aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc
diff options
context:
space:
mode:
authorRong Xu <xur@google.com>2014-07-21 16:47:22 -0700
committerRong Xu <xur@google.com>2014-07-29 15:31:03 -0700
commit38a8aecfb882072900434499696b5c32a2274515 (patch)
tree2aac97f0ae24b03cd98c1a06e989c031c173f889 /gcc-4.9/gcc
parentc231900e5dcc14d8296bd9f62b45997a49d4d5e7 (diff)
downloadtoolchain_gcc-38a8aecfb882072900434499696b5c32a2274515.tar.gz
toolchain_gcc-38a8aecfb882072900434499696b5c32a2274515.tar.bz2
toolchain_gcc-38a8aecfb882072900434499696b5c32a2274515.zip
[4.9] Switch gcc-4.9 to use google/gcc-4_9 branch.
This source drop uses svn version r212828 of google/gcc-4.9 branch. We also cherry-picked r213062, r213063 and r213064 to fix windows build issues. All gcc-4.9 patches before July 3rd are ported to google/gcc-4.9. The following prior commits has not been merged to google branch yet. (They are included in this commit). e7af147f979e657fe2df00808e5b4319b0e088c6, baf87df3cb2683649ba7e9872362a7e721117c23, and c231900e5dcc14d8296bd9f62b45997a49d4d5e7. Change-Id: I4bea3ea470387ff751c2be4cb0d4a12059b9299b
Diffstat (limited to 'gcc-4.9/gcc')
-rw-r--r--gcc-4.9/gcc/BASE-VER2
-rw-r--r--gcc-4.9/gcc/ChangeLog1075
-rw-r--r--gcc-4.9/gcc/DATESTAMP2
-rw-r--r--gcc-4.9/gcc/Makefile.in77
-rw-r--r--gcc-4.9/gcc/ada/ChangeLog56
-rw-r--r--gcc-4.9/gcc/ada/comperr.adb14
-rw-r--r--gcc-4.9/gcc/ada/comperr.ads13
-rw-r--r--gcc-4.9/gcc/ada/exp_cg.adb6
-rw-r--r--gcc-4.9/gcc/ada/exp_dbug.adb77
-rw-r--r--gcc-4.9/gcc/ada/exp_dbug.ads26
-rw-r--r--gcc-4.9/gcc/ada/exp_disp.adb7
-rw-r--r--gcc-4.9/gcc/ada/fe.h23
-rw-r--r--gcc-4.9/gcc/ada/gcc-interface/Makefile.in38
-rw-r--r--gcc-4.9/gcc/ada/gcc-interface/decl.c26
-rw-r--r--gcc-4.9/gcc/ada/gcc-interface/misc.c22
-rw-r--r--gcc-4.9/gcc/ada/gcc-interface/trans.c16
-rw-r--r--gcc-4.9/gcc/ada/gcc-interface/utils.c3
-rw-r--r--gcc-4.9/gcc/ada/init.c13
-rw-r--r--gcc-4.9/gcc/ada/types.h18
-rw-r--r--gcc-4.9/gcc/alias.c66
-rw-r--r--gcc-4.9/gcc/attribs.c1
-rw-r--r--gcc-4.9/gcc/auto-profile.c1865
-rw-r--r--gcc-4.9/gcc/auto-profile.h36
-rw-r--r--gcc-4.9/gcc/basic-block.h6
-rw-r--r--gcc-4.9/gcc/builtin-types.def4
-rw-r--r--gcc-4.9/gcc/builtins.c8
-rw-r--r--gcc-4.9/gcc/c-family/ChangeLog26
-rw-r--r--gcc-4.9/gcc/c-family/c-common.c117
-rw-r--r--gcc-4.9/gcc/c-family/c-common.h3
-rw-r--r--gcc-4.9/gcc/c-family/c-cppbuiltin.c29
-rw-r--r--gcc-4.9/gcc/c-family/c-gimplify.c4
-rw-r--r--gcc-4.9/gcc/c-family/c-omp.c9
-rw-r--r--gcc-4.9/gcc/c-family/c-opts.c126
-rw-r--r--gcc-4.9/gcc/c-family/c-pragma.c2
-rw-r--r--gcc-4.9/gcc/c-family/c.opt4
-rw-r--r--gcc-4.9/gcc/c/ChangeLog51
-rw-r--r--gcc-4.9/gcc/c/c-array-notation.c18
-rw-r--r--gcc-4.9/gcc/c/c-decl.c374
-rw-r--r--gcc-4.9/gcc/c/c-lang.c21
-rw-r--r--gcc-4.9/gcc/c/c-parser.c36
-rw-r--r--gcc-4.9/gcc/c/c-tree.h15
-rw-r--r--gcc-4.9/gcc/c/c-typeck.c3
-rw-r--r--gcc-4.9/gcc/cfg-flags.def9
-rw-r--r--gcc-4.9/gcc/cfg.c20
-rw-r--r--gcc-4.9/gcc/cfgexpand.c5
-rw-r--r--gcc-4.9/gcc/cfghooks.c17
-rw-r--r--gcc-4.9/gcc/cfgloop.c94
-rw-r--r--gcc-4.9/gcc/cfgloop.h17
-rw-r--r--gcc-4.9/gcc/cfgrtl.c4
-rw-r--r--gcc-4.9/gcc/cgraph.c67
-rw-r--r--gcc-4.9/gcc/cgraph.h79
-rw-r--r--gcc-4.9/gcc/cgraphbuild.c391
-rw-r--r--gcc-4.9/gcc/cgraphclones.c87
-rw-r--r--gcc-4.9/gcc/cgraphunit.c191
-rw-r--r--gcc-4.9/gcc/cif-code.def8
-rw-r--r--gcc-4.9/gcc/combine.c2
-rw-r--r--gcc-4.9/gcc/common.opt203
-rw-r--r--gcc-4.9/gcc/common/config/msp430/msp430-common.c91
-rw-r--r--gcc-4.9/gcc/common/config/nds32/nds32-common.c2
-rw-r--r--gcc-4.9/gcc/config.gcc50
-rw-r--r--gcc-4.9/gcc/config.host1
-rw-r--r--gcc-4.9/gcc/config.in24
-rw-r--r--gcc-4.9/gcc/config/aarch64/aarch64-linux-android.h59
-rw-r--r--gcc-4.9/gcc/config/aarch64/aarch64-linux.h35
-rw-r--r--gcc-4.9/gcc/config/aarch64/aarch64-modes.def1
-rw-r--r--gcc-4.9/gcc/config/aarch64/aarch64-simd.md461
-rw-r--r--gcc-4.9/gcc/config/aarch64/aarch64.c20
-rw-r--r--gcc-4.9/gcc/config/aarch64/aarch64.md28
-rw-r--r--gcc-4.9/gcc/config/aarch64/arm_neon.h50
-rw-r--r--gcc-4.9/gcc/config/aarch64/iterators.md16
-rw-r--r--gcc-4.9/gcc/config/alpha/alpha.c6
-rw-r--r--gcc-4.9/gcc/config/arm/aout.h9
-rw-r--r--gcc-4.9/gcc/config/arm/arm-cores.def9
-rw-r--r--gcc-4.9/gcc/config/arm/arm-opts.h9
-rw-r--r--gcc-4.9/gcc/config/arm/arm.c13
-rw-r--r--gcc-4.9/gcc/config/arm/arm.h9
-rw-r--r--gcc-4.9/gcc/config/arm/arm.md13
-rw-r--r--gcc-4.9/gcc/config/arm/arm_neon.h608
-rw-r--r--gcc-4.9/gcc/config/arm/bpabi.h9
-rw-r--r--gcc-4.9/gcc/config/arm/elf.h9
-rw-r--r--gcc-4.9/gcc/config/arm/linux-eabi.h5
-rw-r--r--gcc-4.9/gcc/config/arm/linux-elf.h11
-rw-r--r--gcc-4.9/gcc/config/arm/linux-gas.h9
-rw-r--r--gcc-4.9/gcc/config/arm/linux-grte.h27
-rw-r--r--gcc-4.9/gcc/config/arm/neon-docgen.ml424
-rw-r--r--gcc-4.9/gcc/config/arm/neon-gen.ml520
-rw-r--r--gcc-4.9/gcc/config/arm/netbsd-elf.h9
-rw-r--r--gcc-4.9/gcc/config/arm/uclinux-eabi.h9
-rw-r--r--gcc-4.9/gcc/config/arm/uclinux-elf.h9
-rw-r--r--gcc-4.9/gcc/config/arm/unspecs.md9
-rw-r--r--gcc-4.9/gcc/config/arm/vxworks.h9
-rw-r--r--gcc-4.9/gcc/config/avr/avr-fixed.md4
-rw-r--r--gcc-4.9/gcc/config/avr/avr.h14
-rw-r--r--gcc-4.9/gcc/config/avr/avr.md9
-rw-r--r--gcc-4.9/gcc/config/dbx.h9
-rw-r--r--gcc-4.9/gcc/config/i386/driver-i386.c5
-rw-r--r--gcc-4.9/gcc/config/i386/gnu-user.h6
-rw-r--r--gcc-4.9/gcc/config/i386/i386-protos.h11
-rw-r--r--gcc-4.9/gcc/config/i386/i386.c362
-rw-r--r--gcc-4.9/gcc/config/i386/i386.md97
-rw-r--r--gcc-4.9/gcc/config/i386/i386.opt20
-rw-r--r--gcc-4.9/gcc/config/i386/linux.h20
-rw-r--r--gcc-4.9/gcc/config/i386/linux64.h19
-rw-r--r--gcc-4.9/gcc/config/i386/sse.md64
-rw-r--r--gcc-4.9/gcc/config/initfini-array.h9
-rw-r--r--gcc-4.9/gcc/config/linux-grte.h41
-rw-r--r--gcc-4.9/gcc/config/linux.c4
-rw-r--r--gcc-4.9/gcc/config/linux.h17
-rw-r--r--gcc-4.9/gcc/config/msp430/msp430-opts.h32
-rw-r--r--gcc-4.9/gcc/config/msp430/msp430.c117
-rw-r--r--gcc-4.9/gcc/config/msp430/msp430.h4
-rw-r--r--gcc-4.9/gcc/config/msp430/msp430.md32
-rw-r--r--gcc-4.9/gcc/config/msp430/predicates.md4
-rw-r--r--gcc-4.9/gcc/config/newlib-stdint.h9
-rw-r--r--gcc-4.9/gcc/config/rs6000/htm.md2
-rw-r--r--gcc-4.9/gcc/config/rs6000/htmxlintrin.h9
-rw-r--r--gcc-4.9/gcc/config/rs6000/linux-grte.h41
-rw-r--r--gcc-4.9/gcc/config/rs6000/linux64.h6
-rw-r--r--gcc-4.9/gcc/config/rs6000/rs6000-builtin.def21
-rw-r--r--gcc-4.9/gcc/config/rs6000/rs6000-protos.h2
-rw-r--r--gcc-4.9/gcc/config/rs6000/rs6000.c71
-rw-r--r--gcc-4.9/gcc/config/rs6000/rs6000.h17
-rw-r--r--gcc-4.9/gcc/config/rs6000/rs6000.md24
-rw-r--r--gcc-4.9/gcc/config/rs6000/sysv4.h11
-rw-r--r--gcc-4.9/gcc/config/rs6000/vsx.md43
-rw-r--r--gcc-4.9/gcc/config/rtems.h9
-rw-r--r--gcc-4.9/gcc/config/sol2-clearcap.map2
-rw-r--r--gcc-4.9/gcc/config/sol2-clearcapv2.map7
-rw-r--r--gcc-4.9/gcc/config/sol2.h11
-rw-r--r--gcc-4.9/gcc/config/sol2.opt4
-rw-r--r--gcc-4.9/gcc/config/t-sol27
-rw-r--r--gcc-4.9/gcc/config/v850/rtems.h9
-rw-r--r--gcc-4.9/gcc/config/v850/v850-opts.h9
-rw-r--r--gcc-4.9/gcc/config/v850/v850.h9
-rwxr-xr-xgcc-4.9/gcc/configure190
-rw-r--r--gcc-4.9/gcc/configure.ac95
-rw-r--r--gcc-4.9/gcc/coverage.c1899
-rw-r--r--gcc-4.9/gcc/coverage.h37
-rw-r--r--gcc-4.9/gcc/cp/ChangeLog165
-rw-r--r--gcc-4.9/gcc/cp/call.c78
-rw-r--r--gcc-4.9/gcc/cp/class.c13
-rw-r--r--gcc-4.9/gcc/cp/cp-array-notation.c7
-rw-r--r--gcc-4.9/gcc/cp/cp-gimplify.c23
-rw-r--r--gcc-4.9/gcc/cp/cp-lang.c43
-rw-r--r--gcc-4.9/gcc/cp/cp-objcp-common.c465
-rw-r--r--gcc-4.9/gcc/cp/cp-tree.h49
-rw-r--r--gcc-4.9/gcc/cp/decl.c47
-rw-r--r--gcc-4.9/gcc/cp/decl2.c176
-rw-r--r--gcc-4.9/gcc/cp/error.c5
-rw-r--r--gcc-4.9/gcc/cp/friend.c10
-rw-r--r--gcc-4.9/gcc/cp/init.c85
-rw-r--r--gcc-4.9/gcc/cp/mangle.c33
-rw-r--r--gcc-4.9/gcc/cp/method.c6
-rw-r--r--gcc-4.9/gcc/cp/name-lookup.c54
-rw-r--r--gcc-4.9/gcc/cp/name-lookup.h1
-rw-r--r--gcc-4.9/gcc/cp/parser.c148
-rw-r--r--gcc-4.9/gcc/cp/parser.h9
-rw-r--r--gcc-4.9/gcc/cp/pt.c55
-rw-r--r--gcc-4.9/gcc/cp/rtti.c10
-rw-r--r--gcc-4.9/gcc/cp/semantics.c54
-rw-r--r--gcc-4.9/gcc/cp/tree.c11
-rw-r--r--gcc-4.9/gcc/cp/typeck.c6
-rw-r--r--gcc-4.9/gcc/cp/typeck2.c16
-rw-r--r--gcc-4.9/gcc/dbgcnt.def2
-rw-r--r--gcc-4.9/gcc/dce.c3
-rw-r--r--gcc-4.9/gcc/debug.h1
-rw-r--r--gcc-4.9/gcc/df-problems.c26
-rw-r--r--gcc-4.9/gcc/df.h2
-rw-r--r--gcc-4.9/gcc/diagnostic.c12
-rw-r--r--gcc-4.9/gcc/diagnostic.h3
-rw-r--r--gcc-4.9/gcc/doc/aot-compile.1209
-rw-r--r--gcc-4.9/gcc/doc/arm-acle-intrinsics.texi10
-rw-r--r--gcc-4.9/gcc/doc/arm-neon-intrinsics.texi2
-rw-r--r--gcc-4.9/gcc/doc/cpp.11046
-rw-r--r--gcc-4.9/gcc/doc/cpp.info5602
-rw-r--r--gcc-4.9/gcc/doc/cppinternals.info1029
-rw-r--r--gcc-4.9/gcc/doc/extend.texi13
-rw-r--r--gcc-4.9/gcc/doc/fsf-funding.7193
-rw-r--r--gcc-4.9/gcc/doc/g++.121501
-rw-r--r--gcc-4.9/gcc/doc/gc-analyze.1231
-rw-r--r--gcc-4.9/gcc/doc/gcc.121501
-rw-r--r--gcc-4.9/gcc/doc/gcc.info56908
-rw-r--r--gcc-4.9/gcc/doc/gcc.texi3
-rw-r--r--gcc-4.9/gcc/doc/gccinstall.info4679
-rw-r--r--gcc-4.9/gcc/doc/gccint.info50307
-rw-r--r--gcc-4.9/gcc/doc/gcj-dbtool.1247
-rw-r--r--gcc-4.9/gcc/doc/gcj.1593
-rw-r--r--gcc-4.9/gcc/doc/gcj.info3653
-rw-r--r--gcc-4.9/gcc/doc/gcov-tool.texi189
-rw-r--r--gcc-4.9/gcc/doc/gcov.1733
-rw-r--r--gcc-4.9/gcc/doc/generic.texi10
-rw-r--r--gcc-4.9/gcc/doc/gfdl.71
-rw-r--r--gcc-4.9/gcc/doc/gfortran.11411
-rw-r--r--gcc-4.9/gcc/doc/gij.1295
-rw-r--r--gcc-4.9/gcc/doc/gpl.7850
-rw-r--r--gcc-4.9/gcc/doc/grmic.1222
-rw-r--r--gcc-4.9/gcc/doc/install.texi38
-rw-r--r--gcc-4.9/gcc/doc/invoke.texi352
-rw-r--r--gcc-4.9/gcc/doc/jcf-dump.1217
-rw-r--r--gcc-4.9/gcc/doc/jv-convert.1210
-rw-r--r--gcc-4.9/gcc/doc/md.texi10
-rw-r--r--gcc-4.9/gcc/doc/options.texi4
-rw-r--r--gcc-4.9/gcc/doc/rebuild-gcj-db.1181
-rw-r--r--gcc-4.9/gcc/doc/sourcebuild.texi3
-rw-r--r--gcc-4.9/gcc/doc/tm.texi7
-rw-r--r--gcc-4.9/gcc/doc/tm.texi.in7
-rw-r--r--gcc-4.9/gcc/double-int.c2
-rw-r--r--gcc-4.9/gcc/dumpfile.c6
-rw-r--r--gcc-4.9/gcc/dwarf2out.c207
-rw-r--r--gcc-4.9/gcc/dwarf2out.h4
-rw-r--r--gcc-4.9/gcc/except.c12
-rw-r--r--gcc-4.9/gcc/expmed.c19
-rw-r--r--gcc-4.9/gcc/expr.c14
-rw-r--r--gcc-4.9/gcc/final.c121
-rw-r--r--gcc-4.9/gcc/fold-const.c220
-rw-r--r--gcc-4.9/gcc/fortran/ChangeLog604
-rw-r--r--gcc-4.9/gcc/fortran/cpp.c2
-rw-r--r--gcc-4.9/gcc/fortran/decl.c7
-rw-r--r--gcc-4.9/gcc/fortran/dump-parse-tree.c205
-rw-r--r--gcc-4.9/gcc/fortran/f95-lang.c39
-rw-r--r--gcc-4.9/gcc/fortran/frontend-passes.c73
-rw-r--r--gcc-4.9/gcc/fortran/gfortran.h231
-rw-r--r--gcc-4.9/gcc/fortran/gfortran.info18449
-rw-r--r--gcc-4.9/gcc/fortran/gfortran.texi6
-rw-r--r--gcc-4.9/gcc/fortran/gfortranspec.c38
-rw-r--r--gcc-4.9/gcc/fortran/intrinsic.texi9
-rw-r--r--gcc-4.9/gcc/fortran/match.c29
-rw-r--r--gcc-4.9/gcc/fortran/match.h26
-rw-r--r--gcc-4.9/gcc/fortran/module.c502
-rw-r--r--gcc-4.9/gcc/fortran/openmp.c2341
-rw-r--r--gcc-4.9/gcc/fortran/parse.c520
-rw-r--r--gcc-4.9/gcc/fortran/resolve.c117
-rw-r--r--gcc-4.9/gcc/fortran/scanner.c7
-rw-r--r--gcc-4.9/gcc/fortran/st.c25
-rw-r--r--gcc-4.9/gcc/fortran/symbol.c61
-rw-r--r--gcc-4.9/gcc/fortran/trans-array.c51
-rw-r--r--gcc-4.9/gcc/fortran/trans-array.h4
-rw-r--r--gcc-4.9/gcc/fortran/trans-common.c6
-rw-r--r--gcc-4.9/gcc/fortran/trans-decl.c51
-rw-r--r--gcc-4.9/gcc/fortran/trans-expr.c16
-rw-r--r--gcc-4.9/gcc/fortran/trans-openmp.c2696
-rw-r--r--gcc-4.9/gcc/fortran/trans-stmt.c7
-rw-r--r--gcc-4.9/gcc/fortran/trans-stmt.h1
-rw-r--r--gcc-4.9/gcc/fortran/trans-types.c7
-rw-r--r--gcc-4.9/gcc/fortran/trans.c23
-rw-r--r--gcc-4.9/gcc/fortran/trans.h18
-rw-r--r--gcc-4.9/gcc/function.c35
-rw-r--r--gcc-4.9/gcc/function.h46
-rw-r--r--gcc-4.9/gcc/gcc.c87
-rw-r--r--gcc-4.9/gcc/gcov-counter.def60
-rw-r--r--gcc-4.9/gcc/gcov-dump.c104
-rw-r--r--gcc-4.9/gcc/gcov-io.c90
-rw-r--r--gcc-4.9/gcc/gcov-io.h136
-rw-r--r--gcc-4.9/gcc/gcov-tool.c832
-rw-r--r--gcc-4.9/gcc/gcov.c2
-rw-r--r--gcc-4.9/gcc/gengtype-lex.c2897
-rw-r--r--gcc-4.9/gcc/ggc-page.c15
-rw-r--r--gcc-4.9/gcc/ggc.h3
-rw-r--r--gcc-4.9/gcc/gimple-expr.c5
-rw-r--r--gcc-4.9/gcc/gimple-fold.c4
-rw-r--r--gcc-4.9/gcc/gimple-low.c2
-rw-r--r--gcc-4.9/gcc/gimple-pretty-print.c21
-rw-r--r--gcc-4.9/gcc/gimple.c2
-rw-r--r--gcc-4.9/gcc/gimplify.c205
-rw-r--r--gcc-4.9/gcc/gimplify.h1
-rw-r--r--gcc-4.9/gcc/go/gofrontend/lex.cc2
-rw-r--r--gcc-4.9/gcc/graphite-scop-detection.c6
-rw-r--r--gcc-4.9/gcc/incpath.c24
-rw-r--r--gcc-4.9/gcc/incpath.h3
-rw-r--r--gcc-4.9/gcc/input.c93
-rw-r--r--gcc-4.9/gcc/input.h8
-rw-r--r--gcc-4.9/gcc/ipa-cp.c31
-rw-r--r--gcc-4.9/gcc/ipa-devirt.c6
-rw-r--r--gcc-4.9/gcc/ipa-inline-analysis.c27
-rw-r--r--gcc-4.9/gcc/ipa-inline-transform.c177
-rw-r--r--gcc-4.9/gcc/ipa-inline.c252
-rw-r--r--gcc-4.9/gcc/ipa-inline.h7
-rw-r--r--gcc-4.9/gcc/ipa-prop.c78
-rw-r--r--gcc-4.9/gcc/ipa-prop.h1
-rw-r--r--gcc-4.9/gcc/ipa-pure-const.c6
-rw-r--r--gcc-4.9/gcc/ipa-utils.c4
-rw-r--r--gcc-4.9/gcc/ipa-utils.h6
-rw-r--r--gcc-4.9/gcc/ipa.c75
-rw-r--r--gcc-4.9/gcc/ira-costs.c192
-rw-r--r--gcc-4.9/gcc/ira-int.h5
-rw-r--r--gcc-4.9/gcc/java/Make-lang.in2
-rw-r--r--gcc-4.9/gcc/l-ipo.c2394
-rw-r--r--gcc-4.9/gcc/l-ipo.h68
-rw-r--r--gcc-4.9/gcc/langhooks-def.h48
-rw-r--r--gcc-4.9/gcc/langhooks.c55
-rw-r--r--gcc-4.9/gcc/langhooks.h66
-rw-r--r--gcc-4.9/gcc/loop-iv.c8
-rw-r--r--gcc-4.9/gcc/loop-unroll.c290
-rw-r--r--gcc-4.9/gcc/lra-constraints.c56
-rw-r--r--gcc-4.9/gcc/lra-eliminations.c10
-rw-r--r--gcc-4.9/gcc/lto/ChangeLog5
-rw-r--r--gcc-4.9/gcc/lto/lto-symtab.c7
-rw-r--r--gcc-4.9/gcc/mcf.c163
-rw-r--r--gcc-4.9/gcc/mversn-dispatch.c1769
-rw-r--r--gcc-4.9/gcc/omp-low.c215
-rw-r--r--gcc-4.9/gcc/optabs.c3
-rw-r--r--gcc-4.9/gcc/optabs.def2
-rw-r--r--gcc-4.9/gcc/opts-global.c45
-rw-r--r--gcc-4.9/gcc/opts.c132
-rw-r--r--gcc-4.9/gcc/opts.h16
-rw-r--r--gcc-4.9/gcc/params.c2
-rw-r--r--gcc-4.9/gcc/params.def262
-rw-r--r--gcc-4.9/gcc/passes.c15
-rw-r--r--gcc-4.9/gcc/passes.def2
-rw-r--r--gcc-4.9/gcc/po/ChangeLog4
-rw-r--r--gcc-4.9/gcc/po/be.gmobin10532 -> 0 bytes
-rw-r--r--gcc-4.9/gcc/po/da.gmobin137513 -> 0 bytes
-rw-r--r--gcc-4.9/gcc/po/de.gmobin1197941 -> 0 bytes
-rw-r--r--gcc-4.9/gcc/po/el.gmobin11733 -> 0 bytes
-rw-r--r--gcc-4.9/gcc/po/es.gmobin1129927 -> 0 bytes
-rw-r--r--gcc-4.9/gcc/po/fi.gmobin253499 -> 0 bytes
-rw-r--r--gcc-4.9/gcc/po/fr.gmobin198110 -> 0 bytes
-rw-r--r--gcc-4.9/gcc/po/hr.gmobin16065 -> 0 bytes
-rw-r--r--gcc-4.9/gcc/po/id.gmobin666820 -> 0 bytes
-rw-r--r--gcc-4.9/gcc/po/ja.gmobin493928 -> 0 bytes
-rw-r--r--gcc-4.9/gcc/po/nl.gmobin95067 -> 0 bytes
-rw-r--r--gcc-4.9/gcc/po/ru.gmobin505514 -> 0 bytes
-rw-r--r--gcc-4.9/gcc/po/sr.gmobin652078 -> 0 bytes
-rw-r--r--gcc-4.9/gcc/po/sv.gmobin1298864 -> 0 bytes
-rw-r--r--gcc-4.9/gcc/po/tr.gmobin465450 -> 0 bytes
-rw-r--r--gcc-4.9/gcc/po/vi.gmobin461464 -> 0 bytes
-rw-r--r--gcc-4.9/gcc/po/zh_CN.gmobin791208 -> 0 bytes
-rw-r--r--gcc-4.9/gcc/po/zh_CN.po1532
-rw-r--r--gcc-4.9/gcc/po/zh_TW.gmobin387769 -> 0 bytes
-rw-r--r--gcc-4.9/gcc/predict.c23
-rw-r--r--gcc-4.9/gcc/print-rtl.c9
-rw-r--r--gcc-4.9/gcc/profile.c45
-rw-r--r--gcc-4.9/gcc/profile.h8
-rw-r--r--gcc-4.9/gcc/ree.c53
-rw-r--r--gcc-4.9/gcc/regs.h4
-rw-r--r--gcc-4.9/gcc/rtl.h1
-rw-r--r--gcc-4.9/gcc/sel-sched-ir.c56
-rw-r--r--gcc-4.9/gcc/stmt.c4
-rw-r--r--gcc-4.9/gcc/symtab.c40
-rw-r--r--gcc-4.9/gcc/testsuite/ChangeLog582
-rw-r--r--gcc-4.9/gcc/testsuite/ChangeLog-20133197
-rw-r--r--gcc-4.9/gcc/testsuite/ada/.gitignore2
-rw-r--r--gcc-4.9/gcc/testsuite/c-c++-common/cilk-plus/AN/pr57541-2.c15
-rwxr-xr-xgcc-4.9/gcc/testsuite/c-c++-common/cilk-plus/AN/pr57541.c13
-rw-r--r--gcc-4.9/gcc/testsuite/c-c++-common/cilk-plus/AN/pr58942.c8
-rw-r--r--gcc-4.9/gcc/testsuite/c-c++-common/cilk-plus/AN/pr61191.c10
-rw-r--r--gcc-4.9/gcc/testsuite/c-c++-common/cilk-plus/CK/invalid_sync.cc9
-rw-r--r--gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr59073.c12
-rw-r--r--gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr60823-1.c19
-rw-r--r--gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr60823-2.c44
-rw-r--r--gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr60823-3.c32
-rw-r--r--gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr61486-1.c13
-rw-r--r--gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr61486-2.c458
-rw-r--r--gcc-4.9/gcc/testsuite/c-c++-common/torture/pr60971.c34
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp0x/constexpr-aggr1.C17
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp0x/constexpr-ptrmem2.C13
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp0x/constexpr-template7.C32
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp0x/defaulted49.C15
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp0x/initlist84.C17
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp0x/initlist86.C18
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp0x/lambda/lambda-const3.C38
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp0x/lambda/lambda-template13.C20
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp0x/lambda/lambda-this18.C30
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp0x/nsdmi-template10.C14
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp0x/nsdmi-template11.C15
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp0x/nsdmi-template12.C17
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp0x/nsdmi-template13.C11
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp0x/nsdmi-template9.C16
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp0x/pr58155.C13
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp0x/pr58781.C18
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp0x/pr60249.C6
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp0x/ref-qual15.C13
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp0x/sfinae50.C41
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp0x/variadic158.C24
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp0x/variadic159.C14
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp0x/variadic160.C49
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/cpp1y/pr59867.C52
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/debug/dwarf2/cdtor-1.C2
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/debug/dwarf2/dwarf4-nested.C55
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/debug/dwarf2/dwarf4-typedef.C2
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/debug/dwarf2/imported-decl-2.C32
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/debug/dwarf2/pr61433.C23
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/eh/spec3-static.C25
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/ext/complit14.C11
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/gcov/gcov-7.C28
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/guality/guality.exp3
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/init/copy7.C9
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/ipa/devirt-11.C4
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/ipa/devirt-25.C2
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/ipa/devirt-31.C23
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/ipa/devirt-9.C2
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/ipa/pr60600.C4
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/ipa/pr61085.C33
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/ipa/pr61160-1.C31
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/ipa/pr61160-2.C43
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/ipa/pr61160-3.C37
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/ipa/pr61540.C38
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/opt/pr60849.C13
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/opt/pr60912.C18
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/opt/pr61456.C26
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/opt/pr61654.C27
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/opt/typeinfo1.C27
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/other/no-strict-enum-precision-1.C35
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/other/no-strict-enum-precision-2.C37
-rwxr-xr-xgcc-4.9/gcc/testsuite/g++.dg/other/no-strict-enum-precision-3.C21
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/other/sized-delete-1.C14
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/plugin/selfassign.c4
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/pr60969.C32
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/pr61094.C31
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/pr61289-2.c62
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/pr61289.C63
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/rtti/repo1.C1
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/template/conv14.C30
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/template/local-fn1.C8
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/template/pr61537.C23
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/template/ptrmem27.C22
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/template/ptrmem28.C10
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/thunk_section_name.C30
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tls/thread_local9.C23
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/torture/pr60854.C13
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/torture/pr60895.C32
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_1.C45
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_2.C25
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_3.C25
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_4.C41
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_5.C41
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_6.C53
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_7.C55
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_8.C19
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_split_functions_1.C63
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/indir-call-prof-2_0.C35
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/indir-call-prof_0.C39
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/inline_mismatch_args_0.C36
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/lipo.exp60
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/partition1_0.C54
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/partition2_0.C16
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/partition3_0.C18
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/vcall1_0.C41
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/vcall1_1.C23
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/vcall1_2.C31
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/morefunc.C55
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/reorder.C48
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/reorder_class1.h11
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/reorder_class2.h12
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-prof/tree-prof.exp4
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-ssa/forwprop-switch.C24
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/tree-ssa/pr61009.C53
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/vect/pr60836.cc39
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/warn/Weff1.C5
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/warn/Wnull-conversion-1.C2
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/warn/Wnull-conversion-2.C58
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-1.C54
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-3.C35
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-4.C48
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-5.C38
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-non-pod-1.C54
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-non-pod-3.C35
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-non-pod-4.C48
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-non-pod-5.C38
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/warn/Wshadow-compatible-local-1.C63
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/warn/Wshadow-local-1.C35
-rw-r--r--gcc-4.9/gcc/testsuite/g++.dg/warn/Wshadow-local-2.C63
-rw-r--r--gcc-4.9/gcc/testsuite/g++.old-deja/g++.benjamin/15309-1.C21
-rw-r--r--gcc-4.9/gcc/testsuite/g++.old-deja/g++.benjamin/15309-2.C10
-rw-r--r--gcc-4.9/gcc/testsuite/g++.old-deja/g++.ext/memconst.C2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.c-torture/compile/pr61684.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.c-torture/execute/20140425-1.c23
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr60960.c38
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr61306-1.c39
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr61306-2.c40
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr61306-3.c13
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr61673.c50
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr61725.c14
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/Wshadow-compatible-local-1.c36
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/Wshadow-local-1.c23
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/Wshadow-local-2.c49
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/Wshadow-local-3.c9
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/autopar/outer-1.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/autopar/outer-3.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/autopar/outer-4.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/autopar/outer-5.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/autopar/parallelization-1.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-1.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-1char.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-1short.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-2.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-2char.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-2short.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-3.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-6.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-7.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-8.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-9.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/debug/dwarf2/mlt1.c32
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/debug/dwarf2/mlt2.c31
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/fstack-protector-strong.c5
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/graphite/pr55022.c27
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/graphite/pr59817-1.c16
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/graphite/pr59817-2.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/graphite/pr60979.c37
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/guality/guality.exp3
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/lto/pr60720_0.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/lto/pr60720_1.c1
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/lto/pr60911_0.c21
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/lto/pr61526_0.c6
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/lto/pr61526_1.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/plugin/selfassign.c4
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/pr47793.c1
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/pr53265.c4
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/pr57233.c171
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/pr60844.c16
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/pr60866.c18
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/pr61045.c12
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/pr61053.c75
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/pr61060.c19
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/pr61158.c12
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/pr61583.c18
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/record-compilation-info-in-elf-1.c16
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/torture/pr56965-1.c32
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/torture/pr56965-2.c34
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/torture/pr57864.c37
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/torture/pr60891.c23
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/torture/pr60903.c22
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/torture/pr60930.c22
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/torture/pr61010.c8
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/torture/pr61383-1.c35
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/torture/pr61452.c31
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/torture/pr61681.c37
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/crossmodule-indircall-1a.c1
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/inliner-1.c4
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/bb-reorg_0.c39
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/ic-misattribution-1_0.c19
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/ic-misattribution-1_1.c18
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/indir-call-prof-single_0.c43
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/indir-call-prof_0.c23
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/indir-call-prof_1.c23
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/inliner-1_0.c42
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/lipo.exp60
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/lipo_inline1_0.c29
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/lipo_inline1_1.c22
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/lipo_inline1_2.c6
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/pr34999_0.c45
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/pr45354_0.c43
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/pr47187_0.c23
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/stringop-1_0.c22
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/stringop-2_0.c20
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/tracer-1_0.c18
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/update-cunroll-2_0.c21
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/update-loopch_0.c20
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/update-tailcall_0.c20
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-1_0.c22
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-2_0.c32
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-3_0.c32
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-4_0.c32
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-5_0.c17
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-6_0.c20
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-7_0.c26
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/wcoverage-mismatch_0.c20
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/merge_block.c21
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/ivopt_1.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/ivopt_2.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/ivopt_4.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/ivopts-lt.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/loop-16.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/predcom-1.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/predcom-4.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/predcom-5.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/prefetch-7.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/prefetch-8.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/prefetch-9.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/vrp93.c36
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/typeof-2.c28
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/unused-8b.c4
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/var-expand1.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/vect/pr60841.c183
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/vect/pr61680.c51
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/vect/vect-reduc-sad.c54
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/vect/vect-singleton_1.c38
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/vect/vect.exp25
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/wself-assign-1.c27
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.dg/wself-assign-2.c24
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.misc-tests/help.exp2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/aapcs64/type-def.h7
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/aapcs64/va_arg-13.c59
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/aapcs64/va_arg-14.c35
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/aapcs64/va_arg-15.c39
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/pr61325.c19
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/scalar_intrinsics.c26
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vector_intrinsics.c14
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_high_lane_s16.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_high_lane_s32.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_high_laneq_s16.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_high_laneq_s32.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_lane_s16.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_lane_s32.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_laneq_s16.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_laneq_s32.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlalh_lane_s16.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlals_lane_s32.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_high_lane_s16.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_high_lane_s32.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_high_laneq_s16.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_high_laneq_s32.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_lane_s16.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_lane_s32.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_laneq_s32.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlslh_lane_s16.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsls_lane_s32.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulh_laneq_s16.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulh_laneq_s32.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulhh_lane_s16.c36
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulhq_laneq_s16.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulhq_laneq_s32.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulhs_lane_s32.c34
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_high_lane_s16.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_high_lane_s32.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_high_laneq_s16.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_high_laneq_s32.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_lane_s16.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_lane_s32.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_laneq_s16.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_laneq_s32.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmullh_lane_s16.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulls_lane_s32.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulh_laneq_s16.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulh_laneq_s32.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulhh_lane_s16.c35
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulhq_laneq_s16.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulhq_laneq_s32.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulhs_lane_s32.c35
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/alpha/pr61586.c10
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/arm/pr48252.c13
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/avr/pr60991.c21
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/avr/torture/pr61055.c88
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/avr/torture/pr61443.c134
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/avx-pr57233.c16
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-pr57233.c16
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpaddb-3.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpaddw-3.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpmullw-3.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpsraw-3.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpsrlw-3.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpsubb-3.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpsubw-3.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/avx512f-pr57233.c16
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-andn-1a.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-andn-2a.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-bextr-1a.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-bextr-2a.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsi-1a.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsi-2a.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsmsk-1a.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsmsk-2a.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsr-1a.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsr-2a.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-tzcnt-1a.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-tzcnt-2a.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-bzhi32-1a.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-bzhi64-1a.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-pdep32-1a.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-pdep64-1a.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-pext32-1a.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-pext64-1a.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/cadd.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/clearcap.map3
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/clearcapv2.map7
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/i386.exp36
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-1.c23
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-2.c21
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-3.c21
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-4.c22
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-5.c22
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-6.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-7.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-8.c29
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-force-no-patching.c27
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-force-patching.c20
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-sibling-call.c26
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/pie-copyrelocs-1.c13
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/pie-copyrelocs-2.c13
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/pr50038.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/pr57233.c15
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/pr60868.c10
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/pr60901.c17
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/pr60902.c32
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/pr60909-1.c11
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/pr60909-2.c11
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/pr61423.c38
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/pr61446.c14
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/pr61599-1.c13
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/pr61599-2.c13
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/recip-vec-sqrtf-avx.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/sse2-pr57233.c16
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/sse2-unaligned-mov.c20
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/sse4_1-roundss-1.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/sse4_1-roundss-2.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/sse4_1-roundss-3.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/vec-may_alias.c25
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/wmul-1.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/i386/xop-pr57233.c16
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/powerpc/bcd-1.c27
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/powerpc/bcd-2.c44
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/powerpc/bcd-3.c103
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/powerpc/dfp-builtin-1.c88
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/powerpc/dfp-builtin-2.c88
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/powerpc/extend-divide-1.c34
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/powerpc/extend-divide-2.c34
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/powerpc/htm-ttest.c14
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/powerpc/pack01.c91
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/powerpc/pack02.c96
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/powerpc/pack03.c88
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/powerpc/pr60735.c11
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/powerpc/tfmode_off.c1
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/powerpc/ti_math1.c20
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/powerpc/ti_math2.c73
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/s390/htm-nofloat-2.c55
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/x86_64/abi/avx/abi-avx.exp16
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/x86_64/abi/avx512f/abi-avx512f.exp16
-rw-r--r--gcc-4.9/gcc/testsuite/gcc.target/x86_64/abi/callabi/leaf-2.c2
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/allocatable_function_8.f9059
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/arrayio_14.f9018
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/arrayio_15.f9011
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/arrayio_16.f9013
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/associate_16.f9023
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/associate_17.f9012
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/class_array_15.f033
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/cray_pointers_10.f9018
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/default_format_denormal_2.f904
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/finalize_25.f9055
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/affinity-1.f9019
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/allocatable_components_1.f9010
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/appendix-a/a.31.3.f902
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/associate1.f9083
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/declare-simd-1.f909
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/depend-1.f9013
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/intentin1.f9016
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/omp_do_concurrent.f9013
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/openmp-simd-1.f90137
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/openmp-simd-2.f9028
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/openmp-simd-3.f9028
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/proc_ptr_2.f9014
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/reduction1.f9068
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/reduction3.f908
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/target1.f90520
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/target2.f9074
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/target3.f9012
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr1.f9041
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr2.f9053
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr3.f9075
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr4.f9074
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr5.f9059
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr6.f90205
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr7.f9090
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr8.f90351
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/graphite/pr59817.f14
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/guality/guality.exp3
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/list_read_13.f13
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/nint_2.f903
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/oldstyle_5.f8
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/openmp-define-3.f902
-rw-r--r--gcc-4.9/gcc/testsuite/gfortran.dg/round_4.f901
-rw-r--r--gcc-4.9/gcc/testsuite/gnat.dg/aliasing1.adb2
-rw-r--r--gcc-4.9/gcc/testsuite/gnat.dg/enum3.adb23
-rw-r--r--gcc-4.9/gcc/testsuite/gnat.dg/opt38.adb9
-rw-r--r--gcc-4.9/gcc/testsuite/gnat.dg/opt38_pkg.adb33
-rw-r--r--gcc-4.9/gcc/testsuite/gnat.dg/opt38_pkg.ads5
-rw-r--r--gcc-4.9/gcc/testsuite/gnat.dg/opt39.adb31
-rw-r--r--gcc-4.9/gcc/testsuite/gnat.dg/overflow_fixed.adb19
-rw-r--r--gcc-4.9/gcc/testsuite/lib/asan-dg.exp6
-rw-r--r--gcc-4.9/gcc/testsuite/lib/clearcap.exp58
-rw-r--r--gcc-4.9/gcc/testsuite/lib/gcov.exp2
-rw-r--r--gcc-4.9/gcc/testsuite/lib/profopt.exp76
-rw-r--r--gcc-4.9/gcc/testsuite/lib/target-supports-dg.exp19
-rw-r--r--gcc-4.9/gcc/testsuite/lib/target-supports.exp53
-rw-r--r--gcc-4.9/gcc/testsuite/lib/target-supports.exp.orig5791
-rw-r--r--gcc-4.9/gcc/testsuite/lib/ubsan-dg.exp6
-rw-r--r--gcc-4.9/gcc/timevar.def1
-rw-r--r--gcc-4.9/gcc/toplev.c28
-rw-r--r--gcc-4.9/gcc/tree-cfg.c127
-rw-r--r--gcc-4.9/gcc/tree-core.h22
-rw-r--r--gcc-4.9/gcc/tree-diagnostic.c2
-rw-r--r--gcc-4.9/gcc/tree-inline.c65
-rw-r--r--gcc-4.9/gcc/tree-nested.c238
-rw-r--r--gcc-4.9/gcc/tree-pass.h2
-rw-r--r--gcc-4.9/gcc/tree-pretty-print.c21
-rw-r--r--gcc-4.9/gcc/tree-profile.c868
-rw-r--r--gcc-4.9/gcc/tree-sra.c13
-rw-r--r--gcc-4.9/gcc/tree-ssa-alias.c147
-rw-r--r--gcc-4.9/gcc/tree-ssa-forwprop.c55
-rw-r--r--gcc-4.9/gcc/tree-ssa-ifcombine.c7
-rw-r--r--gcc-4.9/gcc/tree-ssa-live.c2
-rw-r--r--gcc-4.9/gcc/tree-ssa-loop-ivcanon.c2
-rw-r--r--gcc-4.9/gcc/tree-ssa-math-opts.c73
-rw-r--r--gcc-4.9/gcc/tree-ssa-operands.c1
-rw-r--r--gcc-4.9/gcc/tree-ssa-sccvn.c89
-rw-r--r--gcc-4.9/gcc/tree-ssa-structalias.c4
-rw-r--r--gcc-4.9/gcc/tree-ssa-tail-merge.c21
-rw-r--r--gcc-4.9/gcc/tree-ssa-threadedge.c113
-rw-r--r--gcc-4.9/gcc/tree-ssa-uninit.c1
-rw-r--r--gcc-4.9/gcc/tree-ssa.c1
-rw-r--r--gcc-4.9/gcc/tree-streamer-in.c3
-rw-r--r--gcc-4.9/gcc/tree-vect-data-refs.c13
-rw-r--r--gcc-4.9/gcc/tree-vect-generic.c161
-rw-r--r--gcc-4.9/gcc/tree-vect-loop.c1
-rw-r--r--gcc-4.9/gcc/tree-vect-patterns.c244
-rw-r--r--gcc-4.9/gcc/tree-vectorizer.h2
-rw-r--r--gcc-4.9/gcc/tree-vrp.c12
-rw-r--r--gcc-4.9/gcc/tree.c12
-rw-r--r--gcc-4.9/gcc/tree.def16
-rw-r--r--gcc-4.9/gcc/tree.h12
-rw-r--r--gcc-4.9/gcc/value-prof.c454
-rw-r--r--gcc-4.9/gcc/value-prof.h8
-rw-r--r--gcc-4.9/gcc/varasm.c28
-rw-r--r--gcc-4.9/gcc/varpool.c25
814 files changed, 44529 insertions, 204924 deletions
diff --git a/gcc-4.9/gcc/BASE-VER b/gcc-4.9/gcc/BASE-VER
index 86a9588ad..d81d21ceb 100644
--- a/gcc-4.9/gcc/BASE-VER
+++ b/gcc-4.9/gcc/BASE-VER
@@ -1 +1 @@
-4.9
+4.9.x-google
diff --git a/gcc-4.9/gcc/ChangeLog b/gcc-4.9/gcc/ChangeLog
index 1ccda1cd6..dd6e9ad47 100644
--- a/gcc-4.9/gcc/ChangeLog
+++ b/gcc-4.9/gcc/ChangeLog
@@ -1,3 +1,1072 @@
+2014-07-11 Rong Xu <xur@google.com>
+
+ Backport r212462 trunk.
+
+ * gcov-tool.c (gcov_output_files): Fix build error introduced in
+ commit r212448.
+
+2014-07-10 Rong Xu <xur@google.com>
+
+ Backport r212448 from trunk.
+
+ Add gcov-tool: an offline gcda profile processing tool
+ Support.
+ * gcov-io.c (gcov_position): Make avaialble to gcov-tool.
+ (gcov_is_error): Ditto.
+ (gcov_read_string): Ditto.
+ (gcov_read_sync): Ditto.
+ * gcov-io.h: Move counter defines to gcov-counter.def.
+ * gcov-dump.c (tag_counters): Use gcov-counter.def.
+ * coverage.c: Ditto.
+ * gcov-tool.c: Offline gcda profile processing tool.
+ (unlink_gcda_file): Remove one gcda file.
+ (unlink_profile_dir): Remove gcda files from the profile path.
+ (gcov_output_files): Output gcda files to an output dir.
+ (profile_merge): Merge two profiles in directory.
+ (print_merge_usage_message): Print merge usage.
+ (merge_usage): Print merge usage and exit.
+ (do_merge): Driver for profile merge sub-command.
+ (profile_rewrite): Rewrite profile.
+ (print_rewrite_usage_message): Print rewrite usage.
+ (rewrite_usage): Print rewrite usage and exit.
+ (do_rewrite): Driver for profile rewrite sub-command.
+ (print_usage): Print gcov-info usage and exit.
+ (print_version): Print gcov-info version.
+ (process_args): Process arguments.
+ (main): Main routine for gcov-tool.
+ * Makefile.in: Build and install gcov-tool.
+ * gcov-counter.def: New file split from gcov-io.h.
+ * doc/gcc.texi: Include gcov-tool.texi.
+ * doc/gcov-tool.texi: Document for gcov-tool.
+
+2014-07-10 Cary Coutant <ccoutant@google.com>
+
+ Backport from trunk at r212211.
+
+ * dwarf2out.c (remove_addr_table_entry): Remove unnecessary hash table
+ lookup.
+ (resolve_addr_in_expr): When replacing the rtx in a location list
+ entry, get a new address table entry.
+ (dwarf2out_finish): Call index_location_lists even if there are no
+ addr_index_table entries yet.
+
+2014-07-10 Tom G. Christensen <tgc@jupiterrise.com>
+
+ * doc/install.texi: Remove links to defunct package providers for
+ Solaris.
+
+2014-07-10 Eric Botcazou <ebotcazou@adacore.com>
+
+ PR middle-end/53590
+ * function.c (allocate_struct_function): Revert r188667 change.
+
+ * gimple-low.c (lower_builtin_setjmp): Use properly-typed constant.
+
+2014-07-09 Alan Lawrence <alan.lawrence@arm.com>
+
+ Backport r211369 from trunk.
+ 2014-06-09 Alan Lawrence <alan.lawrence@arm.com>
+
+ PR target/61062
+ * config/arm/arm_neon.h (vtrn_s8, vtrn_s16, vtrn_u8, vtrn_u16, vtrn_p8,
+ vtrn_p16, vtrn_s32, vtrn_f32, vtrn_u32, vtrnq_s8, vtrnq_s16, vtrnq_s32,
+ vtrnq_f32, vtrnq_u8, vtrnq_u16, vtrnq_u32, vtrnq_p8, vtrnq_p16, vzip_s8,
+ vzip_s16, vzip_u8, vzip_u16, vzip_p8, vzip_p16, vzip_s32, vzip_f32,
+ vzip_u32, vzipq_s8, vzipq_s16, vzipq_s32, vzipq_f32, vzipq_u8,
+ vzipq_u16, vzipq_u32, vzipq_p8, vzipq_p16, vuzp_s8, vuzp_s16, vuzp_s32,
+ vuzp_f32, vuzp_u8, vuzp_u16, vuzp_u32, vuzp_p8, vuzp_p16, vuzpq_s8,
+ vuzpq_s16, vuzpq_s32, vuzpq_f32, vuzpq_u8, vuzpq_u16, vuzpq_u32,
+ vuzpq_p8, vuzpq_p16): Correct mask for bigendian.
+
+
+2014-07-09 Alan Lawrence <alan.lawrence@arm.com>
+
+ Backport r210219 from trunk.
+ 2014-05-08 Ramana Radhakrishnan <ramana.radhakrishnan@arm.com>
+
+ * config/arm/arm_neon.h: Update comment.
+ * config/arm/neon-docgen.ml: Delete.
+ * config/arm/neon-gen.ml: Delete.
+ * doc/arm-neon-intrinsics.texi: Update comment.
+
+2014-07-09 Zhenqiang Chen <zhenqiang.chen@linaro.org>
+
+ Backport r211775 from trunk.
+ 2014-06-18 Terry Guo <terry.guo@arm.com>
+
+ PR target/61544
+ * config/arm/arm.c (thumb1_reorg): Move to next basic block if we
+ reach the head.
+
+2014-07-08 Jakub Jelinek <jakub@redhat.com>
+
+ PR rtl-optimization/61673
+ * combine.c (simplify_comparison): Test just mode's sign bit
+ in tmode rather than the sign bit and any bits above it.
+
+2014-07-08 James Greenhalgh <james.greenhalgh@arm.com>
+
+ Backport r212298 from trunk.
+ 2014-07-04 James Greenhalgh <james.greenhalgh@arm.com>
+
+ * config/aarch64/aarch64-simd.md (move_lo_quad_internal_<mode>): New.
+ (move_lo_quad_internal_be_<mode>): Likewise.
+ (move_lo_quad_<mode>): Convert to define_expand.
+ (aarch64_simd_move_hi_quad_<mode>): Gate on BYTES_BIG_ENDIAN.
+ (aarch64_simd_move_hi_quad_be_<mode>): New.
+ (move_hi_quad_<mode>): Use appropriate insn for BYTES_BIG_ENDIAN.
+ (aarch64_combinez<mode>): Gate on BYTES_BIG_ENDIAN.
+ (aarch64_combinez_be<mode>): New.
+ (aarch64_combine<mode>): Convert to define_expand.
+ (aarch64_combine_internal<mode>): New.
+ (aarch64_simd_combine<mode>): Remove bogus RTL description.
+
+2014-07-08 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/61680
+ * tree-vect-data-refs.c (vect_analyze_data_ref_dependence):
+ Handle properly all read-write dependences with group accesses.
+
+ PR tree-optimization/61681
+ * tree-ssa-structalias.c (find_what_var_points_to): Expand
+ NONLOCAL inside ESCAPED.
+
+2014-07-08 Alan Lawrence <alan.lawrence@arm.com>
+
+ Backport r211502 from mainline.
+ 2014-06-10 Alan Lawrence <alan.lawrence@arm.com>
+
+ PR target/59843
+ * config/aarch64/aarch64-modes.def: Add V1DFmode.
+ * config/aarch64/aarch64.c (aarch64_vector_mode_supported_p):
+ Support V1DFmode.
+
+2014-07-08 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/61725
+ * tree-vrp.c (extract_range_basic): Don't assume vr0 is unsigned
+ range, use range_includes_zerop_p instead of integer_zerop on
+ vr0->min, only use log2 of max if min is not negative.
+
+2014-07-06 Gerald Pfeifer <gerald@pfeifer.com>
+
+ * doc/install.texi (Specific, aarch64*-*-*): Fix markup. Reword a bit.
+
+2014-07-04 Jakub Jelinek <jakub@redhat.com>
+
+ PR middle-end/61654
+ * cgraphunit.c (expand_thunk): Call free_dominance_info.
+
+ PR tree-optimization/61684
+ * tree-ssa-ifcombine.c (recognize_single_bit_test): Make sure
+ rhs1 of conversion is a SSA_NAME before using SSA_NAME_DEF_STMT on it.
+
+2014-06-30 Jakub Jelinek <jakub@redhat.com>
+
+ Backported from mainline
+ 2014-06-27 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/57233
+ PR tree-optimization/61299
+ * tree-vect-generic.c (get_compute_type, count_type_subparts): New
+ functions.
+ (expand_vector_operations_1): Use them. If {L,R}ROTATE_EXPR
+ would be lowered to scalar shifts, check if corresponding
+ shifts and vector BIT_IOR_EXPR are supported and don't lower
+ or lower just to narrower vector type in that case.
+ * expmed.c (expand_shift_1): Fix up handling of vector
+ shifts and rotates.
+
+ 2014-06-25 Jakub Jelinek <jakub@redhat.com>
+
+ * langhooks-def.h (LANG_HOOKS_OMP_CLAUSE_LINEAR_CTOR): Define.
+ (LANG_HOOKS_DECLS): Add it.
+ * gimplify.c (gimplify_omp_for): Make sure OMP_CLAUSE_LINEAR_STEP
+ has correct type.
+ * tree.h (OMP_CLAUSE_LINEAR_ARRAY): Define.
+ * langhooks.h (struct lang_hooks_for_decls): Add
+ omp_clause_linear_ctor hook.
+ * omp-low.c (lower_rec_input_clauses): Set max_vf even if
+ OMP_CLAUSE_LINEAR_ARRAY is set. Don't fold_convert
+ OMP_CLAUSE_LINEAR_STEP. For OMP_CLAUSE_LINEAR_ARRAY in
+ combined simd loop use omp_clause_linear_ctor hook.
+
+ 2014-06-24 Jakub Jelinek <jakub@redhat.com>
+
+ * gimplify.c (gimplify_scan_omp_clauses) <case OMP_CLAUSE_MAP,
+ OMP_CLAUSE_TO, OMP_CLAUSE_FROM): Make sure OMP_CLAUSE_SIZE is
+ non-NULL.
+ <case OMP_CLAUSE_ALIGNED>: Gimplify OMP_CLAUSE_ALIGNED_ALIGNMENT.
+ (gimplify_adjust_omp_clauses_1): Make sure OMP_CLAUSE_SIZE is
+ non-NULL.
+ (gimplify_adjust_omp_clauses): Likewise.
+ * omp-low.c (lower_rec_simd_input_clauses,
+ lower_rec_input_clauses, expand_omp_simd): Handle non-constant
+ safelen the same as safelen(1).
+ * tree-nested.c (convert_nonlocal_omp_clauses,
+ convert_local_omp_clauses): Handle OMP_CLAUSE_ALIGNED. For
+ OMP_CLAUSE_{MAP,TO,FROM} if not decl use walk_tree.
+ (convert_nonlocal_reference_stmt, convert_local_reference_stmt):
+ Fixup handling of GIMPLE_OMP_TARGET.
+ (convert_tramp_reference_stmt, convert_gimple_call): Handle
+ GIMPLE_OMP_TARGET.
+
+ 2014-06-18 Jakub Jelinek <jakub@redhat.com>
+
+ * gimplify.c (omp_notice_variable): If n is non-NULL
+ and no flags change in ORT_TARGET region, don't jump to
+ do_outer.
+ (struct gimplify_adjust_omp_clauses_data): New type.
+ (gimplify_adjust_omp_clauses_1): Adjust for data being
+ a struct gimplify_adjust_omp_clauses_data pointer instead
+ of tree *. Pass pre_p as a new argument to
+ lang_hooks.decls.omp_finish_clause hook.
+ (gimplify_adjust_omp_clauses): Add pre_p argument, adjust
+ splay_tree_foreach to pass both list_p and pre_p.
+ (gimplify_omp_parallel, gimplify_omp_task, gimplify_omp_for,
+ gimplify_omp_workshare, gimplify_omp_target_update): Adjust
+ gimplify_adjust_omp_clauses callers.
+ * langhooks.c (lhd_omp_finish_clause): New function.
+ * langhooks-def.h (lhd_omp_finish_clause): New prototype.
+ (LANG_HOOKS_OMP_FINISH_CLAUSE): Define to lhd_omp_finish_clause.
+ * langhooks.h (struct lang_hooks_for_decls): Add a new
+ gimple_seq * argument to omp_finish_clause hook.
+ * omp-low.c (scan_sharing_clauses): Call scan_omp_op on
+ non-DECL_P OMP_CLAUSE_DECL if ctx->outer.
+ (scan_omp_parallel, lower_omp_for): When adding
+ _LOOPTEMP_ clause var, add it to outer ctx's decl_map
+ as identity.
+ * tree-core.h (OMP_CLAUSE_MAP_TO_PSET): New map kind.
+ * tree-nested.c (convert_nonlocal_omp_clauses,
+ convert_local_omp_clauses): Handle various OpenMP 4.0 clauses.
+ * tree-pretty-print.c (dump_omp_clause): Handle
+ OMP_CLAUSE_MAP_TO_PSET.
+
+ 2014-06-10 Jakub Jelinek <jakub@redhat.com>
+
+ PR fortran/60928
+ * omp-low.c (lower_rec_input_clauses) <case OMP_CLAUSE_LASTPRIVATE>:
+ Set lastprivate_firstprivate even if omp_private_outer_ref
+ langhook returns true.
+ <case OMP_CLAUSE_REDUCTION>: When calling omp_clause_default_ctor
+ langhook, call unshare_expr on new_var and call
+ build_outer_var_ref to get the last argument.
+
+ 2014-05-11 Jakub Jelinek <jakub@redhat.com>
+
+ * tree.h (OMP_CLAUSE_LINEAR_STMT): Define.
+ * tree.c (omp_clause_num_ops): Increase OMP_CLAUSE_LINEAR
+ number of operands to 3.
+ (walk_tree_1): Walk all operands of OMP_CLAUSE_LINEAR.
+ * tree-nested.c (convert_nonlocal_omp_clauses,
+ convert_local_omp_clauses): Handle OMP_CLAUSE_DEPEND.
+ * gimplify.c (gimplify_scan_omp_clauses): Handle
+ OMP_CLAUSE_LINEAR_STMT.
+ * omp-low.c (lower_rec_input_clauses): Fix typo.
+ (maybe_add_implicit_barrier_cancel, lower_omp_1): Add
+ cast between Fortran boolean_type_node and C _Bool if
+ needed.
+
+2014-06-30 Jason Merrill <jason@redhat.com>
+
+ PR c++/51253
+ PR c++/61382
+ * gimplify.c (gimplify_arg): Non-static.
+ * gimplify.h: Declare it.
+
+2014-06-30 Marcus Shawcroft <marcus.shawcroft@arm.com>
+
+ Backport from Mainline
+ 2014-06-30 Marcus Shawcroft <marcus.shawcroft@arm.com>
+
+ PR target/61633
+ * config/aarch64/aarch64.md (*aarch64_ashr_sisd_or_int_<mode>3):
+ Add alternative; make early clobber. Adjust both split patterns
+ to use operand 0 as the working register.
+
+2014-06-30 Kyrylo Tkachov <kyrylo.tkachov@arm.com>
+
+ * config/aarch64/iterators.md (VCOND): Handle SI and HI modes.
+ Update comments.
+ (VCONQ): Make comment more helpful.
+ (VCON): Delete.
+ * config/aarch64/aarch64-simd.md
+ (aarch64_sqdmulh_lane<mode>):
+ Use VCOND for operands 2. Update lane checking and flipping logic.
+ (aarch64_sqrdmulh_lane<mode>): Likewise.
+ (aarch64_sq<r>dmulh_lane<mode>_internal): Likewise.
+ (aarch64_sqdmull2<mode>): Remove VCON, use VQ_HSI mode iterator.
+ (aarch64_sqdml<SBINQOPS:as>l_lane<mode>_internal, VD_HSI): Change mode
+ attribute of operand 3 to VCOND.
+ (aarch64_sqdml<SBINQOPS:as>l_lane<mode>_internal, SD_HSI): Likewise.
+ (aarch64_sqdml<SBINQOPS:as>l2_lane<mode>_internal): Likewise.
+ (aarch64_sqdmull_lane<mode>_internal, VD_HSI): Likewise.
+ (aarch64_sqdmull_lane<mode>_internal, SD_HSI): Likewise.
+ (aarch64_sqdmull2_lane<mode>_internal): Likewise.
+ (aarch64_sqdml<SBINQOPS:as>l_laneq<mode>_internal, VD_HSI: New
+ define_insn.
+ (aarch64_sqdml<SBINQOPS:as>l_laneq<mode>_internal, SD_HSI): Likewise.
+ (aarch64_sqdml<SBINQOPS:as>l2_laneq<mode>_internal): Likewise.
+ (aarch64_sqdmull_laneq<mode>_internal, VD_HSI): Likewise.
+ (aarch64_sqdmull_laneq<mode>_internal, SD_HSI): Likewise.
+ (aarch64_sqdmull2_laneq<mode>_internal): Likewise.
+ (aarch64_sqdmlal_lane<mode>): Change mode attribute of penultimate
+ operand to VCOND. Update lane flipping and bounds checking logic.
+ (aarch64_sqdmlal2_lane<mode>): Likewise.
+ (aarch64_sqdmlsl_lane<mode>): Likewise.
+ (aarch64_sqdmull_lane<mode>): Likewise.
+ (aarch64_sqdmull2_lane<mode>): Likewise.
+ (aarch64_sqdmlal_laneq<mode>):
+ Replace VCON usage with VCONQ.
+ Emit aarch64_sqdmlal_laneq<mode>_internal insn.
+ (aarch64_sqdmlal2_laneq<mode>): Emit
+ aarch64_sqdmlal2_laneq<mode>_internal insn.
+ Replace VCON with VCONQ.
+ (aarch64_sqdmlsl2_lane<mode>): Replace VCON with VCONQ.
+ (aarch64_sqdmlsl2_laneq<mode>): Likewise.
+ (aarch64_sqdmull_laneq<mode>): Emit
+ aarch64_sqdmull_laneq<mode>_internal insn.
+ Replace VCON with VCONQ.
+ (aarch64_sqdmull2_laneq<mode>): Emit
+ aarch64_sqdmull2_laneq<mode>_internal insn.
+ (aarch64_sqdmlsl_laneq<mode>): Replace VCON usage with VCONQ.
+ * config/aarch64/arm_neon.h (vqdmlal_high_lane_s16): Change type
+ of 3rd argument to int16x4_t.
+ (vqdmlalh_lane_s16): Likewise.
+ (vqdmlslh_lane_s16): Likewise.
+ (vqdmull_high_lane_s16): Likewise.
+ (vqdmullh_lane_s16): Change type of 2nd argument to int16x4_t.
+ (vqdmlal_lane_s16): Don't create temporary int16x8_t value.
+ (vqdmlsl_lane_s16): Likewise.
+ (vqdmull_lane_s16): Don't create temporary int16x8_t value.
+ (vqdmlal_high_lane_s32): Change type 3rd argument to int32x2_t.
+ (vqdmlals_lane_s32): Likewise.
+ (vqdmlsls_lane_s32): Likewise.
+ (vqdmull_high_lane_s32): Change type 2nd argument to int32x2_t.
+ (vqdmulls_lane_s32): Likewise.
+ (vqdmlal_lane_s32): Don't create temporary int32x4_t value.
+ (vqdmlsl_lane_s32): Likewise.
+ (vqdmull_lane_s32): Don't create temporary int32x4_t value.
+ (vqdmulhh_lane_s16): Change type of second argument to int16x4_t.
+ (vqrdmulhh_lane_s16): Likewise.
+ (vqdmlsl_high_lane_s16): Likewise.
+ (vqdmulhs_lane_s32): Change type of second argument to int32x2_t.
+ (vqdmlsl_high_lane_s32): Likewise.
+ (vqrdmulhs_lane_s32): Likewise.
+
+2014-06-30 Thomas Preud'homme <thomas.preudhomme@arm.com>
+
+ Backport from Mainline
+ 2014-06-20 Jakub Jelinek <jakub@redhat.com>
+ 2014-06-11 Thomas Preud'homme <thomas.preudhomme@arm.com>
+
+ PR tree-optimization/61306
+ * tree-ssa-math-opts.c (struct symbolic_number): Store type of
+ expression instead of its size.
+ (do_shift_rotate): Adapt to change in struct symbolic_number. Return
+ false to prevent optimization when the result is unpredictable due to
+ arithmetic right shift of signed type with highest byte is set.
+ (verify_symbolic_number_p): Adapt to change in struct symbolic_number.
+ (find_bswap_1): Likewise. Return NULL to prevent optimization when the
+ result is unpredictable due to sign extension.
+ (find_bswap): Adapt to change in struct symbolic_number.
+
+2014-06-27 Martin Jambor <mjambor@suse.cz>
+
+ PR ipa/61160
+ * cgraphclones.c (duplicate_thunk_for_node): Removed parameter
+ args_to_skip, use those from node instead. Copy args_to_skip and
+ combined_args_to_skip from node to the new thunk.
+ (redirect_edge_duplicating_thunks): Removed parameter args_to_skip.
+ (cgraph_create_virtual_clone): Moved computation of
+ combined_args_to_skip...
+ (cgraph_clone_node): ...here, simplify it to bitmap_ior..
+
+2014-06-27 Uros Bizjak <ubizjak@gmail.com>
+
+ Backport from mainline
+ 2014-06-26 Uros Bizjak <ubizjak@gmail.com>
+
+ PR target/61586
+ * config/alpha/alpha.c (alpha_handle_trap_shadows): Handle BARRIER RTX.
+
+2014-06-26 Bill Schmidt <wschmidt@linux.vnet.ibm.com>
+
+ PR target/61542
+ * config/rs6000/vsx.md (vsx_extract_v4sf): Fix bug with element
+ extraction other than index 3.
+
+2014-06-26 Marc Glisse <marc.glisse@inria.fr>
+
+ PR target/61503
+ * config/i386/i386.md (x86_64_shrd, x86_shrd,
+ ix86_rotr<dwi>3_doubleword): Replace ashiftrt with lshiftrt.
+
+2014-06-26 Martin Jambor <mjambor@suse.cz>
+
+ Backport from mainline
+ * ipa-prop.c (ipa_impossible_devirt_target): No longer static,
+ renamed to ipa_impossible_devirt_target. Fix typo.
+ * ipa-prop.h (ipa_impossible_devirt_target): Declare.
+ * ipa-cp.c (ipa_get_indirect_edge_target_1): Use
+ ipa_impossible_devirt_target.
+
+2014-06-25 Cong Hou <congh@google.com>
+
+ * tree-vectorizer.h: Fixing incorrect number of patterns.
+
+2014-06-24 Cong Hou <congh@google.com>
+
+ * tree-vect-patterns.c (vect_recog_sad_pattern): New function for SAD
+ pattern recognition.
+ (type_conversion_p): PROMOTION is true if it's a type promotion
+ conversion, and false otherwise. Return true if the given expression
+ is a type conversion one.
+ * tree-vectorizer.h: Adjust the number of patterns.
+ * tree.def: Add SAD_EXPR.
+ * optabs.def: Add sad_optab.
+ * cfgexpand.c (expand_debug_expr): Add SAD_EXPR case.
+ * expr.c (expand_expr_real_2): Likewise.
+ * gimple-pretty-print.c (dump_ternary_rhs): Likewise.
+ * gimple.c (get_gimple_rhs_num_ops): Likewise.
+ * optabs.c (optab_for_tree_code): Likewise.
+ * tree-cfg.c (estimate_operator_cost): Likewise.
+ * tree-ssa-operands.c (get_expr_operands): Likewise.
+ * tree-vect-loop.c (get_initial_def_for_reduction): Likewise.
+ * config/i386/sse.md: Add SSE2 and AVX2 expand for SAD.
+ * doc/generic.texi: Add document for SAD_EXPR.
+ * doc/md.texi: Add document for ssad and usad.
+
+2014-06-24 Jakub Jelinek <jakub@redhat.com>
+
+ PR target/61570
+ * config/i386/driver-i386.c (host_detect_local_cpu): For unknown
+ model family 6 CPU with has_longmode never use a CPU without
+ 64-bit support.
+
+ * gimplify.c (gimplify_omp_for): For #pragma omp for simd iterator
+ not mentioned in clauses use private clause if the iterator is
+ declared in #pragma omp for simd, and when adding lastprivate
+ instead, add it to the outer #pragma omp for too. Diagnose
+ if the variable is private in outer context. For simd collapse > 1
+ loops, replace all iterators with temporaries.
+ * omp-low.c (lower_rec_input_clauses): Handle LINEAR clause the
+ same even in collapse > 1 loops.
+
+2014-06-23 Alan Modra <amodra@gmail.com>
+
+ PR bootstrap/61583
+ * tree-vrp.c (remove_range_assertions): Do not set is_unreachable
+ to zero on debug statements.
+
+2014-06-10 Kyrylo Tkachov <kyrylo.tkachov@arm.com>
+
+ * config/aarch64/aarch64-simd.md (aarch64_sqdmulh_lane<mode>):
+ New expander.
+ (aarch64_sqrdmulh_lane<mode>): Likewise.
+ (aarch64_sq<r>dmulh_lane<mode>): Rename to...
+ (aarch64_sq<r>dmulh_lane<mode>_interna): ...this.
+ (aarch64_sqdmulh_laneq<mode>): New expander.
+ (aarch64_sqrdmulh_laneq<mode>): Likewise.
+ (aarch64_sq<r>dmulh_laneq<mode>): Rename to...
+ (aarch64_sq<r>dmulh_laneq<mode>_internal): ...this.
+ (aarch64_sqdmulh_lane<mode>): New expander.
+ (aarch64_sqrdmulh_lane<mode>): Likewise.
+ (aarch64_sq<r>dmulh_lane<mode>): Rename to...
+ (aarch64_sq<r>dmulh_lane<mode>_internal): ...this.
+ (aarch64_sqdmlal_lane<mode>): Add lane flip for big-endian.
+ (aarch64_sqdmlal_laneq<mode>): Likewise.
+ (aarch64_sqdmlsl_lane<mode>): Likewise.
+ (aarch64_sqdmlsl_laneq<mode>): Likewise.
+ (aarch64_sqdmlal2_lane<mode>): Likewise.
+ (aarch64_sqdmlal2_laneq<mode>): Likewise.
+ (aarch64_sqdmlsl2_lane<mode>): Likewise.
+ (aarch64_sqdmlsl2_laneq<mode>): Likewise.
+ (aarch64_sqdmull_lane<mode>): Likewise.
+ (aarch64_sqdmull_laneq<mode>): Likewise.
+ (aarch64_sqdmull2_lane<mode>): Likewise.
+ (aarch64_sqdmull2_laneq<mode>): Likewise.
+
+2014-06-20 Martin Jambor <mjambor@suse.cz>
+
+ PR ipa/61540
+ * ipa-prop.c (impossible_devirt_target): New function.
+ (try_make_edge_direct_virtual_call): Use it, also instead of
+ asserting.
+
+2014-06-20 Martin Jambor <mjambor@suse.cz>
+
+ PR ipa/61211
+ * cgraph.c (clone_of_p): Allow skipped_branch to deal with
+ expanded clones.
+
+2014-06-20 Chung-Lin Tang <cltang@codesourcery.com>
+
+ Backport from mainline
+
+ 2014-06-20 Julian Brown <julian@codesourcery.com>
+ Chung-Lin Tang <cltang@codesourcery.com>
+
+ * config/arm/arm.c (arm_output_mi_thunk): Fix offset for
+ TARGET_THUMB1_ONLY. Add comments.
+
+2014-06-18 Uros Bizjak <ubizjak@gmail.com>
+
+ Backport from mainline
+ 2014-06-16 Uros Bizjak <ubizjak@gmail.com>
+
+ * config/i386/i386.c (decide_alg): Correctly handle
+ maximum size of stringop algorithm.
+
+2014-06-18 Richard Henderson <rth@redhat.com>
+
+ PR target/61545
+ * config/aarch64/aarch64.md (tlsdesc_small): Clobber CC_REGNUM.
+
+2014-06-17 Yufeng Zhang <yufeng.zhang@arm.com>
+
+ PR target/61483
+ * config/aarch64/aarch64.c (aarch64_layout_arg): Add new local
+ variable 'size'; calculate 'size' right in the front; use
+ 'size' to compute 'nregs' (when 'allocate_ncrn != 0') and
+ pcum->aapcs_stack_words.
+
+2014-06-17 Nick Clifton <nickc@redhat.com>
+
+ * config/msp430/msp430.md (mulhisi3): Add a NOP after the DINT.
+ (umulhi3, mulsidi3, umulsidi3): Likewise.
+
+2014-06-17 Uros Bizjak <ubizjak@gmail.com>
+
+ Backport from mainline
+ 2014-06-06 Uros Bizjak <ubizjak@gmail.com>
+
+ PR target/61423
+ * config/i386/i386.md (*floatunssi<mode>2_i387_with_xmm): New
+ define_insn_and_split pattern, merged from *floatunssi<mode>2_1
+ and corresponding splitters. Zero extend general register
+ or memory input operand to XMM temporary. Enable for
+ TARGET_SSE2 and TARGET_INTER_UNIT_MOVES_TO_VEC only.
+ (floatunssi<mode>2): Update expander predicate.
+
+2014-06-16 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR rtl-optimization/61325
+ * lra-constraints.c (valid_address_p): Add forward declaration.
+ (simplify_operand_subreg): Check address validity before and after
+ alter_reg of memory subreg.
+
+2014-06-18 Jakub Jelinek <jakub@redhat.com>
+
+ PR plugins/45078
+ * config.gcc (arm*-*-linux-*): Include vxworks-dummy.h in tm_file.
+
+2014-06-13 Peter Bergner <bergner@vnet.ibm.com>
+
+ Backport from mainline
+
+ 2014-06-13 Peter Bergner <bergner@vnet.ibm.com>
+ PR target/61415
+ * config/rs6000/rs6000-builtin.def (BU_MISC_1): Delete.
+ (BU_MISC_2): Rename to ...
+ (BU_LDBL128_2): ... this.
+ * config/rs6000/rs6000.h (RS6000_BTM_LDBL128): New define.
+ (RS6000_BTM_COMMON): Add RS6000_BTM_LDBL128.
+ * config/rs6000/rs6000.c (rs6000_builtin_mask_calculate): Handle
+ RS6000_BTM_LDBL128.
+ (rs6000_invalid_builtin): Add long double 128-bit builtin support.
+ (rs6000_builtin_mask_names): Add RS6000_BTM_LDBL128.
+ * config/rs6000/rs6000.md (unpacktf_0): Remove define)expand.
+ (unpacktf_1): Likewise.
+ * doc/extend.texi (__builtin_longdouble_dw0): Remove documentation.
+ (__builtin_longdouble_dw1): Likewise.
+ * doc/sourcebuild.texi (longdouble128): Document.
+
+2014-06-13 Jeff Law <law@redhat.com>
+
+ Backports from mainline:
+ 2014-06-13 Jeff Law <law@redhat.com>
+
+ PR rtl-optimization/61094
+ PR rtl-optimization/61446
+ * ree.c (combine_reaching_defs): Get the mode for the copy from
+ the extension insn rather than the defining insn.
+
+ 2014-06-02 Jeff Law <law@redhat.com>
+
+ PR rtl-optimization/61094
+ * ree.c (combine_reaching_defs): Do not reextend an insn if it
+ was marked as do_no_reextend. If a copy is needed to eliminate
+ an extension, then mark it as do_not_reextend.
+
+2014-06-13 Martin Jambor <mjambor@suse.cz>
+
+ PR ipa/61186
+ * ipa-devirt.c (possible_polymorphic_call_targets): Store NULL to
+ cache_token if returning early.
+
+2014-06-12 Jakub Jelinek <jakub@redhat.com>
+
+ PR middle-end/61486
+ * gimplify.c (struct gimplify_omp_ctx): Add distribute field.
+ (gimplify_adjust_omp_clauses): Don't or in GOVD_LASTPRIVATE
+ if outer combined construct is distribute.
+ (gimplify_omp_for): For OMP_DISTRIBUTE set
+ gimplify_omp_ctxp->distribute.
+ * omp-low.c (scan_sharing_clauses) <case OMP_CLAUSE_SHARED>: For
+ GIMPLE_OMP_TEAMS, if decl isn't global in outer context, record
+ mapping into decl map.
+
+2014-06-12 Jeff Law <law@redhat.com>
+
+ Backports from mainline:
+
+ 2014-06-12 Jeff Law <law@redhat.com>
+
+ PR tree-optimization/61009
+ * tree-ssa-threadedge.c (thread_through_normal_block): Correct return
+ value when we stop processing a block due to problematic PHIs.
+
+ 2014-06-05 Jeff Law <law@redhat.com>
+
+ PR tree-optimization/61289
+ * tree-ssa-threadedge.c (invalidate_equivalences): Remove SRC_MAP and
+ DST_MAP parameters. Invalidate by walking all the SSA_NAME_VALUES
+ looking for those which match LHS. All callers changed.
+ (record_temporary_equivalences_from_phis): Remove SRC_MAP and DST_MAP
+ parameters and code which manipulated them. All callers changed.
+ (record_temporary_equivalences_from_stmts_at_dest): Remove SRC_MAP
+ and DST_MAP parameters. Simplify invalidation code by just calling
+ invalidate_equivalences. All callers changed.
+ (thread_across_edge): Simplify now that we don't need to maintain
+ the map of equivalences to invalidate.
+
+2014-06-12 Eric Botcazou <ebotcazou@adacore.com>
+
+ * tree-core.h (DECL_NONALIASED): Use proper spelling in comment.
+
+2014-06-12 Georg-Johann Lay <avr@gjlay.de>
+
+ Backport from 2014-05-14 trunk r210418
+ * config/avr/avr.h (REG_CLASS_CONTENTS): Use unsigned suffix for
+ shifted values to avoid build warning.
+
+2014-06-12 Georg-Johann Lay <avr@gjlay.de>
+
+ Backport from 2014-05-09 trunk r210272
+
+ * config/avr/avr-fixed.md (round<mode>3): Use -1U instead of -1 in
+ unsigned int initializers for regno_in, regno_out.
+
+ Backport from 2014-06-12 trunk r211491
+
+ PR target/61443
+ * config/avr/avr.md (push<mode>1): Avoid (subreg(mem)) when
+ loading from address spaces.
+
+2014-06-12 Alan Modra <amodra@gmail.com>
+
+ PR target/61300
+ * doc/tm.texi.in (INCOMING_REG_PARM_STACK_SPACE): Document.
+ * doc/tm.texi: Regenerate.
+ * function.c (INCOMING_REG_PARM_STACK_SPACE): Provide default.
+ Use throughout in place of REG_PARM_STACK_SPACE.
+ * config/rs6000/rs6000.c (rs6000_reg_parm_stack_space): Add
+ "incoming" param. Pass to rs6000_function_parms_need_stack.
+ (rs6000_function_parms_need_stack): Add "incoming" param, ignore
+ prototype_p when incoming. Use function decl when incoming
+ to handle K&R style functions.
+ * config/rs6000/rs6000.h (REG_PARM_STACK_SPACE): Adjust.
+ (INCOMING_REG_PARM_STACK_SPACE): Define.
+
+2014-06-11 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/61452
+ * tree-ssa-sccvn.c (visit_phi): Remove pointless setting of
+ expr and has_constants in case we found a leader.
+ (simplify_binary_expression): Always valueize operands first.
+ (simplify_unary_expression): Likewise.
+
+2014-06-11 Richard Biener <rguenther@suse.de>
+
+ PR middle-end/61456
+ * tree-ssa-alias.c (nonoverlapping_component_refs_of_decl_p):
+ Do not use the main variant for the type comparison.
+
+2014-06-10 Kyrylo Tkachov <kyrylo.tkachov@arm.com>
+
+ * doc/arm-acle-intrinsics.texi: Specify when CRC32 intrinsics are
+ available.
+ Simplify description of __crc32d and __crc32cd intrinsics.
+ * doc/extend.texi (ARM ACLE Intrinsics): Remove comment about CRC32
+ availability.
+
+2014-06-07 Eric Botcazou <ebotcazou@adacore.com>
+
+ * tree-ssa-tail-merge.c (same_succ_hash): Hash the static chain of a
+ call statement, if any.
+ (gimple_equal_p) <GIMPLE_CALL>: Compare the static chain of the call
+ statements, if any. Tidy up.
+
+2014-06-06 Michael Meissner <meissner@linux.vnet.ibm.com>
+
+ Back port from trunk
+ 2014-06-06 Michael Meissner <meissner@linux.vnet.ibm.com>
+
+ PR target/61431
+ * config/rs6000/vsx.md (VSX_LE): Split VSX_D into 2 separate
+ iterators, VSX_D that handles 64-bit types, and VSX_LE that
+ handles swapping the two 64-bit double words on little endian
+ systems. Include V1TImode and optionally TImode in VSX_LE so that
+ these types are properly swapped. Change all of the insns and
+ splits that do the 64-bit swaps to use VSX_LE.
+ (vsx_le_perm_load_<mode>): Likewise.
+ (vsx_le_perm_store_<mode>): Likewise.
+ (splitters for little endian memory operations): Likewise.
+ (vsx_xxpermdi2_le_<mode>): Likewise.
+ (vsx_lxvd2x2_le_<mode>): Likewise.
+ (vsx_stxvd2x2_le_<mode>): Likewise.
+
+2014-06-06 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR rtl-optimization/61325
+ * lra-constraints.c (process_address_1): Check scale equal to one
+ to prevent transformation: base + scale * index => base + new_reg.
+
+2014-06-05 Martin Jambor <mjambor@suse.cz>
+
+ PR ipa/61393
+ * ipa-cp.c (determine_versionability): Pretend that tm_clones are
+ not versionable.
+
+2014-06-04 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/61383
+ * tree-ssa-ifcombine.c (bb_no_side_effects_p): Make sure
+ stmts can't trap.
+
+2014-06-02 Jason Merrill <jason@redhat.com>
+
+ PR c++/61020
+ * varpool.c (ctor_for_folding): Handle uninitialized vtables.
+
+2014-06-03 Martin Jambor <mjambor@suse.cz>
+
+ PR ipa/61160
+ * ipa-cp.c (cgraph_edge_brings_value_p): Handle edges leading to
+ thunks.
+
+2014-06-03 Andrey Belevantsev <abel@ispras.ru>
+
+ Backport from mainline
+ 2014-05-14 Andrey Belevantsev <abel@ispras.ru>
+
+ PR rtl-optimization/60866
+ * sel-sched-ir (sel_init_new_insn): New parameter old_seqno.
+ Default it to -1. Pass it down to init_simplejump_data.
+ (init_simplejump_data): New parameter old_seqno. Pass it down
+ to get_seqno_for_a_jump.
+ (get_seqno_for_a_jump): New parameter old_seqno. Use it for
+ initializing new jump seqno as a last resort. Add comment.
+ (sel_redirect_edge_and_branch): Save old seqno of the conditional
+ jump and pass it down to sel_init_new_insn.
+ (sel_redirect_edge_and_branch_force): Likewise.
+
+2014-06-03 Andrey Belevantsev <abel@ispras.ru>
+
+ Backport from mainline
+ 2014-05-14 Andrey Belevantsev <abel@ispras.ru>
+
+ PR rtl-optimization/60901
+ * config/i386/i386.c (ix86_dependencies_evaluation_hook): Check that
+ bb predecessor belongs to the same scheduling region. Adjust comment.
+
+2014-06-03 Uros Bizjak <ubizjak@gmail.com>
+
+ Backport from mainline
+ 2014-06-02 Uros Bizjak <ubizjak@gmail.com>
+
+ PR target/61239
+ * config/i386/i386.c (ix86_expand_vec_perm) [case V32QImode]: Use
+ GEN_INT (-128) instead of GEN_INT (128) to set MSB of QImode constant.
+
+2014-05-29 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR rtl-optimization/61325
+ * lra-constraints.c (process_address): Rename to
+ process_address_1.
+ (process_address): New function.
+
+2014-05-29 Uros Bizjak <ubizjak@gmail.com>
+
+ Backport from mainline
+ 2014-05-26 Uros Bizjak <ubizjak@gmail.com>
+
+ PR target/61271
+ * config/i386/i386.c (ix86_rtx_costs)
+ <case CONST_INT, case CONST, case LABEL_REF, case SYMBOL_REF>:
+ Fix condition.
+
+2014-05-28 Eric Botcazou <ebotcazou@adacore.com>
+
+ Backport from mainline
+ 2014-05-27 Eric Botcazou <ebotcazou@adacore.com>
+
+ * double-int.c (div_and_round_double) <ROUND_DIV_EXPR>: Use the proper
+ predicate to detect a negative quotient.
+
+2014-05-28 Richard Biener <rguenther@suse.de>
+
+ Backport from mainline
+ 2014-05-28 Richard Biener <rguenther@suse.de>
+
+ PR middle-end/61045
+ * fold-const.c (fold_comparison): When folding
+ X +- C1 CMP Y +- C2 to X CMP Y +- C2 +- C1 also ensure
+ the sign of the remaining constant operand stays the same.
+
+ 2014-05-05 Richard Biener <rguenther@suse.de>
+
+ PR middle-end/61010
+ * fold-const.c (fold_binary_loc): Consistently avoid
+ canonicalizing X & CST away from a CST that is the mask
+ of a mode.
+
+ 2014-04-28 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/60979
+ * graphite-scop-detection.c (scopdet_basic_block_info): Reject
+ SCOPs that end in a block with a successor with abnormal
+ predecessors.
+
+2014-05-28 Rainer Orth <ro@CeBiTec.Uni-Bielefeld.DE>
+
+ * configure.ac ($gcc_cv_ld_clearcap): New test.
+ * configure: Regenerate.
+ * config.in: Regenerate.
+ * config/sol2.opt (mclear-hwcap): New option.
+ * config/sol2.h (LINK_CLEARCAP_SPEC): Define.
+ * config/sol2-clearcap.map: Moved here from
+ testsuite/gcc.target/i386/clearcap.map.
+ * config/sol2-clearcapv2.map: Move here from
+ gcc.target/i386/clearcapv2.map.
+ * config/t-sol2 (install): Depend on install-clearcap-map.
+ (install-clearcap-map): New target.
+ * doc/invoke.texi (Option Summary, Solaris 2 Options): Document
+ -mclear-hwcap.
+
+2014-05-28 Georg-Johann Lay <avr@gjlay.de>
+
+ PR libgcc/61152
+ * config/dbx.h (License): Add Runtime Library Exception.
+ * config/newlib-stdint.h (License): Same.
+ * config/rtems.h (License): Same
+ * config/initfini-array.h (License): Same
+ * config/v850/v850.h (License): Same.
+ * config/v850/v850-opts.h (License): Same
+ * config/v850/rtems.h (License): Same.
+
+2014-05-28 Georg-Johann Lay <avr@gjlay.de>
+
+ PR target/61044
+ * doc/extend.texi (Local Labels): Note that label differences are
+ not supported for AVR.
+
+2014-05-27 Georg-Johann Lay <avr@gjlay.de>
+
+ Backport from 2014-05-12 mainline r210322.
+ Backport from 2014-05-27 mainline r210959, r210969.
+
+ PR libgcc/61152
+ * config/arm/arm.h (License): Add GCC Runtime Library Exception.
+ * config/arm/arm-cores.def (License): Same.
+ * config/arm/arm-opts.h (License): Same.
+ * config/arm/aout.h (License): Same.
+ * config/arm/bpabi.h (License): Same.
+ * config/arm/elf.h (License): Same.
+ * config/arm/linux-elf.h (License): Same.
+ * config/arm/linux-gas.h (License): Same.
+ * config/arm/netbsd-elf.h (License): Same.
+ * config/arm/uclinux-eabi.h (License): Same.
+ * config/arm/uclinux-elf.h (License): Same.
+ * config/arm/vxworks.h (License): Same.
+
+2014-05-26 Michael Tautschnig <mt@debian.org>
+
+ PR target/61249
+ * doc/extend.texi (X86 Built-in Functions): Fix parameter lists of
+ __builtin_ia32_vfrczs[sd] and __builtin_ia32_mpsadbw256.
+
+2014-05-22 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR rtl-optimization/61215
+ * lra-elelimination.c (lra_eliminate_regs_1): Don't use
+ simplify_gen_subreg until final substitution.
+
+2014-05-23 Alan Modra <amodra@gmail.com>
+
+ PR target/61231
+ * config/rs6000/rs6000.c (mem_operand_gpr): Handle SImode.
+ * config/rs6000/rs6000.md (extendsidi2_lfiwax, extendsidi2_nocell):
+ Use "Y" constraint rather than "m".
+
+2014-05-22 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR rtl-optimization/60969
+ * ira-costs.c (record_reg_classes): Process NO_REGS for matching
+ constraints. Set up mem cost for NO_REGS case.
+
+2014-05-22 Peter Bergner <bergner@vnet.ibm.com>
+
+ * config/rs6000/htm.md (ttest): Use correct shift value to get CR0.
+
+2014-05-22 Richard Earnshaw <rearnsha@arm.com>
+
+ PR target/61208
+ * arm.md (arm_cmpdi_unsigned): Fix length calculation for Thumb2.
+
+2014-05-22 Nick Clifton <nickc@redhat.com>
+
+ * config/msp430/msp430.h (ASM_SPEC): Add spaces after inserted options.
+
+2014-05-22 Jakub Jelinek <jakub@redhat.com>
+
+ * tree-streamer-in.c (unpack_ts_real_cst_value_fields): Make sure
+ all padding bits in REAL_VALUE_TYPE are cleared.
+
+2014-05-21 Guozhi Wei <carrot@google.com>
+
+ PR target/61202
+ * config/aarch64/arm_neon.h (vqdmulh_n_s16): Change the last operand's
+ constraint.
+ (vqdmulhq_n_s16): Likewise.
+
+2014-05-21 Martin Jambor <mjambor@suse.cz>
+
+ * doc/invoke.texi (Optimize Options): Document parameters
+ ipa-cp-eval-threshold, ipa-max-agg-items, ipa-cp-loop-hint-bonus and
+ ipa-cp-array-index-hint-bonus.
+
+2014-05-21 Jakub Jelinek <jakub@redhat.com>
+
+ PR middle-end/61252
+ * omp-low.c (handle_simd_reference): New function.
+ (lower_rec_input_clauses): Use it. Defer adding reference
+ initialization even for reduction without placeholder if in simd,
+ handle it properly later on.
+
+2014-05-20 Jan Hubicka <hubicka@ucw.cz>
+
+ PR bootstrap/60984
+ * ipa-inline-transform.c (inline_call): Use add CALLEE_REMOVED
+ parameter.
+ * ipa-inline.c (inline_to_all_callers): If callee was removed; return.
+ (ipa_inline): Loop inline_to_all_callers until no more aliases
+ are removed.
+
+2014-05-20 Jan Hubicka <hubicka@ucw.cz>
+
+ PR lto/60820
+ * varpool.c (varpool_remove_node): Do not alter decls when streaming.
+
+2014-05-20 DJ Delorie <dj@redhat.com>
+
+ * config/msp430/msp430.md (split): Don't allow subregs when
+ splitting SImode adds.
+ (andneghi): Fix subtraction logic.
+ * config/msp430/predicates.md (msp430_nonsubreg_or_imm_operand): New.
+
+2014-05-20 Nick Clifton <nickc@redhat.com>
+
+ * config/msp430/msp430.c (TARGET_GIMPLIFY_VA_ARG_EXPR): Define.
+ (msp430_gimplify_va_arg_expr): New function.
+ (msp430_print_operand): Handle (CONST (ZERO_EXTRACT)).
+
+ * config/msp430/msp430.md (zero_extendpsisi2): Use + constraint on
+ operand 0 in order to prevent confusion about the number of
+ registers involved.
+
+2014-05-20 Kyrylo Tkachov <kyrylo.tkachov@arm.com>
+
+ * config/arm/arm.md (arith_shiftsi): Do not predicate for
+ arm_restrict_it.
+
+2014-05-19 Richard Earnshaw <rearnsha@arm.com>
+
+ * arm.c (thumb1_reorg): When scanning backwards skip anything
+ that's not a proper insn.
+
+2014-05-17 Jan Hubicka <hubicka@ucw.cz>
+
+ * ipa.c (symtab_remove_unreachable_nodes): Remove
+ symbol from comdat group if its body was eliminated.
+ (comdat_can_be_unshared_p_1): Static symbols can always be privatized.
+ * symtab.c (symtab_remove_from_same_comdat_group): Break out from ...
+ (symtab_unregister_node): ... this one.
+ (verify_symtab_base): More strict checking of comdats.
+ * cgraph.h (symtab_remove_from_same_comdat_group): Declare.
+
+2014-05-17 Jan Hubicka <hubicka@ucw.cz>
+
+ * opts.c (common_handle_option): Disable -fipa-reference coorectly
+ with -fuse-profile.
+
+2014-05-17 Jan Hubicka <hubicka@ucw.cz>
+
+ PR ipa/60854
+ * ipa.c (symtab_remove_unreachable_nodes): Mark targets of
+ external aliases alive, too.
+
+2014-05-17 Uros Bizjak <ubizjak@gmail.com>
+
+ * doc/invoke.texi (free): Mention Alpha. Also enabled at -Os.
+
+2014-05-17 Uros Bizjak <ubizjak@gmail.com>
+
+ Backport from mainline
+ 2014-04-25 H.J. Lu <hongjiu.lu@intel.com>
+
+ PR target/60969
+ * config/i386/i386.md (*movsf_internal): Set MODE to SI for
+ alternative 12.
+
+2014-05-16 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR rtl-optimization/60969
+ * ira-costs.c (record_reg_classes): Allow only memory for pseudo.
+ Calculate costs for this case.
+
+2014-05-15 Peter Bergner <bergner@vnet.ibm.com>
+
+ PR target/61193
+ * config/rs6000/htmxlintrin.h (_HTM_TBEGIN_STARTED): New define.
+ (__TM_simple_begin): Use it.
+ (__TM_begin): Likewise.
+
+2014-05-15 Martin Jambor <mjambor@suse.cz>
+
+ PR ipa/61085
+ * ipa-prop.c (update_indirect_edges_after_inlining): Check
+ type_preserved flag when the indirect edge is polymorphic.
+
+2014-05-15 Martin Jambor <mjambor@suse.cz>
+
+ PR ipa/60897
+ * ipa-prop.c (ipa_modify_formal_parameters): Reset DECL_LANG_SPECIFIC.
+
+2014-05-15 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/61158
+ * fold-const.c (fold_binary_loc): If X is zero-extended and
+ shiftc >= prec, make sure zerobits is all ones instead of
+ invoking undefined behavior.
+
+2014-05-14 Cary Coutant <ccoutant@google.com>
+
+ PR debug/61013
+ * opts.c (common_handle_option): Don't special-case "-g".
+ (set_debug_level): Default to at least level 2 with "-g".
+
2014-05-14 Eric Botcazou <ebotcazou@adacore.com>
* config/sparc/sparc-protos.h (sparc_absnegfloat_split_legitimate):
@@ -1652,10 +2721,10 @@
PR tree-optimization/60577
* tree-core.h (struct tree_base): Document nothrow_flag use
- in VAR_DECL_NONALIASED.
- * tree.h (VAR_DECL_NONALIASED): New.
+ in DECL_NONALIASED.
+ * tree.h (DECL_NONALIASED): New.
(may_be_aliased): Adjust.
- * coverage.c (build_var): Set VAR_DECL_NONALIASED.
+ * coverage.c (build_var): Set DECL_NONALIASED.
2014-03-20 Eric Botcazou <ebotcazou@adacore.com>
diff --git a/gcc-4.9/gcc/DATESTAMP b/gcc-4.9/gcc/DATESTAMP
index 7dfdaab6e..e48f0e7c4 100644
--- a/gcc-4.9/gcc/DATESTAMP
+++ b/gcc-4.9/gcc/DATESTAMP
@@ -1 +1 @@
-20140514
+20140711
diff --git a/gcc-4.9/gcc/Makefile.in b/gcc-4.9/gcc/Makefile.in
index 735011125..f94b35a1e 100644
--- a/gcc-4.9/gcc/Makefile.in
+++ b/gcc-4.9/gcc/Makefile.in
@@ -123,7 +123,8 @@ SUBDIRS =@subdirs@ build
# Selection of languages to be made.
CONFIG_LANGUAGES = @all_selected_languages@
-LANGUAGES = c gcov$(exeext) gcov-dump$(exeext) $(CONFIG_LANGUAGES)
+LANGUAGES = c gcov$(exeext) gcov-dump$(exeext) gcov-tool$(exeext) \
+ $(CONFIG_LANGUAGES)
# Default values for variables overridden in Makefile fragments.
# CFLAGS is for the user to override to, e.g., do a cross build with -O2.
@@ -196,6 +197,9 @@ GCC_WARN_CXXFLAGS = $(LOOSE_WARN) $($(@D)-warn) $(NOCOMMON_FLAG) $($@-warn)
# flex output may yield harmless "no previous prototype" warnings
build/gengtype-lex.o-warn = -Wno-error
gengtype-lex.o-warn = -Wno-error
+libgcov-util.o-warn = -Wno-error
+libgcov-driver-tool.o-warn = -Wno-error
+libgcov-merge-tool.o-warn = -Wno-error
# All warnings have to be shut off in stage1 if the compiler used then
# isn't gcc; configure determines that. WARN_CFLAGS will be either
@@ -769,6 +773,7 @@ GCC_INSTALL_NAME := $(shell echo gcc|sed '$(program_transform_name)')
GCC_TARGET_INSTALL_NAME := $(target_noncanonical)-$(shell echo gcc|sed '$(program_transform_name)')
CPP_INSTALL_NAME := $(shell echo cpp|sed '$(program_transform_name)')
GCOV_INSTALL_NAME := $(shell echo gcov|sed '$(program_transform_name)')
+PROFILE_TOOL_INSTALL_NAME := $(shell echo profile_tool|sed '$(program_transform_name)')
# Setup the testing framework, if you have one
EXPECT = `if [ -f $${rootme}/../expect/expect ] ; then \
@@ -890,7 +895,7 @@ BASIC_BLOCK_H = basic-block.h $(PREDICT_H) $(VEC_H) $(FUNCTION_H) \
GIMPLE_H = gimple.h gimple.def gsstruct.def pointer-set.h $(VEC_H) \
$(GGC_H) $(BASIC_BLOCK_H) $(TREE_H) tree-ssa-operands.h \
tree-ssa-alias.h $(INTERNAL_FN_H) $(HASH_TABLE_H) is-a.h
-GCOV_IO_H = gcov-io.h gcov-iov.h auto-host.h
+GCOV_IO_H = gcov-io.h gcov-iov.h auto-host.h gcov-counter.def
RECOG_H = recog.h
EMIT_RTL_H = emit-rtl.h
FLAGS_H = flags.h flag-types.h $(OPTIONS_H)
@@ -905,7 +910,8 @@ CFGLOOP_H = cfgloop.h $(BASIC_BLOCK_H) double-int.h \
IPA_UTILS_H = ipa-utils.h $(TREE_H) $(CGRAPH_H)
IPA_REFERENCE_H = ipa-reference.h $(BITMAP_H) $(TREE_H)
CGRAPH_H = cgraph.h $(VEC_H) $(TREE_H) $(BASIC_BLOCK_H) $(FUNCTION_H) \
- cif-code.def ipa-ref.h ipa-ref-inline.h $(LINKER_PLUGIN_API_H) is-a.h
+ cif-code.def ipa-ref.h ipa-ref-inline.h $(LINKER_PLUGIN_API_H) is-a.h \
+ l-ipo.h
DF_H = df.h $(BITMAP_H) $(REGSET_H) sbitmap.h $(BASIC_BLOCK_H) \
alloc-pool.h $(TIMEVAR_H)
RESOURCE_H = resource.h hard-reg-set.h $(DF_H)
@@ -1163,6 +1169,7 @@ OBJS = \
alias.o \
alloc-pool.o \
auto-inc-dec.o \
+ auto-profile.o \
bb-reorder.o \
bitmap.o \
bt-load.o \
@@ -1286,6 +1293,7 @@ OBJS = \
ira-emit.o \
ira-lives.o \
jump.o \
+ l-ipo.o \
langhooks.o \
lcm.o \
lists.o \
@@ -1488,7 +1496,7 @@ ALL_HOST_FRONTEND_OBJS = $(foreach v,$(CONFIG_LANGUAGES),$($(v)_OBJS))
ALL_HOST_BACKEND_OBJS = $(GCC_OBJS) $(OBJS) $(OBJS-libcommon) \
$(OBJS-libcommon-target) @TREEBROWSER@ main.o c-family/cppspec.o \
$(COLLECT2_OBJS) $(EXTRA_GCC_OBJS) $(GCOV_OBJS) $(GCOV_DUMP_OBJS) \
- lto-wrapper.o
+ $(GCOV_TOOL_OBJS) lto-wrapper.o
# This lists all host object files, whether they are included in this
# compilation or not.
@@ -1513,6 +1521,7 @@ MOSTLYCLEANFILES = insn-flags.h insn-config.h insn-codes.h \
$(SPECS) collect2$(exeext) gcc-ar$(exeext) gcc-nm$(exeext) \
gcc-ranlib$(exeext) \
gcov-iov$(build_exeext) gcov$(exeext) gcov-dump$(exeext) \
+ gcov-tool$(exeect) \
gengtype$(exeext) *.[0-9][0-9].* *.[si] *-checksum.c libbackend.a \
libcommon-target.a libcommon.a libgcc.mk
@@ -1907,9 +1916,10 @@ collect2$(exeext): $(COLLECT2_OBJS) $(LIBDEPS)
CFLAGS-collect2.o += -DTARGET_MACHINE=\"$(target_noncanonical)\" \
@TARGET_SYSTEM_ROOT_DEFINE@
-lto-wrapper$(exeext): lto-wrapper.o ggc-none.o libcommon-target.a $(LIBDEPS)
+LTO_WRAPPER_OBJS = lto-wrapper.o vec.o ggc-none.o
+lto-wrapper$(exeext): $(LTO_WRAPPER_OBJS) libcommon-target.a $(LIBDEPS)
+$(LINKER) $(ALL_COMPILERFLAGS) $(LDFLAGS) -o T$@ \
- lto-wrapper.o ggc-none.o libcommon-target.a $(LIBS)
+ $(LTO_WRAPPER_OBJS) libcommon-target.a $(LIBS)
mv -f T$@ $@
# Files used by all variants of C or by the stand-alone pre-processor.
@@ -1938,6 +1948,7 @@ DRIVER_DEFINES = \
-DDEFAULT_TARGET_MACHINE=\"$(target_noncanonical)\" \
-DSTANDARD_BINDIR_PREFIX=\"$(bindir)/\" \
-DTOOLDIR_BASE_PREFIX=\"$(libsubdir_to_prefix)$(prefix_to_exec_prefix)\" \
+ @RUNTIME_ROOT_PREFIX_DEFINE@ \
@TARGET_SYSTEM_ROOT_DEFINE@ \
$(VALGRIND_DRIVER_DEFINES) \
$(if $(SHLIB),$(if $(filter yes,@enable_shared@),-DENABLE_SHARED_LIBGCC)) \
@@ -2247,7 +2258,7 @@ GTFILES = $(CPP_ID_DATA_H) $(srcdir)/input.h $(srcdir)/coretypes.h \
$(srcdir)/dwarf2cfi.c \
$(srcdir)/dwarf2out.c \
$(srcdir)/tree-vect-generic.c \
- $(srcdir)/dojump.c \
+ $(srcdir)/dojump.c $(srcdir)/l-ipo.c \
$(srcdir)/emit-rtl.c $(srcdir)/except.h $(srcdir)/explow.c $(srcdir)/expr.c \
$(srcdir)/expr.h \
$(srcdir)/function.c $(srcdir)/except.c \
@@ -2564,13 +2575,37 @@ s-iov: build/gcov-iov$(build_exeext) $(BASEVER) $(DEVPHASE)
$(SHELL) $(srcdir)/../move-if-change tmp-gcov-iov.h gcov-iov.h
$(STAMP) s-iov
-GCOV_OBJS = gcov.o
+GCOV_OBJS = gcov.o vec.o ggc-none.o
gcov$(exeext): $(GCOV_OBJS) $(LIBDEPS)
+$(LINKER) $(ALL_LINKERFLAGS) $(LDFLAGS) $(GCOV_OBJS) $(LIBS) -o $@
-GCOV_DUMP_OBJS = gcov-dump.o
+GCOV_DUMP_OBJS = gcov-dump.o vec.o ggc-none.o
gcov-dump$(exeext): $(GCOV_DUMP_OBJS) $(LIBDEPS)
+$(LINKER) $(ALL_LINKERFLAGS) $(LDFLAGS) $(GCOV_DUMP_OBJS) \
$(LIBS) -o $@
+
+GCOV_TOOL_DEP_FILES = $(srcdir)/../libgcc/libgcov-util.c gcov-io.c $(GCOV_IO_H) \
+ $(srcdir)/../libgcc/libgcov-driver.c $(srcdir)/../libgcc/libgcov-driver-system.c \
+ $(srcdir)/../libgcc/libgcov-merge.c $(srcdir)/../libgcc/libgcov.h \
+ $(SYSTEM_H) coretypes.h $(TM_H) $(CONFIG_H) version.h intl.h $(DIAGNOSTIC_H)
+libgcov-util.o: $(srcdir)/../libgcc/libgcov-util.c $(GCOV_TOOL_DEP_FILES)
+ +$(COMPILER) -c $(ALL_COMPILERFLAGS) $(ALL_CPPFLAGS) $(INCLUDES) -o $@ $<
+libgcov-driver-tool.o: $(srcdir)/../libgcc/libgcov-driver.c $(GCOV_TOOL_DEP_FILES)
+ +$(COMPILER) -c $(ALL_COMPILERFLAGS) $(ALL_CPPFLAGS) $(INCLUDES) \
+ -DIN_GCOV_TOOL=1 -o $@ $<
+libgcov-merge-tool.o: $(srcdir)/../libgcc/libgcov-merge.c $(GCOV_TOOL_DEP_FILES)
+ +$(COMPILER) -c $(ALL_COMPILERFLAGS) $(ALL_CPPFLAGS) $(INCLUDES) \
+ -DIN_GCOV_TOOL=1 -o $@ $<
+gcov-tool-dyn-ipa.o: $(srcdir)/../libgcc/dyn-ipa.c $(GCOV_TOOL_DEP_FILES)
+ +$(COMPILER) -c $(ALL_COMPILERFLAGS) $(ALL_CPPFLAGS) $(INCLUDES) \
+ -DIN_GCOV_TOOL=1 -o $@ $<
+gcov-tool-params.o: params.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(COMMON_TARGET_H) \
+ $(PARAMS_H) $(DIAGNOSTIC_CORE_H)
+ +$(COMPILER) -DIN_GCOV_TOOL=1 -c $(ALL_COMPILERFLAGS) $(ALL_CPPFLAGS) \
+ $(INCLUDES) -o $@ $<
+GCOV_TOOL_OBJS = gcov-tool.o libgcov-util.o libgcov-driver-tool.o \
+ libgcov-merge-tool.o gcov-tool-dyn-ipa.o gcov-tool-params.o
+gcov-tool$(exeext): $(GCOV_TOOL_OBJS) $(LIBDEPS)
+ +$(LINKER) $(ALL_LINKERFLAGS) $(LDFLAGS) $(GCOV_TOOL_OBJS) $(LIBS) -o $@
#
# Build the include directories. The stamp files are stmp-* rather than
# s-* so that mostlyclean does not force the include directory to
@@ -2799,7 +2834,7 @@ TEXI_GCC_FILES = gcc.texi gcc-common.texi gcc-vers.texi frontends.texi \
contribute.texi compat.texi funding.texi gnu.texi gpl_v3.texi \
fdl.texi contrib.texi cppenv.texi cppopts.texi avr-mmcu.texi \
implement-c.texi implement-cxx.texi arm-neon-intrinsics.texi \
- arm-acle-intrinsics.texi
+ arm-acle-intrinsics.texi gcov-tool.texi
# we explicitly use $(srcdir)/doc/tm.texi here to avoid confusion with
# the generated tm.texi; the latter might have a more recent timestamp,
@@ -2920,7 +2955,8 @@ $(build_htmldir)/gccinstall/index.html: $(TEXI_GCCINSTALL_FILES)
DESTDIR=$(@D) \
$(SHELL) $(srcdir)/doc/install.texi2html
-MANFILES = doc/gcov.1 doc/cpp.1 doc/gcc.1 doc/gfdl.7 doc/gpl.7 doc/fsf-funding.7
+MANFILES = doc/gcov.1 doc/cpp.1 doc/gcc.1 doc/gfdl.7 doc/gpl.7 \
+ doc/fsf-funding.7 doc/gcov-tool.1
generated-manpages: man
@@ -3207,6 +3243,20 @@ install-common: native lang.install-common installdirs
rm -f $(DESTDIR)$(bindir)/$(GCOV_INSTALL_NAME)$(exeext); \
$(INSTALL_PROGRAM) gcov$(exeext) $(DESTDIR)$(bindir)/$(GCOV_INSTALL_NAME)$(exeext); \
fi
+# Install profile_tool if it is available.
+ -if [ -f $(srcdir)/../contrib/profile_tool ]; \
+ then \
+ rm -f $(DESTDIR)$(bindir)/$(PROFILE_TOOL_INSTALL_NAME)$(exeext); \
+ $(INSTALL_PROGRAM) $(srcdir)/../contrib/profile_tool \
+ $(DESTDIR)$(bindir)/$(PROFILE_TOOL_INSTALL_NAME)$(exeext); \
+ fi
+# Install gcov-tool if it was compiled.
+ -if [ -f gcov-tool$(exeext) ]; \
+ then \
+ rm -f $(DESTDIR)$(bindir)/$(GCOV_TOOL_INSTALL_NAME)$(exeext); \
+ $(INSTALL_PROGRAM) \
+ gcov-tool$(exeext) $(DESTDIR)$(bindir)/$(GCOV_TOOL_INSTALL_NAME)$(exeext); \
+ fi
# Install the driver program as $(target_noncanonical)-gcc,
# $(target_noncanonical)-gcc-$(version), and also as gcc if native.
@@ -3312,6 +3362,11 @@ $(DESTDIR)$(man1dir)/$(GCOV_INSTALL_NAME)$(man1ext): doc/gcov.1 installdirs
-$(INSTALL_DATA) $< $@
-chmod a-x $@
+$(DESTDIR)$(man1dir)/$(GCOV_TOOL_INSTALL_NAME)$(man1ext): doc/gcov-tool.1 installdirs
+ -rm -f $@
+ -$(INSTALL_DATA) $< $@
+ -chmod a-x $@
+
# Install all the header files built in the include subdirectory.
install-headers: $(INSTALL_HEADERS_DIR)
# Fix symlinks to absolute paths in the installed include directory to
diff --git a/gcc-4.9/gcc/ada/ChangeLog b/gcc-4.9/gcc/ada/ChangeLog
index b4d3e7769..f979c34d4 100644
--- a/gcc-4.9/gcc/ada/ChangeLog
+++ b/gcc-4.9/gcc/ada/ChangeLog
@@ -1,3 +1,59 @@
+2014-05-19 Eric Botcazou <ebotcazou@adacore.com>
+
+ Backport from mainline
+ 2014-04-22 Richard Henderson <rth@redhat.com>
+
+ * init.c [__linux__] (HAVE_GNAT_ALTERNATE_STACK): New define.
+ (__gnat_alternate_stack): Enable for all linux except ia64.
+
+2014-05-18 Eric Botcazou <ebotcazou@adacore.com>
+
+ * utils.c (gnat_write_global_declarations): Adjust the flags put on
+ dummy_global.
+
+2014-05-18 Eric Botcazou <ebotcazou@adacore.com>
+
+ * gcc-interface/decl.c (gnat_to_gnu_entity) <E_Array_Subtype>: Do not
+ consider that regular packed arrays can never be superflat.
+
+2014-05-17 Eric Botcazou <ebotcazou@adacore.com>
+
+ Backport from mainline
+ 2014-04-28 Richard Henderson <rth@redhat.com>
+
+ * gcc-interface/Makefile.in: Support aarch64-linux.
+
+ 2014-04-28 Eric Botcazou <ebotcazou@adacore.com>
+
+ * exp_dbug.ads (Get_External_Name): Add 'False' default to Has_Suffix,
+ add 'Suffix' parameter and adjust comment.
+ (Get_External_Name_With_Suffix): Delete.
+ * exp_dbug.adb (Get_External_Name_With_Suffix): Merge into...
+ (Get_External_Name): ...here. Add 'False' default to Has_Suffix, add
+ 'Suffix' parameter.
+ (Get_Encoded_Name): Remove 2nd argument in call to Get_External_Name.
+ Call Get_External_Name instead of Get_External_Name_With_Suffix.
+ (Get_Secondary_DT_External_Name): Likewise.
+ * exp_cg.adb (Write_Call_Info): Likewise.
+ * exp_disp.adb (Export_DT): Likewise.
+ (Import_DT): Likewise.
+ * comperr.ads (Compiler_Abort): Remove Code parameter and add From_GCC
+ parameter with False default.
+ * comperr.adb (Compiler_Abort): Likewise. Adjust accordingly.
+ * types.h (Fat_Pointer): Rename into...
+ (String_Pointer): ...this. Add comment on interfacing rules.
+ * fe.h (Compiler_Abort): Adjust for above renaming.
+ (Error_Msg_N): Likewise.
+ (Error_Msg_NE): Likewise.
+ (Get_External_Name): Likewise. Add third parameter.
+ (Get_External_Name_With_Suffix): Delete.
+ * gcc-interface/decl.c (STDCALL_PREFIX): Define.
+ (create_concat_name): Adjust call to Get_External_Name, remove call to
+ Get_External_Name_With_Suffix, use STDCALL_PREFIX, adjust for renaming.
+ * gcc-interface/trans.c (post_error): Likewise.
+ (post_error_ne): Likewise.
+ * gcc-interface/misc.c (internal_error_function): Likewise.
+
2014-04-22 Release Manager
* GCC 4.9.0 released.
diff --git a/gcc-4.9/gcc/ada/comperr.adb b/gcc-4.9/gcc/ada/comperr.adb
index 13646a5c1..7a9d7070c 100644
--- a/gcc-4.9/gcc/ada/comperr.adb
+++ b/gcc-4.9/gcc/ada/comperr.adb
@@ -6,7 +6,7 @@
-- --
-- B o d y --
-- --
--- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
+-- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
@@ -74,8 +74,8 @@ package body Comperr is
procedure Compiler_Abort
(X : String;
- Code : Integer := 0;
- Fallback_Loc : String := "")
+ Fallback_Loc : String := "";
+ From_GCC : Boolean := False)
is
-- The procedures below output a "bug box" with information about
-- the cause of the compiler abort and about the preferred method
@@ -206,7 +206,7 @@ package body Comperr is
Write_Str (") ");
if X'Length + Column > 76 then
- if Code < 0 then
+ if From_GCC then
Write_Str ("GCC error:");
end if;
@@ -235,11 +235,7 @@ package body Comperr is
Write_Str (X);
end if;
- if Code > 0 then
- Write_Str (", Code=");
- Write_Int (Int (Code));
-
- elsif Code = 0 then
+ if not From_GCC then
-- For exception case, get exception message from the TSD. Note
-- that it would be neater and cleaner to pass the exception
diff --git a/gcc-4.9/gcc/ada/comperr.ads b/gcc-4.9/gcc/ada/comperr.ads
index ba3cb6b8f..dccd8ef34 100644
--- a/gcc-4.9/gcc/ada/comperr.ads
+++ b/gcc-4.9/gcc/ada/comperr.ads
@@ -6,7 +6,7 @@
-- --
-- S p e c --
-- --
--- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
+-- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
@@ -31,8 +31,8 @@ package Comperr is
procedure Compiler_Abort
(X : String;
- Code : Integer := 0;
- Fallback_Loc : String := "");
+ Fallback_Loc : String := "";
+ From_GCC : Boolean := False);
pragma No_Return (Compiler_Abort);
-- Signals an internal compiler error. Never returns control. Depending on
-- processing may end up raising Unrecoverable_Error, or exiting directly.
@@ -46,10 +46,9 @@ package Comperr is
-- Note that this is only used at the outer level (to handle constraint
-- errors or assert errors etc.) In the normal logic of the compiler we
-- always use pragma Assert to check for errors, and if necessary an
- -- explicit abort is achieved by pragma Assert (False). Code is positive
- -- for a gigi abort (giving the gigi abort code), zero for a front
- -- end exception (with possible message stored in TSD.Current_Excep,
- -- and negative (an unused value) for a GCC abort.
+ -- explicit abort is achieved by pragma Assert (False). From_GCC is true
+ -- for a GCC abort and false for a front end exception (with a possible
+ -- message stored in TSD.Current_Excep).
procedure Delete_SCIL_Files;
-- Delete SCIL files associated with the main unit
diff --git a/gcc-4.9/gcc/ada/exp_cg.adb b/gcc-4.9/gcc/ada/exp_cg.adb
index d8a7022e5..483f174ef 100644
--- a/gcc-4.9/gcc/ada/exp_cg.adb
+++ b/gcc-4.9/gcc/ada/exp_cg.adb
@@ -6,7 +6,7 @@
-- --
-- B o d y --
-- --
--- Copyright (C) 2010-2013, Free Software Foundation, Inc. --
+-- Copyright (C) 2010-2014, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
@@ -437,10 +437,10 @@ package body Exp_CG is
if Nkind (P) = N_Subprogram_Body
and then not Acts_As_Spec (P)
then
- Get_External_Name (Corresponding_Spec (P), Has_Suffix => False);
+ Get_External_Name (Corresponding_Spec (P));
else
- Get_External_Name (Defining_Entity (P), Has_Suffix => False);
+ Get_External_Name (Defining_Entity (P));
end if;
Write_Str (Name_Buffer (1 .. Name_Len));
diff --git a/gcc-4.9/gcc/ada/exp_dbug.adb b/gcc-4.9/gcc/ada/exp_dbug.adb
index 7dc4264cc..136202908 100644
--- a/gcc-4.9/gcc/ada/exp_dbug.adb
+++ b/gcc-4.9/gcc/ada/exp_dbug.adb
@@ -507,8 +507,8 @@ package body Exp_Dbug is
begin
-- If not generating code, there is no need to create encoded names, and
-- problems when the back-end is called to annotate types without full
- -- code generation. See comments in Get_External_Name_With_Suffix for
- -- additional details.
+ -- code generation. See comments in Get_External_Name for additional
+ -- details.
-- However we do create encoded names if the back end is active, even
-- if Operating_Mode got reset. Otherwise any serious error reported
@@ -556,7 +556,7 @@ package body Exp_Dbug is
-- Fixed-point case
if Is_Fixed_Point_Type (E) then
- Get_External_Name_With_Suffix (E, "XF_");
+ Get_External_Name (E, True, "XF_");
Add_Real_To_Buffer (Delta_Value (E));
if Small_Value (E) /= Delta_Value (E) then
@@ -568,14 +568,14 @@ package body Exp_Dbug is
elsif Vax_Float (E) then
if Digits_Value (Base_Type (E)) = 6 then
- Get_External_Name_With_Suffix (E, "XFF");
+ Get_External_Name (E, True, "XFF");
elsif Digits_Value (Base_Type (E)) = 9 then
- Get_External_Name_With_Suffix (E, "XFF");
+ Get_External_Name (E, True, "XFF");
else
pragma Assert (Digits_Value (Base_Type (E)) = 15);
- Get_External_Name_With_Suffix (E, "XFG");
+ Get_External_Name (E, True, "XFG");
end if;
-- Discrete case where bounds do not match size
@@ -607,9 +607,9 @@ package body Exp_Dbug is
begin
if Biased then
- Get_External_Name_With_Suffix (E, "XB");
+ Get_External_Name (E, True, "XB");
else
- Get_External_Name_With_Suffix (E, "XD");
+ Get_External_Name (E, True, "XD");
end if;
if Lo_Encode or Hi_Encode then
@@ -649,7 +649,7 @@ package body Exp_Dbug is
else
Has_Suffix := False;
- Get_External_Name (E, Has_Suffix);
+ Get_External_Name (E);
end if;
if Debug_Flag_B and then Has_Suffix then
@@ -667,7 +667,11 @@ package body Exp_Dbug is
-- Get_External_Name --
-----------------------
- procedure Get_External_Name (Entity : Entity_Id; Has_Suffix : Boolean) is
+ procedure Get_External_Name
+ (Entity : Entity_Id;
+ Has_Suffix : Boolean := False;
+ Suffix : String := "")
+ is
E : Entity_Id := Entity;
Kind : Entity_Kind;
@@ -704,6 +708,20 @@ package body Exp_Dbug is
-- Start of processing for Get_External_Name
begin
+ -- If we are not in code generation mode, this procedure may still be
+ -- called from Back_End (more specifically - from gigi for doing type
+ -- representation annotation or some representation-specific checks).
+ -- But in this mode there is no need to mess with external names.
+
+ -- Furthermore, the call causes difficulties in this case because the
+ -- string representing the homonym number is not correctly reset as a
+ -- part of the call to Output_Homonym_Numbers_Suffix (which is not
+ -- called in gigi).
+
+ if Operating_Mode /= Generate_Code then
+ return;
+ end if;
+
Reset_Buffers;
-- If this is a child unit, we want the child
@@ -762,42 +780,13 @@ package body Exp_Dbug is
Get_Qualified_Name_And_Append (E);
end if;
- Name_Buffer (Name_Len + 1) := ASCII.NUL;
- end Get_External_Name;
-
- -----------------------------------
- -- Get_External_Name_With_Suffix --
- -----------------------------------
-
- procedure Get_External_Name_With_Suffix
- (Entity : Entity_Id;
- Suffix : String)
- is
- Has_Suffix : constant Boolean := (Suffix /= "");
-
- begin
- -- If we are not in code generation mode, this procedure may still be
- -- called from Back_End (more specifically - from gigi for doing type
- -- representation annotation or some representation-specific checks).
- -- But in this mode there is no need to mess with external names.
-
- -- Furthermore, the call causes difficulties in this case because the
- -- string representing the homonym number is not correctly reset as a
- -- part of the call to Output_Homonym_Numbers_Suffix (which is not
- -- called in gigi).
-
- if Operating_Mode /= Generate_Code then
- return;
- end if;
-
- Get_External_Name (Entity, Has_Suffix);
-
if Has_Suffix then
Add_Str_To_Name_Buffer ("___");
Add_Str_To_Name_Buffer (Suffix);
- Name_Buffer (Name_Len + 1) := ASCII.NUL;
end if;
- end Get_External_Name_With_Suffix;
+
+ Name_Buffer (Name_Len + 1) := ASCII.NUL;
+ end Get_External_Name;
--------------------------
-- Get_Variant_Encoding --
@@ -944,7 +933,7 @@ package body Exp_Dbug is
Suffix_Index : Int)
is
begin
- Get_External_Name (Typ, Has_Suffix => False);
+ Get_External_Name (Typ);
if Ancestor_Typ /= Typ then
declare
@@ -952,7 +941,7 @@ package body Exp_Dbug is
Save_Str : constant String (1 .. Name_Len)
:= Name_Buffer (1 .. Name_Len);
begin
- Get_External_Name (Ancestor_Typ, Has_Suffix => False);
+ Get_External_Name (Ancestor_Typ);
-- Append the extended name of the ancestor to the
-- extended name of Typ
diff --git a/gcc-4.9/gcc/ada/exp_dbug.ads b/gcc-4.9/gcc/ada/exp_dbug.ads
index 86099f66f..6f27bfe0e 100644
--- a/gcc-4.9/gcc/ada/exp_dbug.ads
+++ b/gcc-4.9/gcc/ada/exp_dbug.ads
@@ -413,10 +413,11 @@ package Exp_Dbug is
procedure Get_External_Name
(Entity : Entity_Id;
- Has_Suffix : Boolean);
- -- Set Name_Buffer and Name_Len to the external name of entity E. The
+ Has_Suffix : Boolean := False;
+ Suffix : String := "");
+ -- Set Name_Buffer and Name_Len to the external name of the entity. The
-- external name is the Interface_Name, if specified, unless the entity
- -- has an address clause or a suffix.
+ -- has an address clause or Has_Suffix is true.
--
-- If the Interface is not present, or not used, the external name is the
-- concatenation of:
@@ -428,26 +429,11 @@ package Exp_Dbug is
-- - the string "$" (or "__" if target does not allow "$"), followed
-- by homonym suffix, if the entity is an overloaded subprogram
-- or is defined within an overloaded subprogram.
-
- procedure Get_External_Name_With_Suffix
- (Entity : Entity_Id;
- Suffix : String);
- -- Set Name_Buffer and Name_Len to the external name of entity E. If
- -- Suffix is the empty string the external name is as above, otherwise
- -- the external name is the concatenation of:
- --
- -- - the string "_ada_", if the entity is a library subprogram,
- -- - the names of any enclosing scopes, each followed by "__",
- -- or "X_" if the next entity is a subunit)
- -- - the name of the entity
- -- - the string "$" (or "__" if target does not allow "$"), followed
- -- by homonym suffix, if the entity is an overloaded subprogram
- -- or is defined within an overloaded subprogram.
- -- - the string "___" followed by Suffix
+ -- - the string "___" followed by Suffix if Has_Suffix is true.
--
-- Note that a call to this procedure has no effect if we are not
-- generating code, since the necessary information for computing the
- -- proper encoded name is not available in this case.
+ -- proper external name is not available in this case.
--------------------------------------------
-- Subprograms for Handling Qualification --
diff --git a/gcc-4.9/gcc/ada/exp_disp.adb b/gcc-4.9/gcc/ada/exp_disp.adb
index 8ed3b3956..da2b55d3d 100644
--- a/gcc-4.9/gcc/ada/exp_disp.adb
+++ b/gcc-4.9/gcc/ada/exp_disp.adb
@@ -3913,10 +3913,7 @@ package body Exp_Disp is
pragma Assert (Related_Type (Node (Elmt)) = Typ);
- Get_External_Name
- (Entity => Node (Elmt),
- Has_Suffix => True);
-
+ Get_External_Name (Node (Elmt));
Set_Interface_Name (DT,
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer));
@@ -7088,7 +7085,7 @@ package body Exp_Disp is
Set_Scope (DT, Current_Scope);
- Get_External_Name (DT, True);
+ Get_External_Name (DT);
Set_Interface_Name (DT,
Make_String_Literal (Loc, Strval => String_From_Name_Buffer));
diff --git a/gcc-4.9/gcc/ada/fe.h b/gcc-4.9/gcc/ada/fe.h
index 9b38903f9..e02067c0e 100644
--- a/gcc-4.9/gcc/ada/fe.h
+++ b/gcc-4.9/gcc/ada/fe.h
@@ -29,17 +29,20 @@
* *
****************************************************************************/
-/* This file contains definitions to access front-end functions and
- variables used by gigi. */
+/* This file contains declarations to access front-end functions and variables
+ used by gigi.
+
+ WARNING: functions taking String_Pointer parameters must abide by the rule
+ documented alongside the definition of String_Pointer in types.h. */
#ifdef __cplusplus
extern "C" {
#endif
-/* comperr: */
+/* comperr: */
#define Compiler_Abort comperr__compiler_abort
-extern int Compiler_Abort (Fat_Pointer, int, Fat_Pointer) ATTRIBUTE_NORETURN;
+extern int Compiler_Abort (String_Pointer, String_Pointer, Boolean) ATTRIBUTE_NORETURN;
/* csets: */
@@ -72,8 +75,6 @@ extern void Set_Mechanism (Entity_Id, Mechanism_Type);
extern void Set_RM_Size (Entity_Id, Uint);
extern void Set_Present_Expr (Node_Id, Uint);
-/* Test if the node N is the name of an entity (i.e. is an identifier,
- expanded name, or an attribute reference that returns an entity). */
#define Is_Entity_Name einfo__is_entity_name
extern Boolean Is_Entity_Name (Node_Id);
@@ -90,8 +91,8 @@ extern Node_Id Get_Attribute_Definition_Clause (Entity_Id, char);
#define Error_Msg_NE errout__error_msg_ne
#define Set_Identifier_Casing errout__set_identifier_casing
-extern void Error_Msg_N (Fat_Pointer, Node_Id);
-extern void Error_Msg_NE (Fat_Pointer, Node_Id, Entity_Id);
+extern void Error_Msg_N (String_Pointer, Node_Id);
+extern void Error_Msg_NE (String_Pointer, Node_Id, Entity_Id);
extern void Set_Identifier_Casing (Char *, const Char *);
/* err_vars: */
@@ -147,11 +148,9 @@ extern void Setup_Asm_Outputs (Node_Id);
#define Get_Encoded_Name exp_dbug__get_encoded_name
#define Get_External_Name exp_dbug__get_external_name
-#define Get_External_Name_With_Suffix exp_dbug__get_external_name_with_suffix
-extern void Get_Encoded_Name (Entity_Id);
-extern void Get_External_Name (Entity_Id, Boolean);
-extern void Get_External_Name_With_Suffix (Entity_Id, Fat_Pointer);
+extern void Get_Encoded_Name (Entity_Id);
+extern void Get_External_Name (Entity_Id, Boolean, String_Pointer);
/* exp_util: */
diff --git a/gcc-4.9/gcc/ada/gcc-interface/Makefile.in b/gcc-4.9/gcc/ada/gcc-interface/Makefile.in
index 9af1967ce..5c36962ef 100644
--- a/gcc-4.9/gcc/ada/gcc-interface/Makefile.in
+++ b/gcc-4.9/gcc/ada/gcc-interface/Makefile.in
@@ -1988,6 +1988,44 @@ ifeq ($(strip $(filter-out arm% linux-gnueabi%,$(target_cpu) $(target_os))),)
LIBRARY_VERSION := $(LIB_VERSION)
endif
+# AArch64 Linux
+ifeq ($(strip $(filter-out aarch64% linux%,$(target_cpu) $(target_os))),)
+ LIBGNAT_TARGET_PAIRS = \
+ a-exetim.adb<a-exetim-posix.adb \
+ a-exetim.ads<a-exetim-default.ads \
+ a-intnam.ads<a-intnam-linux.ads \
+ a-synbar.adb<a-synbar-posix.adb \
+ a-synbar.ads<a-synbar-posix.ads \
+ s-inmaop.adb<s-inmaop-posix.adb \
+ s-intman.adb<s-intman-posix.adb \
+ s-linux.ads<s-linux.ads \
+ s-mudido.adb<s-mudido-affinity.adb \
+ s-osinte.ads<s-osinte-linux.ads \
+ s-osinte.adb<s-osinte-posix.adb \
+ s-osprim.adb<s-osprim-posix.adb \
+ s-taprop.adb<s-taprop-linux.adb \
+ s-tasinf.ads<s-tasinf-linux.ads \
+ s-tasinf.adb<s-tasinf-linux.adb \
+ s-tpopsp.adb<s-tpopsp-tls.adb \
+ s-taspri.ads<s-taspri-posix.ads \
+ g-sercom.adb<g-sercom-linux.adb \
+ $(ATOMICS_TARGET_PAIRS) \
+ $(ATOMICS_BUILTINS_TARGET_PAIRS) \
+ system.ads<system-linux-x86_64.ads
+ ## ^^ Note the above is a pretty-close placeholder.
+
+ TOOLS_TARGET_PAIRS = \
+ mlib-tgt-specific.adb<mlib-tgt-specific-linux.adb \
+ indepsw.adb<indepsw-gnu.adb
+
+ EXTRA_GNATRTL_TASKING_OBJS=s-linux.o a-exetim.o
+ EH_MECHANISM=-gcc
+ THREADSLIB=-lpthread -lrt
+ GNATLIB_SHARED=gnatlib-shared-dual
+ GMEM_LIB = gmemlib
+ LIBRARY_VERSION := $(LIB_VERSION)
+endif
+
# Sparc Linux
ifeq ($(strip $(filter-out sparc% linux%,$(target_cpu) $(target_os))),)
LIBGNAT_TARGET_PAIRS_COMMON = \
diff --git a/gcc-4.9/gcc/ada/gcc-interface/decl.c b/gcc-4.9/gcc/ada/gcc-interface/decl.c
index 4180e59f6..52452ce79 100644
--- a/gcc-4.9/gcc/ada/gcc-interface/decl.c
+++ b/gcc-4.9/gcc/ada/gcc-interface/decl.c
@@ -72,6 +72,8 @@
#define Has_Thiscall_Convention(E) 0
#endif
+#define STDCALL_PREFIX "_imp__"
+
/* Stack realignment is necessary for functions with foreign conventions when
the ABI doesn't mandate as much as what the compiler assumes - that is, up
to PREFERRED_STACK_BOUNDARY.
@@ -2433,8 +2435,10 @@ gnat_to_gnu_entity (Entity_Id gnat_entity, tree gnu_expr, int definition)
we can just use the high bound of the index type. */
else if ((Nkind (gnat_index) == N_Range
&& cannot_be_superflat_p (gnat_index))
- /* Packed Array Types are never superflat. */
- || Is_Packed_Array_Type (gnat_entity))
+ /* Bit-Packed Array Types are never superflat. */
+ || (Is_Packed_Array_Type (gnat_entity)
+ && Is_Bit_Packed_Array
+ (Original_Array_Type (gnat_entity))))
gnu_high = gnu_max;
/* Otherwise, if the high bound is constant but the low bound is
@@ -8879,16 +8883,12 @@ get_entity_name (Entity_Id gnat_entity)
tree
create_concat_name (Entity_Id gnat_entity, const char *suffix)
{
- Entity_Kind kind = Ekind (gnat_entity);
+ const Entity_Kind kind = Ekind (gnat_entity);
+ const bool has_suffix = (suffix != NULL);
+ String_Template temp = {1, has_suffix ? strlen (suffix) : 0};
+ String_Pointer sp = {suffix, &temp};
- if (suffix)
- {
- String_Template temp = {1, (int) strlen (suffix)};
- Fat_Pointer fp = {suffix, &temp};
- Get_External_Name_With_Suffix (gnat_entity, fp);
- }
- else
- Get_External_Name (gnat_entity, 0);
+ Get_External_Name (gnat_entity, has_suffix, sp);
/* A variable using the Stdcall convention lives in a DLL. We adjust
its name to use the jump table, the _imp__NAME contains the address
@@ -8896,9 +8896,9 @@ create_concat_name (Entity_Id gnat_entity, const char *suffix)
if ((kind == E_Variable || kind == E_Constant)
&& Has_Stdcall_Convention (gnat_entity))
{
- const int len = 6 + Name_Len;
+ const int len = strlen (STDCALL_PREFIX) + Name_Len;
char *new_name = (char *) alloca (len + 1);
- strcpy (new_name, "_imp__");
+ strcpy (new_name, STDCALL_PREFIX);
strcat (new_name, Name_Buffer);
return get_identifier_with_length (new_name, len);
}
diff --git a/gcc-4.9/gcc/ada/gcc-interface/misc.c b/gcc-4.9/gcc/ada/gcc-interface/misc.c
index a5f2881d6..fe44c6d5b 100644
--- a/gcc-4.9/gcc/ada/gcc-interface/misc.c
+++ b/gcc-4.9/gcc/ada/gcc-interface/misc.c
@@ -283,8 +283,8 @@ internal_error_function (diagnostic_context *context,
text_info tinfo;
char *buffer, *p, *loc;
String_Template temp, temp_loc;
- Fat_Pointer fp, fp_loc;
- expanded_location s;
+ String_Pointer sp, sp_loc;
+ expanded_location xloc;
/* Warn if plugins present. */
warn_if_plugins ();
@@ -311,21 +311,21 @@ internal_error_function (diagnostic_context *context,
temp.Low_Bound = 1;
temp.High_Bound = p - buffer;
- fp.Bounds = &temp;
- fp.Array = buffer;
+ sp.Bounds = &temp;
+ sp.Array = buffer;
- s = expand_location (input_location);
- if (context->show_column && s.column != 0)
- asprintf (&loc, "%s:%d:%d", s.file, s.line, s.column);
+ xloc = expand_location (input_location);
+ if (context->show_column && xloc.column != 0)
+ asprintf (&loc, "%s:%d:%d", xloc.file, xloc.line, xloc.column);
else
- asprintf (&loc, "%s:%d", s.file, s.line);
+ asprintf (&loc, "%s:%d", xloc.file, xloc.line);
temp_loc.Low_Bound = 1;
temp_loc.High_Bound = strlen (loc);
- fp_loc.Bounds = &temp_loc;
- fp_loc.Array = loc;
+ sp_loc.Bounds = &temp_loc;
+ sp_loc.Array = loc;
Current_Error_Node = error_gnat_node;
- Compiler_Abort (fp, -1, fp_loc);
+ Compiler_Abort (sp, sp_loc, true);
}
/* Perform all the initialization steps that are language-specific. */
diff --git a/gcc-4.9/gcc/ada/gcc-interface/trans.c b/gcc-4.9/gcc/ada/gcc-interface/trans.c
index 4a4d0faa9..03bf098b0 100644
--- a/gcc-4.9/gcc/ada/gcc-interface/trans.c
+++ b/gcc-4.9/gcc/ada/gcc-interface/trans.c
@@ -9262,16 +9262,16 @@ void
post_error (const char *msg, Node_Id node)
{
String_Template temp;
- Fat_Pointer fp;
+ String_Pointer sp;
if (No (node))
return;
temp.Low_Bound = 1;
temp.High_Bound = strlen (msg);
- fp.Bounds = &temp;
- fp.Array = msg;
- Error_Msg_N (fp, node);
+ sp.Bounds = &temp;
+ sp.Array = msg;
+ Error_Msg_N (sp, node);
}
/* Similar to post_error, but NODE is the node at which to post the error and
@@ -9281,16 +9281,16 @@ void
post_error_ne (const char *msg, Node_Id node, Entity_Id ent)
{
String_Template temp;
- Fat_Pointer fp;
+ String_Pointer sp;
if (No (node))
return;
temp.Low_Bound = 1;
temp.High_Bound = strlen (msg);
- fp.Bounds = &temp;
- fp.Array = msg;
- Error_Msg_NE (fp, node, ent);
+ sp.Bounds = &temp;
+ sp.Array = msg;
+ Error_Msg_NE (sp, node, ent);
}
/* Similar to post_error_ne, but NUM is the number to use for the '^'. */
diff --git a/gcc-4.9/gcc/ada/gcc-interface/utils.c b/gcc-4.9/gcc/ada/gcc-interface/utils.c
index 014fe361b..15b72366b 100644
--- a/gcc-4.9/gcc/ada/gcc-interface/utils.c
+++ b/gcc-4.9/gcc/ada/gcc-interface/utils.c
@@ -5662,9 +5662,10 @@ gnat_write_global_declarations (void)
dummy_global
= build_decl (BUILTINS_LOCATION, VAR_DECL, get_identifier (label),
void_type_node);
+ DECL_HARD_REGISTER (dummy_global) = 1;
TREE_STATIC (dummy_global) = 1;
- TREE_ASM_WRITTEN (dummy_global) = 1;
node = varpool_node_for_decl (dummy_global);
+ node->definition = 1;
node->force_output = 1;
while (!types_used_by_cur_var_decl->is_empty ())
diff --git a/gcc-4.9/gcc/ada/init.c b/gcc-4.9/gcc/ada/init.c
index c3824ab7e..48319d62f 100644
--- a/gcc-4.9/gcc/ada/init.c
+++ b/gcc-4.9/gcc/ada/init.c
@@ -556,9 +556,14 @@ __gnat_error_handler (int sig, siginfo_t *si ATTRIBUTE_UNUSED, void *ucontext)
Raise_From_Signal_Handler (exception, msg);
}
-#if defined (i386) || defined (__x86_64__) || defined (__powerpc__)
-/* This must be in keeping with System.OS_Interface.Alternate_Stack_Size. */
-char __gnat_alternate_stack[16 * 1024]; /* 2 * SIGSTKSZ */
+#ifndef __ia64__
+#define HAVE_GNAT_ALTERNATE_STACK 1
+/* This must be in keeping with System.OS_Interface.Alternate_Stack_Size.
+ It must be larger than MINSIGSTKSZ and hopefully near 2 * SIGSTKSZ. */
+# if 16 * 1024 < MINSIGSTKSZ
+# error "__gnat_alternate_stack too small"
+# endif
+char __gnat_alternate_stack[16 * 1024];
#endif
#ifdef __XENO__
@@ -612,7 +617,7 @@ __gnat_install_handler (void)
sigaction (SIGBUS, &act, NULL);
if (__gnat_get_interrupt_state (SIGSEGV) != 's')
{
-#if defined (i386) || defined (__x86_64__) || defined (__powerpc__)
+#ifdef HAVE_GNAT_ALTERNATE_STACK
/* Setup an alternate stack region for the handler execution so that
stack overflows can be handled properly, avoiding a SEGV generation
from stack usage by the handler itself. */
diff --git a/gcc-4.9/gcc/ada/types.h b/gcc-4.9/gcc/ada/types.h
index 7d1e69624..5e19e8fe6 100644
--- a/gcc-4.9/gcc/ada/types.h
+++ b/gcc-4.9/gcc/ada/types.h
@@ -76,11 +76,19 @@ typedef Char *Str;
/* Pointer to string of Chars */
typedef Char *Str_Ptr;
-/* Types for the fat pointer used for strings and the template it
- points to. */
-typedef struct {int Low_Bound, High_Bound; } String_Template;
-typedef struct {const char *Array; String_Template *Bounds; }
- __attribute ((aligned (sizeof (char *) * 2))) Fat_Pointer;
+/* Types for the fat pointer used for strings and the template it points to.
+ The fat pointer is conceptually a couple of pointers, but it is wrapped
+ up in a special record type. On the Ada side, the record is naturally
+ aligned (i.e. given pointer alignment) on regular platforms, but it is
+ given twice this alignment on strict-alignment platforms for performance
+ reasons. On the C side, for the sake of portability and simplicity, we
+ overalign it on all platforms (so the machine mode is always the same as
+ on the Ada side) but arrange to pass it in an even scalar position as a
+ parameter to functions (so the scalar parameter alignment is always the
+ same as on the Ada side). */
+typedef struct { int Low_Bound, High_Bound; } String_Template;
+typedef struct { const char *Array; String_Template *Bounds; }
+ __attribute ((aligned (sizeof (char *) * 2))) String_Pointer;
/* Types for Node/Entity Kinds: */
diff --git a/gcc-4.9/gcc/alias.c b/gcc-4.9/gcc/alias.c
index 434ae7ad3..e5406123c 100644
--- a/gcc-4.9/gcc/alias.c
+++ b/gcc-4.9/gcc/alias.c
@@ -157,7 +157,6 @@ static rtx find_base_value (rtx);
static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
static int insert_subset_children (splay_tree_node, void*);
static alias_set_entry get_alias_set_entry (alias_set_type);
-static bool nonoverlapping_component_refs_p (const_rtx, const_rtx);
static tree decl_for_component_ref (tree);
static int write_dependence_p (const_rtx,
const_rtx, enum machine_mode, rtx,
@@ -2259,68 +2258,6 @@ read_dependence (const_rtx mem, const_rtx x)
return false;
}
-/* Return true if we can determine that the fields referenced cannot
- overlap for any pair of objects. */
-
-static bool
-nonoverlapping_component_refs_p (const_rtx rtlx, const_rtx rtly)
-{
- const_tree x = MEM_EXPR (rtlx), y = MEM_EXPR (rtly);
- const_tree fieldx, fieldy, typex, typey, orig_y;
-
- if (!flag_strict_aliasing
- || !x || !y
- || TREE_CODE (x) != COMPONENT_REF
- || TREE_CODE (y) != COMPONENT_REF)
- return false;
-
- do
- {
- /* The comparison has to be done at a common type, since we don't
- know how the inheritance hierarchy works. */
- orig_y = y;
- do
- {
- fieldx = TREE_OPERAND (x, 1);
- typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
-
- y = orig_y;
- do
- {
- fieldy = TREE_OPERAND (y, 1);
- typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
-
- if (typex == typey)
- goto found;
-
- y = TREE_OPERAND (y, 0);
- }
- while (y && TREE_CODE (y) == COMPONENT_REF);
-
- x = TREE_OPERAND (x, 0);
- }
- while (x && TREE_CODE (x) == COMPONENT_REF);
- /* Never found a common type. */
- return false;
-
- found:
- /* If we're left with accessing different fields of a structure, then no
- possible overlap, unless they are both bitfields. */
- if (TREE_CODE (typex) == RECORD_TYPE && fieldx != fieldy)
- return !(DECL_BIT_FIELD (fieldx) && DECL_BIT_FIELD (fieldy));
-
- /* The comparison on the current field failed. If we're accessing
- a very nested structure, look at the next outer level. */
- x = TREE_OPERAND (x, 0);
- y = TREE_OPERAND (y, 0);
- }
- while (x && y
- && TREE_CODE (x) == COMPONENT_REF
- && TREE_CODE (y) == COMPONENT_REF);
-
- return false;
-}
-
/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
static tree
@@ -2596,9 +2533,6 @@ true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
if (nonoverlapping_memrefs_p (mem, x, false))
return 0;
- if (nonoverlapping_component_refs_p (mem, x))
- return 0;
-
return rtx_refs_may_alias_p (x, mem, true);
}
diff --git a/gcc-4.9/gcc/attribs.c b/gcc-4.9/gcc/attribs.c
index 54373eb52..d3558a6e9 100644
--- a/gcc-4.9/gcc/attribs.c
+++ b/gcc-4.9/gcc/attribs.c
@@ -35,6 +35,7 @@ along with GCC; see the file COPYING3. If not see
#include "hash-table.h"
#include "plugin.h"
+
/* Table of the tables of attributes (common, language, format, machine)
searched. */
static const struct attribute_spec *attribute_tables[4];
diff --git a/gcc-4.9/gcc/auto-profile.c b/gcc-4.9/gcc/auto-profile.c
new file mode 100644
index 000000000..ddc2d5e9f
--- /dev/null
+++ b/gcc-4.9/gcc/auto-profile.c
@@ -0,0 +1,1865 @@
+/* Calculate branch probabilities, and basic block execution counts.
+ Copyright (C) 2012. Free Software Foundation, Inc.
+ Contributed by Dehao Chen (dehao@google.com)
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* Read and annotate call graph profile from the auto profile data
+ file. */
+
+#include <string.h>
+#include <map>
+#include <vector>
+#include <set>
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tree.h"
+#include "flags.h"
+#include "basic-block.h"
+#include "diagnostic-core.h"
+#include "gcov-io.h"
+#include "input.h"
+#include "profile.h"
+#include "langhooks.h"
+#include "opts.h"
+#include "tree-pass.h"
+#include "cfgloop.h"
+#include "tree-ssa-alias.h"
+#include "tree-cfg.h"
+#include "tree-cfgcleanup.h"
+#include "tree-ssa-operands.h"
+#include "tree-into-ssa.h"
+#include "internal-fn.h"
+#include "is-a.h"
+#include "gimple-expr.h"
+#include "md5.h"
+#include "gimple.h"
+#include "gimple-iterator.h"
+#include "gimple-ssa.h"
+#include "cgraph.h"
+#include "value-prof.h"
+#include "coverage.h"
+#include "params.h"
+#include "l-ipo.h"
+#include "ipa-utils.h"
+#include "ipa-inline.h"
+#include "output.h"
+#include "dwarf2asm.h"
+#include "tree-inline.h"
+#include "auto-profile.h"
+
+/* The following routines implements AutoFDO optimization.
+
+ This optimization uses sampling profiles to annotate basic block counts
+ and uses heuristics to estimate branch probabilities.
+
+ There are three phases in AutoFDO:
+
+ Phase 1: Read profile from the profile data file.
+ The following info is read from the profile datafile:
+ * string_table: a map between function name and its index.
+ * autofdo_source_profile: a map from function_instance name to
+ function_instance. This is represented as a forest of
+ function_instances.
+ * autofdo_module_profile: a map from module name to its
+ compilation/aux-module info.
+ * WorkingSet: a histogram of how many instructions are covered for a
+ given percentage of total cycles.
+
+ Phase 2: Early inline.
+ Early inline uses autofdo_source_profile to find if a callsite is:
+ * inlined in the profiled binary.
+ * callee body is hot in the profiling run.
+ If both condition satisfies, early inline will inline the callsite
+ regardless of the code growth.
+
+ Phase 3: Annotate control flow graph.
+ AutoFDO uses a separate pass to:
+ * Annotate basic block count
+ * Estimate branch probability
+
+ After the above 3 phases, all profile is readily annotated on the GCC IR.
+ AutoFDO tries to reuse all FDO infrastructure as much as possible to make
+ use of the profile. E.g. it uses existing mechanism to calculate the basic
+ block/edge frequency, as well as the cgraph node/edge count.
+*/
+
+#define DEFAULT_AUTO_PROFILE_FILE "fbdata.afdo"
+
+namespace autofdo {
+
+/* Represent a source location: (function_decl, lineno). */
+typedef std::pair<tree, unsigned> decl_lineno;
+
+/* Represent an inline stack. vector[0] is the leaf node. */
+typedef std::vector<decl_lineno> inline_stack;
+
+/* String array that stores function names. */
+typedef std::vector<const char *> string_vector;
+
+/* Map from function name's index in string_table to target's
+ execution count. */
+typedef std::map<unsigned, gcov_type> icall_target_map;
+
+/* Set of gimple stmts. Used to track if the stmt has already been promoted
+ to direct call. */
+typedef std::set<gimple> stmt_set;
+
+/* Represent count info of an inline stack. */
+struct count_info
+{
+ /* Sampled count of the inline stack. */
+ gcov_type count;
+
+ /* Map from indirect call target to its sample count. */
+ icall_target_map targets;
+
+ /* Whether this inline stack is already used in annotation.
+
+ Each inline stack should only be used to annotate IR once.
+ This will be enforced when instruction-level discriminator
+ is supported. */
+ bool annotated;
+};
+
+/* operator< for "const char *". */
+struct string_compare
+{
+ bool operator() (const char *a, const char *b) const
+ { return strcmp (a, b) < 0; }
+};
+
+/* Store a string array, indexed by string position in the array. */
+class string_table {
+public:
+ static string_table *create ();
+
+ /* For a given string, returns its index. */
+ int get_index (const char *name) const;
+
+ /* For a given decl, returns the index of the decl name. */
+ int get_index_by_decl (tree decl) const;
+
+ /* For a given index, returns the string. */
+ const char *get_name (int index) const;
+
+private:
+ string_table () {}
+ bool read ();
+
+ typedef std::map<const char *, unsigned, string_compare> string_index_map;
+ string_vector vector_;
+ string_index_map map_;
+};
+
+/* Profile of a function instance:
+ 1. total_count of the function.
+ 2. head_count of the function (only valid when function is a top-level
+ function_instance, i.e. it is the original copy instead of the
+ inlined copy).
+ 3. map from source location (decl_lineno) of the inlined callsite to
+ profile (count_info).
+ 4. map from callsite to callee function_instance. */
+class function_instance {
+public:
+ typedef std::vector<function_instance *> function_instance_stack;
+
+ /* Read the profile and return a function_instance with head count as
+ HEAD_COUNT. Recursively read callsites to create nested function_instances
+ too. STACK is used to track the recursive creation process. */
+ static function_instance *read_function_instance (
+ function_instance_stack *stack, gcov_type head_count);
+
+ /* Recursively deallocate all callsites (nested function_instances). */
+ ~function_instance ();
+
+ /* Accessors. */
+ int name () const { return name_; }
+ gcov_type total_count () const { return total_count_; }
+ gcov_type head_count () const { return head_count_; }
+
+ /* Recursively traverse STACK starting from LEVEL to find the corresponding
+ function_instance. */
+ function_instance *get_function_instance (const inline_stack &stack,
+ unsigned level);
+
+ /* Store the profile info for LOC in INFO. Return TRUE if profile info
+ is found. */
+ bool get_count_info (location_t loc, count_info *info) const;
+
+ /* Read the inlined indirect call target profile for STMT and store it in
+ MAP, return the total count for all inlined indirect calls. */
+ gcov_type find_icall_target_map (gimple stmt, icall_target_map *map) const;
+
+ /* Sum of counts that is used during annotation. */
+ gcov_type total_annotated_count () const;
+
+ /* Mark LOC as annotated. */
+ void mark_annotated (location_t loc);
+
+private:
+ function_instance (unsigned name, gcov_type head_count)
+ : name_(name), total_count_(0), head_count_(head_count) {}
+
+ /* Map from callsite decl_lineno (lineno in higher 16 bits, discriminator
+ in lower 16 bits) to callee function_instance. */
+ typedef std::map<unsigned, function_instance *> callsite_map;
+ /* Map from source location (decl_lineno) to profile (count_info). */
+ typedef std::map<unsigned, count_info> position_count_map;
+
+ /* function_instance name index in the string_table. */
+ unsigned name_;
+
+ /* Total sample count. */
+ gcov_type total_count_;
+
+ /* Entry BB's sample count. */
+ gcov_type head_count_;
+
+ /* Map from callsite location to callee function_instance. */
+ callsite_map callsites;
+
+ /* Map from source location to count_info. */
+ position_count_map pos_counts;
+};
+
+/* Profile for all functions. */
+class autofdo_source_profile {
+public:
+ static autofdo_source_profile *create ()
+ {
+ autofdo_source_profile *map = new autofdo_source_profile ();
+ if (map->read ())
+ return map;
+ delete map;
+ return NULL;
+ }
+
+ ~autofdo_source_profile ();
+
+ /* For a given DECL, returns the top-level function_instance. */
+ function_instance *get_function_instance_by_decl (tree decl) const;
+
+ /* Find count_info for a given gimple STMT. If found, store the count_info
+ in INFO and return true; otherwise return false. */
+ bool get_count_info (gimple stmt, count_info *info) const;
+
+ /* Find total count of the callee of EDGE. */
+ gcov_type get_callsite_total_count (struct cgraph_edge *edge) const;
+
+ /* Update value profile INFO for STMT from the inlined indirect callsite.
+ Return true if INFO is updated. */
+ bool update_inlined_ind_target (gimple stmt, count_info *info);
+
+ /* Mark LOC as annotated. */
+ void mark_annotated (location_t loc);
+
+ /* Writes the profile annotation status for each function in an elf
+ section. */
+ void write_annotated_count () const;
+
+private:
+ /* Map from function_instance name index (in string_table) to
+ function_instance. */
+ typedef std::map<unsigned, function_instance *>
+ name_function_instance_map;
+
+ autofdo_source_profile () {}
+
+ /* Read AutoFDO profile and returns TRUE on success. */
+ bool read ();
+
+ /* Return the function_instance in the profile that correspond to the
+ inline STACK. */
+ function_instance *get_function_instance_by_inline_stack (
+ const inline_stack &stack) const;
+
+ name_function_instance_map map_;
+};
+
+/* Module profile. */
+class autofdo_module_profile {
+public:
+ static autofdo_module_profile *create ()
+ {
+ autofdo_module_profile *map = new autofdo_module_profile ();
+ if (map->read ())
+ return map;
+ delete map;
+ return NULL;
+ }
+
+ /* For a given module NAME, returns this module's gcov_module_info. */
+ gcov_module_info *get_module(const char *name) const
+ {
+ name_target_map::const_iterator iter = map_.find (name);
+ return iter == map_.end() ? NULL : iter->second.second;
+ }
+
+ /* For a given module NAME, returns this module's aux-modules. */
+ const string_vector *get_aux_modules(const char *name) const
+ {
+ name_target_map::const_iterator iter = map_.find (name);
+ return iter == map_.end() ? NULL : &iter->second.first;
+ }
+
+private:
+ autofdo_module_profile () {}
+ bool read ();
+
+ typedef std::pair<string_vector, gcov_module_info *> AuxInfo;
+ typedef std::map<const char *, AuxInfo, string_compare> name_target_map;
+ /* Map from module name to (aux_modules, gcov_module_info). */
+ name_target_map map_;
+};
+
+
+/* Store the strings read from the profile data file. */
+static string_table *afdo_string_table;
+/* Store the AutoFDO source profile. */
+static autofdo_source_profile *afdo_source_profile;
+
+/* Store the AutoFDO module profile. */
+static autofdo_module_profile *afdo_module_profile;
+
+/* gcov_ctr_summary structure to store the profile_info. */
+static struct gcov_ctr_summary *afdo_profile_info;
+
+/* Helper functions. */
+
+/* Return the original name of NAME: strip the suffix that starts
+ with '.' */
+
+static const char *get_original_name (const char *name)
+{
+ char *ret = xstrdup (name);
+ char *find = strchr (ret, '.');
+ if (find != NULL)
+ *find = 0;
+ return ret;
+}
+
+/* Return the combined location, which is a 32bit integer in which
+ higher 16 bits stores the line offset of LOC to the start lineno
+ of DECL, The lower 16 bits stores the discrimnator. */
+
+static unsigned
+get_combined_location (location_t loc, tree decl)
+{
+ return ((LOCATION_LINE (loc) - DECL_SOURCE_LINE (decl)) << 16)
+ | get_discriminator_from_locus (loc);
+}
+
+/* Return the function decl of a given lexical BLOCK. */
+
+static tree
+get_function_decl_from_block (tree block)
+{
+ tree decl;
+
+ if (LOCATION_LOCUS (BLOCK_SOURCE_LOCATION (block) == UNKNOWN_LOCATION))
+ return NULL_TREE;
+
+ for (decl = BLOCK_ABSTRACT_ORIGIN (block);
+ decl && (TREE_CODE (decl) == BLOCK);
+ decl = BLOCK_ABSTRACT_ORIGIN (decl))
+ if (TREE_CODE (decl) == FUNCTION_DECL)
+ break;
+ return decl;
+}
+
+/* Store inline stack for STMT in STACK. */
+
+static void
+get_inline_stack (location_t locus, inline_stack *stack)
+{
+ if (LOCATION_LOCUS (locus) == UNKNOWN_LOCATION)
+ return;
+
+ tree block = LOCATION_BLOCK (locus);
+ if (block && TREE_CODE (block) == BLOCK)
+ {
+ int level = 0;
+ for (block = BLOCK_SUPERCONTEXT (block);
+ block && (TREE_CODE (block) == BLOCK);
+ block = BLOCK_SUPERCONTEXT (block))
+ {
+ location_t tmp_locus = BLOCK_SOURCE_LOCATION (block);
+ if (LOCATION_LOCUS (tmp_locus) == UNKNOWN_LOCATION)
+ continue;
+
+ tree decl = get_function_decl_from_block (block);
+ stack->push_back (std::make_pair (
+ decl, get_combined_location (locus, decl)));
+ locus = tmp_locus;
+ level++;
+ }
+ }
+ stack->push_back (std::make_pair (
+ current_function_decl,
+ get_combined_location (locus, current_function_decl)));
+}
+
+/* Return STMT's combined location, which is a 32bit integer in which
+ higher 16 bits stores the line offset of LOC to the start lineno
+ of DECL, The lower 16 bits stores the discrimnator. */
+
+static unsigned
+get_relative_location_for_stmt (gimple stmt)
+{
+ location_t locus = gimple_location (stmt);
+ if (LOCATION_LOCUS (locus) == UNKNOWN_LOCATION)
+ return UNKNOWN_LOCATION;
+
+ for (tree block = gimple_block (stmt);
+ block && (TREE_CODE (block) == BLOCK);
+ block = BLOCK_SUPERCONTEXT (block))
+ if (LOCATION_LOCUS (BLOCK_SOURCE_LOCATION (block)) != UNKNOWN_LOCATION)
+ return get_combined_location (
+ locus, get_function_decl_from_block (block));
+ return get_combined_location (locus, current_function_decl);
+}
+
+/* Return true if BB contains indirect call. */
+
+static bool
+has_indirect_call (basic_block bb)
+{
+ gimple_stmt_iterator gsi;
+
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+ if (gimple_code (stmt) == GIMPLE_CALL
+ && (gimple_call_fn (stmt) == NULL
+ || TREE_CODE (gimple_call_fn (stmt)) != FUNCTION_DECL))
+ return true;
+ }
+ return false;
+}
+
+/* Member functions for string_table. */
+
+string_table *
+string_table::create ()
+{
+ string_table *map = new string_table();
+ if (map->read ())
+ return map;
+ delete map;
+ return NULL;
+}
+
+int
+string_table::get_index (const char *name) const
+{
+ if (name == NULL)
+ return -1;
+ string_index_map::const_iterator iter = map_.find (name);
+ if (iter == map_.end())
+ return -1;
+ else
+ return iter->second;
+}
+
+int
+string_table::get_index_by_decl (tree decl) const
+{
+ const char *name = get_original_name (
+ IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
+ int ret = get_index (name);
+ if (ret != -1)
+ return ret;
+ ret = get_index (lang_hooks.dwarf_name (decl, 0));
+ if (ret != -1)
+ return ret;
+ if (DECL_ABSTRACT_ORIGIN (decl))
+ return get_index_by_decl (DECL_ABSTRACT_ORIGIN (decl));
+ else
+ return -1;
+}
+
+const char *
+string_table::get_name (int index) const
+{
+ gcc_assert (index > 0 && index < (int) vector_.size());
+ return vector_[index];
+}
+
+bool
+string_table::read ()
+{
+ if (gcov_read_unsigned () != GCOV_TAG_AFDO_FILE_NAMES)
+ return false;
+ /* Skip the length of the section. */
+ gcov_read_unsigned ();
+ /* Read in the file name table. */
+ unsigned string_num = gcov_read_unsigned ();
+ for (unsigned i = 0; i < string_num; i++)
+ {
+ vector_.push_back (get_original_name (gcov_read_string ()));
+ map_[vector_.back()] = i;
+ }
+ return true;
+}
+
+
+/* Member functions for function_instance. */
+
+function_instance::~function_instance ()
+{
+ for (callsite_map::iterator iter = callsites.begin();
+ iter != callsites.end(); ++iter)
+ delete iter->second;
+}
+
+/* Recursively traverse STACK starting from LEVEL to find the corresponding
+ function_instance. */
+
+function_instance *
+function_instance::get_function_instance (
+ const inline_stack &stack, unsigned level)
+{
+ if (level == 0)
+ return this;
+ callsite_map::const_iterator ret = callsites.find (stack[level].second);
+ if (ret != callsites.end () && ret->second != NULL)
+ return ret->second->get_function_instance (stack, level - 1);
+ else
+ return NULL;
+}
+
+/* Store the profile info for LOC in INFO. Return TRUE if profile info
+ is found. */
+
+bool
+function_instance::get_count_info (location_t loc, count_info *info) const
+{
+ position_count_map::const_iterator iter = pos_counts.find (loc);
+ if (iter == pos_counts.end ())
+ return false;
+ *info = iter->second;
+ return true;
+}
+
+/* Mark LOC as annotated. */
+
+void
+function_instance::mark_annotated (location_t loc)
+{
+ position_count_map::iterator iter = pos_counts.find (loc);
+ if (iter == pos_counts.end ())
+ return;
+ iter->second.annotated = true;
+}
+
+/* Read the inlinied indirect call target profile for STMT and store it in
+ MAP, return the total count for all inlined indirect calls. */
+
+gcov_type
+function_instance::find_icall_target_map (
+ gimple stmt, icall_target_map *map) const
+{
+ gcov_type ret = 0;
+ unsigned stmt_offset = get_relative_location_for_stmt (stmt);
+
+ for (callsite_map::const_iterator iter = callsites.begin();
+ iter != callsites.end(); ++iter)
+ {
+ unsigned callee = iter->second->name();
+ /* Check if callsite location match the stmt. */
+ if (iter->first != stmt_offset)
+ continue;
+ struct cgraph_node *node = find_func_by_global_id (
+ (unsigned long long) afdo_string_table->get_name (callee), true);
+ if (node == NULL)
+ continue;
+ if (!check_ic_target (stmt, node))
+ continue;
+ (*map)[callee] = iter->second->total_count ();
+ ret += iter->second->total_count ();
+ }
+ return ret;
+}
+
+/* Read the profile and create a function_instance with head count as
+ HEAD_COUNT. Recursively read callsites to create nested function_instances
+ too. STACK is used to track the recursive creation process. */
+
+function_instance *
+function_instance::read_function_instance (
+ function_instance_stack *stack, gcov_type head_count)
+{
+ unsigned name = gcov_read_unsigned ();
+ unsigned num_pos_counts = gcov_read_unsigned ();
+ unsigned num_callsites = gcov_read_unsigned ();
+ function_instance *s = new function_instance (name, head_count);
+ stack->push_back(s);
+
+ for (unsigned i = 0; i < num_pos_counts; i++)
+ {
+ unsigned offset = gcov_read_unsigned ();
+ unsigned num_targets = gcov_read_unsigned ();
+ gcov_type count = gcov_read_counter ();
+ s->pos_counts[offset].count = count;
+ for (unsigned j = 0; j < stack->size(); j++)
+ (*stack)[j]->total_count_ += count;
+ for (unsigned j = 0; j < num_targets; j++)
+ {
+ /* Only indirect call target histogram is supported now. */
+ gcov_read_unsigned ();
+ gcov_type target_idx = gcov_read_counter ();
+ s->pos_counts[offset].targets[target_idx] =
+ gcov_read_counter ();
+ }
+ }
+ for (unsigned i = 0; i < num_callsites; i++) {
+ unsigned offset = gcov_read_unsigned ();
+ s->callsites[offset] = read_function_instance (stack, 0);
+ }
+ stack->pop_back();
+ return s;
+}
+
+/* Sum of counts that is used during annotation. */
+
+gcov_type
+function_instance::total_annotated_count () const
+{
+ gcov_type ret = 0;
+ for (callsite_map::const_iterator iter = callsites.begin();
+ iter != callsites.end(); ++iter)
+ ret += iter->second->total_annotated_count ();
+ for (position_count_map::const_iterator iter = pos_counts.begin();
+ iter != pos_counts.end(); ++iter)
+ if (iter->second.annotated)
+ ret += iter->second.count;
+ return ret;
+}
+
+void
+autofdo_source_profile::write_annotated_count () const
+{
+ /* We store the annotation info as a string in the format of:
+
+ function_name:total_count:annotated_count
+
+ Because different modules may output the annotation info for a same
+ function, we set the section as SECTION_MERGE so that we don't have
+ replicated info in the final binary. */
+ switch_to_section (get_section (
+ ".gnu.switches.text.annotation",
+ SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | (SECTION_ENTSIZE & 1),
+ NULL));
+ for (name_function_instance_map::const_iterator iter = map_.begin ();
+ iter != map_.end (); ++iter)
+ if (iter->second->total_count () > 0)
+ {
+ char buf[1024];
+ snprintf (buf, 1024,
+ "%s:"HOST_WIDEST_INT_PRINT_DEC":"HOST_WIDEST_INT_PRINT_DEC,
+ afdo_string_table->get_name (iter->first),
+ iter->second->total_count (),
+ iter->second->total_annotated_count ());
+ dw2_asm_output_nstring (buf, (size_t)-1, NULL);
+ }
+}
+
+
+/* Member functions for autofdo_source_profile. */
+
+autofdo_source_profile::~autofdo_source_profile ()
+{
+ for (name_function_instance_map::const_iterator iter = map_.begin ();
+ iter != map_.end (); ++iter)
+ delete iter->second;
+}
+
+/* For a given DECL, returns the top-level function_instance. */
+
+function_instance *
+autofdo_source_profile::get_function_instance_by_decl (tree decl) const
+{
+ int index = afdo_string_table->get_index_by_decl (decl);
+ if (index == -1)
+ return NULL;
+ name_function_instance_map::const_iterator ret = map_.find (index);
+ return ret == map_.end() ? NULL : ret->second;
+}
+
+/* Find count_info for a given gimple STMT. If found, store the count_info
+ in INFO and return true; otherwise return false. */
+
+bool
+autofdo_source_profile::get_count_info (gimple stmt, count_info *info) const
+{
+ if (LOCATION_LOCUS (gimple_location (stmt)) == cfun->function_end_locus)
+ return false;
+
+ inline_stack stack;
+ get_inline_stack (gimple_location (stmt), &stack);
+ if (stack.size () == 0)
+ return false;
+ const function_instance *s = get_function_instance_by_inline_stack (stack);
+ if (s == NULL)
+ return false;
+ return s->get_count_info (stack[0].second, info);
+}
+
+void
+autofdo_source_profile::mark_annotated (location_t loc) {
+ inline_stack stack;
+ get_inline_stack (loc, &stack);
+ if (stack.size () == 0)
+ return;
+ function_instance *s = get_function_instance_by_inline_stack (stack);
+ if (s == NULL)
+ return;
+ s->mark_annotated (stack[0].second);
+}
+
+/* Update value profile INFO for STMT from the inlined indirect callsite.
+ Return true if INFO is updated. */
+
+bool
+autofdo_source_profile::update_inlined_ind_target (
+ gimple stmt, count_info *info)
+{
+ if (LOCATION_LOCUS (gimple_location (stmt)) == cfun->function_end_locus)
+ return false;
+
+ count_info old_info;
+ get_count_info (stmt, &old_info);
+ gcov_type total = 0;
+ for (icall_target_map::const_iterator iter = old_info.targets.begin();
+ iter != old_info.targets.end(); ++iter)
+ total += iter->second;
+
+ /* Program behavior changed, original promoted (and inlined) target is not
+ hot any more. Will avoid promote the original target.
+
+ To check if original promoted target is still hot, we check the total
+ count of the unpromoted targets (stored in old_info). If it is no less
+ than half of the callsite count (stored in INFO), the original promoted
+ target is considered not hot any more. */
+ if (total >= info->count * 0.5)
+ return false;
+
+ inline_stack stack;
+ get_inline_stack (gimple_location (stmt), &stack);
+ if (stack.size () == 0)
+ return false;
+ const function_instance *s = get_function_instance_by_inline_stack (stack);
+ if (s == NULL)
+ return false;
+ icall_target_map map;
+ if (s->find_icall_target_map (stmt, &map) == 0)
+ return false;
+ for (icall_target_map::const_iterator iter = map.begin();
+ iter != map.end(); ++iter)
+ info->targets[iter->first] = iter->second;
+ return true;
+}
+
+/* Find total count of the callee of EDGE. */
+
+gcov_type
+autofdo_source_profile::get_callsite_total_count (
+ struct cgraph_edge *edge) const
+{
+ inline_stack stack;
+ stack.push_back (std::make_pair(edge->callee->decl, 0));
+ get_inline_stack (gimple_location (edge->call_stmt), &stack);
+
+ const function_instance *s = get_function_instance_by_inline_stack (stack);
+ if (s == NULL)
+ return 0;
+ else
+ return s->total_count ();
+}
+
+/* Read AutoFDO profile and returns TRUE on success. */
+
+bool
+autofdo_source_profile::read ()
+{
+ if (gcov_read_unsigned () != GCOV_TAG_AFDO_FUNCTION)
+ {
+ inform (0, "Not expected TAG.");
+ return false;
+ }
+
+ /* Skip the length of the section. */
+ gcov_read_unsigned ();
+
+ /* Read in the function/callsite profile, and store it in local
+ data structure. */
+ unsigned function_num = gcov_read_unsigned ();
+ for (unsigned i = 0; i < function_num; i++)
+ {
+ function_instance::function_instance_stack stack;
+ function_instance *s = function_instance::read_function_instance (
+ &stack, gcov_read_counter ());
+ afdo_profile_info->sum_all += s->total_count ();
+ map_[s->name ()] = s;
+ }
+ return true;
+}
+
+/* Return the function_instance in the profile that correspond to the
+ inline STACK. */
+
+function_instance *
+autofdo_source_profile::get_function_instance_by_inline_stack (
+ const inline_stack &stack) const
+{
+ name_function_instance_map::const_iterator iter = map_.find (
+ afdo_string_table->get_index_by_decl (
+ stack[stack.size() - 1].first));
+ return iter == map_.end()
+ ? NULL
+ : iter->second->get_function_instance (stack, stack.size() - 1);
+}
+
+
+/* Member functions for autofdo_module_profile. */
+
+bool
+autofdo_module_profile::read ()
+{
+ /* Read in the module info. */
+ if (gcov_read_unsigned () != GCOV_TAG_AFDO_MODULE_GROUPING)
+ {
+ inform (0, "Not expected TAG.");
+ return false;
+ }
+ /* Skip the length of the section. */
+ gcov_read_unsigned ();
+
+ /* Read in the file name table. */
+ unsigned total_module_num = gcov_read_unsigned ();
+ for (unsigned i = 0; i < total_module_num; i++)
+ {
+ char *name = xstrdup (gcov_read_string ());
+ unsigned total_num = 0;
+ unsigned num_array[7];
+ unsigned exported = gcov_read_unsigned ();
+ unsigned lang = gcov_read_unsigned ();
+ unsigned ggc_memory = gcov_read_unsigned ();
+ for (unsigned j = 0; j < 7; j++)
+ {
+ num_array[j] = gcov_read_unsigned ();
+ total_num += num_array[j];
+ }
+ gcov_module_info *module = XCNEWVAR (
+ gcov_module_info,
+ sizeof (gcov_module_info) + sizeof (char *) * total_num);
+
+ std::pair<name_target_map::iterator, bool> ret = map_.insert(
+ name_target_map::value_type (name, AuxInfo()));
+ gcc_assert (ret.second);
+ ret.first->second.second = module;
+ module->ident = i + 1;
+ module->lang = lang;
+ module->ggc_memory = ggc_memory;
+ module->num_quote_paths = num_array[1];
+ module->num_bracket_paths = num_array[2];
+ module->num_system_paths = num_array[3];
+ module->num_cpp_defines = num_array[4];
+ module->num_cpp_includes = num_array[5];
+ module->num_cl_args = num_array[6];
+ module->source_filename = name;
+ module->is_primary = strcmp (name, in_fnames[0]) == 0;
+ module->flags = module->is_primary ? exported : 1;
+ for (unsigned j = 0; j < num_array[0]; j++)
+ ret.first->second.first.push_back (xstrdup (gcov_read_string ()));
+ for (unsigned j = 0; j < total_num - num_array[0]; j++)
+ module->string_array[j] = xstrdup (gcov_read_string ());
+ }
+ return true;
+}
+
+/* Read the profile from the profile file. */
+
+static void
+read_profile (void)
+{
+ if (gcov_open (auto_profile_file, 1) == 0)
+ error ("Cannot open profile file %s.", auto_profile_file);
+
+ if (gcov_read_unsigned () != GCOV_DATA_MAGIC)
+ error ("AutoFDO profile magic number does not mathch.");
+
+ /* Skip the version number. */
+ gcov_read_unsigned ();
+
+ /* Skip the empty integer. */
+ gcov_read_unsigned ();
+
+ /* string_table. */
+ afdo_string_table = string_table::create ();
+ if (afdo_string_table == NULL)
+ error ("Cannot read string table from %s.", auto_profile_file);
+
+ /* autofdo_source_profile. */
+ afdo_source_profile = autofdo_source_profile::create ();
+ if (afdo_source_profile == NULL)
+ error ("Cannot read function profile from %s.", auto_profile_file);
+
+ /* autofdo_module_profile. */
+ afdo_module_profile = autofdo_module_profile::create ();
+ if (afdo_module_profile == NULL)
+ error ("Cannot read module profile from %s.", auto_profile_file);
+
+ /* Read in the working set. */
+ if (gcov_read_unsigned () != GCOV_TAG_AFDO_WORKING_SET)
+ error ("Cannot read working set from %s.", auto_profile_file);
+
+ /* Skip the length of the section. */
+ gcov_read_unsigned ();
+ gcov_working_set_t set[128];
+ for (unsigned i = 0; i < 128; i++)
+ {
+ set[i].num_counters = gcov_read_unsigned ();
+ set[i].min_counter = gcov_read_counter ();
+ }
+ add_working_set (set);
+}
+
+/* Read in the auxiliary modules for the current primary module. */
+
+static void
+read_aux_modules (void)
+{
+ gcov_module_info *module = afdo_module_profile->get_module (in_fnames[0]);
+ if (module == NULL)
+ return;
+
+ const string_vector *aux_modules =
+ afdo_module_profile->get_aux_modules (in_fnames[0]);
+ unsigned num_aux_modules = aux_modules ? aux_modules->size() : 0;
+
+ module_infos = XCNEWVEC (gcov_module_info *, num_aux_modules + 1);
+ module_infos[0] = module;
+ primary_module_id = module->ident;
+ if (aux_modules == NULL)
+ return;
+ unsigned curr_module = 1, max_group = PARAM_VALUE (PARAM_MAX_LIPO_GROUP);
+ for (string_vector::const_iterator iter = aux_modules->begin();
+ iter != aux_modules->end(); ++iter)
+ {
+ gcov_module_info *aux_module = afdo_module_profile->get_module (*iter);
+ if (aux_module == module)
+ continue;
+ if (aux_module == NULL)
+ {
+ if (flag_opt_info)
+ inform (0, "aux module %s cannot be found.", *iter);
+ continue;
+ }
+ if ((aux_module->lang & GCOV_MODULE_LANG_MASK) !=
+ (module->lang & GCOV_MODULE_LANG_MASK))
+ {
+ if (flag_opt_info)
+ inform (0, "Not importing %s: source language"
+ " different from primary module's source language", *iter);
+ continue;
+ }
+ if ((aux_module->lang & GCOV_MODULE_ASM_STMTS)
+ && flag_ripa_disallow_asm_modules)
+ {
+ if (flag_opt_info)
+ inform (0, "Not importing %s: contains "
+ "assembler statements", *iter);
+ continue;
+ }
+ if (max_group != 0 && curr_module >= max_group)
+ {
+ if (flag_opt_info)
+ inform (0, "Not importing %s: maximum group size reached", *iter);
+ continue;
+ }
+ if (incompatible_cl_args (module, aux_module))
+ {
+ if (flag_opt_info)
+ inform (0, "Not importing %s: command-line"
+ " arguments not compatible with primary module", *iter);
+ continue;
+ }
+ module_infos[curr_module++] = aux_module;
+ add_input_filename (*iter);
+ }
+}
+
+/* From AutoFDO profiles, find values inside STMT for that we want to measure
+ histograms for indirect-call optimization. */
+
+static void
+afdo_indirect_call (gimple_stmt_iterator *gsi, const icall_target_map &map)
+{
+ gimple stmt = gsi_stmt (*gsi);
+ tree callee;
+
+ if (map.size() == 0 || gimple_code (stmt) != GIMPLE_CALL
+ || gimple_call_fndecl (stmt) != NULL_TREE)
+ return;
+
+ callee = gimple_call_fn (stmt);
+
+ histogram_value hist = gimple_alloc_histogram_value (
+ cfun, HIST_TYPE_INDIR_CALL_TOPN, stmt, callee);
+ hist->n_counters = (GCOV_ICALL_TOPN_VAL << 2) + 1;
+ hist->hvalue.counters = XNEWVEC (gcov_type, hist->n_counters);
+ gimple_add_histogram_value (cfun, stmt, hist);
+
+ gcov_type total = 0;
+ icall_target_map::const_iterator max_iter1 = map.end();
+ icall_target_map::const_iterator max_iter2 = map.end();
+
+ for (icall_target_map::const_iterator iter = map.begin();
+ iter != map.end(); ++iter)
+ {
+ total += iter->second;
+ if (max_iter1 == map.end() || max_iter1->second < iter->second)
+ {
+ max_iter2 = max_iter1;
+ max_iter1 = iter;
+ }
+ else if (max_iter2 == map.end() || max_iter2->second < iter->second)
+ max_iter2 = iter;
+ }
+
+ hist->hvalue.counters[0] = total;
+ hist->hvalue.counters[1] = (unsigned long long)
+ afdo_string_table->get_name (max_iter1->first);
+ hist->hvalue.counters[2] = max_iter1->second;
+ if (max_iter2 != map.end())
+ {
+ hist->hvalue.counters[3] = (unsigned long long)
+ afdo_string_table->get_name (max_iter2->first);
+ hist->hvalue.counters[4] = max_iter2->second;
+ }
+ else
+ {
+ hist->hvalue.counters[3] = 0;
+ hist->hvalue.counters[4] = 0;
+ }
+}
+
+/* From AutoFDO profiles, find values inside STMT for that we want to measure
+ histograms and adds them to list VALUES. */
+
+static void
+afdo_vpt (gimple_stmt_iterator *gsi, const icall_target_map &map)
+{
+ afdo_indirect_call (gsi, map);
+}
+
+/* For a given BB, return its execution count. Add the location of annotated
+ stmt to ANNOTATED. Attach value profile if a stmt is not in PROMOTED,
+ because we only want to promot an indirect call once. */
+
+static gcov_type
+afdo_get_bb_count (basic_block bb, const stmt_set &promoted)
+{
+ gimple_stmt_iterator gsi;
+ edge e;
+ edge_iterator ei;
+ gcov_type max_count = 0;
+ bool has_annotated = false;
+
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ count_info info;
+ gimple stmt = gsi_stmt (gsi);
+ if (stmt->code == GIMPLE_DEBUG)
+ continue;
+ if (afdo_source_profile->get_count_info (stmt, &info))
+ {
+ if (info.annotated)
+ continue;
+ if (info.count > max_count)
+ max_count = info.count;
+ has_annotated = true;
+ if (info.targets.size() > 0 && promoted.find (stmt) == promoted.end ())
+ afdo_vpt (&gsi, info.targets);
+ }
+ }
+
+ if (!has_annotated)
+ return 0;
+
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ afdo_source_profile->mark_annotated (gimple_location (gsi_stmt (gsi)));
+ for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple phi = gsi_stmt (gsi);
+ size_t i;
+ for (i = 0; i < gimple_phi_num_args (phi); i++)
+ afdo_source_profile->mark_annotated (gimple_phi_arg_location (phi, i));
+ }
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ afdo_source_profile->mark_annotated (e->goto_locus);
+
+ bb->flags |= BB_ANNOTATED;
+ return max_count;
+}
+
+/* BB1 and BB2 are in an equivalent class iff:
+ 1. BB1 dominates BB2.
+ 2. BB2 post-dominates BB1.
+ 3. BB1 and BB2 are in the same loop nest.
+ This function finds the equivalent class for each basic block, and
+ stores a pointer to the first BB in its equivalent class. Meanwhile,
+ set bb counts for the same equivalent class to be idenical. */
+
+static void
+afdo_find_equiv_class (void)
+{
+ basic_block bb;
+
+ FOR_ALL_BB_FN (bb, cfun)
+ bb->aux = NULL;
+
+ FOR_ALL_BB_FN (bb, cfun)
+ {
+ vec<basic_block> dom_bbs;
+ basic_block bb1;
+ int i;
+
+ if (bb->aux != NULL)
+ continue;
+ bb->aux = bb;
+ dom_bbs = get_all_dominated_blocks (CDI_DOMINATORS, bb);
+ FOR_EACH_VEC_ELT (dom_bbs, i, bb1)
+ if (bb1->aux == NULL
+ && dominated_by_p (CDI_POST_DOMINATORS, bb, bb1)
+ && bb1->loop_father == bb->loop_father)
+ {
+ bb1->aux = bb;
+ if (bb1->count > bb->count && (bb1->flags & BB_ANNOTATED) != 0)
+ {
+ bb->count = MAX (bb->count, bb1->count);
+ bb->flags |= BB_ANNOTATED;
+ }
+ }
+ dom_bbs = get_all_dominated_blocks (CDI_POST_DOMINATORS, bb);
+ FOR_EACH_VEC_ELT (dom_bbs, i, bb1)
+ if (bb1->aux == NULL
+ && dominated_by_p (CDI_DOMINATORS, bb, bb1)
+ && bb1->loop_father == bb->loop_father)
+ {
+ bb1->aux = bb;
+ if (bb1->count > bb->count && (bb1->flags & BB_ANNOTATED) != 0)
+ {
+ bb->count = MAX (bb->count, bb1->count);
+ bb->flags |= BB_ANNOTATED;
+ }
+ }
+ }
+}
+
+/* If a basic block's count is known, and only one of its in/out edges' count
+ is unknown, its count can be calculated.
+ Meanwhile, if all of the in/out edges' counts are known, then the basic
+ block's unknown count can also be calculated.
+ IS_SUCC is true if out edges of a basic blocks are examined.
+ Return TRUE if any basic block/edge count is changed. */
+
+static bool
+afdo_propagate_edge (bool is_succ)
+{
+ basic_block bb;
+ bool changed = false;
+
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ edge e, unknown_edge = NULL;
+ edge_iterator ei;
+ int num_unknown_edge = 0;
+ gcov_type total_known_count = 0;
+
+ FOR_EACH_EDGE (e, ei, is_succ ? bb->succs : bb->preds)
+ if ((e->flags & EDGE_ANNOTATED) == 0)
+ num_unknown_edge ++, unknown_edge = e;
+ else
+ total_known_count += e->count;
+
+ if (num_unknown_edge == 0)
+ {
+ if (total_known_count > bb->count)
+ {
+ bb->count = total_known_count;
+ changed = true;
+ }
+ if ((bb->flags & BB_ANNOTATED) == 0)
+ {
+ bb->flags |= BB_ANNOTATED;
+ changed = true;
+ }
+ }
+ else if (num_unknown_edge == 1
+ && (bb->flags & BB_ANNOTATED) != 0)
+ {
+ if (bb->count >= total_known_count)
+ unknown_edge->count = bb->count - total_known_count;
+ else
+ unknown_edge->count = 0;
+ unknown_edge->flags |= EDGE_ANNOTATED;
+ changed = true;
+ }
+ }
+ return changed;
+}
+
+/* Special propagation for circuit expressions. Because GCC translates
+ control flow into data flow for circuit expressions. E.g.
+ BB1:
+ if (a && b)
+ BB2
+ else
+ BB3
+
+ will be translated into:
+
+ BB1:
+ if (a)
+ goto BB.t1
+ else
+ goto BB.t3
+ BB.t1:
+ if (b)
+ goto BB.t2
+ else
+ goto BB.t3
+ BB.t2:
+ goto BB.t3
+ BB.t3:
+ tmp = PHI (0 (BB1), 0 (BB.t1), 1 (BB.t2)
+ if (tmp)
+ goto BB2
+ else
+ goto BB3
+
+ In this case, we need to propagate through PHI to determine the edge
+ count of BB1->BB.t1, BB.t1->BB.t2. */
+
+static void
+afdo_propagate_circuit (void)
+{
+ basic_block bb;
+ FOR_ALL_BB_FN (bb, cfun)
+ {
+ gimple phi_stmt;
+ tree cmp_rhs, cmp_lhs;
+ gimple cmp_stmt = last_stmt (bb);
+ edge e;
+ edge_iterator ei;
+
+ if (!cmp_stmt || gimple_code (cmp_stmt) != GIMPLE_COND)
+ continue;
+ cmp_rhs = gimple_cond_rhs (cmp_stmt);
+ cmp_lhs = gimple_cond_lhs (cmp_stmt);
+ if (!TREE_CONSTANT (cmp_rhs)
+ || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
+ continue;
+ if (TREE_CODE (cmp_lhs) != SSA_NAME)
+ continue;
+ if ((bb->flags & BB_ANNOTATED) == 0)
+ continue;
+ phi_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
+ while (phi_stmt && gimple_code (phi_stmt) == GIMPLE_ASSIGN
+ && gimple_assign_single_p (phi_stmt)
+ && TREE_CODE (gimple_assign_rhs1 (phi_stmt)) == SSA_NAME)
+ phi_stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (phi_stmt));
+ if (!phi_stmt || gimple_code (phi_stmt) != GIMPLE_PHI)
+ continue;
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ unsigned i, total = 0;
+ edge only_one;
+ bool check_value_one = (((integer_onep (cmp_rhs))
+ ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
+ ^ ((e->flags & EDGE_TRUE_VALUE) != 0));
+ if ((e->flags & EDGE_ANNOTATED) == 0)
+ continue;
+ for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
+ {
+ tree val = gimple_phi_arg_def (phi_stmt, i);
+ edge ep = gimple_phi_arg_edge (phi_stmt, i);
+
+ if (!TREE_CONSTANT (val) || !(integer_zerop (val)
+ || integer_onep (val)))
+ continue;
+ if (check_value_one ^ integer_onep (val))
+ continue;
+ total++;
+ only_one = ep;
+ }
+ if (total == 1 && (only_one->flags & EDGE_ANNOTATED) == 0)
+ {
+ only_one->count = e->count;
+ only_one->flags |= EDGE_ANNOTATED;
+ }
+ }
+ }
+}
+
+/* Propagate the basic block count and edge count on the control flow
+ graph. We do the propagation iteratively until stablize. */
+
+static void
+afdo_propagate (void)
+{
+ basic_block bb;
+ bool changed = true;
+ int i = 0;
+
+ FOR_ALL_BB_FN (bb, cfun)
+ {
+ bb->count = ((basic_block) bb->aux)->count;
+ if ((((basic_block) bb->aux)->flags & BB_ANNOTATED) != 0)
+ bb->flags |= BB_ANNOTATED;
+ }
+
+ while (changed && i++ < PARAM_VALUE (PARAM_AUTOFDO_MAX_PROPAGATE_ITERATIONS))
+ {
+ changed = false;
+
+ if (afdo_propagate_edge (true))
+ changed = true;
+ if (afdo_propagate_edge (false))
+ changed = true;
+ afdo_propagate_circuit ();
+ }
+}
+
+/* All information parsed from a location_t that will be stored into the ELF
+ section. */
+
+struct locus_information_t {
+ /* File name of the source file containing the branch. */
+ const char *filename;
+ /* Line number of the branch location. */
+ unsigned lineno;
+ /* Hash value calculated from function name, function length, branch site
+ offset and discriminator, used to uniquely identify a branch across
+ different source versions. */
+ char hash[33];
+};
+
+/* Return true iff file and lineno are available for the provided locus.
+ Fill all fields of li with information about locus. */
+
+static bool
+get_locus_information (location_t locus, locus_information_t* li) {
+ if (locus == UNKNOWN_LOCATION || !LOCATION_FILE (locus))
+ return false;
+ li->filename = LOCATION_FILE (locus);
+ li->lineno = LOCATION_LINE (locus);
+
+ inline_stack stack;
+
+ get_inline_stack (locus, &stack);
+ if (stack.empty ())
+ return false;
+
+ tree function_decl = stack[0].first;
+
+ if (!(function_decl && TREE_CODE (function_decl) == FUNCTION_DECL))
+ return false;
+
+ /* Get function_length, branch_offset and discriminator to identify branches
+ across different source versions. */
+ unsigned function_lineno =
+ LOCATION_LINE (DECL_SOURCE_LOCATION (function_decl));
+ function *f = DECL_STRUCT_FUNCTION (function_decl);
+ unsigned function_length = f? LOCATION_LINE (f->function_end_locus) -
+ function_lineno : 0;
+ unsigned branch_offset = li->lineno - function_lineno;
+ int discriminator = get_discriminator_from_locus (locus);
+
+ const char *fn_name = fndecl_name (function_decl);
+ unsigned char md5_result[16];
+
+ md5_ctx ctx;
+
+ md5_init_ctx (&ctx);
+ md5_process_bytes (fn_name, strlen (fn_name), &ctx);
+ md5_process_bytes (&function_length, sizeof (function_length), &ctx);
+ md5_process_bytes (&branch_offset, sizeof (branch_offset), &ctx);
+ md5_process_bytes (&discriminator, sizeof (discriminator), &ctx);
+ md5_finish_ctx (&ctx, md5_result);
+
+ /* Convert MD5 to hexadecimal representation. */
+ for (int i = 0; i < 16; ++i)
+ {
+ sprintf (li->hash + i*2, "%02x", md5_result[i]);
+ }
+
+ return true;
+}
+
+/* Record branch prediction comparison for the given edge and actual
+ probability. */
+static void
+record_branch_prediction_results (edge e, int probability) {
+ basic_block bb = e->src;
+
+ if (bb->succs->length () == 2 &&
+ maybe_hot_count_p (cfun, bb->count) &&
+ bb->count >= check_branch_annotation_threshold)
+ {
+ gimple_stmt_iterator gsi;
+ gimple last = NULL;
+
+ for (gsi = gsi_last_nondebug_bb (bb);
+ !gsi_end_p (gsi);
+ gsi_prev_nondebug (&gsi))
+ {
+ last = gsi_stmt (gsi);
+
+ if (gimple_has_location (last))
+ break;
+ }
+
+ struct locus_information_t li;
+ bool annotated;
+
+ if (e->flags & EDGE_PREDICTED_BY_EXPECT)
+ annotated = true;
+ else
+ annotated = false;
+
+ if (get_locus_information (e->goto_locus, &li))
+ ; /* Intentionally do nothing. */
+ else if (get_locus_information (gimple_location (last), &li))
+ ; /* Intentionally do nothing. */
+ else
+ return; /* Can't get locus information, return. */
+
+ switch_to_section (get_section (
+ ".gnu.switches.text.branch.annotation",
+ SECTION_DEBUG | SECTION_MERGE |
+ SECTION_STRINGS | (SECTION_ENTSIZE & 1),
+ NULL));
+ char buf[1024];
+ snprintf (buf, 1024, "%s;%u;"
+ HOST_WIDEST_INT_PRINT_DEC";%d;%d;%d;%s",
+ li.filename, li.lineno, bb->count, annotated?1:0,
+ probability, e->probability, li.hash);
+ dw2_asm_output_nstring (buf, (size_t)-1, NULL);
+ }
+}
+
+/* Propagate counts on control flow graph and calculate branch
+ probabilities. */
+
+static void
+afdo_calculate_branch_prob (void)
+{
+ basic_block bb;
+ bool has_sample = false;
+
+ FOR_EACH_BB_FN (bb, cfun)
+ if (bb->count > 0)
+ has_sample = true;
+
+ if (!has_sample)
+ return;
+
+ calculate_dominance_info (CDI_POST_DOMINATORS);
+ calculate_dominance_info (CDI_DOMINATORS);
+ loop_optimizer_init (0);
+
+ afdo_find_equiv_class ();
+ afdo_propagate ();
+
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ edge e;
+ edge_iterator ei;
+ int num_unknown_succ = 0;
+ gcov_type total_count = 0;
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ if ((e->flags & EDGE_ANNOTATED) == 0)
+ num_unknown_succ ++;
+ else
+ total_count += e->count;
+ }
+ if (num_unknown_succ == 0 && total_count > 0)
+ {
+ bool first_edge = true;
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ double probability =
+ (double) e->count * REG_BR_PROB_BASE / total_count;
+
+ if (first_edge && flag_check_branch_annotation)
+ {
+ record_branch_prediction_results (
+ e, static_cast<int> (probability + 0.5));
+ first_edge = false;
+ }
+
+ e->probability = probability;
+ }
+ }
+ }
+ FOR_ALL_BB_FN (bb, cfun)
+ {
+ edge e;
+ edge_iterator ei;
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ e->count =
+ (double) bb->count * e->probability / REG_BR_PROB_BASE;
+ if (flag_check_branch_annotation)
+ {
+ e->flags &= ~EDGE_PREDICTED_BY_EXPECT;
+ }
+ }
+ bb->aux = NULL;
+ }
+
+ loop_optimizer_finalize ();
+ free_dominance_info (CDI_DOMINATORS);
+ free_dominance_info (CDI_POST_DOMINATORS);
+}
+
+/* Perform value profile transformation using AutoFDO profile. Add the
+ promoted stmts to PROMOTED_STMTS. Return TRUE if there is any
+ indirect call promoted. */
+
+static bool
+afdo_vpt_for_early_inline (stmt_set *promoted_stmts)
+{
+ basic_block bb;
+ if (afdo_source_profile->get_function_instance_by_decl (
+ current_function_decl) == NULL)
+ return false;
+
+ bool has_vpt = false;
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ if (!has_indirect_call (bb))
+ continue;
+ gimple_stmt_iterator gsi;
+
+ gcov_type bb_count = 0;
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ count_info info;
+ gimple stmt = gsi_stmt (gsi);
+ if (afdo_source_profile->get_count_info (stmt, &info))
+ bb_count = MAX (bb_count, info.count);
+ }
+
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+ /* IC_promotion and early_inline_2 is done in multiple iterations.
+ No need to promoted the stmt if its in promoted_stmts (means
+ it is already been promoted in the previous iterations). */
+ if (gimple_code (stmt) != GIMPLE_CALL
+ || (gimple_call_fn (stmt) != NULL
+ && TREE_CODE (gimple_call_fn (stmt)) == FUNCTION_DECL)
+ || promoted_stmts->find (stmt) != promoted_stmts->end ())
+ continue;
+
+ count_info info;
+ afdo_source_profile->get_count_info (stmt, &info);
+ info.count = bb_count;
+ if (afdo_source_profile->update_inlined_ind_target (stmt, &info))
+ {
+ /* Promote the indirect call and update the promoted_stmts. */
+ promoted_stmts->insert (stmt);
+ afdo_vpt (&gsi, info.targets);
+ has_vpt = true;
+ }
+ }
+ }
+ if (has_vpt && gimple_value_profile_transformations ())
+ {
+ free_dominance_info (CDI_DOMINATORS);
+ free_dominance_info (CDI_POST_DOMINATORS);
+ calculate_dominance_info (CDI_POST_DOMINATORS);
+ calculate_dominance_info (CDI_DOMINATORS);
+ update_ssa (TODO_update_ssa);
+ rebuild_cgraph_edges ();
+ return true;
+ }
+ else
+ return false;
+}
+
+/* Annotate auto profile to the control flow graph. Do not annotate value
+ profile for stmts in PROMOTED_STMTS. */
+
+static void
+afdo_annotate_cfg (const stmt_set &promoted_stmts)
+{
+ basic_block bb;
+ const function_instance *s =
+ afdo_source_profile->get_function_instance_by_decl (
+ current_function_decl);
+
+ if (s == NULL)
+ return;
+ cgraph_get_node (current_function_decl)->count = s->head_count ();
+ ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = s->head_count ();
+ gcov_type max_count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
+
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ edge e;
+ edge_iterator ei;
+
+ bb->count = 0;
+ bb->flags &= (~BB_ANNOTATED);
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ e->count = 0;
+ e->flags &= (~EDGE_ANNOTATED);
+ }
+
+ bb->count = afdo_get_bb_count (bb, promoted_stmts);
+ if (bb->count > max_count)
+ max_count = bb->count;
+ }
+ if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count >
+ ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->count)
+ {
+ ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->count =
+ ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
+ ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->flags |= BB_ANNOTATED;
+ }
+ if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count >
+ EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->count)
+ {
+ EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->count =
+ ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
+ EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->flags |= BB_ANNOTATED;
+ }
+ afdo_source_profile->mark_annotated (
+ DECL_SOURCE_LOCATION (current_function_decl));
+ afdo_source_profile->mark_annotated (cfun->function_start_locus);
+ afdo_source_profile->mark_annotated (cfun->function_end_locus);
+ if (max_count > 0)
+ {
+ profile_status_for_fn (cfun) = PROFILE_READ;
+ afdo_calculate_branch_prob ();
+ counts_to_freqs ();
+ }
+ if (flag_value_profile_transformations)
+ gimple_value_profile_transformations ();
+}
+
+/* Wrapper function to invoke early inliner. */
+
+static void early_inline ()
+{
+ compute_inline_parameters (cgraph_get_node (current_function_decl), true);
+ unsigned todo = early_inliner ();
+ if (todo & TODO_update_ssa_any)
+ update_ssa (TODO_update_ssa);
+}
+
+/* Use AutoFDO profile to annoate the control flow graph.
+ Return the todo flag. */
+
+static unsigned int
+auto_profile (void)
+{
+ struct cgraph_node *node;
+
+ if (cgraph_state == CGRAPH_STATE_FINISHED)
+ return 0;
+
+ if (!flag_auto_profile)
+ return 0;
+
+ profile_info = autofdo::afdo_profile_info;
+ if (L_IPO_COMP_MODE)
+ lipo_link_and_fixup ();
+ init_node_map (true);
+
+ FOR_EACH_FUNCTION (node)
+ {
+ if (!gimple_has_body_p (node->decl))
+ continue;
+
+ /* Don't profile functions produced for builtin stuff. */
+ if (DECL_SOURCE_LOCATION (node->decl) == BUILTINS_LOCATION)
+ continue;
+
+ push_cfun (DECL_STRUCT_FUNCTION (node->decl));
+
+ /* First do indirect call promotion and early inline to make the
+ IR match the profiled binary before actual annotation.
+
+ This is needed because an indirect call might have been promoted
+ and inlined in the profiled binary. If we do not promote and
+ inline these indirect calls before annotation, the profile for
+ these promoted functions will be lost.
+
+ e.g. foo() --indirect_call--> bar()
+ In profiled binary, the callsite is promoted and inlined, making
+ the profile look like:
+
+ foo: {
+ loc_foo_1: count_1
+ bar@loc_foo_2: {
+ loc_bar_1: count_2
+ loc_bar_2: count_3
+ }
+ }
+
+ Before AutoFDO pass, loc_foo_2 is not promoted thus not inlined.
+ If we perform annotation on it, the profile inside bar@loc_foo2
+ will be wasted.
+
+ To avoid this, we promote loc_foo_2 and inline the promoted bar
+ function before annotation, so the profile inside bar@loc_foo2
+ will be useful. */
+ autofdo::stmt_set promoted_stmts;
+ for (int i = 0; i < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS); i++)
+ {
+ if (!flag_value_profile_transformations
+ || !autofdo::afdo_vpt_for_early_inline (&promoted_stmts))
+ break;
+ early_inline ();
+ }
+
+ early_inline ();
+ autofdo::afdo_annotate_cfg (promoted_stmts);
+ compute_function_frequency ();
+ update_ssa (TODO_update_ssa);
+
+ /* Local pure-const may imply need to fixup the cfg. */
+ if (execute_fixup_cfg () & TODO_cleanup_cfg)
+ cleanup_tree_cfg ();
+
+ free_dominance_info (CDI_DOMINATORS);
+ free_dominance_info (CDI_POST_DOMINATORS);
+ rebuild_cgraph_edges ();
+ pop_cfun ();
+ }
+
+ if (flag_auto_profile_record_coverage_in_elf)
+ autofdo::afdo_source_profile->write_annotated_count ();
+ return TODO_rebuild_cgraph_edges;
+}
+} /* namespace autofdo. */
+
+/* Read the profile from the profile data file. */
+
+void
+init_auto_profile (void)
+{
+ if (auto_profile_file == NULL)
+ auto_profile_file = DEFAULT_AUTO_PROFILE_FILE;
+
+ autofdo::afdo_profile_info = (struct gcov_ctr_summary *)
+ xcalloc (1, sizeof (struct gcov_ctr_summary));
+ autofdo::afdo_profile_info->runs = 1;
+ autofdo::afdo_profile_info->sum_max = 0;
+ autofdo::afdo_profile_info->sum_all = 0;
+
+ /* Read the profile from the profile file. */
+ autofdo::read_profile ();
+
+ if (flag_dyn_ipa)
+ autofdo::read_aux_modules ();
+}
+
+/* Free the resources. */
+
+void
+end_auto_profile (void)
+{
+ delete autofdo::afdo_source_profile;
+ delete autofdo::afdo_string_table;
+ delete autofdo::afdo_module_profile;
+ profile_info = NULL;
+}
+
+/* Returns TRUE if EDGE is hot enough to be inlined early. */
+
+bool
+afdo_callsite_hot_enough_for_early_inline (struct cgraph_edge *edge)
+{
+ gcov_type count =
+ autofdo::afdo_source_profile->get_callsite_total_count (edge);
+ if (count > 0)
+ {
+ bool is_hot;
+ const struct gcov_ctr_summary *saved_profile_info = profile_info;
+ /* At earling inline stage, profile_info is not set yet. We need to
+ temporarily set it to afdo_profile_info to calculate hotness. */
+ profile_info = autofdo::afdo_profile_info;
+ is_hot = maybe_hot_count_p (NULL, count);
+ profile_info = saved_profile_info;
+ return is_hot;
+ }
+ else
+ return false;
+}
+
+namespace {
+
+const pass_data pass_data_ipa_auto_profile =
+{
+ SIMPLE_IPA_PASS,
+ "afdo", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ true, /* has_gate */
+ true, /* has_execute */
+ TV_IPA_AUTOFDO, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ 0, /* todo_flags_finish */
+};
+
+class pass_ipa_auto_profile : public simple_ipa_opt_pass
+{
+public:
+ pass_ipa_auto_profile(gcc::context *ctxt)
+ : simple_ipa_opt_pass(pass_data_ipa_auto_profile, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ bool gate () { return flag_auto_profile; }
+ unsigned int execute () { return autofdo::auto_profile (); }
+
+}; // class pass_ipa_auto_profile
+
+} // anon namespace
+
+simple_ipa_opt_pass *
+make_pass_ipa_auto_profile (gcc::context *ctxt)
+{
+ return new pass_ipa_auto_profile (ctxt);
+}
diff --git a/gcc-4.9/gcc/auto-profile.h b/gcc-4.9/gcc/auto-profile.h
new file mode 100644
index 000000000..276614ad9
--- /dev/null
+++ b/gcc-4.9/gcc/auto-profile.h
@@ -0,0 +1,36 @@
+/* auto-profile.h - Defines data exported from auto-profile.c
+ Copyright (C) 2012. Free Software Foundation, Inc.
+ Contributed by Dehao Chen (dehao@google.com)
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#ifndef AUTO_PROFILE_H
+#define AUTO_PROFILE_H
+
+#include <vector>
+
+/* Read, process, finalize AutoFDO data structures. */
+extern void init_auto_profile (void);
+extern void end_auto_profile (void);
+
+/* Returns TRUE if EDGE is hot enough to be inlined early. */
+extern bool afdo_callsite_hot_enough_for_early_inline (struct cgraph_edge *);
+
+/* Stores all possible call targets for NODE to RET. */
+extern void get_all_possible_call_targets (struct cgraph_node *,
+ std::vector<const char *> *);
+#endif /* AUTO_PROFILE_H */
diff --git a/gcc-4.9/gcc/basic-block.h b/gcc-4.9/gcc/basic-block.h
index 82729b4c8..9ebe4efb8 100644
--- a/gcc-4.9/gcc/basic-block.h
+++ b/gcc-4.9/gcc/basic-block.h
@@ -201,11 +201,6 @@ struct GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb"))) basic_block_d
/* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
int frequency;
-
- /* The discriminator for this block. The discriminator distinguishes
- among several basic blocks that share a common locus, allowing for
- more accurate sample-based profiling. */
- int discriminator;
};
/* This ensures that struct gimple_bb_info is smaller than
@@ -718,6 +713,7 @@ extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
/* In predict.c */
+extern bool maybe_hot_count_p (struct function *, gcov_type);
extern bool maybe_hot_bb_p (struct function *, const_basic_block);
extern bool maybe_hot_edge_p (edge);
extern bool probably_never_executed_bb_p (struct function *, const_basic_block);
diff --git a/gcc-4.9/gcc/builtin-types.def b/gcc-4.9/gcc/builtin-types.def
index fba9c7ddd..91513b36b 100644
--- a/gcc-4.9/gcc/builtin-types.def
+++ b/gcc-4.9/gcc/builtin-types.def
@@ -569,6 +569,10 @@ DEF_POINTER_TYPE (BT_PTR_FN_VOID_VAR, BT_FN_VOID_VAR)
DEF_FUNCTION_TYPE_3 (BT_FN_PTR_PTR_FN_VOID_VAR_PTR_SIZE,
BT_PTR, BT_PTR_FN_VOID_VAR, BT_PTR, BT_SIZE)
+DEF_POINTER_TYPE (BT_PTR_FN_INT, BT_FN_INT)
+DEF_FUNCTION_TYPE_VAR_3 (BT_FN_INT_PTR_FN_INT_PTR_PTR_VAR,
+ BT_INT, BT_PTR_FN_INT, BT_PTR, BT_PTR)
+
DEF_FUNCTION_TYPE_1 (BT_FN_I1_VPTR, BT_I1, BT_VOLATILE_PTR)
DEF_FUNCTION_TYPE_1 (BT_FN_I2_VPTR, BT_I2, BT_VOLATILE_PTR)
diff --git a/gcc-4.9/gcc/builtins.c b/gcc-4.9/gcc/builtins.c
index dd57b1ae4..d6642d0d9 100644
--- a/gcc-4.9/gcc/builtins.c
+++ b/gcc-4.9/gcc/builtins.c
@@ -59,6 +59,7 @@ along with GCC; see the file COPYING3. If not see
#include "builtins.h"
#include "ubsan.h"
#include "cilk.h"
+#include "input.h"
static tree do_mpc_arg1 (tree, tree, int (*)(mpc_ptr, mpc_srcptr, mpc_rnd_t));
@@ -12064,13 +12065,16 @@ fold_builtin_next_arg (tree exp, bool va_start_p)
tree fntype = TREE_TYPE (current_function_decl);
int nargs = call_expr_nargs (exp);
tree arg;
+ location_t loc = LOCATION_LOCUS (input_location);
+ if (has_discriminator (loc))
+ loc = map_discriminator_location (loc);
+
/* There is good chance the current input_location points inside the
definition of the va_start macro (perhaps on the token for
builtin) in a system header, so warnings will not be emitted.
Use the location in real source code. */
source_location current_location =
- linemap_unwind_to_first_non_reserved_loc (line_table, input_location,
- NULL);
+ linemap_unwind_to_first_non_reserved_loc (line_table, loc, NULL);
if (!stdarg_p (fntype))
{
diff --git a/gcc-4.9/gcc/c-family/ChangeLog b/gcc-4.9/gcc/c-family/ChangeLog
index 4f277de68..1fa0dd088 100644
--- a/gcc-4.9/gcc/c-family/ChangeLog
+++ b/gcc-4.9/gcc/c-family/ChangeLog
@@ -1,3 +1,29 @@
+2014-06-30 Jakub Jelinek <jakub@redhat.com>
+
+ Backported from mainline
+ 2014-06-10 Jakub Jelinek <jakub@redhat.com>
+
+ PR fortran/60928
+ * c-pragma.c (omp_pragmas_simd): Move PRAGMA_OMP_TASK...
+ (omp_pragmas): ... back here.
+
+2014-06-12 Jakub Jelinek <jakub@redhat.com>
+
+ PR middle-end/61486
+ * c-omp.c (c_omp_split_clauses): Don't crash on firstprivate in
+ #pragma omp target teams or
+ #pragma omp {,target }teams distribute simd.
+
+2014-06-04 Marek Polacek <polacek@redhat.com>
+
+ Backport from mainline
+ 2014-05-08 Marek Polacek <polacek@redhat.com>
+
+ PR c/61053
+ * c-common.c (min_align_of_type): New function factored out from...
+ (c_sizeof_or_alignof_type): ...here.
+ * c-common.h (min_align_of_type): Declare.
+
2014-05-06 Richard Biener <rguenther@suse.de>
* c-opts.c (c_common_post_options): For -freestanding,
diff --git a/gcc-4.9/gcc/c-family/c-common.c b/gcc-4.9/gcc/c-family/c-common.c
index f7f2bb3e3..65c25bf17 100644
--- a/gcc-4.9/gcc/c-family/c-common.c
+++ b/gcc-4.9/gcc/c-family/c-common.c
@@ -380,6 +380,13 @@ static tree handle_omp_declare_simd_attribute (tree *, tree, tree, int,
static tree handle_omp_declare_target_attribute (tree *, tree, tree, int,
bool *);
+static tree handle_always_patch_for_instrumentation_attribute (tree *, tree,
+ tree, int,
+ bool *);
+static tree handle_never_patch_for_instrumentation_attribute (tree *, tree,
+ tree, int,
+ bool *);
+
static void check_function_nonnull (tree, int, tree *);
static void check_nonnull_arg (void *, tree, unsigned HOST_WIDE_INT);
static bool nonnull_check_p (tree, unsigned HOST_WIDE_INT);
@@ -758,6 +765,13 @@ const struct attribute_spec c_common_attribute_table[] =
The name contains space to prevent its usage in source code. */
{ "fn spec", 1, 1, false, true, true,
handle_fnspec_attribute, false },
+ { "always_patch_for_instrumentation", 0, 0, true, false, false,
+ handle_always_patch_for_instrumentation_attribute,
+ false },
+ { "never_patch_for_instrumentation", 0, 0, true, false, false,
+ handle_never_patch_for_instrumentation_attribute,
+ false },
+
{ "warn_unused", 0, 0, false, false, false,
handle_warn_unused_attribute, false },
{ "returns_nonnull", 0, 0, false, true, true,
@@ -4927,6 +4941,26 @@ c_common_get_alias_set (tree t)
return -1;
}
+/* Return the least alignment required for type TYPE. */
+
+unsigned int
+min_align_of_type (tree type)
+{
+ unsigned int align = TYPE_ALIGN (type);
+ align = MIN (align, BIGGEST_ALIGNMENT);
+#ifdef BIGGEST_FIELD_ALIGNMENT
+ align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
+#endif
+ unsigned int field_align = align;
+#ifdef ADJUST_FIELD_ALIGN
+ tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE,
+ type);
+ field_align = ADJUST_FIELD_ALIGN (field, field_align);
+#endif
+ align = MIN (align, field_align);
+ return align / BITS_PER_UNIT;
+}
+
/* Compute the value of 'sizeof (TYPE)' or '__alignof__ (TYPE)', where
the IS_SIZEOF parameter indicates which operator is being applied.
The COMPLAIN flag controls whether we should diagnose possibly
@@ -5005,21 +5039,7 @@ c_sizeof_or_alignof_type (location_t loc,
size_int (TYPE_PRECISION (char_type_node)
/ BITS_PER_UNIT));
else if (min_alignof)
- {
- unsigned int align = TYPE_ALIGN (type);
- align = MIN (align, BIGGEST_ALIGNMENT);
-#ifdef BIGGEST_FIELD_ALIGNMENT
- align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
-#endif
- unsigned int field_align = align;
-#ifdef ADJUST_FIELD_ALIGN
- tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE,
- type);
- field_align = ADJUST_FIELD_ALIGN (field, field_align);
-#endif
- align = MIN (align, field_align);
- value = size_int (align / BITS_PER_UNIT);
- }
+ value = size_int (min_align_of_type (type));
else
value = size_int (TYPE_ALIGN_UNIT (type));
}
@@ -6867,6 +6887,7 @@ handle_unused_attribute (tree *node, tree name, tree ARG_UNUSED (args),
if (TREE_CODE (decl) == PARM_DECL
|| TREE_CODE (decl) == VAR_DECL
+ || TREE_CODE (decl) == FIELD_DECL
|| TREE_CODE (decl) == FUNCTION_DECL
|| TREE_CODE (decl) == LABEL_DECL
|| TREE_CODE (decl) == TYPE_DECL)
@@ -8680,6 +8701,47 @@ handle_nonnull_attribute (tree *node, tree ARG_UNUSED (name),
return NULL_TREE;
}
+/* Handle a "always_patch_for_instrumentation" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_always_patch_for_instrumentation_attribute (tree *node, tree name,
+ tree ARG_UNUSED (args),
+ int ARG_UNUSED (flags),
+ bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) == FUNCTION_DECL)
+ {
+ /* Disable inlining if forced instrumentation. */
+ DECL_UNINLINABLE (*node) = 1;
+ }
+ else
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored", name);
+ *no_add_attrs = true;
+ }
+ return NULL_TREE;
+}
+
+
+/* Handle a "never_patch_for_instrumentation" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_never_patch_for_instrumentation_attribute (tree *node, tree name,
+ tree ARG_UNUSED (args),
+ int ARG_UNUSED (flags),
+ bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) != FUNCTION_DECL)
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored", name);
+ *no_add_attrs = true;
+ }
+ return NULL_TREE;
+}
+
+
/* Check the argument list of a function call for null in argument slots
that are marked as requiring a non-null pointer argument. The NARGS
arguments are passed in the array ARGARRAY.
@@ -11727,6 +11789,31 @@ keyword_is_decl_specifier (enum rid keyword)
}
}
+/* Check for and warn about self-assignment or self-initialization.
+ LHS and RHS are the tree nodes for the left-hand side and right-hand side
+ of the assignment or initialization we are checking.
+ LOCATION is the source location for RHS. */
+
+void
+check_for_self_assign (location_t location, tree lhs, tree rhs)
+{
+ if (lhs == NULL_TREE || rhs == NULL_TREE)
+ return;
+
+ /* Deal with TREE_LIST initializers (may be generated by class
+ member initialization in C++). */
+ if (TREE_CODE (rhs) == TREE_LIST)
+ rhs = TREE_VALUE (rhs);
+
+ /* Only emit a warning if RHS is not a folded expression so that we don't
+ warn on something like x = x / 1. */
+ if (!EXPR_FOLDED (rhs)
+ && operand_equal_p (lhs, rhs,
+ OEP_PURE_SAME | OEP_ALLOW_NULL | OEP_ALLOW_NO_TYPE))
+ warning_at (location, OPT_Wself_assign, G_("%qE is assigned to itself"),
+ lhs);
+}
+
/* Initialize language-specific-bits of tree_contains_struct. */
void
diff --git a/gcc-4.9/gcc/c-family/c-common.h b/gcc-4.9/gcc/c-family/c-common.h
index 24959d83e..fe798fa6d 100644
--- a/gcc-4.9/gcc/c-family/c-common.h
+++ b/gcc-4.9/gcc/c-family/c-common.h
@@ -758,6 +758,7 @@ extern tree c_wrap_maybe_const (tree, bool);
extern tree c_save_expr (tree);
extern tree c_common_truthvalue_conversion (location_t, tree);
extern void c_apply_type_quals_to_decl (int, tree);
+extern unsigned int min_align_of_type (tree);
extern tree c_sizeof_or_alignof_type (location_t, tree, bool, bool, int);
extern tree c_alignof_expr (location_t, tree);
/* Print an error message for invalid operands to arith operation CODE.
@@ -830,6 +831,7 @@ extern bool c_common_post_options (const char **);
extern bool c_common_init (void);
extern void c_common_finish (void);
extern void c_common_parse_file (void);
+extern FILE *get_dump_info (int, int *);
extern alias_set_type c_common_get_alias_set (tree);
extern void c_register_builtin_type (tree, const char*);
extern bool c_promoting_integer_type_p (const_tree);
@@ -1012,6 +1014,7 @@ extern void release_tree_vector (vec<tree, va_gc> *);
extern vec<tree, va_gc> *make_tree_vector_single (tree);
extern vec<tree, va_gc> *make_tree_vector_from_list (tree);
extern vec<tree, va_gc> *make_tree_vector_copy (const vec<tree, va_gc> *);
+extern void check_for_self_assign (location_t, tree, tree);
/* In c-gimplify.c */
extern void c_genericize (tree);
diff --git a/gcc-4.9/gcc/c-family/c-cppbuiltin.c b/gcc-4.9/gcc/c-family/c-cppbuiltin.c
index 2f2e7bae8..6a697f666 100644
--- a/gcc-4.9/gcc/c-family/c-cppbuiltin.c
+++ b/gcc-4.9/gcc/c-family/c-cppbuiltin.c
@@ -969,6 +969,33 @@ c_cpp_builtins (cpp_reader *pfile)
if (c_dialect_cxx () && TYPE_UNSIGNED (wchar_type_node))
cpp_define (pfile, "__WCHAR_UNSIGNED__");
+ /* Tell source code if the compiler makes sync_compare_and_swap
+ builtins available. */
+#ifdef HAVE_sync_compare_and_swapqi
+ if (HAVE_sync_compare_and_swapqi)
+ cpp_define (pfile, "__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1");
+#endif
+
+#ifdef HAVE_sync_compare_and_swaphi
+ if (HAVE_sync_compare_and_swaphi)
+ cpp_define (pfile, "__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2");
+#endif
+
+#ifdef HAVE_sync_compare_and_swapsi
+ if (HAVE_sync_compare_and_swapsi)
+ cpp_define (pfile, "__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4");
+#endif
+
+#ifdef HAVE_sync_compare_and_swapdi
+ if (HAVE_sync_compare_and_swapdi)
+ cpp_define (pfile, "__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8");
+#endif
+
+#ifdef HAVE_sync_compare_and_swapti
+ if (HAVE_sync_compare_and_swapti)
+ cpp_define (pfile, "__GCC_HAVE_SYNC_COMPARE_AND_SWAP_16");
+#endif
+
cpp_atomic_builtins (pfile);
#ifdef DWARF2_UNWIND_INFO
@@ -1028,6 +1055,8 @@ c_cpp_builtins (cpp_reader *pfile)
format. */
if (ENABLE_DECIMAL_FLOAT && ENABLE_DECIMAL_BID_FORMAT)
cpp_define (pfile, "__DECIMAL_BID_FORMAT__");
+ if (c_dialect_cxx () && flag_sized_delete)
+ cpp_define (pfile, "__GXX_DELETE_WITH_SIZE__");
}
/* Pass an object-like macro. If it doesn't lie in the user's
diff --git a/gcc-4.9/gcc/c-family/c-gimplify.c b/gcc-4.9/gcc/c-family/c-gimplify.c
index 737be4d72..d385f3a40 100644
--- a/gcc-4.9/gcc/c-family/c-gimplify.c
+++ b/gcc-4.9/gcc/c-family/c-gimplify.c
@@ -80,7 +80,7 @@ c_genericize (tree fndecl)
struct cgraph_node *cgn;
/* Dump the C-specific tree IR. */
- dump_orig = dump_begin (TDI_original, &local_dump_flags);
+ dump_orig = get_dump_info (TDI_original, &local_dump_flags);
if (dump_orig)
{
fprintf (dump_orig, "\n;; Function %s",
@@ -97,8 +97,6 @@ c_genericize (tree fndecl)
else
print_c_tree (dump_orig, DECL_SAVED_TREE (fndecl));
fprintf (dump_orig, "\n");
-
- dump_end (TDI_original, dump_orig);
}
/* Dump all nested functions now. */
diff --git a/gcc-4.9/gcc/c-family/c-omp.c b/gcc-4.9/gcc/c-family/c-omp.c
index dd0a45d96..6a0e41988 100644
--- a/gcc-4.9/gcc/c-family/c-omp.c
+++ b/gcc-4.9/gcc/c-family/c-omp.c
@@ -789,8 +789,13 @@ c_omp_split_clauses (location_t loc, enum tree_code code,
else if ((mask & (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NUM_TEAMS))
!= 0)
{
- /* This must be #pragma omp {,target }teams distribute. */
- gcc_assert (code == OMP_DISTRIBUTE);
+ /* This must be one of
+ #pragma omp {,target }teams distribute
+ #pragma omp target teams
+ #pragma omp {,target }teams distribute simd. */
+ gcc_assert (code == OMP_DISTRIBUTE
+ || code == OMP_TEAMS
+ || code == OMP_SIMD);
s = C_OMP_CLAUSE_SPLIT_TEAMS;
}
else if ((mask & (OMP_CLAUSE_MASK_1
diff --git a/gcc-4.9/gcc/c-family/c-opts.c b/gcc-4.9/gcc/c-family/c-opts.c
index 29e9a355b..60d7145b7 100644
--- a/gcc-4.9/gcc/c-family/c-opts.c
+++ b/gcc-4.9/gcc/c-family/c-opts.c
@@ -43,6 +43,10 @@ along with GCC; see the file COPYING3. If not see
TARGET_FLT_EVAL_METHOD_NON_DEFAULT and
TARGET_OPTF. */
#include "tm_p.h" /* For C_COMMON_OVERRIDE_OPTIONS. */
+#include "function.h"
+#include "params.h"
+#include "l-ipo.h"
+#include "dumpfile.h"
#ifndef DOLLARS_IN_IDENTIFIERS
# define DOLLARS_IN_IDENTIFIERS true
@@ -102,6 +106,14 @@ static size_t deferred_count;
/* Number of deferred options scanned for -include. */
static size_t include_cursor;
+static bool parsing_done_p = false;
+
+/* Dump files/flags to use during parsing. */
+static FILE *original_dump_file = NULL;
+static int original_dump_flags;
+static FILE *class_dump_file = NULL;
+static int class_dump_flags;
+
/* Whether any standard preincluded header has been preincluded. */
static bool done_preinclude;
@@ -199,8 +211,10 @@ c_common_init_options_struct (struct gcc_options *opts)
opts->x_warn_write_strings = c_dialect_cxx ();
opts->x_flag_warn_unused_result = true;
- /* By default, C99-like requirements for complex multiply and divide. */
- opts->x_flag_complex_method = 2;
+ /* By default, C99-like requirements for complex multiply and divide.
+ But for C++ this should not be required. */
+ if (c_language != clk_cxx)
+ opts->x_flag_complex_method = 2;
}
/* Common initialization before calling option handlers. */
@@ -845,6 +859,10 @@ c_common_post_options (const char **pfilename)
else if (!flag_gnu89_inline && !flag_isoc99)
error ("-fno-gnu89-inline is only supported in GNU99 or C99 mode");
+ if (flag_dyn_ipa && cpp_opts->preprocessed)
+ error ("-fpreprocessed/-save-temps are not supported with -fripa");
+
+
/* Default to ObjC sjlj exception handling if NeXT runtime. */
if (flag_objc_sjlj_exceptions < 0)
flag_objc_sjlj_exceptions = flag_next_runtime;
@@ -1051,6 +1069,34 @@ c_common_init (void)
return true;
}
+/* Return TRUE if the lipo maximum memory consumption limit is reached, and
+ we should not import any further auxiliary modules. Check after parsing
+ each module, the Ith module being the just parsed module. */
+static bool
+lipo_max_mem_reached (unsigned int i)
+{
+ if (L_IPO_COMP_MODE && PARAM_VALUE (PARAM_MAX_LIPO_MEMORY)
+ && i < (num_in_fnames - 1)
+ /* Scale up memory usage by 25% to account for memory consumption
+ by the optimizer. */
+ && ((ggc_total_allocated () >> 10) * 1.25
+ > (size_t) PARAM_VALUE (PARAM_MAX_LIPO_MEMORY))) {
+ if (dump_enabled_p ())
+ {
+ i++;
+ do {
+ dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, input_location,
+ "Not importing %s: maximum memory "
+ "consumption reached", in_fnames[i]);
+ i++;
+ } while (i < num_in_fnames);
+ }
+ return true;
+ }
+ return false;
+}
+
+
/* Initialize the integrated preprocessor after debug output has been
initialized; loop over each input file. */
void
@@ -1062,9 +1108,26 @@ c_common_parse_file (void)
for (;;)
{
c_finish_options ();
+ /* Open the dump files to use for the original and class dump output
+ here, to be used during parsing for the current file. */
+ original_dump_file = dump_begin (TDI_original, &original_dump_flags);
+ class_dump_file = dump_begin (TDI_class, &class_dump_flags);
pch_init ();
+ set_lipo_c_parsing_context (parse_in, i, verbose);
push_file_scope ();
c_parse_file ();
+ if (i == 0 && flag_record_compilation_info_in_elf)
+ write_compilation_flags_to_asm ();
+
+ if (i == 0)
+ ggc_total_memory = (ggc_total_allocated () >> 10);
+
+ /* In lipo mode, processing too many auxiliary files will cause us
+ to hit memory limits, and cause thrashing -- prevent this by not
+ processing any further auxiliary modules if we reach a certain
+ memory limit. */
+ if (!include_all_aux && lipo_max_mem_reached (i))
+ num_in_fnames = i + 1;
pop_file_scope ();
/* And end the main input file, if the debug writer wants it */
if (debug_hooks->start_end_main_source_file)
@@ -1073,13 +1136,50 @@ c_common_parse_file (void)
break;
cpp_undef_all (parse_in);
cpp_clear_file_cache (parse_in);
+ deferred_count = 0;
this_input_filename
= cpp_read_main_file (parse_in, in_fnames[i]);
+ if (original_dump_file)
+ {
+ dump_end (TDI_original, original_dump_file);
+ original_dump_file = NULL;
+ }
+ if (class_dump_file)
+ {
+ dump_end (TDI_class, class_dump_file);
+ class_dump_file = NULL;
+ }
/* If an input file is missing, abandon further compilation.
cpplib has issued a diagnostic. */
if (!this_input_filename)
break;
}
+ parsing_done_p = true;
+}
+
+/* Returns true if parsing is done */
+
+bool
+is_parsing_done_p (void)
+{
+ return parsing_done_p;
+}
+
+/* Returns the appropriate dump file for PHASE to dump with FLAGS. */
+FILE *
+get_dump_info (int phase, int *flags)
+{
+ gcc_assert (phase == TDI_original || phase == TDI_class);
+ if (phase == TDI_original)
+ {
+ *flags = original_dump_flags;
+ return original_dump_file;
+ }
+ else
+ {
+ *flags = class_dump_flags;
+ return class_dump_file;
+ }
}
/* Common finish hook for the C, ObjC and C++ front ends. */
@@ -1089,7 +1189,11 @@ c_common_finish (void)
FILE *deps_stream = NULL;
/* Don't write the deps file if there are errors. */
- if (cpp_opts->deps.style != DEPS_NONE && !seen_error ())
+ /* FIXME. We are emitting the deps file even if there were errors.
+ This is a temporary workaround to avoid confusing Google's build
+ system. It assumes that deps files are always emitted even
+ in the presence of errors. */
+ if (cpp_opts->deps.style != DEPS_NONE /*&& !seen_error ()*/)
{
/* If -M or -MM was seen without -MF, default output to the
output stream. */
@@ -1313,9 +1417,15 @@ c_finish_options (void)
struct deferred_opt *opt = &deferred_opts[i];
if (opt->code == OPT_D)
- cpp_define (parse_in, opt->arg);
+ {
+ cpp_define (parse_in, opt->arg);
+ coverage_note_define (opt->arg, true);
+ }
else if (opt->code == OPT_U)
- cpp_undef (parse_in, opt->arg);
+ {
+ cpp_undef (parse_in, opt->arg);
+ coverage_note_define (opt->arg, false);
+ }
else if (opt->code == OPT_A)
{
if (opt->arg[0] == '-')
@@ -1338,6 +1448,7 @@ c_finish_options (void)
if (opt->code == OPT_imacros
&& cpp_push_include (parse_in, opt->arg))
{
+ coverage_note_include (opt->arg);
/* Disable push_command_line_include callback for now. */
include_cursor = deferred_count + 1;
cpp_scan_nooutput (parse_in);
@@ -1382,7 +1493,10 @@ push_command_line_include (void)
if (!cpp_opts->preprocessed && opt->code == OPT_include
&& cpp_push_include (parse_in, opt->arg))
- return;
+ {
+ coverage_note_include (opt->arg);
+ return;
+ }
}
if (include_cursor == deferred_count)
diff --git a/gcc-4.9/gcc/c-family/c-pragma.c b/gcc-4.9/gcc/c-family/c-pragma.c
index 9e2a00eb1..ad115e998 100644
--- a/gcc-4.9/gcc/c-family/c-pragma.c
+++ b/gcc-4.9/gcc/c-family/c-pragma.c
@@ -1188,6 +1188,7 @@ static const struct omp_pragma_def omp_pragmas[] = {
{ "section", PRAGMA_OMP_SECTION },
{ "sections", PRAGMA_OMP_SECTIONS },
{ "single", PRAGMA_OMP_SINGLE },
+ { "task", PRAGMA_OMP_TASK },
{ "taskgroup", PRAGMA_OMP_TASKGROUP },
{ "taskwait", PRAGMA_OMP_TASKWAIT },
{ "taskyield", PRAGMA_OMP_TASKYIELD },
@@ -1200,7 +1201,6 @@ static const struct omp_pragma_def omp_pragmas_simd[] = {
{ "parallel", PRAGMA_OMP_PARALLEL },
{ "simd", PRAGMA_OMP_SIMD },
{ "target", PRAGMA_OMP_TARGET },
- { "task", PRAGMA_OMP_TASK },
{ "teams", PRAGMA_OMP_TEAMS },
};
diff --git a/gcc-4.9/gcc/c-family/c.opt b/gcc-4.9/gcc/c-family/c.opt
index 2abf66cb7..9e0a9a410 100644
--- a/gcc-4.9/gcc/c-family/c.opt
+++ b/gcc-4.9/gcc/c-family/c.opt
@@ -331,6 +331,10 @@ Wconversion-null
C++ ObjC++ Var(warn_conversion_null) Init(1) Warning
Warn for converting NULL from/to a non-pointer type
+Wself-assign-non-pod
+C++ ObjC++ Var(warn_self_assign_non_pod) Init(0) Warning
+Warn when a variable of a non-POD type is assigned to itself
+
Wctor-dtor-privacy
C++ ObjC++ Var(warn_ctor_dtor_privacy) Warning
Warn when all constructors and destructors are private
diff --git a/gcc-4.9/gcc/c/ChangeLog b/gcc-4.9/gcc/c/ChangeLog
index 5f4a207a7..e31d4a8a3 100644
--- a/gcc-4.9/gcc/c/ChangeLog
+++ b/gcc-4.9/gcc/c/ChangeLog
@@ -1,3 +1,54 @@
+2014-06-30 Jakub Jelinek <jakub@redhat.com>
+
+ Backported from mainline
+ 2014-06-25 Jakub Jelinek <jakub@redhat.com>
+
+ * c-typeck.c (c_finish_omp_clauses): Make sure
+ OMP_CLAUSE_LINEAR_STEP has correct type.
+
+2014-06-30 Sebastian Huber <sebastian.huber@embedded-brains.de>
+
+ * c-parser.c (c_parser_declaration_or_fndef): Discard all type
+ qualifiers in __auto_type for atomic types.
+ (c_parser_typeof_specifier): Discard all type qualifiers in
+ __typeof__ for atomic types.
+
+2014-06-30 Igor Zamyatin <igor.zamyatin@intel.com>
+
+ PR middle-end/57541
+ * c-array-notation.c (fix_builtin_array_notation_fn):
+ Check for 0 arguments in builtin call. Check that bultin argument is
+ correct.
+ * c-parser.c (c_parser_array_notation): Check for incorrect initial
+ index.
+
+2014-06-24 Jakub Jelinek <jakub@redhat.com>
+
+ * c-parser.c (c_parser_omp_for_loop): For
+ #pragma omp parallel for simd move lastprivate clause from parallel
+ to for rather than simd.
+
+2014-06-04 Igor Zamyatin <igor.zamyatin@intel.com>
+
+ PR c/58942
+ * c-array-notation.c (fix_builtin_array_notation_fn): Handle the case
+ with a pointer.
+
+2014-06-04 Marek Polacek <polacek@redhat.com>
+
+ Backport from mainline
+ 2014-05-08 Marek Polacek <polacek@redhat.com>
+
+ PR c/61053
+ * c-decl.c (grokdeclarator): Use min_align_of_type instead of
+ TYPE_ALIGN_UNIT.
+
+2014-05-26 Igor Zamyatin <igor.zamyatin@intel.com>
+
+ PR c/61191
+ * c-array-notation.c (fix_builtin_array_notation_fn): Check invalid
+ function parameters.
+
2014-04-24 Jakub Jelinek <jakub@redhat.com>
* c-parser.c (c_parser_omp_atomic): Allow seq_cst before
diff --git a/gcc-4.9/gcc/c/c-array-notation.c b/gcc-4.9/gcc/c/c-array-notation.c
index 0ac6ba8e1..2305e1e03 100644
--- a/gcc-4.9/gcc/c/c-array-notation.c
+++ b/gcc-4.9/gcc/c/c-array-notation.c
@@ -214,6 +214,13 @@ fix_builtin_array_notation_fn (tree an_builtin_fn, tree *new_var)
if (an_type == BUILT_IN_NONE)
return NULL_TREE;
+ /* Builtin call should contain at least one argument. */
+ if (call_expr_nargs (an_builtin_fn) == 0)
+ {
+ error_at (EXPR_LOCATION (an_builtin_fn), "Invalid builtin arguments");
+ return error_mark_node;
+ }
+
if (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE
|| an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING)
{
@@ -229,6 +236,8 @@ fix_builtin_array_notation_fn (tree an_builtin_fn, tree *new_var)
/* Fully fold any EXCESSIVE_PRECISION EXPR that can occur in the function
parameter. */
func_parm = c_fully_fold (func_parm, false, NULL);
+ if (func_parm == error_mark_node)
+ return error_mark_node;
location = EXPR_LOCATION (an_builtin_fn);
@@ -236,7 +245,10 @@ fix_builtin_array_notation_fn (tree an_builtin_fn, tree *new_var)
return error_mark_node;
if (rank == 0)
- return an_builtin_fn;
+ {
+ error_at (location, "Invalid builtin arguments");
+ return error_mark_node;
+ }
else if (rank > 1
&& (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND
|| an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND))
@@ -308,7 +320,9 @@ fix_builtin_array_notation_fn (tree an_builtin_fn, tree *new_var)
|| an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND)
array_ind_value = build_decl (location, VAR_DECL, NULL_TREE,
TREE_TYPE (func_parm));
- array_op0 = (*array_operand)[0];
+ array_op0 = (*array_operand)[0];
+ if (TREE_CODE (array_op0) == INDIRECT_REF)
+ array_op0 = TREE_OPERAND (array_op0, 0);
switch (an_type)
{
case BUILT_IN_CILKPLUS_SEC_REDUCE_ADD:
diff --git a/gcc-4.9/gcc/c/c-decl.c b/gcc-4.9/gcc/c/c-decl.c
index df84980e3..ac3819823 100644
--- a/gcc-4.9/gcc/c/c-decl.c
+++ b/gcc-4.9/gcc/c/c-decl.c
@@ -60,6 +60,7 @@ along with GCC; see the file COPYING3. If not see
#include "hash-table.h"
#include "langhooks-def.h"
#include "pointer-set.h"
+#include "l-ipo.h"
#include "plugin.h"
#include "c-family/c-ada-spec.h"
#include "cilk.h"
@@ -537,6 +538,27 @@ static tree grokdeclarator (const struct c_declarator *,
bool *, enum deprecated_states);
static tree grokparms (struct c_arg_info *, bool);
static void layout_array_type (tree);
+static void pop_ext_scope (void);
+
+/* LIPO support */
+/* The list of block nodes. A member node is created
+ when an external scope is popped. */
+static GTY (()) vec<tree, va_gc> *ext_blocks = NULL;
+static inline void
+apply_for_each_ext_block (void (*func) (tree))
+{
+ if (L_IPO_COMP_MODE)
+ {
+ size_t i;
+ tree eb;
+
+ for (i = 0;
+ ext_blocks->iterate (i, &eb);
+ ++i)
+ func (BLOCK_VARS (eb));
+ }
+}
+
/* T is a statement. Add it to the statement-tree. This is the
C/ObjC version--C++ has a slightly different version of this
@@ -686,6 +708,8 @@ bind (tree name, tree decl, struct c_scope *scope, bool invisible,
b->shadowed = *here;
*here = b;
+
+ add_decl_to_current_module_scope (decl, scope);
}
/* Clear the binding structure B, stick it on the binding_freelist,
@@ -1214,8 +1238,18 @@ pop_scope (void)
binding in the home scope. */
if (!b->nested)
{
- DECL_CHAIN (p) = BLOCK_VARS (block);
- BLOCK_VARS (block) = p;
+ /* In LIPO mode compilation, ext_scope is popped out
+ at end of each module to block name lookup across
+ modules. The ext_scope is used to keep the list of
+ global variables in that module scope. Other decls
+ are filtered out. */
+ if (!L_IPO_COMP_MODE
+ || scope != external_scope
+ || TREE_CODE (p) == VAR_DECL)
+ {
+ DECL_CHAIN (p) = BLOCK_VARS (block);
+ BLOCK_VARS (block) = p;
+ }
}
else if (VAR_OR_FUNCTION_DECL_P (p) && scope != file_scope)
{
@@ -1316,6 +1350,11 @@ push_file_scope (void)
push_scope ();
file_scope = current_scope;
+ /* LIPO support -- do this before file scope bindings
+ are created for visible_builtins -- only need to remember
+ external scope bindings. */
+ push_module_scope ();
+
start_fname_decls ();
for (decl = visible_builtins; decl; decl = DECL_CHAIN (decl))
@@ -1350,7 +1389,18 @@ pop_file_scope (void)
pop_scope ();
file_scope = 0;
- maybe_apply_pending_pragma_weaks ();
+ if (!L_IPO_COMP_MODE)
+ maybe_apply_pending_pragma_weaks ();
+ else
+ {
+ pop_ext_scope ();
+ gcc_assert (current_scope == 0 && external_scope == 0);
+ push_scope ();
+ external_scope = current_scope;
+ /* Prepare for parsing for the next module -- including
+ builtin re-binding. */
+ pop_module_scope ();
+ }
}
/* Adjust the bindings for the start of a statement expression. */
@@ -2552,7 +2602,9 @@ warn_if_shadowing (tree new_decl)
struct c_binding *b;
/* Shadow warnings wanted? */
- if (!warn_shadow
+ if (!(warn_shadow
+ || warn_shadow_local
+ || warn_shadow_compatible_local)
/* No shadow warnings for internally generated vars. */
|| DECL_IS_BUILTIN (new_decl)
/* No shadow warnings for vars made for inlining. */
@@ -2569,14 +2621,25 @@ warn_if_shadowing (tree new_decl)
tree old_decl = b->decl;
if (old_decl == error_mark_node)
- {
- warning (OPT_Wshadow, "declaration of %q+D shadows previous "
- "non-variable", new_decl);
- break;
- }
+ warning (OPT_Wshadow, "declaration of %q+D shadows previous "
+ "non-variable", new_decl);
else if (TREE_CODE (old_decl) == PARM_DECL)
- warning (OPT_Wshadow, "declaration of %q+D shadows a parameter",
- new_decl);
+ {
+ enum opt_code warning_code;
+
+ /* If '-Wshadow-compatible-local' is specified without other
+ -Wshadow flags, we will warn only when the types of the
+ shadowing variable (i.e. new_decl) and the shadowed variable
+ (old_decl) are compatible. */
+ if (comptypes (TREE_TYPE (old_decl), TREE_TYPE (new_decl)))
+ warning_code = OPT_Wshadow_compatible_local;
+ else
+ warning_code = OPT_Wshadow_local;
+ warning (warning_code,
+ "declaration of %q+D shadows a parameter", new_decl);
+ warning_at (DECL_SOURCE_LOCATION (old_decl), warning_code,
+ "shadowed declaration is here");
+ }
else if (DECL_FILE_SCOPE_P (old_decl))
{
/* Do not warn if a variable shadows a function, unless
@@ -2586,23 +2649,34 @@ warn_if_shadowing (tree new_decl)
&& !FUNCTION_POINTER_TYPE_P (TREE_TYPE (new_decl)))
continue;
- warning_at (DECL_SOURCE_LOCATION (new_decl), OPT_Wshadow,
- "declaration of %qD shadows a global declaration",
- new_decl);
+ warning (OPT_Wshadow, "declaration of %q+D shadows a global "
+ "declaration", new_decl);
+ warning_at (DECL_SOURCE_LOCATION (old_decl), OPT_Wshadow,
+ "shadowed declaration is here");
}
else if (TREE_CODE (old_decl) == FUNCTION_DECL
&& DECL_BUILT_IN (old_decl))
- {
warning (OPT_Wshadow, "declaration of %q+D shadows "
"a built-in function", new_decl);
- break;
- }
else
- warning (OPT_Wshadow, "declaration of %q+D shadows a previous local",
- new_decl);
-
- warning_at (DECL_SOURCE_LOCATION (old_decl), OPT_Wshadow,
- "shadowed declaration is here");
+ {
+ enum opt_code warning_code;
+
+ /* If '-Wshadow-compatible-local' is specified without other
+ -Wshadow flags, we will warn only when the types of the
+ shadowing variable (i.e. new_decl) and the shadowed variable
+ (old_decl) are compatible. */
+ if (comptypes (TREE_TYPE (old_decl), TREE_TYPE (new_decl)))
+ warning_code = OPT_Wshadow_compatible_local;
+ else
+ warning_code = OPT_Wshadow_local;
+ warning (warning_code,
+ "declaration of %q+D shadows a previous local",
+ new_decl);
+
+ warning_at (DECL_SOURCE_LOCATION (old_decl), warning_code,
+ "shadowed declaration is here");
+ }
break;
}
@@ -4486,12 +4560,25 @@ finish_decl (tree decl, location_t init_loc, tree init,
when a tentative file-scope definition is seen.
But at end of compilation, do output code for them. */
DECL_DEFER_OUTPUT (decl) = 1;
+
+ /* In LIPO mode, create varpool_node early
+ enough so that module id of the current source file being
+ parsed is captured. */
+ if (flag_dyn_ipa && TREE_CODE (decl) == VAR_DECL)
+ varpool_node_for_decl (decl);
+
if (asmspec && C_DECL_REGISTER (decl))
DECL_HARD_REGISTER (decl) = 1;
rest_of_decl_compilation (decl, true, 0);
}
else
{
+ /* LIPO: capture module id. */
+ if (flag_dyn_ipa
+ && TREE_CODE (decl) == VAR_DECL
+ && TREE_STATIC (decl))
+ varpool_node_for_decl (decl);
+
/* In conjunction with an ASMSPEC, the `register'
keyword indicates that we should place the variable
in a particular register. */
@@ -5911,7 +5998,7 @@ grokdeclarator (const struct c_declarator *declarator,
else if (declspecs->align_log != -1)
{
alignas_align = 1U << declspecs->align_log;
- if (alignas_align < TYPE_ALIGN_UNIT (type))
+ if (alignas_align < min_align_of_type (type))
{
if (name)
error_at (loc, "%<_Alignas%> specifiers cannot reduce "
@@ -10391,7 +10478,12 @@ c_write_global_declarations (void)
through wrapup_global_declarations and check_global_declarations. */
FOR_EACH_VEC_ELT (*all_translation_units, i, t)
c_write_global_declarations_1 (BLOCK_VARS (DECL_INITIAL (t)));
- c_write_global_declarations_1 (BLOCK_VARS (ext_block));
+ if (ext_block)
+ c_write_global_declarations_1 (BLOCK_VARS (ext_block));
+ apply_for_each_ext_block (c_write_global_declarations_1);
+
+ if (L_IPO_COMP_MODE)
+ maybe_apply_pending_pragma_weaks ();
timevar_stop (TV_PHASE_DEFERRED);
timevar_start (TV_PHASE_OPT_GEN);
@@ -10410,7 +10502,9 @@ c_write_global_declarations (void)
timevar_push (TV_SYMOUT);
FOR_EACH_VEC_ELT (*all_translation_units, i, t)
c_write_global_declarations_2 (BLOCK_VARS (DECL_INITIAL (t)));
- c_write_global_declarations_2 (BLOCK_VARS (ext_block));
+ if (ext_block)
+ c_write_global_declarations_2 (BLOCK_VARS (ext_block));
+ apply_for_each_ext_block (c_write_global_declarations_2);
timevar_pop (TV_SYMOUT);
}
@@ -10418,6 +10512,236 @@ c_write_global_declarations (void)
timevar_stop (TV_PHASE_DBGINFO);
}
+
+/* LIPO support */
+
+typedef struct GTY (()) c_sb
+{
+ tree decl;
+ tree id;
+ tree decl_copy_pre; /* copy at the start of file parsing. */
+ tree decl_copy_post; /* copy at the end of module_scope. */
+ int invisible;
+} c_saved_builtin;
+
+static GTY (()) vec<c_saved_builtin, va_gc> *saved_builtins = NULL;
+
+/* Return the needed size of lang_decl structure for tree T. */
+
+int
+c_get_lang_decl_size (tree t)
+{
+ if (!DECL_LANG_SPECIFIC (t))
+ return 0;
+ return sizeof (struct lang_decl);
+}
+
+/* Return true if S is external or file scope. */
+
+bool
+c_is_global_scope (tree decl ATTRIBUTE_UNUSED, void *s)
+{
+ struct c_scope *scope = (struct c_scope *)s;
+
+ if (scope == external_scope || scope == file_scope)
+ return true;
+
+ return false;
+}
+
+/* Add DECL to the list of builtins. */
+
+void
+c_add_built_in_decl (tree decl)
+{
+ c_saved_builtin *sb;
+ struct c_binding *b = NULL;
+
+ if (!flag_dyn_ipa)
+ return;
+
+ if (at_eof)
+ return;
+
+ if (parser_parsing_start)
+ return;
+
+ sb = vec_safe_push (saved_builtins, c_saved_builtin ());
+ sb->decl = decl;
+ sb->decl_copy_pre = NULL;
+ sb->decl_copy_post = NULL;
+ sb->id = get_type_or_decl_name (decl);
+
+ switch (TREE_CODE (decl))
+ {
+ case TYPE_DECL:
+ case FUNCTION_DECL:
+ case CONST_DECL:
+ b = I_SYMBOL_BINDING (sb->id);
+ break;
+ case ENUMERAL_TYPE:
+ case UNION_TYPE:
+ case RECORD_TYPE:
+ b = I_TAG_BINDING (sb->id);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ gcc_assert (b && b->decl == decl
+ && b->id == sb->id && b->depth == 0);
+ sb->invisible = b->invisible;
+}
+
+/* Pop the external scope at the end of parsing of a file. */
+
+static void
+pop_ext_scope (void)
+{
+ tree ext_b;
+ if (!L_IPO_COMP_MODE)
+ return;
+ ext_b = pop_scope ();
+ vec_safe_push (ext_blocks, ext_b);
+ gcc_assert (!current_scope);
+ external_scope = 0;
+
+ /* Now remove non var_decls from BLOCK_VARS --
+ this is needed to avoid tree-chain contamination
+ from other modules due to builtin (shared) decls. */
+ {
+ tree *p = &BLOCK_VARS (ext_b);
+ tree decl = BLOCK_VARS (ext_b);
+ for (; decl; decl = TREE_CHAIN (decl))
+ {
+ if (TREE_CODE (decl) != VAR_DECL)
+ {
+ gcc_assert (0);
+ *p = TREE_CHAIN (decl);
+ }
+ else
+ p = &TREE_CHAIN (decl);
+ }
+ }
+}
+
+/* Save a copy of SB->decl before file parsing start. */
+
+static void
+c_save_built_in_decl_pre_parsing_1 (c_saved_builtin *sb)
+{
+ tree decl = sb->decl;
+
+ sb->decl_copy_pre = lipo_save_decl (decl);
+ sb->decl_copy_post = NULL;
+ return;
+}
+
+/* Make copies of builtin decls before file parsing. */
+
+void
+c_save_built_in_decl_pre_parsing (void)
+{
+ size_t i;
+ c_saved_builtin *bi;
+
+ for (i = 0;
+ saved_builtins->iterate (i, &bi);
+ ++i)
+ c_save_built_in_decl_pre_parsing_1 (bi);
+}
+
+/* Restore builtins to their values before file parsing (
+ the initial default value). */
+
+void
+c_restore_built_in_decl_pre_parsing (void)
+{
+ size_t i;
+ c_saved_builtin *bi;
+
+ /* Now re-bind the builtins in the external scope. */
+ gcc_assert (current_scope && current_scope == external_scope);
+ for (i = 0;
+ saved_builtins->iterate (i, &bi);
+ ++i)
+ {
+ tree id;
+ tree decl = bi->decl;
+ id = bi->id;
+
+ lipo_restore_decl (decl, bi->decl_copy_pre);
+ if (id)
+ bind (id, decl, external_scope,
+ bi->invisible, false /*nested*/,
+ DECL_SOURCE_LOCATION (decl));
+ }
+}
+
+/* Save values of builtins after parsing of a file. */
+
+void
+c_save_built_in_decl_post_parsing (void)
+{
+ size_t i;
+ c_saved_builtin *bi;
+
+ for (i = 0;
+ saved_builtins->iterate (i, &bi);
+ ++i)
+ {
+ /* Skip builtin decls in the predefined state.
+ The static flag for defined builtins are not set, so
+ do not check it. */
+ if (DECL_ARTIFICIAL (bi->decl)
+ || TREE_CODE (bi->decl) != FUNCTION_DECL
+ || !DECL_STRUCT_FUNCTION (bi->decl))
+ continue;
+ /* Remember the defining module. */
+ cgraph_link_node (cgraph_get_create_node (bi->decl));
+ if (!bi->decl_copy_post)
+ bi->decl_copy_post = lipo_save_decl (bi->decl);
+ }
+}
+
+/* Restore builtins to their values (non-default)
+ after parsing finishes. */
+
+void
+c_restore_built_in_decl_post_parsing (void)
+{
+ c_saved_builtin *bi;
+ unsigned i;
+ for (i = 0;
+ saved_builtins->iterate (i, &bi);
+ ++i)
+ {
+ tree decl = bi->decl;
+ /* Now restore the decl's state */
+ if (bi->decl_copy_post)
+ lipo_restore_decl (decl, bi->decl_copy_post);
+ }
+}
+
+/* Return true if type T is compiler generated. */
+
+bool
+c_is_compiler_generated_type (tree t ATTRIBUTE_UNUSED)
+{
+ return false;
+}
+
+/* Return 1 if lang specific attribute of T1 and T2 are
+ equivalent. */
+
+int
+c_cmp_lang_type (tree t1 ATTRIBUTE_UNUSED,
+ tree t2 ATTRIBUTE_UNUSED)
+{
+ return 1;
+}
+
+
/* Register reserved keyword WORD as qualifier for address space AS. */
void
diff --git a/gcc-4.9/gcc/c/c-lang.c b/gcc-4.9/gcc/c/c-lang.c
index 97c044362..2b096cf70 100644
--- a/gcc-4.9/gcc/c/c-lang.c
+++ b/gcc-4.9/gcc/c/c-lang.c
@@ -45,6 +45,27 @@ enum c_language_kind c_language = clk_c;
#undef LANG_HOOKS_INIT_TS
#define LANG_HOOKS_INIT_TS c_common_init_ts
+/* LIPO support. */
+#undef LANG_HOOKS_ADD_BUILT_IN_DECL
+#define LANG_HOOKS_ADD_BUILT_IN_DECL c_add_built_in_decl
+#undef LANG_HOOKS_SAVE_BUILT_IN_PRE
+#define LANG_HOOKS_SAVE_BUILT_IN_PRE c_save_built_in_decl_pre_parsing
+#undef LANG_HOOKS_RESTORE_BUILT_IN_PRE
+#define LANG_HOOKS_RESTORE_BUILT_IN_PRE c_restore_built_in_decl_pre_parsing
+#undef LANG_HOOKS_SAVE_BUILT_IN_POST
+#define LANG_HOOKS_SAVE_BUILT_IN_POST c_save_built_in_decl_post_parsing
+#undef LANG_HOOKS_RESTORE_BUILT_IN_POST
+#define LANG_HOOKS_RESTORE_BUILT_IN_POST c_restore_built_in_decl_post_parsing
+#undef LANG_HOOKS_HAS_GLOBAL_NAME
+#define LANG_HOOKS_HAS_GLOBAL_NAME c_is_global_scope
+#undef LANG_HOOKS_GET_LANG_DECL_SIZE
+#define LANG_HOOKS_GET_LANG_DECL_SIZE c_get_lang_decl_size
+#undef LANG_HOOKS_IS_GENERATED_TYPE
+#define LANG_HOOKS_IS_GENERATED_TYPE c_is_compiler_generated_type
+#undef LANG_HOOKS_CMP_LANG_TYPE
+#define LANG_HOOKS_CMP_LANG_TYPE c_cmp_lang_type
+
+
/* Each front end provides its own lang hook initializer. */
struct lang_hooks lang_hooks = LANG_HOOKS_INITIALIZER;
diff --git a/gcc-4.9/gcc/c/c-parser.c b/gcc-4.9/gcc/c/c-parser.c
index 6eb235c5c..a51af2e30 100644
--- a/gcc-4.9/gcc/c/c-parser.c
+++ b/gcc-4.9/gcc/c/c-parser.c
@@ -1707,14 +1707,10 @@ c_parser_declaration_or_fndef (c_parser *parser, bool fndef_ok,
" initializer");
init = convert_lvalue_to_rvalue (init_loc, init, true, true);
tree init_type = TREE_TYPE (init.value);
- /* As with typeof, remove _Atomic and const
- qualifiers from atomic types. */
+ /* As with typeof, remove all qualifiers from atomic types. */
if (init_type != error_mark_node && TYPE_ATOMIC (init_type))
init_type
- = c_build_qualified_type (init_type,
- (TYPE_QUALS (init_type)
- & ~(TYPE_QUAL_ATOMIC
- | TYPE_QUAL_CONST)));
+ = c_build_qualified_type (init_type, TYPE_UNQUALIFIED);
bool vm_type = variably_modified_type_p (init_type,
NULL_TREE);
if (vm_type)
@@ -3011,16 +3007,11 @@ c_parser_typeof_specifier (c_parser *parser)
if (was_vm)
ret.expr = c_fully_fold (expr.value, false, &ret.expr_const_operands);
pop_maybe_used (was_vm);
- /* For use in macros such as those in <stdatomic.h>, remove
- _Atomic and const qualifiers from atomic types. (Possibly
- all qualifiers should be removed; const can be an issue for
- more macros using typeof than just the <stdatomic.h>
- ones.) */
+ /* For use in macros such as those in <stdatomic.h>, remove all
+ qualifiers from atomic types. (const can be an issue for more macros
+ using typeof than just the <stdatomic.h> ones.) */
if (ret.spec != error_mark_node && TYPE_ATOMIC (ret.spec))
- ret.spec = c_build_qualified_type (ret.spec,
- (TYPE_QUALS (ret.spec)
- & ~(TYPE_QUAL_ATOMIC
- | TYPE_QUAL_CONST)));
+ ret.spec = c_build_qualified_type (ret.spec, TYPE_UNQUALIFIED);
}
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>");
return ret;
@@ -11881,8 +11872,17 @@ c_parser_omp_for_loop (location_t loc, c_parser *parser, enum tree_code code,
tree l = build_omp_clause (OMP_CLAUSE_LOCATION (*c),
OMP_CLAUSE_LASTPRIVATE);
OMP_CLAUSE_DECL (l) = OMP_CLAUSE_DECL (*c);
- OMP_CLAUSE_CHAIN (l) = clauses;
- clauses = l;
+ if (code == OMP_SIMD)
+ {
+ OMP_CLAUSE_CHAIN (l)
+ = cclauses[C_OMP_CLAUSE_SPLIT_FOR];
+ cclauses[C_OMP_CLAUSE_SPLIT_FOR] = l;
+ }
+ else
+ {
+ OMP_CLAUSE_CHAIN (l) = clauses;
+ clauses = l;
+ }
OMP_CLAUSE_SET_CODE (*c, OMP_CLAUSE_SHARED);
}
}
@@ -14064,7 +14064,7 @@ c_parser_array_notation (location_t loc, c_parser *parser, tree initial_index,
tree value_tree = NULL_TREE, type = NULL_TREE, array_type = NULL_TREE;
tree array_type_domain = NULL_TREE;
- if (array_value == error_mark_node)
+ if (array_value == error_mark_node || initial_index == error_mark_node)
{
/* No need to continue. If either of these 2 were true, then an error
must be emitted already. Thus, no need to emit them twice. */
diff --git a/gcc-4.9/gcc/c/c-tree.h b/gcc-4.9/gcc/c/c-tree.h
index 85df8858d..50fa18074 100644
--- a/gcc-4.9/gcc/c/c-tree.h
+++ b/gcc-4.9/gcc/c/c-tree.h
@@ -677,4 +677,19 @@ extern tree c_check_omp_declare_reduction_r (tree *, int *, void *);
extern void pedwarn_c90 (location_t, int opt, const char *, ...) ATTRIBUTE_GCC_DIAG(3,4);
extern void pedwarn_c99 (location_t, int opt, const char *, ...) ATTRIBUTE_GCC_DIAG(3,4);
+/* LIPO support. */
+
+extern int c_get_lang_decl_size (tree t);
+extern void c_lipo_dup_lang_type (tree src, tree dest);
+extern void c_lipo_copy_lang_type (tree src, tree dest);
+extern bool c_is_global_scope (tree decl, void *scope);
+extern void c_clear_name_bindings (tree id);
+extern void c_add_built_in_decl (tree decl);
+extern void c_save_built_in_decl_pre_parsing (void);
+extern void c_restore_built_in_decl_pre_parsing (void);
+extern void c_save_built_in_decl_post_parsing (void);
+extern void c_restore_built_in_decl_post_parsing (void);
+extern bool c_is_compiler_generated_type (tree t);
+extern int c_cmp_lang_type (tree t1, tree t2);
+
#endif /* ! GCC_C_TREE_H */
diff --git a/gcc-4.9/gcc/c/c-typeck.c b/gcc-4.9/gcc/c/c-typeck.c
index 65aad4565..5838d6a72 100644
--- a/gcc-4.9/gcc/c/c-typeck.c
+++ b/gcc-4.9/gcc/c/c-typeck.c
@@ -11925,6 +11925,9 @@ c_finish_omp_clauses (tree clauses)
s = size_one_node;
OMP_CLAUSE_LINEAR_STEP (c) = s;
}
+ else
+ OMP_CLAUSE_LINEAR_STEP (c)
+ = fold_convert (TREE_TYPE (t), OMP_CLAUSE_LINEAR_STEP (c));
goto check_dup_generic;
check_dup_generic:
diff --git a/gcc-4.9/gcc/cfg-flags.def b/gcc-4.9/gcc/cfg-flags.def
index 8422c2b1c..a28ba34b5 100644
--- a/gcc-4.9/gcc/cfg-flags.def
+++ b/gcc-4.9/gcc/cfg-flags.def
@@ -93,6 +93,9 @@ DEF_BASIC_BLOCK_FLAG(VISITED, 13)
demand, and is available after calling compute_transaction_bits(). */
DEF_BASIC_BLOCK_FLAG(IN_TRANSACTION, 14)
+/* Set on blocks that has been annotated during AutoFDO profile
+ attribution. */
+DEF_BASIC_BLOCK_FLAG(ANNOTATED, 15)
#endif
#ifdef DEF_EDGE_FLAG
@@ -177,6 +180,12 @@ DEF_EDGE_FLAG(TM_UNINSTRUMENTED, 15)
/* Abort (over) edge out of a GIMPLE_TRANSACTION statement. */
DEF_EDGE_FLAG(TM_ABORT, 16)
+/* Annotated during AutoFDO profile attribution. */
+DEF_EDGE_FLAG(ANNOTATED, 17)
+
+/* Edge probability predicted by __builtin_expect. */
+DEF_EDGE_FLAG(PREDICTED_BY_EXPECT, 18)
+
#endif
/*
diff --git a/gcc-4.9/gcc/cfg.c b/gcc-4.9/gcc/cfg.c
index a281c0fb8..178c37794 100644
--- a/gcc-4.9/gcc/cfg.c
+++ b/gcc-4.9/gcc/cfg.c
@@ -941,7 +941,7 @@ scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
if (num > 1000000)
return;
- num = RDIV (1000 * num, den);
+ num = RDIV (1000.0 * num, den);
den = 1000;
}
if (num > 100 * den)
@@ -954,9 +954,9 @@ scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
/* Make sure the frequencies do not grow over BB_FREQ_MAX. */
if (bbs[i]->frequency > BB_FREQ_MAX)
bbs[i]->frequency = BB_FREQ_MAX;
- bbs[i]->count = RDIV (bbs[i]->count * num, den);
+ bbs[i]->count = RDIV ((double)bbs[i]->count * num, den);
FOR_EACH_EDGE (e, ei, bbs[i]->succs)
- e->count = RDIV (e->count * num, den);
+ e->count = RDIV ((double)e->count * num, den);
}
}
@@ -973,7 +973,7 @@ scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
{
int i;
edge e;
- gcov_type fraction = RDIV (num * 65536, den);
+ gcov_type fraction = RDIV (num * 65536.0, den);
gcc_assert (fraction >= 0);
@@ -983,14 +983,14 @@ scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
edge_iterator ei;
bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
- bbs[i]->count = RDIV (bbs[i]->count * num, den);
+ bbs[i]->count = RDIV ((double)bbs[i]->count * num, den);
else
- bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
+ bbs[i]->count = RDIV ((double)bbs[i]->count * fraction, 65536);
FOR_EACH_EDGE (e, ei, bbs[i]->succs)
if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
- e->count = RDIV (e->count * num, den);
+ e->count = RDIV ((double)e->count * num, den);
else
- e->count = RDIV (e->count * fraction, 65536);
+ e->count = RDIV ((double)e->count * fraction, 65536);
}
else
for (i = 0; i < nbbs; i++)
@@ -1000,9 +1000,9 @@ scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
else
bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
- bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
+ bbs[i]->count = RDIV ((double)bbs[i]->count * fraction, 65536);
FOR_EACH_EDGE (e, ei, bbs[i]->succs)
- e->count = RDIV (e->count * fraction, 65536);
+ e->count = RDIV ((double)e->count * fraction, 65536);
}
}
diff --git a/gcc-4.9/gcc/cfgexpand.c b/gcc-4.9/gcc/cfgexpand.c
index 14511e137..04d39a3d7 100644
--- a/gcc-4.9/gcc/cfgexpand.c
+++ b/gcc-4.9/gcc/cfgexpand.c
@@ -74,6 +74,9 @@ along with GCC; see the file COPYING3. If not see
#include "recog.h"
#include "output.h"
+/* In coverage.c */
+extern void coverage_has_asm_stmt (void);
+
/* Some systems use __main in a way incompatible with its use in gcc, in these
cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
give the same symbol without quotes for an alternative entry point. You
@@ -2874,6 +2877,7 @@ expand_asm_operands (tree string, tree outputs, tree inputs,
emit_move_insn (real_output_rtx[i], output_rtx[i]);
crtl->has_asm_statement = 1;
+ coverage_has_asm_stmt ();
free_temp_slots ();
}
@@ -3681,6 +3685,7 @@ expand_debug_expr (tree exp)
{
case COND_EXPR:
case DOT_PROD_EXPR:
+ case SAD_EXPR:
case WIDEN_MULT_PLUS_EXPR:
case WIDEN_MULT_MINUS_EXPR:
case FMA_EXPR:
diff --git a/gcc-4.9/gcc/cfghooks.c b/gcc-4.9/gcc/cfghooks.c
index bc1634aac..87da0d02a 100644
--- a/gcc-4.9/gcc/cfghooks.c
+++ b/gcc-4.9/gcc/cfghooks.c
@@ -500,7 +500,6 @@ split_block (basic_block bb, void *i)
new_bb->count = bb->count;
new_bb->frequency = bb->frequency;
- new_bb->discriminator = bb->discriminator;
if (dom_info_available_p (CDI_DOMINATORS))
{
@@ -833,6 +832,9 @@ make_forwarder_block (basic_block bb, bool (*redirect_edge_p) (edge),
fallthru = split_block_after_labels (bb);
dummy = fallthru->src;
+ dummy->count = 0;
+ dummy->frequency = 0;
+ fallthru->count = 0;
bb = fallthru->dest;
/* Redirect back edges we want to keep. */
@@ -842,20 +844,13 @@ make_forwarder_block (basic_block bb, bool (*redirect_edge_p) (edge),
if (redirect_edge_p (e))
{
+ dummy->frequency += EDGE_FREQUENCY (e);
+ dummy->count += e->count;
+ fallthru->count += e->count;
ei_next (&ei);
continue;
}
- dummy->frequency -= EDGE_FREQUENCY (e);
- dummy->count -= e->count;
- if (dummy->frequency < 0)
- dummy->frequency = 0;
- if (dummy->count < 0)
- dummy->count = 0;
- fallthru->count -= e->count;
- if (fallthru->count < 0)
- fallthru->count = 0;
-
e_src = e->src;
jump = redirect_edge_and_branch_force (e, bb);
if (jump != NULL)
diff --git a/gcc-4.9/gcc/cfgloop.c b/gcc-4.9/gcc/cfgloop.c
index 70744d83d..14693f1c9 100644
--- a/gcc-4.9/gcc/cfgloop.c
+++ b/gcc-4.9/gcc/cfgloop.c
@@ -1168,24 +1168,98 @@ get_loop_exit_edges (const struct loop *loop)
return edges;
}
-/* Counts the number of conditional branches inside LOOP. */
+/* Determine if INSN is a floating point set. */
-unsigned
-num_loop_branches (const struct loop *loop)
+static bool
+insn_has_fp_set(rtx insn)
{
- unsigned i, n;
- basic_block * body;
+ int i;
+ rtx pat = PATTERN(insn);
+ if (GET_CODE (pat) == SET)
+ return (FLOAT_MODE_P (GET_MODE (SET_DEST (pat))));
+ else if (GET_CODE (pat) == PARALLEL)
+ {
+ for (i = 0; i < XVECLEN (pat, 0); i++)
+ {
+ rtx sub = XVECEXP (pat, 0, i);
+ if (GET_CODE (sub) == SET)
+ return (FLOAT_MODE_P (GET_MODE (SET_DEST (sub))));
+ }
+ }
+ return false;
+}
- gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
+/* Analyzes the instructions inside LOOP, updating the DESC. Currently counts
+ the number of conditional branch instructions, calls and fp instructions,
+ as well as the average number of branches executed per iteration. */
+
+void
+analyze_loop_insns (const struct loop *loop, struct niter_desc *desc)
+{
+ unsigned i, nbranch;
+ gcov_type weighted_nbranch;
+ bool has_call, has_fp;
+ basic_block * body, bb;
+ rtx insn;
+ gcov_type header_count = loop->header->count;
+
+ nbranch = weighted_nbranch = 0;
+ has_call = has_fp = false;
body = get_loop_body (loop);
- n = 0;
for (i = 0; i < loop->num_nodes; i++)
- if (EDGE_COUNT (body[i]->succs) >= 2)
- n++;
+ {
+ bb = body[i];
+
+ if (EDGE_COUNT (bb->succs) >= 2)
+ {
+ nbranch++;
+
+ /* If this block is executed less frequently than the header (loop
+ entry), then it is weighted based on its execution count, which
+ will be turned into a ratio compared to the loop header below. */
+ if (bb->count < header_count)
+ weighted_nbranch += bb->count;
+
+ /* When it is executed more frequently than the header (i.e. it is
+ in a nested inner loop), simply weight the branch the same as the
+ header execution count, so that it will contribute 1 branch to
+ the ratio computed below. */
+ else
+ weighted_nbranch += header_count;
+ }
+
+ /* No need to iterate through the instructions below if
+ both flags have already been set. */
+ if (has_call && has_fp)
+ continue;
+
+ FOR_BB_INSNS (bb, insn)
+ {
+ if (!INSN_P (insn))
+ continue;
+
+ if (!has_call)
+ has_call = CALL_P (insn);
+
+ if (!has_fp)
+ has_fp = insn_has_fp_set (insn);
+ }
+ }
free (body);
- return n;
+ desc->num_branches = nbranch;
+ /* Now divide the weights computed above by the loop header execution count,
+ to compute the average number of branches through the loop. By adding
+ header_count/2 to the numerator we round to nearest with integer
+ division. */
+ if (header_count != 0)
+ desc->av_num_branches
+ = (weighted_nbranch + header_count/2) / header_count;
+ else
+ desc->av_num_branches = 0;
+ desc->has_call = has_call;
+ desc->has_fp = has_fp;
}
/* Adds basic block BB to LOOP. */
diff --git a/gcc-4.9/gcc/cfgloop.h b/gcc-4.9/gcc/cfgloop.h
index 4b7c3d398..c7e417bf2 100644
--- a/gcc-4.9/gcc/cfgloop.h
+++ b/gcc-4.9/gcc/cfgloop.h
@@ -278,7 +278,6 @@ extern basic_block *get_loop_body_in_custom_order (const struct loop *,
extern vec<edge> get_loop_exit_edges (const struct loop *);
extern edge single_exit (const struct loop *);
extern edge single_likely_exit (struct loop *loop);
-extern unsigned num_loop_branches (const struct loop *);
extern edge loop_preheader_edge (const struct loop *);
extern edge loop_latch_edge (const struct loop *);
@@ -381,7 +380,8 @@ struct rtx_iv
};
/* The description of an exit from the loop and of the number of iterations
- till we take the exit. */
+ till we take the exit. Also includes other information used primarily
+ by the loop unroller. */
struct GTY(()) niter_desc
{
@@ -419,6 +419,18 @@ struct GTY(()) niter_desc
/* The number of iterations of the loop. */
rtx niter_expr;
+
+ /* The number of branches in the loop. */
+ unsigned num_branches;
+
+ /* The number of executed branches per iteration. */
+ unsigned av_num_branches;
+
+ /* Whether the loop contains a call instruction. */
+ bool has_call;
+
+ /* Whether the loop contains fp instructions. */
+ bool has_fp;
};
extern void iv_analysis_loop_init (struct loop *);
@@ -432,6 +444,7 @@ extern void iv_analysis_done (void);
extern struct niter_desc *get_simple_loop_desc (struct loop *loop);
extern void free_simple_loop_desc (struct loop *loop);
+void analyze_loop_insns (const struct loop *, struct niter_desc *desc);
static inline struct niter_desc *
simple_loop_desc (struct loop *loop)
diff --git a/gcc-4.9/gcc/cfgrtl.c b/gcc-4.9/gcc/cfgrtl.c
index 60b0c069f..2c5ca2ac1 100644
--- a/gcc-4.9/gcc/cfgrtl.c
+++ b/gcc-4.9/gcc/cfgrtl.c
@@ -2480,7 +2480,9 @@ rtl_verify_edges (void)
| EDGE_IRREDUCIBLE_LOOP
| EDGE_LOOP_EXIT
| EDGE_CROSSING
- | EDGE_PRESERVE)) == 0)
+ | EDGE_PRESERVE
+ | EDGE_ANNOTATED
+ | EDGE_PREDICTED_BY_EXPECT)) == 0)
n_branch++;
if (e->flags & EDGE_ABNORMAL_CALL)
diff --git a/gcc-4.9/gcc/cgraph.c b/gcc-4.9/gcc/cgraph.c
index be3661af6..180a63656 100644
--- a/gcc-4.9/gcc/cgraph.c
+++ b/gcc-4.9/gcc/cgraph.c
@@ -58,6 +58,7 @@ along with GCC; see the file COPYING3. If not see
#include "rtl.h"
#include "ipa-utils.h"
#include "lto-streamer.h"
+#include "l-ipo.h"
#include "ipa-inline.h"
#include "cfgloop.h"
#include "gimple-pretty-print.h"
@@ -773,7 +774,9 @@ cgraph_edge (struct cgraph_node *node, gimple call_stmt)
{
node->call_site_hash = htab_create_ggc (120, edge_hash, edge_eq, NULL);
for (e2 = node->callees; e2; e2 = e2->next_callee)
- cgraph_add_edge_to_call_site_hash (e2);
+ /* Skip fake edges. */
+ if (e2->call_stmt)
+ cgraph_add_edge_to_call_site_hash (e2);
for (e2 = node->indirect_calls; e2; e2 = e2->next_callee)
cgraph_add_edge_to_call_site_hash (e2);
}
@@ -822,6 +825,8 @@ cgraph_set_call_stmt (struct cgraph_edge *e, gimple new_stmt,
/* Constant propagation (and possibly also inlining?) can turn an
indirect call into a direct one. */
struct cgraph_node *new_callee = cgraph_get_node (decl);
+ if (L_IPO_COMP_MODE && cgraph_pre_profiling_inlining_done)
+ new_callee = cgraph_lipo_get_resolved_node (decl);
gcc_checking_assert (new_callee);
e = cgraph_make_edge_direct (e, new_callee);
@@ -1026,7 +1031,7 @@ cgraph_edge_remove_caller (struct cgraph_edge *e)
else
e->caller->callees = e->next_callee;
}
- if (e->caller->call_site_hash)
+ if (e->caller->call_site_hash && e->call_stmt)
htab_remove_elt_with_hash (e->caller->call_site_hash,
e->call_stmt,
htab_hash_pointer (e->call_stmt));
@@ -1068,6 +1073,26 @@ cgraph_remove_edge (struct cgraph_edge *e)
cgraph_free_edge (e);
}
+/* Remove fake cgraph edges for indirect calls. NODE is the callee
+ of the edges. */
+
+void
+cgraph_remove_fake_indirect_call_in_edges (struct cgraph_node *node)
+{
+ struct cgraph_edge *f, *e;
+
+ if (!L_IPO_COMP_MODE)
+ return;
+
+ for (e = node->callers; e; e = f)
+ {
+ f = e->next_caller;
+ if (!e->call_stmt)
+ cgraph_remove_edge (e);
+ }
+}
+
+
/* Set callee of call graph edge E and add it to the corresponding set of
callers. */
@@ -1472,6 +1497,12 @@ cgraph_redirect_edge_call_stmt_to_callee (struct cgraph_edge *e)
new_stmt = e->call_stmt;
gimple_call_set_fndecl (new_stmt, e->callee->decl);
update_stmt_fn (DECL_STRUCT_FUNCTION (e->caller->decl), new_stmt);
+ if (L_IPO_COMP_MODE)
+ {
+ int lp_nr = lookup_stmt_eh_lp (e->call_stmt);
+ if (lp_nr != 0 && !stmt_could_throw_p (e->call_stmt))
+ remove_stmt_from_eh_lp (e->call_stmt);
+ }
}
/* If the call becomes noreturn, remove the lhs. */
@@ -1679,6 +1710,10 @@ cgraph_node_remove_callers (struct cgraph_node *node)
void
release_function_body (tree decl)
{
+ if (cgraph_get_node (decl)
+ && cgraph_is_aux_decl_external (cgraph_get_node (decl)))
+ DECL_EXTERNAL (decl) = 1;
+
if (DECL_STRUCT_FUNCTION (decl))
{
push_cfun (DECL_STRUCT_FUNCTION (decl));
@@ -1820,7 +1855,9 @@ cgraph_remove_node (struct cgraph_node *node)
cgraph_release_function_body (node);
}
+ cgraph_remove_link_node (node);
node->decl = NULL;
+
if (node->call_site_hash)
{
htab_delete (node->call_site_hash);
@@ -1837,6 +1874,7 @@ cgraph_remove_node (struct cgraph_node *node)
free_nodes = node;
}
+
/* Likewise indicate that a node is having address taken. */
void
@@ -1978,6 +2016,9 @@ dump_cgraph_node (FILE *f, struct cgraph_node *node)
if (node->count)
fprintf (f, " executed "HOST_WIDEST_INT_PRINT_DEC"x",
(HOST_WIDEST_INT)node->count);
+ if (node->max_bb_count)
+ fprintf (f, " hottest bb executed "HOST_WIDEST_INT_PRINT_DEC"x",
+ (HOST_WIDEST_INT)node->max_bb_count);
if (node->origin)
fprintf (f, " nested in: %s", node->origin->asm_name ());
if (gimple_has_body_p (node->decl))
@@ -2566,11 +2607,16 @@ clone_of_p (struct cgraph_node *node, struct cgraph_node *node2)
skipped_thunk = true;
}
- if (skipped_thunk
- && (!node2->clone_of
- || !node2->clone.args_to_skip
- || !bitmap_bit_p (node2->clone.args_to_skip, 0)))
- return false;
+ if (skipped_thunk)
+ {
+ if (!node2->clone.args_to_skip
+ || !bitmap_bit_p (node2->clone.args_to_skip, 0))
+ return false;
+ if (node2->former_clone_of == node->decl)
+ return true;
+ else if (!node2->clone_of)
+ return false;
+ }
while (node != node2 && node2)
node2 = node2->clone_of;
@@ -2599,6 +2645,7 @@ verify_edge_count_and_frequency (struct cgraph_edge *e)
error_found = true;
}
if (gimple_has_body_p (e->caller->decl)
+ && e->call_stmt
&& !e->caller->global.inlined_to
&& !e->speculative
/* FIXME: Inline-analysis sets frequency to 0 when edge is optimized out.
@@ -2855,7 +2902,9 @@ verify_cgraph_node (struct cgraph_node *node)
error ("Alias has non-alias reference");
error_found = true;
}
- else if (ref_found)
+ else if (ref_found
+ /* in LIPO mode, the alias can refer to the real target also */
+ && !L_IPO_COMP_MODE)
{
error ("Alias has more than one alias reference");
error_found = true;
@@ -2969,7 +3018,7 @@ verify_cgraph_node (struct cgraph_node *node)
for (e = node->callees; e; e = e->next_callee)
{
- if (!e->aux)
+ if (!e->aux && e->call_stmt)
{
error ("edge %s->%s has no corresponding call_stmt",
identifier_to_locale (e->caller->name ()),
diff --git a/gcc-4.9/gcc/cgraph.h b/gcc-4.9/gcc/cgraph.h
index 15310d888..ee32bcb6b 100644
--- a/gcc-4.9/gcc/cgraph.h
+++ b/gcc-4.9/gcc/cgraph.h
@@ -27,6 +27,7 @@ along with GCC; see the file COPYING3. If not see
#include "basic-block.h"
#include "function.h"
#include "ipa-ref.h"
+#include "l-ipo.h"
/* Symbol table consists of functions and variables.
TODO: add labels and CONST_DECLs. */
@@ -222,6 +223,9 @@ struct GTY(()) cgraph_local_info {
once compilation is finished. Available only with -funit-at-a-time. */
struct GTY(()) cgraph_global_info {
+ /* Estimated stack frame consumption by the function. */
+ HOST_WIDE_INT estimated_stack_size;
+
/* For inline clones this points to the function they will be
inlined into. */
struct cgraph_node *inlined_to;
@@ -398,6 +402,8 @@ public:
/* Expected number of executions: calculated in profile.c. */
gcov_type count;
+ /* Maximum count of any basic block in the function. */
+ gcov_type max_bb_count;
/* How to scale counts at materialization time; used to merge
LTO units with different number of profile runs. */
int count_materialization_scale;
@@ -416,6 +422,8 @@ public:
/* Set once the function has been instantiated and its callee
lists created. */
unsigned process : 1;
+ /* Is this function cloned during versioning ? */
+ unsigned is_versioned_clone : 1;
/* How commonly executed the node is. Initialized during branch
probabilities pass. */
ENUM_BITFIELD (node_frequency) frequency : 2;
@@ -637,6 +645,8 @@ typedef struct cgraph_edge *cgraph_edge_p;
class GTY((tag ("SYMTAB_VARIABLE"))) varpool_node : public symtab_node {
public:
+ /* The module in which it is first declared. */
+ unsigned module_id;
/* Set when variable is scheduled to be assembled. */
unsigned output : 1;
@@ -721,8 +731,11 @@ enum symbol_partitioning_class
/* In symtab.c */
+hashval_t decl_assembler_name_hash (const_tree);
+bool decl_assembler_name_equal (tree decl, const_tree);
void symtab_register_node (symtab_node *);
void symtab_unregister_node (symtab_node *);
+void symtab_remove_from_same_comdat_group (symtab_node *);
void symtab_remove_node (symtab_node *);
symtab_node *symtab_get_node (const_tree);
symtab_node *symtab_node_for_asm (const_tree asmname);
@@ -739,6 +752,8 @@ void verify_symtab_node (symtab_node *);
bool verify_symtab_base (symtab_node *);
bool symtab_used_from_object_file_p (symtab_node *);
void symtab_make_decl_local (tree);
+void unlink_from_assembler_name_hash (symtab_node *, bool);
+void insert_to_assembler_name_hash (symtab_node *, bool);
symtab_node *symtab_alias_ultimate_target (symtab_node *,
enum availability *avail = NULL);
bool symtab_resolve_alias (symtab_node *node, symtab_node *target);
@@ -759,6 +774,11 @@ void dump_cgraph_node (FILE *, struct cgraph_node *);
void debug_cgraph_node (struct cgraph_node *);
void cgraph_remove_edge (struct cgraph_edge *);
void cgraph_remove_node (struct cgraph_node *);
+void cgraph_remove_fake_indirect_call_in_edges (struct cgraph_node *);
+extern bool cgraph_pre_profiling_inlining_done;
+extern bool cgraph_is_fake_indirect_call_edge (struct cgraph_edge *e);
+void cgraph_add_to_same_comdat_group (struct cgraph_node *, struct cgraph_node *);
+void cgraph_remove_node_and_inline_clones (struct cgraph_node *);
void cgraph_release_function_body (struct cgraph_node *);
void release_function_body (tree);
void cgraph_node_remove_callees (struct cgraph_node *node);
@@ -822,6 +842,50 @@ void verify_cgraph (void);
void verify_cgraph_node (struct cgraph_node *);
void cgraph_mark_address_taken_node (struct cgraph_node *);
+/* Module info structure. */
+struct GTY (()) cgraph_mod_info
+{
+ unsigned module_id;
+};
+
+/* LIPO linker symbol table entry for function symbols. */
+struct GTY (()) cgraph_sym
+{
+ tree assembler_name;
+ struct cgraph_node *rep_node;
+ tree rep_decl;
+ htab_t GTY ((param_is (struct cgraph_mod_info))) def_module_hash;
+ bool is_promoted_static;
+};
+
+void cgraph_init_gid_map (void);
+void cgraph_add_fake_indirect_call_edges (void);
+void cgraph_remove_zero_count_fake_edges (void);
+void cgraph_do_link (void);
+struct cgraph_sym *cgraph_link_node (struct cgraph_node *);
+tree cgraph_find_decl (tree asm_name);
+void cgraph_remove_link_node (struct cgraph_node *node);
+struct cgraph_node *cgraph_lipo_get_resolved_node (tree decl);
+struct cgraph_node *cgraph_lipo_get_resolved_node_1 (tree decl, bool);
+unsigned cgraph_get_module_id (tree fndecl);
+bool cgraph_is_auxiliary (tree fndecl);
+void cgraph_process_module_scope_statics (void);
+bool cgraph_is_promoted_static_func (tree fndecl);
+bool cgraph_is_inline_body_available_in_module (tree fndecl, unsigned module_id);
+bool cgraph_is_aux_decl_external (struct cgraph_node *);
+void cgraph_unify_type_alias_sets (void);
+void varpool_do_link (void);
+void varpool_link_node (struct varpool_node *);
+void varpool_remove_link_node (struct varpool_node *node);
+struct varpool_node *real_varpool_node (tree decl);
+bool varpool_is_auxiliary (struct varpool_node *node);
+void varpool_get_referenced_asm_ids (vec<tree, va_gc> **);
+void varpool_clear_asm_id_reference_bit (void);
+void varpool_reset_queue (void);
+void varpool_remove_duplicate_weak_decls (void);
+
+bool cgraph_decide_is_function_needed (struct cgraph_node *, tree);
+
typedef void (*cgraph_edge_hook)(struct cgraph_edge *, void *);
typedef void (*cgraph_node_hook)(struct cgraph_node *, void *);
typedef void (*varpool_node_hook)(varpool_node *, void *);
@@ -881,6 +945,7 @@ void fixup_same_cpp_alias_visibility (symtab_node *, symtab_node *target, tree);
IN_SSA is true if the gimple is in SSA. */
basic_block init_lowered_empty_function (tree, bool);
void cgraph_reset_node (struct cgraph_node *);
+void cgraph_enqueue_node (struct cgraph_node *);
bool expand_thunk (struct cgraph_node *, bool);
/* In cgraphclones.c */
@@ -1466,10 +1531,16 @@ static inline bool
cgraph_edge_recursive_p (struct cgraph_edge *e)
{
struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
- if (e->caller->global.inlined_to)
- return e->caller->global.inlined_to->decl == callee->decl;
- else
- return e->caller->decl == callee->decl;
+ struct cgraph_node *caller = e->caller;
+ if (caller->global.inlined_to)
+ caller = caller->global.inlined_to;
+
+ if (L_IPO_COMP_MODE && cgraph_pre_profiling_inlining_done)
+ {
+ callee = cgraph_lipo_get_resolved_node (callee->decl);
+ caller = cgraph_lipo_get_resolved_node (caller->decl);
+ }
+ return caller->decl == callee->decl;
}
/* Return true if the TM_CLONE bit is set for a given FNDECL. */
diff --git a/gcc-4.9/gcc/cgraphbuild.c b/gcc-4.9/gcc/cgraphbuild.c
index 19961e27d..c6b04be5a 100644
--- a/gcc-4.9/gcc/cgraphbuild.c
+++ b/gcc-4.9/gcc/cgraphbuild.c
@@ -23,9 +23,12 @@ along with GCC; see the file COPYING3. If not see
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
+#include "tree-eh.h"
#include "pointer-set.h"
#include "basic-block.h"
#include "tree-ssa-alias.h"
+#include "tree-ssa-operands.h"
+#include "tree-into-ssa.h"
#include "internal-fn.h"
#include "gimple-fold.h"
#include "gimple-expr.h"
@@ -33,11 +36,16 @@ along with GCC; see the file COPYING3. If not see
#include "gimple.h"
#include "gimple-iterator.h"
#include "gimple-walk.h"
+#include "gimple-ssa.h"
#include "langhooks.h"
#include "intl.h"
+#include "toplev.h"
+#include "gcov-io.h"
+#include "coverage.h"
#include "tree-pass.h"
#include "ipa-utils.h"
#include "except.h"
+#include "l-ipo.h"
#include "ipa-inline.h"
/* Context of record_reference. */
@@ -221,6 +229,158 @@ compute_call_stmt_bb_frequency (tree decl, basic_block bb)
return freq;
}
+
+bool cgraph_pre_profiling_inlining_done = false;
+
+/* Return true if E is a fake indirect call edge. */
+
+bool
+cgraph_is_fake_indirect_call_edge (struct cgraph_edge *e)
+{
+ return !e->call_stmt;
+}
+
+
+/* Add fake cgraph edges from NODE to its indirect call callees
+ using profile data. */
+
+static void
+add_fake_indirect_call_edges (struct cgraph_node *node)
+{
+ unsigned n_counts, i;
+ gcov_type *ic_counts;
+
+ /* Enable this only for LIPO for now. */
+ if (!L_IPO_COMP_MODE)
+ return;
+
+ ic_counts
+ = get_coverage_counts_no_warn (DECL_STRUCT_FUNCTION (node->decl),
+ GCOV_COUNTER_ICALL_TOPNV, &n_counts);
+
+ if (!ic_counts)
+ return;
+
+ gcc_assert ((n_counts % GCOV_ICALL_TOPN_NCOUNTS) == 0);
+
+/* After the early_inline_1 before value profile transformation,
+ functions that are indirect call targets may have their bodies
+ removed (extern inline functions or functions from aux modules,
+ functions in comdat etc) if all direct callsites are inlined. This
+ will lead to missing inline opportunities after profile based
+ indirect call promotion. The solution is to add fake edges to
+ indirect call targets. Note that such edges are not associated
+ with actual indirect call sites because it is not possible to
+ reliably match pre-early-inline indirect callsites with indirect
+ call profile counters which are from post-early inline function body. */
+
+ for (i = 0; i < n_counts;
+ i += GCOV_ICALL_TOPN_NCOUNTS, ic_counts += GCOV_ICALL_TOPN_NCOUNTS)
+ {
+ gcov_type val1, val2, count1, count2;
+ struct cgraph_node *direct_call1 = 0, *direct_call2 = 0;
+
+ val1 = ic_counts[1];
+ count1 = ic_counts[2];
+ val2 = ic_counts[3];
+ count2 = ic_counts[4];
+
+ if (val1 == 0 || count1 == 0)
+ continue;
+
+ direct_call1 = find_func_by_global_id (val1, false);
+ if (direct_call1)
+ {
+ tree decl = direct_call1->decl;
+ cgraph_create_edge (node,
+ cgraph_get_create_node (decl),
+ NULL,
+ count1, 0);
+ }
+
+ if (val2 == 0 || count2 == 0)
+ continue;
+ direct_call2 = find_func_by_global_id (val2, false);
+ if (direct_call2)
+ {
+ tree decl = direct_call2->decl;
+ cgraph_create_edge (node,
+ cgraph_get_create_node (decl),
+ NULL,
+ count2, 0);
+ }
+ }
+}
+
+
+/* This can be implemented as an IPA pass that must be first one
+ before any unreachable node elimination. */
+
+void
+cgraph_add_fake_indirect_call_edges (void)
+{
+ struct cgraph_node *node;
+
+ /* Enable this only for LIPO for now. */
+ if (!L_IPO_COMP_MODE)
+ return;
+
+ FOR_EACH_DEFINED_FUNCTION (node)
+ {
+ if (!gimple_has_body_p (node->decl))
+ continue;
+ add_fake_indirect_call_edges (node);
+ }
+}
+
+/* Remove zero count fake edges added for the purpose of ensuring
+ the right processing order. This should be called after all
+ small ipa passes. */
+void
+cgraph_remove_zero_count_fake_edges (void)
+{
+ struct cgraph_node *node;
+
+ /* Enable this only for LIPO for now. */
+ if (!L_IPO_COMP_MODE)
+ return;
+
+ FOR_EACH_DEFINED_FUNCTION (node)
+ {
+ if (!gimple_has_body_p (node->decl))
+ continue;
+
+ struct cgraph_edge *e, *f;
+ for (e = node->callees; e; e = f)
+ {
+ f = e->next_callee;
+ if (!e->call_stmt && !e->count && !e->frequency)
+ cgraph_remove_edge (e);
+ }
+ }
+}
+
+static void
+record_reference_to_real_target_from_alias (struct cgraph_node *alias)
+{
+ if (!L_IPO_COMP_MODE || !cgraph_pre_profiling_inlining_done)
+ return;
+
+ /* Need to add a reference to the resolved node in LIPO
+ mode to avoid the real node from eliminated */
+ if (alias->alias && alias->analyzed)
+ {
+ struct cgraph_node *target, *real_target;
+
+ target = dyn_cast<cgraph_node> (symtab_alias_target (alias));
+ real_target = cgraph_lipo_get_resolved_node (target->decl);
+ /* TODO: this make create duplicate entries in the reference list. */
+ if (real_target != target)
+ ipa_record_reference (alias, real_target,
+ IPA_REF_ALIAS, NULL);
+ }
+}
+
/* Mark address taken in STMT. */
static bool
@@ -229,11 +389,55 @@ mark_address (gimple stmt, tree addr, tree, void *data)
addr = get_base_address (addr);
if (TREE_CODE (addr) == FUNCTION_DECL)
{
+ /* Before possibly creating a new node in cgraph_get_create_node,
+ save the current cgraph node for addr. */
+ struct cgraph_node *first_clone = cgraph_get_node (addr);
struct cgraph_node *node = cgraph_get_create_node (addr);
+ /* In LIPO mode we use the resolved node. However, there is
+ a possibility that it may not exist at this point. This
+ can happen in cases of ipa-cp, where this is a reference
+ that will eventually go away during inline_transform when we
+ invoke cgraph_redirect_edge_call_stmt_to_callee to rewrite
+ the call_stmt and skip some arguments. It is possible
+ that earlier during inline_call the references to the original
+ non-cloned resolved node were all eliminated, and it was removed.
+ However, virtual clones may stick around until inline_transform,
+ due to references in other virtual clones, at which point they
+ will all be removed. In between inline_call and inline_transform,
+ however, we will materialize clones which would rebuild references
+ and end up here upon still seeing the reference on the call.
+ Handle this by skipping the resolved node lookup when the first
+ clone was marked global.inlined_to (i.e. it is a virtual clone,
+ the original is gone).
+
+ For example, when this is called after ipa inlining for a call stmt
+ in an ipa cp clone, the call will still look like:
+ foo.isra.3 (pow, ...);
+ while the caller node actually has foo.isra.3.constprop in its
+ callee list. And the original, resolved node for pow would have
+ been eliminated during ipa inlining/virtual cloning if this was
+ the only reference leading to a call.
+
+ Later, during inline_transform, this call statement will be rewritted
+ in cgraph_redirect_edge_call_stmt_to_callee to:
+ foo.isra.3.constprop (...); // pow argument removed
+ */
+ if (L_IPO_COMP_MODE && cgraph_pre_profiling_inlining_done
+ && first_clone && !first_clone->global.inlined_to)
+ {
+ /* We now fix up address references to function decls after the LIPO
+ link, so any existing node that isn't an inline clone should be
+ the resolved node. */
+ struct cgraph_node *resolved = cgraph_lipo_get_resolved_node (addr);
+ gcc_assert (resolved == first_clone);
+ gcc_assert (resolved == node);
+ }
+
cgraph_mark_address_taken_node (node);
ipa_record_reference ((symtab_node *)data,
node,
IPA_REF_ADDR, stmt);
+ record_reference_to_real_target_from_alias (node);
}
else if (addr && TREE_CODE (addr) == VAR_DECL
&& (TREE_STATIC (addr) || DECL_EXTERNAL (addr)))
@@ -243,6 +447,13 @@ mark_address (gimple stmt, tree addr, tree, void *data)
ipa_record_reference ((symtab_node *)data,
vnode,
IPA_REF_ADDR, stmt);
+ if (L_IPO_COMP_MODE && cgraph_pre_profiling_inlining_done)
+ {
+ struct varpool_node *rvnode = real_varpool_node (addr);
+ if (rvnode != vnode)
+ ipa_record_reference ((symtab_node *)data, rvnode,
+ IPA_REF_ADDR, stmt);
+ }
}
return false;
@@ -272,6 +483,15 @@ mark_load (gimple stmt, tree t, tree, void *data)
ipa_record_reference ((symtab_node *)data,
vnode,
IPA_REF_LOAD, stmt);
+
+ if (L_IPO_COMP_MODE && cgraph_pre_profiling_inlining_done)
+ {
+ struct varpool_node *rvnode = real_varpool_node (t);
+ if (rvnode != vnode)
+ ipa_record_reference ((symtab_node *)data,
+ rvnode,
+ IPA_REF_ADDR, stmt);
+ }
}
return false;
}
@@ -290,6 +510,14 @@ mark_store (gimple stmt, tree t, tree, void *data)
ipa_record_reference ((symtab_node *)data,
vnode,
IPA_REF_STORE, stmt);
+ if (L_IPO_COMP_MODE && cgraph_pre_profiling_inlining_done)
+ {
+ struct varpool_node *rvnode = real_varpool_node (t);
+ if (rvnode != vnode)
+ ipa_record_reference ((symtab_node *)data,
+ rvnode,
+ IPA_REF_ADDR, stmt);
+ }
}
return false;
}
@@ -369,6 +597,7 @@ build_cgraph_edges (void)
ipa_record_stmt_references (node, gsi_stmt (gsi));
}
+
/* Look for initializers of constant variables and private statics. */
FOR_EACH_LOCAL_DECL (cfun, ix, decl)
if (TREE_CODE (decl) == VAR_DECL
@@ -436,6 +665,144 @@ record_references_in_initializer (tree decl, bool only_vars)
pointer_set_destroy (visited_nodes);
}
+/* Update any function decl references in base ADDR of operand OP to refer to
+ the resolved node. */
+
+static bool
+fixup_ref (gimple, tree addr, tree op)
+{
+ addr = get_base_address (addr);
+ if (addr && TREE_CODE (addr) == FUNCTION_DECL)
+ {
+ gcc_assert (TREE_CODE (op) == ADDR_EXPR);
+ gcc_assert (TREE_OPERAND (op,0) == addr);
+ struct cgraph_node *real_callee;
+ real_callee = cgraph_lipo_get_resolved_node (addr);
+ if (addr == real_callee->decl)
+ return false;
+ TREE_OPERAND (op,0) = real_callee->decl;
+ }
+ return false;
+}
+
+/* Update any function decl references in base ADDR of operand OP from address
+ STMT operand OP to refer to the resolved node. */
+
+static bool
+fixup_address (gimple stmt, tree addr, tree op, void *)
+{
+ return fixup_ref (stmt, addr, op);
+}
+
+/* Update any function decl references in base ADDR of operand OP from load
+ STMT operand OP to refer to the resolved node. See comments in mark_load
+ on when a load may have a function decl reference. */
+
+static bool
+fixup_load (gimple stmt, tree addr, tree op, void *)
+{
+ return fixup_ref (stmt, addr, op);
+}
+
+/* After the LIPO link, references to function decls should be updated
+ to the resolved node, so that the correct references are added to the
+ cgraph. Update all references in STMT. */
+
+void
+lipo_fixup_load_addr_ops (gimple stmt)
+{
+ walk_stmt_load_store_addr_ops (stmt, NULL, fixup_load, NULL,
+ fixup_address);
+}
+
+/* In LIPO mode, before tree_profiling, the call graph edge
+ needs to be built with the original target node to make
+ sure consistent early inline decisions between profile
+ generate and profile use. After tree-profiling, the target
+ needs to be set to the resolved node so that ipa-inline
+ sees the definitions. */
+#include "gimple-pretty-print.h"
+static void
+lipo_fixup_cgraph_edge_call_target (gimple stmt)
+{
+ tree decl;
+ gcc_assert (is_gimple_call (stmt));
+
+ decl = gimple_call_fndecl (stmt);
+ if (decl)
+ {
+ struct cgraph_node *real_callee;
+ real_callee = cgraph_lipo_get_resolved_node (decl);
+
+ if (decl != real_callee->decl)
+ {
+ int lp_nr;
+
+ gcc_assert (!real_callee->clone.combined_args_to_skip);
+ gimple_call_set_fndecl (stmt, real_callee->decl);
+ update_stmt (stmt);
+ lp_nr = lookup_stmt_eh_lp (stmt);
+ if (lp_nr != 0 && !stmt_could_throw_p (stmt))
+ remove_stmt_from_eh_lp (stmt);
+ }
+ }
+}
+
+/* Link the cgraph nodes, varpool nodes and fixup the call target to
+ the correct decl. Remove dead functions. */
+
+
+void
+lipo_link_and_fixup ()
+{
+ struct cgraph_node *node;
+
+ cgraph_pre_profiling_inlining_done = true;
+ cgraph_process_module_scope_statics ();
+ /* Now perform link to allow cross module inlining. */
+ cgraph_do_link ();
+ varpool_do_link ();
+ cgraph_unify_type_alias_sets ();
+ cgraph_init_gid_map ();
+
+ FOR_EACH_DEFINED_FUNCTION (node)
+ {
+ if (!gimple_has_body_p (node->decl))
+ continue;
+
+ /* Don't profile functions produced for builtin stuff. */
+ if (DECL_SOURCE_LOCATION (node->decl) == BUILTINS_LOCATION)
+ continue;
+
+ push_cfun (DECL_STRUCT_FUNCTION (node->decl));
+
+ if (L_IPO_COMP_MODE)
+ {
+ basic_block bb;
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ gimple_stmt_iterator gsi;
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+ if (is_gimple_call (stmt))
+ lipo_fixup_cgraph_edge_call_target (stmt);
+ lipo_fixup_load_addr_ops (stmt);
+ }
+ for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ lipo_fixup_load_addr_ops (gsi_stmt (gsi));
+ }
+ update_ssa (TODO_update_ssa);
+ }
+ rebuild_cgraph_edges ();
+ pop_cfun ();
+ }
+
+ cgraph_add_fake_indirect_call_edges ();
+ symtab_remove_unreachable_nodes (true, dump_file);
+}
+
+
/* Rebuild cgraph edges for current function node. This needs to be run after
passes that don't update the cgraph. */
@@ -450,9 +817,12 @@ rebuild_cgraph_edges (void)
ipa_remove_all_references (&node->ref_list);
node->count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
+ node->max_bb_count = 0;
FOR_EACH_BB_FN (bb, cfun)
{
+ if (bb->count > node->max_bb_count)
+ node->max_bb_count = bb->count;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
@@ -464,8 +834,13 @@ rebuild_cgraph_edges (void)
bb);
decl = gimple_call_fndecl (stmt);
if (decl)
- cgraph_create_edge (node, cgraph_get_create_node (decl), stmt,
- bb->count, freq);
+ {
+ struct cgraph_node *callee = cgraph_get_create_node (decl);
+ if (L_IPO_COMP_MODE)
+ record_reference_to_real_target_from_alias (callee);
+ cgraph_create_edge (node, callee, stmt,
+ bb->count, freq);
+ }
else if (gimple_call_internal_p (stmt))
;
else
@@ -478,6 +853,9 @@ rebuild_cgraph_edges (void)
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
ipa_record_stmt_references (node, gsi_stmt (gsi));
}
+
+ if (!cgraph_pre_profiling_inlining_done)
+ add_fake_indirect_call_edges (node);
record_eh_tables (node, cfun);
gcc_assert (!node->global.inlined_to);
@@ -547,6 +925,9 @@ public:
} // anon namespace
+/* Defined in passes.c */
+extern bool cgraph_callee_edges_final_cleanup;
+
gimple_opt_pass *
make_pass_rebuild_cgraph_edges (gcc::context *ctxt)
{
@@ -557,6 +938,12 @@ make_pass_rebuild_cgraph_edges (gcc::context *ctxt)
static unsigned int
remove_cgraph_callee_edges (void)
{
+ /* The -freorder-functions=* needs the call-graph preserved till
+ pass_final. */
+ if (cgraph_callee_edges_final_cleanup
+ && (flag_reorder_functions > 1))
+ return 0;
+
struct cgraph_node *node = cgraph_get_node (current_function_decl);
cgraph_node_remove_callees (node);
ipa_remove_all_references (&node->ref_list);
diff --git a/gcc-4.9/gcc/cgraphclones.c b/gcc-4.9/gcc/cgraphclones.c
index 257939cb0..9fec2a04d 100644
--- a/gcc-4.9/gcc/cgraphclones.c
+++ b/gcc-4.9/gcc/cgraphclones.c
@@ -101,6 +101,7 @@ along with GCC; see the file COPYING3. If not see
#include "ipa-utils.h"
#include "lto-streamer.h"
#include "except.h"
+#include "l-ipo.h"
/* Create clone of E in the node N represented by CALL_EXPR the callgraph. */
struct cgraph_edge *
@@ -128,7 +129,11 @@ cgraph_clone_edge (struct cgraph_edge *e, struct cgraph_node *n,
via cgraph_resolve_speculation and not here. */
&& !e->speculative)
{
- struct cgraph_node *callee = cgraph_get_node (decl);
+ struct cgraph_node *callee;
+ if (L_IPO_COMP_MODE && cgraph_pre_profiling_inlining_done)
+ callee = cgraph_lipo_get_resolved_node (decl);
+ else
+ callee = cgraph_get_node (decl);
gcc_checking_assert (callee);
new_edge = cgraph_create_edge (n, callee, call_stmt, count, freq);
}
@@ -302,14 +307,13 @@ set_new_clone_decl_and_node_flags (cgraph_node *new_node)
thunk is this_adjusting but we are removing this parameter. */
static cgraph_node *
-duplicate_thunk_for_node (cgraph_node *thunk, cgraph_node *node,
- bitmap args_to_skip)
+duplicate_thunk_for_node (cgraph_node *thunk, cgraph_node *node)
{
cgraph_node *new_thunk, *thunk_of;
thunk_of = cgraph_function_or_thunk_node (thunk->callees->callee);
if (thunk_of->thunk.thunk_p)
- node = duplicate_thunk_for_node (thunk_of, node, args_to_skip);
+ node = duplicate_thunk_for_node (thunk_of, node);
struct cgraph_edge *cs;
for (cs = node->callers; cs; cs = cs->next_caller)
@@ -321,17 +325,18 @@ duplicate_thunk_for_node (cgraph_node *thunk, cgraph_node *node,
return cs->caller;
tree new_decl;
- if (!args_to_skip)
+ if (!node->clone.args_to_skip)
new_decl = copy_node (thunk->decl);
else
{
/* We do not need to duplicate this_adjusting thunks if we have removed
this. */
if (thunk->thunk.this_adjusting
- && bitmap_bit_p (args_to_skip, 0))
+ && bitmap_bit_p (node->clone.args_to_skip, 0))
return node;
- new_decl = build_function_decl_skip_args (thunk->decl, args_to_skip,
+ new_decl = build_function_decl_skip_args (thunk->decl,
+ node->clone.args_to_skip,
false);
}
gcc_checking_assert (!DECL_STRUCT_FUNCTION (new_decl));
@@ -349,6 +354,8 @@ duplicate_thunk_for_node (cgraph_node *thunk, cgraph_node *node,
new_thunk->thunk = thunk->thunk;
new_thunk->unique_name = in_lto_p;
new_thunk->former_clone_of = thunk->decl;
+ new_thunk->clone.args_to_skip = node->clone.args_to_skip;
+ new_thunk->clone.combined_args_to_skip = node->clone.combined_args_to_skip;
struct cgraph_edge *e = cgraph_create_edge (new_thunk, node, NULL, 0,
CGRAPH_FREQ_BASE);
@@ -365,12 +372,11 @@ duplicate_thunk_for_node (cgraph_node *thunk, cgraph_node *node,
chain. */
void
-redirect_edge_duplicating_thunks (struct cgraph_edge *e, struct cgraph_node *n,
- bitmap args_to_skip)
+redirect_edge_duplicating_thunks (struct cgraph_edge *e, struct cgraph_node *n)
{
cgraph_node *orig_to = cgraph_function_or_thunk_node (e->callee);
if (orig_to->thunk.thunk_p)
- n = duplicate_thunk_for_node (orig_to, n, args_to_skip);
+ n = duplicate_thunk_for_node (orig_to, n);
cgraph_redirect_edge_callee (e, n);
}
@@ -422,10 +428,26 @@ cgraph_clone_node (struct cgraph_node *n, tree decl, gcov_type count, int freq,
new_node->global.inlined_to = new_inlined_to;
new_node->rtl = n->rtl;
new_node->count = count;
+ new_node->max_bb_count = count;
+ if (n->count)
+ new_node->max_bb_count = ((n->max_bb_count + n->count / 2)
+ / n->count) * count;
new_node->frequency = n->frequency;
- new_node->clone = n->clone;
- new_node->clone.tree_map = NULL;
new_node->tp_first_run = n->tp_first_run;
+
+ new_node->clone.tree_map = NULL;
+ new_node->clone.args_to_skip = args_to_skip;
+ if (!args_to_skip)
+ new_node->clone.combined_args_to_skip = n->clone.combined_args_to_skip;
+ else if (n->clone.combined_args_to_skip)
+ {
+ new_node->clone.combined_args_to_skip = BITMAP_GGC_ALLOC ();
+ bitmap_ior (new_node->clone.combined_args_to_skip,
+ n->clone.combined_args_to_skip, args_to_skip);
+ }
+ else
+ new_node->clone.combined_args_to_skip = args_to_skip;
+
if (n->count)
{
if (new_node->count > n->count)
@@ -435,11 +457,19 @@ cgraph_clone_node (struct cgraph_node *n, tree decl, gcov_type count, int freq,
}
else
count_scale = 0;
+ /* In AutoFDO, if edge count is larger than callee's entry block
+ count, we will not update the original callee because it may
+ mistakenly mark some hot function as cold. */
+ if (flag_auto_profile && count >= n->count)
+ update_original = false;
if (update_original)
{
n->count -= count;
if (n->count < 0)
- n->count = 0;
+ n->count = 0;
+ n->max_bb_count -= new_node->max_bb_count;
+ if (n->max_bb_count < 0)
+ n->max_bb_count = 0;
}
FOR_EACH_VEC_ELT (redirect_callers, i, e)
@@ -450,10 +480,9 @@ cgraph_clone_node (struct cgraph_node *n, tree decl, gcov_type count, int freq,
if (!e->callee
|| DECL_BUILT_IN_CLASS (e->callee->decl) != BUILT_IN_NORMAL
|| DECL_FUNCTION_CODE (e->callee->decl) != BUILT_IN_UNREACHABLE)
- redirect_edge_duplicating_thunks (e, new_node, args_to_skip);
+ redirect_edge_duplicating_thunks (e, new_node);
}
-
for (e = n->callees;e; e=e->next_callee)
cgraph_clone_edge (e, new_node, e->call_stmt, e->lto_stmt_uid,
count_scale, freq, update_original);
@@ -562,7 +591,6 @@ cgraph_create_virtual_clone (struct cgraph_node *old_node,
DECL_SECTION_NAME (new_node->decl) = NULL;
set_new_clone_decl_and_node_flags (new_node);
new_node->clone.tree_map = tree_map;
- new_node->clone.args_to_skip = args_to_skip;
/* Clones of global symbols or symbols with unique names are unique. */
if ((TREE_PUBLIC (old_decl)
@@ -574,32 +602,6 @@ cgraph_create_virtual_clone (struct cgraph_node *old_node,
FOR_EACH_VEC_SAFE_ELT (tree_map, i, map)
ipa_maybe_record_reference (new_node, map->new_tree,
IPA_REF_ADDR, NULL);
- if (!args_to_skip)
- new_node->clone.combined_args_to_skip = old_node->clone.combined_args_to_skip;
- else if (old_node->clone.combined_args_to_skip)
- {
- int newi = 0, oldi = 0;
- tree arg;
- bitmap new_args_to_skip = BITMAP_GGC_ALLOC ();
- struct cgraph_node *orig_node;
- for (orig_node = old_node; orig_node->clone_of; orig_node = orig_node->clone_of)
- ;
- for (arg = DECL_ARGUMENTS (orig_node->decl);
- arg; arg = DECL_CHAIN (arg), oldi++)
- {
- if (bitmap_bit_p (old_node->clone.combined_args_to_skip, oldi))
- {
- bitmap_set_bit (new_args_to_skip, oldi);
- continue;
- }
- if (bitmap_bit_p (args_to_skip, newi))
- bitmap_set_bit (new_args_to_skip, oldi);
- newi++;
- }
- new_node->clone.combined_args_to_skip = new_args_to_skip;
- }
- else
- new_node->clone.combined_args_to_skip = args_to_skip;
cgraph_call_node_duplication_hooks (old_node, new_node);
@@ -883,6 +885,7 @@ cgraph_copy_node_for_versioning (struct cgraph_node *old_version,
new_version->global = old_version->global;
new_version->rtl = old_version->rtl;
new_version->count = old_version->count;
+ new_version->max_bb_count = old_version->max_bb_count;
for (e = old_version->callees; e; e=e->next_callee)
if (!bbs_to_copy
diff --git a/gcc-4.9/gcc/cgraphunit.c b/gcc-4.9/gcc/cgraphunit.c
index 06283fc3f..83e436f76 100644
--- a/gcc-4.9/gcc/cgraphunit.c
+++ b/gcc-4.9/gcc/cgraphunit.c
@@ -193,6 +193,7 @@ along with GCC; see the file COPYING3. If not see
#include "intl.h"
#include "function.h"
#include "ipa-prop.h"
+#include "gcov-io.h"
#include "tree-iterator.h"
#include "tree-pass.h"
#include "tree-dump.h"
@@ -203,6 +204,7 @@ along with GCC; see the file COPYING3. If not see
#include "ipa-inline.h"
#include "ipa-utils.h"
#include "lto-streamer.h"
+#include "l-ipo.h"
#include "except.h"
#include "cfgloop.h"
#include "regset.h" /* FIXME: For reg_obstack. */
@@ -244,7 +246,8 @@ decide_is_symbol_needed (symtab_node *node)
/* Double check that no one output the function into assembly file
early. */
gcc_checking_assert (!DECL_ASSEMBLER_NAME_SET_P (decl)
- || !TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl)));
+ || (L_IPO_COMP_MODE
+ || !TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl))));
if (!node->definition)
return false;
@@ -292,6 +295,12 @@ enqueue_node (symtab_node *node)
queued_nodes = node;
}
+void
+cgraph_enqueue_node (struct cgraph_node *node)
+{
+ enqueue_node ((symtab_node *) node);
+}
+
/* Process CGRAPH_NEW_FUNCTIONS and perform actions necessary to add these
functions into callgraph in a way so they look like ordinary reachable
functions inserted into callgraph already at construction time. */
@@ -491,6 +500,7 @@ cgraph_add_new_function (tree fndecl, bool lowered)
{
gcc::pass_manager *passes = g->get_passes ();
struct cgraph_node *node;
+
switch (cgraph_state)
{
case CGRAPH_STATE_PARSING:
@@ -551,7 +561,6 @@ cgraph_add_new_function (tree fndecl, bool lowered)
pop_cfun ();
expand_function (node);
break;
-
default:
gcc_unreachable ();
}
@@ -972,7 +981,8 @@ analyze_functions (void)
fprintf (cgraph_dump_file, "Trivially needed symbols:");
changed = true;
if (cgraph_dump_file)
- fprintf (cgraph_dump_file, " %s", node->asm_name ());
+ fprintf (cgraph_dump_file, " %s/%d", node->asm_name (),
+ node->order);
if (!changed && cgraph_dump_file)
fprintf (cgraph_dump_file, "\n");
}
@@ -1085,7 +1095,7 @@ analyze_functions (void)
if (!node->aux && !referred_to_p (node))
{
if (cgraph_dump_file)
- fprintf (cgraph_dump_file, " %s", node->name ());
+ fprintf (cgraph_dump_file, " %s/%d", node->name (), node->order);
symtab_remove_node (node);
continue;
}
@@ -1205,6 +1215,137 @@ handle_alias_pairs (void)
vec_free (alias_pairs);
}
+/* Hash function for symbol (function) resolution. */
+
+static hashval_t
+hash_node_by_assembler_name (const void *p)
+{
+ const struct cgraph_node *n = (const struct cgraph_node *) p;
+ return (hashval_t) decl_assembler_name_hash (
+ DECL_ASSEMBLER_NAME (n->decl));
+}
+
+/* Equality function for cgraph_node table. */
+
+static int
+eq_node_assembler_name (const void *p1, const void *p2)
+{
+ const struct cgraph_node *n1 = (const struct cgraph_node *) p1;
+ const_tree name = (const_tree)p2;
+ return (decl_assembler_name_equal (n1->decl, name));
+}
+
+/* In l-ipo mode compilation (light weight IPO), multiple bodies may
+ be available for the same inline declared function. cgraph linking
+ does not really merge them in order to keep the context (module info)
+ of each body. After inlining, the linkage of the function may require
+ them to be output (even if it is defined in an auxiliary module). This
+ in term may result in duplicate emission. */
+
+static GTY((param_is (symtab_node))) htab_t output_node_hash = NULL;
+
+/* Add NODE that is expanded into the hashtable. */
+
+static struct cgraph_node *
+cgraph_add_output_node (struct cgraph_node *node)
+{
+ void **aslot;
+ tree name;
+
+ if (!L_IPO_COMP_MODE)
+ return node;
+
+ /* Never common non public names except for compiler
+ generated static functions. (they are not promoted
+ to globals either. */
+ if (!TREE_PUBLIC (node->decl)
+ && !(DECL_ARTIFICIAL (node->decl)
+ && DECL_ASSEMBLER_NAME_SET_P (node->decl)))
+ return node;
+
+ if (!output_node_hash)
+ output_node_hash =
+ htab_create_ggc (10, hash_node_by_assembler_name,
+ eq_node_assembler_name, NULL);
+
+ name = DECL_ASSEMBLER_NAME (node->decl);
+
+ aslot = htab_find_slot_with_hash (output_node_hash, name,
+ decl_assembler_name_hash (name),
+ INSERT);
+ if (*aslot == NULL)
+ {
+ *aslot = node;
+ return node;
+ }
+ else
+ return (struct cgraph_node *)(*aslot);
+}
+
+#if ENABLE_CHECKING
+/* Return the cgraph_node if the function symbol for NODE is
+ expanded in the output. Returns NULL otherwise. */
+
+static struct cgraph_node *
+cgraph_find_output_node (struct cgraph_node *node)
+{
+ void **aslot;
+ tree name;
+
+ if (!L_IPO_COMP_MODE)
+ return node;
+
+ /* We do not track non-public functions. */
+ if (!TREE_PUBLIC (node->decl))
+ return NULL;
+
+ /* Never addedd. */
+ if (!output_node_hash)
+ return NULL;
+
+ name = DECL_ASSEMBLER_NAME (node->decl);
+
+ aslot = htab_find_slot_with_hash (output_node_hash, name,
+ decl_assembler_name_hash (name),
+ NO_INSERT);
+ if (!aslot)
+ return NULL;
+
+ return (struct cgraph_node *)(*aslot);
+}
+#endif
+
+
+#if ENABLE_CHECKING
+/* A function used in validation. Return true if NODE was
+ not expanded and its body was not reclaimed. */
+
+static bool
+cgraph_node_expansion_skipped (struct cgraph_node *node)
+{
+ struct cgraph_node *output_node;
+
+ if (!L_IPO_COMP_MODE)
+ return false;
+
+ output_node = cgraph_find_output_node (node);
+
+ if (output_node == node)
+ return false;
+
+ if (output_node)
+ return true;
+
+ /* No output, no duplicate being output, and the node is not
+ inlined (and reclaimed) either -- check if the caller node
+ is output/expanded or not. */
+ if (node->global.inlined_to)
+ return cgraph_node_expansion_skipped (node->global.inlined_to);
+
+ /* External functions not marked for output. */
+ return true;
+}
+#endif
/* Figure out what functions we want to assemble. */
@@ -1235,8 +1376,10 @@ mark_functions_to_output (void)
&& !node->alias
&& !node->global.inlined_to
&& !TREE_ASM_WRITTEN (decl)
- && !DECL_EXTERNAL (decl))
+ && !(DECL_EXTERNAL (decl) || cgraph_is_aux_decl_external (node)))
{
+ if (cgraph_add_output_node (node) == node) {
+ /* Do not fix indentation. */
node->process = 1;
if (node->same_comdat_group)
{
@@ -1245,9 +1388,11 @@ mark_functions_to_output (void)
next != node;
next = cgraph (next->same_comdat_group))
if (!next->thunk.thunk_p && !next->alias
+ && cgraph_add_output_node (next) == next
&& !symtab_comdat_local_p (next))
next->process = 1;
}
+ }
}
else if (node->same_comdat_group)
{
@@ -1266,6 +1411,7 @@ mark_functions_to_output (void)
have analyzed node pointing to it. */
&& !node->in_other_partition
&& !node->alias
+ && !cgraph_is_auxiliary (node->decl)
&& !node->clones
&& !DECL_EXTERNAL (decl))
{
@@ -1278,13 +1424,14 @@ mark_functions_to_output (void)
|| node->in_other_partition
|| node->clones
|| DECL_ARTIFICIAL (decl)
- || DECL_EXTERNAL (decl));
+ || DECL_EXTERNAL (decl)
+ || cgraph_is_auxiliary (node->decl));
}
}
#ifdef ENABLE_CHECKING
- if (check_same_comdat_groups)
+ if (check_same_comdat_groups && !L_IPO_COMP_MODE)
FOR_EACH_FUNCTION (node)
if (node->same_comdat_group && !node->process)
{
@@ -1297,7 +1444,8 @@ mark_functions_to_output (void)
analyzed node pointing to it. */
&& !node->in_other_partition
&& !node->clones
- && !DECL_EXTERNAL (decl))
+ && !(DECL_EXTERNAL (decl) || cgraph_is_aux_decl_external (node))
+ && !L_IPO_COMP_MODE)
{
dump_cgraph_node (stderr, node);
internal_error ("failed to reclaim unneeded function in same "
@@ -1680,6 +1828,7 @@ expand_thunk (struct cgraph_node *node, bool output_asm_thunks)
#ifdef ENABLE_CHECKING
verify_flow_info ();
#endif
+ free_dominance_info (CDI_DOMINATORS);
/* Since we want to emit the thunk, we explicitly mark its name as
referenced. */
@@ -1963,6 +2112,8 @@ output_in_order (void)
max = symtab_order;
nodes = XCNEWVEC (struct cgraph_order_sort, max);
+ varpool_remove_duplicate_weak_decls ();
+
FOR_EACH_DEFINED_FUNCTION (pf)
{
if (pf->process && !pf->thunk.thunk_p && !pf->alias)
@@ -2058,8 +2209,11 @@ ipa_passes (void)
if (!in_lto_p)
{
- /* Generate coverage variables and constructors. */
- coverage_finish ();
+ /* Generate coverage variables and constructors.
+ In LIPO mode, delay this until direct call profiling
+ is done. */
+ if (!flag_dyn_ipa)
+ coverage_finish ();
/* Process new functions added. */
set_cfun (NULL);
@@ -2165,6 +2319,12 @@ compile (void)
fprintf (stderr, "Performing interprocedural optimizations\n");
cgraph_state = CGRAPH_STATE_IPA;
+ if (L_IPO_COMP_MODE)
+ {
+ cgraph_init_gid_map ();
+ cgraph_add_fake_indirect_call_edges ();
+ }
+
/* If LTO is enabled, initialize the streamer hooks needed by GIMPLE. */
if (flag_lto)
lto_streamer_hooks_init ();
@@ -2250,6 +2410,7 @@ compile (void)
output_asm_statements ();
expand_all_functions ();
+ varpool_remove_duplicate_weak_decls ();
varpool_output_variables ();
}
@@ -2265,15 +2426,21 @@ compile (void)
#ifdef ENABLE_CHECKING
verify_symtab ();
/* Double check that all inline clones are gone and that all
- function bodies have been released from memory. */
+ function bodies have been released from memory.
+ As an exception, allow inline clones in the callgraph if
+ they are auxiliary functions. This is because we don't
+ expand any of the auxiliary functions, which may result
+ in inline clones of some auxiliary functions to be left
+ in the callgraph. */
if (!seen_error ())
{
struct cgraph_node *node;
bool error_found = false;
FOR_EACH_DEFINED_FUNCTION (node)
- if (node->global.inlined_to
+ if (((node->global.inlined_to && !cgraph_is_auxiliary (node->decl))
|| gimple_has_body_p (node->decl))
+ && !cgraph_node_expansion_skipped (node))
{
error_found = true;
dump_cgraph_node (stderr, node);
diff --git a/gcc-4.9/gcc/cif-code.def b/gcc-4.9/gcc/cif-code.def
index ce64d96b6..3e5296c2c 100644
--- a/gcc-4.9/gcc/cif-code.def
+++ b/gcc-4.9/gcc/cif-code.def
@@ -99,6 +99,14 @@ DEFCIFCODE(MISMATCHED_ARGUMENTS, CIF_FINAL_ERROR,
DEFCIFCODE(ORIGINALLY_INDIRECT_CALL, CIF_FINAL_NORMAL,
N_("originally indirect function call not considered for inlining"))
+/* Cross module inlining not allowed in first early inline phase. */
+DEFCIFCODE(NO_INTERMODULE_INLINE, CIF_FINAL_ERROR,
+ N_("inter-module inlining is disabled"))
+
+/* Artificial edge. */
+DEFCIFCODE(ARTIFICIAL_EDGE, CIF_FINAL_ERROR,
+ N_("artificial call graph edge"))
+
/* Ths edge represents an indirect edge with a yet-undetermined callee . */
DEFCIFCODE(INDIRECT_UNKNOWN_CALL, CIF_FINAL_NORMAL,
N_("indirect function call with a yet undetermined callee"))
diff --git a/gcc-4.9/gcc/combine.c b/gcc-4.9/gcc/combine.c
index f7a279e86..7c0045205 100644
--- a/gcc-4.9/gcc/combine.c
+++ b/gcc-4.9/gcc/combine.c
@@ -11987,7 +11987,7 @@ simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
= (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1);
op0 = simplify_gen_binary (AND, tmode,
gen_lowpart (tmode, op0),
- gen_int_mode (sign, mode));
+ gen_int_mode (sign, tmode));
code = (code == LT) ? NE : EQ;
break;
}
diff --git a/gcc-4.9/gcc/common.opt b/gcc-4.9/gcc/common.opt
index 86489996d..6614228b8 100644
--- a/gcc-4.9/gcc/common.opt
+++ b/gcc-4.9/gcc/common.opt
@@ -292,6 +292,9 @@ Driver Joined Alias(L)
-no-canonical-prefixes
Driver Alias(no-canonical-prefixes)
+-canonical-prefixes
+Driver Alias(canonical-prefixes)
+
-no-standard-libraries
Driver Alias(nostdlib)
@@ -557,6 +560,10 @@ Wfatal-errors
Common Var(flag_fatal_errors)
Exit on the first error occurred
+Wforce-warnings
+Common Var(flag_force_warnings)
+Disable promoting warnings to errors
+
Wframe-larger-than=
Common RejectNegative Joined UInteger
-Wframe-larger-than=<number> Warn if a function's stack frame requires more than <number> bytes
@@ -599,6 +606,14 @@ Wpadded
Common Var(warn_padded) Warning
Warn when padding is required to align structure members
+Wripa-opt-mismatch
+Common Var(warn_ripa_opt_mismatch) Warning EnabledBy(Wall)
+Warn if primary and auxiliary modules have mismatched command line options
+
+Wself-assign
+Common Var(warn_self_assign) Init(0) Warning
+Warn when a variable is assigned to itself
+
Wpedantic
Common Var(pedantic) Warning
Issue warnings needed for strict compliance to the standard
@@ -607,6 +622,15 @@ Wshadow
Common Var(warn_shadow) Warning
Warn when one local variable shadows another
+Wshadow-local
+Common Var(warn_shadow_local) Warning
+Warn when one local variable shadows another local variable or parameter
+
+Wshadow-compatible-local
+Common Var(warn_shadow_compatible_local) Warning
+Warn when one local variable shadows another local variable or parameter
+of compatible type
+
Wstack-protector
Common Var(warn_stack_protect) Warning
Warn when not issuing stack smashing protection for some reason
@@ -651,6 +675,50 @@ Wtrampolines
Common Var(warn_trampolines) Warning
Warn whenever a trampoline is generated
+; FIXME. The following -Wthread-* flags are placeholders to prevent
+; confusing the compiler when applications are built with these flags.
+; Actual support for these flags is being implemented in the
+; thread-annotations branch.
+Wthread-safety
+Common Var(warn_thread_safety) Warning
+Warn about potential thread safety issues when the code is annotated with thread safety attributes
+
+Wthread-safety-analysis
+Common Ignore
+Does nothing. For compatibility with clang thread safety analysis.
+
+Wthread-safety-attributes
+Common Ignore
+Does nothing. For compatibility with clang thread safety analysis.
+
+Wthread-safety-precise
+Common Ignore
+Does nothing. For compatibility with clang thread safety analysis.
+
+Wthread-unguarded-var
+Common Var(warn_thread_unguarded_var) Init(1) Warning
+Warn about shared variables not properly protected by locks specified in the attributes
+
+Wthread-unguarded-func
+Common Var(warn_thread_unguarded_func) Init(1) Warning
+Warn about function calls not properly protected by locks specified in the attributes
+
+Wthread-mismatched-lock-order
+Common Var(warn_thread_mismatched_lock_order) Init(1) Warning
+Warn about lock acquisition order inconsistent with what specified in the attributes
+
+Wthread-mismatched-lock-acq-rel
+Common Var(warn_thread_mismatched_lock_acq_rel) Init(1) Warning
+Warn about mismatched lock acquisition and release
+
+Wthread-reentrant-lock
+Common Var(warn_thread_reentrant_lock) Init(1) Warning
+Warn about a lock being acquired recursively
+
+Wthread-unsupported-lock-name
+Common Var(warn_unsupported_lock_name) Init(0) Warning
+Warn about uses of unsupported lock names in attributes
+
Wtype-limits
Common Var(warn_type_limits) Warning EnabledBy(Wextra)
Warn if a comparison is always true or always false due to the limited range of the data type
@@ -710,6 +778,9 @@ Warn when a vector operation is compiled outside the SIMD
Xassembler
Driver Separate
+Xclang-only=
+Driver Joined Ignore
+
Xlinker
Driver Separate
@@ -808,7 +879,7 @@ Driver Undocumented
; Additional positive integers will be assigned as new versions of
; the ABI become the default version of the ABI.
fabi-version=
-Common Joined RejectNegative UInteger Var(flag_abi_version) Init(2)
+Common Joined RejectNegative UInteger Var(flag_abi_version) Init(0)
faggressive-loop-optimizations
Common Report Var(flag_aggressive_loop_optimizations) Optimization Init(1)
@@ -870,6 +941,34 @@ fauto-inc-dec
Common Report Var(flag_auto_inc_dec) Init(1)
Generate auto-inc/dec instructions
+fauto-profile
+Common Report Var(flag_auto_profile) Optimization
+Use sample profile information for call graph node weights. The default
+profile file is fbdata.afdo in 'pwd'.
+
+fauto-profile=
+Common Joined RejectNegative Var(auto_profile_file)
+Use sample profile information for call graph node weights. The profile
+file is specified in the argument.
+
+fauto-profile-accurate
+Common Report Var(flag_auto_profile_accurate) Optimization
+Whether to assume the sample profile is accurate.
+
+fauto-profile-record-coverage-in-elf
+Common Report Var(flag_auto_profile_record_coverage_in_elf) Optimization
+Whether to record annotation coverage info in elf.
+
+fcheck-branch-annotation
+Common Report Var(flag_check_branch_annotation)
+Compare branch prediction result and autofdo profile information, store the
+result in a section in the generated elf file.
+
+fcheck-branch-annotation-threshold=
+Common Joined UInteger Var(check_branch_annotation_threshold) Init(100)
+The number of executions a basic block needs to reach before GCC dumps its
+branch prediction information with -fcheck-branch-annotation.
+
; -fcheck-bounds causes gcc to generate array bounds checks.
; For C, C++ and ObjC: defaults off.
; For Java: defaults to on.
@@ -1111,6 +1210,27 @@ fdwarf2-cfi-asm
Common Report Var(flag_dwarf2_cfi_asm) Init(HAVE_GAS_CFI_DIRECTIVE)
Enable CFI tables via GAS assembler directives.
+fripa
+Common Report Var(flag_dyn_ipa)
+Perform Dynamic Inter-Procedural Analysis.
+
+fripa-disallow-asm-modules
+Common Report Var(flag_ripa_disallow_asm_modules)
+Don't import an auxiliary module if it contains asm statements
+
+fripa-disallow-opt-mismatch
+Common Report Var(flag_ripa_disallow_opt_mismatch)
+Don't import an auxiliary module if the command line options mismatch with the primary module
+
+fripa-no-promote-always-inline-func
+Common Report Var(flag_ripa_no_promote_always_inline) Init(0)
+Don't promote always inline static functions assuming they
+will be inlined and no copy is needed.
+
+fripa-inc-path-sub=
+Common Joined RejectNegative Var(lipo_inc_path_pattern)
+Substitute substring in include paths with a new string to allow reuse profile data
+
fearly-inlining
Common Report Var(flag_early_inlining) Init(1) Optimization
Perform early inlining
@@ -1631,6 +1751,10 @@ fpcc-struct-return
Common Report Var(flag_pcc_struct_return,1) Init(DEFAULT_PCC_STRUCT_RETURN)
Return small aggregates in memory, not registers
+fpeel-codesize-limit
+Common Report Var(flag_peel_codesize_limit) Init(1) Optimization
+Limit non-const non-FP loop peeling under profile estimates of large code footprint
+
fpeel-loops
Common Report Var(flag_peel_loops) Optimization
Perform loop peeling
@@ -1692,6 +1816,19 @@ fprofile-correction
Common Report Var(flag_profile_correction)
Enable correction of flow inconsistent profile data input
+fprofile-dump
+Common Report Var(flag_profile_dump) Init(0) Optimization
+Dump CFG profile for comparison.
+
+; fprofile-generate-atomic=0: disable aotimically update.
+; fprofile-generate-atomic=1: aotimically update edge profile counters.
+; fprofile-generate-atomic=2: aotimically update value profile counters.
+; fprofile-generate-atomic=3: aotimically update edge and value profile counters.
+; other values will be ignored (fall back to the default of 0).
+fprofile-generate-atomic=
+Common Joined UInteger Report Var(flag_profile_gen_atomic) Init(0) Optimization
+fprofile-generate-atomic=[0..3] Atomically increments for profile counters.
+
fprofile-generate
Common
Enable common options for generating profile info for profile feedback directed optimizations
@@ -1700,6 +1837,21 @@ fprofile-generate=
Common Joined RejectNegative
Enable common options for generating profile info for profile feedback directed optimizations, and set -fprofile-dir=
+fprofile-generate-sampling
+Common Var(flag_profile_generate_sampling)
+Turn on instrumentation sampling with -fprofile-generate with rate set by --param profile-generate-sampling-rate or environment variable GCOV_SAMPLING_RATE
+
+femit-function-names
+Common Var(flag_emit_function_names)
+Print to stderr the mapping from module name and function id to assembler
+function name when -ftest-coverage, -fprofile-generate or -fprofile-use are
+active, for use in correlating function ids in gcda files with the function
+name.
+
+fprofile-strip=
+Common Joined RejectNegative Var(profile_base_name_suffix_to_strip)
+Specify a substring to be stripped from the profile base file name
+
fprofile-use
Common Var(flag_profile_use)
Enable common options for performing profile feedback directed optimizations
@@ -1737,6 +1889,14 @@ frecord-gcc-switches
Common Report Var(flag_record_gcc_switches)
Record gcc command line switches in the object file.
+; This option differs from frecord-gcc-switches in the way that it
+; divide the command line options into several categories. And the
+; section is not mergable so that linker can save gcc switches for
+; each module.
+frecord-compilation-info-in-elf
+Common Report Var(flag_record_compilation_info_in_elf)
+Record the compiler optimizations in a .gnu.switches.text section.
+
freg-struct-return
Common Report Var(flag_pcc_struct_return,0) Optimization
Return small aggregates in registers
@@ -1765,6 +1925,16 @@ freorder-functions
Common Report Var(flag_reorder_functions) Optimization
Reorder functions to improve code placement
+freorder-functions=
+Common Joined RejectNegative Enum(function_reorder) Var(flag_reorder_functions) Init(0) Optimization
+-freorder-functions=[callgraph] Select the scheme for function reordering. This invokes a linker plugin. Generate .gnu.callgraph.text sections listing callees and edge counts.
+
+Enum
+Name(function_reorder) Type(int) UnknownError(unrecognized function reorder value %qs)
+
+EnumValue
+Enum(function_reorder) String(callgraph) Value(2)
+
frerun-cse-after-loop
Common Report Var(flag_rerun_cse_after_loop) Optimization
Add a common subexpression elimination pass after loop optimizations
@@ -1923,6 +2093,10 @@ fsingle-precision-constant
Common Report Var(flag_single_precision_constant) Optimization
Convert floating point constants to single precision constants
+fsized-delete
+Common Report Var(flag_sized_delete) Optimization
+Support delete operator with objetc's size as the second parameter.
+
fsplit-ivs-in-unroller
Common Report Var(flag_split_ivs_in_unroller) Init(1) Optimization
Split lifetimes of induction variables when loops are unrolled
@@ -1962,8 +2136,12 @@ fstack-protector
Common Report Var(flag_stack_protect, 1)
Use propolice as a stack protection method
-fstack-protector-all
+fstack-protector-strong
Common Report RejectNegative Var(flag_stack_protect, 2)
+Use a smart stack protection method for certain functions
+
+fstack-protector-all
+Common Report RejectNegative Var(flag_stack_protect, 3)
Use a stack protection method for every function
fstack-protector-strong
@@ -2209,6 +2387,10 @@ ftree-vrp
Common Report Var(flag_tree_vrp) Init(0) Optimization
Perform Value Range Propagation on trees
+fstrict-enum-precision
+Common Report Var(flag_strict_enum_precision) Init(1) Optimization
+Perform transformations based on enum precision
+
funit-at-a-time
Common Report Var(flag_unit_at_a_time) Init(1) Optimization
Compile whole compilation unit at a time
@@ -2221,6 +2403,10 @@ funroll-all-loops
Common Report Var(flag_unroll_all_loops) Optimization
Perform loop unrolling for all loops
+funroll-codesize-limit
+Common Report Var(flag_unroll_codesize_limit) Init(1) Optimization
+Limit non-const non-FP loop unrolling under profile estimates of large code footprint
+
; Nonzero means that loop optimizer may assume that the induction variables
; that control loops do not overflow and that the loops with nontrivial
; exit condition are not infinite
@@ -2468,6 +2654,10 @@ grecord-gcc-switches
Common RejectNegative Var(dwarf_record_gcc_switches,1)
Record gcc command line switches in DWARF DW_AT_producer.
+gmlt
+Common RejectNegative
+Generate debug information at level 1 with minimal line table
+
gno-split-dwarf
Common Driver RejectNegative Var(dwarf_split_debug_info,0) Init(0)
Don't generate debug information in separate .dwo files
@@ -2476,6 +2666,12 @@ gsplit-dwarf
Common Driver RejectNegative Var(dwarf_split_debug_info,1)
Generate debug information in separate .dwo files
+gfission
+Common Driver Alias(gsplit-dwarf)
+
+gno-fission
+Common Driver Alias(gno-split-dwarf)
+
gstabs
Common JoinedOrMissing Negative(gstabs+)
Generate debug information in STABS format
@@ -2528,6 +2724,9 @@ Driver
no-canonical-prefixes
Driver
+canonical-prefixes
+Driver
+
nodefaultlibs
Driver
diff --git a/gcc-4.9/gcc/common/config/msp430/msp430-common.c b/gcc-4.9/gcc/common/config/msp430/msp430-common.c
new file mode 100644
index 000000000..fc2c1f27d
--- /dev/null
+++ b/gcc-4.9/gcc/common/config/msp430/msp430-common.c
@@ -0,0 +1,91 @@
+/* Common hooks for Texas Instruments MSP430.
+ Copyright (C) 2014 Free Software Foundation, Inc.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3, or (at your option)
+ any later version.
+
+ GCC is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING3. If not see
+ <http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "diagnostic-core.h"
+#include "tm.h"
+#include "common/common-target.h"
+#include "common/common-target-def.h"
+#include "opts.h"
+#include "flags.h"
+
+/* Handle -mcpu= and -mmcu= here. We want to ensure that only one
+ of these two options - the last specified on the command line -
+ is passed on to the msp430 backend. */
+
+static bool
+msp430_handle_option (struct gcc_options *opts ATTRIBUTE_UNUSED,
+ struct gcc_options *opts_set ATTRIBUTE_UNUSED,
+ const struct cl_decoded_option *decoded,
+ location_t loc ATTRIBUTE_UNUSED)
+{
+ switch (decoded->opt_index)
+ {
+ case OPT_mcpu_:
+ if (strcasecmp (decoded->arg, "msp430x") == 0
+ || strcasecmp (decoded->arg, "msp430xv2") == 0
+ || strcasecmp (decoded->arg, "430x") == 0
+ || strcasecmp (decoded->arg, "430xv2") == 0)
+ {
+ target_cpu = "msp430x";
+ target_mcu = NULL;
+ }
+ else if (strcasecmp (decoded->arg, "msp430") == 0
+ || strcasecmp (decoded->arg, "430") == 0)
+ {
+ target_cpu = "msp430";
+ target_mcu = NULL;
+ }
+ else
+ {
+ error ("unrecognised argument of -mcpu: %s", decoded->arg);
+ return false;
+ }
+ break;
+
+ case OPT_mmcu_:
+ /* For backwards compatibility we recognise two generic MCU
+ 430X names. However we want to be able to generate special C
+ preprocessor defines for them, which is why we set target_mcu
+ to NULL. */
+ if (strcasecmp (decoded->arg, "msp430") == 0)
+ {
+ target_cpu = "msp430";
+ target_mcu = NULL;
+ }
+ else if (strcasecmp (decoded->arg, "msp430x") == 0
+ || strcasecmp (decoded->arg, "msp430xv2") == 0)
+ {
+ target_cpu = "msp430x";
+ target_mcu = NULL;
+ }
+ else
+ target_cpu = NULL;
+ break;
+ }
+
+ return true;
+}
+
+#undef TARGET_HANDLE_OPTION
+#define TARGET_HANDLE_OPTION msp430_handle_option
+
+struct gcc_targetm_common targetm_common = TARGETM_COMMON_INITIALIZER;
diff --git a/gcc-4.9/gcc/common/config/nds32/nds32-common.c b/gcc-4.9/gcc/common/config/nds32/nds32-common.c
index 7d9bf6704..6a2ef81a1 100644
--- a/gcc-4.9/gcc/common/config/nds32/nds32-common.c
+++ b/gcc-4.9/gcc/common/config/nds32/nds32-common.c
@@ -1,5 +1,5 @@
/* Common hooks of Andes NDS32 cpu for GNU compiler
- Copyright (C) 2012-2014 Free Software Foundation, Inc.
+ Copyright (C) 2012-2013 Free Software Foundation, Inc.
Contributed by Andes Technology Corporation.
This file is part of GCC.
diff --git a/gcc-4.9/gcc/config.gcc b/gcc-4.9/gcc/config.gcc
index 79f57de55..c4851d37f 100644
--- a/gcc-4.9/gcc/config.gcc
+++ b/gcc-4.9/gcc/config.gcc
@@ -903,14 +903,19 @@ aarch64*-*-elf)
TM_MULTILIB_CONFIG=`echo $TM_MULTILIB_CONFIG | sed 's/^,//'`
;;
aarch64*-*-linux*)
- tm_file="${tm_file} dbxelf.h elfos.h gnu-user.h linux.h linux-android.h glibc-stdint.h"
+ tm_file="${tm_file} dbxelf.h elfos.h gnu-user.h linux.h linux-android.h glibc-stdint.h"
tm_file="${tm_file} aarch64/aarch64-elf.h aarch64/aarch64-linux.h"
extra_options="${extra_options} linux-android.opt"
tmake_file="${tmake_file} aarch64/t-aarch64 aarch64/t-aarch64-linux"
+ default_gnu_indirect_function=yes
+
case $target in
aarch64_be-*)
tm_defines="${tm_defines} TARGET_BIG_ENDIAN_DEFAULT=1"
;;
+ aarch64*-*-linux-android*)
+ tm_file="${tm_file} aarch64/aarch64-linux-android.h"
+ ;;
esac
aarch64_multilibs="${with_multilib_list}"
if test "$aarch64_multilibs" = "default"; then
@@ -1022,9 +1027,30 @@ arm*-*-linux-*) # ARM GNU/Linux with ELF
;;
esac
tmake_file="${tmake_file} arm/t-arm arm/t-arm-elf arm/t-bpabi arm/t-linux-eabi"
- tm_file="$tm_file arm/bpabi.h arm/linux-eabi.h arm/aout.h arm/arm.h"
+ tm_file="$tm_file arm/bpabi.h arm/linux-eabi.h arm/aout.h vxworks-dummy.h arm/arm.h"
# Define multilib configuration for arm-linux-androideabi.
case ${target} in
+ arm*-*-linux-*eabi)
+ tmake_file="$tmake_file arm/t-arm-elf arm/t-bpabi arm/t-linux-eabi"
+ # Define multilib configuration for arm-linux-androideabi.
+ case ${target} in
+ *-androideabi)
+ tmake_file="$tmake_file arm/t-linux-androideabi"
+ ;;
+ esac
+ # Pull in spec changes for GRTE configurations.
+ case ${target} in
+ *-grte*)
+ tm_file="${tm_file} linux-grte.h arm/linux-grte.h"
+ ;;
+ esac
+ # The BPABI long long divmod functions return a 128-bit value in
+ # registers r0-r3. Correctly modeling that requires the use of
+ # TImode.
+ need_64bit_hwint=yes
+ # The EABI requires the use of __cxa_atexit.
+ default_use_cxa_atexit=yes
+ ;;
*-androideabi)
tmake_file="$tmake_file arm/t-linux-androideabi"
;;
@@ -1438,6 +1464,12 @@ i[34567]86-*-linux* | i[34567]86-*-kfreebsd*-gnu | i[34567]86-*-knetbsd*-gnu | i
else
tm_file="${tm_file} i386/gnu-user-common.h i386/gnu-user.h i386/linux-common.h i386/linux.h"
fi
+ # Pull in spec changes for GRTE configurations.
+ case ${target} in
+ *-grte*)
+ tm_file="${tm_file} linux-grte.h"
+ ;;
+ esac
;;
i[34567]86-*-knetbsd*-gnu)
tm_file="${tm_file} i386/gnu-user-common.h i386/gnu-user.h knetbsd-gnu.h i386/knetbsd-gnu.h"
@@ -1462,6 +1494,12 @@ x86_64-*-linux* | x86_64-*-kfreebsd*-gnu | x86_64-*-knetbsd*-gnu)
extra_options="${extra_options} linux-android.opt"
# Assume modern glibc
default_gnu_indirect_function=yes
+ # Pull in spec changes for GRTE configurations.
+ case ${target} in
+ *-grte*)
+ tm_file="${tm_file} linux-grte.h"
+ ;;
+ esac
;;
x86_64-*-kfreebsd*-gnu)
tm_file="${tm_file} kfreebsd-gnu.h i386/kfreebsd-gnu64.h"
@@ -2315,8 +2353,10 @@ powerpc-*-rtems*)
powerpc*-*-linux*)
tm_file="${tm_file} dbxelf.h elfos.h freebsd-spec.h rs6000/sysv4.h"
extra_options="${extra_options} rs6000/sysv4.opt"
+ extra_options="${extra_options} linux-android.opt"
tmake_file="rs6000/t-fprules rs6000/t-ppcos ${tmake_file} rs6000/t-ppccomm"
extra_objs="$extra_objs rs6000-linux.o"
+ default_gnu_indirect_function=yes
case ${target} in
powerpc*le-*-*)
tm_file="${tm_file} rs6000/sysv4le.h" ;;
@@ -2376,6 +2416,12 @@ powerpc*-*-linux*)
if test x${enable_secureplt} = xyes; then
tm_file="rs6000/secureplt.h ${tm_file}"
fi
+ # Pull in spec changes for GRTE configurations.
+ case ${target} in
+ *-grte*)
+ tm_file="${tm_file} rs6000/linux-grte.h"
+ ;;
+ esac
;;
powerpc-wrs-vxworks|powerpc-wrs-vxworksae)
tm_file="${tm_file} elfos.h freebsd-spec.h rs6000/sysv4.h"
diff --git a/gcc-4.9/gcc/config.host b/gcc-4.9/gcc/config.host
index bea17bcdd..c9916ccc0 100644
--- a/gcc-4.9/gcc/config.host
+++ b/gcc-4.9/gcc/config.host
@@ -75,6 +75,7 @@ out_host_hook_obj=host-default.o
host_can_use_collect2=yes
use_long_long_for_widest_fast_int=no
host_lto_plugin_soname=liblto_plugin.so
+host_function_reordering_plugin_soname=libfunction_reordering_plugin.so
# Unsupported hosts list. Generally, only include hosts known to fail here,
# since we allow hosts not listed to be supported generically.
diff --git a/gcc-4.9/gcc/config.in b/gcc-4.9/gcc/config.in
index 4d57b87ca..a57dde115 100644
--- a/gcc-4.9/gcc/config.in
+++ b/gcc-4.9/gcc/config.in
@@ -45,6 +45,12 @@
#endif
+/* Define to enable prefix canonicalization. */
+#ifndef USED_FOR_TARGET
+#undef ENABLE_CANONICAL_PREFIXES
+#endif
+
+
/* Define if you want more run-time sanity checks. This one gets a grab bag of
miscellaneous but relatively cheap checks. */
#ifndef USED_FOR_TARGET
@@ -1260,6 +1266,13 @@
#endif
+/* Define if the linker supports clearing hardware capabilities via mapfile.
+ */
+#ifndef USED_FOR_TARGET
+#undef HAVE_LD_CLEARCAP
+#endif
+
+
/* Define if your linker supports --demangle option. */
#ifndef USED_FOR_TARGET
#undef HAVE_LD_DEMANGLE
@@ -1714,6 +1727,11 @@
#undef LINKER_HASH_STYLE
#endif
+/* Define to the name of the function reordering plugin DSO that must be
+ passed to the linker's -plugin=LIB option. */
+#ifndef USED_FOR_TARGET
+#undef FRPLUGINSONAME
+#endif
/* Define to the name of the LTO plugin DSO that must be passed to the
linker's -plugin=LIB option. */
@@ -1919,6 +1937,12 @@
#endif
+/* Define to be extra text for frame size warnings. */
+#ifndef USED_FOR_TARGET
+#undef WARN_FRAME_LARGER_THAN_EXTRA_TEXT
+#endif
+
+
/* Define to be the last component of the Windows registry key under which to
look for installation paths. The full key used will be
HKEY_LOCAL_MACHINE/SOFTWARE/Free Software Foundation/{WIN32_REGISTRY_KEY}.
diff --git a/gcc-4.9/gcc/config/aarch64/aarch64-linux-android.h b/gcc-4.9/gcc/config/aarch64/aarch64-linux-android.h
new file mode 100644
index 000000000..91d235ff1
--- /dev/null
+++ b/gcc-4.9/gcc/config/aarch64/aarch64-linux-android.h
@@ -0,0 +1,59 @@
+/* Machine description for AArch64 architecture.
+ Copyright (C) 2014 Free Software Foundation, Inc.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3, or (at your option)
+ any later version.
+
+ GCC is distributed in the hope that it will be useful, but
+ WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING3. If not see
+ <http://www.gnu.org/licenses/>. */
+
+#ifndef GCC_AARCH64_LINUX_ANDROID_H
+#define GCC_AARCH64_LINUX_ANDROID_H
+
+
+#undef TARGET_OS_CPP_BUILTINS
+#define TARGET_OS_CPP_BUILTINS() \
+ do \
+ { \
+ GNU_USER_TARGET_OS_CPP_BUILTINS(); \
+ ANDROID_TARGET_OS_CPP_BUILTINS(); \
+ } \
+ while (0)
+
+#undef LINK_SPEC
+#define LINK_SPEC \
+ LINUX_OR_ANDROID_LD (LINUX_TARGET_LINK_SPEC, \
+ LINUX_TARGET_LINK_SPEC " " ANDROID_LINK_SPEC)
+
+#undef CC1_SPEC
+#define CC1_SPEC \
+ LINUX_OR_ANDROID_CC (GNU_USER_TARGET_CC1_SPEC, \
+ GNU_USER_TARGET_CC1_SPEC " " ANDROID_CC1_SPEC("-fpic"))
+
+#define CC1PLUS_SPEC \
+ LINUX_OR_ANDROID_CC ("", ANDROID_CC1PLUS_SPEC)
+
+#undef LIB_SPEC
+#define LIB_SPEC \
+ LINUX_OR_ANDROID_LD (GNU_USER_TARGET_LIB_SPEC, \
+ GNU_USER_TARGET_NO_PTHREADS_LIB_SPEC " " ANDROID_LIB_SPEC)
+
+#undef STARTFILE_SPEC
+#define STARTFILE_SPEC \
+ LINUX_OR_ANDROID_LD (GNU_USER_TARGET_STARTFILE_SPEC, ANDROID_STARTFILE_SPEC)
+
+#undef ENDFILE_SPEC
+#define ENDFILE_SPEC \
+ LINUX_OR_ANDROID_LD (GNU_USER_TARGET_ENDFILE_SPEC, ANDROID_ENDFILE_SPEC)
+
+#endif /* GCC_AARCH64_LINUX_ANDROID_H */
diff --git a/gcc-4.9/gcc/config/aarch64/aarch64-linux.h b/gcc-4.9/gcc/config/aarch64/aarch64-linux.h
index f32d19f16..f8a97c899 100644
--- a/gcc-4.9/gcc/config/aarch64/aarch64-linux.h
+++ b/gcc-4.9/gcc/config/aarch64/aarch64-linux.h
@@ -21,8 +21,10 @@
#ifndef GCC_AARCH64_LINUX_H
#define GCC_AARCH64_LINUX_H
-#define GLIBC_DYNAMIC_LINKER "/lib/ld-linux-aarch64%{mbig-endian:_be}.so.1"
-#define BIONIC_DYNAMIC_LINKER "/system/bin/linker64"
+#ifndef RUNTIME_ROOT_PREFIX
+#define RUNTIME_ROOT_PREFIX ""
+#endif
+#define GLIBC_DYNAMIC_LINKER RUNTIME_ROOT_PREFIX "/lib/ld-linux-aarch64%{mbig-endian:_be}.so.1"
#define CPP_SPEC "%{pthread:-D_REENTRANT}"
@@ -36,38 +38,13 @@
%{mbig-endian:-EB} %{mlittle-endian:-EL} \
-maarch64linux%{mbig-endian:b}"
+#define LINK_SPEC LINUX_TARGET_LINK_SPEC
+
#define TARGET_OS_CPP_BUILTINS() \
do \
{ \
GNU_USER_TARGET_OS_CPP_BUILTINS(); \
- ANDROID_TARGET_OS_CPP_BUILTINS(); \
} \
while (0)
-#undef LINK_SPEC
-#define LINK_SPEC \
- LINUX_OR_ANDROID_LD (LINUX_TARGET_LINK_SPEC, \
- LINUX_TARGET_LINK_SPEC " " ANDROID_LINK_SPEC)
-
-#undef CC1_SPEC
-#define CC1_SPEC \
- LINUX_OR_ANDROID_CC (GNU_USER_TARGET_CC1_SPEC, \
- GNU_USER_TARGET_CC1_SPEC " " ANDROID_CC1_SPEC("-fpic"))
-
-#define CC1PLUS_SPEC \
- LINUX_OR_ANDROID_CC ("", ANDROID_CC1PLUS_SPEC)
-
-#undef LIB_SPEC
-#define LIB_SPEC \
- LINUX_OR_ANDROID_LD (GNU_USER_TARGET_LIB_SPEC, \
- GNU_USER_TARGET_NO_PTHREADS_LIB_SPEC " " ANDROID_LIB_SPEC)
-
-#undef STARTFILE_SPEC
-#define STARTFILE_SPEC \
- LINUX_OR_ANDROID_LD (GNU_USER_TARGET_STARTFILE_SPEC, ANDROID_STARTFILE_SPEC)
-
-#undef ENDFILE_SPEC
-#define ENDFILE_SPEC \
- LINUX_OR_ANDROID_LD (GNU_USER_TARGET_ENDFILE_SPEC, ANDROID_ENDFILE_SPEC)
-
#endif /* GCC_AARCH64_LINUX_H */
diff --git a/gcc-4.9/gcc/config/aarch64/aarch64-modes.def b/gcc-4.9/gcc/config/aarch64/aarch64-modes.def
index 1d2cc7679..f9c436948 100644
--- a/gcc-4.9/gcc/config/aarch64/aarch64-modes.def
+++ b/gcc-4.9/gcc/config/aarch64/aarch64-modes.def
@@ -31,6 +31,7 @@ VECTOR_MODES (INT, 8); /* V8QI V4HI V2SI. */
VECTOR_MODES (INT, 16); /* V16QI V8HI V4SI V2DI. */
VECTOR_MODES (FLOAT, 8); /* V2SF. */
VECTOR_MODES (FLOAT, 16); /* V4SF V2DF. */
+VECTOR_MODE (FLOAT, DF, 1); /* V1DF. */
/* Oct Int: 256-bit integer mode needed for 32-byte vector arguments. */
INT_MODE (OI, 32);
diff --git a/gcc-4.9/gcc/config/aarch64/aarch64-simd.md b/gcc-4.9/gcc/config/aarch64/aarch64-simd.md
index 73aee2c3d..1f827b57d 100644
--- a/gcc-4.9/gcc/config/aarch64/aarch64-simd.md
+++ b/gcc-4.9/gcc/config/aarch64/aarch64-simd.md
@@ -934,14 +934,22 @@
[(set_attr "type" "neon_minmax<q>")]
)
-;; Move into low-half clearing high half to 0.
+;; vec_concat gives a new vector with the low elements from operand 1, and
+;; the high elements from operand 2. That is to say, given op1 = { a, b }
+;; op2 = { c, d }, vec_concat (op1, op2) = { a, b, c, d }.
+;; What that means, is that the RTL descriptions of the below patterns
+;; need to change depending on endianness.
-(define_insn "move_lo_quad_<mode>"
+;; Move to the low architectural bits of the register.
+;; On little-endian this is { operand, zeroes }
+;; On big-endian this is { zeroes, operand }
+
+(define_insn "move_lo_quad_internal_<mode>"
[(set (match_operand:VQ 0 "register_operand" "=w,w,w")
(vec_concat:VQ
(match_operand:<VHALF> 1 "register_operand" "w,r,r")
(vec_duplicate:<VHALF> (const_int 0))))]
- "TARGET_SIMD"
+ "TARGET_SIMD && !BYTES_BIG_ENDIAN"
"@
dup\\t%d0, %1.d[0]
fmov\\t%d0, %1
@@ -952,7 +960,39 @@
(set_attr "length" "4")]
)
-;; Move into high-half.
+(define_insn "move_lo_quad_internal_be_<mode>"
+ [(set (match_operand:VQ 0 "register_operand" "=w,w,w")
+ (vec_concat:VQ
+ (vec_duplicate:<VHALF> (const_int 0))
+ (match_operand:<VHALF> 1 "register_operand" "w,r,r")))]
+ "TARGET_SIMD && BYTES_BIG_ENDIAN"
+ "@
+ dup\\t%d0, %1.d[0]
+ fmov\\t%d0, %1
+ dup\\t%d0, %1"
+ [(set_attr "type" "neon_dup<q>,f_mcr,neon_dup<q>")
+ (set_attr "simd" "yes,*,yes")
+ (set_attr "fp" "*,yes,*")
+ (set_attr "length" "4")]
+)
+
+(define_expand "move_lo_quad_<mode>"
+ [(match_operand:VQ 0 "register_operand")
+ (match_operand:VQ 1 "register_operand")]
+ "TARGET_SIMD"
+{
+ if (BYTES_BIG_ENDIAN)
+ emit_insn (gen_move_lo_quad_internal_be_<mode> (operands[0], operands[1]));
+ else
+ emit_insn (gen_move_lo_quad_internal_<mode> (operands[0], operands[1]));
+ DONE;
+}
+)
+
+;; Move operand1 to the high architectural bits of the register, keeping
+;; the low architectural bits of operand2.
+;; For little-endian this is { operand2, operand1 }
+;; For big-endian this is { operand1, operand2 }
(define_insn "aarch64_simd_move_hi_quad_<mode>"
[(set (match_operand:VQ 0 "register_operand" "+w,w")
@@ -961,12 +1001,25 @@
(match_dup 0)
(match_operand:VQ 2 "vect_par_cnst_lo_half" ""))
(match_operand:<VHALF> 1 "register_operand" "w,r")))]
- "TARGET_SIMD"
+ "TARGET_SIMD && !BYTES_BIG_ENDIAN"
"@
ins\\t%0.d[1], %1.d[0]
ins\\t%0.d[1], %1"
- [(set_attr "type" "neon_ins")
- (set_attr "length" "4")]
+ [(set_attr "type" "neon_ins")]
+)
+
+(define_insn "aarch64_simd_move_hi_quad_be_<mode>"
+ [(set (match_operand:VQ 0 "register_operand" "+w,w")
+ (vec_concat:VQ
+ (match_operand:<VHALF> 1 "register_operand" "w,r")
+ (vec_select:<VHALF>
+ (match_dup 0)
+ (match_operand:VQ 2 "vect_par_cnst_hi_half" ""))))]
+ "TARGET_SIMD && BYTES_BIG_ENDIAN"
+ "@
+ ins\\t%0.d[1], %1.d[0]
+ ins\\t%0.d[1], %1"
+ [(set_attr "type" "neon_ins")]
)
(define_expand "move_hi_quad_<mode>"
@@ -974,9 +1027,13 @@
(match_operand:<VHALF> 1 "register_operand" "")]
"TARGET_SIMD"
{
- rtx p = aarch64_simd_vect_par_cnst_half (<MODE>mode, false);
- emit_insn (gen_aarch64_simd_move_hi_quad_<mode> (operands[0],
- operands[1], p));
+ rtx p = aarch64_simd_vect_par_cnst_half (<MODE>mode, BYTES_BIG_ENDIAN);
+ if (BYTES_BIG_ENDIAN)
+ emit_insn (gen_aarch64_simd_move_hi_quad_be_<mode> (operands[0],
+ operands[1], p));
+ else
+ emit_insn (gen_aarch64_simd_move_hi_quad_<mode> (operands[0],
+ operands[1], p));
DONE;
})
@@ -2321,12 +2378,44 @@
(vec_concat:<VDBL>
(match_operand:VDIC 1 "register_operand" "w")
(match_operand:VDIC 2 "aarch64_simd_imm_zero" "Dz")))]
- "TARGET_SIMD"
+ "TARGET_SIMD && !BYTES_BIG_ENDIAN"
"mov\\t%0.8b, %1.8b"
[(set_attr "type" "neon_move<q>")]
)
-(define_insn_and_split "aarch64_combine<mode>"
+(define_insn "*aarch64_combinez_be<mode>"
+ [(set (match_operand:<VDBL> 0 "register_operand" "=&w")
+ (vec_concat:<VDBL>
+ (match_operand:VDIC 2 "aarch64_simd_imm_zero" "Dz")
+ (match_operand:VDIC 1 "register_operand" "w")))]
+ "TARGET_SIMD && BYTES_BIG_ENDIAN"
+ "mov\\t%0.8b, %1.8b"
+ [(set_attr "type" "neon_move<q>")]
+)
+
+(define_expand "aarch64_combine<mode>"
+ [(match_operand:<VDBL> 0 "register_operand")
+ (match_operand:VDC 1 "register_operand")
+ (match_operand:VDC 2 "register_operand")]
+ "TARGET_SIMD"
+{
+ rtx op1, op2;
+ if (BYTES_BIG_ENDIAN)
+ {
+ op1 = operands[2];
+ op2 = operands[1];
+ }
+ else
+ {
+ op1 = operands[1];
+ op2 = operands[2];
+ }
+ emit_insn (gen_aarch64_combine_internal<mode> (operands[0], op1, op2));
+ DONE;
+}
+)
+
+(define_insn_and_split "aarch64_combine_internal<mode>"
[(set (match_operand:<VDBL> 0 "register_operand" "=&w")
(vec_concat:<VDBL> (match_operand:VDC 1 "register_operand" "w")
(match_operand:VDC 2 "register_operand" "w")))]
@@ -2335,16 +2424,19 @@
"&& reload_completed"
[(const_int 0)]
{
- aarch64_split_simd_combine (operands[0], operands[1], operands[2]);
+ if (BYTES_BIG_ENDIAN)
+ aarch64_split_simd_combine (operands[0], operands[2], operands[1]);
+ else
+ aarch64_split_simd_combine (operands[0], operands[1], operands[2]);
DONE;
}
[(set_attr "type" "multiple")]
)
(define_expand "aarch64_simd_combine<mode>"
- [(set (match_operand:<VDBL> 0 "register_operand" "=&w")
- (vec_concat:<VDBL> (match_operand:VDC 1 "register_operand" "w")
- (match_operand:VDC 2 "register_operand" "w")))]
+ [(match_operand:<VDBL> 0 "register_operand")
+ (match_operand:VDC 1 "register_operand")
+ (match_operand:VDC 2 "register_operand")]
"TARGET_SIMD"
{
emit_insn (gen_move_lo_quad_<Vdbl> (operands[0], operands[1]));
@@ -2633,7 +2725,41 @@
;; sq<r>dmulh_lane
-(define_insn "aarch64_sq<r>dmulh_lane<mode>"
+(define_expand "aarch64_sqdmulh_lane<mode>"
+ [(match_operand:VDQHS 0 "register_operand" "")
+ (match_operand:VDQHS 1 "register_operand" "")
+ (match_operand:<VCOND> 2 "register_operand" "")
+ (match_operand:SI 3 "immediate_operand" "")]
+ "TARGET_SIMD"
+ {
+ aarch64_simd_lane_bounds (operands[3], 0, GET_MODE_NUNITS (<VCOND>mode));
+ operands[3] = GEN_INT (ENDIAN_LANE_N (<VCOND>mode, INTVAL (operands[3])));
+ emit_insn (gen_aarch64_sqdmulh_lane<mode>_internal (operands[0],
+ operands[1],
+ operands[2],
+ operands[3]));
+ DONE;
+ }
+)
+
+(define_expand "aarch64_sqrdmulh_lane<mode>"
+ [(match_operand:VDQHS 0 "register_operand" "")
+ (match_operand:VDQHS 1 "register_operand" "")
+ (match_operand:<VCOND> 2 "register_operand" "")
+ (match_operand:SI 3 "immediate_operand" "")]
+ "TARGET_SIMD"
+ {
+ aarch64_simd_lane_bounds (operands[3], 0, GET_MODE_NUNITS (<VCOND>mode));
+ operands[3] = GEN_INT (ENDIAN_LANE_N (<VCOND>mode, INTVAL (operands[3])));
+ emit_insn (gen_aarch64_sqrdmulh_lane<mode>_internal (operands[0],
+ operands[1],
+ operands[2],
+ operands[3]));
+ DONE;
+ }
+)
+
+(define_insn "aarch64_sq<r>dmulh_lane<mode>_internal"
[(set (match_operand:VDQHS 0 "register_operand" "=w")
(unspec:VDQHS
[(match_operand:VDQHS 1 "register_operand" "w")
@@ -2649,7 +2775,41 @@
[(set_attr "type" "neon_sat_mul_<Vetype>_scalar<q>")]
)
-(define_insn "aarch64_sq<r>dmulh_laneq<mode>"
+(define_expand "aarch64_sqdmulh_laneq<mode>"
+ [(match_operand:VDQHS 0 "register_operand" "")
+ (match_operand:VDQHS 1 "register_operand" "")
+ (match_operand:<VCONQ> 2 "register_operand" "")
+ (match_operand:SI 3 "immediate_operand" "")]
+ "TARGET_SIMD"
+ {
+ aarch64_simd_lane_bounds (operands[3], 0, GET_MODE_NUNITS (<VCONQ>mode));
+ operands[3] = GEN_INT (ENDIAN_LANE_N (<VCONQ>mode, INTVAL (operands[3])));
+ emit_insn (gen_aarch64_sqdmulh_laneq<mode>_internal (operands[0],
+ operands[1],
+ operands[2],
+ operands[3]));
+ DONE;
+ }
+)
+
+(define_expand "aarch64_sqrdmulh_laneq<mode>"
+ [(match_operand:VDQHS 0 "register_operand" "")
+ (match_operand:VDQHS 1 "register_operand" "")
+ (match_operand:<VCONQ> 2 "register_operand" "")
+ (match_operand:SI 3 "immediate_operand" "")]
+ "TARGET_SIMD"
+ {
+ aarch64_simd_lane_bounds (operands[3], 0, GET_MODE_NUNITS (<VCONQ>mode));
+ operands[3] = GEN_INT (ENDIAN_LANE_N (<VCONQ>mode, INTVAL (operands[3])));
+ emit_insn (gen_aarch64_sqrdmulh_laneq<mode>_internal (operands[0],
+ operands[1],
+ operands[2],
+ operands[3]));
+ DONE;
+ }
+)
+
+(define_insn "aarch64_sq<r>dmulh_laneq<mode>_internal"
[(set (match_operand:VDQHS 0 "register_operand" "=w")
(unspec:VDQHS
[(match_operand:VDQHS 1 "register_operand" "w")
@@ -2659,24 +2819,56 @@
VQDMULH))]
"TARGET_SIMD"
"*
- aarch64_simd_lane_bounds (operands[3], 0, GET_MODE_NUNITS (<VCONQ>mode));
operands[3] = GEN_INT (ENDIAN_LANE_N (<VCONQ>mode, INTVAL (operands[3])));
return \"sq<r>dmulh\\t%0.<Vtype>, %1.<Vtype>, %2.<Vetype>[%3]\";"
[(set_attr "type" "neon_sat_mul_<Vetype>_scalar<q>")]
)
-(define_insn "aarch64_sq<r>dmulh_lane<mode>"
+(define_expand "aarch64_sqdmulh_lane<mode>"
+ [(match_operand:SD_HSI 0 "register_operand" "")
+ (match_operand:SD_HSI 1 "register_operand" "")
+ (match_operand:<VCOND> 2 "register_operand" "")
+ (match_operand:SI 3 "immediate_operand" "")]
+ "TARGET_SIMD"
+ {
+ aarch64_simd_lane_bounds (operands[3], 0, GET_MODE_NUNITS (<VCOND>mode));
+ operands[3] = GEN_INT (ENDIAN_LANE_N (<VCOND>mode, INTVAL (operands[3])));
+ emit_insn (gen_aarch64_sqdmulh_lane<mode>_internal (operands[0],
+ operands[1],
+ operands[2],
+ operands[3]));
+ DONE;
+ }
+)
+
+(define_expand "aarch64_sqrdmulh_lane<mode>"
+ [(match_operand:SD_HSI 0 "register_operand" "")
+ (match_operand:SD_HSI 1 "register_operand" "")
+ (match_operand:<VCOND> 2 "register_operand" "")
+ (match_operand:SI 3 "immediate_operand" "")]
+ "TARGET_SIMD"
+ {
+ aarch64_simd_lane_bounds (operands[3], 0, GET_MODE_NUNITS (<VCOND>mode));
+ operands[3] = GEN_INT (ENDIAN_LANE_N (<VCOND>mode, INTVAL (operands[3])));
+ emit_insn (gen_aarch64_sqrdmulh_lane<mode>_internal (operands[0],
+ operands[1],
+ operands[2],
+ operands[3]));
+ DONE;
+ }
+)
+
+(define_insn "aarch64_sq<r>dmulh_lane<mode>_internal"
[(set (match_operand:SD_HSI 0 "register_operand" "=w")
(unspec:SD_HSI
[(match_operand:SD_HSI 1 "register_operand" "w")
(vec_select:<VEL>
- (match_operand:<VCONQ> 2 "register_operand" "<vwx>")
+ (match_operand:<VCOND> 2 "register_operand" "<vwx>")
(parallel [(match_operand:SI 3 "immediate_operand" "i")]))]
VQDMULH))]
"TARGET_SIMD"
"*
- aarch64_simd_lane_bounds (operands[3], 0, GET_MODE_NUNITS (<VCONQ>mode));
- operands[3] = GEN_INT (ENDIAN_LANE_N (<VCONQ>mode, INTVAL (operands[3])));
+ operands[3] = GEN_INT (ENDIAN_LANE_N (<VCOND>mode, INTVAL (operands[3])));
return \"sq<r>dmulh\\t%<v>0, %<v>1, %2.<v>[%3]\";"
[(set_attr "type" "neon_sat_mul_<Vetype>_scalar<q>")]
)
@@ -2712,7 +2904,31 @@
(sign_extend:<VWIDE>
(vec_duplicate:VD_HSI
(vec_select:<VEL>
- (match_operand:<VCON> 3 "register_operand" "<vwx>")
+ (match_operand:<VCOND> 3 "register_operand" "<vwx>")
+ (parallel [(match_operand:SI 4 "immediate_operand" "i")])))
+ ))
+ (const_int 1))))]
+ "TARGET_SIMD"
+ {
+ operands[4] = GEN_INT (ENDIAN_LANE_N (<VCOND>mode, INTVAL (operands[4])));
+ return
+ "sqdml<SBINQOPS:as>l\\t%<vw2>0<Vmwtype>, %<v>2<Vmtype>, %3.<Vetype>[%4]";
+ }
+ [(set_attr "type" "neon_sat_mla_<Vetype>_scalar_long")]
+)
+
+(define_insn "aarch64_sqdml<SBINQOPS:as>l_laneq<mode>_internal"
+ [(set (match_operand:<VWIDE> 0 "register_operand" "=w")
+ (SBINQOPS:<VWIDE>
+ (match_operand:<VWIDE> 1 "register_operand" "0")
+ (ss_ashift:<VWIDE>
+ (mult:<VWIDE>
+ (sign_extend:<VWIDE>
+ (match_operand:VD_HSI 2 "register_operand" "w"))
+ (sign_extend:<VWIDE>
+ (vec_duplicate:VD_HSI
+ (vec_select:<VEL>
+ (match_operand:<VCONQ> 3 "register_operand" "<vwx>")
(parallel [(match_operand:SI 4 "immediate_operand" "i")])))
))
(const_int 1))))]
@@ -2735,7 +2951,30 @@
(match_operand:SD_HSI 2 "register_operand" "w"))
(sign_extend:<VWIDE>
(vec_select:<VEL>
- (match_operand:<VCON> 3 "register_operand" "<vwx>")
+ (match_operand:<VCOND> 3 "register_operand" "<vwx>")
+ (parallel [(match_operand:SI 4 "immediate_operand" "i")])))
+ )
+ (const_int 1))))]
+ "TARGET_SIMD"
+ {
+ operands[4] = GEN_INT (ENDIAN_LANE_N (<VCOND>mode, INTVAL (operands[4])));
+ return
+ "sqdml<SBINQOPS:as>l\\t%<vw2>0<Vmwtype>, %<v>2<Vmtype>, %3.<Vetype>[%4]";
+ }
+ [(set_attr "type" "neon_sat_mla_<Vetype>_scalar_long")]
+)
+
+(define_insn "aarch64_sqdml<SBINQOPS:as>l_laneq<mode>_internal"
+ [(set (match_operand:<VWIDE> 0 "register_operand" "=w")
+ (SBINQOPS:<VWIDE>
+ (match_operand:<VWIDE> 1 "register_operand" "0")
+ (ss_ashift:<VWIDE>
+ (mult:<VWIDE>
+ (sign_extend:<VWIDE>
+ (match_operand:SD_HSI 2 "register_operand" "w"))
+ (sign_extend:<VWIDE>
+ (vec_select:<VEL>
+ (match_operand:<VCONQ> 3 "register_operand" "<vwx>")
(parallel [(match_operand:SI 4 "immediate_operand" "i")])))
)
(const_int 1))))]
@@ -2752,11 +2991,12 @@
[(match_operand:<VWIDE> 0 "register_operand" "=w")
(match_operand:<VWIDE> 1 "register_operand" "0")
(match_operand:VSD_HSI 2 "register_operand" "w")
- (match_operand:<VCON> 3 "register_operand" "<vwx>")
+ (match_operand:<VCOND> 3 "register_operand" "<vwx>")
(match_operand:SI 4 "immediate_operand" "i")]
"TARGET_SIMD"
{
- aarch64_simd_lane_bounds (operands[4], 0, GET_MODE_NUNITS (<VCON>mode) / 2);
+ aarch64_simd_lane_bounds (operands[4], 0, GET_MODE_NUNITS (<VCOND>mode));
+ operands[4] = GEN_INT (ENDIAN_LANE_N (<VCOND>mode, INTVAL (operands[4])));
emit_insn (gen_aarch64_sqdmlal_lane<mode>_internal (operands[0], operands[1],
operands[2], operands[3],
operands[4]));
@@ -2767,12 +3007,13 @@
[(match_operand:<VWIDE> 0 "register_operand" "=w")
(match_operand:<VWIDE> 1 "register_operand" "0")
(match_operand:VSD_HSI 2 "register_operand" "w")
- (match_operand:<VCON> 3 "register_operand" "<vwx>")
+ (match_operand:<VCONQ> 3 "register_operand" "<vwx>")
(match_operand:SI 4 "immediate_operand" "i")]
"TARGET_SIMD"
{
- aarch64_simd_lane_bounds (operands[4], 0, GET_MODE_NUNITS (<VCON>mode));
- emit_insn (gen_aarch64_sqdmlal_lane<mode>_internal (operands[0], operands[1],
+ aarch64_simd_lane_bounds (operands[4], 0, GET_MODE_NUNITS (<VCONQ>mode));
+ operands[4] = GEN_INT (ENDIAN_LANE_N (<VCONQ>mode, INTVAL (operands[4])));
+ emit_insn (gen_aarch64_sqdmlal_laneq<mode>_internal (operands[0], operands[1],
operands[2], operands[3],
operands[4]));
DONE;
@@ -2782,11 +3023,12 @@
[(match_operand:<VWIDE> 0 "register_operand" "=w")
(match_operand:<VWIDE> 1 "register_operand" "0")
(match_operand:VSD_HSI 2 "register_operand" "w")
- (match_operand:<VCON> 3 "register_operand" "<vwx>")
+ (match_operand:<VCOND> 3 "register_operand" "<vwx>")
(match_operand:SI 4 "immediate_operand" "i")]
"TARGET_SIMD"
{
- aarch64_simd_lane_bounds (operands[4], 0, GET_MODE_NUNITS (<VCON>mode) / 2);
+ aarch64_simd_lane_bounds (operands[4], 0, GET_MODE_NUNITS (<VCOND>mode));
+ operands[4] = GEN_INT (ENDIAN_LANE_N (<VCOND>mode, INTVAL (operands[4])));
emit_insn (gen_aarch64_sqdmlsl_lane<mode>_internal (operands[0], operands[1],
operands[2], operands[3],
operands[4]));
@@ -2797,12 +3039,13 @@
[(match_operand:<VWIDE> 0 "register_operand" "=w")
(match_operand:<VWIDE> 1 "register_operand" "0")
(match_operand:VSD_HSI 2 "register_operand" "w")
- (match_operand:<VCON> 3 "register_operand" "<vwx>")
+ (match_operand:<VCONQ> 3 "register_operand" "<vwx>")
(match_operand:SI 4 "immediate_operand" "i")]
"TARGET_SIMD"
{
- aarch64_simd_lane_bounds (operands[4], 0, GET_MODE_NUNITS (<VCON>mode));
- emit_insn (gen_aarch64_sqdmlsl_lane<mode>_internal (operands[0], operands[1],
+ aarch64_simd_lane_bounds (operands[4], 0, GET_MODE_NUNITS (<VCONQ>mode));
+ operands[4] = GEN_INT (ENDIAN_LANE_N (<VCONQ>mode, INTVAL (operands[4])));
+ emit_insn (gen_aarch64_sqdmlsl_laneq<mode>_internal (operands[0], operands[1],
operands[2], operands[3],
operands[4]));
DONE;
@@ -2890,7 +3133,33 @@
(sign_extend:<VWIDE>
(vec_duplicate:<VHALF>
(vec_select:<VEL>
- (match_operand:<VCON> 3 "register_operand" "<vwx>")
+ (match_operand:<VCOND> 3 "register_operand" "<vwx>")
+ (parallel [(match_operand:SI 4 "immediate_operand" "i")])
+ ))))
+ (const_int 1))))]
+ "TARGET_SIMD"
+ {
+ operands[4] = GEN_INT (ENDIAN_LANE_N (<VCOND>mode, INTVAL (operands[4])));
+ return
+ "sqdml<SBINQOPS:as>l2\\t%<vw2>0<Vmwtype>, %<v>2<Vmtype>, %3.<Vetype>[%4]";
+ }
+ [(set_attr "type" "neon_sat_mla_<Vetype>_scalar_long")]
+)
+
+(define_insn "aarch64_sqdml<SBINQOPS:as>l2_laneq<mode>_internal"
+ [(set (match_operand:<VWIDE> 0 "register_operand" "=w")
+ (SBINQOPS:<VWIDE>
+ (match_operand:<VWIDE> 1 "register_operand" "0")
+ (ss_ashift:<VWIDE>
+ (mult:<VWIDE>
+ (sign_extend:<VWIDE>
+ (vec_select:<VHALF>
+ (match_operand:VQ_HSI 2 "register_operand" "w")
+ (match_operand:VQ_HSI 5 "vect_par_cnst_hi_half" "")))
+ (sign_extend:<VWIDE>
+ (vec_duplicate:<VHALF>
+ (vec_select:<VEL>
+ (match_operand:<VCONQ> 3 "register_operand" "<vwx>")
(parallel [(match_operand:SI 4 "immediate_operand" "i")])
))))
(const_int 1))))]
@@ -2907,12 +3176,13 @@
[(match_operand:<VWIDE> 0 "register_operand" "=w")
(match_operand:<VWIDE> 1 "register_operand" "w")
(match_operand:VQ_HSI 2 "register_operand" "w")
- (match_operand:<VCON> 3 "register_operand" "<vwx>")
+ (match_operand:<VCOND> 3 "register_operand" "<vwx>")
(match_operand:SI 4 "immediate_operand" "i")]
"TARGET_SIMD"
{
rtx p = aarch64_simd_vect_par_cnst_half (<MODE>mode, true);
- aarch64_simd_lane_bounds (operands[4], 0, GET_MODE_NUNITS (<MODE>mode) / 2);
+ aarch64_simd_lane_bounds (operands[4], 0, GET_MODE_NUNITS (<VCOND>mode));
+ operands[4] = GEN_INT (ENDIAN_LANE_N (<VCOND>mode, INTVAL (operands[4])));
emit_insn (gen_aarch64_sqdmlal2_lane<mode>_internal (operands[0], operands[1],
operands[2], operands[3],
operands[4], p));
@@ -2923,13 +3193,14 @@
[(match_operand:<VWIDE> 0 "register_operand" "=w")
(match_operand:<VWIDE> 1 "register_operand" "w")
(match_operand:VQ_HSI 2 "register_operand" "w")
- (match_operand:<VCON> 3 "register_operand" "<vwx>")
+ (match_operand:<VCONQ> 3 "register_operand" "<vwx>")
(match_operand:SI 4 "immediate_operand" "i")]
"TARGET_SIMD"
{
rtx p = aarch64_simd_vect_par_cnst_half (<MODE>mode, true);
- aarch64_simd_lane_bounds (operands[4], 0, GET_MODE_NUNITS (<MODE>mode));
- emit_insn (gen_aarch64_sqdmlal2_lane<mode>_internal (operands[0], operands[1],
+ aarch64_simd_lane_bounds (operands[4], 0, GET_MODE_NUNITS (<VCONQ>mode));
+ operands[4] = GEN_INT (ENDIAN_LANE_N (<VCONQ>mode, INTVAL (operands[4])));
+ emit_insn (gen_aarch64_sqdmlal2_laneq<mode>_internal (operands[0], operands[1],
operands[2], operands[3],
operands[4], p));
DONE;
@@ -2939,12 +3210,13 @@
[(match_operand:<VWIDE> 0 "register_operand" "=w")
(match_operand:<VWIDE> 1 "register_operand" "w")
(match_operand:VQ_HSI 2 "register_operand" "w")
- (match_operand:<VCON> 3 "register_operand" "<vwx>")
+ (match_operand:<VCOND> 3 "register_operand" "<vwx>")
(match_operand:SI 4 "immediate_operand" "i")]
"TARGET_SIMD"
{
rtx p = aarch64_simd_vect_par_cnst_half (<MODE>mode, true);
- aarch64_simd_lane_bounds (operands[4], 0, GET_MODE_NUNITS (<MODE>mode) / 2);
+ aarch64_simd_lane_bounds (operands[4], 0, GET_MODE_NUNITS (<VCOND>mode));
+ operands[4] = GEN_INT (ENDIAN_LANE_N (<VCOND>mode, INTVAL (operands[4])));
emit_insn (gen_aarch64_sqdmlsl2_lane<mode>_internal (operands[0], operands[1],
operands[2], operands[3],
operands[4], p));
@@ -2955,13 +3227,14 @@
[(match_operand:<VWIDE> 0 "register_operand" "=w")
(match_operand:<VWIDE> 1 "register_operand" "w")
(match_operand:VQ_HSI 2 "register_operand" "w")
- (match_operand:<VCON> 3 "register_operand" "<vwx>")
+ (match_operand:<VCONQ> 3 "register_operand" "<vwx>")
(match_operand:SI 4 "immediate_operand" "i")]
"TARGET_SIMD"
{
rtx p = aarch64_simd_vect_par_cnst_half (<MODE>mode, true);
- aarch64_simd_lane_bounds (operands[4], 0, GET_MODE_NUNITS (<MODE>mode));
- emit_insn (gen_aarch64_sqdmlsl2_lane<mode>_internal (operands[0], operands[1],
+ aarch64_simd_lane_bounds (operands[4], 0, GET_MODE_NUNITS (<VCONQ>mode));
+ operands[4] = GEN_INT (ENDIAN_LANE_N (<VCONQ>mode, INTVAL (operands[4])));
+ emit_insn (gen_aarch64_sqdmlsl2_laneq<mode>_internal (operands[0], operands[1],
operands[2], operands[3],
operands[4], p));
DONE;
@@ -3041,7 +3314,28 @@
(sign_extend:<VWIDE>
(vec_duplicate:VD_HSI
(vec_select:<VEL>
- (match_operand:<VCON> 2 "register_operand" "<vwx>")
+ (match_operand:<VCOND> 2 "register_operand" "<vwx>")
+ (parallel [(match_operand:SI 3 "immediate_operand" "i")])))
+ ))
+ (const_int 1)))]
+ "TARGET_SIMD"
+ {
+ operands[3] = GEN_INT (ENDIAN_LANE_N (<VCOND>mode, INTVAL (operands[3])));
+ return "sqdmull\\t%<vw2>0<Vmwtype>, %<v>1<Vmtype>, %2.<Vetype>[%3]";
+ }
+ [(set_attr "type" "neon_sat_mul_<Vetype>_scalar_long")]
+)
+
+(define_insn "aarch64_sqdmull_laneq<mode>_internal"
+ [(set (match_operand:<VWIDE> 0 "register_operand" "=w")
+ (ss_ashift:<VWIDE>
+ (mult:<VWIDE>
+ (sign_extend:<VWIDE>
+ (match_operand:VD_HSI 1 "register_operand" "w"))
+ (sign_extend:<VWIDE>
+ (vec_duplicate:VD_HSI
+ (vec_select:<VEL>
+ (match_operand:<VCONQ> 2 "register_operand" "<vwx>")
(parallel [(match_operand:SI 3 "immediate_operand" "i")])))
))
(const_int 1)))]
@@ -3061,7 +3355,27 @@
(match_operand:SD_HSI 1 "register_operand" "w"))
(sign_extend:<VWIDE>
(vec_select:<VEL>
- (match_operand:<VCON> 2 "register_operand" "<vwx>")
+ (match_operand:<VCOND> 2 "register_operand" "<vwx>")
+ (parallel [(match_operand:SI 3 "immediate_operand" "i")]))
+ ))
+ (const_int 1)))]
+ "TARGET_SIMD"
+ {
+ operands[3] = GEN_INT (ENDIAN_LANE_N (<VCOND>mode, INTVAL (operands[3])));
+ return "sqdmull\\t%<vw2>0<Vmwtype>, %<v>1<Vmtype>, %2.<Vetype>[%3]";
+ }
+ [(set_attr "type" "neon_sat_mul_<Vetype>_scalar_long")]
+)
+
+(define_insn "aarch64_sqdmull_laneq<mode>_internal"
+ [(set (match_operand:<VWIDE> 0 "register_operand" "=w")
+ (ss_ashift:<VWIDE>
+ (mult:<VWIDE>
+ (sign_extend:<VWIDE>
+ (match_operand:SD_HSI 1 "register_operand" "w"))
+ (sign_extend:<VWIDE>
+ (vec_select:<VEL>
+ (match_operand:<VCONQ> 2 "register_operand" "<vwx>")
(parallel [(match_operand:SI 3 "immediate_operand" "i")]))
))
(const_int 1)))]
@@ -3076,11 +3390,12 @@
(define_expand "aarch64_sqdmull_lane<mode>"
[(match_operand:<VWIDE> 0 "register_operand" "=w")
(match_operand:VSD_HSI 1 "register_operand" "w")
- (match_operand:<VCON> 2 "register_operand" "<vwx>")
+ (match_operand:<VCOND> 2 "register_operand" "<vwx>")
(match_operand:SI 3 "immediate_operand" "i")]
"TARGET_SIMD"
{
- aarch64_simd_lane_bounds (operands[3], 0, GET_MODE_NUNITS (<VCON>mode) / 2);
+ aarch64_simd_lane_bounds (operands[3], 0, GET_MODE_NUNITS (<VCOND>mode));
+ operands[3] = GEN_INT (ENDIAN_LANE_N (<VCOND>mode, INTVAL (operands[3])));
emit_insn (gen_aarch64_sqdmull_lane<mode>_internal (operands[0], operands[1],
operands[2], operands[3]));
DONE;
@@ -3089,12 +3404,13 @@
(define_expand "aarch64_sqdmull_laneq<mode>"
[(match_operand:<VWIDE> 0 "register_operand" "=w")
(match_operand:VD_HSI 1 "register_operand" "w")
- (match_operand:<VCON> 2 "register_operand" "<vwx>")
+ (match_operand:<VCONQ> 2 "register_operand" "<vwx>")
(match_operand:SI 3 "immediate_operand" "i")]
"TARGET_SIMD"
{
- aarch64_simd_lane_bounds (operands[3], 0, GET_MODE_NUNITS (<VCON>mode));
- emit_insn (gen_aarch64_sqdmull_lane<mode>_internal
+ aarch64_simd_lane_bounds (operands[3], 0, GET_MODE_NUNITS (<VCONQ>mode));
+ operands[3] = GEN_INT (ENDIAN_LANE_N (<VCONQ>mode, INTVAL (operands[3])));
+ emit_insn (gen_aarch64_sqdmull_laneq<mode>_internal
(operands[0], operands[1], operands[2], operands[3]));
DONE;
})
@@ -3143,7 +3459,7 @@
(define_expand "aarch64_sqdmull2<mode>"
[(match_operand:<VWIDE> 0 "register_operand" "=w")
(match_operand:VQ_HSI 1 "register_operand" "w")
- (match_operand:<VCON> 2 "register_operand" "w")]
+ (match_operand:VQ_HSI 2 "register_operand" "w")]
"TARGET_SIMD"
{
rtx p = aarch64_simd_vect_par_cnst_half (<MODE>mode, true);
@@ -3165,7 +3481,30 @@
(sign_extend:<VWIDE>
(vec_duplicate:<VHALF>
(vec_select:<VEL>
- (match_operand:<VCON> 2 "register_operand" "<vwx>")
+ (match_operand:<VCOND> 2 "register_operand" "<vwx>")
+ (parallel [(match_operand:SI 3 "immediate_operand" "i")])))
+ ))
+ (const_int 1)))]
+ "TARGET_SIMD"
+ {
+ operands[3] = GEN_INT (ENDIAN_LANE_N (<VCOND>mode, INTVAL (operands[3])));
+ return "sqdmull2\\t%<vw2>0<Vmwtype>, %<v>1<Vmtype>, %2.<Vetype>[%3]";
+ }
+ [(set_attr "type" "neon_sat_mul_<Vetype>_scalar_long")]
+)
+
+(define_insn "aarch64_sqdmull2_laneq<mode>_internal"
+ [(set (match_operand:<VWIDE> 0 "register_operand" "=w")
+ (ss_ashift:<VWIDE>
+ (mult:<VWIDE>
+ (sign_extend:<VWIDE>
+ (vec_select:<VHALF>
+ (match_operand:VQ_HSI 1 "register_operand" "w")
+ (match_operand:VQ_HSI 4 "vect_par_cnst_hi_half" "")))
+ (sign_extend:<VWIDE>
+ (vec_duplicate:<VHALF>
+ (vec_select:<VEL>
+ (match_operand:<VCONQ> 2 "register_operand" "<vwx>")
(parallel [(match_operand:SI 3 "immediate_operand" "i")])))
))
(const_int 1)))]
@@ -3180,12 +3519,13 @@
(define_expand "aarch64_sqdmull2_lane<mode>"
[(match_operand:<VWIDE> 0 "register_operand" "=w")
(match_operand:VQ_HSI 1 "register_operand" "w")
- (match_operand:<VCON> 2 "register_operand" "<vwx>")
+ (match_operand:<VCOND> 2 "register_operand" "<vwx>")
(match_operand:SI 3 "immediate_operand" "i")]
"TARGET_SIMD"
{
rtx p = aarch64_simd_vect_par_cnst_half (<MODE>mode, true);
- aarch64_simd_lane_bounds (operands[3], 0, GET_MODE_NUNITS (<MODE>mode) / 2);
+ aarch64_simd_lane_bounds (operands[3], 0, GET_MODE_NUNITS (<VCOND>mode));
+ operands[3] = GEN_INT (ENDIAN_LANE_N (<VCOND>mode, INTVAL (operands[3])));
emit_insn (gen_aarch64_sqdmull2_lane<mode>_internal (operands[0], operands[1],
operands[2], operands[3],
p));
@@ -3195,13 +3535,14 @@
(define_expand "aarch64_sqdmull2_laneq<mode>"
[(match_operand:<VWIDE> 0 "register_operand" "=w")
(match_operand:VQ_HSI 1 "register_operand" "w")
- (match_operand:<VCON> 2 "register_operand" "<vwx>")
+ (match_operand:<VCONQ> 2 "register_operand" "<vwx>")
(match_operand:SI 3 "immediate_operand" "i")]
"TARGET_SIMD"
{
rtx p = aarch64_simd_vect_par_cnst_half (<MODE>mode, true);
- aarch64_simd_lane_bounds (operands[3], 0, GET_MODE_NUNITS (<MODE>mode));
- emit_insn (gen_aarch64_sqdmull2_lane<mode>_internal (operands[0], operands[1],
+ aarch64_simd_lane_bounds (operands[3], 0, GET_MODE_NUNITS (<VCONQ>mode));
+ operands[3] = GEN_INT (ENDIAN_LANE_N (<VCONQ>mode, INTVAL (operands[3])));
+ emit_insn (gen_aarch64_sqdmull2_laneq<mode>_internal (operands[0], operands[1],
operands[2], operands[3],
p));
DONE;
diff --git a/gcc-4.9/gcc/config/aarch64/aarch64.c b/gcc-4.9/gcc/config/aarch64/aarch64.c
index 7b6c2b38e..bf35031ec 100644
--- a/gcc-4.9/gcc/config/aarch64/aarch64.c
+++ b/gcc-4.9/gcc/config/aarch64/aarch64.c
@@ -1405,6 +1405,7 @@ aarch64_layout_arg (cumulative_args_t pcum_v, enum machine_mode mode,
CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v);
int ncrn, nvrn, nregs;
bool allocate_ncrn, allocate_nvrn;
+ HOST_WIDE_INT size;
/* We need to do this once per argument. */
if (pcum->aapcs_arg_processed)
@@ -1412,6 +1413,11 @@ aarch64_layout_arg (cumulative_args_t pcum_v, enum machine_mode mode,
pcum->aapcs_arg_processed = true;
+ /* Size in bytes, rounded to the nearest multiple of 8 bytes. */
+ size
+ = AARCH64_ROUND_UP (type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode),
+ UNITS_PER_WORD);
+
allocate_ncrn = (type) ? !(FLOAT_TYPE_P (type)) : !FLOAT_MODE_P (mode);
allocate_nvrn = aarch64_vfp_is_call_candidate (pcum_v,
mode,
@@ -1462,9 +1468,7 @@ aarch64_layout_arg (cumulative_args_t pcum_v, enum machine_mode mode,
}
ncrn = pcum->aapcs_ncrn;
- nregs = ((type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode))
- + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
-
+ nregs = size / UNITS_PER_WORD;
/* C6 - C9. though the sign and zero extension semantics are
handled elsewhere. This is the case where the argument fits
@@ -1513,13 +1517,12 @@ aarch64_layout_arg (cumulative_args_t pcum_v, enum machine_mode mode,
pcum->aapcs_nextncrn = NUM_ARG_REGS;
/* The argument is passed on stack; record the needed number of words for
- this argument (we can re-use NREGS) and align the total size if
- necessary. */
+ this argument and align the total size if necessary. */
on_stack:
- pcum->aapcs_stack_words = nregs;
+ pcum->aapcs_stack_words = size / UNITS_PER_WORD;
if (aarch64_function_arg_alignment (mode, type) == 16 * BITS_PER_UNIT)
pcum->aapcs_stack_size = AARCH64_ROUND_UP (pcum->aapcs_stack_size,
- 16 / UNITS_PER_WORD) + 1;
+ 16 / UNITS_PER_WORD);
return;
}
@@ -6304,7 +6307,8 @@ aarch64_vector_mode_supported_p (enum machine_mode mode)
|| mode == V16QImode || mode == V2DImode
|| mode == V2SImode || mode == V4HImode
|| mode == V8QImode || mode == V2SFmode
- || mode == V4SFmode || mode == V2DFmode))
+ || mode == V4SFmode || mode == V2DFmode
+ || mode == V1DFmode))
return true;
return false;
diff --git a/gcc-4.9/gcc/config/aarch64/aarch64.md b/gcc-4.9/gcc/config/aarch64/aarch64.md
index c86a29d8e..df81045e9 100644
--- a/gcc-4.9/gcc/config/aarch64/aarch64.md
+++ b/gcc-4.9/gcc/config/aarch64/aarch64.md
@@ -2823,17 +2823,18 @@
;; Arithmetic right shift using SISD or Integer instruction
(define_insn "*aarch64_ashr_sisd_or_int_<mode>3"
- [(set (match_operand:GPI 0 "register_operand" "=w,w,r")
+ [(set (match_operand:GPI 0 "register_operand" "=w,&w,&w,r")
(ashiftrt:GPI
- (match_operand:GPI 1 "register_operand" "w,w,r")
- (match_operand:QI 2 "aarch64_reg_or_shift_imm_di" "Us<cmode>,w,rUs<cmode>")))]
+ (match_operand:GPI 1 "register_operand" "w,w,w,r")
+ (match_operand:QI 2 "aarch64_reg_or_shift_imm_di" "Us<cmode>,w,0,rUs<cmode>")))]
""
"@
sshr\t%<rtn>0<vas>, %<rtn>1<vas>, %2
#
+ #
asr\t%<w>0, %<w>1, %<w>2"
- [(set_attr "simd" "yes,yes,no")
- (set_attr "type" "neon_shift_imm<q>,neon_shift_reg<q>,shift_reg")]
+ [(set_attr "simd" "yes,yes,yes,no")
+ (set_attr "type" "neon_shift_imm<q>,neon_shift_reg<q>,neon_shift_reg<q>,shift_reg")]
)
(define_split
@@ -2842,11 +2843,13 @@
(match_operand:DI 1 "aarch64_simd_register")
(match_operand:QI 2 "aarch64_simd_register")))]
"TARGET_SIMD && reload_completed"
- [(set (match_dup 2)
+ [(set (match_dup 3)
(unspec:QI [(match_dup 2)] UNSPEC_SISD_NEG))
(set (match_dup 0)
- (unspec:DI [(match_dup 1) (match_dup 2)] UNSPEC_SISD_SSHL))]
- ""
+ (unspec:DI [(match_dup 1) (match_dup 3)] UNSPEC_SISD_SSHL))]
+{
+ operands[3] = gen_lowpart (QImode, operands[0]);
+}
)
(define_split
@@ -2855,11 +2858,13 @@
(match_operand:SI 1 "aarch64_simd_register")
(match_operand:QI 2 "aarch64_simd_register")))]
"TARGET_SIMD && reload_completed"
- [(set (match_dup 2)
+ [(set (match_dup 3)
(unspec:QI [(match_dup 2)] UNSPEC_SISD_NEG))
(set (match_dup 0)
- (unspec:SI [(match_dup 1) (match_dup 2)] UNSPEC_SSHL_2S))]
- ""
+ (unspec:SI [(match_dup 1) (match_dup 3)] UNSPEC_SSHL_2S))]
+{
+ operands[3] = gen_lowpart (QImode, operands[0]);
+}
)
(define_insn "*aarch64_sisd_ushl"
@@ -3608,6 +3613,7 @@
(unspec:DI [(match_operand:DI 0 "aarch64_valid_symref" "S")]
UNSPEC_TLSDESC))
(clobber (reg:DI LR_REGNUM))
+ (clobber (reg:CC CC_REGNUM))
(clobber (match_scratch:DI 1 "=r"))]
"TARGET_TLS_DESC"
"adrp\\tx0, %A0\;ldr\\t%1, [x0, #%L0]\;add\\tx0, x0, %L0\;.tlsdesccall\\t%0\;blr\\t%1"
diff --git a/gcc-4.9/gcc/config/aarch64/arm_neon.h b/gcc-4.9/gcc/config/aarch64/arm_neon.h
index b03d11422..c01669b2c 100644
--- a/gcc-4.9/gcc/config/aarch64/arm_neon.h
+++ b/gcc-4.9/gcc/config/aarch64/arm_neon.h
@@ -21008,7 +21008,7 @@ vqdmlal_high_s16 (int32x4_t __a, int16x8_t __b, int16x8_t __c)
}
__extension__ static __inline int32x4_t __attribute__ ((__always_inline__))
-vqdmlal_high_lane_s16 (int32x4_t __a, int16x8_t __b, int16x8_t __c,
+vqdmlal_high_lane_s16 (int32x4_t __a, int16x8_t __b, int16x4_t __c,
int const __d)
{
return __builtin_aarch64_sqdmlal2_lanev8hi (__a, __b, __c, __d);
@@ -21030,8 +21030,7 @@ vqdmlal_high_n_s16 (int32x4_t __a, int16x8_t __b, int16_t __c)
__extension__ static __inline int32x4_t __attribute__ ((__always_inline__))
vqdmlal_lane_s16 (int32x4_t __a, int16x4_t __b, int16x4_t __c, int const __d)
{
- int16x8_t __tmp = vcombine_s16 (__c, vcreate_s16 (__AARCH64_INT64_C (0)));
- return __builtin_aarch64_sqdmlal_lanev4hi (__a, __b, __tmp, __d);
+ return __builtin_aarch64_sqdmlal_lanev4hi (__a, __b, __c, __d);
}
__extension__ static __inline int32x4_t __attribute__ ((__always_inline__))
@@ -21059,7 +21058,7 @@ vqdmlal_high_s32 (int64x2_t __a, int32x4_t __b, int32x4_t __c)
}
__extension__ static __inline int64x2_t __attribute__ ((__always_inline__))
-vqdmlal_high_lane_s32 (int64x2_t __a, int32x4_t __b, int32x4_t __c,
+vqdmlal_high_lane_s32 (int64x2_t __a, int32x4_t __b, int32x2_t __c,
int const __d)
{
return __builtin_aarch64_sqdmlal2_lanev4si (__a, __b, __c, __d);
@@ -21081,8 +21080,7 @@ vqdmlal_high_n_s32 (int64x2_t __a, int32x4_t __b, int32_t __c)
__extension__ static __inline int64x2_t __attribute__ ((__always_inline__))
vqdmlal_lane_s32 (int64x2_t __a, int32x2_t __b, int32x2_t __c, int const __d)
{
- int32x4_t __tmp = vcombine_s32 (__c, vcreate_s32 (__AARCH64_INT64_C (0)));
- return __builtin_aarch64_sqdmlal_lanev2si (__a, __b, __tmp, __d);
+ return __builtin_aarch64_sqdmlal_lanev2si (__a, __b, __c, __d);
}
__extension__ static __inline int64x2_t __attribute__ ((__always_inline__))
@@ -21104,7 +21102,7 @@ vqdmlalh_s16 (int32x1_t __a, int16x1_t __b, int16x1_t __c)
}
__extension__ static __inline int32x1_t __attribute__ ((__always_inline__))
-vqdmlalh_lane_s16 (int32x1_t __a, int16x1_t __b, int16x8_t __c, const int __d)
+vqdmlalh_lane_s16 (int32x1_t __a, int16x1_t __b, int16x4_t __c, const int __d)
{
return __builtin_aarch64_sqdmlal_lanehi (__a, __b, __c, __d);
}
@@ -21116,7 +21114,7 @@ vqdmlals_s32 (int64x1_t __a, int32x1_t __b, int32x1_t __c)
}
__extension__ static __inline int64x1_t __attribute__ ((__always_inline__))
-vqdmlals_lane_s32 (int64x1_t __a, int32x1_t __b, int32x4_t __c, const int __d)
+vqdmlals_lane_s32 (int64x1_t __a, int32x1_t __b, int32x2_t __c, const int __d)
{
return __builtin_aarch64_sqdmlal_lanesi (__a, __b, __c, __d);
}
@@ -21136,7 +21134,7 @@ vqdmlsl_high_s16 (int32x4_t __a, int16x8_t __b, int16x8_t __c)
}
__extension__ static __inline int32x4_t __attribute__ ((__always_inline__))
-vqdmlsl_high_lane_s16 (int32x4_t __a, int16x8_t __b, int16x8_t __c,
+vqdmlsl_high_lane_s16 (int32x4_t __a, int16x8_t __b, int16x4_t __c,
int const __d)
{
return __builtin_aarch64_sqdmlsl2_lanev8hi (__a, __b, __c, __d);
@@ -21158,8 +21156,7 @@ vqdmlsl_high_n_s16 (int32x4_t __a, int16x8_t __b, int16_t __c)
__extension__ static __inline int32x4_t __attribute__ ((__always_inline__))
vqdmlsl_lane_s16 (int32x4_t __a, int16x4_t __b, int16x4_t __c, int const __d)
{
- int16x8_t __tmp = vcombine_s16 (__c, vcreate_s16 (__AARCH64_INT64_C (0)));
- return __builtin_aarch64_sqdmlsl_lanev4hi (__a, __b, __tmp, __d);
+ return __builtin_aarch64_sqdmlsl_lanev4hi (__a, __b, __c, __d);
}
__extension__ static __inline int32x4_t __attribute__ ((__always_inline__))
@@ -21187,7 +21184,7 @@ vqdmlsl_high_s32 (int64x2_t __a, int32x4_t __b, int32x4_t __c)
}
__extension__ static __inline int64x2_t __attribute__ ((__always_inline__))
-vqdmlsl_high_lane_s32 (int64x2_t __a, int32x4_t __b, int32x4_t __c,
+vqdmlsl_high_lane_s32 (int64x2_t __a, int32x4_t __b, int32x2_t __c,
int const __d)
{
return __builtin_aarch64_sqdmlsl2_lanev4si (__a, __b, __c, __d);
@@ -21209,8 +21206,7 @@ vqdmlsl_high_n_s32 (int64x2_t __a, int32x4_t __b, int32_t __c)
__extension__ static __inline int64x2_t __attribute__ ((__always_inline__))
vqdmlsl_lane_s32 (int64x2_t __a, int32x2_t __b, int32x2_t __c, int const __d)
{
- int32x4_t __tmp = vcombine_s32 (__c, vcreate_s32 (__AARCH64_INT64_C (0)));
- return __builtin_aarch64_sqdmlsl_lanev2si (__a, __b, __tmp, __d);
+ return __builtin_aarch64_sqdmlsl_lanev2si (__a, __b, __c, __d);
}
__extension__ static __inline int64x2_t __attribute__ ((__always_inline__))
@@ -21232,7 +21228,7 @@ vqdmlslh_s16 (int32x1_t __a, int16x1_t __b, int16x1_t __c)
}
__extension__ static __inline int32x1_t __attribute__ ((__always_inline__))
-vqdmlslh_lane_s16 (int32x1_t __a, int16x1_t __b, int16x8_t __c, const int __d)
+vqdmlslh_lane_s16 (int32x1_t __a, int16x1_t __b, int16x4_t __c, const int __d)
{
return __builtin_aarch64_sqdmlsl_lanehi (__a, __b, __c, __d);
}
@@ -21244,7 +21240,7 @@ vqdmlsls_s32 (int64x1_t __a, int32x1_t __b, int32x1_t __c)
}
__extension__ static __inline int64x1_t __attribute__ ((__always_inline__))
-vqdmlsls_lane_s32 (int64x1_t __a, int32x1_t __b, int32x4_t __c, const int __d)
+vqdmlsls_lane_s32 (int64x1_t __a, int32x1_t __b, int32x2_t __c, const int __d)
{
return __builtin_aarch64_sqdmlsl_lanesi (__a, __b, __c, __d);
}
@@ -21282,7 +21278,7 @@ vqdmulhh_s16 (int16x1_t __a, int16x1_t __b)
}
__extension__ static __inline int16x1_t __attribute__ ((__always_inline__))
-vqdmulhh_lane_s16 (int16x1_t __a, int16x8_t __b, const int __c)
+vqdmulhh_lane_s16 (int16x1_t __a, int16x4_t __b, const int __c)
{
return __builtin_aarch64_sqdmulh_lanehi (__a, __b, __c);
}
@@ -21294,7 +21290,7 @@ vqdmulhs_s32 (int32x1_t __a, int32x1_t __b)
}
__extension__ static __inline int32x1_t __attribute__ ((__always_inline__))
-vqdmulhs_lane_s32 (int32x1_t __a, int32x4_t __b, const int __c)
+vqdmulhs_lane_s32 (int32x1_t __a, int32x2_t __b, const int __c)
{
return __builtin_aarch64_sqdmulh_lanesi (__a, __b, __c);
}
@@ -21314,7 +21310,7 @@ vqdmull_high_s16 (int16x8_t __a, int16x8_t __b)
}
__extension__ static __inline int32x4_t __attribute__ ((__always_inline__))
-vqdmull_high_lane_s16 (int16x8_t __a, int16x8_t __b, int const __c)
+vqdmull_high_lane_s16 (int16x8_t __a, int16x4_t __b, int const __c)
{
return __builtin_aarch64_sqdmull2_lanev8hi (__a, __b,__c);
}
@@ -21334,8 +21330,7 @@ vqdmull_high_n_s16 (int16x8_t __a, int16_t __b)
__extension__ static __inline int32x4_t __attribute__ ((__always_inline__))
vqdmull_lane_s16 (int16x4_t __a, int16x4_t __b, int const __c)
{
- int16x8_t __tmp = vcombine_s16 (__b, vcreate_s16 (__AARCH64_INT64_C (0)));
- return __builtin_aarch64_sqdmull_lanev4hi (__a, __tmp, __c);
+ return __builtin_aarch64_sqdmull_lanev4hi (__a, __b, __c);
}
__extension__ static __inline int32x4_t __attribute__ ((__always_inline__))
@@ -21363,7 +21358,7 @@ vqdmull_high_s32 (int32x4_t __a, int32x4_t __b)
}
__extension__ static __inline int64x2_t __attribute__ ((__always_inline__))
-vqdmull_high_lane_s32 (int32x4_t __a, int32x4_t __b, int const __c)
+vqdmull_high_lane_s32 (int32x4_t __a, int32x2_t __b, int const __c)
{
return __builtin_aarch64_sqdmull2_lanev4si (__a, __b, __c);
}
@@ -21383,8 +21378,7 @@ vqdmull_high_n_s32 (int32x4_t __a, int32_t __b)
__extension__ static __inline int64x2_t __attribute__ ((__always_inline__))
vqdmull_lane_s32 (int32x2_t __a, int32x2_t __b, int const __c)
{
- int32x4_t __tmp = vcombine_s32 (__b, vcreate_s32 (__AARCH64_INT64_C (0)));
- return __builtin_aarch64_sqdmull_lanev2si (__a, __tmp, __c);
+ return __builtin_aarch64_sqdmull_lanev2si (__a, __b, __c);
}
__extension__ static __inline int64x2_t __attribute__ ((__always_inline__))
@@ -21406,7 +21400,7 @@ vqdmullh_s16 (int16x1_t __a, int16x1_t __b)
}
__extension__ static __inline int32x1_t __attribute__ ((__always_inline__))
-vqdmullh_lane_s16 (int16x1_t __a, int16x8_t __b, const int __c)
+vqdmullh_lane_s16 (int16x1_t __a, int16x4_t __b, const int __c)
{
return __builtin_aarch64_sqdmull_lanehi (__a, __b, __c);
}
@@ -21418,7 +21412,7 @@ vqdmulls_s32 (int32x1_t __a, int32x1_t __b)
}
__extension__ static __inline int64x1_t __attribute__ ((__always_inline__))
-vqdmulls_lane_s32 (int32x1_t __a, int32x4_t __b, const int __c)
+vqdmulls_lane_s32 (int32x1_t __a, int32x2_t __b, const int __c)
{
return __builtin_aarch64_sqdmull_lanesi (__a, __b, __c);
}
@@ -21594,7 +21588,7 @@ vqrdmulhh_s16 (int16x1_t __a, int16x1_t __b)
}
__extension__ static __inline int16x1_t __attribute__ ((__always_inline__))
-vqrdmulhh_lane_s16 (int16x1_t __a, int16x8_t __b, const int __c)
+vqrdmulhh_lane_s16 (int16x1_t __a, int16x4_t __b, const int __c)
{
return __builtin_aarch64_sqrdmulh_lanehi (__a, __b, __c);
}
@@ -21606,7 +21600,7 @@ vqrdmulhs_s32 (int32x1_t __a, int32x1_t __b)
}
__extension__ static __inline int32x1_t __attribute__ ((__always_inline__))
-vqrdmulhs_lane_s32 (int32x1_t __a, int32x4_t __b, const int __c)
+vqrdmulhs_lane_s32 (int32x1_t __a, int32x2_t __b, const int __c)
{
return __builtin_aarch64_sqrdmulh_lanesi (__a, __b, __c);
}
diff --git a/gcc-4.9/gcc/config/aarch64/iterators.md b/gcc-4.9/gcc/config/aarch64/iterators.md
index f1339b8cc..e76e3ef10 100644
--- a/gcc-4.9/gcc/config/aarch64/iterators.md
+++ b/gcc-4.9/gcc/config/aarch64/iterators.md
@@ -396,14 +396,15 @@
(SI "SI") (HI "HI")
(QI "QI")])
-;; Define container mode for lane selection.
-(define_mode_attr VCOND [(V4HI "V4HI") (V8HI "V4HI")
+;; 64-bit container modes the inner or scalar source mode.
+(define_mode_attr VCOND [(HI "V4HI") (SI "V2SI")
+ (V4HI "V4HI") (V8HI "V4HI")
(V2SI "V2SI") (V4SI "V2SI")
(DI "DI") (V2DI "DI")
(V2SF "V2SF") (V4SF "V2SF")
(V2DF "DF")])
-;; Define container mode for lane selection.
+;; 128-bit container modes the inner or scalar source mode.
(define_mode_attr VCONQ [(V8QI "V16QI") (V16QI "V16QI")
(V4HI "V8HI") (V8HI "V8HI")
(V2SI "V4SI") (V4SI "V4SI")
@@ -412,15 +413,6 @@
(V2DF "V2DF") (SI "V4SI")
(HI "V8HI") (QI "V16QI")])
-;; Define container mode for lane selection.
-(define_mode_attr VCON [(V8QI "V16QI") (V16QI "V16QI")
- (V4HI "V8HI") (V8HI "V8HI")
- (V2SI "V4SI") (V4SI "V4SI")
- (DI "V2DI") (V2DI "V2DI")
- (V2SF "V4SF") (V4SF "V4SF")
- (V2DF "V2DF") (SI "V4SI")
- (HI "V8HI") (QI "V16QI")])
-
;; Half modes of all vector modes.
(define_mode_attr VHALF [(V8QI "V4QI") (V16QI "V8QI")
(V4HI "V2HI") (V8HI "V4HI")
diff --git a/gcc-4.9/gcc/config/alpha/alpha.c b/gcc-4.9/gcc/config/alpha/alpha.c
index dc07a02c0..d5c7908be 100644
--- a/gcc-4.9/gcc/config/alpha/alpha.c
+++ b/gcc-4.9/gcc/config/alpha/alpha.c
@@ -8715,6 +8715,11 @@ alpha_handle_trap_shadows (void)
}
break;
+ case BARRIER:
+ /* __builtin_unreachable can expand to no code at all,
+ leaving (barrier) RTXes in the instruction stream. */
+ goto close_shadow_notrapb;
+
case JUMP_INSN:
case CALL_INSN:
case CODE_LABEL:
@@ -8730,6 +8735,7 @@ alpha_handle_trap_shadows (void)
n = emit_insn_before (gen_trapb (), i);
PUT_MODE (n, TImode);
PUT_MODE (i, TImode);
+ close_shadow_notrapb:
trap_pending = 0;
shadow.used.i = 0;
shadow.used.fp = 0;
diff --git a/gcc-4.9/gcc/config/arm/aout.h b/gcc-4.9/gcc/config/arm/aout.h
index 51d32a9d4..c8f4e45c6 100644
--- a/gcc-4.9/gcc/config/arm/aout.h
+++ b/gcc-4.9/gcc/config/arm/aout.h
@@ -14,8 +14,13 @@
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
+ Under Section 7 of GPL version 3, you are granted additional
+ permissions described in the GCC Runtime Library Exception, version
+ 3.1, as published by the Free Software Foundation.
+
+ You should have received a copy of the GNU General Public License and
+ a copy of the GCC Runtime Library Exception along with this program;
+ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#ifndef ASM_APP_ON
diff --git a/gcc-4.9/gcc/config/arm/arm-cores.def b/gcc-4.9/gcc/config/arm/arm-cores.def
index 42f00b463..56041ec8b 100644
--- a/gcc-4.9/gcc/config/arm/arm-cores.def
+++ b/gcc-4.9/gcc/config/arm/arm-cores.def
@@ -14,8 +14,13 @@
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
+ Under Section 7 of GPL version 3, you are granted additional
+ permissions described in the GCC Runtime Library Exception, version
+ 3.1, as published by the Free Software Foundation.
+
+ You should have received a copy of the GNU General Public License and
+ a copy of the GCC Runtime Library Exception along with this program;
+ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* Before using #include to read this file, define a macro:
diff --git a/gcc-4.9/gcc/config/arm/arm-opts.h b/gcc-4.9/gcc/config/arm/arm-opts.h
index a8393975a..21902940e 100644
--- a/gcc-4.9/gcc/config/arm/arm-opts.h
+++ b/gcc-4.9/gcc/config/arm/arm-opts.h
@@ -13,8 +13,13 @@
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
+ Under Section 7 of GPL version 3, you are granted additional
+ permissions described in the GCC Runtime Library Exception, version
+ 3.1, as published by the Free Software Foundation.
+
+ You should have received a copy of the GNU General Public License and
+ a copy of the GCC Runtime Library Exception along with this program;
+ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#ifndef ARM_OPTS_H
diff --git a/gcc-4.9/gcc/config/arm/arm.c b/gcc-4.9/gcc/config/arm/arm.c
index 83763555c..3c237cb6d 100644
--- a/gcc-4.9/gcc/config/arm/arm.c
+++ b/gcc-4.9/gcc/config/arm/arm.c
@@ -16739,11 +16739,12 @@ thumb1_reorg (void)
rtx prev, insn = BB_END (bb);
bool insn_clobbered = false;
- while (insn != BB_HEAD (bb) && DEBUG_INSN_P (insn))
+ while (insn != BB_HEAD (bb) && !NONDEBUG_INSN_P (insn))
insn = PREV_INSN (insn);
/* Find the last cbranchsi4_insn in basic block BB. */
- if (INSN_CODE (insn) != CODE_FOR_cbranchsi4_insn)
+ if (insn == BB_HEAD (bb)
+ || INSN_CODE (insn) != CODE_FOR_cbranchsi4_insn)
continue;
/* Get the register with which we are comparing. */
@@ -28210,9 +28211,13 @@ arm_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
fputs (":\n", file);
if (flag_pic)
{
- /* Output ".word .LTHUNKn-7-.LTHUNKPCn". */
+ /* Output ".word .LTHUNKn-[3,7]-.LTHUNKPCn". */
rtx tem = XEXP (DECL_RTL (function), 0);
- tem = plus_constant (GET_MODE (tem), tem, -7);
+ /* For TARGET_THUMB1_ONLY the thunk is in Thumb mode, so the PC
+ pipeline offset is four rather than eight. Adjust the offset
+ accordingly. */
+ tem = plus_constant (GET_MODE (tem), tem,
+ TARGET_THUMB1_ONLY ? -3 : -7);
tem = gen_rtx_MINUS (GET_MODE (tem),
tem,
gen_rtx_SYMBOL_REF (Pmode,
diff --git a/gcc-4.9/gcc/config/arm/arm.h b/gcc-4.9/gcc/config/arm/arm.h
index 4d9121436..ab5167a8b 100644
--- a/gcc-4.9/gcc/config/arm/arm.h
+++ b/gcc-4.9/gcc/config/arm/arm.h
@@ -17,8 +17,13 @@
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
+ Under Section 7 of GPL version 3, you are granted additional
+ permissions described in the GCC Runtime Library Exception, version
+ 3.1, as published by the Free Software Foundation.
+
+ You should have received a copy of the GNU General Public License and
+ a copy of the GCC Runtime Library Exception along with this program;
+ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_ARM_H
diff --git a/gcc-4.9/gcc/config/arm/arm.md b/gcc-4.9/gcc/config/arm/arm.md
index 662465f2a..467f9ce4e 100644
--- a/gcc-4.9/gcc/config/arm/arm.md
+++ b/gcc-4.9/gcc/config/arm/arm.md
@@ -75,6 +75,8 @@
]
)
+;; UNSPEC_VOLATILE Usage:
+
;;---------------------------------------------------------------------------
;; Attributes
@@ -8349,8 +8351,8 @@
(define_insn_and_split "*arm_cmpdi_unsigned"
[(set (reg:CC_CZ CC_REGNUM)
- (compare:CC_CZ (match_operand:DI 0 "s_register_operand" "l,r,r")
- (match_operand:DI 1 "arm_di_operand" "Py,r,rDi")))]
+ (compare:CC_CZ (match_operand:DI 0 "s_register_operand" "l,r,r,r")
+ (match_operand:DI 1 "arm_di_operand" "Py,r,Di,rDi")))]
"TARGET_32BIT"
"#" ; "cmp\\t%R0, %R1\;it eq\;cmpeq\\t%Q0, %Q1"
@@ -8370,9 +8372,9 @@
operands[1] = gen_lowpart (SImode, operands[1]);
}
[(set_attr "conds" "set")
- (set_attr "enabled_for_depr_it" "yes,yes,no")
- (set_attr "arch" "t2,t2,*")
- (set_attr "length" "6,6,8")
+ (set_attr "enabled_for_depr_it" "yes,yes,no,*")
+ (set_attr "arch" "t2,t2,t2,a")
+ (set_attr "length" "6,6,10,8")
(set_attr "type" "multiple")]
)
@@ -9860,6 +9862,7 @@
"TARGET_32BIT"
"%i1%?\\t%0, %2, %4%S3"
[(set_attr "predicable" "yes")
+ (set_attr "predicable_short_it" "no")
(set_attr "shift" "4")
(set_attr "arch" "a,t2,t2,a")
;; Thumb2 doesn't allow the stack pointer to be used for
diff --git a/gcc-4.9/gcc/config/arm/arm_neon.h b/gcc-4.9/gcc/config/arm/arm_neon.h
index 37a6e611b..95735433d 100644
--- a/gcc-4.9/gcc/config/arm/arm_neon.h
+++ b/gcc-4.9/gcc/config/arm/arm_neon.h
@@ -1,5 +1,4 @@
-/* ARM NEON intrinsics include file. This file is generated automatically
- using neon-gen.ml. Please do not edit manually.
+/* ARM NEON intrinsics include file.
Copyright (C) 2006-2014 Free Software Foundation, Inc.
Contributed by CodeSourcery.
@@ -7707,12 +7706,32 @@ vbslq_p16 (uint16x8_t __a, poly16x8_t __b, poly16x8_t __c)
return (poly16x8_t)__builtin_neon_vbslv8hi ((int16x8_t) __a, (int16x8_t) __b, (int16x8_t) __c);
}
+/* For big-endian, the shuffle masks for ZIP, UZP and TRN must be changed as
+ follows. (nelt = the number of elements within a vector.)
+
+ Firstly, a value of N within a mask, becomes (N ^ (nelt - 1)), as gcc vector
+ extension's indexing scheme is reversed *within each vector* (relative to the
+ neon intrinsics view), but without changing which of the two vectors.
+
+ Secondly, the elements within each mask are reversed, as the mask is itself a
+ vector, and will itself be loaded in reverse order (again, relative to the
+ neon intrinsics view, i.e. that would result from a "vld1" instruction). */
+
__extension__ static __inline int8x8x2_t __attribute__ ((__always_inline__))
vtrn_s8 (int8x8_t __a, int8x8_t __b)
{
int8x8x2_t __rv;
- __rv.val[0] = (int8x8_t) __builtin_shuffle (__a, __b, (uint8x8_t) { 0, 8, 2, 10, 4, 12, 6, 14 });
- __rv.val[1] = (int8x8_t) __builtin_shuffle (__a, __b, (uint8x8_t) { 1, 9, 3, 11, 5, 13, 7, 15 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 9, 1, 11, 3, 13, 5, 15, 7 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 8, 0, 10, 2, 12, 4, 14, 6 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 0, 8, 2, 10, 4, 12, 6, 14 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 1, 9, 3, 11, 5, 13, 7, 15 });
+#endif
return __rv;
}
@@ -7720,8 +7739,13 @@ __extension__ static __inline int16x4x2_t __attribute__ ((__always_inline__))
vtrn_s16 (int16x4_t __a, int16x4_t __b)
{
int16x4x2_t __rv;
- __rv.val[0] = (int16x4_t) __builtin_shuffle (__a, __b, (uint16x4_t) { 0, 4, 2, 6 });
- __rv.val[1] = (int16x4_t) __builtin_shuffle (__a, __b, (uint16x4_t) { 1, 5, 3, 7 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x4_t) { 5, 1, 7, 3 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x4_t) { 4, 0, 6, 2 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x4_t) { 0, 4, 2, 6 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x4_t) { 1, 5, 3, 7 });
+#endif
return __rv;
}
@@ -7729,8 +7753,17 @@ __extension__ static __inline uint8x8x2_t __attribute__ ((__always_inline__))
vtrn_u8 (uint8x8_t __a, uint8x8_t __b)
{
uint8x8x2_t __rv;
- __rv.val[0] = (uint8x8_t) __builtin_shuffle (__a, __b, (uint8x8_t) { 0, 8, 2, 10, 4, 12, 6, 14 });
- __rv.val[1] = (uint8x8_t) __builtin_shuffle (__a, __b, (uint8x8_t) { 1, 9, 3, 11, 5, 13, 7, 15 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 9, 1, 11, 3, 13, 5, 15, 7 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 8, 0, 10, 2, 12, 4, 14, 6 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 0, 8, 2, 10, 4, 12, 6, 14 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 1, 9, 3, 11, 5, 13, 7, 15 });
+#endif
return __rv;
}
@@ -7738,8 +7771,13 @@ __extension__ static __inline uint16x4x2_t __attribute__ ((__always_inline__))
vtrn_u16 (uint16x4_t __a, uint16x4_t __b)
{
uint16x4x2_t __rv;
- __rv.val[0] = (uint16x4_t) __builtin_shuffle (__a, __b, (uint16x4_t) { 0, 4, 2, 6 });
- __rv.val[1] = (uint16x4_t) __builtin_shuffle (__a, __b, (uint16x4_t) { 1, 5, 3, 7 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x4_t) { 5, 1, 7, 3 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x4_t) { 4, 0, 6, 2 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x4_t) { 0, 4, 2, 6 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x4_t) { 1, 5, 3, 7 });
+#endif
return __rv;
}
@@ -7747,8 +7785,17 @@ __extension__ static __inline poly8x8x2_t __attribute__ ((__always_inline__))
vtrn_p8 (poly8x8_t __a, poly8x8_t __b)
{
poly8x8x2_t __rv;
- __rv.val[0] = (poly8x8_t) __builtin_shuffle (__a, __b, (uint8x8_t) { 0, 8, 2, 10, 4, 12, 6, 14 });
- __rv.val[1] = (poly8x8_t) __builtin_shuffle (__a, __b, (uint8x8_t) { 1, 9, 3, 11, 5, 13, 7, 15 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 9, 1, 11, 3, 13, 5, 15, 7 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 8, 0, 10, 2, 12, 4, 14, 6 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 0, 8, 2, 10, 4, 12, 6, 14 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 1, 9, 3, 11, 5, 13, 7, 15 });
+#endif
return __rv;
}
@@ -7756,8 +7803,13 @@ __extension__ static __inline poly16x4x2_t __attribute__ ((__always_inline__))
vtrn_p16 (poly16x4_t __a, poly16x4_t __b)
{
poly16x4x2_t __rv;
- __rv.val[0] = (poly16x4_t) __builtin_shuffle (__a, __b, (uint16x4_t) { 0, 4, 2, 6 });
- __rv.val[1] = (poly16x4_t) __builtin_shuffle (__a, __b, (uint16x4_t) { 1, 5, 3, 7 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x4_t) { 5, 1, 7, 3 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x4_t) { 4, 0, 6, 2 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x4_t) { 0, 4, 2, 6 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x4_t) { 1, 5, 3, 7 });
+#endif
return __rv;
}
@@ -7765,8 +7817,13 @@ __extension__ static __inline int32x2x2_t __attribute__ ((__always_inline__))
vtrn_s32 (int32x2_t __a, int32x2_t __b)
{
int32x2x2_t __rv;
- __rv.val[0] = (int32x2_t) __builtin_shuffle (__a, __b, (uint32x2_t) { 0, 2 });
- __rv.val[1] = (int32x2_t) __builtin_shuffle (__a, __b, (uint32x2_t) { 1, 3 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x2_t) { 3, 1 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x2_t) { 2, 0 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x2_t) { 0, 2 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x2_t) { 1, 3 });
+#endif
return __rv;
}
@@ -7774,8 +7831,13 @@ __extension__ static __inline float32x2x2_t __attribute__ ((__always_inline__))
vtrn_f32 (float32x2_t __a, float32x2_t __b)
{
float32x2x2_t __rv;
- __rv.val[0] = (float32x2_t) __builtin_shuffle (__a, __b, (uint32x2_t) { 0, 2 });
- __rv.val[1] = (float32x2_t) __builtin_shuffle (__a, __b, (uint32x2_t) { 1, 3 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x2_t) { 3, 1 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x2_t) { 2, 0 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x2_t) { 0, 2 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x2_t) { 1, 3 });
+#endif
return __rv;
}
@@ -7783,8 +7845,13 @@ __extension__ static __inline uint32x2x2_t __attribute__ ((__always_inline__))
vtrn_u32 (uint32x2_t __a, uint32x2_t __b)
{
uint32x2x2_t __rv;
- __rv.val[0] = (uint32x2_t) __builtin_shuffle (__a, __b, (uint32x2_t) { 0, 2 });
- __rv.val[1] = (uint32x2_t) __builtin_shuffle (__a, __b, (uint32x2_t) { 1, 3 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x2_t) { 3, 1 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x2_t) { 2, 0 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x2_t) { 0, 2 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x2_t) { 1, 3 });
+#endif
return __rv;
}
@@ -7792,8 +7859,17 @@ __extension__ static __inline int8x16x2_t __attribute__ ((__always_inline__))
vtrnq_s8 (int8x16_t __a, int8x16_t __b)
{
int8x16x2_t __rv;
- __rv.val[0] = (int8x16_t) __builtin_shuffle (__a, __b, (uint8x16_t) { 0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30 });
- __rv.val[1] = (int8x16_t) __builtin_shuffle (__a, __b, (uint8x16_t) { 1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 17, 1, 19, 3, 21, 5, 23, 7, 25, 9, 27, 11, 29, 13, 31, 15 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 16, 0, 18, 2, 20, 4, 22, 6, 24, 8, 26, 10, 28, 12, 30, 14 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31 });
+#endif
return __rv;
}
@@ -7801,8 +7877,17 @@ __extension__ static __inline int16x8x2_t __attribute__ ((__always_inline__))
vtrnq_s16 (int16x8_t __a, int16x8_t __b)
{
int16x8x2_t __rv;
- __rv.val[0] = (int16x8_t) __builtin_shuffle (__a, __b, (uint16x8_t) { 0, 8, 2, 10, 4, 12, 6, 14 });
- __rv.val[1] = (int16x8_t) __builtin_shuffle (__a, __b, (uint16x8_t) { 1, 9, 3, 11, 5, 13, 7, 15 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 9, 1, 11, 3, 13, 5, 15, 7 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 8, 0, 10, 2, 12, 4, 14, 6 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 0, 8, 2, 10, 4, 12, 6, 14 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 1, 9, 3, 11, 5, 13, 7, 15 });
+#endif
return __rv;
}
@@ -7810,8 +7895,13 @@ __extension__ static __inline int32x4x2_t __attribute__ ((__always_inline__))
vtrnq_s32 (int32x4_t __a, int32x4_t __b)
{
int32x4x2_t __rv;
- __rv.val[0] = (int32x4_t) __builtin_shuffle (__a, __b, (uint32x4_t) { 0, 4, 2, 6 });
- __rv.val[1] = (int32x4_t) __builtin_shuffle (__a, __b, (uint32x4_t) { 1, 5, 3, 7 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x4_t) { 5, 1, 7, 3 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x4_t) { 4, 0, 6, 2 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x4_t) { 0, 4, 2, 6 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x4_t) { 1, 5, 3, 7 });
+#endif
return __rv;
}
@@ -7819,8 +7909,13 @@ __extension__ static __inline float32x4x2_t __attribute__ ((__always_inline__))
vtrnq_f32 (float32x4_t __a, float32x4_t __b)
{
float32x4x2_t __rv;
- __rv.val[0] = (float32x4_t) __builtin_shuffle (__a, __b, (uint32x4_t) { 0, 4, 2, 6 });
- __rv.val[1] = (float32x4_t) __builtin_shuffle (__a, __b, (uint32x4_t) { 1, 5, 3, 7 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x4_t) { 5, 1, 7, 3 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x4_t) { 4, 0, 6, 2 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x4_t) { 0, 4, 2, 6 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x4_t) { 1, 5, 3, 7 });
+#endif
return __rv;
}
@@ -7828,8 +7923,17 @@ __extension__ static __inline uint8x16x2_t __attribute__ ((__always_inline__))
vtrnq_u8 (uint8x16_t __a, uint8x16_t __b)
{
uint8x16x2_t __rv;
- __rv.val[0] = (uint8x16_t) __builtin_shuffle (__a, __b, (uint8x16_t) { 0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30 });
- __rv.val[1] = (uint8x16_t) __builtin_shuffle (__a, __b, (uint8x16_t) { 1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 17, 1, 19, 3, 21, 5, 23, 7, 25, 9, 27, 11, 29, 13, 31, 15 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 16, 0, 18, 2, 20, 4, 22, 6, 24, 8, 26, 10, 28, 12, 30, 14 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31 });
+#endif
return __rv;
}
@@ -7837,8 +7941,17 @@ __extension__ static __inline uint16x8x2_t __attribute__ ((__always_inline__))
vtrnq_u16 (uint16x8_t __a, uint16x8_t __b)
{
uint16x8x2_t __rv;
- __rv.val[0] = (uint16x8_t) __builtin_shuffle (__a, __b, (uint16x8_t) { 0, 8, 2, 10, 4, 12, 6, 14 });
- __rv.val[1] = (uint16x8_t) __builtin_shuffle (__a, __b, (uint16x8_t) { 1, 9, 3, 11, 5, 13, 7, 15 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 9, 1, 11, 3, 13, 5, 15, 7 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 8, 0, 10, 2, 12, 4, 14, 6 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 0, 8, 2, 10, 4, 12, 6, 14 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 1, 9, 3, 11, 5, 13, 7, 15 });
+#endif
return __rv;
}
@@ -7846,8 +7959,13 @@ __extension__ static __inline uint32x4x2_t __attribute__ ((__always_inline__))
vtrnq_u32 (uint32x4_t __a, uint32x4_t __b)
{
uint32x4x2_t __rv;
- __rv.val[0] = (uint32x4_t) __builtin_shuffle (__a, __b, (uint32x4_t) { 0, 4, 2, 6 });
- __rv.val[1] = (uint32x4_t) __builtin_shuffle (__a, __b, (uint32x4_t) { 1, 5, 3, 7 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x4_t) { 5, 1, 7, 3 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x4_t) { 4, 0, 6, 2 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x4_t) { 0, 4, 2, 6 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x4_t) { 1, 5, 3, 7 });
+#endif
return __rv;
}
@@ -7855,8 +7973,17 @@ __extension__ static __inline poly8x16x2_t __attribute__ ((__always_inline__))
vtrnq_p8 (poly8x16_t __a, poly8x16_t __b)
{
poly8x16x2_t __rv;
- __rv.val[0] = (poly8x16_t) __builtin_shuffle (__a, __b, (uint8x16_t) { 0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30 });
- __rv.val[1] = (poly8x16_t) __builtin_shuffle (__a, __b, (uint8x16_t) { 1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 17, 1, 19, 3, 21, 5, 23, 7, 25, 9, 27, 11, 29, 13, 31, 15 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 16, 0, 18, 2, 20, 4, 22, 6, 24, 8, 26, 10, 28, 12, 30, 14 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31 });
+#endif
return __rv;
}
@@ -7864,8 +7991,17 @@ __extension__ static __inline poly16x8x2_t __attribute__ ((__always_inline__))
vtrnq_p16 (poly16x8_t __a, poly16x8_t __b)
{
poly16x8x2_t __rv;
- __rv.val[0] = (poly16x8_t) __builtin_shuffle (__a, __b, (uint16x8_t) { 0, 8, 2, 10, 4, 12, 6, 14 });
- __rv.val[1] = (poly16x8_t) __builtin_shuffle (__a, __b, (uint16x8_t) { 1, 9, 3, 11, 5, 13, 7, 15 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 9, 1, 11, 3, 13, 5, 15, 7 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 8, 0, 10, 2, 12, 4, 14, 6 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 0, 8, 2, 10, 4, 12, 6, 14 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 1, 9, 3, 11, 5, 13, 7, 15 });
+#endif
return __rv;
}
@@ -7873,8 +8009,17 @@ __extension__ static __inline int8x8x2_t __attribute__ ((__always_inline__))
vzip_s8 (int8x8_t __a, int8x8_t __b)
{
int8x8x2_t __rv;
- __rv.val[0] = (int8x8_t) __builtin_shuffle (__a, __b, (uint8x8_t) { 0, 8, 1, 9, 2, 10, 3, 11 });
- __rv.val[1] = (int8x8_t) __builtin_shuffle (__a, __b, (uint8x8_t) { 4, 12, 5, 13, 6, 14, 7, 15 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 12, 4, 13, 5, 14, 6, 15, 7 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 8, 0, 9, 1, 10, 2, 11, 3 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 0, 8, 1, 9, 2, 10, 3, 11 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 4, 12, 5, 13, 6, 14, 7, 15 });
+#endif
return __rv;
}
@@ -7882,8 +8027,13 @@ __extension__ static __inline int16x4x2_t __attribute__ ((__always_inline__))
vzip_s16 (int16x4_t __a, int16x4_t __b)
{
int16x4x2_t __rv;
- __rv.val[0] = (int16x4_t) __builtin_shuffle (__a, __b, (uint16x4_t) { 0, 4, 1, 5 });
- __rv.val[1] = (int16x4_t) __builtin_shuffle (__a, __b, (uint16x4_t) { 2, 6, 3, 7 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x4_t) { 6, 2, 7, 3 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x4_t) { 4, 0, 5, 1 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x4_t) { 0, 4, 1, 5 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x4_t) { 2, 6, 3, 7 });
+#endif
return __rv;
}
@@ -7891,8 +8041,17 @@ __extension__ static __inline uint8x8x2_t __attribute__ ((__always_inline__))
vzip_u8 (uint8x8_t __a, uint8x8_t __b)
{
uint8x8x2_t __rv;
- __rv.val[0] = (uint8x8_t) __builtin_shuffle (__a, __b, (uint8x8_t) { 0, 8, 1, 9, 2, 10, 3, 11 });
- __rv.val[1] = (uint8x8_t) __builtin_shuffle (__a, __b, (uint8x8_t) { 4, 12, 5, 13, 6, 14, 7, 15 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 12, 4, 13, 5, 14, 6, 15, 7 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 8, 0, 9, 1, 10, 2, 11, 3 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 0, 8, 1, 9, 2, 10, 3, 11 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 4, 12, 5, 13, 6, 14, 7, 15 });
+#endif
return __rv;
}
@@ -7900,8 +8059,13 @@ __extension__ static __inline uint16x4x2_t __attribute__ ((__always_inline__))
vzip_u16 (uint16x4_t __a, uint16x4_t __b)
{
uint16x4x2_t __rv;
- __rv.val[0] = (uint16x4_t) __builtin_shuffle (__a, __b, (uint16x4_t) { 0, 4, 1, 5 });
- __rv.val[1] = (uint16x4_t) __builtin_shuffle (__a, __b, (uint16x4_t) { 2, 6, 3, 7 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x4_t) { 6, 2, 7, 3 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x4_t) { 4, 0, 5, 1 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x4_t) { 0, 4, 1, 5 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x4_t) { 2, 6, 3, 7 });
+#endif
return __rv;
}
@@ -7909,8 +8073,17 @@ __extension__ static __inline poly8x8x2_t __attribute__ ((__always_inline__))
vzip_p8 (poly8x8_t __a, poly8x8_t __b)
{
poly8x8x2_t __rv;
- __rv.val[0] = (poly8x8_t) __builtin_shuffle (__a, __b, (uint8x8_t) { 0, 8, 1, 9, 2, 10, 3, 11 });
- __rv.val[1] = (poly8x8_t) __builtin_shuffle (__a, __b, (uint8x8_t) { 4, 12, 5, 13, 6, 14, 7, 15 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 12, 4, 13, 5, 14, 6, 15, 7 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 8, 0, 9, 1, 10, 2, 11, 3 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 0, 8, 1, 9, 2, 10, 3, 11 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 4, 12, 5, 13, 6, 14, 7, 15 });
+#endif
return __rv;
}
@@ -7918,8 +8091,13 @@ __extension__ static __inline poly16x4x2_t __attribute__ ((__always_inline__))
vzip_p16 (poly16x4_t __a, poly16x4_t __b)
{
poly16x4x2_t __rv;
- __rv.val[0] = (poly16x4_t) __builtin_shuffle (__a, __b, (uint16x4_t) { 0, 4, 1, 5 });
- __rv.val[1] = (poly16x4_t) __builtin_shuffle (__a, __b, (uint16x4_t) { 2, 6, 3, 7 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x4_t) { 6, 2, 7, 3 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x4_t) { 4, 0, 5, 1 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x4_t) { 0, 4, 1, 5 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x4_t) { 2, 6, 3, 7 });
+#endif
return __rv;
}
@@ -7927,8 +8105,13 @@ __extension__ static __inline int32x2x2_t __attribute__ ((__always_inline__))
vzip_s32 (int32x2_t __a, int32x2_t __b)
{
int32x2x2_t __rv;
- __rv.val[0] = (int32x2_t) __builtin_shuffle (__a, __b, (uint32x2_t) { 0, 2 });
- __rv.val[1] = (int32x2_t) __builtin_shuffle (__a, __b, (uint32x2_t) { 1, 3 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x2_t) { 3, 1 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x2_t) { 2, 0 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x2_t) { 0, 2 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x2_t) { 1, 3 });
+#endif
return __rv;
}
@@ -7936,8 +8119,13 @@ __extension__ static __inline float32x2x2_t __attribute__ ((__always_inline__))
vzip_f32 (float32x2_t __a, float32x2_t __b)
{
float32x2x2_t __rv;
- __rv.val[0] = (float32x2_t) __builtin_shuffle (__a, __b, (uint32x2_t) { 0, 2 });
- __rv.val[1] = (float32x2_t) __builtin_shuffle (__a, __b, (uint32x2_t) { 1, 3 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x2_t) { 3, 1 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x2_t) { 2, 0 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x2_t) { 0, 2 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x2_t) { 1, 3 });
+#endif
return __rv;
}
@@ -7945,8 +8133,13 @@ __extension__ static __inline uint32x2x2_t __attribute__ ((__always_inline__))
vzip_u32 (uint32x2_t __a, uint32x2_t __b)
{
uint32x2x2_t __rv;
- __rv.val[0] = (uint32x2_t) __builtin_shuffle (__a, __b, (uint32x2_t) { 0, 2 });
- __rv.val[1] = (uint32x2_t) __builtin_shuffle (__a, __b, (uint32x2_t) { 1, 3 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x2_t) { 3, 1 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x2_t) { 2, 0 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x2_t) { 0, 2 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x2_t) { 1, 3 });
+#endif
return __rv;
}
@@ -7954,8 +8147,17 @@ __extension__ static __inline int8x16x2_t __attribute__ ((__always_inline__))
vzipq_s8 (int8x16_t __a, int8x16_t __b)
{
int8x16x2_t __rv;
- __rv.val[0] = (int8x16_t) __builtin_shuffle (__a, __b, (uint8x16_t) { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 });
- __rv.val[1] = (int8x16_t) __builtin_shuffle (__a, __b, (uint8x16_t) { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 24, 8, 25, 9, 26, 10, 27, 11, 28, 12, 29, 13, 30, 14, 31, 15 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 16, 0, 17, 1, 18, 2, 19, 3, 20, 4, 21, 5, 22, 6, 23, 7 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 });
+#endif
return __rv;
}
@@ -7963,8 +8165,17 @@ __extension__ static __inline int16x8x2_t __attribute__ ((__always_inline__))
vzipq_s16 (int16x8_t __a, int16x8_t __b)
{
int16x8x2_t __rv;
- __rv.val[0] = (int16x8_t) __builtin_shuffle (__a, __b, (uint16x8_t) { 0, 8, 1, 9, 2, 10, 3, 11 });
- __rv.val[1] = (int16x8_t) __builtin_shuffle (__a, __b, (uint16x8_t) { 4, 12, 5, 13, 6, 14, 7, 15 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 12, 4, 13, 5, 14, 6, 15, 7 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 8, 0, 9, 1, 10, 2, 11, 3 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 0, 8, 1, 9, 2, 10, 3, 11 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 4, 12, 5, 13, 6, 14, 7, 15 });
+#endif
return __rv;
}
@@ -7972,8 +8183,13 @@ __extension__ static __inline int32x4x2_t __attribute__ ((__always_inline__))
vzipq_s32 (int32x4_t __a, int32x4_t __b)
{
int32x4x2_t __rv;
- __rv.val[0] = (int32x4_t) __builtin_shuffle (__a, __b, (uint32x4_t) { 0, 4, 1, 5 });
- __rv.val[1] = (int32x4_t) __builtin_shuffle (__a, __b, (uint32x4_t) { 2, 6, 3, 7 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x4_t) { 6, 2, 7, 3 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x4_t) { 4, 0, 5, 1 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x4_t) { 0, 4, 1, 5 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x4_t) { 2, 6, 3, 7 });
+#endif
return __rv;
}
@@ -7981,8 +8197,13 @@ __extension__ static __inline float32x4x2_t __attribute__ ((__always_inline__))
vzipq_f32 (float32x4_t __a, float32x4_t __b)
{
float32x4x2_t __rv;
- __rv.val[0] = (float32x4_t) __builtin_shuffle (__a, __b, (uint32x4_t) { 0, 4, 1, 5 });
- __rv.val[1] = (float32x4_t) __builtin_shuffle (__a, __b, (uint32x4_t) { 2, 6, 3, 7 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x4_t) { 6, 2, 7, 3 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x4_t) { 4, 0, 5, 1 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x4_t) { 0, 4, 1, 5 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x4_t) { 2, 6, 3, 7 });
+#endif
return __rv;
}
@@ -7990,8 +8211,17 @@ __extension__ static __inline uint8x16x2_t __attribute__ ((__always_inline__))
vzipq_u8 (uint8x16_t __a, uint8x16_t __b)
{
uint8x16x2_t __rv;
- __rv.val[0] = (uint8x16_t) __builtin_shuffle (__a, __b, (uint8x16_t) { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 });
- __rv.val[1] = (uint8x16_t) __builtin_shuffle (__a, __b, (uint8x16_t) { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 24, 8, 25, 9, 26, 10, 27, 11, 28, 12, 29, 13, 30, 14, 31, 15 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 16, 0, 17, 1, 18, 2, 19, 3, 20, 4, 21, 5, 22, 6, 23, 7 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 });
+#endif
return __rv;
}
@@ -7999,8 +8229,17 @@ __extension__ static __inline uint16x8x2_t __attribute__ ((__always_inline__))
vzipq_u16 (uint16x8_t __a, uint16x8_t __b)
{
uint16x8x2_t __rv;
- __rv.val[0] = (uint16x8_t) __builtin_shuffle (__a, __b, (uint16x8_t) { 0, 8, 1, 9, 2, 10, 3, 11 });
- __rv.val[1] = (uint16x8_t) __builtin_shuffle (__a, __b, (uint16x8_t) { 4, 12, 5, 13, 6, 14, 7, 15 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 12, 4, 13, 5, 14, 6, 15, 7 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 8, 0, 9, 1, 10, 2, 11, 3 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 0, 8, 1, 9, 2, 10, 3, 11 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 4, 12, 5, 13, 6, 14, 7, 15 });
+#endif
return __rv;
}
@@ -8008,8 +8247,13 @@ __extension__ static __inline uint32x4x2_t __attribute__ ((__always_inline__))
vzipq_u32 (uint32x4_t __a, uint32x4_t __b)
{
uint32x4x2_t __rv;
- __rv.val[0] = (uint32x4_t) __builtin_shuffle (__a, __b, (uint32x4_t) { 0, 4, 1, 5 });
- __rv.val[1] = (uint32x4_t) __builtin_shuffle (__a, __b, (uint32x4_t) { 2, 6, 3, 7 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x4_t) { 6, 2, 7, 3 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x4_t) { 4, 0, 5, 1 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x4_t) { 0, 4, 1, 5 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x4_t) { 2, 6, 3, 7 });
+#endif
return __rv;
}
@@ -8017,8 +8261,17 @@ __extension__ static __inline poly8x16x2_t __attribute__ ((__always_inline__))
vzipq_p8 (poly8x16_t __a, poly8x16_t __b)
{
poly8x16x2_t __rv;
- __rv.val[0] = (poly8x16_t) __builtin_shuffle (__a, __b, (uint8x16_t) { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 });
- __rv.val[1] = (poly8x16_t) __builtin_shuffle (__a, __b, (uint8x16_t) { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 24, 8, 25, 9, 26, 10, 27, 11, 28, 12, 29, 13, 30, 14, 31, 15 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 16, 0, 17, 1, 18, 2, 19, 3, 20, 4, 21, 5, 22, 6, 23, 7 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 });
+#endif
return __rv;
}
@@ -8026,8 +8279,17 @@ __extension__ static __inline poly16x8x2_t __attribute__ ((__always_inline__))
vzipq_p16 (poly16x8_t __a, poly16x8_t __b)
{
poly16x8x2_t __rv;
- __rv.val[0] = (poly16x8_t) __builtin_shuffle (__a, __b, (uint16x8_t) { 0, 8, 1, 9, 2, 10, 3, 11 });
- __rv.val[1] = (poly16x8_t) __builtin_shuffle (__a, __b, (uint16x8_t) { 4, 12, 5, 13, 6, 14, 7, 15 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 12, 4, 13, 5, 14, 6, 15, 7 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 8, 0, 9, 1, 10, 2, 11, 3 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 0, 8, 1, 9, 2, 10, 3, 11 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 4, 12, 5, 13, 6, 14, 7, 15 });
+#endif
return __rv;
}
@@ -8035,8 +8297,17 @@ __extension__ static __inline int8x8x2_t __attribute__ ((__always_inline__))
vuzp_s8 (int8x8_t __a, int8x8_t __b)
{
int8x8x2_t __rv;
- __rv.val[0] = (int8x8_t) __builtin_shuffle (__a, __b, (uint8x8_t) { 0, 2, 4, 6, 8, 10, 12, 14 });
- __rv.val[1] = (int8x8_t) __builtin_shuffle (__a, __b, (uint8x8_t) { 1, 3, 5, 7, 9, 11, 13, 15 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 9, 11, 13, 15, 1, 3, 5, 7 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 8, 10, 12, 14, 0, 2, 4, 6 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 0, 2, 4, 6, 8, 10, 12, 14 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 1, 3, 5, 7, 9, 11, 13, 15 });
+#endif
return __rv;
}
@@ -8044,8 +8315,13 @@ __extension__ static __inline int16x4x2_t __attribute__ ((__always_inline__))
vuzp_s16 (int16x4_t __a, int16x4_t __b)
{
int16x4x2_t __rv;
- __rv.val[0] = (int16x4_t) __builtin_shuffle (__a, __b, (uint16x4_t) { 0, 2, 4, 6 });
- __rv.val[1] = (int16x4_t) __builtin_shuffle (__a, __b, (uint16x4_t) { 1, 3, 5, 7 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x4_t) { 5, 7, 1, 3 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x4_t) { 4, 6, 0, 2 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x4_t) { 0, 2, 4, 6 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x4_t) { 1, 3, 5, 7 });
+#endif
return __rv;
}
@@ -8053,8 +8329,13 @@ __extension__ static __inline int32x2x2_t __attribute__ ((__always_inline__))
vuzp_s32 (int32x2_t __a, int32x2_t __b)
{
int32x2x2_t __rv;
- __rv.val[0] = (int32x2_t) __builtin_shuffle (__a, __b, (uint32x2_t) { 0, 2 });
- __rv.val[1] = (int32x2_t) __builtin_shuffle (__a, __b, (uint32x2_t) { 1, 3 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x2_t) { 3, 1 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x2_t) { 2, 0 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x2_t) { 0, 2 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x2_t) { 1, 3 });
+#endif
return __rv;
}
@@ -8062,8 +8343,13 @@ __extension__ static __inline float32x2x2_t __attribute__ ((__always_inline__))
vuzp_f32 (float32x2_t __a, float32x2_t __b)
{
float32x2x2_t __rv;
- __rv.val[0] = (float32x2_t) __builtin_shuffle (__a, __b, (uint32x2_t) { 0, 2 });
- __rv.val[1] = (float32x2_t) __builtin_shuffle (__a, __b, (uint32x2_t) { 1, 3 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x2_t) { 3, 1 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x2_t) { 2, 0 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x2_t) { 0, 2 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x2_t) { 1, 3 });
+#endif
return __rv;
}
@@ -8071,8 +8357,17 @@ __extension__ static __inline uint8x8x2_t __attribute__ ((__always_inline__))
vuzp_u8 (uint8x8_t __a, uint8x8_t __b)
{
uint8x8x2_t __rv;
- __rv.val[0] = (uint8x8_t) __builtin_shuffle (__a, __b, (uint8x8_t) { 0, 2, 4, 6, 8, 10, 12, 14 });
- __rv.val[1] = (uint8x8_t) __builtin_shuffle (__a, __b, (uint8x8_t) { 1, 3, 5, 7, 9, 11, 13, 15 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 9, 11, 13, 15, 1, 3, 5, 7 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 8, 10, 12, 14, 0, 2, 4, 6 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 0, 2, 4, 6, 8, 10, 12, 14 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 1, 3, 5, 7, 9, 11, 13, 15 });
+#endif
return __rv;
}
@@ -8080,8 +8375,13 @@ __extension__ static __inline uint16x4x2_t __attribute__ ((__always_inline__))
vuzp_u16 (uint16x4_t __a, uint16x4_t __b)
{
uint16x4x2_t __rv;
- __rv.val[0] = (uint16x4_t) __builtin_shuffle (__a, __b, (uint16x4_t) { 0, 2, 4, 6 });
- __rv.val[1] = (uint16x4_t) __builtin_shuffle (__a, __b, (uint16x4_t) { 1, 3, 5, 7 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x4_t) { 5, 7, 1, 3 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x4_t) { 4, 6, 0, 2 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x4_t) { 0, 2, 4, 6 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x4_t) { 1, 3, 5, 7 });
+#endif
return __rv;
}
@@ -8089,8 +8389,13 @@ __extension__ static __inline uint32x2x2_t __attribute__ ((__always_inline__))
vuzp_u32 (uint32x2_t __a, uint32x2_t __b)
{
uint32x2x2_t __rv;
- __rv.val[0] = (uint32x2_t) __builtin_shuffle (__a, __b, (uint32x2_t) { 0, 2 });
- __rv.val[1] = (uint32x2_t) __builtin_shuffle (__a, __b, (uint32x2_t) { 1, 3 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x2_t) { 3, 1 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x2_t) { 2, 0 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x2_t) { 0, 2 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x2_t) { 1, 3 });
+#endif
return __rv;
}
@@ -8098,8 +8403,17 @@ __extension__ static __inline poly8x8x2_t __attribute__ ((__always_inline__))
vuzp_p8 (poly8x8_t __a, poly8x8_t __b)
{
poly8x8x2_t __rv;
- __rv.val[0] = (poly8x8_t) __builtin_shuffle (__a, __b, (uint8x8_t) { 0, 2, 4, 6, 8, 10, 12, 14 });
- __rv.val[1] = (poly8x8_t) __builtin_shuffle (__a, __b, (uint8x8_t) { 1, 3, 5, 7, 9, 11, 13, 15 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 9, 11, 13, 15, 1, 3, 5, 7 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 8, 10, 12, 14, 0, 2, 4, 6 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 0, 2, 4, 6, 8, 10, 12, 14 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x8_t)
+ { 1, 3, 5, 7, 9, 11, 13, 15 });
+#endif
return __rv;
}
@@ -8107,8 +8421,13 @@ __extension__ static __inline poly16x4x2_t __attribute__ ((__always_inline__))
vuzp_p16 (poly16x4_t __a, poly16x4_t __b)
{
poly16x4x2_t __rv;
- __rv.val[0] = (poly16x4_t) __builtin_shuffle (__a, __b, (uint16x4_t) { 0, 2, 4, 6 });
- __rv.val[1] = (poly16x4_t) __builtin_shuffle (__a, __b, (uint16x4_t) { 1, 3, 5, 7 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x4_t) { 5, 7, 1, 3 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x4_t) { 4, 6, 0, 2 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x4_t) { 0, 2, 4, 6 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x4_t) { 1, 3, 5, 7 });
+#endif
return __rv;
}
@@ -8116,8 +8435,17 @@ __extension__ static __inline int8x16x2_t __attribute__ ((__always_inline__))
vuzpq_s8 (int8x16_t __a, int8x16_t __b)
{
int8x16x2_t __rv;
- __rv.val[0] = (int8x16_t) __builtin_shuffle (__a, __b, (uint8x16_t) { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 });
- __rv.val[1] = (int8x16_t) __builtin_shuffle (__a, __b, (uint8x16_t) { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 17, 19, 21, 23, 25, 27, 29, 31, 1, 3, 5, 7, 9, 11, 13, 15 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 16, 18, 20, 22, 24, 26, 28, 30, 0, 2, 4, 6, 8, 10, 12, 14 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 });
+#endif
return __rv;
}
@@ -8125,8 +8453,17 @@ __extension__ static __inline int16x8x2_t __attribute__ ((__always_inline__))
vuzpq_s16 (int16x8_t __a, int16x8_t __b)
{
int16x8x2_t __rv;
- __rv.val[0] = (int16x8_t) __builtin_shuffle (__a, __b, (uint16x8_t) { 0, 2, 4, 6, 8, 10, 12, 14 });
- __rv.val[1] = (int16x8_t) __builtin_shuffle (__a, __b, (uint16x8_t) { 1, 3, 5, 7, 9, 11, 13, 15 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 9, 11, 13, 15, 1, 3, 5, 7 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 8, 10, 12, 14, 0, 2, 4, 6 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 0, 2, 4, 6, 8, 10, 12, 14 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 1, 3, 5, 7, 9, 11, 13, 15 });
+#endif
return __rv;
}
@@ -8134,8 +8471,13 @@ __extension__ static __inline int32x4x2_t __attribute__ ((__always_inline__))
vuzpq_s32 (int32x4_t __a, int32x4_t __b)
{
int32x4x2_t __rv;
- __rv.val[0] = (int32x4_t) __builtin_shuffle (__a, __b, (uint32x4_t) { 0, 2, 4, 6 });
- __rv.val[1] = (int32x4_t) __builtin_shuffle (__a, __b, (uint32x4_t) { 1, 3, 5, 7 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x4_t) { 5, 7, 1, 3 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x4_t) { 4, 6, 0, 2 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x4_t) { 0, 2, 4, 6 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x4_t) { 1, 3, 5, 7 });
+#endif
return __rv;
}
@@ -8143,8 +8485,13 @@ __extension__ static __inline float32x4x2_t __attribute__ ((__always_inline__))
vuzpq_f32 (float32x4_t __a, float32x4_t __b)
{
float32x4x2_t __rv;
- __rv.val[0] = (float32x4_t) __builtin_shuffle (__a, __b, (uint32x4_t) { 0, 2, 4, 6 });
- __rv.val[1] = (float32x4_t) __builtin_shuffle (__a, __b, (uint32x4_t) { 1, 3, 5, 7 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x4_t) { 5, 7, 1, 3 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x4_t) { 4, 6, 0, 2 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x4_t) { 0, 2, 4, 6 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x4_t) { 1, 3, 5, 7 });
+#endif
return __rv;
}
@@ -8152,8 +8499,17 @@ __extension__ static __inline uint8x16x2_t __attribute__ ((__always_inline__))
vuzpq_u8 (uint8x16_t __a, uint8x16_t __b)
{
uint8x16x2_t __rv;
- __rv.val[0] = (uint8x16_t) __builtin_shuffle (__a, __b, (uint8x16_t) { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 });
- __rv.val[1] = (uint8x16_t) __builtin_shuffle (__a, __b, (uint8x16_t) { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 17, 19, 21, 23, 25, 27, 29, 31, 1, 3, 5, 7, 9, 11, 13, 15 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 16, 18, 20, 22, 24, 26, 28, 30, 0, 2, 4, 6, 8, 10, 12, 14 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 });
+#endif
return __rv;
}
@@ -8161,8 +8517,17 @@ __extension__ static __inline uint16x8x2_t __attribute__ ((__always_inline__))
vuzpq_u16 (uint16x8_t __a, uint16x8_t __b)
{
uint16x8x2_t __rv;
- __rv.val[0] = (uint16x8_t) __builtin_shuffle (__a, __b, (uint16x8_t) { 0, 2, 4, 6, 8, 10, 12, 14 });
- __rv.val[1] = (uint16x8_t) __builtin_shuffle (__a, __b, (uint16x8_t) { 1, 3, 5, 7, 9, 11, 13, 15 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 9, 11, 13, 15, 1, 3, 5, 7 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 8, 10, 12, 14, 0, 2, 4, 6 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 0, 2, 4, 6, 8, 10, 12, 14 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 1, 3, 5, 7, 9, 11, 13, 15 });
+#endif
return __rv;
}
@@ -8170,8 +8535,13 @@ __extension__ static __inline uint32x4x2_t __attribute__ ((__always_inline__))
vuzpq_u32 (uint32x4_t __a, uint32x4_t __b)
{
uint32x4x2_t __rv;
- __rv.val[0] = (uint32x4_t) __builtin_shuffle (__a, __b, (uint32x4_t) { 0, 2, 4, 6 });
- __rv.val[1] = (uint32x4_t) __builtin_shuffle (__a, __b, (uint32x4_t) { 1, 3, 5, 7 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x4_t) { 5, 7, 1, 3 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x4_t) { 4, 6, 0, 2 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint32x4_t) { 0, 2, 4, 6 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint32x4_t) { 1, 3, 5, 7 });
+#endif
return __rv;
}
@@ -8179,8 +8549,17 @@ __extension__ static __inline poly8x16x2_t __attribute__ ((__always_inline__))
vuzpq_p8 (poly8x16_t __a, poly8x16_t __b)
{
poly8x16x2_t __rv;
- __rv.val[0] = (poly8x16_t) __builtin_shuffle (__a, __b, (uint8x16_t) { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 });
- __rv.val[1] = (poly8x16_t) __builtin_shuffle (__a, __b, (uint8x16_t) { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 17, 19, 21, 23, 25, 27, 29, 31, 1, 3, 5, 7, 9, 11, 13, 15 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 16, 18, 20, 22, 24, 26, 28, 30, 0, 2, 4, 6, 8, 10, 12, 14 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint8x16_t)
+ { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 });
+#endif
return __rv;
}
@@ -8188,8 +8567,17 @@ __extension__ static __inline poly16x8x2_t __attribute__ ((__always_inline__))
vuzpq_p16 (poly16x8_t __a, poly16x8_t __b)
{
poly16x8x2_t __rv;
- __rv.val[0] = (poly16x8_t) __builtin_shuffle (__a, __b, (uint16x8_t) { 0, 2, 4, 6, 8, 10, 12, 14 });
- __rv.val[1] = (poly16x8_t) __builtin_shuffle (__a, __b, (uint16x8_t) { 1, 3, 5, 7, 9, 11, 13, 15 });
+#ifdef __ARM_BIG_ENDIAN
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 9, 11, 13, 15, 1, 3, 5, 7 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 8, 10, 12, 14, 0, 2, 4, 6 });
+#else
+ __rv.val[0] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 0, 2, 4, 6, 8, 10, 12, 14 });
+ __rv.val[1] = __builtin_shuffle (__a, __b, (uint16x8_t)
+ { 1, 3, 5, 7, 9, 11, 13, 15 });
+#endif
return __rv;
}
diff --git a/gcc-4.9/gcc/config/arm/bpabi.h b/gcc-4.9/gcc/config/arm/bpabi.h
index bc223f8e3..7a576ac46 100644
--- a/gcc-4.9/gcc/config/arm/bpabi.h
+++ b/gcc-4.9/gcc/config/arm/bpabi.h
@@ -14,8 +14,13 @@
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
+ Under Section 7 of GPL version 3, you are granted additional
+ permissions described in the GCC Runtime Library Exception, version
+ 3.1, as published by the Free Software Foundation.
+
+ You should have received a copy of the GNU General Public License and
+ a copy of the GCC Runtime Library Exception along with this program;
+ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* Use the AAPCS ABI by default. */
diff --git a/gcc-4.9/gcc/config/arm/elf.h b/gcc-4.9/gcc/config/arm/elf.h
index 2edf520de..15a32fb8a 100644
--- a/gcc-4.9/gcc/config/arm/elf.h
+++ b/gcc-4.9/gcc/config/arm/elf.h
@@ -16,8 +16,13 @@
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
+ Under Section 7 of GPL version 3, you are granted additional
+ permissions described in the GCC Runtime Library Exception, version
+ 3.1, as published by the Free Software Foundation.
+
+ You should have received a copy of the GNU General Public License and
+ a copy of the GCC Runtime Library Exception along with this program;
+ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#ifndef OBJECT_FORMAT_ELF
diff --git a/gcc-4.9/gcc/config/arm/linux-eabi.h b/gcc-4.9/gcc/config/arm/linux-eabi.h
index 4d42cbfc8..350639f32 100644
--- a/gcc-4.9/gcc/config/arm/linux-eabi.h
+++ b/gcc-4.9/gcc/config/arm/linux-eabi.h
@@ -68,8 +68,9 @@
GLIBC_DYNAMIC_LINKER_DEFAULT and TARGET_DEFAULT_FLOAT_ABI. */
#undef GLIBC_DYNAMIC_LINKER
-#define GLIBC_DYNAMIC_LINKER_SOFT_FLOAT "/lib/ld-linux.so.3"
-#define GLIBC_DYNAMIC_LINKER_HARD_FLOAT "/lib/ld-linux-armhf.so.3"
+
+#define GLIBC_DYNAMIC_LINKER_SOFT_FLOAT RUNTIME_ROOT_PREFIX "/lib/ld-linux.so.3"
+#define GLIBC_DYNAMIC_LINKER_HARD_FLOAT RUNTIME_ROOT_PREFIX "/lib/ld-linux-armhf.so.3"
#define GLIBC_DYNAMIC_LINKER_DEFAULT GLIBC_DYNAMIC_LINKER_SOFT_FLOAT
#define GLIBC_DYNAMIC_LINKER \
diff --git a/gcc-4.9/gcc/config/arm/linux-elf.h b/gcc-4.9/gcc/config/arm/linux-elf.h
index 5dc3328e8..e825ae48c 100644
--- a/gcc-4.9/gcc/config/arm/linux-elf.h
+++ b/gcc-4.9/gcc/config/arm/linux-elf.h
@@ -14,8 +14,13 @@
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
+ Under Section 7 of GPL version 3, you are granted additional
+ permissions described in the GCC Runtime Library Exception, version
+ 3.1, as published by the Free Software Foundation.
+
+ You should have received a copy of the GNU General Public License and
+ a copy of the GCC Runtime Library Exception along with this program;
+ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* elfos.h should have already been included. Now just override
@@ -57,7 +62,7 @@
#define LIBGCC_SPEC "%{mfloat-abi=soft*:-lfloat} -lgcc"
-#define GLIBC_DYNAMIC_LINKER "/lib/ld-linux.so.2"
+#define GLIBC_DYNAMIC_LINKER RUNTIME_ROOT_PREFIX "/lib/ld-linux.so.2"
#define LINUX_TARGET_LINK_SPEC "%{h*} \
%{static:-Bstatic} \
diff --git a/gcc-4.9/gcc/config/arm/linux-gas.h b/gcc-4.9/gcc/config/arm/linux-gas.h
index 52a739c26..1dd043782 100644
--- a/gcc-4.9/gcc/config/arm/linux-gas.h
+++ b/gcc-4.9/gcc/config/arm/linux-gas.h
@@ -15,8 +15,13 @@
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
+ Under Section 7 of GPL version 3, you are granted additional
+ permissions described in the GCC Runtime Library Exception, version
+ 3.1, as published by the Free Software Foundation.
+
+ You should have received a copy of the GNU General Public License and
+ a copy of the GCC Runtime Library Exception along with this program;
+ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* This is how we tell the assembler that a symbol is weak.
diff --git a/gcc-4.9/gcc/config/arm/linux-grte.h b/gcc-4.9/gcc/config/arm/linux-grte.h
new file mode 100644
index 000000000..7ee5806b7
--- /dev/null
+++ b/gcc-4.9/gcc/config/arm/linux-grte.h
@@ -0,0 +1,27 @@
+/* Definitions for ARM Linux-based GRTE (Google RunTime Environment).
+ Copyright (C) 2011 Free Software Foundation, Inc.
+ Contributed by Chris Demetriou.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
+<http://www.gnu.org/licenses/>. */
+
+#undef SUBSUBTARGET_EXTRA_SPECS
+#define SUBSUBTARGET_EXTRA_SPECS LINUX_GRTE_EXTRA_SPECS
diff --git a/gcc-4.9/gcc/config/arm/neon-docgen.ml b/gcc-4.9/gcc/config/arm/neon-docgen.ml
deleted file mode 100644
index 5788a533e..000000000
--- a/gcc-4.9/gcc/config/arm/neon-docgen.ml
+++ /dev/null
@@ -1,424 +0,0 @@
-(* ARM NEON documentation generator.
-
- Copyright (C) 2006-2014 Free Software Foundation, Inc.
- Contributed by CodeSourcery.
-
- This file is part of GCC.
-
- GCC is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 3, or (at your option) any later
- version.
-
- GCC is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
-
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>.
-
- This is an O'Caml program. The O'Caml compiler is available from:
-
- http://caml.inria.fr/
-
- Or from your favourite OS's friendly packaging system. Tested with version
- 3.09.2, though other versions will probably work too.
-
- Compile with:
- ocamlc -c neon.ml
- ocamlc -o neon-docgen neon.cmo neon-docgen.ml
-
- Run with:
- /path/to/neon-docgen /path/to/gcc/doc/arm-neon-intrinsics.texi
-*)
-
-open Neon
-
-(* The combined "ops" and "reinterp" table. *)
-let ops_reinterp = reinterp @ ops
-
-(* Helper functions for extracting things from the "ops" table. *)
-let single_opcode desired_opcode () =
- List.fold_left (fun got_so_far ->
- fun row ->
- match row with
- (opcode, _, _, _, _, _) ->
- if opcode = desired_opcode then row :: got_so_far
- else got_so_far
- ) [] ops_reinterp
-
-let multiple_opcodes desired_opcodes () =
- List.fold_left (fun got_so_far ->
- fun desired_opcode ->
- (single_opcode desired_opcode ()) @ got_so_far)
- [] desired_opcodes
-
-let ldx_opcode number () =
- List.fold_left (fun got_so_far ->
- fun row ->
- match row with
- (opcode, _, _, _, _, _) ->
- match opcode with
- Vldx n | Vldx_lane n | Vldx_dup n when n = number ->
- row :: got_so_far
- | _ -> got_so_far
- ) [] ops_reinterp
-
-let stx_opcode number () =
- List.fold_left (fun got_so_far ->
- fun row ->
- match row with
- (opcode, _, _, _, _, _) ->
- match opcode with
- Vstx n | Vstx_lane n when n = number ->
- row :: got_so_far
- | _ -> got_so_far
- ) [] ops_reinterp
-
-let tbl_opcode () =
- List.fold_left (fun got_so_far ->
- fun row ->
- match row with
- (opcode, _, _, _, _, _) ->
- match opcode with
- Vtbl _ -> row :: got_so_far
- | _ -> got_so_far
- ) [] ops_reinterp
-
-let tbx_opcode () =
- List.fold_left (fun got_so_far ->
- fun row ->
- match row with
- (opcode, _, _, _, _, _) ->
- match opcode with
- Vtbx _ -> row :: got_so_far
- | _ -> got_so_far
- ) [] ops_reinterp
-
-(* The groups of intrinsics. *)
-let intrinsic_groups =
- [ "Addition", single_opcode Vadd;
- "Multiplication", single_opcode Vmul;
- "Multiply-accumulate", single_opcode Vmla;
- "Multiply-subtract", single_opcode Vmls;
- "Fused-multiply-accumulate", single_opcode Vfma;
- "Fused-multiply-subtract", single_opcode Vfms;
- "Round to integral (to nearest, ties to even)", single_opcode Vrintn;
- "Round to integral (to nearest, ties away from zero)", single_opcode Vrinta;
- "Round to integral (towards +Inf)", single_opcode Vrintp;
- "Round to integral (towards -Inf)", single_opcode Vrintm;
- "Round to integral (towards 0)", single_opcode Vrintz;
- "Subtraction", single_opcode Vsub;
- "Comparison (equal-to)", single_opcode Vceq;
- "Comparison (greater-than-or-equal-to)", single_opcode Vcge;
- "Comparison (less-than-or-equal-to)", single_opcode Vcle;
- "Comparison (greater-than)", single_opcode Vcgt;
- "Comparison (less-than)", single_opcode Vclt;
- "Comparison (absolute greater-than-or-equal-to)", single_opcode Vcage;
- "Comparison (absolute less-than-or-equal-to)", single_opcode Vcale;
- "Comparison (absolute greater-than)", single_opcode Vcagt;
- "Comparison (absolute less-than)", single_opcode Vcalt;
- "Test bits", single_opcode Vtst;
- "Absolute difference", single_opcode Vabd;
- "Absolute difference and accumulate", single_opcode Vaba;
- "Maximum", single_opcode Vmax;
- "Minimum", single_opcode Vmin;
- "Pairwise add", single_opcode Vpadd;
- "Pairwise add, single_opcode widen and accumulate", single_opcode Vpada;
- "Folding maximum", single_opcode Vpmax;
- "Folding minimum", single_opcode Vpmin;
- "Reciprocal step", multiple_opcodes [Vrecps; Vrsqrts];
- "Vector shift left", single_opcode Vshl;
- "Vector shift left by constant", single_opcode Vshl_n;
- "Vector shift right by constant", single_opcode Vshr_n;
- "Vector shift right by constant and accumulate", single_opcode Vsra_n;
- "Vector shift right and insert", single_opcode Vsri;
- "Vector shift left and insert", single_opcode Vsli;
- "Absolute value", single_opcode Vabs;
- "Negation", single_opcode Vneg;
- "Bitwise not", single_opcode Vmvn;
- "Count leading sign bits", single_opcode Vcls;
- "Count leading zeros", single_opcode Vclz;
- "Count number of set bits", single_opcode Vcnt;
- "Reciprocal estimate", single_opcode Vrecpe;
- "Reciprocal square-root estimate", single_opcode Vrsqrte;
- "Get lanes from a vector", single_opcode Vget_lane;
- "Set lanes in a vector", single_opcode Vset_lane;
- "Create vector from literal bit pattern", single_opcode Vcreate;
- "Set all lanes to the same value",
- multiple_opcodes [Vdup_n; Vmov_n; Vdup_lane];
- "Combining vectors", single_opcode Vcombine;
- "Splitting vectors", multiple_opcodes [Vget_high; Vget_low];
- "Conversions", multiple_opcodes [Vcvt; Vcvt_n];
- "Move, single_opcode narrowing", single_opcode Vmovn;
- "Move, single_opcode long", single_opcode Vmovl;
- "Table lookup", tbl_opcode;
- "Extended table lookup", tbx_opcode;
- "Multiply, lane", single_opcode Vmul_lane;
- "Long multiply, lane", single_opcode Vmull_lane;
- "Saturating doubling long multiply, lane", single_opcode Vqdmull_lane;
- "Saturating doubling multiply high, lane", single_opcode Vqdmulh_lane;
- "Multiply-accumulate, lane", single_opcode Vmla_lane;
- "Multiply-subtract, lane", single_opcode Vmls_lane;
- "Vector multiply by scalar", single_opcode Vmul_n;
- "Vector long multiply by scalar", single_opcode Vmull_n;
- "Vector saturating doubling long multiply by scalar",
- single_opcode Vqdmull_n;
- "Vector saturating doubling multiply high by scalar",
- single_opcode Vqdmulh_n;
- "Vector multiply-accumulate by scalar", single_opcode Vmla_n;
- "Vector multiply-subtract by scalar", single_opcode Vmls_n;
- "Vector extract", single_opcode Vext;
- "Reverse elements", multiple_opcodes [Vrev64; Vrev32; Vrev16];
- "Bit selection", single_opcode Vbsl;
- "Transpose elements", single_opcode Vtrn;
- "Zip elements", single_opcode Vzip;
- "Unzip elements", single_opcode Vuzp;
- "Element/structure loads, VLD1 variants", ldx_opcode 1;
- "Element/structure stores, VST1 variants", stx_opcode 1;
- "Element/structure loads, VLD2 variants", ldx_opcode 2;
- "Element/structure stores, VST2 variants", stx_opcode 2;
- "Element/structure loads, VLD3 variants", ldx_opcode 3;
- "Element/structure stores, VST3 variants", stx_opcode 3;
- "Element/structure loads, VLD4 variants", ldx_opcode 4;
- "Element/structure stores, VST4 variants", stx_opcode 4;
- "Logical operations (AND)", single_opcode Vand;
- "Logical operations (OR)", single_opcode Vorr;
- "Logical operations (exclusive OR)", single_opcode Veor;
- "Logical operations (AND-NOT)", single_opcode Vbic;
- "Logical operations (OR-NOT)", single_opcode Vorn;
- "Reinterpret casts", single_opcode Vreinterp ]
-
-(* Given an intrinsic shape, produce a string to document the corresponding
- operand shapes. *)
-let rec analyze_shape shape =
- let rec n_things n thing =
- match n with
- 0 -> []
- | n -> thing :: (n_things (n - 1) thing)
- in
- let rec analyze_shape_elt reg_no elt =
- match elt with
- Dreg -> "@var{d" ^ (string_of_int reg_no) ^ "}"
- | Qreg -> "@var{q" ^ (string_of_int reg_no) ^ "}"
- | Corereg -> "@var{r" ^ (string_of_int reg_no) ^ "}"
- | Immed -> "#@var{0}"
- | VecArray (1, elt) ->
- let elt_regexp = analyze_shape_elt 0 elt in
- "@{" ^ elt_regexp ^ "@}"
- | VecArray (n, elt) ->
- let rec f m =
- match m with
- 0 -> []
- | m -> (analyze_shape_elt (m - 1) elt) :: (f (m - 1))
- in
- let ops = List.rev (f n) in
- "@{" ^ (commas (fun x -> x) ops "") ^ "@}"
- | (PtrTo elt | CstPtrTo elt) ->
- "[" ^ (analyze_shape_elt reg_no elt) ^ "]"
- | Element_of_dreg -> (analyze_shape_elt reg_no Dreg) ^ "[@var{0}]"
- | Element_of_qreg -> (analyze_shape_elt reg_no Qreg) ^ "[@var{0}]"
- | All_elements_of_dreg -> (analyze_shape_elt reg_no Dreg) ^ "[]"
- | Alternatives alts -> (analyze_shape_elt reg_no (List.hd alts))
- in
- match shape with
- All (n, elt) -> commas (analyze_shape_elt 0) (n_things n elt) ""
- | Long -> (analyze_shape_elt 0 Qreg) ^ ", " ^ (analyze_shape_elt 0 Dreg) ^
- ", " ^ (analyze_shape_elt 0 Dreg)
- | Long_noreg elt -> (analyze_shape_elt 0 elt) ^ ", " ^
- (analyze_shape_elt 0 elt)
- | Wide -> (analyze_shape_elt 0 Qreg) ^ ", " ^ (analyze_shape_elt 0 Qreg) ^
- ", " ^ (analyze_shape_elt 0 Dreg)
- | Wide_noreg elt -> analyze_shape (Long_noreg elt)
- | Narrow -> (analyze_shape_elt 0 Dreg) ^ ", " ^ (analyze_shape_elt 0 Qreg) ^
- ", " ^ (analyze_shape_elt 0 Qreg)
- | Use_operands elts -> commas (analyze_shape_elt 0) (Array.to_list elts) ""
- | By_scalar Dreg ->
- analyze_shape (Use_operands [| Dreg; Dreg; Element_of_dreg |])
- | By_scalar Qreg ->
- analyze_shape (Use_operands [| Qreg; Qreg; Element_of_dreg |])
- | By_scalar _ -> assert false
- | Wide_lane ->
- analyze_shape (Use_operands [| Qreg; Dreg; Element_of_dreg |])
- | Wide_scalar ->
- analyze_shape (Use_operands [| Qreg; Dreg; Element_of_dreg |])
- | Pair_result elt ->
- let elt_regexp = analyze_shape_elt 0 elt in
- let elt_regexp' = analyze_shape_elt 1 elt in
- elt_regexp ^ ", " ^ elt_regexp'
- | Unary_scalar _ -> "FIXME Unary_scalar"
- | Binary_imm elt -> analyze_shape (Use_operands [| elt; elt; Immed |])
- | Narrow_imm -> analyze_shape (Use_operands [| Dreg; Qreg; Immed |])
- | Long_imm -> analyze_shape (Use_operands [| Qreg; Dreg; Immed |])
-
-(* Document a single intrinsic. *)
-let describe_intrinsic first chan
- (elt_ty, (_, features, shape, name, munge, _)) =
- let c_arity, new_elt_ty = munge shape elt_ty in
- let c_types = strings_of_arity c_arity in
- Printf.fprintf chan "@itemize @bullet\n";
- let item_code = if first then "@item" else "@itemx" in
- Printf.fprintf chan "%s %s %s_%s (" item_code (List.hd c_types)
- (intrinsic_name name) (string_of_elt elt_ty);
- Printf.fprintf chan "%s)\n" (commas (fun ty -> ty) (List.tl c_types) "");
- if not (List.exists (fun feature -> feature = No_op) features) then
- begin
- let print_one_insn name =
- Printf.fprintf chan "@code{";
- let no_suffix = (new_elt_ty = NoElts) in
- let name_with_suffix =
- if no_suffix then name
- else name ^ "." ^ (string_of_elt_dots new_elt_ty)
- in
- let possible_operands = analyze_all_shapes features shape
- analyze_shape
- in
- let rec print_one_possible_operand op =
- Printf.fprintf chan "%s %s}" name_with_suffix op
- in
- (* If the intrinsic expands to multiple instructions, we assume
- they are all of the same form. *)
- print_one_possible_operand (List.hd possible_operands)
- in
- let rec print_insns names =
- match names with
- [] -> ()
- | [name] -> print_one_insn name
- | name::names -> (print_one_insn name;
- Printf.fprintf chan " @emph{or} ";
- print_insns names)
- in
- let insn_names = get_insn_names features name in
- Printf.fprintf chan "@*@emph{Form of expected instruction(s):} ";
- print_insns insn_names;
- Printf.fprintf chan "\n"
- end;
- Printf.fprintf chan "@end itemize\n";
- Printf.fprintf chan "\n\n"
-
-(* Document a group of intrinsics. *)
-let document_group chan (group_title, group_extractor) =
- (* Extract the rows in question from the ops table and then turn them
- into a list of intrinsics. *)
- let intrinsics =
- List.fold_left (fun got_so_far ->
- fun row ->
- match row with
- (_, _, _, _, _, elt_tys) ->
- List.fold_left (fun got_so_far' ->
- fun elt_ty ->
- (elt_ty, row) :: got_so_far')
- got_so_far elt_tys
- ) [] (group_extractor ())
- in
- (* Emit the title for this group. *)
- Printf.fprintf chan "@subsubsection %s\n\n" group_title;
- (* Emit a description of each intrinsic. *)
- List.iter (describe_intrinsic true chan) intrinsics;
- (* Close this group. *)
- Printf.fprintf chan "\n\n"
-
-let gnu_header chan =
- List.iter (fun s -> Printf.fprintf chan "%s\n" s) [
- "@c Copyright (C) 2006-2014 Free Software Foundation, Inc.";
- "@c This is part of the GCC manual.";
- "@c For copying conditions, see the file gcc.texi.";
- "";
- "@c This file is generated automatically using gcc/config/arm/neon-docgen.ml";
- "@c Please do not edit manually."]
-
-let crypto_doc =
-"
-@itemize @bullet
-@item poly128_t vldrq_p128(poly128_t const *)
-@end itemize
-
-@itemize @bullet
-@item void vstrq_p128(poly128_t *, poly128_t)
-@end itemize
-
-@itemize @bullet
-@item uint64x1_t vceq_p64 (poly64x1_t, poly64x1_t)
-@end itemize
-
-@itemize @bullet
-@item uint64x1_t vtst_p64 (poly64x1_t, poly64x1_t)
-@end itemize
-
-@itemize @bullet
-@item uint32_t vsha1h_u32 (uint32_t)
-@*@emph{Form of expected instruction(s):} @code{sha1h.32 @var{q0}, @var{q1}}
-@end itemize
-
-@itemize @bullet
-@item uint32x4_t vsha1cq_u32 (uint32x4_t, uint32_t, uint32x4_t)
-@*@emph{Form of expected instruction(s):} @code{sha1c.32 @var{q0}, @var{q1}, @var{q2}}
-@end itemize
-
-@itemize @bullet
-@item uint32x4_t vsha1pq_u32 (uint32x4_t, uint32_t, uint32x4_t)
-@*@emph{Form of expected instruction(s):} @code{sha1p.32 @var{q0}, @var{q1}, @var{q2}}
-@end itemize
-
-@itemize @bullet
-@item uint32x4_t vsha1mq_u32 (uint32x4_t, uint32_t, uint32x4_t)
-@*@emph{Form of expected instruction(s):} @code{sha1m.32 @var{q0}, @var{q1}, @var{q2}}
-@end itemize
-
-@itemize @bullet
-@item uint32x4_t vsha1su0q_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
-@*@emph{Form of expected instruction(s):} @code{sha1su0.32 @var{q0}, @var{q1}, @var{q2}}
-@end itemize
-
-@itemize @bullet
-@item uint32x4_t vsha1su1q_u32 (uint32x4_t, uint32x4_t)
-@*@emph{Form of expected instruction(s):} @code{sha1su1.32 @var{q0}, @var{q1}, @var{q2}}
-@end itemize
-
-@itemize @bullet
-@item uint32x4_t vsha256hq_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
-@*@emph{Form of expected instruction(s):} @code{sha256h.32 @var{q0}, @var{q1}, @var{q2}}
-@end itemize
-
-@itemize @bullet
-@item uint32x4_t vsha256h2q_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
-@*@emph{Form of expected instruction(s):} @code{sha256h2.32 @var{q0}, @var{q1}, @var{q2}}
-@end itemize
-
-@itemize @bullet
-@item uint32x4_t vsha256su0q_u32 (uint32x4_t, uint32x4_t)
-@*@emph{Form of expected instruction(s):} @code{sha256su0.32 @var{q0}, @var{q1}}
-@end itemize
-
-@itemize @bullet
-@item uint32x4_t vsha256su1q_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
-@*@emph{Form of expected instruction(s):} @code{sha256su1.32 @var{q0}, @var{q1}, @var{q2}}
-@end itemize
-
-@itemize @bullet
-@item poly128_t vmull_p64 (poly64_t a, poly64_t b)
-@*@emph{Form of expected instruction(s):} @code{vmull.p64 @var{q0}, @var{d1}, @var{d2}}
-@end itemize
-
-@itemize @bullet
-@item poly128_t vmull_high_p64 (poly64x2_t a, poly64x2_t b)
-@*@emph{Form of expected instruction(s):} @code{vmull.p64 @var{q0}, @var{d1}, @var{d2}}
-@end itemize
-"
-
-(* Program entry point. *)
-let _ =
- if Array.length Sys.argv <> 2 then
- failwith "Usage: neon-docgen <output filename>"
- else
- let file = Sys.argv.(1) in
- try
- let chan = open_out file in
- gnu_header chan;
- List.iter (document_group chan) intrinsic_groups;
- Printf.fprintf chan "%s\n" crypto_doc;
- close_out chan
- with Sys_error sys ->
- failwith ("Could not create output file " ^ file ^ ": " ^ sys)
diff --git a/gcc-4.9/gcc/config/arm/neon-gen.ml b/gcc-4.9/gcc/config/arm/neon-gen.ml
deleted file mode 100644
index f3dd86b0a..000000000
--- a/gcc-4.9/gcc/config/arm/neon-gen.ml
+++ /dev/null
@@ -1,520 +0,0 @@
-(* Auto-generate ARM Neon intrinsics header file.
- Copyright (C) 2006-2014 Free Software Foundation, Inc.
- Contributed by CodeSourcery.
-
- This file is part of GCC.
-
- GCC is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 3, or (at your option) any later
- version.
-
- GCC is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
-
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>.
-
- This is an O'Caml program. The O'Caml compiler is available from:
-
- http://caml.inria.fr/
-
- Or from your favourite OS's friendly packaging system. Tested with version
- 3.09.2, though other versions will probably work too.
-
- Compile with:
- ocamlc -c neon.ml
- ocamlc -o neon-gen neon.cmo neon-gen.ml
-
- Run with:
- ./neon-gen > arm_neon.h
-*)
-
-open Neon
-
-(* The format codes used in the following functions are documented at:
- http://caml.inria.fr/pub/docs/manual-ocaml/libref/Format.html\
- #6_printflikefunctionsforprettyprinting
- (one line, remove the backslash.)
-*)
-
-(* Following functions can be used to approximate GNU indentation style. *)
-let start_function () =
- Format.printf "@[<v 0>";
- ref 0
-
-let end_function nesting =
- match !nesting with
- 0 -> Format.printf "@;@;@]"
- | _ -> failwith ("Bad nesting (ending function at level "
- ^ (string_of_int !nesting) ^ ")")
-
-let open_braceblock nesting =
- begin match !nesting with
- 0 -> Format.printf "@,@<0>{@[<v 2>@,"
- | _ -> Format.printf "@,@[<v 2> @<0>{@[<v 2>@,"
- end;
- incr nesting
-
-let close_braceblock nesting =
- decr nesting;
- match !nesting with
- 0 -> Format.printf "@]@,@<0>}"
- | _ -> Format.printf "@]@,@<0>}@]"
-
-let print_function arity fnname body =
- let ffmt = start_function () in
- Format.printf "__extension__ static __inline ";
- let inl = "__attribute__ ((__always_inline__))" in
- begin match arity with
- Arity0 ret ->
- Format.printf "%s %s@,%s (void)" (string_of_vectype ret) inl fnname
- | Arity1 (ret, arg0) ->
- Format.printf "%s %s@,%s (%s __a)" (string_of_vectype ret) inl fnname
- (string_of_vectype arg0)
- | Arity2 (ret, arg0, arg1) ->
- Format.printf "%s %s@,%s (%s __a, %s __b)"
- (string_of_vectype ret) inl fnname (string_of_vectype arg0)
- (string_of_vectype arg1)
- | Arity3 (ret, arg0, arg1, arg2) ->
- Format.printf "%s %s@,%s (%s __a, %s __b, %s __c)"
- (string_of_vectype ret) inl fnname (string_of_vectype arg0)
- (string_of_vectype arg1) (string_of_vectype arg2)
- | Arity4 (ret, arg0, arg1, arg2, arg3) ->
- Format.printf "%s %s@,%s (%s __a, %s __b, %s __c, %s __d)"
- (string_of_vectype ret) inl fnname (string_of_vectype arg0)
- (string_of_vectype arg1) (string_of_vectype arg2)
- (string_of_vectype arg3)
- end;
- open_braceblock ffmt;
- let rec print_lines = function
- [] -> ()
- | "" :: lines -> print_lines lines
- | [line] -> Format.printf "%s" line
- | line::lines -> Format.printf "%s@," line ; print_lines lines in
- print_lines body;
- close_braceblock ffmt;
- end_function ffmt
-
-let union_string num elts base =
- let itype = inttype_for_array num elts in
- let iname = string_of_inttype itype
- and sname = string_of_vectype (T_arrayof (num, elts)) in
- Printf.sprintf "union { %s __i; %s __o; } %s" sname iname base
-
-let rec signed_ctype = function
- T_uint8x8 | T_poly8x8 -> T_int8x8
- | T_uint8x16 | T_poly8x16 -> T_int8x16
- | T_uint16x4 | T_poly16x4 -> T_int16x4
- | T_uint16x8 | T_poly16x8 -> T_int16x8
- | T_uint32x2 -> T_int32x2
- | T_uint32x4 -> T_int32x4
- | T_uint64x1 -> T_int64x1
- | T_uint64x2 -> T_int64x2
- | T_poly64x2 -> T_int64x2
- (* Cast to types defined by mode in arm.c, not random types pulled in from
- the <stdint.h> header in use. This fixes incompatible pointer errors when
- compiling with C++. *)
- | T_uint8 | T_int8 -> T_intQI
- | T_uint16 | T_int16 -> T_intHI
- | T_uint32 | T_int32 -> T_intSI
- | T_uint64 | T_int64 -> T_intDI
- | T_float16 -> T_floatHF
- | T_float32 -> T_floatSF
- | T_poly8 -> T_intQI
- | T_poly16 -> T_intHI
- | T_poly64 -> T_intDI
- | T_poly128 -> T_intTI
- | T_arrayof (n, elt) -> T_arrayof (n, signed_ctype elt)
- | T_ptrto elt -> T_ptrto (signed_ctype elt)
- | T_const elt -> T_const (signed_ctype elt)
- | x -> x
-
-let add_cast ctype cval =
- let stype = signed_ctype ctype in
- if ctype <> stype then
- Printf.sprintf "(%s) %s" (string_of_vectype stype) cval
- else
- cval
-
-let cast_for_return to_ty = "(" ^ (string_of_vectype to_ty) ^ ")"
-
-(* Return a tuple of a list of declarations to go at the start of the function,
- and a list of statements needed to return THING. *)
-let return arity thing =
- match arity with
- Arity0 (ret) | Arity1 (ret, _) | Arity2 (ret, _, _) | Arity3 (ret, _, _, _)
- | Arity4 (ret, _, _, _, _) ->
- begin match ret with
- T_arrayof (num, vec) ->
- let uname = union_string num vec "__rv" in
- [uname ^ ";"], ["__rv.__o = " ^ thing ^ ";"; "return __rv.__i;"]
- | T_void ->
- [], [thing ^ ";"]
- | _ ->
- [], ["return " ^ (cast_for_return ret) ^ thing ^ ";"]
- end
-
-let mask_shape_for_shuffle = function
- All (num, reg) -> All (num, reg)
- | Pair_result reg -> All (2, reg)
- | _ -> failwith "mask_for_shuffle"
-
-let mask_elems shuffle shape elttype part =
- let elem_size = elt_width elttype in
- let num_elems =
- match regmap shape 0 with
- Dreg -> 64 / elem_size
- | Qreg -> 128 / elem_size
- | _ -> failwith "mask_elems" in
- shuffle elem_size num_elems part
-
-(* Return a tuple of a list of declarations 0and a list of statements needed
- to implement an intrinsic using __builtin_shuffle. SHUFFLE is a function
- which returns a list of elements suitable for using as a mask. *)
-
-let shuffle_fn shuffle shape arity elttype =
- let mshape = mask_shape_for_shuffle shape in
- let masktype = type_for_elt mshape (unsigned_of_elt elttype) 0 in
- let masktype_str = string_of_vectype masktype in
- let shuffle_res = type_for_elt mshape elttype 0 in
- let shuffle_res_str = string_of_vectype shuffle_res in
- match arity with
- Arity0 (ret) | Arity1 (ret, _) | Arity2 (ret, _, _) | Arity3 (ret, _, _, _)
- | Arity4 (ret, _, _, _, _) ->
- begin match ret with
- T_arrayof (num, vec) ->
- let elems1 = mask_elems shuffle mshape elttype `lo
- and elems2 = mask_elems shuffle mshape elttype `hi in
- let mask1 = (String.concat ", " (List.map string_of_int elems1))
- and mask2 = (String.concat ", " (List.map string_of_int elems2)) in
- let shuf1 = Printf.sprintf
- "__rv.val[0] = (%s) __builtin_shuffle (__a, __b, (%s) { %s });"
- shuffle_res_str masktype_str mask1
- and shuf2 = Printf.sprintf
- "__rv.val[1] = (%s) __builtin_shuffle (__a, __b, (%s) { %s });"
- shuffle_res_str masktype_str mask2 in
- [Printf.sprintf "%s __rv;" (string_of_vectype ret);],
- [shuf1; shuf2; "return __rv;"]
- | _ ->
- let elems = mask_elems shuffle mshape elttype `lo in
- let mask = (String.concat ", " (List.map string_of_int elems)) in
- let shuf = Printf.sprintf
- "return (%s) __builtin_shuffle (__a, (%s) { %s });" shuffle_res_str masktype_str mask in
- [""],
- [shuf]
- end
-
-let rec element_type ctype =
- match ctype with
- T_arrayof (_, v) -> element_type v
- | _ -> ctype
-
-let params ps =
- let pdecls = ref [] in
- let ptype t p =
- match t with
- T_arrayof (num, elts) ->
- let uname = union_string num elts (p ^ "u") in
- let decl = Printf.sprintf "%s = { %s };" uname p in
- pdecls := decl :: !pdecls;
- p ^ "u.__o"
- | _ -> add_cast t p in
- let plist = match ps with
- Arity0 _ -> []
- | Arity1 (_, t1) -> [ptype t1 "__a"]
- | Arity2 (_, t1, t2) -> [ptype t1 "__a"; ptype t2 "__b"]
- | Arity3 (_, t1, t2, t3) -> [ptype t1 "__a"; ptype t2 "__b"; ptype t3 "__c"]
- | Arity4 (_, t1, t2, t3, t4) ->
- [ptype t1 "__a"; ptype t2 "__b"; ptype t3 "__c"; ptype t4 "__d"] in
- !pdecls, plist
-
-let modify_params features plist =
- let is_flipped =
- List.exists (function Flipped _ -> true | _ -> false) features in
- if is_flipped then
- match plist with
- [ a; b ] -> [ b; a ]
- | _ ->
- failwith ("Don't know how to flip args " ^ (String.concat ", " plist))
- else
- plist
-
-(* !!! Decide whether to add an extra information word based on the shape
- form. *)
-let extra_word shape features paramlist bits =
- let use_word =
- match shape with
- All _ | Long | Long_noreg _ | Wide | Wide_noreg _ | Narrow
- | By_scalar _ | Wide_scalar | Wide_lane | Binary_imm _ | Long_imm
- | Narrow_imm -> true
- | _ -> List.mem InfoWord features
- in
- if use_word then
- paramlist @ [string_of_int bits]
- else
- paramlist
-
-(* Bit 0 represents signed (1) vs unsigned (0), or float (1) vs poly (0).
- Bit 1 represents floats & polynomials (1), or ordinary integers (0).
- Bit 2 represents rounding (1) vs none (0). *)
-let infoword_value elttype features =
- let bits01 =
- match elt_class elttype with
- Signed | ConvClass (Signed, _) | ConvClass (_, Signed) -> 0b001
- | Poly -> 0b010
- | Float -> 0b011
- | _ -> 0b000
- and rounding_bit = if List.mem Rounding features then 0b100 else 0b000 in
- bits01 lor rounding_bit
-
-(* "Cast" type operations will throw an exception in mode_of_elt (actually in
- elt_width, called from there). Deal with that here, and generate a suffix
- with multiple modes (<to><from>). *)
-let rec mode_suffix elttype shape =
- try
- let mode = mode_of_elt elttype shape in
- string_of_mode mode
- with MixedMode (dst, src) ->
- let dstmode = mode_of_elt ~argpos:0 dst shape
- and srcmode = mode_of_elt ~argpos:1 src shape in
- string_of_mode dstmode ^ string_of_mode srcmode
-
-let get_shuffle features =
- try
- match List.find (function Use_shuffle _ -> true | _ -> false) features with
- Use_shuffle fn -> Some fn
- | _ -> None
- with Not_found -> None
-
-let print_feature_test_start features =
- try
- match List.find (fun feature ->
- match feature with Requires_feature _ -> true
- | Requires_arch _ -> true
- | Requires_FP_bit _ -> true
- | _ -> false)
- features with
- Requires_feature feature ->
- Format.printf "#ifdef __ARM_FEATURE_%s@\n" feature
- | Requires_arch arch ->
- Format.printf "#if __ARM_ARCH >= %d@\n" arch
- | Requires_FP_bit bit ->
- Format.printf "#if ((__ARM_FP & 0x%X) != 0)@\n"
- (1 lsl bit)
- | _ -> assert false
- with Not_found -> assert true
-
-let print_feature_test_end features =
- let feature =
- List.exists (function Requires_feature _ -> true
- | Requires_arch _ -> true
- | Requires_FP_bit _ -> true
- | _ -> false) features in
- if feature then Format.printf "#endif@\n"
-
-
-let print_variant opcode features shape name (ctype, asmtype, elttype) =
- let bits = infoword_value elttype features in
- let modesuf = mode_suffix elttype shape in
- let pdecls, paramlist = params ctype in
- let rdecls, stmts =
- match get_shuffle features with
- Some shuffle -> shuffle_fn shuffle shape ctype elttype
- | None ->
- let paramlist' = modify_params features paramlist in
- let paramlist'' = extra_word shape features paramlist' bits in
- let parstr = String.concat ", " paramlist'' in
- let builtin = Printf.sprintf "__builtin_neon_%s%s (%s)"
- (builtin_name features name) modesuf parstr in
- return ctype builtin in
- let body = pdecls @ rdecls @ stmts
- and fnname = (intrinsic_name name) ^ "_" ^ (string_of_elt elttype) in
- begin
- print_feature_test_start features;
- print_function ctype fnname body;
- print_feature_test_end features;
- end
-
-(* When this function processes the element types in the ops table, it rewrites
- them in a list of tuples (a,b,c):
- a : C type as an "arity", e.g. Arity1 (T_poly8x8, T_poly8x8)
- b : Asm type : a single, processed element type, e.g. P16. This is the
- type which should be attached to the asm opcode.
- c : Variant type : the unprocessed type for this variant (e.g. in add
- instructions which don't care about the sign, b might be i16 and c
- might be s16.)
-*)
-
-let print_op (opcode, features, shape, name, munge, types) =
- let sorted_types = List.sort compare types in
- let munged_types = List.map
- (fun elt -> let c, asm = munge shape elt in c, asm, elt) sorted_types in
- List.iter
- (fun variant -> print_variant opcode features shape name variant)
- munged_types
-
-let print_ops ops =
- List.iter print_op ops
-
-(* Output type definitions. Table entries are:
- cbase : "C" name for the type.
- abase : "ARM" base name for the type (i.e. int in int8x8_t).
- esize : element size.
- enum : element count.
- alevel: architecture level at which available.
-*)
-
-type fpulevel = CRYPTO | ALL
-
-let deftypes () =
- let typeinfo = [
- (* Doubleword vector types. *)
- "__builtin_neon_qi", "int", 8, 8, ALL;
- "__builtin_neon_hi", "int", 16, 4, ALL;
- "__builtin_neon_si", "int", 32, 2, ALL;
- "__builtin_neon_di", "int", 64, 1, ALL;
- "__builtin_neon_hf", "float", 16, 4, ALL;
- "__builtin_neon_sf", "float", 32, 2, ALL;
- "__builtin_neon_poly8", "poly", 8, 8, ALL;
- "__builtin_neon_poly16", "poly", 16, 4, ALL;
- "__builtin_neon_poly64", "poly", 64, 1, CRYPTO;
- "__builtin_neon_uqi", "uint", 8, 8, ALL;
- "__builtin_neon_uhi", "uint", 16, 4, ALL;
- "__builtin_neon_usi", "uint", 32, 2, ALL;
- "__builtin_neon_udi", "uint", 64, 1, ALL;
-
- (* Quadword vector types. *)
- "__builtin_neon_qi", "int", 8, 16, ALL;
- "__builtin_neon_hi", "int", 16, 8, ALL;
- "__builtin_neon_si", "int", 32, 4, ALL;
- "__builtin_neon_di", "int", 64, 2, ALL;
- "__builtin_neon_sf", "float", 32, 4, ALL;
- "__builtin_neon_poly8", "poly", 8, 16, ALL;
- "__builtin_neon_poly16", "poly", 16, 8, ALL;
- "__builtin_neon_poly64", "poly", 64, 2, CRYPTO;
- "__builtin_neon_uqi", "uint", 8, 16, ALL;
- "__builtin_neon_uhi", "uint", 16, 8, ALL;
- "__builtin_neon_usi", "uint", 32, 4, ALL;
- "__builtin_neon_udi", "uint", 64, 2, ALL
- ] in
- List.iter
- (fun (cbase, abase, esize, enum, fpulevel) ->
- let attr =
- match enum with
- 1 -> ""
- | _ -> Printf.sprintf "\t__attribute__ ((__vector_size__ (%d)))"
- (esize * enum / 8) in
- if fpulevel == CRYPTO then
- Format.printf "#ifdef __ARM_FEATURE_CRYPTO\n";
- Format.printf "typedef %s %s%dx%d_t%s;@\n" cbase abase esize enum attr;
- if fpulevel == CRYPTO then
- Format.printf "#endif\n";)
- typeinfo;
- Format.print_newline ();
- (* Extra types not in <stdint.h>. *)
- Format.printf "typedef float float32_t;\n";
- Format.printf "typedef __builtin_neon_poly8 poly8_t;\n";
- Format.printf "typedef __builtin_neon_poly16 poly16_t;\n";
- Format.printf "#ifdef __ARM_FEATURE_CRYPTO\n";
- Format.printf "typedef __builtin_neon_poly64 poly64_t;\n";
- Format.printf "typedef __builtin_neon_poly128 poly128_t;\n";
- Format.printf "#endif\n"
-
-(* Output structs containing arrays, for load & store instructions etc.
- poly128_t is deliberately not included here because it has no array types
- defined for it. *)
-
-let arrtypes () =
- let typeinfo = [
- "int", 8, ALL; "int", 16, ALL;
- "int", 32, ALL; "int", 64, ALL;
- "uint", 8, ALL; "uint", 16, ALL;
- "uint", 32, ALL; "uint", 64, ALL;
- "float", 32, ALL; "poly", 8, ALL;
- "poly", 16, ALL; "poly", 64, CRYPTO
- ] in
- let writestruct elname elsize regsize arrsize fpulevel =
- let elnum = regsize / elsize in
- let structname =
- Printf.sprintf "%s%dx%dx%d_t" elname elsize elnum arrsize in
- let sfmt = start_function () in
- Format.printf "%stypedef struct %s"
- (if fpulevel == CRYPTO then "#ifdef __ARM_FEATURE_CRYPTO\n" else "") structname;
- open_braceblock sfmt;
- Format.printf "%s%dx%d_t val[%d];" elname elsize elnum arrsize;
- close_braceblock sfmt;
- Format.printf " %s;%s" structname (if fpulevel == CRYPTO then "\n#endif\n" else "");
- end_function sfmt;
- in
- for n = 2 to 4 do
- List.iter
- (fun (elname, elsize, alevel) ->
- writestruct elname elsize 64 n alevel;
- writestruct elname elsize 128 n alevel)
- typeinfo
- done
-
-let print_lines = List.iter (fun s -> Format.printf "%s@\n" s)
-
-(* Do it. *)
-
-let _ =
- print_lines [
-"/* ARM NEON intrinsics include file. This file is generated automatically";
-" using neon-gen.ml. Please do not edit manually.";
-"";
-" Copyright (C) 2006-2014 Free Software Foundation, Inc.";
-" Contributed by CodeSourcery.";
-"";
-" This file is part of GCC.";
-"";
-" GCC is free software; you can redistribute it and/or modify it";
-" under the terms of the GNU General Public License as published";
-" by the Free Software Foundation; either version 3, or (at your";
-" option) any later version.";
-"";
-" GCC is distributed in the hope that it will be useful, but WITHOUT";
-" ANY WARRANTY; without even the implied warranty of MERCHANTABILITY";
-" or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public";
-" License for more details.";
-"";
-" Under Section 7 of GPL version 3, you are granted additional";
-" permissions described in the GCC Runtime Library Exception, version";
-" 3.1, as published by the Free Software Foundation.";
-"";
-" You should have received a copy of the GNU General Public License and";
-" a copy of the GCC Runtime Library Exception along with this program;";
-" see the files COPYING3 and COPYING.RUNTIME respectively. If not, see";
-" <http://www.gnu.org/licenses/>. */";
-"";
-"#ifndef _GCC_ARM_NEON_H";
-"#define _GCC_ARM_NEON_H 1";
-"";
-"#ifndef __ARM_NEON__";
-"#error You must enable NEON instructions (e.g. -mfloat-abi=softfp -mfpu=neon) to use arm_neon.h";
-"#else";
-"";
-"#ifdef __cplusplus";
-"extern \"C\" {";
-"#endif";
-"";
-"#include <stdint.h>";
-""];
- deftypes ();
- arrtypes ();
- Format.print_newline ();
- print_ops ops;
- Format.print_newline ();
- print_ops reinterp;
- print_ops reinterpq;
- Format.printf "%s" crypto_intrinsics;
- print_lines [
-"#ifdef __cplusplus";
-"}";
-"#endif";
-"#endif";
-"#endif"]
diff --git a/gcc-4.9/gcc/config/arm/netbsd-elf.h b/gcc-4.9/gcc/config/arm/netbsd-elf.h
index 9deda9679..645551fdf 100644
--- a/gcc-4.9/gcc/config/arm/netbsd-elf.h
+++ b/gcc-4.9/gcc/config/arm/netbsd-elf.h
@@ -14,8 +14,13 @@
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
+ Under Section 7 of GPL version 3, you are granted additional
+ permissions described in the GCC Runtime Library Exception, version
+ 3.1, as published by the Free Software Foundation.
+
+ You should have received a copy of the GNU General Public License and
+ a copy of the GCC Runtime Library Exception along with this program;
+ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* Run-time Target Specification. */
diff --git a/gcc-4.9/gcc/config/arm/uclinux-eabi.h b/gcc-4.9/gcc/config/arm/uclinux-eabi.h
index b5055ce40..4d57d1388 100644
--- a/gcc-4.9/gcc/config/arm/uclinux-eabi.h
+++ b/gcc-4.9/gcc/config/arm/uclinux-eabi.h
@@ -14,8 +14,13 @@
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
+ Under Section 7 of GPL version 3, you are granted additional
+ permissions described in the GCC Runtime Library Exception, version
+ 3.1, as published by the Free Software Foundation.
+
+ You should have received a copy of the GNU General Public License and
+ a copy of the GCC Runtime Library Exception along with this program;
+ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* Override settings that are different to the uclinux-elf or
diff --git a/gcc-4.9/gcc/config/arm/uclinux-elf.h b/gcc-4.9/gcc/config/arm/uclinux-elf.h
index 5cd4fe527..43edba70c 100644
--- a/gcc-4.9/gcc/config/arm/uclinux-elf.h
+++ b/gcc-4.9/gcc/config/arm/uclinux-elf.h
@@ -14,8 +14,13 @@
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
+ Under Section 7 of GPL version 3, you are granted additional
+ permissions described in the GCC Runtime Library Exception, version
+ 3.1, as published by the Free Software Foundation.
+
+ You should have received a copy of the GNU General Public License and
+ a copy of the GCC Runtime Library Exception along with this program;
+ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* We don't want a PLT. */
diff --git a/gcc-4.9/gcc/config/arm/unspecs.md b/gcc-4.9/gcc/config/arm/unspecs.md
index 87edf18e2..db3fea5f5 100644
--- a/gcc-4.9/gcc/config/arm/unspecs.md
+++ b/gcc-4.9/gcc/config/arm/unspecs.md
@@ -58,6 +58,7 @@
; instruction stream.
UNSPEC_PIC_OFFSET ; A symbolic 12-bit OFFSET that has been treated
; correctly for PIC usage.
+ UNSPEC_GOT_PREL_SYM ; Specify an R_ARM_GOT_PREL relocation of a symbol.
UNSPEC_GOTSYM_OFF ; The offset of the start of the GOT from a
; a given symbolic address.
UNSPEC_THUMB1_CASESI ; A Thumb1 compressed dispatch-table call.
@@ -70,6 +71,11 @@
; that.
UNSPEC_UNALIGNED_STORE ; Same for str/strh.
UNSPEC_PIC_UNIFIED ; Create a common pic addressing form.
+ UNSPEC_PROLOGUE_USE ; As USE insns are not meaningful after reload,
+ ; this unspec is used to prevent the deletion of
+ ; instructions setting registers for EH handling
+ ; and stack frame generation. Operand 0 is the
+ ; register to "use".
UNSPEC_LL ; Represent an unpaired load-register-exclusive.
UNSPEC_VRINTZ ; Represent a float to integral float rounding
; towards zero.
@@ -83,11 +89,12 @@
; FPSCR rounding mode and signal inexactness.
UNSPEC_VRINTA ; Represent a float to integral float rounding
; towards nearest, ties away from zero.
- UNSPEC_GOT_PREL_SYM ; Specify an R_ARM_GOT_PREL relocation of a symbol
])
(define_c_enum "unspec" [
UNSPEC_WADDC ; Used by the intrinsic form of the iWMMXt WADDC instruction.
+ UNSPEC_WMADDS ; Used by the intrinsic form of the iWMMXt WMADDS instruction.
+ UNSPEC_WMADDU ; Used by the intrinsic form of the iWMMXt WMADDU instruction.
UNSPEC_WABS ; Used by the intrinsic form of the iWMMXt WABS instruction.
UNSPEC_WQMULWMR ; Used by the intrinsic form of the iWMMXt WQMULWMR instruction.
UNSPEC_WQMULMR ; Used by the intrinsic form of the iWMMXt WQMULMR instruction.
diff --git a/gcc-4.9/gcc/config/arm/vxworks.h b/gcc-4.9/gcc/config/arm/vxworks.h
index 8bef16bc4..faf84724d 100644
--- a/gcc-4.9/gcc/config/arm/vxworks.h
+++ b/gcc-4.9/gcc/config/arm/vxworks.h
@@ -17,8 +17,13 @@ but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
diff --git a/gcc-4.9/gcc/config/avr/avr-fixed.md b/gcc-4.9/gcc/config/avr/avr-fixed.md
index 1652415b1..9c8489edd 100644
--- a/gcc-4.9/gcc/config/avr/avr-fixed.md
+++ b/gcc-4.9/gcc/config/avr/avr-fixed.md
@@ -430,8 +430,8 @@
}
// Input and output of the libgcc function
- const unsigned int regno_in[] = { -1, 22, 22, -1, 18 };
- const unsigned int regno_out[] = { -1, 24, 24, -1, 22 };
+ const unsigned int regno_in[] = { -1U, 22, 22, -1U, 18 };
+ const unsigned int regno_out[] = { -1U, 24, 24, -1U, 22 };
operands[3] = gen_rtx_REG (<MODE>mode, regno_out[(size_t) GET_MODE_SIZE (<MODE>mode)]);
operands[4] = gen_rtx_REG (<MODE>mode, regno_in[(size_t) GET_MODE_SIZE (<MODE>mode)]);
diff --git a/gcc-4.9/gcc/config/avr/avr.h b/gcc-4.9/gcc/config/avr/avr.h
index 78434ec5e..9d34983e4 100644
--- a/gcc-4.9/gcc/config/avr/avr.h
+++ b/gcc-4.9/gcc/config/avr/avr.h
@@ -251,18 +251,18 @@ enum reg_class {
#define REG_CLASS_CONTENTS { \
{0x00000000,0x00000000}, /* NO_REGS */ \
{0x00000001,0x00000000}, /* R0_REG */ \
- {3 << REG_X,0x00000000}, /* POINTER_X_REGS, r26 - r27 */ \
- {3 << REG_Y,0x00000000}, /* POINTER_Y_REGS, r28 - r29 */ \
- {3 << REG_Z,0x00000000}, /* POINTER_Z_REGS, r30 - r31 */ \
+ {3u << REG_X,0x00000000}, /* POINTER_X_REGS, r26 - r27 */ \
+ {3u << REG_Y,0x00000000}, /* POINTER_Y_REGS, r28 - r29 */ \
+ {3u << REG_Z,0x00000000}, /* POINTER_Z_REGS, r30 - r31 */ \
{0x00000000,0x00000003}, /* STACK_REG, STACK */ \
- {(3 << REG_Y) | (3 << REG_Z), \
+ {(3u << REG_Y) | (3u << REG_Z), \
0x00000000}, /* BASE_POINTER_REGS, r28 - r31 */ \
- {(3 << REG_X) | (3 << REG_Y) | (3 << REG_Z), \
+ {(3u << REG_X) | (3u << REG_Y) | (3u << REG_Z), \
0x00000000}, /* POINTER_REGS, r26 - r31 */ \
- {(3 << REG_X) | (3 << REG_Y) | (3 << REG_Z) | (3 << REG_W), \
+ {(3u << REG_X) | (3u << REG_Y) | (3u << REG_Z) | (3u << REG_W), \
0x00000000}, /* ADDW_REGS, r24 - r31 */ \
{0x00ff0000,0x00000000}, /* SIMPLE_LD_REGS r16 - r23 */ \
- {(3 << REG_X)|(3 << REG_Y)|(3 << REG_Z)|(3 << REG_W)|(0xff << 16), \
+ {(3u << REG_X)|(3u << REG_Y)|(3u << REG_Z)|(3u << REG_W)|(0xffu << 16),\
0x00000000}, /* LD_REGS, r16 - r31 */ \
{0x0000ffff,0x00000000}, /* NO_LD_REGS r0 - r15 */ \
{0xffffffff,0x00000000}, /* GENERAL_REGS, r0 - r31 */ \
diff --git a/gcc-4.9/gcc/config/avr/avr.md b/gcc-4.9/gcc/config/avr/avr.md
index 2c59bf3f9..3bb2a914a 100644
--- a/gcc-4.9/gcc/config/avr/avr.md
+++ b/gcc-4.9/gcc/config/avr/avr.md
@@ -368,6 +368,15 @@
""
{
int i;
+
+ // Avoid (subreg (mem)) for non-generic address spaces below. Because
+ // of the poor addressing capabilities of these spaces it's better to
+ // load them in one chunk. And it avoids PR61443.
+
+ if (MEM_P (operands[0])
+ && !ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (operands[0])))
+ operands[0] = copy_to_mode_reg (<MODE>mode, operands[0]);
+
for (i = GET_MODE_SIZE (<MODE>mode) - 1; i >= 0; --i)
{
rtx part = simplify_gen_subreg (QImode, operands[0], <MODE>mode, i);
diff --git a/gcc-4.9/gcc/config/dbx.h b/gcc-4.9/gcc/config/dbx.h
index 1b68bcd9a..8173bb06c 100644
--- a/gcc-4.9/gcc/config/dbx.h
+++ b/gcc-4.9/gcc/config/dbx.h
@@ -13,8 +13,13 @@ but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* This file causes gcc to prefer using DBX (stabs) debugging
diff --git a/gcc-4.9/gcc/config/i386/driver-i386.c b/gcc-4.9/gcc/config/i386/driver-i386.c
index 1f5a11c9c..80f6a0879 100644
--- a/gcc-4.9/gcc/config/i386/driver-i386.c
+++ b/gcc-4.9/gcc/config/i386/driver-i386.c
@@ -739,6 +739,11 @@ const char *host_detect_local_cpu (int argc, const char **argv)
/* Assume Core 2. */
cpu = "core2";
}
+ else if (has_longmode)
+ /* Perhaps some emulator? Assume x86-64, otherwise gcc
+ -march=native would be unusable for 64-bit compilations,
+ as all the CPUs below are 32-bit only. */
+ cpu = "x86-64";
else if (has_sse3)
/* It is Core Duo. */
cpu = "pentium-m";
diff --git a/gcc-4.9/gcc/config/i386/gnu-user.h b/gcc-4.9/gcc/config/i386/gnu-user.h
index d9e3fa434..21b9e9692 100644
--- a/gcc-4.9/gcc/config/i386/gnu-user.h
+++ b/gcc-4.9/gcc/config/i386/gnu-user.h
@@ -70,10 +70,12 @@ along with GCC; see the file COPYING3. If not see
"--32 %{!mno-sse2avx:%{mavx:-msse2avx}} %{msse2avx:%{!mavx:-msse2avx}} " \
LINUX_OR_ANDROID_CC ("", ANDROID_ASM_SPEC)
-#undef SUBTARGET_EXTRA_SPECS
-#define SUBTARGET_EXTRA_SPECS \
+#undef SUBTARGET_EXTRA_SPECS_STR
+#define SUBTARGET_EXTRA_SPECS_STR \
{ "link_emulation", GNU_USER_LINK_EMULATION },\
{ "dynamic_linker", GNU_USER_DYNAMIC_LINKER }
+#undef SUBTARGET_EXTRA_SPECS
+#define SUBTARGET_EXTRA_SPECS SUBTARGET_EXTRA_SPECS_STR
#define GNU_USER_TARGET_LINK_SPEC "-m %(link_emulation) %{shared:-shared} \
%{!shared: \
diff --git a/gcc-4.9/gcc/config/i386/i386-protos.h b/gcc-4.9/gcc/config/i386/i386-protos.h
index 6e3297880..fc0eb53f8 100644
--- a/gcc-4.9/gcc/config/i386/i386-protos.h
+++ b/gcc-4.9/gcc/config/i386/i386-protos.h
@@ -28,6 +28,16 @@ extern bool ix86_target_stack_probe (void);
extern bool ix86_can_use_return_insn_p (void);
extern void ix86_setup_frame_addresses (void);
+/* Section names for function patch prologue and epilogue section. See
+ ix86_output_function_nops_prologue_epilogue() in i386.c for details. */
+#define FUNCTION_PATCH_PROLOGUE_SECTION "_function_patch_prologue"
+#define FUNCTION_PATCH_EPILOGUE_SECTION "_function_patch_epilogue"
+
+extern bool ix86_output_function_nops_prologue_epilogue (FILE *,
+ const char *,
+ const char *,
+ int);
+
extern HOST_WIDE_INT ix86_initial_elimination_offset (int, int);
extern void ix86_expand_prologue (void);
extern void ix86_maybe_emit_epilogue_vzeroupper (void);
@@ -312,6 +322,7 @@ extern enum attr_cpu ix86_schedule;
#endif
extern const char * ix86_output_call_insn (rtx insn, rtx call_op);
+extern bool adjacent_mem_locations (rtx mem1, rtx mem2);
#ifdef RTX_CODE
/* Target data for multipass lookahead scheduling.
diff --git a/gcc-4.9/gcc/config/i386/i386.c b/gcc-4.9/gcc/config/i386/i386.c
index d7c592f48..df504335e 100644
--- a/gcc-4.9/gcc/config/i386/i386.c
+++ b/gcc-4.9/gcc/config/i386/i386.c
@@ -78,6 +78,7 @@ along with GCC; see the file COPYING3. If not see
#include "diagnostic.h"
#include "dumpfile.h"
#include "tree-pass.h"
+#include "cfgloop.h"
#include "context.h"
#include "pass_manager.h"
#include "target-globals.h"
@@ -5017,8 +5018,11 @@ ix86_in_large_data_p (tree exp)
HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
/* If this is an incomplete type with size 0, then we can't put it
- in data because it might be too big when completed. */
- if (!size || size > ix86_section_threshold)
+ in data because it might be too big when completed. Also,
+ int_size_in_bytes returns -1 if size can vary or is larger than
+ an integer in which case also it is safer to assume that it goes in
+ large data. */
+ if (size <= 0 || size > ix86_section_threshold)
return true;
}
@@ -11730,6 +11734,246 @@ ix86_expand_epilogue (int style)
m->fs = frame_state_save;
}
+
+/* True if the current function should be patched with nops at prologue and
+ returns. */
+static bool patch_current_function_p = false;
+
+static inline bool
+has_attribute (const char* attribute_name)
+{
+ return lookup_attribute (attribute_name,
+ DECL_ATTRIBUTES (current_function_decl)) != NULL;
+}
+
+/* Return true if we patch the current function. By default a function
+ is patched if it has loops or if the number of insns is greater than
+ patch_functions_min_instructions (number of insns roughly translates
+ to number of instructions). */
+
+static bool
+check_should_patch_current_function (void)
+{
+ int num_insns = 0;
+ rtx insn;
+ const char *func_name = NULL;
+ struct loops *loops;
+ int num_loops = 0;
+ int min_functions_instructions;
+
+ /* If a function has an attribute forcing patching on or off, do as it
+ indicates. */
+ if (has_attribute ("always_patch_for_instrumentation"))
+ return true;
+ else if (has_attribute ("never_patch_for_instrumentation"))
+ return false;
+
+ /* Patch the function if it has at least a loop. */
+ if (!patch_functions_ignore_loops)
+ {
+ if (DECL_STRUCT_FUNCTION (current_function_decl)->cfg)
+ {
+ loops = flow_loops_find (NULL);
+ num_loops = loops->larray->length();
+ /* FIXME - Deallocating the loop causes a seg-fault. */
+#if 0
+ flow_loops_free (loops);
+#endif
+ /* We are not concerned with the function body as a loop. */
+ if (num_loops > 1)
+ return true;
+ }
+ }
+
+ /* Else, check if function has more than patch_functions_min_instrctions. */
+
+ /* Borrowed this code from rest_of_handle_final() in final.c. */
+ func_name = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
+ if (!patch_functions_dont_always_patch_main &&
+ func_name &&
+ strcmp("main", func_name) == 0)
+ return true;
+
+ min_functions_instructions =
+ PARAM_VALUE (PARAM_FUNCTION_PATCH_MIN_INSTRUCTIONS);
+ if (min_functions_instructions > 0)
+ {
+ /* Calculate the number of instructions in this function and only emit
+ function patch for instrumentation if it is greater than
+ patch_functions_min_instructions. */
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ {
+ if (NONDEBUG_INSN_P (insn))
+ ++num_insns;
+ }
+ if (num_insns < min_functions_instructions)
+ return false;
+ }
+
+ return true;
+}
+
+/* Emit the 11-byte patch space for the function prologue for functions that
+ qualify. */
+
+static void
+ix86_output_function_prologue (FILE *file,
+ HOST_WIDE_INT size ATTRIBUTE_UNUSED)
+{
+ /* Only for 64-bit target. */
+ if (TARGET_64BIT && patch_functions_for_instrumentation)
+ {
+ patch_current_function_p = check_should_patch_current_function();
+ /* Emit the instruction 'jmp 09' followed by 9 bytes to make it 11-bytes
+ of nop. */
+ ix86_output_function_nops_prologue_epilogue (
+ file,
+ FUNCTION_PATCH_PROLOGUE_SECTION,
+ ASM_BYTE"0xeb,0x09",
+ 9);
+ }
+}
+
+/* Emit the nop bytes at function prologue or return (including tail call
+ jumps). The number of nop bytes generated is at least 8.
+ Also emits a section named SECTION_NAME, which is a backpointer section
+ holding the addresses of the nop bytes in the text section.
+ SECTION_NAME is either '_function_patch_prologue' or
+ '_function_patch_epilogue'. The backpointer section can be used to navigate
+ through all the function entry and exit points which are patched with nops.
+ PRE_INSTRUCTIONS are the instructions, if any, at the start of the nop byte
+ sequence. NUM_REMAINING_NOPS are the number of nop bytes to fill,
+ excluding the number of bytes in PRE_INSTRUCTIONS.
+ Returns true if the function was patched, false otherwise. */
+
+bool
+ix86_output_function_nops_prologue_epilogue (FILE *file,
+ const char *section_name,
+ const char *pre_instructions,
+ int num_remaining_nops)
+{
+ static int labelno = 0;
+ char label[32], section_label[32];
+ section *section = NULL;
+ int num_actual_nops = num_remaining_nops - sizeof(void *);
+ unsigned int section_flags = SECTION_RELRO;
+ char *section_name_comdat = NULL;
+ const char *decl_section_name = NULL;
+ const char *func_name = NULL;
+ char *section_name_function_sections = NULL;
+ size_t len;
+
+ gcc_assert (num_remaining_nops >= 0);
+
+ if (!patch_current_function_p)
+ return false;
+
+ ASM_GENERATE_INTERNAL_LABEL (label, "LFPEL", labelno);
+ ASM_GENERATE_INTERNAL_LABEL (section_label, "LFPESL", labelno++);
+
+ /* Align the start of nops to 2-byte boundary so that the 2-byte jump
+ instruction can be patched atomically at run time. */
+ ASM_OUTPUT_ALIGN (file, 1);
+
+ /* Emit nop bytes. They look like the following:
+ $LFPEL0:
+ <pre_instruction>
+ 0x90 (repeated num_actual_nops times)
+ .quad $LFPESL0 - .
+ followed by section 'section_name' which contains the address
+ of instruction at 'label'.
+ */
+ ASM_OUTPUT_INTERNAL_LABEL (file, label);
+ if (pre_instructions)
+ fprintf (file, "%s\n", pre_instructions);
+
+ while (num_actual_nops-- > 0)
+ asm_fprintf (file, ASM_BYTE"0x90\n");
+
+ fprintf (file, ASM_QUAD);
+ /* Output "section_label - ." for the relative address of the entry in
+ the section 'section_name'. */
+ assemble_name_raw (file, section_label);
+ fprintf (file, " - .");
+ fprintf (file, "\n");
+
+ /* Emit the backpointer section. For functions belonging to comdat group,
+ we emit a different section named '<section_name>.foo' where 'foo' is
+ the name of the comdat section. This section is later renamed to
+ '<section_name>' by ix86_elf_asm_named_section().
+ We emit a unique section name for the back pointer section for comdat
+ functions because otherwise the 'get_section' call may return an existing
+ non-comdat section with the same name, leading to references from
+ non-comdat section to comdat functions.
+ */
+ if (current_function_decl != NULL_TREE &&
+ DECL_ONE_ONLY (current_function_decl) &&
+ HAVE_COMDAT_GROUP)
+ {
+ decl_section_name =
+ TREE_STRING_POINTER (DECL_SECTION_NAME (current_function_decl));
+ len = strlen (decl_section_name) + strlen (section_name) + 2;
+ section_name_comdat = (char *) alloca (len);
+ sprintf (section_name_comdat, "%s.%s", section_name, decl_section_name);
+ section_name = section_name_comdat;
+ section_flags |= SECTION_LINKONCE;
+ }
+ else if (flag_function_sections)
+ {
+ func_name = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
+ if (func_name)
+ {
+ len = strlen (func_name) + strlen (section_name) + 2;
+ section_name_function_sections = (char *) alloca (len);
+ sprintf (section_name_function_sections, "%s.%s", section_name,
+ func_name);
+ section_name = section_name_function_sections;
+ }
+ }
+ section = get_section (section_name, section_flags, current_function_decl);
+ switch_to_section (section);
+ /* Align the section to 8-byte boundary. */
+ ASM_OUTPUT_ALIGN (file, 3);
+
+ /* Emit address of the start of nop bytes in the section:
+ $LFPESP0:
+ .quad $LFPEL0
+ */
+ ASM_OUTPUT_INTERNAL_LABEL (file, section_label);
+ fprintf(file, ASM_QUAD);
+ assemble_name_raw (file, label);
+ fprintf (file, "\n");
+
+ /* Switching back to text section. */
+ switch_to_section (function_section (current_function_decl));
+ return true;
+}
+
+/* Strips the characters after '_function_patch_prologue' or
+ '_function_patch_epilogue' and emits the section. */
+
+static void
+ix86_elf_asm_named_section (const char *name, unsigned int flags,
+ tree decl)
+{
+ const char *section_name = name;
+ if (!flag_function_sections && HAVE_COMDAT_GROUP && flags & SECTION_LINKONCE)
+ {
+ const int prologue_section_name_length =
+ sizeof(FUNCTION_PATCH_PROLOGUE_SECTION) - 1;
+ const int epilogue_section_name_length =
+ sizeof(FUNCTION_PATCH_EPILOGUE_SECTION) - 1;
+
+ if (strncmp (name, FUNCTION_PATCH_PROLOGUE_SECTION,
+ prologue_section_name_length) == 0)
+ section_name = FUNCTION_PATCH_PROLOGUE_SECTION;
+ else if (strncmp (name, FUNCTION_PATCH_EPILOGUE_SECTION,
+ epilogue_section_name_length) == 0)
+ section_name = FUNCTION_PATCH_EPILOGUE_SECTION;
+ }
+ default_elf_asm_named_section (section_name, flags, decl);
+}
+
/* Reset from the function's potential modifications. */
static void
@@ -12659,7 +12903,9 @@ legitimate_pic_address_disp_p (rtx disp)
return true;
}
else if (!SYMBOL_REF_FAR_ADDR_P (op0)
- && SYMBOL_REF_LOCAL_P (op0)
+ && (SYMBOL_REF_LOCAL_P (op0)
+ || (TARGET_64BIT && ix86_pie_copyrelocs && flag_pie
+ && !SYMBOL_REF_FUNCTION_P (op0)))
&& ix86_cmodel != CM_LARGE_PIC)
return true;
break;
@@ -21507,7 +21753,7 @@ ix86_expand_vec_perm (rtx operands[])
t1 = gen_reg_rtx (V32QImode);
t2 = gen_reg_rtx (V32QImode);
t3 = gen_reg_rtx (V32QImode);
- vt2 = GEN_INT (128);
+ vt2 = GEN_INT (-128);
for (i = 0; i < 32; i++)
vec[i] = vt2;
vt = gen_rtx_CONST_VECTOR (V32QImode, gen_rtvec_v (32, vec));
@@ -23794,7 +24040,7 @@ decide_alg (HOST_WIDE_INT count, HOST_WIDE_INT expected_size,
{
const struct stringop_algs * algs;
bool optimize_for_speed;
- int max = -1;
+ int max = 0;
const struct processor_costs *cost;
int i;
bool any_alg_usable_p = false;
@@ -23832,7 +24078,7 @@ decide_alg (HOST_WIDE_INT count, HOST_WIDE_INT expected_size,
/* If expected size is not known but max size is small enough
so inline version is a win, set expected size into
the range. */
- if (max > 1 && (unsigned HOST_WIDE_INT) max >= max_size
+ if (((max > 1 && (unsigned HOST_WIDE_INT) max >= max_size) || max == -1)
&& expected_size == -1)
expected_size = min_size / 2 + max_size / 2;
@@ -23921,7 +24167,7 @@ decide_alg (HOST_WIDE_INT count, HOST_WIDE_INT expected_size,
*dynamic_check = 128;
return loop_1_byte;
}
- if (max == -1)
+ if (max <= 0)
max = 4096;
alg = decide_alg (count, max / 2, min_size, max_size, memset,
zero_memset, dynamic_check, noalign);
@@ -24945,6 +25191,15 @@ ix86_output_call_insn (rtx insn, rtx call_op)
else
xasm = "jmp\t%A0";
+ /* Just before the sibling call, add 11-bytes of nops to patch function
+ exit: 2 bytes for 'jmp 09' and remaining 9 bytes. */
+ if (TARGET_64BIT && patch_functions_for_instrumentation)
+ ix86_output_function_nops_prologue_epilogue (
+ asm_out_file,
+ FUNCTION_PATCH_EPILOGUE_SECTION,
+ ASM_BYTE"0xeb, 0x09",
+ 9);
+
output_asm_insn (xasm, &call_op);
return "";
}
@@ -26238,13 +26493,17 @@ ix86_dependencies_evaluation_hook (rtx head, rtx tail)
{
edge e;
edge_iterator ei;
- /* Assume that region is SCC, i.e. all immediate predecessors
- of non-head block are in the same region. */
+
+ /* Regions are SCCs with the exception of selective
+ scheduling with pipelining of outer blocks enabled.
+ So also check that immediate predecessors of a non-head
+ block are in the same region. */
FOR_EACH_EDGE (e, ei, bb->preds)
{
/* Avoid creating of loop-carried dependencies through
- using topological odering in region. */
- if (BLOCK_TO_BB (bb->index) > BLOCK_TO_BB (e->src->index))
+ using topological ordering in the region. */
+ if (rgn == CONTAINING_RGN (e->src->index)
+ && BLOCK_TO_BB (bb->index) > BLOCK_TO_BB (e->src->index))
add_dependee_for_func_arg (first_arg, e->src);
}
}
@@ -28789,7 +29048,8 @@ def_builtin (HOST_WIDE_INT mask, const char *name,
ix86_builtins_isa[(int) code].isa = mask;
mask &= ~OPTION_MASK_ISA_64BIT;
- if (mask == 0
+ if (flag_dyn_ipa
+ || mask == 0
|| (mask & ix86_isa_flags) != 0
|| (lang_hooks.builtin_function
== lang_hooks.builtin_function_ext_scope))
@@ -37802,10 +38062,10 @@ ix86_rtx_costs (rtx x, int code_i, int outer_code_i, int opno, int *total,
else if (TARGET_64BIT && !x86_64_zext_immediate_operand (x, VOIDmode))
*total = 2;
else if (flag_pic && SYMBOLIC_CONST (x)
- && (!TARGET_64BIT
- || (!GET_CODE (x) != LABEL_REF
- && (GET_CODE (x) != SYMBOL_REF
- || !SYMBOL_REF_LOCAL_P (x)))))
+ && !(TARGET_64BIT
+ && (GET_CODE (x) == LABEL_REF
+ || (GET_CODE (x) == SYMBOL_REF
+ && SYMBOL_REF_LOCAL_P (x)))))
*total = 1;
else
*total = 0;
@@ -46745,6 +47005,70 @@ ix86_atomic_assign_expand_fenv (tree *hold, tree *clear, tree *update)
atomic_feraiseexcept_call);
}
+/* Try to determine BASE/OFFSET/SIZE parts of the given MEM.
+ Return true if successful, false if all the values couldn't
+ be determined.
+
+ This function only looks for REG/SYMBOL or REG/SYMBOL+CONST
+ address forms. */
+
+static bool
+get_memref_parts (rtx mem, rtx *base, HOST_WIDE_INT *offset,
+ HOST_WIDE_INT *size)
+{
+ rtx addr_rtx;
+ if MEM_SIZE_KNOWN_P (mem)
+ *size = MEM_SIZE (mem);
+ else
+ return false;
+
+ if (GET_CODE (XEXP (mem, 0)) == CONST)
+ addr_rtx = XEXP (XEXP (mem, 0), 0);
+ else
+ addr_rtx = (XEXP (mem, 0));
+
+ if (GET_CODE (addr_rtx) == REG
+ || GET_CODE (addr_rtx) == SYMBOL_REF)
+ {
+ *base = addr_rtx;
+ *offset = 0;
+ }
+ else if (GET_CODE (addr_rtx) == PLUS
+ && CONST_INT_P (XEXP (addr_rtx, 1)))
+ {
+ *base = XEXP (addr_rtx, 0);
+ *offset = INTVAL (XEXP (addr_rtx, 1));
+ }
+ else
+ return false;
+
+ return true;
+}
+
+/* If MEM1 is adjacent to MEM2 and MEM1 has lower address,
+ return true. */
+
+extern bool
+adjacent_mem_locations (rtx mem1, rtx mem2)
+{
+ rtx base1, base2;
+ HOST_WIDE_INT off1, size1, off2, size2;
+
+ if (get_memref_parts (mem1, &base1, &off1, &size1)
+ && get_memref_parts (mem2, &base2, &off2, &size2))
+ {
+ if (GET_CODE (base1) == SYMBOL_REF
+ && GET_CODE (base2) == SYMBOL_REF
+ && SYMBOL_REF_DECL (base1) == SYMBOL_REF_DECL (base2))
+ return (off1 + size1 == off2);
+ else if (REG_P (base1)
+ && REG_P (base2)
+ && REGNO (base1) == REGNO (base2))
+ return (off1 + size1 == off2);
+ }
+ return false;
+}
+
/* Initialize the GCC target structure. */
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY ix86_return_in_memory
@@ -46787,9 +47111,15 @@ ix86_atomic_assign_expand_fenv (tree *hold, tree *clear, tree *update)
#undef TARGET_BUILTIN_RECIPROCAL
#define TARGET_BUILTIN_RECIPROCAL ix86_builtin_reciprocal
+#undef TARGET_ASM_FUNCTION_PROLOGUE
+#define TARGET_ASM_FUNCTION_PROLOGUE ix86_output_function_prologue
+
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE ix86_output_function_epilogue
+#undef TARGET_ASM_NAMED_SECTION
+#define TARGET_ASM_NAMED_SECTION ix86_elf_asm_named_section
+
#undef TARGET_ENCODE_SECTION_INFO
#ifndef SUBTARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO ix86_encode_section_info
diff --git a/gcc-4.9/gcc/config/i386/i386.md b/gcc-4.9/gcc/config/i386/i386.md
index 9f103cf30..058702904 100644
--- a/gcc-4.9/gcc/config/i386/i386.md
+++ b/gcc-4.9/gcc/config/i386/i386.md
@@ -3201,7 +3201,7 @@
(const_string "1")
(const_string "*")))
(set (attr "mode")
- (cond [(eq_attr "alternative" "3,4,9,10,13,14,15")
+ (cond [(eq_attr "alternative" "3,4,9,10,12,13,14,15")
(const_string "SI")
(eq_attr "alternative" "11")
(const_string "DI")
@@ -4933,66 +4933,37 @@
;; Avoid store forwarding (partial memory) stall penalty by extending
;; SImode value to DImode through XMM register instead of pushing two
-;; SImode values to stack. Note that even !TARGET_INTER_UNIT_MOVES_TO_VEC
-;; targets benefit from this optimization. Also note that fild
-;; loads from memory only.
+;; SImode values to stack. Also note that fild loads from memory only.
-(define_insn "*floatunssi<mode>2_1"
- [(set (match_operand:X87MODEF 0 "register_operand" "=f,f")
+(define_insn_and_split "*floatunssi<mode>2_i387_with_xmm"
+ [(set (match_operand:X87MODEF 0 "register_operand" "=f")
(unsigned_float:X87MODEF
- (match_operand:SI 1 "nonimmediate_operand" "x,m")))
- (clobber (match_operand:DI 2 "memory_operand" "=m,m"))
- (clobber (match_scratch:SI 3 "=X,x"))]
+ (match_operand:SI 1 "nonimmediate_operand" "rm")))
+ (clobber (match_scratch:DI 3 "=x"))
+ (clobber (match_operand:DI 2 "memory_operand" "=m"))]
"!TARGET_64BIT
&& TARGET_80387 && X87_ENABLE_FLOAT (<X87MODEF:MODE>mode, DImode)
- && TARGET_SSE"
+ && TARGET_SSE2 && TARGET_INTER_UNIT_MOVES_TO_VEC"
"#"
- [(set_attr "type" "multi")
- (set_attr "mode" "<MODE>")])
-
-(define_split
- [(set (match_operand:X87MODEF 0 "register_operand")
- (unsigned_float:X87MODEF
- (match_operand:SI 1 "register_operand")))
- (clobber (match_operand:DI 2 "memory_operand"))
- (clobber (match_scratch:SI 3))]
- "!TARGET_64BIT
- && TARGET_80387 && X87_ENABLE_FLOAT (<X87MODEF:MODE>mode, DImode)
- && TARGET_SSE
- && reload_completed"
- [(set (match_dup 2) (match_dup 1))
- (set (match_dup 0)
- (float:X87MODEF (match_dup 2)))]
- "operands[1] = simplify_gen_subreg (DImode, operands[1], SImode, 0);")
-
-(define_split
- [(set (match_operand:X87MODEF 0 "register_operand")
- (unsigned_float:X87MODEF
- (match_operand:SI 1 "memory_operand")))
- (clobber (match_operand:DI 2 "memory_operand"))
- (clobber (match_scratch:SI 3))]
- "!TARGET_64BIT
- && TARGET_80387 && X87_ENABLE_FLOAT (<X87MODEF:MODE>mode, DImode)
- && TARGET_SSE
- && reload_completed"
- [(set (match_dup 2) (match_dup 3))
+ "&& reload_completed"
+ [(set (match_dup 3) (zero_extend:DI (match_dup 1)))
+ (set (match_dup 2) (match_dup 3))
(set (match_dup 0)
(float:X87MODEF (match_dup 2)))]
-{
- emit_move_insn (operands[3], operands[1]);
- operands[3] = simplify_gen_subreg (DImode, operands[3], SImode, 0);
-})
+ ""
+ [(set_attr "type" "multi")
+ (set_attr "mode" "<MODE>")])
(define_expand "floatunssi<mode>2"
[(parallel
[(set (match_operand:X87MODEF 0 "register_operand")
(unsigned_float:X87MODEF
(match_operand:SI 1 "nonimmediate_operand")))
- (clobber (match_dup 2))
- (clobber (match_scratch:SI 3))])]
+ (clobber (match_scratch:DI 3))
+ (clobber (match_dup 2))])]
"!TARGET_64BIT
&& ((TARGET_80387 && X87_ENABLE_FLOAT (<X87MODEF:MODE>mode, DImode)
- && TARGET_SSE)
+ && TARGET_SSE2 && TARGET_INTER_UNIT_MOVES_TO_VEC)
|| (SSE_FLOAT_MODE_P (<MODE>mode) && TARGET_SSE_MATH))"
{
if (SSE_FLOAT_MODE_P (<MODE>mode) && TARGET_SSE_MATH)
@@ -9627,7 +9598,7 @@
(define_insn "x86_64_shrd"
[(set (match_operand:DI 0 "nonimmediate_operand" "+r*m")
- (ior:DI (ashiftrt:DI (match_dup 0)
+ (ior:DI (lshiftrt:DI (match_dup 0)
(match_operand:QI 2 "nonmemory_operand" "Jc"))
(ashift:DI (match_operand:DI 1 "register_operand" "r")
(minus:QI (const_int 64) (match_dup 2)))))
@@ -9643,7 +9614,7 @@
(define_insn "x86_shrd"
[(set (match_operand:SI 0 "nonimmediate_operand" "+r*m")
- (ior:SI (ashiftrt:SI (match_dup 0)
+ (ior:SI (lshiftrt:SI (match_dup 0)
(match_operand:QI 2 "nonmemory_operand" "Ic"))
(ashift:SI (match_operand:SI 1 "register_operand" "r")
(minus:QI (const_int 32) (match_dup 2)))))
@@ -10095,13 +10066,13 @@
[(set (match_dup 3) (match_dup 4))
(parallel
[(set (match_dup 4)
- (ior:DWIH (ashiftrt:DWIH (match_dup 4) (match_dup 2))
+ (ior:DWIH (lshiftrt:DWIH (match_dup 4) (match_dup 2))
(ashift:DWIH (match_dup 5)
(minus:QI (match_dup 6) (match_dup 2)))))
(clobber (reg:CC FLAGS_REG))])
(parallel
[(set (match_dup 5)
- (ior:DWIH (ashiftrt:DWIH (match_dup 5) (match_dup 2))
+ (ior:DWIH (lshiftrt:DWIH (match_dup 5) (match_dup 2))
(ashift:DWIH (match_dup 3)
(minus:QI (match_dup 6) (match_dup 2)))))
(clobber (reg:CC FLAGS_REG))])]
@@ -11611,7 +11582,18 @@
(define_insn "simple_return_internal"
[(simple_return)]
"reload_completed"
- "ret"
+{
+ if (TARGET_64BIT && patch_functions_for_instrumentation)
+ {
+ /* Emit 10 nop bytes after ret. */
+ if (ix86_output_function_nops_prologue_epilogue (asm_out_file,
+ FUNCTION_PATCH_EPILOGUE_SECTION,
+ "\tret",
+ 10))
+ return "";
+ }
+ return "ret";
+}
[(set_attr "length" "1")
(set_attr "atom_unit" "jeu")
(set_attr "length_immediate" "0")
@@ -11624,7 +11606,18 @@
[(simple_return)
(unspec [(const_int 0)] UNSPEC_REP)]
"reload_completed"
- "rep%; ret"
+{
+ if (TARGET_64BIT && patch_functions_for_instrumentation)
+ {
+ /* Emit 9 nop bytes after rep;ret. */
+ if (ix86_output_function_nops_prologue_epilogue (asm_out_file,
+ FUNCTION_PATCH_EPILOGUE_SECTION,
+ "\trep\;ret",
+ 9))
+ return "";
+ }
+ return "rep\;ret";
+}
[(set_attr "length" "2")
(set_attr "atom_unit" "jeu")
(set_attr "length_immediate" "0")
diff --git a/gcc-4.9/gcc/config/i386/i386.opt b/gcc-4.9/gcc/config/i386/i386.opt
index 0f463a238..1e00b660e 100644
--- a/gcc-4.9/gcc/config/i386/i386.opt
+++ b/gcc-4.9/gcc/config/i386/i386.opt
@@ -108,6 +108,10 @@ int x_ix86_dump_tunes
TargetSave
int x_ix86_force_align_arg_pointer
+;; -mcopyrelocs=
+TargetSave
+int x_ix86_copyrelocs
+
;; -mforce-drap=
TargetSave
int x_ix86_force_drap
@@ -291,6 +295,10 @@ mfancy-math-387
Target RejectNegative Report InverseMask(NO_FANCY_MATH_387, USE_FANCY_MATH_387) Save
Generate sin, cos, sqrt for FPU
+mcopyrelocs
+Target Report Var(ix86_pie_copyrelocs) Init(0)
+Assume copy relocations support for pie builds.
+
mforce-drap
Target Report Var(ix86_force_drap)
Always use Dynamic Realigned Argument Pointer (DRAP) to realign stack
@@ -781,6 +789,18 @@ mrtm
Target Report Mask(ISA_RTM) Var(ix86_isa_flags) Save
Support RTM built-in functions and code generation
+mpatch-functions-for-instrumentation
+Target RejectNegative Report Var(patch_functions_for_instrumentation) Save
+Patch function prologue and epilogue with custom NOPs for dynamic instrumentation. By default, functions with loops (controlled by -mpatch-functions-without-loop) or functions having instructions more than -mpatch-functions-min-instructions are patched.
+
+mpatch-functions-ignore-loops
+Target RejectNegative Report Var(patch_functions_ignore_loops) Save
+Ignore loops when deciding whether to patch a function for instrumentation (for use with -mpatch-functions-for-instrumentation).
+
+mno-patch-functions-main-always
+Target Report RejectNegative Var(patch_functions_dont_always_patch_main) Save
+Treat 'main' as any other function and only patch it if it meets the criteria for loops and minimum number of instructions (for use with -mpatch-functions-for-instrumentation).
+
mstack-protector-guard=
Target RejectNegative Joined Enum(stack_protector_guard) Var(ix86_stack_protector_guard) Init(SSP_TLS)
Use given stack-protector guard
diff --git a/gcc-4.9/gcc/config/i386/linux.h b/gcc-4.9/gcc/config/i386/linux.h
index 1fb1e0321..27d68b5db 100644
--- a/gcc-4.9/gcc/config/i386/linux.h
+++ b/gcc-4.9/gcc/config/i386/linux.h
@@ -20,4 +20,22 @@ along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#define GNU_USER_LINK_EMULATION "elf_i386"
-#define GLIBC_DYNAMIC_LINKER "/lib/ld-linux.so.2"
+#ifndef RUNTIME_ROOT_PREFIX
+#define RUNTIME_ROOT_PREFIX ""
+#endif
+#define GLIBC_DYNAMIC_LINKER RUNTIME_ROOT_PREFIX "/lib/ld-linux.so.2"
+
+/* These may be provided by config/linux-grtev*.h. */
+#ifndef LINUX_GRTE_EXTRA_SPECS
+#define LINUX_GRTE_EXTRA_SPECS
+#endif
+
+#undef SUBTARGET_EXTRA_SPECS
+#ifndef SUBTARGET_EXTRA_SPECS_STR
+#define SUBTARGET_EXTRA_SPECS \
+ LINUX_GRTE_EXTRA_SPECS
+#else
+#define SUBTARGET_EXTRA_SPECS \
+ LINUX_GRTE_EXTRA_SPECS \
+ SUBTARGET_EXTRA_SPECS_STR
+#endif
diff --git a/gcc-4.9/gcc/config/i386/linux64.h b/gcc-4.9/gcc/config/i386/linux64.h
index a90171e8c..5124a341b 100644
--- a/gcc-4.9/gcc/config/i386/linux64.h
+++ b/gcc-4.9/gcc/config/i386/linux64.h
@@ -27,6 +27,19 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
#define GNU_USER_LINK_EMULATION64 "elf_x86_64"
#define GNU_USER_LINK_EMULATIONX32 "elf32_x86_64"
-#define GLIBC_DYNAMIC_LINKER32 "/lib/ld-linux.so.2"
-#define GLIBC_DYNAMIC_LINKER64 "/lib64/ld-linux-x86-64.so.2"
-#define GLIBC_DYNAMIC_LINKERX32 "/libx32/ld-linux-x32.so.2"
+#ifndef RUNTIME_ROOT_PREFIX
+#define RUNTIME_ROOT_PREFIX ""
+#endif
+#define GLIBC_DYNAMIC_LINKER32 RUNTIME_ROOT_PREFIX "/lib/ld-linux.so.2"
+#define GLIBC_DYNAMIC_LINKER64 RUNTIME_ROOT_PREFIX "/lib64/ld-linux-x86-64.so.2"
+#define GLIBC_DYNAMIC_LINKERX32 RUNTIME_ROOT_PREFIX "/libx32/ld-linux-x32.so.2"
+
+/* These may be provided by config/linux-grtev*.h. */
+#ifndef LINUX_GRTE_EXTRA_SPECS
+#define LINUX_GRTE_EXTRA_SPECS
+#endif
+
+#undef SUBTARGET_EXTRA_SPECS
+#define SUBTARGET_EXTRA_SPECS \
+ LINUX_GRTE_EXTRA_SPECS
+
diff --git a/gcc-4.9/gcc/config/i386/sse.md b/gcc-4.9/gcc/config/i386/sse.md
index 72a4d6d07..27ade1964 100644
--- a/gcc-4.9/gcc/config/i386/sse.md
+++ b/gcc-4.9/gcc/config/i386/sse.md
@@ -8255,6 +8255,36 @@
DONE;
})
+(define_expand "usadv16qi"
+ [(match_operand:V4SI 0 "register_operand")
+ (match_operand:V16QI 1 "register_operand")
+ (match_operand:V16QI 2 "nonimmediate_operand")
+ (match_operand:V4SI 3 "nonimmediate_operand")]
+ "TARGET_SSE2"
+{
+ rtx t1 = gen_reg_rtx (V2DImode);
+ rtx t2 = gen_reg_rtx (V4SImode);
+ emit_insn (gen_sse2_psadbw (t1, operands[1], operands[2]));
+ convert_move (t2, t1, 0);
+ emit_insn (gen_addv4si3 (operands[0], t2, operands[3]));
+ DONE;
+})
+
+(define_expand "usadv32qi"
+ [(match_operand:V8SI 0 "register_operand")
+ (match_operand:V32QI 1 "register_operand")
+ (match_operand:V32QI 2 "nonimmediate_operand")
+ (match_operand:V8SI 3 "nonimmediate_operand")]
+ "TARGET_AVX2"
+{
+ rtx t1 = gen_reg_rtx (V4DImode);
+ rtx t2 = gen_reg_rtx (V8SImode);
+ emit_insn (gen_avx2_psadbw (t1, operands[1], operands[2]));
+ convert_move (t2, t1, 0);
+ emit_insn (gen_addv8si3 (operands[0], t2, operands[3]));
+ DONE;
+})
+
(define_insn "ashr<mode>3"
[(set (match_operand:VI24_AVX2 0 "register_operand" "=x,x")
(ashiftrt:VI24_AVX2
@@ -15606,3 +15636,37 @@
[(set_attr "type" "sselog1")
(set_attr "length_immediate" "1")
(set_attr "mode" "TI")])
+
+;; merge movsd/movhpd to movupd when TARGET_SSE_UNALIGNED_LOAD_OPTIMAL
+;; is true.
+(define_peephole2
+ [(set (match_operand:DF 0 "register_operand")
+ (match_operand:DF 1 "memory_operand"))
+ (set (match_operand:V2DF 2 "register_operand")
+ (vec_concat:V2DF (match_dup 0)
+ (match_operand:DF 3 "memory_operand")))]
+ "TARGET_SSE_UNALIGNED_LOAD_OPTIMAL
+ && REGNO (operands[0]) == REGNO (operands[2])
+ && adjacent_mem_locations (operands[1], operands[3])"
+ [(set (match_dup 2)
+ (unspec:V2DF [(match_dup 4)] UNSPEC_LOADU))]
+{
+ operands[4] = gen_rtx_MEM (V2DFmode, XEXP(operands[1], 0));
+})
+
+;; merge movsd/movhpd to movupd when TARGET_SSE_UNALIGNED_STORE_OPTIMAL
+;; is true.
+(define_peephole2
+ [(set (match_operand:DF 0 "memory_operand")
+ (vec_select:DF (match_operand:V2DF 1 "register_operand")
+ (parallel [(const_int 0)])))
+ (set (match_operand:DF 2 "memory_operand")
+ (vec_select:DF (match_dup 1)
+ (parallel [(const_int 1)])))]
+ "TARGET_SSE_UNALIGNED_STORE_OPTIMAL
+ && adjacent_mem_locations (operands[0], operands[2])"
+ [(set (match_dup 3)
+ (unspec:V2DF [(match_dup 1)] UNSPEC_STOREU))]
+{
+ operands[3] = gen_rtx_MEM (V2DFmode, XEXP(operands[0], 0));
+})
diff --git a/gcc-4.9/gcc/config/initfini-array.h b/gcc-4.9/gcc/config/initfini-array.h
index f7ae836e6..67e66f6f2 100644
--- a/gcc-4.9/gcc/config/initfini-array.h
+++ b/gcc-4.9/gcc/config/initfini-array.h
@@ -14,8 +14,13 @@
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
+ Under Section 7 of GPL version 3, you are granted additional
+ permissions described in the GCC Runtime Library Exception, version
+ 3.1, as published by the Free Software Foundation.
+
+ You should have received a copy of the GNU General Public License and
+ a copy of the GCC Runtime Library Exception along with this program;
+ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#ifdef HAVE_INITFINI_ARRAY_SUPPORT
diff --git a/gcc-4.9/gcc/config/linux-grte.h b/gcc-4.9/gcc/config/linux-grte.h
new file mode 100644
index 000000000..31e8a94ce
--- /dev/null
+++ b/gcc-4.9/gcc/config/linux-grte.h
@@ -0,0 +1,41 @@
+/* Definitions for Linux-based GRTE (Google RunTime Environment).
+ Copyright (C) 2009,2010,2011,2012 Free Software Foundation, Inc.
+ Contributed by Chris Demetriou and Ollie Wild.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
+<http://www.gnu.org/licenses/>. */
+
+/* Overrides LIB_SPEC from gnu-user.h. */
+#undef LIB_SPEC
+#define LIB_SPEC \
+ "%{pthread:-lpthread} \
+ %{shared:-lc} \
+ %{!shared:%{mieee-fp:-lieee} %{profile:%(libc_p)}%{!profile:%(libc)}}"
+
+/* When GRTE links statically, it needs its NSS and resolver libraries
+ linked in as well. Note that when linking statically, these are
+ enclosed in a group by LINK_GCC_C_SEQUENCE_SPEC. */
+#undef LINUX_GRTE_EXTRA_SPECS
+#define LINUX_GRTE_EXTRA_SPECS \
+ { "libc", "%{static:%(libc_static);:-lc}" }, \
+ { "libc_p", "%{static:%(libc_p_static);:-lc_p}" }, \
+ { "libc_static", "-lc -lresolv" }, \
+ { "libc_p_static", "-lc_p -lresolv_p" },
diff --git a/gcc-4.9/gcc/config/linux.c b/gcc-4.9/gcc/config/linux.c
index 6162675d8..2f1cd8e63 100644
--- a/gcc-4.9/gcc/config/linux.c
+++ b/gcc-4.9/gcc/config/linux.c
@@ -38,7 +38,9 @@ linux_libc_has_function (enum function_class fn_class)
return true;
if (OPTION_BIONIC)
if (fn_class == function_c94
- || fn_class == function_c99_misc)
+ || fn_class == function_c99_misc
+ || (fn_class == function_sincos && !TARGET_ANDROID)
+ )
return true;
return false;
diff --git a/gcc-4.9/gcc/config/linux.h b/gcc-4.9/gcc/config/linux.h
index d38ef81e3..7c2a8e2c0 100644
--- a/gcc-4.9/gcc/config/linux.h
+++ b/gcc-4.9/gcc/config/linux.h
@@ -73,13 +73,16 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
GLIBC_DYNAMIC_LINKER must be defined for each target using them, or
GLIBC_DYNAMIC_LINKER32 and GLIBC_DYNAMIC_LINKER64 for targets
supporting both 32-bit and 64-bit compilation. */
-#define UCLIBC_DYNAMIC_LINKER "/lib/ld-uClibc.so.0"
-#define UCLIBC_DYNAMIC_LINKER32 "/lib/ld-uClibc.so.0"
-#define UCLIBC_DYNAMIC_LINKER64 "/lib/ld64-uClibc.so.0"
-#define UCLIBC_DYNAMIC_LINKERX32 "/lib/ldx32-uClibc.so.0"
-#define BIONIC_DYNAMIC_LINKER "/system/bin/linker"
-#define BIONIC_DYNAMIC_LINKER32 "/system/bin/linker"
-#define BIONIC_DYNAMIC_LINKER64 "/system/bin/linker64"
+#ifndef RUNTIME_ROOT_PREFIX
+#define RUNTIME_ROOT_PREFIX ""
+#endif
+#define UCLIBC_DYNAMIC_LINKER RUNTIME_ROOT_PREFIX "/lib/ld-uClibc.so.0"
+#define UCLIBC_DYNAMIC_LINKER32 RUNTIME_ROOT_PREFIX "/lib/ld-uClibc.so.0"
+#define UCLIBC_DYNAMIC_LINKER64 RUNTIME_ROOT_PREFIX "/lib/ld64-uClibc.so.0"
+#define UCLIBC_DYNAMIC_LINKERX32 RUNTIME_ROOT_PREFIX "/lib/ldx32-uClibc.so.0"
+#define BIONIC_DYNAMIC_LINKER RUNTIME_ROOT_PREFIX "/system/bin/linker"
+#define BIONIC_DYNAMIC_LINKER32 RUNTIME_ROOT_PREFIX "/system/bin/linker"
+#define BIONIC_DYNAMIC_LINKER64 RUNTIME_ROOT_PREFIX "/system/bin/linker64"
#define BIONIC_DYNAMIC_LINKERX32 "/system/bin/linkerx32"
#define GNU_USER_DYNAMIC_LINKER \
diff --git a/gcc-4.9/gcc/config/msp430/msp430-opts.h b/gcc-4.9/gcc/config/msp430/msp430-opts.h
new file mode 100644
index 000000000..119cfcb7f
--- /dev/null
+++ b/gcc-4.9/gcc/config/msp430/msp430-opts.h
@@ -0,0 +1,32 @@
+/* GCC option-handling definitions for the TI MSP430
+ Copyright (C) 2014 Free Software Foundation, Inc.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published
+ by the Free Software Foundation; either version 3, or (at your
+ option) any later version.
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+ License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING3. If not see
+ <http://www.gnu.org/licenses/>. */
+
+#ifndef MSP430_OPTS_H
+#define MSP430_OPTS_H
+
+enum msp430_hwmult_types
+{
+ NONE,
+ AUTO,
+ SMALL,
+ LARGE,
+ F5SERIES
+};
+
+#endif
diff --git a/gcc-4.9/gcc/config/msp430/msp430.c b/gcc-4.9/gcc/config/msp430/msp430.c
index c844aa2a1..9eb140974 100644
--- a/gcc-4.9/gcc/config/msp430/msp430.c
+++ b/gcc-4.9/gcc/config/msp430/msp430.c
@@ -730,6 +730,97 @@ msp430_get_raw_result_mode (int regno ATTRIBUTE_UNUSED)
{
return Pmode;
}
+
+#undef TARGET_GIMPLIFY_VA_ARG_EXPR
+#define TARGET_GIMPLIFY_VA_ARG_EXPR msp430_gimplify_va_arg_expr
+
+#include "gimplify.h"
+#include "gimple-expr.h"
+
+static tree
+msp430_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
+ gimple_seq *post_p)
+{
+ tree addr, t, type_size, rounded_size, valist_tmp;
+ unsigned HOST_WIDE_INT align, boundary;
+ bool indirect;
+
+ indirect = pass_by_reference (NULL, TYPE_MODE (type), type, false);
+ if (indirect)
+ type = build_pointer_type (type);
+
+ align = PARM_BOUNDARY / BITS_PER_UNIT;
+ boundary = targetm.calls.function_arg_boundary (TYPE_MODE (type), type);
+
+ /* When we align parameter on stack for caller, if the parameter
+ alignment is beyond MAX_SUPPORTED_STACK_ALIGNMENT, it will be
+ aligned at MAX_SUPPORTED_STACK_ALIGNMENT. We will match callee
+ here with caller. */
+ if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
+ boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
+
+ boundary /= BITS_PER_UNIT;
+
+ /* Hoist the valist value into a temporary for the moment. */
+ valist_tmp = get_initialized_tmp_var (valist, pre_p, NULL);
+
+ /* va_list pointer is aligned to PARM_BOUNDARY. If argument actually
+ requires greater alignment, we must perform dynamic alignment. */
+ if (boundary > align
+ && !integer_zerop (TYPE_SIZE (type)))
+ {
+ /* FIXME: This is where this function diverts from targhooks.c:
+ std_gimplify_va_arg_expr(). It works, but I do not know why... */
+ if (! POINTER_TYPE_P (type))
+ {
+ t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp,
+ fold_build_pointer_plus_hwi (valist_tmp, boundary - 1));
+ gimplify_and_add (t, pre_p);
+
+ t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp,
+ fold_build2 (BIT_AND_EXPR, TREE_TYPE (valist),
+ valist_tmp,
+ build_int_cst (TREE_TYPE (valist), -boundary)));
+ gimplify_and_add (t, pre_p);
+ }
+ }
+ else
+ boundary = align;
+
+ /* If the actual alignment is less than the alignment of the type,
+ adjust the type accordingly so that we don't assume strict alignment
+ when dereferencing the pointer. */
+ boundary *= BITS_PER_UNIT;
+ if (boundary < TYPE_ALIGN (type))
+ {
+ type = build_variant_type_copy (type);
+ TYPE_ALIGN (type) = boundary;
+ }
+
+ /* Compute the rounded size of the type. */
+ type_size = size_in_bytes (type);
+ rounded_size = round_up (type_size, align);
+
+ /* Reduce rounded_size so it's sharable with the postqueue. */
+ gimplify_expr (&rounded_size, pre_p, post_p, is_gimple_val, fb_rvalue);
+
+ /* Get AP. */
+ addr = valist_tmp;
+
+ /* Compute new value for AP. */
+ t = fold_build_pointer_plus (valist_tmp, rounded_size);
+ t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist, t);
+ gimplify_and_add (t, pre_p);
+
+ addr = fold_convert (build_pointer_type (type), addr);
+
+ if (indirect)
+ addr = build_va_arg_indirect_ref (addr);
+
+ addr = build_va_arg_indirect_ref (addr);
+
+ return addr;
+}
/* Addressing Modes */
@@ -2185,8 +2276,32 @@ msp430_print_operand (FILE * file, rtx op, int letter)
msp430_print_operand_addr (file, addr);
break;
- case CONST_INT:
case CONST:
+ if (GET_CODE (XEXP (op, 0)) == ZERO_EXTRACT)
+ {
+ op = XEXP (op, 0);
+ switch (INTVAL (XEXP (op, 2)))
+ {
+ case 0:
+ fprintf (file, "#lo (");
+ msp430_print_operand_raw (file, XEXP (op, 0));
+ fprintf (file, ")");
+ break;
+
+ case 16:
+ fprintf (file, "#hi (");
+ msp430_print_operand_raw (file, XEXP (op, 0));
+ fprintf (file, ")");
+ break;
+
+ default:
+ output_operand_lossage ("invalid zero extract");
+ break;
+ }
+ break;
+ }
+ /* Fall through. */
+ case CONST_INT:
case SYMBOL_REF:
case LABEL_REF:
if (letter == 0)
diff --git a/gcc-4.9/gcc/config/msp430/msp430.h b/gcc-4.9/gcc/config/msp430/msp430.h
index 65d6ad66d..044e558a3 100644
--- a/gcc-4.9/gcc/config/msp430/msp430.h
+++ b/gcc-4.9/gcc/config/msp430/msp430.h
@@ -55,8 +55,8 @@ extern bool msp430x;
"%{mcpu=*:-mcpu=%*}%{!mcpu=*:%{mmcu=*:-mmcu=%*}} " /* Pass the CPU type on to the assembler. */ \
"%{mrelax=-mQ} " /* Pass the relax option on to the assembler. */ \
"%{mlarge:-ml} " /* Tell the assembler if we are building for the LARGE pointer model. */ \
- "%{!msim:-md} %{msim:%{mlarge:-md}}" /* Copy data from ROM to RAM if necessary. */ \
- "%{ffunction-sections:-gdwarf-sections}" /* If function sections are being created then create DWARF line number sections as well. */
+ "%{!msim:-md} %{msim:%{mlarge:-md}} " /* Copy data from ROM to RAM if necessary. */ \
+ "%{ffunction-sections:-gdwarf-sections} " /* If function sections are being created then create DWARF line number sections as well. */
/* Enable linker section garbage collection by default, unless we
are creating a relocatable binary (gc does not work) or debugging
diff --git a/gcc-4.9/gcc/config/msp430/msp430.md b/gcc-4.9/gcc/config/msp430/msp430.md
index 74a98b480..5e890eced 100644
--- a/gcc-4.9/gcc/config/msp430/msp430.md
+++ b/gcc-4.9/gcc/config/msp430/msp430.md
@@ -362,8 +362,8 @@
; halves.
(define_split
[(set (match_operand:SI 0 "msp430_nonsubreg_operand")
- (plus:SI (match_operand:SI 1 "nonimmediate_operand")
- (match_operand:SI 2 "general_operand")))
+ (plus:SI (match_operand:SI 1 "msp430_nonsubreg_operand")
+ (match_operand:SI 2 "msp430_nonsubreg_or_imm_operand")))
]
""
[(parallel [(set (match_operand:HI 3 "nonimmediate_operand" "=&rm")
@@ -609,9 +609,15 @@
; when the PSI value is negative..
;
; Note: using PUSHM.A #1 is two bytes smaller than using PUSHX.A....
+;
+; Note: We use a + constraint on operand 0 as otherwise GCC gets confused
+; about extending a single PSI mode register into a pair of SImode registers
+; with the same starting register. It thinks that the upper register of
+; the pair is unused and so it can clobber it. Try compiling 20050826-2.c
+; at -O2 to see this.
(define_insn "zero_extendpsisi2"
- [(set (match_operand:SI 0 "register_operand" "=r")
+ [(set (match_operand:SI 0 "register_operand" "+r")
(zero_extend:SI (match_operand:PSI 1 "register_operand" "r")))]
""
"*
@@ -1311,9 +1317,9 @@
""
"*
if (REGNO (operands[0]) != REGNO (operands[1]))
- return \"MOV.W\t%1, %0 { SUB.W\t#0, %0 { AND.W\t%2, %0\";
+ return \"MOV.W\t%1, %0 { INV.W\t%0 { INC.W\t%0 { AND.W\t%2, %0\";
else
- return \"SUB.W\t#0, %0 { AND.W\t%2, %0\";
+ return \"INV.W\t%0 { INC.W\t%0 { AND.W\t%2, %0\";
"
)
@@ -1324,9 +1330,9 @@
"optimize > 2 && msp430_hwmult_type != NONE"
"*
if (msp430_use_f5_series_hwmult ())
- return \"PUSH.W sr { DINT { MOV.W %1, &0x04C2 { MOV.W %2, &0x04C8 { MOV.W &0x04CA, %L0 { MOV.W &0x04CC, %H0 { POP.W sr\";
+ return \"PUSH.W sr { DINT { NOP { MOV.W %1, &0x04C2 { MOV.W %2, &0x04C8 { MOV.W &0x04CA, %L0 { MOV.W &0x04CC, %H0 { POP.W sr\";
else
- return \"PUSH.W sr { DINT { MOV.W %1, &0x0132 { MOV.W %2, &0x0138 { MOV.W &0x013A, %L0 { MOV.W &0x013C, %H0 { POP.W sr\";
+ return \"PUSH.W sr { DINT { NOP { MOV.W %1, &0x0132 { MOV.W %2, &0x0138 { MOV.W &0x013A, %L0 { MOV.W &0x013C, %H0 { POP.W sr\";
"
)
@@ -1337,9 +1343,9 @@
"optimize > 2 && msp430_hwmult_type != NONE"
"*
if (msp430_use_f5_series_hwmult ())
- return \"PUSH.W sr { DINT { MOV.W %1, &0x04C0 { MOV.W %2, &0x04C8 { MOV.W &0x04CA, %L0 { MOV.W &0x04CC, %H0 { POP.W sr\";
+ return \"PUSH.W sr { DINT { NOP { MOV.W %1, &0x04C0 { MOV.W %2, &0x04C8 { MOV.W &0x04CA, %L0 { MOV.W &0x04CC, %H0 { POP.W sr\";
else
- return \"PUSH.W sr { DINT { MOV.W %1, &0x0130 { MOV.W %2, &0x0138 { MOV.W &0x013A, %L0 { MOV.W &0x013C, %H0 { POP.W sr\";
+ return \"PUSH.W sr { DINT { NOP { MOV.W %1, &0x0130 { MOV.W %2, &0x0138 { MOV.W &0x013A, %L0 { MOV.W &0x013C, %H0 { POP.W sr\";
"
)
@@ -1350,9 +1356,9 @@
"optimize > 2 && msp430_hwmult_type != NONE"
"*
if (msp430_use_f5_series_hwmult ())
- return \"PUSH.W sr { DINT { MOV.W %L1, &0x04D4 { MOV.W %H1, &0x04D6 { MOV.W %L2, &0x04E0 { MOV.W %H2, &0x04E2 { MOV.W &0x04E4, %A0 { MOV.W &0x04E6, %B0 { MOV.W &0x04E8, %C0 { MOV.W &0x04EA, %D0 { POP.W sr\";
+ return \"PUSH.W sr { DINT { NOP { MOV.W %L1, &0x04D4 { MOV.W %H1, &0x04D6 { MOV.W %L2, &0x04E0 { MOV.W %H2, &0x04E2 { MOV.W &0x04E4, %A0 { MOV.W &0x04E6, %B0 { MOV.W &0x04E8, %C0 { MOV.W &0x04EA, %D0 { POP.W sr\";
else
- return \"PUSH.W sr { DINT { MOV.W %L1, &0x0144 { MOV.W %H1, &0x0146 { MOV.W %L2, &0x0150 { MOV.W %H2, &0x0152 { MOV.W &0x0154, %A0 { MOV.W &0x0156, %B0 { MOV.W &0x0158, %C0 { MOV.W &0x015A, %D0 { POP.W sr\";
+ return \"PUSH.W sr { DINT { NOP { MOV.W %L1, &0x0144 { MOV.W %H1, &0x0146 { MOV.W %L2, &0x0150 { MOV.W %H2, &0x0152 { MOV.W &0x0154, %A0 { MOV.W &0x0156, %B0 { MOV.W &0x0158, %C0 { MOV.W &0x015A, %D0 { POP.W sr\";
"
)
@@ -1363,8 +1369,8 @@
"optimize > 2 && msp430_hwmult_type != NONE"
"*
if (msp430_use_f5_series_hwmult ())
- return \"PUSH.W sr { DINT { MOV.W %L1, &0x04D0 { MOV.W %H1, &0x04D2 { MOV.W %L2, &0x04E0 { MOV.W %H2, &0x04E2 { MOV.W &0x04E4, %A0 { MOV.W &0x04E6, %B0 { MOV.W &0x04E8, %C0 { MOV.W &0x04EA, %D0 { POP.W sr\";
+ return \"PUSH.W sr { DINT { NOP { MOV.W %L1, &0x04D0 { MOV.W %H1, &0x04D2 { MOV.W %L2, &0x04E0 { MOV.W %H2, &0x04E2 { MOV.W &0x04E4, %A0 { MOV.W &0x04E6, %B0 { MOV.W &0x04E8, %C0 { MOV.W &0x04EA, %D0 { POP.W sr\";
else
- return \"PUSH.W sr { DINT { MOV.W %L1, &0x0140 { MOV.W %H1, &0x0142 { MOV.W %L2, &0x0150 { MOV.W %H2, &0x0152 { MOV.W &0x0154, %A0 { MOV.W &0x0156, %B0 { MOV.W &0x0158, %C0 { MOV.W &0x015A, %D0 { POP.W sr\";
+ return \"PUSH.W sr { DINT { NOP { MOV.W %L1, &0x0140 { MOV.W %H1, &0x0142 { MOV.W %L2, &0x0150 { MOV.W %H2, &0x0152 { MOV.W &0x0154, %A0 { MOV.W &0x0156, %B0 { MOV.W &0x0158, %C0 { MOV.W &0x015A, %D0 { POP.W sr\";
"
)
diff --git a/gcc-4.9/gcc/config/msp430/predicates.md b/gcc-4.9/gcc/config/msp430/predicates.md
index 9a8e2da0a..94a628cd5 100644
--- a/gcc-4.9/gcc/config/msp430/predicates.md
+++ b/gcc-4.9/gcc/config/msp430/predicates.md
@@ -73,6 +73,10 @@
(define_predicate "msp430_nonsubreg_operand"
(match_code "reg,mem"))
+(define_predicate "msp430_nonsubreg_or_imm_operand"
+ (ior (match_operand 0 "msp430_nonsubreg_operand")
+ (match_operand 0 "immediate_operand")))
+
; TRUE for constants which are bit positions for zero_extract
(define_predicate "msp430_bitpos"
(and (match_code "const_int")
diff --git a/gcc-4.9/gcc/config/newlib-stdint.h b/gcc-4.9/gcc/config/newlib-stdint.h
index f4a78a544..47445e42d 100644
--- a/gcc-4.9/gcc/config/newlib-stdint.h
+++ b/gcc-4.9/gcc/config/newlib-stdint.h
@@ -13,8 +13,13 @@ but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* newlib uses 32-bit long in certain cases for all non-SPU
diff --git a/gcc-4.9/gcc/config/rs6000/htm.md b/gcc-4.9/gcc/config/rs6000/htm.md
index 9dbb499ce..ca7f7fdf4 100644
--- a/gcc-4.9/gcc/config/rs6000/htm.md
+++ b/gcc-4.9/gcc/config/rs6000/htm.md
@@ -179,7 +179,7 @@
(const_int 0)]
UNSPECV_HTM_TABORTWCI))
(set (subreg:CC (match_dup 2) 0) (match_dup 1))
- (set (match_dup 3) (lshiftrt:SI (match_dup 2) (const_int 24)))
+ (set (match_dup 3) (lshiftrt:SI (match_dup 2) (const_int 28)))
(parallel [(set (match_operand:SI 0 "int_reg_operand" "")
(and:SI (match_dup 3) (const_int 15)))
(clobber (scratch:CC))])]
diff --git a/gcc-4.9/gcc/config/rs6000/htmxlintrin.h b/gcc-4.9/gcc/config/rs6000/htmxlintrin.h
index 38dc066d3..bf7fe3a75 100644
--- a/gcc-4.9/gcc/config/rs6000/htmxlintrin.h
+++ b/gcc-4.9/gcc/config/rs6000/htmxlintrin.h
@@ -46,12 +46,17 @@ extern "C" {
typedef char TM_buff_type[16];
+/* Compatibility macro with s390. This macro can be used to determine
+ whether a transaction was successfully started from the __TM_begin()
+ and __TM_simple_begin() intrinsic functions below. */
+#define _HTM_TBEGIN_STARTED 1
+
extern __inline long
__attribute__ ((__gnu_inline__, __always_inline__, __artificial__))
__TM_simple_begin (void)
{
if (__builtin_expect (__builtin_tbegin (0), 1))
- return 1;
+ return _HTM_TBEGIN_STARTED;
return 0;
}
@@ -61,7 +66,7 @@ __TM_begin (void* const TM_buff)
{
*_TEXASRL_PTR (TM_buff) = 0;
if (__builtin_expect (__builtin_tbegin (0), 1))
- return 1;
+ return _HTM_TBEGIN_STARTED;
#ifdef __powerpc64__
*_TEXASR_PTR (TM_buff) = __builtin_get_texasr ();
#else
diff --git a/gcc-4.9/gcc/config/rs6000/linux-grte.h b/gcc-4.9/gcc/config/rs6000/linux-grte.h
new file mode 100644
index 000000000..53997f027
--- /dev/null
+++ b/gcc-4.9/gcc/config/rs6000/linux-grte.h
@@ -0,0 +1,41 @@
+/* Definitions for Linux-based GRTE (Google RunTime Environment).
+ Copyright (C) 2009,2010,2011,2012 Free Software Foundation, Inc.
+ Contributed by Chris Demetriou and Ollie Wild.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
+<http://www.gnu.org/licenses/>. */
+
+/* Overrides LIB_LINUX_SPEC from sysv4.h. */
+#undef LIB_LINUX_SPEC
+#define LIB_LINUX_SPEC \
+ "%{pthread:-lpthread} \
+ %{shared:-lc} \
+ %{!shared:%{mieee-fp:-lieee} %{profile:%(libc_p)}%{!profile:%(libc)}}"
+
+/* When GRTE links statically, it needs its NSS and resolver libraries
+ linked in as well. Note that when linking statically, these are
+ enclosed in a group by LINK_GCC_C_SEQUENCE_SPEC. */
+#undef LINUX_GRTE_EXTRA_SPECS
+#define LINUX_GRTE_EXTRA_SPECS \
+ { "libc", "%{static:%(libc_static);:-lc}" }, \
+ { "libc_p", "%{static:%(libc_p_static);:-lc_p}" }, \
+ { "libc_static", "-lc -lresolv" }, \
+ { "libc_p_static", "-lc_p -lresolv_p" },
diff --git a/gcc-4.9/gcc/config/rs6000/linux64.h b/gcc-4.9/gcc/config/rs6000/linux64.h
index dbc9a527e..52c233b7d 100644
--- a/gcc-4.9/gcc/config/rs6000/linux64.h
+++ b/gcc-4.9/gcc/config/rs6000/linux64.h
@@ -367,11 +367,11 @@ extern int dot_symbols;
#undef LINK_OS_DEFAULT_SPEC
#define LINK_OS_DEFAULT_SPEC "%(link_os_linux)"
-#define GLIBC_DYNAMIC_LINKER32 "/lib/ld.so.1"
+#define GLIBC_DYNAMIC_LINKER32 RUNTIME_ROOT_PREFIX "/lib/ld.so.1"
#ifdef LINUX64_DEFAULT_ABI_ELFv2
-#define GLIBC_DYNAMIC_LINKER64 "%{mabi=elfv1:/lib64/ld64.so.1;:/lib64/ld64.so.2}"
+#define GLIBC_DYNAMIC_LINKER64 "%{mabi=elfv1:" RUNTIME_ROOT_PREFIX "/lib64/ld64.so.1;:" RUNTIME_ROOT_PREFIX "/lib64/ld64.so.2}"
#else
-#define GLIBC_DYNAMIC_LINKER64 "%{mabi=elfv2:/lib64/ld64.so.2;:/lib64/ld64.so.1}"
+#define GLIBC_DYNAMIC_LINKER64 RUNTIME_ROOT_PREFIX "%{mabi=elfv2:"RUNTIME_ROOT_PREFIX "/lib64/ld64.so.2;:" RUNTIME_ROOT_PREFIX "/lib64/ld64.so.1}"
#endif
#define UCLIBC_DYNAMIC_LINKER32 "/lib/ld-uClibc.so.0"
#define UCLIBC_DYNAMIC_LINKER64 "/lib/ld64-uClibc.so.0"
diff --git a/gcc-4.9/gcc/config/rs6000/rs6000-builtin.def b/gcc-4.9/gcc/config/rs6000/rs6000-builtin.def
index 8e15bdf16..220d1e970 100644
--- a/gcc-4.9/gcc/config/rs6000/rs6000-builtin.def
+++ b/gcc-4.9/gcc/config/rs6000/rs6000-builtin.def
@@ -622,19 +622,12 @@
| RS6000_BTC_TERNARY), \
CODE_FOR_ ## ICODE) /* ICODE */
-/* Miscellaneous builtins. */
-#define BU_MISC_1(ENUM, NAME, ATTR, ICODE) \
- RS6000_BUILTIN_2 (MISC_BUILTIN_ ## ENUM, /* ENUM */ \
- "__builtin_" NAME, /* NAME */ \
- RS6000_BTM_HARD_FLOAT, /* MASK */ \
- (RS6000_BTC_ ## ATTR /* ATTR */ \
- | RS6000_BTC_UNARY), \
- CODE_FOR_ ## ICODE) /* ICODE */
-
-#define BU_MISC_2(ENUM, NAME, ATTR, ICODE) \
+/* 128-bit long double floating point builtins. */
+#define BU_LDBL128_2(ENUM, NAME, ATTR, ICODE) \
RS6000_BUILTIN_2 (MISC_BUILTIN_ ## ENUM, /* ENUM */ \
"__builtin_" NAME, /* NAME */ \
- RS6000_BTM_HARD_FLOAT, /* MASK */ \
+ (RS6000_BTM_HARD_FLOAT /* MASK */ \
+ | RS6000_BTM_LDBL128), \
(RS6000_BTC_ ## ATTR /* ATTR */ \
| RS6000_BTC_BINARY), \
CODE_FOR_ ## ICODE) /* ICODE */
@@ -1593,10 +1586,8 @@ BU_P8V_MISC_3 (BCDSUB_OV, "bcdsub_ov", CONST, bcdsub_unordered)
BU_DFP_MISC_2 (PACK_TD, "pack_dec128", CONST, packtd)
BU_DFP_MISC_2 (UNPACK_TD, "unpack_dec128", CONST, unpacktd)
-BU_MISC_2 (PACK_TF, "pack_longdouble", CONST, packtf)
-BU_MISC_2 (UNPACK_TF, "unpack_longdouble", CONST, unpacktf)
-BU_MISC_1 (UNPACK_TF_0, "longdouble_dw0", CONST, unpacktf_0)
-BU_MISC_1 (UNPACK_TF_1, "longdouble_dw1", CONST, unpacktf_1)
+BU_LDBL128_2 (PACK_TF, "pack_longdouble", CONST, packtf)
+BU_LDBL128_2 (UNPACK_TF, "unpack_longdouble", CONST, unpacktf)
BU_P7_MISC_2 (PACK_V1TI, "pack_vector_int128", CONST, packv1ti)
BU_P7_MISC_2 (UNPACK_V1TI, "unpack_vector_int128", CONST, unpackv1ti)
diff --git a/gcc-4.9/gcc/config/rs6000/rs6000-protos.h b/gcc-4.9/gcc/config/rs6000/rs6000-protos.h
index 69bb26331..785f6ce1b 100644
--- a/gcc-4.9/gcc/config/rs6000/rs6000-protos.h
+++ b/gcc-4.9/gcc/config/rs6000/rs6000-protos.h
@@ -163,7 +163,7 @@ extern tree altivec_resolve_overloaded_builtin (location_t, tree, void *);
extern rtx rs6000_libcall_value (enum machine_mode);
extern rtx rs6000_va_arg (tree, tree);
extern int function_ok_for_sibcall (tree);
-extern int rs6000_reg_parm_stack_space (tree);
+extern int rs6000_reg_parm_stack_space (tree, bool);
extern void rs6000_elf_declare_function_name (FILE *, const char *, tree);
extern bool rs6000_elf_in_small_data_p (const_tree);
#ifdef ARGS_SIZE_RTX
diff --git a/gcc-4.9/gcc/config/rs6000/rs6000.c b/gcc-4.9/gcc/config/rs6000/rs6000.c
index 4f1a399a2..bf67e7298 100644
--- a/gcc-4.9/gcc/config/rs6000/rs6000.c
+++ b/gcc-4.9/gcc/config/rs6000/rs6000.c
@@ -3037,7 +3037,8 @@ rs6000_builtin_mask_calculate (void)
| ((TARGET_CRYPTO) ? RS6000_BTM_CRYPTO : 0)
| ((TARGET_HTM) ? RS6000_BTM_HTM : 0)
| ((TARGET_DFP) ? RS6000_BTM_DFP : 0)
- | ((TARGET_HARD_FLOAT) ? RS6000_BTM_HARD_FLOAT : 0));
+ | ((TARGET_HARD_FLOAT) ? RS6000_BTM_HARD_FLOAT : 0)
+ | ((TARGET_LONG_DOUBLE_128) ? RS6000_BTM_LDBL128 : 0));
}
/* Override command line options. Mostly we process the processor type and
@@ -6118,7 +6119,8 @@ mem_operand_gpr (rtx op, enum machine_mode mode)
return false;
extra = GET_MODE_SIZE (mode) - UNITS_PER_WORD;
- gcc_assert (extra >= 0);
+ if (extra < 0)
+ extra = 0;
if (GET_CODE (addr) == LO_SUM)
/* For lo_sum addresses, we must allow any offset except one that
@@ -10477,35 +10479,65 @@ rs6000_parm_needs_stack (cumulative_args_t args_so_far, tree type)
list, or passes any parameter in memory. */
static bool
-rs6000_function_parms_need_stack (tree fun)
+rs6000_function_parms_need_stack (tree fun, bool incoming)
{
- function_args_iterator args_iter;
- tree arg_type;
+ tree fntype, result;
CUMULATIVE_ARGS args_so_far_v;
cumulative_args_t args_so_far;
if (!fun)
/* Must be a libcall, all of which only use reg parms. */
return false;
+
+ fntype = fun;
if (!TYPE_P (fun))
- fun = TREE_TYPE (fun);
+ fntype = TREE_TYPE (fun);
/* Varargs functions need the parameter save area. */
- if (!prototype_p (fun) || stdarg_p (fun))
+ if ((!incoming && !prototype_p (fntype)) || stdarg_p (fntype))
return true;
- INIT_CUMULATIVE_INCOMING_ARGS (args_so_far_v, fun, NULL_RTX);
+ INIT_CUMULATIVE_INCOMING_ARGS (args_so_far_v, fntype, NULL_RTX);
args_so_far = pack_cumulative_args (&args_so_far_v);
- if (aggregate_value_p (TREE_TYPE (fun), fun))
+ /* When incoming, we will have been passed the function decl.
+ It is necessary to use the decl to handle K&R style functions,
+ where TYPE_ARG_TYPES may not be available. */
+ if (incoming)
{
- tree type = build_pointer_type (TREE_TYPE (fun));
- rs6000_parm_needs_stack (args_so_far, type);
+ gcc_assert (DECL_P (fun));
+ result = DECL_RESULT (fun);
}
+ else
+ result = TREE_TYPE (fntype);
- FOREACH_FUNCTION_ARGS (fun, arg_type, args_iter)
- if (rs6000_parm_needs_stack (args_so_far, arg_type))
- return true;
+ if (result && aggregate_value_p (result, fntype))
+ {
+ if (!TYPE_P (result))
+ result = TREE_TYPE (result);
+ result = build_pointer_type (result);
+ rs6000_parm_needs_stack (args_so_far, result);
+ }
+
+ if (incoming)
+ {
+ tree parm;
+
+ for (parm = DECL_ARGUMENTS (fun);
+ parm && parm != void_list_node;
+ parm = TREE_CHAIN (parm))
+ if (rs6000_parm_needs_stack (args_so_far, TREE_TYPE (parm)))
+ return true;
+ }
+ else
+ {
+ function_args_iterator args_iter;
+ tree arg_type;
+
+ FOREACH_FUNCTION_ARGS (fntype, arg_type, args_iter)
+ if (rs6000_parm_needs_stack (args_so_far, arg_type))
+ return true;
+ }
return false;
}
@@ -10517,7 +10549,7 @@ rs6000_function_parms_need_stack (tree fun)
all parameters in registers. */
int
-rs6000_reg_parm_stack_space (tree fun)
+rs6000_reg_parm_stack_space (tree fun, bool incoming)
{
int reg_parm_stack_space;
@@ -10535,7 +10567,7 @@ rs6000_reg_parm_stack_space (tree fun)
case ABI_ELFv2:
/* ??? Recomputing this every time is a bit expensive. Is there
a place to cache this information? */
- if (rs6000_function_parms_need_stack (fun))
+ if (rs6000_function_parms_need_stack (fun, incoming))
reg_parm_stack_space = TARGET_64BIT ? 64 : 32;
else
reg_parm_stack_space = 0;
@@ -13559,11 +13591,15 @@ rs6000_invalid_builtin (enum rs6000_builtins fncode)
else if ((fnmask & (RS6000_BTM_DFP | RS6000_BTM_P8_VECTOR))
== (RS6000_BTM_DFP | RS6000_BTM_P8_VECTOR))
error ("Builtin function %s requires the -mhard-dfp and"
- "-mpower8-vector options", name);
+ " -mpower8-vector options", name);
else if ((fnmask & RS6000_BTM_DFP) != 0)
error ("Builtin function %s requires the -mhard-dfp option", name);
else if ((fnmask & RS6000_BTM_P8_VECTOR) != 0)
error ("Builtin function %s requires the -mpower8-vector option", name);
+ else if ((fnmask & (RS6000_BTM_HARD_FLOAT | RS6000_BTM_LDBL128))
+ == (RS6000_BTM_HARD_FLOAT | RS6000_BTM_LDBL128))
+ error ("Builtin function %s requires the -mhard-float and"
+ " -mlong-double-128 options", name);
else if ((fnmask & RS6000_BTM_HARD_FLOAT) != 0)
error ("Builtin function %s requires the -mhard-float option", name);
else
@@ -31313,6 +31349,7 @@ static struct rs6000_opt_mask const rs6000_builtin_mask_names[] =
{ "htm", RS6000_BTM_HTM, false, false },
{ "hard-dfp", RS6000_BTM_DFP, false, false },
{ "hard-float", RS6000_BTM_HARD_FLOAT, false, false },
+ { "long-double-128", RS6000_BTM_LDBL128, false, false },
};
/* Option variables that we want to support inside attribute((target)) and
diff --git a/gcc-4.9/gcc/config/rs6000/rs6000.h b/gcc-4.9/gcc/config/rs6000/rs6000.h
index 21330dc65..2b5d033f8 100644
--- a/gcc-4.9/gcc/config/rs6000/rs6000.h
+++ b/gcc-4.9/gcc/config/rs6000/rs6000.h
@@ -1602,7 +1602,14 @@ extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
/* Define this if stack space is still allocated for a parameter passed
in a register. The value is the number of bytes allocated to this
area. */
-#define REG_PARM_STACK_SPACE(FNDECL) rs6000_reg_parm_stack_space((FNDECL))
+#define REG_PARM_STACK_SPACE(FNDECL) \
+ rs6000_reg_parm_stack_space ((FNDECL), false)
+
+/* Define this macro if space guaranteed when compiling a function body
+ is different to space required when making a call, a situation that
+ can arise with K&R style function definitions. */
+#define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
+ rs6000_reg_parm_stack_space ((FNDECL), true)
/* Define this if the above stack space is to be considered part of the
space allocated by the caller. */
@@ -2501,8 +2508,8 @@ extern int frame_pointer_needed;
#define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
/* Builtin targets. For now, we reuse the masks for those options that are in
- target flags, and pick two random bits for SPE and paired which aren't in
- target_flags. */
+ target flags, and pick three random bits for SPE, paired and ldbl128 which
+ aren't in target_flags. */
#define RS6000_BTM_ALWAYS 0 /* Always enabled. */
#define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
#define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
@@ -2519,6 +2526,7 @@ extern int frame_pointer_needed;
#define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
#define RS6000_BTM_DFP MASK_DFP /* Decimal floating point. */
#define RS6000_BTM_HARD_FLOAT MASK_SOFT_FLOAT /* Hardware floating point. */
+#define RS6000_BTM_LDBL128 MASK_MULTIPLE /* 128-bit long double. */
#define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
| RS6000_BTM_VSX \
@@ -2532,7 +2540,8 @@ extern int frame_pointer_needed;
| RS6000_BTM_POPCNTD \
| RS6000_BTM_CELL \
| RS6000_BTM_DFP \
- | RS6000_BTM_HARD_FLOAT)
+ | RS6000_BTM_HARD_FLOAT \
+ | RS6000_BTM_LDBL128)
/* Define builtin enum index. */
diff --git a/gcc-4.9/gcc/config/rs6000/rs6000.md b/gcc-4.9/gcc/config/rs6000/rs6000.md
index e853bc4f9..26d0d1530 100644
--- a/gcc-4.9/gcc/config/rs6000/rs6000.md
+++ b/gcc-4.9/gcc/config/rs6000/rs6000.md
@@ -746,7 +746,7 @@
(define_insn "*extendsidi2_lfiwax"
[(set (match_operand:DI 0 "gpc_reg_operand" "=r,r,??wm,!wl,!wu")
- (sign_extend:DI (match_operand:SI 1 "lwa_operand" "m,r,r,Z,Z")))]
+ (sign_extend:DI (match_operand:SI 1 "lwa_operand" "Y,r,r,Z,Z")))]
"TARGET_POWERPC64 && TARGET_LFIWAX"
"@
lwa%U1%X1 %0,%1
@@ -769,7 +769,7 @@
(define_insn "*extendsidi2_nocell"
[(set (match_operand:DI 0 "gpc_reg_operand" "=r,r")
- (sign_extend:DI (match_operand:SI 1 "lwa_operand" "m,r")))]
+ (sign_extend:DI (match_operand:SI 1 "lwa_operand" "Y,r")))]
"TARGET_POWERPC64 && rs6000_gen_cell_microcode && !TARGET_LFIWAX"
"@
lwa%U1%X1 %0,%1
@@ -15806,26 +15806,6 @@
""
"")
-;; The Advance Toolchain 7.0-3 added private builtins: __builtin_longdouble_dw0
-;; and __builtin_longdouble_dw1 to optimize glibc. Add support for these
-;; builtins here.
-
-(define_expand "unpacktf_0"
- [(set (match_operand:DF 0 "nonimmediate_operand" "")
- (unspec:DF [(match_operand:TF 1 "register_operand" "")
- (const_int 0)]
- UNSPEC_UNPACK_128BIT))]
- ""
- "")
-
-(define_expand "unpacktf_1"
- [(set (match_operand:DF 0 "nonimmediate_operand" "")
- (unspec:DF [(match_operand:TF 1 "register_operand" "")
- (const_int 1)]
- UNSPEC_UNPACK_128BIT))]
- ""
- "")
-
(define_insn_and_split "unpack<mode>_dm"
[(set (match_operand:<FP128_64> 0 "nonimmediate_operand" "=d,m,d,r,m")
(unspec:<FP128_64>
diff --git a/gcc-4.9/gcc/config/rs6000/sysv4.h b/gcc-4.9/gcc/config/rs6000/sysv4.h
index 3fb6bd59f..afbd2892e 100644
--- a/gcc-4.9/gcc/config/rs6000/sysv4.h
+++ b/gcc-4.9/gcc/config/rs6000/sysv4.h
@@ -761,7 +761,10 @@ ENDIAN_SELECT(" -mbig", " -mlittle", DEFAULT_ASM_ENDIAN)
#define LINK_START_LINUX_SPEC ""
-#define GLIBC_DYNAMIC_LINKER "/lib/ld.so.1"
+#ifndef RUNTIME_ROOT_PREFIX
+#define RUNTIME_ROOT_PREFIX ""
+#endif
+#define GLIBC_DYNAMIC_LINKER RUNTIME_ROOT_PREFIX "/lib/ld.so.1"
#define UCLIBC_DYNAMIC_LINKER "/lib/ld-uClibc.so.0"
#if DEFAULT_LIBC == LIBC_UCLIBC
#define CHOOSE_DYNAMIC_LINKER(G, U) "%{mglibc:" G ";:" U "}"
@@ -843,6 +846,11 @@ ncrtn.o%s"
#define CPP_OS_OPENBSD_SPEC "%{posix:-D_POSIX_SOURCE} %{pthread:-D_POSIX_THREADS}"
#endif
+/* These may be provided by rs6000/linux-grtev2.h. */
+#ifndef LINUX_GRTE_EXTRA_SPECS
+#define LINUX_GRTE_EXTRA_SPECS
+#endif
+
/* Define any extra SPECS that the compiler needs to generate. */
/* Override rs6000.h definition. */
#undef SUBTARGET_EXTRA_SPECS
@@ -908,6 +916,7 @@ ncrtn.o%s"
{ "cpp_os_openbsd", CPP_OS_OPENBSD_SPEC }, \
{ "cpp_os_default", CPP_OS_DEFAULT_SPEC }, \
{ "fbsd_dynamic_linker", FBSD_DYNAMIC_LINKER }, \
+ LINUX_GRTE_EXTRA_SPECS \
SUBSUBTARGET_EXTRA_SPECS
#define SUBSUBTARGET_EXTRA_SPECS
diff --git a/gcc-4.9/gcc/config/rs6000/vsx.md b/gcc-4.9/gcc/config/rs6000/vsx.md
index 23d85ab06..6d20eab11 100644
--- a/gcc-4.9/gcc/config/rs6000/vsx.md
+++ b/gcc-4.9/gcc/config/rs6000/vsx.md
@@ -24,6 +24,13 @@
;; Iterator for the 2 64-bit vector types
(define_mode_iterator VSX_D [V2DF V2DI])
+;; Iterator for the 2 64-bit vector types + 128-bit types that are loaded with
+;; lxvd2x to properly handle swapping words on little endian
+(define_mode_iterator VSX_LE [V2DF
+ V2DI
+ V1TI
+ (TI "VECTOR_MEM_VSX_P (TImode)")])
+
;; Iterator for the 2 32-bit vector types
(define_mode_iterator VSX_W [V4SF V4SI])
@@ -228,8 +235,8 @@
;; The patterns for LE permuted loads and stores come before the general
;; VSX moves so they match first.
(define_insn_and_split "*vsx_le_perm_load_<mode>"
- [(set (match_operand:VSX_D 0 "vsx_register_operand" "=wa")
- (match_operand:VSX_D 1 "memory_operand" "Z"))]
+ [(set (match_operand:VSX_LE 0 "vsx_register_operand" "=wa")
+ (match_operand:VSX_LE 1 "memory_operand" "Z"))]
"!BYTES_BIG_ENDIAN && TARGET_VSX"
"#"
"!BYTES_BIG_ENDIAN && TARGET_VSX"
@@ -342,16 +349,16 @@
(set_attr "length" "8")])
(define_insn "*vsx_le_perm_store_<mode>"
- [(set (match_operand:VSX_D 0 "memory_operand" "=Z")
- (match_operand:VSX_D 1 "vsx_register_operand" "+wa"))]
+ [(set (match_operand:VSX_LE 0 "memory_operand" "=Z")
+ (match_operand:VSX_LE 1 "vsx_register_operand" "+wa"))]
"!BYTES_BIG_ENDIAN && TARGET_VSX"
"#"
[(set_attr "type" "vecstore")
(set_attr "length" "12")])
(define_split
- [(set (match_operand:VSX_D 0 "memory_operand" "")
- (match_operand:VSX_D 1 "vsx_register_operand" ""))]
+ [(set (match_operand:VSX_LE 0 "memory_operand" "")
+ (match_operand:VSX_LE 1 "vsx_register_operand" ""))]
"!BYTES_BIG_ENDIAN && TARGET_VSX && !reload_completed"
[(set (match_dup 2)
(vec_select:<MODE>
@@ -369,8 +376,8 @@
;; The post-reload split requires that we re-permute the source
;; register in case it is still live.
(define_split
- [(set (match_operand:VSX_D 0 "memory_operand" "")
- (match_operand:VSX_D 1 "vsx_register_operand" ""))]
+ [(set (match_operand:VSX_LE 0 "memory_operand" "")
+ (match_operand:VSX_LE 1 "vsx_register_operand" ""))]
"!BYTES_BIG_ENDIAN && TARGET_VSX && reload_completed"
[(set (match_dup 1)
(vec_select:<MODE>
@@ -1352,9 +1359,9 @@
;; xxpermdi for little endian loads and stores. We need several of
;; these since the form of the PARALLEL differs by mode.
(define_insn "*vsx_xxpermdi2_le_<mode>"
- [(set (match_operand:VSX_D 0 "vsx_register_operand" "=wa")
- (vec_select:VSX_D
- (match_operand:VSX_D 1 "vsx_register_operand" "wa")
+ [(set (match_operand:VSX_LE 0 "vsx_register_operand" "=wa")
+ (vec_select:VSX_LE
+ (match_operand:VSX_LE 1 "vsx_register_operand" "wa")
(parallel [(const_int 1) (const_int 0)])))]
"!BYTES_BIG_ENDIAN && VECTOR_MEM_VSX_P (<MODE>mode)"
"xxpermdi %x0,%x1,%x1,2"
@@ -1401,9 +1408,9 @@
;; lxvd2x for little endian loads. We need several of
;; these since the form of the PARALLEL differs by mode.
(define_insn "*vsx_lxvd2x2_le_<mode>"
- [(set (match_operand:VSX_D 0 "vsx_register_operand" "=wa")
- (vec_select:VSX_D
- (match_operand:VSX_D 1 "memory_operand" "Z")
+ [(set (match_operand:VSX_LE 0 "vsx_register_operand" "=wa")
+ (vec_select:VSX_LE
+ (match_operand:VSX_LE 1 "memory_operand" "Z")
(parallel [(const_int 1) (const_int 0)])))]
"!BYTES_BIG_ENDIAN && VECTOR_MEM_VSX_P (<MODE>mode)"
"lxvd2x %x0,%y1"
@@ -1450,9 +1457,9 @@
;; stxvd2x for little endian stores. We need several of
;; these since the form of the PARALLEL differs by mode.
(define_insn "*vsx_stxvd2x2_le_<mode>"
- [(set (match_operand:VSX_D 0 "memory_operand" "=Z")
- (vec_select:VSX_D
- (match_operand:VSX_D 1 "vsx_register_operand" "wa")
+ [(set (match_operand:VSX_LE 0 "memory_operand" "=Z")
+ (vec_select:VSX_LE
+ (match_operand:VSX_LE 1 "vsx_register_operand" "wa")
(parallel [(const_int 1) (const_int 0)])))]
"!BYTES_BIG_ENDIAN && VECTOR_MEM_VSX_P (<MODE>mode)"
"stxvd2x %x1,%y0"
@@ -1683,7 +1690,7 @@
{
if (GET_CODE (op3) == SCRATCH)
op3 = gen_reg_rtx (V4SFmode);
- emit_insn (gen_vsx_xxsldwi_v4sf (op3, op1, op1, op2));
+ emit_insn (gen_vsx_xxsldwi_v4sf (op3, op1, op1, GEN_INT (ele)));
tmp = op3;
}
emit_insn (gen_vsx_xscvspdp_scalar2 (op0, tmp));
diff --git a/gcc-4.9/gcc/config/rtems.h b/gcc-4.9/gcc/config/rtems.h
index 3da27c57e..f14aed36a 100644
--- a/gcc-4.9/gcc/config/rtems.h
+++ b/gcc-4.9/gcc/config/rtems.h
@@ -13,8 +13,13 @@ but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* The system headers under RTEMS are C++-aware. */
diff --git a/gcc-4.9/gcc/config/sol2-clearcap.map b/gcc-4.9/gcc/config/sol2-clearcap.map
new file mode 100644
index 000000000..2d880c983
--- /dev/null
+++ b/gcc-4.9/gcc/config/sol2-clearcap.map
@@ -0,0 +1,2 @@
+# Clear all hardware capabilities emitted by Sun as.
+hwcap_1 = V0x0 OVERRIDE;
diff --git a/gcc-4.9/gcc/config/sol2-clearcapv2.map b/gcc-4.9/gcc/config/sol2-clearcapv2.map
new file mode 100644
index 000000000..3c0cacedb
--- /dev/null
+++ b/gcc-4.9/gcc/config/sol2-clearcapv2.map
@@ -0,0 +1,7 @@
+# Clear all hardware capabilities emitted by Sun as.
+#
+# Uses mapfile v2 syntax which is the only way to clear AT_SUN_CAP_HW2 flags.
+$mapfile_version 2
+CAPABILITY {
+ HW = ;
+};
diff --git a/gcc-4.9/gcc/config/sol2.h b/gcc-4.9/gcc/config/sol2.h
index eb8e0b91f..db7844b29 100644
--- a/gcc-4.9/gcc/config/sol2.h
+++ b/gcc-4.9/gcc/config/sol2.h
@@ -183,12 +183,21 @@ along with GCC; see the file COPYING3. If not see
#define LINK_LIBGCC_MAPFILE_SPEC ""
#endif
+/* Clear hardware capabilities, either explicitly or with OpenMP:
+ #pragma openmp declare simd creates clones for SSE2, AVX, and AVX2. */
+#ifdef HAVE_LD_CLEARCAP
+#define LINK_CLEARCAP_SPEC " %{mclear-hwcap|fopenmp*:-M %sclearcap.map}"
+#else
+#define LINK_CLEARCAP_SPEC ""
+#endif
+
#undef LINK_SPEC
#define LINK_SPEC \
"%{h*} %{v:-V} \
%{!shared:%{!static:%{rdynamic: " RDYNAMIC_SPEC "}}} \
%{static:-dn -Bstatic} \
- %{shared:-G -dy %{!mimpure-text:-z text}} " LINK_LIBGCC_MAPFILE_SPEC " \
+ %{shared:-G -dy %{!mimpure-text:-z text}} " \
+ LINK_LIBGCC_MAPFILE_SPEC LINK_CLEARCAP_SPEC " \
%{symbolic:-Bsymbolic -G -dy -z text} \
%(link_arch) \
%{Qy:} %{!Qn:-Qy}"
diff --git a/gcc-4.9/gcc/config/sol2.opt b/gcc-4.9/gcc/config/sol2.opt
index a5ae7c510..16a3e5f58 100644
--- a/gcc-4.9/gcc/config/sol2.opt
+++ b/gcc-4.9/gcc/config/sol2.opt
@@ -27,6 +27,10 @@ Driver Joined
Ym,
Driver Joined
+mclear-hwcap
+Target Report
+Clear hardware capabilities when linking
+
mimpure-text
Target Report
Pass -z text to linker
diff --git a/gcc-4.9/gcc/config/t-sol2 b/gcc-4.9/gcc/config/t-sol2
index a4c4af4ad..25feb0486 100644
--- a/gcc-4.9/gcc/config/t-sol2
+++ b/gcc-4.9/gcc/config/t-sol2
@@ -35,3 +35,10 @@ sol2-stubs.o: $(srcdir)/config/sol2-stubs.c
sol2.o: $(srcdir)/config/sol2.c
$(COMPILE) $<
$(POSTCOMPILE)
+
+# Install clearcap.map if present.
+install: install-clearcap-map
+
+# Ignore failures: file only exists if linker supports it.
+install-clearcap-map:
+ -$(INSTALL_DATA) clearcap.map $(DESTDIR)$(libdir)
diff --git a/gcc-4.9/gcc/config/v850/rtems.h b/gcc-4.9/gcc/config/v850/rtems.h
index 01dff3e52..42ebb9fc0 100644
--- a/gcc-4.9/gcc/config/v850/rtems.h
+++ b/gcc-4.9/gcc/config/v850/rtems.h
@@ -13,8 +13,13 @@
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
+ Under Section 7 of GPL version 3, you are granted additional
+ permissions described in the GCC Runtime Library Exception, version
+ 3.1, as published by the Free Software Foundation.
+
+ You should have received a copy of the GNU General Public License and
+ a copy of the GCC Runtime Library Exception along with this program;
+ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* Specify predefined symbols in preprocessor. */
diff --git a/gcc-4.9/gcc/config/v850/v850-opts.h b/gcc-4.9/gcc/config/v850/v850-opts.h
index a91b1b059..c3d9b7aac 100644
--- a/gcc-4.9/gcc/config/v850/v850-opts.h
+++ b/gcc-4.9/gcc/config/v850/v850-opts.h
@@ -13,8 +13,13 @@
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
+ Under Section 7 of GPL version 3, you are granted additional
+ permissions described in the GCC Runtime Library Exception, version
+ 3.1, as published by the Free Software Foundation.
+
+ You should have received a copy of the GNU General Public License and
+ a copy of the GCC Runtime Library Exception along with this program;
+ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#ifndef V850_OPTS_H
diff --git a/gcc-4.9/gcc/config/v850/v850.h b/gcc-4.9/gcc/config/v850/v850.h
index 92db20a44..6ccdc5d65 100644
--- a/gcc-4.9/gcc/config/v850/v850.h
+++ b/gcc-4.9/gcc/config/v850/v850.h
@@ -14,8 +14,13 @@
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
+ Under Section 7 of GPL version 3, you are granted additional
+ permissions described in the GCC Runtime Library Exception, version
+ 3.1, as published by the Free Software Foundation.
+
+ You should have received a copy of the GNU General Public License and
+ a copy of the GCC Runtime Library Exception along with this program;
+ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_V850_H
diff --git a/gcc-4.9/gcc/configure b/gcc-4.9/gcc/configure
index 0df58deb1..f7edc71d1 100755
--- a/gcc-4.9/gcc/configure
+++ b/gcc-4.9/gcc/configure
@@ -768,6 +768,7 @@ CONFIGURE_SPECS
CROSS_SYSTEM_HEADER_DIR
TARGET_SYSTEM_ROOT_DEFINE
TARGET_SYSTEM_ROOT
+RUNTIME_ROOT_PREFIX_DEFINE
SYSROOT_CFLAGS_FOR_TARGET
enable_shared
enable_fixed_point
@@ -895,6 +896,7 @@ with_dwarf2
enable_shared
with_native_system_header_dir
with_build_sysroot
+with_runtime_root_prefix
with_sysroot
with_specs
with_pkgversion
@@ -929,9 +931,11 @@ with_system_zlib
enable_maintainer_mode
enable_link_mutex
enable_version_specific_runtime_libs
+enable_canonical_prefixes
enable_plugin
enable_host_shared
enable_libquadmath_support
+with_warn_frame_larger_than_extra_text
with_linker_hash_style
'
ac_precious_vars='build_alias
@@ -1652,6 +1656,8 @@ Optional Features:
--enable-version-specific-runtime-libs
specify that runtime libraries should be installed
in a compiler-specific directory
+ --enable-canonical-prefixes
+ enable or disable prefix canonicalization
--enable-plugin enable plugin support
--enable-host-shared build host code as shared libraries
--disable-libquadmath-support
@@ -1679,6 +1685,10 @@ Optional Packages:
system header files in. Defaults to /usr/include.
--with-build-sysroot=sysroot
use sysroot as the system root during the build
+ --with-runtime-root-prefix=prefix
+ prepend prefix to paths used by the compiler to
+ name the dynamic linker and other files used at
+ runtime. Defaults to empty (no prefix).
--with-sysroot[=DIR] search for usr/lib, usr/include, et al, within DIR
--with-specs=SPECS add SPECS to driver command-line processing
--with-pkgversion=PKG Use PKG in the version string in place of "GCC"
@@ -1698,6 +1708,8 @@ Optional Packages:
choose the garbage collection mechanism to use with
the compiler
--with-system-zlib use installed libz
+ --with-warn-frame-larger-than-extra-text=TEXT
+ specifies extra text for frame size warnings
--with-linker-hash-style={sysv,gnu,both}
specify the linker hash style
@@ -7160,6 +7172,23 @@ fi
+
+# Check whether --with-runtime-root-prefix was given.
+if test "${with_runtime_root_prefix+set}" = set; then :
+ withval=$with_runtime_root_prefix;
+ case ${with_runtime_root_prefix} in
+ yes|no) as_fn_error "bad value ${withval} given for runtime root prefix" "$LINENO" 5 ;;
+ /*) ;;
+ *) as_fn_error "${withval} should be an absolute directory" "$LINENO" 5 ;;
+ esac
+ RUNTIME_ROOT_PREFIX_DEFINE="-DRUNTIME_ROOT_PREFIX=\\\"${withval}\\\""
+
+else
+ RUNTIME_ROOT_PREFIX_DEFINE=""
+fi
+
+
+
if test "x$prefix" = xNONE; then
test_prefix=/usr/local
else
@@ -11840,6 +11869,12 @@ esac
cat >>confdefs.h <<_ACEOF
+#define FRPLUGINSONAME "${host_function_reordering_plugin_soname}"
+_ACEOF
+
+
+
+cat >>confdefs.h <<_ACEOF
#define LTOPLUGINSONAME "${host_lto_plugin_soname}"
_ACEOF
@@ -14532,7 +14567,22 @@ fi
# Check whether --with-pic was given.
if test "${with_pic+set}" = set; then :
- withval=$with_pic; pic_mode="$withval"
+ withval=$with_pic; p=${PACKAGE-default}
+ case "$withval" in
+ yes|no) pic_mode="$withval" ;;
+ *)
+ pic_mode=default
+ # Look at the argument we got. We use all the common list separators.
+ lt_save_ifs="$IFS"; IFS="${IFS}$PATH_SEPARATOR,"
+ for pkg in $withval; do
+ IFS="$lt_save_ifs"
+ if test "X$pkg" = "X$p"; then
+ pic_mode=yes
+ fi
+ done
+ IFS="$lt_save_ifs"
+ ;;
+ esac
else
pic_mode=default
fi
@@ -17931,7 +17981,7 @@ else
lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2
lt_status=$lt_dlunknown
cat > conftest.$ac_ext <<_LT_EOF
-#line 17930 "configure"
+#line 17984 "configure"
#include "confdefs.h"
#if HAVE_DLFCN_H
@@ -18037,7 +18087,7 @@ else
lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2
lt_status=$lt_dlunknown
cat > conftest.$ac_ext <<_LT_EOF
-#line 18036 "configure"
+#line 18090 "configure"
#include "confdefs.h"
#if HAVE_DLFCN_H
@@ -26840,25 +26890,25 @@ if test "${enable_eh_frame_hdr_for_static+set}" = set; then :
value for --enable-eh-frame-hdr-for-static.
Valid choices are 'yes' and 'no'." "$LINENO" 5 ;;
esac
-else
- # Only support for glibc 2.3.0 or higher with AT_PHDR/AT_PHNUM from
-# Linux kernel.
- if test x$host = x$build -a x$host = x$target &&
- ldd --version 2>&1 >/dev/null &&
- glibcver=`ldd --version 2>/dev/null | sed 's/.* //;q'`; then
- glibcmajor=`expr "$glibcver" : "\([0-9]*\)"`
- glibcminor=`expr "$glibcver" : "[2-9]*\.\([0-9]*\)"`
- glibcnum=`expr $glibcmajor \* 1000 + $glibcminor`
- if test "$glibcnum" -ge 2003 ; then
- auvx=`LD_SHOW_AUXV=1 ldd 2>/dev/null`
- if echo "$auvx" | grep AT_PHDR > /dev/null &&
- echo "$auvx" | grep AT_PHNUM > /dev/null; then
- enable_eh_frame_hdr_for_static=yes
- fi
- fi
- fi
fi
+## Only support for glibc 2.3.0 or higher with AT_PHDR/AT_PHNUM from
+## Linux kernel.
+# [[if test x$host = x$build -a x$host = x$target &&
+# ldd --version 2>&1 >/dev/null &&
+# glibcver=`ldd --version 2>/dev/null | sed 's/.* //;q'`; then
+# glibcmajor=`expr "$glibcver" : "\([0-9]*\)"`
+# glibcminor=`expr "$glibcver" : "[2-9]*\.\([0-9]*\)"`
+# glibcnum=`expr $glibcmajor \* 1000 + $glibcminor`
+# if test "$glibcnum" -ge 2003 ; then
+# auvx=`LD_SHOW_AUXV=1 ldd 2>/dev/null`
+# if echo "$auvx" | grep AT_PHDR > /dev/null &&
+# echo "$auvx" | grep AT_PHNUM > /dev/null; then
+# enable_eh_frame_hdr_for_static=yes
+# fi
+# fi
+# fi]])
+
if test x$enable_eh_frame_hdr_for_static = xyes; then
$as_echo "#define USE_EH_FRAME_HDR_FOR_STATIC 1" >>confdefs.h
@@ -27129,6 +27179,34 @@ _ACEOF
fi
+{ $as_echo "$as_me:${as_lineno-$LINENO}: checking linker mapfile support for clearing hardware capabilities" >&5
+$as_echo_n "checking linker mapfile support for clearing hardware capabilities... " >&6; }
+saved_LDFLAGS="$LDFLAGS"
+for clearcap_map in sol2-clearcapv2.map sol2-clearcap.map; do
+ LDFLAGS="$saved_LDFLAGS -Wl,-M,${srcdir}/config/$clearcap_map"
+ cat confdefs.h - <<_ACEOF >conftest.$ac_ext
+/* end confdefs.h. */
+int main(void) {return 0;}
+_ACEOF
+if ac_fn_c_try_link "$LINENO"; then :
+ gcc_cv_ld_clearcap=yes; break
+else
+ gcc_cv_ld_clearcap=no
+fi
+rm -f core conftest.err conftest.$ac_objext \
+ conftest$ac_exeext conftest.$ac_ext
+done
+LDFLAGS="$saved_LDFLAGS"
+if test "x$gcc_cv_ld_clearcap" = xyes; then
+
+$as_echo "#define HAVE_LD_CLEARCAP 1" >>confdefs.h
+
+ ac_config_links="$ac_config_links clearcap.map:${srcdir}/config/$clearcap_map"
+
+fi
+{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $gcc_cv_ld_clearcap" >&5
+$as_echo "$gcc_cv_ld_clearcap" >&6; }
+
case "$target:$tm_file" in
powerpc64-*-freebsd* | powerpc64*-*-linux* | powerpc*-*-linux*rs6000/biarch64.h*)
case "$target" in
@@ -27775,6 +27853,21 @@ if test "${enable_version_specific_runtime_libs+set}" = set; then :
fi
+# Set default prefix canonicalization.
+
+# Check whether --enable-canonical-prefixes was given.
+if test "${enable_canonical_prefixes+set}" = set; then :
+ enableval=$enable_canonical_prefixes;
+else
+ enable_canonical_prefixes=yes
+fi
+
+if test x"$enable_canonical_prefixes" = xyes; then
+
+$as_echo "#define ENABLE_CANONICAL_PREFIXES 1" >>confdefs.h
+
+fi
+
# Substitute configuration variables
@@ -28085,6 +28178,24 @@ $as_echo "#define ENABLE_LIBQUADMATH_SUPPORT 1" >>confdefs.h
fi
+warn_frame_larger_than_extra_text=
+
+# Check whether --with-warn-frame-larger-than-extra-text was given.
+if test "${with_warn_frame_larger_than_extra_text+set}" = set; then :
+ withval=$with_warn_frame_larger_than_extra_text; case "${withval}" in
+yes) as_fn_error "bad value ${withval} given for frame size warning text" "$LINENO" 5 ;;
+no) ;;
+*) warn_frame_larger_than_extra_text="$withval" ;;
+esac
+fi
+
+
+cat >>confdefs.h <<_ACEOF
+#define WARN_FRAME_LARGER_THAN_EXTRA_TEXT "$warn_frame_larger_than_extra_text"
+_ACEOF
+
+
+
# Specify what hash style to use by default.
# Check whether --with-linker-hash-style was given.
@@ -28658,6 +28769,7 @@ cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
# Files that config.status was made for.
config_files="$ac_config_files"
config_headers="$ac_config_headers"
+config_links="$ac_config_links"
config_commands="$ac_config_commands"
_ACEOF
@@ -28687,6 +28799,9 @@ $config_files
Configuration headers:
$config_headers
+Configuration links:
+$config_links
+
Configuration commands:
$config_commands
@@ -28822,6 +28937,7 @@ do
"as") CONFIG_FILES="$CONFIG_FILES as:exec-tool.in" ;;
"collect-ld") CONFIG_FILES="$CONFIG_FILES collect-ld:exec-tool.in" ;;
"nm") CONFIG_FILES="$CONFIG_FILES nm:exec-tool.in" ;;
+ "clearcap.map") CONFIG_LINKS="$CONFIG_LINKS clearcap.map:${srcdir}/config/$clearcap_map" ;;
"$all_outputs") CONFIG_FILES="$CONFIG_FILES $all_outputs" ;;
"default") CONFIG_COMMANDS="$CONFIG_COMMANDS default" ;;
@@ -28837,6 +28953,7 @@ done
if $ac_need_defaults; then
test "${CONFIG_FILES+set}" = set || CONFIG_FILES=$config_files
test "${CONFIG_HEADERS+set}" = set || CONFIG_HEADERS=$config_headers
+ test "${CONFIG_LINKS+set}" = set || CONFIG_LINKS=$config_links
test "${CONFIG_COMMANDS+set}" = set || CONFIG_COMMANDS=$config_commands
fi
@@ -29158,7 +29275,7 @@ cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
fi # test -n "$CONFIG_HEADERS"
-eval set X " :F $CONFIG_FILES :H $CONFIG_HEADERS :C $CONFIG_COMMANDS"
+eval set X " :F $CONFIG_FILES :H $CONFIG_HEADERS :L $CONFIG_LINKS :C $CONFIG_COMMANDS"
shift
for ac_tag
do
@@ -29394,7 +29511,38 @@ $as_echo "$as_me: $ac_file is unchanged" >&6;}
|| as_fn_error "could not create -" "$LINENO" 5
fi
;;
+ :L)
+ #
+ # CONFIG_LINK
+ #
+
+ if test "$ac_source" = "$ac_file" && test "$srcdir" = '.'; then
+ :
+ else
+ # Prefer the file from the source tree if names are identical.
+ if test "$ac_source" = "$ac_file" || test ! -r "$ac_source"; then
+ ac_source=$srcdir/$ac_source
+ fi
+ { $as_echo "$as_me:${as_lineno-$LINENO}: linking $ac_source to $ac_file" >&5
+$as_echo "$as_me: linking $ac_source to $ac_file" >&6;}
+
+ if test ! -r "$ac_source"; then
+ as_fn_error "$ac_source: file not found" "$LINENO" 5
+ fi
+ rm -f "$ac_file"
+
+ # Try a relative symlink, then a hard link, then a copy.
+ case $srcdir in
+ [\\/$]* | ?:[\\/]* ) ac_rel_source=$ac_source ;;
+ *) ac_rel_source=$ac_top_build_prefix$ac_source ;;
+ esac
+ ln -s "$ac_rel_source" "$ac_file" 2>/dev/null ||
+ ln "$ac_source" "$ac_file" 2>/dev/null ||
+ cp -p "$ac_source" "$ac_file" ||
+ as_fn_error "cannot link or copy $ac_source to $ac_file" "$LINENO" 5
+ fi
+ ;;
:C) { $as_echo "$as_me:${as_lineno-$LINENO}: executing $ac_file commands" >&5
$as_echo "$as_me: executing $ac_file commands" >&6;}
;;
diff --git a/gcc-4.9/gcc/configure.ac b/gcc-4.9/gcc/configure.ac
index a130db62e..309f068e2 100644
--- a/gcc-4.9/gcc/configure.ac
+++ b/gcc-4.9/gcc/configure.ac
@@ -760,6 +760,21 @@ AC_ARG_WITH(build-sysroot,
[SYSROOT_CFLAGS_FOR_TARGET=])
AC_SUBST(SYSROOT_CFLAGS_FOR_TARGET)
+AC_ARG_WITH([runtime-root-prefix],
+ [ --with-runtime-root-prefix=prefix
+ prepend prefix to paths used by the compiler to
+ name the dynamic linker and other files used at
+ runtime. Defaults to empty (no prefix).],
+[
+ case ${with_runtime_root_prefix} in
+ yes|no) AC_MSG_ERROR([bad value ${withval} given for runtime root prefix]) ;;
+ /*) ;;
+ *) AC_MSG_ERROR([${withval} should be an absolute directory]) ;;
+ esac
+ RUNTIME_ROOT_PREFIX_DEFINE="-DRUNTIME_ROOT_PREFIX=\\\"${withval}\\\""
+], [RUNTIME_ROOT_PREFIX_DEFINE=""])
+AC_SUBST(RUNTIME_ROOT_PREFIX_DEFINE)
+
if test "x$prefix" = xNONE; then
test_prefix=/usr/local
else
@@ -1946,6 +1961,10 @@ case $use_collect2 in
;;
esac
+AC_DEFINE_UNQUOTED(FRPLUGINSONAME,"${host_function_reordering_plugin_soname}",
+[Define to the name of the function reordering plugin DSO that must be
+ passed to the linker's -plugin=LIB option.])
+
AC_DEFINE_UNQUOTED(LTOPLUGINSONAME,"${host_lto_plugin_soname}",
[Define to the name of the LTO plugin DSO that must be
passed to the linker's -plugin=LIB option.])
@@ -4587,23 +4606,24 @@ if test x"$gcc_cv_ld_eh_frame_hdr" = xyes; then
*) AC_MSG_ERROR(['$enable_eh_frame_hdr_for_static' is an invalid
value for --enable-eh-frame-hdr-for-static.
Valid choices are 'yes' and 'no'.]) ;;
- esac],
-# Only support for glibc 2.3.0 or higher with AT_PHDR/AT_PHNUM from
-# Linux kernel.
- [[if test x$host = x$build -a x$host = x$target &&
- ldd --version 2>&1 >/dev/null &&
- glibcver=`ldd --version 2>/dev/null | sed 's/.* //;q'`; then
- glibcmajor=`expr "$glibcver" : "\([0-9]*\)"`
- glibcminor=`expr "$glibcver" : "[2-9]*\.\([0-9]*\)"`
- glibcnum=`expr $glibcmajor \* 1000 + $glibcminor`
- if test "$glibcnum" -ge 2003 ; then
- auvx=`LD_SHOW_AUXV=1 ldd 2>/dev/null`
- if echo "$auvx" | grep AT_PHDR > /dev/null &&
- echo "$auvx" | grep AT_PHNUM > /dev/null; then
- enable_eh_frame_hdr_for_static=yes
- fi
- fi
- fi]])
+ esac])
+## Only support for glibc 2.3.0 or higher with AT_PHDR/AT_PHNUM from
+## Linux kernel.
+# [[if test x$host = x$build -a x$host = x$target &&
+# ldd --version 2>&1 >/dev/null &&
+# glibcver=`ldd --version 2>/dev/null | sed 's/.* //;q'`; then
+# glibcmajor=`expr "$glibcver" : "\([0-9]*\)"`
+# glibcminor=`expr "$glibcver" : "[2-9]*\.\([0-9]*\)"`
+# glibcnum=`expr $glibcmajor \* 1000 + $glibcminor`
+# if test "$glibcnum" -ge 2003 ; then
+# auvx=`LD_SHOW_AUXV=1 ldd 2>/dev/null`
+# if echo "$auvx" | grep AT_PHDR > /dev/null &&
+# echo "$auvx" | grep AT_PHNUM > /dev/null; then
+# enable_eh_frame_hdr_for_static=yes
+# fi
+# fi
+# fi]])
+
if test x$enable_eh_frame_hdr_for_static = xyes; then
AC_DEFINE(USE_EH_FRAME_HDR_FOR_STATIC, 1,
[Define if your system supports PT_GNU_EH_FRAME for static executable.])
@@ -4848,6 +4868,21 @@ if test x"$gcc_cv_ld_as_needed" = xyes; then
[Define to the linker option to keep unused dependencies.])
fi
+AC_MSG_CHECKING(linker mapfile support for clearing hardware capabilities)
+saved_LDFLAGS="$LDFLAGS"
+for clearcap_map in sol2-clearcapv2.map sol2-clearcap.map; do
+ LDFLAGS="$saved_LDFLAGS -Wl,-M,${srcdir}/config/$clearcap_map"
+ AC_LINK_IFELSE([int main(void) {return 0;}],
+ [gcc_cv_ld_clearcap=yes; break], [gcc_cv_ld_clearcap=no])
+done
+LDFLAGS="$saved_LDFLAGS"
+if test "x$gcc_cv_ld_clearcap" = xyes; then
+ AC_DEFINE([HAVE_LD_CLEARCAP], 1,
+[Define if the linker supports clearing hardware capabilities via mapfile.])
+ AC_CONFIG_LINKS([clearcap.map:${srcdir}/config/$clearcap_map])
+fi
+AC_MSG_RESULT($gcc_cv_ld_clearcap)
+
case "$target:$tm_file" in
powerpc64-*-freebsd* | powerpc64*-*-linux* | powerpc*-*-linux*rs6000/biarch64.h*)
case "$target" in
@@ -5408,6 +5443,18 @@ AC_ARG_ENABLE(version-specific-runtime-libs,
[specify that runtime libraries should be
installed in a compiler-specific directory])])
+# Set default prefix canonicalization.
+
+AC_ARG_ENABLE(canonical-prefixes,
+[ --enable-canonical-prefixes
+ enable or disable prefix canonicalization],
+[],
+enable_canonical_prefixes=yes)
+if test x"$enable_canonical_prefixes" = xyes; then
+ AC_DEFINE(ENABLE_CANONICAL_PREFIXES,
+ 1, [Define to enable prefix canonicalization.])
+fi
+
# Substitute configuration variables
AC_SUBST(subdirs)
AC_SUBST(srcdir)
@@ -5627,6 +5674,20 @@ if test "${ENABLE_LIBQUADMATH_SUPPORT}" != "no" ; then
fi
+warn_frame_larger_than_extra_text=
+AC_ARG_WITH(warn-frame-larger-than-extra-text,
+[ --with-warn-frame-larger-than-extra-text=TEXT
+ specifies extra text for frame size warnings],
+[case "${withval}" in
+yes) AC_MSG_ERROR(bad value ${withval} given for frame size warning text) ;;
+no) ;;
+*) warn_frame_larger_than_extra_text="$withval" ;;
+esac])
+AC_DEFINE_UNQUOTED(WARN_FRAME_LARGER_THAN_EXTRA_TEXT,
+ "$warn_frame_larger_than_extra_text",
+ [Define to be extra text for frame size warnings.])
+
+
# Specify what hash style to use by default.
AC_ARG_WITH([linker-hash-style],
[AC_HELP_STRING([--with-linker-hash-style={sysv,gnu,both}],
diff --git a/gcc-4.9/gcc/coverage.c b/gcc-4.9/gcc/coverage.c
index 4c06fa479..a7f183d0c 100644
--- a/gcc-4.9/gcc/coverage.c
+++ b/gcc-4.9/gcc/coverage.c
@@ -50,13 +50,32 @@ along with GCC; see the file COPYING3. If not see
#include "tree-pass.h"
#include "cgraph.h"
#include "dumpfile.h"
+#include "opts.h"
+#include "gcov-io.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "gimple-expr.h"
+#include "gimple.h"
+#include "gimplify.h"
+#include "gimple-iterator.h"
+#include "gimplify-me.h"
+#include "gimple-ssa.h"
+#include "cpplib.h"
+#include "incpath.h"
#include "diagnostic-core.h"
#include "intl.h"
+#include "l-ipo.h"
#include "filenames.h"
+#include "dwarf2asm.h"
#include "target.h"
#include "gcov-io.h"
#include "gcov-io.c"
+#include "params.h"
+#include "dbgcnt.h"
+#include "input.h"
+#include "pointer-set.h"
+#include "auto-profile.h"
struct GTY((chain_next ("%h.next"))) coverage_data
{
@@ -68,11 +87,20 @@ struct GTY((chain_next ("%h.next"))) coverage_data
tree ctr_vars[GCOV_COUNTERS]; /* counter variables. */
};
+static bool profiling_enabled_p (void);
+
+/* Linked list of -D/-U/-imacro/-include strings for a source module. */
+struct str_list
+{
+ char *str;
+ struct str_list *next;
+};
+
/* Counts information for a function. */
typedef struct counts_entry
{
/* We hash by */
- unsigned ident;
+ unsigned HOST_WIDEST_INT ident;
unsigned ctr;
/* Store */
@@ -118,13 +146,42 @@ static unsigned bbg_file_stamp;
/* Name of the count data (gcda) file. */
static char *da_file_name;
+static char *da_base_file_name;
+static char *main_input_file_name;
/* The names of merge functions for counters. */
-static const char *const ctr_merge_functions[GCOV_COUNTERS] = GCOV_MERGE_FUNCTIONS;
-static const char *const ctr_names[GCOV_COUNTERS] = GCOV_COUNTER_NAMES;
+#define STR(str) #str
+#define DEF_GCOV_COUNTER(COUNTER, NAME, FN_TYPE) STR(__gcov_merge ## FN_TYPE),
+static const char *const ctr_merge_functions[GCOV_COUNTERS] = {
+#include "gcov-counter.def"
+};
+#undef DEF_GCOV_COUNTER
+#undef STR
+
+#define DEF_GCOV_COUNTER(COUNTER, NAME, FN_TYPE) NAME,
+static const char *const ctr_names[GCOV_COUNTERS] = {
+#include "gcov-counter.def"
+};
+#undef DEF_GCOV_COUNTER
+
+/* True during the period that counts_hash is being rebuilt. */
+static bool rebuilding_counts_hash = false;
+
+struct gcov_module_info **module_infos = NULL;
+
+/* List of -D/-U options. */
+static struct str_list *cpp_defines_head = NULL, *cpp_defines_tail = NULL;
+static unsigned num_cpp_defines = 0;
+
+/* List of -imcaro/-include options. */
+static struct str_list *cpp_includes_head = NULL, *cpp_includes_tail = NULL;
+static unsigned num_cpp_includes = 0;
+
+/* True if the current module has any asm statements. */
+static bool has_asm_statement;
/* Forward declarations. */
-static void read_counts_file (void);
+static void read_counts_file (const char *, unsigned);
static tree build_var (tree, tree, int);
static void build_fn_info_type (tree, unsigned, tree);
static void build_info_type (tree, tree);
@@ -134,6 +191,8 @@ static bool coverage_obj_init (void);
static vec<constructor_elt, va_gc> *coverage_obj_fn
(vec<constructor_elt, va_gc> *, tree, struct coverage_data const *);
static void coverage_obj_finish (vec<constructor_elt, va_gc> *);
+static char * get_da_file_name (const char *);
+static tree build_gcov_module_info_type (void);
/* Return the type node for gcov_type. */
@@ -146,13 +205,22 @@ get_gcov_type (void)
/* Return the type node for gcov_unsigned_t. */
-static tree
+tree
get_gcov_unsigned_t (void)
{
enum machine_mode mode = smallest_mode_for_size (32, MODE_INT);
return lang_hooks.types.type_for_mode (mode, true);
}
+/* Return the type node for const char *. */
+
+tree
+get_const_string_type (void)
+{
+ return build_pointer_type
+ (build_qualified_type (char_type_node, TYPE_QUAL_CONST));
+}
+
inline hashval_t
counts_entry::hash (const value_type *entry)
{
@@ -169,28 +237,491 @@ counts_entry::equal (const value_type *entry1,
inline void
counts_entry::remove (value_type *entry)
{
- free (entry->counts);
- free (entry);
+ /* When rebuilding counts_hash, we will reuse the entry. */
+ if (!rebuilding_counts_hash)
+ {
+ free (entry->counts);
+ free (entry);
+ }
}
/* Hash table of count data. */
static hash_table <counts_entry> counts_hash;
-/* Read in the counts file, if available. */
+/* Returns true if MOD_ID is the id of the last source module. */
+int
+is_last_module (unsigned mod_id)
+{
+ return (mod_id == module_infos[num_in_fnames - 1]->ident);
+}
+
+/* String hash function */
+
+struct string_hasher
+{
+ /* hash_table support. */
+ typedef char value_type;
+ typedef char compare_type;
+ static inline hashval_t hash (const value_type *);
+ static int equal (const value_type *, const compare_type *);
+ static void remove (value_type *) {};
+};
+
+hashval_t
+string_hasher::hash (const char* s)
+{
+ return htab_hash_string (s);
+}
+
+/* String equal function */
+
+int
+string_hasher::equal (const char *s1, const char *s2)
+{
+ return !strcmp (s1, s2);
+}
+
+/* Command line option descriptor. */
+
+struct opt_desc
+{
+ const char *opt_str;
+ const char *opt_neg_str;
+ bool default_val; /* TODO better handling of default */
+};
+
+static struct opt_desc force_matching_cg_opts[] =
+ {
+ { "-fexceptions", "-fno-exceptions", true },
+ { "-fsized-delete", "-fno-sized-delete", false },
+ { "-frtti", "-fno-rtti", true },
+ { "-fstrict-aliasing", "-fno-strict-aliasing", true },
+ { "-fsigned-char", "-funsigned-char", true },
+ /* { "-fsigned-char", "-fno-signed-char", true },
+ { "-funsigned-char", "-fno-unsigned-char", false }, */
+ { "-ansi", "", false },
+ { NULL, NULL, false }
+ };
+
+/* A helper function to check if OPTION_STRING is one of the codegen
+ options specified in FORCE_MATCHING_CG_ARGS. If yes, set the
+ corresponding entry in CG_ARG_VAL to the value of the option specified
+ in OPTION_STRING. */
+
+static void
+check_cg_opts (bool *cg_opt_val, const char *option_str)
+{
+ unsigned int i;
+ for (i = 0; force_matching_cg_opts[i].opt_str; i++)
+ {
+ if (!strcmp (force_matching_cg_opts[i].opt_str, option_str))
+ cg_opt_val[i] = true;
+ else if (!strcmp (force_matching_cg_opts[i].opt_neg_str, option_str))
+ cg_opt_val[i] = false;
+ }
+}
+
+/* A helper function to check if CG_OPTS1 and CG_OPTS are identical. It returns
+ true if yes, false otherwise. */
+
+static bool
+has_incompatible_cg_opts (bool *cg_opts1, bool *cg_opts2, unsigned num_cg_opts)
+{
+ unsigned i;
+
+ for (i = 0; i < num_cg_opts; i++)
+ {
+ if (cg_opts1[i] != cg_opts2[i])
+ return true;
+ }
+
+ return false;
+}
+
+/* Returns true if the command-line arguments stored in the given module-infos
+ are incompatible. */
+bool
+incompatible_cl_args (struct gcov_module_info* mod_info1,
+ struct gcov_module_info* mod_info2)
+{
+ char **warning_opts1 = XNEWVEC (char *, mod_info1->num_cl_args);
+ char **warning_opts2 = XNEWVEC (char *, mod_info2->num_cl_args);
+ char **non_warning_opts1 = XNEWVEC (char *, mod_info1->num_cl_args);
+ char **non_warning_opts2 = XNEWVEC (char *, mod_info2->num_cl_args);
+ char *std_opts1 = NULL, *std_opts2 = NULL;
+ unsigned arch_isa1 = 0, arch_isa2 = 0;
+ unsigned int i, num_warning_opts1 = 0, num_warning_opts2 = 0;
+ unsigned int num_non_warning_opts1 = 0, num_non_warning_opts2 = 0;
+ bool warning_mismatch = false;
+ bool non_warning_mismatch = false;
+ hash_table <string_hasher> option_tab1, option_tab2;
+ unsigned int start_index1 = mod_info1->num_quote_paths
+ + mod_info1->num_bracket_paths + mod_info1->num_system_paths
+ + mod_info1->num_cpp_defines + mod_info1->num_cpp_includes;
+ unsigned int start_index2 = mod_info2->num_quote_paths
+ + mod_info2->num_bracket_paths + mod_info2->num_system_paths
+ + mod_info2->num_cpp_defines + mod_info2->num_cpp_includes;
+
+ bool *cg_opts1, *cg_opts2, has_any_incompatible_cg_opts, has_incompatible_std;
+ bool has_incompatible_arch_isa;
+ unsigned int num_cg_opts = 0;
+
+ for (i = 0; force_matching_cg_opts[i].opt_str; i++)
+ num_cg_opts++;
+
+ cg_opts1 = XCNEWVEC (bool, num_cg_opts);
+ cg_opts2 = XCNEWVEC (bool, num_cg_opts);
+
+ /* Initialize the array to default value */
+ for (i = 0; force_matching_cg_opts[i].opt_str; i++)
+ {
+ cg_opts1[i] = force_matching_cg_opts[i].default_val;
+ cg_opts2[i] = force_matching_cg_opts[i].default_val;
+ }
+
+ option_tab1.create (10);
+ option_tab2.create (10);
+
+ /* First, separate the warning and non-warning options. */
+ for (i = 0; i < mod_info1->num_cl_args; i++)
+ if (mod_info1->string_array[start_index1 + i][1] == 'W')
+ warning_opts1[num_warning_opts1++] =
+ mod_info1->string_array[start_index1 + i];
+ else
+ {
+ char **slot;
+ char *option_string = mod_info1->string_array[start_index1 + i];
+
+ check_cg_opts (cg_opts1, option_string);
+ if (strstr (option_string, "-std="))
+ std_opts1 = option_string;
+
+ if (!strncmp (option_string, "-m",2))
+ arch_isa1 = crc32_string (arch_isa1, option_string);
+
+ slot = option_tab1.find_slot (option_string, INSERT);
+ if (!*slot)
+ {
+ *slot = option_string;
+ non_warning_opts1[num_non_warning_opts1++] = option_string;
+ }
+ }
+
+ for (i = 0; i < mod_info2->num_cl_args; i++)
+ if (mod_info2->string_array[start_index2 + i][1] == 'W')
+ warning_opts2[num_warning_opts2++] =
+ mod_info2->string_array[start_index2 + i];
+ else
+ {
+ char **slot;
+ char *option_string = mod_info2->string_array[start_index2 + i];
+
+ check_cg_opts (cg_opts2, option_string);
+ if (strstr (option_string, "-std="))
+ std_opts2 = option_string;
+
+ if (!strncmp (option_string, "-m",2))
+ arch_isa2 = crc32_string (arch_isa2, option_string);
+
+ slot = option_tab2.find_slot (option_string, INSERT);
+ if (!*slot)
+ {
+ *slot = option_string;
+ non_warning_opts2[num_non_warning_opts2++] = option_string;
+ }
+ }
+
+ has_incompatible_std =
+ std_opts1 != std_opts2 && (std_opts1 == NULL || std_opts2 == NULL
+ || strcmp (std_opts1, std_opts2));
+
+ has_incompatible_arch_isa = (arch_isa1 != arch_isa2);
+ /* Compare warning options. If these mismatch, we emit a warning. */
+ if (num_warning_opts1 != num_warning_opts2)
+ warning_mismatch = true;
+ else
+ for (i = 0; i < num_warning_opts1 && !warning_mismatch; i++)
+ warning_mismatch = strcmp (warning_opts1[i], warning_opts2[i]) != 0;
+
+ /* Compare non-warning options. If these mismatch, we emit a warning, and if
+ -fripa-disallow-opt-mismatch is supplied, the two modules are also
+ incompatible. */
+ if (num_non_warning_opts1 != num_non_warning_opts2)
+ non_warning_mismatch = true;
+ else
+ for (i = 0; i < num_non_warning_opts1 && !non_warning_mismatch; i++)
+ non_warning_mismatch =
+ strcmp (non_warning_opts1[i], non_warning_opts2[i]) != 0;
+
+ if (warn_ripa_opt_mismatch && (warning_mismatch || non_warning_mismatch))
+ warning (OPT_Wripa_opt_mismatch, "command line arguments mismatch for %s "
+ "and %s", mod_info1->source_filename, mod_info2->source_filename);
+
+ if (warn_ripa_opt_mismatch && non_warning_mismatch && dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, UNKNOWN_LOCATION,
+ "Options for %s", mod_info1->source_filename);
+ for (i = 0; i < num_non_warning_opts1; i++)
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, UNKNOWN_LOCATION,
+ non_warning_opts1[i]);
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, UNKNOWN_LOCATION,
+ "Options for %s", mod_info2->source_filename);
+ for (i = 0; i < num_non_warning_opts2; i++)
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, UNKNOWN_LOCATION,
+ non_warning_opts2[i]);
+ }
+
+ has_any_incompatible_cg_opts
+ = has_incompatible_cg_opts (cg_opts1, cg_opts2, num_cg_opts);
+
+ XDELETEVEC (warning_opts1);
+ XDELETEVEC (warning_opts2);
+ XDELETEVEC (non_warning_opts1);
+ XDELETEVEC (non_warning_opts2);
+ XDELETEVEC (cg_opts1);
+ XDELETEVEC (cg_opts2);
+ option_tab1.dispose ();
+ option_tab2.dispose ();
+ return ((flag_ripa_disallow_opt_mismatch && non_warning_mismatch)
+ || has_any_incompatible_cg_opts || has_incompatible_std
+ || has_incompatible_arch_isa);
+}
+
+
+/* Support for module sorting based on user specfication. */
+struct module_name_entry
+{
+ typedef module_name_entry value_type;
+ typedef module_name_entry compare_type;
+ static inline hashval_t hash (const value_type *entry);
+ static inline int equal (const value_type *entry1, const compare_type *entry2);
+ static inline void remove (value_type *v);
+
+ const char *source_name;
+ int order;
+};
+
+/* Hash function for module name */
+
+hashval_t
+module_name_entry::hash (const value_type *s)
+{
+ return htab_hash_string (s->source_name);
+}
+
+/* Delete function for module name */
+
+void
+module_name_entry::remove (value_type *entry)
+{
+ /* XDELETE (entry->source_name); */
+ XDELETE (entry);
+}
+
+/* Equal function for module name */
+
+int
+module_name_entry::equal (const value_type *s1, const compare_type *s2)
+{
+ return !strcmp (s1->source_name, s2->source_name);
+}
+
+static hash_table<module_name_entry> module_name_tab;
+
+/* Comparison function for sorting module_infos array. */
+
+static int
+cmp_module_name_entry (const void *p1, const void *p2)
+{
+ module_name_entry **slot1, **slot2;
+ module_name_entry *m_e1, *m_e2;
+
+ struct gcov_module_info *const *e1 = (struct gcov_module_info *const *) p1;
+ struct gcov_module_info *const *e2 = (struct gcov_module_info *const *) p2;
+
+ module_name_entry e;
+ e.source_name = (*e1)->source_filename;
+ slot1 = module_name_tab.find_slot (&e, NO_INSERT);
+ e.source_name = (*e2)->source_filename;
+ slot2 = module_name_tab.find_slot (&e, NO_INSERT);
+
+ if (!slot1 || !*slot1)
+ return 1;
+
+ if (!slot2 || !*slot2)
+ return -1;
+
+ gcc_assert (slot1 && *slot1 && slot2 && *slot2);
+ m_e1 = *slot1;
+ m_e2 = *slot2;
+
+ return m_e1->order - m_e2->order;
+}
+
+/* Comparison function for sorting fname array */
+
+static int
+cmp_fname_entry (const void *p1, const void *p2)
+{
+ module_name_entry **slot1, **slot2;
+ module_name_entry *m_e1, *m_e2;
+
+ const char *const *e1 = (const char *const *) p1;
+ const char *const *e2 = (const char *const *) p2;
+
+ module_name_entry e;
+
+ e.source_name = *e1;
+ slot1 = module_name_tab.find_slot (&e, NO_INSERT);
+ e.source_name = *e2;
+ slot2 = module_name_tab.find_slot (&e, NO_INSERT);
+
+ if (!slot1 || !*slot1)
+ return 1;
+
+ if (!slot2 || !*slot2)
+ return -1;
+
+ gcc_assert (slot1 && *slot1 && slot2 && *slot2);
+ m_e1 = *slot1;
+ m_e2 = *slot2;
+
+ return m_e1->order - m_e2->order;
+}
+
+/* Reorder module group according to file IMPORTS_FILE */
+
+static void
+reorder_module_groups (const char *imports_file, unsigned max_group)
+{
+ FILE *f;
+ int order = 0;
+ const int max_line_size = (1 << 16);
+ char line[max_line_size];
+
+ module_name_tab.create (20);
+
+ f = fopen (imports_file, "r");
+ if (!f)
+ error ("Can't open file %s", imports_file);
+
+ while (fgets (line, max_line_size, f))
+ {
+ size_t n = strlen (line);
+ gcc_assert (n < max_line_size - 1);
+ if (line[n - 1] == '\n')
+ line[n - 1] = '\0';
+
+ module_name_entry **slot;
+ module_name_entry *m_e = XCNEW (module_name_entry);
+
+ m_e->source_name = xstrdup (line);
+ m_e->order = order;
+
+ slot = module_name_tab.find_slot (m_e, INSERT);
+ gcc_assert (!*slot);
+ *slot = m_e;
+
+ order++;
+ }
+
+ /* Now do the sorting */
+
+ qsort (&module_infos[1], num_in_fnames - 1, sizeof (void *),
+ cmp_module_name_entry);
+ qsort (&in_fnames[1], num_in_fnames - 1, sizeof (void *),
+ cmp_fname_entry);
+
+ {
+ unsigned i;
+
+ for (i = 0; i < num_in_fnames; i++)
+ fprintf (stderr, "*** %s (%s)\n", in_fnames[i],
+ i < max_group ? "Kept":"Skipped");
+
+ for (i = 0; i < num_in_fnames; i++)
+ fprintf (stderr, "### %s (%s)\n", module_infos[i]->source_filename,
+ i < max_group ? "Kept":"Skipped");
+
+ }
+
+ if (num_in_fnames > max_group)
+ num_in_fnames = max_group;
+
+ module_name_tab.dispose ();
+}
+
+typedef struct {
+ unsigned int mod_id;
+ const char *mod_name;
+} mod_id_to_name_t;
+
+static vec<mod_id_to_name_t> *mod_names;
+
+static void
+record_module_name (unsigned int mod_id, const char *name)
+{
+ mod_id_to_name_t t;
+
+ t.mod_id = mod_id;
+ t.mod_name = xstrdup (name);
+ if (!mod_names)
+ vec_alloc (mod_names, 10);
+ mod_names->safe_push (t);
+}
+
+/* Return the module name for module with MOD_ID. */
+
+const char *
+get_module_name (unsigned int mod_id)
+{
+ size_t i;
+ mod_id_to_name_t *elt;
+
+ for (i = 0; mod_names->iterate (i, &elt); i++)
+ {
+ if (elt->mod_id == mod_id)
+ return elt->mod_name;
+ }
+
+ gcc_assert (0);
+ return NULL;
+}
+
+/* Read in the counts file, if available. DA_FILE_NAME is the
+ name of the gcda file, and MODULE_ID is the module id of the
+ associated source module. */
static void
-read_counts_file (void)
+read_counts_file (const char *da_file_name, unsigned module_id)
{
gcov_unsigned_t fn_ident = 0;
struct gcov_summary summary;
unsigned new_summary = 1;
gcov_unsigned_t tag;
int is_error = 0;
+ unsigned module_infos_read = 0;
+ struct pointer_set_t *modset = 0;
+ unsigned max_group = PARAM_VALUE (PARAM_MAX_LIPO_GROUP);
unsigned lineno_checksum = 0;
unsigned cfg_checksum = 0;
+ const char *imports_filename;
+
+ if (max_group == 0)
+ max_group = (unsigned) -1;
if (!gcov_open (da_file_name, 1))
- return;
+ {
+ if (PARAM_VALUE (PARAM_GCOV_DEBUG))
+ {
+ /* Try to find .gcda file in the current working dir. */
+ da_file_name = lbasename (da_file_name);
+ if (!gcov_open (da_file_name, 1))
+ return;
+ }
+ else
+ return;
+ }
if (!gcov_magic (gcov_read_unsigned (), GCOV_DATA_MAGIC))
{
@@ -215,7 +746,9 @@ read_counts_file (void)
tag = gcov_read_unsigned ();
bbg_file_stamp = crc32_unsigned (bbg_file_stamp, tag);
- counts_hash.create (10);
+ if (!counts_hash.is_created ())
+ counts_hash.create (10);
+
while ((tag = gcov_read_unsigned ()))
{
gcov_unsigned_t length;
@@ -267,7 +800,7 @@ read_counts_file (void)
unsigned n_counts = GCOV_TAG_COUNTER_NUM (length);
unsigned ix;
- elt.ident = fn_ident;
+ elt.ident = GEN_FUNC_GLOBAL_ID (module_id, fn_ident);
elt.ctr = GCOV_COUNTER_FOR_TAG (tag);
slot = counts_hash.find_slot (&elt, INSERT);
@@ -275,7 +808,7 @@ read_counts_file (void)
if (!entry)
{
*slot = entry = XCNEW (counts_entry_t);
- entry->ident = fn_ident;
+ entry->ident = elt.ident;
entry->ctr = elt.ctr;
entry->lineno_checksum = lineno_checksum;
entry->cfg_checksum = cfg_checksum;
@@ -319,6 +852,133 @@ read_counts_file (void)
entry->counts[ix] += gcov_read_counter ();
skip_merge:;
}
+ /* Skip the MODULE_INFO records if not in dyn-ipa mode, or when reading
+ auxiliary modules. */
+ else if (tag == GCOV_TAG_MODULE_INFO && flag_dyn_ipa && !module_id)
+ {
+ struct gcov_module_info* mod_info;
+ size_t info_sz;
+ /* each string has at least 8 bytes, so MOD_INFO's
+ persistent length >= in core size. */
+ mod_info
+ = (struct gcov_module_info *) alloca ((length + 2)
+ * sizeof (gcov_unsigned_t));
+ gcov_read_module_info (mod_info, length);
+ info_sz = (sizeof (struct gcov_module_info) +
+ sizeof (void *) * (mod_info->num_quote_paths +
+ mod_info->num_bracket_paths +
+ mod_info->num_system_paths +
+ mod_info->num_cpp_defines +
+ mod_info->num_cpp_includes +
+ mod_info->num_cl_args));
+ /* The first MODULE_INFO record must be for the primary module. */
+ if (module_infos_read == 0)
+ {
+ gcc_assert (mod_info->is_primary && !modset);
+ module_infos_read++;
+ modset = pointer_set_create ();
+ pointer_set_insert (modset, (void *)(size_t)mod_info->ident);
+ primary_module_id = mod_info->ident;
+ include_all_aux = MODULE_INCLUDE_ALL_AUX_FLAG (mod_info);
+ module_infos = XCNEWVEC (struct gcov_module_info *, 1);
+ module_infos[0] = XCNEWVAR (struct gcov_module_info, info_sz);
+ memcpy (module_infos[0], mod_info, info_sz);
+ }
+ else
+ {
+ int fd;
+ char *aux_da_filename = get_da_file_name (mod_info->da_filename);
+ gcc_assert (!mod_info->is_primary);
+ if (pointer_set_insert (modset, (void *)(size_t)mod_info->ident))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, input_location,
+ "Not importing %s: already imported",
+ mod_info->source_filename);
+ }
+ else if ((module_infos[0]->lang & GCOV_MODULE_LANG_MASK) !=
+ (mod_info->lang & GCOV_MODULE_LANG_MASK))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, input_location,
+ "Not importing %s: source language"
+ " different from primary module's source"
+ " language",
+ mod_info->source_filename);
+ }
+ else if (module_infos_read == max_group
+ /* If reordering is specified, delay the cutoff
+ until after sorting. */
+ && !getenv ("LIPO_REORDER_GROUP"))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, input_location,
+ "Not importing %s: maximum group size"
+ " reached", mod_info->source_filename);
+ }
+ else if (incompatible_cl_args (module_infos[0], mod_info))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, input_location,
+ "Not importing %s: command-line"
+ " arguments not compatible with primary"
+ " module",
+ mod_info->source_filename);
+ }
+ else if ((fd = open (aux_da_filename, O_RDONLY)) < 0)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, input_location,
+ "Not importing %s: couldn't open %s",
+ mod_info->source_filename,
+ aux_da_filename);
+ }
+ else if ((mod_info->lang & GCOV_MODULE_ASM_STMTS)
+ && flag_ripa_disallow_asm_modules)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, input_location,
+ "Not importing %s: contains assembler"
+ " statements", mod_info->source_filename);
+ }
+ else if (mod_info->is_primary == false
+ && MODULE_EXPORTED_FLAG (mod_info) == false)
+ {
+ warning (0, "MODULE_ID=%d (%s) is an auxiliary module, "
+ "but export_bit is not set. \n",
+ mod_info->ident, mod_info->source_filename);
+ }
+ else
+ {
+ close (fd);
+ module_infos_read++;
+ add_input_filename (mod_info->source_filename);
+ module_infos = XRESIZEVEC (struct gcov_module_info *,
+ module_infos, num_in_fnames);
+ gcc_assert (num_in_fnames == module_infos_read);
+ module_infos[module_infos_read - 1]
+ = XCNEWVAR (struct gcov_module_info, info_sz);
+ memcpy (module_infos[module_infos_read - 1], mod_info,
+ info_sz);
+ }
+ }
+
+ record_module_name (mod_info->ident,
+ lbasename (mod_info->source_filename));
+
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, input_location,
+ "MODULE Id=%d, Is_Primary=%s,"
+ " Is_Exported=%s, Include_all=%s, Name=%s (%s)",
+ mod_info->ident, mod_info->is_primary?"yes":"no",
+ MODULE_EXPORTED_FLAG (mod_info)?"yes":"no",
+ MODULE_INCLUDE_ALL_AUX_FLAG (mod_info)?"yes"
+ :"no",
+ mod_info->source_filename,
+ mod_info->da_filename);
+ }
+ }
gcov_sync (offset, length);
if ((is_error = gcov_is_error ()))
{
@@ -329,9 +989,48 @@ read_counts_file (void)
}
}
+ if ((imports_filename = getenv ("LIPO_REORDER_GROUP"))
+ && flag_dyn_ipa && !module_id)
+ {
+ reorder_module_groups (imports_filename, max_group);
+ if (module_infos_read != num_in_fnames)
+ module_infos_read = num_in_fnames;
+ }
+
+ /* TODO: profile based multiple module compilation does not work
+ together with command line (-combine) based ipo -- add a nice
+ warning and bail out instead of asserting. */
+
+ if (modset)
+ pointer_set_destroy (modset);
+ gcc_assert (module_infos_read == 0
+ || module_infos_read == num_in_fnames);
+
+ if (flag_dyn_ipa)
+ gcc_assert (primary_module_id && num_in_fnames >= 1);
+
gcov_close ();
}
+/* Returns the coverage data entry for counter type COUNTER of function
+ FUNC. EXPECTED is the number of expected counter entries. */
+
+static counts_entry_t *
+get_coverage_counts_entry (struct function *func, unsigned counter)
+{
+ counts_entry_t *entry, elt;
+
+ if (PARAM_VALUE (PARAM_PROFILE_FUNC_INTERNAL_ID))
+ elt.ident = FUNC_DECL_GLOBAL_ID (func);
+ else
+ elt.ident = coverage_compute_profile_id (cgraph_get_node (func->decl));
+
+ elt.ctr = counter;
+ entry = counts_hash.find (&elt);
+
+ return entry;
+}
+
/* Returns the counters for a particular tag. */
gcov_type *
@@ -339,7 +1038,7 @@ get_coverage_counts (unsigned counter, unsigned expected,
unsigned cfg_checksum, unsigned lineno_checksum,
const struct gcov_ctr_summary **summary)
{
- counts_entry_t *entry, elt;
+ counts_entry_t *entry;
/* No hash table, no counts. */
if (!counts_hash.is_created ())
@@ -356,15 +1055,18 @@ get_coverage_counts (unsigned counter, unsigned expected,
return NULL;
}
- elt.ident = current_function_funcdef_no + 1;
- elt.ctr = counter;
- entry = counts_hash.find (&elt);
+ entry = get_coverage_counts_entry (cfun, counter);
+
if (!entry || !entry->summary.num)
- /* The function was not emitted, or is weak and not chosen in the
- final executable. Silently fail, because there's nothing we
- can do about it. */
- return NULL;
-
+ {
+ if (!flag_dyn_ipa && dump_enabled_p ())
+ dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, input_location,
+ "no coverage for function %s found",
+ IDENTIFIER_POINTER
+ (DECL_ASSEMBLER_NAME (current_function_decl)));
+ return NULL;
+ }
+
if (entry->cfg_checksum != cfg_checksum
|| entry->summary.num != expected)
{
@@ -400,12 +1102,13 @@ get_coverage_counts (unsigned counter, unsigned expected,
return NULL;
}
- else if (entry->lineno_checksum != lineno_checksum)
- {
- warning (0, "source locations for function %qE have changed,"
- " the profile data may be out of date",
- DECL_ASSEMBLER_NAME (current_function_decl));
- }
+ else if (entry->lineno_checksum != lineno_checksum)
+ {
+ warning (OPT_Wripa_opt_mismatch,
+ "Source location for function %qE have changed,"
+ " the profile data may be out of date",
+ DECL_ASSEMBLER_NAME (current_function_decl));
+ }
if (summary)
*summary = &entry->summary;
@@ -413,6 +1116,31 @@ get_coverage_counts (unsigned counter, unsigned expected,
return entry->counts;
}
+/* Returns the coverage data entry for counter type COUNTER of function
+ FUNC. On return, *N_COUNTS is set to the number of entries in the counter. */
+
+gcov_type *
+get_coverage_counts_no_warn (struct function *f, unsigned counter, unsigned *n_counts)
+{
+ counts_entry_t *entry, elt;
+
+ /* No hash table, no counts. */
+ if (!counts_hash.is_created () || !f)
+ return NULL;
+
+ if (PARAM_VALUE (PARAM_PROFILE_FUNC_INTERNAL_ID))
+ elt.ident = FUNC_DECL_GLOBAL_ID (f);
+ else
+ elt.ident = coverage_compute_profile_id (cgraph_get_node (f->decl));
+ elt.ctr = counter;
+ entry = counts_hash.find (&elt);
+ if (!entry)
+ return NULL;
+
+ *n_counts = entry->summary.num;
+ return entry->counts;
+}
+
/* Allocate NUM counters of type COUNTER. Returns nonzero if the
allocation succeeded. */
@@ -474,6 +1202,26 @@ tree_coverage_counter_addr (unsigned counter, unsigned no)
}
+/* Generate a crc32 of a string with specified STR_LEN when it's not 0.
+ Non-zero STR_LEN should only be seen in LIPO mode. */
+
+static unsigned
+crc32_string_1 (unsigned chksum, const char *string, unsigned str_len)
+{
+ char *dup;
+
+ if (!L_IPO_COMP_MODE || str_len == 0)
+ return crc32_string (chksum, string);
+
+ gcc_assert (str_len > 0 && str_len < strlen (string));
+ dup = xstrdup (string);
+ dup[str_len] = 0;
+ chksum = crc32_string (chksum, dup);
+ free (dup);
+
+ return chksum;
+}
+
/* Generate a checksum for a string. CHKSUM is the current
checksum. */
@@ -482,6 +1230,25 @@ coverage_checksum_string (unsigned chksum, const char *string)
{
int i;
char *dup = NULL;
+ unsigned lipo_orig_str_len = 0;
+
+ /* Strip out the ending ".cmo.[0-9]*" string from function
+ name. Otherwise we will have lineno checksum mismatch. */
+ if (L_IPO_COMP_MODE)
+ {
+ int len;
+
+ i = len = strlen (string);
+ while (i--)
+ if ((string[i] < '0' || string[i] > '9'))
+ break;
+ if ((i > 5) && (i != len - 1))
+ {
+ if (!strncmp (string + i - 4, ".cmo.", 5))
+ lipo_orig_str_len = i - 4;
+ }
+
+ }
/* Look for everything that looks if it were produced by
get_file_function_name and zero out the second part
@@ -528,8 +1295,9 @@ coverage_checksum_string (unsigned chksum, const char *string)
}
}
- chksum = crc32_string (chksum, string);
- free (dup);
+ chksum = crc32_string_1 (chksum, string, lipo_orig_str_len);
+ if (dup)
+ free (dup);
return chksum;
}
@@ -539,13 +1307,32 @@ coverage_checksum_string (unsigned chksum, const char *string)
unsigned
coverage_compute_lineno_checksum (void)
{
+ tree name;
expanded_location xloc
= expand_location (DECL_SOURCE_LOCATION (current_function_decl));
unsigned chksum = xloc.line;
+ const char *pathless_filename = xloc.file;
+ int i;
+ for (i = strlen (xloc.file); i >= 0; i--)
+ if (IS_DIR_SEPARATOR (pathless_filename[i]))
+ {
+ pathless_filename += i + 1;
+ break;
+ }
+
+ chksum = coverage_checksum_string (chksum, pathless_filename);
+
+ /* Note: it is a bad design that C++ FE associate the convertion function type
+ with the name of the decl. This leads to cross contamination between different
+ conversion operators in different modules (If conv_type_names map is cleared
+ at the end of parsing of each module). */
+ if (flag_dyn_ipa && lang_hooks.user_conv_function_p (current_function_decl))
+ name = DECL_ASSEMBLER_NAME (current_function_decl);
+ else
+ name = DECL_NAME (current_function_decl);
- chksum = coverage_checksum_string (chksum, xloc.file);
chksum = coverage_checksum_string
- (chksum, IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (current_function_decl)));
+ (chksum, IDENTIFIER_POINTER (name));
return chksum;
}
@@ -557,12 +1344,13 @@ coverage_compute_profile_id (struct cgraph_node *n)
{
expanded_location xloc
= expand_location (DECL_SOURCE_LOCATION (n->decl));
- unsigned chksum = xloc.line;
+ bool use_name_only = (PARAM_VALUE (PARAM_PROFILE_FUNC_INTERNAL_ID) == 0);
+ unsigned chksum = (use_name_only ? 0 : xloc.line);
chksum = coverage_checksum_string (chksum, xloc.file);
chksum = coverage_checksum_string
(chksum, IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (n->decl)));
- if (first_global_object_name)
+ if (!use_name_only && first_global_object_name)
chksum = coverage_checksum_string
(chksum, first_global_object_name);
chksum = coverage_checksum_string
@@ -620,7 +1408,12 @@ coverage_begin_function (unsigned lineno_checksum, unsigned cfg_checksum)
/* Announce function */
offset = gcov_write_tag (GCOV_TAG_FUNCTION);
- gcov_write_unsigned (current_function_funcdef_no + 1);
+ if (PARAM_VALUE (PARAM_PROFILE_FUNC_INTERNAL_ID))
+ gcov_write_unsigned (FUNC_DECL_FUNC_ID (cfun));
+ else
+ gcov_write_unsigned (coverage_compute_profile_id (
+ cgraph_get_node (cfun->decl)));
+
gcov_write_unsigned (lineno_checksum);
gcov_write_unsigned (cfg_checksum);
gcov_write_string (IDENTIFIER_POINTER
@@ -658,7 +1451,16 @@ coverage_end_function (unsigned lineno_checksum, unsigned cfg_checksum)
{
item = ggc_alloc_coverage_data ();
- item->ident = current_function_funcdef_no + 1;
+ if (PARAM_VALUE (PARAM_PROFILE_FUNC_INTERNAL_ID))
+ item->ident = FUNC_DECL_FUNC_ID (cfun);
+ else
+ {
+ if (flag_dyn_ipa)
+ error ("param=profile-func-internal-id=0 is not"
+ " supported in LIPO mode. ");
+ item->ident = coverage_compute_profile_id (
+ cgraph_get_node (cfun->decl));
+ }
item->lineno_checksum = lineno_checksum;
item->cfg_checksum = cfg_checksum;
@@ -692,6 +1494,70 @@ coverage_end_function (unsigned lineno_checksum, unsigned cfg_checksum)
}
}
+/* True if a function entry corresponding to the given FN_IDENT
+ is present in the coverage internal data structures. */
+
+bool
+coverage_function_present (unsigned fn_ident)
+{
+ struct coverage_data *item = functions_head;
+ while (item && item->ident != fn_ident)
+ item = item->next;
+ return item != NULL;
+}
+
+/* Update function and program direct-call coverage counts. */
+
+void
+coverage_dc_end_function (void)
+{
+ tree var;
+
+ if (fn_ctr_mask)
+ {
+ const unsigned idx = GCOV_COUNTER_DIRECT_CALL;
+ struct coverage_data *item = functions_head;
+ while (item && item->ident != (unsigned) FUNC_DECL_FUNC_ID (cfun))
+ item = item->next;
+
+ /* If a matching function entry hasn't been found, either this function
+ has had no coverage counts added in the profile pass, or this
+ is a new function (function versioning, etc). Create a new entry. */
+ if (!item)
+ {
+ int cnt;
+
+ item = ggc_alloc_coverage_data ();
+ *functions_tail = item;
+ functions_tail = &item->next;
+ item->next = 0;
+ item->ident = FUNC_DECL_FUNC_ID (cfun);
+ item->fn_decl = current_function_decl;
+ item->lineno_checksum = coverage_compute_lineno_checksum ();
+ item->cfg_checksum = coverage_compute_cfg_checksum ();
+ for (cnt = 0; cnt < GCOV_COUNTERS; cnt++)
+ item->ctr_vars[cnt] = NULL_TREE;
+ }
+
+ var = fn_v_ctrs[idx];
+ item->ctr_vars[idx] = var;
+ if (var)
+ {
+ tree array_type = build_index_type (size_int (fn_n_ctrs[idx] - 1));
+ array_type = build_array_type (get_gcov_type (), array_type);
+ TREE_TYPE (var) = array_type;
+ DECL_SIZE (var) = TYPE_SIZE (array_type);
+ DECL_SIZE_UNIT (var) = TYPE_SIZE_UNIT (array_type);
+ varpool_finalize_decl (var);
+ }
+
+ fn_n_ctrs[idx] = fn_b_ctrs[idx] = 0;
+ fn_v_ctrs[idx] = NULL_TREE;
+ prg_ctr_mask |= fn_ctr_mask;
+ fn_ctr_mask = 0;
+ }
+}
+
/* Build a coverage variable of TYPE for function FN_DECL. If COUNTER
>= 0 it is a counter array, otherwise it is the function structure. */
@@ -737,18 +1603,18 @@ build_fn_info_type (tree type, unsigned counters, tree gcov_info_type)
tree array_type;
gcc_assert (counters);
-
+
/* ctr_info::num */
field = build_decl (BUILTINS_LOCATION, FIELD_DECL, NULL_TREE,
get_gcov_unsigned_t ());
fields = field;
-
+
/* ctr_info::values */
field = build_decl (BUILTINS_LOCATION, FIELD_DECL, NULL_TREE,
build_pointer_type (get_gcov_type ()));
DECL_CHAIN (field) = fields;
fields = field;
-
+
finish_builtin_struct (ctr_info, "__gcov_ctr_info", fields, NULL_TREE);
/* key */
@@ -756,13 +1622,13 @@ build_fn_info_type (tree type, unsigned counters, tree gcov_info_type)
build_pointer_type (build_qualified_type
(gcov_info_type, TYPE_QUAL_CONST)));
fields = field;
-
+
/* ident */
field = build_decl (BUILTINS_LOCATION, FIELD_DECL, NULL_TREE,
get_gcov_unsigned_t ());
DECL_CHAIN (field) = fields;
fields = field;
-
+
/* lineno_checksum */
field = build_decl (BUILTINS_LOCATION, FIELD_DECL, NULL_TREE,
get_gcov_unsigned_t ());
@@ -845,6 +1711,12 @@ build_fn_info (const struct coverage_data *data, tree type, tree key)
build_fold_addr_expr (var));
CONSTRUCTOR_APPEND_ELT (v2, NULL, build_constructor (ctr_type, ctr));
+
+ /* In LIPO mode, coverage_finish is called late when pruning can not be
+ * done, so we need to force emitting counter variables even for
+ * eliminated functions to avoid unsat. */
+ if (flag_dyn_ipa && var)
+ varpool_finalize_decl (var);
}
CONSTRUCTOR_APPEND_ELT (v1, fields,
@@ -860,7 +1732,7 @@ static void
build_info_type (tree type, tree fn_info_ptr_type)
{
tree field, fields = NULL_TREE;
- tree merge_fn_type;
+ tree merge_fn_type, mod_type;
/* Version ident */
field = build_decl (BUILTINS_LOCATION, FIELD_DECL, NULL_TREE,
@@ -868,6 +1740,13 @@ build_info_type (tree type, tree fn_info_ptr_type)
DECL_CHAIN (field) = fields;
fields = field;
+ /* mod_info */
+ mod_type = build_gcov_module_info_type ();
+ mod_type = build_pointer_type (mod_type);
+ field = build_decl (BUILTINS_LOCATION, FIELD_DECL, NULL_TREE, mod_type);
+ DECL_CHAIN (field) = fields;
+ fields = field;
+
/* next pointer */
field = build_decl (BUILTINS_LOCATION, FIELD_DECL, NULL_TREE,
build_pointer_type (build_qualified_type
@@ -888,6 +1767,12 @@ build_info_type (tree type, tree fn_info_ptr_type)
DECL_CHAIN (field) = fields;
fields = field;
+ /* eof_pos */
+ field = build_decl (BUILTINS_LOCATION, FIELD_DECL,
+ NULL_TREE, get_gcov_unsigned_t ());
+ DECL_CHAIN (field) = fields;
+ fields = field;
+
/* merge fn array */
merge_fn_type
= build_function_type_list (void_type_node,
@@ -918,6 +1803,402 @@ build_info_type (tree type, tree fn_info_ptr_type)
finish_builtin_struct (type, "__gcov_info", fields, NULL_TREE);
}
+/* Compute an array (tree) of include path strings. STRING_TYPE is
+ the path string type, INC_PATH_VALUE is the initial value of the
+ path array, PATHS gives raw path string values, and NUM is the
+ number of paths. */
+
+static void
+build_inc_path_array_value (tree string_type, vec<constructor_elt, va_gc> **v,
+ cpp_dir *paths, int num)
+{
+ int i;
+ cpp_dir *pdir;
+ for (i = 0, pdir = paths; i < num; pdir = pdir->next)
+ {
+ const char *path_raw_string;
+ int path_string_length;
+ tree path_string;
+ path_raw_string = pdir->name;
+ path_string_length = strlen (path_raw_string);
+ path_string = build_string (path_string_length + 1, path_raw_string);
+ TREE_TYPE (path_string) = build_array_type
+ (char_type_node, build_index_type
+ (build_int_cst (NULL_TREE, path_string_length)));
+ CONSTRUCTOR_APPEND_ELT (*v, NULL,
+ build1 (ADDR_EXPR, string_type, path_string));
+ i++;
+ }
+}
+
+/* Compute an array (tree) of strings. STR_TYPE is the string type,
+ STR_ARRAY_VALUE is the initial value of the string array, and HEAD gives
+ the list of raw strings. */
+
+static void
+build_str_array_value (tree str_type, vec<constructor_elt, va_gc> **v,
+ struct str_list *head)
+{
+ const char *raw_str;
+ int str_length;
+ while (head)
+ {
+ tree str;
+ raw_str = head->str;
+ str_length = strlen (raw_str);
+ str = build_string (str_length + 1, raw_str);
+ TREE_TYPE (str) =
+ build_array_type (char_type_node,
+ build_index_type (build_int_cst (NULL_TREE,
+ str_length)));
+ CONSTRUCTOR_APPEND_ELT (*v, NULL,
+ build1 (ADDR_EXPR, str_type, str));
+ head = head->next;
+ }
+ return;
+}
+
+/* Compute an array (tree) of command-line argument strings. STRING_TYPE is
+ the string type, CL_ARGS_VALUE is the initial value of the command-line
+ args array. */
+
+static void
+build_cl_args_array_value (tree string_type, vec<constructor_elt, va_gc> **v)
+{
+ unsigned int i;
+
+ for (i = 0; i < num_lipo_cl_args; i++)
+ {
+ int arg_length = strlen (lipo_cl_args[i]);
+ tree arg_string = build_string (arg_length + 1, lipo_cl_args[i]);
+ TREE_TYPE (arg_string) =
+ build_array_type (char_type_node,
+ build_index_type (build_int_cst (NULL_TREE,
+ arg_length)));
+ CONSTRUCTOR_APPEND_ELT (*v, NULL,
+ build1 (ADDR_EXPR, string_type, arg_string));
+ }
+ return;
+}
+
+/* Emit mapping between module name and function id to the function's
+ assembler name, for use in correlating function idents in the gcda file
+ with the function name. */
+
+void
+emit_function_name (void)
+{
+ fprintf (stderr, "Module %s FuncId %u Name %s\n",
+ (L_IPO_COMP_MODE
+ ? get_module_name (FUNC_DECL_MODULE_ID (cfun))
+ : main_input_file_name),
+ FUNC_DECL_FUNC_ID (cfun),
+ IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (current_function_decl)));
+}
+
+/* Returns the type of the module info associated with the
+ current source module being compiled. */
+
+static tree
+build_gcov_module_info_type (void)
+{
+ tree type, field, fields = NULL_TREE;
+ tree string_type, index_type, string_array_type;
+
+ cpp_dir *quote_paths, *bracket_paths, *system_paths, *pdir;
+ int num_quote_paths = 0, num_bracket_paths = 0, num_system_paths = 0;
+
+ type = lang_hooks.types.make_type (RECORD_TYPE);
+ string_type = build_pointer_type (
+ build_qualified_type (char_type_node,
+ TYPE_QUAL_CONST));
+
+ /* ident */
+ field = build_decl (BUILTINS_LOCATION, FIELD_DECL,
+ NULL_TREE, get_gcov_unsigned_t ());
+ DECL_CHAIN (field) = fields;
+ fields = field;
+
+ /* is_primary */
+ /* We also overload this field to store a flag that indicates whether this
+ module was built in regular FDO or LIPO mode (-fripa). When reading this
+ field from a GCDA file, it should be used as the IS_PRIMARY flag. When
+ reading this field from the binary's data section, it should be used
+ as a FDO/LIPO flag. */
+ field = build_decl (BUILTINS_LOCATION, FIELD_DECL,
+ NULL_TREE, get_gcov_unsigned_t ());
+ DECL_CHAIN (field) = fields;
+ fields = field;
+
+ /* flags: is_exported and include_all_aux flag. */
+ field = build_decl (BUILTINS_LOCATION, FIELD_DECL,
+ NULL_TREE, get_gcov_unsigned_t ());
+ DECL_CHAIN (field) = fields;
+ fields = field;
+
+ /* lang field */
+ field = build_decl (BUILTINS_LOCATION, FIELD_DECL,
+ NULL_TREE, get_gcov_unsigned_t ());
+ DECL_CHAIN (field) = fields;
+ fields = field;
+
+ /* ggc_memory field */
+ field = build_decl (BUILTINS_LOCATION, FIELD_DECL,
+ NULL_TREE, get_gcov_unsigned_t ());
+ DECL_CHAIN (field) = fields;
+ fields = field;
+
+ /* da_filename */
+ field = build_decl (BUILTINS_LOCATION, FIELD_DECL,
+ NULL_TREE, string_type);
+ DECL_CHAIN (field) = fields;
+ fields = field;
+
+ /* Source name */
+ field = build_decl (BUILTINS_LOCATION, FIELD_DECL,
+ NULL_TREE, string_type);
+ DECL_CHAIN (field) = fields;
+ fields = field;
+
+ /* Num quote paths */
+ field = build_decl (BUILTINS_LOCATION, FIELD_DECL,
+ NULL_TREE, get_gcov_unsigned_t ());
+ DECL_CHAIN (field) = fields;
+ fields = field;
+
+ /* Num bracket paths */
+ field = build_decl (BUILTINS_LOCATION, FIELD_DECL,
+ NULL_TREE, get_gcov_unsigned_t ());
+ DECL_CHAIN (field) = fields;
+ fields = field;
+
+ /* Num system paths */
+ field = build_decl (BUILTINS_LOCATION, FIELD_DECL,
+ NULL_TREE, get_gcov_unsigned_t ());
+ DECL_CHAIN (field) = fields;
+ fields = field;
+
+ /* Num -D/-U options. */
+ field = build_decl (BUILTINS_LOCATION, FIELD_DECL,
+ NULL_TREE, get_gcov_unsigned_t ());
+ DECL_CHAIN (field) = fields;
+ fields = field;
+
+ /* Num -imacro/-include options. */
+ field = build_decl (BUILTINS_LOCATION, FIELD_DECL, NULL_TREE,
+ get_gcov_unsigned_t ());
+ DECL_CHAIN (field) = fields;
+ fields = field;
+
+ /* Num command-line args. */
+ field = build_decl (BUILTINS_LOCATION, FIELD_DECL,
+ NULL_TREE, get_gcov_unsigned_t ());
+ DECL_CHAIN (field) = fields;
+ fields = field;
+
+ get_include_chains (&quote_paths, &bracket_paths, &system_paths);
+ for (pdir = quote_paths; pdir; pdir = pdir->next)
+ {
+ if (pdir == bracket_paths)
+ break;
+ num_quote_paths++;
+ }
+ for (pdir = bracket_paths; pdir; pdir = pdir->next)
+ {
+ if (pdir == system_paths)
+ break;
+ num_bracket_paths++;
+ }
+ for (pdir = system_paths; pdir; pdir = pdir->next)
+ num_system_paths++;
+
+ /* string array */
+ index_type = build_index_type (build_int_cst (NULL_TREE,
+ num_quote_paths +
+ num_bracket_paths +
+ num_system_paths +
+ num_cpp_defines +
+ num_cpp_includes +
+ num_lipo_cl_args));
+
+ string_array_type = build_array_type (string_type, index_type);
+ field = build_decl (BUILTINS_LOCATION, FIELD_DECL,
+ NULL_TREE, string_array_type);
+ DECL_CHAIN (field) = fields;
+ fields = field;
+
+ finish_builtin_struct (type, "__gcov_module_info", fields, NULL_TREE);
+
+ return type;
+}
+
+/* Returns the value of the module info associated with the
+ current source module being compiled. */
+
+static tree
+build_gcov_module_info_value (tree mod_type)
+{
+ tree info_fields, mod_info;
+ tree value = NULL_TREE;
+ int file_name_len;
+ tree filename_string, string_array_type, string_type;
+ cpp_dir *quote_paths, *bracket_paths, *system_paths, *pdir;
+ int num_quote_paths = 0, num_bracket_paths = 0, num_system_paths = 0;
+ unsigned lang;
+ char name_buf[50];
+ vec<constructor_elt,va_gc> *v = NULL, *path_v = NULL;
+
+ info_fields = TYPE_FIELDS (mod_type);
+
+ /* ident */
+ CONSTRUCTOR_APPEND_ELT (v, info_fields,
+ build_int_cstu (get_gcov_unsigned_t (), 0));
+
+ info_fields = DECL_CHAIN (info_fields);
+
+ /* is_primary */
+ /* We also overload this field to store a flag that indicates whether this
+ module was built in regular FDO or LIPO mode (-fripa). When reading this
+ field from a GCDA file, it should be used as the IS_PRIMARY flag. When
+ reading this field from the binary's data section, it should be used
+ as a FDO/LIPO flag. */
+ CONSTRUCTOR_APPEND_ELT (v, info_fields,
+ build_int_cstu (get_gcov_unsigned_t (),
+ flag_dyn_ipa ? 1 : 0));
+ info_fields = DECL_CHAIN (info_fields);
+
+ /* flags */
+ CONSTRUCTOR_APPEND_ELT (v, info_fields,
+ build_int_cstu (get_gcov_unsigned_t (), 0));
+ info_fields = DECL_CHAIN (info_fields);
+
+ /* lang field */
+ if (!strcmp (lang_hooks.name, "GNU C"))
+ lang = GCOV_MODULE_C_LANG;
+ else if (!strcmp (lang_hooks.name, "GNU C++"))
+ lang = GCOV_MODULE_CPP_LANG;
+ else
+ lang = GCOV_MODULE_UNKNOWN_LANG;
+ if (has_asm_statement)
+ lang |= GCOV_MODULE_ASM_STMTS;
+
+ CONSTRUCTOR_APPEND_ELT (v, info_fields,
+ build_int_cstu (get_gcov_unsigned_t (), lang));
+ info_fields = DECL_CHAIN (info_fields);
+
+ /* ggc_memory field */
+ CONSTRUCTOR_APPEND_ELT (v, info_fields,
+ build_int_cstu (get_gcov_unsigned_t (), ggc_total_memory));
+ info_fields = DECL_CHAIN (info_fields);
+
+ /* da_filename */
+
+ string_type = TREE_TYPE (info_fields);
+ file_name_len = strlen (da_base_file_name);
+ filename_string = build_string (file_name_len + 1, da_base_file_name);
+ TREE_TYPE (filename_string) = build_array_type
+ (char_type_node, build_index_type
+ (build_int_cst (NULL_TREE, file_name_len)));
+ CONSTRUCTOR_APPEND_ELT (v, info_fields,
+ build1 (ADDR_EXPR, string_type, filename_string));
+ info_fields = DECL_CHAIN (info_fields);
+
+ /* Source name */
+
+ file_name_len = strlen (main_input_file_name);
+ filename_string = build_string (file_name_len + 1, main_input_file_name);
+ TREE_TYPE (filename_string) = build_array_type
+ (char_type_node, build_index_type
+ (build_int_cst (NULL_TREE, file_name_len)));
+ CONSTRUCTOR_APPEND_ELT (v, info_fields,
+ build1 (ADDR_EXPR, string_type, filename_string));
+ info_fields = DECL_CHAIN (info_fields);
+
+ get_include_chains (&quote_paths, &bracket_paths, &system_paths);
+ for (pdir = quote_paths; pdir; pdir = pdir->next)
+ {
+ if (pdir == bracket_paths)
+ break;
+ num_quote_paths++;
+ }
+ for (pdir = bracket_paths; pdir; pdir = pdir->next)
+ {
+ if (pdir == system_paths)
+ break;
+ num_bracket_paths++;
+ }
+ for (pdir = system_paths; pdir; pdir = pdir->next)
+ num_system_paths++;
+
+ /* Num quote paths */
+ CONSTRUCTOR_APPEND_ELT (v, info_fields,
+ build_int_cstu (get_gcov_unsigned_t (),
+ num_quote_paths));
+ info_fields = DECL_CHAIN (info_fields);
+
+ /* Num bracket paths */
+ CONSTRUCTOR_APPEND_ELT (v, info_fields,
+ build_int_cstu (get_gcov_unsigned_t (),
+ num_bracket_paths));
+ info_fields = DECL_CHAIN (info_fields);
+
+ /* Num system paths */
+ CONSTRUCTOR_APPEND_ELT (v, info_fields,
+ build_int_cstu (get_gcov_unsigned_t (),
+ num_system_paths));
+ info_fields = DECL_CHAIN (info_fields);
+
+ /* Num -D/-U options. */
+ CONSTRUCTOR_APPEND_ELT (v, info_fields,
+ build_int_cstu (get_gcov_unsigned_t (),
+ num_cpp_defines));
+ info_fields = DECL_CHAIN (info_fields);
+
+ /* Num -imacro/-include options. */
+ CONSTRUCTOR_APPEND_ELT (v, info_fields,
+ build_int_cstu (get_gcov_unsigned_t (),
+ num_cpp_includes));
+ info_fields = DECL_CHAIN (info_fields);
+
+ /* Num command-line args. */
+ CONSTRUCTOR_APPEND_ELT (v, info_fields,
+ build_int_cstu (get_gcov_unsigned_t (),
+ num_lipo_cl_args));
+ info_fields = DECL_CHAIN (info_fields);
+
+ /* string array */
+ string_array_type = TREE_TYPE (info_fields);
+ build_inc_path_array_value (string_type, &path_v,
+ quote_paths, num_quote_paths);
+ build_inc_path_array_value (string_type, &path_v,
+ bracket_paths, num_bracket_paths);
+ build_inc_path_array_value (string_type, &path_v,
+ system_paths, num_system_paths);
+ build_str_array_value (string_type, &path_v,
+ cpp_defines_head);
+ build_str_array_value (string_type, &path_v,
+ cpp_includes_head);
+ build_cl_args_array_value (string_type, &path_v);
+ CONSTRUCTOR_APPEND_ELT (v, info_fields,
+ build_constructor (string_array_type, path_v));
+ info_fields = DECL_CHAIN (info_fields);
+
+ gcc_assert (!info_fields);
+ value = build_constructor (mod_type, v);
+
+ mod_info = build_decl (BUILTINS_LOCATION, VAR_DECL,
+ NULL_TREE, TREE_TYPE (value));
+ TREE_STATIC (mod_info) = 1;
+ ASM_GENERATE_INTERNAL_LABEL (name_buf, "MODINFO", 0);
+ DECL_NAME (mod_info) = get_identifier (name_buf);
+ DECL_INITIAL (mod_info) = value;
+
+ /* Build structure. */
+ varpool_finalize_decl (mod_info);
+
+ return mod_info;
+}
+
/* Returns a CONSTRUCTOR for the gcov_info object. INFO_TYPE is the
gcov_info structure type, FN_ARY is the array of pointers to
function info objects. */
@@ -928,6 +2209,7 @@ build_info (tree info_type, tree fn_ary)
tree info_fields = TYPE_FIELDS (info_type);
tree merge_fn_type, n_funcs;
unsigned ix;
+ tree mod_value = NULL_TREE;
tree filename_string;
int da_file_name_len;
vec<constructor_elt, va_gc> *v1 = NULL;
@@ -939,6 +2221,14 @@ build_info (tree info_type, tree fn_ary)
GCOV_VERSION));
info_fields = DECL_CHAIN (info_fields);
+ /* mod_info */
+ mod_value = build_gcov_module_info_value (TREE_TYPE (TREE_TYPE (info_fields)));
+ mod_value = build1 (ADDR_EXPR,
+ build_pointer_type (TREE_TYPE (mod_value)),
+ mod_value);
+ CONSTRUCTOR_APPEND_ELT (v1, info_fields, mod_value);
+ info_fields = DECL_CHAIN (info_fields);
+
/* next -- NULL */
CONSTRUCTOR_APPEND_ELT (v1, info_fields, null_pointer_node);
info_fields = DECL_CHAIN (info_fields);
@@ -959,6 +2249,11 @@ build_info (tree info_type, tree fn_ary)
filename_string));
info_fields = DECL_CHAIN (info_fields);
+ /* eof_pos */
+ CONSTRUCTOR_APPEND_ELT (v1, info_fields,
+ build_int_cstu (TREE_TYPE (info_fields), 0));
+ info_fields = DECL_CHAIN (info_fields);
+
/* merge fn array -- NULL slots indicate unmeasured counters */
merge_fn_type = TREE_TYPE (TREE_TYPE (info_fields));
for (ix = 0; ix != GCOV_COUNTERS; ix++)
@@ -1050,12 +2345,15 @@ coverage_obj_init (void)
fprintf (cgraph_dump_file, "Using data file %s\n", da_file_name);
/* Prune functions. */
- for (fn_prev = &functions_head; (fn = *fn_prev);)
- if (DECL_STRUCT_FUNCTION (fn->fn_decl))
- fn_prev = &fn->next;
- else
- /* The function is not being emitted, remove from list. */
- *fn_prev = fn->next;
+ if (!flag_dyn_ipa)
+ /* in lipo mode, coverage_finish is called when function struct is cleared,
+ so pruning code here will skip all functions. */
+ for (fn_prev = &functions_head; (fn = *fn_prev);)
+ if (DECL_STRUCT_FUNCTION (fn->fn_decl))
+ fn_prev = &fn->next;
+ else
+ /* The function is not being emitted, remove from list. */
+ *fn_prev = fn->next;
if (functions_head == NULL)
return false;
@@ -1080,8 +2378,6 @@ coverage_obj_init (void)
ASM_GENERATE_INTERNAL_LABEL (name_buf, "LPBX", 0);
DECL_NAME (gcov_info_var) = get_identifier (name_buf);
- build_init_ctor (gcov_info_type);
-
return true;
}
@@ -1104,7 +2400,8 @@ coverage_obj_fn (vec<constructor_elt, va_gc> *ctor, tree fn,
}
/* Finalize the coverage data. Generates the array of pointers to
- function objects from CTOR. Generate the gcov_info initializer. */
+ function objects from CTOR. Generate the gcov_info initializer.
+ Generate the constructor function to call __gcov_init. */
static void
coverage_obj_finish (vec<constructor_elt, va_gc> *ctor)
@@ -1122,20 +2419,289 @@ coverage_obj_finish (vec<constructor_elt, va_gc> *ctor)
DECL_NAME (fn_info_ary) = get_identifier (name_buf);
DECL_INITIAL (fn_info_ary) = build_constructor (fn_info_ary_type, ctor);
varpool_finalize_decl (fn_info_ary);
-
+
DECL_INITIAL (gcov_info_var)
= build_info (TREE_TYPE (gcov_info_var), fn_info_ary);
+
+ build_init_ctor (TREE_TYPE (gcov_info_var));
+
varpool_finalize_decl (gcov_info_var);
}
+/* Get the da file name, given base file name. */
+
+static char *
+get_da_file_name (const char *base_file_name)
+{
+ char *da_file_name;
+ int len = strlen (base_file_name);
+ const char *prefix = profile_data_prefix;
+ int prefix_len = 0;
+
+ if (profile_data_prefix == 0 && !IS_ABSOLUTE_PATH(&base_file_name[0]))
+ {
+ profile_data_prefix = getpwd ();
+ prefix = profile_data_prefix;
+ }
+
+ prefix_len = (prefix) ? strlen (prefix) + 1 : 0;
+
+ /* Name of da file. */
+ da_file_name = XNEWVEC (char, len + strlen (GCOV_DATA_SUFFIX)
+ + prefix_len + 2);
+
+ if (prefix)
+ {
+ strcpy (da_file_name, prefix);
+ da_file_name[prefix_len - 1] = '/';
+ da_file_name[prefix_len] = 0;
+ }
+ else
+ da_file_name[0] = 0;
+ strcat (da_file_name, base_file_name);
+ if (profile_base_name_suffix_to_strip)
+ {
+ int base_name_len = strlen (da_file_name);
+ int suffix_to_strip_len = strlen (profile_base_name_suffix_to_strip);
+
+ if (base_name_len > suffix_to_strip_len
+ && !strcmp (da_file_name + (base_name_len - suffix_to_strip_len),
+ profile_base_name_suffix_to_strip))
+ da_file_name[base_name_len - suffix_to_strip_len] = '\0';
+ }
+
+ strcat (da_file_name, GCOV_DATA_SUFFIX);
+ return da_file_name;
+}
+
+/* Callback to move counts_entry from one hash table to
+ the target hashtable */
+
+int
+move_hash_entry_callback (counts_entry **x,
+ hash_table <counts_entry> *target_counts_hash)
+{
+ counts_entry *entry = *x;
+ counts_entry **slot;
+ slot = target_counts_hash->find_slot (entry, INSERT);
+ *slot = entry;
+ return 1;
+}
+
+/* Rebuild counts_hash already built the primary module. This hashtable
+ was built with a module-id of zero. It needs to be rebuilt taking the
+ correct primary module-id into account. */
+
+int
+rehash_callback (counts_entry **x,
+ hash_table <counts_entry> *target_counts_hash)
+{
+ counts_entry *entry = *x;
+ counts_entry **slot;
+
+ entry->ident = GEN_FUNC_GLOBAL_ID (primary_module_id, entry->ident);
+ slot = target_counts_hash->find_slot (entry, INSERT);
+ *slot = entry;
+ return 1;
+}
+
+/* Rebuild counts_hash already built the primary module. This hashtable
+ was built with a module-id of zero. It needs to be rebuilt taking the
+ correct primary module-id into account. */
+
+static void
+rebuild_counts_hash (void)
+{
+ hash_table <counts_entry> tmp_counts_hash;
+ tmp_counts_hash.create (10);
+ gcc_assert (primary_module_id);
+
+ rebuilding_counts_hash = true;
+
+ /* Move the counts entries to the temporary hashtable. */
+ counts_hash.traverse_noresize <
+ hash_table <counts_entry> *,
+ move_hash_entry_callback> (&tmp_counts_hash);
+ counts_hash.empty ();
+
+ /* Now rehash and copy back. */
+ tmp_counts_hash.traverse_noresize <
+ hash_table <counts_entry> *,
+ rehash_callback> (&counts_hash);
+ tmp_counts_hash.dispose();
+
+ rebuilding_counts_hash = false;
+}
+
+/* Add the module information record for the module with id
+ MODULE_ID. IS_PRIMARY is true if the module is the primary module.
+ INDEX is the index of the new record in the module info array. */
+
+void
+add_module_info (unsigned module_id, bool is_primary, int index)
+{
+ struct gcov_module_info *cur_info;
+ module_infos = XRESIZEVEC (struct gcov_module_info *,
+ module_infos, index + 1);
+ module_infos[index] = XNEW (struct gcov_module_info);
+ cur_info = module_infos[index];
+ cur_info->ident = module_id;
+ SET_MODULE_EXPORTED (cur_info);
+ cur_info->num_quote_paths = 0;
+ cur_info->num_bracket_paths = 0;
+ cur_info->da_filename = NULL;
+ cur_info->source_filename = NULL;
+ if (is_primary)
+ primary_module_id = module_id;
+}
+
+/* Process the include paths needed for parsing the aux modules.
+ The sub_pattern is in the form SUB_PATH:NEW_SUB_PATH. If it is
+ defined, the SUB_PATH in ORIG_INC_PATH will be replaced with
+ NEW_SUB_PATH. */
+
+static void
+process_include (char **orig_inc_path, char* old_sub, char *new_sub)
+{
+ char *inc_path, *orig_sub;
+
+ if (strlen (*orig_inc_path) < strlen (old_sub))
+ return;
+
+ inc_path = (char*) xmalloc (strlen (*orig_inc_path) + strlen (new_sub)
+ - strlen (old_sub) + 1);
+ orig_sub = strstr (*orig_inc_path, old_sub);
+ if (!orig_sub)
+ {
+ inform (UNKNOWN_LOCATION, "subpath %s not found in path %s",
+ old_sub, *orig_inc_path);
+ free (inc_path);
+ return;
+ }
+
+ strncpy (inc_path, *orig_inc_path, orig_sub - *orig_inc_path);
+ inc_path[orig_sub - *orig_inc_path] = '\0';
+ strcat (inc_path, new_sub);
+ strcat (inc_path, orig_sub + strlen (old_sub));
+
+ free (*orig_inc_path);
+ *orig_inc_path = inc_path;
+}
+
+/* Process include paths for MOD_INFO according to option
+ -fripa-inc-path-sub=OLD_SUB:NEW_SUB */
+
+static void
+process_include_paths_1 (struct gcov_module_info *mod_info,
+ char* old_sub, char *new_sub)
+{
+ unsigned i, j;
+
+ for (i = 0; i < mod_info->num_quote_paths; i++)
+ process_include (&mod_info->string_array[i], old_sub, new_sub);
+
+ for (i = 0, j = mod_info->num_quote_paths;
+ i < mod_info->num_bracket_paths; i++, j++)
+ process_include (&mod_info->string_array[j], old_sub, new_sub);
+
+ for (i = 0, j = mod_info->num_quote_paths + mod_info->num_bracket_paths +
+ mod_info->num_cpp_defines; i < mod_info->num_cpp_includes; i++, j++)
+ process_include (&mod_info->string_array[j], old_sub, new_sub);
+
+}
+
+/* Process include paths for MOD_INFO according to option
+ -fripa-inc-path-sub=old_sub1:new_sub1[,old_sub2:new_sub2] */
+
+static void
+process_include_paths (struct gcov_module_info *mod_info)
+{
+ char *sub_pattern, *cur, *next, *new_sub;
+
+ if (!lipo_inc_path_pattern)
+ return;
+
+ sub_pattern = xstrdup (lipo_inc_path_pattern);
+ cur = sub_pattern;
+
+ do
+ {
+ next = strchr (cur, ',');
+ if (next)
+ *next++ = '\0';
+ new_sub = strchr (cur, ':');
+ if (!new_sub)
+ {
+ error ("Invalid path substibution pattern %s", sub_pattern);
+ free (sub_pattern);
+ return;
+ }
+ *new_sub++ = '\0';
+ process_include_paths_1 (mod_info, cur, new_sub);
+ cur = next;
+ } while (cur);
+ free (sub_pattern);
+}
+
+/* Set the prepreprocessing context (include search paths, -D/-U).
+ PARSE_IN is the preprocessor reader, I is the index of the module,
+ and VERBOSE is the verbose flag. */
+
+void
+set_lipo_c_parsing_context (struct cpp_reader *parse_in, int i, bool verbose)
+{
+ struct gcov_module_info *mod_info;
+ if (!L_IPO_COMP_MODE)
+ return;
+
+ mod_info = module_infos[i];
+
+ gcc_assert (flag_dyn_ipa);
+ current_module_id = mod_info->ident;
+ reset_funcdef_no ();
+
+ if (current_module_id != primary_module_id)
+ {
+ unsigned i, j;
+
+ process_include_paths (mod_info);
+ /* Setup include paths. */
+ clear_include_chains ();
+ for (i = 0; i < mod_info->num_quote_paths; i++)
+ add_path (xstrdup (mod_info->string_array[i]),
+ QUOTE, 0, 1);
+ for (i = 0, j = mod_info->num_quote_paths;
+ i < mod_info->num_bracket_paths; i++, j++)
+ add_path (xstrdup (mod_info->string_array[j]),
+ BRACKET, 0, 1);
+ for (i = 0; i < mod_info->num_system_paths; i++, j++)
+ add_path (xstrdup (mod_info->string_array[j]),
+ SYSTEM, 0, 1);
+ register_include_chains (parse_in, NULL, NULL, NULL,
+ 0, 0, verbose);
+
+ /* Setup defines/undefs. */
+ for (i = 0; i < mod_info->num_cpp_defines; i++, j++)
+ if (mod_info->string_array[j][0] == 'D')
+ cpp_define (parse_in, mod_info->string_array[j] + 1);
+ else
+ cpp_undef (parse_in, mod_info->string_array[j] + 1);
+
+ /* Setup -imacro/-include. */
+ for (i = 0; i < mod_info->num_cpp_includes; i++, j++)
+ cpp_push_include (parse_in, mod_info->string_array[j]);
+ }
+}
+
/* Perform file-level initialization. Read in data file, generate name
- of notes file. */
+ of graph file. */
void
-coverage_init (const char *filename)
+coverage_init (const char *filename, const char* source_name)
{
+ char* src_name_prefix = 0;
+ int src_name_prefix_len = 0;
int len = strlen (filename);
- int prefix_len = 0;
/* Since coverage_init is invoked very early, before the pass
manager, we need to set up the dumping explicitly. This is
@@ -1144,28 +2710,52 @@ coverage_init (const char *filename)
g->get_passes ()->get_pass_profile ()->static_pass_number;
g->get_dumps ()->dump_start (profile_pass_num, NULL);
- if (!profile_data_prefix && !IS_ABSOLUTE_PATH (filename))
- profile_data_prefix = getpwd ();
+ has_asm_statement = false;
+ da_file_name = get_da_file_name (filename);
+ da_base_file_name = XNEWVEC (char, strlen (filename) + 1);
+ strcpy (da_base_file_name, filename);
- if (profile_data_prefix)
- prefix_len = strlen (profile_data_prefix);
+ if (profile_data_prefix == 0 && !IS_ABSOLUTE_PATH (source_name))
+ {
+ src_name_prefix = getpwd ();
+ src_name_prefix_len = strlen (src_name_prefix) + 1;
+ }
+ main_input_file_name = XNEWVEC (char, strlen (source_name) + 1
+ + src_name_prefix_len);
+ if (!src_name_prefix)
+ strcpy (main_input_file_name, source_name);
+ else
+ {
+ strcpy (main_input_file_name, src_name_prefix);
+ strcat (main_input_file_name, "/");
+ strcat (main_input_file_name, source_name);
+ }
- /* Name of da file. */
- da_file_name = XNEWVEC (char, len + strlen (GCOV_DATA_SUFFIX)
- + prefix_len + 2);
+ bbg_file_stamp = local_tick;
- if (profile_data_prefix)
+ if (flag_branch_probabilities && !flag_auto_profile)
+ read_counts_file (da_file_name, 0);
+
+ /* Rebuild counts_hash and read the auxiliary GCDA files. */
+ if (flag_profile_use && L_IPO_COMP_MODE)
{
- memcpy (da_file_name, profile_data_prefix, prefix_len);
- da_file_name[prefix_len++] = '/';
+ unsigned i;
+ gcc_assert (flag_dyn_ipa);
+ rebuild_counts_hash ();
+ for (i = 1; i < num_in_fnames; i++)
+ read_counts_file (get_da_file_name (module_infos[i]->da_filename),
+ module_infos[i]->ident);
}
- memcpy (da_file_name + prefix_len, filename, len);
- strcpy (da_file_name + prefix_len + len, GCOV_DATA_SUFFIX);
- bbg_file_stamp = local_tick;
-
- if (flag_branch_probabilities)
- read_counts_file ();
+ /* Define variables which are referenced at runtime by libgcov. */
+ if (profiling_enabled_p ())
+ {
+ tree_init_instrumentation ();
+ tree_init_dyn_ipa_parameters ();
+ tree_init_instrumentation_sampling ();
+ }
+ if (flag_auto_profile)
+ init_auto_profile ();
/* Name of bbg file. */
if (flag_test_coverage && !flag_compare_debug)
@@ -1173,7 +2763,6 @@ coverage_init (const char *filename)
bbg_file_name = XNEWVEC (char, len + strlen (GCOV_NOTE_SUFFIX) + 1);
memcpy (bbg_file_name, filename, len);
strcpy (bbg_file_name + len, GCOV_NOTE_SUFFIX);
-
if (!gcov_open (bbg_file_name, -1))
{
error ("cannot open %s", bbg_file_name);
@@ -1190,7 +2779,17 @@ coverage_init (const char *filename)
g->get_dumps ()->dump_finish (profile_pass_num);
}
-/* Performs file-level cleanup. Close notes file, generate coverage
+/* Return True if any type of profiling is enabled which requires linking
+ in libgcov otherwise return False. */
+
+static bool
+profiling_enabled_p (void)
+{
+ return profile_arc_flag
+ || flag_profile_generate_sampling;
+}
+
+/* Performs file-level cleanup. Close graph file, generate coverage
variables and constructor. */
void
@@ -1219,4 +2818,158 @@ coverage_finish (void)
da_file_name = NULL;
}
+/* Add S to the end of the string-list, the head and tail of which are
+ pointed-to by HEAD and TAIL, respectively. */
+
+static void
+str_list_append (struct str_list **head, struct str_list **tail, const char *s)
+{
+ struct str_list *e = XNEW (struct str_list);
+ e->str = XNEWVEC (char, strlen (s) + 1);
+ strcpy (e->str, s);
+ e->next = NULL;
+ if (*tail)
+ (*tail)->next = e;
+ else
+ *head = e;
+ *tail = e;
+}
+
+/* Copies the macro def or undef CPP_DEF and saves the copy
+ in a list. IS_DEF is a flag indicating if CPP_DEF represents
+ a -D or -U. */
+
+void
+coverage_note_define (const char *cpp_def, bool is_def)
+{
+ char *s = XNEWVEC (char, strlen (cpp_def) + 2);
+ s[0] = is_def ? 'D' : 'U';
+ strcpy (s + 1, cpp_def);
+ str_list_append (&cpp_defines_head, &cpp_defines_tail, s);
+ num_cpp_defines++;
+}
+
+/* Copies the -imacro/-include FILENAME and saves the copy in a list. */
+
+void
+coverage_note_include (const char *filename)
+{
+ str_list_append (&cpp_includes_head, &cpp_includes_tail, filename);
+ num_cpp_includes++;
+}
+
+/* Mark this module as containing asm statements. */
+
+void
+coverage_has_asm_stmt (void)
+{
+ has_asm_statement = flag_ripa_disallow_asm_modules;
+}
+
+/* Write compilation info to the .note section. */
+
+void
+write_compilation_info_to_asm (void)
+{
+ unsigned lang;
+ /* Write lang, ggc_memory to ASM section. */
+ switch_to_section (get_section (".gnu.switches.text.lipo_info",
+ SECTION_DEBUG, NULL));
+ if (!strcmp (lang_hooks.name, "GNU C"))
+ lang = GCOV_MODULE_C_LANG;
+ else if (!strcmp (lang_hooks.name, "GNU C++"))
+ lang = GCOV_MODULE_CPP_LANG;
+ else
+ lang = GCOV_MODULE_UNKNOWN_LANG;
+ if (has_asm_statement)
+ lang |= GCOV_MODULE_ASM_STMTS;
+ dw2_asm_output_nstring (in_fnames[0], (size_t)-1, NULL);
+ dw2_asm_output_data_uleb128 (lang, NULL);
+ dw2_asm_output_data_uleb128 (ggc_total_memory, NULL);
+}
+
+/* Write command line options to the .note section. */
+
+void
+write_compilation_flags_to_asm (void)
+{
+ size_t i;
+ cpp_dir *quote_paths, *bracket_paths, *system_paths, *pdir;
+ struct str_list *pdef, *pinc;
+ int num_quote_paths = 0;
+ int num_bracket_paths = 0;
+ int num_system_paths = 0;
+
+ get_include_chains (&quote_paths, &bracket_paths, &system_paths);
+
+ /* Write quote_paths to ASM section. */
+ switch_to_section (get_section (".gnu.switches.text.quote_paths",
+ SECTION_DEBUG, NULL));
+ for (pdir = quote_paths; pdir; pdir = pdir->next)
+ {
+ if (pdir == bracket_paths)
+ break;
+ num_quote_paths++;
+ }
+ dw2_asm_output_nstring (in_fnames[0], (size_t)-1, NULL);
+ dw2_asm_output_data_uleb128 (num_quote_paths, NULL);
+ for (pdir = quote_paths; pdir; pdir = pdir->next)
+ {
+ if (pdir == bracket_paths)
+ break;
+ dw2_asm_output_nstring (pdir->name, (size_t)-1, NULL);
+ }
+
+ /* Write bracket_paths to ASM section. */
+ switch_to_section (get_section (".gnu.switches.text.bracket_paths",
+ SECTION_DEBUG, NULL));
+ for (pdir = bracket_paths; pdir; pdir = pdir->next)
+ {
+ if (pdir == system_paths)
+ break;
+ num_bracket_paths++;
+ }
+ dw2_asm_output_nstring (in_fnames[0], (size_t)-1, NULL);
+ dw2_asm_output_data_uleb128 (num_bracket_paths, NULL);
+ for (pdir = bracket_paths; pdir; pdir = pdir->next)
+ {
+ if (pdir == system_paths)
+ break;
+ dw2_asm_output_nstring (pdir->name, (size_t)-1, NULL);
+ }
+
+ /* Write system_paths to ASM section. */
+ switch_to_section (get_section (".gnu.switches.text.system_paths",
+ SECTION_DEBUG, NULL));
+ for (pdir = system_paths; pdir; pdir = pdir->next)
+ num_system_paths++;
+ dw2_asm_output_nstring (in_fnames[0], (size_t)-1, NULL);
+ dw2_asm_output_data_uleb128 (num_system_paths, NULL);
+ for (pdir = system_paths; pdir; pdir = pdir->next)
+ dw2_asm_output_nstring (pdir->name, (size_t)-1, NULL);
+
+ /* Write cpp_defines to ASM section. */
+ switch_to_section (get_section (".gnu.switches.text.cpp_defines",
+ SECTION_DEBUG, NULL));
+ dw2_asm_output_nstring (in_fnames[0], (size_t)-1, NULL);
+ dw2_asm_output_data_uleb128 (num_cpp_defines, NULL);
+ for (pdef = cpp_defines_head; pdef; pdef = pdef->next)
+ dw2_asm_output_nstring (pdef->str, (size_t)-1, NULL);
+
+ /* Write cpp_includes to ASM section. */
+ switch_to_section (get_section (".gnu.switches.text.cpp_includes",
+ SECTION_DEBUG, NULL));
+ dw2_asm_output_nstring (in_fnames[0], (size_t)-1, NULL);
+ dw2_asm_output_data_uleb128 (num_cpp_includes, NULL);
+ for (pinc = cpp_includes_head; pinc; pinc = pinc->next)
+ dw2_asm_output_nstring (pinc->str, (size_t)-1, NULL);
+
+ /* Write cl_args to ASM section. */
+ switch_to_section (get_section (".gnu.switches.text.cl_args",
+ SECTION_DEBUG, NULL));
+ dw2_asm_output_nstring (in_fnames[0], (size_t)-1, NULL);
+ dw2_asm_output_data_uleb128 (num_lipo_cl_args, NULL);
+ for (i = 0; i < num_lipo_cl_args; i++)
+ dw2_asm_output_nstring (lipo_cl_args[i], (size_t)-1, NULL);
+}
#include "gt-coverage.h"
diff --git a/gcc-4.9/gcc/coverage.h b/gcc-4.9/gcc/coverage.h
index 81f87a6f0..408cd66e6 100644
--- a/gcc-4.9/gcc/coverage.h
+++ b/gcc-4.9/gcc/coverage.h
@@ -22,7 +22,7 @@ along with GCC; see the file COPYING3. If not see
#include "gcov-io.h"
-extern void coverage_init (const char *);
+extern void coverage_init (const char *, const char*);
extern void coverage_finish (void);
/* Start outputting coverage information for the current
@@ -54,7 +54,42 @@ extern gcov_type *get_coverage_counts (unsigned /*counter*/,
unsigned /*cfg_checksum*/,
unsigned /*lineno_checksum*/,
const struct gcov_ctr_summary **);
+/* Get all the counters for the current function without warning. */
+extern gcov_type *get_coverage_counts_no_warn (struct function *,
+ unsigned /*counter*/, unsigned *);
+
+extern struct cgraph_node * find_func_by_global_id (unsigned HOST_WIDE_INT gid,
+ bool);
+
+extern bool check_ic_target (gimple call_stmt, struct cgraph_node *target);
+
+/* All the coverage counters are supposed to be allocated by the time
+ coverage_end_function is called. However, direct-call counters are
+ allocated after coverage_end_function has been called. This function
+ fixes up the various internal structures to reflect these counter
+ allocations. This function is called after coverage_end_function and
+ before coverage_finish. */
+extern void coverage_dc_end_function (void);
+
+/* True if a function entry corresponding to the given function identifier
+ is present in the coverage internal data structures. */
+extern bool coverage_function_present (unsigned fn_ident);
+
+extern void emit_function_name (void);
extern tree get_gcov_type (void);
+extern tree get_gcov_unsigned_t (void);
+extern tree get_const_string_type (void);
+
+/* Mark this module as containing asm statements. */
+extern void coverage_has_asm_stmt (void);
+
+extern bool incompatible_cl_args (struct gcov_module_info *,
+ struct gcov_module_info *);
+
+/* Defined in tree-profile.c. */
+extern void tree_init_instrumentation_sampling (void);
+extern void tree_init_dyn_ipa_parameters (void);
+extern void tree_init_instrumentation (void);
#endif
diff --git a/gcc-4.9/gcc/cp/ChangeLog b/gcc-4.9/gcc/cp/ChangeLog
index f9cf11884..f406b27b7 100644
--- a/gcc-4.9/gcc/cp/ChangeLog
+++ b/gcc-4.9/gcc/cp/ChangeLog
@@ -1,3 +1,168 @@
+2014-07-10 Jason Merrill <jason@redhat.com>
+
+ PR c++/61661
+ * semantics.c (reduced_constant_expression_p): Handle CONSTRUCTOR.
+
+2014-07-01 Paul Pluzhnikov <ppluzhnikov@google.com>
+
+ PR c++/58753
+ PR c++/58930
+ PR c++/58704
+
+ Backported from mainline
+ 2014-05-20 Paolo Carlini <paolo.carlini@oracle.com>
+
+ * typeck2.c (digest_nsdmi_init): New.
+ * parser.c (cp_parser_late_parse_one_default_arg): Use it.
+ * init.c (get_nsdmi): Likewise.
+ * cp-tree.h (digest_nsdmi_init): Declare.
+
+2014-06-30 Edward Smith-Rowland <3dw4rd@verizon.net>
+
+ PR c++/58781
+ PR c++/60249
+ PR c++/59867
+ * parser.c (cp_parser_userdef_string_literal()): Take a tree
+ not a cp_token*. (cp_parser_string_literal(): Don't hack
+ the token stream!
+
+2014-06-30 Jason Merrill <jason@redhat.com>
+
+ PR c++/61647
+ * pt.c (type_dependent_expression_p): Check BASELINK_OPTYPE.
+
+ PR c++/61566
+ * mangle.c (decl_mangling_context): Look through a TEMPLATE_DECL.
+
+2014-06-30 Jakub Jelinek <jakub@redhat.com>
+
+ Backported from mainline
+ 2014-06-25 Jakub Jelinek <jakub@redhat.com>
+
+ * semantics.c (finish_omp_clauses): Make sure
+ OMP_CLAUSE_LINEAR_STEP has correct type.
+
+ 2014-06-18 Jakub Jelinek <jakub@redhat.com>
+
+ * cp-gimplify.c (cxx_omp_finish_clause): Add a gimple_seq *
+ argument.
+ * cp-tree.h (cxx_omp_finish_clause): Adjust prototype.
+
+2014-06-30 Jason Merrill <jason@redhat.com>
+
+ PR c++/61539
+ * pt.c (unify_one_argument): Type/expression mismatch just causes
+ deduction failure.
+
+ DR 1030
+ PR c++/51253
+ PR c++/61382
+ * cp-tree.h (CALL_EXPR_LIST_INIT_P): New.
+ * call.c (struct z_candidate): Add flags field.
+ (add_candidate): Add flags parm.
+ (add_function_candidate, add_conv_candidate, build_builtin_candidate)
+ (add_template_candidate_real): Pass it.
+ (build_over_call): Set CALL_EXPR_LIST_INIT_P.
+ * tree.c (build_aggr_init_expr): Copy it.
+ * semantics.c (simplify_aggr_init_expr): Copy it.
+ * cp-gimplify.c (cp_gimplify_expr): Handle it.
+
+ PR c++/61488
+ * pt.c (check_valid_ptrmem_cst_expr): Fix for template context.
+
+ PR c++/61500
+ * tree.c (lvalue_kind): Handle MEMBER_REF and DOTSTAR_EXPR.
+
+2014-06-30 Igor Zamyatin <igor.zamyatin@intel.com>
+
+ PR middle-end/57541
+ * cp-array-notation.c (expand_sec_reduce_builtin):
+ Check that bultin argument is correct.
+ * call.c (build_cxx_call): Check for 0 arguments in builtin call.
+
+2014-06-27 Jason Merrill <jason@redhat.com>
+
+ PR c++/61433
+ * error.c (dump_template_bindings): Don't tsubst in a clone.
+
+2014-06-27 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/61614
+ * semantics.c (finish_compound_literal): Revert r204228.
+
+2014-06-26 Adam Butcher <adam@jessamine.co.uk>
+
+ PR c++/61537
+ * parser.c (cp_parser_elaborated_type_specifier): Only consider template
+ parameter lists outside of function parameter scope.
+
+2014-06-25 Jason Merrill <jason@redhat.com>
+
+ PR c++/61242
+ * call.c (build_aggr_conv): Ignore passed in flags.
+ (build_array_conv, build_complex_conv): Likewise.
+
+2014-06-24 Jakub Jelinek <jakub@redhat.com>
+
+ * parser.c (cp_parser_omp_for_loop): For
+ #pragma omp parallel for simd move lastprivate clause from parallel
+ to for rather than simd.
+
+2014-06-20 Jason Merrill <jason@redhat.com>
+
+ PR c++/59296
+ * call.c (add_function_candidate): Avoid special 'this' handling
+ if we have a ref-qualifier.
+
+ PR c++/61556
+ * call.c (build_over_call): Call build_this in template path.
+
+2014-06-19 Jason Merrill <jason@redhat.com>
+
+ PR c++/59296
+ * call.c (add_function_candidate): Set LOOKUP_NO_RVAL_BIND
+ |LOOKUP_NO_TEMP_BIND for ref-qualifier handling.
+
+ PR c++/61507
+ * pt.c (resolve_overloaded_unification): Preserve
+ ARGUMENT_PACK_EXPLICIT_ARGS.
+
+2014-06-18 Jason Merrill <jason@redhat.com>
+
+ PR c++/60605
+ * pt.c (check_default_tmpl_args): Check DECL_LOCAL_FUNCTION_P.
+
+2014-06-18 Siva Chandra Reddy <sivachandra@google.com>
+
+ PR debug/57519
+ * class.c (handle_using_decl): Pass the correct scope to
+ cp_emit_debug_info_for_using.
+
+2014-06-09 Jason Merrill <jason@redhat.com>
+
+ PR c++/61343
+ * decl.c (check_initializer): Maybe clear
+ DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P.
+
+2014-06-04 Igor Zamyatin <igor.zamyatin@intel.com>
+
+ PR c/58942
+ * c-c++-common/cilk-plus/AN/pr58942.c: Check for correct handling of
+ the case with a pointer.
+
+2014-06-02 Jason Merrill <jason@redhat.com>
+
+ PR c++/61134
+ * pt.c (pack_deducible_p): Handle canonicalization.
+
+2014-05-21 Igor Zamyatin <igor.zamyatin@intel.com>
+
+ PR c/60189
+ * parser.c (cp_parser_postfix_expression): Move handling of cilk_sync
+ from here to...
+ (cp_parser_statement): ...here. Make sure only semicolon can go after
+ Cilk_sync.
+
2014-05-13 Jason Merrill <jason@redhat.com>
PR c++/61151
diff --git a/gcc-4.9/gcc/cp/call.c b/gcc-4.9/gcc/cp/call.c
index 57e08cb8e..2f24fd49b 100644
--- a/gcc-4.9/gcc/cp/call.c
+++ b/gcc-4.9/gcc/cp/call.c
@@ -206,7 +206,7 @@ static conversion *maybe_handle_ref_bind (conversion **);
static void maybe_handle_implicit_object (conversion **);
static struct z_candidate *add_candidate
(struct z_candidate **, tree, tree, const vec<tree, va_gc> *, size_t,
- conversion **, tree, tree, int, struct rejection_reason *);
+ conversion **, tree, tree, int, struct rejection_reason *, int);
static tree source_type (conversion *);
static void add_warning (struct z_candidate *, struct z_candidate *);
static bool reference_compatible_p (tree, tree);
@@ -520,7 +520,6 @@ struct z_candidate {
sequence from the type returned by FN to the desired destination
type. */
conversion *second_conv;
- int viable;
struct rejection_reason *reason;
/* If FN is a member function, the binfo indicating the path used to
qualify the name of FN at the call site. This path is used to
@@ -538,6 +537,10 @@ struct z_candidate {
tree explicit_targs;
candidate_warning *warnings;
z_candidate *next;
+ int viable;
+
+ /* The flags active in add_candidate. */
+ int flags;
};
/* Returns true iff T is a null pointer constant in the sense of
@@ -886,7 +889,9 @@ build_aggr_conv (tree type, tree ctor, int flags, tsubst_flags_t complain)
if (ctor == error_mark_node)
return NULL;
- flags |= LOOKUP_NO_NARROWING;
+ /* The conversions within the init-list aren't affected by the enclosing
+ context; they're always simple copy-initialization. */
+ flags = LOOKUP_IMPLICIT|LOOKUP_NO_NARROWING;
for (; field; field = next_initializable_field (DECL_CHAIN (field)))
{
@@ -959,6 +964,8 @@ build_array_conv (tree type, tree ctor, int flags, tsubst_flags_t complain)
return NULL;
}
+ flags = LOOKUP_IMPLICIT|LOOKUP_NO_NARROWING;
+
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), i, val)
{
conversion *sub
@@ -1003,6 +1010,8 @@ build_complex_conv (tree type, tree ctor, int flags,
if (len != 2)
return NULL;
+ flags = LOOKUP_IMPLICIT|LOOKUP_NO_NARROWING;
+
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), i, val)
{
conversion *sub
@@ -1810,7 +1819,8 @@ add_candidate (struct z_candidate **candidates,
tree fn, tree first_arg, const vec<tree, va_gc> *args,
size_t num_convs, conversion **convs,
tree access_path, tree conversion_path,
- int viable, struct rejection_reason *reason)
+ int viable, struct rejection_reason *reason,
+ int flags)
{
struct z_candidate *cand = (struct z_candidate *)
conversion_obstack_alloc (sizeof (struct z_candidate));
@@ -1825,6 +1835,7 @@ add_candidate (struct z_candidate **candidates,
cand->viable = viable;
cand->reason = reason;
cand->next = *candidates;
+ cand->flags = flags;
*candidates = cand;
return cand;
@@ -1994,6 +2005,9 @@ add_function_candidate (struct z_candidate **candidates,
object parameter has reference type. */
bool rv = FUNCTION_RVALUE_QUALIFIED (TREE_TYPE (fn));
parmtype = cp_build_reference_type (parmtype, rv);
+ /* The special handling of 'this' conversions in compare_ics
+ does not apply if there is a ref-qualifier. */
+ is_this = false;
}
else
{
@@ -2061,7 +2075,7 @@ add_function_candidate (struct z_candidate **candidates,
out:
return add_candidate (candidates, fn, orig_first_arg, args, len, convs,
- access_path, conversion_path, viable, reason);
+ access_path, conversion_path, viable, reason, flags);
}
/* Create an overload candidate for the conversion function FN which will
@@ -2163,7 +2177,7 @@ add_conv_candidate (struct z_candidate **candidates, tree fn, tree obj,
}
return add_candidate (candidates, totype, first_arg, arglist, len, convs,
- access_path, conversion_path, viable, reason);
+ access_path, conversion_path, viable, reason, flags);
}
static void
@@ -2238,7 +2252,7 @@ build_builtin_candidate (struct z_candidate **candidates, tree fnname,
num_convs, convs,
/*access_path=*/NULL_TREE,
/*conversion_path=*/NULL_TREE,
- viable, reason);
+ viable, reason, flags);
}
static bool
@@ -3056,7 +3070,7 @@ add_template_candidate_real (struct z_candidate **candidates, tree tmpl,
return cand;
fail:
return add_candidate (candidates, tmpl, first_arg, arglist, nargs, NULL,
- access_path, conversion_path, 0, reason);
+ access_path, conversion_path, 0, reason, flags);
}
@@ -4020,8 +4034,9 @@ build_operator_new_call (tree fnname, vec<tree, va_gc> **args,
if (size_check != NULL_TREE)
{
tree errval = TYPE_MAX_VALUE (sizetype);
- /* ANDROID - temporarily disable __cxa_throw_bad_array_new_length call. */
- if (cxx_dialect >= cxx11 && flag_exceptions && 0)
+ if (cxx_dialect >= cxx11 && flag_exceptions
+ /* ANDROID - temporarily disable __cxa_throw_bad_array_new_length call. */
+ && !TARGET_ANDROID)
errval = throw_bad_array_new_length ();
*size = fold_build3 (COND_EXPR, sizetype, size_check,
original_size, errval);
@@ -5743,8 +5758,22 @@ build_op_delete_call (enum tree_code code, tree addr, tree size,
usual deallocation function."
So (void*) beats (void*, size_t). */
- if (FUNCTION_ARG_CHAIN (fn) == void_list_node)
- break;
+ /* If type is not void, pick (void*, size_t) version (which comes
+ first). */
+ if (!flag_sized_delete || TREE_CODE (type) == VOID_TYPE )
+ {
+ /* If -fsized-delete is not passed or if a void * is deleted,
+ prefer delete (void *) version. */
+ if (FUNCTION_ARG_CHAIN (fn) == void_list_node)
+ break;
+ }
+ else
+ {
+ /* If -fsized-delete is passed and it is not a void *,
+ prefer delete (void *, size_t) version. */
+ if (FUNCTION_ARG_CHAIN (fn) != void_list_node)
+ break;
+ }
}
}
@@ -6761,7 +6790,7 @@ build_over_call (struct z_candidate *cand, int flags, tsubst_flags_t complain)
++nargs;
alcarray = XALLOCAVEC (tree, nargs);
- alcarray[0] = first_arg;
+ alcarray[0] = build_this (first_arg);
FOR_EACH_VEC_SAFE_ELT (args, ix, arg)
alcarray[ix + 1] = arg;
argarray = alcarray;
@@ -7229,7 +7258,11 @@ build_over_call (struct z_candidate *cand, int flags, tsubst_flags_t complain)
return error_mark_node;
}
- return build_cxx_call (fn, nargs, argarray, complain|decltype_flag);
+ tree call = build_cxx_call (fn, nargs, argarray, complain|decltype_flag);
+ if (TREE_CODE (call) == CALL_EXPR
+ && (cand->flags & LOOKUP_LIST_INIT_CTOR))
+ CALL_EXPR_LIST_INIT_P (call) = true;
+ return call;
}
/* Build and return a call to FN, using NARGS arguments in ARGARRAY.
@@ -7271,6 +7304,11 @@ build_cxx_call (tree fn, int nargs, tree *argarray,
|| bif == BUILT_IN_CILKPLUS_SEC_REDUCE
|| bif == BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING)
{
+ if (call_expr_nargs (fn) == 0)
+ {
+ error_at (EXPR_LOCATION (fn), "Invalid builtin arguments");
+ return error_mark_node;
+ }
/* for bif == BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_ZERO or
BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_ZERO or
BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_NONZERO or
@@ -8456,10 +8494,11 @@ compare_ics (conversion *ics1, conversion *ics2)
/* [over.ics.rank]
--S1 and S2 are reference bindings (_dcl.init.ref_) and neither refers
- to an implicit object parameter, and either S1 binds an lvalue reference
- to an lvalue and S2 binds an rvalue reference or S1 binds an rvalue
- reference to an rvalue and S2 binds an lvalue reference
- (C++0x draft standard, 13.3.3.2)
+ to an implicit object parameter of a non-static member function
+ declared without a ref-qualifier, and either S1 binds an lvalue
+ reference to an lvalue and S2 binds an rvalue reference or S1 binds an
+ rvalue reference to an rvalue and S2 binds an lvalue reference (C++0x
+ draft standard, 13.3.3.2)
--S1 and S2 are reference bindings (_dcl.init.ref_), and the
types to which the references refer are the same type except for
@@ -9232,6 +9271,9 @@ make_temporary_var_for_ref_to_temp (tree decl, tree type)
tree name;
TREE_STATIC (var) = TREE_STATIC (decl);
+ /* Capture the current module info for statics. */
+ if (L_IPO_COMP_MODE && TREE_STATIC (var))
+ varpool_node_for_decl (var);
DECL_TLS_MODEL (var) = DECL_TLS_MODEL (decl);
name = mangle_ref_init_variable (decl);
DECL_NAME (var) = name;
diff --git a/gcc-4.9/gcc/cp/class.c b/gcc-4.9/gcc/cp/class.c
index 334bfd5ee..265afc486 100644
--- a/gcc-4.9/gcc/cp/class.c
+++ b/gcc-4.9/gcc/cp/class.c
@@ -1300,7 +1300,7 @@ handle_using_decl (tree using_decl, tree t)
old_value = NULL_TREE;
}
- cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
+ cp_emit_debug_info_for_using (decl, t);
if (is_overloaded_fn (decl))
flist = decl;
@@ -8223,12 +8223,11 @@ static void
dump_class_hierarchy (tree t)
{
int flags;
- FILE *stream = dump_begin (TDI_class, &flags);
+ FILE *stream = get_dump_info (TDI_class, &flags);
if (stream)
{
dump_class_hierarchy_1 (stream, flags, t);
- dump_end (TDI_class, stream);
}
}
@@ -8258,7 +8257,7 @@ static void
dump_vtable (tree t, tree binfo, tree vtable)
{
int flags;
- FILE *stream = dump_begin (TDI_class, &flags);
+ FILE *stream = get_dump_info (TDI_class, &flags);
if (!stream)
return;
@@ -8281,15 +8280,13 @@ dump_vtable (tree t, tree binfo, tree vtable)
dump_array (stream, vtable);
fprintf (stream, "\n");
}
-
- dump_end (TDI_class, stream);
}
static void
dump_vtt (tree t, tree vtt)
{
int flags;
- FILE *stream = dump_begin (TDI_class, &flags);
+ FILE *stream = get_dump_info (TDI_class, &flags);
if (!stream)
return;
@@ -8301,8 +8298,6 @@ dump_vtt (tree t, tree vtt)
dump_array (stream, vtt);
fprintf (stream, "\n");
}
-
- dump_end (TDI_class, stream);
}
/* Dump a function or thunk and its thunkees. */
diff --git a/gcc-4.9/gcc/cp/cp-array-notation.c b/gcc-4.9/gcc/cp/cp-array-notation.c
index 65b8bcb81..fed60c953 100644
--- a/gcc-4.9/gcc/cp/cp-array-notation.c
+++ b/gcc-4.9/gcc/cp/cp-array-notation.c
@@ -250,7 +250,10 @@ expand_sec_reduce_builtin (tree an_builtin_fn, tree *new_var)
if (!find_rank (location, an_builtin_fn, an_builtin_fn, true, &rank))
return error_mark_node;
if (rank == 0)
- return an_builtin_fn;
+ {
+ error_at (location, "Invalid builtin arguments");
+ return error_mark_node;
+ }
else if (rank > 1
&& (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND
|| an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND))
@@ -340,6 +343,8 @@ expand_sec_reduce_builtin (tree an_builtin_fn, tree *new_var)
array_ind_value = get_temp_regvar (TREE_TYPE (func_parm), func_parm);
array_op0 = (*array_operand)[0];
+ if (TREE_CODE (array_op0) == INDIRECT_REF)
+ array_op0 = TREE_OPERAND (array_op0, 0);
switch (an_type)
{
case BUILT_IN_CILKPLUS_SEC_REDUCE_ADD:
diff --git a/gcc-4.9/gcc/cp/cp-gimplify.c b/gcc-4.9/gcc/cp/cp-gimplify.c
index ef4b04372..3dc32e6cf 100644
--- a/gcc-4.9/gcc/cp/cp-gimplify.c
+++ b/gcc-4.9/gcc/cp/cp-gimplify.c
@@ -723,6 +723,27 @@ cp_gimplify_expr (tree *expr_p, gimple_seq *pre_p, gimple_seq *post_p)
&& !seen_error ())
return (enum gimplify_status) gimplify_cilk_spawn (expr_p);
+ /* DR 1030 says that we need to evaluate the elements of an
+ initializer-list in forward order even when it's used as arguments to
+ a constructor. So if the target wants to evaluate them in reverse
+ order and there's more than one argument other than 'this', gimplify
+ them in order. */
+ ret = GS_OK;
+ if (PUSH_ARGS_REVERSED && CALL_EXPR_LIST_INIT_P (*expr_p)
+ && call_expr_nargs (*expr_p) > 2)
+ {
+ int nargs = call_expr_nargs (*expr_p);
+ location_t loc = EXPR_LOC_OR_LOC (*expr_p, input_location);
+ for (int i = 1; i < nargs; ++i)
+ {
+ enum gimplify_status t
+ = gimplify_arg (&CALL_EXPR_ARG (*expr_p, i), pre_p, loc);
+ if (t == GS_ERROR)
+ ret = GS_ERROR;
+ }
+ }
+ break;
+
default:
ret = (enum gimplify_status) c_gimplify_expr (expr_p, pre_p, post_p);
break;
@@ -1578,7 +1599,7 @@ cxx_omp_predetermined_sharing (tree decl)
/* Finalize an implicitly determined clause. */
void
-cxx_omp_finish_clause (tree c)
+cxx_omp_finish_clause (tree c, gimple_seq *)
{
tree decl, inner_type;
bool make_shared = false;
diff --git a/gcc-4.9/gcc/cp/cp-lang.c b/gcc-4.9/gcc/cp/cp-lang.c
index c28c07a9d..22f8e4bbb 100644
--- a/gcc-4.9/gcc/cp/cp-lang.c
+++ b/gcc-4.9/gcc/cp/cp-lang.c
@@ -37,6 +37,7 @@ enum c_language_kind c_language = clk_cxx;
static void cp_init_ts (void);
static const char * cxx_dwarf_name (tree t, int verbosity);
static enum classify_record cp_classify_record (tree type);
+static bool cp_user_conv_function_p (tree);
static tree cp_eh_personality (void);
static tree get_template_innermost_arguments_folded (const_tree);
static tree get_template_argument_pack_elems_folded (const_tree);
@@ -77,11 +78,46 @@ static tree get_template_argument_pack_elems_folded (const_tree);
#define LANG_HOOKS_DWARF_NAME cxx_dwarf_name
#undef LANG_HOOKS_INIT_TS
#define LANG_HOOKS_INIT_TS cp_init_ts
+#undef LANG_HOOKS_USER_CONV_FUNCTION
+#define LANG_HOOKS_USER_CONV_FUNCTION cp_user_conv_function_p
#undef LANG_HOOKS_EH_PERSONALITY
#define LANG_HOOKS_EH_PERSONALITY cp_eh_personality
#undef LANG_HOOKS_EH_RUNTIME_TYPE
#define LANG_HOOKS_EH_RUNTIME_TYPE build_eh_type_type
+
+/* LIPO support. */
+#undef LANG_HOOKS_ADD_BUILT_IN_DECL
+#define LANG_HOOKS_ADD_BUILT_IN_DECL cp_add_built_in_decl
+#undef LANG_HOOKS_SAVE_BUILT_IN_PRE
+#define LANG_HOOKS_SAVE_BUILT_IN_PRE cp_save_built_in_decl_pre_parsing
+#undef LANG_HOOKS_RESTORE_BUILT_IN_PRE
+#define LANG_HOOKS_RESTORE_BUILT_IN_PRE cp_restore_built_in_decl_pre_parsing
+#undef LANG_HOOKS_SAVE_BUILT_IN_POST
+#define LANG_HOOKS_SAVE_BUILT_IN_POST cp_save_built_in_decl_post_parsing
+#undef LANG_HOOKS_RESTORE_BUILT_IN_POST
+#define LANG_HOOKS_RESTORE_BUILT_IN_POST cp_restore_built_in_decl_post_parsing
+#undef LANG_HOOKS_CLEAR_NAME_BINDINGS
+#define LANG_HOOKS_CLEAR_NAME_BINDINGS cp_clear_global_name_bindings
+#undef LANG_HOOKS_HAS_GLOBAL_NAME
+#define LANG_HOOKS_HAS_GLOBAL_NAME cp_is_non_sharable_global_decl
+#undef LANG_HOOKS_GET_LANG_DECL_SIZE
+#define LANG_HOOKS_GET_LANG_DECL_SIZE cp_get_lang_decl_size
+#undef LANG_HOOKS_DUP_LANG_TYPE
+#define LANG_HOOKS_DUP_LANG_TYPE cp_lipo_dup_lang_type
+#undef LANG_HOOKS_COPY_LANG_TYPE
+#define LANG_HOOKS_COPY_LANG_TYPE cp_lipo_copy_lang_type
+#undef LANG_HOOKS_PROCESS_PENDING_DECLS
+#define LANG_HOOKS_PROCESS_PENDING_DECLS cp_process_pending_declarations
+#undef LANG_HOOKS_CLEAR_DEFFERED_FNS
+#define LANG_HOOKS_CLEAR_DEFFERED_FNS cp_clear_deferred_fns
+#undef LANG_HOOKS_IS_GENERATED_TYPE
+#define LANG_HOOKS_IS_GENERATED_TYPE cp_is_compiler_generated_type
+#undef LANG_HOOKS_CMP_LANG_TYPE
+#define LANG_HOOKS_CMP_LANG_TYPE cp_cmp_lang_type
+
+
+
/* Each front end provides its own lang hook initializer. */
struct lang_hooks lang_hooks = LANG_HOOKS_INITIALIZER;
@@ -134,6 +170,13 @@ cp_classify_record (tree type)
return RECORD_IS_STRUCT;
}
+static bool
+cp_user_conv_function_p (tree decl)
+{
+ return DECL_CONV_FN_P (decl);
+}
+
+
static GTY(()) tree cp_eh_personality_decl;
static tree
diff --git a/gcc-4.9/gcc/cp/cp-objcp-common.c b/gcc-4.9/gcc/cp/cp-objcp-common.c
index aa0ff839c..e350bb3f3 100644
--- a/gcc-4.9/gcc/cp/cp-objcp-common.c
+++ b/gcc-4.9/gcc/cp/cp-objcp-common.c
@@ -25,12 +25,14 @@ along with GCC; see the file COPYING3. If not see
#include "tree.h"
#include "cp-tree.h"
#include "c-family/c-common.h"
+#include "cgraph.h"
#include "langhooks.h"
#include "langhooks-def.h"
#include "diagnostic.h"
#include "debug.h"
#include "cxx-pretty-print.h"
#include "cp-objcp-common.h"
+#include "l-ipo.h"
#include <new> // For placement new.
@@ -164,15 +166,476 @@ cp_function_decl_explicit_p (tree decl)
&& DECL_NONCONVERTING_P (decl));
}
-/* Stubs to keep c-opts.c happy. */
+/* LIPO support */
+
+typedef struct GTY (()) sb
+{
+ tree decl;
+ tree decl_init_copy; /* copy at the start of file parsing. */
+ tree decl_fini_copy; /* copy at the end of module_scope. */
+ tree id;
+ cxx_binding *binding;
+ /* binding->value may get overwritten during parsing due to
+ an incompatible delcaration in the same scope (e.g. clog),
+ so we need to expliclitly save the binding value. */
+ tree binding_value;
+ /* The binding value in the previous scope: std namespace. */
+ tree std_binding_value;
+ tree real_type_value;
+} saved_builtin;
+
+static GTY (()) vec<saved_builtin, va_gc> *saved_builtins = NULL;
+
+/* Return true if the type is not user defined. */
+
+bool
+cp_is_compiler_generated_type (tree t)
+{
+ if (TYPE_PTRMEMFUNC_P (t))
+ return true;
+ return false;
+}
+
+/* Clear symbol binding for name ID. */
+
+void
+cp_clear_global_name_bindings (tree id)
+{
+ if (id)
+ IDENTIFIER_NAMESPACE_BINDINGS (id) = NULL;
+}
+
+/* Return true if DECL is scoped in global/namespace scope, otherwise
+ return false. This is a langhook method that is used to select declarations
+ that needs to be explicitly popped out the global/namespace scope
+ at the end of parsing the file. */
+
+bool
+cp_is_non_sharable_global_decl (tree decl, void *scope)
+{
+ cp_binding_level *global_scope, *cur_scope;
+
+ cur_scope = (cp_binding_level *) scope;
+ global_scope = NAMESPACE_LEVEL (global_namespace);
+ if (cur_scope->kind != sk_namespace && cur_scope != global_scope)
+ return false;
+
+ /* Type info objects are compiler created -- allow such
+ decls to be shared (treated as other builtins) across modules. */
+ if (TREE_CODE (decl) == VAR_DECL && DECL_TINFO_P (decl))
+ return false;
+
+ return true;
+}
+
+/* Duplicate language specific type information from SRC
+ to DEST. */
+
+void
+cp_lipo_dup_lang_type (tree src, tree dest)
+{
+ struct lang_type *lang_type_clone = 0;
+ /* TODO check size. */
+ lang_type_clone = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
+ *lang_type_clone = *TYPE_LANG_SPECIFIC (src);
+ TYPE_LANG_SPECIFIC (dest) = lang_type_clone;
+
+ TYPE_CACHED_VALUES_P (dest) = TYPE_CACHED_VALUES_P (src);
+ if (TYPE_CACHED_VALUES_P (src))
+ TYPE_CACHED_VALUES (dest) = TYPE_CACHED_VALUES (src);
+ /* Main variant's clone's main variant should be itself. */
+ TYPE_MAIN_VARIANT (dest) = dest;
+ /* Now copy the subdecl.
+ Do not reorder this with previous statement -- it
+ depends on the result of previous one. */
+ TYPE_MAIN_DECL(dest) = TYPE_MAIN_DECL (src);
+}
+
+
+/* Copy DEST into SRC. */
+
+void
+cp_lipo_copy_lang_type (tree src, tree dest)
+{
+ struct lang_type *old_ls;
+ unsigned old_uid;
+
+ old_ls = TYPE_LANG_SPECIFIC (dest);
+ *old_ls = *(TYPE_LANG_SPECIFIC (src));
+ old_uid = TYPE_UID (dest);
+ memcpy (dest, src, tree_size (dest));
+
+ TYPE_UID (dest) = old_uid;
+ TYPE_LANG_SPECIFIC (dest) = old_ls;
+ /* recover main variant. */
+ TYPE_MAIN_VARIANT (dest) = dest;
+ TYPE_MAIN_DECL (dest) = TYPE_MAIN_DECL (src);
+}
+
+/* Return the actual size of the lang_decl struct for
+ decl T. */
+
+int
+cp_get_lang_decl_size (tree t)
+{
+ size_t size;
+ if (TREE_CODE (t) == FUNCTION_DECL)
+ size = sizeof (struct lang_decl_fn);
+ else if (TREE_CODE (t) == NAMESPACE_DECL)
+ size = sizeof (struct lang_decl_ns);
+ else if (TREE_CODE (t) == PARM_DECL)
+ size = sizeof (struct lang_decl_parm);
+ else if (LANG_DECL_HAS_MIN (t))
+ size = sizeof (struct lang_decl_min);
+ else
+ gcc_unreachable ();
+
+ return (int) size;
+}
+
+/* Return 1 if template arguments TA1 and TA2 is compatible.
+ Return 0 otherwise. */
+
+static int
+cmp_templ_arg (tree ta1, tree ta2)
+{
+ if (ARGUMENT_PACK_P (ta1))
+ {
+ int n, i;
+ if (!ARGUMENT_PACK_P (ta2))
+ return 0;
+ tree pack1 = ARGUMENT_PACK_ARGS (ta1);
+ tree pack2 = ARGUMENT_PACK_ARGS (ta2);
+ n = TREE_VEC_LENGTH (pack1);
+ if (n != TREE_VEC_LENGTH (pack2))
+ return 0;
+ for (i = 0; i < n ; i++)
+ {
+ if (!cmp_templ_arg (TREE_VEC_ELT (pack1, i),
+ TREE_VEC_ELT (pack2, i)))
+ return 0;
+ }
+ return 1;
+ }
+ else if (TYPE_P (ta1))
+ {
+ if (!TYPE_P (ta2))
+ return 0;
+
+ return lipo_cmp_type (ta1, ta2);
+ }
+ else if (TREE_CODE (ta1) == TEMPLATE_DECL)
+ {
+ if (TREE_CODE (ta2) != TEMPLATE_DECL)
+ return 0;
+
+ /* compare name -- need context comparison: */
+ return !strcmp (IDENTIFIER_POINTER (DECL_NAME (ta1)),
+ IDENTIFIER_POINTER (DECL_NAME (ta2)));
+ }
+ else /* integer expression */
+ {
+ if (TREE_CODE (ta1) != TREE_CODE (ta2))
+ return 0;
+ if (TREE_CODE (ta1) == INTEGER_CST)
+ return (TREE_INT_CST_HIGH (ta1) == TREE_INT_CST_HIGH (ta2)
+ && TREE_INT_CST_LOW (ta1) == TREE_INT_CST_LOW (ta2));
+ else if (TREE_CODE (ta1) == ADDR_EXPR)
+ {
+ tree td1, td2;
+
+ td1 = TREE_OPERAND (ta1, 0);
+ td2 = TREE_OPERAND (ta2, 0);
+ if (TREE_CODE (td1) != TREE_CODE (td2))
+ return 0;
+ if (TREE_CODE (td1) == FUNCTION_DECL)
+ {
+ tree id1, id2;
+
+ if (!TREE_PUBLIC (td1) || !TREE_PUBLIC (td2))
+ return td1 == td2;
+
+ id1 = DECL_ASSEMBLER_NAME (td1);
+ id2 = DECL_ASSEMBLER_NAME (td2);
+ return !strcmp (IDENTIFIER_POINTER (id1),
+ IDENTIFIER_POINTER (id2));
+ }
+ else
+ {
+ gcc_assert (TREE_CODE (td1) == VAR_DECL);
+ return real_varpool_node (td1) == real_varpool_node (td2);
+ }
+ }
+ else
+ /* Be conservative (from aliasing point of view) for now (TODO) */
+ return 1;
+ }
+}
+
+/* Return 1 if template parameters of T1 and T2
+ are compatible, returns 0 otherwise. */
+
+static int
+cmp_templ_parms (tree t1, tree t2)
+{
+ int n_lvl = 1, i;
+ tree a1, a2;
+ tree args1 = CLASSTYPE_TI_ARGS (t1);
+ tree args2 = CLASSTYPE_TI_ARGS (t2);
+ if (TMPL_ARGS_HAVE_MULTIPLE_LEVELS (args1)
+ && !TMPL_ARGS_HAVE_MULTIPLE_LEVELS (args2))
+ return 0;
+ if (!TMPL_ARGS_HAVE_MULTIPLE_LEVELS (args1)
+ && TMPL_ARGS_HAVE_MULTIPLE_LEVELS (args2))
+ return 0;
+
+ if (TREE_VEC_LENGTH (args1) != TREE_VEC_LENGTH (args2))
+ return 0;
+
+ if (TMPL_ARGS_HAVE_MULTIPLE_LEVELS (args1))
+ n_lvl = TREE_VEC_LENGTH (args1);
+
+ i = 0;
+ if (n_lvl == 1)
+ {
+ a1 = args1;
+ a2 = args2;
+ }
+ else
+ {
+ a1 = TREE_VEC_ELT (args1, 0);
+ a2 = TREE_VEC_ELT (args2, 0);
+ }
+
+ while (i < n_lvl)
+ {
+ int len1, len2, j;
+
+ len1 = TREE_VEC_LENGTH (a1);
+ len2 = TREE_VEC_LENGTH (a2);
+
+ if (len1 != len2)
+ return 0;
+
+ for (j = 0; j < len1; j++)
+ {
+ tree ta1, ta2;
+
+ ta1 = TREE_VEC_ELT (a1, j);
+ ta2 = TREE_VEC_ELT (a2, j);
+
+ if (!cmp_templ_arg (ta1, ta2))
+ return 0;
+ }
+ i++;
+ if (i < n_lvl)
+ {
+ a1 = TREE_VEC_ELT (args1, i);
+ a2 = TREE_VEC_ELT (args2, i);
+ }
+ }
+ return 1;
+}
+
+/* Return 1 if type T1 and T2 are compatible. Type comparison
+ is based on type kind and name. */
+
+int
+cp_cmp_lang_type (tree t1, tree t2)
+{
+ int templ1, templ2;
+
+ /* Now check if the type is a template instantiation. */
+ templ1 = (TYPE_LANG_SPECIFIC (t1) && CLASSTYPE_TEMPLATE_INFO (t1));
+ templ2 = (TYPE_LANG_SPECIFIC (t2) && CLASSTYPE_TEMPLATE_INFO (t2));
+
+ if ((templ1 && !templ2) || (!templ1 && templ2))
+ return 0;
+ if (!templ1 && !templ2)
+ return 1;
+
+ return cmp_templ_parms (t1, t2);
+}
+
+/* Push DECL to the list of builtins declared by the
+ frontend. */
+
+void
+cp_add_built_in_decl (tree decl)
+{
+ saved_builtin *sb;
+
+ if (!flag_dyn_ipa)
+ return;
+
+ if (at_eof)
+ return;
+
+ if (parser_parsing_start)
+ return;
+
+ sb = vec_safe_push (saved_builtins, saved_builtin ());
+ sb->decl = decl;
+ sb->decl_init_copy = NULL;
+ sb->decl_fini_copy = NULL;
+ sb->id = NULL;
+ sb->binding = NULL;
+ sb->real_type_value = NULL;
+ sb->binding_value = NULL;
+ sb->std_binding_value = NULL;
+}
+
+/* Save SB->decl and its name id's binding values. */
+
+static void
+save_built_in_decl_pre_parsing_1 (saved_builtin *sb)
+{
+ tree decl = sb->decl;
+
+ sb->decl_init_copy = lipo_save_decl (decl);
+ sb->decl_fini_copy = NULL;
+ sb->id = NULL;
+ sb->binding = NULL;
+ sb->real_type_value = NULL;
+ sb->binding_value = NULL;
+ sb->std_binding_value = NULL;
+ if (TREE_CODE_CLASS (TREE_CODE (decl)) != tcc_type)
+ sb->id = DECL_NAME (decl);
+ else
+ {
+ tree id;
+ id = TYPE_NAME (decl);
+ if (TREE_CODE (id) == TYPE_DECL)
+ id = DECL_NAME (id);
+ sb->id = id;
+ }
+
+ if (sb->id)
+ {
+ sb->real_type_value = REAL_IDENTIFIER_TYPE_VALUE (sb->id);
+ sb->binding = IDENTIFIER_NAMESPACE_BINDINGS (sb->id);
+ if (sb->binding)
+ {
+ sb->binding_value = sb->binding->value;
+
+ if (sb->binding->previous)
+ sb->std_binding_value = sb->binding->previous->value;
+ }
+ }
+ else
+ {
+ sb->real_type_value = NULL;
+ sb->binding = NULL;
+ }
+
+ return;
+}
+
+/* Add builtin types into the list of builtins. */
+
+static void
+add_built_in_type_node (void)
+{
+ tree type_info_node;
+
+ type_info_node = TYPE_MAIN_VARIANT (const_type_info_type_node);
+ cp_add_built_in_decl (type_info_node);
+}
+
+/* Save the tree (by making a copy) and binding values for
+ builtins before parsing start. */
+
+void
+cp_save_built_in_decl_pre_parsing (void)
+{
+ size_t i;
+ saved_builtin *bi;
+
+ add_built_in_type_node ();
+
+ for (i = 0; saved_builtins->iterate (i, &bi); ++i)
+ save_built_in_decl_pre_parsing_1 (bi);
+}
+
+/* Restore builtins and their bindings to their values
+ before parsing. */
+
+void
+cp_restore_built_in_decl_pre_parsing (void)
+{
+ size_t i;
+ saved_builtin *bi;
+
+ for (i = 0; saved_builtins->iterate (i, &bi); ++i)
+ {
+ tree decl = bi->decl;
+
+ lipo_restore_decl (decl, bi->decl_init_copy);
+
+ if (bi->id)
+ {
+ if (bi->binding)
+ {
+ bi->binding->value = bi->binding_value;
+ if (bi->binding->previous)
+ bi->binding->previous->value = bi->std_binding_value;
+ }
+ IDENTIFIER_NAMESPACE_BINDINGS (bi->id) = bi->binding;
+ REAL_IDENTIFIER_TYPE_VALUE (bi->id) = bi->real_type_value;
+ }
+ }
+ DECL_NAMESPACE_USING (global_namespace) = NULL;
+}
+
+/* Save the tree (by making a copy) and binding values for
+ builtins after parsing of a file. */
+
+void
+cp_save_built_in_decl_post_parsing (void)
+{
+ size_t i;
+ saved_builtin *bi;
+
+ for (i = 0; saved_builtins->iterate (i, &bi); ++i)
+ {
+ if (!TREE_STATIC (bi->decl) || DECL_ARTIFICIAL (bi->decl))
+ continue;
+ /* Remember the defining module. */
+ cgraph_link_node (cgraph_get_create_node (bi->decl));
+ if (!bi->decl_fini_copy)
+ bi->decl_fini_copy = lipo_save_decl (bi->decl);
+ else
+ gcc_assert (TREE_STATIC (bi->decl_fini_copy));
+ }
+}
+
+/* Restore builtins and their bindings to their post parsing values. */
+
+void
+cp_restore_built_in_decl_post_parsing (void)
+{
+ unsigned i;
+ saved_builtin *bi;
+
+ for (i = 0; saved_builtins->iterate (i, &bi); ++i)
+ {
+ tree decl = bi->decl;
+ /* Now restore the decl's state */
+ if (bi->decl_fini_copy)
+ lipo_restore_decl (decl, bi->decl_fini_copy);
+ }
+}
+
void
push_file_scope (void)
{
+ push_module_scope ();
}
void
pop_file_scope (void)
{
+ pop_module_scope ();
}
/* c-pragma.c needs to query whether a decl has extern "C" linkage. */
diff --git a/gcc-4.9/gcc/cp/cp-tree.h b/gcc-4.9/gcc/cp/cp-tree.h
index e9fe86ee4..e6323e7eb 100644
--- a/gcc-4.9/gcc/cp/cp-tree.h
+++ b/gcc-4.9/gcc/cp/cp-tree.h
@@ -25,6 +25,7 @@ along with GCC; see the file COPYING3. If not see
#include "function.h"
#include "hashtab.h"
#include "vec.h"
+#include "l-ipo.h"
/* In order for the format checking to accept the C++ front end
diagnostic framework extensions, you must include this file before
@@ -101,12 +102,14 @@ c-common.h, not after.
FNDECL_USED_AUTO (in FUNCTION_DECL)
DECLTYPE_FOR_LAMBDA_PROXY (in DECLTYPE_TYPE)
REF_PARENTHESIZED_P (in COMPONENT_REF, SCOPE_REF)
+ AGGR_INIT_ZERO_FIRST (in AGGR_INIT_EXPR)
3: (TREE_REFERENCE_EXPR) (in NON_LVALUE_EXPR) (commented-out).
ICS_BAD_FLAG (in _CONV)
FN_TRY_BLOCK_P (in TRY_BLOCK)
IDENTIFIER_CTOR_OR_DTOR_P (in IDENTIFIER_NODE)
BIND_EXPR_BODY_BLOCK (in BIND_EXPR)
DECL_NON_TRIVIALLY_INITIALIZED_P (in VAR_DECL)
+ CALL_EXPR_LIST_INIT_P (in CALL_EXPR, AGGR_INIT_EXPR)
4: TREE_HAS_CONSTRUCTOR (in INDIRECT_REF, SAVE_EXPR, CONSTRUCTOR,
or FIELD_DECL).
IDENTIFIER_TYPENAME_P (in IDENTIFIER_NODE)
@@ -3026,6 +3029,10 @@ extern void decl_shadowed_for_var_insert (tree, tree);
should be performed at instantiation time. */
#define KOENIG_LOOKUP_P(NODE) TREE_LANG_FLAG_0 (CALL_EXPR_CHECK (NODE))
+/* True if CALL_EXPR expresses list-initialization of an object. */
+#define CALL_EXPR_LIST_INIT_P(NODE) \
+ TREE_LANG_FLAG_3 (TREE_CHECK2 ((NODE),CALL_EXPR,AGGR_INIT_EXPR))
+
/* Indicates whether a string literal has been parenthesized. Such
usages are disallowed in certain circumstances. */
@@ -3430,6 +3437,9 @@ more_aggr_init_expr_args_p (const aggr_init_expr_arg_iterator *iter)
B b{1,2}, not B b({1,2}) or B b = {1,2}. */
#define CONSTRUCTOR_IS_DIRECT_INIT(NODE) (TREE_LANG_FLAG_0 (CONSTRUCTOR_CHECK (NODE)))
+#define DIRECT_LIST_INIT_P(NODE) \
+ (BRACE_ENCLOSED_INITIALIZER_P (NODE) && CONSTRUCTOR_IS_DIRECT_INIT (NODE))
+
/* True if NODE represents a conversion for direct-initialization in a
template. Set by perform_implicit_conversion_flags. */
#define IMPLICIT_CONV_EXPR_DIRECT_INIT(NODE) \
@@ -4347,6 +4357,11 @@ extern int function_depth;
PARM_DECLs in cp_tree_equal. */
extern int comparing_specializations;
+/* A type-qualifier, or bitmask therefore, using the TYPE_QUAL
+ constants. */
+
+typedef int cp_cv_quals;
+
/* In parser.c. */
/* Nonzero if we are parsing an unevaluated operand: an operand to
@@ -4356,6 +4371,7 @@ extern int comparing_specializations;
extern int cp_unevaluated_operand;
extern tree cp_convert_range_for (tree, tree, tree, bool);
extern bool parsing_nsdmi (void);
+extern void inject_this_parameter (tree, cp_cv_quals);
/* in pt.c */
@@ -4735,11 +4751,6 @@ extern GTY(()) operator_name_info_t operator_name_info
extern GTY(()) operator_name_info_t assignment_operator_name_info
[(int) MAX_TREE_CODES];
-/* A type-qualifier, or bitmask therefore, using the TYPE_QUAL
- constants. */
-
-typedef int cp_cv_quals;
-
/* Non-static member functions have an optional virt-specifier-seq.
There is a VIRT_SPEC value for each virt-specifier.
They can be combined by bitwise-or to form the complete set of
@@ -5128,6 +5139,7 @@ extern void note_name_declared_in_class (tree, tree);
extern tree get_vtbl_decl_for_binfo (tree);
extern void debug_class (tree);
extern void debug_thunks (tree);
+extern tree cp_fold_obj_type_ref (tree, tree);
extern void set_linkage_according_to_type (tree, tree);
extern void determine_key_method (tree);
extern void check_for_override (tree, tree);
@@ -5315,6 +5327,10 @@ extern bool attributes_naming_typedef_ok (tree);
extern void cplus_decl_attributes (tree *, tree, int);
extern void finish_anon_union (tree);
extern void cp_write_global_declarations (void);
+extern void cp_process_pending_declarations (location_t);
+extern void cp_clear_deferred_fns (void);
+extern void cp_clear_constexpr_hashtable (void);
+extern void cp_clear_conv_type_map (void);
extern tree coerce_new_type (tree);
extern tree coerce_delete_type (tree);
extern void comdat_linkage (tree);
@@ -5415,6 +5431,7 @@ extern tree get_type_value (tree);
extern tree build_zero_init (tree, tree, bool);
extern tree build_value_init (tree, tsubst_flags_t);
extern tree build_value_init_noctor (tree, tsubst_flags_t);
+extern tree get_nsdmi (tree, bool);
extern tree build_offset_ref (tree, tree, bool,
tsubst_flags_t);
extern tree throw_bad_array_new_length (void);
@@ -5608,6 +5625,7 @@ extern tree get_template_argument_pack_elems (const_tree);
extern tree get_function_template_decl (const_tree);
extern tree resolve_nondeduced_context (tree);
extern hashval_t iterative_hash_template_arg (tree arg, hashval_t val);
+extern void clear_pending_templates (void);
/* in repo.c */
extern void init_repo (void);
@@ -6151,6 +6169,7 @@ extern tree store_init_value (tree, tree, vec<tree, va_gc>**, int);
extern void check_narrowing (tree, tree);
extern tree digest_init (tree, tree, tsubst_flags_t);
extern tree digest_init_flags (tree, tree, int);
+extern tree digest_nsdmi_init (tree, tree);
extern tree build_scoped_ref (tree, tree, tree *);
extern tree build_x_arrow (location_t, tree,
tsubst_flags_t);
@@ -6175,6 +6194,7 @@ extern tree mangle_tls_init_fn (tree);
extern tree mangle_tls_wrapper_fn (tree);
extern bool decl_tls_wrapper_p (tree);
extern tree mangle_ref_init_variable (tree);
+extern void reset_temp_count (void);
extern char * get_mangled_vtable_map_var_name (tree);
/* in dump.c */
@@ -6191,6 +6211,22 @@ extern int cxx_types_compatible_p (tree, tree);
extern void init_shadowed_var_for_decl (void);
extern bool cxx_block_may_fallthru (const_tree);
+/* LIPO support. */
+extern bool cp_is_compiler_generated_type (tree);
+extern void cp_clear_global_name_bindings (tree);
+extern bool
+cp_is_non_sharable_global_decl (tree, void *);
+extern void cp_lipo_dup_lang_type (tree, tree);
+extern void cp_lipo_copy_lang_type (tree, tree);
+extern int cp_get_lang_decl_size (tree);
+extern int cp_cmp_lang_type (tree, tree);
+extern void cp_add_built_in_decl (tree);
+extern void cp_save_built_in_decl_pre_parsing (void);
+extern void cp_restore_built_in_decl_pre_parsing (void);
+extern void cp_save_built_in_decl_post_parsing (void);
+extern void cp_restore_built_in_decl_post_parsing (void);
+
+
/* in cp-gimplify.c */
extern int cp_gimplify_expr (tree *, gimple_seq *,
gimple_seq *);
@@ -6201,12 +6237,13 @@ extern tree cxx_omp_clause_default_ctor (tree, tree, tree);
extern tree cxx_omp_clause_copy_ctor (tree, tree, tree);
extern tree cxx_omp_clause_assign_op (tree, tree, tree);
extern tree cxx_omp_clause_dtor (tree, tree);
-extern void cxx_omp_finish_clause (tree);
+extern void cxx_omp_finish_clause (tree, gimple_seq *);
extern bool cxx_omp_privatize_by_reference (const_tree);
/* in name-lookup.c */
extern void suggest_alternatives_for (location_t, tree);
extern tree strip_using_decl (tree);
+extern void reset_anon_name (void);
/* in vtable-class-hierarchy.c */
extern void vtv_compute_class_hierarchy_transitive_closure (void);
diff --git a/gcc-4.9/gcc/cp/decl.c b/gcc-4.9/gcc/cp/decl.c
index 340059442..4dd0ec09f 100644
--- a/gcc-4.9/gcc/cp/decl.c
+++ b/gcc-4.9/gcc/cp/decl.c
@@ -57,6 +57,7 @@ along with GCC; see the file COPYING3. If not see
#include "timevar.h"
#include "pointer-set.h"
#include "splay-tree.h"
+#include "cgraph.h"
#include "plugin.h"
#include "cgraph.h"
#include "cilk.h"
@@ -561,6 +562,7 @@ poplevel (int keep, int reverse, int functionbody)
cp_label_binding *label_bind;
bool subtime = timevar_cond_start (TV_NAME_LOOKUP);
+
restart:
block = NULL_TREE;
@@ -870,7 +872,7 @@ walk_namespaces (walk_namespaces_fn f, void* data)
wrapup_global_declarations for this NAMESPACE. */
int
-wrapup_globals_for_namespace (tree name_space, void* data)
+wrapup_globals_for_namespace (tree name_space, void *data)
{
cp_binding_level *level = NAMESPACE_LEVEL (name_space);
vec<tree, va_gc> *statics = level->static_decls;
@@ -2467,7 +2469,26 @@ duplicate_decls (tree newdecl, tree olddecl, bool newdecl_is_friend)
/* The NEWDECL will no longer be needed. Because every out-of-class
declaration of a member results in a call to duplicate_decls,
freeing these nodes represents in a significant savings. */
- ggc_free (newdecl);
+ {
+ tree clone;
+ bool found_clone = false;
+ /* Fix dangling reference. */
+ FOR_EACH_CLONE (clone, newdecl)
+ {
+ if (DECL_CLONED_FUNCTION (clone) == newdecl)
+ {
+ found_clone = true;
+ break;
+ }
+ if (DECL_ABSTRACT_ORIGIN (clone) == newdecl)
+ {
+ found_clone = true;
+ break;
+ }
+ }
+ if (!found_clone)
+ ggc_free (newdecl);
+ }
return olddecl;
}
@@ -3696,6 +3717,7 @@ cxx_init_decl_processing (void)
{
tree void_ftype;
tree void_ftype_ptr;
+ tree void_ftype_ptr_sizetype;
/* Create all the identifiers we need. */
initialize_predefined_identifiers ();
@@ -3757,8 +3779,14 @@ cxx_init_decl_processing (void)
void_ftype = build_function_type_list (void_type_node, NULL_TREE);
void_ftype_ptr = build_function_type_list (void_type_node,
ptr_type_node, NULL_TREE);
+ void_ftype_ptr_sizetype = build_function_type_list (void_type_node,
+ ptr_type_node,
+ size_type_node,
+ NULL_TREE);
void_ftype_ptr
= build_exception_variant (void_ftype_ptr, empty_except_spec);
+ void_ftype_ptr_sizetype
+ = build_exception_variant (void_ftype_ptr_sizetype, empty_except_spec);
/* C++ extensions */
@@ -3809,7 +3837,7 @@ cxx_init_decl_processing (void)
{
tree newattrs, extvisattr;
- tree newtype, deltype;
+ tree newtype, deltype, deltype2;
tree ptr_ftype_sizetype;
tree new_eh_spec;
@@ -3847,10 +3875,12 @@ cxx_init_decl_processing (void)
newtype = build_exception_variant (newtype, new_eh_spec);
deltype = cp_build_type_attribute_variant (void_ftype_ptr, extvisattr);
deltype = build_exception_variant (deltype, empty_except_spec);
+ deltype2 = build_exception_variant (void_ftype_ptr_sizetype, empty_except_spec);
DECL_IS_OPERATOR_NEW (push_cp_library_fn (NEW_EXPR, newtype, 0)) = 1;
DECL_IS_OPERATOR_NEW (push_cp_library_fn (VEC_NEW_EXPR, newtype, 0)) = 1;
global_delete_fndecl = push_cp_library_fn (DELETE_EXPR, deltype, ECF_NOTHROW);
push_cp_library_fn (VEC_DELETE_EXPR, deltype, ECF_NOTHROW);
+ push_cp_library_fn (DELETE_EXPR, deltype2, ECF_NOTHROW);
nullptr_type_node = make_node (NULLPTR_TYPE);
TYPE_SIZE (nullptr_type_node) = bitsize_int (GET_MODE_BITSIZE (ptr_mode));
@@ -5797,6 +5827,13 @@ check_initializer (tree decl, tree init, int flags, vec<tree, va_gc> **cleanups)
if (init && init != error_mark_node)
init_code = build2 (INIT_EXPR, type, decl, init);
+ if (init_code)
+ {
+ /* We might have set these in cp_finish_decl. */
+ DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = false;
+ TREE_CONSTANT (decl) = false;
+ }
+
if (init_code && DECL_IN_AGGR_P (decl))
{
static int explained = 0;
@@ -5901,6 +5938,10 @@ make_rtl_for_nonlocal_decl (tree decl, tree init, const char* asmspec)
&& DECL_IMPLICIT_INSTANTIATION (decl))
defer_p = 1;
+ /* Capture the current module info. */
+ if (L_IPO_COMP_MODE)
+ varpool_node_for_decl (decl);
+
/* If we're not deferring, go ahead and assemble the variable. */
if (!defer_p)
rest_of_decl_compilation (decl, toplev, at_eof);
diff --git a/gcc-4.9/gcc/cp/decl2.c b/gcc-4.9/gcc/cp/decl2.c
index 6c52e53bc..3088918cd 100644
--- a/gcc-4.9/gcc/cp/decl2.c
+++ b/gcc-4.9/gcc/cp/decl2.c
@@ -103,9 +103,6 @@ static GTY(()) vec<tree, va_gc> *deferred_fns;
sure are defined. */
static GTY(()) vec<tree, va_gc> *no_linkage_decls;
-/* Nonzero if we're done parsing and into end-of-file activities. */
-
-int at_eof;
/* Return a member function type (a METHOD_TYPE), given FNTYPE (a
@@ -3333,11 +3330,13 @@ start_static_storage_duration_function (unsigned count)
{
tree type;
tree body;
- char id[sizeof (SSDF_IDENTIFIER) + 1 /* '\0' */ + 32];
+ char id[sizeof (SSDF_IDENTIFIER) + 1 /* '\0' */ + 64];
/* Create the identifier for this function. It will be of the form
SSDF_IDENTIFIER_<number>. */
sprintf (id, "%s_%u", SSDF_IDENTIFIER, count);
+ if (L_IPO_IS_AUXILIARY_MODULE)
+ sprintf (id, "%s.cmo.%u", id, current_module_id);
type = build_function_type_list (void_type_node,
integer_type_node, integer_type_node,
@@ -3772,6 +3771,9 @@ prune_vars_needing_no_initialization (tree *vars)
continue;
}
+ gcc_assert (!L_IPO_IS_AUXILIARY_MODULE
+ || varpool_is_auxiliary (varpool_node_for_decl (decl)));
+
/* This variable is going to need initialization and/or
finalization, so we add it to the list. */
*var = TREE_CHAIN (t);
@@ -4137,6 +4139,22 @@ no_linkage_error (tree decl)
"to declare function %q#D with linkage", t, decl);
}
+/* Clear the list of deferred functions. */
+
+void
+cp_clear_deferred_fns (void)
+{
+ vec_free (deferred_fns);
+ deferred_fns = NULL;
+ keyed_classes = NULL;
+ vec_free (no_linkage_decls);
+ no_linkage_decls = NULL;
+ cp_clear_constexpr_hashtable ();
+ clear_pending_templates ();
+ reset_anon_name ();
+ reset_temp_count ();
+}
+
/* Collect declarations from all namespaces relevant to SOURCE_FILE. */
static void
@@ -4237,69 +4255,16 @@ dump_tu (void)
first, since that way we only need to reverse the decls once. */
void
-cp_write_global_declarations (void)
+cp_process_pending_declarations (location_t locus)
{
- tree vars;
+ tree vars, decl;
bool reconsider;
size_t i;
- location_t locus;
unsigned ssdf_count = 0;
int retries = 0;
- tree decl;
- struct pointer_set_t *candidates;
-
- locus = input_location;
- at_eof = 1;
-
- /* Bad parse errors. Just forget about it. */
- if (! global_bindings_p () || current_class_type
- || !vec_safe_is_empty (decl_namespace_list))
- return;
-
- /* This is the point to write out a PCH if we're doing that.
- In that case we do not want to do anything else. */
- if (pch_file)
- {
- c_common_write_pch ();
- dump_tu ();
- return;
- }
-
- cgraph_process_same_body_aliases ();
-
- /* Handle -fdump-ada-spec[-slim] */
- if (flag_dump_ada_spec || flag_dump_ada_spec_slim)
- {
- if (flag_dump_ada_spec_slim)
- collect_source_ref (main_input_filename);
- else
- collect_source_refs (global_namespace);
-
- dump_ada_specs (collect_all_refs, cpp_check);
- }
-
- /* FIXME - huh? was input_line -= 1;*/
timevar_start (TV_PHASE_DEFERRED);
- /* We now have to write out all the stuff we put off writing out.
- These include:
-
- o Template specializations that we have not yet instantiated,
- but which are needed.
- o Initialization and destruction for non-local objects with
- static storage duration. (Local objects with static storage
- duration are initialized when their scope is first entered,
- and are cleaned up via atexit.)
- o Virtual function tables.
-
- All of these may cause others to be needed. For example,
- instantiating one function may cause another to be needed, and
- generating the initializer for an object may cause templates to be
- instantiated, etc., etc. */
-
- emit_support_tinfos ();
-
do
{
tree t;
@@ -4535,6 +4500,26 @@ cp_write_global_declarations (void)
}
while (reconsider);
+ if (L_IPO_IS_AUXILIARY_MODULE)
+ {
+ tree fndecl;
+ int i;
+
+ gcc_assert (flag_dyn_ipa && L_IPO_COMP_MODE);
+
+ /* Do some cleanup -- we do not really need static init function
+ to be created for auxiliary modules -- they are created to keep
+ funcdef_no consistent between profile use and profile gen. */
+ FOR_EACH_VEC_SAFE_ELT (ssdf_decls, i, fndecl)
+ /* Such ssdf_decls are not called from GLOBAL ctor/dtor, mark
+ them reachable to avoid being eliminated too early before
+ gimplication. */
+ cgraph_enqueue_node (cgraph_get_create_node (fndecl));
+ ssdf_decls = NULL;
+ timevar_stop (TV_PHASE_DEFERRED);
+ return;
+ }
+
/* All used inline functions must have a definition at this point. */
FOR_EACH_VEC_SAFE_ELT (deferred_fns, i, decl)
{
@@ -4586,7 +4571,10 @@ cp_write_global_declarations (void)
/* We're done with the splay-tree now. */
if (priority_info_map)
- splay_tree_delete (priority_info_map);
+ {
+ splay_tree_delete (priority_info_map);
+ priority_info_map = NULL;
+ }
/* Generate any missing aliases. */
maybe_apply_pending_pragma_weaks ();
@@ -4595,10 +4583,76 @@ cp_write_global_declarations (void)
linkage now. */
pop_lang_context ();
+ ssdf_decls = NULL;
+ timevar_stop (TV_PHASE_DEFERRED);
+}
+
+/* This routine is called at the end of compilation.
+ Its job is to create all the code needed to initialize and
+ destroy the global aggregates. We do the destruction
+ first, since that way we only need to reverse the decls once. */
+
+void
+cp_write_global_declarations (void)
+{
+ bool reconsider = false;
+ location_t locus;
+ struct pointer_set_t *candidates;
+
+ locus = input_location;
+ at_eof = 1;
+
+ /* Bad parse errors. Just forget about it. */
+ if (! global_bindings_p () || current_class_type
+ || !vec_safe_is_empty (decl_namespace_list))
+ return;
+
+ if (pch_file)
+ {
+ c_common_write_pch ();
+ return;
+ }
+
+ cgraph_process_same_body_aliases ();
+
+ /* Handle -fdump-ada-spec[-slim] */
+ if (flag_dump_ada_spec || flag_dump_ada_spec_slim)
+ {
+ if (flag_dump_ada_spec_slim)
+ collect_source_ref (main_input_filename);
+ else
+ collect_source_refs (global_namespace);
+
+ dump_ada_specs (collect_all_refs, cpp_check);
+ }
+
+ /* FIXME - huh? was input_line -= 1;*/
+
+ /* We now have to write out all the stuff we put off writing out.
+ These include:
+
+ o Template specializations that we have not yet instantiated,
+ but which are needed.
+ o Initialization and destruction for non-local objects with
+ static storage duration. (Local objects with static storage
+ duration are initialized when their scope is first entered,
+ and are cleaned up via atexit.)
+ o Virtual function tables.
+
+ All of these may cause others to be needed. For example,
+ instantiating one function may cause another to be needed, and
+ generating the initializer for an object may cause templates to be
+ instantiated, etc., etc. */
+
+ emit_support_tinfos ();
+
+ if (!L_IPO_COMP_MODE)
+ cp_process_pending_declarations (locus);
+
/* Collect candidates for Java hidden aliases. */
candidates = collect_candidates_for_java_method_aliases ();
- timevar_stop (TV_PHASE_DEFERRED);
+
timevar_start (TV_PHASE_OPT_GEN);
if (flag_vtable_verify)
diff --git a/gcc-4.9/gcc/cp/error.c b/gcc-4.9/gcc/cp/error.c
index 699d5458a..87ca4e2a3 100644
--- a/gcc-4.9/gcc/cp/error.c
+++ b/gcc-4.9/gcc/cp/error.c
@@ -318,6 +318,11 @@ dump_template_bindings (cxx_pretty_printer *pp, tree parms, tree args,
if (vec_safe_is_empty (typenames) || uses_template_parms (args))
return;
+ /* Don't try to print typenames when we're processing a clone. */
+ if (current_function_decl
+ && !DECL_LANG_SPECIFIC (current_function_decl))
+ return;
+
FOR_EACH_VEC_SAFE_ELT (typenames, i, t)
{
if (need_semicolon)
diff --git a/gcc-4.9/gcc/cp/friend.c b/gcc-4.9/gcc/cp/friend.c
index 150b392b6..78c02df0e 100644
--- a/gcc-4.9/gcc/cp/friend.c
+++ b/gcc-4.9/gcc/cp/friend.c
@@ -24,6 +24,7 @@ along with GCC; see the file COPYING3. If not see
#include "tree.h"
#include "cp-tree.h"
#include "flags.h"
+#include "cgraph.h"
/* Friend data structures are described in cp-tree.h. */
@@ -148,7 +149,8 @@ add_friend (tree type, tree decl, bool complain)
if (decl == TREE_VALUE (friends))
{
if (complain)
- warning (0, "%qD is already a friend of class %qT",
+ warning (OPT_Wredundant_decls,
+ "%qD is already a friend of class %qT",
decl, type);
return;
}
@@ -376,7 +378,8 @@ make_friend_class (tree type, tree friend_type, bool complain)
if (friend_type == probe)
{
if (complain)
- warning (0, "%qD is already a friend of %qT", probe, type);
+ warning (OPT_Wredundant_decls,
+ "%qD is already a friend of %qT", probe, type);
break;
}
}
@@ -385,7 +388,8 @@ make_friend_class (tree type, tree friend_type, bool complain)
if (same_type_p (probe, friend_type))
{
if (complain)
- warning (0, "%qT is already a friend of %qT", probe, type);
+ warning (OPT_Wredundant_decls,
+ "%qT is already a friend of %qT", probe, type);
break;
}
}
diff --git a/gcc-4.9/gcc/cp/init.c b/gcc-4.9/gcc/cp/init.c
index 4373963a2..ecb103a99 100644
--- a/gcc-4.9/gcc/cp/init.c
+++ b/gcc-4.9/gcc/cp/init.c
@@ -522,6 +522,49 @@ perform_target_ctor (tree init)
}
}
+/* Return the non-static data initializer for FIELD_DECL MEMBER. */
+
+tree
+get_nsdmi (tree member, bool in_ctor)
+{
+ tree init;
+ tree save_ccp = current_class_ptr;
+ tree save_ccr = current_class_ref;
+ if (!in_ctor)
+ inject_this_parameter (DECL_CONTEXT (member), TYPE_UNQUALIFIED);
+ if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
+ {
+ /* Do deferred instantiation of the NSDMI. */
+ init = (tsubst_copy_and_build
+ (DECL_INITIAL (DECL_TI_TEMPLATE (member)),
+ DECL_TI_ARGS (member),
+ tf_warning_or_error, member, /*function_p=*/false,
+ /*integral_constant_expression_p=*/false));
+
+ init = digest_nsdmi_init (member, init);
+ }
+ else
+ {
+ init = DECL_INITIAL (member);
+ if (init && TREE_CODE (init) == DEFAULT_ARG)
+ {
+ error ("constructor required before non-static data member "
+ "for %qD has been parsed", member);
+ DECL_INITIAL (member) = error_mark_node;
+ init = NULL_TREE;
+ }
+ /* Strip redundant TARGET_EXPR so we don't need to remap it, and
+ so the aggregate init code below will see a CONSTRUCTOR. */
+ if (init && TREE_CODE (init) == TARGET_EXPR
+ && !VOID_TYPE_P (TREE_TYPE (TARGET_EXPR_INITIAL (init))))
+ init = TARGET_EXPR_INITIAL (init);
+ init = break_out_target_exprs (init);
+ }
+ current_class_ptr = save_ccp;
+ current_class_ref = save_ccr;
+ return init;
+}
+
/* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
arguments. If TREE_LIST is void_type_node, an empty initializer
list was given; if NULL_TREE no initializer was given. */
@@ -535,31 +578,7 @@ perform_member_init (tree member, tree init)
/* Use the non-static data member initializer if there was no
mem-initializer for this field. */
if (init == NULL_TREE)
- {
- if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
- /* Do deferred instantiation of the NSDMI. */
- init = (tsubst_copy_and_build
- (DECL_INITIAL (DECL_TI_TEMPLATE (member)),
- DECL_TI_ARGS (member),
- tf_warning_or_error, member, /*function_p=*/false,
- /*integral_constant_expression_p=*/false));
- else
- {
- init = DECL_INITIAL (member);
- if (init && TREE_CODE (init) == DEFAULT_ARG)
- {
- error ("constructor required before non-static data member "
- "for %qD has been parsed", member);
- init = NULL_TREE;
- }
- /* Strip redundant TARGET_EXPR so we don't need to remap it, and
- so the aggregate init code below will see a CONSTRUCTOR. */
- if (init && TREE_CODE (init) == TARGET_EXPR
- && !VOID_TYPE_P (TREE_TYPE (TARGET_EXPR_INITIAL (init))))
- init = TARGET_EXPR_INITIAL (init);
- init = break_out_target_exprs (init);
- }
- }
+ init = get_nsdmi (member, /*ctor*/true);
if (init == error_mark_node)
return;
@@ -744,8 +763,8 @@ perform_member_init (tree member, tree init)
tf_warning_or_error);
if (init)
- finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
- tf_warning_or_error));
+ finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
+ tf_warning_or_error));
}
if (type_build_dtor_call (type))
@@ -764,6 +783,11 @@ perform_member_init (tree member, tree init)
&& TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
finish_eh_cleanup (expr);
}
+
+ /* Check for and warn about self-initialization if -Wself-assign is
+ enabled. */
+ if (warn_self_assign)
+ check_for_self_assign (input_location, decl, init);
}
/* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
@@ -2562,9 +2586,10 @@ build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
}
/* Perform the overflow check. */
tree errval = TYPE_MAX_VALUE (sizetype);
- /* ANDROID - temporarily disable __cxa_throw_bad_array_new_length
- call. */
- if (cxx_dialect >= cxx11 && flag_exceptions && 0)
+ if (cxx_dialect >= cxx11 && flag_exceptions
+ /* ANDROID - temporarily disable __cxa_throw_bad_array_new_length
+ call. */
+ && !TARGET_ANDROID)
errval = throw_bad_array_new_length ();
if (outer_nelts_check != NULL_TREE)
size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
diff --git a/gcc-4.9/gcc/cp/mangle.c b/gcc-4.9/gcc/cp/mangle.c
index da82dd6ac..169f84451 100644
--- a/gcc-4.9/gcc/cp/mangle.c
+++ b/gcc-4.9/gcc/cp/mangle.c
@@ -752,6 +752,10 @@ decl_mangling_context (tree decl)
if (tcontext != NULL_TREE)
return tcontext;
+ if (TREE_CODE (decl) == TEMPLATE_DECL
+ && DECL_TEMPLATE_RESULT (decl))
+ decl = DECL_TEMPLATE_RESULT (decl);
+
if (TREE_CODE (decl) == TYPE_DECL
&& LAMBDA_TYPE_P (TREE_TYPE (decl)))
{
@@ -3507,10 +3511,15 @@ mangle_decl (const tree decl)
tree id2, alias;
#endif
- SET_IDENTIFIER_GLOBAL_VALUE (id, decl);
- if (IDENTIFIER_GLOBAL_VALUE (id) != decl)
- inform (DECL_SOURCE_LOCATION (decl), "-fabi-version=6 (or =0) "
- "avoids this error with a change in mangling");
+ if (!L_IPO_COMP_MODE || !is_parsing_done_p ())
+ SET_IDENTIFIER_GLOBAL_VALUE (id, decl);
+ if (L_IPO_COMP_MODE && !is_parsing_done_p ())
+ add_decl_to_current_module_scope (decl,
+ NAMESPACE_LEVEL (global_namespace));
+ if (!L_IPO_COMP_MODE || !is_parsing_done_p ())
+ if (IDENTIFIER_GLOBAL_VALUE (id) != decl)
+ inform (DECL_SOURCE_LOCATION (decl), "-fabi-version=6 (or =0) "
+ "avoids this error with a change in mangling");
#ifdef ASM_OUTPUT_DEF
save_ver = flag_abi_version;
@@ -3786,6 +3795,14 @@ mangle_conv_op_name_for_type (const tree type)
return identifier;
}
+/* Clear the conversion map. */
+
+void
+cp_clear_conv_type_map (void)
+{
+ conv_type_names = NULL;
+}
+
/* Write out the appropriate string for this variable when generating
another mangled name based on this one. */
@@ -3857,6 +3874,14 @@ decl_tls_wrapper_p (const tree fn)
static GTY(()) int temp_count;
+/* Reset static variable temp_count to 0. */
+
+void
+reset_temp_count (void)
+{
+ temp_count = 0;
+}
+
tree
mangle_ref_init_variable (const tree variable)
{
diff --git a/gcc-4.9/gcc/cp/method.c b/gcc-4.9/gcc/cp/method.c
index 11bff7f45..5365b669c 100644
--- a/gcc-4.9/gcc/cp/method.c
+++ b/gcc-4.9/gcc/cp/method.c
@@ -362,8 +362,10 @@ use_thunk (tree thunk_fndecl, bool emit_p)
{
resolve_unique_section (thunk_fndecl, 0, flag_function_sections);
- /* Output the thunk into the same section as function. */
- DECL_SECTION_NAME (thunk_fndecl) = DECL_SECTION_NAME (function);
+ /* Output the thunk into the same section as function if function reordering
+ is not switched on. */
+ if (!flag_reorder_functions)
+ DECL_SECTION_NAME (thunk_fndecl) = DECL_SECTION_NAME (function);
}
}
diff --git a/gcc-4.9/gcc/cp/name-lookup.c b/gcc-4.9/gcc/cp/name-lookup.c
index 0137c3f4a..ad8b4eb8b 100644
--- a/gcc-4.9/gcc/cp/name-lookup.c
+++ b/gcc-4.9/gcc/cp/name-lookup.c
@@ -634,6 +634,10 @@ add_decl_to_level (tree decl, cp_binding_level *b)
|| DECL_DECLARED_INLINE_P (decl))))
vec_safe_push (b->static_decls, decl);
}
+
+ /* The following call is needed for LIPO mode. In this mode, global
+ scope declarations are tracked on a per-module basis. */
+ add_decl_to_current_module_scope (decl, b);
}
/* Record a decl-node X as belonging to the current lexical scope.
@@ -1195,30 +1199,49 @@ pushdecl_maybe_friend_1 (tree x, bool is_friend)
nowarn = true;
}
- if (warn_shadow && !nowarn)
+ if ((warn_shadow
+ || warn_shadow_local
+ || warn_shadow_compatible_local)
+ && !nowarn)
{
- bool warned;
-
+ enum opt_code warning_code;
+ /* If '-Wshadow-compatible-local' is specified without other
+ -Wshadow flags, we will warn only when the type of the
+ shadowing variable (i.e. x) can be converted to that of
+ the shadowed parameter (oldlocal). The reason why we only
+ check if x's type can be converted to oldlocal's type
+ (but not the other way around) is because when users
+ accidentally shadow a parameter, more than often they
+ would use the variable thinking (mistakenly) it's still
+ the parameter. It would be rare that users would use the
+ variable in the place that expects the parameter but
+ thinking it's a new decl. */
+ if (can_convert (TREE_TYPE (oldlocal), TREE_TYPE (x),
+ tf_none))
+ warning_code = OPT_Wshadow_compatible_local;
+ else
+ warning_code = OPT_Wshadow_local;
if (TREE_CODE (oldlocal) == PARM_DECL)
- warned = warning_at (input_location, OPT_Wshadow,
+ warning_at (input_location, warning_code,
"declaration of %q#D shadows a parameter", x);
else if (is_capture_proxy (oldlocal))
- warned = warning_at (input_location, OPT_Wshadow,
+ warning_at (input_location, warning_code,
"declaration of %qD shadows a lambda capture",
x);
else
- warned = warning_at (input_location, OPT_Wshadow,
+ warning_at (input_location, warning_code,
"declaration of %qD shadows a previous local",
x);
-
- if (warned)
- inform (DECL_SOURCE_LOCATION (oldlocal),
- "shadowed declaration is here");
+ warning_at (DECL_SOURCE_LOCATION (oldlocal), warning_code,
+ "shadowed declaration is here");
}
}
/* Maybe warn if shadowing something else. */
- else if (warn_shadow && !DECL_EXTERNAL (x)
+ else if ((warn_shadow
+ || warn_shadow_local
+ || warn_shadow_compatible_local)
+ && !DECL_EXTERNAL (x)
/* No shadow warnings for internally generated vars unless
it's an implicit typedef (see create_implicit_typedef
in decl.c). */
@@ -2068,6 +2091,14 @@ constructor_name_p (tree name, tree type)
static GTY(()) int anon_cnt;
+/* Reset static variable anon_cnt to 0. */
+
+void
+reset_anon_name (void)
+{
+ anon_cnt = 0;
+}
+
/* Return an IDENTIFIER which can be used as a name for
anonymous structs and unions. */
@@ -5080,7 +5111,6 @@ lookup_name_innermost_nonclass_level (tree name)
return ret;
}
-
/* Returns true iff DECL is a block-scope extern declaration of a function
or variable. */
diff --git a/gcc-4.9/gcc/cp/name-lookup.h b/gcc-4.9/gcc/cp/name-lookup.h
index 40e0338ca..cd29a0f5c 100644
--- a/gcc-4.9/gcc/cp/name-lookup.h
+++ b/gcc-4.9/gcc/cp/name-lookup.h
@@ -89,6 +89,7 @@ typedef struct GTY(()) cxx_saved_binding {
extern tree identifier_type_value (tree);
extern void set_identifier_type_value (tree, tree);
extern void pop_binding (tree, tree);
+extern void pop_global_binding (tree, cxx_binding*);
extern void pop_bindings_and_leave_scope (void);
extern tree constructor_name (tree);
extern bool constructor_name_p (tree, tree);
diff --git a/gcc-4.9/gcc/cp/parser.c b/gcc-4.9/gcc/cp/parser.c
index aa00a7b68..706f6c020 100644
--- a/gcc-4.9/gcc/cp/parser.c
+++ b/gcc-4.9/gcc/cp/parser.c
@@ -1891,7 +1891,7 @@ static tree cp_parser_string_literal
static tree cp_parser_userdef_char_literal
(cp_parser *);
static tree cp_parser_userdef_string_literal
- (cp_token *);
+ (tree);
static tree cp_parser_userdef_numeric_literal
(cp_parser *);
@@ -3696,8 +3696,7 @@ cp_parser_string_literal (cp_parser *parser, bool translate, bool wide_ok)
{
tree literal = build_userdef_literal (suffix_id, value,
OT_NONE, NULL_TREE);
- tok->u.value = literal;
- return cp_parser_userdef_string_literal (tok);
+ value = cp_parser_userdef_string_literal (literal);
}
}
else
@@ -3945,9 +3944,8 @@ cp_parser_userdef_numeric_literal (cp_parser *parser)
as arguments. */
static tree
-cp_parser_userdef_string_literal (cp_token *token)
+cp_parser_userdef_string_literal (tree literal)
{
- tree literal = token->u.value;
tree suffix_id = USERDEF_LITERAL_SUFFIX_ID (literal);
tree name = cp_literal_operator_id (IDENTIFIER_POINTER (suffix_id));
tree value = USERDEF_LITERAL_VALUE (literal);
@@ -5835,20 +5833,6 @@ cp_parser_postfix_expression (cp_parser *parser, bool address_p, bool cast_p,
}
break;
}
-
- case RID_CILK_SYNC:
- if (flag_cilkplus)
- {
- tree sync_expr = build_cilk_sync ();
- SET_EXPR_LOCATION (sync_expr,
- cp_lexer_peek_token (parser->lexer)->location);
- finish_expr_stmt (sync_expr);
- }
- else
- error_at (token->location, "-fcilkplus must be enabled to use"
- " %<_Cilk_sync%>");
- cp_lexer_consume_token (parser->lexer);
- break;
case RID_BUILTIN_SHUFFLE:
{
@@ -8099,6 +8083,16 @@ cp_parser_question_colon_clause (cp_parser* parser, tree logical_or_expr)
tf_warning_or_error);
}
+/* A helpfer function to check if the given expression (EXPR) is of POD type.
+ Note that if the expression's type is NULL (e.g. when its type depends on
+ template parameters), we return false. */
+
+static bool
+expr_is_pod (tree expr)
+{
+ return TREE_TYPE (expr) && pod_type_p (TREE_TYPE (expr));
+}
+
/* Parse an assignment-expression.
assignment-expression:
@@ -8157,6 +8151,16 @@ cp_parser_assignment_expression (cp_parser* parser, bool cast_p,
if (cp_parser_non_integral_constant_expression (parser,
NIC_ASSIGNMENT))
return error_mark_node;
+
+ /* Check for and warn about self-assignment if -Wself-assign is
+ enabled and the assignment operator is "=".
+ Checking for non-POD self-assignment will be performed only
+ when -Wself-assign-non-pod is enabled. */
+ if (warn_self_assign
+ && assignment_operator == NOP_EXPR
+ && (warn_self_assign_non_pod || expr_is_pod (expr)))
+ check_for_self_assign (input_location, expr, rhs);
+
/* Build the assignment expression. Its default
location is the location of the '=' token. */
saved_input_location = input_location;
@@ -9400,6 +9404,24 @@ cp_parser_statement (cp_parser* parser, tree in_statement_expr,
statement = cp_parser_jump_statement (parser);
break;
+ case RID_CILK_SYNC:
+ cp_lexer_consume_token (parser->lexer);
+ if (flag_cilkplus)
+ {
+ tree sync_expr = build_cilk_sync ();
+ SET_EXPR_LOCATION (sync_expr,
+ token->location);
+ statement = finish_expr_stmt (sync_expr);
+ }
+ else
+ {
+ error_at (token->location, "-fcilkplus must be enabled to use"
+ " %<_Cilk_sync%>");
+ statement = error_mark_node;
+ }
+ cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
+ break;
+
/* Objective-C++ exception-handling constructs. */
case RID_AT_TRY:
case RID_AT_CATCH:
@@ -12866,6 +12888,9 @@ cp_parser_operator (cp_parser* parser)
static void
cp_parser_template_declaration (cp_parser* parser, bool member_p)
{
+ /* A hack to disable -Wself-assign warning in template parsing. */
+ int old_warn_self_assign = warn_self_assign;
+ warn_self_assign = 0;
/* Check for `export'. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXPORT))
{
@@ -12876,6 +12901,7 @@ cp_parser_template_declaration (cp_parser* parser, bool member_p)
}
cp_parser_template_declaration_after_export (parser, member_p);
+ warn_self_assign = old_warn_self_assign;
}
/* Parse a template-parameter-list.
@@ -15045,6 +15071,18 @@ cp_parser_elaborated_type_specifier (cp_parser* parser,
return cp_parser_make_typename_type (parser, parser->scope,
identifier,
token->location);
+
+ /* Template parameter lists apply only if we are not within a
+ function parameter list. */
+ bool template_parm_lists_apply
+ = parser->num_template_parameter_lists;
+ if (template_parm_lists_apply)
+ for (cp_binding_level *s = current_binding_level;
+ s && s->kind != sk_template_parms;
+ s = s->level_chain)
+ if (s->kind == sk_function_parms)
+ template_parm_lists_apply = false;
+
/* Look up a qualified name in the usual way. */
if (parser->scope)
{
@@ -15087,7 +15125,7 @@ cp_parser_elaborated_type_specifier (cp_parser* parser,
decl = (cp_parser_maybe_treat_template_as_class
(decl, /*tag_name_p=*/is_friend
- && parser->num_template_parameter_lists));
+ && template_parm_lists_apply));
if (TREE_CODE (decl) != TYPE_DECL)
{
@@ -15100,9 +15138,9 @@ cp_parser_elaborated_type_specifier (cp_parser* parser,
if (TREE_CODE (TREE_TYPE (decl)) != TYPENAME_TYPE)
{
- bool allow_template = (parser->num_template_parameter_lists
- || DECL_SELF_REFERENCE_P (decl));
- type = check_elaborated_type_specifier (tag_type, decl,
+ bool allow_template = (template_parm_lists_apply
+ || DECL_SELF_REFERENCE_P (decl));
+ type = check_elaborated_type_specifier (tag_type, decl,
allow_template);
if (type == error_mark_node)
@@ -15188,15 +15226,16 @@ cp_parser_elaborated_type_specifier (cp_parser* parser,
ts = ts_global;
template_p =
- (parser->num_template_parameter_lists
+ (template_parm_lists_apply
&& (cp_parser_next_token_starts_class_definition_p (parser)
|| cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)));
/* An unqualified name was used to reference this type, so
there were no qualifying templates. */
- if (!cp_parser_check_template_parameters (parser,
- /*num_templates=*/0,
- token->location,
- /*declarator=*/NULL))
+ if (template_parm_lists_apply
+ && !cp_parser_check_template_parameters (parser,
+ /*num_templates=*/0,
+ token->location,
+ /*declarator=*/NULL))
return error_mark_node;
type = xref_tag (tag_type, identifier, ts, template_p);
}
@@ -16096,7 +16135,6 @@ cp_parser_alias_declaration (cp_parser* parser)
id = cp_parser_identifier (parser);
if (id == error_mark_node)
return error_mark_node;
-
cp_token *attrs_token = cp_lexer_peek_token (parser->lexer);
attributes = cp_parser_attributes_opt (parser);
if (attributes == error_mark_node)
@@ -16869,6 +16907,10 @@ cp_parser_init_declarator (cp_parser* parser,
`explicit' constructor cannot be used. */
((is_direct_init || !is_initialized)
? LOOKUP_NORMAL : LOOKUP_IMPLICIT));
+ /* Check for and warn about self-initialization if -Wself-assign is
+ enabled. */
+ if (warn_self_assign && initializer)
+ check_for_self_assign (input_location, decl, initializer);
}
else if ((cxx_dialect != cxx98) && friend_p
&& decl && TREE_CODE (decl) == FUNCTION_DECL)
@@ -17837,7 +17879,7 @@ cp_parser_virt_specifier_seq_opt (cp_parser* parser)
/* Used by handling of trailing-return-types and NSDMI, in which 'this'
is in scope even though it isn't real. */
-static void
+void
inject_this_parameter (tree ctype, cp_cv_quals quals)
{
tree this_parm;
@@ -23090,10 +23132,17 @@ cp_parser_template_declaration_after_export (cp_parser* parser, bool member_p)
ok = false;
}
if (!ok)
- error ("literal operator template %qD has invalid parameter list."
- " Expected non-type template argument pack <char...>"
- " or <typename CharT, CharT...>",
- decl);
+ {
+ if (cxx_dialect >= cxx1y)
+ error ("literal operator template %qD has invalid parameter list."
+ " Expected non-type template argument pack <char...>"
+ " or <typename CharT, CharT...>",
+ decl);
+ else
+ error ("literal operator template %qD has invalid parameter list."
+ " Expected non-type template argument pack <char...>",
+ decl);
+ }
}
/* Register member declarations. */
if (member_p && !friend_p && decl && !DECL_CLASS_TEMPLATE_P (decl))
@@ -23664,16 +23713,7 @@ cp_parser_late_parse_one_default_arg (cp_parser *parser, tree decl,
parsed_arg = check_default_argument (parmtype, parsed_arg,
tf_warning_or_error);
else
- {
- int flags = LOOKUP_IMPLICIT;
- if (BRACE_ENCLOSED_INITIALIZER_P (parsed_arg)
- && CONSTRUCTOR_IS_DIRECT_INIT (parsed_arg))
- flags = LOOKUP_NORMAL;
- parsed_arg = digest_init_flags (TREE_TYPE (decl), parsed_arg, flags);
- if (TREE_CODE (parsed_arg) == TARGET_EXPR)
- /* This represents the whole initialization. */
- TARGET_EXPR_DIRECT_INIT_P (parsed_arg) = true;
- }
+ parsed_arg = digest_nsdmi_init (decl, parsed_arg);
}
/* If the token stream has not been completely used up, then
@@ -29361,9 +29401,17 @@ cp_parser_omp_for_loop (cp_parser *parser, enum tree_code code, tree clauses,
change it to shared (decl) in OMP_PARALLEL_CLAUSES. */
tree l = build_omp_clause (loc, OMP_CLAUSE_LASTPRIVATE);
OMP_CLAUSE_DECL (l) = real_decl;
- OMP_CLAUSE_CHAIN (l) = clauses;
CP_OMP_CLAUSE_INFO (l) = CP_OMP_CLAUSE_INFO (*c);
- clauses = l;
+ if (code == OMP_SIMD)
+ {
+ OMP_CLAUSE_CHAIN (l) = cclauses[C_OMP_CLAUSE_SPLIT_FOR];
+ cclauses[C_OMP_CLAUSE_SPLIT_FOR] = l;
+ }
+ else
+ {
+ OMP_CLAUSE_CHAIN (l) = clauses;
+ clauses = l;
+ }
OMP_CLAUSE_SET_CODE (*c, OMP_CLAUSE_SHARED);
CP_OMP_CLAUSE_INFO (*c) = NULL;
add_private_clause = false;
@@ -31667,14 +31715,6 @@ pragma_lex (tree *value)
void
c_parse_file (void)
{
- static bool already_called = false;
-
- if (already_called)
- {
- sorry ("inter-module optimizations not implemented for C++");
- return;
- }
- already_called = true;
the_parser = cp_parser_new ();
push_deferring_access_checks (flag_access_control
diff --git a/gcc-4.9/gcc/cp/parser.h b/gcc-4.9/gcc/cp/parser.h
index d558c607f..628d1ae65 100644
--- a/gcc-4.9/gcc/cp/parser.h
+++ b/gcc-4.9/gcc/cp/parser.h
@@ -350,6 +350,15 @@ typedef struct GTY(()) cp_parser {
outermost class being defined is complete. */
vec<cp_unparsed_functions_entry, va_gc> *unparsed_queues;
+ /* A list of attributes whose arguments are not yet parsed. The
+ TREE_VALUE of each list node contains a delayed attribute.
+ The argument of the attribute (i.e. TREE_VALUE of the attribute)
+ is a special tree list node, where the TREE_PURPOSE is error_mark_node
+ and the TREE_VALUE points to the cached tokens of the arguments.
+ This list is processed once the outermost class being defined is
+ complete. */
+ tree unparsed_attribute_args_queue;
+
/* The number of classes whose definitions are currently in
progress. */
unsigned num_classes_being_defined;
diff --git a/gcc-4.9/gcc/cp/pt.c b/gcc-4.9/gcc/cp/pt.c
index 3951997b0..54676afcc 100644
--- a/gcc-4.9/gcc/cp/pt.c
+++ b/gcc-4.9/gcc/cp/pt.c
@@ -43,8 +43,10 @@ along with GCC; see the file COPYING3. If not see
#include "tree-inline.h"
#include "decl.h"
#include "toplev.h"
+#include "opts.h"
#include "timevar.h"
#include "tree-iterator.h"
+#include "cgraph.h"
#include "type-utils.h"
#include "gimplify.h"
@@ -63,6 +65,13 @@ struct GTY ((chain_next ("%h.next"))) pending_template {
static GTY(()) struct pending_template *pending_templates;
static GTY(()) struct pending_template *last_pending_template;
+void
+clear_pending_templates (void)
+{
+ pending_templates = NULL;
+ last_pending_template = NULL;
+}
+
int processing_template_parmlist;
static int template_header_count;
@@ -4423,7 +4432,8 @@ check_default_tmpl_args (tree decl, tree parms, bool is_primary,
in the template-parameter-list of the definition of a member of a
class template. */
- if (TREE_CODE (CP_DECL_CONTEXT (decl)) == FUNCTION_DECL)
+ if (TREE_CODE (CP_DECL_CONTEXT (decl)) == FUNCTION_DECL
+ || (TREE_CODE (decl) == FUNCTION_DECL && DECL_LOCAL_FUNCTION_P (decl)))
/* You can't have a function template declaration in a local
scope, nor you can you define a member of a class template in a
local scope. */
@@ -5345,6 +5355,10 @@ check_valid_ptrmem_cst_expr (tree type, tree expr,
return true;
if (cxx_dialect >= cxx11 && null_member_pointer_value_p (expr))
return true;
+ if (processing_template_decl
+ && TREE_CODE (expr) == ADDR_EXPR
+ && TREE_CODE (TREE_OPERAND (expr, 0)) == OFFSET_REF)
+ return true;
if (complain & tf_error)
{
error ("%qE is not a valid template argument for type %qT",
@@ -14189,11 +14203,7 @@ tsubst_copy_and_build (tree t,
if (error_msg)
error (error_msg);
if (!function_p && identifier_p (decl))
- {
- if (complain & tf_error)
- unqualified_name_lookup_error (decl);
- decl = error_mark_node;
- }
+ decl = unqualified_name_lookup_error (decl);
RETURN (decl);
}
@@ -15636,7 +15646,7 @@ pack_deducible_p (tree parm, tree fn)
continue;
for (packs = PACK_EXPANSION_PARAMETER_PACKS (type);
packs; packs = TREE_CHAIN (packs))
- if (TREE_VALUE (packs) == parm)
+ if (template_args_equal (TREE_VALUE (packs), parm))
{
/* The template parameter pack is used in a function parameter
pack. If this is the end of the parameter list, the
@@ -16360,8 +16370,9 @@ unify_one_argument (tree tparms, tree targs, tree parm, tree arg,
maybe_adjust_types_for_deduction (strict, &parm, &arg, arg_expr);
}
else
- gcc_assert ((TYPE_P (parm) || TREE_CODE (parm) == TEMPLATE_DECL)
- == (TYPE_P (arg) || TREE_CODE (arg) == TEMPLATE_DECL));
+ if ((TYPE_P (parm) || TREE_CODE (parm) == TEMPLATE_DECL)
+ != (TYPE_P (arg) || TREE_CODE (arg) == TEMPLATE_DECL))
+ return unify_template_argument_mismatch (explain_p, parm, arg);
/* For deduction from an init-list we need the actual list. */
if (arg_expr && BRACE_ENCLOSED_INITIALIZER_P (arg_expr))
@@ -16697,7 +16708,16 @@ resolve_overloaded_unification (tree tparms,
int i = TREE_VEC_LENGTH (targs);
for (; i--; )
if (TREE_VEC_ELT (tempargs, i))
- TREE_VEC_ELT (targs, i) = TREE_VEC_ELT (tempargs, i);
+ {
+ tree old = TREE_VEC_ELT (targs, i);
+ tree new_ = TREE_VEC_ELT (tempargs, i);
+ if (new_ && old && ARGUMENT_PACK_P (old)
+ && ARGUMENT_PACK_EXPLICIT_ARGS (old))
+ /* Don't forget explicit template arguments in a pack. */
+ ARGUMENT_PACK_EXPLICIT_ARGS (new_)
+ = ARGUMENT_PACK_EXPLICIT_ARGS (old);
+ TREE_VEC_ELT (targs, i) = new_;
+ }
}
if (good)
return true;
@@ -19766,7 +19786,13 @@ instantiate_decl (tree d, int defer_ok,
when marked as "extern template". */
if (!(external_p && VAR_P (d)))
add_pending_template (d);
- goto out;
+ {
+ if (L_IPO_COMP_MODE)
+ /* Capture module info. */
+ if (TREE_CODE (d) == VAR_DECL)
+ varpool_node_for_decl (d);
+ goto out;
+ }
}
/* Tell the repository that D is available in this translation unit
-- and see if it is supposed to be instantiated here. */
@@ -20936,7 +20962,12 @@ type_dependent_expression_p (tree expression)
return true;
if (BASELINK_P (expression))
- expression = BASELINK_FUNCTIONS (expression);
+ {
+ if (BASELINK_OPTYPE (expression)
+ && dependent_type_p (BASELINK_OPTYPE (expression)))
+ return true;
+ expression = BASELINK_FUNCTIONS (expression);
+ }
if (TREE_CODE (expression) == TEMPLATE_ID_EXPR)
{
diff --git a/gcc-4.9/gcc/cp/rtti.c b/gcc-4.9/gcc/cp/rtti.c
index a8e6d25c8..7600215de 100644
--- a/gcc-4.9/gcc/cp/rtti.c
+++ b/gcc-4.9/gcc/cp/rtti.c
@@ -1231,6 +1231,10 @@ create_pseudo_type_info (int tk, const char *real_name, ...)
/* Create the pseudo type. */
pseudo_type = make_class_type (RECORD_TYPE);
finish_builtin_struct (pseudo_type, pseudo_name, fields, NULL_TREE);
+ /* For lightweight IPO (LIPO), the list of builtin decls
+ and types are remembered. */
+ cp_add_built_in_decl (pseudo_type);
+
CLASSTYPE_AS_BASE (pseudo_type) = pseudo_type;
ti = &(*tinfo_descs)[tk];
@@ -1396,6 +1400,9 @@ create_tinfo_types (void)
ti->name = NULL_TREE;
finish_builtin_struct (ti->type, "__type_info_pseudo",
fields, NULL_TREE);
+ /* For lightweight IPO (LIPO), the list of builtin decls
+ and types are remembered. */
+ cp_add_built_in_decl (ti->type);
}
/* Fundamental type_info */
@@ -1437,6 +1444,9 @@ create_tinfo_types (void)
ti->name = NULL_TREE;
finish_builtin_struct (ti->type, "__base_class_type_info_pseudo",
fields, NULL_TREE);
+ /* For lightweight IPO (LIPO), the list of builtin decls
+ and types are remembered. */
+ cp_add_built_in_decl (ti->type);
}
/* Pointer type_info. Adds two fields, qualification mask
diff --git a/gcc-4.9/gcc/cp/semantics.c b/gcc-4.9/gcc/cp/semantics.c
index 3619e271d..de5e536f5 100644
--- a/gcc-4.9/gcc/cp/semantics.c
+++ b/gcc-4.9/gcc/cp/semantics.c
@@ -2600,7 +2600,6 @@ finish_compound_literal (tree type, tree compound_literal,
if ((!at_function_scope_p () || CP_TYPE_CONST_P (type))
&& TREE_CODE (type) == ARRAY_TYPE
&& !TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
- && !cp_unevaluated_operand
&& initializer_constant_valid_p (compound_literal, type))
{
tree decl = create_temporary_var (type);
@@ -2621,10 +2620,16 @@ finish_compound_literal (tree type, tree compound_literal,
decl = pushdecl_top_level (decl);
DECL_NAME (decl) = make_anon_name ();
SET_DECL_ASSEMBLER_NAME (decl, DECL_NAME (decl));
+
+ /* Capture the current module info for statics. */
+ if (L_IPO_COMP_MODE)
+ varpool_node_for_decl (decl);
+
/* Make sure the destructor is callable. */
tree clean = cxx_maybe_build_cleanup (decl, complain);
if (clean == error_mark_node)
return error_mark_node;
+
return decl;
}
else
@@ -3867,6 +3872,7 @@ simplify_aggr_init_expr (tree *tp)
aggr_init_expr_nargs (aggr_init_expr),
AGGR_INIT_EXPR_ARGP (aggr_init_expr));
TREE_NOTHROW (call_expr) = TREE_NOTHROW (aggr_init_expr);
+ CALL_EXPR_LIST_INIT_P (call_expr) = CALL_EXPR_LIST_INIT_P (aggr_init_expr);
if (style == ctor)
{
@@ -3925,6 +3931,18 @@ emit_associated_thunks (tree fn)
{
tree thunk;
+ if (L_IPO_COMP_MODE)
+ {
+ /* In LIPO mode, multiple copies of definitions for the same function
+ may exist, but assembler hash table keeps only one copy which might
+ have been deleted at this point. */
+ struct cgraph_node *n = cgraph_get_create_node (fn);
+ #ifdef FIXME_LIPO
+ insert_to_assembler_name_hash ((symtab_node)n);
+ #endif
+ cgraph_link_node (n);
+ }
+
for (thunk = DECL_THUNKS (fn); thunk; thunk = DECL_CHAIN (thunk))
{
if (!THUNK_ALIAS (thunk))
@@ -5283,6 +5301,8 @@ finish_omp_clauses (tree clauses)
break;
}
}
+ else
+ t = fold_convert (TREE_TYPE (OMP_CLAUSE_DECL (c)), t);
}
OMP_CLAUSE_LINEAR_STEP (c) = t;
}
@@ -7964,6 +7984,15 @@ cx_check_missing_mem_inits (tree fun, tree body, bool complain)
return bad;
}
+/* Clear constexpr hash table */
+
+void
+cp_clear_constexpr_hashtable (void)
+{
+ /* htab_delete (constexpr_fundef_table); */
+ constexpr_fundef_table = NULL;
+}
+
/* We are processing the definition of the constexpr function FUN.
Check that its BODY fulfills the propriate requirements and
enter it in the constexpr function definition table.
@@ -8511,11 +8540,24 @@ cxx_eval_call_expression (const constexpr_call *old_call, tree t,
bool
reduced_constant_expression_p (tree t)
{
- if (TREE_CODE (t) == PTRMEM_CST)
- /* Even if we can't lower this yet, it's constant. */
- return true;
- /* FIXME are we calling this too much? */
- return initializer_constant_valid_p (t, TREE_TYPE (t)) != NULL_TREE;
+ switch (TREE_CODE (t))
+ {
+ case PTRMEM_CST:
+ /* Even if we can't lower this yet, it's constant. */
+ return true;
+
+ case CONSTRUCTOR:
+ /* And we need to handle PTRMEM_CST wrapped in a CONSTRUCTOR. */
+ tree elt; unsigned HOST_WIDE_INT idx;
+ FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), idx, elt)
+ if (!reduced_constant_expression_p (elt))
+ return false;
+ return true;
+
+ default:
+ /* FIXME are we calling this too much? */
+ return initializer_constant_valid_p (t, TREE_TYPE (t)) != NULL_TREE;
+ }
}
/* Some expressions may have constant operands but are not constant
diff --git a/gcc-4.9/gcc/cp/tree.c b/gcc-4.9/gcc/cp/tree.c
index 3429d2396..622ba99f7 100644
--- a/gcc-4.9/gcc/cp/tree.c
+++ b/gcc-4.9/gcc/cp/tree.c
@@ -101,6 +101,16 @@ lvalue_kind (const_tree ref)
case IMAGPART_EXPR:
return lvalue_kind (TREE_OPERAND (ref, 0));
+ case MEMBER_REF:
+ case DOTSTAR_EXPR:
+ if (TREE_CODE (ref) == MEMBER_REF)
+ op1_lvalue_kind = clk_ordinary;
+ else
+ op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
+ if (TYPE_PTRMEMFUNC_P (TREE_TYPE (TREE_OPERAND (ref, 1))))
+ op1_lvalue_kind = clk_none;
+ return op1_lvalue_kind;
+
case COMPONENT_REF:
op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
/* Look at the member designator. */
@@ -453,6 +463,7 @@ build_aggr_init_expr (tree type, tree init)
TREE_SIDE_EFFECTS (rval) = 1;
AGGR_INIT_VIA_CTOR_P (rval) = is_ctor;
TREE_NOTHROW (rval) = TREE_NOTHROW (init);
+ CALL_EXPR_LIST_INIT_P (rval) = CALL_EXPR_LIST_INIT_P (init);
}
else
rval = init;
diff --git a/gcc-4.9/gcc/cp/typeck.c b/gcc-4.9/gcc/cp/typeck.c
index 9a80727dd..3c8d62fbc 100644
--- a/gcc-4.9/gcc/cp/typeck.c
+++ b/gcc-4.9/gcc/cp/typeck.c
@@ -1396,7 +1396,11 @@ comptypes (tree t1, tree t2, int strict)
{
bool result = structural_comptypes (t1, t2, strict);
- if (result && TYPE_CANONICAL (t1) != TYPE_CANONICAL (t2))
+ if (result && (TYPE_CANONICAL (t1) != TYPE_CANONICAL (t2)
+ /* In LIPO mode, the builtin functions are shared across
+ different TUs. The parameter type of the builtin may
+ not be the same instance as the arg type. */
+ && !L_IPO_COMP_MODE))
/* The two types are structurally equivalent, but their
canonical types were different. This is a failure of the
canonical type propagation code.*/
diff --git a/gcc-4.9/gcc/cp/typeck2.c b/gcc-4.9/gcc/cp/typeck2.c
index 85696f6e0..0bdad2a51 100644
--- a/gcc-4.9/gcc/cp/typeck2.c
+++ b/gcc-4.9/gcc/cp/typeck2.c
@@ -1097,6 +1097,22 @@ digest_init_flags (tree type, tree init, int flags)
{
return digest_init_r (type, init, false, flags, tf_warning_or_error);
}
+
+/* Process the initializer INIT for an NSDMI DECL (a FIELD_DECL). */
+tree
+digest_nsdmi_init (tree decl, tree init)
+{
+ gcc_assert (TREE_CODE (decl) == FIELD_DECL);
+
+ int flags = LOOKUP_IMPLICIT;
+ if (DIRECT_LIST_INIT_P (init))
+ flags = LOOKUP_NORMAL;
+ init = digest_init_flags (TREE_TYPE (decl), init, flags);
+ if (TREE_CODE (init) == TARGET_EXPR)
+ /* This represents the whole initialization. */
+ TARGET_EXPR_DIRECT_INIT_P (init) = true;
+ return init;
+}
/* Set of flags used within process_init_constructor to describe the
initializers. */
diff --git a/gcc-4.9/gcc/dbgcnt.def b/gcc-4.9/gcc/dbgcnt.def
index 6f8f675e5..cd05e27ae 100644
--- a/gcc-4.9/gcc/dbgcnt.def
+++ b/gcc-4.9/gcc/dbgcnt.def
@@ -141,6 +141,7 @@ echo ubound: $ub
*/
/* Debug counter definitions. */
+DEBUG_COUNTER (alias)
DEBUG_COUNTER (auto_inc_dec)
DEBUG_COUNTER (ccp)
DEBUG_COUNTER (cfg_cleanup)
@@ -165,6 +166,7 @@ DEBUG_COUNTER (if_conversion)
DEBUG_COUNTER (if_conversion_tree)
DEBUG_COUNTER (if_after_combine)
DEBUG_COUNTER (if_after_reload)
+DEBUG_COUNTER (inl)
DEBUG_COUNTER (local_alloc_for_sched)
DEBUG_COUNTER (postreload_cse)
DEBUG_COUNTER (pre)
diff --git a/gcc-4.9/gcc/dce.c b/gcc-4.9/gcc/dce.c
index 07592f46a..1d8b66715 100644
--- a/gcc-4.9/gcc/dce.c
+++ b/gcc-4.9/gcc/dce.c
@@ -755,6 +755,9 @@ rest_of_handle_ud_dce (void)
{
rtx insn;
+ if (df_check_ud_du_memory_usage ())
+ return 0;
+
init_dce (false);
prescan_insns_for_dce (false);
diff --git a/gcc-4.9/gcc/debug.h b/gcc-4.9/gcc/debug.h
index fc575891a..9aff421e3 100644
--- a/gcc-4.9/gcc/debug.h
+++ b/gcc-4.9/gcc/debug.h
@@ -170,6 +170,7 @@ extern const struct gcc_debug_hooks sdb_debug_hooks;
extern const struct gcc_debug_hooks xcoff_debug_hooks;
extern const struct gcc_debug_hooks dwarf2_debug_hooks;
extern const struct gcc_debug_hooks vmsdbg_debug_hooks;
+extern const struct gcc_debug_hooks auto_profile_debug_hooks;
/* Dwarf2 frame information. */
diff --git a/gcc-4.9/gcc/df-problems.c b/gcc-4.9/gcc/df-problems.c
index 77f8c9922..a0b2175d2 100644
--- a/gcc-4.9/gcc/df-problems.c
+++ b/gcc-4.9/gcc/df-problems.c
@@ -42,6 +42,7 @@ along with GCC; see the file COPYING3. If not see
#include "df.h"
#include "except.h"
#include "dce.h"
+#include "basic-block.h"
#include "valtrack.h"
#include "dumpfile.h"
@@ -59,6 +60,28 @@ static bitmap_head seen_in_insn;
Utility functions.
----------------------------------------------------------------------------*/
+/* A helper function checking if UD/DU is large and dense. It returns true
+ if UD/DU can potentially consume huge amount of memory. Returns false
+ otherwise
+*/
+
+bool
+df_check_ud_du_memory_usage (void)
+{
+ /* TODO: make this a target hook. The heuristic applies only to x86 in
+ m32 mode with -Os. In that mode 'push' instruction is used in argument
+ passing, with sp adjustment instruction after each function call. The
+ side effect is that the DU/UD becomes really dense. */
+#define DF_LARGE_FUNC 20000
+
+ if (optimize_size
+ && n_basic_blocks_for_fn (cfun) > DF_LARGE_FUNC)
+ return true;
+
+ return false;
+}
+
+
/* Generic versions to get the void* version of the block info. Only
used inside the problem instance vectors. */
@@ -4507,6 +4530,3 @@ df_md_add_problem (void)
{
df_add_problem (&problem_MD);
}
-
-
-
diff --git a/gcc-4.9/gcc/df.h b/gcc-4.9/gcc/df.h
index 878f50769..2de800c09 100644
--- a/gcc-4.9/gcc/df.h
+++ b/gcc-4.9/gcc/df.h
@@ -1150,4 +1150,6 @@ extern void union_defs (df_ref, struct web_entry *,
unsigned int *used, struct web_entry *,
bool (*fun) (struct web_entry *, struct web_entry *));
+extern bool df_check_ud_du_memory_usage (void);
+
#endif /* GCC_DF_H */
diff --git a/gcc-4.9/gcc/diagnostic.c b/gcc-4.9/gcc/diagnostic.c
index 0cc75934d..3b57f23dd 100644
--- a/gcc-4.9/gcc/diagnostic.c
+++ b/gcc-4.9/gcc/diagnostic.c
@@ -127,6 +127,7 @@ diagnostic_initialize (diagnostic_context *context, int n_opts)
memset (context->diagnostic_count, 0, sizeof context->diagnostic_count);
context->some_warnings_are_errors = false;
context->warning_as_error_requested = false;
+ context->force_warnings_requested = false;
context->n_opts = n_opts;
context->classify_diagnostic = XNEWVEC (diagnostic_t, n_opts);
for (i = 0; i < n_opts; i++)
@@ -187,6 +188,7 @@ diagnostic_set_info_translated (diagnostic_info *diagnostic, const char *msg,
va_list *args, location_t location,
diagnostic_t kind)
{
+ location = map_discriminator_location (location);
diagnostic->message.err_no = errno;
diagnostic->message.args_ptr = args;
diagnostic->message.format_spec = msg;
@@ -513,6 +515,9 @@ diagnostic_report_current_module (diagnostic_context *context, location_t where)
if (where <= BUILTINS_LOCATION)
return;
+ if (has_discriminator (where))
+ where = map_discriminator_location (where);
+
linemap_resolve_location (line_table, where,
LRK_MACRO_DEFINITION_LOCATION,
&map);
@@ -685,7 +690,8 @@ diagnostic_report_diagnostic (diagnostic_context *context,
individual warnings can be overridden back to warnings with
-Wno-error=*. */
if (context->warning_as_error_requested
- && diagnostic->kind == DK_WARNING)
+ && diagnostic->kind == DK_WARNING
+ && !context->force_warnings_requested)
{
diagnostic->kind = DK_ERROR;
}
@@ -732,7 +738,9 @@ diagnostic_report_diagnostic (diagnostic_context *context,
/* This tests if the user provided the appropriate -Werror=foo
option. */
if (diag_class == DK_UNSPECIFIED
- && context->classify_diagnostic[diagnostic->option_index] != DK_UNSPECIFIED)
+ && context->classify_diagnostic[diagnostic->option_index] != DK_UNSPECIFIED
+ && (context->classify_diagnostic[diagnostic->option_index] != DK_ERROR
+ || !context->force_warnings_requested))
{
diagnostic->kind = context->classify_diagnostic[diagnostic->option_index];
}
diff --git a/gcc-4.9/gcc/diagnostic.h b/gcc-4.9/gcc/diagnostic.h
index 6122938ea..7c67e14ef 100644
--- a/gcc-4.9/gcc/diagnostic.h
+++ b/gcc-4.9/gcc/diagnostic.h
@@ -72,6 +72,9 @@ struct diagnostic_context
/* True if it has been requested that warnings be treated as errors. */
bool warning_as_error_requested;
+ /* True if it has been requested that warnings never be promoted to errors. */
+ bool force_warnings_requested;
+
/* The number of option indexes that can be passed to warning() et
al. */
int n_opts;
diff --git a/gcc-4.9/gcc/doc/aot-compile.1 b/gcc-4.9/gcc/doc/aot-compile.1
deleted file mode 100644
index 1afeb5837..000000000
--- a/gcc-4.9/gcc/doc/aot-compile.1
+++ /dev/null
@@ -1,209 +0,0 @@
-.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28)
-.\"
-.\" Standard preamble:
-.\" ========================================================================
-.de Sp \" Vertical space (when we can't use .PP)
-.if t .sp .5v
-.if n .sp
-..
-.de Vb \" Begin verbatim text
-.ft CW
-.nf
-.ne \\$1
-..
-.de Ve \" End verbatim text
-.ft R
-.fi
-..
-.\" Set up some character translations and predefined strings. \*(-- will
-.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
-.\" double quote, and \*(R" will give a right double quote. \*(C+ will
-.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
-.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
-.\" nothing in troff, for use with C<>.
-.tr \(*W-
-.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
-.ie n \{\
-. ds -- \(*W-
-. ds PI pi
-. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
-. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
-. ds L" ""
-. ds R" ""
-. ds C` ""
-. ds C' ""
-'br\}
-.el\{\
-. ds -- \|\(em\|
-. ds PI \(*p
-. ds L" ``
-. ds R" ''
-. ds C`
-. ds C'
-'br\}
-.\"
-.\" Escape single quotes in literal strings from groff's Unicode transform.
-.ie \n(.g .ds Aq \(aq
-.el .ds Aq '
-.\"
-.\" If the F register is turned on, we'll generate index entries on stderr for
-.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
-.\" entries marked with X<> in POD. Of course, you'll have to process the
-.\" output yourself in some meaningful fashion.
-.\"
-.\" Avoid warning from groff about undefined register 'F'.
-.de IX
-..
-.nr rF 0
-.if \n(.g .if rF .nr rF 1
-.if (\n(rF:(\n(.g==0)) \{
-. if \nF \{
-. de IX
-. tm Index:\\$1\t\\n%\t"\\$2"
-..
-. if !\nF==2 \{
-. nr % 0
-. nr F 2
-. \}
-. \}
-.\}
-.rr rF
-.\"
-.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
-.\" Fear. Run. Save yourself. No user-serviceable parts.
-. \" fudge factors for nroff and troff
-.if n \{\
-. ds #H 0
-. ds #V .8m
-. ds #F .3m
-. ds #[ \f1
-. ds #] \fP
-.\}
-.if t \{\
-. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
-. ds #V .6m
-. ds #F 0
-. ds #[ \&
-. ds #] \&
-.\}
-. \" simple accents for nroff and troff
-.if n \{\
-. ds ' \&
-. ds ` \&
-. ds ^ \&
-. ds , \&
-. ds ~ ~
-. ds /
-.\}
-.if t \{\
-. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
-. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
-. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
-. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
-. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
-. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
-.\}
-. \" troff and (daisy-wheel) nroff accents
-.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
-.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
-.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
-.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
-.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
-.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
-.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
-.ds ae a\h'-(\w'a'u*4/10)'e
-.ds Ae A\h'-(\w'A'u*4/10)'E
-. \" corrections for vroff
-.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
-.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
-. \" for low resolution devices (crt and lpr)
-.if \n(.H>23 .if \n(.V>19 \
-\{\
-. ds : e
-. ds 8 ss
-. ds o a
-. ds d- d\h'-1'\(ga
-. ds D- D\h'-1'\(hy
-. ds th \o'bp'
-. ds Th \o'LP'
-. ds ae ae
-. ds Ae AE
-.\}
-.rm #[ #] #H #V #F C
-.\" ========================================================================
-.\"
-.IX Title "AOT-COMPILE 1"
-.TH AOT-COMPILE 1 "2014-04-22" "gcc-4.9.0" "GNU"
-.\" For nroff, turn off justification. Always turn off hyphenation; it makes
-.\" way too many mistakes in technical documents.
-.if n .ad l
-.nh
-.SH "NAME"
-aot\-compile \- Compile bytecode to native and generate databases
-.SH "SYNOPSIS"
-.IX Header "SYNOPSIS"
-aot-compile [\fB\s-1OPTION\s0\fR] ... \fI\s-1SRCDIR\s0\fR \fI\s-1DSTDIR\s0\fR
-.PP
-aot-compile [\fB\-M, \-\-make\fR=\fI\s-1PATH\s0\fR] [\fB\-C, \-\-gcj\fR=\fI\s-1PATH\s0\fR]
- [\fB\-D, \-\-dbtool\fR=\fI\s-1PATH\s0\fR] [\fB\-m, \-\-makeflags\fR=\fI\s-1FLAGS\s0\fR]
- [\fB\-c, \-\-gcjflags\fR=\fI\s-1FLAGS\s0\fR] [\fB\-l, \-\-ldflags\fR=\fI\s-1FLAGS\s0\fR]
- [\fB\-e, \-\-exclude\fR=\fI\s-1PATH\s0\fR]
-.SH "DESCRIPTION"
-.IX Header "DESCRIPTION"
-\&\f(CW\*(C`aot\-compile\*(C'\fR is a script that searches a directory for Java bytecode
-(as class files, or in jars) and uses \f(CW\*(C`gcj\*(C'\fR to compile it to native
-code and generate the databases from it.
-.SH "OPTIONS"
-.IX Header "OPTIONS"
-.IP "\fB\-M, \-\-make=\fR\fI\s-1PATH\s0\fR" 4
-.IX Item "-M, --make=PATH"
-Specify the path to the \f(CW\*(C`make\*(C'\fR executable to use.
-.IP "\fB\-C, \-\-gcj=\fR\fI\s-1PATH\s0\fR" 4
-.IX Item "-C, --gcj=PATH"
-Specify the path to the \f(CW\*(C`gcj\*(C'\fR executable to use.
-.IP "\fB\-D, \-\-dbtool=\fR\fI\s-1PATH\s0\fR" 4
-.IX Item "-D, --dbtool=PATH"
-Specify the path to the \f(CW\*(C`gcj\-dbtool\*(C'\fR executable to use.
-.IP "\fB\-m, \-\-makeflags=\fR\fI\s-1FLAGS\s0\fR" 4
-.IX Item "-m, --makeflags=FLAGS"
-Specify flags to pass to \f(CW\*(C`make\*(C'\fR during the build.
-.IP "\fB\-c, \-\-gcjflags=\fR\fI\s-1FLAGS\s0\fR" 4
-.IX Item "-c, --gcjflags=FLAGS"
-Specify flags to pass to \f(CW\*(C`gcj\*(C'\fR during compilation, in addition to
-\&'\-fPIC \-findirect\-dispatch \-fjni'.
-.IP "\fB\-l, \-\-ldflags=\fR\fI\s-1FLAGS\s0\fR" 4
-.IX Item "-l, --ldflags=FLAGS"
-Specify flags to pass to \f(CW\*(C`gcj\*(C'\fR during linking, in addition to
-\&'\-Wl,\-Bsymbolic'.
-.IP "\fB\-e, \-\-exclude=\fR\fI\s-1PATH\s0\fR" 4
-.IX Item "-e, --exclude=PATH"
-Do not compile \fI\s-1PATH\s0\fR.
-.SH "SEE ALSO"
-.IX Header "SEE ALSO"
-\&\fIgcc\fR\|(1), \fIgcj\fR\|(1), \fIgcjh\fR\|(1), \fIjcf\-dump\fR\|(1), \fIgfdl\fR\|(7),
-and the Info entries for \fIgcj\fR and \fIgcc\fR.
-.SH "COPYRIGHT"
-.IX Header "COPYRIGHT"
-Copyright (c) 2001\-2014 Free Software Foundation, Inc.
-.PP
-Permission is granted to copy, distribute and/or modify this document
-under the terms of the \s-1GNU\s0 Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with no
-Invariant Sections, the Front-Cover Texts being (a) (see below), and
-with the Back-Cover Texts being (b) (see below).
-A copy of the license is included in the
-man page \fIgfdl\fR\|(7).
-.PP
-(a) The \s-1FSF\s0's Front-Cover Text is:
-.PP
-.Vb 1
-\& A GNU Manual
-.Ve
-.PP
-(b) The \s-1FSF\s0's Back-Cover Text is:
-.PP
-.Vb 3
-\& You have freedom to copy and modify this GNU Manual, like GNU
-\& software. Copies published by the Free Software Foundation raise
-\& funds for GNU development.
-.Ve
diff --git a/gcc-4.9/gcc/doc/arm-acle-intrinsics.texi b/gcc-4.9/gcc/doc/arm-acle-intrinsics.texi
index e68f4cd20..8c5523ed5 100644
--- a/gcc-4.9/gcc/doc/arm-acle-intrinsics.texi
+++ b/gcc-4.9/gcc/doc/arm-acle-intrinsics.texi
@@ -4,6 +4,10 @@
@subsubsection CRC32 intrinsics
+These intrinsics are available when the CRC32 architecture extension is
+specified, e.g. when the @option{-march=armv8-a+crc} switch is used, or when
+the target processor specified with @option{-mcpu} supports it.
+
@itemize @bullet
@item uint32_t __crc32b (uint32_t, uint8_t)
@*@emph{Form of expected instruction(s):} @code{crc32b @var{r0}, @var{r0}, @var{r0}}
@@ -25,8 +29,7 @@
@itemize @bullet
@item uint32_t __crc32d (uint32_t, uint64_t)
@*@emph{Form of expected instruction(s):} Two @code{crc32w @var{r0}, @var{r0}, @var{r0}}
-instructions for AArch32. One @code{crc32w @var{w0}, @var{w0}, @var{x0}} instruction for
-AArch64.
+instructions.
@end itemize
@itemize @bullet
@@ -50,6 +53,5 @@ AArch64.
@itemize @bullet
@item uint32_t __crc32cd (uint32_t, uint64_t)
@*@emph{Form of expected instruction(s):} Two @code{crc32cw @var{r0}, @var{r0}, @var{r0}}
-instructions for AArch32. One @code{crc32cw @var{w0}, @var{w0}, @var{x0}} instruction for
-AArch64.
+instructions.
@end itemize
diff --git a/gcc-4.9/gcc/doc/arm-neon-intrinsics.texi b/gcc-4.9/gcc/doc/arm-neon-intrinsics.texi
index 67f84e096..56987e4a6 100644
--- a/gcc-4.9/gcc/doc/arm-neon-intrinsics.texi
+++ b/gcc-4.9/gcc/doc/arm-neon-intrinsics.texi
@@ -2,8 +2,6 @@
@c This is part of the GCC manual.
@c For copying conditions, see the file gcc.texi.
-@c This file is generated automatically using gcc/config/arm/neon-docgen.ml
-@c Please do not edit manually.
@subsubsection Addition
@itemize @bullet
diff --git a/gcc-4.9/gcc/doc/cpp.1 b/gcc-4.9/gcc/doc/cpp.1
deleted file mode 100644
index 0c34e8453..000000000
--- a/gcc-4.9/gcc/doc/cpp.1
+++ /dev/null
@@ -1,1046 +0,0 @@
-.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28)
-.\"
-.\" Standard preamble:
-.\" ========================================================================
-.de Sp \" Vertical space (when we can't use .PP)
-.if t .sp .5v
-.if n .sp
-..
-.de Vb \" Begin verbatim text
-.ft CW
-.nf
-.ne \\$1
-..
-.de Ve \" End verbatim text
-.ft R
-.fi
-..
-.\" Set up some character translations and predefined strings. \*(-- will
-.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
-.\" double quote, and \*(R" will give a right double quote. \*(C+ will
-.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
-.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
-.\" nothing in troff, for use with C<>.
-.tr \(*W-
-.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
-.ie n \{\
-. ds -- \(*W-
-. ds PI pi
-. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
-. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
-. ds L" ""
-. ds R" ""
-. ds C` ""
-. ds C' ""
-'br\}
-.el\{\
-. ds -- \|\(em\|
-. ds PI \(*p
-. ds L" ``
-. ds R" ''
-. ds C`
-. ds C'
-'br\}
-.\"
-.\" Escape single quotes in literal strings from groff's Unicode transform.
-.ie \n(.g .ds Aq \(aq
-.el .ds Aq '
-.\"
-.\" If the F register is turned on, we'll generate index entries on stderr for
-.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
-.\" entries marked with X<> in POD. Of course, you'll have to process the
-.\" output yourself in some meaningful fashion.
-.\"
-.\" Avoid warning from groff about undefined register 'F'.
-.de IX
-..
-.nr rF 0
-.if \n(.g .if rF .nr rF 1
-.if (\n(rF:(\n(.g==0)) \{
-. if \nF \{
-. de IX
-. tm Index:\\$1\t\\n%\t"\\$2"
-..
-. if !\nF==2 \{
-. nr % 0
-. nr F 2
-. \}
-. \}
-.\}
-.rr rF
-.\"
-.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
-.\" Fear. Run. Save yourself. No user-serviceable parts.
-. \" fudge factors for nroff and troff
-.if n \{\
-. ds #H 0
-. ds #V .8m
-. ds #F .3m
-. ds #[ \f1
-. ds #] \fP
-.\}
-.if t \{\
-. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
-. ds #V .6m
-. ds #F 0
-. ds #[ \&
-. ds #] \&
-.\}
-. \" simple accents for nroff and troff
-.if n \{\
-. ds ' \&
-. ds ` \&
-. ds ^ \&
-. ds , \&
-. ds ~ ~
-. ds /
-.\}
-.if t \{\
-. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
-. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
-. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
-. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
-. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
-. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
-.\}
-. \" troff and (daisy-wheel) nroff accents
-.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
-.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
-.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
-.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
-.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
-.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
-.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
-.ds ae a\h'-(\w'a'u*4/10)'e
-.ds Ae A\h'-(\w'A'u*4/10)'E
-. \" corrections for vroff
-.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
-.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
-. \" for low resolution devices (crt and lpr)
-.if \n(.H>23 .if \n(.V>19 \
-\{\
-. ds : e
-. ds 8 ss
-. ds o a
-. ds d- d\h'-1'\(ga
-. ds D- D\h'-1'\(hy
-. ds th \o'bp'
-. ds Th \o'LP'
-. ds ae ae
-. ds Ae AE
-.\}
-.rm #[ #] #H #V #F C
-.\" ========================================================================
-.\"
-.IX Title "CPP 1"
-.TH CPP 1 "2014-04-22" "gcc-4.9.0" "GNU"
-.\" For nroff, turn off justification. Always turn off hyphenation; it makes
-.\" way too many mistakes in technical documents.
-.if n .ad l
-.nh
-.SH "NAME"
-cpp \- The C Preprocessor
-.SH "SYNOPSIS"
-.IX Header "SYNOPSIS"
-cpp [\fB\-D\fR\fImacro\fR[=\fIdefn\fR]...] [\fB\-U\fR\fImacro\fR]
- [\fB\-I\fR\fIdir\fR...] [\fB\-iquote\fR\fIdir\fR...]
- [\fB\-W\fR\fIwarn\fR...]
- [\fB\-M\fR|\fB\-MM\fR] [\fB\-MG\fR] [\fB\-MF\fR \fIfilename\fR]
- [\fB\-MP\fR] [\fB\-MQ\fR \fItarget\fR...]
- [\fB\-MT\fR \fItarget\fR...]
- [\fB\-P\fR] [\fB\-fno\-working\-directory\fR]
- [\fB\-x\fR \fIlanguage\fR] [\fB\-std=\fR\fIstandard\fR]
- \fIinfile\fR \fIoutfile\fR
-.PP
-Only the most useful options are listed here; see below for the remainder.
-.SH "DESCRIPTION"
-.IX Header "DESCRIPTION"
-The C preprocessor, often known as \fIcpp\fR, is a \fImacro processor\fR
-that is used automatically by the C compiler to transform your program
-before compilation. It is called a macro processor because it allows
-you to define \fImacros\fR, which are brief abbreviations for longer
-constructs.
-.PP
-The C preprocessor is intended to be used only with C, \*(C+, and
-Objective-C source code. In the past, it has been abused as a general
-text processor. It will choke on input which does not obey C's lexical
-rules. For example, apostrophes will be interpreted as the beginning of
-character constants, and cause errors. Also, you cannot rely on it
-preserving characteristics of the input which are not significant to
-C\-family languages. If a Makefile is preprocessed, all the hard tabs
-will be removed, and the Makefile will not work.
-.PP
-Having said that, you can often get away with using cpp on things which
-are not C. Other Algol-ish programming languages are often safe
-(Pascal, Ada, etc.) So is assembly, with caution. \fB\-traditional\-cpp\fR
-mode preserves more white space, and is otherwise more permissive. Many
-of the problems can be avoided by writing C or \*(C+ style comments
-instead of native language comments, and keeping macros simple.
-.PP
-Wherever possible, you should use a preprocessor geared to the language
-you are writing in. Modern versions of the \s-1GNU\s0 assembler have macro
-facilities. Most high level programming languages have their own
-conditional compilation and inclusion mechanism. If all else fails,
-try a true general text processor, such as \s-1GNU M4.\s0
-.PP
-C preprocessors vary in some details. This manual discusses the \s-1GNU C\s0
-preprocessor, which provides a small superset of the features of \s-1ISO\s0
-Standard C. In its default mode, the \s-1GNU C\s0 preprocessor does not do a
-few things required by the standard. These are features which are
-rarely, if ever, used, and may cause surprising changes to the meaning
-of a program which does not expect them. To get strict \s-1ISO\s0 Standard C,
-you should use the \fB\-std=c90\fR, \fB\-std=c99\fR or
-\&\fB\-std=c11\fR options, depending
-on which version of the standard you want. To get all the mandatory
-diagnostics, you must also use \fB\-pedantic\fR.
-.PP
-This manual describes the behavior of the \s-1ISO\s0 preprocessor. To
-minimize gratuitous differences, where the \s-1ISO\s0 preprocessor's
-behavior does not conflict with traditional semantics, the
-traditional preprocessor should behave the same way. The various
-differences that do exist are detailed in the section \fBTraditional
-Mode\fR.
-.PP
-For clarity, unless noted otherwise, references to \fB\s-1CPP\s0\fR in this
-manual refer to \s-1GNU CPP.\s0
-.SH "OPTIONS"
-.IX Header "OPTIONS"
-The C preprocessor expects two file names as arguments, \fIinfile\fR and
-\&\fIoutfile\fR. The preprocessor reads \fIinfile\fR together with any
-other files it specifies with \fB#include\fR. All the output generated
-by the combined input files is written in \fIoutfile\fR.
-.PP
-Either \fIinfile\fR or \fIoutfile\fR may be \fB\-\fR, which as
-\&\fIinfile\fR means to read from standard input and as \fIoutfile\fR
-means to write to standard output. Also, if either file is omitted, it
-means the same as if \fB\-\fR had been specified for that file.
-.PP
-Unless otherwise noted, or the option ends in \fB=\fR, all options
-which take an argument may have that argument appear either immediately
-after the option, or with a space between option and argument:
-\&\fB\-Ifoo\fR and \fB\-I foo\fR have the same effect.
-.PP
-Many options have multi-letter names; therefore multiple single-letter
-options may \fInot\fR be grouped: \fB\-dM\fR is very different from
-\&\fB\-d\ \-M\fR.
-.IP "\fB\-D\fR \fIname\fR" 4
-.IX Item "-D name"
-Predefine \fIname\fR as a macro, with definition \f(CW1\fR.
-.IP "\fB\-D\fR \fIname\fR\fB=\fR\fIdefinition\fR" 4
-.IX Item "-D name=definition"
-The contents of \fIdefinition\fR are tokenized and processed as if
-they appeared during translation phase three in a \fB#define\fR
-directive. In particular, the definition will be truncated by
-embedded newline characters.
-.Sp
-If you are invoking the preprocessor from a shell or shell-like
-program you may need to use the shell's quoting syntax to protect
-characters such as spaces that have a meaning in the shell syntax.
-.Sp
-If you wish to define a function-like macro on the command line, write
-its argument list with surrounding parentheses before the equals sign
-(if any). Parentheses are meaningful to most shells, so you will need
-to quote the option. With \fBsh\fR and \fBcsh\fR,
-\&\fB\-D'\fR\fIname\fR\fB(\fR\fIargs...\fR\fB)=\fR\fIdefinition\fR\fB'\fR works.
-.Sp
-\&\fB\-D\fR and \fB\-U\fR options are processed in the order they
-are given on the command line. All \fB\-imacros\fR \fIfile\fR and
-\&\fB\-include\fR \fIfile\fR options are processed after all
-\&\fB\-D\fR and \fB\-U\fR options.
-.IP "\fB\-U\fR \fIname\fR" 4
-.IX Item "-U name"
-Cancel any previous definition of \fIname\fR, either built in or
-provided with a \fB\-D\fR option.
-.IP "\fB\-undef\fR" 4
-.IX Item "-undef"
-Do not predefine any system-specific or GCC-specific macros. The
-standard predefined macros remain defined.
-.IP "\fB\-I\fR \fIdir\fR" 4
-.IX Item "-I dir"
-Add the directory \fIdir\fR to the list of directories to be searched
-for header files.
-.Sp
-Directories named by \fB\-I\fR are searched before the standard
-system include directories. If the directory \fIdir\fR is a standard
-system include directory, the option is ignored to ensure that the
-default search order for system directories and the special treatment
-of system headers are not defeated
-\&.
-If \fIdir\fR begins with \f(CW\*(C`=\*(C'\fR, then the \f(CW\*(C`=\*(C'\fR will be replaced
-by the sysroot prefix; see \fB\-\-sysroot\fR and \fB\-isysroot\fR.
-.IP "\fB\-o\fR \fIfile\fR" 4
-.IX Item "-o file"
-Write output to \fIfile\fR. This is the same as specifying \fIfile\fR
-as the second non-option argument to \fBcpp\fR. \fBgcc\fR has a
-different interpretation of a second non-option argument, so you must
-use \fB\-o\fR to specify the output file.
-.IP "\fB\-Wall\fR" 4
-.IX Item "-Wall"
-Turns on all optional warnings which are desirable for normal code.
-At present this is \fB\-Wcomment\fR, \fB\-Wtrigraphs\fR,
-\&\fB\-Wmultichar\fR and a warning about integer promotion causing a
-change of sign in \f(CW\*(C`#if\*(C'\fR expressions. Note that many of the
-preprocessor's warnings are on by default and have no options to
-control them.
-.IP "\fB\-Wcomment\fR" 4
-.IX Item "-Wcomment"
-.PD 0
-.IP "\fB\-Wcomments\fR" 4
-.IX Item "-Wcomments"
-.PD
-Warn whenever a comment-start sequence \fB/*\fR appears in a \fB/*\fR
-comment, or whenever a backslash-newline appears in a \fB//\fR comment.
-(Both forms have the same effect.)
-.IP "\fB\-Wtrigraphs\fR" 4
-.IX Item "-Wtrigraphs"
-Most trigraphs in comments cannot affect the meaning of the program.
-However, a trigraph that would form an escaped newline (\fB??/\fR at
-the end of a line) can, by changing where the comment begins or ends.
-Therefore, only trigraphs that would form escaped newlines produce
-warnings inside a comment.
-.Sp
-This option is implied by \fB\-Wall\fR. If \fB\-Wall\fR is not
-given, this option is still enabled unless trigraphs are enabled. To
-get trigraph conversion without warnings, but get the other
-\&\fB\-Wall\fR warnings, use \fB\-trigraphs \-Wall \-Wno\-trigraphs\fR.
-.IP "\fB\-Wtraditional\fR" 4
-.IX Item "-Wtraditional"
-Warn about certain constructs that behave differently in traditional and
-\&\s-1ISO C. \s0 Also warn about \s-1ISO C\s0 constructs that have no traditional C
-equivalent, and problematic constructs which should be avoided.
-.IP "\fB\-Wundef\fR" 4
-.IX Item "-Wundef"
-Warn whenever an identifier which is not a macro is encountered in an
-\&\fB#if\fR directive, outside of \fBdefined\fR. Such identifiers are
-replaced with zero.
-.IP "\fB\-Wunused\-macros\fR" 4
-.IX Item "-Wunused-macros"
-Warn about macros defined in the main file that are unused. A macro
-is \fIused\fR if it is expanded or tested for existence at least once.
-The preprocessor will also warn if the macro has not been used at the
-time it is redefined or undefined.
-.Sp
-Built-in macros, macros defined on the command line, and macros
-defined in include files are not warned about.
-.Sp
-\&\fINote:\fR If a macro is actually used, but only used in skipped
-conditional blocks, then \s-1CPP\s0 will report it as unused. To avoid the
-warning in such a case, you might improve the scope of the macro's
-definition by, for example, moving it into the first skipped block.
-Alternatively, you could provide a dummy use with something like:
-.Sp
-.Vb 2
-\& #if defined the_macro_causing_the_warning
-\& #endif
-.Ve
-.IP "\fB\-Wendif\-labels\fR" 4
-.IX Item "-Wendif-labels"
-Warn whenever an \fB#else\fR or an \fB#endif\fR are followed by text.
-This usually happens in code of the form
-.Sp
-.Vb 5
-\& #if FOO
-\& ...
-\& #else FOO
-\& ...
-\& #endif FOO
-.Ve
-.Sp
-The second and third \f(CW\*(C`FOO\*(C'\fR should be in comments, but often are not
-in older programs. This warning is on by default.
-.IP "\fB\-Werror\fR" 4
-.IX Item "-Werror"
-Make all warnings into hard errors. Source code which triggers warnings
-will be rejected.
-.IP "\fB\-Wsystem\-headers\fR" 4
-.IX Item "-Wsystem-headers"
-Issue warnings for code in system headers. These are normally unhelpful
-in finding bugs in your own code, therefore suppressed. If you are
-responsible for the system library, you may want to see them.
-.IP "\fB\-w\fR" 4
-.IX Item "-w"
-Suppress all warnings, including those which \s-1GNU CPP\s0 issues by default.
-.IP "\fB\-pedantic\fR" 4
-.IX Item "-pedantic"
-Issue all the mandatory diagnostics listed in the C standard. Some of
-them are left out by default, since they trigger frequently on harmless
-code.
-.IP "\fB\-pedantic\-errors\fR" 4
-.IX Item "-pedantic-errors"
-Issue all the mandatory diagnostics, and make all mandatory diagnostics
-into errors. This includes mandatory diagnostics that \s-1GCC\s0 issues
-without \fB\-pedantic\fR but treats as warnings.
-.IP "\fB\-M\fR" 4
-.IX Item "-M"
-Instead of outputting the result of preprocessing, output a rule
-suitable for \fBmake\fR describing the dependencies of the main
-source file. The preprocessor outputs one \fBmake\fR rule containing
-the object file name for that source file, a colon, and the names of all
-the included files, including those coming from \fB\-include\fR or
-\&\fB\-imacros\fR command line options.
-.Sp
-Unless specified explicitly (with \fB\-MT\fR or \fB\-MQ\fR), the
-object file name consists of the name of the source file with any
-suffix replaced with object file suffix and with any leading directory
-parts removed. If there are many included files then the rule is
-split into several lines using \fB\e\fR\-newline. The rule has no
-commands.
-.Sp
-This option does not suppress the preprocessor's debug output, such as
-\&\fB\-dM\fR. To avoid mixing such debug output with the dependency
-rules you should explicitly specify the dependency output file with
-\&\fB\-MF\fR, or use an environment variable like
-\&\fB\s-1DEPENDENCIES_OUTPUT\s0\fR. Debug output
-will still be sent to the regular output stream as normal.
-.Sp
-Passing \fB\-M\fR to the driver implies \fB\-E\fR, and suppresses
-warnings with an implicit \fB\-w\fR.
-.IP "\fB\-MM\fR" 4
-.IX Item "-MM"
-Like \fB\-M\fR but do not mention header files that are found in
-system header directories, nor header files that are included,
-directly or indirectly, from such a header.
-.Sp
-This implies that the choice of angle brackets or double quotes in an
-\&\fB#include\fR directive does not in itself determine whether that
-header will appear in \fB\-MM\fR dependency output. This is a
-slight change in semantics from \s-1GCC\s0 versions 3.0 and earlier.
-.IP "\fB\-MF\fR \fIfile\fR" 4
-.IX Item "-MF file"
-When used with \fB\-M\fR or \fB\-MM\fR, specifies a
-file to write the dependencies to. If no \fB\-MF\fR switch is given
-the preprocessor sends the rules to the same place it would have sent
-preprocessed output.
-.Sp
-When used with the driver options \fB\-MD\fR or \fB\-MMD\fR,
-\&\fB\-MF\fR overrides the default dependency output file.
-.IP "\fB\-MG\fR" 4
-.IX Item "-MG"
-In conjunction with an option such as \fB\-M\fR requesting
-dependency generation, \fB\-MG\fR assumes missing header files are
-generated files and adds them to the dependency list without raising
-an error. The dependency filename is taken directly from the
-\&\f(CW\*(C`#include\*(C'\fR directive without prepending any path. \fB\-MG\fR
-also suppresses preprocessed output, as a missing header file renders
-this useless.
-.Sp
-This feature is used in automatic updating of makefiles.
-.IP "\fB\-MP\fR" 4
-.IX Item "-MP"
-This option instructs \s-1CPP\s0 to add a phony target for each dependency
-other than the main file, causing each to depend on nothing. These
-dummy rules work around errors \fBmake\fR gives if you remove header
-files without updating the \fIMakefile\fR to match.
-.Sp
-This is typical output:
-.Sp
-.Vb 1
-\& test.o: test.c test.h
-\&
-\& test.h:
-.Ve
-.IP "\fB\-MT\fR \fItarget\fR" 4
-.IX Item "-MT target"
-Change the target of the rule emitted by dependency generation. By
-default \s-1CPP\s0 takes the name of the main input file, deletes any
-directory components and any file suffix such as \fB.c\fR, and
-appends the platform's usual object suffix. The result is the target.
-.Sp
-An \fB\-MT\fR option will set the target to be exactly the string you
-specify. If you want multiple targets, you can specify them as a single
-argument to \fB\-MT\fR, or use multiple \fB\-MT\fR options.
-.Sp
-For example, \fB\-MT\ '$(objpfx)foo.o'\fR might give
-.Sp
-.Vb 1
-\& $(objpfx)foo.o: foo.c
-.Ve
-.IP "\fB\-MQ\fR \fItarget\fR" 4
-.IX Item "-MQ target"
-Same as \fB\-MT\fR, but it quotes any characters which are special to
-Make. \fB\-MQ\ '$(objpfx)foo.o'\fR gives
-.Sp
-.Vb 1
-\& $$(objpfx)foo.o: foo.c
-.Ve
-.Sp
-The default target is automatically quoted, as if it were given with
-\&\fB\-MQ\fR.
-.IP "\fB\-MD\fR" 4
-.IX Item "-MD"
-\&\fB\-MD\fR is equivalent to \fB\-M \-MF\fR \fIfile\fR, except that
-\&\fB\-E\fR is not implied. The driver determines \fIfile\fR based on
-whether an \fB\-o\fR option is given. If it is, the driver uses its
-argument but with a suffix of \fI.d\fR, otherwise it takes the name
-of the input file, removes any directory components and suffix, and
-applies a \fI.d\fR suffix.
-.Sp
-If \fB\-MD\fR is used in conjunction with \fB\-E\fR, any
-\&\fB\-o\fR switch is understood to specify the dependency output file, but if used without \fB\-E\fR, each \fB\-o\fR
-is understood to specify a target object file.
-.Sp
-Since \fB\-E\fR is not implied, \fB\-MD\fR can be used to generate
-a dependency output file as a side-effect of the compilation process.
-.IP "\fB\-MMD\fR" 4
-.IX Item "-MMD"
-Like \fB\-MD\fR except mention only user header files, not system
-header files.
-.IP "\fB\-x c\fR" 4
-.IX Item "-x c"
-.PD 0
-.IP "\fB\-x c++\fR" 4
-.IX Item "-x c++"
-.IP "\fB\-x objective-c\fR" 4
-.IX Item "-x objective-c"
-.IP "\fB\-x assembler-with-cpp\fR" 4
-.IX Item "-x assembler-with-cpp"
-.PD
-Specify the source language: C, \*(C+, Objective-C, or assembly. This has
-nothing to do with standards conformance or extensions; it merely
-selects which base syntax to expect. If you give none of these options,
-cpp will deduce the language from the extension of the source file:
-\&\fB.c\fR, \fB.cc\fR, \fB.m\fR, or \fB.S\fR. Some other common
-extensions for \*(C+ and assembly are also recognized. If cpp does not
-recognize the extension, it will treat the file as C; this is the most
-generic mode.
-.Sp
-\&\fINote:\fR Previous versions of cpp accepted a \fB\-lang\fR option
-which selected both the language and the standards conformance level.
-This option has been removed, because it conflicts with the \fB\-l\fR
-option.
-.IP "\fB\-std=\fR\fIstandard\fR" 4
-.IX Item "-std=standard"
-.PD 0
-.IP "\fB\-ansi\fR" 4
-.IX Item "-ansi"
-.PD
-Specify the standard to which the code should conform. Currently \s-1CPP\s0
-knows about C and \*(C+ standards; others may be added in the future.
-.Sp
-\&\fIstandard\fR
-may be one of:
-.RS 4
-.ie n .IP """c90""" 4
-.el .IP "\f(CWc90\fR" 4
-.IX Item "c90"
-.PD 0
-.ie n .IP """c89""" 4
-.el .IP "\f(CWc89\fR" 4
-.IX Item "c89"
-.ie n .IP """iso9899:1990""" 4
-.el .IP "\f(CWiso9899:1990\fR" 4
-.IX Item "iso9899:1990"
-.PD
-The \s-1ISO C\s0 standard from 1990. \fBc90\fR is the customary shorthand for
-this version of the standard.
-.Sp
-The \fB\-ansi\fR option is equivalent to \fB\-std=c90\fR.
-.ie n .IP """iso9899:199409""" 4
-.el .IP "\f(CWiso9899:199409\fR" 4
-.IX Item "iso9899:199409"
-The 1990 C standard, as amended in 1994.
-.ie n .IP """iso9899:1999""" 4
-.el .IP "\f(CWiso9899:1999\fR" 4
-.IX Item "iso9899:1999"
-.PD 0
-.ie n .IP """c99""" 4
-.el .IP "\f(CWc99\fR" 4
-.IX Item "c99"
-.ie n .IP """iso9899:199x""" 4
-.el .IP "\f(CWiso9899:199x\fR" 4
-.IX Item "iso9899:199x"
-.ie n .IP """c9x""" 4
-.el .IP "\f(CWc9x\fR" 4
-.IX Item "c9x"
-.PD
-The revised \s-1ISO C\s0 standard, published in December 1999. Before
-publication, this was known as C9X.
-.ie n .IP """iso9899:2011""" 4
-.el .IP "\f(CWiso9899:2011\fR" 4
-.IX Item "iso9899:2011"
-.PD 0
-.ie n .IP """c11""" 4
-.el .IP "\f(CWc11\fR" 4
-.IX Item "c11"
-.ie n .IP """c1x""" 4
-.el .IP "\f(CWc1x\fR" 4
-.IX Item "c1x"
-.PD
-The revised \s-1ISO C\s0 standard, published in December 2011. Before
-publication, this was known as C1X.
-.ie n .IP """gnu90""" 4
-.el .IP "\f(CWgnu90\fR" 4
-.IX Item "gnu90"
-.PD 0
-.ie n .IP """gnu89""" 4
-.el .IP "\f(CWgnu89\fR" 4
-.IX Item "gnu89"
-.PD
-The 1990 C standard plus \s-1GNU\s0 extensions. This is the default.
-.ie n .IP """gnu99""" 4
-.el .IP "\f(CWgnu99\fR" 4
-.IX Item "gnu99"
-.PD 0
-.ie n .IP """gnu9x""" 4
-.el .IP "\f(CWgnu9x\fR" 4
-.IX Item "gnu9x"
-.PD
-The 1999 C standard plus \s-1GNU\s0 extensions.
-.ie n .IP """gnu11""" 4
-.el .IP "\f(CWgnu11\fR" 4
-.IX Item "gnu11"
-.PD 0
-.ie n .IP """gnu1x""" 4
-.el .IP "\f(CWgnu1x\fR" 4
-.IX Item "gnu1x"
-.PD
-The 2011 C standard plus \s-1GNU\s0 extensions.
-.ie n .IP """c++98""" 4
-.el .IP "\f(CWc++98\fR" 4
-.IX Item "c++98"
-The 1998 \s-1ISO \*(C+\s0 standard plus amendments.
-.ie n .IP """gnu++98""" 4
-.el .IP "\f(CWgnu++98\fR" 4
-.IX Item "gnu++98"
-The same as \fB\-std=c++98\fR plus \s-1GNU\s0 extensions. This is the
-default for \*(C+ code.
-.RE
-.RS 4
-.RE
-.IP "\fB\-I\-\fR" 4
-.IX Item "-I-"
-Split the include path. Any directories specified with \fB\-I\fR
-options before \fB\-I\-\fR are searched only for headers requested with
-\&\f(CW\*(C`#include\ "\f(CIfile\f(CW"\*(C'\fR; they are not searched for
-\&\f(CW\*(C`#include\ <\f(CIfile\f(CW>\*(C'\fR. If additional directories are
-specified with \fB\-I\fR options after the \fB\-I\-\fR, those
-directories are searched for all \fB#include\fR directives.
-.Sp
-In addition, \fB\-I\-\fR inhibits the use of the directory of the current
-file directory as the first search directory for \f(CW\*(C`#include\ "\f(CIfile\f(CW"\*(C'\fR.
-.Sp
-This option has been deprecated.
-.IP "\fB\-nostdinc\fR" 4
-.IX Item "-nostdinc"
-Do not search the standard system directories for header files.
-Only the directories you have specified with \fB\-I\fR options
-(and the directory of the current file, if appropriate) are searched.
-.IP "\fB\-nostdinc++\fR" 4
-.IX Item "-nostdinc++"
-Do not search for header files in the \*(C+\-specific standard directories,
-but do still search the other standard directories. (This option is
-used when building the \*(C+ library.)
-.IP "\fB\-include\fR \fIfile\fR" 4
-.IX Item "-include file"
-Process \fIfile\fR as if \f(CW\*(C`#include "file"\*(C'\fR appeared as the first
-line of the primary source file. However, the first directory searched
-for \fIfile\fR is the preprocessor's working directory \fIinstead of\fR
-the directory containing the main source file. If not found there, it
-is searched for in the remainder of the \f(CW\*(C`#include "..."\*(C'\fR search
-chain as normal.
-.Sp
-If multiple \fB\-include\fR options are given, the files are included
-in the order they appear on the command line.
-.IP "\fB\-imacros\fR \fIfile\fR" 4
-.IX Item "-imacros file"
-Exactly like \fB\-include\fR, except that any output produced by
-scanning \fIfile\fR is thrown away. Macros it defines remain defined.
-This allows you to acquire all the macros from a header without also
-processing its declarations.
-.Sp
-All files specified by \fB\-imacros\fR are processed before all files
-specified by \fB\-include\fR.
-.IP "\fB\-idirafter\fR \fIdir\fR" 4
-.IX Item "-idirafter dir"
-Search \fIdir\fR for header files, but do it \fIafter\fR all
-directories specified with \fB\-I\fR and the standard system directories
-have been exhausted. \fIdir\fR is treated as a system include directory.
-If \fIdir\fR begins with \f(CW\*(C`=\*(C'\fR, then the \f(CW\*(C`=\*(C'\fR will be replaced
-by the sysroot prefix; see \fB\-\-sysroot\fR and \fB\-isysroot\fR.
-.IP "\fB\-iprefix\fR \fIprefix\fR" 4
-.IX Item "-iprefix prefix"
-Specify \fIprefix\fR as the prefix for subsequent \fB\-iwithprefix\fR
-options. If the prefix represents a directory, you should include the
-final \fB/\fR.
-.IP "\fB\-iwithprefix\fR \fIdir\fR" 4
-.IX Item "-iwithprefix dir"
-.PD 0
-.IP "\fB\-iwithprefixbefore\fR \fIdir\fR" 4
-.IX Item "-iwithprefixbefore dir"
-.PD
-Append \fIdir\fR to the prefix specified previously with
-\&\fB\-iprefix\fR, and add the resulting directory to the include search
-path. \fB\-iwithprefixbefore\fR puts it in the same place \fB\-I\fR
-would; \fB\-iwithprefix\fR puts it where \fB\-idirafter\fR would.
-.IP "\fB\-isysroot\fR \fIdir\fR" 4
-.IX Item "-isysroot dir"
-This option is like the \fB\-\-sysroot\fR option, but applies only to
-header files (except for Darwin targets, where it applies to both header
-files and libraries). See the \fB\-\-sysroot\fR option for more
-information.
-.IP "\fB\-imultilib\fR \fIdir\fR" 4
-.IX Item "-imultilib dir"
-Use \fIdir\fR as a subdirectory of the directory containing
-target-specific \*(C+ headers.
-.IP "\fB\-isystem\fR \fIdir\fR" 4
-.IX Item "-isystem dir"
-Search \fIdir\fR for header files, after all directories specified by
-\&\fB\-I\fR but before the standard system directories. Mark it
-as a system directory, so that it gets the same special treatment as
-is applied to the standard system directories.
-.Sp
-If \fIdir\fR begins with \f(CW\*(C`=\*(C'\fR, then the \f(CW\*(C`=\*(C'\fR will be replaced
-by the sysroot prefix; see \fB\-\-sysroot\fR and \fB\-isysroot\fR.
-.IP "\fB\-iquote\fR \fIdir\fR" 4
-.IX Item "-iquote dir"
-Search \fIdir\fR only for header files requested with
-\&\f(CW\*(C`#include\ "\f(CIfile\f(CW"\*(C'\fR; they are not searched for
-\&\f(CW\*(C`#include\ <\f(CIfile\f(CW>\*(C'\fR, before all directories specified by
-\&\fB\-I\fR and before the standard system directories.
-.Sp
-If \fIdir\fR begins with \f(CW\*(C`=\*(C'\fR, then the \f(CW\*(C`=\*(C'\fR will be replaced
-by the sysroot prefix; see \fB\-\-sysroot\fR and \fB\-isysroot\fR.
-.IP "\fB\-fdirectives\-only\fR" 4
-.IX Item "-fdirectives-only"
-When preprocessing, handle directives, but do not expand macros.
-.Sp
-The option's behavior depends on the \fB\-E\fR and \fB\-fpreprocessed\fR
-options.
-.Sp
-With \fB\-E\fR, preprocessing is limited to the handling of directives
-such as \f(CW\*(C`#define\*(C'\fR, \f(CW\*(C`#ifdef\*(C'\fR, and \f(CW\*(C`#error\*(C'\fR. Other
-preprocessor operations, such as macro expansion and trigraph
-conversion are not performed. In addition, the \fB\-dD\fR option is
-implicitly enabled.
-.Sp
-With \fB\-fpreprocessed\fR, predefinition of command line and most
-builtin macros is disabled. Macros such as \f(CW\*(C`_\|_LINE_\|_\*(C'\fR, which are
-contextually dependent, are handled normally. This enables compilation of
-files previously preprocessed with \f(CW\*(C`\-E \-fdirectives\-only\*(C'\fR.
-.Sp
-With both \fB\-E\fR and \fB\-fpreprocessed\fR, the rules for
-\&\fB\-fpreprocessed\fR take precedence. This enables full preprocessing of
-files previously preprocessed with \f(CW\*(C`\-E \-fdirectives\-only\*(C'\fR.
-.IP "\fB\-fdollars\-in\-identifiers\fR" 4
-.IX Item "-fdollars-in-identifiers"
-Accept \fB$\fR in identifiers.
-.IP "\fB\-fextended\-identifiers\fR" 4
-.IX Item "-fextended-identifiers"
-Accept universal character names in identifiers. This option is
-experimental; in a future version of \s-1GCC,\s0 it will be enabled by
-default for C99 and \*(C+.
-.IP "\fB\-fno\-canonical\-system\-headers\fR" 4
-.IX Item "-fno-canonical-system-headers"
-When preprocessing, do not shorten system header paths with canonicalization.
-.IP "\fB\-fpreprocessed\fR" 4
-.IX Item "-fpreprocessed"
-Indicate to the preprocessor that the input file has already been
-preprocessed. This suppresses things like macro expansion, trigraph
-conversion, escaped newline splicing, and processing of most directives.
-The preprocessor still recognizes and removes comments, so that you can
-pass a file preprocessed with \fB\-C\fR to the compiler without
-problems. In this mode the integrated preprocessor is little more than
-a tokenizer for the front ends.
-.Sp
-\&\fB\-fpreprocessed\fR is implicit if the input file has one of the
-extensions \fB.i\fR, \fB.ii\fR or \fB.mi\fR. These are the
-extensions that \s-1GCC\s0 uses for preprocessed files created by
-\&\fB\-save\-temps\fR.
-.IP "\fB\-ftabstop=\fR\fIwidth\fR" 4
-.IX Item "-ftabstop=width"
-Set the distance between tab stops. This helps the preprocessor report
-correct column numbers in warnings or errors, even if tabs appear on the
-line. If the value is less than 1 or greater than 100, the option is
-ignored. The default is 8.
-.IP "\fB\-fdebug\-cpp\fR" 4
-.IX Item "-fdebug-cpp"
-This option is only useful for debugging \s-1GCC. \s0 When used with
-\&\fB\-E\fR, dumps debugging information about location maps. Every
-token in the output is preceded by the dump of the map its location
-belongs to. The dump of the map holding the location of a token would
-be:
-.Sp
-.Vb 1
-\& {"P":F</file/path>;"F":F</includer/path>;"L":<line_num>;"C":<col_num>;"S":<system_header_p>;"M":<map_address>;"E":<macro_expansion_p>,"loc":<location>}
-.Ve
-.Sp
-When used without \fB\-E\fR, this option has no effect.
-.IP "\fB\-ftrack\-macro\-expansion\fR[\fB=\fR\fIlevel\fR]" 4
-.IX Item "-ftrack-macro-expansion[=level]"
-Track locations of tokens across macro expansions. This allows the
-compiler to emit diagnostic about the current macro expansion stack
-when a compilation error occurs in a macro expansion. Using this
-option makes the preprocessor and the compiler consume more
-memory. The \fIlevel\fR parameter can be used to choose the level of
-precision of token location tracking thus decreasing the memory
-consumption if necessary. Value \fB0\fR of \fIlevel\fR de-activates
-this option just as if no \fB\-ftrack\-macro\-expansion\fR was present
-on the command line. Value \fB1\fR tracks tokens locations in a
-degraded mode for the sake of minimal memory overhead. In this mode
-all tokens resulting from the expansion of an argument of a
-function-like macro have the same location. Value \fB2\fR tracks
-tokens locations completely. This value is the most memory hungry.
-When this option is given no argument, the default parameter value is
-\&\fB2\fR.
-.Sp
-Note that \-ftrack\-macro\-expansion=2 is activated by default.
-.IP "\fB\-fexec\-charset=\fR\fIcharset\fR" 4
-.IX Item "-fexec-charset=charset"
-Set the execution character set, used for string and character
-constants. The default is \s-1UTF\-8. \s0\fIcharset\fR can be any encoding
-supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine.
-.IP "\fB\-fwide\-exec\-charset=\fR\fIcharset\fR" 4
-.IX Item "-fwide-exec-charset=charset"
-Set the wide execution character set, used for wide string and
-character constants. The default is \s-1UTF\-32\s0 or \s-1UTF\-16,\s0 whichever
-corresponds to the width of \f(CW\*(C`wchar_t\*(C'\fR. As with
-\&\fB\-fexec\-charset\fR, \fIcharset\fR can be any encoding supported
-by the system's \f(CW\*(C`iconv\*(C'\fR library routine; however, you will have
-problems with encodings that do not fit exactly in \f(CW\*(C`wchar_t\*(C'\fR.
-.IP "\fB\-finput\-charset=\fR\fIcharset\fR" 4
-.IX Item "-finput-charset=charset"
-Set the input character set, used for translation from the character
-set of the input file to the source character set used by \s-1GCC. \s0 If the
-locale does not specify, or \s-1GCC\s0 cannot get this information from the
-locale, the default is \s-1UTF\-8. \s0 This can be overridden by either the locale
-or this command line option. Currently the command line option takes
-precedence if there's a conflict. \fIcharset\fR can be any encoding
-supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine.
-.IP "\fB\-fworking\-directory\fR" 4
-.IX Item "-fworking-directory"
-Enable generation of linemarkers in the preprocessor output that will
-let the compiler know the current working directory at the time of
-preprocessing. When this option is enabled, the preprocessor will
-emit, after the initial linemarker, a second linemarker with the
-current working directory followed by two slashes. \s-1GCC\s0 will use this
-directory, when it's present in the preprocessed input, as the
-directory emitted as the current working directory in some debugging
-information formats. This option is implicitly enabled if debugging
-information is enabled, but this can be inhibited with the negated
-form \fB\-fno\-working\-directory\fR. If the \fB\-P\fR flag is
-present in the command line, this option has no effect, since no
-\&\f(CW\*(C`#line\*(C'\fR directives are emitted whatsoever.
-.IP "\fB\-fno\-show\-column\fR" 4
-.IX Item "-fno-show-column"
-Do not print column numbers in diagnostics. This may be necessary if
-diagnostics are being scanned by a program that does not understand the
-column numbers, such as \fBdejagnu\fR.
-.IP "\fB\-A\fR \fIpredicate\fR\fB=\fR\fIanswer\fR" 4
-.IX Item "-A predicate=answer"
-Make an assertion with the predicate \fIpredicate\fR and answer
-\&\fIanswer\fR. This form is preferred to the older form \fB\-A\fR
-\&\fIpredicate\fR\fB(\fR\fIanswer\fR\fB)\fR, which is still supported, because
-it does not use shell special characters.
-.IP "\fB\-A \-\fR\fIpredicate\fR\fB=\fR\fIanswer\fR" 4
-.IX Item "-A -predicate=answer"
-Cancel an assertion with the predicate \fIpredicate\fR and answer
-\&\fIanswer\fR.
-.IP "\fB\-dCHARS\fR" 4
-.IX Item "-dCHARS"
-\&\fI\s-1CHARS\s0\fR is a sequence of one or more of the following characters,
-and must not be preceded by a space. Other characters are interpreted
-by the compiler proper, or reserved for future versions of \s-1GCC,\s0 and so
-are silently ignored. If you specify characters whose behavior
-conflicts, the result is undefined.
-.RS 4
-.IP "\fBM\fR" 4
-.IX Item "M"
-Instead of the normal output, generate a list of \fB#define\fR
-directives for all the macros defined during the execution of the
-preprocessor, including predefined macros. This gives you a way of
-finding out what is predefined in your version of the preprocessor.
-Assuming you have no file \fIfoo.h\fR, the command
-.Sp
-.Vb 1
-\& touch foo.h; cpp \-dM foo.h
-.Ve
-.Sp
-will show all the predefined macros.
-.Sp
-If you use \fB\-dM\fR without the \fB\-E\fR option, \fB\-dM\fR is
-interpreted as a synonym for \fB\-fdump\-rtl\-mach\fR.
-.IP "\fBD\fR" 4
-.IX Item "D"
-Like \fBM\fR except in two respects: it does \fInot\fR include the
-predefined macros, and it outputs \fIboth\fR the \fB#define\fR
-directives and the result of preprocessing. Both kinds of output go to
-the standard output file.
-.IP "\fBN\fR" 4
-.IX Item "N"
-Like \fBD\fR, but emit only the macro names, not their expansions.
-.IP "\fBI\fR" 4
-.IX Item "I"
-Output \fB#include\fR directives in addition to the result of
-preprocessing.
-.IP "\fBU\fR" 4
-.IX Item "U"
-Like \fBD\fR except that only macros that are expanded, or whose
-definedness is tested in preprocessor directives, are output; the
-output is delayed until the use or test of the macro; and
-\&\fB#undef\fR directives are also output for macros tested but
-undefined at the time.
-.RE
-.RS 4
-.RE
-.IP "\fB\-P\fR" 4
-.IX Item "-P"
-Inhibit generation of linemarkers in the output from the preprocessor.
-This might be useful when running the preprocessor on something that is
-not C code, and will be sent to a program which might be confused by the
-linemarkers.
-.IP "\fB\-C\fR" 4
-.IX Item "-C"
-Do not discard comments. All comments are passed through to the output
-file, except for comments in processed directives, which are deleted
-along with the directive.
-.Sp
-You should be prepared for side effects when using \fB\-C\fR; it
-causes the preprocessor to treat comments as tokens in their own right.
-For example, comments appearing at the start of what would be a
-directive line have the effect of turning that line into an ordinary
-source line, since the first token on the line is no longer a \fB#\fR.
-.IP "\fB\-CC\fR" 4
-.IX Item "-CC"
-Do not discard comments, including during macro expansion. This is
-like \fB\-C\fR, except that comments contained within macros are
-also passed through to the output file where the macro is expanded.
-.Sp
-In addition to the side-effects of the \fB\-C\fR option, the
-\&\fB\-CC\fR option causes all \*(C+\-style comments inside a macro
-to be converted to C\-style comments. This is to prevent later use
-of that macro from inadvertently commenting out the remainder of
-the source line.
-.Sp
-The \fB\-CC\fR option is generally used to support lint comments.
-.IP "\fB\-traditional\-cpp\fR" 4
-.IX Item "-traditional-cpp"
-Try to imitate the behavior of old-fashioned C preprocessors, as
-opposed to \s-1ISO C\s0 preprocessors.
-.IP "\fB\-trigraphs\fR" 4
-.IX Item "-trigraphs"
-Process trigraph sequences.
-.IP "\fB\-remap\fR" 4
-.IX Item "-remap"
-Enable special code to work around file systems which only permit very
-short file names, such as MS-DOS.
-.IP "\fB\-\-help\fR" 4
-.IX Item "--help"
-.PD 0
-.IP "\fB\-\-target\-help\fR" 4
-.IX Item "--target-help"
-.PD
-Print text describing all the command line options instead of
-preprocessing anything.
-.IP "\fB\-v\fR" 4
-.IX Item "-v"
-Verbose mode. Print out \s-1GNU CPP\s0's version number at the beginning of
-execution, and report the final form of the include path.
-.IP "\fB\-H\fR" 4
-.IX Item "-H"
-Print the name of each header file used, in addition to other normal
-activities. Each name is indented to show how deep in the
-\&\fB#include\fR stack it is. Precompiled header files are also
-printed, even if they are found to be invalid; an invalid precompiled
-header file is printed with \fB...x\fR and a valid one with \fB...!\fR .
-.IP "\fB\-version\fR" 4
-.IX Item "-version"
-.PD 0
-.IP "\fB\-\-version\fR" 4
-.IX Item "--version"
-.PD
-Print out \s-1GNU CPP\s0's version number. With one dash, proceed to
-preprocess as normal. With two dashes, exit immediately.
-.SH "ENVIRONMENT"
-.IX Header "ENVIRONMENT"
-This section describes the environment variables that affect how \s-1CPP\s0
-operates. You can use them to specify directories or prefixes to use
-when searching for include files, or to control dependency output.
-.PP
-Note that you can also specify places to search using options such as
-\&\fB\-I\fR, and control dependency output with options like
-\&\fB\-M\fR. These take precedence over
-environment variables, which in turn take precedence over the
-configuration of \s-1GCC.\s0
-.IP "\fB\s-1CPATH\s0\fR" 4
-.IX Item "CPATH"
-.PD 0
-.IP "\fBC_INCLUDE_PATH\fR" 4
-.IX Item "C_INCLUDE_PATH"
-.IP "\fB\s-1CPLUS_INCLUDE_PATH\s0\fR" 4
-.IX Item "CPLUS_INCLUDE_PATH"
-.IP "\fB\s-1OBJC_INCLUDE_PATH\s0\fR" 4
-.IX Item "OBJC_INCLUDE_PATH"
-.PD
-Each variable's value is a list of directories separated by a special
-character, much like \fB\s-1PATH\s0\fR, in which to look for header files.
-The special character, \f(CW\*(C`PATH_SEPARATOR\*(C'\fR, is target-dependent and
-determined at \s-1GCC\s0 build time. For Microsoft Windows-based targets it is a
-semicolon, and for almost all other targets it is a colon.
-.Sp
-\&\fB\s-1CPATH\s0\fR specifies a list of directories to be searched as if
-specified with \fB\-I\fR, but after any paths given with \fB\-I\fR
-options on the command line. This environment variable is used
-regardless of which language is being preprocessed.
-.Sp
-The remaining environment variables apply only when preprocessing the
-particular language indicated. Each specifies a list of directories
-to be searched as if specified with \fB\-isystem\fR, but after any
-paths given with \fB\-isystem\fR options on the command line.
-.Sp
-In all these variables, an empty element instructs the compiler to
-search its current working directory. Empty elements can appear at the
-beginning or end of a path. For instance, if the value of
-\&\fB\s-1CPATH\s0\fR is \f(CW\*(C`:/special/include\*(C'\fR, that has the same
-effect as \fB\-I.\ \-I/special/include\fR.
-.IP "\fB\s-1DEPENDENCIES_OUTPUT\s0\fR" 4
-.IX Item "DEPENDENCIES_OUTPUT"
-If this variable is set, its value specifies how to output
-dependencies for Make based on the non-system header files processed
-by the compiler. System header files are ignored in the dependency
-output.
-.Sp
-The value of \fB\s-1DEPENDENCIES_OUTPUT\s0\fR can be just a file name, in
-which case the Make rules are written to that file, guessing the target
-name from the source file name. Or the value can have the form
-\&\fIfile\fR\fB \fR\fItarget\fR, in which case the rules are written to
-file \fIfile\fR using \fItarget\fR as the target name.
-.Sp
-In other words, this environment variable is equivalent to combining
-the options \fB\-MM\fR and \fB\-MF\fR,
-with an optional \fB\-MT\fR switch too.
-.IP "\fB\s-1SUNPRO_DEPENDENCIES\s0\fR" 4
-.IX Item "SUNPRO_DEPENDENCIES"
-This variable is the same as \fB\s-1DEPENDENCIES_OUTPUT\s0\fR (see above),
-except that system header files are not ignored, so it implies
-\&\fB\-M\fR rather than \fB\-MM\fR. However, the dependence on the
-main input file is omitted.
-.SH "SEE ALSO"
-.IX Header "SEE ALSO"
-\&\fIgpl\fR\|(7), \fIgfdl\fR\|(7), \fIfsf\-funding\fR\|(7),
-\&\fIgcc\fR\|(1), \fIas\fR\|(1), \fIld\fR\|(1), and the Info entries for \fIcpp\fR, \fIgcc\fR, and
-\&\fIbinutils\fR.
-.SH "COPYRIGHT"
-.IX Header "COPYRIGHT"
-Copyright (c) 1987\-2014 Free Software Foundation, Inc.
-.PP
-Permission is granted to copy, distribute and/or modify this document
-under the terms of the \s-1GNU\s0 Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation. A copy of
-the license is included in the
-man page \fIgfdl\fR\|(7).
-This manual contains no Invariant Sections. The Front-Cover Texts are
-(a) (see below), and the Back-Cover Texts are (b) (see below).
-.PP
-(a) The \s-1FSF\s0's Front-Cover Text is:
-.PP
-.Vb 1
-\& A GNU Manual
-.Ve
-.PP
-(b) The \s-1FSF\s0's Back-Cover Text is:
-.PP
-.Vb 3
-\& You have freedom to copy and modify this GNU Manual, like GNU
-\& software. Copies published by the Free Software Foundation raise
-\& funds for GNU development.
-.Ve
diff --git a/gcc-4.9/gcc/doc/cpp.info b/gcc-4.9/gcc/doc/cpp.info
deleted file mode 100644
index dcb300666..000000000
--- a/gcc-4.9/gcc/doc/cpp.info
+++ /dev/null
@@ -1,5602 +0,0 @@
-This is cpp.info, produced by makeinfo version 5.1 from cpp.texi.
-
-Copyright (C) 1987-2014 Free Software Foundation, Inc.
-
- Permission is granted to copy, distribute and/or modify this document
-under the terms of the GNU Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation. A copy of
-the license is included in the section entitled "GNU Free Documentation
-License".
-
- This manual contains no Invariant Sections. The Front-Cover Texts
-are (a) (see below), and the Back-Cover Texts are (b) (see below).
-
- (a) The FSF's Front-Cover Text is:
-
- A GNU Manual
-
- (b) The FSF's Back-Cover Text is:
-
- You have freedom to copy and modify this GNU Manual, like GNU
-software. Copies published by the Free Software Foundation raise funds
-for GNU development.
-INFO-DIR-SECTION Software development
-START-INFO-DIR-ENTRY
-* Cpp: (cpp). The GNU C preprocessor.
-END-INFO-DIR-ENTRY
-
-
-File: cpp.info, Node: Top, Next: Overview, Up: (dir)
-
-The C Preprocessor
-******************
-
-The C preprocessor implements the macro language used to transform C,
-C++, and Objective-C programs before they are compiled. It can also be
-useful on its own.
-
-* Menu:
-
-* Overview::
-* Header Files::
-* Macros::
-* Conditionals::
-* Diagnostics::
-* Line Control::
-* Pragmas::
-* Other Directives::
-* Preprocessor Output::
-* Traditional Mode::
-* Implementation Details::
-* Invocation::
-* Environment Variables::
-* GNU Free Documentation License::
-* Index of Directives::
-* Option Index::
-* Concept Index::
-
- -- The Detailed Node Listing --
-
-Overview
-
-* Character sets::
-* Initial processing::
-* Tokenization::
-* The preprocessing language::
-
-Header Files
-
-* Include Syntax::
-* Include Operation::
-* Search Path::
-* Once-Only Headers::
-* Alternatives to Wrapper #ifndef::
-* Computed Includes::
-* Wrapper Headers::
-* System Headers::
-
-Macros
-
-* Object-like Macros::
-* Function-like Macros::
-* Macro Arguments::
-* Stringification::
-* Concatenation::
-* Variadic Macros::
-* Predefined Macros::
-* Undefining and Redefining Macros::
-* Directives Within Macro Arguments::
-* Macro Pitfalls::
-
-Predefined Macros
-
-* Standard Predefined Macros::
-* Common Predefined Macros::
-* System-specific Predefined Macros::
-* C++ Named Operators::
-
-Macro Pitfalls
-
-* Misnesting::
-* Operator Precedence Problems::
-* Swallowing the Semicolon::
-* Duplication of Side Effects::
-* Self-Referential Macros::
-* Argument Prescan::
-* Newlines in Arguments::
-
-Conditionals
-
-* Conditional Uses::
-* Conditional Syntax::
-* Deleted Code::
-
-Conditional Syntax
-
-* Ifdef::
-* If::
-* Defined::
-* Else::
-* Elif::
-
-Implementation Details
-
-* Implementation-defined behavior::
-* Implementation limits::
-* Obsolete Features::
-* Differences from previous versions::
-
-Obsolete Features
-
-* Obsolete Features::
-
-
- Copyright (C) 1987-2014 Free Software Foundation, Inc.
-
- Permission is granted to copy, distribute and/or modify this document
-under the terms of the GNU Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation. A copy of
-the license is included in the section entitled "GNU Free Documentation
-License".
-
- This manual contains no Invariant Sections. The Front-Cover Texts
-are (a) (see below), and the Back-Cover Texts are (b) (see below).
-
- (a) The FSF's Front-Cover Text is:
-
- A GNU Manual
-
- (b) The FSF's Back-Cover Text is:
-
- You have freedom to copy and modify this GNU Manual, like GNU
-software. Copies published by the Free Software Foundation raise funds
-for GNU development.
-
-
-File: cpp.info, Node: Overview, Next: Header Files, Prev: Top, Up: Top
-
-1 Overview
-**********
-
-The C preprocessor, often known as "cpp", is a "macro processor" that is
-used automatically by the C compiler to transform your program before
-compilation. It is called a macro processor because it allows you to
-define "macros", which are brief abbreviations for longer constructs.
-
- The C preprocessor is intended to be used only with C, C++, and
-Objective-C source code. In the past, it has been abused as a general
-text processor. It will choke on input which does not obey C's lexical
-rules. For example, apostrophes will be interpreted as the beginning of
-character constants, and cause errors. Also, you cannot rely on it
-preserving characteristics of the input which are not significant to
-C-family languages. If a Makefile is preprocessed, all the hard tabs
-will be removed, and the Makefile will not work.
-
- Having said that, you can often get away with using cpp on things
-which are not C. Other Algol-ish programming languages are often safe
-(Pascal, Ada, etc.) So is assembly, with caution. '-traditional-cpp'
-mode preserves more white space, and is otherwise more permissive. Many
-of the problems can be avoided by writing C or C++ style comments
-instead of native language comments, and keeping macros simple.
-
- Wherever possible, you should use a preprocessor geared to the
-language you are writing in. Modern versions of the GNU assembler have
-macro facilities. Most high level programming languages have their own
-conditional compilation and inclusion mechanism. If all else fails, try
-a true general text processor, such as GNU M4.
-
- C preprocessors vary in some details. This manual discusses the GNU
-C preprocessor, which provides a small superset of the features of ISO
-Standard C. In its default mode, the GNU C preprocessor does not do a
-few things required by the standard. These are features which are
-rarely, if ever, used, and may cause surprising changes to the meaning
-of a program which does not expect them. To get strict ISO Standard C,
-you should use the '-std=c90', '-std=c99' or '-std=c11' options,
-depending on which version of the standard you want. To get all the
-mandatory diagnostics, you must also use '-pedantic'. *Note
-Invocation::.
-
- This manual describes the behavior of the ISO preprocessor. To
-minimize gratuitous differences, where the ISO preprocessor's behavior
-does not conflict with traditional semantics, the traditional
-preprocessor should behave the same way. The various differences that
-do exist are detailed in the section *note Traditional Mode::.
-
- For clarity, unless noted otherwise, references to 'CPP' in this
-manual refer to GNU CPP.
-
-* Menu:
-
-* Character sets::
-* Initial processing::
-* Tokenization::
-* The preprocessing language::
-
-
-File: cpp.info, Node: Character sets, Next: Initial processing, Up: Overview
-
-1.1 Character sets
-==================
-
-Source code character set processing in C and related languages is
-rather complicated. The C standard discusses two character sets, but
-there are really at least four.
-
- The files input to CPP might be in any character set at all. CPP's
-very first action, before it even looks for line boundaries, is to
-convert the file into the character set it uses for internal processing.
-That set is what the C standard calls the "source" character set. It
-must be isomorphic with ISO 10646, also known as Unicode. CPP uses the
-UTF-8 encoding of Unicode.
-
- The character sets of the input files are specified using the
-'-finput-charset=' option.
-
- All preprocessing work (the subject of the rest of this manual) is
-carried out in the source character set. If you request textual output
-from the preprocessor with the '-E' option, it will be in UTF-8.
-
- After preprocessing is complete, string and character constants are
-converted again, into the "execution" character set. This character set
-is under control of the user; the default is UTF-8, matching the source
-character set. Wide string and character constants have their own
-character set, which is not called out specifically in the standard.
-Again, it is under control of the user. The default is UTF-16 or
-UTF-32, whichever fits in the target's 'wchar_t' type, in the target
-machine's byte order.(1) Octal and hexadecimal escape sequences do not
-undergo conversion; '\x12' has the value 0x12 regardless of the
-currently selected execution character set. All other escapes are
-replaced by the character in the source character set that they
-represent, then converted to the execution character set, just like
-unescaped characters.
-
- Unless the experimental '-fextended-identifiers' option is used, GCC
-does not permit the use of characters outside the ASCII range, nor '\u'
-and '\U' escapes, in identifiers. Even with that option, characters
-outside the ASCII range can only be specified with the '\u' and '\U'
-escapes, not used directly in identifiers.
-
- ---------- Footnotes ----------
-
- (1) UTF-16 does not meet the requirements of the C standard for a
-wide character set, but the choice of 16-bit 'wchar_t' is enshrined in
-some system ABIs so we cannot fix this.
-
-
-File: cpp.info, Node: Initial processing, Next: Tokenization, Prev: Character sets, Up: Overview
-
-1.2 Initial processing
-======================
-
-The preprocessor performs a series of textual transformations on its
-input. These happen before all other processing. Conceptually, they
-happen in a rigid order, and the entire file is run through each
-transformation before the next one begins. CPP actually does them all
-at once, for performance reasons. These transformations correspond
-roughly to the first three "phases of translation" described in the C
-standard.
-
- 1. The input file is read into memory and broken into lines.
-
- Different systems use different conventions to indicate the end of
- a line. GCC accepts the ASCII control sequences 'LF', 'CR LF' and
- 'CR' as end-of-line markers. These are the canonical sequences
- used by Unix, DOS and VMS, and the classic Mac OS (before OSX)
- respectively. You may therefore safely copy source code written on
- any of those systems to a different one and use it without
- conversion. (GCC may lose track of the current line number if a
- file doesn't consistently use one convention, as sometimes happens
- when it is edited on computers with different conventions that
- share a network file system.)
-
- If the last line of any input file lacks an end-of-line marker, the
- end of the file is considered to implicitly supply one. The C
- standard says that this condition provokes undefined behavior, so
- GCC will emit a warning message.
-
- 2. If trigraphs are enabled, they are replaced by their corresponding
- single characters. By default GCC ignores trigraphs, but if you
- request a strictly conforming mode with the '-std' option, or you
- specify the '-trigraphs' option, then it converts them.
-
- These are nine three-character sequences, all starting with '??',
- that are defined by ISO C to stand for single characters. They
- permit obsolete systems that lack some of C's punctuation to use C.
- For example, '??/' stands for '\', so '??/n' is a character
- constant for a newline.
-
- Trigraphs are not popular and many compilers implement them
- incorrectly. Portable code should not rely on trigraphs being
- either converted or ignored. With '-Wtrigraphs' GCC will warn you
- when a trigraph may change the meaning of your program if it were
- converted. *Note Wtrigraphs::.
-
- In a string constant, you can prevent a sequence of question marks
- from being confused with a trigraph by inserting a backslash
- between the question marks, or by separating the string literal at
- the trigraph and making use of string literal concatenation.
- "(??\?)" is the string '(???)', not '(?]'. Traditional C compilers
- do not recognize these idioms.
-
- The nine trigraphs and their replacements are
-
- Trigraph: ??( ??) ??< ??> ??= ??/ ??' ??! ??-
- Replacement: [ ] { } # \ ^ | ~
-
- 3. Continued lines are merged into one long line.
-
- A continued line is a line which ends with a backslash, '\'. The
- backslash is removed and the following line is joined with the
- current one. No space is inserted, so you may split a line
- anywhere, even in the middle of a word. (It is generally more
- readable to split lines only at white space.)
-
- The trailing backslash on a continued line is commonly referred to
- as a "backslash-newline".
-
- If there is white space between a backslash and the end of a line,
- that is still a continued line. However, as this is usually the
- result of an editing mistake, and many compilers will not accept it
- as a continued line, GCC will warn you about it.
-
- 4. All comments are replaced with single spaces.
-
- There are two kinds of comments. "Block comments" begin with '/*'
- and continue until the next '*/'. Block comments do not nest:
-
- /* this is /* one comment */ text outside comment
-
- "Line comments" begin with '//' and continue to the end of the
- current line. Line comments do not nest either, but it does not
- matter, because they would end in the same place anyway.
-
- // this is // one comment
- text outside comment
-
- It is safe to put line comments inside block comments, or vice versa.
-
- /* block comment
- // contains line comment
- yet more comment
- */ outside comment
-
- // line comment /* contains block comment */
-
- But beware of commenting out one end of a block comment with a line
-comment.
-
- // l.c. /* block comment begins
- oops! this isn't a comment anymore */
-
- Comments are not recognized within string literals. "/* blah */" is
-the string constant '/* blah */', not an empty string.
-
- Line comments are not in the 1989 edition of the C standard, but they
-are recognized by GCC as an extension. In C++ and in the 1999 edition
-of the C standard, they are an official part of the language.
-
- Since these transformations happen before all other processing, you
-can split a line mechanically with backslash-newline anywhere. You can
-comment out the end of a line. You can continue a line comment onto the
-next line with backslash-newline. You can even split '/*', '*/', and
-'//' onto multiple lines with backslash-newline. For example:
-
- /\
- *
- */ # /*
- */ defi\
- ne FO\
- O 10\
- 20
-
-is equivalent to '#define FOO 1020'. All these tricks are extremely
-confusing and should not be used in code intended to be readable.
-
- There is no way to prevent a backslash at the end of a line from
-being interpreted as a backslash-newline. This cannot affect any
-correct program, however.
-
-
-File: cpp.info, Node: Tokenization, Next: The preprocessing language, Prev: Initial processing, Up: Overview
-
-1.3 Tokenization
-================
-
-After the textual transformations are finished, the input file is
-converted into a sequence of "preprocessing tokens". These mostly
-correspond to the syntactic tokens used by the C compiler, but there are
-a few differences. White space separates tokens; it is not itself a
-token of any kind. Tokens do not have to be separated by white space,
-but it is often necessary to avoid ambiguities.
-
- When faced with a sequence of characters that has more than one
-possible tokenization, the preprocessor is greedy. It always makes each
-token, starting from the left, as big as possible before moving on to
-the next token. For instance, 'a+++++b' is interpreted as
-'a ++ ++ + b', not as 'a ++ + ++ b', even though the latter tokenization
-could be part of a valid C program and the former could not.
-
- Once the input file is broken into tokens, the token boundaries never
-change, except when the '##' preprocessing operator is used to paste
-tokens together. *Note Concatenation::. For example,
-
- #define foo() bar
- foo()baz
- ==> bar baz
- _not_
- ==> barbaz
-
- The compiler does not re-tokenize the preprocessor's output. Each
-preprocessing token becomes one compiler token.
-
- Preprocessing tokens fall into five broad classes: identifiers,
-preprocessing numbers, string literals, punctuators, and other. An
-"identifier" is the same as an identifier in C: any sequence of letters,
-digits, or underscores, which begins with a letter or underscore.
-Keywords of C have no significance to the preprocessor; they are
-ordinary identifiers. You can define a macro whose name is a keyword,
-for instance. The only identifier which can be considered a
-preprocessing keyword is 'defined'. *Note Defined::.
-
- This is mostly true of other languages which use the C preprocessor.
-However, a few of the keywords of C++ are significant even in the
-preprocessor. *Note C++ Named Operators::.
-
- In the 1999 C standard, identifiers may contain letters which are not
-part of the "basic source character set", at the implementation's
-discretion (such as accented Latin letters, Greek letters, or Chinese
-ideograms). This may be done with an extended character set, or the
-'\u' and '\U' escape sequences. The implementation of this feature in
-GCC is experimental; such characters are only accepted in the '\u' and
-'\U' forms and only if '-fextended-identifiers' is used.
-
- As an extension, GCC treats '$' as a letter. This is for
-compatibility with some systems, such as VMS, where '$' is commonly used
-in system-defined function and object names. '$' is not a letter in
-strictly conforming mode, or if you specify the '-$' option. *Note
-Invocation::.
-
- A "preprocessing number" has a rather bizarre definition. The
-category includes all the normal integer and floating point constants
-one expects of C, but also a number of other things one might not
-initially recognize as a number. Formally, preprocessing numbers begin
-with an optional period, a required decimal digit, and then continue
-with any sequence of letters, digits, underscores, periods, and
-exponents. Exponents are the two-character sequences 'e+', 'e-', 'E+',
-'E-', 'p+', 'p-', 'P+', and 'P-'. (The exponents that begin with 'p' or
-'P' are new to C99. They are used for hexadecimal floating-point
-constants.)
-
- The purpose of this unusual definition is to isolate the preprocessor
-from the full complexity of numeric constants. It does not have to
-distinguish between lexically valid and invalid floating-point numbers,
-which is complicated. The definition also permits you to split an
-identifier at any position and get exactly two tokens, which can then be
-pasted back together with the '##' operator.
-
- It's possible for preprocessing numbers to cause programs to be
-misinterpreted. For example, '0xE+12' is a preprocessing number which
-does not translate to any valid numeric constant, therefore a syntax
-error. It does not mean '0xE + 12', which is what you might have
-intended.
-
- "String literals" are string constants, character constants, and
-header file names (the argument of '#include').(1) String constants and
-character constants are straightforward: "..." or '...'. In either case
-embedded quotes should be escaped with a backslash: '\'' is the
-character constant for '''. There is no limit on the length of a
-character constant, but the value of a character constant that contains
-more than one character is implementation-defined. *Note Implementation
-Details::.
-
- Header file names either look like string constants, "...", or are
-written with angle brackets instead, <...>. In either case, backslash
-is an ordinary character. There is no way to escape the closing quote
-or angle bracket. The preprocessor looks for the header file in
-different places depending on which form you use. *Note Include
-Operation::.
-
- No string literal may extend past the end of a line. Older versions
-of GCC accepted multi-line string constants. You may use continued
-lines instead, or string constant concatenation. *Note Differences from
-previous versions::.
-
- "Punctuators" are all the usual bits of punctuation which are
-meaningful to C and C++. All but three of the punctuation characters in
-ASCII are C punctuators. The exceptions are '@', '$', and '`'. In
-addition, all the two- and three-character operators are punctuators.
-There are also six "digraphs", which the C++ standard calls "alternative
-tokens", which are merely alternate ways to spell other punctuators.
-This is a second attempt to work around missing punctuation in obsolete
-systems. It has no negative side effects, unlike trigraphs, but does
-not cover as much ground. The digraphs and their corresponding normal
-punctuators are:
-
- Digraph: <% %> <: :> %: %:%:
- Punctuator: { } [ ] # ##
-
- Any other single character is considered "other". It is passed on to
-the preprocessor's output unmolested. The C compiler will almost
-certainly reject source code containing "other" tokens. In ASCII, the
-only other characters are '@', '$', '`', and control characters other
-than NUL (all bits zero). (Note that '$' is normally considered a
-letter.) All characters with the high bit set (numeric range 0x7F-0xFF)
-are also "other" in the present implementation. This will change when
-proper support for international character sets is added to GCC.
-
- NUL is a special case because of the high probability that its
-appearance is accidental, and because it may be invisible to the user
-(many terminals do not display NUL at all). Within comments, NULs are
-silently ignored, just as any other character would be. In running
-text, NUL is considered white space. For example, these two directives
-have the same meaning.
-
- #define X^@1
- #define X 1
-
-(where '^@' is ASCII NUL). Within string or character constants, NULs
-are preserved. In the latter two cases the preprocessor emits a warning
-message.
-
- ---------- Footnotes ----------
-
- (1) The C standard uses the term "string literal" to refer only to
-what we are calling "string constants".
-
-
-File: cpp.info, Node: The preprocessing language, Prev: Tokenization, Up: Overview
-
-1.4 The preprocessing language
-==============================
-
-After tokenization, the stream of tokens may simply be passed straight
-to the compiler's parser. However, if it contains any operations in the
-"preprocessing language", it will be transformed first. This stage
-corresponds roughly to the standard's "translation phase 4" and is what
-most people think of as the preprocessor's job.
-
- The preprocessing language consists of "directives" to be executed
-and "macros" to be expanded. Its primary capabilities are:
-
- * Inclusion of header files. These are files of declarations that
- can be substituted into your program.
-
- * Macro expansion. You can define "macros", which are abbreviations
- for arbitrary fragments of C code. The preprocessor will replace
- the macros with their definitions throughout the program. Some
- macros are automatically defined for you.
-
- * Conditional compilation. You can include or exclude parts of the
- program according to various conditions.
-
- * Line control. If you use a program to combine or rearrange source
- files into an intermediate file which is then compiled, you can use
- line control to inform the compiler where each source line
- originally came from.
-
- * Diagnostics. You can detect problems at compile time and issue
- errors or warnings.
-
- There are a few more, less useful, features.
-
- Except for expansion of predefined macros, all these operations are
-triggered with "preprocessing directives". Preprocessing directives are
-lines in your program that start with '#'. Whitespace is allowed before
-and after the '#'. The '#' is followed by an identifier, the "directive
-name". It specifies the operation to perform. Directives are commonly
-referred to as '#NAME' where NAME is the directive name. For example,
-'#define' is the directive that defines a macro.
-
- The '#' which begins a directive cannot come from a macro expansion.
-Also, the directive name is not macro expanded. Thus, if 'foo' is
-defined as a macro expanding to 'define', that does not make '#foo' a
-valid preprocessing directive.
-
- The set of valid directive names is fixed. Programs cannot define
-new preprocessing directives.
-
- Some directives require arguments; these make up the rest of the
-directive line and must be separated from the directive name by
-whitespace. For example, '#define' must be followed by a macro name and
-the intended expansion of the macro.
-
- A preprocessing directive cannot cover more than one line. The line
-may, however, be continued with backslash-newline, or by a block comment
-which extends past the end of the line. In either case, when the
-directive is processed, the continuations have already been merged with
-the first line to make one long line.
-
-
-File: cpp.info, Node: Header Files, Next: Macros, Prev: Overview, Up: Top
-
-2 Header Files
-**************
-
-A header file is a file containing C declarations and macro definitions
-(*note Macros::) to be shared between several source files. You request
-the use of a header file in your program by "including" it, with the C
-preprocessing directive '#include'.
-
- Header files serve two purposes.
-
- * System header files declare the interfaces to parts of the
- operating system. You include them in your program to supply the
- definitions and declarations you need to invoke system calls and
- libraries.
-
- * Your own header files contain declarations for interfaces between
- the source files of your program. Each time you have a group of
- related declarations and macro definitions all or most of which are
- needed in several different source files, it is a good idea to
- create a header file for them.
-
- Including a header file produces the same results as copying the
-header file into each source file that needs it. Such copying would be
-time-consuming and error-prone. With a header file, the related
-declarations appear in only one place. If they need to be changed, they
-can be changed in one place, and programs that include the header file
-will automatically use the new version when next recompiled. The header
-file eliminates the labor of finding and changing all the copies as well
-as the risk that a failure to find one copy will result in
-inconsistencies within a program.
-
- In C, the usual convention is to give header files names that end
-with '.h'. It is most portable to use only letters, digits, dashes, and
-underscores in header file names, and at most one dot.
-
-* Menu:
-
-* Include Syntax::
-* Include Operation::
-* Search Path::
-* Once-Only Headers::
-* Alternatives to Wrapper #ifndef::
-* Computed Includes::
-* Wrapper Headers::
-* System Headers::
-
-
-File: cpp.info, Node: Include Syntax, Next: Include Operation, Up: Header Files
-
-2.1 Include Syntax
-==================
-
-Both user and system header files are included using the preprocessing
-directive '#include'. It has two variants:
-
-'#include <FILE>'
- This variant is used for system header files. It searches for a
- file named FILE in a standard list of system directories. You can
- prepend directories to this list with the '-I' option (*note
- Invocation::).
-
-'#include "FILE"'
- This variant is used for header files of your own program. It
- searches for a file named FILE first in the directory containing
- the current file, then in the quote directories and then the same
- directories used for '<FILE>'. You can prepend directories to the
- list of quote directories with the '-iquote' option.
-
- The argument of '#include', whether delimited with quote marks or
-angle brackets, behaves like a string constant in that comments are not
-recognized, and macro names are not expanded. Thus, '#include <x/*y>'
-specifies inclusion of a system header file named 'x/*y'.
-
- However, if backslashes occur within FILE, they are considered
-ordinary text characters, not escape characters. None of the character
-escape sequences appropriate to string constants in C are processed.
-Thus, '#include "x\n\\y"' specifies a filename containing three
-backslashes. (Some systems interpret '\' as a pathname separator. All
-of these also interpret '/' the same way. It is most portable to use
-only '/'.)
-
- It is an error if there is anything (other than comments) on the line
-after the file name.
-
-
-File: cpp.info, Node: Include Operation, Next: Search Path, Prev: Include Syntax, Up: Header Files
-
-2.2 Include Operation
-=====================
-
-The '#include' directive works by directing the C preprocessor to scan
-the specified file as input before continuing with the rest of the
-current file. The output from the preprocessor contains the output
-already generated, followed by the output resulting from the included
-file, followed by the output that comes from the text after the
-'#include' directive. For example, if you have a header file 'header.h'
-as follows,
-
- char *test (void);
-
-and a main program called 'program.c' that uses the header file, like
-this,
-
- int x;
- #include "header.h"
-
- int
- main (void)
- {
- puts (test ());
- }
-
-the compiler will see the same token stream as it would if 'program.c'
-read
-
- int x;
- char *test (void);
-
- int
- main (void)
- {
- puts (test ());
- }
-
- Included files are not limited to declarations and macro definitions;
-those are merely the typical uses. Any fragment of a C program can be
-included from another file. The include file could even contain the
-beginning of a statement that is concluded in the containing file, or
-the end of a statement that was started in the including file. However,
-an included file must consist of complete tokens. Comments and string
-literals which have not been closed by the end of an included file are
-invalid. For error recovery, they are considered to end at the end of
-the file.
-
- To avoid confusion, it is best if header files contain only complete
-syntactic units--function declarations or definitions, type
-declarations, etc.
-
- The line following the '#include' directive is always treated as a
-separate line by the C preprocessor, even if the included file lacks a
-final newline.
-
-
-File: cpp.info, Node: Search Path, Next: Once-Only Headers, Prev: Include Operation, Up: Header Files
-
-2.3 Search Path
-===============
-
-GCC looks in several different places for headers. On a normal Unix
-system, if you do not instruct it otherwise, it will look for headers
-requested with '#include <FILE>' in:
-
- /usr/local/include
- LIBDIR/gcc/TARGET/VERSION/include
- /usr/TARGET/include
- /usr/include
-
- For C++ programs, it will also look in
-'LIBDIR/../include/c++/VERSION', first. In the above, TARGET is the
-canonical name of the system GCC was configured to compile code for;
-often but not always the same as the canonical name of the system it
-runs on. VERSION is the version of GCC in use.
-
- You can add to this list with the '-IDIR' command line option. All
-the directories named by '-I' are searched, in left-to-right order,
-_before_ the default directories. The only exception is when 'dir' is
-already searched by default. In this case, the option is ignored and
-the search order for system directories remains unchanged.
-
- Duplicate directories are removed from the quote and bracket search
-chains before the two chains are merged to make the final search chain.
-Thus, it is possible for a directory to occur twice in the final search
-chain if it was specified in both the quote and bracket chains.
-
- You can prevent GCC from searching any of the default directories
-with the '-nostdinc' option. This is useful when you are compiling an
-operating system kernel or some other program that does not use the
-standard C library facilities, or the standard C library itself. '-I'
-options are not ignored as described above when '-nostdinc' is in
-effect.
-
- GCC looks for headers requested with '#include "FILE"' first in the
-directory containing the current file, then in the directories as
-specified by '-iquote' options, then in the same places it would have
-looked for a header requested with angle brackets. For example, if
-'/usr/include/sys/stat.h' contains '#include "types.h"', GCC looks for
-'types.h' first in '/usr/include/sys', then in its usual search path.
-
- '#line' (*note Line Control::) does not change GCC's idea of the
-directory containing the current file.
-
- You may put '-I-' at any point in your list of '-I' options. This
-has two effects. First, directories appearing before the '-I-' in the
-list are searched only for headers requested with quote marks.
-Directories after '-I-' are searched for all headers. Second, the
-directory containing the current file is not searched for anything,
-unless it happens to be one of the directories named by an '-I' switch.
-'-I-' is deprecated, '-iquote' should be used instead.
-
- '-I. -I-' is not the same as no '-I' options at all, and does not
-cause the same behavior for '<>' includes that '""' includes get with no
-special options. '-I.' searches the compiler's current working
-directory for header files. That may or may not be the same as the
-directory containing the current file.
-
- If you need to look for headers in a directory named '-', write
-'-I./-'.
-
- There are several more ways to adjust the header search path. They
-are generally less useful. *Note Invocation::.
-
-
-File: cpp.info, Node: Once-Only Headers, Next: Alternatives to Wrapper #ifndef, Prev: Search Path, Up: Header Files
-
-2.4 Once-Only Headers
-=====================
-
-If a header file happens to be included twice, the compiler will process
-its contents twice. This is very likely to cause an error, e.g. when
-the compiler sees the same structure definition twice. Even if it does
-not, it will certainly waste time.
-
- The standard way to prevent this is to enclose the entire real
-contents of the file in a conditional, like this:
-
- /* File foo. */
- #ifndef FILE_FOO_SEEN
- #define FILE_FOO_SEEN
-
- THE ENTIRE FILE
-
- #endif /* !FILE_FOO_SEEN */
-
- This construct is commonly known as a "wrapper #ifndef". When the
-header is included again, the conditional will be false, because
-'FILE_FOO_SEEN' is defined. The preprocessor will skip over the entire
-contents of the file, and the compiler will not see it twice.
-
- CPP optimizes even further. It remembers when a header file has a
-wrapper '#ifndef'. If a subsequent '#include' specifies that header,
-and the macro in the '#ifndef' is still defined, it does not bother to
-rescan the file at all.
-
- You can put comments outside the wrapper. They will not interfere
-with this optimization.
-
- The macro 'FILE_FOO_SEEN' is called the "controlling macro" or "guard
-macro". In a user header file, the macro name should not begin with
-'_'. In a system header file, it should begin with '__' to avoid
-conflicts with user programs. In any kind of header file, the macro
-name should contain the name of the file and some additional text, to
-avoid conflicts with other header files.
-
-
-File: cpp.info, Node: Alternatives to Wrapper #ifndef, Next: Computed Includes, Prev: Once-Only Headers, Up: Header Files
-
-2.5 Alternatives to Wrapper #ifndef
-===================================
-
-CPP supports two more ways of indicating that a header file should be
-read only once. Neither one is as portable as a wrapper '#ifndef' and
-we recommend you do not use them in new programs, with the caveat that
-'#import' is standard practice in Objective-C.
-
- CPP supports a variant of '#include' called '#import' which includes
-a file, but does so at most once. If you use '#import' instead of
-'#include', then you don't need the conditionals inside the header file
-to prevent multiple inclusion of the contents. '#import' is standard in
-Objective-C, but is considered a deprecated extension in C and C++.
-
- '#import' is not a well designed feature. It requires the users of a
-header file to know that it should only be included once. It is much
-better for the header file's implementor to write the file so that users
-don't need to know this. Using a wrapper '#ifndef' accomplishes this
-goal.
-
- In the present implementation, a single use of '#import' will prevent
-the file from ever being read again, by either '#import' or '#include'.
-You should not rely on this; do not use both '#import' and '#include' to
-refer to the same header file.
-
- Another way to prevent a header file from being included more than
-once is with the '#pragma once' directive. If '#pragma once' is seen
-when scanning a header file, that file will never be read again, no
-matter what.
-
- '#pragma once' does not have the problems that '#import' does, but it
-is not recognized by all preprocessors, so you cannot rely on it in a
-portable program.
-
-
-File: cpp.info, Node: Computed Includes, Next: Wrapper Headers, Prev: Alternatives to Wrapper #ifndef, Up: Header Files
-
-2.6 Computed Includes
-=====================
-
-Sometimes it is necessary to select one of several different header
-files to be included into your program. They might specify
-configuration parameters to be used on different sorts of operating
-systems, for instance. You could do this with a series of conditionals,
-
- #if SYSTEM_1
- # include "system_1.h"
- #elif SYSTEM_2
- # include "system_2.h"
- #elif SYSTEM_3
- ...
- #endif
-
- That rapidly becomes tedious. Instead, the preprocessor offers the
-ability to use a macro for the header name. This is called a "computed
-include". Instead of writing a header name as the direct argument of
-'#include', you simply put a macro name there instead:
-
- #define SYSTEM_H "system_1.h"
- ...
- #include SYSTEM_H
-
-'SYSTEM_H' will be expanded, and the preprocessor will look for
-'system_1.h' as if the '#include' had been written that way originally.
-'SYSTEM_H' could be defined by your Makefile with a '-D' option.
-
- You must be careful when you define the macro. '#define' saves
-tokens, not text. The preprocessor has no way of knowing that the macro
-will be used as the argument of '#include', so it generates ordinary
-tokens, not a header name. This is unlikely to cause problems if you
-use double-quote includes, which are close enough to string constants.
-If you use angle brackets, however, you may have trouble.
-
- The syntax of a computed include is actually a bit more general than
-the above. If the first non-whitespace character after '#include' is
-not '"' or '<', then the entire line is macro-expanded like running text
-would be.
-
- If the line expands to a single string constant, the contents of that
-string constant are the file to be included. CPP does not re-examine
-the string for embedded quotes, but neither does it process backslash
-escapes in the string. Therefore
-
- #define HEADER "a\"b"
- #include HEADER
-
-looks for a file named 'a\"b'. CPP searches for the file according to
-the rules for double-quoted includes.
-
- If the line expands to a token stream beginning with a '<' token and
-including a '>' token, then the tokens between the '<' and the first '>'
-are combined to form the filename to be included. Any whitespace
-between tokens is reduced to a single space; then any space after the
-initial '<' is retained, but a trailing space before the closing '>' is
-ignored. CPP searches for the file according to the rules for
-angle-bracket includes.
-
- In either case, if there are any tokens on the line after the file
-name, an error occurs and the directive is not processed. It is also an
-error if the result of expansion does not match either of the two
-expected forms.
-
- These rules are implementation-defined behavior according to the C
-standard. To minimize the risk of different compilers interpreting your
-computed includes differently, we recommend you use only a single
-object-like macro which expands to a string constant. This will also
-minimize confusion for people reading your program.
-
-
-File: cpp.info, Node: Wrapper Headers, Next: System Headers, Prev: Computed Includes, Up: Header Files
-
-2.7 Wrapper Headers
-===================
-
-Sometimes it is necessary to adjust the contents of a system-provided
-header file without editing it directly. GCC's 'fixincludes' operation
-does this, for example. One way to do that would be to create a new
-header file with the same name and insert it in the search path before
-the original header. That works fine as long as you're willing to
-replace the old header entirely. But what if you want to refer to the
-old header from the new one?
-
- You cannot simply include the old header with '#include'. That will
-start from the beginning, and find your new header again. If your
-header is not protected from multiple inclusion (*note Once-Only
-Headers::), it will recurse infinitely and cause a fatal error.
-
- You could include the old header with an absolute pathname:
- #include "/usr/include/old-header.h"
-This works, but is not clean; should the system headers ever move, you
-would have to edit the new headers to match.
-
- There is no way to solve this problem within the C standard, but you
-can use the GNU extension '#include_next'. It means, "Include the
-_next_ file with this name". This directive works like '#include'
-except in searching for the specified file: it starts searching the list
-of header file directories _after_ the directory in which the current
-file was found.
-
- Suppose you specify '-I /usr/local/include', and the list of
-directories to search also includes '/usr/include'; and suppose both
-directories contain 'signal.h'. Ordinary '#include <signal.h>' finds
-the file under '/usr/local/include'. If that file contains
-'#include_next <signal.h>', it starts searching after that directory,
-and finds the file in '/usr/include'.
-
- '#include_next' does not distinguish between '<FILE>' and '"FILE"'
-inclusion, nor does it check that the file you specify has the same name
-as the current file. It simply looks for the file named, starting with
-the directory in the search path after the one where the current file
-was found.
-
- The use of '#include_next' can lead to great confusion. We recommend
-it be used only when there is no other alternative. In particular, it
-should not be used in the headers belonging to a specific program; it
-should be used only to make global corrections along the lines of
-'fixincludes'.
-
-
-File: cpp.info, Node: System Headers, Prev: Wrapper Headers, Up: Header Files
-
-2.8 System Headers
-==================
-
-The header files declaring interfaces to the operating system and
-runtime libraries often cannot be written in strictly conforming C.
-Therefore, GCC gives code found in "system headers" special treatment.
-All warnings, other than those generated by '#warning' (*note
-Diagnostics::), are suppressed while GCC is processing a system header.
-Macros defined in a system header are immune to a few warnings wherever
-they are expanded. This immunity is granted on an ad-hoc basis, when we
-find that a warning generates lots of false positives because of code in
-macros defined in system headers.
-
- Normally, only the headers found in specific directories are
-considered system headers. These directories are determined when GCC is
-compiled. There are, however, two ways to make normal headers into
-system headers.
-
- The '-isystem' command line option adds its argument to the list of
-directories to search for headers, just like '-I'. Any headers found in
-that directory will be considered system headers.
-
- All directories named by '-isystem' are searched _after_ all
-directories named by '-I', no matter what their order was on the command
-line. If the same directory is named by both '-I' and '-isystem', the
-'-I' option is ignored. GCC provides an informative message when this
-occurs if '-v' is used.
-
- There is also a directive, '#pragma GCC system_header', which tells
-GCC to consider the rest of the current include file a system header, no
-matter where it was found. Code that comes before the '#pragma' in the
-file will not be affected. '#pragma GCC system_header' has no effect in
-the primary source file.
-
- On very old systems, some of the pre-defined system header
-directories get even more special treatment. GNU C++ considers code in
-headers found in those directories to be surrounded by an 'extern "C"'
-block. There is no way to request this behavior with a '#pragma', or
-from the command line.
-
-
-File: cpp.info, Node: Macros, Next: Conditionals, Prev: Header Files, Up: Top
-
-3 Macros
-********
-
-A "macro" is a fragment of code which has been given a name. Whenever
-the name is used, it is replaced by the contents of the macro. There
-are two kinds of macros. They differ mostly in what they look like when
-they are used. "Object-like" macros resemble data objects when used,
-"function-like" macros resemble function calls.
-
- You may define any valid identifier as a macro, even if it is a C
-keyword. The preprocessor does not know anything about keywords. This
-can be useful if you wish to hide a keyword such as 'const' from an
-older compiler that does not understand it. However, the preprocessor
-operator 'defined' (*note Defined::) can never be defined as a macro,
-and C++'s named operators (*note C++ Named Operators::) cannot be macros
-when you are compiling C++.
-
-* Menu:
-
-* Object-like Macros::
-* Function-like Macros::
-* Macro Arguments::
-* Stringification::
-* Concatenation::
-* Variadic Macros::
-* Predefined Macros::
-* Undefining and Redefining Macros::
-* Directives Within Macro Arguments::
-* Macro Pitfalls::
-
-
-File: cpp.info, Node: Object-like Macros, Next: Function-like Macros, Up: Macros
-
-3.1 Object-like Macros
-======================
-
-An "object-like macro" is a simple identifier which will be replaced by
-a code fragment. It is called object-like because it looks like a data
-object in code that uses it. They are most commonly used to give
-symbolic names to numeric constants.
-
- You create macros with the '#define' directive. '#define' is
-followed by the name of the macro and then the token sequence it should
-be an abbreviation for, which is variously referred to as the macro's
-"body", "expansion" or "replacement list". For example,
-
- #define BUFFER_SIZE 1024
-
-defines a macro named 'BUFFER_SIZE' as an abbreviation for the token
-'1024'. If somewhere after this '#define' directive there comes a C
-statement of the form
-
- foo = (char *) malloc (BUFFER_SIZE);
-
-then the C preprocessor will recognize and "expand" the macro
-'BUFFER_SIZE'. The C compiler will see the same tokens as it would if
-you had written
-
- foo = (char *) malloc (1024);
-
- By convention, macro names are written in uppercase. Programs are
-easier to read when it is possible to tell at a glance which names are
-macros.
-
- The macro's body ends at the end of the '#define' line. You may
-continue the definition onto multiple lines, if necessary, using
-backslash-newline. When the macro is expanded, however, it will all
-come out on one line. For example,
-
- #define NUMBERS 1, \
- 2, \
- 3
- int x[] = { NUMBERS };
- ==> int x[] = { 1, 2, 3 };
-
-The most common visible consequence of this is surprising line numbers
-in error messages.
-
- There is no restriction on what can go in a macro body provided it
-decomposes into valid preprocessing tokens. Parentheses need not
-balance, and the body need not resemble valid C code. (If it does not,
-you may get error messages from the C compiler when you use the macro.)
-
- The C preprocessor scans your program sequentially. Macro
-definitions take effect at the place you write them. Therefore, the
-following input to the C preprocessor
-
- foo = X;
- #define X 4
- bar = X;
-
-produces
-
- foo = X;
- bar = 4;
-
- When the preprocessor expands a macro name, the macro's expansion
-replaces the macro invocation, then the expansion is examined for more
-macros to expand. For example,
-
- #define TABLESIZE BUFSIZE
- #define BUFSIZE 1024
- TABLESIZE
- ==> BUFSIZE
- ==> 1024
-
-'TABLESIZE' is expanded first to produce 'BUFSIZE', then that macro is
-expanded to produce the final result, '1024'.
-
- Notice that 'BUFSIZE' was not defined when 'TABLESIZE' was defined.
-The '#define' for 'TABLESIZE' uses exactly the expansion you specify--in
-this case, 'BUFSIZE'--and does not check to see whether it too contains
-macro names. Only when you _use_ 'TABLESIZE' is the result of its
-expansion scanned for more macro names.
-
- This makes a difference if you change the definition of 'BUFSIZE' at
-some point in the source file. 'TABLESIZE', defined as shown, will
-always expand using the definition of 'BUFSIZE' that is currently in
-effect:
-
- #define BUFSIZE 1020
- #define TABLESIZE BUFSIZE
- #undef BUFSIZE
- #define BUFSIZE 37
-
-Now 'TABLESIZE' expands (in two stages) to '37'.
-
- If the expansion of a macro contains its own name, either directly or
-via intermediate macros, it is not expanded again when the expansion is
-examined for more macros. This prevents infinite recursion. *Note
-Self-Referential Macros::, for the precise details.
-
-
-File: cpp.info, Node: Function-like Macros, Next: Macro Arguments, Prev: Object-like Macros, Up: Macros
-
-3.2 Function-like Macros
-========================
-
-You can also define macros whose use looks like a function call. These
-are called "function-like macros". To define a function-like macro, you
-use the same '#define' directive, but you put a pair of parentheses
-immediately after the macro name. For example,
-
- #define lang_init() c_init()
- lang_init()
- ==> c_init()
-
- A function-like macro is only expanded if its name appears with a
-pair of parentheses after it. If you write just the name, it is left
-alone. This can be useful when you have a function and a macro of the
-same name, and you wish to use the function sometimes.
-
- extern void foo(void);
- #define foo() /* optimized inline version */
- ...
- foo();
- funcptr = foo;
-
- Here the call to 'foo()' will use the macro, but the function pointer
-will get the address of the real function. If the macro were to be
-expanded, it would cause a syntax error.
-
- If you put spaces between the macro name and the parentheses in the
-macro definition, that does not define a function-like macro, it defines
-an object-like macro whose expansion happens to begin with a pair of
-parentheses.
-
- #define lang_init () c_init()
- lang_init()
- ==> () c_init()()
-
- The first two pairs of parentheses in this expansion come from the
-macro. The third is the pair that was originally after the macro
-invocation. Since 'lang_init' is an object-like macro, it does not
-consume those parentheses.
-
-
-File: cpp.info, Node: Macro Arguments, Next: Stringification, Prev: Function-like Macros, Up: Macros
-
-3.3 Macro Arguments
-===================
-
-Function-like macros can take "arguments", just like true functions. To
-define a macro that uses arguments, you insert "parameters" between the
-pair of parentheses in the macro definition that make the macro
-function-like. The parameters must be valid C identifiers, separated by
-commas and optionally whitespace.
-
- To invoke a macro that takes arguments, you write the name of the
-macro followed by a list of "actual arguments" in parentheses, separated
-by commas. The invocation of the macro need not be restricted to a
-single logical line--it can cross as many lines in the source file as
-you wish. The number of arguments you give must match the number of
-parameters in the macro definition. When the macro is expanded, each
-use of a parameter in its body is replaced by the tokens of the
-corresponding argument. (You need not use all of the parameters in the
-macro body.)
-
- As an example, here is a macro that computes the minimum of two
-numeric values, as it is defined in many C programs, and some uses.
-
- #define min(X, Y) ((X) < (Y) ? (X) : (Y))
- x = min(a, b); ==> x = ((a) < (b) ? (a) : (b));
- y = min(1, 2); ==> y = ((1) < (2) ? (1) : (2));
- z = min(a + 28, *p); ==> z = ((a + 28) < (*p) ? (a + 28) : (*p));
-
-(In this small example you can already see several of the dangers of
-macro arguments. *Note Macro Pitfalls::, for detailed explanations.)
-
- Leading and trailing whitespace in each argument is dropped, and all
-whitespace between the tokens of an argument is reduced to a single
-space. Parentheses within each argument must balance; a comma within
-such parentheses does not end the argument. However, there is no
-requirement for square brackets or braces to balance, and they do not
-prevent a comma from separating arguments. Thus,
-
- macro (array[x = y, x + 1])
-
-passes two arguments to 'macro': 'array[x = y' and 'x + 1]'. If you
-want to supply 'array[x = y, x + 1]' as an argument, you can write it as
-'array[(x = y, x + 1)]', which is equivalent C code.
-
- All arguments to a macro are completely macro-expanded before they
-are substituted into the macro body. After substitution, the complete
-text is scanned again for macros to expand, including the arguments.
-This rule may seem strange, but it is carefully designed so you need not
-worry about whether any function call is actually a macro invocation.
-You can run into trouble if you try to be too clever, though. *Note
-Argument Prescan::, for detailed discussion.
-
- For example, 'min (min (a, b), c)' is first expanded to
-
- min (((a) < (b) ? (a) : (b)), (c))
-
-and then to
-
- ((((a) < (b) ? (a) : (b))) < (c)
- ? (((a) < (b) ? (a) : (b)))
- : (c))
-
-(Line breaks shown here for clarity would not actually be generated.)
-
- You can leave macro arguments empty; this is not an error to the
-preprocessor (but many macros will then expand to invalid code). You
-cannot leave out arguments entirely; if a macro takes two arguments,
-there must be exactly one comma at the top level of its argument list.
-Here are some silly examples using 'min':
-
- min(, b) ==> (( ) < (b) ? ( ) : (b))
- min(a, ) ==> ((a ) < ( ) ? (a ) : ( ))
- min(,) ==> (( ) < ( ) ? ( ) : ( ))
- min((,),) ==> (((,)) < ( ) ? ((,)) : ( ))
-
- min() error-> macro "min" requires 2 arguments, but only 1 given
- min(,,) error-> macro "min" passed 3 arguments, but takes just 2
-
- Whitespace is not a preprocessing token, so if a macro 'foo' takes
-one argument, 'foo ()' and 'foo ( )' both supply it an empty argument.
-Previous GNU preprocessor implementations and documentation were
-incorrect on this point, insisting that a function-like macro that takes
-a single argument be passed a space if an empty argument was required.
-
- Macro parameters appearing inside string literals are not replaced by
-their corresponding actual arguments.
-
- #define foo(x) x, "x"
- foo(bar) ==> bar, "x"
-
-
-File: cpp.info, Node: Stringification, Next: Concatenation, Prev: Macro Arguments, Up: Macros
-
-3.4 Stringification
-===================
-
-Sometimes you may want to convert a macro argument into a string
-constant. Parameters are not replaced inside string constants, but you
-can use the '#' preprocessing operator instead. When a macro parameter
-is used with a leading '#', the preprocessor replaces it with the
-literal text of the actual argument, converted to a string constant.
-Unlike normal parameter replacement, the argument is not macro-expanded
-first. This is called "stringification".
-
- There is no way to combine an argument with surrounding text and
-stringify it all together. Instead, you can write a series of adjacent
-string constants and stringified arguments. The preprocessor will
-replace the stringified arguments with string constants. The C compiler
-will then combine all the adjacent string constants into one long
-string.
-
- Here is an example of a macro definition that uses stringification:
-
- #define WARN_IF(EXP) \
- do { if (EXP) \
- fprintf (stderr, "Warning: " #EXP "\n"); } \
- while (0)
- WARN_IF (x == 0);
- ==> do { if (x == 0)
- fprintf (stderr, "Warning: " "x == 0" "\n"); } while (0);
-
-The argument for 'EXP' is substituted once, as-is, into the 'if'
-statement, and once, stringified, into the argument to 'fprintf'. If
-'x' were a macro, it would be expanded in the 'if' statement, but not in
-the string.
-
- The 'do' and 'while (0)' are a kludge to make it possible to write
-'WARN_IF (ARG);', which the resemblance of 'WARN_IF' to a function would
-make C programmers want to do; see *note Swallowing the Semicolon::.
-
- Stringification in C involves more than putting double-quote
-characters around the fragment. The preprocessor backslash-escapes the
-quotes surrounding embedded string constants, and all backslashes within
-string and character constants, in order to get a valid C string
-constant with the proper contents. Thus, stringifying 'p = "foo\n";'
-results in "p = \"foo\\n\";". However, backslashes that are not inside
-string or character constants are not duplicated: '\n' by itself
-stringifies to "\n".
-
- All leading and trailing whitespace in text being stringified is
-ignored. Any sequence of whitespace in the middle of the text is
-converted to a single space in the stringified result. Comments are
-replaced by whitespace long before stringification happens, so they
-never appear in stringified text.
-
- There is no way to convert a macro argument into a character
-constant.
-
- If you want to stringify the result of expansion of a macro argument,
-you have to use two levels of macros.
-
- #define xstr(s) str(s)
- #define str(s) #s
- #define foo 4
- str (foo)
- ==> "foo"
- xstr (foo)
- ==> xstr (4)
- ==> str (4)
- ==> "4"
-
- 's' is stringified when it is used in 'str', so it is not
-macro-expanded first. But 's' is an ordinary argument to 'xstr', so it
-is completely macro-expanded before 'xstr' itself is expanded (*note
-Argument Prescan::). Therefore, by the time 'str' gets to its argument,
-it has already been macro-expanded.
-
-
-File: cpp.info, Node: Concatenation, Next: Variadic Macros, Prev: Stringification, Up: Macros
-
-3.5 Concatenation
-=================
-
-It is often useful to merge two tokens into one while expanding macros.
-This is called "token pasting" or "token concatenation". The '##'
-preprocessing operator performs token pasting. When a macro is
-expanded, the two tokens on either side of each '##' operator are
-combined into a single token, which then replaces the '##' and the two
-original tokens in the macro expansion. Usually both will be
-identifiers, or one will be an identifier and the other a preprocessing
-number. When pasted, they make a longer identifier. This isn't the
-only valid case. It is also possible to concatenate two numbers (or a
-number and a name, such as '1.5' and 'e3') into a number. Also,
-multi-character operators such as '+=' can be formed by token pasting.
-
- However, two tokens that don't together form a valid token cannot be
-pasted together. For example, you cannot concatenate 'x' with '+' in
-either order. If you try, the preprocessor issues a warning and emits
-the two tokens. Whether it puts white space between the tokens is
-undefined. It is common to find unnecessary uses of '##' in complex
-macros. If you get this warning, it is likely that you can simply
-remove the '##'.
-
- Both the tokens combined by '##' could come from the macro body, but
-you could just as well write them as one token in the first place.
-Token pasting is most useful when one or both of the tokens comes from a
-macro argument. If either of the tokens next to an '##' is a parameter
-name, it is replaced by its actual argument before '##' executes. As
-with stringification, the actual argument is not macro-expanded first.
-If the argument is empty, that '##' has no effect.
-
- Keep in mind that the C preprocessor converts comments to whitespace
-before macros are even considered. Therefore, you cannot create a
-comment by concatenating '/' and '*'. You can put as much whitespace
-between '##' and its operands as you like, including comments, and you
-can put comments in arguments that will be concatenated. However, it is
-an error if '##' appears at either end of a macro body.
-
- Consider a C program that interprets named commands. There probably
-needs to be a table of commands, perhaps an array of structures declared
-as follows:
-
- struct command
- {
- char *name;
- void (*function) (void);
- };
-
- struct command commands[] =
- {
- { "quit", quit_command },
- { "help", help_command },
- ...
- };
-
- It would be cleaner not to have to give each command name twice, once
-in the string constant and once in the function name. A macro which
-takes the name of a command as an argument can make this unnecessary.
-The string constant can be created with stringification, and the
-function name by concatenating the argument with '_command'. Here is
-how it is done:
-
- #define COMMAND(NAME) { #NAME, NAME ## _command }
-
- struct command commands[] =
- {
- COMMAND (quit),
- COMMAND (help),
- ...
- };
-
-
-File: cpp.info, Node: Variadic Macros, Next: Predefined Macros, Prev: Concatenation, Up: Macros
-
-3.6 Variadic Macros
-===================
-
-A macro can be declared to accept a variable number of arguments much as
-a function can. The syntax for defining the macro is similar to that of
-a function. Here is an example:
-
- #define eprintf(...) fprintf (stderr, __VA_ARGS__)
-
- This kind of macro is called "variadic". When the macro is invoked,
-all the tokens in its argument list after the last named argument (this
-macro has none), including any commas, become the "variable argument".
-This sequence of tokens replaces the identifier '__VA_ARGS__' in the
-macro body wherever it appears. Thus, we have this expansion:
-
- eprintf ("%s:%d: ", input_file, lineno)
- ==> fprintf (stderr, "%s:%d: ", input_file, lineno)
-
- The variable argument is completely macro-expanded before it is
-inserted into the macro expansion, just like an ordinary argument. You
-may use the '#' and '##' operators to stringify the variable argument or
-to paste its leading or trailing token with another token. (But see
-below for an important special case for '##'.)
-
- If your macro is complicated, you may want a more descriptive name
-for the variable argument than '__VA_ARGS__'. CPP permits this, as an
-extension. You may write an argument name immediately before the '...';
-that name is used for the variable argument. The 'eprintf' macro above
-could be written
-
- #define eprintf(args...) fprintf (stderr, args)
-
-using this extension. You cannot use '__VA_ARGS__' and this extension
-in the same macro.
-
- You can have named arguments as well as variable arguments in a
-variadic macro. We could define 'eprintf' like this, instead:
-
- #define eprintf(format, ...) fprintf (stderr, format, __VA_ARGS__)
-
-This formulation looks more descriptive, but unfortunately it is less
-flexible: you must now supply at least one argument after the format
-string. In standard C, you cannot omit the comma separating the named
-argument from the variable arguments. Furthermore, if you leave the
-variable argument empty, you will get a syntax error, because there will
-be an extra comma after the format string.
-
- eprintf("success!\n", );
- ==> fprintf(stderr, "success!\n", );
-
- GNU CPP has a pair of extensions which deal with this problem.
-First, you are allowed to leave the variable argument out entirely:
-
- eprintf ("success!\n")
- ==> fprintf(stderr, "success!\n", );
-
-Second, the '##' token paste operator has a special meaning when placed
-between a comma and a variable argument. If you write
-
- #define eprintf(format, ...) fprintf (stderr, format, ##__VA_ARGS__)
-
-and the variable argument is left out when the 'eprintf' macro is used,
-then the comma before the '##' will be deleted. This does _not_ happen
-if you pass an empty argument, nor does it happen if the token preceding
-'##' is anything other than a comma.
-
- eprintf ("success!\n")
- ==> fprintf(stderr, "success!\n");
-
-The above explanation is ambiguous about the case where the only macro
-parameter is a variable arguments parameter, as it is meaningless to try
-to distinguish whether no argument at all is an empty argument or a
-missing argument. In this case the C99 standard is clear that the comma
-must remain, however the existing GCC extension used to swallow the
-comma. So CPP retains the comma when conforming to a specific C
-standard, and drops it otherwise.
-
- C99 mandates that the only place the identifier '__VA_ARGS__' can
-appear is in the replacement list of a variadic macro. It may not be
-used as a macro name, macro argument name, or within a different type of
-macro. It may also be forbidden in open text; the standard is
-ambiguous. We recommend you avoid using it except for its defined
-purpose.
-
- Variadic macros are a new feature in C99. GNU CPP has supported them
-for a long time, but only with a named variable argument ('args...', not
-'...' and '__VA_ARGS__'). If you are concerned with portability to
-previous versions of GCC, you should use only named variable arguments.
-On the other hand, if you are concerned with portability to other
-conforming implementations of C99, you should use only '__VA_ARGS__'.
-
- Previous versions of CPP implemented the comma-deletion extension
-much more generally. We have restricted it in this release to minimize
-the differences from C99. To get the same effect with both this and
-previous versions of GCC, the token preceding the special '##' must be a
-comma, and there must be white space between that comma and whatever
-comes immediately before it:
-
- #define eprintf(format, args...) fprintf (stderr, format , ##args)
-
-*Note Differences from previous versions::, for the gory details.
-
-
-File: cpp.info, Node: Predefined Macros, Next: Undefining and Redefining Macros, Prev: Variadic Macros, Up: Macros
-
-3.7 Predefined Macros
-=====================
-
-Several object-like macros are predefined; you use them without
-supplying their definitions. They fall into three classes: standard,
-common, and system-specific.
-
- In C++, there is a fourth category, the named operators. They act
-like predefined macros, but you cannot undefine them.
-
-* Menu:
-
-* Standard Predefined Macros::
-* Common Predefined Macros::
-* System-specific Predefined Macros::
-* C++ Named Operators::
-
-
-File: cpp.info, Node: Standard Predefined Macros, Next: Common Predefined Macros, Up: Predefined Macros
-
-3.7.1 Standard Predefined Macros
---------------------------------
-
-The standard predefined macros are specified by the relevant language
-standards, so they are available with all compilers that implement those
-standards. Older compilers may not provide all of them. Their names
-all start with double underscores.
-
-'__FILE__'
- This macro expands to the name of the current input file, in the
- form of a C string constant. This is the path by which the
- preprocessor opened the file, not the short name specified in
- '#include' or as the input file name argument. For example,
- '"/usr/local/include/myheader.h"' is a possible expansion of this
- macro.
-
-'__LINE__'
- This macro expands to the current input line number, in the form of
- a decimal integer constant. While we call it a predefined macro,
- it's a pretty strange macro, since its "definition" changes with
- each new line of source code.
-
- '__FILE__' and '__LINE__' are useful in generating an error message
-to report an inconsistency detected by the program; the message can
-state the source line at which the inconsistency was detected. For
-example,
-
- fprintf (stderr, "Internal error: "
- "negative string length "
- "%d at %s, line %d.",
- length, __FILE__, __LINE__);
-
- An '#include' directive changes the expansions of '__FILE__' and
-'__LINE__' to correspond to the included file. At the end of that file,
-when processing resumes on the input file that contained the '#include'
-directive, the expansions of '__FILE__' and '__LINE__' revert to the
-values they had before the '#include' (but '__LINE__' is then
-incremented by one as processing moves to the line after the
-'#include').
-
- A '#line' directive changes '__LINE__', and may change '__FILE__' as
-well. *Note Line Control::.
-
- C99 introduces '__func__', and GCC has provided '__FUNCTION__' for a
-long time. Both of these are strings containing the name of the current
-function (there are slight semantic differences; see the GCC manual).
-Neither of them is a macro; the preprocessor does not know the name of
-the current function. They tend to be useful in conjunction with
-'__FILE__' and '__LINE__', though.
-
-'__DATE__'
- This macro expands to a string constant that describes the date on
- which the preprocessor is being run. The string constant contains
- eleven characters and looks like '"Feb 12 1996"'. If the day of
- the month is less than 10, it is padded with a space on the left.
-
- If GCC cannot determine the current date, it will emit a warning
- message (once per compilation) and '__DATE__' will expand to
- '"??? ?? ????"'.
-
-'__TIME__'
- This macro expands to a string constant that describes the time at
- which the preprocessor is being run. The string constant contains
- eight characters and looks like '"23:59:01"'.
-
- If GCC cannot determine the current time, it will emit a warning
- message (once per compilation) and '__TIME__' will expand to
- '"??:??:??"'.
-
-'__STDC__'
- In normal operation, this macro expands to the constant 1, to
- signify that this compiler conforms to ISO Standard C. If GNU CPP
- is used with a compiler other than GCC, this is not necessarily
- true; however, the preprocessor always conforms to the standard
- unless the '-traditional-cpp' option is used.
-
- This macro is not defined if the '-traditional-cpp' option is used.
-
- On some hosts, the system compiler uses a different convention,
- where '__STDC__' is normally 0, but is 1 if the user specifies
- strict conformance to the C Standard. CPP follows the host
- convention when processing system header files, but when processing
- user files '__STDC__' is always 1. This has been reported to cause
- problems; for instance, some versions of Solaris provide X Windows
- headers that expect '__STDC__' to be either undefined or 1. *Note
- Invocation::.
-
-'__STDC_VERSION__'
- This macro expands to the C Standard's version number, a long
- integer constant of the form 'YYYYMML' where YYYY and MM are the
- year and month of the Standard version. This signifies which
- version of the C Standard the compiler conforms to. Like
- '__STDC__', this is not necessarily accurate for the entire
- implementation, unless GNU CPP is being used with GCC.
-
- The value '199409L' signifies the 1989 C standard as amended in
- 1994, which is the current default; the value '199901L' signifies
- the 1999 revision of the C standard. Support for the 1999 revision
- is not yet complete.
-
- This macro is not defined if the '-traditional-cpp' option is used,
- nor when compiling C++ or Objective-C.
-
-'__STDC_HOSTED__'
- This macro is defined, with value 1, if the compiler's target is a
- "hosted environment". A hosted environment has the complete
- facilities of the standard C library available.
-
-'__cplusplus'
- This macro is defined when the C++ compiler is in use. You can use
- '__cplusplus' to test whether a header is compiled by a C compiler
- or a C++ compiler. This macro is similar to '__STDC_VERSION__', in
- that it expands to a version number. Depending on the language
- standard selected, the value of the macro is '199711L', as mandated
- by the 1998 C++ standard; '201103L', per the 2011 C++ standard; an
- unspecified value strictly larger than '201103L' for the
- experimental languages enabled by '-std=c++1y' and '-std=gnu++1y'.
-
-'__OBJC__'
- This macro is defined, with value 1, when the Objective-C compiler
- is in use. You can use '__OBJC__' to test whether a header is
- compiled by a C compiler or an Objective-C compiler.
-
-'__ASSEMBLER__'
- This macro is defined with value 1 when preprocessing assembly
- language.
-
-
-File: cpp.info, Node: Common Predefined Macros, Next: System-specific Predefined Macros, Prev: Standard Predefined Macros, Up: Predefined Macros
-
-3.7.2 Common Predefined Macros
-------------------------------
-
-The common predefined macros are GNU C extensions. They are available
-with the same meanings regardless of the machine or operating system on
-which you are using GNU C or GNU Fortran. Their names all start with
-double underscores.
-
-'__COUNTER__'
- This macro expands to sequential integral values starting from 0.
- In conjunction with the '##' operator, this provides a convenient
- means to generate unique identifiers. Care must be taken to ensure
- that '__COUNTER__' is not expanded prior to inclusion of
- precompiled headers which use it. Otherwise, the precompiled
- headers will not be used.
-
-'__GFORTRAN__'
- The GNU Fortran compiler defines this.
-
-'__GNUC__'
-'__GNUC_MINOR__'
-'__GNUC_PATCHLEVEL__'
- These macros are defined by all GNU compilers that use the C
- preprocessor: C, C++, Objective-C and Fortran. Their values are
- the major version, minor version, and patch level of the compiler,
- as integer constants. For example, GCC 3.2.1 will define
- '__GNUC__' to 3, '__GNUC_MINOR__' to 2, and '__GNUC_PATCHLEVEL__'
- to 1. These macros are also defined if you invoke the preprocessor
- directly.
-
- '__GNUC_PATCHLEVEL__' is new to GCC 3.0; it is also present in the
- widely-used development snapshots leading up to 3.0 (which identify
- themselves as GCC 2.96 or 2.97, depending on which snapshot you
- have).
-
- If all you need to know is whether or not your program is being
- compiled by GCC, or a non-GCC compiler that claims to accept the
- GNU C dialects, you can simply test '__GNUC__'. If you need to
- write code which depends on a specific version, you must be more
- careful. Each time the minor version is increased, the patch level
- is reset to zero; each time the major version is increased (which
- happens rarely), the minor version and patch level are reset. If
- you wish to use the predefined macros directly in the conditional,
- you will need to write it like this:
-
- /* Test for GCC > 3.2.0 */
- #if __GNUC__ > 3 || \
- (__GNUC__ == 3 && (__GNUC_MINOR__ > 2 || \
- (__GNUC_MINOR__ == 2 && \
- __GNUC_PATCHLEVEL__ > 0))
-
- Another approach is to use the predefined macros to calculate a
- single number, then compare that against a threshold:
-
- #define GCC_VERSION (__GNUC__ * 10000 \
- + __GNUC_MINOR__ * 100 \
- + __GNUC_PATCHLEVEL__)
- ...
- /* Test for GCC > 3.2.0 */
- #if GCC_VERSION > 30200
-
- Many people find this form easier to understand.
-
-'__GNUG__'
- The GNU C++ compiler defines this. Testing it is equivalent to
- testing '(__GNUC__ && __cplusplus)'.
-
-'__STRICT_ANSI__'
- GCC defines this macro if and only if the '-ansi' switch, or a
- '-std' switch specifying strict conformance to some version of ISO
- C or ISO C++, was specified when GCC was invoked. It is defined to
- '1'. This macro exists primarily to direct GNU libc's header files
- to restrict their definitions to the minimal set found in the 1989
- C standard.
-
-'__BASE_FILE__'
- This macro expands to the name of the main input file, in the form
- of a C string constant. This is the source file that was specified
- on the command line of the preprocessor or C compiler.
-
-'__INCLUDE_LEVEL__'
- This macro expands to a decimal integer constant that represents
- the depth of nesting in include files. The value of this macro is
- incremented on every '#include' directive and decremented at the
- end of every included file. It starts out at 0, its value within
- the base file specified on the command line.
-
-'__ELF__'
- This macro is defined if the target uses the ELF object format.
-
-'__VERSION__'
- This macro expands to a string constant which describes the version
- of the compiler in use. You should not rely on its contents having
- any particular form, but it can be counted on to contain at least
- the release number.
-
-'__OPTIMIZE__'
-'__OPTIMIZE_SIZE__'
-'__NO_INLINE__'
- These macros describe the compilation mode. '__OPTIMIZE__' is
- defined in all optimizing compilations. '__OPTIMIZE_SIZE__' is
- defined if the compiler is optimizing for size, not speed.
- '__NO_INLINE__' is defined if no functions will be inlined into
- their callers (when not optimizing, or when inlining has been
- specifically disabled by '-fno-inline').
-
- These macros cause certain GNU header files to provide optimized
- definitions, using macros or inline functions, of system library
- functions. You should not use these macros in any way unless you
- make sure that programs will execute with the same effect whether
- or not they are defined. If they are defined, their value is 1.
-
-'__GNUC_GNU_INLINE__'
- GCC defines this macro if functions declared 'inline' will be
- handled in GCC's traditional gnu90 mode. Object files will contain
- externally visible definitions of all functions declared 'inline'
- without 'extern' or 'static'. They will not contain any
- definitions of any functions declared 'extern inline'.
-
-'__GNUC_STDC_INLINE__'
- GCC defines this macro if functions declared 'inline' will be
- handled according to the ISO C99 standard. Object files will
- contain externally visible definitions of all functions declared
- 'extern inline'. They will not contain definitions of any
- functions declared 'inline' without 'extern'.
-
- If this macro is defined, GCC supports the 'gnu_inline' function
- attribute as a way to always get the gnu90 behavior. Support for
- this and '__GNUC_GNU_INLINE__' was added in GCC 4.1.3. If neither
- macro is defined, an older version of GCC is being used: 'inline'
- functions will be compiled in gnu90 mode, and the 'gnu_inline'
- function attribute will not be recognized.
-
-'__CHAR_UNSIGNED__'
- GCC defines this macro if and only if the data type 'char' is
- unsigned on the target machine. It exists to cause the standard
- header file 'limits.h' to work correctly. You should not use this
- macro yourself; instead, refer to the standard macros defined in
- 'limits.h'.
-
-'__WCHAR_UNSIGNED__'
- Like '__CHAR_UNSIGNED__', this macro is defined if and only if the
- data type 'wchar_t' is unsigned and the front-end is in C++ mode.
-
-'__REGISTER_PREFIX__'
- This macro expands to a single token (not a string constant) which
- is the prefix applied to CPU register names in assembly language
- for this target. You can use it to write assembly that is usable
- in multiple environments. For example, in the 'm68k-aout'
- environment it expands to nothing, but in the 'm68k-coff'
- environment it expands to a single '%'.
-
-'__USER_LABEL_PREFIX__'
- This macro expands to a single token which is the prefix applied to
- user labels (symbols visible to C code) in assembly. For example,
- in the 'm68k-aout' environment it expands to an '_', but in the
- 'm68k-coff' environment it expands to nothing.
-
- This macro will have the correct definition even if
- '-f(no-)underscores' is in use, but it will not be correct if
- target-specific options that adjust this prefix are used (e.g. the
- OSF/rose '-mno-underscores' option).
-
-'__SIZE_TYPE__'
-'__PTRDIFF_TYPE__'
-'__WCHAR_TYPE__'
-'__WINT_TYPE__'
-'__INTMAX_TYPE__'
-'__UINTMAX_TYPE__'
-'__SIG_ATOMIC_TYPE__'
-'__INT8_TYPE__'
-'__INT16_TYPE__'
-'__INT32_TYPE__'
-'__INT64_TYPE__'
-'__UINT8_TYPE__'
-'__UINT16_TYPE__'
-'__UINT32_TYPE__'
-'__UINT64_TYPE__'
-'__INT_LEAST8_TYPE__'
-'__INT_LEAST16_TYPE__'
-'__INT_LEAST32_TYPE__'
-'__INT_LEAST64_TYPE__'
-'__UINT_LEAST8_TYPE__'
-'__UINT_LEAST16_TYPE__'
-'__UINT_LEAST32_TYPE__'
-'__UINT_LEAST64_TYPE__'
-'__INT_FAST8_TYPE__'
-'__INT_FAST16_TYPE__'
-'__INT_FAST32_TYPE__'
-'__INT_FAST64_TYPE__'
-'__UINT_FAST8_TYPE__'
-'__UINT_FAST16_TYPE__'
-'__UINT_FAST32_TYPE__'
-'__UINT_FAST64_TYPE__'
-'__INTPTR_TYPE__'
-'__UINTPTR_TYPE__'
- These macros are defined to the correct underlying types for the
- 'size_t', 'ptrdiff_t', 'wchar_t', 'wint_t', 'intmax_t',
- 'uintmax_t', 'sig_atomic_t', 'int8_t', 'int16_t', 'int32_t',
- 'int64_t', 'uint8_t', 'uint16_t', 'uint32_t', 'uint64_t',
- 'int_least8_t', 'int_least16_t', 'int_least32_t', 'int_least64_t',
- 'uint_least8_t', 'uint_least16_t', 'uint_least32_t',
- 'uint_least64_t', 'int_fast8_t', 'int_fast16_t', 'int_fast32_t',
- 'int_fast64_t', 'uint_fast8_t', 'uint_fast16_t', 'uint_fast32_t',
- 'uint_fast64_t', 'intptr_t', and 'uintptr_t' typedefs,
- respectively. They exist to make the standard header files
- 'stddef.h', 'stdint.h', and 'wchar.h' work correctly. You should
- not use these macros directly; instead, include the appropriate
- headers and use the typedefs. Some of these macros may not be
- defined on particular systems if GCC does not provide a 'stdint.h'
- header on those systems.
-
-'__CHAR_BIT__'
- Defined to the number of bits used in the representation of the
- 'char' data type. It exists to make the standard header given
- numerical limits work correctly. You should not use this macro
- directly; instead, include the appropriate headers.
-
-'__SCHAR_MAX__'
-'__WCHAR_MAX__'
-'__SHRT_MAX__'
-'__INT_MAX__'
-'__LONG_MAX__'
-'__LONG_LONG_MAX__'
-'__WINT_MAX__'
-'__SIZE_MAX__'
-'__PTRDIFF_MAX__'
-'__INTMAX_MAX__'
-'__UINTMAX_MAX__'
-'__SIG_ATOMIC_MAX__'
-'__INT8_MAX__'
-'__INT16_MAX__'
-'__INT32_MAX__'
-'__INT64_MAX__'
-'__UINT8_MAX__'
-'__UINT16_MAX__'
-'__UINT32_MAX__'
-'__UINT64_MAX__'
-'__INT_LEAST8_MAX__'
-'__INT_LEAST16_MAX__'
-'__INT_LEAST32_MAX__'
-'__INT_LEAST64_MAX__'
-'__UINT_LEAST8_MAX__'
-'__UINT_LEAST16_MAX__'
-'__UINT_LEAST32_MAX__'
-'__UINT_LEAST64_MAX__'
-'__INT_FAST8_MAX__'
-'__INT_FAST16_MAX__'
-'__INT_FAST32_MAX__'
-'__INT_FAST64_MAX__'
-'__UINT_FAST8_MAX__'
-'__UINT_FAST16_MAX__'
-'__UINT_FAST32_MAX__'
-'__UINT_FAST64_MAX__'
-'__INTPTR_MAX__'
-'__UINTPTR_MAX__'
-'__WCHAR_MIN__'
-'__WINT_MIN__'
-'__SIG_ATOMIC_MIN__'
- Defined to the maximum value of the 'signed char', 'wchar_t',
- 'signed short', 'signed int', 'signed long', 'signed long long',
- 'wint_t', 'size_t', 'ptrdiff_t', 'intmax_t', 'uintmax_t',
- 'sig_atomic_t', 'int8_t', 'int16_t', 'int32_t', 'int64_t',
- 'uint8_t', 'uint16_t', 'uint32_t', 'uint64_t', 'int_least8_t',
- 'int_least16_t', 'int_least32_t', 'int_least64_t', 'uint_least8_t',
- 'uint_least16_t', 'uint_least32_t', 'uint_least64_t',
- 'int_fast8_t', 'int_fast16_t', 'int_fast32_t', 'int_fast64_t',
- 'uint_fast8_t', 'uint_fast16_t', 'uint_fast32_t', 'uint_fast64_t',
- 'intptr_t', and 'uintptr_t' types and to the minimum value of the
- 'wchar_t', 'wint_t', and 'sig_atomic_t' types respectively. They
- exist to make the standard header given numerical limits work
- correctly. You should not use these macros directly; instead,
- include the appropriate headers. Some of these macros may not be
- defined on particular systems if GCC does not provide a 'stdint.h'
- header on those systems.
-
-'__INT8_C'
-'__INT16_C'
-'__INT32_C'
-'__INT64_C'
-'__UINT8_C'
-'__UINT16_C'
-'__UINT32_C'
-'__UINT64_C'
-'__INTMAX_C'
-'__UINTMAX_C'
- Defined to implementations of the standard 'stdint.h' macros with
- the same names without the leading '__'. They exist the make the
- implementation of that header work correctly. You should not use
- these macros directly; instead, include the appropriate headers.
- Some of these macros may not be defined on particular systems if
- GCC does not provide a 'stdint.h' header on those systems.
-
-'__SIZEOF_INT__'
-'__SIZEOF_LONG__'
-'__SIZEOF_LONG_LONG__'
-'__SIZEOF_SHORT__'
-'__SIZEOF_POINTER__'
-'__SIZEOF_FLOAT__'
-'__SIZEOF_DOUBLE__'
-'__SIZEOF_LONG_DOUBLE__'
-'__SIZEOF_SIZE_T__'
-'__SIZEOF_WCHAR_T__'
-'__SIZEOF_WINT_T__'
-'__SIZEOF_PTRDIFF_T__'
- Defined to the number of bytes of the C standard data types: 'int',
- 'long', 'long long', 'short', 'void *', 'float', 'double', 'long
- double', 'size_t', 'wchar_t', 'wint_t' and 'ptrdiff_t'.
-
-'__BYTE_ORDER__'
-'__ORDER_LITTLE_ENDIAN__'
-'__ORDER_BIG_ENDIAN__'
-'__ORDER_PDP_ENDIAN__'
- '__BYTE_ORDER__' is defined to one of the values
- '__ORDER_LITTLE_ENDIAN__', '__ORDER_BIG_ENDIAN__', or
- '__ORDER_PDP_ENDIAN__' to reflect the layout of multi-byte and
- multi-word quantities in memory. If '__BYTE_ORDER__' is equal to
- '__ORDER_LITTLE_ENDIAN__' or '__ORDER_BIG_ENDIAN__', then
- multi-byte and multi-word quantities are laid out identically: the
- byte (word) at the lowest address is the least significant or most
- significant byte (word) of the quantity, respectively. If
- '__BYTE_ORDER__' is equal to '__ORDER_PDP_ENDIAN__', then bytes in
- 16-bit words are laid out in a little-endian fashion, whereas the
- 16-bit subwords of a 32-bit quantity are laid out in big-endian
- fashion.
-
- You should use these macros for testing like this:
-
- /* Test for a little-endian machine */
- #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
-
-'__FLOAT_WORD_ORDER__'
- '__FLOAT_WORD_ORDER__' is defined to one of the values
- '__ORDER_LITTLE_ENDIAN__' or '__ORDER_BIG_ENDIAN__' to reflect the
- layout of the words of multi-word floating-point quantities.
-
-'__DEPRECATED'
- This macro is defined, with value 1, when compiling a C++ source
- file with warnings about deprecated constructs enabled. These
- warnings are enabled by default, but can be disabled with
- '-Wno-deprecated'.
-
-'__EXCEPTIONS'
- This macro is defined, with value 1, when compiling a C++ source
- file with exceptions enabled. If '-fno-exceptions' is used when
- compiling the file, then this macro is not defined.
-
-'__GXX_RTTI'
- This macro is defined, with value 1, when compiling a C++ source
- file with runtime type identification enabled. If '-fno-rtti' is
- used when compiling the file, then this macro is not defined.
-
-'__USING_SJLJ_EXCEPTIONS__'
- This macro is defined, with value 1, if the compiler uses the old
- mechanism based on 'setjmp' and 'longjmp' for exception handling.
-
-'__GXX_EXPERIMENTAL_CXX0X__'
- This macro is defined when compiling a C++ source file with the
- option '-std=c++0x' or '-std=gnu++0x'. It indicates that some
- features likely to be included in C++0x are available. Note that
- these features are experimental, and may change or be removed in
- future versions of GCC.
-
-'__GXX_WEAK__'
- This macro is defined when compiling a C++ source file. It has the
- value 1 if the compiler will use weak symbols, COMDAT sections, or
- other similar techniques to collapse symbols with "vague linkage"
- that are defined in multiple translation units. If the compiler
- will not collapse such symbols, this macro is defined with value 0.
- In general, user code should not need to make use of this macro;
- the purpose of this macro is to ease implementation of the C++
- runtime library provided with G++.
-
-'__NEXT_RUNTIME__'
- This macro is defined, with value 1, if (and only if) the NeXT
- runtime (as in '-fnext-runtime') is in use for Objective-C. If the
- GNU runtime is used, this macro is not defined, so that you can use
- this macro to determine which runtime (NeXT or GNU) is being used.
-
-'__LP64__'
-'_LP64'
- These macros are defined, with value 1, if (and only if) the
- compilation is for a target where 'long int' and pointer both use
- 64-bits and 'int' uses 32-bit.
-
-'__SSP__'
- This macro is defined, with value 1, when '-fstack-protector' is in
- use.
-
-'__SSP_ALL__'
- This macro is defined, with value 2, when '-fstack-protector-all'
- is in use.
-
-'__SSP_STRONG__'
- This macro is defined, with value 3, when
- '-fstack-protector-strong' is in use.
-
-'__SANITIZE_ADDRESS__'
- This macro is defined, with value 1, when '-fsanitize=address' is
- in use.
-
-'__TIMESTAMP__'
- This macro expands to a string constant that describes the date and
- time of the last modification of the current source file. The
- string constant contains abbreviated day of the week, month, day of
- the month, time in hh:mm:ss form, year and looks like
- '"Sun Sep 16 01:03:52 1973"'. If the day of the month is less than
- 10, it is padded with a space on the left.
-
- If GCC cannot determine the current date, it will emit a warning
- message (once per compilation) and '__TIMESTAMP__' will expand to
- '"??? ??? ?? ??:??:?? ????"'.
-
-'__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1'
-'__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2'
-'__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4'
-'__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8'
-'__GCC_HAVE_SYNC_COMPARE_AND_SWAP_16'
- These macros are defined when the target processor supports atomic
- compare and swap operations on operands 1, 2, 4, 8 or 16 bytes in
- length, respectively.
-
-'__GCC_HAVE_DWARF2_CFI_ASM'
- This macro is defined when the compiler is emitting Dwarf2 CFI
- directives to the assembler. When this is defined, it is possible
- to emit those same directives in inline assembly.
-
-'__FP_FAST_FMA'
-'__FP_FAST_FMAF'
-'__FP_FAST_FMAL'
- These macros are defined with value 1 if the backend supports the
- 'fma', 'fmaf', and 'fmal' builtin functions, so that the include
- file 'math.h' can define the macros 'FP_FAST_FMA', 'FP_FAST_FMAF',
- and 'FP_FAST_FMAL' for compatibility with the 1999 C standard.
-
-'__GCC_IEC_559'
- This macro is defined to indicate the intended level of support for
- IEEE 754 (IEC 60559) floating-point arithmetic. It expands to a
- nonnegative integer value. If 0, it indicates that the combination
- of the compiler configuration and the command-line options is not
- intended to support IEEE 754 arithmetic for 'float' and 'double' as
- defined in C99 and C11 Annex F (for example, that the standard
- rounding modes and exceptions are not supported, or that
- optimizations are enabled that conflict with IEEE 754 semantics).
- If 1, it indicates that IEEE 754 arithmetic is intended to be
- supported; this does not mean that all relevant language features
- are supported by GCC. If 2 or more, it additionally indicates
- support for IEEE 754-2008 (in particular, that the binary encodings
- for quiet and signaling NaNs are as specified in IEEE 754-2008).
-
- This macro does not indicate the default state of command-line
- options that control optimizations that C99 and C11 permit to be
- controlled by standard pragmas, where those standards do not
- require a particular default state. It does not indicate whether
- optimizations respect signaling NaN semantics (the macro for that
- is '__SUPPORT_SNAN__'). It does not indicate support for decimal
- floating point or the IEEE 754 binary16 and binary128 types.
-
-'__GCC_IEC_559_COMPLEX'
- This macro is defined to indicate the intended level of support for
- IEEE 754 (IEC 60559) floating-point arithmetic for complex numbers,
- as defined in C99 and C11 Annex G. It expands to a nonnegative
- integer value. If 0, it indicates that the combination of the
- compiler configuration and the command-line options is not intended
- to support Annex G requirements (for example, because
- '-fcx-limited-range' was used). If 1 or more, it indicates that it
- is intended to support those requirements; this does not mean that
- all relevant language features are supported by GCC.
-
-
-File: cpp.info, Node: System-specific Predefined Macros, Next: C++ Named Operators, Prev: Common Predefined Macros, Up: Predefined Macros
-
-3.7.3 System-specific Predefined Macros
----------------------------------------
-
-The C preprocessor normally predefines several macros that indicate what
-type of system and machine is in use. They are obviously different on
-each target supported by GCC. This manual, being for all systems and
-machines, cannot tell you what their names are, but you can use 'cpp
--dM' to see them all. *Note Invocation::. All system-specific
-predefined macros expand to a constant value, so you can test them with
-either '#ifdef' or '#if'.
-
- The C standard requires that all system-specific macros be part of
-the "reserved namespace". All names which begin with two underscores,
-or an underscore and a capital letter, are reserved for the compiler and
-library to use as they wish. However, historically system-specific
-macros have had names with no special prefix; for instance, it is common
-to find 'unix' defined on Unix systems. For all such macros, GCC
-provides a parallel macro with two underscores added at the beginning
-and the end. If 'unix' is defined, '__unix__' will be defined too.
-There will never be more than two underscores; the parallel of '_mips'
-is '__mips__'.
-
- When the '-ansi' option, or any '-std' option that requests strict
-conformance, is given to the compiler, all the system-specific
-predefined macros outside the reserved namespace are suppressed. The
-parallel macros, inside the reserved namespace, remain defined.
-
- We are slowly phasing out all predefined macros which are outside the
-reserved namespace. You should never use them in new programs, and we
-encourage you to correct older code to use the parallel macros whenever
-you find it. We don't recommend you use the system-specific macros that
-are in the reserved namespace, either. It is better in the long run to
-check specifically for features you need, using a tool such as
-'autoconf'.
-
-
-File: cpp.info, Node: C++ Named Operators, Prev: System-specific Predefined Macros, Up: Predefined Macros
-
-3.7.4 C++ Named Operators
--------------------------
-
-In C++, there are eleven keywords which are simply alternate spellings
-of operators normally written with punctuation. These keywords are
-treated as such even in the preprocessor. They function as operators in
-'#if', and they cannot be defined as macros or poisoned. In C, you can
-request that those keywords take their C++ meaning by including
-'iso646.h'. That header defines each one as a normal object-like macro
-expanding to the appropriate punctuator.
-
- These are the named operators and their corresponding punctuators:
-
-Named Operator Punctuator
-'and' '&&'
-'and_eq' '&='
-'bitand' '&'
-'bitor' '|'
-'compl' '~'
-'not' '!'
-'not_eq' '!='
-'or' '||'
-'or_eq' '|='
-'xor' '^'
-'xor_eq' '^='
-
-
-File: cpp.info, Node: Undefining and Redefining Macros, Next: Directives Within Macro Arguments, Prev: Predefined Macros, Up: Macros
-
-3.8 Undefining and Redefining Macros
-====================================
-
-If a macro ceases to be useful, it may be "undefined" with the '#undef'
-directive. '#undef' takes a single argument, the name of the macro to
-undefine. You use the bare macro name, even if the macro is
-function-like. It is an error if anything appears on the line after the
-macro name. '#undef' has no effect if the name is not a macro.
-
- #define FOO 4
- x = FOO; ==> x = 4;
- #undef FOO
- x = FOO; ==> x = FOO;
-
- Once a macro has been undefined, that identifier may be "redefined"
-as a macro by a subsequent '#define' directive. The new definition need
-not have any resemblance to the old definition.
-
- However, if an identifier which is currently a macro is redefined,
-then the new definition must be "effectively the same" as the old one.
-Two macro definitions are effectively the same if:
- * Both are the same type of macro (object- or function-like).
- * All the tokens of the replacement list are the same.
- * If there are any parameters, they are the same.
- * Whitespace appears in the same places in both. It need not be
- exactly the same amount of whitespace, though. Remember that
- comments count as whitespace.
-
-These definitions are effectively the same:
- #define FOUR (2 + 2)
- #define FOUR (2 + 2)
- #define FOUR (2 /* two */ + 2)
-but these are not:
- #define FOUR (2 + 2)
- #define FOUR ( 2+2 )
- #define FOUR (2 * 2)
- #define FOUR(score,and,seven,years,ago) (2 + 2)
-
- If a macro is redefined with a definition that is not effectively the
-same as the old one, the preprocessor issues a warning and changes the
-macro to use the new definition. If the new definition is effectively
-the same, the redefinition is silently ignored. This allows, for
-instance, two different headers to define a common macro. The
-preprocessor will only complain if the definitions do not match.
-
-
-File: cpp.info, Node: Directives Within Macro Arguments, Next: Macro Pitfalls, Prev: Undefining and Redefining Macros, Up: Macros
-
-3.9 Directives Within Macro Arguments
-=====================================
-
-Occasionally it is convenient to use preprocessor directives within the
-arguments of a macro. The C and C++ standards declare that behavior in
-these cases is undefined.
-
- Versions of CPP prior to 3.2 would reject such constructs with an
-error message. This was the only syntactic difference between normal
-functions and function-like macros, so it seemed attractive to remove
-this limitation, and people would often be surprised that they could not
-use macros in this way. Moreover, sometimes people would use
-conditional compilation in the argument list to a normal library
-function like 'printf', only to find that after a library upgrade
-'printf' had changed to be a function-like macro, and their code would
-no longer compile. So from version 3.2 we changed CPP to successfully
-process arbitrary directives within macro arguments in exactly the same
-way as it would have processed the directive were the function-like
-macro invocation not present.
-
- If, within a macro invocation, that macro is redefined, then the new
-definition takes effect in time for argument pre-expansion, but the
-original definition is still used for argument replacement. Here is a
-pathological example:
-
- #define f(x) x x
- f (1
- #undef f
- #define f 2
- f)
-
-which expands to
-
- 1 2 1 2
-
-with the semantics described above.
-
-
-File: cpp.info, Node: Macro Pitfalls, Prev: Directives Within Macro Arguments, Up: Macros
-
-3.10 Macro Pitfalls
-===================
-
-In this section we describe some special rules that apply to macros and
-macro expansion, and point out certain cases in which the rules have
-counter-intuitive consequences that you must watch out for.
-
-* Menu:
-
-* Misnesting::
-* Operator Precedence Problems::
-* Swallowing the Semicolon::
-* Duplication of Side Effects::
-* Self-Referential Macros::
-* Argument Prescan::
-* Newlines in Arguments::
-
-
-File: cpp.info, Node: Misnesting, Next: Operator Precedence Problems, Up: Macro Pitfalls
-
-3.10.1 Misnesting
------------------
-
-When a macro is called with arguments, the arguments are substituted
-into the macro body and the result is checked, together with the rest of
-the input file, for more macro calls. It is possible to piece together
-a macro call coming partially from the macro body and partially from the
-arguments. For example,
-
- #define twice(x) (2*(x))
- #define call_with_1(x) x(1)
- call_with_1 (twice)
- ==> twice(1)
- ==> (2*(1))
-
- Macro definitions do not have to have balanced parentheses. By
-writing an unbalanced open parenthesis in a macro body, it is possible
-to create a macro call that begins inside the macro body but ends
-outside of it. For example,
-
- #define strange(file) fprintf (file, "%s %d",
- ...
- strange(stderr) p, 35)
- ==> fprintf (stderr, "%s %d", p, 35)
-
- The ability to piece together a macro call can be useful, but the use
-of unbalanced open parentheses in a macro body is just confusing, and
-should be avoided.
-
-
-File: cpp.info, Node: Operator Precedence Problems, Next: Swallowing the Semicolon, Prev: Misnesting, Up: Macro Pitfalls
-
-3.10.2 Operator Precedence Problems
------------------------------------
-
-You may have noticed that in most of the macro definition examples shown
-above, each occurrence of a macro argument name had parentheses around
-it. In addition, another pair of parentheses usually surround the
-entire macro definition. Here is why it is best to write macros that
-way.
-
- Suppose you define a macro as follows,
-
- #define ceil_div(x, y) (x + y - 1) / y
-
-whose purpose is to divide, rounding up. (One use for this operation is
-to compute how many 'int' objects are needed to hold a certain number of
-'char' objects.) Then suppose it is used as follows:
-
- a = ceil_div (b & c, sizeof (int));
- ==> a = (b & c + sizeof (int) - 1) / sizeof (int);
-
-This does not do what is intended. The operator-precedence rules of C
-make it equivalent to this:
-
- a = (b & (c + sizeof (int) - 1)) / sizeof (int);
-
-What we want is this:
-
- a = ((b & c) + sizeof (int) - 1)) / sizeof (int);
-
-Defining the macro as
-
- #define ceil_div(x, y) ((x) + (y) - 1) / (y)
-
-provides the desired result.
-
- Unintended grouping can result in another way. Consider 'sizeof
-ceil_div(1, 2)'. That has the appearance of a C expression that would
-compute the size of the type of 'ceil_div (1, 2)', but in fact it means
-something very different. Here is what it expands to:
-
- sizeof ((1) + (2) - 1) / (2)
-
-This would take the size of an integer and divide it by two. The
-precedence rules have put the division outside the 'sizeof' when it was
-intended to be inside.
-
- Parentheses around the entire macro definition prevent such problems.
-Here, then, is the recommended way to define 'ceil_div':
-
- #define ceil_div(x, y) (((x) + (y) - 1) / (y))
-
-
-File: cpp.info, Node: Swallowing the Semicolon, Next: Duplication of Side Effects, Prev: Operator Precedence Problems, Up: Macro Pitfalls
-
-3.10.3 Swallowing the Semicolon
--------------------------------
-
-Often it is desirable to define a macro that expands into a compound
-statement. Consider, for example, the following macro, that advances a
-pointer (the argument 'p' says where to find it) across whitespace
-characters:
-
- #define SKIP_SPACES(p, limit) \
- { char *lim = (limit); \
- while (p < lim) { \
- if (*p++ != ' ') { \
- p--; break; }}}
-
-Here backslash-newline is used to split the macro definition, which must
-be a single logical line, so that it resembles the way such code would
-be laid out if not part of a macro definition.
-
- A call to this macro might be 'SKIP_SPACES (p, lim)'. Strictly
-speaking, the call expands to a compound statement, which is a complete
-statement with no need for a semicolon to end it. However, since it
-looks like a function call, it minimizes confusion if you can use it
-like a function call, writing a semicolon afterward, as in 'SKIP_SPACES
-(p, lim);'
-
- This can cause trouble before 'else' statements, because the
-semicolon is actually a null statement. Suppose you write
-
- if (*p != 0)
- SKIP_SPACES (p, lim);
- else ...
-
-The presence of two statements--the compound statement and a null
-statement--in between the 'if' condition and the 'else' makes invalid C
-code.
-
- The definition of the macro 'SKIP_SPACES' can be altered to solve
-this problem, using a 'do ... while' statement. Here is how:
-
- #define SKIP_SPACES(p, limit) \
- do { char *lim = (limit); \
- while (p < lim) { \
- if (*p++ != ' ') { \
- p--; break; }}} \
- while (0)
-
- Now 'SKIP_SPACES (p, lim);' expands into
-
- do {...} while (0);
-
-which is one statement. The loop executes exactly once; most compilers
-generate no extra code for it.
-
-
-File: cpp.info, Node: Duplication of Side Effects, Next: Self-Referential Macros, Prev: Swallowing the Semicolon, Up: Macro Pitfalls
-
-3.10.4 Duplication of Side Effects
-----------------------------------
-
-Many C programs define a macro 'min', for "minimum", like this:
-
- #define min(X, Y) ((X) < (Y) ? (X) : (Y))
-
- When you use this macro with an argument containing a side effect, as
-shown here,
-
- next = min (x + y, foo (z));
-
-it expands as follows:
-
- next = ((x + y) < (foo (z)) ? (x + y) : (foo (z)));
-
-where 'x + y' has been substituted for 'X' and 'foo (z)' for 'Y'.
-
- The function 'foo' is used only once in the statement as it appears
-in the program, but the expression 'foo (z)' has been substituted twice
-into the macro expansion. As a result, 'foo' might be called two times
-when the statement is executed. If it has side effects or if it takes a
-long time to compute, the results might not be what you intended. We
-say that 'min' is an "unsafe" macro.
-
- The best solution to this problem is to define 'min' in a way that
-computes the value of 'foo (z)' only once. The C language offers no
-standard way to do this, but it can be done with GNU extensions as
-follows:
-
- #define min(X, Y) \
- ({ typeof (X) x_ = (X); \
- typeof (Y) y_ = (Y); \
- (x_ < y_) ? x_ : y_; })
-
- The '({ ... })' notation produces a compound statement that acts as
-an expression. Its value is the value of its last statement. This
-permits us to define local variables and assign each argument to one.
-The local variables have underscores after their names to reduce the
-risk of conflict with an identifier of wider scope (it is impossible to
-avoid this entirely). Now each argument is evaluated exactly once.
-
- If you do not wish to use GNU C extensions, the only solution is to
-be careful when _using_ the macro 'min'. For example, you can calculate
-the value of 'foo (z)', save it in a variable, and use that variable in
-'min':
-
- #define min(X, Y) ((X) < (Y) ? (X) : (Y))
- ...
- {
- int tem = foo (z);
- next = min (x + y, tem);
- }
-
-(where we assume that 'foo' returns type 'int').
-
-
-File: cpp.info, Node: Self-Referential Macros, Next: Argument Prescan, Prev: Duplication of Side Effects, Up: Macro Pitfalls
-
-3.10.5 Self-Referential Macros
-------------------------------
-
-A "self-referential" macro is one whose name appears in its definition.
-Recall that all macro definitions are rescanned for more macros to
-replace. If the self-reference were considered a use of the macro, it
-would produce an infinitely large expansion. To prevent this, the
-self-reference is not considered a macro call. It is passed into the
-preprocessor output unchanged. Consider an example:
-
- #define foo (4 + foo)
-
-where 'foo' is also a variable in your program.
-
- Following the ordinary rules, each reference to 'foo' will expand
-into '(4 + foo)'; then this will be rescanned and will expand into '(4 +
-(4 + foo))'; and so on until the computer runs out of memory.
-
- The self-reference rule cuts this process short after one step, at
-'(4 + foo)'. Therefore, this macro definition has the possibly useful
-effect of causing the program to add 4 to the value of 'foo' wherever
-'foo' is referred to.
-
- In most cases, it is a bad idea to take advantage of this feature. A
-person reading the program who sees that 'foo' is a variable will not
-expect that it is a macro as well. The reader will come across the
-identifier 'foo' in the program and think its value should be that of
-the variable 'foo', whereas in fact the value is four greater.
-
- One common, useful use of self-reference is to create a macro which
-expands to itself. If you write
-
- #define EPERM EPERM
-
-then the macro 'EPERM' expands to 'EPERM'. Effectively, it is left
-alone by the preprocessor whenever it's used in running text. You can
-tell that it's a macro with '#ifdef'. You might do this if you want to
-define numeric constants with an 'enum', but have '#ifdef' be true for
-each constant.
-
- If a macro 'x' expands to use a macro 'y', and the expansion of 'y'
-refers to the macro 'x', that is an "indirect self-reference" of 'x'.
-'x' is not expanded in this case either. Thus, if we have
-
- #define x (4 + y)
- #define y (2 * x)
-
-then 'x' and 'y' expand as follows:
-
- x ==> (4 + y)
- ==> (4 + (2 * x))
-
- y ==> (2 * x)
- ==> (2 * (4 + y))
-
-Each macro is expanded when it appears in the definition of the other
-macro, but not when it indirectly appears in its own definition.
-
-
-File: cpp.info, Node: Argument Prescan, Next: Newlines in Arguments, Prev: Self-Referential Macros, Up: Macro Pitfalls
-
-3.10.6 Argument Prescan
------------------------
-
-Macro arguments are completely macro-expanded before they are
-substituted into a macro body, unless they are stringified or pasted
-with other tokens. After substitution, the entire macro body, including
-the substituted arguments, is scanned again for macros to be expanded.
-The result is that the arguments are scanned _twice_ to expand macro
-calls in them.
-
- Most of the time, this has no effect. If the argument contained any
-macro calls, they are expanded during the first scan. The result
-therefore contains no macro calls, so the second scan does not change
-it. If the argument were substituted as given, with no prescan, the
-single remaining scan would find the same macro calls and produce the
-same results.
-
- You might expect the double scan to change the results when a
-self-referential macro is used in an argument of another macro (*note
-Self-Referential Macros::): the self-referential macro would be expanded
-once in the first scan, and a second time in the second scan. However,
-this is not what happens. The self-references that do not expand in the
-first scan are marked so that they will not expand in the second scan
-either.
-
- You might wonder, "Why mention the prescan, if it makes no
-difference? And why not skip it and make the preprocessor faster?" The
-answer is that the prescan does make a difference in three special
-cases:
-
- * Nested calls to a macro.
-
- We say that "nested" calls to a macro occur when a macro's argument
- contains a call to that very macro. For example, if 'f' is a macro
- that expects one argument, 'f (f (1))' is a nested pair of calls to
- 'f'. The desired expansion is made by expanding 'f (1)' and
- substituting that into the definition of 'f'. The prescan causes
- the expected result to happen. Without the prescan, 'f (1)' itself
- would be substituted as an argument, and the inner use of 'f' would
- appear during the main scan as an indirect self-reference and would
- not be expanded.
-
- * Macros that call other macros that stringify or concatenate.
-
- If an argument is stringified or concatenated, the prescan does not
- occur. If you _want_ to expand a macro, then stringify or
- concatenate its expansion, you can do that by causing one macro to
- call another macro that does the stringification or concatenation.
- For instance, if you have
-
- #define AFTERX(x) X_ ## x
- #define XAFTERX(x) AFTERX(x)
- #define TABLESIZE 1024
- #define BUFSIZE TABLESIZE
-
- then 'AFTERX(BUFSIZE)' expands to 'X_BUFSIZE', and
- 'XAFTERX(BUFSIZE)' expands to 'X_1024'. (Not to 'X_TABLESIZE'.
- Prescan always does a complete expansion.)
-
- * Macros used in arguments, whose expansions contain unshielded
- commas.
-
- This can cause a macro expanded on the second scan to be called
- with the wrong number of arguments. Here is an example:
-
- #define foo a,b
- #define bar(x) lose(x)
- #define lose(x) (1 + (x))
-
- We would like 'bar(foo)' to turn into '(1 + (foo))', which would
- then turn into '(1 + (a,b))'. Instead, 'bar(foo)' expands into
- 'lose(a,b)', and you get an error because 'lose' requires a single
- argument. In this case, the problem is easily solved by the same
- parentheses that ought to be used to prevent misnesting of
- arithmetic operations:
-
- #define foo (a,b)
- or
- #define bar(x) lose((x))
-
- The extra pair of parentheses prevents the comma in 'foo''s
- definition from being interpreted as an argument separator.
-
-
-File: cpp.info, Node: Newlines in Arguments, Prev: Argument Prescan, Up: Macro Pitfalls
-
-3.10.7 Newlines in Arguments
-----------------------------
-
-The invocation of a function-like macro can extend over many logical
-lines. However, in the present implementation, the entire expansion
-comes out on one line. Thus line numbers emitted by the compiler or
-debugger refer to the line the invocation started on, which might be
-different to the line containing the argument causing the problem.
-
- Here is an example illustrating this:
-
- #define ignore_second_arg(a,b,c) a; c
-
- ignore_second_arg (foo (),
- ignored (),
- syntax error);
-
-The syntax error triggered by the tokens 'syntax error' results in an
-error message citing line three--the line of ignore_second_arg-- even
-though the problematic code comes from line five.
-
- We consider this a bug, and intend to fix it in the near future.
-
-
-File: cpp.info, Node: Conditionals, Next: Diagnostics, Prev: Macros, Up: Top
-
-4 Conditionals
-**************
-
-A "conditional" is a directive that instructs the preprocessor to select
-whether or not to include a chunk of code in the final token stream
-passed to the compiler. Preprocessor conditionals can test arithmetic
-expressions, or whether a name is defined as a macro, or both
-simultaneously using the special 'defined' operator.
-
- A conditional in the C preprocessor resembles in some ways an 'if'
-statement in C, but it is important to understand the difference between
-them. The condition in an 'if' statement is tested during the execution
-of your program. Its purpose is to allow your program to behave
-differently from run to run, depending on the data it is operating on.
-The condition in a preprocessing conditional directive is tested when
-your program is compiled. Its purpose is to allow different code to be
-included in the program depending on the situation at the time of
-compilation.
-
- However, the distinction is becoming less clear. Modern compilers
-often do test 'if' statements when a program is compiled, if their
-conditions are known not to vary at run time, and eliminate code which
-can never be executed. If you can count on your compiler to do this,
-you may find that your program is more readable if you use 'if'
-statements with constant conditions (perhaps determined by macros). Of
-course, you can only use this to exclude code, not type definitions or
-other preprocessing directives, and you can only do it if the code
-remains syntactically valid when it is not to be used.
-
- GCC version 3 eliminates this kind of never-executed code even when
-not optimizing. Older versions did it only when optimizing.
-
-* Menu:
-
-* Conditional Uses::
-* Conditional Syntax::
-* Deleted Code::
-
-
-File: cpp.info, Node: Conditional Uses, Next: Conditional Syntax, Up: Conditionals
-
-4.1 Conditional Uses
-====================
-
-There are three general reasons to use a conditional.
-
- * A program may need to use different code depending on the machine
- or operating system it is to run on. In some cases the code for
- one operating system may be erroneous on another operating system;
- for example, it might refer to data types or constants that do not
- exist on the other system. When this happens, it is not enough to
- avoid executing the invalid code. Its mere presence will cause the
- compiler to reject the program. With a preprocessing conditional,
- the offending code can be effectively excised from the program when
- it is not valid.
-
- * You may want to be able to compile the same source file into two
- different programs. One version might make frequent time-consuming
- consistency checks on its intermediate data, or print the values of
- those data for debugging, and the other not.
-
- * A conditional whose condition is always false is one way to exclude
- code from the program but keep it as a sort of comment for future
- reference.
-
- Simple programs that do not need system-specific logic or complex
-debugging hooks generally will not need to use preprocessing
-conditionals.
-
-
-File: cpp.info, Node: Conditional Syntax, Next: Deleted Code, Prev: Conditional Uses, Up: Conditionals
-
-4.2 Conditional Syntax
-======================
-
-A conditional in the C preprocessor begins with a "conditional
-directive": '#if', '#ifdef' or '#ifndef'.
-
-* Menu:
-
-* Ifdef::
-* If::
-* Defined::
-* Else::
-* Elif::
-
-
-File: cpp.info, Node: Ifdef, Next: If, Up: Conditional Syntax
-
-4.2.1 Ifdef
------------
-
-The simplest sort of conditional is
-
- #ifdef MACRO
-
- CONTROLLED TEXT
-
- #endif /* MACRO */
-
- This block is called a "conditional group". CONTROLLED TEXT will be
-included in the output of the preprocessor if and only if MACRO is
-defined. We say that the conditional "succeeds" if MACRO is defined,
-"fails" if it is not.
-
- The CONTROLLED TEXT inside of a conditional can include preprocessing
-directives. They are executed only if the conditional succeeds. You
-can nest conditional groups inside other conditional groups, but they
-must be completely nested. In other words, '#endif' always matches the
-nearest '#ifdef' (or '#ifndef', or '#if'). Also, you cannot start a
-conditional group in one file and end it in another.
-
- Even if a conditional fails, the CONTROLLED TEXT inside it is still
-run through initial transformations and tokenization. Therefore, it
-must all be lexically valid C. Normally the only way this matters is
-that all comments and string literals inside a failing conditional group
-must still be properly ended.
-
- The comment following the '#endif' is not required, but it is a good
-practice if there is a lot of CONTROLLED TEXT, because it helps people
-match the '#endif' to the corresponding '#ifdef'. Older programs
-sometimes put MACRO directly after the '#endif' without enclosing it in
-a comment. This is invalid code according to the C standard. CPP
-accepts it with a warning. It never affects which '#ifndef' the
-'#endif' matches.
-
- Sometimes you wish to use some code if a macro is _not_ defined. You
-can do this by writing '#ifndef' instead of '#ifdef'. One common use of
-'#ifndef' is to include code only the first time a header file is
-included. *Note Once-Only Headers::.
-
- Macro definitions can vary between compilations for several reasons.
-Here are some samples.
-
- * Some macros are predefined on each kind of machine (*note
- System-specific Predefined Macros::). This allows you to provide
- code specially tuned for a particular machine.
-
- * System header files define more macros, associated with the
- features they implement. You can test these macros with
- conditionals to avoid using a system feature on a machine where it
- is not implemented.
-
- * Macros can be defined or undefined with the '-D' and '-U' command
- line options when you compile the program. You can arrange to
- compile the same source file into two different programs by
- choosing a macro name to specify which program you want, writing
- conditionals to test whether or how this macro is defined, and then
- controlling the state of the macro with command line options,
- perhaps set in the Makefile. *Note Invocation::.
-
- * Your program might have a special header file (often called
- 'config.h') that is adjusted when the program is compiled. It can
- define or not define macros depending on the features of the system
- and the desired capabilities of the program. The adjustment can be
- automated by a tool such as 'autoconf', or done by hand.
-
-
-File: cpp.info, Node: If, Next: Defined, Prev: Ifdef, Up: Conditional Syntax
-
-4.2.2 If
---------
-
-The '#if' directive allows you to test the value of an arithmetic
-expression, rather than the mere existence of one macro. Its syntax is
-
- #if EXPRESSION
-
- CONTROLLED TEXT
-
- #endif /* EXPRESSION */
-
- EXPRESSION is a C expression of integer type, subject to stringent
-restrictions. It may contain
-
- * Integer constants.
-
- * Character constants, which are interpreted as they would be in
- normal code.
-
- * Arithmetic operators for addition, subtraction, multiplication,
- division, bitwise operations, shifts, comparisons, and logical
- operations ('&&' and '||'). The latter two obey the usual
- short-circuiting rules of standard C.
-
- * Macros. All macros in the expression are expanded before actual
- computation of the expression's value begins.
-
- * Uses of the 'defined' operator, which lets you check whether macros
- are defined in the middle of an '#if'.
-
- * Identifiers that are not macros, which are all considered to be the
- number zero. This allows you to write '#if MACRO' instead of
- '#ifdef MACRO', if you know that MACRO, when defined, will always
- have a nonzero value. Function-like macros used without their
- function call parentheses are also treated as zero.
-
- In some contexts this shortcut is undesirable. The '-Wundef'
- option causes GCC to warn whenever it encounters an identifier
- which is not a macro in an '#if'.
-
- The preprocessor does not know anything about types in the language.
-Therefore, 'sizeof' operators are not recognized in '#if', and neither
-are 'enum' constants. They will be taken as identifiers which are not
-macros, and replaced by zero. In the case of 'sizeof', this is likely
-to cause the expression to be invalid.
-
- The preprocessor calculates the value of EXPRESSION. It carries out
-all calculations in the widest integer type known to the compiler; on
-most machines supported by GCC this is 64 bits. This is not the same
-rule as the compiler uses to calculate the value of a constant
-expression, and may give different results in some cases. If the value
-comes out to be nonzero, the '#if' succeeds and the CONTROLLED TEXT is
-included; otherwise it is skipped.
-
-
-File: cpp.info, Node: Defined, Next: Else, Prev: If, Up: Conditional Syntax
-
-4.2.3 Defined
--------------
-
-The special operator 'defined' is used in '#if' and '#elif' expressions
-to test whether a certain name is defined as a macro. 'defined NAME'
-and 'defined (NAME)' are both expressions whose value is 1 if NAME is
-defined as a macro at the current point in the program, and 0 otherwise.
-Thus, '#if defined MACRO' is precisely equivalent to '#ifdef MACRO'.
-
- 'defined' is useful when you wish to test more than one macro for
-existence at once. For example,
-
- #if defined (__vax__) || defined (__ns16000__)
-
-would succeed if either of the names '__vax__' or '__ns16000__' is
-defined as a macro.
-
- Conditionals written like this:
-
- #if defined BUFSIZE && BUFSIZE >= 1024
-
-can generally be simplified to just '#if BUFSIZE >= 1024', since if
-'BUFSIZE' is not defined, it will be interpreted as having the value
-zero.
-
- If the 'defined' operator appears as a result of a macro expansion,
-the C standard says the behavior is undefined. GNU cpp treats it as a
-genuine 'defined' operator and evaluates it normally. It will warn
-wherever your code uses this feature if you use the command-line option
-'-pedantic', since other compilers may handle it differently.
-
-
-File: cpp.info, Node: Else, Next: Elif, Prev: Defined, Up: Conditional Syntax
-
-4.2.4 Else
-----------
-
-The '#else' directive can be added to a conditional to provide
-alternative text to be used if the condition fails. This is what it
-looks like:
-
- #if EXPRESSION
- TEXT-IF-TRUE
- #else /* Not EXPRESSION */
- TEXT-IF-FALSE
- #endif /* Not EXPRESSION */
-
-If EXPRESSION is nonzero, the TEXT-IF-TRUE is included and the
-TEXT-IF-FALSE is skipped. If EXPRESSION is zero, the opposite happens.
-
- You can use '#else' with '#ifdef' and '#ifndef', too.
-
-
-File: cpp.info, Node: Elif, Prev: Else, Up: Conditional Syntax
-
-4.2.5 Elif
-----------
-
-One common case of nested conditionals is used to check for more than
-two possible alternatives. For example, you might have
-
- #if X == 1
- ...
- #else /* X != 1 */
- #if X == 2
- ...
- #else /* X != 2 */
- ...
- #endif /* X != 2 */
- #endif /* X != 1 */
-
- Another conditional directive, '#elif', allows this to be abbreviated
-as follows:
-
- #if X == 1
- ...
- #elif X == 2
- ...
- #else /* X != 2 and X != 1*/
- ...
- #endif /* X != 2 and X != 1*/
-
- '#elif' stands for "else if". Like '#else', it goes in the middle of
-a conditional group and subdivides it; it does not require a matching
-'#endif' of its own. Like '#if', the '#elif' directive includes an
-expression to be tested. The text following the '#elif' is processed
-only if the original '#if'-condition failed and the '#elif' condition
-succeeds.
-
- More than one '#elif' can go in the same conditional group. Then the
-text after each '#elif' is processed only if the '#elif' condition
-succeeds after the original '#if' and all previous '#elif' directives
-within it have failed.
-
- '#else' is allowed after any number of '#elif' directives, but
-'#elif' may not follow '#else'.
-
-
-File: cpp.info, Node: Deleted Code, Prev: Conditional Syntax, Up: Conditionals
-
-4.3 Deleted Code
-================
-
-If you replace or delete a part of the program but want to keep the old
-code around for future reference, you often cannot simply comment it
-out. Block comments do not nest, so the first comment inside the old
-code will end the commenting-out. The probable result is a flood of
-syntax errors.
-
- One way to avoid this problem is to use an always-false conditional
-instead. For instance, put '#if 0' before the deleted code and '#endif'
-after it. This works even if the code being turned off contains
-conditionals, but they must be entire conditionals (balanced '#if' and
-'#endif').
-
- Some people use '#ifdef notdef' instead. This is risky, because
-'notdef' might be accidentally defined as a macro, and then the
-conditional would succeed. '#if 0' can be counted on to fail.
-
- Do not use '#if 0' for comments which are not C code. Use a real
-comment, instead. The interior of '#if 0' must consist of complete
-tokens; in particular, single-quote characters must balance. Comments
-often contain unbalanced single-quote characters (known in English as
-apostrophes). These confuse '#if 0'. They don't confuse '/*'.
-
-
-File: cpp.info, Node: Diagnostics, Next: Line Control, Prev: Conditionals, Up: Top
-
-5 Diagnostics
-*************
-
-The directive '#error' causes the preprocessor to report a fatal error.
-The tokens forming the rest of the line following '#error' are used as
-the error message.
-
- You would use '#error' inside of a conditional that detects a
-combination of parameters which you know the program does not properly
-support. For example, if you know that the program will not run
-properly on a VAX, you might write
-
- #ifdef __vax__
- #error "Won't work on VAXen. See comments at get_last_object."
- #endif
-
- If you have several configuration parameters that must be set up by
-the installation in a consistent way, you can use conditionals to detect
-an inconsistency and report it with '#error'. For example,
-
- #if !defined(FOO) && defined(BAR)
- #error "BAR requires FOO."
- #endif
-
- The directive '#warning' is like '#error', but causes the
-preprocessor to issue a warning and continue preprocessing. The tokens
-following '#warning' are used as the warning message.
-
- You might use '#warning' in obsolete header files, with a message
-directing the user to the header file which should be used instead.
-
- Neither '#error' nor '#warning' macro-expands its argument. Internal
-whitespace sequences are each replaced with a single space. The line
-must consist of complete tokens. It is wisest to make the argument of
-these directives be a single string constant; this avoids problems with
-apostrophes and the like.
-
-
-File: cpp.info, Node: Line Control, Next: Pragmas, Prev: Diagnostics, Up: Top
-
-6 Line Control
-**************
-
-The C preprocessor informs the C compiler of the location in your source
-code where each token came from. Presently, this is just the file name
-and line number. All the tokens resulting from macro expansion are
-reported as having appeared on the line of the source file where the
-outermost macro was used. We intend to be more accurate in the future.
-
- If you write a program which generates source code, such as the
-'bison' parser generator, you may want to adjust the preprocessor's
-notion of the current file name and line number by hand. Parts of the
-output from 'bison' are generated from scratch, other parts come from a
-standard parser file. The rest are copied verbatim from 'bison''s
-input. You would like compiler error messages and symbolic debuggers to
-be able to refer to 'bison''s input file.
-
- 'bison' or any such program can arrange this by writing '#line'
-directives into the output file. '#line' is a directive that specifies
-the original line number and source file name for subsequent input in
-the current preprocessor input file. '#line' has three variants:
-
-'#line LINENUM'
- LINENUM is a non-negative decimal integer constant. It specifies
- the line number which should be reported for the following line of
- input. Subsequent lines are counted from LINENUM.
-
-'#line LINENUM FILENAME'
- LINENUM is the same as for the first form, and has the same effect.
- In addition, FILENAME is a string constant. The following line and
- all subsequent lines are reported to come from the file it
- specifies, until something else happens to change that. FILENAME
- is interpreted according to the normal rules for a string constant:
- backslash escapes are interpreted. This is different from
- '#include'.
-
- Previous versions of CPP did not interpret escapes in '#line'; we
- have changed it because the standard requires they be interpreted,
- and most other compilers do.
-
-'#line ANYTHING ELSE'
- ANYTHING ELSE is checked for macro calls, which are expanded. The
- result should match one of the above two forms.
-
- '#line' directives alter the results of the '__FILE__' and '__LINE__'
-predefined macros from that point on. *Note Standard Predefined
-Macros::. They do not have any effect on '#include''s idea of the
-directory containing the current file. This is a change from GCC 2.95.
-Previously, a file reading
-
- #include "gram.h"
-
- would search for 'gram.h' in '../src', then the '-I' chain; the
-directory containing the physical source file would not be searched. In
-GCC 3.0 and later, the '#include' is not affected by the presence of a
-'#line' referring to a different directory.
-
- We made this change because the old behavior caused problems when
-generated source files were transported between machines. For instance,
-it is common practice to ship generated parsers with a source release,
-so that people building the distribution do not need to have yacc or
-Bison installed. These files frequently have '#line' directives
-referring to the directory tree of the system where the distribution was
-created. If GCC tries to search for headers in those directories, the
-build is likely to fail.
-
- The new behavior can cause failures too, if the generated file is not
-in the same directory as its source and it attempts to include a header
-which would be visible searching from the directory containing the
-source file. However, this problem is easily solved with an additional
-'-I' switch on the command line. The failures caused by the old
-semantics could sometimes be corrected only by editing the generated
-files, which is difficult and error-prone.
-
-
-File: cpp.info, Node: Pragmas, Next: Other Directives, Prev: Line Control, Up: Top
-
-7 Pragmas
-*********
-
-The '#pragma' directive is the method specified by the C standard for
-providing additional information to the compiler, beyond what is
-conveyed in the language itself. Three forms of this directive
-(commonly known as "pragmas") are specified by the 1999 C standard. A C
-compiler is free to attach any meaning it likes to other pragmas.
-
- GCC has historically preferred to use extensions to the syntax of the
-language, such as '__attribute__', for this purpose. However, GCC does
-define a few pragmas of its own. These mostly have effects on the
-entire translation unit or source file.
-
- In GCC version 3, all GNU-defined, supported pragmas have been given
-a 'GCC' prefix. This is in line with the 'STDC' prefix on all pragmas
-defined by C99. For backward compatibility, pragmas which were
-recognized by previous versions are still recognized without the 'GCC'
-prefix, but that usage is deprecated. Some older pragmas are deprecated
-in their entirety. They are not recognized with the 'GCC' prefix.
-*Note Obsolete Features::.
-
- C99 introduces the '_Pragma' operator. This feature addresses a
-major problem with '#pragma': being a directive, it cannot be produced
-as the result of macro expansion. '_Pragma' is an operator, much like
-'sizeof' or 'defined', and can be embedded in a macro.
-
- Its syntax is '_Pragma (STRING-LITERAL)', where STRING-LITERAL can be
-either a normal or wide-character string literal. It is destringized,
-by replacing all '\\' with a single '\' and all '\"' with a '"'. The
-result is then processed as if it had appeared as the right hand side of
-a '#pragma' directive. For example,
-
- _Pragma ("GCC dependency \"parse.y\"")
-
-has the same effect as '#pragma GCC dependency "parse.y"'. The same
-effect could be achieved using macros, for example
-
- #define DO_PRAGMA(x) _Pragma (#x)
- DO_PRAGMA (GCC dependency "parse.y")
-
- The standard is unclear on where a '_Pragma' operator can appear.
-The preprocessor does not accept it within a preprocessing conditional
-directive like '#if'. To be safe, you are probably best keeping it out
-of directives other than '#define', and putting it on a line of its own.
-
- This manual documents the pragmas which are meaningful to the
-preprocessor itself. Other pragmas are meaningful to the C or C++
-compilers. They are documented in the GCC manual.
-
- GCC plugins may provide their own pragmas.
-
-'#pragma GCC dependency'
- '#pragma GCC dependency' allows you to check the relative dates of
- the current file and another file. If the other file is more
- recent than the current file, a warning is issued. This is useful
- if the current file is derived from the other file, and should be
- regenerated. The other file is searched for using the normal
- include search path. Optional trailing text can be used to give
- more information in the warning message.
-
- #pragma GCC dependency "parse.y"
- #pragma GCC dependency "/usr/include/time.h" rerun fixincludes
-
-'#pragma GCC poison'
- Sometimes, there is an identifier that you want to remove
- completely from your program, and make sure that it never creeps
- back in. To enforce this, you can "poison" the identifier with
- this pragma. '#pragma GCC poison' is followed by a list of
- identifiers to poison. If any of those identifiers appears
- anywhere in the source after the directive, it is a hard error.
- For example,
-
- #pragma GCC poison printf sprintf fprintf
- sprintf(some_string, "hello");
-
- will produce an error.
-
- If a poisoned identifier appears as part of the expansion of a
- macro which was defined before the identifier was poisoned, it will
- _not_ cause an error. This lets you poison an identifier without
- worrying about system headers defining macros that use it.
-
- For example,
-
- #define strrchr rindex
- #pragma GCC poison rindex
- strrchr(some_string, 'h');
-
- will not produce an error.
-
-'#pragma GCC system_header'
- This pragma takes no arguments. It causes the rest of the code in
- the current file to be treated as if it came from a system header.
- *Note System Headers::.
-
-'#pragma GCC warning'
-'#pragma GCC error'
- '#pragma GCC warning "message"' causes the preprocessor to issue a
- warning diagnostic with the text 'message'. The message contained
- in the pragma must be a single string literal. Similarly, '#pragma
- GCC error "message"' issues an error message. Unlike the
- '#warning' and '#error' directives, these pragmas can be embedded
- in preprocessor macros using '_Pragma'.
-
-
-File: cpp.info, Node: Other Directives, Next: Preprocessor Output, Prev: Pragmas, Up: Top
-
-8 Other Directives
-******************
-
-The '#ident' directive takes one argument, a string constant. On some
-systems, that string constant is copied into a special segment of the
-object file. On other systems, the directive is ignored. The '#sccs'
-directive is a synonym for '#ident'.
-
- These directives are not part of the C standard, but they are not
-official GNU extensions either. What historical information we have
-been able to find, suggests they originated with System V.
-
- The "null directive" consists of a '#' followed by a newline, with
-only whitespace (including comments) in between. A null directive is
-understood as a preprocessing directive but has no effect on the
-preprocessor output. The primary significance of the existence of the
-null directive is that an input line consisting of just a '#' will
-produce no output, rather than a line of output containing just a '#'.
-Supposedly some old C programs contain such lines.
-
-
-File: cpp.info, Node: Preprocessor Output, Next: Traditional Mode, Prev: Other Directives, Up: Top
-
-9 Preprocessor Output
-*********************
-
-When the C preprocessor is used with the C, C++, or Objective-C
-compilers, it is integrated into the compiler and communicates a stream
-of binary tokens directly to the compiler's parser. However, it can
-also be used in the more conventional standalone mode, where it produces
-textual output.
-
- The output from the C preprocessor looks much like the input, except
-that all preprocessing directive lines have been replaced with blank
-lines and all comments with spaces. Long runs of blank lines are
-discarded.
-
- The ISO standard specifies that it is implementation defined whether
-a preprocessor preserves whitespace between tokens, or replaces it with
-e.g. a single space. In GNU CPP, whitespace between tokens is collapsed
-to become a single space, with the exception that the first token on a
-non-directive line is preceded with sufficient spaces that it appears in
-the same column in the preprocessed output that it appeared in the
-original source file. This is so the output is easy to read. *Note
-Differences from previous versions::. CPP does not insert any
-whitespace where there was none in the original source, except where
-necessary to prevent an accidental token paste.
-
- Source file name and line number information is conveyed by lines of
-the form
-
- # LINENUM FILENAME FLAGS
-
-These are called "linemarkers". They are inserted as needed into the
-output (but never within a string or character constant). They mean
-that the following line originated in file FILENAME at line LINENUM.
-FILENAME will never contain any non-printing characters; they are
-replaced with octal escape sequences.
-
- After the file name comes zero or more flags, which are '1', '2',
-'3', or '4'. If there are multiple flags, spaces separate them. Here
-is what the flags mean:
-
-'1'
- This indicates the start of a new file.
-'2'
- This indicates returning to a file (after having included another
- file).
-'3'
- This indicates that the following text comes from a system header
- file, so certain warnings should be suppressed.
-'4'
- This indicates that the following text should be treated as being
- wrapped in an implicit 'extern "C"' block.
-
- As an extension, the preprocessor accepts linemarkers in
-non-assembler input files. They are treated like the corresponding
-'#line' directive, (*note Line Control::), except that trailing flags
-are permitted, and are interpreted with the meanings described above.
-If multiple flags are given, they must be in ascending order.
-
- Some directives may be duplicated in the output of the preprocessor.
-These are '#ident' (always), '#pragma' (only if the preprocessor does
-not handle the pragma itself), and '#define' and '#undef' (with certain
-debugging options). If this happens, the '#' of the directive will
-always be in the first column, and there will be no space between the
-'#' and the directive name. If macro expansion happens to generate
-tokens which might be mistaken for a duplicated directive, a space will
-be inserted between the '#' and the directive name.
-
-
-File: cpp.info, Node: Traditional Mode, Next: Implementation Details, Prev: Preprocessor Output, Up: Top
-
-10 Traditional Mode
-*******************
-
-Traditional (pre-standard) C preprocessing is rather different from the
-preprocessing specified by the standard. When GCC is given the
-'-traditional-cpp' option, it attempts to emulate a traditional
-preprocessor.
-
- GCC versions 3.2 and later only support traditional mode semantics in
-the preprocessor, and not in the compiler front ends. This chapter
-outlines the traditional preprocessor semantics we implemented.
-
- The implementation does not correspond precisely to the behavior of
-earlier versions of GCC, nor to any true traditional preprocessor.
-After all, inconsistencies among traditional implementations were a
-major motivation for C standardization. However, we intend that it
-should be compatible with true traditional preprocessors in all ways
-that actually matter.
-
-* Menu:
-
-* Traditional lexical analysis::
-* Traditional macros::
-* Traditional miscellany::
-* Traditional warnings::
-
-
-File: cpp.info, Node: Traditional lexical analysis, Next: Traditional macros, Up: Traditional Mode
-
-10.1 Traditional lexical analysis
-=================================
-
-The traditional preprocessor does not decompose its input into tokens
-the same way a standards-conforming preprocessor does. The input is
-simply treated as a stream of text with minimal internal form.
-
- This implementation does not treat trigraphs (*note trigraphs::)
-specially since they were an invention of the standards committee. It
-handles arbitrarily-positioned escaped newlines properly and splices the
-lines as you would expect; many traditional preprocessors did not do
-this.
-
- The form of horizontal whitespace in the input file is preserved in
-the output. In particular, hard tabs remain hard tabs. This can be
-useful if, for example, you are preprocessing a Makefile.
-
- Traditional CPP only recognizes C-style block comments, and treats
-the '/*' sequence as introducing a comment only if it lies outside
-quoted text. Quoted text is introduced by the usual single and double
-quotes, and also by an initial '<' in a '#include' directive.
-
- Traditionally, comments are completely removed and are not replaced
-with a space. Since a traditional compiler does its own tokenization of
-the output of the preprocessor, this means that comments can effectively
-be used as token paste operators. However, comments behave like
-separators for text handled by the preprocessor itself, since it doesn't
-re-lex its input. For example, in
-
- #if foo/**/bar
-
-'foo' and 'bar' are distinct identifiers and expanded separately if they
-happen to be macros. In other words, this directive is equivalent to
-
- #if foo bar
-
-rather than
-
- #if foobar
-
- Generally speaking, in traditional mode an opening quote need not
-have a matching closing quote. In particular, a macro may be defined
-with replacement text that contains an unmatched quote. Of course, if
-you attempt to compile preprocessed output containing an unmatched quote
-you will get a syntax error.
-
- However, all preprocessing directives other than '#define' require
-matching quotes. For example:
-
- #define m This macro's fine and has an unmatched quote
- "/* This is not a comment. */
- /* This is a comment. The following #include directive
- is ill-formed. */
- #include <stdio.h
-
- Just as for the ISO preprocessor, what would be a closing quote can
-be escaped with a backslash to prevent the quoted text from closing.
-
-
-File: cpp.info, Node: Traditional macros, Next: Traditional miscellany, Prev: Traditional lexical analysis, Up: Traditional Mode
-
-10.2 Traditional macros
-=======================
-
-The major difference between traditional and ISO macros is that the
-former expand to text rather than to a token sequence. CPP removes all
-leading and trailing horizontal whitespace from a macro's replacement
-text before storing it, but preserves the form of internal whitespace.
-
- One consequence is that it is legitimate for the replacement text to
-contain an unmatched quote (*note Traditional lexical analysis::). An
-unclosed string or character constant continues into the text following
-the macro call. Similarly, the text at the end of a macro's expansion
-can run together with the text after the macro invocation to produce a
-single token.
-
- Normally comments are removed from the replacement text after the
-macro is expanded, but if the '-CC' option is passed on the command line
-comments are preserved. (In fact, the current implementation removes
-comments even before saving the macro replacement text, but it careful
-to do it in such a way that the observed effect is identical even in the
-function-like macro case.)
-
- The ISO stringification operator '#' and token paste operator '##'
-have no special meaning. As explained later, an effect similar to these
-operators can be obtained in a different way. Macro names that are
-embedded in quotes, either from the main file or after macro
-replacement, do not expand.
-
- CPP replaces an unquoted object-like macro name with its replacement
-text, and then rescans it for further macros to replace. Unlike
-standard macro expansion, traditional macro expansion has no provision
-to prevent recursion. If an object-like macro appears unquoted in its
-replacement text, it will be replaced again during the rescan pass, and
-so on _ad infinitum_. GCC detects when it is expanding recursive
-macros, emits an error message, and continues after the offending macro
-invocation.
-
- #define PLUS +
- #define INC(x) PLUS+x
- INC(foo);
- ==> ++foo;
-
- Function-like macros are similar in form but quite different in
-behavior to their ISO counterparts. Their arguments are contained
-within parentheses, are comma-separated, and can cross physical lines.
-Commas within nested parentheses are not treated as argument separators.
-Similarly, a quote in an argument cannot be left unclosed; a following
-comma or parenthesis that comes before the closing quote is treated like
-any other character. There is no facility for handling variadic macros.
-
- This implementation removes all comments from macro arguments, unless
-the '-C' option is given. The form of all other horizontal whitespace
-in arguments is preserved, including leading and trailing whitespace.
-In particular
-
- f( )
-
-is treated as an invocation of the macro 'f' with a single argument
-consisting of a single space. If you want to invoke a function-like
-macro that takes no arguments, you must not leave any whitespace between
-the parentheses.
-
- If a macro argument crosses a new line, the new line is replaced with
-a space when forming the argument. If the previous line contained an
-unterminated quote, the following line inherits the quoted state.
-
- Traditional preprocessors replace parameters in the replacement text
-with their arguments regardless of whether the parameters are within
-quotes or not. This provides a way to stringize arguments. For example
-
- #define str(x) "x"
- str(/* A comment */some text )
- ==> "some text "
-
-Note that the comment is removed, but that the trailing space is
-preserved. Here is an example of using a comment to effect token
-pasting.
-
- #define suffix(x) foo_/**/x
- suffix(bar)
- ==> foo_bar
-
-
-File: cpp.info, Node: Traditional miscellany, Next: Traditional warnings, Prev: Traditional macros, Up: Traditional Mode
-
-10.3 Traditional miscellany
-===========================
-
-Here are some things to be aware of when using the traditional
-preprocessor.
-
- * Preprocessing directives are recognized only when their leading '#'
- appears in the first column. There can be no whitespace between
- the beginning of the line and the '#', but whitespace can follow
- the '#'.
-
- * A true traditional C preprocessor does not recognize '#error' or
- '#pragma', and may not recognize '#elif'. CPP supports all the
- directives in traditional mode that it supports in ISO mode,
- including extensions, with the exception that the effects of
- '#pragma GCC poison' are undefined.
-
- * __STDC__ is not defined.
-
- * If you use digraphs the behavior is undefined.
-
- * If a line that looks like a directive appears within macro
- arguments, the behavior is undefined.
-
-
-File: cpp.info, Node: Traditional warnings, Prev: Traditional miscellany, Up: Traditional Mode
-
-10.4 Traditional warnings
-=========================
-
-You can request warnings about features that did not exist, or worked
-differently, in traditional C with the '-Wtraditional' option. GCC does
-not warn about features of ISO C which you must use when you are using a
-conforming compiler, such as the '#' and '##' operators.
-
- Presently '-Wtraditional' warns about:
-
- * Macro parameters that appear within string literals in the macro
- body. In traditional C macro replacement takes place within string
- literals, but does not in ISO C.
-
- * In traditional C, some preprocessor directives did not exist.
- Traditional preprocessors would only consider a line to be a
- directive if the '#' appeared in column 1 on the line. Therefore
- '-Wtraditional' warns about directives that traditional C
- understands but would ignore because the '#' does not appear as the
- first character on the line. It also suggests you hide directives
- like '#pragma' not understood by traditional C by indenting them.
- Some traditional implementations would not recognize '#elif', so it
- suggests avoiding it altogether.
-
- * A function-like macro that appears without an argument list. In
- some traditional preprocessors this was an error. In ISO C it
- merely means that the macro is not expanded.
-
- * The unary plus operator. This did not exist in traditional C.
-
- * The 'U' and 'LL' integer constant suffixes, which were not
- available in traditional C. (Traditional C does support the 'L'
- suffix for simple long integer constants.) You are not warned
- about uses of these suffixes in macros defined in system headers.
- For instance, 'UINT_MAX' may well be defined as '4294967295U', but
- you will not be warned if you use 'UINT_MAX'.
-
- You can usually avoid the warning, and the related warning about
- constants which are so large that they are unsigned, by writing the
- integer constant in question in hexadecimal, with no U suffix.
- Take care, though, because this gives the wrong result in exotic
- cases.
-
-
-File: cpp.info, Node: Implementation Details, Next: Invocation, Prev: Traditional Mode, Up: Top
-
-11 Implementation Details
-*************************
-
-Here we document details of how the preprocessor's implementation
-affects its user-visible behavior. You should try to avoid undue
-reliance on behavior described here, as it is possible that it will
-change subtly in future implementations.
-
- Also documented here are obsolete features and changes from previous
-versions of CPP.
-
-* Menu:
-
-* Implementation-defined behavior::
-* Implementation limits::
-* Obsolete Features::
-* Differences from previous versions::
-
-
-File: cpp.info, Node: Implementation-defined behavior, Next: Implementation limits, Up: Implementation Details
-
-11.1 Implementation-defined behavior
-====================================
-
-This is how CPP behaves in all the cases which the C standard describes
-as "implementation-defined". This term means that the implementation is
-free to do what it likes, but must document its choice and stick to it.
-
- * The mapping of physical source file multi-byte characters to the
- execution character set.
-
- The input character set can be specified using the
- '-finput-charset' option, while the execution character set may be
- controlled using the '-fexec-charset' and '-fwide-exec-charset'
- options.
-
- * Identifier characters.
-
- The C and C++ standards allow identifiers to be composed of '_' and
- the alphanumeric characters. C++ and C99 also allow universal
- character names, and C99 further permits implementation-defined
- characters. GCC currently only permits universal character names
- if '-fextended-identifiers' is used, because the implementation of
- universal character names in identifiers is experimental.
-
- GCC allows the '$' character in identifiers as an extension for
- most targets. This is true regardless of the 'std=' switch, since
- this extension cannot conflict with standards-conforming programs.
- When preprocessing assembler, however, dollars are not identifier
- characters by default.
-
- Currently the targets that by default do not permit '$' are AVR,
- IP2K, MMIX, MIPS Irix 3, ARM aout, and PowerPC targets for the AIX
- operating system.
-
- You can override the default with '-fdollars-in-identifiers' or
- 'fno-dollars-in-identifiers'. *Note fdollars-in-identifiers::.
-
- * Non-empty sequences of whitespace characters.
-
- In textual output, each whitespace sequence is collapsed to a
- single space. For aesthetic reasons, the first token on each
- non-directive line of output is preceded with sufficient spaces
- that it appears in the same column as it did in the original source
- file.
-
- * The numeric value of character constants in preprocessor
- expressions.
-
- The preprocessor and compiler interpret character constants in the
- same way; i.e. escape sequences such as '\a' are given the values
- they would have on the target machine.
-
- The compiler evaluates a multi-character character constant a
- character at a time, shifting the previous value left by the number
- of bits per target character, and then or-ing in the bit-pattern of
- the new character truncated to the width of a target character.
- The final bit-pattern is given type 'int', and is therefore signed,
- regardless of whether single characters are signed or not (a slight
- change from versions 3.1 and earlier of GCC). If there are more
- characters in the constant than would fit in the target 'int' the
- compiler issues a warning, and the excess leading characters are
- ignored.
-
- For example, ''ab'' for a target with an 8-bit 'char' would be
- interpreted as
- '(int) ((unsigned char) 'a' * 256 + (unsigned char) 'b')', and
- ''\234a'' as
- '(int) ((unsigned char) '\234' * 256 + (unsigned char) 'a')'.
-
- * Source file inclusion.
-
- For a discussion on how the preprocessor locates header files,
- *note Include Operation::.
-
- * Interpretation of the filename resulting from a macro-expanded
- '#include' directive.
-
- *Note Computed Includes::.
-
- * Treatment of a '#pragma' directive that after macro-expansion
- results in a standard pragma.
-
- No macro expansion occurs on any '#pragma' directive line, so the
- question does not arise.
-
- Note that GCC does not yet implement any of the standard pragmas.
-
-
-File: cpp.info, Node: Implementation limits, Next: Obsolete Features, Prev: Implementation-defined behavior, Up: Implementation Details
-
-11.2 Implementation limits
-==========================
-
-CPP has a small number of internal limits. This section lists the
-limits which the C standard requires to be no lower than some minimum,
-and all the others known. It is intended that there should be as few
-limits as possible. If you encounter an undocumented or inconvenient
-limit, please report that as a bug. *Note Reporting Bugs: (gcc)Bugs.
-
- Where we say something is limited "only by available memory", that
-means that internal data structures impose no intrinsic limit, and space
-is allocated with 'malloc' or equivalent. The actual limit will
-therefore depend on many things, such as the size of other things
-allocated by the compiler at the same time, the amount of memory
-consumed by other processes on the same computer, etc.
-
- * Nesting levels of '#include' files.
-
- We impose an arbitrary limit of 200 levels, to avoid runaway
- recursion. The standard requires at least 15 levels.
-
- * Nesting levels of conditional inclusion.
-
- The C standard mandates this be at least 63. CPP is limited only
- by available memory.
-
- * Levels of parenthesized expressions within a full expression.
-
- The C standard requires this to be at least 63. In preprocessor
- conditional expressions, it is limited only by available memory.
-
- * Significant initial characters in an identifier or macro name.
-
- The preprocessor treats all characters as significant. The C
- standard requires only that the first 63 be significant.
-
- * Number of macros simultaneously defined in a single translation
- unit.
-
- The standard requires at least 4095 be possible. CPP is limited
- only by available memory.
-
- * Number of parameters in a macro definition and arguments in a macro
- call.
-
- We allow 'USHRT_MAX', which is no smaller than 65,535. The minimum
- required by the standard is 127.
-
- * Number of characters on a logical source line.
-
- The C standard requires a minimum of 4096 be permitted. CPP places
- no limits on this, but you may get incorrect column numbers
- reported in diagnostics for lines longer than 65,535 characters.
-
- * Maximum size of a source file.
-
- The standard does not specify any lower limit on the maximum size
- of a source file. GNU cpp maps files into memory, so it is limited
- by the available address space. This is generally at least two
- gigabytes. Depending on the operating system, the size of physical
- memory may or may not be a limitation.
-
-
-File: cpp.info, Node: Obsolete Features, Next: Differences from previous versions, Prev: Implementation limits, Up: Implementation Details
-
-11.3 Obsolete Features
-======================
-
-CPP has some features which are present mainly for compatibility with
-older programs. We discourage their use in new code. In some cases, we
-plan to remove the feature in a future version of GCC.
-
-11.3.1 Assertions
------------------
-
-"Assertions" are a deprecated alternative to macros in writing
-conditionals to test what sort of computer or system the compiled
-program will run on. Assertions are usually predefined, but you can
-define them with preprocessing directives or command-line options.
-
- Assertions were intended to provide a more systematic way to describe
-the compiler's target system and we added them for compatibility with
-existing compilers. In practice they are just as unpredictable as the
-system-specific predefined macros. In addition, they are not part of
-any standard, and only a few compilers support them. Therefore, the use
-of assertions is *less* portable than the use of system-specific
-predefined macros. We recommend you do not use them at all.
-
- An assertion looks like this:
-
- #PREDICATE (ANSWER)
-
-PREDICATE must be a single identifier. ANSWER can be any sequence of
-tokens; all characters are significant except for leading and trailing
-whitespace, and differences in internal whitespace sequences are
-ignored. (This is similar to the rules governing macro redefinition.)
-Thus, '(x + y)' is different from '(x+y)' but equivalent to '( x + y )'.
-Parentheses do not nest inside an answer.
-
- To test an assertion, you write it in an '#if'. For example, this
-conditional succeeds if either 'vax' or 'ns16000' has been asserted as
-an answer for 'machine'.
-
- #if #machine (vax) || #machine (ns16000)
-
-You can test whether _any_ answer is asserted for a predicate by
-omitting the answer in the conditional:
-
- #if #machine
-
- Assertions are made with the '#assert' directive. Its sole argument
-is the assertion to make, without the leading '#' that identifies
-assertions in conditionals.
-
- #assert PREDICATE (ANSWER)
-
-You may make several assertions with the same predicate and different
-answers. Subsequent assertions do not override previous ones for the
-same predicate. All the answers for any given predicate are
-simultaneously true.
-
- Assertions can be canceled with the '#unassert' directive. It has
-the same syntax as '#assert'. In that form it cancels only the answer
-which was specified on the '#unassert' line; other answers for that
-predicate remain true. You can cancel an entire predicate by leaving
-out the answer:
-
- #unassert PREDICATE
-
-In either form, if no such assertion has been made, '#unassert' has no
-effect.
-
- You can also make or cancel assertions using command line options.
-*Note Invocation::.
-
-
-File: cpp.info, Node: Differences from previous versions, Prev: Obsolete Features, Up: Implementation Details
-
-11.4 Differences from previous versions
-=======================================
-
-This section details behavior which has changed from previous versions
-of CPP. We do not plan to change it again in the near future, but we do
-not promise not to, either.
-
- The "previous versions" discussed here are 2.95 and before. The
-behavior of GCC 3.0 is mostly the same as the behavior of the widely
-used 2.96 and 2.97 development snapshots. Where there are differences,
-they generally represent bugs in the snapshots.
-
- * -I- deprecated
-
- This option has been deprecated in 4.0. '-iquote' is meant to
- replace the need for this option.
-
- * Order of evaluation of '#' and '##' operators
-
- The standard does not specify the order of evaluation of a chain of
- '##' operators, nor whether '#' is evaluated before, after, or at
- the same time as '##'. You should therefore not write any code
- which depends on any specific ordering. It is possible to
- guarantee an ordering, if you need one, by suitable use of nested
- macros.
-
- An example of where this might matter is pasting the arguments '1',
- 'e' and '-2'. This would be fine for left-to-right pasting, but
- right-to-left pasting would produce an invalid token 'e-2'.
-
- GCC 3.0 evaluates '#' and '##' at the same time and strictly left
- to right. Older versions evaluated all '#' operators first, then
- all '##' operators, in an unreliable order.
-
- * The form of whitespace between tokens in preprocessor output
-
- *Note Preprocessor Output::, for the current textual format. This
- is also the format used by stringification. Normally, the
- preprocessor communicates tokens directly to the compiler's parser,
- and whitespace does not come up at all.
-
- Older versions of GCC preserved all whitespace provided by the user
- and inserted lots more whitespace of their own, because they could
- not accurately predict when extra spaces were needed to prevent
- accidental token pasting.
-
- * Optional argument when invoking rest argument macros
-
- As an extension, GCC permits you to omit the variable arguments
- entirely when you use a variable argument macro. This is forbidden
- by the 1999 C standard, and will provoke a pedantic warning with
- GCC 3.0. Previous versions accepted it silently.
-
- * '##' swallowing preceding text in rest argument macros
-
- Formerly, in a macro expansion, if '##' appeared before a variable
- arguments parameter, and the set of tokens specified for that
- argument in the macro invocation was empty, previous versions of
- CPP would back up and remove the preceding sequence of
- non-whitespace characters (*not* the preceding token). This
- extension is in direct conflict with the 1999 C standard and has
- been drastically pared back.
-
- In the current version of the preprocessor, if '##' appears between
- a comma and a variable arguments parameter, and the variable
- argument is omitted entirely, the comma will be removed from the
- expansion. If the variable argument is empty, or the token before
- '##' is not a comma, then '##' behaves as a normal token paste.
-
- * '#line' and '#include'
-
- The '#line' directive used to change GCC's notion of the "directory
- containing the current file", used by '#include' with a
- double-quoted header file name. In 3.0 and later, it does not.
- *Note Line Control::, for further explanation.
-
- * Syntax of '#line'
-
- In GCC 2.95 and previous, the string constant argument to '#line'
- was treated the same way as the argument to '#include': backslash
- escapes were not honored, and the string ended at the second '"'.
- This is not compliant with the C standard. In GCC 3.0, an attempt
- was made to correct the behavior, so that the string was treated as
- a real string constant, but it turned out to be buggy. In 3.1, the
- bugs have been fixed. (We are not fixing the bugs in 3.0 because
- they affect relatively few people and the fix is quite invasive.)
-
-
-File: cpp.info, Node: Invocation, Next: Environment Variables, Prev: Implementation Details, Up: Top
-
-12 Invocation
-*************
-
-Most often when you use the C preprocessor you will not have to invoke
-it explicitly: the C compiler will do so automatically. However, the
-preprocessor is sometimes useful on its own. All the options listed
-here are also acceptable to the C compiler and have the same meaning,
-except that the C compiler has different rules for specifying the output
-file.
-
- _Note:_ Whether you use the preprocessor by way of 'gcc' or 'cpp',
-the "compiler driver" is run first. This program's purpose is to
-translate your command into invocations of the programs that do the
-actual work. Their command line interfaces are similar but not
-identical to the documented interface, and may change without notice.
-
- The C preprocessor expects two file names as arguments, INFILE and
-OUTFILE. The preprocessor reads INFILE together with any other files it
-specifies with '#include'. All the output generated by the combined
-input files is written in OUTFILE.
-
- Either INFILE or OUTFILE may be '-', which as INFILE means to read
-from standard input and as OUTFILE means to write to standard output.
-Also, if either file is omitted, it means the same as if '-' had been
-specified for that file.
-
- Unless otherwise noted, or the option ends in '=', all options which
-take an argument may have that argument appear either immediately after
-the option, or with a space between option and argument: '-Ifoo' and '-I
-foo' have the same effect.
-
- Many options have multi-letter names; therefore multiple
-single-letter options may _not_ be grouped: '-dM' is very different from
-'-d -M'.
-
-'-D NAME'
- Predefine NAME as a macro, with definition '1'.
-
-'-D NAME=DEFINITION'
- The contents of DEFINITION are tokenized and processed as if they
- appeared during translation phase three in a '#define' directive.
- In particular, the definition will be truncated by embedded newline
- characters.
-
- If you are invoking the preprocessor from a shell or shell-like
- program you may need to use the shell's quoting syntax to protect
- characters such as spaces that have a meaning in the shell syntax.
-
- If you wish to define a function-like macro on the command line,
- write its argument list with surrounding parentheses before the
- equals sign (if any). Parentheses are meaningful to most shells,
- so you will need to quote the option. With 'sh' and 'csh',
- '-D'NAME(ARGS...)=DEFINITION'' works.
-
- '-D' and '-U' options are processed in the order they are given on
- the command line. All '-imacros FILE' and '-include FILE' options
- are processed after all '-D' and '-U' options.
-
-'-U NAME'
- Cancel any previous definition of NAME, either built in or provided
- with a '-D' option.
-
-'-undef'
- Do not predefine any system-specific or GCC-specific macros. The
- standard predefined macros remain defined. *Note Standard
- Predefined Macros::.
-
-'-I DIR'
- Add the directory DIR to the list of directories to be searched for
- header files. *Note Search Path::. Directories named by '-I' are
- searched before the standard system include directories. If the
- directory DIR is a standard system include directory, the option is
- ignored to ensure that the default search order for system
- directories and the special treatment of system headers are not
- defeated (*note System Headers::) . If DIR begins with '=', then
- the '=' will be replaced by the sysroot prefix; see '--sysroot' and
- '-isysroot'.
-
-'-o FILE'
- Write output to FILE. This is the same as specifying FILE as the
- second non-option argument to 'cpp'. 'gcc' has a different
- interpretation of a second non-option argument, so you must use
- '-o' to specify the output file.
-
-'-Wall'
- Turns on all optional warnings which are desirable for normal code.
- At present this is '-Wcomment', '-Wtrigraphs', '-Wmultichar' and a
- warning about integer promotion causing a change of sign in '#if'
- expressions. Note that many of the preprocessor's warnings are on
- by default and have no options to control them.
-
-'-Wcomment'
-'-Wcomments'
- Warn whenever a comment-start sequence '/*' appears in a '/*'
- comment, or whenever a backslash-newline appears in a '//' comment.
- (Both forms have the same effect.)
-
-'-Wtrigraphs'
- Most trigraphs in comments cannot affect the meaning of the
- program. However, a trigraph that would form an escaped newline
- ('??/' at the end of a line) can, by changing where the comment
- begins or ends. Therefore, only trigraphs that would form escaped
- newlines produce warnings inside a comment.
-
- This option is implied by '-Wall'. If '-Wall' is not given, this
- option is still enabled unless trigraphs are enabled. To get
- trigraph conversion without warnings, but get the other '-Wall'
- warnings, use '-trigraphs -Wall -Wno-trigraphs'.
-
-'-Wtraditional'
- Warn about certain constructs that behave differently in
- traditional and ISO C. Also warn about ISO C constructs that have
- no traditional C equivalent, and problematic constructs which
- should be avoided. *Note Traditional Mode::.
-
-'-Wundef'
- Warn whenever an identifier which is not a macro is encountered in
- an '#if' directive, outside of 'defined'. Such identifiers are
- replaced with zero.
-
-'-Wunused-macros'
- Warn about macros defined in the main file that are unused. A
- macro is "used" if it is expanded or tested for existence at least
- once. The preprocessor will also warn if the macro has not been
- used at the time it is redefined or undefined.
-
- Built-in macros, macros defined on the command line, and macros
- defined in include files are not warned about.
-
- _Note:_ If a macro is actually used, but only used in skipped
- conditional blocks, then CPP will report it as unused. To avoid
- the warning in such a case, you might improve the scope of the
- macro's definition by, for example, moving it into the first
- skipped block. Alternatively, you could provide a dummy use with
- something like:
-
- #if defined the_macro_causing_the_warning
- #endif
-
-'-Wendif-labels'
- Warn whenever an '#else' or an '#endif' are followed by text. This
- usually happens in code of the form
-
- #if FOO
- ...
- #else FOO
- ...
- #endif FOO
-
- The second and third 'FOO' should be in comments, but often are not
- in older programs. This warning is on by default.
-
-'-Werror'
- Make all warnings into hard errors. Source code which triggers
- warnings will be rejected.
-
-'-Wsystem-headers'
- Issue warnings for code in system headers. These are normally
- unhelpful in finding bugs in your own code, therefore suppressed.
- If you are responsible for the system library, you may want to see
- them.
-
-'-w'
- Suppress all warnings, including those which GNU CPP issues by
- default.
-
-'-pedantic'
- Issue all the mandatory diagnostics listed in the C standard. Some
- of them are left out by default, since they trigger frequently on
- harmless code.
-
-'-pedantic-errors'
- Issue all the mandatory diagnostics, and make all mandatory
- diagnostics into errors. This includes mandatory diagnostics that
- GCC issues without '-pedantic' but treats as warnings.
-
-'-M'
- Instead of outputting the result of preprocessing, output a rule
- suitable for 'make' describing the dependencies of the main source
- file. The preprocessor outputs one 'make' rule containing the
- object file name for that source file, a colon, and the names of
- all the included files, including those coming from '-include' or
- '-imacros' command line options.
-
- Unless specified explicitly (with '-MT' or '-MQ'), the object file
- name consists of the name of the source file with any suffix
- replaced with object file suffix and with any leading directory
- parts removed. If there are many included files then the rule is
- split into several lines using '\'-newline. The rule has no
- commands.
-
- This option does not suppress the preprocessor's debug output, such
- as '-dM'. To avoid mixing such debug output with the dependency
- rules you should explicitly specify the dependency output file with
- '-MF', or use an environment variable like 'DEPENDENCIES_OUTPUT'
- (*note Environment Variables::). Debug output will still be sent
- to the regular output stream as normal.
-
- Passing '-M' to the driver implies '-E', and suppresses warnings
- with an implicit '-w'.
-
-'-MM'
- Like '-M' but do not mention header files that are found in system
- header directories, nor header files that are included, directly or
- indirectly, from such a header.
-
- This implies that the choice of angle brackets or double quotes in
- an '#include' directive does not in itself determine whether that
- header will appear in '-MM' dependency output. This is a slight
- change in semantics from GCC versions 3.0 and earlier.
-
-'-MF FILE'
- When used with '-M' or '-MM', specifies a file to write the
- dependencies to. If no '-MF' switch is given the preprocessor
- sends the rules to the same place it would have sent preprocessed
- output.
-
- When used with the driver options '-MD' or '-MMD', '-MF' overrides
- the default dependency output file.
-
-'-MG'
- In conjunction with an option such as '-M' requesting dependency
- generation, '-MG' assumes missing header files are generated files
- and adds them to the dependency list without raising an error. The
- dependency filename is taken directly from the '#include' directive
- without prepending any path. '-MG' also suppresses preprocessed
- output, as a missing header file renders this useless.
-
- This feature is used in automatic updating of makefiles.
-
-'-MP'
- This option instructs CPP to add a phony target for each dependency
- other than the main file, causing each to depend on nothing. These
- dummy rules work around errors 'make' gives if you remove header
- files without updating the 'Makefile' to match.
-
- This is typical output:
-
- test.o: test.c test.h
-
- test.h:
-
-'-MT TARGET'
-
- Change the target of the rule emitted by dependency generation. By
- default CPP takes the name of the main input file, deletes any
- directory components and any file suffix such as '.c', and appends
- the platform's usual object suffix. The result is the target.
-
- An '-MT' option will set the target to be exactly the string you
- specify. If you want multiple targets, you can specify them as a
- single argument to '-MT', or use multiple '-MT' options.
-
- For example, '-MT '$(objpfx)foo.o'' might give
-
- $(objpfx)foo.o: foo.c
-
-'-MQ TARGET'
-
- Same as '-MT', but it quotes any characters which are special to
- Make. '-MQ '$(objpfx)foo.o'' gives
-
- $$(objpfx)foo.o: foo.c
-
- The default target is automatically quoted, as if it were given
- with '-MQ'.
-
-'-MD'
- '-MD' is equivalent to '-M -MF FILE', except that '-E' is not
- implied. The driver determines FILE based on whether an '-o'
- option is given. If it is, the driver uses its argument but with a
- suffix of '.d', otherwise it takes the name of the input file,
- removes any directory components and suffix, and applies a '.d'
- suffix.
-
- If '-MD' is used in conjunction with '-E', any '-o' switch is
- understood to specify the dependency output file (*note -MF:
- dashMF.), but if used without '-E', each '-o' is understood to
- specify a target object file.
-
- Since '-E' is not implied, '-MD' can be used to generate a
- dependency output file as a side-effect of the compilation process.
-
-'-MMD'
- Like '-MD' except mention only user header files, not system header
- files.
-
-'-x c'
-'-x c++'
-'-x objective-c'
-'-x assembler-with-cpp'
- Specify the source language: C, C++, Objective-C, or assembly.
- This has nothing to do with standards conformance or extensions; it
- merely selects which base syntax to expect. If you give none of
- these options, cpp will deduce the language from the extension of
- the source file: '.c', '.cc', '.m', or '.S'. Some other common
- extensions for C++ and assembly are also recognized. If cpp does
- not recognize the extension, it will treat the file as C; this is
- the most generic mode.
-
- _Note:_ Previous versions of cpp accepted a '-lang' option which
- selected both the language and the standards conformance level.
- This option has been removed, because it conflicts with the '-l'
- option.
-
-'-std=STANDARD'
-'-ansi'
- Specify the standard to which the code should conform. Currently
- CPP knows about C and C++ standards; others may be added in the
- future.
-
- STANDARD may be one of:
- 'c90'
- 'c89'
- 'iso9899:1990'
- The ISO C standard from 1990. 'c90' is the customary
- shorthand for this version of the standard.
-
- The '-ansi' option is equivalent to '-std=c90'.
-
- 'iso9899:199409'
- The 1990 C standard, as amended in 1994.
-
- 'iso9899:1999'
- 'c99'
- 'iso9899:199x'
- 'c9x'
- The revised ISO C standard, published in December 1999.
- Before publication, this was known as C9X.
-
- 'iso9899:2011'
- 'c11'
- 'c1x'
- The revised ISO C standard, published in December 2011.
- Before publication, this was known as C1X.
-
- 'gnu90'
- 'gnu89'
- The 1990 C standard plus GNU extensions. This is the default.
-
- 'gnu99'
- 'gnu9x'
- The 1999 C standard plus GNU extensions.
-
- 'gnu11'
- 'gnu1x'
- The 2011 C standard plus GNU extensions.
-
- 'c++98'
- The 1998 ISO C++ standard plus amendments.
-
- 'gnu++98'
- The same as '-std=c++98' plus GNU extensions. This is the
- default for C++ code.
-
-'-I-'
- Split the include path. Any directories specified with '-I'
- options before '-I-' are searched only for headers requested with
- '#include "FILE"'; they are not searched for '#include <FILE>'. If
- additional directories are specified with '-I' options after the
- '-I-', those directories are searched for all '#include'
- directives.
-
- In addition, '-I-' inhibits the use of the directory of the current
- file directory as the first search directory for '#include "FILE"'.
- *Note Search Path::. This option has been deprecated.
-
-'-nostdinc'
- Do not search the standard system directories for header files.
- Only the directories you have specified with '-I' options (and the
- directory of the current file, if appropriate) are searched.
-
-'-nostdinc++'
- Do not search for header files in the C++-specific standard
- directories, but do still search the other standard directories.
- (This option is used when building the C++ library.)
-
-'-include FILE'
- Process FILE as if '#include "file"' appeared as the first line of
- the primary source file. However, the first directory searched for
- FILE is the preprocessor's working directory _instead of_ the
- directory containing the main source file. If not found there, it
- is searched for in the remainder of the '#include "..."' search
- chain as normal.
-
- If multiple '-include' options are given, the files are included in
- the order they appear on the command line.
-
-'-imacros FILE'
- Exactly like '-include', except that any output produced by
- scanning FILE is thrown away. Macros it defines remain defined.
- This allows you to acquire all the macros from a header without
- also processing its declarations.
-
- All files specified by '-imacros' are processed before all files
- specified by '-include'.
-
-'-idirafter DIR'
- Search DIR for header files, but do it _after_ all directories
- specified with '-I' and the standard system directories have been
- exhausted. DIR is treated as a system include directory. If DIR
- begins with '=', then the '=' will be replaced by the sysroot
- prefix; see '--sysroot' and '-isysroot'.
-
-'-iprefix PREFIX'
- Specify PREFIX as the prefix for subsequent '-iwithprefix' options.
- If the prefix represents a directory, you should include the final
- '/'.
-
-'-iwithprefix DIR'
-'-iwithprefixbefore DIR'
- Append DIR to the prefix specified previously with '-iprefix', and
- add the resulting directory to the include search path.
- '-iwithprefixbefore' puts it in the same place '-I' would;
- '-iwithprefix' puts it where '-idirafter' would.
-
-'-isysroot DIR'
- This option is like the '--sysroot' option, but applies only to
- header files (except for Darwin targets, where it applies to both
- header files and libraries). See the '--sysroot' option for more
- information.
-
-'-imultilib DIR'
- Use DIR as a subdirectory of the directory containing
- target-specific C++ headers.
-
-'-isystem DIR'
- Search DIR for header files, after all directories specified by
- '-I' but before the standard system directories. Mark it as a
- system directory, so that it gets the same special treatment as is
- applied to the standard system directories. *Note System
- Headers::. If DIR begins with '=', then the '=' will be replaced
- by the sysroot prefix; see '--sysroot' and '-isysroot'.
-
-'-iquote DIR'
- Search DIR only for header files requested with '#include "FILE"';
- they are not searched for '#include <FILE>', before all directories
- specified by '-I' and before the standard system directories.
- *Note Search Path::. If DIR begins with '=', then the '=' will be
- replaced by the sysroot prefix; see '--sysroot' and '-isysroot'.
-
-'-fdirectives-only'
- When preprocessing, handle directives, but do not expand macros.
-
- The option's behavior depends on the '-E' and '-fpreprocessed'
- options.
-
- With '-E', preprocessing is limited to the handling of directives
- such as '#define', '#ifdef', and '#error'. Other preprocessor
- operations, such as macro expansion and trigraph conversion are not
- performed. In addition, the '-dD' option is implicitly enabled.
-
- With '-fpreprocessed', predefinition of command line and most
- builtin macros is disabled. Macros such as '__LINE__', which are
- contextually dependent, are handled normally. This enables
- compilation of files previously preprocessed with '-E
- -fdirectives-only'.
-
- With both '-E' and '-fpreprocessed', the rules for '-fpreprocessed'
- take precedence. This enables full preprocessing of files
- previously preprocessed with '-E -fdirectives-only'.
-
-'-fdollars-in-identifiers'
- Accept '$' in identifiers. *Note Identifier characters::.
-
-'-fextended-identifiers'
- Accept universal character names in identifiers. This option is
- experimental; in a future version of GCC, it will be enabled by
- default for C99 and C++.
-
-'-fno-canonical-system-headers'
- When preprocessing, do not shorten system header paths with
- canonicalization.
-
-'-fpreprocessed'
- Indicate to the preprocessor that the input file has already been
- preprocessed. This suppresses things like macro expansion,
- trigraph conversion, escaped newline splicing, and processing of
- most directives. The preprocessor still recognizes and removes
- comments, so that you can pass a file preprocessed with '-C' to the
- compiler without problems. In this mode the integrated
- preprocessor is little more than a tokenizer for the front ends.
-
- '-fpreprocessed' is implicit if the input file has one of the
- extensions '.i', '.ii' or '.mi'. These are the extensions that GCC
- uses for preprocessed files created by '-save-temps'.
-
-'-ftabstop=WIDTH'
- Set the distance between tab stops. This helps the preprocessor
- report correct column numbers in warnings or errors, even if tabs
- appear on the line. If the value is less than 1 or greater than
- 100, the option is ignored. The default is 8.
-
-'-fdebug-cpp'
- This option is only useful for debugging GCC. When used with '-E',
- dumps debugging information about location maps. Every token in
- the output is preceded by the dump of the map its location belongs
- to. The dump of the map holding the location of a token would be:
- {'P':/file/path;'F':/includer/path;'L':LINE_NUM;'C':COL_NUM;'S':SYSTEM_HEADER_P;'M':MAP_ADDRESS;'E':MACRO_EXPANSION_P,'loc':LOCATION}
-
- When used without '-E', this option has no effect.
-
-'-ftrack-macro-expansion[=LEVEL]'
- Track locations of tokens across macro expansions. This allows the
- compiler to emit diagnostic about the current macro expansion stack
- when a compilation error occurs in a macro expansion. Using this
- option makes the preprocessor and the compiler consume more memory.
- The LEVEL parameter can be used to choose the level of precision of
- token location tracking thus decreasing the memory consumption if
- necessary. Value '0' of LEVEL de-activates this option just as if
- no '-ftrack-macro-expansion' was present on the command line.
- Value '1' tracks tokens locations in a degraded mode for the sake
- of minimal memory overhead. In this mode all tokens resulting from
- the expansion of an argument of a function-like macro have the same
- location. Value '2' tracks tokens locations completely. This
- value is the most memory hungry. When this option is given no
- argument, the default parameter value is '2'.
-
- Note that -ftrack-macro-expansion=2 is activated by default.
-
-'-fexec-charset=CHARSET'
- Set the execution character set, used for string and character
- constants. The default is UTF-8. CHARSET can be any encoding
- supported by the system's 'iconv' library routine.
-
-'-fwide-exec-charset=CHARSET'
- Set the wide execution character set, used for wide string and
- character constants. The default is UTF-32 or UTF-16, whichever
- corresponds to the width of 'wchar_t'. As with '-fexec-charset',
- CHARSET can be any encoding supported by the system's 'iconv'
- library routine; however, you will have problems with encodings
- that do not fit exactly in 'wchar_t'.
-
-'-finput-charset=CHARSET'
- Set the input character set, used for translation from the
- character set of the input file to the source character set used by
- GCC. If the locale does not specify, or GCC cannot get this
- information from the locale, the default is UTF-8. This can be
- overridden by either the locale or this command line option.
- Currently the command line option takes precedence if there's a
- conflict. CHARSET can be any encoding supported by the system's
- 'iconv' library routine.
-
-'-fworking-directory'
- Enable generation of linemarkers in the preprocessor output that
- will let the compiler know the current working directory at the
- time of preprocessing. When this option is enabled, the
- preprocessor will emit, after the initial linemarker, a second
- linemarker with the current working directory followed by two
- slashes. GCC will use this directory, when it's present in the
- preprocessed input, as the directory emitted as the current working
- directory in some debugging information formats. This option is
- implicitly enabled if debugging information is enabled, but this
- can be inhibited with the negated form '-fno-working-directory'.
- If the '-P' flag is present in the command line, this option has no
- effect, since no '#line' directives are emitted whatsoever.
-
-'-fno-show-column'
- Do not print column numbers in diagnostics. This may be necessary
- if diagnostics are being scanned by a program that does not
- understand the column numbers, such as 'dejagnu'.
-
-'-A PREDICATE=ANSWER'
- Make an assertion with the predicate PREDICATE and answer ANSWER.
- This form is preferred to the older form '-A PREDICATE(ANSWER)',
- which is still supported, because it does not use shell special
- characters. *Note Obsolete Features::.
-
-'-A -PREDICATE=ANSWER'
- Cancel an assertion with the predicate PREDICATE and answer ANSWER.
-
-'-dCHARS'
- CHARS is a sequence of one or more of the following characters, and
- must not be preceded by a space. Other characters are interpreted
- by the compiler proper, or reserved for future versions of GCC, and
- so are silently ignored. If you specify characters whose behavior
- conflicts, the result is undefined.
-
- 'M'
- Instead of the normal output, generate a list of '#define'
- directives for all the macros defined during the execution of
- the preprocessor, including predefined macros. This gives you
- a way of finding out what is predefined in your version of the
- preprocessor. Assuming you have no file 'foo.h', the command
-
- touch foo.h; cpp -dM foo.h
-
- will show all the predefined macros.
-
- If you use '-dM' without the '-E' option, '-dM' is interpreted
- as a synonym for '-fdump-rtl-mach'. *Note (gcc)Debugging
- Options::.
-
- 'D'
- Like 'M' except in two respects: it does _not_ include the
- predefined macros, and it outputs _both_ the '#define'
- directives and the result of preprocessing. Both kinds of
- output go to the standard output file.
-
- 'N'
- Like 'D', but emit only the macro names, not their expansions.
-
- 'I'
- Output '#include' directives in addition to the result of
- preprocessing.
-
- 'U'
- Like 'D' except that only macros that are expanded, or whose
- definedness is tested in preprocessor directives, are output;
- the output is delayed until the use or test of the macro; and
- '#undef' directives are also output for macros tested but
- undefined at the time.
-
-'-P'
- Inhibit generation of linemarkers in the output from the
- preprocessor. This might be useful when running the preprocessor
- on something that is not C code, and will be sent to a program
- which might be confused by the linemarkers. *Note Preprocessor
- Output::.
-
-'-C'
- Do not discard comments. All comments are passed through to the
- output file, except for comments in processed directives, which are
- deleted along with the directive.
-
- You should be prepared for side effects when using '-C'; it causes
- the preprocessor to treat comments as tokens in their own right.
- For example, comments appearing at the start of what would be a
- directive line have the effect of turning that line into an
- ordinary source line, since the first token on the line is no
- longer a '#'.
-
-'-CC'
- Do not discard comments, including during macro expansion. This is
- like '-C', except that comments contained within macros are also
- passed through to the output file where the macro is expanded.
-
- In addition to the side-effects of the '-C' option, the '-CC'
- option causes all C++-style comments inside a macro to be converted
- to C-style comments. This is to prevent later use of that macro
- from inadvertently commenting out the remainder of the source line.
-
- The '-CC' option is generally used to support lint comments.
-
-'-traditional-cpp'
- Try to imitate the behavior of old-fashioned C preprocessors, as
- opposed to ISO C preprocessors. *Note Traditional Mode::.
-
-'-trigraphs'
- Process trigraph sequences. *Note Initial processing::.
-
-'-remap'
- Enable special code to work around file systems which only permit
- very short file names, such as MS-DOS.
-
-'--help'
-'--target-help'
- Print text describing all the command line options instead of
- preprocessing anything.
-
-'-v'
- Verbose mode. Print out GNU CPP's version number at the beginning
- of execution, and report the final form of the include path.
-
-'-H'
- Print the name of each header file used, in addition to other
- normal activities. Each name is indented to show how deep in the
- '#include' stack it is. Precompiled header files are also printed,
- even if they are found to be invalid; an invalid precompiled header
- file is printed with '...x' and a valid one with '...!' .
-
-'-version'
-'--version'
- Print out GNU CPP's version number. With one dash, proceed to
- preprocess as normal. With two dashes, exit immediately.
-
-
-File: cpp.info, Node: Environment Variables, Next: GNU Free Documentation License, Prev: Invocation, Up: Top
-
-13 Environment Variables
-************************
-
-This section describes the environment variables that affect how CPP
-operates. You can use them to specify directories or prefixes to use
-when searching for include files, or to control dependency output.
-
- Note that you can also specify places to search using options such as
-'-I', and control dependency output with options like '-M' (*note
-Invocation::). These take precedence over environment variables, which
-in turn take precedence over the configuration of GCC.
-
-'CPATH'
-'C_INCLUDE_PATH'
-'CPLUS_INCLUDE_PATH'
-'OBJC_INCLUDE_PATH'
- Each variable's value is a list of directories separated by a
- special character, much like 'PATH', in which to look for header
- files. The special character, 'PATH_SEPARATOR', is
- target-dependent and determined at GCC build time. For Microsoft
- Windows-based targets it is a semicolon, and for almost all other
- targets it is a colon.
-
- 'CPATH' specifies a list of directories to be searched as if
- specified with '-I', but after any paths given with '-I' options on
- the command line. This environment variable is used regardless of
- which language is being preprocessed.
-
- The remaining environment variables apply only when preprocessing
- the particular language indicated. Each specifies a list of
- directories to be searched as if specified with '-isystem', but
- after any paths given with '-isystem' options on the command line.
-
- In all these variables, an empty element instructs the compiler to
- search its current working directory. Empty elements can appear at
- the beginning or end of a path. For instance, if the value of
- 'CPATH' is ':/special/include', that has the same effect as
- '-I. -I/special/include'.
-
- See also *note Search Path::.
-
-'DEPENDENCIES_OUTPUT'
- If this variable is set, its value specifies how to output
- dependencies for Make based on the non-system header files
- processed by the compiler. System header files are ignored in the
- dependency output.
-
- The value of 'DEPENDENCIES_OUTPUT' can be just a file name, in
- which case the Make rules are written to that file, guessing the
- target name from the source file name. Or the value can have the
- form 'FILE TARGET', in which case the rules are written to file
- FILE using TARGET as the target name.
-
- In other words, this environment variable is equivalent to
- combining the options '-MM' and '-MF' (*note Invocation::), with an
- optional '-MT' switch too.
-
-'SUNPRO_DEPENDENCIES'
- This variable is the same as 'DEPENDENCIES_OUTPUT' (see above),
- except that system header files are not ignored, so it implies '-M'
- rather than '-MM'. However, the dependence on the main input file
- is omitted. *Note Invocation::.
-
-
-File: cpp.info, Node: GNU Free Documentation License, Next: Index of Directives, Prev: Environment Variables, Up: Top
-
-GNU Free Documentation License
-******************************
-
- Version 1.3, 3 November 2008
-
- Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
- <http://fsf.org/>
-
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
- 0. PREAMBLE
-
- The purpose of this License is to make a manual, textbook, or other
- functional and useful document "free" in the sense of freedom: to
- assure everyone the effective freedom to copy and redistribute it,
- with or without modifying it, either commercially or
- noncommercially. Secondarily, this License preserves for the
- author and publisher a way to get credit for their work, while not
- being considered responsible for modifications made by others.
-
- This License is a kind of "copyleft", which means that derivative
- works of the document must themselves be free in the same sense.
- It complements the GNU General Public License, which is a copyleft
- license designed for free software.
-
- We have designed this License in order to use it for manuals for
- free software, because free software needs free documentation: a
- free program should come with manuals providing the same freedoms
- that the software does. But this License is not limited to
- software manuals; it can be used for any textual work, regardless
- of subject matter or whether it is published as a printed book. We
- recommend this License principally for works whose purpose is
- instruction or reference.
-
- 1. APPLICABILITY AND DEFINITIONS
-
- This License applies to any manual or other work, in any medium,
- that contains a notice placed by the copyright holder saying it can
- be distributed under the terms of this License. Such a notice
- grants a world-wide, royalty-free license, unlimited in duration,
- to use that work under the conditions stated herein. The
- "Document", below, refers to any such manual or work. Any member
- of the public is a licensee, and is addressed as "you". You accept
- the license if you copy, modify or distribute the work in a way
- requiring permission under copyright law.
-
- A "Modified Version" of the Document means any work containing the
- Document or a portion of it, either copied verbatim, or with
- modifications and/or translated into another language.
-
- A "Secondary Section" is a named appendix or a front-matter section
- of the Document that deals exclusively with the relationship of the
- publishers or authors of the Document to the Document's overall
- subject (or to related matters) and contains nothing that could
- fall directly within that overall subject. (Thus, if the Document
- is in part a textbook of mathematics, a Secondary Section may not
- explain any mathematics.) The relationship could be a matter of
- historical connection with the subject or with related matters, or
- of legal, commercial, philosophical, ethical or political position
- regarding them.
-
- The "Invariant Sections" are certain Secondary Sections whose
- titles are designated, as being those of Invariant Sections, in the
- notice that says that the Document is released under this License.
- If a section does not fit the above definition of Secondary then it
- is not allowed to be designated as Invariant. The Document may
- contain zero Invariant Sections. If the Document does not identify
- any Invariant Sections then there are none.
-
- The "Cover Texts" are certain short passages of text that are
- listed, as Front-Cover Texts or Back-Cover Texts, in the notice
- that says that the Document is released under this License. A
- Front-Cover Text may be at most 5 words, and a Back-Cover Text may
- be at most 25 words.
-
- A "Transparent" copy of the Document means a machine-readable copy,
- represented in a format whose specification is available to the
- general public, that is suitable for revising the document
- straightforwardly with generic text editors or (for images composed
- of pixels) generic paint programs or (for drawings) some widely
- available drawing editor, and that is suitable for input to text
- formatters or for automatic translation to a variety of formats
- suitable for input to text formatters. A copy made in an otherwise
- Transparent file format whose markup, or absence of markup, has
- been arranged to thwart or discourage subsequent modification by
- readers is not Transparent. An image format is not Transparent if
- used for any substantial amount of text. A copy that is not
- "Transparent" is called "Opaque".
-
- Examples of suitable formats for Transparent copies include plain
- ASCII without markup, Texinfo input format, LaTeX input format,
- SGML or XML using a publicly available DTD, and standard-conforming
- simple HTML, PostScript or PDF designed for human modification.
- Examples of transparent image formats include PNG, XCF and JPG.
- Opaque formats include proprietary formats that can be read and
- edited only by proprietary word processors, SGML or XML for which
- the DTD and/or processing tools are not generally available, and
- the machine-generated HTML, PostScript or PDF produced by some word
- processors for output purposes only.
-
- The "Title Page" means, for a printed book, the title page itself,
- plus such following pages as are needed to hold, legibly, the
- material this License requires to appear in the title page. For
- works in formats which do not have any title page as such, "Title
- Page" means the text near the most prominent appearance of the
- work's title, preceding the beginning of the body of the text.
-
- The "publisher" means any person or entity that distributes copies
- of the Document to the public.
-
- A section "Entitled XYZ" means a named subunit of the Document
- whose title either is precisely XYZ or contains XYZ in parentheses
- following text that translates XYZ in another language. (Here XYZ
- stands for a specific section name mentioned below, such as
- "Acknowledgements", "Dedications", "Endorsements", or "History".)
- To "Preserve the Title" of such a section when you modify the
- Document means that it remains a section "Entitled XYZ" according
- to this definition.
-
- The Document may include Warranty Disclaimers next to the notice
- which states that this License applies to the Document. These
- Warranty Disclaimers are considered to be included by reference in
- this License, but only as regards disclaiming warranties: any other
- implication that these Warranty Disclaimers may have is void and
- has no effect on the meaning of this License.
-
- 2. VERBATIM COPYING
-
- You may copy and distribute the Document in any medium, either
- commercially or noncommercially, provided that this License, the
- copyright notices, and the license notice saying this License
- applies to the Document are reproduced in all copies, and that you
- add no other conditions whatsoever to those of this License. You
- may not use technical measures to obstruct or control the reading
- or further copying of the copies you make or distribute. However,
- you may accept compensation in exchange for copies. If you
- distribute a large enough number of copies you must also follow the
- conditions in section 3.
-
- You may also lend copies, under the same conditions stated above,
- and you may publicly display copies.
-
- 3. COPYING IN QUANTITY
-
- If you publish printed copies (or copies in media that commonly
- have printed covers) of the Document, numbering more than 100, and
- the Document's license notice requires Cover Texts, you must
- enclose the copies in covers that carry, clearly and legibly, all
- these Cover Texts: Front-Cover Texts on the front cover, and
- Back-Cover Texts on the back cover. Both covers must also clearly
- and legibly identify you as the publisher of these copies. The
- front cover must present the full title with all words of the title
- equally prominent and visible. You may add other material on the
- covers in addition. Copying with changes limited to the covers, as
- long as they preserve the title of the Document and satisfy these
- conditions, can be treated as verbatim copying in other respects.
-
- If the required texts for either cover are too voluminous to fit
- legibly, you should put the first ones listed (as many as fit
- reasonably) on the actual cover, and continue the rest onto
- adjacent pages.
-
- If you publish or distribute Opaque copies of the Document
- numbering more than 100, you must either include a machine-readable
- Transparent copy along with each Opaque copy, or state in or with
- each Opaque copy a computer-network location from which the general
- network-using public has access to download using public-standard
- network protocols a complete Transparent copy of the Document, free
- of added material. If you use the latter option, you must take
- reasonably prudent steps, when you begin distribution of Opaque
- copies in quantity, to ensure that this Transparent copy will
- remain thus accessible at the stated location until at least one
- year after the last time you distribute an Opaque copy (directly or
- through your agents or retailers) of that edition to the public.
-
- It is requested, but not required, that you contact the authors of
- the Document well before redistributing any large number of copies,
- to give them a chance to provide you with an updated version of the
- Document.
-
- 4. MODIFICATIONS
-
- You may copy and distribute a Modified Version of the Document
- under the conditions of sections 2 and 3 above, provided that you
- release the Modified Version under precisely this License, with the
- Modified Version filling the role of the Document, thus licensing
- distribution and modification of the Modified Version to whoever
- possesses a copy of it. In addition, you must do these things in
- the Modified Version:
-
- A. Use in the Title Page (and on the covers, if any) a title
- distinct from that of the Document, and from those of previous
- versions (which should, if there were any, be listed in the
- History section of the Document). You may use the same title
- as a previous version if the original publisher of that
- version gives permission.
-
- B. List on the Title Page, as authors, one or more persons or
- entities responsible for authorship of the modifications in
- the Modified Version, together with at least five of the
- principal authors of the Document (all of its principal
- authors, if it has fewer than five), unless they release you
- from this requirement.
-
- C. State on the Title page the name of the publisher of the
- Modified Version, as the publisher.
-
- D. Preserve all the copyright notices of the Document.
-
- E. Add an appropriate copyright notice for your modifications
- adjacent to the other copyright notices.
-
- F. Include, immediately after the copyright notices, a license
- notice giving the public permission to use the Modified
- Version under the terms of this License, in the form shown in
- the Addendum below.
-
- G. Preserve in that license notice the full lists of Invariant
- Sections and required Cover Texts given in the Document's
- license notice.
-
- H. Include an unaltered copy of this License.
-
- I. Preserve the section Entitled "History", Preserve its Title,
- and add to it an item stating at least the title, year, new
- authors, and publisher of the Modified Version as given on the
- Title Page. If there is no section Entitled "History" in the
- Document, create one stating the title, year, authors, and
- publisher of the Document as given on its Title Page, then add
- an item describing the Modified Version as stated in the
- previous sentence.
-
- J. Preserve the network location, if any, given in the Document
- for public access to a Transparent copy of the Document, and
- likewise the network locations given in the Document for
- previous versions it was based on. These may be placed in the
- "History" section. You may omit a network location for a work
- that was published at least four years before the Document
- itself, or if the original publisher of the version it refers
- to gives permission.
-
- K. For any section Entitled "Acknowledgements" or "Dedications",
- Preserve the Title of the section, and preserve in the section
- all the substance and tone of each of the contributor
- acknowledgements and/or dedications given therein.
-
- L. Preserve all the Invariant Sections of the Document, unaltered
- in their text and in their titles. Section numbers or the
- equivalent are not considered part of the section titles.
-
- M. Delete any section Entitled "Endorsements". Such a section
- may not be included in the Modified Version.
-
- N. Do not retitle any existing section to be Entitled
- "Endorsements" or to conflict in title with any Invariant
- Section.
-
- O. Preserve any Warranty Disclaimers.
-
- If the Modified Version includes new front-matter sections or
- appendices that qualify as Secondary Sections and contain no
- material copied from the Document, you may at your option designate
- some or all of these sections as invariant. To do this, add their
- titles to the list of Invariant Sections in the Modified Version's
- license notice. These titles must be distinct from any other
- section titles.
-
- You may add a section Entitled "Endorsements", provided it contains
- nothing but endorsements of your Modified Version by various
- parties--for example, statements of peer review or that the text
- has been approved by an organization as the authoritative
- definition of a standard.
-
- You may add a passage of up to five words as a Front-Cover Text,
- and a passage of up to 25 words as a Back-Cover Text, to the end of
- the list of Cover Texts in the Modified Version. Only one passage
- of Front-Cover Text and one of Back-Cover Text may be added by (or
- through arrangements made by) any one entity. If the Document
- already includes a cover text for the same cover, previously added
- by you or by arrangement made by the same entity you are acting on
- behalf of, you may not add another; but you may replace the old
- one, on explicit permission from the previous publisher that added
- the old one.
-
- The author(s) and publisher(s) of the Document do not by this
- License give permission to use their names for publicity for or to
- assert or imply endorsement of any Modified Version.
-
- 5. COMBINING DOCUMENTS
-
- You may combine the Document with other documents released under
- this License, under the terms defined in section 4 above for
- modified versions, provided that you include in the combination all
- of the Invariant Sections of all of the original documents,
- unmodified, and list them all as Invariant Sections of your
- combined work in its license notice, and that you preserve all
- their Warranty Disclaimers.
-
- The combined work need only contain one copy of this License, and
- multiple identical Invariant Sections may be replaced with a single
- copy. If there are multiple Invariant Sections with the same name
- but different contents, make the title of each such section unique
- by adding at the end of it, in parentheses, the name of the
- original author or publisher of that section if known, or else a
- unique number. Make the same adjustment to the section titles in
- the list of Invariant Sections in the license notice of the
- combined work.
-
- In the combination, you must combine any sections Entitled
- "History" in the various original documents, forming one section
- Entitled "History"; likewise combine any sections Entitled
- "Acknowledgements", and any sections Entitled "Dedications". You
- must delete all sections Entitled "Endorsements."
-
- 6. COLLECTIONS OF DOCUMENTS
-
- You may make a collection consisting of the Document and other
- documents released under this License, and replace the individual
- copies of this License in the various documents with a single copy
- that is included in the collection, provided that you follow the
- rules of this License for verbatim copying of each of the documents
- in all other respects.
-
- You may extract a single document from such a collection, and
- distribute it individually under this License, provided you insert
- a copy of this License into the extracted document, and follow this
- License in all other respects regarding verbatim copying of that
- document.
-
- 7. AGGREGATION WITH INDEPENDENT WORKS
-
- A compilation of the Document or its derivatives with other
- separate and independent documents or works, in or on a volume of a
- storage or distribution medium, is called an "aggregate" if the
- copyright resulting from the compilation is not used to limit the
- legal rights of the compilation's users beyond what the individual
- works permit. When the Document is included in an aggregate, this
- License does not apply to the other works in the aggregate which
- are not themselves derivative works of the Document.
-
- If the Cover Text requirement of section 3 is applicable to these
- copies of the Document, then if the Document is less than one half
- of the entire aggregate, the Document's Cover Texts may be placed
- on covers that bracket the Document within the aggregate, or the
- electronic equivalent of covers if the Document is in electronic
- form. Otherwise they must appear on printed covers that bracket
- the whole aggregate.
-
- 8. TRANSLATION
-
- Translation is considered a kind of modification, so you may
- distribute translations of the Document under the terms of section
- 4. Replacing Invariant Sections with translations requires special
- permission from their copyright holders, but you may include
- translations of some or all Invariant Sections in addition to the
- original versions of these Invariant Sections. You may include a
- translation of this License, and all the license notices in the
- Document, and any Warranty Disclaimers, provided that you also
- include the original English version of this License and the
- original versions of those notices and disclaimers. In case of a
- disagreement between the translation and the original version of
- this License or a notice or disclaimer, the original version will
- prevail.
-
- If a section in the Document is Entitled "Acknowledgements",
- "Dedications", or "History", the requirement (section 4) to
- Preserve its Title (section 1) will typically require changing the
- actual title.
-
- 9. TERMINATION
-
- You may not copy, modify, sublicense, or distribute the Document
- except as expressly provided under this License. Any attempt
- otherwise to copy, modify, sublicense, or distribute it is void,
- and will automatically terminate your rights under this License.
-
- However, if you cease all violation of this License, then your
- license from a particular copyright holder is reinstated (a)
- provisionally, unless and until the copyright holder explicitly and
- finally terminates your license, and (b) permanently, if the
- copyright holder fails to notify you of the violation by some
- reasonable means prior to 60 days after the cessation.
-
- Moreover, your license from a particular copyright holder is
- reinstated permanently if the copyright holder notifies you of the
- violation by some reasonable means, this is the first time you have
- received notice of violation of this License (for any work) from
- that copyright holder, and you cure the violation prior to 30 days
- after your receipt of the notice.
-
- Termination of your rights under this section does not terminate
- the licenses of parties who have received copies or rights from you
- under this License. If your rights have been terminated and not
- permanently reinstated, receipt of a copy of some or all of the
- same material does not give you any rights to use it.
-
- 10. FUTURE REVISIONS OF THIS LICENSE
-
- The Free Software Foundation may publish new, revised versions of
- the GNU Free Documentation License from time to time. Such new
- versions will be similar in spirit to the present version, but may
- differ in detail to address new problems or concerns. See
- <http://www.gnu.org/copyleft/>.
-
- Each version of the License is given a distinguishing version
- number. If the Document specifies that a particular numbered
- version of this License "or any later version" applies to it, you
- have the option of following the terms and conditions either of
- that specified version or of any later version that has been
- published (not as a draft) by the Free Software Foundation. If the
- Document does not specify a version number of this License, you may
- choose any version ever published (not as a draft) by the Free
- Software Foundation. If the Document specifies that a proxy can
- decide which future versions of this License can be used, that
- proxy's public statement of acceptance of a version permanently
- authorizes you to choose that version for the Document.
-
- 11. RELICENSING
-
- "Massive Multiauthor Collaboration Site" (or "MMC Site") means any
- World Wide Web server that publishes copyrightable works and also
- provides prominent facilities for anybody to edit those works. A
- public wiki that anybody can edit is an example of such a server.
- A "Massive Multiauthor Collaboration" (or "MMC") contained in the
- site means any set of copyrightable works thus published on the MMC
- site.
-
- "CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
- license published by Creative Commons Corporation, a not-for-profit
- corporation with a principal place of business in San Francisco,
- California, as well as future copyleft versions of that license
- published by that same organization.
-
- "Incorporate" means to publish or republish a Document, in whole or
- in part, as part of another Document.
-
- An MMC is "eligible for relicensing" if it is licensed under this
- License, and if all works that were first published under this
- License somewhere other than this MMC, and subsequently
- incorporated in whole or in part into the MMC, (1) had no cover
- texts or invariant sections, and (2) were thus incorporated prior
- to November 1, 2008.
-
- The operator of an MMC Site may republish an MMC contained in the
- site under CC-BY-SA on the same site at any time before August 1,
- 2009, provided the MMC is eligible for relicensing.
-
-ADDENDUM: How to use this License for your documents
-====================================================
-
-To use this License in a document you have written, include a copy of
-the License in the document and put the following copyright and license
-notices just after the title page:
-
- Copyright (C) YEAR YOUR NAME.
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3
- or any later version published by the Free Software Foundation;
- with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
- Texts. A copy of the license is included in the section entitled ``GNU
- Free Documentation License''.
-
- If you have Invariant Sections, Front-Cover Texts and Back-Cover
-Texts, replace the "with...Texts." line with this:
-
- with the Invariant Sections being LIST THEIR TITLES, with
- the Front-Cover Texts being LIST, and with the Back-Cover Texts
- being LIST.
-
- If you have Invariant Sections without Cover Texts, or some other
-combination of the three, merge those two alternatives to suit the
-situation.
-
- If your document contains nontrivial examples of program code, we
-recommend releasing these examples in parallel under your choice of free
-software license, such as the GNU General Public License, to permit
-their use in free software.
-
-
-File: cpp.info, Node: Index of Directives, Next: Option Index, Prev: GNU Free Documentation License, Up: Top
-
-Index of Directives
-*******************
-
-
-* Menu:
-
-* #assert: Obsolete Features. (line 48)
-* #define: Object-like Macros. (line 11)
-* #elif: Elif. (line 6)
-* #else: Else. (line 6)
-* #endif: Ifdef. (line 6)
-* #error: Diagnostics. (line 6)
-* #ident: Other Directives. (line 6)
-* #if: Conditional Syntax. (line 6)
-* #ifdef: Ifdef. (line 6)
-* #ifndef: Ifdef. (line 40)
-* #import: Alternatives to Wrapper #ifndef.
- (line 11)
-* #include: Include Syntax. (line 6)
-* #include_next: Wrapper Headers. (line 6)
-* #line: Line Control. (line 20)
-* #pragma GCC dependency: Pragmas. (line 55)
-* #pragma GCC error: Pragmas. (line 100)
-* #pragma GCC poison: Pragmas. (line 67)
-* #pragma GCC system_header: System Headers. (line 31)
-* #pragma GCC system_header <1>: Pragmas. (line 94)
-* #pragma GCC warning: Pragmas. (line 99)
-* #sccs: Other Directives. (line 6)
-* #unassert: Obsolete Features. (line 59)
-* #undef: Undefining and Redefining Macros.
- (line 6)
-* #warning: Diagnostics. (line 27)
-
-
-File: cpp.info, Node: Option Index, Next: Concept Index, Prev: Index of Directives, Up: Top
-
-Option Index
-************
-
-CPP's command line options and environment variables are indexed here
-without any initial '-' or '--'.
-
-
-* Menu:
-
-* A: Invocation. (line 567)
-* ansi: Invocation. (line 311)
-* C: Invocation. (line 625)
-* CPATH: Environment Variables.
- (line 15)
-* CPLUS_INCLUDE_PATH: Environment Variables.
- (line 17)
-* C_INCLUDE_PATH: Environment Variables.
- (line 16)
-* D: Invocation. (line 40)
-* dD: Invocation. (line 598)
-* DEPENDENCIES_OUTPUT: Environment Variables.
- (line 44)
-* dI: Invocation. (line 607)
-* dM: Invocation. (line 583)
-* dN: Invocation. (line 604)
-* dU: Invocation. (line 611)
-* fdebug-cpp: Invocation. (line 498)
-* fdirectives-only: Invocation. (line 446)
-* fdollars-in-identifiers: Invocation. (line 467)
-* fexec-charset: Invocation. (line 525)
-* fextended-identifiers: Invocation. (line 470)
-* finput-charset: Invocation. (line 538)
-* fno-canonical-system-headers: Invocation. (line 475)
-* fno-show-column: Invocation. (line 562)
-* fno-working-directory: Invocation. (line 548)
-* fpreprocessed: Invocation. (line 479)
-* ftabstop: Invocation. (line 492)
-* ftrack-macro-expansion: Invocation. (line 507)
-* fwide-exec-charset: Invocation. (line 530)
-* fworking-directory: Invocation. (line 548)
-* H: Invocation. (line 669)
-* help: Invocation. (line 661)
-* I: Invocation. (line 72)
-* I-: Invocation. (line 360)
-* idirafter: Invocation. (line 402)
-* imacros: Invocation. (line 393)
-* imultilib: Invocation. (line 427)
-* include: Invocation. (line 382)
-* iprefix: Invocation. (line 409)
-* iquote: Invocation. (line 439)
-* isysroot: Invocation. (line 421)
-* isystem: Invocation. (line 431)
-* iwithprefix: Invocation. (line 415)
-* iwithprefixbefore: Invocation. (line 415)
-* M: Invocation. (line 181)
-* MD: Invocation. (line 272)
-* MF: Invocation. (line 216)
-* MG: Invocation. (line 225)
-* MM: Invocation. (line 206)
-* MMD: Invocation. (line 288)
-* MP: Invocation. (line 235)
-* MQ: Invocation. (line 262)
-* MT: Invocation. (line 247)
-* nostdinc: Invocation. (line 372)
-* nostdinc++: Invocation. (line 377)
-* o: Invocation. (line 83)
-* OBJC_INCLUDE_PATH: Environment Variables.
- (line 18)
-* P: Invocation. (line 618)
-* pedantic: Invocation. (line 171)
-* pedantic-errors: Invocation. (line 176)
-* remap: Invocation. (line 656)
-* std=: Invocation. (line 311)
-* SUNPRO_DEPENDENCIES: Environment Variables.
- (line 60)
-* target-help: Invocation. (line 661)
-* traditional-cpp: Invocation. (line 649)
-* trigraphs: Invocation. (line 653)
-* U: Invocation. (line 63)
-* undef: Invocation. (line 67)
-* v: Invocation. (line 665)
-* version: Invocation. (line 677)
-* w: Invocation. (line 167)
-* Wall: Invocation. (line 89)
-* Wcomment: Invocation. (line 97)
-* Wcomments: Invocation. (line 97)
-* Wendif-labels: Invocation. (line 144)
-* Werror: Invocation. (line 157)
-* Wsystem-headers: Invocation. (line 161)
-* Wtraditional: Invocation. (line 114)
-* Wtrigraphs: Invocation. (line 102)
-* Wundef: Invocation. (line 120)
-* Wunused-macros: Invocation. (line 125)
-* x: Invocation. (line 295)
-
-
-File: cpp.info, Node: Concept Index, Prev: Option Index, Up: Top
-
-Concept Index
-*************
-
-
-* Menu:
-
-* '#' operator: Stringification. (line 6)
-* '##' operator: Concatenation. (line 6)
-* '_Pragma': Pragmas. (line 25)
-* alternative tokens: Tokenization. (line 105)
-* arguments: Macro Arguments. (line 6)
-* arguments in macro definitions: Macro Arguments. (line 6)
-* assertions: Obsolete Features. (line 13)
-* assertions, canceling: Obsolete Features. (line 59)
-* backslash-newline: Initial processing. (line 61)
-* block comments: Initial processing. (line 77)
-* C++ named operators: C++ Named Operators. (line 6)
-* character constants: Tokenization. (line 84)
-* character set, execution: Invocation. (line 525)
-* character set, input: Invocation. (line 538)
-* character set, wide execution: Invocation. (line 530)
-* command line: Invocation. (line 6)
-* commenting out code: Deleted Code. (line 6)
-* comments: Initial processing. (line 77)
-* common predefined macros: Common Predefined Macros.
- (line 6)
-* computed includes: Computed Includes. (line 6)
-* concatenation: Concatenation. (line 6)
-* conditional group: Ifdef. (line 14)
-* conditionals: Conditionals. (line 6)
-* continued lines: Initial processing. (line 61)
-* controlling macro: Once-Only Headers. (line 35)
-* 'defined': Defined. (line 6)
-* dependencies for make as output: Environment Variables.
- (line 45)
-* dependencies for make as output <1>: Environment Variables.
- (line 61)
-* dependencies, 'make': Invocation. (line 181)
-* diagnostic: Diagnostics. (line 6)
-* differences from previous versions: Differences from previous versions.
- (line 6)
-* digraphs: Tokenization. (line 105)
-* directive line: The preprocessing language.
- (line 6)
-* directive name: The preprocessing language.
- (line 6)
-* directives: The preprocessing language.
- (line 6)
-* empty macro arguments: Macro Arguments. (line 66)
-* environment variables: Environment Variables.
- (line 6)
-* expansion of arguments: Argument Prescan. (line 6)
-* FDL, GNU Free Documentation License: GNU Free Documentation License.
- (line 6)
-* function-like macros: Function-like Macros.
- (line 6)
-* grouping options: Invocation. (line 34)
-* guard macro: Once-Only Headers. (line 35)
-* header file: Header Files. (line 6)
-* header file names: Tokenization. (line 84)
-* identifiers: Tokenization. (line 33)
-* implementation limits: Implementation limits.
- (line 6)
-* implementation-defined behavior: Implementation-defined behavior.
- (line 6)
-* including just once: Once-Only Headers. (line 6)
-* invocation: Invocation. (line 6)
-* 'iso646.h': C++ Named Operators. (line 6)
-* line comments: Initial processing. (line 77)
-* line control: Line Control. (line 6)
-* line endings: Initial processing. (line 14)
-* linemarkers: Preprocessor Output. (line 28)
-* macro argument expansion: Argument Prescan. (line 6)
-* macro arguments and directives: Directives Within Macro Arguments.
- (line 6)
-* macros in include: Computed Includes. (line 6)
-* macros with arguments: Macro Arguments. (line 6)
-* macros with variable arguments: Variadic Macros. (line 6)
-* 'make': Invocation. (line 181)
-* manifest constants: Object-like Macros. (line 6)
-* named operators: C++ Named Operators. (line 6)
-* newlines in macro arguments: Newlines in Arguments.
- (line 6)
-* null directive: Other Directives. (line 15)
-* numbers: Tokenization. (line 60)
-* object-like macro: Object-like Macros. (line 6)
-* options: Invocation. (line 39)
-* options, grouping: Invocation. (line 34)
-* other tokens: Tokenization. (line 119)
-* output format: Preprocessor Output. (line 12)
-* overriding a header file: Wrapper Headers. (line 6)
-* parentheses in macro bodies: Operator Precedence Problems.
- (line 6)
-* pitfalls of macros: Macro Pitfalls. (line 6)
-* predefined macros: Predefined Macros. (line 6)
-* predefined macros, system-specific: System-specific Predefined Macros.
- (line 6)
-* predicates: Obsolete Features. (line 26)
-* preprocessing directives: The preprocessing language.
- (line 6)
-* preprocessing numbers: Tokenization. (line 60)
-* preprocessing tokens: Tokenization. (line 6)
-* prescan of macro arguments: Argument Prescan. (line 6)
-* problems with macros: Macro Pitfalls. (line 6)
-* punctuators: Tokenization. (line 105)
-* redefining macros: Undefining and Redefining Macros.
- (line 6)
-* repeated inclusion: Once-Only Headers. (line 6)
-* reporting errors: Diagnostics. (line 6)
-* reporting warnings: Diagnostics. (line 6)
-* reserved namespace: System-specific Predefined Macros.
- (line 6)
-* self-reference: Self-Referential Macros.
- (line 6)
-* semicolons (after macro calls): Swallowing the Semicolon.
- (line 6)
-* side effects (in macro arguments): Duplication of Side Effects.
- (line 6)
-* standard predefined macros.: Standard Predefined Macros.
- (line 6)
-* string constants: Tokenization. (line 84)
-* string literals: Tokenization. (line 84)
-* stringification: Stringification. (line 6)
-* symbolic constants: Object-like Macros. (line 6)
-* system header files: Header Files. (line 13)
-* system header files <1>: System Headers. (line 6)
-* system-specific predefined macros: System-specific Predefined Macros.
- (line 6)
-* testing predicates: Obsolete Features. (line 37)
-* token concatenation: Concatenation. (line 6)
-* token pasting: Concatenation. (line 6)
-* tokens: Tokenization. (line 6)
-* trigraphs: Initial processing. (line 32)
-* undefining macros: Undefining and Redefining Macros.
- (line 6)
-* unsafe macros: Duplication of Side Effects.
- (line 6)
-* variable number of arguments: Variadic Macros. (line 6)
-* variadic macros: Variadic Macros. (line 6)
-* wrapper '#ifndef': Once-Only Headers. (line 6)
-* wrapper headers: Wrapper Headers. (line 6)
-
-
-
-Tag Table:
-Node: Top945
-Node: Overview3549
-Node: Character sets6383
-Ref: Character sets-Footnote-18564
-Node: Initial processing8745
-Ref: trigraphs10304
-Node: Tokenization14504
-Ref: Tokenization-Footnote-121638
-Node: The preprocessing language21749
-Node: Header Files24628
-Node: Include Syntax26544
-Node: Include Operation28181
-Node: Search Path30029
-Node: Once-Only Headers33230
-Node: Alternatives to Wrapper #ifndef34889
-Node: Computed Includes36631
-Node: Wrapper Headers39789
-Node: System Headers42212
-Node: Macros44262
-Node: Object-like Macros45403
-Node: Function-like Macros48993
-Node: Macro Arguments50609
-Node: Stringification54752
-Node: Concatenation57958
-Node: Variadic Macros61066
-Node: Predefined Macros65853
-Node: Standard Predefined Macros66441
-Node: Common Predefined Macros72410
-Node: System-specific Predefined Macros92190
-Node: C++ Named Operators94213
-Node: Undefining and Redefining Macros95177
-Node: Directives Within Macro Arguments97275
-Node: Macro Pitfalls98823
-Node: Misnesting99356
-Node: Operator Precedence Problems100468
-Node: Swallowing the Semicolon102334
-Node: Duplication of Side Effects104357
-Node: Self-Referential Macros106540
-Node: Argument Prescan108949
-Node: Newlines in Arguments112704
-Node: Conditionals113655
-Node: Conditional Uses115484
-Node: Conditional Syntax116842
-Node: Ifdef117162
-Node: If120319
-Node: Defined122623
-Node: Else123904
-Node: Elif124474
-Node: Deleted Code125763
-Node: Diagnostics127010
-Node: Line Control128559
-Node: Pragmas132334
-Node: Other Directives137088
-Node: Preprocessor Output138138
-Node: Traditional Mode141336
-Node: Traditional lexical analysis142394
-Node: Traditional macros144897
-Node: Traditional miscellany148698
-Node: Traditional warnings149694
-Node: Implementation Details151891
-Node: Implementation-defined behavior152512
-Ref: Identifier characters153262
-Node: Implementation limits156340
-Node: Obsolete Features159013
-Node: Differences from previous versions161900
-Node: Invocation166102
-Ref: Wtrigraphs170554
-Ref: dashMF175331
-Ref: fdollars-in-identifiers185073
-Node: Environment Variables194900
-Node: GNU Free Documentation License197866
-Node: Index of Directives223010
-Node: Option Index225090
-Node: Concept Index231493
-
-End Tag Table
diff --git a/gcc-4.9/gcc/doc/cppinternals.info b/gcc-4.9/gcc/doc/cppinternals.info
deleted file mode 100644
index 391787ef2..000000000
--- a/gcc-4.9/gcc/doc/cppinternals.info
+++ /dev/null
@@ -1,1029 +0,0 @@
-This is cppinternals.info, produced by makeinfo version 5.1 from
-cppinternals.texi.
-
-INFO-DIR-SECTION Software development
-START-INFO-DIR-ENTRY
-* Cpplib: (cppinternals). Cpplib internals.
-END-INFO-DIR-ENTRY
-
-This file documents the internals of the GNU C Preprocessor.
-
- Copyright (C) 2000-2014 Free Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the entire resulting derived work is distributed under the terms of
-a permission notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions.
-
-
-File: cppinternals.info, Node: Top, Next: Conventions, Up: (dir)
-
-The GNU C Preprocessor Internals
-********************************
-
-1 Cpplib--the GNU C Preprocessor
-********************************
-
-The GNU C preprocessor is implemented as a library, "cpplib", so it can
-be easily shared between a stand-alone preprocessor, and a preprocessor
-integrated with the C, C++ and Objective-C front ends. It is also
-available for use by other programs, though this is not recommended as
-its exposed interface has not yet reached a point of reasonable
-stability.
-
- The library has been written to be re-entrant, so that it can be used
-to preprocess many files simultaneously if necessary. It has also been
-written with the preprocessing token as the fundamental unit; the
-preprocessor in previous versions of GCC would operate on text strings
-as the fundamental unit.
-
- This brief manual documents the internals of cpplib, and explains
-some of the tricky issues. It is intended that, along with the comments
-in the source code, a reasonably competent C programmer should be able
-to figure out what the code is doing, and why things have been
-implemented the way they have.
-
-* Menu:
-
-* Conventions:: Conventions used in the code.
-* Lexer:: The combined C, C++ and Objective-C Lexer.
-* Hash Nodes:: All identifiers are entered into a hash table.
-* Macro Expansion:: Macro expansion algorithm.
-* Token Spacing:: Spacing and paste avoidance issues.
-* Line Numbering:: Tracking location within files.
-* Guard Macros:: Optimizing header files with guard macros.
-* Files:: File handling.
-* Concept Index:: Index.
-
-
-File: cppinternals.info, Node: Conventions, Next: Lexer, Prev: Top, Up: Top
-
-Conventions
-***********
-
-cpplib has two interfaces--one is exposed internally only, and the other
-is for both internal and external use.
-
- The convention is that functions and types that are exposed to
-multiple files internally are prefixed with '_cpp_', and are to be found
-in the file 'internal.h'. Functions and types exposed to external
-clients are in 'cpplib.h', and prefixed with 'cpp_'. For historical
-reasons this is no longer quite true, but we should strive to stick to
-it.
-
- We are striving to reduce the information exposed in 'cpplib.h' to
-the bare minimum necessary, and then to keep it there. This makes clear
-exactly what external clients are entitled to assume, and allows us to
-change internals in the future without worrying whether library clients
-are perhaps relying on some kind of undocumented implementation-specific
-behavior.
-
-
-File: cppinternals.info, Node: Lexer, Next: Hash Nodes, Prev: Conventions, Up: Top
-
-The Lexer
-*********
-
-Overview
-========
-
-The lexer is contained in the file 'lex.c'. It is a hand-coded lexer,
-and not implemented as a state machine. It can understand C, C++ and
-Objective-C source code, and has been extended to allow reasonably
-successful preprocessing of assembly language. The lexer does not make
-an initial pass to strip out trigraphs and escaped newlines, but handles
-them as they are encountered in a single pass of the input file. It
-returns preprocessing tokens individually, not a line at a time.
-
- It is mostly transparent to users of the library, since the library's
-interface for obtaining the next token, 'cpp_get_token', takes care of
-lexing new tokens, handling directives, and expanding macros as
-necessary. However, the lexer does expose some functionality so that
-clients of the library can easily spell a given token, such as
-'cpp_spell_token' and 'cpp_token_len'. These functions are useful when
-generating diagnostics, and for emitting the preprocessed output.
-
-Lexing a token
-==============
-
-Lexing of an individual token is handled by '_cpp_lex_direct' and its
-subroutines. In its current form the code is quite complicated, with
-read ahead characters and such-like, since it strives to not step back
-in the character stream in preparation for handling non-ASCII file
-encodings. The current plan is to convert any such files to UTF-8
-before processing them. This complexity is therefore unnecessary and
-will be removed, so I'll not discuss it further here.
-
- The job of '_cpp_lex_direct' is simply to lex a token. It is not
-responsible for issues like directive handling, returning lookahead
-tokens directly, multiple-include optimization, or conditional block
-skipping. It necessarily has a minor ro^le to play in memory management
-of lexed lines. I discuss these issues in a separate section (*note
-Lexing a line::).
-
- The lexer places the token it lexes into storage pointed to by the
-variable 'cur_token', and then increments it. This variable is
-important for correct diagnostic positioning. Unless a specific line
-and column are passed to the diagnostic routines, they will examine the
-'line' and 'col' values of the token just before the location that
-'cur_token' points to, and use that location to report the diagnostic.
-
- The lexer does not consider whitespace to be a token in its own
-right. If whitespace (other than a new line) precedes a token, it sets
-the 'PREV_WHITE' bit in the token's flags. Each token has its 'line'
-and 'col' variables set to the line and column of the first character of
-the token. This line number is the line number in the translation unit,
-and can be converted to a source (file, line) pair using the line map
-code.
-
- The first token on a logical, i.e. unescaped, line has the flag 'BOL'
-set for beginning-of-line. This flag is intended for internal use, both
-to distinguish a '#' that begins a directive from one that doesn't, and
-to generate a call-back to clients that want to be notified about the
-start of every non-directive line with tokens on it. Clients cannot
-reliably determine this for themselves: the first token might be a
-macro, and the tokens of a macro expansion do not have the 'BOL' flag
-set. The macro expansion may even be empty, and the next token on the
-line certainly won't have the 'BOL' flag set.
-
- New lines are treated specially; exactly how the lexer handles them
-is context-dependent. The C standard mandates that directives are
-terminated by the first unescaped newline character, even if it appears
-in the middle of a macro expansion. Therefore, if the state variable
-'in_directive' is set, the lexer returns a 'CPP_EOF' token, which is
-normally used to indicate end-of-file, to indicate end-of-directive. In
-a directive a 'CPP_EOF' token never means end-of-file. Conveniently, if
-the caller was 'collect_args', it already handles 'CPP_EOF' as if it
-were end-of-file, and reports an error about an unterminated macro
-argument list.
-
- The C standard also specifies that a new line in the middle of the
-arguments to a macro is treated as whitespace. This white space is
-important in case the macro argument is stringified. The state variable
-'parsing_args' is nonzero when the preprocessor is collecting the
-arguments to a macro call. It is set to 1 when looking for the opening
-parenthesis to a function-like macro, and 2 when collecting the actual
-arguments up to the closing parenthesis, since these two cases need to
-be distinguished sometimes. One such time is here: the lexer sets the
-'PREV_WHITE' flag of a token if it meets a new line when 'parsing_args'
-is set to 2. It doesn't set it if it meets a new line when
-'parsing_args' is 1, since then code like
-
- #define foo() bar
- foo
- baz
-
-would be output with an erroneous space before 'baz':
-
- foo
- baz
-
- This is a good example of the subtlety of getting token spacing
-correct in the preprocessor; there are plenty of tests in the testsuite
-for corner cases like this.
-
- The lexer is written to treat each of '\r', '\n', '\r\n' and '\n\r'
-as a single new line indicator. This allows it to transparently
-preprocess MS-DOS, Macintosh and Unix files without their needing to
-pass through a special filter beforehand.
-
- We also decided to treat a backslash, either '\' or the trigraph
-'??/', separated from one of the above newline indicators by non-comment
-whitespace only, as intending to escape the newline. It tends to be a
-typing mistake, and cannot reasonably be mistaken for anything else in
-any of the C-family grammars. Since handling it this way is not
-strictly conforming to the ISO standard, the library issues a warning
-wherever it encounters it.
-
- Handling newlines like this is made simpler by doing it in one place
-only. The function 'handle_newline' takes care of all newline
-characters, and 'skip_escaped_newlines' takes care of arbitrarily long
-sequences of escaped newlines, deferring to 'handle_newline' to handle
-the newlines themselves.
-
- The most painful aspect of lexing ISO-standard C and C++ is handling
-trigraphs and backlash-escaped newlines. Trigraphs are processed before
-any interpretation of the meaning of a character is made, and
-unfortunately there is a trigraph representation for a backslash, so it
-is possible for the trigraph '??/' to introduce an escaped newline.
-
- Escaped newlines are tedious because theoretically they can occur
-anywhere--between the '+' and '=' of the '+=' token, within the
-characters of an identifier, and even between the '*' and '/' that
-terminates a comment. Moreover, you cannot be sure there is just
-one--there might be an arbitrarily long sequence of them.
-
- So, for example, the routine that lexes a number, 'parse_number',
-cannot assume that it can scan forwards until the first non-number
-character and be done with it, because this could be the '\' introducing
-an escaped newline, or the '?' introducing the trigraph sequence that
-represents the '\' of an escaped newline. If it encounters a '?' or
-'\', it calls 'skip_escaped_newlines' to skip over any potential escaped
-newlines before checking whether the number has been finished.
-
- Similarly code in the main body of '_cpp_lex_direct' cannot simply
-check for a '=' after a '+' character to determine whether it has a '+='
-token; it needs to be prepared for an escaped newline of some sort.
-Such cases use the function 'get_effective_char', which returns the
-first character after any intervening escaped newlines.
-
- The lexer needs to keep track of the correct column position,
-including counting tabs as specified by the '-ftabstop=' option. This
-should be done even within C-style comments; they can appear in the
-middle of a line, and we want to report diagnostics in the correct
-position for text appearing after the end of the comment.
-
- Some identifiers, such as '__VA_ARGS__' and poisoned identifiers, may
-be invalid and require a diagnostic. However, if they appear in a macro
-expansion we don't want to complain with each use of the macro. It is
-therefore best to catch them during the lexing stage, in
-'parse_identifier'. In both cases, whether a diagnostic is needed or
-not is dependent upon the lexer's state. For example, we don't want to
-issue a diagnostic for re-poisoning a poisoned identifier, or for using
-'__VA_ARGS__' in the expansion of a variable-argument macro. Therefore
-'parse_identifier' makes use of state flags to determine whether a
-diagnostic is appropriate. Since we change state on a per-token basis,
-and don't lex whole lines at a time, this is not a problem.
-
- Another place where state flags are used to change behavior is whilst
-lexing header names. Normally, a '<' would be lexed as a single token.
-After a '#include' directive, though, it should be lexed as a single
-token as far as the nearest '>' character. Note that we don't allow the
-terminators of header names to be escaped; the first '"' or '>'
-terminates the header name.
-
- Interpretation of some character sequences depends upon whether we
-are lexing C, C++ or Objective-C, and on the revision of the standard in
-force. For example, '::' is a single token in C++, but in C it is two
-separate ':' tokens and almost certainly a syntax error. Such cases are
-handled by '_cpp_lex_direct' based upon command-line flags stored in the
-'cpp_options' structure.
-
- Once a token has been lexed, it leads an independent existence. The
-spelling of numbers, identifiers and strings is copied to permanent
-storage from the original input buffer, so a token remains valid and
-correct even if its source buffer is freed with '_cpp_pop_buffer'. The
-storage holding the spellings of such tokens remains until the client
-program calls cpp_destroy, probably at the end of the translation unit.
-
-Lexing a line
-=============
-
-When the preprocessor was changed to return pointers to tokens, one
-feature I wanted was some sort of guarantee regarding how long a
-returned pointer remains valid. This is important to the stand-alone
-preprocessor, the future direction of the C family front ends, and even
-to cpplib itself internally.
-
- Occasionally the preprocessor wants to be able to peek ahead in the
-token stream. For example, after the name of a function-like macro, it
-wants to check the next token to see if it is an opening parenthesis.
-Another example is that, after reading the first few tokens of a
-'#pragma' directive and not recognizing it as a registered pragma, it
-wants to backtrack and allow the user-defined handler for unknown
-pragmas to access the full '#pragma' token stream. The stand-alone
-preprocessor wants to be able to test the current token with the
-previous one to see if a space needs to be inserted to preserve their
-separate tokenization upon re-lexing (paste avoidance), so it needs to
-be sure the pointer to the previous token is still valid. The
-recursive-descent C++ parser wants to be able to perform tentative
-parsing arbitrarily far ahead in the token stream, and then to be able
-to jump back to a prior position in that stream if necessary.
-
- The rule I chose, which is fairly natural, is to arrange that the
-preprocessor lex all tokens on a line consecutively into a token buffer,
-which I call a "token run", and when meeting an unescaped new line
-(newlines within comments do not count either), to start lexing back at
-the beginning of the run. Note that we do _not_ lex a line of tokens at
-once; if we did that 'parse_identifier' would not have state flags
-available to warn about invalid identifiers (*note Invalid
-identifiers::).
-
- In other words, accessing tokens that appeared earlier in the current
-line is valid, but since each logical line overwrites the tokens of the
-previous line, tokens from prior lines are unavailable. In particular,
-since a directive only occupies a single logical line, this means that
-the directive handlers like the '#pragma' handler can jump around in the
-directive's tokens if necessary.
-
- Two issues remain: what about tokens that arise from macro
-expansions, and what happens when we have a long line that overflows the
-token run?
-
- Since we promise clients that we preserve the validity of pointers
-that we have already returned for tokens that appeared earlier in the
-line, we cannot reallocate the run. Instead, on overflow it is expanded
-by chaining a new token run on to the end of the existing one.
-
- The tokens forming a macro's replacement list are collected by the
-'#define' handler, and placed in storage that is only freed by
-'cpp_destroy'. So if a macro is expanded in the line of tokens, the
-pointers to the tokens of its expansion that are returned will always
-remain valid. However, macros are a little trickier than that, since
-they give rise to three sources of fresh tokens. They are the built-in
-macros like '__LINE__', and the '#' and '##' operators for
-stringification and token pasting. I handled this by allocating space
-for these tokens from the lexer's token run chain. This means they
-automatically receive the same lifetime guarantees as lexed tokens, and
-we don't need to concern ourselves with freeing them.
-
- Lexing into a line of tokens solves some of the token memory
-management issues, but not all. The opening parenthesis after a
-function-like macro name might lie on a different line, and the front
-ends definitely want the ability to look ahead past the end of the
-current line. So cpplib only moves back to the start of the token run
-at the end of a line if the variable 'keep_tokens' is zero.
-Line-buffering is quite natural for the preprocessor, and as a result
-the only time cpplib needs to increment this variable is whilst looking
-for the opening parenthesis to, and reading the arguments of, a
-function-like macro. In the near future cpplib will export an interface
-to increment and decrement this variable, so that clients can share full
-control over the lifetime of token pointers too.
-
- The routine '_cpp_lex_token' handles moving to new token runs,
-calling '_cpp_lex_direct' to lex new tokens, or returning
-previously-lexed tokens if we stepped back in the token stream. It also
-checks each token for the 'BOL' flag, which might indicate a directive
-that needs to be handled, or require a start-of-line call-back to be
-made. '_cpp_lex_token' also handles skipping over tokens in failed
-conditional blocks, and invalidates the control macro of the
-multiple-include optimization if a token was successfully lexed outside
-a directive. In other words, its callers do not need to concern
-themselves with such issues.
-
-
-File: cppinternals.info, Node: Hash Nodes, Next: Macro Expansion, Prev: Lexer, Up: Top
-
-Hash Nodes
-**********
-
-When cpplib encounters an "identifier", it generates a hash code for it
-and stores it in the hash table. By "identifier" we mean tokens with
-type 'CPP_NAME'; this includes identifiers in the usual C sense, as well
-as keywords, directive names, macro names and so on. For example, all
-of 'pragma', 'int', 'foo' and '__GNUC__' are identifiers and hashed when
-lexed.
-
- Each node in the hash table contain various information about the
-identifier it represents. For example, its length and type. At any one
-time, each identifier falls into exactly one of three categories:
-
- * Macros
-
- These have been declared to be macros, either on the command line
- or with '#define'. A few, such as '__TIME__' are built-ins entered
- in the hash table during initialization. The hash node for a
- normal macro points to a structure with more information about the
- macro, such as whether it is function-like, how many arguments it
- takes, and its expansion. Built-in macros are flagged as special,
- and instead contain an enum indicating which of the various
- built-in macros it is.
-
- * Assertions
-
- Assertions are in a separate namespace to macros. To enforce this,
- cpp actually prepends a '#' character before hashing and entering
- it in the hash table. An assertion's node points to a chain of
- answers to that assertion.
-
- * Void
-
- Everything else falls into this category--an identifier that is not
- currently a macro, or a macro that has since been undefined with
- '#undef'.
-
- When preprocessing C++, this category also includes the named
- operators, such as 'xor'. In expressions these behave like the
- operators they represent, but in contexts where the spelling of a
- token matters they are spelt differently. This spelling
- distinction is relevant when they are operands of the stringizing
- and pasting macro operators '#' and '##'. Named operator hash
- nodes are flagged, both to catch the spelling distinction and to
- prevent them from being defined as macros.
-
- The same identifiers share the same hash node. Since each identifier
-token, after lexing, contains a pointer to its hash node, this is used
-to provide rapid lookup of various information. For example, when
-parsing a '#define' statement, CPP flags each argument's identifier hash
-node with the index of that argument. This makes duplicated argument
-checking an O(1) operation for each argument. Similarly, for each
-identifier in the macro's expansion, lookup to see if it is an argument,
-and which argument it is, is also an O(1) operation. Further, each
-directive name, such as 'endif', has an associated directive enum stored
-in its hash node, so that directive lookup is also O(1).
-
-
-File: cppinternals.info, Node: Macro Expansion, Next: Token Spacing, Prev: Hash Nodes, Up: Top
-
-Macro Expansion Algorithm
-*************************
-
-Macro expansion is a tricky operation, fraught with nasty corner cases
-and situations that render what you thought was a nifty way to optimize
-the preprocessor's expansion algorithm wrong in quite subtle ways.
-
- I strongly recommend you have a good grasp of how the C and C++
-standards require macros to be expanded before diving into this section,
-let alone the code!. If you don't have a clear mental picture of how
-things like nested macro expansion, stringification and token pasting
-are supposed to work, damage to your sanity can quickly result.
-
-Internal representation of macros
-=================================
-
-The preprocessor stores macro expansions in tokenized form. This saves
-repeated lexing passes during expansion, at the cost of a small increase
-in memory consumption on average. The tokens are stored contiguously in
-memory, so a pointer to the first one and a token count is all you need
-to get the replacement list of a macro.
-
- If the macro is a function-like macro the preprocessor also stores
-its parameters, in the form of an ordered list of pointers to the hash
-table entry of each parameter's identifier. Further, in the macro's
-stored expansion each occurrence of a parameter is replaced with a
-special token of type 'CPP_MACRO_ARG'. Each such token holds the index
-of the parameter it represents in the parameter list, which allows rapid
-replacement of parameters with their arguments during expansion.
-Despite this optimization it is still necessary to store the original
-parameters to the macro, both for dumping with e.g., '-dD', and to warn
-about non-trivial macro redefinitions when the parameter names have
-changed.
-
-Macro expansion overview
-========================
-
-The preprocessor maintains a "context stack", implemented as a linked
-list of 'cpp_context' structures, which together represent the macro
-expansion state at any one time. The 'struct cpp_reader' member
-variable 'context' points to the current top of this stack. The top
-normally holds the unexpanded replacement list of the innermost macro
-under expansion, except when cpplib is about to pre-expand an argument,
-in which case it holds that argument's unexpanded tokens.
-
- When there are no macros under expansion, cpplib is in "base
-context". All contexts other than the base context contain a contiguous
-list of tokens delimited by a starting and ending token. When not in
-base context, cpplib obtains the next token from the list of the top
-context. If there are no tokens left in the list, it pops that context
-off the stack, and subsequent ones if necessary, until an unexhausted
-context is found or it returns to base context. In base context, cpplib
-reads tokens directly from the lexer.
-
- If it encounters an identifier that is both a macro and enabled for
-expansion, cpplib prepares to push a new context for that macro on the
-stack by calling the routine 'enter_macro_context'. When this routine
-returns, the new context will contain the unexpanded tokens of the
-replacement list of that macro. In the case of function-like macros,
-'enter_macro_context' also replaces any parameters in the replacement
-list, stored as 'CPP_MACRO_ARG' tokens, with the appropriate macro
-argument. If the standard requires that the parameter be replaced with
-its expanded argument, the argument will have been fully macro expanded
-first.
-
- 'enter_macro_context' also handles special macros like '__LINE__'.
-Although these macros expand to a single token which cannot contain any
-further macros, for reasons of token spacing (*note Token Spacing::) and
-simplicity of implementation, cpplib handles these special macros by
-pushing a context containing just that one token.
-
- The final thing that 'enter_macro_context' does before returning is
-to mark the macro disabled for expansion (except for special macros like
-'__TIME__'). The macro is re-enabled when its context is later popped
-from the context stack, as described above. This strict ordering
-ensures that a macro is disabled whilst its expansion is being scanned,
-but that it is _not_ disabled whilst any arguments to it are being
-expanded.
-
-Scanning the replacement list for macros to expand
-==================================================
-
-The C standard states that, after any parameters have been replaced with
-their possibly-expanded arguments, the replacement list is scanned for
-nested macros. Further, any identifiers in the replacement list that
-are not expanded during this scan are never again eligible for expansion
-in the future, if the reason they were not expanded is that the macro in
-question was disabled.
-
- Clearly this latter condition can only apply to tokens resulting from
-argument pre-expansion. Other tokens never have an opportunity to be
-re-tested for expansion. It is possible for identifiers that are
-function-like macros to not expand initially but to expand during a
-later scan. This occurs when the identifier is the last token of an
-argument (and therefore originally followed by a comma or a closing
-parenthesis in its macro's argument list), and when it replaces its
-parameter in the macro's replacement list, the subsequent token happens
-to be an opening parenthesis (itself possibly the first token of an
-argument).
-
- It is important to note that when cpplib reads the last token of a
-given context, that context still remains on the stack. Only when
-looking for the _next_ token do we pop it off the stack and drop to a
-lower context. This makes backing up by one token easy, but more
-importantly ensures that the macro corresponding to the current context
-is still disabled when we are considering the last token of its
-replacement list for expansion (or indeed expanding it). As an example,
-which illustrates many of the points above, consider
-
- #define foo(x) bar x
- foo(foo) (2)
-
-which fully expands to 'bar foo (2)'. During pre-expansion of the
-argument, 'foo' does not expand even though the macro is enabled, since
-it has no following parenthesis [pre-expansion of an argument only uses
-tokens from that argument; it cannot take tokens from whatever follows
-the macro invocation]. This still leaves the argument token 'foo'
-eligible for future expansion. Then, when re-scanning after argument
-replacement, the token 'foo' is rejected for expansion, and marked
-ineligible for future expansion, since the macro is now disabled. It is
-disabled because the replacement list 'bar foo' of the macro is still on
-the context stack.
-
- If instead the algorithm looked for an opening parenthesis first and
-then tested whether the macro were disabled it would be subtly wrong.
-In the example above, the replacement list of 'foo' would be popped in
-the process of finding the parenthesis, re-enabling 'foo' and expanding
-it a second time.
-
-Looking for a function-like macro's opening parenthesis
-=======================================================
-
-Function-like macros only expand when immediately followed by a
-parenthesis. To do this cpplib needs to temporarily disable macros and
-read the next token. Unfortunately, because of spacing issues (*note
-Token Spacing::), there can be fake padding tokens in-between, and if
-the next real token is not a parenthesis cpplib needs to be able to back
-up that one token as well as retain the information in any intervening
-padding tokens.
-
- Backing up more than one token when macros are involved is not
-permitted by cpplib, because in general it might involve issues like
-restoring popped contexts onto the context stack, which are too hard.
-Instead, searching for the parenthesis is handled by a special function,
-'funlike_invocation_p', which remembers padding information as it reads
-tokens. If the next real token is not an opening parenthesis, it backs
-up that one token, and then pushes an extra context just containing the
-padding information if necessary.
-
-Marking tokens ineligible for future expansion
-==============================================
-
-As discussed above, cpplib needs a way of marking tokens as
-unexpandable. Since the tokens cpplib handles are read-only once they
-have been lexed, it instead makes a copy of the token and adds the flag
-'NO_EXPAND' to the copy.
-
- For efficiency and to simplify memory management by avoiding having
-to remember to free these tokens, they are allocated as temporary tokens
-from the lexer's current token run (*note Lexing a line::) using the
-function '_cpp_temp_token'. The tokens are then re-used once the
-current line of tokens has been read in.
-
- This might sound unsafe. However, tokens runs are not re-used at the
-end of a line if it happens to be in the middle of a macro argument
-list, and cpplib only wants to back-up more than one lexer token in
-situations where no macro expansion is involved, so the optimization is
-safe.
-
-
-File: cppinternals.info, Node: Token Spacing, Next: Line Numbering, Prev: Macro Expansion, Up: Top
-
-Token Spacing
-*************
-
-First, consider an issue that only concerns the stand-alone
-preprocessor: there needs to be a guarantee that re-reading its
-preprocessed output results in an identical token stream. Without
-taking special measures, this might not be the case because of macro
-substitution. For example:
-
- #define PLUS +
- #define EMPTY
- #define f(x) =x=
- +PLUS -EMPTY- PLUS+ f(=)
- ==> + + - - + + = = =
- _not_
- ==> ++ -- ++ ===
-
- One solution would be to simply insert a space between all adjacent
-tokens. However, we would like to keep space insertion to a minimum,
-both for aesthetic reasons and because it causes problems for people who
-still try to abuse the preprocessor for things like Fortran source and
-Makefiles.
-
- For now, just notice that when tokens are added (or removed, as shown
-by the 'EMPTY' example) from the original lexed token stream, we need to
-check for accidental token pasting. We call this "paste avoidance".
-Token addition and removal can only occur because of macro expansion,
-but accidental pasting can occur in many places: both before and after
-each macro replacement, each argument replacement, and additionally each
-token created by the '#' and '##' operators.
-
- Look at how the preprocessor gets whitespace output correct normally.
-The 'cpp_token' structure contains a flags byte, and one of those flags
-is 'PREV_WHITE'. This is flagged by the lexer, and indicates that the
-token was preceded by whitespace of some form other than a new line.
-The stand-alone preprocessor can use this flag to decide whether to
-insert a space between tokens in the output.
-
- Now consider the result of the following macro expansion:
-
- #define add(x, y, z) x + y +z;
- sum = add (1,2, 3);
- ==> sum = 1 + 2 +3;
-
- The interesting thing here is that the tokens '1' and '2' are output
-with a preceding space, and '3' is output without a preceding space, but
-when lexed none of these tokens had that property. Careful
-consideration reveals that '1' gets its preceding whitespace from the
-space preceding 'add' in the macro invocation, _not_ replacement list.
-'2' gets its whitespace from the space preceding the parameter 'y' in
-the macro replacement list, and '3' has no preceding space because
-parameter 'z' has none in the replacement list.
-
- Once lexed, tokens are effectively fixed and cannot be altered, since
-pointers to them might be held in many places, in particular by
-in-progress macro expansions. So instead of modifying the two tokens
-above, the preprocessor inserts a special token, which I call a "padding
-token", into the token stream to indicate that spacing of the subsequent
-token is special. The preprocessor inserts padding tokens in front of
-every macro expansion and expanded macro argument. These point to a
-"source token" from which the subsequent real token should inherit its
-spacing. In the above example, the source tokens are 'add' in the macro
-invocation, and 'y' and 'z' in the macro replacement list, respectively.
-
- It is quite easy to get multiple padding tokens in a row, for example
-if a macro's first replacement token expands straight into another
-macro.
-
- #define foo bar
- #define bar baz
- [foo]
- ==> [baz]
-
- Here, two padding tokens are generated with sources the 'foo' token
-between the brackets, and the 'bar' token from foo's replacement list,
-respectively. Clearly the first padding token is the one to use, so the
-output code should contain a rule that the first padding token in a
-sequence is the one that matters.
-
- But what if a macro expansion is left? Adjusting the above example
-slightly:
-
- #define foo bar
- #define bar EMPTY baz
- #define EMPTY
- [foo] EMPTY;
- ==> [ baz] ;
-
- As shown, now there should be a space before 'baz' and the semicolon
-in the output.
-
- The rules we decided above fail for 'baz': we generate three padding
-tokens, one per macro invocation, before the token 'baz'. We would then
-have it take its spacing from the first of these, which carries source
-token 'foo' with no leading space.
-
- It is vital that cpplib get spacing correct in these examples since
-any of these macro expansions could be stringified, where spacing
-matters.
-
- So, this demonstrates that not just entering macro and argument
-expansions, but leaving them requires special handling too. I made
-cpplib insert a padding token with a 'NULL' source token when leaving
-macro expansions, as well as after each replaced argument in a macro's
-replacement list. It also inserts appropriate padding tokens on either
-side of tokens created by the '#' and '##' operators. I expanded the
-rule so that, if we see a padding token with a 'NULL' source token,
-_and_ that source token has no leading space, then we behave as if we
-have seen no padding tokens at all. A quick check shows this rule will
-then get the above example correct as well.
-
- Now a relationship with paste avoidance is apparent: we have to be
-careful about paste avoidance in exactly the same locations we have
-padding tokens in order to get white space correct. This makes
-implementation of paste avoidance easy: wherever the stand-alone
-preprocessor is fixing up spacing because of padding tokens, and it
-turns out that no space is needed, it has to take the extra step to
-check that a space is not needed after all to avoid an accidental paste.
-The function 'cpp_avoid_paste' advises whether a space is required
-between two consecutive tokens. To avoid excessive spacing, it tries
-hard to only require a space if one is likely to be necessary, but for
-reasons of efficiency it is slightly conservative and might recommend a
-space where one is not strictly needed.
-
-
-File: cppinternals.info, Node: Line Numbering, Next: Guard Macros, Prev: Token Spacing, Up: Top
-
-Line numbering
-**************
-
-Just which line number anyway?
-==============================
-
-There are three reasonable requirements a cpplib client might have for
-the line number of a token passed to it:
-
- * The source line it was lexed on.
- * The line it is output on. This can be different to the line it was
- lexed on if, for example, there are intervening escaped newlines or
- C-style comments. For example:
-
- foo /* A long
- comment */ bar \
- baz
- =>
- foo bar baz
-
- * If the token results from a macro expansion, the line of the macro
- name, or possibly the line of the closing parenthesis in the case
- of function-like macro expansion.
-
- The 'cpp_token' structure contains 'line' and 'col' members. The
-lexer fills these in with the line and column of the first character of
-the token. Consequently, but maybe unexpectedly, a token from the
-replacement list of a macro expansion carries the location of the token
-within the '#define' directive, because cpplib expands a macro by
-returning pointers to the tokens in its replacement list. The current
-implementation of cpplib assigns tokens created from built-in macros and
-the '#' and '##' operators the location of the most recently lexed
-token. This is a because they are allocated from the lexer's token
-runs, and because of the way the diagnostic routines infer the
-appropriate location to report.
-
- The diagnostic routines in cpplib display the location of the most
-recently _lexed_ token, unless they are passed a specific line and
-column to report. For diagnostics regarding tokens that arise from
-macro expansions, it might also be helpful for the user to see the
-original location in the macro definition that the token came from.
-Since that is exactly the information each token carries, such an
-enhancement could be made relatively easily in future.
-
- The stand-alone preprocessor faces a similar problem when determining
-the correct line to output the token on: the position attached to a
-token is fairly useless if the token came from a macro expansion. All
-tokens on a logical line should be output on its first physical line, so
-the token's reported location is also wrong if it is part of a physical
-line other than the first.
-
- To solve these issues, cpplib provides a callback that is generated
-whenever it lexes a preprocessing token that starts a new logical line
-other than a directive. It passes this token (which may be a 'CPP_EOF'
-token indicating the end of the translation unit) to the callback
-routine, which can then use the line and column of this token to produce
-correct output.
-
-Representation of line numbers
-==============================
-
-As mentioned above, cpplib stores with each token the line number that
-it was lexed on. In fact, this number is not the number of the line in
-the source file, but instead bears more resemblance to the number of the
-line in the translation unit.
-
- The preprocessor maintains a monotonic increasing line count, which
-is incremented at every new line character (and also at the end of any
-buffer that does not end in a new line). Since a line number of zero is
-useful to indicate certain special states and conditions, this variable
-starts counting from one.
-
- This variable therefore uniquely enumerates each line in the
-translation unit. With some simple infrastructure, it is straight
-forward to map from this to the original source file and line number
-pair, saving space whenever line number information needs to be saved.
-The code the implements this mapping lies in the files 'line-map.c' and
-'line-map.h'.
-
- Command-line macros and assertions are implemented by pushing a
-buffer containing the right hand side of an equivalent '#define' or
-'#assert' directive. Some built-in macros are handled similarly. Since
-these are all processed before the first line of the main input file, it
-will typically have an assigned line closer to twenty than to one.
-
-
-File: cppinternals.info, Node: Guard Macros, Next: Files, Prev: Line Numbering, Up: Top
-
-The Multiple-Include Optimization
-*********************************
-
-Header files are often of the form
-
- #ifndef FOO
- #define FOO
- ...
- #endif
-
-to prevent the compiler from processing them more than once. The
-preprocessor notices such header files, so that if the header file
-appears in a subsequent '#include' directive and 'FOO' is defined, then
-it is ignored and it doesn't preprocess or even re-open the file a
-second time. This is referred to as the "multiple include
-optimization".
-
- Under what circumstances is such an optimization valid? If the file
-were included a second time, it can only be optimized away if that
-inclusion would result in no tokens to return, and no relevant
-directives to process. Therefore the current implementation imposes
-requirements and makes some allowances as follows:
-
- 1. There must be no tokens outside the controlling '#if'-'#endif'
- pair, but whitespace and comments are permitted.
-
- 2. There must be no directives outside the controlling directive pair,
- but the "null directive" (a line containing nothing other than a
- single '#' and possibly whitespace) is permitted.
-
- 3. The opening directive must be of the form
-
- #ifndef FOO
-
- or
-
- #if !defined FOO [equivalently, #if !defined(FOO)]
-
- 4. In the second form above, the tokens forming the '#if' expression
- must have come directly from the source file--no macro expansion
- must have been involved. This is because macro definitions can
- change, and tracking whether or not a relevant change has been made
- is not worth the implementation cost.
-
- 5. There can be no '#else' or '#elif' directives at the outer
- conditional block level, because they would probably contain
- something of interest to a subsequent pass.
-
- First, when pushing a new file on the buffer stack,
-'_stack_include_file' sets the controlling macro 'mi_cmacro' to 'NULL',
-and sets 'mi_valid' to 'true'. This indicates that the preprocessor has
-not yet encountered anything that would invalidate the multiple-include
-optimization. As described in the next few paragraphs, these two
-variables having these values effectively indicates top-of-file.
-
- When about to return a token that is not part of a directive,
-'_cpp_lex_token' sets 'mi_valid' to 'false'. This enforces the
-constraint that tokens outside the controlling conditional block
-invalidate the optimization.
-
- The 'do_if', when appropriate, and 'do_ifndef' directive handlers
-pass the controlling macro to the function 'push_conditional'. cpplib
-maintains a stack of nested conditional blocks, and after processing
-every opening conditional this function pushes an 'if_stack' structure
-onto the stack. In this structure it records the controlling macro for
-the block, provided there is one and we're at top-of-file (as described
-above). If an '#elif' or '#else' directive is encountered, the
-controlling macro for that block is cleared to 'NULL'. Otherwise, it
-survives until the '#endif' closing the block, upon which 'do_endif'
-sets 'mi_valid' to true and stores the controlling macro in 'mi_cmacro'.
-
- '_cpp_handle_directive' clears 'mi_valid' when processing any
-directive other than an opening conditional and the null directive.
-With this, and requiring top-of-file to record a controlling macro, and
-no '#else' or '#elif' for it to survive and be copied to 'mi_cmacro' by
-'do_endif', we have enforced the absence of directives outside the main
-conditional block for the optimization to be on.
-
- Note that whilst we are inside the conditional block, 'mi_valid' is
-likely to be reset to 'false', but this does not matter since the
-closing '#endif' restores it to 'true' if appropriate.
-
- Finally, since '_cpp_lex_direct' pops the file off the buffer stack
-at 'EOF' without returning a token, if the '#endif' directive was not
-followed by any tokens, 'mi_valid' is 'true' and '_cpp_pop_file_buffer'
-remembers the controlling macro associated with the file. Subsequent
-calls to 'stack_include_file' result in no buffer being pushed if the
-controlling macro is defined, effecting the optimization.
-
- A quick word on how we handle the
-
- #if !defined FOO
-
-case. '_cpp_parse_expr' and 'parse_defined' take steps to see whether
-the three stages '!', 'defined-expression' and 'end-of-directive' occur
-in order in a '#if' expression. If so, they return the guard macro to
-'do_if' in the variable 'mi_ind_cmacro', and otherwise set it to 'NULL'.
-'enter_macro_context' sets 'mi_valid' to false, so if a macro was
-expanded whilst parsing any part of the expression, then the top-of-file
-test in 'push_conditional' fails and the optimization is turned off.
-
-
-File: cppinternals.info, Node: Files, Next: Concept Index, Prev: Guard Macros, Up: Top
-
-File Handling
-*************
-
-Fairly obviously, the file handling code of cpplib resides in the file
-'files.c'. It takes care of the details of file searching, opening,
-reading and caching, for both the main source file and all the headers
-it recursively includes.
-
- The basic strategy is to minimize the number of system calls. On
-many systems, the basic 'open ()' and 'fstat ()' system calls can be
-quite expensive. For every '#include'-d file, we need to try all the
-directories in the search path until we find a match. Some projects,
-such as glibc, pass twenty or thirty include paths on the command line,
-so this can rapidly become time consuming.
-
- For a header file we have not encountered before we have little
-choice but to do this. However, it is often the case that the same
-headers are repeatedly included, and in these cases we try to avoid
-repeating the filesystem queries whilst searching for the correct file.
-
- For each file we try to open, we store the constructed path in a
-splay tree. This path first undergoes simplification by the function
-'_cpp_simplify_pathname'. For example, '/usr/include/bits/../foo.h' is
-simplified to '/usr/include/foo.h' before we enter it in the splay tree
-and try to 'open ()' the file. CPP will then find subsequent uses of
-'foo.h', even as '/usr/include/foo.h', in the splay tree and save system
-calls.
-
- Further, it is likely the file contents have also been cached, saving
-a 'read ()' system call. We don't bother caching the contents of header
-files that are re-inclusion protected, and whose re-inclusion macro is
-defined when we leave the header file for the first time. If the host
-supports it, we try to map suitably large files into memory, rather than
-reading them in directly.
-
- The include paths are internally stored on a null-terminated
-singly-linked list, starting with the '"header.h"' directory search
-chain, which then links into the '<header.h>' directory chain.
-
- Files included with the '<foo.h>' syntax start the lookup directly in
-the second half of this chain. However, files included with the
-'"foo.h"' syntax start at the beginning of the chain, but with one extra
-directory prepended. This is the directory of the current file; the one
-containing the '#include' directive. Prepending this directory on a
-per-file basis is handled by the function 'search_from'.
-
- Note that a header included with a directory component, such as
-'#include "mydir/foo.h"' and opened as '/usr/local/include/mydir/foo.h',
-will have the complete path minus the basename 'foo.h' as the current
-directory.
-
- Enough information is stored in the splay tree that CPP can
-immediately tell whether it can skip the header file because of the
-multiple include optimization, whether the file didn't exist or couldn't
-be opened for some reason, or whether the header was flagged not to be
-re-used, as it is with the obsolete '#import' directive.
-
- For the benefit of MS-DOS filesystems with an 8.3 filename
-limitation, CPP offers the ability to treat various include file names
-as aliases for the real header files with shorter names. The map from
-one to the other is found in a special file called 'header.gcc', stored
-in the command line (or system) include directories to which the mapping
-applies. This may be higher up the directory tree than the full path to
-the file minus the base name.
-
-
-File: cppinternals.info, Node: Concept Index, Prev: Files, Up: Top
-
-Concept Index
-*************
-
-
-* Menu:
-
-* assertions: Hash Nodes. (line 6)
-* controlling macros: Guard Macros. (line 6)
-* escaped newlines: Lexer. (line 5)
-* files: Files. (line 6)
-* guard macros: Guard Macros. (line 6)
-* hash table: Hash Nodes. (line 6)
-* header files: Conventions. (line 6)
-* identifiers: Hash Nodes. (line 6)
-* interface: Conventions. (line 6)
-* lexer: Lexer. (line 6)
-* line numbers: Line Numbering. (line 5)
-* macro expansion: Macro Expansion. (line 6)
-* macro representation (internal): Macro Expansion. (line 19)
-* macros: Hash Nodes. (line 6)
-* multiple-include optimization: Guard Macros. (line 6)
-* named operators: Hash Nodes. (line 6)
-* newlines: Lexer. (line 6)
-* paste avoidance: Token Spacing. (line 6)
-* spacing: Token Spacing. (line 6)
-* token run: Lexer. (line 191)
-* token spacing: Token Spacing. (line 6)
-
-
-
-Tag Table:
-Node: Top905
-Node: Conventions2590
-Node: Lexer3532
-Ref: Invalid identifiers11447
-Ref: Lexing a line13397
-Node: Hash Nodes18170
-Node: Macro Expansion21049
-Node: Token Spacing29997
-Node: Line Numbering35854
-Node: Guard Macros39939
-Node: Files44730
-Node: Concept Index48196
-
-End Tag Table
diff --git a/gcc-4.9/gcc/doc/extend.texi b/gcc-4.9/gcc/doc/extend.texi
index 169857fc9..dfdedb617 100644
--- a/gcc-4.9/gcc/doc/extend.texi
+++ b/gcc-4.9/gcc/doc/extend.texi
@@ -376,6 +376,8 @@ goto *(&&foo + array[i]);
This is more friendly to code living in shared libraries, as it reduces
the number of dynamic relocations that are needed, and by consequence,
allows the data to be read-only.
+This alternative with label differences is not supported for the AVR target,
+please use the first approach for AVR programs.
The @code{&&foo} expressions for the same label might have different
values if the containing function is inlined or cloned. If a program
@@ -9914,9 +9916,6 @@ when the @option{-mfpu=neon} switch is used:
@node ARM ACLE Intrinsics
@subsection ARM ACLE Intrinsics
-These built-in intrinsics for the ARMv8-A CRC32 extension are available when
-the @option{-march=armv8-a+crc} switch is used:
-
@include arm-acle-intrinsics.texi
@node AVR Built-in Functions
@@ -11336,7 +11335,7 @@ used. All of them generate the machine instruction that is part of the
name.
@smallexample
-v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,v32qi,int)
+v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,int)
v32qi __builtin_ia32_pabsb256 (v32qi)
v16hi __builtin_ia32_pabsw256 (v16hi)
v8si __builtin_ia32_pabsd256 (v8si)
@@ -11571,8 +11570,8 @@ The following built-in functions are available when @option{-mxop} is used.
@smallexample
v2df __builtin_ia32_vfrczpd (v2df)
v4sf __builtin_ia32_vfrczps (v4sf)
-v2df __builtin_ia32_vfrczsd (v2df, v2df)
-v4sf __builtin_ia32_vfrczss (v4sf, v4sf)
+v2df __builtin_ia32_vfrczsd (v2df)
+v4sf __builtin_ia32_vfrczss (v4sf)
v4df __builtin_ia32_vfrczpd256 (v4df)
v8sf __builtin_ia32_vfrczps256 (v8sf)
v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
@@ -13573,8 +13572,6 @@ double __builtin_rsqrt (double);
uint64_t __builtin_ppc_get_timebase ();
unsigned long __builtin_ppc_mftb ();
double __builtin_unpack_longdouble (long double, int);
-double __builtin_longdouble_dw0 (long double);
-double __builtin_longdouble_dw1 (long double);
long double __builtin_pack_longdouble (double, double);
@end smallexample
diff --git a/gcc-4.9/gcc/doc/fsf-funding.7 b/gcc-4.9/gcc/doc/fsf-funding.7
deleted file mode 100644
index 9e91dee51..000000000
--- a/gcc-4.9/gcc/doc/fsf-funding.7
+++ /dev/null
@@ -1,193 +0,0 @@
-.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28)
-.\"
-.\" Standard preamble:
-.\" ========================================================================
-.de Sp \" Vertical space (when we can't use .PP)
-.if t .sp .5v
-.if n .sp
-..
-.de Vb \" Begin verbatim text
-.ft CW
-.nf
-.ne \\$1
-..
-.de Ve \" End verbatim text
-.ft R
-.fi
-..
-.\" Set up some character translations and predefined strings. \*(-- will
-.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
-.\" double quote, and \*(R" will give a right double quote. \*(C+ will
-.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
-.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
-.\" nothing in troff, for use with C<>.
-.tr \(*W-
-.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
-.ie n \{\
-. ds -- \(*W-
-. ds PI pi
-. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
-. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
-. ds L" ""
-. ds R" ""
-. ds C` ""
-. ds C' ""
-'br\}
-.el\{\
-. ds -- \|\(em\|
-. ds PI \(*p
-. ds L" ``
-. ds R" ''
-. ds C`
-. ds C'
-'br\}
-.\"
-.\" Escape single quotes in literal strings from groff's Unicode transform.
-.ie \n(.g .ds Aq \(aq
-.el .ds Aq '
-.\"
-.\" If the F register is turned on, we'll generate index entries on stderr for
-.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
-.\" entries marked with X<> in POD. Of course, you'll have to process the
-.\" output yourself in some meaningful fashion.
-.\"
-.\" Avoid warning from groff about undefined register 'F'.
-.de IX
-..
-.nr rF 0
-.if \n(.g .if rF .nr rF 1
-.if (\n(rF:(\n(.g==0)) \{
-. if \nF \{
-. de IX
-. tm Index:\\$1\t\\n%\t"\\$2"
-..
-. if !\nF==2 \{
-. nr % 0
-. nr F 2
-. \}
-. \}
-.\}
-.rr rF
-.\"
-.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
-.\" Fear. Run. Save yourself. No user-serviceable parts.
-. \" fudge factors for nroff and troff
-.if n \{\
-. ds #H 0
-. ds #V .8m
-. ds #F .3m
-. ds #[ \f1
-. ds #] \fP
-.\}
-.if t \{\
-. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
-. ds #V .6m
-. ds #F 0
-. ds #[ \&
-. ds #] \&
-.\}
-. \" simple accents for nroff and troff
-.if n \{\
-. ds ' \&
-. ds ` \&
-. ds ^ \&
-. ds , \&
-. ds ~ ~
-. ds /
-.\}
-.if t \{\
-. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
-. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
-. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
-. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
-. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
-. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
-.\}
-. \" troff and (daisy-wheel) nroff accents
-.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
-.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
-.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
-.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
-.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
-.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
-.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
-.ds ae a\h'-(\w'a'u*4/10)'e
-.ds Ae A\h'-(\w'A'u*4/10)'E
-. \" corrections for vroff
-.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
-.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
-. \" for low resolution devices (crt and lpr)
-.if \n(.H>23 .if \n(.V>19 \
-\{\
-. ds : e
-. ds 8 ss
-. ds o a
-. ds d- d\h'-1'\(ga
-. ds D- D\h'-1'\(hy
-. ds th \o'bp'
-. ds Th \o'LP'
-. ds ae ae
-. ds Ae AE
-.\}
-.rm #[ #] #H #V #F C
-.\" ========================================================================
-.\"
-.IX Title "FSF-FUNDING 7"
-.TH FSF-FUNDING 7 "2014-04-22" "gcc-4.9.0" "GNU"
-.\" For nroff, turn off justification. Always turn off hyphenation; it makes
-.\" way too many mistakes in technical documents.
-.if n .ad l
-.nh
-.SH "NAME"
-fsf\-funding \- Funding Free Software
-.SH "DESCRIPTION"
-.IX Header "DESCRIPTION"
-.SS "Funding Free Software"
-.IX Subsection "Funding Free Software"
-If you want to have more free software a few years from now, it makes
-sense for you to help encourage people to contribute funds for its
-development. The most effective approach known is to encourage
-commercial redistributors to donate.
-.PP
-Users of free software systems can boost the pace of development by
-encouraging for-a-fee distributors to donate part of their selling price
-to free software developers\-\-\-the Free Software Foundation, and others.
-.PP
-The way to convince distributors to do this is to demand it and expect
-it from them. So when you compare distributors, judge them partly by
-how much they give to free software development. Show distributors
-they must compete to be the one who gives the most.
-.PP
-To make this approach work, you must insist on numbers that you can
-compare, such as, \*(L"We will donate ten dollars to the Frobnitz project
-for each disk sold.\*(R" Don't be satisfied with a vague promise, such as
-\&\*(L"A portion of the profits are donated,\*(R" since it doesn't give a basis
-for comparison.
-.PP
-Even a precise fraction \*(L"of the profits from this disk\*(R" is not very
-meaningful, since creative accounting and unrelated business decisions
-can greatly alter what fraction of the sales price counts as profit.
-If the price you pay is \f(CW$50\fR, ten percent of the profit is probably
-less than a dollar; it might be a few cents, or nothing at all.
-.PP
-Some redistributors do development work themselves. This is useful too;
-but to keep everyone honest, you need to inquire how much they do, and
-what kind. Some kinds of development make much more long-term
-difference than others. For example, maintaining a separate version of
-a program contributes very little; maintaining the standard version of a
-program for the whole community contributes much. Easy new ports
-contribute little, since someone else would surely do them; difficult
-ports such as adding a new \s-1CPU\s0 to the \s-1GNU\s0 Compiler Collection contribute more;
-major new features or packages contribute the most.
-.PP
-By establishing the idea that supporting further development is \*(L"the
-proper thing to do\*(R" when distributing free software for a fee, we can
-assure a steady flow of resources into making more free software.
-.SH "SEE ALSO"
-.IX Header "SEE ALSO"
-\&\fIgpl\fR\|(7), \fIgfdl\fR\|(7).
-.SH "COPYRIGHT"
-.IX Header "COPYRIGHT"
-Copyright (c) 1994 Free Software Foundation, Inc.
-Verbatim copying and redistribution of this section is permitted
-without royalty; alteration is not permitted.
diff --git a/gcc-4.9/gcc/doc/g++.1 b/gcc-4.9/gcc/doc/g++.1
deleted file mode 100644
index 1ed57fcbb..000000000
--- a/gcc-4.9/gcc/doc/g++.1
+++ /dev/null
@@ -1,21501 +0,0 @@
-.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28)
-.\"
-.\" Standard preamble:
-.\" ========================================================================
-.de Sp \" Vertical space (when we can't use .PP)
-.if t .sp .5v
-.if n .sp
-..
-.de Vb \" Begin verbatim text
-.ft CW
-.nf
-.ne \\$1
-..
-.de Ve \" End verbatim text
-.ft R
-.fi
-..
-.\" Set up some character translations and predefined strings. \*(-- will
-.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
-.\" double quote, and \*(R" will give a right double quote. \*(C+ will
-.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
-.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
-.\" nothing in troff, for use with C<>.
-.tr \(*W-
-.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
-.ie n \{\
-. ds -- \(*W-
-. ds PI pi
-. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
-. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
-. ds L" ""
-. ds R" ""
-. ds C` ""
-. ds C' ""
-'br\}
-.el\{\
-. ds -- \|\(em\|
-. ds PI \(*p
-. ds L" ``
-. ds R" ''
-. ds C`
-. ds C'
-'br\}
-.\"
-.\" Escape single quotes in literal strings from groff's Unicode transform.
-.ie \n(.g .ds Aq \(aq
-.el .ds Aq '
-.\"
-.\" If the F register is turned on, we'll generate index entries on stderr for
-.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
-.\" entries marked with X<> in POD. Of course, you'll have to process the
-.\" output yourself in some meaningful fashion.
-.\"
-.\" Avoid warning from groff about undefined register 'F'.
-.de IX
-..
-.nr rF 0
-.if \n(.g .if rF .nr rF 1
-.if (\n(rF:(\n(.g==0)) \{
-. if \nF \{
-. de IX
-. tm Index:\\$1\t\\n%\t"\\$2"
-..
-. if !\nF==2 \{
-. nr % 0
-. nr F 2
-. \}
-. \}
-.\}
-.rr rF
-.\"
-.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
-.\" Fear. Run. Save yourself. No user-serviceable parts.
-. \" fudge factors for nroff and troff
-.if n \{\
-. ds #H 0
-. ds #V .8m
-. ds #F .3m
-. ds #[ \f1
-. ds #] \fP
-.\}
-.if t \{\
-. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
-. ds #V .6m
-. ds #F 0
-. ds #[ \&
-. ds #] \&
-.\}
-. \" simple accents for nroff and troff
-.if n \{\
-. ds ' \&
-. ds ` \&
-. ds ^ \&
-. ds , \&
-. ds ~ ~
-. ds /
-.\}
-.if t \{\
-. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
-. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
-. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
-. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
-. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
-. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
-.\}
-. \" troff and (daisy-wheel) nroff accents
-.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
-.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
-.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
-.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
-.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
-.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
-.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
-.ds ae a\h'-(\w'a'u*4/10)'e
-.ds Ae A\h'-(\w'A'u*4/10)'E
-. \" corrections for vroff
-.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
-.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
-. \" for low resolution devices (crt and lpr)
-.if \n(.H>23 .if \n(.V>19 \
-\{\
-. ds : e
-. ds 8 ss
-. ds o a
-. ds d- d\h'-1'\(ga
-. ds D- D\h'-1'\(hy
-. ds th \o'bp'
-. ds Th \o'LP'
-. ds ae ae
-. ds Ae AE
-.\}
-.rm #[ #] #H #V #F C
-.\" ========================================================================
-.\"
-.IX Title "GCC 1"
-.TH GCC 1 "2014-04-22" "gcc-4.9.0" "GNU"
-.\" For nroff, turn off justification. Always turn off hyphenation; it makes
-.\" way too many mistakes in technical documents.
-.if n .ad l
-.nh
-.SH "NAME"
-gcc \- GNU project C and C++ compiler
-.SH "SYNOPSIS"
-.IX Header "SYNOPSIS"
-gcc [\fB\-c\fR|\fB\-S\fR|\fB\-E\fR] [\fB\-std=\fR\fIstandard\fR]
- [\fB\-g\fR] [\fB\-pg\fR] [\fB\-O\fR\fIlevel\fR]
- [\fB\-W\fR\fIwarn\fR...] [\fB\-Wpedantic\fR]
- [\fB\-I\fR\fIdir\fR...] [\fB\-L\fR\fIdir\fR...]
- [\fB\-D\fR\fImacro\fR[=\fIdefn\fR]...] [\fB\-U\fR\fImacro\fR]
- [\fB\-f\fR\fIoption\fR...] [\fB\-m\fR\fImachine-option\fR...]
- [\fB\-o\fR \fIoutfile\fR] [@\fIfile\fR] \fIinfile\fR...
-.PP
-Only the most useful options are listed here; see below for the
-remainder. \fBg++\fR accepts mostly the same options as \fBgcc\fR.
-.SH "DESCRIPTION"
-.IX Header "DESCRIPTION"
-When you invoke \s-1GCC,\s0 it normally does preprocessing, compilation,
-assembly and linking. The \*(L"overall options\*(R" allow you to stop this
-process at an intermediate stage. For example, the \fB\-c\fR option
-says not to run the linker. Then the output consists of object files
-output by the assembler.
-.PP
-Other options are passed on to one stage of processing. Some options
-control the preprocessor and others the compiler itself. Yet other
-options control the assembler and linker; most of these are not
-documented here, since you rarely need to use any of them.
-.PP
-Most of the command-line options that you can use with \s-1GCC\s0 are useful
-for C programs; when an option is only useful with another language
-(usually \*(C+), the explanation says so explicitly. If the description
-for a particular option does not mention a source language, you can use
-that option with all supported languages.
-.PP
-The \fBgcc\fR program accepts options and file names as operands. Many
-options have multi-letter names; therefore multiple single-letter options
-may \fInot\fR be grouped: \fB\-dv\fR is very different from \fB\-d\ \-v\fR.
-.PP
-You can mix options and other arguments. For the most part, the order
-you use doesn't matter. Order does matter when you use several
-options of the same kind; for example, if you specify \fB\-L\fR more
-than once, the directories are searched in the order specified. Also,
-the placement of the \fB\-l\fR option is significant.
-.PP
-Many options have long names starting with \fB\-f\fR or with
-\&\fB\-W\fR\-\-\-for example,
-\&\fB\-fmove\-loop\-invariants\fR, \fB\-Wformat\fR and so on. Most of
-these have both positive and negative forms; the negative form of
-\&\fB\-ffoo\fR is \fB\-fno\-foo\fR. This manual documents
-only one of these two forms, whichever one is not the default.
-.SH "OPTIONS"
-.IX Header "OPTIONS"
-.SS "Option Summary"
-.IX Subsection "Option Summary"
-Here is a summary of all the options, grouped by type. Explanations are
-in the following sections.
-.IP "\fIOverall Options\fR" 4
-.IX Item "Overall Options"
-\&\fB\-c \-S \-E \-o\fR \fIfile\fR \fB\-no\-canonical\-prefixes
-\&\-pipe \-pass\-exit\-codes
-\&\-x\fR \fIlanguage\fR \fB\-v \-### \-\-help\fR[\fB=\fR\fIclass\fR[\fB,...\fR]] \fB\-\-target\-help
-\&\-\-version \-wrapper @\fR\fIfile\fR \fB\-fplugin=\fR\fIfile\fR \fB\-fplugin\-arg\-\fR\fIname\fR\fB=\fR\fIarg\fR
-\&\fB\-fdump\-ada\-spec\fR[\fB\-slim\fR] \fB\-fada\-spec\-parent=\fR\fIunit\fR \fB\-fdump\-go\-spec=\fR\fIfile\fR
-.IP "\fIC Language Options\fR" 4
-.IX Item "C Language Options"
-\&\fB\-ansi \-std=\fR\fIstandard\fR \fB\-fgnu89\-inline
-\&\-aux\-info\fR \fIfilename\fR \fB\-fallow\-parameterless\-variadic\-functions
-\&\-fno\-asm \-fno\-builtin \-fno\-builtin\-\fR\fIfunction\fR
-\&\fB\-fhosted \-ffreestanding \-fopenmp \-fopenmp\-simd \-fms\-extensions
-\&\-fplan9\-extensions \-trigraphs \-traditional \-traditional\-cpp
-\&\-fallow\-single\-precision \-fcond\-mismatch \-flax\-vector\-conversions
-\&\-fsigned\-bitfields \-fsigned\-char
-\&\-funsigned\-bitfields \-funsigned\-char\fR
-.IP "\fI\*(C+ Language Options\fR" 4
-.IX Item " Language Options"
-\&\fB\-fabi\-version=\fR\fIn\fR \fB\-fno\-access\-control \-fcheck\-new
-\&\-fconstexpr\-depth=\fR\fIn\fR \fB\-ffriend\-injection
-\&\-fno\-elide\-constructors
-\&\-fno\-enforce\-eh\-specs
-\&\-ffor\-scope \-fno\-for\-scope \-fno\-gnu\-keywords
-\&\-fno\-implicit\-templates
-\&\-fno\-implicit\-inline\-templates
-\&\-fno\-implement\-inlines \-fms\-extensions
-\&\-fno\-nonansi\-builtins \-fnothrow\-opt \-fno\-operator\-names
-\&\-fno\-optional\-diags \-fpermissive
-\&\-fno\-pretty\-templates
-\&\-frepo \-fno\-rtti \-fstats \-ftemplate\-backtrace\-limit=\fR\fIn\fR
-\&\fB\-ftemplate\-depth=\fR\fIn\fR
-\&\fB\-fno\-threadsafe\-statics \-fuse\-cxa\-atexit \-fno\-weak \-nostdinc++
-\&\-fvisibility\-inlines\-hidden
-\&\-fvtable\-verify=\fR\fIstd|preinit|none\fR
-\&\fB\-fvtv\-counts \-fvtv\-debug
-\&\-fvisibility\-ms\-compat
-\&\-fext\-numeric\-literals
-\&\-Wabi \-Wconversion\-null \-Wctor\-dtor\-privacy
-\&\-Wdelete\-non\-virtual\-dtor \-Wliteral\-suffix \-Wnarrowing
-\&\-Wnoexcept \-Wnon\-virtual\-dtor \-Wreorder
-\&\-Weffc++ \-Wstrict\-null\-sentinel
-\&\-Wno\-non\-template\-friend \-Wold\-style\-cast
-\&\-Woverloaded\-virtual \-Wno\-pmf\-conversions
-\&\-Wsign\-promo\fR
-.IP "\fIObjective-C and Objective\-\*(C+ Language Options\fR" 4
-.IX Item "Objective-C and Objective- Language Options"
-\&\fB\-fconstant\-string\-class=\fR\fIclass-name\fR
-\&\fB\-fgnu\-runtime \-fnext\-runtime
-\&\-fno\-nil\-receivers
-\&\-fobjc\-abi\-version=\fR\fIn\fR
-\&\fB\-fobjc\-call\-cxx\-cdtors
-\&\-fobjc\-direct\-dispatch
-\&\-fobjc\-exceptions
-\&\-fobjc\-gc
-\&\-fobjc\-nilcheck
-\&\-fobjc\-std=objc1
-\&\-freplace\-objc\-classes
-\&\-fzero\-link
-\&\-gen\-decls
-\&\-Wassign\-intercept
-\&\-Wno\-protocol \-Wselector
-\&\-Wstrict\-selector\-match
-\&\-Wundeclared\-selector\fR
-.IP "\fILanguage Independent Options\fR" 4
-.IX Item "Language Independent Options"
-\&\fB\-fmessage\-length=\fR\fIn\fR
-\&\fB\-fdiagnostics\-show\-location=\fR[\fBonce\fR|\fBevery-line\fR]
-\&\fB\-fdiagnostics\-color=\fR[\fBauto\fR|\fBnever\fR|\fBalways\fR]
-\&\fB\-fno\-diagnostics\-show\-option \-fno\-diagnostics\-show\-caret\fR
-.IP "\fIWarning Options\fR" 4
-.IX Item "Warning Options"
-\&\fB\-fsyntax\-only \-fmax\-errors=\fR\fIn\fR \fB\-Wpedantic
-\&\-pedantic\-errors
-\&\-w \-Wextra \-Wall \-Waddress \-Waggregate\-return
-\&\-Waggressive\-loop\-optimizations \-Warray\-bounds
-\&\-Wno\-attributes \-Wno\-builtin\-macro\-redefined
-\&\-Wc++\-compat \-Wc++11\-compat \-Wcast\-align \-Wcast\-qual
-\&\-Wchar\-subscripts \-Wclobbered \-Wcomment \-Wconditionally\-supported
-\&\-Wconversion \-Wcoverage\-mismatch \-Wdate\-time \-Wdelete\-incomplete \-Wno\-cpp
-\&\-Wno\-deprecated \-Wno\-deprecated\-declarations \-Wdisabled\-optimization
-\&\-Wno\-div\-by\-zero \-Wdouble\-promotion \-Wempty\-body \-Wenum\-compare
-\&\-Wno\-endif\-labels \-Werror \-Werror=*
-\&\-Wfatal\-errors \-Wfloat\-equal \-Wformat \-Wformat=2
-\&\-Wno\-format\-contains\-nul \-Wno\-format\-extra\-args \-Wformat\-nonliteral
-\&\-Wformat\-security \-Wformat\-y2k
-\&\-Wframe\-larger\-than=\fR\fIlen\fR \fB\-Wno\-free\-nonheap\-object \-Wjump\-misses\-init
-\&\-Wignored\-qualifiers
-\&\-Wimplicit \-Wimplicit\-function\-declaration \-Wimplicit\-int
-\&\-Winit\-self \-Winline \-Wmaybe\-uninitialized
-\&\-Wno\-int\-to\-pointer\-cast \-Wno\-invalid\-offsetof
-\&\-Winvalid\-pch \-Wlarger\-than=\fR\fIlen\fR \fB\-Wunsafe\-loop\-optimizations
-\&\-Wlogical\-op \-Wlong\-long
-\&\-Wmain \-Wmaybe\-uninitialized \-Wmissing\-braces \-Wmissing\-field\-initializers
-\&\-Wmissing\-include\-dirs
-\&\-Wno\-multichar \-Wnonnull \-Wno\-overflow \-Wopenmp\-simd
-\&\-Woverlength\-strings \-Wpacked \-Wpacked\-bitfield\-compat \-Wpadded
-\&\-Wparentheses \-Wpedantic\-ms\-format \-Wno\-pedantic\-ms\-format
-\&\-Wpointer\-arith \-Wno\-pointer\-to\-int\-cast
-\&\-Wredundant\-decls \-Wno\-return\-local\-addr
-\&\-Wreturn\-type \-Wsequence\-point \-Wshadow
-\&\-Wsign\-compare \-Wsign\-conversion \-Wfloat\-conversion
-\&\-Wsizeof\-pointer\-memaccess
-\&\-Wstack\-protector \-Wstack\-usage=\fR\fIlen\fR \fB\-Wstrict\-aliasing
-\&\-Wstrict\-aliasing=n \-Wstrict\-overflow \-Wstrict\-overflow=\fR\fIn\fR
-\&\fB\-Wsuggest\-attribute=\fR[\fBpure\fR|\fBconst\fR|\fBnoreturn\fR|\fBformat\fR]
-\&\fB\-Wmissing\-format\-attribute
-\&\-Wswitch \-Wswitch\-default \-Wswitch\-enum \-Wsync\-nand
-\&\-Wsystem\-headers \-Wtrampolines \-Wtrigraphs \-Wtype\-limits \-Wundef
-\&\-Wuninitialized \-Wunknown\-pragmas \-Wno\-pragmas
-\&\-Wunsuffixed\-float\-constants \-Wunused \-Wunused\-function
-\&\-Wunused\-label \-Wunused\-local\-typedefs \-Wunused\-parameter
-\&\-Wno\-unused\-result \-Wunused\-value \-Wunused\-variable
-\&\-Wunused\-but\-set\-parameter \-Wunused\-but\-set\-variable
-\&\-Wuseless\-cast \-Wvariadic\-macros \-Wvector\-operation\-performance
-\&\-Wvla \-Wvolatile\-register\-var \-Wwrite\-strings \-Wzero\-as\-null\-pointer\-constant\fR
-.IP "\fIC and Objective-C-only Warning Options\fR" 4
-.IX Item "C and Objective-C-only Warning Options"
-\&\fB\-Wbad\-function\-cast \-Wmissing\-declarations
-\&\-Wmissing\-parameter\-type \-Wmissing\-prototypes \-Wnested\-externs
-\&\-Wold\-style\-declaration \-Wold\-style\-definition
-\&\-Wstrict\-prototypes \-Wtraditional \-Wtraditional\-conversion
-\&\-Wdeclaration\-after\-statement \-Wpointer\-sign\fR
-.IP "\fIDebugging Options\fR" 4
-.IX Item "Debugging Options"
-\&\fB\-d\fR\fIletters\fR \fB\-dumpspecs \-dumpmachine \-dumpversion
-\&\-fsanitize=\fR\fIstyle\fR
-\&\fB\-fdbg\-cnt\-list \-fdbg\-cnt=\fR\fIcounter-value-list\fR
-\&\fB\-fdisable\-ipa\-\fR\fIpass_name\fR
-\&\fB\-fdisable\-rtl\-\fR\fIpass_name\fR
-\&\fB\-fdisable\-rtl\-\fR\fIpass-name\fR\fB=\fR\fIrange-list\fR
-\&\fB\-fdisable\-tree\-\fR\fIpass_name\fR
-\&\fB\-fdisable\-tree\-\fR\fIpass-name\fR\fB=\fR\fIrange-list\fR
-\&\fB\-fdump\-noaddr \-fdump\-unnumbered \-fdump\-unnumbered\-links
-\&\-fdump\-translation\-unit\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-class\-hierarchy\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-ipa\-all \-fdump\-ipa\-cgraph \-fdump\-ipa\-inline
-\&\-fdump\-passes
-\&\-fdump\-statistics
-\&\-fdump\-tree\-all
-\&\-fdump\-tree\-original\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-optimized\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-cfg \-fdump\-tree\-alias
-\&\-fdump\-tree\-ch
-\&\-fdump\-tree\-ssa\fR[\fB\-\fR\fIn\fR] \fB\-fdump\-tree\-pre\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-ccp\fR[\fB\-\fR\fIn\fR] \fB\-fdump\-tree\-dce\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-gimple\fR[\fB\-raw\fR]
-\&\fB\-fdump\-tree\-dom\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-dse\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-phiprop\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-phiopt\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-forwprop\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-copyrename\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-nrv \-fdump\-tree\-vect
-\&\-fdump\-tree\-sink
-\&\-fdump\-tree\-sra\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-forwprop\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-fre\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-vtable\-verify
-\&\-fdump\-tree\-vrp\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-storeccp\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-final\-insns=\fR\fIfile\fR
-\&\fB\-fcompare\-debug\fR[\fB=\fR\fIopts\fR] \fB\-fcompare\-debug\-second
-\&\-feliminate\-dwarf2\-dups \-fno\-eliminate\-unused\-debug\-types
-\&\-feliminate\-unused\-debug\-symbols \-femit\-class\-debug\-always
-\&\-fenable\-\fR\fIkind\fR\fB\-\fR\fIpass\fR
-\&\fB\-fenable\-\fR\fIkind\fR\fB\-\fR\fIpass\fR\fB=\fR\fIrange-list\fR
-\&\fB\-fdebug\-types\-section \-fmem\-report\-wpa
-\&\-fmem\-report \-fpre\-ipa\-mem\-report \-fpost\-ipa\-mem\-report \-fprofile\-arcs
-\&\-fopt\-info
-\&\-fopt\-info\-\fR\fIoptions\fR[\fB=\fR\fIfile\fR]
-\&\fB\-frandom\-seed=\fR\fIstring\fR \fB\-fsched\-verbose=\fR\fIn\fR
-\&\fB\-fsel\-sched\-verbose \-fsel\-sched\-dump\-cfg \-fsel\-sched\-pipelining\-verbose
-\&\-fstack\-usage \-ftest\-coverage \-ftime\-report \-fvar\-tracking
-\&\-fvar\-tracking\-assignments \-fvar\-tracking\-assignments\-toggle
-\&\-g \-g\fR\fIlevel\fR \fB\-gtoggle \-gcoff \-gdwarf\-\fR\fIversion\fR
-\&\fB\-ggdb \-grecord\-gcc\-switches \-gno\-record\-gcc\-switches
-\&\-gstabs \-gstabs+ \-gstrict\-dwarf \-gno\-strict\-dwarf
-\&\-gvms \-gxcoff \-gxcoff+
-\&\-fno\-merge\-debug\-strings \-fno\-dwarf2\-cfi\-asm
-\&\-fdebug\-prefix\-map=\fR\fIold\fR\fB=\fR\fInew\fR
-\&\fB\-femit\-struct\-debug\-baseonly \-femit\-struct\-debug\-reduced
-\&\-femit\-struct\-debug\-detailed\fR[\fB=\fR\fIspec-list\fR]
-\&\fB\-p \-pg \-print\-file\-name=\fR\fIlibrary\fR \fB\-print\-libgcc\-file\-name
-\&\-print\-multi\-directory \-print\-multi\-lib \-print\-multi\-os\-directory
-\&\-print\-prog\-name=\fR\fIprogram\fR \fB\-print\-search\-dirs \-Q
-\&\-print\-sysroot \-print\-sysroot\-headers\-suffix
-\&\-save\-temps \-save\-temps=cwd \-save\-temps=obj \-time\fR[\fB=\fR\fIfile\fR]
-.IP "\fIOptimization Options\fR" 4
-.IX Item "Optimization Options"
-\&\fB\-faggressive\-loop\-optimizations \-falign\-functions[=\fR\fIn\fR\fB]
-\&\-falign\-jumps[=\fR\fIn\fR\fB]
-\&\-falign\-labels[=\fR\fIn\fR\fB] \-falign\-loops[=\fR\fIn\fR\fB]
-\&\-fassociative\-math \-fauto\-inc\-dec \-fbranch\-probabilities
-\&\-fbranch\-target\-load\-optimize \-fbranch\-target\-load\-optimize2
-\&\-fbtr\-bb\-exclusive \-fcaller\-saves
-\&\-fcheck\-data\-deps \-fcombine\-stack\-adjustments \-fconserve\-stack
-\&\-fcompare\-elim \-fcprop\-registers \-fcrossjumping
-\&\-fcse\-follow\-jumps \-fcse\-skip\-blocks \-fcx\-fortran\-rules
-\&\-fcx\-limited\-range
-\&\-fdata\-sections \-fdce \-fdelayed\-branch
-\&\-fdelete\-null\-pointer\-checks \-fdevirtualize \-fdevirtualize\-speculatively \-fdse
-\&\-fearly\-inlining \-fipa\-sra \-fexpensive\-optimizations \-ffat\-lto\-objects
-\&\-ffast\-math \-ffinite\-math\-only \-ffloat\-store \-fexcess\-precision=\fR\fIstyle\fR
-\&\fB\-fforward\-propagate \-ffp\-contract=\fR\fIstyle\fR \fB\-ffunction\-sections
-\&\-fgcse \-fgcse\-after\-reload \-fgcse\-las \-fgcse\-lm \-fgraphite\-identity
-\&\-fgcse\-sm \-fhoist\-adjacent\-loads \-fif\-conversion
-\&\-fif\-conversion2 \-findirect\-inlining
-\&\-finline\-functions \-finline\-functions\-called\-once \-finline\-limit=\fR\fIn\fR
-\&\fB\-finline\-small\-functions \-fipa\-cp \-fipa\-cp\-clone
-\&\-fipa\-pta \-fipa\-profile \-fipa\-pure\-const \-fipa\-reference
-\&\-fira\-algorithm=\fR\fIalgorithm\fR
-\&\fB\-fira\-region=\fR\fIregion\fR \fB\-fira\-hoist\-pressure
-\&\-fira\-loop\-pressure \-fno\-ira\-share\-save\-slots
-\&\-fno\-ira\-share\-spill\-slots \-fira\-verbose=\fR\fIn\fR
-\&\fB\-fisolate\-erroneous\-paths\-dereference \-fisolate\-erroneous\-paths\-attribute
-\&\-fivopts \-fkeep\-inline\-functions \-fkeep\-static\-consts \-flive\-range\-shrinkage
-\&\-floop\-block \-floop\-interchange \-floop\-strip\-mine \-floop\-nest\-optimize
-\&\-floop\-parallelize\-all \-flto \-flto\-compression\-level
-\&\-flto\-partition=\fR\fIalg\fR \fB\-flto\-report \-flto\-report\-wpa \-fmerge\-all\-constants
-\&\-fmerge\-constants \-fmodulo\-sched \-fmodulo\-sched\-allow\-regmoves
-\&\-fmove\-loop\-invariants \-fno\-branch\-count\-reg
-\&\-fno\-defer\-pop \-fno\-function\-cse \-fno\-guess\-branch\-probability
-\&\-fno\-inline \-fno\-math\-errno \-fno\-peephole \-fno\-peephole2
-\&\-fno\-sched\-interblock \-fno\-sched\-spec \-fno\-signed\-zeros
-\&\-fno\-toplevel\-reorder \-fno\-trapping\-math \-fno\-zero\-initialized\-in\-bss
-\&\-fomit\-frame\-pointer \-foptimize\-sibling\-calls
-\&\-fpartial\-inlining \-fpeel\-loops \-fpredictive\-commoning
-\&\-fprefetch\-loop\-arrays \-fprofile\-report
-\&\-fprofile\-correction \-fprofile\-dir=\fR\fIpath\fR \fB\-fprofile\-generate
-\&\-fprofile\-generate=\fR\fIpath\fR
-\&\fB\-fprofile\-use \-fprofile\-use=\fR\fIpath\fR \fB\-fprofile\-values \-fprofile\-reorder\-functions
-\&\-freciprocal\-math \-free \-frename\-registers \-freorder\-blocks
-\&\-freorder\-blocks\-and\-partition \-freorder\-functions
-\&\-frerun\-cse\-after\-loop \-freschedule\-modulo\-scheduled\-loops
-\&\-frounding\-math \-fsched2\-use\-superblocks \-fsched\-pressure
-\&\-fsched\-spec\-load \-fsched\-spec\-load\-dangerous
-\&\-fsched\-stalled\-insns\-dep[=\fR\fIn\fR\fB] \-fsched\-stalled\-insns[=\fR\fIn\fR\fB]
-\&\-fsched\-group\-heuristic \-fsched\-critical\-path\-heuristic
-\&\-fsched\-spec\-insn\-heuristic \-fsched\-rank\-heuristic
-\&\-fsched\-last\-insn\-heuristic \-fsched\-dep\-count\-heuristic
-\&\-fschedule\-insns \-fschedule\-insns2 \-fsection\-anchors
-\&\-fselective\-scheduling \-fselective\-scheduling2
-\&\-fsel\-sched\-pipelining \-fsel\-sched\-pipelining\-outer\-loops
-\&\-fshrink\-wrap \-fsignaling\-nans \-fsingle\-precision\-constant
-\&\-fsplit\-ivs\-in\-unroller \-fsplit\-wide\-types \-fstack\-protector
-\&\-fstack\-protector\-all \-fstack\-protector\-strong \-fstrict\-aliasing
-\&\-fstrict\-overflow \-fthread\-jumps \-ftracer \-ftree\-bit\-ccp
-\&\-ftree\-builtin\-call\-dce \-ftree\-ccp \-ftree\-ch
-\&\-ftree\-coalesce\-inline\-vars \-ftree\-coalesce\-vars \-ftree\-copy\-prop
-\&\-ftree\-copyrename \-ftree\-dce \-ftree\-dominator\-opts \-ftree\-dse
-\&\-ftree\-forwprop \-ftree\-fre \-ftree\-loop\-if\-convert
-\&\-ftree\-loop\-if\-convert\-stores \-ftree\-loop\-im
-\&\-ftree\-phiprop \-ftree\-loop\-distribution \-ftree\-loop\-distribute\-patterns
-\&\-ftree\-loop\-ivcanon \-ftree\-loop\-linear \-ftree\-loop\-optimize
-\&\-ftree\-loop\-vectorize
-\&\-ftree\-parallelize\-loops=\fR\fIn\fR \fB\-ftree\-pre \-ftree\-partial\-pre \-ftree\-pta
-\&\-ftree\-reassoc \-ftree\-sink \-ftree\-slsr \-ftree\-sra
-\&\-ftree\-switch\-conversion \-ftree\-tail\-merge \-ftree\-ter
-\&\-ftree\-vectorize \-ftree\-vrp
-\&\-funit\-at\-a\-time \-funroll\-all\-loops \-funroll\-loops
-\&\-funsafe\-loop\-optimizations \-funsafe\-math\-optimizations \-funswitch\-loops
-\&\-fvariable\-expansion\-in\-unroller \-fvect\-cost\-model \-fvpt \-fweb
-\&\-fwhole\-program \-fwpa \-fuse\-ld=\fR\fIlinker\fR \fB\-fuse\-linker\-plugin
-\&\-\-param\fR \fIname\fR\fB=\fR\fIvalue\fR
-\&\fB\-O \-O0 \-O1 \-O2 \-O3 \-Os \-Ofast \-Og\fR
-.IP "\fIPreprocessor Options\fR" 4
-.IX Item "Preprocessor Options"
-\&\fB\-A\fR\fIquestion\fR\fB=\fR\fIanswer\fR
-\&\fB\-A\-\fR\fIquestion\fR[\fB=\fR\fIanswer\fR]
-\&\fB\-C \-dD \-dI \-dM \-dN
-\&\-D\fR\fImacro\fR[\fB=\fR\fIdefn\fR] \fB\-E \-H
-\&\-idirafter\fR \fIdir\fR
-\&\fB\-include\fR \fIfile\fR \fB\-imacros\fR \fIfile\fR
-\&\fB\-iprefix\fR \fIfile\fR \fB\-iwithprefix\fR \fIdir\fR
-\&\fB\-iwithprefixbefore\fR \fIdir\fR \fB\-isystem\fR \fIdir\fR
-\&\fB\-imultilib\fR \fIdir\fR \fB\-isysroot\fR \fIdir\fR
-\&\fB\-M \-MM \-MF \-MG \-MP \-MQ \-MT \-nostdinc
-\&\-P \-fdebug\-cpp \-ftrack\-macro\-expansion \-fworking\-directory
-\&\-remap \-trigraphs \-undef \-U\fR\fImacro\fR
-\&\fB\-Wp,\fR\fIoption\fR \fB\-Xpreprocessor\fR \fIoption\fR \fB\-no\-integrated\-cpp\fR
-.IP "\fIAssembler Option\fR" 4
-.IX Item "Assembler Option"
-\&\fB\-Wa,\fR\fIoption\fR \fB\-Xassembler\fR \fIoption\fR
-.IP "\fILinker Options\fR" 4
-.IX Item "Linker Options"
-\&\fIobject-file-name\fR \fB\-l\fR\fIlibrary\fR
-\&\fB\-nostartfiles \-nodefaultlibs \-nostdlib \-pie \-rdynamic
-\&\-s \-static \-static\-libgcc \-static\-libstdc++
-\&\-static\-libasan \-static\-libtsan \-static\-liblsan \-static\-libubsan
-\&\-shared \-shared\-libgcc \-symbolic
-\&\-T\fR \fIscript\fR \fB\-Wl,\fR\fIoption\fR \fB\-Xlinker\fR \fIoption\fR
-\&\fB\-u\fR \fIsymbol\fR
-.IP "\fIDirectory Options\fR" 4
-.IX Item "Directory Options"
-\&\fB\-B\fR\fIprefix\fR \fB\-I\fR\fIdir\fR \fB\-iplugindir=\fR\fIdir\fR
-\&\fB\-iquote\fR\fIdir\fR \fB\-L\fR\fIdir\fR \fB\-specs=\fR\fIfile\fR \fB\-I\-
-\&\-\-sysroot=\fR\fIdir\fR \fB\-\-no\-sysroot\-suffix\fR
-.IP "\fIMachine Dependent Options\fR" 4
-.IX Item "Machine Dependent Options"
-\&\fIAArch64 Options\fR
-\&\fB\-mabi=\fR\fIname\fR \fB\-mbig\-endian \-mlittle\-endian
-\&\-mgeneral\-regs\-only
-\&\-mcmodel=tiny \-mcmodel=small \-mcmodel=large
-\&\-mstrict\-align
-\&\-momit\-leaf\-frame\-pointer \-mno\-omit\-leaf\-frame\-pointer
-\&\-mtls\-dialect=desc \-mtls\-dialect=traditional
-\&\-march=\fR\fIname\fR \fB\-mcpu=\fR\fIname\fR \fB\-mtune=\fR\fIname\fR
-.Sp
-\&\fIAdapteva Epiphany Options\fR
-\&\fB\-mhalf\-reg\-file \-mprefer\-short\-insn\-regs
-\&\-mbranch\-cost=\fR\fInum\fR \fB\-mcmove \-mnops=\fR\fInum\fR \fB\-msoft\-cmpsf
-\&\-msplit\-lohi \-mpost\-inc \-mpost\-modify \-mstack\-offset=\fR\fInum\fR
-\&\fB\-mround\-nearest \-mlong\-calls \-mshort\-calls \-msmall16
-\&\-mfp\-mode=\fR\fImode\fR \fB\-mvect\-double \-max\-vect\-align=\fR\fInum\fR
-\&\fB\-msplit\-vecmove\-early \-m1reg\-\fR\fIreg\fR
-.Sp
-\&\fI\s-1ARC\s0 Options\fR
-\&\fB\-mbarrel\-shifter
-\&\-mcpu=\fR\fIcpu\fR \fB\-mA6 \-mARC600 \-mA7 \-mARC700
-\&\-mdpfp \-mdpfp\-compact \-mdpfp\-fast \-mno\-dpfp\-lrsr
-\&\-mea \-mno\-mpy \-mmul32x16 \-mmul64
-\&\-mnorm \-mspfp \-mspfp\-compact \-mspfp\-fast \-msimd \-msoft\-float \-mswap
-\&\-mcrc \-mdsp\-packa \-mdvbf \-mlock \-mmac\-d16 \-mmac\-24 \-mrtsc \-mswape
-\&\-mtelephony \-mxy \-misize \-mannotate\-align \-marclinux \-marclinux_prof
-\&\-mepilogue\-cfi \-mlong\-calls \-mmedium\-calls \-msdata
-\&\-mucb\-mcount \-mvolatile\-cache
-\&\-malign\-call \-mauto\-modify\-reg \-mbbit\-peephole \-mno\-brcc
-\&\-mcase\-vector\-pcrel \-mcompact\-casesi \-mno\-cond\-exec \-mearly\-cbranchsi
-\&\-mexpand\-adddi \-mindexed\-loads \-mlra \-mlra\-priority\-none
-\&\-mlra\-priority\-compact mlra-priority-noncompact \-mno\-millicode
-\&\-mmixed\-code \-mq\-class \-mRcq \-mRcw \-msize\-level=\fR\fIlevel\fR
-\&\fB\-mtune=\fR\fIcpu\fR \fB\-mmultcost=\fR\fInum\fR \fB\-munalign\-prob\-threshold=\fR\fIprobability\fR
-.Sp
-\&\fI\s-1ARM\s0 Options\fR
-\&\fB\-mapcs\-frame \-mno\-apcs\-frame
-\&\-mabi=\fR\fIname\fR
-\&\fB\-mapcs\-stack\-check \-mno\-apcs\-stack\-check
-\&\-mapcs\-float \-mno\-apcs\-float
-\&\-mapcs\-reentrant \-mno\-apcs\-reentrant
-\&\-msched\-prolog \-mno\-sched\-prolog
-\&\-mlittle\-endian \-mbig\-endian \-mwords\-little\-endian
-\&\-mfloat\-abi=\fR\fIname\fR
-\&\fB\-mfp16\-format=\fR\fIname\fR
-\&\fB\-mthumb\-interwork \-mno\-thumb\-interwork
-\&\-mcpu=\fR\fIname\fR \fB\-march=\fR\fIname\fR \fB\-mfpu=\fR\fIname\fR
-\&\fB\-mstructure\-size\-boundary=\fR\fIn\fR
-\&\fB\-mabort\-on\-noreturn
-\&\-mlong\-calls \-mno\-long\-calls
-\&\-msingle\-pic\-base \-mno\-single\-pic\-base
-\&\-mpic\-register=\fR\fIreg\fR
-\&\fB\-mnop\-fun\-dllimport
-\&\-mpoke\-function\-name
-\&\-mthumb \-marm
-\&\-mtpcs\-frame \-mtpcs\-leaf\-frame
-\&\-mcaller\-super\-interworking \-mcallee\-super\-interworking
-\&\-mtp=\fR\fIname\fR \fB\-mtls\-dialect=\fR\fIdialect\fR
-\&\fB\-mword\-relocations
-\&\-mfix\-cortex\-m3\-ldrd
-\&\-munaligned\-access
-\&\-mneon\-for\-64bits
-\&\-mslow\-flash\-data
-\&\-mrestrict\-it\fR
-.Sp
-\&\fI\s-1AVR\s0 Options\fR
-\&\fB\-mmcu=\fR\fImcu\fR \fB\-maccumulate\-args \-mbranch\-cost=\fR\fIcost\fR
-\&\fB\-mcall\-prologues \-mint8 \-mno\-interrupts \-mrelax
-\&\-mstrict\-X \-mtiny\-stack \-Waddr\-space\-convert\fR
-.Sp
-\&\fIBlackfin Options\fR
-\&\fB\-mcpu=\fR\fIcpu\fR[\fB\-\fR\fIsirevision\fR]
-\&\fB\-msim \-momit\-leaf\-frame\-pointer \-mno\-omit\-leaf\-frame\-pointer
-\&\-mspecld\-anomaly \-mno\-specld\-anomaly \-mcsync\-anomaly \-mno\-csync\-anomaly
-\&\-mlow\-64k \-mno\-low64k \-mstack\-check\-l1 \-mid\-shared\-library
-\&\-mno\-id\-shared\-library \-mshared\-library\-id=\fR\fIn\fR
-\&\fB\-mleaf\-id\-shared\-library \-mno\-leaf\-id\-shared\-library
-\&\-msep\-data \-mno\-sep\-data \-mlong\-calls \-mno\-long\-calls
-\&\-mfast\-fp \-minline\-plt \-mmulticore \-mcorea \-mcoreb \-msdram
-\&\-micplb\fR
-.Sp
-\&\fIC6X Options\fR
-\&\fB\-mbig\-endian \-mlittle\-endian \-march=\fR\fIcpu\fR
-\&\fB\-msim \-msdata=\fR\fIsdata-type\fR
-.Sp
-\&\fI\s-1CRIS\s0 Options\fR
-\&\fB\-mcpu=\fR\fIcpu\fR \fB\-march=\fR\fIcpu\fR \fB\-mtune=\fR\fIcpu\fR
-\&\fB\-mmax\-stack\-frame=\fR\fIn\fR \fB\-melinux\-stacksize=\fR\fIn\fR
-\&\fB\-metrax4 \-metrax100 \-mpdebug \-mcc\-init \-mno\-side\-effects
-\&\-mstack\-align \-mdata\-align \-mconst\-align
-\&\-m32\-bit \-m16\-bit \-m8\-bit \-mno\-prologue\-epilogue \-mno\-gotplt
-\&\-melf \-maout \-melinux \-mlinux \-sim \-sim2
-\&\-mmul\-bug\-workaround \-mno\-mul\-bug\-workaround\fR
-.Sp
-\&\fI\s-1CR16\s0 Options\fR
-\&\fB\-mmac
-\&\-mcr16cplus \-mcr16c
-\&\-msim \-mint32 \-mbit\-ops
-\&\-mdata\-model=\fR\fImodel\fR
-.Sp
-\&\fIDarwin Options\fR
-\&\fB\-all_load \-allowable_client \-arch \-arch_errors_fatal
-\&\-arch_only \-bind_at_load \-bundle \-bundle_loader
-\&\-client_name \-compatibility_version \-current_version
-\&\-dead_strip
-\&\-dependency\-file \-dylib_file \-dylinker_install_name
-\&\-dynamic \-dynamiclib \-exported_symbols_list
-\&\-filelist \-flat_namespace \-force_cpusubtype_ALL
-\&\-force_flat_namespace \-headerpad_max_install_names
-\&\-iframework
-\&\-image_base \-init \-install_name \-keep_private_externs
-\&\-multi_module \-multiply_defined \-multiply_defined_unused
-\&\-noall_load \-no_dead_strip_inits_and_terms
-\&\-nofixprebinding \-nomultidefs \-noprebind \-noseglinkedit
-\&\-pagezero_size \-prebind \-prebind_all_twolevel_modules
-\&\-private_bundle \-read_only_relocs \-sectalign
-\&\-sectobjectsymbols \-whyload \-seg1addr
-\&\-sectcreate \-sectobjectsymbols \-sectorder
-\&\-segaddr \-segs_read_only_addr \-segs_read_write_addr
-\&\-seg_addr_table \-seg_addr_table_filename \-seglinkedit
-\&\-segprot \-segs_read_only_addr \-segs_read_write_addr
-\&\-single_module \-static \-sub_library \-sub_umbrella
-\&\-twolevel_namespace \-umbrella \-undefined
-\&\-unexported_symbols_list \-weak_reference_mismatches
-\&\-whatsloaded \-F \-gused \-gfull \-mmacosx\-version\-min=\fR\fIversion\fR
-\&\fB\-mkernel \-mone\-byte\-bool\fR
-.Sp
-\&\fI\s-1DEC\s0 Alpha Options\fR
-\&\fB\-mno\-fp\-regs \-msoft\-float
-\&\-mieee \-mieee\-with\-inexact \-mieee\-conformant
-\&\-mfp\-trap\-mode=\fR\fImode\fR \fB\-mfp\-rounding\-mode=\fR\fImode\fR
-\&\fB\-mtrap\-precision=\fR\fImode\fR \fB\-mbuild\-constants
-\&\-mcpu=\fR\fIcpu-type\fR \fB\-mtune=\fR\fIcpu-type\fR
-\&\fB\-mbwx \-mmax \-mfix \-mcix
-\&\-mfloat\-vax \-mfloat\-ieee
-\&\-mexplicit\-relocs \-msmall\-data \-mlarge\-data
-\&\-msmall\-text \-mlarge\-text
-\&\-mmemory\-latency=\fR\fItime\fR
-.Sp
-\&\fI\s-1FR30\s0 Options\fR
-\&\fB\-msmall\-model \-mno\-lsim\fR
-.Sp
-\&\fI\s-1FRV\s0 Options\fR
-\&\fB\-mgpr\-32 \-mgpr\-64 \-mfpr\-32 \-mfpr\-64
-\&\-mhard\-float \-msoft\-float
-\&\-malloc\-cc \-mfixed\-cc \-mdword \-mno\-dword
-\&\-mdouble \-mno\-double
-\&\-mmedia \-mno\-media \-mmuladd \-mno\-muladd
-\&\-mfdpic \-minline\-plt \-mgprel\-ro \-multilib\-library\-pic
-\&\-mlinked\-fp \-mlong\-calls \-malign\-labels
-\&\-mlibrary\-pic \-macc\-4 \-macc\-8
-\&\-mpack \-mno\-pack \-mno\-eflags \-mcond\-move \-mno\-cond\-move
-\&\-moptimize\-membar \-mno\-optimize\-membar
-\&\-mscc \-mno\-scc \-mcond\-exec \-mno\-cond\-exec
-\&\-mvliw\-branch \-mno\-vliw\-branch
-\&\-mmulti\-cond\-exec \-mno\-multi\-cond\-exec \-mnested\-cond\-exec
-\&\-mno\-nested\-cond\-exec \-mtomcat\-stats
-\&\-mTLS \-mtls
-\&\-mcpu=\fR\fIcpu\fR
-.Sp
-\&\fIGNU/Linux Options\fR
-\&\fB\-mglibc \-muclibc \-mbionic \-mandroid
-\&\-tno\-android\-cc \-tno\-android\-ld\fR
-.Sp
-\&\fIH8/300 Options\fR
-\&\fB\-mrelax \-mh \-ms \-mn \-mexr \-mno\-exr \-mint32 \-malign\-300\fR
-.Sp
-\&\fI\s-1HPPA\s0 Options\fR
-\&\fB\-march=\fR\fIarchitecture-type\fR
-\&\fB\-mdisable\-fpregs \-mdisable\-indexing
-\&\-mfast\-indirect\-calls \-mgas \-mgnu\-ld \-mhp\-ld
-\&\-mfixed\-range=\fR\fIregister-range\fR
-\&\fB\-mjump\-in\-delay \-mlinker\-opt \-mlong\-calls
-\&\-mlong\-load\-store \-mno\-disable\-fpregs
-\&\-mno\-disable\-indexing \-mno\-fast\-indirect\-calls \-mno\-gas
-\&\-mno\-jump\-in\-delay \-mno\-long\-load\-store
-\&\-mno\-portable\-runtime \-mno\-soft\-float
-\&\-mno\-space\-regs \-msoft\-float \-mpa\-risc\-1\-0
-\&\-mpa\-risc\-1\-1 \-mpa\-risc\-2\-0 \-mportable\-runtime
-\&\-mschedule=\fR\fIcpu-type\fR \fB\-mspace\-regs \-msio \-mwsio
-\&\-munix=\fR\fIunix-std\fR \fB\-nolibdld \-static \-threads\fR
-.Sp
-\&\fIi386 and x86\-64 Options\fR
-\&\fB\-mtune=\fR\fIcpu-type\fR \fB\-march=\fR\fIcpu-type\fR
-\&\fB\-mtune\-ctrl=\fR\fIfeature-list\fR \fB\-mdump\-tune\-features \-mno\-default
-\&\-mfpmath=\fR\fIunit\fR
-\&\fB\-masm=\fR\fIdialect\fR \fB\-mno\-fancy\-math\-387
-\&\-mno\-fp\-ret\-in\-387 \-msoft\-float
-\&\-mno\-wide\-multiply \-mrtd \-malign\-double
-\&\-mpreferred\-stack\-boundary=\fR\fInum\fR
-\&\fB\-mincoming\-stack\-boundary=\fR\fInum\fR
-\&\fB\-mcld \-mcx16 \-msahf \-mmovbe \-mcrc32
-\&\-mrecip \-mrecip=\fR\fIopt\fR
-\&\fB\-mvzeroupper \-mprefer\-avx128
-\&\-mmmx \-msse \-msse2 \-msse3 \-mssse3 \-msse4.1 \-msse4.2 \-msse4 \-mavx
-\&\-mavx2 \-mavx512f \-mavx512pf \-mavx512er \-mavx512cd \-msha
-\&\-maes \-mpclmul \-mfsgsbase \-mrdrnd \-mf16c \-mfma \-mprefetchwt1
-\&\-msse4a \-m3dnow \-mpopcnt \-mabm \-mbmi \-mtbm \-mfma4 \-mxop \-mlzcnt
-\&\-mbmi2 \-mfxsr \-mxsave \-mxsaveopt \-mrtm \-mlwp \-mthreads
-\&\-mno\-align\-stringops \-minline\-all\-stringops
-\&\-minline\-stringops\-dynamically \-mstringop\-strategy=\fR\fIalg\fR
-\&\fB\-mmemcpy\-strategy=\fR\fIstrategy\fR \fB\-mmemset\-strategy=\fR\fIstrategy\fR
-\&\fB\-mpush\-args \-maccumulate\-outgoing\-args \-m128bit\-long\-double
-\&\-m96bit\-long\-double \-mlong\-double\-64 \-mlong\-double\-80 \-mlong\-double\-128
-\&\-mregparm=\fR\fInum\fR \fB\-msseregparm
-\&\-mveclibabi=\fR\fItype\fR \fB\-mvect8\-ret\-in\-mem
-\&\-mpc32 \-mpc64 \-mpc80 \-mstackrealign
-\&\-momit\-leaf\-frame\-pointer \-mno\-red\-zone \-mno\-tls\-direct\-seg\-refs
-\&\-mcmodel=\fR\fIcode-model\fR \fB\-mabi=\fR\fIname\fR \fB\-maddress\-mode=\fR\fImode\fR
-\&\fB\-m32 \-m64 \-mx32 \-m16 \-mlarge\-data\-threshold=\fR\fInum\fR
-\&\fB\-msse2avx \-mfentry \-m8bit\-idiv
-\&\-mavx256\-split\-unaligned\-load \-mavx256\-split\-unaligned\-store
-\&\-mstack\-protector\-guard=\fR\fIguard\fR
-.Sp
-\&\fIi386 and x86\-64 Windows Options\fR
-\&\fB\-mconsole \-mcygwin \-mno\-cygwin \-mdll
-\&\-mnop\-fun\-dllimport \-mthread
-\&\-municode \-mwin32 \-mwindows \-fno\-set\-stack\-executable\fR
-.Sp
-\&\fI\s-1IA\-64\s0 Options\fR
-\&\fB\-mbig\-endian \-mlittle\-endian \-mgnu\-as \-mgnu\-ld \-mno\-pic
-\&\-mvolatile\-asm\-stop \-mregister\-names \-msdata \-mno\-sdata
-\&\-mconstant\-gp \-mauto\-pic \-mfused\-madd
-\&\-minline\-float\-divide\-min\-latency
-\&\-minline\-float\-divide\-max\-throughput
-\&\-mno\-inline\-float\-divide
-\&\-minline\-int\-divide\-min\-latency
-\&\-minline\-int\-divide\-max\-throughput
-\&\-mno\-inline\-int\-divide
-\&\-minline\-sqrt\-min\-latency \-minline\-sqrt\-max\-throughput
-\&\-mno\-inline\-sqrt
-\&\-mdwarf2\-asm \-mearly\-stop\-bits
-\&\-mfixed\-range=\fR\fIregister-range\fR \fB\-mtls\-size=\fR\fItls-size\fR
-\&\fB\-mtune=\fR\fIcpu-type\fR \fB\-milp32 \-mlp64
-\&\-msched\-br\-data\-spec \-msched\-ar\-data\-spec \-msched\-control\-spec
-\&\-msched\-br\-in\-data\-spec \-msched\-ar\-in\-data\-spec \-msched\-in\-control\-spec
-\&\-msched\-spec\-ldc \-msched\-spec\-control\-ldc
-\&\-msched\-prefer\-non\-data\-spec\-insns \-msched\-prefer\-non\-control\-spec\-insns
-\&\-msched\-stop\-bits\-after\-every\-cycle \-msched\-count\-spec\-in\-critical\-path
-\&\-msel\-sched\-dont\-check\-control\-spec \-msched\-fp\-mem\-deps\-zero\-cost
-\&\-msched\-max\-memory\-insns\-hard\-limit \-msched\-max\-memory\-insns=\fR\fImax-insns\fR
-.Sp
-\&\fI\s-1LM32\s0 Options\fR
-\&\fB\-mbarrel\-shift\-enabled \-mdivide\-enabled \-mmultiply\-enabled
-\&\-msign\-extend\-enabled \-muser\-enabled\fR
-.Sp
-\&\fIM32R/D Options\fR
-\&\fB\-m32r2 \-m32rx \-m32r
-\&\-mdebug
-\&\-malign\-loops \-mno\-align\-loops
-\&\-missue\-rate=\fR\fInumber\fR
-\&\fB\-mbranch\-cost=\fR\fInumber\fR
-\&\fB\-mmodel=\fR\fIcode-size-model-type\fR
-\&\fB\-msdata=\fR\fIsdata-type\fR
-\&\fB\-mno\-flush\-func \-mflush\-func=\fR\fIname\fR
-\&\fB\-mno\-flush\-trap \-mflush\-trap=\fR\fInumber\fR
-\&\fB\-G\fR \fInum\fR
-.Sp
-\&\fIM32C Options\fR
-\&\fB\-mcpu=\fR\fIcpu\fR \fB\-msim \-memregs=\fR\fInumber\fR
-.Sp
-\&\fIM680x0 Options\fR
-\&\fB\-march=\fR\fIarch\fR \fB\-mcpu=\fR\fIcpu\fR \fB\-mtune=\fR\fItune\fR
-\&\fB\-m68000 \-m68020 \-m68020\-40 \-m68020\-60 \-m68030 \-m68040
-\&\-m68060 \-mcpu32 \-m5200 \-m5206e \-m528x \-m5307 \-m5407
-\&\-mcfv4e \-mbitfield \-mno\-bitfield \-mc68000 \-mc68020
-\&\-mnobitfield \-mrtd \-mno\-rtd \-mdiv \-mno\-div \-mshort
-\&\-mno\-short \-mhard\-float \-m68881 \-msoft\-float \-mpcrel
-\&\-malign\-int \-mstrict\-align \-msep\-data \-mno\-sep\-data
-\&\-mshared\-library\-id=n \-mid\-shared\-library \-mno\-id\-shared\-library
-\&\-mxgot \-mno\-xgot\fR
-.Sp
-\&\fIMCore Options\fR
-\&\fB\-mhardlit \-mno\-hardlit \-mdiv \-mno\-div \-mrelax\-immediates
-\&\-mno\-relax\-immediates \-mwide\-bitfields \-mno\-wide\-bitfields
-\&\-m4byte\-functions \-mno\-4byte\-functions \-mcallgraph\-data
-\&\-mno\-callgraph\-data \-mslow\-bytes \-mno\-slow\-bytes \-mno\-lsim
-\&\-mlittle\-endian \-mbig\-endian \-m210 \-m340 \-mstack\-increment\fR
-.Sp
-\&\fIMeP Options\fR
-\&\fB\-mabsdiff \-mall\-opts \-maverage \-mbased=\fR\fIn\fR \fB\-mbitops
-\&\-mc=\fR\fIn\fR \fB\-mclip \-mconfig=\fR\fIname\fR \fB\-mcop \-mcop32 \-mcop64 \-mivc2
-\&\-mdc \-mdiv \-meb \-mel \-mio\-volatile \-ml \-mleadz \-mm \-mminmax
-\&\-mmult \-mno\-opts \-mrepeat \-ms \-msatur \-msdram \-msim \-msimnovec \-mtf
-\&\-mtiny=\fR\fIn\fR
-.Sp
-\&\fIMicroBlaze Options\fR
-\&\fB\-msoft\-float \-mhard\-float \-msmall\-divides \-mcpu=\fR\fIcpu\fR
-\&\fB\-mmemcpy \-mxl\-soft\-mul \-mxl\-soft\-div \-mxl\-barrel\-shift
-\&\-mxl\-pattern\-compare \-mxl\-stack\-check \-mxl\-gp\-opt \-mno\-clearbss
-\&\-mxl\-multiply\-high \-mxl\-float\-convert \-mxl\-float\-sqrt
-\&\-mbig\-endian \-mlittle\-endian \-mxl\-reorder \-mxl\-mode\-\fR\fIapp-model\fR
-.Sp
-\&\fI\s-1MIPS\s0 Options\fR
-\&\fB\-EL \-EB \-march=\fR\fIarch\fR \fB\-mtune=\fR\fIarch\fR
-\&\fB\-mips1 \-mips2 \-mips3 \-mips4 \-mips32 \-mips32r2
-\&\-mips64 \-mips64r2
-\&\-mips16 \-mno\-mips16 \-mflip\-mips16
-\&\-minterlink\-compressed \-mno\-interlink\-compressed
-\&\-minterlink\-mips16 \-mno\-interlink\-mips16
-\&\-mabi=\fR\fIabi\fR \fB\-mabicalls \-mno\-abicalls
-\&\-mshared \-mno\-shared \-mplt \-mno\-plt \-mxgot \-mno\-xgot
-\&\-mgp32 \-mgp64 \-mfp32 \-mfp64 \-mhard\-float \-msoft\-float
-\&\-mno\-float \-msingle\-float \-mdouble\-float
-\&\-mabs=\fR\fImode\fR \fB\-mnan=\fR\fIencoding\fR
-\&\fB\-mdsp \-mno\-dsp \-mdspr2 \-mno\-dspr2
-\&\-mmcu \-mmno\-mcu
-\&\-meva \-mno\-eva
-\&\-mvirt \-mno\-virt
-\&\-mmicromips \-mno\-micromips
-\&\-mfpu=\fR\fIfpu-type\fR
-\&\fB\-msmartmips \-mno\-smartmips
-\&\-mpaired\-single \-mno\-paired\-single \-mdmx \-mno\-mdmx
-\&\-mips3d \-mno\-mips3d \-mmt \-mno\-mt \-mllsc \-mno\-llsc
-\&\-mlong64 \-mlong32 \-msym32 \-mno\-sym32
-\&\-G\fR\fInum\fR \fB\-mlocal\-sdata \-mno\-local\-sdata
-\&\-mextern\-sdata \-mno\-extern\-sdata \-mgpopt \-mno\-gopt
-\&\-membedded\-data \-mno\-embedded\-data
-\&\-muninit\-const\-in\-rodata \-mno\-uninit\-const\-in\-rodata
-\&\-mcode\-readable=\fR\fIsetting\fR
-\&\fB\-msplit\-addresses \-mno\-split\-addresses
-\&\-mexplicit\-relocs \-mno\-explicit\-relocs
-\&\-mcheck\-zero\-division \-mno\-check\-zero\-division
-\&\-mdivide\-traps \-mdivide\-breaks
-\&\-mmemcpy \-mno\-memcpy \-mlong\-calls \-mno\-long\-calls
-\&\-mmad \-mno\-mad \-mimadd \-mno\-imadd \-mfused\-madd \-mno\-fused\-madd \-nocpp
-\&\-mfix\-24k \-mno\-fix\-24k
-\&\-mfix\-r4000 \-mno\-fix\-r4000 \-mfix\-r4400 \-mno\-fix\-r4400
-\&\-mfix\-r10000 \-mno\-fix\-r10000 \-mfix\-rm7000 \-mno\-fix\-rm7000
-\&\-mfix\-vr4120 \-mno\-fix\-vr4120
-\&\-mfix\-vr4130 \-mno\-fix\-vr4130 \-mfix\-sb1 \-mno\-fix\-sb1
-\&\-mflush\-func=\fR\fIfunc\fR \fB\-mno\-flush\-func
-\&\-mbranch\-cost=\fR\fInum\fR \fB\-mbranch\-likely \-mno\-branch\-likely
-\&\-mfp\-exceptions \-mno\-fp\-exceptions
-\&\-mvr4130\-align \-mno\-vr4130\-align \-msynci \-mno\-synci
-\&\-mrelax\-pic\-calls \-mno\-relax\-pic\-calls \-mmcount\-ra\-address\fR
-.Sp
-\&\fI\s-1MMIX\s0 Options\fR
-\&\fB\-mlibfuncs \-mno\-libfuncs \-mepsilon \-mno\-epsilon \-mabi=gnu
-\&\-mabi=mmixware \-mzero\-extend \-mknuthdiv \-mtoplevel\-symbols
-\&\-melf \-mbranch\-predict \-mno\-branch\-predict \-mbase\-addresses
-\&\-mno\-base\-addresses \-msingle\-exit \-mno\-single\-exit\fR
-.Sp
-\&\fI\s-1MN10300\s0 Options\fR
-\&\fB\-mmult\-bug \-mno\-mult\-bug
-\&\-mno\-am33 \-mam33 \-mam33\-2 \-mam34
-\&\-mtune=\fR\fIcpu-type\fR
-\&\fB\-mreturn\-pointer\-on\-d0
-\&\-mno\-crt0 \-mrelax \-mliw \-msetlb\fR
-.Sp
-\&\fIMoxie Options\fR
-\&\fB\-meb \-mel \-mno\-crt0\fR
-.Sp
-\&\fI\s-1MSP430\s0 Options\fR
-\&\fB\-msim \-masm\-hex \-mmcu= \-mcpu= \-mlarge \-msmall \-mrelax\fR
-.Sp
-\&\fI\s-1NDS32\s0 Options\fR
-\&\fB\-mbig\-endian \-mlittle\-endian
-\&\-mreduced\-regs \-mfull\-regs
-\&\-mcmov \-mno\-cmov
-\&\-mperf\-ext \-mno\-perf\-ext
-\&\-mv3push \-mno\-v3push
-\&\-m16bit \-mno\-16bit
-\&\-mgp\-direct \-mno\-gp\-direct
-\&\-misr\-vector\-size=\fR\fInum\fR
-\&\fB\-mcache\-block\-size=\fR\fInum\fR
-\&\fB\-march=\fR\fIarch\fR
-\&\fB\-mforce\-fp\-as\-gp \-mforbid\-fp\-as\-gp
-\&\-mex9 \-mctor\-dtor \-mrelax\fR
-.Sp
-\&\fINios \s-1II\s0 Options\fR
-\&\fB\-G\fR \fInum\fR \fB\-mgpopt \-mno\-gpopt \-mel \-meb
-\&\-mno\-bypass\-cache \-mbypass\-cache
-\&\-mno\-cache\-volatile \-mcache\-volatile
-\&\-mno\-fast\-sw\-div \-mfast\-sw\-div
-\&\-mhw\-mul \-mno\-hw\-mul \-mhw\-mulx \-mno\-hw\-mulx \-mno\-hw\-div \-mhw\-div
-\&\-mcustom\-\fR\fIinsn\fR\fB=\fR\fIN\fR \fB\-mno\-custom\-\fR\fIinsn\fR
-\&\fB\-mcustom\-fpu\-cfg=\fR\fIname\fR
-\&\fB\-mhal \-msmallc \-msys\-crt0=\fR\fIname\fR \fB\-msys\-lib=\fR\fIname\fR
-.Sp
-\&\fI\s-1PDP\-11\s0 Options\fR
-\&\fB\-mfpu \-msoft\-float \-mac0 \-mno\-ac0 \-m40 \-m45 \-m10
-\&\-mbcopy \-mbcopy\-builtin \-mint32 \-mno\-int16
-\&\-mint16 \-mno\-int32 \-mfloat32 \-mno\-float64
-\&\-mfloat64 \-mno\-float32 \-mabshi \-mno\-abshi
-\&\-mbranch\-expensive \-mbranch\-cheap
-\&\-munix\-asm \-mdec\-asm\fR
-.Sp
-\&\fIpicoChip Options\fR
-\&\fB\-mae=\fR\fIae_type\fR \fB\-mvliw\-lookahead=\fR\fIN\fR
-\&\fB\-msymbol\-as\-address \-mno\-inefficient\-warnings\fR
-.Sp
-\&\fIPowerPC Options\fR
-See \s-1RS/6000\s0 and PowerPC Options.
-.Sp
-\&\fI\s-1RL78\s0 Options\fR
-\&\fB\-msim \-mmul=none \-mmul=g13 \-mmul=rl78\fR
-.Sp
-\&\fI\s-1RS/6000\s0 and PowerPC Options\fR
-\&\fB\-mcpu=\fR\fIcpu-type\fR
-\&\fB\-mtune=\fR\fIcpu-type\fR
-\&\fB\-mcmodel=\fR\fIcode-model\fR
-\&\fB\-mpowerpc64
-\&\-maltivec \-mno\-altivec
-\&\-mpowerpc\-gpopt \-mno\-powerpc\-gpopt
-\&\-mpowerpc\-gfxopt \-mno\-powerpc\-gfxopt
-\&\-mmfcrf \-mno\-mfcrf \-mpopcntb \-mno\-popcntb \-mpopcntd \-mno\-popcntd
-\&\-mfprnd \-mno\-fprnd
-\&\-mcmpb \-mno\-cmpb \-mmfpgpr \-mno\-mfpgpr \-mhard\-dfp \-mno\-hard\-dfp
-\&\-mfull\-toc \-mminimal\-toc \-mno\-fp\-in\-toc \-mno\-sum\-in\-toc
-\&\-m64 \-m32 \-mxl\-compat \-mno\-xl\-compat \-mpe
-\&\-malign\-power \-malign\-natural
-\&\-msoft\-float \-mhard\-float \-mmultiple \-mno\-multiple
-\&\-msingle\-float \-mdouble\-float \-msimple\-fpu
-\&\-mstring \-mno\-string \-mupdate \-mno\-update
-\&\-mavoid\-indexed\-addresses \-mno\-avoid\-indexed\-addresses
-\&\-mfused\-madd \-mno\-fused\-madd \-mbit\-align \-mno\-bit\-align
-\&\-mstrict\-align \-mno\-strict\-align \-mrelocatable
-\&\-mno\-relocatable \-mrelocatable\-lib \-mno\-relocatable\-lib
-\&\-mtoc \-mno\-toc \-mlittle \-mlittle\-endian \-mbig \-mbig\-endian
-\&\-mdynamic\-no\-pic \-maltivec \-mswdiv \-msingle\-pic\-base
-\&\-mprioritize\-restricted\-insns=\fR\fIpriority\fR
-\&\fB\-msched\-costly\-dep=\fR\fIdependence_type\fR
-\&\fB\-minsert\-sched\-nops=\fR\fIscheme\fR
-\&\fB\-mcall\-sysv \-mcall\-netbsd
-\&\-maix\-struct\-return \-msvr4\-struct\-return
-\&\-mabi=\fR\fIabi-type\fR \fB\-msecure\-plt \-mbss\-plt
-\&\-mblock\-move\-inline\-limit=\fR\fInum\fR
-\&\fB\-misel \-mno\-isel
-\&\-misel=yes \-misel=no
-\&\-mspe \-mno\-spe
-\&\-mspe=yes \-mspe=no
-\&\-mpaired
-\&\-mgen\-cell\-microcode \-mwarn\-cell\-microcode
-\&\-mvrsave \-mno\-vrsave
-\&\-mmulhw \-mno\-mulhw
-\&\-mdlmzb \-mno\-dlmzb
-\&\-mfloat\-gprs=yes \-mfloat\-gprs=no \-mfloat\-gprs=single \-mfloat\-gprs=double
-\&\-mprototype \-mno\-prototype
-\&\-msim \-mmvme \-mads \-myellowknife \-memb \-msdata
-\&\-msdata=\fR\fIopt\fR \fB\-mvxworks \-G\fR \fInum\fR \fB\-pthread
-\&\-mrecip \-mrecip=\fR\fIopt\fR \fB\-mno\-recip \-mrecip\-precision
-\&\-mno\-recip\-precision
-\&\-mveclibabi=\fR\fItype\fR \fB\-mfriz \-mno\-friz
-\&\-mpointers\-to\-nested\-functions \-mno\-pointers\-to\-nested\-functions
-\&\-msave\-toc\-indirect \-mno\-save\-toc\-indirect
-\&\-mpower8\-fusion \-mno\-mpower8\-fusion \-mpower8\-vector \-mno\-power8\-vector
-\&\-mcrypto \-mno\-crypto \-mdirect\-move \-mno\-direct\-move
-\&\-mquad\-memory \-mno\-quad\-memory
-\&\-mquad\-memory\-atomic \-mno\-quad\-memory\-atomic
-\&\-mcompat\-align\-parm \-mno\-compat\-align\-parm\fR
-.Sp
-\&\fI\s-1RX\s0 Options\fR
-\&\fB\-m64bit\-doubles \-m32bit\-doubles \-fpu \-nofpu
-\&\-mcpu=
-\&\-mbig\-endian\-data \-mlittle\-endian\-data
-\&\-msmall\-data
-\&\-msim \-mno\-sim
-\&\-mas100\-syntax \-mno\-as100\-syntax
-\&\-mrelax
-\&\-mmax\-constant\-size=
-\&\-mint\-register=
-\&\-mpid
-\&\-mno\-warn\-multiple\-fast\-interrupts
-\&\-msave\-acc\-in\-interrupts\fR
-.Sp
-\&\fIS/390 and zSeries Options\fR
-\&\fB\-mtune=\fR\fIcpu-type\fR \fB\-march=\fR\fIcpu-type\fR
-\&\fB\-mhard\-float \-msoft\-float \-mhard\-dfp \-mno\-hard\-dfp
-\&\-mlong\-double\-64 \-mlong\-double\-128
-\&\-mbackchain \-mno\-backchain \-mpacked\-stack \-mno\-packed\-stack
-\&\-msmall\-exec \-mno\-small\-exec \-mmvcle \-mno\-mvcle
-\&\-m64 \-m31 \-mdebug \-mno\-debug \-mesa \-mzarch
-\&\-mtpf\-trace \-mno\-tpf\-trace \-mfused\-madd \-mno\-fused\-madd
-\&\-mwarn\-framesize \-mwarn\-dynamicstack \-mstack\-size \-mstack\-guard
-\&\-mhotpatch[=\fR\fIhalfwords\fR\fB] \-mno\-hotpatch\fR
-.Sp
-\&\fIScore Options\fR
-\&\fB\-meb \-mel
-\&\-mnhwloop
-\&\-muls
-\&\-mmac
-\&\-mscore5 \-mscore5u \-mscore7 \-mscore7d\fR
-.Sp
-\&\fI\s-1SH\s0 Options\fR
-\&\fB\-m1 \-m2 \-m2e
-\&\-m2a\-nofpu \-m2a\-single\-only \-m2a\-single \-m2a
-\&\-m3 \-m3e
-\&\-m4\-nofpu \-m4\-single\-only \-m4\-single \-m4
-\&\-m4a\-nofpu \-m4a\-single\-only \-m4a\-single \-m4a \-m4al
-\&\-m5\-64media \-m5\-64media\-nofpu
-\&\-m5\-32media \-m5\-32media\-nofpu
-\&\-m5\-compact \-m5\-compact\-nofpu
-\&\-mb \-ml \-mdalign \-mrelax
-\&\-mbigtable \-mfmovd \-mhitachi \-mrenesas \-mno\-renesas \-mnomacsave
-\&\-mieee \-mno\-ieee \-mbitops \-misize \-minline\-ic_invalidate \-mpadstruct
-\&\-mspace \-mprefergot \-musermode \-multcost=\fR\fInumber\fR \fB\-mdiv=\fR\fIstrategy\fR
-\&\fB\-mdivsi3_libfunc=\fR\fIname\fR \fB\-mfixed\-range=\fR\fIregister-range\fR
-\&\fB\-mindexed\-addressing \-mgettrcost=\fR\fInumber\fR \fB\-mpt\-fixed
-\&\-maccumulate\-outgoing\-args \-minvalid\-symbols
-\&\-matomic\-model=\fR\fIatomic-model\fR
-\&\fB\-mbranch\-cost=\fR\fInum\fR \fB\-mzdcbranch \-mno\-zdcbranch
-\&\-mfused\-madd \-mno\-fused\-madd \-mfsca \-mno\-fsca \-mfsrra \-mno\-fsrra
-\&\-mpretend\-cmove \-mtas\fR
-.Sp
-\&\fISolaris 2 Options\fR
-\&\fB\-mimpure\-text \-mno\-impure\-text
-\&\-pthreads \-pthread\fR
-.Sp
-\&\fI\s-1SPARC\s0 Options\fR
-\&\fB\-mcpu=\fR\fIcpu-type\fR
-\&\fB\-mtune=\fR\fIcpu-type\fR
-\&\fB\-mcmodel=\fR\fIcode-model\fR
-\&\fB\-mmemory\-model=\fR\fImem-model\fR
-\&\fB\-m32 \-m64 \-mapp\-regs \-mno\-app\-regs
-\&\-mfaster\-structs \-mno\-faster\-structs \-mflat \-mno\-flat
-\&\-mfpu \-mno\-fpu \-mhard\-float \-msoft\-float
-\&\-mhard\-quad\-float \-msoft\-quad\-float
-\&\-mstack\-bias \-mno\-stack\-bias
-\&\-munaligned\-doubles \-mno\-unaligned\-doubles
-\&\-mv8plus \-mno\-v8plus \-mvis \-mno\-vis
-\&\-mvis2 \-mno\-vis2 \-mvis3 \-mno\-vis3
-\&\-mcbcond \-mno\-cbcond
-\&\-mfmaf \-mno\-fmaf \-mpopc \-mno\-popc
-\&\-mfix\-at697f \-mfix\-ut699\fR
-.Sp
-\&\fI\s-1SPU\s0 Options\fR
-\&\fB\-mwarn\-reloc \-merror\-reloc
-\&\-msafe\-dma \-munsafe\-dma
-\&\-mbranch\-hints
-\&\-msmall\-mem \-mlarge\-mem \-mstdmain
-\&\-mfixed\-range=\fR\fIregister-range\fR
-\&\fB\-mea32 \-mea64
-\&\-maddress\-space\-conversion \-mno\-address\-space\-conversion
-\&\-mcache\-size=\fR\fIcache-size\fR
-\&\fB\-matomic\-updates \-mno\-atomic\-updates\fR
-.Sp
-\&\fISystem V Options\fR
-\&\fB\-Qy \-Qn \-YP,\fR\fIpaths\fR \fB\-Ym,\fR\fIdir\fR
-.Sp
-\&\fITILE-Gx Options\fR
-\&\fB\-mcpu=CPU \-m32 \-m64 \-mbig\-endian \-mlittle\-endian
-\&\-mcmodel=\fR\fIcode-model\fR
-.Sp
-\&\fITILEPro Options\fR
-\&\fB\-mcpu=\fR\fIcpu\fR \fB\-m32\fR
-.Sp
-\&\fIV850 Options\fR
-\&\fB\-mlong\-calls \-mno\-long\-calls \-mep \-mno\-ep
-\&\-mprolog\-function \-mno\-prolog\-function \-mspace
-\&\-mtda=\fR\fIn\fR \fB\-msda=\fR\fIn\fR \fB\-mzda=\fR\fIn\fR
-\&\fB\-mapp\-regs \-mno\-app\-regs
-\&\-mdisable\-callt \-mno\-disable\-callt
-\&\-mv850e2v3 \-mv850e2 \-mv850e1 \-mv850es
-\&\-mv850e \-mv850 \-mv850e3v5
-\&\-mloop
-\&\-mrelax
-\&\-mlong\-jumps
-\&\-msoft\-float
-\&\-mhard\-float
-\&\-mgcc\-abi
-\&\-mrh850\-abi
-\&\-mbig\-switch\fR
-.Sp
-\&\fI\s-1VAX\s0 Options\fR
-\&\fB\-mg \-mgnu \-munix\fR
-.Sp
-\&\fI\s-1VMS\s0 Options\fR
-\&\fB\-mvms\-return\-codes \-mdebug\-main=\fR\fIprefix\fR \fB\-mmalloc64
-\&\-mpointer\-size=\fR\fIsize\fR
-.Sp
-\&\fIVxWorks Options\fR
-\&\fB\-mrtp \-non\-static \-Bstatic \-Bdynamic
-\&\-Xbind\-lazy \-Xbind\-now\fR
-.Sp
-\&\fIx86\-64 Options\fR
-See i386 and x86\-64 Options.
-.Sp
-\&\fIXstormy16 Options\fR
-\&\fB\-msim\fR
-.Sp
-\&\fIXtensa Options\fR
-\&\fB\-mconst16 \-mno\-const16
-\&\-mfused\-madd \-mno\-fused\-madd
-\&\-mforce\-no\-pic
-\&\-mserialize\-volatile \-mno\-serialize\-volatile
-\&\-mtext\-section\-literals \-mno\-text\-section\-literals
-\&\-mtarget\-align \-mno\-target\-align
-\&\-mlongcalls \-mno\-longcalls\fR
-.Sp
-\&\fIzSeries Options\fR
-See S/390 and zSeries Options.
-.IP "\fICode Generation Options\fR" 4
-.IX Item "Code Generation Options"
-\&\fB\-fcall\-saved\-\fR\fIreg\fR \fB\-fcall\-used\-\fR\fIreg\fR
-\&\fB\-ffixed\-\fR\fIreg\fR \fB\-fexceptions
-\&\-fnon\-call\-exceptions \-fdelete\-dead\-exceptions \-funwind\-tables
-\&\-fasynchronous\-unwind\-tables
-\&\-fno\-gnu\-unique
-\&\-finhibit\-size\-directive \-finstrument\-functions
-\&\-finstrument\-functions\-exclude\-function\-list=\fR\fIsym\fR\fB,\fR\fIsym\fR\fB,...
-\&\-finstrument\-functions\-exclude\-file\-list=\fR\fIfile\fR\fB,\fR\fIfile\fR\fB,...
-\&\-fno\-common \-fno\-ident
-\&\-fpcc\-struct\-return \-fpic \-fPIC \-fpie \-fPIE
-\&\-fno\-jump\-tables
-\&\-frecord\-gcc\-switches
-\&\-freg\-struct\-return \-fshort\-enums
-\&\-fshort\-double \-fshort\-wchar
-\&\-fverbose\-asm \-fpack\-struct[=\fR\fIn\fR\fB] \-fstack\-check
-\&\-fstack\-limit\-register=\fR\fIreg\fR \fB\-fstack\-limit\-symbol=\fR\fIsym\fR
-\&\fB\-fno\-stack\-limit \-fsplit\-stack
-\&\-fleading\-underscore \-ftls\-model=\fR\fImodel\fR
-\&\fB\-fstack\-reuse=\fR\fIreuse_level\fR
-\&\fB\-ftrapv \-fwrapv \-fbounds\-check
-\&\-fvisibility \-fstrict\-volatile\-bitfields \-fsync\-libcalls\fR
-.SS "Options Controlling the Kind of Output"
-.IX Subsection "Options Controlling the Kind of Output"
-Compilation can involve up to four stages: preprocessing, compilation
-proper, assembly and linking, always in that order. \s-1GCC\s0 is capable of
-preprocessing and compiling several files either into several
-assembler input files, or into one assembler input file; then each
-assembler input file produces an object file, and linking combines all
-the object files (those newly compiled, and those specified as input)
-into an executable file.
-.PP
-For any given input file, the file name suffix determines what kind of
-compilation is done:
-.IP "\fIfile\fR\fB.c\fR" 4
-.IX Item "file.c"
-C source code that must be preprocessed.
-.IP "\fIfile\fR\fB.i\fR" 4
-.IX Item "file.i"
-C source code that should not be preprocessed.
-.IP "\fIfile\fR\fB.ii\fR" 4
-.IX Item "file.ii"
-\&\*(C+ source code that should not be preprocessed.
-.IP "\fIfile\fR\fB.m\fR" 4
-.IX Item "file.m"
-Objective-C source code. Note that you must link with the \fIlibobjc\fR
-library to make an Objective-C program work.
-.IP "\fIfile\fR\fB.mi\fR" 4
-.IX Item "file.mi"
-Objective-C source code that should not be preprocessed.
-.IP "\fIfile\fR\fB.mm\fR" 4
-.IX Item "file.mm"
-.PD 0
-.IP "\fIfile\fR\fB.M\fR" 4
-.IX Item "file.M"
-.PD
-Objective\-\*(C+ source code. Note that you must link with the \fIlibobjc\fR
-library to make an Objective\-\*(C+ program work. Note that \fB.M\fR refers
-to a literal capital M.
-.IP "\fIfile\fR\fB.mii\fR" 4
-.IX Item "file.mii"
-Objective\-\*(C+ source code that should not be preprocessed.
-.IP "\fIfile\fR\fB.h\fR" 4
-.IX Item "file.h"
-C, \*(C+, Objective-C or Objective\-\*(C+ header file to be turned into a
-precompiled header (default), or C, \*(C+ header file to be turned into an
-Ada spec (via the \fB\-fdump\-ada\-spec\fR switch).
-.IP "\fIfile\fR\fB.cc\fR" 4
-.IX Item "file.cc"
-.PD 0
-.IP "\fIfile\fR\fB.cp\fR" 4
-.IX Item "file.cp"
-.IP "\fIfile\fR\fB.cxx\fR" 4
-.IX Item "file.cxx"
-.IP "\fIfile\fR\fB.cpp\fR" 4
-.IX Item "file.cpp"
-.IP "\fIfile\fR\fB.CPP\fR" 4
-.IX Item "file.CPP"
-.IP "\fIfile\fR\fB.c++\fR" 4
-.IX Item "file.c++"
-.IP "\fIfile\fR\fB.C\fR" 4
-.IX Item "file.C"
-.PD
-\&\*(C+ source code that must be preprocessed. Note that in \fB.cxx\fR,
-the last two letters must both be literally \fBx\fR. Likewise,
-\&\fB.C\fR refers to a literal capital C.
-.IP "\fIfile\fR\fB.mm\fR" 4
-.IX Item "file.mm"
-.PD 0
-.IP "\fIfile\fR\fB.M\fR" 4
-.IX Item "file.M"
-.PD
-Objective\-\*(C+ source code that must be preprocessed.
-.IP "\fIfile\fR\fB.mii\fR" 4
-.IX Item "file.mii"
-Objective\-\*(C+ source code that should not be preprocessed.
-.IP "\fIfile\fR\fB.hh\fR" 4
-.IX Item "file.hh"
-.PD 0
-.IP "\fIfile\fR\fB.H\fR" 4
-.IX Item "file.H"
-.IP "\fIfile\fR\fB.hp\fR" 4
-.IX Item "file.hp"
-.IP "\fIfile\fR\fB.hxx\fR" 4
-.IX Item "file.hxx"
-.IP "\fIfile\fR\fB.hpp\fR" 4
-.IX Item "file.hpp"
-.IP "\fIfile\fR\fB.HPP\fR" 4
-.IX Item "file.HPP"
-.IP "\fIfile\fR\fB.h++\fR" 4
-.IX Item "file.h++"
-.IP "\fIfile\fR\fB.tcc\fR" 4
-.IX Item "file.tcc"
-.PD
-\&\*(C+ header file to be turned into a precompiled header or Ada spec.
-.IP "\fIfile\fR\fB.f\fR" 4
-.IX Item "file.f"
-.PD 0
-.IP "\fIfile\fR\fB.for\fR" 4
-.IX Item "file.for"
-.IP "\fIfile\fR\fB.ftn\fR" 4
-.IX Item "file.ftn"
-.PD
-Fixed form Fortran source code that should not be preprocessed.
-.IP "\fIfile\fR\fB.F\fR" 4
-.IX Item "file.F"
-.PD 0
-.IP "\fIfile\fR\fB.FOR\fR" 4
-.IX Item "file.FOR"
-.IP "\fIfile\fR\fB.fpp\fR" 4
-.IX Item "file.fpp"
-.IP "\fIfile\fR\fB.FPP\fR" 4
-.IX Item "file.FPP"
-.IP "\fIfile\fR\fB.FTN\fR" 4
-.IX Item "file.FTN"
-.PD
-Fixed form Fortran source code that must be preprocessed (with the traditional
-preprocessor).
-.IP "\fIfile\fR\fB.f90\fR" 4
-.IX Item "file.f90"
-.PD 0
-.IP "\fIfile\fR\fB.f95\fR" 4
-.IX Item "file.f95"
-.IP "\fIfile\fR\fB.f03\fR" 4
-.IX Item "file.f03"
-.IP "\fIfile\fR\fB.f08\fR" 4
-.IX Item "file.f08"
-.PD
-Free form Fortran source code that should not be preprocessed.
-.IP "\fIfile\fR\fB.F90\fR" 4
-.IX Item "file.F90"
-.PD 0
-.IP "\fIfile\fR\fB.F95\fR" 4
-.IX Item "file.F95"
-.IP "\fIfile\fR\fB.F03\fR" 4
-.IX Item "file.F03"
-.IP "\fIfile\fR\fB.F08\fR" 4
-.IX Item "file.F08"
-.PD
-Free form Fortran source code that must be preprocessed (with the
-traditional preprocessor).
-.IP "\fIfile\fR\fB.go\fR" 4
-.IX Item "file.go"
-Go source code.
-.IP "\fIfile\fR\fB.ads\fR" 4
-.IX Item "file.ads"
-Ada source code file that contains a library unit declaration (a
-declaration of a package, subprogram, or generic, or a generic
-instantiation), or a library unit renaming declaration (a package,
-generic, or subprogram renaming declaration). Such files are also
-called \fIspecs\fR.
-.IP "\fIfile\fR\fB.adb\fR" 4
-.IX Item "file.adb"
-Ada source code file containing a library unit body (a subprogram or
-package body). Such files are also called \fIbodies\fR.
-.IP "\fIfile\fR\fB.s\fR" 4
-.IX Item "file.s"
-Assembler code.
-.IP "\fIfile\fR\fB.S\fR" 4
-.IX Item "file.S"
-.PD 0
-.IP "\fIfile\fR\fB.sx\fR" 4
-.IX Item "file.sx"
-.PD
-Assembler code that must be preprocessed.
-.IP "\fIother\fR" 4
-.IX Item "other"
-An object file to be fed straight into linking.
-Any file name with no recognized suffix is treated this way.
-.PP
-You can specify the input language explicitly with the \fB\-x\fR option:
-.IP "\fB\-x\fR \fIlanguage\fR" 4
-.IX Item "-x language"
-Specify explicitly the \fIlanguage\fR for the following input files
-(rather than letting the compiler choose a default based on the file
-name suffix). This option applies to all following input files until
-the next \fB\-x\fR option. Possible values for \fIlanguage\fR are:
-.Sp
-.Vb 9
-\& c c\-header cpp\-output
-\& c++ c++\-header c++\-cpp\-output
-\& objective\-c objective\-c\-header objective\-c\-cpp\-output
-\& objective\-c++ objective\-c++\-header objective\-c++\-cpp\-output
-\& assembler assembler\-with\-cpp
-\& ada
-\& f77 f77\-cpp\-input f95 f95\-cpp\-input
-\& go
-\& java
-.Ve
-.IP "\fB\-x none\fR" 4
-.IX Item "-x none"
-Turn off any specification of a language, so that subsequent files are
-handled according to their file name suffixes (as they are if \fB\-x\fR
-has not been used at all).
-.IP "\fB\-pass\-exit\-codes\fR" 4
-.IX Item "-pass-exit-codes"
-Normally the \fBgcc\fR program exits with the code of 1 if any
-phase of the compiler returns a non-success return code. If you specify
-\&\fB\-pass\-exit\-codes\fR, the \fBgcc\fR program instead returns with
-the numerically highest error produced by any phase returning an error
-indication. The C, \*(C+, and Fortran front ends return 4 if an internal
-compiler error is encountered.
-.PP
-If you only want some of the stages of compilation, you can use
-\&\fB\-x\fR (or filename suffixes) to tell \fBgcc\fR where to start, and
-one of the options \fB\-c\fR, \fB\-S\fR, or \fB\-E\fR to say where
-\&\fBgcc\fR is to stop. Note that some combinations (for example,
-\&\fB\-x cpp-output \-E\fR) instruct \fBgcc\fR to do nothing at all.
-.IP "\fB\-c\fR" 4
-.IX Item "-c"
-Compile or assemble the source files, but do not link. The linking
-stage simply is not done. The ultimate output is in the form of an
-object file for each source file.
-.Sp
-By default, the object file name for a source file is made by replacing
-the suffix \fB.c\fR, \fB.i\fR, \fB.s\fR, etc., with \fB.o\fR.
-.Sp
-Unrecognized input files, not requiring compilation or assembly, are
-ignored.
-.IP "\fB\-S\fR" 4
-.IX Item "-S"
-Stop after the stage of compilation proper; do not assemble. The output
-is in the form of an assembler code file for each non-assembler input
-file specified.
-.Sp
-By default, the assembler file name for a source file is made by
-replacing the suffix \fB.c\fR, \fB.i\fR, etc., with \fB.s\fR.
-.Sp
-Input files that don't require compilation are ignored.
-.IP "\fB\-E\fR" 4
-.IX Item "-E"
-Stop after the preprocessing stage; do not run the compiler proper. The
-output is in the form of preprocessed source code, which is sent to the
-standard output.
-.Sp
-Input files that don't require preprocessing are ignored.
-.IP "\fB\-o\fR \fIfile\fR" 4
-.IX Item "-o file"
-Place output in file \fIfile\fR. This applies to whatever
-sort of output is being produced, whether it be an executable file,
-an object file, an assembler file or preprocessed C code.
-.Sp
-If \fB\-o\fR is not specified, the default is to put an executable
-file in \fIa.out\fR, the object file for
-\&\fI\fIsource\fI.\fIsuffix\fI\fR in \fI\fIsource\fI.o\fR, its
-assembler file in \fI\fIsource\fI.s\fR, a precompiled header file in
-\&\fI\fIsource\fI.\fIsuffix\fI.gch\fR, and all preprocessed C source on
-standard output.
-.IP "\fB\-v\fR" 4
-.IX Item "-v"
-Print (on standard error output) the commands executed to run the stages
-of compilation. Also print the version number of the compiler driver
-program and of the preprocessor and the compiler proper.
-.IP "\fB\-###\fR" 4
-.IX Item "-###"
-Like \fB\-v\fR except the commands are not executed and arguments
-are quoted unless they contain only alphanumeric characters or \f(CW\*(C`./\-_\*(C'\fR.
-This is useful for shell scripts to capture the driver-generated command lines.
-.IP "\fB\-pipe\fR" 4
-.IX Item "-pipe"
-Use pipes rather than temporary files for communication between the
-various stages of compilation. This fails to work on some systems where
-the assembler is unable to read from a pipe; but the \s-1GNU\s0 assembler has
-no trouble.
-.IP "\fB\-\-help\fR" 4
-.IX Item "--help"
-Print (on the standard output) a description of the command-line options
-understood by \fBgcc\fR. If the \fB\-v\fR option is also specified
-then \fB\-\-help\fR is also passed on to the various processes
-invoked by \fBgcc\fR, so that they can display the command-line options
-they accept. If the \fB\-Wextra\fR option has also been specified
-(prior to the \fB\-\-help\fR option), then command-line options that
-have no documentation associated with them are also displayed.
-.IP "\fB\-\-target\-help\fR" 4
-.IX Item "--target-help"
-Print (on the standard output) a description of target-specific command-line
-options for each tool. For some targets extra target-specific
-information may also be printed.
-.IP "\fB\-\-help={\fR\fIclass\fR|[\fB^\fR]\fIqualifier\fR\fB}\fR[\fB,...\fR]" 4
-.IX Item "--help={class|[^]qualifier}[,...]"
-Print (on the standard output) a description of the command-line
-options understood by the compiler that fit into all specified classes
-and qualifiers. These are the supported classes:
-.RS 4
-.IP "\fBoptimizers\fR" 4
-.IX Item "optimizers"
-Display all of the optimization options supported by the
-compiler.
-.IP "\fBwarnings\fR" 4
-.IX Item "warnings"
-Display all of the options controlling warning messages
-produced by the compiler.
-.IP "\fBtarget\fR" 4
-.IX Item "target"
-Display target-specific options. Unlike the
-\&\fB\-\-target\-help\fR option however, target-specific options of the
-linker and assembler are not displayed. This is because those
-tools do not currently support the extended \fB\-\-help=\fR syntax.
-.IP "\fBparams\fR" 4
-.IX Item "params"
-Display the values recognized by the \fB\-\-param\fR
-option.
-.IP "\fIlanguage\fR" 4
-.IX Item "language"
-Display the options supported for \fIlanguage\fR, where
-\&\fIlanguage\fR is the name of one of the languages supported in this
-version of \s-1GCC.\s0
-.IP "\fBcommon\fR" 4
-.IX Item "common"
-Display the options that are common to all languages.
-.RE
-.RS 4
-.Sp
-These are the supported qualifiers:
-.IP "\fBundocumented\fR" 4
-.IX Item "undocumented"
-Display only those options that are undocumented.
-.IP "\fBjoined\fR" 4
-.IX Item "joined"
-Display options taking an argument that appears after an equal
-sign in the same continuous piece of text, such as:
-\&\fB\-\-help=target\fR.
-.IP "\fBseparate\fR" 4
-.IX Item "separate"
-Display options taking an argument that appears as a separate word
-following the original option, such as: \fB\-o output-file\fR.
-.RE
-.RS 4
-.Sp
-Thus for example to display all the undocumented target-specific
-switches supported by the compiler, use:
-.Sp
-.Vb 1
-\& \-\-help=target,undocumented
-.Ve
-.Sp
-The sense of a qualifier can be inverted by prefixing it with the
-\&\fB^\fR character, so for example to display all binary warning
-options (i.e., ones that are either on or off and that do not take an
-argument) that have a description, use:
-.Sp
-.Vb 1
-\& \-\-help=warnings,^joined,^undocumented
-.Ve
-.Sp
-The argument to \fB\-\-help=\fR should not consist solely of inverted
-qualifiers.
-.Sp
-Combining several classes is possible, although this usually
-restricts the output so much that there is nothing to display. One
-case where it does work, however, is when one of the classes is
-\&\fItarget\fR. For example, to display all the target-specific
-optimization options, use:
-.Sp
-.Vb 1
-\& \-\-help=target,optimizers
-.Ve
-.Sp
-The \fB\-\-help=\fR option can be repeated on the command line. Each
-successive use displays its requested class of options, skipping
-those that have already been displayed.
-.Sp
-If the \fB\-Q\fR option appears on the command line before the
-\&\fB\-\-help=\fR option, then the descriptive text displayed by
-\&\fB\-\-help=\fR is changed. Instead of describing the displayed
-options, an indication is given as to whether the option is enabled,
-disabled or set to a specific value (assuming that the compiler
-knows this at the point where the \fB\-\-help=\fR option is used).
-.Sp
-Here is a truncated example from the \s-1ARM\s0 port of \fBgcc\fR:
-.Sp
-.Vb 5
-\& % gcc \-Q \-mabi=2 \-\-help=target \-c
-\& The following options are target specific:
-\& \-mabi= 2
-\& \-mabort\-on\-noreturn [disabled]
-\& \-mapcs [disabled]
-.Ve
-.Sp
-The output is sensitive to the effects of previous command-line
-options, so for example it is possible to find out which optimizations
-are enabled at \fB\-O2\fR by using:
-.Sp
-.Vb 1
-\& \-Q \-O2 \-\-help=optimizers
-.Ve
-.Sp
-Alternatively you can discover which binary optimizations are enabled
-by \fB\-O3\fR by using:
-.Sp
-.Vb 3
-\& gcc \-c \-Q \-O3 \-\-help=optimizers > /tmp/O3\-opts
-\& gcc \-c \-Q \-O2 \-\-help=optimizers > /tmp/O2\-opts
-\& diff /tmp/O2\-opts /tmp/O3\-opts | grep enabled
-.Ve
-.RE
-.IP "\fB\-no\-canonical\-prefixes\fR" 4
-.IX Item "-no-canonical-prefixes"
-Do not expand any symbolic links, resolve references to \fB/../\fR
-or \fB/./\fR, or make the path absolute when generating a relative
-prefix.
-.IP "\fB\-\-version\fR" 4
-.IX Item "--version"
-Display the version number and copyrights of the invoked \s-1GCC.\s0
-.IP "\fB\-wrapper\fR" 4
-.IX Item "-wrapper"
-Invoke all subcommands under a wrapper program. The name of the
-wrapper program and its parameters are passed as a comma separated
-list.
-.Sp
-.Vb 1
-\& gcc \-c t.c \-wrapper gdb,\-\-args
-.Ve
-.Sp
-This invokes all subprograms of \fBgcc\fR under
-\&\fBgdb \-\-args\fR, thus the invocation of \fBcc1\fR is
-\&\fBgdb \-\-args cc1 ...\fR.
-.IP "\fB\-fplugin=\fR\fIname\fR\fB.so\fR" 4
-.IX Item "-fplugin=name.so"
-Load the plugin code in file \fIname\fR.so, assumed to be a
-shared object to be dlopen'd by the compiler. The base name of
-the shared object file is used to identify the plugin for the
-purposes of argument parsing (See
-\&\fB\-fplugin\-arg\-\fR\fIname\fR\fB\-\fR\fIkey\fR\fB=\fR\fIvalue\fR below).
-Each plugin should define the callback functions specified in the
-Plugins \s-1API.\s0
-.IP "\fB\-fplugin\-arg\-\fR\fIname\fR\fB\-\fR\fIkey\fR\fB=\fR\fIvalue\fR" 4
-.IX Item "-fplugin-arg-name-key=value"
-Define an argument called \fIkey\fR with a value of \fIvalue\fR
-for the plugin called \fIname\fR.
-.IP "\fB\-fdump\-ada\-spec\fR[\fB\-slim\fR]" 4
-.IX Item "-fdump-ada-spec[-slim]"
-For C and \*(C+ source and include files, generate corresponding Ada specs.
-.IP "\fB\-fada\-spec\-parent=\fR\fIunit\fR" 4
-.IX Item "-fada-spec-parent=unit"
-In conjunction with \fB\-fdump\-ada\-spec\fR[\fB\-slim\fR] above, generate
-Ada specs as child units of parent \fIunit\fR.
-.IP "\fB\-fdump\-go\-spec=\fR\fIfile\fR" 4
-.IX Item "-fdump-go-spec=file"
-For input files in any language, generate corresponding Go
-declarations in \fIfile\fR. This generates Go \f(CW\*(C`const\*(C'\fR,
-\&\f(CW\*(C`type\*(C'\fR, \f(CW\*(C`var\*(C'\fR, and \f(CW\*(C`func\*(C'\fR declarations which may be a
-useful way to start writing a Go interface to code written in some
-other language.
-.IP "\fB@\fR\fIfile\fR" 4
-.IX Item "@file"
-Read command-line options from \fIfile\fR. The options read are
-inserted in place of the original @\fIfile\fR option. If \fIfile\fR
-does not exist, or cannot be read, then the option will be treated
-literally, and not removed.
-.Sp
-Options in \fIfile\fR are separated by whitespace. A whitespace
-character may be included in an option by surrounding the entire
-option in either single or double quotes. Any character (including a
-backslash) may be included by prefixing the character to be included
-with a backslash. The \fIfile\fR may itself contain additional
-@\fIfile\fR options; any such options will be processed recursively.
-.SS "Compiling \*(C+ Programs"
-.IX Subsection "Compiling Programs"
-\&\*(C+ source files conventionally use one of the suffixes \fB.C\fR,
-\&\fB.cc\fR, \fB.cpp\fR, \fB.CPP\fR, \fB.c++\fR, \fB.cp\fR, or
-\&\fB.cxx\fR; \*(C+ header files often use \fB.hh\fR, \fB.hpp\fR,
-\&\fB.H\fR, or (for shared template code) \fB.tcc\fR; and
-preprocessed \*(C+ files use the suffix \fB.ii\fR. \s-1GCC\s0 recognizes
-files with these names and compiles them as \*(C+ programs even if you
-call the compiler the same way as for compiling C programs (usually
-with the name \fBgcc\fR).
-.PP
-However, the use of \fBgcc\fR does not add the \*(C+ library.
-\&\fBg++\fR is a program that calls \s-1GCC\s0 and automatically specifies linking
-against the \*(C+ library. It treats \fB.c\fR,
-\&\fB.h\fR and \fB.i\fR files as \*(C+ source files instead of C source
-files unless \fB\-x\fR is used. This program is also useful when
-precompiling a C header file with a \fB.h\fR extension for use in \*(C+
-compilations. On many systems, \fBg++\fR is also installed with
-the name \fBc++\fR.
-.PP
-When you compile \*(C+ programs, you may specify many of the same
-command-line options that you use for compiling programs in any
-language; or command-line options meaningful for C and related
-languages; or options that are meaningful only for \*(C+ programs.
-.SS "Options Controlling C Dialect"
-.IX Subsection "Options Controlling C Dialect"
-The following options control the dialect of C (or languages derived
-from C, such as \*(C+, Objective-C and Objective\-\*(C+) that the compiler
-accepts:
-.IP "\fB\-ansi\fR" 4
-.IX Item "-ansi"
-In C mode, this is equivalent to \fB\-std=c90\fR. In \*(C+ mode, it is
-equivalent to \fB\-std=c++98\fR.
-.Sp
-This turns off certain features of \s-1GCC\s0 that are incompatible with \s-1ISO
-C90 \s0(when compiling C code), or of standard \*(C+ (when compiling \*(C+ code),
-such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, and
-predefined macros such as \f(CW\*(C`unix\*(C'\fR and \f(CW\*(C`vax\*(C'\fR that identify the
-type of system you are using. It also enables the undesirable and
-rarely used \s-1ISO\s0 trigraph feature. For the C compiler,
-it disables recognition of \*(C+ style \fB//\fR comments as well as
-the \f(CW\*(C`inline\*(C'\fR keyword.
-.Sp
-The alternate keywords \f(CW\*(C`_\|_asm_\|_\*(C'\fR, \f(CW\*(C`_\|_extension_\|_\*(C'\fR,
-\&\f(CW\*(C`_\|_inline_\|_\*(C'\fR and \f(CW\*(C`_\|_typeof_\|_\*(C'\fR continue to work despite
-\&\fB\-ansi\fR. You would not want to use them in an \s-1ISO C\s0 program, of
-course, but it is useful to put them in header files that might be included
-in compilations done with \fB\-ansi\fR. Alternate predefined macros
-such as \f(CW\*(C`_\|_unix_\|_\*(C'\fR and \f(CW\*(C`_\|_vax_\|_\*(C'\fR are also available, with or
-without \fB\-ansi\fR.
-.Sp
-The \fB\-ansi\fR option does not cause non-ISO programs to be
-rejected gratuitously. For that, \fB\-Wpedantic\fR is required in
-addition to \fB\-ansi\fR.
-.Sp
-The macro \f(CW\*(C`_\|_STRICT_ANSI_\|_\*(C'\fR is predefined when the \fB\-ansi\fR
-option is used. Some header files may notice this macro and refrain
-from declaring certain functions or defining certain macros that the
-\&\s-1ISO\s0 standard doesn't call for; this is to avoid interfering with any
-programs that might use these names for other things.
-.Sp
-Functions that are normally built in but do not have semantics
-defined by \s-1ISO C \s0(such as \f(CW\*(C`alloca\*(C'\fR and \f(CW\*(C`ffs\*(C'\fR) are not built-in
-functions when \fB\-ansi\fR is used.
-.IP "\fB\-std=\fR" 4
-.IX Item "-std="
-Determine the language standard. This option
-is currently only supported when compiling C or \*(C+.
-.Sp
-The compiler can accept several base standards, such as \fBc90\fR or
-\&\fBc++98\fR, and \s-1GNU\s0 dialects of those standards, such as
-\&\fBgnu90\fR or \fBgnu++98\fR. When a base standard is specified, the
-compiler accepts all programs following that standard plus those
-using \s-1GNU\s0 extensions that do not contradict it. For example,
-\&\fB\-std=c90\fR turns off certain features of \s-1GCC\s0 that are
-incompatible with \s-1ISO C90,\s0 such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR
-keywords, but not other \s-1GNU\s0 extensions that do not have a meaning in
-\&\s-1ISO C90,\s0 such as omitting the middle term of a \f(CW\*(C`?:\*(C'\fR
-expression. On the other hand, when a \s-1GNU\s0 dialect of a standard is
-specified, all features supported by the compiler are enabled, even when
-those features change the meaning of the base standard. As a result, some
-strict-conforming programs may be rejected. The particular standard
-is used by \fB\-Wpedantic\fR to identify which features are \s-1GNU\s0
-extensions given that version of the standard. For example
-\&\fB\-std=gnu90 \-Wpedantic\fR warns about \*(C+ style \fB//\fR
-comments, while \fB\-std=gnu99 \-Wpedantic\fR does not.
-.Sp
-A value for this option must be provided; possible values are
-.RS 4
-.IP "\fBc90\fR" 4
-.IX Item "c90"
-.PD 0
-.IP "\fBc89\fR" 4
-.IX Item "c89"
-.IP "\fBiso9899:1990\fR" 4
-.IX Item "iso9899:1990"
-.PD
-Support all \s-1ISO C90\s0 programs (certain \s-1GNU\s0 extensions that conflict
-with \s-1ISO C90\s0 are disabled). Same as \fB\-ansi\fR for C code.
-.IP "\fBiso9899:199409\fR" 4
-.IX Item "iso9899:199409"
-\&\s-1ISO C90\s0 as modified in amendment 1.
-.IP "\fBc99\fR" 4
-.IX Item "c99"
-.PD 0
-.IP "\fBc9x\fR" 4
-.IX Item "c9x"
-.IP "\fBiso9899:1999\fR" 4
-.IX Item "iso9899:1999"
-.IP "\fBiso9899:199x\fR" 4
-.IX Item "iso9899:199x"
-.PD
-\&\s-1ISO C99. \s0 This standard is substantially completely supported, modulo
-bugs, extended identifiers (supported except for corner cases when
-\&\fB\-fextended\-identifiers\fR is used) and floating-point issues
-(mainly but not entirely relating to optional C99 features from
-Annexes F and G). See
-<\fBhttp://gcc.gnu.org/c99status.html\fR> for more information. The
-names \fBc9x\fR and \fBiso9899:199x\fR are deprecated.
-.IP "\fBc11\fR" 4
-.IX Item "c11"
-.PD 0
-.IP "\fBc1x\fR" 4
-.IX Item "c1x"
-.IP "\fBiso9899:2011\fR" 4
-.IX Item "iso9899:2011"
-.PD
-\&\s-1ISO C11,\s0 the 2011 revision of the \s-1ISO C\s0 standard. This standard is
-substantially completely supported, modulo bugs, extended identifiers
-(supported except for corner cases when
-\&\fB\-fextended\-identifiers\fR is used), floating-point issues
-(mainly but not entirely relating to optional C11 features from
-Annexes F and G) and the optional Annexes K (Bounds-checking
-interfaces) and L (Analyzability). The name \fBc1x\fR is deprecated.
-.IP "\fBgnu90\fR" 4
-.IX Item "gnu90"
-.PD 0
-.IP "\fBgnu89\fR" 4
-.IX Item "gnu89"
-.PD
-\&\s-1GNU\s0 dialect of \s-1ISO C90 \s0(including some C99 features). This
-is the default for C code.
-.IP "\fBgnu99\fR" 4
-.IX Item "gnu99"
-.PD 0
-.IP "\fBgnu9x\fR" 4
-.IX Item "gnu9x"
-.PD
-\&\s-1GNU\s0 dialect of \s-1ISO C99. \s0 The name \fBgnu9x\fR is deprecated.
-.IP "\fBgnu11\fR" 4
-.IX Item "gnu11"
-.PD 0
-.IP "\fBgnu1x\fR" 4
-.IX Item "gnu1x"
-.PD
-\&\s-1GNU\s0 dialect of \s-1ISO C11. \s0 This is intended to become the default in a
-future release of \s-1GCC. \s0 The name \fBgnu1x\fR is deprecated.
-.IP "\fBc++98\fR" 4
-.IX Item "c++98"
-.PD 0
-.IP "\fBc++03\fR" 4
-.IX Item "c++03"
-.PD
-The 1998 \s-1ISO \*(C+\s0 standard plus the 2003 technical corrigendum and some
-additional defect reports. Same as \fB\-ansi\fR for \*(C+ code.
-.IP "\fBgnu++98\fR" 4
-.IX Item "gnu++98"
-.PD 0
-.IP "\fBgnu++03\fR" 4
-.IX Item "gnu++03"
-.PD
-\&\s-1GNU\s0 dialect of \fB\-std=c++98\fR. This is the default for
-\&\*(C+ code.
-.IP "\fBc++11\fR" 4
-.IX Item "c++11"
-.PD 0
-.IP "\fBc++0x\fR" 4
-.IX Item "c++0x"
-.PD
-The 2011 \s-1ISO \*(C+\s0 standard plus amendments.
-The name \fBc++0x\fR is deprecated.
-.IP "\fBgnu++11\fR" 4
-.IX Item "gnu++11"
-.PD 0
-.IP "\fBgnu++0x\fR" 4
-.IX Item "gnu++0x"
-.PD
-\&\s-1GNU\s0 dialect of \fB\-std=c++11\fR.
-The name \fBgnu++0x\fR is deprecated.
-.IP "\fBc++1y\fR" 4
-.IX Item "c++1y"
-The next revision of the \s-1ISO \*(C+\s0 standard, tentatively planned for
-2014. Support is highly experimental, and will almost certainly
-change in incompatible ways in future releases.
-.IP "\fBgnu++1y\fR" 4
-.IX Item "gnu++1y"
-\&\s-1GNU\s0 dialect of \fB\-std=c++1y\fR. Support is highly experimental,
-and will almost certainly change in incompatible ways in future
-releases.
-.RE
-.RS 4
-.RE
-.IP "\fB\-fgnu89\-inline\fR" 4
-.IX Item "-fgnu89-inline"
-The option \fB\-fgnu89\-inline\fR tells \s-1GCC\s0 to use the traditional
-\&\s-1GNU\s0 semantics for \f(CW\*(C`inline\*(C'\fR functions when in C99 mode.
- This option
-is accepted and ignored by \s-1GCC\s0 versions 4.1.3 up to but not including
-4.3. In \s-1GCC\s0 versions 4.3 and later it changes the behavior of \s-1GCC\s0 in
-C99 mode. Using this option is roughly equivalent to adding the
-\&\f(CW\*(C`gnu_inline\*(C'\fR function attribute to all inline functions.
-.Sp
-The option \fB\-fno\-gnu89\-inline\fR explicitly tells \s-1GCC\s0 to use the
-C99 semantics for \f(CW\*(C`inline\*(C'\fR when in C99 or gnu99 mode (i.e., it
-specifies the default behavior). This option was first supported in
-\&\s-1GCC 4.3. \s0 This option is not supported in \fB\-std=c90\fR or
-\&\fB\-std=gnu90\fR mode.
-.Sp
-The preprocessor macros \f(CW\*(C`_\|_GNUC_GNU_INLINE_\|_\*(C'\fR and
-\&\f(CW\*(C`_\|_GNUC_STDC_INLINE_\|_\*(C'\fR may be used to check which semantics are
-in effect for \f(CW\*(C`inline\*(C'\fR functions.
-.IP "\fB\-aux\-info\fR \fIfilename\fR" 4
-.IX Item "-aux-info filename"
-Output to the given filename prototyped declarations for all functions
-declared and/or defined in a translation unit, including those in header
-files. This option is silently ignored in any language other than C.
-.Sp
-Besides declarations, the file indicates, in comments, the origin of
-each declaration (source file and line), whether the declaration was
-implicit, prototyped or unprototyped (\fBI\fR, \fBN\fR for new or
-\&\fBO\fR for old, respectively, in the first character after the line
-number and the colon), and whether it came from a declaration or a
-definition (\fBC\fR or \fBF\fR, respectively, in the following
-character). In the case of function definitions, a K&R\-style list of
-arguments followed by their declarations is also provided, inside
-comments, after the declaration.
-.IP "\fB\-fallow\-parameterless\-variadic\-functions\fR" 4
-.IX Item "-fallow-parameterless-variadic-functions"
-Accept variadic functions without named parameters.
-.Sp
-Although it is possible to define such a function, this is not very
-useful as it is not possible to read the arguments. This is only
-supported for C as this construct is allowed by \*(C+.
-.IP "\fB\-fno\-asm\fR" 4
-.IX Item "-fno-asm"
-Do not recognize \f(CW\*(C`asm\*(C'\fR, \f(CW\*(C`inline\*(C'\fR or \f(CW\*(C`typeof\*(C'\fR as a
-keyword, so that code can use these words as identifiers. You can use
-the keywords \f(CW\*(C`_\|_asm_\|_\*(C'\fR, \f(CW\*(C`_\|_inline_\|_\*(C'\fR and \f(CW\*(C`_\|_typeof_\|_\*(C'\fR
-instead. \fB\-ansi\fR implies \fB\-fno\-asm\fR.
-.Sp
-In \*(C+, this switch only affects the \f(CW\*(C`typeof\*(C'\fR keyword, since
-\&\f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`inline\*(C'\fR are standard keywords. You may want to
-use the \fB\-fno\-gnu\-keywords\fR flag instead, which has the same
-effect. In C99 mode (\fB\-std=c99\fR or \fB\-std=gnu99\fR), this
-switch only affects the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, since
-\&\f(CW\*(C`inline\*(C'\fR is a standard keyword in \s-1ISO C99.\s0
-.IP "\fB\-fno\-builtin\fR" 4
-.IX Item "-fno-builtin"
-.PD 0
-.IP "\fB\-fno\-builtin\-\fR\fIfunction\fR" 4
-.IX Item "-fno-builtin-function"
-.PD
-Don't recognize built-in functions that do not begin with
-\&\fB_\|_builtin_\fR as prefix.
-.Sp
-\&\s-1GCC\s0 normally generates special code to handle certain built-in functions
-more efficiently; for instance, calls to \f(CW\*(C`alloca\*(C'\fR may become single
-instructions which adjust the stack directly, and calls to \f(CW\*(C`memcpy\*(C'\fR
-may become inline copy loops. The resulting code is often both smaller
-and faster, but since the function calls no longer appear as such, you
-cannot set a breakpoint on those calls, nor can you change the behavior
-of the functions by linking with a different library. In addition,
-when a function is recognized as a built-in function, \s-1GCC\s0 may use
-information about that function to warn about problems with calls to
-that function, or to generate more efficient code, even if the
-resulting code still contains calls to that function. For example,
-warnings are given with \fB\-Wformat\fR for bad calls to
-\&\f(CW\*(C`printf\*(C'\fR when \f(CW\*(C`printf\*(C'\fR is built in and \f(CW\*(C`strlen\*(C'\fR is
-known not to modify global memory.
-.Sp
-With the \fB\-fno\-builtin\-\fR\fIfunction\fR option
-only the built-in function \fIfunction\fR is
-disabled. \fIfunction\fR must not begin with \fB_\|_builtin_\fR. If a
-function is named that is not built-in in this version of \s-1GCC,\s0 this
-option is ignored. There is no corresponding
-\&\fB\-fbuiltin\-\fR\fIfunction\fR option; if you wish to enable
-built-in functions selectively when using \fB\-fno\-builtin\fR or
-\&\fB\-ffreestanding\fR, you may define macros such as:
-.Sp
-.Vb 2
-\& #define abs(n) _\|_builtin_abs ((n))
-\& #define strcpy(d, s) _\|_builtin_strcpy ((d), (s))
-.Ve
-.IP "\fB\-fhosted\fR" 4
-.IX Item "-fhosted"
-Assert that compilation targets a hosted environment. This implies
-\&\fB\-fbuiltin\fR. A hosted environment is one in which the
-entire standard library is available, and in which \f(CW\*(C`main\*(C'\fR has a return
-type of \f(CW\*(C`int\*(C'\fR. Examples are nearly everything except a kernel.
-This is equivalent to \fB\-fno\-freestanding\fR.
-.IP "\fB\-ffreestanding\fR" 4
-.IX Item "-ffreestanding"
-Assert that compilation targets a freestanding environment. This
-implies \fB\-fno\-builtin\fR. A freestanding environment
-is one in which the standard library may not exist, and program startup may
-not necessarily be at \f(CW\*(C`main\*(C'\fR. The most obvious example is an \s-1OS\s0 kernel.
-This is equivalent to \fB\-fno\-hosted\fR.
-.IP "\fB\-fopenmp\fR" 4
-.IX Item "-fopenmp"
-Enable handling of OpenMP directives \f(CW\*(C`#pragma omp\*(C'\fR in C/\*(C+ and
-\&\f(CW\*(C`!$omp\*(C'\fR in Fortran. When \fB\-fopenmp\fR is specified, the
-compiler generates parallel code according to the OpenMP Application
-Program Interface v4.0 <\fBhttp://www.openmp.org/\fR>. This option
-implies \fB\-pthread\fR, and thus is only supported on targets that
-have support for \fB\-pthread\fR. \fB\-fopenmp\fR implies
-\&\fB\-fopenmp\-simd\fR.
-.IP "\fB\-fopenmp\-simd\fR" 4
-.IX Item "-fopenmp-simd"
-Enable handling of OpenMP's \s-1SIMD\s0 directives with \f(CW\*(C`#pragma omp\*(C'\fR
-in C/\*(C+ and \f(CW\*(C`!$omp\*(C'\fR in Fortran. Other OpenMP directives
-are ignored.
-.IP "\fB\-fcilkplus\fR" 4
-.IX Item "-fcilkplus"
-Enable the usage of Cilk Plus language extension features for C/\*(C+.
-When the option \fB\-fcilkplus\fR is specified, enable the usage of
-the Cilk Plus Language extension features for C/\*(C+. The present
-implementation follows \s-1ABI\s0 version 1.2. This is an experimental
-feature that is only partially complete, and whose interface may
-change in future versions of \s-1GCC\s0 as the official specification
-changes. Currently, all features but \f(CW\*(C`_Cilk_for\*(C'\fR have been
-implemented.
-.IP "\fB\-fgnu\-tm\fR" 4
-.IX Item "-fgnu-tm"
-When the option \fB\-fgnu\-tm\fR is specified, the compiler
-generates code for the Linux variant of Intel's current Transactional
-Memory \s-1ABI\s0 specification document (Revision 1.1, May 6 2009). This is
-an experimental feature whose interface may change in future versions
-of \s-1GCC,\s0 as the official specification changes. Please note that not
-all architectures are supported for this feature.
-.Sp
-For more information on \s-1GCC\s0's support for transactional memory,
-.Sp
-Note that the transactional memory feature is not supported with
-non-call exceptions (\fB\-fnon\-call\-exceptions\fR).
-.IP "\fB\-fms\-extensions\fR" 4
-.IX Item "-fms-extensions"
-Accept some non-standard constructs used in Microsoft header files.
-.Sp
-In \*(C+ code, this allows member names in structures to be similar
-to previous types declarations.
-.Sp
-.Vb 4
-\& typedef int UOW;
-\& struct ABC {
-\& UOW UOW;
-\& };
-.Ve
-.Sp
-Some cases of unnamed fields in structures and unions are only
-accepted with this option.
-.Sp
-Note that this option is off for all targets but i?86 and x86_64
-targets using ms-abi.
-.IP "\fB\-fplan9\-extensions\fR" 4
-.IX Item "-fplan9-extensions"
-Accept some non-standard constructs used in Plan 9 code.
-.Sp
-This enables \fB\-fms\-extensions\fR, permits passing pointers to
-structures with anonymous fields to functions that expect pointers to
-elements of the type of the field, and permits referring to anonymous
-fields declared using a typedef. This is only
-supported for C, not \*(C+.
-.IP "\fB\-trigraphs\fR" 4
-.IX Item "-trigraphs"
-Support \s-1ISO C\s0 trigraphs. The \fB\-ansi\fR option (and \fB\-std\fR
-options for strict \s-1ISO C\s0 conformance) implies \fB\-trigraphs\fR.
-.IP "\fB\-traditional\fR" 4
-.IX Item "-traditional"
-.PD 0
-.IP "\fB\-traditional\-cpp\fR" 4
-.IX Item "-traditional-cpp"
-.PD
-Formerly, these options caused \s-1GCC\s0 to attempt to emulate a pre-standard
-C compiler. They are now only supported with the \fB\-E\fR switch.
-The preprocessor continues to support a pre-standard mode. See the \s-1GNU
-CPP\s0 manual for details.
-.IP "\fB\-fcond\-mismatch\fR" 4
-.IX Item "-fcond-mismatch"
-Allow conditional expressions with mismatched types in the second and
-third arguments. The value of such an expression is void. This option
-is not supported for \*(C+.
-.IP "\fB\-flax\-vector\-conversions\fR" 4
-.IX Item "-flax-vector-conversions"
-Allow implicit conversions between vectors with differing numbers of
-elements and/or incompatible element types. This option should not be
-used for new code.
-.IP "\fB\-funsigned\-char\fR" 4
-.IX Item "-funsigned-char"
-Let the type \f(CW\*(C`char\*(C'\fR be unsigned, like \f(CW\*(C`unsigned char\*(C'\fR.
-.Sp
-Each kind of machine has a default for what \f(CW\*(C`char\*(C'\fR should
-be. It is either like \f(CW\*(C`unsigned char\*(C'\fR by default or like
-\&\f(CW\*(C`signed char\*(C'\fR by default.
-.Sp
-Ideally, a portable program should always use \f(CW\*(C`signed char\*(C'\fR or
-\&\f(CW\*(C`unsigned char\*(C'\fR when it depends on the signedness of an object.
-But many programs have been written to use plain \f(CW\*(C`char\*(C'\fR and
-expect it to be signed, or expect it to be unsigned, depending on the
-machines they were written for. This option, and its inverse, let you
-make such a program work with the opposite default.
-.Sp
-The type \f(CW\*(C`char\*(C'\fR is always a distinct type from each of
-\&\f(CW\*(C`signed char\*(C'\fR or \f(CW\*(C`unsigned char\*(C'\fR, even though its behavior
-is always just like one of those two.
-.IP "\fB\-fsigned\-char\fR" 4
-.IX Item "-fsigned-char"
-Let the type \f(CW\*(C`char\*(C'\fR be signed, like \f(CW\*(C`signed char\*(C'\fR.
-.Sp
-Note that this is equivalent to \fB\-fno\-unsigned\-char\fR, which is
-the negative form of \fB\-funsigned\-char\fR. Likewise, the option
-\&\fB\-fno\-signed\-char\fR is equivalent to \fB\-funsigned\-char\fR.
-.IP "\fB\-fsigned\-bitfields\fR" 4
-.IX Item "-fsigned-bitfields"
-.PD 0
-.IP "\fB\-funsigned\-bitfields\fR" 4
-.IX Item "-funsigned-bitfields"
-.IP "\fB\-fno\-signed\-bitfields\fR" 4
-.IX Item "-fno-signed-bitfields"
-.IP "\fB\-fno\-unsigned\-bitfields\fR" 4
-.IX Item "-fno-unsigned-bitfields"
-.PD
-These options control whether a bit-field is signed or unsigned, when the
-declaration does not use either \f(CW\*(C`signed\*(C'\fR or \f(CW\*(C`unsigned\*(C'\fR. By
-default, such a bit-field is signed, because this is consistent: the
-basic integer types such as \f(CW\*(C`int\*(C'\fR are signed types.
-.SS "Options Controlling \*(C+ Dialect"
-.IX Subsection "Options Controlling Dialect"
-This section describes the command-line options that are only meaningful
-for \*(C+ programs. You can also use most of the \s-1GNU\s0 compiler options
-regardless of what language your program is in. For example, you
-might compile a file \f(CW\*(C`firstClass.C\*(C'\fR like this:
-.PP
-.Vb 1
-\& g++ \-g \-frepo \-O \-c firstClass.C
-.Ve
-.PP
-In this example, only \fB\-frepo\fR is an option meant
-only for \*(C+ programs; you can use the other options with any
-language supported by \s-1GCC.\s0
-.PP
-Here is a list of options that are \fIonly\fR for compiling \*(C+ programs:
-.IP "\fB\-fabi\-version=\fR\fIn\fR" 4
-.IX Item "-fabi-version=n"
-Use version \fIn\fR of the \*(C+ \s-1ABI. \s0 The default is version 2.
-.Sp
-Version 0 refers to the version conforming most closely to
-the \*(C+ \s-1ABI\s0 specification. Therefore, the \s-1ABI\s0 obtained using version 0
-will change in different versions of G++ as \s-1ABI\s0 bugs are fixed.
-.Sp
-Version 1 is the version of the \*(C+ \s-1ABI\s0 that first appeared in G++ 3.2.
-.Sp
-Version 2 is the version of the \*(C+ \s-1ABI\s0 that first appeared in G++ 3.4.
-.Sp
-Version 3 corrects an error in mangling a constant address as a
-template argument.
-.Sp
-Version 4, which first appeared in G++ 4.5, implements a standard
-mangling for vector types.
-.Sp
-Version 5, which first appeared in G++ 4.6, corrects the mangling of
-attribute const/volatile on function pointer types, decltype of a
-plain decl, and use of a function parameter in the declaration of
-another parameter.
-.Sp
-Version 6, which first appeared in G++ 4.7, corrects the promotion
-behavior of \*(C+11 scoped enums and the mangling of template argument
-packs, const/static_cast, prefix ++ and \-\-, and a class scope function
-used as a template argument.
-.Sp
-See also \fB\-Wabi\fR.
-.IP "\fB\-fno\-access\-control\fR" 4
-.IX Item "-fno-access-control"
-Turn off all access checking. This switch is mainly useful for working
-around bugs in the access control code.
-.IP "\fB\-fcheck\-new\fR" 4
-.IX Item "-fcheck-new"
-Check that the pointer returned by \f(CW\*(C`operator new\*(C'\fR is non-null
-before attempting to modify the storage allocated. This check is
-normally unnecessary because the \*(C+ standard specifies that
-\&\f(CW\*(C`operator new\*(C'\fR only returns \f(CW0\fR if it is declared
-\&\fB\f(BIthrow()\fB\fR, in which case the compiler always checks the
-return value even without this option. In all other cases, when
-\&\f(CW\*(C`operator new\*(C'\fR has a non-empty exception specification, memory
-exhaustion is signalled by throwing \f(CW\*(C`std::bad_alloc\*(C'\fR. See also
-\&\fBnew (nothrow)\fR.
-.IP "\fB\-fconstexpr\-depth=\fR\fIn\fR" 4
-.IX Item "-fconstexpr-depth=n"
-Set the maximum nested evaluation depth for \*(C+11 constexpr functions
-to \fIn\fR. A limit is needed to detect endless recursion during
-constant expression evaluation. The minimum specified by the standard
-is 512.
-.IP "\fB\-fdeduce\-init\-list\fR" 4
-.IX Item "-fdeduce-init-list"
-Enable deduction of a template type parameter as
-\&\f(CW\*(C`std::initializer_list\*(C'\fR from a brace-enclosed initializer list, i.e.
-.Sp
-.Vb 4
-\& template <class T> auto forward(T t) \-> decltype (realfn (t))
-\& {
-\& return realfn (t);
-\& }
-\&
-\& void f()
-\& {
-\& forward({1,2}); // call forward<std::initializer_list<int>>
-\& }
-.Ve
-.Sp
-This deduction was implemented as a possible extension to the
-originally proposed semantics for the \*(C+11 standard, but was not part
-of the final standard, so it is disabled by default. This option is
-deprecated, and may be removed in a future version of G++.
-.IP "\fB\-ffriend\-injection\fR" 4
-.IX Item "-ffriend-injection"
-Inject friend functions into the enclosing namespace, so that they are
-visible outside the scope of the class in which they are declared.
-Friend functions were documented to work this way in the old Annotated
-\&\*(C+ Reference Manual, and versions of G++ before 4.1 always worked
-that way. However, in \s-1ISO \*(C+\s0 a friend function that is not declared
-in an enclosing scope can only be found using argument dependent
-lookup. This option causes friends to be injected as they were in
-earlier releases.
-.Sp
-This option is for compatibility, and may be removed in a future
-release of G++.
-.IP "\fB\-fno\-elide\-constructors\fR" 4
-.IX Item "-fno-elide-constructors"
-The \*(C+ standard allows an implementation to omit creating a temporary
-that is only used to initialize another object of the same type.
-Specifying this option disables that optimization, and forces G++ to
-call the copy constructor in all cases.
-.IP "\fB\-fno\-enforce\-eh\-specs\fR" 4
-.IX Item "-fno-enforce-eh-specs"
-Don't generate code to check for violation of exception specifications
-at run time. This option violates the \*(C+ standard, but may be useful
-for reducing code size in production builds, much like defining
-\&\fB\s-1NDEBUG\s0\fR. This does not give user code permission to throw
-exceptions in violation of the exception specifications; the compiler
-still optimizes based on the specifications, so throwing an
-unexpected exception results in undefined behavior at run time.
-.IP "\fB\-fextern\-tls\-init\fR" 4
-.IX Item "-fextern-tls-init"
-.PD 0
-.IP "\fB\-fno\-extern\-tls\-init\fR" 4
-.IX Item "-fno-extern-tls-init"
-.PD
-The \*(C+11 and OpenMP standards allow \fBthread_local\fR and
-\&\fBthreadprivate\fR variables to have dynamic (runtime)
-initialization. To support this, any use of such a variable goes
-through a wrapper function that performs any necessary initialization.
-When the use and definition of the variable are in the same
-translation unit, this overhead can be optimized away, but when the
-use is in a different translation unit there is significant overhead
-even if the variable doesn't actually need dynamic initialization. If
-the programmer can be sure that no use of the variable in a
-non-defining \s-1TU\s0 needs to trigger dynamic initialization (either
-because the variable is statically initialized, or a use of the
-variable in the defining \s-1TU\s0 will be executed before any uses in
-another \s-1TU\s0), they can avoid this overhead with the
-\&\fB\-fno\-extern\-tls\-init\fR option.
-.Sp
-On targets that support symbol aliases, the default is
-\&\fB\-fextern\-tls\-init\fR. On targets that do not support symbol
-aliases, the default is \fB\-fno\-extern\-tls\-init\fR.
-.IP "\fB\-ffor\-scope\fR" 4
-.IX Item "-ffor-scope"
-.PD 0
-.IP "\fB\-fno\-for\-scope\fR" 4
-.IX Item "-fno-for-scope"
-.PD
-If \fB\-ffor\-scope\fR is specified, the scope of variables declared in
-a \fIfor-init-statement\fR is limited to the \fBfor\fR loop itself,
-as specified by the \*(C+ standard.
-If \fB\-fno\-for\-scope\fR is specified, the scope of variables declared in
-a \fIfor-init-statement\fR extends to the end of the enclosing scope,
-as was the case in old versions of G++, and other (traditional)
-implementations of \*(C+.
-.Sp
-If neither flag is given, the default is to follow the standard,
-but to allow and give a warning for old-style code that would
-otherwise be invalid, or have different behavior.
-.IP "\fB\-fno\-gnu\-keywords\fR" 4
-.IX Item "-fno-gnu-keywords"
-Do not recognize \f(CW\*(C`typeof\*(C'\fR as a keyword, so that code can use this
-word as an identifier. You can use the keyword \f(CW\*(C`_\|_typeof_\|_\*(C'\fR instead.
-\&\fB\-ansi\fR implies \fB\-fno\-gnu\-keywords\fR.
-.IP "\fB\-fno\-implicit\-templates\fR" 4
-.IX Item "-fno-implicit-templates"
-Never emit code for non-inline templates that are instantiated
-implicitly (i.e. by use); only emit code for explicit instantiations.
-.IP "\fB\-fno\-implicit\-inline\-templates\fR" 4
-.IX Item "-fno-implicit-inline-templates"
-Don't emit code for implicit instantiations of inline templates, either.
-The default is to handle inlines differently so that compiles with and
-without optimization need the same set of explicit instantiations.
-.IP "\fB\-fno\-implement\-inlines\fR" 4
-.IX Item "-fno-implement-inlines"
-To save space, do not emit out-of-line copies of inline functions
-controlled by \fB#pragma implementation\fR. This causes linker
-errors if these functions are not inlined everywhere they are called.
-.IP "\fB\-fms\-extensions\fR" 4
-.IX Item "-fms-extensions"
-Disable Wpedantic warnings about constructs used in \s-1MFC,\s0 such as implicit
-int and getting a pointer to member function via non-standard syntax.
-.IP "\fB\-fno\-nonansi\-builtins\fR" 4
-.IX Item "-fno-nonansi-builtins"
-Disable built-in declarations of functions that are not mandated by
-\&\s-1ANSI/ISO C. \s0 These include \f(CW\*(C`ffs\*(C'\fR, \f(CW\*(C`alloca\*(C'\fR, \f(CW\*(C`_exit\*(C'\fR,
-\&\f(CW\*(C`index\*(C'\fR, \f(CW\*(C`bzero\*(C'\fR, \f(CW\*(C`conjf\*(C'\fR, and other related functions.
-.IP "\fB\-fnothrow\-opt\fR" 4
-.IX Item "-fnothrow-opt"
-Treat a \f(CW\*(C`throw()\*(C'\fR exception specification as if it were a
-\&\f(CW\*(C`noexcept\*(C'\fR specification to reduce or eliminate the text size
-overhead relative to a function with no exception specification. If
-the function has local variables of types with non-trivial
-destructors, the exception specification actually makes the
-function smaller because the \s-1EH\s0 cleanups for those variables can be
-optimized away. The semantic effect is that an exception thrown out of
-a function with such an exception specification results in a call
-to \f(CW\*(C`terminate\*(C'\fR rather than \f(CW\*(C`unexpected\*(C'\fR.
-.IP "\fB\-fno\-operator\-names\fR" 4
-.IX Item "-fno-operator-names"
-Do not treat the operator name keywords \f(CW\*(C`and\*(C'\fR, \f(CW\*(C`bitand\*(C'\fR,
-\&\f(CW\*(C`bitor\*(C'\fR, \f(CW\*(C`compl\*(C'\fR, \f(CW\*(C`not\*(C'\fR, \f(CW\*(C`or\*(C'\fR and \f(CW\*(C`xor\*(C'\fR as
-synonyms as keywords.
-.IP "\fB\-fno\-optional\-diags\fR" 4
-.IX Item "-fno-optional-diags"
-Disable diagnostics that the standard says a compiler does not need to
-issue. Currently, the only such diagnostic issued by G++ is the one for
-a name having multiple meanings within a class.
-.IP "\fB\-fpermissive\fR" 4
-.IX Item "-fpermissive"
-Downgrade some diagnostics about nonconformant code from errors to
-warnings. Thus, using \fB\-fpermissive\fR allows some
-nonconforming code to compile.
-.IP "\fB\-fno\-pretty\-templates\fR" 4
-.IX Item "-fno-pretty-templates"
-When an error message refers to a specialization of a function
-template, the compiler normally prints the signature of the
-template followed by the template arguments and any typedefs or
-typenames in the signature (e.g. \f(CW\*(C`void f(T) [with T = int]\*(C'\fR
-rather than \f(CW\*(C`void f(int)\*(C'\fR) so that it's clear which template is
-involved. When an error message refers to a specialization of a class
-template, the compiler omits any template arguments that match
-the default template arguments for that template. If either of these
-behaviors make it harder to understand the error message rather than
-easier, you can use \fB\-fno\-pretty\-templates\fR to disable them.
-.IP "\fB\-frepo\fR" 4
-.IX Item "-frepo"
-Enable automatic template instantiation at link time. This option also
-implies \fB\-fno\-implicit\-templates\fR.
-.IP "\fB\-fno\-rtti\fR" 4
-.IX Item "-fno-rtti"
-Disable generation of information about every class with virtual
-functions for use by the \*(C+ run-time type identification features
-(\fBdynamic_cast\fR and \fBtypeid\fR). If you don't use those parts
-of the language, you can save some space by using this flag. Note that
-exception handling uses the same information, but G++ generates it as
-needed. The \fBdynamic_cast\fR operator can still be used for casts that
-do not require run-time type information, i.e. casts to \f(CW\*(C`void *\*(C'\fR or to
-unambiguous base classes.
-.IP "\fB\-fstats\fR" 4
-.IX Item "-fstats"
-Emit statistics about front-end processing at the end of the compilation.
-This information is generally only useful to the G++ development team.
-.IP "\fB\-fstrict\-enums\fR" 4
-.IX Item "-fstrict-enums"
-Allow the compiler to optimize using the assumption that a value of
-enumerated type can only be one of the values of the enumeration (as
-defined in the \*(C+ standard; basically, a value that can be
-represented in the minimum number of bits needed to represent all the
-enumerators). This assumption may not be valid if the program uses a
-cast to convert an arbitrary integer value to the enumerated type.
-.IP "\fB\-ftemplate\-backtrace\-limit=\fR\fIn\fR" 4
-.IX Item "-ftemplate-backtrace-limit=n"
-Set the maximum number of template instantiation notes for a single
-warning or error to \fIn\fR. The default value is 10.
-.IP "\fB\-ftemplate\-depth=\fR\fIn\fR" 4
-.IX Item "-ftemplate-depth=n"
-Set the maximum instantiation depth for template classes to \fIn\fR.
-A limit on the template instantiation depth is needed to detect
-endless recursions during template class instantiation. \s-1ANSI/ISO \*(C+\s0
-conforming programs must not rely on a maximum depth greater than 17
-(changed to 1024 in \*(C+11). The default value is 900, as the compiler
-can run out of stack space before hitting 1024 in some situations.
-.IP "\fB\-fno\-threadsafe\-statics\fR" 4
-.IX Item "-fno-threadsafe-statics"
-Do not emit the extra code to use the routines specified in the \*(C+
-\&\s-1ABI\s0 for thread-safe initialization of local statics. You can use this
-option to reduce code size slightly in code that doesn't need to be
-thread-safe.
-.IP "\fB\-fuse\-cxa\-atexit\fR" 4
-.IX Item "-fuse-cxa-atexit"
-Register destructors for objects with static storage duration with the
-\&\f(CW\*(C`_\|_cxa_atexit\*(C'\fR function rather than the \f(CW\*(C`atexit\*(C'\fR function.
-This option is required for fully standards-compliant handling of static
-destructors, but only works if your C library supports
-\&\f(CW\*(C`_\|_cxa_atexit\*(C'\fR.
-.IP "\fB\-fno\-use\-cxa\-get\-exception\-ptr\fR" 4
-.IX Item "-fno-use-cxa-get-exception-ptr"
-Don't use the \f(CW\*(C`_\|_cxa_get_exception_ptr\*(C'\fR runtime routine. This
-causes \f(CW\*(C`std::uncaught_exception\*(C'\fR to be incorrect, but is necessary
-if the runtime routine is not available.
-.IP "\fB\-fvisibility\-inlines\-hidden\fR" 4
-.IX Item "-fvisibility-inlines-hidden"
-This switch declares that the user does not attempt to compare
-pointers to inline functions or methods where the addresses of the two functions
-are taken in different shared objects.
-.Sp
-The effect of this is that \s-1GCC\s0 may, effectively, mark inline methods with
-\&\f(CW\*(C`_\|_attribute_\|_ ((visibility ("hidden")))\*(C'\fR so that they do not
-appear in the export table of a \s-1DSO\s0 and do not require a \s-1PLT\s0 indirection
-when used within the \s-1DSO. \s0 Enabling this option can have a dramatic effect
-on load and link times of a \s-1DSO\s0 as it massively reduces the size of the
-dynamic export table when the library makes heavy use of templates.
-.Sp
-The behavior of this switch is not quite the same as marking the
-methods as hidden directly, because it does not affect static variables
-local to the function or cause the compiler to deduce that
-the function is defined in only one shared object.
-.Sp
-You may mark a method as having a visibility explicitly to negate the
-effect of the switch for that method. For example, if you do want to
-compare pointers to a particular inline method, you might mark it as
-having default visibility. Marking the enclosing class with explicit
-visibility has no effect.
-.Sp
-Explicitly instantiated inline methods are unaffected by this option
-as their linkage might otherwise cross a shared library boundary.
-.IP "\fB\-fvisibility\-ms\-compat\fR" 4
-.IX Item "-fvisibility-ms-compat"
-This flag attempts to use visibility settings to make \s-1GCC\s0's \*(C+
-linkage model compatible with that of Microsoft Visual Studio.
-.Sp
-The flag makes these changes to \s-1GCC\s0's linkage model:
-.RS 4
-.IP "1." 4
-It sets the default visibility to \f(CW\*(C`hidden\*(C'\fR, like
-\&\fB\-fvisibility=hidden\fR.
-.IP "2." 4
-Types, but not their members, are not hidden by default.
-.IP "3." 4
-The One Definition Rule is relaxed for types without explicit
-visibility specifications that are defined in more than one
-shared object: those declarations are permitted if they are
-permitted when this option is not used.
-.RE
-.RS 4
-.Sp
-In new code it is better to use \fB\-fvisibility=hidden\fR and
-export those classes that are intended to be externally visible.
-Unfortunately it is possible for code to rely, perhaps accidentally,
-on the Visual Studio behavior.
-.Sp
-Among the consequences of these changes are that static data members
-of the same type with the same name but defined in different shared
-objects are different, so changing one does not change the other;
-and that pointers to function members defined in different shared
-objects may not compare equal. When this flag is given, it is a
-violation of the \s-1ODR\s0 to define types with the same name differently.
-.RE
-.IP "\fB\-fvtable\-verify=\fR\fIstd|preinit|none\fR" 4
-.IX Item "-fvtable-verify=std|preinit|none"
-Turn on (or off, if using \fB\-fvtable\-verify=none\fR) the security
-feature that verifies at runtime, for every virtual call that is made, that
-the vtable pointer through which the call is made is valid for the type of
-the object, and has not been corrupted or overwritten. If an invalid vtable
-pointer is detected (at runtime), an error is reported and execution of the
-program is immediately halted.
-.Sp
-This option causes runtime data structures to be built, at program start up,
-for verifying the vtable pointers. The options \f(CW\*(C`std\*(C'\fR and \f(CW\*(C`preinit\*(C'\fR
-control the timing of when these data structures are built. In both cases the
-data structures are built before execution reaches 'main'. The
-\&\fB\-fvtable\-verify=std\fR causes these data structure to be built after the
-shared libraries have been loaded and initialized.
-\&\fB\-fvtable\-verify=preinit\fR causes them to be built before the shared
-libraries have been loaded and initialized.
-.Sp
-If this option appears multiple times in the compiler line, with different
-values specified, 'none' will take highest priority over both 'std' and
-\&'preinit'; 'preinit' will take priority over 'std'.
-.IP "\fB\-fvtv\-debug\fR" 4
-.IX Item "-fvtv-debug"
-Causes debug versions of the runtime functions for the vtable verification
-feature to be called. This assumes the \fB\-fvtable\-verify=std\fR or
-\&\fB\-fvtable\-verify=preinit\fR has been used. This flag will also cause the
-compiler to keep track of which vtable pointers it found for each class, and
-record that information in the file \*(L"vtv_set_ptr_data.log\*(R", in the dump
-file directory on the user's machine.
-.Sp
-Note: This feature \s-1APPENDS\s0 data to the log file. If you want a fresh log
-file, be sure to delete any existing one.
-.IP "\fB\-fvtv\-counts\fR" 4
-.IX Item "-fvtv-counts"
-This is a debugging flag. When used in conjunction with
-\&\fB\-fvtable\-verify=std\fR or \fB\-fvtable\-verify=preinit\fR, this
-causes the compiler to keep track of the total number of virtual calls
-it encountered and the number of verifications it inserted. It also
-counts the number of calls to certain runtime library functions
-that it inserts. This information, for each compilation unit, is written
-to a file named \*(L"vtv_count_data.log\*(R", in the dump_file directory on
-the user's machine. It also counts the size of the vtable pointer sets
-for each class, and writes this information to \*(L"vtv_class_set_sizes.log\*(R"
-in the same directory.
-.Sp
-Note: This feature \s-1APPENDS\s0 data to the log files. To get a fresh log
-files, be sure to delete any existing ones.
-.IP "\fB\-fno\-weak\fR" 4
-.IX Item "-fno-weak"
-Do not use weak symbol support, even if it is provided by the linker.
-By default, G++ uses weak symbols if they are available. This
-option exists only for testing, and should not be used by end-users;
-it results in inferior code and has no benefits. This option may
-be removed in a future release of G++.
-.IP "\fB\-nostdinc++\fR" 4
-.IX Item "-nostdinc++"
-Do not search for header files in the standard directories specific to
-\&\*(C+, but do still search the other standard directories. (This option
-is used when building the \*(C+ library.)
-.PP
-In addition, these optimization, warning, and code generation options
-have meanings only for \*(C+ programs:
-.IP "\fB\-Wabi\fR (C, Objective-C, \*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wabi (C, Objective-C, and Objective- only)"
-Warn when G++ generates code that is probably not compatible with the
-vendor-neutral \*(C+ \s-1ABI. \s0 Although an effort has been made to warn about
-all such cases, there are probably some cases that are not warned about,
-even though G++ is generating incompatible code. There may also be
-cases where warnings are emitted even though the code that is generated
-is compatible.
-.Sp
-You should rewrite your code to avoid these warnings if you are
-concerned about the fact that code generated by G++ may not be binary
-compatible with code generated by other compilers.
-.Sp
-The known incompatibilities in \fB\-fabi\-version=2\fR (the default) include:
-.RS 4
-.IP "\(bu" 4
-A template with a non-type template parameter of reference type is
-mangled incorrectly:
-.Sp
-.Vb 3
-\& extern int N;
-\& template <int &> struct S {};
-\& void n (S<N>) {2}
-.Ve
-.Sp
-This is fixed in \fB\-fabi\-version=3\fR.
-.IP "\(bu" 4
-\&\s-1SIMD\s0 vector types declared using \f(CW\*(C`_\|_attribute ((vector_size))\*(C'\fR are
-mangled in a non-standard way that does not allow for overloading of
-functions taking vectors of different sizes.
-.Sp
-The mangling is changed in \fB\-fabi\-version=4\fR.
-.RE
-.RS 4
-.Sp
-The known incompatibilities in \fB\-fabi\-version=1\fR include:
-.IP "\(bu" 4
-Incorrect handling of tail-padding for bit-fields. G++ may attempt to
-pack data into the same byte as a base class. For example:
-.Sp
-.Vb 2
-\& struct A { virtual void f(); int f1 : 1; };
-\& struct B : public A { int f2 : 1; };
-.Ve
-.Sp
-In this case, G++ places \f(CW\*(C`B::f2\*(C'\fR into the same byte
-as \f(CW\*(C`A::f1\*(C'\fR; other compilers do not. You can avoid this problem
-by explicitly padding \f(CW\*(C`A\*(C'\fR so that its size is a multiple of the
-byte size on your platform; that causes G++ and other compilers to
-lay out \f(CW\*(C`B\*(C'\fR identically.
-.IP "\(bu" 4
-Incorrect handling of tail-padding for virtual bases. G++ does not use
-tail padding when laying out virtual bases. For example:
-.Sp
-.Vb 3
-\& struct A { virtual void f(); char c1; };
-\& struct B { B(); char c2; };
-\& struct C : public A, public virtual B {};
-.Ve
-.Sp
-In this case, G++ does not place \f(CW\*(C`B\*(C'\fR into the tail-padding for
-\&\f(CW\*(C`A\*(C'\fR; other compilers do. You can avoid this problem by
-explicitly padding \f(CW\*(C`A\*(C'\fR so that its size is a multiple of its
-alignment (ignoring virtual base classes); that causes G++ and other
-compilers to lay out \f(CW\*(C`C\*(C'\fR identically.
-.IP "\(bu" 4
-Incorrect handling of bit-fields with declared widths greater than that
-of their underlying types, when the bit-fields appear in a union. For
-example:
-.Sp
-.Vb 1
-\& union U { int i : 4096; };
-.Ve
-.Sp
-Assuming that an \f(CW\*(C`int\*(C'\fR does not have 4096 bits, G++ makes the
-union too small by the number of bits in an \f(CW\*(C`int\*(C'\fR.
-.IP "\(bu" 4
-Empty classes can be placed at incorrect offsets. For example:
-.Sp
-.Vb 1
-\& struct A {};
-\&
-\& struct B {
-\& A a;
-\& virtual void f ();
-\& };
-\&
-\& struct C : public B, public A {};
-.Ve
-.Sp
-G++ places the \f(CW\*(C`A\*(C'\fR base class of \f(CW\*(C`C\*(C'\fR at a nonzero offset;
-it should be placed at offset zero. G++ mistakenly believes that the
-\&\f(CW\*(C`A\*(C'\fR data member of \f(CW\*(C`B\*(C'\fR is already at offset zero.
-.IP "\(bu" 4
-Names of template functions whose types involve \f(CW\*(C`typename\*(C'\fR or
-template template parameters can be mangled incorrectly.
-.Sp
-.Vb 2
-\& template <typename Q>
-\& void f(typename Q::X) {}
-\&
-\& template <template <typename> class Q>
-\& void f(typename Q<int>::X) {}
-.Ve
-.Sp
-Instantiations of these templates may be mangled incorrectly.
-.RE
-.RS 4
-.Sp
-It also warns about psABI-related changes. The known psABI changes at this
-point include:
-.IP "\(bu" 4
-For SysV/x86\-64, unions with \f(CW\*(C`long double\*(C'\fR members are
-passed in memory as specified in psABI. For example:
-.Sp
-.Vb 4
-\& union U {
-\& long double ld;
-\& int i;
-\& };
-.Ve
-.Sp
-\&\f(CW\*(C`union U\*(C'\fR is always passed in memory.
-.RE
-.RS 4
-.RE
-.IP "\fB\-Wctor\-dtor\-privacy\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wctor-dtor-privacy ( and Objective- only)"
-Warn when a class seems unusable because all the constructors or
-destructors in that class are private, and it has neither friends nor
-public static member functions. Also warn if there are no non-private
-methods, and there's at least one private member function that isn't
-a constructor or destructor.
-.IP "\fB\-Wdelete\-non\-virtual\-dtor\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wdelete-non-virtual-dtor ( and Objective- only)"
-Warn when \fBdelete\fR is used to destroy an instance of a class that
-has virtual functions and non-virtual destructor. It is unsafe to delete
-an instance of a derived class through a pointer to a base class if the
-base class does not have a virtual destructor. This warning is enabled
-by \fB\-Wall\fR.
-.IP "\fB\-Wliteral\-suffix\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wliteral-suffix ( and Objective- only)"
-Warn when a string or character literal is followed by a ud-suffix which does
-not begin with an underscore. As a conforming extension, \s-1GCC\s0 treats such
-suffixes as separate preprocessing tokens in order to maintain backwards
-compatibility with code that uses formatting macros from \f(CW\*(C`<inttypes.h>\*(C'\fR.
-For example:
-.Sp
-.Vb 3
-\& #define _\|_STDC_FORMAT_MACROS
-\& #include <inttypes.h>
-\& #include <stdio.h>
-\&
-\& int main() {
-\& int64_t i64 = 123;
-\& printf("My int64: %"PRId64"\en", i64);
-\& }
-.Ve
-.Sp
-In this case, \f(CW\*(C`PRId64\*(C'\fR is treated as a separate preprocessing token.
-.Sp
-This warning is enabled by default.
-.IP "\fB\-Wnarrowing\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wnarrowing ( and Objective- only)"
-Warn when a narrowing conversion prohibited by \*(C+11 occurs within
-\&\fB{ }\fR, e.g.
-.Sp
-.Vb 1
-\& int i = { 2.2 }; // error: narrowing from double to int
-.Ve
-.Sp
-This flag is included in \fB\-Wall\fR and \fB\-Wc++11\-compat\fR.
-.Sp
-With \fB\-std=c++11\fR, \fB\-Wno\-narrowing\fR suppresses the diagnostic
-required by the standard. Note that this does not affect the meaning
-of well-formed code; narrowing conversions are still considered
-ill-formed in \s-1SFINAE\s0 context.
-.IP "\fB\-Wnoexcept\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wnoexcept ( and Objective- only)"
-Warn when a noexcept-expression evaluates to false because of a call
-to a function that does not have a non-throwing exception
-specification (i.e. \fB\f(BIthrow()\fB\fR or \fBnoexcept\fR) but is known by
-the compiler to never throw an exception.
-.IP "\fB\-Wnon\-virtual\-dtor\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wnon-virtual-dtor ( and Objective- only)"
-Warn when a class has virtual functions and an accessible non-virtual
-destructor itself or in an accessible polymorphic base class, in which
-case it is possible but unsafe to delete an instance of a derived
-class through a pointer to the class itself or base class. This
-warning is automatically enabled if \fB\-Weffc++\fR is specified.
-.IP "\fB\-Wreorder\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wreorder ( and Objective- only)"
-Warn when the order of member initializers given in the code does not
-match the order in which they must be executed. For instance:
-.Sp
-.Vb 5
-\& struct A {
-\& int i;
-\& int j;
-\& A(): j (0), i (1) { }
-\& };
-.Ve
-.Sp
-The compiler rearranges the member initializers for \fBi\fR
-and \fBj\fR to match the declaration order of the members, emitting
-a warning to that effect. This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-fext\-numeric\-literals\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-fext-numeric-literals ( and Objective- only)"
-Accept imaginary, fixed-point, or machine-defined
-literal number suffixes as \s-1GNU\s0 extensions.
-When this option is turned off these suffixes are treated
-as \*(C+11 user-defined literal numeric suffixes.
-This is on by default for all pre\-\*(C+11 dialects and all \s-1GNU\s0 dialects:
-\&\fB\-std=c++98\fR, \fB\-std=gnu++98\fR, \fB\-std=gnu++11\fR,
-\&\fB\-std=gnu++1y\fR.
-This option is off by default
-for \s-1ISO \*(C+11\s0 onwards (\fB\-std=c++11\fR, ...).
-.PP
-The following \fB\-W...\fR options are not affected by \fB\-Wall\fR.
-.IP "\fB\-Weffc++\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Weffc++ ( and Objective- only)"
-Warn about violations of the following style guidelines from Scott Meyers'
-\&\fIEffective \*(C+\fR series of books:
-.RS 4
-.IP "\(bu" 4
-Define a copy constructor and an assignment operator for classes
-with dynamically-allocated memory.
-.IP "\(bu" 4
-Prefer initialization to assignment in constructors.
-.IP "\(bu" 4
-Have \f(CW\*(C`operator=\*(C'\fR return a reference to \f(CW*this\fR.
-.IP "\(bu" 4
-Don't try to return a reference when you must return an object.
-.IP "\(bu" 4
-Distinguish between prefix and postfix forms of increment and
-decrement operators.
-.IP "\(bu" 4
-Never overload \f(CW\*(C`&&\*(C'\fR, \f(CW\*(C`||\*(C'\fR, or \f(CW\*(C`,\*(C'\fR.
-.RE
-.RS 4
-.Sp
-This option also enables \fB\-Wnon\-virtual\-dtor\fR, which is also
-one of the effective \*(C+ recommendations. However, the check is
-extended to warn about the lack of virtual destructor in accessible
-non-polymorphic bases classes too.
-.Sp
-When selecting this option, be aware that the standard library
-headers do not obey all of these guidelines; use \fBgrep \-v\fR
-to filter out those warnings.
-.RE
-.IP "\fB\-Wstrict\-null\-sentinel\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wstrict-null-sentinel ( and Objective- only)"
-Warn about the use of an uncasted \f(CW\*(C`NULL\*(C'\fR as sentinel. When
-compiling only with \s-1GCC\s0 this is a valid sentinel, as \f(CW\*(C`NULL\*(C'\fR is defined
-to \f(CW\*(C`_\|_null\*(C'\fR. Although it is a null pointer constant rather than a
-null pointer, it is guaranteed to be of the same size as a pointer.
-But this use is not portable across different compilers.
-.IP "\fB\-Wno\-non\-template\-friend\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wno-non-template-friend ( and Objective- only)"
-Disable warnings when non-templatized friend functions are declared
-within a template. Since the advent of explicit template specification
-support in G++, if the name of the friend is an unqualified-id (i.e.,
-\&\fBfriend foo(int)\fR), the \*(C+ language specification demands that the
-friend declare or define an ordinary, nontemplate function. (Section
-14.5.3). Before G++ implemented explicit specification, unqualified-ids
-could be interpreted as a particular specialization of a templatized
-function. Because this non-conforming behavior is no longer the default
-behavior for G++, \fB\-Wnon\-template\-friend\fR allows the compiler to
-check existing code for potential trouble spots and is on by default.
-This new compiler behavior can be turned off with
-\&\fB\-Wno\-non\-template\-friend\fR, which keeps the conformant compiler code
-but disables the helpful warning.
-.IP "\fB\-Wold\-style\-cast\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wold-style-cast ( and Objective- only)"
-Warn if an old-style (C\-style) cast to a non-void type is used within
-a \*(C+ program. The new-style casts (\fBdynamic_cast\fR,
-\&\fBstatic_cast\fR, \fBreinterpret_cast\fR, and \fBconst_cast\fR) are
-less vulnerable to unintended effects and much easier to search for.
-.IP "\fB\-Woverloaded\-virtual\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Woverloaded-virtual ( and Objective- only)"
-Warn when a function declaration hides virtual functions from a
-base class. For example, in:
-.Sp
-.Vb 3
-\& struct A {
-\& virtual void f();
-\& };
-\&
-\& struct B: public A {
-\& void f(int);
-\& };
-.Ve
-.Sp
-the \f(CW\*(C`A\*(C'\fR class version of \f(CW\*(C`f\*(C'\fR is hidden in \f(CW\*(C`B\*(C'\fR, and code
-like:
-.Sp
-.Vb 2
-\& B* b;
-\& b\->f();
-.Ve
-.Sp
-fails to compile.
-.IP "\fB\-Wno\-pmf\-conversions\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wno-pmf-conversions ( and Objective- only)"
-Disable the diagnostic for converting a bound pointer to member function
-to a plain pointer.
-.IP "\fB\-Wsign\-promo\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wsign-promo ( and Objective- only)"
-Warn when overload resolution chooses a promotion from unsigned or
-enumerated type to a signed type, over a conversion to an unsigned type of
-the same size. Previous versions of G++ tried to preserve
-unsignedness, but the standard mandates the current behavior.
-.SS "Options Controlling Objective-C and Objective\-\*(C+ Dialects"
-.IX Subsection "Options Controlling Objective-C and Objective- Dialects"
-(\s-1NOTE:\s0 This manual does not describe the Objective-C and Objective\-\*(C+
-languages themselves.
-.PP
-This section describes the command-line options that are only meaningful
-for Objective-C and Objective\-\*(C+ programs. You can also use most of
-the language-independent \s-1GNU\s0 compiler options.
-For example, you might compile a file \f(CW\*(C`some_class.m\*(C'\fR like this:
-.PP
-.Vb 1
-\& gcc \-g \-fgnu\-runtime \-O \-c some_class.m
-.Ve
-.PP
-In this example, \fB\-fgnu\-runtime\fR is an option meant only for
-Objective-C and Objective\-\*(C+ programs; you can use the other options with
-any language supported by \s-1GCC.\s0
-.PP
-Note that since Objective-C is an extension of the C language, Objective-C
-compilations may also use options specific to the C front-end (e.g.,
-\&\fB\-Wtraditional\fR). Similarly, Objective\-\*(C+ compilations may use
-\&\*(C+\-specific options (e.g., \fB\-Wabi\fR).
-.PP
-Here is a list of options that are \fIonly\fR for compiling Objective-C
-and Objective\-\*(C+ programs:
-.IP "\fB\-fconstant\-string\-class=\fR\fIclass-name\fR" 4
-.IX Item "-fconstant-string-class=class-name"
-Use \fIclass-name\fR as the name of the class to instantiate for each
-literal string specified with the syntax \f(CW\*(C`@"..."\*(C'\fR. The default
-class name is \f(CW\*(C`NXConstantString\*(C'\fR if the \s-1GNU\s0 runtime is being used, and
-\&\f(CW\*(C`NSConstantString\*(C'\fR if the NeXT runtime is being used (see below). The
-\&\fB\-fconstant\-cfstrings\fR option, if also present, overrides the
-\&\fB\-fconstant\-string\-class\fR setting and cause \f(CW\*(C`@"..."\*(C'\fR literals
-to be laid out as constant CoreFoundation strings.
-.IP "\fB\-fgnu\-runtime\fR" 4
-.IX Item "-fgnu-runtime"
-Generate object code compatible with the standard \s-1GNU\s0 Objective-C
-runtime. This is the default for most types of systems.
-.IP "\fB\-fnext\-runtime\fR" 4
-.IX Item "-fnext-runtime"
-Generate output compatible with the NeXT runtime. This is the default
-for NeXT-based systems, including Darwin and Mac \s-1OS X. \s0 The macro
-\&\f(CW\*(C`_\|_NEXT_RUNTIME_\|_\*(C'\fR is predefined if (and only if) this option is
-used.
-.IP "\fB\-fno\-nil\-receivers\fR" 4
-.IX Item "-fno-nil-receivers"
-Assume that all Objective-C message dispatches (\f(CW\*(C`[receiver
-message:arg]\*(C'\fR) in this translation unit ensure that the receiver is
-not \f(CW\*(C`nil\*(C'\fR. This allows for more efficient entry points in the
-runtime to be used. This option is only available in conjunction with
-the NeXT runtime and \s-1ABI\s0 version 0 or 1.
-.IP "\fB\-fobjc\-abi\-version=\fR\fIn\fR" 4
-.IX Item "-fobjc-abi-version=n"
-Use version \fIn\fR of the Objective-C \s-1ABI\s0 for the selected runtime.
-This option is currently supported only for the NeXT runtime. In that
-case, Version 0 is the traditional (32\-bit) \s-1ABI\s0 without support for
-properties and other Objective-C 2.0 additions. Version 1 is the
-traditional (32\-bit) \s-1ABI\s0 with support for properties and other
-Objective-C 2.0 additions. Version 2 is the modern (64\-bit) \s-1ABI. \s0 If
-nothing is specified, the default is Version 0 on 32\-bit target
-machines, and Version 2 on 64\-bit target machines.
-.IP "\fB\-fobjc\-call\-cxx\-cdtors\fR" 4
-.IX Item "-fobjc-call-cxx-cdtors"
-For each Objective-C class, check if any of its instance variables is a
-\&\*(C+ object with a non-trivial default constructor. If so, synthesize a
-special \f(CW\*(C`\- (id) .cxx_construct\*(C'\fR instance method which runs
-non-trivial default constructors on any such instance variables, in order,
-and then return \f(CW\*(C`self\*(C'\fR. Similarly, check if any instance variable
-is a \*(C+ object with a non-trivial destructor, and if so, synthesize a
-special \f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR method which runs
-all such default destructors, in reverse order.
-.Sp
-The \f(CW\*(C`\- (id) .cxx_construct\*(C'\fR and \f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR
-methods thusly generated only operate on instance variables
-declared in the current Objective-C class, and not those inherited
-from superclasses. It is the responsibility of the Objective-C
-runtime to invoke all such methods in an object's inheritance
-hierarchy. The \f(CW\*(C`\- (id) .cxx_construct\*(C'\fR methods are invoked
-by the runtime immediately after a new object instance is allocated;
-the \f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR methods are invoked immediately
-before the runtime deallocates an object instance.
-.Sp
-As of this writing, only the NeXT runtime on Mac \s-1OS X 10.4\s0 and later has
-support for invoking the \f(CW\*(C`\- (id) .cxx_construct\*(C'\fR and
-\&\f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR methods.
-.IP "\fB\-fobjc\-direct\-dispatch\fR" 4
-.IX Item "-fobjc-direct-dispatch"
-Allow fast jumps to the message dispatcher. On Darwin this is
-accomplished via the comm page.
-.IP "\fB\-fobjc\-exceptions\fR" 4
-.IX Item "-fobjc-exceptions"
-Enable syntactic support for structured exception handling in
-Objective-C, similar to what is offered by \*(C+ and Java. This option
-is required to use the Objective-C keywords \f(CW@try\fR,
-\&\f(CW@throw\fR, \f(CW@catch\fR, \f(CW@finally\fR and
-\&\f(CW@synchronized\fR. This option is available with both the \s-1GNU\s0
-runtime and the NeXT runtime (but not available in conjunction with
-the NeXT runtime on Mac \s-1OS X 10.2\s0 and earlier).
-.IP "\fB\-fobjc\-gc\fR" 4
-.IX Item "-fobjc-gc"
-Enable garbage collection (\s-1GC\s0) in Objective-C and Objective\-\*(C+
-programs. This option is only available with the NeXT runtime; the
-\&\s-1GNU\s0 runtime has a different garbage collection implementation that
-does not require special compiler flags.
-.IP "\fB\-fobjc\-nilcheck\fR" 4
-.IX Item "-fobjc-nilcheck"
-For the NeXT runtime with version 2 of the \s-1ABI,\s0 check for a nil
-receiver in method invocations before doing the actual method call.
-This is the default and can be disabled using
-\&\fB\-fno\-objc\-nilcheck\fR. Class methods and super calls are never
-checked for nil in this way no matter what this flag is set to.
-Currently this flag does nothing when the \s-1GNU\s0 runtime, or an older
-version of the NeXT runtime \s-1ABI,\s0 is used.
-.IP "\fB\-fobjc\-std=objc1\fR" 4
-.IX Item "-fobjc-std=objc1"
-Conform to the language syntax of Objective-C 1.0, the language
-recognized by \s-1GCC 4.0. \s0 This only affects the Objective-C additions to
-the C/\*(C+ language; it does not affect conformance to C/\*(C+ standards,
-which is controlled by the separate C/\*(C+ dialect option flags. When
-this option is used with the Objective-C or Objective\-\*(C+ compiler,
-any Objective-C syntax that is not recognized by \s-1GCC 4.0\s0 is rejected.
-This is useful if you need to make sure that your Objective-C code can
-be compiled with older versions of \s-1GCC.\s0
-.IP "\fB\-freplace\-objc\-classes\fR" 4
-.IX Item "-freplace-objc-classes"
-Emit a special marker instructing \fB\f(BIld\fB\|(1)\fR not to statically link in
-the resulting object file, and allow \fB\f(BIdyld\fB\|(1)\fR to load it in at
-run time instead. This is used in conjunction with the Fix-and-Continue
-debugging mode, where the object file in question may be recompiled and
-dynamically reloaded in the course of program execution, without the need
-to restart the program itself. Currently, Fix-and-Continue functionality
-is only available in conjunction with the NeXT runtime on Mac \s-1OS X 10.3\s0
-and later.
-.IP "\fB\-fzero\-link\fR" 4
-.IX Item "-fzero-link"
-When compiling for the NeXT runtime, the compiler ordinarily replaces calls
-to \f(CW\*(C`objc_getClass("...")\*(C'\fR (when the name of the class is known at
-compile time) with static class references that get initialized at load time,
-which improves run-time performance. Specifying the \fB\-fzero\-link\fR flag
-suppresses this behavior and causes calls to \f(CW\*(C`objc_getClass("...")\*(C'\fR
-to be retained. This is useful in Zero-Link debugging mode, since it allows
-for individual class implementations to be modified during program execution.
-The \s-1GNU\s0 runtime currently always retains calls to \f(CW\*(C`objc_get_class("...")\*(C'\fR
-regardless of command-line options.
-.IP "\fB\-gen\-decls\fR" 4
-.IX Item "-gen-decls"
-Dump interface declarations for all classes seen in the source file to a
-file named \fI\fIsourcename\fI.decl\fR.
-.IP "\fB\-Wassign\-intercept\fR (Objective-C and Objective\-\*(C+ only)" 4
-.IX Item "-Wassign-intercept (Objective-C and Objective- only)"
-Warn whenever an Objective-C assignment is being intercepted by the
-garbage collector.
-.IP "\fB\-Wno\-protocol\fR (Objective-C and Objective\-\*(C+ only)" 4
-.IX Item "-Wno-protocol (Objective-C and Objective- only)"
-If a class is declared to implement a protocol, a warning is issued for
-every method in the protocol that is not implemented by the class. The
-default behavior is to issue a warning for every method not explicitly
-implemented in the class, even if a method implementation is inherited
-from the superclass. If you use the \fB\-Wno\-protocol\fR option, then
-methods inherited from the superclass are considered to be implemented,
-and no warning is issued for them.
-.IP "\fB\-Wselector\fR (Objective-C and Objective\-\*(C+ only)" 4
-.IX Item "-Wselector (Objective-C and Objective- only)"
-Warn if multiple methods of different types for the same selector are
-found during compilation. The check is performed on the list of methods
-in the final stage of compilation. Additionally, a check is performed
-for each selector appearing in a \f(CW\*(C`@selector(...)\*(C'\fR
-expression, and a corresponding method for that selector has been found
-during compilation. Because these checks scan the method table only at
-the end of compilation, these warnings are not produced if the final
-stage of compilation is not reached, for example because an error is
-found during compilation, or because the \fB\-fsyntax\-only\fR option is
-being used.
-.IP "\fB\-Wstrict\-selector\-match\fR (Objective-C and Objective\-\*(C+ only)" 4
-.IX Item "-Wstrict-selector-match (Objective-C and Objective- only)"
-Warn if multiple methods with differing argument and/or return types are
-found for a given selector when attempting to send a message using this
-selector to a receiver of type \f(CW\*(C`id\*(C'\fR or \f(CW\*(C`Class\*(C'\fR. When this flag
-is off (which is the default behavior), the compiler omits such warnings
-if any differences found are confined to types that share the same size
-and alignment.
-.IP "\fB\-Wundeclared\-selector\fR (Objective-C and Objective\-\*(C+ only)" 4
-.IX Item "-Wundeclared-selector (Objective-C and Objective- only)"
-Warn if a \f(CW\*(C`@selector(...)\*(C'\fR expression referring to an
-undeclared selector is found. A selector is considered undeclared if no
-method with that name has been declared before the
-\&\f(CW\*(C`@selector(...)\*(C'\fR expression, either explicitly in an
-\&\f(CW@interface\fR or \f(CW@protocol\fR declaration, or implicitly in
-an \f(CW@implementation\fR section. This option always performs its
-checks as soon as a \f(CW\*(C`@selector(...)\*(C'\fR expression is found,
-while \fB\-Wselector\fR only performs its checks in the final stage of
-compilation. This also enforces the coding style convention
-that methods and selectors must be declared before being used.
-.IP "\fB\-print\-objc\-runtime\-info\fR" 4
-.IX Item "-print-objc-runtime-info"
-Generate C header describing the largest structure that is passed by
-value, if any.
-.SS "Options to Control Diagnostic Messages Formatting"
-.IX Subsection "Options to Control Diagnostic Messages Formatting"
-Traditionally, diagnostic messages have been formatted irrespective of
-the output device's aspect (e.g. its width, ...). You can use the
-options described below
-to control the formatting algorithm for diagnostic messages,
-e.g. how many characters per line, how often source location
-information should be reported. Note that some language front ends may not
-honor these options.
-.IP "\fB\-fmessage\-length=\fR\fIn\fR" 4
-.IX Item "-fmessage-length=n"
-Try to format error messages so that they fit on lines of about \fIn\fR
-characters. The default is 72 characters for \fBg++\fR and 0 for the rest of
-the front ends supported by \s-1GCC. \s0 If \fIn\fR is zero, then no
-line-wrapping is done; each error message appears on a single
-line.
-.IP "\fB\-fdiagnostics\-show\-location=once\fR" 4
-.IX Item "-fdiagnostics-show-location=once"
-Only meaningful in line-wrapping mode. Instructs the diagnostic messages
-reporter to emit source location information \fIonce\fR; that is, in
-case the message is too long to fit on a single physical line and has to
-be wrapped, the source location won't be emitted (as prefix) again,
-over and over, in subsequent continuation lines. This is the default
-behavior.
-.IP "\fB\-fdiagnostics\-show\-location=every\-line\fR" 4
-.IX Item "-fdiagnostics-show-location=every-line"
-Only meaningful in line-wrapping mode. Instructs the diagnostic
-messages reporter to emit the same source location information (as
-prefix) for physical lines that result from the process of breaking
-a message which is too long to fit on a single line.
-.IP "\fB\-fdiagnostics\-color[=\fR\fI\s-1WHEN\s0\fR\fB]\fR" 4
-.IX Item "-fdiagnostics-color[=WHEN]"
-.PD 0
-.IP "\fB\-fno\-diagnostics\-color\fR" 4
-.IX Item "-fno-diagnostics-color"
-.PD
-Use color in diagnostics. \fI\s-1WHEN\s0\fR is \fBnever\fR, \fBalways\fR,
-or \fBauto\fR. The default is \fBnever\fR if \fB\s-1GCC_COLORS\s0\fR environment
-variable isn't present in the environment, and \fBauto\fR otherwise.
-\&\fBauto\fR means to use color only when the standard error is a terminal.
-The forms \fB\-fdiagnostics\-color\fR and \fB\-fno\-diagnostics\-color\fR are
-aliases for \fB\-fdiagnostics\-color=always\fR and
-\&\fB\-fdiagnostics\-color=never\fR, respectively.
-.Sp
-The colors are defined by the environment variable \fB\s-1GCC_COLORS\s0\fR.
-Its value is a colon-separated list of capabilities and Select Graphic
-Rendition (\s-1SGR\s0) substrings. \s-1SGR\s0 commands are interpreted by the
-terminal or terminal emulator. (See the section in the documentation
-of your text terminal for permitted values and their meanings as
-character attributes.) These substring values are integers in decimal
-representation and can be concatenated with semicolons.
-Common values to concatenate include
-\&\fB1\fR for bold,
-\&\fB4\fR for underline,
-\&\fB5\fR for blink,
-\&\fB7\fR for inverse,
-\&\fB39\fR for default foreground color,
-\&\fB30\fR to \fB37\fR for foreground colors,
-\&\fB90\fR to \fB97\fR for 16\-color mode foreground colors,
-\&\fB38;5;0\fR to \fB38;5;255\fR
-for 88\-color and 256\-color modes foreground colors,
-\&\fB49\fR for default background color,
-\&\fB40\fR to \fB47\fR for background colors,
-\&\fB100\fR to \fB107\fR for 16\-color mode background colors,
-and \fB48;5;0\fR to \fB48;5;255\fR
-for 88\-color and 256\-color modes background colors.
-.Sp
-The default \fB\s-1GCC_COLORS\s0\fR is
-\&\fBerror=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01\fR
-where \fB01;31\fR is bold red, \fB01;35\fR is bold magenta,
-\&\fB01;36\fR is bold cyan, \fB01;32\fR is bold green and
-\&\fB01\fR is bold. Setting \fB\s-1GCC_COLORS\s0\fR to the empty
-string disables colors.
-Supported capabilities are as follows.
-.RS 4
-.ie n .IP """error=""" 4
-.el .IP "\f(CWerror=\fR" 4
-.IX Item "error="
-\&\s-1SGR\s0 substring for error: markers.
-.ie n .IP """warning=""" 4
-.el .IP "\f(CWwarning=\fR" 4
-.IX Item "warning="
-\&\s-1SGR\s0 substring for warning: markers.
-.ie n .IP """note=""" 4
-.el .IP "\f(CWnote=\fR" 4
-.IX Item "note="
-\&\s-1SGR\s0 substring for note: markers.
-.ie n .IP """caret=""" 4
-.el .IP "\f(CWcaret=\fR" 4
-.IX Item "caret="
-\&\s-1SGR\s0 substring for caret line.
-.ie n .IP """locus=""" 4
-.el .IP "\f(CWlocus=\fR" 4
-.IX Item "locus="
-\&\s-1SGR\s0 substring for location information, \fBfile:line\fR or
-\&\fBfile:line:column\fR etc.
-.ie n .IP """quote=""" 4
-.el .IP "\f(CWquote=\fR" 4
-.IX Item "quote="
-\&\s-1SGR\s0 substring for information printed within quotes.
-.RE
-.RS 4
-.RE
-.IP "\fB\-fno\-diagnostics\-show\-option\fR" 4
-.IX Item "-fno-diagnostics-show-option"
-By default, each diagnostic emitted includes text indicating the
-command-line option that directly controls the diagnostic (if such an
-option is known to the diagnostic machinery). Specifying the
-\&\fB\-fno\-diagnostics\-show\-option\fR flag suppresses that behavior.
-.IP "\fB\-fno\-diagnostics\-show\-caret\fR" 4
-.IX Item "-fno-diagnostics-show-caret"
-By default, each diagnostic emitted includes the original source line
-and a caret '^' indicating the column. This option suppresses this
-information.
-.SS "Options to Request or Suppress Warnings"
-.IX Subsection "Options to Request or Suppress Warnings"
-Warnings are diagnostic messages that report constructions that
-are not inherently erroneous but that are risky or suggest there
-may have been an error.
-.PP
-The following language-independent options do not enable specific
-warnings but control the kinds of diagnostics produced by \s-1GCC.\s0
-.IP "\fB\-fsyntax\-only\fR" 4
-.IX Item "-fsyntax-only"
-Check the code for syntax errors, but don't do anything beyond that.
-.IP "\fB\-fmax\-errors=\fR\fIn\fR" 4
-.IX Item "-fmax-errors=n"
-Limits the maximum number of error messages to \fIn\fR, at which point
-\&\s-1GCC\s0 bails out rather than attempting to continue processing the source
-code. If \fIn\fR is 0 (the default), there is no limit on the number
-of error messages produced. If \fB\-Wfatal\-errors\fR is also
-specified, then \fB\-Wfatal\-errors\fR takes precedence over this
-option.
-.IP "\fB\-w\fR" 4
-.IX Item "-w"
-Inhibit all warning messages.
-.IP "\fB\-Werror\fR" 4
-.IX Item "-Werror"
-Make all warnings into errors.
-.IP "\fB\-Werror=\fR" 4
-.IX Item "-Werror="
-Make the specified warning into an error. The specifier for a warning
-is appended; for example \fB\-Werror=switch\fR turns the warnings
-controlled by \fB\-Wswitch\fR into errors. This switch takes a
-negative form, to be used to negate \fB\-Werror\fR for specific
-warnings; for example \fB\-Wno\-error=switch\fR makes
-\&\fB\-Wswitch\fR warnings not be errors, even when \fB\-Werror\fR
-is in effect.
-.Sp
-The warning message for each controllable warning includes the
-option that controls the warning. That option can then be used with
-\&\fB\-Werror=\fR and \fB\-Wno\-error=\fR as described above.
-(Printing of the option in the warning message can be disabled using the
-\&\fB\-fno\-diagnostics\-show\-option\fR flag.)
-.Sp
-Note that specifying \fB\-Werror=\fR\fIfoo\fR automatically implies
-\&\fB\-W\fR\fIfoo\fR. However, \fB\-Wno\-error=\fR\fIfoo\fR does not
-imply anything.
-.IP "\fB\-Wfatal\-errors\fR" 4
-.IX Item "-Wfatal-errors"
-This option causes the compiler to abort compilation on the first error
-occurred rather than trying to keep going and printing further error
-messages.
-.PP
-You can request many specific warnings with options beginning with
-\&\fB\-W\fR, for example \fB\-Wimplicit\fR to request warnings on
-implicit declarations. Each of these specific warning options also
-has a negative form beginning \fB\-Wno\-\fR to turn off warnings; for
-example, \fB\-Wno\-implicit\fR. This manual lists only one of the
-two forms, whichever is not the default. For further
-language-specific options also refer to \fB\*(C+ Dialect Options\fR and
-\&\fBObjective-C and Objective\-\*(C+ Dialect Options\fR.
-.PP
-When an unrecognized warning option is requested (e.g.,
-\&\fB\-Wunknown\-warning\fR), \s-1GCC\s0 emits a diagnostic stating
-that the option is not recognized. However, if the \fB\-Wno\-\fR form
-is used, the behavior is slightly different: no diagnostic is
-produced for \fB\-Wno\-unknown\-warning\fR unless other diagnostics
-are being produced. This allows the use of new \fB\-Wno\-\fR options
-with old compilers, but if something goes wrong, the compiler
-warns that an unrecognized option is present.
-.IP "\fB\-Wpedantic\fR" 4
-.IX Item "-Wpedantic"
-.PD 0
-.IP "\fB\-pedantic\fR" 4
-.IX Item "-pedantic"
-.PD
-Issue all the warnings demanded by strict \s-1ISO C\s0 and \s-1ISO \*(C+\s0;
-reject all programs that use forbidden extensions, and some other
-programs that do not follow \s-1ISO C\s0 and \s-1ISO \*(C+. \s0 For \s-1ISO C,\s0 follows the
-version of the \s-1ISO C\s0 standard specified by any \fB\-std\fR option used.
-.Sp
-Valid \s-1ISO C\s0 and \s-1ISO \*(C+\s0 programs should compile properly with or without
-this option (though a rare few require \fB\-ansi\fR or a
-\&\fB\-std\fR option specifying the required version of \s-1ISO C\s0). However,
-without this option, certain \s-1GNU\s0 extensions and traditional C and \*(C+
-features are supported as well. With this option, they are rejected.
-.Sp
-\&\fB\-Wpedantic\fR does not cause warning messages for use of the
-alternate keywords whose names begin and end with \fB_\|_\fR. Pedantic
-warnings are also disabled in the expression that follows
-\&\f(CW\*(C`_\|_extension_\|_\*(C'\fR. However, only system header files should use
-these escape routes; application programs should avoid them.
-.Sp
-Some users try to use \fB\-Wpedantic\fR to check programs for strict \s-1ISO
-C\s0 conformance. They soon find that it does not do quite what they want:
-it finds some non-ISO practices, but not all\-\-\-only those for which
-\&\s-1ISO C \s0\fIrequires\fR a diagnostic, and some others for which
-diagnostics have been added.
-.Sp
-A feature to report any failure to conform to \s-1ISO C\s0 might be useful in
-some instances, but would require considerable additional work and would
-be quite different from \fB\-Wpedantic\fR. We don't have plans to
-support such a feature in the near future.
-.Sp
-Where the standard specified with \fB\-std\fR represents a \s-1GNU\s0
-extended dialect of C, such as \fBgnu90\fR or \fBgnu99\fR, there is a
-corresponding \fIbase standard\fR, the version of \s-1ISO C\s0 on which the \s-1GNU\s0
-extended dialect is based. Warnings from \fB\-Wpedantic\fR are given
-where they are required by the base standard. (It does not make sense
-for such warnings to be given only for features not in the specified \s-1GNU
-C\s0 dialect, since by definition the \s-1GNU\s0 dialects of C include all
-features the compiler supports with the given option, and there would be
-nothing to warn about.)
-.IP "\fB\-pedantic\-errors\fR" 4
-.IX Item "-pedantic-errors"
-Like \fB\-Wpedantic\fR, except that errors are produced rather than
-warnings.
-.IP "\fB\-Wall\fR" 4
-.IX Item "-Wall"
-This enables all the warnings about constructions that some users
-consider questionable, and that are easy to avoid (or modify to
-prevent the warning), even in conjunction with macros. This also
-enables some language-specific warnings described in \fB\*(C+ Dialect
-Options\fR and \fBObjective-C and Objective\-\*(C+ Dialect Options\fR.
-.Sp
-\&\fB\-Wall\fR turns on the following warning flags:
-.Sp
-\&\fB\-Waddress
-\&\-Warray\-bounds\fR (only with\fB \fR\fB\-O2\fR)
-\&\fB\-Wc++11\-compat
-\&\-Wchar\-subscripts
-\&\-Wenum\-compare\fR (in C/ObjC; this is on by default in \*(C+)
-\&\fB\-Wimplicit\-int\fR (C and Objective-C only)
-\&\fB\-Wimplicit\-function\-declaration\fR (C and Objective-C only)
-\&\fB\-Wcomment
-\&\-Wformat
-\&\-Wmain\fR (only for C/ObjC and unless\fB \fR\fB\-ffreestanding\fR)
-\&\fB\-Wmaybe\-uninitialized
-\&\-Wmissing\-braces\fR (only for C/ObjC)
-\&\fB\-Wnonnull
-\&\-Wopenmp\-simd
-\&\-Wparentheses
-\&\-Wpointer\-sign
-\&\-Wreorder
-\&\-Wreturn\-type
-\&\-Wsequence\-point
-\&\-Wsign\-compare\fR (only in \*(C+)
-\&\fB\-Wstrict\-aliasing
-\&\-Wstrict\-overflow=1
-\&\-Wswitch
-\&\-Wtrigraphs
-\&\-Wuninitialized
-\&\-Wunknown\-pragmas
-\&\-Wunused\-function
-\&\-Wunused\-label
-\&\-Wunused\-value
-\&\-Wunused\-variable
-\&\-Wvolatile\-register\-var\fR
-.Sp
-Note that some warning flags are not implied by \fB\-Wall\fR. Some of
-them warn about constructions that users generally do not consider
-questionable, but which occasionally you might wish to check for;
-others warn about constructions that are necessary or hard to avoid in
-some cases, and there is no simple way to modify the code to suppress
-the warning. Some of them are enabled by \fB\-Wextra\fR but many of
-them must be enabled individually.
-.IP "\fB\-Wextra\fR" 4
-.IX Item "-Wextra"
-This enables some extra warning flags that are not enabled by
-\&\fB\-Wall\fR. (This option used to be called \fB\-W\fR. The older
-name is still supported, but the newer name is more descriptive.)
-.Sp
-\&\fB\-Wclobbered
-\&\-Wempty\-body
-\&\-Wignored\-qualifiers
-\&\-Wmissing\-field\-initializers
-\&\-Wmissing\-parameter\-type\fR (C only)
-\&\fB\-Wold\-style\-declaration\fR (C only)
-\&\fB\-Woverride\-init
-\&\-Wsign\-compare
-\&\-Wtype\-limits
-\&\-Wuninitialized
-\&\-Wunused\-parameter\fR (only with\fB \fR\fB\-Wunused\fR\fB \fRor\fB \fR\fB\-Wall\fR)
-\&\fB\-Wunused\-but\-set\-parameter\fR (only with\fB \fR\fB\-Wunused\fR\fB \fRor\fB \fR\fB\-Wall\fR) \fB \fR
-.Sp
-The option \fB\-Wextra\fR also prints warning messages for the
-following cases:
-.RS 4
-.IP "\(bu" 4
-A pointer is compared against integer zero with \fB<\fR, \fB<=\fR,
-\&\fB>\fR, or \fB>=\fR.
-.IP "\(bu" 4
-(\*(C+ only) An enumerator and a non-enumerator both appear in a
-conditional expression.
-.IP "\(bu" 4
-(\*(C+ only) Ambiguous virtual bases.
-.IP "\(bu" 4
-(\*(C+ only) Subscripting an array that has been declared \fBregister\fR.
-.IP "\(bu" 4
-(\*(C+ only) Taking the address of a variable that has been declared
-\&\fBregister\fR.
-.IP "\(bu" 4
-(\*(C+ only) A base class is not initialized in a derived class's copy
-constructor.
-.RE
-.RS 4
-.RE
-.IP "\fB\-Wchar\-subscripts\fR" 4
-.IX Item "-Wchar-subscripts"
-Warn if an array subscript has type \f(CW\*(C`char\*(C'\fR. This is a common cause
-of error, as programmers often forget that this type is signed on some
-machines.
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wcomment\fR" 4
-.IX Item "-Wcomment"
-Warn whenever a comment-start sequence \fB/*\fR appears in a \fB/*\fR
-comment, or whenever a Backslash-Newline appears in a \fB//\fR comment.
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wno\-coverage\-mismatch\fR" 4
-.IX Item "-Wno-coverage-mismatch"
-Warn if feedback profiles do not match when using the
-\&\fB\-fprofile\-use\fR option.
-If a source file is changed between compiling with \fB\-fprofile\-gen\fR and
-with \fB\-fprofile\-use\fR, the files with the profile feedback can fail
-to match the source file and \s-1GCC\s0 cannot use the profile feedback
-information. By default, this warning is enabled and is treated as an
-error. \fB\-Wno\-coverage\-mismatch\fR can be used to disable the
-warning or \fB\-Wno\-error=coverage\-mismatch\fR can be used to
-disable the error. Disabling the error for this warning can result in
-poorly optimized code and is useful only in the
-case of very minor changes such as bug fixes to an existing code-base.
-Completely disabling the warning is not recommended.
-.IP "\fB\-Wno\-cpp\fR" 4
-.IX Item "-Wno-cpp"
-(C, Objective-C, \*(C+, Objective\-\*(C+ and Fortran only)
-.Sp
-Suppress warning messages emitted by \f(CW\*(C`#warning\*(C'\fR directives.
-.IP "\fB\-Wdouble\-promotion\fR (C, \*(C+, Objective-C and Objective\-\*(C+ only)" 4
-.IX Item "-Wdouble-promotion (C, , Objective-C and Objective- only)"
-Give a warning when a value of type \f(CW\*(C`float\*(C'\fR is implicitly
-promoted to \f(CW\*(C`double\*(C'\fR. CPUs with a 32\-bit \*(L"single-precision\*(R"
-floating-point unit implement \f(CW\*(C`float\*(C'\fR in hardware, but emulate
-\&\f(CW\*(C`double\*(C'\fR in software. On such a machine, doing computations
-using \f(CW\*(C`double\*(C'\fR values is much more expensive because of the
-overhead required for software emulation.
-.Sp
-It is easy to accidentally do computations with \f(CW\*(C`double\*(C'\fR because
-floating-point literals are implicitly of type \f(CW\*(C`double\*(C'\fR. For
-example, in:
-.Sp
-.Vb 4
-\& float area(float radius)
-\& {
-\& return 3.14159 * radius * radius;
-\& }
-.Ve
-.Sp
-the compiler performs the entire computation with \f(CW\*(C`double\*(C'\fR
-because the floating-point literal is a \f(CW\*(C`double\*(C'\fR.
-.IP "\fB\-Wformat\fR" 4
-.IX Item "-Wformat"
-.PD 0
-.IP "\fB\-Wformat=\fR\fIn\fR" 4
-.IX Item "-Wformat=n"
-.PD
-Check calls to \f(CW\*(C`printf\*(C'\fR and \f(CW\*(C`scanf\*(C'\fR, etc., to make sure that
-the arguments supplied have types appropriate to the format string
-specified, and that the conversions specified in the format string make
-sense. This includes standard functions, and others specified by format
-attributes, in the \f(CW\*(C`printf\*(C'\fR,
-\&\f(CW\*(C`scanf\*(C'\fR, \f(CW\*(C`strftime\*(C'\fR and \f(CW\*(C`strfmon\*(C'\fR (an X/Open extension,
-not in the C standard) families (or other target-specific families).
-Which functions are checked without format attributes having been
-specified depends on the standard version selected, and such checks of
-functions without the attribute specified are disabled by
-\&\fB\-ffreestanding\fR or \fB\-fno\-builtin\fR.
-.Sp
-The formats are checked against the format features supported by \s-1GNU\s0
-libc version 2.2. These include all \s-1ISO C90\s0 and C99 features, as well
-as features from the Single Unix Specification and some \s-1BSD\s0 and \s-1GNU\s0
-extensions. Other library implementations may not support all these
-features; \s-1GCC\s0 does not support warning about features that go beyond a
-particular library's limitations. However, if \fB\-Wpedantic\fR is used
-with \fB\-Wformat\fR, warnings are given about format features not
-in the selected standard version (but not for \f(CW\*(C`strfmon\*(C'\fR formats,
-since those are not in any version of the C standard).
-.RS 4
-.IP "\fB\-Wformat=1\fR" 4
-.IX Item "-Wformat=1"
-.PD 0
-.IP "\fB\-Wformat\fR" 4
-.IX Item "-Wformat"
-.PD
-Option \fB\-Wformat\fR is equivalent to \fB\-Wformat=1\fR, and
-\&\fB\-Wno\-format\fR is equivalent to \fB\-Wformat=0\fR. Since
-\&\fB\-Wformat\fR also checks for null format arguments for several
-functions, \fB\-Wformat\fR also implies \fB\-Wnonnull\fR. Some
-aspects of this level of format checking can be disabled by the
-options: \fB\-Wno\-format\-contains\-nul\fR,
-\&\fB\-Wno\-format\-extra\-args\fR, and \fB\-Wno\-format\-zero\-length\fR.
-\&\fB\-Wformat\fR is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wno\-format\-contains\-nul\fR" 4
-.IX Item "-Wno-format-contains-nul"
-If \fB\-Wformat\fR is specified, do not warn about format strings that
-contain \s-1NUL\s0 bytes.
-.IP "\fB\-Wno\-format\-extra\-args\fR" 4
-.IX Item "-Wno-format-extra-args"
-If \fB\-Wformat\fR is specified, do not warn about excess arguments to a
-\&\f(CW\*(C`printf\*(C'\fR or \f(CW\*(C`scanf\*(C'\fR format function. The C standard specifies
-that such arguments are ignored.
-.Sp
-Where the unused arguments lie between used arguments that are
-specified with \fB$\fR operand number specifications, normally
-warnings are still given, since the implementation could not know what
-type to pass to \f(CW\*(C`va_arg\*(C'\fR to skip the unused arguments. However,
-in the case of \f(CW\*(C`scanf\*(C'\fR formats, this option suppresses the
-warning if the unused arguments are all pointers, since the Single
-Unix Specification says that such unused arguments are allowed.
-.IP "\fB\-Wno\-format\-zero\-length\fR" 4
-.IX Item "-Wno-format-zero-length"
-If \fB\-Wformat\fR is specified, do not warn about zero-length formats.
-The C standard specifies that zero-length formats are allowed.
-.IP "\fB\-Wformat=2\fR" 4
-.IX Item "-Wformat=2"
-Enable \fB\-Wformat\fR plus additional format checks. Currently
-equivalent to \fB\-Wformat \-Wformat\-nonliteral \-Wformat\-security
-\&\-Wformat\-y2k\fR.
-.IP "\fB\-Wformat\-nonliteral\fR" 4
-.IX Item "-Wformat-nonliteral"
-If \fB\-Wformat\fR is specified, also warn if the format string is not a
-string literal and so cannot be checked, unless the format function
-takes its format arguments as a \f(CW\*(C`va_list\*(C'\fR.
-.IP "\fB\-Wformat\-security\fR" 4
-.IX Item "-Wformat-security"
-If \fB\-Wformat\fR is specified, also warn about uses of format
-functions that represent possible security problems. At present, this
-warns about calls to \f(CW\*(C`printf\*(C'\fR and \f(CW\*(C`scanf\*(C'\fR functions where the
-format string is not a string literal and there are no format arguments,
-as in \f(CW\*(C`printf (foo);\*(C'\fR. This may be a security hole if the format
-string came from untrusted input and contains \fB\f(CB%n\fB\fR. (This is
-currently a subset of what \fB\-Wformat\-nonliteral\fR warns about, but
-in future warnings may be added to \fB\-Wformat\-security\fR that are not
-included in \fB\-Wformat\-nonliteral\fR.)
-.IP "\fB\-Wformat\-y2k\fR" 4
-.IX Item "-Wformat-y2k"
-If \fB\-Wformat\fR is specified, also warn about \f(CW\*(C`strftime\*(C'\fR
-formats that may yield only a two-digit year.
-.RE
-.RS 4
-.RE
-.IP "\fB\-Wnonnull\fR" 4
-.IX Item "-Wnonnull"
-Warn about passing a null pointer for arguments marked as
-requiring a non-null value by the \f(CW\*(C`nonnull\*(C'\fR function attribute.
-.Sp
-\&\fB\-Wnonnull\fR is included in \fB\-Wall\fR and \fB\-Wformat\fR. It
-can be disabled with the \fB\-Wno\-nonnull\fR option.
-.IP "\fB\-Winit\-self\fR (C, \*(C+, Objective-C and Objective\-\*(C+ only)" 4
-.IX Item "-Winit-self (C, , Objective-C and Objective- only)"
-Warn about uninitialized variables that are initialized with themselves.
-Note this option can only be used with the \fB\-Wuninitialized\fR option.
-.Sp
-For example, \s-1GCC\s0 warns about \f(CW\*(C`i\*(C'\fR being uninitialized in the
-following snippet only when \fB\-Winit\-self\fR has been specified:
-.Sp
-.Vb 5
-\& int f()
-\& {
-\& int i = i;
-\& return i;
-\& }
-.Ve
-.Sp
-This warning is enabled by \fB\-Wall\fR in \*(C+.
-.IP "\fB\-Wimplicit\-int\fR (C and Objective-C only)" 4
-.IX Item "-Wimplicit-int (C and Objective-C only)"
-Warn when a declaration does not specify a type.
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wimplicit\-function\-declaration\fR (C and Objective-C only)" 4
-.IX Item "-Wimplicit-function-declaration (C and Objective-C only)"
-Give a warning whenever a function is used before being declared. In
-C99 mode (\fB\-std=c99\fR or \fB\-std=gnu99\fR), this warning is
-enabled by default and it is made into an error by
-\&\fB\-pedantic\-errors\fR. This warning is also enabled by
-\&\fB\-Wall\fR.
-.IP "\fB\-Wimplicit\fR (C and Objective-C only)" 4
-.IX Item "-Wimplicit (C and Objective-C only)"
-Same as \fB\-Wimplicit\-int\fR and \fB\-Wimplicit\-function\-declaration\fR.
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wignored\-qualifiers\fR (C and \*(C+ only)" 4
-.IX Item "-Wignored-qualifiers (C and only)"
-Warn if the return type of a function has a type qualifier
-such as \f(CW\*(C`const\*(C'\fR. For \s-1ISO C\s0 such a type qualifier has no effect,
-since the value returned by a function is not an lvalue.
-For \*(C+, the warning is only emitted for scalar types or \f(CW\*(C`void\*(C'\fR.
-\&\s-1ISO C\s0 prohibits qualified \f(CW\*(C`void\*(C'\fR return types on function
-definitions, so such return types always receive a warning
-even without this option.
-.Sp
-This warning is also enabled by \fB\-Wextra\fR.
-.IP "\fB\-Wmain\fR" 4
-.IX Item "-Wmain"
-Warn if the type of \fBmain\fR is suspicious. \fBmain\fR should be
-a function with external linkage, returning int, taking either zero
-arguments, two, or three arguments of appropriate types. This warning
-is enabled by default in \*(C+ and is enabled by either \fB\-Wall\fR
-or \fB\-Wpedantic\fR.
-.IP "\fB\-Wmissing\-braces\fR" 4
-.IX Item "-Wmissing-braces"
-Warn if an aggregate or union initializer is not fully bracketed. In
-the following example, the initializer for \fBa\fR is not fully
-bracketed, but that for \fBb\fR is fully bracketed. This warning is
-enabled by \fB\-Wall\fR in C.
-.Sp
-.Vb 2
-\& int a[2][2] = { 0, 1, 2, 3 };
-\& int b[2][2] = { { 0, 1 }, { 2, 3 } };
-.Ve
-.Sp
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wmissing\-include\-dirs\fR (C, \*(C+, Objective-C and Objective\-\*(C+ only)" 4
-.IX Item "-Wmissing-include-dirs (C, , Objective-C and Objective- only)"
-Warn if a user-supplied include directory does not exist.
-.IP "\fB\-Wparentheses\fR" 4
-.IX Item "-Wparentheses"
-Warn if parentheses are omitted in certain contexts, such
-as when there is an assignment in a context where a truth value
-is expected, or when operators are nested whose precedence people
-often get confused about.
-.Sp
-Also warn if a comparison like \fBx<=y<=z\fR appears; this is
-equivalent to \fB(x<=y ? 1 : 0) <= z\fR, which is a different
-interpretation from that of ordinary mathematical notation.
-.Sp
-Also warn about constructions where there may be confusion to which
-\&\f(CW\*(C`if\*(C'\fR statement an \f(CW\*(C`else\*(C'\fR branch belongs. Here is an example of
-such a case:
-.Sp
-.Vb 7
-\& {
-\& if (a)
-\& if (b)
-\& foo ();
-\& else
-\& bar ();
-\& }
-.Ve
-.Sp
-In C/\*(C+, every \f(CW\*(C`else\*(C'\fR branch belongs to the innermost possible
-\&\f(CW\*(C`if\*(C'\fR statement, which in this example is \f(CW\*(C`if (b)\*(C'\fR. This is
-often not what the programmer expected, as illustrated in the above
-example by indentation the programmer chose. When there is the
-potential for this confusion, \s-1GCC\s0 issues a warning when this flag
-is specified. To eliminate the warning, add explicit braces around
-the innermost \f(CW\*(C`if\*(C'\fR statement so there is no way the \f(CW\*(C`else\*(C'\fR
-can belong to the enclosing \f(CW\*(C`if\*(C'\fR. The resulting code
-looks like this:
-.Sp
-.Vb 9
-\& {
-\& if (a)
-\& {
-\& if (b)
-\& foo ();
-\& else
-\& bar ();
-\& }
-\& }
-.Ve
-.Sp
-Also warn for dangerous uses of the \s-1GNU\s0 extension to
-\&\f(CW\*(C`?:\*(C'\fR with omitted middle operand. When the condition
-in the \f(CW\*(C`?\*(C'\fR: operator is a boolean expression, the omitted value is
-always 1. Often programmers expect it to be a value computed
-inside the conditional expression instead.
-.Sp
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wsequence\-point\fR" 4
-.IX Item "-Wsequence-point"
-Warn about code that may have undefined semantics because of violations
-of sequence point rules in the C and \*(C+ standards.
-.Sp
-The C and \*(C+ standards define the order in which expressions in a C/\*(C+
-program are evaluated in terms of \fIsequence points\fR, which represent
-a partial ordering between the execution of parts of the program: those
-executed before the sequence point, and those executed after it. These
-occur after the evaluation of a full expression (one which is not part
-of a larger expression), after the evaluation of the first operand of a
-\&\f(CW\*(C`&&\*(C'\fR, \f(CW\*(C`||\*(C'\fR, \f(CW\*(C`? :\*(C'\fR or \f(CW\*(C`,\*(C'\fR (comma) operator, before a
-function is called (but after the evaluation of its arguments and the
-expression denoting the called function), and in certain other places.
-Other than as expressed by the sequence point rules, the order of
-evaluation of subexpressions of an expression is not specified. All
-these rules describe only a partial order rather than a total order,
-since, for example, if two functions are called within one expression
-with no sequence point between them, the order in which the functions
-are called is not specified. However, the standards committee have
-ruled that function calls do not overlap.
-.Sp
-It is not specified when between sequence points modifications to the
-values of objects take effect. Programs whose behavior depends on this
-have undefined behavior; the C and \*(C+ standards specify that \*(L"Between
-the previous and next sequence point an object shall have its stored
-value modified at most once by the evaluation of an expression.
-Furthermore, the prior value shall be read only to determine the value
-to be stored.\*(R". If a program breaks these rules, the results on any
-particular implementation are entirely unpredictable.
-.Sp
-Examples of code with undefined behavior are \f(CW\*(C`a = a++;\*(C'\fR, \f(CW\*(C`a[n]
-= b[n++]\*(C'\fR and \f(CW\*(C`a[i++] = i;\*(C'\fR. Some more complicated cases are not
-diagnosed by this option, and it may give an occasional false positive
-result, but in general it has been found fairly effective at detecting
-this sort of problem in programs.
-.Sp
-The standard is worded confusingly, therefore there is some debate
-over the precise meaning of the sequence point rules in subtle cases.
-Links to discussions of the problem, including proposed formal
-definitions, may be found on the \s-1GCC\s0 readings page, at
-<\fBhttp://gcc.gnu.org/readings.html\fR>.
-.Sp
-This warning is enabled by \fB\-Wall\fR for C and \*(C+.
-.IP "\fB\-Wno\-return\-local\-addr\fR" 4
-.IX Item "-Wno-return-local-addr"
-Do not warn about returning a pointer (or in \*(C+, a reference) to a
-variable that goes out of scope after the function returns.
-.IP "\fB\-Wreturn\-type\fR" 4
-.IX Item "-Wreturn-type"
-Warn whenever a function is defined with a return type that defaults
-to \f(CW\*(C`int\*(C'\fR. Also warn about any \f(CW\*(C`return\*(C'\fR statement with no
-return value in a function whose return type is not \f(CW\*(C`void\*(C'\fR
-(falling off the end of the function body is considered returning
-without a value), and about a \f(CW\*(C`return\*(C'\fR statement with an
-expression in a function whose return type is \f(CW\*(C`void\*(C'\fR.
-.Sp
-For \*(C+, a function without return type always produces a diagnostic
-message, even when \fB\-Wno\-return\-type\fR is specified. The only
-exceptions are \fBmain\fR and functions defined in system headers.
-.Sp
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wswitch\fR" 4
-.IX Item "-Wswitch"
-Warn whenever a \f(CW\*(C`switch\*(C'\fR statement has an index of enumerated type
-and lacks a \f(CW\*(C`case\*(C'\fR for one or more of the named codes of that
-enumeration. (The presence of a \f(CW\*(C`default\*(C'\fR label prevents this
-warning.) \f(CW\*(C`case\*(C'\fR labels outside the enumeration range also
-provoke warnings when this option is used (even if there is a
-\&\f(CW\*(C`default\*(C'\fR label).
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wswitch\-default\fR" 4
-.IX Item "-Wswitch-default"
-Warn whenever a \f(CW\*(C`switch\*(C'\fR statement does not have a \f(CW\*(C`default\*(C'\fR
-case.
-.IP "\fB\-Wswitch\-enum\fR" 4
-.IX Item "-Wswitch-enum"
-Warn whenever a \f(CW\*(C`switch\*(C'\fR statement has an index of enumerated type
-and lacks a \f(CW\*(C`case\*(C'\fR for one or more of the named codes of that
-enumeration. \f(CW\*(C`case\*(C'\fR labels outside the enumeration range also
-provoke warnings when this option is used. The only difference
-between \fB\-Wswitch\fR and this option is that this option gives a
-warning about an omitted enumeration code even if there is a
-\&\f(CW\*(C`default\*(C'\fR label.
-.IP "\fB\-Wsync\-nand\fR (C and \*(C+ only)" 4
-.IX Item "-Wsync-nand (C and only)"
-Warn when \f(CW\*(C`_\|_sync_fetch_and_nand\*(C'\fR and \f(CW\*(C`_\|_sync_nand_and_fetch\*(C'\fR
-built-in functions are used. These functions changed semantics in \s-1GCC 4.4.\s0
-.IP "\fB\-Wtrigraphs\fR" 4
-.IX Item "-Wtrigraphs"
-Warn if any trigraphs are encountered that might change the meaning of
-the program (trigraphs within comments are not warned about).
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wunused\-but\-set\-parameter\fR" 4
-.IX Item "-Wunused-but-set-parameter"
-Warn whenever a function parameter is assigned to, but otherwise unused
-(aside from its declaration).
-.Sp
-To suppress this warning use the \fBunused\fR attribute.
-.Sp
-This warning is also enabled by \fB\-Wunused\fR together with
-\&\fB\-Wextra\fR.
-.IP "\fB\-Wunused\-but\-set\-variable\fR" 4
-.IX Item "-Wunused-but-set-variable"
-Warn whenever a local variable is assigned to, but otherwise unused
-(aside from its declaration).
-This warning is enabled by \fB\-Wall\fR.
-.Sp
-To suppress this warning use the \fBunused\fR attribute.
-.Sp
-This warning is also enabled by \fB\-Wunused\fR, which is enabled
-by \fB\-Wall\fR.
-.IP "\fB\-Wunused\-function\fR" 4
-.IX Item "-Wunused-function"
-Warn whenever a static function is declared but not defined or a
-non-inline static function is unused.
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wunused\-label\fR" 4
-.IX Item "-Wunused-label"
-Warn whenever a label is declared but not used.
-This warning is enabled by \fB\-Wall\fR.
-.Sp
-To suppress this warning use the \fBunused\fR attribute.
-.IP "\fB\-Wunused\-local\-typedefs\fR (C, Objective-C, \*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wunused-local-typedefs (C, Objective-C, and Objective- only)"
-Warn when a typedef locally defined in a function is not used.
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wunused\-parameter\fR" 4
-.IX Item "-Wunused-parameter"
-Warn whenever a function parameter is unused aside from its declaration.
-.Sp
-To suppress this warning use the \fBunused\fR attribute.
-.IP "\fB\-Wno\-unused\-result\fR" 4
-.IX Item "-Wno-unused-result"
-Do not warn if a caller of a function marked with attribute
-\&\f(CW\*(C`warn_unused_result\*(C'\fR does not use
-its return value. The default is \fB\-Wunused\-result\fR.
-.IP "\fB\-Wunused\-variable\fR" 4
-.IX Item "-Wunused-variable"
-Warn whenever a local variable or non-constant static variable is unused
-aside from its declaration.
-This warning is enabled by \fB\-Wall\fR.
-.Sp
-To suppress this warning use the \fBunused\fR attribute.
-.IP "\fB\-Wunused\-value\fR" 4
-.IX Item "-Wunused-value"
-Warn whenever a statement computes a result that is explicitly not
-used. To suppress this warning cast the unused expression to
-\&\fBvoid\fR. This includes an expression-statement or the left-hand
-side of a comma expression that contains no side effects. For example,
-an expression such as \fBx[i,j]\fR causes a warning, while
-\&\fBx[(void)i,j]\fR does not.
-.Sp
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wunused\fR" 4
-.IX Item "-Wunused"
-All the above \fB\-Wunused\fR options combined.
-.Sp
-In order to get a warning about an unused function parameter, you must
-either specify \fB\-Wextra \-Wunused\fR (note that \fB\-Wall\fR implies
-\&\fB\-Wunused\fR), or separately specify \fB\-Wunused\-parameter\fR.
-.IP "\fB\-Wuninitialized\fR" 4
-.IX Item "-Wuninitialized"
-Warn if an automatic variable is used without first being initialized
-or if a variable may be clobbered by a \f(CW\*(C`setjmp\*(C'\fR call. In \*(C+,
-warn if a non-static reference or non-static \fBconst\fR member
-appears in a class without constructors.
-.Sp
-If you want to warn about code that uses the uninitialized value of the
-variable in its own initializer, use the \fB\-Winit\-self\fR option.
-.Sp
-These warnings occur for individual uninitialized or clobbered
-elements of structure, union or array variables as well as for
-variables that are uninitialized or clobbered as a whole. They do
-not occur for variables or elements declared \f(CW\*(C`volatile\*(C'\fR. Because
-these warnings depend on optimization, the exact variables or elements
-for which there are warnings depends on the precise optimization
-options and version of \s-1GCC\s0 used.
-.Sp
-Note that there may be no warning about a variable that is used only
-to compute a value that itself is never used, because such
-computations may be deleted by data flow analysis before the warnings
-are printed.
-.IP "\fB\-Wmaybe\-uninitialized\fR" 4
-.IX Item "-Wmaybe-uninitialized"
-For an automatic variable, if there exists a path from the function
-entry to a use of the variable that is initialized, but there exist
-some other paths for which the variable is not initialized, the compiler
-emits a warning if it cannot prove the uninitialized paths are not
-executed at run time. These warnings are made optional because \s-1GCC\s0 is
-not smart enough to see all the reasons why the code might be correct
-in spite of appearing to have an error. Here is one example of how
-this can happen:
-.Sp
-.Vb 12
-\& {
-\& int x;
-\& switch (y)
-\& {
-\& case 1: x = 1;
-\& break;
-\& case 2: x = 4;
-\& break;
-\& case 3: x = 5;
-\& }
-\& foo (x);
-\& }
-.Ve
-.Sp
-If the value of \f(CW\*(C`y\*(C'\fR is always 1, 2 or 3, then \f(CW\*(C`x\*(C'\fR is
-always initialized, but \s-1GCC\s0 doesn't know this. To suppress the
-warning, you need to provide a default case with \fIassert\fR\|(0) or
-similar code.
-.Sp
-This option also warns when a non-volatile automatic variable might be
-changed by a call to \f(CW\*(C`longjmp\*(C'\fR. These warnings as well are possible
-only in optimizing compilation.
-.Sp
-The compiler sees only the calls to \f(CW\*(C`setjmp\*(C'\fR. It cannot know
-where \f(CW\*(C`longjmp\*(C'\fR will be called; in fact, a signal handler could
-call it at any point in the code. As a result, you may get a warning
-even when there is in fact no problem because \f(CW\*(C`longjmp\*(C'\fR cannot
-in fact be called at the place that would cause a problem.
-.Sp
-Some spurious warnings can be avoided if you declare all the functions
-you use that never return as \f(CW\*(C`noreturn\*(C'\fR.
-.Sp
-This warning is enabled by \fB\-Wall\fR or \fB\-Wextra\fR.
-.IP "\fB\-Wunknown\-pragmas\fR" 4
-.IX Item "-Wunknown-pragmas"
-Warn when a \f(CW\*(C`#pragma\*(C'\fR directive is encountered that is not understood by
-\&\s-1GCC. \s0 If this command-line option is used, warnings are even issued
-for unknown pragmas in system header files. This is not the case if
-the warnings are only enabled by the \fB\-Wall\fR command-line option.
-.IP "\fB\-Wno\-pragmas\fR" 4
-.IX Item "-Wno-pragmas"
-Do not warn about misuses of pragmas, such as incorrect parameters,
-invalid syntax, or conflicts between pragmas. See also
-\&\fB\-Wunknown\-pragmas\fR.
-.IP "\fB\-Wstrict\-aliasing\fR" 4
-.IX Item "-Wstrict-aliasing"
-This option is only active when \fB\-fstrict\-aliasing\fR is active.
-It warns about code that might break the strict aliasing rules that the
-compiler is using for optimization. The warning does not catch all
-cases, but does attempt to catch the more common pitfalls. It is
-included in \fB\-Wall\fR.
-It is equivalent to \fB\-Wstrict\-aliasing=3\fR
-.IP "\fB\-Wstrict\-aliasing=n\fR" 4
-.IX Item "-Wstrict-aliasing=n"
-This option is only active when \fB\-fstrict\-aliasing\fR is active.
-It warns about code that might break the strict aliasing rules that the
-compiler is using for optimization.
-Higher levels correspond to higher accuracy (fewer false positives).
-Higher levels also correspond to more effort, similar to the way \fB\-O\fR
-works.
-\&\fB\-Wstrict\-aliasing\fR is equivalent to \fB\-Wstrict\-aliasing=3\fR.
-.Sp
-Level 1: Most aggressive, quick, least accurate.
-Possibly useful when higher levels
-do not warn but \fB\-fstrict\-aliasing\fR still breaks the code, as it has very few
-false negatives. However, it has many false positives.
-Warns for all pointer conversions between possibly incompatible types,
-even if never dereferenced. Runs in the front end only.
-.Sp
-Level 2: Aggressive, quick, not too precise.
-May still have many false positives (not as many as level 1 though),
-and few false negatives (but possibly more than level 1).
-Unlike level 1, it only warns when an address is taken. Warns about
-incomplete types. Runs in the front end only.
-.Sp
-Level 3 (default for \fB\-Wstrict\-aliasing\fR):
-Should have very few false positives and few false
-negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
-Takes care of the common pun+dereference pattern in the front end:
-\&\f(CW\*(C`*(int*)&some_float\*(C'\fR.
-If optimization is enabled, it also runs in the back end, where it deals
-with multiple statement cases using flow-sensitive points-to information.
-Only warns when the converted pointer is dereferenced.
-Does not warn about incomplete types.
-.IP "\fB\-Wstrict\-overflow\fR" 4
-.IX Item "-Wstrict-overflow"
-.PD 0
-.IP "\fB\-Wstrict\-overflow=\fR\fIn\fR" 4
-.IX Item "-Wstrict-overflow=n"
-.PD
-This option is only active when \fB\-fstrict\-overflow\fR is active.
-It warns about cases where the compiler optimizes based on the
-assumption that signed overflow does not occur. Note that it does not
-warn about all cases where the code might overflow: it only warns
-about cases where the compiler implements some optimization. Thus
-this warning depends on the optimization level.
-.Sp
-An optimization that assumes that signed overflow does not occur is
-perfectly safe if the values of the variables involved are such that
-overflow never does, in fact, occur. Therefore this warning can
-easily give a false positive: a warning about code that is not
-actually a problem. To help focus on important issues, several
-warning levels are defined. No warnings are issued for the use of
-undefined signed overflow when estimating how many iterations a loop
-requires, in particular when determining whether a loop will be
-executed at all.
-.RS 4
-.IP "\fB\-Wstrict\-overflow=1\fR" 4
-.IX Item "-Wstrict-overflow=1"
-Warn about cases that are both questionable and easy to avoid. For
-example, with \fB\-fstrict\-overflow\fR, the compiler simplifies
-\&\f(CW\*(C`x + 1 > x\*(C'\fR to \f(CW1\fR. This level of
-\&\fB\-Wstrict\-overflow\fR is enabled by \fB\-Wall\fR; higher levels
-are not, and must be explicitly requested.
-.IP "\fB\-Wstrict\-overflow=2\fR" 4
-.IX Item "-Wstrict-overflow=2"
-Also warn about other cases where a comparison is simplified to a
-constant. For example: \f(CW\*(C`abs (x) >= 0\*(C'\fR. This can only be
-simplified when \fB\-fstrict\-overflow\fR is in effect, because
-\&\f(CW\*(C`abs (INT_MIN)\*(C'\fR overflows to \f(CW\*(C`INT_MIN\*(C'\fR, which is less than
-zero. \fB\-Wstrict\-overflow\fR (with no level) is the same as
-\&\fB\-Wstrict\-overflow=2\fR.
-.IP "\fB\-Wstrict\-overflow=3\fR" 4
-.IX Item "-Wstrict-overflow=3"
-Also warn about other cases where a comparison is simplified. For
-example: \f(CW\*(C`x + 1 > 1\*(C'\fR is simplified to \f(CW\*(C`x > 0\*(C'\fR.
-.IP "\fB\-Wstrict\-overflow=4\fR" 4
-.IX Item "-Wstrict-overflow=4"
-Also warn about other simplifications not covered by the above cases.
-For example: \f(CW\*(C`(x * 10) / 5\*(C'\fR is simplified to \f(CW\*(C`x * 2\*(C'\fR.
-.IP "\fB\-Wstrict\-overflow=5\fR" 4
-.IX Item "-Wstrict-overflow=5"
-Also warn about cases where the compiler reduces the magnitude of a
-constant involved in a comparison. For example: \f(CW\*(C`x + 2 > y\*(C'\fR is
-simplified to \f(CW\*(C`x + 1 >= y\*(C'\fR. This is reported only at the
-highest warning level because this simplification applies to many
-comparisons, so this warning level gives a very large number of
-false positives.
-.RE
-.RS 4
-.RE
-.IP "\fB\-Wsuggest\-attribute=\fR[\fBpure\fR|\fBconst\fR|\fBnoreturn\fR|\fBformat\fR]" 4
-.IX Item "-Wsuggest-attribute=[pure|const|noreturn|format]"
-Warn for cases where adding an attribute may be beneficial. The
-attributes currently supported are listed below.
-.RS 4
-.IP "\fB\-Wsuggest\-attribute=pure\fR" 4
-.IX Item "-Wsuggest-attribute=pure"
-.PD 0
-.IP "\fB\-Wsuggest\-attribute=const\fR" 4
-.IX Item "-Wsuggest-attribute=const"
-.IP "\fB\-Wsuggest\-attribute=noreturn\fR" 4
-.IX Item "-Wsuggest-attribute=noreturn"
-.PD
-Warn about functions that might be candidates for attributes
-\&\f(CW\*(C`pure\*(C'\fR, \f(CW\*(C`const\*(C'\fR or \f(CW\*(C`noreturn\*(C'\fR. The compiler only warns for
-functions visible in other compilation units or (in the case of \f(CW\*(C`pure\*(C'\fR and
-\&\f(CW\*(C`const\*(C'\fR) if it cannot prove that the function returns normally. A function
-returns normally if it doesn't contain an infinite loop or return abnormally
-by throwing, calling \f(CW\*(C`abort()\*(C'\fR or trapping. This analysis requires option
-\&\fB\-fipa\-pure\-const\fR, which is enabled by default at \fB\-O\fR and
-higher. Higher optimization levels improve the accuracy of the analysis.
-.IP "\fB\-Wsuggest\-attribute=format\fR" 4
-.IX Item "-Wsuggest-attribute=format"
-.PD 0
-.IP "\fB\-Wmissing\-format\-attribute\fR" 4
-.IX Item "-Wmissing-format-attribute"
-.PD
-Warn about function pointers that might be candidates for \f(CW\*(C`format\*(C'\fR
-attributes. Note these are only possible candidates, not absolute ones.
-\&\s-1GCC\s0 guesses that function pointers with \f(CW\*(C`format\*(C'\fR attributes that
-are used in assignment, initialization, parameter passing or return
-statements should have a corresponding \f(CW\*(C`format\*(C'\fR attribute in the
-resulting type. I.e. the left-hand side of the assignment or
-initialization, the type of the parameter variable, or the return type
-of the containing function respectively should also have a \f(CW\*(C`format\*(C'\fR
-attribute to avoid the warning.
-.Sp
-\&\s-1GCC\s0 also warns about function definitions that might be
-candidates for \f(CW\*(C`format\*(C'\fR attributes. Again, these are only
-possible candidates. \s-1GCC\s0 guesses that \f(CW\*(C`format\*(C'\fR attributes
-might be appropriate for any function that calls a function like
-\&\f(CW\*(C`vprintf\*(C'\fR or \f(CW\*(C`vscanf\*(C'\fR, but this might not always be the
-case, and some functions for which \f(CW\*(C`format\*(C'\fR attributes are
-appropriate may not be detected.
-.RE
-.RS 4
-.RE
-.IP "\fB\-Warray\-bounds\fR" 4
-.IX Item "-Warray-bounds"
-This option is only active when \fB\-ftree\-vrp\fR is active
-(default for \fB\-O2\fR and above). It warns about subscripts to arrays
-that are always out of bounds. This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wno\-div\-by\-zero\fR" 4
-.IX Item "-Wno-div-by-zero"
-Do not warn about compile-time integer division by zero. Floating-point
-division by zero is not warned about, as it can be a legitimate way of
-obtaining infinities and NaNs.
-.IP "\fB\-Wsystem\-headers\fR" 4
-.IX Item "-Wsystem-headers"
-Print warning messages for constructs found in system header files.
-Warnings from system headers are normally suppressed, on the assumption
-that they usually do not indicate real problems and would only make the
-compiler output harder to read. Using this command-line option tells
-\&\s-1GCC\s0 to emit warnings from system headers as if they occurred in user
-code. However, note that using \fB\-Wall\fR in conjunction with this
-option does \fInot\fR warn about unknown pragmas in system
-headers\-\-\-for that, \fB\-Wunknown\-pragmas\fR must also be used.
-.IP "\fB\-Wtrampolines\fR" 4
-.IX Item "-Wtrampolines"
-.Vb 1
-\& Warn about trampolines generated for pointers to nested functions.
-\&
-\& A trampoline is a small piece of data or code that is created at run
-\& time on the stack when the address of a nested function is taken, and
-\& is used to call the nested function indirectly. For some targets, it
-\& is made up of data only and thus requires no special treatment. But,
-\& for most targets, it is made up of code and thus requires the stack
-\& to be made executable in order for the program to work properly.
-.Ve
-.IP "\fB\-Wfloat\-equal\fR" 4
-.IX Item "-Wfloat-equal"
-Warn if floating-point values are used in equality comparisons.
-.Sp
-The idea behind this is that sometimes it is convenient (for the
-programmer) to consider floating-point values as approximations to
-infinitely precise real numbers. If you are doing this, then you need
-to compute (by analyzing the code, or in some other way) the maximum or
-likely maximum error that the computation introduces, and allow for it
-when performing comparisons (and when producing output, but that's a
-different problem). In particular, instead of testing for equality, you
-should check to see whether the two values have ranges that overlap; and
-this is done with the relational operators, so equality comparisons are
-probably mistaken.
-.IP "\fB\-Wtraditional\fR (C and Objective-C only)" 4
-.IX Item "-Wtraditional (C and Objective-C only)"
-Warn about certain constructs that behave differently in traditional and
-\&\s-1ISO C. \s0 Also warn about \s-1ISO C\s0 constructs that have no traditional C
-equivalent, and/or problematic constructs that should be avoided.
-.RS 4
-.IP "\(bu" 4
-Macro parameters that appear within string literals in the macro body.
-In traditional C macro replacement takes place within string literals,
-but in \s-1ISO C\s0 it does not.
-.IP "\(bu" 4
-In traditional C, some preprocessor directives did not exist.
-Traditional preprocessors only considered a line to be a directive
-if the \fB#\fR appeared in column 1 on the line. Therefore
-\&\fB\-Wtraditional\fR warns about directives that traditional C
-understands but ignores because the \fB#\fR does not appear as the
-first character on the line. It also suggests you hide directives like
-\&\fB#pragma\fR not understood by traditional C by indenting them. Some
-traditional implementations do not recognize \fB#elif\fR, so this option
-suggests avoiding it altogether.
-.IP "\(bu" 4
-A function-like macro that appears without arguments.
-.IP "\(bu" 4
-The unary plus operator.
-.IP "\(bu" 4
-The \fBU\fR integer constant suffix, or the \fBF\fR or \fBL\fR floating-point
-constant suffixes. (Traditional C does support the \fBL\fR suffix on integer
-constants.) Note, these suffixes appear in macros defined in the system
-headers of most modern systems, e.g. the \fB_MIN\fR/\fB_MAX\fR macros in \f(CW\*(C`<limits.h>\*(C'\fR.
-Use of these macros in user code might normally lead to spurious
-warnings, however \s-1GCC\s0's integrated preprocessor has enough context to
-avoid warning in these cases.
-.IP "\(bu" 4
-A function declared external in one block and then used after the end of
-the block.
-.IP "\(bu" 4
-A \f(CW\*(C`switch\*(C'\fR statement has an operand of type \f(CW\*(C`long\*(C'\fR.
-.IP "\(bu" 4
-A non\-\f(CW\*(C`static\*(C'\fR function declaration follows a \f(CW\*(C`static\*(C'\fR one.
-This construct is not accepted by some traditional C compilers.
-.IP "\(bu" 4
-The \s-1ISO\s0 type of an integer constant has a different width or
-signedness from its traditional type. This warning is only issued if
-the base of the constant is ten. I.e. hexadecimal or octal values, which
-typically represent bit patterns, are not warned about.
-.IP "\(bu" 4
-Usage of \s-1ISO\s0 string concatenation is detected.
-.IP "\(bu" 4
-Initialization of automatic aggregates.
-.IP "\(bu" 4
-Identifier conflicts with labels. Traditional C lacks a separate
-namespace for labels.
-.IP "\(bu" 4
-Initialization of unions. If the initializer is zero, the warning is
-omitted. This is done under the assumption that the zero initializer in
-user code appears conditioned on e.g. \f(CW\*(C`_\|_STDC_\|_\*(C'\fR to avoid missing
-initializer warnings and relies on default initialization to zero in the
-traditional C case.
-.IP "\(bu" 4
-Conversions by prototypes between fixed/floating\-point values and vice
-versa. The absence of these prototypes when compiling with traditional
-C causes serious problems. This is a subset of the possible
-conversion warnings; for the full set use \fB\-Wtraditional\-conversion\fR.
-.IP "\(bu" 4
-Use of \s-1ISO C\s0 style function definitions. This warning intentionally is
-\&\fInot\fR issued for prototype declarations or variadic functions
-because these \s-1ISO C\s0 features appear in your code when using
-libiberty's traditional C compatibility macros, \f(CW\*(C`PARAMS\*(C'\fR and
-\&\f(CW\*(C`VPARAMS\*(C'\fR. This warning is also bypassed for nested functions
-because that feature is already a \s-1GCC\s0 extension and thus not relevant to
-traditional C compatibility.
-.RE
-.RS 4
-.RE
-.IP "\fB\-Wtraditional\-conversion\fR (C and Objective-C only)" 4
-.IX Item "-Wtraditional-conversion (C and Objective-C only)"
-Warn if a prototype causes a type conversion that is different from what
-would happen to the same argument in the absence of a prototype. This
-includes conversions of fixed point to floating and vice versa, and
-conversions changing the width or signedness of a fixed-point argument
-except when the same as the default promotion.
-.IP "\fB\-Wdeclaration\-after\-statement\fR (C and Objective-C only)" 4
-.IX Item "-Wdeclaration-after-statement (C and Objective-C only)"
-Warn when a declaration is found after a statement in a block. This
-construct, known from \*(C+, was introduced with \s-1ISO C99\s0 and is by default
-allowed in \s-1GCC. \s0 It is not supported by \s-1ISO C90\s0 and was not supported by
-\&\s-1GCC\s0 versions before \s-1GCC 3.0. \s0
-.IP "\fB\-Wundef\fR" 4
-.IX Item "-Wundef"
-Warn if an undefined identifier is evaluated in an \fB#if\fR directive.
-.IP "\fB\-Wno\-endif\-labels\fR" 4
-.IX Item "-Wno-endif-labels"
-Do not warn whenever an \fB#else\fR or an \fB#endif\fR are followed by text.
-.IP "\fB\-Wshadow\fR" 4
-.IX Item "-Wshadow"
-Warn whenever a local variable or type declaration shadows another variable,
-parameter, type, or class member (in \*(C+), or whenever a built-in function
-is shadowed. Note that in \*(C+, the compiler warns if a local variable
-shadows an explicit typedef, but not if it shadows a struct/class/enum.
-.IP "\fB\-Wlarger\-than=\fR\fIlen\fR" 4
-.IX Item "-Wlarger-than=len"
-Warn whenever an object of larger than \fIlen\fR bytes is defined.
-.IP "\fB\-Wframe\-larger\-than=\fR\fIlen\fR" 4
-.IX Item "-Wframe-larger-than=len"
-Warn if the size of a function frame is larger than \fIlen\fR bytes.
-The computation done to determine the stack frame size is approximate
-and not conservative.
-The actual requirements may be somewhat greater than \fIlen\fR
-even if you do not get a warning. In addition, any space allocated
-via \f(CW\*(C`alloca\*(C'\fR, variable-length arrays, or related constructs
-is not included by the compiler when determining
-whether or not to issue a warning.
-.IP "\fB\-Wno\-free\-nonheap\-object\fR" 4
-.IX Item "-Wno-free-nonheap-object"
-Do not warn when attempting to free an object that was not allocated
-on the heap.
-.IP "\fB\-Wstack\-usage=\fR\fIlen\fR" 4
-.IX Item "-Wstack-usage=len"
-Warn if the stack usage of a function might be larger than \fIlen\fR bytes.
-The computation done to determine the stack usage is conservative.
-Any space allocated via \f(CW\*(C`alloca\*(C'\fR, variable-length arrays, or related
-constructs is included by the compiler when determining whether or not to
-issue a warning.
-.Sp
-The message is in keeping with the output of \fB\-fstack\-usage\fR.
-.RS 4
-.IP "\(bu" 4
-If the stack usage is fully static but exceeds the specified amount, it's:
-.Sp
-.Vb 1
-\& warning: stack usage is 1120 bytes
-.Ve
-.IP "\(bu" 4
-If the stack usage is (partly) dynamic but bounded, it's:
-.Sp
-.Vb 1
-\& warning: stack usage might be 1648 bytes
-.Ve
-.IP "\(bu" 4
-If the stack usage is (partly) dynamic and not bounded, it's:
-.Sp
-.Vb 1
-\& warning: stack usage might be unbounded
-.Ve
-.RE
-.RS 4
-.RE
-.IP "\fB\-Wunsafe\-loop\-optimizations\fR" 4
-.IX Item "-Wunsafe-loop-optimizations"
-Warn if the loop cannot be optimized because the compiler cannot
-assume anything on the bounds of the loop indices. With
-\&\fB\-funsafe\-loop\-optimizations\fR warn if the compiler makes
-such assumptions.
-.IP "\fB\-Wno\-pedantic\-ms\-format\fR (MinGW targets only)" 4
-.IX Item "-Wno-pedantic-ms-format (MinGW targets only)"
-When used in combination with \fB\-Wformat\fR
-and \fB\-pedantic\fR without \s-1GNU\s0 extensions, this option
-disables the warnings about non-ISO \f(CW\*(C`printf\*(C'\fR / \f(CW\*(C`scanf\*(C'\fR format
-width specifiers \f(CW\*(C`I32\*(C'\fR, \f(CW\*(C`I64\*(C'\fR, and \f(CW\*(C`I\*(C'\fR used on Windows targets,
-which depend on the \s-1MS\s0 runtime.
-.IP "\fB\-Wpointer\-arith\fR" 4
-.IX Item "-Wpointer-arith"
-Warn about anything that depends on the \*(L"size of\*(R" a function type or
-of \f(CW\*(C`void\*(C'\fR. \s-1GNU C\s0 assigns these types a size of 1, for
-convenience in calculations with \f(CW\*(C`void *\*(C'\fR pointers and pointers
-to functions. In \*(C+, warn also when an arithmetic operation involves
-\&\f(CW\*(C`NULL\*(C'\fR. This warning is also enabled by \fB\-Wpedantic\fR.
-.IP "\fB\-Wtype\-limits\fR" 4
-.IX Item "-Wtype-limits"
-Warn if a comparison is always true or always false due to the limited
-range of the data type, but do not warn for constant expressions. For
-example, warn if an unsigned variable is compared against zero with
-\&\fB<\fR or \fB>=\fR. This warning is also enabled by
-\&\fB\-Wextra\fR.
-.IP "\fB\-Wbad\-function\-cast\fR (C and Objective-C only)" 4
-.IX Item "-Wbad-function-cast (C and Objective-C only)"
-Warn whenever a function call is cast to a non-matching type.
-For example, warn if \f(CW\*(C`int malloc()\*(C'\fR is cast to \f(CW\*(C`anything *\*(C'\fR.
-.IP "\fB\-Wc++\-compat\fR (C and Objective-C only)" 4
-.IX Item "-Wc++-compat (C and Objective-C only)"
-Warn about \s-1ISO C\s0 constructs that are outside of the common subset of
-\&\s-1ISO C\s0 and \s-1ISO \*(C+,\s0 e.g. request for implicit conversion from
-\&\f(CW\*(C`void *\*(C'\fR to a pointer to non\-\f(CW\*(C`void\*(C'\fR type.
-.IP "\fB\-Wc++11\-compat\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wc++11-compat ( and Objective- only)"
-Warn about \*(C+ constructs whose meaning differs between \s-1ISO \*(C+ 1998\s0
-and \s-1ISO \*(C+ 2011,\s0 e.g., identifiers in \s-1ISO \*(C+ 1998\s0 that are keywords
-in \s-1ISO \*(C+ 2011. \s0 This warning turns on \fB\-Wnarrowing\fR and is
-enabled by \fB\-Wall\fR.
-.IP "\fB\-Wcast\-qual\fR" 4
-.IX Item "-Wcast-qual"
-Warn whenever a pointer is cast so as to remove a type qualifier from
-the target type. For example, warn if a \f(CW\*(C`const char *\*(C'\fR is cast
-to an ordinary \f(CW\*(C`char *\*(C'\fR.
-.Sp
-Also warn when making a cast that introduces a type qualifier in an
-unsafe way. For example, casting \f(CW\*(C`char **\*(C'\fR to \f(CW\*(C`const char **\*(C'\fR
-is unsafe, as in this example:
-.Sp
-.Vb 6
-\& /* p is char ** value. */
-\& const char **q = (const char **) p;
-\& /* Assignment of readonly string to const char * is OK. */
-\& *q = "string";
-\& /* Now char** pointer points to read\-only memory. */
-\& **p = \*(Aqb\*(Aq;
-.Ve
-.IP "\fB\-Wcast\-align\fR" 4
-.IX Item "-Wcast-align"
-Warn whenever a pointer is cast such that the required alignment of the
-target is increased. For example, warn if a \f(CW\*(C`char *\*(C'\fR is cast to
-an \f(CW\*(C`int *\*(C'\fR on machines where integers can only be accessed at
-two\- or four-byte boundaries.
-.IP "\fB\-Wwrite\-strings\fR" 4
-.IX Item "-Wwrite-strings"
-When compiling C, give string constants the type \f(CW\*(C`const
-char[\f(CIlength\f(CW]\*(C'\fR so that copying the address of one into a
-non\-\f(CW\*(C`const\*(C'\fR \f(CW\*(C`char *\*(C'\fR pointer produces a warning. These
-warnings help you find at compile time code that can try to write
-into a string constant, but only if you have been very careful about
-using \f(CW\*(C`const\*(C'\fR in declarations and prototypes. Otherwise, it is
-just a nuisance. This is why we did not make \fB\-Wall\fR request
-these warnings.
-.Sp
-When compiling \*(C+, warn about the deprecated conversion from string
-literals to \f(CW\*(C`char *\*(C'\fR. This warning is enabled by default for \*(C+
-programs.
-.IP "\fB\-Wclobbered\fR" 4
-.IX Item "-Wclobbered"
-Warn for variables that might be changed by \fBlongjmp\fR or
-\&\fBvfork\fR. This warning is also enabled by \fB\-Wextra\fR.
-.IP "\fB\-Wconditionally\-supported\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wconditionally-supported ( and Objective- only)"
-Warn for conditionally-supported (\*(C+11 [intro.defs]) constructs.
-.IP "\fB\-Wconversion\fR" 4
-.IX Item "-Wconversion"
-Warn for implicit conversions that may alter a value. This includes
-conversions between real and integer, like \f(CW\*(C`abs (x)\*(C'\fR when
-\&\f(CW\*(C`x\*(C'\fR is \f(CW\*(C`double\*(C'\fR; conversions between signed and unsigned,
-like \f(CW\*(C`unsigned ui = \-1\*(C'\fR; and conversions to smaller types, like
-\&\f(CW\*(C`sqrtf (M_PI)\*(C'\fR. Do not warn for explicit casts like \f(CW\*(C`abs
-((int) x)\*(C'\fR and \f(CW\*(C`ui = (unsigned) \-1\*(C'\fR, or if the value is not
-changed by the conversion like in \f(CW\*(C`abs (2.0)\*(C'\fR. Warnings about
-conversions between signed and unsigned integers can be disabled by
-using \fB\-Wno\-sign\-conversion\fR.
-.Sp
-For \*(C+, also warn for confusing overload resolution for user-defined
-conversions; and conversions that never use a type conversion
-operator: conversions to \f(CW\*(C`void\*(C'\fR, the same type, a base class or a
-reference to them. Warnings about conversions between signed and
-unsigned integers are disabled by default in \*(C+ unless
-\&\fB\-Wsign\-conversion\fR is explicitly enabled.
-.IP "\fB\-Wno\-conversion\-null\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wno-conversion-null ( and Objective- only)"
-Do not warn for conversions between \f(CW\*(C`NULL\*(C'\fR and non-pointer
-types. \fB\-Wconversion\-null\fR is enabled by default.
-.IP "\fB\-Wzero\-as\-null\-pointer\-constant\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wzero-as-null-pointer-constant ( and Objective- only)"
-Warn when a literal '0' is used as null pointer constant. This can
-be useful to facilitate the conversion to \f(CW\*(C`nullptr\*(C'\fR in \*(C+11.
-.IP "\fB\-Wdate\-time\fR" 4
-.IX Item "-Wdate-time"
-Warn when macros \f(CW\*(C`_\|_TIME_\|_\*(C'\fR, \f(CW\*(C`_\|_DATE_\|_\*(C'\fR or \f(CW\*(C`_\|_TIMESTAMP_\|_\*(C'\fR
-are encountered as they might prevent bit-wise-identical reproducible
-compilations.
-.IP "\fB\-Wdelete\-incomplete\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wdelete-incomplete ( and Objective- only)"
-Warn when deleting a pointer to incomplete type, which may cause
-undefined behavior at runtime. This warning is enabled by default.
-.IP "\fB\-Wuseless\-cast\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wuseless-cast ( and Objective- only)"
-Warn when an expression is casted to its own type.
-.IP "\fB\-Wempty\-body\fR" 4
-.IX Item "-Wempty-body"
-Warn if an empty body occurs in an \fBif\fR, \fBelse\fR or \fBdo
-while\fR statement. This warning is also enabled by \fB\-Wextra\fR.
-.IP "\fB\-Wenum\-compare\fR" 4
-.IX Item "-Wenum-compare"
-Warn about a comparison between values of different enumerated types.
-In \*(C+ enumeral mismatches in conditional expressions are also
-diagnosed and the warning is enabled by default. In C this warning is
-enabled by \fB\-Wall\fR.
-.IP "\fB\-Wjump\-misses\-init\fR (C, Objective-C only)" 4
-.IX Item "-Wjump-misses-init (C, Objective-C only)"
-Warn if a \f(CW\*(C`goto\*(C'\fR statement or a \f(CW\*(C`switch\*(C'\fR statement jumps
-forward across the initialization of a variable, or jumps backward to a
-label after the variable has been initialized. This only warns about
-variables that are initialized when they are declared. This warning is
-only supported for C and Objective-C; in \*(C+ this sort of branch is an
-error in any case.
-.Sp
-\&\fB\-Wjump\-misses\-init\fR is included in \fB\-Wc++\-compat\fR. It
-can be disabled with the \fB\-Wno\-jump\-misses\-init\fR option.
-.IP "\fB\-Wsign\-compare\fR" 4
-.IX Item "-Wsign-compare"
-Warn when a comparison between signed and unsigned values could produce
-an incorrect result when the signed value is converted to unsigned.
-This warning is also enabled by \fB\-Wextra\fR; to get the other warnings
-of \fB\-Wextra\fR without this warning, use \fB\-Wextra \-Wno\-sign\-compare\fR.
-.IP "\fB\-Wsign\-conversion\fR" 4
-.IX Item "-Wsign-conversion"
-Warn for implicit conversions that may change the sign of an integer
-value, like assigning a signed integer expression to an unsigned
-integer variable. An explicit cast silences the warning. In C, this
-option is enabled also by \fB\-Wconversion\fR.
-.IP "\fB\-Wfloat\-conversion\fR" 4
-.IX Item "-Wfloat-conversion"
-Warn for implicit conversions that reduce the precision of a real value.
-This includes conversions from real to integer, and from higher precision
-real to lower precision real values. This option is also enabled by
-\&\fB\-Wconversion\fR.
-.IP "\fB\-Wsizeof\-pointer\-memaccess\fR" 4
-.IX Item "-Wsizeof-pointer-memaccess"
-Warn for suspicious length parameters to certain string and memory built-in
-functions if the argument uses \f(CW\*(C`sizeof\*(C'\fR. This warning warns e.g.
-about \f(CW\*(C`memset (ptr, 0, sizeof (ptr));\*(C'\fR if \f(CW\*(C`ptr\*(C'\fR is not an array,
-but a pointer, and suggests a possible fix, or about
-\&\f(CW\*(C`memcpy (&foo, ptr, sizeof (&foo));\*(C'\fR. This warning is enabled by
-\&\fB\-Wall\fR.
-.IP "\fB\-Waddress\fR" 4
-.IX Item "-Waddress"
-Warn about suspicious uses of memory addresses. These include using
-the address of a function in a conditional expression, such as
-\&\f(CW\*(C`void func(void); if (func)\*(C'\fR, and comparisons against the memory
-address of a string literal, such as \f(CW\*(C`if (x == "abc")\*(C'\fR. Such
-uses typically indicate a programmer error: the address of a function
-always evaluates to true, so their use in a conditional usually
-indicate that the programmer forgot the parentheses in a function
-call; and comparisons against string literals result in unspecified
-behavior and are not portable in C, so they usually indicate that the
-programmer intended to use \f(CW\*(C`strcmp\*(C'\fR. This warning is enabled by
-\&\fB\-Wall\fR.
-.IP "\fB\-Wlogical\-op\fR" 4
-.IX Item "-Wlogical-op"
-Warn about suspicious uses of logical operators in expressions.
-This includes using logical operators in contexts where a
-bit-wise operator is likely to be expected.
-.IP "\fB\-Waggregate\-return\fR" 4
-.IX Item "-Waggregate-return"
-Warn if any functions that return structures or unions are defined or
-called. (In languages where you can return an array, this also elicits
-a warning.)
-.IP "\fB\-Wno\-aggressive\-loop\-optimizations\fR" 4
-.IX Item "-Wno-aggressive-loop-optimizations"
-Warn if in a loop with constant number of iterations the compiler detects
-undefined behavior in some statement during one or more of the iterations.
-.IP "\fB\-Wno\-attributes\fR" 4
-.IX Item "-Wno-attributes"
-Do not warn if an unexpected \f(CW\*(C`_\|_attribute_\|_\*(C'\fR is used, such as
-unrecognized attributes, function attributes applied to variables,
-etc. This does not stop errors for incorrect use of supported
-attributes.
-.IP "\fB\-Wno\-builtin\-macro\-redefined\fR" 4
-.IX Item "-Wno-builtin-macro-redefined"
-Do not warn if certain built-in macros are redefined. This suppresses
-warnings for redefinition of \f(CW\*(C`_\|_TIMESTAMP_\|_\*(C'\fR, \f(CW\*(C`_\|_TIME_\|_\*(C'\fR,
-\&\f(CW\*(C`_\|_DATE_\|_\*(C'\fR, \f(CW\*(C`_\|_FILE_\|_\*(C'\fR, and \f(CW\*(C`_\|_BASE_FILE_\|_\*(C'\fR.
-.IP "\fB\-Wstrict\-prototypes\fR (C and Objective-C only)" 4
-.IX Item "-Wstrict-prototypes (C and Objective-C only)"
-Warn if a function is declared or defined without specifying the
-argument types. (An old-style function definition is permitted without
-a warning if preceded by a declaration that specifies the argument
-types.)
-.IP "\fB\-Wold\-style\-declaration\fR (C and Objective-C only)" 4
-.IX Item "-Wold-style-declaration (C and Objective-C only)"
-Warn for obsolescent usages, according to the C Standard, in a
-declaration. For example, warn if storage-class specifiers like
-\&\f(CW\*(C`static\*(C'\fR are not the first things in a declaration. This warning
-is also enabled by \fB\-Wextra\fR.
-.IP "\fB\-Wold\-style\-definition\fR (C and Objective-C only)" 4
-.IX Item "-Wold-style-definition (C and Objective-C only)"
-Warn if an old-style function definition is used. A warning is given
-even if there is a previous prototype.
-.IP "\fB\-Wmissing\-parameter\-type\fR (C and Objective-C only)" 4
-.IX Item "-Wmissing-parameter-type (C and Objective-C only)"
-A function parameter is declared without a type specifier in K&R\-style
-functions:
-.Sp
-.Vb 1
-\& void foo(bar) { }
-.Ve
-.Sp
-This warning is also enabled by \fB\-Wextra\fR.
-.IP "\fB\-Wmissing\-prototypes\fR (C and Objective-C only)" 4
-.IX Item "-Wmissing-prototypes (C and Objective-C only)"
-Warn if a global function is defined without a previous prototype
-declaration. This warning is issued even if the definition itself
-provides a prototype. Use this option to detect global functions
-that do not have a matching prototype declaration in a header file.
-This option is not valid for \*(C+ because all function declarations
-provide prototypes and a non-matching declaration will declare an
-overload rather than conflict with an earlier declaration.
-Use \fB\-Wmissing\-declarations\fR to detect missing declarations in \*(C+.
-.IP "\fB\-Wmissing\-declarations\fR" 4
-.IX Item "-Wmissing-declarations"
-Warn if a global function is defined without a previous declaration.
-Do so even if the definition itself provides a prototype.
-Use this option to detect global functions that are not declared in
-header files. In C, no warnings are issued for functions with previous
-non-prototype declarations; use \fB\-Wmissing\-prototype\fR to detect
-missing prototypes. In \*(C+, no warnings are issued for function templates,
-or for inline functions, or for functions in anonymous namespaces.
-.IP "\fB\-Wmissing\-field\-initializers\fR" 4
-.IX Item "-Wmissing-field-initializers"
-Warn if a structure's initializer has some fields missing. For
-example, the following code causes such a warning, because
-\&\f(CW\*(C`x.h\*(C'\fR is implicitly zero:
-.Sp
-.Vb 2
-\& struct s { int f, g, h; };
-\& struct s x = { 3, 4 };
-.Ve
-.Sp
-This option does not warn about designated initializers, so the following
-modification does not trigger a warning:
-.Sp
-.Vb 2
-\& struct s { int f, g, h; };
-\& struct s x = { .f = 3, .g = 4 };
-.Ve
-.Sp
-This warning is included in \fB\-Wextra\fR. To get other \fB\-Wextra\fR
-warnings without this one, use \fB\-Wextra \-Wno\-missing\-field\-initializers\fR.
-.IP "\fB\-Wno\-multichar\fR" 4
-.IX Item "-Wno-multichar"
-Do not warn if a multicharacter constant (\fB'\s-1FOOF\s0'\fR) is used.
-Usually they indicate a typo in the user's code, as they have
-implementation-defined values, and should not be used in portable code.
-.IP "\fB\-Wnormalized=<none|id|nfc|nfkc>\fR" 4
-.IX Item "-Wnormalized=<none|id|nfc|nfkc>"
-In \s-1ISO C\s0 and \s-1ISO \*(C+,\s0 two identifiers are different if they are
-different sequences of characters. However, sometimes when characters
-outside the basic \s-1ASCII\s0 character set are used, you can have two
-different character sequences that look the same. To avoid confusion,
-the \s-1ISO 10646\s0 standard sets out some \fInormalization rules\fR which
-when applied ensure that two sequences that look the same are turned into
-the same sequence. \s-1GCC\s0 can warn you if you are using identifiers that
-have not been normalized; this option controls that warning.
-.Sp
-There are four levels of warning supported by \s-1GCC. \s0 The default is
-\&\fB\-Wnormalized=nfc\fR, which warns about any identifier that is
-not in the \s-1ISO 10646 \*(L"C\*(R"\s0 normalized form, \fI\s-1NFC\s0\fR. \s-1NFC\s0 is the
-recommended form for most uses.
-.Sp
-Unfortunately, there are some characters allowed in identifiers by
-\&\s-1ISO C\s0 and \s-1ISO \*(C+\s0 that, when turned into \s-1NFC,\s0 are not allowed in
-identifiers. That is, there's no way to use these symbols in portable
-\&\s-1ISO C\s0 or \*(C+ and have all your identifiers in \s-1NFC.
-\&\s0\fB\-Wnormalized=id\fR suppresses the warning for these characters.
-It is hoped that future versions of the standards involved will correct
-this, which is why this option is not the default.
-.Sp
-You can switch the warning off for all characters by writing
-\&\fB\-Wnormalized=none\fR. You should only do this if you
-are using some other normalization scheme (like \*(L"D\*(R"), because
-otherwise you can easily create bugs that are literally impossible to see.
-.Sp
-Some characters in \s-1ISO 10646\s0 have distinct meanings but look identical
-in some fonts or display methodologies, especially once formatting has
-been applied. For instance \f(CW\*(C`\eu207F\*(C'\fR, \*(L"\s-1SUPERSCRIPT LATIN SMALL
-LETTER N\*(R",\s0 displays just like a regular \f(CW\*(C`n\*(C'\fR that has been
-placed in a superscript. \s-1ISO 10646\s0 defines the \fI\s-1NFKC\s0\fR
-normalization scheme to convert all these into a standard form as
-well, and \s-1GCC\s0 warns if your code is not in \s-1NFKC\s0 if you use
-\&\fB\-Wnormalized=nfkc\fR. This warning is comparable to warning
-about every identifier that contains the letter O because it might be
-confused with the digit 0, and so is not the default, but may be
-useful as a local coding convention if the programming environment
-cannot be fixed to display these characters distinctly.
-.IP "\fB\-Wno\-deprecated\fR" 4
-.IX Item "-Wno-deprecated"
-Do not warn about usage of deprecated features.
-.IP "\fB\-Wno\-deprecated\-declarations\fR" 4
-.IX Item "-Wno-deprecated-declarations"
-Do not warn about uses of functions,
-variables, and types marked as deprecated by using the \f(CW\*(C`deprecated\*(C'\fR
-attribute.
-.IP "\fB\-Wno\-overflow\fR" 4
-.IX Item "-Wno-overflow"
-Do not warn about compile-time overflow in constant expressions.
-.IP "\fB\-Wopenmp\-simd\fR" 4
-.IX Item "-Wopenmp-simd"
-Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus
-simd directive set by user. The \fB\-fsimd\-cost\-model=unlimited\fR can
-be used to relax the cost model.
-.IP "\fB\-Woverride\-init\fR (C and Objective-C only)" 4
-.IX Item "-Woverride-init (C and Objective-C only)"
-Warn if an initialized field without side effects is overridden when
-using designated initializers.
-.Sp
-This warning is included in \fB\-Wextra\fR. To get other
-\&\fB\-Wextra\fR warnings without this one, use \fB\-Wextra
-\&\-Wno\-override\-init\fR.
-.IP "\fB\-Wpacked\fR" 4
-.IX Item "-Wpacked"
-Warn if a structure is given the packed attribute, but the packed
-attribute has no effect on the layout or size of the structure.
-Such structures may be mis-aligned for little benefit. For
-instance, in this code, the variable \f(CW\*(C`f.x\*(C'\fR in \f(CW\*(C`struct bar\*(C'\fR
-is misaligned even though \f(CW\*(C`struct bar\*(C'\fR does not itself
-have the packed attribute:
-.Sp
-.Vb 8
-\& struct foo {
-\& int x;
-\& char a, b, c, d;
-\& } _\|_attribute_\|_((packed));
-\& struct bar {
-\& char z;
-\& struct foo f;
-\& };
-.Ve
-.IP "\fB\-Wpacked\-bitfield\-compat\fR" 4
-.IX Item "-Wpacked-bitfield-compat"
-The 4.1, 4.2 and 4.3 series of \s-1GCC\s0 ignore the \f(CW\*(C`packed\*(C'\fR attribute
-on bit-fields of type \f(CW\*(C`char\*(C'\fR. This has been fixed in \s-1GCC 4.4\s0 but
-the change can lead to differences in the structure layout. \s-1GCC\s0
-informs you when the offset of such a field has changed in \s-1GCC 4.4.\s0
-For example there is no longer a 4\-bit padding between field \f(CW\*(C`a\*(C'\fR
-and \f(CW\*(C`b\*(C'\fR in this structure:
-.Sp
-.Vb 5
-\& struct foo
-\& {
-\& char a:4;
-\& char b:8;
-\& } _\|_attribute_\|_ ((packed));
-.Ve
-.Sp
-This warning is enabled by default. Use
-\&\fB\-Wno\-packed\-bitfield\-compat\fR to disable this warning.
-.IP "\fB\-Wpadded\fR" 4
-.IX Item "-Wpadded"
-Warn if padding is included in a structure, either to align an element
-of the structure or to align the whole structure. Sometimes when this
-happens it is possible to rearrange the fields of the structure to
-reduce the padding and so make the structure smaller.
-.IP "\fB\-Wredundant\-decls\fR" 4
-.IX Item "-Wredundant-decls"
-Warn if anything is declared more than once in the same scope, even in
-cases where multiple declaration is valid and changes nothing.
-.IP "\fB\-Wnested\-externs\fR (C and Objective-C only)" 4
-.IX Item "-Wnested-externs (C and Objective-C only)"
-Warn if an \f(CW\*(C`extern\*(C'\fR declaration is encountered within a function.
-.IP "\fB\-Wno\-inherited\-variadic\-ctor\fR" 4
-.IX Item "-Wno-inherited-variadic-ctor"
-Suppress warnings about use of \*(C+11 inheriting constructors when the
-base class inherited from has a C variadic constructor; the warning is
-on by default because the ellipsis is not inherited.
-.IP "\fB\-Winline\fR" 4
-.IX Item "-Winline"
-Warn if a function that is declared as inline cannot be inlined.
-Even with this option, the compiler does not warn about failures to
-inline functions declared in system headers.
-.Sp
-The compiler uses a variety of heuristics to determine whether or not
-to inline a function. For example, the compiler takes into account
-the size of the function being inlined and the amount of inlining
-that has already been done in the current function. Therefore,
-seemingly insignificant changes in the source program can cause the
-warnings produced by \fB\-Winline\fR to appear or disappear.
-.IP "\fB\-Wno\-invalid\-offsetof\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wno-invalid-offsetof ( and Objective- only)"
-Suppress warnings from applying the \fBoffsetof\fR macro to a non-POD
-type. According to the 1998 \s-1ISO \*(C+\s0 standard, applying \fBoffsetof\fR
-to a non-POD type is undefined. In existing \*(C+ implementations,
-however, \fBoffsetof\fR typically gives meaningful results even when
-applied to certain kinds of non-POD types (such as a simple
-\&\fBstruct\fR that fails to be a \s-1POD\s0 type only by virtue of having a
-constructor). This flag is for users who are aware that they are
-writing nonportable code and who have deliberately chosen to ignore the
-warning about it.
-.Sp
-The restrictions on \fBoffsetof\fR may be relaxed in a future version
-of the \*(C+ standard.
-.IP "\fB\-Wno\-int\-to\-pointer\-cast\fR" 4
-.IX Item "-Wno-int-to-pointer-cast"
-Suppress warnings from casts to pointer type of an integer of a
-different size. In \*(C+, casting to a pointer type of smaller size is
-an error. \fBWint-to-pointer-cast\fR is enabled by default.
-.IP "\fB\-Wno\-pointer\-to\-int\-cast\fR (C and Objective-C only)" 4
-.IX Item "-Wno-pointer-to-int-cast (C and Objective-C only)"
-Suppress warnings from casts from a pointer to an integer type of a
-different size.
-.IP "\fB\-Winvalid\-pch\fR" 4
-.IX Item "-Winvalid-pch"
-Warn if a precompiled header is found in
-the search path but can't be used.
-.IP "\fB\-Wlong\-long\fR" 4
-.IX Item "-Wlong-long"
-Warn if \fBlong long\fR type is used. This is enabled by either
-\&\fB\-Wpedantic\fR or \fB\-Wtraditional\fR in \s-1ISO C90\s0 and \*(C+98
-modes. To inhibit the warning messages, use \fB\-Wno\-long\-long\fR.
-.IP "\fB\-Wvariadic\-macros\fR" 4
-.IX Item "-Wvariadic-macros"
-Warn if variadic macros are used in pedantic \s-1ISO C90\s0 mode, or the \s-1GNU\s0
-alternate syntax when in pedantic \s-1ISO C99\s0 mode. This is default.
-To inhibit the warning messages, use \fB\-Wno\-variadic\-macros\fR.
-.IP "\fB\-Wvarargs\fR" 4
-.IX Item "-Wvarargs"
-Warn upon questionable usage of the macros used to handle variable
-arguments like \fBva_start\fR. This is default. To inhibit the
-warning messages, use \fB\-Wno\-varargs\fR.
-.IP "\fB\-Wvector\-operation\-performance\fR" 4
-.IX Item "-Wvector-operation-performance"
-Warn if vector operation is not implemented via \s-1SIMD\s0 capabilities of the
-architecture. Mainly useful for the performance tuning.
-Vector operation can be implemented \f(CW\*(C`piecewise\*(C'\fR, which means that the
-scalar operation is performed on every vector element;
-\&\f(CW\*(C`in parallel\*(C'\fR, which means that the vector operation is implemented
-using scalars of wider type, which normally is more performance efficient;
-and \f(CW\*(C`as a single scalar\*(C'\fR, which means that vector fits into a
-scalar type.
-.IP "\fB\-Wno\-virtual\-move\-assign\fR" 4
-.IX Item "-Wno-virtual-move-assign"
-Suppress warnings about inheriting from a virtual base with a
-non-trivial \*(C+11 move assignment operator. This is dangerous because
-if the virtual base is reachable along more than one path, it will be
-moved multiple times, which can mean both objects end up in the
-moved-from state. If the move assignment operator is written to avoid
-moving from a moved-from object, this warning can be disabled.
-.IP "\fB\-Wvla\fR" 4
-.IX Item "-Wvla"
-Warn if variable length array is used in the code.
-\&\fB\-Wno\-vla\fR prevents the \fB\-Wpedantic\fR warning of
-the variable length array.
-.IP "\fB\-Wvolatile\-register\-var\fR" 4
-.IX Item "-Wvolatile-register-var"
-Warn if a register variable is declared volatile. The volatile
-modifier does not inhibit all optimizations that may eliminate reads
-and/or writes to register variables. This warning is enabled by
-\&\fB\-Wall\fR.
-.IP "\fB\-Wdisabled\-optimization\fR" 4
-.IX Item "-Wdisabled-optimization"
-Warn if a requested optimization pass is disabled. This warning does
-not generally indicate that there is anything wrong with your code; it
-merely indicates that \s-1GCC\s0's optimizers are unable to handle the code
-effectively. Often, the problem is that your code is too big or too
-complex; \s-1GCC\s0 refuses to optimize programs when the optimization
-itself is likely to take inordinate amounts of time.
-.IP "\fB\-Wpointer\-sign\fR (C and Objective-C only)" 4
-.IX Item "-Wpointer-sign (C and Objective-C only)"
-Warn for pointer argument passing or assignment with different signedness.
-This option is only supported for C and Objective-C. It is implied by
-\&\fB\-Wall\fR and by \fB\-Wpedantic\fR, which can be disabled with
-\&\fB\-Wno\-pointer\-sign\fR.
-.IP "\fB\-Wstack\-protector\fR" 4
-.IX Item "-Wstack-protector"
-This option is only active when \fB\-fstack\-protector\fR is active. It
-warns about functions that are not protected against stack smashing.
-.IP "\fB\-Woverlength\-strings\fR" 4
-.IX Item "-Woverlength-strings"
-Warn about string constants that are longer than the \*(L"minimum
-maximum\*(R" length specified in the C standard. Modern compilers
-generally allow string constants that are much longer than the
-standard's minimum limit, but very portable programs should avoid
-using longer strings.
-.Sp
-The limit applies \fIafter\fR string constant concatenation, and does
-not count the trailing \s-1NUL. \s0 In C90, the limit was 509 characters; in
-C99, it was raised to 4095. \*(C+98 does not specify a normative
-minimum maximum, so we do not diagnose overlength strings in \*(C+.
-.Sp
-This option is implied by \fB\-Wpedantic\fR, and can be disabled with
-\&\fB\-Wno\-overlength\-strings\fR.
-.IP "\fB\-Wunsuffixed\-float\-constants\fR (C and Objective-C only)" 4
-.IX Item "-Wunsuffixed-float-constants (C and Objective-C only)"
-Issue a warning for any floating constant that does not have
-a suffix. When used together with \fB\-Wsystem\-headers\fR it
-warns about such constants in system header files. This can be useful
-when preparing code to use with the \f(CW\*(C`FLOAT_CONST_DECIMAL64\*(C'\fR pragma
-from the decimal floating-point extension to C99.
-.SS "Options for Debugging Your Program or \s-1GCC\s0"
-.IX Subsection "Options for Debugging Your Program or GCC"
-\&\s-1GCC\s0 has various special options that are used for debugging
-either your program or \s-1GCC:\s0
-.IP "\fB\-g\fR" 4
-.IX Item "-g"
-Produce debugging information in the operating system's native format
-(stabs, \s-1COFF, XCOFF,\s0 or \s-1DWARF 2\s0). \s-1GDB\s0 can work with this debugging
-information.
-.Sp
-On most systems that use stabs format, \fB\-g\fR enables use of extra
-debugging information that only \s-1GDB\s0 can use; this extra information
-makes debugging work better in \s-1GDB\s0 but probably makes other debuggers
-crash or
-refuse to read the program. If you want to control for certain whether
-to generate the extra information, use \fB\-gstabs+\fR, \fB\-gstabs\fR,
-\&\fB\-gxcoff+\fR, \fB\-gxcoff\fR, or \fB\-gvms\fR (see below).
-.Sp
-\&\s-1GCC\s0 allows you to use \fB\-g\fR with
-\&\fB\-O\fR. The shortcuts taken by optimized code may occasionally
-produce surprising results: some variables you declared may not exist
-at all; flow of control may briefly move where you did not expect it;
-some statements may not be executed because they compute constant
-results or their values are already at hand; some statements may
-execute in different places because they have been moved out of loops.
-.Sp
-Nevertheless it proves possible to debug optimized output. This makes
-it reasonable to use the optimizer for programs that might have bugs.
-.Sp
-The following options are useful when \s-1GCC\s0 is generated with the
-capability for more than one debugging format.
-.IP "\fB\-gsplit\-dwarf\fR" 4
-.IX Item "-gsplit-dwarf"
-Separate as much dwarf debugging information as possible into a
-separate output file with the extension .dwo. This option allows
-the build system to avoid linking files with debug information. To
-be useful, this option requires a debugger capable of reading .dwo
-files.
-.IP "\fB\-ggdb\fR" 4
-.IX Item "-ggdb"
-Produce debugging information for use by \s-1GDB. \s0 This means to use the
-most expressive format available (\s-1DWARF 2,\s0 stabs, or the native format
-if neither of those are supported), including \s-1GDB\s0 extensions if at all
-possible.
-.IP "\fB\-gpubnames\fR" 4
-.IX Item "-gpubnames"
-Generate dwarf .debug_pubnames and .debug_pubtypes sections.
-.IP "\fB\-ggnu\-pubnames\fR" 4
-.IX Item "-ggnu-pubnames"
-Generate .debug_pubnames and .debug_pubtypes sections in a format
-suitable for conversion into a \s-1GDB\s0 index. This option is only useful
-with a linker that can produce \s-1GDB\s0 index version 7.
-.IP "\fB\-gstabs\fR" 4
-.IX Item "-gstabs"
-Produce debugging information in stabs format (if that is supported),
-without \s-1GDB\s0 extensions. This is the format used by \s-1DBX\s0 on most \s-1BSD\s0
-systems. On \s-1MIPS,\s0 Alpha and System V Release 4 systems this option
-produces stabs debugging output that is not understood by \s-1DBX\s0 or \s-1SDB.\s0
-On System V Release 4 systems this option requires the \s-1GNU\s0 assembler.
-.IP "\fB\-feliminate\-unused\-debug\-symbols\fR" 4
-.IX Item "-feliminate-unused-debug-symbols"
-Produce debugging information in stabs format (if that is supported),
-for only symbols that are actually used.
-.IP "\fB\-femit\-class\-debug\-always\fR" 4
-.IX Item "-femit-class-debug-always"
-Instead of emitting debugging information for a \*(C+ class in only one
-object file, emit it in all object files using the class. This option
-should be used only with debuggers that are unable to handle the way \s-1GCC\s0
-normally emits debugging information for classes because using this
-option increases the size of debugging information by as much as a
-factor of two.
-.IP "\fB\-fdebug\-types\-section\fR" 4
-.IX Item "-fdebug-types-section"
-When using \s-1DWARF\s0 Version 4 or higher, type DIEs can be put into
-their own \f(CW\*(C`.debug_types\*(C'\fR section instead of making them part of the
-\&\f(CW\*(C`.debug_info\*(C'\fR section. It is more efficient to put them in a separate
-comdat sections since the linker can then remove duplicates.
-But not all \s-1DWARF\s0 consumers support \f(CW\*(C`.debug_types\*(C'\fR sections yet
-and on some objects \f(CW\*(C`.debug_types\*(C'\fR produces larger instead of smaller
-debugging information.
-.IP "\fB\-gstabs+\fR" 4
-.IX Item "-gstabs+"
-Produce debugging information in stabs format (if that is supported),
-using \s-1GNU\s0 extensions understood only by the \s-1GNU\s0 debugger (\s-1GDB\s0). The
-use of these extensions is likely to make other debuggers crash or
-refuse to read the program.
-.IP "\fB\-gcoff\fR" 4
-.IX Item "-gcoff"
-Produce debugging information in \s-1COFF\s0 format (if that is supported).
-This is the format used by \s-1SDB\s0 on most System V systems prior to
-System V Release 4.
-.IP "\fB\-gxcoff\fR" 4
-.IX Item "-gxcoff"
-Produce debugging information in \s-1XCOFF\s0 format (if that is supported).
-This is the format used by the \s-1DBX\s0 debugger on \s-1IBM RS/6000\s0 systems.
-.IP "\fB\-gxcoff+\fR" 4
-.IX Item "-gxcoff+"
-Produce debugging information in \s-1XCOFF\s0 format (if that is supported),
-using \s-1GNU\s0 extensions understood only by the \s-1GNU\s0 debugger (\s-1GDB\s0). The
-use of these extensions is likely to make other debuggers crash or
-refuse to read the program, and may cause assemblers other than the \s-1GNU\s0
-assembler (\s-1GAS\s0) to fail with an error.
-.IP "\fB\-gdwarf\-\fR\fIversion\fR" 4
-.IX Item "-gdwarf-version"
-Produce debugging information in \s-1DWARF\s0 format (if that is supported).
-The value of \fIversion\fR may be either 2, 3 or 4; the default version
-for most targets is 4.
-.Sp
-Note that with \s-1DWARF\s0 Version 2, some ports require and always
-use some non-conflicting \s-1DWARF 3\s0 extensions in the unwind tables.
-.Sp
-Version 4 may require \s-1GDB 7.0\s0 and \fB\-fvar\-tracking\-assignments\fR
-for maximum benefit.
-.IP "\fB\-grecord\-gcc\-switches\fR" 4
-.IX Item "-grecord-gcc-switches"
-This switch causes the command-line options used to invoke the
-compiler that may affect code generation to be appended to the
-DW_AT_producer attribute in \s-1DWARF\s0 debugging information. The options
-are concatenated with spaces separating them from each other and from
-the compiler version. See also \fB\-frecord\-gcc\-switches\fR for another
-way of storing compiler options into the object file. This is the default.
-.IP "\fB\-gno\-record\-gcc\-switches\fR" 4
-.IX Item "-gno-record-gcc-switches"
-Disallow appending command-line options to the DW_AT_producer attribute
-in \s-1DWARF\s0 debugging information.
-.IP "\fB\-gstrict\-dwarf\fR" 4
-.IX Item "-gstrict-dwarf"
-Disallow using extensions of later \s-1DWARF\s0 standard version than selected
-with \fB\-gdwarf\-\fR\fIversion\fR. On most targets using non-conflicting
-\&\s-1DWARF\s0 extensions from later standard versions is allowed.
-.IP "\fB\-gno\-strict\-dwarf\fR" 4
-.IX Item "-gno-strict-dwarf"
-Allow using extensions of later \s-1DWARF\s0 standard version than selected with
-\&\fB\-gdwarf\-\fR\fIversion\fR.
-.IP "\fB\-gvms\fR" 4
-.IX Item "-gvms"
-Produce debugging information in Alpha/VMS debug format (if that is
-supported). This is the format used by \s-1DEBUG\s0 on Alpha/VMS systems.
-.IP "\fB\-g\fR\fIlevel\fR" 4
-.IX Item "-glevel"
-.PD 0
-.IP "\fB\-ggdb\fR\fIlevel\fR" 4
-.IX Item "-ggdblevel"
-.IP "\fB\-gstabs\fR\fIlevel\fR" 4
-.IX Item "-gstabslevel"
-.IP "\fB\-gcoff\fR\fIlevel\fR" 4
-.IX Item "-gcofflevel"
-.IP "\fB\-gxcoff\fR\fIlevel\fR" 4
-.IX Item "-gxcofflevel"
-.IP "\fB\-gvms\fR\fIlevel\fR" 4
-.IX Item "-gvmslevel"
-.PD
-Request debugging information and also use \fIlevel\fR to specify how
-much information. The default level is 2.
-.Sp
-Level 0 produces no debug information at all. Thus, \fB\-g0\fR negates
-\&\fB\-g\fR.
-.Sp
-Level 1 produces minimal information, enough for making backtraces in
-parts of the program that you don't plan to debug. This includes
-descriptions of functions and external variables, and line number
-tables, but no information about local variables.
-.Sp
-Level 3 includes extra information, such as all the macro definitions
-present in the program. Some debuggers support macro expansion when
-you use \fB\-g3\fR.
-.Sp
-\&\fB\-gdwarf\-2\fR does not accept a concatenated debug level, because
-\&\s-1GCC\s0 used to support an option \fB\-gdwarf\fR that meant to generate
-debug information in version 1 of the \s-1DWARF\s0 format (which is very
-different from version 2), and it would have been too confusing. That
-debug format is long obsolete, but the option cannot be changed now.
-Instead use an additional \fB\-g\fR\fIlevel\fR option to change the
-debug level for \s-1DWARF.\s0
-.IP "\fB\-gtoggle\fR" 4
-.IX Item "-gtoggle"
-Turn off generation of debug info, if leaving out this option
-generates it, or turn it on at level 2 otherwise. The position of this
-argument in the command line does not matter; it takes effect after all
-other options are processed, and it does so only once, no matter how
-many times it is given. This is mainly intended to be used with
-\&\fB\-fcompare\-debug\fR.
-.IP "\fB\-fsanitize=address\fR" 4
-.IX Item "-fsanitize=address"
-Enable AddressSanitizer, a fast memory error detector.
-Memory access instructions will be instrumented to detect
-out-of-bounds and use-after-free bugs.
-See <\fBhttp://code.google.com/p/address\-sanitizer/\fR> for
-more details. The run-time behavior can be influenced using the
-\&\fB\s-1ASAN_OPTIONS\s0\fR environment variable; see
-<\fBhttps://code.google.com/p/address\-sanitizer/wiki/Flags#Run\-time_flags\fR> for
-a list of supported options.
-.IP "\fB\-fsanitize=thread\fR" 4
-.IX Item "-fsanitize=thread"
-Enable ThreadSanitizer, a fast data race detector.
-Memory access instructions will be instrumented to detect
-data race bugs. See <\fBhttp://code.google.com/p/thread\-sanitizer/\fR> for more
-details. The run-time behavior can be influenced using the \fB\s-1TSAN_OPTIONS\s0\fR
-environment variable; see
-<\fBhttps://code.google.com/p/thread\-sanitizer/wiki/Flags\fR> for a list of
-supported options.
-.IP "\fB\-fsanitize=leak\fR" 4
-.IX Item "-fsanitize=leak"
-Enable LeakSanitizer, a memory leak detector.
-This option only matters for linking of executables and if neither
-\&\fB\-fsanitize=address\fR nor \fB\-fsanitize=thread\fR is used. In that
-case it will link the executable against a library that overrides \f(CW\*(C`malloc\*(C'\fR
-and other allocator functions. See
-<\fBhttps://code.google.com/p/address\-sanitizer/wiki/LeakSanitizer\fR> for more
-details. The run-time behavior can be influenced using the
-\&\fB\s-1LSAN_OPTIONS\s0\fR environment variable.
-.IP "\fB\-fsanitize=undefined\fR" 4
-.IX Item "-fsanitize=undefined"
-Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
-Various computations will be instrumented to detect undefined behavior
-at runtime. Current suboptions are:
-.RS 4
-.IP "\fB\-fsanitize=shift\fR" 4
-.IX Item "-fsanitize=shift"
-This option enables checking that the result of a shift operation is
-not undefined. Note that what exactly is considered undefined differs
-slightly between C and \*(C+, as well as between \s-1ISO C90\s0 and C99, etc.
-.IP "\fB\-fsanitize=integer\-divide\-by\-zero\fR" 4
-.IX Item "-fsanitize=integer-divide-by-zero"
-Detect integer division by zero as well as \f(CW\*(C`INT_MIN / \-1\*(C'\fR division.
-.IP "\fB\-fsanitize=unreachable\fR" 4
-.IX Item "-fsanitize=unreachable"
-With this option, the compiler will turn the \f(CW\*(C`_\|_builtin_unreachable\*(C'\fR
-call into a diagnostics message call instead. When reaching the
-\&\f(CW\*(C`_\|_builtin_unreachable\*(C'\fR call, the behavior is undefined.
-.IP "\fB\-fsanitize=vla\-bound\fR" 4
-.IX Item "-fsanitize=vla-bound"
-This option instructs the compiler to check that the size of a variable
-length array is positive. This option does not have any effect in
-\&\fB\-std=c++1y\fR mode, as the standard requires the exception be thrown
-instead.
-.IP "\fB\-fsanitize=null\fR" 4
-.IX Item "-fsanitize=null"
-This option enables pointer checking. Particularly, the application
-built with this option turned on will issue an error message when it
-tries to dereference a \s-1NULL\s0 pointer, or if a reference (possibly an
-rvalue reference) is bound to a \s-1NULL\s0 pointer.
-.IP "\fB\-fsanitize=return\fR" 4
-.IX Item "-fsanitize=return"
-This option enables return statement checking. Programs
-built with this option turned on will issue an error message
-when the end of a non-void function is reached without actually
-returning a value. This option works in \*(C+ only.
-.IP "\fB\-fsanitize=signed\-integer\-overflow\fR" 4
-.IX Item "-fsanitize=signed-integer-overflow"
-This option enables signed integer overflow checking. We check that
-the result of \f(CW\*(C`+\*(C'\fR, \f(CW\*(C`*\*(C'\fR, and both unary and binary \f(CW\*(C`\-\*(C'\fR
-does not overflow in the signed arithmetics. Note, integer promotion
-rules must be taken into account. That is, the following is not an
-overflow:
-.Sp
-.Vb 2
-\& signed char a = SCHAR_MAX;
-\& a++;
-.Ve
-.RE
-.RS 4
-.Sp
-While \fB\-ftrapv\fR causes traps for signed overflows to be emitted,
-\&\fB\-fsanitize=undefined\fR gives a diagnostic message.
-This currently works only for the C family of languages.
-.RE
-.IP "\fB\-fdump\-final\-insns\fR[\fB=\fR\fIfile\fR]" 4
-.IX Item "-fdump-final-insns[=file]"
-Dump the final internal representation (\s-1RTL\s0) to \fIfile\fR. If the
-optional argument is omitted (or if \fIfile\fR is \f(CW\*(C`.\*(C'\fR), the name
-of the dump file is determined by appending \f(CW\*(C`.gkd\*(C'\fR to the
-compilation output file name.
-.IP "\fB\-fcompare\-debug\fR[\fB=\fR\fIopts\fR]" 4
-.IX Item "-fcompare-debug[=opts]"
-If no error occurs during compilation, run the compiler a second time,
-adding \fIopts\fR and \fB\-fcompare\-debug\-second\fR to the arguments
-passed to the second compilation. Dump the final internal
-representation in both compilations, and print an error if they differ.
-.Sp
-If the equal sign is omitted, the default \fB\-gtoggle\fR is used.
-.Sp
-The environment variable \fB\s-1GCC_COMPARE_DEBUG\s0\fR, if defined, non-empty
-and nonzero, implicitly enables \fB\-fcompare\-debug\fR. If
-\&\fB\s-1GCC_COMPARE_DEBUG\s0\fR is defined to a string starting with a dash,
-then it is used for \fIopts\fR, otherwise the default \fB\-gtoggle\fR
-is used.
-.Sp
-\&\fB\-fcompare\-debug=\fR, with the equal sign but without \fIopts\fR,
-is equivalent to \fB\-fno\-compare\-debug\fR, which disables the dumping
-of the final representation and the second compilation, preventing even
-\&\fB\s-1GCC_COMPARE_DEBUG\s0\fR from taking effect.
-.Sp
-To verify full coverage during \fB\-fcompare\-debug\fR testing, set
-\&\fB\s-1GCC_COMPARE_DEBUG\s0\fR to say \fB\-fcompare\-debug\-not\-overridden\fR,
-which \s-1GCC\s0 rejects as an invalid option in any actual compilation
-(rather than preprocessing, assembly or linking). To get just a
-warning, setting \fB\s-1GCC_COMPARE_DEBUG\s0\fR to \fB\-w%n\-fcompare\-debug
-not overridden\fR will do.
-.IP "\fB\-fcompare\-debug\-second\fR" 4
-.IX Item "-fcompare-debug-second"
-This option is implicitly passed to the compiler for the second
-compilation requested by \fB\-fcompare\-debug\fR, along with options to
-silence warnings, and omitting other options that would cause
-side-effect compiler outputs to files or to the standard output. Dump
-files and preserved temporary files are renamed so as to contain the
-\&\f(CW\*(C`.gk\*(C'\fR additional extension during the second compilation, to avoid
-overwriting those generated by the first.
-.Sp
-When this option is passed to the compiler driver, it causes the
-\&\fIfirst\fR compilation to be skipped, which makes it useful for little
-other than debugging the compiler proper.
-.IP "\fB\-feliminate\-dwarf2\-dups\fR" 4
-.IX Item "-feliminate-dwarf2-dups"
-Compress \s-1DWARF 2\s0 debugging information by eliminating duplicated
-information about each symbol. This option only makes sense when
-generating \s-1DWARF 2\s0 debugging information with \fB\-gdwarf\-2\fR.
-.IP "\fB\-femit\-struct\-debug\-baseonly\fR" 4
-.IX Item "-femit-struct-debug-baseonly"
-Emit debug information for struct-like types
-only when the base name of the compilation source file
-matches the base name of file in which the struct is defined.
-.Sp
-This option substantially reduces the size of debugging information,
-but at significant potential loss in type information to the debugger.
-See \fB\-femit\-struct\-debug\-reduced\fR for a less aggressive option.
-See \fB\-femit\-struct\-debug\-detailed\fR for more detailed control.
-.Sp
-This option works only with \s-1DWARF 2.\s0
-.IP "\fB\-femit\-struct\-debug\-reduced\fR" 4
-.IX Item "-femit-struct-debug-reduced"
-Emit debug information for struct-like types
-only when the base name of the compilation source file
-matches the base name of file in which the type is defined,
-unless the struct is a template or defined in a system header.
-.Sp
-This option significantly reduces the size of debugging information,
-with some potential loss in type information to the debugger.
-See \fB\-femit\-struct\-debug\-baseonly\fR for a more aggressive option.
-See \fB\-femit\-struct\-debug\-detailed\fR for more detailed control.
-.Sp
-This option works only with \s-1DWARF 2.\s0
-.IP "\fB\-femit\-struct\-debug\-detailed\fR[\fB=\fR\fIspec-list\fR]" 4
-.IX Item "-femit-struct-debug-detailed[=spec-list]"
-Specify the struct-like types
-for which the compiler generates debug information.
-The intent is to reduce duplicate struct debug information
-between different object files within the same program.
-.Sp
-This option is a detailed version of
-\&\fB\-femit\-struct\-debug\-reduced\fR and \fB\-femit\-struct\-debug\-baseonly\fR,
-which serves for most needs.
-.Sp
-A specification has the syntax[\fBdir:\fR|\fBind:\fR][\fBord:\fR|\fBgen:\fR](\fBany\fR|\fBsys\fR|\fBbase\fR|\fBnone\fR)
-.Sp
-The optional first word limits the specification to
-structs that are used directly (\fBdir:\fR) or used indirectly (\fBind:\fR).
-A struct type is used directly when it is the type of a variable, member.
-Indirect uses arise through pointers to structs.
-That is, when use of an incomplete struct is valid, the use is indirect.
-An example is
-\&\fBstruct one direct; struct two * indirect;\fR.
-.Sp
-The optional second word limits the specification to
-ordinary structs (\fBord:\fR) or generic structs (\fBgen:\fR).
-Generic structs are a bit complicated to explain.
-For \*(C+, these are non-explicit specializations of template classes,
-or non-template classes within the above.
-Other programming languages have generics,
-but \fB\-femit\-struct\-debug\-detailed\fR does not yet implement them.
-.Sp
-The third word specifies the source files for those
-structs for which the compiler should emit debug information.
-The values \fBnone\fR and \fBany\fR have the normal meaning.
-The value \fBbase\fR means that
-the base of name of the file in which the type declaration appears
-must match the base of the name of the main compilation file.
-In practice, this means that when compiling \fIfoo.c\fR, debug information
-is generated for types declared in that file and \fIfoo.h\fR,
-but not other header files.
-The value \fBsys\fR means those types satisfying \fBbase\fR
-or declared in system or compiler headers.
-.Sp
-You may need to experiment to determine the best settings for your application.
-.Sp
-The default is \fB\-femit\-struct\-debug\-detailed=all\fR.
-.Sp
-This option works only with \s-1DWARF 2.\s0
-.IP "\fB\-fno\-merge\-debug\-strings\fR" 4
-.IX Item "-fno-merge-debug-strings"
-Direct the linker to not merge together strings in the debugging
-information that are identical in different object files. Merging is
-not supported by all assemblers or linkers. Merging decreases the size
-of the debug information in the output file at the cost of increasing
-link processing time. Merging is enabled by default.
-.IP "\fB\-fdebug\-prefix\-map=\fR\fIold\fR\fB=\fR\fInew\fR" 4
-.IX Item "-fdebug-prefix-map=old=new"
-When compiling files in directory \fI\fIold\fI\fR, record debugging
-information describing them as in \fI\fInew\fI\fR instead.
-.IP "\fB\-fno\-dwarf2\-cfi\-asm\fR" 4
-.IX Item "-fno-dwarf2-cfi-asm"
-Emit \s-1DWARF 2\s0 unwind info as compiler generated \f(CW\*(C`.eh_frame\*(C'\fR section
-instead of using \s-1GAS \s0\f(CW\*(C`.cfi_*\*(C'\fR directives.
-.IP "\fB\-p\fR" 4
-.IX Item "-p"
-Generate extra code to write profile information suitable for the
-analysis program \fBprof\fR. You must use this option when compiling
-the source files you want data about, and you must also use it when
-linking.
-.IP "\fB\-pg\fR" 4
-.IX Item "-pg"
-Generate extra code to write profile information suitable for the
-analysis program \fBgprof\fR. You must use this option when compiling
-the source files you want data about, and you must also use it when
-linking.
-.IP "\fB\-Q\fR" 4
-.IX Item "-Q"
-Makes the compiler print out each function name as it is compiled, and
-print some statistics about each pass when it finishes.
-.IP "\fB\-ftime\-report\fR" 4
-.IX Item "-ftime-report"
-Makes the compiler print some statistics about the time consumed by each
-pass when it finishes.
-.IP "\fB\-fmem\-report\fR" 4
-.IX Item "-fmem-report"
-Makes the compiler print some statistics about permanent memory
-allocation when it finishes.
-.IP "\fB\-fmem\-report\-wpa\fR" 4
-.IX Item "-fmem-report-wpa"
-Makes the compiler print some statistics about permanent memory
-allocation for the \s-1WPA\s0 phase only.
-.IP "\fB\-fpre\-ipa\-mem\-report\fR" 4
-.IX Item "-fpre-ipa-mem-report"
-.PD 0
-.IP "\fB\-fpost\-ipa\-mem\-report\fR" 4
-.IX Item "-fpost-ipa-mem-report"
-.PD
-Makes the compiler print some statistics about permanent memory
-allocation before or after interprocedural optimization.
-.IP "\fB\-fprofile\-report\fR" 4
-.IX Item "-fprofile-report"
-Makes the compiler print some statistics about consistency of the
-(estimated) profile and effect of individual passes.
-.IP "\fB\-fstack\-usage\fR" 4
-.IX Item "-fstack-usage"
-Makes the compiler output stack usage information for the program, on a
-per-function basis. The filename for the dump is made by appending
-\&\fI.su\fR to the \fIauxname\fR. \fIauxname\fR is generated from the name of
-the output file, if explicitly specified and it is not an executable,
-otherwise it is the basename of the source file. An entry is made up
-of three fields:
-.RS 4
-.IP "\(bu" 4
-The name of the function.
-.IP "\(bu" 4
-A number of bytes.
-.IP "\(bu" 4
-One or more qualifiers: \f(CW\*(C`static\*(C'\fR, \f(CW\*(C`dynamic\*(C'\fR, \f(CW\*(C`bounded\*(C'\fR.
-.RE
-.RS 4
-.Sp
-The qualifier \f(CW\*(C`static\*(C'\fR means that the function manipulates the stack
-statically: a fixed number of bytes are allocated for the frame on function
-entry and released on function exit; no stack adjustments are otherwise made
-in the function. The second field is this fixed number of bytes.
-.Sp
-The qualifier \f(CW\*(C`dynamic\*(C'\fR means that the function manipulates the stack
-dynamically: in addition to the static allocation described above, stack
-adjustments are made in the body of the function, for example to push/pop
-arguments around function calls. If the qualifier \f(CW\*(C`bounded\*(C'\fR is also
-present, the amount of these adjustments is bounded at compile time and
-the second field is an upper bound of the total amount of stack used by
-the function. If it is not present, the amount of these adjustments is
-not bounded at compile time and the second field only represents the
-bounded part.
-.RE
-.IP "\fB\-fprofile\-arcs\fR" 4
-.IX Item "-fprofile-arcs"
-Add code so that program flow \fIarcs\fR are instrumented. During
-execution the program records how many times each branch and call is
-executed and how many times it is taken or returns. When the compiled
-program exits it saves this data to a file called
-\&\fI\fIauxname\fI.gcda\fR for each source file. The data may be used for
-profile-directed optimizations (\fB\-fbranch\-probabilities\fR), or for
-test coverage analysis (\fB\-ftest\-coverage\fR). Each object file's
-\&\fIauxname\fR is generated from the name of the output file, if
-explicitly specified and it is not the final executable, otherwise it is
-the basename of the source file. In both cases any suffix is removed
-(e.g. \fIfoo.gcda\fR for input file \fIdir/foo.c\fR, or
-\&\fIdir/foo.gcda\fR for output file specified as \fB\-o dir/foo.o\fR).
-.IP "\fB\-\-coverage\fR" 4
-.IX Item "--coverage"
-This option is used to compile and link code instrumented for coverage
-analysis. The option is a synonym for \fB\-fprofile\-arcs\fR
-\&\fB\-ftest\-coverage\fR (when compiling) and \fB\-lgcov\fR (when
-linking). See the documentation for those options for more details.
-.RS 4
-.IP "\(bu" 4
-Compile the source files with \fB\-fprofile\-arcs\fR plus optimization
-and code generation options. For test coverage analysis, use the
-additional \fB\-ftest\-coverage\fR option. You do not need to profile
-every source file in a program.
-.IP "\(bu" 4
-Link your object files with \fB\-lgcov\fR or \fB\-fprofile\-arcs\fR
-(the latter implies the former).
-.IP "\(bu" 4
-Run the program on a representative workload to generate the arc profile
-information. This may be repeated any number of times. You can run
-concurrent instances of your program, and provided that the file system
-supports locking, the data files will be correctly updated. Also
-\&\f(CW\*(C`fork\*(C'\fR calls are detected and correctly handled (double counting
-will not happen).
-.IP "\(bu" 4
-For profile-directed optimizations, compile the source files again with
-the same optimization and code generation options plus
-\&\fB\-fbranch\-probabilities\fR.
-.IP "\(bu" 4
-For test coverage analysis, use \fBgcov\fR to produce human readable
-information from the \fI.gcno\fR and \fI.gcda\fR files. Refer to the
-\&\fBgcov\fR documentation for further information.
-.RE
-.RS 4
-.Sp
-With \fB\-fprofile\-arcs\fR, for each function of your program \s-1GCC\s0
-creates a program flow graph, then finds a spanning tree for the graph.
-Only arcs that are not on the spanning tree have to be instrumented: the
-compiler adds code to count the number of times that these arcs are
-executed. When an arc is the only exit or only entrance to a block, the
-instrumentation code can be added to the block; otherwise, a new basic
-block must be created to hold the instrumentation code.
-.RE
-.IP "\fB\-ftest\-coverage\fR" 4
-.IX Item "-ftest-coverage"
-Produce a notes file that the \fBgcov\fR code-coverage utility can use to
-show program coverage. Each source file's note file is called
-\&\fI\fIauxname\fI.gcno\fR. Refer to the \fB\-fprofile\-arcs\fR option
-above for a description of \fIauxname\fR and instructions on how to
-generate test coverage data. Coverage data matches the source files
-more closely if you do not optimize.
-.IP "\fB\-fdbg\-cnt\-list\fR" 4
-.IX Item "-fdbg-cnt-list"
-Print the name and the counter upper bound for all debug counters.
-.IP "\fB\-fdbg\-cnt=\fR\fIcounter-value-list\fR" 4
-.IX Item "-fdbg-cnt=counter-value-list"
-Set the internal debug counter upper bound. \fIcounter-value-list\fR
-is a comma-separated list of \fIname\fR:\fIvalue\fR pairs
-which sets the upper bound of each debug counter \fIname\fR to \fIvalue\fR.
-All debug counters have the initial upper bound of \f(CW\*(C`UINT_MAX\*(C'\fR;
-thus \f(CW\*(C`dbg_cnt()\*(C'\fR returns true always unless the upper bound
-is set by this option.
-For example, with \fB\-fdbg\-cnt=dce:10,tail_call:0\fR,
-\&\f(CW\*(C`dbg_cnt(dce)\*(C'\fR returns true only for first 10 invocations.
-.IP "\fB\-fenable\-\fR\fIkind\fR\fB\-\fR\fIpass\fR" 4
-.IX Item "-fenable-kind-pass"
-.PD 0
-.IP "\fB\-fdisable\-\fR\fIkind\fR\fB\-\fR\fIpass\fR\fB=\fR\fIrange-list\fR" 4
-.IX Item "-fdisable-kind-pass=range-list"
-.PD
-This is a set of options that are used to explicitly disable/enable
-optimization passes. These options are intended for use for debugging \s-1GCC.\s0
-Compiler users should use regular options for enabling/disabling
-passes instead.
-.RS 4
-.IP "\fB\-fdisable\-ipa\-\fR\fIpass\fR" 4
-.IX Item "-fdisable-ipa-pass"
-Disable \s-1IPA\s0 pass \fIpass\fR. \fIpass\fR is the pass name. If the same pass is
-statically invoked in the compiler multiple times, the pass name should be
-appended with a sequential number starting from 1.
-.IP "\fB\-fdisable\-rtl\-\fR\fIpass\fR" 4
-.IX Item "-fdisable-rtl-pass"
-.PD 0
-.IP "\fB\-fdisable\-rtl\-\fR\fIpass\fR\fB=\fR\fIrange-list\fR" 4
-.IX Item "-fdisable-rtl-pass=range-list"
-.PD
-Disable \s-1RTL\s0 pass \fIpass\fR. \fIpass\fR is the pass name. If the same pass is
-statically invoked in the compiler multiple times, the pass name should be
-appended with a sequential number starting from 1. \fIrange-list\fR is a
-comma-separated list of function ranges or assembler names. Each range is a number
-pair separated by a colon. The range is inclusive in both ends. If the range
-is trivial, the number pair can be simplified as a single number. If the
-function's call graph node's \fIuid\fR falls within one of the specified ranges,
-the \fIpass\fR is disabled for that function. The \fIuid\fR is shown in the
-function header of a dump file, and the pass names can be dumped by using
-option \fB\-fdump\-passes\fR.
-.IP "\fB\-fdisable\-tree\-\fR\fIpass\fR" 4
-.IX Item "-fdisable-tree-pass"
-.PD 0
-.IP "\fB\-fdisable\-tree\-\fR\fIpass\fR\fB=\fR\fIrange-list\fR" 4
-.IX Item "-fdisable-tree-pass=range-list"
-.PD
-Disable tree pass \fIpass\fR. See \fB\-fdisable\-rtl\fR for the description of
-option arguments.
-.IP "\fB\-fenable\-ipa\-\fR\fIpass\fR" 4
-.IX Item "-fenable-ipa-pass"
-Enable \s-1IPA\s0 pass \fIpass\fR. \fIpass\fR is the pass name. If the same pass is
-statically invoked in the compiler multiple times, the pass name should be
-appended with a sequential number starting from 1.
-.IP "\fB\-fenable\-rtl\-\fR\fIpass\fR" 4
-.IX Item "-fenable-rtl-pass"
-.PD 0
-.IP "\fB\-fenable\-rtl\-\fR\fIpass\fR\fB=\fR\fIrange-list\fR" 4
-.IX Item "-fenable-rtl-pass=range-list"
-.PD
-Enable \s-1RTL\s0 pass \fIpass\fR. See \fB\-fdisable\-rtl\fR for option argument
-description and examples.
-.IP "\fB\-fenable\-tree\-\fR\fIpass\fR" 4
-.IX Item "-fenable-tree-pass"
-.PD 0
-.IP "\fB\-fenable\-tree\-\fR\fIpass\fR\fB=\fR\fIrange-list\fR" 4
-.IX Item "-fenable-tree-pass=range-list"
-.PD
-Enable tree pass \fIpass\fR. See \fB\-fdisable\-rtl\fR for the description
-of option arguments.
-.RE
-.RS 4
-.Sp
-Here are some examples showing uses of these options.
-.Sp
-.Vb 10
-\& # disable ccp1 for all functions
-\& \-fdisable\-tree\-ccp1
-\& # disable complete unroll for function whose cgraph node uid is 1
-\& \-fenable\-tree\-cunroll=1
-\& # disable gcse2 for functions at the following ranges [1,1],
-\& # [300,400], and [400,1000]
-\& # disable gcse2 for functions foo and foo2
-\& \-fdisable\-rtl\-gcse2=foo,foo2
-\& # disable early inlining
-\& \-fdisable\-tree\-einline
-\& # disable ipa inlining
-\& \-fdisable\-ipa\-inline
-\& # enable tree full unroll
-\& \-fenable\-tree\-unroll
-.Ve
-.RE
-.IP "\fB\-d\fR\fIletters\fR" 4
-.IX Item "-dletters"
-.PD 0
-.IP "\fB\-fdump\-rtl\-\fR\fIpass\fR" 4
-.IX Item "-fdump-rtl-pass"
-.IP "\fB\-fdump\-rtl\-\fR\fIpass\fR\fB=\fR\fIfilename\fR" 4
-.IX Item "-fdump-rtl-pass=filename"
-.PD
-Says to make debugging dumps during compilation at times specified by
-\&\fIletters\fR. This is used for debugging the RTL-based passes of the
-compiler. The file names for most of the dumps are made by appending
-a pass number and a word to the \fIdumpname\fR, and the files are
-created in the directory of the output file. In case of
-\&\fB=\fR\fIfilename\fR option, the dump is output on the given file
-instead of the pass numbered dump files. Note that the pass number is
-computed statically as passes get registered into the pass manager.
-Thus the numbering is not related to the dynamic order of execution of
-passes. In particular, a pass installed by a plugin could have a
-number over 200 even if it executed quite early. \fIdumpname\fR is
-generated from the name of the output file, if explicitly specified
-and it is not an executable, otherwise it is the basename of the
-source file. These switches may have different effects when
-\&\fB\-E\fR is used for preprocessing.
-.Sp
-Debug dumps can be enabled with a \fB\-fdump\-rtl\fR switch or some
-\&\fB\-d\fR option \fIletters\fR. Here are the possible
-letters for use in \fIpass\fR and \fIletters\fR, and their meanings:
-.RS 4
-.IP "\fB\-fdump\-rtl\-alignments\fR" 4
-.IX Item "-fdump-rtl-alignments"
-Dump after branch alignments have been computed.
-.IP "\fB\-fdump\-rtl\-asmcons\fR" 4
-.IX Item "-fdump-rtl-asmcons"
-Dump after fixing rtl statements that have unsatisfied in/out constraints.
-.IP "\fB\-fdump\-rtl\-auto_inc_dec\fR" 4
-.IX Item "-fdump-rtl-auto_inc_dec"
-Dump after auto-inc-dec discovery. This pass is only run on
-architectures that have auto inc or auto dec instructions.
-.IP "\fB\-fdump\-rtl\-barriers\fR" 4
-.IX Item "-fdump-rtl-barriers"
-Dump after cleaning up the barrier instructions.
-.IP "\fB\-fdump\-rtl\-bbpart\fR" 4
-.IX Item "-fdump-rtl-bbpart"
-Dump after partitioning hot and cold basic blocks.
-.IP "\fB\-fdump\-rtl\-bbro\fR" 4
-.IX Item "-fdump-rtl-bbro"
-Dump after block reordering.
-.IP "\fB\-fdump\-rtl\-btl1\fR" 4
-.IX Item "-fdump-rtl-btl1"
-.PD 0
-.IP "\fB\-fdump\-rtl\-btl2\fR" 4
-.IX Item "-fdump-rtl-btl2"
-.PD
-\&\fB\-fdump\-rtl\-btl1\fR and \fB\-fdump\-rtl\-btl2\fR enable dumping
-after the two branch
-target load optimization passes.
-.IP "\fB\-fdump\-rtl\-bypass\fR" 4
-.IX Item "-fdump-rtl-bypass"
-Dump after jump bypassing and control flow optimizations.
-.IP "\fB\-fdump\-rtl\-combine\fR" 4
-.IX Item "-fdump-rtl-combine"
-Dump after the \s-1RTL\s0 instruction combination pass.
-.IP "\fB\-fdump\-rtl\-compgotos\fR" 4
-.IX Item "-fdump-rtl-compgotos"
-Dump after duplicating the computed gotos.
-.IP "\fB\-fdump\-rtl\-ce1\fR" 4
-.IX Item "-fdump-rtl-ce1"
-.PD 0
-.IP "\fB\-fdump\-rtl\-ce2\fR" 4
-.IX Item "-fdump-rtl-ce2"
-.IP "\fB\-fdump\-rtl\-ce3\fR" 4
-.IX Item "-fdump-rtl-ce3"
-.PD
-\&\fB\-fdump\-rtl\-ce1\fR, \fB\-fdump\-rtl\-ce2\fR, and
-\&\fB\-fdump\-rtl\-ce3\fR enable dumping after the three
-if conversion passes.
-.IP "\fB\-fdump\-rtl\-cprop_hardreg\fR" 4
-.IX Item "-fdump-rtl-cprop_hardreg"
-Dump after hard register copy propagation.
-.IP "\fB\-fdump\-rtl\-csa\fR" 4
-.IX Item "-fdump-rtl-csa"
-Dump after combining stack adjustments.
-.IP "\fB\-fdump\-rtl\-cse1\fR" 4
-.IX Item "-fdump-rtl-cse1"
-.PD 0
-.IP "\fB\-fdump\-rtl\-cse2\fR" 4
-.IX Item "-fdump-rtl-cse2"
-.PD
-\&\fB\-fdump\-rtl\-cse1\fR and \fB\-fdump\-rtl\-cse2\fR enable dumping after
-the two common subexpression elimination passes.
-.IP "\fB\-fdump\-rtl\-dce\fR" 4
-.IX Item "-fdump-rtl-dce"
-Dump after the standalone dead code elimination passes.
-.IP "\fB\-fdump\-rtl\-dbr\fR" 4
-.IX Item "-fdump-rtl-dbr"
-Dump after delayed branch scheduling.
-.IP "\fB\-fdump\-rtl\-dce1\fR" 4
-.IX Item "-fdump-rtl-dce1"
-.PD 0
-.IP "\fB\-fdump\-rtl\-dce2\fR" 4
-.IX Item "-fdump-rtl-dce2"
-.PD
-\&\fB\-fdump\-rtl\-dce1\fR and \fB\-fdump\-rtl\-dce2\fR enable dumping after
-the two dead store elimination passes.
-.IP "\fB\-fdump\-rtl\-eh\fR" 4
-.IX Item "-fdump-rtl-eh"
-Dump after finalization of \s-1EH\s0 handling code.
-.IP "\fB\-fdump\-rtl\-eh_ranges\fR" 4
-.IX Item "-fdump-rtl-eh_ranges"
-Dump after conversion of \s-1EH\s0 handling range regions.
-.IP "\fB\-fdump\-rtl\-expand\fR" 4
-.IX Item "-fdump-rtl-expand"
-Dump after \s-1RTL\s0 generation.
-.IP "\fB\-fdump\-rtl\-fwprop1\fR" 4
-.IX Item "-fdump-rtl-fwprop1"
-.PD 0
-.IP "\fB\-fdump\-rtl\-fwprop2\fR" 4
-.IX Item "-fdump-rtl-fwprop2"
-.PD
-\&\fB\-fdump\-rtl\-fwprop1\fR and \fB\-fdump\-rtl\-fwprop2\fR enable
-dumping after the two forward propagation passes.
-.IP "\fB\-fdump\-rtl\-gcse1\fR" 4
-.IX Item "-fdump-rtl-gcse1"
-.PD 0
-.IP "\fB\-fdump\-rtl\-gcse2\fR" 4
-.IX Item "-fdump-rtl-gcse2"
-.PD
-\&\fB\-fdump\-rtl\-gcse1\fR and \fB\-fdump\-rtl\-gcse2\fR enable dumping
-after global common subexpression elimination.
-.IP "\fB\-fdump\-rtl\-init\-regs\fR" 4
-.IX Item "-fdump-rtl-init-regs"
-Dump after the initialization of the registers.
-.IP "\fB\-fdump\-rtl\-initvals\fR" 4
-.IX Item "-fdump-rtl-initvals"
-Dump after the computation of the initial value sets.
-.IP "\fB\-fdump\-rtl\-into_cfglayout\fR" 4
-.IX Item "-fdump-rtl-into_cfglayout"
-Dump after converting to cfglayout mode.
-.IP "\fB\-fdump\-rtl\-ira\fR" 4
-.IX Item "-fdump-rtl-ira"
-Dump after iterated register allocation.
-.IP "\fB\-fdump\-rtl\-jump\fR" 4
-.IX Item "-fdump-rtl-jump"
-Dump after the second jump optimization.
-.IP "\fB\-fdump\-rtl\-loop2\fR" 4
-.IX Item "-fdump-rtl-loop2"
-\&\fB\-fdump\-rtl\-loop2\fR enables dumping after the rtl
-loop optimization passes.
-.IP "\fB\-fdump\-rtl\-mach\fR" 4
-.IX Item "-fdump-rtl-mach"
-Dump after performing the machine dependent reorganization pass, if that
-pass exists.
-.IP "\fB\-fdump\-rtl\-mode_sw\fR" 4
-.IX Item "-fdump-rtl-mode_sw"
-Dump after removing redundant mode switches.
-.IP "\fB\-fdump\-rtl\-rnreg\fR" 4
-.IX Item "-fdump-rtl-rnreg"
-Dump after register renumbering.
-.IP "\fB\-fdump\-rtl\-outof_cfglayout\fR" 4
-.IX Item "-fdump-rtl-outof_cfglayout"
-Dump after converting from cfglayout mode.
-.IP "\fB\-fdump\-rtl\-peephole2\fR" 4
-.IX Item "-fdump-rtl-peephole2"
-Dump after the peephole pass.
-.IP "\fB\-fdump\-rtl\-postreload\fR" 4
-.IX Item "-fdump-rtl-postreload"
-Dump after post-reload optimizations.
-.IP "\fB\-fdump\-rtl\-pro_and_epilogue\fR" 4
-.IX Item "-fdump-rtl-pro_and_epilogue"
-Dump after generating the function prologues and epilogues.
-.IP "\fB\-fdump\-rtl\-sched1\fR" 4
-.IX Item "-fdump-rtl-sched1"
-.PD 0
-.IP "\fB\-fdump\-rtl\-sched2\fR" 4
-.IX Item "-fdump-rtl-sched2"
-.PD
-\&\fB\-fdump\-rtl\-sched1\fR and \fB\-fdump\-rtl\-sched2\fR enable dumping
-after the basic block scheduling passes.
-.IP "\fB\-fdump\-rtl\-ree\fR" 4
-.IX Item "-fdump-rtl-ree"
-Dump after sign/zero extension elimination.
-.IP "\fB\-fdump\-rtl\-seqabstr\fR" 4
-.IX Item "-fdump-rtl-seqabstr"
-Dump after common sequence discovery.
-.IP "\fB\-fdump\-rtl\-shorten\fR" 4
-.IX Item "-fdump-rtl-shorten"
-Dump after shortening branches.
-.IP "\fB\-fdump\-rtl\-sibling\fR" 4
-.IX Item "-fdump-rtl-sibling"
-Dump after sibling call optimizations.
-.IP "\fB\-fdump\-rtl\-split1\fR" 4
-.IX Item "-fdump-rtl-split1"
-.PD 0
-.IP "\fB\-fdump\-rtl\-split2\fR" 4
-.IX Item "-fdump-rtl-split2"
-.IP "\fB\-fdump\-rtl\-split3\fR" 4
-.IX Item "-fdump-rtl-split3"
-.IP "\fB\-fdump\-rtl\-split4\fR" 4
-.IX Item "-fdump-rtl-split4"
-.IP "\fB\-fdump\-rtl\-split5\fR" 4
-.IX Item "-fdump-rtl-split5"
-.PD
-\&\fB\-fdump\-rtl\-split1\fR, \fB\-fdump\-rtl\-split2\fR,
-\&\fB\-fdump\-rtl\-split3\fR, \fB\-fdump\-rtl\-split4\fR and
-\&\fB\-fdump\-rtl\-split5\fR enable dumping after five rounds of
-instruction splitting.
-.IP "\fB\-fdump\-rtl\-sms\fR" 4
-.IX Item "-fdump-rtl-sms"
-Dump after modulo scheduling. This pass is only run on some
-architectures.
-.IP "\fB\-fdump\-rtl\-stack\fR" 4
-.IX Item "-fdump-rtl-stack"
-Dump after conversion from \s-1GCC\s0's \*(L"flat register file\*(R" registers to the
-x87's stack-like registers. This pass is only run on x86 variants.
-.IP "\fB\-fdump\-rtl\-subreg1\fR" 4
-.IX Item "-fdump-rtl-subreg1"
-.PD 0
-.IP "\fB\-fdump\-rtl\-subreg2\fR" 4
-.IX Item "-fdump-rtl-subreg2"
-.PD
-\&\fB\-fdump\-rtl\-subreg1\fR and \fB\-fdump\-rtl\-subreg2\fR enable dumping after
-the two subreg expansion passes.
-.IP "\fB\-fdump\-rtl\-unshare\fR" 4
-.IX Item "-fdump-rtl-unshare"
-Dump after all rtl has been unshared.
-.IP "\fB\-fdump\-rtl\-vartrack\fR" 4
-.IX Item "-fdump-rtl-vartrack"
-Dump after variable tracking.
-.IP "\fB\-fdump\-rtl\-vregs\fR" 4
-.IX Item "-fdump-rtl-vregs"
-Dump after converting virtual registers to hard registers.
-.IP "\fB\-fdump\-rtl\-web\fR" 4
-.IX Item "-fdump-rtl-web"
-Dump after live range splitting.
-.IP "\fB\-fdump\-rtl\-regclass\fR" 4
-.IX Item "-fdump-rtl-regclass"
-.PD 0
-.IP "\fB\-fdump\-rtl\-subregs_of_mode_init\fR" 4
-.IX Item "-fdump-rtl-subregs_of_mode_init"
-.IP "\fB\-fdump\-rtl\-subregs_of_mode_finish\fR" 4
-.IX Item "-fdump-rtl-subregs_of_mode_finish"
-.IP "\fB\-fdump\-rtl\-dfinit\fR" 4
-.IX Item "-fdump-rtl-dfinit"
-.IP "\fB\-fdump\-rtl\-dfinish\fR" 4
-.IX Item "-fdump-rtl-dfinish"
-.PD
-These dumps are defined but always produce empty files.
-.IP "\fB\-da\fR" 4
-.IX Item "-da"
-.PD 0
-.IP "\fB\-fdump\-rtl\-all\fR" 4
-.IX Item "-fdump-rtl-all"
-.PD
-Produce all the dumps listed above.
-.IP "\fB\-dA\fR" 4
-.IX Item "-dA"
-Annotate the assembler output with miscellaneous debugging information.
-.IP "\fB\-dD\fR" 4
-.IX Item "-dD"
-Dump all macro definitions, at the end of preprocessing, in addition to
-normal output.
-.IP "\fB\-dH\fR" 4
-.IX Item "-dH"
-Produce a core dump whenever an error occurs.
-.IP "\fB\-dp\fR" 4
-.IX Item "-dp"
-Annotate the assembler output with a comment indicating which
-pattern and alternative is used. The length of each instruction is
-also printed.
-.IP "\fB\-dP\fR" 4
-.IX Item "-dP"
-Dump the \s-1RTL\s0 in the assembler output as a comment before each instruction.
-Also turns on \fB\-dp\fR annotation.
-.IP "\fB\-dx\fR" 4
-.IX Item "-dx"
-Just generate \s-1RTL\s0 for a function instead of compiling it. Usually used
-with \fB\-fdump\-rtl\-expand\fR.
-.RE
-.RS 4
-.RE
-.IP "\fB\-fdump\-noaddr\fR" 4
-.IX Item "-fdump-noaddr"
-When doing debugging dumps, suppress address output. This makes it more
-feasible to use diff on debugging dumps for compiler invocations with
-different compiler binaries and/or different
-text / bss / data / heap / stack / dso start locations.
-.IP "\fB\-fdump\-unnumbered\fR" 4
-.IX Item "-fdump-unnumbered"
-When doing debugging dumps, suppress instruction numbers and address output.
-This makes it more feasible to use diff on debugging dumps for compiler
-invocations with different options, in particular with and without
-\&\fB\-g\fR.
-.IP "\fB\-fdump\-unnumbered\-links\fR" 4
-.IX Item "-fdump-unnumbered-links"
-When doing debugging dumps (see \fB\-d\fR option above), suppress
-instruction numbers for the links to the previous and next instructions
-in a sequence.
-.IP "\fB\-fdump\-translation\-unit\fR (\*(C+ only)" 4
-.IX Item "-fdump-translation-unit ( only)"
-.PD 0
-.IP "\fB\-fdump\-translation\-unit\-\fR\fIoptions\fR\fB \fR(\*(C+ only)" 4
-.IX Item "-fdump-translation-unit-options ( only)"
-.PD
-Dump a representation of the tree structure for the entire translation
-unit to a file. The file name is made by appending \fI.tu\fR to the
-source file name, and the file is created in the same directory as the
-output file. If the \fB\-\fR\fIoptions\fR form is used, \fIoptions\fR
-controls the details of the dump as described for the
-\&\fB\-fdump\-tree\fR options.
-.IP "\fB\-fdump\-class\-hierarchy\fR (\*(C+ only)" 4
-.IX Item "-fdump-class-hierarchy ( only)"
-.PD 0
-.IP "\fB\-fdump\-class\-hierarchy\-\fR\fIoptions\fR\fB \fR(\*(C+ only)" 4
-.IX Item "-fdump-class-hierarchy-options ( only)"
-.PD
-Dump a representation of each class's hierarchy and virtual function
-table layout to a file. The file name is made by appending
-\&\fI.class\fR to the source file name, and the file is created in the
-same directory as the output file. If the \fB\-\fR\fIoptions\fR form
-is used, \fIoptions\fR controls the details of the dump as described
-for the \fB\-fdump\-tree\fR options.
-.IP "\fB\-fdump\-ipa\-\fR\fIswitch\fR" 4
-.IX Item "-fdump-ipa-switch"
-Control the dumping at various stages of inter-procedural analysis
-language tree to a file. The file name is generated by appending a
-switch specific suffix to the source file name, and the file is created
-in the same directory as the output file. The following dumps are
-possible:
-.RS 4
-.IP "\fBall\fR" 4
-.IX Item "all"
-Enables all inter-procedural analysis dumps.
-.IP "\fBcgraph\fR" 4
-.IX Item "cgraph"
-Dumps information about call-graph optimization, unused function removal,
-and inlining decisions.
-.IP "\fBinline\fR" 4
-.IX Item "inline"
-Dump after function inlining.
-.RE
-.RS 4
-.RE
-.IP "\fB\-fdump\-passes\fR" 4
-.IX Item "-fdump-passes"
-Dump the list of optimization passes that are turned on and off by
-the current command-line options.
-.IP "\fB\-fdump\-statistics\-\fR\fIoption\fR" 4
-.IX Item "-fdump-statistics-option"
-Enable and control dumping of pass statistics in a separate file. The
-file name is generated by appending a suffix ending in
-\&\fB.statistics\fR to the source file name, and the file is created in
-the same directory as the output file. If the \fB\-\fR\fIoption\fR
-form is used, \fB\-stats\fR causes counters to be summed over the
-whole compilation unit while \fB\-details\fR dumps every event as
-the passes generate them. The default with no option is to sum
-counters for each function compiled.
-.IP "\fB\-fdump\-tree\-\fR\fIswitch\fR" 4
-.IX Item "-fdump-tree-switch"
-.PD 0
-.IP "\fB\-fdump\-tree\-\fR\fIswitch\fR\fB\-\fR\fIoptions\fR" 4
-.IX Item "-fdump-tree-switch-options"
-.IP "\fB\-fdump\-tree\-\fR\fIswitch\fR\fB\-\fR\fIoptions\fR\fB=\fR\fIfilename\fR" 4
-.IX Item "-fdump-tree-switch-options=filename"
-.PD
-Control the dumping at various stages of processing the intermediate
-language tree to a file. The file name is generated by appending a
-switch-specific suffix to the source file name, and the file is
-created in the same directory as the output file. In case of
-\&\fB=\fR\fIfilename\fR option, the dump is output on the given file
-instead of the auto named dump files. If the \fB\-\fR\fIoptions\fR
-form is used, \fIoptions\fR is a list of \fB\-\fR separated options
-which control the details of the dump. Not all options are applicable
-to all dumps; those that are not meaningful are ignored. The
-following options are available
-.RS 4
-.IP "\fBaddress\fR" 4
-.IX Item "address"
-Print the address of each node. Usually this is not meaningful as it
-changes according to the environment and source file. Its primary use
-is for tying up a dump file with a debug environment.
-.IP "\fBasmname\fR" 4
-.IX Item "asmname"
-If \f(CW\*(C`DECL_ASSEMBLER_NAME\*(C'\fR has been set for a given decl, use that
-in the dump instead of \f(CW\*(C`DECL_NAME\*(C'\fR. Its primary use is ease of
-use working backward from mangled names in the assembly file.
-.IP "\fBslim\fR" 4
-.IX Item "slim"
-When dumping front-end intermediate representations, inhibit dumping
-of members of a scope or body of a function merely because that scope
-has been reached. Only dump such items when they are directly reachable
-by some other path.
-.Sp
-When dumping pretty-printed trees, this option inhibits dumping the
-bodies of control structures.
-.Sp
-When dumping \s-1RTL,\s0 print the \s-1RTL\s0 in slim (condensed) form instead of
-the default LISP-like representation.
-.IP "\fBraw\fR" 4
-.IX Item "raw"
-Print a raw representation of the tree. By default, trees are
-pretty-printed into a C\-like representation.
-.IP "\fBdetails\fR" 4
-.IX Item "details"
-Enable more detailed dumps (not honored by every dump option). Also
-include information from the optimization passes.
-.IP "\fBstats\fR" 4
-.IX Item "stats"
-Enable dumping various statistics about the pass (not honored by every dump
-option).
-.IP "\fBblocks\fR" 4
-.IX Item "blocks"
-Enable showing basic block boundaries (disabled in raw dumps).
-.IP "\fBgraph\fR" 4
-.IX Item "graph"
-For each of the other indicated dump files (\fB\-fdump\-rtl\-\fR\fIpass\fR),
-dump a representation of the control flow graph suitable for viewing with
-GraphViz to \fI\fIfile\fI.\fIpassid\fI.\fIpass\fI.dot\fR. Each function in
-the file is pretty-printed as a subgraph, so that GraphViz can render them
-all in a single plot.
-.Sp
-This option currently only works for \s-1RTL\s0 dumps, and the \s-1RTL\s0 is always
-dumped in slim form.
-.IP "\fBvops\fR" 4
-.IX Item "vops"
-Enable showing virtual operands for every statement.
-.IP "\fBlineno\fR" 4
-.IX Item "lineno"
-Enable showing line numbers for statements.
-.IP "\fBuid\fR" 4
-.IX Item "uid"
-Enable showing the unique \s-1ID \s0(\f(CW\*(C`DECL_UID\*(C'\fR) for each variable.
-.IP "\fBverbose\fR" 4
-.IX Item "verbose"
-Enable showing the tree dump for each statement.
-.IP "\fBeh\fR" 4
-.IX Item "eh"
-Enable showing the \s-1EH\s0 region number holding each statement.
-.IP "\fBscev\fR" 4
-.IX Item "scev"
-Enable showing scalar evolution analysis details.
-.IP "\fBoptimized\fR" 4
-.IX Item "optimized"
-Enable showing optimization information (only available in certain
-passes).
-.IP "\fBmissed\fR" 4
-.IX Item "missed"
-Enable showing missed optimization information (only available in certain
-passes).
-.IP "\fBnotes\fR" 4
-.IX Item "notes"
-Enable other detailed optimization information (only available in
-certain passes).
-.IP "\fB=\fR\fIfilename\fR" 4
-.IX Item "=filename"
-Instead of an auto named dump file, output into the given file
-name. The file names \fIstdout\fR and \fIstderr\fR are treated
-specially and are considered already open standard streams. For
-example,
-.Sp
-.Vb 2
-\& gcc \-O2 \-ftree\-vectorize \-fdump\-tree\-vect\-blocks=foo.dump
-\& \-fdump\-tree\-pre=stderr file.c
-.Ve
-.Sp
-outputs vectorizer dump into \fIfoo.dump\fR, while the \s-1PRE\s0 dump is
-output on to \fIstderr\fR. If two conflicting dump filenames are
-given for the same pass, then the latter option overrides the earlier
-one.
-.IP "\fBall\fR" 4
-.IX Item "all"
-Turn on all options, except \fBraw\fR, \fBslim\fR, \fBverbose\fR
-and \fBlineno\fR.
-.IP "\fBoptall\fR" 4
-.IX Item "optall"
-Turn on all optimization options, i.e., \fBoptimized\fR,
-\&\fBmissed\fR, and \fBnote\fR.
-.RE
-.RS 4
-.Sp
-The following tree dumps are possible:
-.IP "\fBoriginal\fR" 4
-.IX Item "original"
-Dump before any tree based optimization, to \fI\fIfile\fI.original\fR.
-.IP "\fBoptimized\fR" 4
-.IX Item "optimized"
-Dump after all tree based optimization, to \fI\fIfile\fI.optimized\fR.
-.IP "\fBgimple\fR" 4
-.IX Item "gimple"
-Dump each function before and after the gimplification pass to a file. The
-file name is made by appending \fI.gimple\fR to the source file name.
-.IP "\fBcfg\fR" 4
-.IX Item "cfg"
-Dump the control flow graph of each function to a file. The file name is
-made by appending \fI.cfg\fR to the source file name.
-.IP "\fBch\fR" 4
-.IX Item "ch"
-Dump each function after copying loop headers. The file name is made by
-appending \fI.ch\fR to the source file name.
-.IP "\fBssa\fR" 4
-.IX Item "ssa"
-Dump \s-1SSA\s0 related information to a file. The file name is made by appending
-\&\fI.ssa\fR to the source file name.
-.IP "\fBalias\fR" 4
-.IX Item "alias"
-Dump aliasing information for each function. The file name is made by
-appending \fI.alias\fR to the source file name.
-.IP "\fBccp\fR" 4
-.IX Item "ccp"
-Dump each function after \s-1CCP. \s0 The file name is made by appending
-\&\fI.ccp\fR to the source file name.
-.IP "\fBstoreccp\fR" 4
-.IX Item "storeccp"
-Dump each function after STORE-CCP. The file name is made by appending
-\&\fI.storeccp\fR to the source file name.
-.IP "\fBpre\fR" 4
-.IX Item "pre"
-Dump trees after partial redundancy elimination. The file name is made
-by appending \fI.pre\fR to the source file name.
-.IP "\fBfre\fR" 4
-.IX Item "fre"
-Dump trees after full redundancy elimination. The file name is made
-by appending \fI.fre\fR to the source file name.
-.IP "\fBcopyprop\fR" 4
-.IX Item "copyprop"
-Dump trees after copy propagation. The file name is made
-by appending \fI.copyprop\fR to the source file name.
-.IP "\fBstore_copyprop\fR" 4
-.IX Item "store_copyprop"
-Dump trees after store copy-propagation. The file name is made
-by appending \fI.store_copyprop\fR to the source file name.
-.IP "\fBdce\fR" 4
-.IX Item "dce"
-Dump each function after dead code elimination. The file name is made by
-appending \fI.dce\fR to the source file name.
-.IP "\fBsra\fR" 4
-.IX Item "sra"
-Dump each function after performing scalar replacement of aggregates. The
-file name is made by appending \fI.sra\fR to the source file name.
-.IP "\fBsink\fR" 4
-.IX Item "sink"
-Dump each function after performing code sinking. The file name is made
-by appending \fI.sink\fR to the source file name.
-.IP "\fBdom\fR" 4
-.IX Item "dom"
-Dump each function after applying dominator tree optimizations. The file
-name is made by appending \fI.dom\fR to the source file name.
-.IP "\fBdse\fR" 4
-.IX Item "dse"
-Dump each function after applying dead store elimination. The file
-name is made by appending \fI.dse\fR to the source file name.
-.IP "\fBphiopt\fR" 4
-.IX Item "phiopt"
-Dump each function after optimizing \s-1PHI\s0 nodes into straightline code. The file
-name is made by appending \fI.phiopt\fR to the source file name.
-.IP "\fBforwprop\fR" 4
-.IX Item "forwprop"
-Dump each function after forward propagating single use variables. The file
-name is made by appending \fI.forwprop\fR to the source file name.
-.IP "\fBcopyrename\fR" 4
-.IX Item "copyrename"
-Dump each function after applying the copy rename optimization. The file
-name is made by appending \fI.copyrename\fR to the source file name.
-.IP "\fBnrv\fR" 4
-.IX Item "nrv"
-Dump each function after applying the named return value optimization on
-generic trees. The file name is made by appending \fI.nrv\fR to the source
-file name.
-.IP "\fBvect\fR" 4
-.IX Item "vect"
-Dump each function after applying vectorization of loops. The file name is
-made by appending \fI.vect\fR to the source file name.
-.IP "\fBslp\fR" 4
-.IX Item "slp"
-Dump each function after applying vectorization of basic blocks. The file name
-is made by appending \fI.slp\fR to the source file name.
-.IP "\fBvrp\fR" 4
-.IX Item "vrp"
-Dump each function after Value Range Propagation (\s-1VRP\s0). The file name
-is made by appending \fI.vrp\fR to the source file name.
-.IP "\fBall\fR" 4
-.IX Item "all"
-Enable all the available tree dumps with the flags provided in this option.
-.RE
-.RS 4
-.RE
-.IP "\fB\-fopt\-info\fR" 4
-.IX Item "-fopt-info"
-.PD 0
-.IP "\fB\-fopt\-info\-\fR\fIoptions\fR" 4
-.IX Item "-fopt-info-options"
-.IP "\fB\-fopt\-info\-\fR\fIoptions\fR\fB=\fR\fIfilename\fR" 4
-.IX Item "-fopt-info-options=filename"
-.PD
-Controls optimization dumps from various optimization passes. If the
-\&\fB\-\fR\fIoptions\fR form is used, \fIoptions\fR is a list of
-\&\fB\-\fR separated options to select the dump details and
-optimizations. If \fIoptions\fR is not specified, it defaults to
-\&\fBoptimized\fR for details and \fBoptall\fR for optimization
-groups. If the \fIfilename\fR is not specified, it defaults to
-\&\fIstderr\fR. Note that the output \fIfilename\fR will be overwritten
-in case of multiple translation units. If a combined output from
-multiple translation units is desired, \fIstderr\fR should be used
-instead.
-.Sp
-The options can be divided into two groups, 1) options describing the
-verbosity of the dump, and 2) options describing which optimizations
-should be included. The options from both the groups can be freely
-mixed as they are non-overlapping. However, in case of any conflicts,
-the latter options override the earlier options on the command
-line. Though multiple \-fopt\-info options are accepted, only one of
-them can have \fB=filename\fR. If other filenames are provided then
-all but the first one are ignored.
-.Sp
-The dump verbosity has the following options
-.RS 4
-.IP "\fBoptimized\fR" 4
-.IX Item "optimized"
-Print information when an optimization is successfully applied. It is
-up to a pass to decide which information is relevant. For example, the
-vectorizer passes print the source location of loops which got
-successfully vectorized.
-.IP "\fBmissed\fR" 4
-.IX Item "missed"
-Print information about missed optimizations. Individual passes
-control which information to include in the output. For example,
-.Sp
-.Vb 1
-\& gcc \-O2 \-ftree\-vectorize \-fopt\-info\-vec\-missed
-.Ve
-.Sp
-will print information about missed optimization opportunities from
-vectorization passes on stderr.
-.IP "\fBnote\fR" 4
-.IX Item "note"
-Print verbose information about optimizations, such as certain
-transformations, more detailed messages about decisions etc.
-.IP "\fBall\fR" 4
-.IX Item "all"
-Print detailed optimization information. This includes
-\&\fIoptimized\fR, \fImissed\fR, and \fInote\fR.
-.RE
-.RS 4
-.Sp
-The second set of options describes a group of optimizations and may
-include one or more of the following.
-.IP "\fBipa\fR" 4
-.IX Item "ipa"
-Enable dumps from all interprocedural optimizations.
-.IP "\fBloop\fR" 4
-.IX Item "loop"
-Enable dumps from all loop optimizations.
-.IP "\fBinline\fR" 4
-.IX Item "inline"
-Enable dumps from all inlining optimizations.
-.IP "\fBvec\fR" 4
-.IX Item "vec"
-Enable dumps from all vectorization optimizations.
-.IP "\fBoptall\fR" 4
-.IX Item "optall"
-Enable dumps from all optimizations. This is a superset of
-the optimization groups listed above.
-.RE
-.RS 4
-.Sp
-For example,
-.Sp
-.Vb 1
-\& gcc \-O3 \-fopt\-info\-missed=missed.all
-.Ve
-.Sp
-outputs missed optimization report from all the passes into
-\&\fImissed.all\fR.
-.Sp
-As another example,
-.Sp
-.Vb 1
-\& gcc \-O3 \-fopt\-info\-inline\-optimized\-missed=inline.txt
-.Ve
-.Sp
-will output information about missed optimizations as well as
-optimized locations from all the inlining passes into
-\&\fIinline.txt\fR.
-.Sp
-If the \fIfilename\fR is provided, then the dumps from all the
-applicable optimizations are concatenated into the \fIfilename\fR.
-Otherwise the dump is output onto \fIstderr\fR. If \fIoptions\fR is
-omitted, it defaults to \fBall-optall\fR, which means dump all
-available optimization info from all the passes. In the following
-example, all optimization info is output on to \fIstderr\fR.
-.Sp
-.Vb 1
-\& gcc \-O3 \-fopt\-info
-.Ve
-.Sp
-Note that \fB\-fopt\-info\-vec\-missed\fR behaves the same as
-\&\fB\-fopt\-info\-missed\-vec\fR.
-.Sp
-As another example, consider
-.Sp
-.Vb 1
-\& gcc \-fopt\-info\-vec\-missed=vec.miss \-fopt\-info\-loop\-optimized=loop.opt
-.Ve
-.Sp
-Here the two output filenames \fIvec.miss\fR and \fIloop.opt\fR are
-in conflict since only one output file is allowed. In this case, only
-the first option takes effect and the subsequent options are
-ignored. Thus only the \fIvec.miss\fR is produced which contains
-dumps from the vectorizer about missed opportunities.
-.RE
-.IP "\fB\-frandom\-seed=\fR\fIstring\fR" 4
-.IX Item "-frandom-seed=string"
-This option provides a seed that \s-1GCC\s0 uses in place of
-random numbers in generating certain symbol names
-that have to be different in every compiled file. It is also used to
-place unique stamps in coverage data files and the object files that
-produce them. You can use the \fB\-frandom\-seed\fR option to produce
-reproducibly identical object files.
-.Sp
-The \fIstring\fR should be different for every file you compile.
-.IP "\fB\-fsched\-verbose=\fR\fIn\fR" 4
-.IX Item "-fsched-verbose=n"
-On targets that use instruction scheduling, this option controls the
-amount of debugging output the scheduler prints. This information is
-written to standard error, unless \fB\-fdump\-rtl\-sched1\fR or
-\&\fB\-fdump\-rtl\-sched2\fR is specified, in which case it is output
-to the usual dump listing file, \fI.sched1\fR or \fI.sched2\fR
-respectively. However for \fIn\fR greater than nine, the output is
-always printed to standard error.
-.Sp
-For \fIn\fR greater than zero, \fB\-fsched\-verbose\fR outputs the
-same information as \fB\-fdump\-rtl\-sched1\fR and \fB\-fdump\-rtl\-sched2\fR.
-For \fIn\fR greater than one, it also output basic block probabilities,
-detailed ready list information and unit/insn info. For \fIn\fR greater
-than two, it includes \s-1RTL\s0 at abort point, control-flow and regions info.
-And for \fIn\fR over four, \fB\-fsched\-verbose\fR also includes
-dependence info.
-.IP "\fB\-save\-temps\fR" 4
-.IX Item "-save-temps"
-.PD 0
-.IP "\fB\-save\-temps=cwd\fR" 4
-.IX Item "-save-temps=cwd"
-.PD
-Store the usual \*(L"temporary\*(R" intermediate files permanently; place them
-in the current directory and name them based on the source file. Thus,
-compiling \fIfoo.c\fR with \fB\-c \-save\-temps\fR produces files
-\&\fIfoo.i\fR and \fIfoo.s\fR, as well as \fIfoo.o\fR. This creates a
-preprocessed \fIfoo.i\fR output file even though the compiler now
-normally uses an integrated preprocessor.
-.Sp
-When used in combination with the \fB\-x\fR command-line option,
-\&\fB\-save\-temps\fR is sensible enough to avoid over writing an
-input source file with the same extension as an intermediate file.
-The corresponding intermediate file may be obtained by renaming the
-source file before using \fB\-save\-temps\fR.
-.Sp
-If you invoke \s-1GCC\s0 in parallel, compiling several different source
-files that share a common base name in different subdirectories or the
-same source file compiled for multiple output destinations, it is
-likely that the different parallel compilers will interfere with each
-other, and overwrite the temporary files. For instance:
-.Sp
-.Vb 2
-\& gcc \-save\-temps \-o outdir1/foo.o indir1/foo.c&
-\& gcc \-save\-temps \-o outdir2/foo.o indir2/foo.c&
-.Ve
-.Sp
-may result in \fIfoo.i\fR and \fIfoo.o\fR being written to
-simultaneously by both compilers.
-.IP "\fB\-save\-temps=obj\fR" 4
-.IX Item "-save-temps=obj"
-Store the usual \*(L"temporary\*(R" intermediate files permanently. If the
-\&\fB\-o\fR option is used, the temporary files are based on the
-object file. If the \fB\-o\fR option is not used, the
-\&\fB\-save\-temps=obj\fR switch behaves like \fB\-save\-temps\fR.
-.Sp
-For example:
-.Sp
-.Vb 3
-\& gcc \-save\-temps=obj \-c foo.c
-\& gcc \-save\-temps=obj \-c bar.c \-o dir/xbar.o
-\& gcc \-save\-temps=obj foobar.c \-o dir2/yfoobar
-.Ve
-.Sp
-creates \fIfoo.i\fR, \fIfoo.s\fR, \fIdir/xbar.i\fR,
-\&\fIdir/xbar.s\fR, \fIdir2/yfoobar.i\fR, \fIdir2/yfoobar.s\fR, and
-\&\fIdir2/yfoobar.o\fR.
-.IP "\fB\-time\fR[\fB=\fR\fIfile\fR]" 4
-.IX Item "-time[=file]"
-Report the \s-1CPU\s0 time taken by each subprocess in the compilation
-sequence. For C source files, this is the compiler proper and assembler
-(plus the linker if linking is done).
-.Sp
-Without the specification of an output file, the output looks like this:
-.Sp
-.Vb 2
-\& # cc1 0.12 0.01
-\& # as 0.00 0.01
-.Ve
-.Sp
-The first number on each line is the \*(L"user time\*(R", that is time spent
-executing the program itself. The second number is \*(L"system time\*(R",
-time spent executing operating system routines on behalf of the program.
-Both numbers are in seconds.
-.Sp
-With the specification of an output file, the output is appended to the
-named file, and it looks like this:
-.Sp
-.Vb 2
-\& 0.12 0.01 cc1 <options>
-\& 0.00 0.01 as <options>
-.Ve
-.Sp
-The \*(L"user time\*(R" and the \*(L"system time\*(R" are moved before the program
-name, and the options passed to the program are displayed, so that one
-can later tell what file was being compiled, and with which options.
-.IP "\fB\-fvar\-tracking\fR" 4
-.IX Item "-fvar-tracking"
-Run variable tracking pass. It computes where variables are stored at each
-position in code. Better debugging information is then generated
-(if the debugging information format supports this information).
-.Sp
-It is enabled by default when compiling with optimization (\fB\-Os\fR,
-\&\fB\-O\fR, \fB\-O2\fR, ...), debugging information (\fB\-g\fR) and
-the debug info format supports it.
-.IP "\fB\-fvar\-tracking\-assignments\fR" 4
-.IX Item "-fvar-tracking-assignments"
-Annotate assignments to user variables early in the compilation and
-attempt to carry the annotations over throughout the compilation all the
-way to the end, in an attempt to improve debug information while
-optimizing. Use of \fB\-gdwarf\-4\fR is recommended along with it.
-.Sp
-It can be enabled even if var-tracking is disabled, in which case
-annotations are created and maintained, but discarded at the end.
-.IP "\fB\-fvar\-tracking\-assignments\-toggle\fR" 4
-.IX Item "-fvar-tracking-assignments-toggle"
-Toggle \fB\-fvar\-tracking\-assignments\fR, in the same way that
-\&\fB\-gtoggle\fR toggles \fB\-g\fR.
-.IP "\fB\-print\-file\-name=\fR\fIlibrary\fR" 4
-.IX Item "-print-file-name=library"
-Print the full absolute name of the library file \fIlibrary\fR that
-would be used when linking\-\-\-and don't do anything else. With this
-option, \s-1GCC\s0 does not compile or link anything; it just prints the
-file name.
-.IP "\fB\-print\-multi\-directory\fR" 4
-.IX Item "-print-multi-directory"
-Print the directory name corresponding to the multilib selected by any
-other switches present in the command line. This directory is supposed
-to exist in \fB\s-1GCC_EXEC_PREFIX\s0\fR.
-.IP "\fB\-print\-multi\-lib\fR" 4
-.IX Item "-print-multi-lib"
-Print the mapping from multilib directory names to compiler switches
-that enable them. The directory name is separated from the switches by
-\&\fB;\fR, and each switch starts with an \fB@\fR instead of the
-\&\fB\-\fR, without spaces between multiple switches. This is supposed to
-ease shell processing.
-.IP "\fB\-print\-multi\-os\-directory\fR" 4
-.IX Item "-print-multi-os-directory"
-Print the path to \s-1OS\s0 libraries for the selected
-multilib, relative to some \fIlib\fR subdirectory. If \s-1OS\s0 libraries are
-present in the \fIlib\fR subdirectory and no multilibs are used, this is
-usually just \fI.\fR, if \s-1OS\s0 libraries are present in \fIlib\fIsuffix\fI\fR
-sibling directories this prints e.g. \fI../lib64\fR, \fI../lib\fR or
-\&\fI../lib32\fR, or if \s-1OS\s0 libraries are present in \fIlib/\fIsubdir\fI\fR
-subdirectories it prints e.g. \fIamd64\fR, \fIsparcv9\fR or \fIev6\fR.
-.IP "\fB\-print\-multiarch\fR" 4
-.IX Item "-print-multiarch"
-Print the path to \s-1OS\s0 libraries for the selected multiarch,
-relative to some \fIlib\fR subdirectory.
-.IP "\fB\-print\-prog\-name=\fR\fIprogram\fR" 4
-.IX Item "-print-prog-name=program"
-Like \fB\-print\-file\-name\fR, but searches for a program such as \fBcpp\fR.
-.IP "\fB\-print\-libgcc\-file\-name\fR" 4
-.IX Item "-print-libgcc-file-name"
-Same as \fB\-print\-file\-name=libgcc.a\fR.
-.Sp
-This is useful when you use \fB\-nostdlib\fR or \fB\-nodefaultlibs\fR
-but you do want to link with \fIlibgcc.a\fR. You can do:
-.Sp
-.Vb 1
-\& gcc \-nostdlib <files>... \`gcc \-print\-libgcc\-file\-name\`
-.Ve
-.IP "\fB\-print\-search\-dirs\fR" 4
-.IX Item "-print-search-dirs"
-Print the name of the configured installation directory and a list of
-program and library directories \fBgcc\fR searches\-\-\-and don't do anything else.
-.Sp
-This is useful when \fBgcc\fR prints the error message
-\&\fBinstallation problem, cannot exec cpp0: No such file or directory\fR.
-To resolve this you either need to put \fIcpp0\fR and the other compiler
-components where \fBgcc\fR expects to find them, or you can set the environment
-variable \fB\s-1GCC_EXEC_PREFIX\s0\fR to the directory where you installed them.
-Don't forget the trailing \fB/\fR.
-.IP "\fB\-print\-sysroot\fR" 4
-.IX Item "-print-sysroot"
-Print the target sysroot directory that is used during
-compilation. This is the target sysroot specified either at configure
-time or using the \fB\-\-sysroot\fR option, possibly with an extra
-suffix that depends on compilation options. If no target sysroot is
-specified, the option prints nothing.
-.IP "\fB\-print\-sysroot\-headers\-suffix\fR" 4
-.IX Item "-print-sysroot-headers-suffix"
-Print the suffix added to the target sysroot when searching for
-headers, or give an error if the compiler is not configured with such
-a suffix\-\-\-and don't do anything else.
-.IP "\fB\-dumpmachine\fR" 4
-.IX Item "-dumpmachine"
-Print the compiler's target machine (for example,
-\&\fBi686\-pc\-linux\-gnu\fR)\-\-\-and don't do anything else.
-.IP "\fB\-dumpversion\fR" 4
-.IX Item "-dumpversion"
-Print the compiler version (for example, \fB3.0\fR)\-\-\-and don't do
-anything else.
-.IP "\fB\-dumpspecs\fR" 4
-.IX Item "-dumpspecs"
-Print the compiler's built-in specs\-\-\-and don't do anything else. (This
-is used when \s-1GCC\s0 itself is being built.)
-.IP "\fB\-fno\-eliminate\-unused\-debug\-types\fR" 4
-.IX Item "-fno-eliminate-unused-debug-types"
-Normally, when producing \s-1DWARF 2\s0 output, \s-1GCC\s0 avoids producing debug symbol
-output for types that are nowhere used in the source file being compiled.
-Sometimes it is useful to have \s-1GCC\s0 emit debugging
-information for all types declared in a compilation
-unit, regardless of whether or not they are actually used
-in that compilation unit, for example
-if, in the debugger, you want to cast a value to a type that is
-not actually used in your program (but is declared). More often,
-however, this results in a significant amount of wasted space.
-.SS "Options That Control Optimization"
-.IX Subsection "Options That Control Optimization"
-These options control various sorts of optimizations.
-.PP
-Without any optimization option, the compiler's goal is to reduce the
-cost of compilation and to make debugging produce the expected
-results. Statements are independent: if you stop the program with a
-breakpoint between statements, you can then assign a new value to any
-variable or change the program counter to any other statement in the
-function and get exactly the results you expect from the source
-code.
-.PP
-Turning on optimization flags makes the compiler attempt to improve
-the performance and/or code size at the expense of compilation time
-and possibly the ability to debug the program.
-.PP
-The compiler performs optimization based on the knowledge it has of the
-program. Compiling multiple files at once to a single output file mode allows
-the compiler to use information gained from all of the files when compiling
-each of them.
-.PP
-Not all optimizations are controlled directly by a flag. Only
-optimizations that have a flag are listed in this section.
-.PP
-Most optimizations are only enabled if an \fB\-O\fR level is set on
-the command line. Otherwise they are disabled, even if individual
-optimization flags are specified.
-.PP
-Depending on the target and how \s-1GCC\s0 was configured, a slightly different
-set of optimizations may be enabled at each \fB\-O\fR level than
-those listed here. You can invoke \s-1GCC\s0 with \fB\-Q \-\-help=optimizers\fR
-to find out the exact set of optimizations that are enabled at each level.
-.IP "\fB\-O\fR" 4
-.IX Item "-O"
-.PD 0
-.IP "\fB\-O1\fR" 4
-.IX Item "-O1"
-.PD
-Optimize. Optimizing compilation takes somewhat more time, and a lot
-more memory for a large function.
-.Sp
-With \fB\-O\fR, the compiler tries to reduce code size and execution
-time, without performing any optimizations that take a great deal of
-compilation time.
-.Sp
-\&\fB\-O\fR turns on the following optimization flags:
-.Sp
-\&\fB\-fauto\-inc\-dec
-\&\-fcompare\-elim
-\&\-fcprop\-registers
-\&\-fdce
-\&\-fdefer\-pop
-\&\-fdelayed\-branch
-\&\-fdse
-\&\-fguess\-branch\-probability
-\&\-fif\-conversion2
-\&\-fif\-conversion
-\&\-fipa\-pure\-const
-\&\-fipa\-profile
-\&\-fipa\-reference
-\&\-fmerge\-constants
-\&\-fsplit\-wide\-types
-\&\-ftree\-bit\-ccp
-\&\-ftree\-builtin\-call\-dce
-\&\-ftree\-ccp
-\&\-ftree\-ch
-\&\-ftree\-copyrename
-\&\-ftree\-dce
-\&\-ftree\-dominator\-opts
-\&\-ftree\-dse
-\&\-ftree\-forwprop
-\&\-ftree\-fre
-\&\-ftree\-phiprop
-\&\-ftree\-slsr
-\&\-ftree\-sra
-\&\-ftree\-pta
-\&\-ftree\-ter
-\&\-funit\-at\-a\-time\fR
-.Sp
-\&\fB\-O\fR also turns on \fB\-fomit\-frame\-pointer\fR on machines
-where doing so does not interfere with debugging.
-.IP "\fB\-O2\fR" 4
-.IX Item "-O2"
-Optimize even more. \s-1GCC\s0 performs nearly all supported optimizations
-that do not involve a space-speed tradeoff.
-As compared to \fB\-O\fR, this option increases both compilation time
-and the performance of the generated code.
-.Sp
-\&\fB\-O2\fR turns on all optimization flags specified by \fB\-O\fR. It
-also turns on the following optimization flags:
-\&\fB\-fthread\-jumps
-\&\-falign\-functions \-falign\-jumps
-\&\-falign\-loops \-falign\-labels
-\&\-fcaller\-saves
-\&\-fcrossjumping
-\&\-fcse\-follow\-jumps \-fcse\-skip\-blocks
-\&\-fdelete\-null\-pointer\-checks
-\&\-fdevirtualize \-fdevirtualize\-speculatively
-\&\-fexpensive\-optimizations
-\&\-fgcse \-fgcse\-lm
-\&\-fhoist\-adjacent\-loads
-\&\-finline\-small\-functions
-\&\-findirect\-inlining
-\&\-fipa\-sra
-\&\-fisolate\-erroneous\-paths\-dereference
-\&\-foptimize\-sibling\-calls
-\&\-fpartial\-inlining
-\&\-fpeephole2
-\&\-freorder\-blocks \-freorder\-functions
-\&\-frerun\-cse\-after\-loop
-\&\-fsched\-interblock \-fsched\-spec
-\&\-fschedule\-insns \-fschedule\-insns2
-\&\-fstrict\-aliasing \-fstrict\-overflow
-\&\-ftree\-switch\-conversion \-ftree\-tail\-merge
-\&\-ftree\-pre
-\&\-ftree\-vrp\fR
-.Sp
-Please note the warning under \fB\-fgcse\fR about
-invoking \fB\-O2\fR on programs that use computed gotos.
-.IP "\fB\-O3\fR" 4
-.IX Item "-O3"
-Optimize yet more. \fB\-O3\fR turns on all optimizations specified
-by \fB\-O2\fR and also turns on the \fB\-finline\-functions\fR,
-\&\fB\-funswitch\-loops\fR, \fB\-fpredictive\-commoning\fR,
-\&\fB\-fgcse\-after\-reload\fR, \fB\-ftree\-loop\-vectorize\fR,
-\&\fB\-ftree\-slp\-vectorize\fR, \fB\-fvect\-cost\-model\fR,
-\&\fB\-ftree\-partial\-pre\fR and \fB\-fipa\-cp\-clone\fR options.
-.IP "\fB\-O0\fR" 4
-.IX Item "-O0"
-Reduce compilation time and make debugging produce the expected
-results. This is the default.
-.IP "\fB\-Os\fR" 4
-.IX Item "-Os"
-Optimize for size. \fB\-Os\fR enables all \fB\-O2\fR optimizations that
-do not typically increase code size. It also performs further
-optimizations designed to reduce code size.
-.Sp
-\&\fB\-Os\fR disables the following optimization flags:
-\&\fB\-falign\-functions \-falign\-jumps \-falign\-loops
-\&\-falign\-labels \-freorder\-blocks \-freorder\-blocks\-and\-partition
-\&\-fprefetch\-loop\-arrays\fR
-.IP "\fB\-Ofast\fR" 4
-.IX Item "-Ofast"
-Disregard strict standards compliance. \fB\-Ofast\fR enables all
-\&\fB\-O3\fR optimizations. It also enables optimizations that are not
-valid for all standard-compliant programs.
-It turns on \fB\-ffast\-math\fR and the Fortran-specific
-\&\fB\-fno\-protect\-parens\fR and \fB\-fstack\-arrays\fR.
-.IP "\fB\-Og\fR" 4
-.IX Item "-Og"
-Optimize debugging experience. \fB\-Og\fR enables optimizations
-that do not interfere with debugging. It should be the optimization
-level of choice for the standard edit-compile-debug cycle, offering
-a reasonable level of optimization while maintaining fast compilation
-and a good debugging experience.
-.Sp
-If you use multiple \fB\-O\fR options, with or without level numbers,
-the last such option is the one that is effective.
-.PP
-Options of the form \fB\-f\fR\fIflag\fR specify machine-independent
-flags. Most flags have both positive and negative forms; the negative
-form of \fB\-ffoo\fR is \fB\-fno\-foo\fR. In the table
-below, only one of the forms is listed\-\-\-the one you typically
-use. You can figure out the other form by either removing \fBno\-\fR
-or adding it.
-.PP
-The following options control specific optimizations. They are either
-activated by \fB\-O\fR options or are related to ones that are. You
-can use the following flags in the rare cases when \*(L"fine-tuning\*(R" of
-optimizations to be performed is desired.
-.IP "\fB\-fno\-defer\-pop\fR" 4
-.IX Item "-fno-defer-pop"
-Always pop the arguments to each function call as soon as that function
-returns. For machines that must pop arguments after a function call,
-the compiler normally lets arguments accumulate on the stack for several
-function calls and pops them all at once.
-.Sp
-Disabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fforward\-propagate\fR" 4
-.IX Item "-fforward-propagate"
-Perform a forward propagation pass on \s-1RTL. \s0 The pass tries to combine two
-instructions and checks if the result can be simplified. If loop unrolling
-is active, two passes are performed and the second is scheduled after
-loop unrolling.
-.Sp
-This option is enabled by default at optimization levels \fB\-O\fR,
-\&\fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-ffp\-contract=\fR\fIstyle\fR" 4
-.IX Item "-ffp-contract=style"
-\&\fB\-ffp\-contract=off\fR disables floating-point expression contraction.
-\&\fB\-ffp\-contract=fast\fR enables floating-point expression contraction
-such as forming of fused multiply-add operations if the target has
-native support for them.
-\&\fB\-ffp\-contract=on\fR enables floating-point expression contraction
-if allowed by the language standard. This is currently not implemented
-and treated equal to \fB\-ffp\-contract=off\fR.
-.Sp
-The default is \fB\-ffp\-contract=fast\fR.
-.IP "\fB\-fomit\-frame\-pointer\fR" 4
-.IX Item "-fomit-frame-pointer"
-Don't keep the frame pointer in a register for functions that
-don't need one. This avoids the instructions to save, set up and
-restore frame pointers; it also makes an extra register available
-in many functions. \fBIt also makes debugging impossible on
-some machines.\fR
-.Sp
-On some machines, such as the \s-1VAX,\s0 this flag has no effect, because
-the standard calling sequence automatically handles the frame pointer
-and nothing is saved by pretending it doesn't exist. The
-machine-description macro \f(CW\*(C`FRAME_POINTER_REQUIRED\*(C'\fR controls
-whether a target machine supports this flag.
-.Sp
-Starting with \s-1GCC\s0 version 4.6, the default setting (when not optimizing for
-size) for 32\-bit GNU/Linux x86 and 32\-bit Darwin x86 targets has been changed to
-\&\fB\-fomit\-frame\-pointer\fR. The default can be reverted to
-\&\fB\-fno\-omit\-frame\-pointer\fR by configuring \s-1GCC\s0 with the
-\&\fB\-\-enable\-frame\-pointer\fR configure option.
-.Sp
-Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-foptimize\-sibling\-calls\fR" 4
-.IX Item "-foptimize-sibling-calls"
-Optimize sibling and tail recursive calls.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fno\-inline\fR" 4
-.IX Item "-fno-inline"
-Do not expand any functions inline apart from those marked with
-the \f(CW\*(C`always_inline\*(C'\fR attribute. This is the default when not
-optimizing.
-.Sp
-Single functions can be exempted from inlining by marking them
-with the \f(CW\*(C`noinline\*(C'\fR attribute.
-.IP "\fB\-finline\-small\-functions\fR" 4
-.IX Item "-finline-small-functions"
-Integrate functions into their callers when their body is smaller than expected
-function call code (so overall size of program gets smaller). The compiler
-heuristically decides which functions are simple enough to be worth integrating
-in this way. This inlining applies to all functions, even those not declared
-inline.
-.Sp
-Enabled at level \fB\-O2\fR.
-.IP "\fB\-findirect\-inlining\fR" 4
-.IX Item "-findirect-inlining"
-Inline also indirect calls that are discovered to be known at compile
-time thanks to previous inlining. This option has any effect only
-when inlining itself is turned on by the \fB\-finline\-functions\fR
-or \fB\-finline\-small\-functions\fR options.
-.Sp
-Enabled at level \fB\-O2\fR.
-.IP "\fB\-finline\-functions\fR" 4
-.IX Item "-finline-functions"
-Consider all functions for inlining, even if they are not declared inline.
-The compiler heuristically decides which functions are worth integrating
-in this way.
-.Sp
-If all calls to a given function are integrated, and the function is
-declared \f(CW\*(C`static\*(C'\fR, then the function is normally not output as
-assembler code in its own right.
-.Sp
-Enabled at level \fB\-O3\fR.
-.IP "\fB\-finline\-functions\-called\-once\fR" 4
-.IX Item "-finline-functions-called-once"
-Consider all \f(CW\*(C`static\*(C'\fR functions called once for inlining into their
-caller even if they are not marked \f(CW\*(C`inline\*(C'\fR. If a call to a given
-function is integrated, then the function is not output as assembler code
-in its own right.
-.Sp
-Enabled at levels \fB\-O1\fR, \fB\-O2\fR, \fB\-O3\fR and \fB\-Os\fR.
-.IP "\fB\-fearly\-inlining\fR" 4
-.IX Item "-fearly-inlining"
-Inline functions marked by \f(CW\*(C`always_inline\*(C'\fR and functions whose body seems
-smaller than the function call overhead early before doing
-\&\fB\-fprofile\-generate\fR instrumentation and real inlining pass. Doing so
-makes profiling significantly cheaper and usually inlining faster on programs
-having large chains of nested wrapper functions.
-.Sp
-Enabled by default.
-.IP "\fB\-fipa\-sra\fR" 4
-.IX Item "-fipa-sra"
-Perform interprocedural scalar replacement of aggregates, removal of
-unused parameters and replacement of parameters passed by reference
-by parameters passed by value.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR and \fB\-Os\fR.
-.IP "\fB\-finline\-limit=\fR\fIn\fR" 4
-.IX Item "-finline-limit=n"
-By default, \s-1GCC\s0 limits the size of functions that can be inlined. This flag
-allows coarse control of this limit. \fIn\fR is the size of functions that
-can be inlined in number of pseudo instructions.
-.Sp
-Inlining is actually controlled by a number of parameters, which may be
-specified individually by using \fB\-\-param\fR \fIname\fR\fB=\fR\fIvalue\fR.
-The \fB\-finline\-limit=\fR\fIn\fR option sets some of these parameters
-as follows:
-.RS 4
-.IP "\fBmax-inline-insns-single\fR" 4
-.IX Item "max-inline-insns-single"
-is set to \fIn\fR/2.
-.IP "\fBmax-inline-insns-auto\fR" 4
-.IX Item "max-inline-insns-auto"
-is set to \fIn\fR/2.
-.RE
-.RS 4
-.Sp
-See below for a documentation of the individual
-parameters controlling inlining and for the defaults of these parameters.
-.Sp
-\&\fINote:\fR there may be no value to \fB\-finline\-limit\fR that results
-in default behavior.
-.Sp
-\&\fINote:\fR pseudo instruction represents, in this particular context, an
-abstract measurement of function's size. In no way does it represent a count
-of assembly instructions and as such its exact meaning might change from one
-release to an another.
-.RE
-.IP "\fB\-fno\-keep\-inline\-dllexport\fR" 4
-.IX Item "-fno-keep-inline-dllexport"
-This is a more fine-grained version of \fB\-fkeep\-inline\-functions\fR,
-which applies only to functions that are declared using the \f(CW\*(C`dllexport\*(C'\fR
-attribute or declspec
-.IP "\fB\-fkeep\-inline\-functions\fR" 4
-.IX Item "-fkeep-inline-functions"
-In C, emit \f(CW\*(C`static\*(C'\fR functions that are declared \f(CW\*(C`inline\*(C'\fR
-into the object file, even if the function has been inlined into all
-of its callers. This switch does not affect functions using the
-\&\f(CW\*(C`extern inline\*(C'\fR extension in \s-1GNU C90. \s0 In \*(C+, emit any and all
-inline functions into the object file.
-.IP "\fB\-fkeep\-static\-consts\fR" 4
-.IX Item "-fkeep-static-consts"
-Emit variables declared \f(CW\*(C`static const\*(C'\fR when optimization isn't turned
-on, even if the variables aren't referenced.
-.Sp
-\&\s-1GCC\s0 enables this option by default. If you want to force the compiler to
-check if a variable is referenced, regardless of whether or not
-optimization is turned on, use the \fB\-fno\-keep\-static\-consts\fR option.
-.IP "\fB\-fmerge\-constants\fR" 4
-.IX Item "-fmerge-constants"
-Attempt to merge identical constants (string constants and floating-point
-constants) across compilation units.
-.Sp
-This option is the default for optimized compilation if the assembler and
-linker support it. Use \fB\-fno\-merge\-constants\fR to inhibit this
-behavior.
-.Sp
-Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fmerge\-all\-constants\fR" 4
-.IX Item "-fmerge-all-constants"
-Attempt to merge identical constants and identical variables.
-.Sp
-This option implies \fB\-fmerge\-constants\fR. In addition to
-\&\fB\-fmerge\-constants\fR this considers e.g. even constant initialized
-arrays or initialized constant variables with integral or floating-point
-types. Languages like C or \*(C+ require each variable, including multiple
-instances of the same variable in recursive calls, to have distinct locations,
-so using this option results in non-conforming
-behavior.
-.IP "\fB\-fmodulo\-sched\fR" 4
-.IX Item "-fmodulo-sched"
-Perform swing modulo scheduling immediately before the first scheduling
-pass. This pass looks at innermost loops and reorders their
-instructions by overlapping different iterations.
-.IP "\fB\-fmodulo\-sched\-allow\-regmoves\fR" 4
-.IX Item "-fmodulo-sched-allow-regmoves"
-Perform more aggressive SMS-based modulo scheduling with register moves
-allowed. By setting this flag certain anti-dependences edges are
-deleted, which triggers the generation of reg-moves based on the
-life-range analysis. This option is effective only with
-\&\fB\-fmodulo\-sched\fR enabled.
-.IP "\fB\-fno\-branch\-count\-reg\fR" 4
-.IX Item "-fno-branch-count-reg"
-Do not use \*(L"decrement and branch\*(R" instructions on a count register,
-but instead generate a sequence of instructions that decrement a
-register, compare it against zero, then branch based upon the result.
-This option is only meaningful on architectures that support such
-instructions, which include x86, PowerPC, \s-1IA\-64\s0 and S/390.
-.Sp
-The default is \fB\-fbranch\-count\-reg\fR.
-.IP "\fB\-fno\-function\-cse\fR" 4
-.IX Item "-fno-function-cse"
-Do not put function addresses in registers; make each instruction that
-calls a constant function contain the function's address explicitly.
-.Sp
-This option results in less efficient code, but some strange hacks
-that alter the assembler output may be confused by the optimizations
-performed when this option is not used.
-.Sp
-The default is \fB\-ffunction\-cse\fR
-.IP "\fB\-fno\-zero\-initialized\-in\-bss\fR" 4
-.IX Item "-fno-zero-initialized-in-bss"
-If the target supports a \s-1BSS\s0 section, \s-1GCC\s0 by default puts variables that
-are initialized to zero into \s-1BSS. \s0 This can save space in the resulting
-code.
-.Sp
-This option turns off this behavior because some programs explicitly
-rely on variables going to the data section\-\-\-e.g., so that the
-resulting executable can find the beginning of that section and/or make
-assumptions based on that.
-.Sp
-The default is \fB\-fzero\-initialized\-in\-bss\fR.
-.IP "\fB\-fthread\-jumps\fR" 4
-.IX Item "-fthread-jumps"
-Perform optimizations that check to see if a jump branches to a
-location where another comparison subsumed by the first is found. If
-so, the first branch is redirected to either the destination of the
-second branch or a point immediately following it, depending on whether
-the condition is known to be true or false.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fsplit\-wide\-types\fR" 4
-.IX Item "-fsplit-wide-types"
-When using a type that occupies multiple registers, such as \f(CW\*(C`long
-long\*(C'\fR on a 32\-bit system, split the registers apart and allocate them
-independently. This normally generates better code for those types,
-but may make debugging more difficult.
-.Sp
-Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR,
-\&\fB\-Os\fR.
-.IP "\fB\-fcse\-follow\-jumps\fR" 4
-.IX Item "-fcse-follow-jumps"
-In common subexpression elimination (\s-1CSE\s0), scan through jump instructions
-when the target of the jump is not reached by any other path. For
-example, when \s-1CSE\s0 encounters an \f(CW\*(C`if\*(C'\fR statement with an
-\&\f(CW\*(C`else\*(C'\fR clause, \s-1CSE\s0 follows the jump when the condition
-tested is false.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fcse\-skip\-blocks\fR" 4
-.IX Item "-fcse-skip-blocks"
-This is similar to \fB\-fcse\-follow\-jumps\fR, but causes \s-1CSE\s0 to
-follow jumps that conditionally skip over blocks. When \s-1CSE\s0
-encounters a simple \f(CW\*(C`if\*(C'\fR statement with no else clause,
-\&\fB\-fcse\-skip\-blocks\fR causes \s-1CSE\s0 to follow the jump around the
-body of the \f(CW\*(C`if\*(C'\fR.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-frerun\-cse\-after\-loop\fR" 4
-.IX Item "-frerun-cse-after-loop"
-Re-run common subexpression elimination after loop optimizations are
-performed.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fgcse\fR" 4
-.IX Item "-fgcse"
-Perform a global common subexpression elimination pass.
-This pass also performs global constant and copy propagation.
-.Sp
-\&\fINote:\fR When compiling a program using computed gotos, a \s-1GCC\s0
-extension, you may get better run-time performance if you disable
-the global common subexpression elimination pass by adding
-\&\fB\-fno\-gcse\fR to the command line.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fgcse\-lm\fR" 4
-.IX Item "-fgcse-lm"
-When \fB\-fgcse\-lm\fR is enabled, global common subexpression elimination
-attempts to move loads that are only killed by stores into themselves. This
-allows a loop containing a load/store sequence to be changed to a load outside
-the loop, and a copy/store within the loop.
-.Sp
-Enabled by default when \fB\-fgcse\fR is enabled.
-.IP "\fB\-fgcse\-sm\fR" 4
-.IX Item "-fgcse-sm"
-When \fB\-fgcse\-sm\fR is enabled, a store motion pass is run after
-global common subexpression elimination. This pass attempts to move
-stores out of loops. When used in conjunction with \fB\-fgcse\-lm\fR,
-loops containing a load/store sequence can be changed to a load before
-the loop and a store after the loop.
-.Sp
-Not enabled at any optimization level.
-.IP "\fB\-fgcse\-las\fR" 4
-.IX Item "-fgcse-las"
-When \fB\-fgcse\-las\fR is enabled, the global common subexpression
-elimination pass eliminates redundant loads that come after stores to the
-same memory location (both partial and full redundancies).
-.Sp
-Not enabled at any optimization level.
-.IP "\fB\-fgcse\-after\-reload\fR" 4
-.IX Item "-fgcse-after-reload"
-When \fB\-fgcse\-after\-reload\fR is enabled, a redundant load elimination
-pass is performed after reload. The purpose of this pass is to clean up
-redundant spilling.
-.IP "\fB\-faggressive\-loop\-optimizations\fR" 4
-.IX Item "-faggressive-loop-optimizations"
-This option tells the loop optimizer to use language constraints to
-derive bounds for the number of iterations of a loop. This assumes that
-loop code does not invoke undefined behavior by for example causing signed
-integer overflows or out-of-bound array accesses. The bounds for the
-number of iterations of a loop are used to guide loop unrolling and peeling
-and loop exit test optimizations.
-This option is enabled by default.
-.IP "\fB\-funsafe\-loop\-optimizations\fR" 4
-.IX Item "-funsafe-loop-optimizations"
-This option tells the loop optimizer to assume that loop indices do not
-overflow, and that loops with nontrivial exit condition are not
-infinite. This enables a wider range of loop optimizations even if
-the loop optimizer itself cannot prove that these assumptions are valid.
-If you use \fB\-Wunsafe\-loop\-optimizations\fR, the compiler warns you
-if it finds this kind of loop.
-.IP "\fB\-fcrossjumping\fR" 4
-.IX Item "-fcrossjumping"
-Perform cross-jumping transformation.
-This transformation unifies equivalent code and saves code size. The
-resulting code may or may not perform better than without cross-jumping.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fauto\-inc\-dec\fR" 4
-.IX Item "-fauto-inc-dec"
-Combine increments or decrements of addresses with memory accesses.
-This pass is always skipped on architectures that do not have
-instructions to support this. Enabled by default at \fB\-O\fR and
-higher on architectures that support this.
-.IP "\fB\-fdce\fR" 4
-.IX Item "-fdce"
-Perform dead code elimination (\s-1DCE\s0) on \s-1RTL.\s0
-Enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-fdse\fR" 4
-.IX Item "-fdse"
-Perform dead store elimination (\s-1DSE\s0) on \s-1RTL.\s0
-Enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-fif\-conversion\fR" 4
-.IX Item "-fif-conversion"
-Attempt to transform conditional jumps into branch-less equivalents. This
-includes use of conditional moves, min, max, set flags and abs instructions, and
-some tricks doable by standard arithmetics. The use of conditional execution
-on chips where it is available is controlled by \f(CW\*(C`if\-conversion2\*(C'\fR.
-.Sp
-Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fif\-conversion2\fR" 4
-.IX Item "-fif-conversion2"
-Use conditional execution (where available) to transform conditional jumps into
-branch-less equivalents.
-.Sp
-Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fdeclone\-ctor\-dtor\fR" 4
-.IX Item "-fdeclone-ctor-dtor"
-The \*(C+ \s-1ABI\s0 requires multiple entry points for constructors and
-destructors: one for a base subobject, one for a complete object, and
-one for a virtual destructor that calls operator delete afterwards.
-For a hierarchy with virtual bases, the base and complete variants are
-clones, which means two copies of the function. With this option, the
-base and complete variants are changed to be thunks that call a common
-implementation.
-.Sp
-Enabled by \fB\-Os\fR.
-.IP "\fB\-fdelete\-null\-pointer\-checks\fR" 4
-.IX Item "-fdelete-null-pointer-checks"
-Assume that programs cannot safely dereference null pointers, and that
-no code or data element resides there. This enables simple constant
-folding optimizations at all optimization levels. In addition, other
-optimization passes in \s-1GCC\s0 use this flag to control global dataflow
-analyses that eliminate useless checks for null pointers; these assume
-that if a pointer is checked after it has already been dereferenced,
-it cannot be null.
-.Sp
-Note however that in some environments this assumption is not true.
-Use \fB\-fno\-delete\-null\-pointer\-checks\fR to disable this optimization
-for programs that depend on that behavior.
-.Sp
-Some targets, especially embedded ones, disable this option at all levels.
-Otherwise it is enabled at all levels: \fB\-O0\fR, \fB\-O1\fR,
-\&\fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR. Passes that use the information
-are enabled independently at different optimization levels.
-.IP "\fB\-fdevirtualize\fR" 4
-.IX Item "-fdevirtualize"
-Attempt to convert calls to virtual functions to direct calls. This
-is done both within a procedure and interprocedurally as part of
-indirect inlining (\f(CW\*(C`\-findirect\-inlining\*(C'\fR) and interprocedural constant
-propagation (\fB\-fipa\-cp\fR).
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fdevirtualize\-speculatively\fR" 4
-.IX Item "-fdevirtualize-speculatively"
-Attempt to convert calls to virtual functions to speculative direct calls.
-Based on the analysis of the type inheritance graph, determine for a given call
-the set of likely targets. If the set is small, preferably of size 1, change
-the call into an conditional deciding on direct and indirect call. The
-speculative calls enable more optimizations, such as inlining. When they seem
-useless after further optimization, they are converted back into original form.
-.IP "\fB\-fexpensive\-optimizations\fR" 4
-.IX Item "-fexpensive-optimizations"
-Perform a number of minor optimizations that are relatively expensive.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-free\fR" 4
-.IX Item "-free"
-Attempt to remove redundant extension instructions. This is especially
-helpful for the x86\-64 architecture, which implicitly zero-extends in 64\-bit
-registers after writing to their lower 32\-bit half.
-.Sp
-Enabled for AArch64 and x86 at levels \fB\-O2\fR, \fB\-O3\fR.
-.IP "\fB\-flive\-range\-shrinkage\fR" 4
-.IX Item "-flive-range-shrinkage"
-Attempt to decrease register pressure through register live range
-shrinkage. This is helpful for fast processors with small or moderate
-size register sets.
-.IP "\fB\-fira\-algorithm=\fR\fIalgorithm\fR" 4
-.IX Item "-fira-algorithm=algorithm"
-Use the specified coloring algorithm for the integrated register
-allocator. The \fIalgorithm\fR argument can be \fBpriority\fR, which
-specifies Chow's priority coloring, or \fB\s-1CB\s0\fR, which specifies
-Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
-for all architectures, but for those targets that do support it, it is
-the default because it generates better code.
-.IP "\fB\-fira\-region=\fR\fIregion\fR" 4
-.IX Item "-fira-region=region"
-Use specified regions for the integrated register allocator. The
-\&\fIregion\fR argument should be one of the following:
-.RS 4
-.IP "\fBall\fR" 4
-.IX Item "all"
-Use all loops as register allocation regions.
-This can give the best results for machines with a small and/or
-irregular register set.
-.IP "\fBmixed\fR" 4
-.IX Item "mixed"
-Use all loops except for loops with small register pressure
-as the regions. This value usually gives
-the best results in most cases and for most architectures,
-and is enabled by default when compiling with optimization for speed
-(\fB\-O\fR, \fB\-O2\fR, ...).
-.IP "\fBone\fR" 4
-.IX Item "one"
-Use all functions as a single region.
-This typically results in the smallest code size, and is enabled by default for
-\&\fB\-Os\fR or \fB\-O0\fR.
-.RE
-.RS 4
-.RE
-.IP "\fB\-fira\-hoist\-pressure\fR" 4
-.IX Item "-fira-hoist-pressure"
-Use \s-1IRA\s0 to evaluate register pressure in the code hoisting pass for
-decisions to hoist expressions. This option usually results in smaller
-code, but it can slow the compiler down.
-.Sp
-This option is enabled at level \fB\-Os\fR for all targets.
-.IP "\fB\-fira\-loop\-pressure\fR" 4
-.IX Item "-fira-loop-pressure"
-Use \s-1IRA\s0 to evaluate register pressure in loops for decisions to move
-loop invariants. This option usually results in generation
-of faster and smaller code on machines with large register files (>= 32
-registers), but it can slow the compiler down.
-.Sp
-This option is enabled at level \fB\-O3\fR for some targets.
-.IP "\fB\-fno\-ira\-share\-save\-slots\fR" 4
-.IX Item "-fno-ira-share-save-slots"
-Disable sharing of stack slots used for saving call-used hard
-registers living through a call. Each hard register gets a
-separate stack slot, and as a result function stack frames are
-larger.
-.IP "\fB\-fno\-ira\-share\-spill\-slots\fR" 4
-.IX Item "-fno-ira-share-spill-slots"
-Disable sharing of stack slots allocated for pseudo-registers. Each
-pseudo-register that does not get a hard register gets a separate
-stack slot, and as a result function stack frames are larger.
-.IP "\fB\-fira\-verbose=\fR\fIn\fR" 4
-.IX Item "-fira-verbose=n"
-Control the verbosity of the dump file for the integrated register allocator.
-The default value is 5. If the value \fIn\fR is greater or equal to 10,
-the dump output is sent to stderr using the same format as \fIn\fR minus 10.
-.IP "\fB\-fdelayed\-branch\fR" 4
-.IX Item "-fdelayed-branch"
-If supported for the target machine, attempt to reorder instructions
-to exploit instruction slots available after delayed branch
-instructions.
-.Sp
-Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fschedule\-insns\fR" 4
-.IX Item "-fschedule-insns"
-If supported for the target machine, attempt to reorder instructions to
-eliminate execution stalls due to required data being unavailable. This
-helps machines that have slow floating point or memory load instructions
-by allowing other instructions to be issued until the result of the load
-or floating-point instruction is required.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR.
-.IP "\fB\-fschedule\-insns2\fR" 4
-.IX Item "-fschedule-insns2"
-Similar to \fB\-fschedule\-insns\fR, but requests an additional pass of
-instruction scheduling after register allocation has been done. This is
-especially useful on machines with a relatively small number of
-registers and where memory load instructions take more than one cycle.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fno\-sched\-interblock\fR" 4
-.IX Item "-fno-sched-interblock"
-Don't schedule instructions across basic blocks. This is normally
-enabled by default when scheduling before register allocation, i.e.
-with \fB\-fschedule\-insns\fR or at \fB\-O2\fR or higher.
-.IP "\fB\-fno\-sched\-spec\fR" 4
-.IX Item "-fno-sched-spec"
-Don't allow speculative motion of non-load instructions. This is normally
-enabled by default when scheduling before register allocation, i.e.
-with \fB\-fschedule\-insns\fR or at \fB\-O2\fR or higher.
-.IP "\fB\-fsched\-pressure\fR" 4
-.IX Item "-fsched-pressure"
-Enable register pressure sensitive insn scheduling before register
-allocation. This only makes sense when scheduling before register
-allocation is enabled, i.e. with \fB\-fschedule\-insns\fR or at
-\&\fB\-O2\fR or higher. Usage of this option can improve the
-generated code and decrease its size by preventing register pressure
-increase above the number of available hard registers and subsequent
-spills in register allocation.
-.IP "\fB\-fsched\-spec\-load\fR" 4
-.IX Item "-fsched-spec-load"
-Allow speculative motion of some load instructions. This only makes
-sense when scheduling before register allocation, i.e. with
-\&\fB\-fschedule\-insns\fR or at \fB\-O2\fR or higher.
-.IP "\fB\-fsched\-spec\-load\-dangerous\fR" 4
-.IX Item "-fsched-spec-load-dangerous"
-Allow speculative motion of more load instructions. This only makes
-sense when scheduling before register allocation, i.e. with
-\&\fB\-fschedule\-insns\fR or at \fB\-O2\fR or higher.
-.IP "\fB\-fsched\-stalled\-insns\fR" 4
-.IX Item "-fsched-stalled-insns"
-.PD 0
-.IP "\fB\-fsched\-stalled\-insns=\fR\fIn\fR" 4
-.IX Item "-fsched-stalled-insns=n"
-.PD
-Define how many insns (if any) can be moved prematurely from the queue
-of stalled insns into the ready list during the second scheduling pass.
-\&\fB\-fno\-sched\-stalled\-insns\fR means that no insns are moved
-prematurely, \fB\-fsched\-stalled\-insns=0\fR means there is no limit
-on how many queued insns can be moved prematurely.
-\&\fB\-fsched\-stalled\-insns\fR without a value is equivalent to
-\&\fB\-fsched\-stalled\-insns=1\fR.
-.IP "\fB\-fsched\-stalled\-insns\-dep\fR" 4
-.IX Item "-fsched-stalled-insns-dep"
-.PD 0
-.IP "\fB\-fsched\-stalled\-insns\-dep=\fR\fIn\fR" 4
-.IX Item "-fsched-stalled-insns-dep=n"
-.PD
-Define how many insn groups (cycles) are examined for a dependency
-on a stalled insn that is a candidate for premature removal from the queue
-of stalled insns. This has an effect only during the second scheduling pass,
-and only if \fB\-fsched\-stalled\-insns\fR is used.
-\&\fB\-fno\-sched\-stalled\-insns\-dep\fR is equivalent to
-\&\fB\-fsched\-stalled\-insns\-dep=0\fR.
-\&\fB\-fsched\-stalled\-insns\-dep\fR without a value is equivalent to
-\&\fB\-fsched\-stalled\-insns\-dep=1\fR.
-.IP "\fB\-fsched2\-use\-superblocks\fR" 4
-.IX Item "-fsched2-use-superblocks"
-When scheduling after register allocation, use superblock scheduling.
-This allows motion across basic block boundaries,
-resulting in faster schedules. This option is experimental, as not all machine
-descriptions used by \s-1GCC\s0 model the \s-1CPU\s0 closely enough to avoid unreliable
-results from the algorithm.
-.Sp
-This only makes sense when scheduling after register allocation, i.e. with
-\&\fB\-fschedule\-insns2\fR or at \fB\-O2\fR or higher.
-.IP "\fB\-fsched\-group\-heuristic\fR" 4
-.IX Item "-fsched-group-heuristic"
-Enable the group heuristic in the scheduler. This heuristic favors
-the instruction that belongs to a schedule group. This is enabled
-by default when scheduling is enabled, i.e. with \fB\-fschedule\-insns\fR
-or \fB\-fschedule\-insns2\fR or at \fB\-O2\fR or higher.
-.IP "\fB\-fsched\-critical\-path\-heuristic\fR" 4
-.IX Item "-fsched-critical-path-heuristic"
-Enable the critical-path heuristic in the scheduler. This heuristic favors
-instructions on the critical path. This is enabled by default when
-scheduling is enabled, i.e. with \fB\-fschedule\-insns\fR
-or \fB\-fschedule\-insns2\fR or at \fB\-O2\fR or higher.
-.IP "\fB\-fsched\-spec\-insn\-heuristic\fR" 4
-.IX Item "-fsched-spec-insn-heuristic"
-Enable the speculative instruction heuristic in the scheduler. This
-heuristic favors speculative instructions with greater dependency weakness.
-This is enabled by default when scheduling is enabled, i.e.
-with \fB\-fschedule\-insns\fR or \fB\-fschedule\-insns2\fR
-or at \fB\-O2\fR or higher.
-.IP "\fB\-fsched\-rank\-heuristic\fR" 4
-.IX Item "-fsched-rank-heuristic"
-Enable the rank heuristic in the scheduler. This heuristic favors
-the instruction belonging to a basic block with greater size or frequency.
-This is enabled by default when scheduling is enabled, i.e.
-with \fB\-fschedule\-insns\fR or \fB\-fschedule\-insns2\fR or
-at \fB\-O2\fR or higher.
-.IP "\fB\-fsched\-last\-insn\-heuristic\fR" 4
-.IX Item "-fsched-last-insn-heuristic"
-Enable the last-instruction heuristic in the scheduler. This heuristic
-favors the instruction that is less dependent on the last instruction
-scheduled. This is enabled by default when scheduling is enabled,
-i.e. with \fB\-fschedule\-insns\fR or \fB\-fschedule\-insns2\fR or
-at \fB\-O2\fR or higher.
-.IP "\fB\-fsched\-dep\-count\-heuristic\fR" 4
-.IX Item "-fsched-dep-count-heuristic"
-Enable the dependent-count heuristic in the scheduler. This heuristic
-favors the instruction that has more instructions depending on it.
-This is enabled by default when scheduling is enabled, i.e.
-with \fB\-fschedule\-insns\fR or \fB\-fschedule\-insns2\fR or
-at \fB\-O2\fR or higher.
-.IP "\fB\-freschedule\-modulo\-scheduled\-loops\fR" 4
-.IX Item "-freschedule-modulo-scheduled-loops"
-Modulo scheduling is performed before traditional scheduling. If a loop
-is modulo scheduled, later scheduling passes may change its schedule.
-Use this option to control that behavior.
-.IP "\fB\-fselective\-scheduling\fR" 4
-.IX Item "-fselective-scheduling"
-Schedule instructions using selective scheduling algorithm. Selective
-scheduling runs instead of the first scheduler pass.
-.IP "\fB\-fselective\-scheduling2\fR" 4
-.IX Item "-fselective-scheduling2"
-Schedule instructions using selective scheduling algorithm. Selective
-scheduling runs instead of the second scheduler pass.
-.IP "\fB\-fsel\-sched\-pipelining\fR" 4
-.IX Item "-fsel-sched-pipelining"
-Enable software pipelining of innermost loops during selective scheduling.
-This option has no effect unless one of \fB\-fselective\-scheduling\fR or
-\&\fB\-fselective\-scheduling2\fR is turned on.
-.IP "\fB\-fsel\-sched\-pipelining\-outer\-loops\fR" 4
-.IX Item "-fsel-sched-pipelining-outer-loops"
-When pipelining loops during selective scheduling, also pipeline outer loops.
-This option has no effect unless \fB\-fsel\-sched\-pipelining\fR is turned on.
-.IP "\fB\-fshrink\-wrap\fR" 4
-.IX Item "-fshrink-wrap"
-Emit function prologues only before parts of the function that need it,
-rather than at the top of the function. This flag is enabled by default at
-\&\fB\-O\fR and higher.
-.IP "\fB\-fcaller\-saves\fR" 4
-.IX Item "-fcaller-saves"
-Enable allocation of values to registers that are clobbered by
-function calls, by emitting extra instructions to save and restore the
-registers around such calls. Such allocation is done only when it
-seems to result in better code.
-.Sp
-This option is always enabled by default on certain machines, usually
-those which have no call-preserved registers to use instead.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fcombine\-stack\-adjustments\fR" 4
-.IX Item "-fcombine-stack-adjustments"
-Tracks stack adjustments (pushes and pops) and stack memory references
-and then tries to find ways to combine them.
-.Sp
-Enabled by default at \fB\-O1\fR and higher.
-.IP "\fB\-fconserve\-stack\fR" 4
-.IX Item "-fconserve-stack"
-Attempt to minimize stack usage. The compiler attempts to use less
-stack space, even if that makes the program slower. This option
-implies setting the \fBlarge-stack-frame\fR parameter to 100
-and the \fBlarge-stack-frame-growth\fR parameter to 400.
-.IP "\fB\-ftree\-reassoc\fR" 4
-.IX Item "-ftree-reassoc"
-Perform reassociation on trees. This flag is enabled by default
-at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-pre\fR" 4
-.IX Item "-ftree-pre"
-Perform partial redundancy elimination (\s-1PRE\s0) on trees. This flag is
-enabled by default at \fB\-O2\fR and \fB\-O3\fR.
-.IP "\fB\-ftree\-partial\-pre\fR" 4
-.IX Item "-ftree-partial-pre"
-Make partial redundancy elimination (\s-1PRE\s0) more aggressive. This flag is
-enabled by default at \fB\-O3\fR.
-.IP "\fB\-ftree\-forwprop\fR" 4
-.IX Item "-ftree-forwprop"
-Perform forward propagation on trees. This flag is enabled by default
-at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-fre\fR" 4
-.IX Item "-ftree-fre"
-Perform full redundancy elimination (\s-1FRE\s0) on trees. The difference
-between \s-1FRE\s0 and \s-1PRE\s0 is that \s-1FRE\s0 only considers expressions
-that are computed on all paths leading to the redundant computation.
-This analysis is faster than \s-1PRE,\s0 though it exposes fewer redundancies.
-This flag is enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-phiprop\fR" 4
-.IX Item "-ftree-phiprop"
-Perform hoisting of loads from conditional pointers on trees. This
-pass is enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-fhoist\-adjacent\-loads\fR" 4
-.IX Item "-fhoist-adjacent-loads"
-Speculatively hoist loads from both branches of an if-then-else if the
-loads are from adjacent locations in the same structure and the target
-architecture has a conditional move instruction. This flag is enabled
-by default at \fB\-O2\fR and higher.
-.IP "\fB\-ftree\-copy\-prop\fR" 4
-.IX Item "-ftree-copy-prop"
-Perform copy propagation on trees. This pass eliminates unnecessary
-copy operations. This flag is enabled by default at \fB\-O\fR and
-higher.
-.IP "\fB\-fipa\-pure\-const\fR" 4
-.IX Item "-fipa-pure-const"
-Discover which functions are pure or constant.
-Enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-fipa\-reference\fR" 4
-.IX Item "-fipa-reference"
-Discover which static variables do not escape the
-compilation unit.
-Enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-fipa\-pta\fR" 4
-.IX Item "-fipa-pta"
-Perform interprocedural pointer analysis and interprocedural modification
-and reference analysis. This option can cause excessive memory and
-compile-time usage on large compilation units. It is not enabled by
-default at any optimization level.
-.IP "\fB\-fipa\-profile\fR" 4
-.IX Item "-fipa-profile"
-Perform interprocedural profile propagation. The functions called only from
-cold functions are marked as cold. Also functions executed once (such as
-\&\f(CW\*(C`cold\*(C'\fR, \f(CW\*(C`noreturn\*(C'\fR, static constructors or destructors) are identified. Cold
-functions and loop less parts of functions executed once are then optimized for
-size.
-Enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-fipa\-cp\fR" 4
-.IX Item "-fipa-cp"
-Perform interprocedural constant propagation.
-This optimization analyzes the program to determine when values passed
-to functions are constants and then optimizes accordingly.
-This optimization can substantially increase performance
-if the application has constants passed to functions.
-This flag is enabled by default at \fB\-O2\fR, \fB\-Os\fR and \fB\-O3\fR.
-.IP "\fB\-fipa\-cp\-clone\fR" 4
-.IX Item "-fipa-cp-clone"
-Perform function cloning to make interprocedural constant propagation stronger.
-When enabled, interprocedural constant propagation performs function cloning
-when externally visible function can be called with constant arguments.
-Because this optimization can create multiple copies of functions,
-it may significantly increase code size
-(see \fB\-\-param ipcp\-unit\-growth=\fR\fIvalue\fR).
-This flag is enabled by default at \fB\-O3\fR.
-.IP "\fB\-fisolate\-erroneous\-paths\-dereference\fR" 4
-.IX Item "-fisolate-erroneous-paths-dereference"
-Detect paths which trigger erroneous or undefined behaviour due to
-dereferencing a \s-1NULL\s0 pointer. Isolate those paths from the main control
-flow and turn the statement with erroneous or undefined behaviour into a trap.
-.IP "\fB\-fisolate\-erroneous\-paths\-attribute\fR" 4
-.IX Item "-fisolate-erroneous-paths-attribute"
-Detect paths which trigger erroneous or undefined behaviour due a \s-1NULL\s0 value
-being used in a way which is forbidden by a \f(CW\*(C`returns_nonnull\*(C'\fR or \f(CW\*(C`nonnull\*(C'\fR
-attribute. Isolate those paths from the main control flow and turn the
-statement with erroneous or undefined behaviour into a trap. This is not
-currently enabled, but may be enabled by \f(CW\*(C`\-O2\*(C'\fR in the future.
-.IP "\fB\-ftree\-sink\fR" 4
-.IX Item "-ftree-sink"
-Perform forward store motion on trees. This flag is
-enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-bit\-ccp\fR" 4
-.IX Item "-ftree-bit-ccp"
-Perform sparse conditional bit constant propagation on trees and propagate
-pointer alignment information.
-This pass only operates on local scalar variables and is enabled by default
-at \fB\-O\fR and higher. It requires that \fB\-ftree\-ccp\fR is enabled.
-.IP "\fB\-ftree\-ccp\fR" 4
-.IX Item "-ftree-ccp"
-Perform sparse conditional constant propagation (\s-1CCP\s0) on trees. This
-pass only operates on local scalar variables and is enabled by default
-at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-switch\-conversion\fR" 4
-.IX Item "-ftree-switch-conversion"
-Perform conversion of simple initializations in a switch to
-initializations from a scalar array. This flag is enabled by default
-at \fB\-O2\fR and higher.
-.IP "\fB\-ftree\-tail\-merge\fR" 4
-.IX Item "-ftree-tail-merge"
-Look for identical code sequences. When found, replace one with a jump to the
-other. This optimization is known as tail merging or cross jumping. This flag
-is enabled by default at \fB\-O2\fR and higher. The compilation time
-in this pass can
-be limited using \fBmax-tail-merge-comparisons\fR parameter and
-\&\fBmax-tail-merge-iterations\fR parameter.
-.IP "\fB\-ftree\-dce\fR" 4
-.IX Item "-ftree-dce"
-Perform dead code elimination (\s-1DCE\s0) on trees. This flag is enabled by
-default at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-builtin\-call\-dce\fR" 4
-.IX Item "-ftree-builtin-call-dce"
-Perform conditional dead code elimination (\s-1DCE\s0) for calls to built-in functions
-that may set \f(CW\*(C`errno\*(C'\fR but are otherwise side-effect free. This flag is
-enabled by default at \fB\-O2\fR and higher if \fB\-Os\fR is not also
-specified.
-.IP "\fB\-ftree\-dominator\-opts\fR" 4
-.IX Item "-ftree-dominator-opts"
-Perform a variety of simple scalar cleanups (constant/copy
-propagation, redundancy elimination, range propagation and expression
-simplification) based on a dominator tree traversal. This also
-performs jump threading (to reduce jumps to jumps). This flag is
-enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-dse\fR" 4
-.IX Item "-ftree-dse"
-Perform dead store elimination (\s-1DSE\s0) on trees. A dead store is a store into
-a memory location that is later overwritten by another store without
-any intervening loads. In this case the earlier store can be deleted. This
-flag is enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-ch\fR" 4
-.IX Item "-ftree-ch"
-Perform loop header copying on trees. This is beneficial since it increases
-effectiveness of code motion optimizations. It also saves one jump. This flag
-is enabled by default at \fB\-O\fR and higher. It is not enabled
-for \fB\-Os\fR, since it usually increases code size.
-.IP "\fB\-ftree\-loop\-optimize\fR" 4
-.IX Item "-ftree-loop-optimize"
-Perform loop optimizations on trees. This flag is enabled by default
-at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-loop\-linear\fR" 4
-.IX Item "-ftree-loop-linear"
-Perform loop interchange transformations on tree. Same as
-\&\fB\-floop\-interchange\fR. To use this code transformation, \s-1GCC\s0 has
-to be configured with \fB\-\-with\-ppl\fR and \fB\-\-with\-cloog\fR to
-enable the Graphite loop transformation infrastructure.
-.IP "\fB\-floop\-interchange\fR" 4
-.IX Item "-floop-interchange"
-Perform loop interchange transformations on loops. Interchanging two
-nested loops switches the inner and outer loops. For example, given a
-loop like:
-.Sp
-.Vb 5
-\& DO J = 1, M
-\& DO I = 1, N
-\& A(J, I) = A(J, I) * C
-\& ENDDO
-\& ENDDO
-.Ve
-.Sp
-loop interchange transforms the loop as if it were written:
-.Sp
-.Vb 5
-\& DO I = 1, N
-\& DO J = 1, M
-\& A(J, I) = A(J, I) * C
-\& ENDDO
-\& ENDDO
-.Ve
-.Sp
-which can be beneficial when \f(CW\*(C`N\*(C'\fR is larger than the caches,
-because in Fortran, the elements of an array are stored in memory
-contiguously by column, and the original loop iterates over rows,
-potentially creating at each access a cache miss. This optimization
-applies to all the languages supported by \s-1GCC\s0 and is not limited to
-Fortran. To use this code transformation, \s-1GCC\s0 has to be configured
-with \fB\-\-with\-ppl\fR and \fB\-\-with\-cloog\fR to enable the
-Graphite loop transformation infrastructure.
-.IP "\fB\-floop\-strip\-mine\fR" 4
-.IX Item "-floop-strip-mine"
-Perform loop strip mining transformations on loops. Strip mining
-splits a loop into two nested loops. The outer loop has strides
-equal to the strip size and the inner loop has strides of the
-original loop within a strip. The strip length can be changed
-using the \fBloop-block-tile-size\fR parameter. For example,
-given a loop like:
-.Sp
-.Vb 3
-\& DO I = 1, N
-\& A(I) = A(I) + C
-\& ENDDO
-.Ve
-.Sp
-loop strip mining transforms the loop as if it were written:
-.Sp
-.Vb 5
-\& DO II = 1, N, 51
-\& DO I = II, min (II + 50, N)
-\& A(I) = A(I) + C
-\& ENDDO
-\& ENDDO
-.Ve
-.Sp
-This optimization applies to all the languages supported by \s-1GCC\s0 and is
-not limited to Fortran. To use this code transformation, \s-1GCC\s0 has to
-be configured with \fB\-\-with\-ppl\fR and \fB\-\-with\-cloog\fR to
-enable the Graphite loop transformation infrastructure.
-.IP "\fB\-floop\-block\fR" 4
-.IX Item "-floop-block"
-Perform loop blocking transformations on loops. Blocking strip mines
-each loop in the loop nest such that the memory accesses of the
-element loops fit inside caches. The strip length can be changed
-using the \fBloop-block-tile-size\fR parameter. For example, given
-a loop like:
-.Sp
-.Vb 5
-\& DO I = 1, N
-\& DO J = 1, M
-\& A(J, I) = B(I) + C(J)
-\& ENDDO
-\& ENDDO
-.Ve
-.Sp
-loop blocking transforms the loop as if it were written:
-.Sp
-.Vb 9
-\& DO II = 1, N, 51
-\& DO JJ = 1, M, 51
-\& DO I = II, min (II + 50, N)
-\& DO J = JJ, min (JJ + 50, M)
-\& A(J, I) = B(I) + C(J)
-\& ENDDO
-\& ENDDO
-\& ENDDO
-\& ENDDO
-.Ve
-.Sp
-which can be beneficial when \f(CW\*(C`M\*(C'\fR is larger than the caches,
-because the innermost loop iterates over a smaller amount of data
-which can be kept in the caches. This optimization applies to all the
-languages supported by \s-1GCC\s0 and is not limited to Fortran. To use this
-code transformation, \s-1GCC\s0 has to be configured with \fB\-\-with\-ppl\fR
-and \fB\-\-with\-cloog\fR to enable the Graphite loop transformation
-infrastructure.
-.IP "\fB\-fgraphite\-identity\fR" 4
-.IX Item "-fgraphite-identity"
-Enable the identity transformation for graphite. For every SCoP we generate
-the polyhedral representation and transform it back to gimple. Using
-\&\fB\-fgraphite\-identity\fR we can check the costs or benefits of the
-\&\s-1GIMPLE \-\s0> \s-1GRAPHITE \-\s0> \s-1GIMPLE\s0 transformation. Some minimal optimizations
-are also performed by the code generator CLooG, like index splitting and
-dead code elimination in loops.
-.IP "\fB\-floop\-nest\-optimize\fR" 4
-.IX Item "-floop-nest-optimize"
-Enable the \s-1ISL\s0 based loop nest optimizer. This is a generic loop nest
-optimizer based on the Pluto optimization algorithms. It calculates a loop
-structure optimized for data-locality and parallelism. This option
-is experimental.
-.IP "\fB\-floop\-parallelize\-all\fR" 4
-.IX Item "-floop-parallelize-all"
-Use the Graphite data dependence analysis to identify loops that can
-be parallelized. Parallelize all the loops that can be analyzed to
-not contain loop carried dependences without checking that it is
-profitable to parallelize the loops.
-.IP "\fB\-fcheck\-data\-deps\fR" 4
-.IX Item "-fcheck-data-deps"
-Compare the results of several data dependence analyzers. This option
-is used for debugging the data dependence analyzers.
-.IP "\fB\-ftree\-loop\-if\-convert\fR" 4
-.IX Item "-ftree-loop-if-convert"
-Attempt to transform conditional jumps in the innermost loops to
-branch-less equivalents. The intent is to remove control-flow from
-the innermost loops in order to improve the ability of the
-vectorization pass to handle these loops. This is enabled by default
-if vectorization is enabled.
-.IP "\fB\-ftree\-loop\-if\-convert\-stores\fR" 4
-.IX Item "-ftree-loop-if-convert-stores"
-Attempt to also if-convert conditional jumps containing memory writes.
-This transformation can be unsafe for multi-threaded programs as it
-transforms conditional memory writes into unconditional memory writes.
-For example,
-.Sp
-.Vb 3
-\& for (i = 0; i < N; i++)
-\& if (cond)
-\& A[i] = expr;
-.Ve
-.Sp
-is transformed to
-.Sp
-.Vb 2
-\& for (i = 0; i < N; i++)
-\& A[i] = cond ? expr : A[i];
-.Ve
-.Sp
-potentially producing data races.
-.IP "\fB\-ftree\-loop\-distribution\fR" 4
-.IX Item "-ftree-loop-distribution"
-Perform loop distribution. This flag can improve cache performance on
-big loop bodies and allow further loop optimizations, like
-parallelization or vectorization, to take place. For example, the loop
-.Sp
-.Vb 4
-\& DO I = 1, N
-\& A(I) = B(I) + C
-\& D(I) = E(I) * F
-\& ENDDO
-.Ve
-.Sp
-is transformed to
-.Sp
-.Vb 6
-\& DO I = 1, N
-\& A(I) = B(I) + C
-\& ENDDO
-\& DO I = 1, N
-\& D(I) = E(I) * F
-\& ENDDO
-.Ve
-.IP "\fB\-ftree\-loop\-distribute\-patterns\fR" 4
-.IX Item "-ftree-loop-distribute-patterns"
-Perform loop distribution of patterns that can be code generated with
-calls to a library. This flag is enabled by default at \fB\-O3\fR.
-.Sp
-This pass distributes the initialization loops and generates a call to
-memset zero. For example, the loop
-.Sp
-.Vb 4
-\& DO I = 1, N
-\& A(I) = 0
-\& B(I) = A(I) + I
-\& ENDDO
-.Ve
-.Sp
-is transformed to
-.Sp
-.Vb 6
-\& DO I = 1, N
-\& A(I) = 0
-\& ENDDO
-\& DO I = 1, N
-\& B(I) = A(I) + I
-\& ENDDO
-.Ve
-.Sp
-and the initialization loop is transformed into a call to memset zero.
-.IP "\fB\-ftree\-loop\-im\fR" 4
-.IX Item "-ftree-loop-im"
-Perform loop invariant motion on trees. This pass moves only invariants that
-are hard to handle at \s-1RTL\s0 level (function calls, operations that expand to
-nontrivial sequences of insns). With \fB\-funswitch\-loops\fR it also moves
-operands of conditions that are invariant out of the loop, so that we can use
-just trivial invariantness analysis in loop unswitching. The pass also includes
-store motion.
-.IP "\fB\-ftree\-loop\-ivcanon\fR" 4
-.IX Item "-ftree-loop-ivcanon"
-Create a canonical counter for number of iterations in loops for which
-determining number of iterations requires complicated analysis. Later
-optimizations then may determine the number easily. Useful especially
-in connection with unrolling.
-.IP "\fB\-fivopts\fR" 4
-.IX Item "-fivopts"
-Perform induction variable optimizations (strength reduction, induction
-variable merging and induction variable elimination) on trees.
-.IP "\fB\-ftree\-parallelize\-loops=n\fR" 4
-.IX Item "-ftree-parallelize-loops=n"
-Parallelize loops, i.e., split their iteration space to run in n threads.
-This is only possible for loops whose iterations are independent
-and can be arbitrarily reordered. The optimization is only
-profitable on multiprocessor machines, for loops that are CPU-intensive,
-rather than constrained e.g. by memory bandwidth. This option
-implies \fB\-pthread\fR, and thus is only supported on targets
-that have support for \fB\-pthread\fR.
-.IP "\fB\-ftree\-pta\fR" 4
-.IX Item "-ftree-pta"
-Perform function-local points-to analysis on trees. This flag is
-enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-sra\fR" 4
-.IX Item "-ftree-sra"
-Perform scalar replacement of aggregates. This pass replaces structure
-references with scalars to prevent committing structures to memory too
-early. This flag is enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-copyrename\fR" 4
-.IX Item "-ftree-copyrename"
-Perform copy renaming on trees. This pass attempts to rename compiler
-temporaries to other variables at copy locations, usually resulting in
-variable names which more closely resemble the original variables. This flag
-is enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-coalesce\-inlined\-vars\fR" 4
-.IX Item "-ftree-coalesce-inlined-vars"
-Tell the copyrename pass (see \fB\-ftree\-copyrename\fR) to attempt to
-combine small user-defined variables too, but only if they were inlined
-from other functions. It is a more limited form of
-\&\fB\-ftree\-coalesce\-vars\fR. This may harm debug information of such
-inlined variables, but it will keep variables of the inlined-into
-function apart from each other, such that they are more likely to
-contain the expected values in a debugging session. This was the
-default in \s-1GCC\s0 versions older than 4.7.
-.IP "\fB\-ftree\-coalesce\-vars\fR" 4
-.IX Item "-ftree-coalesce-vars"
-Tell the copyrename pass (see \fB\-ftree\-copyrename\fR) to attempt to
-combine small user-defined variables too, instead of just compiler
-temporaries. This may severely limit the ability to debug an optimized
-program compiled with \fB\-fno\-var\-tracking\-assignments\fR. In the
-negated form, this flag prevents \s-1SSA\s0 coalescing of user variables,
-including inlined ones. This option is enabled by default.
-.IP "\fB\-ftree\-ter\fR" 4
-.IX Item "-ftree-ter"
-Perform temporary expression replacement during the \s-1SSA\-\s0>normal phase. Single
-use/single def temporaries are replaced at their use location with their
-defining expression. This results in non-GIMPLE code, but gives the expanders
-much more complex trees to work on resulting in better \s-1RTL\s0 generation. This is
-enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-slsr\fR" 4
-.IX Item "-ftree-slsr"
-Perform straight-line strength reduction on trees. This recognizes related
-expressions involving multiplications and replaces them by less expensive
-calculations when possible. This is enabled by default at \fB\-O\fR and
-higher.
-.IP "\fB\-ftree\-vectorize\fR" 4
-.IX Item "-ftree-vectorize"
-Perform vectorization on trees. This flag enables \fB\-ftree\-loop\-vectorize\fR
-and \fB\-ftree\-slp\-vectorize\fR if not explicitly specified.
-.IP "\fB\-ftree\-loop\-vectorize\fR" 4
-.IX Item "-ftree-loop-vectorize"
-Perform loop vectorization on trees. This flag is enabled by default at
-\&\fB\-O3\fR and when \fB\-ftree\-vectorize\fR is enabled.
-.IP "\fB\-ftree\-slp\-vectorize\fR" 4
-.IX Item "-ftree-slp-vectorize"
-Perform basic block vectorization on trees. This flag is enabled by default at
-\&\fB\-O3\fR and when \fB\-ftree\-vectorize\fR is enabled.
-.IP "\fB\-fvect\-cost\-model=\fR\fImodel\fR" 4
-.IX Item "-fvect-cost-model=model"
-Alter the cost model used for vectorization. The \fImodel\fR argument
-should be one of \f(CW\*(C`unlimited\*(C'\fR, \f(CW\*(C`dynamic\*(C'\fR or \f(CW\*(C`cheap\*(C'\fR.
-With the \f(CW\*(C`unlimited\*(C'\fR model the vectorized code-path is assumed
-to be profitable while with the \f(CW\*(C`dynamic\*(C'\fR model a runtime check
-will guard the vectorized code-path to enable it only for iteration
-counts that will likely execute faster than when executing the original
-scalar loop. The \f(CW\*(C`cheap\*(C'\fR model will disable vectorization of
-loops where doing so would be cost prohibitive for example due to
-required runtime checks for data dependence or alignment but otherwise
-is equal to the \f(CW\*(C`dynamic\*(C'\fR model.
-The default cost model depends on other optimization flags and is
-either \f(CW\*(C`dynamic\*(C'\fR or \f(CW\*(C`cheap\*(C'\fR.
-.IP "\fB\-fsimd\-cost\-model=\fR\fImodel\fR" 4
-.IX Item "-fsimd-cost-model=model"
-Alter the cost model used for vectorization of loops marked with the OpenMP
-or Cilk Plus simd directive. The \fImodel\fR argument should be one of
-\&\f(CW\*(C`unlimited\*(C'\fR, \f(CW\*(C`dynamic\*(C'\fR, \f(CW\*(C`cheap\*(C'\fR. All values of \fImodel\fR
-have the same meaning as described in \fB\-fvect\-cost\-model\fR and by
-default a cost model defined with \fB\-fvect\-cost\-model\fR is used.
-.IP "\fB\-ftree\-vrp\fR" 4
-.IX Item "-ftree-vrp"
-Perform Value Range Propagation on trees. This is similar to the
-constant propagation pass, but instead of values, ranges of values are
-propagated. This allows the optimizers to remove unnecessary range
-checks like array bound checks and null pointer checks. This is
-enabled by default at \fB\-O2\fR and higher. Null pointer check
-elimination is only done if \fB\-fdelete\-null\-pointer\-checks\fR is
-enabled.
-.IP "\fB\-ftracer\fR" 4
-.IX Item "-ftracer"
-Perform tail duplication to enlarge superblock size. This transformation
-simplifies the control flow of the function allowing other optimizations to do
-a better job.
-.IP "\fB\-funroll\-loops\fR" 4
-.IX Item "-funroll-loops"
-Unroll loops whose number of iterations can be determined at compile
-time or upon entry to the loop. \fB\-funroll\-loops\fR implies
-\&\fB\-frerun\-cse\-after\-loop\fR. This option makes code larger,
-and may or may not make it run faster.
-.IP "\fB\-funroll\-all\-loops\fR" 4
-.IX Item "-funroll-all-loops"
-Unroll all loops, even if their number of iterations is uncertain when
-the loop is entered. This usually makes programs run more slowly.
-\&\fB\-funroll\-all\-loops\fR implies the same options as
-\&\fB\-funroll\-loops\fR,
-.IP "\fB\-fsplit\-ivs\-in\-unroller\fR" 4
-.IX Item "-fsplit-ivs-in-unroller"
-Enables expression of values of induction variables in later iterations
-of the unrolled loop using the value in the first iteration. This breaks
-long dependency chains, thus improving efficiency of the scheduling passes.
-.Sp
-A combination of \fB\-fweb\fR and \s-1CSE\s0 is often sufficient to obtain the
-same effect. However, that is not reliable in cases where the loop body
-is more complicated than a single basic block. It also does not work at all
-on some architectures due to restrictions in the \s-1CSE\s0 pass.
-.Sp
-This optimization is enabled by default.
-.IP "\fB\-fvariable\-expansion\-in\-unroller\fR" 4
-.IX Item "-fvariable-expansion-in-unroller"
-With this option, the compiler creates multiple copies of some
-local variables when unrolling a loop, which can result in superior code.
-.IP "\fB\-fpartial\-inlining\fR" 4
-.IX Item "-fpartial-inlining"
-Inline parts of functions. This option has any effect only
-when inlining itself is turned on by the \fB\-finline\-functions\fR
-or \fB\-finline\-small\-functions\fR options.
-.Sp
-Enabled at level \fB\-O2\fR.
-.IP "\fB\-fpredictive\-commoning\fR" 4
-.IX Item "-fpredictive-commoning"
-Perform predictive commoning optimization, i.e., reusing computations
-(especially memory loads and stores) performed in previous
-iterations of loops.
-.Sp
-This option is enabled at level \fB\-O3\fR.
-.IP "\fB\-fprefetch\-loop\-arrays\fR" 4
-.IX Item "-fprefetch-loop-arrays"
-If supported by the target machine, generate instructions to prefetch
-memory to improve the performance of loops that access large arrays.
-.Sp
-This option may generate better or worse code; results are highly
-dependent on the structure of loops within the source code.
-.Sp
-Disabled at level \fB\-Os\fR.
-.IP "\fB\-fno\-peephole\fR" 4
-.IX Item "-fno-peephole"
-.PD 0
-.IP "\fB\-fno\-peephole2\fR" 4
-.IX Item "-fno-peephole2"
-.PD
-Disable any machine-specific peephole optimizations. The difference
-between \fB\-fno\-peephole\fR and \fB\-fno\-peephole2\fR is in how they
-are implemented in the compiler; some targets use one, some use the
-other, a few use both.
-.Sp
-\&\fB\-fpeephole\fR is enabled by default.
-\&\fB\-fpeephole2\fR enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fno\-guess\-branch\-probability\fR" 4
-.IX Item "-fno-guess-branch-probability"
-Do not guess branch probabilities using heuristics.
-.Sp
-\&\s-1GCC\s0 uses heuristics to guess branch probabilities if they are
-not provided by profiling feedback (\fB\-fprofile\-arcs\fR). These
-heuristics are based on the control flow graph. If some branch probabilities
-are specified by \fB_\|_builtin_expect\fR, then the heuristics are
-used to guess branch probabilities for the rest of the control flow graph,
-taking the \fB_\|_builtin_expect\fR info into account. The interactions
-between the heuristics and \fB_\|_builtin_expect\fR can be complex, and in
-some cases, it may be useful to disable the heuristics so that the effects
-of \fB_\|_builtin_expect\fR are easier to understand.
-.Sp
-The default is \fB\-fguess\-branch\-probability\fR at levels
-\&\fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-freorder\-blocks\fR" 4
-.IX Item "-freorder-blocks"
-Reorder basic blocks in the compiled function in order to reduce number of
-taken branches and improve code locality.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR.
-.IP "\fB\-freorder\-blocks\-and\-partition\fR" 4
-.IX Item "-freorder-blocks-and-partition"
-In addition to reordering basic blocks in the compiled function, in order
-to reduce number of taken branches, partitions hot and cold basic blocks
-into separate sections of the assembly and .o files, to improve
-paging and cache locality performance.
-.Sp
-This optimization is automatically turned off in the presence of
-exception handling, for linkonce sections, for functions with a user-defined
-section attribute and on any architecture that does not support named
-sections.
-.Sp
-Enabled for x86 at levels \fB\-O2\fR, \fB\-O3\fR.
-.IP "\fB\-freorder\-functions\fR" 4
-.IX Item "-freorder-functions"
-Reorder functions in the object file in order to
-improve code locality. This is implemented by using special
-subsections \f(CW\*(C`.text.hot\*(C'\fR for most frequently executed functions and
-\&\f(CW\*(C`.text.unlikely\*(C'\fR for unlikely executed functions. Reordering is done by
-the linker so object file format must support named sections and linker must
-place them in a reasonable way.
-.Sp
-Also profile feedback must be available to make this option effective. See
-\&\fB\-fprofile\-arcs\fR for details.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fstrict\-aliasing\fR" 4
-.IX Item "-fstrict-aliasing"
-Allow the compiler to assume the strictest aliasing rules applicable to
-the language being compiled. For C (and \*(C+), this activates
-optimizations based on the type of expressions. In particular, an
-object of one type is assumed never to reside at the same address as an
-object of a different type, unless the types are almost the same. For
-example, an \f(CW\*(C`unsigned int\*(C'\fR can alias an \f(CW\*(C`int\*(C'\fR, but not a
-\&\f(CW\*(C`void*\*(C'\fR or a \f(CW\*(C`double\*(C'\fR. A character type may alias any other
-type.
-.Sp
-Pay special attention to code like this:
-.Sp
-.Vb 4
-\& union a_union {
-\& int i;
-\& double d;
-\& };
-\&
-\& int f() {
-\& union a_union t;
-\& t.d = 3.0;
-\& return t.i;
-\& }
-.Ve
-.Sp
-The practice of reading from a different union member than the one most
-recently written to (called \*(L"type-punning\*(R") is common. Even with
-\&\fB\-fstrict\-aliasing\fR, type-punning is allowed, provided the memory
-is accessed through the union type. So, the code above works as
-expected. However, this code might not:
-.Sp
-.Vb 7
-\& int f() {
-\& union a_union t;
-\& int* ip;
-\& t.d = 3.0;
-\& ip = &t.i;
-\& return *ip;
-\& }
-.Ve
-.Sp
-Similarly, access by taking the address, casting the resulting pointer
-and dereferencing the result has undefined behavior, even if the cast
-uses a union type, e.g.:
-.Sp
-.Vb 4
-\& int f() {
-\& double d = 3.0;
-\& return ((union a_union *) &d)\->i;
-\& }
-.Ve
-.Sp
-The \fB\-fstrict\-aliasing\fR option is enabled at levels
-\&\fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fstrict\-overflow\fR" 4
-.IX Item "-fstrict-overflow"
-Allow the compiler to assume strict signed overflow rules, depending
-on the language being compiled. For C (and \*(C+) this means that
-overflow when doing arithmetic with signed numbers is undefined, which
-means that the compiler may assume that it does not happen. This
-permits various optimizations. For example, the compiler assumes
-that an expression like \f(CW\*(C`i + 10 > i\*(C'\fR is always true for
-signed \f(CW\*(C`i\*(C'\fR. This assumption is only valid if signed overflow is
-undefined, as the expression is false if \f(CW\*(C`i + 10\*(C'\fR overflows when
-using twos complement arithmetic. When this option is in effect any
-attempt to determine whether an operation on signed numbers
-overflows must be written carefully to not actually involve overflow.
-.Sp
-This option also allows the compiler to assume strict pointer
-semantics: given a pointer to an object, if adding an offset to that
-pointer does not produce a pointer to the same object, the addition is
-undefined. This permits the compiler to conclude that \f(CW\*(C`p + u >
-p\*(C'\fR is always true for a pointer \f(CW\*(C`p\*(C'\fR and unsigned integer
-\&\f(CW\*(C`u\*(C'\fR. This assumption is only valid because pointer wraparound is
-undefined, as the expression is false if \f(CW\*(C`p + u\*(C'\fR overflows using
-twos complement arithmetic.
-.Sp
-See also the \fB\-fwrapv\fR option. Using \fB\-fwrapv\fR means
-that integer signed overflow is fully defined: it wraps. When
-\&\fB\-fwrapv\fR is used, there is no difference between
-\&\fB\-fstrict\-overflow\fR and \fB\-fno\-strict\-overflow\fR for
-integers. With \fB\-fwrapv\fR certain types of overflow are
-permitted. For example, if the compiler gets an overflow when doing
-arithmetic on constants, the overflowed value can still be used with
-\&\fB\-fwrapv\fR, but not otherwise.
-.Sp
-The \fB\-fstrict\-overflow\fR option is enabled at levels
-\&\fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-falign\-functions\fR" 4
-.IX Item "-falign-functions"
-.PD 0
-.IP "\fB\-falign\-functions=\fR\fIn\fR" 4
-.IX Item "-falign-functions=n"
-.PD
-Align the start of functions to the next power-of-two greater than
-\&\fIn\fR, skipping up to \fIn\fR bytes. For instance,
-\&\fB\-falign\-functions=32\fR aligns functions to the next 32\-byte
-boundary, but \fB\-falign\-functions=24\fR aligns to the next
-32\-byte boundary only if this can be done by skipping 23 bytes or less.
-.Sp
-\&\fB\-fno\-align\-functions\fR and \fB\-falign\-functions=1\fR are
-equivalent and mean that functions are not aligned.
-.Sp
-Some assemblers only support this flag when \fIn\fR is a power of two;
-in that case, it is rounded up.
-.Sp
-If \fIn\fR is not specified or is zero, use a machine-dependent default.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR.
-.IP "\fB\-falign\-labels\fR" 4
-.IX Item "-falign-labels"
-.PD 0
-.IP "\fB\-falign\-labels=\fR\fIn\fR" 4
-.IX Item "-falign-labels=n"
-.PD
-Align all branch targets to a power-of-two boundary, skipping up to
-\&\fIn\fR bytes like \fB\-falign\-functions\fR. This option can easily
-make code slower, because it must insert dummy operations for when the
-branch target is reached in the usual flow of the code.
-.Sp
-\&\fB\-fno\-align\-labels\fR and \fB\-falign\-labels=1\fR are
-equivalent and mean that labels are not aligned.
-.Sp
-If \fB\-falign\-loops\fR or \fB\-falign\-jumps\fR are applicable and
-are greater than this value, then their values are used instead.
-.Sp
-If \fIn\fR is not specified or is zero, use a machine-dependent default
-which is very likely to be \fB1\fR, meaning no alignment.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR.
-.IP "\fB\-falign\-loops\fR" 4
-.IX Item "-falign-loops"
-.PD 0
-.IP "\fB\-falign\-loops=\fR\fIn\fR" 4
-.IX Item "-falign-loops=n"
-.PD
-Align loops to a power-of-two boundary, skipping up to \fIn\fR bytes
-like \fB\-falign\-functions\fR. If the loops are
-executed many times, this makes up for any execution of the dummy
-operations.
-.Sp
-\&\fB\-fno\-align\-loops\fR and \fB\-falign\-loops=1\fR are
-equivalent and mean that loops are not aligned.
-.Sp
-If \fIn\fR is not specified or is zero, use a machine-dependent default.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR.
-.IP "\fB\-falign\-jumps\fR" 4
-.IX Item "-falign-jumps"
-.PD 0
-.IP "\fB\-falign\-jumps=\fR\fIn\fR" 4
-.IX Item "-falign-jumps=n"
-.PD
-Align branch targets to a power-of-two boundary, for branch targets
-where the targets can only be reached by jumping, skipping up to \fIn\fR
-bytes like \fB\-falign\-functions\fR. In this case, no dummy operations
-need be executed.
-.Sp
-\&\fB\-fno\-align\-jumps\fR and \fB\-falign\-jumps=1\fR are
-equivalent and mean that loops are not aligned.
-.Sp
-If \fIn\fR is not specified or is zero, use a machine-dependent default.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR.
-.IP "\fB\-funit\-at\-a\-time\fR" 4
-.IX Item "-funit-at-a-time"
-This option is left for compatibility reasons. \fB\-funit\-at\-a\-time\fR
-has no effect, while \fB\-fno\-unit\-at\-a\-time\fR implies
-\&\fB\-fno\-toplevel\-reorder\fR and \fB\-fno\-section\-anchors\fR.
-.Sp
-Enabled by default.
-.IP "\fB\-fno\-toplevel\-reorder\fR" 4
-.IX Item "-fno-toplevel-reorder"
-Do not reorder top-level functions, variables, and \f(CW\*(C`asm\*(C'\fR
-statements. Output them in the same order that they appear in the
-input file. When this option is used, unreferenced static variables
-are not removed. This option is intended to support existing code
-that relies on a particular ordering. For new code, it is better to
-use attributes when possible.
-.Sp
-Enabled at level \fB\-O0\fR. When disabled explicitly, it also implies
-\&\fB\-fno\-section\-anchors\fR, which is otherwise enabled at \fB\-O0\fR on some
-targets.
-.IP "\fB\-fweb\fR" 4
-.IX Item "-fweb"
-Constructs webs as commonly used for register allocation purposes and assign
-each web individual pseudo register. This allows the register allocation pass
-to operate on pseudos directly, but also strengthens several other optimization
-passes, such as \s-1CSE,\s0 loop optimizer and trivial dead code remover. It can,
-however, make debugging impossible, since variables no longer stay in a
-\&\*(L"home register\*(R".
-.Sp
-Enabled by default with \fB\-funroll\-loops\fR.
-.IP "\fB\-fwhole\-program\fR" 4
-.IX Item "-fwhole-program"
-Assume that the current compilation unit represents the whole program being
-compiled. All public functions and variables with the exception of \f(CW\*(C`main\*(C'\fR
-and those merged by attribute \f(CW\*(C`externally_visible\*(C'\fR become static functions
-and in effect are optimized more aggressively by interprocedural optimizers.
-.Sp
-This option should not be used in combination with \f(CW\*(C`\-flto\*(C'\fR.
-Instead relying on a linker plugin should provide safer and more precise
-information.
-.IP "\fB\-flto[=\fR\fIn\fR\fB]\fR" 4
-.IX Item "-flto[=n]"
-This option runs the standard link-time optimizer. When invoked
-with source code, it generates \s-1GIMPLE \s0(one of \s-1GCC\s0's internal
-representations) and writes it to special \s-1ELF\s0 sections in the object
-file. When the object files are linked together, all the function
-bodies are read from these \s-1ELF\s0 sections and instantiated as if they
-had been part of the same translation unit.
-.Sp
-To use the link-time optimizer, \fB\-flto\fR and optimization
-options should be specified at compile time and during the final link.
-For example:
-.Sp
-.Vb 3
-\& gcc \-c \-O2 \-flto foo.c
-\& gcc \-c \-O2 \-flto bar.c
-\& gcc \-o myprog \-flto \-O2 foo.o bar.o
-.Ve
-.Sp
-The first two invocations to \s-1GCC\s0 save a bytecode representation
-of \s-1GIMPLE\s0 into special \s-1ELF\s0 sections inside \fIfoo.o\fR and
-\&\fIbar.o\fR. The final invocation reads the \s-1GIMPLE\s0 bytecode from
-\&\fIfoo.o\fR and \fIbar.o\fR, merges the two files into a single
-internal image, and compiles the result as usual. Since both
-\&\fIfoo.o\fR and \fIbar.o\fR are merged into a single image, this
-causes all the interprocedural analyses and optimizations in \s-1GCC\s0 to
-work across the two files as if they were a single one. This means,
-for example, that the inliner is able to inline functions in
-\&\fIbar.o\fR into functions in \fIfoo.o\fR and vice-versa.
-.Sp
-Another (simpler) way to enable link-time optimization is:
-.Sp
-.Vb 1
-\& gcc \-o myprog \-flto \-O2 foo.c bar.c
-.Ve
-.Sp
-The above generates bytecode for \fIfoo.c\fR and \fIbar.c\fR,
-merges them together into a single \s-1GIMPLE\s0 representation and optimizes
-them as usual to produce \fImyprog\fR.
-.Sp
-The only important thing to keep in mind is that to enable link-time
-optimizations you need to use the \s-1GCC\s0 driver to perform the link-step.
-\&\s-1GCC\s0 then automatically performs link-time optimization if any of the
-objects involved were compiled with the \fB\-flto\fR. You generally
-should specify the optimization options to be used for link-time
-optimization though \s-1GCC\s0 will try to be clever at guessing an
-optimization level to use from the options used at compile-time
-if you fail to specify one at link-time. You can always override
-the automatic decision to do link-time optimization at link-time
-by passing \fB\-fno\-lto\fR to the link command.
-.Sp
-To make whole program optimization effective, it is necessary to make
-certain whole program assumptions. The compiler needs to know
-what functions and variables can be accessed by libraries and runtime
-outside of the link-time optimized unit. When supported by the linker,
-the linker plugin (see \fB\-fuse\-linker\-plugin\fR) passes information
-to the compiler about used and externally visible symbols. When
-the linker plugin is not available, \fB\-fwhole\-program\fR should be
-used to allow the compiler to make these assumptions, which leads
-to more aggressive optimization decisions.
-.Sp
-When \fB\-fuse\-linker\-plugin\fR is not enabled then, when a file is
-compiled with \fB\-flto\fR, the generated object file is larger than
-a regular object file because it contains \s-1GIMPLE\s0 bytecodes and the usual
-final code (see \fB\-ffat\-lto\-objects\fR. This means that
-object files with \s-1LTO\s0 information can be linked as normal object
-files; if \fB\-fno\-lto\fR is passed to the linker, no
-interprocedural optimizations are applied. Note that when
-\&\fB\-fno\-fat\-lto\-objects\fR is enabled the compile-stage is faster
-but you cannot perform a regular, non-LTO link on them.
-.Sp
-Additionally, the optimization flags used to compile individual files
-are not necessarily related to those used at link time. For instance,
-.Sp
-.Vb 3
-\& gcc \-c \-O0 \-ffat\-lto\-objects \-flto foo.c
-\& gcc \-c \-O0 \-ffat\-lto\-objects \-flto bar.c
-\& gcc \-o myprog \-O3 foo.o bar.o
-.Ve
-.Sp
-This produces individual object files with unoptimized assembler
-code, but the resulting binary \fImyprog\fR is optimized at
-\&\fB\-O3\fR. If, instead, the final binary is generated with
-\&\fB\-fno\-lto\fR, then \fImyprog\fR is not optimized.
-.Sp
-When producing the final binary, \s-1GCC\s0 only
-applies link-time optimizations to those files that contain bytecode.
-Therefore, you can mix and match object files and libraries with
-\&\s-1GIMPLE\s0 bytecodes and final object code. \s-1GCC\s0 automatically selects
-which files to optimize in \s-1LTO\s0 mode and which files to link without
-further processing.
-.Sp
-There are some code generation flags preserved by \s-1GCC\s0 when
-generating bytecodes, as they need to be used during the final link
-stage. Generally options specified at link-time override those
-specified at compile-time.
-.Sp
-If you do not specify an optimization level option \fB\-O\fR at
-link-time then \s-1GCC\s0 will compute one based on the optimization levels
-used when compiling the object files. The highest optimization
-level will win here.
-.Sp
-Currently, the following options and their setting are take from
-the first object file that explicitely specified it:
-\&\fB\-fPIC\fR, \fB\-fpic\fR, \fB\-fpie\fR, \fB\-fcommon\fR,
-\&\fB\-fexceptions\fR, \fB\-fnon\-call\-exceptions\fR, \fB\-fgnu\-tm\fR
-and all the \fB\-m\fR target flags.
-.Sp
-Certain \s-1ABI\s0 changing flags are required to match in all compilation-units
-and trying to override this at link-time with a conflicting value
-is ignored. This includes options such as \fB\-freg\-struct\-return\fR
-and \fB\-fpcc\-struct\-return\fR.
-.Sp
-Other options such as \fB\-ffp\-contract\fR, \fB\-fno\-strict\-overflow\fR,
-\&\fB\-fwrapv\fR, \fB\-fno\-trapv\fR or \fB\-fno\-strict\-aliasing\fR
-are passed through to the link stage and merged conservatively for
-conflicting translation units. Specifically
-\&\fB\-fno\-strict\-overflow\fR, \fB\-fwrapv\fR and \fB\-fno\-trapv\fR take
-precedence and for example \fB\-ffp\-contract=off\fR takes precedence
-over \fB\-ffp\-contract=fast\fR. You can override them at linke-time.
-.Sp
-It is recommended that you compile all the files participating in the
-same link with the same options and also specify those options at
-link time.
-.Sp
-If \s-1LTO\s0 encounters objects with C linkage declared with incompatible
-types in separate translation units to be linked together (undefined
-behavior according to \s-1ISO C99 6.2.7\s0), a non-fatal diagnostic may be
-issued. The behavior is still undefined at run time. Similar
-diagnostics may be raised for other languages.
-.Sp
-Another feature of \s-1LTO\s0 is that it is possible to apply interprocedural
-optimizations on files written in different languages:
-.Sp
-.Vb 4
-\& gcc \-c \-flto foo.c
-\& g++ \-c \-flto bar.cc
-\& gfortran \-c \-flto baz.f90
-\& g++ \-o myprog \-flto \-O3 foo.o bar.o baz.o \-lgfortran
-.Ve
-.Sp
-Notice that the final link is done with \fBg++\fR to get the \*(C+
-runtime libraries and \fB\-lgfortran\fR is added to get the Fortran
-runtime libraries. In general, when mixing languages in \s-1LTO\s0 mode, you
-should use the same link command options as when mixing languages in a
-regular (non-LTO) compilation.
-.Sp
-If object files containing \s-1GIMPLE\s0 bytecode are stored in a library archive, say
-\&\fIlibfoo.a\fR, it is possible to extract and use them in an \s-1LTO\s0 link if you
-are using a linker with plugin support. To create static libraries suitable
-for \s-1LTO,\s0 use \fBgcc-ar\fR and \fBgcc-ranlib\fR instead of \fBar\fR
-and \f(CW\*(C`ranlib\*(C'\fR; to show the symbols of object files with \s-1GIMPLE\s0 bytecode, use
-\&\fBgcc-nm\fR. Those commands require that \fBar\fR, \fBranlib\fR
-and \fBnm\fR have been compiled with plugin support. At link time, use the the
-flag \fB\-fuse\-linker\-plugin\fR to ensure that the library participates in
-the \s-1LTO\s0 optimization process:
-.Sp
-.Vb 1
-\& gcc \-o myprog \-O2 \-flto \-fuse\-linker\-plugin a.o b.o \-lfoo
-.Ve
-.Sp
-With the linker plugin enabled, the linker extracts the needed
-\&\s-1GIMPLE\s0 files from \fIlibfoo.a\fR and passes them on to the running \s-1GCC\s0
-to make them part of the aggregated \s-1GIMPLE\s0 image to be optimized.
-.Sp
-If you are not using a linker with plugin support and/or do not
-enable the linker plugin, then the objects inside \fIlibfoo.a\fR
-are extracted and linked as usual, but they do not participate
-in the \s-1LTO\s0 optimization process. In order to make a static library suitable
-for both \s-1LTO\s0 optimization and usual linkage, compile its object files with
-\&\fB\-flto\fR \f(CW\*(C`\-ffat\-lto\-objects\*(C'\fR.
-.Sp
-Link-time optimizations do not require the presence of the whole program to
-operate. If the program does not require any symbols to be exported, it is
-possible to combine \fB\-flto\fR and \fB\-fwhole\-program\fR to allow
-the interprocedural optimizers to use more aggressive assumptions which may
-lead to improved optimization opportunities.
-Use of \fB\-fwhole\-program\fR is not needed when linker plugin is
-active (see \fB\-fuse\-linker\-plugin\fR).
-.Sp
-The current implementation of \s-1LTO\s0 makes no
-attempt to generate bytecode that is portable between different
-types of hosts. The bytecode files are versioned and there is a
-strict version check, so bytecode files generated in one version of
-\&\s-1GCC\s0 will not work with an older or newer version of \s-1GCC.\s0
-.Sp
-Link-time optimization does not work well with generation of debugging
-information. Combining \fB\-flto\fR with
-\&\fB\-g\fR is currently experimental and expected to produce unexpected
-results.
-.Sp
-If you specify the optional \fIn\fR, the optimization and code
-generation done at link time is executed in parallel using \fIn\fR
-parallel jobs by utilizing an installed \fBmake\fR program. The
-environment variable \fB\s-1MAKE\s0\fR may be used to override the program
-used. The default value for \fIn\fR is 1.
-.Sp
-You can also specify \fB\-flto=jobserver\fR to use \s-1GNU\s0 make's
-job server mode to determine the number of parallel jobs. This
-is useful when the Makefile calling \s-1GCC\s0 is already executing in parallel.
-You must prepend a \fB+\fR to the command recipe in the parent Makefile
-for this to work. This option likely only works if \fB\s-1MAKE\s0\fR is
-\&\s-1GNU\s0 make.
-.IP "\fB\-flto\-partition=\fR\fIalg\fR" 4
-.IX Item "-flto-partition=alg"
-Specify the partitioning algorithm used by the link-time optimizer.
-The value is either \f(CW\*(C`1to1\*(C'\fR to specify a partitioning mirroring
-the original source files or \f(CW\*(C`balanced\*(C'\fR to specify partitioning
-into equally sized chunks (whenever possible) or \f(CW\*(C`max\*(C'\fR to create
-new partition for every symbol where possible. Specifying \f(CW\*(C`none\*(C'\fR
-as an algorithm disables partitioning and streaming completely.
-The default value is \f(CW\*(C`balanced\*(C'\fR. While \f(CW\*(C`1to1\*(C'\fR can be used
-as an workaround for various code ordering issues, the \f(CW\*(C`max\*(C'\fR
-partitioning is intended for internal testing only.
-.IP "\fB\-flto\-compression\-level=\fR\fIn\fR" 4
-.IX Item "-flto-compression-level=n"
-This option specifies the level of compression used for intermediate
-language written to \s-1LTO\s0 object files, and is only meaningful in
-conjunction with \s-1LTO\s0 mode (\fB\-flto\fR). Valid
-values are 0 (no compression) to 9 (maximum compression). Values
-outside this range are clamped to either 0 or 9. If the option is not
-given, a default balanced compression setting is used.
-.IP "\fB\-flto\-report\fR" 4
-.IX Item "-flto-report"
-Prints a report with internal details on the workings of the link-time
-optimizer. The contents of this report vary from version to version.
-It is meant to be useful to \s-1GCC\s0 developers when processing object
-files in \s-1LTO\s0 mode (via \fB\-flto\fR).
-.Sp
-Disabled by default.
-.IP "\fB\-flto\-report\-wpa\fR" 4
-.IX Item "-flto-report-wpa"
-Like \fB\-flto\-report\fR, but only print for the \s-1WPA\s0 phase of Link
-Time Optimization.
-.IP "\fB\-fuse\-linker\-plugin\fR" 4
-.IX Item "-fuse-linker-plugin"
-Enables the use of a linker plugin during link-time optimization. This
-option relies on plugin support in the linker, which is available in gold
-or in \s-1GNU\s0 ld 2.21 or newer.
-.Sp
-This option enables the extraction of object files with \s-1GIMPLE\s0 bytecode out
-of library archives. This improves the quality of optimization by exposing
-more code to the link-time optimizer. This information specifies what
-symbols can be accessed externally (by non-LTO object or during dynamic
-linking). Resulting code quality improvements on binaries (and shared
-libraries that use hidden visibility) are similar to \f(CW\*(C`\-fwhole\-program\*(C'\fR.
-See \fB\-flto\fR for a description of the effect of this flag and how to
-use it.
-.Sp
-This option is enabled by default when \s-1LTO\s0 support in \s-1GCC\s0 is enabled
-and \s-1GCC\s0 was configured for use with
-a linker supporting plugins (\s-1GNU\s0 ld 2.21 or newer or gold).
-.IP "\fB\-ffat\-lto\-objects\fR" 4
-.IX Item "-ffat-lto-objects"
-Fat \s-1LTO\s0 objects are object files that contain both the intermediate language
-and the object code. This makes them usable for both \s-1LTO\s0 linking and normal
-linking. This option is effective only when compiling with \fB\-flto\fR
-and is ignored at link time.
-.Sp
-\&\fB\-fno\-fat\-lto\-objects\fR improves compilation time over plain \s-1LTO,\s0 but
-requires the complete toolchain to be aware of \s-1LTO.\s0 It requires a linker with
-linker plugin support for basic functionality. Additionally,
-\&\fBnm\fR, \fBar\fR and \fBranlib\fR
-need to support linker plugins to allow a full-featured build environment
-(capable of building static libraries etc). \s-1GCC\s0 provides the \fBgcc-ar\fR,
-\&\fBgcc-nm\fR, \fBgcc-ranlib\fR wrappers to pass the right options
-to these tools. With non fat \s-1LTO\s0 makefiles need to be modified to use them.
-.Sp
-The default is \fB\-fno\-fat\-lto\-objects\fR on targets with linker plugin
-support.
-.IP "\fB\-fcompare\-elim\fR" 4
-.IX Item "-fcompare-elim"
-After register allocation and post-register allocation instruction splitting,
-identify arithmetic instructions that compute processor flags similar to a
-comparison operation based on that arithmetic. If possible, eliminate the
-explicit comparison operation.
-.Sp
-This pass only applies to certain targets that cannot explicitly represent
-the comparison operation before register allocation is complete.
-.Sp
-Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fuse\-ld=bfd\fR" 4
-.IX Item "-fuse-ld=bfd"
-Use the \fBbfd\fR linker instead of the default linker.
-.IP "\fB\-fuse\-ld=gold\fR" 4
-.IX Item "-fuse-ld=gold"
-Use the \fBgold\fR linker instead of the default linker.
-.IP "\fB\-fcprop\-registers\fR" 4
-.IX Item "-fcprop-registers"
-After register allocation and post-register allocation instruction splitting,
-perform a copy-propagation pass to try to reduce scheduling dependencies
-and occasionally eliminate the copy.
-.Sp
-Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fprofile\-correction\fR" 4
-.IX Item "-fprofile-correction"
-Profiles collected using an instrumented binary for multi-threaded programs may
-be inconsistent due to missed counter updates. When this option is specified,
-\&\s-1GCC\s0 uses heuristics to correct or smooth out such inconsistencies. By
-default, \s-1GCC\s0 emits an error message when an inconsistent profile is detected.
-.IP "\fB\-fprofile\-dir=\fR\fIpath\fR" 4
-.IX Item "-fprofile-dir=path"
-Set the directory to search for the profile data files in to \fIpath\fR.
-This option affects only the profile data generated by
-\&\fB\-fprofile\-generate\fR, \fB\-ftest\-coverage\fR, \fB\-fprofile\-arcs\fR
-and used by \fB\-fprofile\-use\fR and \fB\-fbranch\-probabilities\fR
-and its related options. Both absolute and relative paths can be used.
-By default, \s-1GCC\s0 uses the current directory as \fIpath\fR, thus the
-profile data file appears in the same directory as the object file.
-.IP "\fB\-fprofile\-generate\fR" 4
-.IX Item "-fprofile-generate"
-.PD 0
-.IP "\fB\-fprofile\-generate=\fR\fIpath\fR" 4
-.IX Item "-fprofile-generate=path"
-.PD
-Enable options usually used for instrumenting application to produce
-profile useful for later recompilation with profile feedback based
-optimization. You must use \fB\-fprofile\-generate\fR both when
-compiling and when linking your program.
-.Sp
-The following options are enabled: \f(CW\*(C`\-fprofile\-arcs\*(C'\fR, \f(CW\*(C`\-fprofile\-values\*(C'\fR, \f(CW\*(C`\-fvpt\*(C'\fR.
-.Sp
-If \fIpath\fR is specified, \s-1GCC\s0 looks at the \fIpath\fR to find
-the profile feedback data files. See \fB\-fprofile\-dir\fR.
-.IP "\fB\-fprofile\-use\fR" 4
-.IX Item "-fprofile-use"
-.PD 0
-.IP "\fB\-fprofile\-use=\fR\fIpath\fR" 4
-.IX Item "-fprofile-use=path"
-.PD
-Enable profile feedback directed optimizations, and optimizations
-generally profitable only with profile feedback available.
-.Sp
-The following options are enabled: \f(CW\*(C`\-fbranch\-probabilities\*(C'\fR, \f(CW\*(C`\-fvpt\*(C'\fR,
-\&\f(CW\*(C`\-funroll\-loops\*(C'\fR, \f(CW\*(C`\-fpeel\-loops\*(C'\fR, \f(CW\*(C`\-ftracer\*(C'\fR, \f(CW\*(C`\-ftree\-vectorize\*(C'\fR,
-\&\f(CW\*(C`ftree\-loop\-distribute\-patterns\*(C'\fR
-.Sp
-By default, \s-1GCC\s0 emits an error message if the feedback profiles do not
-match the source code. This error can be turned into a warning by using
-\&\fB\-Wcoverage\-mismatch\fR. Note this may result in poorly optimized
-code.
-.Sp
-If \fIpath\fR is specified, \s-1GCC\s0 looks at the \fIpath\fR to find
-the profile feedback data files. See \fB\-fprofile\-dir\fR.
-.PP
-The following options control compiler behavior regarding floating-point
-arithmetic. These options trade off between speed and
-correctness. All must be specifically enabled.
-.IP "\fB\-ffloat\-store\fR" 4
-.IX Item "-ffloat-store"
-Do not store floating-point variables in registers, and inhibit other
-options that might change whether a floating-point value is taken from a
-register or memory.
-.Sp
-This option prevents undesirable excess precision on machines such as
-the 68000 where the floating registers (of the 68881) keep more
-precision than a \f(CW\*(C`double\*(C'\fR is supposed to have. Similarly for the
-x86 architecture. For most programs, the excess precision does only
-good, but a few programs rely on the precise definition of \s-1IEEE\s0 floating
-point. Use \fB\-ffloat\-store\fR for such programs, after modifying
-them to store all pertinent intermediate computations into variables.
-.IP "\fB\-fexcess\-precision=\fR\fIstyle\fR" 4
-.IX Item "-fexcess-precision=style"
-This option allows further control over excess precision on machines
-where floating-point registers have more precision than the \s-1IEEE
-\&\s0\f(CW\*(C`float\*(C'\fR and \f(CW\*(C`double\*(C'\fR types and the processor does not
-support operations rounding to those types. By default,
-\&\fB\-fexcess\-precision=fast\fR is in effect; this means that
-operations are carried out in the precision of the registers and that
-it is unpredictable when rounding to the types specified in the source
-code takes place. When compiling C, if
-\&\fB\-fexcess\-precision=standard\fR is specified then excess
-precision follows the rules specified in \s-1ISO C99\s0; in particular,
-both casts and assignments cause values to be rounded to their
-semantic types (whereas \fB\-ffloat\-store\fR only affects
-assignments). This option is enabled by default for C if a strict
-conformance option such as \fB\-std=c99\fR is used.
-.Sp
-\&\fB\-fexcess\-precision=standard\fR is not implemented for languages
-other than C, and has no effect if
-\&\fB\-funsafe\-math\-optimizations\fR or \fB\-ffast\-math\fR is
-specified. On the x86, it also has no effect if \fB\-mfpmath=sse\fR
-or \fB\-mfpmath=sse+387\fR is specified; in the former case, \s-1IEEE\s0
-semantics apply without excess precision, and in the latter, rounding
-is unpredictable.
-.IP "\fB\-ffast\-math\fR" 4
-.IX Item "-ffast-math"
-Sets \fB\-fno\-math\-errno\fR, \fB\-funsafe\-math\-optimizations\fR,
-\&\fB\-ffinite\-math\-only\fR, \fB\-fno\-rounding\-math\fR,
-\&\fB\-fno\-signaling\-nans\fR and \fB\-fcx\-limited\-range\fR.
-.Sp
-This option causes the preprocessor macro \f(CW\*(C`_\|_FAST_MATH_\|_\*(C'\fR to be defined.
-.Sp
-This option is not turned on by any \fB\-O\fR option besides
-\&\fB\-Ofast\fR since it can result in incorrect output for programs
-that depend on an exact implementation of \s-1IEEE\s0 or \s-1ISO\s0 rules/specifications
-for math functions. It may, however, yield faster code for programs
-that do not require the guarantees of these specifications.
-.IP "\fB\-fno\-math\-errno\fR" 4
-.IX Item "-fno-math-errno"
-Do not set \f(CW\*(C`errno\*(C'\fR after calling math functions that are executed
-with a single instruction, e.g., \f(CW\*(C`sqrt\*(C'\fR. A program that relies on
-\&\s-1IEEE\s0 exceptions for math error handling may want to use this flag
-for speed while maintaining \s-1IEEE\s0 arithmetic compatibility.
-.Sp
-This option is not turned on by any \fB\-O\fR option since
-it can result in incorrect output for programs that depend on
-an exact implementation of \s-1IEEE\s0 or \s-1ISO\s0 rules/specifications for
-math functions. It may, however, yield faster code for programs
-that do not require the guarantees of these specifications.
-.Sp
-The default is \fB\-fmath\-errno\fR.
-.Sp
-On Darwin systems, the math library never sets \f(CW\*(C`errno\*(C'\fR. There is
-therefore no reason for the compiler to consider the possibility that
-it might, and \fB\-fno\-math\-errno\fR is the default.
-.IP "\fB\-funsafe\-math\-optimizations\fR" 4
-.IX Item "-funsafe-math-optimizations"
-Allow optimizations for floating-point arithmetic that (a) assume
-that arguments and results are valid and (b) may violate \s-1IEEE\s0 or
-\&\s-1ANSI\s0 standards. When used at link-time, it may include libraries
-or startup files that change the default \s-1FPU\s0 control word or other
-similar optimizations.
-.Sp
-This option is not turned on by any \fB\-O\fR option since
-it can result in incorrect output for programs that depend on
-an exact implementation of \s-1IEEE\s0 or \s-1ISO\s0 rules/specifications for
-math functions. It may, however, yield faster code for programs
-that do not require the guarantees of these specifications.
-Enables \fB\-fno\-signed\-zeros\fR, \fB\-fno\-trapping\-math\fR,
-\&\fB\-fassociative\-math\fR and \fB\-freciprocal\-math\fR.
-.Sp
-The default is \fB\-fno\-unsafe\-math\-optimizations\fR.
-.IP "\fB\-fassociative\-math\fR" 4
-.IX Item "-fassociative-math"
-Allow re-association of operands in series of floating-point operations.
-This violates the \s-1ISO C\s0 and \*(C+ language standard by possibly changing
-computation result. \s-1NOTE:\s0 re-ordering may change the sign of zero as
-well as ignore NaNs and inhibit or create underflow or overflow (and
-thus cannot be used on code that relies on rounding behavior like
-\&\f(CW\*(C`(x + 2**52) \- 2**52\*(C'\fR. May also reorder floating-point comparisons
-and thus may not be used when ordered comparisons are required.
-This option requires that both \fB\-fno\-signed\-zeros\fR and
-\&\fB\-fno\-trapping\-math\fR be in effect. Moreover, it doesn't make
-much sense with \fB\-frounding\-math\fR. For Fortran the option
-is automatically enabled when both \fB\-fno\-signed\-zeros\fR and
-\&\fB\-fno\-trapping\-math\fR are in effect.
-.Sp
-The default is \fB\-fno\-associative\-math\fR.
-.IP "\fB\-freciprocal\-math\fR" 4
-.IX Item "-freciprocal-math"
-Allow the reciprocal of a value to be used instead of dividing by
-the value if this enables optimizations. For example \f(CW\*(C`x / y\*(C'\fR
-can be replaced with \f(CW\*(C`x * (1/y)\*(C'\fR, which is useful if \f(CW\*(C`(1/y)\*(C'\fR
-is subject to common subexpression elimination. Note that this loses
-precision and increases the number of flops operating on the value.
-.Sp
-The default is \fB\-fno\-reciprocal\-math\fR.
-.IP "\fB\-ffinite\-math\-only\fR" 4
-.IX Item "-ffinite-math-only"
-Allow optimizations for floating-point arithmetic that assume
-that arguments and results are not NaNs or +\-Infs.
-.Sp
-This option is not turned on by any \fB\-O\fR option since
-it can result in incorrect output for programs that depend on
-an exact implementation of \s-1IEEE\s0 or \s-1ISO\s0 rules/specifications for
-math functions. It may, however, yield faster code for programs
-that do not require the guarantees of these specifications.
-.Sp
-The default is \fB\-fno\-finite\-math\-only\fR.
-.IP "\fB\-fno\-signed\-zeros\fR" 4
-.IX Item "-fno-signed-zeros"
-Allow optimizations for floating-point arithmetic that ignore the
-signedness of zero. \s-1IEEE\s0 arithmetic specifies the behavior of
-distinct +0.0 and \-0.0 values, which then prohibits simplification
-of expressions such as x+0.0 or 0.0*x (even with \fB\-ffinite\-math\-only\fR).
-This option implies that the sign of a zero result isn't significant.
-.Sp
-The default is \fB\-fsigned\-zeros\fR.
-.IP "\fB\-fno\-trapping\-math\fR" 4
-.IX Item "-fno-trapping-math"
-Compile code assuming that floating-point operations cannot generate
-user-visible traps. These traps include division by zero, overflow,
-underflow, inexact result and invalid operation. This option requires
-that \fB\-fno\-signaling\-nans\fR be in effect. Setting this option may
-allow faster code if one relies on \*(L"non-stop\*(R" \s-1IEEE\s0 arithmetic, for example.
-.Sp
-This option should never be turned on by any \fB\-O\fR option since
-it can result in incorrect output for programs that depend on
-an exact implementation of \s-1IEEE\s0 or \s-1ISO\s0 rules/specifications for
-math functions.
-.Sp
-The default is \fB\-ftrapping\-math\fR.
-.IP "\fB\-frounding\-math\fR" 4
-.IX Item "-frounding-math"
-Disable transformations and optimizations that assume default floating-point
-rounding behavior. This is round-to-zero for all floating point
-to integer conversions, and round-to-nearest for all other arithmetic
-truncations. This option should be specified for programs that change
-the \s-1FP\s0 rounding mode dynamically, or that may be executed with a
-non-default rounding mode. This option disables constant folding of
-floating-point expressions at compile time (which may be affected by
-rounding mode) and arithmetic transformations that are unsafe in the
-presence of sign-dependent rounding modes.
-.Sp
-The default is \fB\-fno\-rounding\-math\fR.
-.Sp
-This option is experimental and does not currently guarantee to
-disable all \s-1GCC\s0 optimizations that are affected by rounding mode.
-Future versions of \s-1GCC\s0 may provide finer control of this setting
-using C99's \f(CW\*(C`FENV_ACCESS\*(C'\fR pragma. This command-line option
-will be used to specify the default state for \f(CW\*(C`FENV_ACCESS\*(C'\fR.
-.IP "\fB\-fsignaling\-nans\fR" 4
-.IX Item "-fsignaling-nans"
-Compile code assuming that \s-1IEEE\s0 signaling NaNs may generate user-visible
-traps during floating-point operations. Setting this option disables
-optimizations that may change the number of exceptions visible with
-signaling NaNs. This option implies \fB\-ftrapping\-math\fR.
-.Sp
-This option causes the preprocessor macro \f(CW\*(C`_\|_SUPPORT_SNAN_\|_\*(C'\fR to
-be defined.
-.Sp
-The default is \fB\-fno\-signaling\-nans\fR.
-.Sp
-This option is experimental and does not currently guarantee to
-disable all \s-1GCC\s0 optimizations that affect signaling NaN behavior.
-.IP "\fB\-fsingle\-precision\-constant\fR" 4
-.IX Item "-fsingle-precision-constant"
-Treat floating-point constants as single precision instead of
-implicitly converting them to double-precision constants.
-.IP "\fB\-fcx\-limited\-range\fR" 4
-.IX Item "-fcx-limited-range"
-When enabled, this option states that a range reduction step is not
-needed when performing complex division. Also, there is no checking
-whether the result of a complex multiplication or division is \f(CW\*(C`NaN
-+ I*NaN\*(C'\fR, with an attempt to rescue the situation in that case. The
-default is \fB\-fno\-cx\-limited\-range\fR, but is enabled by
-\&\fB\-ffast\-math\fR.
-.Sp
-This option controls the default setting of the \s-1ISO C99
-\&\s0\f(CW\*(C`CX_LIMITED_RANGE\*(C'\fR pragma. Nevertheless, the option applies to
-all languages.
-.IP "\fB\-fcx\-fortran\-rules\fR" 4
-.IX Item "-fcx-fortran-rules"
-Complex multiplication and division follow Fortran rules. Range
-reduction is done as part of complex division, but there is no checking
-whether the result of a complex multiplication or division is \f(CW\*(C`NaN
-+ I*NaN\*(C'\fR, with an attempt to rescue the situation in that case.
-.Sp
-The default is \fB\-fno\-cx\-fortran\-rules\fR.
-.PP
-The following options control optimizations that may improve
-performance, but are not enabled by any \fB\-O\fR options. This
-section includes experimental options that may produce broken code.
-.IP "\fB\-fbranch\-probabilities\fR" 4
-.IX Item "-fbranch-probabilities"
-After running a program compiled with \fB\-fprofile\-arcs\fR, you can compile it a second time using
-\&\fB\-fbranch\-probabilities\fR, to improve optimizations based on
-the number of times each branch was taken. When a program
-compiled with \fB\-fprofile\-arcs\fR exits, it saves arc execution
-counts to a file called \fI\fIsourcename\fI.gcda\fR for each source
-file. The information in this data file is very dependent on the
-structure of the generated code, so you must use the same source code
-and the same optimization options for both compilations.
-.Sp
-With \fB\-fbranch\-probabilities\fR, \s-1GCC\s0 puts a
-\&\fB\s-1REG_BR_PROB\s0\fR note on each \fB\s-1JUMP_INSN\s0\fR and \fB\s-1CALL_INSN\s0\fR.
-These can be used to improve optimization. Currently, they are only
-used in one place: in \fIreorg.c\fR, instead of guessing which path a
-branch is most likely to take, the \fB\s-1REG_BR_PROB\s0\fR values are used to
-exactly determine which path is taken more often.
-.IP "\fB\-fprofile\-values\fR" 4
-.IX Item "-fprofile-values"
-If combined with \fB\-fprofile\-arcs\fR, it adds code so that some
-data about values of expressions in the program is gathered.
-.Sp
-With \fB\-fbranch\-probabilities\fR, it reads back the data gathered
-from profiling values of expressions for usage in optimizations.
-.Sp
-Enabled with \fB\-fprofile\-generate\fR and \fB\-fprofile\-use\fR.
-.IP "\fB\-fprofile\-reorder\-functions\fR" 4
-.IX Item "-fprofile-reorder-functions"
-Function reordering based on profile instrumentation collects
-first time of execution of a function and orders these functions
-in ascending order.
-.Sp
-Enabled with \fB\-fprofile\-use\fR.
-.IP "\fB\-fvpt\fR" 4
-.IX Item "-fvpt"
-If combined with \fB\-fprofile\-arcs\fR, this option instructs the compiler
-to add code to gather information about values of expressions.
-.Sp
-With \fB\-fbranch\-probabilities\fR, it reads back the data gathered
-and actually performs the optimizations based on them.
-Currently the optimizations include specialization of division operations
-using the knowledge about the value of the denominator.
-.IP "\fB\-frename\-registers\fR" 4
-.IX Item "-frename-registers"
-Attempt to avoid false dependencies in scheduled code by making use
-of registers left over after register allocation. This optimization
-most benefits processors with lots of registers. Depending on the
-debug information format adopted by the target, however, it can
-make debugging impossible, since variables no longer stay in
-a \*(L"home register\*(R".
-.Sp
-Enabled by default with \fB\-funroll\-loops\fR and \fB\-fpeel\-loops\fR.
-.IP "\fB\-ftracer\fR" 4
-.IX Item "-ftracer"
-Perform tail duplication to enlarge superblock size. This transformation
-simplifies the control flow of the function allowing other optimizations to do
-a better job.
-.Sp
-Enabled with \fB\-fprofile\-use\fR.
-.IP "\fB\-funroll\-loops\fR" 4
-.IX Item "-funroll-loops"
-Unroll loops whose number of iterations can be determined at compile time or
-upon entry to the loop. \fB\-funroll\-loops\fR implies
-\&\fB\-frerun\-cse\-after\-loop\fR, \fB\-fweb\fR and \fB\-frename\-registers\fR.
-It also turns on complete loop peeling (i.e. complete removal of loops with
-a small constant number of iterations). This option makes code larger, and may
-or may not make it run faster.
-.Sp
-Enabled with \fB\-fprofile\-use\fR.
-.IP "\fB\-funroll\-all\-loops\fR" 4
-.IX Item "-funroll-all-loops"
-Unroll all loops, even if their number of iterations is uncertain when
-the loop is entered. This usually makes programs run more slowly.
-\&\fB\-funroll\-all\-loops\fR implies the same options as
-\&\fB\-funroll\-loops\fR.
-.IP "\fB\-fpeel\-loops\fR" 4
-.IX Item "-fpeel-loops"
-Peels loops for which there is enough information that they do not
-roll much (from profile feedback). It also turns on complete loop peeling
-(i.e. complete removal of loops with small constant number of iterations).
-.Sp
-Enabled with \fB\-fprofile\-use\fR.
-.IP "\fB\-fmove\-loop\-invariants\fR" 4
-.IX Item "-fmove-loop-invariants"
-Enables the loop invariant motion pass in the \s-1RTL\s0 loop optimizer. Enabled
-at level \fB\-O1\fR
-.IP "\fB\-funswitch\-loops\fR" 4
-.IX Item "-funswitch-loops"
-Move branches with loop invariant conditions out of the loop, with duplicates
-of the loop on both branches (modified according to result of the condition).
-.IP "\fB\-ffunction\-sections\fR" 4
-.IX Item "-ffunction-sections"
-.PD 0
-.IP "\fB\-fdata\-sections\fR" 4
-.IX Item "-fdata-sections"
-.PD
-Place each function or data item into its own section in the output
-file if the target supports arbitrary sections. The name of the
-function or the name of the data item determines the section's name
-in the output file.
-.Sp
-Use these options on systems where the linker can perform optimizations
-to improve locality of reference in the instruction space. Most systems
-using the \s-1ELF\s0 object format and \s-1SPARC\s0 processors running Solaris 2 have
-linkers with such optimizations. \s-1AIX\s0 may have these optimizations in
-the future.
-.Sp
-Only use these options when there are significant benefits from doing
-so. When you specify these options, the assembler and linker
-create larger object and executable files and are also slower.
-You cannot use \f(CW\*(C`gprof\*(C'\fR on all systems if you
-specify this option, and you may have problems with debugging if
-you specify both this option and \fB\-g\fR.
-.IP "\fB\-fbranch\-target\-load\-optimize\fR" 4
-.IX Item "-fbranch-target-load-optimize"
-Perform branch target register load optimization before prologue / epilogue
-threading.
-The use of target registers can typically be exposed only during reload,
-thus hoisting loads out of loops and doing inter-block scheduling needs
-a separate optimization pass.
-.IP "\fB\-fbranch\-target\-load\-optimize2\fR" 4
-.IX Item "-fbranch-target-load-optimize2"
-Perform branch target register load optimization after prologue / epilogue
-threading.
-.IP "\fB\-fbtr\-bb\-exclusive\fR" 4
-.IX Item "-fbtr-bb-exclusive"
-When performing branch target register load optimization, don't reuse
-branch target registers within any basic block.
-.IP "\fB\-fstack\-protector\fR" 4
-.IX Item "-fstack-protector"
-Emit extra code to check for buffer overflows, such as stack smashing
-attacks. This is done by adding a guard variable to functions with
-vulnerable objects. This includes functions that call \f(CW\*(C`alloca\*(C'\fR, and
-functions with buffers larger than 8 bytes. The guards are initialized
-when a function is entered and then checked when the function exits.
-If a guard check fails, an error message is printed and the program exits.
-.IP "\fB\-fstack\-protector\-all\fR" 4
-.IX Item "-fstack-protector-all"
-Like \fB\-fstack\-protector\fR except that all functions are protected.
-.IP "\fB\-fstack\-protector\-strong\fR" 4
-.IX Item "-fstack-protector-strong"
-Like \fB\-fstack\-protector\fR but includes additional functions to
-be protected \-\-\- those that have local array definitions, or have
-references to local frame addresses.
-.IP "\fB\-fsection\-anchors\fR" 4
-.IX Item "-fsection-anchors"
-Try to reduce the number of symbolic address calculations by using
-shared \*(L"anchor\*(R" symbols to address nearby objects. This transformation
-can help to reduce the number of \s-1GOT\s0 entries and \s-1GOT\s0 accesses on some
-targets.
-.Sp
-For example, the implementation of the following function \f(CW\*(C`foo\*(C'\fR:
-.Sp
-.Vb 2
-\& static int a, b, c;
-\& int foo (void) { return a + b + c; }
-.Ve
-.Sp
-usually calculates the addresses of all three variables, but if you
-compile it with \fB\-fsection\-anchors\fR, it accesses the variables
-from a common anchor point instead. The effect is similar to the
-following pseudocode (which isn't valid C):
-.Sp
-.Vb 5
-\& int foo (void)
-\& {
-\& register int *xr = &x;
-\& return xr[&a \- &x] + xr[&b \- &x] + xr[&c \- &x];
-\& }
-.Ve
-.Sp
-Not all targets support this option.
-.IP "\fB\-\-param\fR \fIname\fR\fB=\fR\fIvalue\fR" 4
-.IX Item "--param name=value"
-In some places, \s-1GCC\s0 uses various constants to control the amount of
-optimization that is done. For example, \s-1GCC\s0 does not inline functions
-that contain more than a certain number of instructions. You can
-control some of these constants on the command line using the
-\&\fB\-\-param\fR option.
-.Sp
-The names of specific parameters, and the meaning of the values, are
-tied to the internals of the compiler, and are subject to change
-without notice in future releases.
-.Sp
-In each case, the \fIvalue\fR is an integer. The allowable choices for
-\&\fIname\fR are:
-.RS 4
-.IP "\fBpredictable-branch-outcome\fR" 4
-.IX Item "predictable-branch-outcome"
-When branch is predicted to be taken with probability lower than this threshold
-(in percent), then it is considered well predictable. The default is 10.
-.IP "\fBmax-crossjump-edges\fR" 4
-.IX Item "max-crossjump-edges"
-The maximum number of incoming edges to consider for cross-jumping.
-The algorithm used by \fB\-fcrossjumping\fR is O(N^2) in
-the number of edges incoming to each block. Increasing values mean
-more aggressive optimization, making the compilation time increase with
-probably small improvement in executable size.
-.IP "\fBmin-crossjump-insns\fR" 4
-.IX Item "min-crossjump-insns"
-The minimum number of instructions that must be matched at the end
-of two blocks before cross-jumping is performed on them. This
-value is ignored in the case where all instructions in the block being
-cross-jumped from are matched. The default value is 5.
-.IP "\fBmax-grow-copy-bb-insns\fR" 4
-.IX Item "max-grow-copy-bb-insns"
-The maximum code size expansion factor when copying basic blocks
-instead of jumping. The expansion is relative to a jump instruction.
-The default value is 8.
-.IP "\fBmax-goto-duplication-insns\fR" 4
-.IX Item "max-goto-duplication-insns"
-The maximum number of instructions to duplicate to a block that jumps
-to a computed goto. To avoid O(N^2) behavior in a number of
-passes, \s-1GCC\s0 factors computed gotos early in the compilation process,
-and unfactors them as late as possible. Only computed jumps at the
-end of a basic blocks with no more than max-goto-duplication-insns are
-unfactored. The default value is 8.
-.IP "\fBmax-delay-slot-insn-search\fR" 4
-.IX Item "max-delay-slot-insn-search"
-The maximum number of instructions to consider when looking for an
-instruction to fill a delay slot. If more than this arbitrary number of
-instructions are searched, the time savings from filling the delay slot
-are minimal, so stop searching. Increasing values mean more
-aggressive optimization, making the compilation time increase with probably
-small improvement in execution time.
-.IP "\fBmax-delay-slot-live-search\fR" 4
-.IX Item "max-delay-slot-live-search"
-When trying to fill delay slots, the maximum number of instructions to
-consider when searching for a block with valid live register
-information. Increasing this arbitrarily chosen value means more
-aggressive optimization, increasing the compilation time. This parameter
-should be removed when the delay slot code is rewritten to maintain the
-control-flow graph.
-.IP "\fBmax-gcse-memory\fR" 4
-.IX Item "max-gcse-memory"
-The approximate maximum amount of memory that can be allocated in
-order to perform the global common subexpression elimination
-optimization. If more memory than specified is required, the
-optimization is not done.
-.IP "\fBmax-gcse-insertion-ratio\fR" 4
-.IX Item "max-gcse-insertion-ratio"
-If the ratio of expression insertions to deletions is larger than this value
-for any expression, then \s-1RTL PRE\s0 inserts or removes the expression and thus
-leaves partially redundant computations in the instruction stream. The default value is 20.
-.IP "\fBmax-pending-list-length\fR" 4
-.IX Item "max-pending-list-length"
-The maximum number of pending dependencies scheduling allows
-before flushing the current state and starting over. Large functions
-with few branches or calls can create excessively large lists which
-needlessly consume memory and resources.
-.IP "\fBmax-modulo-backtrack-attempts\fR" 4
-.IX Item "max-modulo-backtrack-attempts"
-The maximum number of backtrack attempts the scheduler should make
-when modulo scheduling a loop. Larger values can exponentially increase
-compilation time.
-.IP "\fBmax-inline-insns-single\fR" 4
-.IX Item "max-inline-insns-single"
-Several parameters control the tree inliner used in \s-1GCC.\s0
-This number sets the maximum number of instructions (counted in \s-1GCC\s0's
-internal representation) in a single function that the tree inliner
-considers for inlining. This only affects functions declared
-inline and methods implemented in a class declaration (\*(C+).
-The default value is 400.
-.IP "\fBmax-inline-insns-auto\fR" 4
-.IX Item "max-inline-insns-auto"
-When you use \fB\-finline\-functions\fR (included in \fB\-O3\fR),
-a lot of functions that would otherwise not be considered for inlining
-by the compiler are investigated. To those functions, a different
-(more restrictive) limit compared to functions declared inline can
-be applied.
-The default value is 40.
-.IP "\fBinline-min-speedup\fR" 4
-.IX Item "inline-min-speedup"
-When estimated performance improvement of caller + callee runtime exceeds this
-threshold (in precent), the function can be inlined regardless the limit on
-\&\fB\-\-param max-inline-insns-single\fR and \fB\-\-param
-max-inline-insns-auto\fR.
-.IP "\fBlarge-function-insns\fR" 4
-.IX Item "large-function-insns"
-The limit specifying really large functions. For functions larger than this
-limit after inlining, inlining is constrained by
-\&\fB\-\-param large-function-growth\fR. This parameter is useful primarily
-to avoid extreme compilation time caused by non-linear algorithms used by the
-back end.
-The default value is 2700.
-.IP "\fBlarge-function-growth\fR" 4
-.IX Item "large-function-growth"
-Specifies maximal growth of large function caused by inlining in percents.
-The default value is 100 which limits large function growth to 2.0 times
-the original size.
-.IP "\fBlarge-unit-insns\fR" 4
-.IX Item "large-unit-insns"
-The limit specifying large translation unit. Growth caused by inlining of
-units larger than this limit is limited by \fB\-\-param inline-unit-growth\fR.
-For small units this might be too tight.
-For example, consider a unit consisting of function A
-that is inline and B that just calls A three times. If B is small relative to
-A, the growth of unit is 300\e% and yet such inlining is very sane. For very
-large units consisting of small inlineable functions, however, the overall unit
-growth limit is needed to avoid exponential explosion of code size. Thus for
-smaller units, the size is increased to \fB\-\-param large-unit-insns\fR
-before applying \fB\-\-param inline-unit-growth\fR. The default is 10000.
-.IP "\fBinline-unit-growth\fR" 4
-.IX Item "inline-unit-growth"
-Specifies maximal overall growth of the compilation unit caused by inlining.
-The default value is 30 which limits unit growth to 1.3 times the original
-size.
-.IP "\fBipcp-unit-growth\fR" 4
-.IX Item "ipcp-unit-growth"
-Specifies maximal overall growth of the compilation unit caused by
-interprocedural constant propagation. The default value is 10 which limits
-unit growth to 1.1 times the original size.
-.IP "\fBlarge-stack-frame\fR" 4
-.IX Item "large-stack-frame"
-The limit specifying large stack frames. While inlining the algorithm is trying
-to not grow past this limit too much. The default value is 256 bytes.
-.IP "\fBlarge-stack-frame-growth\fR" 4
-.IX Item "large-stack-frame-growth"
-Specifies maximal growth of large stack frames caused by inlining in percents.
-The default value is 1000 which limits large stack frame growth to 11 times
-the original size.
-.IP "\fBmax-inline-insns-recursive\fR" 4
-.IX Item "max-inline-insns-recursive"
-.PD 0
-.IP "\fBmax-inline-insns-recursive-auto\fR" 4
-.IX Item "max-inline-insns-recursive-auto"
-.PD
-Specifies the maximum number of instructions an out-of-line copy of a
-self-recursive inline
-function can grow into by performing recursive inlining.
-.Sp
-For functions declared inline, \fB\-\-param max-inline-insns-recursive\fR is
-taken into account. For functions not declared inline, recursive inlining
-happens only when \fB\-finline\-functions\fR (included in \fB\-O3\fR) is
-enabled and \fB\-\-param max-inline-insns-recursive-auto\fR is used. The
-default value is 450.
-.IP "\fBmax-inline-recursive-depth\fR" 4
-.IX Item "max-inline-recursive-depth"
-.PD 0
-.IP "\fBmax-inline-recursive-depth-auto\fR" 4
-.IX Item "max-inline-recursive-depth-auto"
-.PD
-Specifies the maximum recursion depth used for recursive inlining.
-.Sp
-For functions declared inline, \fB\-\-param max-inline-recursive-depth\fR is
-taken into account. For functions not declared inline, recursive inlining
-happens only when \fB\-finline\-functions\fR (included in \fB\-O3\fR) is
-enabled and \fB\-\-param max-inline-recursive-depth-auto\fR is used. The
-default value is 8.
-.IP "\fBmin-inline-recursive-probability\fR" 4
-.IX Item "min-inline-recursive-probability"
-Recursive inlining is profitable only for function having deep recursion
-in average and can hurt for function having little recursion depth by
-increasing the prologue size or complexity of function body to other
-optimizers.
-.Sp
-When profile feedback is available (see \fB\-fprofile\-generate\fR) the actual
-recursion depth can be guessed from probability that function recurses via a
-given call expression. This parameter limits inlining only to call expressions
-whose probability exceeds the given threshold (in percents).
-The default value is 10.
-.IP "\fBearly-inlining-insns\fR" 4
-.IX Item "early-inlining-insns"
-Specify growth that the early inliner can make. In effect it increases
-the amount of inlining for code having a large abstraction penalty.
-The default value is 10.
-.IP "\fBmax-early-inliner-iterations\fR" 4
-.IX Item "max-early-inliner-iterations"
-.PD 0
-.IP "\fBmax-early-inliner-iterations\fR" 4
-.IX Item "max-early-inliner-iterations"
-.PD
-Limit of iterations of the early inliner. This basically bounds
-the number of nested indirect calls the early inliner can resolve.
-Deeper chains are still handled by late inlining.
-.IP "\fBcomdat-sharing-probability\fR" 4
-.IX Item "comdat-sharing-probability"
-.PD 0
-.IP "\fBcomdat-sharing-probability\fR" 4
-.IX Item "comdat-sharing-probability"
-.PD
-Probability (in percent) that \*(C+ inline function with comdat visibility
-are shared across multiple compilation units. The default value is 20.
-.IP "\fBmin-vect-loop-bound\fR" 4
-.IX Item "min-vect-loop-bound"
-The minimum number of iterations under which loops are not vectorized
-when \fB\-ftree\-vectorize\fR is used. The number of iterations after
-vectorization needs to be greater than the value specified by this option
-to allow vectorization. The default value is 0.
-.IP "\fBgcse-cost-distance-ratio\fR" 4
-.IX Item "gcse-cost-distance-ratio"
-Scaling factor in calculation of maximum distance an expression
-can be moved by \s-1GCSE\s0 optimizations. This is currently supported only in the
-code hoisting pass. The bigger the ratio, the more aggressive code hoisting
-is with simple expressions, i.e., the expressions that have cost
-less than \fBgcse-unrestricted-cost\fR. Specifying 0 disables
-hoisting of simple expressions. The default value is 10.
-.IP "\fBgcse-unrestricted-cost\fR" 4
-.IX Item "gcse-unrestricted-cost"
-Cost, roughly measured as the cost of a single typical machine
-instruction, at which \s-1GCSE\s0 optimizations do not constrain
-the distance an expression can travel. This is currently
-supported only in the code hoisting pass. The lesser the cost,
-the more aggressive code hoisting is. Specifying 0
-allows all expressions to travel unrestricted distances.
-The default value is 3.
-.IP "\fBmax-hoist-depth\fR" 4
-.IX Item "max-hoist-depth"
-The depth of search in the dominator tree for expressions to hoist.
-This is used to avoid quadratic behavior in hoisting algorithm.
-The value of 0 does not limit on the search, but may slow down compilation
-of huge functions. The default value is 30.
-.IP "\fBmax-tail-merge-comparisons\fR" 4
-.IX Item "max-tail-merge-comparisons"
-The maximum amount of similar bbs to compare a bb with. This is used to
-avoid quadratic behavior in tree tail merging. The default value is 10.
-.IP "\fBmax-tail-merge-iterations\fR" 4
-.IX Item "max-tail-merge-iterations"
-The maximum amount of iterations of the pass over the function. This is used to
-limit compilation time in tree tail merging. The default value is 2.
-.IP "\fBmax-unrolled-insns\fR" 4
-.IX Item "max-unrolled-insns"
-The maximum number of instructions that a loop may have to be unrolled.
-If a loop is unrolled, this parameter also determines how many times
-the loop code is unrolled.
-.IP "\fBmax-average-unrolled-insns\fR" 4
-.IX Item "max-average-unrolled-insns"
-The maximum number of instructions biased by probabilities of their execution
-that a loop may have to be unrolled. If a loop is unrolled,
-this parameter also determines how many times the loop code is unrolled.
-.IP "\fBmax-unroll-times\fR" 4
-.IX Item "max-unroll-times"
-The maximum number of unrollings of a single loop.
-.IP "\fBmax-peeled-insns\fR" 4
-.IX Item "max-peeled-insns"
-The maximum number of instructions that a loop may have to be peeled.
-If a loop is peeled, this parameter also determines how many times
-the loop code is peeled.
-.IP "\fBmax-peel-times\fR" 4
-.IX Item "max-peel-times"
-The maximum number of peelings of a single loop.
-.IP "\fBmax-peel-branches\fR" 4
-.IX Item "max-peel-branches"
-The maximum number of branches on the hot path through the peeled sequence.
-.IP "\fBmax-completely-peeled-insns\fR" 4
-.IX Item "max-completely-peeled-insns"
-The maximum number of insns of a completely peeled loop.
-.IP "\fBmax-completely-peel-times\fR" 4
-.IX Item "max-completely-peel-times"
-The maximum number of iterations of a loop to be suitable for complete peeling.
-.IP "\fBmax-completely-peel-loop-nest-depth\fR" 4
-.IX Item "max-completely-peel-loop-nest-depth"
-The maximum depth of a loop nest suitable for complete peeling.
-.IP "\fBmax-unswitch-insns\fR" 4
-.IX Item "max-unswitch-insns"
-The maximum number of insns of an unswitched loop.
-.IP "\fBmax-unswitch-level\fR" 4
-.IX Item "max-unswitch-level"
-The maximum number of branches unswitched in a single loop.
-.IP "\fBlim-expensive\fR" 4
-.IX Item "lim-expensive"
-The minimum cost of an expensive expression in the loop invariant motion.
-.IP "\fBiv-consider-all-candidates-bound\fR" 4
-.IX Item "iv-consider-all-candidates-bound"
-Bound on number of candidates for induction variables, below which
-all candidates are considered for each use in induction variable
-optimizations. If there are more candidates than this,
-only the most relevant ones are considered to avoid quadratic time complexity.
-.IP "\fBiv-max-considered-uses\fR" 4
-.IX Item "iv-max-considered-uses"
-The induction variable optimizations give up on loops that contain more
-induction variable uses.
-.IP "\fBiv-always-prune-cand-set-bound\fR" 4
-.IX Item "iv-always-prune-cand-set-bound"
-If the number of candidates in the set is smaller than this value,
-always try to remove unnecessary ivs from the set
-when adding a new one.
-.IP "\fBscev-max-expr-size\fR" 4
-.IX Item "scev-max-expr-size"
-Bound on size of expressions used in the scalar evolutions analyzer.
-Large expressions slow the analyzer.
-.IP "\fBscev-max-expr-complexity\fR" 4
-.IX Item "scev-max-expr-complexity"
-Bound on the complexity of the expressions in the scalar evolutions analyzer.
-Complex expressions slow the analyzer.
-.IP "\fBomega-max-vars\fR" 4
-.IX Item "omega-max-vars"
-The maximum number of variables in an Omega constraint system.
-The default value is 128.
-.IP "\fBomega-max-geqs\fR" 4
-.IX Item "omega-max-geqs"
-The maximum number of inequalities in an Omega constraint system.
-The default value is 256.
-.IP "\fBomega-max-eqs\fR" 4
-.IX Item "omega-max-eqs"
-The maximum number of equalities in an Omega constraint system.
-The default value is 128.
-.IP "\fBomega-max-wild-cards\fR" 4
-.IX Item "omega-max-wild-cards"
-The maximum number of wildcard variables that the Omega solver is
-able to insert. The default value is 18.
-.IP "\fBomega-hash-table-size\fR" 4
-.IX Item "omega-hash-table-size"
-The size of the hash table in the Omega solver. The default value is
-550.
-.IP "\fBomega-max-keys\fR" 4
-.IX Item "omega-max-keys"
-The maximal number of keys used by the Omega solver. The default
-value is 500.
-.IP "\fBomega-eliminate-redundant-constraints\fR" 4
-.IX Item "omega-eliminate-redundant-constraints"
-When set to 1, use expensive methods to eliminate all redundant
-constraints. The default value is 0.
-.IP "\fBvect-max-version-for-alignment-checks\fR" 4
-.IX Item "vect-max-version-for-alignment-checks"
-The maximum number of run-time checks that can be performed when
-doing loop versioning for alignment in the vectorizer.
-.IP "\fBvect-max-version-for-alias-checks\fR" 4
-.IX Item "vect-max-version-for-alias-checks"
-The maximum number of run-time checks that can be performed when
-doing loop versioning for alias in the vectorizer.
-.IP "\fBvect-max-peeling-for-alignment\fR" 4
-.IX Item "vect-max-peeling-for-alignment"
-The maximum number of loop peels to enhance access alignment
-for vectorizer. Value \-1 means 'no limit'.
-.IP "\fBmax-iterations-to-track\fR" 4
-.IX Item "max-iterations-to-track"
-The maximum number of iterations of a loop the brute-force algorithm
-for analysis of the number of iterations of the loop tries to evaluate.
-.IP "\fBhot-bb-count-ws-permille\fR" 4
-.IX Item "hot-bb-count-ws-permille"
-A basic block profile count is considered hot if it contributes to
-the given permillage (i.e. 0...1000) of the entire profiled execution.
-.IP "\fBhot-bb-frequency-fraction\fR" 4
-.IX Item "hot-bb-frequency-fraction"
-Select fraction of the entry block frequency of executions of basic block in
-function given basic block needs to have to be considered hot.
-.IP "\fBmax-predicted-iterations\fR" 4
-.IX Item "max-predicted-iterations"
-The maximum number of loop iterations we predict statically. This is useful
-in cases where a function contains a single loop with known bound and
-another loop with unknown bound.
-The known number of iterations is predicted correctly, while
-the unknown number of iterations average to roughly 10. This means that the
-loop without bounds appears artificially cold relative to the other one.
-.IP "\fBbuiltin-expect-probability\fR" 4
-.IX Item "builtin-expect-probability"
-Control the probability of the expression having the specified value. This
-parameter takes a percentage (i.e. 0 ... 100) as input.
-The default probability of 90 is obtained empirically.
-.IP "\fBalign-threshold\fR" 4
-.IX Item "align-threshold"
-Select fraction of the maximal frequency of executions of a basic block in
-a function to align the basic block.
-.IP "\fBalign-loop-iterations\fR" 4
-.IX Item "align-loop-iterations"
-A loop expected to iterate at least the selected number of iterations is
-aligned.
-.IP "\fBtracer-dynamic-coverage\fR" 4
-.IX Item "tracer-dynamic-coverage"
-.PD 0
-.IP "\fBtracer-dynamic-coverage-feedback\fR" 4
-.IX Item "tracer-dynamic-coverage-feedback"
-.PD
-This value is used to limit superblock formation once the given percentage of
-executed instructions is covered. This limits unnecessary code size
-expansion.
-.Sp
-The \fBtracer-dynamic-coverage-feedback\fR is used only when profile
-feedback is available. The real profiles (as opposed to statically estimated
-ones) are much less balanced allowing the threshold to be larger value.
-.IP "\fBtracer-max-code-growth\fR" 4
-.IX Item "tracer-max-code-growth"
-Stop tail duplication once code growth has reached given percentage. This is
-a rather artificial limit, as most of the duplicates are eliminated later in
-cross jumping, so it may be set to much higher values than is the desired code
-growth.
-.IP "\fBtracer-min-branch-ratio\fR" 4
-.IX Item "tracer-min-branch-ratio"
-Stop reverse growth when the reverse probability of best edge is less than this
-threshold (in percent).
-.IP "\fBtracer-min-branch-ratio\fR" 4
-.IX Item "tracer-min-branch-ratio"
-.PD 0
-.IP "\fBtracer-min-branch-ratio-feedback\fR" 4
-.IX Item "tracer-min-branch-ratio-feedback"
-.PD
-Stop forward growth if the best edge has probability lower than this
-threshold.
-.Sp
-Similarly to \fBtracer-dynamic-coverage\fR two values are present, one for
-compilation for profile feedback and one for compilation without. The value
-for compilation with profile feedback needs to be more conservative (higher) in
-order to make tracer effective.
-.IP "\fBmax-cse-path-length\fR" 4
-.IX Item "max-cse-path-length"
-The maximum number of basic blocks on path that \s-1CSE\s0 considers.
-The default is 10.
-.IP "\fBmax-cse-insns\fR" 4
-.IX Item "max-cse-insns"
-The maximum number of instructions \s-1CSE\s0 processes before flushing.
-The default is 1000.
-.IP "\fBggc-min-expand\fR" 4
-.IX Item "ggc-min-expand"
-\&\s-1GCC\s0 uses a garbage collector to manage its own memory allocation. This
-parameter specifies the minimum percentage by which the garbage
-collector's heap should be allowed to expand between collections.
-Tuning this may improve compilation speed; it has no effect on code
-generation.
-.Sp
-The default is 30% + 70% * (\s-1RAM/1GB\s0) with an upper bound of 100% when
-\&\s-1RAM \s0>= 1GB. If \f(CW\*(C`getrlimit\*(C'\fR is available, the notion of \*(L"\s-1RAM\*(R"\s0 is
-the smallest of actual \s-1RAM\s0 and \f(CW\*(C`RLIMIT_DATA\*(C'\fR or \f(CW\*(C`RLIMIT_AS\*(C'\fR. If
-\&\s-1GCC\s0 is not able to calculate \s-1RAM\s0 on a particular platform, the lower
-bound of 30% is used. Setting this parameter and
-\&\fBggc-min-heapsize\fR to zero causes a full collection to occur at
-every opportunity. This is extremely slow, but can be useful for
-debugging.
-.IP "\fBggc-min-heapsize\fR" 4
-.IX Item "ggc-min-heapsize"
-Minimum size of the garbage collector's heap before it begins bothering
-to collect garbage. The first collection occurs after the heap expands
-by \fBggc-min-expand\fR% beyond \fBggc-min-heapsize\fR. Again,
-tuning this may improve compilation speed, and has no effect on code
-generation.
-.Sp
-The default is the smaller of \s-1RAM/8, RLIMIT_RSS,\s0 or a limit that
-tries to ensure that \s-1RLIMIT_DATA\s0 or \s-1RLIMIT_AS\s0 are not exceeded, but
-with a lower bound of 4096 (four megabytes) and an upper bound of
-131072 (128 megabytes). If \s-1GCC\s0 is not able to calculate \s-1RAM\s0 on a
-particular platform, the lower bound is used. Setting this parameter
-very large effectively disables garbage collection. Setting this
-parameter and \fBggc-min-expand\fR to zero causes a full collection
-to occur at every opportunity.
-.IP "\fBmax-reload-search-insns\fR" 4
-.IX Item "max-reload-search-insns"
-The maximum number of instruction reload should look backward for equivalent
-register. Increasing values mean more aggressive optimization, making the
-compilation time increase with probably slightly better performance.
-The default value is 100.
-.IP "\fBmax-cselib-memory-locations\fR" 4
-.IX Item "max-cselib-memory-locations"
-The maximum number of memory locations cselib should take into account.
-Increasing values mean more aggressive optimization, making the compilation time
-increase with probably slightly better performance. The default value is 500.
-.IP "\fBreorder-blocks-duplicate\fR" 4
-.IX Item "reorder-blocks-duplicate"
-.PD 0
-.IP "\fBreorder-blocks-duplicate-feedback\fR" 4
-.IX Item "reorder-blocks-duplicate-feedback"
-.PD
-Used by the basic block reordering pass to decide whether to use unconditional
-branch or duplicate the code on its destination. Code is duplicated when its
-estimated size is smaller than this value multiplied by the estimated size of
-unconditional jump in the hot spots of the program.
-.Sp
-The \fBreorder-block-duplicate-feedback\fR is used only when profile
-feedback is available. It may be set to higher values than
-\&\fBreorder-block-duplicate\fR since information about the hot spots is more
-accurate.
-.IP "\fBmax-sched-ready-insns\fR" 4
-.IX Item "max-sched-ready-insns"
-The maximum number of instructions ready to be issued the scheduler should
-consider at any given time during the first scheduling pass. Increasing
-values mean more thorough searches, making the compilation time increase
-with probably little benefit. The default value is 100.
-.IP "\fBmax-sched-region-blocks\fR" 4
-.IX Item "max-sched-region-blocks"
-The maximum number of blocks in a region to be considered for
-interblock scheduling. The default value is 10.
-.IP "\fBmax-pipeline-region-blocks\fR" 4
-.IX Item "max-pipeline-region-blocks"
-The maximum number of blocks in a region to be considered for
-pipelining in the selective scheduler. The default value is 15.
-.IP "\fBmax-sched-region-insns\fR" 4
-.IX Item "max-sched-region-insns"
-The maximum number of insns in a region to be considered for
-interblock scheduling. The default value is 100.
-.IP "\fBmax-pipeline-region-insns\fR" 4
-.IX Item "max-pipeline-region-insns"
-The maximum number of insns in a region to be considered for
-pipelining in the selective scheduler. The default value is 200.
-.IP "\fBmin-spec-prob\fR" 4
-.IX Item "min-spec-prob"
-The minimum probability (in percents) of reaching a source block
-for interblock speculative scheduling. The default value is 40.
-.IP "\fBmax-sched-extend-regions-iters\fR" 4
-.IX Item "max-sched-extend-regions-iters"
-The maximum number of iterations through \s-1CFG\s0 to extend regions.
-A value of 0 (the default) disables region extensions.
-.IP "\fBmax-sched-insn-conflict-delay\fR" 4
-.IX Item "max-sched-insn-conflict-delay"
-The maximum conflict delay for an insn to be considered for speculative motion.
-The default value is 3.
-.IP "\fBsched-spec-prob-cutoff\fR" 4
-.IX Item "sched-spec-prob-cutoff"
-The minimal probability of speculation success (in percents), so that
-speculative insns are scheduled.
-The default value is 40.
-.IP "\fBsched-spec-state-edge-prob-cutoff\fR" 4
-.IX Item "sched-spec-state-edge-prob-cutoff"
-The minimum probability an edge must have for the scheduler to save its
-state across it.
-The default value is 10.
-.IP "\fBsched-mem-true-dep-cost\fR" 4
-.IX Item "sched-mem-true-dep-cost"
-Minimal distance (in \s-1CPU\s0 cycles) between store and load targeting same
-memory locations. The default value is 1.
-.IP "\fBselsched-max-lookahead\fR" 4
-.IX Item "selsched-max-lookahead"
-The maximum size of the lookahead window of selective scheduling. It is a
-depth of search for available instructions.
-The default value is 50.
-.IP "\fBselsched-max-sched-times\fR" 4
-.IX Item "selsched-max-sched-times"
-The maximum number of times that an instruction is scheduled during
-selective scheduling. This is the limit on the number of iterations
-through which the instruction may be pipelined. The default value is 2.
-.IP "\fBselsched-max-insns-to-rename\fR" 4
-.IX Item "selsched-max-insns-to-rename"
-The maximum number of best instructions in the ready list that are considered
-for renaming in the selective scheduler. The default value is 2.
-.IP "\fBsms-min-sc\fR" 4
-.IX Item "sms-min-sc"
-The minimum value of stage count that swing modulo scheduler
-generates. The default value is 2.
-.IP "\fBmax-last-value-rtl\fR" 4
-.IX Item "max-last-value-rtl"
-The maximum size measured as number of RTLs that can be recorded in an expression
-in combiner for a pseudo register as last known value of that register. The default
-is 10000.
-.IP "\fBinteger-share-limit\fR" 4
-.IX Item "integer-share-limit"
-Small integer constants can use a shared data structure, reducing the
-compiler's memory usage and increasing its speed. This sets the maximum
-value of a shared integer constant. The default value is 256.
-.IP "\fBssp-buffer-size\fR" 4
-.IX Item "ssp-buffer-size"
-The minimum size of buffers (i.e. arrays) that receive stack smashing
-protection when \fB\-fstack\-protection\fR is used.
-.IP "\fBmin-size-for-stack-sharing\fR" 4
-.IX Item "min-size-for-stack-sharing"
-The minimum size of variables taking part in stack slot sharing when not
-optimizing. The default value is 32.
-.IP "\fBmax-jump-thread-duplication-stmts\fR" 4
-.IX Item "max-jump-thread-duplication-stmts"
-Maximum number of statements allowed in a block that needs to be
-duplicated when threading jumps.
-.IP "\fBmax-fields-for-field-sensitive\fR" 4
-.IX Item "max-fields-for-field-sensitive"
-Maximum number of fields in a structure treated in
-a field sensitive manner during pointer analysis. The default is zero
-for \fB\-O0\fR and \fB\-O1\fR,
-and 100 for \fB\-Os\fR, \fB\-O2\fR, and \fB\-O3\fR.
-.IP "\fBprefetch-latency\fR" 4
-.IX Item "prefetch-latency"
-Estimate on average number of instructions that are executed before
-prefetch finishes. The distance prefetched ahead is proportional
-to this constant. Increasing this number may also lead to less
-streams being prefetched (see \fBsimultaneous-prefetches\fR).
-.IP "\fBsimultaneous-prefetches\fR" 4
-.IX Item "simultaneous-prefetches"
-Maximum number of prefetches that can run at the same time.
-.IP "\fBl1\-cache\-line\-size\fR" 4
-.IX Item "l1-cache-line-size"
-The size of cache line in L1 cache, in bytes.
-.IP "\fBl1\-cache\-size\fR" 4
-.IX Item "l1-cache-size"
-The size of L1 cache, in kilobytes.
-.IP "\fBl2\-cache\-size\fR" 4
-.IX Item "l2-cache-size"
-The size of L2 cache, in kilobytes.
-.IP "\fBmin-insn-to-prefetch-ratio\fR" 4
-.IX Item "min-insn-to-prefetch-ratio"
-The minimum ratio between the number of instructions and the
-number of prefetches to enable prefetching in a loop.
-.IP "\fBprefetch-min-insn-to-mem-ratio\fR" 4
-.IX Item "prefetch-min-insn-to-mem-ratio"
-The minimum ratio between the number of instructions and the
-number of memory references to enable prefetching in a loop.
-.IP "\fBuse-canonical-types\fR" 4
-.IX Item "use-canonical-types"
-Whether the compiler should use the \*(L"canonical\*(R" type system. By
-default, this should always be 1, which uses a more efficient internal
-mechanism for comparing types in \*(C+ and Objective\-\*(C+. However, if
-bugs in the canonical type system are causing compilation failures,
-set this value to 0 to disable canonical types.
-.IP "\fBswitch-conversion-max-branch-ratio\fR" 4
-.IX Item "switch-conversion-max-branch-ratio"
-Switch initialization conversion refuses to create arrays that are
-bigger than \fBswitch-conversion-max-branch-ratio\fR times the number of
-branches in the switch.
-.IP "\fBmax-partial-antic-length\fR" 4
-.IX Item "max-partial-antic-length"
-Maximum length of the partial antic set computed during the tree
-partial redundancy elimination optimization (\fB\-ftree\-pre\fR) when
-optimizing at \fB\-O3\fR and above. For some sorts of source code
-the enhanced partial redundancy elimination optimization can run away,
-consuming all of the memory available on the host machine. This
-parameter sets a limit on the length of the sets that are computed,
-which prevents the runaway behavior. Setting a value of 0 for
-this parameter allows an unlimited set length.
-.IP "\fBsccvn-max-scc-size\fR" 4
-.IX Item "sccvn-max-scc-size"
-Maximum size of a strongly connected component (\s-1SCC\s0) during \s-1SCCVN\s0
-processing. If this limit is hit, \s-1SCCVN\s0 processing for the whole
-function is not done and optimizations depending on it are
-disabled. The default maximum \s-1SCC\s0 size is 10000.
-.IP "\fBsccvn-max-alias-queries-per-access\fR" 4
-.IX Item "sccvn-max-alias-queries-per-access"
-Maximum number of alias-oracle queries we perform when looking for
-redundancies for loads and stores. If this limit is hit the search
-is aborted and the load or store is not considered redundant. The
-number of queries is algorithmically limited to the number of
-stores on all paths from the load to the function entry.
-The default maxmimum number of queries is 1000.
-.IP "\fBira-max-loops-num\fR" 4
-.IX Item "ira-max-loops-num"
-\&\s-1IRA\s0 uses regional register allocation by default. If a function
-contains more loops than the number given by this parameter, only at most
-the given number of the most frequently-executed loops form regions
-for regional register allocation. The default value of the
-parameter is 100.
-.IP "\fBira-max-conflict-table-size\fR" 4
-.IX Item "ira-max-conflict-table-size"
-Although \s-1IRA\s0 uses a sophisticated algorithm to compress the conflict
-table, the table can still require excessive amounts of memory for
-huge functions. If the conflict table for a function could be more
-than the size in \s-1MB\s0 given by this parameter, the register allocator
-instead uses a faster, simpler, and lower-quality
-algorithm that does not require building a pseudo-register conflict table.
-The default value of the parameter is 2000.
-.IP "\fBira-loop-reserved-regs\fR" 4
-.IX Item "ira-loop-reserved-regs"
-\&\s-1IRA\s0 can be used to evaluate more accurate register pressure in loops
-for decisions to move loop invariants (see \fB\-O3\fR). The number
-of available registers reserved for some other purposes is given
-by this parameter. The default value of the parameter is 2, which is
-the minimal number of registers needed by typical instructions.
-This value is the best found from numerous experiments.
-.IP "\fBloop-invariant-max-bbs-in-loop\fR" 4
-.IX Item "loop-invariant-max-bbs-in-loop"
-Loop invariant motion can be very expensive, both in compilation time and
-in amount of needed compile-time memory, with very large loops. Loops
-with more basic blocks than this parameter won't have loop invariant
-motion optimization performed on them. The default value of the
-parameter is 1000 for \fB\-O1\fR and 10000 for \fB\-O2\fR and above.
-.IP "\fBloop-max-datarefs-for-datadeps\fR" 4
-.IX Item "loop-max-datarefs-for-datadeps"
-Building data dapendencies is expensive for very large loops. This
-parameter limits the number of data references in loops that are
-considered for data dependence analysis. These large loops are no
-handled by the optimizations using loop data dependencies.
-The default value is 1000.
-.IP "\fBmax-vartrack-size\fR" 4
-.IX Item "max-vartrack-size"
-Sets a maximum number of hash table slots to use during variable
-tracking dataflow analysis of any function. If this limit is exceeded
-with variable tracking at assignments enabled, analysis for that
-function is retried without it, after removing all debug insns from
-the function. If the limit is exceeded even without debug insns, var
-tracking analysis is completely disabled for the function. Setting
-the parameter to zero makes it unlimited.
-.IP "\fBmax-vartrack-expr-depth\fR" 4
-.IX Item "max-vartrack-expr-depth"
-Sets a maximum number of recursion levels when attempting to map
-variable names or debug temporaries to value expressions. This trades
-compilation time for more complete debug information. If this is set too
-low, value expressions that are available and could be represented in
-debug information may end up not being used; setting this higher may
-enable the compiler to find more complex debug expressions, but compile
-time and memory use may grow. The default is 12.
-.IP "\fBmin-nondebug-insn-uid\fR" 4
-.IX Item "min-nondebug-insn-uid"
-Use uids starting at this parameter for nondebug insns. The range below
-the parameter is reserved exclusively for debug insns created by
-\&\fB\-fvar\-tracking\-assignments\fR, but debug insns may get
-(non-overlapping) uids above it if the reserved range is exhausted.
-.IP "\fBipa-sra-ptr-growth-factor\fR" 4
-.IX Item "ipa-sra-ptr-growth-factor"
-IPA-SRA replaces a pointer to an aggregate with one or more new
-parameters only when their cumulative size is less or equal to
-\&\fBipa-sra-ptr-growth-factor\fR times the size of the original
-pointer parameter.
-.IP "\fBtm-max-aggregate-size\fR" 4
-.IX Item "tm-max-aggregate-size"
-When making copies of thread-local variables in a transaction, this
-parameter specifies the size in bytes after which variables are
-saved with the logging functions as opposed to save/restore code
-sequence pairs. This option only applies when using
-\&\fB\-fgnu\-tm\fR.
-.IP "\fBgraphite-max-nb-scop-params\fR" 4
-.IX Item "graphite-max-nb-scop-params"
-To avoid exponential effects in the Graphite loop transforms, the
-number of parameters in a Static Control Part (SCoP) is bounded. The
-default value is 10 parameters. A variable whose value is unknown at
-compilation time and defined outside a SCoP is a parameter of the SCoP.
-.IP "\fBgraphite-max-bbs-per-function\fR" 4
-.IX Item "graphite-max-bbs-per-function"
-To avoid exponential effects in the detection of SCoPs, the size of
-the functions analyzed by Graphite is bounded. The default value is
-100 basic blocks.
-.IP "\fBloop-block-tile-size\fR" 4
-.IX Item "loop-block-tile-size"
-Loop blocking or strip mining transforms, enabled with
-\&\fB\-floop\-block\fR or \fB\-floop\-strip\-mine\fR, strip mine each
-loop in the loop nest by a given number of iterations. The strip
-length can be changed using the \fBloop-block-tile-size\fR
-parameter. The default value is 51 iterations.
-.IP "\fBipa-cp-value-list-size\fR" 4
-.IX Item "ipa-cp-value-list-size"
-IPA-CP attempts to track all possible values and types passed to a function's
-parameter in order to propagate them and perform devirtualization.
-\&\fBipa-cp-value-list-size\fR is the maximum number of values and types it
-stores per one formal parameter of a function.
-.IP "\fBlto-partitions\fR" 4
-.IX Item "lto-partitions"
-Specify desired number of partitions produced during \s-1WHOPR\s0 compilation.
-The number of partitions should exceed the number of CPUs used for compilation.
-The default value is 32.
-.IP "\fBlto-minpartition\fR" 4
-.IX Item "lto-minpartition"
-Size of minimal partition for \s-1WHOPR \s0(in estimated instructions).
-This prevents expenses of splitting very small programs into too many
-partitions.
-.IP "\fBcxx-max-namespaces-for-diagnostic-help\fR" 4
-.IX Item "cxx-max-namespaces-for-diagnostic-help"
-The maximum number of namespaces to consult for suggestions when \*(C+
-name lookup fails for an identifier. The default is 1000.
-.IP "\fBsink-frequency-threshold\fR" 4
-.IX Item "sink-frequency-threshold"
-The maximum relative execution frequency (in percents) of the target block
-relative to a statement's original block to allow statement sinking of a
-statement. Larger numbers result in more aggressive statement sinking.
-The default value is 75. A small positive adjustment is applied for
-statements with memory operands as those are even more profitable so sink.
-.IP "\fBmax-stores-to-sink\fR" 4
-.IX Item "max-stores-to-sink"
-The maximum number of conditional stores paires that can be sunk. Set to 0
-if either vectorization (\fB\-ftree\-vectorize\fR) or if-conversion
-(\fB\-ftree\-loop\-if\-convert\fR) is disabled. The default is 2.
-.IP "\fBallow-load-data-races\fR" 4
-.IX Item "allow-load-data-races"
-Allow optimizers to introduce new data races on loads.
-Set to 1 to allow, otherwise to 0. This option is enabled by default
-unless implicitly set by the \fB\-fmemory\-model=\fR option.
-.IP "\fBallow-store-data-races\fR" 4
-.IX Item "allow-store-data-races"
-Allow optimizers to introduce new data races on stores.
-Set to 1 to allow, otherwise to 0. This option is enabled by default
-unless implicitly set by the \fB\-fmemory\-model=\fR option.
-.IP "\fBallow-packed-load-data-races\fR" 4
-.IX Item "allow-packed-load-data-races"
-Allow optimizers to introduce new data races on packed data loads.
-Set to 1 to allow, otherwise to 0. This option is enabled by default
-unless implicitly set by the \fB\-fmemory\-model=\fR option.
-.IP "\fBallow-packed-store-data-races\fR" 4
-.IX Item "allow-packed-store-data-races"
-Allow optimizers to introduce new data races on packed data stores.
-Set to 1 to allow, otherwise to 0. This option is enabled by default
-unless implicitly set by the \fB\-fmemory\-model=\fR option.
-.IP "\fBcase-values-threshold\fR" 4
-.IX Item "case-values-threshold"
-The smallest number of different values for which it is best to use a
-jump-table instead of a tree of conditional branches. If the value is
-0, use the default for the machine. The default is 0.
-.IP "\fBtree-reassoc-width\fR" 4
-.IX Item "tree-reassoc-width"
-Set the maximum number of instructions executed in parallel in
-reassociated tree. This parameter overrides target dependent
-heuristics used by default if has non zero value.
-.IP "\fBsched-pressure-algorithm\fR" 4
-.IX Item "sched-pressure-algorithm"
-Choose between the two available implementations of
-\&\fB\-fsched\-pressure\fR. Algorithm 1 is the original implementation
-and is the more likely to prevent instructions from being reordered.
-Algorithm 2 was designed to be a compromise between the relatively
-conservative approach taken by algorithm 1 and the rather aggressive
-approach taken by the default scheduler. It relies more heavily on
-having a regular register file and accurate register pressure classes.
-See \fIhaifa\-sched.c\fR in the \s-1GCC\s0 sources for more details.
-.Sp
-The default choice depends on the target.
-.IP "\fBmax-slsr-cand-scan\fR" 4
-.IX Item "max-slsr-cand-scan"
-Set the maximum number of existing candidates that will be considered when
-seeking a basis for a new straight-line strength reduction candidate.
-.IP "\fBasan-globals\fR" 4
-.IX Item "asan-globals"
-Enable buffer overflow detection for global objects. This kind
-of protection is enabled by default if you are using
-\&\fB\-fsanitize=address\fR option.
-To disable global objects protection use \fB\-\-param asan\-globals=0\fR.
-.IP "\fBasan-stack\fR" 4
-.IX Item "asan-stack"
-Enable buffer overflow detection for stack objects. This kind of
-protection is enabled by default when using\fB\-fsanitize=address\fR.
-To disable stack protection use \fB\-\-param asan\-stack=0\fR option.
-.IP "\fBasan-instrument-reads\fR" 4
-.IX Item "asan-instrument-reads"
-Enable buffer overflow detection for memory reads. This kind of
-protection is enabled by default when using \fB\-fsanitize=address\fR.
-To disable memory reads protection use
-\&\fB\-\-param asan\-instrument\-reads=0\fR.
-.IP "\fBasan-instrument-writes\fR" 4
-.IX Item "asan-instrument-writes"
-Enable buffer overflow detection for memory writes. This kind of
-protection is enabled by default when using \fB\-fsanitize=address\fR.
-To disable memory writes protection use
-\&\fB\-\-param asan\-instrument\-writes=0\fR option.
-.IP "\fBasan-memintrin\fR" 4
-.IX Item "asan-memintrin"
-Enable detection for built-in functions. This kind of protection
-is enabled by default when using \fB\-fsanitize=address\fR.
-To disable built-in functions protection use
-\&\fB\-\-param asan\-memintrin=0\fR.
-.IP "\fBasan-use-after-return\fR" 4
-.IX Item "asan-use-after-return"
-Enable detection of use-after-return. This kind of protection
-is enabled by default when using \fB\-fsanitize=address\fR option.
-To disable use-after-return detection use
-\&\fB\-\-param asan\-use\-after\-return=0\fR.
-.RE
-.RS 4
-.RE
-.SS "Options Controlling the Preprocessor"
-.IX Subsection "Options Controlling the Preprocessor"
-These options control the C preprocessor, which is run on each C source
-file before actual compilation.
-.PP
-If you use the \fB\-E\fR option, nothing is done except preprocessing.
-Some of these options make sense only together with \fB\-E\fR because
-they cause the preprocessor output to be unsuitable for actual
-compilation.
-.IP "\fB\-Wp,\fR\fIoption\fR" 4
-.IX Item "-Wp,option"
-You can use \fB\-Wp,\fR\fIoption\fR to bypass the compiler driver
-and pass \fIoption\fR directly through to the preprocessor. If
-\&\fIoption\fR contains commas, it is split into multiple options at the
-commas. However, many options are modified, translated or interpreted
-by the compiler driver before being passed to the preprocessor, and
-\&\fB\-Wp\fR forcibly bypasses this phase. The preprocessor's direct
-interface is undocumented and subject to change, so whenever possible
-you should avoid using \fB\-Wp\fR and let the driver handle the
-options instead.
-.IP "\fB\-Xpreprocessor\fR \fIoption\fR" 4
-.IX Item "-Xpreprocessor option"
-Pass \fIoption\fR as an option to the preprocessor. You can use this to
-supply system-specific preprocessor options that \s-1GCC\s0 does not
-recognize.
-.Sp
-If you want to pass an option that takes an argument, you must use
-\&\fB\-Xpreprocessor\fR twice, once for the option and once for the argument.
-.IP "\fB\-no\-integrated\-cpp\fR" 4
-.IX Item "-no-integrated-cpp"
-Perform preprocessing as a separate pass before compilation.
-By default, \s-1GCC\s0 performs preprocessing as an integrated part of
-input tokenization and parsing.
-If this option is provided, the appropriate language front end
-(\fBcc1\fR, \fBcc1plus\fR, or \fBcc1obj\fR for C, \*(C+,
-and Objective-C, respectively) is instead invoked twice,
-once for preprocessing only and once for actual compilation
-of the preprocessed input.
-This option may be useful in conjunction with the \fB\-B\fR or
-\&\fB\-wrapper\fR options to specify an alternate preprocessor or
-perform additional processing of the program source between
-normal preprocessing and compilation.
-.IP "\fB\-D\fR \fIname\fR" 4
-.IX Item "-D name"
-Predefine \fIname\fR as a macro, with definition \f(CW1\fR.
-.IP "\fB\-D\fR \fIname\fR\fB=\fR\fIdefinition\fR" 4
-.IX Item "-D name=definition"
-The contents of \fIdefinition\fR are tokenized and processed as if
-they appeared during translation phase three in a \fB#define\fR
-directive. In particular, the definition will be truncated by
-embedded newline characters.
-.Sp
-If you are invoking the preprocessor from a shell or shell-like
-program you may need to use the shell's quoting syntax to protect
-characters such as spaces that have a meaning in the shell syntax.
-.Sp
-If you wish to define a function-like macro on the command line, write
-its argument list with surrounding parentheses before the equals sign
-(if any). Parentheses are meaningful to most shells, so you will need
-to quote the option. With \fBsh\fR and \fBcsh\fR,
-\&\fB\-D'\fR\fIname\fR\fB(\fR\fIargs...\fR\fB)=\fR\fIdefinition\fR\fB'\fR works.
-.Sp
-\&\fB\-D\fR and \fB\-U\fR options are processed in the order they
-are given on the command line. All \fB\-imacros\fR \fIfile\fR and
-\&\fB\-include\fR \fIfile\fR options are processed after all
-\&\fB\-D\fR and \fB\-U\fR options.
-.IP "\fB\-U\fR \fIname\fR" 4
-.IX Item "-U name"
-Cancel any previous definition of \fIname\fR, either built in or
-provided with a \fB\-D\fR option.
-.IP "\fB\-undef\fR" 4
-.IX Item "-undef"
-Do not predefine any system-specific or GCC-specific macros. The
-standard predefined macros remain defined.
-.IP "\fB\-I\fR \fIdir\fR" 4
-.IX Item "-I dir"
-Add the directory \fIdir\fR to the list of directories to be searched
-for header files.
-Directories named by \fB\-I\fR are searched before the standard
-system include directories. If the directory \fIdir\fR is a standard
-system include directory, the option is ignored to ensure that the
-default search order for system directories and the special treatment
-of system headers are not defeated
-\&.
-If \fIdir\fR begins with \f(CW\*(C`=\*(C'\fR, then the \f(CW\*(C`=\*(C'\fR will be replaced
-by the sysroot prefix; see \fB\-\-sysroot\fR and \fB\-isysroot\fR.
-.IP "\fB\-o\fR \fIfile\fR" 4
-.IX Item "-o file"
-Write output to \fIfile\fR. This is the same as specifying \fIfile\fR
-as the second non-option argument to \fBcpp\fR. \fBgcc\fR has a
-different interpretation of a second non-option argument, so you must
-use \fB\-o\fR to specify the output file.
-.IP "\fB\-Wall\fR" 4
-.IX Item "-Wall"
-Turns on all optional warnings which are desirable for normal code.
-At present this is \fB\-Wcomment\fR, \fB\-Wtrigraphs\fR,
-\&\fB\-Wmultichar\fR and a warning about integer promotion causing a
-change of sign in \f(CW\*(C`#if\*(C'\fR expressions. Note that many of the
-preprocessor's warnings are on by default and have no options to
-control them.
-.IP "\fB\-Wcomment\fR" 4
-.IX Item "-Wcomment"
-.PD 0
-.IP "\fB\-Wcomments\fR" 4
-.IX Item "-Wcomments"
-.PD
-Warn whenever a comment-start sequence \fB/*\fR appears in a \fB/*\fR
-comment, or whenever a backslash-newline appears in a \fB//\fR comment.
-(Both forms have the same effect.)
-.IP "\fB\-Wtrigraphs\fR" 4
-.IX Item "-Wtrigraphs"
-Most trigraphs in comments cannot affect the meaning of the program.
-However, a trigraph that would form an escaped newline (\fB??/\fR at
-the end of a line) can, by changing where the comment begins or ends.
-Therefore, only trigraphs that would form escaped newlines produce
-warnings inside a comment.
-.Sp
-This option is implied by \fB\-Wall\fR. If \fB\-Wall\fR is not
-given, this option is still enabled unless trigraphs are enabled. To
-get trigraph conversion without warnings, but get the other
-\&\fB\-Wall\fR warnings, use \fB\-trigraphs \-Wall \-Wno\-trigraphs\fR.
-.IP "\fB\-Wtraditional\fR" 4
-.IX Item "-Wtraditional"
-Warn about certain constructs that behave differently in traditional and
-\&\s-1ISO C. \s0 Also warn about \s-1ISO C\s0 constructs that have no traditional C
-equivalent, and problematic constructs which should be avoided.
-.IP "\fB\-Wundef\fR" 4
-.IX Item "-Wundef"
-Warn whenever an identifier which is not a macro is encountered in an
-\&\fB#if\fR directive, outside of \fBdefined\fR. Such identifiers are
-replaced with zero.
-.IP "\fB\-Wunused\-macros\fR" 4
-.IX Item "-Wunused-macros"
-Warn about macros defined in the main file that are unused. A macro
-is \fIused\fR if it is expanded or tested for existence at least once.
-The preprocessor will also warn if the macro has not been used at the
-time it is redefined or undefined.
-.Sp
-Built-in macros, macros defined on the command line, and macros
-defined in include files are not warned about.
-.Sp
-\&\fINote:\fR If a macro is actually used, but only used in skipped
-conditional blocks, then \s-1CPP\s0 will report it as unused. To avoid the
-warning in such a case, you might improve the scope of the macro's
-definition by, for example, moving it into the first skipped block.
-Alternatively, you could provide a dummy use with something like:
-.Sp
-.Vb 2
-\& #if defined the_macro_causing_the_warning
-\& #endif
-.Ve
-.IP "\fB\-Wendif\-labels\fR" 4
-.IX Item "-Wendif-labels"
-Warn whenever an \fB#else\fR or an \fB#endif\fR are followed by text.
-This usually happens in code of the form
-.Sp
-.Vb 5
-\& #if FOO
-\& ...
-\& #else FOO
-\& ...
-\& #endif FOO
-.Ve
-.Sp
-The second and third \f(CW\*(C`FOO\*(C'\fR should be in comments, but often are not
-in older programs. This warning is on by default.
-.IP "\fB\-Werror\fR" 4
-.IX Item "-Werror"
-Make all warnings into hard errors. Source code which triggers warnings
-will be rejected.
-.IP "\fB\-Wsystem\-headers\fR" 4
-.IX Item "-Wsystem-headers"
-Issue warnings for code in system headers. These are normally unhelpful
-in finding bugs in your own code, therefore suppressed. If you are
-responsible for the system library, you may want to see them.
-.IP "\fB\-w\fR" 4
-.IX Item "-w"
-Suppress all warnings, including those which \s-1GNU CPP\s0 issues by default.
-.IP "\fB\-pedantic\fR" 4
-.IX Item "-pedantic"
-Issue all the mandatory diagnostics listed in the C standard. Some of
-them are left out by default, since they trigger frequently on harmless
-code.
-.IP "\fB\-pedantic\-errors\fR" 4
-.IX Item "-pedantic-errors"
-Issue all the mandatory diagnostics, and make all mandatory diagnostics
-into errors. This includes mandatory diagnostics that \s-1GCC\s0 issues
-without \fB\-pedantic\fR but treats as warnings.
-.IP "\fB\-M\fR" 4
-.IX Item "-M"
-Instead of outputting the result of preprocessing, output a rule
-suitable for \fBmake\fR describing the dependencies of the main
-source file. The preprocessor outputs one \fBmake\fR rule containing
-the object file name for that source file, a colon, and the names of all
-the included files, including those coming from \fB\-include\fR or
-\&\fB\-imacros\fR command line options.
-.Sp
-Unless specified explicitly (with \fB\-MT\fR or \fB\-MQ\fR), the
-object file name consists of the name of the source file with any
-suffix replaced with object file suffix and with any leading directory
-parts removed. If there are many included files then the rule is
-split into several lines using \fB\e\fR\-newline. The rule has no
-commands.
-.Sp
-This option does not suppress the preprocessor's debug output, such as
-\&\fB\-dM\fR. To avoid mixing such debug output with the dependency
-rules you should explicitly specify the dependency output file with
-\&\fB\-MF\fR, or use an environment variable like
-\&\fB\s-1DEPENDENCIES_OUTPUT\s0\fR. Debug output
-will still be sent to the regular output stream as normal.
-.Sp
-Passing \fB\-M\fR to the driver implies \fB\-E\fR, and suppresses
-warnings with an implicit \fB\-w\fR.
-.IP "\fB\-MM\fR" 4
-.IX Item "-MM"
-Like \fB\-M\fR but do not mention header files that are found in
-system header directories, nor header files that are included,
-directly or indirectly, from such a header.
-.Sp
-This implies that the choice of angle brackets or double quotes in an
-\&\fB#include\fR directive does not in itself determine whether that
-header will appear in \fB\-MM\fR dependency output. This is a
-slight change in semantics from \s-1GCC\s0 versions 3.0 and earlier.
-.IP "\fB\-MF\fR \fIfile\fR" 4
-.IX Item "-MF file"
-When used with \fB\-M\fR or \fB\-MM\fR, specifies a
-file to write the dependencies to. If no \fB\-MF\fR switch is given
-the preprocessor sends the rules to the same place it would have sent
-preprocessed output.
-.Sp
-When used with the driver options \fB\-MD\fR or \fB\-MMD\fR,
-\&\fB\-MF\fR overrides the default dependency output file.
-.IP "\fB\-MG\fR" 4
-.IX Item "-MG"
-In conjunction with an option such as \fB\-M\fR requesting
-dependency generation, \fB\-MG\fR assumes missing header files are
-generated files and adds them to the dependency list without raising
-an error. The dependency filename is taken directly from the
-\&\f(CW\*(C`#include\*(C'\fR directive without prepending any path. \fB\-MG\fR
-also suppresses preprocessed output, as a missing header file renders
-this useless.
-.Sp
-This feature is used in automatic updating of makefiles.
-.IP "\fB\-MP\fR" 4
-.IX Item "-MP"
-This option instructs \s-1CPP\s0 to add a phony target for each dependency
-other than the main file, causing each to depend on nothing. These
-dummy rules work around errors \fBmake\fR gives if you remove header
-files without updating the \fIMakefile\fR to match.
-.Sp
-This is typical output:
-.Sp
-.Vb 1
-\& test.o: test.c test.h
-\&
-\& test.h:
-.Ve
-.IP "\fB\-MT\fR \fItarget\fR" 4
-.IX Item "-MT target"
-Change the target of the rule emitted by dependency generation. By
-default \s-1CPP\s0 takes the name of the main input file, deletes any
-directory components and any file suffix such as \fB.c\fR, and
-appends the platform's usual object suffix. The result is the target.
-.Sp
-An \fB\-MT\fR option will set the target to be exactly the string you
-specify. If you want multiple targets, you can specify them as a single
-argument to \fB\-MT\fR, or use multiple \fB\-MT\fR options.
-.Sp
-For example, \fB\-MT\ '$(objpfx)foo.o'\fR might give
-.Sp
-.Vb 1
-\& $(objpfx)foo.o: foo.c
-.Ve
-.IP "\fB\-MQ\fR \fItarget\fR" 4
-.IX Item "-MQ target"
-Same as \fB\-MT\fR, but it quotes any characters which are special to
-Make. \fB\-MQ\ '$(objpfx)foo.o'\fR gives
-.Sp
-.Vb 1
-\& $$(objpfx)foo.o: foo.c
-.Ve
-.Sp
-The default target is automatically quoted, as if it were given with
-\&\fB\-MQ\fR.
-.IP "\fB\-MD\fR" 4
-.IX Item "-MD"
-\&\fB\-MD\fR is equivalent to \fB\-M \-MF\fR \fIfile\fR, except that
-\&\fB\-E\fR is not implied. The driver determines \fIfile\fR based on
-whether an \fB\-o\fR option is given. If it is, the driver uses its
-argument but with a suffix of \fI.d\fR, otherwise it takes the name
-of the input file, removes any directory components and suffix, and
-applies a \fI.d\fR suffix.
-.Sp
-If \fB\-MD\fR is used in conjunction with \fB\-E\fR, any
-\&\fB\-o\fR switch is understood to specify the dependency output file, but if used without \fB\-E\fR, each \fB\-o\fR
-is understood to specify a target object file.
-.Sp
-Since \fB\-E\fR is not implied, \fB\-MD\fR can be used to generate
-a dependency output file as a side-effect of the compilation process.
-.IP "\fB\-MMD\fR" 4
-.IX Item "-MMD"
-Like \fB\-MD\fR except mention only user header files, not system
-header files.
-.IP "\fB\-fpch\-deps\fR" 4
-.IX Item "-fpch-deps"
-When using precompiled headers, this flag
-will cause the dependency-output flags to also list the files from the
-precompiled header's dependencies. If not specified only the
-precompiled header would be listed and not the files that were used to
-create it because those files are not consulted when a precompiled
-header is used.
-.IP "\fB\-fpch\-preprocess\fR" 4
-.IX Item "-fpch-preprocess"
-This option allows use of a precompiled header together with \fB\-E\fR. It inserts a special \f(CW\*(C`#pragma\*(C'\fR,
-\&\f(CW\*(C`#pragma GCC pch_preprocess "\f(CIfilename\f(CW"\*(C'\fR in the output to mark
-the place where the precompiled header was found, and its \fIfilename\fR.
-When \fB\-fpreprocessed\fR is in use, \s-1GCC\s0 recognizes this \f(CW\*(C`#pragma\*(C'\fR
-and loads the \s-1PCH.\s0
-.Sp
-This option is off by default, because the resulting preprocessed output
-is only really suitable as input to \s-1GCC. \s0 It is switched on by
-\&\fB\-save\-temps\fR.
-.Sp
-You should not write this \f(CW\*(C`#pragma\*(C'\fR in your own code, but it is
-safe to edit the filename if the \s-1PCH\s0 file is available in a different
-location. The filename may be absolute or it may be relative to \s-1GCC\s0's
-current directory.
-.IP "\fB\-x c\fR" 4
-.IX Item "-x c"
-.PD 0
-.IP "\fB\-x c++\fR" 4
-.IX Item "-x c++"
-.IP "\fB\-x objective-c\fR" 4
-.IX Item "-x objective-c"
-.IP "\fB\-x assembler-with-cpp\fR" 4
-.IX Item "-x assembler-with-cpp"
-.PD
-Specify the source language: C, \*(C+, Objective-C, or assembly. This has
-nothing to do with standards conformance or extensions; it merely
-selects which base syntax to expect. If you give none of these options,
-cpp will deduce the language from the extension of the source file:
-\&\fB.c\fR, \fB.cc\fR, \fB.m\fR, or \fB.S\fR. Some other common
-extensions for \*(C+ and assembly are also recognized. If cpp does not
-recognize the extension, it will treat the file as C; this is the most
-generic mode.
-.Sp
-\&\fINote:\fR Previous versions of cpp accepted a \fB\-lang\fR option
-which selected both the language and the standards conformance level.
-This option has been removed, because it conflicts with the \fB\-l\fR
-option.
-.IP "\fB\-std=\fR\fIstandard\fR" 4
-.IX Item "-std=standard"
-.PD 0
-.IP "\fB\-ansi\fR" 4
-.IX Item "-ansi"
-.PD
-Specify the standard to which the code should conform. Currently \s-1CPP\s0
-knows about C and \*(C+ standards; others may be added in the future.
-.Sp
-\&\fIstandard\fR
-may be one of:
-.RS 4
-.ie n .IP """c90""" 4
-.el .IP "\f(CWc90\fR" 4
-.IX Item "c90"
-.PD 0
-.ie n .IP """c89""" 4
-.el .IP "\f(CWc89\fR" 4
-.IX Item "c89"
-.ie n .IP """iso9899:1990""" 4
-.el .IP "\f(CWiso9899:1990\fR" 4
-.IX Item "iso9899:1990"
-.PD
-The \s-1ISO C\s0 standard from 1990. \fBc90\fR is the customary shorthand for
-this version of the standard.
-.Sp
-The \fB\-ansi\fR option is equivalent to \fB\-std=c90\fR.
-.ie n .IP """iso9899:199409""" 4
-.el .IP "\f(CWiso9899:199409\fR" 4
-.IX Item "iso9899:199409"
-The 1990 C standard, as amended in 1994.
-.ie n .IP """iso9899:1999""" 4
-.el .IP "\f(CWiso9899:1999\fR" 4
-.IX Item "iso9899:1999"
-.PD 0
-.ie n .IP """c99""" 4
-.el .IP "\f(CWc99\fR" 4
-.IX Item "c99"
-.ie n .IP """iso9899:199x""" 4
-.el .IP "\f(CWiso9899:199x\fR" 4
-.IX Item "iso9899:199x"
-.ie n .IP """c9x""" 4
-.el .IP "\f(CWc9x\fR" 4
-.IX Item "c9x"
-.PD
-The revised \s-1ISO C\s0 standard, published in December 1999. Before
-publication, this was known as C9X.
-.ie n .IP """iso9899:2011""" 4
-.el .IP "\f(CWiso9899:2011\fR" 4
-.IX Item "iso9899:2011"
-.PD 0
-.ie n .IP """c11""" 4
-.el .IP "\f(CWc11\fR" 4
-.IX Item "c11"
-.ie n .IP """c1x""" 4
-.el .IP "\f(CWc1x\fR" 4
-.IX Item "c1x"
-.PD
-The revised \s-1ISO C\s0 standard, published in December 2011. Before
-publication, this was known as C1X.
-.ie n .IP """gnu90""" 4
-.el .IP "\f(CWgnu90\fR" 4
-.IX Item "gnu90"
-.PD 0
-.ie n .IP """gnu89""" 4
-.el .IP "\f(CWgnu89\fR" 4
-.IX Item "gnu89"
-.PD
-The 1990 C standard plus \s-1GNU\s0 extensions. This is the default.
-.ie n .IP """gnu99""" 4
-.el .IP "\f(CWgnu99\fR" 4
-.IX Item "gnu99"
-.PD 0
-.ie n .IP """gnu9x""" 4
-.el .IP "\f(CWgnu9x\fR" 4
-.IX Item "gnu9x"
-.PD
-The 1999 C standard plus \s-1GNU\s0 extensions.
-.ie n .IP """gnu11""" 4
-.el .IP "\f(CWgnu11\fR" 4
-.IX Item "gnu11"
-.PD 0
-.ie n .IP """gnu1x""" 4
-.el .IP "\f(CWgnu1x\fR" 4
-.IX Item "gnu1x"
-.PD
-The 2011 C standard plus \s-1GNU\s0 extensions.
-.ie n .IP """c++98""" 4
-.el .IP "\f(CWc++98\fR" 4
-.IX Item "c++98"
-The 1998 \s-1ISO \*(C+\s0 standard plus amendments.
-.ie n .IP """gnu++98""" 4
-.el .IP "\f(CWgnu++98\fR" 4
-.IX Item "gnu++98"
-The same as \fB\-std=c++98\fR plus \s-1GNU\s0 extensions. This is the
-default for \*(C+ code.
-.RE
-.RS 4
-.RE
-.IP "\fB\-I\-\fR" 4
-.IX Item "-I-"
-Split the include path. Any directories specified with \fB\-I\fR
-options before \fB\-I\-\fR are searched only for headers requested with
-\&\f(CW\*(C`#include\ "\f(CIfile\f(CW"\*(C'\fR; they are not searched for
-\&\f(CW\*(C`#include\ <\f(CIfile\f(CW>\*(C'\fR. If additional directories are
-specified with \fB\-I\fR options after the \fB\-I\-\fR, those
-directories are searched for all \fB#include\fR directives.
-.Sp
-In addition, \fB\-I\-\fR inhibits the use of the directory of the current
-file directory as the first search directory for \f(CW\*(C`#include\ "\f(CIfile\f(CW"\*(C'\fR.
-This option has been deprecated.
-.IP "\fB\-nostdinc\fR" 4
-.IX Item "-nostdinc"
-Do not search the standard system directories for header files.
-Only the directories you have specified with \fB\-I\fR options
-(and the directory of the current file, if appropriate) are searched.
-.IP "\fB\-nostdinc++\fR" 4
-.IX Item "-nostdinc++"
-Do not search for header files in the \*(C+\-specific standard directories,
-but do still search the other standard directories. (This option is
-used when building the \*(C+ library.)
-.IP "\fB\-include\fR \fIfile\fR" 4
-.IX Item "-include file"
-Process \fIfile\fR as if \f(CW\*(C`#include "file"\*(C'\fR appeared as the first
-line of the primary source file. However, the first directory searched
-for \fIfile\fR is the preprocessor's working directory \fIinstead of\fR
-the directory containing the main source file. If not found there, it
-is searched for in the remainder of the \f(CW\*(C`#include "..."\*(C'\fR search
-chain as normal.
-.Sp
-If multiple \fB\-include\fR options are given, the files are included
-in the order they appear on the command line.
-.IP "\fB\-imacros\fR \fIfile\fR" 4
-.IX Item "-imacros file"
-Exactly like \fB\-include\fR, except that any output produced by
-scanning \fIfile\fR is thrown away. Macros it defines remain defined.
-This allows you to acquire all the macros from a header without also
-processing its declarations.
-.Sp
-All files specified by \fB\-imacros\fR are processed before all files
-specified by \fB\-include\fR.
-.IP "\fB\-idirafter\fR \fIdir\fR" 4
-.IX Item "-idirafter dir"
-Search \fIdir\fR for header files, but do it \fIafter\fR all
-directories specified with \fB\-I\fR and the standard system directories
-have been exhausted. \fIdir\fR is treated as a system include directory.
-If \fIdir\fR begins with \f(CW\*(C`=\*(C'\fR, then the \f(CW\*(C`=\*(C'\fR will be replaced
-by the sysroot prefix; see \fB\-\-sysroot\fR and \fB\-isysroot\fR.
-.IP "\fB\-iprefix\fR \fIprefix\fR" 4
-.IX Item "-iprefix prefix"
-Specify \fIprefix\fR as the prefix for subsequent \fB\-iwithprefix\fR
-options. If the prefix represents a directory, you should include the
-final \fB/\fR.
-.IP "\fB\-iwithprefix\fR \fIdir\fR" 4
-.IX Item "-iwithprefix dir"
-.PD 0
-.IP "\fB\-iwithprefixbefore\fR \fIdir\fR" 4
-.IX Item "-iwithprefixbefore dir"
-.PD
-Append \fIdir\fR to the prefix specified previously with
-\&\fB\-iprefix\fR, and add the resulting directory to the include search
-path. \fB\-iwithprefixbefore\fR puts it in the same place \fB\-I\fR
-would; \fB\-iwithprefix\fR puts it where \fB\-idirafter\fR would.
-.IP "\fB\-isysroot\fR \fIdir\fR" 4
-.IX Item "-isysroot dir"
-This option is like the \fB\-\-sysroot\fR option, but applies only to
-header files (except for Darwin targets, where it applies to both header
-files and libraries). See the \fB\-\-sysroot\fR option for more
-information.
-.IP "\fB\-imultilib\fR \fIdir\fR" 4
-.IX Item "-imultilib dir"
-Use \fIdir\fR as a subdirectory of the directory containing
-target-specific \*(C+ headers.
-.IP "\fB\-isystem\fR \fIdir\fR" 4
-.IX Item "-isystem dir"
-Search \fIdir\fR for header files, after all directories specified by
-\&\fB\-I\fR but before the standard system directories. Mark it
-as a system directory, so that it gets the same special treatment as
-is applied to the standard system directories.
-If \fIdir\fR begins with \f(CW\*(C`=\*(C'\fR, then the \f(CW\*(C`=\*(C'\fR will be replaced
-by the sysroot prefix; see \fB\-\-sysroot\fR and \fB\-isysroot\fR.
-.IP "\fB\-iquote\fR \fIdir\fR" 4
-.IX Item "-iquote dir"
-Search \fIdir\fR only for header files requested with
-\&\f(CW\*(C`#include\ "\f(CIfile\f(CW"\*(C'\fR; they are not searched for
-\&\f(CW\*(C`#include\ <\f(CIfile\f(CW>\*(C'\fR, before all directories specified by
-\&\fB\-I\fR and before the standard system directories.
-If \fIdir\fR begins with \f(CW\*(C`=\*(C'\fR, then the \f(CW\*(C`=\*(C'\fR will be replaced
-by the sysroot prefix; see \fB\-\-sysroot\fR and \fB\-isysroot\fR.
-.IP "\fB\-fdirectives\-only\fR" 4
-.IX Item "-fdirectives-only"
-When preprocessing, handle directives, but do not expand macros.
-.Sp
-The option's behavior depends on the \fB\-E\fR and \fB\-fpreprocessed\fR
-options.
-.Sp
-With \fB\-E\fR, preprocessing is limited to the handling of directives
-such as \f(CW\*(C`#define\*(C'\fR, \f(CW\*(C`#ifdef\*(C'\fR, and \f(CW\*(C`#error\*(C'\fR. Other
-preprocessor operations, such as macro expansion and trigraph
-conversion are not performed. In addition, the \fB\-dD\fR option is
-implicitly enabled.
-.Sp
-With \fB\-fpreprocessed\fR, predefinition of command line and most
-builtin macros is disabled. Macros such as \f(CW\*(C`_\|_LINE_\|_\*(C'\fR, which are
-contextually dependent, are handled normally. This enables compilation of
-files previously preprocessed with \f(CW\*(C`\-E \-fdirectives\-only\*(C'\fR.
-.Sp
-With both \fB\-E\fR and \fB\-fpreprocessed\fR, the rules for
-\&\fB\-fpreprocessed\fR take precedence. This enables full preprocessing of
-files previously preprocessed with \f(CW\*(C`\-E \-fdirectives\-only\*(C'\fR.
-.IP "\fB\-fdollars\-in\-identifiers\fR" 4
-.IX Item "-fdollars-in-identifiers"
-Accept \fB$\fR in identifiers.
-.IP "\fB\-fextended\-identifiers\fR" 4
-.IX Item "-fextended-identifiers"
-Accept universal character names in identifiers. This option is
-experimental; in a future version of \s-1GCC,\s0 it will be enabled by
-default for C99 and \*(C+.
-.IP "\fB\-fno\-canonical\-system\-headers\fR" 4
-.IX Item "-fno-canonical-system-headers"
-When preprocessing, do not shorten system header paths with canonicalization.
-.IP "\fB\-fpreprocessed\fR" 4
-.IX Item "-fpreprocessed"
-Indicate to the preprocessor that the input file has already been
-preprocessed. This suppresses things like macro expansion, trigraph
-conversion, escaped newline splicing, and processing of most directives.
-The preprocessor still recognizes and removes comments, so that you can
-pass a file preprocessed with \fB\-C\fR to the compiler without
-problems. In this mode the integrated preprocessor is little more than
-a tokenizer for the front ends.
-.Sp
-\&\fB\-fpreprocessed\fR is implicit if the input file has one of the
-extensions \fB.i\fR, \fB.ii\fR or \fB.mi\fR. These are the
-extensions that \s-1GCC\s0 uses for preprocessed files created by
-\&\fB\-save\-temps\fR.
-.IP "\fB\-ftabstop=\fR\fIwidth\fR" 4
-.IX Item "-ftabstop=width"
-Set the distance between tab stops. This helps the preprocessor report
-correct column numbers in warnings or errors, even if tabs appear on the
-line. If the value is less than 1 or greater than 100, the option is
-ignored. The default is 8.
-.IP "\fB\-fdebug\-cpp\fR" 4
-.IX Item "-fdebug-cpp"
-This option is only useful for debugging \s-1GCC. \s0 When used with
-\&\fB\-E\fR, dumps debugging information about location maps. Every
-token in the output is preceded by the dump of the map its location
-belongs to. The dump of the map holding the location of a token would
-be:
-.Sp
-.Vb 1
-\& {"P":F</file/path>;"F":F</includer/path>;"L":<line_num>;"C":<col_num>;"S":<system_header_p>;"M":<map_address>;"E":<macro_expansion_p>,"loc":<location>}
-.Ve
-.Sp
-When used without \fB\-E\fR, this option has no effect.
-.IP "\fB\-ftrack\-macro\-expansion\fR[\fB=\fR\fIlevel\fR]" 4
-.IX Item "-ftrack-macro-expansion[=level]"
-Track locations of tokens across macro expansions. This allows the
-compiler to emit diagnostic about the current macro expansion stack
-when a compilation error occurs in a macro expansion. Using this
-option makes the preprocessor and the compiler consume more
-memory. The \fIlevel\fR parameter can be used to choose the level of
-precision of token location tracking thus decreasing the memory
-consumption if necessary. Value \fB0\fR of \fIlevel\fR de-activates
-this option just as if no \fB\-ftrack\-macro\-expansion\fR was present
-on the command line. Value \fB1\fR tracks tokens locations in a
-degraded mode for the sake of minimal memory overhead. In this mode
-all tokens resulting from the expansion of an argument of a
-function-like macro have the same location. Value \fB2\fR tracks
-tokens locations completely. This value is the most memory hungry.
-When this option is given no argument, the default parameter value is
-\&\fB2\fR.
-.Sp
-Note that \-ftrack\-macro\-expansion=2 is activated by default.
-.IP "\fB\-fexec\-charset=\fR\fIcharset\fR" 4
-.IX Item "-fexec-charset=charset"
-Set the execution character set, used for string and character
-constants. The default is \s-1UTF\-8. \s0\fIcharset\fR can be any encoding
-supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine.
-.IP "\fB\-fwide\-exec\-charset=\fR\fIcharset\fR" 4
-.IX Item "-fwide-exec-charset=charset"
-Set the wide execution character set, used for wide string and
-character constants. The default is \s-1UTF\-32\s0 or \s-1UTF\-16,\s0 whichever
-corresponds to the width of \f(CW\*(C`wchar_t\*(C'\fR. As with
-\&\fB\-fexec\-charset\fR, \fIcharset\fR can be any encoding supported
-by the system's \f(CW\*(C`iconv\*(C'\fR library routine; however, you will have
-problems with encodings that do not fit exactly in \f(CW\*(C`wchar_t\*(C'\fR.
-.IP "\fB\-finput\-charset=\fR\fIcharset\fR" 4
-.IX Item "-finput-charset=charset"
-Set the input character set, used for translation from the character
-set of the input file to the source character set used by \s-1GCC. \s0 If the
-locale does not specify, or \s-1GCC\s0 cannot get this information from the
-locale, the default is \s-1UTF\-8. \s0 This can be overridden by either the locale
-or this command line option. Currently the command line option takes
-precedence if there's a conflict. \fIcharset\fR can be any encoding
-supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine.
-.IP "\fB\-fworking\-directory\fR" 4
-.IX Item "-fworking-directory"
-Enable generation of linemarkers in the preprocessor output that will
-let the compiler know the current working directory at the time of
-preprocessing. When this option is enabled, the preprocessor will
-emit, after the initial linemarker, a second linemarker with the
-current working directory followed by two slashes. \s-1GCC\s0 will use this
-directory, when it's present in the preprocessed input, as the
-directory emitted as the current working directory in some debugging
-information formats. This option is implicitly enabled if debugging
-information is enabled, but this can be inhibited with the negated
-form \fB\-fno\-working\-directory\fR. If the \fB\-P\fR flag is
-present in the command line, this option has no effect, since no
-\&\f(CW\*(C`#line\*(C'\fR directives are emitted whatsoever.
-.IP "\fB\-fno\-show\-column\fR" 4
-.IX Item "-fno-show-column"
-Do not print column numbers in diagnostics. This may be necessary if
-diagnostics are being scanned by a program that does not understand the
-column numbers, such as \fBdejagnu\fR.
-.IP "\fB\-A\fR \fIpredicate\fR\fB=\fR\fIanswer\fR" 4
-.IX Item "-A predicate=answer"
-Make an assertion with the predicate \fIpredicate\fR and answer
-\&\fIanswer\fR. This form is preferred to the older form \fB\-A\fR
-\&\fIpredicate\fR\fB(\fR\fIanswer\fR\fB)\fR, which is still supported, because
-it does not use shell special characters.
-.IP "\fB\-A \-\fR\fIpredicate\fR\fB=\fR\fIanswer\fR" 4
-.IX Item "-A -predicate=answer"
-Cancel an assertion with the predicate \fIpredicate\fR and answer
-\&\fIanswer\fR.
-.IP "\fB\-dCHARS\fR" 4
-.IX Item "-dCHARS"
-\&\fI\s-1CHARS\s0\fR is a sequence of one or more of the following characters,
-and must not be preceded by a space. Other characters are interpreted
-by the compiler proper, or reserved for future versions of \s-1GCC,\s0 and so
-are silently ignored. If you specify characters whose behavior
-conflicts, the result is undefined.
-.RS 4
-.IP "\fBM\fR" 4
-.IX Item "M"
-Instead of the normal output, generate a list of \fB#define\fR
-directives for all the macros defined during the execution of the
-preprocessor, including predefined macros. This gives you a way of
-finding out what is predefined in your version of the preprocessor.
-Assuming you have no file \fIfoo.h\fR, the command
-.Sp
-.Vb 1
-\& touch foo.h; cpp \-dM foo.h
-.Ve
-.Sp
-will show all the predefined macros.
-.Sp
-If you use \fB\-dM\fR without the \fB\-E\fR option, \fB\-dM\fR is
-interpreted as a synonym for \fB\-fdump\-rtl\-mach\fR.
-.IP "\fBD\fR" 4
-.IX Item "D"
-Like \fBM\fR except in two respects: it does \fInot\fR include the
-predefined macros, and it outputs \fIboth\fR the \fB#define\fR
-directives and the result of preprocessing. Both kinds of output go to
-the standard output file.
-.IP "\fBN\fR" 4
-.IX Item "N"
-Like \fBD\fR, but emit only the macro names, not their expansions.
-.IP "\fBI\fR" 4
-.IX Item "I"
-Output \fB#include\fR directives in addition to the result of
-preprocessing.
-.IP "\fBU\fR" 4
-.IX Item "U"
-Like \fBD\fR except that only macros that are expanded, or whose
-definedness is tested in preprocessor directives, are output; the
-output is delayed until the use or test of the macro; and
-\&\fB#undef\fR directives are also output for macros tested but
-undefined at the time.
-.RE
-.RS 4
-.RE
-.IP "\fB\-P\fR" 4
-.IX Item "-P"
-Inhibit generation of linemarkers in the output from the preprocessor.
-This might be useful when running the preprocessor on something that is
-not C code, and will be sent to a program which might be confused by the
-linemarkers.
-.IP "\fB\-C\fR" 4
-.IX Item "-C"
-Do not discard comments. All comments are passed through to the output
-file, except for comments in processed directives, which are deleted
-along with the directive.
-.Sp
-You should be prepared for side effects when using \fB\-C\fR; it
-causes the preprocessor to treat comments as tokens in their own right.
-For example, comments appearing at the start of what would be a
-directive line have the effect of turning that line into an ordinary
-source line, since the first token on the line is no longer a \fB#\fR.
-.IP "\fB\-CC\fR" 4
-.IX Item "-CC"
-Do not discard comments, including during macro expansion. This is
-like \fB\-C\fR, except that comments contained within macros are
-also passed through to the output file where the macro is expanded.
-.Sp
-In addition to the side-effects of the \fB\-C\fR option, the
-\&\fB\-CC\fR option causes all \*(C+\-style comments inside a macro
-to be converted to C\-style comments. This is to prevent later use
-of that macro from inadvertently commenting out the remainder of
-the source line.
-.Sp
-The \fB\-CC\fR option is generally used to support lint comments.
-.IP "\fB\-traditional\-cpp\fR" 4
-.IX Item "-traditional-cpp"
-Try to imitate the behavior of old-fashioned C preprocessors, as
-opposed to \s-1ISO C\s0 preprocessors.
-.IP "\fB\-trigraphs\fR" 4
-.IX Item "-trigraphs"
-Process trigraph sequences.
-These are three-character sequences, all starting with \fB??\fR, that
-are defined by \s-1ISO C\s0 to stand for single characters. For example,
-\&\fB??/\fR stands for \fB\e\fR, so \fB'??/n'\fR is a character
-constant for a newline. By default, \s-1GCC\s0 ignores trigraphs, but in
-standard-conforming modes it converts them. See the \fB\-std\fR and
-\&\fB\-ansi\fR options.
-.Sp
-The nine trigraphs and their replacements are
-.Sp
-.Vb 2
-\& Trigraph: ??( ??) ??< ??> ??= ??/ ??\*(Aq ??! ??\-
-\& Replacement: [ ] { } # \e ^ | ~
-.Ve
-.IP "\fB\-remap\fR" 4
-.IX Item "-remap"
-Enable special code to work around file systems which only permit very
-short file names, such as MS-DOS.
-.IP "\fB\-\-help\fR" 4
-.IX Item "--help"
-.PD 0
-.IP "\fB\-\-target\-help\fR" 4
-.IX Item "--target-help"
-.PD
-Print text describing all the command line options instead of
-preprocessing anything.
-.IP "\fB\-v\fR" 4
-.IX Item "-v"
-Verbose mode. Print out \s-1GNU CPP\s0's version number at the beginning of
-execution, and report the final form of the include path.
-.IP "\fB\-H\fR" 4
-.IX Item "-H"
-Print the name of each header file used, in addition to other normal
-activities. Each name is indented to show how deep in the
-\&\fB#include\fR stack it is. Precompiled header files are also
-printed, even if they are found to be invalid; an invalid precompiled
-header file is printed with \fB...x\fR and a valid one with \fB...!\fR .
-.IP "\fB\-version\fR" 4
-.IX Item "-version"
-.PD 0
-.IP "\fB\-\-version\fR" 4
-.IX Item "--version"
-.PD
-Print out \s-1GNU CPP\s0's version number. With one dash, proceed to
-preprocess as normal. With two dashes, exit immediately.
-.SS "Passing Options to the Assembler"
-.IX Subsection "Passing Options to the Assembler"
-You can pass options to the assembler.
-.IP "\fB\-Wa,\fR\fIoption\fR" 4
-.IX Item "-Wa,option"
-Pass \fIoption\fR as an option to the assembler. If \fIoption\fR
-contains commas, it is split into multiple options at the commas.
-.IP "\fB\-Xassembler\fR \fIoption\fR" 4
-.IX Item "-Xassembler option"
-Pass \fIoption\fR as an option to the assembler. You can use this to
-supply system-specific assembler options that \s-1GCC\s0 does not
-recognize.
-.Sp
-If you want to pass an option that takes an argument, you must use
-\&\fB\-Xassembler\fR twice, once for the option and once for the argument.
-.SS "Options for Linking"
-.IX Subsection "Options for Linking"
-These options come into play when the compiler links object files into
-an executable output file. They are meaningless if the compiler is
-not doing a link step.
-.IP "\fIobject-file-name\fR" 4
-.IX Item "object-file-name"
-A file name that does not end in a special recognized suffix is
-considered to name an object file or library. (Object files are
-distinguished from libraries by the linker according to the file
-contents.) If linking is done, these object files are used as input
-to the linker.
-.IP "\fB\-c\fR" 4
-.IX Item "-c"
-.PD 0
-.IP "\fB\-S\fR" 4
-.IX Item "-S"
-.IP "\fB\-E\fR" 4
-.IX Item "-E"
-.PD
-If any of these options is used, then the linker is not run, and
-object file names should not be used as arguments.
-.IP "\fB\-l\fR\fIlibrary\fR" 4
-.IX Item "-llibrary"
-.PD 0
-.IP "\fB\-l\fR \fIlibrary\fR" 4
-.IX Item "-l library"
-.PD
-Search the library named \fIlibrary\fR when linking. (The second
-alternative with the library as a separate argument is only for
-\&\s-1POSIX\s0 compliance and is not recommended.)
-.Sp
-It makes a difference where in the command you write this option; the
-linker searches and processes libraries and object files in the order they
-are specified. Thus, \fBfoo.o \-lz bar.o\fR searches library \fBz\fR
-after file \fIfoo.o\fR but before \fIbar.o\fR. If \fIbar.o\fR refers
-to functions in \fBz\fR, those functions may not be loaded.
-.Sp
-The linker searches a standard list of directories for the library,
-which is actually a file named \fIlib\fIlibrary\fI.a\fR. The linker
-then uses this file as if it had been specified precisely by name.
-.Sp
-The directories searched include several standard system directories
-plus any that you specify with \fB\-L\fR.
-.Sp
-Normally the files found this way are library files\-\-\-archive files
-whose members are object files. The linker handles an archive file by
-scanning through it for members which define symbols that have so far
-been referenced but not defined. But if the file that is found is an
-ordinary object file, it is linked in the usual fashion. The only
-difference between using an \fB\-l\fR option and specifying a file name
-is that \fB\-l\fR surrounds \fIlibrary\fR with \fBlib\fR and \fB.a\fR
-and searches several directories.
-.IP "\fB\-lobjc\fR" 4
-.IX Item "-lobjc"
-You need this special case of the \fB\-l\fR option in order to
-link an Objective-C or Objective\-\*(C+ program.
-.IP "\fB\-nostartfiles\fR" 4
-.IX Item "-nostartfiles"
-Do not use the standard system startup files when linking.
-The standard system libraries are used normally, unless \fB\-nostdlib\fR
-or \fB\-nodefaultlibs\fR is used.
-.IP "\fB\-nodefaultlibs\fR" 4
-.IX Item "-nodefaultlibs"
-Do not use the standard system libraries when linking.
-Only the libraries you specify are passed to the linker, and options
-specifying linkage of the system libraries, such as \f(CW\*(C`\-static\-libgcc\*(C'\fR
-or \f(CW\*(C`\-shared\-libgcc\*(C'\fR, are ignored.
-The standard startup files are used normally, unless \fB\-nostartfiles\fR
-is used.
-.Sp
-The compiler may generate calls to \f(CW\*(C`memcmp\*(C'\fR,
-\&\f(CW\*(C`memset\*(C'\fR, \f(CW\*(C`memcpy\*(C'\fR and \f(CW\*(C`memmove\*(C'\fR.
-These entries are usually resolved by entries in
-libc. These entry points should be supplied through some other
-mechanism when this option is specified.
-.IP "\fB\-nostdlib\fR" 4
-.IX Item "-nostdlib"
-Do not use the standard system startup files or libraries when linking.
-No startup files and only the libraries you specify are passed to
-the linker, and options specifying linkage of the system libraries, such as
-\&\f(CW\*(C`\-static\-libgcc\*(C'\fR or \f(CW\*(C`\-shared\-libgcc\*(C'\fR, are ignored.
-.Sp
-The compiler may generate calls to \f(CW\*(C`memcmp\*(C'\fR, \f(CW\*(C`memset\*(C'\fR,
-\&\f(CW\*(C`memcpy\*(C'\fR and \f(CW\*(C`memmove\*(C'\fR.
-These entries are usually resolved by entries in
-libc. These entry points should be supplied through some other
-mechanism when this option is specified.
-.Sp
-One of the standard libraries bypassed by \fB\-nostdlib\fR and
-\&\fB\-nodefaultlibs\fR is \fIlibgcc.a\fR, a library of internal subroutines
-which \s-1GCC\s0 uses to overcome shortcomings of particular machines, or special
-needs for some languages.
-.Sp
-In most cases, you need \fIlibgcc.a\fR even when you want to avoid
-other standard libraries. In other words, when you specify \fB\-nostdlib\fR
-or \fB\-nodefaultlibs\fR you should usually specify \fB\-lgcc\fR as well.
-This ensures that you have no unresolved references to internal \s-1GCC\s0
-library subroutines.
-(An example of such an internal subroutine is \fB_\|_main\fR, used to ensure \*(C+
-constructors are called.)
-.IP "\fB\-pie\fR" 4
-.IX Item "-pie"
-Produce a position independent executable on targets that support it.
-For predictable results, you must also specify the same set of options
-used for compilation (\fB\-fpie\fR, \fB\-fPIE\fR,
-or model suboptions) when you specify this linker option.
-.IP "\fB\-rdynamic\fR" 4
-.IX Item "-rdynamic"
-Pass the flag \fB\-export\-dynamic\fR to the \s-1ELF\s0 linker, on targets
-that support it. This instructs the linker to add all symbols, not
-only used ones, to the dynamic symbol table. This option is needed
-for some uses of \f(CW\*(C`dlopen\*(C'\fR or to allow obtaining backtraces
-from within a program.
-.IP "\fB\-s\fR" 4
-.IX Item "-s"
-Remove all symbol table and relocation information from the executable.
-.IP "\fB\-static\fR" 4
-.IX Item "-static"
-On systems that support dynamic linking, this prevents linking with the shared
-libraries. On other systems, this option has no effect.
-.IP "\fB\-shared\fR" 4
-.IX Item "-shared"
-Produce a shared object which can then be linked with other objects to
-form an executable. Not all systems support this option. For predictable
-results, you must also specify the same set of options used for compilation
-(\fB\-fpic\fR, \fB\-fPIC\fR, or model suboptions) when
-you specify this linker option.[1]
-.IP "\fB\-shared\-libgcc\fR" 4
-.IX Item "-shared-libgcc"
-.PD 0
-.IP "\fB\-static\-libgcc\fR" 4
-.IX Item "-static-libgcc"
-.PD
-On systems that provide \fIlibgcc\fR as a shared library, these options
-force the use of either the shared or static version, respectively.
-If no shared version of \fIlibgcc\fR was built when the compiler was
-configured, these options have no effect.
-.Sp
-There are several situations in which an application should use the
-shared \fIlibgcc\fR instead of the static version. The most common
-of these is when the application wishes to throw and catch exceptions
-across different shared libraries. In that case, each of the libraries
-as well as the application itself should use the shared \fIlibgcc\fR.
-.Sp
-Therefore, the G++ and \s-1GCJ\s0 drivers automatically add
-\&\fB\-shared\-libgcc\fR whenever you build a shared library or a main
-executable, because \*(C+ and Java programs typically use exceptions, so
-this is the right thing to do.
-.Sp
-If, instead, you use the \s-1GCC\s0 driver to create shared libraries, you may
-find that they are not always linked with the shared \fIlibgcc\fR.
-If \s-1GCC\s0 finds, at its configuration time, that you have a non-GNU linker
-or a \s-1GNU\s0 linker that does not support option \fB\-\-eh\-frame\-hdr\fR,
-it links the shared version of \fIlibgcc\fR into shared libraries
-by default. Otherwise, it takes advantage of the linker and optimizes
-away the linking with the shared version of \fIlibgcc\fR, linking with
-the static version of libgcc by default. This allows exceptions to
-propagate through such shared libraries, without incurring relocation
-costs at library load time.
-.Sp
-However, if a library or main executable is supposed to throw or catch
-exceptions, you must link it using the G++ or \s-1GCJ\s0 driver, as appropriate
-for the languages used in the program, or using the option
-\&\fB\-shared\-libgcc\fR, such that it is linked with the shared
-\&\fIlibgcc\fR.
-.IP "\fB\-static\-libasan\fR" 4
-.IX Item "-static-libasan"
-When the \fB\-fsanitize=address\fR option is used to link a program,
-the \s-1GCC\s0 driver automatically links against \fBlibasan\fR. If
-\&\fIlibasan\fR is available as a shared library, and the \fB\-static\fR
-option is not used, then this links against the shared version of
-\&\fIlibasan\fR. The \fB\-static\-libasan\fR option directs the \s-1GCC\s0
-driver to link \fIlibasan\fR statically, without necessarily linking
-other libraries statically.
-.IP "\fB\-static\-libtsan\fR" 4
-.IX Item "-static-libtsan"
-When the \fB\-fsanitize=thread\fR option is used to link a program,
-the \s-1GCC\s0 driver automatically links against \fBlibtsan\fR. If
-\&\fIlibtsan\fR is available as a shared library, and the \fB\-static\fR
-option is not used, then this links against the shared version of
-\&\fIlibtsan\fR. The \fB\-static\-libtsan\fR option directs the \s-1GCC\s0
-driver to link \fIlibtsan\fR statically, without necessarily linking
-other libraries statically.
-.IP "\fB\-static\-liblsan\fR" 4
-.IX Item "-static-liblsan"
-When the \fB\-fsanitize=leak\fR option is used to link a program,
-the \s-1GCC\s0 driver automatically links against \fBliblsan\fR. If
-\&\fIliblsan\fR is available as a shared library, and the \fB\-static\fR
-option is not used, then this links against the shared version of
-\&\fIliblsan\fR. The \fB\-static\-liblsan\fR option directs the \s-1GCC\s0
-driver to link \fIliblsan\fR statically, without necessarily linking
-other libraries statically.
-.IP "\fB\-static\-libubsan\fR" 4
-.IX Item "-static-libubsan"
-When the \fB\-fsanitize=undefined\fR option is used to link a program,
-the \s-1GCC\s0 driver automatically links against \fBlibubsan\fR. If
-\&\fIlibubsan\fR is available as a shared library, and the \fB\-static\fR
-option is not used, then this links against the shared version of
-\&\fIlibubsan\fR. The \fB\-static\-libubsan\fR option directs the \s-1GCC\s0
-driver to link \fIlibubsan\fR statically, without necessarily linking
-other libraries statically.
-.IP "\fB\-static\-libstdc++\fR" 4
-.IX Item "-static-libstdc++"
-When the \fBg++\fR program is used to link a \*(C+ program, it
-normally automatically links against \fBlibstdc++\fR. If
-\&\fIlibstdc++\fR is available as a shared library, and the
-\&\fB\-static\fR option is not used, then this links against the
-shared version of \fIlibstdc++\fR. That is normally fine. However, it
-is sometimes useful to freeze the version of \fIlibstdc++\fR used by
-the program without going all the way to a fully static link. The
-\&\fB\-static\-libstdc++\fR option directs the \fBg++\fR driver to
-link \fIlibstdc++\fR statically, without necessarily linking other
-libraries statically.
-.IP "\fB\-symbolic\fR" 4
-.IX Item "-symbolic"
-Bind references to global symbols when building a shared object. Warn
-about any unresolved references (unless overridden by the link editor
-option \fB\-Xlinker \-z \-Xlinker defs\fR). Only a few systems support
-this option.
-.IP "\fB\-T\fR \fIscript\fR" 4
-.IX Item "-T script"
-Use \fIscript\fR as the linker script. This option is supported by most
-systems using the \s-1GNU\s0 linker. On some targets, such as bare-board
-targets without an operating system, the \fB\-T\fR option may be required
-when linking to avoid references to undefined symbols.
-.IP "\fB\-Xlinker\fR \fIoption\fR" 4
-.IX Item "-Xlinker option"
-Pass \fIoption\fR as an option to the linker. You can use this to
-supply system-specific linker options that \s-1GCC\s0 does not recognize.
-.Sp
-If you want to pass an option that takes a separate argument, you must use
-\&\fB\-Xlinker\fR twice, once for the option and once for the argument.
-For example, to pass \fB\-assert definitions\fR, you must write
-\&\fB\-Xlinker \-assert \-Xlinker definitions\fR. It does not work to write
-\&\fB\-Xlinker \*(L"\-assert definitions\*(R"\fR, because this passes the entire
-string as a single argument, which is not what the linker expects.
-.Sp
-When using the \s-1GNU\s0 linker, it is usually more convenient to pass
-arguments to linker options using the \fIoption\fR\fB=\fR\fIvalue\fR
-syntax than as separate arguments. For example, you can specify
-\&\fB\-Xlinker \-Map=output.map\fR rather than
-\&\fB\-Xlinker \-Map \-Xlinker output.map\fR. Other linkers may not support
-this syntax for command-line options.
-.IP "\fB\-Wl,\fR\fIoption\fR" 4
-.IX Item "-Wl,option"
-Pass \fIoption\fR as an option to the linker. If \fIoption\fR contains
-commas, it is split into multiple options at the commas. You can use this
-syntax to pass an argument to the option.
-For example, \fB\-Wl,\-Map,output.map\fR passes \fB\-Map output.map\fR to the
-linker. When using the \s-1GNU\s0 linker, you can also get the same effect with
-\&\fB\-Wl,\-Map=output.map\fR.
-.IP "\fB\-u\fR \fIsymbol\fR" 4
-.IX Item "-u symbol"
-Pretend the symbol \fIsymbol\fR is undefined, to force linking of
-library modules to define it. You can use \fB\-u\fR multiple times with
-different symbols to force loading of additional library modules.
-.SS "Options for Directory Search"
-.IX Subsection "Options for Directory Search"
-These options specify directories to search for header files, for
-libraries and for parts of the compiler:
-.IP "\fB\-I\fR\fIdir\fR" 4
-.IX Item "-Idir"
-Add the directory \fIdir\fR to the head of the list of directories to be
-searched for header files. This can be used to override a system header
-file, substituting your own version, since these directories are
-searched before the system header file directories. However, you should
-not use this option to add directories that contain vendor-supplied
-system header files (use \fB\-isystem\fR for that). If you use more than
-one \fB\-I\fR option, the directories are scanned in left-to-right
-order; the standard system directories come after.
-.Sp
-If a standard system include directory, or a directory specified with
-\&\fB\-isystem\fR, is also specified with \fB\-I\fR, the \fB\-I\fR
-option is ignored. The directory is still searched but as a
-system directory at its normal position in the system include chain.
-This is to ensure that \s-1GCC\s0's procedure to fix buggy system headers and
-the ordering for the \f(CW\*(C`include_next\*(C'\fR directive are not inadvertently changed.
-If you really need to change the search order for system directories,
-use the \fB\-nostdinc\fR and/or \fB\-isystem\fR options.
-.IP "\fB\-iplugindir=\fR\fIdir\fR" 4
-.IX Item "-iplugindir=dir"
-Set the directory to search for plugins that are passed
-by \fB\-fplugin=\fR\fIname\fR instead of
-\&\fB\-fplugin=\fR\fIpath\fR\fB/\fR\fIname\fR\fB.so\fR. This option is not meant
-to be used by the user, but only passed by the driver.
-.IP "\fB\-iquote\fR\fIdir\fR" 4
-.IX Item "-iquotedir"
-Add the directory \fIdir\fR to the head of the list of directories to
-be searched for header files only for the case of \fB#include
-"\fR\fIfile\fR\fB"\fR; they are not searched for \fB#include <\fR\fIfile\fR\fB>\fR,
-otherwise just like \fB\-I\fR.
-.IP "\fB\-L\fR\fIdir\fR" 4
-.IX Item "-Ldir"
-Add directory \fIdir\fR to the list of directories to be searched
-for \fB\-l\fR.
-.IP "\fB\-B\fR\fIprefix\fR" 4
-.IX Item "-Bprefix"
-This option specifies where to find the executables, libraries,
-include files, and data files of the compiler itself.
-.Sp
-The compiler driver program runs one or more of the subprograms
-\&\fBcpp\fR, \fBcc1\fR, \fBas\fR and \fBld\fR. It tries
-\&\fIprefix\fR as a prefix for each program it tries to run, both with and
-without \fImachine\fR\fB/\fR\fIversion\fR\fB/\fR.
-.Sp
-For each subprogram to be run, the compiler driver first tries the
-\&\fB\-B\fR prefix, if any. If that name is not found, or if \fB\-B\fR
-is not specified, the driver tries two standard prefixes,
-\&\fI/usr/lib/gcc/\fR and \fI/usr/local/lib/gcc/\fR. If neither of
-those results in a file name that is found, the unmodified program
-name is searched for using the directories specified in your
-\&\fB\s-1PATH\s0\fR environment variable.
-.Sp
-The compiler checks to see if the path provided by the \fB\-B\fR
-refers to a directory, and if necessary it adds a directory
-separator character at the end of the path.
-.Sp
-\&\fB\-B\fR prefixes that effectively specify directory names also apply
-to libraries in the linker, because the compiler translates these
-options into \fB\-L\fR options for the linker. They also apply to
-include files in the preprocessor, because the compiler translates these
-options into \fB\-isystem\fR options for the preprocessor. In this case,
-the compiler appends \fBinclude\fR to the prefix.
-.Sp
-The runtime support file \fIlibgcc.a\fR can also be searched for using
-the \fB\-B\fR prefix, if needed. If it is not found there, the two
-standard prefixes above are tried, and that is all. The file is left
-out of the link if it is not found by those means.
-.Sp
-Another way to specify a prefix much like the \fB\-B\fR prefix is to use
-the environment variable \fB\s-1GCC_EXEC_PREFIX\s0\fR.
-.Sp
-As a special kludge, if the path provided by \fB\-B\fR is
-\&\fI[dir/]stage\fIN\fI/\fR, where \fIN\fR is a number in the range 0 to
-9, then it is replaced by \fI[dir/]include\fR. This is to help
-with boot-strapping the compiler.
-.IP "\fB\-specs=\fR\fIfile\fR" 4
-.IX Item "-specs=file"
-Process \fIfile\fR after the compiler reads in the standard \fIspecs\fR
-file, in order to override the defaults which the \fBgcc\fR driver
-program uses when determining what switches to pass to \fBcc1\fR,
-\&\fBcc1plus\fR, \fBas\fR, \fBld\fR, etc. More than one
-\&\fB\-specs=\fR\fIfile\fR can be specified on the command line, and they
-are processed in order, from left to right.
-.IP "\fB\-\-sysroot=\fR\fIdir\fR" 4
-.IX Item "--sysroot=dir"
-Use \fIdir\fR as the logical root directory for headers and libraries.
-For example, if the compiler normally searches for headers in
-\&\fI/usr/include\fR and libraries in \fI/usr/lib\fR, it instead
-searches \fI\fIdir\fI/usr/include\fR and \fI\fIdir\fI/usr/lib\fR.
-.Sp
-If you use both this option and the \fB\-isysroot\fR option, then
-the \fB\-\-sysroot\fR option applies to libraries, but the
-\&\fB\-isysroot\fR option applies to header files.
-.Sp
-The \s-1GNU\s0 linker (beginning with version 2.16) has the necessary support
-for this option. If your linker does not support this option, the
-header file aspect of \fB\-\-sysroot\fR still works, but the
-library aspect does not.
-.IP "\fB\-\-no\-sysroot\-suffix\fR" 4
-.IX Item "--no-sysroot-suffix"
-For some targets, a suffix is added to the root directory specified
-with \fB\-\-sysroot\fR, depending on the other options used, so that
-headers may for example be found in
-\&\fI\fIdir\fI/\fIsuffix\fI/usr/include\fR instead of
-\&\fI\fIdir\fI/usr/include\fR. This option disables the addition of
-such a suffix.
-.IP "\fB\-I\-\fR" 4
-.IX Item "-I-"
-This option has been deprecated. Please use \fB\-iquote\fR instead for
-\&\fB\-I\fR directories before the \fB\-I\-\fR and remove the \fB\-I\-\fR.
-Any directories you specify with \fB\-I\fR options before the \fB\-I\-\fR
-option are searched only for the case of \fB#include "\fR\fIfile\fR\fB"\fR;
-they are not searched for \fB#include <\fR\fIfile\fR\fB>\fR.
-.Sp
-If additional directories are specified with \fB\-I\fR options after
-the \fB\-I\-\fR, these directories are searched for all \fB#include\fR
-directives. (Ordinarily \fIall\fR \fB\-I\fR directories are used
-this way.)
-.Sp
-In addition, the \fB\-I\-\fR option inhibits the use of the current
-directory (where the current input file came from) as the first search
-directory for \fB#include "\fR\fIfile\fR\fB"\fR. There is no way to
-override this effect of \fB\-I\-\fR. With \fB\-I.\fR you can specify
-searching the directory that is current when the compiler is
-invoked. That is not exactly the same as what the preprocessor does
-by default, but it is often satisfactory.
-.Sp
-\&\fB\-I\-\fR does not inhibit the use of the standard system directories
-for header files. Thus, \fB\-I\-\fR and \fB\-nostdinc\fR are
-independent.
-.SS "Specifying Target Machine and Compiler Version"
-.IX Subsection "Specifying Target Machine and Compiler Version"
-The usual way to run \s-1GCC\s0 is to run the executable called \fBgcc\fR, or
-\&\fImachine\fR\fB\-gcc\fR when cross-compiling, or
-\&\fImachine\fR\fB\-gcc\-\fR\fIversion\fR to run a version other than the
-one that was installed last.
-.SS "Hardware Models and Configurations"
-.IX Subsection "Hardware Models and Configurations"
-Each target machine types can have its own
-special options, starting with \fB\-m\fR, to choose among various
-hardware models or configurations\-\-\-for example, 68010 vs 68020,
-floating coprocessor or none. A single installed version of the
-compiler can compile for any model or configuration, according to the
-options specified.
-.PP
-Some configurations of the compiler also support additional special
-options, usually for compatibility with other compilers on the same
-platform.
-.PP
-\fIAArch64 Options\fR
-.IX Subsection "AArch64 Options"
-.PP
-These options are defined for AArch64 implementations:
-.IP "\fB\-mabi=\fR\fIname\fR" 4
-.IX Item "-mabi=name"
-Generate code for the specified data model. Permissible values
-are \fBilp32\fR for SysV-like data model where int, long int and pointer
-are 32\-bit, and \fBlp64\fR for SysV-like data model where int is 32\-bit,
-but long int and pointer are 64\-bit.
-.Sp
-The default depends on the specific target configuration. Note that
-the \s-1LP64\s0 and \s-1ILP32\s0 ABIs are not link-compatible; you must compile your
-entire program with the same \s-1ABI,\s0 and link with a compatible set of libraries.
-.IP "\fB\-mbig\-endian\fR" 4
-.IX Item "-mbig-endian"
-Generate big-endian code. This is the default when \s-1GCC\s0 is configured for an
-\&\fBaarch64_be\-*\-*\fR target.
-.IP "\fB\-mgeneral\-regs\-only\fR" 4
-.IX Item "-mgeneral-regs-only"
-Generate code which uses only the general registers.
-.IP "\fB\-mlittle\-endian\fR" 4
-.IX Item "-mlittle-endian"
-Generate little-endian code. This is the default when \s-1GCC\s0 is configured for an
-\&\fBaarch64\-*\-*\fR but not an \fBaarch64_be\-*\-*\fR target.
-.IP "\fB\-mcmodel=tiny\fR" 4
-.IX Item "-mcmodel=tiny"
-Generate code for the tiny code model. The program and its statically defined
-symbols must be within 1GB of each other. Pointers are 64 bits. Programs can
-be statically or dynamically linked. This model is not fully implemented and
-mostly treated as \fBsmall\fR.
-.IP "\fB\-mcmodel=small\fR" 4
-.IX Item "-mcmodel=small"
-Generate code for the small code model. The program and its statically defined
-symbols must be within 4GB of each other. Pointers are 64 bits. Programs can
-be statically or dynamically linked. This is the default code model.
-.IP "\fB\-mcmodel=large\fR" 4
-.IX Item "-mcmodel=large"
-Generate code for the large code model. This makes no assumptions about
-addresses and sizes of sections. Pointers are 64 bits. Programs can be
-statically linked only.
-.IP "\fB\-mstrict\-align\fR" 4
-.IX Item "-mstrict-align"
-Do not assume that unaligned memory references will be handled by the system.
-.IP "\fB\-momit\-leaf\-frame\-pointer\fR" 4
-.IX Item "-momit-leaf-frame-pointer"
-.PD 0
-.IP "\fB\-mno\-omit\-leaf\-frame\-pointer\fR" 4
-.IX Item "-mno-omit-leaf-frame-pointer"
-.PD
-Omit or keep the frame pointer in leaf functions. The former behaviour is the
-default.
-.IP "\fB\-mtls\-dialect=desc\fR" 4
-.IX Item "-mtls-dialect=desc"
-Use \s-1TLS\s0 descriptors as the thread-local storage mechanism for dynamic accesses
-of \s-1TLS\s0 variables. This is the default.
-.IP "\fB\-mtls\-dialect=traditional\fR" 4
-.IX Item "-mtls-dialect=traditional"
-Use traditional \s-1TLS\s0 as the thread-local storage mechanism for dynamic accesses
-of \s-1TLS\s0 variables.
-.IP "\fB\-march=\fR\fIname\fR" 4
-.IX Item "-march=name"
-Specify the name of the target architecture, optionally suffixed by one or
-more feature modifiers. This option has the form
-\&\fB\-march=\fR\fIarch\fR{\fB+\fR[\fBno\fR]\fIfeature\fR}*, where the
-only permissible value for \fIarch\fR is \fBarmv8\-a\fR. The permissible
-values for \fIfeature\fR are documented in the sub-section below.
-.Sp
-Where conflicting feature modifiers are specified, the right-most feature is
-used.
-.Sp
-\&\s-1GCC\s0 uses this name to determine what kind of instructions it can emit when
-generating assembly code.
-.Sp
-Where \fB\-march\fR is specified without either of \fB\-mtune\fR
-or \fB\-mcpu\fR also being specified, the code will be tuned to perform
-well across a range of target processors implementing the target
-architecture.
-.IP "\fB\-mtune=\fR\fIname\fR" 4
-.IX Item "-mtune=name"
-Specify the name of the target processor for which \s-1GCC\s0 should tune the
-performance of the code. Permissible values for this option are:
-\&\fBgeneric\fR, \fBcortex\-a53\fR, \fBcortex\-a57\fR.
-.Sp
-Additionally, this option can specify that \s-1GCC\s0 should tune the performance
-of the code for a big.LITTLE system. The only permissible value is
-\&\fBcortex\-a57.cortex\-a53\fR.
-.Sp
-Where none of \fB\-mtune=\fR, \fB\-mcpu=\fR or \fB\-march=\fR
-are specified, the code will be tuned to perform well across a range
-of target processors.
-.Sp
-This option cannot be suffixed by feature modifiers.
-.IP "\fB\-mcpu=\fR\fIname\fR" 4
-.IX Item "-mcpu=name"
-Specify the name of the target processor, optionally suffixed by one or more
-feature modifiers. This option has the form
-\&\fB\-mcpu=\fR\fIcpu\fR{\fB+\fR[\fBno\fR]\fIfeature\fR}*, where the
-permissible values for \fIcpu\fR are the same as those available for
-\&\fB\-mtune\fR.
-.Sp
-The permissible values for \fIfeature\fR are documented in the sub-section
-below.
-.Sp
-Where conflicting feature modifiers are specified, the right-most feature is
-used.
-.Sp
-\&\s-1GCC\s0 uses this name to determine what kind of instructions it can emit when
-generating assembly code (as if by \fB\-march\fR) and to determine
-the target processor for which to tune for performance (as if
-by \fB\-mtune\fR). Where this option is used in conjunction
-with \fB\-march\fR or \fB\-mtune\fR, those options take precedence
-over the appropriate part of this option.
-.PP
-\fB\-march\fR and \fB\-mcpu\fR feature modifiers
-.IX Subsection "-march and -mcpu feature modifiers"
-.PP
-Feature modifiers used with \fB\-march\fR and \fB\-mcpu\fR can be one
-the following:
-.IP "\fBcrc\fR" 4
-.IX Item "crc"
-Enable \s-1CRC\s0 extension.
-.IP "\fBcrypto\fR" 4
-.IX Item "crypto"
-Enable Crypto extension. This implies Advanced \s-1SIMD\s0 is enabled.
-.IP "\fBfp\fR" 4
-.IX Item "fp"
-Enable floating-point instructions.
-.IP "\fBsimd\fR" 4
-.IX Item "simd"
-Enable Advanced \s-1SIMD\s0 instructions. This implies floating-point instructions
-are enabled. This is the default for all current possible values for options
-\&\fB\-march\fR and \fB\-mcpu=\fR.
-.PP
-\fIAdapteva Epiphany Options\fR
-.IX Subsection "Adapteva Epiphany Options"
-.PP
-These \fB\-m\fR options are defined for Adapteva Epiphany:
-.IP "\fB\-mhalf\-reg\-file\fR" 4
-.IX Item "-mhalf-reg-file"
-Don't allocate any register in the range \f(CW\*(C`r32\*(C'\fR...\f(CW\*(C`r63\*(C'\fR.
-That allows code to run on hardware variants that lack these registers.
-.IP "\fB\-mprefer\-short\-insn\-regs\fR" 4
-.IX Item "-mprefer-short-insn-regs"
-Preferrentially allocate registers that allow short instruction generation.
-This can result in increased instruction count, so this may either reduce or
-increase overall code size.
-.IP "\fB\-mbranch\-cost=\fR\fInum\fR" 4
-.IX Item "-mbranch-cost=num"
-Set the cost of branches to roughly \fInum\fR \*(L"simple\*(R" instructions.
-This cost is only a heuristic and is not guaranteed to produce
-consistent results across releases.
-.IP "\fB\-mcmove\fR" 4
-.IX Item "-mcmove"
-Enable the generation of conditional moves.
-.IP "\fB\-mnops=\fR\fInum\fR" 4
-.IX Item "-mnops=num"
-Emit \fInum\fR NOPs before every other generated instruction.
-.IP "\fB\-mno\-soft\-cmpsf\fR" 4
-.IX Item "-mno-soft-cmpsf"
-For single-precision floating-point comparisons, emit an \f(CW\*(C`fsub\*(C'\fR instruction
-and test the flags. This is faster than a software comparison, but can
-get incorrect results in the presence of NaNs, or when two different small
-numbers are compared such that their difference is calculated as zero.
-The default is \fB\-msoft\-cmpsf\fR, which uses slower, but IEEE-compliant,
-software comparisons.
-.IP "\fB\-mstack\-offset=\fR\fInum\fR" 4
-.IX Item "-mstack-offset=num"
-Set the offset between the top of the stack and the stack pointer.
-E.g., a value of 8 means that the eight bytes in the range \f(CW\*(C`sp+0...sp+7\*(C'\fR
-can be used by leaf functions without stack allocation.
-Values other than \fB8\fR or \fB16\fR are untested and unlikely to work.
-Note also that this option changes the \s-1ABI\s0; compiling a program with a
-different stack offset than the libraries have been compiled with
-generally does not work.
-This option can be useful if you want to evaluate if a different stack
-offset would give you better code, but to actually use a different stack
-offset to build working programs, it is recommended to configure the
-toolchain with the appropriate \fB\-\-with\-stack\-offset=\fR\fInum\fR option.
-.IP "\fB\-mno\-round\-nearest\fR" 4
-.IX Item "-mno-round-nearest"
-Make the scheduler assume that the rounding mode has been set to
-truncating. The default is \fB\-mround\-nearest\fR.
-.IP "\fB\-mlong\-calls\fR" 4
-.IX Item "-mlong-calls"
-If not otherwise specified by an attribute, assume all calls might be beyond
-the offset range of the \f(CW\*(C`b\*(C'\fR / \f(CW\*(C`bl\*(C'\fR instructions, and therefore load the
-function address into a register before performing a (otherwise direct) call.
-This is the default.
-.IP "\fB\-mshort\-calls\fR" 4
-.IX Item "-mshort-calls"
-If not otherwise specified by an attribute, assume all direct calls are
-in the range of the \f(CW\*(C`b\*(C'\fR / \f(CW\*(C`bl\*(C'\fR instructions, so use these instructions
-for direct calls. The default is \fB\-mlong\-calls\fR.
-.IP "\fB\-msmall16\fR" 4
-.IX Item "-msmall16"
-Assume addresses can be loaded as 16\-bit unsigned values. This does not
-apply to function addresses for which \fB\-mlong\-calls\fR semantics
-are in effect.
-.IP "\fB\-mfp\-mode=\fR\fImode\fR" 4
-.IX Item "-mfp-mode=mode"
-Set the prevailing mode of the floating-point unit.
-This determines the floating-point mode that is provided and expected
-at function call and return time. Making this mode match the mode you
-predominantly need at function start can make your programs smaller and
-faster by avoiding unnecessary mode switches.
-.Sp
-\&\fImode\fR can be set to one the following values:
-.RS 4
-.IP "\fBcaller\fR" 4
-.IX Item "caller"
-Any mode at function entry is valid, and retained or restored when
-the function returns, and when it calls other functions.
-This mode is useful for compiling libraries or other compilation units
-you might want to incorporate into different programs with different
-prevailing \s-1FPU\s0 modes, and the convenience of being able to use a single
-object file outweighs the size and speed overhead for any extra
-mode switching that might be needed, compared with what would be needed
-with a more specific choice of prevailing \s-1FPU\s0 mode.
-.IP "\fBtruncate\fR" 4
-.IX Item "truncate"
-This is the mode used for floating-point calculations with
-truncating (i.e. round towards zero) rounding mode. That includes
-conversion from floating point to integer.
-.IP "\fBround-nearest\fR" 4
-.IX Item "round-nearest"
-This is the mode used for floating-point calculations with
-round-to-nearest-or-even rounding mode.
-.IP "\fBint\fR" 4
-.IX Item "int"
-This is the mode used to perform integer calculations in the \s-1FPU,\s0 e.g.
-integer multiply, or integer multiply-and-accumulate.
-.RE
-.RS 4
-.Sp
-The default is \fB\-mfp\-mode=caller\fR
-.RE
-.IP "\fB\-mnosplit\-lohi\fR" 4
-.IX Item "-mnosplit-lohi"
-.PD 0
-.IP "\fB\-mno\-postinc\fR" 4
-.IX Item "-mno-postinc"
-.IP "\fB\-mno\-postmodify\fR" 4
-.IX Item "-mno-postmodify"
-.PD
-Code generation tweaks that disable, respectively, splitting of 32\-bit
-loads, generation of post-increment addresses, and generation of
-post-modify addresses. The defaults are \fBmsplit-lohi\fR,
-\&\fB\-mpost\-inc\fR, and \fB\-mpost\-modify\fR.
-.IP "\fB\-mnovect\-double\fR" 4
-.IX Item "-mnovect-double"
-Change the preferred \s-1SIMD\s0 mode to SImode. The default is
-\&\fB\-mvect\-double\fR, which uses DImode as preferred \s-1SIMD\s0 mode.
-.IP "\fB\-max\-vect\-align=\fR\fInum\fR" 4
-.IX Item "-max-vect-align=num"
-The maximum alignment for \s-1SIMD\s0 vector mode types.
-\&\fInum\fR may be 4 or 8. The default is 8.
-Note that this is an \s-1ABI\s0 change, even though many library function
-interfaces are unaffected if they don't use \s-1SIMD\s0 vector modes
-in places that affect size and/or alignment of relevant types.
-.IP "\fB\-msplit\-vecmove\-early\fR" 4
-.IX Item "-msplit-vecmove-early"
-Split vector moves into single word moves before reload. In theory this
-can give better register allocation, but so far the reverse seems to be
-generally the case.
-.IP "\fB\-m1reg\-\fR\fIreg\fR" 4
-.IX Item "-m1reg-reg"
-Specify a register to hold the constant \-1, which makes loading small negative
-constants and certain bitmasks faster.
-Allowable values for \fIreg\fR are \fBr43\fR and \fBr63\fR,
-which specify use of that register as a fixed register,
-and \fBnone\fR, which means that no register is used for this
-purpose. The default is \fB\-m1reg\-none\fR.
-.PP
-\fI\s-1ARC\s0 Options\fR
-.IX Subsection "ARC Options"
-.PP
-The following options control the architecture variant for which code
-is being compiled:
-.IP "\fB\-mbarrel\-shifter\fR" 4
-.IX Item "-mbarrel-shifter"
-Generate instructions supported by barrel shifter. This is the default
-unless \fB\-mcpu=ARC601\fR is in effect.
-.IP "\fB\-mcpu=\fR\fIcpu\fR" 4
-.IX Item "-mcpu=cpu"
-Set architecture type, register usage, and instruction scheduling
-parameters for \fIcpu\fR. There are also shortcut alias options
-available for backward compatibility and convenience. Supported
-values for \fIcpu\fR are
-.RS 4
-.IP "\fB\s-1ARC600\s0\fR" 4
-.IX Item "ARC600"
-Compile for \s-1ARC600. \s0 Aliases: \fB\-mA6\fR, \fB\-mARC600\fR.
-.IP "\fB\s-1ARC601\s0\fR" 4
-.IX Item "ARC601"
-Compile for \s-1ARC601. \s0 Alias: \fB\-mARC601\fR.
-.IP "\fB\s-1ARC700\s0\fR" 4
-.IX Item "ARC700"
-Compile for \s-1ARC700. \s0 Aliases: \fB\-mA7\fR, \fB\-mARC700\fR.
-This is the default when configured with \fB\-\-with\-cpu=arc700\fR.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mdpfp\fR" 4
-.IX Item "-mdpfp"
-.PD 0
-.IP "\fB\-mdpfp\-compact\fR" 4
-.IX Item "-mdpfp-compact"
-.PD
-\&\s-1FPX:\s0 Generate Double Precision \s-1FPX\s0 instructions, tuned for the compact
-implementation.
-.IP "\fB\-mdpfp\-fast\fR" 4
-.IX Item "-mdpfp-fast"
-\&\s-1FPX:\s0 Generate Double Precision \s-1FPX\s0 instructions, tuned for the fast
-implementation.
-.IP "\fB\-mno\-dpfp\-lrsr\fR" 4
-.IX Item "-mno-dpfp-lrsr"
-Disable \s-1LR\s0 and \s-1SR\s0 instructions from using \s-1FPX\s0 extension aux registers.
-.IP "\fB\-mea\fR" 4
-.IX Item "-mea"
-Generate Extended arithmetic instructions. Currently only
-\&\f(CW\*(C`divaw\*(C'\fR, \f(CW\*(C`adds\*(C'\fR, \f(CW\*(C`subs\*(C'\fR, and \f(CW\*(C`sat16\*(C'\fR are
-supported. This is always enabled for \fB\-mcpu=ARC700\fR.
-.IP "\fB\-mno\-mpy\fR" 4
-.IX Item "-mno-mpy"
-Do not generate mpy instructions for \s-1ARC700.\s0
-.IP "\fB\-mmul32x16\fR" 4
-.IX Item "-mmul32x16"
-Generate 32x16 bit multiply and mac instructions.
-.IP "\fB\-mmul64\fR" 4
-.IX Item "-mmul64"
-Generate mul64 and mulu64 instructions. Only valid for \fB\-mcpu=ARC600\fR.
-.IP "\fB\-mnorm\fR" 4
-.IX Item "-mnorm"
-Generate norm instruction. This is the default if \fB\-mcpu=ARC700\fR
-is in effect.
-.IP "\fB\-mspfp\fR" 4
-.IX Item "-mspfp"
-.PD 0
-.IP "\fB\-mspfp\-compact\fR" 4
-.IX Item "-mspfp-compact"
-.PD
-\&\s-1FPX:\s0 Generate Single Precision \s-1FPX\s0 instructions, tuned for the compact
-implementation.
-.IP "\fB\-mspfp\-fast\fR" 4
-.IX Item "-mspfp-fast"
-\&\s-1FPX:\s0 Generate Single Precision \s-1FPX\s0 instructions, tuned for the fast
-implementation.
-.IP "\fB\-msimd\fR" 4
-.IX Item "-msimd"
-Enable generation of \s-1ARC SIMD\s0 instructions via target-specific
-builtins. Only valid for \fB\-mcpu=ARC700\fR.
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-This option ignored; it is provided for compatibility purposes only.
-Software floating point code is emitted by default, and this default
-can overridden by \s-1FPX\s0 options; \fBmspfp\fR, \fBmspfp-compact\fR, or
-\&\fBmspfp-fast\fR for single precision, and \fBmdpfp\fR,
-\&\fBmdpfp-compact\fR, or \fBmdpfp-fast\fR for double precision.
-.IP "\fB\-mswap\fR" 4
-.IX Item "-mswap"
-Generate swap instructions.
-.PP
-The following options are passed through to the assembler, and also
-define preprocessor macro symbols.
-.IP "\fB\-mdsp\-packa\fR" 4
-.IX Item "-mdsp-packa"
-Passed down to the assembler to enable the \s-1DSP\s0 Pack A extensions.
-Also sets the preprocessor symbol \f(CW\*(C`_\|_Xdsp_packa\*(C'\fR.
-.IP "\fB\-mdvbf\fR" 4
-.IX Item "-mdvbf"
-Passed down to the assembler to enable the dual viterbi butterfly
-extension. Also sets the preprocessor symbol \f(CW\*(C`_\|_Xdvbf\*(C'\fR.
-.IP "\fB\-mlock\fR" 4
-.IX Item "-mlock"
-Passed down to the assembler to enable the Locked Load/Store
-Conditional extension. Also sets the preprocessor symbol
-\&\f(CW\*(C`_\|_Xlock\*(C'\fR.
-.IP "\fB\-mmac\-d16\fR" 4
-.IX Item "-mmac-d16"
-Passed down to the assembler. Also sets the preprocessor symbol
-\&\f(CW\*(C`_\|_Xxmac_d16\*(C'\fR.
-.IP "\fB\-mmac\-24\fR" 4
-.IX Item "-mmac-24"
-Passed down to the assembler. Also sets the preprocessor symbol
-\&\f(CW\*(C`_\|_Xxmac_24\*(C'\fR.
-.IP "\fB\-mrtsc\fR" 4
-.IX Item "-mrtsc"
-Passed down to the assembler to enable the 64\-bit Time-Stamp Counter
-extension instruction. Also sets the preprocessor symbol
-\&\f(CW\*(C`_\|_Xrtsc\*(C'\fR.
-.IP "\fB\-mswape\fR" 4
-.IX Item "-mswape"
-Passed down to the assembler to enable the swap byte ordering
-extension instruction. Also sets the preprocessor symbol
-\&\f(CW\*(C`_\|_Xswape\*(C'\fR.
-.IP "\fB\-mtelephony\fR" 4
-.IX Item "-mtelephony"
-Passed down to the assembler to enable dual and single operand
-instructions for telephony. Also sets the preprocessor symbol
-\&\f(CW\*(C`_\|_Xtelephony\*(C'\fR.
-.IP "\fB\-mxy\fR" 4
-.IX Item "-mxy"
-Passed down to the assembler to enable the \s-1XY\s0 Memory extension. Also
-sets the preprocessor symbol \f(CW\*(C`_\|_Xxy\*(C'\fR.
-.PP
-The following options control how the assembly code is annotated:
-.IP "\fB\-misize\fR" 4
-.IX Item "-misize"
-Annotate assembler instructions with estimated addresses.
-.IP "\fB\-mannotate\-align\fR" 4
-.IX Item "-mannotate-align"
-Explain what alignment considerations lead to the decision to make an
-instruction short or long.
-.PP
-The following options are passed through to the linker:
-.IP "\fB\-marclinux\fR" 4
-.IX Item "-marclinux"
-Passed through to the linker, to specify use of the \f(CW\*(C`arclinux\*(C'\fR emulation.
-This option is enabled by default in tool chains built for
-\&\f(CW\*(C`arc\-linux\-uclibc\*(C'\fR and \f(CW\*(C`arceb\-linux\-uclibc\*(C'\fR targets
-when profiling is not requested.
-.IP "\fB\-marclinux_prof\fR" 4
-.IX Item "-marclinux_prof"
-Passed through to the linker, to specify use of the
-\&\f(CW\*(C`arclinux_prof\*(C'\fR emulation. This option is enabled by default in
-tool chains built for \f(CW\*(C`arc\-linux\-uclibc\*(C'\fR and
-\&\f(CW\*(C`arceb\-linux\-uclibc\*(C'\fR targets when profiling is requested.
-.PP
-The following options control the semantics of generated code:
-.IP "\fB\-mepilogue\-cfi\fR" 4
-.IX Item "-mepilogue-cfi"
-Enable generation of call frame information for epilogues.
-.IP "\fB\-mno\-epilogue\-cfi\fR" 4
-.IX Item "-mno-epilogue-cfi"
-Disable generation of call frame information for epilogues.
-.IP "\fB\-mlong\-calls\fR" 4
-.IX Item "-mlong-calls"
-Generate call insns as register indirect calls, thus providing access
-to the full 32\-bit address range.
-.IP "\fB\-mmedium\-calls\fR" 4
-.IX Item "-mmedium-calls"
-Don't use less than 25 bit addressing range for calls, which is the
-offset available for an unconditional branch-and-link
-instruction. Conditional execution of function calls is suppressed, to
-allow use of the 25\-bit range, rather than the 21\-bit range with
-conditional branch-and-link. This is the default for tool chains built
-for \f(CW\*(C`arc\-linux\-uclibc\*(C'\fR and \f(CW\*(C`arceb\-linux\-uclibc\*(C'\fR targets.
-.IP "\fB\-mno\-sdata\fR" 4
-.IX Item "-mno-sdata"
-Do not generate sdata references. This is the default for tool chains
-built for \f(CW\*(C`arc\-linux\-uclibc\*(C'\fR and \f(CW\*(C`arceb\-linux\-uclibc\*(C'\fR
-targets.
-.IP "\fB\-mucb\-mcount\fR" 4
-.IX Item "-mucb-mcount"
-Instrument with mcount calls as used in \s-1UCB\s0 code. I.e. do the
-counting in the callee, not the caller. By default \s-1ARC\s0 instrumentation
-counts in the caller.
-.IP "\fB\-mvolatile\-cache\fR" 4
-.IX Item "-mvolatile-cache"
-Use ordinarily cached memory accesses for volatile references. This is the
-default.
-.IP "\fB\-mno\-volatile\-cache\fR" 4
-.IX Item "-mno-volatile-cache"
-Enable cache bypass for volatile references.
-.PP
-The following options fine tune code generation:
-.IP "\fB\-malign\-call\fR" 4
-.IX Item "-malign-call"
-Do alignment optimizations for call instructions.
-.IP "\fB\-mauto\-modify\-reg\fR" 4
-.IX Item "-mauto-modify-reg"
-Enable the use of pre/post modify with register displacement.
-.IP "\fB\-mbbit\-peephole\fR" 4
-.IX Item "-mbbit-peephole"
-Enable bbit peephole2.
-.IP "\fB\-mno\-brcc\fR" 4
-.IX Item "-mno-brcc"
-This option disables a target-specific pass in \fIarc_reorg\fR to
-generate \f(CW\*(C`BRcc\*(C'\fR instructions. It has no effect on \f(CW\*(C`BRcc\*(C'\fR
-generation driven by the combiner pass.
-.IP "\fB\-mcase\-vector\-pcrel\fR" 4
-.IX Item "-mcase-vector-pcrel"
-Use pc-relative switch case tables \- this enables case table shortening.
-This is the default for \fB\-Os\fR.
-.IP "\fB\-mcompact\-casesi\fR" 4
-.IX Item "-mcompact-casesi"
-Enable compact casesi pattern.
-This is the default for \fB\-Os\fR.
-.IP "\fB\-mno\-cond\-exec\fR" 4
-.IX Item "-mno-cond-exec"
-Disable ARCompact specific pass to generate conditional execution instructions.
-Due to delay slot scheduling and interactions between operand numbers,
-literal sizes, instruction lengths, and the support for conditional execution,
-the target-independent pass to generate conditional execution is often lacking,
-so the \s-1ARC\s0 port has kept a special pass around that tries to find more
-conditional execution generating opportunities after register allocation,
-branch shortening, and delay slot scheduling have been done. This pass
-generally, but not always, improves performance and code size, at the cost of
-extra compilation time, which is why there is an option to switch it off.
-If you have a problem with call instructions exceeding their allowable
-offset range because they are conditionalized, you should consider using
-\&\fB\-mmedium\-calls\fR instead.
-.IP "\fB\-mearly\-cbranchsi\fR" 4
-.IX Item "-mearly-cbranchsi"
-Enable pre-reload use of the cbranchsi pattern.
-.IP "\fB\-mexpand\-adddi\fR" 4
-.IX Item "-mexpand-adddi"
-Expand \f(CW\*(C`adddi3\*(C'\fR and \f(CW\*(C`subdi3\*(C'\fR at rtl generation time into
-\&\f(CW\*(C`add.f\*(C'\fR, \f(CW\*(C`adc\*(C'\fR etc.
-.IP "\fB\-mindexed\-loads\fR" 4
-.IX Item "-mindexed-loads"
-Enable the use of indexed loads. This can be problematic because some
-optimizers will then assume the that indexed stores exist, which is not
-the case.
-.IP "\fB\-mlra\fR" 4
-.IX Item "-mlra"
-Enable Local Register Allocation. This is still experimental for \s-1ARC,\s0
-so by default the compiler uses standard reload
-(i.e. \fB\-mno\-lra\fR).
-.IP "\fB\-mlra\-priority\-none\fR" 4
-.IX Item "-mlra-priority-none"
-Don't indicate any priority for target registers.
-.IP "\fB\-mlra\-priority\-compact\fR" 4
-.IX Item "-mlra-priority-compact"
-Indicate target register priority for r0..r3 / r12..r15.
-.IP "\fB\-mlra\-priority\-noncompact\fR" 4
-.IX Item "-mlra-priority-noncompact"
-Reduce target regsiter priority for r0..r3 / r12..r15.
-.IP "\fB\-mno\-millicode\fR" 4
-.IX Item "-mno-millicode"
-When optimizing for size (using \fB\-Os\fR), prologues and epilogues
-that have to save or restore a large number of registers are often
-shortened by using call to a special function in libgcc; this is
-referred to as a \fImillicode\fR call. As these calls can pose
-performance issues, and/or cause linking issues when linking in a
-nonstandard way, this option is provided to turn off millicode call
-generation.
-.IP "\fB\-mmixed\-code\fR" 4
-.IX Item "-mmixed-code"
-Tweak register allocation to help 16\-bit instruction generation.
-This generally has the effect of decreasing the average instruction size
-while increasing the instruction count.
-.IP "\fB\-mq\-class\fR" 4
-.IX Item "-mq-class"
-Enable 'q' instruction alternatives.
-This is the default for \fB\-Os\fR.
-.IP "\fB\-mRcq\fR" 4
-.IX Item "-mRcq"
-Enable Rcq constraint handling \- most short code generation depends on this.
-This is the default.
-.IP "\fB\-mRcw\fR" 4
-.IX Item "-mRcw"
-Enable Rcw constraint handling \- ccfsm condexec mostly depends on this.
-This is the default.
-.IP "\fB\-msize\-level=\fR\fIlevel\fR" 4
-.IX Item "-msize-level=level"
-Fine-tune size optimization with regards to instruction lengths and alignment.
-The recognized values for \fIlevel\fR are:
-.RS 4
-.IP "\fB0\fR" 4
-.IX Item "0"
-No size optimization. This level is deprecated and treated like \fB1\fR.
-.IP "\fB1\fR" 4
-.IX Item "1"
-Short instructions are used opportunistically.
-.IP "\fB2\fR" 4
-.IX Item "2"
-In addition, alignment of loops and of code after barriers are dropped.
-.IP "\fB3\fR" 4
-.IX Item "3"
-In addition, optional data alignment is dropped, and the option \fBOs\fR is enabled.
-.RE
-.RS 4
-.Sp
-This defaults to \fB3\fR when \fB\-Os\fR is in effect. Otherwise,
-the behavior when this is not set is equivalent to level \fB1\fR.
-.RE
-.IP "\fB\-mtune=\fR\fIcpu\fR" 4
-.IX Item "-mtune=cpu"
-Set instruction scheduling parameters for \fIcpu\fR, overriding any implied
-by \fB\-mcpu=\fR.
-.Sp
-Supported values for \fIcpu\fR are
-.RS 4
-.IP "\fB\s-1ARC600\s0\fR" 4
-.IX Item "ARC600"
-Tune for \s-1ARC600\s0 cpu.
-.IP "\fB\s-1ARC601\s0\fR" 4
-.IX Item "ARC601"
-Tune for \s-1ARC601\s0 cpu.
-.IP "\fB\s-1ARC700\s0\fR" 4
-.IX Item "ARC700"
-Tune for \s-1ARC700\s0 cpu with standard multiplier block.
-.IP "\fBARC700\-xmac\fR" 4
-.IX Item "ARC700-xmac"
-Tune for \s-1ARC700\s0 cpu with \s-1XMAC\s0 block.
-.IP "\fB\s-1ARC725D\s0\fR" 4
-.IX Item "ARC725D"
-Tune for \s-1ARC725D\s0 cpu.
-.IP "\fB\s-1ARC750D\s0\fR" 4
-.IX Item "ARC750D"
-Tune for \s-1ARC750D\s0 cpu.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mmultcost=\fR\fInum\fR" 4
-.IX Item "-mmultcost=num"
-Cost to assume for a multiply instruction, with \fB4\fR being equal to a
-normal instruction.
-.IP "\fB\-munalign\-prob\-threshold=\fR\fIprobability\fR" 4
-.IX Item "-munalign-prob-threshold=probability"
-Set probability threshold for unaligning branches.
-When tuning for \fB\s-1ARC700\s0\fR and optimizing for speed, branches without
-filled delay slot are preferably emitted unaligned and long, unless
-profiling indicates that the probability for the branch to be taken
-is below \fIprobability\fR.
-The default is (\s-1REG_BR_PROB_BASE/2\s0), i.e. 5000.
-.PP
-The following options are maintained for backward compatibility, but
-are now deprecated and will be removed in a future release:
-.IP "\fB\-margonaut\fR" 4
-.IX Item "-margonaut"
-Obsolete \s-1FPX.\s0
-.IP "\fB\-mbig\-endian\fR" 4
-.IX Item "-mbig-endian"
-.PD 0
-.IP "\fB\-EB\fR" 4
-.IX Item "-EB"
-.PD
-Compile code for big endian targets. Use of these options is now
-deprecated. Users wanting big-endian code, should use the
-\&\f(CW\*(C`arceb\-elf32\*(C'\fR and \f(CW\*(C`arceb\-linux\-uclibc\*(C'\fR targets when
-building the tool chain, for which big-endian is the default.
-.IP "\fB\-mlittle\-endian\fR" 4
-.IX Item "-mlittle-endian"
-.PD 0
-.IP "\fB\-EL\fR" 4
-.IX Item "-EL"
-.PD
-Compile code for little endian targets. Use of these options is now
-deprecated. Users wanting little-endian code should use the
-\&\f(CW\*(C`arc\-elf32\*(C'\fR and \f(CW\*(C`arc\-linux\-uclibc\*(C'\fR targets when
-building the tool chain, for which little-endian is the default.
-.IP "\fB\-mbarrel_shifter\fR" 4
-.IX Item "-mbarrel_shifter"
-Replaced by \fB\-mbarrel\-shifter\fR
-.IP "\fB\-mdpfp_compact\fR" 4
-.IX Item "-mdpfp_compact"
-Replaced by \fB\-mdpfp\-compact\fR
-.IP "\fB\-mdpfp_fast\fR" 4
-.IX Item "-mdpfp_fast"
-Replaced by \fB\-mdpfp\-fast\fR
-.IP "\fB\-mdsp_packa\fR" 4
-.IX Item "-mdsp_packa"
-Replaced by \fB\-mdsp\-packa\fR
-.IP "\fB\-mEA\fR" 4
-.IX Item "-mEA"
-Replaced by \fB\-mea\fR
-.IP "\fB\-mmac_24\fR" 4
-.IX Item "-mmac_24"
-Replaced by \fB\-mmac\-24\fR
-.IP "\fB\-mmac_d16\fR" 4
-.IX Item "-mmac_d16"
-Replaced by \fB\-mmac\-d16\fR
-.IP "\fB\-mspfp_compact\fR" 4
-.IX Item "-mspfp_compact"
-Replaced by \fB\-mspfp\-compact\fR
-.IP "\fB\-mspfp_fast\fR" 4
-.IX Item "-mspfp_fast"
-Replaced by \fB\-mspfp\-fast\fR
-.IP "\fB\-mtune=\fR\fIcpu\fR" 4
-.IX Item "-mtune=cpu"
-Values \fBarc600\fR, \fBarc601\fR, \fBarc700\fR and
-\&\fBarc700\-xmac\fR for \fIcpu\fR are replaced by \fB\s-1ARC600\s0\fR,
-\&\fB\s-1ARC601\s0\fR, \fB\s-1ARC700\s0\fR and \fBARC700\-xmac\fR respectively
-.IP "\fB\-multcost=\fR\fInum\fR" 4
-.IX Item "-multcost=num"
-Replaced by \fB\-mmultcost\fR.
-.PP
-\fI\s-1ARM\s0 Options\fR
-.IX Subsection "ARM Options"
-.PP
-These \fB\-m\fR options are defined for Advanced \s-1RISC\s0 Machines (\s-1ARM\s0)
-architectures:
-.IP "\fB\-mabi=\fR\fIname\fR" 4
-.IX Item "-mabi=name"
-Generate code for the specified \s-1ABI. \s0 Permissible values are: \fBapcs-gnu\fR,
-\&\fBatpcs\fR, \fBaapcs\fR, \fBaapcs-linux\fR and \fBiwmmxt\fR.
-.IP "\fB\-mapcs\-frame\fR" 4
-.IX Item "-mapcs-frame"
-Generate a stack frame that is compliant with the \s-1ARM\s0 Procedure Call
-Standard for all functions, even if this is not strictly necessary for
-correct execution of the code. Specifying \fB\-fomit\-frame\-pointer\fR
-with this option causes the stack frames not to be generated for
-leaf functions. The default is \fB\-mno\-apcs\-frame\fR.
-.IP "\fB\-mapcs\fR" 4
-.IX Item "-mapcs"
-This is a synonym for \fB\-mapcs\-frame\fR.
-.IP "\fB\-mthumb\-interwork\fR" 4
-.IX Item "-mthumb-interwork"
-Generate code that supports calling between the \s-1ARM\s0 and Thumb
-instruction sets. Without this option, on pre\-v5 architectures, the
-two instruction sets cannot be reliably used inside one program. The
-default is \fB\-mno\-thumb\-interwork\fR, since slightly larger code
-is generated when \fB\-mthumb\-interwork\fR is specified. In \s-1AAPCS\s0
-configurations this option is meaningless.
-.IP "\fB\-mno\-sched\-prolog\fR" 4
-.IX Item "-mno-sched-prolog"
-Prevent the reordering of instructions in the function prologue, or the
-merging of those instruction with the instructions in the function's
-body. This means that all functions start with a recognizable set
-of instructions (or in fact one of a choice from a small set of
-different function prologues), and this information can be used to
-locate the start of functions inside an executable piece of code. The
-default is \fB\-msched\-prolog\fR.
-.IP "\fB\-mfloat\-abi=\fR\fIname\fR" 4
-.IX Item "-mfloat-abi=name"
-Specifies which floating-point \s-1ABI\s0 to use. Permissible values
-are: \fBsoft\fR, \fBsoftfp\fR and \fBhard\fR.
-.Sp
-Specifying \fBsoft\fR causes \s-1GCC\s0 to generate output containing
-library calls for floating-point operations.
-\&\fBsoftfp\fR allows the generation of code using hardware floating-point
-instructions, but still uses the soft-float calling conventions.
-\&\fBhard\fR allows generation of floating-point instructions
-and uses FPU-specific calling conventions.
-.Sp
-The default depends on the specific target configuration. Note that
-the hard-float and soft-float ABIs are not link-compatible; you must
-compile your entire program with the same \s-1ABI,\s0 and link with a
-compatible set of libraries.
-.IP "\fB\-mlittle\-endian\fR" 4
-.IX Item "-mlittle-endian"
-Generate code for a processor running in little-endian mode. This is
-the default for all standard configurations.
-.IP "\fB\-mbig\-endian\fR" 4
-.IX Item "-mbig-endian"
-Generate code for a processor running in big-endian mode; the default is
-to compile code for a little-endian processor.
-.IP "\fB\-mwords\-little\-endian\fR" 4
-.IX Item "-mwords-little-endian"
-This option only applies when generating code for big-endian processors.
-Generate code for a little-endian word order but a big-endian byte
-order. That is, a byte order of the form \fB32107654\fR. Note: this
-option should only be used if you require compatibility with code for
-big-endian \s-1ARM\s0 processors generated by versions of the compiler prior to
-2.8. This option is now deprecated.
-.IP "\fB\-march=\fR\fIname\fR" 4
-.IX Item "-march=name"
-This specifies the name of the target \s-1ARM\s0 architecture. \s-1GCC\s0 uses this
-name to determine what kind of instructions it can emit when generating
-assembly code. This option can be used in conjunction with or instead
-of the \fB\-mcpu=\fR option. Permissible names are: \fBarmv2\fR,
-\&\fBarmv2a\fR, \fBarmv3\fR, \fBarmv3m\fR, \fBarmv4\fR, \fBarmv4t\fR,
-\&\fBarmv5\fR, \fBarmv5t\fR, \fBarmv5e\fR, \fBarmv5te\fR,
-\&\fBarmv6\fR, \fBarmv6j\fR,
-\&\fBarmv6t2\fR, \fBarmv6z\fR, \fBarmv6zk\fR, \fBarmv6\-m\fR,
-\&\fBarmv7\fR, \fBarmv7\-a\fR, \fBarmv7\-r\fR, \fBarmv7\-m\fR, \fBarmv7e\-m\fR,
-\&\fBarmv7ve\fR, \fBarmv8\-a\fR, \fBarmv8\-a+crc\fR,
-\&\fBiwmmxt\fR, \fBiwmmxt2\fR, \fBep9312\fR.
-.Sp
-\&\fB\-march=armv7ve\fR is the armv7\-a architecture with virtualization
-extensions.
-.Sp
-\&\fB\-march=armv8\-a+crc\fR enables code generation for the ARMv8\-A
-architecture together with the optional \s-1CRC32\s0 extensions.
-.Sp
-\&\fB\-march=native\fR causes the compiler to auto-detect the architecture
-of the build computer. At present, this feature is only supported on
-Linux, and not all architectures are recognized. If the auto-detect is
-unsuccessful the option has no effect.
-.IP "\fB\-mtune=\fR\fIname\fR" 4
-.IX Item "-mtune=name"
-This option specifies the name of the target \s-1ARM\s0 processor for
-which \s-1GCC\s0 should tune the performance of the code.
-For some \s-1ARM\s0 implementations better performance can be obtained by using
-this option.
-Permissible names are: \fBarm2\fR, \fBarm250\fR,
-\&\fBarm3\fR, \fBarm6\fR, \fBarm60\fR, \fBarm600\fR, \fBarm610\fR,
-\&\fBarm620\fR, \fBarm7\fR, \fBarm7m\fR, \fBarm7d\fR, \fBarm7dm\fR,
-\&\fBarm7di\fR, \fBarm7dmi\fR, \fBarm70\fR, \fBarm700\fR,
-\&\fBarm700i\fR, \fBarm710\fR, \fBarm710c\fR, \fBarm7100\fR,
-\&\fBarm720\fR,
-\&\fBarm7500\fR, \fBarm7500fe\fR, \fBarm7tdmi\fR, \fBarm7tdmi\-s\fR,
-\&\fBarm710t\fR, \fBarm720t\fR, \fBarm740t\fR,
-\&\fBstrongarm\fR, \fBstrongarm110\fR, \fBstrongarm1100\fR,
-\&\fBstrongarm1110\fR,
-\&\fBarm8\fR, \fBarm810\fR, \fBarm9\fR, \fBarm9e\fR, \fBarm920\fR,
-\&\fBarm920t\fR, \fBarm922t\fR, \fBarm946e\-s\fR, \fBarm966e\-s\fR,
-\&\fBarm968e\-s\fR, \fBarm926ej\-s\fR, \fBarm940t\fR, \fBarm9tdmi\fR,
-\&\fBarm10tdmi\fR, \fBarm1020t\fR, \fBarm1026ej\-s\fR,
-\&\fBarm10e\fR, \fBarm1020e\fR, \fBarm1022e\fR,
-\&\fBarm1136j\-s\fR, \fBarm1136jf\-s\fR, \fBmpcore\fR, \fBmpcorenovfp\fR,
-\&\fBarm1156t2\-s\fR, \fBarm1156t2f\-s\fR, \fBarm1176jz\-s\fR, \fBarm1176jzf\-s\fR,
-\&\fBcortex\-a5\fR, \fBcortex\-a7\fR, \fBcortex\-a8\fR, \fBcortex\-a9\fR,
-\&\fBcortex\-a12\fR, \fBcortex\-a15\fR, \fBcortex\-a53\fR, \fBcortex\-a57\fR,
-\&\fBcortex\-r4\fR,
-\&\fBcortex\-r4f\fR, \fBcortex\-r5\fR, \fBcortex\-r7\fR, \fBcortex\-m4\fR,
-\&\fBcortex\-m3\fR,
-\&\fBcortex\-m1\fR,
-\&\fBcortex\-m0\fR,
-\&\fBcortex\-m0plus\fR,
-\&\fBmarvell\-pj4\fR,
-\&\fBxscale\fR, \fBiwmmxt\fR, \fBiwmmxt2\fR, \fBep9312\fR,
-\&\fBfa526\fR, \fBfa626\fR,
-\&\fBfa606te\fR, \fBfa626te\fR, \fBfmp626\fR, \fBfa726te\fR.
-.Sp
-Additionally, this option can specify that \s-1GCC\s0 should tune the performance
-of the code for a big.LITTLE system. Permissible names are:
-\&\fBcortex\-a15.cortex\-a7\fR, \fBcortex\-a57.cortex\-a53\fR.
-.Sp
-\&\fB\-mtune=generic\-\fR\fIarch\fR specifies that \s-1GCC\s0 should tune the
-performance for a blend of processors within architecture \fIarch\fR.
-The aim is to generate code that run well on the current most popular
-processors, balancing between optimizations that benefit some CPUs in the
-range, and avoiding performance pitfalls of other CPUs. The effects of
-this option may change in future \s-1GCC\s0 versions as \s-1CPU\s0 models come and go.
-.Sp
-\&\fB\-mtune=native\fR causes the compiler to auto-detect the \s-1CPU\s0
-of the build computer. At present, this feature is only supported on
-Linux, and not all architectures are recognized. If the auto-detect is
-unsuccessful the option has no effect.
-.IP "\fB\-mcpu=\fR\fIname\fR" 4
-.IX Item "-mcpu=name"
-This specifies the name of the target \s-1ARM\s0 processor. \s-1GCC\s0 uses this name
-to derive the name of the target \s-1ARM\s0 architecture (as if specified
-by \fB\-march\fR) and the \s-1ARM\s0 processor type for which to tune for
-performance (as if specified by \fB\-mtune\fR). Where this option
-is used in conjunction with \fB\-march\fR or \fB\-mtune\fR,
-those options take precedence over the appropriate part of this option.
-.Sp
-Permissible names for this option are the same as those for
-\&\fB\-mtune\fR.
-.Sp
-\&\fB\-mcpu=generic\-\fR\fIarch\fR is also permissible, and is
-equivalent to \fB\-march=\fR\fIarch\fR \fB\-mtune=generic\-\fR\fIarch\fR.
-See \fB\-mtune\fR for more information.
-.Sp
-\&\fB\-mcpu=native\fR causes the compiler to auto-detect the \s-1CPU\s0
-of the build computer. At present, this feature is only supported on
-Linux, and not all architectures are recognized. If the auto-detect is
-unsuccessful the option has no effect.
-.IP "\fB\-mfpu=\fR\fIname\fR" 4
-.IX Item "-mfpu=name"
-This specifies what floating-point hardware (or hardware emulation) is
-available on the target. Permissible names are: \fBvfp\fR, \fBvfpv3\fR,
-\&\fBvfpv3\-fp16\fR, \fBvfpv3\-d16\fR, \fBvfpv3\-d16\-fp16\fR, \fBvfpv3xd\fR,
-\&\fBvfpv3xd\-fp16\fR, \fBneon\fR, \fBneon\-fp16\fR, \fBvfpv4\fR,
-\&\fBvfpv4\-d16\fR, \fBfpv4\-sp\-d16\fR, \fBneon\-vfpv4\fR,
-\&\fBfp\-armv8\fR, \fBneon\-fp\-armv8\fR, and \fBcrypto\-neon\-fp\-armv8\fR.
-.Sp
-If \fB\-msoft\-float\fR is specified this specifies the format of
-floating-point values.
-.Sp
-If the selected floating-point hardware includes the \s-1NEON\s0 extension
-(e.g. \fB\-mfpu\fR=\fBneon\fR), note that floating-point
-operations are not generated by \s-1GCC\s0's auto-vectorization pass unless
-\&\fB\-funsafe\-math\-optimizations\fR is also specified. This is
-because \s-1NEON\s0 hardware does not fully implement the \s-1IEEE 754\s0 standard for
-floating-point arithmetic (in particular denormal values are treated as
-zero), so the use of \s-1NEON\s0 instructions may lead to a loss of precision.
-.IP "\fB\-mfp16\-format=\fR\fIname\fR" 4
-.IX Item "-mfp16-format=name"
-Specify the format of the \f(CW\*(C`_\|_fp16\*(C'\fR half-precision floating-point type.
-Permissible names are \fBnone\fR, \fBieee\fR, and \fBalternative\fR;
-the default is \fBnone\fR, in which case the \f(CW\*(C`_\|_fp16\*(C'\fR type is not
-defined.
-.IP "\fB\-mstructure\-size\-boundary=\fR\fIn\fR" 4
-.IX Item "-mstructure-size-boundary=n"
-The sizes of all structures and unions are rounded up to a multiple
-of the number of bits set by this option. Permissible values are 8, 32
-and 64. The default value varies for different toolchains. For the \s-1COFF\s0
-targeted toolchain the default value is 8. A value of 64 is only allowed
-if the underlying \s-1ABI\s0 supports it.
-.Sp
-Specifying a larger number can produce faster, more efficient code, but
-can also increase the size of the program. Different values are potentially
-incompatible. Code compiled with one value cannot necessarily expect to
-work with code or libraries compiled with another value, if they exchange
-information using structures or unions.
-.IP "\fB\-mabort\-on\-noreturn\fR" 4
-.IX Item "-mabort-on-noreturn"
-Generate a call to the function \f(CW\*(C`abort\*(C'\fR at the end of a
-\&\f(CW\*(C`noreturn\*(C'\fR function. It is executed if the function tries to
-return.
-.IP "\fB\-mlong\-calls\fR" 4
-.IX Item "-mlong-calls"
-.PD 0
-.IP "\fB\-mno\-long\-calls\fR" 4
-.IX Item "-mno-long-calls"
-.PD
-Tells the compiler to perform function calls by first loading the
-address of the function into a register and then performing a subroutine
-call on this register. This switch is needed if the target function
-lies outside of the 64\-megabyte addressing range of the offset-based
-version of subroutine call instruction.
-.Sp
-Even if this switch is enabled, not all function calls are turned
-into long calls. The heuristic is that static functions, functions
-that have the \fBshort-call\fR attribute, functions that are inside
-the scope of a \fB#pragma no_long_calls\fR directive, and functions whose
-definitions have already been compiled within the current compilation
-unit are not turned into long calls. The exceptions to this rule are
-that weak function definitions, functions with the \fBlong-call\fR
-attribute or the \fBsection\fR attribute, and functions that are within
-the scope of a \fB#pragma long_calls\fR directive are always
-turned into long calls.
-.Sp
-This feature is not enabled by default. Specifying
-\&\fB\-mno\-long\-calls\fR restores the default behavior, as does
-placing the function calls within the scope of a \fB#pragma
-long_calls_off\fR directive. Note these switches have no effect on how
-the compiler generates code to handle function calls via function
-pointers.
-.IP "\fB\-msingle\-pic\-base\fR" 4
-.IX Item "-msingle-pic-base"
-Treat the register used for \s-1PIC\s0 addressing as read-only, rather than
-loading it in the prologue for each function. The runtime system is
-responsible for initializing this register with an appropriate value
-before execution begins.
-.IP "\fB\-mpic\-register=\fR\fIreg\fR" 4
-.IX Item "-mpic-register=reg"
-Specify the register to be used for \s-1PIC\s0 addressing.
-For standard \s-1PIC\s0 base case, the default will be any suitable register
-determined by compiler. For single \s-1PIC\s0 base case, the default is
-\&\fBR9\fR if target is \s-1EABI\s0 based or stack-checking is enabled,
-otherwise the default is \fBR10\fR.
-.IP "\fB\-mpic\-data\-is\-text\-relative\fR" 4
-.IX Item "-mpic-data-is-text-relative"
-Assume that each data segments are relative to text segment at load time.
-Therefore, it permits addressing data using PC-relative operations.
-This option is on by default for targets other than VxWorks \s-1RTP.\s0
-.IP "\fB\-mpoke\-function\-name\fR" 4
-.IX Item "-mpoke-function-name"
-Write the name of each function into the text section, directly
-preceding the function prologue. The generated code is similar to this:
-.Sp
-.Vb 9
-\& t0
-\& .ascii "arm_poke_function_name", 0
-\& .align
-\& t1
-\& .word 0xff000000 + (t1 \- t0)
-\& arm_poke_function_name
-\& mov ip, sp
-\& stmfd sp!, {fp, ip, lr, pc}
-\& sub fp, ip, #4
-.Ve
-.Sp
-When performing a stack backtrace, code can inspect the value of
-\&\f(CW\*(C`pc\*(C'\fR stored at \f(CW\*(C`fp + 0\*(C'\fR. If the trace function then looks at
-location \f(CW\*(C`pc \- 12\*(C'\fR and the top 8 bits are set, then we know that
-there is a function name embedded immediately preceding this location
-and has length \f(CW\*(C`((pc[\-3]) & 0xff000000)\*(C'\fR.
-.IP "\fB\-mthumb\fR" 4
-.IX Item "-mthumb"
-.PD 0
-.IP "\fB\-marm\fR" 4
-.IX Item "-marm"
-.PD
-Select between generating code that executes in \s-1ARM\s0 and Thumb
-states. The default for most configurations is to generate code
-that executes in \s-1ARM\s0 state, but the default can be changed by
-configuring \s-1GCC\s0 with the \fB\-\-with\-mode=\fR\fIstate\fR
-configure option.
-.IP "\fB\-mtpcs\-frame\fR" 4
-.IX Item "-mtpcs-frame"
-Generate a stack frame that is compliant with the Thumb Procedure Call
-Standard for all non-leaf functions. (A leaf function is one that does
-not call any other functions.) The default is \fB\-mno\-tpcs\-frame\fR.
-.IP "\fB\-mtpcs\-leaf\-frame\fR" 4
-.IX Item "-mtpcs-leaf-frame"
-Generate a stack frame that is compliant with the Thumb Procedure Call
-Standard for all leaf functions. (A leaf function is one that does
-not call any other functions.) The default is \fB\-mno\-apcs\-leaf\-frame\fR.
-.IP "\fB\-mcallee\-super\-interworking\fR" 4
-.IX Item "-mcallee-super-interworking"
-Gives all externally visible functions in the file being compiled an \s-1ARM\s0
-instruction set header which switches to Thumb mode before executing the
-rest of the function. This allows these functions to be called from
-non-interworking code. This option is not valid in \s-1AAPCS\s0 configurations
-because interworking is enabled by default.
-.IP "\fB\-mcaller\-super\-interworking\fR" 4
-.IX Item "-mcaller-super-interworking"
-Allows calls via function pointers (including virtual functions) to
-execute correctly regardless of whether the target code has been
-compiled for interworking or not. There is a small overhead in the cost
-of executing a function pointer if this option is enabled. This option
-is not valid in \s-1AAPCS\s0 configurations because interworking is enabled
-by default.
-.IP "\fB\-mtp=\fR\fIname\fR" 4
-.IX Item "-mtp=name"
-Specify the access model for the thread local storage pointer. The valid
-models are \fBsoft\fR, which generates calls to \f(CW\*(C`_\|_aeabi_read_tp\*(C'\fR,
-\&\fBcp15\fR, which fetches the thread pointer from \f(CW\*(C`cp15\*(C'\fR directly
-(supported in the arm6k architecture), and \fBauto\fR, which uses the
-best available method for the selected processor. The default setting is
-\&\fBauto\fR.
-.IP "\fB\-mtls\-dialect=\fR\fIdialect\fR" 4
-.IX Item "-mtls-dialect=dialect"
-Specify the dialect to use for accessing thread local storage. Two
-\&\fIdialect\fRs are supported\-\-\-\fBgnu\fR and \fBgnu2\fR. The
-\&\fBgnu\fR dialect selects the original \s-1GNU\s0 scheme for supporting
-local and global dynamic \s-1TLS\s0 models. The \fBgnu2\fR dialect
-selects the \s-1GNU\s0 descriptor scheme, which provides better performance
-for shared libraries. The \s-1GNU\s0 descriptor scheme is compatible with
-the original scheme, but does require new assembler, linker and
-library support. Initial and local exec \s-1TLS\s0 models are unaffected by
-this option and always use the original scheme.
-.IP "\fB\-mword\-relocations\fR" 4
-.IX Item "-mword-relocations"
-Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
-This is enabled by default on targets (uClinux, SymbianOS) where the runtime
-loader imposes this restriction, and when \fB\-fpic\fR or \fB\-fPIC\fR
-is specified.
-.IP "\fB\-mfix\-cortex\-m3\-ldrd\fR" 4
-.IX Item "-mfix-cortex-m3-ldrd"
-Some Cortex\-M3 cores can cause data corruption when \f(CW\*(C`ldrd\*(C'\fR instructions
-with overlapping destination and base registers are used. This option avoids
-generating these instructions. This option is enabled by default when
-\&\fB\-mcpu=cortex\-m3\fR is specified.
-.IP "\fB\-munaligned\-access\fR" 4
-.IX Item "-munaligned-access"
-.PD 0
-.IP "\fB\-mno\-unaligned\-access\fR" 4
-.IX Item "-mno-unaligned-access"
-.PD
-Enables (or disables) reading and writing of 16\- and 32\- bit values
-from addresses that are not 16\- or 32\- bit aligned. By default
-unaligned access is disabled for all pre\-ARMv6 and all ARMv6\-M
-architectures, and enabled for all other architectures. If unaligned
-access is not enabled then words in packed data structures will be
-accessed a byte at a time.
-.Sp
-The \s-1ARM\s0 attribute \f(CW\*(C`Tag_CPU_unaligned_access\*(C'\fR will be set in the
-generated object file to either true or false, depending upon the
-setting of this option. If unaligned access is enabled then the
-preprocessor symbol \f(CW\*(C`_\|_ARM_FEATURE_UNALIGNED\*(C'\fR will also be
-defined.
-.IP "\fB\-mneon\-for\-64bits\fR" 4
-.IX Item "-mneon-for-64bits"
-Enables using Neon to handle scalar 64\-bits operations. This is
-disabled by default since the cost of moving data from core registers
-to Neon is high.
-.IP "\fB\-mslow\-flash\-data\fR" 4
-.IX Item "-mslow-flash-data"
-Assume loading data from flash is slower than fetching instruction.
-Therefore literal load is minimized for better performance.
-This option is only supported when compiling for ARMv7 M\-profile and
-off by default.
-.IP "\fB\-mrestrict\-it\fR" 4
-.IX Item "-mrestrict-it"
-Restricts generation of \s-1IT\s0 blocks to conform to the rules of ARMv8.
-\&\s-1IT\s0 blocks can only contain a single 16\-bit instruction from a select
-set of instructions. This option is on by default for ARMv8 Thumb mode.
-.PP
-\fI\s-1AVR\s0 Options\fR
-.IX Subsection "AVR Options"
-.PP
-These options are defined for \s-1AVR\s0 implementations:
-.IP "\fB\-mmcu=\fR\fImcu\fR" 4
-.IX Item "-mmcu=mcu"
-Specify Atmel \s-1AVR\s0 instruction set architectures (\s-1ISA\s0) or \s-1MCU\s0 type.
-.Sp
-The default for this option is@tie{}\f(CW\*(C`avr2\*(C'\fR.
-.Sp
-\&\s-1GCC\s0 supports the following \s-1AVR\s0 devices and ISAs:
-.RS 4
-.ie n .IP """avr2""" 4
-.el .IP "\f(CWavr2\fR" 4
-.IX Item "avr2"
-\&\*(L"Classic\*(R" devices with up to 8@tie{}KiB of program memory.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`attiny22\*(C'\fR, \f(CW\*(C`attiny26\*(C'\fR, \f(CW\*(C`at90c8534\*(C'\fR, \f(CW\*(C`at90s2313\*(C'\fR, \f(CW\*(C`at90s2323\*(C'\fR, \f(CW\*(C`at90s2333\*(C'\fR, \f(CW\*(C`at90s2343\*(C'\fR, \f(CW\*(C`at90s4414\*(C'\fR, \f(CW\*(C`at90s4433\*(C'\fR, \f(CW\*(C`at90s4434\*(C'\fR, \f(CW\*(C`at90s8515\*(C'\fR, \f(CW\*(C`at90s8535\*(C'\fR.
-.ie n .IP """avr25""" 4
-.el .IP "\f(CWavr25\fR" 4
-.IX Item "avr25"
-\&\*(L"Classic\*(R" devices with up to 8@tie{}KiB of program memory and with the \f(CW\*(C`MOVW\*(C'\fR instruction.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`ata5272\*(C'\fR, \f(CW\*(C`ata6289\*(C'\fR, \f(CW\*(C`attiny13\*(C'\fR, \f(CW\*(C`attiny13a\*(C'\fR, \f(CW\*(C`attiny2313\*(C'\fR, \f(CW\*(C`attiny2313a\*(C'\fR, \f(CW\*(C`attiny24\*(C'\fR, \f(CW\*(C`attiny24a\*(C'\fR, \f(CW\*(C`attiny25\*(C'\fR, \f(CW\*(C`attiny261\*(C'\fR, \f(CW\*(C`attiny261a\*(C'\fR, \f(CW\*(C`attiny43u\*(C'\fR, \f(CW\*(C`attiny4313\*(C'\fR, \f(CW\*(C`attiny44\*(C'\fR, \f(CW\*(C`attiny44a\*(C'\fR, \f(CW\*(C`attiny45\*(C'\fR, \f(CW\*(C`attiny461\*(C'\fR, \f(CW\*(C`attiny461a\*(C'\fR, \f(CW\*(C`attiny48\*(C'\fR, \f(CW\*(C`attiny84\*(C'\fR, \f(CW\*(C`attiny84a\*(C'\fR, \f(CW\*(C`attiny85\*(C'\fR, \f(CW\*(C`attiny861\*(C'\fR, \f(CW\*(C`attiny861a\*(C'\fR, \f(CW\*(C`attiny87\*(C'\fR, \f(CW\*(C`attiny88\*(C'\fR, \f(CW\*(C`at86rf401\*(C'\fR.
-.ie n .IP """avr3""" 4
-.el .IP "\f(CWavr3\fR" 4
-.IX Item "avr3"
-\&\*(L"Classic\*(R" devices with 16@tie{}KiB up to 64@tie{}KiB of program memory.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`at43usb355\*(C'\fR, \f(CW\*(C`at76c711\*(C'\fR.
-.ie n .IP """avr31""" 4
-.el .IP "\f(CWavr31\fR" 4
-.IX Item "avr31"
-\&\*(L"Classic\*(R" devices with 128@tie{}KiB of program memory.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmega103\*(C'\fR, \f(CW\*(C`at43usb320\*(C'\fR.
-.ie n .IP """avr35""" 4
-.el .IP "\f(CWavr35\fR" 4
-.IX Item "avr35"
-\&\*(L"Classic\*(R" devices with 16@tie{}KiB up to 64@tie{}KiB of program memory and with the \f(CW\*(C`MOVW\*(C'\fR instruction.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`ata5505\*(C'\fR, \f(CW\*(C`atmega16u2\*(C'\fR, \f(CW\*(C`atmega32u2\*(C'\fR, \f(CW\*(C`atmega8u2\*(C'\fR, \f(CW\*(C`attiny1634\*(C'\fR, \f(CW\*(C`attiny167\*(C'\fR, \f(CW\*(C`at90usb162\*(C'\fR, \f(CW\*(C`at90usb82\*(C'\fR.
-.ie n .IP """avr4""" 4
-.el .IP "\f(CWavr4\fR" 4
-.IX Item "avr4"
-\&\*(L"Enhanced\*(R" devices with up to 8@tie{}KiB of program memory.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`ata6285\*(C'\fR, \f(CW\*(C`ata6286\*(C'\fR, \f(CW\*(C`atmega48\*(C'\fR, \f(CW\*(C`atmega48a\*(C'\fR, \f(CW\*(C`atmega48p\*(C'\fR, \f(CW\*(C`atmega48pa\*(C'\fR, \f(CW\*(C`atmega8\*(C'\fR, \f(CW\*(C`atmega8a\*(C'\fR, \f(CW\*(C`atmega8hva\*(C'\fR, \f(CW\*(C`atmega8515\*(C'\fR, \f(CW\*(C`atmega8535\*(C'\fR, \f(CW\*(C`atmega88\*(C'\fR, \f(CW\*(C`atmega88a\*(C'\fR, \f(CW\*(C`atmega88p\*(C'\fR, \f(CW\*(C`atmega88pa\*(C'\fR, \f(CW\*(C`at90pwm1\*(C'\fR, \f(CW\*(C`at90pwm2\*(C'\fR, \f(CW\*(C`at90pwm2b\*(C'\fR, \f(CW\*(C`at90pwm3\*(C'\fR, \f(CW\*(C`at90pwm3b\*(C'\fR, \f(CW\*(C`at90pwm81\*(C'\fR.
-.ie n .IP """avr5""" 4
-.el .IP "\f(CWavr5\fR" 4
-.IX Item "avr5"
-\&\*(L"Enhanced\*(R" devices with 16@tie{}KiB up to 64@tie{}KiB of program memory.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`ata5790\*(C'\fR, \f(CW\*(C`ata5790n\*(C'\fR, \f(CW\*(C`ata5795\*(C'\fR, \f(CW\*(C`atmega16\*(C'\fR, \f(CW\*(C`atmega16a\*(C'\fR, \f(CW\*(C`atmega16hva\*(C'\fR, \f(CW\*(C`atmega16hva2\*(C'\fR, \f(CW\*(C`atmega16hvb\*(C'\fR, \f(CW\*(C`atmega16hvbrevb\*(C'\fR, \f(CW\*(C`atmega16m1\*(C'\fR, \f(CW\*(C`atmega16u4\*(C'\fR, \f(CW\*(C`atmega161\*(C'\fR, \f(CW\*(C`atmega162\*(C'\fR, \f(CW\*(C`atmega163\*(C'\fR, \f(CW\*(C`atmega164a\*(C'\fR, \f(CW\*(C`atmega164p\*(C'\fR, \f(CW\*(C`atmega164pa\*(C'\fR, \f(CW\*(C`atmega165\*(C'\fR, \f(CW\*(C`atmega165a\*(C'\fR, \f(CW\*(C`atmega165p\*(C'\fR, \f(CW\*(C`atmega165pa\*(C'\fR, \f(CW\*(C`atmega168\*(C'\fR, \f(CW\*(C`atmega168a\*(C'\fR, \f(CW\*(C`atmega168p\*(C'\fR, \f(CW\*(C`atmega168pa\*(C'\fR, \f(CW\*(C`atmega169\*(C'\fR, \f(CW\*(C`atmega169a\*(C'\fR, \f(CW\*(C`atmega169p\*(C'\fR, \f(CW\*(C`atmega169pa\*(C'\fR, \f(CW\*(C`atmega26hvg\*(C'\fR, \f(CW\*(C`atmega32\*(C'\fR, \f(CW\*(C`atmega32a\*(C'\fR, \f(CW\*(C`atmega32c1\*(C'\fR, \f(CW\*(C`atmega32hvb\*(C'\fR, \f(CW\*(C`atmega32hvbrevb\*(C'\fR, \f(CW\*(C`atmega32m1\*(C'\fR, \f(CW\*(C`atmega32u4\*(C'\fR, \f(CW\*(C`atmega32u6\*(C'\fR, \f(CW\*(C`atmega323\*(C'\fR, \f(CW\*(C`atmega324a\*(C'\fR, \f(CW\*(C`atmega324p\*(C'\fR, \f(CW\*(C`atmega324pa\*(C'\fR, \f(CW\*(C`atmega325\*(C'\fR, \f(CW\*(C`atmega325a\*(C'\fR, \f(CW\*(C`atmega325p\*(C'\fR, \f(CW\*(C`atmega3250\*(C'\fR, \f(CW\*(C`atmega3250a\*(C'\fR, \f(CW\*(C`atmega3250p\*(C'\fR, \f(CW\*(C`atmega3250pa\*(C'\fR, \f(CW\*(C`atmega328\*(C'\fR, \f(CW\*(C`atmega328p\*(C'\fR, \f(CW\*(C`atmega329\*(C'\fR, \f(CW\*(C`atmega329a\*(C'\fR, \f(CW\*(C`atmega329p\*(C'\fR, \f(CW\*(C`atmega329pa\*(C'\fR, \f(CW\*(C`atmega3290\*(C'\fR, \f(CW\*(C`atmega3290a\*(C'\fR, \f(CW\*(C`atmega3290p\*(C'\fR, \f(CW\*(C`atmega3290pa\*(C'\fR, \f(CW\*(C`atmega406\*(C'\fR, \f(CW\*(C`atmega48hvf\*(C'\fR, \f(CW\*(C`atmega64\*(C'\fR, \f(CW\*(C`atmega64a\*(C'\fR, \f(CW\*(C`atmega64c1\*(C'\fR, \f(CW\*(C`atmega64hve\*(C'\fR, \f(CW\*(C`atmega64m1\*(C'\fR, \f(CW\*(C`atmega64rfa2\*(C'\fR, \f(CW\*(C`atmega64rfr2\*(C'\fR, \f(CW\*(C`atmega640\*(C'\fR, \f(CW\*(C`atmega644\*(C'\fR, \f(CW\*(C`atmega644a\*(C'\fR, \f(CW\*(C`atmega644p\*(C'\fR, \f(CW\*(C`atmega644pa\*(C'\fR, \f(CW\*(C`atmega645\*(C'\fR, \f(CW\*(C`atmega645a\*(C'\fR, \f(CW\*(C`atmega645p\*(C'\fR, \f(CW\*(C`atmega6450\*(C'\fR, \f(CW\*(C`atmega6450a\*(C'\fR, \f(CW\*(C`atmega6450p\*(C'\fR, \f(CW\*(C`atmega649\*(C'\fR, \f(CW\*(C`atmega649a\*(C'\fR, \f(CW\*(C`atmega649p\*(C'\fR, \f(CW\*(C`atmega6490\*(C'\fR, \f(CW\*(C`atmega6490a\*(C'\fR, \f(CW\*(C`atmega6490p\*(C'\fR, \f(CW\*(C`at90can32\*(C'\fR, \f(CW\*(C`at90can64\*(C'\fR, \f(CW\*(C`at90pwm161\*(C'\fR, \f(CW\*(C`at90pwm216\*(C'\fR, \f(CW\*(C`at90pwm316\*(C'\fR, \f(CW\*(C`at90scr100\*(C'\fR, \f(CW\*(C`at90usb646\*(C'\fR, \f(CW\*(C`at90usb647\*(C'\fR, \f(CW\*(C`at94k\*(C'\fR, \f(CW\*(C`m3000\*(C'\fR.
-.ie n .IP """avr51""" 4
-.el .IP "\f(CWavr51\fR" 4
-.IX Item "avr51"
-\&\*(L"Enhanced\*(R" devices with 128@tie{}KiB of program memory.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmega128\*(C'\fR, \f(CW\*(C`atmega128a\*(C'\fR, \f(CW\*(C`atmega128rfa1\*(C'\fR, \f(CW\*(C`atmega1280\*(C'\fR, \f(CW\*(C`atmega1281\*(C'\fR, \f(CW\*(C`atmega1284\*(C'\fR, \f(CW\*(C`atmega1284p\*(C'\fR, \f(CW\*(C`at90can128\*(C'\fR, \f(CW\*(C`at90usb1286\*(C'\fR, \f(CW\*(C`at90usb1287\*(C'\fR.
-.ie n .IP """avr6""" 4
-.el .IP "\f(CWavr6\fR" 4
-.IX Item "avr6"
-\&\*(L"Enhanced\*(R" devices with 3\-byte \s-1PC,\s0 i.e. with more than 128@tie{}KiB of program memory.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmega2560\*(C'\fR, \f(CW\*(C`atmega2561\*(C'\fR.
-.ie n .IP """avrxmega2""" 4
-.el .IP "\f(CWavrxmega2\fR" 4
-.IX Item "avrxmega2"
-\&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 8@tie{}KiB and up to 64@tie{}KiB of program memory.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmxt112sl\*(C'\fR, \f(CW\*(C`atmxt224\*(C'\fR, \f(CW\*(C`atmxt224e\*(C'\fR, \f(CW\*(C`atmxt336s\*(C'\fR, \f(CW\*(C`atxmega16a4\*(C'\fR, \f(CW\*(C`atxmega16a4u\*(C'\fR, \f(CW\*(C`atxmega16c4\*(C'\fR, \f(CW\*(C`atxmega16d4\*(C'\fR, \f(CW\*(C`atxmega32a4\*(C'\fR, \f(CW\*(C`atxmega32a4u\*(C'\fR, \f(CW\*(C`atxmega32c4\*(C'\fR, \f(CW\*(C`atxmega32d4\*(C'\fR, \f(CW\*(C`atxmega32e5\*(C'\fR, \f(CW\*(C`atxmega32x1\*(C'\fR.
-.ie n .IP """avrxmega4""" 4
-.el .IP "\f(CWavrxmega4\fR" 4
-.IX Item "avrxmega4"
-\&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 64@tie{}KiB and up to 128@tie{}KiB of program memory.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega64a3\*(C'\fR, \f(CW\*(C`atxmega64a3u\*(C'\fR, \f(CW\*(C`atxmega64a4u\*(C'\fR, \f(CW\*(C`atxmega64b1\*(C'\fR, \f(CW\*(C`atxmega64b3\*(C'\fR, \f(CW\*(C`atxmega64c3\*(C'\fR, \f(CW\*(C`atxmega64d3\*(C'\fR, \f(CW\*(C`atxmega64d4\*(C'\fR.
-.ie n .IP """avrxmega5""" 4
-.el .IP "\f(CWavrxmega5\fR" 4
-.IX Item "avrxmega5"
-\&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 64@tie{}KiB and up to 128@tie{}KiB of program memory and more than 64@tie{}KiB of \s-1RAM.
-\&\s0\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega64a1\*(C'\fR, \f(CW\*(C`atxmega64a1u\*(C'\fR.
-.ie n .IP """avrxmega6""" 4
-.el .IP "\f(CWavrxmega6\fR" 4
-.IX Item "avrxmega6"
-\&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 128@tie{}KiB of program memory.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmxt540s\*(C'\fR, \f(CW\*(C`atmxt540sreva\*(C'\fR, \f(CW\*(C`atxmega128a3\*(C'\fR, \f(CW\*(C`atxmega128a3u\*(C'\fR, \f(CW\*(C`atxmega128b1\*(C'\fR, \f(CW\*(C`atxmega128b3\*(C'\fR, \f(CW\*(C`atxmega128c3\*(C'\fR, \f(CW\*(C`atxmega128d3\*(C'\fR, \f(CW\*(C`atxmega128d4\*(C'\fR, \f(CW\*(C`atxmega192a3\*(C'\fR, \f(CW\*(C`atxmega192a3u\*(C'\fR, \f(CW\*(C`atxmega192c3\*(C'\fR, \f(CW\*(C`atxmega192d3\*(C'\fR, \f(CW\*(C`atxmega256a3\*(C'\fR, \f(CW\*(C`atxmega256a3b\*(C'\fR, \f(CW\*(C`atxmega256a3bu\*(C'\fR, \f(CW\*(C`atxmega256a3u\*(C'\fR, \f(CW\*(C`atxmega256c3\*(C'\fR, \f(CW\*(C`atxmega256d3\*(C'\fR, \f(CW\*(C`atxmega384c3\*(C'\fR, \f(CW\*(C`atxmega384d3\*(C'\fR.
-.ie n .IP """avrxmega7""" 4
-.el .IP "\f(CWavrxmega7\fR" 4
-.IX Item "avrxmega7"
-\&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 128@tie{}KiB of program memory and more than 64@tie{}KiB of \s-1RAM.
-\&\s0\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega128a1\*(C'\fR, \f(CW\*(C`atxmega128a1u\*(C'\fR, \f(CW\*(C`atxmega128a4u\*(C'\fR.
-.ie n .IP """avr1""" 4
-.el .IP "\f(CWavr1\fR" 4
-.IX Item "avr1"
-This \s-1ISA\s0 is implemented by the minimal \s-1AVR\s0 core and supported for assembler only.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`attiny11\*(C'\fR, \f(CW\*(C`attiny12\*(C'\fR, \f(CW\*(C`attiny15\*(C'\fR, \f(CW\*(C`attiny28\*(C'\fR, \f(CW\*(C`at90s1200\*(C'\fR.
-.RE
-.RS 4
-.RE
-.IP "\fB\-maccumulate\-args\fR" 4
-.IX Item "-maccumulate-args"
-Accumulate outgoing function arguments and acquire/release the needed
-stack space for outgoing function arguments once in function
-prologue/epilogue. Without this option, outgoing arguments are pushed
-before calling a function and popped afterwards.
-.Sp
-Popping the arguments after the function call can be expensive on
-\&\s-1AVR\s0 so that accumulating the stack space might lead to smaller
-executables because arguments need not to be removed from the
-stack after such a function call.
-.Sp
-This option can lead to reduced code size for functions that perform
-several calls to functions that get their arguments on the stack like
-calls to printf-like functions.
-.IP "\fB\-mbranch\-cost=\fR\fIcost\fR" 4
-.IX Item "-mbranch-cost=cost"
-Set the branch costs for conditional branch instructions to
-\&\fIcost\fR. Reasonable values for \fIcost\fR are small, non-negative
-integers. The default branch cost is 0.
-.IP "\fB\-mcall\-prologues\fR" 4
-.IX Item "-mcall-prologues"
-Functions prologues/epilogues are expanded as calls to appropriate
-subroutines. Code size is smaller.
-.IP "\fB\-mint8\fR" 4
-.IX Item "-mint8"
-Assume \f(CW\*(C`int\*(C'\fR to be 8\-bit integer. This affects the sizes of all types: a
-\&\f(CW\*(C`char\*(C'\fR is 1 byte, an \f(CW\*(C`int\*(C'\fR is 1 byte, a \f(CW\*(C`long\*(C'\fR is 2 bytes,
-and \f(CW\*(C`long long\*(C'\fR is 4 bytes. Please note that this option does not
-conform to the C standards, but it results in smaller code
-size.
-.IP "\fB\-mno\-interrupts\fR" 4
-.IX Item "-mno-interrupts"
-Generated code is not compatible with hardware interrupts.
-Code size is smaller.
-.IP "\fB\-mrelax\fR" 4
-.IX Item "-mrelax"
-Try to replace \f(CW\*(C`CALL\*(C'\fR resp. \f(CW\*(C`JMP\*(C'\fR instruction by the shorter
-\&\f(CW\*(C`RCALL\*(C'\fR resp. \f(CW\*(C`RJMP\*(C'\fR instruction if applicable.
-Setting \f(CW\*(C`\-mrelax\*(C'\fR just adds the \f(CW\*(C`\-\-relax\*(C'\fR option to the
-linker command line when the linker is called.
-.Sp
-Jump relaxing is performed by the linker because jump offsets are not
-known before code is located. Therefore, the assembler code generated by the
-compiler is the same, but the instructions in the executable may
-differ from instructions in the assembler code.
-.Sp
-Relaxing must be turned on if linker stubs are needed, see the
-section on \f(CW\*(C`EIND\*(C'\fR and linker stubs below.
-.IP "\fB\-msp8\fR" 4
-.IX Item "-msp8"
-Treat the stack pointer register as an 8\-bit register,
-i.e. assume the high byte of the stack pointer is zero.
-In general, you don't need to set this option by hand.
-.Sp
-This option is used internally by the compiler to select and
-build multilibs for architectures \f(CW\*(C`avr2\*(C'\fR and \f(CW\*(C`avr25\*(C'\fR.
-These architectures mix devices with and without \f(CW\*(C`SPH\*(C'\fR.
-For any setting other than \f(CW\*(C`\-mmcu=avr2\*(C'\fR or \f(CW\*(C`\-mmcu=avr25\*(C'\fR
-the compiler driver will add or remove this option from the compiler
-proper's command line, because the compiler then knows if the device
-or architecture has an 8\-bit stack pointer and thus no \f(CW\*(C`SPH\*(C'\fR
-register or not.
-.IP "\fB\-mstrict\-X\fR" 4
-.IX Item "-mstrict-X"
-Use address register \f(CW\*(C`X\*(C'\fR in a way proposed by the hardware. This means
-that \f(CW\*(C`X\*(C'\fR is only used in indirect, post-increment or
-pre-decrement addressing.
-.Sp
-Without this option, the \f(CW\*(C`X\*(C'\fR register may be used in the same way
-as \f(CW\*(C`Y\*(C'\fR or \f(CW\*(C`Z\*(C'\fR which then is emulated by additional
-instructions.
-For example, loading a value with \f(CW\*(C`X+const\*(C'\fR addressing with a
-small non-negative \f(CW\*(C`const < 64\*(C'\fR to a register \fIRn\fR is
-performed as
-.Sp
-.Vb 3
-\& adiw r26, const ; X += const
-\& ld <Rn>, X ; <Rn> = *X
-\& sbiw r26, const ; X \-= const
-.Ve
-.IP "\fB\-mtiny\-stack\fR" 4
-.IX Item "-mtiny-stack"
-Only change the lower 8@tie{}bits of the stack pointer.
-.IP "\fB\-Waddr\-space\-convert\fR" 4
-.IX Item "-Waddr-space-convert"
-Warn about conversions between address spaces in the case where the
-resulting address space is not contained in the incoming address space.
-.PP
-\f(CW\*(C`EIND\*(C'\fR and Devices with more than 128 Ki Bytes of Flash
-.IX Subsection "EIND and Devices with more than 128 Ki Bytes of Flash"
-.PP
-Pointers in the implementation are 16@tie{}bits wide.
-The address of a function or label is represented as word address so
-that indirect jumps and calls can target any code address in the
-range of 64@tie{}Ki words.
-.PP
-In order to facilitate indirect jump on devices with more than 128@tie{}Ki
-bytes of program memory space, there is a special function register called
-\&\f(CW\*(C`EIND\*(C'\fR that serves as most significant part of the target address
-when \f(CW\*(C`EICALL\*(C'\fR or \f(CW\*(C`EIJMP\*(C'\fR instructions are used.
-.PP
-Indirect jumps and calls on these devices are handled as follows by
-the compiler and are subject to some limitations:
-.IP "\(bu" 4
-The compiler never sets \f(CW\*(C`EIND\*(C'\fR.
-.IP "\(bu" 4
-The compiler uses \f(CW\*(C`EIND\*(C'\fR implicitely in \f(CW\*(C`EICALL\*(C'\fR/\f(CW\*(C`EIJMP\*(C'\fR
-instructions or might read \f(CW\*(C`EIND\*(C'\fR directly in order to emulate an
-indirect call/jump by means of a \f(CW\*(C`RET\*(C'\fR instruction.
-.IP "\(bu" 4
-The compiler assumes that \f(CW\*(C`EIND\*(C'\fR never changes during the startup
-code or during the application. In particular, \f(CW\*(C`EIND\*(C'\fR is not
-saved/restored in function or interrupt service routine
-prologue/epilogue.
-.IP "\(bu" 4
-For indirect calls to functions and computed goto, the linker
-generates \fIstubs\fR. Stubs are jump pads sometimes also called
-\&\fItrampolines\fR. Thus, the indirect call/jump jumps to such a stub.
-The stub contains a direct jump to the desired address.
-.IP "\(bu" 4
-Linker relaxation must be turned on so that the linker will generate
-the stubs correctly an all situaltion. See the compiler option
-\&\f(CW\*(C`\-mrelax\*(C'\fR and the linler option \f(CW\*(C`\-\-relax\*(C'\fR.
-There are corner cases where the linker is supposed to generate stubs
-but aborts without relaxation and without a helpful error message.
-.IP "\(bu" 4
-The default linker script is arranged for code with \f(CW\*(C`EIND = 0\*(C'\fR.
-If code is supposed to work for a setup with \f(CW\*(C`EIND != 0\*(C'\fR, a custom
-linker script has to be used in order to place the sections whose
-name start with \f(CW\*(C`.trampolines\*(C'\fR into the segment where \f(CW\*(C`EIND\*(C'\fR
-points to.
-.IP "\(bu" 4
-The startup code from libgcc never sets \f(CW\*(C`EIND\*(C'\fR.
-Notice that startup code is a blend of code from libgcc and AVR-LibC.
-For the impact of AVR-LibC on \f(CW\*(C`EIND\*(C'\fR, see the
-AVR-LibC\ user\ manual (\f(CW\*(C`http://nongnu.org/avr\-libc/user\-manual/\*(C'\fR).
-.IP "\(bu" 4
-It is legitimate for user-specific startup code to set up \f(CW\*(C`EIND\*(C'\fR
-early, for example by means of initialization code located in
-section \f(CW\*(C`.init3\*(C'\fR. Such code runs prior to general startup code
-that initializes \s-1RAM\s0 and calls constructors, but after the bit
-of startup code from AVR-LibC that sets \f(CW\*(C`EIND\*(C'\fR to the segment
-where the vector table is located.
-.Sp
-.Vb 1
-\& #include <avr/io.h>
-\&
-\& static void
-\& _\|_attribute_\|_((section(".init3"),naked,used,no_instrument_function))
-\& init3_set_eind (void)
-\& {
-\& _\|_asm volatile ("ldi r24,pm_hh8(_\|_trampolines_start)\en\et"
-\& "out %i0,r24" :: "n" (&EIND) : "r24","memory");
-\& }
-.Ve
-.Sp
-The \f(CW\*(C`_\|_trampolines_start\*(C'\fR symbol is defined in the linker script.
-.IP "\(bu" 4
-Stubs are generated automatically by the linker if
-the following two conditions are met:
-.RS 4
-.ie n .IP "\-<The address of a label is taken by means of the ""gs"" modifier>" 4
-.el .IP "\-<The address of a label is taken by means of the \f(CWgs\fR modifier>" 4
-.IX Item "-<The address of a label is taken by means of the gs modifier>"
-(short for \fIgenerate stubs\fR) like so:
-.Sp
-.Vb 2
-\& LDI r24, lo8(gs(<func>))
-\& LDI r25, hi8(gs(<func>))
-.Ve
-.IP "\-<The final location of that label is in a code segment>" 4
-.IX Item "-<The final location of that label is in a code segment>"
-\&\fIoutside\fR the segment where the stubs are located.
-.RE
-.RS 4
-.RE
-.IP "\(bu" 4
-The compiler emits such \f(CW\*(C`gs\*(C'\fR modifiers for code labels in the
-following situations:
-.RS 4
-.IP "\-<Taking address of a function or code label.>" 4
-.IX Item "-<Taking address of a function or code label.>"
-.PD 0
-.IP "\-<Computed goto.>" 4
-.IX Item "-<Computed goto.>"
-.IP "\-<If prologue-save function is used, see \fB\-mcall\-prologues\fR>" 4
-.IX Item "-<If prologue-save function is used, see -mcall-prologues>"
-.PD
-command-line option.
-.IP "\-<Switch/case dispatch tables. If you do not want such dispatch>" 4
-.IX Item "-<Switch/case dispatch tables. If you do not want such dispatch>"
-tables you can specify the \fB\-fno\-jump\-tables\fR command-line option.
-.IP "\-<C and \*(C+ constructors/destructors called during startup/shutdown.>" 4
-.IX Item "-<C and constructors/destructors called during startup/shutdown.>"
-.PD 0
-.ie n .IP "\-<If the tools hit a ""gs()"" modifier explained above.>" 4
-.el .IP "\-<If the tools hit a \f(CWgs()\fR modifier explained above.>" 4
-.IX Item "-<If the tools hit a gs() modifier explained above.>"
-.RE
-.RS 4
-.RE
-.IP "\(bu" 4
-.PD
-Jumping to non-symbolic addresses like so is \fInot\fR supported:
-.Sp
-.Vb 5
-\& int main (void)
-\& {
-\& /* Call function at word address 0x2 */
-\& return ((int(*)(void)) 0x2)();
-\& }
-.Ve
-.Sp
-Instead, a stub has to be set up, i.e. the function has to be called
-through a symbol (\f(CW\*(C`func_4\*(C'\fR in the example):
-.Sp
-.Vb 3
-\& int main (void)
-\& {
-\& extern int func_4 (void);
-\&
-\& /* Call function at byte address 0x4 */
-\& return func_4();
-\& }
-.Ve
-.Sp
-and the application be linked with \f(CW\*(C`\-Wl,\-\-defsym,func_4=0x4\*(C'\fR.
-Alternatively, \f(CW\*(C`func_4\*(C'\fR can be defined in the linker script.
-.PP
-Handling of the \f(CW\*(C`RAMPD\*(C'\fR, \f(CW\*(C`RAMPX\*(C'\fR, \f(CW\*(C`RAMPY\*(C'\fR and \f(CW\*(C`RAMPZ\*(C'\fR Special Function Registers
-.IX Subsection "Handling of the RAMPD, RAMPX, RAMPY and RAMPZ Special Function Registers"
-.PP
-Some \s-1AVR\s0 devices support memories larger than the 64@tie{}KiB range
-that can be accessed with 16\-bit pointers. To access memory locations
-outside this 64@tie{}KiB range, the contentent of a \f(CW\*(C`RAMP\*(C'\fR
-register is used as high part of the address:
-The \f(CW\*(C`X\*(C'\fR, \f(CW\*(C`Y\*(C'\fR, \f(CW\*(C`Z\*(C'\fR address register is concatenated
-with the \f(CW\*(C`RAMPX\*(C'\fR, \f(CW\*(C`RAMPY\*(C'\fR, \f(CW\*(C`RAMPZ\*(C'\fR special function
-register, respectively, to get a wide address. Similarly,
-\&\f(CW\*(C`RAMPD\*(C'\fR is used together with direct addressing.
-.IP "\(bu" 4
-The startup code initializes the \f(CW\*(C`RAMP\*(C'\fR special function
-registers with zero.
-.IP "\(bu" 4
-If a \fB\s-1AVR\s0 Named Address Spaces,named address space\fR other than
-generic or \f(CW\*(C`_\|_flash\*(C'\fR is used, then \f(CW\*(C`RAMPZ\*(C'\fR is set
-as needed before the operation.
-.IP "\(bu" 4
-If the device supports \s-1RAM\s0 larger than 64@tie{}KiB and the compiler
-needs to change \f(CW\*(C`RAMPZ\*(C'\fR to accomplish an operation, \f(CW\*(C`RAMPZ\*(C'\fR
-is reset to zero after the operation.
-.IP "\(bu" 4
-If the device comes with a specific \f(CW\*(C`RAMP\*(C'\fR register, the \s-1ISR\s0
-prologue/epilogue saves/restores that \s-1SFR\s0 and initializes it with
-zero in case the \s-1ISR\s0 code might (implicitly) use it.
-.IP "\(bu" 4
-\&\s-1RAM\s0 larger than 64@tie{}KiB is not supported by \s-1GCC\s0 for \s-1AVR\s0 targets.
-If you use inline assembler to read from locations outside the
-16\-bit address range and change one of the \f(CW\*(C`RAMP\*(C'\fR registers,
-you must reset it to zero after the access.
-.PP
-\s-1AVR\s0 Built-in Macros
-.IX Subsection "AVR Built-in Macros"
-.PP
-\&\s-1GCC\s0 defines several built-in macros so that the user code can test
-for the presence or absence of features. Almost any of the following
-built-in macros are deduced from device capabilities and thus
-triggered by the \f(CW\*(C`\-mmcu=\*(C'\fR command-line option.
-.PP
-For even more AVR-specific built-in macros see
-\&\fB\s-1AVR\s0 Named Address Spaces\fR and \fB\s-1AVR\s0 Built-in Functions\fR.
-.ie n .IP """_\|_AVR_ARCH_\|_""" 4
-.el .IP "\f(CW_\|_AVR_ARCH_\|_\fR" 4
-.IX Item "__AVR_ARCH__"
-Build-in macro that resolves to a decimal number that identifies the
-architecture and depends on the \f(CW\*(C`\-mmcu=\f(CImcu\f(CW\*(C'\fR option.
-Possible values are:
-.Sp
-\&\f(CW2\fR, \f(CW25\fR, \f(CW3\fR, \f(CW31\fR, \f(CW35\fR,
-\&\f(CW4\fR, \f(CW5\fR, \f(CW51\fR, \f(CW6\fR, \f(CW102\fR, \f(CW104\fR,
-\&\f(CW105\fR, \f(CW106\fR, \f(CW107\fR
-.Sp
-for \fImcu\fR=\f(CW\*(C`avr2\*(C'\fR, \f(CW\*(C`avr25\*(C'\fR, \f(CW\*(C`avr3\*(C'\fR,
-\&\f(CW\*(C`avr31\*(C'\fR, \f(CW\*(C`avr35\*(C'\fR, \f(CW\*(C`avr4\*(C'\fR, \f(CW\*(C`avr5\*(C'\fR, \f(CW\*(C`avr51\*(C'\fR,
-\&\f(CW\*(C`avr6\*(C'\fR, \f(CW\*(C`avrxmega2\*(C'\fR, \f(CW\*(C`avrxmega4\*(C'\fR, \f(CW\*(C`avrxmega5\*(C'\fR,
-\&\f(CW\*(C`avrxmega6\*(C'\fR, \f(CW\*(C`avrxmega7\*(C'\fR, respectively.
-If \fImcu\fR specifies a device, this built-in macro is set
-accordingly. For example, with \f(CW\*(C`\-mmcu=atmega8\*(C'\fR the macro will be
-defined to \f(CW4\fR.
-.ie n .IP """_\|_AVR_\f(CIDevice\f(CW_\|_""" 4
-.el .IP "\f(CW_\|_AVR_\f(CIDevice\f(CW_\|_\fR" 4
-.IX Item "__AVR_Device__"
-Setting \f(CW\*(C`\-mmcu=\f(CIdevice\f(CW\*(C'\fR defines this built-in macro which reflects
-the device's name. For example, \f(CW\*(C`\-mmcu=atmega8\*(C'\fR defines the
-built-in macro \f(CW\*(C`_\|_AVR_ATmega8_\|_\*(C'\fR, \f(CW\*(C`\-mmcu=attiny261a\*(C'\fR defines
-\&\f(CW\*(C`_\|_AVR_ATtiny261A_\|_\*(C'\fR, etc.
-.Sp
-The built-in macros' names follow
-the scheme \f(CW\*(C`_\|_AVR_\f(CIDevice\f(CW_\|_\*(C'\fR where \fIDevice\fR is
-the device name as from the \s-1AVR\s0 user manual. The difference between
-\&\fIDevice\fR in the built-in macro and \fIdevice\fR in
-\&\f(CW\*(C`\-mmcu=\f(CIdevice\f(CW\*(C'\fR is that the latter is always lowercase.
-.Sp
-If \fIdevice\fR is not a device but only a core architecture like
-\&\f(CW\*(C`avr51\*(C'\fR, this macro will not be defined.
-.ie n .IP """_\|_AVR_XMEGA_\|_""" 4
-.el .IP "\f(CW_\|_AVR_XMEGA_\|_\fR" 4
-.IX Item "__AVR_XMEGA__"
-The device / architecture belongs to the \s-1XMEGA\s0 family of devices.
-.ie n .IP """_\|_AVR_HAVE_ELPM_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_ELPM_\|_\fR" 4
-.IX Item "__AVR_HAVE_ELPM__"
-The device has the the \f(CW\*(C`ELPM\*(C'\fR instruction.
-.ie n .IP """_\|_AVR_HAVE_ELPMX_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_ELPMX_\|_\fR" 4
-.IX Item "__AVR_HAVE_ELPMX__"
-The device has the \f(CW\*(C`ELPM R\f(CIn\f(CW,Z\*(C'\fR and \f(CW\*(C`ELPM
-R\f(CIn\f(CW,Z+\*(C'\fR instructions.
-.ie n .IP """_\|_AVR_HAVE_MOVW_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_MOVW_\|_\fR" 4
-.IX Item "__AVR_HAVE_MOVW__"
-The device has the \f(CW\*(C`MOVW\*(C'\fR instruction to perform 16\-bit
-register-register moves.
-.ie n .IP """_\|_AVR_HAVE_LPMX_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_LPMX_\|_\fR" 4
-.IX Item "__AVR_HAVE_LPMX__"
-The device has the \f(CW\*(C`LPM R\f(CIn\f(CW,Z\*(C'\fR and
-\&\f(CW\*(C`LPM R\f(CIn\f(CW,Z+\*(C'\fR instructions.
-.ie n .IP """_\|_AVR_HAVE_MUL_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_MUL_\|_\fR" 4
-.IX Item "__AVR_HAVE_MUL__"
-The device has a hardware multiplier.
-.ie n .IP """_\|_AVR_HAVE_JMP_CALL_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_JMP_CALL_\|_\fR" 4
-.IX Item "__AVR_HAVE_JMP_CALL__"
-The device has the \f(CW\*(C`JMP\*(C'\fR and \f(CW\*(C`CALL\*(C'\fR instructions.
-This is the case for devices with at least 16@tie{}KiB of program
-memory.
-.ie n .IP """_\|_AVR_HAVE_EIJMP_EICALL_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_EIJMP_EICALL_\|_\fR" 4
-.IX Item "__AVR_HAVE_EIJMP_EICALL__"
-.PD 0
-.ie n .IP """_\|_AVR_3_BYTE_PC_\|_""" 4
-.el .IP "\f(CW_\|_AVR_3_BYTE_PC_\|_\fR" 4
-.IX Item "__AVR_3_BYTE_PC__"
-.PD
-The device has the \f(CW\*(C`EIJMP\*(C'\fR and \f(CW\*(C`EICALL\*(C'\fR instructions.
-This is the case for devices with more than 128@tie{}KiB of program memory.
-This also means that the program counter
-(\s-1PC\s0) is 3@tie{}bytes wide.
-.ie n .IP """_\|_AVR_2_BYTE_PC_\|_""" 4
-.el .IP "\f(CW_\|_AVR_2_BYTE_PC_\|_\fR" 4
-.IX Item "__AVR_2_BYTE_PC__"
-The program counter (\s-1PC\s0) is 2@tie{}bytes wide. This is the case for devices
-with up to 128@tie{}KiB of program memory.
-.ie n .IP """_\|_AVR_HAVE_8BIT_SP_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_8BIT_SP_\|_\fR" 4
-.IX Item "__AVR_HAVE_8BIT_SP__"
-.PD 0
-.ie n .IP """_\|_AVR_HAVE_16BIT_SP_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_16BIT_SP_\|_\fR" 4
-.IX Item "__AVR_HAVE_16BIT_SP__"
-.PD
-The stack pointer (\s-1SP\s0) register is treated as 8\-bit respectively
-16\-bit register by the compiler.
-The definition of these macros is affected by \f(CW\*(C`\-mtiny\-stack\*(C'\fR.
-.ie n .IP """_\|_AVR_HAVE_SPH_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_SPH_\|_\fR" 4
-.IX Item "__AVR_HAVE_SPH__"
-.PD 0
-.ie n .IP """_\|_AVR_SP8_\|_""" 4
-.el .IP "\f(CW_\|_AVR_SP8_\|_\fR" 4
-.IX Item "__AVR_SP8__"
-.PD
-The device has the \s-1SPH \s0(high part of stack pointer) special function
-register or has an 8\-bit stack pointer, respectively.
-The definition of these macros is affected by \f(CW\*(C`\-mmcu=\*(C'\fR and
-in the cases of \f(CW\*(C`\-mmcu=avr2\*(C'\fR and \f(CW\*(C`\-mmcu=avr25\*(C'\fR also
-by \f(CW\*(C`\-msp8\*(C'\fR.
-.ie n .IP """_\|_AVR_HAVE_RAMPD_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_RAMPD_\|_\fR" 4
-.IX Item "__AVR_HAVE_RAMPD__"
-.PD 0
-.ie n .IP """_\|_AVR_HAVE_RAMPX_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_RAMPX_\|_\fR" 4
-.IX Item "__AVR_HAVE_RAMPX__"
-.ie n .IP """_\|_AVR_HAVE_RAMPY_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_RAMPY_\|_\fR" 4
-.IX Item "__AVR_HAVE_RAMPY__"
-.ie n .IP """_\|_AVR_HAVE_RAMPZ_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_RAMPZ_\|_\fR" 4
-.IX Item "__AVR_HAVE_RAMPZ__"
-.PD
-The device has the \f(CW\*(C`RAMPD\*(C'\fR, \f(CW\*(C`RAMPX\*(C'\fR, \f(CW\*(C`RAMPY\*(C'\fR,
-\&\f(CW\*(C`RAMPZ\*(C'\fR special function register, respectively.
-.ie n .IP """_\|_NO_INTERRUPTS_\|_""" 4
-.el .IP "\f(CW_\|_NO_INTERRUPTS_\|_\fR" 4
-.IX Item "__NO_INTERRUPTS__"
-This macro reflects the \f(CW\*(C`\-mno\-interrupts\*(C'\fR command line option.
-.ie n .IP """_\|_AVR_ERRATA_SKIP_\|_""" 4
-.el .IP "\f(CW_\|_AVR_ERRATA_SKIP_\|_\fR" 4
-.IX Item "__AVR_ERRATA_SKIP__"
-.PD 0
-.ie n .IP """_\|_AVR_ERRATA_SKIP_JMP_CALL_\|_""" 4
-.el .IP "\f(CW_\|_AVR_ERRATA_SKIP_JMP_CALL_\|_\fR" 4
-.IX Item "__AVR_ERRATA_SKIP_JMP_CALL__"
-.PD
-Some \s-1AVR\s0 devices (\s-1AT90S8515,\s0 ATmega103) must not skip 32\-bit
-instructions because of a hardware erratum. Skip instructions are
-\&\f(CW\*(C`SBRS\*(C'\fR, \f(CW\*(C`SBRC\*(C'\fR, \f(CW\*(C`SBIS\*(C'\fR, \f(CW\*(C`SBIC\*(C'\fR and \f(CW\*(C`CPSE\*(C'\fR.
-The second macro is only defined if \f(CW\*(C`_\|_AVR_HAVE_JMP_CALL_\|_\*(C'\fR is also
-set.
-.ie n .IP """_\|_AVR_ISA_RMW_\|_""" 4
-.el .IP "\f(CW_\|_AVR_ISA_RMW_\|_\fR" 4
-.IX Item "__AVR_ISA_RMW__"
-The device has Read-Modify-Write instructions (\s-1XCH, LAC, LAS\s0 and \s-1LAT\s0).
-.ie n .IP """_\|_AVR_SFR_OFFSET_\|_=\f(CIoffset\f(CW""" 4
-.el .IP "\f(CW_\|_AVR_SFR_OFFSET_\|_=\f(CIoffset\f(CW\fR" 4
-.IX Item "__AVR_SFR_OFFSET__=offset"
-Instructions that can address I/O special function registers directly
-like \f(CW\*(C`IN\*(C'\fR, \f(CW\*(C`OUT\*(C'\fR, \f(CW\*(C`SBI\*(C'\fR, etc. may use a different
-address as if addressed by an instruction to access \s-1RAM\s0 like \f(CW\*(C`LD\*(C'\fR
-or \f(CW\*(C`STS\*(C'\fR. This offset depends on the device architecture and has
-to be subtracted from the \s-1RAM\s0 address in order to get the
-respective I/O@tie{}address.
-.ie n .IP """_\|_WITH_AVRLIBC_\|_""" 4
-.el .IP "\f(CW_\|_WITH_AVRLIBC_\|_\fR" 4
-.IX Item "__WITH_AVRLIBC__"
-The compiler is configured to be used together with AVR-Libc.
-See the \f(CW\*(C`\-\-with\-avrlibc\*(C'\fR configure option.
-.PP
-\fIBlackfin Options\fR
-.IX Subsection "Blackfin Options"
-.IP "\fB\-mcpu=\fR\fIcpu\fR[\fB\-\fR\fIsirevision\fR]" 4
-.IX Item "-mcpu=cpu[-sirevision]"
-Specifies the name of the target Blackfin processor. Currently, \fIcpu\fR
-can be one of \fBbf512\fR, \fBbf514\fR, \fBbf516\fR, \fBbf518\fR,
-\&\fBbf522\fR, \fBbf523\fR, \fBbf524\fR, \fBbf525\fR, \fBbf526\fR,
-\&\fBbf527\fR, \fBbf531\fR, \fBbf532\fR, \fBbf533\fR,
-\&\fBbf534\fR, \fBbf536\fR, \fBbf537\fR, \fBbf538\fR, \fBbf539\fR,
-\&\fBbf542\fR, \fBbf544\fR, \fBbf547\fR, \fBbf548\fR, \fBbf549\fR,
-\&\fBbf542m\fR, \fBbf544m\fR, \fBbf547m\fR, \fBbf548m\fR, \fBbf549m\fR,
-\&\fBbf561\fR, \fBbf592\fR.
-.Sp
-The optional \fIsirevision\fR specifies the silicon revision of the target
-Blackfin processor. Any workarounds available for the targeted silicon revision
-are enabled. If \fIsirevision\fR is \fBnone\fR, no workarounds are enabled.
-If \fIsirevision\fR is \fBany\fR, all workarounds for the targeted processor
-are enabled. The \f(CW\*(C`_\|_SILICON_REVISION_\|_\*(C'\fR macro is defined to two
-hexadecimal digits representing the major and minor numbers in the silicon
-revision. If \fIsirevision\fR is \fBnone\fR, the \f(CW\*(C`_\|_SILICON_REVISION_\|_\*(C'\fR
-is not defined. If \fIsirevision\fR is \fBany\fR, the
-\&\f(CW\*(C`_\|_SILICON_REVISION_\|_\*(C'\fR is defined to be \f(CW0xffff\fR.
-If this optional \fIsirevision\fR is not used, \s-1GCC\s0 assumes the latest known
-silicon revision of the targeted Blackfin processor.
-.Sp
-\&\s-1GCC\s0 defines a preprocessor macro for the specified \fIcpu\fR.
-For the \fBbfin-elf\fR toolchain, this option causes the hardware \s-1BSP\s0
-provided by libgloss to be linked in if \fB\-msim\fR is not given.
-.Sp
-Without this option, \fBbf532\fR is used as the processor by default.
-.Sp
-Note that support for \fBbf561\fR is incomplete. For \fBbf561\fR,
-only the preprocessor macro is defined.
-.IP "\fB\-msim\fR" 4
-.IX Item "-msim"
-Specifies that the program will be run on the simulator. This causes
-the simulator \s-1BSP\s0 provided by libgloss to be linked in. This option
-has effect only for \fBbfin-elf\fR toolchain.
-Certain other options, such as \fB\-mid\-shared\-library\fR and
-\&\fB\-mfdpic\fR, imply \fB\-msim\fR.
-.IP "\fB\-momit\-leaf\-frame\-pointer\fR" 4
-.IX Item "-momit-leaf-frame-pointer"
-Don't keep the frame pointer in a register for leaf functions. This
-avoids the instructions to save, set up and restore frame pointers and
-makes an extra register available in leaf functions. The option
-\&\fB\-fomit\-frame\-pointer\fR removes the frame pointer for all functions,
-which might make debugging harder.
-.IP "\fB\-mspecld\-anomaly\fR" 4
-.IX Item "-mspecld-anomaly"
-When enabled, the compiler ensures that the generated code does not
-contain speculative loads after jump instructions. If this option is used,
-\&\f(CW\*(C`_\|_WORKAROUND_SPECULATIVE_LOADS\*(C'\fR is defined.
-.IP "\fB\-mno\-specld\-anomaly\fR" 4
-.IX Item "-mno-specld-anomaly"
-Don't generate extra code to prevent speculative loads from occurring.
-.IP "\fB\-mcsync\-anomaly\fR" 4
-.IX Item "-mcsync-anomaly"
-When enabled, the compiler ensures that the generated code does not
-contain \s-1CSYNC\s0 or \s-1SSYNC\s0 instructions too soon after conditional branches.
-If this option is used, \f(CW\*(C`_\|_WORKAROUND_SPECULATIVE_SYNCS\*(C'\fR is defined.
-.IP "\fB\-mno\-csync\-anomaly\fR" 4
-.IX Item "-mno-csync-anomaly"
-Don't generate extra code to prevent \s-1CSYNC\s0 or \s-1SSYNC\s0 instructions from
-occurring too soon after a conditional branch.
-.IP "\fB\-mlow\-64k\fR" 4
-.IX Item "-mlow-64k"
-When enabled, the compiler is free to take advantage of the knowledge that
-the entire program fits into the low 64k of memory.
-.IP "\fB\-mno\-low\-64k\fR" 4
-.IX Item "-mno-low-64k"
-Assume that the program is arbitrarily large. This is the default.
-.IP "\fB\-mstack\-check\-l1\fR" 4
-.IX Item "-mstack-check-l1"
-Do stack checking using information placed into L1 scratchpad memory by the
-uClinux kernel.
-.IP "\fB\-mid\-shared\-library\fR" 4
-.IX Item "-mid-shared-library"
-Generate code that supports shared libraries via the library \s-1ID\s0 method.
-This allows for execute in place and shared libraries in an environment
-without virtual memory management. This option implies \fB\-fPIC\fR.
-With a \fBbfin-elf\fR target, this option implies \fB\-msim\fR.
-.IP "\fB\-mno\-id\-shared\-library\fR" 4
-.IX Item "-mno-id-shared-library"
-Generate code that doesn't assume ID-based shared libraries are being used.
-This is the default.
-.IP "\fB\-mleaf\-id\-shared\-library\fR" 4
-.IX Item "-mleaf-id-shared-library"
-Generate code that supports shared libraries via the library \s-1ID\s0 method,
-but assumes that this library or executable won't link against any other
-\&\s-1ID\s0 shared libraries. That allows the compiler to use faster code for jumps
-and calls.
-.IP "\fB\-mno\-leaf\-id\-shared\-library\fR" 4
-.IX Item "-mno-leaf-id-shared-library"
-Do not assume that the code being compiled won't link against any \s-1ID\s0 shared
-libraries. Slower code is generated for jump and call insns.
-.IP "\fB\-mshared\-library\-id=n\fR" 4
-.IX Item "-mshared-library-id=n"
-Specifies the identification number of the ID-based shared library being
-compiled. Specifying a value of 0 generates more compact code; specifying
-other values forces the allocation of that number to the current
-library but is no more space\- or time-efficient than omitting this option.
-.IP "\fB\-msep\-data\fR" 4
-.IX Item "-msep-data"
-Generate code that allows the data segment to be located in a different
-area of memory from the text segment. This allows for execute in place in
-an environment without virtual memory management by eliminating relocations
-against the text section.
-.IP "\fB\-mno\-sep\-data\fR" 4
-.IX Item "-mno-sep-data"
-Generate code that assumes that the data segment follows the text segment.
-This is the default.
-.IP "\fB\-mlong\-calls\fR" 4
-.IX Item "-mlong-calls"
-.PD 0
-.IP "\fB\-mno\-long\-calls\fR" 4
-.IX Item "-mno-long-calls"
-.PD
-Tells the compiler to perform function calls by first loading the
-address of the function into a register and then performing a subroutine
-call on this register. This switch is needed if the target function
-lies outside of the 24\-bit addressing range of the offset-based
-version of subroutine call instruction.
-.Sp
-This feature is not enabled by default. Specifying
-\&\fB\-mno\-long\-calls\fR restores the default behavior. Note these
-switches have no effect on how the compiler generates code to handle
-function calls via function pointers.
-.IP "\fB\-mfast\-fp\fR" 4
-.IX Item "-mfast-fp"
-Link with the fast floating-point library. This library relaxes some of
-the \s-1IEEE\s0 floating-point standard's rules for checking inputs against
-Not-a-Number (\s-1NAN\s0), in the interest of performance.
-.IP "\fB\-minline\-plt\fR" 4
-.IX Item "-minline-plt"
-Enable inlining of \s-1PLT\s0 entries in function calls to functions that are
-not known to bind locally. It has no effect without \fB\-mfdpic\fR.
-.IP "\fB\-mmulticore\fR" 4
-.IX Item "-mmulticore"
-Build a standalone application for multicore Blackfin processors.
-This option causes proper start files and link scripts supporting
-multicore to be used, and defines the macro \f(CW\*(C`_\|_BFIN_MULTICORE\*(C'\fR.
-It can only be used with \fB\-mcpu=bf561\fR[\fB\-\fR\fIsirevision\fR].
-.Sp
-This option can be used with \fB\-mcorea\fR or \fB\-mcoreb\fR, which
-selects the one-application-per-core programming model. Without
-\&\fB\-mcorea\fR or \fB\-mcoreb\fR, the single\-application/dual\-core
-programming model is used. In this model, the main function of Core B
-should be named as \f(CW\*(C`coreb_main\*(C'\fR.
-.Sp
-If this option is not used, the single-core application programming
-model is used.
-.IP "\fB\-mcorea\fR" 4
-.IX Item "-mcorea"
-Build a standalone application for Core A of \s-1BF561\s0 when using
-the one-application-per-core programming model. Proper start files
-and link scripts are used to support Core A, and the macro
-\&\f(CW\*(C`_\|_BFIN_COREA\*(C'\fR is defined.
-This option can only be used in conjunction with \fB\-mmulticore\fR.
-.IP "\fB\-mcoreb\fR" 4
-.IX Item "-mcoreb"
-Build a standalone application for Core B of \s-1BF561\s0 when using
-the one-application-per-core programming model. Proper start files
-and link scripts are used to support Core B, and the macro
-\&\f(CW\*(C`_\|_BFIN_COREB\*(C'\fR is defined. When this option is used, \f(CW\*(C`coreb_main\*(C'\fR
-should be used instead of \f(CW\*(C`main\*(C'\fR.
-This option can only be used in conjunction with \fB\-mmulticore\fR.
-.IP "\fB\-msdram\fR" 4
-.IX Item "-msdram"
-Build a standalone application for \s-1SDRAM.\s0 Proper start files and
-link scripts are used to put the application into \s-1SDRAM,\s0 and the macro
-\&\f(CW\*(C`_\|_BFIN_SDRAM\*(C'\fR is defined.
-The loader should initialize \s-1SDRAM\s0 before loading the application.
-.IP "\fB\-micplb\fR" 4
-.IX Item "-micplb"
-Assume that ICPLBs are enabled at run time. This has an effect on certain
-anomaly workarounds. For Linux targets, the default is to assume ICPLBs
-are enabled; for standalone applications the default is off.
-.PP
-\fIC6X Options\fR
-.IX Subsection "C6X Options"
-.IP "\fB\-march=\fR\fIname\fR" 4
-.IX Item "-march=name"
-This specifies the name of the target architecture. \s-1GCC\s0 uses this
-name to determine what kind of instructions it can emit when generating
-assembly code. Permissible names are: \fBc62x\fR,
-\&\fBc64x\fR, \fBc64x+\fR, \fBc67x\fR, \fBc67x+\fR, \fBc674x\fR.
-.IP "\fB\-mbig\-endian\fR" 4
-.IX Item "-mbig-endian"
-Generate code for a big-endian target.
-.IP "\fB\-mlittle\-endian\fR" 4
-.IX Item "-mlittle-endian"
-Generate code for a little-endian target. This is the default.
-.IP "\fB\-msim\fR" 4
-.IX Item "-msim"
-Choose startup files and linker script suitable for the simulator.
-.IP "\fB\-msdata=default\fR" 4
-.IX Item "-msdata=default"
-Put small global and static data in the \fB.neardata\fR section,
-which is pointed to by register \f(CW\*(C`B14\*(C'\fR. Put small uninitialized
-global and static data in the \fB.bss\fR section, which is adjacent
-to the \fB.neardata\fR section. Put small read-only data into the
-\&\fB.rodata\fR section. The corresponding sections used for large
-pieces of data are \fB.fardata\fR, \fB.far\fR and \fB.const\fR.
-.IP "\fB\-msdata=all\fR" 4
-.IX Item "-msdata=all"
-Put all data, not just small objects, into the sections reserved for
-small data, and use addressing relative to the \f(CW\*(C`B14\*(C'\fR register to
-access them.
-.IP "\fB\-msdata=none\fR" 4
-.IX Item "-msdata=none"
-Make no use of the sections reserved for small data, and use absolute
-addresses to access all data. Put all initialized global and static
-data in the \fB.fardata\fR section, and all uninitialized data in the
-\&\fB.far\fR section. Put all constant data into the \fB.const\fR
-section.
-.PP
-\fI\s-1CRIS\s0 Options\fR
-.IX Subsection "CRIS Options"
-.PP
-These options are defined specifically for the \s-1CRIS\s0 ports.
-.IP "\fB\-march=\fR\fIarchitecture-type\fR" 4
-.IX Item "-march=architecture-type"
-.PD 0
-.IP "\fB\-mcpu=\fR\fIarchitecture-type\fR" 4
-.IX Item "-mcpu=architecture-type"
-.PD
-Generate code for the specified architecture. The choices for
-\&\fIarchitecture-type\fR are \fBv3\fR, \fBv8\fR and \fBv10\fR for
-respectively \s-1ETRAX\s0\ 4, \s-1ETRAX\s0\ 100, and \s-1ETRAX\s0\ 100\ \s-1LX.\s0
-Default is \fBv0\fR except for cris-axis-linux-gnu, where the default is
-\&\fBv10\fR.
-.IP "\fB\-mtune=\fR\fIarchitecture-type\fR" 4
-.IX Item "-mtune=architecture-type"
-Tune to \fIarchitecture-type\fR everything applicable about the generated
-code, except for the \s-1ABI\s0 and the set of available instructions. The
-choices for \fIarchitecture-type\fR are the same as for
-\&\fB\-march=\fR\fIarchitecture-type\fR.
-.IP "\fB\-mmax\-stack\-frame=\fR\fIn\fR" 4
-.IX Item "-mmax-stack-frame=n"
-Warn when the stack frame of a function exceeds \fIn\fR bytes.
-.IP "\fB\-metrax4\fR" 4
-.IX Item "-metrax4"
-.PD 0
-.IP "\fB\-metrax100\fR" 4
-.IX Item "-metrax100"
-.PD
-The options \fB\-metrax4\fR and \fB\-metrax100\fR are synonyms for
-\&\fB\-march=v3\fR and \fB\-march=v8\fR respectively.
-.IP "\fB\-mmul\-bug\-workaround\fR" 4
-.IX Item "-mmul-bug-workaround"
-.PD 0
-.IP "\fB\-mno\-mul\-bug\-workaround\fR" 4
-.IX Item "-mno-mul-bug-workaround"
-.PD
-Work around a bug in the \f(CW\*(C`muls\*(C'\fR and \f(CW\*(C`mulu\*(C'\fR instructions for \s-1CPU\s0
-models where it applies. This option is active by default.
-.IP "\fB\-mpdebug\fR" 4
-.IX Item "-mpdebug"
-Enable CRIS-specific verbose debug-related information in the assembly
-code. This option also has the effect of turning off the \fB#NO_APP\fR
-formatted-code indicator to the assembler at the beginning of the
-assembly file.
-.IP "\fB\-mcc\-init\fR" 4
-.IX Item "-mcc-init"
-Do not use condition-code results from previous instruction; always emit
-compare and test instructions before use of condition codes.
-.IP "\fB\-mno\-side\-effects\fR" 4
-.IX Item "-mno-side-effects"
-Do not emit instructions with side effects in addressing modes other than
-post-increment.
-.IP "\fB\-mstack\-align\fR" 4
-.IX Item "-mstack-align"
-.PD 0
-.IP "\fB\-mno\-stack\-align\fR" 4
-.IX Item "-mno-stack-align"
-.IP "\fB\-mdata\-align\fR" 4
-.IX Item "-mdata-align"
-.IP "\fB\-mno\-data\-align\fR" 4
-.IX Item "-mno-data-align"
-.IP "\fB\-mconst\-align\fR" 4
-.IX Item "-mconst-align"
-.IP "\fB\-mno\-const\-align\fR" 4
-.IX Item "-mno-const-align"
-.PD
-These options (\fBno\-\fR options) arrange (eliminate arrangements) for the
-stack frame, individual data and constants to be aligned for the maximum
-single data access size for the chosen \s-1CPU\s0 model. The default is to
-arrange for 32\-bit alignment. \s-1ABI\s0 details such as structure layout are
-not affected by these options.
-.IP "\fB\-m32\-bit\fR" 4
-.IX Item "-m32-bit"
-.PD 0
-.IP "\fB\-m16\-bit\fR" 4
-.IX Item "-m16-bit"
-.IP "\fB\-m8\-bit\fR" 4
-.IX Item "-m8-bit"
-.PD
-Similar to the stack\- data\- and const-align options above, these options
-arrange for stack frame, writable data and constants to all be 32\-bit,
-16\-bit or 8\-bit aligned. The default is 32\-bit alignment.
-.IP "\fB\-mno\-prologue\-epilogue\fR" 4
-.IX Item "-mno-prologue-epilogue"
-.PD 0
-.IP "\fB\-mprologue\-epilogue\fR" 4
-.IX Item "-mprologue-epilogue"
-.PD
-With \fB\-mno\-prologue\-epilogue\fR, the normal function prologue and
-epilogue which set up the stack frame are omitted and no return
-instructions or return sequences are generated in the code. Use this
-option only together with visual inspection of the compiled code: no
-warnings or errors are generated when call-saved registers must be saved,
-or storage for local variables needs to be allocated.
-.IP "\fB\-mno\-gotplt\fR" 4
-.IX Item "-mno-gotplt"
-.PD 0
-.IP "\fB\-mgotplt\fR" 4
-.IX Item "-mgotplt"
-.PD
-With \fB\-fpic\fR and \fB\-fPIC\fR, don't generate (do generate)
-instruction sequences that load addresses for functions from the \s-1PLT\s0 part
-of the \s-1GOT\s0 rather than (traditional on other architectures) calls to the
-\&\s-1PLT. \s0 The default is \fB\-mgotplt\fR.
-.IP "\fB\-melf\fR" 4
-.IX Item "-melf"
-Legacy no-op option only recognized with the cris-axis-elf and
-cris-axis-linux-gnu targets.
-.IP "\fB\-mlinux\fR" 4
-.IX Item "-mlinux"
-Legacy no-op option only recognized with the cris-axis-linux-gnu target.
-.IP "\fB\-sim\fR" 4
-.IX Item "-sim"
-This option, recognized for the cris-axis-elf, arranges
-to link with input-output functions from a simulator library. Code,
-initialized data and zero-initialized data are allocated consecutively.
-.IP "\fB\-sim2\fR" 4
-.IX Item "-sim2"
-Like \fB\-sim\fR, but pass linker options to locate initialized data at
-0x40000000 and zero-initialized data at 0x80000000.
-.PP
-\fI\s-1CR16\s0 Options\fR
-.IX Subsection "CR16 Options"
-.PP
-These options are defined specifically for the \s-1CR16\s0 ports.
-.IP "\fB\-mmac\fR" 4
-.IX Item "-mmac"
-Enable the use of multiply-accumulate instructions. Disabled by default.
-.IP "\fB\-mcr16cplus\fR" 4
-.IX Item "-mcr16cplus"
-.PD 0
-.IP "\fB\-mcr16c\fR" 4
-.IX Item "-mcr16c"
-.PD
-Generate code for \s-1CR16C\s0 or \s-1CR16C+\s0 architecture. \s-1CR16C+\s0 architecture
-is default.
-.IP "\fB\-msim\fR" 4
-.IX Item "-msim"
-Links the library libsim.a which is in compatible with simulator. Applicable
-to \s-1ELF\s0 compiler only.
-.IP "\fB\-mint32\fR" 4
-.IX Item "-mint32"
-Choose integer type as 32\-bit wide.
-.IP "\fB\-mbit\-ops\fR" 4
-.IX Item "-mbit-ops"
-Generates \f(CW\*(C`sbit\*(C'\fR/\f(CW\*(C`cbit\*(C'\fR instructions for bit manipulations.
-.IP "\fB\-mdata\-model=\fR\fImodel\fR" 4
-.IX Item "-mdata-model=model"
-Choose a data model. The choices for \fImodel\fR are \fBnear\fR,
-\&\fBfar\fR or \fBmedium\fR. \fBmedium\fR is default.
-However, \fBfar\fR is not valid with \fB\-mcr16c\fR, as the
-\&\s-1CR16C\s0 architecture does not support the far data model.
-.PP
-\fIDarwin Options\fR
-.IX Subsection "Darwin Options"
-.PP
-These options are defined for all architectures running the Darwin operating
-system.
-.PP
-\&\s-1FSF GCC\s0 on Darwin does not create \*(L"fat\*(R" object files; it creates
-an object file for the single architecture that \s-1GCC\s0 was built to
-target. Apple's \s-1GCC\s0 on Darwin does create \*(L"fat\*(R" files if multiple
-\&\fB\-arch\fR options are used; it does so by running the compiler or
-linker multiple times and joining the results together with
-\&\fIlipo\fR.
-.PP
-The subtype of the file created (like \fBppc7400\fR or \fBppc970\fR or
-\&\fBi686\fR) is determined by the flags that specify the \s-1ISA\s0
-that \s-1GCC\s0 is targeting, like \fB\-mcpu\fR or \fB\-march\fR. The
-\&\fB\-force_cpusubtype_ALL\fR option can be used to override this.
-.PP
-The Darwin tools vary in their behavior when presented with an \s-1ISA\s0
-mismatch. The assembler, \fIas\fR, only permits instructions to
-be used that are valid for the subtype of the file it is generating,
-so you cannot put 64\-bit instructions in a \fBppc750\fR object file.
-The linker for shared libraries, \fI/usr/bin/libtool\fR, fails
-and prints an error if asked to create a shared library with a less
-restrictive subtype than its input files (for instance, trying to put
-a \fBppc970\fR object file in a \fBppc7400\fR library). The linker
-for executables, \fBld\fR, quietly gives the executable the most
-restrictive subtype of any of its input files.
-.IP "\fB\-F\fR\fIdir\fR" 4
-.IX Item "-Fdir"
-Add the framework directory \fIdir\fR to the head of the list of
-directories to be searched for header files. These directories are
-interleaved with those specified by \fB\-I\fR options and are
-scanned in a left-to-right order.
-.Sp
-A framework directory is a directory with frameworks in it. A
-framework is a directory with a \fIHeaders\fR and/or
-\&\fIPrivateHeaders\fR directory contained directly in it that ends
-in \fI.framework\fR. The name of a framework is the name of this
-directory excluding the \fI.framework\fR. Headers associated with
-the framework are found in one of those two directories, with
-\&\fIHeaders\fR being searched first. A subframework is a framework
-directory that is in a framework's \fIFrameworks\fR directory.
-Includes of subframework headers can only appear in a header of a
-framework that contains the subframework, or in a sibling subframework
-header. Two subframeworks are siblings if they occur in the same
-framework. A subframework should not have the same name as a
-framework; a warning is issued if this is violated. Currently a
-subframework cannot have subframeworks; in the future, the mechanism
-may be extended to support this. The standard frameworks can be found
-in \fI/System/Library/Frameworks\fR and
-\&\fI/Library/Frameworks\fR. An example include looks like
-\&\f(CW\*(C`#include <Framework/header.h>\*(C'\fR, where \fIFramework\fR denotes
-the name of the framework and \fIheader.h\fR is found in the
-\&\fIPrivateHeaders\fR or \fIHeaders\fR directory.
-.IP "\fB\-iframework\fR\fIdir\fR" 4
-.IX Item "-iframeworkdir"
-Like \fB\-F\fR except the directory is a treated as a system
-directory. The main difference between this \fB\-iframework\fR and
-\&\fB\-F\fR is that with \fB\-iframework\fR the compiler does not
-warn about constructs contained within header files found via
-\&\fIdir\fR. This option is valid only for the C family of languages.
-.IP "\fB\-gused\fR" 4
-.IX Item "-gused"
-Emit debugging information for symbols that are used. For stabs
-debugging format, this enables \fB\-feliminate\-unused\-debug\-symbols\fR.
-This is by default \s-1ON.\s0
-.IP "\fB\-gfull\fR" 4
-.IX Item "-gfull"
-Emit debugging information for all symbols and types.
-.IP "\fB\-mmacosx\-version\-min=\fR\fIversion\fR" 4
-.IX Item "-mmacosx-version-min=version"
-The earliest version of MacOS X that this executable will run on
-is \fIversion\fR. Typical values of \fIversion\fR include \f(CW10.1\fR,
-\&\f(CW10.2\fR, and \f(CW10.3.9\fR.
-.Sp
-If the compiler was built to use the system's headers by default,
-then the default for this option is the system version on which the
-compiler is running, otherwise the default is to make choices that
-are compatible with as many systems and code bases as possible.
-.IP "\fB\-mkernel\fR" 4
-.IX Item "-mkernel"
-Enable kernel development mode. The \fB\-mkernel\fR option sets
-\&\fB\-static\fR, \fB\-fno\-common\fR, \fB\-fno\-cxa\-atexit\fR,
-\&\fB\-fno\-exceptions\fR, \fB\-fno\-non\-call\-exceptions\fR,
-\&\fB\-fapple\-kext\fR, \fB\-fno\-weak\fR and \fB\-fno\-rtti\fR where
-applicable. This mode also sets \fB\-mno\-altivec\fR,
-\&\fB\-msoft\-float\fR, \fB\-fno\-builtin\fR and
-\&\fB\-mlong\-branch\fR for PowerPC targets.
-.IP "\fB\-mone\-byte\-bool\fR" 4
-.IX Item "-mone-byte-bool"
-Override the defaults for \fBbool\fR so that \fBsizeof(bool)==1\fR.
-By default \fBsizeof(bool)\fR is \fB4\fR when compiling for
-Darwin/PowerPC and \fB1\fR when compiling for Darwin/x86, so this
-option has no effect on x86.
-.Sp
-\&\fBWarning:\fR The \fB\-mone\-byte\-bool\fR switch causes \s-1GCC\s0
-to generate code that is not binary compatible with code generated
-without that switch. Using this switch may require recompiling all
-other modules in a program, including system libraries. Use this
-switch to conform to a non-default data model.
-.IP "\fB\-mfix\-and\-continue\fR" 4
-.IX Item "-mfix-and-continue"
-.PD 0
-.IP "\fB\-ffix\-and\-continue\fR" 4
-.IX Item "-ffix-and-continue"
-.IP "\fB\-findirect\-data\fR" 4
-.IX Item "-findirect-data"
-.PD
-Generate code suitable for fast turnaround development, such as to
-allow \s-1GDB\s0 to dynamically load \f(CW\*(C`.o\*(C'\fR files into already-running
-programs. \fB\-findirect\-data\fR and \fB\-ffix\-and\-continue\fR
-are provided for backwards compatibility.
-.IP "\fB\-all_load\fR" 4
-.IX Item "-all_load"
-Loads all members of static archive libraries.
-See man \fIld\fR\|(1) for more information.
-.IP "\fB\-arch_errors_fatal\fR" 4
-.IX Item "-arch_errors_fatal"
-Cause the errors having to do with files that have the wrong architecture
-to be fatal.
-.IP "\fB\-bind_at_load\fR" 4
-.IX Item "-bind_at_load"
-Causes the output file to be marked such that the dynamic linker will
-bind all undefined references when the file is loaded or launched.
-.IP "\fB\-bundle\fR" 4
-.IX Item "-bundle"
-Produce a Mach-o bundle format file.
-See man \fIld\fR\|(1) for more information.
-.IP "\fB\-bundle_loader\fR \fIexecutable\fR" 4
-.IX Item "-bundle_loader executable"
-This option specifies the \fIexecutable\fR that will load the build
-output file being linked. See man \fIld\fR\|(1) for more information.
-.IP "\fB\-dynamiclib\fR" 4
-.IX Item "-dynamiclib"
-When passed this option, \s-1GCC\s0 produces a dynamic library instead of
-an executable when linking, using the Darwin \fIlibtool\fR command.
-.IP "\fB\-force_cpusubtype_ALL\fR" 4
-.IX Item "-force_cpusubtype_ALL"
-This causes \s-1GCC\s0's output file to have the \fI\s-1ALL\s0\fR subtype, instead of
-one controlled by the \fB\-mcpu\fR or \fB\-march\fR option.
-.IP "\fB\-allowable_client\fR \fIclient_name\fR" 4
-.IX Item "-allowable_client client_name"
-.PD 0
-.IP "\fB\-client_name\fR" 4
-.IX Item "-client_name"
-.IP "\fB\-compatibility_version\fR" 4
-.IX Item "-compatibility_version"
-.IP "\fB\-current_version\fR" 4
-.IX Item "-current_version"
-.IP "\fB\-dead_strip\fR" 4
-.IX Item "-dead_strip"
-.IP "\fB\-dependency\-file\fR" 4
-.IX Item "-dependency-file"
-.IP "\fB\-dylib_file\fR" 4
-.IX Item "-dylib_file"
-.IP "\fB\-dylinker_install_name\fR" 4
-.IX Item "-dylinker_install_name"
-.IP "\fB\-dynamic\fR" 4
-.IX Item "-dynamic"
-.IP "\fB\-exported_symbols_list\fR" 4
-.IX Item "-exported_symbols_list"
-.IP "\fB\-filelist\fR" 4
-.IX Item "-filelist"
-.IP "\fB\-flat_namespace\fR" 4
-.IX Item "-flat_namespace"
-.IP "\fB\-force_flat_namespace\fR" 4
-.IX Item "-force_flat_namespace"
-.IP "\fB\-headerpad_max_install_names\fR" 4
-.IX Item "-headerpad_max_install_names"
-.IP "\fB\-image_base\fR" 4
-.IX Item "-image_base"
-.IP "\fB\-init\fR" 4
-.IX Item "-init"
-.IP "\fB\-install_name\fR" 4
-.IX Item "-install_name"
-.IP "\fB\-keep_private_externs\fR" 4
-.IX Item "-keep_private_externs"
-.IP "\fB\-multi_module\fR" 4
-.IX Item "-multi_module"
-.IP "\fB\-multiply_defined\fR" 4
-.IX Item "-multiply_defined"
-.IP "\fB\-multiply_defined_unused\fR" 4
-.IX Item "-multiply_defined_unused"
-.IP "\fB\-noall_load\fR" 4
-.IX Item "-noall_load"
-.IP "\fB\-no_dead_strip_inits_and_terms\fR" 4
-.IX Item "-no_dead_strip_inits_and_terms"
-.IP "\fB\-nofixprebinding\fR" 4
-.IX Item "-nofixprebinding"
-.IP "\fB\-nomultidefs\fR" 4
-.IX Item "-nomultidefs"
-.IP "\fB\-noprebind\fR" 4
-.IX Item "-noprebind"
-.IP "\fB\-noseglinkedit\fR" 4
-.IX Item "-noseglinkedit"
-.IP "\fB\-pagezero_size\fR" 4
-.IX Item "-pagezero_size"
-.IP "\fB\-prebind\fR" 4
-.IX Item "-prebind"
-.IP "\fB\-prebind_all_twolevel_modules\fR" 4
-.IX Item "-prebind_all_twolevel_modules"
-.IP "\fB\-private_bundle\fR" 4
-.IX Item "-private_bundle"
-.IP "\fB\-read_only_relocs\fR" 4
-.IX Item "-read_only_relocs"
-.IP "\fB\-sectalign\fR" 4
-.IX Item "-sectalign"
-.IP "\fB\-sectobjectsymbols\fR" 4
-.IX Item "-sectobjectsymbols"
-.IP "\fB\-whyload\fR" 4
-.IX Item "-whyload"
-.IP "\fB\-seg1addr\fR" 4
-.IX Item "-seg1addr"
-.IP "\fB\-sectcreate\fR" 4
-.IX Item "-sectcreate"
-.IP "\fB\-sectobjectsymbols\fR" 4
-.IX Item "-sectobjectsymbols"
-.IP "\fB\-sectorder\fR" 4
-.IX Item "-sectorder"
-.IP "\fB\-segaddr\fR" 4
-.IX Item "-segaddr"
-.IP "\fB\-segs_read_only_addr\fR" 4
-.IX Item "-segs_read_only_addr"
-.IP "\fB\-segs_read_write_addr\fR" 4
-.IX Item "-segs_read_write_addr"
-.IP "\fB\-seg_addr_table\fR" 4
-.IX Item "-seg_addr_table"
-.IP "\fB\-seg_addr_table_filename\fR" 4
-.IX Item "-seg_addr_table_filename"
-.IP "\fB\-seglinkedit\fR" 4
-.IX Item "-seglinkedit"
-.IP "\fB\-segprot\fR" 4
-.IX Item "-segprot"
-.IP "\fB\-segs_read_only_addr\fR" 4
-.IX Item "-segs_read_only_addr"
-.IP "\fB\-segs_read_write_addr\fR" 4
-.IX Item "-segs_read_write_addr"
-.IP "\fB\-single_module\fR" 4
-.IX Item "-single_module"
-.IP "\fB\-static\fR" 4
-.IX Item "-static"
-.IP "\fB\-sub_library\fR" 4
-.IX Item "-sub_library"
-.IP "\fB\-sub_umbrella\fR" 4
-.IX Item "-sub_umbrella"
-.IP "\fB\-twolevel_namespace\fR" 4
-.IX Item "-twolevel_namespace"
-.IP "\fB\-umbrella\fR" 4
-.IX Item "-umbrella"
-.IP "\fB\-undefined\fR" 4
-.IX Item "-undefined"
-.IP "\fB\-unexported_symbols_list\fR" 4
-.IX Item "-unexported_symbols_list"
-.IP "\fB\-weak_reference_mismatches\fR" 4
-.IX Item "-weak_reference_mismatches"
-.IP "\fB\-whatsloaded\fR" 4
-.IX Item "-whatsloaded"
-.PD
-These options are passed to the Darwin linker. The Darwin linker man page
-describes them in detail.
-.PP
-\fI\s-1DEC\s0 Alpha Options\fR
-.IX Subsection "DEC Alpha Options"
-.PP
-These \fB\-m\fR options are defined for the \s-1DEC\s0 Alpha implementations:
-.IP "\fB\-mno\-soft\-float\fR" 4
-.IX Item "-mno-soft-float"
-.PD 0
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-.PD
-Use (do not use) the hardware floating-point instructions for
-floating-point operations. When \fB\-msoft\-float\fR is specified,
-functions in \fIlibgcc.a\fR are used to perform floating-point
-operations. Unless they are replaced by routines that emulate the
-floating-point operations, or compiled in such a way as to call such
-emulations routines, these routines issue floating-point
-operations. If you are compiling for an Alpha without floating-point
-operations, you must ensure that the library is built so as not to call
-them.
-.Sp
-Note that Alpha implementations without floating-point operations are
-required to have floating-point registers.
-.IP "\fB\-mfp\-reg\fR" 4
-.IX Item "-mfp-reg"
-.PD 0
-.IP "\fB\-mno\-fp\-regs\fR" 4
-.IX Item "-mno-fp-regs"
-.PD
-Generate code that uses (does not use) the floating-point register set.
-\&\fB\-mno\-fp\-regs\fR implies \fB\-msoft\-float\fR. If the floating-point
-register set is not used, floating-point operands are passed in integer
-registers as if they were integers and floating-point results are passed
-in \f(CW$0\fR instead of \f(CW$f0\fR. This is a non-standard calling sequence,
-so any function with a floating-point argument or return value called by code
-compiled with \fB\-mno\-fp\-regs\fR must also be compiled with that
-option.
-.Sp
-A typical use of this option is building a kernel that does not use,
-and hence need not save and restore, any floating-point registers.
-.IP "\fB\-mieee\fR" 4
-.IX Item "-mieee"
-The Alpha architecture implements floating-point hardware optimized for
-maximum performance. It is mostly compliant with the \s-1IEEE\s0 floating-point
-standard. However, for full compliance, software assistance is
-required. This option generates code fully IEEE-compliant code
-\&\fIexcept\fR that the \fIinexact-flag\fR is not maintained (see below).
-If this option is turned on, the preprocessor macro \f(CW\*(C`_IEEE_FP\*(C'\fR is
-defined during compilation. The resulting code is less efficient but is
-able to correctly support denormalized numbers and exceptional \s-1IEEE\s0
-values such as not-a-number and plus/minus infinity. Other Alpha
-compilers call this option \fB\-ieee_with_no_inexact\fR.
-.IP "\fB\-mieee\-with\-inexact\fR" 4
-.IX Item "-mieee-with-inexact"
-This is like \fB\-mieee\fR except the generated code also maintains
-the \s-1IEEE \s0\fIinexact-flag\fR. Turning on this option causes the
-generated code to implement fully-compliant \s-1IEEE\s0 math. In addition to
-\&\f(CW\*(C`_IEEE_FP\*(C'\fR, \f(CW\*(C`_IEEE_FP_EXACT\*(C'\fR is defined as a preprocessor
-macro. On some Alpha implementations the resulting code may execute
-significantly slower than the code generated by default. Since there is
-very little code that depends on the \fIinexact-flag\fR, you should
-normally not specify this option. Other Alpha compilers call this
-option \fB\-ieee_with_inexact\fR.
-.IP "\fB\-mfp\-trap\-mode=\fR\fItrap-mode\fR" 4
-.IX Item "-mfp-trap-mode=trap-mode"
-This option controls what floating-point related traps are enabled.
-Other Alpha compilers call this option \fB\-fptm\fR \fItrap-mode\fR.
-The trap mode can be set to one of four values:
-.RS 4
-.IP "\fBn\fR" 4
-.IX Item "n"
-This is the default (normal) setting. The only traps that are enabled
-are the ones that cannot be disabled in software (e.g., division by zero
-trap).
-.IP "\fBu\fR" 4
-.IX Item "u"
-In addition to the traps enabled by \fBn\fR, underflow traps are enabled
-as well.
-.IP "\fBsu\fR" 4
-.IX Item "su"
-Like \fBu\fR, but the instructions are marked to be safe for software
-completion (see Alpha architecture manual for details).
-.IP "\fBsui\fR" 4
-.IX Item "sui"
-Like \fBsu\fR, but inexact traps are enabled as well.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mfp\-rounding\-mode=\fR\fIrounding-mode\fR" 4
-.IX Item "-mfp-rounding-mode=rounding-mode"
-Selects the \s-1IEEE\s0 rounding mode. Other Alpha compilers call this option
-\&\fB\-fprm\fR \fIrounding-mode\fR. The \fIrounding-mode\fR can be one
-of:
-.RS 4
-.IP "\fBn\fR" 4
-.IX Item "n"
-Normal \s-1IEEE\s0 rounding mode. Floating-point numbers are rounded towards
-the nearest machine number or towards the even machine number in case
-of a tie.
-.IP "\fBm\fR" 4
-.IX Item "m"
-Round towards minus infinity.
-.IP "\fBc\fR" 4
-.IX Item "c"
-Chopped rounding mode. Floating-point numbers are rounded towards zero.
-.IP "\fBd\fR" 4
-.IX Item "d"
-Dynamic rounding mode. A field in the floating-point control register
-(\fIfpcr\fR, see Alpha architecture reference manual) controls the
-rounding mode in effect. The C library initializes this register for
-rounding towards plus infinity. Thus, unless your program modifies the
-\&\fIfpcr\fR, \fBd\fR corresponds to round towards plus infinity.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mtrap\-precision=\fR\fItrap-precision\fR" 4
-.IX Item "-mtrap-precision=trap-precision"
-In the Alpha architecture, floating-point traps are imprecise. This
-means without software assistance it is impossible to recover from a
-floating trap and program execution normally needs to be terminated.
-\&\s-1GCC\s0 can generate code that can assist operating system trap handlers
-in determining the exact location that caused a floating-point trap.
-Depending on the requirements of an application, different levels of
-precisions can be selected:
-.RS 4
-.IP "\fBp\fR" 4
-.IX Item "p"
-Program precision. This option is the default and means a trap handler
-can only identify which program caused a floating-point exception.
-.IP "\fBf\fR" 4
-.IX Item "f"
-Function precision. The trap handler can determine the function that
-caused a floating-point exception.
-.IP "\fBi\fR" 4
-.IX Item "i"
-Instruction precision. The trap handler can determine the exact
-instruction that caused a floating-point exception.
-.RE
-.RS 4
-.Sp
-Other Alpha compilers provide the equivalent options called
-\&\fB\-scope_safe\fR and \fB\-resumption_safe\fR.
-.RE
-.IP "\fB\-mieee\-conformant\fR" 4
-.IX Item "-mieee-conformant"
-This option marks the generated code as \s-1IEEE\s0 conformant. You must not
-use this option unless you also specify \fB\-mtrap\-precision=i\fR and either
-\&\fB\-mfp\-trap\-mode=su\fR or \fB\-mfp\-trap\-mode=sui\fR. Its only effect
-is to emit the line \fB.eflag 48\fR in the function prologue of the
-generated assembly file.
-.IP "\fB\-mbuild\-constants\fR" 4
-.IX Item "-mbuild-constants"
-Normally \s-1GCC\s0 examines a 32\- or 64\-bit integer constant to
-see if it can construct it from smaller constants in two or three
-instructions. If it cannot, it outputs the constant as a literal and
-generates code to load it from the data segment at run time.
-.Sp
-Use this option to require \s-1GCC\s0 to construct \fIall\fR integer constants
-using code, even if it takes more instructions (the maximum is six).
-.Sp
-You typically use this option to build a shared library dynamic
-loader. Itself a shared library, it must relocate itself in memory
-before it can find the variables and constants in its own data segment.
-.IP "\fB\-mbwx\fR" 4
-.IX Item "-mbwx"
-.PD 0
-.IP "\fB\-mno\-bwx\fR" 4
-.IX Item "-mno-bwx"
-.IP "\fB\-mcix\fR" 4
-.IX Item "-mcix"
-.IP "\fB\-mno\-cix\fR" 4
-.IX Item "-mno-cix"
-.IP "\fB\-mfix\fR" 4
-.IX Item "-mfix"
-.IP "\fB\-mno\-fix\fR" 4
-.IX Item "-mno-fix"
-.IP "\fB\-mmax\fR" 4
-.IX Item "-mmax"
-.IP "\fB\-mno\-max\fR" 4
-.IX Item "-mno-max"
-.PD
-Indicate whether \s-1GCC\s0 should generate code to use the optional \s-1BWX,
-CIX, FIX\s0 and \s-1MAX\s0 instruction sets. The default is to use the instruction
-sets supported by the \s-1CPU\s0 type specified via \fB\-mcpu=\fR option or that
-of the \s-1CPU\s0 on which \s-1GCC\s0 was built if none is specified.
-.IP "\fB\-mfloat\-vax\fR" 4
-.IX Item "-mfloat-vax"
-.PD 0
-.IP "\fB\-mfloat\-ieee\fR" 4
-.IX Item "-mfloat-ieee"
-.PD
-Generate code that uses (does not use) \s-1VAX F\s0 and G floating-point
-arithmetic instead of \s-1IEEE\s0 single and double precision.
-.IP "\fB\-mexplicit\-relocs\fR" 4
-.IX Item "-mexplicit-relocs"
-.PD 0
-.IP "\fB\-mno\-explicit\-relocs\fR" 4
-.IX Item "-mno-explicit-relocs"
-.PD
-Older Alpha assemblers provided no way to generate symbol relocations
-except via assembler macros. Use of these macros does not allow
-optimal instruction scheduling. \s-1GNU\s0 binutils as of version 2.12
-supports a new syntax that allows the compiler to explicitly mark
-which relocations should apply to which instructions. This option
-is mostly useful for debugging, as \s-1GCC\s0 detects the capabilities of
-the assembler when it is built and sets the default accordingly.
-.IP "\fB\-msmall\-data\fR" 4
-.IX Item "-msmall-data"
-.PD 0
-.IP "\fB\-mlarge\-data\fR" 4
-.IX Item "-mlarge-data"
-.PD
-When \fB\-mexplicit\-relocs\fR is in effect, static data is
-accessed via \fIgp-relative\fR relocations. When \fB\-msmall\-data\fR
-is used, objects 8 bytes long or smaller are placed in a \fIsmall data area\fR
-(the \f(CW\*(C`.sdata\*(C'\fR and \f(CW\*(C`.sbss\*(C'\fR sections) and are accessed via
-16\-bit relocations off of the \f(CW$gp\fR register. This limits the
-size of the small data area to 64KB, but allows the variables to be
-directly accessed via a single instruction.
-.Sp
-The default is \fB\-mlarge\-data\fR. With this option the data area
-is limited to just below 2GB. Programs that require more than 2GB of
-data must use \f(CW\*(C`malloc\*(C'\fR or \f(CW\*(C`mmap\*(C'\fR to allocate the data in the
-heap instead of in the program's data segment.
-.Sp
-When generating code for shared libraries, \fB\-fpic\fR implies
-\&\fB\-msmall\-data\fR and \fB\-fPIC\fR implies \fB\-mlarge\-data\fR.
-.IP "\fB\-msmall\-text\fR" 4
-.IX Item "-msmall-text"
-.PD 0
-.IP "\fB\-mlarge\-text\fR" 4
-.IX Item "-mlarge-text"
-.PD
-When \fB\-msmall\-text\fR is used, the compiler assumes that the
-code of the entire program (or shared library) fits in 4MB, and is
-thus reachable with a branch instruction. When \fB\-msmall\-data\fR
-is used, the compiler can assume that all local symbols share the
-same \f(CW$gp\fR value, and thus reduce the number of instructions
-required for a function call from 4 to 1.
-.Sp
-The default is \fB\-mlarge\-text\fR.
-.IP "\fB\-mcpu=\fR\fIcpu_type\fR" 4
-.IX Item "-mcpu=cpu_type"
-Set the instruction set and instruction scheduling parameters for
-machine type \fIcpu_type\fR. You can specify either the \fB\s-1EV\s0\fR
-style name or the corresponding chip number. \s-1GCC\s0 supports scheduling
-parameters for the \s-1EV4, EV5\s0 and \s-1EV6\s0 family of processors and
-chooses the default values for the instruction set from the processor
-you specify. If you do not specify a processor type, \s-1GCC\s0 defaults
-to the processor on which the compiler was built.
-.Sp
-Supported values for \fIcpu_type\fR are
-.RS 4
-.IP "\fBev4\fR" 4
-.IX Item "ev4"
-.PD 0
-.IP "\fBev45\fR" 4
-.IX Item "ev45"
-.IP "\fB21064\fR" 4
-.IX Item "21064"
-.PD
-Schedules as an \s-1EV4\s0 and has no instruction set extensions.
-.IP "\fBev5\fR" 4
-.IX Item "ev5"
-.PD 0
-.IP "\fB21164\fR" 4
-.IX Item "21164"
-.PD
-Schedules as an \s-1EV5\s0 and has no instruction set extensions.
-.IP "\fBev56\fR" 4
-.IX Item "ev56"
-.PD 0
-.IP "\fB21164a\fR" 4
-.IX Item "21164a"
-.PD
-Schedules as an \s-1EV5\s0 and supports the \s-1BWX\s0 extension.
-.IP "\fBpca56\fR" 4
-.IX Item "pca56"
-.PD 0
-.IP "\fB21164pc\fR" 4
-.IX Item "21164pc"
-.IP "\fB21164PC\fR" 4
-.IX Item "21164PC"
-.PD
-Schedules as an \s-1EV5\s0 and supports the \s-1BWX\s0 and \s-1MAX\s0 extensions.
-.IP "\fBev6\fR" 4
-.IX Item "ev6"
-.PD 0
-.IP "\fB21264\fR" 4
-.IX Item "21264"
-.PD
-Schedules as an \s-1EV6\s0 and supports the \s-1BWX, FIX,\s0 and \s-1MAX\s0 extensions.
-.IP "\fBev67\fR" 4
-.IX Item "ev67"
-.PD 0
-.IP "\fB21264a\fR" 4
-.IX Item "21264a"
-.PD
-Schedules as an \s-1EV6\s0 and supports the \s-1BWX, CIX, FIX,\s0 and \s-1MAX\s0 extensions.
-.RE
-.RS 4
-.Sp
-Native toolchains also support the value \fBnative\fR,
-which selects the best architecture option for the host processor.
-\&\fB\-mcpu=native\fR has no effect if \s-1GCC\s0 does not recognize
-the processor.
-.RE
-.IP "\fB\-mtune=\fR\fIcpu_type\fR" 4
-.IX Item "-mtune=cpu_type"
-Set only the instruction scheduling parameters for machine type
-\&\fIcpu_type\fR. The instruction set is not changed.
-.Sp
-Native toolchains also support the value \fBnative\fR,
-which selects the best architecture option for the host processor.
-\&\fB\-mtune=native\fR has no effect if \s-1GCC\s0 does not recognize
-the processor.
-.IP "\fB\-mmemory\-latency=\fR\fItime\fR" 4
-.IX Item "-mmemory-latency=time"
-Sets the latency the scheduler should assume for typical memory
-references as seen by the application. This number is highly
-dependent on the memory access patterns used by the application
-and the size of the external cache on the machine.
-.Sp
-Valid options for \fItime\fR are
-.RS 4
-.IP "\fInumber\fR" 4
-.IX Item "number"
-A decimal number representing clock cycles.
-.IP "\fBL1\fR" 4
-.IX Item "L1"
-.PD 0
-.IP "\fBL2\fR" 4
-.IX Item "L2"
-.IP "\fBL3\fR" 4
-.IX Item "L3"
-.IP "\fBmain\fR" 4
-.IX Item "main"
-.PD
-The compiler contains estimates of the number of clock cycles for
-\&\*(L"typical\*(R" \s-1EV4 & EV5\s0 hardware for the Level 1, 2 & 3 caches
-(also called Dcache, Scache, and Bcache), as well as to main memory.
-Note that L3 is only valid for \s-1EV5.\s0
-.RE
-.RS 4
-.RE
-.PP
-\fI\s-1FR30\s0 Options\fR
-.IX Subsection "FR30 Options"
-.PP
-These options are defined specifically for the \s-1FR30\s0 port.
-.IP "\fB\-msmall\-model\fR" 4
-.IX Item "-msmall-model"
-Use the small address space model. This can produce smaller code, but
-it does assume that all symbolic values and addresses fit into a
-20\-bit range.
-.IP "\fB\-mno\-lsim\fR" 4
-.IX Item "-mno-lsim"
-Assume that runtime support has been provided and so there is no need
-to include the simulator library (\fIlibsim.a\fR) on the linker
-command line.
-.PP
-\fI\s-1FRV\s0 Options\fR
-.IX Subsection "FRV Options"
-.IP "\fB\-mgpr\-32\fR" 4
-.IX Item "-mgpr-32"
-Only use the first 32 general-purpose registers.
-.IP "\fB\-mgpr\-64\fR" 4
-.IX Item "-mgpr-64"
-Use all 64 general-purpose registers.
-.IP "\fB\-mfpr\-32\fR" 4
-.IX Item "-mfpr-32"
-Use only the first 32 floating-point registers.
-.IP "\fB\-mfpr\-64\fR" 4
-.IX Item "-mfpr-64"
-Use all 64 floating-point registers.
-.IP "\fB\-mhard\-float\fR" 4
-.IX Item "-mhard-float"
-Use hardware instructions for floating-point operations.
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-Use library routines for floating-point operations.
-.IP "\fB\-malloc\-cc\fR" 4
-.IX Item "-malloc-cc"
-Dynamically allocate condition code registers.
-.IP "\fB\-mfixed\-cc\fR" 4
-.IX Item "-mfixed-cc"
-Do not try to dynamically allocate condition code registers, only
-use \f(CW\*(C`icc0\*(C'\fR and \f(CW\*(C`fcc0\*(C'\fR.
-.IP "\fB\-mdword\fR" 4
-.IX Item "-mdword"
-Change \s-1ABI\s0 to use double word insns.
-.IP "\fB\-mno\-dword\fR" 4
-.IX Item "-mno-dword"
-Do not use double word instructions.
-.IP "\fB\-mdouble\fR" 4
-.IX Item "-mdouble"
-Use floating-point double instructions.
-.IP "\fB\-mno\-double\fR" 4
-.IX Item "-mno-double"
-Do not use floating-point double instructions.
-.IP "\fB\-mmedia\fR" 4
-.IX Item "-mmedia"
-Use media instructions.
-.IP "\fB\-mno\-media\fR" 4
-.IX Item "-mno-media"
-Do not use media instructions.
-.IP "\fB\-mmuladd\fR" 4
-.IX Item "-mmuladd"
-Use multiply and add/subtract instructions.
-.IP "\fB\-mno\-muladd\fR" 4
-.IX Item "-mno-muladd"
-Do not use multiply and add/subtract instructions.
-.IP "\fB\-mfdpic\fR" 4
-.IX Item "-mfdpic"
-Select the \s-1FDPIC ABI,\s0 which uses function descriptors to represent
-pointers to functions. Without any PIC/PIE\-related options, it
-implies \fB\-fPIE\fR. With \fB\-fpic\fR or \fB\-fpie\fR, it
-assumes \s-1GOT\s0 entries and small data are within a 12\-bit range from the
-\&\s-1GOT\s0 base address; with \fB\-fPIC\fR or \fB\-fPIE\fR, \s-1GOT\s0 offsets
-are computed with 32 bits.
-With a \fBbfin-elf\fR target, this option implies \fB\-msim\fR.
-.IP "\fB\-minline\-plt\fR" 4
-.IX Item "-minline-plt"
-Enable inlining of \s-1PLT\s0 entries in function calls to functions that are
-not known to bind locally. It has no effect without \fB\-mfdpic\fR.
-It's enabled by default if optimizing for speed and compiling for
-shared libraries (i.e., \fB\-fPIC\fR or \fB\-fpic\fR), or when an
-optimization option such as \fB\-O3\fR or above is present in the
-command line.
-.IP "\fB\-mTLS\fR" 4
-.IX Item "-mTLS"
-Assume a large \s-1TLS\s0 segment when generating thread-local code.
-.IP "\fB\-mtls\fR" 4
-.IX Item "-mtls"
-Do not assume a large \s-1TLS\s0 segment when generating thread-local code.
-.IP "\fB\-mgprel\-ro\fR" 4
-.IX Item "-mgprel-ro"
-Enable the use of \f(CW\*(C`GPREL\*(C'\fR relocations in the \s-1FDPIC ABI\s0 for data
-that is known to be in read-only sections. It's enabled by default,
-except for \fB\-fpic\fR or \fB\-fpie\fR: even though it may help
-make the global offset table smaller, it trades 1 instruction for 4.
-With \fB\-fPIC\fR or \fB\-fPIE\fR, it trades 3 instructions for 4,
-one of which may be shared by multiple symbols, and it avoids the need
-for a \s-1GOT\s0 entry for the referenced symbol, so it's more likely to be a
-win. If it is not, \fB\-mno\-gprel\-ro\fR can be used to disable it.
-.IP "\fB\-multilib\-library\-pic\fR" 4
-.IX Item "-multilib-library-pic"
-Link with the (library, not \s-1FD\s0) pic libraries. It's implied by
-\&\fB\-mlibrary\-pic\fR, as well as by \fB\-fPIC\fR and
-\&\fB\-fpic\fR without \fB\-mfdpic\fR. You should never have to use
-it explicitly.
-.IP "\fB\-mlinked\-fp\fR" 4
-.IX Item "-mlinked-fp"
-Follow the \s-1EABI\s0 requirement of always creating a frame pointer whenever
-a stack frame is allocated. This option is enabled by default and can
-be disabled with \fB\-mno\-linked\-fp\fR.
-.IP "\fB\-mlong\-calls\fR" 4
-.IX Item "-mlong-calls"
-Use indirect addressing to call functions outside the current
-compilation unit. This allows the functions to be placed anywhere
-within the 32\-bit address space.
-.IP "\fB\-malign\-labels\fR" 4
-.IX Item "-malign-labels"
-Try to align labels to an 8\-byte boundary by inserting NOPs into the
-previous packet. This option only has an effect when \s-1VLIW\s0 packing
-is enabled. It doesn't create new packets; it merely adds NOPs to
-existing ones.
-.IP "\fB\-mlibrary\-pic\fR" 4
-.IX Item "-mlibrary-pic"
-Generate position-independent \s-1EABI\s0 code.
-.IP "\fB\-macc\-4\fR" 4
-.IX Item "-macc-4"
-Use only the first four media accumulator registers.
-.IP "\fB\-macc\-8\fR" 4
-.IX Item "-macc-8"
-Use all eight media accumulator registers.
-.IP "\fB\-mpack\fR" 4
-.IX Item "-mpack"
-Pack \s-1VLIW\s0 instructions.
-.IP "\fB\-mno\-pack\fR" 4
-.IX Item "-mno-pack"
-Do not pack \s-1VLIW\s0 instructions.
-.IP "\fB\-mno\-eflags\fR" 4
-.IX Item "-mno-eflags"
-Do not mark \s-1ABI\s0 switches in e_flags.
-.IP "\fB\-mcond\-move\fR" 4
-.IX Item "-mcond-move"
-Enable the use of conditional-move instructions (default).
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-mno\-cond\-move\fR" 4
-.IX Item "-mno-cond-move"
-Disable the use of conditional-move instructions.
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-mscc\fR" 4
-.IX Item "-mscc"
-Enable the use of conditional set instructions (default).
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-mno\-scc\fR" 4
-.IX Item "-mno-scc"
-Disable the use of conditional set instructions.
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-mcond\-exec\fR" 4
-.IX Item "-mcond-exec"
-Enable the use of conditional execution (default).
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-mno\-cond\-exec\fR" 4
-.IX Item "-mno-cond-exec"
-Disable the use of conditional execution.
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-mvliw\-branch\fR" 4
-.IX Item "-mvliw-branch"
-Run a pass to pack branches into \s-1VLIW\s0 instructions (default).
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-mno\-vliw\-branch\fR" 4
-.IX Item "-mno-vliw-branch"
-Do not run a pass to pack branches into \s-1VLIW\s0 instructions.
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-mmulti\-cond\-exec\fR" 4
-.IX Item "-mmulti-cond-exec"
-Enable optimization of \f(CW\*(C`&&\*(C'\fR and \f(CW\*(C`||\*(C'\fR in conditional execution
-(default).
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-mno\-multi\-cond\-exec\fR" 4
-.IX Item "-mno-multi-cond-exec"
-Disable optimization of \f(CW\*(C`&&\*(C'\fR and \f(CW\*(C`||\*(C'\fR in conditional execution.
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-mnested\-cond\-exec\fR" 4
-.IX Item "-mnested-cond-exec"
-Enable nested conditional execution optimizations (default).
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-mno\-nested\-cond\-exec\fR" 4
-.IX Item "-mno-nested-cond-exec"
-Disable nested conditional execution optimizations.
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-moptimize\-membar\fR" 4
-.IX Item "-moptimize-membar"
-This switch removes redundant \f(CW\*(C`membar\*(C'\fR instructions from the
-compiler-generated code. It is enabled by default.
-.IP "\fB\-mno\-optimize\-membar\fR" 4
-.IX Item "-mno-optimize-membar"
-This switch disables the automatic removal of redundant \f(CW\*(C`membar\*(C'\fR
-instructions from the generated code.
-.IP "\fB\-mtomcat\-stats\fR" 4
-.IX Item "-mtomcat-stats"
-Cause gas to print out tomcat statistics.
-.IP "\fB\-mcpu=\fR\fIcpu\fR" 4
-.IX Item "-mcpu=cpu"
-Select the processor type for which to generate code. Possible values are
-\&\fBfrv\fR, \fBfr550\fR, \fBtomcat\fR, \fBfr500\fR, \fBfr450\fR,
-\&\fBfr405\fR, \fBfr400\fR, \fBfr300\fR and \fBsimple\fR.
-.PP
-\fIGNU/Linux Options\fR
-.IX Subsection "GNU/Linux Options"
-.PP
-These \fB\-m\fR options are defined for GNU/Linux targets:
-.IP "\fB\-mglibc\fR" 4
-.IX Item "-mglibc"
-Use the \s-1GNU C\s0 library. This is the default except
-on \fB*\-*\-linux\-*uclibc*\fR and \fB*\-*\-linux\-*android*\fR targets.
-.IP "\fB\-muclibc\fR" 4
-.IX Item "-muclibc"
-Use uClibc C library. This is the default on
-\&\fB*\-*\-linux\-*uclibc*\fR targets.
-.IP "\fB\-mbionic\fR" 4
-.IX Item "-mbionic"
-Use Bionic C library. This is the default on
-\&\fB*\-*\-linux\-*android*\fR targets.
-.IP "\fB\-mandroid\fR" 4
-.IX Item "-mandroid"
-Compile code compatible with Android platform. This is the default on
-\&\fB*\-*\-linux\-*android*\fR targets.
-.Sp
-When compiling, this option enables \fB\-mbionic\fR, \fB\-fPIC\fR,
-\&\fB\-fno\-exceptions\fR and \fB\-fno\-rtti\fR by default. When linking,
-this option makes the \s-1GCC\s0 driver pass Android-specific options to the linker.
-Finally, this option causes the preprocessor macro \f(CW\*(C`_\|_ANDROID_\|_\*(C'\fR
-to be defined.
-.IP "\fB\-tno\-android\-cc\fR" 4
-.IX Item "-tno-android-cc"
-Disable compilation effects of \fB\-mandroid\fR, i.e., do not enable
-\&\fB\-mbionic\fR, \fB\-fPIC\fR, \fB\-fno\-exceptions\fR and
-\&\fB\-fno\-rtti\fR by default.
-.IP "\fB\-tno\-android\-ld\fR" 4
-.IX Item "-tno-android-ld"
-Disable linking effects of \fB\-mandroid\fR, i.e., pass standard Linux
-linking options to the linker.
-.PP
-\fIH8/300 Options\fR
-.IX Subsection "H8/300 Options"
-.PP
-These \fB\-m\fR options are defined for the H8/300 implementations:
-.IP "\fB\-mrelax\fR" 4
-.IX Item "-mrelax"
-Shorten some address references at link time, when possible; uses the
-linker option \fB\-relax\fR.
-.IP "\fB\-mh\fR" 4
-.IX Item "-mh"
-Generate code for the H8/300H.
-.IP "\fB\-ms\fR" 4
-.IX Item "-ms"
-Generate code for the H8S.
-.IP "\fB\-mn\fR" 4
-.IX Item "-mn"
-Generate code for the H8S and H8/300H in the normal mode. This switch
-must be used either with \fB\-mh\fR or \fB\-ms\fR.
-.IP "\fB\-ms2600\fR" 4
-.IX Item "-ms2600"
-Generate code for the H8S/2600. This switch must be used with \fB\-ms\fR.
-.IP "\fB\-mexr\fR" 4
-.IX Item "-mexr"
-Extended registers are stored on stack before execution of function
-with monitor attribute. Default option is \fB\-mexr\fR.
-This option is valid only for H8S targets.
-.IP "\fB\-mno\-exr\fR" 4
-.IX Item "-mno-exr"
-Extended registers are not stored on stack before execution of function
-with monitor attribute. Default option is \fB\-mno\-exr\fR.
-This option is valid only for H8S targets.
-.IP "\fB\-mint32\fR" 4
-.IX Item "-mint32"
-Make \f(CW\*(C`int\*(C'\fR data 32 bits by default.
-.IP "\fB\-malign\-300\fR" 4
-.IX Item "-malign-300"
-On the H8/300H and H8S, use the same alignment rules as for the H8/300.
-The default for the H8/300H and H8S is to align longs and floats on
-4\-byte boundaries.
-\&\fB\-malign\-300\fR causes them to be aligned on 2\-byte boundaries.
-This option has no effect on the H8/300.
-.PP
-\fI\s-1HPPA\s0 Options\fR
-.IX Subsection "HPPA Options"
-.PP
-These \fB\-m\fR options are defined for the \s-1HPPA\s0 family of computers:
-.IP "\fB\-march=\fR\fIarchitecture-type\fR" 4
-.IX Item "-march=architecture-type"
-Generate code for the specified architecture. The choices for
-\&\fIarchitecture-type\fR are \fB1.0\fR for \s-1PA 1.0, \s0\fB1.1\fR for \s-1PA
-1.1,\s0 and \fB2.0\fR for \s-1PA 2.0\s0 processors. Refer to
-\&\fI/usr/lib/sched.models\fR on an HP-UX system to determine the proper
-architecture option for your machine. Code compiled for lower numbered
-architectures runs on higher numbered architectures, but not the
-other way around.
-.IP "\fB\-mpa\-risc\-1\-0\fR" 4
-.IX Item "-mpa-risc-1-0"
-.PD 0
-.IP "\fB\-mpa\-risc\-1\-1\fR" 4
-.IX Item "-mpa-risc-1-1"
-.IP "\fB\-mpa\-risc\-2\-0\fR" 4
-.IX Item "-mpa-risc-2-0"
-.PD
-Synonyms for \fB\-march=1.0\fR, \fB\-march=1.1\fR, and \fB\-march=2.0\fR respectively.
-.IP "\fB\-mjump\-in\-delay\fR" 4
-.IX Item "-mjump-in-delay"
-Fill delay slots of function calls with unconditional jump instructions
-by modifying the return pointer for the function call to be the target
-of the conditional jump.
-.IP "\fB\-mdisable\-fpregs\fR" 4
-.IX Item "-mdisable-fpregs"
-Prevent floating-point registers from being used in any manner. This is
-necessary for compiling kernels that perform lazy context switching of
-floating-point registers. If you use this option and attempt to perform
-floating-point operations, the compiler aborts.
-.IP "\fB\-mdisable\-indexing\fR" 4
-.IX Item "-mdisable-indexing"
-Prevent the compiler from using indexing address modes. This avoids some
-rather obscure problems when compiling \s-1MIG\s0 generated code under \s-1MACH.\s0
-.IP "\fB\-mno\-space\-regs\fR" 4
-.IX Item "-mno-space-regs"
-Generate code that assumes the target has no space registers. This allows
-\&\s-1GCC\s0 to generate faster indirect calls and use unscaled index address modes.
-.Sp
-Such code is suitable for level 0 \s-1PA\s0 systems and kernels.
-.IP "\fB\-mfast\-indirect\-calls\fR" 4
-.IX Item "-mfast-indirect-calls"
-Generate code that assumes calls never cross space boundaries. This
-allows \s-1GCC\s0 to emit code that performs faster indirect calls.
-.Sp
-This option does not work in the presence of shared libraries or nested
-functions.
-.IP "\fB\-mfixed\-range=\fR\fIregister-range\fR" 4
-.IX Item "-mfixed-range=register-range"
-Generate code treating the given register range as fixed registers.
-A fixed register is one that the register allocator cannot use. This is
-useful when compiling kernel code. A register range is specified as
-two registers separated by a dash. Multiple register ranges can be
-specified separated by a comma.
-.IP "\fB\-mlong\-load\-store\fR" 4
-.IX Item "-mlong-load-store"
-Generate 3\-instruction load and store sequences as sometimes required by
-the HP-UX 10 linker. This is equivalent to the \fB+k\fR option to
-the \s-1HP\s0 compilers.
-.IP "\fB\-mportable\-runtime\fR" 4
-.IX Item "-mportable-runtime"
-Use the portable calling conventions proposed by \s-1HP\s0 for \s-1ELF\s0 systems.
-.IP "\fB\-mgas\fR" 4
-.IX Item "-mgas"
-Enable the use of assembler directives only \s-1GAS\s0 understands.
-.IP "\fB\-mschedule=\fR\fIcpu-type\fR" 4
-.IX Item "-mschedule=cpu-type"
-Schedule code according to the constraints for the machine type
-\&\fIcpu-type\fR. The choices for \fIcpu-type\fR are \fB700\fR
-\&\fB7100\fR, \fB7100LC\fR, \fB7200\fR, \fB7300\fR and \fB8000\fR. Refer
-to \fI/usr/lib/sched.models\fR on an HP-UX system to determine the
-proper scheduling option for your machine. The default scheduling is
-\&\fB8000\fR.
-.IP "\fB\-mlinker\-opt\fR" 4
-.IX Item "-mlinker-opt"
-Enable the optimization pass in the HP-UX linker. Note this makes symbolic
-debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
-linkers in which they give bogus error messages when linking some programs.
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-Generate output containing library calls for floating point.
-\&\fBWarning:\fR the requisite libraries are not available for all \s-1HPPA\s0
-targets. Normally the facilities of the machine's usual C compiler are
-used, but this cannot be done directly in cross-compilation. You must make
-your own arrangements to provide suitable library functions for
-cross-compilation.
-.Sp
-\&\fB\-msoft\-float\fR changes the calling convention in the output file;
-therefore, it is only useful if you compile \fIall\fR of a program with
-this option. In particular, you need to compile \fIlibgcc.a\fR, the
-library that comes with \s-1GCC,\s0 with \fB\-msoft\-float\fR in order for
-this to work.
-.IP "\fB\-msio\fR" 4
-.IX Item "-msio"
-Generate the predefine, \f(CW\*(C`_SIO\*(C'\fR, for server \s-1IO. \s0 The default is
-\&\fB\-mwsio\fR. This generates the predefines, \f(CW\*(C`_\|_hp9000s700\*(C'\fR,
-\&\f(CW\*(C`_\|_hp9000s700_\|_\*(C'\fR and \f(CW\*(C`_WSIO\*(C'\fR, for workstation \s-1IO. \s0 These
-options are available under HP-UX and HI-UX.
-.IP "\fB\-mgnu\-ld\fR" 4
-.IX Item "-mgnu-ld"
-Use options specific to \s-1GNU \s0\fBld\fR.
-This passes \fB\-shared\fR to \fBld\fR when
-building a shared library. It is the default when \s-1GCC\s0 is configured,
-explicitly or implicitly, with the \s-1GNU\s0 linker. This option does not
-affect which \fBld\fR is called; it only changes what parameters
-are passed to that \fBld\fR.
-The \fBld\fR that is called is determined by the
-\&\fB\-\-with\-ld\fR configure option, \s-1GCC\s0's program search path, and
-finally by the user's \fB\s-1PATH\s0\fR. The linker used by \s-1GCC\s0 can be printed
-using \fBwhich `gcc \-print\-prog\-name=ld`\fR. This option is only available
-on the 64\-bit HP-UX \s-1GCC,\s0 i.e. configured with \fBhppa*64*\-*\-hpux*\fR.
-.IP "\fB\-mhp\-ld\fR" 4
-.IX Item "-mhp-ld"
-Use options specific to \s-1HP \s0\fBld\fR.
-This passes \fB\-b\fR to \fBld\fR when building
-a shared library and passes \fB+Accept TypeMismatch\fR to \fBld\fR on all
-links. It is the default when \s-1GCC\s0 is configured, explicitly or
-implicitly, with the \s-1HP\s0 linker. This option does not affect
-which \fBld\fR is called; it only changes what parameters are passed to that
-\&\fBld\fR.
-The \fBld\fR that is called is determined by the \fB\-\-with\-ld\fR
-configure option, \s-1GCC\s0's program search path, and finally by the user's
-\&\fB\s-1PATH\s0\fR. The linker used by \s-1GCC\s0 can be printed using \fBwhich
-`gcc \-print\-prog\-name=ld`\fR. This option is only available on the 64\-bit
-HP-UX \s-1GCC,\s0 i.e. configured with \fBhppa*64*\-*\-hpux*\fR.
-.IP "\fB\-mlong\-calls\fR" 4
-.IX Item "-mlong-calls"
-Generate code that uses long call sequences. This ensures that a call
-is always able to reach linker generated stubs. The default is to generate
-long calls only when the distance from the call site to the beginning
-of the function or translation unit, as the case may be, exceeds a
-predefined limit set by the branch type being used. The limits for
-normal calls are 7,600,000 and 240,000 bytes, respectively for the
-\&\s-1PA 2.0\s0 and \s-1PA 1.X\s0 architectures. Sibcalls are always limited at
-240,000 bytes.
-.Sp
-Distances are measured from the beginning of functions when using the
-\&\fB\-ffunction\-sections\fR option, or when using the \fB\-mgas\fR
-and \fB\-mno\-portable\-runtime\fR options together under HP-UX with
-the \s-1SOM\s0 linker.
-.Sp
-It is normally not desirable to use this option as it degrades
-performance. However, it may be useful in large applications,
-particularly when partial linking is used to build the application.
-.Sp
-The types of long calls used depends on the capabilities of the
-assembler and linker, and the type of code being generated. The
-impact on systems that support long absolute calls, and long pic
-symbol-difference or pc-relative calls should be relatively small.
-However, an indirect call is used on 32\-bit \s-1ELF\s0 systems in pic code
-and it is quite long.
-.IP "\fB\-munix=\fR\fIunix-std\fR" 4
-.IX Item "-munix=unix-std"
-Generate compiler predefines and select a startfile for the specified
-\&\s-1UNIX\s0 standard. The choices for \fIunix-std\fR are \fB93\fR, \fB95\fR
-and \fB98\fR. \fB93\fR is supported on all HP-UX versions. \fB95\fR
-is available on HP-UX 10.10 and later. \fB98\fR is available on HP-UX
-11.11 and later. The default values are \fB93\fR for HP-UX 10.00,
-\&\fB95\fR for HP-UX 10.10 though to 11.00, and \fB98\fR for HP-UX 11.11
-and later.
-.Sp
-\&\fB\-munix=93\fR provides the same predefines as \s-1GCC 3.3\s0 and 3.4.
-\&\fB\-munix=95\fR provides additional predefines for \f(CW\*(C`XOPEN_UNIX\*(C'\fR
-and \f(CW\*(C`_XOPEN_SOURCE_EXTENDED\*(C'\fR, and the startfile \fIunix95.o\fR.
-\&\fB\-munix=98\fR provides additional predefines for \f(CW\*(C`_XOPEN_UNIX\*(C'\fR,
-\&\f(CW\*(C`_XOPEN_SOURCE_EXTENDED\*(C'\fR, \f(CW\*(C`_INCLUDE_\|_STDC_A1_SOURCE\*(C'\fR and
-\&\f(CW\*(C`_INCLUDE_XOPEN_SOURCE_500\*(C'\fR, and the startfile \fIunix98.o\fR.
-.Sp
-It is \fIimportant\fR to note that this option changes the interfaces
-for various library routines. It also affects the operational behavior
-of the C library. Thus, \fIextreme\fR care is needed in using this
-option.
-.Sp
-Library code that is intended to operate with more than one \s-1UNIX\s0
-standard must test, set and restore the variable \fI_\|_xpg4_extended_mask\fR
-as appropriate. Most \s-1GNU\s0 software doesn't provide this capability.
-.IP "\fB\-nolibdld\fR" 4
-.IX Item "-nolibdld"
-Suppress the generation of link options to search libdld.sl when the
-\&\fB\-static\fR option is specified on HP-UX 10 and later.
-.IP "\fB\-static\fR" 4
-.IX Item "-static"
-The HP-UX implementation of setlocale in libc has a dependency on
-libdld.sl. There isn't an archive version of libdld.sl. Thus,
-when the \fB\-static\fR option is specified, special link options
-are needed to resolve this dependency.
-.Sp
-On HP-UX 10 and later, the \s-1GCC\s0 driver adds the necessary options to
-link with libdld.sl when the \fB\-static\fR option is specified.
-This causes the resulting binary to be dynamic. On the 64\-bit port,
-the linkers generate dynamic binaries by default in any case. The
-\&\fB\-nolibdld\fR option can be used to prevent the \s-1GCC\s0 driver from
-adding these link options.
-.IP "\fB\-threads\fR" 4
-.IX Item "-threads"
-Add support for multithreading with the \fIdce thread\fR library
-under HP-UX. This option sets flags for both the preprocessor and
-linker.
-.PP
-\fIIntel 386 and \s-1AMD\s0 x86\-64 Options\fR
-.IX Subsection "Intel 386 and AMD x86-64 Options"
-.PP
-These \fB\-m\fR options are defined for the i386 and x86\-64 family of
-computers:
-.IP "\fB\-march=\fR\fIcpu-type\fR" 4
-.IX Item "-march=cpu-type"
-Generate instructions for the machine type \fIcpu-type\fR. In contrast to
-\&\fB\-mtune=\fR\fIcpu-type\fR, which merely tunes the generated code
-for the specified \fIcpu-type\fR, \fB\-march=\fR\fIcpu-type\fR allows \s-1GCC\s0
-to generate code that may not run at all on processors other than the one
-indicated. Specifying \fB\-march=\fR\fIcpu-type\fR implies
-\&\fB\-mtune=\fR\fIcpu-type\fR.
-.Sp
-The choices for \fIcpu-type\fR are:
-.RS 4
-.IP "\fBnative\fR" 4
-.IX Item "native"
-This selects the \s-1CPU\s0 to generate code for at compilation time by determining
-the processor type of the compiling machine. Using \fB\-march=native\fR
-enables all instruction subsets supported by the local machine (hence
-the result might not run on different machines). Using \fB\-mtune=native\fR
-produces code optimized for the local machine under the constraints
-of the selected instruction set.
-.IP "\fBi386\fR" 4
-.IX Item "i386"
-Original Intel i386 \s-1CPU.\s0
-.IP "\fBi486\fR" 4
-.IX Item "i486"
-Intel i486 \s-1CPU. \s0(No scheduling is implemented for this chip.)
-.IP "\fBi586\fR" 4
-.IX Item "i586"
-.PD 0
-.IP "\fBpentium\fR" 4
-.IX Item "pentium"
-.PD
-Intel Pentium \s-1CPU\s0 with no \s-1MMX\s0 support.
-.IP "\fBpentium-mmx\fR" 4
-.IX Item "pentium-mmx"
-Intel Pentium \s-1MMX CPU,\s0 based on Pentium core with \s-1MMX\s0 instruction set support.
-.IP "\fBpentiumpro\fR" 4
-.IX Item "pentiumpro"
-Intel Pentium Pro \s-1CPU.\s0
-.IP "\fBi686\fR" 4
-.IX Item "i686"
-When used with \fB\-march\fR, the Pentium Pro
-instruction set is used, so the code runs on all i686 family chips.
-When used with \fB\-mtune\fR, it has the same meaning as \fBgeneric\fR.
-.IP "\fBpentium2\fR" 4
-.IX Item "pentium2"
-Intel Pentium \s-1II CPU,\s0 based on Pentium Pro core with \s-1MMX\s0 instruction set
-support.
-.IP "\fBpentium3\fR" 4
-.IX Item "pentium3"
-.PD 0
-.IP "\fBpentium3m\fR" 4
-.IX Item "pentium3m"
-.PD
-Intel Pentium \s-1III CPU,\s0 based on Pentium Pro core with \s-1MMX\s0 and \s-1SSE\s0 instruction
-set support.
-.IP "\fBpentium-m\fR" 4
-.IX Item "pentium-m"
-Intel Pentium M; low-power version of Intel Pentium \s-1III CPU\s0
-with \s-1MMX, SSE\s0 and \s-1SSE2\s0 instruction set support. Used by Centrino notebooks.
-.IP "\fBpentium4\fR" 4
-.IX Item "pentium4"
-.PD 0
-.IP "\fBpentium4m\fR" 4
-.IX Item "pentium4m"
-.PD
-Intel Pentium 4 \s-1CPU\s0 with \s-1MMX, SSE\s0 and \s-1SSE2\s0 instruction set support.
-.IP "\fBprescott\fR" 4
-.IX Item "prescott"
-Improved version of Intel Pentium 4 \s-1CPU\s0 with \s-1MMX, SSE, SSE2\s0 and \s-1SSE3\s0 instruction
-set support.
-.IP "\fBnocona\fR" 4
-.IX Item "nocona"
-Improved version of Intel Pentium 4 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE,
-SSE2\s0 and \s-1SSE3\s0 instruction set support.
-.IP "\fBcore2\fR" 4
-.IX Item "core2"
-Intel Core 2 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3\s0 and \s-1SSSE3\s0
-instruction set support.
-.IP "\fBnehalem\fR" 4
-.IX Item "nehalem"
-Intel Nehalem \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3, SSSE3,
-SSE4.1, SSE4.2\s0 and \s-1POPCNT\s0 instruction set support.
-.IP "\fBwestmere\fR" 4
-.IX Item "westmere"
-Intel Westmere \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3, SSSE3,
-SSE4.1, SSE4.2, POPCNT, AES\s0 and \s-1PCLMUL\s0 instruction set support.
-.IP "\fBsandybridge\fR" 4
-.IX Item "sandybridge"
-Intel Sandy Bridge \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3, SSSE3,
-SSE4.1, SSE4.2, POPCNT, AVX, AES\s0 and \s-1PCLMUL\s0 instruction set support.
-.IP "\fBivybridge\fR" 4
-.IX Item "ivybridge"
-Intel Ivy Bridge \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3, SSSE3,
-SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND\s0 and F16C
-instruction set support.
-.IP "\fBhaswell\fR" 4
-.IX Item "haswell"
-Intel Haswell \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
-SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
-BMI, BMI2\s0 and F16C instruction set support.
-.IP "\fBbroadwell\fR" 4
-.IX Item "broadwell"
-Intel Broadwell \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
-SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
-BMI, BMI2, F16C, RDSEED, ADCX\s0 and \s-1PREFETCHW\s0 instruction set support.
-.IP "\fBbonnell\fR" 4
-.IX Item "bonnell"
-Intel Bonnell \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE, MMX, SSE, SSE2, SSE3\s0 and \s-1SSSE3\s0
-instruction set support.
-.IP "\fBsilvermont\fR" 4
-.IX Item "silvermont"
-Intel Silvermont \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
-SSE4.1, SSE4.2, POPCNT, AES, PCLMUL\s0 and \s-1RDRND\s0 instruction set support.
-.IP "\fBk6\fR" 4
-.IX Item "k6"
-\&\s-1AMD K6 CPU\s0 with \s-1MMX\s0 instruction set support.
-.IP "\fBk6\-2\fR" 4
-.IX Item "k6-2"
-.PD 0
-.IP "\fBk6\-3\fR" 4
-.IX Item "k6-3"
-.PD
-Improved versions of \s-1AMD K6 CPU\s0 with \s-1MMX\s0 and 3DNow! instruction set support.
-.IP "\fBathlon\fR" 4
-.IX Item "athlon"
-.PD 0
-.IP "\fBathlon-tbird\fR" 4
-.IX Item "athlon-tbird"
-.PD
-\&\s-1AMD\s0 Athlon \s-1CPU\s0 with \s-1MMX,\s0 3dNOW!, enhanced 3DNow! and \s-1SSE\s0 prefetch instructions
-support.
-.IP "\fBathlon\-4\fR" 4
-.IX Item "athlon-4"
-.PD 0
-.IP "\fBathlon-xp\fR" 4
-.IX Item "athlon-xp"
-.IP "\fBathlon-mp\fR" 4
-.IX Item "athlon-mp"
-.PD
-Improved \s-1AMD\s0 Athlon \s-1CPU\s0 with \s-1MMX,\s0 3DNow!, enhanced 3DNow! and full \s-1SSE\s0
-instruction set support.
-.IP "\fBk8\fR" 4
-.IX Item "k8"
-.PD 0
-.IP "\fBopteron\fR" 4
-.IX Item "opteron"
-.IP "\fBathlon64\fR" 4
-.IX Item "athlon64"
-.IP "\fBathlon-fx\fR" 4
-.IX Item "athlon-fx"
-.PD
-Processors based on the \s-1AMD K8\s0 core with x86\-64 instruction set support,
-including the \s-1AMD\s0 Opteron, Athlon 64, and Athlon 64 \s-1FX\s0 processors.
-(This supersets \s-1MMX, SSE, SSE2,\s0 3DNow!, enhanced 3DNow! and 64\-bit
-instruction set extensions.)
-.IP "\fBk8\-sse3\fR" 4
-.IX Item "k8-sse3"
-.PD 0
-.IP "\fBopteron\-sse3\fR" 4
-.IX Item "opteron-sse3"
-.IP "\fBathlon64\-sse3\fR" 4
-.IX Item "athlon64-sse3"
-.PD
-Improved versions of \s-1AMD K8\s0 cores with \s-1SSE3\s0 instruction set support.
-.IP "\fBamdfam10\fR" 4
-.IX Item "amdfam10"
-.PD 0
-.IP "\fBbarcelona\fR" 4
-.IX Item "barcelona"
-.PD
-CPUs based on \s-1AMD\s0 Family 10h cores with x86\-64 instruction set support. (This
-supersets \s-1MMX, SSE, SSE2, SSE3, SSE4A,\s0 3DNow!, enhanced 3DNow!, \s-1ABM\s0 and 64\-bit
-instruction set extensions.)
-.IP "\fBbdver1\fR" 4
-.IX Item "bdver1"
-CPUs based on \s-1AMD\s0 Family 15h cores with x86\-64 instruction set support. (This
-supersets \s-1FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
-SSSE3, SSE4.1, SSE4.2, ABM\s0 and 64\-bit instruction set extensions.)
-.IP "\fBbdver2\fR" 4
-.IX Item "bdver2"
-\&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This
-supersets \s-1BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
-SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM\s0 and 64\-bit instruction set
-extensions.)
-.IP "\fBbdver3\fR" 4
-.IX Item "bdver3"
-\&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This
-supersets \s-1BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
-PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM\s0 and
-64\-bit instruction set extensions.
-.IP "\fBbdver4\fR" 4
-.IX Item "bdver4"
-\&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This
-supersets \s-1BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
-AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
-SSE4.2, ABM\s0 and 64\-bit instruction set extensions.
-.IP "\fBbtver1\fR" 4
-.IX Item "btver1"
-CPUs based on \s-1AMD\s0 Family 14h cores with x86\-64 instruction set support. (This
-supersets \s-1MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM\s0 and 64\-bit
-instruction set extensions.)
-.IP "\fBbtver2\fR" 4
-.IX Item "btver2"
-CPUs based on \s-1AMD\s0 Family 16h cores with x86\-64 instruction set support. This
-includes \s-1MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
-SSE4A, SSSE3, SSE3, SSE2, SSE, MMX\s0 and 64\-bit instruction set extensions.
-.IP "\fBwinchip\-c6\fR" 4
-.IX Item "winchip-c6"
-\&\s-1IDT\s0 WinChip C6 \s-1CPU,\s0 dealt in same way as i486 with additional \s-1MMX\s0 instruction
-set support.
-.IP "\fBwinchip2\fR" 4
-.IX Item "winchip2"
-\&\s-1IDT\s0 WinChip 2 \s-1CPU,\s0 dealt in same way as i486 with additional \s-1MMX\s0 and 3DNow!
-instruction set support.
-.IP "\fBc3\fR" 4
-.IX Item "c3"
-\&\s-1VIA C3 CPU\s0 with \s-1MMX\s0 and 3DNow! instruction set support. (No scheduling is
-implemented for this chip.)
-.IP "\fBc3\-2\fR" 4
-.IX Item "c3-2"
-\&\s-1VIA C3\-2 \s0(Nehemiah/C5XL) \s-1CPU\s0 with \s-1MMX\s0 and \s-1SSE\s0 instruction set support.
-(No scheduling is
-implemented for this chip.)
-.IP "\fBgeode\fR" 4
-.IX Item "geode"
-\&\s-1AMD\s0 Geode embedded processor with \s-1MMX\s0 and 3DNow! instruction set support.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mtune=\fR\fIcpu-type\fR" 4
-.IX Item "-mtune=cpu-type"
-Tune to \fIcpu-type\fR everything applicable about the generated code, except
-for the \s-1ABI\s0 and the set of available instructions.
-While picking a specific \fIcpu-type\fR schedules things appropriately
-for that particular chip, the compiler does not generate any code that
-cannot run on the default machine type unless you use a
-\&\fB\-march=\fR\fIcpu-type\fR option.
-For example, if \s-1GCC\s0 is configured for i686\-pc\-linux\-gnu
-then \fB\-mtune=pentium4\fR generates code that is tuned for Pentium 4
-but still runs on i686 machines.
-.Sp
-The choices for \fIcpu-type\fR are the same as for \fB\-march\fR.
-In addition, \fB\-mtune\fR supports 2 extra choices for \fIcpu-type\fR:
-.RS 4
-.IP "\fBgeneric\fR" 4
-.IX Item "generic"
-Produce code optimized for the most common \s-1IA32/AMD64/EM64T\s0 processors.
-If you know the \s-1CPU\s0 on which your code will run, then you should use
-the corresponding \fB\-mtune\fR or \fB\-march\fR option instead of
-\&\fB\-mtune=generic\fR. But, if you do not know exactly what \s-1CPU\s0 users
-of your application will have, then you should use this option.
-.Sp
-As new processors are deployed in the marketplace, the behavior of this
-option will change. Therefore, if you upgrade to a newer version of
-\&\s-1GCC,\s0 code generation controlled by this option will change to reflect
-the processors
-that are most common at the time that version of \s-1GCC\s0 is released.
-.Sp
-There is no \fB\-march=generic\fR option because \fB\-march\fR
-indicates the instruction set the compiler can use, and there is no
-generic instruction set applicable to all processors. In contrast,
-\&\fB\-mtune\fR indicates the processor (or, in this case, collection of
-processors) for which the code is optimized.
-.IP "\fBintel\fR" 4
-.IX Item "intel"
-Produce code optimized for the most current Intel processors, which are
-Haswell and Silvermont for this version of \s-1GCC. \s0 If you know the \s-1CPU\s0
-on which your code will run, then you should use the corresponding
-\&\fB\-mtune\fR or \fB\-march\fR option instead of \fB\-mtune=intel\fR.
-But, if you want your application performs better on both Haswell and
-Silvermont, then you should use this option.
-.Sp
-As new Intel processors are deployed in the marketplace, the behavior of
-this option will change. Therefore, if you upgrade to a newer version of
-\&\s-1GCC,\s0 code generation controlled by this option will change to reflect
-the most current Intel processors at the time that version of \s-1GCC\s0 is
-released.
-.Sp
-There is no \fB\-march=intel\fR option because \fB\-march\fR indicates
-the instruction set the compiler can use, and there is no common
-instruction set applicable to all processors. In contrast,
-\&\fB\-mtune\fR indicates the processor (or, in this case, collection of
-processors) for which the code is optimized.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mcpu=\fR\fIcpu-type\fR" 4
-.IX Item "-mcpu=cpu-type"
-A deprecated synonym for \fB\-mtune\fR.
-.IP "\fB\-mfpmath=\fR\fIunit\fR" 4
-.IX Item "-mfpmath=unit"
-Generate floating-point arithmetic for selected unit \fIunit\fR. The choices
-for \fIunit\fR are:
-.RS 4
-.IP "\fB387\fR" 4
-.IX Item "387"
-Use the standard 387 floating-point coprocessor present on the majority of chips and
-emulated otherwise. Code compiled with this option runs almost everywhere.
-The temporary results are computed in 80\-bit precision instead of the precision
-specified by the type, resulting in slightly different results compared to most
-of other chips. See \fB\-ffloat\-store\fR for more detailed description.
-.Sp
-This is the default choice for i386 compiler.
-.IP "\fBsse\fR" 4
-.IX Item "sse"
-Use scalar floating-point instructions present in the \s-1SSE\s0 instruction set.
-This instruction set is supported by Pentium \s-1III\s0 and newer chips,
-and in the \s-1AMD\s0 line
-by Athlon\-4, Athlon \s-1XP\s0 and Athlon \s-1MP\s0 chips. The earlier version of the \s-1SSE\s0
-instruction set supports only single-precision arithmetic, thus the double and
-extended-precision arithmetic are still done using 387. A later version, present
-only in Pentium 4 and \s-1AMD\s0 x86\-64 chips, supports double-precision
-arithmetic too.
-.Sp
-For the i386 compiler, you must use \fB\-march=\fR\fIcpu-type\fR, \fB\-msse\fR
-or \fB\-msse2\fR switches to enable \s-1SSE\s0 extensions and make this option
-effective. For the x86\-64 compiler, these extensions are enabled by default.
-.Sp
-The resulting code should be considerably faster in the majority of cases and avoid
-the numerical instability problems of 387 code, but may break some existing
-code that expects temporaries to be 80 bits.
-.Sp
-This is the default choice for the x86\-64 compiler.
-.IP "\fBsse,387\fR" 4
-.IX Item "sse,387"
-.PD 0
-.IP "\fBsse+387\fR" 4
-.IX Item "sse+387"
-.IP "\fBboth\fR" 4
-.IX Item "both"
-.PD
-Attempt to utilize both instruction sets at once. This effectively doubles the
-amount of available registers, and on chips with separate execution units for
-387 and \s-1SSE\s0 the execution resources too. Use this option with care, as it is
-still experimental, because the \s-1GCC\s0 register allocator does not model separate
-functional units well, resulting in unstable performance.
-.RE
-.RS 4
-.RE
-.IP "\fB\-masm=\fR\fIdialect\fR" 4
-.IX Item "-masm=dialect"
-Output assembly instructions using selected \fIdialect\fR. Supported
-choices are \fBintel\fR or \fBatt\fR (the default). Darwin does
-not support \fBintel\fR.
-.IP "\fB\-mieee\-fp\fR" 4
-.IX Item "-mieee-fp"
-.PD 0
-.IP "\fB\-mno\-ieee\-fp\fR" 4
-.IX Item "-mno-ieee-fp"
-.PD
-Control whether or not the compiler uses \s-1IEEE\s0 floating-point
-comparisons. These correctly handle the case where the result of a
-comparison is unordered.
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-Generate output containing library calls for floating point.
-.Sp
-\&\fBWarning:\fR the requisite libraries are not part of \s-1GCC.\s0
-Normally the facilities of the machine's usual C compiler are used, but
-this can't be done directly in cross-compilation. You must make your
-own arrangements to provide suitable library functions for
-cross-compilation.
-.Sp
-On machines where a function returns floating-point results in the 80387
-register stack, some floating-point opcodes may be emitted even if
-\&\fB\-msoft\-float\fR is used.
-.IP "\fB\-mno\-fp\-ret\-in\-387\fR" 4
-.IX Item "-mno-fp-ret-in-387"
-Do not use the \s-1FPU\s0 registers for return values of functions.
-.Sp
-The usual calling convention has functions return values of types
-\&\f(CW\*(C`float\*(C'\fR and \f(CW\*(C`double\*(C'\fR in an \s-1FPU\s0 register, even if there
-is no \s-1FPU. \s0 The idea is that the operating system should emulate
-an \s-1FPU.\s0
-.Sp
-The option \fB\-mno\-fp\-ret\-in\-387\fR causes such values to be returned
-in ordinary \s-1CPU\s0 registers instead.
-.IP "\fB\-mno\-fancy\-math\-387\fR" 4
-.IX Item "-mno-fancy-math-387"
-Some 387 emulators do not support the \f(CW\*(C`sin\*(C'\fR, \f(CW\*(C`cos\*(C'\fR and
-\&\f(CW\*(C`sqrt\*(C'\fR instructions for the 387. Specify this option to avoid
-generating those instructions. This option is the default on FreeBSD,
-OpenBSD and NetBSD. This option is overridden when \fB\-march\fR
-indicates that the target \s-1CPU\s0 always has an \s-1FPU\s0 and so the
-instruction does not need emulation. These
-instructions are not generated unless you also use the
-\&\fB\-funsafe\-math\-optimizations\fR switch.
-.IP "\fB\-malign\-double\fR" 4
-.IX Item "-malign-double"
-.PD 0
-.IP "\fB\-mno\-align\-double\fR" 4
-.IX Item "-mno-align-double"
-.PD
-Control whether \s-1GCC\s0 aligns \f(CW\*(C`double\*(C'\fR, \f(CW\*(C`long double\*(C'\fR, and
-\&\f(CW\*(C`long long\*(C'\fR variables on a two-word boundary or a one-word
-boundary. Aligning \f(CW\*(C`double\*(C'\fR variables on a two-word boundary
-produces code that runs somewhat faster on a Pentium at the
-expense of more memory.
-.Sp
-On x86\-64, \fB\-malign\-double\fR is enabled by default.
-.Sp
-\&\fBWarning:\fR if you use the \fB\-malign\-double\fR switch,
-structures containing the above types are aligned differently than
-the published application binary interface specifications for the 386
-and are not binary compatible with structures in code compiled
-without that switch.
-.IP "\fB\-m96bit\-long\-double\fR" 4
-.IX Item "-m96bit-long-double"
-.PD 0
-.IP "\fB\-m128bit\-long\-double\fR" 4
-.IX Item "-m128bit-long-double"
-.PD
-These switches control the size of \f(CW\*(C`long double\*(C'\fR type. The i386
-application binary interface specifies the size to be 96 bits,
-so \fB\-m96bit\-long\-double\fR is the default in 32\-bit mode.
-.Sp
-Modern architectures (Pentium and newer) prefer \f(CW\*(C`long double\*(C'\fR
-to be aligned to an 8\- or 16\-byte boundary. In arrays or structures
-conforming to the \s-1ABI,\s0 this is not possible. So specifying
-\&\fB\-m128bit\-long\-double\fR aligns \f(CW\*(C`long double\*(C'\fR
-to a 16\-byte boundary by padding the \f(CW\*(C`long double\*(C'\fR with an additional
-32\-bit zero.
-.Sp
-In the x86\-64 compiler, \fB\-m128bit\-long\-double\fR is the default choice as
-its \s-1ABI\s0 specifies that \f(CW\*(C`long double\*(C'\fR is aligned on 16\-byte boundary.
-.Sp
-Notice that neither of these options enable any extra precision over the x87
-standard of 80 bits for a \f(CW\*(C`long double\*(C'\fR.
-.Sp
-\&\fBWarning:\fR if you override the default value for your target \s-1ABI,\s0 this
-changes the size of
-structures and arrays containing \f(CW\*(C`long double\*(C'\fR variables,
-as well as modifying the function calling convention for functions taking
-\&\f(CW\*(C`long double\*(C'\fR. Hence they are not binary-compatible
-with code compiled without that switch.
-.IP "\fB\-mlong\-double\-64\fR" 4
-.IX Item "-mlong-double-64"
-.PD 0
-.IP "\fB\-mlong\-double\-80\fR" 4
-.IX Item "-mlong-double-80"
-.IP "\fB\-mlong\-double\-128\fR" 4
-.IX Item "-mlong-double-128"
-.PD
-These switches control the size of \f(CW\*(C`long double\*(C'\fR type. A size
-of 64 bits makes the \f(CW\*(C`long double\*(C'\fR type equivalent to the \f(CW\*(C`double\*(C'\fR
-type. This is the default for 32\-bit Bionic C library. A size
-of 128 bits makes the \f(CW\*(C`long double\*(C'\fR type equivalent to the
-\&\f(CW\*(C`_\|_float128\*(C'\fR type. This is the default for 64\-bit Bionic C library.
-.Sp
-\&\fBWarning:\fR if you override the default value for your target \s-1ABI,\s0 this
-changes the size of
-structures and arrays containing \f(CW\*(C`long double\*(C'\fR variables,
-as well as modifying the function calling convention for functions taking
-\&\f(CW\*(C`long double\*(C'\fR. Hence they are not binary-compatible
-with code compiled without that switch.
-.IP "\fB\-mlarge\-data\-threshold=\fR\fIthreshold\fR" 4
-.IX Item "-mlarge-data-threshold=threshold"
-When \fB\-mcmodel=medium\fR is specified, data objects larger than
-\&\fIthreshold\fR are placed in the large data section. This value must be the
-same across all objects linked into the binary, and defaults to 65535.
-.IP "\fB\-mrtd\fR" 4
-.IX Item "-mrtd"
-Use a different function-calling convention, in which functions that
-take a fixed number of arguments return with the \f(CW\*(C`ret \f(CInum\f(CW\*(C'\fR
-instruction, which pops their arguments while returning. This saves one
-instruction in the caller since there is no need to pop the arguments
-there.
-.Sp
-You can specify that an individual function is called with this calling
-sequence with the function attribute \fBstdcall\fR. You can also
-override the \fB\-mrtd\fR option by using the function attribute
-\&\fBcdecl\fR.
-.Sp
-\&\fBWarning:\fR this calling convention is incompatible with the one
-normally used on Unix, so you cannot use it if you need to call
-libraries compiled with the Unix compiler.
-.Sp
-Also, you must provide function prototypes for all functions that
-take variable numbers of arguments (including \f(CW\*(C`printf\*(C'\fR);
-otherwise incorrect code is generated for calls to those
-functions.
-.Sp
-In addition, seriously incorrect code results if you call a
-function with too many arguments. (Normally, extra arguments are
-harmlessly ignored.)
-.IP "\fB\-mregparm=\fR\fInum\fR" 4
-.IX Item "-mregparm=num"
-Control how many registers are used to pass integer arguments. By
-default, no registers are used to pass arguments, and at most 3
-registers can be used. You can control this behavior for a specific
-function by using the function attribute \fBregparm\fR.
-.Sp
-\&\fBWarning:\fR if you use this switch, and
-\&\fInum\fR is nonzero, then you must build all modules with the same
-value, including any libraries. This includes the system libraries and
-startup modules.
-.IP "\fB\-msseregparm\fR" 4
-.IX Item "-msseregparm"
-Use \s-1SSE\s0 register passing conventions for float and double arguments
-and return values. You can control this behavior for a specific
-function by using the function attribute \fBsseregparm\fR.
-.Sp
-\&\fBWarning:\fR if you use this switch then you must build all
-modules with the same value, including any libraries. This includes
-the system libraries and startup modules.
-.IP "\fB\-mvect8\-ret\-in\-mem\fR" 4
-.IX Item "-mvect8-ret-in-mem"
-Return 8\-byte vectors in memory instead of \s-1MMX\s0 registers. This is the
-default on Solaris@tie{}8 and 9 and VxWorks to match the \s-1ABI\s0 of the Sun
-Studio compilers until version 12. Later compiler versions (starting
-with Studio 12 Update@tie{}1) follow the \s-1ABI\s0 used by other x86 targets, which
-is the default on Solaris@tie{}10 and later. \fIOnly\fR use this option if
-you need to remain compatible with existing code produced by those
-previous compiler versions or older versions of \s-1GCC.\s0
-.IP "\fB\-mpc32\fR" 4
-.IX Item "-mpc32"
-.PD 0
-.IP "\fB\-mpc64\fR" 4
-.IX Item "-mpc64"
-.IP "\fB\-mpc80\fR" 4
-.IX Item "-mpc80"
-.PD
-Set 80387 floating-point precision to 32, 64 or 80 bits. When \fB\-mpc32\fR
-is specified, the significands of results of floating-point operations are
-rounded to 24 bits (single precision); \fB\-mpc64\fR rounds the
-significands of results of floating-point operations to 53 bits (double
-precision) and \fB\-mpc80\fR rounds the significands of results of
-floating-point operations to 64 bits (extended double precision), which is
-the default. When this option is used, floating-point operations in higher
-precisions are not available to the programmer without setting the \s-1FPU\s0
-control word explicitly.
-.Sp
-Setting the rounding of floating-point operations to less than the default
-80 bits can speed some programs by 2% or more. Note that some mathematical
-libraries assume that extended-precision (80\-bit) floating-point operations
-are enabled by default; routines in such libraries could suffer significant
-loss of accuracy, typically through so-called \*(L"catastrophic cancellation\*(R",
-when this option is used to set the precision to less than extended precision.
-.IP "\fB\-mstackrealign\fR" 4
-.IX Item "-mstackrealign"
-Realign the stack at entry. On the Intel x86, the \fB\-mstackrealign\fR
-option generates an alternate prologue and epilogue that realigns the
-run-time stack if necessary. This supports mixing legacy codes that keep
-4\-byte stack alignment with modern codes that keep 16\-byte stack alignment for
-\&\s-1SSE\s0 compatibility. See also the attribute \f(CW\*(C`force_align_arg_pointer\*(C'\fR,
-applicable to individual functions.
-.IP "\fB\-mpreferred\-stack\-boundary=\fR\fInum\fR" 4
-.IX Item "-mpreferred-stack-boundary=num"
-Attempt to keep the stack boundary aligned to a 2 raised to \fInum\fR
-byte boundary. If \fB\-mpreferred\-stack\-boundary\fR is not specified,
-the default is 4 (16 bytes or 128 bits).
-.Sp
-\&\fBWarning:\fR When generating code for the x86\-64 architecture with
-\&\s-1SSE\s0 extensions disabled, \fB\-mpreferred\-stack\-boundary=3\fR can be
-used to keep the stack boundary aligned to 8 byte boundary. Since
-x86\-64 \s-1ABI\s0 require 16 byte stack alignment, this is \s-1ABI\s0 incompatible and
-intended to be used in controlled environment where stack space is
-important limitation. This option will lead to wrong code when functions
-compiled with 16 byte stack alignment (such as functions from a standard
-library) are called with misaligned stack. In this case, \s-1SSE\s0
-instructions may lead to misaligned memory access traps. In addition,
-variable arguments will be handled incorrectly for 16 byte aligned
-objects (including x87 long double and _\|_int128), leading to wrong
-results. You must build all modules with
-\&\fB\-mpreferred\-stack\-boundary=3\fR, including any libraries. This
-includes the system libraries and startup modules.
-.IP "\fB\-mincoming\-stack\-boundary=\fR\fInum\fR" 4
-.IX Item "-mincoming-stack-boundary=num"
-Assume the incoming stack is aligned to a 2 raised to \fInum\fR byte
-boundary. If \fB\-mincoming\-stack\-boundary\fR is not specified,
-the one specified by \fB\-mpreferred\-stack\-boundary\fR is used.
-.Sp
-On Pentium and Pentium Pro, \f(CW\*(C`double\*(C'\fR and \f(CW\*(C`long double\*(C'\fR values
-should be aligned to an 8\-byte boundary (see \fB\-malign\-double\fR) or
-suffer significant run time performance penalties. On Pentium \s-1III,\s0 the
-Streaming \s-1SIMD\s0 Extension (\s-1SSE\s0) data type \f(CW\*(C`_\|_m128\*(C'\fR may not work
-properly if it is not 16\-byte aligned.
-.Sp
-To ensure proper alignment of this values on the stack, the stack boundary
-must be as aligned as that required by any value stored on the stack.
-Further, every function must be generated such that it keeps the stack
-aligned. Thus calling a function compiled with a higher preferred
-stack boundary from a function compiled with a lower preferred stack
-boundary most likely misaligns the stack. It is recommended that
-libraries that use callbacks always use the default setting.
-.Sp
-This extra alignment does consume extra stack space, and generally
-increases code size. Code that is sensitive to stack space usage, such
-as embedded systems and operating system kernels, may want to reduce the
-preferred alignment to \fB\-mpreferred\-stack\-boundary=2\fR.
-.IP "\fB\-mmmx\fR" 4
-.IX Item "-mmmx"
-.PD 0
-.IP "\fB\-mno\-mmx\fR" 4
-.IX Item "-mno-mmx"
-.IP "\fB\-msse\fR" 4
-.IX Item "-msse"
-.IP "\fB\-mno\-sse\fR" 4
-.IX Item "-mno-sse"
-.IP "\fB\-msse2\fR" 4
-.IX Item "-msse2"
-.IP "\fB\-mno\-sse2\fR" 4
-.IX Item "-mno-sse2"
-.IP "\fB\-msse3\fR" 4
-.IX Item "-msse3"
-.IP "\fB\-mno\-sse3\fR" 4
-.IX Item "-mno-sse3"
-.IP "\fB\-mssse3\fR" 4
-.IX Item "-mssse3"
-.IP "\fB\-mno\-ssse3\fR" 4
-.IX Item "-mno-ssse3"
-.IP "\fB\-msse4.1\fR" 4
-.IX Item "-msse4.1"
-.IP "\fB\-mno\-sse4.1\fR" 4
-.IX Item "-mno-sse4.1"
-.IP "\fB\-msse4.2\fR" 4
-.IX Item "-msse4.2"
-.IP "\fB\-mno\-sse4.2\fR" 4
-.IX Item "-mno-sse4.2"
-.IP "\fB\-msse4\fR" 4
-.IX Item "-msse4"
-.IP "\fB\-mno\-sse4\fR" 4
-.IX Item "-mno-sse4"
-.IP "\fB\-mavx\fR" 4
-.IX Item "-mavx"
-.IP "\fB\-mno\-avx\fR" 4
-.IX Item "-mno-avx"
-.IP "\fB\-mavx2\fR" 4
-.IX Item "-mavx2"
-.IP "\fB\-mno\-avx2\fR" 4
-.IX Item "-mno-avx2"
-.IP "\fB\-mavx512f\fR" 4
-.IX Item "-mavx512f"
-.IP "\fB\-mno\-avx512f\fR" 4
-.IX Item "-mno-avx512f"
-.IP "\fB\-mavx512pf\fR" 4
-.IX Item "-mavx512pf"
-.IP "\fB\-mno\-avx512pf\fR" 4
-.IX Item "-mno-avx512pf"
-.IP "\fB\-mavx512er\fR" 4
-.IX Item "-mavx512er"
-.IP "\fB\-mno\-avx512er\fR" 4
-.IX Item "-mno-avx512er"
-.IP "\fB\-mavx512cd\fR" 4
-.IX Item "-mavx512cd"
-.IP "\fB\-mno\-avx512cd\fR" 4
-.IX Item "-mno-avx512cd"
-.IP "\fB\-msha\fR" 4
-.IX Item "-msha"
-.IP "\fB\-mno\-sha\fR" 4
-.IX Item "-mno-sha"
-.IP "\fB\-maes\fR" 4
-.IX Item "-maes"
-.IP "\fB\-mno\-aes\fR" 4
-.IX Item "-mno-aes"
-.IP "\fB\-mpclmul\fR" 4
-.IX Item "-mpclmul"
-.IP "\fB\-mno\-pclmul\fR" 4
-.IX Item "-mno-pclmul"
-.IP "\fB\-mfsgsbase\fR" 4
-.IX Item "-mfsgsbase"
-.IP "\fB\-mno\-fsgsbase\fR" 4
-.IX Item "-mno-fsgsbase"
-.IP "\fB\-mrdrnd\fR" 4
-.IX Item "-mrdrnd"
-.IP "\fB\-mno\-rdrnd\fR" 4
-.IX Item "-mno-rdrnd"
-.IP "\fB\-mf16c\fR" 4
-.IX Item "-mf16c"
-.IP "\fB\-mno\-f16c\fR" 4
-.IX Item "-mno-f16c"
-.IP "\fB\-mfma\fR" 4
-.IX Item "-mfma"
-.IP "\fB\-mno\-fma\fR" 4
-.IX Item "-mno-fma"
-.IP "\fB\-mprefetchwt1\fR" 4
-.IX Item "-mprefetchwt1"
-.IP "\fB\-mno\-prefetchwt1\fR" 4
-.IX Item "-mno-prefetchwt1"
-.IP "\fB\-msse4a\fR" 4
-.IX Item "-msse4a"
-.IP "\fB\-mno\-sse4a\fR" 4
-.IX Item "-mno-sse4a"
-.IP "\fB\-mfma4\fR" 4
-.IX Item "-mfma4"
-.IP "\fB\-mno\-fma4\fR" 4
-.IX Item "-mno-fma4"
-.IP "\fB\-mxop\fR" 4
-.IX Item "-mxop"
-.IP "\fB\-mno\-xop\fR" 4
-.IX Item "-mno-xop"
-.IP "\fB\-mlwp\fR" 4
-.IX Item "-mlwp"
-.IP "\fB\-mno\-lwp\fR" 4
-.IX Item "-mno-lwp"
-.IP "\fB\-m3dnow\fR" 4
-.IX Item "-m3dnow"
-.IP "\fB\-mno\-3dnow\fR" 4
-.IX Item "-mno-3dnow"
-.IP "\fB\-mpopcnt\fR" 4
-.IX Item "-mpopcnt"
-.IP "\fB\-mno\-popcnt\fR" 4
-.IX Item "-mno-popcnt"
-.IP "\fB\-mabm\fR" 4
-.IX Item "-mabm"
-.IP "\fB\-mno\-abm\fR" 4
-.IX Item "-mno-abm"
-.IP "\fB\-mbmi\fR" 4
-.IX Item "-mbmi"
-.IP "\fB\-mbmi2\fR" 4
-.IX Item "-mbmi2"
-.IP "\fB\-mno\-bmi\fR" 4
-.IX Item "-mno-bmi"
-.IP "\fB\-mno\-bmi2\fR" 4
-.IX Item "-mno-bmi2"
-.IP "\fB\-mlzcnt\fR" 4
-.IX Item "-mlzcnt"
-.IP "\fB\-mno\-lzcnt\fR" 4
-.IX Item "-mno-lzcnt"
-.IP "\fB\-mfxsr\fR" 4
-.IX Item "-mfxsr"
-.IP "\fB\-mxsave\fR" 4
-.IX Item "-mxsave"
-.IP "\fB\-mxsaveopt\fR" 4
-.IX Item "-mxsaveopt"
-.IP "\fB\-mrtm\fR" 4
-.IX Item "-mrtm"
-.IP "\fB\-mtbm\fR" 4
-.IX Item "-mtbm"
-.IP "\fB\-mno\-tbm\fR" 4
-.IX Item "-mno-tbm"
-.PD
-These switches enable or disable the use of instructions in the \s-1MMX, SSE,
-SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
-SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
-BMI, BMI2, FXSR, XSAVE, XSAVEOPT, LZCNT, RTM,\s0 or 3DNow!
-extended instruction sets.
-These extensions are also available as built-in functions: see
-\&\fBX86 Built-in Functions\fR, for details of the functions enabled and
-disabled by these switches.
-.Sp
-To generate \s-1SSE/SSE2\s0 instructions automatically from floating-point
-code (as opposed to 387 instructions), see \fB\-mfpmath=sse\fR.
-.Sp
-\&\s-1GCC\s0 depresses SSEx instructions when \fB\-mavx\fR is used. Instead, it
-generates new \s-1AVX\s0 instructions or \s-1AVX\s0 equivalence for all SSEx instructions
-when needed.
-.Sp
-These options enable \s-1GCC\s0 to use these extended instructions in
-generated code, even without \fB\-mfpmath=sse\fR. Applications that
-perform run-time \s-1CPU\s0 detection must compile separate files for each
-supported architecture, using the appropriate flags. In particular,
-the file containing the \s-1CPU\s0 detection code should be compiled without
-these options.
-.IP "\fB\-mdump\-tune\-features\fR" 4
-.IX Item "-mdump-tune-features"
-This option instructs \s-1GCC\s0 to dump the names of the x86 performance
-tuning features and default settings. The names can be used in
-\&\fB\-mtune\-ctrl=\fR\fIfeature-list\fR.
-.IP "\fB\-mtune\-ctrl=\fR\fIfeature-list\fR" 4
-.IX Item "-mtune-ctrl=feature-list"
-This option is used to do fine grain control of x86 code generation features.
-\&\fIfeature-list\fR is a comma separated list of \fIfeature\fR names. See also
-\&\fB\-mdump\-tune\-features\fR. When specified, the \fIfeature\fR will be turned
-on if it is not preceded with \f(CW\*(C`^\*(C'\fR, otherwise, it will be turned off.
-\&\fB\-mtune\-ctrl=\fR\fIfeature-list\fR is intended to be used by \s-1GCC\s0
-developers. Using it may lead to code paths not covered by testing and can
-potentially result in compiler ICEs or runtime errors.
-.IP "\fB\-mno\-default\fR" 4
-.IX Item "-mno-default"
-This option instructs \s-1GCC\s0 to turn off all tunable features. See also
-\&\fB\-mtune\-ctrl=\fR\fIfeature-list\fR and \fB\-mdump\-tune\-features\fR.
-.IP "\fB\-mcld\fR" 4
-.IX Item "-mcld"
-This option instructs \s-1GCC\s0 to emit a \f(CW\*(C`cld\*(C'\fR instruction in the prologue
-of functions that use string instructions. String instructions depend on
-the \s-1DF\s0 flag to select between autoincrement or autodecrement mode. While the
-\&\s-1ABI\s0 specifies the \s-1DF\s0 flag to be cleared on function entry, some operating
-systems violate this specification by not clearing the \s-1DF\s0 flag in their
-exception dispatchers. The exception handler can be invoked with the \s-1DF\s0 flag
-set, which leads to wrong direction mode when string instructions are used.
-This option can be enabled by default on 32\-bit x86 targets by configuring
-\&\s-1GCC\s0 with the \fB\-\-enable\-cld\fR configure option. Generation of \f(CW\*(C`cld\*(C'\fR
-instructions can be suppressed with the \fB\-mno\-cld\fR compiler option
-in this case.
-.IP "\fB\-mvzeroupper\fR" 4
-.IX Item "-mvzeroupper"
-This option instructs \s-1GCC\s0 to emit a \f(CW\*(C`vzeroupper\*(C'\fR instruction
-before a transfer of control flow out of the function to minimize
-the \s-1AVX\s0 to \s-1SSE\s0 transition penalty as well as remove unnecessary \f(CW\*(C`zeroupper\*(C'\fR
-intrinsics.
-.IP "\fB\-mprefer\-avx128\fR" 4
-.IX Item "-mprefer-avx128"
-This option instructs \s-1GCC\s0 to use 128\-bit \s-1AVX\s0 instructions instead of
-256\-bit \s-1AVX\s0 instructions in the auto-vectorizer.
-.IP "\fB\-mcx16\fR" 4
-.IX Item "-mcx16"
-This option enables \s-1GCC\s0 to generate \f(CW\*(C`CMPXCHG16B\*(C'\fR instructions.
-\&\f(CW\*(C`CMPXCHG16B\*(C'\fR allows for atomic operations on 128\-bit double quadword
-(or oword) data types.
-This is useful for high-resolution counters that can be updated
-by multiple processors (or cores). This instruction is generated as part of
-atomic built-in functions: see \fB_\|_sync Builtins\fR or
-\&\fB_\|_atomic Builtins\fR for details.
-.IP "\fB\-msahf\fR" 4
-.IX Item "-msahf"
-This option enables generation of \f(CW\*(C`SAHF\*(C'\fR instructions in 64\-bit code.
-Early Intel Pentium 4 CPUs with Intel 64 support,
-prior to the introduction of Pentium 4 G1 step in December 2005,
-lacked the \f(CW\*(C`LAHF\*(C'\fR and \f(CW\*(C`SAHF\*(C'\fR instructions
-which were supported by \s-1AMD64.\s0
-These are load and store instructions, respectively, for certain status flags.
-In 64\-bit mode, the \f(CW\*(C`SAHF\*(C'\fR instruction is used to optimize \f(CW\*(C`fmod\*(C'\fR,
-\&\f(CW\*(C`drem\*(C'\fR, and \f(CW\*(C`remainder\*(C'\fR built-in functions;
-see \fBOther Builtins\fR for details.
-.IP "\fB\-mmovbe\fR" 4
-.IX Item "-mmovbe"
-This option enables use of the \f(CW\*(C`movbe\*(C'\fR instruction to implement
-\&\f(CW\*(C`_\|_builtin_bswap32\*(C'\fR and \f(CW\*(C`_\|_builtin_bswap64\*(C'\fR.
-.IP "\fB\-mcrc32\fR" 4
-.IX Item "-mcrc32"
-This option enables built-in functions \f(CW\*(C`_\|_builtin_ia32_crc32qi\*(C'\fR,
-\&\f(CW\*(C`_\|_builtin_ia32_crc32hi\*(C'\fR, \f(CW\*(C`_\|_builtin_ia32_crc32si\*(C'\fR and
-\&\f(CW\*(C`_\|_builtin_ia32_crc32di\*(C'\fR to generate the \f(CW\*(C`crc32\*(C'\fR machine instruction.
-.IP "\fB\-mrecip\fR" 4
-.IX Item "-mrecip"
-This option enables use of \f(CW\*(C`RCPSS\*(C'\fR and \f(CW\*(C`RSQRTSS\*(C'\fR instructions
-(and their vectorized variants \f(CW\*(C`RCPPS\*(C'\fR and \f(CW\*(C`RSQRTPS\*(C'\fR)
-with an additional Newton-Raphson step
-to increase precision instead of \f(CW\*(C`DIVSS\*(C'\fR and \f(CW\*(C`SQRTSS\*(C'\fR
-(and their vectorized
-variants) for single-precision floating-point arguments. These instructions
-are generated only when \fB\-funsafe\-math\-optimizations\fR is enabled
-together with \fB\-finite\-math\-only\fR and \fB\-fno\-trapping\-math\fR.
-Note that while the throughput of the sequence is higher than the throughput
-of the non-reciprocal instruction, the precision of the sequence can be
-decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
-.Sp
-Note that \s-1GCC\s0 implements \f(CW\*(C`1.0f/sqrtf(\f(CIx\f(CW)\*(C'\fR in terms of \f(CW\*(C`RSQRTSS\*(C'\fR
-(or \f(CW\*(C`RSQRTPS\*(C'\fR) already with \fB\-ffast\-math\fR (or the above option
-combination), and doesn't need \fB\-mrecip\fR.
-.Sp
-Also note that \s-1GCC\s0 emits the above sequence with additional Newton-Raphson step
-for vectorized single-float division and vectorized \f(CW\*(C`sqrtf(\f(CIx\f(CW)\*(C'\fR
-already with \fB\-ffast\-math\fR (or the above option combination), and
-doesn't need \fB\-mrecip\fR.
-.IP "\fB\-mrecip=\fR\fIopt\fR" 4
-.IX Item "-mrecip=opt"
-This option controls which reciprocal estimate instructions
-may be used. \fIopt\fR is a comma-separated list of options, which may
-be preceded by a \fB!\fR to invert the option:
-.RS 4
-.IP "\fBall\fR" 4
-.IX Item "all"
-Enable all estimate instructions.
-.IP "\fBdefault\fR" 4
-.IX Item "default"
-Enable the default instructions, equivalent to \fB\-mrecip\fR.
-.IP "\fBnone\fR" 4
-.IX Item "none"
-Disable all estimate instructions, equivalent to \fB\-mno\-recip\fR.
-.IP "\fBdiv\fR" 4
-.IX Item "div"
-Enable the approximation for scalar division.
-.IP "\fBvec-div\fR" 4
-.IX Item "vec-div"
-Enable the approximation for vectorized division.
-.IP "\fBsqrt\fR" 4
-.IX Item "sqrt"
-Enable the approximation for scalar square root.
-.IP "\fBvec-sqrt\fR" 4
-.IX Item "vec-sqrt"
-Enable the approximation for vectorized square root.
-.RE
-.RS 4
-.Sp
-So, for example, \fB\-mrecip=all,!sqrt\fR enables
-all of the reciprocal approximations, except for square root.
-.RE
-.IP "\fB\-mveclibabi=\fR\fItype\fR" 4
-.IX Item "-mveclibabi=type"
-Specifies the \s-1ABI\s0 type to use for vectorizing intrinsics using an
-external library. Supported values for \fItype\fR are \fBsvml\fR
-for the Intel short
-vector math library and \fBacml\fR for the \s-1AMD\s0 math core library.
-To use this option, both \fB\-ftree\-vectorize\fR and
-\&\fB\-funsafe\-math\-optimizations\fR have to be enabled, and an \s-1SVML\s0 or \s-1ACML \s0
-ABI-compatible library must be specified at link time.
-.Sp
-\&\s-1GCC\s0 currently emits calls to \f(CW\*(C`vmldExp2\*(C'\fR,
-\&\f(CW\*(C`vmldLn2\*(C'\fR, \f(CW\*(C`vmldLog102\*(C'\fR, \f(CW\*(C`vmldLog102\*(C'\fR, \f(CW\*(C`vmldPow2\*(C'\fR,
-\&\f(CW\*(C`vmldTanh2\*(C'\fR, \f(CW\*(C`vmldTan2\*(C'\fR, \f(CW\*(C`vmldAtan2\*(C'\fR, \f(CW\*(C`vmldAtanh2\*(C'\fR,
-\&\f(CW\*(C`vmldCbrt2\*(C'\fR, \f(CW\*(C`vmldSinh2\*(C'\fR, \f(CW\*(C`vmldSin2\*(C'\fR, \f(CW\*(C`vmldAsinh2\*(C'\fR,
-\&\f(CW\*(C`vmldAsin2\*(C'\fR, \f(CW\*(C`vmldCosh2\*(C'\fR, \f(CW\*(C`vmldCos2\*(C'\fR, \f(CW\*(C`vmldAcosh2\*(C'\fR,
-\&\f(CW\*(C`vmldAcos2\*(C'\fR, \f(CW\*(C`vmlsExp4\*(C'\fR, \f(CW\*(C`vmlsLn4\*(C'\fR, \f(CW\*(C`vmlsLog104\*(C'\fR,
-\&\f(CW\*(C`vmlsLog104\*(C'\fR, \f(CW\*(C`vmlsPow4\*(C'\fR, \f(CW\*(C`vmlsTanh4\*(C'\fR, \f(CW\*(C`vmlsTan4\*(C'\fR,
-\&\f(CW\*(C`vmlsAtan4\*(C'\fR, \f(CW\*(C`vmlsAtanh4\*(C'\fR, \f(CW\*(C`vmlsCbrt4\*(C'\fR, \f(CW\*(C`vmlsSinh4\*(C'\fR,
-\&\f(CW\*(C`vmlsSin4\*(C'\fR, \f(CW\*(C`vmlsAsinh4\*(C'\fR, \f(CW\*(C`vmlsAsin4\*(C'\fR, \f(CW\*(C`vmlsCosh4\*(C'\fR,
-\&\f(CW\*(C`vmlsCos4\*(C'\fR, \f(CW\*(C`vmlsAcosh4\*(C'\fR and \f(CW\*(C`vmlsAcos4\*(C'\fR for corresponding
-function type when \fB\-mveclibabi=svml\fR is used, and \f(CW\*(C`_\|_vrd2_sin\*(C'\fR,
-\&\f(CW\*(C`_\|_vrd2_cos\*(C'\fR, \f(CW\*(C`_\|_vrd2_exp\*(C'\fR, \f(CW\*(C`_\|_vrd2_log\*(C'\fR, \f(CW\*(C`_\|_vrd2_log2\*(C'\fR,
-\&\f(CW\*(C`_\|_vrd2_log10\*(C'\fR, \f(CW\*(C`_\|_vrs4_sinf\*(C'\fR, \f(CW\*(C`_\|_vrs4_cosf\*(C'\fR,
-\&\f(CW\*(C`_\|_vrs4_expf\*(C'\fR, \f(CW\*(C`_\|_vrs4_logf\*(C'\fR, \f(CW\*(C`_\|_vrs4_log2f\*(C'\fR,
-\&\f(CW\*(C`_\|_vrs4_log10f\*(C'\fR and \f(CW\*(C`_\|_vrs4_powf\*(C'\fR for the corresponding function type
-when \fB\-mveclibabi=acml\fR is used.
-.IP "\fB\-mabi=\fR\fIname\fR" 4
-.IX Item "-mabi=name"
-Generate code for the specified calling convention. Permissible values
-are \fBsysv\fR for the \s-1ABI\s0 used on GNU/Linux and other systems, and
-\&\fBms\fR for the Microsoft \s-1ABI. \s0 The default is to use the Microsoft
-\&\s-1ABI\s0 when targeting Microsoft Windows and the SysV \s-1ABI\s0 on all other systems.
-You can control this behavior for a specific function by
-using the function attribute \fBms_abi\fR/\fBsysv_abi\fR.
-.IP "\fB\-mtls\-dialect=\fR\fItype\fR" 4
-.IX Item "-mtls-dialect=type"
-Generate code to access thread-local storage using the \fBgnu\fR or
-\&\fBgnu2\fR conventions. \fBgnu\fR is the conservative default;
-\&\fBgnu2\fR is more efficient, but it may add compile\- and run-time
-requirements that cannot be satisfied on all systems.
-.IP "\fB\-mpush\-args\fR" 4
-.IX Item "-mpush-args"
-.PD 0
-.IP "\fB\-mno\-push\-args\fR" 4
-.IX Item "-mno-push-args"
-.PD
-Use \s-1PUSH\s0 operations to store outgoing parameters. This method is shorter
-and usually equally fast as method using \s-1SUB/MOV\s0 operations and is enabled
-by default. In some cases disabling it may improve performance because of
-improved scheduling and reduced dependencies.
-.IP "\fB\-maccumulate\-outgoing\-args\fR" 4
-.IX Item "-maccumulate-outgoing-args"
-If enabled, the maximum amount of space required for outgoing arguments is
-computed in the function prologue. This is faster on most modern CPUs
-because of reduced dependencies, improved scheduling and reduced stack usage
-when the preferred stack boundary is not equal to 2. The drawback is a notable
-increase in code size. This switch implies \fB\-mno\-push\-args\fR.
-.IP "\fB\-mthreads\fR" 4
-.IX Item "-mthreads"
-Support thread-safe exception handling on MinGW. Programs that rely
-on thread-safe exception handling must compile and link all code with the
-\&\fB\-mthreads\fR option. When compiling, \fB\-mthreads\fR defines
-\&\f(CW\*(C`\-D_MT\*(C'\fR; when linking, it links in a special thread helper library
-\&\fB\-lmingwthrd\fR which cleans up per-thread exception-handling data.
-.IP "\fB\-mno\-align\-stringops\fR" 4
-.IX Item "-mno-align-stringops"
-Do not align the destination of inlined string operations. This switch reduces
-code size and improves performance in case the destination is already aligned,
-but \s-1GCC\s0 doesn't know about it.
-.IP "\fB\-minline\-all\-stringops\fR" 4
-.IX Item "-minline-all-stringops"
-By default \s-1GCC\s0 inlines string operations only when the destination is
-known to be aligned to least a 4\-byte boundary.
-This enables more inlining and increases code
-size, but may improve performance of code that depends on fast
-\&\f(CW\*(C`memcpy\*(C'\fR, \f(CW\*(C`strlen\*(C'\fR,
-and \f(CW\*(C`memset\*(C'\fR for short lengths.
-.IP "\fB\-minline\-stringops\-dynamically\fR" 4
-.IX Item "-minline-stringops-dynamically"
-For string operations of unknown size, use run-time checks with
-inline code for small blocks and a library call for large blocks.
-.IP "\fB\-mstringop\-strategy=\fR\fIalg\fR" 4
-.IX Item "-mstringop-strategy=alg"
-Override the internal decision heuristic for the particular algorithm to use
-for inlining string operations. The allowed values for \fIalg\fR are:
-.RS 4
-.IP "\fBrep_byte\fR" 4
-.IX Item "rep_byte"
-.PD 0
-.IP "\fBrep_4byte\fR" 4
-.IX Item "rep_4byte"
-.IP "\fBrep_8byte\fR" 4
-.IX Item "rep_8byte"
-.PD
-Expand using i386 \f(CW\*(C`rep\*(C'\fR prefix of the specified size.
-.IP "\fBbyte_loop\fR" 4
-.IX Item "byte_loop"
-.PD 0
-.IP "\fBloop\fR" 4
-.IX Item "loop"
-.IP "\fBunrolled_loop\fR" 4
-.IX Item "unrolled_loop"
-.PD
-Expand into an inline loop.
-.IP "\fBlibcall\fR" 4
-.IX Item "libcall"
-Always use a library call.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mmemcpy\-strategy=\fR\fIstrategy\fR" 4
-.IX Item "-mmemcpy-strategy=strategy"
-Override the internal decision heuristic to decide if \f(CW\*(C`_\|_builtin_memcpy\*(C'\fR
-should be inlined and what inline algorithm to use when the expected size
-of the copy operation is known. \fIstrategy\fR
-is a comma-separated list of \fIalg\fR:\fImax_size\fR:\fIdest_align\fR triplets.
-\&\fIalg\fR is specified in \fB\-mstringop\-strategy\fR, \fImax_size\fR specifies
-the max byte size with which inline algorithm \fIalg\fR is allowed. For the last
-triplet, the \fImax_size\fR must be \f(CW\*(C`\-1\*(C'\fR. The \fImax_size\fR of the triplets
-in the list must be specified in increasing order. The minimal byte size for
-\&\fIalg\fR is \f(CW0\fR for the first triplet and \f(CW\*(C`\f(CImax_size\f(CW + 1\*(C'\fR of the
-preceding range.
-.IP "\fB\-mmemset\-strategy=\fR\fIstrategy\fR" 4
-.IX Item "-mmemset-strategy=strategy"
-The option is similar to \fB\-mmemcpy\-strategy=\fR except that it is to control
-\&\f(CW\*(C`_\|_builtin_memset\*(C'\fR expansion.
-.IP "\fB\-momit\-leaf\-frame\-pointer\fR" 4
-.IX Item "-momit-leaf-frame-pointer"
-Don't keep the frame pointer in a register for leaf functions. This
-avoids the instructions to save, set up, and restore frame pointers and
-makes an extra register available in leaf functions. The option
-\&\fB\-fomit\-leaf\-frame\-pointer\fR removes the frame pointer for leaf functions,
-which might make debugging harder.
-.IP "\fB\-mtls\-direct\-seg\-refs\fR" 4
-.IX Item "-mtls-direct-seg-refs"
-.PD 0
-.IP "\fB\-mno\-tls\-direct\-seg\-refs\fR" 4
-.IX Item "-mno-tls-direct-seg-refs"
-.PD
-Controls whether \s-1TLS\s0 variables may be accessed with offsets from the
-\&\s-1TLS\s0 segment register (\f(CW%gs\fR for 32\-bit, \f(CW%fs\fR for 64\-bit),
-or whether the thread base pointer must be added. Whether or not this
-is valid depends on the operating system, and whether it maps the
-segment to cover the entire \s-1TLS\s0 area.
-.Sp
-For systems that use the \s-1GNU C\s0 Library, the default is on.
-.IP "\fB\-msse2avx\fR" 4
-.IX Item "-msse2avx"
-.PD 0
-.IP "\fB\-mno\-sse2avx\fR" 4
-.IX Item "-mno-sse2avx"
-.PD
-Specify that the assembler should encode \s-1SSE\s0 instructions with \s-1VEX\s0
-prefix. The option \fB\-mavx\fR turns this on by default.
-.IP "\fB\-mfentry\fR" 4
-.IX Item "-mfentry"
-.PD 0
-.IP "\fB\-mno\-fentry\fR" 4
-.IX Item "-mno-fentry"
-.PD
-If profiling is active (\fB\-pg\fR), put the profiling
-counter call before the prologue.
-Note: On x86 architectures the attribute \f(CW\*(C`ms_hook_prologue\*(C'\fR
-isn't possible at the moment for \fB\-mfentry\fR and \fB\-pg\fR.
-.IP "\fB\-m8bit\-idiv\fR" 4
-.IX Item "-m8bit-idiv"
-.PD 0
-.IP "\fB\-mno\-8bit\-idiv\fR" 4
-.IX Item "-mno-8bit-idiv"
-.PD
-On some processors, like Intel Atom, 8\-bit unsigned integer divide is
-much faster than 32\-bit/64\-bit integer divide. This option generates a
-run-time check. If both dividend and divisor are within range of 0
-to 255, 8\-bit unsigned integer divide is used instead of
-32\-bit/64\-bit integer divide.
-.IP "\fB\-mavx256\-split\-unaligned\-load\fR" 4
-.IX Item "-mavx256-split-unaligned-load"
-.PD 0
-.IP "\fB\-mavx256\-split\-unaligned\-store\fR" 4
-.IX Item "-mavx256-split-unaligned-store"
-.PD
-Split 32\-byte \s-1AVX\s0 unaligned load and store.
-.IP "\fB\-mstack\-protector\-guard=\fR\fIguard\fR" 4
-.IX Item "-mstack-protector-guard=guard"
-Generate stack protection code using canary at \fIguard\fR. Supported
-locations are \fBglobal\fR for global canary or \fBtls\fR for per-thread
-canary in the \s-1TLS\s0 block (the default). This option has effect only when
-\&\fB\-fstack\-protector\fR or \fB\-fstack\-protector\-all\fR is specified.
-.PP
-These \fB\-m\fR switches are supported in addition to the above
-on x86\-64 processors in 64\-bit environments.
-.IP "\fB\-m32\fR" 4
-.IX Item "-m32"
-.PD 0
-.IP "\fB\-m64\fR" 4
-.IX Item "-m64"
-.IP "\fB\-mx32\fR" 4
-.IX Item "-mx32"
-.IP "\fB\-m16\fR" 4
-.IX Item "-m16"
-.PD
-Generate code for a 16\-bit, 32\-bit or 64\-bit environment.
-The \fB\-m32\fR option sets \f(CW\*(C`int\*(C'\fR, \f(CW\*(C`long\*(C'\fR, and pointer types
-to 32 bits, and
-generates code that runs on any i386 system.
-.Sp
-The \fB\-m64\fR option sets \f(CW\*(C`int\*(C'\fR to 32 bits and \f(CW\*(C`long\*(C'\fR and pointer
-types to 64 bits, and generates code for the x86\-64 architecture.
-For Darwin only the \fB\-m64\fR option also turns off the \fB\-fno\-pic\fR
-and \fB\-mdynamic\-no\-pic\fR options.
-.Sp
-The \fB\-mx32\fR option sets \f(CW\*(C`int\*(C'\fR, \f(CW\*(C`long\*(C'\fR, and pointer types
-to 32 bits, and
-generates code for the x86\-64 architecture.
-.Sp
-The \fB\-m16\fR option is the same as \fB\-m32\fR, except for that
-it outputs the \f(CW\*(C`.code16gcc\*(C'\fR assembly directive at the beginning of
-the assembly output so that the binary can run in 16\-bit mode.
-.IP "\fB\-mno\-red\-zone\fR" 4
-.IX Item "-mno-red-zone"
-Do not use a so-called \*(L"red zone\*(R" for x86\-64 code. The red zone is mandated
-by the x86\-64 \s-1ABI\s0; it is a 128\-byte area beyond the location of the
-stack pointer that is not modified by signal or interrupt handlers
-and therefore can be used for temporary data without adjusting the stack
-pointer. The flag \fB\-mno\-red\-zone\fR disables this red zone.
-.IP "\fB\-mcmodel=small\fR" 4
-.IX Item "-mcmodel=small"
-Generate code for the small code model: the program and its symbols must
-be linked in the lower 2 \s-1GB\s0 of the address space. Pointers are 64 bits.
-Programs can be statically or dynamically linked. This is the default
-code model.
-.IP "\fB\-mcmodel=kernel\fR" 4
-.IX Item "-mcmodel=kernel"
-Generate code for the kernel code model. The kernel runs in the
-negative 2 \s-1GB\s0 of the address space.
-This model has to be used for Linux kernel code.
-.IP "\fB\-mcmodel=medium\fR" 4
-.IX Item "-mcmodel=medium"
-Generate code for the medium model: the program is linked in the lower 2
-\&\s-1GB\s0 of the address space. Small symbols are also placed there. Symbols
-with sizes larger than \fB\-mlarge\-data\-threshold\fR are put into
-large data or \s-1BSS\s0 sections and can be located above 2GB. Programs can
-be statically or dynamically linked.
-.IP "\fB\-mcmodel=large\fR" 4
-.IX Item "-mcmodel=large"
-Generate code for the large model. This model makes no assumptions
-about addresses and sizes of sections.
-.IP "\fB\-maddress\-mode=long\fR" 4
-.IX Item "-maddress-mode=long"
-Generate code for long address mode. This is only supported for 64\-bit
-and x32 environments. It is the default address mode for 64\-bit
-environments.
-.IP "\fB\-maddress\-mode=short\fR" 4
-.IX Item "-maddress-mode=short"
-Generate code for short address mode. This is only supported for 32\-bit
-and x32 environments. It is the default address mode for 32\-bit and
-x32 environments.
-.PP
-\fIi386 and x86\-64 Windows Options\fR
-.IX Subsection "i386 and x86-64 Windows Options"
-.PP
-These additional options are available for Microsoft Windows targets:
-.IP "\fB\-mconsole\fR" 4
-.IX Item "-mconsole"
-This option
-specifies that a console application is to be generated, by
-instructing the linker to set the \s-1PE\s0 header subsystem type
-required for console applications.
-This option is available for Cygwin and MinGW targets and is
-enabled by default on those targets.
-.IP "\fB\-mdll\fR" 4
-.IX Item "-mdll"
-This option is available for Cygwin and MinGW targets. It
-specifies that a DLL\-\-\-a dynamic link library\-\-\-is to be
-generated, enabling the selection of the required runtime
-startup object and entry point.
-.IP "\fB\-mnop\-fun\-dllimport\fR" 4
-.IX Item "-mnop-fun-dllimport"
-This option is available for Cygwin and MinGW targets. It
-specifies that the \f(CW\*(C`dllimport\*(C'\fR attribute should be ignored.
-.IP "\fB\-mthread\fR" 4
-.IX Item "-mthread"
-This option is available for MinGW targets. It specifies
-that MinGW-specific thread support is to be used.
-.IP "\fB\-municode\fR" 4
-.IX Item "-municode"
-This option is available for MinGW\-w64 targets. It causes
-the \f(CW\*(C`UNICODE\*(C'\fR preprocessor macro to be predefined, and
-chooses Unicode-capable runtime startup code.
-.IP "\fB\-mwin32\fR" 4
-.IX Item "-mwin32"
-This option is available for Cygwin and MinGW targets. It
-specifies that the typical Microsoft Windows predefined macros are to
-be set in the pre-processor, but does not influence the choice
-of runtime library/startup code.
-.IP "\fB\-mwindows\fR" 4
-.IX Item "-mwindows"
-This option is available for Cygwin and MinGW targets. It
-specifies that a \s-1GUI\s0 application is to be generated by
-instructing the linker to set the \s-1PE\s0 header subsystem type
-appropriately.
-.IP "\fB\-fno\-set\-stack\-executable\fR" 4
-.IX Item "-fno-set-stack-executable"
-This option is available for MinGW targets. It specifies that
-the executable flag for the stack used by nested functions isn't
-set. This is necessary for binaries running in kernel mode of
-Microsoft Windows, as there the User32 \s-1API,\s0 which is used to set executable
-privileges, isn't available.
-.IP "\fB\-fwritable\-relocated\-rdata\fR" 4
-.IX Item "-fwritable-relocated-rdata"
-This option is available for MinGW and Cygwin targets. It specifies
-that relocated-data in read-only section is put into .data
-section. This is a necessary for older runtimes not supporting
-modification of .rdata sections for pseudo-relocation.
-.IP "\fB\-mpe\-aligned\-commons\fR" 4
-.IX Item "-mpe-aligned-commons"
-This option is available for Cygwin and MinGW targets. It
-specifies that the \s-1GNU\s0 extension to the \s-1PE\s0 file format that
-permits the correct alignment of \s-1COMMON\s0 variables should be
-used when generating code. It is enabled by default if
-\&\s-1GCC\s0 detects that the target assembler found during configuration
-supports the feature.
-.PP
-See also under \fBi386 and x86\-64 Options\fR for standard options.
-.PP
-\fI\s-1IA\-64\s0 Options\fR
-.IX Subsection "IA-64 Options"
-.PP
-These are the \fB\-m\fR options defined for the Intel \s-1IA\-64\s0 architecture.
-.IP "\fB\-mbig\-endian\fR" 4
-.IX Item "-mbig-endian"
-Generate code for a big-endian target. This is the default for HP-UX.
-.IP "\fB\-mlittle\-endian\fR" 4
-.IX Item "-mlittle-endian"
-Generate code for a little-endian target. This is the default for \s-1AIX5\s0
-and GNU/Linux.
-.IP "\fB\-mgnu\-as\fR" 4
-.IX Item "-mgnu-as"
-.PD 0
-.IP "\fB\-mno\-gnu\-as\fR" 4
-.IX Item "-mno-gnu-as"
-.PD
-Generate (or don't) code for the \s-1GNU\s0 assembler. This is the default.
-.IP "\fB\-mgnu\-ld\fR" 4
-.IX Item "-mgnu-ld"
-.PD 0
-.IP "\fB\-mno\-gnu\-ld\fR" 4
-.IX Item "-mno-gnu-ld"
-.PD
-Generate (or don't) code for the \s-1GNU\s0 linker. This is the default.
-.IP "\fB\-mno\-pic\fR" 4
-.IX Item "-mno-pic"
-Generate code that does not use a global pointer register. The result
-is not position independent code, and violates the \s-1IA\-64 ABI.\s0
-.IP "\fB\-mvolatile\-asm\-stop\fR" 4
-.IX Item "-mvolatile-asm-stop"
-.PD 0
-.IP "\fB\-mno\-volatile\-asm\-stop\fR" 4
-.IX Item "-mno-volatile-asm-stop"
-.PD
-Generate (or don't) a stop bit immediately before and after volatile asm
-statements.
-.IP "\fB\-mregister\-names\fR" 4
-.IX Item "-mregister-names"
-.PD 0
-.IP "\fB\-mno\-register\-names\fR" 4
-.IX Item "-mno-register-names"
-.PD
-Generate (or don't) \fBin\fR, \fBloc\fR, and \fBout\fR register names for
-the stacked registers. This may make assembler output more readable.
-.IP "\fB\-mno\-sdata\fR" 4
-.IX Item "-mno-sdata"
-.PD 0
-.IP "\fB\-msdata\fR" 4
-.IX Item "-msdata"
-.PD
-Disable (or enable) optimizations that use the small data section. This may
-be useful for working around optimizer bugs.
-.IP "\fB\-mconstant\-gp\fR" 4
-.IX Item "-mconstant-gp"
-Generate code that uses a single constant global pointer value. This is
-useful when compiling kernel code.
-.IP "\fB\-mauto\-pic\fR" 4
-.IX Item "-mauto-pic"
-Generate code that is self-relocatable. This implies \fB\-mconstant\-gp\fR.
-This is useful when compiling firmware code.
-.IP "\fB\-minline\-float\-divide\-min\-latency\fR" 4
-.IX Item "-minline-float-divide-min-latency"
-Generate code for inline divides of floating-point values
-using the minimum latency algorithm.
-.IP "\fB\-minline\-float\-divide\-max\-throughput\fR" 4
-.IX Item "-minline-float-divide-max-throughput"
-Generate code for inline divides of floating-point values
-using the maximum throughput algorithm.
-.IP "\fB\-mno\-inline\-float\-divide\fR" 4
-.IX Item "-mno-inline-float-divide"
-Do not generate inline code for divides of floating-point values.
-.IP "\fB\-minline\-int\-divide\-min\-latency\fR" 4
-.IX Item "-minline-int-divide-min-latency"
-Generate code for inline divides of integer values
-using the minimum latency algorithm.
-.IP "\fB\-minline\-int\-divide\-max\-throughput\fR" 4
-.IX Item "-minline-int-divide-max-throughput"
-Generate code for inline divides of integer values
-using the maximum throughput algorithm.
-.IP "\fB\-mno\-inline\-int\-divide\fR" 4
-.IX Item "-mno-inline-int-divide"
-Do not generate inline code for divides of integer values.
-.IP "\fB\-minline\-sqrt\-min\-latency\fR" 4
-.IX Item "-minline-sqrt-min-latency"
-Generate code for inline square roots
-using the minimum latency algorithm.
-.IP "\fB\-minline\-sqrt\-max\-throughput\fR" 4
-.IX Item "-minline-sqrt-max-throughput"
-Generate code for inline square roots
-using the maximum throughput algorithm.
-.IP "\fB\-mno\-inline\-sqrt\fR" 4
-.IX Item "-mno-inline-sqrt"
-Do not generate inline code for \f(CW\*(C`sqrt\*(C'\fR.
-.IP "\fB\-mfused\-madd\fR" 4
-.IX Item "-mfused-madd"
-.PD 0
-.IP "\fB\-mno\-fused\-madd\fR" 4
-.IX Item "-mno-fused-madd"
-.PD
-Do (don't) generate code that uses the fused multiply/add or multiply/subtract
-instructions. The default is to use these instructions.
-.IP "\fB\-mno\-dwarf2\-asm\fR" 4
-.IX Item "-mno-dwarf2-asm"
-.PD 0
-.IP "\fB\-mdwarf2\-asm\fR" 4
-.IX Item "-mdwarf2-asm"
-.PD
-Don't (or do) generate assembler code for the \s-1DWARF 2\s0 line number debugging
-info. This may be useful when not using the \s-1GNU\s0 assembler.
-.IP "\fB\-mearly\-stop\-bits\fR" 4
-.IX Item "-mearly-stop-bits"
-.PD 0
-.IP "\fB\-mno\-early\-stop\-bits\fR" 4
-.IX Item "-mno-early-stop-bits"
-.PD
-Allow stop bits to be placed earlier than immediately preceding the
-instruction that triggered the stop bit. This can improve instruction
-scheduling, but does not always do so.
-.IP "\fB\-mfixed\-range=\fR\fIregister-range\fR" 4
-.IX Item "-mfixed-range=register-range"
-Generate code treating the given register range as fixed registers.
-A fixed register is one that the register allocator cannot use. This is
-useful when compiling kernel code. A register range is specified as
-two registers separated by a dash. Multiple register ranges can be
-specified separated by a comma.
-.IP "\fB\-mtls\-size=\fR\fItls-size\fR" 4
-.IX Item "-mtls-size=tls-size"
-Specify bit size of immediate \s-1TLS\s0 offsets. Valid values are 14, 22, and
-64.
-.IP "\fB\-mtune=\fR\fIcpu-type\fR" 4
-.IX Item "-mtune=cpu-type"
-Tune the instruction scheduling for a particular \s-1CPU,\s0 Valid values are
-\&\fBitanium\fR, \fBitanium1\fR, \fBmerced\fR, \fBitanium2\fR,
-and \fBmckinley\fR.
-.IP "\fB\-milp32\fR" 4
-.IX Item "-milp32"
-.PD 0
-.IP "\fB\-mlp64\fR" 4
-.IX Item "-mlp64"
-.PD
-Generate code for a 32\-bit or 64\-bit environment.
-The 32\-bit environment sets int, long and pointer to 32 bits.
-The 64\-bit environment sets int to 32 bits and long and pointer
-to 64 bits. These are HP-UX specific flags.
-.IP "\fB\-mno\-sched\-br\-data\-spec\fR" 4
-.IX Item "-mno-sched-br-data-spec"
-.PD 0
-.IP "\fB\-msched\-br\-data\-spec\fR" 4
-.IX Item "-msched-br-data-spec"
-.PD
-(Dis/En)able data speculative scheduling before reload.
-This results in generation of \f(CW\*(C`ld.a\*(C'\fR instructions and
-the corresponding check instructions (\f(CW\*(C`ld.c\*(C'\fR / \f(CW\*(C`chk.a\*(C'\fR).
-The default is 'disable'.
-.IP "\fB\-msched\-ar\-data\-spec\fR" 4
-.IX Item "-msched-ar-data-spec"
-.PD 0
-.IP "\fB\-mno\-sched\-ar\-data\-spec\fR" 4
-.IX Item "-mno-sched-ar-data-spec"
-.PD
-(En/Dis)able data speculative scheduling after reload.
-This results in generation of \f(CW\*(C`ld.a\*(C'\fR instructions and
-the corresponding check instructions (\f(CW\*(C`ld.c\*(C'\fR / \f(CW\*(C`chk.a\*(C'\fR).
-The default is 'enable'.
-.IP "\fB\-mno\-sched\-control\-spec\fR" 4
-.IX Item "-mno-sched-control-spec"
-.PD 0
-.IP "\fB\-msched\-control\-spec\fR" 4
-.IX Item "-msched-control-spec"
-.PD
-(Dis/En)able control speculative scheduling. This feature is
-available only during region scheduling (i.e. before reload).
-This results in generation of the \f(CW\*(C`ld.s\*(C'\fR instructions and
-the corresponding check instructions \f(CW\*(C`chk.s\*(C'\fR.
-The default is 'disable'.
-.IP "\fB\-msched\-br\-in\-data\-spec\fR" 4
-.IX Item "-msched-br-in-data-spec"
-.PD 0
-.IP "\fB\-mno\-sched\-br\-in\-data\-spec\fR" 4
-.IX Item "-mno-sched-br-in-data-spec"
-.PD
-(En/Dis)able speculative scheduling of the instructions that
-are dependent on the data speculative loads before reload.
-This is effective only with \fB\-msched\-br\-data\-spec\fR enabled.
-The default is 'enable'.
-.IP "\fB\-msched\-ar\-in\-data\-spec\fR" 4
-.IX Item "-msched-ar-in-data-spec"
-.PD 0
-.IP "\fB\-mno\-sched\-ar\-in\-data\-spec\fR" 4
-.IX Item "-mno-sched-ar-in-data-spec"
-.PD
-(En/Dis)able speculative scheduling of the instructions that
-are dependent on the data speculative loads after reload.
-This is effective only with \fB\-msched\-ar\-data\-spec\fR enabled.
-The default is 'enable'.
-.IP "\fB\-msched\-in\-control\-spec\fR" 4
-.IX Item "-msched-in-control-spec"
-.PD 0
-.IP "\fB\-mno\-sched\-in\-control\-spec\fR" 4
-.IX Item "-mno-sched-in-control-spec"
-.PD
-(En/Dis)able speculative scheduling of the instructions that
-are dependent on the control speculative loads.
-This is effective only with \fB\-msched\-control\-spec\fR enabled.
-The default is 'enable'.
-.IP "\fB\-mno\-sched\-prefer\-non\-data\-spec\-insns\fR" 4
-.IX Item "-mno-sched-prefer-non-data-spec-insns"
-.PD 0
-.IP "\fB\-msched\-prefer\-non\-data\-spec\-insns\fR" 4
-.IX Item "-msched-prefer-non-data-spec-insns"
-.PD
-If enabled, data-speculative instructions are chosen for schedule
-only if there are no other choices at the moment. This makes
-the use of the data speculation much more conservative.
-The default is 'disable'.
-.IP "\fB\-mno\-sched\-prefer\-non\-control\-spec\-insns\fR" 4
-.IX Item "-mno-sched-prefer-non-control-spec-insns"
-.PD 0
-.IP "\fB\-msched\-prefer\-non\-control\-spec\-insns\fR" 4
-.IX Item "-msched-prefer-non-control-spec-insns"
-.PD
-If enabled, control-speculative instructions are chosen for schedule
-only if there are no other choices at the moment. This makes
-the use of the control speculation much more conservative.
-The default is 'disable'.
-.IP "\fB\-mno\-sched\-count\-spec\-in\-critical\-path\fR" 4
-.IX Item "-mno-sched-count-spec-in-critical-path"
-.PD 0
-.IP "\fB\-msched\-count\-spec\-in\-critical\-path\fR" 4
-.IX Item "-msched-count-spec-in-critical-path"
-.PD
-If enabled, speculative dependencies are considered during
-computation of the instructions priorities. This makes the use of the
-speculation a bit more conservative.
-The default is 'disable'.
-.IP "\fB\-msched\-spec\-ldc\fR" 4
-.IX Item "-msched-spec-ldc"
-Use a simple data speculation check. This option is on by default.
-.IP "\fB\-msched\-control\-spec\-ldc\fR" 4
-.IX Item "-msched-control-spec-ldc"
-Use a simple check for control speculation. This option is on by default.
-.IP "\fB\-msched\-stop\-bits\-after\-every\-cycle\fR" 4
-.IX Item "-msched-stop-bits-after-every-cycle"
-Place a stop bit after every cycle when scheduling. This option is on
-by default.
-.IP "\fB\-msched\-fp\-mem\-deps\-zero\-cost\fR" 4
-.IX Item "-msched-fp-mem-deps-zero-cost"
-Assume that floating-point stores and loads are not likely to cause a conflict
-when placed into the same instruction group. This option is disabled by
-default.
-.IP "\fB\-msel\-sched\-dont\-check\-control\-spec\fR" 4
-.IX Item "-msel-sched-dont-check-control-spec"
-Generate checks for control speculation in selective scheduling.
-This flag is disabled by default.
-.IP "\fB\-msched\-max\-memory\-insns=\fR\fImax-insns\fR" 4
-.IX Item "-msched-max-memory-insns=max-insns"
-Limit on the number of memory insns per instruction group, giving lower
-priority to subsequent memory insns attempting to schedule in the same
-instruction group. Frequently useful to prevent cache bank conflicts.
-The default value is 1.
-.IP "\fB\-msched\-max\-memory\-insns\-hard\-limit\fR" 4
-.IX Item "-msched-max-memory-insns-hard-limit"
-Makes the limit specified by \fBmsched-max-memory-insns\fR a hard limit,
-disallowing more than that number in an instruction group.
-Otherwise, the limit is \*(L"soft\*(R", meaning that non-memory operations
-are preferred when the limit is reached, but memory operations may still
-be scheduled.
-.PP
-\fI\s-1LM32\s0 Options\fR
-.IX Subsection "LM32 Options"
-.PP
-These \fB\-m\fR options are defined for the LatticeMico32 architecture:
-.IP "\fB\-mbarrel\-shift\-enabled\fR" 4
-.IX Item "-mbarrel-shift-enabled"
-Enable barrel-shift instructions.
-.IP "\fB\-mdivide\-enabled\fR" 4
-.IX Item "-mdivide-enabled"
-Enable divide and modulus instructions.
-.IP "\fB\-mmultiply\-enabled\fR" 4
-.IX Item "-mmultiply-enabled"
-Enable multiply instructions.
-.IP "\fB\-msign\-extend\-enabled\fR" 4
-.IX Item "-msign-extend-enabled"
-Enable sign extend instructions.
-.IP "\fB\-muser\-enabled\fR" 4
-.IX Item "-muser-enabled"
-Enable user-defined instructions.
-.PP
-\fIM32C Options\fR
-.IX Subsection "M32C Options"
-.IP "\fB\-mcpu=\fR\fIname\fR" 4
-.IX Item "-mcpu=name"
-Select the \s-1CPU\s0 for which code is generated. \fIname\fR may be one of
-\&\fBr8c\fR for the R8C/Tiny series, \fBm16c\fR for the M16C (up to
-/60) series, \fBm32cm\fR for the M16C/80 series, or \fBm32c\fR for
-the M32C/80 series.
-.IP "\fB\-msim\fR" 4
-.IX Item "-msim"
-Specifies that the program will be run on the simulator. This causes
-an alternate runtime library to be linked in which supports, for
-example, file I/O. You must not use this option when generating
-programs that will run on real hardware; you must provide your own
-runtime library for whatever I/O functions are needed.
-.IP "\fB\-memregs=\fR\fInumber\fR" 4
-.IX Item "-memregs=number"
-Specifies the number of memory-based pseudo-registers \s-1GCC\s0 uses
-during code generation. These pseudo-registers are used like real
-registers, so there is a tradeoff between \s-1GCC\s0's ability to fit the
-code into available registers, and the performance penalty of using
-memory instead of registers. Note that all modules in a program must
-be compiled with the same value for this option. Because of that, you
-must not use this option with \s-1GCC\s0's default runtime libraries.
-.PP
-\fIM32R/D Options\fR
-.IX Subsection "M32R/D Options"
-.PP
-These \fB\-m\fR options are defined for Renesas M32R/D architectures:
-.IP "\fB\-m32r2\fR" 4
-.IX Item "-m32r2"
-Generate code for the M32R/2.
-.IP "\fB\-m32rx\fR" 4
-.IX Item "-m32rx"
-Generate code for the M32R/X.
-.IP "\fB\-m32r\fR" 4
-.IX Item "-m32r"
-Generate code for the M32R. This is the default.
-.IP "\fB\-mmodel=small\fR" 4
-.IX Item "-mmodel=small"
-Assume all objects live in the lower 16MB of memory (so that their addresses
-can be loaded with the \f(CW\*(C`ld24\*(C'\fR instruction), and assume all subroutines
-are reachable with the \f(CW\*(C`bl\*(C'\fR instruction.
-This is the default.
-.Sp
-The addressability of a particular object can be set with the
-\&\f(CW\*(C`model\*(C'\fR attribute.
-.IP "\fB\-mmodel=medium\fR" 4
-.IX Item "-mmodel=medium"
-Assume objects may be anywhere in the 32\-bit address space (the compiler
-generates \f(CW\*(C`seth/add3\*(C'\fR instructions to load their addresses), and
-assume all subroutines are reachable with the \f(CW\*(C`bl\*(C'\fR instruction.
-.IP "\fB\-mmodel=large\fR" 4
-.IX Item "-mmodel=large"
-Assume objects may be anywhere in the 32\-bit address space (the compiler
-generates \f(CW\*(C`seth/add3\*(C'\fR instructions to load their addresses), and
-assume subroutines may not be reachable with the \f(CW\*(C`bl\*(C'\fR instruction
-(the compiler generates the much slower \f(CW\*(C`seth/add3/jl\*(C'\fR
-instruction sequence).
-.IP "\fB\-msdata=none\fR" 4
-.IX Item "-msdata=none"
-Disable use of the small data area. Variables are put into
-one of \fB.data\fR, \fB.bss\fR, or \fB.rodata\fR (unless the
-\&\f(CW\*(C`section\*(C'\fR attribute has been specified).
-This is the default.
-.Sp
-The small data area consists of sections \fB.sdata\fR and \fB.sbss\fR.
-Objects may be explicitly put in the small data area with the
-\&\f(CW\*(C`section\*(C'\fR attribute using one of these sections.
-.IP "\fB\-msdata=sdata\fR" 4
-.IX Item "-msdata=sdata"
-Put small global and static data in the small data area, but do not
-generate special code to reference them.
-.IP "\fB\-msdata=use\fR" 4
-.IX Item "-msdata=use"
-Put small global and static data in the small data area, and generate
-special instructions to reference them.
-.IP "\fB\-G\fR \fInum\fR" 4
-.IX Item "-G num"
-Put global and static objects less than or equal to \fInum\fR bytes
-into the small data or \s-1BSS\s0 sections instead of the normal data or \s-1BSS\s0
-sections. The default value of \fInum\fR is 8.
-The \fB\-msdata\fR option must be set to one of \fBsdata\fR or \fBuse\fR
-for this option to have any effect.
-.Sp
-All modules should be compiled with the same \fB\-G\fR \fInum\fR value.
-Compiling with different values of \fInum\fR may or may not work; if it
-doesn't the linker gives an error message\-\-\-incorrect code is not
-generated.
-.IP "\fB\-mdebug\fR" 4
-.IX Item "-mdebug"
-Makes the M32R\-specific code in the compiler display some statistics
-that might help in debugging programs.
-.IP "\fB\-malign\-loops\fR" 4
-.IX Item "-malign-loops"
-Align all loops to a 32\-byte boundary.
-.IP "\fB\-mno\-align\-loops\fR" 4
-.IX Item "-mno-align-loops"
-Do not enforce a 32\-byte alignment for loops. This is the default.
-.IP "\fB\-missue\-rate=\fR\fInumber\fR" 4
-.IX Item "-missue-rate=number"
-Issue \fInumber\fR instructions per cycle. \fInumber\fR can only be 1
-or 2.
-.IP "\fB\-mbranch\-cost=\fR\fInumber\fR" 4
-.IX Item "-mbranch-cost=number"
-\&\fInumber\fR can only be 1 or 2. If it is 1 then branches are
-preferred over conditional code, if it is 2, then the opposite applies.
-.IP "\fB\-mflush\-trap=\fR\fInumber\fR" 4
-.IX Item "-mflush-trap=number"
-Specifies the trap number to use to flush the cache. The default is
-12. Valid numbers are between 0 and 15 inclusive.
-.IP "\fB\-mno\-flush\-trap\fR" 4
-.IX Item "-mno-flush-trap"
-Specifies that the cache cannot be flushed by using a trap.
-.IP "\fB\-mflush\-func=\fR\fIname\fR" 4
-.IX Item "-mflush-func=name"
-Specifies the name of the operating system function to call to flush
-the cache. The default is \fI_flush_cache\fR, but a function call
-is only used if a trap is not available.
-.IP "\fB\-mno\-flush\-func\fR" 4
-.IX Item "-mno-flush-func"
-Indicates that there is no \s-1OS\s0 function for flushing the cache.
-.PP
-\fIM680x0 Options\fR
-.IX Subsection "M680x0 Options"
-.PP
-These are the \fB\-m\fR options defined for M680x0 and ColdFire processors.
-The default settings depend on which architecture was selected when
-the compiler was configured; the defaults for the most common choices
-are given below.
-.IP "\fB\-march=\fR\fIarch\fR" 4
-.IX Item "-march=arch"
-Generate code for a specific M680x0 or ColdFire instruction set
-architecture. Permissible values of \fIarch\fR for M680x0
-architectures are: \fB68000\fR, \fB68010\fR, \fB68020\fR,
-\&\fB68030\fR, \fB68040\fR, \fB68060\fR and \fBcpu32\fR. ColdFire
-architectures are selected according to Freescale's \s-1ISA\s0 classification
-and the permissible values are: \fBisaa\fR, \fBisaaplus\fR,
-\&\fBisab\fR and \fBisac\fR.
-.Sp
-\&\s-1GCC\s0 defines a macro \fB_\|_mcf\fR\fIarch\fR\fB_\|_\fR whenever it is generating
-code for a ColdFire target. The \fIarch\fR in this macro is one of the
-\&\fB\-march\fR arguments given above.
-.Sp
-When used together, \fB\-march\fR and \fB\-mtune\fR select code
-that runs on a family of similar processors but that is optimized
-for a particular microarchitecture.
-.IP "\fB\-mcpu=\fR\fIcpu\fR" 4
-.IX Item "-mcpu=cpu"
-Generate code for a specific M680x0 or ColdFire processor.
-The M680x0 \fIcpu\fRs are: \fB68000\fR, \fB68010\fR, \fB68020\fR,
-\&\fB68030\fR, \fB68040\fR, \fB68060\fR, \fB68302\fR, \fB68332\fR
-and \fBcpu32\fR. The ColdFire \fIcpu\fRs are given by the table
-below, which also classifies the CPUs into families:
-.RS 4
-.IP "Family : \fB\-mcpu\fR arguments" 4
-.IX Item "Family : -mcpu arguments"
-.PD 0
-.IP "\fB51\fR : \fB51\fR \fB51ac\fR \fB51ag\fR \fB51cn\fR \fB51em\fR \fB51je\fR \fB51jf\fR \fB51jg\fR \fB51jm\fR \fB51mm\fR \fB51qe\fR \fB51qm\fR" 4
-.IX Item "51 : 51 51ac 51ag 51cn 51em 51je 51jf 51jg 51jm 51mm 51qe 51qm"
-.IP "\fB5206\fR : \fB5202\fR \fB5204\fR \fB5206\fR" 4
-.IX Item "5206 : 5202 5204 5206"
-.IP "\fB5206e\fR : \fB5206e\fR" 4
-.IX Item "5206e : 5206e"
-.IP "\fB5208\fR : \fB5207\fR \fB5208\fR" 4
-.IX Item "5208 : 5207 5208"
-.IP "\fB5211a\fR : \fB5210a\fR \fB5211a\fR" 4
-.IX Item "5211a : 5210a 5211a"
-.IP "\fB5213\fR : \fB5211\fR \fB5212\fR \fB5213\fR" 4
-.IX Item "5213 : 5211 5212 5213"
-.IP "\fB5216\fR : \fB5214\fR \fB5216\fR" 4
-.IX Item "5216 : 5214 5216"
-.IP "\fB52235\fR : \fB52230\fR \fB52231\fR \fB52232\fR \fB52233\fR \fB52234\fR \fB52235\fR" 4
-.IX Item "52235 : 52230 52231 52232 52233 52234 52235"
-.IP "\fB5225\fR : \fB5224\fR \fB5225\fR" 4
-.IX Item "5225 : 5224 5225"
-.IP "\fB52259\fR : \fB52252\fR \fB52254\fR \fB52255\fR \fB52256\fR \fB52258\fR \fB52259\fR" 4
-.IX Item "52259 : 52252 52254 52255 52256 52258 52259"
-.IP "\fB5235\fR : \fB5232\fR \fB5233\fR \fB5234\fR \fB5235\fR \fB523x\fR" 4
-.IX Item "5235 : 5232 5233 5234 5235 523x"
-.IP "\fB5249\fR : \fB5249\fR" 4
-.IX Item "5249 : 5249"
-.IP "\fB5250\fR : \fB5250\fR" 4
-.IX Item "5250 : 5250"
-.IP "\fB5271\fR : \fB5270\fR \fB5271\fR" 4
-.IX Item "5271 : 5270 5271"
-.IP "\fB5272\fR : \fB5272\fR" 4
-.IX Item "5272 : 5272"
-.IP "\fB5275\fR : \fB5274\fR \fB5275\fR" 4
-.IX Item "5275 : 5274 5275"
-.IP "\fB5282\fR : \fB5280\fR \fB5281\fR \fB5282\fR \fB528x\fR" 4
-.IX Item "5282 : 5280 5281 5282 528x"
-.IP "\fB53017\fR : \fB53011\fR \fB53012\fR \fB53013\fR \fB53014\fR \fB53015\fR \fB53016\fR \fB53017\fR" 4
-.IX Item "53017 : 53011 53012 53013 53014 53015 53016 53017"
-.IP "\fB5307\fR : \fB5307\fR" 4
-.IX Item "5307 : 5307"
-.IP "\fB5329\fR : \fB5327\fR \fB5328\fR \fB5329\fR \fB532x\fR" 4
-.IX Item "5329 : 5327 5328 5329 532x"
-.IP "\fB5373\fR : \fB5372\fR \fB5373\fR \fB537x\fR" 4
-.IX Item "5373 : 5372 5373 537x"
-.IP "\fB5407\fR : \fB5407\fR" 4
-.IX Item "5407 : 5407"
-.IP "\fB5475\fR : \fB5470\fR \fB5471\fR \fB5472\fR \fB5473\fR \fB5474\fR \fB5475\fR \fB547x\fR \fB5480\fR \fB5481\fR \fB5482\fR \fB5483\fR \fB5484\fR \fB5485\fR" 4
-.IX Item "5475 : 5470 5471 5472 5473 5474 5475 547x 5480 5481 5482 5483 5484 5485"
-.RE
-.RS 4
-.PD
-.Sp
-\&\fB\-mcpu=\fR\fIcpu\fR overrides \fB\-march=\fR\fIarch\fR if
-\&\fIarch\fR is compatible with \fIcpu\fR. Other combinations of
-\&\fB\-mcpu\fR and \fB\-march\fR are rejected.
-.Sp
-\&\s-1GCC\s0 defines the macro \fB_\|_mcf_cpu_\fR\fIcpu\fR when ColdFire target
-\&\fIcpu\fR is selected. It also defines \fB_\|_mcf_family_\fR\fIfamily\fR,
-where the value of \fIfamily\fR is given by the table above.
-.RE
-.IP "\fB\-mtune=\fR\fItune\fR" 4
-.IX Item "-mtune=tune"
-Tune the code for a particular microarchitecture within the
-constraints set by \fB\-march\fR and \fB\-mcpu\fR.
-The M680x0 microarchitectures are: \fB68000\fR, \fB68010\fR,
-\&\fB68020\fR, \fB68030\fR, \fB68040\fR, \fB68060\fR
-and \fBcpu32\fR. The ColdFire microarchitectures
-are: \fBcfv1\fR, \fBcfv2\fR, \fBcfv3\fR, \fBcfv4\fR and \fBcfv4e\fR.
-.Sp
-You can also use \fB\-mtune=68020\-40\fR for code that needs
-to run relatively well on 68020, 68030 and 68040 targets.
-\&\fB\-mtune=68020\-60\fR is similar but includes 68060 targets
-as well. These two options select the same tuning decisions as
-\&\fB\-m68020\-40\fR and \fB\-m68020\-60\fR respectively.
-.Sp
-\&\s-1GCC\s0 defines the macros \fB_\|_mc\fR\fIarch\fR and \fB_\|_mc\fR\fIarch\fR\fB_\|_\fR
-when tuning for 680x0 architecture \fIarch\fR. It also defines
-\&\fBmc\fR\fIarch\fR unless either \fB\-ansi\fR or a non-GNU \fB\-std\fR
-option is used. If \s-1GCC\s0 is tuning for a range of architectures,
-as selected by \fB\-mtune=68020\-40\fR or \fB\-mtune=68020\-60\fR,
-it defines the macros for every architecture in the range.
-.Sp
-\&\s-1GCC\s0 also defines the macro \fB_\|_m\fR\fIuarch\fR\fB_\|_\fR when tuning for
-ColdFire microarchitecture \fIuarch\fR, where \fIuarch\fR is one
-of the arguments given above.
-.IP "\fB\-m68000\fR" 4
-.IX Item "-m68000"
-.PD 0
-.IP "\fB\-mc68000\fR" 4
-.IX Item "-mc68000"
-.PD
-Generate output for a 68000. This is the default
-when the compiler is configured for 68000\-based systems.
-It is equivalent to \fB\-march=68000\fR.
-.Sp
-Use this option for microcontrollers with a 68000 or \s-1EC000\s0 core,
-including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
-.IP "\fB\-m68010\fR" 4
-.IX Item "-m68010"
-Generate output for a 68010. This is the default
-when the compiler is configured for 68010\-based systems.
-It is equivalent to \fB\-march=68010\fR.
-.IP "\fB\-m68020\fR" 4
-.IX Item "-m68020"
-.PD 0
-.IP "\fB\-mc68020\fR" 4
-.IX Item "-mc68020"
-.PD
-Generate output for a 68020. This is the default
-when the compiler is configured for 68020\-based systems.
-It is equivalent to \fB\-march=68020\fR.
-.IP "\fB\-m68030\fR" 4
-.IX Item "-m68030"
-Generate output for a 68030. This is the default when the compiler is
-configured for 68030\-based systems. It is equivalent to
-\&\fB\-march=68030\fR.
-.IP "\fB\-m68040\fR" 4
-.IX Item "-m68040"
-Generate output for a 68040. This is the default when the compiler is
-configured for 68040\-based systems. It is equivalent to
-\&\fB\-march=68040\fR.
-.Sp
-This option inhibits the use of 68881/68882 instructions that have to be
-emulated by software on the 68040. Use this option if your 68040 does not
-have code to emulate those instructions.
-.IP "\fB\-m68060\fR" 4
-.IX Item "-m68060"
-Generate output for a 68060. This is the default when the compiler is
-configured for 68060\-based systems. It is equivalent to
-\&\fB\-march=68060\fR.
-.Sp
-This option inhibits the use of 68020 and 68881/68882 instructions that
-have to be emulated by software on the 68060. Use this option if your 68060
-does not have code to emulate those instructions.
-.IP "\fB\-mcpu32\fR" 4
-.IX Item "-mcpu32"
-Generate output for a \s-1CPU32. \s0 This is the default
-when the compiler is configured for CPU32\-based systems.
-It is equivalent to \fB\-march=cpu32\fR.
-.Sp
-Use this option for microcontrollers with a
-\&\s-1CPU32\s0 or \s-1CPU32+\s0 core, including the 68330, 68331, 68332, 68333, 68334,
-68336, 68340, 68341, 68349 and 68360.
-.IP "\fB\-m5200\fR" 4
-.IX Item "-m5200"
-Generate output for a 520X ColdFire \s-1CPU. \s0 This is the default
-when the compiler is configured for 520X\-based systems.
-It is equivalent to \fB\-mcpu=5206\fR, and is now deprecated
-in favor of that option.
-.Sp
-Use this option for microcontroller with a 5200 core, including
-the \s-1MCF5202, MCF5203, MCF5204\s0 and \s-1MCF5206.\s0
-.IP "\fB\-m5206e\fR" 4
-.IX Item "-m5206e"
-Generate output for a 5206e ColdFire \s-1CPU. \s0 The option is now
-deprecated in favor of the equivalent \fB\-mcpu=5206e\fR.
-.IP "\fB\-m528x\fR" 4
-.IX Item "-m528x"
-Generate output for a member of the ColdFire 528X family.
-The option is now deprecated in favor of the equivalent
-\&\fB\-mcpu=528x\fR.
-.IP "\fB\-m5307\fR" 4
-.IX Item "-m5307"
-Generate output for a ColdFire 5307 \s-1CPU. \s0 The option is now deprecated
-in favor of the equivalent \fB\-mcpu=5307\fR.
-.IP "\fB\-m5407\fR" 4
-.IX Item "-m5407"
-Generate output for a ColdFire 5407 \s-1CPU. \s0 The option is now deprecated
-in favor of the equivalent \fB\-mcpu=5407\fR.
-.IP "\fB\-mcfv4e\fR" 4
-.IX Item "-mcfv4e"
-Generate output for a ColdFire V4e family \s-1CPU \s0(e.g. 547x/548x).
-This includes use of hardware floating-point instructions.
-The option is equivalent to \fB\-mcpu=547x\fR, and is now
-deprecated in favor of that option.
-.IP "\fB\-m68020\-40\fR" 4
-.IX Item "-m68020-40"
-Generate output for a 68040, without using any of the new instructions.
-This results in code that can run relatively efficiently on either a
-68020/68881 or a 68030 or a 68040. The generated code does use the
-68881 instructions that are emulated on the 68040.
-.Sp
-The option is equivalent to \fB\-march=68020\fR \fB\-mtune=68020\-40\fR.
-.IP "\fB\-m68020\-60\fR" 4
-.IX Item "-m68020-60"
-Generate output for a 68060, without using any of the new instructions.
-This results in code that can run relatively efficiently on either a
-68020/68881 or a 68030 or a 68040. The generated code does use the
-68881 instructions that are emulated on the 68060.
-.Sp
-The option is equivalent to \fB\-march=68020\fR \fB\-mtune=68020\-60\fR.
-.IP "\fB\-mhard\-float\fR" 4
-.IX Item "-mhard-float"
-.PD 0
-.IP "\fB\-m68881\fR" 4
-.IX Item "-m68881"
-.PD
-Generate floating-point instructions. This is the default for 68020
-and above, and for ColdFire devices that have an \s-1FPU. \s0 It defines the
-macro \fB_\|_HAVE_68881_\|_\fR on M680x0 targets and \fB_\|_mcffpu_\|_\fR
-on ColdFire targets.
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-Do not generate floating-point instructions; use library calls instead.
-This is the default for 68000, 68010, and 68832 targets. It is also
-the default for ColdFire devices that have no \s-1FPU.\s0
-.IP "\fB\-mdiv\fR" 4
-.IX Item "-mdiv"
-.PD 0
-.IP "\fB\-mno\-div\fR" 4
-.IX Item "-mno-div"
-.PD
-Generate (do not generate) ColdFire hardware divide and remainder
-instructions. If \fB\-march\fR is used without \fB\-mcpu\fR,
-the default is \*(L"on\*(R" for ColdFire architectures and \*(L"off\*(R" for M680x0
-architectures. Otherwise, the default is taken from the target \s-1CPU
-\&\s0(either the default \s-1CPU,\s0 or the one specified by \fB\-mcpu\fR). For
-example, the default is \*(L"off\*(R" for \fB\-mcpu=5206\fR and \*(L"on\*(R" for
-\&\fB\-mcpu=5206e\fR.
-.Sp
-\&\s-1GCC\s0 defines the macro \fB_\|_mcfhwdiv_\|_\fR when this option is enabled.
-.IP "\fB\-mshort\fR" 4
-.IX Item "-mshort"
-Consider type \f(CW\*(C`int\*(C'\fR to be 16 bits wide, like \f(CW\*(C`short int\*(C'\fR.
-Additionally, parameters passed on the stack are also aligned to a
-16\-bit boundary even on targets whose \s-1API\s0 mandates promotion to 32\-bit.
-.IP "\fB\-mno\-short\fR" 4
-.IX Item "-mno-short"
-Do not consider type \f(CW\*(C`int\*(C'\fR to be 16 bits wide. This is the default.
-.IP "\fB\-mnobitfield\fR" 4
-.IX Item "-mnobitfield"
-.PD 0
-.IP "\fB\-mno\-bitfield\fR" 4
-.IX Item "-mno-bitfield"
-.PD
-Do not use the bit-field instructions. The \fB\-m68000\fR, \fB\-mcpu32\fR
-and \fB\-m5200\fR options imply \fB\-mnobitfield\fR.
-.IP "\fB\-mbitfield\fR" 4
-.IX Item "-mbitfield"
-Do use the bit-field instructions. The \fB\-m68020\fR option implies
-\&\fB\-mbitfield\fR. This is the default if you use a configuration
-designed for a 68020.
-.IP "\fB\-mrtd\fR" 4
-.IX Item "-mrtd"
-Use a different function-calling convention, in which functions
-that take a fixed number of arguments return with the \f(CW\*(C`rtd\*(C'\fR
-instruction, which pops their arguments while returning. This
-saves one instruction in the caller since there is no need to pop
-the arguments there.
-.Sp
-This calling convention is incompatible with the one normally
-used on Unix, so you cannot use it if you need to call libraries
-compiled with the Unix compiler.
-.Sp
-Also, you must provide function prototypes for all functions that
-take variable numbers of arguments (including \f(CW\*(C`printf\*(C'\fR);
-otherwise incorrect code is generated for calls to those
-functions.
-.Sp
-In addition, seriously incorrect code results if you call a
-function with too many arguments. (Normally, extra arguments are
-harmlessly ignored.)
-.Sp
-The \f(CW\*(C`rtd\*(C'\fR instruction is supported by the 68010, 68020, 68030,
-68040, 68060 and \s-1CPU32\s0 processors, but not by the 68000 or 5200.
-.IP "\fB\-mno\-rtd\fR" 4
-.IX Item "-mno-rtd"
-Do not use the calling conventions selected by \fB\-mrtd\fR.
-This is the default.
-.IP "\fB\-malign\-int\fR" 4
-.IX Item "-malign-int"
-.PD 0
-.IP "\fB\-mno\-align\-int\fR" 4
-.IX Item "-mno-align-int"
-.PD
-Control whether \s-1GCC\s0 aligns \f(CW\*(C`int\*(C'\fR, \f(CW\*(C`long\*(C'\fR, \f(CW\*(C`long long\*(C'\fR,
-\&\f(CW\*(C`float\*(C'\fR, \f(CW\*(C`double\*(C'\fR, and \f(CW\*(C`long double\*(C'\fR variables on a 32\-bit
-boundary (\fB\-malign\-int\fR) or a 16\-bit boundary (\fB\-mno\-align\-int\fR).
-Aligning variables on 32\-bit boundaries produces code that runs somewhat
-faster on processors with 32\-bit busses at the expense of more memory.
-.Sp
-\&\fBWarning:\fR if you use the \fB\-malign\-int\fR switch, \s-1GCC\s0
-aligns structures containing the above types differently than
-most published application binary interface specifications for the m68k.
-.IP "\fB\-mpcrel\fR" 4
-.IX Item "-mpcrel"
-Use the pc-relative addressing mode of the 68000 directly, instead of
-using a global offset table. At present, this option implies \fB\-fpic\fR,
-allowing at most a 16\-bit offset for pc-relative addressing. \fB\-fPIC\fR is
-not presently supported with \fB\-mpcrel\fR, though this could be supported for
-68020 and higher processors.
-.IP "\fB\-mno\-strict\-align\fR" 4
-.IX Item "-mno-strict-align"
-.PD 0
-.IP "\fB\-mstrict\-align\fR" 4
-.IX Item "-mstrict-align"
-.PD
-Do not (do) assume that unaligned memory references are handled by
-the system.
-.IP "\fB\-msep\-data\fR" 4
-.IX Item "-msep-data"
-Generate code that allows the data segment to be located in a different
-area of memory from the text segment. This allows for execute-in-place in
-an environment without virtual memory management. This option implies
-\&\fB\-fPIC\fR.
-.IP "\fB\-mno\-sep\-data\fR" 4
-.IX Item "-mno-sep-data"
-Generate code that assumes that the data segment follows the text segment.
-This is the default.
-.IP "\fB\-mid\-shared\-library\fR" 4
-.IX Item "-mid-shared-library"
-Generate code that supports shared libraries via the library \s-1ID\s0 method.
-This allows for execute-in-place and shared libraries in an environment
-without virtual memory management. This option implies \fB\-fPIC\fR.
-.IP "\fB\-mno\-id\-shared\-library\fR" 4
-.IX Item "-mno-id-shared-library"
-Generate code that doesn't assume ID-based shared libraries are being used.
-This is the default.
-.IP "\fB\-mshared\-library\-id=n\fR" 4
-.IX Item "-mshared-library-id=n"
-Specifies the identification number of the ID-based shared library being
-compiled. Specifying a value of 0 generates more compact code; specifying
-other values forces the allocation of that number to the current
-library, but is no more space\- or time-efficient than omitting this option.
-.IP "\fB\-mxgot\fR" 4
-.IX Item "-mxgot"
-.PD 0
-.IP "\fB\-mno\-xgot\fR" 4
-.IX Item "-mno-xgot"
-.PD
-When generating position-independent code for ColdFire, generate code
-that works if the \s-1GOT\s0 has more than 8192 entries. This code is
-larger and slower than code generated without this option. On M680x0
-processors, this option is not needed; \fB\-fPIC\fR suffices.
-.Sp
-\&\s-1GCC\s0 normally uses a single instruction to load values from the \s-1GOT.\s0
-While this is relatively efficient, it only works if the \s-1GOT\s0
-is smaller than about 64k. Anything larger causes the linker
-to report an error such as:
-.Sp
-.Vb 1
-\& relocation truncated to fit: R_68K_GOT16O foobar
-.Ve
-.Sp
-If this happens, you should recompile your code with \fB\-mxgot\fR.
-It should then work with very large GOTs. However, code generated with
-\&\fB\-mxgot\fR is less efficient, since it takes 4 instructions to fetch
-the value of a global symbol.
-.Sp
-Note that some linkers, including newer versions of the \s-1GNU\s0 linker,
-can create multiple GOTs and sort \s-1GOT\s0 entries. If you have such a linker,
-you should only need to use \fB\-mxgot\fR when compiling a single
-object file that accesses more than 8192 \s-1GOT\s0 entries. Very few do.
-.Sp
-These options have no effect unless \s-1GCC\s0 is generating
-position-independent code.
-.PP
-\fIMCore Options\fR
-.IX Subsection "MCore Options"
-.PP
-These are the \fB\-m\fR options defined for the Motorola M*Core
-processors.
-.IP "\fB\-mhardlit\fR" 4
-.IX Item "-mhardlit"
-.PD 0
-.IP "\fB\-mno\-hardlit\fR" 4
-.IX Item "-mno-hardlit"
-.PD
-Inline constants into the code stream if it can be done in two
-instructions or less.
-.IP "\fB\-mdiv\fR" 4
-.IX Item "-mdiv"
-.PD 0
-.IP "\fB\-mno\-div\fR" 4
-.IX Item "-mno-div"
-.PD
-Use the divide instruction. (Enabled by default).
-.IP "\fB\-mrelax\-immediate\fR" 4
-.IX Item "-mrelax-immediate"
-.PD 0
-.IP "\fB\-mno\-relax\-immediate\fR" 4
-.IX Item "-mno-relax-immediate"
-.PD
-Allow arbitrary-sized immediates in bit operations.
-.IP "\fB\-mwide\-bitfields\fR" 4
-.IX Item "-mwide-bitfields"
-.PD 0
-.IP "\fB\-mno\-wide\-bitfields\fR" 4
-.IX Item "-mno-wide-bitfields"
-.PD
-Always treat bit-fields as \f(CW\*(C`int\*(C'\fR\-sized.
-.IP "\fB\-m4byte\-functions\fR" 4
-.IX Item "-m4byte-functions"
-.PD 0
-.IP "\fB\-mno\-4byte\-functions\fR" 4
-.IX Item "-mno-4byte-functions"
-.PD
-Force all functions to be aligned to a 4\-byte boundary.
-.IP "\fB\-mcallgraph\-data\fR" 4
-.IX Item "-mcallgraph-data"
-.PD 0
-.IP "\fB\-mno\-callgraph\-data\fR" 4
-.IX Item "-mno-callgraph-data"
-.PD
-Emit callgraph information.
-.IP "\fB\-mslow\-bytes\fR" 4
-.IX Item "-mslow-bytes"
-.PD 0
-.IP "\fB\-mno\-slow\-bytes\fR" 4
-.IX Item "-mno-slow-bytes"
-.PD
-Prefer word access when reading byte quantities.
-.IP "\fB\-mlittle\-endian\fR" 4
-.IX Item "-mlittle-endian"
-.PD 0
-.IP "\fB\-mbig\-endian\fR" 4
-.IX Item "-mbig-endian"
-.PD
-Generate code for a little-endian target.
-.IP "\fB\-m210\fR" 4
-.IX Item "-m210"
-.PD 0
-.IP "\fB\-m340\fR" 4
-.IX Item "-m340"
-.PD
-Generate code for the 210 processor.
-.IP "\fB\-mno\-lsim\fR" 4
-.IX Item "-mno-lsim"
-Assume that runtime support has been provided and so omit the
-simulator library (\fIlibsim.a)\fR from the linker command line.
-.IP "\fB\-mstack\-increment=\fR\fIsize\fR" 4
-.IX Item "-mstack-increment=size"
-Set the maximum amount for a single stack increment operation. Large
-values can increase the speed of programs that contain functions
-that need a large amount of stack space, but they can also trigger a
-segmentation fault if the stack is extended too much. The default
-value is 0x1000.
-.PP
-\fIMeP Options\fR
-.IX Subsection "MeP Options"
-.IP "\fB\-mabsdiff\fR" 4
-.IX Item "-mabsdiff"
-Enables the \f(CW\*(C`abs\*(C'\fR instruction, which is the absolute difference
-between two registers.
-.IP "\fB\-mall\-opts\fR" 4
-.IX Item "-mall-opts"
-Enables all the optional instructions\-\-\-average, multiply, divide, bit
-operations, leading zero, absolute difference, min/max, clip, and
-saturation.
-.IP "\fB\-maverage\fR" 4
-.IX Item "-maverage"
-Enables the \f(CW\*(C`ave\*(C'\fR instruction, which computes the average of two
-registers.
-.IP "\fB\-mbased=\fR\fIn\fR" 4
-.IX Item "-mbased=n"
-Variables of size \fIn\fR bytes or smaller are placed in the
-\&\f(CW\*(C`.based\*(C'\fR section by default. Based variables use the \f(CW$tp\fR
-register as a base register, and there is a 128\-byte limit to the
-\&\f(CW\*(C`.based\*(C'\fR section.
-.IP "\fB\-mbitops\fR" 4
-.IX Item "-mbitops"
-Enables the bit operation instructions\-\-\-bit test (\f(CW\*(C`btstm\*(C'\fR), set
-(\f(CW\*(C`bsetm\*(C'\fR), clear (\f(CW\*(C`bclrm\*(C'\fR), invert (\f(CW\*(C`bnotm\*(C'\fR), and
-test-and-set (\f(CW\*(C`tas\*(C'\fR).
-.IP "\fB\-mc=\fR\fIname\fR" 4
-.IX Item "-mc=name"
-Selects which section constant data is placed in. \fIname\fR may
-be \f(CW\*(C`tiny\*(C'\fR, \f(CW\*(C`near\*(C'\fR, or \f(CW\*(C`far\*(C'\fR.
-.IP "\fB\-mclip\fR" 4
-.IX Item "-mclip"
-Enables the \f(CW\*(C`clip\*(C'\fR instruction. Note that \f(CW\*(C`\-mclip\*(C'\fR is not
-useful unless you also provide \f(CW\*(C`\-mminmax\*(C'\fR.
-.IP "\fB\-mconfig=\fR\fIname\fR" 4
-.IX Item "-mconfig=name"
-Selects one of the built-in core configurations. Each MeP chip has
-one or more modules in it; each module has a core \s-1CPU\s0 and a variety of
-coprocessors, optional instructions, and peripherals. The
-\&\f(CW\*(C`MeP\-Integrator\*(C'\fR tool, not part of \s-1GCC,\s0 provides these
-configurations through this option; using this option is the same as
-using all the corresponding command-line options. The default
-configuration is \f(CW\*(C`default\*(C'\fR.
-.IP "\fB\-mcop\fR" 4
-.IX Item "-mcop"
-Enables the coprocessor instructions. By default, this is a 32\-bit
-coprocessor. Note that the coprocessor is normally enabled via the
-\&\f(CW\*(C`\-mconfig=\*(C'\fR option.
-.IP "\fB\-mcop32\fR" 4
-.IX Item "-mcop32"
-Enables the 32\-bit coprocessor's instructions.
-.IP "\fB\-mcop64\fR" 4
-.IX Item "-mcop64"
-Enables the 64\-bit coprocessor's instructions.
-.IP "\fB\-mivc2\fR" 4
-.IX Item "-mivc2"
-Enables \s-1IVC2\s0 scheduling. \s-1IVC2\s0 is a 64\-bit \s-1VLIW\s0 coprocessor.
-.IP "\fB\-mdc\fR" 4
-.IX Item "-mdc"
-Causes constant variables to be placed in the \f(CW\*(C`.near\*(C'\fR section.
-.IP "\fB\-mdiv\fR" 4
-.IX Item "-mdiv"
-Enables the \f(CW\*(C`div\*(C'\fR and \f(CW\*(C`divu\*(C'\fR instructions.
-.IP "\fB\-meb\fR" 4
-.IX Item "-meb"
-Generate big-endian code.
-.IP "\fB\-mel\fR" 4
-.IX Item "-mel"
-Generate little-endian code.
-.IP "\fB\-mio\-volatile\fR" 4
-.IX Item "-mio-volatile"
-Tells the compiler that any variable marked with the \f(CW\*(C`io\*(C'\fR
-attribute is to be considered volatile.
-.IP "\fB\-ml\fR" 4
-.IX Item "-ml"
-Causes variables to be assigned to the \f(CW\*(C`.far\*(C'\fR section by default.
-.IP "\fB\-mleadz\fR" 4
-.IX Item "-mleadz"
-Enables the \f(CW\*(C`leadz\*(C'\fR (leading zero) instruction.
-.IP "\fB\-mm\fR" 4
-.IX Item "-mm"
-Causes variables to be assigned to the \f(CW\*(C`.near\*(C'\fR section by default.
-.IP "\fB\-mminmax\fR" 4
-.IX Item "-mminmax"
-Enables the \f(CW\*(C`min\*(C'\fR and \f(CW\*(C`max\*(C'\fR instructions.
-.IP "\fB\-mmult\fR" 4
-.IX Item "-mmult"
-Enables the multiplication and multiply-accumulate instructions.
-.IP "\fB\-mno\-opts\fR" 4
-.IX Item "-mno-opts"
-Disables all the optional instructions enabled by \f(CW\*(C`\-mall\-opts\*(C'\fR.
-.IP "\fB\-mrepeat\fR" 4
-.IX Item "-mrepeat"
-Enables the \f(CW\*(C`repeat\*(C'\fR and \f(CW\*(C`erepeat\*(C'\fR instructions, used for
-low-overhead looping.
-.IP "\fB\-ms\fR" 4
-.IX Item "-ms"
-Causes all variables to default to the \f(CW\*(C`.tiny\*(C'\fR section. Note
-that there is a 65536\-byte limit to this section. Accesses to these
-variables use the \f(CW%gp\fR base register.
-.IP "\fB\-msatur\fR" 4
-.IX Item "-msatur"
-Enables the saturation instructions. Note that the compiler does not
-currently generate these itself, but this option is included for
-compatibility with other tools, like \f(CW\*(C`as\*(C'\fR.
-.IP "\fB\-msdram\fR" 4
-.IX Item "-msdram"
-Link the SDRAM-based runtime instead of the default ROM-based runtime.
-.IP "\fB\-msim\fR" 4
-.IX Item "-msim"
-Link the simulator run-time libraries.
-.IP "\fB\-msimnovec\fR" 4
-.IX Item "-msimnovec"
-Link the simulator runtime libraries, excluding built-in support
-for reset and exception vectors and tables.
-.IP "\fB\-mtf\fR" 4
-.IX Item "-mtf"
-Causes all functions to default to the \f(CW\*(C`.far\*(C'\fR section. Without
-this option, functions default to the \f(CW\*(C`.near\*(C'\fR section.
-.IP "\fB\-mtiny=\fR\fIn\fR" 4
-.IX Item "-mtiny=n"
-Variables that are \fIn\fR bytes or smaller are allocated to the
-\&\f(CW\*(C`.tiny\*(C'\fR section. These variables use the \f(CW$gp\fR base
-register. The default for this option is 4, but note that there's a
-65536\-byte limit to the \f(CW\*(C`.tiny\*(C'\fR section.
-.PP
-\fIMicroBlaze Options\fR
-.IX Subsection "MicroBlaze Options"
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-Use software emulation for floating point (default).
-.IP "\fB\-mhard\-float\fR" 4
-.IX Item "-mhard-float"
-Use hardware floating-point instructions.
-.IP "\fB\-mmemcpy\fR" 4
-.IX Item "-mmemcpy"
-Do not optimize block moves, use \f(CW\*(C`memcpy\*(C'\fR.
-.IP "\fB\-mno\-clearbss\fR" 4
-.IX Item "-mno-clearbss"
-This option is deprecated. Use \fB\-fno\-zero\-initialized\-in\-bss\fR instead.
-.IP "\fB\-mcpu=\fR\fIcpu-type\fR" 4
-.IX Item "-mcpu=cpu-type"
-Use features of, and schedule code for, the given \s-1CPU.\s0
-Supported values are in the format \fBv\fR\fIX\fR\fB.\fR\fI\s-1YY\s0\fR\fB.\fR\fIZ\fR,
-where \fIX\fR is a major version, \fI\s-1YY\s0\fR is the minor version, and
-\&\fIZ\fR is compatibility code. Example values are \fBv3.00.a\fR,
-\&\fBv4.00.b\fR, \fBv5.00.a\fR, \fBv5.00.b\fR, \fBv5.00.b\fR, \fBv6.00.a\fR.
-.IP "\fB\-mxl\-soft\-mul\fR" 4
-.IX Item "-mxl-soft-mul"
-Use software multiply emulation (default).
-.IP "\fB\-mxl\-soft\-div\fR" 4
-.IX Item "-mxl-soft-div"
-Use software emulation for divides (default).
-.IP "\fB\-mxl\-barrel\-shift\fR" 4
-.IX Item "-mxl-barrel-shift"
-Use the hardware barrel shifter.
-.IP "\fB\-mxl\-pattern\-compare\fR" 4
-.IX Item "-mxl-pattern-compare"
-Use pattern compare instructions.
-.IP "\fB\-msmall\-divides\fR" 4
-.IX Item "-msmall-divides"
-Use table lookup optimization for small signed integer divisions.
-.IP "\fB\-mxl\-stack\-check\fR" 4
-.IX Item "-mxl-stack-check"
-This option is deprecated. Use \fB\-fstack\-check\fR instead.
-.IP "\fB\-mxl\-gp\-opt\fR" 4
-.IX Item "-mxl-gp-opt"
-Use GP-relative \f(CW\*(C`.sdata\*(C'\fR/\f(CW\*(C`.sbss\*(C'\fR sections.
-.IP "\fB\-mxl\-multiply\-high\fR" 4
-.IX Item "-mxl-multiply-high"
-Use multiply high instructions for high part of 32x32 multiply.
-.IP "\fB\-mxl\-float\-convert\fR" 4
-.IX Item "-mxl-float-convert"
-Use hardware floating-point conversion instructions.
-.IP "\fB\-mxl\-float\-sqrt\fR" 4
-.IX Item "-mxl-float-sqrt"
-Use hardware floating-point square root instruction.
-.IP "\fB\-mbig\-endian\fR" 4
-.IX Item "-mbig-endian"
-Generate code for a big-endian target.
-.IP "\fB\-mlittle\-endian\fR" 4
-.IX Item "-mlittle-endian"
-Generate code for a little-endian target.
-.IP "\fB\-mxl\-reorder\fR" 4
-.IX Item "-mxl-reorder"
-Use reorder instructions (swap and byte reversed load/store).
-.IP "\fB\-mxl\-mode\-\fR\fIapp-model\fR" 4
-.IX Item "-mxl-mode-app-model"
-Select application model \fIapp-model\fR. Valid models are
-.RS 4
-.IP "\fBexecutable\fR" 4
-.IX Item "executable"
-normal executable (default), uses startup code \fIcrt0.o\fR.
-.IP "\fBxmdstub\fR" 4
-.IX Item "xmdstub"
-for use with Xilinx Microprocessor Debugger (\s-1XMD\s0) based
-software intrusive debug agent called xmdstub. This uses startup file
-\&\fIcrt1.o\fR and sets the start address of the program to 0x800.
-.IP "\fBbootstrap\fR" 4
-.IX Item "bootstrap"
-for applications that are loaded using a bootloader.
-This model uses startup file \fIcrt2.o\fR which does not contain a processor
-reset vector handler. This is suitable for transferring control on a
-processor reset to the bootloader rather than the application.
-.IP "\fBnovectors\fR" 4
-.IX Item "novectors"
-for applications that do not require any of the
-MicroBlaze vectors. This option may be useful for applications running
-within a monitoring application. This model uses \fIcrt3.o\fR as a startup file.
-.RE
-.RS 4
-.Sp
-Option \fB\-xl\-mode\-\fR\fIapp-model\fR is a deprecated alias for
-\&\fB\-mxl\-mode\-\fR\fIapp-model\fR.
-.RE
-.PP
-\fI\s-1MIPS\s0 Options\fR
-.IX Subsection "MIPS Options"
-.IP "\fB\-EB\fR" 4
-.IX Item "-EB"
-Generate big-endian code.
-.IP "\fB\-EL\fR" 4
-.IX Item "-EL"
-Generate little-endian code. This is the default for \fBmips*el\-*\-*\fR
-configurations.
-.IP "\fB\-march=\fR\fIarch\fR" 4
-.IX Item "-march=arch"
-Generate code that runs on \fIarch\fR, which can be the name of a
-generic \s-1MIPS ISA,\s0 or the name of a particular processor.
-The \s-1ISA\s0 names are:
-\&\fBmips1\fR, \fBmips2\fR, \fBmips3\fR, \fBmips4\fR,
-\&\fBmips32\fR, \fBmips32r2\fR, \fBmips64\fR and \fBmips64r2\fR.
-The processor names are:
-\&\fB4kc\fR, \fB4km\fR, \fB4kp\fR, \fB4ksc\fR,
-\&\fB4kec\fR, \fB4kem\fR, \fB4kep\fR, \fB4ksd\fR,
-\&\fB5kc\fR, \fB5kf\fR,
-\&\fB20kc\fR,
-\&\fB24kc\fR, \fB24kf2_1\fR, \fB24kf1_1\fR,
-\&\fB24kec\fR, \fB24kef2_1\fR, \fB24kef1_1\fR,
-\&\fB34kc\fR, \fB34kf2_1\fR, \fB34kf1_1\fR, \fB34kn\fR,
-\&\fB74kc\fR, \fB74kf2_1\fR, \fB74kf1_1\fR, \fB74kf3_2\fR,
-\&\fB1004kc\fR, \fB1004kf2_1\fR, \fB1004kf1_1\fR,
-\&\fBloongson2e\fR, \fBloongson2f\fR, \fBloongson3a\fR,
-\&\fBm4k\fR,
-\&\fBm14k\fR, \fBm14kc\fR, \fBm14ke\fR, \fBm14kec\fR,
-\&\fBocteon\fR, \fBocteon+\fR, \fBocteon2\fR,
-\&\fBorion\fR,
-\&\fBr2000\fR, \fBr3000\fR, \fBr3900\fR, \fBr4000\fR, \fBr4400\fR,
-\&\fBr4600\fR, \fBr4650\fR, \fBr4700\fR, \fBr6000\fR, \fBr8000\fR,
-\&\fBrm7000\fR, \fBrm9000\fR,
-\&\fBr10000\fR, \fBr12000\fR, \fBr14000\fR, \fBr16000\fR,
-\&\fBsb1\fR,
-\&\fBsr71000\fR,
-\&\fBvr4100\fR, \fBvr4111\fR, \fBvr4120\fR, \fBvr4130\fR, \fBvr4300\fR,
-\&\fBvr5000\fR, \fBvr5400\fR, \fBvr5500\fR,
-\&\fBxlr\fR and \fBxlp\fR.
-The special value \fBfrom-abi\fR selects the
-most compatible architecture for the selected \s-1ABI \s0(that is,
-\&\fBmips1\fR for 32\-bit ABIs and \fBmips3\fR for 64\-bit ABIs).
-.Sp
-The native Linux/GNU toolchain also supports the value \fBnative\fR,
-which selects the best architecture option for the host processor.
-\&\fB\-march=native\fR has no effect if \s-1GCC\s0 does not recognize
-the processor.
-.Sp
-In processor names, a final \fB000\fR can be abbreviated as \fBk\fR
-(for example, \fB\-march=r2k\fR). Prefixes are optional, and
-\&\fBvr\fR may be written \fBr\fR.
-.Sp
-Names of the form \fIn\fR\fBf2_1\fR refer to processors with
-FPUs clocked at half the rate of the core, names of the form
-\&\fIn\fR\fBf1_1\fR refer to processors with FPUs clocked at the same
-rate as the core, and names of the form \fIn\fR\fBf3_2\fR refer to
-processors with FPUs clocked a ratio of 3:2 with respect to the core.
-For compatibility reasons, \fIn\fR\fBf\fR is accepted as a synonym
-for \fIn\fR\fBf2_1\fR while \fIn\fR\fBx\fR and \fIb\fR\fBfx\fR are
-accepted as synonyms for \fIn\fR\fBf1_1\fR.
-.Sp
-\&\s-1GCC\s0 defines two macros based on the value of this option. The first
-is \fB_MIPS_ARCH\fR, which gives the name of target architecture, as
-a string. The second has the form \fB_MIPS_ARCH_\fR\fIfoo\fR,
-where \fIfoo\fR is the capitalized value of \fB_MIPS_ARCH\fR.
-For example, \fB\-march=r2000\fR sets \fB_MIPS_ARCH\fR
-to \fB\*(L"r2000\*(R"\fR and defines the macro \fB_MIPS_ARCH_R2000\fR.
-.Sp
-Note that the \fB_MIPS_ARCH\fR macro uses the processor names given
-above. In other words, it has the full prefix and does not
-abbreviate \fB000\fR as \fBk\fR. In the case of \fBfrom-abi\fR,
-the macro names the resolved architecture (either \fB\*(L"mips1\*(R"\fR or
-\&\fB\*(L"mips3\*(R"\fR). It names the default architecture when no
-\&\fB\-march\fR option is given.
-.IP "\fB\-mtune=\fR\fIarch\fR" 4
-.IX Item "-mtune=arch"
-Optimize for \fIarch\fR. Among other things, this option controls
-the way instructions are scheduled, and the perceived cost of arithmetic
-operations. The list of \fIarch\fR values is the same as for
-\&\fB\-march\fR.
-.Sp
-When this option is not used, \s-1GCC\s0 optimizes for the processor
-specified by \fB\-march\fR. By using \fB\-march\fR and
-\&\fB\-mtune\fR together, it is possible to generate code that
-runs on a family of processors, but optimize the code for one
-particular member of that family.
-.Sp
-\&\fB\-mtune\fR defines the macros \fB_MIPS_TUNE\fR and
-\&\fB_MIPS_TUNE_\fR\fIfoo\fR, which work in the same way as the
-\&\fB\-march\fR ones described above.
-.IP "\fB\-mips1\fR" 4
-.IX Item "-mips1"
-Equivalent to \fB\-march=mips1\fR.
-.IP "\fB\-mips2\fR" 4
-.IX Item "-mips2"
-Equivalent to \fB\-march=mips2\fR.
-.IP "\fB\-mips3\fR" 4
-.IX Item "-mips3"
-Equivalent to \fB\-march=mips3\fR.
-.IP "\fB\-mips4\fR" 4
-.IX Item "-mips4"
-Equivalent to \fB\-march=mips4\fR.
-.IP "\fB\-mips32\fR" 4
-.IX Item "-mips32"
-Equivalent to \fB\-march=mips32\fR.
-.IP "\fB\-mips32r2\fR" 4
-.IX Item "-mips32r2"
-Equivalent to \fB\-march=mips32r2\fR.
-.IP "\fB\-mips64\fR" 4
-.IX Item "-mips64"
-Equivalent to \fB\-march=mips64\fR.
-.IP "\fB\-mips64r2\fR" 4
-.IX Item "-mips64r2"
-Equivalent to \fB\-march=mips64r2\fR.
-.IP "\fB\-mips16\fR" 4
-.IX Item "-mips16"
-.PD 0
-.IP "\fB\-mno\-mips16\fR" 4
-.IX Item "-mno-mips16"
-.PD
-Generate (do not generate) \s-1MIPS16\s0 code. If \s-1GCC\s0 is targeting a
-\&\s-1MIPS32\s0 or \s-1MIPS64\s0 architecture, it makes use of the MIPS16e \s-1ASE.\s0
-.Sp
-\&\s-1MIPS16\s0 code generation can also be controlled on a per-function basis
-by means of \f(CW\*(C`mips16\*(C'\fR and \f(CW\*(C`nomips16\*(C'\fR attributes.
-.IP "\fB\-mflip\-mips16\fR" 4
-.IX Item "-mflip-mips16"
-Generate \s-1MIPS16\s0 code on alternating functions. This option is provided
-for regression testing of mixed MIPS16/non\-MIPS16 code generation, and is
-not intended for ordinary use in compiling user code.
-.IP "\fB\-minterlink\-compressed\fR" 4
-.IX Item "-minterlink-compressed"
-.PD 0
-.IP "\fB\-mno\-interlink\-compressed\fR" 4
-.IX Item "-mno-interlink-compressed"
-.PD
-Require (do not require) that code using the standard (uncompressed) \s-1MIPS ISA\s0
-be link-compatible with \s-1MIPS16\s0 and microMIPS code, and vice versa.
-.Sp
-For example, code using the standard \s-1ISA\s0 encoding cannot jump directly
-to \s-1MIPS16\s0 or microMIPS code; it must either use a call or an indirect jump.
-\&\fB\-minterlink\-compressed\fR therefore disables direct jumps unless \s-1GCC\s0
-knows that the target of the jump is not compressed.
-.IP "\fB\-minterlink\-mips16\fR" 4
-.IX Item "-minterlink-mips16"
-.PD 0
-.IP "\fB\-mno\-interlink\-mips16\fR" 4
-.IX Item "-mno-interlink-mips16"
-.PD
-Aliases of \fB\-minterlink\-compressed\fR and
-\&\fB\-mno\-interlink\-compressed\fR. These options predate the microMIPS \s-1ASE\s0
-and are retained for backwards compatibility.
-.IP "\fB\-mabi=32\fR" 4
-.IX Item "-mabi=32"
-.PD 0
-.IP "\fB\-mabi=o64\fR" 4
-.IX Item "-mabi=o64"
-.IP "\fB\-mabi=n32\fR" 4
-.IX Item "-mabi=n32"
-.IP "\fB\-mabi=64\fR" 4
-.IX Item "-mabi=64"
-.IP "\fB\-mabi=eabi\fR" 4
-.IX Item "-mabi=eabi"
-.PD
-Generate code for the given \s-1ABI.\s0
-.Sp
-Note that the \s-1EABI\s0 has a 32\-bit and a 64\-bit variant. \s-1GCC\s0 normally
-generates 64\-bit code when you select a 64\-bit architecture, but you
-can use \fB\-mgp32\fR to get 32\-bit code instead.
-.Sp
-For information about the O64 \s-1ABI,\s0 see
-<\fBhttp://gcc.gnu.org/projects/mipso64\-abi.html\fR>.
-.Sp
-\&\s-1GCC\s0 supports a variant of the o32 \s-1ABI\s0 in which floating-point registers
-are 64 rather than 32 bits wide. You can select this combination with
-\&\fB\-mabi=32\fR \fB\-mfp64\fR. This \s-1ABI\s0 relies on the \f(CW\*(C`mthc1\*(C'\fR
-and \f(CW\*(C`mfhc1\*(C'\fR instructions and is therefore only supported for
-\&\s-1MIPS32R2\s0 processors.
-.Sp
-The register assignments for arguments and return values remain the
-same, but each scalar value is passed in a single 64\-bit register
-rather than a pair of 32\-bit registers. For example, scalar
-floating-point values are returned in \fB\f(CB$f0\fB\fR only, not a
-\&\fB\f(CB$f0\fB\fR/\fB\f(CB$f1\fB\fR pair. The set of call-saved registers also
-remains the same, but all 64 bits are saved.
-.IP "\fB\-mabicalls\fR" 4
-.IX Item "-mabicalls"
-.PD 0
-.IP "\fB\-mno\-abicalls\fR" 4
-.IX Item "-mno-abicalls"
-.PD
-Generate (do not generate) code that is suitable for SVR4\-style
-dynamic objects. \fB\-mabicalls\fR is the default for SVR4\-based
-systems.
-.IP "\fB\-mshared\fR" 4
-.IX Item "-mshared"
-.PD 0
-.IP "\fB\-mno\-shared\fR" 4
-.IX Item "-mno-shared"
-.PD
-Generate (do not generate) code that is fully position-independent,
-and that can therefore be linked into shared libraries. This option
-only affects \fB\-mabicalls\fR.
-.Sp
-All \fB\-mabicalls\fR code has traditionally been position-independent,
-regardless of options like \fB\-fPIC\fR and \fB\-fpic\fR. However,
-as an extension, the \s-1GNU\s0 toolchain allows executables to use absolute
-accesses for locally-binding symbols. It can also use shorter \s-1GP\s0
-initialization sequences and generate direct calls to locally-defined
-functions. This mode is selected by \fB\-mno\-shared\fR.
-.Sp
-\&\fB\-mno\-shared\fR depends on binutils 2.16 or higher and generates
-objects that can only be linked by the \s-1GNU\s0 linker. However, the option
-does not affect the \s-1ABI\s0 of the final executable; it only affects the \s-1ABI\s0
-of relocatable objects. Using \fB\-mno\-shared\fR generally makes
-executables both smaller and quicker.
-.Sp
-\&\fB\-mshared\fR is the default.
-.IP "\fB\-mplt\fR" 4
-.IX Item "-mplt"
-.PD 0
-.IP "\fB\-mno\-plt\fR" 4
-.IX Item "-mno-plt"
-.PD
-Assume (do not assume) that the static and dynamic linkers
-support PLTs and copy relocations. This option only affects
-\&\fB\-mno\-shared \-mabicalls\fR. For the n64 \s-1ABI,\s0 this option
-has no effect without \fB\-msym32\fR.
-.Sp
-You can make \fB\-mplt\fR the default by configuring
-\&\s-1GCC\s0 with \fB\-\-with\-mips\-plt\fR. The default is
-\&\fB\-mno\-plt\fR otherwise.
-.IP "\fB\-mxgot\fR" 4
-.IX Item "-mxgot"
-.PD 0
-.IP "\fB\-mno\-xgot\fR" 4
-.IX Item "-mno-xgot"
-.PD
-Lift (do not lift) the usual restrictions on the size of the global
-offset table.
-.Sp
-\&\s-1GCC\s0 normally uses a single instruction to load values from the \s-1GOT.\s0
-While this is relatively efficient, it only works if the \s-1GOT\s0
-is smaller than about 64k. Anything larger causes the linker
-to report an error such as:
-.Sp
-.Vb 1
-\& relocation truncated to fit: R_MIPS_GOT16 foobar
-.Ve
-.Sp
-If this happens, you should recompile your code with \fB\-mxgot\fR.
-This works with very large GOTs, although the code is also
-less efficient, since it takes three instructions to fetch the
-value of a global symbol.
-.Sp
-Note that some linkers can create multiple GOTs. If you have such a
-linker, you should only need to use \fB\-mxgot\fR when a single object
-file accesses more than 64k's worth of \s-1GOT\s0 entries. Very few do.
-.Sp
-These options have no effect unless \s-1GCC\s0 is generating position
-independent code.
-.IP "\fB\-mgp32\fR" 4
-.IX Item "-mgp32"
-Assume that general-purpose registers are 32 bits wide.
-.IP "\fB\-mgp64\fR" 4
-.IX Item "-mgp64"
-Assume that general-purpose registers are 64 bits wide.
-.IP "\fB\-mfp32\fR" 4
-.IX Item "-mfp32"
-Assume that floating-point registers are 32 bits wide.
-.IP "\fB\-mfp64\fR" 4
-.IX Item "-mfp64"
-Assume that floating-point registers are 64 bits wide.
-.IP "\fB\-mhard\-float\fR" 4
-.IX Item "-mhard-float"
-Use floating-point coprocessor instructions.
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-Do not use floating-point coprocessor instructions. Implement
-floating-point calculations using library calls instead.
-.IP "\fB\-mno\-float\fR" 4
-.IX Item "-mno-float"
-Equivalent to \fB\-msoft\-float\fR, but additionally asserts that the
-program being compiled does not perform any floating-point operations.
-This option is presently supported only by some bare-metal \s-1MIPS\s0
-configurations, where it may select a special set of libraries
-that lack all floating-point support (including, for example, the
-floating-point \f(CW\*(C`printf\*(C'\fR formats).
-If code compiled with \f(CW\*(C`\-mno\-float\*(C'\fR accidentally contains
-floating-point operations, it is likely to suffer a link-time
-or run-time failure.
-.IP "\fB\-msingle\-float\fR" 4
-.IX Item "-msingle-float"
-Assume that the floating-point coprocessor only supports single-precision
-operations.
-.IP "\fB\-mdouble\-float\fR" 4
-.IX Item "-mdouble-float"
-Assume that the floating-point coprocessor supports double-precision
-operations. This is the default.
-.IP "\fB\-mabs=2008\fR" 4
-.IX Item "-mabs=2008"
-.PD 0
-.IP "\fB\-mabs=legacy\fR" 4
-.IX Item "-mabs=legacy"
-.PD
-These options control the treatment of the special not-a-number (NaN)
-\&\s-1IEEE 754\s0 floating-point data with the \f(CW\*(C`abs.\f(CIfmt\f(CW\*(C'\fR and
-\&\f(CW\*(C`neg.\f(CIfmt\f(CW\*(C'\fR machine instructions.
-.Sp
-By default or when the \fB\-mabs=legacy\fR is used the legacy
-treatment is selected. In this case these instructions are considered
-arithmetic and avoided where correct operation is required and the
-input operand might be a NaN. A longer sequence of instructions that
-manipulate the sign bit of floating-point datum manually is used
-instead unless the \fB\-ffinite\-math\-only\fR option has also been
-specified.
-.Sp
-The \fB\-mabs=2008\fR option selects the \s-1IEEE 754\-2008\s0 treatment. In
-this case these instructions are considered non-arithmetic and therefore
-operating correctly in all cases, including in particular where the
-input operand is a NaN. These instructions are therefore always used
-for the respective operations.
-.IP "\fB\-mnan=2008\fR" 4
-.IX Item "-mnan=2008"
-.PD 0
-.IP "\fB\-mnan=legacy\fR" 4
-.IX Item "-mnan=legacy"
-.PD
-These options control the encoding of the special not-a-number (NaN)
-\&\s-1IEEE 754\s0 floating-point data.
-.Sp
-The \fB\-mnan=legacy\fR option selects the legacy encoding. In this
-case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
-significand field being 0, whereas signalling NaNs (sNaNs) are denoted
-by the first bit of their trailing significand field being 1.
-.Sp
-The \fB\-mnan=2008\fR option selects the \s-1IEEE 754\-2008\s0 encoding. In
-this case qNaNs are denoted by the first bit of their trailing
-significand field being 1, whereas sNaNs are denoted by the first bit of
-their trailing significand field being 0.
-.Sp
-The default is \fB\-mnan=legacy\fR unless \s-1GCC\s0 has been configured with
-\&\fB\-\-with\-nan=2008\fR.
-.IP "\fB\-mllsc\fR" 4
-.IX Item "-mllsc"
-.PD 0
-.IP "\fB\-mno\-llsc\fR" 4
-.IX Item "-mno-llsc"
-.PD
-Use (do not use) \fBll\fR, \fBsc\fR, and \fBsync\fR instructions to
-implement atomic memory built-in functions. When neither option is
-specified, \s-1GCC\s0 uses the instructions if the target architecture
-supports them.
-.Sp
-\&\fB\-mllsc\fR is useful if the runtime environment can emulate the
-instructions and \fB\-mno\-llsc\fR can be useful when compiling for
-nonstandard ISAs. You can make either option the default by
-configuring \s-1GCC\s0 with \fB\-\-with\-llsc\fR and \fB\-\-without\-llsc\fR
-respectively. \fB\-\-with\-llsc\fR is the default for some
-configurations; see the installation documentation for details.
-.IP "\fB\-mdsp\fR" 4
-.IX Item "-mdsp"
-.PD 0
-.IP "\fB\-mno\-dsp\fR" 4
-.IX Item "-mno-dsp"
-.PD
-Use (do not use) revision 1 of the \s-1MIPS DSP ASE.
- \s0 This option defines the
-preprocessor macro \fB_\|_mips_dsp\fR. It also defines
-\&\fB_\|_mips_dsp_rev\fR to 1.
-.IP "\fB\-mdspr2\fR" 4
-.IX Item "-mdspr2"
-.PD 0
-.IP "\fB\-mno\-dspr2\fR" 4
-.IX Item "-mno-dspr2"
-.PD
-Use (do not use) revision 2 of the \s-1MIPS DSP ASE.
- \s0 This option defines the
-preprocessor macros \fB_\|_mips_dsp\fR and \fB_\|_mips_dspr2\fR.
-It also defines \fB_\|_mips_dsp_rev\fR to 2.
-.IP "\fB\-msmartmips\fR" 4
-.IX Item "-msmartmips"
-.PD 0
-.IP "\fB\-mno\-smartmips\fR" 4
-.IX Item "-mno-smartmips"
-.PD
-Use (do not use) the \s-1MIPS\s0 SmartMIPS \s-1ASE.\s0
-.IP "\fB\-mpaired\-single\fR" 4
-.IX Item "-mpaired-single"
-.PD 0
-.IP "\fB\-mno\-paired\-single\fR" 4
-.IX Item "-mno-paired-single"
-.PD
-Use (do not use) paired-single floating-point instructions.
- This option requires
-hardware floating-point support to be enabled.
-.IP "\fB\-mdmx\fR" 4
-.IX Item "-mdmx"
-.PD 0
-.IP "\fB\-mno\-mdmx\fR" 4
-.IX Item "-mno-mdmx"
-.PD
-Use (do not use) \s-1MIPS\s0 Digital Media Extension instructions.
-This option can only be used when generating 64\-bit code and requires
-hardware floating-point support to be enabled.
-.IP "\fB\-mips3d\fR" 4
-.IX Item "-mips3d"
-.PD 0
-.IP "\fB\-mno\-mips3d\fR" 4
-.IX Item "-mno-mips3d"
-.PD
-Use (do not use) the \s-1MIPS\-3D ASE. \s0
-The option \fB\-mips3d\fR implies \fB\-mpaired\-single\fR.
-.IP "\fB\-mmicromips\fR" 4
-.IX Item "-mmicromips"
-.PD 0
-.IP "\fB\-mno\-micromips\fR" 4
-.IX Item "-mno-micromips"
-.PD
-Generate (do not generate) microMIPS code.
-.Sp
-MicroMIPS code generation can also be controlled on a per-function basis
-by means of \f(CW\*(C`micromips\*(C'\fR and \f(CW\*(C`nomicromips\*(C'\fR attributes.
-.IP "\fB\-mmt\fR" 4
-.IX Item "-mmt"
-.PD 0
-.IP "\fB\-mno\-mt\fR" 4
-.IX Item "-mno-mt"
-.PD
-Use (do not use) \s-1MT\s0 Multithreading instructions.
-.IP "\fB\-mmcu\fR" 4
-.IX Item "-mmcu"
-.PD 0
-.IP "\fB\-mno\-mcu\fR" 4
-.IX Item "-mno-mcu"
-.PD
-Use (do not use) the \s-1MIPS MCU ASE\s0 instructions.
-.IP "\fB\-meva\fR" 4
-.IX Item "-meva"
-.PD 0
-.IP "\fB\-mno\-eva\fR" 4
-.IX Item "-mno-eva"
-.PD
-Use (do not use) the \s-1MIPS\s0 Enhanced Virtual Addressing instructions.
-.IP "\fB\-mvirt\fR" 4
-.IX Item "-mvirt"
-.PD 0
-.IP "\fB\-mno\-virt\fR" 4
-.IX Item "-mno-virt"
-.PD
-Use (do not use) the \s-1MIPS\s0 Virtualization Application Specific instructions.
-.IP "\fB\-mlong64\fR" 4
-.IX Item "-mlong64"
-Force \f(CW\*(C`long\*(C'\fR types to be 64 bits wide. See \fB\-mlong32\fR for
-an explanation of the default and the way that the pointer size is
-determined.
-.IP "\fB\-mlong32\fR" 4
-.IX Item "-mlong32"
-Force \f(CW\*(C`long\*(C'\fR, \f(CW\*(C`int\*(C'\fR, and pointer types to be 32 bits wide.
-.Sp
-The default size of \f(CW\*(C`int\*(C'\fRs, \f(CW\*(C`long\*(C'\fRs and pointers depends on
-the \s-1ABI. \s0 All the supported ABIs use 32\-bit \f(CW\*(C`int\*(C'\fRs. The n64 \s-1ABI\s0
-uses 64\-bit \f(CW\*(C`long\*(C'\fRs, as does the 64\-bit \s-1EABI\s0; the others use
-32\-bit \f(CW\*(C`long\*(C'\fRs. Pointers are the same size as \f(CW\*(C`long\*(C'\fRs,
-or the same size as integer registers, whichever is smaller.
-.IP "\fB\-msym32\fR" 4
-.IX Item "-msym32"
-.PD 0
-.IP "\fB\-mno\-sym32\fR" 4
-.IX Item "-mno-sym32"
-.PD
-Assume (do not assume) that all symbols have 32\-bit values, regardless
-of the selected \s-1ABI. \s0 This option is useful in combination with
-\&\fB\-mabi=64\fR and \fB\-mno\-abicalls\fR because it allows \s-1GCC\s0
-to generate shorter and faster references to symbolic addresses.
-.IP "\fB\-G\fR \fInum\fR" 4
-.IX Item "-G num"
-Put definitions of externally-visible data in a small data section
-if that data is no bigger than \fInum\fR bytes. \s-1GCC\s0 can then generate
-more efficient accesses to the data; see \fB\-mgpopt\fR for details.
-.Sp
-The default \fB\-G\fR option depends on the configuration.
-.IP "\fB\-mlocal\-sdata\fR" 4
-.IX Item "-mlocal-sdata"
-.PD 0
-.IP "\fB\-mno\-local\-sdata\fR" 4
-.IX Item "-mno-local-sdata"
-.PD
-Extend (do not extend) the \fB\-G\fR behavior to local data too,
-such as to static variables in C. \fB\-mlocal\-sdata\fR is the
-default for all configurations.
-.Sp
-If the linker complains that an application is using too much small data,
-you might want to try rebuilding the less performance-critical parts with
-\&\fB\-mno\-local\-sdata\fR. You might also want to build large
-libraries with \fB\-mno\-local\-sdata\fR, so that the libraries leave
-more room for the main program.
-.IP "\fB\-mextern\-sdata\fR" 4
-.IX Item "-mextern-sdata"
-.PD 0
-.IP "\fB\-mno\-extern\-sdata\fR" 4
-.IX Item "-mno-extern-sdata"
-.PD
-Assume (do not assume) that externally-defined data is in
-a small data section if the size of that data is within the \fB\-G\fR limit.
-\&\fB\-mextern\-sdata\fR is the default for all configurations.
-.Sp
-If you compile a module \fIMod\fR with \fB\-mextern\-sdata\fR \fB\-G\fR
-\&\fInum\fR \fB\-mgpopt\fR, and \fIMod\fR references a variable \fIVar\fR
-that is no bigger than \fInum\fR bytes, you must make sure that \fIVar\fR
-is placed in a small data section. If \fIVar\fR is defined by another
-module, you must either compile that module with a high-enough
-\&\fB\-G\fR setting or attach a \f(CW\*(C`section\*(C'\fR attribute to \fIVar\fR's
-definition. If \fIVar\fR is common, you must link the application
-with a high-enough \fB\-G\fR setting.
-.Sp
-The easiest way of satisfying these restrictions is to compile
-and link every module with the same \fB\-G\fR option. However,
-you may wish to build a library that supports several different
-small data limits. You can do this by compiling the library with
-the highest supported \fB\-G\fR setting and additionally using
-\&\fB\-mno\-extern\-sdata\fR to stop the library from making assumptions
-about externally-defined data.
-.IP "\fB\-mgpopt\fR" 4
-.IX Item "-mgpopt"
-.PD 0
-.IP "\fB\-mno\-gpopt\fR" 4
-.IX Item "-mno-gpopt"
-.PD
-Use (do not use) GP-relative accesses for symbols that are known to be
-in a small data section; see \fB\-G\fR, \fB\-mlocal\-sdata\fR and
-\&\fB\-mextern\-sdata\fR. \fB\-mgpopt\fR is the default for all
-configurations.
-.Sp
-\&\fB\-mno\-gpopt\fR is useful for cases where the \f(CW$gp\fR register
-might not hold the value of \f(CW\*(C`_gp\*(C'\fR. For example, if the code is
-part of a library that might be used in a boot monitor, programs that
-call boot monitor routines pass an unknown value in \f(CW$gp\fR.
-(In such situations, the boot monitor itself is usually compiled
-with \fB\-G0\fR.)
-.Sp
-\&\fB\-mno\-gpopt\fR implies \fB\-mno\-local\-sdata\fR and
-\&\fB\-mno\-extern\-sdata\fR.
-.IP "\fB\-membedded\-data\fR" 4
-.IX Item "-membedded-data"
-.PD 0
-.IP "\fB\-mno\-embedded\-data\fR" 4
-.IX Item "-mno-embedded-data"
-.PD
-Allocate variables to the read-only data section first if possible, then
-next in the small data section if possible, otherwise in data. This gives
-slightly slower code than the default, but reduces the amount of \s-1RAM\s0 required
-when executing, and thus may be preferred for some embedded systems.
-.IP "\fB\-muninit\-const\-in\-rodata\fR" 4
-.IX Item "-muninit-const-in-rodata"
-.PD 0
-.IP "\fB\-mno\-uninit\-const\-in\-rodata\fR" 4
-.IX Item "-mno-uninit-const-in-rodata"
-.PD
-Put uninitialized \f(CW\*(C`const\*(C'\fR variables in the read-only data section.
-This option is only meaningful in conjunction with \fB\-membedded\-data\fR.
-.IP "\fB\-mcode\-readable=\fR\fIsetting\fR" 4
-.IX Item "-mcode-readable=setting"
-Specify whether \s-1GCC\s0 may generate code that reads from executable sections.
-There are three possible settings:
-.RS 4
-.IP "\fB\-mcode\-readable=yes\fR" 4
-.IX Item "-mcode-readable=yes"
-Instructions may freely access executable sections. This is the
-default setting.
-.IP "\fB\-mcode\-readable=pcrel\fR" 4
-.IX Item "-mcode-readable=pcrel"
-\&\s-1MIPS16\s0 PC-relative load instructions can access executable sections,
-but other instructions must not do so. This option is useful on 4KSc
-and 4KSd processors when the code TLBs have the Read Inhibit bit set.
-It is also useful on processors that can be configured to have a dual
-instruction/data \s-1SRAM\s0 interface and that, like the M4K, automatically
-redirect PC-relative loads to the instruction \s-1RAM.\s0
-.IP "\fB\-mcode\-readable=no\fR" 4
-.IX Item "-mcode-readable=no"
-Instructions must not access executable sections. This option can be
-useful on targets that are configured to have a dual instruction/data
-\&\s-1SRAM\s0 interface but that (unlike the M4K) do not automatically redirect
-PC-relative loads to the instruction \s-1RAM.\s0
-.RE
-.RS 4
-.RE
-.IP "\fB\-msplit\-addresses\fR" 4
-.IX Item "-msplit-addresses"
-.PD 0
-.IP "\fB\-mno\-split\-addresses\fR" 4
-.IX Item "-mno-split-addresses"
-.PD
-Enable (disable) use of the \f(CW\*(C`%hi()\*(C'\fR and \f(CW\*(C`%lo()\*(C'\fR assembler
-relocation operators. This option has been superseded by
-\&\fB\-mexplicit\-relocs\fR but is retained for backwards compatibility.
-.IP "\fB\-mexplicit\-relocs\fR" 4
-.IX Item "-mexplicit-relocs"
-.PD 0
-.IP "\fB\-mno\-explicit\-relocs\fR" 4
-.IX Item "-mno-explicit-relocs"
-.PD
-Use (do not use) assembler relocation operators when dealing with symbolic
-addresses. The alternative, selected by \fB\-mno\-explicit\-relocs\fR,
-is to use assembler macros instead.
-.Sp
-\&\fB\-mexplicit\-relocs\fR is the default if \s-1GCC\s0 was configured
-to use an assembler that supports relocation operators.
-.IP "\fB\-mcheck\-zero\-division\fR" 4
-.IX Item "-mcheck-zero-division"
-.PD 0
-.IP "\fB\-mno\-check\-zero\-division\fR" 4
-.IX Item "-mno-check-zero-division"
-.PD
-Trap (do not trap) on integer division by zero.
-.Sp
-The default is \fB\-mcheck\-zero\-division\fR.
-.IP "\fB\-mdivide\-traps\fR" 4
-.IX Item "-mdivide-traps"
-.PD 0
-.IP "\fB\-mdivide\-breaks\fR" 4
-.IX Item "-mdivide-breaks"
-.PD
-\&\s-1MIPS\s0 systems check for division by zero by generating either a
-conditional trap or a break instruction. Using traps results in
-smaller code, but is only supported on \s-1MIPS II\s0 and later. Also, some
-versions of the Linux kernel have a bug that prevents trap from
-generating the proper signal (\f(CW\*(C`SIGFPE\*(C'\fR). Use \fB\-mdivide\-traps\fR to
-allow conditional traps on architectures that support them and
-\&\fB\-mdivide\-breaks\fR to force the use of breaks.
-.Sp
-The default is usually \fB\-mdivide\-traps\fR, but this can be
-overridden at configure time using \fB\-\-with\-divide=breaks\fR.
-Divide-by-zero checks can be completely disabled using
-\&\fB\-mno\-check\-zero\-division\fR.
-.IP "\fB\-mmemcpy\fR" 4
-.IX Item "-mmemcpy"
-.PD 0
-.IP "\fB\-mno\-memcpy\fR" 4
-.IX Item "-mno-memcpy"
-.PD
-Force (do not force) the use of \f(CW\*(C`memcpy()\*(C'\fR for non-trivial block
-moves. The default is \fB\-mno\-memcpy\fR, which allows \s-1GCC\s0 to inline
-most constant-sized copies.
-.IP "\fB\-mlong\-calls\fR" 4
-.IX Item "-mlong-calls"
-.PD 0
-.IP "\fB\-mno\-long\-calls\fR" 4
-.IX Item "-mno-long-calls"
-.PD
-Disable (do not disable) use of the \f(CW\*(C`jal\*(C'\fR instruction. Calling
-functions using \f(CW\*(C`jal\*(C'\fR is more efficient but requires the caller
-and callee to be in the same 256 megabyte segment.
-.Sp
-This option has no effect on abicalls code. The default is
-\&\fB\-mno\-long\-calls\fR.
-.IP "\fB\-mmad\fR" 4
-.IX Item "-mmad"
-.PD 0
-.IP "\fB\-mno\-mad\fR" 4
-.IX Item "-mno-mad"
-.PD
-Enable (disable) use of the \f(CW\*(C`mad\*(C'\fR, \f(CW\*(C`madu\*(C'\fR and \f(CW\*(C`mul\*(C'\fR
-instructions, as provided by the R4650 \s-1ISA.\s0
-.IP "\fB\-mimadd\fR" 4
-.IX Item "-mimadd"
-.PD 0
-.IP "\fB\-mno\-imadd\fR" 4
-.IX Item "-mno-imadd"
-.PD
-Enable (disable) use of the \f(CW\*(C`madd\*(C'\fR and \f(CW\*(C`msub\*(C'\fR integer
-instructions. The default is \fB\-mimadd\fR on architectures
-that support \f(CW\*(C`madd\*(C'\fR and \f(CW\*(C`msub\*(C'\fR except for the 74k
-architecture where it was found to generate slower code.
-.IP "\fB\-mfused\-madd\fR" 4
-.IX Item "-mfused-madd"
-.PD 0
-.IP "\fB\-mno\-fused\-madd\fR" 4
-.IX Item "-mno-fused-madd"
-.PD
-Enable (disable) use of the floating-point multiply-accumulate
-instructions, when they are available. The default is
-\&\fB\-mfused\-madd\fR.
-.Sp
-On the R8000 \s-1CPU\s0 when multiply-accumulate instructions are used,
-the intermediate product is calculated to infinite precision
-and is not subject to the \s-1FCSR\s0 Flush to Zero bit. This may be
-undesirable in some circumstances. On other processors the result
-is numerically identical to the equivalent computation using
-separate multiply, add, subtract and negate instructions.
-.IP "\fB\-nocpp\fR" 4
-.IX Item "-nocpp"
-Tell the \s-1MIPS\s0 assembler to not run its preprocessor over user
-assembler files (with a \fB.s\fR suffix) when assembling them.
-.IP "\fB\-mfix\-24k\fR" 4
-.IX Item "-mfix-24k"
-.PD 0
-.IP "\fB\-mno\-fix\-24k\fR" 4
-.IX Item "-mno-fix-24k"
-.PD
-Work around the 24K E48 (lost data on stores during refill) errata.
-The workarounds are implemented by the assembler rather than by \s-1GCC.\s0
-.IP "\fB\-mfix\-r4000\fR" 4
-.IX Item "-mfix-r4000"
-.PD 0
-.IP "\fB\-mno\-fix\-r4000\fR" 4
-.IX Item "-mno-fix-r4000"
-.PD
-Work around certain R4000 \s-1CPU\s0 errata:
-.RS 4
-.IP "\-" 4
-A double-word or a variable shift may give an incorrect result if executed
-immediately after starting an integer division.
-.IP "\-" 4
-A double-word or a variable shift may give an incorrect result if executed
-while an integer multiplication is in progress.
-.IP "\-" 4
-An integer division may give an incorrect result if started in a delay slot
-of a taken branch or a jump.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mfix\-r4400\fR" 4
-.IX Item "-mfix-r4400"
-.PD 0
-.IP "\fB\-mno\-fix\-r4400\fR" 4
-.IX Item "-mno-fix-r4400"
-.PD
-Work around certain R4400 \s-1CPU\s0 errata:
-.RS 4
-.IP "\-" 4
-A double-word or a variable shift may give an incorrect result if executed
-immediately after starting an integer division.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mfix\-r10000\fR" 4
-.IX Item "-mfix-r10000"
-.PD 0
-.IP "\fB\-mno\-fix\-r10000\fR" 4
-.IX Item "-mno-fix-r10000"
-.PD
-Work around certain R10000 errata:
-.RS 4
-.IP "\-" 4
-\&\f(CW\*(C`ll\*(C'\fR/\f(CW\*(C`sc\*(C'\fR sequences may not behave atomically on revisions
-prior to 3.0. They may deadlock on revisions 2.6 and earlier.
-.RE
-.RS 4
-.Sp
-This option can only be used if the target architecture supports
-branch-likely instructions. \fB\-mfix\-r10000\fR is the default when
-\&\fB\-march=r10000\fR is used; \fB\-mno\-fix\-r10000\fR is the default
-otherwise.
-.RE
-.IP "\fB\-mfix\-rm7000\fR" 4
-.IX Item "-mfix-rm7000"
-.PD 0
-.IP "\fB\-mno\-fix\-rm7000\fR" 4
-.IX Item "-mno-fix-rm7000"
-.PD
-Work around the \s-1RM7000 \s0\f(CW\*(C`dmult\*(C'\fR/\f(CW\*(C`dmultu\*(C'\fR errata. The
-workarounds are implemented by the assembler rather than by \s-1GCC.\s0
-.IP "\fB\-mfix\-vr4120\fR" 4
-.IX Item "-mfix-vr4120"
-.PD 0
-.IP "\fB\-mno\-fix\-vr4120\fR" 4
-.IX Item "-mno-fix-vr4120"
-.PD
-Work around certain \s-1VR4120\s0 errata:
-.RS 4
-.IP "\-" 4
-\&\f(CW\*(C`dmultu\*(C'\fR does not always produce the correct result.
-.IP "\-" 4
-\&\f(CW\*(C`div\*(C'\fR and \f(CW\*(C`ddiv\*(C'\fR do not always produce the correct result if one
-of the operands is negative.
-.RE
-.RS 4
-.Sp
-The workarounds for the division errata rely on special functions in
-\&\fIlibgcc.a\fR. At present, these functions are only provided by
-the \f(CW\*(C`mips64vr*\-elf\*(C'\fR configurations.
-.Sp
-Other \s-1VR4120\s0 errata require a \s-1NOP\s0 to be inserted between certain pairs of
-instructions. These errata are handled by the assembler, not by \s-1GCC\s0 itself.
-.RE
-.IP "\fB\-mfix\-vr4130\fR" 4
-.IX Item "-mfix-vr4130"
-Work around the \s-1VR4130 \s0\f(CW\*(C`mflo\*(C'\fR/\f(CW\*(C`mfhi\*(C'\fR errata. The
-workarounds are implemented by the assembler rather than by \s-1GCC,\s0
-although \s-1GCC\s0 avoids using \f(CW\*(C`mflo\*(C'\fR and \f(CW\*(C`mfhi\*(C'\fR if the
-\&\s-1VR4130 \s0\f(CW\*(C`macc\*(C'\fR, \f(CW\*(C`macchi\*(C'\fR, \f(CW\*(C`dmacc\*(C'\fR and \f(CW\*(C`dmacchi\*(C'\fR
-instructions are available instead.
-.IP "\fB\-mfix\-sb1\fR" 4
-.IX Item "-mfix-sb1"
-.PD 0
-.IP "\fB\-mno\-fix\-sb1\fR" 4
-.IX Item "-mno-fix-sb1"
-.PD
-Work around certain \s-1SB\-1 CPU\s0 core errata.
-(This flag currently works around the \s-1SB\-1\s0 revision 2
-\&\*(L"F1\*(R" and \*(L"F2\*(R" floating-point errata.)
-.IP "\fB\-mr10k\-cache\-barrier=\fR\fIsetting\fR" 4
-.IX Item "-mr10k-cache-barrier=setting"
-Specify whether \s-1GCC\s0 should insert cache barriers to avoid the
-side-effects of speculation on R10K processors.
-.Sp
-In common with many processors, the R10K tries to predict the outcome
-of a conditional branch and speculatively executes instructions from
-the \*(L"taken\*(R" branch. It later aborts these instructions if the
-predicted outcome is wrong. However, on the R10K, even aborted
-instructions can have side effects.
-.Sp
-This problem only affects kernel stores and, depending on the system,
-kernel loads. As an example, a speculatively-executed store may load
-the target memory into cache and mark the cache line as dirty, even if
-the store itself is later aborted. If a \s-1DMA\s0 operation writes to the
-same area of memory before the \*(L"dirty\*(R" line is flushed, the cached
-data overwrites the DMA-ed data. See the R10K processor manual
-for a full description, including other potential problems.
-.Sp
-One workaround is to insert cache barrier instructions before every memory
-access that might be speculatively executed and that might have side
-effects even if aborted. \fB\-mr10k\-cache\-barrier=\fR\fIsetting\fR
-controls \s-1GCC\s0's implementation of this workaround. It assumes that
-aborted accesses to any byte in the following regions does not have
-side effects:
-.RS 4
-.IP "1." 4
-the memory occupied by the current function's stack frame;
-.IP "2." 4
-the memory occupied by an incoming stack argument;
-.IP "3." 4
-the memory occupied by an object with a link-time-constant address.
-.RE
-.RS 4
-.Sp
-It is the kernel's responsibility to ensure that speculative
-accesses to these regions are indeed safe.
-.Sp
-If the input program contains a function declaration such as:
-.Sp
-.Vb 1
-\& void foo (void);
-.Ve
-.Sp
-then the implementation of \f(CW\*(C`foo\*(C'\fR must allow \f(CW\*(C`j foo\*(C'\fR and
-\&\f(CW\*(C`jal foo\*(C'\fR to be executed speculatively. \s-1GCC\s0 honors this
-restriction for functions it compiles itself. It expects non-GCC
-functions (such as hand-written assembly code) to do the same.
-.Sp
-The option has three forms:
-.IP "\fB\-mr10k\-cache\-barrier=load\-store\fR" 4
-.IX Item "-mr10k-cache-barrier=load-store"
-Insert a cache barrier before a load or store that might be
-speculatively executed and that might have side effects even
-if aborted.
-.IP "\fB\-mr10k\-cache\-barrier=store\fR" 4
-.IX Item "-mr10k-cache-barrier=store"
-Insert a cache barrier before a store that might be speculatively
-executed and that might have side effects even if aborted.
-.IP "\fB\-mr10k\-cache\-barrier=none\fR" 4
-.IX Item "-mr10k-cache-barrier=none"
-Disable the insertion of cache barriers. This is the default setting.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mflush\-func=\fR\fIfunc\fR" 4
-.IX Item "-mflush-func=func"
-.PD 0
-.IP "\fB\-mno\-flush\-func\fR" 4
-.IX Item "-mno-flush-func"
-.PD
-Specifies the function to call to flush the I and D caches, or to not
-call any such function. If called, the function must take the same
-arguments as the common \f(CW\*(C`_flush_func()\*(C'\fR, that is, the address of the
-memory range for which the cache is being flushed, the size of the
-memory range, and the number 3 (to flush both caches). The default
-depends on the target \s-1GCC\s0 was configured for, but commonly is either
-\&\fB_flush_func\fR or \fB_\|_cpu_flush\fR.
-.IP "\fBmbranch\-cost=\fR\fInum\fR" 4
-.IX Item "mbranch-cost=num"
-Set the cost of branches to roughly \fInum\fR \*(L"simple\*(R" instructions.
-This cost is only a heuristic and is not guaranteed to produce
-consistent results across releases. A zero cost redundantly selects
-the default, which is based on the \fB\-mtune\fR setting.
-.IP "\fB\-mbranch\-likely\fR" 4
-.IX Item "-mbranch-likely"
-.PD 0
-.IP "\fB\-mno\-branch\-likely\fR" 4
-.IX Item "-mno-branch-likely"
-.PD
-Enable or disable use of Branch Likely instructions, regardless of the
-default for the selected architecture. By default, Branch Likely
-instructions may be generated if they are supported by the selected
-architecture. An exception is for the \s-1MIPS32\s0 and \s-1MIPS64\s0 architectures
-and processors that implement those architectures; for those, Branch
-Likely instructions are not be generated by default because the \s-1MIPS32\s0
-and \s-1MIPS64\s0 architectures specifically deprecate their use.
-.IP "\fB\-mfp\-exceptions\fR" 4
-.IX Item "-mfp-exceptions"
-.PD 0
-.IP "\fB\-mno\-fp\-exceptions\fR" 4
-.IX Item "-mno-fp-exceptions"
-.PD
-Specifies whether \s-1FP\s0 exceptions are enabled. This affects how
-\&\s-1FP\s0 instructions are scheduled for some processors.
-The default is that \s-1FP\s0 exceptions are
-enabled.
-.Sp
-For instance, on the \s-1SB\-1,\s0 if \s-1FP\s0 exceptions are disabled, and we are emitting
-64\-bit code, then we can use both \s-1FP\s0 pipes. Otherwise, we can only use one
-\&\s-1FP\s0 pipe.
-.IP "\fB\-mvr4130\-align\fR" 4
-.IX Item "-mvr4130-align"
-.PD 0
-.IP "\fB\-mno\-vr4130\-align\fR" 4
-.IX Item "-mno-vr4130-align"
-.PD
-The \s-1VR4130\s0 pipeline is two-way superscalar, but can only issue two
-instructions together if the first one is 8\-byte aligned. When this
-option is enabled, \s-1GCC\s0 aligns pairs of instructions that it
-thinks should execute in parallel.
-.Sp
-This option only has an effect when optimizing for the \s-1VR4130.\s0
-It normally makes code faster, but at the expense of making it bigger.
-It is enabled by default at optimization level \fB\-O3\fR.
-.IP "\fB\-msynci\fR" 4
-.IX Item "-msynci"
-.PD 0
-.IP "\fB\-mno\-synci\fR" 4
-.IX Item "-mno-synci"
-.PD
-Enable (disable) generation of \f(CW\*(C`synci\*(C'\fR instructions on
-architectures that support it. The \f(CW\*(C`synci\*(C'\fR instructions (if
-enabled) are generated when \f(CW\*(C`_\|_builtin_\|_\|_clear_cache()\*(C'\fR is
-compiled.
-.Sp
-This option defaults to \f(CW\*(C`\-mno\-synci\*(C'\fR, but the default can be
-overridden by configuring with \f(CW\*(C`\-\-with\-synci\*(C'\fR.
-.Sp
-When compiling code for single processor systems, it is generally safe
-to use \f(CW\*(C`synci\*(C'\fR. However, on many multi-core (\s-1SMP\s0) systems, it
-does not invalidate the instruction caches on all cores and may lead
-to undefined behavior.
-.IP "\fB\-mrelax\-pic\-calls\fR" 4
-.IX Item "-mrelax-pic-calls"
-.PD 0
-.IP "\fB\-mno\-relax\-pic\-calls\fR" 4
-.IX Item "-mno-relax-pic-calls"
-.PD
-Try to turn \s-1PIC\s0 calls that are normally dispatched via register
-\&\f(CW$25\fR into direct calls. This is only possible if the linker can
-resolve the destination at link-time and if the destination is within
-range for a direct call.
-.Sp
-\&\fB\-mrelax\-pic\-calls\fR is the default if \s-1GCC\s0 was configured to use
-an assembler and a linker that support the \f(CW\*(C`.reloc\*(C'\fR assembly
-directive and \f(CW\*(C`\-mexplicit\-relocs\*(C'\fR is in effect. With
-\&\f(CW\*(C`\-mno\-explicit\-relocs\*(C'\fR, this optimization can be performed by the
-assembler and the linker alone without help from the compiler.
-.IP "\fB\-mmcount\-ra\-address\fR" 4
-.IX Item "-mmcount-ra-address"
-.PD 0
-.IP "\fB\-mno\-mcount\-ra\-address\fR" 4
-.IX Item "-mno-mcount-ra-address"
-.PD
-Emit (do not emit) code that allows \f(CW\*(C`_mcount\*(C'\fR to modify the
-calling function's return address. When enabled, this option extends
-the usual \f(CW\*(C`_mcount\*(C'\fR interface with a new \fIra-address\fR
-parameter, which has type \f(CW\*(C`intptr_t *\*(C'\fR and is passed in register
-\&\f(CW$12\fR. \f(CW\*(C`_mcount\*(C'\fR can then modify the return address by
-doing both of the following:
-.RS 4
-.IP "\(bu" 4
-Returning the new address in register \f(CW$31\fR.
-.IP "\(bu" 4
-Storing the new address in \f(CW\*(C`*\f(CIra\-address\f(CW\*(C'\fR,
-if \fIra-address\fR is nonnull.
-.RE
-.RS 4
-.Sp
-The default is \fB\-mno\-mcount\-ra\-address\fR.
-.RE
-.PP
-\fI\s-1MMIX\s0 Options\fR
-.IX Subsection "MMIX Options"
-.PP
-These options are defined for the \s-1MMIX:\s0
-.IP "\fB\-mlibfuncs\fR" 4
-.IX Item "-mlibfuncs"
-.PD 0
-.IP "\fB\-mno\-libfuncs\fR" 4
-.IX Item "-mno-libfuncs"
-.PD
-Specify that intrinsic library functions are being compiled, passing all
-values in registers, no matter the size.
-.IP "\fB\-mepsilon\fR" 4
-.IX Item "-mepsilon"
-.PD 0
-.IP "\fB\-mno\-epsilon\fR" 4
-.IX Item "-mno-epsilon"
-.PD
-Generate floating-point comparison instructions that compare with respect
-to the \f(CW\*(C`rE\*(C'\fR epsilon register.
-.IP "\fB\-mabi=mmixware\fR" 4
-.IX Item "-mabi=mmixware"
-.PD 0
-.IP "\fB\-mabi=gnu\fR" 4
-.IX Item "-mabi=gnu"
-.PD
-Generate code that passes function parameters and return values that (in
-the called function) are seen as registers \f(CW$0\fR and up, as opposed to
-the \s-1GNU ABI\s0 which uses global registers \f(CW$231\fR and up.
-.IP "\fB\-mzero\-extend\fR" 4
-.IX Item "-mzero-extend"
-.PD 0
-.IP "\fB\-mno\-zero\-extend\fR" 4
-.IX Item "-mno-zero-extend"
-.PD
-When reading data from memory in sizes shorter than 64 bits, use (do not
-use) zero-extending load instructions by default, rather than
-sign-extending ones.
-.IP "\fB\-mknuthdiv\fR" 4
-.IX Item "-mknuthdiv"
-.PD 0
-.IP "\fB\-mno\-knuthdiv\fR" 4
-.IX Item "-mno-knuthdiv"
-.PD
-Make the result of a division yielding a remainder have the same sign as
-the divisor. With the default, \fB\-mno\-knuthdiv\fR, the sign of the
-remainder follows the sign of the dividend. Both methods are
-arithmetically valid, the latter being almost exclusively used.
-.IP "\fB\-mtoplevel\-symbols\fR" 4
-.IX Item "-mtoplevel-symbols"
-.PD 0
-.IP "\fB\-mno\-toplevel\-symbols\fR" 4
-.IX Item "-mno-toplevel-symbols"
-.PD
-Prepend (do not prepend) a \fB:\fR to all global symbols, so the assembly
-code can be used with the \f(CW\*(C`PREFIX\*(C'\fR assembly directive.
-.IP "\fB\-melf\fR" 4
-.IX Item "-melf"
-Generate an executable in the \s-1ELF\s0 format, rather than the default
-\&\fBmmo\fR format used by the \fBmmix\fR simulator.
-.IP "\fB\-mbranch\-predict\fR" 4
-.IX Item "-mbranch-predict"
-.PD 0
-.IP "\fB\-mno\-branch\-predict\fR" 4
-.IX Item "-mno-branch-predict"
-.PD
-Use (do not use) the probable-branch instructions, when static branch
-prediction indicates a probable branch.
-.IP "\fB\-mbase\-addresses\fR" 4
-.IX Item "-mbase-addresses"
-.PD 0
-.IP "\fB\-mno\-base\-addresses\fR" 4
-.IX Item "-mno-base-addresses"
-.PD
-Generate (do not generate) code that uses \fIbase addresses\fR. Using a
-base address automatically generates a request (handled by the assembler
-and the linker) for a constant to be set up in a global register. The
-register is used for one or more base address requests within the range 0
-to 255 from the value held in the register. The generally leads to short
-and fast code, but the number of different data items that can be
-addressed is limited. This means that a program that uses lots of static
-data may require \fB\-mno\-base\-addresses\fR.
-.IP "\fB\-msingle\-exit\fR" 4
-.IX Item "-msingle-exit"
-.PD 0
-.IP "\fB\-mno\-single\-exit\fR" 4
-.IX Item "-mno-single-exit"
-.PD
-Force (do not force) generated code to have a single exit point in each
-function.
-.PP
-\fI\s-1MN10300\s0 Options\fR
-.IX Subsection "MN10300 Options"
-.PP
-These \fB\-m\fR options are defined for Matsushita \s-1MN10300\s0 architectures:
-.IP "\fB\-mmult\-bug\fR" 4
-.IX Item "-mmult-bug"
-Generate code to avoid bugs in the multiply instructions for the \s-1MN10300\s0
-processors. This is the default.
-.IP "\fB\-mno\-mult\-bug\fR" 4
-.IX Item "-mno-mult-bug"
-Do not generate code to avoid bugs in the multiply instructions for the
-\&\s-1MN10300\s0 processors.
-.IP "\fB\-mam33\fR" 4
-.IX Item "-mam33"
-Generate code using features specific to the \s-1AM33\s0 processor.
-.IP "\fB\-mno\-am33\fR" 4
-.IX Item "-mno-am33"
-Do not generate code using features specific to the \s-1AM33\s0 processor. This
-is the default.
-.IP "\fB\-mam33\-2\fR" 4
-.IX Item "-mam33-2"
-Generate code using features specific to the \s-1AM33/2.0\s0 processor.
-.IP "\fB\-mam34\fR" 4
-.IX Item "-mam34"
-Generate code using features specific to the \s-1AM34\s0 processor.
-.IP "\fB\-mtune=\fR\fIcpu-type\fR" 4
-.IX Item "-mtune=cpu-type"
-Use the timing characteristics of the indicated \s-1CPU\s0 type when
-scheduling instructions. This does not change the targeted processor
-type. The \s-1CPU\s0 type must be one of \fBmn10300\fR, \fBam33\fR,
-\&\fBam33\-2\fR or \fBam34\fR.
-.IP "\fB\-mreturn\-pointer\-on\-d0\fR" 4
-.IX Item "-mreturn-pointer-on-d0"
-When generating a function that returns a pointer, return the pointer
-in both \f(CW\*(C`a0\*(C'\fR and \f(CW\*(C`d0\*(C'\fR. Otherwise, the pointer is returned
-only in \f(CW\*(C`a0\*(C'\fR, and attempts to call such functions without a prototype
-result in errors. Note that this option is on by default; use
-\&\fB\-mno\-return\-pointer\-on\-d0\fR to disable it.
-.IP "\fB\-mno\-crt0\fR" 4
-.IX Item "-mno-crt0"
-Do not link in the C run-time initialization object file.
-.IP "\fB\-mrelax\fR" 4
-.IX Item "-mrelax"
-Indicate to the linker that it should perform a relaxation optimization pass
-to shorten branches, calls and absolute memory addresses. This option only
-has an effect when used on the command line for the final link step.
-.Sp
-This option makes symbolic debugging impossible.
-.IP "\fB\-mliw\fR" 4
-.IX Item "-mliw"
-Allow the compiler to generate \fILong Instruction Word\fR
-instructions if the target is the \fB\s-1AM33\s0\fR or later. This is the
-default. This option defines the preprocessor macro \fB_\|_LIW_\|_\fR.
-.IP "\fB\-mnoliw\fR" 4
-.IX Item "-mnoliw"
-Do not allow the compiler to generate \fILong Instruction Word\fR
-instructions. This option defines the preprocessor macro
-\&\fB_\|_NO_LIW_\|_\fR.
-.IP "\fB\-msetlb\fR" 4
-.IX Item "-msetlb"
-Allow the compiler to generate the \fI\s-1SETLB\s0\fR and \fILcc\fR
-instructions if the target is the \fB\s-1AM33\s0\fR or later. This is the
-default. This option defines the preprocessor macro \fB_\|_SETLB_\|_\fR.
-.IP "\fB\-mnosetlb\fR" 4
-.IX Item "-mnosetlb"
-Do not allow the compiler to generate \fI\s-1SETLB\s0\fR or \fILcc\fR
-instructions. This option defines the preprocessor macro
-\&\fB_\|_NO_SETLB_\|_\fR.
-.PP
-\fIMoxie Options\fR
-.IX Subsection "Moxie Options"
-.IP "\fB\-meb\fR" 4
-.IX Item "-meb"
-Generate big-endian code. This is the default for \fBmoxie\-*\-*\fR
-configurations.
-.IP "\fB\-mel\fR" 4
-.IX Item "-mel"
-Generate little-endian code.
-.IP "\fB\-mno\-crt0\fR" 4
-.IX Item "-mno-crt0"
-Do not link in the C run-time initialization object file.
-.PP
-\fI\s-1MSP430\s0 Options\fR
-.IX Subsection "MSP430 Options"
-.PP
-These options are defined for the \s-1MSP430:\s0
-.IP "\fB\-masm\-hex\fR" 4
-.IX Item "-masm-hex"
-Force assembly output to always use hex constants. Normally such
-constants are signed decimals, but this option is available for
-testsuite and/or aesthetic purposes.
-.IP "\fB\-mmcu=\fR" 4
-.IX Item "-mmcu="
-Select the \s-1MCU\s0 to target. This is used to create a C preprocessor
-symbol based upon the \s-1MCU\s0 name, converted to upper case and pre\- and
-post\- fixed with \f(CW\*(C`_\|_\*(C'\fR. This in turn will be used by the
-\&\f(CW\*(C`msp430.h\*(C'\fR header file to select an \s-1MCU\s0 specific supplimentary
-header file.
-.Sp
-The option also sets the \s-1ISA\s0 to use. If the \s-1MCU\s0 name is one that is
-known to only support the 430 \s-1ISA\s0 then that is selected, otherwise the
-430X \s-1ISA\s0 is selected. A generic \s-1MCU\s0 name of \f(CW\*(C`msp430\*(C'\fR can also be
-used to select the 430 \s-1ISA. \s0 Similarly the generic \f(CW\*(C`msp430x\*(C'\fR \s-1MCU\s0
-name will select the 430X \s-1ISA.\s0
-.Sp
-In addition an \s-1MCU\s0 specific linker script will be added to the linker
-command line. The script's name is the name of the \s-1MCU\s0 with
-\&\f(CW\*(C`.ld\*(C'\fR appended. Thus specifying \fB\-mmcu=xxx\fR on the gcc
-command line will define the C preprocessor symbol \f(CW\*(C`_\|_XXX_\|_\*(C'\fR and
-cause the linker to search for a script called \fIxxx.ld\fR.
-.Sp
-This option is also passed on to the assembler.
-.IP "\fB\-mcpu=\fR" 4
-.IX Item "-mcpu="
-Specifies the \s-1ISA\s0 to use. Accepted values are \f(CW\*(C`msp430\*(C'\fR,
-\&\f(CW\*(C`msp430x\*(C'\fR and \f(CW\*(C`msp430xv2\*(C'\fR. This option is deprecated. The
-\&\fB\-mmcu=\fR option should be used to select the \s-1ISA.\s0
-.IP "\fB\-msim\fR" 4
-.IX Item "-msim"
-Link to the simulator runtime libraries and linker script. Overrides
-any scripts that would be selected by the \fB\-mmcu=\fR option.
-.IP "\fB\-mlarge\fR" 4
-.IX Item "-mlarge"
-Use large-model addressing (20\-bit pointers, 32\-bit \f(CW\*(C`size_t\*(C'\fR).
-.IP "\fB\-msmall\fR" 4
-.IX Item "-msmall"
-Use small-model addressing (16\-bit pointers, 16\-bit \f(CW\*(C`size_t\*(C'\fR).
-.IP "\fB\-mrelax\fR" 4
-.IX Item "-mrelax"
-This option is passed to the assembler and linker, and allows the
-linker to perform certain optimizations that cannot be done until
-the final link.
-.PP
-\fI\s-1NDS32\s0 Options\fR
-.IX Subsection "NDS32 Options"
-.PP
-These options are defined for \s-1NDS32\s0 implementations:
-.IP "\fB\-mbig\-endian\fR" 4
-.IX Item "-mbig-endian"
-Generate code in big-endian mode.
-.IP "\fB\-mlittle\-endian\fR" 4
-.IX Item "-mlittle-endian"
-Generate code in little-endian mode.
-.IP "\fB\-mreduced\-regs\fR" 4
-.IX Item "-mreduced-regs"
-Use reduced-set registers for register allocation.
-.IP "\fB\-mfull\-regs\fR" 4
-.IX Item "-mfull-regs"
-Use full-set registers for register allocation.
-.IP "\fB\-mcmov\fR" 4
-.IX Item "-mcmov"
-Generate conditional move instructions.
-.IP "\fB\-mno\-cmov\fR" 4
-.IX Item "-mno-cmov"
-Do not generate conditional move instructions.
-.IP "\fB\-mperf\-ext\fR" 4
-.IX Item "-mperf-ext"
-Generate performance extension instructions.
-.IP "\fB\-mno\-perf\-ext\fR" 4
-.IX Item "-mno-perf-ext"
-Do not generate performance extension instructions.
-.IP "\fB\-mv3push\fR" 4
-.IX Item "-mv3push"
-Generate v3 push25/pop25 instructions.
-.IP "\fB\-mno\-v3push\fR" 4
-.IX Item "-mno-v3push"
-Do not generate v3 push25/pop25 instructions.
-.IP "\fB\-m16\-bit\fR" 4
-.IX Item "-m16-bit"
-Generate 16\-bit instructions.
-.IP "\fB\-mno\-16\-bit\fR" 4
-.IX Item "-mno-16-bit"
-Do not generate 16\-bit instructions.
-.IP "\fB\-mgp\-direct\fR" 4
-.IX Item "-mgp-direct"
-Generate \s-1GP\s0 base instructions directly.
-.IP "\fB\-mno\-gp\-direct\fR" 4
-.IX Item "-mno-gp-direct"
-Do no generate \s-1GP\s0 base instructions directly.
-.IP "\fB\-misr\-vector\-size=\fR\fInum\fR" 4
-.IX Item "-misr-vector-size=num"
-Specify the size of each interrupt vector, which must be 4 or 16.
-.IP "\fB\-mcache\-block\-size=\fR\fInum\fR" 4
-.IX Item "-mcache-block-size=num"
-Specify the size of each cache block,
-which must be a power of 2 between 4 and 512.
-.IP "\fB\-march=\fR\fIarch\fR" 4
-.IX Item "-march=arch"
-Specify the name of the target architecture.
-.IP "\fB\-mforce\-fp\-as\-gp\fR" 4
-.IX Item "-mforce-fp-as-gp"
-Prevent \f(CW$fp\fR being allocated during register allocation so that compiler
-is able to force performing fp-as-gp optimization.
-.IP "\fB\-mforbid\-fp\-as\-gp\fR" 4
-.IX Item "-mforbid-fp-as-gp"
-Forbid using \f(CW$fp\fR to access static and global variables.
-This option strictly forbids fp-as-gp optimization
-regardless of \fB\-mforce\-fp\-as\-gp\fR.
-.IP "\fB\-mex9\fR" 4
-.IX Item "-mex9"
-Use special directives to guide linker doing ex9 optimization.
-.IP "\fB\-mctor\-dtor\fR" 4
-.IX Item "-mctor-dtor"
-Enable constructor/destructor feature.
-.IP "\fB\-mrelax\fR" 4
-.IX Item "-mrelax"
-Guide linker to relax instructions.
-.PP
-\fINios \s-1II\s0 Options\fR
-.IX Subsection "Nios II Options"
-.PP
-These are the options defined for the Altera Nios \s-1II\s0 processor.
-.IP "\fB\-G\fR \fInum\fR" 4
-.IX Item "-G num"
-Put global and static objects less than or equal to \fInum\fR bytes
-into the small data or \s-1BSS\s0 sections instead of the normal data or \s-1BSS\s0
-sections. The default value of \fInum\fR is 8.
-.IP "\fB\-mgpopt\fR" 4
-.IX Item "-mgpopt"
-.PD 0
-.IP "\fB\-mno\-gpopt\fR" 4
-.IX Item "-mno-gpopt"
-.PD
-Generate (do not generate) GP-relative accesses for objects in the
-small data or \s-1BSS\s0 sections. The default is \fB\-mgpopt\fR except
-when \fB\-fpic\fR or \fB\-fPIC\fR is specified to generate
-position-independent code. Note that the Nios \s-1II ABI\s0 does not permit
-GP-relative accesses from shared libraries.
-.Sp
-You may need to specify \fB\-mno\-gpopt\fR explicitly when building
-programs that include large amounts of small data, including large
-\&\s-1GOT\s0 data sections. In this case, the 16\-bit offset for GP-relative
-addressing may not be large enough to allow access to the entire
-small data section.
-.IP "\fB\-mel\fR" 4
-.IX Item "-mel"
-.PD 0
-.IP "\fB\-meb\fR" 4
-.IX Item "-meb"
-.PD
-Generate little-endian (default) or big-endian (experimental) code,
-respectively.
-.IP "\fB\-mbypass\-cache\fR" 4
-.IX Item "-mbypass-cache"
-.PD 0
-.IP "\fB\-mno\-bypass\-cache\fR" 4
-.IX Item "-mno-bypass-cache"
-.PD
-Force all load and store instructions to always bypass cache by
-using I/O variants of the instructions. The default is not to
-bypass the cache.
-.IP "\fB\-mno\-cache\-volatile\fR" 4
-.IX Item "-mno-cache-volatile"
-.PD 0
-.IP "\fB\-mcache\-volatile\fR" 4
-.IX Item "-mcache-volatile"
-.PD
-Volatile memory access bypass the cache using the I/O variants of
-the load and store instructions. The default is not to bypass the cache.
-.IP "\fB\-mno\-fast\-sw\-div\fR" 4
-.IX Item "-mno-fast-sw-div"
-.PD 0
-.IP "\fB\-mfast\-sw\-div\fR" 4
-.IX Item "-mfast-sw-div"
-.PD
-Do not use table-based fast divide for small numbers. The default
-is to use the fast divide at \fB\-O3\fR and above.
-.IP "\fB\-mno\-hw\-mul\fR" 4
-.IX Item "-mno-hw-mul"
-.PD 0
-.IP "\fB\-mhw\-mul\fR" 4
-.IX Item "-mhw-mul"
-.IP "\fB\-mno\-hw\-mulx\fR" 4
-.IX Item "-mno-hw-mulx"
-.IP "\fB\-mhw\-mulx\fR" 4
-.IX Item "-mhw-mulx"
-.IP "\fB\-mno\-hw\-div\fR" 4
-.IX Item "-mno-hw-div"
-.IP "\fB\-mhw\-div\fR" 4
-.IX Item "-mhw-div"
-.PD
-Enable or disable emitting \f(CW\*(C`mul\*(C'\fR, \f(CW\*(C`mulx\*(C'\fR and \f(CW\*(C`div\*(C'\fR family of
-instructions by the compiler. The default is to emit \f(CW\*(C`mul\*(C'\fR
-and not emit \f(CW\*(C`div\*(C'\fR and \f(CW\*(C`mulx\*(C'\fR.
-.IP "\fB\-mcustom\-\fR\fIinsn\fR\fB=\fR\fIN\fR" 4
-.IX Item "-mcustom-insn=N"
-.PD 0
-.IP "\fB\-mno\-custom\-\fR\fIinsn\fR" 4
-.IX Item "-mno-custom-insn"
-.PD
-Each \fB\-mcustom\-\fR\fIinsn\fR\fB=\fR\fIN\fR option enables use of a
-custom instruction with encoding \fIN\fR when generating code that uses
-\&\fIinsn\fR. For example, \f(CW\*(C`\-mcustom\-fadds=253\*(C'\fR generates custom
-instruction 253 for single-precision floating-point add operations instead
-of the default behavior of using a library call.
-.Sp
-The following values of \fIinsn\fR are supported. Except as otherwise
-noted, floating-point operations are expected to be implemented with
-normal \s-1IEEE 754\s0 semantics and correspond directly to the C operators or the
-equivalent \s-1GCC\s0 built-in functions.
-.Sp
-Single-precision floating point:
-.RS 4
-.IP "\fBfadds\fR, \fBfsubs\fR, \fBfdivs\fR, \fBfmuls\fR" 4
-.IX Item "fadds, fsubs, fdivs, fmuls"
-Binary arithmetic operations.
-.IP "\fBfnegs\fR" 4
-.IX Item "fnegs"
-Unary negation.
-.IP "\fBfabss\fR" 4
-.IX Item "fabss"
-Unary absolute value.
-.IP "\fBfcmpeqs\fR, \fBfcmpges\fR, \fBfcmpgts\fR, \fBfcmples\fR, \fBfcmplts\fR, \fBfcmpnes\fR" 4
-.IX Item "fcmpeqs, fcmpges, fcmpgts, fcmples, fcmplts, fcmpnes"
-Comparison operations.
-.IP "\fBfmins\fR, \fBfmaxs\fR" 4
-.IX Item "fmins, fmaxs"
-Floating-point minimum and maximum. These instructions are only
-generated if \fB\-ffinite\-math\-only\fR is specified.
-.IP "\fBfsqrts\fR" 4
-.IX Item "fsqrts"
-Unary square root operation.
-.IP "\fBfcoss\fR, \fBfsins\fR, \fBftans\fR, \fBfatans\fR, \fBfexps\fR, \fBflogs\fR" 4
-.IX Item "fcoss, fsins, ftans, fatans, fexps, flogs"
-Floating-point trigonometric and exponential functions. These instructions
-are only generated if \fB\-funsafe\-math\-optimizations\fR is also specified.
-.RE
-.RS 4
-.Sp
-Double-precision floating point:
-.IP "\fBfaddd\fR, \fBfsubd\fR, \fBfdivd\fR, \fBfmuld\fR" 4
-.IX Item "faddd, fsubd, fdivd, fmuld"
-Binary arithmetic operations.
-.IP "\fBfnegd\fR" 4
-.IX Item "fnegd"
-Unary negation.
-.IP "\fBfabsd\fR" 4
-.IX Item "fabsd"
-Unary absolute value.
-.IP "\fBfcmpeqd\fR, \fBfcmpged\fR, \fBfcmpgtd\fR, \fBfcmpled\fR, \fBfcmpltd\fR, \fBfcmpned\fR" 4
-.IX Item "fcmpeqd, fcmpged, fcmpgtd, fcmpled, fcmpltd, fcmpned"
-Comparison operations.
-.IP "\fBfmind\fR, \fBfmaxd\fR" 4
-.IX Item "fmind, fmaxd"
-Double-precision minimum and maximum. These instructions are only
-generated if \fB\-ffinite\-math\-only\fR is specified.
-.IP "\fBfsqrtd\fR" 4
-.IX Item "fsqrtd"
-Unary square root operation.
-.IP "\fBfcosd\fR, \fBfsind\fR, \fBftand\fR, \fBfatand\fR, \fBfexpd\fR, \fBflogd\fR" 4
-.IX Item "fcosd, fsind, ftand, fatand, fexpd, flogd"
-Double-precision trigonometric and exponential functions. These instructions
-are only generated if \fB\-funsafe\-math\-optimizations\fR is also specified.
-.RE
-.RS 4
-.Sp
-Conversions:
-.IP "\fBfextsd\fR" 4
-.IX Item "fextsd"
-Conversion from single precision to double precision.
-.IP "\fBftruncds\fR" 4
-.IX Item "ftruncds"
-Conversion from double precision to single precision.
-.IP "\fBfixsi\fR, \fBfixsu\fR, \fBfixdi\fR, \fBfixdu\fR" 4
-.IX Item "fixsi, fixsu, fixdi, fixdu"
-Conversion from floating point to signed or unsigned integer types, with
-truncation towards zero.
-.IP "\fBfloatis\fR, \fBfloatus\fR, \fBfloatid\fR, \fBfloatud\fR" 4
-.IX Item "floatis, floatus, floatid, floatud"
-Conversion from signed or unsigned integer types to floating-point types.
-.RE
-.RS 4
-.Sp
-In addition, all of the following transfer instructions for internal
-registers X and Y must be provided to use any of the double-precision
-floating-point instructions. Custom instructions taking two
-double-precision source operands expect the first operand in the
-64\-bit register X. The other operand (or only operand of a unary
-operation) is given to the custom arithmetic instruction with the
-least significant half in source register \fIsrc1\fR and the most
-significant half in \fIsrc2\fR. A custom instruction that returns a
-double-precision result returns the most significant 32 bits in the
-destination register and the other half in 32\-bit register Y.
-\&\s-1GCC\s0 automatically generates the necessary code sequences to write
-register X and/or read register Y when double-precision floating-point
-instructions are used.
-.IP "\fBfwrx\fR" 4
-.IX Item "fwrx"
-Write \fIsrc1\fR into the least significant half of X and \fIsrc2\fR into
-the most significant half of X.
-.IP "\fBfwry\fR" 4
-.IX Item "fwry"
-Write \fIsrc1\fR into Y.
-.IP "\fBfrdxhi\fR, \fBfrdxlo\fR" 4
-.IX Item "frdxhi, frdxlo"
-Read the most or least (respectively) significant half of X and store it in
-\&\fIdest\fR.
-.IP "\fBfrdy\fR" 4
-.IX Item "frdy"
-Read the value of Y and store it into \fIdest\fR.
-.RE
-.RS 4
-.Sp
-Note that you can gain more local control over generation of Nios \s-1II\s0 custom
-instructions by using the \f(CW\*(C`target("custom\-\f(CIinsn\f(CW=\f(CIN\f(CW")\*(C'\fR
-and \f(CW\*(C`target("no\-custom\-\f(CIinsn\f(CW")\*(C'\fR function attributes
-or pragmas.
-.RE
-.IP "\fB\-mcustom\-fpu\-cfg=\fR\fIname\fR" 4
-.IX Item "-mcustom-fpu-cfg=name"
-This option enables a predefined, named set of custom instruction encodings
-(see \fB\-mcustom\-\fR\fIinsn\fR above).
-Currently, the following sets are defined:
-.Sp
-\&\fB\-mcustom\-fpu\-cfg=60\-1\fR is equivalent to:
-\&\fB\-mcustom\-fmuls=252
-\&\-mcustom\-fadds=253
-\&\-mcustom\-fsubs=254
-\&\-fsingle\-precision\-constant\fR
-.Sp
-\&\fB\-mcustom\-fpu\-cfg=60\-2\fR is equivalent to:
-\&\fB\-mcustom\-fmuls=252
-\&\-mcustom\-fadds=253
-\&\-mcustom\-fsubs=254
-\&\-mcustom\-fdivs=255
-\&\-fsingle\-precision\-constant\fR
-.Sp
-\&\fB\-mcustom\-fpu\-cfg=72\-3\fR is equivalent to:
-\&\fB\-mcustom\-floatus=243
-\&\-mcustom\-fixsi=244
-\&\-mcustom\-floatis=245
-\&\-mcustom\-fcmpgts=246
-\&\-mcustom\-fcmples=249
-\&\-mcustom\-fcmpeqs=250
-\&\-mcustom\-fcmpnes=251
-\&\-mcustom\-fmuls=252
-\&\-mcustom\-fadds=253
-\&\-mcustom\-fsubs=254
-\&\-mcustom\-fdivs=255
-\&\-fsingle\-precision\-constant\fR
-.Sp
-Custom instruction assignments given by individual
-\&\fB\-mcustom\-\fR\fIinsn\fR\fB=\fR options override those given by
-\&\fB\-mcustom\-fpu\-cfg=\fR, regardless of the
-order of the options on the command line.
-.Sp
-Note that you can gain more local control over selection of a \s-1FPU\s0
-configuration by using the \f(CW\*(C`target("custom\-fpu\-cfg=\f(CIname\f(CW")\*(C'\fR
-function attribute
-or pragma.
-.PP
-These additional \fB\-m\fR options are available for the Altera Nios \s-1II
-ELF \s0(bare-metal) target:
-.IP "\fB\-mhal\fR" 4
-.IX Item "-mhal"
-Link with \s-1HAL BSP. \s0 This suppresses linking with the GCC-provided C runtime
-startup and termination code, and is typically used in conjunction with
-\&\fB\-msys\-crt0=\fR to specify the location of the alternate startup code
-provided by the \s-1HAL BSP.\s0
-.IP "\fB\-msmallc\fR" 4
-.IX Item "-msmallc"
-Link with a limited version of the C library, \fB\-lsmallc\fR, rather than
-Newlib.
-.IP "\fB\-msys\-crt0=\fR\fIstartfile\fR" 4
-.IX Item "-msys-crt0=startfile"
-\&\fIstartfile\fR is the file name of the startfile (crt0) to use
-when linking. This option is only useful in conjunction with \fB\-mhal\fR.
-.IP "\fB\-msys\-lib=\fR\fIsystemlib\fR" 4
-.IX Item "-msys-lib=systemlib"
-\&\fIsystemlib\fR is the library name of the library that provides
-low-level system calls required by the C library,
-e.g. \f(CW\*(C`read\*(C'\fR and \f(CW\*(C`write\*(C'\fR.
-This option is typically used to link with a library provided by a \s-1HAL BSP.\s0
-.PP
-\fI\s-1PDP\-11\s0 Options\fR
-.IX Subsection "PDP-11 Options"
-.PP
-These options are defined for the \s-1PDP\-11:\s0
-.IP "\fB\-mfpu\fR" 4
-.IX Item "-mfpu"
-Use hardware \s-1FPP\s0 floating point. This is the default. (\s-1FIS\s0 floating
-point on the \s-1PDP\-11/40\s0 is not supported.)
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-Do not use hardware floating point.
-.IP "\fB\-mac0\fR" 4
-.IX Item "-mac0"
-Return floating-point results in ac0 (fr0 in Unix assembler syntax).
-.IP "\fB\-mno\-ac0\fR" 4
-.IX Item "-mno-ac0"
-Return floating-point results in memory. This is the default.
-.IP "\fB\-m40\fR" 4
-.IX Item "-m40"
-Generate code for a \s-1PDP\-11/40.\s0
-.IP "\fB\-m45\fR" 4
-.IX Item "-m45"
-Generate code for a \s-1PDP\-11/45. \s0 This is the default.
-.IP "\fB\-m10\fR" 4
-.IX Item "-m10"
-Generate code for a \s-1PDP\-11/10.\s0
-.IP "\fB\-mbcopy\-builtin\fR" 4
-.IX Item "-mbcopy-builtin"
-Use inline \f(CW\*(C`movmemhi\*(C'\fR patterns for copying memory. This is the
-default.
-.IP "\fB\-mbcopy\fR" 4
-.IX Item "-mbcopy"
-Do not use inline \f(CW\*(C`movmemhi\*(C'\fR patterns for copying memory.
-.IP "\fB\-mint16\fR" 4
-.IX Item "-mint16"
-.PD 0
-.IP "\fB\-mno\-int32\fR" 4
-.IX Item "-mno-int32"
-.PD
-Use 16\-bit \f(CW\*(C`int\*(C'\fR. This is the default.
-.IP "\fB\-mint32\fR" 4
-.IX Item "-mint32"
-.PD 0
-.IP "\fB\-mno\-int16\fR" 4
-.IX Item "-mno-int16"
-.PD
-Use 32\-bit \f(CW\*(C`int\*(C'\fR.
-.IP "\fB\-mfloat64\fR" 4
-.IX Item "-mfloat64"
-.PD 0
-.IP "\fB\-mno\-float32\fR" 4
-.IX Item "-mno-float32"
-.PD
-Use 64\-bit \f(CW\*(C`float\*(C'\fR. This is the default.
-.IP "\fB\-mfloat32\fR" 4
-.IX Item "-mfloat32"
-.PD 0
-.IP "\fB\-mno\-float64\fR" 4
-.IX Item "-mno-float64"
-.PD
-Use 32\-bit \f(CW\*(C`float\*(C'\fR.
-.IP "\fB\-mabshi\fR" 4
-.IX Item "-mabshi"
-Use \f(CW\*(C`abshi2\*(C'\fR pattern. This is the default.
-.IP "\fB\-mno\-abshi\fR" 4
-.IX Item "-mno-abshi"
-Do not use \f(CW\*(C`abshi2\*(C'\fR pattern.
-.IP "\fB\-mbranch\-expensive\fR" 4
-.IX Item "-mbranch-expensive"
-Pretend that branches are expensive. This is for experimenting with
-code generation only.
-.IP "\fB\-mbranch\-cheap\fR" 4
-.IX Item "-mbranch-cheap"
-Do not pretend that branches are expensive. This is the default.
-.IP "\fB\-munix\-asm\fR" 4
-.IX Item "-munix-asm"
-Use Unix assembler syntax. This is the default when configured for
-\&\fBpdp11\-*\-bsd\fR.
-.IP "\fB\-mdec\-asm\fR" 4
-.IX Item "-mdec-asm"
-Use \s-1DEC\s0 assembler syntax. This is the default when configured for any
-\&\s-1PDP\-11\s0 target other than \fBpdp11\-*\-bsd\fR.
-.PP
-\fIpicoChip Options\fR
-.IX Subsection "picoChip Options"
-.PP
-These \fB\-m\fR options are defined for picoChip implementations:
-.IP "\fB\-mae=\fR\fIae_type\fR" 4
-.IX Item "-mae=ae_type"
-Set the instruction set, register set, and instruction scheduling
-parameters for array element type \fIae_type\fR. Supported values
-for \fIae_type\fR are \fB\s-1ANY\s0\fR, \fB\s-1MUL\s0\fR, and \fB\s-1MAC\s0\fR.
-.Sp
-\&\fB\-mae=ANY\fR selects a completely generic \s-1AE\s0 type. Code
-generated with this option runs on any of the other \s-1AE\s0 types. The
-code is not as efficient as it would be if compiled for a specific
-\&\s-1AE\s0 type, and some types of operation (e.g., multiplication) do not
-work properly on all types of \s-1AE.\s0
-.Sp
-\&\fB\-mae=MUL\fR selects a \s-1MUL AE\s0 type. This is the most useful \s-1AE\s0 type
-for compiled code, and is the default.
-.Sp
-\&\fB\-mae=MAC\fR selects a DSP-style \s-1MAC AE. \s0 Code compiled with this
-option may suffer from poor performance of byte (char) manipulation,
-since the \s-1DSP AE\s0 does not provide hardware support for byte load/stores.
-.IP "\fB\-msymbol\-as\-address\fR" 4
-.IX Item "-msymbol-as-address"
-Enable the compiler to directly use a symbol name as an address in a
-load/store instruction, without first loading it into a
-register. Typically, the use of this option generates larger
-programs, which run faster than when the option isn't used. However, the
-results vary from program to program, so it is left as a user option,
-rather than being permanently enabled.
-.IP "\fB\-mno\-inefficient\-warnings\fR" 4
-.IX Item "-mno-inefficient-warnings"
-Disables warnings about the generation of inefficient code. These
-warnings can be generated, for example, when compiling code that
-performs byte-level memory operations on the \s-1MAC AE\s0 type. The \s-1MAC AE\s0 has
-no hardware support for byte-level memory operations, so all byte
-load/stores must be synthesized from word load/store operations. This is
-inefficient and a warning is generated to indicate
-that you should rewrite the code to avoid byte operations, or to target
-an \s-1AE\s0 type that has the necessary hardware support. This option disables
-these warnings.
-.PP
-\fIPowerPC Options\fR
-.IX Subsection "PowerPC Options"
-.PP
-These are listed under
-.PP
-\fI\s-1RL78\s0 Options\fR
-.IX Subsection "RL78 Options"
-.IP "\fB\-msim\fR" 4
-.IX Item "-msim"
-Links in additional target libraries to support operation within a
-simulator.
-.IP "\fB\-mmul=none\fR" 4
-.IX Item "-mmul=none"
-.PD 0
-.IP "\fB\-mmul=g13\fR" 4
-.IX Item "-mmul=g13"
-.IP "\fB\-mmul=rl78\fR" 4
-.IX Item "-mmul=rl78"
-.PD
-Specifies the type of hardware multiplication support to be used. The
-default is \f(CW\*(C`none\*(C'\fR, which uses software multiplication functions.
-The \f(CW\*(C`g13\*(C'\fR option is for the hardware multiply/divide peripheral
-only on the \s-1RL78/G13\s0 targets. The \f(CW\*(C`rl78\*(C'\fR option is for the
-standard hardware multiplication defined in the \s-1RL78\s0 software manual.
-.PP
-\fI\s-1IBM RS/6000\s0 and PowerPC Options\fR
-.IX Subsection "IBM RS/6000 and PowerPC Options"
-.PP
-These \fB\-m\fR options are defined for the \s-1IBM RS/6000\s0 and PowerPC:
-.IP "\fB\-mpowerpc\-gpopt\fR" 4
-.IX Item "-mpowerpc-gpopt"
-.PD 0
-.IP "\fB\-mno\-powerpc\-gpopt\fR" 4
-.IX Item "-mno-powerpc-gpopt"
-.IP "\fB\-mpowerpc\-gfxopt\fR" 4
-.IX Item "-mpowerpc-gfxopt"
-.IP "\fB\-mno\-powerpc\-gfxopt\fR" 4
-.IX Item "-mno-powerpc-gfxopt"
-.IP "\fB\-mpowerpc64\fR" 4
-.IX Item "-mpowerpc64"
-.IP "\fB\-mno\-powerpc64\fR" 4
-.IX Item "-mno-powerpc64"
-.IP "\fB\-mmfcrf\fR" 4
-.IX Item "-mmfcrf"
-.IP "\fB\-mno\-mfcrf\fR" 4
-.IX Item "-mno-mfcrf"
-.IP "\fB\-mpopcntb\fR" 4
-.IX Item "-mpopcntb"
-.IP "\fB\-mno\-popcntb\fR" 4
-.IX Item "-mno-popcntb"
-.IP "\fB\-mpopcntd\fR" 4
-.IX Item "-mpopcntd"
-.IP "\fB\-mno\-popcntd\fR" 4
-.IX Item "-mno-popcntd"
-.IP "\fB\-mfprnd\fR" 4
-.IX Item "-mfprnd"
-.IP "\fB\-mno\-fprnd\fR" 4
-.IX Item "-mno-fprnd"
-.IP "\fB\-mcmpb\fR" 4
-.IX Item "-mcmpb"
-.IP "\fB\-mno\-cmpb\fR" 4
-.IX Item "-mno-cmpb"
-.IP "\fB\-mmfpgpr\fR" 4
-.IX Item "-mmfpgpr"
-.IP "\fB\-mno\-mfpgpr\fR" 4
-.IX Item "-mno-mfpgpr"
-.IP "\fB\-mhard\-dfp\fR" 4
-.IX Item "-mhard-dfp"
-.IP "\fB\-mno\-hard\-dfp\fR" 4
-.IX Item "-mno-hard-dfp"
-.PD
-You use these options to specify which instructions are available on the
-processor you are using. The default value of these options is
-determined when configuring \s-1GCC. \s0 Specifying the
-\&\fB\-mcpu=\fR\fIcpu_type\fR overrides the specification of these
-options. We recommend you use the \fB\-mcpu=\fR\fIcpu_type\fR option
-rather than the options listed above.
-.Sp
-Specifying \fB\-mpowerpc\-gpopt\fR allows
-\&\s-1GCC\s0 to use the optional PowerPC architecture instructions in the
-General Purpose group, including floating-point square root. Specifying
-\&\fB\-mpowerpc\-gfxopt\fR allows \s-1GCC\s0 to
-use the optional PowerPC architecture instructions in the Graphics
-group, including floating-point select.
-.Sp
-The \fB\-mmfcrf\fR option allows \s-1GCC\s0 to generate the move from
-condition register field instruction implemented on the \s-1POWER4\s0
-processor and other processors that support the PowerPC V2.01
-architecture.
-The \fB\-mpopcntb\fR option allows \s-1GCC\s0 to generate the popcount and
-double-precision \s-1FP\s0 reciprocal estimate instruction implemented on the
-\&\s-1POWER5\s0 processor and other processors that support the PowerPC V2.02
-architecture.
-The \fB\-mpopcntd\fR option allows \s-1GCC\s0 to generate the popcount
-instruction implemented on the \s-1POWER7\s0 processor and other processors
-that support the PowerPC V2.06 architecture.
-The \fB\-mfprnd\fR option allows \s-1GCC\s0 to generate the \s-1FP\s0 round to
-integer instructions implemented on the \s-1POWER5+\s0 processor and other
-processors that support the PowerPC V2.03 architecture.
-The \fB\-mcmpb\fR option allows \s-1GCC\s0 to generate the compare bytes
-instruction implemented on the \s-1POWER6\s0 processor and other processors
-that support the PowerPC V2.05 architecture.
-The \fB\-mmfpgpr\fR option allows \s-1GCC\s0 to generate the \s-1FP\s0 move to/from
-general-purpose register instructions implemented on the \s-1POWER6X\s0
-processor and other processors that support the extended PowerPC V2.05
-architecture.
-The \fB\-mhard\-dfp\fR option allows \s-1GCC\s0 to generate the decimal
-floating-point instructions implemented on some \s-1POWER\s0 processors.
-.Sp
-The \fB\-mpowerpc64\fR option allows \s-1GCC\s0 to generate the additional
-64\-bit instructions that are found in the full PowerPC64 architecture
-and to treat GPRs as 64\-bit, doubleword quantities. \s-1GCC\s0 defaults to
-\&\fB\-mno\-powerpc64\fR.
-.IP "\fB\-mcpu=\fR\fIcpu_type\fR" 4
-.IX Item "-mcpu=cpu_type"
-Set architecture type, register usage, and
-instruction scheduling parameters for machine type \fIcpu_type\fR.
-Supported values for \fIcpu_type\fR are \fB401\fR, \fB403\fR,
-\&\fB405\fR, \fB405fp\fR, \fB440\fR, \fB440fp\fR, \fB464\fR, \fB464fp\fR,
-\&\fB476\fR, \fB476fp\fR, \fB505\fR, \fB601\fR, \fB602\fR, \fB603\fR,
-\&\fB603e\fR, \fB604\fR, \fB604e\fR, \fB620\fR, \fB630\fR, \fB740\fR,
-\&\fB7400\fR, \fB7450\fR, \fB750\fR, \fB801\fR, \fB821\fR, \fB823\fR,
-\&\fB860\fR, \fB970\fR, \fB8540\fR, \fBa2\fR, \fBe300c2\fR,
-\&\fBe300c3\fR, \fBe500mc\fR, \fBe500mc64\fR, \fBe5500\fR,
-\&\fBe6500\fR, \fBec603e\fR, \fBG3\fR, \fBG4\fR, \fBG5\fR,
-\&\fBtitan\fR, \fBpower3\fR, \fBpower4\fR, \fBpower5\fR, \fBpower5+\fR,
-\&\fBpower6\fR, \fBpower6x\fR, \fBpower7\fR, \fBpower8\fR, \fBpowerpc\fR,
-\&\fBpowerpc64\fR, and \fBrs64\fR.
-.Sp
-\&\fB\-mcpu=powerpc\fR, and \fB\-mcpu=powerpc64\fR specify pure 32\-bit
-PowerPC and 64\-bit PowerPC architecture machine
-types, with an appropriate, generic processor model assumed for
-scheduling purposes.
-.Sp
-The other options specify a specific processor. Code generated under
-those options runs best on that processor, and may not run at all on
-others.
-.Sp
-The \fB\-mcpu\fR options automatically enable or disable the
-following options:
-.Sp
-\&\fB\-maltivec \-mfprnd \-mhard\-float \-mmfcrf \-mmultiple
-\&\-mpopcntb \-mpopcntd \-mpowerpc64
-\&\-mpowerpc\-gpopt \-mpowerpc\-gfxopt \-msingle\-float \-mdouble\-float
-\&\-msimple\-fpu \-mstring \-mmulhw \-mdlmzb \-mmfpgpr \-mvsx
-\&\-mcrypto \-mdirect\-move \-mpower8\-fusion \-mpower8\-vector
-\&\-mquad\-memory \-mquad\-memory\-atomic\fR
-.Sp
-The particular options set for any particular \s-1CPU\s0 varies between
-compiler versions, depending on what setting seems to produce optimal
-code for that \s-1CPU\s0; it doesn't necessarily reflect the actual hardware's
-capabilities. If you wish to set an individual option to a particular
-value, you may specify it after the \fB\-mcpu\fR option, like
-\&\fB\-mcpu=970 \-mno\-altivec\fR.
-.Sp
-On \s-1AIX,\s0 the \fB\-maltivec\fR and \fB\-mpowerpc64\fR options are
-not enabled or disabled by the \fB\-mcpu\fR option at present because
-\&\s-1AIX\s0 does not have full support for these options. You may still
-enable or disable them individually if you're sure it'll work in your
-environment.
-.IP "\fB\-mtune=\fR\fIcpu_type\fR" 4
-.IX Item "-mtune=cpu_type"
-Set the instruction scheduling parameters for machine type
-\&\fIcpu_type\fR, but do not set the architecture type or register usage,
-as \fB\-mcpu=\fR\fIcpu_type\fR does. The same
-values for \fIcpu_type\fR are used for \fB\-mtune\fR as for
-\&\fB\-mcpu\fR. If both are specified, the code generated uses the
-architecture and registers set by \fB\-mcpu\fR, but the
-scheduling parameters set by \fB\-mtune\fR.
-.IP "\fB\-mcmodel=small\fR" 4
-.IX Item "-mcmodel=small"
-Generate PowerPC64 code for the small model: The \s-1TOC\s0 is limited to
-64k.
-.IP "\fB\-mcmodel=medium\fR" 4
-.IX Item "-mcmodel=medium"
-Generate PowerPC64 code for the medium model: The \s-1TOC\s0 and other static
-data may be up to a total of 4G in size.
-.IP "\fB\-mcmodel=large\fR" 4
-.IX Item "-mcmodel=large"
-Generate PowerPC64 code for the large model: The \s-1TOC\s0 may be up to 4G
-in size. Other data and code is only limited by the 64\-bit address
-space.
-.IP "\fB\-maltivec\fR" 4
-.IX Item "-maltivec"
-.PD 0
-.IP "\fB\-mno\-altivec\fR" 4
-.IX Item "-mno-altivec"
-.PD
-Generate code that uses (does not use) AltiVec instructions, and also
-enable the use of built-in functions that allow more direct access to
-the AltiVec instruction set. You may also need to set
-\&\fB\-mabi=altivec\fR to adjust the current \s-1ABI\s0 with AltiVec \s-1ABI\s0
-enhancements.
-.Sp
-When \fB\-maltivec\fR is used, rather than \fB\-maltivec=le\fR or
-\&\fB\-maltivec=be\fR, the element order for Altivec intrinsics such
-as \f(CW\*(C`vec_splat\*(C'\fR, \f(CW\*(C`vec_extract\*(C'\fR, and \f(CW\*(C`vec_insert\*(C'\fR will
-match array element order corresponding to the endianness of the
-target. That is, element zero identifies the leftmost element in a
-vector register when targeting a big-endian platform, and identifies
-the rightmost element in a vector register when targeting a
-little-endian platform.
-.IP "\fB\-maltivec=be\fR" 4
-.IX Item "-maltivec=be"
-Generate Altivec instructions using big-endian element order,
-regardless of whether the target is big\- or little-endian. This is
-the default when targeting a big-endian platform.
-.Sp
-The element order is used to interpret element numbers in Altivec
-intrinsics such as \f(CW\*(C`vec_splat\*(C'\fR, \f(CW\*(C`vec_extract\*(C'\fR, and
-\&\f(CW\*(C`vec_insert\*(C'\fR. By default, these will match array element order
-corresponding to the endianness for the target.
-.IP "\fB\-maltivec=le\fR" 4
-.IX Item "-maltivec=le"
-Generate Altivec instructions using little-endian element order,
-regardless of whether the target is big\- or little-endian. This is
-the default when targeting a little-endian platform. This option is
-currently ignored when targeting a big-endian platform.
-.Sp
-The element order is used to interpret element numbers in Altivec
-intrinsics such as \f(CW\*(C`vec_splat\*(C'\fR, \f(CW\*(C`vec_extract\*(C'\fR, and
-\&\f(CW\*(C`vec_insert\*(C'\fR. By default, these will match array element order
-corresponding to the endianness for the target.
-.IP "\fB\-mvrsave\fR" 4
-.IX Item "-mvrsave"
-.PD 0
-.IP "\fB\-mno\-vrsave\fR" 4
-.IX Item "-mno-vrsave"
-.PD
-Generate \s-1VRSAVE\s0 instructions when generating AltiVec code.
-.IP "\fB\-mgen\-cell\-microcode\fR" 4
-.IX Item "-mgen-cell-microcode"
-Generate Cell microcode instructions.
-.IP "\fB\-mwarn\-cell\-microcode\fR" 4
-.IX Item "-mwarn-cell-microcode"
-Warn when a Cell microcode instruction is emitted. An example
-of a Cell microcode instruction is a variable shift.
-.IP "\fB\-msecure\-plt\fR" 4
-.IX Item "-msecure-plt"
-Generate code that allows \fBld\fR and \fBld.so\fR
-to build executables and shared
-libraries with non-executable \f(CW\*(C`.plt\*(C'\fR and \f(CW\*(C`.got\*(C'\fR sections.
-This is a PowerPC
-32\-bit \s-1SYSV ABI\s0 option.
-.IP "\fB\-mbss\-plt\fR" 4
-.IX Item "-mbss-plt"
-Generate code that uses a \s-1BSS \s0\f(CW\*(C`.plt\*(C'\fR section that \fBld.so\fR
-fills in, and
-requires \f(CW\*(C`.plt\*(C'\fR and \f(CW\*(C`.got\*(C'\fR
-sections that are both writable and executable.
-This is a PowerPC 32\-bit \s-1SYSV ABI\s0 option.
-.IP "\fB\-misel\fR" 4
-.IX Item "-misel"
-.PD 0
-.IP "\fB\-mno\-isel\fR" 4
-.IX Item "-mno-isel"
-.PD
-This switch enables or disables the generation of \s-1ISEL\s0 instructions.
-.IP "\fB\-misel=\fR\fIyes/no\fR" 4
-.IX Item "-misel=yes/no"
-This switch has been deprecated. Use \fB\-misel\fR and
-\&\fB\-mno\-isel\fR instead.
-.IP "\fB\-mspe\fR" 4
-.IX Item "-mspe"
-.PD 0
-.IP "\fB\-mno\-spe\fR" 4
-.IX Item "-mno-spe"
-.PD
-This switch enables or disables the generation of \s-1SPE\s0 simd
-instructions.
-.IP "\fB\-mpaired\fR" 4
-.IX Item "-mpaired"
-.PD 0
-.IP "\fB\-mno\-paired\fR" 4
-.IX Item "-mno-paired"
-.PD
-This switch enables or disables the generation of \s-1PAIRED\s0 simd
-instructions.
-.IP "\fB\-mspe=\fR\fIyes/no\fR" 4
-.IX Item "-mspe=yes/no"
-This option has been deprecated. Use \fB\-mspe\fR and
-\&\fB\-mno\-spe\fR instead.
-.IP "\fB\-mvsx\fR" 4
-.IX Item "-mvsx"
-.PD 0
-.IP "\fB\-mno\-vsx\fR" 4
-.IX Item "-mno-vsx"
-.PD
-Generate code that uses (does not use) vector/scalar (\s-1VSX\s0)
-instructions, and also enable the use of built-in functions that allow
-more direct access to the \s-1VSX\s0 instruction set.
-.IP "\fB\-mcrypto\fR" 4
-.IX Item "-mcrypto"
-.PD 0
-.IP "\fB\-mno\-crypto\fR" 4
-.IX Item "-mno-crypto"
-.PD
-Enable the use (disable) of the built-in functions that allow direct
-access to the cryptographic instructions that were added in version
-2.07 of the PowerPC \s-1ISA.\s0
-.IP "\fB\-mdirect\-move\fR" 4
-.IX Item "-mdirect-move"
-.PD 0
-.IP "\fB\-mno\-direct\-move\fR" 4
-.IX Item "-mno-direct-move"
-.PD
-Generate code that uses (does not use) the instructions to move data
-between the general purpose registers and the vector/scalar (\s-1VSX\s0)
-registers that were added in version 2.07 of the PowerPC \s-1ISA.\s0
-.IP "\fB\-mpower8\-fusion\fR" 4
-.IX Item "-mpower8-fusion"
-.PD 0
-.IP "\fB\-mno\-power8\-fusion\fR" 4
-.IX Item "-mno-power8-fusion"
-.PD
-Generate code that keeps (does not keeps) some integer operations
-adjacent so that the instructions can be fused together on power8 and
-later processors.
-.IP "\fB\-mpower8\-vector\fR" 4
-.IX Item "-mpower8-vector"
-.PD 0
-.IP "\fB\-mno\-power8\-vector\fR" 4
-.IX Item "-mno-power8-vector"
-.PD
-Generate code that uses (does not use) the vector and scalar
-instructions that were added in version 2.07 of the PowerPC \s-1ISA. \s0 Also
-enable the use of built-in functions that allow more direct access to
-the vector instructions.
-.IP "\fB\-mquad\-memory\fR" 4
-.IX Item "-mquad-memory"
-.PD 0
-.IP "\fB\-mno\-quad\-memory\fR" 4
-.IX Item "-mno-quad-memory"
-.PD
-Generate code that uses (does not use) the non-atomic quad word memory
-instructions. The \fB\-mquad\-memory\fR option requires use of
-64\-bit mode.
-.IP "\fB\-mquad\-memory\-atomic\fR" 4
-.IX Item "-mquad-memory-atomic"
-.PD 0
-.IP "\fB\-mno\-quad\-memory\-atomic\fR" 4
-.IX Item "-mno-quad-memory-atomic"
-.PD
-Generate code that uses (does not use) the atomic quad word memory
-instructions. The \fB\-mquad\-memory\-atomic\fR option requires use of
-64\-bit mode.
-.IP "\fB\-mfloat\-gprs=\fR\fIyes/single/double/no\fR" 4
-.IX Item "-mfloat-gprs=yes/single/double/no"
-.PD 0
-.IP "\fB\-mfloat\-gprs\fR" 4
-.IX Item "-mfloat-gprs"
-.PD
-This switch enables or disables the generation of floating-point
-operations on the general-purpose registers for architectures that
-support it.
-.Sp
-The argument \fIyes\fR or \fIsingle\fR enables the use of
-single-precision floating-point operations.
-.Sp
-The argument \fIdouble\fR enables the use of single and
-double-precision floating-point operations.
-.Sp
-The argument \fIno\fR disables floating-point operations on the
-general-purpose registers.
-.Sp
-This option is currently only available on the MPC854x.
-.IP "\fB\-m32\fR" 4
-.IX Item "-m32"
-.PD 0
-.IP "\fB\-m64\fR" 4
-.IX Item "-m64"
-.PD
-Generate code for 32\-bit or 64\-bit environments of Darwin and \s-1SVR4\s0
-targets (including GNU/Linux). The 32\-bit environment sets int, long
-and pointer to 32 bits and generates code that runs on any PowerPC
-variant. The 64\-bit environment sets int to 32 bits and long and
-pointer to 64 bits, and generates code for PowerPC64, as for
-\&\fB\-mpowerpc64\fR.
-.IP "\fB\-mfull\-toc\fR" 4
-.IX Item "-mfull-toc"
-.PD 0
-.IP "\fB\-mno\-fp\-in\-toc\fR" 4
-.IX Item "-mno-fp-in-toc"
-.IP "\fB\-mno\-sum\-in\-toc\fR" 4
-.IX Item "-mno-sum-in-toc"
-.IP "\fB\-mminimal\-toc\fR" 4
-.IX Item "-mminimal-toc"
-.PD
-Modify generation of the \s-1TOC \s0(Table Of Contents), which is created for
-every executable file. The \fB\-mfull\-toc\fR option is selected by
-default. In that case, \s-1GCC\s0 allocates at least one \s-1TOC\s0 entry for
-each unique non-automatic variable reference in your program. \s-1GCC\s0
-also places floating-point constants in the \s-1TOC. \s0 However, only
-16,384 entries are available in the \s-1TOC.\s0
-.Sp
-If you receive a linker error message that saying you have overflowed
-the available \s-1TOC\s0 space, you can reduce the amount of \s-1TOC\s0 space used
-with the \fB\-mno\-fp\-in\-toc\fR and \fB\-mno\-sum\-in\-toc\fR options.
-\&\fB\-mno\-fp\-in\-toc\fR prevents \s-1GCC\s0 from putting floating-point
-constants in the \s-1TOC\s0 and \fB\-mno\-sum\-in\-toc\fR forces \s-1GCC\s0 to
-generate code to calculate the sum of an address and a constant at
-run time instead of putting that sum into the \s-1TOC. \s0 You may specify one
-or both of these options. Each causes \s-1GCC\s0 to produce very slightly
-slower and larger code at the expense of conserving \s-1TOC\s0 space.
-.Sp
-If you still run out of space in the \s-1TOC\s0 even when you specify both of
-these options, specify \fB\-mminimal\-toc\fR instead. This option causes
-\&\s-1GCC\s0 to make only one \s-1TOC\s0 entry for every file. When you specify this
-option, \s-1GCC\s0 produces code that is slower and larger but which
-uses extremely little \s-1TOC\s0 space. You may wish to use this option
-only on files that contain less frequently-executed code.
-.IP "\fB\-maix64\fR" 4
-.IX Item "-maix64"
-.PD 0
-.IP "\fB\-maix32\fR" 4
-.IX Item "-maix32"
-.PD
-Enable 64\-bit \s-1AIX ABI\s0 and calling convention: 64\-bit pointers, 64\-bit
-\&\f(CW\*(C`long\*(C'\fR type, and the infrastructure needed to support them.
-Specifying \fB\-maix64\fR implies \fB\-mpowerpc64\fR,
-while \fB\-maix32\fR disables the 64\-bit \s-1ABI\s0 and
-implies \fB\-mno\-powerpc64\fR. \s-1GCC\s0 defaults to \fB\-maix32\fR.
-.IP "\fB\-mxl\-compat\fR" 4
-.IX Item "-mxl-compat"
-.PD 0
-.IP "\fB\-mno\-xl\-compat\fR" 4
-.IX Item "-mno-xl-compat"
-.PD
-Produce code that conforms more closely to \s-1IBM XL\s0 compiler semantics
-when using AIX-compatible \s-1ABI. \s0 Pass floating-point arguments to
-prototyped functions beyond the register save area (\s-1RSA\s0) on the stack
-in addition to argument FPRs. Do not assume that most significant
-double in 128\-bit long double value is properly rounded when comparing
-values and converting to double. Use \s-1XL\s0 symbol names for long double
-support routines.
-.Sp
-The \s-1AIX\s0 calling convention was extended but not initially documented to
-handle an obscure K&R C case of calling a function that takes the
-address of its arguments with fewer arguments than declared. \s-1IBM XL\s0
-compilers access floating-point arguments that do not fit in the
-\&\s-1RSA\s0 from the stack when a subroutine is compiled without
-optimization. Because always storing floating-point arguments on the
-stack is inefficient and rarely needed, this option is not enabled by
-default and only is necessary when calling subroutines compiled by \s-1IBM
-XL\s0 compilers without optimization.
-.IP "\fB\-mpe\fR" 4
-.IX Item "-mpe"
-Support \fI\s-1IBM RS/6000 SP\s0\fR \fIParallel Environment\fR (\s-1PE\s0). Link an
-application written to use message passing with special startup code to
-enable the application to run. The system must have \s-1PE\s0 installed in the
-standard location (\fI/usr/lpp/ppe.poe/\fR), or the \fIspecs\fR file
-must be overridden with the \fB\-specs=\fR option to specify the
-appropriate directory location. The Parallel Environment does not
-support threads, so the \fB\-mpe\fR option and the \fB\-pthread\fR
-option are incompatible.
-.IP "\fB\-malign\-natural\fR" 4
-.IX Item "-malign-natural"
-.PD 0
-.IP "\fB\-malign\-power\fR" 4
-.IX Item "-malign-power"
-.PD
-On \s-1AIX,\s0 32\-bit Darwin, and 64\-bit PowerPC GNU/Linux, the option
-\&\fB\-malign\-natural\fR overrides the ABI-defined alignment of larger
-types, such as floating-point doubles, on their natural size-based boundary.
-The option \fB\-malign\-power\fR instructs \s-1GCC\s0 to follow the ABI-specified
-alignment rules. \s-1GCC\s0 defaults to the standard alignment defined in the \s-1ABI.\s0
-.Sp
-On 64\-bit Darwin, natural alignment is the default, and \fB\-malign\-power\fR
-is not supported.
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-.PD 0
-.IP "\fB\-mhard\-float\fR" 4
-.IX Item "-mhard-float"
-.PD
-Generate code that does not use (uses) the floating-point register set.
-Software floating-point emulation is provided if you use the
-\&\fB\-msoft\-float\fR option, and pass the option to \s-1GCC\s0 when linking.
-.IP "\fB\-msingle\-float\fR" 4
-.IX Item "-msingle-float"
-.PD 0
-.IP "\fB\-mdouble\-float\fR" 4
-.IX Item "-mdouble-float"
-.PD
-Generate code for single\- or double-precision floating-point operations.
-\&\fB\-mdouble\-float\fR implies \fB\-msingle\-float\fR.
-.IP "\fB\-msimple\-fpu\fR" 4
-.IX Item "-msimple-fpu"
-Do not generate \f(CW\*(C`sqrt\*(C'\fR and \f(CW\*(C`div\*(C'\fR instructions for hardware
-floating-point unit.
-.IP "\fB\-mfpu=\fR\fIname\fR" 4
-.IX Item "-mfpu=name"
-Specify type of floating-point unit. Valid values for \fIname\fR are
-\&\fBsp_lite\fR (equivalent to \fB\-msingle\-float \-msimple\-fpu\fR),
-\&\fBdp_lite\fR (equivalent to \fB\-mdouble\-float \-msimple\-fpu\fR),
-\&\fBsp_full\fR (equivalent to \fB\-msingle\-float\fR),
-and \fBdp_full\fR (equivalent to \fB\-mdouble\-float\fR).
-.IP "\fB\-mxilinx\-fpu\fR" 4
-.IX Item "-mxilinx-fpu"
-Perform optimizations for the floating-point unit on Xilinx \s-1PPC 405/440.\s0
-.IP "\fB\-mmultiple\fR" 4
-.IX Item "-mmultiple"
-.PD 0
-.IP "\fB\-mno\-multiple\fR" 4
-.IX Item "-mno-multiple"
-.PD
-Generate code that uses (does not use) the load multiple word
-instructions and the store multiple word instructions. These
-instructions are generated by default on \s-1POWER\s0 systems, and not
-generated on PowerPC systems. Do not use \fB\-mmultiple\fR on little-endian
-PowerPC systems, since those instructions do not work when the
-processor is in little-endian mode. The exceptions are \s-1PPC740\s0 and
-\&\s-1PPC750\s0 which permit these instructions in little-endian mode.
-.IP "\fB\-mstring\fR" 4
-.IX Item "-mstring"
-.PD 0
-.IP "\fB\-mno\-string\fR" 4
-.IX Item "-mno-string"
-.PD
-Generate code that uses (does not use) the load string instructions
-and the store string word instructions to save multiple registers and
-do small block moves. These instructions are generated by default on
-\&\s-1POWER\s0 systems, and not generated on PowerPC systems. Do not use
-\&\fB\-mstring\fR on little-endian PowerPC systems, since those
-instructions do not work when the processor is in little-endian mode.
-The exceptions are \s-1PPC740\s0 and \s-1PPC750\s0 which permit these instructions
-in little-endian mode.
-.IP "\fB\-mupdate\fR" 4
-.IX Item "-mupdate"
-.PD 0
-.IP "\fB\-mno\-update\fR" 4
-.IX Item "-mno-update"
-.PD
-Generate code that uses (does not use) the load or store instructions
-that update the base register to the address of the calculated memory
-location. These instructions are generated by default. If you use
-\&\fB\-mno\-update\fR, there is a small window between the time that the
-stack pointer is updated and the address of the previous frame is
-stored, which means code that walks the stack frame across interrupts or
-signals may get corrupted data.
-.IP "\fB\-mavoid\-indexed\-addresses\fR" 4
-.IX Item "-mavoid-indexed-addresses"
-.PD 0
-.IP "\fB\-mno\-avoid\-indexed\-addresses\fR" 4
-.IX Item "-mno-avoid-indexed-addresses"
-.PD
-Generate code that tries to avoid (not avoid) the use of indexed load
-or store instructions. These instructions can incur a performance
-penalty on Power6 processors in certain situations, such as when
-stepping through large arrays that cross a 16M boundary. This option
-is enabled by default when targeting Power6 and disabled otherwise.
-.IP "\fB\-mfused\-madd\fR" 4
-.IX Item "-mfused-madd"
-.PD 0
-.IP "\fB\-mno\-fused\-madd\fR" 4
-.IX Item "-mno-fused-madd"
-.PD
-Generate code that uses (does not use) the floating-point multiply and
-accumulate instructions. These instructions are generated by default
-if hardware floating point is used. The machine-dependent
-\&\fB\-mfused\-madd\fR option is now mapped to the machine-independent
-\&\fB\-ffp\-contract=fast\fR option, and \fB\-mno\-fused\-madd\fR is
-mapped to \fB\-ffp\-contract=off\fR.
-.IP "\fB\-mmulhw\fR" 4
-.IX Item "-mmulhw"
-.PD 0
-.IP "\fB\-mno\-mulhw\fR" 4
-.IX Item "-mno-mulhw"
-.PD
-Generate code that uses (does not use) the half-word multiply and
-multiply-accumulate instructions on the \s-1IBM 405, 440, 464\s0 and 476 processors.
-These instructions are generated by default when targeting those
-processors.
-.IP "\fB\-mdlmzb\fR" 4
-.IX Item "-mdlmzb"
-.PD 0
-.IP "\fB\-mno\-dlmzb\fR" 4
-.IX Item "-mno-dlmzb"
-.PD
-Generate code that uses (does not use) the string-search \fBdlmzb\fR
-instruction on the \s-1IBM 405, 440, 464\s0 and 476 processors. This instruction is
-generated by default when targeting those processors.
-.IP "\fB\-mno\-bit\-align\fR" 4
-.IX Item "-mno-bit-align"
-.PD 0
-.IP "\fB\-mbit\-align\fR" 4
-.IX Item "-mbit-align"
-.PD
-On System V.4 and embedded PowerPC systems do not (do) force structures
-and unions that contain bit-fields to be aligned to the base type of the
-bit-field.
-.Sp
-For example, by default a structure containing nothing but 8
-\&\f(CW\*(C`unsigned\*(C'\fR bit-fields of length 1 is aligned to a 4\-byte
-boundary and has a size of 4 bytes. By using \fB\-mno\-bit\-align\fR,
-the structure is aligned to a 1\-byte boundary and is 1 byte in
-size.
-.IP "\fB\-mno\-strict\-align\fR" 4
-.IX Item "-mno-strict-align"
-.PD 0
-.IP "\fB\-mstrict\-align\fR" 4
-.IX Item "-mstrict-align"
-.PD
-On System V.4 and embedded PowerPC systems do not (do) assume that
-unaligned memory references are handled by the system.
-.IP "\fB\-mrelocatable\fR" 4
-.IX Item "-mrelocatable"
-.PD 0
-.IP "\fB\-mno\-relocatable\fR" 4
-.IX Item "-mno-relocatable"
-.PD
-Generate code that allows (does not allow) a static executable to be
-relocated to a different address at run time. A simple embedded
-PowerPC system loader should relocate the entire contents of
-\&\f(CW\*(C`.got2\*(C'\fR and 4\-byte locations listed in the \f(CW\*(C`.fixup\*(C'\fR section,
-a table of 32\-bit addresses generated by this option. For this to
-work, all objects linked together must be compiled with
-\&\fB\-mrelocatable\fR or \fB\-mrelocatable\-lib\fR.
-\&\fB\-mrelocatable\fR code aligns the stack to an 8\-byte boundary.
-.IP "\fB\-mrelocatable\-lib\fR" 4
-.IX Item "-mrelocatable-lib"
-.PD 0
-.IP "\fB\-mno\-relocatable\-lib\fR" 4
-.IX Item "-mno-relocatable-lib"
-.PD
-Like \fB\-mrelocatable\fR, \fB\-mrelocatable\-lib\fR generates a
-\&\f(CW\*(C`.fixup\*(C'\fR section to allow static executables to be relocated at
-run time, but \fB\-mrelocatable\-lib\fR does not use the smaller stack
-alignment of \fB\-mrelocatable\fR. Objects compiled with
-\&\fB\-mrelocatable\-lib\fR may be linked with objects compiled with
-any combination of the \fB\-mrelocatable\fR options.
-.IP "\fB\-mno\-toc\fR" 4
-.IX Item "-mno-toc"
-.PD 0
-.IP "\fB\-mtoc\fR" 4
-.IX Item "-mtoc"
-.PD
-On System V.4 and embedded PowerPC systems do not (do) assume that
-register 2 contains a pointer to a global area pointing to the addresses
-used in the program.
-.IP "\fB\-mlittle\fR" 4
-.IX Item "-mlittle"
-.PD 0
-.IP "\fB\-mlittle\-endian\fR" 4
-.IX Item "-mlittle-endian"
-.PD
-On System V.4 and embedded PowerPC systems compile code for the
-processor in little-endian mode. The \fB\-mlittle\-endian\fR option is
-the same as \fB\-mlittle\fR.
-.IP "\fB\-mbig\fR" 4
-.IX Item "-mbig"
-.PD 0
-.IP "\fB\-mbig\-endian\fR" 4
-.IX Item "-mbig-endian"
-.PD
-On System V.4 and embedded PowerPC systems compile code for the
-processor in big-endian mode. The \fB\-mbig\-endian\fR option is
-the same as \fB\-mbig\fR.
-.IP "\fB\-mdynamic\-no\-pic\fR" 4
-.IX Item "-mdynamic-no-pic"
-On Darwin and Mac \s-1OS X\s0 systems, compile code so that it is not
-relocatable, but that its external references are relocatable. The
-resulting code is suitable for applications, but not shared
-libraries.
-.IP "\fB\-msingle\-pic\-base\fR" 4
-.IX Item "-msingle-pic-base"
-Treat the register used for \s-1PIC\s0 addressing as read-only, rather than
-loading it in the prologue for each function. The runtime system is
-responsible for initializing this register with an appropriate value
-before execution begins.
-.IP "\fB\-mprioritize\-restricted\-insns=\fR\fIpriority\fR" 4
-.IX Item "-mprioritize-restricted-insns=priority"
-This option controls the priority that is assigned to
-dispatch-slot restricted instructions during the second scheduling
-pass. The argument \fIpriority\fR takes the value \fB0\fR, \fB1\fR,
-or \fB2\fR to assign no, highest, or second-highest (respectively)
-priority to dispatch-slot restricted
-instructions.
-.IP "\fB\-msched\-costly\-dep=\fR\fIdependence_type\fR" 4
-.IX Item "-msched-costly-dep=dependence_type"
-This option controls which dependences are considered costly
-by the target during instruction scheduling. The argument
-\&\fIdependence_type\fR takes one of the following values:
-.RS 4
-.IP "\fBno\fR" 4
-.IX Item "no"
-No dependence is costly.
-.IP "\fBall\fR" 4
-.IX Item "all"
-All dependences are costly.
-.IP "\fBtrue_store_to_load\fR" 4
-.IX Item "true_store_to_load"
-A true dependence from store to load is costly.
-.IP "\fBstore_to_load\fR" 4
-.IX Item "store_to_load"
-Any dependence from store to load is costly.
-.IP "\fInumber\fR" 4
-.IX Item "number"
-Any dependence for which the latency is greater than or equal to
-\&\fInumber\fR is costly.
-.RE
-.RS 4
-.RE
-.IP "\fB\-minsert\-sched\-nops=\fR\fIscheme\fR" 4
-.IX Item "-minsert-sched-nops=scheme"
-This option controls which \s-1NOP\s0 insertion scheme is used during
-the second scheduling pass. The argument \fIscheme\fR takes one of the
-following values:
-.RS 4
-.IP "\fBno\fR" 4
-.IX Item "no"
-Don't insert NOPs.
-.IP "\fBpad\fR" 4
-.IX Item "pad"
-Pad with NOPs any dispatch group that has vacant issue slots,
-according to the scheduler's grouping.
-.IP "\fBregroup_exact\fR" 4
-.IX Item "regroup_exact"
-Insert NOPs to force costly dependent insns into
-separate groups. Insert exactly as many NOPs as needed to force an insn
-to a new group, according to the estimated processor grouping.
-.IP "\fInumber\fR" 4
-.IX Item "number"
-Insert NOPs to force costly dependent insns into
-separate groups. Insert \fInumber\fR NOPs to force an insn to a new group.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mcall\-sysv\fR" 4
-.IX Item "-mcall-sysv"
-On System V.4 and embedded PowerPC systems compile code using calling
-conventions that adhere to the March 1995 draft of the System V
-Application Binary Interface, PowerPC processor supplement. This is the
-default unless you configured \s-1GCC\s0 using \fBpowerpc\-*\-eabiaix\fR.
-.IP "\fB\-mcall\-sysv\-eabi\fR" 4
-.IX Item "-mcall-sysv-eabi"
-.PD 0
-.IP "\fB\-mcall\-eabi\fR" 4
-.IX Item "-mcall-eabi"
-.PD
-Specify both \fB\-mcall\-sysv\fR and \fB\-meabi\fR options.
-.IP "\fB\-mcall\-sysv\-noeabi\fR" 4
-.IX Item "-mcall-sysv-noeabi"
-Specify both \fB\-mcall\-sysv\fR and \fB\-mno\-eabi\fR options.
-.IP "\fB\-mcall\-aixdesc\fR" 4
-.IX Item "-mcall-aixdesc"
-On System V.4 and embedded PowerPC systems compile code for the \s-1AIX\s0
-operating system.
-.IP "\fB\-mcall\-linux\fR" 4
-.IX Item "-mcall-linux"
-On System V.4 and embedded PowerPC systems compile code for the
-Linux-based \s-1GNU\s0 system.
-.IP "\fB\-mcall\-freebsd\fR" 4
-.IX Item "-mcall-freebsd"
-On System V.4 and embedded PowerPC systems compile code for the
-FreeBSD operating system.
-.IP "\fB\-mcall\-netbsd\fR" 4
-.IX Item "-mcall-netbsd"
-On System V.4 and embedded PowerPC systems compile code for the
-NetBSD operating system.
-.IP "\fB\-mcall\-openbsd\fR" 4
-.IX Item "-mcall-openbsd"
-On System V.4 and embedded PowerPC systems compile code for the
-OpenBSD operating system.
-.IP "\fB\-maix\-struct\-return\fR" 4
-.IX Item "-maix-struct-return"
-Return all structures in memory (as specified by the \s-1AIX ABI\s0).
-.IP "\fB\-msvr4\-struct\-return\fR" 4
-.IX Item "-msvr4-struct-return"
-Return structures smaller than 8 bytes in registers (as specified by the
-\&\s-1SVR4 ABI\s0).
-.IP "\fB\-mabi=\fR\fIabi-type\fR" 4
-.IX Item "-mabi=abi-type"
-Extend the current \s-1ABI\s0 with a particular extension, or remove such extension.
-Valid values are \fIaltivec\fR, \fIno-altivec\fR, \fIspe\fR,
-\&\fIno-spe\fR, \fIibmlongdouble\fR, \fIieeelongdouble\fR,
-\&\fIelfv1\fR, \fIelfv2\fR.
-.IP "\fB\-mabi=spe\fR" 4
-.IX Item "-mabi=spe"
-Extend the current \s-1ABI\s0 with \s-1SPE ABI\s0 extensions. This does not change
-the default \s-1ABI,\s0 instead it adds the \s-1SPE ABI\s0 extensions to the current
-\&\s-1ABI.\s0
-.IP "\fB\-mabi=no\-spe\fR" 4
-.IX Item "-mabi=no-spe"
-Disable Book-E \s-1SPE ABI\s0 extensions for the current \s-1ABI.\s0
-.IP "\fB\-mabi=ibmlongdouble\fR" 4
-.IX Item "-mabi=ibmlongdouble"
-Change the current \s-1ABI\s0 to use \s-1IBM\s0 extended-precision long double.
-This is a PowerPC 32\-bit \s-1SYSV ABI\s0 option.
-.IP "\fB\-mabi=ieeelongdouble\fR" 4
-.IX Item "-mabi=ieeelongdouble"
-Change the current \s-1ABI\s0 to use \s-1IEEE\s0 extended-precision long double.
-This is a PowerPC 32\-bit Linux \s-1ABI\s0 option.
-.IP "\fB\-mabi=elfv1\fR" 4
-.IX Item "-mabi=elfv1"
-Change the current \s-1ABI\s0 to use the ELFv1 \s-1ABI.\s0
-This is the default \s-1ABI\s0 for big-endian PowerPC 64\-bit Linux.
-Overriding the default \s-1ABI\s0 requires special system support and is
-likely to fail in spectacular ways.
-.IP "\fB\-mabi=elfv2\fR" 4
-.IX Item "-mabi=elfv2"
-Change the current \s-1ABI\s0 to use the ELFv2 \s-1ABI.\s0
-This is the default \s-1ABI\s0 for little-endian PowerPC 64\-bit Linux.
-Overriding the default \s-1ABI\s0 requires special system support and is
-likely to fail in spectacular ways.
-.IP "\fB\-mprototype\fR" 4
-.IX Item "-mprototype"
-.PD 0
-.IP "\fB\-mno\-prototype\fR" 4
-.IX Item "-mno-prototype"
-.PD
-On System V.4 and embedded PowerPC systems assume that all calls to
-variable argument functions are properly prototyped. Otherwise, the
-compiler must insert an instruction before every non-prototyped call to
-set or clear bit 6 of the condition code register (\fI\s-1CR\s0\fR) to
-indicate whether floating-point values are passed in the floating-point
-registers in case the function takes variable arguments. With
-\&\fB\-mprototype\fR, only calls to prototyped variable argument functions
-set or clear the bit.
-.IP "\fB\-msim\fR" 4
-.IX Item "-msim"
-On embedded PowerPC systems, assume that the startup module is called
-\&\fIsim\-crt0.o\fR and that the standard C libraries are \fIlibsim.a\fR and
-\&\fIlibc.a\fR. This is the default for \fBpowerpc\-*\-eabisim\fR
-configurations.
-.IP "\fB\-mmvme\fR" 4
-.IX Item "-mmvme"
-On embedded PowerPC systems, assume that the startup module is called
-\&\fIcrt0.o\fR and the standard C libraries are \fIlibmvme.a\fR and
-\&\fIlibc.a\fR.
-.IP "\fB\-mads\fR" 4
-.IX Item "-mads"
-On embedded PowerPC systems, assume that the startup module is called
-\&\fIcrt0.o\fR and the standard C libraries are \fIlibads.a\fR and
-\&\fIlibc.a\fR.
-.IP "\fB\-myellowknife\fR" 4
-.IX Item "-myellowknife"
-On embedded PowerPC systems, assume that the startup module is called
-\&\fIcrt0.o\fR and the standard C libraries are \fIlibyk.a\fR and
-\&\fIlibc.a\fR.
-.IP "\fB\-mvxworks\fR" 4
-.IX Item "-mvxworks"
-On System V.4 and embedded PowerPC systems, specify that you are
-compiling for a VxWorks system.
-.IP "\fB\-memb\fR" 4
-.IX Item "-memb"
-On embedded PowerPC systems, set the \fI\s-1PPC_EMB\s0\fR bit in the \s-1ELF\s0 flags
-header to indicate that \fBeabi\fR extended relocations are used.
-.IP "\fB\-meabi\fR" 4
-.IX Item "-meabi"
-.PD 0
-.IP "\fB\-mno\-eabi\fR" 4
-.IX Item "-mno-eabi"
-.PD
-On System V.4 and embedded PowerPC systems do (do not) adhere to the
-Embedded Applications Binary Interface (\s-1EABI\s0), which is a set of
-modifications to the System V.4 specifications. Selecting \fB\-meabi\fR
-means that the stack is aligned to an 8\-byte boundary, a function
-\&\f(CW\*(C`_\|_eabi\*(C'\fR is called from \f(CW\*(C`main\*(C'\fR to set up the \s-1EABI\s0
-environment, and the \fB\-msdata\fR option can use both \f(CW\*(C`r2\*(C'\fR and
-\&\f(CW\*(C`r13\*(C'\fR to point to two separate small data areas. Selecting
-\&\fB\-mno\-eabi\fR means that the stack is aligned to a 16\-byte boundary,
-no \s-1EABI\s0 initialization function is called from \f(CW\*(C`main\*(C'\fR, and the
-\&\fB\-msdata\fR option only uses \f(CW\*(C`r13\*(C'\fR to point to a single
-small data area. The \fB\-meabi\fR option is on by default if you
-configured \s-1GCC\s0 using one of the \fBpowerpc*\-*\-eabi*\fR options.
-.IP "\fB\-msdata=eabi\fR" 4
-.IX Item "-msdata=eabi"
-On System V.4 and embedded PowerPC systems, put small initialized
-\&\f(CW\*(C`const\*(C'\fR global and static data in the \fB.sdata2\fR section, which
-is pointed to by register \f(CW\*(C`r2\*(C'\fR. Put small initialized
-non\-\f(CW\*(C`const\*(C'\fR global and static data in the \fB.sdata\fR section,
-which is pointed to by register \f(CW\*(C`r13\*(C'\fR. Put small uninitialized
-global and static data in the \fB.sbss\fR section, which is adjacent to
-the \fB.sdata\fR section. The \fB\-msdata=eabi\fR option is
-incompatible with the \fB\-mrelocatable\fR option. The
-\&\fB\-msdata=eabi\fR option also sets the \fB\-memb\fR option.
-.IP "\fB\-msdata=sysv\fR" 4
-.IX Item "-msdata=sysv"
-On System V.4 and embedded PowerPC systems, put small global and static
-data in the \fB.sdata\fR section, which is pointed to by register
-\&\f(CW\*(C`r13\*(C'\fR. Put small uninitialized global and static data in the
-\&\fB.sbss\fR section, which is adjacent to the \fB.sdata\fR section.
-The \fB\-msdata=sysv\fR option is incompatible with the
-\&\fB\-mrelocatable\fR option.
-.IP "\fB\-msdata=default\fR" 4
-.IX Item "-msdata=default"
-.PD 0
-.IP "\fB\-msdata\fR" 4
-.IX Item "-msdata"
-.PD
-On System V.4 and embedded PowerPC systems, if \fB\-meabi\fR is used,
-compile code the same as \fB\-msdata=eabi\fR, otherwise compile code the
-same as \fB\-msdata=sysv\fR.
-.IP "\fB\-msdata=data\fR" 4
-.IX Item "-msdata=data"
-On System V.4 and embedded PowerPC systems, put small global
-data in the \fB.sdata\fR section. Put small uninitialized global
-data in the \fB.sbss\fR section. Do not use register \f(CW\*(C`r13\*(C'\fR
-to address small data however. This is the default behavior unless
-other \fB\-msdata\fR options are used.
-.IP "\fB\-msdata=none\fR" 4
-.IX Item "-msdata=none"
-.PD 0
-.IP "\fB\-mno\-sdata\fR" 4
-.IX Item "-mno-sdata"
-.PD
-On embedded PowerPC systems, put all initialized global and static data
-in the \fB.data\fR section, and all uninitialized data in the
-\&\fB.bss\fR section.
-.IP "\fB\-mblock\-move\-inline\-limit=\fR\fInum\fR" 4
-.IX Item "-mblock-move-inline-limit=num"
-Inline all block moves (such as calls to \f(CW\*(C`memcpy\*(C'\fR or structure
-copies) less than or equal to \fInum\fR bytes. The minimum value for
-\&\fInum\fR is 32 bytes on 32\-bit targets and 64 bytes on 64\-bit
-targets. The default value is target-specific.
-.IP "\fB\-G\fR \fInum\fR" 4
-.IX Item "-G num"
-On embedded PowerPC systems, put global and static items less than or
-equal to \fInum\fR bytes into the small data or \s-1BSS\s0 sections instead of
-the normal data or \s-1BSS\s0 section. By default, \fInum\fR is 8. The
-\&\fB\-G\fR \fInum\fR switch is also passed to the linker.
-All modules should be compiled with the same \fB\-G\fR \fInum\fR value.
-.IP "\fB\-mregnames\fR" 4
-.IX Item "-mregnames"
-.PD 0
-.IP "\fB\-mno\-regnames\fR" 4
-.IX Item "-mno-regnames"
-.PD
-On System V.4 and embedded PowerPC systems do (do not) emit register
-names in the assembly language output using symbolic forms.
-.IP "\fB\-mlongcall\fR" 4
-.IX Item "-mlongcall"
-.PD 0
-.IP "\fB\-mno\-longcall\fR" 4
-.IX Item "-mno-longcall"
-.PD
-By default assume that all calls are far away so that a longer and more
-expensive calling sequence is required. This is required for calls
-farther than 32 megabytes (33,554,432 bytes) from the current location.
-A short call is generated if the compiler knows
-the call cannot be that far away. This setting can be overridden by
-the \f(CW\*(C`shortcall\*(C'\fR function attribute, or by \f(CW\*(C`#pragma
-longcall(0)\*(C'\fR.
-.Sp
-Some linkers are capable of detecting out-of-range calls and generating
-glue code on the fly. On these systems, long calls are unnecessary and
-generate slower code. As of this writing, the \s-1AIX\s0 linker can do this,
-as can the \s-1GNU\s0 linker for PowerPC/64. It is planned to add this feature
-to the \s-1GNU\s0 linker for 32\-bit PowerPC systems as well.
-.Sp
-On Darwin/PPC systems, \f(CW\*(C`#pragma longcall\*(C'\fR generates \f(CW\*(C`jbsr
-callee, L42\*(C'\fR, plus a \fIbranch island\fR (glue code). The two target
-addresses represent the callee and the branch island. The
-Darwin/PPC linker prefers the first address and generates a \f(CW\*(C`bl
-callee\*(C'\fR if the \s-1PPC \s0\f(CW\*(C`bl\*(C'\fR instruction reaches the callee directly;
-otherwise, the linker generates \f(CW\*(C`bl L42\*(C'\fR to call the branch
-island. The branch island is appended to the body of the
-calling function; it computes the full 32\-bit address of the callee
-and jumps to it.
-.Sp
-On Mach-O (Darwin) systems, this option directs the compiler emit to
-the glue for every direct call, and the Darwin linker decides whether
-to use or discard it.
-.Sp
-In the future, \s-1GCC\s0 may ignore all longcall specifications
-when the linker is known to generate glue.
-.IP "\fB\-mtls\-markers\fR" 4
-.IX Item "-mtls-markers"
-.PD 0
-.IP "\fB\-mno\-tls\-markers\fR" 4
-.IX Item "-mno-tls-markers"
-.PD
-Mark (do not mark) calls to \f(CW\*(C`_\|_tls_get_addr\*(C'\fR with a relocation
-specifying the function argument. The relocation allows the linker to
-reliably associate function call with argument setup instructions for
-\&\s-1TLS\s0 optimization, which in turn allows \s-1GCC\s0 to better schedule the
-sequence.
-.IP "\fB\-pthread\fR" 4
-.IX Item "-pthread"
-Adds support for multithreading with the \fIpthreads\fR library.
-This option sets flags for both the preprocessor and linker.
-.IP "\fB\-mrecip\fR" 4
-.IX Item "-mrecip"
-.PD 0
-.IP "\fB\-mno\-recip\fR" 4
-.IX Item "-mno-recip"
-.PD
-This option enables use of the reciprocal estimate and
-reciprocal square root estimate instructions with additional
-Newton-Raphson steps to increase precision instead of doing a divide or
-square root and divide for floating-point arguments. You should use
-the \fB\-ffast\-math\fR option when using \fB\-mrecip\fR (or at
-least \fB\-funsafe\-math\-optimizations\fR,
-\&\fB\-finite\-math\-only\fR, \fB\-freciprocal\-math\fR and
-\&\fB\-fno\-trapping\-math\fR). Note that while the throughput of the
-sequence is generally higher than the throughput of the non-reciprocal
-instruction, the precision of the sequence can be decreased by up to 2
-ulp (i.e. the inverse of 1.0 equals 0.99999994) for reciprocal square
-roots.
-.IP "\fB\-mrecip=\fR\fIopt\fR" 4
-.IX Item "-mrecip=opt"
-This option controls which reciprocal estimate instructions
-may be used. \fIopt\fR is a comma-separated list of options, which may
-be preceded by a \f(CW\*(C`!\*(C'\fR to invert the option:
-\&\f(CW\*(C`all\*(C'\fR: enable all estimate instructions,
-\&\f(CW\*(C`default\*(C'\fR: enable the default instructions, equivalent to \fB\-mrecip\fR,
-\&\f(CW\*(C`none\*(C'\fR: disable all estimate instructions, equivalent to \fB\-mno\-recip\fR;
-\&\f(CW\*(C`div\*(C'\fR: enable the reciprocal approximation instructions for both single and double precision;
-\&\f(CW\*(C`divf\*(C'\fR: enable the single-precision reciprocal approximation instructions;
-\&\f(CW\*(C`divd\*(C'\fR: enable the double-precision reciprocal approximation instructions;
-\&\f(CW\*(C`rsqrt\*(C'\fR: enable the reciprocal square root approximation instructions for both single and double precision;
-\&\f(CW\*(C`rsqrtf\*(C'\fR: enable the single-precision reciprocal square root approximation instructions;
-\&\f(CW\*(C`rsqrtd\*(C'\fR: enable the double-precision reciprocal square root approximation instructions;
-.Sp
-So, for example, \fB\-mrecip=all,!rsqrtd\fR enables
-all of the reciprocal estimate instructions, except for the
-\&\f(CW\*(C`FRSQRTE\*(C'\fR, \f(CW\*(C`XSRSQRTEDP\*(C'\fR, and \f(CW\*(C`XVRSQRTEDP\*(C'\fR instructions
-which handle the double-precision reciprocal square root calculations.
-.IP "\fB\-mrecip\-precision\fR" 4
-.IX Item "-mrecip-precision"
-.PD 0
-.IP "\fB\-mno\-recip\-precision\fR" 4
-.IX Item "-mno-recip-precision"
-.PD
-Assume (do not assume) that the reciprocal estimate instructions
-provide higher-precision estimates than is mandated by the PowerPC
-\&\s-1ABI. \s0 Selecting \fB\-mcpu=power6\fR, \fB\-mcpu=power7\fR or
-\&\fB\-mcpu=power8\fR automatically selects \fB\-mrecip\-precision\fR.
-The double-precision square root estimate instructions are not generated by
-default on low-precision machines, since they do not provide an
-estimate that converges after three steps.
-.IP "\fB\-mveclibabi=\fR\fItype\fR" 4
-.IX Item "-mveclibabi=type"
-Specifies the \s-1ABI\s0 type to use for vectorizing intrinsics using an
-external library. The only type supported at present is \f(CW\*(C`mass\*(C'\fR,
-which specifies to use \s-1IBM\s0's Mathematical Acceleration Subsystem
-(\s-1MASS\s0) libraries for vectorizing intrinsics using external libraries.
-\&\s-1GCC\s0 currently emits calls to \f(CW\*(C`acosd2\*(C'\fR, \f(CW\*(C`acosf4\*(C'\fR,
-\&\f(CW\*(C`acoshd2\*(C'\fR, \f(CW\*(C`acoshf4\*(C'\fR, \f(CW\*(C`asind2\*(C'\fR, \f(CW\*(C`asinf4\*(C'\fR,
-\&\f(CW\*(C`asinhd2\*(C'\fR, \f(CW\*(C`asinhf4\*(C'\fR, \f(CW\*(C`atan2d2\*(C'\fR, \f(CW\*(C`atan2f4\*(C'\fR,
-\&\f(CW\*(C`atand2\*(C'\fR, \f(CW\*(C`atanf4\*(C'\fR, \f(CW\*(C`atanhd2\*(C'\fR, \f(CW\*(C`atanhf4\*(C'\fR,
-\&\f(CW\*(C`cbrtd2\*(C'\fR, \f(CW\*(C`cbrtf4\*(C'\fR, \f(CW\*(C`cosd2\*(C'\fR, \f(CW\*(C`cosf4\*(C'\fR,
-\&\f(CW\*(C`coshd2\*(C'\fR, \f(CW\*(C`coshf4\*(C'\fR, \f(CW\*(C`erfcd2\*(C'\fR, \f(CW\*(C`erfcf4\*(C'\fR,
-\&\f(CW\*(C`erfd2\*(C'\fR, \f(CW\*(C`erff4\*(C'\fR, \f(CW\*(C`exp2d2\*(C'\fR, \f(CW\*(C`exp2f4\*(C'\fR,
-\&\f(CW\*(C`expd2\*(C'\fR, \f(CW\*(C`expf4\*(C'\fR, \f(CW\*(C`expm1d2\*(C'\fR, \f(CW\*(C`expm1f4\*(C'\fR,
-\&\f(CW\*(C`hypotd2\*(C'\fR, \f(CW\*(C`hypotf4\*(C'\fR, \f(CW\*(C`lgammad2\*(C'\fR, \f(CW\*(C`lgammaf4\*(C'\fR,
-\&\f(CW\*(C`log10d2\*(C'\fR, \f(CW\*(C`log10f4\*(C'\fR, \f(CW\*(C`log1pd2\*(C'\fR, \f(CW\*(C`log1pf4\*(C'\fR,
-\&\f(CW\*(C`log2d2\*(C'\fR, \f(CW\*(C`log2f4\*(C'\fR, \f(CW\*(C`logd2\*(C'\fR, \f(CW\*(C`logf4\*(C'\fR,
-\&\f(CW\*(C`powd2\*(C'\fR, \f(CW\*(C`powf4\*(C'\fR, \f(CW\*(C`sind2\*(C'\fR, \f(CW\*(C`sinf4\*(C'\fR, \f(CW\*(C`sinhd2\*(C'\fR,
-\&\f(CW\*(C`sinhf4\*(C'\fR, \f(CW\*(C`sqrtd2\*(C'\fR, \f(CW\*(C`sqrtf4\*(C'\fR, \f(CW\*(C`tand2\*(C'\fR,
-\&\f(CW\*(C`tanf4\*(C'\fR, \f(CW\*(C`tanhd2\*(C'\fR, and \f(CW\*(C`tanhf4\*(C'\fR when generating code
-for power7. Both \fB\-ftree\-vectorize\fR and
-\&\fB\-funsafe\-math\-optimizations\fR must also be enabled. The \s-1MASS\s0
-libraries must be specified at link time.
-.IP "\fB\-mfriz\fR" 4
-.IX Item "-mfriz"
-.PD 0
-.IP "\fB\-mno\-friz\fR" 4
-.IX Item "-mno-friz"
-.PD
-Generate (do not generate) the \f(CW\*(C`friz\*(C'\fR instruction when the
-\&\fB\-funsafe\-math\-optimizations\fR option is used to optimize
-rounding of floating-point values to 64\-bit integer and back to floating
-point. The \f(CW\*(C`friz\*(C'\fR instruction does not return the same value if
-the floating-point number is too large to fit in an integer.
-.IP "\fB\-mpointers\-to\-nested\-functions\fR" 4
-.IX Item "-mpointers-to-nested-functions"
-.PD 0
-.IP "\fB\-mno\-pointers\-to\-nested\-functions\fR" 4
-.IX Item "-mno-pointers-to-nested-functions"
-.PD
-Generate (do not generate) code to load up the static chain register
-(\fIr11\fR) when calling through a pointer on \s-1AIX\s0 and 64\-bit Linux
-systems where a function pointer points to a 3\-word descriptor giving
-the function address, \s-1TOC\s0 value to be loaded in register \fIr2\fR, and
-static chain value to be loaded in register \fIr11\fR. The
-\&\fB\-mpointers\-to\-nested\-functions\fR is on by default. You cannot
-call through pointers to nested functions or pointers
-to functions compiled in other languages that use the static chain if
-you use the \fB\-mno\-pointers\-to\-nested\-functions\fR.
-.IP "\fB\-msave\-toc\-indirect\fR" 4
-.IX Item "-msave-toc-indirect"
-.PD 0
-.IP "\fB\-mno\-save\-toc\-indirect\fR" 4
-.IX Item "-mno-save-toc-indirect"
-.PD
-Generate (do not generate) code to save the \s-1TOC\s0 value in the reserved
-stack location in the function prologue if the function calls through
-a pointer on \s-1AIX\s0 and 64\-bit Linux systems. If the \s-1TOC\s0 value is not
-saved in the prologue, it is saved just before the call through the
-pointer. The \fB\-mno\-save\-toc\-indirect\fR option is the default.
-.IP "\fB\-mcompat\-align\-parm\fR" 4
-.IX Item "-mcompat-align-parm"
-.PD 0
-.IP "\fB\-mno\-compat\-align\-parm\fR" 4
-.IX Item "-mno-compat-align-parm"
-.PD
-Generate (do not generate) code to pass structure parameters with a
-maximum alignment of 64 bits, for compatibility with older versions
-of \s-1GCC.\s0
-.Sp
-Older versions of \s-1GCC \s0(prior to 4.9.0) incorrectly did not align a
-structure parameter on a 128\-bit boundary when that structure contained
-a member requiring 128\-bit alignment. This is corrected in more
-recent versions of \s-1GCC. \s0 This option may be used to generate code
-that is compatible with functions compiled with older versions of
-\&\s-1GCC.\s0
-.Sp
-The \fB\-mno\-compat\-align\-parm\fR option is the default.
-.PP
-\fI\s-1RX\s0 Options\fR
-.IX Subsection "RX Options"
-.PP
-These command-line options are defined for \s-1RX\s0 targets:
-.IP "\fB\-m64bit\-doubles\fR" 4
-.IX Item "-m64bit-doubles"
-.PD 0
-.IP "\fB\-m32bit\-doubles\fR" 4
-.IX Item "-m32bit-doubles"
-.PD
-Make the \f(CW\*(C`double\*(C'\fR data type be 64 bits (\fB\-m64bit\-doubles\fR)
-or 32 bits (\fB\-m32bit\-doubles\fR) in size. The default is
-\&\fB\-m32bit\-doubles\fR. \fINote\fR \s-1RX\s0 floating-point hardware only
-works on 32\-bit values, which is why the default is
-\&\fB\-m32bit\-doubles\fR.
-.IP "\fB\-fpu\fR" 4
-.IX Item "-fpu"
-.PD 0
-.IP "\fB\-nofpu\fR" 4
-.IX Item "-nofpu"
-.PD
-Enables (\fB\-fpu\fR) or disables (\fB\-nofpu\fR) the use of \s-1RX\s0
-floating-point hardware. The default is enabled for the \fI\s-1RX600\s0\fR
-series and disabled for the \fI\s-1RX200\s0\fR series.
-.Sp
-Floating-point instructions are only generated for 32\-bit floating-point
-values, however, so the \s-1FPU\s0 hardware is not used for doubles if the
-\&\fB\-m64bit\-doubles\fR option is used.
-.Sp
-\&\fINote\fR If the \fB\-fpu\fR option is enabled then
-\&\fB\-funsafe\-math\-optimizations\fR is also enabled automatically.
-This is because the \s-1RX FPU\s0 instructions are themselves unsafe.
-.IP "\fB\-mcpu=\fR\fIname\fR" 4
-.IX Item "-mcpu=name"
-Selects the type of \s-1RX CPU\s0 to be targeted. Currently three types are
-supported, the generic \fI\s-1RX600\s0\fR and \fI\s-1RX200\s0\fR series hardware and
-the specific \fI\s-1RX610\s0\fR \s-1CPU. \s0 The default is \fI\s-1RX600\s0\fR.
-.Sp
-The only difference between \fI\s-1RX600\s0\fR and \fI\s-1RX610\s0\fR is that the
-\&\fI\s-1RX610\s0\fR does not support the \f(CW\*(C`MVTIPL\*(C'\fR instruction.
-.Sp
-The \fI\s-1RX200\s0\fR series does not have a hardware floating-point unit
-and so \fB\-nofpu\fR is enabled by default when this type is
-selected.
-.IP "\fB\-mbig\-endian\-data\fR" 4
-.IX Item "-mbig-endian-data"
-.PD 0
-.IP "\fB\-mlittle\-endian\-data\fR" 4
-.IX Item "-mlittle-endian-data"
-.PD
-Store data (but not code) in the big-endian format. The default is
-\&\fB\-mlittle\-endian\-data\fR, i.e. to store data in the little-endian
-format.
-.IP "\fB\-msmall\-data\-limit=\fR\fIN\fR" 4
-.IX Item "-msmall-data-limit=N"
-Specifies the maximum size in bytes of global and static variables
-which can be placed into the small data area. Using the small data
-area can lead to smaller and faster code, but the size of area is
-limited and it is up to the programmer to ensure that the area does
-not overflow. Also when the small data area is used one of the \s-1RX\s0's
-registers (usually \f(CW\*(C`r13\*(C'\fR) is reserved for use pointing to this
-area, so it is no longer available for use by the compiler. This
-could result in slower and/or larger code if variables are pushed onto
-the stack instead of being held in this register.
-.Sp
-Note, common variables (variables that have not been initialized) and
-constants are not placed into the small data area as they are assigned
-to other sections in the output executable.
-.Sp
-The default value is zero, which disables this feature. Note, this
-feature is not enabled by default with higher optimization levels
-(\fB\-O2\fR etc) because of the potentially detrimental effects of
-reserving a register. It is up to the programmer to experiment and
-discover whether this feature is of benefit to their program. See the
-description of the \fB\-mpid\fR option for a description of how the
-actual register to hold the small data area pointer is chosen.
-.IP "\fB\-msim\fR" 4
-.IX Item "-msim"
-.PD 0
-.IP "\fB\-mno\-sim\fR" 4
-.IX Item "-mno-sim"
-.PD
-Use the simulator runtime. The default is to use the libgloss
-board-specific runtime.
-.IP "\fB\-mas100\-syntax\fR" 4
-.IX Item "-mas100-syntax"
-.PD 0
-.IP "\fB\-mno\-as100\-syntax\fR" 4
-.IX Item "-mno-as100-syntax"
-.PD
-When generating assembler output use a syntax that is compatible with
-Renesas's \s-1AS100\s0 assembler. This syntax can also be handled by the \s-1GAS\s0
-assembler, but it has some restrictions so it is not generated by default.
-.IP "\fB\-mmax\-constant\-size=\fR\fIN\fR" 4
-.IX Item "-mmax-constant-size=N"
-Specifies the maximum size, in bytes, of a constant that can be used as
-an operand in a \s-1RX\s0 instruction. Although the \s-1RX\s0 instruction set does
-allow constants of up to 4 bytes in length to be used in instructions,
-a longer value equates to a longer instruction. Thus in some
-circumstances it can be beneficial to restrict the size of constants
-that are used in instructions. Constants that are too big are instead
-placed into a constant pool and referenced via register indirection.
-.Sp
-The value \fIN\fR can be between 0 and 4. A value of 0 (the default)
-or 4 means that constants of any size are allowed.
-.IP "\fB\-mrelax\fR" 4
-.IX Item "-mrelax"
-Enable linker relaxation. Linker relaxation is a process whereby the
-linker attempts to reduce the size of a program by finding shorter
-versions of various instructions. Disabled by default.
-.IP "\fB\-mint\-register=\fR\fIN\fR" 4
-.IX Item "-mint-register=N"
-Specify the number of registers to reserve for fast interrupt handler
-functions. The value \fIN\fR can be between 0 and 4. A value of 1
-means that register \f(CW\*(C`r13\*(C'\fR is reserved for the exclusive use
-of fast interrupt handlers. A value of 2 reserves \f(CW\*(C`r13\*(C'\fR and
-\&\f(CW\*(C`r12\*(C'\fR. A value of 3 reserves \f(CW\*(C`r13\*(C'\fR, \f(CW\*(C`r12\*(C'\fR and
-\&\f(CW\*(C`r11\*(C'\fR, and a value of 4 reserves \f(CW\*(C`r13\*(C'\fR through \f(CW\*(C`r10\*(C'\fR.
-A value of 0, the default, does not reserve any registers.
-.IP "\fB\-msave\-acc\-in\-interrupts\fR" 4
-.IX Item "-msave-acc-in-interrupts"
-Specifies that interrupt handler functions should preserve the
-accumulator register. This is only necessary if normal code might use
-the accumulator register, for example because it performs 64\-bit
-multiplications. The default is to ignore the accumulator as this
-makes the interrupt handlers faster.
-.IP "\fB\-mpid\fR" 4
-.IX Item "-mpid"
-.PD 0
-.IP "\fB\-mno\-pid\fR" 4
-.IX Item "-mno-pid"
-.PD
-Enables the generation of position independent data. When enabled any
-access to constant data is done via an offset from a base address
-held in a register. This allows the location of constant data to be
-determined at run time without requiring the executable to be
-relocated, which is a benefit to embedded applications with tight
-memory constraints. Data that can be modified is not affected by this
-option.
-.Sp
-Note, using this feature reserves a register, usually \f(CW\*(C`r13\*(C'\fR, for
-the constant data base address. This can result in slower and/or
-larger code, especially in complicated functions.
-.Sp
-The actual register chosen to hold the constant data base address
-depends upon whether the \fB\-msmall\-data\-limit\fR and/or the
-\&\fB\-mint\-register\fR command-line options are enabled. Starting
-with register \f(CW\*(C`r13\*(C'\fR and proceeding downwards, registers are
-allocated first to satisfy the requirements of \fB\-mint\-register\fR,
-then \fB\-mpid\fR and finally \fB\-msmall\-data\-limit\fR. Thus it
-is possible for the small data area register to be \f(CW\*(C`r8\*(C'\fR if both
-\&\fB\-mint\-register=4\fR and \fB\-mpid\fR are specified on the
-command line.
-.Sp
-By default this feature is not enabled. The default can be restored
-via the \fB\-mno\-pid\fR command-line option.
-.IP "\fB\-mno\-warn\-multiple\-fast\-interrupts\fR" 4
-.IX Item "-mno-warn-multiple-fast-interrupts"
-.PD 0
-.IP "\fB\-mwarn\-multiple\-fast\-interrupts\fR" 4
-.IX Item "-mwarn-multiple-fast-interrupts"
-.PD
-Prevents \s-1GCC\s0 from issuing a warning message if it finds more than one
-fast interrupt handler when it is compiling a file. The default is to
-issue a warning for each extra fast interrupt handler found, as the \s-1RX\s0
-only supports one such interrupt.
-.PP
-\&\fINote:\fR The generic \s-1GCC\s0 command-line option \fB\-ffixed\-\fR\fIreg\fR
-has special significance to the \s-1RX\s0 port when used with the
-\&\f(CW\*(C`interrupt\*(C'\fR function attribute. This attribute indicates a
-function intended to process fast interrupts. \s-1GCC\s0 ensures
-that it only uses the registers \f(CW\*(C`r10\*(C'\fR, \f(CW\*(C`r11\*(C'\fR, \f(CW\*(C`r12\*(C'\fR
-and/or \f(CW\*(C`r13\*(C'\fR and only provided that the normal use of the
-corresponding registers have been restricted via the
-\&\fB\-ffixed\-\fR\fIreg\fR or \fB\-mint\-register\fR command-line
-options.
-.PP
-\fIS/390 and zSeries Options\fR
-.IX Subsection "S/390 and zSeries Options"
-.PP
-These are the \fB\-m\fR options defined for the S/390 and zSeries architecture.
-.IP "\fB\-mhard\-float\fR" 4
-.IX Item "-mhard-float"
-.PD 0
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-.PD
-Use (do not use) the hardware floating-point instructions and registers
-for floating-point operations. When \fB\-msoft\-float\fR is specified,
-functions in \fIlibgcc.a\fR are used to perform floating-point
-operations. When \fB\-mhard\-float\fR is specified, the compiler
-generates \s-1IEEE\s0 floating-point instructions. This is the default.
-.IP "\fB\-mhard\-dfp\fR" 4
-.IX Item "-mhard-dfp"
-.PD 0
-.IP "\fB\-mno\-hard\-dfp\fR" 4
-.IX Item "-mno-hard-dfp"
-.PD
-Use (do not use) the hardware decimal-floating-point instructions for
-decimal-floating-point operations. When \fB\-mno\-hard\-dfp\fR is
-specified, functions in \fIlibgcc.a\fR are used to perform
-decimal-floating-point operations. When \fB\-mhard\-dfp\fR is
-specified, the compiler generates decimal-floating-point hardware
-instructions. This is the default for \fB\-march=z9\-ec\fR or higher.
-.IP "\fB\-mlong\-double\-64\fR" 4
-.IX Item "-mlong-double-64"
-.PD 0
-.IP "\fB\-mlong\-double\-128\fR" 4
-.IX Item "-mlong-double-128"
-.PD
-These switches control the size of \f(CW\*(C`long double\*(C'\fR type. A size
-of 64 bits makes the \f(CW\*(C`long double\*(C'\fR type equivalent to the \f(CW\*(C`double\*(C'\fR
-type. This is the default.
-.IP "\fB\-mbackchain\fR" 4
-.IX Item "-mbackchain"
-.PD 0
-.IP "\fB\-mno\-backchain\fR" 4
-.IX Item "-mno-backchain"
-.PD
-Store (do not store) the address of the caller's frame as backchain pointer
-into the callee's stack frame.
-A backchain may be needed to allow debugging using tools that do not understand
-\&\s-1DWARF 2\s0 call frame information.
-When \fB\-mno\-packed\-stack\fR is in effect, the backchain pointer is stored
-at the bottom of the stack frame; when \fB\-mpacked\-stack\fR is in effect,
-the backchain is placed into the topmost word of the 96/160 byte register
-save area.
-.Sp
-In general, code compiled with \fB\-mbackchain\fR is call-compatible with
-code compiled with \fB\-mmo\-backchain\fR; however, use of the backchain
-for debugging purposes usually requires that the whole binary is built with
-\&\fB\-mbackchain\fR. Note that the combination of \fB\-mbackchain\fR,
-\&\fB\-mpacked\-stack\fR and \fB\-mhard\-float\fR is not supported. In order
-to build a linux kernel use \fB\-msoft\-float\fR.
-.Sp
-The default is to not maintain the backchain.
-.IP "\fB\-mpacked\-stack\fR" 4
-.IX Item "-mpacked-stack"
-.PD 0
-.IP "\fB\-mno\-packed\-stack\fR" 4
-.IX Item "-mno-packed-stack"
-.PD
-Use (do not use) the packed stack layout. When \fB\-mno\-packed\-stack\fR is
-specified, the compiler uses the all fields of the 96/160 byte register save
-area only for their default purpose; unused fields still take up stack space.
-When \fB\-mpacked\-stack\fR is specified, register save slots are densely
-packed at the top of the register save area; unused space is reused for other
-purposes, allowing for more efficient use of the available stack space.
-However, when \fB\-mbackchain\fR is also in effect, the topmost word of
-the save area is always used to store the backchain, and the return address
-register is always saved two words below the backchain.
-.Sp
-As long as the stack frame backchain is not used, code generated with
-\&\fB\-mpacked\-stack\fR is call-compatible with code generated with
-\&\fB\-mno\-packed\-stack\fR. Note that some non-FSF releases of \s-1GCC 2.95\s0 for
-S/390 or zSeries generated code that uses the stack frame backchain at run
-time, not just for debugging purposes. Such code is not call-compatible
-with code compiled with \fB\-mpacked\-stack\fR. Also, note that the
-combination of \fB\-mbackchain\fR,
-\&\fB\-mpacked\-stack\fR and \fB\-mhard\-float\fR is not supported. In order
-to build a linux kernel use \fB\-msoft\-float\fR.
-.Sp
-The default is to not use the packed stack layout.
-.IP "\fB\-msmall\-exec\fR" 4
-.IX Item "-msmall-exec"
-.PD 0
-.IP "\fB\-mno\-small\-exec\fR" 4
-.IX Item "-mno-small-exec"
-.PD
-Generate (or do not generate) code using the \f(CW\*(C`bras\*(C'\fR instruction
-to do subroutine calls.
-This only works reliably if the total executable size does not
-exceed 64k. The default is to use the \f(CW\*(C`basr\*(C'\fR instruction instead,
-which does not have this limitation.
-.IP "\fB\-m64\fR" 4
-.IX Item "-m64"
-.PD 0
-.IP "\fB\-m31\fR" 4
-.IX Item "-m31"
-.PD
-When \fB\-m31\fR is specified, generate code compliant to the
-GNU/Linux for S/390 \s-1ABI. \s0 When \fB\-m64\fR is specified, generate
-code compliant to the GNU/Linux for zSeries \s-1ABI. \s0 This allows \s-1GCC\s0 in
-particular to generate 64\-bit instructions. For the \fBs390\fR
-targets, the default is \fB\-m31\fR, while the \fBs390x\fR
-targets default to \fB\-m64\fR.
-.IP "\fB\-mzarch\fR" 4
-.IX Item "-mzarch"
-.PD 0
-.IP "\fB\-mesa\fR" 4
-.IX Item "-mesa"
-.PD
-When \fB\-mzarch\fR is specified, generate code using the
-instructions available on z/Architecture.
-When \fB\-mesa\fR is specified, generate code using the
-instructions available on \s-1ESA/390. \s0 Note that \fB\-mesa\fR is
-not possible with \fB\-m64\fR.
-When generating code compliant to the GNU/Linux for S/390 \s-1ABI,\s0
-the default is \fB\-mesa\fR. When generating code compliant
-to the GNU/Linux for zSeries \s-1ABI,\s0 the default is \fB\-mzarch\fR.
-.IP "\fB\-mmvcle\fR" 4
-.IX Item "-mmvcle"
-.PD 0
-.IP "\fB\-mno\-mvcle\fR" 4
-.IX Item "-mno-mvcle"
-.PD
-Generate (or do not generate) code using the \f(CW\*(C`mvcle\*(C'\fR instruction
-to perform block moves. When \fB\-mno\-mvcle\fR is specified,
-use a \f(CW\*(C`mvc\*(C'\fR loop instead. This is the default unless optimizing for
-size.
-.IP "\fB\-mdebug\fR" 4
-.IX Item "-mdebug"
-.PD 0
-.IP "\fB\-mno\-debug\fR" 4
-.IX Item "-mno-debug"
-.PD
-Print (or do not print) additional debug information when compiling.
-The default is to not print debug information.
-.IP "\fB\-march=\fR\fIcpu-type\fR" 4
-.IX Item "-march=cpu-type"
-Generate code that runs on \fIcpu-type\fR, which is the name of a system
-representing a certain processor type. Possible values for
-\&\fIcpu-type\fR are \fBg5\fR, \fBg6\fR, \fBz900\fR, \fBz990\fR,
-\&\fBz9\-109\fR, \fBz9\-ec\fR and \fBz10\fR.
-When generating code using the instructions available on z/Architecture,
-the default is \fB\-march=z900\fR. Otherwise, the default is
-\&\fB\-march=g5\fR.
-.IP "\fB\-mtune=\fR\fIcpu-type\fR" 4
-.IX Item "-mtune=cpu-type"
-Tune to \fIcpu-type\fR everything applicable about the generated code,
-except for the \s-1ABI\s0 and the set of available instructions.
-The list of \fIcpu-type\fR values is the same as for \fB\-march\fR.
-The default is the value used for \fB\-march\fR.
-.IP "\fB\-mtpf\-trace\fR" 4
-.IX Item "-mtpf-trace"
-.PD 0
-.IP "\fB\-mno\-tpf\-trace\fR" 4
-.IX Item "-mno-tpf-trace"
-.PD
-Generate code that adds (does not add) in \s-1TPF OS\s0 specific branches to trace
-routines in the operating system. This option is off by default, even
-when compiling for the \s-1TPF OS.\s0
-.IP "\fB\-mfused\-madd\fR" 4
-.IX Item "-mfused-madd"
-.PD 0
-.IP "\fB\-mno\-fused\-madd\fR" 4
-.IX Item "-mno-fused-madd"
-.PD
-Generate code that uses (does not use) the floating-point multiply and
-accumulate instructions. These instructions are generated by default if
-hardware floating point is used.
-.IP "\fB\-mwarn\-framesize=\fR\fIframesize\fR" 4
-.IX Item "-mwarn-framesize=framesize"
-Emit a warning if the current function exceeds the given frame size. Because
-this is a compile-time check it doesn't need to be a real problem when the program
-runs. It is intended to identify functions that most probably cause
-a stack overflow. It is useful to be used in an environment with limited stack
-size e.g. the linux kernel.
-.IP "\fB\-mwarn\-dynamicstack\fR" 4
-.IX Item "-mwarn-dynamicstack"
-Emit a warning if the function calls \f(CW\*(C`alloca\*(C'\fR or uses dynamically-sized
-arrays. This is generally a bad idea with a limited stack size.
-.IP "\fB\-mstack\-guard=\fR\fIstack-guard\fR" 4
-.IX Item "-mstack-guard=stack-guard"
-.PD 0
-.IP "\fB\-mstack\-size=\fR\fIstack-size\fR" 4
-.IX Item "-mstack-size=stack-size"
-.PD
-If these options are provided the S/390 back end emits additional instructions in
-the function prologue that trigger a trap if the stack size is \fIstack-guard\fR
-bytes above the \fIstack-size\fR (remember that the stack on S/390 grows downward).
-If the \fIstack-guard\fR option is omitted the smallest power of 2 larger than
-the frame size of the compiled function is chosen.
-These options are intended to be used to help debugging stack overflow problems.
-The additionally emitted code causes only little overhead and hence can also be
-used in production-like systems without greater performance degradation. The given
-values have to be exact powers of 2 and \fIstack-size\fR has to be greater than
-\&\fIstack-guard\fR without exceeding 64k.
-In order to be efficient the extra code makes the assumption that the stack starts
-at an address aligned to the value given by \fIstack-size\fR.
-The \fIstack-guard\fR option can only be used in conjunction with \fIstack-size\fR.
-.IP "\fB\-mhotpatch[=\fR\fIhalfwords\fR\fB]\fR" 4
-.IX Item "-mhotpatch[=halfwords]"
-.PD 0
-.IP "\fB\-mno\-hotpatch\fR" 4
-.IX Item "-mno-hotpatch"
-.PD
-If the hotpatch option is enabled, a \*(L"hot-patching\*(R" function
-prologue is generated for all functions in the compilation unit.
-The funtion label is prepended with the given number of two-byte
-Nop instructions (\fIhalfwords\fR, maximum 1000000) or 12 Nop
-instructions if no argument is present. Functions with a
-hot-patching prologue are never inlined automatically, and a
-hot-patching prologue is never generated for functions functions
-that are explicitly inline.
-.Sp
-This option can be overridden for individual functions with the
-\&\f(CW\*(C`hotpatch\*(C'\fR attribute.
-.PP
-\fIScore Options\fR
-.IX Subsection "Score Options"
-.PP
-These options are defined for Score implementations:
-.IP "\fB\-meb\fR" 4
-.IX Item "-meb"
-Compile code for big-endian mode. This is the default.
-.IP "\fB\-mel\fR" 4
-.IX Item "-mel"
-Compile code for little-endian mode.
-.IP "\fB\-mnhwloop\fR" 4
-.IX Item "-mnhwloop"
-Disable generation of \f(CW\*(C`bcnz\*(C'\fR instructions.
-.IP "\fB\-muls\fR" 4
-.IX Item "-muls"
-Enable generation of unaligned load and store instructions.
-.IP "\fB\-mmac\fR" 4
-.IX Item "-mmac"
-Enable the use of multiply-accumulate instructions. Disabled by default.
-.IP "\fB\-mscore5\fR" 4
-.IX Item "-mscore5"
-Specify the \s-1SCORE5\s0 as the target architecture.
-.IP "\fB\-mscore5u\fR" 4
-.IX Item "-mscore5u"
-Specify the \s-1SCORE5U\s0 of the target architecture.
-.IP "\fB\-mscore7\fR" 4
-.IX Item "-mscore7"
-Specify the \s-1SCORE7\s0 as the target architecture. This is the default.
-.IP "\fB\-mscore7d\fR" 4
-.IX Item "-mscore7d"
-Specify the \s-1SCORE7D\s0 as the target architecture.
-.PP
-\fI\s-1SH\s0 Options\fR
-.IX Subsection "SH Options"
-.PP
-These \fB\-m\fR options are defined for the \s-1SH\s0 implementations:
-.IP "\fB\-m1\fR" 4
-.IX Item "-m1"
-Generate code for the \s-1SH1.\s0
-.IP "\fB\-m2\fR" 4
-.IX Item "-m2"
-Generate code for the \s-1SH2.\s0
-.IP "\fB\-m2e\fR" 4
-.IX Item "-m2e"
-Generate code for the SH2e.
-.IP "\fB\-m2a\-nofpu\fR" 4
-.IX Item "-m2a-nofpu"
-Generate code for the SH2a without \s-1FPU,\s0 or for a SH2a\-FPU in such a way
-that the floating-point unit is not used.
-.IP "\fB\-m2a\-single\-only\fR" 4
-.IX Item "-m2a-single-only"
-Generate code for the SH2a\-FPU, in such a way that no double-precision
-floating-point operations are used.
-.IP "\fB\-m2a\-single\fR" 4
-.IX Item "-m2a-single"
-Generate code for the SH2a\-FPU assuming the floating-point unit is in
-single-precision mode by default.
-.IP "\fB\-m2a\fR" 4
-.IX Item "-m2a"
-Generate code for the SH2a\-FPU assuming the floating-point unit is in
-double-precision mode by default.
-.IP "\fB\-m3\fR" 4
-.IX Item "-m3"
-Generate code for the \s-1SH3.\s0
-.IP "\fB\-m3e\fR" 4
-.IX Item "-m3e"
-Generate code for the SH3e.
-.IP "\fB\-m4\-nofpu\fR" 4
-.IX Item "-m4-nofpu"
-Generate code for the \s-1SH4\s0 without a floating-point unit.
-.IP "\fB\-m4\-single\-only\fR" 4
-.IX Item "-m4-single-only"
-Generate code for the \s-1SH4\s0 with a floating-point unit that only
-supports single-precision arithmetic.
-.IP "\fB\-m4\-single\fR" 4
-.IX Item "-m4-single"
-Generate code for the \s-1SH4\s0 assuming the floating-point unit is in
-single-precision mode by default.
-.IP "\fB\-m4\fR" 4
-.IX Item "-m4"
-Generate code for the \s-1SH4.\s0
-.IP "\fB\-m4a\-nofpu\fR" 4
-.IX Item "-m4a-nofpu"
-Generate code for the SH4al\-dsp, or for a SH4a in such a way that the
-floating-point unit is not used.
-.IP "\fB\-m4a\-single\-only\fR" 4
-.IX Item "-m4a-single-only"
-Generate code for the SH4a, in such a way that no double-precision
-floating-point operations are used.
-.IP "\fB\-m4a\-single\fR" 4
-.IX Item "-m4a-single"
-Generate code for the SH4a assuming the floating-point unit is in
-single-precision mode by default.
-.IP "\fB\-m4a\fR" 4
-.IX Item "-m4a"
-Generate code for the SH4a.
-.IP "\fB\-m4al\fR" 4
-.IX Item "-m4al"
-Same as \fB\-m4a\-nofpu\fR, except that it implicitly passes
-\&\fB\-dsp\fR to the assembler. \s-1GCC\s0 doesn't generate any \s-1DSP\s0
-instructions at the moment.
-.IP "\fB\-mb\fR" 4
-.IX Item "-mb"
-Compile code for the processor in big-endian mode.
-.IP "\fB\-ml\fR" 4
-.IX Item "-ml"
-Compile code for the processor in little-endian mode.
-.IP "\fB\-mdalign\fR" 4
-.IX Item "-mdalign"
-Align doubles at 64\-bit boundaries. Note that this changes the calling
-conventions, and thus some functions from the standard C library do
-not work unless you recompile it first with \fB\-mdalign\fR.
-.IP "\fB\-mrelax\fR" 4
-.IX Item "-mrelax"
-Shorten some address references at link time, when possible; uses the
-linker option \fB\-relax\fR.
-.IP "\fB\-mbigtable\fR" 4
-.IX Item "-mbigtable"
-Use 32\-bit offsets in \f(CW\*(C`switch\*(C'\fR tables. The default is to use
-16\-bit offsets.
-.IP "\fB\-mbitops\fR" 4
-.IX Item "-mbitops"
-Enable the use of bit manipulation instructions on \s-1SH2A.\s0
-.IP "\fB\-mfmovd\fR" 4
-.IX Item "-mfmovd"
-Enable the use of the instruction \f(CW\*(C`fmovd\*(C'\fR. Check \fB\-mdalign\fR for
-alignment constraints.
-.IP "\fB\-mhitachi\fR" 4
-.IX Item "-mhitachi"
-Comply with the calling conventions defined by Renesas.
-.IP "\fB\-mrenesas\fR" 4
-.IX Item "-mrenesas"
-Comply with the calling conventions defined by Renesas.
-.IP "\fB\-mno\-renesas\fR" 4
-.IX Item "-mno-renesas"
-Comply with the calling conventions defined for \s-1GCC\s0 before the Renesas
-conventions were available. This option is the default for all
-targets of the \s-1SH\s0 toolchain.
-.IP "\fB\-mnomacsave\fR" 4
-.IX Item "-mnomacsave"
-Mark the \f(CW\*(C`MAC\*(C'\fR register as call-clobbered, even if
-\&\fB\-mhitachi\fR is given.
-.IP "\fB\-mieee\fR" 4
-.IX Item "-mieee"
-.PD 0
-.IP "\fB\-mno\-ieee\fR" 4
-.IX Item "-mno-ieee"
-.PD
-Control the \s-1IEEE\s0 compliance of floating-point comparisons, which affects the
-handling of cases where the result of a comparison is unordered. By default
-\&\fB\-mieee\fR is implicitly enabled. If \fB\-ffinite\-math\-only\fR is
-enabled \fB\-mno\-ieee\fR is implicitly set, which results in faster
-floating-point greater-equal and less-equal comparisons. The implcit settings
-can be overridden by specifying either \fB\-mieee\fR or \fB\-mno\-ieee\fR.
-.IP "\fB\-minline\-ic_invalidate\fR" 4
-.IX Item "-minline-ic_invalidate"
-Inline code to invalidate instruction cache entries after setting up
-nested function trampolines.
-This option has no effect if \fB\-musermode\fR is in effect and the selected
-code generation option (e.g. \fB\-m4\fR) does not allow the use of the \f(CW\*(C`icbi\*(C'\fR
-instruction.
-If the selected code generation option does not allow the use of the \f(CW\*(C`icbi\*(C'\fR
-instruction, and \fB\-musermode\fR is not in effect, the inlined code
-manipulates the instruction cache address array directly with an associative
-write. This not only requires privileged mode at run time, but it also
-fails if the cache line had been mapped via the \s-1TLB\s0 and has become unmapped.
-.IP "\fB\-misize\fR" 4
-.IX Item "-misize"
-Dump instruction size and location in the assembly code.
-.IP "\fB\-mpadstruct\fR" 4
-.IX Item "-mpadstruct"
-This option is deprecated. It pads structures to multiple of 4 bytes,
-which is incompatible with the \s-1SH ABI.\s0
-.IP "\fB\-matomic\-model=\fR\fImodel\fR" 4
-.IX Item "-matomic-model=model"
-Sets the model of atomic operations and additional parameters as a comma
-separated list. For details on the atomic built-in functions see
-\&\fB_\|_atomic Builtins\fR. The following models and parameters are supported:
-.RS 4
-.IP "\fBnone\fR" 4
-.IX Item "none"
-Disable compiler generated atomic sequences and emit library calls for atomic
-operations. This is the default if the target is not \f(CW\*(C`sh\-*\-linux*\*(C'\fR.
-.IP "\fBsoft-gusa\fR" 4
-.IX Item "soft-gusa"
-Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
-built-in functions. The generated atomic sequences require additional support
-from the interrupt/exception handling code of the system and are only suitable
-for SH3* and SH4* single-core systems. This option is enabled by default when
-the target is \f(CW\*(C`sh\-*\-linux*\*(C'\fR and SH3* or SH4*. When the target is \s-1SH4A,\s0
-this option will also partially utilize the hardware atomic instructions
-\&\f(CW\*(C`movli.l\*(C'\fR and \f(CW\*(C`movco.l\*(C'\fR to create more efficient code, unless
-\&\fBstrict\fR is specified.
-.IP "\fBsoft-tcb\fR" 4
-.IX Item "soft-tcb"
-Generate software atomic sequences that use a variable in the thread control
-block. This is a variation of the gUSA sequences which can also be used on
-SH1* and SH2* targets. The generated atomic sequences require additional
-support from the interrupt/exception handling code of the system and are only
-suitable for single-core systems. When using this model, the \fBgbr\-offset=\fR
-parameter has to be specified as well.
-.IP "\fBsoft-imask\fR" 4
-.IX Item "soft-imask"
-Generate software atomic sequences that temporarily disable interrupts by
-setting \f(CW\*(C`SR.IMASK = 1111\*(C'\fR. This model works only when the program runs
-in privileged mode and is only suitable for single-core systems. Additional
-support from the interrupt/exception handling code of the system is not
-required. This model is enabled by default when the target is
-\&\f(CW\*(C`sh\-*\-linux*\*(C'\fR and SH1* or SH2*.
-.IP "\fBhard-llcs\fR" 4
-.IX Item "hard-llcs"
-Generate hardware atomic sequences using the \f(CW\*(C`movli.l\*(C'\fR and \f(CW\*(C`movco.l\*(C'\fR
-instructions only. This is only available on \s-1SH4A\s0 and is suitable for
-multi-core systems. Since the hardware instructions support only 32 bit atomic
-variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
-Code compiled with this option will also be compatible with other software
-atomic model interrupt/exception handling systems if executed on an \s-1SH4A\s0
-system. Additional support from the interrupt/exception handling code of the
-system is not required for this model.
-.IP "\fBgbr\-offset=\fR" 4
-.IX Item "gbr-offset="
-This parameter specifies the offset in bytes of the variable in the thread
-control block structure that should be used by the generated atomic sequences
-when the \fBsoft-tcb\fR model has been selected. For other models this
-parameter is ignored. The specified value must be an integer multiple of four
-and in the range 0\-1020.
-.IP "\fBstrict\fR" 4
-.IX Item "strict"
-This parameter prevents mixed usage of multiple atomic models, even though they
-would be compatible, and will make the compiler generate atomic sequences of the
-specified model only.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mtas\fR" 4
-.IX Item "-mtas"
-Generate the \f(CW\*(C`tas.b\*(C'\fR opcode for \f(CW\*(C`_\|_atomic_test_and_set\*(C'\fR.
-Notice that depending on the particular hardware and software configuration
-this can degrade overall performance due to the operand cache line flushes
-that are implied by the \f(CW\*(C`tas.b\*(C'\fR instruction. On multi-core \s-1SH4A\s0
-processors the \f(CW\*(C`tas.b\*(C'\fR instruction must be used with caution since it
-can result in data corruption for certain cache configurations.
-.IP "\fB\-mspace\fR" 4
-.IX Item "-mspace"
-Optimize for space instead of speed. Implied by \fB\-Os\fR.
-.IP "\fB\-mprefergot\fR" 4
-.IX Item "-mprefergot"
-When generating position-independent code, emit function calls using
-the Global Offset Table instead of the Procedure Linkage Table.
-.IP "\fB\-musermode\fR" 4
-.IX Item "-musermode"
-Don't generate privileged mode only code. This option
-implies \fB\-mno\-inline\-ic_invalidate\fR
-if the inlined code would not work in user mode.
-This is the default when the target is \f(CW\*(C`sh\-*\-linux*\*(C'\fR.
-.IP "\fB\-multcost=\fR\fInumber\fR" 4
-.IX Item "-multcost=number"
-Set the cost to assume for a multiply insn.
-.IP "\fB\-mdiv=\fR\fIstrategy\fR" 4
-.IX Item "-mdiv=strategy"
-Set the division strategy to be used for integer division operations.
-For SHmedia \fIstrategy\fR can be one of:
-.RS 4
-.IP "\fBfp\fR" 4
-.IX Item "fp"
-Performs the operation in floating point. This has a very high latency,
-but needs only a few instructions, so it might be a good choice if
-your code has enough easily-exploitable \s-1ILP\s0 to allow the compiler to
-schedule the floating-point instructions together with other instructions.
-Division by zero causes a floating-point exception.
-.IP "\fBinv\fR" 4
-.IX Item "inv"
-Uses integer operations to calculate the inverse of the divisor,
-and then multiplies the dividend with the inverse. This strategy allows
-\&\s-1CSE\s0 and hoisting of the inverse calculation. Division by zero calculates
-an unspecified result, but does not trap.
-.IP "\fBinv:minlat\fR" 4
-.IX Item "inv:minlat"
-A variant of \fBinv\fR where, if no \s-1CSE\s0 or hoisting opportunities
-have been found, or if the entire operation has been hoisted to the same
-place, the last stages of the inverse calculation are intertwined with the
-final multiply to reduce the overall latency, at the expense of using a few
-more instructions, and thus offering fewer scheduling opportunities with
-other code.
-.IP "\fBcall\fR" 4
-.IX Item "call"
-Calls a library function that usually implements the \fBinv:minlat\fR
-strategy.
-This gives high code density for \f(CW\*(C`m5\-*media\-nofpu\*(C'\fR compilations.
-.IP "\fBcall2\fR" 4
-.IX Item "call2"
-Uses a different entry point of the same library function, where it
-assumes that a pointer to a lookup table has already been set up, which
-exposes the pointer load to \s-1CSE\s0 and code hoisting optimizations.
-.IP "\fBinv:call\fR" 4
-.IX Item "inv:call"
-.PD 0
-.IP "\fBinv:call2\fR" 4
-.IX Item "inv:call2"
-.IP "\fBinv:fp\fR" 4
-.IX Item "inv:fp"
-.PD
-Use the \fBinv\fR algorithm for initial
-code generation, but if the code stays unoptimized, revert to the \fBcall\fR,
-\&\fBcall2\fR, or \fBfp\fR strategies, respectively. Note that the
-potentially-trapping side effect of division by zero is carried by a
-separate instruction, so it is possible that all the integer instructions
-are hoisted out, but the marker for the side effect stays where it is.
-A recombination to floating-point operations or a call is not possible
-in that case.
-.IP "\fBinv20u\fR" 4
-.IX Item "inv20u"
-.PD 0
-.IP "\fBinv20l\fR" 4
-.IX Item "inv20l"
-.PD
-Variants of the \fBinv:minlat\fR strategy. In the case
-that the inverse calculation is not separated from the multiply, they speed
-up division where the dividend fits into 20 bits (plus sign where applicable)
-by inserting a test to skip a number of operations in this case; this test
-slows down the case of larger dividends. \fBinv20u\fR assumes the case of a such
-a small dividend to be unlikely, and \fBinv20l\fR assumes it to be likely.
-.RE
-.RS 4
-.Sp
-For targets other than SHmedia \fIstrategy\fR can be one of:
-.IP "\fBcall\-div1\fR" 4
-.IX Item "call-div1"
-Calls a library function that uses the single-step division instruction
-\&\f(CW\*(C`div1\*(C'\fR to perform the operation. Division by zero calculates an
-unspecified result and does not trap. This is the default except for \s-1SH4,
-SH2A\s0 and SHcompact.
-.IP "\fBcall-fp\fR" 4
-.IX Item "call-fp"
-Calls a library function that performs the operation in double precision
-floating point. Division by zero causes a floating-point exception. This is
-the default for SHcompact with \s-1FPU. \s0 Specifying this for targets that do not
-have a double precision \s-1FPU\s0 will default to \f(CW\*(C`call\-div1\*(C'\fR.
-.IP "\fBcall-table\fR" 4
-.IX Item "call-table"
-Calls a library function that uses a lookup table for small divisors and
-the \f(CW\*(C`div1\*(C'\fR instruction with case distinction for larger divisors. Division
-by zero calculates an unspecified result and does not trap. This is the default
-for \s-1SH4. \s0 Specifying this for targets that do not have dynamic shift
-instructions will default to \f(CW\*(C`call\-div1\*(C'\fR.
-.RE
-.RS 4
-.Sp
-When a division strategy has not been specified the default strategy will be
-selected based on the current target. For \s-1SH2A\s0 the default strategy is to
-use the \f(CW\*(C`divs\*(C'\fR and \f(CW\*(C`divu\*(C'\fR instructions instead of library function
-calls.
-.RE
-.IP "\fB\-maccumulate\-outgoing\-args\fR" 4
-.IX Item "-maccumulate-outgoing-args"
-Reserve space once for outgoing arguments in the function prologue rather
-than around each call. Generally beneficial for performance and size. Also
-needed for unwinding to avoid changing the stack frame around conditional code.
-.IP "\fB\-mdivsi3_libfunc=\fR\fIname\fR" 4
-.IX Item "-mdivsi3_libfunc=name"
-Set the name of the library function used for 32\-bit signed division to
-\&\fIname\fR.
-This only affects the name used in the \fBcall\fR and \fBinv:call\fR
-division strategies, and the compiler still expects the same
-sets of input/output/clobbered registers as if this option were not present.
-.IP "\fB\-mfixed\-range=\fR\fIregister-range\fR" 4
-.IX Item "-mfixed-range=register-range"
-Generate code treating the given register range as fixed registers.
-A fixed register is one that the register allocator can not use. This is
-useful when compiling kernel code. A register range is specified as
-two registers separated by a dash. Multiple register ranges can be
-specified separated by a comma.
-.IP "\fB\-mindexed\-addressing\fR" 4
-.IX Item "-mindexed-addressing"
-Enable the use of the indexed addressing mode for SHmedia32/SHcompact.
-This is only safe if the hardware and/or \s-1OS\s0 implement 32\-bit wrap-around
-semantics for the indexed addressing mode. The architecture allows the
-implementation of processors with 64\-bit \s-1MMU,\s0 which the \s-1OS\s0 could use to
-get 32\-bit addressing, but since no current hardware implementation supports
-this or any other way to make the indexed addressing mode safe to use in
-the 32\-bit \s-1ABI,\s0 the default is \fB\-mno\-indexed\-addressing\fR.
-.IP "\fB\-mgettrcost=\fR\fInumber\fR" 4
-.IX Item "-mgettrcost=number"
-Set the cost assumed for the \f(CW\*(C`gettr\*(C'\fR instruction to \fInumber\fR.
-The default is 2 if \fB\-mpt\-fixed\fR is in effect, 100 otherwise.
-.IP "\fB\-mpt\-fixed\fR" 4
-.IX Item "-mpt-fixed"
-Assume \f(CW\*(C`pt*\*(C'\fR instructions won't trap. This generally generates
-better-scheduled code, but is unsafe on current hardware.
-The current architecture
-definition says that \f(CW\*(C`ptabs\*(C'\fR and \f(CW\*(C`ptrel\*(C'\fR trap when the target
-anded with 3 is 3.
-This has the unintentional effect of making it unsafe to schedule these
-instructions before a branch, or hoist them out of a loop. For example,
-\&\f(CW\*(C`_\|_do_global_ctors\*(C'\fR, a part of \fIlibgcc\fR
-that runs constructors at program
-startup, calls functions in a list which is delimited by \-1. With the
-\&\fB\-mpt\-fixed\fR option, the \f(CW\*(C`ptabs\*(C'\fR is done before testing against \-1.
-That means that all the constructors run a bit more quickly, but when
-the loop comes to the end of the list, the program crashes because \f(CW\*(C`ptabs\*(C'\fR
-loads \-1 into a target register.
-.Sp
-Since this option is unsafe for any
-hardware implementing the current architecture specification, the default
-is \fB\-mno\-pt\-fixed\fR. Unless specified explicitly with
-\&\fB\-mgettrcost\fR, \fB\-mno\-pt\-fixed\fR also implies \fB\-mgettrcost=100\fR;
-this deters register allocation from using target registers for storing
-ordinary integers.
-.IP "\fB\-minvalid\-symbols\fR" 4
-.IX Item "-minvalid-symbols"
-Assume symbols might be invalid. Ordinary function symbols generated by
-the compiler are always valid to load with
-\&\f(CW\*(C`movi\*(C'\fR/\f(CW\*(C`shori\*(C'\fR/\f(CW\*(C`ptabs\*(C'\fR or
-\&\f(CW\*(C`movi\*(C'\fR/\f(CW\*(C`shori\*(C'\fR/\f(CW\*(C`ptrel\*(C'\fR,
-but with assembler and/or linker tricks it is possible
-to generate symbols that cause \f(CW\*(C`ptabs\*(C'\fR or \f(CW\*(C`ptrel\*(C'\fR to trap.
-This option is only meaningful when \fB\-mno\-pt\-fixed\fR is in effect.
-It prevents cross-basic-block \s-1CSE,\s0 hoisting and most scheduling
-of symbol loads. The default is \fB\-mno\-invalid\-symbols\fR.
-.IP "\fB\-mbranch\-cost=\fR\fInum\fR" 4
-.IX Item "-mbranch-cost=num"
-Assume \fInum\fR to be the cost for a branch instruction. Higher numbers
-make the compiler try to generate more branch-free code if possible.
-If not specified the value is selected depending on the processor type that
-is being compiled for.
-.IP "\fB\-mzdcbranch\fR" 4
-.IX Item "-mzdcbranch"
-.PD 0
-.IP "\fB\-mno\-zdcbranch\fR" 4
-.IX Item "-mno-zdcbranch"
-.PD
-Assume (do not assume) that zero displacement conditional branch instructions
-\&\f(CW\*(C`bt\*(C'\fR and \f(CW\*(C`bf\*(C'\fR are fast. If \fB\-mzdcbranch\fR is specified, the
-compiler will try to prefer zero displacement branch code sequences. This is
-enabled by default when generating code for \s-1SH4\s0 and \s-1SH4A. \s0 It can be explicitly
-disabled by specifying \fB\-mno\-zdcbranch\fR.
-.IP "\fB\-mfused\-madd\fR" 4
-.IX Item "-mfused-madd"
-.PD 0
-.IP "\fB\-mno\-fused\-madd\fR" 4
-.IX Item "-mno-fused-madd"
-.PD
-Generate code that uses (does not use) the floating-point multiply and
-accumulate instructions. These instructions are generated by default
-if hardware floating point is used. The machine-dependent
-\&\fB\-mfused\-madd\fR option is now mapped to the machine-independent
-\&\fB\-ffp\-contract=fast\fR option, and \fB\-mno\-fused\-madd\fR is
-mapped to \fB\-ffp\-contract=off\fR.
-.IP "\fB\-mfsca\fR" 4
-.IX Item "-mfsca"
-.PD 0
-.IP "\fB\-mno\-fsca\fR" 4
-.IX Item "-mno-fsca"
-.PD
-Allow or disallow the compiler to emit the \f(CW\*(C`fsca\*(C'\fR instruction for sine
-and cosine approximations. The option \f(CW\*(C`\-mfsca\*(C'\fR must be used in
-combination with \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR. It is enabled by default
-when generating code for \s-1SH4A. \s0 Using \f(CW\*(C`\-mno\-fsca\*(C'\fR disables sine and cosine
-approximations even if \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR is in effect.
-.IP "\fB\-mfsrra\fR" 4
-.IX Item "-mfsrra"
-.PD 0
-.IP "\fB\-mno\-fsrra\fR" 4
-.IX Item "-mno-fsrra"
-.PD
-Allow or disallow the compiler to emit the \f(CW\*(C`fsrra\*(C'\fR instruction for
-reciprocal square root approximations. The option \f(CW\*(C`\-mfsrra\*(C'\fR must be used
-in combination with \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR and
-\&\f(CW\*(C`\-ffinite\-math\-only\*(C'\fR. It is enabled by default when generating code for
-\&\s-1SH4A. \s0 Using \f(CW\*(C`\-mno\-fsrra\*(C'\fR disables reciprocal square root approximations
-even if \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR and \f(CW\*(C`\-ffinite\-math\-only\*(C'\fR are
-in effect.
-.IP "\fB\-mpretend\-cmove\fR" 4
-.IX Item "-mpretend-cmove"
-Prefer zero-displacement conditional branches for conditional move instruction
-patterns. This can result in faster code on the \s-1SH4\s0 processor.
-.PP
-\fISolaris 2 Options\fR
-.IX Subsection "Solaris 2 Options"
-.PP
-These \fB\-m\fR options are supported on Solaris 2:
-.IP "\fB\-mimpure\-text\fR" 4
-.IX Item "-mimpure-text"
-\&\fB\-mimpure\-text\fR, used in addition to \fB\-shared\fR, tells
-the compiler to not pass \fB\-z text\fR to the linker when linking a
-shared object. Using this option, you can link position-dependent
-code into a shared object.
-.Sp
-\&\fB\-mimpure\-text\fR suppresses the \*(L"relocations remain against
-allocatable but non-writable sections\*(R" linker error message.
-However, the necessary relocations trigger copy-on-write, and the
-shared object is not actually shared across processes. Instead of
-using \fB\-mimpure\-text\fR, you should compile all source code with
-\&\fB\-fpic\fR or \fB\-fPIC\fR.
-.PP
-These switches are supported in addition to the above on Solaris 2:
-.IP "\fB\-pthreads\fR" 4
-.IX Item "-pthreads"
-Add support for multithreading using the \s-1POSIX\s0 threads library. This
-option sets flags for both the preprocessor and linker. This option does
-not affect the thread safety of object code produced by the compiler or
-that of libraries supplied with it.
-.IP "\fB\-pthread\fR" 4
-.IX Item "-pthread"
-This is a synonym for \fB\-pthreads\fR.
-.PP
-\fI\s-1SPARC\s0 Options\fR
-.IX Subsection "SPARC Options"
-.PP
-These \fB\-m\fR options are supported on the \s-1SPARC:\s0
-.IP "\fB\-mno\-app\-regs\fR" 4
-.IX Item "-mno-app-regs"
-.PD 0
-.IP "\fB\-mapp\-regs\fR" 4
-.IX Item "-mapp-regs"
-.PD
-Specify \fB\-mapp\-regs\fR to generate output using the global registers
-2 through 4, which the \s-1SPARC SVR4 ABI\s0 reserves for applications. Like the
-global register 1, each global register 2 through 4 is then treated as an
-allocable register that is clobbered by function calls. This is the default.
-.Sp
-To be fully \s-1SVR4\s0 ABI-compliant at the cost of some performance loss,
-specify \fB\-mno\-app\-regs\fR. You should compile libraries and system
-software with this option.
-.IP "\fB\-mflat\fR" 4
-.IX Item "-mflat"
-.PD 0
-.IP "\fB\-mno\-flat\fR" 4
-.IX Item "-mno-flat"
-.PD
-With \fB\-mflat\fR, the compiler does not generate save/restore instructions
-and uses a \*(L"flat\*(R" or single register window model. This model is compatible
-with the regular register window model. The local registers and the input
-registers (0\-\-5) are still treated as \*(L"call-saved\*(R" registers and are
-saved on the stack as needed.
-.Sp
-With \fB\-mno\-flat\fR (the default), the compiler generates save/restore
-instructions (except for leaf functions). This is the normal operating mode.
-.IP "\fB\-mfpu\fR" 4
-.IX Item "-mfpu"
-.PD 0
-.IP "\fB\-mhard\-float\fR" 4
-.IX Item "-mhard-float"
-.PD
-Generate output containing floating-point instructions. This is the
-default.
-.IP "\fB\-mno\-fpu\fR" 4
-.IX Item "-mno-fpu"
-.PD 0
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-.PD
-Generate output containing library calls for floating point.
-\&\fBWarning:\fR the requisite libraries are not available for all \s-1SPARC\s0
-targets. Normally the facilities of the machine's usual C compiler are
-used, but this cannot be done directly in cross-compilation. You must make
-your own arrangements to provide suitable library functions for
-cross-compilation. The embedded targets \fBsparc\-*\-aout\fR and
-\&\fBsparclite\-*\-*\fR do provide software floating-point support.
-.Sp
-\&\fB\-msoft\-float\fR changes the calling convention in the output file;
-therefore, it is only useful if you compile \fIall\fR of a program with
-this option. In particular, you need to compile \fIlibgcc.a\fR, the
-library that comes with \s-1GCC,\s0 with \fB\-msoft\-float\fR in order for
-this to work.
-.IP "\fB\-mhard\-quad\-float\fR" 4
-.IX Item "-mhard-quad-float"
-Generate output containing quad-word (long double) floating-point
-instructions.
-.IP "\fB\-msoft\-quad\-float\fR" 4
-.IX Item "-msoft-quad-float"
-Generate output containing library calls for quad-word (long double)
-floating-point instructions. The functions called are those specified
-in the \s-1SPARC ABI. \s0 This is the default.
-.Sp
-As of this writing, there are no \s-1SPARC\s0 implementations that have hardware
-support for the quad-word floating-point instructions. They all invoke
-a trap handler for one of these instructions, and then the trap handler
-emulates the effect of the instruction. Because of the trap handler overhead,
-this is much slower than calling the \s-1ABI\s0 library routines. Thus the
-\&\fB\-msoft\-quad\-float\fR option is the default.
-.IP "\fB\-mno\-unaligned\-doubles\fR" 4
-.IX Item "-mno-unaligned-doubles"
-.PD 0
-.IP "\fB\-munaligned\-doubles\fR" 4
-.IX Item "-munaligned-doubles"
-.PD
-Assume that doubles have 8\-byte alignment. This is the default.
-.Sp
-With \fB\-munaligned\-doubles\fR, \s-1GCC\s0 assumes that doubles have 8\-byte
-alignment only if they are contained in another type, or if they have an
-absolute address. Otherwise, it assumes they have 4\-byte alignment.
-Specifying this option avoids some rare compatibility problems with code
-generated by other compilers. It is not the default because it results
-in a performance loss, especially for floating-point code.
-.IP "\fB\-mno\-faster\-structs\fR" 4
-.IX Item "-mno-faster-structs"
-.PD 0
-.IP "\fB\-mfaster\-structs\fR" 4
-.IX Item "-mfaster-structs"
-.PD
-With \fB\-mfaster\-structs\fR, the compiler assumes that structures
-should have 8\-byte alignment. This enables the use of pairs of
-\&\f(CW\*(C`ldd\*(C'\fR and \f(CW\*(C`std\*(C'\fR instructions for copies in structure
-assignment, in place of twice as many \f(CW\*(C`ld\*(C'\fR and \f(CW\*(C`st\*(C'\fR pairs.
-However, the use of this changed alignment directly violates the \s-1SPARC
-ABI. \s0 Thus, it's intended only for use on targets where the developer
-acknowledges that their resulting code is not directly in line with
-the rules of the \s-1ABI.\s0
-.IP "\fB\-mcpu=\fR\fIcpu_type\fR" 4
-.IX Item "-mcpu=cpu_type"
-Set the instruction set, register set, and instruction scheduling parameters
-for machine type \fIcpu_type\fR. Supported values for \fIcpu_type\fR are
-\&\fBv7\fR, \fBcypress\fR, \fBv8\fR, \fBsupersparc\fR, \fBhypersparc\fR,
-\&\fBleon\fR, \fBleon3\fR, \fBsparclite\fR, \fBf930\fR, \fBf934\fR,
-\&\fBsparclite86x\fR, \fBsparclet\fR, \fBtsc701\fR, \fBv9\fR,
-\&\fBultrasparc\fR, \fBultrasparc3\fR, \fBniagara\fR, \fBniagara2\fR,
-\&\fBniagara3\fR and \fBniagara4\fR.
-.Sp
-Native Solaris and GNU/Linux toolchains also support the value \fBnative\fR,
-which selects the best architecture option for the host processor.
-\&\fB\-mcpu=native\fR has no effect if \s-1GCC\s0 does not recognize
-the processor.
-.Sp
-Default instruction scheduling parameters are used for values that select
-an architecture and not an implementation. These are \fBv7\fR, \fBv8\fR,
-\&\fBsparclite\fR, \fBsparclet\fR, \fBv9\fR.
-.Sp
-Here is a list of each supported architecture and their supported
-implementations.
-.RS 4
-.IP "v7" 4
-.IX Item "v7"
-cypress
-.IP "v8" 4
-.IX Item "v8"
-supersparc, hypersparc, leon, leon3
-.IP "sparclite" 4
-.IX Item "sparclite"
-f930, f934, sparclite86x
-.IP "sparclet" 4
-.IX Item "sparclet"
-tsc701
-.IP "v9" 4
-.IX Item "v9"
-ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4
-.RE
-.RS 4
-.Sp
-By default (unless configured otherwise), \s-1GCC\s0 generates code for the V7
-variant of the \s-1SPARC\s0 architecture. With \fB\-mcpu=cypress\fR, the compiler
-additionally optimizes it for the Cypress \s-1CY7C602\s0 chip, as used in the
-SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
-SPARCStation 1, 2, \s-1IPX\s0 etc.
-.Sp
-With \fB\-mcpu=v8\fR, \s-1GCC\s0 generates code for the V8 variant of the \s-1SPARC\s0
-architecture. The only difference from V7 code is that the compiler emits
-the integer multiply and integer divide instructions which exist in \s-1SPARC\-V8\s0
-but not in \s-1SPARC\-V7. \s0 With \fB\-mcpu=supersparc\fR, the compiler additionally
-optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
-2000 series.
-.Sp
-With \fB\-mcpu=sparclite\fR, \s-1GCC\s0 generates code for the SPARClite variant of
-the \s-1SPARC\s0 architecture. This adds the integer multiply, integer divide step
-and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which exist in SPARClite but not in \s-1SPARC\-V7.\s0
-With \fB\-mcpu=f930\fR, the compiler additionally optimizes it for the
-Fujitsu \s-1MB86930\s0 chip, which is the original SPARClite, with no \s-1FPU. \s0 With
-\&\fB\-mcpu=f934\fR, the compiler additionally optimizes it for the Fujitsu
-\&\s-1MB86934\s0 chip, which is the more recent SPARClite with \s-1FPU.\s0
-.Sp
-With \fB\-mcpu=sparclet\fR, \s-1GCC\s0 generates code for the SPARClet variant of
-the \s-1SPARC\s0 architecture. This adds the integer multiply, multiply/accumulate,
-integer divide step and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which exist in SPARClet
-but not in \s-1SPARC\-V7. \s0 With \fB\-mcpu=tsc701\fR, the compiler additionally
-optimizes it for the \s-1TEMIC\s0 SPARClet chip.
-.Sp
-With \fB\-mcpu=v9\fR, \s-1GCC\s0 generates code for the V9 variant of the \s-1SPARC\s0
-architecture. This adds 64\-bit integer and floating-point move instructions,
-3 additional floating-point condition code registers and conditional move
-instructions. With \fB\-mcpu=ultrasparc\fR, the compiler additionally
-optimizes it for the Sun UltraSPARC I/II/IIi chips. With
-\&\fB\-mcpu=ultrasparc3\fR, the compiler additionally optimizes it for the
-Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
-\&\fB\-mcpu=niagara\fR, the compiler additionally optimizes it for
-Sun UltraSPARC T1 chips. With \fB\-mcpu=niagara2\fR, the compiler
-additionally optimizes it for Sun UltraSPARC T2 chips. With
-\&\fB\-mcpu=niagara3\fR, the compiler additionally optimizes it for Sun
-UltraSPARC T3 chips. With \fB\-mcpu=niagara4\fR, the compiler
-additionally optimizes it for Sun UltraSPARC T4 chips.
-.RE
-.IP "\fB\-mtune=\fR\fIcpu_type\fR" 4
-.IX Item "-mtune=cpu_type"
-Set the instruction scheduling parameters for machine type
-\&\fIcpu_type\fR, but do not set the instruction set or register set that the
-option \fB\-mcpu=\fR\fIcpu_type\fR does.
-.Sp
-The same values for \fB\-mcpu=\fR\fIcpu_type\fR can be used for
-\&\fB\-mtune=\fR\fIcpu_type\fR, but the only useful values are those
-that select a particular \s-1CPU\s0 implementation. Those are \fBcypress\fR,
-\&\fBsupersparc\fR, \fBhypersparc\fR, \fBleon\fR, \fBleon3\fR, \fBf930\fR,
-\&\fBf934\fR, \fBsparclite86x\fR, \fBtsc701\fR, \fBultrasparc\fR,
-\&\fBultrasparc3\fR, \fBniagara\fR, \fBniagara2\fR, \fBniagara3\fR and
-\&\fBniagara4\fR. With native Solaris and GNU/Linux toolchains, \fBnative\fR
-can also be used.
-.IP "\fB\-mv8plus\fR" 4
-.IX Item "-mv8plus"
-.PD 0
-.IP "\fB\-mno\-v8plus\fR" 4
-.IX Item "-mno-v8plus"
-.PD
-With \fB\-mv8plus\fR, \s-1GCC\s0 generates code for the \s-1SPARC\-V8+ ABI. \s0 The
-difference from the V8 \s-1ABI\s0 is that the global and out registers are
-considered 64 bits wide. This is enabled by default on Solaris in 32\-bit
-mode for all \s-1SPARC\-V9\s0 processors.
-.IP "\fB\-mvis\fR" 4
-.IX Item "-mvis"
-.PD 0
-.IP "\fB\-mno\-vis\fR" 4
-.IX Item "-mno-vis"
-.PD
-With \fB\-mvis\fR, \s-1GCC\s0 generates code that takes advantage of the UltraSPARC
-Visual Instruction Set extensions. The default is \fB\-mno\-vis\fR.
-.IP "\fB\-mvis2\fR" 4
-.IX Item "-mvis2"
-.PD 0
-.IP "\fB\-mno\-vis2\fR" 4
-.IX Item "-mno-vis2"
-.PD
-With \fB\-mvis2\fR, \s-1GCC\s0 generates code that takes advantage of
-version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
-default is \fB\-mvis2\fR when targeting a cpu that supports such
-instructions, such as UltraSPARC-III and later. Setting \fB\-mvis2\fR
-also sets \fB\-mvis\fR.
-.IP "\fB\-mvis3\fR" 4
-.IX Item "-mvis3"
-.PD 0
-.IP "\fB\-mno\-vis3\fR" 4
-.IX Item "-mno-vis3"
-.PD
-With \fB\-mvis3\fR, \s-1GCC\s0 generates code that takes advantage of
-version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
-default is \fB\-mvis3\fR when targeting a cpu that supports such
-instructions, such as niagara\-3 and later. Setting \fB\-mvis3\fR
-also sets \fB\-mvis2\fR and \fB\-mvis\fR.
-.IP "\fB\-mcbcond\fR" 4
-.IX Item "-mcbcond"
-.PD 0
-.IP "\fB\-mno\-cbcond\fR" 4
-.IX Item "-mno-cbcond"
-.PD
-With \fB\-mcbcond\fR, \s-1GCC\s0 generates code that takes advantage of
-compare-and-branch instructions, as defined in the Sparc Architecture 2011.
-The default is \fB\-mcbcond\fR when targeting a cpu that supports such
-instructions, such as niagara\-4 and later.
-.IP "\fB\-mpopc\fR" 4
-.IX Item "-mpopc"
-.PD 0
-.IP "\fB\-mno\-popc\fR" 4
-.IX Item "-mno-popc"
-.PD
-With \fB\-mpopc\fR, \s-1GCC\s0 generates code that takes advantage of the UltraSPARC
-population count instruction. The default is \fB\-mpopc\fR
-when targeting a cpu that supports such instructions, such as Niagara\-2 and
-later.
-.IP "\fB\-mfmaf\fR" 4
-.IX Item "-mfmaf"
-.PD 0
-.IP "\fB\-mno\-fmaf\fR" 4
-.IX Item "-mno-fmaf"
-.PD
-With \fB\-mfmaf\fR, \s-1GCC\s0 generates code that takes advantage of the UltraSPARC
-Fused Multiply-Add Floating-point extensions. The default is \fB\-mfmaf\fR
-when targeting a cpu that supports such instructions, such as Niagara\-3 and
-later.
-.IP "\fB\-mfix\-at697f\fR" 4
-.IX Item "-mfix-at697f"
-Enable the documented workaround for the single erratum of the Atmel \s-1AT697F\s0
-processor (which corresponds to erratum #13 of the \s-1AT697E\s0 processor).
-.IP "\fB\-mfix\-ut699\fR" 4
-.IX Item "-mfix-ut699"
-Enable the documented workarounds for the floating-point errata and the data
-cache nullify errata of the \s-1UT699\s0 processor.
-.PP
-These \fB\-m\fR options are supported in addition to the above
-on \s-1SPARC\-V9\s0 processors in 64\-bit environments:
-.IP "\fB\-m32\fR" 4
-.IX Item "-m32"
-.PD 0
-.IP "\fB\-m64\fR" 4
-.IX Item "-m64"
-.PD
-Generate code for a 32\-bit or 64\-bit environment.
-The 32\-bit environment sets int, long and pointer to 32 bits.
-The 64\-bit environment sets int to 32 bits and long and pointer
-to 64 bits.
-.IP "\fB\-mcmodel=\fR\fIwhich\fR" 4
-.IX Item "-mcmodel=which"
-Set the code model to one of
-.RS 4
-.IP "\fBmedlow\fR" 4
-.IX Item "medlow"
-The Medium/Low code model: 64\-bit addresses, programs
-must be linked in the low 32 bits of memory. Programs can be statically
-or dynamically linked.
-.IP "\fBmedmid\fR" 4
-.IX Item "medmid"
-The Medium/Middle code model: 64\-bit addresses, programs
-must be linked in the low 44 bits of memory, the text and data segments must
-be less than 2GB in size and the data segment must be located within 2GB of
-the text segment.
-.IP "\fBmedany\fR" 4
-.IX Item "medany"
-The Medium/Anywhere code model: 64\-bit addresses, programs
-may be linked anywhere in memory, the text and data segments must be less
-than 2GB in size and the data segment must be located within 2GB of the
-text segment.
-.IP "\fBembmedany\fR" 4
-.IX Item "embmedany"
-The Medium/Anywhere code model for embedded systems:
-64\-bit addresses, the text and data segments must be less than 2GB in
-size, both starting anywhere in memory (determined at link time). The
-global register \f(CW%g4\fR points to the base of the data segment. Programs
-are statically linked and \s-1PIC\s0 is not supported.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mmemory\-model=\fR\fImem-model\fR" 4
-.IX Item "-mmemory-model=mem-model"
-Set the memory model in force on the processor to one of
-.RS 4
-.IP "\fBdefault\fR" 4
-.IX Item "default"
-The default memory model for the processor and operating system.
-.IP "\fBrmo\fR" 4
-.IX Item "rmo"
-Relaxed Memory Order
-.IP "\fBpso\fR" 4
-.IX Item "pso"
-Partial Store Order
-.IP "\fBtso\fR" 4
-.IX Item "tso"
-Total Store Order
-.IP "\fBsc\fR" 4
-.IX Item "sc"
-Sequential Consistency
-.RE
-.RS 4
-.Sp
-These memory models are formally defined in Appendix D of the Sparc V9
-architecture manual, as set in the processor's \f(CW\*(C`PSTATE.MM\*(C'\fR field.
-.RE
-.IP "\fB\-mstack\-bias\fR" 4
-.IX Item "-mstack-bias"
-.PD 0
-.IP "\fB\-mno\-stack\-bias\fR" 4
-.IX Item "-mno-stack-bias"
-.PD
-With \fB\-mstack\-bias\fR, \s-1GCC\s0 assumes that the stack pointer, and
-frame pointer if present, are offset by \-2047 which must be added back
-when making stack frame references. This is the default in 64\-bit mode.
-Otherwise, assume no such offset is present.
-.PP
-\fI\s-1SPU\s0 Options\fR
-.IX Subsection "SPU Options"
-.PP
-These \fB\-m\fR options are supported on the \s-1SPU:\s0
-.IP "\fB\-mwarn\-reloc\fR" 4
-.IX Item "-mwarn-reloc"
-.PD 0
-.IP "\fB\-merror\-reloc\fR" 4
-.IX Item "-merror-reloc"
-.PD
-The loader for \s-1SPU\s0 does not handle dynamic relocations. By default, \s-1GCC\s0
-gives an error when it generates code that requires a dynamic
-relocation. \fB\-mno\-error\-reloc\fR disables the error,
-\&\fB\-mwarn\-reloc\fR generates a warning instead.
-.IP "\fB\-msafe\-dma\fR" 4
-.IX Item "-msafe-dma"
-.PD 0
-.IP "\fB\-munsafe\-dma\fR" 4
-.IX Item "-munsafe-dma"
-.PD
-Instructions that initiate or test completion of \s-1DMA\s0 must not be
-reordered with respect to loads and stores of the memory that is being
-accessed.
-With \fB\-munsafe\-dma\fR you must use the \f(CW\*(C`volatile\*(C'\fR keyword to protect
-memory accesses, but that can lead to inefficient code in places where the
-memory is known to not change. Rather than mark the memory as volatile,
-you can use \fB\-msafe\-dma\fR to tell the compiler to treat
-the \s-1DMA\s0 instructions as potentially affecting all memory.
-.IP "\fB\-mbranch\-hints\fR" 4
-.IX Item "-mbranch-hints"
-By default, \s-1GCC\s0 generates a branch hint instruction to avoid
-pipeline stalls for always-taken or probably-taken branches. A hint
-is not generated closer than 8 instructions away from its branch.
-There is little reason to disable them, except for debugging purposes,
-or to make an object a little bit smaller.
-.IP "\fB\-msmall\-mem\fR" 4
-.IX Item "-msmall-mem"
-.PD 0
-.IP "\fB\-mlarge\-mem\fR" 4
-.IX Item "-mlarge-mem"
-.PD
-By default, \s-1GCC\s0 generates code assuming that addresses are never larger
-than 18 bits. With \fB\-mlarge\-mem\fR code is generated that assumes
-a full 32\-bit address.
-.IP "\fB\-mstdmain\fR" 4
-.IX Item "-mstdmain"
-By default, \s-1GCC\s0 links against startup code that assumes the SPU-style
-main function interface (which has an unconventional parameter list).
-With \fB\-mstdmain\fR, \s-1GCC\s0 links your program against startup
-code that assumes a C99\-style interface to \f(CW\*(C`main\*(C'\fR, including a
-local copy of \f(CW\*(C`argv\*(C'\fR strings.
-.IP "\fB\-mfixed\-range=\fR\fIregister-range\fR" 4
-.IX Item "-mfixed-range=register-range"
-Generate code treating the given register range as fixed registers.
-A fixed register is one that the register allocator cannot use. This is
-useful when compiling kernel code. A register range is specified as
-two registers separated by a dash. Multiple register ranges can be
-specified separated by a comma.
-.IP "\fB\-mea32\fR" 4
-.IX Item "-mea32"
-.PD 0
-.IP "\fB\-mea64\fR" 4
-.IX Item "-mea64"
-.PD
-Compile code assuming that pointers to the \s-1PPU\s0 address space accessed
-via the \f(CW\*(C`_\|_ea\*(C'\fR named address space qualifier are either 32 or 64
-bits wide. The default is 32 bits. As this is an ABI-changing option,
-all object code in an executable must be compiled with the same setting.
-.IP "\fB\-maddress\-space\-conversion\fR" 4
-.IX Item "-maddress-space-conversion"
-.PD 0
-.IP "\fB\-mno\-address\-space\-conversion\fR" 4
-.IX Item "-mno-address-space-conversion"
-.PD
-Allow/disallow treating the \f(CW\*(C`_\|_ea\*(C'\fR address space as superset
-of the generic address space. This enables explicit type casts
-between \f(CW\*(C`_\|_ea\*(C'\fR and generic pointer as well as implicit
-conversions of generic pointers to \f(CW\*(C`_\|_ea\*(C'\fR pointers. The
-default is to allow address space pointer conversions.
-.IP "\fB\-mcache\-size=\fR\fIcache-size\fR" 4
-.IX Item "-mcache-size=cache-size"
-This option controls the version of libgcc that the compiler links to an
-executable and selects a software-managed cache for accessing variables
-in the \f(CW\*(C`_\|_ea\*(C'\fR address space with a particular cache size. Possible
-options for \fIcache-size\fR are \fB8\fR, \fB16\fR, \fB32\fR, \fB64\fR
-and \fB128\fR. The default cache size is 64KB.
-.IP "\fB\-matomic\-updates\fR" 4
-.IX Item "-matomic-updates"
-.PD 0
-.IP "\fB\-mno\-atomic\-updates\fR" 4
-.IX Item "-mno-atomic-updates"
-.PD
-This option controls the version of libgcc that the compiler links to an
-executable and selects whether atomic updates to the software-managed
-cache of PPU-side variables are used. If you use atomic updates, changes
-to a \s-1PPU\s0 variable from \s-1SPU\s0 code using the \f(CW\*(C`_\|_ea\*(C'\fR named address space
-qualifier do not interfere with changes to other \s-1PPU\s0 variables residing
-in the same cache line from \s-1PPU\s0 code. If you do not use atomic updates,
-such interference may occur; however, writing back cache lines is
-more efficient. The default behavior is to use atomic updates.
-.IP "\fB\-mdual\-nops\fR" 4
-.IX Item "-mdual-nops"
-.PD 0
-.IP "\fB\-mdual\-nops=\fR\fIn\fR" 4
-.IX Item "-mdual-nops=n"
-.PD
-By default, \s-1GCC\s0 inserts nops to increase dual issue when it expects
-it to increase performance. \fIn\fR can be a value from 0 to 10. A
-smaller \fIn\fR inserts fewer nops. 10 is the default, 0 is the
-same as \fB\-mno\-dual\-nops\fR. Disabled with \fB\-Os\fR.
-.IP "\fB\-mhint\-max\-nops=\fR\fIn\fR" 4
-.IX Item "-mhint-max-nops=n"
-Maximum number of nops to insert for a branch hint. A branch hint must
-be at least 8 instructions away from the branch it is affecting. \s-1GCC\s0
-inserts up to \fIn\fR nops to enforce this, otherwise it does not
-generate the branch hint.
-.IP "\fB\-mhint\-max\-distance=\fR\fIn\fR" 4
-.IX Item "-mhint-max-distance=n"
-The encoding of the branch hint instruction limits the hint to be within
-256 instructions of the branch it is affecting. By default, \s-1GCC\s0 makes
-sure it is within 125.
-.IP "\fB\-msafe\-hints\fR" 4
-.IX Item "-msafe-hints"
-Work around a hardware bug that causes the \s-1SPU\s0 to stall indefinitely.
-By default, \s-1GCC\s0 inserts the \f(CW\*(C`hbrp\*(C'\fR instruction to make sure
-this stall won't happen.
-.PP
-\fIOptions for System V\fR
-.IX Subsection "Options for System V"
-.PP
-These additional options are available on System V Release 4 for
-compatibility with other compilers on those systems:
-.IP "\fB\-G\fR" 4
-.IX Item "-G"
-Create a shared object.
-It is recommended that \fB\-symbolic\fR or \fB\-shared\fR be used instead.
-.IP "\fB\-Qy\fR" 4
-.IX Item "-Qy"
-Identify the versions of each tool used by the compiler, in a
-\&\f(CW\*(C`.ident\*(C'\fR assembler directive in the output.
-.IP "\fB\-Qn\fR" 4
-.IX Item "-Qn"
-Refrain from adding \f(CW\*(C`.ident\*(C'\fR directives to the output file (this is
-the default).
-.IP "\fB\-YP,\fR\fIdirs\fR" 4
-.IX Item "-YP,dirs"
-Search the directories \fIdirs\fR, and no others, for libraries
-specified with \fB\-l\fR.
-.IP "\fB\-Ym,\fR\fIdir\fR" 4
-.IX Item "-Ym,dir"
-Look in the directory \fIdir\fR to find the M4 preprocessor.
-The assembler uses this option.
-.PP
-\fITILE-Gx Options\fR
-.IX Subsection "TILE-Gx Options"
-.PP
-These \fB\-m\fR options are supported on the TILE-Gx:
-.IP "\fB\-mcmodel=small\fR" 4
-.IX Item "-mcmodel=small"
-Generate code for the small model. The distance for direct calls is
-limited to 500M in either direction. PC-relative addresses are 32
-bits. Absolute addresses support the full address range.
-.IP "\fB\-mcmodel=large\fR" 4
-.IX Item "-mcmodel=large"
-Generate code for the large model. There is no limitation on call
-distance, pc-relative addresses, or absolute addresses.
-.IP "\fB\-mcpu=\fR\fIname\fR" 4
-.IX Item "-mcpu=name"
-Selects the type of \s-1CPU\s0 to be targeted. Currently the only supported
-type is \fBtilegx\fR.
-.IP "\fB\-m32\fR" 4
-.IX Item "-m32"
-.PD 0
-.IP "\fB\-m64\fR" 4
-.IX Item "-m64"
-.PD
-Generate code for a 32\-bit or 64\-bit environment. The 32\-bit
-environment sets int, long, and pointer to 32 bits. The 64\-bit
-environment sets int to 32 bits and long and pointer to 64 bits.
-.IP "\fB\-mbig\-endian\fR" 4
-.IX Item "-mbig-endian"
-.PD 0
-.IP "\fB\-mlittle\-endian\fR" 4
-.IX Item "-mlittle-endian"
-.PD
-Generate code in big/little endian mode, respectively.
-.PP
-\fITILEPro Options\fR
-.IX Subsection "TILEPro Options"
-.PP
-These \fB\-m\fR options are supported on the TILEPro:
-.IP "\fB\-mcpu=\fR\fIname\fR" 4
-.IX Item "-mcpu=name"
-Selects the type of \s-1CPU\s0 to be targeted. Currently the only supported
-type is \fBtilepro\fR.
-.IP "\fB\-m32\fR" 4
-.IX Item "-m32"
-Generate code for a 32\-bit environment, which sets int, long, and
-pointer to 32 bits. This is the only supported behavior so the flag
-is essentially ignored.
-.PP
-\fIV850 Options\fR
-.IX Subsection "V850 Options"
-.PP
-These \fB\-m\fR options are defined for V850 implementations:
-.IP "\fB\-mlong\-calls\fR" 4
-.IX Item "-mlong-calls"
-.PD 0
-.IP "\fB\-mno\-long\-calls\fR" 4
-.IX Item "-mno-long-calls"
-.PD
-Treat all calls as being far away (near). If calls are assumed to be
-far away, the compiler always loads the function's address into a
-register, and calls indirect through the pointer.
-.IP "\fB\-mno\-ep\fR" 4
-.IX Item "-mno-ep"
-.PD 0
-.IP "\fB\-mep\fR" 4
-.IX Item "-mep"
-.PD
-Do not optimize (do optimize) basic blocks that use the same index
-pointer 4 or more times to copy pointer into the \f(CW\*(C`ep\*(C'\fR register, and
-use the shorter \f(CW\*(C`sld\*(C'\fR and \f(CW\*(C`sst\*(C'\fR instructions. The \fB\-mep\fR
-option is on by default if you optimize.
-.IP "\fB\-mno\-prolog\-function\fR" 4
-.IX Item "-mno-prolog-function"
-.PD 0
-.IP "\fB\-mprolog\-function\fR" 4
-.IX Item "-mprolog-function"
-.PD
-Do not use (do use) external functions to save and restore registers
-at the prologue and epilogue of a function. The external functions
-are slower, but use less code space if more than one function saves
-the same number of registers. The \fB\-mprolog\-function\fR option
-is on by default if you optimize.
-.IP "\fB\-mspace\fR" 4
-.IX Item "-mspace"
-Try to make the code as small as possible. At present, this just turns
-on the \fB\-mep\fR and \fB\-mprolog\-function\fR options.
-.IP "\fB\-mtda=\fR\fIn\fR" 4
-.IX Item "-mtda=n"
-Put static or global variables whose size is \fIn\fR bytes or less into
-the tiny data area that register \f(CW\*(C`ep\*(C'\fR points to. The tiny data
-area can hold up to 256 bytes in total (128 bytes for byte references).
-.IP "\fB\-msda=\fR\fIn\fR" 4
-.IX Item "-msda=n"
-Put static or global variables whose size is \fIn\fR bytes or less into
-the small data area that register \f(CW\*(C`gp\*(C'\fR points to. The small data
-area can hold up to 64 kilobytes.
-.IP "\fB\-mzda=\fR\fIn\fR" 4
-.IX Item "-mzda=n"
-Put static or global variables whose size is \fIn\fR bytes or less into
-the first 32 kilobytes of memory.
-.IP "\fB\-mv850\fR" 4
-.IX Item "-mv850"
-Specify that the target processor is the V850.
-.IP "\fB\-mv850e3v5\fR" 4
-.IX Item "-mv850e3v5"
-Specify that the target processor is the V850E3V5. The preprocessor
-constant \fB_\|_v850e3v5_\|_\fR is defined if this option is used.
-.IP "\fB\-mv850e2v4\fR" 4
-.IX Item "-mv850e2v4"
-Specify that the target processor is the V850E3V5. This is an alias for
-the \fB\-mv850e3v5\fR option.
-.IP "\fB\-mv850e2v3\fR" 4
-.IX Item "-mv850e2v3"
-Specify that the target processor is the V850E2V3. The preprocessor
-constant \fB_\|_v850e2v3_\|_\fR is defined if this option is used.
-.IP "\fB\-mv850e2\fR" 4
-.IX Item "-mv850e2"
-Specify that the target processor is the V850E2. The preprocessor
-constant \fB_\|_v850e2_\|_\fR is defined if this option is used.
-.IP "\fB\-mv850e1\fR" 4
-.IX Item "-mv850e1"
-Specify that the target processor is the V850E1. The preprocessor
-constants \fB_\|_v850e1_\|_\fR and \fB_\|_v850e_\|_\fR are defined if
-this option is used.
-.IP "\fB\-mv850es\fR" 4
-.IX Item "-mv850es"
-Specify that the target processor is the V850ES. This is an alias for
-the \fB\-mv850e1\fR option.
-.IP "\fB\-mv850e\fR" 4
-.IX Item "-mv850e"
-Specify that the target processor is the V850E. The preprocessor
-constant \fB_\|_v850e_\|_\fR is defined if this option is used.
-.Sp
-If neither \fB\-mv850\fR nor \fB\-mv850e\fR nor \fB\-mv850e1\fR
-nor \fB\-mv850e2\fR nor \fB\-mv850e2v3\fR nor \fB\-mv850e3v5\fR
-are defined then a default target processor is chosen and the
-relevant \fB_\|_v850*_\|_\fR preprocessor constant is defined.
-.Sp
-The preprocessor constants \fB_\|_v850\fR and \fB_\|_v851_\|_\fR are always
-defined, regardless of which processor variant is the target.
-.IP "\fB\-mdisable\-callt\fR" 4
-.IX Item "-mdisable-callt"
-.PD 0
-.IP "\fB\-mno\-disable\-callt\fR" 4
-.IX Item "-mno-disable-callt"
-.PD
-This option suppresses generation of the \f(CW\*(C`CALLT\*(C'\fR instruction for the
-v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
-architecture.
-.Sp
-This option is enabled by default when the \s-1RH850 ABI\s0 is
-in use (see \fB\-mrh850\-abi\fR), and disabled by default when the
-\&\s-1GCC ABI\s0 is in use. If \f(CW\*(C`CALLT\*(C'\fR instructions are being generated
-then the C preprocessor symbol \f(CW\*(C`_\|_V850_CALLT_\|_\*(C'\fR will be defined.
-.IP "\fB\-mrelax\fR" 4
-.IX Item "-mrelax"
-.PD 0
-.IP "\fB\-mno\-relax\fR" 4
-.IX Item "-mno-relax"
-.PD
-Pass on (or do not pass on) the \fB\-mrelax\fR command line option
-to the assembler.
-.IP "\fB\-mlong\-jumps\fR" 4
-.IX Item "-mlong-jumps"
-.PD 0
-.IP "\fB\-mno\-long\-jumps\fR" 4
-.IX Item "-mno-long-jumps"
-.PD
-Disable (or re-enable) the generation of PC-relative jump instructions.
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-.PD 0
-.IP "\fB\-mhard\-float\fR" 4
-.IX Item "-mhard-float"
-.PD
-Disable (or re-enable) the generation of hardware floating point
-instructions. This option is only significant when the target
-architecture is \fBV850E2V3\fR or higher. If hardware floating point
-instructions are being generated then the C preprocessor symbol
-\&\f(CW\*(C`_\|_FPU_OK_\|_\*(C'\fR will be defined, otherwise the symbol
-\&\f(CW\*(C`_\|_NO_FPU_\|_\*(C'\fR will be defined.
-.IP "\fB\-mloop\fR" 4
-.IX Item "-mloop"
-Enables the use of the e3v5 \s-1LOOP\s0 instruction. The use of this
-instruction is not enabled by default when the e3v5 architecture is
-selected because its use is still experimental.
-.IP "\fB\-mrh850\-abi\fR" 4
-.IX Item "-mrh850-abi"
-.PD 0
-.IP "\fB\-mghs\fR" 4
-.IX Item "-mghs"
-.PD
-Enables support for the \s-1RH850\s0 version of the V850 \s-1ABI. \s0 This is the
-default. With this version of the \s-1ABI\s0 the following rules apply:
-.RS 4
-.IP "\(bu" 4
-Integer sized structures and unions are returned via a memory pointer
-rather than a register.
-.IP "\(bu" 4
-Large structures and unions (more than 8 bytes in size) are passed by
-value.
-.IP "\(bu" 4
-Functions are aligned to 16\-bit boundaries.
-.IP "\(bu" 4
-The \fB\-m8byte\-align\fR command line option is supported.
-.IP "\(bu" 4
-The \fB\-mdisable\-callt\fR command line option is enabled by
-default. The \fB\-mno\-disable\-callt\fR command line option is not
-supported.
-.RE
-.RS 4
-.Sp
-When this version of the \s-1ABI\s0 is enabled the C preprocessor symbol
-\&\f(CW\*(C`_\|_V850_RH850_ABI_\|_\*(C'\fR is defined.
-.RE
-.IP "\fB\-mgcc\-abi\fR" 4
-.IX Item "-mgcc-abi"
-Enables support for the old \s-1GCC\s0 version of the V850 \s-1ABI. \s0 With this
-version of the \s-1ABI\s0 the following rules apply:
-.RS 4
-.IP "\(bu" 4
-Integer sized structures and unions are returned in register \f(CW\*(C`r10\*(C'\fR.
-.IP "\(bu" 4
-Large structures and unions (more than 8 bytes in size) are passed by
-reference.
-.IP "\(bu" 4
-Functions are aligned to 32\-bit boundaries, unless optimizing for
-size.
-.IP "\(bu" 4
-The \fB\-m8byte\-align\fR command line option is not supported.
-.IP "\(bu" 4
-The \fB\-mdisable\-callt\fR command line option is supported but not
-enabled by default.
-.RE
-.RS 4
-.Sp
-When this version of the \s-1ABI\s0 is enabled the C preprocessor symbol
-\&\f(CW\*(C`_\|_V850_GCC_ABI_\|_\*(C'\fR is defined.
-.RE
-.IP "\fB\-m8byte\-align\fR" 4
-.IX Item "-m8byte-align"
-.PD 0
-.IP "\fB\-mno\-8byte\-align\fR" 4
-.IX Item "-mno-8byte-align"
-.PD
-Enables support for \f(CW\*(C`doubles\*(C'\fR and \f(CW\*(C`long long\*(C'\fR types to be
-aligned on 8\-byte boundaries. The default is to restrict the
-alignment of all objects to at most 4\-bytes. When
-\&\fB\-m8byte\-align\fR is in effect the C preprocessor symbol
-\&\f(CW\*(C`_\|_V850_8BYTE_ALIGN_\|_\*(C'\fR will be defined.
-.IP "\fB\-mbig\-switch\fR" 4
-.IX Item "-mbig-switch"
-Generate code suitable for big switch tables. Use this option only if
-the assembler/linker complain about out of range branches within a switch
-table.
-.IP "\fB\-mapp\-regs\fR" 4
-.IX Item "-mapp-regs"
-This option causes r2 and r5 to be used in the code generated by
-the compiler. This setting is the default.
-.IP "\fB\-mno\-app\-regs\fR" 4
-.IX Item "-mno-app-regs"
-This option causes r2 and r5 to be treated as fixed registers.
-.PP
-\fI\s-1VAX\s0 Options\fR
-.IX Subsection "VAX Options"
-.PP
-These \fB\-m\fR options are defined for the \s-1VAX:\s0
-.IP "\fB\-munix\fR" 4
-.IX Item "-munix"
-Do not output certain jump instructions (\f(CW\*(C`aobleq\*(C'\fR and so on)
-that the Unix assembler for the \s-1VAX\s0 cannot handle across long
-ranges.
-.IP "\fB\-mgnu\fR" 4
-.IX Item "-mgnu"
-Do output those jump instructions, on the assumption that the
-\&\s-1GNU\s0 assembler is being used.
-.IP "\fB\-mg\fR" 4
-.IX Item "-mg"
-Output code for G\-format floating-point numbers instead of D\-format.
-.PP
-\fI\s-1VMS\s0 Options\fR
-.IX Subsection "VMS Options"
-.PP
-These \fB\-m\fR options are defined for the \s-1VMS\s0 implementations:
-.IP "\fB\-mvms\-return\-codes\fR" 4
-.IX Item "-mvms-return-codes"
-Return \s-1VMS\s0 condition codes from \f(CW\*(C`main\*(C'\fR. The default is to return POSIX-style
-condition (e.g. error) codes.
-.IP "\fB\-mdebug\-main=\fR\fIprefix\fR" 4
-.IX Item "-mdebug-main=prefix"
-Flag the first routine whose name starts with \fIprefix\fR as the main
-routine for the debugger.
-.IP "\fB\-mmalloc64\fR" 4
-.IX Item "-mmalloc64"
-Default to 64\-bit memory allocation routines.
-.IP "\fB\-mpointer\-size=\fR\fIsize\fR" 4
-.IX Item "-mpointer-size=size"
-Set the default size of pointers. Possible options for \fIsize\fR are
-\&\fB32\fR or \fBshort\fR for 32 bit pointers, \fB64\fR or \fBlong\fR
-for 64 bit pointers, and \fBno\fR for supporting only 32 bit pointers.
-The later option disables \f(CW\*(C`pragma pointer_size\*(C'\fR.
-.PP
-\fIVxWorks Options\fR
-.IX Subsection "VxWorks Options"
-.PP
-The options in this section are defined for all VxWorks targets.
-Options specific to the target hardware are listed with the other
-options for that target.
-.IP "\fB\-mrtp\fR" 4
-.IX Item "-mrtp"
-\&\s-1GCC\s0 can generate code for both VxWorks kernels and real time processes
-(RTPs). This option switches from the former to the latter. It also
-defines the preprocessor macro \f(CW\*(C`_\|_RTP_\|_\*(C'\fR.
-.IP "\fB\-non\-static\fR" 4
-.IX Item "-non-static"
-Link an \s-1RTP\s0 executable against shared libraries rather than static
-libraries. The options \fB\-static\fR and \fB\-shared\fR can
-also be used for RTPs; \fB\-static\fR
-is the default.
-.IP "\fB\-Bstatic\fR" 4
-.IX Item "-Bstatic"
-.PD 0
-.IP "\fB\-Bdynamic\fR" 4
-.IX Item "-Bdynamic"
-.PD
-These options are passed down to the linker. They are defined for
-compatibility with Diab.
-.IP "\fB\-Xbind\-lazy\fR" 4
-.IX Item "-Xbind-lazy"
-Enable lazy binding of function calls. This option is equivalent to
-\&\fB\-Wl,\-z,now\fR and is defined for compatibility with Diab.
-.IP "\fB\-Xbind\-now\fR" 4
-.IX Item "-Xbind-now"
-Disable lazy binding of function calls. This option is the default and
-is defined for compatibility with Diab.
-.PP
-\fIx86\-64 Options\fR
-.IX Subsection "x86-64 Options"
-.PP
-These are listed under
-.PP
-\fIXstormy16 Options\fR
-.IX Subsection "Xstormy16 Options"
-.PP
-These options are defined for Xstormy16:
-.IP "\fB\-msim\fR" 4
-.IX Item "-msim"
-Choose startup files and linker script suitable for the simulator.
-.PP
-\fIXtensa Options\fR
-.IX Subsection "Xtensa Options"
-.PP
-These options are supported for Xtensa targets:
-.IP "\fB\-mconst16\fR" 4
-.IX Item "-mconst16"
-.PD 0
-.IP "\fB\-mno\-const16\fR" 4
-.IX Item "-mno-const16"
-.PD
-Enable or disable use of \f(CW\*(C`CONST16\*(C'\fR instructions for loading
-constant values. The \f(CW\*(C`CONST16\*(C'\fR instruction is currently not a
-standard option from Tensilica. When enabled, \f(CW\*(C`CONST16\*(C'\fR
-instructions are always used in place of the standard \f(CW\*(C`L32R\*(C'\fR
-instructions. The use of \f(CW\*(C`CONST16\*(C'\fR is enabled by default only if
-the \f(CW\*(C`L32R\*(C'\fR instruction is not available.
-.IP "\fB\-mfused\-madd\fR" 4
-.IX Item "-mfused-madd"
-.PD 0
-.IP "\fB\-mno\-fused\-madd\fR" 4
-.IX Item "-mno-fused-madd"
-.PD
-Enable or disable use of fused multiply/add and multiply/subtract
-instructions in the floating-point option. This has no effect if the
-floating-point option is not also enabled. Disabling fused multiply/add
-and multiply/subtract instructions forces the compiler to use separate
-instructions for the multiply and add/subtract operations. This may be
-desirable in some cases where strict \s-1IEEE\s0 754\-compliant results are
-required: the fused multiply add/subtract instructions do not round the
-intermediate result, thereby producing results with \fImore\fR bits of
-precision than specified by the \s-1IEEE\s0 standard. Disabling fused multiply
-add/subtract instructions also ensures that the program output is not
-sensitive to the compiler's ability to combine multiply and add/subtract
-operations.
-.IP "\fB\-mserialize\-volatile\fR" 4
-.IX Item "-mserialize-volatile"
-.PD 0
-.IP "\fB\-mno\-serialize\-volatile\fR" 4
-.IX Item "-mno-serialize-volatile"
-.PD
-When this option is enabled, \s-1GCC\s0 inserts \f(CW\*(C`MEMW\*(C'\fR instructions before
-\&\f(CW\*(C`volatile\*(C'\fR memory references to guarantee sequential consistency.
-The default is \fB\-mserialize\-volatile\fR. Use
-\&\fB\-mno\-serialize\-volatile\fR to omit the \f(CW\*(C`MEMW\*(C'\fR instructions.
-.IP "\fB\-mforce\-no\-pic\fR" 4
-.IX Item "-mforce-no-pic"
-For targets, like GNU/Linux, where all user-mode Xtensa code must be
-position-independent code (\s-1PIC\s0), this option disables \s-1PIC\s0 for compiling
-kernel code.
-.IP "\fB\-mtext\-section\-literals\fR" 4
-.IX Item "-mtext-section-literals"
-.PD 0
-.IP "\fB\-mno\-text\-section\-literals\fR" 4
-.IX Item "-mno-text-section-literals"
-.PD
-Control the treatment of literal pools. The default is
-\&\fB\-mno\-text\-section\-literals\fR, which places literals in a separate
-section in the output file. This allows the literal pool to be placed
-in a data \s-1RAM/ROM,\s0 and it also allows the linker to combine literal
-pools from separate object files to remove redundant literals and
-improve code size. With \fB\-mtext\-section\-literals\fR, the literals
-are interspersed in the text section in order to keep them as close as
-possible to their references. This may be necessary for large assembly
-files.
-.IP "\fB\-mtarget\-align\fR" 4
-.IX Item "-mtarget-align"
-.PD 0
-.IP "\fB\-mno\-target\-align\fR" 4
-.IX Item "-mno-target-align"
-.PD
-When this option is enabled, \s-1GCC\s0 instructs the assembler to
-automatically align instructions to reduce branch penalties at the
-expense of some code density. The assembler attempts to widen density
-instructions to align branch targets and the instructions following call
-instructions. If there are not enough preceding safe density
-instructions to align a target, no widening is performed. The
-default is \fB\-mtarget\-align\fR. These options do not affect the
-treatment of auto-aligned instructions like \f(CW\*(C`LOOP\*(C'\fR, which the
-assembler always aligns, either by widening density instructions or
-by inserting \s-1NOP\s0 instructions.
-.IP "\fB\-mlongcalls\fR" 4
-.IX Item "-mlongcalls"
-.PD 0
-.IP "\fB\-mno\-longcalls\fR" 4
-.IX Item "-mno-longcalls"
-.PD
-When this option is enabled, \s-1GCC\s0 instructs the assembler to translate
-direct calls to indirect calls unless it can determine that the target
-of a direct call is in the range allowed by the call instruction. This
-translation typically occurs for calls to functions in other source
-files. Specifically, the assembler translates a direct \f(CW\*(C`CALL\*(C'\fR
-instruction into an \f(CW\*(C`L32R\*(C'\fR followed by a \f(CW\*(C`CALLX\*(C'\fR instruction.
-The default is \fB\-mno\-longcalls\fR. This option should be used in
-programs where the call target can potentially be out of range. This
-option is implemented in the assembler, not the compiler, so the
-assembly code generated by \s-1GCC\s0 still shows direct call
-instructions\-\-\-look at the disassembled object code to see the actual
-instructions. Note that the assembler uses an indirect call for
-every cross-file call, not just those that really are out of range.
-.PP
-\fIzSeries Options\fR
-.IX Subsection "zSeries Options"
-.PP
-These are listed under
-.SS "Options for Code Generation Conventions"
-.IX Subsection "Options for Code Generation Conventions"
-These machine-independent options control the interface conventions
-used in code generation.
-.PP
-Most of them have both positive and negative forms; the negative form
-of \fB\-ffoo\fR is \fB\-fno\-foo\fR. In the table below, only
-one of the forms is listed\-\-\-the one that is not the default. You
-can figure out the other form by either removing \fBno\-\fR or adding
-it.
-.IP "\fB\-fbounds\-check\fR" 4
-.IX Item "-fbounds-check"
-For front ends that support it, generate additional code to check that
-indices used to access arrays are within the declared range. This is
-currently only supported by the Java and Fortran front ends, where
-this option defaults to true and false respectively.
-.IP "\fB\-fstack\-reuse=\fR\fIreuse-level\fR" 4
-.IX Item "-fstack-reuse=reuse-level"
-This option controls stack space reuse for user declared local/auto variables
-and compiler generated temporaries. \fIreuse_level\fR can be \fBall\fR,
-\&\fBnamed_vars\fR, or \fBnone\fR. \fBall\fR enables stack reuse for all
-local variables and temporaries, \fBnamed_vars\fR enables the reuse only for
-user defined local variables with names, and \fBnone\fR disables stack reuse
-completely. The default value is \fBall\fR. The option is needed when the
-program extends the lifetime of a scoped local variable or a compiler generated
-temporary beyond the end point defined by the language. When a lifetime of
-a variable ends, and if the variable lives in memory, the optimizing compiler
-has the freedom to reuse its stack space with other temporaries or scoped
-local variables whose live range does not overlap with it. Legacy code extending
-local lifetime will likely to break with the stack reuse optimization.
-.Sp
-For example,
-.Sp
-.Vb 3
-\& int *p;
-\& {
-\& int local1;
-\&
-\& p = &local1;
-\& local1 = 10;
-\& ....
-\& }
-\& {
-\& int local2;
-\& local2 = 20;
-\& ...
-\& }
-\&
-\& if (*p == 10) // out of scope use of local1
-\& {
-\&
-\& }
-.Ve
-.Sp
-Another example:
-.Sp
-.Vb 6
-\& struct A
-\& {
-\& A(int k) : i(k), j(k) { }
-\& int i;
-\& int j;
-\& };
-\&
-\& A *ap;
-\&
-\& void foo(const A& ar)
-\& {
-\& ap = &ar;
-\& }
-\&
-\& void bar()
-\& {
-\& foo(A(10)); // temp object\*(Aqs lifetime ends when foo returns
-\&
-\& {
-\& A a(20);
-\& ....
-\& }
-\& ap\->i+= 10; // ap references out of scope temp whose space
-\& // is reused with a. What is the value of ap\->i?
-\& }
-.Ve
-.Sp
-The lifetime of a compiler generated temporary is well defined by the \*(C+
-standard. When a lifetime of a temporary ends, and if the temporary lives
-in memory, the optimizing compiler has the freedom to reuse its stack
-space with other temporaries or scoped local variables whose live range
-does not overlap with it. However some of the legacy code relies on
-the behavior of older compilers in which temporaries' stack space is
-not reused, the aggressive stack reuse can lead to runtime errors. This
-option is used to control the temporary stack reuse optimization.
-.IP "\fB\-ftrapv\fR" 4
-.IX Item "-ftrapv"
-This option generates traps for signed overflow on addition, subtraction,
-multiplication operations.
-.IP "\fB\-fwrapv\fR" 4
-.IX Item "-fwrapv"
-This option instructs the compiler to assume that signed arithmetic
-overflow of addition, subtraction and multiplication wraps around
-using twos-complement representation. This flag enables some optimizations
-and disables others. This option is enabled by default for the Java
-front end, as required by the Java language specification.
-.IP "\fB\-fexceptions\fR" 4
-.IX Item "-fexceptions"
-Enable exception handling. Generates extra code needed to propagate
-exceptions. For some targets, this implies \s-1GCC\s0 generates frame
-unwind information for all functions, which can produce significant data
-size overhead, although it does not affect execution. If you do not
-specify this option, \s-1GCC\s0 enables it by default for languages like
-\&\*(C+ that normally require exception handling, and disables it for
-languages like C that do not normally require it. However, you may need
-to enable this option when compiling C code that needs to interoperate
-properly with exception handlers written in \*(C+. You may also wish to
-disable this option if you are compiling older \*(C+ programs that don't
-use exception handling.
-.IP "\fB\-fnon\-call\-exceptions\fR" 4
-.IX Item "-fnon-call-exceptions"
-Generate code that allows trapping instructions to throw exceptions.
-Note that this requires platform-specific runtime support that does
-not exist everywhere. Moreover, it only allows \fItrapping\fR
-instructions to throw exceptions, i.e. memory references or floating-point
-instructions. It does not allow exceptions to be thrown from
-arbitrary signal handlers such as \f(CW\*(C`SIGALRM\*(C'\fR.
-.IP "\fB\-fdelete\-dead\-exceptions\fR" 4
-.IX Item "-fdelete-dead-exceptions"
-Consider that instructions that may throw exceptions but don't otherwise
-contribute to the execution of the program can be optimized away.
-This option is enabled by default for the Ada front end, as permitted by
-the Ada language specification.
-Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
-.IP "\fB\-funwind\-tables\fR" 4
-.IX Item "-funwind-tables"
-Similar to \fB\-fexceptions\fR, except that it just generates any needed
-static data, but does not affect the generated code in any other way.
-You normally do not need to enable this option; instead, a language processor
-that needs this handling enables it on your behalf.
-.IP "\fB\-fasynchronous\-unwind\-tables\fR" 4
-.IX Item "-fasynchronous-unwind-tables"
-Generate unwind table in \s-1DWARF 2\s0 format, if supported by target machine. The
-table is exact at each instruction boundary, so it can be used for stack
-unwinding from asynchronous events (such as debugger or garbage collector).
-.IP "\fB\-fno\-gnu\-unique\fR" 4
-.IX Item "-fno-gnu-unique"
-On systems with recent \s-1GNU\s0 assembler and C library, the \*(C+ compiler
-uses the \f(CW\*(C`STB_GNU_UNIQUE\*(C'\fR binding to make sure that definitions
-of template static data members and static local variables in inline
-functions are unique even in the presence of \f(CW\*(C`RTLD_LOCAL\*(C'\fR; this
-is necessary to avoid problems with a library used by two different
-\&\f(CW\*(C`RTLD_LOCAL\*(C'\fR plugins depending on a definition in one of them and
-therefore disagreeing with the other one about the binding of the
-symbol. But this causes \f(CW\*(C`dlclose\*(C'\fR to be ignored for affected
-DSOs; if your program relies on reinitialization of a \s-1DSO\s0 via
-\&\f(CW\*(C`dlclose\*(C'\fR and \f(CW\*(C`dlopen\*(C'\fR, you can use
-\&\fB\-fno\-gnu\-unique\fR.
-.IP "\fB\-fpcc\-struct\-return\fR" 4
-.IX Item "-fpcc-struct-return"
-Return \*(L"short\*(R" \f(CW\*(C`struct\*(C'\fR and \f(CW\*(C`union\*(C'\fR values in memory like
-longer ones, rather than in registers. This convention is less
-efficient, but it has the advantage of allowing intercallability between
-GCC-compiled files and files compiled with other compilers, particularly
-the Portable C Compiler (pcc).
-.Sp
-The precise convention for returning structures in memory depends
-on the target configuration macros.
-.Sp
-Short structures and unions are those whose size and alignment match
-that of some integer type.
-.Sp
-\&\fBWarning:\fR code compiled with the \fB\-fpcc\-struct\-return\fR
-switch is not binary compatible with code compiled with the
-\&\fB\-freg\-struct\-return\fR switch.
-Use it to conform to a non-default application binary interface.
-.IP "\fB\-freg\-struct\-return\fR" 4
-.IX Item "-freg-struct-return"
-Return \f(CW\*(C`struct\*(C'\fR and \f(CW\*(C`union\*(C'\fR values in registers when possible.
-This is more efficient for small structures than
-\&\fB\-fpcc\-struct\-return\fR.
-.Sp
-If you specify neither \fB\-fpcc\-struct\-return\fR nor
-\&\fB\-freg\-struct\-return\fR, \s-1GCC\s0 defaults to whichever convention is
-standard for the target. If there is no standard convention, \s-1GCC\s0
-defaults to \fB\-fpcc\-struct\-return\fR, except on targets where \s-1GCC\s0 is
-the principal compiler. In those cases, we can choose the standard, and
-we chose the more efficient register return alternative.
-.Sp
-\&\fBWarning:\fR code compiled with the \fB\-freg\-struct\-return\fR
-switch is not binary compatible with code compiled with the
-\&\fB\-fpcc\-struct\-return\fR switch.
-Use it to conform to a non-default application binary interface.
-.IP "\fB\-fshort\-enums\fR" 4
-.IX Item "-fshort-enums"
-Allocate to an \f(CW\*(C`enum\*(C'\fR type only as many bytes as it needs for the
-declared range of possible values. Specifically, the \f(CW\*(C`enum\*(C'\fR type
-is equivalent to the smallest integer type that has enough room.
-.Sp
-\&\fBWarning:\fR the \fB\-fshort\-enums\fR switch causes \s-1GCC\s0 to generate
-code that is not binary compatible with code generated without that switch.
-Use it to conform to a non-default application binary interface.
-.IP "\fB\-fshort\-double\fR" 4
-.IX Item "-fshort-double"
-Use the same size for \f(CW\*(C`double\*(C'\fR as for \f(CW\*(C`float\*(C'\fR.
-.Sp
-\&\fBWarning:\fR the \fB\-fshort\-double\fR switch causes \s-1GCC\s0 to generate
-code that is not binary compatible with code generated without that switch.
-Use it to conform to a non-default application binary interface.
-.IP "\fB\-fshort\-wchar\fR" 4
-.IX Item "-fshort-wchar"
-Override the underlying type for \fBwchar_t\fR to be \fBshort
-unsigned int\fR instead of the default for the target. This option is
-useful for building programs to run under \s-1WINE.\s0
-.Sp
-\&\fBWarning:\fR the \fB\-fshort\-wchar\fR switch causes \s-1GCC\s0 to generate
-code that is not binary compatible with code generated without that switch.
-Use it to conform to a non-default application binary interface.
-.IP "\fB\-fno\-common\fR" 4
-.IX Item "-fno-common"
-In C code, controls the placement of uninitialized global variables.
-Unix C compilers have traditionally permitted multiple definitions of
-such variables in different compilation units by placing the variables
-in a common block.
-This is the behavior specified by \fB\-fcommon\fR, and is the default
-for \s-1GCC\s0 on most targets.
-On the other hand, this behavior is not required by \s-1ISO C,\s0 and on some
-targets may carry a speed or code size penalty on variable references.
-The \fB\-fno\-common\fR option specifies that the compiler should place
-uninitialized global variables in the data section of the object file,
-rather than generating them as common blocks.
-This has the effect that if the same variable is declared
-(without \f(CW\*(C`extern\*(C'\fR) in two different compilations,
-you get a multiple-definition error when you link them.
-In this case, you must compile with \fB\-fcommon\fR instead.
-Compiling with \fB\-fno\-common\fR is useful on targets for which
-it provides better performance, or if you wish to verify that the
-program will work on other systems that always treat uninitialized
-variable declarations this way.
-.IP "\fB\-fno\-ident\fR" 4
-.IX Item "-fno-ident"
-Ignore the \fB#ident\fR directive.
-.IP "\fB\-finhibit\-size\-directive\fR" 4
-.IX Item "-finhibit-size-directive"
-Don't output a \f(CW\*(C`.size\*(C'\fR assembler directive, or anything else that
-would cause trouble if the function is split in the middle, and the
-two halves are placed at locations far apart in memory. This option is
-used when compiling \fIcrtstuff.c\fR; you should not need to use it
-for anything else.
-.IP "\fB\-fverbose\-asm\fR" 4
-.IX Item "-fverbose-asm"
-Put extra commentary information in the generated assembly code to
-make it more readable. This option is generally only of use to those
-who actually need to read the generated assembly code (perhaps while
-debugging the compiler itself).
-.Sp
-\&\fB\-fno\-verbose\-asm\fR, the default, causes the
-extra information to be omitted and is useful when comparing two assembler
-files.
-.IP "\fB\-frecord\-gcc\-switches\fR" 4
-.IX Item "-frecord-gcc-switches"
-This switch causes the command line used to invoke the
-compiler to be recorded into the object file that is being created.
-This switch is only implemented on some targets and the exact format
-of the recording is target and binary file format dependent, but it
-usually takes the form of a section containing \s-1ASCII\s0 text. This
-switch is related to the \fB\-fverbose\-asm\fR switch, but that
-switch only records information in the assembler output file as
-comments, so it never reaches the object file.
-See also \fB\-grecord\-gcc\-switches\fR for another
-way of storing compiler options into the object file.
-.IP "\fB\-fpic\fR" 4
-.IX Item "-fpic"
-Generate position-independent code (\s-1PIC\s0) suitable for use in a shared
-library, if supported for the target machine. Such code accesses all
-constant addresses through a global offset table (\s-1GOT\s0). The dynamic
-loader resolves the \s-1GOT\s0 entries when the program starts (the dynamic
-loader is not part of \s-1GCC\s0; it is part of the operating system). If
-the \s-1GOT\s0 size for the linked executable exceeds a machine-specific
-maximum size, you get an error message from the linker indicating that
-\&\fB\-fpic\fR does not work; in that case, recompile with \fB\-fPIC\fR
-instead. (These maximums are 8k on the \s-1SPARC\s0 and 32k
-on the m68k and \s-1RS/6000. \s0 The 386 has no such limit.)
-.Sp
-Position-independent code requires special support, and therefore works
-only on certain machines. For the 386, \s-1GCC\s0 supports \s-1PIC\s0 for System V
-but not for the Sun 386i. Code generated for the \s-1IBM RS/6000\s0 is always
-position-independent.
-.Sp
-When this flag is set, the macros \f(CW\*(C`_\|_pic_\|_\*(C'\fR and \f(CW\*(C`_\|_PIC_\|_\*(C'\fR
-are defined to 1.
-.IP "\fB\-fPIC\fR" 4
-.IX Item "-fPIC"
-If supported for the target machine, emit position-independent code,
-suitable for dynamic linking and avoiding any limit on the size of the
-global offset table. This option makes a difference on the m68k,
-PowerPC and \s-1SPARC.\s0
-.Sp
-Position-independent code requires special support, and therefore works
-only on certain machines.
-.Sp
-When this flag is set, the macros \f(CW\*(C`_\|_pic_\|_\*(C'\fR and \f(CW\*(C`_\|_PIC_\|_\*(C'\fR
-are defined to 2.
-.IP "\fB\-fpie\fR" 4
-.IX Item "-fpie"
-.PD 0
-.IP "\fB\-fPIE\fR" 4
-.IX Item "-fPIE"
-.PD
-These options are similar to \fB\-fpic\fR and \fB\-fPIC\fR, but
-generated position independent code can be only linked into executables.
-Usually these options are used when \fB\-pie\fR \s-1GCC\s0 option is
-used during linking.
-.Sp
-\&\fB\-fpie\fR and \fB\-fPIE\fR both define the macros
-\&\f(CW\*(C`_\|_pie_\|_\*(C'\fR and \f(CW\*(C`_\|_PIE_\|_\*(C'\fR. The macros have the value 1
-for \fB\-fpie\fR and 2 for \fB\-fPIE\fR.
-.IP "\fB\-fno\-jump\-tables\fR" 4
-.IX Item "-fno-jump-tables"
-Do not use jump tables for switch statements even where it would be
-more efficient than other code generation strategies. This option is
-of use in conjunction with \fB\-fpic\fR or \fB\-fPIC\fR for
-building code that forms part of a dynamic linker and cannot
-reference the address of a jump table. On some targets, jump tables
-do not require a \s-1GOT\s0 and this option is not needed.
-.IP "\fB\-ffixed\-\fR\fIreg\fR" 4
-.IX Item "-ffixed-reg"
-Treat the register named \fIreg\fR as a fixed register; generated code
-should never refer to it (except perhaps as a stack pointer, frame
-pointer or in some other fixed role).
-.Sp
-\&\fIreg\fR must be the name of a register. The register names accepted
-are machine-specific and are defined in the \f(CW\*(C`REGISTER_NAMES\*(C'\fR
-macro in the machine description macro file.
-.Sp
-This flag does not have a negative form, because it specifies a
-three-way choice.
-.IP "\fB\-fcall\-used\-\fR\fIreg\fR" 4
-.IX Item "-fcall-used-reg"
-Treat the register named \fIreg\fR as an allocable register that is
-clobbered by function calls. It may be allocated for temporaries or
-variables that do not live across a call. Functions compiled this way
-do not save and restore the register \fIreg\fR.
-.Sp
-It is an error to use this flag with the frame pointer or stack pointer.
-Use of this flag for other registers that have fixed pervasive roles in
-the machine's execution model produces disastrous results.
-.Sp
-This flag does not have a negative form, because it specifies a
-three-way choice.
-.IP "\fB\-fcall\-saved\-\fR\fIreg\fR" 4
-.IX Item "-fcall-saved-reg"
-Treat the register named \fIreg\fR as an allocable register saved by
-functions. It may be allocated even for temporaries or variables that
-live across a call. Functions compiled this way save and restore
-the register \fIreg\fR if they use it.
-.Sp
-It is an error to use this flag with the frame pointer or stack pointer.
-Use of this flag for other registers that have fixed pervasive roles in
-the machine's execution model produces disastrous results.
-.Sp
-A different sort of disaster results from the use of this flag for
-a register in which function values may be returned.
-.Sp
-This flag does not have a negative form, because it specifies a
-three-way choice.
-.IP "\fB\-fpack\-struct[=\fR\fIn\fR\fB]\fR" 4
-.IX Item "-fpack-struct[=n]"
-Without a value specified, pack all structure members together without
-holes. When a value is specified (which must be a small power of two), pack
-structure members according to this value, representing the maximum
-alignment (that is, objects with default alignment requirements larger than
-this are output potentially unaligned at the next fitting location.
-.Sp
-\&\fBWarning:\fR the \fB\-fpack\-struct\fR switch causes \s-1GCC\s0 to generate
-code that is not binary compatible with code generated without that switch.
-Additionally, it makes the code suboptimal.
-Use it to conform to a non-default application binary interface.
-.IP "\fB\-finstrument\-functions\fR" 4
-.IX Item "-finstrument-functions"
-Generate instrumentation calls for entry and exit to functions. Just
-after function entry and just before function exit, the following
-profiling functions are called with the address of the current
-function and its call site. (On some platforms,
-\&\f(CW\*(C`_\|_builtin_return_address\*(C'\fR does not work beyond the current
-function, so the call site information may not be available to the
-profiling functions otherwise.)
-.Sp
-.Vb 4
-\& void _\|_cyg_profile_func_enter (void *this_fn,
-\& void *call_site);
-\& void _\|_cyg_profile_func_exit (void *this_fn,
-\& void *call_site);
-.Ve
-.Sp
-The first argument is the address of the start of the current function,
-which may be looked up exactly in the symbol table.
-.Sp
-This instrumentation is also done for functions expanded inline in other
-functions. The profiling calls indicate where, conceptually, the
-inline function is entered and exited. This means that addressable
-versions of such functions must be available. If all your uses of a
-function are expanded inline, this may mean an additional expansion of
-code size. If you use \fBextern inline\fR in your C code, an
-addressable version of such functions must be provided. (This is
-normally the case anyway, but if you get lucky and the optimizer always
-expands the functions inline, you might have gotten away without
-providing static copies.)
-.Sp
-A function may be given the attribute \f(CW\*(C`no_instrument_function\*(C'\fR, in
-which case this instrumentation is not done. This can be used, for
-example, for the profiling functions listed above, high-priority
-interrupt routines, and any functions from which the profiling functions
-cannot safely be called (perhaps signal handlers, if the profiling
-routines generate output or allocate memory).
-.IP "\fB\-finstrument\-functions\-exclude\-file\-list=\fR\fIfile\fR\fB,\fR\fIfile\fR\fB,...\fR" 4
-.IX Item "-finstrument-functions-exclude-file-list=file,file,..."
-Set the list of functions that are excluded from instrumentation (see
-the description of \f(CW\*(C`\-finstrument\-functions\*(C'\fR). If the file that
-contains a function definition matches with one of \fIfile\fR, then
-that function is not instrumented. The match is done on substrings:
-if the \fIfile\fR parameter is a substring of the file name, it is
-considered to be a match.
-.Sp
-For example:
-.Sp
-.Vb 1
-\& \-finstrument\-functions\-exclude\-file\-list=/bits/stl,include/sys
-.Ve
-.Sp
-excludes any inline function defined in files whose pathnames
-contain \f(CW\*(C`/bits/stl\*(C'\fR or \f(CW\*(C`include/sys\*(C'\fR.
-.Sp
-If, for some reason, you want to include letter \f(CW\*(Aq,\*(Aq\fR in one of
-\&\fIsym\fR, write \f(CW\*(Aq,\*(Aq\fR. For example,
-\&\f(CW\*(C`\-finstrument\-functions\-exclude\-file\-list=\*(Aq,,tmp\*(Aq\*(C'\fR
-(note the single quote surrounding the option).
-.IP "\fB\-finstrument\-functions\-exclude\-function\-list=\fR\fIsym\fR\fB,\fR\fIsym\fR\fB,...\fR" 4
-.IX Item "-finstrument-functions-exclude-function-list=sym,sym,..."
-This is similar to \f(CW\*(C`\-finstrument\-functions\-exclude\-file\-list\*(C'\fR,
-but this option sets the list of function names to be excluded from
-instrumentation. The function name to be matched is its user-visible
-name, such as \f(CW\*(C`vector<int> blah(const vector<int> &)\*(C'\fR, not the
-internal mangled name (e.g., \f(CW\*(C`_Z4blahRSt6vectorIiSaIiEE\*(C'\fR). The
-match is done on substrings: if the \fIsym\fR parameter is a substring
-of the function name, it is considered to be a match. For C99 and \*(C+
-extended identifiers, the function name must be given in \s-1UTF\-8,\s0 not
-using universal character names.
-.IP "\fB\-fstack\-check\fR" 4
-.IX Item "-fstack-check"
-Generate code to verify that you do not go beyond the boundary of the
-stack. You should specify this flag if you are running in an
-environment with multiple threads, but you only rarely need to specify it in
-a single-threaded environment since stack overflow is automatically
-detected on nearly all systems if there is only one stack.
-.Sp
-Note that this switch does not actually cause checking to be done; the
-operating system or the language runtime must do that. The switch causes
-generation of code to ensure that they see the stack being extended.
-.Sp
-You can additionally specify a string parameter: \f(CW\*(C`no\*(C'\fR means no
-checking, \f(CW\*(C`generic\*(C'\fR means force the use of old-style checking,
-\&\f(CW\*(C`specific\*(C'\fR means use the best checking method and is equivalent
-to bare \fB\-fstack\-check\fR.
-.Sp
-Old-style checking is a generic mechanism that requires no specific
-target support in the compiler but comes with the following drawbacks:
-.RS 4
-.IP "1." 4
-Modified allocation strategy for large objects: they are always
-allocated dynamically if their size exceeds a fixed threshold.
-.IP "2." 4
-Fixed limit on the size of the static frame of functions: when it is
-topped by a particular function, stack checking is not reliable and
-a warning is issued by the compiler.
-.IP "3." 4
-Inefficiency: because of both the modified allocation strategy and the
-generic implementation, code performance is hampered.
-.RE
-.RS 4
-.Sp
-Note that old-style stack checking is also the fallback method for
-\&\f(CW\*(C`specific\*(C'\fR if no target support has been added in the compiler.
-.RE
-.IP "\fB\-fstack\-limit\-register=\fR\fIreg\fR" 4
-.IX Item "-fstack-limit-register=reg"
-.PD 0
-.IP "\fB\-fstack\-limit\-symbol=\fR\fIsym\fR" 4
-.IX Item "-fstack-limit-symbol=sym"
-.IP "\fB\-fno\-stack\-limit\fR" 4
-.IX Item "-fno-stack-limit"
-.PD
-Generate code to ensure that the stack does not grow beyond a certain value,
-either the value of a register or the address of a symbol. If a larger
-stack is required, a signal is raised at run time. For most targets,
-the signal is raised before the stack overruns the boundary, so
-it is possible to catch the signal without taking special precautions.
-.Sp
-For instance, if the stack starts at absolute address \fB0x80000000\fR
-and grows downwards, you can use the flags
-\&\fB\-fstack\-limit\-symbol=_\|_stack_limit\fR and
-\&\fB\-Wl,\-\-defsym,_\|_stack_limit=0x7ffe0000\fR to enforce a stack limit
-of 128KB. Note that this may only work with the \s-1GNU\s0 linker.
-.IP "\fB\-fsplit\-stack\fR" 4
-.IX Item "-fsplit-stack"
-Generate code to automatically split the stack before it overflows.
-The resulting program has a discontiguous stack which can only
-overflow if the program is unable to allocate any more memory. This
-is most useful when running threaded programs, as it is no longer
-necessary to calculate a good stack size to use for each thread. This
-is currently only implemented for the i386 and x86_64 back ends running
-GNU/Linux.
-.Sp
-When code compiled with \fB\-fsplit\-stack\fR calls code compiled
-without \fB\-fsplit\-stack\fR, there may not be much stack space
-available for the latter code to run. If compiling all code,
-including library code, with \fB\-fsplit\-stack\fR is not an option,
-then the linker can fix up these calls so that the code compiled
-without \fB\-fsplit\-stack\fR always has a large stack. Support for
-this is implemented in the gold linker in \s-1GNU\s0 binutils release 2.21
-and later.
-.IP "\fB\-fleading\-underscore\fR" 4
-.IX Item "-fleading-underscore"
-This option and its counterpart, \fB\-fno\-leading\-underscore\fR, forcibly
-change the way C symbols are represented in the object file. One use
-is to help link with legacy assembly code.
-.Sp
-\&\fBWarning:\fR the \fB\-fleading\-underscore\fR switch causes \s-1GCC\s0 to
-generate code that is not binary compatible with code generated without that
-switch. Use it to conform to a non-default application binary interface.
-Not all targets provide complete support for this switch.
-.IP "\fB\-ftls\-model=\fR\fImodel\fR" 4
-.IX Item "-ftls-model=model"
-Alter the thread-local storage model to be used.
-The \fImodel\fR argument should be one of \f(CW\*(C`global\-dynamic\*(C'\fR,
-\&\f(CW\*(C`local\-dynamic\*(C'\fR, \f(CW\*(C`initial\-exec\*(C'\fR or \f(CW\*(C`local\-exec\*(C'\fR.
-Note that the choice is subject to optimization: the compiler may use
-a more efficient model for symbols not visible outside of the translation
-unit, or if \fB\-fpic\fR is not given on the command line.
-.Sp
-The default without \fB\-fpic\fR is \f(CW\*(C`initial\-exec\*(C'\fR; with
-\&\fB\-fpic\fR the default is \f(CW\*(C`global\-dynamic\*(C'\fR.
-.IP "\fB\-fvisibility=\fR\fIdefault|internal|hidden|protected\fR" 4
-.IX Item "-fvisibility=default|internal|hidden|protected"
-Set the default \s-1ELF\s0 image symbol visibility to the specified option\-\-\-all
-symbols are marked with this unless overridden within the code.
-Using this feature can very substantially improve linking and
-load times of shared object libraries, produce more optimized
-code, provide near-perfect \s-1API\s0 export and prevent symbol clashes.
-It is \fBstrongly\fR recommended that you use this in any shared objects
-you distribute.
-.Sp
-Despite the nomenclature, \f(CW\*(C`default\*(C'\fR always means public; i.e.,
-available to be linked against from outside the shared object.
-\&\f(CW\*(C`protected\*(C'\fR and \f(CW\*(C`internal\*(C'\fR are pretty useless in real-world
-usage so the only other commonly used option is \f(CW\*(C`hidden\*(C'\fR.
-The default if \fB\-fvisibility\fR isn't specified is
-\&\f(CW\*(C`default\*(C'\fR, i.e., make every
-symbol public\-\-\-this causes the same behavior as previous versions of
-\&\s-1GCC.\s0
-.Sp
-A good explanation of the benefits offered by ensuring \s-1ELF\s0
-symbols have the correct visibility is given by \*(L"How To Write
-Shared Libraries\*(R" by Ulrich Drepper (which can be found at
-<\fBhttp://people.redhat.com/~drepper/\fR>)\-\-\-however a superior
-solution made possible by this option to marking things hidden when
-the default is public is to make the default hidden and mark things
-public. This is the norm with DLLs on Windows and with \fB\-fvisibility=hidden\fR
-and \f(CW\*(C`_\|_attribute_\|_ ((visibility("default")))\*(C'\fR instead of
-\&\f(CW\*(C`_\|_declspec(dllexport)\*(C'\fR you get almost identical semantics with
-identical syntax. This is a great boon to those working with
-cross-platform projects.
-.Sp
-For those adding visibility support to existing code, you may find
-\&\fB#pragma \s-1GCC\s0 visibility\fR of use. This works by you enclosing
-the declarations you wish to set visibility for with (for example)
-\&\fB#pragma \s-1GCC\s0 visibility push(hidden)\fR and
-\&\fB#pragma \s-1GCC\s0 visibility pop\fR.
-Bear in mind that symbol visibility should be viewed \fBas
-part of the \s-1API\s0 interface contract\fR and thus all new code should
-always specify visibility when it is not the default; i.e., declarations
-only for use within the local \s-1DSO\s0 should \fBalways\fR be marked explicitly
-as hidden as so to avoid \s-1PLT\s0 indirection overheads\-\-\-making this
-abundantly clear also aids readability and self-documentation of the code.
-Note that due to \s-1ISO \*(C+\s0 specification requirements, \f(CW\*(C`operator new\*(C'\fR and
-\&\f(CW\*(C`operator delete\*(C'\fR must always be of default visibility.
-.Sp
-Be aware that headers from outside your project, in particular system
-headers and headers from any other library you use, may not be
-expecting to be compiled with visibility other than the default. You
-may need to explicitly say \fB#pragma \s-1GCC\s0 visibility push(default)\fR
-before including any such headers.
-.Sp
-\&\fBextern\fR declarations are not affected by \fB\-fvisibility\fR, so
-a lot of code can be recompiled with \fB\-fvisibility=hidden\fR with
-no modifications. However, this means that calls to \f(CW\*(C`extern\*(C'\fR
-functions with no explicit visibility use the \s-1PLT,\s0 so it is more
-effective to use \f(CW\*(C`_\|_attribute ((visibility))\*(C'\fR and/or
-\&\f(CW\*(C`#pragma GCC visibility\*(C'\fR to tell the compiler which \f(CW\*(C`extern\*(C'\fR
-declarations should be treated as hidden.
-.Sp
-Note that \fB\-fvisibility\fR does affect \*(C+ vague linkage
-entities. This means that, for instance, an exception class that is
-be thrown between DSOs must be explicitly marked with default
-visibility so that the \fBtype_info\fR nodes are unified between
-the DSOs.
-.Sp
-An overview of these techniques, their benefits and how to use them
-is at <\fBhttp://gcc.gnu.org/wiki/Visibility\fR>.
-.IP "\fB\-fstrict\-volatile\-bitfields\fR" 4
-.IX Item "-fstrict-volatile-bitfields"
-This option should be used if accesses to volatile bit-fields (or other
-structure fields, although the compiler usually honors those types
-anyway) should use a single access of the width of the
-field's type, aligned to a natural alignment if possible. For
-example, targets with memory-mapped peripheral registers might require
-all such accesses to be 16 bits wide; with this flag you can
-declare all peripheral bit-fields as \f(CW\*(C`unsigned short\*(C'\fR (assuming short
-is 16 bits on these targets) to force \s-1GCC\s0 to use 16\-bit accesses
-instead of, perhaps, a more efficient 32\-bit access.
-.Sp
-If this option is disabled, the compiler uses the most efficient
-instruction. In the previous example, that might be a 32\-bit load
-instruction, even though that accesses bytes that do not contain
-any portion of the bit-field, or memory-mapped registers unrelated to
-the one being updated.
-.Sp
-In some cases, such as when the \f(CW\*(C`packed\*(C'\fR attribute is applied to a
-structure field, it may not be possible to access the field with a single
-read or write that is correctly aligned for the target machine. In this
-case \s-1GCC\s0 falls back to generating multiple accesses rather than code that
-will fault or truncate the result at run time.
-.Sp
-Note: Due to restrictions of the C/\*(C+11 memory model, write accesses are
-not allowed to touch non bit-field members. It is therefore recommended
-to define all bits of the field's type as bit-field members.
-.Sp
-The default value of this option is determined by the application binary
-interface for the target processor.
-.IP "\fB\-fsync\-libcalls\fR" 4
-.IX Item "-fsync-libcalls"
-This option controls whether any out-of-line instance of the \f(CW\*(C`_\|_sync\*(C'\fR
-family of functions may be used to implement the \*(C+11 \f(CW\*(C`_\|_atomic\*(C'\fR
-family of functions.
-.Sp
-The default value of this option is enabled, thus the only useful form
-of the option is \fB\-fno\-sync\-libcalls\fR. This option is used in
-the implementation of the \fIlibatomic\fR runtime library.
-.SH "ENVIRONMENT"
-.IX Header "ENVIRONMENT"
-This section describes several environment variables that affect how \s-1GCC\s0
-operates. Some of them work by specifying directories or prefixes to use
-when searching for various kinds of files. Some are used to specify other
-aspects of the compilation environment.
-.PP
-Note that you can also specify places to search using options such as
-\&\fB\-B\fR, \fB\-I\fR and \fB\-L\fR. These
-take precedence over places specified using environment variables, which
-in turn take precedence over those specified by the configuration of \s-1GCC.\s0
-.IP "\fB\s-1LANG\s0\fR" 4
-.IX Item "LANG"
-.PD 0
-.IP "\fB\s-1LC_CTYPE\s0\fR" 4
-.IX Item "LC_CTYPE"
-.IP "\fB\s-1LC_MESSAGES\s0\fR" 4
-.IX Item "LC_MESSAGES"
-.IP "\fB\s-1LC_ALL\s0\fR" 4
-.IX Item "LC_ALL"
-.PD
-These environment variables control the way that \s-1GCC\s0 uses
-localization information which allows \s-1GCC\s0 to work with different
-national conventions. \s-1GCC\s0 inspects the locale categories
-\&\fB\s-1LC_CTYPE\s0\fR and \fB\s-1LC_MESSAGES\s0\fR if it has been configured to do
-so. These locale categories can be set to any value supported by your
-installation. A typical value is \fBen_GB.UTF\-8\fR for English in the United
-Kingdom encoded in \s-1UTF\-8.\s0
-.Sp
-The \fB\s-1LC_CTYPE\s0\fR environment variable specifies character
-classification. \s-1GCC\s0 uses it to determine the character boundaries in
-a string; this is needed for some multibyte encodings that contain quote
-and escape characters that are otherwise interpreted as a string
-end or escape.
-.Sp
-The \fB\s-1LC_MESSAGES\s0\fR environment variable specifies the language to
-use in diagnostic messages.
-.Sp
-If the \fB\s-1LC_ALL\s0\fR environment variable is set, it overrides the value
-of \fB\s-1LC_CTYPE\s0\fR and \fB\s-1LC_MESSAGES\s0\fR; otherwise, \fB\s-1LC_CTYPE\s0\fR
-and \fB\s-1LC_MESSAGES\s0\fR default to the value of the \fB\s-1LANG\s0\fR
-environment variable. If none of these variables are set, \s-1GCC\s0
-defaults to traditional C English behavior.
-.IP "\fB\s-1TMPDIR\s0\fR" 4
-.IX Item "TMPDIR"
-If \fB\s-1TMPDIR\s0\fR is set, it specifies the directory to use for temporary
-files. \s-1GCC\s0 uses temporary files to hold the output of one stage of
-compilation which is to be used as input to the next stage: for example,
-the output of the preprocessor, which is the input to the compiler
-proper.
-.IP "\fB\s-1GCC_COMPARE_DEBUG\s0\fR" 4
-.IX Item "GCC_COMPARE_DEBUG"
-Setting \fB\s-1GCC_COMPARE_DEBUG\s0\fR is nearly equivalent to passing
-\&\fB\-fcompare\-debug\fR to the compiler driver. See the documentation
-of this option for more details.
-.IP "\fB\s-1GCC_EXEC_PREFIX\s0\fR" 4
-.IX Item "GCC_EXEC_PREFIX"
-If \fB\s-1GCC_EXEC_PREFIX\s0\fR is set, it specifies a prefix to use in the
-names of the subprograms executed by the compiler. No slash is added
-when this prefix is combined with the name of a subprogram, but you can
-specify a prefix that ends with a slash if you wish.
-.Sp
-If \fB\s-1GCC_EXEC_PREFIX\s0\fR is not set, \s-1GCC\s0 attempts to figure out
-an appropriate prefix to use based on the pathname it is invoked with.
-.Sp
-If \s-1GCC\s0 cannot find the subprogram using the specified prefix, it
-tries looking in the usual places for the subprogram.
-.Sp
-The default value of \fB\s-1GCC_EXEC_PREFIX\s0\fR is
-\&\fI\fIprefix\fI/lib/gcc/\fR where \fIprefix\fR is the prefix to
-the installed compiler. In many cases \fIprefix\fR is the value
-of \f(CW\*(C`prefix\*(C'\fR when you ran the \fIconfigure\fR script.
-.Sp
-Other prefixes specified with \fB\-B\fR take precedence over this prefix.
-.Sp
-This prefix is also used for finding files such as \fIcrt0.o\fR that are
-used for linking.
-.Sp
-In addition, the prefix is used in an unusual way in finding the
-directories to search for header files. For each of the standard
-directories whose name normally begins with \fB/usr/local/lib/gcc\fR
-(more precisely, with the value of \fB\s-1GCC_INCLUDE_DIR\s0\fR), \s-1GCC\s0 tries
-replacing that beginning with the specified prefix to produce an
-alternate directory name. Thus, with \fB\-Bfoo/\fR, \s-1GCC\s0 searches
-\&\fIfoo/bar\fR just before it searches the standard directory
-\&\fI/usr/local/lib/bar\fR.
-If a standard directory begins with the configured
-\&\fIprefix\fR then the value of \fIprefix\fR is replaced by
-\&\fB\s-1GCC_EXEC_PREFIX\s0\fR when looking for header files.
-.IP "\fB\s-1COMPILER_PATH\s0\fR" 4
-.IX Item "COMPILER_PATH"
-The value of \fB\s-1COMPILER_PATH\s0\fR is a colon-separated list of
-directories, much like \fB\s-1PATH\s0\fR. \s-1GCC\s0 tries the directories thus
-specified when searching for subprograms, if it can't find the
-subprograms using \fB\s-1GCC_EXEC_PREFIX\s0\fR.
-.IP "\fB\s-1LIBRARY_PATH\s0\fR" 4
-.IX Item "LIBRARY_PATH"
-The value of \fB\s-1LIBRARY_PATH\s0\fR is a colon-separated list of
-directories, much like \fB\s-1PATH\s0\fR. When configured as a native compiler,
-\&\s-1GCC\s0 tries the directories thus specified when searching for special
-linker files, if it can't find them using \fB\s-1GCC_EXEC_PREFIX\s0\fR. Linking
-using \s-1GCC\s0 also uses these directories when searching for ordinary
-libraries for the \fB\-l\fR option (but directories specified with
-\&\fB\-L\fR come first).
-.IP "\fB\s-1LANG\s0\fR" 4
-.IX Item "LANG"
-This variable is used to pass locale information to the compiler. One way in
-which this information is used is to determine the character set to be used
-when character literals, string literals and comments are parsed in C and \*(C+.
-When the compiler is configured to allow multibyte characters,
-the following values for \fB\s-1LANG\s0\fR are recognized:
-.RS 4
-.IP "\fBC\-JIS\fR" 4
-.IX Item "C-JIS"
-Recognize \s-1JIS\s0 characters.
-.IP "\fBC\-SJIS\fR" 4
-.IX Item "C-SJIS"
-Recognize \s-1SJIS\s0 characters.
-.IP "\fBC\-EUCJP\fR" 4
-.IX Item "C-EUCJP"
-Recognize \s-1EUCJP\s0 characters.
-.RE
-.RS 4
-.Sp
-If \fB\s-1LANG\s0\fR is not defined, or if it has some other value, then the
-compiler uses \f(CW\*(C`mblen\*(C'\fR and \f(CW\*(C`mbtowc\*(C'\fR as defined by the default locale to
-recognize and translate multibyte characters.
-.RE
-.PP
-Some additional environment variables affect the behavior of the
-preprocessor.
-.IP "\fB\s-1CPATH\s0\fR" 4
-.IX Item "CPATH"
-.PD 0
-.IP "\fBC_INCLUDE_PATH\fR" 4
-.IX Item "C_INCLUDE_PATH"
-.IP "\fB\s-1CPLUS_INCLUDE_PATH\s0\fR" 4
-.IX Item "CPLUS_INCLUDE_PATH"
-.IP "\fB\s-1OBJC_INCLUDE_PATH\s0\fR" 4
-.IX Item "OBJC_INCLUDE_PATH"
-.PD
-Each variable's value is a list of directories separated by a special
-character, much like \fB\s-1PATH\s0\fR, in which to look for header files.
-The special character, \f(CW\*(C`PATH_SEPARATOR\*(C'\fR, is target-dependent and
-determined at \s-1GCC\s0 build time. For Microsoft Windows-based targets it is a
-semicolon, and for almost all other targets it is a colon.
-.Sp
-\&\fB\s-1CPATH\s0\fR specifies a list of directories to be searched as if
-specified with \fB\-I\fR, but after any paths given with \fB\-I\fR
-options on the command line. This environment variable is used
-regardless of which language is being preprocessed.
-.Sp
-The remaining environment variables apply only when preprocessing the
-particular language indicated. Each specifies a list of directories
-to be searched as if specified with \fB\-isystem\fR, but after any
-paths given with \fB\-isystem\fR options on the command line.
-.Sp
-In all these variables, an empty element instructs the compiler to
-search its current working directory. Empty elements can appear at the
-beginning or end of a path. For instance, if the value of
-\&\fB\s-1CPATH\s0\fR is \f(CW\*(C`:/special/include\*(C'\fR, that has the same
-effect as \fB\-I.\ \-I/special/include\fR.
-.IP "\fB\s-1DEPENDENCIES_OUTPUT\s0\fR" 4
-.IX Item "DEPENDENCIES_OUTPUT"
-If this variable is set, its value specifies how to output
-dependencies for Make based on the non-system header files processed
-by the compiler. System header files are ignored in the dependency
-output.
-.Sp
-The value of \fB\s-1DEPENDENCIES_OUTPUT\s0\fR can be just a file name, in
-which case the Make rules are written to that file, guessing the target
-name from the source file name. Or the value can have the form
-\&\fIfile\fR\fB \fR\fItarget\fR, in which case the rules are written to
-file \fIfile\fR using \fItarget\fR as the target name.
-.Sp
-In other words, this environment variable is equivalent to combining
-the options \fB\-MM\fR and \fB\-MF\fR,
-with an optional \fB\-MT\fR switch too.
-.IP "\fB\s-1SUNPRO_DEPENDENCIES\s0\fR" 4
-.IX Item "SUNPRO_DEPENDENCIES"
-This variable is the same as \fB\s-1DEPENDENCIES_OUTPUT\s0\fR (see above),
-except that system header files are not ignored, so it implies
-\&\fB\-M\fR rather than \fB\-MM\fR. However, the dependence on the
-main input file is omitted.
-.SH "BUGS"
-.IX Header "BUGS"
-For instructions on reporting bugs, see
-<\fBhttp://gcc.gnu.org/bugs.html\fR>.
-.SH "FOOTNOTES"
-.IX Header "FOOTNOTES"
-.IP "1." 4
-On some systems, \fBgcc \-shared\fR
-needs to build supplementary stub code for constructors to work. On
-multi-libbed systems, \fBgcc \-shared\fR must select the correct support
-libraries to link against. Failing to supply the correct flags may lead
-to subtle defects. Supplying them in cases where they are not necessary
-is innocuous.
-.SH "SEE ALSO"
-.IX Header "SEE ALSO"
-\&\fIgpl\fR\|(7), \fIgfdl\fR\|(7), \fIfsf\-funding\fR\|(7),
-\&\fIcpp\fR\|(1), \fIgcov\fR\|(1), \fIas\fR\|(1), \fIld\fR\|(1), \fIgdb\fR\|(1), \fIadb\fR\|(1), \fIdbx\fR\|(1), \fIsdb\fR\|(1)
-and the Info entries for \fIgcc\fR, \fIcpp\fR, \fIas\fR,
-\&\fIld\fR, \fIbinutils\fR and \fIgdb\fR.
-.SH "AUTHOR"
-.IX Header "AUTHOR"
-See the Info entry for \fBgcc\fR, or
-<\fBhttp://gcc.gnu.org/onlinedocs/gcc/Contributors.html\fR>,
-for contributors to \s-1GCC.\s0
-.SH "COPYRIGHT"
-.IX Header "COPYRIGHT"
-Copyright (c) 1988\-2014 Free Software Foundation, Inc.
-.PP
-Permission is granted to copy, distribute and/or modify this document
-under the terms of the \s-1GNU\s0 Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with the
-Invariant Sections being \*(L"\s-1GNU\s0 General Public License\*(R" and \*(L"Funding
-Free Software\*(R", the Front-Cover texts being (a) (see below), and with
-the Back-Cover Texts being (b) (see below). A copy of the license is
-included in the \fIgfdl\fR\|(7) man page.
-.PP
-(a) The \s-1FSF\s0's Front-Cover Text is:
-.PP
-.Vb 1
-\& A GNU Manual
-.Ve
-.PP
-(b) The \s-1FSF\s0's Back-Cover Text is:
-.PP
-.Vb 3
-\& You have freedom to copy and modify this GNU Manual, like GNU
-\& software. Copies published by the Free Software Foundation raise
-\& funds for GNU development.
-.Ve
diff --git a/gcc-4.9/gcc/doc/gc-analyze.1 b/gcc-4.9/gcc/doc/gc-analyze.1
deleted file mode 100644
index a446a65ef..000000000
--- a/gcc-4.9/gcc/doc/gc-analyze.1
+++ /dev/null
@@ -1,231 +0,0 @@
-.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28)
-.\"
-.\" Standard preamble:
-.\" ========================================================================
-.de Sp \" Vertical space (when we can't use .PP)
-.if t .sp .5v
-.if n .sp
-..
-.de Vb \" Begin verbatim text
-.ft CW
-.nf
-.ne \\$1
-..
-.de Ve \" End verbatim text
-.ft R
-.fi
-..
-.\" Set up some character translations and predefined strings. \*(-- will
-.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
-.\" double quote, and \*(R" will give a right double quote. \*(C+ will
-.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
-.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
-.\" nothing in troff, for use with C<>.
-.tr \(*W-
-.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
-.ie n \{\
-. ds -- \(*W-
-. ds PI pi
-. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
-. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
-. ds L" ""
-. ds R" ""
-. ds C` ""
-. ds C' ""
-'br\}
-.el\{\
-. ds -- \|\(em\|
-. ds PI \(*p
-. ds L" ``
-. ds R" ''
-. ds C`
-. ds C'
-'br\}
-.\"
-.\" Escape single quotes in literal strings from groff's Unicode transform.
-.ie \n(.g .ds Aq \(aq
-.el .ds Aq '
-.\"
-.\" If the F register is turned on, we'll generate index entries on stderr for
-.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
-.\" entries marked with X<> in POD. Of course, you'll have to process the
-.\" output yourself in some meaningful fashion.
-.\"
-.\" Avoid warning from groff about undefined register 'F'.
-.de IX
-..
-.nr rF 0
-.if \n(.g .if rF .nr rF 1
-.if (\n(rF:(\n(.g==0)) \{
-. if \nF \{
-. de IX
-. tm Index:\\$1\t\\n%\t"\\$2"
-..
-. if !\nF==2 \{
-. nr % 0
-. nr F 2
-. \}
-. \}
-.\}
-.rr rF
-.\"
-.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
-.\" Fear. Run. Save yourself. No user-serviceable parts.
-. \" fudge factors for nroff and troff
-.if n \{\
-. ds #H 0
-. ds #V .8m
-. ds #F .3m
-. ds #[ \f1
-. ds #] \fP
-.\}
-.if t \{\
-. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
-. ds #V .6m
-. ds #F 0
-. ds #[ \&
-. ds #] \&
-.\}
-. \" simple accents for nroff and troff
-.if n \{\
-. ds ' \&
-. ds ` \&
-. ds ^ \&
-. ds , \&
-. ds ~ ~
-. ds /
-.\}
-.if t \{\
-. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
-. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
-. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
-. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
-. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
-. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
-.\}
-. \" troff and (daisy-wheel) nroff accents
-.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
-.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
-.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
-.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
-.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
-.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
-.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
-.ds ae a\h'-(\w'a'u*4/10)'e
-.ds Ae A\h'-(\w'A'u*4/10)'E
-. \" corrections for vroff
-.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
-.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
-. \" for low resolution devices (crt and lpr)
-.if \n(.H>23 .if \n(.V>19 \
-\{\
-. ds : e
-. ds 8 ss
-. ds o a
-. ds d- d\h'-1'\(ga
-. ds D- D\h'-1'\(hy
-. ds th \o'bp'
-. ds Th \o'LP'
-. ds ae ae
-. ds Ae AE
-.\}
-.rm #[ #] #H #V #F C
-.\" ========================================================================
-.\"
-.IX Title "GC-ANALYZE 1"
-.TH GC-ANALYZE 1 "2014-04-22" "gcc-4.9.0" "GNU"
-.\" For nroff, turn off justification. Always turn off hyphenation; it makes
-.\" way too many mistakes in technical documents.
-.if n .ad l
-.nh
-.SH "NAME"
-gc\-analyze \- Analyze Garbage Collector (GC) memory dumps
-.SH "SYNOPSIS"
-.IX Header "SYNOPSIS"
-\&\fBgc-analyze\fR [\fB\s-1OPTION\s0\fR] ... [\fIfile\fR]
-.SH "DESCRIPTION"
-.IX Header "DESCRIPTION"
-\&\fBgc-analyze\fR prints an analysis of a \s-1GC\s0 memory dump to
-standard out.
-.PP
-The memory dumps may be created by calling
-\&\f(CW\*(C`gnu.gcj.util.GCInfo.enumerate(String namePrefix)\*(C'\fR from java
-code. A memory dump will be created on an out of memory condition if
-\&\f(CW\*(C`gnu.gcj.util.GCInfo.setOOMDump(String namePrefix)\*(C'\fR is called
-before the out of memory occurs.
-.PP
-Running this program will create two files: \fITestDump001\fR and
-\&\fITestDump001.bytes\fR.
-.PP
-.Vb 2
-\& import gnu.gcj.util.*;
-\& import java.util.*;
-\&
-\& public class GCDumpTest
-\& {
-\& static public void main(String args[])
-\& {
-\& ArrayList<String> l = new ArrayList<String>(1000);
-\&
-\& for (int i = 1; i < 1500; i++) {
-\& l.add("This is string #" + i);
-\& }
-\& GCInfo.enumerate("TestDump");
-\& }
-\& }
-.Ve
-.PP
-The memory dump may then be displayed by running:
-.PP
-.Vb 1
-\& gc\-analyze \-v TestDump001
-.Ve
-.SH "OPTIONS"
-.IX Header "OPTIONS"
-.IP "\fB\-\-verbose\fR" 4
-.IX Item "--verbose"
-.PD 0
-.IP "\fB\-v\fR" 4
-.IX Item "-v"
-.PD
-Verbose output.
-.IP "\fB\-p\fR \fItool-prefix\fR" 4
-.IX Item "-p tool-prefix"
-Prefix added to the names of the \fBnm\fR and \fBreadelf\fR commands.
-.IP "\fB\-d\fR \fIdirectory\fR" 4
-.IX Item "-d directory"
-Directory that contains the executable and shared libraries used when
-the dump was generated.
-.IP "\fB\-\-help\fR" 4
-.IX Item "--help"
-Print a help message, then exit.
-.IP "\fB\-\-version\fR" 4
-.IX Item "--version"
-Print version information, then exit.
-.SH "SEE ALSO"
-.IX Header "SEE ALSO"
-.SH "COPYRIGHT"
-.IX Header "COPYRIGHT"
-Copyright (c) 2001\-2014 Free Software Foundation, Inc.
-.PP
-Permission is granted to copy, distribute and/or modify this document
-under the terms of the \s-1GNU\s0 Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with no
-Invariant Sections, the Front-Cover Texts being (a) (see below), and
-with the Back-Cover Texts being (b) (see below).
-A copy of the license is included in the
-man page \fIgfdl\fR\|(7).
-.PP
-(a) The \s-1FSF\s0's Front-Cover Text is:
-.PP
-.Vb 1
-\& A GNU Manual
-.Ve
-.PP
-(b) The \s-1FSF\s0's Back-Cover Text is:
-.PP
-.Vb 3
-\& You have freedom to copy and modify this GNU Manual, like GNU
-\& software. Copies published by the Free Software Foundation raise
-\& funds for GNU development.
-.Ve
diff --git a/gcc-4.9/gcc/doc/gcc.1 b/gcc-4.9/gcc/doc/gcc.1
deleted file mode 100644
index 1ed57fcbb..000000000
--- a/gcc-4.9/gcc/doc/gcc.1
+++ /dev/null
@@ -1,21501 +0,0 @@
-.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28)
-.\"
-.\" Standard preamble:
-.\" ========================================================================
-.de Sp \" Vertical space (when we can't use .PP)
-.if t .sp .5v
-.if n .sp
-..
-.de Vb \" Begin verbatim text
-.ft CW
-.nf
-.ne \\$1
-..
-.de Ve \" End verbatim text
-.ft R
-.fi
-..
-.\" Set up some character translations and predefined strings. \*(-- will
-.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
-.\" double quote, and \*(R" will give a right double quote. \*(C+ will
-.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
-.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
-.\" nothing in troff, for use with C<>.
-.tr \(*W-
-.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
-.ie n \{\
-. ds -- \(*W-
-. ds PI pi
-. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
-. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
-. ds L" ""
-. ds R" ""
-. ds C` ""
-. ds C' ""
-'br\}
-.el\{\
-. ds -- \|\(em\|
-. ds PI \(*p
-. ds L" ``
-. ds R" ''
-. ds C`
-. ds C'
-'br\}
-.\"
-.\" Escape single quotes in literal strings from groff's Unicode transform.
-.ie \n(.g .ds Aq \(aq
-.el .ds Aq '
-.\"
-.\" If the F register is turned on, we'll generate index entries on stderr for
-.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
-.\" entries marked with X<> in POD. Of course, you'll have to process the
-.\" output yourself in some meaningful fashion.
-.\"
-.\" Avoid warning from groff about undefined register 'F'.
-.de IX
-..
-.nr rF 0
-.if \n(.g .if rF .nr rF 1
-.if (\n(rF:(\n(.g==0)) \{
-. if \nF \{
-. de IX
-. tm Index:\\$1\t\\n%\t"\\$2"
-..
-. if !\nF==2 \{
-. nr % 0
-. nr F 2
-. \}
-. \}
-.\}
-.rr rF
-.\"
-.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
-.\" Fear. Run. Save yourself. No user-serviceable parts.
-. \" fudge factors for nroff and troff
-.if n \{\
-. ds #H 0
-. ds #V .8m
-. ds #F .3m
-. ds #[ \f1
-. ds #] \fP
-.\}
-.if t \{\
-. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
-. ds #V .6m
-. ds #F 0
-. ds #[ \&
-. ds #] \&
-.\}
-. \" simple accents for nroff and troff
-.if n \{\
-. ds ' \&
-. ds ` \&
-. ds ^ \&
-. ds , \&
-. ds ~ ~
-. ds /
-.\}
-.if t \{\
-. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
-. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
-. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
-. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
-. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
-. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
-.\}
-. \" troff and (daisy-wheel) nroff accents
-.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
-.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
-.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
-.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
-.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
-.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
-.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
-.ds ae a\h'-(\w'a'u*4/10)'e
-.ds Ae A\h'-(\w'A'u*4/10)'E
-. \" corrections for vroff
-.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
-.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
-. \" for low resolution devices (crt and lpr)
-.if \n(.H>23 .if \n(.V>19 \
-\{\
-. ds : e
-. ds 8 ss
-. ds o a
-. ds d- d\h'-1'\(ga
-. ds D- D\h'-1'\(hy
-. ds th \o'bp'
-. ds Th \o'LP'
-. ds ae ae
-. ds Ae AE
-.\}
-.rm #[ #] #H #V #F C
-.\" ========================================================================
-.\"
-.IX Title "GCC 1"
-.TH GCC 1 "2014-04-22" "gcc-4.9.0" "GNU"
-.\" For nroff, turn off justification. Always turn off hyphenation; it makes
-.\" way too many mistakes in technical documents.
-.if n .ad l
-.nh
-.SH "NAME"
-gcc \- GNU project C and C++ compiler
-.SH "SYNOPSIS"
-.IX Header "SYNOPSIS"
-gcc [\fB\-c\fR|\fB\-S\fR|\fB\-E\fR] [\fB\-std=\fR\fIstandard\fR]
- [\fB\-g\fR] [\fB\-pg\fR] [\fB\-O\fR\fIlevel\fR]
- [\fB\-W\fR\fIwarn\fR...] [\fB\-Wpedantic\fR]
- [\fB\-I\fR\fIdir\fR...] [\fB\-L\fR\fIdir\fR...]
- [\fB\-D\fR\fImacro\fR[=\fIdefn\fR]...] [\fB\-U\fR\fImacro\fR]
- [\fB\-f\fR\fIoption\fR...] [\fB\-m\fR\fImachine-option\fR...]
- [\fB\-o\fR \fIoutfile\fR] [@\fIfile\fR] \fIinfile\fR...
-.PP
-Only the most useful options are listed here; see below for the
-remainder. \fBg++\fR accepts mostly the same options as \fBgcc\fR.
-.SH "DESCRIPTION"
-.IX Header "DESCRIPTION"
-When you invoke \s-1GCC,\s0 it normally does preprocessing, compilation,
-assembly and linking. The \*(L"overall options\*(R" allow you to stop this
-process at an intermediate stage. For example, the \fB\-c\fR option
-says not to run the linker. Then the output consists of object files
-output by the assembler.
-.PP
-Other options are passed on to one stage of processing. Some options
-control the preprocessor and others the compiler itself. Yet other
-options control the assembler and linker; most of these are not
-documented here, since you rarely need to use any of them.
-.PP
-Most of the command-line options that you can use with \s-1GCC\s0 are useful
-for C programs; when an option is only useful with another language
-(usually \*(C+), the explanation says so explicitly. If the description
-for a particular option does not mention a source language, you can use
-that option with all supported languages.
-.PP
-The \fBgcc\fR program accepts options and file names as operands. Many
-options have multi-letter names; therefore multiple single-letter options
-may \fInot\fR be grouped: \fB\-dv\fR is very different from \fB\-d\ \-v\fR.
-.PP
-You can mix options and other arguments. For the most part, the order
-you use doesn't matter. Order does matter when you use several
-options of the same kind; for example, if you specify \fB\-L\fR more
-than once, the directories are searched in the order specified. Also,
-the placement of the \fB\-l\fR option is significant.
-.PP
-Many options have long names starting with \fB\-f\fR or with
-\&\fB\-W\fR\-\-\-for example,
-\&\fB\-fmove\-loop\-invariants\fR, \fB\-Wformat\fR and so on. Most of
-these have both positive and negative forms; the negative form of
-\&\fB\-ffoo\fR is \fB\-fno\-foo\fR. This manual documents
-only one of these two forms, whichever one is not the default.
-.SH "OPTIONS"
-.IX Header "OPTIONS"
-.SS "Option Summary"
-.IX Subsection "Option Summary"
-Here is a summary of all the options, grouped by type. Explanations are
-in the following sections.
-.IP "\fIOverall Options\fR" 4
-.IX Item "Overall Options"
-\&\fB\-c \-S \-E \-o\fR \fIfile\fR \fB\-no\-canonical\-prefixes
-\&\-pipe \-pass\-exit\-codes
-\&\-x\fR \fIlanguage\fR \fB\-v \-### \-\-help\fR[\fB=\fR\fIclass\fR[\fB,...\fR]] \fB\-\-target\-help
-\&\-\-version \-wrapper @\fR\fIfile\fR \fB\-fplugin=\fR\fIfile\fR \fB\-fplugin\-arg\-\fR\fIname\fR\fB=\fR\fIarg\fR
-\&\fB\-fdump\-ada\-spec\fR[\fB\-slim\fR] \fB\-fada\-spec\-parent=\fR\fIunit\fR \fB\-fdump\-go\-spec=\fR\fIfile\fR
-.IP "\fIC Language Options\fR" 4
-.IX Item "C Language Options"
-\&\fB\-ansi \-std=\fR\fIstandard\fR \fB\-fgnu89\-inline
-\&\-aux\-info\fR \fIfilename\fR \fB\-fallow\-parameterless\-variadic\-functions
-\&\-fno\-asm \-fno\-builtin \-fno\-builtin\-\fR\fIfunction\fR
-\&\fB\-fhosted \-ffreestanding \-fopenmp \-fopenmp\-simd \-fms\-extensions
-\&\-fplan9\-extensions \-trigraphs \-traditional \-traditional\-cpp
-\&\-fallow\-single\-precision \-fcond\-mismatch \-flax\-vector\-conversions
-\&\-fsigned\-bitfields \-fsigned\-char
-\&\-funsigned\-bitfields \-funsigned\-char\fR
-.IP "\fI\*(C+ Language Options\fR" 4
-.IX Item " Language Options"
-\&\fB\-fabi\-version=\fR\fIn\fR \fB\-fno\-access\-control \-fcheck\-new
-\&\-fconstexpr\-depth=\fR\fIn\fR \fB\-ffriend\-injection
-\&\-fno\-elide\-constructors
-\&\-fno\-enforce\-eh\-specs
-\&\-ffor\-scope \-fno\-for\-scope \-fno\-gnu\-keywords
-\&\-fno\-implicit\-templates
-\&\-fno\-implicit\-inline\-templates
-\&\-fno\-implement\-inlines \-fms\-extensions
-\&\-fno\-nonansi\-builtins \-fnothrow\-opt \-fno\-operator\-names
-\&\-fno\-optional\-diags \-fpermissive
-\&\-fno\-pretty\-templates
-\&\-frepo \-fno\-rtti \-fstats \-ftemplate\-backtrace\-limit=\fR\fIn\fR
-\&\fB\-ftemplate\-depth=\fR\fIn\fR
-\&\fB\-fno\-threadsafe\-statics \-fuse\-cxa\-atexit \-fno\-weak \-nostdinc++
-\&\-fvisibility\-inlines\-hidden
-\&\-fvtable\-verify=\fR\fIstd|preinit|none\fR
-\&\fB\-fvtv\-counts \-fvtv\-debug
-\&\-fvisibility\-ms\-compat
-\&\-fext\-numeric\-literals
-\&\-Wabi \-Wconversion\-null \-Wctor\-dtor\-privacy
-\&\-Wdelete\-non\-virtual\-dtor \-Wliteral\-suffix \-Wnarrowing
-\&\-Wnoexcept \-Wnon\-virtual\-dtor \-Wreorder
-\&\-Weffc++ \-Wstrict\-null\-sentinel
-\&\-Wno\-non\-template\-friend \-Wold\-style\-cast
-\&\-Woverloaded\-virtual \-Wno\-pmf\-conversions
-\&\-Wsign\-promo\fR
-.IP "\fIObjective-C and Objective\-\*(C+ Language Options\fR" 4
-.IX Item "Objective-C and Objective- Language Options"
-\&\fB\-fconstant\-string\-class=\fR\fIclass-name\fR
-\&\fB\-fgnu\-runtime \-fnext\-runtime
-\&\-fno\-nil\-receivers
-\&\-fobjc\-abi\-version=\fR\fIn\fR
-\&\fB\-fobjc\-call\-cxx\-cdtors
-\&\-fobjc\-direct\-dispatch
-\&\-fobjc\-exceptions
-\&\-fobjc\-gc
-\&\-fobjc\-nilcheck
-\&\-fobjc\-std=objc1
-\&\-freplace\-objc\-classes
-\&\-fzero\-link
-\&\-gen\-decls
-\&\-Wassign\-intercept
-\&\-Wno\-protocol \-Wselector
-\&\-Wstrict\-selector\-match
-\&\-Wundeclared\-selector\fR
-.IP "\fILanguage Independent Options\fR" 4
-.IX Item "Language Independent Options"
-\&\fB\-fmessage\-length=\fR\fIn\fR
-\&\fB\-fdiagnostics\-show\-location=\fR[\fBonce\fR|\fBevery-line\fR]
-\&\fB\-fdiagnostics\-color=\fR[\fBauto\fR|\fBnever\fR|\fBalways\fR]
-\&\fB\-fno\-diagnostics\-show\-option \-fno\-diagnostics\-show\-caret\fR
-.IP "\fIWarning Options\fR" 4
-.IX Item "Warning Options"
-\&\fB\-fsyntax\-only \-fmax\-errors=\fR\fIn\fR \fB\-Wpedantic
-\&\-pedantic\-errors
-\&\-w \-Wextra \-Wall \-Waddress \-Waggregate\-return
-\&\-Waggressive\-loop\-optimizations \-Warray\-bounds
-\&\-Wno\-attributes \-Wno\-builtin\-macro\-redefined
-\&\-Wc++\-compat \-Wc++11\-compat \-Wcast\-align \-Wcast\-qual
-\&\-Wchar\-subscripts \-Wclobbered \-Wcomment \-Wconditionally\-supported
-\&\-Wconversion \-Wcoverage\-mismatch \-Wdate\-time \-Wdelete\-incomplete \-Wno\-cpp
-\&\-Wno\-deprecated \-Wno\-deprecated\-declarations \-Wdisabled\-optimization
-\&\-Wno\-div\-by\-zero \-Wdouble\-promotion \-Wempty\-body \-Wenum\-compare
-\&\-Wno\-endif\-labels \-Werror \-Werror=*
-\&\-Wfatal\-errors \-Wfloat\-equal \-Wformat \-Wformat=2
-\&\-Wno\-format\-contains\-nul \-Wno\-format\-extra\-args \-Wformat\-nonliteral
-\&\-Wformat\-security \-Wformat\-y2k
-\&\-Wframe\-larger\-than=\fR\fIlen\fR \fB\-Wno\-free\-nonheap\-object \-Wjump\-misses\-init
-\&\-Wignored\-qualifiers
-\&\-Wimplicit \-Wimplicit\-function\-declaration \-Wimplicit\-int
-\&\-Winit\-self \-Winline \-Wmaybe\-uninitialized
-\&\-Wno\-int\-to\-pointer\-cast \-Wno\-invalid\-offsetof
-\&\-Winvalid\-pch \-Wlarger\-than=\fR\fIlen\fR \fB\-Wunsafe\-loop\-optimizations
-\&\-Wlogical\-op \-Wlong\-long
-\&\-Wmain \-Wmaybe\-uninitialized \-Wmissing\-braces \-Wmissing\-field\-initializers
-\&\-Wmissing\-include\-dirs
-\&\-Wno\-multichar \-Wnonnull \-Wno\-overflow \-Wopenmp\-simd
-\&\-Woverlength\-strings \-Wpacked \-Wpacked\-bitfield\-compat \-Wpadded
-\&\-Wparentheses \-Wpedantic\-ms\-format \-Wno\-pedantic\-ms\-format
-\&\-Wpointer\-arith \-Wno\-pointer\-to\-int\-cast
-\&\-Wredundant\-decls \-Wno\-return\-local\-addr
-\&\-Wreturn\-type \-Wsequence\-point \-Wshadow
-\&\-Wsign\-compare \-Wsign\-conversion \-Wfloat\-conversion
-\&\-Wsizeof\-pointer\-memaccess
-\&\-Wstack\-protector \-Wstack\-usage=\fR\fIlen\fR \fB\-Wstrict\-aliasing
-\&\-Wstrict\-aliasing=n \-Wstrict\-overflow \-Wstrict\-overflow=\fR\fIn\fR
-\&\fB\-Wsuggest\-attribute=\fR[\fBpure\fR|\fBconst\fR|\fBnoreturn\fR|\fBformat\fR]
-\&\fB\-Wmissing\-format\-attribute
-\&\-Wswitch \-Wswitch\-default \-Wswitch\-enum \-Wsync\-nand
-\&\-Wsystem\-headers \-Wtrampolines \-Wtrigraphs \-Wtype\-limits \-Wundef
-\&\-Wuninitialized \-Wunknown\-pragmas \-Wno\-pragmas
-\&\-Wunsuffixed\-float\-constants \-Wunused \-Wunused\-function
-\&\-Wunused\-label \-Wunused\-local\-typedefs \-Wunused\-parameter
-\&\-Wno\-unused\-result \-Wunused\-value \-Wunused\-variable
-\&\-Wunused\-but\-set\-parameter \-Wunused\-but\-set\-variable
-\&\-Wuseless\-cast \-Wvariadic\-macros \-Wvector\-operation\-performance
-\&\-Wvla \-Wvolatile\-register\-var \-Wwrite\-strings \-Wzero\-as\-null\-pointer\-constant\fR
-.IP "\fIC and Objective-C-only Warning Options\fR" 4
-.IX Item "C and Objective-C-only Warning Options"
-\&\fB\-Wbad\-function\-cast \-Wmissing\-declarations
-\&\-Wmissing\-parameter\-type \-Wmissing\-prototypes \-Wnested\-externs
-\&\-Wold\-style\-declaration \-Wold\-style\-definition
-\&\-Wstrict\-prototypes \-Wtraditional \-Wtraditional\-conversion
-\&\-Wdeclaration\-after\-statement \-Wpointer\-sign\fR
-.IP "\fIDebugging Options\fR" 4
-.IX Item "Debugging Options"
-\&\fB\-d\fR\fIletters\fR \fB\-dumpspecs \-dumpmachine \-dumpversion
-\&\-fsanitize=\fR\fIstyle\fR
-\&\fB\-fdbg\-cnt\-list \-fdbg\-cnt=\fR\fIcounter-value-list\fR
-\&\fB\-fdisable\-ipa\-\fR\fIpass_name\fR
-\&\fB\-fdisable\-rtl\-\fR\fIpass_name\fR
-\&\fB\-fdisable\-rtl\-\fR\fIpass-name\fR\fB=\fR\fIrange-list\fR
-\&\fB\-fdisable\-tree\-\fR\fIpass_name\fR
-\&\fB\-fdisable\-tree\-\fR\fIpass-name\fR\fB=\fR\fIrange-list\fR
-\&\fB\-fdump\-noaddr \-fdump\-unnumbered \-fdump\-unnumbered\-links
-\&\-fdump\-translation\-unit\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-class\-hierarchy\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-ipa\-all \-fdump\-ipa\-cgraph \-fdump\-ipa\-inline
-\&\-fdump\-passes
-\&\-fdump\-statistics
-\&\-fdump\-tree\-all
-\&\-fdump\-tree\-original\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-optimized\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-cfg \-fdump\-tree\-alias
-\&\-fdump\-tree\-ch
-\&\-fdump\-tree\-ssa\fR[\fB\-\fR\fIn\fR] \fB\-fdump\-tree\-pre\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-ccp\fR[\fB\-\fR\fIn\fR] \fB\-fdump\-tree\-dce\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-gimple\fR[\fB\-raw\fR]
-\&\fB\-fdump\-tree\-dom\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-dse\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-phiprop\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-phiopt\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-forwprop\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-copyrename\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-nrv \-fdump\-tree\-vect
-\&\-fdump\-tree\-sink
-\&\-fdump\-tree\-sra\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-forwprop\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-fre\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-vtable\-verify
-\&\-fdump\-tree\-vrp\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-tree\-storeccp\fR[\fB\-\fR\fIn\fR]
-\&\fB\-fdump\-final\-insns=\fR\fIfile\fR
-\&\fB\-fcompare\-debug\fR[\fB=\fR\fIopts\fR] \fB\-fcompare\-debug\-second
-\&\-feliminate\-dwarf2\-dups \-fno\-eliminate\-unused\-debug\-types
-\&\-feliminate\-unused\-debug\-symbols \-femit\-class\-debug\-always
-\&\-fenable\-\fR\fIkind\fR\fB\-\fR\fIpass\fR
-\&\fB\-fenable\-\fR\fIkind\fR\fB\-\fR\fIpass\fR\fB=\fR\fIrange-list\fR
-\&\fB\-fdebug\-types\-section \-fmem\-report\-wpa
-\&\-fmem\-report \-fpre\-ipa\-mem\-report \-fpost\-ipa\-mem\-report \-fprofile\-arcs
-\&\-fopt\-info
-\&\-fopt\-info\-\fR\fIoptions\fR[\fB=\fR\fIfile\fR]
-\&\fB\-frandom\-seed=\fR\fIstring\fR \fB\-fsched\-verbose=\fR\fIn\fR
-\&\fB\-fsel\-sched\-verbose \-fsel\-sched\-dump\-cfg \-fsel\-sched\-pipelining\-verbose
-\&\-fstack\-usage \-ftest\-coverage \-ftime\-report \-fvar\-tracking
-\&\-fvar\-tracking\-assignments \-fvar\-tracking\-assignments\-toggle
-\&\-g \-g\fR\fIlevel\fR \fB\-gtoggle \-gcoff \-gdwarf\-\fR\fIversion\fR
-\&\fB\-ggdb \-grecord\-gcc\-switches \-gno\-record\-gcc\-switches
-\&\-gstabs \-gstabs+ \-gstrict\-dwarf \-gno\-strict\-dwarf
-\&\-gvms \-gxcoff \-gxcoff+
-\&\-fno\-merge\-debug\-strings \-fno\-dwarf2\-cfi\-asm
-\&\-fdebug\-prefix\-map=\fR\fIold\fR\fB=\fR\fInew\fR
-\&\fB\-femit\-struct\-debug\-baseonly \-femit\-struct\-debug\-reduced
-\&\-femit\-struct\-debug\-detailed\fR[\fB=\fR\fIspec-list\fR]
-\&\fB\-p \-pg \-print\-file\-name=\fR\fIlibrary\fR \fB\-print\-libgcc\-file\-name
-\&\-print\-multi\-directory \-print\-multi\-lib \-print\-multi\-os\-directory
-\&\-print\-prog\-name=\fR\fIprogram\fR \fB\-print\-search\-dirs \-Q
-\&\-print\-sysroot \-print\-sysroot\-headers\-suffix
-\&\-save\-temps \-save\-temps=cwd \-save\-temps=obj \-time\fR[\fB=\fR\fIfile\fR]
-.IP "\fIOptimization Options\fR" 4
-.IX Item "Optimization Options"
-\&\fB\-faggressive\-loop\-optimizations \-falign\-functions[=\fR\fIn\fR\fB]
-\&\-falign\-jumps[=\fR\fIn\fR\fB]
-\&\-falign\-labels[=\fR\fIn\fR\fB] \-falign\-loops[=\fR\fIn\fR\fB]
-\&\-fassociative\-math \-fauto\-inc\-dec \-fbranch\-probabilities
-\&\-fbranch\-target\-load\-optimize \-fbranch\-target\-load\-optimize2
-\&\-fbtr\-bb\-exclusive \-fcaller\-saves
-\&\-fcheck\-data\-deps \-fcombine\-stack\-adjustments \-fconserve\-stack
-\&\-fcompare\-elim \-fcprop\-registers \-fcrossjumping
-\&\-fcse\-follow\-jumps \-fcse\-skip\-blocks \-fcx\-fortran\-rules
-\&\-fcx\-limited\-range
-\&\-fdata\-sections \-fdce \-fdelayed\-branch
-\&\-fdelete\-null\-pointer\-checks \-fdevirtualize \-fdevirtualize\-speculatively \-fdse
-\&\-fearly\-inlining \-fipa\-sra \-fexpensive\-optimizations \-ffat\-lto\-objects
-\&\-ffast\-math \-ffinite\-math\-only \-ffloat\-store \-fexcess\-precision=\fR\fIstyle\fR
-\&\fB\-fforward\-propagate \-ffp\-contract=\fR\fIstyle\fR \fB\-ffunction\-sections
-\&\-fgcse \-fgcse\-after\-reload \-fgcse\-las \-fgcse\-lm \-fgraphite\-identity
-\&\-fgcse\-sm \-fhoist\-adjacent\-loads \-fif\-conversion
-\&\-fif\-conversion2 \-findirect\-inlining
-\&\-finline\-functions \-finline\-functions\-called\-once \-finline\-limit=\fR\fIn\fR
-\&\fB\-finline\-small\-functions \-fipa\-cp \-fipa\-cp\-clone
-\&\-fipa\-pta \-fipa\-profile \-fipa\-pure\-const \-fipa\-reference
-\&\-fira\-algorithm=\fR\fIalgorithm\fR
-\&\fB\-fira\-region=\fR\fIregion\fR \fB\-fira\-hoist\-pressure
-\&\-fira\-loop\-pressure \-fno\-ira\-share\-save\-slots
-\&\-fno\-ira\-share\-spill\-slots \-fira\-verbose=\fR\fIn\fR
-\&\fB\-fisolate\-erroneous\-paths\-dereference \-fisolate\-erroneous\-paths\-attribute
-\&\-fivopts \-fkeep\-inline\-functions \-fkeep\-static\-consts \-flive\-range\-shrinkage
-\&\-floop\-block \-floop\-interchange \-floop\-strip\-mine \-floop\-nest\-optimize
-\&\-floop\-parallelize\-all \-flto \-flto\-compression\-level
-\&\-flto\-partition=\fR\fIalg\fR \fB\-flto\-report \-flto\-report\-wpa \-fmerge\-all\-constants
-\&\-fmerge\-constants \-fmodulo\-sched \-fmodulo\-sched\-allow\-regmoves
-\&\-fmove\-loop\-invariants \-fno\-branch\-count\-reg
-\&\-fno\-defer\-pop \-fno\-function\-cse \-fno\-guess\-branch\-probability
-\&\-fno\-inline \-fno\-math\-errno \-fno\-peephole \-fno\-peephole2
-\&\-fno\-sched\-interblock \-fno\-sched\-spec \-fno\-signed\-zeros
-\&\-fno\-toplevel\-reorder \-fno\-trapping\-math \-fno\-zero\-initialized\-in\-bss
-\&\-fomit\-frame\-pointer \-foptimize\-sibling\-calls
-\&\-fpartial\-inlining \-fpeel\-loops \-fpredictive\-commoning
-\&\-fprefetch\-loop\-arrays \-fprofile\-report
-\&\-fprofile\-correction \-fprofile\-dir=\fR\fIpath\fR \fB\-fprofile\-generate
-\&\-fprofile\-generate=\fR\fIpath\fR
-\&\fB\-fprofile\-use \-fprofile\-use=\fR\fIpath\fR \fB\-fprofile\-values \-fprofile\-reorder\-functions
-\&\-freciprocal\-math \-free \-frename\-registers \-freorder\-blocks
-\&\-freorder\-blocks\-and\-partition \-freorder\-functions
-\&\-frerun\-cse\-after\-loop \-freschedule\-modulo\-scheduled\-loops
-\&\-frounding\-math \-fsched2\-use\-superblocks \-fsched\-pressure
-\&\-fsched\-spec\-load \-fsched\-spec\-load\-dangerous
-\&\-fsched\-stalled\-insns\-dep[=\fR\fIn\fR\fB] \-fsched\-stalled\-insns[=\fR\fIn\fR\fB]
-\&\-fsched\-group\-heuristic \-fsched\-critical\-path\-heuristic
-\&\-fsched\-spec\-insn\-heuristic \-fsched\-rank\-heuristic
-\&\-fsched\-last\-insn\-heuristic \-fsched\-dep\-count\-heuristic
-\&\-fschedule\-insns \-fschedule\-insns2 \-fsection\-anchors
-\&\-fselective\-scheduling \-fselective\-scheduling2
-\&\-fsel\-sched\-pipelining \-fsel\-sched\-pipelining\-outer\-loops
-\&\-fshrink\-wrap \-fsignaling\-nans \-fsingle\-precision\-constant
-\&\-fsplit\-ivs\-in\-unroller \-fsplit\-wide\-types \-fstack\-protector
-\&\-fstack\-protector\-all \-fstack\-protector\-strong \-fstrict\-aliasing
-\&\-fstrict\-overflow \-fthread\-jumps \-ftracer \-ftree\-bit\-ccp
-\&\-ftree\-builtin\-call\-dce \-ftree\-ccp \-ftree\-ch
-\&\-ftree\-coalesce\-inline\-vars \-ftree\-coalesce\-vars \-ftree\-copy\-prop
-\&\-ftree\-copyrename \-ftree\-dce \-ftree\-dominator\-opts \-ftree\-dse
-\&\-ftree\-forwprop \-ftree\-fre \-ftree\-loop\-if\-convert
-\&\-ftree\-loop\-if\-convert\-stores \-ftree\-loop\-im
-\&\-ftree\-phiprop \-ftree\-loop\-distribution \-ftree\-loop\-distribute\-patterns
-\&\-ftree\-loop\-ivcanon \-ftree\-loop\-linear \-ftree\-loop\-optimize
-\&\-ftree\-loop\-vectorize
-\&\-ftree\-parallelize\-loops=\fR\fIn\fR \fB\-ftree\-pre \-ftree\-partial\-pre \-ftree\-pta
-\&\-ftree\-reassoc \-ftree\-sink \-ftree\-slsr \-ftree\-sra
-\&\-ftree\-switch\-conversion \-ftree\-tail\-merge \-ftree\-ter
-\&\-ftree\-vectorize \-ftree\-vrp
-\&\-funit\-at\-a\-time \-funroll\-all\-loops \-funroll\-loops
-\&\-funsafe\-loop\-optimizations \-funsafe\-math\-optimizations \-funswitch\-loops
-\&\-fvariable\-expansion\-in\-unroller \-fvect\-cost\-model \-fvpt \-fweb
-\&\-fwhole\-program \-fwpa \-fuse\-ld=\fR\fIlinker\fR \fB\-fuse\-linker\-plugin
-\&\-\-param\fR \fIname\fR\fB=\fR\fIvalue\fR
-\&\fB\-O \-O0 \-O1 \-O2 \-O3 \-Os \-Ofast \-Og\fR
-.IP "\fIPreprocessor Options\fR" 4
-.IX Item "Preprocessor Options"
-\&\fB\-A\fR\fIquestion\fR\fB=\fR\fIanswer\fR
-\&\fB\-A\-\fR\fIquestion\fR[\fB=\fR\fIanswer\fR]
-\&\fB\-C \-dD \-dI \-dM \-dN
-\&\-D\fR\fImacro\fR[\fB=\fR\fIdefn\fR] \fB\-E \-H
-\&\-idirafter\fR \fIdir\fR
-\&\fB\-include\fR \fIfile\fR \fB\-imacros\fR \fIfile\fR
-\&\fB\-iprefix\fR \fIfile\fR \fB\-iwithprefix\fR \fIdir\fR
-\&\fB\-iwithprefixbefore\fR \fIdir\fR \fB\-isystem\fR \fIdir\fR
-\&\fB\-imultilib\fR \fIdir\fR \fB\-isysroot\fR \fIdir\fR
-\&\fB\-M \-MM \-MF \-MG \-MP \-MQ \-MT \-nostdinc
-\&\-P \-fdebug\-cpp \-ftrack\-macro\-expansion \-fworking\-directory
-\&\-remap \-trigraphs \-undef \-U\fR\fImacro\fR
-\&\fB\-Wp,\fR\fIoption\fR \fB\-Xpreprocessor\fR \fIoption\fR \fB\-no\-integrated\-cpp\fR
-.IP "\fIAssembler Option\fR" 4
-.IX Item "Assembler Option"
-\&\fB\-Wa,\fR\fIoption\fR \fB\-Xassembler\fR \fIoption\fR
-.IP "\fILinker Options\fR" 4
-.IX Item "Linker Options"
-\&\fIobject-file-name\fR \fB\-l\fR\fIlibrary\fR
-\&\fB\-nostartfiles \-nodefaultlibs \-nostdlib \-pie \-rdynamic
-\&\-s \-static \-static\-libgcc \-static\-libstdc++
-\&\-static\-libasan \-static\-libtsan \-static\-liblsan \-static\-libubsan
-\&\-shared \-shared\-libgcc \-symbolic
-\&\-T\fR \fIscript\fR \fB\-Wl,\fR\fIoption\fR \fB\-Xlinker\fR \fIoption\fR
-\&\fB\-u\fR \fIsymbol\fR
-.IP "\fIDirectory Options\fR" 4
-.IX Item "Directory Options"
-\&\fB\-B\fR\fIprefix\fR \fB\-I\fR\fIdir\fR \fB\-iplugindir=\fR\fIdir\fR
-\&\fB\-iquote\fR\fIdir\fR \fB\-L\fR\fIdir\fR \fB\-specs=\fR\fIfile\fR \fB\-I\-
-\&\-\-sysroot=\fR\fIdir\fR \fB\-\-no\-sysroot\-suffix\fR
-.IP "\fIMachine Dependent Options\fR" 4
-.IX Item "Machine Dependent Options"
-\&\fIAArch64 Options\fR
-\&\fB\-mabi=\fR\fIname\fR \fB\-mbig\-endian \-mlittle\-endian
-\&\-mgeneral\-regs\-only
-\&\-mcmodel=tiny \-mcmodel=small \-mcmodel=large
-\&\-mstrict\-align
-\&\-momit\-leaf\-frame\-pointer \-mno\-omit\-leaf\-frame\-pointer
-\&\-mtls\-dialect=desc \-mtls\-dialect=traditional
-\&\-march=\fR\fIname\fR \fB\-mcpu=\fR\fIname\fR \fB\-mtune=\fR\fIname\fR
-.Sp
-\&\fIAdapteva Epiphany Options\fR
-\&\fB\-mhalf\-reg\-file \-mprefer\-short\-insn\-regs
-\&\-mbranch\-cost=\fR\fInum\fR \fB\-mcmove \-mnops=\fR\fInum\fR \fB\-msoft\-cmpsf
-\&\-msplit\-lohi \-mpost\-inc \-mpost\-modify \-mstack\-offset=\fR\fInum\fR
-\&\fB\-mround\-nearest \-mlong\-calls \-mshort\-calls \-msmall16
-\&\-mfp\-mode=\fR\fImode\fR \fB\-mvect\-double \-max\-vect\-align=\fR\fInum\fR
-\&\fB\-msplit\-vecmove\-early \-m1reg\-\fR\fIreg\fR
-.Sp
-\&\fI\s-1ARC\s0 Options\fR
-\&\fB\-mbarrel\-shifter
-\&\-mcpu=\fR\fIcpu\fR \fB\-mA6 \-mARC600 \-mA7 \-mARC700
-\&\-mdpfp \-mdpfp\-compact \-mdpfp\-fast \-mno\-dpfp\-lrsr
-\&\-mea \-mno\-mpy \-mmul32x16 \-mmul64
-\&\-mnorm \-mspfp \-mspfp\-compact \-mspfp\-fast \-msimd \-msoft\-float \-mswap
-\&\-mcrc \-mdsp\-packa \-mdvbf \-mlock \-mmac\-d16 \-mmac\-24 \-mrtsc \-mswape
-\&\-mtelephony \-mxy \-misize \-mannotate\-align \-marclinux \-marclinux_prof
-\&\-mepilogue\-cfi \-mlong\-calls \-mmedium\-calls \-msdata
-\&\-mucb\-mcount \-mvolatile\-cache
-\&\-malign\-call \-mauto\-modify\-reg \-mbbit\-peephole \-mno\-brcc
-\&\-mcase\-vector\-pcrel \-mcompact\-casesi \-mno\-cond\-exec \-mearly\-cbranchsi
-\&\-mexpand\-adddi \-mindexed\-loads \-mlra \-mlra\-priority\-none
-\&\-mlra\-priority\-compact mlra-priority-noncompact \-mno\-millicode
-\&\-mmixed\-code \-mq\-class \-mRcq \-mRcw \-msize\-level=\fR\fIlevel\fR
-\&\fB\-mtune=\fR\fIcpu\fR \fB\-mmultcost=\fR\fInum\fR \fB\-munalign\-prob\-threshold=\fR\fIprobability\fR
-.Sp
-\&\fI\s-1ARM\s0 Options\fR
-\&\fB\-mapcs\-frame \-mno\-apcs\-frame
-\&\-mabi=\fR\fIname\fR
-\&\fB\-mapcs\-stack\-check \-mno\-apcs\-stack\-check
-\&\-mapcs\-float \-mno\-apcs\-float
-\&\-mapcs\-reentrant \-mno\-apcs\-reentrant
-\&\-msched\-prolog \-mno\-sched\-prolog
-\&\-mlittle\-endian \-mbig\-endian \-mwords\-little\-endian
-\&\-mfloat\-abi=\fR\fIname\fR
-\&\fB\-mfp16\-format=\fR\fIname\fR
-\&\fB\-mthumb\-interwork \-mno\-thumb\-interwork
-\&\-mcpu=\fR\fIname\fR \fB\-march=\fR\fIname\fR \fB\-mfpu=\fR\fIname\fR
-\&\fB\-mstructure\-size\-boundary=\fR\fIn\fR
-\&\fB\-mabort\-on\-noreturn
-\&\-mlong\-calls \-mno\-long\-calls
-\&\-msingle\-pic\-base \-mno\-single\-pic\-base
-\&\-mpic\-register=\fR\fIreg\fR
-\&\fB\-mnop\-fun\-dllimport
-\&\-mpoke\-function\-name
-\&\-mthumb \-marm
-\&\-mtpcs\-frame \-mtpcs\-leaf\-frame
-\&\-mcaller\-super\-interworking \-mcallee\-super\-interworking
-\&\-mtp=\fR\fIname\fR \fB\-mtls\-dialect=\fR\fIdialect\fR
-\&\fB\-mword\-relocations
-\&\-mfix\-cortex\-m3\-ldrd
-\&\-munaligned\-access
-\&\-mneon\-for\-64bits
-\&\-mslow\-flash\-data
-\&\-mrestrict\-it\fR
-.Sp
-\&\fI\s-1AVR\s0 Options\fR
-\&\fB\-mmcu=\fR\fImcu\fR \fB\-maccumulate\-args \-mbranch\-cost=\fR\fIcost\fR
-\&\fB\-mcall\-prologues \-mint8 \-mno\-interrupts \-mrelax
-\&\-mstrict\-X \-mtiny\-stack \-Waddr\-space\-convert\fR
-.Sp
-\&\fIBlackfin Options\fR
-\&\fB\-mcpu=\fR\fIcpu\fR[\fB\-\fR\fIsirevision\fR]
-\&\fB\-msim \-momit\-leaf\-frame\-pointer \-mno\-omit\-leaf\-frame\-pointer
-\&\-mspecld\-anomaly \-mno\-specld\-anomaly \-mcsync\-anomaly \-mno\-csync\-anomaly
-\&\-mlow\-64k \-mno\-low64k \-mstack\-check\-l1 \-mid\-shared\-library
-\&\-mno\-id\-shared\-library \-mshared\-library\-id=\fR\fIn\fR
-\&\fB\-mleaf\-id\-shared\-library \-mno\-leaf\-id\-shared\-library
-\&\-msep\-data \-mno\-sep\-data \-mlong\-calls \-mno\-long\-calls
-\&\-mfast\-fp \-minline\-plt \-mmulticore \-mcorea \-mcoreb \-msdram
-\&\-micplb\fR
-.Sp
-\&\fIC6X Options\fR
-\&\fB\-mbig\-endian \-mlittle\-endian \-march=\fR\fIcpu\fR
-\&\fB\-msim \-msdata=\fR\fIsdata-type\fR
-.Sp
-\&\fI\s-1CRIS\s0 Options\fR
-\&\fB\-mcpu=\fR\fIcpu\fR \fB\-march=\fR\fIcpu\fR \fB\-mtune=\fR\fIcpu\fR
-\&\fB\-mmax\-stack\-frame=\fR\fIn\fR \fB\-melinux\-stacksize=\fR\fIn\fR
-\&\fB\-metrax4 \-metrax100 \-mpdebug \-mcc\-init \-mno\-side\-effects
-\&\-mstack\-align \-mdata\-align \-mconst\-align
-\&\-m32\-bit \-m16\-bit \-m8\-bit \-mno\-prologue\-epilogue \-mno\-gotplt
-\&\-melf \-maout \-melinux \-mlinux \-sim \-sim2
-\&\-mmul\-bug\-workaround \-mno\-mul\-bug\-workaround\fR
-.Sp
-\&\fI\s-1CR16\s0 Options\fR
-\&\fB\-mmac
-\&\-mcr16cplus \-mcr16c
-\&\-msim \-mint32 \-mbit\-ops
-\&\-mdata\-model=\fR\fImodel\fR
-.Sp
-\&\fIDarwin Options\fR
-\&\fB\-all_load \-allowable_client \-arch \-arch_errors_fatal
-\&\-arch_only \-bind_at_load \-bundle \-bundle_loader
-\&\-client_name \-compatibility_version \-current_version
-\&\-dead_strip
-\&\-dependency\-file \-dylib_file \-dylinker_install_name
-\&\-dynamic \-dynamiclib \-exported_symbols_list
-\&\-filelist \-flat_namespace \-force_cpusubtype_ALL
-\&\-force_flat_namespace \-headerpad_max_install_names
-\&\-iframework
-\&\-image_base \-init \-install_name \-keep_private_externs
-\&\-multi_module \-multiply_defined \-multiply_defined_unused
-\&\-noall_load \-no_dead_strip_inits_and_terms
-\&\-nofixprebinding \-nomultidefs \-noprebind \-noseglinkedit
-\&\-pagezero_size \-prebind \-prebind_all_twolevel_modules
-\&\-private_bundle \-read_only_relocs \-sectalign
-\&\-sectobjectsymbols \-whyload \-seg1addr
-\&\-sectcreate \-sectobjectsymbols \-sectorder
-\&\-segaddr \-segs_read_only_addr \-segs_read_write_addr
-\&\-seg_addr_table \-seg_addr_table_filename \-seglinkedit
-\&\-segprot \-segs_read_only_addr \-segs_read_write_addr
-\&\-single_module \-static \-sub_library \-sub_umbrella
-\&\-twolevel_namespace \-umbrella \-undefined
-\&\-unexported_symbols_list \-weak_reference_mismatches
-\&\-whatsloaded \-F \-gused \-gfull \-mmacosx\-version\-min=\fR\fIversion\fR
-\&\fB\-mkernel \-mone\-byte\-bool\fR
-.Sp
-\&\fI\s-1DEC\s0 Alpha Options\fR
-\&\fB\-mno\-fp\-regs \-msoft\-float
-\&\-mieee \-mieee\-with\-inexact \-mieee\-conformant
-\&\-mfp\-trap\-mode=\fR\fImode\fR \fB\-mfp\-rounding\-mode=\fR\fImode\fR
-\&\fB\-mtrap\-precision=\fR\fImode\fR \fB\-mbuild\-constants
-\&\-mcpu=\fR\fIcpu-type\fR \fB\-mtune=\fR\fIcpu-type\fR
-\&\fB\-mbwx \-mmax \-mfix \-mcix
-\&\-mfloat\-vax \-mfloat\-ieee
-\&\-mexplicit\-relocs \-msmall\-data \-mlarge\-data
-\&\-msmall\-text \-mlarge\-text
-\&\-mmemory\-latency=\fR\fItime\fR
-.Sp
-\&\fI\s-1FR30\s0 Options\fR
-\&\fB\-msmall\-model \-mno\-lsim\fR
-.Sp
-\&\fI\s-1FRV\s0 Options\fR
-\&\fB\-mgpr\-32 \-mgpr\-64 \-mfpr\-32 \-mfpr\-64
-\&\-mhard\-float \-msoft\-float
-\&\-malloc\-cc \-mfixed\-cc \-mdword \-mno\-dword
-\&\-mdouble \-mno\-double
-\&\-mmedia \-mno\-media \-mmuladd \-mno\-muladd
-\&\-mfdpic \-minline\-plt \-mgprel\-ro \-multilib\-library\-pic
-\&\-mlinked\-fp \-mlong\-calls \-malign\-labels
-\&\-mlibrary\-pic \-macc\-4 \-macc\-8
-\&\-mpack \-mno\-pack \-mno\-eflags \-mcond\-move \-mno\-cond\-move
-\&\-moptimize\-membar \-mno\-optimize\-membar
-\&\-mscc \-mno\-scc \-mcond\-exec \-mno\-cond\-exec
-\&\-mvliw\-branch \-mno\-vliw\-branch
-\&\-mmulti\-cond\-exec \-mno\-multi\-cond\-exec \-mnested\-cond\-exec
-\&\-mno\-nested\-cond\-exec \-mtomcat\-stats
-\&\-mTLS \-mtls
-\&\-mcpu=\fR\fIcpu\fR
-.Sp
-\&\fIGNU/Linux Options\fR
-\&\fB\-mglibc \-muclibc \-mbionic \-mandroid
-\&\-tno\-android\-cc \-tno\-android\-ld\fR
-.Sp
-\&\fIH8/300 Options\fR
-\&\fB\-mrelax \-mh \-ms \-mn \-mexr \-mno\-exr \-mint32 \-malign\-300\fR
-.Sp
-\&\fI\s-1HPPA\s0 Options\fR
-\&\fB\-march=\fR\fIarchitecture-type\fR
-\&\fB\-mdisable\-fpregs \-mdisable\-indexing
-\&\-mfast\-indirect\-calls \-mgas \-mgnu\-ld \-mhp\-ld
-\&\-mfixed\-range=\fR\fIregister-range\fR
-\&\fB\-mjump\-in\-delay \-mlinker\-opt \-mlong\-calls
-\&\-mlong\-load\-store \-mno\-disable\-fpregs
-\&\-mno\-disable\-indexing \-mno\-fast\-indirect\-calls \-mno\-gas
-\&\-mno\-jump\-in\-delay \-mno\-long\-load\-store
-\&\-mno\-portable\-runtime \-mno\-soft\-float
-\&\-mno\-space\-regs \-msoft\-float \-mpa\-risc\-1\-0
-\&\-mpa\-risc\-1\-1 \-mpa\-risc\-2\-0 \-mportable\-runtime
-\&\-mschedule=\fR\fIcpu-type\fR \fB\-mspace\-regs \-msio \-mwsio
-\&\-munix=\fR\fIunix-std\fR \fB\-nolibdld \-static \-threads\fR
-.Sp
-\&\fIi386 and x86\-64 Options\fR
-\&\fB\-mtune=\fR\fIcpu-type\fR \fB\-march=\fR\fIcpu-type\fR
-\&\fB\-mtune\-ctrl=\fR\fIfeature-list\fR \fB\-mdump\-tune\-features \-mno\-default
-\&\-mfpmath=\fR\fIunit\fR
-\&\fB\-masm=\fR\fIdialect\fR \fB\-mno\-fancy\-math\-387
-\&\-mno\-fp\-ret\-in\-387 \-msoft\-float
-\&\-mno\-wide\-multiply \-mrtd \-malign\-double
-\&\-mpreferred\-stack\-boundary=\fR\fInum\fR
-\&\fB\-mincoming\-stack\-boundary=\fR\fInum\fR
-\&\fB\-mcld \-mcx16 \-msahf \-mmovbe \-mcrc32
-\&\-mrecip \-mrecip=\fR\fIopt\fR
-\&\fB\-mvzeroupper \-mprefer\-avx128
-\&\-mmmx \-msse \-msse2 \-msse3 \-mssse3 \-msse4.1 \-msse4.2 \-msse4 \-mavx
-\&\-mavx2 \-mavx512f \-mavx512pf \-mavx512er \-mavx512cd \-msha
-\&\-maes \-mpclmul \-mfsgsbase \-mrdrnd \-mf16c \-mfma \-mprefetchwt1
-\&\-msse4a \-m3dnow \-mpopcnt \-mabm \-mbmi \-mtbm \-mfma4 \-mxop \-mlzcnt
-\&\-mbmi2 \-mfxsr \-mxsave \-mxsaveopt \-mrtm \-mlwp \-mthreads
-\&\-mno\-align\-stringops \-minline\-all\-stringops
-\&\-minline\-stringops\-dynamically \-mstringop\-strategy=\fR\fIalg\fR
-\&\fB\-mmemcpy\-strategy=\fR\fIstrategy\fR \fB\-mmemset\-strategy=\fR\fIstrategy\fR
-\&\fB\-mpush\-args \-maccumulate\-outgoing\-args \-m128bit\-long\-double
-\&\-m96bit\-long\-double \-mlong\-double\-64 \-mlong\-double\-80 \-mlong\-double\-128
-\&\-mregparm=\fR\fInum\fR \fB\-msseregparm
-\&\-mveclibabi=\fR\fItype\fR \fB\-mvect8\-ret\-in\-mem
-\&\-mpc32 \-mpc64 \-mpc80 \-mstackrealign
-\&\-momit\-leaf\-frame\-pointer \-mno\-red\-zone \-mno\-tls\-direct\-seg\-refs
-\&\-mcmodel=\fR\fIcode-model\fR \fB\-mabi=\fR\fIname\fR \fB\-maddress\-mode=\fR\fImode\fR
-\&\fB\-m32 \-m64 \-mx32 \-m16 \-mlarge\-data\-threshold=\fR\fInum\fR
-\&\fB\-msse2avx \-mfentry \-m8bit\-idiv
-\&\-mavx256\-split\-unaligned\-load \-mavx256\-split\-unaligned\-store
-\&\-mstack\-protector\-guard=\fR\fIguard\fR
-.Sp
-\&\fIi386 and x86\-64 Windows Options\fR
-\&\fB\-mconsole \-mcygwin \-mno\-cygwin \-mdll
-\&\-mnop\-fun\-dllimport \-mthread
-\&\-municode \-mwin32 \-mwindows \-fno\-set\-stack\-executable\fR
-.Sp
-\&\fI\s-1IA\-64\s0 Options\fR
-\&\fB\-mbig\-endian \-mlittle\-endian \-mgnu\-as \-mgnu\-ld \-mno\-pic
-\&\-mvolatile\-asm\-stop \-mregister\-names \-msdata \-mno\-sdata
-\&\-mconstant\-gp \-mauto\-pic \-mfused\-madd
-\&\-minline\-float\-divide\-min\-latency
-\&\-minline\-float\-divide\-max\-throughput
-\&\-mno\-inline\-float\-divide
-\&\-minline\-int\-divide\-min\-latency
-\&\-minline\-int\-divide\-max\-throughput
-\&\-mno\-inline\-int\-divide
-\&\-minline\-sqrt\-min\-latency \-minline\-sqrt\-max\-throughput
-\&\-mno\-inline\-sqrt
-\&\-mdwarf2\-asm \-mearly\-stop\-bits
-\&\-mfixed\-range=\fR\fIregister-range\fR \fB\-mtls\-size=\fR\fItls-size\fR
-\&\fB\-mtune=\fR\fIcpu-type\fR \fB\-milp32 \-mlp64
-\&\-msched\-br\-data\-spec \-msched\-ar\-data\-spec \-msched\-control\-spec
-\&\-msched\-br\-in\-data\-spec \-msched\-ar\-in\-data\-spec \-msched\-in\-control\-spec
-\&\-msched\-spec\-ldc \-msched\-spec\-control\-ldc
-\&\-msched\-prefer\-non\-data\-spec\-insns \-msched\-prefer\-non\-control\-spec\-insns
-\&\-msched\-stop\-bits\-after\-every\-cycle \-msched\-count\-spec\-in\-critical\-path
-\&\-msel\-sched\-dont\-check\-control\-spec \-msched\-fp\-mem\-deps\-zero\-cost
-\&\-msched\-max\-memory\-insns\-hard\-limit \-msched\-max\-memory\-insns=\fR\fImax-insns\fR
-.Sp
-\&\fI\s-1LM32\s0 Options\fR
-\&\fB\-mbarrel\-shift\-enabled \-mdivide\-enabled \-mmultiply\-enabled
-\&\-msign\-extend\-enabled \-muser\-enabled\fR
-.Sp
-\&\fIM32R/D Options\fR
-\&\fB\-m32r2 \-m32rx \-m32r
-\&\-mdebug
-\&\-malign\-loops \-mno\-align\-loops
-\&\-missue\-rate=\fR\fInumber\fR
-\&\fB\-mbranch\-cost=\fR\fInumber\fR
-\&\fB\-mmodel=\fR\fIcode-size-model-type\fR
-\&\fB\-msdata=\fR\fIsdata-type\fR
-\&\fB\-mno\-flush\-func \-mflush\-func=\fR\fIname\fR
-\&\fB\-mno\-flush\-trap \-mflush\-trap=\fR\fInumber\fR
-\&\fB\-G\fR \fInum\fR
-.Sp
-\&\fIM32C Options\fR
-\&\fB\-mcpu=\fR\fIcpu\fR \fB\-msim \-memregs=\fR\fInumber\fR
-.Sp
-\&\fIM680x0 Options\fR
-\&\fB\-march=\fR\fIarch\fR \fB\-mcpu=\fR\fIcpu\fR \fB\-mtune=\fR\fItune\fR
-\&\fB\-m68000 \-m68020 \-m68020\-40 \-m68020\-60 \-m68030 \-m68040
-\&\-m68060 \-mcpu32 \-m5200 \-m5206e \-m528x \-m5307 \-m5407
-\&\-mcfv4e \-mbitfield \-mno\-bitfield \-mc68000 \-mc68020
-\&\-mnobitfield \-mrtd \-mno\-rtd \-mdiv \-mno\-div \-mshort
-\&\-mno\-short \-mhard\-float \-m68881 \-msoft\-float \-mpcrel
-\&\-malign\-int \-mstrict\-align \-msep\-data \-mno\-sep\-data
-\&\-mshared\-library\-id=n \-mid\-shared\-library \-mno\-id\-shared\-library
-\&\-mxgot \-mno\-xgot\fR
-.Sp
-\&\fIMCore Options\fR
-\&\fB\-mhardlit \-mno\-hardlit \-mdiv \-mno\-div \-mrelax\-immediates
-\&\-mno\-relax\-immediates \-mwide\-bitfields \-mno\-wide\-bitfields
-\&\-m4byte\-functions \-mno\-4byte\-functions \-mcallgraph\-data
-\&\-mno\-callgraph\-data \-mslow\-bytes \-mno\-slow\-bytes \-mno\-lsim
-\&\-mlittle\-endian \-mbig\-endian \-m210 \-m340 \-mstack\-increment\fR
-.Sp
-\&\fIMeP Options\fR
-\&\fB\-mabsdiff \-mall\-opts \-maverage \-mbased=\fR\fIn\fR \fB\-mbitops
-\&\-mc=\fR\fIn\fR \fB\-mclip \-mconfig=\fR\fIname\fR \fB\-mcop \-mcop32 \-mcop64 \-mivc2
-\&\-mdc \-mdiv \-meb \-mel \-mio\-volatile \-ml \-mleadz \-mm \-mminmax
-\&\-mmult \-mno\-opts \-mrepeat \-ms \-msatur \-msdram \-msim \-msimnovec \-mtf
-\&\-mtiny=\fR\fIn\fR
-.Sp
-\&\fIMicroBlaze Options\fR
-\&\fB\-msoft\-float \-mhard\-float \-msmall\-divides \-mcpu=\fR\fIcpu\fR
-\&\fB\-mmemcpy \-mxl\-soft\-mul \-mxl\-soft\-div \-mxl\-barrel\-shift
-\&\-mxl\-pattern\-compare \-mxl\-stack\-check \-mxl\-gp\-opt \-mno\-clearbss
-\&\-mxl\-multiply\-high \-mxl\-float\-convert \-mxl\-float\-sqrt
-\&\-mbig\-endian \-mlittle\-endian \-mxl\-reorder \-mxl\-mode\-\fR\fIapp-model\fR
-.Sp
-\&\fI\s-1MIPS\s0 Options\fR
-\&\fB\-EL \-EB \-march=\fR\fIarch\fR \fB\-mtune=\fR\fIarch\fR
-\&\fB\-mips1 \-mips2 \-mips3 \-mips4 \-mips32 \-mips32r2
-\&\-mips64 \-mips64r2
-\&\-mips16 \-mno\-mips16 \-mflip\-mips16
-\&\-minterlink\-compressed \-mno\-interlink\-compressed
-\&\-minterlink\-mips16 \-mno\-interlink\-mips16
-\&\-mabi=\fR\fIabi\fR \fB\-mabicalls \-mno\-abicalls
-\&\-mshared \-mno\-shared \-mplt \-mno\-plt \-mxgot \-mno\-xgot
-\&\-mgp32 \-mgp64 \-mfp32 \-mfp64 \-mhard\-float \-msoft\-float
-\&\-mno\-float \-msingle\-float \-mdouble\-float
-\&\-mabs=\fR\fImode\fR \fB\-mnan=\fR\fIencoding\fR
-\&\fB\-mdsp \-mno\-dsp \-mdspr2 \-mno\-dspr2
-\&\-mmcu \-mmno\-mcu
-\&\-meva \-mno\-eva
-\&\-mvirt \-mno\-virt
-\&\-mmicromips \-mno\-micromips
-\&\-mfpu=\fR\fIfpu-type\fR
-\&\fB\-msmartmips \-mno\-smartmips
-\&\-mpaired\-single \-mno\-paired\-single \-mdmx \-mno\-mdmx
-\&\-mips3d \-mno\-mips3d \-mmt \-mno\-mt \-mllsc \-mno\-llsc
-\&\-mlong64 \-mlong32 \-msym32 \-mno\-sym32
-\&\-G\fR\fInum\fR \fB\-mlocal\-sdata \-mno\-local\-sdata
-\&\-mextern\-sdata \-mno\-extern\-sdata \-mgpopt \-mno\-gopt
-\&\-membedded\-data \-mno\-embedded\-data
-\&\-muninit\-const\-in\-rodata \-mno\-uninit\-const\-in\-rodata
-\&\-mcode\-readable=\fR\fIsetting\fR
-\&\fB\-msplit\-addresses \-mno\-split\-addresses
-\&\-mexplicit\-relocs \-mno\-explicit\-relocs
-\&\-mcheck\-zero\-division \-mno\-check\-zero\-division
-\&\-mdivide\-traps \-mdivide\-breaks
-\&\-mmemcpy \-mno\-memcpy \-mlong\-calls \-mno\-long\-calls
-\&\-mmad \-mno\-mad \-mimadd \-mno\-imadd \-mfused\-madd \-mno\-fused\-madd \-nocpp
-\&\-mfix\-24k \-mno\-fix\-24k
-\&\-mfix\-r4000 \-mno\-fix\-r4000 \-mfix\-r4400 \-mno\-fix\-r4400
-\&\-mfix\-r10000 \-mno\-fix\-r10000 \-mfix\-rm7000 \-mno\-fix\-rm7000
-\&\-mfix\-vr4120 \-mno\-fix\-vr4120
-\&\-mfix\-vr4130 \-mno\-fix\-vr4130 \-mfix\-sb1 \-mno\-fix\-sb1
-\&\-mflush\-func=\fR\fIfunc\fR \fB\-mno\-flush\-func
-\&\-mbranch\-cost=\fR\fInum\fR \fB\-mbranch\-likely \-mno\-branch\-likely
-\&\-mfp\-exceptions \-mno\-fp\-exceptions
-\&\-mvr4130\-align \-mno\-vr4130\-align \-msynci \-mno\-synci
-\&\-mrelax\-pic\-calls \-mno\-relax\-pic\-calls \-mmcount\-ra\-address\fR
-.Sp
-\&\fI\s-1MMIX\s0 Options\fR
-\&\fB\-mlibfuncs \-mno\-libfuncs \-mepsilon \-mno\-epsilon \-mabi=gnu
-\&\-mabi=mmixware \-mzero\-extend \-mknuthdiv \-mtoplevel\-symbols
-\&\-melf \-mbranch\-predict \-mno\-branch\-predict \-mbase\-addresses
-\&\-mno\-base\-addresses \-msingle\-exit \-mno\-single\-exit\fR
-.Sp
-\&\fI\s-1MN10300\s0 Options\fR
-\&\fB\-mmult\-bug \-mno\-mult\-bug
-\&\-mno\-am33 \-mam33 \-mam33\-2 \-mam34
-\&\-mtune=\fR\fIcpu-type\fR
-\&\fB\-mreturn\-pointer\-on\-d0
-\&\-mno\-crt0 \-mrelax \-mliw \-msetlb\fR
-.Sp
-\&\fIMoxie Options\fR
-\&\fB\-meb \-mel \-mno\-crt0\fR
-.Sp
-\&\fI\s-1MSP430\s0 Options\fR
-\&\fB\-msim \-masm\-hex \-mmcu= \-mcpu= \-mlarge \-msmall \-mrelax\fR
-.Sp
-\&\fI\s-1NDS32\s0 Options\fR
-\&\fB\-mbig\-endian \-mlittle\-endian
-\&\-mreduced\-regs \-mfull\-regs
-\&\-mcmov \-mno\-cmov
-\&\-mperf\-ext \-mno\-perf\-ext
-\&\-mv3push \-mno\-v3push
-\&\-m16bit \-mno\-16bit
-\&\-mgp\-direct \-mno\-gp\-direct
-\&\-misr\-vector\-size=\fR\fInum\fR
-\&\fB\-mcache\-block\-size=\fR\fInum\fR
-\&\fB\-march=\fR\fIarch\fR
-\&\fB\-mforce\-fp\-as\-gp \-mforbid\-fp\-as\-gp
-\&\-mex9 \-mctor\-dtor \-mrelax\fR
-.Sp
-\&\fINios \s-1II\s0 Options\fR
-\&\fB\-G\fR \fInum\fR \fB\-mgpopt \-mno\-gpopt \-mel \-meb
-\&\-mno\-bypass\-cache \-mbypass\-cache
-\&\-mno\-cache\-volatile \-mcache\-volatile
-\&\-mno\-fast\-sw\-div \-mfast\-sw\-div
-\&\-mhw\-mul \-mno\-hw\-mul \-mhw\-mulx \-mno\-hw\-mulx \-mno\-hw\-div \-mhw\-div
-\&\-mcustom\-\fR\fIinsn\fR\fB=\fR\fIN\fR \fB\-mno\-custom\-\fR\fIinsn\fR
-\&\fB\-mcustom\-fpu\-cfg=\fR\fIname\fR
-\&\fB\-mhal \-msmallc \-msys\-crt0=\fR\fIname\fR \fB\-msys\-lib=\fR\fIname\fR
-.Sp
-\&\fI\s-1PDP\-11\s0 Options\fR
-\&\fB\-mfpu \-msoft\-float \-mac0 \-mno\-ac0 \-m40 \-m45 \-m10
-\&\-mbcopy \-mbcopy\-builtin \-mint32 \-mno\-int16
-\&\-mint16 \-mno\-int32 \-mfloat32 \-mno\-float64
-\&\-mfloat64 \-mno\-float32 \-mabshi \-mno\-abshi
-\&\-mbranch\-expensive \-mbranch\-cheap
-\&\-munix\-asm \-mdec\-asm\fR
-.Sp
-\&\fIpicoChip Options\fR
-\&\fB\-mae=\fR\fIae_type\fR \fB\-mvliw\-lookahead=\fR\fIN\fR
-\&\fB\-msymbol\-as\-address \-mno\-inefficient\-warnings\fR
-.Sp
-\&\fIPowerPC Options\fR
-See \s-1RS/6000\s0 and PowerPC Options.
-.Sp
-\&\fI\s-1RL78\s0 Options\fR
-\&\fB\-msim \-mmul=none \-mmul=g13 \-mmul=rl78\fR
-.Sp
-\&\fI\s-1RS/6000\s0 and PowerPC Options\fR
-\&\fB\-mcpu=\fR\fIcpu-type\fR
-\&\fB\-mtune=\fR\fIcpu-type\fR
-\&\fB\-mcmodel=\fR\fIcode-model\fR
-\&\fB\-mpowerpc64
-\&\-maltivec \-mno\-altivec
-\&\-mpowerpc\-gpopt \-mno\-powerpc\-gpopt
-\&\-mpowerpc\-gfxopt \-mno\-powerpc\-gfxopt
-\&\-mmfcrf \-mno\-mfcrf \-mpopcntb \-mno\-popcntb \-mpopcntd \-mno\-popcntd
-\&\-mfprnd \-mno\-fprnd
-\&\-mcmpb \-mno\-cmpb \-mmfpgpr \-mno\-mfpgpr \-mhard\-dfp \-mno\-hard\-dfp
-\&\-mfull\-toc \-mminimal\-toc \-mno\-fp\-in\-toc \-mno\-sum\-in\-toc
-\&\-m64 \-m32 \-mxl\-compat \-mno\-xl\-compat \-mpe
-\&\-malign\-power \-malign\-natural
-\&\-msoft\-float \-mhard\-float \-mmultiple \-mno\-multiple
-\&\-msingle\-float \-mdouble\-float \-msimple\-fpu
-\&\-mstring \-mno\-string \-mupdate \-mno\-update
-\&\-mavoid\-indexed\-addresses \-mno\-avoid\-indexed\-addresses
-\&\-mfused\-madd \-mno\-fused\-madd \-mbit\-align \-mno\-bit\-align
-\&\-mstrict\-align \-mno\-strict\-align \-mrelocatable
-\&\-mno\-relocatable \-mrelocatable\-lib \-mno\-relocatable\-lib
-\&\-mtoc \-mno\-toc \-mlittle \-mlittle\-endian \-mbig \-mbig\-endian
-\&\-mdynamic\-no\-pic \-maltivec \-mswdiv \-msingle\-pic\-base
-\&\-mprioritize\-restricted\-insns=\fR\fIpriority\fR
-\&\fB\-msched\-costly\-dep=\fR\fIdependence_type\fR
-\&\fB\-minsert\-sched\-nops=\fR\fIscheme\fR
-\&\fB\-mcall\-sysv \-mcall\-netbsd
-\&\-maix\-struct\-return \-msvr4\-struct\-return
-\&\-mabi=\fR\fIabi-type\fR \fB\-msecure\-plt \-mbss\-plt
-\&\-mblock\-move\-inline\-limit=\fR\fInum\fR
-\&\fB\-misel \-mno\-isel
-\&\-misel=yes \-misel=no
-\&\-mspe \-mno\-spe
-\&\-mspe=yes \-mspe=no
-\&\-mpaired
-\&\-mgen\-cell\-microcode \-mwarn\-cell\-microcode
-\&\-mvrsave \-mno\-vrsave
-\&\-mmulhw \-mno\-mulhw
-\&\-mdlmzb \-mno\-dlmzb
-\&\-mfloat\-gprs=yes \-mfloat\-gprs=no \-mfloat\-gprs=single \-mfloat\-gprs=double
-\&\-mprototype \-mno\-prototype
-\&\-msim \-mmvme \-mads \-myellowknife \-memb \-msdata
-\&\-msdata=\fR\fIopt\fR \fB\-mvxworks \-G\fR \fInum\fR \fB\-pthread
-\&\-mrecip \-mrecip=\fR\fIopt\fR \fB\-mno\-recip \-mrecip\-precision
-\&\-mno\-recip\-precision
-\&\-mveclibabi=\fR\fItype\fR \fB\-mfriz \-mno\-friz
-\&\-mpointers\-to\-nested\-functions \-mno\-pointers\-to\-nested\-functions
-\&\-msave\-toc\-indirect \-mno\-save\-toc\-indirect
-\&\-mpower8\-fusion \-mno\-mpower8\-fusion \-mpower8\-vector \-mno\-power8\-vector
-\&\-mcrypto \-mno\-crypto \-mdirect\-move \-mno\-direct\-move
-\&\-mquad\-memory \-mno\-quad\-memory
-\&\-mquad\-memory\-atomic \-mno\-quad\-memory\-atomic
-\&\-mcompat\-align\-parm \-mno\-compat\-align\-parm\fR
-.Sp
-\&\fI\s-1RX\s0 Options\fR
-\&\fB\-m64bit\-doubles \-m32bit\-doubles \-fpu \-nofpu
-\&\-mcpu=
-\&\-mbig\-endian\-data \-mlittle\-endian\-data
-\&\-msmall\-data
-\&\-msim \-mno\-sim
-\&\-mas100\-syntax \-mno\-as100\-syntax
-\&\-mrelax
-\&\-mmax\-constant\-size=
-\&\-mint\-register=
-\&\-mpid
-\&\-mno\-warn\-multiple\-fast\-interrupts
-\&\-msave\-acc\-in\-interrupts\fR
-.Sp
-\&\fIS/390 and zSeries Options\fR
-\&\fB\-mtune=\fR\fIcpu-type\fR \fB\-march=\fR\fIcpu-type\fR
-\&\fB\-mhard\-float \-msoft\-float \-mhard\-dfp \-mno\-hard\-dfp
-\&\-mlong\-double\-64 \-mlong\-double\-128
-\&\-mbackchain \-mno\-backchain \-mpacked\-stack \-mno\-packed\-stack
-\&\-msmall\-exec \-mno\-small\-exec \-mmvcle \-mno\-mvcle
-\&\-m64 \-m31 \-mdebug \-mno\-debug \-mesa \-mzarch
-\&\-mtpf\-trace \-mno\-tpf\-trace \-mfused\-madd \-mno\-fused\-madd
-\&\-mwarn\-framesize \-mwarn\-dynamicstack \-mstack\-size \-mstack\-guard
-\&\-mhotpatch[=\fR\fIhalfwords\fR\fB] \-mno\-hotpatch\fR
-.Sp
-\&\fIScore Options\fR
-\&\fB\-meb \-mel
-\&\-mnhwloop
-\&\-muls
-\&\-mmac
-\&\-mscore5 \-mscore5u \-mscore7 \-mscore7d\fR
-.Sp
-\&\fI\s-1SH\s0 Options\fR
-\&\fB\-m1 \-m2 \-m2e
-\&\-m2a\-nofpu \-m2a\-single\-only \-m2a\-single \-m2a
-\&\-m3 \-m3e
-\&\-m4\-nofpu \-m4\-single\-only \-m4\-single \-m4
-\&\-m4a\-nofpu \-m4a\-single\-only \-m4a\-single \-m4a \-m4al
-\&\-m5\-64media \-m5\-64media\-nofpu
-\&\-m5\-32media \-m5\-32media\-nofpu
-\&\-m5\-compact \-m5\-compact\-nofpu
-\&\-mb \-ml \-mdalign \-mrelax
-\&\-mbigtable \-mfmovd \-mhitachi \-mrenesas \-mno\-renesas \-mnomacsave
-\&\-mieee \-mno\-ieee \-mbitops \-misize \-minline\-ic_invalidate \-mpadstruct
-\&\-mspace \-mprefergot \-musermode \-multcost=\fR\fInumber\fR \fB\-mdiv=\fR\fIstrategy\fR
-\&\fB\-mdivsi3_libfunc=\fR\fIname\fR \fB\-mfixed\-range=\fR\fIregister-range\fR
-\&\fB\-mindexed\-addressing \-mgettrcost=\fR\fInumber\fR \fB\-mpt\-fixed
-\&\-maccumulate\-outgoing\-args \-minvalid\-symbols
-\&\-matomic\-model=\fR\fIatomic-model\fR
-\&\fB\-mbranch\-cost=\fR\fInum\fR \fB\-mzdcbranch \-mno\-zdcbranch
-\&\-mfused\-madd \-mno\-fused\-madd \-mfsca \-mno\-fsca \-mfsrra \-mno\-fsrra
-\&\-mpretend\-cmove \-mtas\fR
-.Sp
-\&\fISolaris 2 Options\fR
-\&\fB\-mimpure\-text \-mno\-impure\-text
-\&\-pthreads \-pthread\fR
-.Sp
-\&\fI\s-1SPARC\s0 Options\fR
-\&\fB\-mcpu=\fR\fIcpu-type\fR
-\&\fB\-mtune=\fR\fIcpu-type\fR
-\&\fB\-mcmodel=\fR\fIcode-model\fR
-\&\fB\-mmemory\-model=\fR\fImem-model\fR
-\&\fB\-m32 \-m64 \-mapp\-regs \-mno\-app\-regs
-\&\-mfaster\-structs \-mno\-faster\-structs \-mflat \-mno\-flat
-\&\-mfpu \-mno\-fpu \-mhard\-float \-msoft\-float
-\&\-mhard\-quad\-float \-msoft\-quad\-float
-\&\-mstack\-bias \-mno\-stack\-bias
-\&\-munaligned\-doubles \-mno\-unaligned\-doubles
-\&\-mv8plus \-mno\-v8plus \-mvis \-mno\-vis
-\&\-mvis2 \-mno\-vis2 \-mvis3 \-mno\-vis3
-\&\-mcbcond \-mno\-cbcond
-\&\-mfmaf \-mno\-fmaf \-mpopc \-mno\-popc
-\&\-mfix\-at697f \-mfix\-ut699\fR
-.Sp
-\&\fI\s-1SPU\s0 Options\fR
-\&\fB\-mwarn\-reloc \-merror\-reloc
-\&\-msafe\-dma \-munsafe\-dma
-\&\-mbranch\-hints
-\&\-msmall\-mem \-mlarge\-mem \-mstdmain
-\&\-mfixed\-range=\fR\fIregister-range\fR
-\&\fB\-mea32 \-mea64
-\&\-maddress\-space\-conversion \-mno\-address\-space\-conversion
-\&\-mcache\-size=\fR\fIcache-size\fR
-\&\fB\-matomic\-updates \-mno\-atomic\-updates\fR
-.Sp
-\&\fISystem V Options\fR
-\&\fB\-Qy \-Qn \-YP,\fR\fIpaths\fR \fB\-Ym,\fR\fIdir\fR
-.Sp
-\&\fITILE-Gx Options\fR
-\&\fB\-mcpu=CPU \-m32 \-m64 \-mbig\-endian \-mlittle\-endian
-\&\-mcmodel=\fR\fIcode-model\fR
-.Sp
-\&\fITILEPro Options\fR
-\&\fB\-mcpu=\fR\fIcpu\fR \fB\-m32\fR
-.Sp
-\&\fIV850 Options\fR
-\&\fB\-mlong\-calls \-mno\-long\-calls \-mep \-mno\-ep
-\&\-mprolog\-function \-mno\-prolog\-function \-mspace
-\&\-mtda=\fR\fIn\fR \fB\-msda=\fR\fIn\fR \fB\-mzda=\fR\fIn\fR
-\&\fB\-mapp\-regs \-mno\-app\-regs
-\&\-mdisable\-callt \-mno\-disable\-callt
-\&\-mv850e2v3 \-mv850e2 \-mv850e1 \-mv850es
-\&\-mv850e \-mv850 \-mv850e3v5
-\&\-mloop
-\&\-mrelax
-\&\-mlong\-jumps
-\&\-msoft\-float
-\&\-mhard\-float
-\&\-mgcc\-abi
-\&\-mrh850\-abi
-\&\-mbig\-switch\fR
-.Sp
-\&\fI\s-1VAX\s0 Options\fR
-\&\fB\-mg \-mgnu \-munix\fR
-.Sp
-\&\fI\s-1VMS\s0 Options\fR
-\&\fB\-mvms\-return\-codes \-mdebug\-main=\fR\fIprefix\fR \fB\-mmalloc64
-\&\-mpointer\-size=\fR\fIsize\fR
-.Sp
-\&\fIVxWorks Options\fR
-\&\fB\-mrtp \-non\-static \-Bstatic \-Bdynamic
-\&\-Xbind\-lazy \-Xbind\-now\fR
-.Sp
-\&\fIx86\-64 Options\fR
-See i386 and x86\-64 Options.
-.Sp
-\&\fIXstormy16 Options\fR
-\&\fB\-msim\fR
-.Sp
-\&\fIXtensa Options\fR
-\&\fB\-mconst16 \-mno\-const16
-\&\-mfused\-madd \-mno\-fused\-madd
-\&\-mforce\-no\-pic
-\&\-mserialize\-volatile \-mno\-serialize\-volatile
-\&\-mtext\-section\-literals \-mno\-text\-section\-literals
-\&\-mtarget\-align \-mno\-target\-align
-\&\-mlongcalls \-mno\-longcalls\fR
-.Sp
-\&\fIzSeries Options\fR
-See S/390 and zSeries Options.
-.IP "\fICode Generation Options\fR" 4
-.IX Item "Code Generation Options"
-\&\fB\-fcall\-saved\-\fR\fIreg\fR \fB\-fcall\-used\-\fR\fIreg\fR
-\&\fB\-ffixed\-\fR\fIreg\fR \fB\-fexceptions
-\&\-fnon\-call\-exceptions \-fdelete\-dead\-exceptions \-funwind\-tables
-\&\-fasynchronous\-unwind\-tables
-\&\-fno\-gnu\-unique
-\&\-finhibit\-size\-directive \-finstrument\-functions
-\&\-finstrument\-functions\-exclude\-function\-list=\fR\fIsym\fR\fB,\fR\fIsym\fR\fB,...
-\&\-finstrument\-functions\-exclude\-file\-list=\fR\fIfile\fR\fB,\fR\fIfile\fR\fB,...
-\&\-fno\-common \-fno\-ident
-\&\-fpcc\-struct\-return \-fpic \-fPIC \-fpie \-fPIE
-\&\-fno\-jump\-tables
-\&\-frecord\-gcc\-switches
-\&\-freg\-struct\-return \-fshort\-enums
-\&\-fshort\-double \-fshort\-wchar
-\&\-fverbose\-asm \-fpack\-struct[=\fR\fIn\fR\fB] \-fstack\-check
-\&\-fstack\-limit\-register=\fR\fIreg\fR \fB\-fstack\-limit\-symbol=\fR\fIsym\fR
-\&\fB\-fno\-stack\-limit \-fsplit\-stack
-\&\-fleading\-underscore \-ftls\-model=\fR\fImodel\fR
-\&\fB\-fstack\-reuse=\fR\fIreuse_level\fR
-\&\fB\-ftrapv \-fwrapv \-fbounds\-check
-\&\-fvisibility \-fstrict\-volatile\-bitfields \-fsync\-libcalls\fR
-.SS "Options Controlling the Kind of Output"
-.IX Subsection "Options Controlling the Kind of Output"
-Compilation can involve up to four stages: preprocessing, compilation
-proper, assembly and linking, always in that order. \s-1GCC\s0 is capable of
-preprocessing and compiling several files either into several
-assembler input files, or into one assembler input file; then each
-assembler input file produces an object file, and linking combines all
-the object files (those newly compiled, and those specified as input)
-into an executable file.
-.PP
-For any given input file, the file name suffix determines what kind of
-compilation is done:
-.IP "\fIfile\fR\fB.c\fR" 4
-.IX Item "file.c"
-C source code that must be preprocessed.
-.IP "\fIfile\fR\fB.i\fR" 4
-.IX Item "file.i"
-C source code that should not be preprocessed.
-.IP "\fIfile\fR\fB.ii\fR" 4
-.IX Item "file.ii"
-\&\*(C+ source code that should not be preprocessed.
-.IP "\fIfile\fR\fB.m\fR" 4
-.IX Item "file.m"
-Objective-C source code. Note that you must link with the \fIlibobjc\fR
-library to make an Objective-C program work.
-.IP "\fIfile\fR\fB.mi\fR" 4
-.IX Item "file.mi"
-Objective-C source code that should not be preprocessed.
-.IP "\fIfile\fR\fB.mm\fR" 4
-.IX Item "file.mm"
-.PD 0
-.IP "\fIfile\fR\fB.M\fR" 4
-.IX Item "file.M"
-.PD
-Objective\-\*(C+ source code. Note that you must link with the \fIlibobjc\fR
-library to make an Objective\-\*(C+ program work. Note that \fB.M\fR refers
-to a literal capital M.
-.IP "\fIfile\fR\fB.mii\fR" 4
-.IX Item "file.mii"
-Objective\-\*(C+ source code that should not be preprocessed.
-.IP "\fIfile\fR\fB.h\fR" 4
-.IX Item "file.h"
-C, \*(C+, Objective-C or Objective\-\*(C+ header file to be turned into a
-precompiled header (default), or C, \*(C+ header file to be turned into an
-Ada spec (via the \fB\-fdump\-ada\-spec\fR switch).
-.IP "\fIfile\fR\fB.cc\fR" 4
-.IX Item "file.cc"
-.PD 0
-.IP "\fIfile\fR\fB.cp\fR" 4
-.IX Item "file.cp"
-.IP "\fIfile\fR\fB.cxx\fR" 4
-.IX Item "file.cxx"
-.IP "\fIfile\fR\fB.cpp\fR" 4
-.IX Item "file.cpp"
-.IP "\fIfile\fR\fB.CPP\fR" 4
-.IX Item "file.CPP"
-.IP "\fIfile\fR\fB.c++\fR" 4
-.IX Item "file.c++"
-.IP "\fIfile\fR\fB.C\fR" 4
-.IX Item "file.C"
-.PD
-\&\*(C+ source code that must be preprocessed. Note that in \fB.cxx\fR,
-the last two letters must both be literally \fBx\fR. Likewise,
-\&\fB.C\fR refers to a literal capital C.
-.IP "\fIfile\fR\fB.mm\fR" 4
-.IX Item "file.mm"
-.PD 0
-.IP "\fIfile\fR\fB.M\fR" 4
-.IX Item "file.M"
-.PD
-Objective\-\*(C+ source code that must be preprocessed.
-.IP "\fIfile\fR\fB.mii\fR" 4
-.IX Item "file.mii"
-Objective\-\*(C+ source code that should not be preprocessed.
-.IP "\fIfile\fR\fB.hh\fR" 4
-.IX Item "file.hh"
-.PD 0
-.IP "\fIfile\fR\fB.H\fR" 4
-.IX Item "file.H"
-.IP "\fIfile\fR\fB.hp\fR" 4
-.IX Item "file.hp"
-.IP "\fIfile\fR\fB.hxx\fR" 4
-.IX Item "file.hxx"
-.IP "\fIfile\fR\fB.hpp\fR" 4
-.IX Item "file.hpp"
-.IP "\fIfile\fR\fB.HPP\fR" 4
-.IX Item "file.HPP"
-.IP "\fIfile\fR\fB.h++\fR" 4
-.IX Item "file.h++"
-.IP "\fIfile\fR\fB.tcc\fR" 4
-.IX Item "file.tcc"
-.PD
-\&\*(C+ header file to be turned into a precompiled header or Ada spec.
-.IP "\fIfile\fR\fB.f\fR" 4
-.IX Item "file.f"
-.PD 0
-.IP "\fIfile\fR\fB.for\fR" 4
-.IX Item "file.for"
-.IP "\fIfile\fR\fB.ftn\fR" 4
-.IX Item "file.ftn"
-.PD
-Fixed form Fortran source code that should not be preprocessed.
-.IP "\fIfile\fR\fB.F\fR" 4
-.IX Item "file.F"
-.PD 0
-.IP "\fIfile\fR\fB.FOR\fR" 4
-.IX Item "file.FOR"
-.IP "\fIfile\fR\fB.fpp\fR" 4
-.IX Item "file.fpp"
-.IP "\fIfile\fR\fB.FPP\fR" 4
-.IX Item "file.FPP"
-.IP "\fIfile\fR\fB.FTN\fR" 4
-.IX Item "file.FTN"
-.PD
-Fixed form Fortran source code that must be preprocessed (with the traditional
-preprocessor).
-.IP "\fIfile\fR\fB.f90\fR" 4
-.IX Item "file.f90"
-.PD 0
-.IP "\fIfile\fR\fB.f95\fR" 4
-.IX Item "file.f95"
-.IP "\fIfile\fR\fB.f03\fR" 4
-.IX Item "file.f03"
-.IP "\fIfile\fR\fB.f08\fR" 4
-.IX Item "file.f08"
-.PD
-Free form Fortran source code that should not be preprocessed.
-.IP "\fIfile\fR\fB.F90\fR" 4
-.IX Item "file.F90"
-.PD 0
-.IP "\fIfile\fR\fB.F95\fR" 4
-.IX Item "file.F95"
-.IP "\fIfile\fR\fB.F03\fR" 4
-.IX Item "file.F03"
-.IP "\fIfile\fR\fB.F08\fR" 4
-.IX Item "file.F08"
-.PD
-Free form Fortran source code that must be preprocessed (with the
-traditional preprocessor).
-.IP "\fIfile\fR\fB.go\fR" 4
-.IX Item "file.go"
-Go source code.
-.IP "\fIfile\fR\fB.ads\fR" 4
-.IX Item "file.ads"
-Ada source code file that contains a library unit declaration (a
-declaration of a package, subprogram, or generic, or a generic
-instantiation), or a library unit renaming declaration (a package,
-generic, or subprogram renaming declaration). Such files are also
-called \fIspecs\fR.
-.IP "\fIfile\fR\fB.adb\fR" 4
-.IX Item "file.adb"
-Ada source code file containing a library unit body (a subprogram or
-package body). Such files are also called \fIbodies\fR.
-.IP "\fIfile\fR\fB.s\fR" 4
-.IX Item "file.s"
-Assembler code.
-.IP "\fIfile\fR\fB.S\fR" 4
-.IX Item "file.S"
-.PD 0
-.IP "\fIfile\fR\fB.sx\fR" 4
-.IX Item "file.sx"
-.PD
-Assembler code that must be preprocessed.
-.IP "\fIother\fR" 4
-.IX Item "other"
-An object file to be fed straight into linking.
-Any file name with no recognized suffix is treated this way.
-.PP
-You can specify the input language explicitly with the \fB\-x\fR option:
-.IP "\fB\-x\fR \fIlanguage\fR" 4
-.IX Item "-x language"
-Specify explicitly the \fIlanguage\fR for the following input files
-(rather than letting the compiler choose a default based on the file
-name suffix). This option applies to all following input files until
-the next \fB\-x\fR option. Possible values for \fIlanguage\fR are:
-.Sp
-.Vb 9
-\& c c\-header cpp\-output
-\& c++ c++\-header c++\-cpp\-output
-\& objective\-c objective\-c\-header objective\-c\-cpp\-output
-\& objective\-c++ objective\-c++\-header objective\-c++\-cpp\-output
-\& assembler assembler\-with\-cpp
-\& ada
-\& f77 f77\-cpp\-input f95 f95\-cpp\-input
-\& go
-\& java
-.Ve
-.IP "\fB\-x none\fR" 4
-.IX Item "-x none"
-Turn off any specification of a language, so that subsequent files are
-handled according to their file name suffixes (as they are if \fB\-x\fR
-has not been used at all).
-.IP "\fB\-pass\-exit\-codes\fR" 4
-.IX Item "-pass-exit-codes"
-Normally the \fBgcc\fR program exits with the code of 1 if any
-phase of the compiler returns a non-success return code. If you specify
-\&\fB\-pass\-exit\-codes\fR, the \fBgcc\fR program instead returns with
-the numerically highest error produced by any phase returning an error
-indication. The C, \*(C+, and Fortran front ends return 4 if an internal
-compiler error is encountered.
-.PP
-If you only want some of the stages of compilation, you can use
-\&\fB\-x\fR (or filename suffixes) to tell \fBgcc\fR where to start, and
-one of the options \fB\-c\fR, \fB\-S\fR, or \fB\-E\fR to say where
-\&\fBgcc\fR is to stop. Note that some combinations (for example,
-\&\fB\-x cpp-output \-E\fR) instruct \fBgcc\fR to do nothing at all.
-.IP "\fB\-c\fR" 4
-.IX Item "-c"
-Compile or assemble the source files, but do not link. The linking
-stage simply is not done. The ultimate output is in the form of an
-object file for each source file.
-.Sp
-By default, the object file name for a source file is made by replacing
-the suffix \fB.c\fR, \fB.i\fR, \fB.s\fR, etc., with \fB.o\fR.
-.Sp
-Unrecognized input files, not requiring compilation or assembly, are
-ignored.
-.IP "\fB\-S\fR" 4
-.IX Item "-S"
-Stop after the stage of compilation proper; do not assemble. The output
-is in the form of an assembler code file for each non-assembler input
-file specified.
-.Sp
-By default, the assembler file name for a source file is made by
-replacing the suffix \fB.c\fR, \fB.i\fR, etc., with \fB.s\fR.
-.Sp
-Input files that don't require compilation are ignored.
-.IP "\fB\-E\fR" 4
-.IX Item "-E"
-Stop after the preprocessing stage; do not run the compiler proper. The
-output is in the form of preprocessed source code, which is sent to the
-standard output.
-.Sp
-Input files that don't require preprocessing are ignored.
-.IP "\fB\-o\fR \fIfile\fR" 4
-.IX Item "-o file"
-Place output in file \fIfile\fR. This applies to whatever
-sort of output is being produced, whether it be an executable file,
-an object file, an assembler file or preprocessed C code.
-.Sp
-If \fB\-o\fR is not specified, the default is to put an executable
-file in \fIa.out\fR, the object file for
-\&\fI\fIsource\fI.\fIsuffix\fI\fR in \fI\fIsource\fI.o\fR, its
-assembler file in \fI\fIsource\fI.s\fR, a precompiled header file in
-\&\fI\fIsource\fI.\fIsuffix\fI.gch\fR, and all preprocessed C source on
-standard output.
-.IP "\fB\-v\fR" 4
-.IX Item "-v"
-Print (on standard error output) the commands executed to run the stages
-of compilation. Also print the version number of the compiler driver
-program and of the preprocessor and the compiler proper.
-.IP "\fB\-###\fR" 4
-.IX Item "-###"
-Like \fB\-v\fR except the commands are not executed and arguments
-are quoted unless they contain only alphanumeric characters or \f(CW\*(C`./\-_\*(C'\fR.
-This is useful for shell scripts to capture the driver-generated command lines.
-.IP "\fB\-pipe\fR" 4
-.IX Item "-pipe"
-Use pipes rather than temporary files for communication between the
-various stages of compilation. This fails to work on some systems where
-the assembler is unable to read from a pipe; but the \s-1GNU\s0 assembler has
-no trouble.
-.IP "\fB\-\-help\fR" 4
-.IX Item "--help"
-Print (on the standard output) a description of the command-line options
-understood by \fBgcc\fR. If the \fB\-v\fR option is also specified
-then \fB\-\-help\fR is also passed on to the various processes
-invoked by \fBgcc\fR, so that they can display the command-line options
-they accept. If the \fB\-Wextra\fR option has also been specified
-(prior to the \fB\-\-help\fR option), then command-line options that
-have no documentation associated with them are also displayed.
-.IP "\fB\-\-target\-help\fR" 4
-.IX Item "--target-help"
-Print (on the standard output) a description of target-specific command-line
-options for each tool. For some targets extra target-specific
-information may also be printed.
-.IP "\fB\-\-help={\fR\fIclass\fR|[\fB^\fR]\fIqualifier\fR\fB}\fR[\fB,...\fR]" 4
-.IX Item "--help={class|[^]qualifier}[,...]"
-Print (on the standard output) a description of the command-line
-options understood by the compiler that fit into all specified classes
-and qualifiers. These are the supported classes:
-.RS 4
-.IP "\fBoptimizers\fR" 4
-.IX Item "optimizers"
-Display all of the optimization options supported by the
-compiler.
-.IP "\fBwarnings\fR" 4
-.IX Item "warnings"
-Display all of the options controlling warning messages
-produced by the compiler.
-.IP "\fBtarget\fR" 4
-.IX Item "target"
-Display target-specific options. Unlike the
-\&\fB\-\-target\-help\fR option however, target-specific options of the
-linker and assembler are not displayed. This is because those
-tools do not currently support the extended \fB\-\-help=\fR syntax.
-.IP "\fBparams\fR" 4
-.IX Item "params"
-Display the values recognized by the \fB\-\-param\fR
-option.
-.IP "\fIlanguage\fR" 4
-.IX Item "language"
-Display the options supported for \fIlanguage\fR, where
-\&\fIlanguage\fR is the name of one of the languages supported in this
-version of \s-1GCC.\s0
-.IP "\fBcommon\fR" 4
-.IX Item "common"
-Display the options that are common to all languages.
-.RE
-.RS 4
-.Sp
-These are the supported qualifiers:
-.IP "\fBundocumented\fR" 4
-.IX Item "undocumented"
-Display only those options that are undocumented.
-.IP "\fBjoined\fR" 4
-.IX Item "joined"
-Display options taking an argument that appears after an equal
-sign in the same continuous piece of text, such as:
-\&\fB\-\-help=target\fR.
-.IP "\fBseparate\fR" 4
-.IX Item "separate"
-Display options taking an argument that appears as a separate word
-following the original option, such as: \fB\-o output-file\fR.
-.RE
-.RS 4
-.Sp
-Thus for example to display all the undocumented target-specific
-switches supported by the compiler, use:
-.Sp
-.Vb 1
-\& \-\-help=target,undocumented
-.Ve
-.Sp
-The sense of a qualifier can be inverted by prefixing it with the
-\&\fB^\fR character, so for example to display all binary warning
-options (i.e., ones that are either on or off and that do not take an
-argument) that have a description, use:
-.Sp
-.Vb 1
-\& \-\-help=warnings,^joined,^undocumented
-.Ve
-.Sp
-The argument to \fB\-\-help=\fR should not consist solely of inverted
-qualifiers.
-.Sp
-Combining several classes is possible, although this usually
-restricts the output so much that there is nothing to display. One
-case where it does work, however, is when one of the classes is
-\&\fItarget\fR. For example, to display all the target-specific
-optimization options, use:
-.Sp
-.Vb 1
-\& \-\-help=target,optimizers
-.Ve
-.Sp
-The \fB\-\-help=\fR option can be repeated on the command line. Each
-successive use displays its requested class of options, skipping
-those that have already been displayed.
-.Sp
-If the \fB\-Q\fR option appears on the command line before the
-\&\fB\-\-help=\fR option, then the descriptive text displayed by
-\&\fB\-\-help=\fR is changed. Instead of describing the displayed
-options, an indication is given as to whether the option is enabled,
-disabled or set to a specific value (assuming that the compiler
-knows this at the point where the \fB\-\-help=\fR option is used).
-.Sp
-Here is a truncated example from the \s-1ARM\s0 port of \fBgcc\fR:
-.Sp
-.Vb 5
-\& % gcc \-Q \-mabi=2 \-\-help=target \-c
-\& The following options are target specific:
-\& \-mabi= 2
-\& \-mabort\-on\-noreturn [disabled]
-\& \-mapcs [disabled]
-.Ve
-.Sp
-The output is sensitive to the effects of previous command-line
-options, so for example it is possible to find out which optimizations
-are enabled at \fB\-O2\fR by using:
-.Sp
-.Vb 1
-\& \-Q \-O2 \-\-help=optimizers
-.Ve
-.Sp
-Alternatively you can discover which binary optimizations are enabled
-by \fB\-O3\fR by using:
-.Sp
-.Vb 3
-\& gcc \-c \-Q \-O3 \-\-help=optimizers > /tmp/O3\-opts
-\& gcc \-c \-Q \-O2 \-\-help=optimizers > /tmp/O2\-opts
-\& diff /tmp/O2\-opts /tmp/O3\-opts | grep enabled
-.Ve
-.RE
-.IP "\fB\-no\-canonical\-prefixes\fR" 4
-.IX Item "-no-canonical-prefixes"
-Do not expand any symbolic links, resolve references to \fB/../\fR
-or \fB/./\fR, or make the path absolute when generating a relative
-prefix.
-.IP "\fB\-\-version\fR" 4
-.IX Item "--version"
-Display the version number and copyrights of the invoked \s-1GCC.\s0
-.IP "\fB\-wrapper\fR" 4
-.IX Item "-wrapper"
-Invoke all subcommands under a wrapper program. The name of the
-wrapper program and its parameters are passed as a comma separated
-list.
-.Sp
-.Vb 1
-\& gcc \-c t.c \-wrapper gdb,\-\-args
-.Ve
-.Sp
-This invokes all subprograms of \fBgcc\fR under
-\&\fBgdb \-\-args\fR, thus the invocation of \fBcc1\fR is
-\&\fBgdb \-\-args cc1 ...\fR.
-.IP "\fB\-fplugin=\fR\fIname\fR\fB.so\fR" 4
-.IX Item "-fplugin=name.so"
-Load the plugin code in file \fIname\fR.so, assumed to be a
-shared object to be dlopen'd by the compiler. The base name of
-the shared object file is used to identify the plugin for the
-purposes of argument parsing (See
-\&\fB\-fplugin\-arg\-\fR\fIname\fR\fB\-\fR\fIkey\fR\fB=\fR\fIvalue\fR below).
-Each plugin should define the callback functions specified in the
-Plugins \s-1API.\s0
-.IP "\fB\-fplugin\-arg\-\fR\fIname\fR\fB\-\fR\fIkey\fR\fB=\fR\fIvalue\fR" 4
-.IX Item "-fplugin-arg-name-key=value"
-Define an argument called \fIkey\fR with a value of \fIvalue\fR
-for the plugin called \fIname\fR.
-.IP "\fB\-fdump\-ada\-spec\fR[\fB\-slim\fR]" 4
-.IX Item "-fdump-ada-spec[-slim]"
-For C and \*(C+ source and include files, generate corresponding Ada specs.
-.IP "\fB\-fada\-spec\-parent=\fR\fIunit\fR" 4
-.IX Item "-fada-spec-parent=unit"
-In conjunction with \fB\-fdump\-ada\-spec\fR[\fB\-slim\fR] above, generate
-Ada specs as child units of parent \fIunit\fR.
-.IP "\fB\-fdump\-go\-spec=\fR\fIfile\fR" 4
-.IX Item "-fdump-go-spec=file"
-For input files in any language, generate corresponding Go
-declarations in \fIfile\fR. This generates Go \f(CW\*(C`const\*(C'\fR,
-\&\f(CW\*(C`type\*(C'\fR, \f(CW\*(C`var\*(C'\fR, and \f(CW\*(C`func\*(C'\fR declarations which may be a
-useful way to start writing a Go interface to code written in some
-other language.
-.IP "\fB@\fR\fIfile\fR" 4
-.IX Item "@file"
-Read command-line options from \fIfile\fR. The options read are
-inserted in place of the original @\fIfile\fR option. If \fIfile\fR
-does not exist, or cannot be read, then the option will be treated
-literally, and not removed.
-.Sp
-Options in \fIfile\fR are separated by whitespace. A whitespace
-character may be included in an option by surrounding the entire
-option in either single or double quotes. Any character (including a
-backslash) may be included by prefixing the character to be included
-with a backslash. The \fIfile\fR may itself contain additional
-@\fIfile\fR options; any such options will be processed recursively.
-.SS "Compiling \*(C+ Programs"
-.IX Subsection "Compiling Programs"
-\&\*(C+ source files conventionally use one of the suffixes \fB.C\fR,
-\&\fB.cc\fR, \fB.cpp\fR, \fB.CPP\fR, \fB.c++\fR, \fB.cp\fR, or
-\&\fB.cxx\fR; \*(C+ header files often use \fB.hh\fR, \fB.hpp\fR,
-\&\fB.H\fR, or (for shared template code) \fB.tcc\fR; and
-preprocessed \*(C+ files use the suffix \fB.ii\fR. \s-1GCC\s0 recognizes
-files with these names and compiles them as \*(C+ programs even if you
-call the compiler the same way as for compiling C programs (usually
-with the name \fBgcc\fR).
-.PP
-However, the use of \fBgcc\fR does not add the \*(C+ library.
-\&\fBg++\fR is a program that calls \s-1GCC\s0 and automatically specifies linking
-against the \*(C+ library. It treats \fB.c\fR,
-\&\fB.h\fR and \fB.i\fR files as \*(C+ source files instead of C source
-files unless \fB\-x\fR is used. This program is also useful when
-precompiling a C header file with a \fB.h\fR extension for use in \*(C+
-compilations. On many systems, \fBg++\fR is also installed with
-the name \fBc++\fR.
-.PP
-When you compile \*(C+ programs, you may specify many of the same
-command-line options that you use for compiling programs in any
-language; or command-line options meaningful for C and related
-languages; or options that are meaningful only for \*(C+ programs.
-.SS "Options Controlling C Dialect"
-.IX Subsection "Options Controlling C Dialect"
-The following options control the dialect of C (or languages derived
-from C, such as \*(C+, Objective-C and Objective\-\*(C+) that the compiler
-accepts:
-.IP "\fB\-ansi\fR" 4
-.IX Item "-ansi"
-In C mode, this is equivalent to \fB\-std=c90\fR. In \*(C+ mode, it is
-equivalent to \fB\-std=c++98\fR.
-.Sp
-This turns off certain features of \s-1GCC\s0 that are incompatible with \s-1ISO
-C90 \s0(when compiling C code), or of standard \*(C+ (when compiling \*(C+ code),
-such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, and
-predefined macros such as \f(CW\*(C`unix\*(C'\fR and \f(CW\*(C`vax\*(C'\fR that identify the
-type of system you are using. It also enables the undesirable and
-rarely used \s-1ISO\s0 trigraph feature. For the C compiler,
-it disables recognition of \*(C+ style \fB//\fR comments as well as
-the \f(CW\*(C`inline\*(C'\fR keyword.
-.Sp
-The alternate keywords \f(CW\*(C`_\|_asm_\|_\*(C'\fR, \f(CW\*(C`_\|_extension_\|_\*(C'\fR,
-\&\f(CW\*(C`_\|_inline_\|_\*(C'\fR and \f(CW\*(C`_\|_typeof_\|_\*(C'\fR continue to work despite
-\&\fB\-ansi\fR. You would not want to use them in an \s-1ISO C\s0 program, of
-course, but it is useful to put them in header files that might be included
-in compilations done with \fB\-ansi\fR. Alternate predefined macros
-such as \f(CW\*(C`_\|_unix_\|_\*(C'\fR and \f(CW\*(C`_\|_vax_\|_\*(C'\fR are also available, with or
-without \fB\-ansi\fR.
-.Sp
-The \fB\-ansi\fR option does not cause non-ISO programs to be
-rejected gratuitously. For that, \fB\-Wpedantic\fR is required in
-addition to \fB\-ansi\fR.
-.Sp
-The macro \f(CW\*(C`_\|_STRICT_ANSI_\|_\*(C'\fR is predefined when the \fB\-ansi\fR
-option is used. Some header files may notice this macro and refrain
-from declaring certain functions or defining certain macros that the
-\&\s-1ISO\s0 standard doesn't call for; this is to avoid interfering with any
-programs that might use these names for other things.
-.Sp
-Functions that are normally built in but do not have semantics
-defined by \s-1ISO C \s0(such as \f(CW\*(C`alloca\*(C'\fR and \f(CW\*(C`ffs\*(C'\fR) are not built-in
-functions when \fB\-ansi\fR is used.
-.IP "\fB\-std=\fR" 4
-.IX Item "-std="
-Determine the language standard. This option
-is currently only supported when compiling C or \*(C+.
-.Sp
-The compiler can accept several base standards, such as \fBc90\fR or
-\&\fBc++98\fR, and \s-1GNU\s0 dialects of those standards, such as
-\&\fBgnu90\fR or \fBgnu++98\fR. When a base standard is specified, the
-compiler accepts all programs following that standard plus those
-using \s-1GNU\s0 extensions that do not contradict it. For example,
-\&\fB\-std=c90\fR turns off certain features of \s-1GCC\s0 that are
-incompatible with \s-1ISO C90,\s0 such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR
-keywords, but not other \s-1GNU\s0 extensions that do not have a meaning in
-\&\s-1ISO C90,\s0 such as omitting the middle term of a \f(CW\*(C`?:\*(C'\fR
-expression. On the other hand, when a \s-1GNU\s0 dialect of a standard is
-specified, all features supported by the compiler are enabled, even when
-those features change the meaning of the base standard. As a result, some
-strict-conforming programs may be rejected. The particular standard
-is used by \fB\-Wpedantic\fR to identify which features are \s-1GNU\s0
-extensions given that version of the standard. For example
-\&\fB\-std=gnu90 \-Wpedantic\fR warns about \*(C+ style \fB//\fR
-comments, while \fB\-std=gnu99 \-Wpedantic\fR does not.
-.Sp
-A value for this option must be provided; possible values are
-.RS 4
-.IP "\fBc90\fR" 4
-.IX Item "c90"
-.PD 0
-.IP "\fBc89\fR" 4
-.IX Item "c89"
-.IP "\fBiso9899:1990\fR" 4
-.IX Item "iso9899:1990"
-.PD
-Support all \s-1ISO C90\s0 programs (certain \s-1GNU\s0 extensions that conflict
-with \s-1ISO C90\s0 are disabled). Same as \fB\-ansi\fR for C code.
-.IP "\fBiso9899:199409\fR" 4
-.IX Item "iso9899:199409"
-\&\s-1ISO C90\s0 as modified in amendment 1.
-.IP "\fBc99\fR" 4
-.IX Item "c99"
-.PD 0
-.IP "\fBc9x\fR" 4
-.IX Item "c9x"
-.IP "\fBiso9899:1999\fR" 4
-.IX Item "iso9899:1999"
-.IP "\fBiso9899:199x\fR" 4
-.IX Item "iso9899:199x"
-.PD
-\&\s-1ISO C99. \s0 This standard is substantially completely supported, modulo
-bugs, extended identifiers (supported except for corner cases when
-\&\fB\-fextended\-identifiers\fR is used) and floating-point issues
-(mainly but not entirely relating to optional C99 features from
-Annexes F and G). See
-<\fBhttp://gcc.gnu.org/c99status.html\fR> for more information. The
-names \fBc9x\fR and \fBiso9899:199x\fR are deprecated.
-.IP "\fBc11\fR" 4
-.IX Item "c11"
-.PD 0
-.IP "\fBc1x\fR" 4
-.IX Item "c1x"
-.IP "\fBiso9899:2011\fR" 4
-.IX Item "iso9899:2011"
-.PD
-\&\s-1ISO C11,\s0 the 2011 revision of the \s-1ISO C\s0 standard. This standard is
-substantially completely supported, modulo bugs, extended identifiers
-(supported except for corner cases when
-\&\fB\-fextended\-identifiers\fR is used), floating-point issues
-(mainly but not entirely relating to optional C11 features from
-Annexes F and G) and the optional Annexes K (Bounds-checking
-interfaces) and L (Analyzability). The name \fBc1x\fR is deprecated.
-.IP "\fBgnu90\fR" 4
-.IX Item "gnu90"
-.PD 0
-.IP "\fBgnu89\fR" 4
-.IX Item "gnu89"
-.PD
-\&\s-1GNU\s0 dialect of \s-1ISO C90 \s0(including some C99 features). This
-is the default for C code.
-.IP "\fBgnu99\fR" 4
-.IX Item "gnu99"
-.PD 0
-.IP "\fBgnu9x\fR" 4
-.IX Item "gnu9x"
-.PD
-\&\s-1GNU\s0 dialect of \s-1ISO C99. \s0 The name \fBgnu9x\fR is deprecated.
-.IP "\fBgnu11\fR" 4
-.IX Item "gnu11"
-.PD 0
-.IP "\fBgnu1x\fR" 4
-.IX Item "gnu1x"
-.PD
-\&\s-1GNU\s0 dialect of \s-1ISO C11. \s0 This is intended to become the default in a
-future release of \s-1GCC. \s0 The name \fBgnu1x\fR is deprecated.
-.IP "\fBc++98\fR" 4
-.IX Item "c++98"
-.PD 0
-.IP "\fBc++03\fR" 4
-.IX Item "c++03"
-.PD
-The 1998 \s-1ISO \*(C+\s0 standard plus the 2003 technical corrigendum and some
-additional defect reports. Same as \fB\-ansi\fR for \*(C+ code.
-.IP "\fBgnu++98\fR" 4
-.IX Item "gnu++98"
-.PD 0
-.IP "\fBgnu++03\fR" 4
-.IX Item "gnu++03"
-.PD
-\&\s-1GNU\s0 dialect of \fB\-std=c++98\fR. This is the default for
-\&\*(C+ code.
-.IP "\fBc++11\fR" 4
-.IX Item "c++11"
-.PD 0
-.IP "\fBc++0x\fR" 4
-.IX Item "c++0x"
-.PD
-The 2011 \s-1ISO \*(C+\s0 standard plus amendments.
-The name \fBc++0x\fR is deprecated.
-.IP "\fBgnu++11\fR" 4
-.IX Item "gnu++11"
-.PD 0
-.IP "\fBgnu++0x\fR" 4
-.IX Item "gnu++0x"
-.PD
-\&\s-1GNU\s0 dialect of \fB\-std=c++11\fR.
-The name \fBgnu++0x\fR is deprecated.
-.IP "\fBc++1y\fR" 4
-.IX Item "c++1y"
-The next revision of the \s-1ISO \*(C+\s0 standard, tentatively planned for
-2014. Support is highly experimental, and will almost certainly
-change in incompatible ways in future releases.
-.IP "\fBgnu++1y\fR" 4
-.IX Item "gnu++1y"
-\&\s-1GNU\s0 dialect of \fB\-std=c++1y\fR. Support is highly experimental,
-and will almost certainly change in incompatible ways in future
-releases.
-.RE
-.RS 4
-.RE
-.IP "\fB\-fgnu89\-inline\fR" 4
-.IX Item "-fgnu89-inline"
-The option \fB\-fgnu89\-inline\fR tells \s-1GCC\s0 to use the traditional
-\&\s-1GNU\s0 semantics for \f(CW\*(C`inline\*(C'\fR functions when in C99 mode.
- This option
-is accepted and ignored by \s-1GCC\s0 versions 4.1.3 up to but not including
-4.3. In \s-1GCC\s0 versions 4.3 and later it changes the behavior of \s-1GCC\s0 in
-C99 mode. Using this option is roughly equivalent to adding the
-\&\f(CW\*(C`gnu_inline\*(C'\fR function attribute to all inline functions.
-.Sp
-The option \fB\-fno\-gnu89\-inline\fR explicitly tells \s-1GCC\s0 to use the
-C99 semantics for \f(CW\*(C`inline\*(C'\fR when in C99 or gnu99 mode (i.e., it
-specifies the default behavior). This option was first supported in
-\&\s-1GCC 4.3. \s0 This option is not supported in \fB\-std=c90\fR or
-\&\fB\-std=gnu90\fR mode.
-.Sp
-The preprocessor macros \f(CW\*(C`_\|_GNUC_GNU_INLINE_\|_\*(C'\fR and
-\&\f(CW\*(C`_\|_GNUC_STDC_INLINE_\|_\*(C'\fR may be used to check which semantics are
-in effect for \f(CW\*(C`inline\*(C'\fR functions.
-.IP "\fB\-aux\-info\fR \fIfilename\fR" 4
-.IX Item "-aux-info filename"
-Output to the given filename prototyped declarations for all functions
-declared and/or defined in a translation unit, including those in header
-files. This option is silently ignored in any language other than C.
-.Sp
-Besides declarations, the file indicates, in comments, the origin of
-each declaration (source file and line), whether the declaration was
-implicit, prototyped or unprototyped (\fBI\fR, \fBN\fR for new or
-\&\fBO\fR for old, respectively, in the first character after the line
-number and the colon), and whether it came from a declaration or a
-definition (\fBC\fR or \fBF\fR, respectively, in the following
-character). In the case of function definitions, a K&R\-style list of
-arguments followed by their declarations is also provided, inside
-comments, after the declaration.
-.IP "\fB\-fallow\-parameterless\-variadic\-functions\fR" 4
-.IX Item "-fallow-parameterless-variadic-functions"
-Accept variadic functions without named parameters.
-.Sp
-Although it is possible to define such a function, this is not very
-useful as it is not possible to read the arguments. This is only
-supported for C as this construct is allowed by \*(C+.
-.IP "\fB\-fno\-asm\fR" 4
-.IX Item "-fno-asm"
-Do not recognize \f(CW\*(C`asm\*(C'\fR, \f(CW\*(C`inline\*(C'\fR or \f(CW\*(C`typeof\*(C'\fR as a
-keyword, so that code can use these words as identifiers. You can use
-the keywords \f(CW\*(C`_\|_asm_\|_\*(C'\fR, \f(CW\*(C`_\|_inline_\|_\*(C'\fR and \f(CW\*(C`_\|_typeof_\|_\*(C'\fR
-instead. \fB\-ansi\fR implies \fB\-fno\-asm\fR.
-.Sp
-In \*(C+, this switch only affects the \f(CW\*(C`typeof\*(C'\fR keyword, since
-\&\f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`inline\*(C'\fR are standard keywords. You may want to
-use the \fB\-fno\-gnu\-keywords\fR flag instead, which has the same
-effect. In C99 mode (\fB\-std=c99\fR or \fB\-std=gnu99\fR), this
-switch only affects the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, since
-\&\f(CW\*(C`inline\*(C'\fR is a standard keyword in \s-1ISO C99.\s0
-.IP "\fB\-fno\-builtin\fR" 4
-.IX Item "-fno-builtin"
-.PD 0
-.IP "\fB\-fno\-builtin\-\fR\fIfunction\fR" 4
-.IX Item "-fno-builtin-function"
-.PD
-Don't recognize built-in functions that do not begin with
-\&\fB_\|_builtin_\fR as prefix.
-.Sp
-\&\s-1GCC\s0 normally generates special code to handle certain built-in functions
-more efficiently; for instance, calls to \f(CW\*(C`alloca\*(C'\fR may become single
-instructions which adjust the stack directly, and calls to \f(CW\*(C`memcpy\*(C'\fR
-may become inline copy loops. The resulting code is often both smaller
-and faster, but since the function calls no longer appear as such, you
-cannot set a breakpoint on those calls, nor can you change the behavior
-of the functions by linking with a different library. In addition,
-when a function is recognized as a built-in function, \s-1GCC\s0 may use
-information about that function to warn about problems with calls to
-that function, or to generate more efficient code, even if the
-resulting code still contains calls to that function. For example,
-warnings are given with \fB\-Wformat\fR for bad calls to
-\&\f(CW\*(C`printf\*(C'\fR when \f(CW\*(C`printf\*(C'\fR is built in and \f(CW\*(C`strlen\*(C'\fR is
-known not to modify global memory.
-.Sp
-With the \fB\-fno\-builtin\-\fR\fIfunction\fR option
-only the built-in function \fIfunction\fR is
-disabled. \fIfunction\fR must not begin with \fB_\|_builtin_\fR. If a
-function is named that is not built-in in this version of \s-1GCC,\s0 this
-option is ignored. There is no corresponding
-\&\fB\-fbuiltin\-\fR\fIfunction\fR option; if you wish to enable
-built-in functions selectively when using \fB\-fno\-builtin\fR or
-\&\fB\-ffreestanding\fR, you may define macros such as:
-.Sp
-.Vb 2
-\& #define abs(n) _\|_builtin_abs ((n))
-\& #define strcpy(d, s) _\|_builtin_strcpy ((d), (s))
-.Ve
-.IP "\fB\-fhosted\fR" 4
-.IX Item "-fhosted"
-Assert that compilation targets a hosted environment. This implies
-\&\fB\-fbuiltin\fR. A hosted environment is one in which the
-entire standard library is available, and in which \f(CW\*(C`main\*(C'\fR has a return
-type of \f(CW\*(C`int\*(C'\fR. Examples are nearly everything except a kernel.
-This is equivalent to \fB\-fno\-freestanding\fR.
-.IP "\fB\-ffreestanding\fR" 4
-.IX Item "-ffreestanding"
-Assert that compilation targets a freestanding environment. This
-implies \fB\-fno\-builtin\fR. A freestanding environment
-is one in which the standard library may not exist, and program startup may
-not necessarily be at \f(CW\*(C`main\*(C'\fR. The most obvious example is an \s-1OS\s0 kernel.
-This is equivalent to \fB\-fno\-hosted\fR.
-.IP "\fB\-fopenmp\fR" 4
-.IX Item "-fopenmp"
-Enable handling of OpenMP directives \f(CW\*(C`#pragma omp\*(C'\fR in C/\*(C+ and
-\&\f(CW\*(C`!$omp\*(C'\fR in Fortran. When \fB\-fopenmp\fR is specified, the
-compiler generates parallel code according to the OpenMP Application
-Program Interface v4.0 <\fBhttp://www.openmp.org/\fR>. This option
-implies \fB\-pthread\fR, and thus is only supported on targets that
-have support for \fB\-pthread\fR. \fB\-fopenmp\fR implies
-\&\fB\-fopenmp\-simd\fR.
-.IP "\fB\-fopenmp\-simd\fR" 4
-.IX Item "-fopenmp-simd"
-Enable handling of OpenMP's \s-1SIMD\s0 directives with \f(CW\*(C`#pragma omp\*(C'\fR
-in C/\*(C+ and \f(CW\*(C`!$omp\*(C'\fR in Fortran. Other OpenMP directives
-are ignored.
-.IP "\fB\-fcilkplus\fR" 4
-.IX Item "-fcilkplus"
-Enable the usage of Cilk Plus language extension features for C/\*(C+.
-When the option \fB\-fcilkplus\fR is specified, enable the usage of
-the Cilk Plus Language extension features for C/\*(C+. The present
-implementation follows \s-1ABI\s0 version 1.2. This is an experimental
-feature that is only partially complete, and whose interface may
-change in future versions of \s-1GCC\s0 as the official specification
-changes. Currently, all features but \f(CW\*(C`_Cilk_for\*(C'\fR have been
-implemented.
-.IP "\fB\-fgnu\-tm\fR" 4
-.IX Item "-fgnu-tm"
-When the option \fB\-fgnu\-tm\fR is specified, the compiler
-generates code for the Linux variant of Intel's current Transactional
-Memory \s-1ABI\s0 specification document (Revision 1.1, May 6 2009). This is
-an experimental feature whose interface may change in future versions
-of \s-1GCC,\s0 as the official specification changes. Please note that not
-all architectures are supported for this feature.
-.Sp
-For more information on \s-1GCC\s0's support for transactional memory,
-.Sp
-Note that the transactional memory feature is not supported with
-non-call exceptions (\fB\-fnon\-call\-exceptions\fR).
-.IP "\fB\-fms\-extensions\fR" 4
-.IX Item "-fms-extensions"
-Accept some non-standard constructs used in Microsoft header files.
-.Sp
-In \*(C+ code, this allows member names in structures to be similar
-to previous types declarations.
-.Sp
-.Vb 4
-\& typedef int UOW;
-\& struct ABC {
-\& UOW UOW;
-\& };
-.Ve
-.Sp
-Some cases of unnamed fields in structures and unions are only
-accepted with this option.
-.Sp
-Note that this option is off for all targets but i?86 and x86_64
-targets using ms-abi.
-.IP "\fB\-fplan9\-extensions\fR" 4
-.IX Item "-fplan9-extensions"
-Accept some non-standard constructs used in Plan 9 code.
-.Sp
-This enables \fB\-fms\-extensions\fR, permits passing pointers to
-structures with anonymous fields to functions that expect pointers to
-elements of the type of the field, and permits referring to anonymous
-fields declared using a typedef. This is only
-supported for C, not \*(C+.
-.IP "\fB\-trigraphs\fR" 4
-.IX Item "-trigraphs"
-Support \s-1ISO C\s0 trigraphs. The \fB\-ansi\fR option (and \fB\-std\fR
-options for strict \s-1ISO C\s0 conformance) implies \fB\-trigraphs\fR.
-.IP "\fB\-traditional\fR" 4
-.IX Item "-traditional"
-.PD 0
-.IP "\fB\-traditional\-cpp\fR" 4
-.IX Item "-traditional-cpp"
-.PD
-Formerly, these options caused \s-1GCC\s0 to attempt to emulate a pre-standard
-C compiler. They are now only supported with the \fB\-E\fR switch.
-The preprocessor continues to support a pre-standard mode. See the \s-1GNU
-CPP\s0 manual for details.
-.IP "\fB\-fcond\-mismatch\fR" 4
-.IX Item "-fcond-mismatch"
-Allow conditional expressions with mismatched types in the second and
-third arguments. The value of such an expression is void. This option
-is not supported for \*(C+.
-.IP "\fB\-flax\-vector\-conversions\fR" 4
-.IX Item "-flax-vector-conversions"
-Allow implicit conversions between vectors with differing numbers of
-elements and/or incompatible element types. This option should not be
-used for new code.
-.IP "\fB\-funsigned\-char\fR" 4
-.IX Item "-funsigned-char"
-Let the type \f(CW\*(C`char\*(C'\fR be unsigned, like \f(CW\*(C`unsigned char\*(C'\fR.
-.Sp
-Each kind of machine has a default for what \f(CW\*(C`char\*(C'\fR should
-be. It is either like \f(CW\*(C`unsigned char\*(C'\fR by default or like
-\&\f(CW\*(C`signed char\*(C'\fR by default.
-.Sp
-Ideally, a portable program should always use \f(CW\*(C`signed char\*(C'\fR or
-\&\f(CW\*(C`unsigned char\*(C'\fR when it depends on the signedness of an object.
-But many programs have been written to use plain \f(CW\*(C`char\*(C'\fR and
-expect it to be signed, or expect it to be unsigned, depending on the
-machines they were written for. This option, and its inverse, let you
-make such a program work with the opposite default.
-.Sp
-The type \f(CW\*(C`char\*(C'\fR is always a distinct type from each of
-\&\f(CW\*(C`signed char\*(C'\fR or \f(CW\*(C`unsigned char\*(C'\fR, even though its behavior
-is always just like one of those two.
-.IP "\fB\-fsigned\-char\fR" 4
-.IX Item "-fsigned-char"
-Let the type \f(CW\*(C`char\*(C'\fR be signed, like \f(CW\*(C`signed char\*(C'\fR.
-.Sp
-Note that this is equivalent to \fB\-fno\-unsigned\-char\fR, which is
-the negative form of \fB\-funsigned\-char\fR. Likewise, the option
-\&\fB\-fno\-signed\-char\fR is equivalent to \fB\-funsigned\-char\fR.
-.IP "\fB\-fsigned\-bitfields\fR" 4
-.IX Item "-fsigned-bitfields"
-.PD 0
-.IP "\fB\-funsigned\-bitfields\fR" 4
-.IX Item "-funsigned-bitfields"
-.IP "\fB\-fno\-signed\-bitfields\fR" 4
-.IX Item "-fno-signed-bitfields"
-.IP "\fB\-fno\-unsigned\-bitfields\fR" 4
-.IX Item "-fno-unsigned-bitfields"
-.PD
-These options control whether a bit-field is signed or unsigned, when the
-declaration does not use either \f(CW\*(C`signed\*(C'\fR or \f(CW\*(C`unsigned\*(C'\fR. By
-default, such a bit-field is signed, because this is consistent: the
-basic integer types such as \f(CW\*(C`int\*(C'\fR are signed types.
-.SS "Options Controlling \*(C+ Dialect"
-.IX Subsection "Options Controlling Dialect"
-This section describes the command-line options that are only meaningful
-for \*(C+ programs. You can also use most of the \s-1GNU\s0 compiler options
-regardless of what language your program is in. For example, you
-might compile a file \f(CW\*(C`firstClass.C\*(C'\fR like this:
-.PP
-.Vb 1
-\& g++ \-g \-frepo \-O \-c firstClass.C
-.Ve
-.PP
-In this example, only \fB\-frepo\fR is an option meant
-only for \*(C+ programs; you can use the other options with any
-language supported by \s-1GCC.\s0
-.PP
-Here is a list of options that are \fIonly\fR for compiling \*(C+ programs:
-.IP "\fB\-fabi\-version=\fR\fIn\fR" 4
-.IX Item "-fabi-version=n"
-Use version \fIn\fR of the \*(C+ \s-1ABI. \s0 The default is version 2.
-.Sp
-Version 0 refers to the version conforming most closely to
-the \*(C+ \s-1ABI\s0 specification. Therefore, the \s-1ABI\s0 obtained using version 0
-will change in different versions of G++ as \s-1ABI\s0 bugs are fixed.
-.Sp
-Version 1 is the version of the \*(C+ \s-1ABI\s0 that first appeared in G++ 3.2.
-.Sp
-Version 2 is the version of the \*(C+ \s-1ABI\s0 that first appeared in G++ 3.4.
-.Sp
-Version 3 corrects an error in mangling a constant address as a
-template argument.
-.Sp
-Version 4, which first appeared in G++ 4.5, implements a standard
-mangling for vector types.
-.Sp
-Version 5, which first appeared in G++ 4.6, corrects the mangling of
-attribute const/volatile on function pointer types, decltype of a
-plain decl, and use of a function parameter in the declaration of
-another parameter.
-.Sp
-Version 6, which first appeared in G++ 4.7, corrects the promotion
-behavior of \*(C+11 scoped enums and the mangling of template argument
-packs, const/static_cast, prefix ++ and \-\-, and a class scope function
-used as a template argument.
-.Sp
-See also \fB\-Wabi\fR.
-.IP "\fB\-fno\-access\-control\fR" 4
-.IX Item "-fno-access-control"
-Turn off all access checking. This switch is mainly useful for working
-around bugs in the access control code.
-.IP "\fB\-fcheck\-new\fR" 4
-.IX Item "-fcheck-new"
-Check that the pointer returned by \f(CW\*(C`operator new\*(C'\fR is non-null
-before attempting to modify the storage allocated. This check is
-normally unnecessary because the \*(C+ standard specifies that
-\&\f(CW\*(C`operator new\*(C'\fR only returns \f(CW0\fR if it is declared
-\&\fB\f(BIthrow()\fB\fR, in which case the compiler always checks the
-return value even without this option. In all other cases, when
-\&\f(CW\*(C`operator new\*(C'\fR has a non-empty exception specification, memory
-exhaustion is signalled by throwing \f(CW\*(C`std::bad_alloc\*(C'\fR. See also
-\&\fBnew (nothrow)\fR.
-.IP "\fB\-fconstexpr\-depth=\fR\fIn\fR" 4
-.IX Item "-fconstexpr-depth=n"
-Set the maximum nested evaluation depth for \*(C+11 constexpr functions
-to \fIn\fR. A limit is needed to detect endless recursion during
-constant expression evaluation. The minimum specified by the standard
-is 512.
-.IP "\fB\-fdeduce\-init\-list\fR" 4
-.IX Item "-fdeduce-init-list"
-Enable deduction of a template type parameter as
-\&\f(CW\*(C`std::initializer_list\*(C'\fR from a brace-enclosed initializer list, i.e.
-.Sp
-.Vb 4
-\& template <class T> auto forward(T t) \-> decltype (realfn (t))
-\& {
-\& return realfn (t);
-\& }
-\&
-\& void f()
-\& {
-\& forward({1,2}); // call forward<std::initializer_list<int>>
-\& }
-.Ve
-.Sp
-This deduction was implemented as a possible extension to the
-originally proposed semantics for the \*(C+11 standard, but was not part
-of the final standard, so it is disabled by default. This option is
-deprecated, and may be removed in a future version of G++.
-.IP "\fB\-ffriend\-injection\fR" 4
-.IX Item "-ffriend-injection"
-Inject friend functions into the enclosing namespace, so that they are
-visible outside the scope of the class in which they are declared.
-Friend functions were documented to work this way in the old Annotated
-\&\*(C+ Reference Manual, and versions of G++ before 4.1 always worked
-that way. However, in \s-1ISO \*(C+\s0 a friend function that is not declared
-in an enclosing scope can only be found using argument dependent
-lookup. This option causes friends to be injected as they were in
-earlier releases.
-.Sp
-This option is for compatibility, and may be removed in a future
-release of G++.
-.IP "\fB\-fno\-elide\-constructors\fR" 4
-.IX Item "-fno-elide-constructors"
-The \*(C+ standard allows an implementation to omit creating a temporary
-that is only used to initialize another object of the same type.
-Specifying this option disables that optimization, and forces G++ to
-call the copy constructor in all cases.
-.IP "\fB\-fno\-enforce\-eh\-specs\fR" 4
-.IX Item "-fno-enforce-eh-specs"
-Don't generate code to check for violation of exception specifications
-at run time. This option violates the \*(C+ standard, but may be useful
-for reducing code size in production builds, much like defining
-\&\fB\s-1NDEBUG\s0\fR. This does not give user code permission to throw
-exceptions in violation of the exception specifications; the compiler
-still optimizes based on the specifications, so throwing an
-unexpected exception results in undefined behavior at run time.
-.IP "\fB\-fextern\-tls\-init\fR" 4
-.IX Item "-fextern-tls-init"
-.PD 0
-.IP "\fB\-fno\-extern\-tls\-init\fR" 4
-.IX Item "-fno-extern-tls-init"
-.PD
-The \*(C+11 and OpenMP standards allow \fBthread_local\fR and
-\&\fBthreadprivate\fR variables to have dynamic (runtime)
-initialization. To support this, any use of such a variable goes
-through a wrapper function that performs any necessary initialization.
-When the use and definition of the variable are in the same
-translation unit, this overhead can be optimized away, but when the
-use is in a different translation unit there is significant overhead
-even if the variable doesn't actually need dynamic initialization. If
-the programmer can be sure that no use of the variable in a
-non-defining \s-1TU\s0 needs to trigger dynamic initialization (either
-because the variable is statically initialized, or a use of the
-variable in the defining \s-1TU\s0 will be executed before any uses in
-another \s-1TU\s0), they can avoid this overhead with the
-\&\fB\-fno\-extern\-tls\-init\fR option.
-.Sp
-On targets that support symbol aliases, the default is
-\&\fB\-fextern\-tls\-init\fR. On targets that do not support symbol
-aliases, the default is \fB\-fno\-extern\-tls\-init\fR.
-.IP "\fB\-ffor\-scope\fR" 4
-.IX Item "-ffor-scope"
-.PD 0
-.IP "\fB\-fno\-for\-scope\fR" 4
-.IX Item "-fno-for-scope"
-.PD
-If \fB\-ffor\-scope\fR is specified, the scope of variables declared in
-a \fIfor-init-statement\fR is limited to the \fBfor\fR loop itself,
-as specified by the \*(C+ standard.
-If \fB\-fno\-for\-scope\fR is specified, the scope of variables declared in
-a \fIfor-init-statement\fR extends to the end of the enclosing scope,
-as was the case in old versions of G++, and other (traditional)
-implementations of \*(C+.
-.Sp
-If neither flag is given, the default is to follow the standard,
-but to allow and give a warning for old-style code that would
-otherwise be invalid, or have different behavior.
-.IP "\fB\-fno\-gnu\-keywords\fR" 4
-.IX Item "-fno-gnu-keywords"
-Do not recognize \f(CW\*(C`typeof\*(C'\fR as a keyword, so that code can use this
-word as an identifier. You can use the keyword \f(CW\*(C`_\|_typeof_\|_\*(C'\fR instead.
-\&\fB\-ansi\fR implies \fB\-fno\-gnu\-keywords\fR.
-.IP "\fB\-fno\-implicit\-templates\fR" 4
-.IX Item "-fno-implicit-templates"
-Never emit code for non-inline templates that are instantiated
-implicitly (i.e. by use); only emit code for explicit instantiations.
-.IP "\fB\-fno\-implicit\-inline\-templates\fR" 4
-.IX Item "-fno-implicit-inline-templates"
-Don't emit code for implicit instantiations of inline templates, either.
-The default is to handle inlines differently so that compiles with and
-without optimization need the same set of explicit instantiations.
-.IP "\fB\-fno\-implement\-inlines\fR" 4
-.IX Item "-fno-implement-inlines"
-To save space, do not emit out-of-line copies of inline functions
-controlled by \fB#pragma implementation\fR. This causes linker
-errors if these functions are not inlined everywhere they are called.
-.IP "\fB\-fms\-extensions\fR" 4
-.IX Item "-fms-extensions"
-Disable Wpedantic warnings about constructs used in \s-1MFC,\s0 such as implicit
-int and getting a pointer to member function via non-standard syntax.
-.IP "\fB\-fno\-nonansi\-builtins\fR" 4
-.IX Item "-fno-nonansi-builtins"
-Disable built-in declarations of functions that are not mandated by
-\&\s-1ANSI/ISO C. \s0 These include \f(CW\*(C`ffs\*(C'\fR, \f(CW\*(C`alloca\*(C'\fR, \f(CW\*(C`_exit\*(C'\fR,
-\&\f(CW\*(C`index\*(C'\fR, \f(CW\*(C`bzero\*(C'\fR, \f(CW\*(C`conjf\*(C'\fR, and other related functions.
-.IP "\fB\-fnothrow\-opt\fR" 4
-.IX Item "-fnothrow-opt"
-Treat a \f(CW\*(C`throw()\*(C'\fR exception specification as if it were a
-\&\f(CW\*(C`noexcept\*(C'\fR specification to reduce or eliminate the text size
-overhead relative to a function with no exception specification. If
-the function has local variables of types with non-trivial
-destructors, the exception specification actually makes the
-function smaller because the \s-1EH\s0 cleanups for those variables can be
-optimized away. The semantic effect is that an exception thrown out of
-a function with such an exception specification results in a call
-to \f(CW\*(C`terminate\*(C'\fR rather than \f(CW\*(C`unexpected\*(C'\fR.
-.IP "\fB\-fno\-operator\-names\fR" 4
-.IX Item "-fno-operator-names"
-Do not treat the operator name keywords \f(CW\*(C`and\*(C'\fR, \f(CW\*(C`bitand\*(C'\fR,
-\&\f(CW\*(C`bitor\*(C'\fR, \f(CW\*(C`compl\*(C'\fR, \f(CW\*(C`not\*(C'\fR, \f(CW\*(C`or\*(C'\fR and \f(CW\*(C`xor\*(C'\fR as
-synonyms as keywords.
-.IP "\fB\-fno\-optional\-diags\fR" 4
-.IX Item "-fno-optional-diags"
-Disable diagnostics that the standard says a compiler does not need to
-issue. Currently, the only such diagnostic issued by G++ is the one for
-a name having multiple meanings within a class.
-.IP "\fB\-fpermissive\fR" 4
-.IX Item "-fpermissive"
-Downgrade some diagnostics about nonconformant code from errors to
-warnings. Thus, using \fB\-fpermissive\fR allows some
-nonconforming code to compile.
-.IP "\fB\-fno\-pretty\-templates\fR" 4
-.IX Item "-fno-pretty-templates"
-When an error message refers to a specialization of a function
-template, the compiler normally prints the signature of the
-template followed by the template arguments and any typedefs or
-typenames in the signature (e.g. \f(CW\*(C`void f(T) [with T = int]\*(C'\fR
-rather than \f(CW\*(C`void f(int)\*(C'\fR) so that it's clear which template is
-involved. When an error message refers to a specialization of a class
-template, the compiler omits any template arguments that match
-the default template arguments for that template. If either of these
-behaviors make it harder to understand the error message rather than
-easier, you can use \fB\-fno\-pretty\-templates\fR to disable them.
-.IP "\fB\-frepo\fR" 4
-.IX Item "-frepo"
-Enable automatic template instantiation at link time. This option also
-implies \fB\-fno\-implicit\-templates\fR.
-.IP "\fB\-fno\-rtti\fR" 4
-.IX Item "-fno-rtti"
-Disable generation of information about every class with virtual
-functions for use by the \*(C+ run-time type identification features
-(\fBdynamic_cast\fR and \fBtypeid\fR). If you don't use those parts
-of the language, you can save some space by using this flag. Note that
-exception handling uses the same information, but G++ generates it as
-needed. The \fBdynamic_cast\fR operator can still be used for casts that
-do not require run-time type information, i.e. casts to \f(CW\*(C`void *\*(C'\fR or to
-unambiguous base classes.
-.IP "\fB\-fstats\fR" 4
-.IX Item "-fstats"
-Emit statistics about front-end processing at the end of the compilation.
-This information is generally only useful to the G++ development team.
-.IP "\fB\-fstrict\-enums\fR" 4
-.IX Item "-fstrict-enums"
-Allow the compiler to optimize using the assumption that a value of
-enumerated type can only be one of the values of the enumeration (as
-defined in the \*(C+ standard; basically, a value that can be
-represented in the minimum number of bits needed to represent all the
-enumerators). This assumption may not be valid if the program uses a
-cast to convert an arbitrary integer value to the enumerated type.
-.IP "\fB\-ftemplate\-backtrace\-limit=\fR\fIn\fR" 4
-.IX Item "-ftemplate-backtrace-limit=n"
-Set the maximum number of template instantiation notes for a single
-warning or error to \fIn\fR. The default value is 10.
-.IP "\fB\-ftemplate\-depth=\fR\fIn\fR" 4
-.IX Item "-ftemplate-depth=n"
-Set the maximum instantiation depth for template classes to \fIn\fR.
-A limit on the template instantiation depth is needed to detect
-endless recursions during template class instantiation. \s-1ANSI/ISO \*(C+\s0
-conforming programs must not rely on a maximum depth greater than 17
-(changed to 1024 in \*(C+11). The default value is 900, as the compiler
-can run out of stack space before hitting 1024 in some situations.
-.IP "\fB\-fno\-threadsafe\-statics\fR" 4
-.IX Item "-fno-threadsafe-statics"
-Do not emit the extra code to use the routines specified in the \*(C+
-\&\s-1ABI\s0 for thread-safe initialization of local statics. You can use this
-option to reduce code size slightly in code that doesn't need to be
-thread-safe.
-.IP "\fB\-fuse\-cxa\-atexit\fR" 4
-.IX Item "-fuse-cxa-atexit"
-Register destructors for objects with static storage duration with the
-\&\f(CW\*(C`_\|_cxa_atexit\*(C'\fR function rather than the \f(CW\*(C`atexit\*(C'\fR function.
-This option is required for fully standards-compliant handling of static
-destructors, but only works if your C library supports
-\&\f(CW\*(C`_\|_cxa_atexit\*(C'\fR.
-.IP "\fB\-fno\-use\-cxa\-get\-exception\-ptr\fR" 4
-.IX Item "-fno-use-cxa-get-exception-ptr"
-Don't use the \f(CW\*(C`_\|_cxa_get_exception_ptr\*(C'\fR runtime routine. This
-causes \f(CW\*(C`std::uncaught_exception\*(C'\fR to be incorrect, but is necessary
-if the runtime routine is not available.
-.IP "\fB\-fvisibility\-inlines\-hidden\fR" 4
-.IX Item "-fvisibility-inlines-hidden"
-This switch declares that the user does not attempt to compare
-pointers to inline functions or methods where the addresses of the two functions
-are taken in different shared objects.
-.Sp
-The effect of this is that \s-1GCC\s0 may, effectively, mark inline methods with
-\&\f(CW\*(C`_\|_attribute_\|_ ((visibility ("hidden")))\*(C'\fR so that they do not
-appear in the export table of a \s-1DSO\s0 and do not require a \s-1PLT\s0 indirection
-when used within the \s-1DSO. \s0 Enabling this option can have a dramatic effect
-on load and link times of a \s-1DSO\s0 as it massively reduces the size of the
-dynamic export table when the library makes heavy use of templates.
-.Sp
-The behavior of this switch is not quite the same as marking the
-methods as hidden directly, because it does not affect static variables
-local to the function or cause the compiler to deduce that
-the function is defined in only one shared object.
-.Sp
-You may mark a method as having a visibility explicitly to negate the
-effect of the switch for that method. For example, if you do want to
-compare pointers to a particular inline method, you might mark it as
-having default visibility. Marking the enclosing class with explicit
-visibility has no effect.
-.Sp
-Explicitly instantiated inline methods are unaffected by this option
-as their linkage might otherwise cross a shared library boundary.
-.IP "\fB\-fvisibility\-ms\-compat\fR" 4
-.IX Item "-fvisibility-ms-compat"
-This flag attempts to use visibility settings to make \s-1GCC\s0's \*(C+
-linkage model compatible with that of Microsoft Visual Studio.
-.Sp
-The flag makes these changes to \s-1GCC\s0's linkage model:
-.RS 4
-.IP "1." 4
-It sets the default visibility to \f(CW\*(C`hidden\*(C'\fR, like
-\&\fB\-fvisibility=hidden\fR.
-.IP "2." 4
-Types, but not their members, are not hidden by default.
-.IP "3." 4
-The One Definition Rule is relaxed for types without explicit
-visibility specifications that are defined in more than one
-shared object: those declarations are permitted if they are
-permitted when this option is not used.
-.RE
-.RS 4
-.Sp
-In new code it is better to use \fB\-fvisibility=hidden\fR and
-export those classes that are intended to be externally visible.
-Unfortunately it is possible for code to rely, perhaps accidentally,
-on the Visual Studio behavior.
-.Sp
-Among the consequences of these changes are that static data members
-of the same type with the same name but defined in different shared
-objects are different, so changing one does not change the other;
-and that pointers to function members defined in different shared
-objects may not compare equal. When this flag is given, it is a
-violation of the \s-1ODR\s0 to define types with the same name differently.
-.RE
-.IP "\fB\-fvtable\-verify=\fR\fIstd|preinit|none\fR" 4
-.IX Item "-fvtable-verify=std|preinit|none"
-Turn on (or off, if using \fB\-fvtable\-verify=none\fR) the security
-feature that verifies at runtime, for every virtual call that is made, that
-the vtable pointer through which the call is made is valid for the type of
-the object, and has not been corrupted or overwritten. If an invalid vtable
-pointer is detected (at runtime), an error is reported and execution of the
-program is immediately halted.
-.Sp
-This option causes runtime data structures to be built, at program start up,
-for verifying the vtable pointers. The options \f(CW\*(C`std\*(C'\fR and \f(CW\*(C`preinit\*(C'\fR
-control the timing of when these data structures are built. In both cases the
-data structures are built before execution reaches 'main'. The
-\&\fB\-fvtable\-verify=std\fR causes these data structure to be built after the
-shared libraries have been loaded and initialized.
-\&\fB\-fvtable\-verify=preinit\fR causes them to be built before the shared
-libraries have been loaded and initialized.
-.Sp
-If this option appears multiple times in the compiler line, with different
-values specified, 'none' will take highest priority over both 'std' and
-\&'preinit'; 'preinit' will take priority over 'std'.
-.IP "\fB\-fvtv\-debug\fR" 4
-.IX Item "-fvtv-debug"
-Causes debug versions of the runtime functions for the vtable verification
-feature to be called. This assumes the \fB\-fvtable\-verify=std\fR or
-\&\fB\-fvtable\-verify=preinit\fR has been used. This flag will also cause the
-compiler to keep track of which vtable pointers it found for each class, and
-record that information in the file \*(L"vtv_set_ptr_data.log\*(R", in the dump
-file directory on the user's machine.
-.Sp
-Note: This feature \s-1APPENDS\s0 data to the log file. If you want a fresh log
-file, be sure to delete any existing one.
-.IP "\fB\-fvtv\-counts\fR" 4
-.IX Item "-fvtv-counts"
-This is a debugging flag. When used in conjunction with
-\&\fB\-fvtable\-verify=std\fR or \fB\-fvtable\-verify=preinit\fR, this
-causes the compiler to keep track of the total number of virtual calls
-it encountered and the number of verifications it inserted. It also
-counts the number of calls to certain runtime library functions
-that it inserts. This information, for each compilation unit, is written
-to a file named \*(L"vtv_count_data.log\*(R", in the dump_file directory on
-the user's machine. It also counts the size of the vtable pointer sets
-for each class, and writes this information to \*(L"vtv_class_set_sizes.log\*(R"
-in the same directory.
-.Sp
-Note: This feature \s-1APPENDS\s0 data to the log files. To get a fresh log
-files, be sure to delete any existing ones.
-.IP "\fB\-fno\-weak\fR" 4
-.IX Item "-fno-weak"
-Do not use weak symbol support, even if it is provided by the linker.
-By default, G++ uses weak symbols if they are available. This
-option exists only for testing, and should not be used by end-users;
-it results in inferior code and has no benefits. This option may
-be removed in a future release of G++.
-.IP "\fB\-nostdinc++\fR" 4
-.IX Item "-nostdinc++"
-Do not search for header files in the standard directories specific to
-\&\*(C+, but do still search the other standard directories. (This option
-is used when building the \*(C+ library.)
-.PP
-In addition, these optimization, warning, and code generation options
-have meanings only for \*(C+ programs:
-.IP "\fB\-Wabi\fR (C, Objective-C, \*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wabi (C, Objective-C, and Objective- only)"
-Warn when G++ generates code that is probably not compatible with the
-vendor-neutral \*(C+ \s-1ABI. \s0 Although an effort has been made to warn about
-all such cases, there are probably some cases that are not warned about,
-even though G++ is generating incompatible code. There may also be
-cases where warnings are emitted even though the code that is generated
-is compatible.
-.Sp
-You should rewrite your code to avoid these warnings if you are
-concerned about the fact that code generated by G++ may not be binary
-compatible with code generated by other compilers.
-.Sp
-The known incompatibilities in \fB\-fabi\-version=2\fR (the default) include:
-.RS 4
-.IP "\(bu" 4
-A template with a non-type template parameter of reference type is
-mangled incorrectly:
-.Sp
-.Vb 3
-\& extern int N;
-\& template <int &> struct S {};
-\& void n (S<N>) {2}
-.Ve
-.Sp
-This is fixed in \fB\-fabi\-version=3\fR.
-.IP "\(bu" 4
-\&\s-1SIMD\s0 vector types declared using \f(CW\*(C`_\|_attribute ((vector_size))\*(C'\fR are
-mangled in a non-standard way that does not allow for overloading of
-functions taking vectors of different sizes.
-.Sp
-The mangling is changed in \fB\-fabi\-version=4\fR.
-.RE
-.RS 4
-.Sp
-The known incompatibilities in \fB\-fabi\-version=1\fR include:
-.IP "\(bu" 4
-Incorrect handling of tail-padding for bit-fields. G++ may attempt to
-pack data into the same byte as a base class. For example:
-.Sp
-.Vb 2
-\& struct A { virtual void f(); int f1 : 1; };
-\& struct B : public A { int f2 : 1; };
-.Ve
-.Sp
-In this case, G++ places \f(CW\*(C`B::f2\*(C'\fR into the same byte
-as \f(CW\*(C`A::f1\*(C'\fR; other compilers do not. You can avoid this problem
-by explicitly padding \f(CW\*(C`A\*(C'\fR so that its size is a multiple of the
-byte size on your platform; that causes G++ and other compilers to
-lay out \f(CW\*(C`B\*(C'\fR identically.
-.IP "\(bu" 4
-Incorrect handling of tail-padding for virtual bases. G++ does not use
-tail padding when laying out virtual bases. For example:
-.Sp
-.Vb 3
-\& struct A { virtual void f(); char c1; };
-\& struct B { B(); char c2; };
-\& struct C : public A, public virtual B {};
-.Ve
-.Sp
-In this case, G++ does not place \f(CW\*(C`B\*(C'\fR into the tail-padding for
-\&\f(CW\*(C`A\*(C'\fR; other compilers do. You can avoid this problem by
-explicitly padding \f(CW\*(C`A\*(C'\fR so that its size is a multiple of its
-alignment (ignoring virtual base classes); that causes G++ and other
-compilers to lay out \f(CW\*(C`C\*(C'\fR identically.
-.IP "\(bu" 4
-Incorrect handling of bit-fields with declared widths greater than that
-of their underlying types, when the bit-fields appear in a union. For
-example:
-.Sp
-.Vb 1
-\& union U { int i : 4096; };
-.Ve
-.Sp
-Assuming that an \f(CW\*(C`int\*(C'\fR does not have 4096 bits, G++ makes the
-union too small by the number of bits in an \f(CW\*(C`int\*(C'\fR.
-.IP "\(bu" 4
-Empty classes can be placed at incorrect offsets. For example:
-.Sp
-.Vb 1
-\& struct A {};
-\&
-\& struct B {
-\& A a;
-\& virtual void f ();
-\& };
-\&
-\& struct C : public B, public A {};
-.Ve
-.Sp
-G++ places the \f(CW\*(C`A\*(C'\fR base class of \f(CW\*(C`C\*(C'\fR at a nonzero offset;
-it should be placed at offset zero. G++ mistakenly believes that the
-\&\f(CW\*(C`A\*(C'\fR data member of \f(CW\*(C`B\*(C'\fR is already at offset zero.
-.IP "\(bu" 4
-Names of template functions whose types involve \f(CW\*(C`typename\*(C'\fR or
-template template parameters can be mangled incorrectly.
-.Sp
-.Vb 2
-\& template <typename Q>
-\& void f(typename Q::X) {}
-\&
-\& template <template <typename> class Q>
-\& void f(typename Q<int>::X) {}
-.Ve
-.Sp
-Instantiations of these templates may be mangled incorrectly.
-.RE
-.RS 4
-.Sp
-It also warns about psABI-related changes. The known psABI changes at this
-point include:
-.IP "\(bu" 4
-For SysV/x86\-64, unions with \f(CW\*(C`long double\*(C'\fR members are
-passed in memory as specified in psABI. For example:
-.Sp
-.Vb 4
-\& union U {
-\& long double ld;
-\& int i;
-\& };
-.Ve
-.Sp
-\&\f(CW\*(C`union U\*(C'\fR is always passed in memory.
-.RE
-.RS 4
-.RE
-.IP "\fB\-Wctor\-dtor\-privacy\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wctor-dtor-privacy ( and Objective- only)"
-Warn when a class seems unusable because all the constructors or
-destructors in that class are private, and it has neither friends nor
-public static member functions. Also warn if there are no non-private
-methods, and there's at least one private member function that isn't
-a constructor or destructor.
-.IP "\fB\-Wdelete\-non\-virtual\-dtor\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wdelete-non-virtual-dtor ( and Objective- only)"
-Warn when \fBdelete\fR is used to destroy an instance of a class that
-has virtual functions and non-virtual destructor. It is unsafe to delete
-an instance of a derived class through a pointer to a base class if the
-base class does not have a virtual destructor. This warning is enabled
-by \fB\-Wall\fR.
-.IP "\fB\-Wliteral\-suffix\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wliteral-suffix ( and Objective- only)"
-Warn when a string or character literal is followed by a ud-suffix which does
-not begin with an underscore. As a conforming extension, \s-1GCC\s0 treats such
-suffixes as separate preprocessing tokens in order to maintain backwards
-compatibility with code that uses formatting macros from \f(CW\*(C`<inttypes.h>\*(C'\fR.
-For example:
-.Sp
-.Vb 3
-\& #define _\|_STDC_FORMAT_MACROS
-\& #include <inttypes.h>
-\& #include <stdio.h>
-\&
-\& int main() {
-\& int64_t i64 = 123;
-\& printf("My int64: %"PRId64"\en", i64);
-\& }
-.Ve
-.Sp
-In this case, \f(CW\*(C`PRId64\*(C'\fR is treated as a separate preprocessing token.
-.Sp
-This warning is enabled by default.
-.IP "\fB\-Wnarrowing\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wnarrowing ( and Objective- only)"
-Warn when a narrowing conversion prohibited by \*(C+11 occurs within
-\&\fB{ }\fR, e.g.
-.Sp
-.Vb 1
-\& int i = { 2.2 }; // error: narrowing from double to int
-.Ve
-.Sp
-This flag is included in \fB\-Wall\fR and \fB\-Wc++11\-compat\fR.
-.Sp
-With \fB\-std=c++11\fR, \fB\-Wno\-narrowing\fR suppresses the diagnostic
-required by the standard. Note that this does not affect the meaning
-of well-formed code; narrowing conversions are still considered
-ill-formed in \s-1SFINAE\s0 context.
-.IP "\fB\-Wnoexcept\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wnoexcept ( and Objective- only)"
-Warn when a noexcept-expression evaluates to false because of a call
-to a function that does not have a non-throwing exception
-specification (i.e. \fB\f(BIthrow()\fB\fR or \fBnoexcept\fR) but is known by
-the compiler to never throw an exception.
-.IP "\fB\-Wnon\-virtual\-dtor\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wnon-virtual-dtor ( and Objective- only)"
-Warn when a class has virtual functions and an accessible non-virtual
-destructor itself or in an accessible polymorphic base class, in which
-case it is possible but unsafe to delete an instance of a derived
-class through a pointer to the class itself or base class. This
-warning is automatically enabled if \fB\-Weffc++\fR is specified.
-.IP "\fB\-Wreorder\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wreorder ( and Objective- only)"
-Warn when the order of member initializers given in the code does not
-match the order in which they must be executed. For instance:
-.Sp
-.Vb 5
-\& struct A {
-\& int i;
-\& int j;
-\& A(): j (0), i (1) { }
-\& };
-.Ve
-.Sp
-The compiler rearranges the member initializers for \fBi\fR
-and \fBj\fR to match the declaration order of the members, emitting
-a warning to that effect. This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-fext\-numeric\-literals\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-fext-numeric-literals ( and Objective- only)"
-Accept imaginary, fixed-point, or machine-defined
-literal number suffixes as \s-1GNU\s0 extensions.
-When this option is turned off these suffixes are treated
-as \*(C+11 user-defined literal numeric suffixes.
-This is on by default for all pre\-\*(C+11 dialects and all \s-1GNU\s0 dialects:
-\&\fB\-std=c++98\fR, \fB\-std=gnu++98\fR, \fB\-std=gnu++11\fR,
-\&\fB\-std=gnu++1y\fR.
-This option is off by default
-for \s-1ISO \*(C+11\s0 onwards (\fB\-std=c++11\fR, ...).
-.PP
-The following \fB\-W...\fR options are not affected by \fB\-Wall\fR.
-.IP "\fB\-Weffc++\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Weffc++ ( and Objective- only)"
-Warn about violations of the following style guidelines from Scott Meyers'
-\&\fIEffective \*(C+\fR series of books:
-.RS 4
-.IP "\(bu" 4
-Define a copy constructor and an assignment operator for classes
-with dynamically-allocated memory.
-.IP "\(bu" 4
-Prefer initialization to assignment in constructors.
-.IP "\(bu" 4
-Have \f(CW\*(C`operator=\*(C'\fR return a reference to \f(CW*this\fR.
-.IP "\(bu" 4
-Don't try to return a reference when you must return an object.
-.IP "\(bu" 4
-Distinguish between prefix and postfix forms of increment and
-decrement operators.
-.IP "\(bu" 4
-Never overload \f(CW\*(C`&&\*(C'\fR, \f(CW\*(C`||\*(C'\fR, or \f(CW\*(C`,\*(C'\fR.
-.RE
-.RS 4
-.Sp
-This option also enables \fB\-Wnon\-virtual\-dtor\fR, which is also
-one of the effective \*(C+ recommendations. However, the check is
-extended to warn about the lack of virtual destructor in accessible
-non-polymorphic bases classes too.
-.Sp
-When selecting this option, be aware that the standard library
-headers do not obey all of these guidelines; use \fBgrep \-v\fR
-to filter out those warnings.
-.RE
-.IP "\fB\-Wstrict\-null\-sentinel\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wstrict-null-sentinel ( and Objective- only)"
-Warn about the use of an uncasted \f(CW\*(C`NULL\*(C'\fR as sentinel. When
-compiling only with \s-1GCC\s0 this is a valid sentinel, as \f(CW\*(C`NULL\*(C'\fR is defined
-to \f(CW\*(C`_\|_null\*(C'\fR. Although it is a null pointer constant rather than a
-null pointer, it is guaranteed to be of the same size as a pointer.
-But this use is not portable across different compilers.
-.IP "\fB\-Wno\-non\-template\-friend\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wno-non-template-friend ( and Objective- only)"
-Disable warnings when non-templatized friend functions are declared
-within a template. Since the advent of explicit template specification
-support in G++, if the name of the friend is an unqualified-id (i.e.,
-\&\fBfriend foo(int)\fR), the \*(C+ language specification demands that the
-friend declare or define an ordinary, nontemplate function. (Section
-14.5.3). Before G++ implemented explicit specification, unqualified-ids
-could be interpreted as a particular specialization of a templatized
-function. Because this non-conforming behavior is no longer the default
-behavior for G++, \fB\-Wnon\-template\-friend\fR allows the compiler to
-check existing code for potential trouble spots and is on by default.
-This new compiler behavior can be turned off with
-\&\fB\-Wno\-non\-template\-friend\fR, which keeps the conformant compiler code
-but disables the helpful warning.
-.IP "\fB\-Wold\-style\-cast\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wold-style-cast ( and Objective- only)"
-Warn if an old-style (C\-style) cast to a non-void type is used within
-a \*(C+ program. The new-style casts (\fBdynamic_cast\fR,
-\&\fBstatic_cast\fR, \fBreinterpret_cast\fR, and \fBconst_cast\fR) are
-less vulnerable to unintended effects and much easier to search for.
-.IP "\fB\-Woverloaded\-virtual\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Woverloaded-virtual ( and Objective- only)"
-Warn when a function declaration hides virtual functions from a
-base class. For example, in:
-.Sp
-.Vb 3
-\& struct A {
-\& virtual void f();
-\& };
-\&
-\& struct B: public A {
-\& void f(int);
-\& };
-.Ve
-.Sp
-the \f(CW\*(C`A\*(C'\fR class version of \f(CW\*(C`f\*(C'\fR is hidden in \f(CW\*(C`B\*(C'\fR, and code
-like:
-.Sp
-.Vb 2
-\& B* b;
-\& b\->f();
-.Ve
-.Sp
-fails to compile.
-.IP "\fB\-Wno\-pmf\-conversions\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wno-pmf-conversions ( and Objective- only)"
-Disable the diagnostic for converting a bound pointer to member function
-to a plain pointer.
-.IP "\fB\-Wsign\-promo\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wsign-promo ( and Objective- only)"
-Warn when overload resolution chooses a promotion from unsigned or
-enumerated type to a signed type, over a conversion to an unsigned type of
-the same size. Previous versions of G++ tried to preserve
-unsignedness, but the standard mandates the current behavior.
-.SS "Options Controlling Objective-C and Objective\-\*(C+ Dialects"
-.IX Subsection "Options Controlling Objective-C and Objective- Dialects"
-(\s-1NOTE:\s0 This manual does not describe the Objective-C and Objective\-\*(C+
-languages themselves.
-.PP
-This section describes the command-line options that are only meaningful
-for Objective-C and Objective\-\*(C+ programs. You can also use most of
-the language-independent \s-1GNU\s0 compiler options.
-For example, you might compile a file \f(CW\*(C`some_class.m\*(C'\fR like this:
-.PP
-.Vb 1
-\& gcc \-g \-fgnu\-runtime \-O \-c some_class.m
-.Ve
-.PP
-In this example, \fB\-fgnu\-runtime\fR is an option meant only for
-Objective-C and Objective\-\*(C+ programs; you can use the other options with
-any language supported by \s-1GCC.\s0
-.PP
-Note that since Objective-C is an extension of the C language, Objective-C
-compilations may also use options specific to the C front-end (e.g.,
-\&\fB\-Wtraditional\fR). Similarly, Objective\-\*(C+ compilations may use
-\&\*(C+\-specific options (e.g., \fB\-Wabi\fR).
-.PP
-Here is a list of options that are \fIonly\fR for compiling Objective-C
-and Objective\-\*(C+ programs:
-.IP "\fB\-fconstant\-string\-class=\fR\fIclass-name\fR" 4
-.IX Item "-fconstant-string-class=class-name"
-Use \fIclass-name\fR as the name of the class to instantiate for each
-literal string specified with the syntax \f(CW\*(C`@"..."\*(C'\fR. The default
-class name is \f(CW\*(C`NXConstantString\*(C'\fR if the \s-1GNU\s0 runtime is being used, and
-\&\f(CW\*(C`NSConstantString\*(C'\fR if the NeXT runtime is being used (see below). The
-\&\fB\-fconstant\-cfstrings\fR option, if also present, overrides the
-\&\fB\-fconstant\-string\-class\fR setting and cause \f(CW\*(C`@"..."\*(C'\fR literals
-to be laid out as constant CoreFoundation strings.
-.IP "\fB\-fgnu\-runtime\fR" 4
-.IX Item "-fgnu-runtime"
-Generate object code compatible with the standard \s-1GNU\s0 Objective-C
-runtime. This is the default for most types of systems.
-.IP "\fB\-fnext\-runtime\fR" 4
-.IX Item "-fnext-runtime"
-Generate output compatible with the NeXT runtime. This is the default
-for NeXT-based systems, including Darwin and Mac \s-1OS X. \s0 The macro
-\&\f(CW\*(C`_\|_NEXT_RUNTIME_\|_\*(C'\fR is predefined if (and only if) this option is
-used.
-.IP "\fB\-fno\-nil\-receivers\fR" 4
-.IX Item "-fno-nil-receivers"
-Assume that all Objective-C message dispatches (\f(CW\*(C`[receiver
-message:arg]\*(C'\fR) in this translation unit ensure that the receiver is
-not \f(CW\*(C`nil\*(C'\fR. This allows for more efficient entry points in the
-runtime to be used. This option is only available in conjunction with
-the NeXT runtime and \s-1ABI\s0 version 0 or 1.
-.IP "\fB\-fobjc\-abi\-version=\fR\fIn\fR" 4
-.IX Item "-fobjc-abi-version=n"
-Use version \fIn\fR of the Objective-C \s-1ABI\s0 for the selected runtime.
-This option is currently supported only for the NeXT runtime. In that
-case, Version 0 is the traditional (32\-bit) \s-1ABI\s0 without support for
-properties and other Objective-C 2.0 additions. Version 1 is the
-traditional (32\-bit) \s-1ABI\s0 with support for properties and other
-Objective-C 2.0 additions. Version 2 is the modern (64\-bit) \s-1ABI. \s0 If
-nothing is specified, the default is Version 0 on 32\-bit target
-machines, and Version 2 on 64\-bit target machines.
-.IP "\fB\-fobjc\-call\-cxx\-cdtors\fR" 4
-.IX Item "-fobjc-call-cxx-cdtors"
-For each Objective-C class, check if any of its instance variables is a
-\&\*(C+ object with a non-trivial default constructor. If so, synthesize a
-special \f(CW\*(C`\- (id) .cxx_construct\*(C'\fR instance method which runs
-non-trivial default constructors on any such instance variables, in order,
-and then return \f(CW\*(C`self\*(C'\fR. Similarly, check if any instance variable
-is a \*(C+ object with a non-trivial destructor, and if so, synthesize a
-special \f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR method which runs
-all such default destructors, in reverse order.
-.Sp
-The \f(CW\*(C`\- (id) .cxx_construct\*(C'\fR and \f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR
-methods thusly generated only operate on instance variables
-declared in the current Objective-C class, and not those inherited
-from superclasses. It is the responsibility of the Objective-C
-runtime to invoke all such methods in an object's inheritance
-hierarchy. The \f(CW\*(C`\- (id) .cxx_construct\*(C'\fR methods are invoked
-by the runtime immediately after a new object instance is allocated;
-the \f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR methods are invoked immediately
-before the runtime deallocates an object instance.
-.Sp
-As of this writing, only the NeXT runtime on Mac \s-1OS X 10.4\s0 and later has
-support for invoking the \f(CW\*(C`\- (id) .cxx_construct\*(C'\fR and
-\&\f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR methods.
-.IP "\fB\-fobjc\-direct\-dispatch\fR" 4
-.IX Item "-fobjc-direct-dispatch"
-Allow fast jumps to the message dispatcher. On Darwin this is
-accomplished via the comm page.
-.IP "\fB\-fobjc\-exceptions\fR" 4
-.IX Item "-fobjc-exceptions"
-Enable syntactic support for structured exception handling in
-Objective-C, similar to what is offered by \*(C+ and Java. This option
-is required to use the Objective-C keywords \f(CW@try\fR,
-\&\f(CW@throw\fR, \f(CW@catch\fR, \f(CW@finally\fR and
-\&\f(CW@synchronized\fR. This option is available with both the \s-1GNU\s0
-runtime and the NeXT runtime (but not available in conjunction with
-the NeXT runtime on Mac \s-1OS X 10.2\s0 and earlier).
-.IP "\fB\-fobjc\-gc\fR" 4
-.IX Item "-fobjc-gc"
-Enable garbage collection (\s-1GC\s0) in Objective-C and Objective\-\*(C+
-programs. This option is only available with the NeXT runtime; the
-\&\s-1GNU\s0 runtime has a different garbage collection implementation that
-does not require special compiler flags.
-.IP "\fB\-fobjc\-nilcheck\fR" 4
-.IX Item "-fobjc-nilcheck"
-For the NeXT runtime with version 2 of the \s-1ABI,\s0 check for a nil
-receiver in method invocations before doing the actual method call.
-This is the default and can be disabled using
-\&\fB\-fno\-objc\-nilcheck\fR. Class methods and super calls are never
-checked for nil in this way no matter what this flag is set to.
-Currently this flag does nothing when the \s-1GNU\s0 runtime, or an older
-version of the NeXT runtime \s-1ABI,\s0 is used.
-.IP "\fB\-fobjc\-std=objc1\fR" 4
-.IX Item "-fobjc-std=objc1"
-Conform to the language syntax of Objective-C 1.0, the language
-recognized by \s-1GCC 4.0. \s0 This only affects the Objective-C additions to
-the C/\*(C+ language; it does not affect conformance to C/\*(C+ standards,
-which is controlled by the separate C/\*(C+ dialect option flags. When
-this option is used with the Objective-C or Objective\-\*(C+ compiler,
-any Objective-C syntax that is not recognized by \s-1GCC 4.0\s0 is rejected.
-This is useful if you need to make sure that your Objective-C code can
-be compiled with older versions of \s-1GCC.\s0
-.IP "\fB\-freplace\-objc\-classes\fR" 4
-.IX Item "-freplace-objc-classes"
-Emit a special marker instructing \fB\f(BIld\fB\|(1)\fR not to statically link in
-the resulting object file, and allow \fB\f(BIdyld\fB\|(1)\fR to load it in at
-run time instead. This is used in conjunction with the Fix-and-Continue
-debugging mode, where the object file in question may be recompiled and
-dynamically reloaded in the course of program execution, without the need
-to restart the program itself. Currently, Fix-and-Continue functionality
-is only available in conjunction with the NeXT runtime on Mac \s-1OS X 10.3\s0
-and later.
-.IP "\fB\-fzero\-link\fR" 4
-.IX Item "-fzero-link"
-When compiling for the NeXT runtime, the compiler ordinarily replaces calls
-to \f(CW\*(C`objc_getClass("...")\*(C'\fR (when the name of the class is known at
-compile time) with static class references that get initialized at load time,
-which improves run-time performance. Specifying the \fB\-fzero\-link\fR flag
-suppresses this behavior and causes calls to \f(CW\*(C`objc_getClass("...")\*(C'\fR
-to be retained. This is useful in Zero-Link debugging mode, since it allows
-for individual class implementations to be modified during program execution.
-The \s-1GNU\s0 runtime currently always retains calls to \f(CW\*(C`objc_get_class("...")\*(C'\fR
-regardless of command-line options.
-.IP "\fB\-gen\-decls\fR" 4
-.IX Item "-gen-decls"
-Dump interface declarations for all classes seen in the source file to a
-file named \fI\fIsourcename\fI.decl\fR.
-.IP "\fB\-Wassign\-intercept\fR (Objective-C and Objective\-\*(C+ only)" 4
-.IX Item "-Wassign-intercept (Objective-C and Objective- only)"
-Warn whenever an Objective-C assignment is being intercepted by the
-garbage collector.
-.IP "\fB\-Wno\-protocol\fR (Objective-C and Objective\-\*(C+ only)" 4
-.IX Item "-Wno-protocol (Objective-C and Objective- only)"
-If a class is declared to implement a protocol, a warning is issued for
-every method in the protocol that is not implemented by the class. The
-default behavior is to issue a warning for every method not explicitly
-implemented in the class, even if a method implementation is inherited
-from the superclass. If you use the \fB\-Wno\-protocol\fR option, then
-methods inherited from the superclass are considered to be implemented,
-and no warning is issued for them.
-.IP "\fB\-Wselector\fR (Objective-C and Objective\-\*(C+ only)" 4
-.IX Item "-Wselector (Objective-C and Objective- only)"
-Warn if multiple methods of different types for the same selector are
-found during compilation. The check is performed on the list of methods
-in the final stage of compilation. Additionally, a check is performed
-for each selector appearing in a \f(CW\*(C`@selector(...)\*(C'\fR
-expression, and a corresponding method for that selector has been found
-during compilation. Because these checks scan the method table only at
-the end of compilation, these warnings are not produced if the final
-stage of compilation is not reached, for example because an error is
-found during compilation, or because the \fB\-fsyntax\-only\fR option is
-being used.
-.IP "\fB\-Wstrict\-selector\-match\fR (Objective-C and Objective\-\*(C+ only)" 4
-.IX Item "-Wstrict-selector-match (Objective-C and Objective- only)"
-Warn if multiple methods with differing argument and/or return types are
-found for a given selector when attempting to send a message using this
-selector to a receiver of type \f(CW\*(C`id\*(C'\fR or \f(CW\*(C`Class\*(C'\fR. When this flag
-is off (which is the default behavior), the compiler omits such warnings
-if any differences found are confined to types that share the same size
-and alignment.
-.IP "\fB\-Wundeclared\-selector\fR (Objective-C and Objective\-\*(C+ only)" 4
-.IX Item "-Wundeclared-selector (Objective-C and Objective- only)"
-Warn if a \f(CW\*(C`@selector(...)\*(C'\fR expression referring to an
-undeclared selector is found. A selector is considered undeclared if no
-method with that name has been declared before the
-\&\f(CW\*(C`@selector(...)\*(C'\fR expression, either explicitly in an
-\&\f(CW@interface\fR or \f(CW@protocol\fR declaration, or implicitly in
-an \f(CW@implementation\fR section. This option always performs its
-checks as soon as a \f(CW\*(C`@selector(...)\*(C'\fR expression is found,
-while \fB\-Wselector\fR only performs its checks in the final stage of
-compilation. This also enforces the coding style convention
-that methods and selectors must be declared before being used.
-.IP "\fB\-print\-objc\-runtime\-info\fR" 4
-.IX Item "-print-objc-runtime-info"
-Generate C header describing the largest structure that is passed by
-value, if any.
-.SS "Options to Control Diagnostic Messages Formatting"
-.IX Subsection "Options to Control Diagnostic Messages Formatting"
-Traditionally, diagnostic messages have been formatted irrespective of
-the output device's aspect (e.g. its width, ...). You can use the
-options described below
-to control the formatting algorithm for diagnostic messages,
-e.g. how many characters per line, how often source location
-information should be reported. Note that some language front ends may not
-honor these options.
-.IP "\fB\-fmessage\-length=\fR\fIn\fR" 4
-.IX Item "-fmessage-length=n"
-Try to format error messages so that they fit on lines of about \fIn\fR
-characters. The default is 72 characters for \fBg++\fR and 0 for the rest of
-the front ends supported by \s-1GCC. \s0 If \fIn\fR is zero, then no
-line-wrapping is done; each error message appears on a single
-line.
-.IP "\fB\-fdiagnostics\-show\-location=once\fR" 4
-.IX Item "-fdiagnostics-show-location=once"
-Only meaningful in line-wrapping mode. Instructs the diagnostic messages
-reporter to emit source location information \fIonce\fR; that is, in
-case the message is too long to fit on a single physical line and has to
-be wrapped, the source location won't be emitted (as prefix) again,
-over and over, in subsequent continuation lines. This is the default
-behavior.
-.IP "\fB\-fdiagnostics\-show\-location=every\-line\fR" 4
-.IX Item "-fdiagnostics-show-location=every-line"
-Only meaningful in line-wrapping mode. Instructs the diagnostic
-messages reporter to emit the same source location information (as
-prefix) for physical lines that result from the process of breaking
-a message which is too long to fit on a single line.
-.IP "\fB\-fdiagnostics\-color[=\fR\fI\s-1WHEN\s0\fR\fB]\fR" 4
-.IX Item "-fdiagnostics-color[=WHEN]"
-.PD 0
-.IP "\fB\-fno\-diagnostics\-color\fR" 4
-.IX Item "-fno-diagnostics-color"
-.PD
-Use color in diagnostics. \fI\s-1WHEN\s0\fR is \fBnever\fR, \fBalways\fR,
-or \fBauto\fR. The default is \fBnever\fR if \fB\s-1GCC_COLORS\s0\fR environment
-variable isn't present in the environment, and \fBauto\fR otherwise.
-\&\fBauto\fR means to use color only when the standard error is a terminal.
-The forms \fB\-fdiagnostics\-color\fR and \fB\-fno\-diagnostics\-color\fR are
-aliases for \fB\-fdiagnostics\-color=always\fR and
-\&\fB\-fdiagnostics\-color=never\fR, respectively.
-.Sp
-The colors are defined by the environment variable \fB\s-1GCC_COLORS\s0\fR.
-Its value is a colon-separated list of capabilities and Select Graphic
-Rendition (\s-1SGR\s0) substrings. \s-1SGR\s0 commands are interpreted by the
-terminal or terminal emulator. (See the section in the documentation
-of your text terminal for permitted values and their meanings as
-character attributes.) These substring values are integers in decimal
-representation and can be concatenated with semicolons.
-Common values to concatenate include
-\&\fB1\fR for bold,
-\&\fB4\fR for underline,
-\&\fB5\fR for blink,
-\&\fB7\fR for inverse,
-\&\fB39\fR for default foreground color,
-\&\fB30\fR to \fB37\fR for foreground colors,
-\&\fB90\fR to \fB97\fR for 16\-color mode foreground colors,
-\&\fB38;5;0\fR to \fB38;5;255\fR
-for 88\-color and 256\-color modes foreground colors,
-\&\fB49\fR for default background color,
-\&\fB40\fR to \fB47\fR for background colors,
-\&\fB100\fR to \fB107\fR for 16\-color mode background colors,
-and \fB48;5;0\fR to \fB48;5;255\fR
-for 88\-color and 256\-color modes background colors.
-.Sp
-The default \fB\s-1GCC_COLORS\s0\fR is
-\&\fBerror=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01\fR
-where \fB01;31\fR is bold red, \fB01;35\fR is bold magenta,
-\&\fB01;36\fR is bold cyan, \fB01;32\fR is bold green and
-\&\fB01\fR is bold. Setting \fB\s-1GCC_COLORS\s0\fR to the empty
-string disables colors.
-Supported capabilities are as follows.
-.RS 4
-.ie n .IP """error=""" 4
-.el .IP "\f(CWerror=\fR" 4
-.IX Item "error="
-\&\s-1SGR\s0 substring for error: markers.
-.ie n .IP """warning=""" 4
-.el .IP "\f(CWwarning=\fR" 4
-.IX Item "warning="
-\&\s-1SGR\s0 substring for warning: markers.
-.ie n .IP """note=""" 4
-.el .IP "\f(CWnote=\fR" 4
-.IX Item "note="
-\&\s-1SGR\s0 substring for note: markers.
-.ie n .IP """caret=""" 4
-.el .IP "\f(CWcaret=\fR" 4
-.IX Item "caret="
-\&\s-1SGR\s0 substring for caret line.
-.ie n .IP """locus=""" 4
-.el .IP "\f(CWlocus=\fR" 4
-.IX Item "locus="
-\&\s-1SGR\s0 substring for location information, \fBfile:line\fR or
-\&\fBfile:line:column\fR etc.
-.ie n .IP """quote=""" 4
-.el .IP "\f(CWquote=\fR" 4
-.IX Item "quote="
-\&\s-1SGR\s0 substring for information printed within quotes.
-.RE
-.RS 4
-.RE
-.IP "\fB\-fno\-diagnostics\-show\-option\fR" 4
-.IX Item "-fno-diagnostics-show-option"
-By default, each diagnostic emitted includes text indicating the
-command-line option that directly controls the diagnostic (if such an
-option is known to the diagnostic machinery). Specifying the
-\&\fB\-fno\-diagnostics\-show\-option\fR flag suppresses that behavior.
-.IP "\fB\-fno\-diagnostics\-show\-caret\fR" 4
-.IX Item "-fno-diagnostics-show-caret"
-By default, each diagnostic emitted includes the original source line
-and a caret '^' indicating the column. This option suppresses this
-information.
-.SS "Options to Request or Suppress Warnings"
-.IX Subsection "Options to Request or Suppress Warnings"
-Warnings are diagnostic messages that report constructions that
-are not inherently erroneous but that are risky or suggest there
-may have been an error.
-.PP
-The following language-independent options do not enable specific
-warnings but control the kinds of diagnostics produced by \s-1GCC.\s0
-.IP "\fB\-fsyntax\-only\fR" 4
-.IX Item "-fsyntax-only"
-Check the code for syntax errors, but don't do anything beyond that.
-.IP "\fB\-fmax\-errors=\fR\fIn\fR" 4
-.IX Item "-fmax-errors=n"
-Limits the maximum number of error messages to \fIn\fR, at which point
-\&\s-1GCC\s0 bails out rather than attempting to continue processing the source
-code. If \fIn\fR is 0 (the default), there is no limit on the number
-of error messages produced. If \fB\-Wfatal\-errors\fR is also
-specified, then \fB\-Wfatal\-errors\fR takes precedence over this
-option.
-.IP "\fB\-w\fR" 4
-.IX Item "-w"
-Inhibit all warning messages.
-.IP "\fB\-Werror\fR" 4
-.IX Item "-Werror"
-Make all warnings into errors.
-.IP "\fB\-Werror=\fR" 4
-.IX Item "-Werror="
-Make the specified warning into an error. The specifier for a warning
-is appended; for example \fB\-Werror=switch\fR turns the warnings
-controlled by \fB\-Wswitch\fR into errors. This switch takes a
-negative form, to be used to negate \fB\-Werror\fR for specific
-warnings; for example \fB\-Wno\-error=switch\fR makes
-\&\fB\-Wswitch\fR warnings not be errors, even when \fB\-Werror\fR
-is in effect.
-.Sp
-The warning message for each controllable warning includes the
-option that controls the warning. That option can then be used with
-\&\fB\-Werror=\fR and \fB\-Wno\-error=\fR as described above.
-(Printing of the option in the warning message can be disabled using the
-\&\fB\-fno\-diagnostics\-show\-option\fR flag.)
-.Sp
-Note that specifying \fB\-Werror=\fR\fIfoo\fR automatically implies
-\&\fB\-W\fR\fIfoo\fR. However, \fB\-Wno\-error=\fR\fIfoo\fR does not
-imply anything.
-.IP "\fB\-Wfatal\-errors\fR" 4
-.IX Item "-Wfatal-errors"
-This option causes the compiler to abort compilation on the first error
-occurred rather than trying to keep going and printing further error
-messages.
-.PP
-You can request many specific warnings with options beginning with
-\&\fB\-W\fR, for example \fB\-Wimplicit\fR to request warnings on
-implicit declarations. Each of these specific warning options also
-has a negative form beginning \fB\-Wno\-\fR to turn off warnings; for
-example, \fB\-Wno\-implicit\fR. This manual lists only one of the
-two forms, whichever is not the default. For further
-language-specific options also refer to \fB\*(C+ Dialect Options\fR and
-\&\fBObjective-C and Objective\-\*(C+ Dialect Options\fR.
-.PP
-When an unrecognized warning option is requested (e.g.,
-\&\fB\-Wunknown\-warning\fR), \s-1GCC\s0 emits a diagnostic stating
-that the option is not recognized. However, if the \fB\-Wno\-\fR form
-is used, the behavior is slightly different: no diagnostic is
-produced for \fB\-Wno\-unknown\-warning\fR unless other diagnostics
-are being produced. This allows the use of new \fB\-Wno\-\fR options
-with old compilers, but if something goes wrong, the compiler
-warns that an unrecognized option is present.
-.IP "\fB\-Wpedantic\fR" 4
-.IX Item "-Wpedantic"
-.PD 0
-.IP "\fB\-pedantic\fR" 4
-.IX Item "-pedantic"
-.PD
-Issue all the warnings demanded by strict \s-1ISO C\s0 and \s-1ISO \*(C+\s0;
-reject all programs that use forbidden extensions, and some other
-programs that do not follow \s-1ISO C\s0 and \s-1ISO \*(C+. \s0 For \s-1ISO C,\s0 follows the
-version of the \s-1ISO C\s0 standard specified by any \fB\-std\fR option used.
-.Sp
-Valid \s-1ISO C\s0 and \s-1ISO \*(C+\s0 programs should compile properly with or without
-this option (though a rare few require \fB\-ansi\fR or a
-\&\fB\-std\fR option specifying the required version of \s-1ISO C\s0). However,
-without this option, certain \s-1GNU\s0 extensions and traditional C and \*(C+
-features are supported as well. With this option, they are rejected.
-.Sp
-\&\fB\-Wpedantic\fR does not cause warning messages for use of the
-alternate keywords whose names begin and end with \fB_\|_\fR. Pedantic
-warnings are also disabled in the expression that follows
-\&\f(CW\*(C`_\|_extension_\|_\*(C'\fR. However, only system header files should use
-these escape routes; application programs should avoid them.
-.Sp
-Some users try to use \fB\-Wpedantic\fR to check programs for strict \s-1ISO
-C\s0 conformance. They soon find that it does not do quite what they want:
-it finds some non-ISO practices, but not all\-\-\-only those for which
-\&\s-1ISO C \s0\fIrequires\fR a diagnostic, and some others for which
-diagnostics have been added.
-.Sp
-A feature to report any failure to conform to \s-1ISO C\s0 might be useful in
-some instances, but would require considerable additional work and would
-be quite different from \fB\-Wpedantic\fR. We don't have plans to
-support such a feature in the near future.
-.Sp
-Where the standard specified with \fB\-std\fR represents a \s-1GNU\s0
-extended dialect of C, such as \fBgnu90\fR or \fBgnu99\fR, there is a
-corresponding \fIbase standard\fR, the version of \s-1ISO C\s0 on which the \s-1GNU\s0
-extended dialect is based. Warnings from \fB\-Wpedantic\fR are given
-where they are required by the base standard. (It does not make sense
-for such warnings to be given only for features not in the specified \s-1GNU
-C\s0 dialect, since by definition the \s-1GNU\s0 dialects of C include all
-features the compiler supports with the given option, and there would be
-nothing to warn about.)
-.IP "\fB\-pedantic\-errors\fR" 4
-.IX Item "-pedantic-errors"
-Like \fB\-Wpedantic\fR, except that errors are produced rather than
-warnings.
-.IP "\fB\-Wall\fR" 4
-.IX Item "-Wall"
-This enables all the warnings about constructions that some users
-consider questionable, and that are easy to avoid (or modify to
-prevent the warning), even in conjunction with macros. This also
-enables some language-specific warnings described in \fB\*(C+ Dialect
-Options\fR and \fBObjective-C and Objective\-\*(C+ Dialect Options\fR.
-.Sp
-\&\fB\-Wall\fR turns on the following warning flags:
-.Sp
-\&\fB\-Waddress
-\&\-Warray\-bounds\fR (only with\fB \fR\fB\-O2\fR)
-\&\fB\-Wc++11\-compat
-\&\-Wchar\-subscripts
-\&\-Wenum\-compare\fR (in C/ObjC; this is on by default in \*(C+)
-\&\fB\-Wimplicit\-int\fR (C and Objective-C only)
-\&\fB\-Wimplicit\-function\-declaration\fR (C and Objective-C only)
-\&\fB\-Wcomment
-\&\-Wformat
-\&\-Wmain\fR (only for C/ObjC and unless\fB \fR\fB\-ffreestanding\fR)
-\&\fB\-Wmaybe\-uninitialized
-\&\-Wmissing\-braces\fR (only for C/ObjC)
-\&\fB\-Wnonnull
-\&\-Wopenmp\-simd
-\&\-Wparentheses
-\&\-Wpointer\-sign
-\&\-Wreorder
-\&\-Wreturn\-type
-\&\-Wsequence\-point
-\&\-Wsign\-compare\fR (only in \*(C+)
-\&\fB\-Wstrict\-aliasing
-\&\-Wstrict\-overflow=1
-\&\-Wswitch
-\&\-Wtrigraphs
-\&\-Wuninitialized
-\&\-Wunknown\-pragmas
-\&\-Wunused\-function
-\&\-Wunused\-label
-\&\-Wunused\-value
-\&\-Wunused\-variable
-\&\-Wvolatile\-register\-var\fR
-.Sp
-Note that some warning flags are not implied by \fB\-Wall\fR. Some of
-them warn about constructions that users generally do not consider
-questionable, but which occasionally you might wish to check for;
-others warn about constructions that are necessary or hard to avoid in
-some cases, and there is no simple way to modify the code to suppress
-the warning. Some of them are enabled by \fB\-Wextra\fR but many of
-them must be enabled individually.
-.IP "\fB\-Wextra\fR" 4
-.IX Item "-Wextra"
-This enables some extra warning flags that are not enabled by
-\&\fB\-Wall\fR. (This option used to be called \fB\-W\fR. The older
-name is still supported, but the newer name is more descriptive.)
-.Sp
-\&\fB\-Wclobbered
-\&\-Wempty\-body
-\&\-Wignored\-qualifiers
-\&\-Wmissing\-field\-initializers
-\&\-Wmissing\-parameter\-type\fR (C only)
-\&\fB\-Wold\-style\-declaration\fR (C only)
-\&\fB\-Woverride\-init
-\&\-Wsign\-compare
-\&\-Wtype\-limits
-\&\-Wuninitialized
-\&\-Wunused\-parameter\fR (only with\fB \fR\fB\-Wunused\fR\fB \fRor\fB \fR\fB\-Wall\fR)
-\&\fB\-Wunused\-but\-set\-parameter\fR (only with\fB \fR\fB\-Wunused\fR\fB \fRor\fB \fR\fB\-Wall\fR) \fB \fR
-.Sp
-The option \fB\-Wextra\fR also prints warning messages for the
-following cases:
-.RS 4
-.IP "\(bu" 4
-A pointer is compared against integer zero with \fB<\fR, \fB<=\fR,
-\&\fB>\fR, or \fB>=\fR.
-.IP "\(bu" 4
-(\*(C+ only) An enumerator and a non-enumerator both appear in a
-conditional expression.
-.IP "\(bu" 4
-(\*(C+ only) Ambiguous virtual bases.
-.IP "\(bu" 4
-(\*(C+ only) Subscripting an array that has been declared \fBregister\fR.
-.IP "\(bu" 4
-(\*(C+ only) Taking the address of a variable that has been declared
-\&\fBregister\fR.
-.IP "\(bu" 4
-(\*(C+ only) A base class is not initialized in a derived class's copy
-constructor.
-.RE
-.RS 4
-.RE
-.IP "\fB\-Wchar\-subscripts\fR" 4
-.IX Item "-Wchar-subscripts"
-Warn if an array subscript has type \f(CW\*(C`char\*(C'\fR. This is a common cause
-of error, as programmers often forget that this type is signed on some
-machines.
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wcomment\fR" 4
-.IX Item "-Wcomment"
-Warn whenever a comment-start sequence \fB/*\fR appears in a \fB/*\fR
-comment, or whenever a Backslash-Newline appears in a \fB//\fR comment.
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wno\-coverage\-mismatch\fR" 4
-.IX Item "-Wno-coverage-mismatch"
-Warn if feedback profiles do not match when using the
-\&\fB\-fprofile\-use\fR option.
-If a source file is changed between compiling with \fB\-fprofile\-gen\fR and
-with \fB\-fprofile\-use\fR, the files with the profile feedback can fail
-to match the source file and \s-1GCC\s0 cannot use the profile feedback
-information. By default, this warning is enabled and is treated as an
-error. \fB\-Wno\-coverage\-mismatch\fR can be used to disable the
-warning or \fB\-Wno\-error=coverage\-mismatch\fR can be used to
-disable the error. Disabling the error for this warning can result in
-poorly optimized code and is useful only in the
-case of very minor changes such as bug fixes to an existing code-base.
-Completely disabling the warning is not recommended.
-.IP "\fB\-Wno\-cpp\fR" 4
-.IX Item "-Wno-cpp"
-(C, Objective-C, \*(C+, Objective\-\*(C+ and Fortran only)
-.Sp
-Suppress warning messages emitted by \f(CW\*(C`#warning\*(C'\fR directives.
-.IP "\fB\-Wdouble\-promotion\fR (C, \*(C+, Objective-C and Objective\-\*(C+ only)" 4
-.IX Item "-Wdouble-promotion (C, , Objective-C and Objective- only)"
-Give a warning when a value of type \f(CW\*(C`float\*(C'\fR is implicitly
-promoted to \f(CW\*(C`double\*(C'\fR. CPUs with a 32\-bit \*(L"single-precision\*(R"
-floating-point unit implement \f(CW\*(C`float\*(C'\fR in hardware, but emulate
-\&\f(CW\*(C`double\*(C'\fR in software. On such a machine, doing computations
-using \f(CW\*(C`double\*(C'\fR values is much more expensive because of the
-overhead required for software emulation.
-.Sp
-It is easy to accidentally do computations with \f(CW\*(C`double\*(C'\fR because
-floating-point literals are implicitly of type \f(CW\*(C`double\*(C'\fR. For
-example, in:
-.Sp
-.Vb 4
-\& float area(float radius)
-\& {
-\& return 3.14159 * radius * radius;
-\& }
-.Ve
-.Sp
-the compiler performs the entire computation with \f(CW\*(C`double\*(C'\fR
-because the floating-point literal is a \f(CW\*(C`double\*(C'\fR.
-.IP "\fB\-Wformat\fR" 4
-.IX Item "-Wformat"
-.PD 0
-.IP "\fB\-Wformat=\fR\fIn\fR" 4
-.IX Item "-Wformat=n"
-.PD
-Check calls to \f(CW\*(C`printf\*(C'\fR and \f(CW\*(C`scanf\*(C'\fR, etc., to make sure that
-the arguments supplied have types appropriate to the format string
-specified, and that the conversions specified in the format string make
-sense. This includes standard functions, and others specified by format
-attributes, in the \f(CW\*(C`printf\*(C'\fR,
-\&\f(CW\*(C`scanf\*(C'\fR, \f(CW\*(C`strftime\*(C'\fR and \f(CW\*(C`strfmon\*(C'\fR (an X/Open extension,
-not in the C standard) families (or other target-specific families).
-Which functions are checked without format attributes having been
-specified depends on the standard version selected, and such checks of
-functions without the attribute specified are disabled by
-\&\fB\-ffreestanding\fR or \fB\-fno\-builtin\fR.
-.Sp
-The formats are checked against the format features supported by \s-1GNU\s0
-libc version 2.2. These include all \s-1ISO C90\s0 and C99 features, as well
-as features from the Single Unix Specification and some \s-1BSD\s0 and \s-1GNU\s0
-extensions. Other library implementations may not support all these
-features; \s-1GCC\s0 does not support warning about features that go beyond a
-particular library's limitations. However, if \fB\-Wpedantic\fR is used
-with \fB\-Wformat\fR, warnings are given about format features not
-in the selected standard version (but not for \f(CW\*(C`strfmon\*(C'\fR formats,
-since those are not in any version of the C standard).
-.RS 4
-.IP "\fB\-Wformat=1\fR" 4
-.IX Item "-Wformat=1"
-.PD 0
-.IP "\fB\-Wformat\fR" 4
-.IX Item "-Wformat"
-.PD
-Option \fB\-Wformat\fR is equivalent to \fB\-Wformat=1\fR, and
-\&\fB\-Wno\-format\fR is equivalent to \fB\-Wformat=0\fR. Since
-\&\fB\-Wformat\fR also checks for null format arguments for several
-functions, \fB\-Wformat\fR also implies \fB\-Wnonnull\fR. Some
-aspects of this level of format checking can be disabled by the
-options: \fB\-Wno\-format\-contains\-nul\fR,
-\&\fB\-Wno\-format\-extra\-args\fR, and \fB\-Wno\-format\-zero\-length\fR.
-\&\fB\-Wformat\fR is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wno\-format\-contains\-nul\fR" 4
-.IX Item "-Wno-format-contains-nul"
-If \fB\-Wformat\fR is specified, do not warn about format strings that
-contain \s-1NUL\s0 bytes.
-.IP "\fB\-Wno\-format\-extra\-args\fR" 4
-.IX Item "-Wno-format-extra-args"
-If \fB\-Wformat\fR is specified, do not warn about excess arguments to a
-\&\f(CW\*(C`printf\*(C'\fR or \f(CW\*(C`scanf\*(C'\fR format function. The C standard specifies
-that such arguments are ignored.
-.Sp
-Where the unused arguments lie between used arguments that are
-specified with \fB$\fR operand number specifications, normally
-warnings are still given, since the implementation could not know what
-type to pass to \f(CW\*(C`va_arg\*(C'\fR to skip the unused arguments. However,
-in the case of \f(CW\*(C`scanf\*(C'\fR formats, this option suppresses the
-warning if the unused arguments are all pointers, since the Single
-Unix Specification says that such unused arguments are allowed.
-.IP "\fB\-Wno\-format\-zero\-length\fR" 4
-.IX Item "-Wno-format-zero-length"
-If \fB\-Wformat\fR is specified, do not warn about zero-length formats.
-The C standard specifies that zero-length formats are allowed.
-.IP "\fB\-Wformat=2\fR" 4
-.IX Item "-Wformat=2"
-Enable \fB\-Wformat\fR plus additional format checks. Currently
-equivalent to \fB\-Wformat \-Wformat\-nonliteral \-Wformat\-security
-\&\-Wformat\-y2k\fR.
-.IP "\fB\-Wformat\-nonliteral\fR" 4
-.IX Item "-Wformat-nonliteral"
-If \fB\-Wformat\fR is specified, also warn if the format string is not a
-string literal and so cannot be checked, unless the format function
-takes its format arguments as a \f(CW\*(C`va_list\*(C'\fR.
-.IP "\fB\-Wformat\-security\fR" 4
-.IX Item "-Wformat-security"
-If \fB\-Wformat\fR is specified, also warn about uses of format
-functions that represent possible security problems. At present, this
-warns about calls to \f(CW\*(C`printf\*(C'\fR and \f(CW\*(C`scanf\*(C'\fR functions where the
-format string is not a string literal and there are no format arguments,
-as in \f(CW\*(C`printf (foo);\*(C'\fR. This may be a security hole if the format
-string came from untrusted input and contains \fB\f(CB%n\fB\fR. (This is
-currently a subset of what \fB\-Wformat\-nonliteral\fR warns about, but
-in future warnings may be added to \fB\-Wformat\-security\fR that are not
-included in \fB\-Wformat\-nonliteral\fR.)
-.IP "\fB\-Wformat\-y2k\fR" 4
-.IX Item "-Wformat-y2k"
-If \fB\-Wformat\fR is specified, also warn about \f(CW\*(C`strftime\*(C'\fR
-formats that may yield only a two-digit year.
-.RE
-.RS 4
-.RE
-.IP "\fB\-Wnonnull\fR" 4
-.IX Item "-Wnonnull"
-Warn about passing a null pointer for arguments marked as
-requiring a non-null value by the \f(CW\*(C`nonnull\*(C'\fR function attribute.
-.Sp
-\&\fB\-Wnonnull\fR is included in \fB\-Wall\fR and \fB\-Wformat\fR. It
-can be disabled with the \fB\-Wno\-nonnull\fR option.
-.IP "\fB\-Winit\-self\fR (C, \*(C+, Objective-C and Objective\-\*(C+ only)" 4
-.IX Item "-Winit-self (C, , Objective-C and Objective- only)"
-Warn about uninitialized variables that are initialized with themselves.
-Note this option can only be used with the \fB\-Wuninitialized\fR option.
-.Sp
-For example, \s-1GCC\s0 warns about \f(CW\*(C`i\*(C'\fR being uninitialized in the
-following snippet only when \fB\-Winit\-self\fR has been specified:
-.Sp
-.Vb 5
-\& int f()
-\& {
-\& int i = i;
-\& return i;
-\& }
-.Ve
-.Sp
-This warning is enabled by \fB\-Wall\fR in \*(C+.
-.IP "\fB\-Wimplicit\-int\fR (C and Objective-C only)" 4
-.IX Item "-Wimplicit-int (C and Objective-C only)"
-Warn when a declaration does not specify a type.
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wimplicit\-function\-declaration\fR (C and Objective-C only)" 4
-.IX Item "-Wimplicit-function-declaration (C and Objective-C only)"
-Give a warning whenever a function is used before being declared. In
-C99 mode (\fB\-std=c99\fR or \fB\-std=gnu99\fR), this warning is
-enabled by default and it is made into an error by
-\&\fB\-pedantic\-errors\fR. This warning is also enabled by
-\&\fB\-Wall\fR.
-.IP "\fB\-Wimplicit\fR (C and Objective-C only)" 4
-.IX Item "-Wimplicit (C and Objective-C only)"
-Same as \fB\-Wimplicit\-int\fR and \fB\-Wimplicit\-function\-declaration\fR.
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wignored\-qualifiers\fR (C and \*(C+ only)" 4
-.IX Item "-Wignored-qualifiers (C and only)"
-Warn if the return type of a function has a type qualifier
-such as \f(CW\*(C`const\*(C'\fR. For \s-1ISO C\s0 such a type qualifier has no effect,
-since the value returned by a function is not an lvalue.
-For \*(C+, the warning is only emitted for scalar types or \f(CW\*(C`void\*(C'\fR.
-\&\s-1ISO C\s0 prohibits qualified \f(CW\*(C`void\*(C'\fR return types on function
-definitions, so such return types always receive a warning
-even without this option.
-.Sp
-This warning is also enabled by \fB\-Wextra\fR.
-.IP "\fB\-Wmain\fR" 4
-.IX Item "-Wmain"
-Warn if the type of \fBmain\fR is suspicious. \fBmain\fR should be
-a function with external linkage, returning int, taking either zero
-arguments, two, or three arguments of appropriate types. This warning
-is enabled by default in \*(C+ and is enabled by either \fB\-Wall\fR
-or \fB\-Wpedantic\fR.
-.IP "\fB\-Wmissing\-braces\fR" 4
-.IX Item "-Wmissing-braces"
-Warn if an aggregate or union initializer is not fully bracketed. In
-the following example, the initializer for \fBa\fR is not fully
-bracketed, but that for \fBb\fR is fully bracketed. This warning is
-enabled by \fB\-Wall\fR in C.
-.Sp
-.Vb 2
-\& int a[2][2] = { 0, 1, 2, 3 };
-\& int b[2][2] = { { 0, 1 }, { 2, 3 } };
-.Ve
-.Sp
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wmissing\-include\-dirs\fR (C, \*(C+, Objective-C and Objective\-\*(C+ only)" 4
-.IX Item "-Wmissing-include-dirs (C, , Objective-C and Objective- only)"
-Warn if a user-supplied include directory does not exist.
-.IP "\fB\-Wparentheses\fR" 4
-.IX Item "-Wparentheses"
-Warn if parentheses are omitted in certain contexts, such
-as when there is an assignment in a context where a truth value
-is expected, or when operators are nested whose precedence people
-often get confused about.
-.Sp
-Also warn if a comparison like \fBx<=y<=z\fR appears; this is
-equivalent to \fB(x<=y ? 1 : 0) <= z\fR, which is a different
-interpretation from that of ordinary mathematical notation.
-.Sp
-Also warn about constructions where there may be confusion to which
-\&\f(CW\*(C`if\*(C'\fR statement an \f(CW\*(C`else\*(C'\fR branch belongs. Here is an example of
-such a case:
-.Sp
-.Vb 7
-\& {
-\& if (a)
-\& if (b)
-\& foo ();
-\& else
-\& bar ();
-\& }
-.Ve
-.Sp
-In C/\*(C+, every \f(CW\*(C`else\*(C'\fR branch belongs to the innermost possible
-\&\f(CW\*(C`if\*(C'\fR statement, which in this example is \f(CW\*(C`if (b)\*(C'\fR. This is
-often not what the programmer expected, as illustrated in the above
-example by indentation the programmer chose. When there is the
-potential for this confusion, \s-1GCC\s0 issues a warning when this flag
-is specified. To eliminate the warning, add explicit braces around
-the innermost \f(CW\*(C`if\*(C'\fR statement so there is no way the \f(CW\*(C`else\*(C'\fR
-can belong to the enclosing \f(CW\*(C`if\*(C'\fR. The resulting code
-looks like this:
-.Sp
-.Vb 9
-\& {
-\& if (a)
-\& {
-\& if (b)
-\& foo ();
-\& else
-\& bar ();
-\& }
-\& }
-.Ve
-.Sp
-Also warn for dangerous uses of the \s-1GNU\s0 extension to
-\&\f(CW\*(C`?:\*(C'\fR with omitted middle operand. When the condition
-in the \f(CW\*(C`?\*(C'\fR: operator is a boolean expression, the omitted value is
-always 1. Often programmers expect it to be a value computed
-inside the conditional expression instead.
-.Sp
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wsequence\-point\fR" 4
-.IX Item "-Wsequence-point"
-Warn about code that may have undefined semantics because of violations
-of sequence point rules in the C and \*(C+ standards.
-.Sp
-The C and \*(C+ standards define the order in which expressions in a C/\*(C+
-program are evaluated in terms of \fIsequence points\fR, which represent
-a partial ordering between the execution of parts of the program: those
-executed before the sequence point, and those executed after it. These
-occur after the evaluation of a full expression (one which is not part
-of a larger expression), after the evaluation of the first operand of a
-\&\f(CW\*(C`&&\*(C'\fR, \f(CW\*(C`||\*(C'\fR, \f(CW\*(C`? :\*(C'\fR or \f(CW\*(C`,\*(C'\fR (comma) operator, before a
-function is called (but after the evaluation of its arguments and the
-expression denoting the called function), and in certain other places.
-Other than as expressed by the sequence point rules, the order of
-evaluation of subexpressions of an expression is not specified. All
-these rules describe only a partial order rather than a total order,
-since, for example, if two functions are called within one expression
-with no sequence point between them, the order in which the functions
-are called is not specified. However, the standards committee have
-ruled that function calls do not overlap.
-.Sp
-It is not specified when between sequence points modifications to the
-values of objects take effect. Programs whose behavior depends on this
-have undefined behavior; the C and \*(C+ standards specify that \*(L"Between
-the previous and next sequence point an object shall have its stored
-value modified at most once by the evaluation of an expression.
-Furthermore, the prior value shall be read only to determine the value
-to be stored.\*(R". If a program breaks these rules, the results on any
-particular implementation are entirely unpredictable.
-.Sp
-Examples of code with undefined behavior are \f(CW\*(C`a = a++;\*(C'\fR, \f(CW\*(C`a[n]
-= b[n++]\*(C'\fR and \f(CW\*(C`a[i++] = i;\*(C'\fR. Some more complicated cases are not
-diagnosed by this option, and it may give an occasional false positive
-result, but in general it has been found fairly effective at detecting
-this sort of problem in programs.
-.Sp
-The standard is worded confusingly, therefore there is some debate
-over the precise meaning of the sequence point rules in subtle cases.
-Links to discussions of the problem, including proposed formal
-definitions, may be found on the \s-1GCC\s0 readings page, at
-<\fBhttp://gcc.gnu.org/readings.html\fR>.
-.Sp
-This warning is enabled by \fB\-Wall\fR for C and \*(C+.
-.IP "\fB\-Wno\-return\-local\-addr\fR" 4
-.IX Item "-Wno-return-local-addr"
-Do not warn about returning a pointer (or in \*(C+, a reference) to a
-variable that goes out of scope after the function returns.
-.IP "\fB\-Wreturn\-type\fR" 4
-.IX Item "-Wreturn-type"
-Warn whenever a function is defined with a return type that defaults
-to \f(CW\*(C`int\*(C'\fR. Also warn about any \f(CW\*(C`return\*(C'\fR statement with no
-return value in a function whose return type is not \f(CW\*(C`void\*(C'\fR
-(falling off the end of the function body is considered returning
-without a value), and about a \f(CW\*(C`return\*(C'\fR statement with an
-expression in a function whose return type is \f(CW\*(C`void\*(C'\fR.
-.Sp
-For \*(C+, a function without return type always produces a diagnostic
-message, even when \fB\-Wno\-return\-type\fR is specified. The only
-exceptions are \fBmain\fR and functions defined in system headers.
-.Sp
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wswitch\fR" 4
-.IX Item "-Wswitch"
-Warn whenever a \f(CW\*(C`switch\*(C'\fR statement has an index of enumerated type
-and lacks a \f(CW\*(C`case\*(C'\fR for one or more of the named codes of that
-enumeration. (The presence of a \f(CW\*(C`default\*(C'\fR label prevents this
-warning.) \f(CW\*(C`case\*(C'\fR labels outside the enumeration range also
-provoke warnings when this option is used (even if there is a
-\&\f(CW\*(C`default\*(C'\fR label).
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wswitch\-default\fR" 4
-.IX Item "-Wswitch-default"
-Warn whenever a \f(CW\*(C`switch\*(C'\fR statement does not have a \f(CW\*(C`default\*(C'\fR
-case.
-.IP "\fB\-Wswitch\-enum\fR" 4
-.IX Item "-Wswitch-enum"
-Warn whenever a \f(CW\*(C`switch\*(C'\fR statement has an index of enumerated type
-and lacks a \f(CW\*(C`case\*(C'\fR for one or more of the named codes of that
-enumeration. \f(CW\*(C`case\*(C'\fR labels outside the enumeration range also
-provoke warnings when this option is used. The only difference
-between \fB\-Wswitch\fR and this option is that this option gives a
-warning about an omitted enumeration code even if there is a
-\&\f(CW\*(C`default\*(C'\fR label.
-.IP "\fB\-Wsync\-nand\fR (C and \*(C+ only)" 4
-.IX Item "-Wsync-nand (C and only)"
-Warn when \f(CW\*(C`_\|_sync_fetch_and_nand\*(C'\fR and \f(CW\*(C`_\|_sync_nand_and_fetch\*(C'\fR
-built-in functions are used. These functions changed semantics in \s-1GCC 4.4.\s0
-.IP "\fB\-Wtrigraphs\fR" 4
-.IX Item "-Wtrigraphs"
-Warn if any trigraphs are encountered that might change the meaning of
-the program (trigraphs within comments are not warned about).
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wunused\-but\-set\-parameter\fR" 4
-.IX Item "-Wunused-but-set-parameter"
-Warn whenever a function parameter is assigned to, but otherwise unused
-(aside from its declaration).
-.Sp
-To suppress this warning use the \fBunused\fR attribute.
-.Sp
-This warning is also enabled by \fB\-Wunused\fR together with
-\&\fB\-Wextra\fR.
-.IP "\fB\-Wunused\-but\-set\-variable\fR" 4
-.IX Item "-Wunused-but-set-variable"
-Warn whenever a local variable is assigned to, but otherwise unused
-(aside from its declaration).
-This warning is enabled by \fB\-Wall\fR.
-.Sp
-To suppress this warning use the \fBunused\fR attribute.
-.Sp
-This warning is also enabled by \fB\-Wunused\fR, which is enabled
-by \fB\-Wall\fR.
-.IP "\fB\-Wunused\-function\fR" 4
-.IX Item "-Wunused-function"
-Warn whenever a static function is declared but not defined or a
-non-inline static function is unused.
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wunused\-label\fR" 4
-.IX Item "-Wunused-label"
-Warn whenever a label is declared but not used.
-This warning is enabled by \fB\-Wall\fR.
-.Sp
-To suppress this warning use the \fBunused\fR attribute.
-.IP "\fB\-Wunused\-local\-typedefs\fR (C, Objective-C, \*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wunused-local-typedefs (C, Objective-C, and Objective- only)"
-Warn when a typedef locally defined in a function is not used.
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wunused\-parameter\fR" 4
-.IX Item "-Wunused-parameter"
-Warn whenever a function parameter is unused aside from its declaration.
-.Sp
-To suppress this warning use the \fBunused\fR attribute.
-.IP "\fB\-Wno\-unused\-result\fR" 4
-.IX Item "-Wno-unused-result"
-Do not warn if a caller of a function marked with attribute
-\&\f(CW\*(C`warn_unused_result\*(C'\fR does not use
-its return value. The default is \fB\-Wunused\-result\fR.
-.IP "\fB\-Wunused\-variable\fR" 4
-.IX Item "-Wunused-variable"
-Warn whenever a local variable or non-constant static variable is unused
-aside from its declaration.
-This warning is enabled by \fB\-Wall\fR.
-.Sp
-To suppress this warning use the \fBunused\fR attribute.
-.IP "\fB\-Wunused\-value\fR" 4
-.IX Item "-Wunused-value"
-Warn whenever a statement computes a result that is explicitly not
-used. To suppress this warning cast the unused expression to
-\&\fBvoid\fR. This includes an expression-statement or the left-hand
-side of a comma expression that contains no side effects. For example,
-an expression such as \fBx[i,j]\fR causes a warning, while
-\&\fBx[(void)i,j]\fR does not.
-.Sp
-This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wunused\fR" 4
-.IX Item "-Wunused"
-All the above \fB\-Wunused\fR options combined.
-.Sp
-In order to get a warning about an unused function parameter, you must
-either specify \fB\-Wextra \-Wunused\fR (note that \fB\-Wall\fR implies
-\&\fB\-Wunused\fR), or separately specify \fB\-Wunused\-parameter\fR.
-.IP "\fB\-Wuninitialized\fR" 4
-.IX Item "-Wuninitialized"
-Warn if an automatic variable is used without first being initialized
-or if a variable may be clobbered by a \f(CW\*(C`setjmp\*(C'\fR call. In \*(C+,
-warn if a non-static reference or non-static \fBconst\fR member
-appears in a class without constructors.
-.Sp
-If you want to warn about code that uses the uninitialized value of the
-variable in its own initializer, use the \fB\-Winit\-self\fR option.
-.Sp
-These warnings occur for individual uninitialized or clobbered
-elements of structure, union or array variables as well as for
-variables that are uninitialized or clobbered as a whole. They do
-not occur for variables or elements declared \f(CW\*(C`volatile\*(C'\fR. Because
-these warnings depend on optimization, the exact variables or elements
-for which there are warnings depends on the precise optimization
-options and version of \s-1GCC\s0 used.
-.Sp
-Note that there may be no warning about a variable that is used only
-to compute a value that itself is never used, because such
-computations may be deleted by data flow analysis before the warnings
-are printed.
-.IP "\fB\-Wmaybe\-uninitialized\fR" 4
-.IX Item "-Wmaybe-uninitialized"
-For an automatic variable, if there exists a path from the function
-entry to a use of the variable that is initialized, but there exist
-some other paths for which the variable is not initialized, the compiler
-emits a warning if it cannot prove the uninitialized paths are not
-executed at run time. These warnings are made optional because \s-1GCC\s0 is
-not smart enough to see all the reasons why the code might be correct
-in spite of appearing to have an error. Here is one example of how
-this can happen:
-.Sp
-.Vb 12
-\& {
-\& int x;
-\& switch (y)
-\& {
-\& case 1: x = 1;
-\& break;
-\& case 2: x = 4;
-\& break;
-\& case 3: x = 5;
-\& }
-\& foo (x);
-\& }
-.Ve
-.Sp
-If the value of \f(CW\*(C`y\*(C'\fR is always 1, 2 or 3, then \f(CW\*(C`x\*(C'\fR is
-always initialized, but \s-1GCC\s0 doesn't know this. To suppress the
-warning, you need to provide a default case with \fIassert\fR\|(0) or
-similar code.
-.Sp
-This option also warns when a non-volatile automatic variable might be
-changed by a call to \f(CW\*(C`longjmp\*(C'\fR. These warnings as well are possible
-only in optimizing compilation.
-.Sp
-The compiler sees only the calls to \f(CW\*(C`setjmp\*(C'\fR. It cannot know
-where \f(CW\*(C`longjmp\*(C'\fR will be called; in fact, a signal handler could
-call it at any point in the code. As a result, you may get a warning
-even when there is in fact no problem because \f(CW\*(C`longjmp\*(C'\fR cannot
-in fact be called at the place that would cause a problem.
-.Sp
-Some spurious warnings can be avoided if you declare all the functions
-you use that never return as \f(CW\*(C`noreturn\*(C'\fR.
-.Sp
-This warning is enabled by \fB\-Wall\fR or \fB\-Wextra\fR.
-.IP "\fB\-Wunknown\-pragmas\fR" 4
-.IX Item "-Wunknown-pragmas"
-Warn when a \f(CW\*(C`#pragma\*(C'\fR directive is encountered that is not understood by
-\&\s-1GCC. \s0 If this command-line option is used, warnings are even issued
-for unknown pragmas in system header files. This is not the case if
-the warnings are only enabled by the \fB\-Wall\fR command-line option.
-.IP "\fB\-Wno\-pragmas\fR" 4
-.IX Item "-Wno-pragmas"
-Do not warn about misuses of pragmas, such as incorrect parameters,
-invalid syntax, or conflicts between pragmas. See also
-\&\fB\-Wunknown\-pragmas\fR.
-.IP "\fB\-Wstrict\-aliasing\fR" 4
-.IX Item "-Wstrict-aliasing"
-This option is only active when \fB\-fstrict\-aliasing\fR is active.
-It warns about code that might break the strict aliasing rules that the
-compiler is using for optimization. The warning does not catch all
-cases, but does attempt to catch the more common pitfalls. It is
-included in \fB\-Wall\fR.
-It is equivalent to \fB\-Wstrict\-aliasing=3\fR
-.IP "\fB\-Wstrict\-aliasing=n\fR" 4
-.IX Item "-Wstrict-aliasing=n"
-This option is only active when \fB\-fstrict\-aliasing\fR is active.
-It warns about code that might break the strict aliasing rules that the
-compiler is using for optimization.
-Higher levels correspond to higher accuracy (fewer false positives).
-Higher levels also correspond to more effort, similar to the way \fB\-O\fR
-works.
-\&\fB\-Wstrict\-aliasing\fR is equivalent to \fB\-Wstrict\-aliasing=3\fR.
-.Sp
-Level 1: Most aggressive, quick, least accurate.
-Possibly useful when higher levels
-do not warn but \fB\-fstrict\-aliasing\fR still breaks the code, as it has very few
-false negatives. However, it has many false positives.
-Warns for all pointer conversions between possibly incompatible types,
-even if never dereferenced. Runs in the front end only.
-.Sp
-Level 2: Aggressive, quick, not too precise.
-May still have many false positives (not as many as level 1 though),
-and few false negatives (but possibly more than level 1).
-Unlike level 1, it only warns when an address is taken. Warns about
-incomplete types. Runs in the front end only.
-.Sp
-Level 3 (default for \fB\-Wstrict\-aliasing\fR):
-Should have very few false positives and few false
-negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
-Takes care of the common pun+dereference pattern in the front end:
-\&\f(CW\*(C`*(int*)&some_float\*(C'\fR.
-If optimization is enabled, it also runs in the back end, where it deals
-with multiple statement cases using flow-sensitive points-to information.
-Only warns when the converted pointer is dereferenced.
-Does not warn about incomplete types.
-.IP "\fB\-Wstrict\-overflow\fR" 4
-.IX Item "-Wstrict-overflow"
-.PD 0
-.IP "\fB\-Wstrict\-overflow=\fR\fIn\fR" 4
-.IX Item "-Wstrict-overflow=n"
-.PD
-This option is only active when \fB\-fstrict\-overflow\fR is active.
-It warns about cases where the compiler optimizes based on the
-assumption that signed overflow does not occur. Note that it does not
-warn about all cases where the code might overflow: it only warns
-about cases where the compiler implements some optimization. Thus
-this warning depends on the optimization level.
-.Sp
-An optimization that assumes that signed overflow does not occur is
-perfectly safe if the values of the variables involved are such that
-overflow never does, in fact, occur. Therefore this warning can
-easily give a false positive: a warning about code that is not
-actually a problem. To help focus on important issues, several
-warning levels are defined. No warnings are issued for the use of
-undefined signed overflow when estimating how many iterations a loop
-requires, in particular when determining whether a loop will be
-executed at all.
-.RS 4
-.IP "\fB\-Wstrict\-overflow=1\fR" 4
-.IX Item "-Wstrict-overflow=1"
-Warn about cases that are both questionable and easy to avoid. For
-example, with \fB\-fstrict\-overflow\fR, the compiler simplifies
-\&\f(CW\*(C`x + 1 > x\*(C'\fR to \f(CW1\fR. This level of
-\&\fB\-Wstrict\-overflow\fR is enabled by \fB\-Wall\fR; higher levels
-are not, and must be explicitly requested.
-.IP "\fB\-Wstrict\-overflow=2\fR" 4
-.IX Item "-Wstrict-overflow=2"
-Also warn about other cases where a comparison is simplified to a
-constant. For example: \f(CW\*(C`abs (x) >= 0\*(C'\fR. This can only be
-simplified when \fB\-fstrict\-overflow\fR is in effect, because
-\&\f(CW\*(C`abs (INT_MIN)\*(C'\fR overflows to \f(CW\*(C`INT_MIN\*(C'\fR, which is less than
-zero. \fB\-Wstrict\-overflow\fR (with no level) is the same as
-\&\fB\-Wstrict\-overflow=2\fR.
-.IP "\fB\-Wstrict\-overflow=3\fR" 4
-.IX Item "-Wstrict-overflow=3"
-Also warn about other cases where a comparison is simplified. For
-example: \f(CW\*(C`x + 1 > 1\*(C'\fR is simplified to \f(CW\*(C`x > 0\*(C'\fR.
-.IP "\fB\-Wstrict\-overflow=4\fR" 4
-.IX Item "-Wstrict-overflow=4"
-Also warn about other simplifications not covered by the above cases.
-For example: \f(CW\*(C`(x * 10) / 5\*(C'\fR is simplified to \f(CW\*(C`x * 2\*(C'\fR.
-.IP "\fB\-Wstrict\-overflow=5\fR" 4
-.IX Item "-Wstrict-overflow=5"
-Also warn about cases where the compiler reduces the magnitude of a
-constant involved in a comparison. For example: \f(CW\*(C`x + 2 > y\*(C'\fR is
-simplified to \f(CW\*(C`x + 1 >= y\*(C'\fR. This is reported only at the
-highest warning level because this simplification applies to many
-comparisons, so this warning level gives a very large number of
-false positives.
-.RE
-.RS 4
-.RE
-.IP "\fB\-Wsuggest\-attribute=\fR[\fBpure\fR|\fBconst\fR|\fBnoreturn\fR|\fBformat\fR]" 4
-.IX Item "-Wsuggest-attribute=[pure|const|noreturn|format]"
-Warn for cases where adding an attribute may be beneficial. The
-attributes currently supported are listed below.
-.RS 4
-.IP "\fB\-Wsuggest\-attribute=pure\fR" 4
-.IX Item "-Wsuggest-attribute=pure"
-.PD 0
-.IP "\fB\-Wsuggest\-attribute=const\fR" 4
-.IX Item "-Wsuggest-attribute=const"
-.IP "\fB\-Wsuggest\-attribute=noreturn\fR" 4
-.IX Item "-Wsuggest-attribute=noreturn"
-.PD
-Warn about functions that might be candidates for attributes
-\&\f(CW\*(C`pure\*(C'\fR, \f(CW\*(C`const\*(C'\fR or \f(CW\*(C`noreturn\*(C'\fR. The compiler only warns for
-functions visible in other compilation units or (in the case of \f(CW\*(C`pure\*(C'\fR and
-\&\f(CW\*(C`const\*(C'\fR) if it cannot prove that the function returns normally. A function
-returns normally if it doesn't contain an infinite loop or return abnormally
-by throwing, calling \f(CW\*(C`abort()\*(C'\fR or trapping. This analysis requires option
-\&\fB\-fipa\-pure\-const\fR, which is enabled by default at \fB\-O\fR and
-higher. Higher optimization levels improve the accuracy of the analysis.
-.IP "\fB\-Wsuggest\-attribute=format\fR" 4
-.IX Item "-Wsuggest-attribute=format"
-.PD 0
-.IP "\fB\-Wmissing\-format\-attribute\fR" 4
-.IX Item "-Wmissing-format-attribute"
-.PD
-Warn about function pointers that might be candidates for \f(CW\*(C`format\*(C'\fR
-attributes. Note these are only possible candidates, not absolute ones.
-\&\s-1GCC\s0 guesses that function pointers with \f(CW\*(C`format\*(C'\fR attributes that
-are used in assignment, initialization, parameter passing or return
-statements should have a corresponding \f(CW\*(C`format\*(C'\fR attribute in the
-resulting type. I.e. the left-hand side of the assignment or
-initialization, the type of the parameter variable, or the return type
-of the containing function respectively should also have a \f(CW\*(C`format\*(C'\fR
-attribute to avoid the warning.
-.Sp
-\&\s-1GCC\s0 also warns about function definitions that might be
-candidates for \f(CW\*(C`format\*(C'\fR attributes. Again, these are only
-possible candidates. \s-1GCC\s0 guesses that \f(CW\*(C`format\*(C'\fR attributes
-might be appropriate for any function that calls a function like
-\&\f(CW\*(C`vprintf\*(C'\fR or \f(CW\*(C`vscanf\*(C'\fR, but this might not always be the
-case, and some functions for which \f(CW\*(C`format\*(C'\fR attributes are
-appropriate may not be detected.
-.RE
-.RS 4
-.RE
-.IP "\fB\-Warray\-bounds\fR" 4
-.IX Item "-Warray-bounds"
-This option is only active when \fB\-ftree\-vrp\fR is active
-(default for \fB\-O2\fR and above). It warns about subscripts to arrays
-that are always out of bounds. This warning is enabled by \fB\-Wall\fR.
-.IP "\fB\-Wno\-div\-by\-zero\fR" 4
-.IX Item "-Wno-div-by-zero"
-Do not warn about compile-time integer division by zero. Floating-point
-division by zero is not warned about, as it can be a legitimate way of
-obtaining infinities and NaNs.
-.IP "\fB\-Wsystem\-headers\fR" 4
-.IX Item "-Wsystem-headers"
-Print warning messages for constructs found in system header files.
-Warnings from system headers are normally suppressed, on the assumption
-that they usually do not indicate real problems and would only make the
-compiler output harder to read. Using this command-line option tells
-\&\s-1GCC\s0 to emit warnings from system headers as if they occurred in user
-code. However, note that using \fB\-Wall\fR in conjunction with this
-option does \fInot\fR warn about unknown pragmas in system
-headers\-\-\-for that, \fB\-Wunknown\-pragmas\fR must also be used.
-.IP "\fB\-Wtrampolines\fR" 4
-.IX Item "-Wtrampolines"
-.Vb 1
-\& Warn about trampolines generated for pointers to nested functions.
-\&
-\& A trampoline is a small piece of data or code that is created at run
-\& time on the stack when the address of a nested function is taken, and
-\& is used to call the nested function indirectly. For some targets, it
-\& is made up of data only and thus requires no special treatment. But,
-\& for most targets, it is made up of code and thus requires the stack
-\& to be made executable in order for the program to work properly.
-.Ve
-.IP "\fB\-Wfloat\-equal\fR" 4
-.IX Item "-Wfloat-equal"
-Warn if floating-point values are used in equality comparisons.
-.Sp
-The idea behind this is that sometimes it is convenient (for the
-programmer) to consider floating-point values as approximations to
-infinitely precise real numbers. If you are doing this, then you need
-to compute (by analyzing the code, or in some other way) the maximum or
-likely maximum error that the computation introduces, and allow for it
-when performing comparisons (and when producing output, but that's a
-different problem). In particular, instead of testing for equality, you
-should check to see whether the two values have ranges that overlap; and
-this is done with the relational operators, so equality comparisons are
-probably mistaken.
-.IP "\fB\-Wtraditional\fR (C and Objective-C only)" 4
-.IX Item "-Wtraditional (C and Objective-C only)"
-Warn about certain constructs that behave differently in traditional and
-\&\s-1ISO C. \s0 Also warn about \s-1ISO C\s0 constructs that have no traditional C
-equivalent, and/or problematic constructs that should be avoided.
-.RS 4
-.IP "\(bu" 4
-Macro parameters that appear within string literals in the macro body.
-In traditional C macro replacement takes place within string literals,
-but in \s-1ISO C\s0 it does not.
-.IP "\(bu" 4
-In traditional C, some preprocessor directives did not exist.
-Traditional preprocessors only considered a line to be a directive
-if the \fB#\fR appeared in column 1 on the line. Therefore
-\&\fB\-Wtraditional\fR warns about directives that traditional C
-understands but ignores because the \fB#\fR does not appear as the
-first character on the line. It also suggests you hide directives like
-\&\fB#pragma\fR not understood by traditional C by indenting them. Some
-traditional implementations do not recognize \fB#elif\fR, so this option
-suggests avoiding it altogether.
-.IP "\(bu" 4
-A function-like macro that appears without arguments.
-.IP "\(bu" 4
-The unary plus operator.
-.IP "\(bu" 4
-The \fBU\fR integer constant suffix, or the \fBF\fR or \fBL\fR floating-point
-constant suffixes. (Traditional C does support the \fBL\fR suffix on integer
-constants.) Note, these suffixes appear in macros defined in the system
-headers of most modern systems, e.g. the \fB_MIN\fR/\fB_MAX\fR macros in \f(CW\*(C`<limits.h>\*(C'\fR.
-Use of these macros in user code might normally lead to spurious
-warnings, however \s-1GCC\s0's integrated preprocessor has enough context to
-avoid warning in these cases.
-.IP "\(bu" 4
-A function declared external in one block and then used after the end of
-the block.
-.IP "\(bu" 4
-A \f(CW\*(C`switch\*(C'\fR statement has an operand of type \f(CW\*(C`long\*(C'\fR.
-.IP "\(bu" 4
-A non\-\f(CW\*(C`static\*(C'\fR function declaration follows a \f(CW\*(C`static\*(C'\fR one.
-This construct is not accepted by some traditional C compilers.
-.IP "\(bu" 4
-The \s-1ISO\s0 type of an integer constant has a different width or
-signedness from its traditional type. This warning is only issued if
-the base of the constant is ten. I.e. hexadecimal or octal values, which
-typically represent bit patterns, are not warned about.
-.IP "\(bu" 4
-Usage of \s-1ISO\s0 string concatenation is detected.
-.IP "\(bu" 4
-Initialization of automatic aggregates.
-.IP "\(bu" 4
-Identifier conflicts with labels. Traditional C lacks a separate
-namespace for labels.
-.IP "\(bu" 4
-Initialization of unions. If the initializer is zero, the warning is
-omitted. This is done under the assumption that the zero initializer in
-user code appears conditioned on e.g. \f(CW\*(C`_\|_STDC_\|_\*(C'\fR to avoid missing
-initializer warnings and relies on default initialization to zero in the
-traditional C case.
-.IP "\(bu" 4
-Conversions by prototypes between fixed/floating\-point values and vice
-versa. The absence of these prototypes when compiling with traditional
-C causes serious problems. This is a subset of the possible
-conversion warnings; for the full set use \fB\-Wtraditional\-conversion\fR.
-.IP "\(bu" 4
-Use of \s-1ISO C\s0 style function definitions. This warning intentionally is
-\&\fInot\fR issued for prototype declarations or variadic functions
-because these \s-1ISO C\s0 features appear in your code when using
-libiberty's traditional C compatibility macros, \f(CW\*(C`PARAMS\*(C'\fR and
-\&\f(CW\*(C`VPARAMS\*(C'\fR. This warning is also bypassed for nested functions
-because that feature is already a \s-1GCC\s0 extension and thus not relevant to
-traditional C compatibility.
-.RE
-.RS 4
-.RE
-.IP "\fB\-Wtraditional\-conversion\fR (C and Objective-C only)" 4
-.IX Item "-Wtraditional-conversion (C and Objective-C only)"
-Warn if a prototype causes a type conversion that is different from what
-would happen to the same argument in the absence of a prototype. This
-includes conversions of fixed point to floating and vice versa, and
-conversions changing the width or signedness of a fixed-point argument
-except when the same as the default promotion.
-.IP "\fB\-Wdeclaration\-after\-statement\fR (C and Objective-C only)" 4
-.IX Item "-Wdeclaration-after-statement (C and Objective-C only)"
-Warn when a declaration is found after a statement in a block. This
-construct, known from \*(C+, was introduced with \s-1ISO C99\s0 and is by default
-allowed in \s-1GCC. \s0 It is not supported by \s-1ISO C90\s0 and was not supported by
-\&\s-1GCC\s0 versions before \s-1GCC 3.0. \s0
-.IP "\fB\-Wundef\fR" 4
-.IX Item "-Wundef"
-Warn if an undefined identifier is evaluated in an \fB#if\fR directive.
-.IP "\fB\-Wno\-endif\-labels\fR" 4
-.IX Item "-Wno-endif-labels"
-Do not warn whenever an \fB#else\fR or an \fB#endif\fR are followed by text.
-.IP "\fB\-Wshadow\fR" 4
-.IX Item "-Wshadow"
-Warn whenever a local variable or type declaration shadows another variable,
-parameter, type, or class member (in \*(C+), or whenever a built-in function
-is shadowed. Note that in \*(C+, the compiler warns if a local variable
-shadows an explicit typedef, but not if it shadows a struct/class/enum.
-.IP "\fB\-Wlarger\-than=\fR\fIlen\fR" 4
-.IX Item "-Wlarger-than=len"
-Warn whenever an object of larger than \fIlen\fR bytes is defined.
-.IP "\fB\-Wframe\-larger\-than=\fR\fIlen\fR" 4
-.IX Item "-Wframe-larger-than=len"
-Warn if the size of a function frame is larger than \fIlen\fR bytes.
-The computation done to determine the stack frame size is approximate
-and not conservative.
-The actual requirements may be somewhat greater than \fIlen\fR
-even if you do not get a warning. In addition, any space allocated
-via \f(CW\*(C`alloca\*(C'\fR, variable-length arrays, or related constructs
-is not included by the compiler when determining
-whether or not to issue a warning.
-.IP "\fB\-Wno\-free\-nonheap\-object\fR" 4
-.IX Item "-Wno-free-nonheap-object"
-Do not warn when attempting to free an object that was not allocated
-on the heap.
-.IP "\fB\-Wstack\-usage=\fR\fIlen\fR" 4
-.IX Item "-Wstack-usage=len"
-Warn if the stack usage of a function might be larger than \fIlen\fR bytes.
-The computation done to determine the stack usage is conservative.
-Any space allocated via \f(CW\*(C`alloca\*(C'\fR, variable-length arrays, or related
-constructs is included by the compiler when determining whether or not to
-issue a warning.
-.Sp
-The message is in keeping with the output of \fB\-fstack\-usage\fR.
-.RS 4
-.IP "\(bu" 4
-If the stack usage is fully static but exceeds the specified amount, it's:
-.Sp
-.Vb 1
-\& warning: stack usage is 1120 bytes
-.Ve
-.IP "\(bu" 4
-If the stack usage is (partly) dynamic but bounded, it's:
-.Sp
-.Vb 1
-\& warning: stack usage might be 1648 bytes
-.Ve
-.IP "\(bu" 4
-If the stack usage is (partly) dynamic and not bounded, it's:
-.Sp
-.Vb 1
-\& warning: stack usage might be unbounded
-.Ve
-.RE
-.RS 4
-.RE
-.IP "\fB\-Wunsafe\-loop\-optimizations\fR" 4
-.IX Item "-Wunsafe-loop-optimizations"
-Warn if the loop cannot be optimized because the compiler cannot
-assume anything on the bounds of the loop indices. With
-\&\fB\-funsafe\-loop\-optimizations\fR warn if the compiler makes
-such assumptions.
-.IP "\fB\-Wno\-pedantic\-ms\-format\fR (MinGW targets only)" 4
-.IX Item "-Wno-pedantic-ms-format (MinGW targets only)"
-When used in combination with \fB\-Wformat\fR
-and \fB\-pedantic\fR without \s-1GNU\s0 extensions, this option
-disables the warnings about non-ISO \f(CW\*(C`printf\*(C'\fR / \f(CW\*(C`scanf\*(C'\fR format
-width specifiers \f(CW\*(C`I32\*(C'\fR, \f(CW\*(C`I64\*(C'\fR, and \f(CW\*(C`I\*(C'\fR used on Windows targets,
-which depend on the \s-1MS\s0 runtime.
-.IP "\fB\-Wpointer\-arith\fR" 4
-.IX Item "-Wpointer-arith"
-Warn about anything that depends on the \*(L"size of\*(R" a function type or
-of \f(CW\*(C`void\*(C'\fR. \s-1GNU C\s0 assigns these types a size of 1, for
-convenience in calculations with \f(CW\*(C`void *\*(C'\fR pointers and pointers
-to functions. In \*(C+, warn also when an arithmetic operation involves
-\&\f(CW\*(C`NULL\*(C'\fR. This warning is also enabled by \fB\-Wpedantic\fR.
-.IP "\fB\-Wtype\-limits\fR" 4
-.IX Item "-Wtype-limits"
-Warn if a comparison is always true or always false due to the limited
-range of the data type, but do not warn for constant expressions. For
-example, warn if an unsigned variable is compared against zero with
-\&\fB<\fR or \fB>=\fR. This warning is also enabled by
-\&\fB\-Wextra\fR.
-.IP "\fB\-Wbad\-function\-cast\fR (C and Objective-C only)" 4
-.IX Item "-Wbad-function-cast (C and Objective-C only)"
-Warn whenever a function call is cast to a non-matching type.
-For example, warn if \f(CW\*(C`int malloc()\*(C'\fR is cast to \f(CW\*(C`anything *\*(C'\fR.
-.IP "\fB\-Wc++\-compat\fR (C and Objective-C only)" 4
-.IX Item "-Wc++-compat (C and Objective-C only)"
-Warn about \s-1ISO C\s0 constructs that are outside of the common subset of
-\&\s-1ISO C\s0 and \s-1ISO \*(C+,\s0 e.g. request for implicit conversion from
-\&\f(CW\*(C`void *\*(C'\fR to a pointer to non\-\f(CW\*(C`void\*(C'\fR type.
-.IP "\fB\-Wc++11\-compat\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wc++11-compat ( and Objective- only)"
-Warn about \*(C+ constructs whose meaning differs between \s-1ISO \*(C+ 1998\s0
-and \s-1ISO \*(C+ 2011,\s0 e.g., identifiers in \s-1ISO \*(C+ 1998\s0 that are keywords
-in \s-1ISO \*(C+ 2011. \s0 This warning turns on \fB\-Wnarrowing\fR and is
-enabled by \fB\-Wall\fR.
-.IP "\fB\-Wcast\-qual\fR" 4
-.IX Item "-Wcast-qual"
-Warn whenever a pointer is cast so as to remove a type qualifier from
-the target type. For example, warn if a \f(CW\*(C`const char *\*(C'\fR is cast
-to an ordinary \f(CW\*(C`char *\*(C'\fR.
-.Sp
-Also warn when making a cast that introduces a type qualifier in an
-unsafe way. For example, casting \f(CW\*(C`char **\*(C'\fR to \f(CW\*(C`const char **\*(C'\fR
-is unsafe, as in this example:
-.Sp
-.Vb 6
-\& /* p is char ** value. */
-\& const char **q = (const char **) p;
-\& /* Assignment of readonly string to const char * is OK. */
-\& *q = "string";
-\& /* Now char** pointer points to read\-only memory. */
-\& **p = \*(Aqb\*(Aq;
-.Ve
-.IP "\fB\-Wcast\-align\fR" 4
-.IX Item "-Wcast-align"
-Warn whenever a pointer is cast such that the required alignment of the
-target is increased. For example, warn if a \f(CW\*(C`char *\*(C'\fR is cast to
-an \f(CW\*(C`int *\*(C'\fR on machines where integers can only be accessed at
-two\- or four-byte boundaries.
-.IP "\fB\-Wwrite\-strings\fR" 4
-.IX Item "-Wwrite-strings"
-When compiling C, give string constants the type \f(CW\*(C`const
-char[\f(CIlength\f(CW]\*(C'\fR so that copying the address of one into a
-non\-\f(CW\*(C`const\*(C'\fR \f(CW\*(C`char *\*(C'\fR pointer produces a warning. These
-warnings help you find at compile time code that can try to write
-into a string constant, but only if you have been very careful about
-using \f(CW\*(C`const\*(C'\fR in declarations and prototypes. Otherwise, it is
-just a nuisance. This is why we did not make \fB\-Wall\fR request
-these warnings.
-.Sp
-When compiling \*(C+, warn about the deprecated conversion from string
-literals to \f(CW\*(C`char *\*(C'\fR. This warning is enabled by default for \*(C+
-programs.
-.IP "\fB\-Wclobbered\fR" 4
-.IX Item "-Wclobbered"
-Warn for variables that might be changed by \fBlongjmp\fR or
-\&\fBvfork\fR. This warning is also enabled by \fB\-Wextra\fR.
-.IP "\fB\-Wconditionally\-supported\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wconditionally-supported ( and Objective- only)"
-Warn for conditionally-supported (\*(C+11 [intro.defs]) constructs.
-.IP "\fB\-Wconversion\fR" 4
-.IX Item "-Wconversion"
-Warn for implicit conversions that may alter a value. This includes
-conversions between real and integer, like \f(CW\*(C`abs (x)\*(C'\fR when
-\&\f(CW\*(C`x\*(C'\fR is \f(CW\*(C`double\*(C'\fR; conversions between signed and unsigned,
-like \f(CW\*(C`unsigned ui = \-1\*(C'\fR; and conversions to smaller types, like
-\&\f(CW\*(C`sqrtf (M_PI)\*(C'\fR. Do not warn for explicit casts like \f(CW\*(C`abs
-((int) x)\*(C'\fR and \f(CW\*(C`ui = (unsigned) \-1\*(C'\fR, or if the value is not
-changed by the conversion like in \f(CW\*(C`abs (2.0)\*(C'\fR. Warnings about
-conversions between signed and unsigned integers can be disabled by
-using \fB\-Wno\-sign\-conversion\fR.
-.Sp
-For \*(C+, also warn for confusing overload resolution for user-defined
-conversions; and conversions that never use a type conversion
-operator: conversions to \f(CW\*(C`void\*(C'\fR, the same type, a base class or a
-reference to them. Warnings about conversions between signed and
-unsigned integers are disabled by default in \*(C+ unless
-\&\fB\-Wsign\-conversion\fR is explicitly enabled.
-.IP "\fB\-Wno\-conversion\-null\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wno-conversion-null ( and Objective- only)"
-Do not warn for conversions between \f(CW\*(C`NULL\*(C'\fR and non-pointer
-types. \fB\-Wconversion\-null\fR is enabled by default.
-.IP "\fB\-Wzero\-as\-null\-pointer\-constant\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wzero-as-null-pointer-constant ( and Objective- only)"
-Warn when a literal '0' is used as null pointer constant. This can
-be useful to facilitate the conversion to \f(CW\*(C`nullptr\*(C'\fR in \*(C+11.
-.IP "\fB\-Wdate\-time\fR" 4
-.IX Item "-Wdate-time"
-Warn when macros \f(CW\*(C`_\|_TIME_\|_\*(C'\fR, \f(CW\*(C`_\|_DATE_\|_\*(C'\fR or \f(CW\*(C`_\|_TIMESTAMP_\|_\*(C'\fR
-are encountered as they might prevent bit-wise-identical reproducible
-compilations.
-.IP "\fB\-Wdelete\-incomplete\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wdelete-incomplete ( and Objective- only)"
-Warn when deleting a pointer to incomplete type, which may cause
-undefined behavior at runtime. This warning is enabled by default.
-.IP "\fB\-Wuseless\-cast\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wuseless-cast ( and Objective- only)"
-Warn when an expression is casted to its own type.
-.IP "\fB\-Wempty\-body\fR" 4
-.IX Item "-Wempty-body"
-Warn if an empty body occurs in an \fBif\fR, \fBelse\fR or \fBdo
-while\fR statement. This warning is also enabled by \fB\-Wextra\fR.
-.IP "\fB\-Wenum\-compare\fR" 4
-.IX Item "-Wenum-compare"
-Warn about a comparison between values of different enumerated types.
-In \*(C+ enumeral mismatches in conditional expressions are also
-diagnosed and the warning is enabled by default. In C this warning is
-enabled by \fB\-Wall\fR.
-.IP "\fB\-Wjump\-misses\-init\fR (C, Objective-C only)" 4
-.IX Item "-Wjump-misses-init (C, Objective-C only)"
-Warn if a \f(CW\*(C`goto\*(C'\fR statement or a \f(CW\*(C`switch\*(C'\fR statement jumps
-forward across the initialization of a variable, or jumps backward to a
-label after the variable has been initialized. This only warns about
-variables that are initialized when they are declared. This warning is
-only supported for C and Objective-C; in \*(C+ this sort of branch is an
-error in any case.
-.Sp
-\&\fB\-Wjump\-misses\-init\fR is included in \fB\-Wc++\-compat\fR. It
-can be disabled with the \fB\-Wno\-jump\-misses\-init\fR option.
-.IP "\fB\-Wsign\-compare\fR" 4
-.IX Item "-Wsign-compare"
-Warn when a comparison between signed and unsigned values could produce
-an incorrect result when the signed value is converted to unsigned.
-This warning is also enabled by \fB\-Wextra\fR; to get the other warnings
-of \fB\-Wextra\fR without this warning, use \fB\-Wextra \-Wno\-sign\-compare\fR.
-.IP "\fB\-Wsign\-conversion\fR" 4
-.IX Item "-Wsign-conversion"
-Warn for implicit conversions that may change the sign of an integer
-value, like assigning a signed integer expression to an unsigned
-integer variable. An explicit cast silences the warning. In C, this
-option is enabled also by \fB\-Wconversion\fR.
-.IP "\fB\-Wfloat\-conversion\fR" 4
-.IX Item "-Wfloat-conversion"
-Warn for implicit conversions that reduce the precision of a real value.
-This includes conversions from real to integer, and from higher precision
-real to lower precision real values. This option is also enabled by
-\&\fB\-Wconversion\fR.
-.IP "\fB\-Wsizeof\-pointer\-memaccess\fR" 4
-.IX Item "-Wsizeof-pointer-memaccess"
-Warn for suspicious length parameters to certain string and memory built-in
-functions if the argument uses \f(CW\*(C`sizeof\*(C'\fR. This warning warns e.g.
-about \f(CW\*(C`memset (ptr, 0, sizeof (ptr));\*(C'\fR if \f(CW\*(C`ptr\*(C'\fR is not an array,
-but a pointer, and suggests a possible fix, or about
-\&\f(CW\*(C`memcpy (&foo, ptr, sizeof (&foo));\*(C'\fR. This warning is enabled by
-\&\fB\-Wall\fR.
-.IP "\fB\-Waddress\fR" 4
-.IX Item "-Waddress"
-Warn about suspicious uses of memory addresses. These include using
-the address of a function in a conditional expression, such as
-\&\f(CW\*(C`void func(void); if (func)\*(C'\fR, and comparisons against the memory
-address of a string literal, such as \f(CW\*(C`if (x == "abc")\*(C'\fR. Such
-uses typically indicate a programmer error: the address of a function
-always evaluates to true, so their use in a conditional usually
-indicate that the programmer forgot the parentheses in a function
-call; and comparisons against string literals result in unspecified
-behavior and are not portable in C, so they usually indicate that the
-programmer intended to use \f(CW\*(C`strcmp\*(C'\fR. This warning is enabled by
-\&\fB\-Wall\fR.
-.IP "\fB\-Wlogical\-op\fR" 4
-.IX Item "-Wlogical-op"
-Warn about suspicious uses of logical operators in expressions.
-This includes using logical operators in contexts where a
-bit-wise operator is likely to be expected.
-.IP "\fB\-Waggregate\-return\fR" 4
-.IX Item "-Waggregate-return"
-Warn if any functions that return structures or unions are defined or
-called. (In languages where you can return an array, this also elicits
-a warning.)
-.IP "\fB\-Wno\-aggressive\-loop\-optimizations\fR" 4
-.IX Item "-Wno-aggressive-loop-optimizations"
-Warn if in a loop with constant number of iterations the compiler detects
-undefined behavior in some statement during one or more of the iterations.
-.IP "\fB\-Wno\-attributes\fR" 4
-.IX Item "-Wno-attributes"
-Do not warn if an unexpected \f(CW\*(C`_\|_attribute_\|_\*(C'\fR is used, such as
-unrecognized attributes, function attributes applied to variables,
-etc. This does not stop errors for incorrect use of supported
-attributes.
-.IP "\fB\-Wno\-builtin\-macro\-redefined\fR" 4
-.IX Item "-Wno-builtin-macro-redefined"
-Do not warn if certain built-in macros are redefined. This suppresses
-warnings for redefinition of \f(CW\*(C`_\|_TIMESTAMP_\|_\*(C'\fR, \f(CW\*(C`_\|_TIME_\|_\*(C'\fR,
-\&\f(CW\*(C`_\|_DATE_\|_\*(C'\fR, \f(CW\*(C`_\|_FILE_\|_\*(C'\fR, and \f(CW\*(C`_\|_BASE_FILE_\|_\*(C'\fR.
-.IP "\fB\-Wstrict\-prototypes\fR (C and Objective-C only)" 4
-.IX Item "-Wstrict-prototypes (C and Objective-C only)"
-Warn if a function is declared or defined without specifying the
-argument types. (An old-style function definition is permitted without
-a warning if preceded by a declaration that specifies the argument
-types.)
-.IP "\fB\-Wold\-style\-declaration\fR (C and Objective-C only)" 4
-.IX Item "-Wold-style-declaration (C and Objective-C only)"
-Warn for obsolescent usages, according to the C Standard, in a
-declaration. For example, warn if storage-class specifiers like
-\&\f(CW\*(C`static\*(C'\fR are not the first things in a declaration. This warning
-is also enabled by \fB\-Wextra\fR.
-.IP "\fB\-Wold\-style\-definition\fR (C and Objective-C only)" 4
-.IX Item "-Wold-style-definition (C and Objective-C only)"
-Warn if an old-style function definition is used. A warning is given
-even if there is a previous prototype.
-.IP "\fB\-Wmissing\-parameter\-type\fR (C and Objective-C only)" 4
-.IX Item "-Wmissing-parameter-type (C and Objective-C only)"
-A function parameter is declared without a type specifier in K&R\-style
-functions:
-.Sp
-.Vb 1
-\& void foo(bar) { }
-.Ve
-.Sp
-This warning is also enabled by \fB\-Wextra\fR.
-.IP "\fB\-Wmissing\-prototypes\fR (C and Objective-C only)" 4
-.IX Item "-Wmissing-prototypes (C and Objective-C only)"
-Warn if a global function is defined without a previous prototype
-declaration. This warning is issued even if the definition itself
-provides a prototype. Use this option to detect global functions
-that do not have a matching prototype declaration in a header file.
-This option is not valid for \*(C+ because all function declarations
-provide prototypes and a non-matching declaration will declare an
-overload rather than conflict with an earlier declaration.
-Use \fB\-Wmissing\-declarations\fR to detect missing declarations in \*(C+.
-.IP "\fB\-Wmissing\-declarations\fR" 4
-.IX Item "-Wmissing-declarations"
-Warn if a global function is defined without a previous declaration.
-Do so even if the definition itself provides a prototype.
-Use this option to detect global functions that are not declared in
-header files. In C, no warnings are issued for functions with previous
-non-prototype declarations; use \fB\-Wmissing\-prototype\fR to detect
-missing prototypes. In \*(C+, no warnings are issued for function templates,
-or for inline functions, or for functions in anonymous namespaces.
-.IP "\fB\-Wmissing\-field\-initializers\fR" 4
-.IX Item "-Wmissing-field-initializers"
-Warn if a structure's initializer has some fields missing. For
-example, the following code causes such a warning, because
-\&\f(CW\*(C`x.h\*(C'\fR is implicitly zero:
-.Sp
-.Vb 2
-\& struct s { int f, g, h; };
-\& struct s x = { 3, 4 };
-.Ve
-.Sp
-This option does not warn about designated initializers, so the following
-modification does not trigger a warning:
-.Sp
-.Vb 2
-\& struct s { int f, g, h; };
-\& struct s x = { .f = 3, .g = 4 };
-.Ve
-.Sp
-This warning is included in \fB\-Wextra\fR. To get other \fB\-Wextra\fR
-warnings without this one, use \fB\-Wextra \-Wno\-missing\-field\-initializers\fR.
-.IP "\fB\-Wno\-multichar\fR" 4
-.IX Item "-Wno-multichar"
-Do not warn if a multicharacter constant (\fB'\s-1FOOF\s0'\fR) is used.
-Usually they indicate a typo in the user's code, as they have
-implementation-defined values, and should not be used in portable code.
-.IP "\fB\-Wnormalized=<none|id|nfc|nfkc>\fR" 4
-.IX Item "-Wnormalized=<none|id|nfc|nfkc>"
-In \s-1ISO C\s0 and \s-1ISO \*(C+,\s0 two identifiers are different if they are
-different sequences of characters. However, sometimes when characters
-outside the basic \s-1ASCII\s0 character set are used, you can have two
-different character sequences that look the same. To avoid confusion,
-the \s-1ISO 10646\s0 standard sets out some \fInormalization rules\fR which
-when applied ensure that two sequences that look the same are turned into
-the same sequence. \s-1GCC\s0 can warn you if you are using identifiers that
-have not been normalized; this option controls that warning.
-.Sp
-There are four levels of warning supported by \s-1GCC. \s0 The default is
-\&\fB\-Wnormalized=nfc\fR, which warns about any identifier that is
-not in the \s-1ISO 10646 \*(L"C\*(R"\s0 normalized form, \fI\s-1NFC\s0\fR. \s-1NFC\s0 is the
-recommended form for most uses.
-.Sp
-Unfortunately, there are some characters allowed in identifiers by
-\&\s-1ISO C\s0 and \s-1ISO \*(C+\s0 that, when turned into \s-1NFC,\s0 are not allowed in
-identifiers. That is, there's no way to use these symbols in portable
-\&\s-1ISO C\s0 or \*(C+ and have all your identifiers in \s-1NFC.
-\&\s0\fB\-Wnormalized=id\fR suppresses the warning for these characters.
-It is hoped that future versions of the standards involved will correct
-this, which is why this option is not the default.
-.Sp
-You can switch the warning off for all characters by writing
-\&\fB\-Wnormalized=none\fR. You should only do this if you
-are using some other normalization scheme (like \*(L"D\*(R"), because
-otherwise you can easily create bugs that are literally impossible to see.
-.Sp
-Some characters in \s-1ISO 10646\s0 have distinct meanings but look identical
-in some fonts or display methodologies, especially once formatting has
-been applied. For instance \f(CW\*(C`\eu207F\*(C'\fR, \*(L"\s-1SUPERSCRIPT LATIN SMALL
-LETTER N\*(R",\s0 displays just like a regular \f(CW\*(C`n\*(C'\fR that has been
-placed in a superscript. \s-1ISO 10646\s0 defines the \fI\s-1NFKC\s0\fR
-normalization scheme to convert all these into a standard form as
-well, and \s-1GCC\s0 warns if your code is not in \s-1NFKC\s0 if you use
-\&\fB\-Wnormalized=nfkc\fR. This warning is comparable to warning
-about every identifier that contains the letter O because it might be
-confused with the digit 0, and so is not the default, but may be
-useful as a local coding convention if the programming environment
-cannot be fixed to display these characters distinctly.
-.IP "\fB\-Wno\-deprecated\fR" 4
-.IX Item "-Wno-deprecated"
-Do not warn about usage of deprecated features.
-.IP "\fB\-Wno\-deprecated\-declarations\fR" 4
-.IX Item "-Wno-deprecated-declarations"
-Do not warn about uses of functions,
-variables, and types marked as deprecated by using the \f(CW\*(C`deprecated\*(C'\fR
-attribute.
-.IP "\fB\-Wno\-overflow\fR" 4
-.IX Item "-Wno-overflow"
-Do not warn about compile-time overflow in constant expressions.
-.IP "\fB\-Wopenmp\-simd\fR" 4
-.IX Item "-Wopenmp-simd"
-Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus
-simd directive set by user. The \fB\-fsimd\-cost\-model=unlimited\fR can
-be used to relax the cost model.
-.IP "\fB\-Woverride\-init\fR (C and Objective-C only)" 4
-.IX Item "-Woverride-init (C and Objective-C only)"
-Warn if an initialized field without side effects is overridden when
-using designated initializers.
-.Sp
-This warning is included in \fB\-Wextra\fR. To get other
-\&\fB\-Wextra\fR warnings without this one, use \fB\-Wextra
-\&\-Wno\-override\-init\fR.
-.IP "\fB\-Wpacked\fR" 4
-.IX Item "-Wpacked"
-Warn if a structure is given the packed attribute, but the packed
-attribute has no effect on the layout or size of the structure.
-Such structures may be mis-aligned for little benefit. For
-instance, in this code, the variable \f(CW\*(C`f.x\*(C'\fR in \f(CW\*(C`struct bar\*(C'\fR
-is misaligned even though \f(CW\*(C`struct bar\*(C'\fR does not itself
-have the packed attribute:
-.Sp
-.Vb 8
-\& struct foo {
-\& int x;
-\& char a, b, c, d;
-\& } _\|_attribute_\|_((packed));
-\& struct bar {
-\& char z;
-\& struct foo f;
-\& };
-.Ve
-.IP "\fB\-Wpacked\-bitfield\-compat\fR" 4
-.IX Item "-Wpacked-bitfield-compat"
-The 4.1, 4.2 and 4.3 series of \s-1GCC\s0 ignore the \f(CW\*(C`packed\*(C'\fR attribute
-on bit-fields of type \f(CW\*(C`char\*(C'\fR. This has been fixed in \s-1GCC 4.4\s0 but
-the change can lead to differences in the structure layout. \s-1GCC\s0
-informs you when the offset of such a field has changed in \s-1GCC 4.4.\s0
-For example there is no longer a 4\-bit padding between field \f(CW\*(C`a\*(C'\fR
-and \f(CW\*(C`b\*(C'\fR in this structure:
-.Sp
-.Vb 5
-\& struct foo
-\& {
-\& char a:4;
-\& char b:8;
-\& } _\|_attribute_\|_ ((packed));
-.Ve
-.Sp
-This warning is enabled by default. Use
-\&\fB\-Wno\-packed\-bitfield\-compat\fR to disable this warning.
-.IP "\fB\-Wpadded\fR" 4
-.IX Item "-Wpadded"
-Warn if padding is included in a structure, either to align an element
-of the structure or to align the whole structure. Sometimes when this
-happens it is possible to rearrange the fields of the structure to
-reduce the padding and so make the structure smaller.
-.IP "\fB\-Wredundant\-decls\fR" 4
-.IX Item "-Wredundant-decls"
-Warn if anything is declared more than once in the same scope, even in
-cases where multiple declaration is valid and changes nothing.
-.IP "\fB\-Wnested\-externs\fR (C and Objective-C only)" 4
-.IX Item "-Wnested-externs (C and Objective-C only)"
-Warn if an \f(CW\*(C`extern\*(C'\fR declaration is encountered within a function.
-.IP "\fB\-Wno\-inherited\-variadic\-ctor\fR" 4
-.IX Item "-Wno-inherited-variadic-ctor"
-Suppress warnings about use of \*(C+11 inheriting constructors when the
-base class inherited from has a C variadic constructor; the warning is
-on by default because the ellipsis is not inherited.
-.IP "\fB\-Winline\fR" 4
-.IX Item "-Winline"
-Warn if a function that is declared as inline cannot be inlined.
-Even with this option, the compiler does not warn about failures to
-inline functions declared in system headers.
-.Sp
-The compiler uses a variety of heuristics to determine whether or not
-to inline a function. For example, the compiler takes into account
-the size of the function being inlined and the amount of inlining
-that has already been done in the current function. Therefore,
-seemingly insignificant changes in the source program can cause the
-warnings produced by \fB\-Winline\fR to appear or disappear.
-.IP "\fB\-Wno\-invalid\-offsetof\fR (\*(C+ and Objective\-\*(C+ only)" 4
-.IX Item "-Wno-invalid-offsetof ( and Objective- only)"
-Suppress warnings from applying the \fBoffsetof\fR macro to a non-POD
-type. According to the 1998 \s-1ISO \*(C+\s0 standard, applying \fBoffsetof\fR
-to a non-POD type is undefined. In existing \*(C+ implementations,
-however, \fBoffsetof\fR typically gives meaningful results even when
-applied to certain kinds of non-POD types (such as a simple
-\&\fBstruct\fR that fails to be a \s-1POD\s0 type only by virtue of having a
-constructor). This flag is for users who are aware that they are
-writing nonportable code and who have deliberately chosen to ignore the
-warning about it.
-.Sp
-The restrictions on \fBoffsetof\fR may be relaxed in a future version
-of the \*(C+ standard.
-.IP "\fB\-Wno\-int\-to\-pointer\-cast\fR" 4
-.IX Item "-Wno-int-to-pointer-cast"
-Suppress warnings from casts to pointer type of an integer of a
-different size. In \*(C+, casting to a pointer type of smaller size is
-an error. \fBWint-to-pointer-cast\fR is enabled by default.
-.IP "\fB\-Wno\-pointer\-to\-int\-cast\fR (C and Objective-C only)" 4
-.IX Item "-Wno-pointer-to-int-cast (C and Objective-C only)"
-Suppress warnings from casts from a pointer to an integer type of a
-different size.
-.IP "\fB\-Winvalid\-pch\fR" 4
-.IX Item "-Winvalid-pch"
-Warn if a precompiled header is found in
-the search path but can't be used.
-.IP "\fB\-Wlong\-long\fR" 4
-.IX Item "-Wlong-long"
-Warn if \fBlong long\fR type is used. This is enabled by either
-\&\fB\-Wpedantic\fR or \fB\-Wtraditional\fR in \s-1ISO C90\s0 and \*(C+98
-modes. To inhibit the warning messages, use \fB\-Wno\-long\-long\fR.
-.IP "\fB\-Wvariadic\-macros\fR" 4
-.IX Item "-Wvariadic-macros"
-Warn if variadic macros are used in pedantic \s-1ISO C90\s0 mode, or the \s-1GNU\s0
-alternate syntax when in pedantic \s-1ISO C99\s0 mode. This is default.
-To inhibit the warning messages, use \fB\-Wno\-variadic\-macros\fR.
-.IP "\fB\-Wvarargs\fR" 4
-.IX Item "-Wvarargs"
-Warn upon questionable usage of the macros used to handle variable
-arguments like \fBva_start\fR. This is default. To inhibit the
-warning messages, use \fB\-Wno\-varargs\fR.
-.IP "\fB\-Wvector\-operation\-performance\fR" 4
-.IX Item "-Wvector-operation-performance"
-Warn if vector operation is not implemented via \s-1SIMD\s0 capabilities of the
-architecture. Mainly useful for the performance tuning.
-Vector operation can be implemented \f(CW\*(C`piecewise\*(C'\fR, which means that the
-scalar operation is performed on every vector element;
-\&\f(CW\*(C`in parallel\*(C'\fR, which means that the vector operation is implemented
-using scalars of wider type, which normally is more performance efficient;
-and \f(CW\*(C`as a single scalar\*(C'\fR, which means that vector fits into a
-scalar type.
-.IP "\fB\-Wno\-virtual\-move\-assign\fR" 4
-.IX Item "-Wno-virtual-move-assign"
-Suppress warnings about inheriting from a virtual base with a
-non-trivial \*(C+11 move assignment operator. This is dangerous because
-if the virtual base is reachable along more than one path, it will be
-moved multiple times, which can mean both objects end up in the
-moved-from state. If the move assignment operator is written to avoid
-moving from a moved-from object, this warning can be disabled.
-.IP "\fB\-Wvla\fR" 4
-.IX Item "-Wvla"
-Warn if variable length array is used in the code.
-\&\fB\-Wno\-vla\fR prevents the \fB\-Wpedantic\fR warning of
-the variable length array.
-.IP "\fB\-Wvolatile\-register\-var\fR" 4
-.IX Item "-Wvolatile-register-var"
-Warn if a register variable is declared volatile. The volatile
-modifier does not inhibit all optimizations that may eliminate reads
-and/or writes to register variables. This warning is enabled by
-\&\fB\-Wall\fR.
-.IP "\fB\-Wdisabled\-optimization\fR" 4
-.IX Item "-Wdisabled-optimization"
-Warn if a requested optimization pass is disabled. This warning does
-not generally indicate that there is anything wrong with your code; it
-merely indicates that \s-1GCC\s0's optimizers are unable to handle the code
-effectively. Often, the problem is that your code is too big or too
-complex; \s-1GCC\s0 refuses to optimize programs when the optimization
-itself is likely to take inordinate amounts of time.
-.IP "\fB\-Wpointer\-sign\fR (C and Objective-C only)" 4
-.IX Item "-Wpointer-sign (C and Objective-C only)"
-Warn for pointer argument passing or assignment with different signedness.
-This option is only supported for C and Objective-C. It is implied by
-\&\fB\-Wall\fR and by \fB\-Wpedantic\fR, which can be disabled with
-\&\fB\-Wno\-pointer\-sign\fR.
-.IP "\fB\-Wstack\-protector\fR" 4
-.IX Item "-Wstack-protector"
-This option is only active when \fB\-fstack\-protector\fR is active. It
-warns about functions that are not protected against stack smashing.
-.IP "\fB\-Woverlength\-strings\fR" 4
-.IX Item "-Woverlength-strings"
-Warn about string constants that are longer than the \*(L"minimum
-maximum\*(R" length specified in the C standard. Modern compilers
-generally allow string constants that are much longer than the
-standard's minimum limit, but very portable programs should avoid
-using longer strings.
-.Sp
-The limit applies \fIafter\fR string constant concatenation, and does
-not count the trailing \s-1NUL. \s0 In C90, the limit was 509 characters; in
-C99, it was raised to 4095. \*(C+98 does not specify a normative
-minimum maximum, so we do not diagnose overlength strings in \*(C+.
-.Sp
-This option is implied by \fB\-Wpedantic\fR, and can be disabled with
-\&\fB\-Wno\-overlength\-strings\fR.
-.IP "\fB\-Wunsuffixed\-float\-constants\fR (C and Objective-C only)" 4
-.IX Item "-Wunsuffixed-float-constants (C and Objective-C only)"
-Issue a warning for any floating constant that does not have
-a suffix. When used together with \fB\-Wsystem\-headers\fR it
-warns about such constants in system header files. This can be useful
-when preparing code to use with the \f(CW\*(C`FLOAT_CONST_DECIMAL64\*(C'\fR pragma
-from the decimal floating-point extension to C99.
-.SS "Options for Debugging Your Program or \s-1GCC\s0"
-.IX Subsection "Options for Debugging Your Program or GCC"
-\&\s-1GCC\s0 has various special options that are used for debugging
-either your program or \s-1GCC:\s0
-.IP "\fB\-g\fR" 4
-.IX Item "-g"
-Produce debugging information in the operating system's native format
-(stabs, \s-1COFF, XCOFF,\s0 or \s-1DWARF 2\s0). \s-1GDB\s0 can work with this debugging
-information.
-.Sp
-On most systems that use stabs format, \fB\-g\fR enables use of extra
-debugging information that only \s-1GDB\s0 can use; this extra information
-makes debugging work better in \s-1GDB\s0 but probably makes other debuggers
-crash or
-refuse to read the program. If you want to control for certain whether
-to generate the extra information, use \fB\-gstabs+\fR, \fB\-gstabs\fR,
-\&\fB\-gxcoff+\fR, \fB\-gxcoff\fR, or \fB\-gvms\fR (see below).
-.Sp
-\&\s-1GCC\s0 allows you to use \fB\-g\fR with
-\&\fB\-O\fR. The shortcuts taken by optimized code may occasionally
-produce surprising results: some variables you declared may not exist
-at all; flow of control may briefly move where you did not expect it;
-some statements may not be executed because they compute constant
-results or their values are already at hand; some statements may
-execute in different places because they have been moved out of loops.
-.Sp
-Nevertheless it proves possible to debug optimized output. This makes
-it reasonable to use the optimizer for programs that might have bugs.
-.Sp
-The following options are useful when \s-1GCC\s0 is generated with the
-capability for more than one debugging format.
-.IP "\fB\-gsplit\-dwarf\fR" 4
-.IX Item "-gsplit-dwarf"
-Separate as much dwarf debugging information as possible into a
-separate output file with the extension .dwo. This option allows
-the build system to avoid linking files with debug information. To
-be useful, this option requires a debugger capable of reading .dwo
-files.
-.IP "\fB\-ggdb\fR" 4
-.IX Item "-ggdb"
-Produce debugging information for use by \s-1GDB. \s0 This means to use the
-most expressive format available (\s-1DWARF 2,\s0 stabs, or the native format
-if neither of those are supported), including \s-1GDB\s0 extensions if at all
-possible.
-.IP "\fB\-gpubnames\fR" 4
-.IX Item "-gpubnames"
-Generate dwarf .debug_pubnames and .debug_pubtypes sections.
-.IP "\fB\-ggnu\-pubnames\fR" 4
-.IX Item "-ggnu-pubnames"
-Generate .debug_pubnames and .debug_pubtypes sections in a format
-suitable for conversion into a \s-1GDB\s0 index. This option is only useful
-with a linker that can produce \s-1GDB\s0 index version 7.
-.IP "\fB\-gstabs\fR" 4
-.IX Item "-gstabs"
-Produce debugging information in stabs format (if that is supported),
-without \s-1GDB\s0 extensions. This is the format used by \s-1DBX\s0 on most \s-1BSD\s0
-systems. On \s-1MIPS,\s0 Alpha and System V Release 4 systems this option
-produces stabs debugging output that is not understood by \s-1DBX\s0 or \s-1SDB.\s0
-On System V Release 4 systems this option requires the \s-1GNU\s0 assembler.
-.IP "\fB\-feliminate\-unused\-debug\-symbols\fR" 4
-.IX Item "-feliminate-unused-debug-symbols"
-Produce debugging information in stabs format (if that is supported),
-for only symbols that are actually used.
-.IP "\fB\-femit\-class\-debug\-always\fR" 4
-.IX Item "-femit-class-debug-always"
-Instead of emitting debugging information for a \*(C+ class in only one
-object file, emit it in all object files using the class. This option
-should be used only with debuggers that are unable to handle the way \s-1GCC\s0
-normally emits debugging information for classes because using this
-option increases the size of debugging information by as much as a
-factor of two.
-.IP "\fB\-fdebug\-types\-section\fR" 4
-.IX Item "-fdebug-types-section"
-When using \s-1DWARF\s0 Version 4 or higher, type DIEs can be put into
-their own \f(CW\*(C`.debug_types\*(C'\fR section instead of making them part of the
-\&\f(CW\*(C`.debug_info\*(C'\fR section. It is more efficient to put them in a separate
-comdat sections since the linker can then remove duplicates.
-But not all \s-1DWARF\s0 consumers support \f(CW\*(C`.debug_types\*(C'\fR sections yet
-and on some objects \f(CW\*(C`.debug_types\*(C'\fR produces larger instead of smaller
-debugging information.
-.IP "\fB\-gstabs+\fR" 4
-.IX Item "-gstabs+"
-Produce debugging information in stabs format (if that is supported),
-using \s-1GNU\s0 extensions understood only by the \s-1GNU\s0 debugger (\s-1GDB\s0). The
-use of these extensions is likely to make other debuggers crash or
-refuse to read the program.
-.IP "\fB\-gcoff\fR" 4
-.IX Item "-gcoff"
-Produce debugging information in \s-1COFF\s0 format (if that is supported).
-This is the format used by \s-1SDB\s0 on most System V systems prior to
-System V Release 4.
-.IP "\fB\-gxcoff\fR" 4
-.IX Item "-gxcoff"
-Produce debugging information in \s-1XCOFF\s0 format (if that is supported).
-This is the format used by the \s-1DBX\s0 debugger on \s-1IBM RS/6000\s0 systems.
-.IP "\fB\-gxcoff+\fR" 4
-.IX Item "-gxcoff+"
-Produce debugging information in \s-1XCOFF\s0 format (if that is supported),
-using \s-1GNU\s0 extensions understood only by the \s-1GNU\s0 debugger (\s-1GDB\s0). The
-use of these extensions is likely to make other debuggers crash or
-refuse to read the program, and may cause assemblers other than the \s-1GNU\s0
-assembler (\s-1GAS\s0) to fail with an error.
-.IP "\fB\-gdwarf\-\fR\fIversion\fR" 4
-.IX Item "-gdwarf-version"
-Produce debugging information in \s-1DWARF\s0 format (if that is supported).
-The value of \fIversion\fR may be either 2, 3 or 4; the default version
-for most targets is 4.
-.Sp
-Note that with \s-1DWARF\s0 Version 2, some ports require and always
-use some non-conflicting \s-1DWARF 3\s0 extensions in the unwind tables.
-.Sp
-Version 4 may require \s-1GDB 7.0\s0 and \fB\-fvar\-tracking\-assignments\fR
-for maximum benefit.
-.IP "\fB\-grecord\-gcc\-switches\fR" 4
-.IX Item "-grecord-gcc-switches"
-This switch causes the command-line options used to invoke the
-compiler that may affect code generation to be appended to the
-DW_AT_producer attribute in \s-1DWARF\s0 debugging information. The options
-are concatenated with spaces separating them from each other and from
-the compiler version. See also \fB\-frecord\-gcc\-switches\fR for another
-way of storing compiler options into the object file. This is the default.
-.IP "\fB\-gno\-record\-gcc\-switches\fR" 4
-.IX Item "-gno-record-gcc-switches"
-Disallow appending command-line options to the DW_AT_producer attribute
-in \s-1DWARF\s0 debugging information.
-.IP "\fB\-gstrict\-dwarf\fR" 4
-.IX Item "-gstrict-dwarf"
-Disallow using extensions of later \s-1DWARF\s0 standard version than selected
-with \fB\-gdwarf\-\fR\fIversion\fR. On most targets using non-conflicting
-\&\s-1DWARF\s0 extensions from later standard versions is allowed.
-.IP "\fB\-gno\-strict\-dwarf\fR" 4
-.IX Item "-gno-strict-dwarf"
-Allow using extensions of later \s-1DWARF\s0 standard version than selected with
-\&\fB\-gdwarf\-\fR\fIversion\fR.
-.IP "\fB\-gvms\fR" 4
-.IX Item "-gvms"
-Produce debugging information in Alpha/VMS debug format (if that is
-supported). This is the format used by \s-1DEBUG\s0 on Alpha/VMS systems.
-.IP "\fB\-g\fR\fIlevel\fR" 4
-.IX Item "-glevel"
-.PD 0
-.IP "\fB\-ggdb\fR\fIlevel\fR" 4
-.IX Item "-ggdblevel"
-.IP "\fB\-gstabs\fR\fIlevel\fR" 4
-.IX Item "-gstabslevel"
-.IP "\fB\-gcoff\fR\fIlevel\fR" 4
-.IX Item "-gcofflevel"
-.IP "\fB\-gxcoff\fR\fIlevel\fR" 4
-.IX Item "-gxcofflevel"
-.IP "\fB\-gvms\fR\fIlevel\fR" 4
-.IX Item "-gvmslevel"
-.PD
-Request debugging information and also use \fIlevel\fR to specify how
-much information. The default level is 2.
-.Sp
-Level 0 produces no debug information at all. Thus, \fB\-g0\fR negates
-\&\fB\-g\fR.
-.Sp
-Level 1 produces minimal information, enough for making backtraces in
-parts of the program that you don't plan to debug. This includes
-descriptions of functions and external variables, and line number
-tables, but no information about local variables.
-.Sp
-Level 3 includes extra information, such as all the macro definitions
-present in the program. Some debuggers support macro expansion when
-you use \fB\-g3\fR.
-.Sp
-\&\fB\-gdwarf\-2\fR does not accept a concatenated debug level, because
-\&\s-1GCC\s0 used to support an option \fB\-gdwarf\fR that meant to generate
-debug information in version 1 of the \s-1DWARF\s0 format (which is very
-different from version 2), and it would have been too confusing. That
-debug format is long obsolete, but the option cannot be changed now.
-Instead use an additional \fB\-g\fR\fIlevel\fR option to change the
-debug level for \s-1DWARF.\s0
-.IP "\fB\-gtoggle\fR" 4
-.IX Item "-gtoggle"
-Turn off generation of debug info, if leaving out this option
-generates it, or turn it on at level 2 otherwise. The position of this
-argument in the command line does not matter; it takes effect after all
-other options are processed, and it does so only once, no matter how
-many times it is given. This is mainly intended to be used with
-\&\fB\-fcompare\-debug\fR.
-.IP "\fB\-fsanitize=address\fR" 4
-.IX Item "-fsanitize=address"
-Enable AddressSanitizer, a fast memory error detector.
-Memory access instructions will be instrumented to detect
-out-of-bounds and use-after-free bugs.
-See <\fBhttp://code.google.com/p/address\-sanitizer/\fR> for
-more details. The run-time behavior can be influenced using the
-\&\fB\s-1ASAN_OPTIONS\s0\fR environment variable; see
-<\fBhttps://code.google.com/p/address\-sanitizer/wiki/Flags#Run\-time_flags\fR> for
-a list of supported options.
-.IP "\fB\-fsanitize=thread\fR" 4
-.IX Item "-fsanitize=thread"
-Enable ThreadSanitizer, a fast data race detector.
-Memory access instructions will be instrumented to detect
-data race bugs. See <\fBhttp://code.google.com/p/thread\-sanitizer/\fR> for more
-details. The run-time behavior can be influenced using the \fB\s-1TSAN_OPTIONS\s0\fR
-environment variable; see
-<\fBhttps://code.google.com/p/thread\-sanitizer/wiki/Flags\fR> for a list of
-supported options.
-.IP "\fB\-fsanitize=leak\fR" 4
-.IX Item "-fsanitize=leak"
-Enable LeakSanitizer, a memory leak detector.
-This option only matters for linking of executables and if neither
-\&\fB\-fsanitize=address\fR nor \fB\-fsanitize=thread\fR is used. In that
-case it will link the executable against a library that overrides \f(CW\*(C`malloc\*(C'\fR
-and other allocator functions. See
-<\fBhttps://code.google.com/p/address\-sanitizer/wiki/LeakSanitizer\fR> for more
-details. The run-time behavior can be influenced using the
-\&\fB\s-1LSAN_OPTIONS\s0\fR environment variable.
-.IP "\fB\-fsanitize=undefined\fR" 4
-.IX Item "-fsanitize=undefined"
-Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
-Various computations will be instrumented to detect undefined behavior
-at runtime. Current suboptions are:
-.RS 4
-.IP "\fB\-fsanitize=shift\fR" 4
-.IX Item "-fsanitize=shift"
-This option enables checking that the result of a shift operation is
-not undefined. Note that what exactly is considered undefined differs
-slightly between C and \*(C+, as well as between \s-1ISO C90\s0 and C99, etc.
-.IP "\fB\-fsanitize=integer\-divide\-by\-zero\fR" 4
-.IX Item "-fsanitize=integer-divide-by-zero"
-Detect integer division by zero as well as \f(CW\*(C`INT_MIN / \-1\*(C'\fR division.
-.IP "\fB\-fsanitize=unreachable\fR" 4
-.IX Item "-fsanitize=unreachable"
-With this option, the compiler will turn the \f(CW\*(C`_\|_builtin_unreachable\*(C'\fR
-call into a diagnostics message call instead. When reaching the
-\&\f(CW\*(C`_\|_builtin_unreachable\*(C'\fR call, the behavior is undefined.
-.IP "\fB\-fsanitize=vla\-bound\fR" 4
-.IX Item "-fsanitize=vla-bound"
-This option instructs the compiler to check that the size of a variable
-length array is positive. This option does not have any effect in
-\&\fB\-std=c++1y\fR mode, as the standard requires the exception be thrown
-instead.
-.IP "\fB\-fsanitize=null\fR" 4
-.IX Item "-fsanitize=null"
-This option enables pointer checking. Particularly, the application
-built with this option turned on will issue an error message when it
-tries to dereference a \s-1NULL\s0 pointer, or if a reference (possibly an
-rvalue reference) is bound to a \s-1NULL\s0 pointer.
-.IP "\fB\-fsanitize=return\fR" 4
-.IX Item "-fsanitize=return"
-This option enables return statement checking. Programs
-built with this option turned on will issue an error message
-when the end of a non-void function is reached without actually
-returning a value. This option works in \*(C+ only.
-.IP "\fB\-fsanitize=signed\-integer\-overflow\fR" 4
-.IX Item "-fsanitize=signed-integer-overflow"
-This option enables signed integer overflow checking. We check that
-the result of \f(CW\*(C`+\*(C'\fR, \f(CW\*(C`*\*(C'\fR, and both unary and binary \f(CW\*(C`\-\*(C'\fR
-does not overflow in the signed arithmetics. Note, integer promotion
-rules must be taken into account. That is, the following is not an
-overflow:
-.Sp
-.Vb 2
-\& signed char a = SCHAR_MAX;
-\& a++;
-.Ve
-.RE
-.RS 4
-.Sp
-While \fB\-ftrapv\fR causes traps for signed overflows to be emitted,
-\&\fB\-fsanitize=undefined\fR gives a diagnostic message.
-This currently works only for the C family of languages.
-.RE
-.IP "\fB\-fdump\-final\-insns\fR[\fB=\fR\fIfile\fR]" 4
-.IX Item "-fdump-final-insns[=file]"
-Dump the final internal representation (\s-1RTL\s0) to \fIfile\fR. If the
-optional argument is omitted (or if \fIfile\fR is \f(CW\*(C`.\*(C'\fR), the name
-of the dump file is determined by appending \f(CW\*(C`.gkd\*(C'\fR to the
-compilation output file name.
-.IP "\fB\-fcompare\-debug\fR[\fB=\fR\fIopts\fR]" 4
-.IX Item "-fcompare-debug[=opts]"
-If no error occurs during compilation, run the compiler a second time,
-adding \fIopts\fR and \fB\-fcompare\-debug\-second\fR to the arguments
-passed to the second compilation. Dump the final internal
-representation in both compilations, and print an error if they differ.
-.Sp
-If the equal sign is omitted, the default \fB\-gtoggle\fR is used.
-.Sp
-The environment variable \fB\s-1GCC_COMPARE_DEBUG\s0\fR, if defined, non-empty
-and nonzero, implicitly enables \fB\-fcompare\-debug\fR. If
-\&\fB\s-1GCC_COMPARE_DEBUG\s0\fR is defined to a string starting with a dash,
-then it is used for \fIopts\fR, otherwise the default \fB\-gtoggle\fR
-is used.
-.Sp
-\&\fB\-fcompare\-debug=\fR, with the equal sign but without \fIopts\fR,
-is equivalent to \fB\-fno\-compare\-debug\fR, which disables the dumping
-of the final representation and the second compilation, preventing even
-\&\fB\s-1GCC_COMPARE_DEBUG\s0\fR from taking effect.
-.Sp
-To verify full coverage during \fB\-fcompare\-debug\fR testing, set
-\&\fB\s-1GCC_COMPARE_DEBUG\s0\fR to say \fB\-fcompare\-debug\-not\-overridden\fR,
-which \s-1GCC\s0 rejects as an invalid option in any actual compilation
-(rather than preprocessing, assembly or linking). To get just a
-warning, setting \fB\s-1GCC_COMPARE_DEBUG\s0\fR to \fB\-w%n\-fcompare\-debug
-not overridden\fR will do.
-.IP "\fB\-fcompare\-debug\-second\fR" 4
-.IX Item "-fcompare-debug-second"
-This option is implicitly passed to the compiler for the second
-compilation requested by \fB\-fcompare\-debug\fR, along with options to
-silence warnings, and omitting other options that would cause
-side-effect compiler outputs to files or to the standard output. Dump
-files and preserved temporary files are renamed so as to contain the
-\&\f(CW\*(C`.gk\*(C'\fR additional extension during the second compilation, to avoid
-overwriting those generated by the first.
-.Sp
-When this option is passed to the compiler driver, it causes the
-\&\fIfirst\fR compilation to be skipped, which makes it useful for little
-other than debugging the compiler proper.
-.IP "\fB\-feliminate\-dwarf2\-dups\fR" 4
-.IX Item "-feliminate-dwarf2-dups"
-Compress \s-1DWARF 2\s0 debugging information by eliminating duplicated
-information about each symbol. This option only makes sense when
-generating \s-1DWARF 2\s0 debugging information with \fB\-gdwarf\-2\fR.
-.IP "\fB\-femit\-struct\-debug\-baseonly\fR" 4
-.IX Item "-femit-struct-debug-baseonly"
-Emit debug information for struct-like types
-only when the base name of the compilation source file
-matches the base name of file in which the struct is defined.
-.Sp
-This option substantially reduces the size of debugging information,
-but at significant potential loss in type information to the debugger.
-See \fB\-femit\-struct\-debug\-reduced\fR for a less aggressive option.
-See \fB\-femit\-struct\-debug\-detailed\fR for more detailed control.
-.Sp
-This option works only with \s-1DWARF 2.\s0
-.IP "\fB\-femit\-struct\-debug\-reduced\fR" 4
-.IX Item "-femit-struct-debug-reduced"
-Emit debug information for struct-like types
-only when the base name of the compilation source file
-matches the base name of file in which the type is defined,
-unless the struct is a template or defined in a system header.
-.Sp
-This option significantly reduces the size of debugging information,
-with some potential loss in type information to the debugger.
-See \fB\-femit\-struct\-debug\-baseonly\fR for a more aggressive option.
-See \fB\-femit\-struct\-debug\-detailed\fR for more detailed control.
-.Sp
-This option works only with \s-1DWARF 2.\s0
-.IP "\fB\-femit\-struct\-debug\-detailed\fR[\fB=\fR\fIspec-list\fR]" 4
-.IX Item "-femit-struct-debug-detailed[=spec-list]"
-Specify the struct-like types
-for which the compiler generates debug information.
-The intent is to reduce duplicate struct debug information
-between different object files within the same program.
-.Sp
-This option is a detailed version of
-\&\fB\-femit\-struct\-debug\-reduced\fR and \fB\-femit\-struct\-debug\-baseonly\fR,
-which serves for most needs.
-.Sp
-A specification has the syntax[\fBdir:\fR|\fBind:\fR][\fBord:\fR|\fBgen:\fR](\fBany\fR|\fBsys\fR|\fBbase\fR|\fBnone\fR)
-.Sp
-The optional first word limits the specification to
-structs that are used directly (\fBdir:\fR) or used indirectly (\fBind:\fR).
-A struct type is used directly when it is the type of a variable, member.
-Indirect uses arise through pointers to structs.
-That is, when use of an incomplete struct is valid, the use is indirect.
-An example is
-\&\fBstruct one direct; struct two * indirect;\fR.
-.Sp
-The optional second word limits the specification to
-ordinary structs (\fBord:\fR) or generic structs (\fBgen:\fR).
-Generic structs are a bit complicated to explain.
-For \*(C+, these are non-explicit specializations of template classes,
-or non-template classes within the above.
-Other programming languages have generics,
-but \fB\-femit\-struct\-debug\-detailed\fR does not yet implement them.
-.Sp
-The third word specifies the source files for those
-structs for which the compiler should emit debug information.
-The values \fBnone\fR and \fBany\fR have the normal meaning.
-The value \fBbase\fR means that
-the base of name of the file in which the type declaration appears
-must match the base of the name of the main compilation file.
-In practice, this means that when compiling \fIfoo.c\fR, debug information
-is generated for types declared in that file and \fIfoo.h\fR,
-but not other header files.
-The value \fBsys\fR means those types satisfying \fBbase\fR
-or declared in system or compiler headers.
-.Sp
-You may need to experiment to determine the best settings for your application.
-.Sp
-The default is \fB\-femit\-struct\-debug\-detailed=all\fR.
-.Sp
-This option works only with \s-1DWARF 2.\s0
-.IP "\fB\-fno\-merge\-debug\-strings\fR" 4
-.IX Item "-fno-merge-debug-strings"
-Direct the linker to not merge together strings in the debugging
-information that are identical in different object files. Merging is
-not supported by all assemblers or linkers. Merging decreases the size
-of the debug information in the output file at the cost of increasing
-link processing time. Merging is enabled by default.
-.IP "\fB\-fdebug\-prefix\-map=\fR\fIold\fR\fB=\fR\fInew\fR" 4
-.IX Item "-fdebug-prefix-map=old=new"
-When compiling files in directory \fI\fIold\fI\fR, record debugging
-information describing them as in \fI\fInew\fI\fR instead.
-.IP "\fB\-fno\-dwarf2\-cfi\-asm\fR" 4
-.IX Item "-fno-dwarf2-cfi-asm"
-Emit \s-1DWARF 2\s0 unwind info as compiler generated \f(CW\*(C`.eh_frame\*(C'\fR section
-instead of using \s-1GAS \s0\f(CW\*(C`.cfi_*\*(C'\fR directives.
-.IP "\fB\-p\fR" 4
-.IX Item "-p"
-Generate extra code to write profile information suitable for the
-analysis program \fBprof\fR. You must use this option when compiling
-the source files you want data about, and you must also use it when
-linking.
-.IP "\fB\-pg\fR" 4
-.IX Item "-pg"
-Generate extra code to write profile information suitable for the
-analysis program \fBgprof\fR. You must use this option when compiling
-the source files you want data about, and you must also use it when
-linking.
-.IP "\fB\-Q\fR" 4
-.IX Item "-Q"
-Makes the compiler print out each function name as it is compiled, and
-print some statistics about each pass when it finishes.
-.IP "\fB\-ftime\-report\fR" 4
-.IX Item "-ftime-report"
-Makes the compiler print some statistics about the time consumed by each
-pass when it finishes.
-.IP "\fB\-fmem\-report\fR" 4
-.IX Item "-fmem-report"
-Makes the compiler print some statistics about permanent memory
-allocation when it finishes.
-.IP "\fB\-fmem\-report\-wpa\fR" 4
-.IX Item "-fmem-report-wpa"
-Makes the compiler print some statistics about permanent memory
-allocation for the \s-1WPA\s0 phase only.
-.IP "\fB\-fpre\-ipa\-mem\-report\fR" 4
-.IX Item "-fpre-ipa-mem-report"
-.PD 0
-.IP "\fB\-fpost\-ipa\-mem\-report\fR" 4
-.IX Item "-fpost-ipa-mem-report"
-.PD
-Makes the compiler print some statistics about permanent memory
-allocation before or after interprocedural optimization.
-.IP "\fB\-fprofile\-report\fR" 4
-.IX Item "-fprofile-report"
-Makes the compiler print some statistics about consistency of the
-(estimated) profile and effect of individual passes.
-.IP "\fB\-fstack\-usage\fR" 4
-.IX Item "-fstack-usage"
-Makes the compiler output stack usage information for the program, on a
-per-function basis. The filename for the dump is made by appending
-\&\fI.su\fR to the \fIauxname\fR. \fIauxname\fR is generated from the name of
-the output file, if explicitly specified and it is not an executable,
-otherwise it is the basename of the source file. An entry is made up
-of three fields:
-.RS 4
-.IP "\(bu" 4
-The name of the function.
-.IP "\(bu" 4
-A number of bytes.
-.IP "\(bu" 4
-One or more qualifiers: \f(CW\*(C`static\*(C'\fR, \f(CW\*(C`dynamic\*(C'\fR, \f(CW\*(C`bounded\*(C'\fR.
-.RE
-.RS 4
-.Sp
-The qualifier \f(CW\*(C`static\*(C'\fR means that the function manipulates the stack
-statically: a fixed number of bytes are allocated for the frame on function
-entry and released on function exit; no stack adjustments are otherwise made
-in the function. The second field is this fixed number of bytes.
-.Sp
-The qualifier \f(CW\*(C`dynamic\*(C'\fR means that the function manipulates the stack
-dynamically: in addition to the static allocation described above, stack
-adjustments are made in the body of the function, for example to push/pop
-arguments around function calls. If the qualifier \f(CW\*(C`bounded\*(C'\fR is also
-present, the amount of these adjustments is bounded at compile time and
-the second field is an upper bound of the total amount of stack used by
-the function. If it is not present, the amount of these adjustments is
-not bounded at compile time and the second field only represents the
-bounded part.
-.RE
-.IP "\fB\-fprofile\-arcs\fR" 4
-.IX Item "-fprofile-arcs"
-Add code so that program flow \fIarcs\fR are instrumented. During
-execution the program records how many times each branch and call is
-executed and how many times it is taken or returns. When the compiled
-program exits it saves this data to a file called
-\&\fI\fIauxname\fI.gcda\fR for each source file. The data may be used for
-profile-directed optimizations (\fB\-fbranch\-probabilities\fR), or for
-test coverage analysis (\fB\-ftest\-coverage\fR). Each object file's
-\&\fIauxname\fR is generated from the name of the output file, if
-explicitly specified and it is not the final executable, otherwise it is
-the basename of the source file. In both cases any suffix is removed
-(e.g. \fIfoo.gcda\fR for input file \fIdir/foo.c\fR, or
-\&\fIdir/foo.gcda\fR for output file specified as \fB\-o dir/foo.o\fR).
-.IP "\fB\-\-coverage\fR" 4
-.IX Item "--coverage"
-This option is used to compile and link code instrumented for coverage
-analysis. The option is a synonym for \fB\-fprofile\-arcs\fR
-\&\fB\-ftest\-coverage\fR (when compiling) and \fB\-lgcov\fR (when
-linking). See the documentation for those options for more details.
-.RS 4
-.IP "\(bu" 4
-Compile the source files with \fB\-fprofile\-arcs\fR plus optimization
-and code generation options. For test coverage analysis, use the
-additional \fB\-ftest\-coverage\fR option. You do not need to profile
-every source file in a program.
-.IP "\(bu" 4
-Link your object files with \fB\-lgcov\fR or \fB\-fprofile\-arcs\fR
-(the latter implies the former).
-.IP "\(bu" 4
-Run the program on a representative workload to generate the arc profile
-information. This may be repeated any number of times. You can run
-concurrent instances of your program, and provided that the file system
-supports locking, the data files will be correctly updated. Also
-\&\f(CW\*(C`fork\*(C'\fR calls are detected and correctly handled (double counting
-will not happen).
-.IP "\(bu" 4
-For profile-directed optimizations, compile the source files again with
-the same optimization and code generation options plus
-\&\fB\-fbranch\-probabilities\fR.
-.IP "\(bu" 4
-For test coverage analysis, use \fBgcov\fR to produce human readable
-information from the \fI.gcno\fR and \fI.gcda\fR files. Refer to the
-\&\fBgcov\fR documentation for further information.
-.RE
-.RS 4
-.Sp
-With \fB\-fprofile\-arcs\fR, for each function of your program \s-1GCC\s0
-creates a program flow graph, then finds a spanning tree for the graph.
-Only arcs that are not on the spanning tree have to be instrumented: the
-compiler adds code to count the number of times that these arcs are
-executed. When an arc is the only exit or only entrance to a block, the
-instrumentation code can be added to the block; otherwise, a new basic
-block must be created to hold the instrumentation code.
-.RE
-.IP "\fB\-ftest\-coverage\fR" 4
-.IX Item "-ftest-coverage"
-Produce a notes file that the \fBgcov\fR code-coverage utility can use to
-show program coverage. Each source file's note file is called
-\&\fI\fIauxname\fI.gcno\fR. Refer to the \fB\-fprofile\-arcs\fR option
-above for a description of \fIauxname\fR and instructions on how to
-generate test coverage data. Coverage data matches the source files
-more closely if you do not optimize.
-.IP "\fB\-fdbg\-cnt\-list\fR" 4
-.IX Item "-fdbg-cnt-list"
-Print the name and the counter upper bound for all debug counters.
-.IP "\fB\-fdbg\-cnt=\fR\fIcounter-value-list\fR" 4
-.IX Item "-fdbg-cnt=counter-value-list"
-Set the internal debug counter upper bound. \fIcounter-value-list\fR
-is a comma-separated list of \fIname\fR:\fIvalue\fR pairs
-which sets the upper bound of each debug counter \fIname\fR to \fIvalue\fR.
-All debug counters have the initial upper bound of \f(CW\*(C`UINT_MAX\*(C'\fR;
-thus \f(CW\*(C`dbg_cnt()\*(C'\fR returns true always unless the upper bound
-is set by this option.
-For example, with \fB\-fdbg\-cnt=dce:10,tail_call:0\fR,
-\&\f(CW\*(C`dbg_cnt(dce)\*(C'\fR returns true only for first 10 invocations.
-.IP "\fB\-fenable\-\fR\fIkind\fR\fB\-\fR\fIpass\fR" 4
-.IX Item "-fenable-kind-pass"
-.PD 0
-.IP "\fB\-fdisable\-\fR\fIkind\fR\fB\-\fR\fIpass\fR\fB=\fR\fIrange-list\fR" 4
-.IX Item "-fdisable-kind-pass=range-list"
-.PD
-This is a set of options that are used to explicitly disable/enable
-optimization passes. These options are intended for use for debugging \s-1GCC.\s0
-Compiler users should use regular options for enabling/disabling
-passes instead.
-.RS 4
-.IP "\fB\-fdisable\-ipa\-\fR\fIpass\fR" 4
-.IX Item "-fdisable-ipa-pass"
-Disable \s-1IPA\s0 pass \fIpass\fR. \fIpass\fR is the pass name. If the same pass is
-statically invoked in the compiler multiple times, the pass name should be
-appended with a sequential number starting from 1.
-.IP "\fB\-fdisable\-rtl\-\fR\fIpass\fR" 4
-.IX Item "-fdisable-rtl-pass"
-.PD 0
-.IP "\fB\-fdisable\-rtl\-\fR\fIpass\fR\fB=\fR\fIrange-list\fR" 4
-.IX Item "-fdisable-rtl-pass=range-list"
-.PD
-Disable \s-1RTL\s0 pass \fIpass\fR. \fIpass\fR is the pass name. If the same pass is
-statically invoked in the compiler multiple times, the pass name should be
-appended with a sequential number starting from 1. \fIrange-list\fR is a
-comma-separated list of function ranges or assembler names. Each range is a number
-pair separated by a colon. The range is inclusive in both ends. If the range
-is trivial, the number pair can be simplified as a single number. If the
-function's call graph node's \fIuid\fR falls within one of the specified ranges,
-the \fIpass\fR is disabled for that function. The \fIuid\fR is shown in the
-function header of a dump file, and the pass names can be dumped by using
-option \fB\-fdump\-passes\fR.
-.IP "\fB\-fdisable\-tree\-\fR\fIpass\fR" 4
-.IX Item "-fdisable-tree-pass"
-.PD 0
-.IP "\fB\-fdisable\-tree\-\fR\fIpass\fR\fB=\fR\fIrange-list\fR" 4
-.IX Item "-fdisable-tree-pass=range-list"
-.PD
-Disable tree pass \fIpass\fR. See \fB\-fdisable\-rtl\fR for the description of
-option arguments.
-.IP "\fB\-fenable\-ipa\-\fR\fIpass\fR" 4
-.IX Item "-fenable-ipa-pass"
-Enable \s-1IPA\s0 pass \fIpass\fR. \fIpass\fR is the pass name. If the same pass is
-statically invoked in the compiler multiple times, the pass name should be
-appended with a sequential number starting from 1.
-.IP "\fB\-fenable\-rtl\-\fR\fIpass\fR" 4
-.IX Item "-fenable-rtl-pass"
-.PD 0
-.IP "\fB\-fenable\-rtl\-\fR\fIpass\fR\fB=\fR\fIrange-list\fR" 4
-.IX Item "-fenable-rtl-pass=range-list"
-.PD
-Enable \s-1RTL\s0 pass \fIpass\fR. See \fB\-fdisable\-rtl\fR for option argument
-description and examples.
-.IP "\fB\-fenable\-tree\-\fR\fIpass\fR" 4
-.IX Item "-fenable-tree-pass"
-.PD 0
-.IP "\fB\-fenable\-tree\-\fR\fIpass\fR\fB=\fR\fIrange-list\fR" 4
-.IX Item "-fenable-tree-pass=range-list"
-.PD
-Enable tree pass \fIpass\fR. See \fB\-fdisable\-rtl\fR for the description
-of option arguments.
-.RE
-.RS 4
-.Sp
-Here are some examples showing uses of these options.
-.Sp
-.Vb 10
-\& # disable ccp1 for all functions
-\& \-fdisable\-tree\-ccp1
-\& # disable complete unroll for function whose cgraph node uid is 1
-\& \-fenable\-tree\-cunroll=1
-\& # disable gcse2 for functions at the following ranges [1,1],
-\& # [300,400], and [400,1000]
-\& # disable gcse2 for functions foo and foo2
-\& \-fdisable\-rtl\-gcse2=foo,foo2
-\& # disable early inlining
-\& \-fdisable\-tree\-einline
-\& # disable ipa inlining
-\& \-fdisable\-ipa\-inline
-\& # enable tree full unroll
-\& \-fenable\-tree\-unroll
-.Ve
-.RE
-.IP "\fB\-d\fR\fIletters\fR" 4
-.IX Item "-dletters"
-.PD 0
-.IP "\fB\-fdump\-rtl\-\fR\fIpass\fR" 4
-.IX Item "-fdump-rtl-pass"
-.IP "\fB\-fdump\-rtl\-\fR\fIpass\fR\fB=\fR\fIfilename\fR" 4
-.IX Item "-fdump-rtl-pass=filename"
-.PD
-Says to make debugging dumps during compilation at times specified by
-\&\fIletters\fR. This is used for debugging the RTL-based passes of the
-compiler. The file names for most of the dumps are made by appending
-a pass number and a word to the \fIdumpname\fR, and the files are
-created in the directory of the output file. In case of
-\&\fB=\fR\fIfilename\fR option, the dump is output on the given file
-instead of the pass numbered dump files. Note that the pass number is
-computed statically as passes get registered into the pass manager.
-Thus the numbering is not related to the dynamic order of execution of
-passes. In particular, a pass installed by a plugin could have a
-number over 200 even if it executed quite early. \fIdumpname\fR is
-generated from the name of the output file, if explicitly specified
-and it is not an executable, otherwise it is the basename of the
-source file. These switches may have different effects when
-\&\fB\-E\fR is used for preprocessing.
-.Sp
-Debug dumps can be enabled with a \fB\-fdump\-rtl\fR switch or some
-\&\fB\-d\fR option \fIletters\fR. Here are the possible
-letters for use in \fIpass\fR and \fIletters\fR, and their meanings:
-.RS 4
-.IP "\fB\-fdump\-rtl\-alignments\fR" 4
-.IX Item "-fdump-rtl-alignments"
-Dump after branch alignments have been computed.
-.IP "\fB\-fdump\-rtl\-asmcons\fR" 4
-.IX Item "-fdump-rtl-asmcons"
-Dump after fixing rtl statements that have unsatisfied in/out constraints.
-.IP "\fB\-fdump\-rtl\-auto_inc_dec\fR" 4
-.IX Item "-fdump-rtl-auto_inc_dec"
-Dump after auto-inc-dec discovery. This pass is only run on
-architectures that have auto inc or auto dec instructions.
-.IP "\fB\-fdump\-rtl\-barriers\fR" 4
-.IX Item "-fdump-rtl-barriers"
-Dump after cleaning up the barrier instructions.
-.IP "\fB\-fdump\-rtl\-bbpart\fR" 4
-.IX Item "-fdump-rtl-bbpart"
-Dump after partitioning hot and cold basic blocks.
-.IP "\fB\-fdump\-rtl\-bbro\fR" 4
-.IX Item "-fdump-rtl-bbro"
-Dump after block reordering.
-.IP "\fB\-fdump\-rtl\-btl1\fR" 4
-.IX Item "-fdump-rtl-btl1"
-.PD 0
-.IP "\fB\-fdump\-rtl\-btl2\fR" 4
-.IX Item "-fdump-rtl-btl2"
-.PD
-\&\fB\-fdump\-rtl\-btl1\fR and \fB\-fdump\-rtl\-btl2\fR enable dumping
-after the two branch
-target load optimization passes.
-.IP "\fB\-fdump\-rtl\-bypass\fR" 4
-.IX Item "-fdump-rtl-bypass"
-Dump after jump bypassing and control flow optimizations.
-.IP "\fB\-fdump\-rtl\-combine\fR" 4
-.IX Item "-fdump-rtl-combine"
-Dump after the \s-1RTL\s0 instruction combination pass.
-.IP "\fB\-fdump\-rtl\-compgotos\fR" 4
-.IX Item "-fdump-rtl-compgotos"
-Dump after duplicating the computed gotos.
-.IP "\fB\-fdump\-rtl\-ce1\fR" 4
-.IX Item "-fdump-rtl-ce1"
-.PD 0
-.IP "\fB\-fdump\-rtl\-ce2\fR" 4
-.IX Item "-fdump-rtl-ce2"
-.IP "\fB\-fdump\-rtl\-ce3\fR" 4
-.IX Item "-fdump-rtl-ce3"
-.PD
-\&\fB\-fdump\-rtl\-ce1\fR, \fB\-fdump\-rtl\-ce2\fR, and
-\&\fB\-fdump\-rtl\-ce3\fR enable dumping after the three
-if conversion passes.
-.IP "\fB\-fdump\-rtl\-cprop_hardreg\fR" 4
-.IX Item "-fdump-rtl-cprop_hardreg"
-Dump after hard register copy propagation.
-.IP "\fB\-fdump\-rtl\-csa\fR" 4
-.IX Item "-fdump-rtl-csa"
-Dump after combining stack adjustments.
-.IP "\fB\-fdump\-rtl\-cse1\fR" 4
-.IX Item "-fdump-rtl-cse1"
-.PD 0
-.IP "\fB\-fdump\-rtl\-cse2\fR" 4
-.IX Item "-fdump-rtl-cse2"
-.PD
-\&\fB\-fdump\-rtl\-cse1\fR and \fB\-fdump\-rtl\-cse2\fR enable dumping after
-the two common subexpression elimination passes.
-.IP "\fB\-fdump\-rtl\-dce\fR" 4
-.IX Item "-fdump-rtl-dce"
-Dump after the standalone dead code elimination passes.
-.IP "\fB\-fdump\-rtl\-dbr\fR" 4
-.IX Item "-fdump-rtl-dbr"
-Dump after delayed branch scheduling.
-.IP "\fB\-fdump\-rtl\-dce1\fR" 4
-.IX Item "-fdump-rtl-dce1"
-.PD 0
-.IP "\fB\-fdump\-rtl\-dce2\fR" 4
-.IX Item "-fdump-rtl-dce2"
-.PD
-\&\fB\-fdump\-rtl\-dce1\fR and \fB\-fdump\-rtl\-dce2\fR enable dumping after
-the two dead store elimination passes.
-.IP "\fB\-fdump\-rtl\-eh\fR" 4
-.IX Item "-fdump-rtl-eh"
-Dump after finalization of \s-1EH\s0 handling code.
-.IP "\fB\-fdump\-rtl\-eh_ranges\fR" 4
-.IX Item "-fdump-rtl-eh_ranges"
-Dump after conversion of \s-1EH\s0 handling range regions.
-.IP "\fB\-fdump\-rtl\-expand\fR" 4
-.IX Item "-fdump-rtl-expand"
-Dump after \s-1RTL\s0 generation.
-.IP "\fB\-fdump\-rtl\-fwprop1\fR" 4
-.IX Item "-fdump-rtl-fwprop1"
-.PD 0
-.IP "\fB\-fdump\-rtl\-fwprop2\fR" 4
-.IX Item "-fdump-rtl-fwprop2"
-.PD
-\&\fB\-fdump\-rtl\-fwprop1\fR and \fB\-fdump\-rtl\-fwprop2\fR enable
-dumping after the two forward propagation passes.
-.IP "\fB\-fdump\-rtl\-gcse1\fR" 4
-.IX Item "-fdump-rtl-gcse1"
-.PD 0
-.IP "\fB\-fdump\-rtl\-gcse2\fR" 4
-.IX Item "-fdump-rtl-gcse2"
-.PD
-\&\fB\-fdump\-rtl\-gcse1\fR and \fB\-fdump\-rtl\-gcse2\fR enable dumping
-after global common subexpression elimination.
-.IP "\fB\-fdump\-rtl\-init\-regs\fR" 4
-.IX Item "-fdump-rtl-init-regs"
-Dump after the initialization of the registers.
-.IP "\fB\-fdump\-rtl\-initvals\fR" 4
-.IX Item "-fdump-rtl-initvals"
-Dump after the computation of the initial value sets.
-.IP "\fB\-fdump\-rtl\-into_cfglayout\fR" 4
-.IX Item "-fdump-rtl-into_cfglayout"
-Dump after converting to cfglayout mode.
-.IP "\fB\-fdump\-rtl\-ira\fR" 4
-.IX Item "-fdump-rtl-ira"
-Dump after iterated register allocation.
-.IP "\fB\-fdump\-rtl\-jump\fR" 4
-.IX Item "-fdump-rtl-jump"
-Dump after the second jump optimization.
-.IP "\fB\-fdump\-rtl\-loop2\fR" 4
-.IX Item "-fdump-rtl-loop2"
-\&\fB\-fdump\-rtl\-loop2\fR enables dumping after the rtl
-loop optimization passes.
-.IP "\fB\-fdump\-rtl\-mach\fR" 4
-.IX Item "-fdump-rtl-mach"
-Dump after performing the machine dependent reorganization pass, if that
-pass exists.
-.IP "\fB\-fdump\-rtl\-mode_sw\fR" 4
-.IX Item "-fdump-rtl-mode_sw"
-Dump after removing redundant mode switches.
-.IP "\fB\-fdump\-rtl\-rnreg\fR" 4
-.IX Item "-fdump-rtl-rnreg"
-Dump after register renumbering.
-.IP "\fB\-fdump\-rtl\-outof_cfglayout\fR" 4
-.IX Item "-fdump-rtl-outof_cfglayout"
-Dump after converting from cfglayout mode.
-.IP "\fB\-fdump\-rtl\-peephole2\fR" 4
-.IX Item "-fdump-rtl-peephole2"
-Dump after the peephole pass.
-.IP "\fB\-fdump\-rtl\-postreload\fR" 4
-.IX Item "-fdump-rtl-postreload"
-Dump after post-reload optimizations.
-.IP "\fB\-fdump\-rtl\-pro_and_epilogue\fR" 4
-.IX Item "-fdump-rtl-pro_and_epilogue"
-Dump after generating the function prologues and epilogues.
-.IP "\fB\-fdump\-rtl\-sched1\fR" 4
-.IX Item "-fdump-rtl-sched1"
-.PD 0
-.IP "\fB\-fdump\-rtl\-sched2\fR" 4
-.IX Item "-fdump-rtl-sched2"
-.PD
-\&\fB\-fdump\-rtl\-sched1\fR and \fB\-fdump\-rtl\-sched2\fR enable dumping
-after the basic block scheduling passes.
-.IP "\fB\-fdump\-rtl\-ree\fR" 4
-.IX Item "-fdump-rtl-ree"
-Dump after sign/zero extension elimination.
-.IP "\fB\-fdump\-rtl\-seqabstr\fR" 4
-.IX Item "-fdump-rtl-seqabstr"
-Dump after common sequence discovery.
-.IP "\fB\-fdump\-rtl\-shorten\fR" 4
-.IX Item "-fdump-rtl-shorten"
-Dump after shortening branches.
-.IP "\fB\-fdump\-rtl\-sibling\fR" 4
-.IX Item "-fdump-rtl-sibling"
-Dump after sibling call optimizations.
-.IP "\fB\-fdump\-rtl\-split1\fR" 4
-.IX Item "-fdump-rtl-split1"
-.PD 0
-.IP "\fB\-fdump\-rtl\-split2\fR" 4
-.IX Item "-fdump-rtl-split2"
-.IP "\fB\-fdump\-rtl\-split3\fR" 4
-.IX Item "-fdump-rtl-split3"
-.IP "\fB\-fdump\-rtl\-split4\fR" 4
-.IX Item "-fdump-rtl-split4"
-.IP "\fB\-fdump\-rtl\-split5\fR" 4
-.IX Item "-fdump-rtl-split5"
-.PD
-\&\fB\-fdump\-rtl\-split1\fR, \fB\-fdump\-rtl\-split2\fR,
-\&\fB\-fdump\-rtl\-split3\fR, \fB\-fdump\-rtl\-split4\fR and
-\&\fB\-fdump\-rtl\-split5\fR enable dumping after five rounds of
-instruction splitting.
-.IP "\fB\-fdump\-rtl\-sms\fR" 4
-.IX Item "-fdump-rtl-sms"
-Dump after modulo scheduling. This pass is only run on some
-architectures.
-.IP "\fB\-fdump\-rtl\-stack\fR" 4
-.IX Item "-fdump-rtl-stack"
-Dump after conversion from \s-1GCC\s0's \*(L"flat register file\*(R" registers to the
-x87's stack-like registers. This pass is only run on x86 variants.
-.IP "\fB\-fdump\-rtl\-subreg1\fR" 4
-.IX Item "-fdump-rtl-subreg1"
-.PD 0
-.IP "\fB\-fdump\-rtl\-subreg2\fR" 4
-.IX Item "-fdump-rtl-subreg2"
-.PD
-\&\fB\-fdump\-rtl\-subreg1\fR and \fB\-fdump\-rtl\-subreg2\fR enable dumping after
-the two subreg expansion passes.
-.IP "\fB\-fdump\-rtl\-unshare\fR" 4
-.IX Item "-fdump-rtl-unshare"
-Dump after all rtl has been unshared.
-.IP "\fB\-fdump\-rtl\-vartrack\fR" 4
-.IX Item "-fdump-rtl-vartrack"
-Dump after variable tracking.
-.IP "\fB\-fdump\-rtl\-vregs\fR" 4
-.IX Item "-fdump-rtl-vregs"
-Dump after converting virtual registers to hard registers.
-.IP "\fB\-fdump\-rtl\-web\fR" 4
-.IX Item "-fdump-rtl-web"
-Dump after live range splitting.
-.IP "\fB\-fdump\-rtl\-regclass\fR" 4
-.IX Item "-fdump-rtl-regclass"
-.PD 0
-.IP "\fB\-fdump\-rtl\-subregs_of_mode_init\fR" 4
-.IX Item "-fdump-rtl-subregs_of_mode_init"
-.IP "\fB\-fdump\-rtl\-subregs_of_mode_finish\fR" 4
-.IX Item "-fdump-rtl-subregs_of_mode_finish"
-.IP "\fB\-fdump\-rtl\-dfinit\fR" 4
-.IX Item "-fdump-rtl-dfinit"
-.IP "\fB\-fdump\-rtl\-dfinish\fR" 4
-.IX Item "-fdump-rtl-dfinish"
-.PD
-These dumps are defined but always produce empty files.
-.IP "\fB\-da\fR" 4
-.IX Item "-da"
-.PD 0
-.IP "\fB\-fdump\-rtl\-all\fR" 4
-.IX Item "-fdump-rtl-all"
-.PD
-Produce all the dumps listed above.
-.IP "\fB\-dA\fR" 4
-.IX Item "-dA"
-Annotate the assembler output with miscellaneous debugging information.
-.IP "\fB\-dD\fR" 4
-.IX Item "-dD"
-Dump all macro definitions, at the end of preprocessing, in addition to
-normal output.
-.IP "\fB\-dH\fR" 4
-.IX Item "-dH"
-Produce a core dump whenever an error occurs.
-.IP "\fB\-dp\fR" 4
-.IX Item "-dp"
-Annotate the assembler output with a comment indicating which
-pattern and alternative is used. The length of each instruction is
-also printed.
-.IP "\fB\-dP\fR" 4
-.IX Item "-dP"
-Dump the \s-1RTL\s0 in the assembler output as a comment before each instruction.
-Also turns on \fB\-dp\fR annotation.
-.IP "\fB\-dx\fR" 4
-.IX Item "-dx"
-Just generate \s-1RTL\s0 for a function instead of compiling it. Usually used
-with \fB\-fdump\-rtl\-expand\fR.
-.RE
-.RS 4
-.RE
-.IP "\fB\-fdump\-noaddr\fR" 4
-.IX Item "-fdump-noaddr"
-When doing debugging dumps, suppress address output. This makes it more
-feasible to use diff on debugging dumps for compiler invocations with
-different compiler binaries and/or different
-text / bss / data / heap / stack / dso start locations.
-.IP "\fB\-fdump\-unnumbered\fR" 4
-.IX Item "-fdump-unnumbered"
-When doing debugging dumps, suppress instruction numbers and address output.
-This makes it more feasible to use diff on debugging dumps for compiler
-invocations with different options, in particular with and without
-\&\fB\-g\fR.
-.IP "\fB\-fdump\-unnumbered\-links\fR" 4
-.IX Item "-fdump-unnumbered-links"
-When doing debugging dumps (see \fB\-d\fR option above), suppress
-instruction numbers for the links to the previous and next instructions
-in a sequence.
-.IP "\fB\-fdump\-translation\-unit\fR (\*(C+ only)" 4
-.IX Item "-fdump-translation-unit ( only)"
-.PD 0
-.IP "\fB\-fdump\-translation\-unit\-\fR\fIoptions\fR\fB \fR(\*(C+ only)" 4
-.IX Item "-fdump-translation-unit-options ( only)"
-.PD
-Dump a representation of the tree structure for the entire translation
-unit to a file. The file name is made by appending \fI.tu\fR to the
-source file name, and the file is created in the same directory as the
-output file. If the \fB\-\fR\fIoptions\fR form is used, \fIoptions\fR
-controls the details of the dump as described for the
-\&\fB\-fdump\-tree\fR options.
-.IP "\fB\-fdump\-class\-hierarchy\fR (\*(C+ only)" 4
-.IX Item "-fdump-class-hierarchy ( only)"
-.PD 0
-.IP "\fB\-fdump\-class\-hierarchy\-\fR\fIoptions\fR\fB \fR(\*(C+ only)" 4
-.IX Item "-fdump-class-hierarchy-options ( only)"
-.PD
-Dump a representation of each class's hierarchy and virtual function
-table layout to a file. The file name is made by appending
-\&\fI.class\fR to the source file name, and the file is created in the
-same directory as the output file. If the \fB\-\fR\fIoptions\fR form
-is used, \fIoptions\fR controls the details of the dump as described
-for the \fB\-fdump\-tree\fR options.
-.IP "\fB\-fdump\-ipa\-\fR\fIswitch\fR" 4
-.IX Item "-fdump-ipa-switch"
-Control the dumping at various stages of inter-procedural analysis
-language tree to a file. The file name is generated by appending a
-switch specific suffix to the source file name, and the file is created
-in the same directory as the output file. The following dumps are
-possible:
-.RS 4
-.IP "\fBall\fR" 4
-.IX Item "all"
-Enables all inter-procedural analysis dumps.
-.IP "\fBcgraph\fR" 4
-.IX Item "cgraph"
-Dumps information about call-graph optimization, unused function removal,
-and inlining decisions.
-.IP "\fBinline\fR" 4
-.IX Item "inline"
-Dump after function inlining.
-.RE
-.RS 4
-.RE
-.IP "\fB\-fdump\-passes\fR" 4
-.IX Item "-fdump-passes"
-Dump the list of optimization passes that are turned on and off by
-the current command-line options.
-.IP "\fB\-fdump\-statistics\-\fR\fIoption\fR" 4
-.IX Item "-fdump-statistics-option"
-Enable and control dumping of pass statistics in a separate file. The
-file name is generated by appending a suffix ending in
-\&\fB.statistics\fR to the source file name, and the file is created in
-the same directory as the output file. If the \fB\-\fR\fIoption\fR
-form is used, \fB\-stats\fR causes counters to be summed over the
-whole compilation unit while \fB\-details\fR dumps every event as
-the passes generate them. The default with no option is to sum
-counters for each function compiled.
-.IP "\fB\-fdump\-tree\-\fR\fIswitch\fR" 4
-.IX Item "-fdump-tree-switch"
-.PD 0
-.IP "\fB\-fdump\-tree\-\fR\fIswitch\fR\fB\-\fR\fIoptions\fR" 4
-.IX Item "-fdump-tree-switch-options"
-.IP "\fB\-fdump\-tree\-\fR\fIswitch\fR\fB\-\fR\fIoptions\fR\fB=\fR\fIfilename\fR" 4
-.IX Item "-fdump-tree-switch-options=filename"
-.PD
-Control the dumping at various stages of processing the intermediate
-language tree to a file. The file name is generated by appending a
-switch-specific suffix to the source file name, and the file is
-created in the same directory as the output file. In case of
-\&\fB=\fR\fIfilename\fR option, the dump is output on the given file
-instead of the auto named dump files. If the \fB\-\fR\fIoptions\fR
-form is used, \fIoptions\fR is a list of \fB\-\fR separated options
-which control the details of the dump. Not all options are applicable
-to all dumps; those that are not meaningful are ignored. The
-following options are available
-.RS 4
-.IP "\fBaddress\fR" 4
-.IX Item "address"
-Print the address of each node. Usually this is not meaningful as it
-changes according to the environment and source file. Its primary use
-is for tying up a dump file with a debug environment.
-.IP "\fBasmname\fR" 4
-.IX Item "asmname"
-If \f(CW\*(C`DECL_ASSEMBLER_NAME\*(C'\fR has been set for a given decl, use that
-in the dump instead of \f(CW\*(C`DECL_NAME\*(C'\fR. Its primary use is ease of
-use working backward from mangled names in the assembly file.
-.IP "\fBslim\fR" 4
-.IX Item "slim"
-When dumping front-end intermediate representations, inhibit dumping
-of members of a scope or body of a function merely because that scope
-has been reached. Only dump such items when they are directly reachable
-by some other path.
-.Sp
-When dumping pretty-printed trees, this option inhibits dumping the
-bodies of control structures.
-.Sp
-When dumping \s-1RTL,\s0 print the \s-1RTL\s0 in slim (condensed) form instead of
-the default LISP-like representation.
-.IP "\fBraw\fR" 4
-.IX Item "raw"
-Print a raw representation of the tree. By default, trees are
-pretty-printed into a C\-like representation.
-.IP "\fBdetails\fR" 4
-.IX Item "details"
-Enable more detailed dumps (not honored by every dump option). Also
-include information from the optimization passes.
-.IP "\fBstats\fR" 4
-.IX Item "stats"
-Enable dumping various statistics about the pass (not honored by every dump
-option).
-.IP "\fBblocks\fR" 4
-.IX Item "blocks"
-Enable showing basic block boundaries (disabled in raw dumps).
-.IP "\fBgraph\fR" 4
-.IX Item "graph"
-For each of the other indicated dump files (\fB\-fdump\-rtl\-\fR\fIpass\fR),
-dump a representation of the control flow graph suitable for viewing with
-GraphViz to \fI\fIfile\fI.\fIpassid\fI.\fIpass\fI.dot\fR. Each function in
-the file is pretty-printed as a subgraph, so that GraphViz can render them
-all in a single plot.
-.Sp
-This option currently only works for \s-1RTL\s0 dumps, and the \s-1RTL\s0 is always
-dumped in slim form.
-.IP "\fBvops\fR" 4
-.IX Item "vops"
-Enable showing virtual operands for every statement.
-.IP "\fBlineno\fR" 4
-.IX Item "lineno"
-Enable showing line numbers for statements.
-.IP "\fBuid\fR" 4
-.IX Item "uid"
-Enable showing the unique \s-1ID \s0(\f(CW\*(C`DECL_UID\*(C'\fR) for each variable.
-.IP "\fBverbose\fR" 4
-.IX Item "verbose"
-Enable showing the tree dump for each statement.
-.IP "\fBeh\fR" 4
-.IX Item "eh"
-Enable showing the \s-1EH\s0 region number holding each statement.
-.IP "\fBscev\fR" 4
-.IX Item "scev"
-Enable showing scalar evolution analysis details.
-.IP "\fBoptimized\fR" 4
-.IX Item "optimized"
-Enable showing optimization information (only available in certain
-passes).
-.IP "\fBmissed\fR" 4
-.IX Item "missed"
-Enable showing missed optimization information (only available in certain
-passes).
-.IP "\fBnotes\fR" 4
-.IX Item "notes"
-Enable other detailed optimization information (only available in
-certain passes).
-.IP "\fB=\fR\fIfilename\fR" 4
-.IX Item "=filename"
-Instead of an auto named dump file, output into the given file
-name. The file names \fIstdout\fR and \fIstderr\fR are treated
-specially and are considered already open standard streams. For
-example,
-.Sp
-.Vb 2
-\& gcc \-O2 \-ftree\-vectorize \-fdump\-tree\-vect\-blocks=foo.dump
-\& \-fdump\-tree\-pre=stderr file.c
-.Ve
-.Sp
-outputs vectorizer dump into \fIfoo.dump\fR, while the \s-1PRE\s0 dump is
-output on to \fIstderr\fR. If two conflicting dump filenames are
-given for the same pass, then the latter option overrides the earlier
-one.
-.IP "\fBall\fR" 4
-.IX Item "all"
-Turn on all options, except \fBraw\fR, \fBslim\fR, \fBverbose\fR
-and \fBlineno\fR.
-.IP "\fBoptall\fR" 4
-.IX Item "optall"
-Turn on all optimization options, i.e., \fBoptimized\fR,
-\&\fBmissed\fR, and \fBnote\fR.
-.RE
-.RS 4
-.Sp
-The following tree dumps are possible:
-.IP "\fBoriginal\fR" 4
-.IX Item "original"
-Dump before any tree based optimization, to \fI\fIfile\fI.original\fR.
-.IP "\fBoptimized\fR" 4
-.IX Item "optimized"
-Dump after all tree based optimization, to \fI\fIfile\fI.optimized\fR.
-.IP "\fBgimple\fR" 4
-.IX Item "gimple"
-Dump each function before and after the gimplification pass to a file. The
-file name is made by appending \fI.gimple\fR to the source file name.
-.IP "\fBcfg\fR" 4
-.IX Item "cfg"
-Dump the control flow graph of each function to a file. The file name is
-made by appending \fI.cfg\fR to the source file name.
-.IP "\fBch\fR" 4
-.IX Item "ch"
-Dump each function after copying loop headers. The file name is made by
-appending \fI.ch\fR to the source file name.
-.IP "\fBssa\fR" 4
-.IX Item "ssa"
-Dump \s-1SSA\s0 related information to a file. The file name is made by appending
-\&\fI.ssa\fR to the source file name.
-.IP "\fBalias\fR" 4
-.IX Item "alias"
-Dump aliasing information for each function. The file name is made by
-appending \fI.alias\fR to the source file name.
-.IP "\fBccp\fR" 4
-.IX Item "ccp"
-Dump each function after \s-1CCP. \s0 The file name is made by appending
-\&\fI.ccp\fR to the source file name.
-.IP "\fBstoreccp\fR" 4
-.IX Item "storeccp"
-Dump each function after STORE-CCP. The file name is made by appending
-\&\fI.storeccp\fR to the source file name.
-.IP "\fBpre\fR" 4
-.IX Item "pre"
-Dump trees after partial redundancy elimination. The file name is made
-by appending \fI.pre\fR to the source file name.
-.IP "\fBfre\fR" 4
-.IX Item "fre"
-Dump trees after full redundancy elimination. The file name is made
-by appending \fI.fre\fR to the source file name.
-.IP "\fBcopyprop\fR" 4
-.IX Item "copyprop"
-Dump trees after copy propagation. The file name is made
-by appending \fI.copyprop\fR to the source file name.
-.IP "\fBstore_copyprop\fR" 4
-.IX Item "store_copyprop"
-Dump trees after store copy-propagation. The file name is made
-by appending \fI.store_copyprop\fR to the source file name.
-.IP "\fBdce\fR" 4
-.IX Item "dce"
-Dump each function after dead code elimination. The file name is made by
-appending \fI.dce\fR to the source file name.
-.IP "\fBsra\fR" 4
-.IX Item "sra"
-Dump each function after performing scalar replacement of aggregates. The
-file name is made by appending \fI.sra\fR to the source file name.
-.IP "\fBsink\fR" 4
-.IX Item "sink"
-Dump each function after performing code sinking. The file name is made
-by appending \fI.sink\fR to the source file name.
-.IP "\fBdom\fR" 4
-.IX Item "dom"
-Dump each function after applying dominator tree optimizations. The file
-name is made by appending \fI.dom\fR to the source file name.
-.IP "\fBdse\fR" 4
-.IX Item "dse"
-Dump each function after applying dead store elimination. The file
-name is made by appending \fI.dse\fR to the source file name.
-.IP "\fBphiopt\fR" 4
-.IX Item "phiopt"
-Dump each function after optimizing \s-1PHI\s0 nodes into straightline code. The file
-name is made by appending \fI.phiopt\fR to the source file name.
-.IP "\fBforwprop\fR" 4
-.IX Item "forwprop"
-Dump each function after forward propagating single use variables. The file
-name is made by appending \fI.forwprop\fR to the source file name.
-.IP "\fBcopyrename\fR" 4
-.IX Item "copyrename"
-Dump each function after applying the copy rename optimization. The file
-name is made by appending \fI.copyrename\fR to the source file name.
-.IP "\fBnrv\fR" 4
-.IX Item "nrv"
-Dump each function after applying the named return value optimization on
-generic trees. The file name is made by appending \fI.nrv\fR to the source
-file name.
-.IP "\fBvect\fR" 4
-.IX Item "vect"
-Dump each function after applying vectorization of loops. The file name is
-made by appending \fI.vect\fR to the source file name.
-.IP "\fBslp\fR" 4
-.IX Item "slp"
-Dump each function after applying vectorization of basic blocks. The file name
-is made by appending \fI.slp\fR to the source file name.
-.IP "\fBvrp\fR" 4
-.IX Item "vrp"
-Dump each function after Value Range Propagation (\s-1VRP\s0). The file name
-is made by appending \fI.vrp\fR to the source file name.
-.IP "\fBall\fR" 4
-.IX Item "all"
-Enable all the available tree dumps with the flags provided in this option.
-.RE
-.RS 4
-.RE
-.IP "\fB\-fopt\-info\fR" 4
-.IX Item "-fopt-info"
-.PD 0
-.IP "\fB\-fopt\-info\-\fR\fIoptions\fR" 4
-.IX Item "-fopt-info-options"
-.IP "\fB\-fopt\-info\-\fR\fIoptions\fR\fB=\fR\fIfilename\fR" 4
-.IX Item "-fopt-info-options=filename"
-.PD
-Controls optimization dumps from various optimization passes. If the
-\&\fB\-\fR\fIoptions\fR form is used, \fIoptions\fR is a list of
-\&\fB\-\fR separated options to select the dump details and
-optimizations. If \fIoptions\fR is not specified, it defaults to
-\&\fBoptimized\fR for details and \fBoptall\fR for optimization
-groups. If the \fIfilename\fR is not specified, it defaults to
-\&\fIstderr\fR. Note that the output \fIfilename\fR will be overwritten
-in case of multiple translation units. If a combined output from
-multiple translation units is desired, \fIstderr\fR should be used
-instead.
-.Sp
-The options can be divided into two groups, 1) options describing the
-verbosity of the dump, and 2) options describing which optimizations
-should be included. The options from both the groups can be freely
-mixed as they are non-overlapping. However, in case of any conflicts,
-the latter options override the earlier options on the command
-line. Though multiple \-fopt\-info options are accepted, only one of
-them can have \fB=filename\fR. If other filenames are provided then
-all but the first one are ignored.
-.Sp
-The dump verbosity has the following options
-.RS 4
-.IP "\fBoptimized\fR" 4
-.IX Item "optimized"
-Print information when an optimization is successfully applied. It is
-up to a pass to decide which information is relevant. For example, the
-vectorizer passes print the source location of loops which got
-successfully vectorized.
-.IP "\fBmissed\fR" 4
-.IX Item "missed"
-Print information about missed optimizations. Individual passes
-control which information to include in the output. For example,
-.Sp
-.Vb 1
-\& gcc \-O2 \-ftree\-vectorize \-fopt\-info\-vec\-missed
-.Ve
-.Sp
-will print information about missed optimization opportunities from
-vectorization passes on stderr.
-.IP "\fBnote\fR" 4
-.IX Item "note"
-Print verbose information about optimizations, such as certain
-transformations, more detailed messages about decisions etc.
-.IP "\fBall\fR" 4
-.IX Item "all"
-Print detailed optimization information. This includes
-\&\fIoptimized\fR, \fImissed\fR, and \fInote\fR.
-.RE
-.RS 4
-.Sp
-The second set of options describes a group of optimizations and may
-include one or more of the following.
-.IP "\fBipa\fR" 4
-.IX Item "ipa"
-Enable dumps from all interprocedural optimizations.
-.IP "\fBloop\fR" 4
-.IX Item "loop"
-Enable dumps from all loop optimizations.
-.IP "\fBinline\fR" 4
-.IX Item "inline"
-Enable dumps from all inlining optimizations.
-.IP "\fBvec\fR" 4
-.IX Item "vec"
-Enable dumps from all vectorization optimizations.
-.IP "\fBoptall\fR" 4
-.IX Item "optall"
-Enable dumps from all optimizations. This is a superset of
-the optimization groups listed above.
-.RE
-.RS 4
-.Sp
-For example,
-.Sp
-.Vb 1
-\& gcc \-O3 \-fopt\-info\-missed=missed.all
-.Ve
-.Sp
-outputs missed optimization report from all the passes into
-\&\fImissed.all\fR.
-.Sp
-As another example,
-.Sp
-.Vb 1
-\& gcc \-O3 \-fopt\-info\-inline\-optimized\-missed=inline.txt
-.Ve
-.Sp
-will output information about missed optimizations as well as
-optimized locations from all the inlining passes into
-\&\fIinline.txt\fR.
-.Sp
-If the \fIfilename\fR is provided, then the dumps from all the
-applicable optimizations are concatenated into the \fIfilename\fR.
-Otherwise the dump is output onto \fIstderr\fR. If \fIoptions\fR is
-omitted, it defaults to \fBall-optall\fR, which means dump all
-available optimization info from all the passes. In the following
-example, all optimization info is output on to \fIstderr\fR.
-.Sp
-.Vb 1
-\& gcc \-O3 \-fopt\-info
-.Ve
-.Sp
-Note that \fB\-fopt\-info\-vec\-missed\fR behaves the same as
-\&\fB\-fopt\-info\-missed\-vec\fR.
-.Sp
-As another example, consider
-.Sp
-.Vb 1
-\& gcc \-fopt\-info\-vec\-missed=vec.miss \-fopt\-info\-loop\-optimized=loop.opt
-.Ve
-.Sp
-Here the two output filenames \fIvec.miss\fR and \fIloop.opt\fR are
-in conflict since only one output file is allowed. In this case, only
-the first option takes effect and the subsequent options are
-ignored. Thus only the \fIvec.miss\fR is produced which contains
-dumps from the vectorizer about missed opportunities.
-.RE
-.IP "\fB\-frandom\-seed=\fR\fIstring\fR" 4
-.IX Item "-frandom-seed=string"
-This option provides a seed that \s-1GCC\s0 uses in place of
-random numbers in generating certain symbol names
-that have to be different in every compiled file. It is also used to
-place unique stamps in coverage data files and the object files that
-produce them. You can use the \fB\-frandom\-seed\fR option to produce
-reproducibly identical object files.
-.Sp
-The \fIstring\fR should be different for every file you compile.
-.IP "\fB\-fsched\-verbose=\fR\fIn\fR" 4
-.IX Item "-fsched-verbose=n"
-On targets that use instruction scheduling, this option controls the
-amount of debugging output the scheduler prints. This information is
-written to standard error, unless \fB\-fdump\-rtl\-sched1\fR or
-\&\fB\-fdump\-rtl\-sched2\fR is specified, in which case it is output
-to the usual dump listing file, \fI.sched1\fR or \fI.sched2\fR
-respectively. However for \fIn\fR greater than nine, the output is
-always printed to standard error.
-.Sp
-For \fIn\fR greater than zero, \fB\-fsched\-verbose\fR outputs the
-same information as \fB\-fdump\-rtl\-sched1\fR and \fB\-fdump\-rtl\-sched2\fR.
-For \fIn\fR greater than one, it also output basic block probabilities,
-detailed ready list information and unit/insn info. For \fIn\fR greater
-than two, it includes \s-1RTL\s0 at abort point, control-flow and regions info.
-And for \fIn\fR over four, \fB\-fsched\-verbose\fR also includes
-dependence info.
-.IP "\fB\-save\-temps\fR" 4
-.IX Item "-save-temps"
-.PD 0
-.IP "\fB\-save\-temps=cwd\fR" 4
-.IX Item "-save-temps=cwd"
-.PD
-Store the usual \*(L"temporary\*(R" intermediate files permanently; place them
-in the current directory and name them based on the source file. Thus,
-compiling \fIfoo.c\fR with \fB\-c \-save\-temps\fR produces files
-\&\fIfoo.i\fR and \fIfoo.s\fR, as well as \fIfoo.o\fR. This creates a
-preprocessed \fIfoo.i\fR output file even though the compiler now
-normally uses an integrated preprocessor.
-.Sp
-When used in combination with the \fB\-x\fR command-line option,
-\&\fB\-save\-temps\fR is sensible enough to avoid over writing an
-input source file with the same extension as an intermediate file.
-The corresponding intermediate file may be obtained by renaming the
-source file before using \fB\-save\-temps\fR.
-.Sp
-If you invoke \s-1GCC\s0 in parallel, compiling several different source
-files that share a common base name in different subdirectories or the
-same source file compiled for multiple output destinations, it is
-likely that the different parallel compilers will interfere with each
-other, and overwrite the temporary files. For instance:
-.Sp
-.Vb 2
-\& gcc \-save\-temps \-o outdir1/foo.o indir1/foo.c&
-\& gcc \-save\-temps \-o outdir2/foo.o indir2/foo.c&
-.Ve
-.Sp
-may result in \fIfoo.i\fR and \fIfoo.o\fR being written to
-simultaneously by both compilers.
-.IP "\fB\-save\-temps=obj\fR" 4
-.IX Item "-save-temps=obj"
-Store the usual \*(L"temporary\*(R" intermediate files permanently. If the
-\&\fB\-o\fR option is used, the temporary files are based on the
-object file. If the \fB\-o\fR option is not used, the
-\&\fB\-save\-temps=obj\fR switch behaves like \fB\-save\-temps\fR.
-.Sp
-For example:
-.Sp
-.Vb 3
-\& gcc \-save\-temps=obj \-c foo.c
-\& gcc \-save\-temps=obj \-c bar.c \-o dir/xbar.o
-\& gcc \-save\-temps=obj foobar.c \-o dir2/yfoobar
-.Ve
-.Sp
-creates \fIfoo.i\fR, \fIfoo.s\fR, \fIdir/xbar.i\fR,
-\&\fIdir/xbar.s\fR, \fIdir2/yfoobar.i\fR, \fIdir2/yfoobar.s\fR, and
-\&\fIdir2/yfoobar.o\fR.
-.IP "\fB\-time\fR[\fB=\fR\fIfile\fR]" 4
-.IX Item "-time[=file]"
-Report the \s-1CPU\s0 time taken by each subprocess in the compilation
-sequence. For C source files, this is the compiler proper and assembler
-(plus the linker if linking is done).
-.Sp
-Without the specification of an output file, the output looks like this:
-.Sp
-.Vb 2
-\& # cc1 0.12 0.01
-\& # as 0.00 0.01
-.Ve
-.Sp
-The first number on each line is the \*(L"user time\*(R", that is time spent
-executing the program itself. The second number is \*(L"system time\*(R",
-time spent executing operating system routines on behalf of the program.
-Both numbers are in seconds.
-.Sp
-With the specification of an output file, the output is appended to the
-named file, and it looks like this:
-.Sp
-.Vb 2
-\& 0.12 0.01 cc1 <options>
-\& 0.00 0.01 as <options>
-.Ve
-.Sp
-The \*(L"user time\*(R" and the \*(L"system time\*(R" are moved before the program
-name, and the options passed to the program are displayed, so that one
-can later tell what file was being compiled, and with which options.
-.IP "\fB\-fvar\-tracking\fR" 4
-.IX Item "-fvar-tracking"
-Run variable tracking pass. It computes where variables are stored at each
-position in code. Better debugging information is then generated
-(if the debugging information format supports this information).
-.Sp
-It is enabled by default when compiling with optimization (\fB\-Os\fR,
-\&\fB\-O\fR, \fB\-O2\fR, ...), debugging information (\fB\-g\fR) and
-the debug info format supports it.
-.IP "\fB\-fvar\-tracking\-assignments\fR" 4
-.IX Item "-fvar-tracking-assignments"
-Annotate assignments to user variables early in the compilation and
-attempt to carry the annotations over throughout the compilation all the
-way to the end, in an attempt to improve debug information while
-optimizing. Use of \fB\-gdwarf\-4\fR is recommended along with it.
-.Sp
-It can be enabled even if var-tracking is disabled, in which case
-annotations are created and maintained, but discarded at the end.
-.IP "\fB\-fvar\-tracking\-assignments\-toggle\fR" 4
-.IX Item "-fvar-tracking-assignments-toggle"
-Toggle \fB\-fvar\-tracking\-assignments\fR, in the same way that
-\&\fB\-gtoggle\fR toggles \fB\-g\fR.
-.IP "\fB\-print\-file\-name=\fR\fIlibrary\fR" 4
-.IX Item "-print-file-name=library"
-Print the full absolute name of the library file \fIlibrary\fR that
-would be used when linking\-\-\-and don't do anything else. With this
-option, \s-1GCC\s0 does not compile or link anything; it just prints the
-file name.
-.IP "\fB\-print\-multi\-directory\fR" 4
-.IX Item "-print-multi-directory"
-Print the directory name corresponding to the multilib selected by any
-other switches present in the command line. This directory is supposed
-to exist in \fB\s-1GCC_EXEC_PREFIX\s0\fR.
-.IP "\fB\-print\-multi\-lib\fR" 4
-.IX Item "-print-multi-lib"
-Print the mapping from multilib directory names to compiler switches
-that enable them. The directory name is separated from the switches by
-\&\fB;\fR, and each switch starts with an \fB@\fR instead of the
-\&\fB\-\fR, without spaces between multiple switches. This is supposed to
-ease shell processing.
-.IP "\fB\-print\-multi\-os\-directory\fR" 4
-.IX Item "-print-multi-os-directory"
-Print the path to \s-1OS\s0 libraries for the selected
-multilib, relative to some \fIlib\fR subdirectory. If \s-1OS\s0 libraries are
-present in the \fIlib\fR subdirectory and no multilibs are used, this is
-usually just \fI.\fR, if \s-1OS\s0 libraries are present in \fIlib\fIsuffix\fI\fR
-sibling directories this prints e.g. \fI../lib64\fR, \fI../lib\fR or
-\&\fI../lib32\fR, or if \s-1OS\s0 libraries are present in \fIlib/\fIsubdir\fI\fR
-subdirectories it prints e.g. \fIamd64\fR, \fIsparcv9\fR or \fIev6\fR.
-.IP "\fB\-print\-multiarch\fR" 4
-.IX Item "-print-multiarch"
-Print the path to \s-1OS\s0 libraries for the selected multiarch,
-relative to some \fIlib\fR subdirectory.
-.IP "\fB\-print\-prog\-name=\fR\fIprogram\fR" 4
-.IX Item "-print-prog-name=program"
-Like \fB\-print\-file\-name\fR, but searches for a program such as \fBcpp\fR.
-.IP "\fB\-print\-libgcc\-file\-name\fR" 4
-.IX Item "-print-libgcc-file-name"
-Same as \fB\-print\-file\-name=libgcc.a\fR.
-.Sp
-This is useful when you use \fB\-nostdlib\fR or \fB\-nodefaultlibs\fR
-but you do want to link with \fIlibgcc.a\fR. You can do:
-.Sp
-.Vb 1
-\& gcc \-nostdlib <files>... \`gcc \-print\-libgcc\-file\-name\`
-.Ve
-.IP "\fB\-print\-search\-dirs\fR" 4
-.IX Item "-print-search-dirs"
-Print the name of the configured installation directory and a list of
-program and library directories \fBgcc\fR searches\-\-\-and don't do anything else.
-.Sp
-This is useful when \fBgcc\fR prints the error message
-\&\fBinstallation problem, cannot exec cpp0: No such file or directory\fR.
-To resolve this you either need to put \fIcpp0\fR and the other compiler
-components where \fBgcc\fR expects to find them, or you can set the environment
-variable \fB\s-1GCC_EXEC_PREFIX\s0\fR to the directory where you installed them.
-Don't forget the trailing \fB/\fR.
-.IP "\fB\-print\-sysroot\fR" 4
-.IX Item "-print-sysroot"
-Print the target sysroot directory that is used during
-compilation. This is the target sysroot specified either at configure
-time or using the \fB\-\-sysroot\fR option, possibly with an extra
-suffix that depends on compilation options. If no target sysroot is
-specified, the option prints nothing.
-.IP "\fB\-print\-sysroot\-headers\-suffix\fR" 4
-.IX Item "-print-sysroot-headers-suffix"
-Print the suffix added to the target sysroot when searching for
-headers, or give an error if the compiler is not configured with such
-a suffix\-\-\-and don't do anything else.
-.IP "\fB\-dumpmachine\fR" 4
-.IX Item "-dumpmachine"
-Print the compiler's target machine (for example,
-\&\fBi686\-pc\-linux\-gnu\fR)\-\-\-and don't do anything else.
-.IP "\fB\-dumpversion\fR" 4
-.IX Item "-dumpversion"
-Print the compiler version (for example, \fB3.0\fR)\-\-\-and don't do
-anything else.
-.IP "\fB\-dumpspecs\fR" 4
-.IX Item "-dumpspecs"
-Print the compiler's built-in specs\-\-\-and don't do anything else. (This
-is used when \s-1GCC\s0 itself is being built.)
-.IP "\fB\-fno\-eliminate\-unused\-debug\-types\fR" 4
-.IX Item "-fno-eliminate-unused-debug-types"
-Normally, when producing \s-1DWARF 2\s0 output, \s-1GCC\s0 avoids producing debug symbol
-output for types that are nowhere used in the source file being compiled.
-Sometimes it is useful to have \s-1GCC\s0 emit debugging
-information for all types declared in a compilation
-unit, regardless of whether or not they are actually used
-in that compilation unit, for example
-if, in the debugger, you want to cast a value to a type that is
-not actually used in your program (but is declared). More often,
-however, this results in a significant amount of wasted space.
-.SS "Options That Control Optimization"
-.IX Subsection "Options That Control Optimization"
-These options control various sorts of optimizations.
-.PP
-Without any optimization option, the compiler's goal is to reduce the
-cost of compilation and to make debugging produce the expected
-results. Statements are independent: if you stop the program with a
-breakpoint between statements, you can then assign a new value to any
-variable or change the program counter to any other statement in the
-function and get exactly the results you expect from the source
-code.
-.PP
-Turning on optimization flags makes the compiler attempt to improve
-the performance and/or code size at the expense of compilation time
-and possibly the ability to debug the program.
-.PP
-The compiler performs optimization based on the knowledge it has of the
-program. Compiling multiple files at once to a single output file mode allows
-the compiler to use information gained from all of the files when compiling
-each of them.
-.PP
-Not all optimizations are controlled directly by a flag. Only
-optimizations that have a flag are listed in this section.
-.PP
-Most optimizations are only enabled if an \fB\-O\fR level is set on
-the command line. Otherwise they are disabled, even if individual
-optimization flags are specified.
-.PP
-Depending on the target and how \s-1GCC\s0 was configured, a slightly different
-set of optimizations may be enabled at each \fB\-O\fR level than
-those listed here. You can invoke \s-1GCC\s0 with \fB\-Q \-\-help=optimizers\fR
-to find out the exact set of optimizations that are enabled at each level.
-.IP "\fB\-O\fR" 4
-.IX Item "-O"
-.PD 0
-.IP "\fB\-O1\fR" 4
-.IX Item "-O1"
-.PD
-Optimize. Optimizing compilation takes somewhat more time, and a lot
-more memory for a large function.
-.Sp
-With \fB\-O\fR, the compiler tries to reduce code size and execution
-time, without performing any optimizations that take a great deal of
-compilation time.
-.Sp
-\&\fB\-O\fR turns on the following optimization flags:
-.Sp
-\&\fB\-fauto\-inc\-dec
-\&\-fcompare\-elim
-\&\-fcprop\-registers
-\&\-fdce
-\&\-fdefer\-pop
-\&\-fdelayed\-branch
-\&\-fdse
-\&\-fguess\-branch\-probability
-\&\-fif\-conversion2
-\&\-fif\-conversion
-\&\-fipa\-pure\-const
-\&\-fipa\-profile
-\&\-fipa\-reference
-\&\-fmerge\-constants
-\&\-fsplit\-wide\-types
-\&\-ftree\-bit\-ccp
-\&\-ftree\-builtin\-call\-dce
-\&\-ftree\-ccp
-\&\-ftree\-ch
-\&\-ftree\-copyrename
-\&\-ftree\-dce
-\&\-ftree\-dominator\-opts
-\&\-ftree\-dse
-\&\-ftree\-forwprop
-\&\-ftree\-fre
-\&\-ftree\-phiprop
-\&\-ftree\-slsr
-\&\-ftree\-sra
-\&\-ftree\-pta
-\&\-ftree\-ter
-\&\-funit\-at\-a\-time\fR
-.Sp
-\&\fB\-O\fR also turns on \fB\-fomit\-frame\-pointer\fR on machines
-where doing so does not interfere with debugging.
-.IP "\fB\-O2\fR" 4
-.IX Item "-O2"
-Optimize even more. \s-1GCC\s0 performs nearly all supported optimizations
-that do not involve a space-speed tradeoff.
-As compared to \fB\-O\fR, this option increases both compilation time
-and the performance of the generated code.
-.Sp
-\&\fB\-O2\fR turns on all optimization flags specified by \fB\-O\fR. It
-also turns on the following optimization flags:
-\&\fB\-fthread\-jumps
-\&\-falign\-functions \-falign\-jumps
-\&\-falign\-loops \-falign\-labels
-\&\-fcaller\-saves
-\&\-fcrossjumping
-\&\-fcse\-follow\-jumps \-fcse\-skip\-blocks
-\&\-fdelete\-null\-pointer\-checks
-\&\-fdevirtualize \-fdevirtualize\-speculatively
-\&\-fexpensive\-optimizations
-\&\-fgcse \-fgcse\-lm
-\&\-fhoist\-adjacent\-loads
-\&\-finline\-small\-functions
-\&\-findirect\-inlining
-\&\-fipa\-sra
-\&\-fisolate\-erroneous\-paths\-dereference
-\&\-foptimize\-sibling\-calls
-\&\-fpartial\-inlining
-\&\-fpeephole2
-\&\-freorder\-blocks \-freorder\-functions
-\&\-frerun\-cse\-after\-loop
-\&\-fsched\-interblock \-fsched\-spec
-\&\-fschedule\-insns \-fschedule\-insns2
-\&\-fstrict\-aliasing \-fstrict\-overflow
-\&\-ftree\-switch\-conversion \-ftree\-tail\-merge
-\&\-ftree\-pre
-\&\-ftree\-vrp\fR
-.Sp
-Please note the warning under \fB\-fgcse\fR about
-invoking \fB\-O2\fR on programs that use computed gotos.
-.IP "\fB\-O3\fR" 4
-.IX Item "-O3"
-Optimize yet more. \fB\-O3\fR turns on all optimizations specified
-by \fB\-O2\fR and also turns on the \fB\-finline\-functions\fR,
-\&\fB\-funswitch\-loops\fR, \fB\-fpredictive\-commoning\fR,
-\&\fB\-fgcse\-after\-reload\fR, \fB\-ftree\-loop\-vectorize\fR,
-\&\fB\-ftree\-slp\-vectorize\fR, \fB\-fvect\-cost\-model\fR,
-\&\fB\-ftree\-partial\-pre\fR and \fB\-fipa\-cp\-clone\fR options.
-.IP "\fB\-O0\fR" 4
-.IX Item "-O0"
-Reduce compilation time and make debugging produce the expected
-results. This is the default.
-.IP "\fB\-Os\fR" 4
-.IX Item "-Os"
-Optimize for size. \fB\-Os\fR enables all \fB\-O2\fR optimizations that
-do not typically increase code size. It also performs further
-optimizations designed to reduce code size.
-.Sp
-\&\fB\-Os\fR disables the following optimization flags:
-\&\fB\-falign\-functions \-falign\-jumps \-falign\-loops
-\&\-falign\-labels \-freorder\-blocks \-freorder\-blocks\-and\-partition
-\&\-fprefetch\-loop\-arrays\fR
-.IP "\fB\-Ofast\fR" 4
-.IX Item "-Ofast"
-Disregard strict standards compliance. \fB\-Ofast\fR enables all
-\&\fB\-O3\fR optimizations. It also enables optimizations that are not
-valid for all standard-compliant programs.
-It turns on \fB\-ffast\-math\fR and the Fortran-specific
-\&\fB\-fno\-protect\-parens\fR and \fB\-fstack\-arrays\fR.
-.IP "\fB\-Og\fR" 4
-.IX Item "-Og"
-Optimize debugging experience. \fB\-Og\fR enables optimizations
-that do not interfere with debugging. It should be the optimization
-level of choice for the standard edit-compile-debug cycle, offering
-a reasonable level of optimization while maintaining fast compilation
-and a good debugging experience.
-.Sp
-If you use multiple \fB\-O\fR options, with or without level numbers,
-the last such option is the one that is effective.
-.PP
-Options of the form \fB\-f\fR\fIflag\fR specify machine-independent
-flags. Most flags have both positive and negative forms; the negative
-form of \fB\-ffoo\fR is \fB\-fno\-foo\fR. In the table
-below, only one of the forms is listed\-\-\-the one you typically
-use. You can figure out the other form by either removing \fBno\-\fR
-or adding it.
-.PP
-The following options control specific optimizations. They are either
-activated by \fB\-O\fR options or are related to ones that are. You
-can use the following flags in the rare cases when \*(L"fine-tuning\*(R" of
-optimizations to be performed is desired.
-.IP "\fB\-fno\-defer\-pop\fR" 4
-.IX Item "-fno-defer-pop"
-Always pop the arguments to each function call as soon as that function
-returns. For machines that must pop arguments after a function call,
-the compiler normally lets arguments accumulate on the stack for several
-function calls and pops them all at once.
-.Sp
-Disabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fforward\-propagate\fR" 4
-.IX Item "-fforward-propagate"
-Perform a forward propagation pass on \s-1RTL. \s0 The pass tries to combine two
-instructions and checks if the result can be simplified. If loop unrolling
-is active, two passes are performed and the second is scheduled after
-loop unrolling.
-.Sp
-This option is enabled by default at optimization levels \fB\-O\fR,
-\&\fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-ffp\-contract=\fR\fIstyle\fR" 4
-.IX Item "-ffp-contract=style"
-\&\fB\-ffp\-contract=off\fR disables floating-point expression contraction.
-\&\fB\-ffp\-contract=fast\fR enables floating-point expression contraction
-such as forming of fused multiply-add operations if the target has
-native support for them.
-\&\fB\-ffp\-contract=on\fR enables floating-point expression contraction
-if allowed by the language standard. This is currently not implemented
-and treated equal to \fB\-ffp\-contract=off\fR.
-.Sp
-The default is \fB\-ffp\-contract=fast\fR.
-.IP "\fB\-fomit\-frame\-pointer\fR" 4
-.IX Item "-fomit-frame-pointer"
-Don't keep the frame pointer in a register for functions that
-don't need one. This avoids the instructions to save, set up and
-restore frame pointers; it also makes an extra register available
-in many functions. \fBIt also makes debugging impossible on
-some machines.\fR
-.Sp
-On some machines, such as the \s-1VAX,\s0 this flag has no effect, because
-the standard calling sequence automatically handles the frame pointer
-and nothing is saved by pretending it doesn't exist. The
-machine-description macro \f(CW\*(C`FRAME_POINTER_REQUIRED\*(C'\fR controls
-whether a target machine supports this flag.
-.Sp
-Starting with \s-1GCC\s0 version 4.6, the default setting (when not optimizing for
-size) for 32\-bit GNU/Linux x86 and 32\-bit Darwin x86 targets has been changed to
-\&\fB\-fomit\-frame\-pointer\fR. The default can be reverted to
-\&\fB\-fno\-omit\-frame\-pointer\fR by configuring \s-1GCC\s0 with the
-\&\fB\-\-enable\-frame\-pointer\fR configure option.
-.Sp
-Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-foptimize\-sibling\-calls\fR" 4
-.IX Item "-foptimize-sibling-calls"
-Optimize sibling and tail recursive calls.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fno\-inline\fR" 4
-.IX Item "-fno-inline"
-Do not expand any functions inline apart from those marked with
-the \f(CW\*(C`always_inline\*(C'\fR attribute. This is the default when not
-optimizing.
-.Sp
-Single functions can be exempted from inlining by marking them
-with the \f(CW\*(C`noinline\*(C'\fR attribute.
-.IP "\fB\-finline\-small\-functions\fR" 4
-.IX Item "-finline-small-functions"
-Integrate functions into their callers when their body is smaller than expected
-function call code (so overall size of program gets smaller). The compiler
-heuristically decides which functions are simple enough to be worth integrating
-in this way. This inlining applies to all functions, even those not declared
-inline.
-.Sp
-Enabled at level \fB\-O2\fR.
-.IP "\fB\-findirect\-inlining\fR" 4
-.IX Item "-findirect-inlining"
-Inline also indirect calls that are discovered to be known at compile
-time thanks to previous inlining. This option has any effect only
-when inlining itself is turned on by the \fB\-finline\-functions\fR
-or \fB\-finline\-small\-functions\fR options.
-.Sp
-Enabled at level \fB\-O2\fR.
-.IP "\fB\-finline\-functions\fR" 4
-.IX Item "-finline-functions"
-Consider all functions for inlining, even if they are not declared inline.
-The compiler heuristically decides which functions are worth integrating
-in this way.
-.Sp
-If all calls to a given function are integrated, and the function is
-declared \f(CW\*(C`static\*(C'\fR, then the function is normally not output as
-assembler code in its own right.
-.Sp
-Enabled at level \fB\-O3\fR.
-.IP "\fB\-finline\-functions\-called\-once\fR" 4
-.IX Item "-finline-functions-called-once"
-Consider all \f(CW\*(C`static\*(C'\fR functions called once for inlining into their
-caller even if they are not marked \f(CW\*(C`inline\*(C'\fR. If a call to a given
-function is integrated, then the function is not output as assembler code
-in its own right.
-.Sp
-Enabled at levels \fB\-O1\fR, \fB\-O2\fR, \fB\-O3\fR and \fB\-Os\fR.
-.IP "\fB\-fearly\-inlining\fR" 4
-.IX Item "-fearly-inlining"
-Inline functions marked by \f(CW\*(C`always_inline\*(C'\fR and functions whose body seems
-smaller than the function call overhead early before doing
-\&\fB\-fprofile\-generate\fR instrumentation and real inlining pass. Doing so
-makes profiling significantly cheaper and usually inlining faster on programs
-having large chains of nested wrapper functions.
-.Sp
-Enabled by default.
-.IP "\fB\-fipa\-sra\fR" 4
-.IX Item "-fipa-sra"
-Perform interprocedural scalar replacement of aggregates, removal of
-unused parameters and replacement of parameters passed by reference
-by parameters passed by value.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR and \fB\-Os\fR.
-.IP "\fB\-finline\-limit=\fR\fIn\fR" 4
-.IX Item "-finline-limit=n"
-By default, \s-1GCC\s0 limits the size of functions that can be inlined. This flag
-allows coarse control of this limit. \fIn\fR is the size of functions that
-can be inlined in number of pseudo instructions.
-.Sp
-Inlining is actually controlled by a number of parameters, which may be
-specified individually by using \fB\-\-param\fR \fIname\fR\fB=\fR\fIvalue\fR.
-The \fB\-finline\-limit=\fR\fIn\fR option sets some of these parameters
-as follows:
-.RS 4
-.IP "\fBmax-inline-insns-single\fR" 4
-.IX Item "max-inline-insns-single"
-is set to \fIn\fR/2.
-.IP "\fBmax-inline-insns-auto\fR" 4
-.IX Item "max-inline-insns-auto"
-is set to \fIn\fR/2.
-.RE
-.RS 4
-.Sp
-See below for a documentation of the individual
-parameters controlling inlining and for the defaults of these parameters.
-.Sp
-\&\fINote:\fR there may be no value to \fB\-finline\-limit\fR that results
-in default behavior.
-.Sp
-\&\fINote:\fR pseudo instruction represents, in this particular context, an
-abstract measurement of function's size. In no way does it represent a count
-of assembly instructions and as such its exact meaning might change from one
-release to an another.
-.RE
-.IP "\fB\-fno\-keep\-inline\-dllexport\fR" 4
-.IX Item "-fno-keep-inline-dllexport"
-This is a more fine-grained version of \fB\-fkeep\-inline\-functions\fR,
-which applies only to functions that are declared using the \f(CW\*(C`dllexport\*(C'\fR
-attribute or declspec
-.IP "\fB\-fkeep\-inline\-functions\fR" 4
-.IX Item "-fkeep-inline-functions"
-In C, emit \f(CW\*(C`static\*(C'\fR functions that are declared \f(CW\*(C`inline\*(C'\fR
-into the object file, even if the function has been inlined into all
-of its callers. This switch does not affect functions using the
-\&\f(CW\*(C`extern inline\*(C'\fR extension in \s-1GNU C90. \s0 In \*(C+, emit any and all
-inline functions into the object file.
-.IP "\fB\-fkeep\-static\-consts\fR" 4
-.IX Item "-fkeep-static-consts"
-Emit variables declared \f(CW\*(C`static const\*(C'\fR when optimization isn't turned
-on, even if the variables aren't referenced.
-.Sp
-\&\s-1GCC\s0 enables this option by default. If you want to force the compiler to
-check if a variable is referenced, regardless of whether or not
-optimization is turned on, use the \fB\-fno\-keep\-static\-consts\fR option.
-.IP "\fB\-fmerge\-constants\fR" 4
-.IX Item "-fmerge-constants"
-Attempt to merge identical constants (string constants and floating-point
-constants) across compilation units.
-.Sp
-This option is the default for optimized compilation if the assembler and
-linker support it. Use \fB\-fno\-merge\-constants\fR to inhibit this
-behavior.
-.Sp
-Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fmerge\-all\-constants\fR" 4
-.IX Item "-fmerge-all-constants"
-Attempt to merge identical constants and identical variables.
-.Sp
-This option implies \fB\-fmerge\-constants\fR. In addition to
-\&\fB\-fmerge\-constants\fR this considers e.g. even constant initialized
-arrays or initialized constant variables with integral or floating-point
-types. Languages like C or \*(C+ require each variable, including multiple
-instances of the same variable in recursive calls, to have distinct locations,
-so using this option results in non-conforming
-behavior.
-.IP "\fB\-fmodulo\-sched\fR" 4
-.IX Item "-fmodulo-sched"
-Perform swing modulo scheduling immediately before the first scheduling
-pass. This pass looks at innermost loops and reorders their
-instructions by overlapping different iterations.
-.IP "\fB\-fmodulo\-sched\-allow\-regmoves\fR" 4
-.IX Item "-fmodulo-sched-allow-regmoves"
-Perform more aggressive SMS-based modulo scheduling with register moves
-allowed. By setting this flag certain anti-dependences edges are
-deleted, which triggers the generation of reg-moves based on the
-life-range analysis. This option is effective only with
-\&\fB\-fmodulo\-sched\fR enabled.
-.IP "\fB\-fno\-branch\-count\-reg\fR" 4
-.IX Item "-fno-branch-count-reg"
-Do not use \*(L"decrement and branch\*(R" instructions on a count register,
-but instead generate a sequence of instructions that decrement a
-register, compare it against zero, then branch based upon the result.
-This option is only meaningful on architectures that support such
-instructions, which include x86, PowerPC, \s-1IA\-64\s0 and S/390.
-.Sp
-The default is \fB\-fbranch\-count\-reg\fR.
-.IP "\fB\-fno\-function\-cse\fR" 4
-.IX Item "-fno-function-cse"
-Do not put function addresses in registers; make each instruction that
-calls a constant function contain the function's address explicitly.
-.Sp
-This option results in less efficient code, but some strange hacks
-that alter the assembler output may be confused by the optimizations
-performed when this option is not used.
-.Sp
-The default is \fB\-ffunction\-cse\fR
-.IP "\fB\-fno\-zero\-initialized\-in\-bss\fR" 4
-.IX Item "-fno-zero-initialized-in-bss"
-If the target supports a \s-1BSS\s0 section, \s-1GCC\s0 by default puts variables that
-are initialized to zero into \s-1BSS. \s0 This can save space in the resulting
-code.
-.Sp
-This option turns off this behavior because some programs explicitly
-rely on variables going to the data section\-\-\-e.g., so that the
-resulting executable can find the beginning of that section and/or make
-assumptions based on that.
-.Sp
-The default is \fB\-fzero\-initialized\-in\-bss\fR.
-.IP "\fB\-fthread\-jumps\fR" 4
-.IX Item "-fthread-jumps"
-Perform optimizations that check to see if a jump branches to a
-location where another comparison subsumed by the first is found. If
-so, the first branch is redirected to either the destination of the
-second branch or a point immediately following it, depending on whether
-the condition is known to be true or false.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fsplit\-wide\-types\fR" 4
-.IX Item "-fsplit-wide-types"
-When using a type that occupies multiple registers, such as \f(CW\*(C`long
-long\*(C'\fR on a 32\-bit system, split the registers apart and allocate them
-independently. This normally generates better code for those types,
-but may make debugging more difficult.
-.Sp
-Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR,
-\&\fB\-Os\fR.
-.IP "\fB\-fcse\-follow\-jumps\fR" 4
-.IX Item "-fcse-follow-jumps"
-In common subexpression elimination (\s-1CSE\s0), scan through jump instructions
-when the target of the jump is not reached by any other path. For
-example, when \s-1CSE\s0 encounters an \f(CW\*(C`if\*(C'\fR statement with an
-\&\f(CW\*(C`else\*(C'\fR clause, \s-1CSE\s0 follows the jump when the condition
-tested is false.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fcse\-skip\-blocks\fR" 4
-.IX Item "-fcse-skip-blocks"
-This is similar to \fB\-fcse\-follow\-jumps\fR, but causes \s-1CSE\s0 to
-follow jumps that conditionally skip over blocks. When \s-1CSE\s0
-encounters a simple \f(CW\*(C`if\*(C'\fR statement with no else clause,
-\&\fB\-fcse\-skip\-blocks\fR causes \s-1CSE\s0 to follow the jump around the
-body of the \f(CW\*(C`if\*(C'\fR.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-frerun\-cse\-after\-loop\fR" 4
-.IX Item "-frerun-cse-after-loop"
-Re-run common subexpression elimination after loop optimizations are
-performed.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fgcse\fR" 4
-.IX Item "-fgcse"
-Perform a global common subexpression elimination pass.
-This pass also performs global constant and copy propagation.
-.Sp
-\&\fINote:\fR When compiling a program using computed gotos, a \s-1GCC\s0
-extension, you may get better run-time performance if you disable
-the global common subexpression elimination pass by adding
-\&\fB\-fno\-gcse\fR to the command line.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fgcse\-lm\fR" 4
-.IX Item "-fgcse-lm"
-When \fB\-fgcse\-lm\fR is enabled, global common subexpression elimination
-attempts to move loads that are only killed by stores into themselves. This
-allows a loop containing a load/store sequence to be changed to a load outside
-the loop, and a copy/store within the loop.
-.Sp
-Enabled by default when \fB\-fgcse\fR is enabled.
-.IP "\fB\-fgcse\-sm\fR" 4
-.IX Item "-fgcse-sm"
-When \fB\-fgcse\-sm\fR is enabled, a store motion pass is run after
-global common subexpression elimination. This pass attempts to move
-stores out of loops. When used in conjunction with \fB\-fgcse\-lm\fR,
-loops containing a load/store sequence can be changed to a load before
-the loop and a store after the loop.
-.Sp
-Not enabled at any optimization level.
-.IP "\fB\-fgcse\-las\fR" 4
-.IX Item "-fgcse-las"
-When \fB\-fgcse\-las\fR is enabled, the global common subexpression
-elimination pass eliminates redundant loads that come after stores to the
-same memory location (both partial and full redundancies).
-.Sp
-Not enabled at any optimization level.
-.IP "\fB\-fgcse\-after\-reload\fR" 4
-.IX Item "-fgcse-after-reload"
-When \fB\-fgcse\-after\-reload\fR is enabled, a redundant load elimination
-pass is performed after reload. The purpose of this pass is to clean up
-redundant spilling.
-.IP "\fB\-faggressive\-loop\-optimizations\fR" 4
-.IX Item "-faggressive-loop-optimizations"
-This option tells the loop optimizer to use language constraints to
-derive bounds for the number of iterations of a loop. This assumes that
-loop code does not invoke undefined behavior by for example causing signed
-integer overflows or out-of-bound array accesses. The bounds for the
-number of iterations of a loop are used to guide loop unrolling and peeling
-and loop exit test optimizations.
-This option is enabled by default.
-.IP "\fB\-funsafe\-loop\-optimizations\fR" 4
-.IX Item "-funsafe-loop-optimizations"
-This option tells the loop optimizer to assume that loop indices do not
-overflow, and that loops with nontrivial exit condition are not
-infinite. This enables a wider range of loop optimizations even if
-the loop optimizer itself cannot prove that these assumptions are valid.
-If you use \fB\-Wunsafe\-loop\-optimizations\fR, the compiler warns you
-if it finds this kind of loop.
-.IP "\fB\-fcrossjumping\fR" 4
-.IX Item "-fcrossjumping"
-Perform cross-jumping transformation.
-This transformation unifies equivalent code and saves code size. The
-resulting code may or may not perform better than without cross-jumping.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fauto\-inc\-dec\fR" 4
-.IX Item "-fauto-inc-dec"
-Combine increments or decrements of addresses with memory accesses.
-This pass is always skipped on architectures that do not have
-instructions to support this. Enabled by default at \fB\-O\fR and
-higher on architectures that support this.
-.IP "\fB\-fdce\fR" 4
-.IX Item "-fdce"
-Perform dead code elimination (\s-1DCE\s0) on \s-1RTL.\s0
-Enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-fdse\fR" 4
-.IX Item "-fdse"
-Perform dead store elimination (\s-1DSE\s0) on \s-1RTL.\s0
-Enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-fif\-conversion\fR" 4
-.IX Item "-fif-conversion"
-Attempt to transform conditional jumps into branch-less equivalents. This
-includes use of conditional moves, min, max, set flags and abs instructions, and
-some tricks doable by standard arithmetics. The use of conditional execution
-on chips where it is available is controlled by \f(CW\*(C`if\-conversion2\*(C'\fR.
-.Sp
-Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fif\-conversion2\fR" 4
-.IX Item "-fif-conversion2"
-Use conditional execution (where available) to transform conditional jumps into
-branch-less equivalents.
-.Sp
-Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fdeclone\-ctor\-dtor\fR" 4
-.IX Item "-fdeclone-ctor-dtor"
-The \*(C+ \s-1ABI\s0 requires multiple entry points for constructors and
-destructors: one for a base subobject, one for a complete object, and
-one for a virtual destructor that calls operator delete afterwards.
-For a hierarchy with virtual bases, the base and complete variants are
-clones, which means two copies of the function. With this option, the
-base and complete variants are changed to be thunks that call a common
-implementation.
-.Sp
-Enabled by \fB\-Os\fR.
-.IP "\fB\-fdelete\-null\-pointer\-checks\fR" 4
-.IX Item "-fdelete-null-pointer-checks"
-Assume that programs cannot safely dereference null pointers, and that
-no code or data element resides there. This enables simple constant
-folding optimizations at all optimization levels. In addition, other
-optimization passes in \s-1GCC\s0 use this flag to control global dataflow
-analyses that eliminate useless checks for null pointers; these assume
-that if a pointer is checked after it has already been dereferenced,
-it cannot be null.
-.Sp
-Note however that in some environments this assumption is not true.
-Use \fB\-fno\-delete\-null\-pointer\-checks\fR to disable this optimization
-for programs that depend on that behavior.
-.Sp
-Some targets, especially embedded ones, disable this option at all levels.
-Otherwise it is enabled at all levels: \fB\-O0\fR, \fB\-O1\fR,
-\&\fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR. Passes that use the information
-are enabled independently at different optimization levels.
-.IP "\fB\-fdevirtualize\fR" 4
-.IX Item "-fdevirtualize"
-Attempt to convert calls to virtual functions to direct calls. This
-is done both within a procedure and interprocedurally as part of
-indirect inlining (\f(CW\*(C`\-findirect\-inlining\*(C'\fR) and interprocedural constant
-propagation (\fB\-fipa\-cp\fR).
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fdevirtualize\-speculatively\fR" 4
-.IX Item "-fdevirtualize-speculatively"
-Attempt to convert calls to virtual functions to speculative direct calls.
-Based on the analysis of the type inheritance graph, determine for a given call
-the set of likely targets. If the set is small, preferably of size 1, change
-the call into an conditional deciding on direct and indirect call. The
-speculative calls enable more optimizations, such as inlining. When they seem
-useless after further optimization, they are converted back into original form.
-.IP "\fB\-fexpensive\-optimizations\fR" 4
-.IX Item "-fexpensive-optimizations"
-Perform a number of minor optimizations that are relatively expensive.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-free\fR" 4
-.IX Item "-free"
-Attempt to remove redundant extension instructions. This is especially
-helpful for the x86\-64 architecture, which implicitly zero-extends in 64\-bit
-registers after writing to their lower 32\-bit half.
-.Sp
-Enabled for AArch64 and x86 at levels \fB\-O2\fR, \fB\-O3\fR.
-.IP "\fB\-flive\-range\-shrinkage\fR" 4
-.IX Item "-flive-range-shrinkage"
-Attempt to decrease register pressure through register live range
-shrinkage. This is helpful for fast processors with small or moderate
-size register sets.
-.IP "\fB\-fira\-algorithm=\fR\fIalgorithm\fR" 4
-.IX Item "-fira-algorithm=algorithm"
-Use the specified coloring algorithm for the integrated register
-allocator. The \fIalgorithm\fR argument can be \fBpriority\fR, which
-specifies Chow's priority coloring, or \fB\s-1CB\s0\fR, which specifies
-Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
-for all architectures, but for those targets that do support it, it is
-the default because it generates better code.
-.IP "\fB\-fira\-region=\fR\fIregion\fR" 4
-.IX Item "-fira-region=region"
-Use specified regions for the integrated register allocator. The
-\&\fIregion\fR argument should be one of the following:
-.RS 4
-.IP "\fBall\fR" 4
-.IX Item "all"
-Use all loops as register allocation regions.
-This can give the best results for machines with a small and/or
-irregular register set.
-.IP "\fBmixed\fR" 4
-.IX Item "mixed"
-Use all loops except for loops with small register pressure
-as the regions. This value usually gives
-the best results in most cases and for most architectures,
-and is enabled by default when compiling with optimization for speed
-(\fB\-O\fR, \fB\-O2\fR, ...).
-.IP "\fBone\fR" 4
-.IX Item "one"
-Use all functions as a single region.
-This typically results in the smallest code size, and is enabled by default for
-\&\fB\-Os\fR or \fB\-O0\fR.
-.RE
-.RS 4
-.RE
-.IP "\fB\-fira\-hoist\-pressure\fR" 4
-.IX Item "-fira-hoist-pressure"
-Use \s-1IRA\s0 to evaluate register pressure in the code hoisting pass for
-decisions to hoist expressions. This option usually results in smaller
-code, but it can slow the compiler down.
-.Sp
-This option is enabled at level \fB\-Os\fR for all targets.
-.IP "\fB\-fira\-loop\-pressure\fR" 4
-.IX Item "-fira-loop-pressure"
-Use \s-1IRA\s0 to evaluate register pressure in loops for decisions to move
-loop invariants. This option usually results in generation
-of faster and smaller code on machines with large register files (>= 32
-registers), but it can slow the compiler down.
-.Sp
-This option is enabled at level \fB\-O3\fR for some targets.
-.IP "\fB\-fno\-ira\-share\-save\-slots\fR" 4
-.IX Item "-fno-ira-share-save-slots"
-Disable sharing of stack slots used for saving call-used hard
-registers living through a call. Each hard register gets a
-separate stack slot, and as a result function stack frames are
-larger.
-.IP "\fB\-fno\-ira\-share\-spill\-slots\fR" 4
-.IX Item "-fno-ira-share-spill-slots"
-Disable sharing of stack slots allocated for pseudo-registers. Each
-pseudo-register that does not get a hard register gets a separate
-stack slot, and as a result function stack frames are larger.
-.IP "\fB\-fira\-verbose=\fR\fIn\fR" 4
-.IX Item "-fira-verbose=n"
-Control the verbosity of the dump file for the integrated register allocator.
-The default value is 5. If the value \fIn\fR is greater or equal to 10,
-the dump output is sent to stderr using the same format as \fIn\fR minus 10.
-.IP "\fB\-fdelayed\-branch\fR" 4
-.IX Item "-fdelayed-branch"
-If supported for the target machine, attempt to reorder instructions
-to exploit instruction slots available after delayed branch
-instructions.
-.Sp
-Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fschedule\-insns\fR" 4
-.IX Item "-fschedule-insns"
-If supported for the target machine, attempt to reorder instructions to
-eliminate execution stalls due to required data being unavailable. This
-helps machines that have slow floating point or memory load instructions
-by allowing other instructions to be issued until the result of the load
-or floating-point instruction is required.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR.
-.IP "\fB\-fschedule\-insns2\fR" 4
-.IX Item "-fschedule-insns2"
-Similar to \fB\-fschedule\-insns\fR, but requests an additional pass of
-instruction scheduling after register allocation has been done. This is
-especially useful on machines with a relatively small number of
-registers and where memory load instructions take more than one cycle.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fno\-sched\-interblock\fR" 4
-.IX Item "-fno-sched-interblock"
-Don't schedule instructions across basic blocks. This is normally
-enabled by default when scheduling before register allocation, i.e.
-with \fB\-fschedule\-insns\fR or at \fB\-O2\fR or higher.
-.IP "\fB\-fno\-sched\-spec\fR" 4
-.IX Item "-fno-sched-spec"
-Don't allow speculative motion of non-load instructions. This is normally
-enabled by default when scheduling before register allocation, i.e.
-with \fB\-fschedule\-insns\fR or at \fB\-O2\fR or higher.
-.IP "\fB\-fsched\-pressure\fR" 4
-.IX Item "-fsched-pressure"
-Enable register pressure sensitive insn scheduling before register
-allocation. This only makes sense when scheduling before register
-allocation is enabled, i.e. with \fB\-fschedule\-insns\fR or at
-\&\fB\-O2\fR or higher. Usage of this option can improve the
-generated code and decrease its size by preventing register pressure
-increase above the number of available hard registers and subsequent
-spills in register allocation.
-.IP "\fB\-fsched\-spec\-load\fR" 4
-.IX Item "-fsched-spec-load"
-Allow speculative motion of some load instructions. This only makes
-sense when scheduling before register allocation, i.e. with
-\&\fB\-fschedule\-insns\fR or at \fB\-O2\fR or higher.
-.IP "\fB\-fsched\-spec\-load\-dangerous\fR" 4
-.IX Item "-fsched-spec-load-dangerous"
-Allow speculative motion of more load instructions. This only makes
-sense when scheduling before register allocation, i.e. with
-\&\fB\-fschedule\-insns\fR or at \fB\-O2\fR or higher.
-.IP "\fB\-fsched\-stalled\-insns\fR" 4
-.IX Item "-fsched-stalled-insns"
-.PD 0
-.IP "\fB\-fsched\-stalled\-insns=\fR\fIn\fR" 4
-.IX Item "-fsched-stalled-insns=n"
-.PD
-Define how many insns (if any) can be moved prematurely from the queue
-of stalled insns into the ready list during the second scheduling pass.
-\&\fB\-fno\-sched\-stalled\-insns\fR means that no insns are moved
-prematurely, \fB\-fsched\-stalled\-insns=0\fR means there is no limit
-on how many queued insns can be moved prematurely.
-\&\fB\-fsched\-stalled\-insns\fR without a value is equivalent to
-\&\fB\-fsched\-stalled\-insns=1\fR.
-.IP "\fB\-fsched\-stalled\-insns\-dep\fR" 4
-.IX Item "-fsched-stalled-insns-dep"
-.PD 0
-.IP "\fB\-fsched\-stalled\-insns\-dep=\fR\fIn\fR" 4
-.IX Item "-fsched-stalled-insns-dep=n"
-.PD
-Define how many insn groups (cycles) are examined for a dependency
-on a stalled insn that is a candidate for premature removal from the queue
-of stalled insns. This has an effect only during the second scheduling pass,
-and only if \fB\-fsched\-stalled\-insns\fR is used.
-\&\fB\-fno\-sched\-stalled\-insns\-dep\fR is equivalent to
-\&\fB\-fsched\-stalled\-insns\-dep=0\fR.
-\&\fB\-fsched\-stalled\-insns\-dep\fR without a value is equivalent to
-\&\fB\-fsched\-stalled\-insns\-dep=1\fR.
-.IP "\fB\-fsched2\-use\-superblocks\fR" 4
-.IX Item "-fsched2-use-superblocks"
-When scheduling after register allocation, use superblock scheduling.
-This allows motion across basic block boundaries,
-resulting in faster schedules. This option is experimental, as not all machine
-descriptions used by \s-1GCC\s0 model the \s-1CPU\s0 closely enough to avoid unreliable
-results from the algorithm.
-.Sp
-This only makes sense when scheduling after register allocation, i.e. with
-\&\fB\-fschedule\-insns2\fR or at \fB\-O2\fR or higher.
-.IP "\fB\-fsched\-group\-heuristic\fR" 4
-.IX Item "-fsched-group-heuristic"
-Enable the group heuristic in the scheduler. This heuristic favors
-the instruction that belongs to a schedule group. This is enabled
-by default when scheduling is enabled, i.e. with \fB\-fschedule\-insns\fR
-or \fB\-fschedule\-insns2\fR or at \fB\-O2\fR or higher.
-.IP "\fB\-fsched\-critical\-path\-heuristic\fR" 4
-.IX Item "-fsched-critical-path-heuristic"
-Enable the critical-path heuristic in the scheduler. This heuristic favors
-instructions on the critical path. This is enabled by default when
-scheduling is enabled, i.e. with \fB\-fschedule\-insns\fR
-or \fB\-fschedule\-insns2\fR or at \fB\-O2\fR or higher.
-.IP "\fB\-fsched\-spec\-insn\-heuristic\fR" 4
-.IX Item "-fsched-spec-insn-heuristic"
-Enable the speculative instruction heuristic in the scheduler. This
-heuristic favors speculative instructions with greater dependency weakness.
-This is enabled by default when scheduling is enabled, i.e.
-with \fB\-fschedule\-insns\fR or \fB\-fschedule\-insns2\fR
-or at \fB\-O2\fR or higher.
-.IP "\fB\-fsched\-rank\-heuristic\fR" 4
-.IX Item "-fsched-rank-heuristic"
-Enable the rank heuristic in the scheduler. This heuristic favors
-the instruction belonging to a basic block with greater size or frequency.
-This is enabled by default when scheduling is enabled, i.e.
-with \fB\-fschedule\-insns\fR or \fB\-fschedule\-insns2\fR or
-at \fB\-O2\fR or higher.
-.IP "\fB\-fsched\-last\-insn\-heuristic\fR" 4
-.IX Item "-fsched-last-insn-heuristic"
-Enable the last-instruction heuristic in the scheduler. This heuristic
-favors the instruction that is less dependent on the last instruction
-scheduled. This is enabled by default when scheduling is enabled,
-i.e. with \fB\-fschedule\-insns\fR or \fB\-fschedule\-insns2\fR or
-at \fB\-O2\fR or higher.
-.IP "\fB\-fsched\-dep\-count\-heuristic\fR" 4
-.IX Item "-fsched-dep-count-heuristic"
-Enable the dependent-count heuristic in the scheduler. This heuristic
-favors the instruction that has more instructions depending on it.
-This is enabled by default when scheduling is enabled, i.e.
-with \fB\-fschedule\-insns\fR or \fB\-fschedule\-insns2\fR or
-at \fB\-O2\fR or higher.
-.IP "\fB\-freschedule\-modulo\-scheduled\-loops\fR" 4
-.IX Item "-freschedule-modulo-scheduled-loops"
-Modulo scheduling is performed before traditional scheduling. If a loop
-is modulo scheduled, later scheduling passes may change its schedule.
-Use this option to control that behavior.
-.IP "\fB\-fselective\-scheduling\fR" 4
-.IX Item "-fselective-scheduling"
-Schedule instructions using selective scheduling algorithm. Selective
-scheduling runs instead of the first scheduler pass.
-.IP "\fB\-fselective\-scheduling2\fR" 4
-.IX Item "-fselective-scheduling2"
-Schedule instructions using selective scheduling algorithm. Selective
-scheduling runs instead of the second scheduler pass.
-.IP "\fB\-fsel\-sched\-pipelining\fR" 4
-.IX Item "-fsel-sched-pipelining"
-Enable software pipelining of innermost loops during selective scheduling.
-This option has no effect unless one of \fB\-fselective\-scheduling\fR or
-\&\fB\-fselective\-scheduling2\fR is turned on.
-.IP "\fB\-fsel\-sched\-pipelining\-outer\-loops\fR" 4
-.IX Item "-fsel-sched-pipelining-outer-loops"
-When pipelining loops during selective scheduling, also pipeline outer loops.
-This option has no effect unless \fB\-fsel\-sched\-pipelining\fR is turned on.
-.IP "\fB\-fshrink\-wrap\fR" 4
-.IX Item "-fshrink-wrap"
-Emit function prologues only before parts of the function that need it,
-rather than at the top of the function. This flag is enabled by default at
-\&\fB\-O\fR and higher.
-.IP "\fB\-fcaller\-saves\fR" 4
-.IX Item "-fcaller-saves"
-Enable allocation of values to registers that are clobbered by
-function calls, by emitting extra instructions to save and restore the
-registers around such calls. Such allocation is done only when it
-seems to result in better code.
-.Sp
-This option is always enabled by default on certain machines, usually
-those which have no call-preserved registers to use instead.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fcombine\-stack\-adjustments\fR" 4
-.IX Item "-fcombine-stack-adjustments"
-Tracks stack adjustments (pushes and pops) and stack memory references
-and then tries to find ways to combine them.
-.Sp
-Enabled by default at \fB\-O1\fR and higher.
-.IP "\fB\-fconserve\-stack\fR" 4
-.IX Item "-fconserve-stack"
-Attempt to minimize stack usage. The compiler attempts to use less
-stack space, even if that makes the program slower. This option
-implies setting the \fBlarge-stack-frame\fR parameter to 100
-and the \fBlarge-stack-frame-growth\fR parameter to 400.
-.IP "\fB\-ftree\-reassoc\fR" 4
-.IX Item "-ftree-reassoc"
-Perform reassociation on trees. This flag is enabled by default
-at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-pre\fR" 4
-.IX Item "-ftree-pre"
-Perform partial redundancy elimination (\s-1PRE\s0) on trees. This flag is
-enabled by default at \fB\-O2\fR and \fB\-O3\fR.
-.IP "\fB\-ftree\-partial\-pre\fR" 4
-.IX Item "-ftree-partial-pre"
-Make partial redundancy elimination (\s-1PRE\s0) more aggressive. This flag is
-enabled by default at \fB\-O3\fR.
-.IP "\fB\-ftree\-forwprop\fR" 4
-.IX Item "-ftree-forwprop"
-Perform forward propagation on trees. This flag is enabled by default
-at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-fre\fR" 4
-.IX Item "-ftree-fre"
-Perform full redundancy elimination (\s-1FRE\s0) on trees. The difference
-between \s-1FRE\s0 and \s-1PRE\s0 is that \s-1FRE\s0 only considers expressions
-that are computed on all paths leading to the redundant computation.
-This analysis is faster than \s-1PRE,\s0 though it exposes fewer redundancies.
-This flag is enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-phiprop\fR" 4
-.IX Item "-ftree-phiprop"
-Perform hoisting of loads from conditional pointers on trees. This
-pass is enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-fhoist\-adjacent\-loads\fR" 4
-.IX Item "-fhoist-adjacent-loads"
-Speculatively hoist loads from both branches of an if-then-else if the
-loads are from adjacent locations in the same structure and the target
-architecture has a conditional move instruction. This flag is enabled
-by default at \fB\-O2\fR and higher.
-.IP "\fB\-ftree\-copy\-prop\fR" 4
-.IX Item "-ftree-copy-prop"
-Perform copy propagation on trees. This pass eliminates unnecessary
-copy operations. This flag is enabled by default at \fB\-O\fR and
-higher.
-.IP "\fB\-fipa\-pure\-const\fR" 4
-.IX Item "-fipa-pure-const"
-Discover which functions are pure or constant.
-Enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-fipa\-reference\fR" 4
-.IX Item "-fipa-reference"
-Discover which static variables do not escape the
-compilation unit.
-Enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-fipa\-pta\fR" 4
-.IX Item "-fipa-pta"
-Perform interprocedural pointer analysis and interprocedural modification
-and reference analysis. This option can cause excessive memory and
-compile-time usage on large compilation units. It is not enabled by
-default at any optimization level.
-.IP "\fB\-fipa\-profile\fR" 4
-.IX Item "-fipa-profile"
-Perform interprocedural profile propagation. The functions called only from
-cold functions are marked as cold. Also functions executed once (such as
-\&\f(CW\*(C`cold\*(C'\fR, \f(CW\*(C`noreturn\*(C'\fR, static constructors or destructors) are identified. Cold
-functions and loop less parts of functions executed once are then optimized for
-size.
-Enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-fipa\-cp\fR" 4
-.IX Item "-fipa-cp"
-Perform interprocedural constant propagation.
-This optimization analyzes the program to determine when values passed
-to functions are constants and then optimizes accordingly.
-This optimization can substantially increase performance
-if the application has constants passed to functions.
-This flag is enabled by default at \fB\-O2\fR, \fB\-Os\fR and \fB\-O3\fR.
-.IP "\fB\-fipa\-cp\-clone\fR" 4
-.IX Item "-fipa-cp-clone"
-Perform function cloning to make interprocedural constant propagation stronger.
-When enabled, interprocedural constant propagation performs function cloning
-when externally visible function can be called with constant arguments.
-Because this optimization can create multiple copies of functions,
-it may significantly increase code size
-(see \fB\-\-param ipcp\-unit\-growth=\fR\fIvalue\fR).
-This flag is enabled by default at \fB\-O3\fR.
-.IP "\fB\-fisolate\-erroneous\-paths\-dereference\fR" 4
-.IX Item "-fisolate-erroneous-paths-dereference"
-Detect paths which trigger erroneous or undefined behaviour due to
-dereferencing a \s-1NULL\s0 pointer. Isolate those paths from the main control
-flow and turn the statement with erroneous or undefined behaviour into a trap.
-.IP "\fB\-fisolate\-erroneous\-paths\-attribute\fR" 4
-.IX Item "-fisolate-erroneous-paths-attribute"
-Detect paths which trigger erroneous or undefined behaviour due a \s-1NULL\s0 value
-being used in a way which is forbidden by a \f(CW\*(C`returns_nonnull\*(C'\fR or \f(CW\*(C`nonnull\*(C'\fR
-attribute. Isolate those paths from the main control flow and turn the
-statement with erroneous or undefined behaviour into a trap. This is not
-currently enabled, but may be enabled by \f(CW\*(C`\-O2\*(C'\fR in the future.
-.IP "\fB\-ftree\-sink\fR" 4
-.IX Item "-ftree-sink"
-Perform forward store motion on trees. This flag is
-enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-bit\-ccp\fR" 4
-.IX Item "-ftree-bit-ccp"
-Perform sparse conditional bit constant propagation on trees and propagate
-pointer alignment information.
-This pass only operates on local scalar variables and is enabled by default
-at \fB\-O\fR and higher. It requires that \fB\-ftree\-ccp\fR is enabled.
-.IP "\fB\-ftree\-ccp\fR" 4
-.IX Item "-ftree-ccp"
-Perform sparse conditional constant propagation (\s-1CCP\s0) on trees. This
-pass only operates on local scalar variables and is enabled by default
-at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-switch\-conversion\fR" 4
-.IX Item "-ftree-switch-conversion"
-Perform conversion of simple initializations in a switch to
-initializations from a scalar array. This flag is enabled by default
-at \fB\-O2\fR and higher.
-.IP "\fB\-ftree\-tail\-merge\fR" 4
-.IX Item "-ftree-tail-merge"
-Look for identical code sequences. When found, replace one with a jump to the
-other. This optimization is known as tail merging or cross jumping. This flag
-is enabled by default at \fB\-O2\fR and higher. The compilation time
-in this pass can
-be limited using \fBmax-tail-merge-comparisons\fR parameter and
-\&\fBmax-tail-merge-iterations\fR parameter.
-.IP "\fB\-ftree\-dce\fR" 4
-.IX Item "-ftree-dce"
-Perform dead code elimination (\s-1DCE\s0) on trees. This flag is enabled by
-default at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-builtin\-call\-dce\fR" 4
-.IX Item "-ftree-builtin-call-dce"
-Perform conditional dead code elimination (\s-1DCE\s0) for calls to built-in functions
-that may set \f(CW\*(C`errno\*(C'\fR but are otherwise side-effect free. This flag is
-enabled by default at \fB\-O2\fR and higher if \fB\-Os\fR is not also
-specified.
-.IP "\fB\-ftree\-dominator\-opts\fR" 4
-.IX Item "-ftree-dominator-opts"
-Perform a variety of simple scalar cleanups (constant/copy
-propagation, redundancy elimination, range propagation and expression
-simplification) based on a dominator tree traversal. This also
-performs jump threading (to reduce jumps to jumps). This flag is
-enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-dse\fR" 4
-.IX Item "-ftree-dse"
-Perform dead store elimination (\s-1DSE\s0) on trees. A dead store is a store into
-a memory location that is later overwritten by another store without
-any intervening loads. In this case the earlier store can be deleted. This
-flag is enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-ch\fR" 4
-.IX Item "-ftree-ch"
-Perform loop header copying on trees. This is beneficial since it increases
-effectiveness of code motion optimizations. It also saves one jump. This flag
-is enabled by default at \fB\-O\fR and higher. It is not enabled
-for \fB\-Os\fR, since it usually increases code size.
-.IP "\fB\-ftree\-loop\-optimize\fR" 4
-.IX Item "-ftree-loop-optimize"
-Perform loop optimizations on trees. This flag is enabled by default
-at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-loop\-linear\fR" 4
-.IX Item "-ftree-loop-linear"
-Perform loop interchange transformations on tree. Same as
-\&\fB\-floop\-interchange\fR. To use this code transformation, \s-1GCC\s0 has
-to be configured with \fB\-\-with\-ppl\fR and \fB\-\-with\-cloog\fR to
-enable the Graphite loop transformation infrastructure.
-.IP "\fB\-floop\-interchange\fR" 4
-.IX Item "-floop-interchange"
-Perform loop interchange transformations on loops. Interchanging two
-nested loops switches the inner and outer loops. For example, given a
-loop like:
-.Sp
-.Vb 5
-\& DO J = 1, M
-\& DO I = 1, N
-\& A(J, I) = A(J, I) * C
-\& ENDDO
-\& ENDDO
-.Ve
-.Sp
-loop interchange transforms the loop as if it were written:
-.Sp
-.Vb 5
-\& DO I = 1, N
-\& DO J = 1, M
-\& A(J, I) = A(J, I) * C
-\& ENDDO
-\& ENDDO
-.Ve
-.Sp
-which can be beneficial when \f(CW\*(C`N\*(C'\fR is larger than the caches,
-because in Fortran, the elements of an array are stored in memory
-contiguously by column, and the original loop iterates over rows,
-potentially creating at each access a cache miss. This optimization
-applies to all the languages supported by \s-1GCC\s0 and is not limited to
-Fortran. To use this code transformation, \s-1GCC\s0 has to be configured
-with \fB\-\-with\-ppl\fR and \fB\-\-with\-cloog\fR to enable the
-Graphite loop transformation infrastructure.
-.IP "\fB\-floop\-strip\-mine\fR" 4
-.IX Item "-floop-strip-mine"
-Perform loop strip mining transformations on loops. Strip mining
-splits a loop into two nested loops. The outer loop has strides
-equal to the strip size and the inner loop has strides of the
-original loop within a strip. The strip length can be changed
-using the \fBloop-block-tile-size\fR parameter. For example,
-given a loop like:
-.Sp
-.Vb 3
-\& DO I = 1, N
-\& A(I) = A(I) + C
-\& ENDDO
-.Ve
-.Sp
-loop strip mining transforms the loop as if it were written:
-.Sp
-.Vb 5
-\& DO II = 1, N, 51
-\& DO I = II, min (II + 50, N)
-\& A(I) = A(I) + C
-\& ENDDO
-\& ENDDO
-.Ve
-.Sp
-This optimization applies to all the languages supported by \s-1GCC\s0 and is
-not limited to Fortran. To use this code transformation, \s-1GCC\s0 has to
-be configured with \fB\-\-with\-ppl\fR and \fB\-\-with\-cloog\fR to
-enable the Graphite loop transformation infrastructure.
-.IP "\fB\-floop\-block\fR" 4
-.IX Item "-floop-block"
-Perform loop blocking transformations on loops. Blocking strip mines
-each loop in the loop nest such that the memory accesses of the
-element loops fit inside caches. The strip length can be changed
-using the \fBloop-block-tile-size\fR parameter. For example, given
-a loop like:
-.Sp
-.Vb 5
-\& DO I = 1, N
-\& DO J = 1, M
-\& A(J, I) = B(I) + C(J)
-\& ENDDO
-\& ENDDO
-.Ve
-.Sp
-loop blocking transforms the loop as if it were written:
-.Sp
-.Vb 9
-\& DO II = 1, N, 51
-\& DO JJ = 1, M, 51
-\& DO I = II, min (II + 50, N)
-\& DO J = JJ, min (JJ + 50, M)
-\& A(J, I) = B(I) + C(J)
-\& ENDDO
-\& ENDDO
-\& ENDDO
-\& ENDDO
-.Ve
-.Sp
-which can be beneficial when \f(CW\*(C`M\*(C'\fR is larger than the caches,
-because the innermost loop iterates over a smaller amount of data
-which can be kept in the caches. This optimization applies to all the
-languages supported by \s-1GCC\s0 and is not limited to Fortran. To use this
-code transformation, \s-1GCC\s0 has to be configured with \fB\-\-with\-ppl\fR
-and \fB\-\-with\-cloog\fR to enable the Graphite loop transformation
-infrastructure.
-.IP "\fB\-fgraphite\-identity\fR" 4
-.IX Item "-fgraphite-identity"
-Enable the identity transformation for graphite. For every SCoP we generate
-the polyhedral representation and transform it back to gimple. Using
-\&\fB\-fgraphite\-identity\fR we can check the costs or benefits of the
-\&\s-1GIMPLE \-\s0> \s-1GRAPHITE \-\s0> \s-1GIMPLE\s0 transformation. Some minimal optimizations
-are also performed by the code generator CLooG, like index splitting and
-dead code elimination in loops.
-.IP "\fB\-floop\-nest\-optimize\fR" 4
-.IX Item "-floop-nest-optimize"
-Enable the \s-1ISL\s0 based loop nest optimizer. This is a generic loop nest
-optimizer based on the Pluto optimization algorithms. It calculates a loop
-structure optimized for data-locality and parallelism. This option
-is experimental.
-.IP "\fB\-floop\-parallelize\-all\fR" 4
-.IX Item "-floop-parallelize-all"
-Use the Graphite data dependence analysis to identify loops that can
-be parallelized. Parallelize all the loops that can be analyzed to
-not contain loop carried dependences without checking that it is
-profitable to parallelize the loops.
-.IP "\fB\-fcheck\-data\-deps\fR" 4
-.IX Item "-fcheck-data-deps"
-Compare the results of several data dependence analyzers. This option
-is used for debugging the data dependence analyzers.
-.IP "\fB\-ftree\-loop\-if\-convert\fR" 4
-.IX Item "-ftree-loop-if-convert"
-Attempt to transform conditional jumps in the innermost loops to
-branch-less equivalents. The intent is to remove control-flow from
-the innermost loops in order to improve the ability of the
-vectorization pass to handle these loops. This is enabled by default
-if vectorization is enabled.
-.IP "\fB\-ftree\-loop\-if\-convert\-stores\fR" 4
-.IX Item "-ftree-loop-if-convert-stores"
-Attempt to also if-convert conditional jumps containing memory writes.
-This transformation can be unsafe for multi-threaded programs as it
-transforms conditional memory writes into unconditional memory writes.
-For example,
-.Sp
-.Vb 3
-\& for (i = 0; i < N; i++)
-\& if (cond)
-\& A[i] = expr;
-.Ve
-.Sp
-is transformed to
-.Sp
-.Vb 2
-\& for (i = 0; i < N; i++)
-\& A[i] = cond ? expr : A[i];
-.Ve
-.Sp
-potentially producing data races.
-.IP "\fB\-ftree\-loop\-distribution\fR" 4
-.IX Item "-ftree-loop-distribution"
-Perform loop distribution. This flag can improve cache performance on
-big loop bodies and allow further loop optimizations, like
-parallelization or vectorization, to take place. For example, the loop
-.Sp
-.Vb 4
-\& DO I = 1, N
-\& A(I) = B(I) + C
-\& D(I) = E(I) * F
-\& ENDDO
-.Ve
-.Sp
-is transformed to
-.Sp
-.Vb 6
-\& DO I = 1, N
-\& A(I) = B(I) + C
-\& ENDDO
-\& DO I = 1, N
-\& D(I) = E(I) * F
-\& ENDDO
-.Ve
-.IP "\fB\-ftree\-loop\-distribute\-patterns\fR" 4
-.IX Item "-ftree-loop-distribute-patterns"
-Perform loop distribution of patterns that can be code generated with
-calls to a library. This flag is enabled by default at \fB\-O3\fR.
-.Sp
-This pass distributes the initialization loops and generates a call to
-memset zero. For example, the loop
-.Sp
-.Vb 4
-\& DO I = 1, N
-\& A(I) = 0
-\& B(I) = A(I) + I
-\& ENDDO
-.Ve
-.Sp
-is transformed to
-.Sp
-.Vb 6
-\& DO I = 1, N
-\& A(I) = 0
-\& ENDDO
-\& DO I = 1, N
-\& B(I) = A(I) + I
-\& ENDDO
-.Ve
-.Sp
-and the initialization loop is transformed into a call to memset zero.
-.IP "\fB\-ftree\-loop\-im\fR" 4
-.IX Item "-ftree-loop-im"
-Perform loop invariant motion on trees. This pass moves only invariants that
-are hard to handle at \s-1RTL\s0 level (function calls, operations that expand to
-nontrivial sequences of insns). With \fB\-funswitch\-loops\fR it also moves
-operands of conditions that are invariant out of the loop, so that we can use
-just trivial invariantness analysis in loop unswitching. The pass also includes
-store motion.
-.IP "\fB\-ftree\-loop\-ivcanon\fR" 4
-.IX Item "-ftree-loop-ivcanon"
-Create a canonical counter for number of iterations in loops for which
-determining number of iterations requires complicated analysis. Later
-optimizations then may determine the number easily. Useful especially
-in connection with unrolling.
-.IP "\fB\-fivopts\fR" 4
-.IX Item "-fivopts"
-Perform induction variable optimizations (strength reduction, induction
-variable merging and induction variable elimination) on trees.
-.IP "\fB\-ftree\-parallelize\-loops=n\fR" 4
-.IX Item "-ftree-parallelize-loops=n"
-Parallelize loops, i.e., split their iteration space to run in n threads.
-This is only possible for loops whose iterations are independent
-and can be arbitrarily reordered. The optimization is only
-profitable on multiprocessor machines, for loops that are CPU-intensive,
-rather than constrained e.g. by memory bandwidth. This option
-implies \fB\-pthread\fR, and thus is only supported on targets
-that have support for \fB\-pthread\fR.
-.IP "\fB\-ftree\-pta\fR" 4
-.IX Item "-ftree-pta"
-Perform function-local points-to analysis on trees. This flag is
-enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-sra\fR" 4
-.IX Item "-ftree-sra"
-Perform scalar replacement of aggregates. This pass replaces structure
-references with scalars to prevent committing structures to memory too
-early. This flag is enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-copyrename\fR" 4
-.IX Item "-ftree-copyrename"
-Perform copy renaming on trees. This pass attempts to rename compiler
-temporaries to other variables at copy locations, usually resulting in
-variable names which more closely resemble the original variables. This flag
-is enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-coalesce\-inlined\-vars\fR" 4
-.IX Item "-ftree-coalesce-inlined-vars"
-Tell the copyrename pass (see \fB\-ftree\-copyrename\fR) to attempt to
-combine small user-defined variables too, but only if they were inlined
-from other functions. It is a more limited form of
-\&\fB\-ftree\-coalesce\-vars\fR. This may harm debug information of such
-inlined variables, but it will keep variables of the inlined-into
-function apart from each other, such that they are more likely to
-contain the expected values in a debugging session. This was the
-default in \s-1GCC\s0 versions older than 4.7.
-.IP "\fB\-ftree\-coalesce\-vars\fR" 4
-.IX Item "-ftree-coalesce-vars"
-Tell the copyrename pass (see \fB\-ftree\-copyrename\fR) to attempt to
-combine small user-defined variables too, instead of just compiler
-temporaries. This may severely limit the ability to debug an optimized
-program compiled with \fB\-fno\-var\-tracking\-assignments\fR. In the
-negated form, this flag prevents \s-1SSA\s0 coalescing of user variables,
-including inlined ones. This option is enabled by default.
-.IP "\fB\-ftree\-ter\fR" 4
-.IX Item "-ftree-ter"
-Perform temporary expression replacement during the \s-1SSA\-\s0>normal phase. Single
-use/single def temporaries are replaced at their use location with their
-defining expression. This results in non-GIMPLE code, but gives the expanders
-much more complex trees to work on resulting in better \s-1RTL\s0 generation. This is
-enabled by default at \fB\-O\fR and higher.
-.IP "\fB\-ftree\-slsr\fR" 4
-.IX Item "-ftree-slsr"
-Perform straight-line strength reduction on trees. This recognizes related
-expressions involving multiplications and replaces them by less expensive
-calculations when possible. This is enabled by default at \fB\-O\fR and
-higher.
-.IP "\fB\-ftree\-vectorize\fR" 4
-.IX Item "-ftree-vectorize"
-Perform vectorization on trees. This flag enables \fB\-ftree\-loop\-vectorize\fR
-and \fB\-ftree\-slp\-vectorize\fR if not explicitly specified.
-.IP "\fB\-ftree\-loop\-vectorize\fR" 4
-.IX Item "-ftree-loop-vectorize"
-Perform loop vectorization on trees. This flag is enabled by default at
-\&\fB\-O3\fR and when \fB\-ftree\-vectorize\fR is enabled.
-.IP "\fB\-ftree\-slp\-vectorize\fR" 4
-.IX Item "-ftree-slp-vectorize"
-Perform basic block vectorization on trees. This flag is enabled by default at
-\&\fB\-O3\fR and when \fB\-ftree\-vectorize\fR is enabled.
-.IP "\fB\-fvect\-cost\-model=\fR\fImodel\fR" 4
-.IX Item "-fvect-cost-model=model"
-Alter the cost model used for vectorization. The \fImodel\fR argument
-should be one of \f(CW\*(C`unlimited\*(C'\fR, \f(CW\*(C`dynamic\*(C'\fR or \f(CW\*(C`cheap\*(C'\fR.
-With the \f(CW\*(C`unlimited\*(C'\fR model the vectorized code-path is assumed
-to be profitable while with the \f(CW\*(C`dynamic\*(C'\fR model a runtime check
-will guard the vectorized code-path to enable it only for iteration
-counts that will likely execute faster than when executing the original
-scalar loop. The \f(CW\*(C`cheap\*(C'\fR model will disable vectorization of
-loops where doing so would be cost prohibitive for example due to
-required runtime checks for data dependence or alignment but otherwise
-is equal to the \f(CW\*(C`dynamic\*(C'\fR model.
-The default cost model depends on other optimization flags and is
-either \f(CW\*(C`dynamic\*(C'\fR or \f(CW\*(C`cheap\*(C'\fR.
-.IP "\fB\-fsimd\-cost\-model=\fR\fImodel\fR" 4
-.IX Item "-fsimd-cost-model=model"
-Alter the cost model used for vectorization of loops marked with the OpenMP
-or Cilk Plus simd directive. The \fImodel\fR argument should be one of
-\&\f(CW\*(C`unlimited\*(C'\fR, \f(CW\*(C`dynamic\*(C'\fR, \f(CW\*(C`cheap\*(C'\fR. All values of \fImodel\fR
-have the same meaning as described in \fB\-fvect\-cost\-model\fR and by
-default a cost model defined with \fB\-fvect\-cost\-model\fR is used.
-.IP "\fB\-ftree\-vrp\fR" 4
-.IX Item "-ftree-vrp"
-Perform Value Range Propagation on trees. This is similar to the
-constant propagation pass, but instead of values, ranges of values are
-propagated. This allows the optimizers to remove unnecessary range
-checks like array bound checks and null pointer checks. This is
-enabled by default at \fB\-O2\fR and higher. Null pointer check
-elimination is only done if \fB\-fdelete\-null\-pointer\-checks\fR is
-enabled.
-.IP "\fB\-ftracer\fR" 4
-.IX Item "-ftracer"
-Perform tail duplication to enlarge superblock size. This transformation
-simplifies the control flow of the function allowing other optimizations to do
-a better job.
-.IP "\fB\-funroll\-loops\fR" 4
-.IX Item "-funroll-loops"
-Unroll loops whose number of iterations can be determined at compile
-time or upon entry to the loop. \fB\-funroll\-loops\fR implies
-\&\fB\-frerun\-cse\-after\-loop\fR. This option makes code larger,
-and may or may not make it run faster.
-.IP "\fB\-funroll\-all\-loops\fR" 4
-.IX Item "-funroll-all-loops"
-Unroll all loops, even if their number of iterations is uncertain when
-the loop is entered. This usually makes programs run more slowly.
-\&\fB\-funroll\-all\-loops\fR implies the same options as
-\&\fB\-funroll\-loops\fR,
-.IP "\fB\-fsplit\-ivs\-in\-unroller\fR" 4
-.IX Item "-fsplit-ivs-in-unroller"
-Enables expression of values of induction variables in later iterations
-of the unrolled loop using the value in the first iteration. This breaks
-long dependency chains, thus improving efficiency of the scheduling passes.
-.Sp
-A combination of \fB\-fweb\fR and \s-1CSE\s0 is often sufficient to obtain the
-same effect. However, that is not reliable in cases where the loop body
-is more complicated than a single basic block. It also does not work at all
-on some architectures due to restrictions in the \s-1CSE\s0 pass.
-.Sp
-This optimization is enabled by default.
-.IP "\fB\-fvariable\-expansion\-in\-unroller\fR" 4
-.IX Item "-fvariable-expansion-in-unroller"
-With this option, the compiler creates multiple copies of some
-local variables when unrolling a loop, which can result in superior code.
-.IP "\fB\-fpartial\-inlining\fR" 4
-.IX Item "-fpartial-inlining"
-Inline parts of functions. This option has any effect only
-when inlining itself is turned on by the \fB\-finline\-functions\fR
-or \fB\-finline\-small\-functions\fR options.
-.Sp
-Enabled at level \fB\-O2\fR.
-.IP "\fB\-fpredictive\-commoning\fR" 4
-.IX Item "-fpredictive-commoning"
-Perform predictive commoning optimization, i.e., reusing computations
-(especially memory loads and stores) performed in previous
-iterations of loops.
-.Sp
-This option is enabled at level \fB\-O3\fR.
-.IP "\fB\-fprefetch\-loop\-arrays\fR" 4
-.IX Item "-fprefetch-loop-arrays"
-If supported by the target machine, generate instructions to prefetch
-memory to improve the performance of loops that access large arrays.
-.Sp
-This option may generate better or worse code; results are highly
-dependent on the structure of loops within the source code.
-.Sp
-Disabled at level \fB\-Os\fR.
-.IP "\fB\-fno\-peephole\fR" 4
-.IX Item "-fno-peephole"
-.PD 0
-.IP "\fB\-fno\-peephole2\fR" 4
-.IX Item "-fno-peephole2"
-.PD
-Disable any machine-specific peephole optimizations. The difference
-between \fB\-fno\-peephole\fR and \fB\-fno\-peephole2\fR is in how they
-are implemented in the compiler; some targets use one, some use the
-other, a few use both.
-.Sp
-\&\fB\-fpeephole\fR is enabled by default.
-\&\fB\-fpeephole2\fR enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fno\-guess\-branch\-probability\fR" 4
-.IX Item "-fno-guess-branch-probability"
-Do not guess branch probabilities using heuristics.
-.Sp
-\&\s-1GCC\s0 uses heuristics to guess branch probabilities if they are
-not provided by profiling feedback (\fB\-fprofile\-arcs\fR). These
-heuristics are based on the control flow graph. If some branch probabilities
-are specified by \fB_\|_builtin_expect\fR, then the heuristics are
-used to guess branch probabilities for the rest of the control flow graph,
-taking the \fB_\|_builtin_expect\fR info into account. The interactions
-between the heuristics and \fB_\|_builtin_expect\fR can be complex, and in
-some cases, it may be useful to disable the heuristics so that the effects
-of \fB_\|_builtin_expect\fR are easier to understand.
-.Sp
-The default is \fB\-fguess\-branch\-probability\fR at levels
-\&\fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-freorder\-blocks\fR" 4
-.IX Item "-freorder-blocks"
-Reorder basic blocks in the compiled function in order to reduce number of
-taken branches and improve code locality.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR.
-.IP "\fB\-freorder\-blocks\-and\-partition\fR" 4
-.IX Item "-freorder-blocks-and-partition"
-In addition to reordering basic blocks in the compiled function, in order
-to reduce number of taken branches, partitions hot and cold basic blocks
-into separate sections of the assembly and .o files, to improve
-paging and cache locality performance.
-.Sp
-This optimization is automatically turned off in the presence of
-exception handling, for linkonce sections, for functions with a user-defined
-section attribute and on any architecture that does not support named
-sections.
-.Sp
-Enabled for x86 at levels \fB\-O2\fR, \fB\-O3\fR.
-.IP "\fB\-freorder\-functions\fR" 4
-.IX Item "-freorder-functions"
-Reorder functions in the object file in order to
-improve code locality. This is implemented by using special
-subsections \f(CW\*(C`.text.hot\*(C'\fR for most frequently executed functions and
-\&\f(CW\*(C`.text.unlikely\*(C'\fR for unlikely executed functions. Reordering is done by
-the linker so object file format must support named sections and linker must
-place them in a reasonable way.
-.Sp
-Also profile feedback must be available to make this option effective. See
-\&\fB\-fprofile\-arcs\fR for details.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fstrict\-aliasing\fR" 4
-.IX Item "-fstrict-aliasing"
-Allow the compiler to assume the strictest aliasing rules applicable to
-the language being compiled. For C (and \*(C+), this activates
-optimizations based on the type of expressions. In particular, an
-object of one type is assumed never to reside at the same address as an
-object of a different type, unless the types are almost the same. For
-example, an \f(CW\*(C`unsigned int\*(C'\fR can alias an \f(CW\*(C`int\*(C'\fR, but not a
-\&\f(CW\*(C`void*\*(C'\fR or a \f(CW\*(C`double\*(C'\fR. A character type may alias any other
-type.
-.Sp
-Pay special attention to code like this:
-.Sp
-.Vb 4
-\& union a_union {
-\& int i;
-\& double d;
-\& };
-\&
-\& int f() {
-\& union a_union t;
-\& t.d = 3.0;
-\& return t.i;
-\& }
-.Ve
-.Sp
-The practice of reading from a different union member than the one most
-recently written to (called \*(L"type-punning\*(R") is common. Even with
-\&\fB\-fstrict\-aliasing\fR, type-punning is allowed, provided the memory
-is accessed through the union type. So, the code above works as
-expected. However, this code might not:
-.Sp
-.Vb 7
-\& int f() {
-\& union a_union t;
-\& int* ip;
-\& t.d = 3.0;
-\& ip = &t.i;
-\& return *ip;
-\& }
-.Ve
-.Sp
-Similarly, access by taking the address, casting the resulting pointer
-and dereferencing the result has undefined behavior, even if the cast
-uses a union type, e.g.:
-.Sp
-.Vb 4
-\& int f() {
-\& double d = 3.0;
-\& return ((union a_union *) &d)\->i;
-\& }
-.Ve
-.Sp
-The \fB\-fstrict\-aliasing\fR option is enabled at levels
-\&\fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fstrict\-overflow\fR" 4
-.IX Item "-fstrict-overflow"
-Allow the compiler to assume strict signed overflow rules, depending
-on the language being compiled. For C (and \*(C+) this means that
-overflow when doing arithmetic with signed numbers is undefined, which
-means that the compiler may assume that it does not happen. This
-permits various optimizations. For example, the compiler assumes
-that an expression like \f(CW\*(C`i + 10 > i\*(C'\fR is always true for
-signed \f(CW\*(C`i\*(C'\fR. This assumption is only valid if signed overflow is
-undefined, as the expression is false if \f(CW\*(C`i + 10\*(C'\fR overflows when
-using twos complement arithmetic. When this option is in effect any
-attempt to determine whether an operation on signed numbers
-overflows must be written carefully to not actually involve overflow.
-.Sp
-This option also allows the compiler to assume strict pointer
-semantics: given a pointer to an object, if adding an offset to that
-pointer does not produce a pointer to the same object, the addition is
-undefined. This permits the compiler to conclude that \f(CW\*(C`p + u >
-p\*(C'\fR is always true for a pointer \f(CW\*(C`p\*(C'\fR and unsigned integer
-\&\f(CW\*(C`u\*(C'\fR. This assumption is only valid because pointer wraparound is
-undefined, as the expression is false if \f(CW\*(C`p + u\*(C'\fR overflows using
-twos complement arithmetic.
-.Sp
-See also the \fB\-fwrapv\fR option. Using \fB\-fwrapv\fR means
-that integer signed overflow is fully defined: it wraps. When
-\&\fB\-fwrapv\fR is used, there is no difference between
-\&\fB\-fstrict\-overflow\fR and \fB\-fno\-strict\-overflow\fR for
-integers. With \fB\-fwrapv\fR certain types of overflow are
-permitted. For example, if the compiler gets an overflow when doing
-arithmetic on constants, the overflowed value can still be used with
-\&\fB\-fwrapv\fR, but not otherwise.
-.Sp
-The \fB\-fstrict\-overflow\fR option is enabled at levels
-\&\fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-falign\-functions\fR" 4
-.IX Item "-falign-functions"
-.PD 0
-.IP "\fB\-falign\-functions=\fR\fIn\fR" 4
-.IX Item "-falign-functions=n"
-.PD
-Align the start of functions to the next power-of-two greater than
-\&\fIn\fR, skipping up to \fIn\fR bytes. For instance,
-\&\fB\-falign\-functions=32\fR aligns functions to the next 32\-byte
-boundary, but \fB\-falign\-functions=24\fR aligns to the next
-32\-byte boundary only if this can be done by skipping 23 bytes or less.
-.Sp
-\&\fB\-fno\-align\-functions\fR and \fB\-falign\-functions=1\fR are
-equivalent and mean that functions are not aligned.
-.Sp
-Some assemblers only support this flag when \fIn\fR is a power of two;
-in that case, it is rounded up.
-.Sp
-If \fIn\fR is not specified or is zero, use a machine-dependent default.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR.
-.IP "\fB\-falign\-labels\fR" 4
-.IX Item "-falign-labels"
-.PD 0
-.IP "\fB\-falign\-labels=\fR\fIn\fR" 4
-.IX Item "-falign-labels=n"
-.PD
-Align all branch targets to a power-of-two boundary, skipping up to
-\&\fIn\fR bytes like \fB\-falign\-functions\fR. This option can easily
-make code slower, because it must insert dummy operations for when the
-branch target is reached in the usual flow of the code.
-.Sp
-\&\fB\-fno\-align\-labels\fR and \fB\-falign\-labels=1\fR are
-equivalent and mean that labels are not aligned.
-.Sp
-If \fB\-falign\-loops\fR or \fB\-falign\-jumps\fR are applicable and
-are greater than this value, then their values are used instead.
-.Sp
-If \fIn\fR is not specified or is zero, use a machine-dependent default
-which is very likely to be \fB1\fR, meaning no alignment.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR.
-.IP "\fB\-falign\-loops\fR" 4
-.IX Item "-falign-loops"
-.PD 0
-.IP "\fB\-falign\-loops=\fR\fIn\fR" 4
-.IX Item "-falign-loops=n"
-.PD
-Align loops to a power-of-two boundary, skipping up to \fIn\fR bytes
-like \fB\-falign\-functions\fR. If the loops are
-executed many times, this makes up for any execution of the dummy
-operations.
-.Sp
-\&\fB\-fno\-align\-loops\fR and \fB\-falign\-loops=1\fR are
-equivalent and mean that loops are not aligned.
-.Sp
-If \fIn\fR is not specified or is zero, use a machine-dependent default.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR.
-.IP "\fB\-falign\-jumps\fR" 4
-.IX Item "-falign-jumps"
-.PD 0
-.IP "\fB\-falign\-jumps=\fR\fIn\fR" 4
-.IX Item "-falign-jumps=n"
-.PD
-Align branch targets to a power-of-two boundary, for branch targets
-where the targets can only be reached by jumping, skipping up to \fIn\fR
-bytes like \fB\-falign\-functions\fR. In this case, no dummy operations
-need be executed.
-.Sp
-\&\fB\-fno\-align\-jumps\fR and \fB\-falign\-jumps=1\fR are
-equivalent and mean that loops are not aligned.
-.Sp
-If \fIn\fR is not specified or is zero, use a machine-dependent default.
-.Sp
-Enabled at levels \fB\-O2\fR, \fB\-O3\fR.
-.IP "\fB\-funit\-at\-a\-time\fR" 4
-.IX Item "-funit-at-a-time"
-This option is left for compatibility reasons. \fB\-funit\-at\-a\-time\fR
-has no effect, while \fB\-fno\-unit\-at\-a\-time\fR implies
-\&\fB\-fno\-toplevel\-reorder\fR and \fB\-fno\-section\-anchors\fR.
-.Sp
-Enabled by default.
-.IP "\fB\-fno\-toplevel\-reorder\fR" 4
-.IX Item "-fno-toplevel-reorder"
-Do not reorder top-level functions, variables, and \f(CW\*(C`asm\*(C'\fR
-statements. Output them in the same order that they appear in the
-input file. When this option is used, unreferenced static variables
-are not removed. This option is intended to support existing code
-that relies on a particular ordering. For new code, it is better to
-use attributes when possible.
-.Sp
-Enabled at level \fB\-O0\fR. When disabled explicitly, it also implies
-\&\fB\-fno\-section\-anchors\fR, which is otherwise enabled at \fB\-O0\fR on some
-targets.
-.IP "\fB\-fweb\fR" 4
-.IX Item "-fweb"
-Constructs webs as commonly used for register allocation purposes and assign
-each web individual pseudo register. This allows the register allocation pass
-to operate on pseudos directly, but also strengthens several other optimization
-passes, such as \s-1CSE,\s0 loop optimizer and trivial dead code remover. It can,
-however, make debugging impossible, since variables no longer stay in a
-\&\*(L"home register\*(R".
-.Sp
-Enabled by default with \fB\-funroll\-loops\fR.
-.IP "\fB\-fwhole\-program\fR" 4
-.IX Item "-fwhole-program"
-Assume that the current compilation unit represents the whole program being
-compiled. All public functions and variables with the exception of \f(CW\*(C`main\*(C'\fR
-and those merged by attribute \f(CW\*(C`externally_visible\*(C'\fR become static functions
-and in effect are optimized more aggressively by interprocedural optimizers.
-.Sp
-This option should not be used in combination with \f(CW\*(C`\-flto\*(C'\fR.
-Instead relying on a linker plugin should provide safer and more precise
-information.
-.IP "\fB\-flto[=\fR\fIn\fR\fB]\fR" 4
-.IX Item "-flto[=n]"
-This option runs the standard link-time optimizer. When invoked
-with source code, it generates \s-1GIMPLE \s0(one of \s-1GCC\s0's internal
-representations) and writes it to special \s-1ELF\s0 sections in the object
-file. When the object files are linked together, all the function
-bodies are read from these \s-1ELF\s0 sections and instantiated as if they
-had been part of the same translation unit.
-.Sp
-To use the link-time optimizer, \fB\-flto\fR and optimization
-options should be specified at compile time and during the final link.
-For example:
-.Sp
-.Vb 3
-\& gcc \-c \-O2 \-flto foo.c
-\& gcc \-c \-O2 \-flto bar.c
-\& gcc \-o myprog \-flto \-O2 foo.o bar.o
-.Ve
-.Sp
-The first two invocations to \s-1GCC\s0 save a bytecode representation
-of \s-1GIMPLE\s0 into special \s-1ELF\s0 sections inside \fIfoo.o\fR and
-\&\fIbar.o\fR. The final invocation reads the \s-1GIMPLE\s0 bytecode from
-\&\fIfoo.o\fR and \fIbar.o\fR, merges the two files into a single
-internal image, and compiles the result as usual. Since both
-\&\fIfoo.o\fR and \fIbar.o\fR are merged into a single image, this
-causes all the interprocedural analyses and optimizations in \s-1GCC\s0 to
-work across the two files as if they were a single one. This means,
-for example, that the inliner is able to inline functions in
-\&\fIbar.o\fR into functions in \fIfoo.o\fR and vice-versa.
-.Sp
-Another (simpler) way to enable link-time optimization is:
-.Sp
-.Vb 1
-\& gcc \-o myprog \-flto \-O2 foo.c bar.c
-.Ve
-.Sp
-The above generates bytecode for \fIfoo.c\fR and \fIbar.c\fR,
-merges them together into a single \s-1GIMPLE\s0 representation and optimizes
-them as usual to produce \fImyprog\fR.
-.Sp
-The only important thing to keep in mind is that to enable link-time
-optimizations you need to use the \s-1GCC\s0 driver to perform the link-step.
-\&\s-1GCC\s0 then automatically performs link-time optimization if any of the
-objects involved were compiled with the \fB\-flto\fR. You generally
-should specify the optimization options to be used for link-time
-optimization though \s-1GCC\s0 will try to be clever at guessing an
-optimization level to use from the options used at compile-time
-if you fail to specify one at link-time. You can always override
-the automatic decision to do link-time optimization at link-time
-by passing \fB\-fno\-lto\fR to the link command.
-.Sp
-To make whole program optimization effective, it is necessary to make
-certain whole program assumptions. The compiler needs to know
-what functions and variables can be accessed by libraries and runtime
-outside of the link-time optimized unit. When supported by the linker,
-the linker plugin (see \fB\-fuse\-linker\-plugin\fR) passes information
-to the compiler about used and externally visible symbols. When
-the linker plugin is not available, \fB\-fwhole\-program\fR should be
-used to allow the compiler to make these assumptions, which leads
-to more aggressive optimization decisions.
-.Sp
-When \fB\-fuse\-linker\-plugin\fR is not enabled then, when a file is
-compiled with \fB\-flto\fR, the generated object file is larger than
-a regular object file because it contains \s-1GIMPLE\s0 bytecodes and the usual
-final code (see \fB\-ffat\-lto\-objects\fR. This means that
-object files with \s-1LTO\s0 information can be linked as normal object
-files; if \fB\-fno\-lto\fR is passed to the linker, no
-interprocedural optimizations are applied. Note that when
-\&\fB\-fno\-fat\-lto\-objects\fR is enabled the compile-stage is faster
-but you cannot perform a regular, non-LTO link on them.
-.Sp
-Additionally, the optimization flags used to compile individual files
-are not necessarily related to those used at link time. For instance,
-.Sp
-.Vb 3
-\& gcc \-c \-O0 \-ffat\-lto\-objects \-flto foo.c
-\& gcc \-c \-O0 \-ffat\-lto\-objects \-flto bar.c
-\& gcc \-o myprog \-O3 foo.o bar.o
-.Ve
-.Sp
-This produces individual object files with unoptimized assembler
-code, but the resulting binary \fImyprog\fR is optimized at
-\&\fB\-O3\fR. If, instead, the final binary is generated with
-\&\fB\-fno\-lto\fR, then \fImyprog\fR is not optimized.
-.Sp
-When producing the final binary, \s-1GCC\s0 only
-applies link-time optimizations to those files that contain bytecode.
-Therefore, you can mix and match object files and libraries with
-\&\s-1GIMPLE\s0 bytecodes and final object code. \s-1GCC\s0 automatically selects
-which files to optimize in \s-1LTO\s0 mode and which files to link without
-further processing.
-.Sp
-There are some code generation flags preserved by \s-1GCC\s0 when
-generating bytecodes, as they need to be used during the final link
-stage. Generally options specified at link-time override those
-specified at compile-time.
-.Sp
-If you do not specify an optimization level option \fB\-O\fR at
-link-time then \s-1GCC\s0 will compute one based on the optimization levels
-used when compiling the object files. The highest optimization
-level will win here.
-.Sp
-Currently, the following options and their setting are take from
-the first object file that explicitely specified it:
-\&\fB\-fPIC\fR, \fB\-fpic\fR, \fB\-fpie\fR, \fB\-fcommon\fR,
-\&\fB\-fexceptions\fR, \fB\-fnon\-call\-exceptions\fR, \fB\-fgnu\-tm\fR
-and all the \fB\-m\fR target flags.
-.Sp
-Certain \s-1ABI\s0 changing flags are required to match in all compilation-units
-and trying to override this at link-time with a conflicting value
-is ignored. This includes options such as \fB\-freg\-struct\-return\fR
-and \fB\-fpcc\-struct\-return\fR.
-.Sp
-Other options such as \fB\-ffp\-contract\fR, \fB\-fno\-strict\-overflow\fR,
-\&\fB\-fwrapv\fR, \fB\-fno\-trapv\fR or \fB\-fno\-strict\-aliasing\fR
-are passed through to the link stage and merged conservatively for
-conflicting translation units. Specifically
-\&\fB\-fno\-strict\-overflow\fR, \fB\-fwrapv\fR and \fB\-fno\-trapv\fR take
-precedence and for example \fB\-ffp\-contract=off\fR takes precedence
-over \fB\-ffp\-contract=fast\fR. You can override them at linke-time.
-.Sp
-It is recommended that you compile all the files participating in the
-same link with the same options and also specify those options at
-link time.
-.Sp
-If \s-1LTO\s0 encounters objects with C linkage declared with incompatible
-types in separate translation units to be linked together (undefined
-behavior according to \s-1ISO C99 6.2.7\s0), a non-fatal diagnostic may be
-issued. The behavior is still undefined at run time. Similar
-diagnostics may be raised for other languages.
-.Sp
-Another feature of \s-1LTO\s0 is that it is possible to apply interprocedural
-optimizations on files written in different languages:
-.Sp
-.Vb 4
-\& gcc \-c \-flto foo.c
-\& g++ \-c \-flto bar.cc
-\& gfortran \-c \-flto baz.f90
-\& g++ \-o myprog \-flto \-O3 foo.o bar.o baz.o \-lgfortran
-.Ve
-.Sp
-Notice that the final link is done with \fBg++\fR to get the \*(C+
-runtime libraries and \fB\-lgfortran\fR is added to get the Fortran
-runtime libraries. In general, when mixing languages in \s-1LTO\s0 mode, you
-should use the same link command options as when mixing languages in a
-regular (non-LTO) compilation.
-.Sp
-If object files containing \s-1GIMPLE\s0 bytecode are stored in a library archive, say
-\&\fIlibfoo.a\fR, it is possible to extract and use them in an \s-1LTO\s0 link if you
-are using a linker with plugin support. To create static libraries suitable
-for \s-1LTO,\s0 use \fBgcc-ar\fR and \fBgcc-ranlib\fR instead of \fBar\fR
-and \f(CW\*(C`ranlib\*(C'\fR; to show the symbols of object files with \s-1GIMPLE\s0 bytecode, use
-\&\fBgcc-nm\fR. Those commands require that \fBar\fR, \fBranlib\fR
-and \fBnm\fR have been compiled with plugin support. At link time, use the the
-flag \fB\-fuse\-linker\-plugin\fR to ensure that the library participates in
-the \s-1LTO\s0 optimization process:
-.Sp
-.Vb 1
-\& gcc \-o myprog \-O2 \-flto \-fuse\-linker\-plugin a.o b.o \-lfoo
-.Ve
-.Sp
-With the linker plugin enabled, the linker extracts the needed
-\&\s-1GIMPLE\s0 files from \fIlibfoo.a\fR and passes them on to the running \s-1GCC\s0
-to make them part of the aggregated \s-1GIMPLE\s0 image to be optimized.
-.Sp
-If you are not using a linker with plugin support and/or do not
-enable the linker plugin, then the objects inside \fIlibfoo.a\fR
-are extracted and linked as usual, but they do not participate
-in the \s-1LTO\s0 optimization process. In order to make a static library suitable
-for both \s-1LTO\s0 optimization and usual linkage, compile its object files with
-\&\fB\-flto\fR \f(CW\*(C`\-ffat\-lto\-objects\*(C'\fR.
-.Sp
-Link-time optimizations do not require the presence of the whole program to
-operate. If the program does not require any symbols to be exported, it is
-possible to combine \fB\-flto\fR and \fB\-fwhole\-program\fR to allow
-the interprocedural optimizers to use more aggressive assumptions which may
-lead to improved optimization opportunities.
-Use of \fB\-fwhole\-program\fR is not needed when linker plugin is
-active (see \fB\-fuse\-linker\-plugin\fR).
-.Sp
-The current implementation of \s-1LTO\s0 makes no
-attempt to generate bytecode that is portable between different
-types of hosts. The bytecode files are versioned and there is a
-strict version check, so bytecode files generated in one version of
-\&\s-1GCC\s0 will not work with an older or newer version of \s-1GCC.\s0
-.Sp
-Link-time optimization does not work well with generation of debugging
-information. Combining \fB\-flto\fR with
-\&\fB\-g\fR is currently experimental and expected to produce unexpected
-results.
-.Sp
-If you specify the optional \fIn\fR, the optimization and code
-generation done at link time is executed in parallel using \fIn\fR
-parallel jobs by utilizing an installed \fBmake\fR program. The
-environment variable \fB\s-1MAKE\s0\fR may be used to override the program
-used. The default value for \fIn\fR is 1.
-.Sp
-You can also specify \fB\-flto=jobserver\fR to use \s-1GNU\s0 make's
-job server mode to determine the number of parallel jobs. This
-is useful when the Makefile calling \s-1GCC\s0 is already executing in parallel.
-You must prepend a \fB+\fR to the command recipe in the parent Makefile
-for this to work. This option likely only works if \fB\s-1MAKE\s0\fR is
-\&\s-1GNU\s0 make.
-.IP "\fB\-flto\-partition=\fR\fIalg\fR" 4
-.IX Item "-flto-partition=alg"
-Specify the partitioning algorithm used by the link-time optimizer.
-The value is either \f(CW\*(C`1to1\*(C'\fR to specify a partitioning mirroring
-the original source files or \f(CW\*(C`balanced\*(C'\fR to specify partitioning
-into equally sized chunks (whenever possible) or \f(CW\*(C`max\*(C'\fR to create
-new partition for every symbol where possible. Specifying \f(CW\*(C`none\*(C'\fR
-as an algorithm disables partitioning and streaming completely.
-The default value is \f(CW\*(C`balanced\*(C'\fR. While \f(CW\*(C`1to1\*(C'\fR can be used
-as an workaround for various code ordering issues, the \f(CW\*(C`max\*(C'\fR
-partitioning is intended for internal testing only.
-.IP "\fB\-flto\-compression\-level=\fR\fIn\fR" 4
-.IX Item "-flto-compression-level=n"
-This option specifies the level of compression used for intermediate
-language written to \s-1LTO\s0 object files, and is only meaningful in
-conjunction with \s-1LTO\s0 mode (\fB\-flto\fR). Valid
-values are 0 (no compression) to 9 (maximum compression). Values
-outside this range are clamped to either 0 or 9. If the option is not
-given, a default balanced compression setting is used.
-.IP "\fB\-flto\-report\fR" 4
-.IX Item "-flto-report"
-Prints a report with internal details on the workings of the link-time
-optimizer. The contents of this report vary from version to version.
-It is meant to be useful to \s-1GCC\s0 developers when processing object
-files in \s-1LTO\s0 mode (via \fB\-flto\fR).
-.Sp
-Disabled by default.
-.IP "\fB\-flto\-report\-wpa\fR" 4
-.IX Item "-flto-report-wpa"
-Like \fB\-flto\-report\fR, but only print for the \s-1WPA\s0 phase of Link
-Time Optimization.
-.IP "\fB\-fuse\-linker\-plugin\fR" 4
-.IX Item "-fuse-linker-plugin"
-Enables the use of a linker plugin during link-time optimization. This
-option relies on plugin support in the linker, which is available in gold
-or in \s-1GNU\s0 ld 2.21 or newer.
-.Sp
-This option enables the extraction of object files with \s-1GIMPLE\s0 bytecode out
-of library archives. This improves the quality of optimization by exposing
-more code to the link-time optimizer. This information specifies what
-symbols can be accessed externally (by non-LTO object or during dynamic
-linking). Resulting code quality improvements on binaries (and shared
-libraries that use hidden visibility) are similar to \f(CW\*(C`\-fwhole\-program\*(C'\fR.
-See \fB\-flto\fR for a description of the effect of this flag and how to
-use it.
-.Sp
-This option is enabled by default when \s-1LTO\s0 support in \s-1GCC\s0 is enabled
-and \s-1GCC\s0 was configured for use with
-a linker supporting plugins (\s-1GNU\s0 ld 2.21 or newer or gold).
-.IP "\fB\-ffat\-lto\-objects\fR" 4
-.IX Item "-ffat-lto-objects"
-Fat \s-1LTO\s0 objects are object files that contain both the intermediate language
-and the object code. This makes them usable for both \s-1LTO\s0 linking and normal
-linking. This option is effective only when compiling with \fB\-flto\fR
-and is ignored at link time.
-.Sp
-\&\fB\-fno\-fat\-lto\-objects\fR improves compilation time over plain \s-1LTO,\s0 but
-requires the complete toolchain to be aware of \s-1LTO.\s0 It requires a linker with
-linker plugin support for basic functionality. Additionally,
-\&\fBnm\fR, \fBar\fR and \fBranlib\fR
-need to support linker plugins to allow a full-featured build environment
-(capable of building static libraries etc). \s-1GCC\s0 provides the \fBgcc-ar\fR,
-\&\fBgcc-nm\fR, \fBgcc-ranlib\fR wrappers to pass the right options
-to these tools. With non fat \s-1LTO\s0 makefiles need to be modified to use them.
-.Sp
-The default is \fB\-fno\-fat\-lto\-objects\fR on targets with linker plugin
-support.
-.IP "\fB\-fcompare\-elim\fR" 4
-.IX Item "-fcompare-elim"
-After register allocation and post-register allocation instruction splitting,
-identify arithmetic instructions that compute processor flags similar to a
-comparison operation based on that arithmetic. If possible, eliminate the
-explicit comparison operation.
-.Sp
-This pass only applies to certain targets that cannot explicitly represent
-the comparison operation before register allocation is complete.
-.Sp
-Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fuse\-ld=bfd\fR" 4
-.IX Item "-fuse-ld=bfd"
-Use the \fBbfd\fR linker instead of the default linker.
-.IP "\fB\-fuse\-ld=gold\fR" 4
-.IX Item "-fuse-ld=gold"
-Use the \fBgold\fR linker instead of the default linker.
-.IP "\fB\-fcprop\-registers\fR" 4
-.IX Item "-fcprop-registers"
-After register allocation and post-register allocation instruction splitting,
-perform a copy-propagation pass to try to reduce scheduling dependencies
-and occasionally eliminate the copy.
-.Sp
-Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
-.IP "\fB\-fprofile\-correction\fR" 4
-.IX Item "-fprofile-correction"
-Profiles collected using an instrumented binary for multi-threaded programs may
-be inconsistent due to missed counter updates. When this option is specified,
-\&\s-1GCC\s0 uses heuristics to correct or smooth out such inconsistencies. By
-default, \s-1GCC\s0 emits an error message when an inconsistent profile is detected.
-.IP "\fB\-fprofile\-dir=\fR\fIpath\fR" 4
-.IX Item "-fprofile-dir=path"
-Set the directory to search for the profile data files in to \fIpath\fR.
-This option affects only the profile data generated by
-\&\fB\-fprofile\-generate\fR, \fB\-ftest\-coverage\fR, \fB\-fprofile\-arcs\fR
-and used by \fB\-fprofile\-use\fR and \fB\-fbranch\-probabilities\fR
-and its related options. Both absolute and relative paths can be used.
-By default, \s-1GCC\s0 uses the current directory as \fIpath\fR, thus the
-profile data file appears in the same directory as the object file.
-.IP "\fB\-fprofile\-generate\fR" 4
-.IX Item "-fprofile-generate"
-.PD 0
-.IP "\fB\-fprofile\-generate=\fR\fIpath\fR" 4
-.IX Item "-fprofile-generate=path"
-.PD
-Enable options usually used for instrumenting application to produce
-profile useful for later recompilation with profile feedback based
-optimization. You must use \fB\-fprofile\-generate\fR both when
-compiling and when linking your program.
-.Sp
-The following options are enabled: \f(CW\*(C`\-fprofile\-arcs\*(C'\fR, \f(CW\*(C`\-fprofile\-values\*(C'\fR, \f(CW\*(C`\-fvpt\*(C'\fR.
-.Sp
-If \fIpath\fR is specified, \s-1GCC\s0 looks at the \fIpath\fR to find
-the profile feedback data files. See \fB\-fprofile\-dir\fR.
-.IP "\fB\-fprofile\-use\fR" 4
-.IX Item "-fprofile-use"
-.PD 0
-.IP "\fB\-fprofile\-use=\fR\fIpath\fR" 4
-.IX Item "-fprofile-use=path"
-.PD
-Enable profile feedback directed optimizations, and optimizations
-generally profitable only with profile feedback available.
-.Sp
-The following options are enabled: \f(CW\*(C`\-fbranch\-probabilities\*(C'\fR, \f(CW\*(C`\-fvpt\*(C'\fR,
-\&\f(CW\*(C`\-funroll\-loops\*(C'\fR, \f(CW\*(C`\-fpeel\-loops\*(C'\fR, \f(CW\*(C`\-ftracer\*(C'\fR, \f(CW\*(C`\-ftree\-vectorize\*(C'\fR,
-\&\f(CW\*(C`ftree\-loop\-distribute\-patterns\*(C'\fR
-.Sp
-By default, \s-1GCC\s0 emits an error message if the feedback profiles do not
-match the source code. This error can be turned into a warning by using
-\&\fB\-Wcoverage\-mismatch\fR. Note this may result in poorly optimized
-code.
-.Sp
-If \fIpath\fR is specified, \s-1GCC\s0 looks at the \fIpath\fR to find
-the profile feedback data files. See \fB\-fprofile\-dir\fR.
-.PP
-The following options control compiler behavior regarding floating-point
-arithmetic. These options trade off between speed and
-correctness. All must be specifically enabled.
-.IP "\fB\-ffloat\-store\fR" 4
-.IX Item "-ffloat-store"
-Do not store floating-point variables in registers, and inhibit other
-options that might change whether a floating-point value is taken from a
-register or memory.
-.Sp
-This option prevents undesirable excess precision on machines such as
-the 68000 where the floating registers (of the 68881) keep more
-precision than a \f(CW\*(C`double\*(C'\fR is supposed to have. Similarly for the
-x86 architecture. For most programs, the excess precision does only
-good, but a few programs rely on the precise definition of \s-1IEEE\s0 floating
-point. Use \fB\-ffloat\-store\fR for such programs, after modifying
-them to store all pertinent intermediate computations into variables.
-.IP "\fB\-fexcess\-precision=\fR\fIstyle\fR" 4
-.IX Item "-fexcess-precision=style"
-This option allows further control over excess precision on machines
-where floating-point registers have more precision than the \s-1IEEE
-\&\s0\f(CW\*(C`float\*(C'\fR and \f(CW\*(C`double\*(C'\fR types and the processor does not
-support operations rounding to those types. By default,
-\&\fB\-fexcess\-precision=fast\fR is in effect; this means that
-operations are carried out in the precision of the registers and that
-it is unpredictable when rounding to the types specified in the source
-code takes place. When compiling C, if
-\&\fB\-fexcess\-precision=standard\fR is specified then excess
-precision follows the rules specified in \s-1ISO C99\s0; in particular,
-both casts and assignments cause values to be rounded to their
-semantic types (whereas \fB\-ffloat\-store\fR only affects
-assignments). This option is enabled by default for C if a strict
-conformance option such as \fB\-std=c99\fR is used.
-.Sp
-\&\fB\-fexcess\-precision=standard\fR is not implemented for languages
-other than C, and has no effect if
-\&\fB\-funsafe\-math\-optimizations\fR or \fB\-ffast\-math\fR is
-specified. On the x86, it also has no effect if \fB\-mfpmath=sse\fR
-or \fB\-mfpmath=sse+387\fR is specified; in the former case, \s-1IEEE\s0
-semantics apply without excess precision, and in the latter, rounding
-is unpredictable.
-.IP "\fB\-ffast\-math\fR" 4
-.IX Item "-ffast-math"
-Sets \fB\-fno\-math\-errno\fR, \fB\-funsafe\-math\-optimizations\fR,
-\&\fB\-ffinite\-math\-only\fR, \fB\-fno\-rounding\-math\fR,
-\&\fB\-fno\-signaling\-nans\fR and \fB\-fcx\-limited\-range\fR.
-.Sp
-This option causes the preprocessor macro \f(CW\*(C`_\|_FAST_MATH_\|_\*(C'\fR to be defined.
-.Sp
-This option is not turned on by any \fB\-O\fR option besides
-\&\fB\-Ofast\fR since it can result in incorrect output for programs
-that depend on an exact implementation of \s-1IEEE\s0 or \s-1ISO\s0 rules/specifications
-for math functions. It may, however, yield faster code for programs
-that do not require the guarantees of these specifications.
-.IP "\fB\-fno\-math\-errno\fR" 4
-.IX Item "-fno-math-errno"
-Do not set \f(CW\*(C`errno\*(C'\fR after calling math functions that are executed
-with a single instruction, e.g., \f(CW\*(C`sqrt\*(C'\fR. A program that relies on
-\&\s-1IEEE\s0 exceptions for math error handling may want to use this flag
-for speed while maintaining \s-1IEEE\s0 arithmetic compatibility.
-.Sp
-This option is not turned on by any \fB\-O\fR option since
-it can result in incorrect output for programs that depend on
-an exact implementation of \s-1IEEE\s0 or \s-1ISO\s0 rules/specifications for
-math functions. It may, however, yield faster code for programs
-that do not require the guarantees of these specifications.
-.Sp
-The default is \fB\-fmath\-errno\fR.
-.Sp
-On Darwin systems, the math library never sets \f(CW\*(C`errno\*(C'\fR. There is
-therefore no reason for the compiler to consider the possibility that
-it might, and \fB\-fno\-math\-errno\fR is the default.
-.IP "\fB\-funsafe\-math\-optimizations\fR" 4
-.IX Item "-funsafe-math-optimizations"
-Allow optimizations for floating-point arithmetic that (a) assume
-that arguments and results are valid and (b) may violate \s-1IEEE\s0 or
-\&\s-1ANSI\s0 standards. When used at link-time, it may include libraries
-or startup files that change the default \s-1FPU\s0 control word or other
-similar optimizations.
-.Sp
-This option is not turned on by any \fB\-O\fR option since
-it can result in incorrect output for programs that depend on
-an exact implementation of \s-1IEEE\s0 or \s-1ISO\s0 rules/specifications for
-math functions. It may, however, yield faster code for programs
-that do not require the guarantees of these specifications.
-Enables \fB\-fno\-signed\-zeros\fR, \fB\-fno\-trapping\-math\fR,
-\&\fB\-fassociative\-math\fR and \fB\-freciprocal\-math\fR.
-.Sp
-The default is \fB\-fno\-unsafe\-math\-optimizations\fR.
-.IP "\fB\-fassociative\-math\fR" 4
-.IX Item "-fassociative-math"
-Allow re-association of operands in series of floating-point operations.
-This violates the \s-1ISO C\s0 and \*(C+ language standard by possibly changing
-computation result. \s-1NOTE:\s0 re-ordering may change the sign of zero as
-well as ignore NaNs and inhibit or create underflow or overflow (and
-thus cannot be used on code that relies on rounding behavior like
-\&\f(CW\*(C`(x + 2**52) \- 2**52\*(C'\fR. May also reorder floating-point comparisons
-and thus may not be used when ordered comparisons are required.
-This option requires that both \fB\-fno\-signed\-zeros\fR and
-\&\fB\-fno\-trapping\-math\fR be in effect. Moreover, it doesn't make
-much sense with \fB\-frounding\-math\fR. For Fortran the option
-is automatically enabled when both \fB\-fno\-signed\-zeros\fR and
-\&\fB\-fno\-trapping\-math\fR are in effect.
-.Sp
-The default is \fB\-fno\-associative\-math\fR.
-.IP "\fB\-freciprocal\-math\fR" 4
-.IX Item "-freciprocal-math"
-Allow the reciprocal of a value to be used instead of dividing by
-the value if this enables optimizations. For example \f(CW\*(C`x / y\*(C'\fR
-can be replaced with \f(CW\*(C`x * (1/y)\*(C'\fR, which is useful if \f(CW\*(C`(1/y)\*(C'\fR
-is subject to common subexpression elimination. Note that this loses
-precision and increases the number of flops operating on the value.
-.Sp
-The default is \fB\-fno\-reciprocal\-math\fR.
-.IP "\fB\-ffinite\-math\-only\fR" 4
-.IX Item "-ffinite-math-only"
-Allow optimizations for floating-point arithmetic that assume
-that arguments and results are not NaNs or +\-Infs.
-.Sp
-This option is not turned on by any \fB\-O\fR option since
-it can result in incorrect output for programs that depend on
-an exact implementation of \s-1IEEE\s0 or \s-1ISO\s0 rules/specifications for
-math functions. It may, however, yield faster code for programs
-that do not require the guarantees of these specifications.
-.Sp
-The default is \fB\-fno\-finite\-math\-only\fR.
-.IP "\fB\-fno\-signed\-zeros\fR" 4
-.IX Item "-fno-signed-zeros"
-Allow optimizations for floating-point arithmetic that ignore the
-signedness of zero. \s-1IEEE\s0 arithmetic specifies the behavior of
-distinct +0.0 and \-0.0 values, which then prohibits simplification
-of expressions such as x+0.0 or 0.0*x (even with \fB\-ffinite\-math\-only\fR).
-This option implies that the sign of a zero result isn't significant.
-.Sp
-The default is \fB\-fsigned\-zeros\fR.
-.IP "\fB\-fno\-trapping\-math\fR" 4
-.IX Item "-fno-trapping-math"
-Compile code assuming that floating-point operations cannot generate
-user-visible traps. These traps include division by zero, overflow,
-underflow, inexact result and invalid operation. This option requires
-that \fB\-fno\-signaling\-nans\fR be in effect. Setting this option may
-allow faster code if one relies on \*(L"non-stop\*(R" \s-1IEEE\s0 arithmetic, for example.
-.Sp
-This option should never be turned on by any \fB\-O\fR option since
-it can result in incorrect output for programs that depend on
-an exact implementation of \s-1IEEE\s0 or \s-1ISO\s0 rules/specifications for
-math functions.
-.Sp
-The default is \fB\-ftrapping\-math\fR.
-.IP "\fB\-frounding\-math\fR" 4
-.IX Item "-frounding-math"
-Disable transformations and optimizations that assume default floating-point
-rounding behavior. This is round-to-zero for all floating point
-to integer conversions, and round-to-nearest for all other arithmetic
-truncations. This option should be specified for programs that change
-the \s-1FP\s0 rounding mode dynamically, or that may be executed with a
-non-default rounding mode. This option disables constant folding of
-floating-point expressions at compile time (which may be affected by
-rounding mode) and arithmetic transformations that are unsafe in the
-presence of sign-dependent rounding modes.
-.Sp
-The default is \fB\-fno\-rounding\-math\fR.
-.Sp
-This option is experimental and does not currently guarantee to
-disable all \s-1GCC\s0 optimizations that are affected by rounding mode.
-Future versions of \s-1GCC\s0 may provide finer control of this setting
-using C99's \f(CW\*(C`FENV_ACCESS\*(C'\fR pragma. This command-line option
-will be used to specify the default state for \f(CW\*(C`FENV_ACCESS\*(C'\fR.
-.IP "\fB\-fsignaling\-nans\fR" 4
-.IX Item "-fsignaling-nans"
-Compile code assuming that \s-1IEEE\s0 signaling NaNs may generate user-visible
-traps during floating-point operations. Setting this option disables
-optimizations that may change the number of exceptions visible with
-signaling NaNs. This option implies \fB\-ftrapping\-math\fR.
-.Sp
-This option causes the preprocessor macro \f(CW\*(C`_\|_SUPPORT_SNAN_\|_\*(C'\fR to
-be defined.
-.Sp
-The default is \fB\-fno\-signaling\-nans\fR.
-.Sp
-This option is experimental and does not currently guarantee to
-disable all \s-1GCC\s0 optimizations that affect signaling NaN behavior.
-.IP "\fB\-fsingle\-precision\-constant\fR" 4
-.IX Item "-fsingle-precision-constant"
-Treat floating-point constants as single precision instead of
-implicitly converting them to double-precision constants.
-.IP "\fB\-fcx\-limited\-range\fR" 4
-.IX Item "-fcx-limited-range"
-When enabled, this option states that a range reduction step is not
-needed when performing complex division. Also, there is no checking
-whether the result of a complex multiplication or division is \f(CW\*(C`NaN
-+ I*NaN\*(C'\fR, with an attempt to rescue the situation in that case. The
-default is \fB\-fno\-cx\-limited\-range\fR, but is enabled by
-\&\fB\-ffast\-math\fR.
-.Sp
-This option controls the default setting of the \s-1ISO C99
-\&\s0\f(CW\*(C`CX_LIMITED_RANGE\*(C'\fR pragma. Nevertheless, the option applies to
-all languages.
-.IP "\fB\-fcx\-fortran\-rules\fR" 4
-.IX Item "-fcx-fortran-rules"
-Complex multiplication and division follow Fortran rules. Range
-reduction is done as part of complex division, but there is no checking
-whether the result of a complex multiplication or division is \f(CW\*(C`NaN
-+ I*NaN\*(C'\fR, with an attempt to rescue the situation in that case.
-.Sp
-The default is \fB\-fno\-cx\-fortran\-rules\fR.
-.PP
-The following options control optimizations that may improve
-performance, but are not enabled by any \fB\-O\fR options. This
-section includes experimental options that may produce broken code.
-.IP "\fB\-fbranch\-probabilities\fR" 4
-.IX Item "-fbranch-probabilities"
-After running a program compiled with \fB\-fprofile\-arcs\fR, you can compile it a second time using
-\&\fB\-fbranch\-probabilities\fR, to improve optimizations based on
-the number of times each branch was taken. When a program
-compiled with \fB\-fprofile\-arcs\fR exits, it saves arc execution
-counts to a file called \fI\fIsourcename\fI.gcda\fR for each source
-file. The information in this data file is very dependent on the
-structure of the generated code, so you must use the same source code
-and the same optimization options for both compilations.
-.Sp
-With \fB\-fbranch\-probabilities\fR, \s-1GCC\s0 puts a
-\&\fB\s-1REG_BR_PROB\s0\fR note on each \fB\s-1JUMP_INSN\s0\fR and \fB\s-1CALL_INSN\s0\fR.
-These can be used to improve optimization. Currently, they are only
-used in one place: in \fIreorg.c\fR, instead of guessing which path a
-branch is most likely to take, the \fB\s-1REG_BR_PROB\s0\fR values are used to
-exactly determine which path is taken more often.
-.IP "\fB\-fprofile\-values\fR" 4
-.IX Item "-fprofile-values"
-If combined with \fB\-fprofile\-arcs\fR, it adds code so that some
-data about values of expressions in the program is gathered.
-.Sp
-With \fB\-fbranch\-probabilities\fR, it reads back the data gathered
-from profiling values of expressions for usage in optimizations.
-.Sp
-Enabled with \fB\-fprofile\-generate\fR and \fB\-fprofile\-use\fR.
-.IP "\fB\-fprofile\-reorder\-functions\fR" 4
-.IX Item "-fprofile-reorder-functions"
-Function reordering based on profile instrumentation collects
-first time of execution of a function and orders these functions
-in ascending order.
-.Sp
-Enabled with \fB\-fprofile\-use\fR.
-.IP "\fB\-fvpt\fR" 4
-.IX Item "-fvpt"
-If combined with \fB\-fprofile\-arcs\fR, this option instructs the compiler
-to add code to gather information about values of expressions.
-.Sp
-With \fB\-fbranch\-probabilities\fR, it reads back the data gathered
-and actually performs the optimizations based on them.
-Currently the optimizations include specialization of division operations
-using the knowledge about the value of the denominator.
-.IP "\fB\-frename\-registers\fR" 4
-.IX Item "-frename-registers"
-Attempt to avoid false dependencies in scheduled code by making use
-of registers left over after register allocation. This optimization
-most benefits processors with lots of registers. Depending on the
-debug information format adopted by the target, however, it can
-make debugging impossible, since variables no longer stay in
-a \*(L"home register\*(R".
-.Sp
-Enabled by default with \fB\-funroll\-loops\fR and \fB\-fpeel\-loops\fR.
-.IP "\fB\-ftracer\fR" 4
-.IX Item "-ftracer"
-Perform tail duplication to enlarge superblock size. This transformation
-simplifies the control flow of the function allowing other optimizations to do
-a better job.
-.Sp
-Enabled with \fB\-fprofile\-use\fR.
-.IP "\fB\-funroll\-loops\fR" 4
-.IX Item "-funroll-loops"
-Unroll loops whose number of iterations can be determined at compile time or
-upon entry to the loop. \fB\-funroll\-loops\fR implies
-\&\fB\-frerun\-cse\-after\-loop\fR, \fB\-fweb\fR and \fB\-frename\-registers\fR.
-It also turns on complete loop peeling (i.e. complete removal of loops with
-a small constant number of iterations). This option makes code larger, and may
-or may not make it run faster.
-.Sp
-Enabled with \fB\-fprofile\-use\fR.
-.IP "\fB\-funroll\-all\-loops\fR" 4
-.IX Item "-funroll-all-loops"
-Unroll all loops, even if their number of iterations is uncertain when
-the loop is entered. This usually makes programs run more slowly.
-\&\fB\-funroll\-all\-loops\fR implies the same options as
-\&\fB\-funroll\-loops\fR.
-.IP "\fB\-fpeel\-loops\fR" 4
-.IX Item "-fpeel-loops"
-Peels loops for which there is enough information that they do not
-roll much (from profile feedback). It also turns on complete loop peeling
-(i.e. complete removal of loops with small constant number of iterations).
-.Sp
-Enabled with \fB\-fprofile\-use\fR.
-.IP "\fB\-fmove\-loop\-invariants\fR" 4
-.IX Item "-fmove-loop-invariants"
-Enables the loop invariant motion pass in the \s-1RTL\s0 loop optimizer. Enabled
-at level \fB\-O1\fR
-.IP "\fB\-funswitch\-loops\fR" 4
-.IX Item "-funswitch-loops"
-Move branches with loop invariant conditions out of the loop, with duplicates
-of the loop on both branches (modified according to result of the condition).
-.IP "\fB\-ffunction\-sections\fR" 4
-.IX Item "-ffunction-sections"
-.PD 0
-.IP "\fB\-fdata\-sections\fR" 4
-.IX Item "-fdata-sections"
-.PD
-Place each function or data item into its own section in the output
-file if the target supports arbitrary sections. The name of the
-function or the name of the data item determines the section's name
-in the output file.
-.Sp
-Use these options on systems where the linker can perform optimizations
-to improve locality of reference in the instruction space. Most systems
-using the \s-1ELF\s0 object format and \s-1SPARC\s0 processors running Solaris 2 have
-linkers with such optimizations. \s-1AIX\s0 may have these optimizations in
-the future.
-.Sp
-Only use these options when there are significant benefits from doing
-so. When you specify these options, the assembler and linker
-create larger object and executable files and are also slower.
-You cannot use \f(CW\*(C`gprof\*(C'\fR on all systems if you
-specify this option, and you may have problems with debugging if
-you specify both this option and \fB\-g\fR.
-.IP "\fB\-fbranch\-target\-load\-optimize\fR" 4
-.IX Item "-fbranch-target-load-optimize"
-Perform branch target register load optimization before prologue / epilogue
-threading.
-The use of target registers can typically be exposed only during reload,
-thus hoisting loads out of loops and doing inter-block scheduling needs
-a separate optimization pass.
-.IP "\fB\-fbranch\-target\-load\-optimize2\fR" 4
-.IX Item "-fbranch-target-load-optimize2"
-Perform branch target register load optimization after prologue / epilogue
-threading.
-.IP "\fB\-fbtr\-bb\-exclusive\fR" 4
-.IX Item "-fbtr-bb-exclusive"
-When performing branch target register load optimization, don't reuse
-branch target registers within any basic block.
-.IP "\fB\-fstack\-protector\fR" 4
-.IX Item "-fstack-protector"
-Emit extra code to check for buffer overflows, such as stack smashing
-attacks. This is done by adding a guard variable to functions with
-vulnerable objects. This includes functions that call \f(CW\*(C`alloca\*(C'\fR, and
-functions with buffers larger than 8 bytes. The guards are initialized
-when a function is entered and then checked when the function exits.
-If a guard check fails, an error message is printed and the program exits.
-.IP "\fB\-fstack\-protector\-all\fR" 4
-.IX Item "-fstack-protector-all"
-Like \fB\-fstack\-protector\fR except that all functions are protected.
-.IP "\fB\-fstack\-protector\-strong\fR" 4
-.IX Item "-fstack-protector-strong"
-Like \fB\-fstack\-protector\fR but includes additional functions to
-be protected \-\-\- those that have local array definitions, or have
-references to local frame addresses.
-.IP "\fB\-fsection\-anchors\fR" 4
-.IX Item "-fsection-anchors"
-Try to reduce the number of symbolic address calculations by using
-shared \*(L"anchor\*(R" symbols to address nearby objects. This transformation
-can help to reduce the number of \s-1GOT\s0 entries and \s-1GOT\s0 accesses on some
-targets.
-.Sp
-For example, the implementation of the following function \f(CW\*(C`foo\*(C'\fR:
-.Sp
-.Vb 2
-\& static int a, b, c;
-\& int foo (void) { return a + b + c; }
-.Ve
-.Sp
-usually calculates the addresses of all three variables, but if you
-compile it with \fB\-fsection\-anchors\fR, it accesses the variables
-from a common anchor point instead. The effect is similar to the
-following pseudocode (which isn't valid C):
-.Sp
-.Vb 5
-\& int foo (void)
-\& {
-\& register int *xr = &x;
-\& return xr[&a \- &x] + xr[&b \- &x] + xr[&c \- &x];
-\& }
-.Ve
-.Sp
-Not all targets support this option.
-.IP "\fB\-\-param\fR \fIname\fR\fB=\fR\fIvalue\fR" 4
-.IX Item "--param name=value"
-In some places, \s-1GCC\s0 uses various constants to control the amount of
-optimization that is done. For example, \s-1GCC\s0 does not inline functions
-that contain more than a certain number of instructions. You can
-control some of these constants on the command line using the
-\&\fB\-\-param\fR option.
-.Sp
-The names of specific parameters, and the meaning of the values, are
-tied to the internals of the compiler, and are subject to change
-without notice in future releases.
-.Sp
-In each case, the \fIvalue\fR is an integer. The allowable choices for
-\&\fIname\fR are:
-.RS 4
-.IP "\fBpredictable-branch-outcome\fR" 4
-.IX Item "predictable-branch-outcome"
-When branch is predicted to be taken with probability lower than this threshold
-(in percent), then it is considered well predictable. The default is 10.
-.IP "\fBmax-crossjump-edges\fR" 4
-.IX Item "max-crossjump-edges"
-The maximum number of incoming edges to consider for cross-jumping.
-The algorithm used by \fB\-fcrossjumping\fR is O(N^2) in
-the number of edges incoming to each block. Increasing values mean
-more aggressive optimization, making the compilation time increase with
-probably small improvement in executable size.
-.IP "\fBmin-crossjump-insns\fR" 4
-.IX Item "min-crossjump-insns"
-The minimum number of instructions that must be matched at the end
-of two blocks before cross-jumping is performed on them. This
-value is ignored in the case where all instructions in the block being
-cross-jumped from are matched. The default value is 5.
-.IP "\fBmax-grow-copy-bb-insns\fR" 4
-.IX Item "max-grow-copy-bb-insns"
-The maximum code size expansion factor when copying basic blocks
-instead of jumping. The expansion is relative to a jump instruction.
-The default value is 8.
-.IP "\fBmax-goto-duplication-insns\fR" 4
-.IX Item "max-goto-duplication-insns"
-The maximum number of instructions to duplicate to a block that jumps
-to a computed goto. To avoid O(N^2) behavior in a number of
-passes, \s-1GCC\s0 factors computed gotos early in the compilation process,
-and unfactors them as late as possible. Only computed jumps at the
-end of a basic blocks with no more than max-goto-duplication-insns are
-unfactored. The default value is 8.
-.IP "\fBmax-delay-slot-insn-search\fR" 4
-.IX Item "max-delay-slot-insn-search"
-The maximum number of instructions to consider when looking for an
-instruction to fill a delay slot. If more than this arbitrary number of
-instructions are searched, the time savings from filling the delay slot
-are minimal, so stop searching. Increasing values mean more
-aggressive optimization, making the compilation time increase with probably
-small improvement in execution time.
-.IP "\fBmax-delay-slot-live-search\fR" 4
-.IX Item "max-delay-slot-live-search"
-When trying to fill delay slots, the maximum number of instructions to
-consider when searching for a block with valid live register
-information. Increasing this arbitrarily chosen value means more
-aggressive optimization, increasing the compilation time. This parameter
-should be removed when the delay slot code is rewritten to maintain the
-control-flow graph.
-.IP "\fBmax-gcse-memory\fR" 4
-.IX Item "max-gcse-memory"
-The approximate maximum amount of memory that can be allocated in
-order to perform the global common subexpression elimination
-optimization. If more memory than specified is required, the
-optimization is not done.
-.IP "\fBmax-gcse-insertion-ratio\fR" 4
-.IX Item "max-gcse-insertion-ratio"
-If the ratio of expression insertions to deletions is larger than this value
-for any expression, then \s-1RTL PRE\s0 inserts or removes the expression and thus
-leaves partially redundant computations in the instruction stream. The default value is 20.
-.IP "\fBmax-pending-list-length\fR" 4
-.IX Item "max-pending-list-length"
-The maximum number of pending dependencies scheduling allows
-before flushing the current state and starting over. Large functions
-with few branches or calls can create excessively large lists which
-needlessly consume memory and resources.
-.IP "\fBmax-modulo-backtrack-attempts\fR" 4
-.IX Item "max-modulo-backtrack-attempts"
-The maximum number of backtrack attempts the scheduler should make
-when modulo scheduling a loop. Larger values can exponentially increase
-compilation time.
-.IP "\fBmax-inline-insns-single\fR" 4
-.IX Item "max-inline-insns-single"
-Several parameters control the tree inliner used in \s-1GCC.\s0
-This number sets the maximum number of instructions (counted in \s-1GCC\s0's
-internal representation) in a single function that the tree inliner
-considers for inlining. This only affects functions declared
-inline and methods implemented in a class declaration (\*(C+).
-The default value is 400.
-.IP "\fBmax-inline-insns-auto\fR" 4
-.IX Item "max-inline-insns-auto"
-When you use \fB\-finline\-functions\fR (included in \fB\-O3\fR),
-a lot of functions that would otherwise not be considered for inlining
-by the compiler are investigated. To those functions, a different
-(more restrictive) limit compared to functions declared inline can
-be applied.
-The default value is 40.
-.IP "\fBinline-min-speedup\fR" 4
-.IX Item "inline-min-speedup"
-When estimated performance improvement of caller + callee runtime exceeds this
-threshold (in precent), the function can be inlined regardless the limit on
-\&\fB\-\-param max-inline-insns-single\fR and \fB\-\-param
-max-inline-insns-auto\fR.
-.IP "\fBlarge-function-insns\fR" 4
-.IX Item "large-function-insns"
-The limit specifying really large functions. For functions larger than this
-limit after inlining, inlining is constrained by
-\&\fB\-\-param large-function-growth\fR. This parameter is useful primarily
-to avoid extreme compilation time caused by non-linear algorithms used by the
-back end.
-The default value is 2700.
-.IP "\fBlarge-function-growth\fR" 4
-.IX Item "large-function-growth"
-Specifies maximal growth of large function caused by inlining in percents.
-The default value is 100 which limits large function growth to 2.0 times
-the original size.
-.IP "\fBlarge-unit-insns\fR" 4
-.IX Item "large-unit-insns"
-The limit specifying large translation unit. Growth caused by inlining of
-units larger than this limit is limited by \fB\-\-param inline-unit-growth\fR.
-For small units this might be too tight.
-For example, consider a unit consisting of function A
-that is inline and B that just calls A three times. If B is small relative to
-A, the growth of unit is 300\e% and yet such inlining is very sane. For very
-large units consisting of small inlineable functions, however, the overall unit
-growth limit is needed to avoid exponential explosion of code size. Thus for
-smaller units, the size is increased to \fB\-\-param large-unit-insns\fR
-before applying \fB\-\-param inline-unit-growth\fR. The default is 10000.
-.IP "\fBinline-unit-growth\fR" 4
-.IX Item "inline-unit-growth"
-Specifies maximal overall growth of the compilation unit caused by inlining.
-The default value is 30 which limits unit growth to 1.3 times the original
-size.
-.IP "\fBipcp-unit-growth\fR" 4
-.IX Item "ipcp-unit-growth"
-Specifies maximal overall growth of the compilation unit caused by
-interprocedural constant propagation. The default value is 10 which limits
-unit growth to 1.1 times the original size.
-.IP "\fBlarge-stack-frame\fR" 4
-.IX Item "large-stack-frame"
-The limit specifying large stack frames. While inlining the algorithm is trying
-to not grow past this limit too much. The default value is 256 bytes.
-.IP "\fBlarge-stack-frame-growth\fR" 4
-.IX Item "large-stack-frame-growth"
-Specifies maximal growth of large stack frames caused by inlining in percents.
-The default value is 1000 which limits large stack frame growth to 11 times
-the original size.
-.IP "\fBmax-inline-insns-recursive\fR" 4
-.IX Item "max-inline-insns-recursive"
-.PD 0
-.IP "\fBmax-inline-insns-recursive-auto\fR" 4
-.IX Item "max-inline-insns-recursive-auto"
-.PD
-Specifies the maximum number of instructions an out-of-line copy of a
-self-recursive inline
-function can grow into by performing recursive inlining.
-.Sp
-For functions declared inline, \fB\-\-param max-inline-insns-recursive\fR is
-taken into account. For functions not declared inline, recursive inlining
-happens only when \fB\-finline\-functions\fR (included in \fB\-O3\fR) is
-enabled and \fB\-\-param max-inline-insns-recursive-auto\fR is used. The
-default value is 450.
-.IP "\fBmax-inline-recursive-depth\fR" 4
-.IX Item "max-inline-recursive-depth"
-.PD 0
-.IP "\fBmax-inline-recursive-depth-auto\fR" 4
-.IX Item "max-inline-recursive-depth-auto"
-.PD
-Specifies the maximum recursion depth used for recursive inlining.
-.Sp
-For functions declared inline, \fB\-\-param max-inline-recursive-depth\fR is
-taken into account. For functions not declared inline, recursive inlining
-happens only when \fB\-finline\-functions\fR (included in \fB\-O3\fR) is
-enabled and \fB\-\-param max-inline-recursive-depth-auto\fR is used. The
-default value is 8.
-.IP "\fBmin-inline-recursive-probability\fR" 4
-.IX Item "min-inline-recursive-probability"
-Recursive inlining is profitable only for function having deep recursion
-in average and can hurt for function having little recursion depth by
-increasing the prologue size or complexity of function body to other
-optimizers.
-.Sp
-When profile feedback is available (see \fB\-fprofile\-generate\fR) the actual
-recursion depth can be guessed from probability that function recurses via a
-given call expression. This parameter limits inlining only to call expressions
-whose probability exceeds the given threshold (in percents).
-The default value is 10.
-.IP "\fBearly-inlining-insns\fR" 4
-.IX Item "early-inlining-insns"
-Specify growth that the early inliner can make. In effect it increases
-the amount of inlining for code having a large abstraction penalty.
-The default value is 10.
-.IP "\fBmax-early-inliner-iterations\fR" 4
-.IX Item "max-early-inliner-iterations"
-.PD 0
-.IP "\fBmax-early-inliner-iterations\fR" 4
-.IX Item "max-early-inliner-iterations"
-.PD
-Limit of iterations of the early inliner. This basically bounds
-the number of nested indirect calls the early inliner can resolve.
-Deeper chains are still handled by late inlining.
-.IP "\fBcomdat-sharing-probability\fR" 4
-.IX Item "comdat-sharing-probability"
-.PD 0
-.IP "\fBcomdat-sharing-probability\fR" 4
-.IX Item "comdat-sharing-probability"
-.PD
-Probability (in percent) that \*(C+ inline function with comdat visibility
-are shared across multiple compilation units. The default value is 20.
-.IP "\fBmin-vect-loop-bound\fR" 4
-.IX Item "min-vect-loop-bound"
-The minimum number of iterations under which loops are not vectorized
-when \fB\-ftree\-vectorize\fR is used. The number of iterations after
-vectorization needs to be greater than the value specified by this option
-to allow vectorization. The default value is 0.
-.IP "\fBgcse-cost-distance-ratio\fR" 4
-.IX Item "gcse-cost-distance-ratio"
-Scaling factor in calculation of maximum distance an expression
-can be moved by \s-1GCSE\s0 optimizations. This is currently supported only in the
-code hoisting pass. The bigger the ratio, the more aggressive code hoisting
-is with simple expressions, i.e., the expressions that have cost
-less than \fBgcse-unrestricted-cost\fR. Specifying 0 disables
-hoisting of simple expressions. The default value is 10.
-.IP "\fBgcse-unrestricted-cost\fR" 4
-.IX Item "gcse-unrestricted-cost"
-Cost, roughly measured as the cost of a single typical machine
-instruction, at which \s-1GCSE\s0 optimizations do not constrain
-the distance an expression can travel. This is currently
-supported only in the code hoisting pass. The lesser the cost,
-the more aggressive code hoisting is. Specifying 0
-allows all expressions to travel unrestricted distances.
-The default value is 3.
-.IP "\fBmax-hoist-depth\fR" 4
-.IX Item "max-hoist-depth"
-The depth of search in the dominator tree for expressions to hoist.
-This is used to avoid quadratic behavior in hoisting algorithm.
-The value of 0 does not limit on the search, but may slow down compilation
-of huge functions. The default value is 30.
-.IP "\fBmax-tail-merge-comparisons\fR" 4
-.IX Item "max-tail-merge-comparisons"
-The maximum amount of similar bbs to compare a bb with. This is used to
-avoid quadratic behavior in tree tail merging. The default value is 10.
-.IP "\fBmax-tail-merge-iterations\fR" 4
-.IX Item "max-tail-merge-iterations"
-The maximum amount of iterations of the pass over the function. This is used to
-limit compilation time in tree tail merging. The default value is 2.
-.IP "\fBmax-unrolled-insns\fR" 4
-.IX Item "max-unrolled-insns"
-The maximum number of instructions that a loop may have to be unrolled.
-If a loop is unrolled, this parameter also determines how many times
-the loop code is unrolled.
-.IP "\fBmax-average-unrolled-insns\fR" 4
-.IX Item "max-average-unrolled-insns"
-The maximum number of instructions biased by probabilities of their execution
-that a loop may have to be unrolled. If a loop is unrolled,
-this parameter also determines how many times the loop code is unrolled.
-.IP "\fBmax-unroll-times\fR" 4
-.IX Item "max-unroll-times"
-The maximum number of unrollings of a single loop.
-.IP "\fBmax-peeled-insns\fR" 4
-.IX Item "max-peeled-insns"
-The maximum number of instructions that a loop may have to be peeled.
-If a loop is peeled, this parameter also determines how many times
-the loop code is peeled.
-.IP "\fBmax-peel-times\fR" 4
-.IX Item "max-peel-times"
-The maximum number of peelings of a single loop.
-.IP "\fBmax-peel-branches\fR" 4
-.IX Item "max-peel-branches"
-The maximum number of branches on the hot path through the peeled sequence.
-.IP "\fBmax-completely-peeled-insns\fR" 4
-.IX Item "max-completely-peeled-insns"
-The maximum number of insns of a completely peeled loop.
-.IP "\fBmax-completely-peel-times\fR" 4
-.IX Item "max-completely-peel-times"
-The maximum number of iterations of a loop to be suitable for complete peeling.
-.IP "\fBmax-completely-peel-loop-nest-depth\fR" 4
-.IX Item "max-completely-peel-loop-nest-depth"
-The maximum depth of a loop nest suitable for complete peeling.
-.IP "\fBmax-unswitch-insns\fR" 4
-.IX Item "max-unswitch-insns"
-The maximum number of insns of an unswitched loop.
-.IP "\fBmax-unswitch-level\fR" 4
-.IX Item "max-unswitch-level"
-The maximum number of branches unswitched in a single loop.
-.IP "\fBlim-expensive\fR" 4
-.IX Item "lim-expensive"
-The minimum cost of an expensive expression in the loop invariant motion.
-.IP "\fBiv-consider-all-candidates-bound\fR" 4
-.IX Item "iv-consider-all-candidates-bound"
-Bound on number of candidates for induction variables, below which
-all candidates are considered for each use in induction variable
-optimizations. If there are more candidates than this,
-only the most relevant ones are considered to avoid quadratic time complexity.
-.IP "\fBiv-max-considered-uses\fR" 4
-.IX Item "iv-max-considered-uses"
-The induction variable optimizations give up on loops that contain more
-induction variable uses.
-.IP "\fBiv-always-prune-cand-set-bound\fR" 4
-.IX Item "iv-always-prune-cand-set-bound"
-If the number of candidates in the set is smaller than this value,
-always try to remove unnecessary ivs from the set
-when adding a new one.
-.IP "\fBscev-max-expr-size\fR" 4
-.IX Item "scev-max-expr-size"
-Bound on size of expressions used in the scalar evolutions analyzer.
-Large expressions slow the analyzer.
-.IP "\fBscev-max-expr-complexity\fR" 4
-.IX Item "scev-max-expr-complexity"
-Bound on the complexity of the expressions in the scalar evolutions analyzer.
-Complex expressions slow the analyzer.
-.IP "\fBomega-max-vars\fR" 4
-.IX Item "omega-max-vars"
-The maximum number of variables in an Omega constraint system.
-The default value is 128.
-.IP "\fBomega-max-geqs\fR" 4
-.IX Item "omega-max-geqs"
-The maximum number of inequalities in an Omega constraint system.
-The default value is 256.
-.IP "\fBomega-max-eqs\fR" 4
-.IX Item "omega-max-eqs"
-The maximum number of equalities in an Omega constraint system.
-The default value is 128.
-.IP "\fBomega-max-wild-cards\fR" 4
-.IX Item "omega-max-wild-cards"
-The maximum number of wildcard variables that the Omega solver is
-able to insert. The default value is 18.
-.IP "\fBomega-hash-table-size\fR" 4
-.IX Item "omega-hash-table-size"
-The size of the hash table in the Omega solver. The default value is
-550.
-.IP "\fBomega-max-keys\fR" 4
-.IX Item "omega-max-keys"
-The maximal number of keys used by the Omega solver. The default
-value is 500.
-.IP "\fBomega-eliminate-redundant-constraints\fR" 4
-.IX Item "omega-eliminate-redundant-constraints"
-When set to 1, use expensive methods to eliminate all redundant
-constraints. The default value is 0.
-.IP "\fBvect-max-version-for-alignment-checks\fR" 4
-.IX Item "vect-max-version-for-alignment-checks"
-The maximum number of run-time checks that can be performed when
-doing loop versioning for alignment in the vectorizer.
-.IP "\fBvect-max-version-for-alias-checks\fR" 4
-.IX Item "vect-max-version-for-alias-checks"
-The maximum number of run-time checks that can be performed when
-doing loop versioning for alias in the vectorizer.
-.IP "\fBvect-max-peeling-for-alignment\fR" 4
-.IX Item "vect-max-peeling-for-alignment"
-The maximum number of loop peels to enhance access alignment
-for vectorizer. Value \-1 means 'no limit'.
-.IP "\fBmax-iterations-to-track\fR" 4
-.IX Item "max-iterations-to-track"
-The maximum number of iterations of a loop the brute-force algorithm
-for analysis of the number of iterations of the loop tries to evaluate.
-.IP "\fBhot-bb-count-ws-permille\fR" 4
-.IX Item "hot-bb-count-ws-permille"
-A basic block profile count is considered hot if it contributes to
-the given permillage (i.e. 0...1000) of the entire profiled execution.
-.IP "\fBhot-bb-frequency-fraction\fR" 4
-.IX Item "hot-bb-frequency-fraction"
-Select fraction of the entry block frequency of executions of basic block in
-function given basic block needs to have to be considered hot.
-.IP "\fBmax-predicted-iterations\fR" 4
-.IX Item "max-predicted-iterations"
-The maximum number of loop iterations we predict statically. This is useful
-in cases where a function contains a single loop with known bound and
-another loop with unknown bound.
-The known number of iterations is predicted correctly, while
-the unknown number of iterations average to roughly 10. This means that the
-loop without bounds appears artificially cold relative to the other one.
-.IP "\fBbuiltin-expect-probability\fR" 4
-.IX Item "builtin-expect-probability"
-Control the probability of the expression having the specified value. This
-parameter takes a percentage (i.e. 0 ... 100) as input.
-The default probability of 90 is obtained empirically.
-.IP "\fBalign-threshold\fR" 4
-.IX Item "align-threshold"
-Select fraction of the maximal frequency of executions of a basic block in
-a function to align the basic block.
-.IP "\fBalign-loop-iterations\fR" 4
-.IX Item "align-loop-iterations"
-A loop expected to iterate at least the selected number of iterations is
-aligned.
-.IP "\fBtracer-dynamic-coverage\fR" 4
-.IX Item "tracer-dynamic-coverage"
-.PD 0
-.IP "\fBtracer-dynamic-coverage-feedback\fR" 4
-.IX Item "tracer-dynamic-coverage-feedback"
-.PD
-This value is used to limit superblock formation once the given percentage of
-executed instructions is covered. This limits unnecessary code size
-expansion.
-.Sp
-The \fBtracer-dynamic-coverage-feedback\fR is used only when profile
-feedback is available. The real profiles (as opposed to statically estimated
-ones) are much less balanced allowing the threshold to be larger value.
-.IP "\fBtracer-max-code-growth\fR" 4
-.IX Item "tracer-max-code-growth"
-Stop tail duplication once code growth has reached given percentage. This is
-a rather artificial limit, as most of the duplicates are eliminated later in
-cross jumping, so it may be set to much higher values than is the desired code
-growth.
-.IP "\fBtracer-min-branch-ratio\fR" 4
-.IX Item "tracer-min-branch-ratio"
-Stop reverse growth when the reverse probability of best edge is less than this
-threshold (in percent).
-.IP "\fBtracer-min-branch-ratio\fR" 4
-.IX Item "tracer-min-branch-ratio"
-.PD 0
-.IP "\fBtracer-min-branch-ratio-feedback\fR" 4
-.IX Item "tracer-min-branch-ratio-feedback"
-.PD
-Stop forward growth if the best edge has probability lower than this
-threshold.
-.Sp
-Similarly to \fBtracer-dynamic-coverage\fR two values are present, one for
-compilation for profile feedback and one for compilation without. The value
-for compilation with profile feedback needs to be more conservative (higher) in
-order to make tracer effective.
-.IP "\fBmax-cse-path-length\fR" 4
-.IX Item "max-cse-path-length"
-The maximum number of basic blocks on path that \s-1CSE\s0 considers.
-The default is 10.
-.IP "\fBmax-cse-insns\fR" 4
-.IX Item "max-cse-insns"
-The maximum number of instructions \s-1CSE\s0 processes before flushing.
-The default is 1000.
-.IP "\fBggc-min-expand\fR" 4
-.IX Item "ggc-min-expand"
-\&\s-1GCC\s0 uses a garbage collector to manage its own memory allocation. This
-parameter specifies the minimum percentage by which the garbage
-collector's heap should be allowed to expand between collections.
-Tuning this may improve compilation speed; it has no effect on code
-generation.
-.Sp
-The default is 30% + 70% * (\s-1RAM/1GB\s0) with an upper bound of 100% when
-\&\s-1RAM \s0>= 1GB. If \f(CW\*(C`getrlimit\*(C'\fR is available, the notion of \*(L"\s-1RAM\*(R"\s0 is
-the smallest of actual \s-1RAM\s0 and \f(CW\*(C`RLIMIT_DATA\*(C'\fR or \f(CW\*(C`RLIMIT_AS\*(C'\fR. If
-\&\s-1GCC\s0 is not able to calculate \s-1RAM\s0 on a particular platform, the lower
-bound of 30% is used. Setting this parameter and
-\&\fBggc-min-heapsize\fR to zero causes a full collection to occur at
-every opportunity. This is extremely slow, but can be useful for
-debugging.
-.IP "\fBggc-min-heapsize\fR" 4
-.IX Item "ggc-min-heapsize"
-Minimum size of the garbage collector's heap before it begins bothering
-to collect garbage. The first collection occurs after the heap expands
-by \fBggc-min-expand\fR% beyond \fBggc-min-heapsize\fR. Again,
-tuning this may improve compilation speed, and has no effect on code
-generation.
-.Sp
-The default is the smaller of \s-1RAM/8, RLIMIT_RSS,\s0 or a limit that
-tries to ensure that \s-1RLIMIT_DATA\s0 or \s-1RLIMIT_AS\s0 are not exceeded, but
-with a lower bound of 4096 (four megabytes) and an upper bound of
-131072 (128 megabytes). If \s-1GCC\s0 is not able to calculate \s-1RAM\s0 on a
-particular platform, the lower bound is used. Setting this parameter
-very large effectively disables garbage collection. Setting this
-parameter and \fBggc-min-expand\fR to zero causes a full collection
-to occur at every opportunity.
-.IP "\fBmax-reload-search-insns\fR" 4
-.IX Item "max-reload-search-insns"
-The maximum number of instruction reload should look backward for equivalent
-register. Increasing values mean more aggressive optimization, making the
-compilation time increase with probably slightly better performance.
-The default value is 100.
-.IP "\fBmax-cselib-memory-locations\fR" 4
-.IX Item "max-cselib-memory-locations"
-The maximum number of memory locations cselib should take into account.
-Increasing values mean more aggressive optimization, making the compilation time
-increase with probably slightly better performance. The default value is 500.
-.IP "\fBreorder-blocks-duplicate\fR" 4
-.IX Item "reorder-blocks-duplicate"
-.PD 0
-.IP "\fBreorder-blocks-duplicate-feedback\fR" 4
-.IX Item "reorder-blocks-duplicate-feedback"
-.PD
-Used by the basic block reordering pass to decide whether to use unconditional
-branch or duplicate the code on its destination. Code is duplicated when its
-estimated size is smaller than this value multiplied by the estimated size of
-unconditional jump in the hot spots of the program.
-.Sp
-The \fBreorder-block-duplicate-feedback\fR is used only when profile
-feedback is available. It may be set to higher values than
-\&\fBreorder-block-duplicate\fR since information about the hot spots is more
-accurate.
-.IP "\fBmax-sched-ready-insns\fR" 4
-.IX Item "max-sched-ready-insns"
-The maximum number of instructions ready to be issued the scheduler should
-consider at any given time during the first scheduling pass. Increasing
-values mean more thorough searches, making the compilation time increase
-with probably little benefit. The default value is 100.
-.IP "\fBmax-sched-region-blocks\fR" 4
-.IX Item "max-sched-region-blocks"
-The maximum number of blocks in a region to be considered for
-interblock scheduling. The default value is 10.
-.IP "\fBmax-pipeline-region-blocks\fR" 4
-.IX Item "max-pipeline-region-blocks"
-The maximum number of blocks in a region to be considered for
-pipelining in the selective scheduler. The default value is 15.
-.IP "\fBmax-sched-region-insns\fR" 4
-.IX Item "max-sched-region-insns"
-The maximum number of insns in a region to be considered for
-interblock scheduling. The default value is 100.
-.IP "\fBmax-pipeline-region-insns\fR" 4
-.IX Item "max-pipeline-region-insns"
-The maximum number of insns in a region to be considered for
-pipelining in the selective scheduler. The default value is 200.
-.IP "\fBmin-spec-prob\fR" 4
-.IX Item "min-spec-prob"
-The minimum probability (in percents) of reaching a source block
-for interblock speculative scheduling. The default value is 40.
-.IP "\fBmax-sched-extend-regions-iters\fR" 4
-.IX Item "max-sched-extend-regions-iters"
-The maximum number of iterations through \s-1CFG\s0 to extend regions.
-A value of 0 (the default) disables region extensions.
-.IP "\fBmax-sched-insn-conflict-delay\fR" 4
-.IX Item "max-sched-insn-conflict-delay"
-The maximum conflict delay for an insn to be considered for speculative motion.
-The default value is 3.
-.IP "\fBsched-spec-prob-cutoff\fR" 4
-.IX Item "sched-spec-prob-cutoff"
-The minimal probability of speculation success (in percents), so that
-speculative insns are scheduled.
-The default value is 40.
-.IP "\fBsched-spec-state-edge-prob-cutoff\fR" 4
-.IX Item "sched-spec-state-edge-prob-cutoff"
-The minimum probability an edge must have for the scheduler to save its
-state across it.
-The default value is 10.
-.IP "\fBsched-mem-true-dep-cost\fR" 4
-.IX Item "sched-mem-true-dep-cost"
-Minimal distance (in \s-1CPU\s0 cycles) between store and load targeting same
-memory locations. The default value is 1.
-.IP "\fBselsched-max-lookahead\fR" 4
-.IX Item "selsched-max-lookahead"
-The maximum size of the lookahead window of selective scheduling. It is a
-depth of search for available instructions.
-The default value is 50.
-.IP "\fBselsched-max-sched-times\fR" 4
-.IX Item "selsched-max-sched-times"
-The maximum number of times that an instruction is scheduled during
-selective scheduling. This is the limit on the number of iterations
-through which the instruction may be pipelined. The default value is 2.
-.IP "\fBselsched-max-insns-to-rename\fR" 4
-.IX Item "selsched-max-insns-to-rename"
-The maximum number of best instructions in the ready list that are considered
-for renaming in the selective scheduler. The default value is 2.
-.IP "\fBsms-min-sc\fR" 4
-.IX Item "sms-min-sc"
-The minimum value of stage count that swing modulo scheduler
-generates. The default value is 2.
-.IP "\fBmax-last-value-rtl\fR" 4
-.IX Item "max-last-value-rtl"
-The maximum size measured as number of RTLs that can be recorded in an expression
-in combiner for a pseudo register as last known value of that register. The default
-is 10000.
-.IP "\fBinteger-share-limit\fR" 4
-.IX Item "integer-share-limit"
-Small integer constants can use a shared data structure, reducing the
-compiler's memory usage and increasing its speed. This sets the maximum
-value of a shared integer constant. The default value is 256.
-.IP "\fBssp-buffer-size\fR" 4
-.IX Item "ssp-buffer-size"
-The minimum size of buffers (i.e. arrays) that receive stack smashing
-protection when \fB\-fstack\-protection\fR is used.
-.IP "\fBmin-size-for-stack-sharing\fR" 4
-.IX Item "min-size-for-stack-sharing"
-The minimum size of variables taking part in stack slot sharing when not
-optimizing. The default value is 32.
-.IP "\fBmax-jump-thread-duplication-stmts\fR" 4
-.IX Item "max-jump-thread-duplication-stmts"
-Maximum number of statements allowed in a block that needs to be
-duplicated when threading jumps.
-.IP "\fBmax-fields-for-field-sensitive\fR" 4
-.IX Item "max-fields-for-field-sensitive"
-Maximum number of fields in a structure treated in
-a field sensitive manner during pointer analysis. The default is zero
-for \fB\-O0\fR and \fB\-O1\fR,
-and 100 for \fB\-Os\fR, \fB\-O2\fR, and \fB\-O3\fR.
-.IP "\fBprefetch-latency\fR" 4
-.IX Item "prefetch-latency"
-Estimate on average number of instructions that are executed before
-prefetch finishes. The distance prefetched ahead is proportional
-to this constant. Increasing this number may also lead to less
-streams being prefetched (see \fBsimultaneous-prefetches\fR).
-.IP "\fBsimultaneous-prefetches\fR" 4
-.IX Item "simultaneous-prefetches"
-Maximum number of prefetches that can run at the same time.
-.IP "\fBl1\-cache\-line\-size\fR" 4
-.IX Item "l1-cache-line-size"
-The size of cache line in L1 cache, in bytes.
-.IP "\fBl1\-cache\-size\fR" 4
-.IX Item "l1-cache-size"
-The size of L1 cache, in kilobytes.
-.IP "\fBl2\-cache\-size\fR" 4
-.IX Item "l2-cache-size"
-The size of L2 cache, in kilobytes.
-.IP "\fBmin-insn-to-prefetch-ratio\fR" 4
-.IX Item "min-insn-to-prefetch-ratio"
-The minimum ratio between the number of instructions and the
-number of prefetches to enable prefetching in a loop.
-.IP "\fBprefetch-min-insn-to-mem-ratio\fR" 4
-.IX Item "prefetch-min-insn-to-mem-ratio"
-The minimum ratio between the number of instructions and the
-number of memory references to enable prefetching in a loop.
-.IP "\fBuse-canonical-types\fR" 4
-.IX Item "use-canonical-types"
-Whether the compiler should use the \*(L"canonical\*(R" type system. By
-default, this should always be 1, which uses a more efficient internal
-mechanism for comparing types in \*(C+ and Objective\-\*(C+. However, if
-bugs in the canonical type system are causing compilation failures,
-set this value to 0 to disable canonical types.
-.IP "\fBswitch-conversion-max-branch-ratio\fR" 4
-.IX Item "switch-conversion-max-branch-ratio"
-Switch initialization conversion refuses to create arrays that are
-bigger than \fBswitch-conversion-max-branch-ratio\fR times the number of
-branches in the switch.
-.IP "\fBmax-partial-antic-length\fR" 4
-.IX Item "max-partial-antic-length"
-Maximum length of the partial antic set computed during the tree
-partial redundancy elimination optimization (\fB\-ftree\-pre\fR) when
-optimizing at \fB\-O3\fR and above. For some sorts of source code
-the enhanced partial redundancy elimination optimization can run away,
-consuming all of the memory available on the host machine. This
-parameter sets a limit on the length of the sets that are computed,
-which prevents the runaway behavior. Setting a value of 0 for
-this parameter allows an unlimited set length.
-.IP "\fBsccvn-max-scc-size\fR" 4
-.IX Item "sccvn-max-scc-size"
-Maximum size of a strongly connected component (\s-1SCC\s0) during \s-1SCCVN\s0
-processing. If this limit is hit, \s-1SCCVN\s0 processing for the whole
-function is not done and optimizations depending on it are
-disabled. The default maximum \s-1SCC\s0 size is 10000.
-.IP "\fBsccvn-max-alias-queries-per-access\fR" 4
-.IX Item "sccvn-max-alias-queries-per-access"
-Maximum number of alias-oracle queries we perform when looking for
-redundancies for loads and stores. If this limit is hit the search
-is aborted and the load or store is not considered redundant. The
-number of queries is algorithmically limited to the number of
-stores on all paths from the load to the function entry.
-The default maxmimum number of queries is 1000.
-.IP "\fBira-max-loops-num\fR" 4
-.IX Item "ira-max-loops-num"
-\&\s-1IRA\s0 uses regional register allocation by default. If a function
-contains more loops than the number given by this parameter, only at most
-the given number of the most frequently-executed loops form regions
-for regional register allocation. The default value of the
-parameter is 100.
-.IP "\fBira-max-conflict-table-size\fR" 4
-.IX Item "ira-max-conflict-table-size"
-Although \s-1IRA\s0 uses a sophisticated algorithm to compress the conflict
-table, the table can still require excessive amounts of memory for
-huge functions. If the conflict table for a function could be more
-than the size in \s-1MB\s0 given by this parameter, the register allocator
-instead uses a faster, simpler, and lower-quality
-algorithm that does not require building a pseudo-register conflict table.
-The default value of the parameter is 2000.
-.IP "\fBira-loop-reserved-regs\fR" 4
-.IX Item "ira-loop-reserved-regs"
-\&\s-1IRA\s0 can be used to evaluate more accurate register pressure in loops
-for decisions to move loop invariants (see \fB\-O3\fR). The number
-of available registers reserved for some other purposes is given
-by this parameter. The default value of the parameter is 2, which is
-the minimal number of registers needed by typical instructions.
-This value is the best found from numerous experiments.
-.IP "\fBloop-invariant-max-bbs-in-loop\fR" 4
-.IX Item "loop-invariant-max-bbs-in-loop"
-Loop invariant motion can be very expensive, both in compilation time and
-in amount of needed compile-time memory, with very large loops. Loops
-with more basic blocks than this parameter won't have loop invariant
-motion optimization performed on them. The default value of the
-parameter is 1000 for \fB\-O1\fR and 10000 for \fB\-O2\fR and above.
-.IP "\fBloop-max-datarefs-for-datadeps\fR" 4
-.IX Item "loop-max-datarefs-for-datadeps"
-Building data dapendencies is expensive for very large loops. This
-parameter limits the number of data references in loops that are
-considered for data dependence analysis. These large loops are no
-handled by the optimizations using loop data dependencies.
-The default value is 1000.
-.IP "\fBmax-vartrack-size\fR" 4
-.IX Item "max-vartrack-size"
-Sets a maximum number of hash table slots to use during variable
-tracking dataflow analysis of any function. If this limit is exceeded
-with variable tracking at assignments enabled, analysis for that
-function is retried without it, after removing all debug insns from
-the function. If the limit is exceeded even without debug insns, var
-tracking analysis is completely disabled for the function. Setting
-the parameter to zero makes it unlimited.
-.IP "\fBmax-vartrack-expr-depth\fR" 4
-.IX Item "max-vartrack-expr-depth"
-Sets a maximum number of recursion levels when attempting to map
-variable names or debug temporaries to value expressions. This trades
-compilation time for more complete debug information. If this is set too
-low, value expressions that are available and could be represented in
-debug information may end up not being used; setting this higher may
-enable the compiler to find more complex debug expressions, but compile
-time and memory use may grow. The default is 12.
-.IP "\fBmin-nondebug-insn-uid\fR" 4
-.IX Item "min-nondebug-insn-uid"
-Use uids starting at this parameter for nondebug insns. The range below
-the parameter is reserved exclusively for debug insns created by
-\&\fB\-fvar\-tracking\-assignments\fR, but debug insns may get
-(non-overlapping) uids above it if the reserved range is exhausted.
-.IP "\fBipa-sra-ptr-growth-factor\fR" 4
-.IX Item "ipa-sra-ptr-growth-factor"
-IPA-SRA replaces a pointer to an aggregate with one or more new
-parameters only when their cumulative size is less or equal to
-\&\fBipa-sra-ptr-growth-factor\fR times the size of the original
-pointer parameter.
-.IP "\fBtm-max-aggregate-size\fR" 4
-.IX Item "tm-max-aggregate-size"
-When making copies of thread-local variables in a transaction, this
-parameter specifies the size in bytes after which variables are
-saved with the logging functions as opposed to save/restore code
-sequence pairs. This option only applies when using
-\&\fB\-fgnu\-tm\fR.
-.IP "\fBgraphite-max-nb-scop-params\fR" 4
-.IX Item "graphite-max-nb-scop-params"
-To avoid exponential effects in the Graphite loop transforms, the
-number of parameters in a Static Control Part (SCoP) is bounded. The
-default value is 10 parameters. A variable whose value is unknown at
-compilation time and defined outside a SCoP is a parameter of the SCoP.
-.IP "\fBgraphite-max-bbs-per-function\fR" 4
-.IX Item "graphite-max-bbs-per-function"
-To avoid exponential effects in the detection of SCoPs, the size of
-the functions analyzed by Graphite is bounded. The default value is
-100 basic blocks.
-.IP "\fBloop-block-tile-size\fR" 4
-.IX Item "loop-block-tile-size"
-Loop blocking or strip mining transforms, enabled with
-\&\fB\-floop\-block\fR or \fB\-floop\-strip\-mine\fR, strip mine each
-loop in the loop nest by a given number of iterations. The strip
-length can be changed using the \fBloop-block-tile-size\fR
-parameter. The default value is 51 iterations.
-.IP "\fBipa-cp-value-list-size\fR" 4
-.IX Item "ipa-cp-value-list-size"
-IPA-CP attempts to track all possible values and types passed to a function's
-parameter in order to propagate them and perform devirtualization.
-\&\fBipa-cp-value-list-size\fR is the maximum number of values and types it
-stores per one formal parameter of a function.
-.IP "\fBlto-partitions\fR" 4
-.IX Item "lto-partitions"
-Specify desired number of partitions produced during \s-1WHOPR\s0 compilation.
-The number of partitions should exceed the number of CPUs used for compilation.
-The default value is 32.
-.IP "\fBlto-minpartition\fR" 4
-.IX Item "lto-minpartition"
-Size of minimal partition for \s-1WHOPR \s0(in estimated instructions).
-This prevents expenses of splitting very small programs into too many
-partitions.
-.IP "\fBcxx-max-namespaces-for-diagnostic-help\fR" 4
-.IX Item "cxx-max-namespaces-for-diagnostic-help"
-The maximum number of namespaces to consult for suggestions when \*(C+
-name lookup fails for an identifier. The default is 1000.
-.IP "\fBsink-frequency-threshold\fR" 4
-.IX Item "sink-frequency-threshold"
-The maximum relative execution frequency (in percents) of the target block
-relative to a statement's original block to allow statement sinking of a
-statement. Larger numbers result in more aggressive statement sinking.
-The default value is 75. A small positive adjustment is applied for
-statements with memory operands as those are even more profitable so sink.
-.IP "\fBmax-stores-to-sink\fR" 4
-.IX Item "max-stores-to-sink"
-The maximum number of conditional stores paires that can be sunk. Set to 0
-if either vectorization (\fB\-ftree\-vectorize\fR) or if-conversion
-(\fB\-ftree\-loop\-if\-convert\fR) is disabled. The default is 2.
-.IP "\fBallow-load-data-races\fR" 4
-.IX Item "allow-load-data-races"
-Allow optimizers to introduce new data races on loads.
-Set to 1 to allow, otherwise to 0. This option is enabled by default
-unless implicitly set by the \fB\-fmemory\-model=\fR option.
-.IP "\fBallow-store-data-races\fR" 4
-.IX Item "allow-store-data-races"
-Allow optimizers to introduce new data races on stores.
-Set to 1 to allow, otherwise to 0. This option is enabled by default
-unless implicitly set by the \fB\-fmemory\-model=\fR option.
-.IP "\fBallow-packed-load-data-races\fR" 4
-.IX Item "allow-packed-load-data-races"
-Allow optimizers to introduce new data races on packed data loads.
-Set to 1 to allow, otherwise to 0. This option is enabled by default
-unless implicitly set by the \fB\-fmemory\-model=\fR option.
-.IP "\fBallow-packed-store-data-races\fR" 4
-.IX Item "allow-packed-store-data-races"
-Allow optimizers to introduce new data races on packed data stores.
-Set to 1 to allow, otherwise to 0. This option is enabled by default
-unless implicitly set by the \fB\-fmemory\-model=\fR option.
-.IP "\fBcase-values-threshold\fR" 4
-.IX Item "case-values-threshold"
-The smallest number of different values for which it is best to use a
-jump-table instead of a tree of conditional branches. If the value is
-0, use the default for the machine. The default is 0.
-.IP "\fBtree-reassoc-width\fR" 4
-.IX Item "tree-reassoc-width"
-Set the maximum number of instructions executed in parallel in
-reassociated tree. This parameter overrides target dependent
-heuristics used by default if has non zero value.
-.IP "\fBsched-pressure-algorithm\fR" 4
-.IX Item "sched-pressure-algorithm"
-Choose between the two available implementations of
-\&\fB\-fsched\-pressure\fR. Algorithm 1 is the original implementation
-and is the more likely to prevent instructions from being reordered.
-Algorithm 2 was designed to be a compromise between the relatively
-conservative approach taken by algorithm 1 and the rather aggressive
-approach taken by the default scheduler. It relies more heavily on
-having a regular register file and accurate register pressure classes.
-See \fIhaifa\-sched.c\fR in the \s-1GCC\s0 sources for more details.
-.Sp
-The default choice depends on the target.
-.IP "\fBmax-slsr-cand-scan\fR" 4
-.IX Item "max-slsr-cand-scan"
-Set the maximum number of existing candidates that will be considered when
-seeking a basis for a new straight-line strength reduction candidate.
-.IP "\fBasan-globals\fR" 4
-.IX Item "asan-globals"
-Enable buffer overflow detection for global objects. This kind
-of protection is enabled by default if you are using
-\&\fB\-fsanitize=address\fR option.
-To disable global objects protection use \fB\-\-param asan\-globals=0\fR.
-.IP "\fBasan-stack\fR" 4
-.IX Item "asan-stack"
-Enable buffer overflow detection for stack objects. This kind of
-protection is enabled by default when using\fB\-fsanitize=address\fR.
-To disable stack protection use \fB\-\-param asan\-stack=0\fR option.
-.IP "\fBasan-instrument-reads\fR" 4
-.IX Item "asan-instrument-reads"
-Enable buffer overflow detection for memory reads. This kind of
-protection is enabled by default when using \fB\-fsanitize=address\fR.
-To disable memory reads protection use
-\&\fB\-\-param asan\-instrument\-reads=0\fR.
-.IP "\fBasan-instrument-writes\fR" 4
-.IX Item "asan-instrument-writes"
-Enable buffer overflow detection for memory writes. This kind of
-protection is enabled by default when using \fB\-fsanitize=address\fR.
-To disable memory writes protection use
-\&\fB\-\-param asan\-instrument\-writes=0\fR option.
-.IP "\fBasan-memintrin\fR" 4
-.IX Item "asan-memintrin"
-Enable detection for built-in functions. This kind of protection
-is enabled by default when using \fB\-fsanitize=address\fR.
-To disable built-in functions protection use
-\&\fB\-\-param asan\-memintrin=0\fR.
-.IP "\fBasan-use-after-return\fR" 4
-.IX Item "asan-use-after-return"
-Enable detection of use-after-return. This kind of protection
-is enabled by default when using \fB\-fsanitize=address\fR option.
-To disable use-after-return detection use
-\&\fB\-\-param asan\-use\-after\-return=0\fR.
-.RE
-.RS 4
-.RE
-.SS "Options Controlling the Preprocessor"
-.IX Subsection "Options Controlling the Preprocessor"
-These options control the C preprocessor, which is run on each C source
-file before actual compilation.
-.PP
-If you use the \fB\-E\fR option, nothing is done except preprocessing.
-Some of these options make sense only together with \fB\-E\fR because
-they cause the preprocessor output to be unsuitable for actual
-compilation.
-.IP "\fB\-Wp,\fR\fIoption\fR" 4
-.IX Item "-Wp,option"
-You can use \fB\-Wp,\fR\fIoption\fR to bypass the compiler driver
-and pass \fIoption\fR directly through to the preprocessor. If
-\&\fIoption\fR contains commas, it is split into multiple options at the
-commas. However, many options are modified, translated or interpreted
-by the compiler driver before being passed to the preprocessor, and
-\&\fB\-Wp\fR forcibly bypasses this phase. The preprocessor's direct
-interface is undocumented and subject to change, so whenever possible
-you should avoid using \fB\-Wp\fR and let the driver handle the
-options instead.
-.IP "\fB\-Xpreprocessor\fR \fIoption\fR" 4
-.IX Item "-Xpreprocessor option"
-Pass \fIoption\fR as an option to the preprocessor. You can use this to
-supply system-specific preprocessor options that \s-1GCC\s0 does not
-recognize.
-.Sp
-If you want to pass an option that takes an argument, you must use
-\&\fB\-Xpreprocessor\fR twice, once for the option and once for the argument.
-.IP "\fB\-no\-integrated\-cpp\fR" 4
-.IX Item "-no-integrated-cpp"
-Perform preprocessing as a separate pass before compilation.
-By default, \s-1GCC\s0 performs preprocessing as an integrated part of
-input tokenization and parsing.
-If this option is provided, the appropriate language front end
-(\fBcc1\fR, \fBcc1plus\fR, or \fBcc1obj\fR for C, \*(C+,
-and Objective-C, respectively) is instead invoked twice,
-once for preprocessing only and once for actual compilation
-of the preprocessed input.
-This option may be useful in conjunction with the \fB\-B\fR or
-\&\fB\-wrapper\fR options to specify an alternate preprocessor or
-perform additional processing of the program source between
-normal preprocessing and compilation.
-.IP "\fB\-D\fR \fIname\fR" 4
-.IX Item "-D name"
-Predefine \fIname\fR as a macro, with definition \f(CW1\fR.
-.IP "\fB\-D\fR \fIname\fR\fB=\fR\fIdefinition\fR" 4
-.IX Item "-D name=definition"
-The contents of \fIdefinition\fR are tokenized and processed as if
-they appeared during translation phase three in a \fB#define\fR
-directive. In particular, the definition will be truncated by
-embedded newline characters.
-.Sp
-If you are invoking the preprocessor from a shell or shell-like
-program you may need to use the shell's quoting syntax to protect
-characters such as spaces that have a meaning in the shell syntax.
-.Sp
-If you wish to define a function-like macro on the command line, write
-its argument list with surrounding parentheses before the equals sign
-(if any). Parentheses are meaningful to most shells, so you will need
-to quote the option. With \fBsh\fR and \fBcsh\fR,
-\&\fB\-D'\fR\fIname\fR\fB(\fR\fIargs...\fR\fB)=\fR\fIdefinition\fR\fB'\fR works.
-.Sp
-\&\fB\-D\fR and \fB\-U\fR options are processed in the order they
-are given on the command line. All \fB\-imacros\fR \fIfile\fR and
-\&\fB\-include\fR \fIfile\fR options are processed after all
-\&\fB\-D\fR and \fB\-U\fR options.
-.IP "\fB\-U\fR \fIname\fR" 4
-.IX Item "-U name"
-Cancel any previous definition of \fIname\fR, either built in or
-provided with a \fB\-D\fR option.
-.IP "\fB\-undef\fR" 4
-.IX Item "-undef"
-Do not predefine any system-specific or GCC-specific macros. The
-standard predefined macros remain defined.
-.IP "\fB\-I\fR \fIdir\fR" 4
-.IX Item "-I dir"
-Add the directory \fIdir\fR to the list of directories to be searched
-for header files.
-Directories named by \fB\-I\fR are searched before the standard
-system include directories. If the directory \fIdir\fR is a standard
-system include directory, the option is ignored to ensure that the
-default search order for system directories and the special treatment
-of system headers are not defeated
-\&.
-If \fIdir\fR begins with \f(CW\*(C`=\*(C'\fR, then the \f(CW\*(C`=\*(C'\fR will be replaced
-by the sysroot prefix; see \fB\-\-sysroot\fR and \fB\-isysroot\fR.
-.IP "\fB\-o\fR \fIfile\fR" 4
-.IX Item "-o file"
-Write output to \fIfile\fR. This is the same as specifying \fIfile\fR
-as the second non-option argument to \fBcpp\fR. \fBgcc\fR has a
-different interpretation of a second non-option argument, so you must
-use \fB\-o\fR to specify the output file.
-.IP "\fB\-Wall\fR" 4
-.IX Item "-Wall"
-Turns on all optional warnings which are desirable for normal code.
-At present this is \fB\-Wcomment\fR, \fB\-Wtrigraphs\fR,
-\&\fB\-Wmultichar\fR and a warning about integer promotion causing a
-change of sign in \f(CW\*(C`#if\*(C'\fR expressions. Note that many of the
-preprocessor's warnings are on by default and have no options to
-control them.
-.IP "\fB\-Wcomment\fR" 4
-.IX Item "-Wcomment"
-.PD 0
-.IP "\fB\-Wcomments\fR" 4
-.IX Item "-Wcomments"
-.PD
-Warn whenever a comment-start sequence \fB/*\fR appears in a \fB/*\fR
-comment, or whenever a backslash-newline appears in a \fB//\fR comment.
-(Both forms have the same effect.)
-.IP "\fB\-Wtrigraphs\fR" 4
-.IX Item "-Wtrigraphs"
-Most trigraphs in comments cannot affect the meaning of the program.
-However, a trigraph that would form an escaped newline (\fB??/\fR at
-the end of a line) can, by changing where the comment begins or ends.
-Therefore, only trigraphs that would form escaped newlines produce
-warnings inside a comment.
-.Sp
-This option is implied by \fB\-Wall\fR. If \fB\-Wall\fR is not
-given, this option is still enabled unless trigraphs are enabled. To
-get trigraph conversion without warnings, but get the other
-\&\fB\-Wall\fR warnings, use \fB\-trigraphs \-Wall \-Wno\-trigraphs\fR.
-.IP "\fB\-Wtraditional\fR" 4
-.IX Item "-Wtraditional"
-Warn about certain constructs that behave differently in traditional and
-\&\s-1ISO C. \s0 Also warn about \s-1ISO C\s0 constructs that have no traditional C
-equivalent, and problematic constructs which should be avoided.
-.IP "\fB\-Wundef\fR" 4
-.IX Item "-Wundef"
-Warn whenever an identifier which is not a macro is encountered in an
-\&\fB#if\fR directive, outside of \fBdefined\fR. Such identifiers are
-replaced with zero.
-.IP "\fB\-Wunused\-macros\fR" 4
-.IX Item "-Wunused-macros"
-Warn about macros defined in the main file that are unused. A macro
-is \fIused\fR if it is expanded or tested for existence at least once.
-The preprocessor will also warn if the macro has not been used at the
-time it is redefined or undefined.
-.Sp
-Built-in macros, macros defined on the command line, and macros
-defined in include files are not warned about.
-.Sp
-\&\fINote:\fR If a macro is actually used, but only used in skipped
-conditional blocks, then \s-1CPP\s0 will report it as unused. To avoid the
-warning in such a case, you might improve the scope of the macro's
-definition by, for example, moving it into the first skipped block.
-Alternatively, you could provide a dummy use with something like:
-.Sp
-.Vb 2
-\& #if defined the_macro_causing_the_warning
-\& #endif
-.Ve
-.IP "\fB\-Wendif\-labels\fR" 4
-.IX Item "-Wendif-labels"
-Warn whenever an \fB#else\fR or an \fB#endif\fR are followed by text.
-This usually happens in code of the form
-.Sp
-.Vb 5
-\& #if FOO
-\& ...
-\& #else FOO
-\& ...
-\& #endif FOO
-.Ve
-.Sp
-The second and third \f(CW\*(C`FOO\*(C'\fR should be in comments, but often are not
-in older programs. This warning is on by default.
-.IP "\fB\-Werror\fR" 4
-.IX Item "-Werror"
-Make all warnings into hard errors. Source code which triggers warnings
-will be rejected.
-.IP "\fB\-Wsystem\-headers\fR" 4
-.IX Item "-Wsystem-headers"
-Issue warnings for code in system headers. These are normally unhelpful
-in finding bugs in your own code, therefore suppressed. If you are
-responsible for the system library, you may want to see them.
-.IP "\fB\-w\fR" 4
-.IX Item "-w"
-Suppress all warnings, including those which \s-1GNU CPP\s0 issues by default.
-.IP "\fB\-pedantic\fR" 4
-.IX Item "-pedantic"
-Issue all the mandatory diagnostics listed in the C standard. Some of
-them are left out by default, since they trigger frequently on harmless
-code.
-.IP "\fB\-pedantic\-errors\fR" 4
-.IX Item "-pedantic-errors"
-Issue all the mandatory diagnostics, and make all mandatory diagnostics
-into errors. This includes mandatory diagnostics that \s-1GCC\s0 issues
-without \fB\-pedantic\fR but treats as warnings.
-.IP "\fB\-M\fR" 4
-.IX Item "-M"
-Instead of outputting the result of preprocessing, output a rule
-suitable for \fBmake\fR describing the dependencies of the main
-source file. The preprocessor outputs one \fBmake\fR rule containing
-the object file name for that source file, a colon, and the names of all
-the included files, including those coming from \fB\-include\fR or
-\&\fB\-imacros\fR command line options.
-.Sp
-Unless specified explicitly (with \fB\-MT\fR or \fB\-MQ\fR), the
-object file name consists of the name of the source file with any
-suffix replaced with object file suffix and with any leading directory
-parts removed. If there are many included files then the rule is
-split into several lines using \fB\e\fR\-newline. The rule has no
-commands.
-.Sp
-This option does not suppress the preprocessor's debug output, such as
-\&\fB\-dM\fR. To avoid mixing such debug output with the dependency
-rules you should explicitly specify the dependency output file with
-\&\fB\-MF\fR, or use an environment variable like
-\&\fB\s-1DEPENDENCIES_OUTPUT\s0\fR. Debug output
-will still be sent to the regular output stream as normal.
-.Sp
-Passing \fB\-M\fR to the driver implies \fB\-E\fR, and suppresses
-warnings with an implicit \fB\-w\fR.
-.IP "\fB\-MM\fR" 4
-.IX Item "-MM"
-Like \fB\-M\fR but do not mention header files that are found in
-system header directories, nor header files that are included,
-directly or indirectly, from such a header.
-.Sp
-This implies that the choice of angle brackets or double quotes in an
-\&\fB#include\fR directive does not in itself determine whether that
-header will appear in \fB\-MM\fR dependency output. This is a
-slight change in semantics from \s-1GCC\s0 versions 3.0 and earlier.
-.IP "\fB\-MF\fR \fIfile\fR" 4
-.IX Item "-MF file"
-When used with \fB\-M\fR or \fB\-MM\fR, specifies a
-file to write the dependencies to. If no \fB\-MF\fR switch is given
-the preprocessor sends the rules to the same place it would have sent
-preprocessed output.
-.Sp
-When used with the driver options \fB\-MD\fR or \fB\-MMD\fR,
-\&\fB\-MF\fR overrides the default dependency output file.
-.IP "\fB\-MG\fR" 4
-.IX Item "-MG"
-In conjunction with an option such as \fB\-M\fR requesting
-dependency generation, \fB\-MG\fR assumes missing header files are
-generated files and adds them to the dependency list without raising
-an error. The dependency filename is taken directly from the
-\&\f(CW\*(C`#include\*(C'\fR directive without prepending any path. \fB\-MG\fR
-also suppresses preprocessed output, as a missing header file renders
-this useless.
-.Sp
-This feature is used in automatic updating of makefiles.
-.IP "\fB\-MP\fR" 4
-.IX Item "-MP"
-This option instructs \s-1CPP\s0 to add a phony target for each dependency
-other than the main file, causing each to depend on nothing. These
-dummy rules work around errors \fBmake\fR gives if you remove header
-files without updating the \fIMakefile\fR to match.
-.Sp
-This is typical output:
-.Sp
-.Vb 1
-\& test.o: test.c test.h
-\&
-\& test.h:
-.Ve
-.IP "\fB\-MT\fR \fItarget\fR" 4
-.IX Item "-MT target"
-Change the target of the rule emitted by dependency generation. By
-default \s-1CPP\s0 takes the name of the main input file, deletes any
-directory components and any file suffix such as \fB.c\fR, and
-appends the platform's usual object suffix. The result is the target.
-.Sp
-An \fB\-MT\fR option will set the target to be exactly the string you
-specify. If you want multiple targets, you can specify them as a single
-argument to \fB\-MT\fR, or use multiple \fB\-MT\fR options.
-.Sp
-For example, \fB\-MT\ '$(objpfx)foo.o'\fR might give
-.Sp
-.Vb 1
-\& $(objpfx)foo.o: foo.c
-.Ve
-.IP "\fB\-MQ\fR \fItarget\fR" 4
-.IX Item "-MQ target"
-Same as \fB\-MT\fR, but it quotes any characters which are special to
-Make. \fB\-MQ\ '$(objpfx)foo.o'\fR gives
-.Sp
-.Vb 1
-\& $$(objpfx)foo.o: foo.c
-.Ve
-.Sp
-The default target is automatically quoted, as if it were given with
-\&\fB\-MQ\fR.
-.IP "\fB\-MD\fR" 4
-.IX Item "-MD"
-\&\fB\-MD\fR is equivalent to \fB\-M \-MF\fR \fIfile\fR, except that
-\&\fB\-E\fR is not implied. The driver determines \fIfile\fR based on
-whether an \fB\-o\fR option is given. If it is, the driver uses its
-argument but with a suffix of \fI.d\fR, otherwise it takes the name
-of the input file, removes any directory components and suffix, and
-applies a \fI.d\fR suffix.
-.Sp
-If \fB\-MD\fR is used in conjunction with \fB\-E\fR, any
-\&\fB\-o\fR switch is understood to specify the dependency output file, but if used without \fB\-E\fR, each \fB\-o\fR
-is understood to specify a target object file.
-.Sp
-Since \fB\-E\fR is not implied, \fB\-MD\fR can be used to generate
-a dependency output file as a side-effect of the compilation process.
-.IP "\fB\-MMD\fR" 4
-.IX Item "-MMD"
-Like \fB\-MD\fR except mention only user header files, not system
-header files.
-.IP "\fB\-fpch\-deps\fR" 4
-.IX Item "-fpch-deps"
-When using precompiled headers, this flag
-will cause the dependency-output flags to also list the files from the
-precompiled header's dependencies. If not specified only the
-precompiled header would be listed and not the files that were used to
-create it because those files are not consulted when a precompiled
-header is used.
-.IP "\fB\-fpch\-preprocess\fR" 4
-.IX Item "-fpch-preprocess"
-This option allows use of a precompiled header together with \fB\-E\fR. It inserts a special \f(CW\*(C`#pragma\*(C'\fR,
-\&\f(CW\*(C`#pragma GCC pch_preprocess "\f(CIfilename\f(CW"\*(C'\fR in the output to mark
-the place where the precompiled header was found, and its \fIfilename\fR.
-When \fB\-fpreprocessed\fR is in use, \s-1GCC\s0 recognizes this \f(CW\*(C`#pragma\*(C'\fR
-and loads the \s-1PCH.\s0
-.Sp
-This option is off by default, because the resulting preprocessed output
-is only really suitable as input to \s-1GCC. \s0 It is switched on by
-\&\fB\-save\-temps\fR.
-.Sp
-You should not write this \f(CW\*(C`#pragma\*(C'\fR in your own code, but it is
-safe to edit the filename if the \s-1PCH\s0 file is available in a different
-location. The filename may be absolute or it may be relative to \s-1GCC\s0's
-current directory.
-.IP "\fB\-x c\fR" 4
-.IX Item "-x c"
-.PD 0
-.IP "\fB\-x c++\fR" 4
-.IX Item "-x c++"
-.IP "\fB\-x objective-c\fR" 4
-.IX Item "-x objective-c"
-.IP "\fB\-x assembler-with-cpp\fR" 4
-.IX Item "-x assembler-with-cpp"
-.PD
-Specify the source language: C, \*(C+, Objective-C, or assembly. This has
-nothing to do with standards conformance or extensions; it merely
-selects which base syntax to expect. If you give none of these options,
-cpp will deduce the language from the extension of the source file:
-\&\fB.c\fR, \fB.cc\fR, \fB.m\fR, or \fB.S\fR. Some other common
-extensions for \*(C+ and assembly are also recognized. If cpp does not
-recognize the extension, it will treat the file as C; this is the most
-generic mode.
-.Sp
-\&\fINote:\fR Previous versions of cpp accepted a \fB\-lang\fR option
-which selected both the language and the standards conformance level.
-This option has been removed, because it conflicts with the \fB\-l\fR
-option.
-.IP "\fB\-std=\fR\fIstandard\fR" 4
-.IX Item "-std=standard"
-.PD 0
-.IP "\fB\-ansi\fR" 4
-.IX Item "-ansi"
-.PD
-Specify the standard to which the code should conform. Currently \s-1CPP\s0
-knows about C and \*(C+ standards; others may be added in the future.
-.Sp
-\&\fIstandard\fR
-may be one of:
-.RS 4
-.ie n .IP """c90""" 4
-.el .IP "\f(CWc90\fR" 4
-.IX Item "c90"
-.PD 0
-.ie n .IP """c89""" 4
-.el .IP "\f(CWc89\fR" 4
-.IX Item "c89"
-.ie n .IP """iso9899:1990""" 4
-.el .IP "\f(CWiso9899:1990\fR" 4
-.IX Item "iso9899:1990"
-.PD
-The \s-1ISO C\s0 standard from 1990. \fBc90\fR is the customary shorthand for
-this version of the standard.
-.Sp
-The \fB\-ansi\fR option is equivalent to \fB\-std=c90\fR.
-.ie n .IP """iso9899:199409""" 4
-.el .IP "\f(CWiso9899:199409\fR" 4
-.IX Item "iso9899:199409"
-The 1990 C standard, as amended in 1994.
-.ie n .IP """iso9899:1999""" 4
-.el .IP "\f(CWiso9899:1999\fR" 4
-.IX Item "iso9899:1999"
-.PD 0
-.ie n .IP """c99""" 4
-.el .IP "\f(CWc99\fR" 4
-.IX Item "c99"
-.ie n .IP """iso9899:199x""" 4
-.el .IP "\f(CWiso9899:199x\fR" 4
-.IX Item "iso9899:199x"
-.ie n .IP """c9x""" 4
-.el .IP "\f(CWc9x\fR" 4
-.IX Item "c9x"
-.PD
-The revised \s-1ISO C\s0 standard, published in December 1999. Before
-publication, this was known as C9X.
-.ie n .IP """iso9899:2011""" 4
-.el .IP "\f(CWiso9899:2011\fR" 4
-.IX Item "iso9899:2011"
-.PD 0
-.ie n .IP """c11""" 4
-.el .IP "\f(CWc11\fR" 4
-.IX Item "c11"
-.ie n .IP """c1x""" 4
-.el .IP "\f(CWc1x\fR" 4
-.IX Item "c1x"
-.PD
-The revised \s-1ISO C\s0 standard, published in December 2011. Before
-publication, this was known as C1X.
-.ie n .IP """gnu90""" 4
-.el .IP "\f(CWgnu90\fR" 4
-.IX Item "gnu90"
-.PD 0
-.ie n .IP """gnu89""" 4
-.el .IP "\f(CWgnu89\fR" 4
-.IX Item "gnu89"
-.PD
-The 1990 C standard plus \s-1GNU\s0 extensions. This is the default.
-.ie n .IP """gnu99""" 4
-.el .IP "\f(CWgnu99\fR" 4
-.IX Item "gnu99"
-.PD 0
-.ie n .IP """gnu9x""" 4
-.el .IP "\f(CWgnu9x\fR" 4
-.IX Item "gnu9x"
-.PD
-The 1999 C standard plus \s-1GNU\s0 extensions.
-.ie n .IP """gnu11""" 4
-.el .IP "\f(CWgnu11\fR" 4
-.IX Item "gnu11"
-.PD 0
-.ie n .IP """gnu1x""" 4
-.el .IP "\f(CWgnu1x\fR" 4
-.IX Item "gnu1x"
-.PD
-The 2011 C standard plus \s-1GNU\s0 extensions.
-.ie n .IP """c++98""" 4
-.el .IP "\f(CWc++98\fR" 4
-.IX Item "c++98"
-The 1998 \s-1ISO \*(C+\s0 standard plus amendments.
-.ie n .IP """gnu++98""" 4
-.el .IP "\f(CWgnu++98\fR" 4
-.IX Item "gnu++98"
-The same as \fB\-std=c++98\fR plus \s-1GNU\s0 extensions. This is the
-default for \*(C+ code.
-.RE
-.RS 4
-.RE
-.IP "\fB\-I\-\fR" 4
-.IX Item "-I-"
-Split the include path. Any directories specified with \fB\-I\fR
-options before \fB\-I\-\fR are searched only for headers requested with
-\&\f(CW\*(C`#include\ "\f(CIfile\f(CW"\*(C'\fR; they are not searched for
-\&\f(CW\*(C`#include\ <\f(CIfile\f(CW>\*(C'\fR. If additional directories are
-specified with \fB\-I\fR options after the \fB\-I\-\fR, those
-directories are searched for all \fB#include\fR directives.
-.Sp
-In addition, \fB\-I\-\fR inhibits the use of the directory of the current
-file directory as the first search directory for \f(CW\*(C`#include\ "\f(CIfile\f(CW"\*(C'\fR.
-This option has been deprecated.
-.IP "\fB\-nostdinc\fR" 4
-.IX Item "-nostdinc"
-Do not search the standard system directories for header files.
-Only the directories you have specified with \fB\-I\fR options
-(and the directory of the current file, if appropriate) are searched.
-.IP "\fB\-nostdinc++\fR" 4
-.IX Item "-nostdinc++"
-Do not search for header files in the \*(C+\-specific standard directories,
-but do still search the other standard directories. (This option is
-used when building the \*(C+ library.)
-.IP "\fB\-include\fR \fIfile\fR" 4
-.IX Item "-include file"
-Process \fIfile\fR as if \f(CW\*(C`#include "file"\*(C'\fR appeared as the first
-line of the primary source file. However, the first directory searched
-for \fIfile\fR is the preprocessor's working directory \fIinstead of\fR
-the directory containing the main source file. If not found there, it
-is searched for in the remainder of the \f(CW\*(C`#include "..."\*(C'\fR search
-chain as normal.
-.Sp
-If multiple \fB\-include\fR options are given, the files are included
-in the order they appear on the command line.
-.IP "\fB\-imacros\fR \fIfile\fR" 4
-.IX Item "-imacros file"
-Exactly like \fB\-include\fR, except that any output produced by
-scanning \fIfile\fR is thrown away. Macros it defines remain defined.
-This allows you to acquire all the macros from a header without also
-processing its declarations.
-.Sp
-All files specified by \fB\-imacros\fR are processed before all files
-specified by \fB\-include\fR.
-.IP "\fB\-idirafter\fR \fIdir\fR" 4
-.IX Item "-idirafter dir"
-Search \fIdir\fR for header files, but do it \fIafter\fR all
-directories specified with \fB\-I\fR and the standard system directories
-have been exhausted. \fIdir\fR is treated as a system include directory.
-If \fIdir\fR begins with \f(CW\*(C`=\*(C'\fR, then the \f(CW\*(C`=\*(C'\fR will be replaced
-by the sysroot prefix; see \fB\-\-sysroot\fR and \fB\-isysroot\fR.
-.IP "\fB\-iprefix\fR \fIprefix\fR" 4
-.IX Item "-iprefix prefix"
-Specify \fIprefix\fR as the prefix for subsequent \fB\-iwithprefix\fR
-options. If the prefix represents a directory, you should include the
-final \fB/\fR.
-.IP "\fB\-iwithprefix\fR \fIdir\fR" 4
-.IX Item "-iwithprefix dir"
-.PD 0
-.IP "\fB\-iwithprefixbefore\fR \fIdir\fR" 4
-.IX Item "-iwithprefixbefore dir"
-.PD
-Append \fIdir\fR to the prefix specified previously with
-\&\fB\-iprefix\fR, and add the resulting directory to the include search
-path. \fB\-iwithprefixbefore\fR puts it in the same place \fB\-I\fR
-would; \fB\-iwithprefix\fR puts it where \fB\-idirafter\fR would.
-.IP "\fB\-isysroot\fR \fIdir\fR" 4
-.IX Item "-isysroot dir"
-This option is like the \fB\-\-sysroot\fR option, but applies only to
-header files (except for Darwin targets, where it applies to both header
-files and libraries). See the \fB\-\-sysroot\fR option for more
-information.
-.IP "\fB\-imultilib\fR \fIdir\fR" 4
-.IX Item "-imultilib dir"
-Use \fIdir\fR as a subdirectory of the directory containing
-target-specific \*(C+ headers.
-.IP "\fB\-isystem\fR \fIdir\fR" 4
-.IX Item "-isystem dir"
-Search \fIdir\fR for header files, after all directories specified by
-\&\fB\-I\fR but before the standard system directories. Mark it
-as a system directory, so that it gets the same special treatment as
-is applied to the standard system directories.
-If \fIdir\fR begins with \f(CW\*(C`=\*(C'\fR, then the \f(CW\*(C`=\*(C'\fR will be replaced
-by the sysroot prefix; see \fB\-\-sysroot\fR and \fB\-isysroot\fR.
-.IP "\fB\-iquote\fR \fIdir\fR" 4
-.IX Item "-iquote dir"
-Search \fIdir\fR only for header files requested with
-\&\f(CW\*(C`#include\ "\f(CIfile\f(CW"\*(C'\fR; they are not searched for
-\&\f(CW\*(C`#include\ <\f(CIfile\f(CW>\*(C'\fR, before all directories specified by
-\&\fB\-I\fR and before the standard system directories.
-If \fIdir\fR begins with \f(CW\*(C`=\*(C'\fR, then the \f(CW\*(C`=\*(C'\fR will be replaced
-by the sysroot prefix; see \fB\-\-sysroot\fR and \fB\-isysroot\fR.
-.IP "\fB\-fdirectives\-only\fR" 4
-.IX Item "-fdirectives-only"
-When preprocessing, handle directives, but do not expand macros.
-.Sp
-The option's behavior depends on the \fB\-E\fR and \fB\-fpreprocessed\fR
-options.
-.Sp
-With \fB\-E\fR, preprocessing is limited to the handling of directives
-such as \f(CW\*(C`#define\*(C'\fR, \f(CW\*(C`#ifdef\*(C'\fR, and \f(CW\*(C`#error\*(C'\fR. Other
-preprocessor operations, such as macro expansion and trigraph
-conversion are not performed. In addition, the \fB\-dD\fR option is
-implicitly enabled.
-.Sp
-With \fB\-fpreprocessed\fR, predefinition of command line and most
-builtin macros is disabled. Macros such as \f(CW\*(C`_\|_LINE_\|_\*(C'\fR, which are
-contextually dependent, are handled normally. This enables compilation of
-files previously preprocessed with \f(CW\*(C`\-E \-fdirectives\-only\*(C'\fR.
-.Sp
-With both \fB\-E\fR and \fB\-fpreprocessed\fR, the rules for
-\&\fB\-fpreprocessed\fR take precedence. This enables full preprocessing of
-files previously preprocessed with \f(CW\*(C`\-E \-fdirectives\-only\*(C'\fR.
-.IP "\fB\-fdollars\-in\-identifiers\fR" 4
-.IX Item "-fdollars-in-identifiers"
-Accept \fB$\fR in identifiers.
-.IP "\fB\-fextended\-identifiers\fR" 4
-.IX Item "-fextended-identifiers"
-Accept universal character names in identifiers. This option is
-experimental; in a future version of \s-1GCC,\s0 it will be enabled by
-default for C99 and \*(C+.
-.IP "\fB\-fno\-canonical\-system\-headers\fR" 4
-.IX Item "-fno-canonical-system-headers"
-When preprocessing, do not shorten system header paths with canonicalization.
-.IP "\fB\-fpreprocessed\fR" 4
-.IX Item "-fpreprocessed"
-Indicate to the preprocessor that the input file has already been
-preprocessed. This suppresses things like macro expansion, trigraph
-conversion, escaped newline splicing, and processing of most directives.
-The preprocessor still recognizes and removes comments, so that you can
-pass a file preprocessed with \fB\-C\fR to the compiler without
-problems. In this mode the integrated preprocessor is little more than
-a tokenizer for the front ends.
-.Sp
-\&\fB\-fpreprocessed\fR is implicit if the input file has one of the
-extensions \fB.i\fR, \fB.ii\fR or \fB.mi\fR. These are the
-extensions that \s-1GCC\s0 uses for preprocessed files created by
-\&\fB\-save\-temps\fR.
-.IP "\fB\-ftabstop=\fR\fIwidth\fR" 4
-.IX Item "-ftabstop=width"
-Set the distance between tab stops. This helps the preprocessor report
-correct column numbers in warnings or errors, even if tabs appear on the
-line. If the value is less than 1 or greater than 100, the option is
-ignored. The default is 8.
-.IP "\fB\-fdebug\-cpp\fR" 4
-.IX Item "-fdebug-cpp"
-This option is only useful for debugging \s-1GCC. \s0 When used with
-\&\fB\-E\fR, dumps debugging information about location maps. Every
-token in the output is preceded by the dump of the map its location
-belongs to. The dump of the map holding the location of a token would
-be:
-.Sp
-.Vb 1
-\& {"P":F</file/path>;"F":F</includer/path>;"L":<line_num>;"C":<col_num>;"S":<system_header_p>;"M":<map_address>;"E":<macro_expansion_p>,"loc":<location>}
-.Ve
-.Sp
-When used without \fB\-E\fR, this option has no effect.
-.IP "\fB\-ftrack\-macro\-expansion\fR[\fB=\fR\fIlevel\fR]" 4
-.IX Item "-ftrack-macro-expansion[=level]"
-Track locations of tokens across macro expansions. This allows the
-compiler to emit diagnostic about the current macro expansion stack
-when a compilation error occurs in a macro expansion. Using this
-option makes the preprocessor and the compiler consume more
-memory. The \fIlevel\fR parameter can be used to choose the level of
-precision of token location tracking thus decreasing the memory
-consumption if necessary. Value \fB0\fR of \fIlevel\fR de-activates
-this option just as if no \fB\-ftrack\-macro\-expansion\fR was present
-on the command line. Value \fB1\fR tracks tokens locations in a
-degraded mode for the sake of minimal memory overhead. In this mode
-all tokens resulting from the expansion of an argument of a
-function-like macro have the same location. Value \fB2\fR tracks
-tokens locations completely. This value is the most memory hungry.
-When this option is given no argument, the default parameter value is
-\&\fB2\fR.
-.Sp
-Note that \-ftrack\-macro\-expansion=2 is activated by default.
-.IP "\fB\-fexec\-charset=\fR\fIcharset\fR" 4
-.IX Item "-fexec-charset=charset"
-Set the execution character set, used for string and character
-constants. The default is \s-1UTF\-8. \s0\fIcharset\fR can be any encoding
-supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine.
-.IP "\fB\-fwide\-exec\-charset=\fR\fIcharset\fR" 4
-.IX Item "-fwide-exec-charset=charset"
-Set the wide execution character set, used for wide string and
-character constants. The default is \s-1UTF\-32\s0 or \s-1UTF\-16,\s0 whichever
-corresponds to the width of \f(CW\*(C`wchar_t\*(C'\fR. As with
-\&\fB\-fexec\-charset\fR, \fIcharset\fR can be any encoding supported
-by the system's \f(CW\*(C`iconv\*(C'\fR library routine; however, you will have
-problems with encodings that do not fit exactly in \f(CW\*(C`wchar_t\*(C'\fR.
-.IP "\fB\-finput\-charset=\fR\fIcharset\fR" 4
-.IX Item "-finput-charset=charset"
-Set the input character set, used for translation from the character
-set of the input file to the source character set used by \s-1GCC. \s0 If the
-locale does not specify, or \s-1GCC\s0 cannot get this information from the
-locale, the default is \s-1UTF\-8. \s0 This can be overridden by either the locale
-or this command line option. Currently the command line option takes
-precedence if there's a conflict. \fIcharset\fR can be any encoding
-supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine.
-.IP "\fB\-fworking\-directory\fR" 4
-.IX Item "-fworking-directory"
-Enable generation of linemarkers in the preprocessor output that will
-let the compiler know the current working directory at the time of
-preprocessing. When this option is enabled, the preprocessor will
-emit, after the initial linemarker, a second linemarker with the
-current working directory followed by two slashes. \s-1GCC\s0 will use this
-directory, when it's present in the preprocessed input, as the
-directory emitted as the current working directory in some debugging
-information formats. This option is implicitly enabled if debugging
-information is enabled, but this can be inhibited with the negated
-form \fB\-fno\-working\-directory\fR. If the \fB\-P\fR flag is
-present in the command line, this option has no effect, since no
-\&\f(CW\*(C`#line\*(C'\fR directives are emitted whatsoever.
-.IP "\fB\-fno\-show\-column\fR" 4
-.IX Item "-fno-show-column"
-Do not print column numbers in diagnostics. This may be necessary if
-diagnostics are being scanned by a program that does not understand the
-column numbers, such as \fBdejagnu\fR.
-.IP "\fB\-A\fR \fIpredicate\fR\fB=\fR\fIanswer\fR" 4
-.IX Item "-A predicate=answer"
-Make an assertion with the predicate \fIpredicate\fR and answer
-\&\fIanswer\fR. This form is preferred to the older form \fB\-A\fR
-\&\fIpredicate\fR\fB(\fR\fIanswer\fR\fB)\fR, which is still supported, because
-it does not use shell special characters.
-.IP "\fB\-A \-\fR\fIpredicate\fR\fB=\fR\fIanswer\fR" 4
-.IX Item "-A -predicate=answer"
-Cancel an assertion with the predicate \fIpredicate\fR and answer
-\&\fIanswer\fR.
-.IP "\fB\-dCHARS\fR" 4
-.IX Item "-dCHARS"
-\&\fI\s-1CHARS\s0\fR is a sequence of one or more of the following characters,
-and must not be preceded by a space. Other characters are interpreted
-by the compiler proper, or reserved for future versions of \s-1GCC,\s0 and so
-are silently ignored. If you specify characters whose behavior
-conflicts, the result is undefined.
-.RS 4
-.IP "\fBM\fR" 4
-.IX Item "M"
-Instead of the normal output, generate a list of \fB#define\fR
-directives for all the macros defined during the execution of the
-preprocessor, including predefined macros. This gives you a way of
-finding out what is predefined in your version of the preprocessor.
-Assuming you have no file \fIfoo.h\fR, the command
-.Sp
-.Vb 1
-\& touch foo.h; cpp \-dM foo.h
-.Ve
-.Sp
-will show all the predefined macros.
-.Sp
-If you use \fB\-dM\fR without the \fB\-E\fR option, \fB\-dM\fR is
-interpreted as a synonym for \fB\-fdump\-rtl\-mach\fR.
-.IP "\fBD\fR" 4
-.IX Item "D"
-Like \fBM\fR except in two respects: it does \fInot\fR include the
-predefined macros, and it outputs \fIboth\fR the \fB#define\fR
-directives and the result of preprocessing. Both kinds of output go to
-the standard output file.
-.IP "\fBN\fR" 4
-.IX Item "N"
-Like \fBD\fR, but emit only the macro names, not their expansions.
-.IP "\fBI\fR" 4
-.IX Item "I"
-Output \fB#include\fR directives in addition to the result of
-preprocessing.
-.IP "\fBU\fR" 4
-.IX Item "U"
-Like \fBD\fR except that only macros that are expanded, or whose
-definedness is tested in preprocessor directives, are output; the
-output is delayed until the use or test of the macro; and
-\&\fB#undef\fR directives are also output for macros tested but
-undefined at the time.
-.RE
-.RS 4
-.RE
-.IP "\fB\-P\fR" 4
-.IX Item "-P"
-Inhibit generation of linemarkers in the output from the preprocessor.
-This might be useful when running the preprocessor on something that is
-not C code, and will be sent to a program which might be confused by the
-linemarkers.
-.IP "\fB\-C\fR" 4
-.IX Item "-C"
-Do not discard comments. All comments are passed through to the output
-file, except for comments in processed directives, which are deleted
-along with the directive.
-.Sp
-You should be prepared for side effects when using \fB\-C\fR; it
-causes the preprocessor to treat comments as tokens in their own right.
-For example, comments appearing at the start of what would be a
-directive line have the effect of turning that line into an ordinary
-source line, since the first token on the line is no longer a \fB#\fR.
-.IP "\fB\-CC\fR" 4
-.IX Item "-CC"
-Do not discard comments, including during macro expansion. This is
-like \fB\-C\fR, except that comments contained within macros are
-also passed through to the output file where the macro is expanded.
-.Sp
-In addition to the side-effects of the \fB\-C\fR option, the
-\&\fB\-CC\fR option causes all \*(C+\-style comments inside a macro
-to be converted to C\-style comments. This is to prevent later use
-of that macro from inadvertently commenting out the remainder of
-the source line.
-.Sp
-The \fB\-CC\fR option is generally used to support lint comments.
-.IP "\fB\-traditional\-cpp\fR" 4
-.IX Item "-traditional-cpp"
-Try to imitate the behavior of old-fashioned C preprocessors, as
-opposed to \s-1ISO C\s0 preprocessors.
-.IP "\fB\-trigraphs\fR" 4
-.IX Item "-trigraphs"
-Process trigraph sequences.
-These are three-character sequences, all starting with \fB??\fR, that
-are defined by \s-1ISO C\s0 to stand for single characters. For example,
-\&\fB??/\fR stands for \fB\e\fR, so \fB'??/n'\fR is a character
-constant for a newline. By default, \s-1GCC\s0 ignores trigraphs, but in
-standard-conforming modes it converts them. See the \fB\-std\fR and
-\&\fB\-ansi\fR options.
-.Sp
-The nine trigraphs and their replacements are
-.Sp
-.Vb 2
-\& Trigraph: ??( ??) ??< ??> ??= ??/ ??\*(Aq ??! ??\-
-\& Replacement: [ ] { } # \e ^ | ~
-.Ve
-.IP "\fB\-remap\fR" 4
-.IX Item "-remap"
-Enable special code to work around file systems which only permit very
-short file names, such as MS-DOS.
-.IP "\fB\-\-help\fR" 4
-.IX Item "--help"
-.PD 0
-.IP "\fB\-\-target\-help\fR" 4
-.IX Item "--target-help"
-.PD
-Print text describing all the command line options instead of
-preprocessing anything.
-.IP "\fB\-v\fR" 4
-.IX Item "-v"
-Verbose mode. Print out \s-1GNU CPP\s0's version number at the beginning of
-execution, and report the final form of the include path.
-.IP "\fB\-H\fR" 4
-.IX Item "-H"
-Print the name of each header file used, in addition to other normal
-activities. Each name is indented to show how deep in the
-\&\fB#include\fR stack it is. Precompiled header files are also
-printed, even if they are found to be invalid; an invalid precompiled
-header file is printed with \fB...x\fR and a valid one with \fB...!\fR .
-.IP "\fB\-version\fR" 4
-.IX Item "-version"
-.PD 0
-.IP "\fB\-\-version\fR" 4
-.IX Item "--version"
-.PD
-Print out \s-1GNU CPP\s0's version number. With one dash, proceed to
-preprocess as normal. With two dashes, exit immediately.
-.SS "Passing Options to the Assembler"
-.IX Subsection "Passing Options to the Assembler"
-You can pass options to the assembler.
-.IP "\fB\-Wa,\fR\fIoption\fR" 4
-.IX Item "-Wa,option"
-Pass \fIoption\fR as an option to the assembler. If \fIoption\fR
-contains commas, it is split into multiple options at the commas.
-.IP "\fB\-Xassembler\fR \fIoption\fR" 4
-.IX Item "-Xassembler option"
-Pass \fIoption\fR as an option to the assembler. You can use this to
-supply system-specific assembler options that \s-1GCC\s0 does not
-recognize.
-.Sp
-If you want to pass an option that takes an argument, you must use
-\&\fB\-Xassembler\fR twice, once for the option and once for the argument.
-.SS "Options for Linking"
-.IX Subsection "Options for Linking"
-These options come into play when the compiler links object files into
-an executable output file. They are meaningless if the compiler is
-not doing a link step.
-.IP "\fIobject-file-name\fR" 4
-.IX Item "object-file-name"
-A file name that does not end in a special recognized suffix is
-considered to name an object file or library. (Object files are
-distinguished from libraries by the linker according to the file
-contents.) If linking is done, these object files are used as input
-to the linker.
-.IP "\fB\-c\fR" 4
-.IX Item "-c"
-.PD 0
-.IP "\fB\-S\fR" 4
-.IX Item "-S"
-.IP "\fB\-E\fR" 4
-.IX Item "-E"
-.PD
-If any of these options is used, then the linker is not run, and
-object file names should not be used as arguments.
-.IP "\fB\-l\fR\fIlibrary\fR" 4
-.IX Item "-llibrary"
-.PD 0
-.IP "\fB\-l\fR \fIlibrary\fR" 4
-.IX Item "-l library"
-.PD
-Search the library named \fIlibrary\fR when linking. (The second
-alternative with the library as a separate argument is only for
-\&\s-1POSIX\s0 compliance and is not recommended.)
-.Sp
-It makes a difference where in the command you write this option; the
-linker searches and processes libraries and object files in the order they
-are specified. Thus, \fBfoo.o \-lz bar.o\fR searches library \fBz\fR
-after file \fIfoo.o\fR but before \fIbar.o\fR. If \fIbar.o\fR refers
-to functions in \fBz\fR, those functions may not be loaded.
-.Sp
-The linker searches a standard list of directories for the library,
-which is actually a file named \fIlib\fIlibrary\fI.a\fR. The linker
-then uses this file as if it had been specified precisely by name.
-.Sp
-The directories searched include several standard system directories
-plus any that you specify with \fB\-L\fR.
-.Sp
-Normally the files found this way are library files\-\-\-archive files
-whose members are object files. The linker handles an archive file by
-scanning through it for members which define symbols that have so far
-been referenced but not defined. But if the file that is found is an
-ordinary object file, it is linked in the usual fashion. The only
-difference between using an \fB\-l\fR option and specifying a file name
-is that \fB\-l\fR surrounds \fIlibrary\fR with \fBlib\fR and \fB.a\fR
-and searches several directories.
-.IP "\fB\-lobjc\fR" 4
-.IX Item "-lobjc"
-You need this special case of the \fB\-l\fR option in order to
-link an Objective-C or Objective\-\*(C+ program.
-.IP "\fB\-nostartfiles\fR" 4
-.IX Item "-nostartfiles"
-Do not use the standard system startup files when linking.
-The standard system libraries are used normally, unless \fB\-nostdlib\fR
-or \fB\-nodefaultlibs\fR is used.
-.IP "\fB\-nodefaultlibs\fR" 4
-.IX Item "-nodefaultlibs"
-Do not use the standard system libraries when linking.
-Only the libraries you specify are passed to the linker, and options
-specifying linkage of the system libraries, such as \f(CW\*(C`\-static\-libgcc\*(C'\fR
-or \f(CW\*(C`\-shared\-libgcc\*(C'\fR, are ignored.
-The standard startup files are used normally, unless \fB\-nostartfiles\fR
-is used.
-.Sp
-The compiler may generate calls to \f(CW\*(C`memcmp\*(C'\fR,
-\&\f(CW\*(C`memset\*(C'\fR, \f(CW\*(C`memcpy\*(C'\fR and \f(CW\*(C`memmove\*(C'\fR.
-These entries are usually resolved by entries in
-libc. These entry points should be supplied through some other
-mechanism when this option is specified.
-.IP "\fB\-nostdlib\fR" 4
-.IX Item "-nostdlib"
-Do not use the standard system startup files or libraries when linking.
-No startup files and only the libraries you specify are passed to
-the linker, and options specifying linkage of the system libraries, such as
-\&\f(CW\*(C`\-static\-libgcc\*(C'\fR or \f(CW\*(C`\-shared\-libgcc\*(C'\fR, are ignored.
-.Sp
-The compiler may generate calls to \f(CW\*(C`memcmp\*(C'\fR, \f(CW\*(C`memset\*(C'\fR,
-\&\f(CW\*(C`memcpy\*(C'\fR and \f(CW\*(C`memmove\*(C'\fR.
-These entries are usually resolved by entries in
-libc. These entry points should be supplied through some other
-mechanism when this option is specified.
-.Sp
-One of the standard libraries bypassed by \fB\-nostdlib\fR and
-\&\fB\-nodefaultlibs\fR is \fIlibgcc.a\fR, a library of internal subroutines
-which \s-1GCC\s0 uses to overcome shortcomings of particular machines, or special
-needs for some languages.
-.Sp
-In most cases, you need \fIlibgcc.a\fR even when you want to avoid
-other standard libraries. In other words, when you specify \fB\-nostdlib\fR
-or \fB\-nodefaultlibs\fR you should usually specify \fB\-lgcc\fR as well.
-This ensures that you have no unresolved references to internal \s-1GCC\s0
-library subroutines.
-(An example of such an internal subroutine is \fB_\|_main\fR, used to ensure \*(C+
-constructors are called.)
-.IP "\fB\-pie\fR" 4
-.IX Item "-pie"
-Produce a position independent executable on targets that support it.
-For predictable results, you must also specify the same set of options
-used for compilation (\fB\-fpie\fR, \fB\-fPIE\fR,
-or model suboptions) when you specify this linker option.
-.IP "\fB\-rdynamic\fR" 4
-.IX Item "-rdynamic"
-Pass the flag \fB\-export\-dynamic\fR to the \s-1ELF\s0 linker, on targets
-that support it. This instructs the linker to add all symbols, not
-only used ones, to the dynamic symbol table. This option is needed
-for some uses of \f(CW\*(C`dlopen\*(C'\fR or to allow obtaining backtraces
-from within a program.
-.IP "\fB\-s\fR" 4
-.IX Item "-s"
-Remove all symbol table and relocation information from the executable.
-.IP "\fB\-static\fR" 4
-.IX Item "-static"
-On systems that support dynamic linking, this prevents linking with the shared
-libraries. On other systems, this option has no effect.
-.IP "\fB\-shared\fR" 4
-.IX Item "-shared"
-Produce a shared object which can then be linked with other objects to
-form an executable. Not all systems support this option. For predictable
-results, you must also specify the same set of options used for compilation
-(\fB\-fpic\fR, \fB\-fPIC\fR, or model suboptions) when
-you specify this linker option.[1]
-.IP "\fB\-shared\-libgcc\fR" 4
-.IX Item "-shared-libgcc"
-.PD 0
-.IP "\fB\-static\-libgcc\fR" 4
-.IX Item "-static-libgcc"
-.PD
-On systems that provide \fIlibgcc\fR as a shared library, these options
-force the use of either the shared or static version, respectively.
-If no shared version of \fIlibgcc\fR was built when the compiler was
-configured, these options have no effect.
-.Sp
-There are several situations in which an application should use the
-shared \fIlibgcc\fR instead of the static version. The most common
-of these is when the application wishes to throw and catch exceptions
-across different shared libraries. In that case, each of the libraries
-as well as the application itself should use the shared \fIlibgcc\fR.
-.Sp
-Therefore, the G++ and \s-1GCJ\s0 drivers automatically add
-\&\fB\-shared\-libgcc\fR whenever you build a shared library or a main
-executable, because \*(C+ and Java programs typically use exceptions, so
-this is the right thing to do.
-.Sp
-If, instead, you use the \s-1GCC\s0 driver to create shared libraries, you may
-find that they are not always linked with the shared \fIlibgcc\fR.
-If \s-1GCC\s0 finds, at its configuration time, that you have a non-GNU linker
-or a \s-1GNU\s0 linker that does not support option \fB\-\-eh\-frame\-hdr\fR,
-it links the shared version of \fIlibgcc\fR into shared libraries
-by default. Otherwise, it takes advantage of the linker and optimizes
-away the linking with the shared version of \fIlibgcc\fR, linking with
-the static version of libgcc by default. This allows exceptions to
-propagate through such shared libraries, without incurring relocation
-costs at library load time.
-.Sp
-However, if a library or main executable is supposed to throw or catch
-exceptions, you must link it using the G++ or \s-1GCJ\s0 driver, as appropriate
-for the languages used in the program, or using the option
-\&\fB\-shared\-libgcc\fR, such that it is linked with the shared
-\&\fIlibgcc\fR.
-.IP "\fB\-static\-libasan\fR" 4
-.IX Item "-static-libasan"
-When the \fB\-fsanitize=address\fR option is used to link a program,
-the \s-1GCC\s0 driver automatically links against \fBlibasan\fR. If
-\&\fIlibasan\fR is available as a shared library, and the \fB\-static\fR
-option is not used, then this links against the shared version of
-\&\fIlibasan\fR. The \fB\-static\-libasan\fR option directs the \s-1GCC\s0
-driver to link \fIlibasan\fR statically, without necessarily linking
-other libraries statically.
-.IP "\fB\-static\-libtsan\fR" 4
-.IX Item "-static-libtsan"
-When the \fB\-fsanitize=thread\fR option is used to link a program,
-the \s-1GCC\s0 driver automatically links against \fBlibtsan\fR. If
-\&\fIlibtsan\fR is available as a shared library, and the \fB\-static\fR
-option is not used, then this links against the shared version of
-\&\fIlibtsan\fR. The \fB\-static\-libtsan\fR option directs the \s-1GCC\s0
-driver to link \fIlibtsan\fR statically, without necessarily linking
-other libraries statically.
-.IP "\fB\-static\-liblsan\fR" 4
-.IX Item "-static-liblsan"
-When the \fB\-fsanitize=leak\fR option is used to link a program,
-the \s-1GCC\s0 driver automatically links against \fBliblsan\fR. If
-\&\fIliblsan\fR is available as a shared library, and the \fB\-static\fR
-option is not used, then this links against the shared version of
-\&\fIliblsan\fR. The \fB\-static\-liblsan\fR option directs the \s-1GCC\s0
-driver to link \fIliblsan\fR statically, without necessarily linking
-other libraries statically.
-.IP "\fB\-static\-libubsan\fR" 4
-.IX Item "-static-libubsan"
-When the \fB\-fsanitize=undefined\fR option is used to link a program,
-the \s-1GCC\s0 driver automatically links against \fBlibubsan\fR. If
-\&\fIlibubsan\fR is available as a shared library, and the \fB\-static\fR
-option is not used, then this links against the shared version of
-\&\fIlibubsan\fR. The \fB\-static\-libubsan\fR option directs the \s-1GCC\s0
-driver to link \fIlibubsan\fR statically, without necessarily linking
-other libraries statically.
-.IP "\fB\-static\-libstdc++\fR" 4
-.IX Item "-static-libstdc++"
-When the \fBg++\fR program is used to link a \*(C+ program, it
-normally automatically links against \fBlibstdc++\fR. If
-\&\fIlibstdc++\fR is available as a shared library, and the
-\&\fB\-static\fR option is not used, then this links against the
-shared version of \fIlibstdc++\fR. That is normally fine. However, it
-is sometimes useful to freeze the version of \fIlibstdc++\fR used by
-the program without going all the way to a fully static link. The
-\&\fB\-static\-libstdc++\fR option directs the \fBg++\fR driver to
-link \fIlibstdc++\fR statically, without necessarily linking other
-libraries statically.
-.IP "\fB\-symbolic\fR" 4
-.IX Item "-symbolic"
-Bind references to global symbols when building a shared object. Warn
-about any unresolved references (unless overridden by the link editor
-option \fB\-Xlinker \-z \-Xlinker defs\fR). Only a few systems support
-this option.
-.IP "\fB\-T\fR \fIscript\fR" 4
-.IX Item "-T script"
-Use \fIscript\fR as the linker script. This option is supported by most
-systems using the \s-1GNU\s0 linker. On some targets, such as bare-board
-targets without an operating system, the \fB\-T\fR option may be required
-when linking to avoid references to undefined symbols.
-.IP "\fB\-Xlinker\fR \fIoption\fR" 4
-.IX Item "-Xlinker option"
-Pass \fIoption\fR as an option to the linker. You can use this to
-supply system-specific linker options that \s-1GCC\s0 does not recognize.
-.Sp
-If you want to pass an option that takes a separate argument, you must use
-\&\fB\-Xlinker\fR twice, once for the option and once for the argument.
-For example, to pass \fB\-assert definitions\fR, you must write
-\&\fB\-Xlinker \-assert \-Xlinker definitions\fR. It does not work to write
-\&\fB\-Xlinker \*(L"\-assert definitions\*(R"\fR, because this passes the entire
-string as a single argument, which is not what the linker expects.
-.Sp
-When using the \s-1GNU\s0 linker, it is usually more convenient to pass
-arguments to linker options using the \fIoption\fR\fB=\fR\fIvalue\fR
-syntax than as separate arguments. For example, you can specify
-\&\fB\-Xlinker \-Map=output.map\fR rather than
-\&\fB\-Xlinker \-Map \-Xlinker output.map\fR. Other linkers may not support
-this syntax for command-line options.
-.IP "\fB\-Wl,\fR\fIoption\fR" 4
-.IX Item "-Wl,option"
-Pass \fIoption\fR as an option to the linker. If \fIoption\fR contains
-commas, it is split into multiple options at the commas. You can use this
-syntax to pass an argument to the option.
-For example, \fB\-Wl,\-Map,output.map\fR passes \fB\-Map output.map\fR to the
-linker. When using the \s-1GNU\s0 linker, you can also get the same effect with
-\&\fB\-Wl,\-Map=output.map\fR.
-.IP "\fB\-u\fR \fIsymbol\fR" 4
-.IX Item "-u symbol"
-Pretend the symbol \fIsymbol\fR is undefined, to force linking of
-library modules to define it. You can use \fB\-u\fR multiple times with
-different symbols to force loading of additional library modules.
-.SS "Options for Directory Search"
-.IX Subsection "Options for Directory Search"
-These options specify directories to search for header files, for
-libraries and for parts of the compiler:
-.IP "\fB\-I\fR\fIdir\fR" 4
-.IX Item "-Idir"
-Add the directory \fIdir\fR to the head of the list of directories to be
-searched for header files. This can be used to override a system header
-file, substituting your own version, since these directories are
-searched before the system header file directories. However, you should
-not use this option to add directories that contain vendor-supplied
-system header files (use \fB\-isystem\fR for that). If you use more than
-one \fB\-I\fR option, the directories are scanned in left-to-right
-order; the standard system directories come after.
-.Sp
-If a standard system include directory, or a directory specified with
-\&\fB\-isystem\fR, is also specified with \fB\-I\fR, the \fB\-I\fR
-option is ignored. The directory is still searched but as a
-system directory at its normal position in the system include chain.
-This is to ensure that \s-1GCC\s0's procedure to fix buggy system headers and
-the ordering for the \f(CW\*(C`include_next\*(C'\fR directive are not inadvertently changed.
-If you really need to change the search order for system directories,
-use the \fB\-nostdinc\fR and/or \fB\-isystem\fR options.
-.IP "\fB\-iplugindir=\fR\fIdir\fR" 4
-.IX Item "-iplugindir=dir"
-Set the directory to search for plugins that are passed
-by \fB\-fplugin=\fR\fIname\fR instead of
-\&\fB\-fplugin=\fR\fIpath\fR\fB/\fR\fIname\fR\fB.so\fR. This option is not meant
-to be used by the user, but only passed by the driver.
-.IP "\fB\-iquote\fR\fIdir\fR" 4
-.IX Item "-iquotedir"
-Add the directory \fIdir\fR to the head of the list of directories to
-be searched for header files only for the case of \fB#include
-"\fR\fIfile\fR\fB"\fR; they are not searched for \fB#include <\fR\fIfile\fR\fB>\fR,
-otherwise just like \fB\-I\fR.
-.IP "\fB\-L\fR\fIdir\fR" 4
-.IX Item "-Ldir"
-Add directory \fIdir\fR to the list of directories to be searched
-for \fB\-l\fR.
-.IP "\fB\-B\fR\fIprefix\fR" 4
-.IX Item "-Bprefix"
-This option specifies where to find the executables, libraries,
-include files, and data files of the compiler itself.
-.Sp
-The compiler driver program runs one or more of the subprograms
-\&\fBcpp\fR, \fBcc1\fR, \fBas\fR and \fBld\fR. It tries
-\&\fIprefix\fR as a prefix for each program it tries to run, both with and
-without \fImachine\fR\fB/\fR\fIversion\fR\fB/\fR.
-.Sp
-For each subprogram to be run, the compiler driver first tries the
-\&\fB\-B\fR prefix, if any. If that name is not found, or if \fB\-B\fR
-is not specified, the driver tries two standard prefixes,
-\&\fI/usr/lib/gcc/\fR and \fI/usr/local/lib/gcc/\fR. If neither of
-those results in a file name that is found, the unmodified program
-name is searched for using the directories specified in your
-\&\fB\s-1PATH\s0\fR environment variable.
-.Sp
-The compiler checks to see if the path provided by the \fB\-B\fR
-refers to a directory, and if necessary it adds a directory
-separator character at the end of the path.
-.Sp
-\&\fB\-B\fR prefixes that effectively specify directory names also apply
-to libraries in the linker, because the compiler translates these
-options into \fB\-L\fR options for the linker. They also apply to
-include files in the preprocessor, because the compiler translates these
-options into \fB\-isystem\fR options for the preprocessor. In this case,
-the compiler appends \fBinclude\fR to the prefix.
-.Sp
-The runtime support file \fIlibgcc.a\fR can also be searched for using
-the \fB\-B\fR prefix, if needed. If it is not found there, the two
-standard prefixes above are tried, and that is all. The file is left
-out of the link if it is not found by those means.
-.Sp
-Another way to specify a prefix much like the \fB\-B\fR prefix is to use
-the environment variable \fB\s-1GCC_EXEC_PREFIX\s0\fR.
-.Sp
-As a special kludge, if the path provided by \fB\-B\fR is
-\&\fI[dir/]stage\fIN\fI/\fR, where \fIN\fR is a number in the range 0 to
-9, then it is replaced by \fI[dir/]include\fR. This is to help
-with boot-strapping the compiler.
-.IP "\fB\-specs=\fR\fIfile\fR" 4
-.IX Item "-specs=file"
-Process \fIfile\fR after the compiler reads in the standard \fIspecs\fR
-file, in order to override the defaults which the \fBgcc\fR driver
-program uses when determining what switches to pass to \fBcc1\fR,
-\&\fBcc1plus\fR, \fBas\fR, \fBld\fR, etc. More than one
-\&\fB\-specs=\fR\fIfile\fR can be specified on the command line, and they
-are processed in order, from left to right.
-.IP "\fB\-\-sysroot=\fR\fIdir\fR" 4
-.IX Item "--sysroot=dir"
-Use \fIdir\fR as the logical root directory for headers and libraries.
-For example, if the compiler normally searches for headers in
-\&\fI/usr/include\fR and libraries in \fI/usr/lib\fR, it instead
-searches \fI\fIdir\fI/usr/include\fR and \fI\fIdir\fI/usr/lib\fR.
-.Sp
-If you use both this option and the \fB\-isysroot\fR option, then
-the \fB\-\-sysroot\fR option applies to libraries, but the
-\&\fB\-isysroot\fR option applies to header files.
-.Sp
-The \s-1GNU\s0 linker (beginning with version 2.16) has the necessary support
-for this option. If your linker does not support this option, the
-header file aspect of \fB\-\-sysroot\fR still works, but the
-library aspect does not.
-.IP "\fB\-\-no\-sysroot\-suffix\fR" 4
-.IX Item "--no-sysroot-suffix"
-For some targets, a suffix is added to the root directory specified
-with \fB\-\-sysroot\fR, depending on the other options used, so that
-headers may for example be found in
-\&\fI\fIdir\fI/\fIsuffix\fI/usr/include\fR instead of
-\&\fI\fIdir\fI/usr/include\fR. This option disables the addition of
-such a suffix.
-.IP "\fB\-I\-\fR" 4
-.IX Item "-I-"
-This option has been deprecated. Please use \fB\-iquote\fR instead for
-\&\fB\-I\fR directories before the \fB\-I\-\fR and remove the \fB\-I\-\fR.
-Any directories you specify with \fB\-I\fR options before the \fB\-I\-\fR
-option are searched only for the case of \fB#include "\fR\fIfile\fR\fB"\fR;
-they are not searched for \fB#include <\fR\fIfile\fR\fB>\fR.
-.Sp
-If additional directories are specified with \fB\-I\fR options after
-the \fB\-I\-\fR, these directories are searched for all \fB#include\fR
-directives. (Ordinarily \fIall\fR \fB\-I\fR directories are used
-this way.)
-.Sp
-In addition, the \fB\-I\-\fR option inhibits the use of the current
-directory (where the current input file came from) as the first search
-directory for \fB#include "\fR\fIfile\fR\fB"\fR. There is no way to
-override this effect of \fB\-I\-\fR. With \fB\-I.\fR you can specify
-searching the directory that is current when the compiler is
-invoked. That is not exactly the same as what the preprocessor does
-by default, but it is often satisfactory.
-.Sp
-\&\fB\-I\-\fR does not inhibit the use of the standard system directories
-for header files. Thus, \fB\-I\-\fR and \fB\-nostdinc\fR are
-independent.
-.SS "Specifying Target Machine and Compiler Version"
-.IX Subsection "Specifying Target Machine and Compiler Version"
-The usual way to run \s-1GCC\s0 is to run the executable called \fBgcc\fR, or
-\&\fImachine\fR\fB\-gcc\fR when cross-compiling, or
-\&\fImachine\fR\fB\-gcc\-\fR\fIversion\fR to run a version other than the
-one that was installed last.
-.SS "Hardware Models and Configurations"
-.IX Subsection "Hardware Models and Configurations"
-Each target machine types can have its own
-special options, starting with \fB\-m\fR, to choose among various
-hardware models or configurations\-\-\-for example, 68010 vs 68020,
-floating coprocessor or none. A single installed version of the
-compiler can compile for any model or configuration, according to the
-options specified.
-.PP
-Some configurations of the compiler also support additional special
-options, usually for compatibility with other compilers on the same
-platform.
-.PP
-\fIAArch64 Options\fR
-.IX Subsection "AArch64 Options"
-.PP
-These options are defined for AArch64 implementations:
-.IP "\fB\-mabi=\fR\fIname\fR" 4
-.IX Item "-mabi=name"
-Generate code for the specified data model. Permissible values
-are \fBilp32\fR for SysV-like data model where int, long int and pointer
-are 32\-bit, and \fBlp64\fR for SysV-like data model where int is 32\-bit,
-but long int and pointer are 64\-bit.
-.Sp
-The default depends on the specific target configuration. Note that
-the \s-1LP64\s0 and \s-1ILP32\s0 ABIs are not link-compatible; you must compile your
-entire program with the same \s-1ABI,\s0 and link with a compatible set of libraries.
-.IP "\fB\-mbig\-endian\fR" 4
-.IX Item "-mbig-endian"
-Generate big-endian code. This is the default when \s-1GCC\s0 is configured for an
-\&\fBaarch64_be\-*\-*\fR target.
-.IP "\fB\-mgeneral\-regs\-only\fR" 4
-.IX Item "-mgeneral-regs-only"
-Generate code which uses only the general registers.
-.IP "\fB\-mlittle\-endian\fR" 4
-.IX Item "-mlittle-endian"
-Generate little-endian code. This is the default when \s-1GCC\s0 is configured for an
-\&\fBaarch64\-*\-*\fR but not an \fBaarch64_be\-*\-*\fR target.
-.IP "\fB\-mcmodel=tiny\fR" 4
-.IX Item "-mcmodel=tiny"
-Generate code for the tiny code model. The program and its statically defined
-symbols must be within 1GB of each other. Pointers are 64 bits. Programs can
-be statically or dynamically linked. This model is not fully implemented and
-mostly treated as \fBsmall\fR.
-.IP "\fB\-mcmodel=small\fR" 4
-.IX Item "-mcmodel=small"
-Generate code for the small code model. The program and its statically defined
-symbols must be within 4GB of each other. Pointers are 64 bits. Programs can
-be statically or dynamically linked. This is the default code model.
-.IP "\fB\-mcmodel=large\fR" 4
-.IX Item "-mcmodel=large"
-Generate code for the large code model. This makes no assumptions about
-addresses and sizes of sections. Pointers are 64 bits. Programs can be
-statically linked only.
-.IP "\fB\-mstrict\-align\fR" 4
-.IX Item "-mstrict-align"
-Do not assume that unaligned memory references will be handled by the system.
-.IP "\fB\-momit\-leaf\-frame\-pointer\fR" 4
-.IX Item "-momit-leaf-frame-pointer"
-.PD 0
-.IP "\fB\-mno\-omit\-leaf\-frame\-pointer\fR" 4
-.IX Item "-mno-omit-leaf-frame-pointer"
-.PD
-Omit or keep the frame pointer in leaf functions. The former behaviour is the
-default.
-.IP "\fB\-mtls\-dialect=desc\fR" 4
-.IX Item "-mtls-dialect=desc"
-Use \s-1TLS\s0 descriptors as the thread-local storage mechanism for dynamic accesses
-of \s-1TLS\s0 variables. This is the default.
-.IP "\fB\-mtls\-dialect=traditional\fR" 4
-.IX Item "-mtls-dialect=traditional"
-Use traditional \s-1TLS\s0 as the thread-local storage mechanism for dynamic accesses
-of \s-1TLS\s0 variables.
-.IP "\fB\-march=\fR\fIname\fR" 4
-.IX Item "-march=name"
-Specify the name of the target architecture, optionally suffixed by one or
-more feature modifiers. This option has the form
-\&\fB\-march=\fR\fIarch\fR{\fB+\fR[\fBno\fR]\fIfeature\fR}*, where the
-only permissible value for \fIarch\fR is \fBarmv8\-a\fR. The permissible
-values for \fIfeature\fR are documented in the sub-section below.
-.Sp
-Where conflicting feature modifiers are specified, the right-most feature is
-used.
-.Sp
-\&\s-1GCC\s0 uses this name to determine what kind of instructions it can emit when
-generating assembly code.
-.Sp
-Where \fB\-march\fR is specified without either of \fB\-mtune\fR
-or \fB\-mcpu\fR also being specified, the code will be tuned to perform
-well across a range of target processors implementing the target
-architecture.
-.IP "\fB\-mtune=\fR\fIname\fR" 4
-.IX Item "-mtune=name"
-Specify the name of the target processor for which \s-1GCC\s0 should tune the
-performance of the code. Permissible values for this option are:
-\&\fBgeneric\fR, \fBcortex\-a53\fR, \fBcortex\-a57\fR.
-.Sp
-Additionally, this option can specify that \s-1GCC\s0 should tune the performance
-of the code for a big.LITTLE system. The only permissible value is
-\&\fBcortex\-a57.cortex\-a53\fR.
-.Sp
-Where none of \fB\-mtune=\fR, \fB\-mcpu=\fR or \fB\-march=\fR
-are specified, the code will be tuned to perform well across a range
-of target processors.
-.Sp
-This option cannot be suffixed by feature modifiers.
-.IP "\fB\-mcpu=\fR\fIname\fR" 4
-.IX Item "-mcpu=name"
-Specify the name of the target processor, optionally suffixed by one or more
-feature modifiers. This option has the form
-\&\fB\-mcpu=\fR\fIcpu\fR{\fB+\fR[\fBno\fR]\fIfeature\fR}*, where the
-permissible values for \fIcpu\fR are the same as those available for
-\&\fB\-mtune\fR.
-.Sp
-The permissible values for \fIfeature\fR are documented in the sub-section
-below.
-.Sp
-Where conflicting feature modifiers are specified, the right-most feature is
-used.
-.Sp
-\&\s-1GCC\s0 uses this name to determine what kind of instructions it can emit when
-generating assembly code (as if by \fB\-march\fR) and to determine
-the target processor for which to tune for performance (as if
-by \fB\-mtune\fR). Where this option is used in conjunction
-with \fB\-march\fR or \fB\-mtune\fR, those options take precedence
-over the appropriate part of this option.
-.PP
-\fB\-march\fR and \fB\-mcpu\fR feature modifiers
-.IX Subsection "-march and -mcpu feature modifiers"
-.PP
-Feature modifiers used with \fB\-march\fR and \fB\-mcpu\fR can be one
-the following:
-.IP "\fBcrc\fR" 4
-.IX Item "crc"
-Enable \s-1CRC\s0 extension.
-.IP "\fBcrypto\fR" 4
-.IX Item "crypto"
-Enable Crypto extension. This implies Advanced \s-1SIMD\s0 is enabled.
-.IP "\fBfp\fR" 4
-.IX Item "fp"
-Enable floating-point instructions.
-.IP "\fBsimd\fR" 4
-.IX Item "simd"
-Enable Advanced \s-1SIMD\s0 instructions. This implies floating-point instructions
-are enabled. This is the default for all current possible values for options
-\&\fB\-march\fR and \fB\-mcpu=\fR.
-.PP
-\fIAdapteva Epiphany Options\fR
-.IX Subsection "Adapteva Epiphany Options"
-.PP
-These \fB\-m\fR options are defined for Adapteva Epiphany:
-.IP "\fB\-mhalf\-reg\-file\fR" 4
-.IX Item "-mhalf-reg-file"
-Don't allocate any register in the range \f(CW\*(C`r32\*(C'\fR...\f(CW\*(C`r63\*(C'\fR.
-That allows code to run on hardware variants that lack these registers.
-.IP "\fB\-mprefer\-short\-insn\-regs\fR" 4
-.IX Item "-mprefer-short-insn-regs"
-Preferrentially allocate registers that allow short instruction generation.
-This can result in increased instruction count, so this may either reduce or
-increase overall code size.
-.IP "\fB\-mbranch\-cost=\fR\fInum\fR" 4
-.IX Item "-mbranch-cost=num"
-Set the cost of branches to roughly \fInum\fR \*(L"simple\*(R" instructions.
-This cost is only a heuristic and is not guaranteed to produce
-consistent results across releases.
-.IP "\fB\-mcmove\fR" 4
-.IX Item "-mcmove"
-Enable the generation of conditional moves.
-.IP "\fB\-mnops=\fR\fInum\fR" 4
-.IX Item "-mnops=num"
-Emit \fInum\fR NOPs before every other generated instruction.
-.IP "\fB\-mno\-soft\-cmpsf\fR" 4
-.IX Item "-mno-soft-cmpsf"
-For single-precision floating-point comparisons, emit an \f(CW\*(C`fsub\*(C'\fR instruction
-and test the flags. This is faster than a software comparison, but can
-get incorrect results in the presence of NaNs, or when two different small
-numbers are compared such that their difference is calculated as zero.
-The default is \fB\-msoft\-cmpsf\fR, which uses slower, but IEEE-compliant,
-software comparisons.
-.IP "\fB\-mstack\-offset=\fR\fInum\fR" 4
-.IX Item "-mstack-offset=num"
-Set the offset between the top of the stack and the stack pointer.
-E.g., a value of 8 means that the eight bytes in the range \f(CW\*(C`sp+0...sp+7\*(C'\fR
-can be used by leaf functions without stack allocation.
-Values other than \fB8\fR or \fB16\fR are untested and unlikely to work.
-Note also that this option changes the \s-1ABI\s0; compiling a program with a
-different stack offset than the libraries have been compiled with
-generally does not work.
-This option can be useful if you want to evaluate if a different stack
-offset would give you better code, but to actually use a different stack
-offset to build working programs, it is recommended to configure the
-toolchain with the appropriate \fB\-\-with\-stack\-offset=\fR\fInum\fR option.
-.IP "\fB\-mno\-round\-nearest\fR" 4
-.IX Item "-mno-round-nearest"
-Make the scheduler assume that the rounding mode has been set to
-truncating. The default is \fB\-mround\-nearest\fR.
-.IP "\fB\-mlong\-calls\fR" 4
-.IX Item "-mlong-calls"
-If not otherwise specified by an attribute, assume all calls might be beyond
-the offset range of the \f(CW\*(C`b\*(C'\fR / \f(CW\*(C`bl\*(C'\fR instructions, and therefore load the
-function address into a register before performing a (otherwise direct) call.
-This is the default.
-.IP "\fB\-mshort\-calls\fR" 4
-.IX Item "-mshort-calls"
-If not otherwise specified by an attribute, assume all direct calls are
-in the range of the \f(CW\*(C`b\*(C'\fR / \f(CW\*(C`bl\*(C'\fR instructions, so use these instructions
-for direct calls. The default is \fB\-mlong\-calls\fR.
-.IP "\fB\-msmall16\fR" 4
-.IX Item "-msmall16"
-Assume addresses can be loaded as 16\-bit unsigned values. This does not
-apply to function addresses for which \fB\-mlong\-calls\fR semantics
-are in effect.
-.IP "\fB\-mfp\-mode=\fR\fImode\fR" 4
-.IX Item "-mfp-mode=mode"
-Set the prevailing mode of the floating-point unit.
-This determines the floating-point mode that is provided and expected
-at function call and return time. Making this mode match the mode you
-predominantly need at function start can make your programs smaller and
-faster by avoiding unnecessary mode switches.
-.Sp
-\&\fImode\fR can be set to one the following values:
-.RS 4
-.IP "\fBcaller\fR" 4
-.IX Item "caller"
-Any mode at function entry is valid, and retained or restored when
-the function returns, and when it calls other functions.
-This mode is useful for compiling libraries or other compilation units
-you might want to incorporate into different programs with different
-prevailing \s-1FPU\s0 modes, and the convenience of being able to use a single
-object file outweighs the size and speed overhead for any extra
-mode switching that might be needed, compared with what would be needed
-with a more specific choice of prevailing \s-1FPU\s0 mode.
-.IP "\fBtruncate\fR" 4
-.IX Item "truncate"
-This is the mode used for floating-point calculations with
-truncating (i.e. round towards zero) rounding mode. That includes
-conversion from floating point to integer.
-.IP "\fBround-nearest\fR" 4
-.IX Item "round-nearest"
-This is the mode used for floating-point calculations with
-round-to-nearest-or-even rounding mode.
-.IP "\fBint\fR" 4
-.IX Item "int"
-This is the mode used to perform integer calculations in the \s-1FPU,\s0 e.g.
-integer multiply, or integer multiply-and-accumulate.
-.RE
-.RS 4
-.Sp
-The default is \fB\-mfp\-mode=caller\fR
-.RE
-.IP "\fB\-mnosplit\-lohi\fR" 4
-.IX Item "-mnosplit-lohi"
-.PD 0
-.IP "\fB\-mno\-postinc\fR" 4
-.IX Item "-mno-postinc"
-.IP "\fB\-mno\-postmodify\fR" 4
-.IX Item "-mno-postmodify"
-.PD
-Code generation tweaks that disable, respectively, splitting of 32\-bit
-loads, generation of post-increment addresses, and generation of
-post-modify addresses. The defaults are \fBmsplit-lohi\fR,
-\&\fB\-mpost\-inc\fR, and \fB\-mpost\-modify\fR.
-.IP "\fB\-mnovect\-double\fR" 4
-.IX Item "-mnovect-double"
-Change the preferred \s-1SIMD\s0 mode to SImode. The default is
-\&\fB\-mvect\-double\fR, which uses DImode as preferred \s-1SIMD\s0 mode.
-.IP "\fB\-max\-vect\-align=\fR\fInum\fR" 4
-.IX Item "-max-vect-align=num"
-The maximum alignment for \s-1SIMD\s0 vector mode types.
-\&\fInum\fR may be 4 or 8. The default is 8.
-Note that this is an \s-1ABI\s0 change, even though many library function
-interfaces are unaffected if they don't use \s-1SIMD\s0 vector modes
-in places that affect size and/or alignment of relevant types.
-.IP "\fB\-msplit\-vecmove\-early\fR" 4
-.IX Item "-msplit-vecmove-early"
-Split vector moves into single word moves before reload. In theory this
-can give better register allocation, but so far the reverse seems to be
-generally the case.
-.IP "\fB\-m1reg\-\fR\fIreg\fR" 4
-.IX Item "-m1reg-reg"
-Specify a register to hold the constant \-1, which makes loading small negative
-constants and certain bitmasks faster.
-Allowable values for \fIreg\fR are \fBr43\fR and \fBr63\fR,
-which specify use of that register as a fixed register,
-and \fBnone\fR, which means that no register is used for this
-purpose. The default is \fB\-m1reg\-none\fR.
-.PP
-\fI\s-1ARC\s0 Options\fR
-.IX Subsection "ARC Options"
-.PP
-The following options control the architecture variant for which code
-is being compiled:
-.IP "\fB\-mbarrel\-shifter\fR" 4
-.IX Item "-mbarrel-shifter"
-Generate instructions supported by barrel shifter. This is the default
-unless \fB\-mcpu=ARC601\fR is in effect.
-.IP "\fB\-mcpu=\fR\fIcpu\fR" 4
-.IX Item "-mcpu=cpu"
-Set architecture type, register usage, and instruction scheduling
-parameters for \fIcpu\fR. There are also shortcut alias options
-available for backward compatibility and convenience. Supported
-values for \fIcpu\fR are
-.RS 4
-.IP "\fB\s-1ARC600\s0\fR" 4
-.IX Item "ARC600"
-Compile for \s-1ARC600. \s0 Aliases: \fB\-mA6\fR, \fB\-mARC600\fR.
-.IP "\fB\s-1ARC601\s0\fR" 4
-.IX Item "ARC601"
-Compile for \s-1ARC601. \s0 Alias: \fB\-mARC601\fR.
-.IP "\fB\s-1ARC700\s0\fR" 4
-.IX Item "ARC700"
-Compile for \s-1ARC700. \s0 Aliases: \fB\-mA7\fR, \fB\-mARC700\fR.
-This is the default when configured with \fB\-\-with\-cpu=arc700\fR.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mdpfp\fR" 4
-.IX Item "-mdpfp"
-.PD 0
-.IP "\fB\-mdpfp\-compact\fR" 4
-.IX Item "-mdpfp-compact"
-.PD
-\&\s-1FPX:\s0 Generate Double Precision \s-1FPX\s0 instructions, tuned for the compact
-implementation.
-.IP "\fB\-mdpfp\-fast\fR" 4
-.IX Item "-mdpfp-fast"
-\&\s-1FPX:\s0 Generate Double Precision \s-1FPX\s0 instructions, tuned for the fast
-implementation.
-.IP "\fB\-mno\-dpfp\-lrsr\fR" 4
-.IX Item "-mno-dpfp-lrsr"
-Disable \s-1LR\s0 and \s-1SR\s0 instructions from using \s-1FPX\s0 extension aux registers.
-.IP "\fB\-mea\fR" 4
-.IX Item "-mea"
-Generate Extended arithmetic instructions. Currently only
-\&\f(CW\*(C`divaw\*(C'\fR, \f(CW\*(C`adds\*(C'\fR, \f(CW\*(C`subs\*(C'\fR, and \f(CW\*(C`sat16\*(C'\fR are
-supported. This is always enabled for \fB\-mcpu=ARC700\fR.
-.IP "\fB\-mno\-mpy\fR" 4
-.IX Item "-mno-mpy"
-Do not generate mpy instructions for \s-1ARC700.\s0
-.IP "\fB\-mmul32x16\fR" 4
-.IX Item "-mmul32x16"
-Generate 32x16 bit multiply and mac instructions.
-.IP "\fB\-mmul64\fR" 4
-.IX Item "-mmul64"
-Generate mul64 and mulu64 instructions. Only valid for \fB\-mcpu=ARC600\fR.
-.IP "\fB\-mnorm\fR" 4
-.IX Item "-mnorm"
-Generate norm instruction. This is the default if \fB\-mcpu=ARC700\fR
-is in effect.
-.IP "\fB\-mspfp\fR" 4
-.IX Item "-mspfp"
-.PD 0
-.IP "\fB\-mspfp\-compact\fR" 4
-.IX Item "-mspfp-compact"
-.PD
-\&\s-1FPX:\s0 Generate Single Precision \s-1FPX\s0 instructions, tuned for the compact
-implementation.
-.IP "\fB\-mspfp\-fast\fR" 4
-.IX Item "-mspfp-fast"
-\&\s-1FPX:\s0 Generate Single Precision \s-1FPX\s0 instructions, tuned for the fast
-implementation.
-.IP "\fB\-msimd\fR" 4
-.IX Item "-msimd"
-Enable generation of \s-1ARC SIMD\s0 instructions via target-specific
-builtins. Only valid for \fB\-mcpu=ARC700\fR.
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-This option ignored; it is provided for compatibility purposes only.
-Software floating point code is emitted by default, and this default
-can overridden by \s-1FPX\s0 options; \fBmspfp\fR, \fBmspfp-compact\fR, or
-\&\fBmspfp-fast\fR for single precision, and \fBmdpfp\fR,
-\&\fBmdpfp-compact\fR, or \fBmdpfp-fast\fR for double precision.
-.IP "\fB\-mswap\fR" 4
-.IX Item "-mswap"
-Generate swap instructions.
-.PP
-The following options are passed through to the assembler, and also
-define preprocessor macro symbols.
-.IP "\fB\-mdsp\-packa\fR" 4
-.IX Item "-mdsp-packa"
-Passed down to the assembler to enable the \s-1DSP\s0 Pack A extensions.
-Also sets the preprocessor symbol \f(CW\*(C`_\|_Xdsp_packa\*(C'\fR.
-.IP "\fB\-mdvbf\fR" 4
-.IX Item "-mdvbf"
-Passed down to the assembler to enable the dual viterbi butterfly
-extension. Also sets the preprocessor symbol \f(CW\*(C`_\|_Xdvbf\*(C'\fR.
-.IP "\fB\-mlock\fR" 4
-.IX Item "-mlock"
-Passed down to the assembler to enable the Locked Load/Store
-Conditional extension. Also sets the preprocessor symbol
-\&\f(CW\*(C`_\|_Xlock\*(C'\fR.
-.IP "\fB\-mmac\-d16\fR" 4
-.IX Item "-mmac-d16"
-Passed down to the assembler. Also sets the preprocessor symbol
-\&\f(CW\*(C`_\|_Xxmac_d16\*(C'\fR.
-.IP "\fB\-mmac\-24\fR" 4
-.IX Item "-mmac-24"
-Passed down to the assembler. Also sets the preprocessor symbol
-\&\f(CW\*(C`_\|_Xxmac_24\*(C'\fR.
-.IP "\fB\-mrtsc\fR" 4
-.IX Item "-mrtsc"
-Passed down to the assembler to enable the 64\-bit Time-Stamp Counter
-extension instruction. Also sets the preprocessor symbol
-\&\f(CW\*(C`_\|_Xrtsc\*(C'\fR.
-.IP "\fB\-mswape\fR" 4
-.IX Item "-mswape"
-Passed down to the assembler to enable the swap byte ordering
-extension instruction. Also sets the preprocessor symbol
-\&\f(CW\*(C`_\|_Xswape\*(C'\fR.
-.IP "\fB\-mtelephony\fR" 4
-.IX Item "-mtelephony"
-Passed down to the assembler to enable dual and single operand
-instructions for telephony. Also sets the preprocessor symbol
-\&\f(CW\*(C`_\|_Xtelephony\*(C'\fR.
-.IP "\fB\-mxy\fR" 4
-.IX Item "-mxy"
-Passed down to the assembler to enable the \s-1XY\s0 Memory extension. Also
-sets the preprocessor symbol \f(CW\*(C`_\|_Xxy\*(C'\fR.
-.PP
-The following options control how the assembly code is annotated:
-.IP "\fB\-misize\fR" 4
-.IX Item "-misize"
-Annotate assembler instructions with estimated addresses.
-.IP "\fB\-mannotate\-align\fR" 4
-.IX Item "-mannotate-align"
-Explain what alignment considerations lead to the decision to make an
-instruction short or long.
-.PP
-The following options are passed through to the linker:
-.IP "\fB\-marclinux\fR" 4
-.IX Item "-marclinux"
-Passed through to the linker, to specify use of the \f(CW\*(C`arclinux\*(C'\fR emulation.
-This option is enabled by default in tool chains built for
-\&\f(CW\*(C`arc\-linux\-uclibc\*(C'\fR and \f(CW\*(C`arceb\-linux\-uclibc\*(C'\fR targets
-when profiling is not requested.
-.IP "\fB\-marclinux_prof\fR" 4
-.IX Item "-marclinux_prof"
-Passed through to the linker, to specify use of the
-\&\f(CW\*(C`arclinux_prof\*(C'\fR emulation. This option is enabled by default in
-tool chains built for \f(CW\*(C`arc\-linux\-uclibc\*(C'\fR and
-\&\f(CW\*(C`arceb\-linux\-uclibc\*(C'\fR targets when profiling is requested.
-.PP
-The following options control the semantics of generated code:
-.IP "\fB\-mepilogue\-cfi\fR" 4
-.IX Item "-mepilogue-cfi"
-Enable generation of call frame information for epilogues.
-.IP "\fB\-mno\-epilogue\-cfi\fR" 4
-.IX Item "-mno-epilogue-cfi"
-Disable generation of call frame information for epilogues.
-.IP "\fB\-mlong\-calls\fR" 4
-.IX Item "-mlong-calls"
-Generate call insns as register indirect calls, thus providing access
-to the full 32\-bit address range.
-.IP "\fB\-mmedium\-calls\fR" 4
-.IX Item "-mmedium-calls"
-Don't use less than 25 bit addressing range for calls, which is the
-offset available for an unconditional branch-and-link
-instruction. Conditional execution of function calls is suppressed, to
-allow use of the 25\-bit range, rather than the 21\-bit range with
-conditional branch-and-link. This is the default for tool chains built
-for \f(CW\*(C`arc\-linux\-uclibc\*(C'\fR and \f(CW\*(C`arceb\-linux\-uclibc\*(C'\fR targets.
-.IP "\fB\-mno\-sdata\fR" 4
-.IX Item "-mno-sdata"
-Do not generate sdata references. This is the default for tool chains
-built for \f(CW\*(C`arc\-linux\-uclibc\*(C'\fR and \f(CW\*(C`arceb\-linux\-uclibc\*(C'\fR
-targets.
-.IP "\fB\-mucb\-mcount\fR" 4
-.IX Item "-mucb-mcount"
-Instrument with mcount calls as used in \s-1UCB\s0 code. I.e. do the
-counting in the callee, not the caller. By default \s-1ARC\s0 instrumentation
-counts in the caller.
-.IP "\fB\-mvolatile\-cache\fR" 4
-.IX Item "-mvolatile-cache"
-Use ordinarily cached memory accesses for volatile references. This is the
-default.
-.IP "\fB\-mno\-volatile\-cache\fR" 4
-.IX Item "-mno-volatile-cache"
-Enable cache bypass for volatile references.
-.PP
-The following options fine tune code generation:
-.IP "\fB\-malign\-call\fR" 4
-.IX Item "-malign-call"
-Do alignment optimizations for call instructions.
-.IP "\fB\-mauto\-modify\-reg\fR" 4
-.IX Item "-mauto-modify-reg"
-Enable the use of pre/post modify with register displacement.
-.IP "\fB\-mbbit\-peephole\fR" 4
-.IX Item "-mbbit-peephole"
-Enable bbit peephole2.
-.IP "\fB\-mno\-brcc\fR" 4
-.IX Item "-mno-brcc"
-This option disables a target-specific pass in \fIarc_reorg\fR to
-generate \f(CW\*(C`BRcc\*(C'\fR instructions. It has no effect on \f(CW\*(C`BRcc\*(C'\fR
-generation driven by the combiner pass.
-.IP "\fB\-mcase\-vector\-pcrel\fR" 4
-.IX Item "-mcase-vector-pcrel"
-Use pc-relative switch case tables \- this enables case table shortening.
-This is the default for \fB\-Os\fR.
-.IP "\fB\-mcompact\-casesi\fR" 4
-.IX Item "-mcompact-casesi"
-Enable compact casesi pattern.
-This is the default for \fB\-Os\fR.
-.IP "\fB\-mno\-cond\-exec\fR" 4
-.IX Item "-mno-cond-exec"
-Disable ARCompact specific pass to generate conditional execution instructions.
-Due to delay slot scheduling and interactions between operand numbers,
-literal sizes, instruction lengths, and the support for conditional execution,
-the target-independent pass to generate conditional execution is often lacking,
-so the \s-1ARC\s0 port has kept a special pass around that tries to find more
-conditional execution generating opportunities after register allocation,
-branch shortening, and delay slot scheduling have been done. This pass
-generally, but not always, improves performance and code size, at the cost of
-extra compilation time, which is why there is an option to switch it off.
-If you have a problem with call instructions exceeding their allowable
-offset range because they are conditionalized, you should consider using
-\&\fB\-mmedium\-calls\fR instead.
-.IP "\fB\-mearly\-cbranchsi\fR" 4
-.IX Item "-mearly-cbranchsi"
-Enable pre-reload use of the cbranchsi pattern.
-.IP "\fB\-mexpand\-adddi\fR" 4
-.IX Item "-mexpand-adddi"
-Expand \f(CW\*(C`adddi3\*(C'\fR and \f(CW\*(C`subdi3\*(C'\fR at rtl generation time into
-\&\f(CW\*(C`add.f\*(C'\fR, \f(CW\*(C`adc\*(C'\fR etc.
-.IP "\fB\-mindexed\-loads\fR" 4
-.IX Item "-mindexed-loads"
-Enable the use of indexed loads. This can be problematic because some
-optimizers will then assume the that indexed stores exist, which is not
-the case.
-.IP "\fB\-mlra\fR" 4
-.IX Item "-mlra"
-Enable Local Register Allocation. This is still experimental for \s-1ARC,\s0
-so by default the compiler uses standard reload
-(i.e. \fB\-mno\-lra\fR).
-.IP "\fB\-mlra\-priority\-none\fR" 4
-.IX Item "-mlra-priority-none"
-Don't indicate any priority for target registers.
-.IP "\fB\-mlra\-priority\-compact\fR" 4
-.IX Item "-mlra-priority-compact"
-Indicate target register priority for r0..r3 / r12..r15.
-.IP "\fB\-mlra\-priority\-noncompact\fR" 4
-.IX Item "-mlra-priority-noncompact"
-Reduce target regsiter priority for r0..r3 / r12..r15.
-.IP "\fB\-mno\-millicode\fR" 4
-.IX Item "-mno-millicode"
-When optimizing for size (using \fB\-Os\fR), prologues and epilogues
-that have to save or restore a large number of registers are often
-shortened by using call to a special function in libgcc; this is
-referred to as a \fImillicode\fR call. As these calls can pose
-performance issues, and/or cause linking issues when linking in a
-nonstandard way, this option is provided to turn off millicode call
-generation.
-.IP "\fB\-mmixed\-code\fR" 4
-.IX Item "-mmixed-code"
-Tweak register allocation to help 16\-bit instruction generation.
-This generally has the effect of decreasing the average instruction size
-while increasing the instruction count.
-.IP "\fB\-mq\-class\fR" 4
-.IX Item "-mq-class"
-Enable 'q' instruction alternatives.
-This is the default for \fB\-Os\fR.
-.IP "\fB\-mRcq\fR" 4
-.IX Item "-mRcq"
-Enable Rcq constraint handling \- most short code generation depends on this.
-This is the default.
-.IP "\fB\-mRcw\fR" 4
-.IX Item "-mRcw"
-Enable Rcw constraint handling \- ccfsm condexec mostly depends on this.
-This is the default.
-.IP "\fB\-msize\-level=\fR\fIlevel\fR" 4
-.IX Item "-msize-level=level"
-Fine-tune size optimization with regards to instruction lengths and alignment.
-The recognized values for \fIlevel\fR are:
-.RS 4
-.IP "\fB0\fR" 4
-.IX Item "0"
-No size optimization. This level is deprecated and treated like \fB1\fR.
-.IP "\fB1\fR" 4
-.IX Item "1"
-Short instructions are used opportunistically.
-.IP "\fB2\fR" 4
-.IX Item "2"
-In addition, alignment of loops and of code after barriers are dropped.
-.IP "\fB3\fR" 4
-.IX Item "3"
-In addition, optional data alignment is dropped, and the option \fBOs\fR is enabled.
-.RE
-.RS 4
-.Sp
-This defaults to \fB3\fR when \fB\-Os\fR is in effect. Otherwise,
-the behavior when this is not set is equivalent to level \fB1\fR.
-.RE
-.IP "\fB\-mtune=\fR\fIcpu\fR" 4
-.IX Item "-mtune=cpu"
-Set instruction scheduling parameters for \fIcpu\fR, overriding any implied
-by \fB\-mcpu=\fR.
-.Sp
-Supported values for \fIcpu\fR are
-.RS 4
-.IP "\fB\s-1ARC600\s0\fR" 4
-.IX Item "ARC600"
-Tune for \s-1ARC600\s0 cpu.
-.IP "\fB\s-1ARC601\s0\fR" 4
-.IX Item "ARC601"
-Tune for \s-1ARC601\s0 cpu.
-.IP "\fB\s-1ARC700\s0\fR" 4
-.IX Item "ARC700"
-Tune for \s-1ARC700\s0 cpu with standard multiplier block.
-.IP "\fBARC700\-xmac\fR" 4
-.IX Item "ARC700-xmac"
-Tune for \s-1ARC700\s0 cpu with \s-1XMAC\s0 block.
-.IP "\fB\s-1ARC725D\s0\fR" 4
-.IX Item "ARC725D"
-Tune for \s-1ARC725D\s0 cpu.
-.IP "\fB\s-1ARC750D\s0\fR" 4
-.IX Item "ARC750D"
-Tune for \s-1ARC750D\s0 cpu.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mmultcost=\fR\fInum\fR" 4
-.IX Item "-mmultcost=num"
-Cost to assume for a multiply instruction, with \fB4\fR being equal to a
-normal instruction.
-.IP "\fB\-munalign\-prob\-threshold=\fR\fIprobability\fR" 4
-.IX Item "-munalign-prob-threshold=probability"
-Set probability threshold for unaligning branches.
-When tuning for \fB\s-1ARC700\s0\fR and optimizing for speed, branches without
-filled delay slot are preferably emitted unaligned and long, unless
-profiling indicates that the probability for the branch to be taken
-is below \fIprobability\fR.
-The default is (\s-1REG_BR_PROB_BASE/2\s0), i.e. 5000.
-.PP
-The following options are maintained for backward compatibility, but
-are now deprecated and will be removed in a future release:
-.IP "\fB\-margonaut\fR" 4
-.IX Item "-margonaut"
-Obsolete \s-1FPX.\s0
-.IP "\fB\-mbig\-endian\fR" 4
-.IX Item "-mbig-endian"
-.PD 0
-.IP "\fB\-EB\fR" 4
-.IX Item "-EB"
-.PD
-Compile code for big endian targets. Use of these options is now
-deprecated. Users wanting big-endian code, should use the
-\&\f(CW\*(C`arceb\-elf32\*(C'\fR and \f(CW\*(C`arceb\-linux\-uclibc\*(C'\fR targets when
-building the tool chain, for which big-endian is the default.
-.IP "\fB\-mlittle\-endian\fR" 4
-.IX Item "-mlittle-endian"
-.PD 0
-.IP "\fB\-EL\fR" 4
-.IX Item "-EL"
-.PD
-Compile code for little endian targets. Use of these options is now
-deprecated. Users wanting little-endian code should use the
-\&\f(CW\*(C`arc\-elf32\*(C'\fR and \f(CW\*(C`arc\-linux\-uclibc\*(C'\fR targets when
-building the tool chain, for which little-endian is the default.
-.IP "\fB\-mbarrel_shifter\fR" 4
-.IX Item "-mbarrel_shifter"
-Replaced by \fB\-mbarrel\-shifter\fR
-.IP "\fB\-mdpfp_compact\fR" 4
-.IX Item "-mdpfp_compact"
-Replaced by \fB\-mdpfp\-compact\fR
-.IP "\fB\-mdpfp_fast\fR" 4
-.IX Item "-mdpfp_fast"
-Replaced by \fB\-mdpfp\-fast\fR
-.IP "\fB\-mdsp_packa\fR" 4
-.IX Item "-mdsp_packa"
-Replaced by \fB\-mdsp\-packa\fR
-.IP "\fB\-mEA\fR" 4
-.IX Item "-mEA"
-Replaced by \fB\-mea\fR
-.IP "\fB\-mmac_24\fR" 4
-.IX Item "-mmac_24"
-Replaced by \fB\-mmac\-24\fR
-.IP "\fB\-mmac_d16\fR" 4
-.IX Item "-mmac_d16"
-Replaced by \fB\-mmac\-d16\fR
-.IP "\fB\-mspfp_compact\fR" 4
-.IX Item "-mspfp_compact"
-Replaced by \fB\-mspfp\-compact\fR
-.IP "\fB\-mspfp_fast\fR" 4
-.IX Item "-mspfp_fast"
-Replaced by \fB\-mspfp\-fast\fR
-.IP "\fB\-mtune=\fR\fIcpu\fR" 4
-.IX Item "-mtune=cpu"
-Values \fBarc600\fR, \fBarc601\fR, \fBarc700\fR and
-\&\fBarc700\-xmac\fR for \fIcpu\fR are replaced by \fB\s-1ARC600\s0\fR,
-\&\fB\s-1ARC601\s0\fR, \fB\s-1ARC700\s0\fR and \fBARC700\-xmac\fR respectively
-.IP "\fB\-multcost=\fR\fInum\fR" 4
-.IX Item "-multcost=num"
-Replaced by \fB\-mmultcost\fR.
-.PP
-\fI\s-1ARM\s0 Options\fR
-.IX Subsection "ARM Options"
-.PP
-These \fB\-m\fR options are defined for Advanced \s-1RISC\s0 Machines (\s-1ARM\s0)
-architectures:
-.IP "\fB\-mabi=\fR\fIname\fR" 4
-.IX Item "-mabi=name"
-Generate code for the specified \s-1ABI. \s0 Permissible values are: \fBapcs-gnu\fR,
-\&\fBatpcs\fR, \fBaapcs\fR, \fBaapcs-linux\fR and \fBiwmmxt\fR.
-.IP "\fB\-mapcs\-frame\fR" 4
-.IX Item "-mapcs-frame"
-Generate a stack frame that is compliant with the \s-1ARM\s0 Procedure Call
-Standard for all functions, even if this is not strictly necessary for
-correct execution of the code. Specifying \fB\-fomit\-frame\-pointer\fR
-with this option causes the stack frames not to be generated for
-leaf functions. The default is \fB\-mno\-apcs\-frame\fR.
-.IP "\fB\-mapcs\fR" 4
-.IX Item "-mapcs"
-This is a synonym for \fB\-mapcs\-frame\fR.
-.IP "\fB\-mthumb\-interwork\fR" 4
-.IX Item "-mthumb-interwork"
-Generate code that supports calling between the \s-1ARM\s0 and Thumb
-instruction sets. Without this option, on pre\-v5 architectures, the
-two instruction sets cannot be reliably used inside one program. The
-default is \fB\-mno\-thumb\-interwork\fR, since slightly larger code
-is generated when \fB\-mthumb\-interwork\fR is specified. In \s-1AAPCS\s0
-configurations this option is meaningless.
-.IP "\fB\-mno\-sched\-prolog\fR" 4
-.IX Item "-mno-sched-prolog"
-Prevent the reordering of instructions in the function prologue, or the
-merging of those instruction with the instructions in the function's
-body. This means that all functions start with a recognizable set
-of instructions (or in fact one of a choice from a small set of
-different function prologues), and this information can be used to
-locate the start of functions inside an executable piece of code. The
-default is \fB\-msched\-prolog\fR.
-.IP "\fB\-mfloat\-abi=\fR\fIname\fR" 4
-.IX Item "-mfloat-abi=name"
-Specifies which floating-point \s-1ABI\s0 to use. Permissible values
-are: \fBsoft\fR, \fBsoftfp\fR and \fBhard\fR.
-.Sp
-Specifying \fBsoft\fR causes \s-1GCC\s0 to generate output containing
-library calls for floating-point operations.
-\&\fBsoftfp\fR allows the generation of code using hardware floating-point
-instructions, but still uses the soft-float calling conventions.
-\&\fBhard\fR allows generation of floating-point instructions
-and uses FPU-specific calling conventions.
-.Sp
-The default depends on the specific target configuration. Note that
-the hard-float and soft-float ABIs are not link-compatible; you must
-compile your entire program with the same \s-1ABI,\s0 and link with a
-compatible set of libraries.
-.IP "\fB\-mlittle\-endian\fR" 4
-.IX Item "-mlittle-endian"
-Generate code for a processor running in little-endian mode. This is
-the default for all standard configurations.
-.IP "\fB\-mbig\-endian\fR" 4
-.IX Item "-mbig-endian"
-Generate code for a processor running in big-endian mode; the default is
-to compile code for a little-endian processor.
-.IP "\fB\-mwords\-little\-endian\fR" 4
-.IX Item "-mwords-little-endian"
-This option only applies when generating code for big-endian processors.
-Generate code for a little-endian word order but a big-endian byte
-order. That is, a byte order of the form \fB32107654\fR. Note: this
-option should only be used if you require compatibility with code for
-big-endian \s-1ARM\s0 processors generated by versions of the compiler prior to
-2.8. This option is now deprecated.
-.IP "\fB\-march=\fR\fIname\fR" 4
-.IX Item "-march=name"
-This specifies the name of the target \s-1ARM\s0 architecture. \s-1GCC\s0 uses this
-name to determine what kind of instructions it can emit when generating
-assembly code. This option can be used in conjunction with or instead
-of the \fB\-mcpu=\fR option. Permissible names are: \fBarmv2\fR,
-\&\fBarmv2a\fR, \fBarmv3\fR, \fBarmv3m\fR, \fBarmv4\fR, \fBarmv4t\fR,
-\&\fBarmv5\fR, \fBarmv5t\fR, \fBarmv5e\fR, \fBarmv5te\fR,
-\&\fBarmv6\fR, \fBarmv6j\fR,
-\&\fBarmv6t2\fR, \fBarmv6z\fR, \fBarmv6zk\fR, \fBarmv6\-m\fR,
-\&\fBarmv7\fR, \fBarmv7\-a\fR, \fBarmv7\-r\fR, \fBarmv7\-m\fR, \fBarmv7e\-m\fR,
-\&\fBarmv7ve\fR, \fBarmv8\-a\fR, \fBarmv8\-a+crc\fR,
-\&\fBiwmmxt\fR, \fBiwmmxt2\fR, \fBep9312\fR.
-.Sp
-\&\fB\-march=armv7ve\fR is the armv7\-a architecture with virtualization
-extensions.
-.Sp
-\&\fB\-march=armv8\-a+crc\fR enables code generation for the ARMv8\-A
-architecture together with the optional \s-1CRC32\s0 extensions.
-.Sp
-\&\fB\-march=native\fR causes the compiler to auto-detect the architecture
-of the build computer. At present, this feature is only supported on
-Linux, and not all architectures are recognized. If the auto-detect is
-unsuccessful the option has no effect.
-.IP "\fB\-mtune=\fR\fIname\fR" 4
-.IX Item "-mtune=name"
-This option specifies the name of the target \s-1ARM\s0 processor for
-which \s-1GCC\s0 should tune the performance of the code.
-For some \s-1ARM\s0 implementations better performance can be obtained by using
-this option.
-Permissible names are: \fBarm2\fR, \fBarm250\fR,
-\&\fBarm3\fR, \fBarm6\fR, \fBarm60\fR, \fBarm600\fR, \fBarm610\fR,
-\&\fBarm620\fR, \fBarm7\fR, \fBarm7m\fR, \fBarm7d\fR, \fBarm7dm\fR,
-\&\fBarm7di\fR, \fBarm7dmi\fR, \fBarm70\fR, \fBarm700\fR,
-\&\fBarm700i\fR, \fBarm710\fR, \fBarm710c\fR, \fBarm7100\fR,
-\&\fBarm720\fR,
-\&\fBarm7500\fR, \fBarm7500fe\fR, \fBarm7tdmi\fR, \fBarm7tdmi\-s\fR,
-\&\fBarm710t\fR, \fBarm720t\fR, \fBarm740t\fR,
-\&\fBstrongarm\fR, \fBstrongarm110\fR, \fBstrongarm1100\fR,
-\&\fBstrongarm1110\fR,
-\&\fBarm8\fR, \fBarm810\fR, \fBarm9\fR, \fBarm9e\fR, \fBarm920\fR,
-\&\fBarm920t\fR, \fBarm922t\fR, \fBarm946e\-s\fR, \fBarm966e\-s\fR,
-\&\fBarm968e\-s\fR, \fBarm926ej\-s\fR, \fBarm940t\fR, \fBarm9tdmi\fR,
-\&\fBarm10tdmi\fR, \fBarm1020t\fR, \fBarm1026ej\-s\fR,
-\&\fBarm10e\fR, \fBarm1020e\fR, \fBarm1022e\fR,
-\&\fBarm1136j\-s\fR, \fBarm1136jf\-s\fR, \fBmpcore\fR, \fBmpcorenovfp\fR,
-\&\fBarm1156t2\-s\fR, \fBarm1156t2f\-s\fR, \fBarm1176jz\-s\fR, \fBarm1176jzf\-s\fR,
-\&\fBcortex\-a5\fR, \fBcortex\-a7\fR, \fBcortex\-a8\fR, \fBcortex\-a9\fR,
-\&\fBcortex\-a12\fR, \fBcortex\-a15\fR, \fBcortex\-a53\fR, \fBcortex\-a57\fR,
-\&\fBcortex\-r4\fR,
-\&\fBcortex\-r4f\fR, \fBcortex\-r5\fR, \fBcortex\-r7\fR, \fBcortex\-m4\fR,
-\&\fBcortex\-m3\fR,
-\&\fBcortex\-m1\fR,
-\&\fBcortex\-m0\fR,
-\&\fBcortex\-m0plus\fR,
-\&\fBmarvell\-pj4\fR,
-\&\fBxscale\fR, \fBiwmmxt\fR, \fBiwmmxt2\fR, \fBep9312\fR,
-\&\fBfa526\fR, \fBfa626\fR,
-\&\fBfa606te\fR, \fBfa626te\fR, \fBfmp626\fR, \fBfa726te\fR.
-.Sp
-Additionally, this option can specify that \s-1GCC\s0 should tune the performance
-of the code for a big.LITTLE system. Permissible names are:
-\&\fBcortex\-a15.cortex\-a7\fR, \fBcortex\-a57.cortex\-a53\fR.
-.Sp
-\&\fB\-mtune=generic\-\fR\fIarch\fR specifies that \s-1GCC\s0 should tune the
-performance for a blend of processors within architecture \fIarch\fR.
-The aim is to generate code that run well on the current most popular
-processors, balancing between optimizations that benefit some CPUs in the
-range, and avoiding performance pitfalls of other CPUs. The effects of
-this option may change in future \s-1GCC\s0 versions as \s-1CPU\s0 models come and go.
-.Sp
-\&\fB\-mtune=native\fR causes the compiler to auto-detect the \s-1CPU\s0
-of the build computer. At present, this feature is only supported on
-Linux, and not all architectures are recognized. If the auto-detect is
-unsuccessful the option has no effect.
-.IP "\fB\-mcpu=\fR\fIname\fR" 4
-.IX Item "-mcpu=name"
-This specifies the name of the target \s-1ARM\s0 processor. \s-1GCC\s0 uses this name
-to derive the name of the target \s-1ARM\s0 architecture (as if specified
-by \fB\-march\fR) and the \s-1ARM\s0 processor type for which to tune for
-performance (as if specified by \fB\-mtune\fR). Where this option
-is used in conjunction with \fB\-march\fR or \fB\-mtune\fR,
-those options take precedence over the appropriate part of this option.
-.Sp
-Permissible names for this option are the same as those for
-\&\fB\-mtune\fR.
-.Sp
-\&\fB\-mcpu=generic\-\fR\fIarch\fR is also permissible, and is
-equivalent to \fB\-march=\fR\fIarch\fR \fB\-mtune=generic\-\fR\fIarch\fR.
-See \fB\-mtune\fR for more information.
-.Sp
-\&\fB\-mcpu=native\fR causes the compiler to auto-detect the \s-1CPU\s0
-of the build computer. At present, this feature is only supported on
-Linux, and not all architectures are recognized. If the auto-detect is
-unsuccessful the option has no effect.
-.IP "\fB\-mfpu=\fR\fIname\fR" 4
-.IX Item "-mfpu=name"
-This specifies what floating-point hardware (or hardware emulation) is
-available on the target. Permissible names are: \fBvfp\fR, \fBvfpv3\fR,
-\&\fBvfpv3\-fp16\fR, \fBvfpv3\-d16\fR, \fBvfpv3\-d16\-fp16\fR, \fBvfpv3xd\fR,
-\&\fBvfpv3xd\-fp16\fR, \fBneon\fR, \fBneon\-fp16\fR, \fBvfpv4\fR,
-\&\fBvfpv4\-d16\fR, \fBfpv4\-sp\-d16\fR, \fBneon\-vfpv4\fR,
-\&\fBfp\-armv8\fR, \fBneon\-fp\-armv8\fR, and \fBcrypto\-neon\-fp\-armv8\fR.
-.Sp
-If \fB\-msoft\-float\fR is specified this specifies the format of
-floating-point values.
-.Sp
-If the selected floating-point hardware includes the \s-1NEON\s0 extension
-(e.g. \fB\-mfpu\fR=\fBneon\fR), note that floating-point
-operations are not generated by \s-1GCC\s0's auto-vectorization pass unless
-\&\fB\-funsafe\-math\-optimizations\fR is also specified. This is
-because \s-1NEON\s0 hardware does not fully implement the \s-1IEEE 754\s0 standard for
-floating-point arithmetic (in particular denormal values are treated as
-zero), so the use of \s-1NEON\s0 instructions may lead to a loss of precision.
-.IP "\fB\-mfp16\-format=\fR\fIname\fR" 4
-.IX Item "-mfp16-format=name"
-Specify the format of the \f(CW\*(C`_\|_fp16\*(C'\fR half-precision floating-point type.
-Permissible names are \fBnone\fR, \fBieee\fR, and \fBalternative\fR;
-the default is \fBnone\fR, in which case the \f(CW\*(C`_\|_fp16\*(C'\fR type is not
-defined.
-.IP "\fB\-mstructure\-size\-boundary=\fR\fIn\fR" 4
-.IX Item "-mstructure-size-boundary=n"
-The sizes of all structures and unions are rounded up to a multiple
-of the number of bits set by this option. Permissible values are 8, 32
-and 64. The default value varies for different toolchains. For the \s-1COFF\s0
-targeted toolchain the default value is 8. A value of 64 is only allowed
-if the underlying \s-1ABI\s0 supports it.
-.Sp
-Specifying a larger number can produce faster, more efficient code, but
-can also increase the size of the program. Different values are potentially
-incompatible. Code compiled with one value cannot necessarily expect to
-work with code or libraries compiled with another value, if they exchange
-information using structures or unions.
-.IP "\fB\-mabort\-on\-noreturn\fR" 4
-.IX Item "-mabort-on-noreturn"
-Generate a call to the function \f(CW\*(C`abort\*(C'\fR at the end of a
-\&\f(CW\*(C`noreturn\*(C'\fR function. It is executed if the function tries to
-return.
-.IP "\fB\-mlong\-calls\fR" 4
-.IX Item "-mlong-calls"
-.PD 0
-.IP "\fB\-mno\-long\-calls\fR" 4
-.IX Item "-mno-long-calls"
-.PD
-Tells the compiler to perform function calls by first loading the
-address of the function into a register and then performing a subroutine
-call on this register. This switch is needed if the target function
-lies outside of the 64\-megabyte addressing range of the offset-based
-version of subroutine call instruction.
-.Sp
-Even if this switch is enabled, not all function calls are turned
-into long calls. The heuristic is that static functions, functions
-that have the \fBshort-call\fR attribute, functions that are inside
-the scope of a \fB#pragma no_long_calls\fR directive, and functions whose
-definitions have already been compiled within the current compilation
-unit are not turned into long calls. The exceptions to this rule are
-that weak function definitions, functions with the \fBlong-call\fR
-attribute or the \fBsection\fR attribute, and functions that are within
-the scope of a \fB#pragma long_calls\fR directive are always
-turned into long calls.
-.Sp
-This feature is not enabled by default. Specifying
-\&\fB\-mno\-long\-calls\fR restores the default behavior, as does
-placing the function calls within the scope of a \fB#pragma
-long_calls_off\fR directive. Note these switches have no effect on how
-the compiler generates code to handle function calls via function
-pointers.
-.IP "\fB\-msingle\-pic\-base\fR" 4
-.IX Item "-msingle-pic-base"
-Treat the register used for \s-1PIC\s0 addressing as read-only, rather than
-loading it in the prologue for each function. The runtime system is
-responsible for initializing this register with an appropriate value
-before execution begins.
-.IP "\fB\-mpic\-register=\fR\fIreg\fR" 4
-.IX Item "-mpic-register=reg"
-Specify the register to be used for \s-1PIC\s0 addressing.
-For standard \s-1PIC\s0 base case, the default will be any suitable register
-determined by compiler. For single \s-1PIC\s0 base case, the default is
-\&\fBR9\fR if target is \s-1EABI\s0 based or stack-checking is enabled,
-otherwise the default is \fBR10\fR.
-.IP "\fB\-mpic\-data\-is\-text\-relative\fR" 4
-.IX Item "-mpic-data-is-text-relative"
-Assume that each data segments are relative to text segment at load time.
-Therefore, it permits addressing data using PC-relative operations.
-This option is on by default for targets other than VxWorks \s-1RTP.\s0
-.IP "\fB\-mpoke\-function\-name\fR" 4
-.IX Item "-mpoke-function-name"
-Write the name of each function into the text section, directly
-preceding the function prologue. The generated code is similar to this:
-.Sp
-.Vb 9
-\& t0
-\& .ascii "arm_poke_function_name", 0
-\& .align
-\& t1
-\& .word 0xff000000 + (t1 \- t0)
-\& arm_poke_function_name
-\& mov ip, sp
-\& stmfd sp!, {fp, ip, lr, pc}
-\& sub fp, ip, #4
-.Ve
-.Sp
-When performing a stack backtrace, code can inspect the value of
-\&\f(CW\*(C`pc\*(C'\fR stored at \f(CW\*(C`fp + 0\*(C'\fR. If the trace function then looks at
-location \f(CW\*(C`pc \- 12\*(C'\fR and the top 8 bits are set, then we know that
-there is a function name embedded immediately preceding this location
-and has length \f(CW\*(C`((pc[\-3]) & 0xff000000)\*(C'\fR.
-.IP "\fB\-mthumb\fR" 4
-.IX Item "-mthumb"
-.PD 0
-.IP "\fB\-marm\fR" 4
-.IX Item "-marm"
-.PD
-Select between generating code that executes in \s-1ARM\s0 and Thumb
-states. The default for most configurations is to generate code
-that executes in \s-1ARM\s0 state, but the default can be changed by
-configuring \s-1GCC\s0 with the \fB\-\-with\-mode=\fR\fIstate\fR
-configure option.
-.IP "\fB\-mtpcs\-frame\fR" 4
-.IX Item "-mtpcs-frame"
-Generate a stack frame that is compliant with the Thumb Procedure Call
-Standard for all non-leaf functions. (A leaf function is one that does
-not call any other functions.) The default is \fB\-mno\-tpcs\-frame\fR.
-.IP "\fB\-mtpcs\-leaf\-frame\fR" 4
-.IX Item "-mtpcs-leaf-frame"
-Generate a stack frame that is compliant with the Thumb Procedure Call
-Standard for all leaf functions. (A leaf function is one that does
-not call any other functions.) The default is \fB\-mno\-apcs\-leaf\-frame\fR.
-.IP "\fB\-mcallee\-super\-interworking\fR" 4
-.IX Item "-mcallee-super-interworking"
-Gives all externally visible functions in the file being compiled an \s-1ARM\s0
-instruction set header which switches to Thumb mode before executing the
-rest of the function. This allows these functions to be called from
-non-interworking code. This option is not valid in \s-1AAPCS\s0 configurations
-because interworking is enabled by default.
-.IP "\fB\-mcaller\-super\-interworking\fR" 4
-.IX Item "-mcaller-super-interworking"
-Allows calls via function pointers (including virtual functions) to
-execute correctly regardless of whether the target code has been
-compiled for interworking or not. There is a small overhead in the cost
-of executing a function pointer if this option is enabled. This option
-is not valid in \s-1AAPCS\s0 configurations because interworking is enabled
-by default.
-.IP "\fB\-mtp=\fR\fIname\fR" 4
-.IX Item "-mtp=name"
-Specify the access model for the thread local storage pointer. The valid
-models are \fBsoft\fR, which generates calls to \f(CW\*(C`_\|_aeabi_read_tp\*(C'\fR,
-\&\fBcp15\fR, which fetches the thread pointer from \f(CW\*(C`cp15\*(C'\fR directly
-(supported in the arm6k architecture), and \fBauto\fR, which uses the
-best available method for the selected processor. The default setting is
-\&\fBauto\fR.
-.IP "\fB\-mtls\-dialect=\fR\fIdialect\fR" 4
-.IX Item "-mtls-dialect=dialect"
-Specify the dialect to use for accessing thread local storage. Two
-\&\fIdialect\fRs are supported\-\-\-\fBgnu\fR and \fBgnu2\fR. The
-\&\fBgnu\fR dialect selects the original \s-1GNU\s0 scheme for supporting
-local and global dynamic \s-1TLS\s0 models. The \fBgnu2\fR dialect
-selects the \s-1GNU\s0 descriptor scheme, which provides better performance
-for shared libraries. The \s-1GNU\s0 descriptor scheme is compatible with
-the original scheme, but does require new assembler, linker and
-library support. Initial and local exec \s-1TLS\s0 models are unaffected by
-this option and always use the original scheme.
-.IP "\fB\-mword\-relocations\fR" 4
-.IX Item "-mword-relocations"
-Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
-This is enabled by default on targets (uClinux, SymbianOS) where the runtime
-loader imposes this restriction, and when \fB\-fpic\fR or \fB\-fPIC\fR
-is specified.
-.IP "\fB\-mfix\-cortex\-m3\-ldrd\fR" 4
-.IX Item "-mfix-cortex-m3-ldrd"
-Some Cortex\-M3 cores can cause data corruption when \f(CW\*(C`ldrd\*(C'\fR instructions
-with overlapping destination and base registers are used. This option avoids
-generating these instructions. This option is enabled by default when
-\&\fB\-mcpu=cortex\-m3\fR is specified.
-.IP "\fB\-munaligned\-access\fR" 4
-.IX Item "-munaligned-access"
-.PD 0
-.IP "\fB\-mno\-unaligned\-access\fR" 4
-.IX Item "-mno-unaligned-access"
-.PD
-Enables (or disables) reading and writing of 16\- and 32\- bit values
-from addresses that are not 16\- or 32\- bit aligned. By default
-unaligned access is disabled for all pre\-ARMv6 and all ARMv6\-M
-architectures, and enabled for all other architectures. If unaligned
-access is not enabled then words in packed data structures will be
-accessed a byte at a time.
-.Sp
-The \s-1ARM\s0 attribute \f(CW\*(C`Tag_CPU_unaligned_access\*(C'\fR will be set in the
-generated object file to either true or false, depending upon the
-setting of this option. If unaligned access is enabled then the
-preprocessor symbol \f(CW\*(C`_\|_ARM_FEATURE_UNALIGNED\*(C'\fR will also be
-defined.
-.IP "\fB\-mneon\-for\-64bits\fR" 4
-.IX Item "-mneon-for-64bits"
-Enables using Neon to handle scalar 64\-bits operations. This is
-disabled by default since the cost of moving data from core registers
-to Neon is high.
-.IP "\fB\-mslow\-flash\-data\fR" 4
-.IX Item "-mslow-flash-data"
-Assume loading data from flash is slower than fetching instruction.
-Therefore literal load is minimized for better performance.
-This option is only supported when compiling for ARMv7 M\-profile and
-off by default.
-.IP "\fB\-mrestrict\-it\fR" 4
-.IX Item "-mrestrict-it"
-Restricts generation of \s-1IT\s0 blocks to conform to the rules of ARMv8.
-\&\s-1IT\s0 blocks can only contain a single 16\-bit instruction from a select
-set of instructions. This option is on by default for ARMv8 Thumb mode.
-.PP
-\fI\s-1AVR\s0 Options\fR
-.IX Subsection "AVR Options"
-.PP
-These options are defined for \s-1AVR\s0 implementations:
-.IP "\fB\-mmcu=\fR\fImcu\fR" 4
-.IX Item "-mmcu=mcu"
-Specify Atmel \s-1AVR\s0 instruction set architectures (\s-1ISA\s0) or \s-1MCU\s0 type.
-.Sp
-The default for this option is@tie{}\f(CW\*(C`avr2\*(C'\fR.
-.Sp
-\&\s-1GCC\s0 supports the following \s-1AVR\s0 devices and ISAs:
-.RS 4
-.ie n .IP """avr2""" 4
-.el .IP "\f(CWavr2\fR" 4
-.IX Item "avr2"
-\&\*(L"Classic\*(R" devices with up to 8@tie{}KiB of program memory.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`attiny22\*(C'\fR, \f(CW\*(C`attiny26\*(C'\fR, \f(CW\*(C`at90c8534\*(C'\fR, \f(CW\*(C`at90s2313\*(C'\fR, \f(CW\*(C`at90s2323\*(C'\fR, \f(CW\*(C`at90s2333\*(C'\fR, \f(CW\*(C`at90s2343\*(C'\fR, \f(CW\*(C`at90s4414\*(C'\fR, \f(CW\*(C`at90s4433\*(C'\fR, \f(CW\*(C`at90s4434\*(C'\fR, \f(CW\*(C`at90s8515\*(C'\fR, \f(CW\*(C`at90s8535\*(C'\fR.
-.ie n .IP """avr25""" 4
-.el .IP "\f(CWavr25\fR" 4
-.IX Item "avr25"
-\&\*(L"Classic\*(R" devices with up to 8@tie{}KiB of program memory and with the \f(CW\*(C`MOVW\*(C'\fR instruction.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`ata5272\*(C'\fR, \f(CW\*(C`ata6289\*(C'\fR, \f(CW\*(C`attiny13\*(C'\fR, \f(CW\*(C`attiny13a\*(C'\fR, \f(CW\*(C`attiny2313\*(C'\fR, \f(CW\*(C`attiny2313a\*(C'\fR, \f(CW\*(C`attiny24\*(C'\fR, \f(CW\*(C`attiny24a\*(C'\fR, \f(CW\*(C`attiny25\*(C'\fR, \f(CW\*(C`attiny261\*(C'\fR, \f(CW\*(C`attiny261a\*(C'\fR, \f(CW\*(C`attiny43u\*(C'\fR, \f(CW\*(C`attiny4313\*(C'\fR, \f(CW\*(C`attiny44\*(C'\fR, \f(CW\*(C`attiny44a\*(C'\fR, \f(CW\*(C`attiny45\*(C'\fR, \f(CW\*(C`attiny461\*(C'\fR, \f(CW\*(C`attiny461a\*(C'\fR, \f(CW\*(C`attiny48\*(C'\fR, \f(CW\*(C`attiny84\*(C'\fR, \f(CW\*(C`attiny84a\*(C'\fR, \f(CW\*(C`attiny85\*(C'\fR, \f(CW\*(C`attiny861\*(C'\fR, \f(CW\*(C`attiny861a\*(C'\fR, \f(CW\*(C`attiny87\*(C'\fR, \f(CW\*(C`attiny88\*(C'\fR, \f(CW\*(C`at86rf401\*(C'\fR.
-.ie n .IP """avr3""" 4
-.el .IP "\f(CWavr3\fR" 4
-.IX Item "avr3"
-\&\*(L"Classic\*(R" devices with 16@tie{}KiB up to 64@tie{}KiB of program memory.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`at43usb355\*(C'\fR, \f(CW\*(C`at76c711\*(C'\fR.
-.ie n .IP """avr31""" 4
-.el .IP "\f(CWavr31\fR" 4
-.IX Item "avr31"
-\&\*(L"Classic\*(R" devices with 128@tie{}KiB of program memory.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmega103\*(C'\fR, \f(CW\*(C`at43usb320\*(C'\fR.
-.ie n .IP """avr35""" 4
-.el .IP "\f(CWavr35\fR" 4
-.IX Item "avr35"
-\&\*(L"Classic\*(R" devices with 16@tie{}KiB up to 64@tie{}KiB of program memory and with the \f(CW\*(C`MOVW\*(C'\fR instruction.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`ata5505\*(C'\fR, \f(CW\*(C`atmega16u2\*(C'\fR, \f(CW\*(C`atmega32u2\*(C'\fR, \f(CW\*(C`atmega8u2\*(C'\fR, \f(CW\*(C`attiny1634\*(C'\fR, \f(CW\*(C`attiny167\*(C'\fR, \f(CW\*(C`at90usb162\*(C'\fR, \f(CW\*(C`at90usb82\*(C'\fR.
-.ie n .IP """avr4""" 4
-.el .IP "\f(CWavr4\fR" 4
-.IX Item "avr4"
-\&\*(L"Enhanced\*(R" devices with up to 8@tie{}KiB of program memory.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`ata6285\*(C'\fR, \f(CW\*(C`ata6286\*(C'\fR, \f(CW\*(C`atmega48\*(C'\fR, \f(CW\*(C`atmega48a\*(C'\fR, \f(CW\*(C`atmega48p\*(C'\fR, \f(CW\*(C`atmega48pa\*(C'\fR, \f(CW\*(C`atmega8\*(C'\fR, \f(CW\*(C`atmega8a\*(C'\fR, \f(CW\*(C`atmega8hva\*(C'\fR, \f(CW\*(C`atmega8515\*(C'\fR, \f(CW\*(C`atmega8535\*(C'\fR, \f(CW\*(C`atmega88\*(C'\fR, \f(CW\*(C`atmega88a\*(C'\fR, \f(CW\*(C`atmega88p\*(C'\fR, \f(CW\*(C`atmega88pa\*(C'\fR, \f(CW\*(C`at90pwm1\*(C'\fR, \f(CW\*(C`at90pwm2\*(C'\fR, \f(CW\*(C`at90pwm2b\*(C'\fR, \f(CW\*(C`at90pwm3\*(C'\fR, \f(CW\*(C`at90pwm3b\*(C'\fR, \f(CW\*(C`at90pwm81\*(C'\fR.
-.ie n .IP """avr5""" 4
-.el .IP "\f(CWavr5\fR" 4
-.IX Item "avr5"
-\&\*(L"Enhanced\*(R" devices with 16@tie{}KiB up to 64@tie{}KiB of program memory.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`ata5790\*(C'\fR, \f(CW\*(C`ata5790n\*(C'\fR, \f(CW\*(C`ata5795\*(C'\fR, \f(CW\*(C`atmega16\*(C'\fR, \f(CW\*(C`atmega16a\*(C'\fR, \f(CW\*(C`atmega16hva\*(C'\fR, \f(CW\*(C`atmega16hva2\*(C'\fR, \f(CW\*(C`atmega16hvb\*(C'\fR, \f(CW\*(C`atmega16hvbrevb\*(C'\fR, \f(CW\*(C`atmega16m1\*(C'\fR, \f(CW\*(C`atmega16u4\*(C'\fR, \f(CW\*(C`atmega161\*(C'\fR, \f(CW\*(C`atmega162\*(C'\fR, \f(CW\*(C`atmega163\*(C'\fR, \f(CW\*(C`atmega164a\*(C'\fR, \f(CW\*(C`atmega164p\*(C'\fR, \f(CW\*(C`atmega164pa\*(C'\fR, \f(CW\*(C`atmega165\*(C'\fR, \f(CW\*(C`atmega165a\*(C'\fR, \f(CW\*(C`atmega165p\*(C'\fR, \f(CW\*(C`atmega165pa\*(C'\fR, \f(CW\*(C`atmega168\*(C'\fR, \f(CW\*(C`atmega168a\*(C'\fR, \f(CW\*(C`atmega168p\*(C'\fR, \f(CW\*(C`atmega168pa\*(C'\fR, \f(CW\*(C`atmega169\*(C'\fR, \f(CW\*(C`atmega169a\*(C'\fR, \f(CW\*(C`atmega169p\*(C'\fR, \f(CW\*(C`atmega169pa\*(C'\fR, \f(CW\*(C`atmega26hvg\*(C'\fR, \f(CW\*(C`atmega32\*(C'\fR, \f(CW\*(C`atmega32a\*(C'\fR, \f(CW\*(C`atmega32c1\*(C'\fR, \f(CW\*(C`atmega32hvb\*(C'\fR, \f(CW\*(C`atmega32hvbrevb\*(C'\fR, \f(CW\*(C`atmega32m1\*(C'\fR, \f(CW\*(C`atmega32u4\*(C'\fR, \f(CW\*(C`atmega32u6\*(C'\fR, \f(CW\*(C`atmega323\*(C'\fR, \f(CW\*(C`atmega324a\*(C'\fR, \f(CW\*(C`atmega324p\*(C'\fR, \f(CW\*(C`atmega324pa\*(C'\fR, \f(CW\*(C`atmega325\*(C'\fR, \f(CW\*(C`atmega325a\*(C'\fR, \f(CW\*(C`atmega325p\*(C'\fR, \f(CW\*(C`atmega3250\*(C'\fR, \f(CW\*(C`atmega3250a\*(C'\fR, \f(CW\*(C`atmega3250p\*(C'\fR, \f(CW\*(C`atmega3250pa\*(C'\fR, \f(CW\*(C`atmega328\*(C'\fR, \f(CW\*(C`atmega328p\*(C'\fR, \f(CW\*(C`atmega329\*(C'\fR, \f(CW\*(C`atmega329a\*(C'\fR, \f(CW\*(C`atmega329p\*(C'\fR, \f(CW\*(C`atmega329pa\*(C'\fR, \f(CW\*(C`atmega3290\*(C'\fR, \f(CW\*(C`atmega3290a\*(C'\fR, \f(CW\*(C`atmega3290p\*(C'\fR, \f(CW\*(C`atmega3290pa\*(C'\fR, \f(CW\*(C`atmega406\*(C'\fR, \f(CW\*(C`atmega48hvf\*(C'\fR, \f(CW\*(C`atmega64\*(C'\fR, \f(CW\*(C`atmega64a\*(C'\fR, \f(CW\*(C`atmega64c1\*(C'\fR, \f(CW\*(C`atmega64hve\*(C'\fR, \f(CW\*(C`atmega64m1\*(C'\fR, \f(CW\*(C`atmega64rfa2\*(C'\fR, \f(CW\*(C`atmega64rfr2\*(C'\fR, \f(CW\*(C`atmega640\*(C'\fR, \f(CW\*(C`atmega644\*(C'\fR, \f(CW\*(C`atmega644a\*(C'\fR, \f(CW\*(C`atmega644p\*(C'\fR, \f(CW\*(C`atmega644pa\*(C'\fR, \f(CW\*(C`atmega645\*(C'\fR, \f(CW\*(C`atmega645a\*(C'\fR, \f(CW\*(C`atmega645p\*(C'\fR, \f(CW\*(C`atmega6450\*(C'\fR, \f(CW\*(C`atmega6450a\*(C'\fR, \f(CW\*(C`atmega6450p\*(C'\fR, \f(CW\*(C`atmega649\*(C'\fR, \f(CW\*(C`atmega649a\*(C'\fR, \f(CW\*(C`atmega649p\*(C'\fR, \f(CW\*(C`atmega6490\*(C'\fR, \f(CW\*(C`atmega6490a\*(C'\fR, \f(CW\*(C`atmega6490p\*(C'\fR, \f(CW\*(C`at90can32\*(C'\fR, \f(CW\*(C`at90can64\*(C'\fR, \f(CW\*(C`at90pwm161\*(C'\fR, \f(CW\*(C`at90pwm216\*(C'\fR, \f(CW\*(C`at90pwm316\*(C'\fR, \f(CW\*(C`at90scr100\*(C'\fR, \f(CW\*(C`at90usb646\*(C'\fR, \f(CW\*(C`at90usb647\*(C'\fR, \f(CW\*(C`at94k\*(C'\fR, \f(CW\*(C`m3000\*(C'\fR.
-.ie n .IP """avr51""" 4
-.el .IP "\f(CWavr51\fR" 4
-.IX Item "avr51"
-\&\*(L"Enhanced\*(R" devices with 128@tie{}KiB of program memory.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmega128\*(C'\fR, \f(CW\*(C`atmega128a\*(C'\fR, \f(CW\*(C`atmega128rfa1\*(C'\fR, \f(CW\*(C`atmega1280\*(C'\fR, \f(CW\*(C`atmega1281\*(C'\fR, \f(CW\*(C`atmega1284\*(C'\fR, \f(CW\*(C`atmega1284p\*(C'\fR, \f(CW\*(C`at90can128\*(C'\fR, \f(CW\*(C`at90usb1286\*(C'\fR, \f(CW\*(C`at90usb1287\*(C'\fR.
-.ie n .IP """avr6""" 4
-.el .IP "\f(CWavr6\fR" 4
-.IX Item "avr6"
-\&\*(L"Enhanced\*(R" devices with 3\-byte \s-1PC,\s0 i.e. with more than 128@tie{}KiB of program memory.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmega2560\*(C'\fR, \f(CW\*(C`atmega2561\*(C'\fR.
-.ie n .IP """avrxmega2""" 4
-.el .IP "\f(CWavrxmega2\fR" 4
-.IX Item "avrxmega2"
-\&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 8@tie{}KiB and up to 64@tie{}KiB of program memory.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmxt112sl\*(C'\fR, \f(CW\*(C`atmxt224\*(C'\fR, \f(CW\*(C`atmxt224e\*(C'\fR, \f(CW\*(C`atmxt336s\*(C'\fR, \f(CW\*(C`atxmega16a4\*(C'\fR, \f(CW\*(C`atxmega16a4u\*(C'\fR, \f(CW\*(C`atxmega16c4\*(C'\fR, \f(CW\*(C`atxmega16d4\*(C'\fR, \f(CW\*(C`atxmega32a4\*(C'\fR, \f(CW\*(C`atxmega32a4u\*(C'\fR, \f(CW\*(C`atxmega32c4\*(C'\fR, \f(CW\*(C`atxmega32d4\*(C'\fR, \f(CW\*(C`atxmega32e5\*(C'\fR, \f(CW\*(C`atxmega32x1\*(C'\fR.
-.ie n .IP """avrxmega4""" 4
-.el .IP "\f(CWavrxmega4\fR" 4
-.IX Item "avrxmega4"
-\&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 64@tie{}KiB and up to 128@tie{}KiB of program memory.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega64a3\*(C'\fR, \f(CW\*(C`atxmega64a3u\*(C'\fR, \f(CW\*(C`atxmega64a4u\*(C'\fR, \f(CW\*(C`atxmega64b1\*(C'\fR, \f(CW\*(C`atxmega64b3\*(C'\fR, \f(CW\*(C`atxmega64c3\*(C'\fR, \f(CW\*(C`atxmega64d3\*(C'\fR, \f(CW\*(C`atxmega64d4\*(C'\fR.
-.ie n .IP """avrxmega5""" 4
-.el .IP "\f(CWavrxmega5\fR" 4
-.IX Item "avrxmega5"
-\&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 64@tie{}KiB and up to 128@tie{}KiB of program memory and more than 64@tie{}KiB of \s-1RAM.
-\&\s0\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega64a1\*(C'\fR, \f(CW\*(C`atxmega64a1u\*(C'\fR.
-.ie n .IP """avrxmega6""" 4
-.el .IP "\f(CWavrxmega6\fR" 4
-.IX Item "avrxmega6"
-\&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 128@tie{}KiB of program memory.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmxt540s\*(C'\fR, \f(CW\*(C`atmxt540sreva\*(C'\fR, \f(CW\*(C`atxmega128a3\*(C'\fR, \f(CW\*(C`atxmega128a3u\*(C'\fR, \f(CW\*(C`atxmega128b1\*(C'\fR, \f(CW\*(C`atxmega128b3\*(C'\fR, \f(CW\*(C`atxmega128c3\*(C'\fR, \f(CW\*(C`atxmega128d3\*(C'\fR, \f(CW\*(C`atxmega128d4\*(C'\fR, \f(CW\*(C`atxmega192a3\*(C'\fR, \f(CW\*(C`atxmega192a3u\*(C'\fR, \f(CW\*(C`atxmega192c3\*(C'\fR, \f(CW\*(C`atxmega192d3\*(C'\fR, \f(CW\*(C`atxmega256a3\*(C'\fR, \f(CW\*(C`atxmega256a3b\*(C'\fR, \f(CW\*(C`atxmega256a3bu\*(C'\fR, \f(CW\*(C`atxmega256a3u\*(C'\fR, \f(CW\*(C`atxmega256c3\*(C'\fR, \f(CW\*(C`atxmega256d3\*(C'\fR, \f(CW\*(C`atxmega384c3\*(C'\fR, \f(CW\*(C`atxmega384d3\*(C'\fR.
-.ie n .IP """avrxmega7""" 4
-.el .IP "\f(CWavrxmega7\fR" 4
-.IX Item "avrxmega7"
-\&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 128@tie{}KiB of program memory and more than 64@tie{}KiB of \s-1RAM.
-\&\s0\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega128a1\*(C'\fR, \f(CW\*(C`atxmega128a1u\*(C'\fR, \f(CW\*(C`atxmega128a4u\*(C'\fR.
-.ie n .IP """avr1""" 4
-.el .IP "\f(CWavr1\fR" 4
-.IX Item "avr1"
-This \s-1ISA\s0 is implemented by the minimal \s-1AVR\s0 core and supported for assembler only.
-\&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`attiny11\*(C'\fR, \f(CW\*(C`attiny12\*(C'\fR, \f(CW\*(C`attiny15\*(C'\fR, \f(CW\*(C`attiny28\*(C'\fR, \f(CW\*(C`at90s1200\*(C'\fR.
-.RE
-.RS 4
-.RE
-.IP "\fB\-maccumulate\-args\fR" 4
-.IX Item "-maccumulate-args"
-Accumulate outgoing function arguments and acquire/release the needed
-stack space for outgoing function arguments once in function
-prologue/epilogue. Without this option, outgoing arguments are pushed
-before calling a function and popped afterwards.
-.Sp
-Popping the arguments after the function call can be expensive on
-\&\s-1AVR\s0 so that accumulating the stack space might lead to smaller
-executables because arguments need not to be removed from the
-stack after such a function call.
-.Sp
-This option can lead to reduced code size for functions that perform
-several calls to functions that get their arguments on the stack like
-calls to printf-like functions.
-.IP "\fB\-mbranch\-cost=\fR\fIcost\fR" 4
-.IX Item "-mbranch-cost=cost"
-Set the branch costs for conditional branch instructions to
-\&\fIcost\fR. Reasonable values for \fIcost\fR are small, non-negative
-integers. The default branch cost is 0.
-.IP "\fB\-mcall\-prologues\fR" 4
-.IX Item "-mcall-prologues"
-Functions prologues/epilogues are expanded as calls to appropriate
-subroutines. Code size is smaller.
-.IP "\fB\-mint8\fR" 4
-.IX Item "-mint8"
-Assume \f(CW\*(C`int\*(C'\fR to be 8\-bit integer. This affects the sizes of all types: a
-\&\f(CW\*(C`char\*(C'\fR is 1 byte, an \f(CW\*(C`int\*(C'\fR is 1 byte, a \f(CW\*(C`long\*(C'\fR is 2 bytes,
-and \f(CW\*(C`long long\*(C'\fR is 4 bytes. Please note that this option does not
-conform to the C standards, but it results in smaller code
-size.
-.IP "\fB\-mno\-interrupts\fR" 4
-.IX Item "-mno-interrupts"
-Generated code is not compatible with hardware interrupts.
-Code size is smaller.
-.IP "\fB\-mrelax\fR" 4
-.IX Item "-mrelax"
-Try to replace \f(CW\*(C`CALL\*(C'\fR resp. \f(CW\*(C`JMP\*(C'\fR instruction by the shorter
-\&\f(CW\*(C`RCALL\*(C'\fR resp. \f(CW\*(C`RJMP\*(C'\fR instruction if applicable.
-Setting \f(CW\*(C`\-mrelax\*(C'\fR just adds the \f(CW\*(C`\-\-relax\*(C'\fR option to the
-linker command line when the linker is called.
-.Sp
-Jump relaxing is performed by the linker because jump offsets are not
-known before code is located. Therefore, the assembler code generated by the
-compiler is the same, but the instructions in the executable may
-differ from instructions in the assembler code.
-.Sp
-Relaxing must be turned on if linker stubs are needed, see the
-section on \f(CW\*(C`EIND\*(C'\fR and linker stubs below.
-.IP "\fB\-msp8\fR" 4
-.IX Item "-msp8"
-Treat the stack pointer register as an 8\-bit register,
-i.e. assume the high byte of the stack pointer is zero.
-In general, you don't need to set this option by hand.
-.Sp
-This option is used internally by the compiler to select and
-build multilibs for architectures \f(CW\*(C`avr2\*(C'\fR and \f(CW\*(C`avr25\*(C'\fR.
-These architectures mix devices with and without \f(CW\*(C`SPH\*(C'\fR.
-For any setting other than \f(CW\*(C`\-mmcu=avr2\*(C'\fR or \f(CW\*(C`\-mmcu=avr25\*(C'\fR
-the compiler driver will add or remove this option from the compiler
-proper's command line, because the compiler then knows if the device
-or architecture has an 8\-bit stack pointer and thus no \f(CW\*(C`SPH\*(C'\fR
-register or not.
-.IP "\fB\-mstrict\-X\fR" 4
-.IX Item "-mstrict-X"
-Use address register \f(CW\*(C`X\*(C'\fR in a way proposed by the hardware. This means
-that \f(CW\*(C`X\*(C'\fR is only used in indirect, post-increment or
-pre-decrement addressing.
-.Sp
-Without this option, the \f(CW\*(C`X\*(C'\fR register may be used in the same way
-as \f(CW\*(C`Y\*(C'\fR or \f(CW\*(C`Z\*(C'\fR which then is emulated by additional
-instructions.
-For example, loading a value with \f(CW\*(C`X+const\*(C'\fR addressing with a
-small non-negative \f(CW\*(C`const < 64\*(C'\fR to a register \fIRn\fR is
-performed as
-.Sp
-.Vb 3
-\& adiw r26, const ; X += const
-\& ld <Rn>, X ; <Rn> = *X
-\& sbiw r26, const ; X \-= const
-.Ve
-.IP "\fB\-mtiny\-stack\fR" 4
-.IX Item "-mtiny-stack"
-Only change the lower 8@tie{}bits of the stack pointer.
-.IP "\fB\-Waddr\-space\-convert\fR" 4
-.IX Item "-Waddr-space-convert"
-Warn about conversions between address spaces in the case where the
-resulting address space is not contained in the incoming address space.
-.PP
-\f(CW\*(C`EIND\*(C'\fR and Devices with more than 128 Ki Bytes of Flash
-.IX Subsection "EIND and Devices with more than 128 Ki Bytes of Flash"
-.PP
-Pointers in the implementation are 16@tie{}bits wide.
-The address of a function or label is represented as word address so
-that indirect jumps and calls can target any code address in the
-range of 64@tie{}Ki words.
-.PP
-In order to facilitate indirect jump on devices with more than 128@tie{}Ki
-bytes of program memory space, there is a special function register called
-\&\f(CW\*(C`EIND\*(C'\fR that serves as most significant part of the target address
-when \f(CW\*(C`EICALL\*(C'\fR or \f(CW\*(C`EIJMP\*(C'\fR instructions are used.
-.PP
-Indirect jumps and calls on these devices are handled as follows by
-the compiler and are subject to some limitations:
-.IP "\(bu" 4
-The compiler never sets \f(CW\*(C`EIND\*(C'\fR.
-.IP "\(bu" 4
-The compiler uses \f(CW\*(C`EIND\*(C'\fR implicitely in \f(CW\*(C`EICALL\*(C'\fR/\f(CW\*(C`EIJMP\*(C'\fR
-instructions or might read \f(CW\*(C`EIND\*(C'\fR directly in order to emulate an
-indirect call/jump by means of a \f(CW\*(C`RET\*(C'\fR instruction.
-.IP "\(bu" 4
-The compiler assumes that \f(CW\*(C`EIND\*(C'\fR never changes during the startup
-code or during the application. In particular, \f(CW\*(C`EIND\*(C'\fR is not
-saved/restored in function or interrupt service routine
-prologue/epilogue.
-.IP "\(bu" 4
-For indirect calls to functions and computed goto, the linker
-generates \fIstubs\fR. Stubs are jump pads sometimes also called
-\&\fItrampolines\fR. Thus, the indirect call/jump jumps to such a stub.
-The stub contains a direct jump to the desired address.
-.IP "\(bu" 4
-Linker relaxation must be turned on so that the linker will generate
-the stubs correctly an all situaltion. See the compiler option
-\&\f(CW\*(C`\-mrelax\*(C'\fR and the linler option \f(CW\*(C`\-\-relax\*(C'\fR.
-There are corner cases where the linker is supposed to generate stubs
-but aborts without relaxation and without a helpful error message.
-.IP "\(bu" 4
-The default linker script is arranged for code with \f(CW\*(C`EIND = 0\*(C'\fR.
-If code is supposed to work for a setup with \f(CW\*(C`EIND != 0\*(C'\fR, a custom
-linker script has to be used in order to place the sections whose
-name start with \f(CW\*(C`.trampolines\*(C'\fR into the segment where \f(CW\*(C`EIND\*(C'\fR
-points to.
-.IP "\(bu" 4
-The startup code from libgcc never sets \f(CW\*(C`EIND\*(C'\fR.
-Notice that startup code is a blend of code from libgcc and AVR-LibC.
-For the impact of AVR-LibC on \f(CW\*(C`EIND\*(C'\fR, see the
-AVR-LibC\ user\ manual (\f(CW\*(C`http://nongnu.org/avr\-libc/user\-manual/\*(C'\fR).
-.IP "\(bu" 4
-It is legitimate for user-specific startup code to set up \f(CW\*(C`EIND\*(C'\fR
-early, for example by means of initialization code located in
-section \f(CW\*(C`.init3\*(C'\fR. Such code runs prior to general startup code
-that initializes \s-1RAM\s0 and calls constructors, but after the bit
-of startup code from AVR-LibC that sets \f(CW\*(C`EIND\*(C'\fR to the segment
-where the vector table is located.
-.Sp
-.Vb 1
-\& #include <avr/io.h>
-\&
-\& static void
-\& _\|_attribute_\|_((section(".init3"),naked,used,no_instrument_function))
-\& init3_set_eind (void)
-\& {
-\& _\|_asm volatile ("ldi r24,pm_hh8(_\|_trampolines_start)\en\et"
-\& "out %i0,r24" :: "n" (&EIND) : "r24","memory");
-\& }
-.Ve
-.Sp
-The \f(CW\*(C`_\|_trampolines_start\*(C'\fR symbol is defined in the linker script.
-.IP "\(bu" 4
-Stubs are generated automatically by the linker if
-the following two conditions are met:
-.RS 4
-.ie n .IP "\-<The address of a label is taken by means of the ""gs"" modifier>" 4
-.el .IP "\-<The address of a label is taken by means of the \f(CWgs\fR modifier>" 4
-.IX Item "-<The address of a label is taken by means of the gs modifier>"
-(short for \fIgenerate stubs\fR) like so:
-.Sp
-.Vb 2
-\& LDI r24, lo8(gs(<func>))
-\& LDI r25, hi8(gs(<func>))
-.Ve
-.IP "\-<The final location of that label is in a code segment>" 4
-.IX Item "-<The final location of that label is in a code segment>"
-\&\fIoutside\fR the segment where the stubs are located.
-.RE
-.RS 4
-.RE
-.IP "\(bu" 4
-The compiler emits such \f(CW\*(C`gs\*(C'\fR modifiers for code labels in the
-following situations:
-.RS 4
-.IP "\-<Taking address of a function or code label.>" 4
-.IX Item "-<Taking address of a function or code label.>"
-.PD 0
-.IP "\-<Computed goto.>" 4
-.IX Item "-<Computed goto.>"
-.IP "\-<If prologue-save function is used, see \fB\-mcall\-prologues\fR>" 4
-.IX Item "-<If prologue-save function is used, see -mcall-prologues>"
-.PD
-command-line option.
-.IP "\-<Switch/case dispatch tables. If you do not want such dispatch>" 4
-.IX Item "-<Switch/case dispatch tables. If you do not want such dispatch>"
-tables you can specify the \fB\-fno\-jump\-tables\fR command-line option.
-.IP "\-<C and \*(C+ constructors/destructors called during startup/shutdown.>" 4
-.IX Item "-<C and constructors/destructors called during startup/shutdown.>"
-.PD 0
-.ie n .IP "\-<If the tools hit a ""gs()"" modifier explained above.>" 4
-.el .IP "\-<If the tools hit a \f(CWgs()\fR modifier explained above.>" 4
-.IX Item "-<If the tools hit a gs() modifier explained above.>"
-.RE
-.RS 4
-.RE
-.IP "\(bu" 4
-.PD
-Jumping to non-symbolic addresses like so is \fInot\fR supported:
-.Sp
-.Vb 5
-\& int main (void)
-\& {
-\& /* Call function at word address 0x2 */
-\& return ((int(*)(void)) 0x2)();
-\& }
-.Ve
-.Sp
-Instead, a stub has to be set up, i.e. the function has to be called
-through a symbol (\f(CW\*(C`func_4\*(C'\fR in the example):
-.Sp
-.Vb 3
-\& int main (void)
-\& {
-\& extern int func_4 (void);
-\&
-\& /* Call function at byte address 0x4 */
-\& return func_4();
-\& }
-.Ve
-.Sp
-and the application be linked with \f(CW\*(C`\-Wl,\-\-defsym,func_4=0x4\*(C'\fR.
-Alternatively, \f(CW\*(C`func_4\*(C'\fR can be defined in the linker script.
-.PP
-Handling of the \f(CW\*(C`RAMPD\*(C'\fR, \f(CW\*(C`RAMPX\*(C'\fR, \f(CW\*(C`RAMPY\*(C'\fR and \f(CW\*(C`RAMPZ\*(C'\fR Special Function Registers
-.IX Subsection "Handling of the RAMPD, RAMPX, RAMPY and RAMPZ Special Function Registers"
-.PP
-Some \s-1AVR\s0 devices support memories larger than the 64@tie{}KiB range
-that can be accessed with 16\-bit pointers. To access memory locations
-outside this 64@tie{}KiB range, the contentent of a \f(CW\*(C`RAMP\*(C'\fR
-register is used as high part of the address:
-The \f(CW\*(C`X\*(C'\fR, \f(CW\*(C`Y\*(C'\fR, \f(CW\*(C`Z\*(C'\fR address register is concatenated
-with the \f(CW\*(C`RAMPX\*(C'\fR, \f(CW\*(C`RAMPY\*(C'\fR, \f(CW\*(C`RAMPZ\*(C'\fR special function
-register, respectively, to get a wide address. Similarly,
-\&\f(CW\*(C`RAMPD\*(C'\fR is used together with direct addressing.
-.IP "\(bu" 4
-The startup code initializes the \f(CW\*(C`RAMP\*(C'\fR special function
-registers with zero.
-.IP "\(bu" 4
-If a \fB\s-1AVR\s0 Named Address Spaces,named address space\fR other than
-generic or \f(CW\*(C`_\|_flash\*(C'\fR is used, then \f(CW\*(C`RAMPZ\*(C'\fR is set
-as needed before the operation.
-.IP "\(bu" 4
-If the device supports \s-1RAM\s0 larger than 64@tie{}KiB and the compiler
-needs to change \f(CW\*(C`RAMPZ\*(C'\fR to accomplish an operation, \f(CW\*(C`RAMPZ\*(C'\fR
-is reset to zero after the operation.
-.IP "\(bu" 4
-If the device comes with a specific \f(CW\*(C`RAMP\*(C'\fR register, the \s-1ISR\s0
-prologue/epilogue saves/restores that \s-1SFR\s0 and initializes it with
-zero in case the \s-1ISR\s0 code might (implicitly) use it.
-.IP "\(bu" 4
-\&\s-1RAM\s0 larger than 64@tie{}KiB is not supported by \s-1GCC\s0 for \s-1AVR\s0 targets.
-If you use inline assembler to read from locations outside the
-16\-bit address range and change one of the \f(CW\*(C`RAMP\*(C'\fR registers,
-you must reset it to zero after the access.
-.PP
-\s-1AVR\s0 Built-in Macros
-.IX Subsection "AVR Built-in Macros"
-.PP
-\&\s-1GCC\s0 defines several built-in macros so that the user code can test
-for the presence or absence of features. Almost any of the following
-built-in macros are deduced from device capabilities and thus
-triggered by the \f(CW\*(C`\-mmcu=\*(C'\fR command-line option.
-.PP
-For even more AVR-specific built-in macros see
-\&\fB\s-1AVR\s0 Named Address Spaces\fR and \fB\s-1AVR\s0 Built-in Functions\fR.
-.ie n .IP """_\|_AVR_ARCH_\|_""" 4
-.el .IP "\f(CW_\|_AVR_ARCH_\|_\fR" 4
-.IX Item "__AVR_ARCH__"
-Build-in macro that resolves to a decimal number that identifies the
-architecture and depends on the \f(CW\*(C`\-mmcu=\f(CImcu\f(CW\*(C'\fR option.
-Possible values are:
-.Sp
-\&\f(CW2\fR, \f(CW25\fR, \f(CW3\fR, \f(CW31\fR, \f(CW35\fR,
-\&\f(CW4\fR, \f(CW5\fR, \f(CW51\fR, \f(CW6\fR, \f(CW102\fR, \f(CW104\fR,
-\&\f(CW105\fR, \f(CW106\fR, \f(CW107\fR
-.Sp
-for \fImcu\fR=\f(CW\*(C`avr2\*(C'\fR, \f(CW\*(C`avr25\*(C'\fR, \f(CW\*(C`avr3\*(C'\fR,
-\&\f(CW\*(C`avr31\*(C'\fR, \f(CW\*(C`avr35\*(C'\fR, \f(CW\*(C`avr4\*(C'\fR, \f(CW\*(C`avr5\*(C'\fR, \f(CW\*(C`avr51\*(C'\fR,
-\&\f(CW\*(C`avr6\*(C'\fR, \f(CW\*(C`avrxmega2\*(C'\fR, \f(CW\*(C`avrxmega4\*(C'\fR, \f(CW\*(C`avrxmega5\*(C'\fR,
-\&\f(CW\*(C`avrxmega6\*(C'\fR, \f(CW\*(C`avrxmega7\*(C'\fR, respectively.
-If \fImcu\fR specifies a device, this built-in macro is set
-accordingly. For example, with \f(CW\*(C`\-mmcu=atmega8\*(C'\fR the macro will be
-defined to \f(CW4\fR.
-.ie n .IP """_\|_AVR_\f(CIDevice\f(CW_\|_""" 4
-.el .IP "\f(CW_\|_AVR_\f(CIDevice\f(CW_\|_\fR" 4
-.IX Item "__AVR_Device__"
-Setting \f(CW\*(C`\-mmcu=\f(CIdevice\f(CW\*(C'\fR defines this built-in macro which reflects
-the device's name. For example, \f(CW\*(C`\-mmcu=atmega8\*(C'\fR defines the
-built-in macro \f(CW\*(C`_\|_AVR_ATmega8_\|_\*(C'\fR, \f(CW\*(C`\-mmcu=attiny261a\*(C'\fR defines
-\&\f(CW\*(C`_\|_AVR_ATtiny261A_\|_\*(C'\fR, etc.
-.Sp
-The built-in macros' names follow
-the scheme \f(CW\*(C`_\|_AVR_\f(CIDevice\f(CW_\|_\*(C'\fR where \fIDevice\fR is
-the device name as from the \s-1AVR\s0 user manual. The difference between
-\&\fIDevice\fR in the built-in macro and \fIdevice\fR in
-\&\f(CW\*(C`\-mmcu=\f(CIdevice\f(CW\*(C'\fR is that the latter is always lowercase.
-.Sp
-If \fIdevice\fR is not a device but only a core architecture like
-\&\f(CW\*(C`avr51\*(C'\fR, this macro will not be defined.
-.ie n .IP """_\|_AVR_XMEGA_\|_""" 4
-.el .IP "\f(CW_\|_AVR_XMEGA_\|_\fR" 4
-.IX Item "__AVR_XMEGA__"
-The device / architecture belongs to the \s-1XMEGA\s0 family of devices.
-.ie n .IP """_\|_AVR_HAVE_ELPM_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_ELPM_\|_\fR" 4
-.IX Item "__AVR_HAVE_ELPM__"
-The device has the the \f(CW\*(C`ELPM\*(C'\fR instruction.
-.ie n .IP """_\|_AVR_HAVE_ELPMX_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_ELPMX_\|_\fR" 4
-.IX Item "__AVR_HAVE_ELPMX__"
-The device has the \f(CW\*(C`ELPM R\f(CIn\f(CW,Z\*(C'\fR and \f(CW\*(C`ELPM
-R\f(CIn\f(CW,Z+\*(C'\fR instructions.
-.ie n .IP """_\|_AVR_HAVE_MOVW_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_MOVW_\|_\fR" 4
-.IX Item "__AVR_HAVE_MOVW__"
-The device has the \f(CW\*(C`MOVW\*(C'\fR instruction to perform 16\-bit
-register-register moves.
-.ie n .IP """_\|_AVR_HAVE_LPMX_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_LPMX_\|_\fR" 4
-.IX Item "__AVR_HAVE_LPMX__"
-The device has the \f(CW\*(C`LPM R\f(CIn\f(CW,Z\*(C'\fR and
-\&\f(CW\*(C`LPM R\f(CIn\f(CW,Z+\*(C'\fR instructions.
-.ie n .IP """_\|_AVR_HAVE_MUL_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_MUL_\|_\fR" 4
-.IX Item "__AVR_HAVE_MUL__"
-The device has a hardware multiplier.
-.ie n .IP """_\|_AVR_HAVE_JMP_CALL_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_JMP_CALL_\|_\fR" 4
-.IX Item "__AVR_HAVE_JMP_CALL__"
-The device has the \f(CW\*(C`JMP\*(C'\fR and \f(CW\*(C`CALL\*(C'\fR instructions.
-This is the case for devices with at least 16@tie{}KiB of program
-memory.
-.ie n .IP """_\|_AVR_HAVE_EIJMP_EICALL_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_EIJMP_EICALL_\|_\fR" 4
-.IX Item "__AVR_HAVE_EIJMP_EICALL__"
-.PD 0
-.ie n .IP """_\|_AVR_3_BYTE_PC_\|_""" 4
-.el .IP "\f(CW_\|_AVR_3_BYTE_PC_\|_\fR" 4
-.IX Item "__AVR_3_BYTE_PC__"
-.PD
-The device has the \f(CW\*(C`EIJMP\*(C'\fR and \f(CW\*(C`EICALL\*(C'\fR instructions.
-This is the case for devices with more than 128@tie{}KiB of program memory.
-This also means that the program counter
-(\s-1PC\s0) is 3@tie{}bytes wide.
-.ie n .IP """_\|_AVR_2_BYTE_PC_\|_""" 4
-.el .IP "\f(CW_\|_AVR_2_BYTE_PC_\|_\fR" 4
-.IX Item "__AVR_2_BYTE_PC__"
-The program counter (\s-1PC\s0) is 2@tie{}bytes wide. This is the case for devices
-with up to 128@tie{}KiB of program memory.
-.ie n .IP """_\|_AVR_HAVE_8BIT_SP_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_8BIT_SP_\|_\fR" 4
-.IX Item "__AVR_HAVE_8BIT_SP__"
-.PD 0
-.ie n .IP """_\|_AVR_HAVE_16BIT_SP_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_16BIT_SP_\|_\fR" 4
-.IX Item "__AVR_HAVE_16BIT_SP__"
-.PD
-The stack pointer (\s-1SP\s0) register is treated as 8\-bit respectively
-16\-bit register by the compiler.
-The definition of these macros is affected by \f(CW\*(C`\-mtiny\-stack\*(C'\fR.
-.ie n .IP """_\|_AVR_HAVE_SPH_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_SPH_\|_\fR" 4
-.IX Item "__AVR_HAVE_SPH__"
-.PD 0
-.ie n .IP """_\|_AVR_SP8_\|_""" 4
-.el .IP "\f(CW_\|_AVR_SP8_\|_\fR" 4
-.IX Item "__AVR_SP8__"
-.PD
-The device has the \s-1SPH \s0(high part of stack pointer) special function
-register or has an 8\-bit stack pointer, respectively.
-The definition of these macros is affected by \f(CW\*(C`\-mmcu=\*(C'\fR and
-in the cases of \f(CW\*(C`\-mmcu=avr2\*(C'\fR and \f(CW\*(C`\-mmcu=avr25\*(C'\fR also
-by \f(CW\*(C`\-msp8\*(C'\fR.
-.ie n .IP """_\|_AVR_HAVE_RAMPD_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_RAMPD_\|_\fR" 4
-.IX Item "__AVR_HAVE_RAMPD__"
-.PD 0
-.ie n .IP """_\|_AVR_HAVE_RAMPX_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_RAMPX_\|_\fR" 4
-.IX Item "__AVR_HAVE_RAMPX__"
-.ie n .IP """_\|_AVR_HAVE_RAMPY_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_RAMPY_\|_\fR" 4
-.IX Item "__AVR_HAVE_RAMPY__"
-.ie n .IP """_\|_AVR_HAVE_RAMPZ_\|_""" 4
-.el .IP "\f(CW_\|_AVR_HAVE_RAMPZ_\|_\fR" 4
-.IX Item "__AVR_HAVE_RAMPZ__"
-.PD
-The device has the \f(CW\*(C`RAMPD\*(C'\fR, \f(CW\*(C`RAMPX\*(C'\fR, \f(CW\*(C`RAMPY\*(C'\fR,
-\&\f(CW\*(C`RAMPZ\*(C'\fR special function register, respectively.
-.ie n .IP """_\|_NO_INTERRUPTS_\|_""" 4
-.el .IP "\f(CW_\|_NO_INTERRUPTS_\|_\fR" 4
-.IX Item "__NO_INTERRUPTS__"
-This macro reflects the \f(CW\*(C`\-mno\-interrupts\*(C'\fR command line option.
-.ie n .IP """_\|_AVR_ERRATA_SKIP_\|_""" 4
-.el .IP "\f(CW_\|_AVR_ERRATA_SKIP_\|_\fR" 4
-.IX Item "__AVR_ERRATA_SKIP__"
-.PD 0
-.ie n .IP """_\|_AVR_ERRATA_SKIP_JMP_CALL_\|_""" 4
-.el .IP "\f(CW_\|_AVR_ERRATA_SKIP_JMP_CALL_\|_\fR" 4
-.IX Item "__AVR_ERRATA_SKIP_JMP_CALL__"
-.PD
-Some \s-1AVR\s0 devices (\s-1AT90S8515,\s0 ATmega103) must not skip 32\-bit
-instructions because of a hardware erratum. Skip instructions are
-\&\f(CW\*(C`SBRS\*(C'\fR, \f(CW\*(C`SBRC\*(C'\fR, \f(CW\*(C`SBIS\*(C'\fR, \f(CW\*(C`SBIC\*(C'\fR and \f(CW\*(C`CPSE\*(C'\fR.
-The second macro is only defined if \f(CW\*(C`_\|_AVR_HAVE_JMP_CALL_\|_\*(C'\fR is also
-set.
-.ie n .IP """_\|_AVR_ISA_RMW_\|_""" 4
-.el .IP "\f(CW_\|_AVR_ISA_RMW_\|_\fR" 4
-.IX Item "__AVR_ISA_RMW__"
-The device has Read-Modify-Write instructions (\s-1XCH, LAC, LAS\s0 and \s-1LAT\s0).
-.ie n .IP """_\|_AVR_SFR_OFFSET_\|_=\f(CIoffset\f(CW""" 4
-.el .IP "\f(CW_\|_AVR_SFR_OFFSET_\|_=\f(CIoffset\f(CW\fR" 4
-.IX Item "__AVR_SFR_OFFSET__=offset"
-Instructions that can address I/O special function registers directly
-like \f(CW\*(C`IN\*(C'\fR, \f(CW\*(C`OUT\*(C'\fR, \f(CW\*(C`SBI\*(C'\fR, etc. may use a different
-address as if addressed by an instruction to access \s-1RAM\s0 like \f(CW\*(C`LD\*(C'\fR
-or \f(CW\*(C`STS\*(C'\fR. This offset depends on the device architecture and has
-to be subtracted from the \s-1RAM\s0 address in order to get the
-respective I/O@tie{}address.
-.ie n .IP """_\|_WITH_AVRLIBC_\|_""" 4
-.el .IP "\f(CW_\|_WITH_AVRLIBC_\|_\fR" 4
-.IX Item "__WITH_AVRLIBC__"
-The compiler is configured to be used together with AVR-Libc.
-See the \f(CW\*(C`\-\-with\-avrlibc\*(C'\fR configure option.
-.PP
-\fIBlackfin Options\fR
-.IX Subsection "Blackfin Options"
-.IP "\fB\-mcpu=\fR\fIcpu\fR[\fB\-\fR\fIsirevision\fR]" 4
-.IX Item "-mcpu=cpu[-sirevision]"
-Specifies the name of the target Blackfin processor. Currently, \fIcpu\fR
-can be one of \fBbf512\fR, \fBbf514\fR, \fBbf516\fR, \fBbf518\fR,
-\&\fBbf522\fR, \fBbf523\fR, \fBbf524\fR, \fBbf525\fR, \fBbf526\fR,
-\&\fBbf527\fR, \fBbf531\fR, \fBbf532\fR, \fBbf533\fR,
-\&\fBbf534\fR, \fBbf536\fR, \fBbf537\fR, \fBbf538\fR, \fBbf539\fR,
-\&\fBbf542\fR, \fBbf544\fR, \fBbf547\fR, \fBbf548\fR, \fBbf549\fR,
-\&\fBbf542m\fR, \fBbf544m\fR, \fBbf547m\fR, \fBbf548m\fR, \fBbf549m\fR,
-\&\fBbf561\fR, \fBbf592\fR.
-.Sp
-The optional \fIsirevision\fR specifies the silicon revision of the target
-Blackfin processor. Any workarounds available for the targeted silicon revision
-are enabled. If \fIsirevision\fR is \fBnone\fR, no workarounds are enabled.
-If \fIsirevision\fR is \fBany\fR, all workarounds for the targeted processor
-are enabled. The \f(CW\*(C`_\|_SILICON_REVISION_\|_\*(C'\fR macro is defined to two
-hexadecimal digits representing the major and minor numbers in the silicon
-revision. If \fIsirevision\fR is \fBnone\fR, the \f(CW\*(C`_\|_SILICON_REVISION_\|_\*(C'\fR
-is not defined. If \fIsirevision\fR is \fBany\fR, the
-\&\f(CW\*(C`_\|_SILICON_REVISION_\|_\*(C'\fR is defined to be \f(CW0xffff\fR.
-If this optional \fIsirevision\fR is not used, \s-1GCC\s0 assumes the latest known
-silicon revision of the targeted Blackfin processor.
-.Sp
-\&\s-1GCC\s0 defines a preprocessor macro for the specified \fIcpu\fR.
-For the \fBbfin-elf\fR toolchain, this option causes the hardware \s-1BSP\s0
-provided by libgloss to be linked in if \fB\-msim\fR is not given.
-.Sp
-Without this option, \fBbf532\fR is used as the processor by default.
-.Sp
-Note that support for \fBbf561\fR is incomplete. For \fBbf561\fR,
-only the preprocessor macro is defined.
-.IP "\fB\-msim\fR" 4
-.IX Item "-msim"
-Specifies that the program will be run on the simulator. This causes
-the simulator \s-1BSP\s0 provided by libgloss to be linked in. This option
-has effect only for \fBbfin-elf\fR toolchain.
-Certain other options, such as \fB\-mid\-shared\-library\fR and
-\&\fB\-mfdpic\fR, imply \fB\-msim\fR.
-.IP "\fB\-momit\-leaf\-frame\-pointer\fR" 4
-.IX Item "-momit-leaf-frame-pointer"
-Don't keep the frame pointer in a register for leaf functions. This
-avoids the instructions to save, set up and restore frame pointers and
-makes an extra register available in leaf functions. The option
-\&\fB\-fomit\-frame\-pointer\fR removes the frame pointer for all functions,
-which might make debugging harder.
-.IP "\fB\-mspecld\-anomaly\fR" 4
-.IX Item "-mspecld-anomaly"
-When enabled, the compiler ensures that the generated code does not
-contain speculative loads after jump instructions. If this option is used,
-\&\f(CW\*(C`_\|_WORKAROUND_SPECULATIVE_LOADS\*(C'\fR is defined.
-.IP "\fB\-mno\-specld\-anomaly\fR" 4
-.IX Item "-mno-specld-anomaly"
-Don't generate extra code to prevent speculative loads from occurring.
-.IP "\fB\-mcsync\-anomaly\fR" 4
-.IX Item "-mcsync-anomaly"
-When enabled, the compiler ensures that the generated code does not
-contain \s-1CSYNC\s0 or \s-1SSYNC\s0 instructions too soon after conditional branches.
-If this option is used, \f(CW\*(C`_\|_WORKAROUND_SPECULATIVE_SYNCS\*(C'\fR is defined.
-.IP "\fB\-mno\-csync\-anomaly\fR" 4
-.IX Item "-mno-csync-anomaly"
-Don't generate extra code to prevent \s-1CSYNC\s0 or \s-1SSYNC\s0 instructions from
-occurring too soon after a conditional branch.
-.IP "\fB\-mlow\-64k\fR" 4
-.IX Item "-mlow-64k"
-When enabled, the compiler is free to take advantage of the knowledge that
-the entire program fits into the low 64k of memory.
-.IP "\fB\-mno\-low\-64k\fR" 4
-.IX Item "-mno-low-64k"
-Assume that the program is arbitrarily large. This is the default.
-.IP "\fB\-mstack\-check\-l1\fR" 4
-.IX Item "-mstack-check-l1"
-Do stack checking using information placed into L1 scratchpad memory by the
-uClinux kernel.
-.IP "\fB\-mid\-shared\-library\fR" 4
-.IX Item "-mid-shared-library"
-Generate code that supports shared libraries via the library \s-1ID\s0 method.
-This allows for execute in place and shared libraries in an environment
-without virtual memory management. This option implies \fB\-fPIC\fR.
-With a \fBbfin-elf\fR target, this option implies \fB\-msim\fR.
-.IP "\fB\-mno\-id\-shared\-library\fR" 4
-.IX Item "-mno-id-shared-library"
-Generate code that doesn't assume ID-based shared libraries are being used.
-This is the default.
-.IP "\fB\-mleaf\-id\-shared\-library\fR" 4
-.IX Item "-mleaf-id-shared-library"
-Generate code that supports shared libraries via the library \s-1ID\s0 method,
-but assumes that this library or executable won't link against any other
-\&\s-1ID\s0 shared libraries. That allows the compiler to use faster code for jumps
-and calls.
-.IP "\fB\-mno\-leaf\-id\-shared\-library\fR" 4
-.IX Item "-mno-leaf-id-shared-library"
-Do not assume that the code being compiled won't link against any \s-1ID\s0 shared
-libraries. Slower code is generated for jump and call insns.
-.IP "\fB\-mshared\-library\-id=n\fR" 4
-.IX Item "-mshared-library-id=n"
-Specifies the identification number of the ID-based shared library being
-compiled. Specifying a value of 0 generates more compact code; specifying
-other values forces the allocation of that number to the current
-library but is no more space\- or time-efficient than omitting this option.
-.IP "\fB\-msep\-data\fR" 4
-.IX Item "-msep-data"
-Generate code that allows the data segment to be located in a different
-area of memory from the text segment. This allows for execute in place in
-an environment without virtual memory management by eliminating relocations
-against the text section.
-.IP "\fB\-mno\-sep\-data\fR" 4
-.IX Item "-mno-sep-data"
-Generate code that assumes that the data segment follows the text segment.
-This is the default.
-.IP "\fB\-mlong\-calls\fR" 4
-.IX Item "-mlong-calls"
-.PD 0
-.IP "\fB\-mno\-long\-calls\fR" 4
-.IX Item "-mno-long-calls"
-.PD
-Tells the compiler to perform function calls by first loading the
-address of the function into a register and then performing a subroutine
-call on this register. This switch is needed if the target function
-lies outside of the 24\-bit addressing range of the offset-based
-version of subroutine call instruction.
-.Sp
-This feature is not enabled by default. Specifying
-\&\fB\-mno\-long\-calls\fR restores the default behavior. Note these
-switches have no effect on how the compiler generates code to handle
-function calls via function pointers.
-.IP "\fB\-mfast\-fp\fR" 4
-.IX Item "-mfast-fp"
-Link with the fast floating-point library. This library relaxes some of
-the \s-1IEEE\s0 floating-point standard's rules for checking inputs against
-Not-a-Number (\s-1NAN\s0), in the interest of performance.
-.IP "\fB\-minline\-plt\fR" 4
-.IX Item "-minline-plt"
-Enable inlining of \s-1PLT\s0 entries in function calls to functions that are
-not known to bind locally. It has no effect without \fB\-mfdpic\fR.
-.IP "\fB\-mmulticore\fR" 4
-.IX Item "-mmulticore"
-Build a standalone application for multicore Blackfin processors.
-This option causes proper start files and link scripts supporting
-multicore to be used, and defines the macro \f(CW\*(C`_\|_BFIN_MULTICORE\*(C'\fR.
-It can only be used with \fB\-mcpu=bf561\fR[\fB\-\fR\fIsirevision\fR].
-.Sp
-This option can be used with \fB\-mcorea\fR or \fB\-mcoreb\fR, which
-selects the one-application-per-core programming model. Without
-\&\fB\-mcorea\fR or \fB\-mcoreb\fR, the single\-application/dual\-core
-programming model is used. In this model, the main function of Core B
-should be named as \f(CW\*(C`coreb_main\*(C'\fR.
-.Sp
-If this option is not used, the single-core application programming
-model is used.
-.IP "\fB\-mcorea\fR" 4
-.IX Item "-mcorea"
-Build a standalone application for Core A of \s-1BF561\s0 when using
-the one-application-per-core programming model. Proper start files
-and link scripts are used to support Core A, and the macro
-\&\f(CW\*(C`_\|_BFIN_COREA\*(C'\fR is defined.
-This option can only be used in conjunction with \fB\-mmulticore\fR.
-.IP "\fB\-mcoreb\fR" 4
-.IX Item "-mcoreb"
-Build a standalone application for Core B of \s-1BF561\s0 when using
-the one-application-per-core programming model. Proper start files
-and link scripts are used to support Core B, and the macro
-\&\f(CW\*(C`_\|_BFIN_COREB\*(C'\fR is defined. When this option is used, \f(CW\*(C`coreb_main\*(C'\fR
-should be used instead of \f(CW\*(C`main\*(C'\fR.
-This option can only be used in conjunction with \fB\-mmulticore\fR.
-.IP "\fB\-msdram\fR" 4
-.IX Item "-msdram"
-Build a standalone application for \s-1SDRAM.\s0 Proper start files and
-link scripts are used to put the application into \s-1SDRAM,\s0 and the macro
-\&\f(CW\*(C`_\|_BFIN_SDRAM\*(C'\fR is defined.
-The loader should initialize \s-1SDRAM\s0 before loading the application.
-.IP "\fB\-micplb\fR" 4
-.IX Item "-micplb"
-Assume that ICPLBs are enabled at run time. This has an effect on certain
-anomaly workarounds. For Linux targets, the default is to assume ICPLBs
-are enabled; for standalone applications the default is off.
-.PP
-\fIC6X Options\fR
-.IX Subsection "C6X Options"
-.IP "\fB\-march=\fR\fIname\fR" 4
-.IX Item "-march=name"
-This specifies the name of the target architecture. \s-1GCC\s0 uses this
-name to determine what kind of instructions it can emit when generating
-assembly code. Permissible names are: \fBc62x\fR,
-\&\fBc64x\fR, \fBc64x+\fR, \fBc67x\fR, \fBc67x+\fR, \fBc674x\fR.
-.IP "\fB\-mbig\-endian\fR" 4
-.IX Item "-mbig-endian"
-Generate code for a big-endian target.
-.IP "\fB\-mlittle\-endian\fR" 4
-.IX Item "-mlittle-endian"
-Generate code for a little-endian target. This is the default.
-.IP "\fB\-msim\fR" 4
-.IX Item "-msim"
-Choose startup files and linker script suitable for the simulator.
-.IP "\fB\-msdata=default\fR" 4
-.IX Item "-msdata=default"
-Put small global and static data in the \fB.neardata\fR section,
-which is pointed to by register \f(CW\*(C`B14\*(C'\fR. Put small uninitialized
-global and static data in the \fB.bss\fR section, which is adjacent
-to the \fB.neardata\fR section. Put small read-only data into the
-\&\fB.rodata\fR section. The corresponding sections used for large
-pieces of data are \fB.fardata\fR, \fB.far\fR and \fB.const\fR.
-.IP "\fB\-msdata=all\fR" 4
-.IX Item "-msdata=all"
-Put all data, not just small objects, into the sections reserved for
-small data, and use addressing relative to the \f(CW\*(C`B14\*(C'\fR register to
-access them.
-.IP "\fB\-msdata=none\fR" 4
-.IX Item "-msdata=none"
-Make no use of the sections reserved for small data, and use absolute
-addresses to access all data. Put all initialized global and static
-data in the \fB.fardata\fR section, and all uninitialized data in the
-\&\fB.far\fR section. Put all constant data into the \fB.const\fR
-section.
-.PP
-\fI\s-1CRIS\s0 Options\fR
-.IX Subsection "CRIS Options"
-.PP
-These options are defined specifically for the \s-1CRIS\s0 ports.
-.IP "\fB\-march=\fR\fIarchitecture-type\fR" 4
-.IX Item "-march=architecture-type"
-.PD 0
-.IP "\fB\-mcpu=\fR\fIarchitecture-type\fR" 4
-.IX Item "-mcpu=architecture-type"
-.PD
-Generate code for the specified architecture. The choices for
-\&\fIarchitecture-type\fR are \fBv3\fR, \fBv8\fR and \fBv10\fR for
-respectively \s-1ETRAX\s0\ 4, \s-1ETRAX\s0\ 100, and \s-1ETRAX\s0\ 100\ \s-1LX.\s0
-Default is \fBv0\fR except for cris-axis-linux-gnu, where the default is
-\&\fBv10\fR.
-.IP "\fB\-mtune=\fR\fIarchitecture-type\fR" 4
-.IX Item "-mtune=architecture-type"
-Tune to \fIarchitecture-type\fR everything applicable about the generated
-code, except for the \s-1ABI\s0 and the set of available instructions. The
-choices for \fIarchitecture-type\fR are the same as for
-\&\fB\-march=\fR\fIarchitecture-type\fR.
-.IP "\fB\-mmax\-stack\-frame=\fR\fIn\fR" 4
-.IX Item "-mmax-stack-frame=n"
-Warn when the stack frame of a function exceeds \fIn\fR bytes.
-.IP "\fB\-metrax4\fR" 4
-.IX Item "-metrax4"
-.PD 0
-.IP "\fB\-metrax100\fR" 4
-.IX Item "-metrax100"
-.PD
-The options \fB\-metrax4\fR and \fB\-metrax100\fR are synonyms for
-\&\fB\-march=v3\fR and \fB\-march=v8\fR respectively.
-.IP "\fB\-mmul\-bug\-workaround\fR" 4
-.IX Item "-mmul-bug-workaround"
-.PD 0
-.IP "\fB\-mno\-mul\-bug\-workaround\fR" 4
-.IX Item "-mno-mul-bug-workaround"
-.PD
-Work around a bug in the \f(CW\*(C`muls\*(C'\fR and \f(CW\*(C`mulu\*(C'\fR instructions for \s-1CPU\s0
-models where it applies. This option is active by default.
-.IP "\fB\-mpdebug\fR" 4
-.IX Item "-mpdebug"
-Enable CRIS-specific verbose debug-related information in the assembly
-code. This option also has the effect of turning off the \fB#NO_APP\fR
-formatted-code indicator to the assembler at the beginning of the
-assembly file.
-.IP "\fB\-mcc\-init\fR" 4
-.IX Item "-mcc-init"
-Do not use condition-code results from previous instruction; always emit
-compare and test instructions before use of condition codes.
-.IP "\fB\-mno\-side\-effects\fR" 4
-.IX Item "-mno-side-effects"
-Do not emit instructions with side effects in addressing modes other than
-post-increment.
-.IP "\fB\-mstack\-align\fR" 4
-.IX Item "-mstack-align"
-.PD 0
-.IP "\fB\-mno\-stack\-align\fR" 4
-.IX Item "-mno-stack-align"
-.IP "\fB\-mdata\-align\fR" 4
-.IX Item "-mdata-align"
-.IP "\fB\-mno\-data\-align\fR" 4
-.IX Item "-mno-data-align"
-.IP "\fB\-mconst\-align\fR" 4
-.IX Item "-mconst-align"
-.IP "\fB\-mno\-const\-align\fR" 4
-.IX Item "-mno-const-align"
-.PD
-These options (\fBno\-\fR options) arrange (eliminate arrangements) for the
-stack frame, individual data and constants to be aligned for the maximum
-single data access size for the chosen \s-1CPU\s0 model. The default is to
-arrange for 32\-bit alignment. \s-1ABI\s0 details such as structure layout are
-not affected by these options.
-.IP "\fB\-m32\-bit\fR" 4
-.IX Item "-m32-bit"
-.PD 0
-.IP "\fB\-m16\-bit\fR" 4
-.IX Item "-m16-bit"
-.IP "\fB\-m8\-bit\fR" 4
-.IX Item "-m8-bit"
-.PD
-Similar to the stack\- data\- and const-align options above, these options
-arrange for stack frame, writable data and constants to all be 32\-bit,
-16\-bit or 8\-bit aligned. The default is 32\-bit alignment.
-.IP "\fB\-mno\-prologue\-epilogue\fR" 4
-.IX Item "-mno-prologue-epilogue"
-.PD 0
-.IP "\fB\-mprologue\-epilogue\fR" 4
-.IX Item "-mprologue-epilogue"
-.PD
-With \fB\-mno\-prologue\-epilogue\fR, the normal function prologue and
-epilogue which set up the stack frame are omitted and no return
-instructions or return sequences are generated in the code. Use this
-option only together with visual inspection of the compiled code: no
-warnings or errors are generated when call-saved registers must be saved,
-or storage for local variables needs to be allocated.
-.IP "\fB\-mno\-gotplt\fR" 4
-.IX Item "-mno-gotplt"
-.PD 0
-.IP "\fB\-mgotplt\fR" 4
-.IX Item "-mgotplt"
-.PD
-With \fB\-fpic\fR and \fB\-fPIC\fR, don't generate (do generate)
-instruction sequences that load addresses for functions from the \s-1PLT\s0 part
-of the \s-1GOT\s0 rather than (traditional on other architectures) calls to the
-\&\s-1PLT. \s0 The default is \fB\-mgotplt\fR.
-.IP "\fB\-melf\fR" 4
-.IX Item "-melf"
-Legacy no-op option only recognized with the cris-axis-elf and
-cris-axis-linux-gnu targets.
-.IP "\fB\-mlinux\fR" 4
-.IX Item "-mlinux"
-Legacy no-op option only recognized with the cris-axis-linux-gnu target.
-.IP "\fB\-sim\fR" 4
-.IX Item "-sim"
-This option, recognized for the cris-axis-elf, arranges
-to link with input-output functions from a simulator library. Code,
-initialized data and zero-initialized data are allocated consecutively.
-.IP "\fB\-sim2\fR" 4
-.IX Item "-sim2"
-Like \fB\-sim\fR, but pass linker options to locate initialized data at
-0x40000000 and zero-initialized data at 0x80000000.
-.PP
-\fI\s-1CR16\s0 Options\fR
-.IX Subsection "CR16 Options"
-.PP
-These options are defined specifically for the \s-1CR16\s0 ports.
-.IP "\fB\-mmac\fR" 4
-.IX Item "-mmac"
-Enable the use of multiply-accumulate instructions. Disabled by default.
-.IP "\fB\-mcr16cplus\fR" 4
-.IX Item "-mcr16cplus"
-.PD 0
-.IP "\fB\-mcr16c\fR" 4
-.IX Item "-mcr16c"
-.PD
-Generate code for \s-1CR16C\s0 or \s-1CR16C+\s0 architecture. \s-1CR16C+\s0 architecture
-is default.
-.IP "\fB\-msim\fR" 4
-.IX Item "-msim"
-Links the library libsim.a which is in compatible with simulator. Applicable
-to \s-1ELF\s0 compiler only.
-.IP "\fB\-mint32\fR" 4
-.IX Item "-mint32"
-Choose integer type as 32\-bit wide.
-.IP "\fB\-mbit\-ops\fR" 4
-.IX Item "-mbit-ops"
-Generates \f(CW\*(C`sbit\*(C'\fR/\f(CW\*(C`cbit\*(C'\fR instructions for bit manipulations.
-.IP "\fB\-mdata\-model=\fR\fImodel\fR" 4
-.IX Item "-mdata-model=model"
-Choose a data model. The choices for \fImodel\fR are \fBnear\fR,
-\&\fBfar\fR or \fBmedium\fR. \fBmedium\fR is default.
-However, \fBfar\fR is not valid with \fB\-mcr16c\fR, as the
-\&\s-1CR16C\s0 architecture does not support the far data model.
-.PP
-\fIDarwin Options\fR
-.IX Subsection "Darwin Options"
-.PP
-These options are defined for all architectures running the Darwin operating
-system.
-.PP
-\&\s-1FSF GCC\s0 on Darwin does not create \*(L"fat\*(R" object files; it creates
-an object file for the single architecture that \s-1GCC\s0 was built to
-target. Apple's \s-1GCC\s0 on Darwin does create \*(L"fat\*(R" files if multiple
-\&\fB\-arch\fR options are used; it does so by running the compiler or
-linker multiple times and joining the results together with
-\&\fIlipo\fR.
-.PP
-The subtype of the file created (like \fBppc7400\fR or \fBppc970\fR or
-\&\fBi686\fR) is determined by the flags that specify the \s-1ISA\s0
-that \s-1GCC\s0 is targeting, like \fB\-mcpu\fR or \fB\-march\fR. The
-\&\fB\-force_cpusubtype_ALL\fR option can be used to override this.
-.PP
-The Darwin tools vary in their behavior when presented with an \s-1ISA\s0
-mismatch. The assembler, \fIas\fR, only permits instructions to
-be used that are valid for the subtype of the file it is generating,
-so you cannot put 64\-bit instructions in a \fBppc750\fR object file.
-The linker for shared libraries, \fI/usr/bin/libtool\fR, fails
-and prints an error if asked to create a shared library with a less
-restrictive subtype than its input files (for instance, trying to put
-a \fBppc970\fR object file in a \fBppc7400\fR library). The linker
-for executables, \fBld\fR, quietly gives the executable the most
-restrictive subtype of any of its input files.
-.IP "\fB\-F\fR\fIdir\fR" 4
-.IX Item "-Fdir"
-Add the framework directory \fIdir\fR to the head of the list of
-directories to be searched for header files. These directories are
-interleaved with those specified by \fB\-I\fR options and are
-scanned in a left-to-right order.
-.Sp
-A framework directory is a directory with frameworks in it. A
-framework is a directory with a \fIHeaders\fR and/or
-\&\fIPrivateHeaders\fR directory contained directly in it that ends
-in \fI.framework\fR. The name of a framework is the name of this
-directory excluding the \fI.framework\fR. Headers associated with
-the framework are found in one of those two directories, with
-\&\fIHeaders\fR being searched first. A subframework is a framework
-directory that is in a framework's \fIFrameworks\fR directory.
-Includes of subframework headers can only appear in a header of a
-framework that contains the subframework, or in a sibling subframework
-header. Two subframeworks are siblings if they occur in the same
-framework. A subframework should not have the same name as a
-framework; a warning is issued if this is violated. Currently a
-subframework cannot have subframeworks; in the future, the mechanism
-may be extended to support this. The standard frameworks can be found
-in \fI/System/Library/Frameworks\fR and
-\&\fI/Library/Frameworks\fR. An example include looks like
-\&\f(CW\*(C`#include <Framework/header.h>\*(C'\fR, where \fIFramework\fR denotes
-the name of the framework and \fIheader.h\fR is found in the
-\&\fIPrivateHeaders\fR or \fIHeaders\fR directory.
-.IP "\fB\-iframework\fR\fIdir\fR" 4
-.IX Item "-iframeworkdir"
-Like \fB\-F\fR except the directory is a treated as a system
-directory. The main difference between this \fB\-iframework\fR and
-\&\fB\-F\fR is that with \fB\-iframework\fR the compiler does not
-warn about constructs contained within header files found via
-\&\fIdir\fR. This option is valid only for the C family of languages.
-.IP "\fB\-gused\fR" 4
-.IX Item "-gused"
-Emit debugging information for symbols that are used. For stabs
-debugging format, this enables \fB\-feliminate\-unused\-debug\-symbols\fR.
-This is by default \s-1ON.\s0
-.IP "\fB\-gfull\fR" 4
-.IX Item "-gfull"
-Emit debugging information for all symbols and types.
-.IP "\fB\-mmacosx\-version\-min=\fR\fIversion\fR" 4
-.IX Item "-mmacosx-version-min=version"
-The earliest version of MacOS X that this executable will run on
-is \fIversion\fR. Typical values of \fIversion\fR include \f(CW10.1\fR,
-\&\f(CW10.2\fR, and \f(CW10.3.9\fR.
-.Sp
-If the compiler was built to use the system's headers by default,
-then the default for this option is the system version on which the
-compiler is running, otherwise the default is to make choices that
-are compatible with as many systems and code bases as possible.
-.IP "\fB\-mkernel\fR" 4
-.IX Item "-mkernel"
-Enable kernel development mode. The \fB\-mkernel\fR option sets
-\&\fB\-static\fR, \fB\-fno\-common\fR, \fB\-fno\-cxa\-atexit\fR,
-\&\fB\-fno\-exceptions\fR, \fB\-fno\-non\-call\-exceptions\fR,
-\&\fB\-fapple\-kext\fR, \fB\-fno\-weak\fR and \fB\-fno\-rtti\fR where
-applicable. This mode also sets \fB\-mno\-altivec\fR,
-\&\fB\-msoft\-float\fR, \fB\-fno\-builtin\fR and
-\&\fB\-mlong\-branch\fR for PowerPC targets.
-.IP "\fB\-mone\-byte\-bool\fR" 4
-.IX Item "-mone-byte-bool"
-Override the defaults for \fBbool\fR so that \fBsizeof(bool)==1\fR.
-By default \fBsizeof(bool)\fR is \fB4\fR when compiling for
-Darwin/PowerPC and \fB1\fR when compiling for Darwin/x86, so this
-option has no effect on x86.
-.Sp
-\&\fBWarning:\fR The \fB\-mone\-byte\-bool\fR switch causes \s-1GCC\s0
-to generate code that is not binary compatible with code generated
-without that switch. Using this switch may require recompiling all
-other modules in a program, including system libraries. Use this
-switch to conform to a non-default data model.
-.IP "\fB\-mfix\-and\-continue\fR" 4
-.IX Item "-mfix-and-continue"
-.PD 0
-.IP "\fB\-ffix\-and\-continue\fR" 4
-.IX Item "-ffix-and-continue"
-.IP "\fB\-findirect\-data\fR" 4
-.IX Item "-findirect-data"
-.PD
-Generate code suitable for fast turnaround development, such as to
-allow \s-1GDB\s0 to dynamically load \f(CW\*(C`.o\*(C'\fR files into already-running
-programs. \fB\-findirect\-data\fR and \fB\-ffix\-and\-continue\fR
-are provided for backwards compatibility.
-.IP "\fB\-all_load\fR" 4
-.IX Item "-all_load"
-Loads all members of static archive libraries.
-See man \fIld\fR\|(1) for more information.
-.IP "\fB\-arch_errors_fatal\fR" 4
-.IX Item "-arch_errors_fatal"
-Cause the errors having to do with files that have the wrong architecture
-to be fatal.
-.IP "\fB\-bind_at_load\fR" 4
-.IX Item "-bind_at_load"
-Causes the output file to be marked such that the dynamic linker will
-bind all undefined references when the file is loaded or launched.
-.IP "\fB\-bundle\fR" 4
-.IX Item "-bundle"
-Produce a Mach-o bundle format file.
-See man \fIld\fR\|(1) for more information.
-.IP "\fB\-bundle_loader\fR \fIexecutable\fR" 4
-.IX Item "-bundle_loader executable"
-This option specifies the \fIexecutable\fR that will load the build
-output file being linked. See man \fIld\fR\|(1) for more information.
-.IP "\fB\-dynamiclib\fR" 4
-.IX Item "-dynamiclib"
-When passed this option, \s-1GCC\s0 produces a dynamic library instead of
-an executable when linking, using the Darwin \fIlibtool\fR command.
-.IP "\fB\-force_cpusubtype_ALL\fR" 4
-.IX Item "-force_cpusubtype_ALL"
-This causes \s-1GCC\s0's output file to have the \fI\s-1ALL\s0\fR subtype, instead of
-one controlled by the \fB\-mcpu\fR or \fB\-march\fR option.
-.IP "\fB\-allowable_client\fR \fIclient_name\fR" 4
-.IX Item "-allowable_client client_name"
-.PD 0
-.IP "\fB\-client_name\fR" 4
-.IX Item "-client_name"
-.IP "\fB\-compatibility_version\fR" 4
-.IX Item "-compatibility_version"
-.IP "\fB\-current_version\fR" 4
-.IX Item "-current_version"
-.IP "\fB\-dead_strip\fR" 4
-.IX Item "-dead_strip"
-.IP "\fB\-dependency\-file\fR" 4
-.IX Item "-dependency-file"
-.IP "\fB\-dylib_file\fR" 4
-.IX Item "-dylib_file"
-.IP "\fB\-dylinker_install_name\fR" 4
-.IX Item "-dylinker_install_name"
-.IP "\fB\-dynamic\fR" 4
-.IX Item "-dynamic"
-.IP "\fB\-exported_symbols_list\fR" 4
-.IX Item "-exported_symbols_list"
-.IP "\fB\-filelist\fR" 4
-.IX Item "-filelist"
-.IP "\fB\-flat_namespace\fR" 4
-.IX Item "-flat_namespace"
-.IP "\fB\-force_flat_namespace\fR" 4
-.IX Item "-force_flat_namespace"
-.IP "\fB\-headerpad_max_install_names\fR" 4
-.IX Item "-headerpad_max_install_names"
-.IP "\fB\-image_base\fR" 4
-.IX Item "-image_base"
-.IP "\fB\-init\fR" 4
-.IX Item "-init"
-.IP "\fB\-install_name\fR" 4
-.IX Item "-install_name"
-.IP "\fB\-keep_private_externs\fR" 4
-.IX Item "-keep_private_externs"
-.IP "\fB\-multi_module\fR" 4
-.IX Item "-multi_module"
-.IP "\fB\-multiply_defined\fR" 4
-.IX Item "-multiply_defined"
-.IP "\fB\-multiply_defined_unused\fR" 4
-.IX Item "-multiply_defined_unused"
-.IP "\fB\-noall_load\fR" 4
-.IX Item "-noall_load"
-.IP "\fB\-no_dead_strip_inits_and_terms\fR" 4
-.IX Item "-no_dead_strip_inits_and_terms"
-.IP "\fB\-nofixprebinding\fR" 4
-.IX Item "-nofixprebinding"
-.IP "\fB\-nomultidefs\fR" 4
-.IX Item "-nomultidefs"
-.IP "\fB\-noprebind\fR" 4
-.IX Item "-noprebind"
-.IP "\fB\-noseglinkedit\fR" 4
-.IX Item "-noseglinkedit"
-.IP "\fB\-pagezero_size\fR" 4
-.IX Item "-pagezero_size"
-.IP "\fB\-prebind\fR" 4
-.IX Item "-prebind"
-.IP "\fB\-prebind_all_twolevel_modules\fR" 4
-.IX Item "-prebind_all_twolevel_modules"
-.IP "\fB\-private_bundle\fR" 4
-.IX Item "-private_bundle"
-.IP "\fB\-read_only_relocs\fR" 4
-.IX Item "-read_only_relocs"
-.IP "\fB\-sectalign\fR" 4
-.IX Item "-sectalign"
-.IP "\fB\-sectobjectsymbols\fR" 4
-.IX Item "-sectobjectsymbols"
-.IP "\fB\-whyload\fR" 4
-.IX Item "-whyload"
-.IP "\fB\-seg1addr\fR" 4
-.IX Item "-seg1addr"
-.IP "\fB\-sectcreate\fR" 4
-.IX Item "-sectcreate"
-.IP "\fB\-sectobjectsymbols\fR" 4
-.IX Item "-sectobjectsymbols"
-.IP "\fB\-sectorder\fR" 4
-.IX Item "-sectorder"
-.IP "\fB\-segaddr\fR" 4
-.IX Item "-segaddr"
-.IP "\fB\-segs_read_only_addr\fR" 4
-.IX Item "-segs_read_only_addr"
-.IP "\fB\-segs_read_write_addr\fR" 4
-.IX Item "-segs_read_write_addr"
-.IP "\fB\-seg_addr_table\fR" 4
-.IX Item "-seg_addr_table"
-.IP "\fB\-seg_addr_table_filename\fR" 4
-.IX Item "-seg_addr_table_filename"
-.IP "\fB\-seglinkedit\fR" 4
-.IX Item "-seglinkedit"
-.IP "\fB\-segprot\fR" 4
-.IX Item "-segprot"
-.IP "\fB\-segs_read_only_addr\fR" 4
-.IX Item "-segs_read_only_addr"
-.IP "\fB\-segs_read_write_addr\fR" 4
-.IX Item "-segs_read_write_addr"
-.IP "\fB\-single_module\fR" 4
-.IX Item "-single_module"
-.IP "\fB\-static\fR" 4
-.IX Item "-static"
-.IP "\fB\-sub_library\fR" 4
-.IX Item "-sub_library"
-.IP "\fB\-sub_umbrella\fR" 4
-.IX Item "-sub_umbrella"
-.IP "\fB\-twolevel_namespace\fR" 4
-.IX Item "-twolevel_namespace"
-.IP "\fB\-umbrella\fR" 4
-.IX Item "-umbrella"
-.IP "\fB\-undefined\fR" 4
-.IX Item "-undefined"
-.IP "\fB\-unexported_symbols_list\fR" 4
-.IX Item "-unexported_symbols_list"
-.IP "\fB\-weak_reference_mismatches\fR" 4
-.IX Item "-weak_reference_mismatches"
-.IP "\fB\-whatsloaded\fR" 4
-.IX Item "-whatsloaded"
-.PD
-These options are passed to the Darwin linker. The Darwin linker man page
-describes them in detail.
-.PP
-\fI\s-1DEC\s0 Alpha Options\fR
-.IX Subsection "DEC Alpha Options"
-.PP
-These \fB\-m\fR options are defined for the \s-1DEC\s0 Alpha implementations:
-.IP "\fB\-mno\-soft\-float\fR" 4
-.IX Item "-mno-soft-float"
-.PD 0
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-.PD
-Use (do not use) the hardware floating-point instructions for
-floating-point operations. When \fB\-msoft\-float\fR is specified,
-functions in \fIlibgcc.a\fR are used to perform floating-point
-operations. Unless they are replaced by routines that emulate the
-floating-point operations, or compiled in such a way as to call such
-emulations routines, these routines issue floating-point
-operations. If you are compiling for an Alpha without floating-point
-operations, you must ensure that the library is built so as not to call
-them.
-.Sp
-Note that Alpha implementations without floating-point operations are
-required to have floating-point registers.
-.IP "\fB\-mfp\-reg\fR" 4
-.IX Item "-mfp-reg"
-.PD 0
-.IP "\fB\-mno\-fp\-regs\fR" 4
-.IX Item "-mno-fp-regs"
-.PD
-Generate code that uses (does not use) the floating-point register set.
-\&\fB\-mno\-fp\-regs\fR implies \fB\-msoft\-float\fR. If the floating-point
-register set is not used, floating-point operands are passed in integer
-registers as if they were integers and floating-point results are passed
-in \f(CW$0\fR instead of \f(CW$f0\fR. This is a non-standard calling sequence,
-so any function with a floating-point argument or return value called by code
-compiled with \fB\-mno\-fp\-regs\fR must also be compiled with that
-option.
-.Sp
-A typical use of this option is building a kernel that does not use,
-and hence need not save and restore, any floating-point registers.
-.IP "\fB\-mieee\fR" 4
-.IX Item "-mieee"
-The Alpha architecture implements floating-point hardware optimized for
-maximum performance. It is mostly compliant with the \s-1IEEE\s0 floating-point
-standard. However, for full compliance, software assistance is
-required. This option generates code fully IEEE-compliant code
-\&\fIexcept\fR that the \fIinexact-flag\fR is not maintained (see below).
-If this option is turned on, the preprocessor macro \f(CW\*(C`_IEEE_FP\*(C'\fR is
-defined during compilation. The resulting code is less efficient but is
-able to correctly support denormalized numbers and exceptional \s-1IEEE\s0
-values such as not-a-number and plus/minus infinity. Other Alpha
-compilers call this option \fB\-ieee_with_no_inexact\fR.
-.IP "\fB\-mieee\-with\-inexact\fR" 4
-.IX Item "-mieee-with-inexact"
-This is like \fB\-mieee\fR except the generated code also maintains
-the \s-1IEEE \s0\fIinexact-flag\fR. Turning on this option causes the
-generated code to implement fully-compliant \s-1IEEE\s0 math. In addition to
-\&\f(CW\*(C`_IEEE_FP\*(C'\fR, \f(CW\*(C`_IEEE_FP_EXACT\*(C'\fR is defined as a preprocessor
-macro. On some Alpha implementations the resulting code may execute
-significantly slower than the code generated by default. Since there is
-very little code that depends on the \fIinexact-flag\fR, you should
-normally not specify this option. Other Alpha compilers call this
-option \fB\-ieee_with_inexact\fR.
-.IP "\fB\-mfp\-trap\-mode=\fR\fItrap-mode\fR" 4
-.IX Item "-mfp-trap-mode=trap-mode"
-This option controls what floating-point related traps are enabled.
-Other Alpha compilers call this option \fB\-fptm\fR \fItrap-mode\fR.
-The trap mode can be set to one of four values:
-.RS 4
-.IP "\fBn\fR" 4
-.IX Item "n"
-This is the default (normal) setting. The only traps that are enabled
-are the ones that cannot be disabled in software (e.g., division by zero
-trap).
-.IP "\fBu\fR" 4
-.IX Item "u"
-In addition to the traps enabled by \fBn\fR, underflow traps are enabled
-as well.
-.IP "\fBsu\fR" 4
-.IX Item "su"
-Like \fBu\fR, but the instructions are marked to be safe for software
-completion (see Alpha architecture manual for details).
-.IP "\fBsui\fR" 4
-.IX Item "sui"
-Like \fBsu\fR, but inexact traps are enabled as well.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mfp\-rounding\-mode=\fR\fIrounding-mode\fR" 4
-.IX Item "-mfp-rounding-mode=rounding-mode"
-Selects the \s-1IEEE\s0 rounding mode. Other Alpha compilers call this option
-\&\fB\-fprm\fR \fIrounding-mode\fR. The \fIrounding-mode\fR can be one
-of:
-.RS 4
-.IP "\fBn\fR" 4
-.IX Item "n"
-Normal \s-1IEEE\s0 rounding mode. Floating-point numbers are rounded towards
-the nearest machine number or towards the even machine number in case
-of a tie.
-.IP "\fBm\fR" 4
-.IX Item "m"
-Round towards minus infinity.
-.IP "\fBc\fR" 4
-.IX Item "c"
-Chopped rounding mode. Floating-point numbers are rounded towards zero.
-.IP "\fBd\fR" 4
-.IX Item "d"
-Dynamic rounding mode. A field in the floating-point control register
-(\fIfpcr\fR, see Alpha architecture reference manual) controls the
-rounding mode in effect. The C library initializes this register for
-rounding towards plus infinity. Thus, unless your program modifies the
-\&\fIfpcr\fR, \fBd\fR corresponds to round towards plus infinity.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mtrap\-precision=\fR\fItrap-precision\fR" 4
-.IX Item "-mtrap-precision=trap-precision"
-In the Alpha architecture, floating-point traps are imprecise. This
-means without software assistance it is impossible to recover from a
-floating trap and program execution normally needs to be terminated.
-\&\s-1GCC\s0 can generate code that can assist operating system trap handlers
-in determining the exact location that caused a floating-point trap.
-Depending on the requirements of an application, different levels of
-precisions can be selected:
-.RS 4
-.IP "\fBp\fR" 4
-.IX Item "p"
-Program precision. This option is the default and means a trap handler
-can only identify which program caused a floating-point exception.
-.IP "\fBf\fR" 4
-.IX Item "f"
-Function precision. The trap handler can determine the function that
-caused a floating-point exception.
-.IP "\fBi\fR" 4
-.IX Item "i"
-Instruction precision. The trap handler can determine the exact
-instruction that caused a floating-point exception.
-.RE
-.RS 4
-.Sp
-Other Alpha compilers provide the equivalent options called
-\&\fB\-scope_safe\fR and \fB\-resumption_safe\fR.
-.RE
-.IP "\fB\-mieee\-conformant\fR" 4
-.IX Item "-mieee-conformant"
-This option marks the generated code as \s-1IEEE\s0 conformant. You must not
-use this option unless you also specify \fB\-mtrap\-precision=i\fR and either
-\&\fB\-mfp\-trap\-mode=su\fR or \fB\-mfp\-trap\-mode=sui\fR. Its only effect
-is to emit the line \fB.eflag 48\fR in the function prologue of the
-generated assembly file.
-.IP "\fB\-mbuild\-constants\fR" 4
-.IX Item "-mbuild-constants"
-Normally \s-1GCC\s0 examines a 32\- or 64\-bit integer constant to
-see if it can construct it from smaller constants in two or three
-instructions. If it cannot, it outputs the constant as a literal and
-generates code to load it from the data segment at run time.
-.Sp
-Use this option to require \s-1GCC\s0 to construct \fIall\fR integer constants
-using code, even if it takes more instructions (the maximum is six).
-.Sp
-You typically use this option to build a shared library dynamic
-loader. Itself a shared library, it must relocate itself in memory
-before it can find the variables and constants in its own data segment.
-.IP "\fB\-mbwx\fR" 4
-.IX Item "-mbwx"
-.PD 0
-.IP "\fB\-mno\-bwx\fR" 4
-.IX Item "-mno-bwx"
-.IP "\fB\-mcix\fR" 4
-.IX Item "-mcix"
-.IP "\fB\-mno\-cix\fR" 4
-.IX Item "-mno-cix"
-.IP "\fB\-mfix\fR" 4
-.IX Item "-mfix"
-.IP "\fB\-mno\-fix\fR" 4
-.IX Item "-mno-fix"
-.IP "\fB\-mmax\fR" 4
-.IX Item "-mmax"
-.IP "\fB\-mno\-max\fR" 4
-.IX Item "-mno-max"
-.PD
-Indicate whether \s-1GCC\s0 should generate code to use the optional \s-1BWX,
-CIX, FIX\s0 and \s-1MAX\s0 instruction sets. The default is to use the instruction
-sets supported by the \s-1CPU\s0 type specified via \fB\-mcpu=\fR option or that
-of the \s-1CPU\s0 on which \s-1GCC\s0 was built if none is specified.
-.IP "\fB\-mfloat\-vax\fR" 4
-.IX Item "-mfloat-vax"
-.PD 0
-.IP "\fB\-mfloat\-ieee\fR" 4
-.IX Item "-mfloat-ieee"
-.PD
-Generate code that uses (does not use) \s-1VAX F\s0 and G floating-point
-arithmetic instead of \s-1IEEE\s0 single and double precision.
-.IP "\fB\-mexplicit\-relocs\fR" 4
-.IX Item "-mexplicit-relocs"
-.PD 0
-.IP "\fB\-mno\-explicit\-relocs\fR" 4
-.IX Item "-mno-explicit-relocs"
-.PD
-Older Alpha assemblers provided no way to generate symbol relocations
-except via assembler macros. Use of these macros does not allow
-optimal instruction scheduling. \s-1GNU\s0 binutils as of version 2.12
-supports a new syntax that allows the compiler to explicitly mark
-which relocations should apply to which instructions. This option
-is mostly useful for debugging, as \s-1GCC\s0 detects the capabilities of
-the assembler when it is built and sets the default accordingly.
-.IP "\fB\-msmall\-data\fR" 4
-.IX Item "-msmall-data"
-.PD 0
-.IP "\fB\-mlarge\-data\fR" 4
-.IX Item "-mlarge-data"
-.PD
-When \fB\-mexplicit\-relocs\fR is in effect, static data is
-accessed via \fIgp-relative\fR relocations. When \fB\-msmall\-data\fR
-is used, objects 8 bytes long or smaller are placed in a \fIsmall data area\fR
-(the \f(CW\*(C`.sdata\*(C'\fR and \f(CW\*(C`.sbss\*(C'\fR sections) and are accessed via
-16\-bit relocations off of the \f(CW$gp\fR register. This limits the
-size of the small data area to 64KB, but allows the variables to be
-directly accessed via a single instruction.
-.Sp
-The default is \fB\-mlarge\-data\fR. With this option the data area
-is limited to just below 2GB. Programs that require more than 2GB of
-data must use \f(CW\*(C`malloc\*(C'\fR or \f(CW\*(C`mmap\*(C'\fR to allocate the data in the
-heap instead of in the program's data segment.
-.Sp
-When generating code for shared libraries, \fB\-fpic\fR implies
-\&\fB\-msmall\-data\fR and \fB\-fPIC\fR implies \fB\-mlarge\-data\fR.
-.IP "\fB\-msmall\-text\fR" 4
-.IX Item "-msmall-text"
-.PD 0
-.IP "\fB\-mlarge\-text\fR" 4
-.IX Item "-mlarge-text"
-.PD
-When \fB\-msmall\-text\fR is used, the compiler assumes that the
-code of the entire program (or shared library) fits in 4MB, and is
-thus reachable with a branch instruction. When \fB\-msmall\-data\fR
-is used, the compiler can assume that all local symbols share the
-same \f(CW$gp\fR value, and thus reduce the number of instructions
-required for a function call from 4 to 1.
-.Sp
-The default is \fB\-mlarge\-text\fR.
-.IP "\fB\-mcpu=\fR\fIcpu_type\fR" 4
-.IX Item "-mcpu=cpu_type"
-Set the instruction set and instruction scheduling parameters for
-machine type \fIcpu_type\fR. You can specify either the \fB\s-1EV\s0\fR
-style name or the corresponding chip number. \s-1GCC\s0 supports scheduling
-parameters for the \s-1EV4, EV5\s0 and \s-1EV6\s0 family of processors and
-chooses the default values for the instruction set from the processor
-you specify. If you do not specify a processor type, \s-1GCC\s0 defaults
-to the processor on which the compiler was built.
-.Sp
-Supported values for \fIcpu_type\fR are
-.RS 4
-.IP "\fBev4\fR" 4
-.IX Item "ev4"
-.PD 0
-.IP "\fBev45\fR" 4
-.IX Item "ev45"
-.IP "\fB21064\fR" 4
-.IX Item "21064"
-.PD
-Schedules as an \s-1EV4\s0 and has no instruction set extensions.
-.IP "\fBev5\fR" 4
-.IX Item "ev5"
-.PD 0
-.IP "\fB21164\fR" 4
-.IX Item "21164"
-.PD
-Schedules as an \s-1EV5\s0 and has no instruction set extensions.
-.IP "\fBev56\fR" 4
-.IX Item "ev56"
-.PD 0
-.IP "\fB21164a\fR" 4
-.IX Item "21164a"
-.PD
-Schedules as an \s-1EV5\s0 and supports the \s-1BWX\s0 extension.
-.IP "\fBpca56\fR" 4
-.IX Item "pca56"
-.PD 0
-.IP "\fB21164pc\fR" 4
-.IX Item "21164pc"
-.IP "\fB21164PC\fR" 4
-.IX Item "21164PC"
-.PD
-Schedules as an \s-1EV5\s0 and supports the \s-1BWX\s0 and \s-1MAX\s0 extensions.
-.IP "\fBev6\fR" 4
-.IX Item "ev6"
-.PD 0
-.IP "\fB21264\fR" 4
-.IX Item "21264"
-.PD
-Schedules as an \s-1EV6\s0 and supports the \s-1BWX, FIX,\s0 and \s-1MAX\s0 extensions.
-.IP "\fBev67\fR" 4
-.IX Item "ev67"
-.PD 0
-.IP "\fB21264a\fR" 4
-.IX Item "21264a"
-.PD
-Schedules as an \s-1EV6\s0 and supports the \s-1BWX, CIX, FIX,\s0 and \s-1MAX\s0 extensions.
-.RE
-.RS 4
-.Sp
-Native toolchains also support the value \fBnative\fR,
-which selects the best architecture option for the host processor.
-\&\fB\-mcpu=native\fR has no effect if \s-1GCC\s0 does not recognize
-the processor.
-.RE
-.IP "\fB\-mtune=\fR\fIcpu_type\fR" 4
-.IX Item "-mtune=cpu_type"
-Set only the instruction scheduling parameters for machine type
-\&\fIcpu_type\fR. The instruction set is not changed.
-.Sp
-Native toolchains also support the value \fBnative\fR,
-which selects the best architecture option for the host processor.
-\&\fB\-mtune=native\fR has no effect if \s-1GCC\s0 does not recognize
-the processor.
-.IP "\fB\-mmemory\-latency=\fR\fItime\fR" 4
-.IX Item "-mmemory-latency=time"
-Sets the latency the scheduler should assume for typical memory
-references as seen by the application. This number is highly
-dependent on the memory access patterns used by the application
-and the size of the external cache on the machine.
-.Sp
-Valid options for \fItime\fR are
-.RS 4
-.IP "\fInumber\fR" 4
-.IX Item "number"
-A decimal number representing clock cycles.
-.IP "\fBL1\fR" 4
-.IX Item "L1"
-.PD 0
-.IP "\fBL2\fR" 4
-.IX Item "L2"
-.IP "\fBL3\fR" 4
-.IX Item "L3"
-.IP "\fBmain\fR" 4
-.IX Item "main"
-.PD
-The compiler contains estimates of the number of clock cycles for
-\&\*(L"typical\*(R" \s-1EV4 & EV5\s0 hardware for the Level 1, 2 & 3 caches
-(also called Dcache, Scache, and Bcache), as well as to main memory.
-Note that L3 is only valid for \s-1EV5.\s0
-.RE
-.RS 4
-.RE
-.PP
-\fI\s-1FR30\s0 Options\fR
-.IX Subsection "FR30 Options"
-.PP
-These options are defined specifically for the \s-1FR30\s0 port.
-.IP "\fB\-msmall\-model\fR" 4
-.IX Item "-msmall-model"
-Use the small address space model. This can produce smaller code, but
-it does assume that all symbolic values and addresses fit into a
-20\-bit range.
-.IP "\fB\-mno\-lsim\fR" 4
-.IX Item "-mno-lsim"
-Assume that runtime support has been provided and so there is no need
-to include the simulator library (\fIlibsim.a\fR) on the linker
-command line.
-.PP
-\fI\s-1FRV\s0 Options\fR
-.IX Subsection "FRV Options"
-.IP "\fB\-mgpr\-32\fR" 4
-.IX Item "-mgpr-32"
-Only use the first 32 general-purpose registers.
-.IP "\fB\-mgpr\-64\fR" 4
-.IX Item "-mgpr-64"
-Use all 64 general-purpose registers.
-.IP "\fB\-mfpr\-32\fR" 4
-.IX Item "-mfpr-32"
-Use only the first 32 floating-point registers.
-.IP "\fB\-mfpr\-64\fR" 4
-.IX Item "-mfpr-64"
-Use all 64 floating-point registers.
-.IP "\fB\-mhard\-float\fR" 4
-.IX Item "-mhard-float"
-Use hardware instructions for floating-point operations.
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-Use library routines for floating-point operations.
-.IP "\fB\-malloc\-cc\fR" 4
-.IX Item "-malloc-cc"
-Dynamically allocate condition code registers.
-.IP "\fB\-mfixed\-cc\fR" 4
-.IX Item "-mfixed-cc"
-Do not try to dynamically allocate condition code registers, only
-use \f(CW\*(C`icc0\*(C'\fR and \f(CW\*(C`fcc0\*(C'\fR.
-.IP "\fB\-mdword\fR" 4
-.IX Item "-mdword"
-Change \s-1ABI\s0 to use double word insns.
-.IP "\fB\-mno\-dword\fR" 4
-.IX Item "-mno-dword"
-Do not use double word instructions.
-.IP "\fB\-mdouble\fR" 4
-.IX Item "-mdouble"
-Use floating-point double instructions.
-.IP "\fB\-mno\-double\fR" 4
-.IX Item "-mno-double"
-Do not use floating-point double instructions.
-.IP "\fB\-mmedia\fR" 4
-.IX Item "-mmedia"
-Use media instructions.
-.IP "\fB\-mno\-media\fR" 4
-.IX Item "-mno-media"
-Do not use media instructions.
-.IP "\fB\-mmuladd\fR" 4
-.IX Item "-mmuladd"
-Use multiply and add/subtract instructions.
-.IP "\fB\-mno\-muladd\fR" 4
-.IX Item "-mno-muladd"
-Do not use multiply and add/subtract instructions.
-.IP "\fB\-mfdpic\fR" 4
-.IX Item "-mfdpic"
-Select the \s-1FDPIC ABI,\s0 which uses function descriptors to represent
-pointers to functions. Without any PIC/PIE\-related options, it
-implies \fB\-fPIE\fR. With \fB\-fpic\fR or \fB\-fpie\fR, it
-assumes \s-1GOT\s0 entries and small data are within a 12\-bit range from the
-\&\s-1GOT\s0 base address; with \fB\-fPIC\fR or \fB\-fPIE\fR, \s-1GOT\s0 offsets
-are computed with 32 bits.
-With a \fBbfin-elf\fR target, this option implies \fB\-msim\fR.
-.IP "\fB\-minline\-plt\fR" 4
-.IX Item "-minline-plt"
-Enable inlining of \s-1PLT\s0 entries in function calls to functions that are
-not known to bind locally. It has no effect without \fB\-mfdpic\fR.
-It's enabled by default if optimizing for speed and compiling for
-shared libraries (i.e., \fB\-fPIC\fR or \fB\-fpic\fR), or when an
-optimization option such as \fB\-O3\fR or above is present in the
-command line.
-.IP "\fB\-mTLS\fR" 4
-.IX Item "-mTLS"
-Assume a large \s-1TLS\s0 segment when generating thread-local code.
-.IP "\fB\-mtls\fR" 4
-.IX Item "-mtls"
-Do not assume a large \s-1TLS\s0 segment when generating thread-local code.
-.IP "\fB\-mgprel\-ro\fR" 4
-.IX Item "-mgprel-ro"
-Enable the use of \f(CW\*(C`GPREL\*(C'\fR relocations in the \s-1FDPIC ABI\s0 for data
-that is known to be in read-only sections. It's enabled by default,
-except for \fB\-fpic\fR or \fB\-fpie\fR: even though it may help
-make the global offset table smaller, it trades 1 instruction for 4.
-With \fB\-fPIC\fR or \fB\-fPIE\fR, it trades 3 instructions for 4,
-one of which may be shared by multiple symbols, and it avoids the need
-for a \s-1GOT\s0 entry for the referenced symbol, so it's more likely to be a
-win. If it is not, \fB\-mno\-gprel\-ro\fR can be used to disable it.
-.IP "\fB\-multilib\-library\-pic\fR" 4
-.IX Item "-multilib-library-pic"
-Link with the (library, not \s-1FD\s0) pic libraries. It's implied by
-\&\fB\-mlibrary\-pic\fR, as well as by \fB\-fPIC\fR and
-\&\fB\-fpic\fR without \fB\-mfdpic\fR. You should never have to use
-it explicitly.
-.IP "\fB\-mlinked\-fp\fR" 4
-.IX Item "-mlinked-fp"
-Follow the \s-1EABI\s0 requirement of always creating a frame pointer whenever
-a stack frame is allocated. This option is enabled by default and can
-be disabled with \fB\-mno\-linked\-fp\fR.
-.IP "\fB\-mlong\-calls\fR" 4
-.IX Item "-mlong-calls"
-Use indirect addressing to call functions outside the current
-compilation unit. This allows the functions to be placed anywhere
-within the 32\-bit address space.
-.IP "\fB\-malign\-labels\fR" 4
-.IX Item "-malign-labels"
-Try to align labels to an 8\-byte boundary by inserting NOPs into the
-previous packet. This option only has an effect when \s-1VLIW\s0 packing
-is enabled. It doesn't create new packets; it merely adds NOPs to
-existing ones.
-.IP "\fB\-mlibrary\-pic\fR" 4
-.IX Item "-mlibrary-pic"
-Generate position-independent \s-1EABI\s0 code.
-.IP "\fB\-macc\-4\fR" 4
-.IX Item "-macc-4"
-Use only the first four media accumulator registers.
-.IP "\fB\-macc\-8\fR" 4
-.IX Item "-macc-8"
-Use all eight media accumulator registers.
-.IP "\fB\-mpack\fR" 4
-.IX Item "-mpack"
-Pack \s-1VLIW\s0 instructions.
-.IP "\fB\-mno\-pack\fR" 4
-.IX Item "-mno-pack"
-Do not pack \s-1VLIW\s0 instructions.
-.IP "\fB\-mno\-eflags\fR" 4
-.IX Item "-mno-eflags"
-Do not mark \s-1ABI\s0 switches in e_flags.
-.IP "\fB\-mcond\-move\fR" 4
-.IX Item "-mcond-move"
-Enable the use of conditional-move instructions (default).
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-mno\-cond\-move\fR" 4
-.IX Item "-mno-cond-move"
-Disable the use of conditional-move instructions.
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-mscc\fR" 4
-.IX Item "-mscc"
-Enable the use of conditional set instructions (default).
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-mno\-scc\fR" 4
-.IX Item "-mno-scc"
-Disable the use of conditional set instructions.
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-mcond\-exec\fR" 4
-.IX Item "-mcond-exec"
-Enable the use of conditional execution (default).
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-mno\-cond\-exec\fR" 4
-.IX Item "-mno-cond-exec"
-Disable the use of conditional execution.
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-mvliw\-branch\fR" 4
-.IX Item "-mvliw-branch"
-Run a pass to pack branches into \s-1VLIW\s0 instructions (default).
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-mno\-vliw\-branch\fR" 4
-.IX Item "-mno-vliw-branch"
-Do not run a pass to pack branches into \s-1VLIW\s0 instructions.
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-mmulti\-cond\-exec\fR" 4
-.IX Item "-mmulti-cond-exec"
-Enable optimization of \f(CW\*(C`&&\*(C'\fR and \f(CW\*(C`||\*(C'\fR in conditional execution
-(default).
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-mno\-multi\-cond\-exec\fR" 4
-.IX Item "-mno-multi-cond-exec"
-Disable optimization of \f(CW\*(C`&&\*(C'\fR and \f(CW\*(C`||\*(C'\fR in conditional execution.
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-mnested\-cond\-exec\fR" 4
-.IX Item "-mnested-cond-exec"
-Enable nested conditional execution optimizations (default).
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-mno\-nested\-cond\-exec\fR" 4
-.IX Item "-mno-nested-cond-exec"
-Disable nested conditional execution optimizations.
-.Sp
-This switch is mainly for debugging the compiler and will likely be removed
-in a future version.
-.IP "\fB\-moptimize\-membar\fR" 4
-.IX Item "-moptimize-membar"
-This switch removes redundant \f(CW\*(C`membar\*(C'\fR instructions from the
-compiler-generated code. It is enabled by default.
-.IP "\fB\-mno\-optimize\-membar\fR" 4
-.IX Item "-mno-optimize-membar"
-This switch disables the automatic removal of redundant \f(CW\*(C`membar\*(C'\fR
-instructions from the generated code.
-.IP "\fB\-mtomcat\-stats\fR" 4
-.IX Item "-mtomcat-stats"
-Cause gas to print out tomcat statistics.
-.IP "\fB\-mcpu=\fR\fIcpu\fR" 4
-.IX Item "-mcpu=cpu"
-Select the processor type for which to generate code. Possible values are
-\&\fBfrv\fR, \fBfr550\fR, \fBtomcat\fR, \fBfr500\fR, \fBfr450\fR,
-\&\fBfr405\fR, \fBfr400\fR, \fBfr300\fR and \fBsimple\fR.
-.PP
-\fIGNU/Linux Options\fR
-.IX Subsection "GNU/Linux Options"
-.PP
-These \fB\-m\fR options are defined for GNU/Linux targets:
-.IP "\fB\-mglibc\fR" 4
-.IX Item "-mglibc"
-Use the \s-1GNU C\s0 library. This is the default except
-on \fB*\-*\-linux\-*uclibc*\fR and \fB*\-*\-linux\-*android*\fR targets.
-.IP "\fB\-muclibc\fR" 4
-.IX Item "-muclibc"
-Use uClibc C library. This is the default on
-\&\fB*\-*\-linux\-*uclibc*\fR targets.
-.IP "\fB\-mbionic\fR" 4
-.IX Item "-mbionic"
-Use Bionic C library. This is the default on
-\&\fB*\-*\-linux\-*android*\fR targets.
-.IP "\fB\-mandroid\fR" 4
-.IX Item "-mandroid"
-Compile code compatible with Android platform. This is the default on
-\&\fB*\-*\-linux\-*android*\fR targets.
-.Sp
-When compiling, this option enables \fB\-mbionic\fR, \fB\-fPIC\fR,
-\&\fB\-fno\-exceptions\fR and \fB\-fno\-rtti\fR by default. When linking,
-this option makes the \s-1GCC\s0 driver pass Android-specific options to the linker.
-Finally, this option causes the preprocessor macro \f(CW\*(C`_\|_ANDROID_\|_\*(C'\fR
-to be defined.
-.IP "\fB\-tno\-android\-cc\fR" 4
-.IX Item "-tno-android-cc"
-Disable compilation effects of \fB\-mandroid\fR, i.e., do not enable
-\&\fB\-mbionic\fR, \fB\-fPIC\fR, \fB\-fno\-exceptions\fR and
-\&\fB\-fno\-rtti\fR by default.
-.IP "\fB\-tno\-android\-ld\fR" 4
-.IX Item "-tno-android-ld"
-Disable linking effects of \fB\-mandroid\fR, i.e., pass standard Linux
-linking options to the linker.
-.PP
-\fIH8/300 Options\fR
-.IX Subsection "H8/300 Options"
-.PP
-These \fB\-m\fR options are defined for the H8/300 implementations:
-.IP "\fB\-mrelax\fR" 4
-.IX Item "-mrelax"
-Shorten some address references at link time, when possible; uses the
-linker option \fB\-relax\fR.
-.IP "\fB\-mh\fR" 4
-.IX Item "-mh"
-Generate code for the H8/300H.
-.IP "\fB\-ms\fR" 4
-.IX Item "-ms"
-Generate code for the H8S.
-.IP "\fB\-mn\fR" 4
-.IX Item "-mn"
-Generate code for the H8S and H8/300H in the normal mode. This switch
-must be used either with \fB\-mh\fR or \fB\-ms\fR.
-.IP "\fB\-ms2600\fR" 4
-.IX Item "-ms2600"
-Generate code for the H8S/2600. This switch must be used with \fB\-ms\fR.
-.IP "\fB\-mexr\fR" 4
-.IX Item "-mexr"
-Extended registers are stored on stack before execution of function
-with monitor attribute. Default option is \fB\-mexr\fR.
-This option is valid only for H8S targets.
-.IP "\fB\-mno\-exr\fR" 4
-.IX Item "-mno-exr"
-Extended registers are not stored on stack before execution of function
-with monitor attribute. Default option is \fB\-mno\-exr\fR.
-This option is valid only for H8S targets.
-.IP "\fB\-mint32\fR" 4
-.IX Item "-mint32"
-Make \f(CW\*(C`int\*(C'\fR data 32 bits by default.
-.IP "\fB\-malign\-300\fR" 4
-.IX Item "-malign-300"
-On the H8/300H and H8S, use the same alignment rules as for the H8/300.
-The default for the H8/300H and H8S is to align longs and floats on
-4\-byte boundaries.
-\&\fB\-malign\-300\fR causes them to be aligned on 2\-byte boundaries.
-This option has no effect on the H8/300.
-.PP
-\fI\s-1HPPA\s0 Options\fR
-.IX Subsection "HPPA Options"
-.PP
-These \fB\-m\fR options are defined for the \s-1HPPA\s0 family of computers:
-.IP "\fB\-march=\fR\fIarchitecture-type\fR" 4
-.IX Item "-march=architecture-type"
-Generate code for the specified architecture. The choices for
-\&\fIarchitecture-type\fR are \fB1.0\fR for \s-1PA 1.0, \s0\fB1.1\fR for \s-1PA
-1.1,\s0 and \fB2.0\fR for \s-1PA 2.0\s0 processors. Refer to
-\&\fI/usr/lib/sched.models\fR on an HP-UX system to determine the proper
-architecture option for your machine. Code compiled for lower numbered
-architectures runs on higher numbered architectures, but not the
-other way around.
-.IP "\fB\-mpa\-risc\-1\-0\fR" 4
-.IX Item "-mpa-risc-1-0"
-.PD 0
-.IP "\fB\-mpa\-risc\-1\-1\fR" 4
-.IX Item "-mpa-risc-1-1"
-.IP "\fB\-mpa\-risc\-2\-0\fR" 4
-.IX Item "-mpa-risc-2-0"
-.PD
-Synonyms for \fB\-march=1.0\fR, \fB\-march=1.1\fR, and \fB\-march=2.0\fR respectively.
-.IP "\fB\-mjump\-in\-delay\fR" 4
-.IX Item "-mjump-in-delay"
-Fill delay slots of function calls with unconditional jump instructions
-by modifying the return pointer for the function call to be the target
-of the conditional jump.
-.IP "\fB\-mdisable\-fpregs\fR" 4
-.IX Item "-mdisable-fpregs"
-Prevent floating-point registers from being used in any manner. This is
-necessary for compiling kernels that perform lazy context switching of
-floating-point registers. If you use this option and attempt to perform
-floating-point operations, the compiler aborts.
-.IP "\fB\-mdisable\-indexing\fR" 4
-.IX Item "-mdisable-indexing"
-Prevent the compiler from using indexing address modes. This avoids some
-rather obscure problems when compiling \s-1MIG\s0 generated code under \s-1MACH.\s0
-.IP "\fB\-mno\-space\-regs\fR" 4
-.IX Item "-mno-space-regs"
-Generate code that assumes the target has no space registers. This allows
-\&\s-1GCC\s0 to generate faster indirect calls and use unscaled index address modes.
-.Sp
-Such code is suitable for level 0 \s-1PA\s0 systems and kernels.
-.IP "\fB\-mfast\-indirect\-calls\fR" 4
-.IX Item "-mfast-indirect-calls"
-Generate code that assumes calls never cross space boundaries. This
-allows \s-1GCC\s0 to emit code that performs faster indirect calls.
-.Sp
-This option does not work in the presence of shared libraries or nested
-functions.
-.IP "\fB\-mfixed\-range=\fR\fIregister-range\fR" 4
-.IX Item "-mfixed-range=register-range"
-Generate code treating the given register range as fixed registers.
-A fixed register is one that the register allocator cannot use. This is
-useful when compiling kernel code. A register range is specified as
-two registers separated by a dash. Multiple register ranges can be
-specified separated by a comma.
-.IP "\fB\-mlong\-load\-store\fR" 4
-.IX Item "-mlong-load-store"
-Generate 3\-instruction load and store sequences as sometimes required by
-the HP-UX 10 linker. This is equivalent to the \fB+k\fR option to
-the \s-1HP\s0 compilers.
-.IP "\fB\-mportable\-runtime\fR" 4
-.IX Item "-mportable-runtime"
-Use the portable calling conventions proposed by \s-1HP\s0 for \s-1ELF\s0 systems.
-.IP "\fB\-mgas\fR" 4
-.IX Item "-mgas"
-Enable the use of assembler directives only \s-1GAS\s0 understands.
-.IP "\fB\-mschedule=\fR\fIcpu-type\fR" 4
-.IX Item "-mschedule=cpu-type"
-Schedule code according to the constraints for the machine type
-\&\fIcpu-type\fR. The choices for \fIcpu-type\fR are \fB700\fR
-\&\fB7100\fR, \fB7100LC\fR, \fB7200\fR, \fB7300\fR and \fB8000\fR. Refer
-to \fI/usr/lib/sched.models\fR on an HP-UX system to determine the
-proper scheduling option for your machine. The default scheduling is
-\&\fB8000\fR.
-.IP "\fB\-mlinker\-opt\fR" 4
-.IX Item "-mlinker-opt"
-Enable the optimization pass in the HP-UX linker. Note this makes symbolic
-debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
-linkers in which they give bogus error messages when linking some programs.
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-Generate output containing library calls for floating point.
-\&\fBWarning:\fR the requisite libraries are not available for all \s-1HPPA\s0
-targets. Normally the facilities of the machine's usual C compiler are
-used, but this cannot be done directly in cross-compilation. You must make
-your own arrangements to provide suitable library functions for
-cross-compilation.
-.Sp
-\&\fB\-msoft\-float\fR changes the calling convention in the output file;
-therefore, it is only useful if you compile \fIall\fR of a program with
-this option. In particular, you need to compile \fIlibgcc.a\fR, the
-library that comes with \s-1GCC,\s0 with \fB\-msoft\-float\fR in order for
-this to work.
-.IP "\fB\-msio\fR" 4
-.IX Item "-msio"
-Generate the predefine, \f(CW\*(C`_SIO\*(C'\fR, for server \s-1IO. \s0 The default is
-\&\fB\-mwsio\fR. This generates the predefines, \f(CW\*(C`_\|_hp9000s700\*(C'\fR,
-\&\f(CW\*(C`_\|_hp9000s700_\|_\*(C'\fR and \f(CW\*(C`_WSIO\*(C'\fR, for workstation \s-1IO. \s0 These
-options are available under HP-UX and HI-UX.
-.IP "\fB\-mgnu\-ld\fR" 4
-.IX Item "-mgnu-ld"
-Use options specific to \s-1GNU \s0\fBld\fR.
-This passes \fB\-shared\fR to \fBld\fR when
-building a shared library. It is the default when \s-1GCC\s0 is configured,
-explicitly or implicitly, with the \s-1GNU\s0 linker. This option does not
-affect which \fBld\fR is called; it only changes what parameters
-are passed to that \fBld\fR.
-The \fBld\fR that is called is determined by the
-\&\fB\-\-with\-ld\fR configure option, \s-1GCC\s0's program search path, and
-finally by the user's \fB\s-1PATH\s0\fR. The linker used by \s-1GCC\s0 can be printed
-using \fBwhich `gcc \-print\-prog\-name=ld`\fR. This option is only available
-on the 64\-bit HP-UX \s-1GCC,\s0 i.e. configured with \fBhppa*64*\-*\-hpux*\fR.
-.IP "\fB\-mhp\-ld\fR" 4
-.IX Item "-mhp-ld"
-Use options specific to \s-1HP \s0\fBld\fR.
-This passes \fB\-b\fR to \fBld\fR when building
-a shared library and passes \fB+Accept TypeMismatch\fR to \fBld\fR on all
-links. It is the default when \s-1GCC\s0 is configured, explicitly or
-implicitly, with the \s-1HP\s0 linker. This option does not affect
-which \fBld\fR is called; it only changes what parameters are passed to that
-\&\fBld\fR.
-The \fBld\fR that is called is determined by the \fB\-\-with\-ld\fR
-configure option, \s-1GCC\s0's program search path, and finally by the user's
-\&\fB\s-1PATH\s0\fR. The linker used by \s-1GCC\s0 can be printed using \fBwhich
-`gcc \-print\-prog\-name=ld`\fR. This option is only available on the 64\-bit
-HP-UX \s-1GCC,\s0 i.e. configured with \fBhppa*64*\-*\-hpux*\fR.
-.IP "\fB\-mlong\-calls\fR" 4
-.IX Item "-mlong-calls"
-Generate code that uses long call sequences. This ensures that a call
-is always able to reach linker generated stubs. The default is to generate
-long calls only when the distance from the call site to the beginning
-of the function or translation unit, as the case may be, exceeds a
-predefined limit set by the branch type being used. The limits for
-normal calls are 7,600,000 and 240,000 bytes, respectively for the
-\&\s-1PA 2.0\s0 and \s-1PA 1.X\s0 architectures. Sibcalls are always limited at
-240,000 bytes.
-.Sp
-Distances are measured from the beginning of functions when using the
-\&\fB\-ffunction\-sections\fR option, or when using the \fB\-mgas\fR
-and \fB\-mno\-portable\-runtime\fR options together under HP-UX with
-the \s-1SOM\s0 linker.
-.Sp
-It is normally not desirable to use this option as it degrades
-performance. However, it may be useful in large applications,
-particularly when partial linking is used to build the application.
-.Sp
-The types of long calls used depends on the capabilities of the
-assembler and linker, and the type of code being generated. The
-impact on systems that support long absolute calls, and long pic
-symbol-difference or pc-relative calls should be relatively small.
-However, an indirect call is used on 32\-bit \s-1ELF\s0 systems in pic code
-and it is quite long.
-.IP "\fB\-munix=\fR\fIunix-std\fR" 4
-.IX Item "-munix=unix-std"
-Generate compiler predefines and select a startfile for the specified
-\&\s-1UNIX\s0 standard. The choices for \fIunix-std\fR are \fB93\fR, \fB95\fR
-and \fB98\fR. \fB93\fR is supported on all HP-UX versions. \fB95\fR
-is available on HP-UX 10.10 and later. \fB98\fR is available on HP-UX
-11.11 and later. The default values are \fB93\fR for HP-UX 10.00,
-\&\fB95\fR for HP-UX 10.10 though to 11.00, and \fB98\fR for HP-UX 11.11
-and later.
-.Sp
-\&\fB\-munix=93\fR provides the same predefines as \s-1GCC 3.3\s0 and 3.4.
-\&\fB\-munix=95\fR provides additional predefines for \f(CW\*(C`XOPEN_UNIX\*(C'\fR
-and \f(CW\*(C`_XOPEN_SOURCE_EXTENDED\*(C'\fR, and the startfile \fIunix95.o\fR.
-\&\fB\-munix=98\fR provides additional predefines for \f(CW\*(C`_XOPEN_UNIX\*(C'\fR,
-\&\f(CW\*(C`_XOPEN_SOURCE_EXTENDED\*(C'\fR, \f(CW\*(C`_INCLUDE_\|_STDC_A1_SOURCE\*(C'\fR and
-\&\f(CW\*(C`_INCLUDE_XOPEN_SOURCE_500\*(C'\fR, and the startfile \fIunix98.o\fR.
-.Sp
-It is \fIimportant\fR to note that this option changes the interfaces
-for various library routines. It also affects the operational behavior
-of the C library. Thus, \fIextreme\fR care is needed in using this
-option.
-.Sp
-Library code that is intended to operate with more than one \s-1UNIX\s0
-standard must test, set and restore the variable \fI_\|_xpg4_extended_mask\fR
-as appropriate. Most \s-1GNU\s0 software doesn't provide this capability.
-.IP "\fB\-nolibdld\fR" 4
-.IX Item "-nolibdld"
-Suppress the generation of link options to search libdld.sl when the
-\&\fB\-static\fR option is specified on HP-UX 10 and later.
-.IP "\fB\-static\fR" 4
-.IX Item "-static"
-The HP-UX implementation of setlocale in libc has a dependency on
-libdld.sl. There isn't an archive version of libdld.sl. Thus,
-when the \fB\-static\fR option is specified, special link options
-are needed to resolve this dependency.
-.Sp
-On HP-UX 10 and later, the \s-1GCC\s0 driver adds the necessary options to
-link with libdld.sl when the \fB\-static\fR option is specified.
-This causes the resulting binary to be dynamic. On the 64\-bit port,
-the linkers generate dynamic binaries by default in any case. The
-\&\fB\-nolibdld\fR option can be used to prevent the \s-1GCC\s0 driver from
-adding these link options.
-.IP "\fB\-threads\fR" 4
-.IX Item "-threads"
-Add support for multithreading with the \fIdce thread\fR library
-under HP-UX. This option sets flags for both the preprocessor and
-linker.
-.PP
-\fIIntel 386 and \s-1AMD\s0 x86\-64 Options\fR
-.IX Subsection "Intel 386 and AMD x86-64 Options"
-.PP
-These \fB\-m\fR options are defined for the i386 and x86\-64 family of
-computers:
-.IP "\fB\-march=\fR\fIcpu-type\fR" 4
-.IX Item "-march=cpu-type"
-Generate instructions for the machine type \fIcpu-type\fR. In contrast to
-\&\fB\-mtune=\fR\fIcpu-type\fR, which merely tunes the generated code
-for the specified \fIcpu-type\fR, \fB\-march=\fR\fIcpu-type\fR allows \s-1GCC\s0
-to generate code that may not run at all on processors other than the one
-indicated. Specifying \fB\-march=\fR\fIcpu-type\fR implies
-\&\fB\-mtune=\fR\fIcpu-type\fR.
-.Sp
-The choices for \fIcpu-type\fR are:
-.RS 4
-.IP "\fBnative\fR" 4
-.IX Item "native"
-This selects the \s-1CPU\s0 to generate code for at compilation time by determining
-the processor type of the compiling machine. Using \fB\-march=native\fR
-enables all instruction subsets supported by the local machine (hence
-the result might not run on different machines). Using \fB\-mtune=native\fR
-produces code optimized for the local machine under the constraints
-of the selected instruction set.
-.IP "\fBi386\fR" 4
-.IX Item "i386"
-Original Intel i386 \s-1CPU.\s0
-.IP "\fBi486\fR" 4
-.IX Item "i486"
-Intel i486 \s-1CPU. \s0(No scheduling is implemented for this chip.)
-.IP "\fBi586\fR" 4
-.IX Item "i586"
-.PD 0
-.IP "\fBpentium\fR" 4
-.IX Item "pentium"
-.PD
-Intel Pentium \s-1CPU\s0 with no \s-1MMX\s0 support.
-.IP "\fBpentium-mmx\fR" 4
-.IX Item "pentium-mmx"
-Intel Pentium \s-1MMX CPU,\s0 based on Pentium core with \s-1MMX\s0 instruction set support.
-.IP "\fBpentiumpro\fR" 4
-.IX Item "pentiumpro"
-Intel Pentium Pro \s-1CPU.\s0
-.IP "\fBi686\fR" 4
-.IX Item "i686"
-When used with \fB\-march\fR, the Pentium Pro
-instruction set is used, so the code runs on all i686 family chips.
-When used with \fB\-mtune\fR, it has the same meaning as \fBgeneric\fR.
-.IP "\fBpentium2\fR" 4
-.IX Item "pentium2"
-Intel Pentium \s-1II CPU,\s0 based on Pentium Pro core with \s-1MMX\s0 instruction set
-support.
-.IP "\fBpentium3\fR" 4
-.IX Item "pentium3"
-.PD 0
-.IP "\fBpentium3m\fR" 4
-.IX Item "pentium3m"
-.PD
-Intel Pentium \s-1III CPU,\s0 based on Pentium Pro core with \s-1MMX\s0 and \s-1SSE\s0 instruction
-set support.
-.IP "\fBpentium-m\fR" 4
-.IX Item "pentium-m"
-Intel Pentium M; low-power version of Intel Pentium \s-1III CPU\s0
-with \s-1MMX, SSE\s0 and \s-1SSE2\s0 instruction set support. Used by Centrino notebooks.
-.IP "\fBpentium4\fR" 4
-.IX Item "pentium4"
-.PD 0
-.IP "\fBpentium4m\fR" 4
-.IX Item "pentium4m"
-.PD
-Intel Pentium 4 \s-1CPU\s0 with \s-1MMX, SSE\s0 and \s-1SSE2\s0 instruction set support.
-.IP "\fBprescott\fR" 4
-.IX Item "prescott"
-Improved version of Intel Pentium 4 \s-1CPU\s0 with \s-1MMX, SSE, SSE2\s0 and \s-1SSE3\s0 instruction
-set support.
-.IP "\fBnocona\fR" 4
-.IX Item "nocona"
-Improved version of Intel Pentium 4 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE,
-SSE2\s0 and \s-1SSE3\s0 instruction set support.
-.IP "\fBcore2\fR" 4
-.IX Item "core2"
-Intel Core 2 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3\s0 and \s-1SSSE3\s0
-instruction set support.
-.IP "\fBnehalem\fR" 4
-.IX Item "nehalem"
-Intel Nehalem \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3, SSSE3,
-SSE4.1, SSE4.2\s0 and \s-1POPCNT\s0 instruction set support.
-.IP "\fBwestmere\fR" 4
-.IX Item "westmere"
-Intel Westmere \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3, SSSE3,
-SSE4.1, SSE4.2, POPCNT, AES\s0 and \s-1PCLMUL\s0 instruction set support.
-.IP "\fBsandybridge\fR" 4
-.IX Item "sandybridge"
-Intel Sandy Bridge \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3, SSSE3,
-SSE4.1, SSE4.2, POPCNT, AVX, AES\s0 and \s-1PCLMUL\s0 instruction set support.
-.IP "\fBivybridge\fR" 4
-.IX Item "ivybridge"
-Intel Ivy Bridge \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3, SSSE3,
-SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND\s0 and F16C
-instruction set support.
-.IP "\fBhaswell\fR" 4
-.IX Item "haswell"
-Intel Haswell \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
-SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
-BMI, BMI2\s0 and F16C instruction set support.
-.IP "\fBbroadwell\fR" 4
-.IX Item "broadwell"
-Intel Broadwell \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
-SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
-BMI, BMI2, F16C, RDSEED, ADCX\s0 and \s-1PREFETCHW\s0 instruction set support.
-.IP "\fBbonnell\fR" 4
-.IX Item "bonnell"
-Intel Bonnell \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE, MMX, SSE, SSE2, SSE3\s0 and \s-1SSSE3\s0
-instruction set support.
-.IP "\fBsilvermont\fR" 4
-.IX Item "silvermont"
-Intel Silvermont \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
-SSE4.1, SSE4.2, POPCNT, AES, PCLMUL\s0 and \s-1RDRND\s0 instruction set support.
-.IP "\fBk6\fR" 4
-.IX Item "k6"
-\&\s-1AMD K6 CPU\s0 with \s-1MMX\s0 instruction set support.
-.IP "\fBk6\-2\fR" 4
-.IX Item "k6-2"
-.PD 0
-.IP "\fBk6\-3\fR" 4
-.IX Item "k6-3"
-.PD
-Improved versions of \s-1AMD K6 CPU\s0 with \s-1MMX\s0 and 3DNow! instruction set support.
-.IP "\fBathlon\fR" 4
-.IX Item "athlon"
-.PD 0
-.IP "\fBathlon-tbird\fR" 4
-.IX Item "athlon-tbird"
-.PD
-\&\s-1AMD\s0 Athlon \s-1CPU\s0 with \s-1MMX,\s0 3dNOW!, enhanced 3DNow! and \s-1SSE\s0 prefetch instructions
-support.
-.IP "\fBathlon\-4\fR" 4
-.IX Item "athlon-4"
-.PD 0
-.IP "\fBathlon-xp\fR" 4
-.IX Item "athlon-xp"
-.IP "\fBathlon-mp\fR" 4
-.IX Item "athlon-mp"
-.PD
-Improved \s-1AMD\s0 Athlon \s-1CPU\s0 with \s-1MMX,\s0 3DNow!, enhanced 3DNow! and full \s-1SSE\s0
-instruction set support.
-.IP "\fBk8\fR" 4
-.IX Item "k8"
-.PD 0
-.IP "\fBopteron\fR" 4
-.IX Item "opteron"
-.IP "\fBathlon64\fR" 4
-.IX Item "athlon64"
-.IP "\fBathlon-fx\fR" 4
-.IX Item "athlon-fx"
-.PD
-Processors based on the \s-1AMD K8\s0 core with x86\-64 instruction set support,
-including the \s-1AMD\s0 Opteron, Athlon 64, and Athlon 64 \s-1FX\s0 processors.
-(This supersets \s-1MMX, SSE, SSE2,\s0 3DNow!, enhanced 3DNow! and 64\-bit
-instruction set extensions.)
-.IP "\fBk8\-sse3\fR" 4
-.IX Item "k8-sse3"
-.PD 0
-.IP "\fBopteron\-sse3\fR" 4
-.IX Item "opteron-sse3"
-.IP "\fBathlon64\-sse3\fR" 4
-.IX Item "athlon64-sse3"
-.PD
-Improved versions of \s-1AMD K8\s0 cores with \s-1SSE3\s0 instruction set support.
-.IP "\fBamdfam10\fR" 4
-.IX Item "amdfam10"
-.PD 0
-.IP "\fBbarcelona\fR" 4
-.IX Item "barcelona"
-.PD
-CPUs based on \s-1AMD\s0 Family 10h cores with x86\-64 instruction set support. (This
-supersets \s-1MMX, SSE, SSE2, SSE3, SSE4A,\s0 3DNow!, enhanced 3DNow!, \s-1ABM\s0 and 64\-bit
-instruction set extensions.)
-.IP "\fBbdver1\fR" 4
-.IX Item "bdver1"
-CPUs based on \s-1AMD\s0 Family 15h cores with x86\-64 instruction set support. (This
-supersets \s-1FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
-SSSE3, SSE4.1, SSE4.2, ABM\s0 and 64\-bit instruction set extensions.)
-.IP "\fBbdver2\fR" 4
-.IX Item "bdver2"
-\&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This
-supersets \s-1BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
-SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM\s0 and 64\-bit instruction set
-extensions.)
-.IP "\fBbdver3\fR" 4
-.IX Item "bdver3"
-\&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This
-supersets \s-1BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
-PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM\s0 and
-64\-bit instruction set extensions.
-.IP "\fBbdver4\fR" 4
-.IX Item "bdver4"
-\&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This
-supersets \s-1BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
-AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
-SSE4.2, ABM\s0 and 64\-bit instruction set extensions.
-.IP "\fBbtver1\fR" 4
-.IX Item "btver1"
-CPUs based on \s-1AMD\s0 Family 14h cores with x86\-64 instruction set support. (This
-supersets \s-1MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM\s0 and 64\-bit
-instruction set extensions.)
-.IP "\fBbtver2\fR" 4
-.IX Item "btver2"
-CPUs based on \s-1AMD\s0 Family 16h cores with x86\-64 instruction set support. This
-includes \s-1MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
-SSE4A, SSSE3, SSE3, SSE2, SSE, MMX\s0 and 64\-bit instruction set extensions.
-.IP "\fBwinchip\-c6\fR" 4
-.IX Item "winchip-c6"
-\&\s-1IDT\s0 WinChip C6 \s-1CPU,\s0 dealt in same way as i486 with additional \s-1MMX\s0 instruction
-set support.
-.IP "\fBwinchip2\fR" 4
-.IX Item "winchip2"
-\&\s-1IDT\s0 WinChip 2 \s-1CPU,\s0 dealt in same way as i486 with additional \s-1MMX\s0 and 3DNow!
-instruction set support.
-.IP "\fBc3\fR" 4
-.IX Item "c3"
-\&\s-1VIA C3 CPU\s0 with \s-1MMX\s0 and 3DNow! instruction set support. (No scheduling is
-implemented for this chip.)
-.IP "\fBc3\-2\fR" 4
-.IX Item "c3-2"
-\&\s-1VIA C3\-2 \s0(Nehemiah/C5XL) \s-1CPU\s0 with \s-1MMX\s0 and \s-1SSE\s0 instruction set support.
-(No scheduling is
-implemented for this chip.)
-.IP "\fBgeode\fR" 4
-.IX Item "geode"
-\&\s-1AMD\s0 Geode embedded processor with \s-1MMX\s0 and 3DNow! instruction set support.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mtune=\fR\fIcpu-type\fR" 4
-.IX Item "-mtune=cpu-type"
-Tune to \fIcpu-type\fR everything applicable about the generated code, except
-for the \s-1ABI\s0 and the set of available instructions.
-While picking a specific \fIcpu-type\fR schedules things appropriately
-for that particular chip, the compiler does not generate any code that
-cannot run on the default machine type unless you use a
-\&\fB\-march=\fR\fIcpu-type\fR option.
-For example, if \s-1GCC\s0 is configured for i686\-pc\-linux\-gnu
-then \fB\-mtune=pentium4\fR generates code that is tuned for Pentium 4
-but still runs on i686 machines.
-.Sp
-The choices for \fIcpu-type\fR are the same as for \fB\-march\fR.
-In addition, \fB\-mtune\fR supports 2 extra choices for \fIcpu-type\fR:
-.RS 4
-.IP "\fBgeneric\fR" 4
-.IX Item "generic"
-Produce code optimized for the most common \s-1IA32/AMD64/EM64T\s0 processors.
-If you know the \s-1CPU\s0 on which your code will run, then you should use
-the corresponding \fB\-mtune\fR or \fB\-march\fR option instead of
-\&\fB\-mtune=generic\fR. But, if you do not know exactly what \s-1CPU\s0 users
-of your application will have, then you should use this option.
-.Sp
-As new processors are deployed in the marketplace, the behavior of this
-option will change. Therefore, if you upgrade to a newer version of
-\&\s-1GCC,\s0 code generation controlled by this option will change to reflect
-the processors
-that are most common at the time that version of \s-1GCC\s0 is released.
-.Sp
-There is no \fB\-march=generic\fR option because \fB\-march\fR
-indicates the instruction set the compiler can use, and there is no
-generic instruction set applicable to all processors. In contrast,
-\&\fB\-mtune\fR indicates the processor (or, in this case, collection of
-processors) for which the code is optimized.
-.IP "\fBintel\fR" 4
-.IX Item "intel"
-Produce code optimized for the most current Intel processors, which are
-Haswell and Silvermont for this version of \s-1GCC. \s0 If you know the \s-1CPU\s0
-on which your code will run, then you should use the corresponding
-\&\fB\-mtune\fR or \fB\-march\fR option instead of \fB\-mtune=intel\fR.
-But, if you want your application performs better on both Haswell and
-Silvermont, then you should use this option.
-.Sp
-As new Intel processors are deployed in the marketplace, the behavior of
-this option will change. Therefore, if you upgrade to a newer version of
-\&\s-1GCC,\s0 code generation controlled by this option will change to reflect
-the most current Intel processors at the time that version of \s-1GCC\s0 is
-released.
-.Sp
-There is no \fB\-march=intel\fR option because \fB\-march\fR indicates
-the instruction set the compiler can use, and there is no common
-instruction set applicable to all processors. In contrast,
-\&\fB\-mtune\fR indicates the processor (or, in this case, collection of
-processors) for which the code is optimized.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mcpu=\fR\fIcpu-type\fR" 4
-.IX Item "-mcpu=cpu-type"
-A deprecated synonym for \fB\-mtune\fR.
-.IP "\fB\-mfpmath=\fR\fIunit\fR" 4
-.IX Item "-mfpmath=unit"
-Generate floating-point arithmetic for selected unit \fIunit\fR. The choices
-for \fIunit\fR are:
-.RS 4
-.IP "\fB387\fR" 4
-.IX Item "387"
-Use the standard 387 floating-point coprocessor present on the majority of chips and
-emulated otherwise. Code compiled with this option runs almost everywhere.
-The temporary results are computed in 80\-bit precision instead of the precision
-specified by the type, resulting in slightly different results compared to most
-of other chips. See \fB\-ffloat\-store\fR for more detailed description.
-.Sp
-This is the default choice for i386 compiler.
-.IP "\fBsse\fR" 4
-.IX Item "sse"
-Use scalar floating-point instructions present in the \s-1SSE\s0 instruction set.
-This instruction set is supported by Pentium \s-1III\s0 and newer chips,
-and in the \s-1AMD\s0 line
-by Athlon\-4, Athlon \s-1XP\s0 and Athlon \s-1MP\s0 chips. The earlier version of the \s-1SSE\s0
-instruction set supports only single-precision arithmetic, thus the double and
-extended-precision arithmetic are still done using 387. A later version, present
-only in Pentium 4 and \s-1AMD\s0 x86\-64 chips, supports double-precision
-arithmetic too.
-.Sp
-For the i386 compiler, you must use \fB\-march=\fR\fIcpu-type\fR, \fB\-msse\fR
-or \fB\-msse2\fR switches to enable \s-1SSE\s0 extensions and make this option
-effective. For the x86\-64 compiler, these extensions are enabled by default.
-.Sp
-The resulting code should be considerably faster in the majority of cases and avoid
-the numerical instability problems of 387 code, but may break some existing
-code that expects temporaries to be 80 bits.
-.Sp
-This is the default choice for the x86\-64 compiler.
-.IP "\fBsse,387\fR" 4
-.IX Item "sse,387"
-.PD 0
-.IP "\fBsse+387\fR" 4
-.IX Item "sse+387"
-.IP "\fBboth\fR" 4
-.IX Item "both"
-.PD
-Attempt to utilize both instruction sets at once. This effectively doubles the
-amount of available registers, and on chips with separate execution units for
-387 and \s-1SSE\s0 the execution resources too. Use this option with care, as it is
-still experimental, because the \s-1GCC\s0 register allocator does not model separate
-functional units well, resulting in unstable performance.
-.RE
-.RS 4
-.RE
-.IP "\fB\-masm=\fR\fIdialect\fR" 4
-.IX Item "-masm=dialect"
-Output assembly instructions using selected \fIdialect\fR. Supported
-choices are \fBintel\fR or \fBatt\fR (the default). Darwin does
-not support \fBintel\fR.
-.IP "\fB\-mieee\-fp\fR" 4
-.IX Item "-mieee-fp"
-.PD 0
-.IP "\fB\-mno\-ieee\-fp\fR" 4
-.IX Item "-mno-ieee-fp"
-.PD
-Control whether or not the compiler uses \s-1IEEE\s0 floating-point
-comparisons. These correctly handle the case where the result of a
-comparison is unordered.
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-Generate output containing library calls for floating point.
-.Sp
-\&\fBWarning:\fR the requisite libraries are not part of \s-1GCC.\s0
-Normally the facilities of the machine's usual C compiler are used, but
-this can't be done directly in cross-compilation. You must make your
-own arrangements to provide suitable library functions for
-cross-compilation.
-.Sp
-On machines where a function returns floating-point results in the 80387
-register stack, some floating-point opcodes may be emitted even if
-\&\fB\-msoft\-float\fR is used.
-.IP "\fB\-mno\-fp\-ret\-in\-387\fR" 4
-.IX Item "-mno-fp-ret-in-387"
-Do not use the \s-1FPU\s0 registers for return values of functions.
-.Sp
-The usual calling convention has functions return values of types
-\&\f(CW\*(C`float\*(C'\fR and \f(CW\*(C`double\*(C'\fR in an \s-1FPU\s0 register, even if there
-is no \s-1FPU. \s0 The idea is that the operating system should emulate
-an \s-1FPU.\s0
-.Sp
-The option \fB\-mno\-fp\-ret\-in\-387\fR causes such values to be returned
-in ordinary \s-1CPU\s0 registers instead.
-.IP "\fB\-mno\-fancy\-math\-387\fR" 4
-.IX Item "-mno-fancy-math-387"
-Some 387 emulators do not support the \f(CW\*(C`sin\*(C'\fR, \f(CW\*(C`cos\*(C'\fR and
-\&\f(CW\*(C`sqrt\*(C'\fR instructions for the 387. Specify this option to avoid
-generating those instructions. This option is the default on FreeBSD,
-OpenBSD and NetBSD. This option is overridden when \fB\-march\fR
-indicates that the target \s-1CPU\s0 always has an \s-1FPU\s0 and so the
-instruction does not need emulation. These
-instructions are not generated unless you also use the
-\&\fB\-funsafe\-math\-optimizations\fR switch.
-.IP "\fB\-malign\-double\fR" 4
-.IX Item "-malign-double"
-.PD 0
-.IP "\fB\-mno\-align\-double\fR" 4
-.IX Item "-mno-align-double"
-.PD
-Control whether \s-1GCC\s0 aligns \f(CW\*(C`double\*(C'\fR, \f(CW\*(C`long double\*(C'\fR, and
-\&\f(CW\*(C`long long\*(C'\fR variables on a two-word boundary or a one-word
-boundary. Aligning \f(CW\*(C`double\*(C'\fR variables on a two-word boundary
-produces code that runs somewhat faster on a Pentium at the
-expense of more memory.
-.Sp
-On x86\-64, \fB\-malign\-double\fR is enabled by default.
-.Sp
-\&\fBWarning:\fR if you use the \fB\-malign\-double\fR switch,
-structures containing the above types are aligned differently than
-the published application binary interface specifications for the 386
-and are not binary compatible with structures in code compiled
-without that switch.
-.IP "\fB\-m96bit\-long\-double\fR" 4
-.IX Item "-m96bit-long-double"
-.PD 0
-.IP "\fB\-m128bit\-long\-double\fR" 4
-.IX Item "-m128bit-long-double"
-.PD
-These switches control the size of \f(CW\*(C`long double\*(C'\fR type. The i386
-application binary interface specifies the size to be 96 bits,
-so \fB\-m96bit\-long\-double\fR is the default in 32\-bit mode.
-.Sp
-Modern architectures (Pentium and newer) prefer \f(CW\*(C`long double\*(C'\fR
-to be aligned to an 8\- or 16\-byte boundary. In arrays or structures
-conforming to the \s-1ABI,\s0 this is not possible. So specifying
-\&\fB\-m128bit\-long\-double\fR aligns \f(CW\*(C`long double\*(C'\fR
-to a 16\-byte boundary by padding the \f(CW\*(C`long double\*(C'\fR with an additional
-32\-bit zero.
-.Sp
-In the x86\-64 compiler, \fB\-m128bit\-long\-double\fR is the default choice as
-its \s-1ABI\s0 specifies that \f(CW\*(C`long double\*(C'\fR is aligned on 16\-byte boundary.
-.Sp
-Notice that neither of these options enable any extra precision over the x87
-standard of 80 bits for a \f(CW\*(C`long double\*(C'\fR.
-.Sp
-\&\fBWarning:\fR if you override the default value for your target \s-1ABI,\s0 this
-changes the size of
-structures and arrays containing \f(CW\*(C`long double\*(C'\fR variables,
-as well as modifying the function calling convention for functions taking
-\&\f(CW\*(C`long double\*(C'\fR. Hence they are not binary-compatible
-with code compiled without that switch.
-.IP "\fB\-mlong\-double\-64\fR" 4
-.IX Item "-mlong-double-64"
-.PD 0
-.IP "\fB\-mlong\-double\-80\fR" 4
-.IX Item "-mlong-double-80"
-.IP "\fB\-mlong\-double\-128\fR" 4
-.IX Item "-mlong-double-128"
-.PD
-These switches control the size of \f(CW\*(C`long double\*(C'\fR type. A size
-of 64 bits makes the \f(CW\*(C`long double\*(C'\fR type equivalent to the \f(CW\*(C`double\*(C'\fR
-type. This is the default for 32\-bit Bionic C library. A size
-of 128 bits makes the \f(CW\*(C`long double\*(C'\fR type equivalent to the
-\&\f(CW\*(C`_\|_float128\*(C'\fR type. This is the default for 64\-bit Bionic C library.
-.Sp
-\&\fBWarning:\fR if you override the default value for your target \s-1ABI,\s0 this
-changes the size of
-structures and arrays containing \f(CW\*(C`long double\*(C'\fR variables,
-as well as modifying the function calling convention for functions taking
-\&\f(CW\*(C`long double\*(C'\fR. Hence they are not binary-compatible
-with code compiled without that switch.
-.IP "\fB\-mlarge\-data\-threshold=\fR\fIthreshold\fR" 4
-.IX Item "-mlarge-data-threshold=threshold"
-When \fB\-mcmodel=medium\fR is specified, data objects larger than
-\&\fIthreshold\fR are placed in the large data section. This value must be the
-same across all objects linked into the binary, and defaults to 65535.
-.IP "\fB\-mrtd\fR" 4
-.IX Item "-mrtd"
-Use a different function-calling convention, in which functions that
-take a fixed number of arguments return with the \f(CW\*(C`ret \f(CInum\f(CW\*(C'\fR
-instruction, which pops their arguments while returning. This saves one
-instruction in the caller since there is no need to pop the arguments
-there.
-.Sp
-You can specify that an individual function is called with this calling
-sequence with the function attribute \fBstdcall\fR. You can also
-override the \fB\-mrtd\fR option by using the function attribute
-\&\fBcdecl\fR.
-.Sp
-\&\fBWarning:\fR this calling convention is incompatible with the one
-normally used on Unix, so you cannot use it if you need to call
-libraries compiled with the Unix compiler.
-.Sp
-Also, you must provide function prototypes for all functions that
-take variable numbers of arguments (including \f(CW\*(C`printf\*(C'\fR);
-otherwise incorrect code is generated for calls to those
-functions.
-.Sp
-In addition, seriously incorrect code results if you call a
-function with too many arguments. (Normally, extra arguments are
-harmlessly ignored.)
-.IP "\fB\-mregparm=\fR\fInum\fR" 4
-.IX Item "-mregparm=num"
-Control how many registers are used to pass integer arguments. By
-default, no registers are used to pass arguments, and at most 3
-registers can be used. You can control this behavior for a specific
-function by using the function attribute \fBregparm\fR.
-.Sp
-\&\fBWarning:\fR if you use this switch, and
-\&\fInum\fR is nonzero, then you must build all modules with the same
-value, including any libraries. This includes the system libraries and
-startup modules.
-.IP "\fB\-msseregparm\fR" 4
-.IX Item "-msseregparm"
-Use \s-1SSE\s0 register passing conventions for float and double arguments
-and return values. You can control this behavior for a specific
-function by using the function attribute \fBsseregparm\fR.
-.Sp
-\&\fBWarning:\fR if you use this switch then you must build all
-modules with the same value, including any libraries. This includes
-the system libraries and startup modules.
-.IP "\fB\-mvect8\-ret\-in\-mem\fR" 4
-.IX Item "-mvect8-ret-in-mem"
-Return 8\-byte vectors in memory instead of \s-1MMX\s0 registers. This is the
-default on Solaris@tie{}8 and 9 and VxWorks to match the \s-1ABI\s0 of the Sun
-Studio compilers until version 12. Later compiler versions (starting
-with Studio 12 Update@tie{}1) follow the \s-1ABI\s0 used by other x86 targets, which
-is the default on Solaris@tie{}10 and later. \fIOnly\fR use this option if
-you need to remain compatible with existing code produced by those
-previous compiler versions or older versions of \s-1GCC.\s0
-.IP "\fB\-mpc32\fR" 4
-.IX Item "-mpc32"
-.PD 0
-.IP "\fB\-mpc64\fR" 4
-.IX Item "-mpc64"
-.IP "\fB\-mpc80\fR" 4
-.IX Item "-mpc80"
-.PD
-Set 80387 floating-point precision to 32, 64 or 80 bits. When \fB\-mpc32\fR
-is specified, the significands of results of floating-point operations are
-rounded to 24 bits (single precision); \fB\-mpc64\fR rounds the
-significands of results of floating-point operations to 53 bits (double
-precision) and \fB\-mpc80\fR rounds the significands of results of
-floating-point operations to 64 bits (extended double precision), which is
-the default. When this option is used, floating-point operations in higher
-precisions are not available to the programmer without setting the \s-1FPU\s0
-control word explicitly.
-.Sp
-Setting the rounding of floating-point operations to less than the default
-80 bits can speed some programs by 2% or more. Note that some mathematical
-libraries assume that extended-precision (80\-bit) floating-point operations
-are enabled by default; routines in such libraries could suffer significant
-loss of accuracy, typically through so-called \*(L"catastrophic cancellation\*(R",
-when this option is used to set the precision to less than extended precision.
-.IP "\fB\-mstackrealign\fR" 4
-.IX Item "-mstackrealign"
-Realign the stack at entry. On the Intel x86, the \fB\-mstackrealign\fR
-option generates an alternate prologue and epilogue that realigns the
-run-time stack if necessary. This supports mixing legacy codes that keep
-4\-byte stack alignment with modern codes that keep 16\-byte stack alignment for
-\&\s-1SSE\s0 compatibility. See also the attribute \f(CW\*(C`force_align_arg_pointer\*(C'\fR,
-applicable to individual functions.
-.IP "\fB\-mpreferred\-stack\-boundary=\fR\fInum\fR" 4
-.IX Item "-mpreferred-stack-boundary=num"
-Attempt to keep the stack boundary aligned to a 2 raised to \fInum\fR
-byte boundary. If \fB\-mpreferred\-stack\-boundary\fR is not specified,
-the default is 4 (16 bytes or 128 bits).
-.Sp
-\&\fBWarning:\fR When generating code for the x86\-64 architecture with
-\&\s-1SSE\s0 extensions disabled, \fB\-mpreferred\-stack\-boundary=3\fR can be
-used to keep the stack boundary aligned to 8 byte boundary. Since
-x86\-64 \s-1ABI\s0 require 16 byte stack alignment, this is \s-1ABI\s0 incompatible and
-intended to be used in controlled environment where stack space is
-important limitation. This option will lead to wrong code when functions
-compiled with 16 byte stack alignment (such as functions from a standard
-library) are called with misaligned stack. In this case, \s-1SSE\s0
-instructions may lead to misaligned memory access traps. In addition,
-variable arguments will be handled incorrectly for 16 byte aligned
-objects (including x87 long double and _\|_int128), leading to wrong
-results. You must build all modules with
-\&\fB\-mpreferred\-stack\-boundary=3\fR, including any libraries. This
-includes the system libraries and startup modules.
-.IP "\fB\-mincoming\-stack\-boundary=\fR\fInum\fR" 4
-.IX Item "-mincoming-stack-boundary=num"
-Assume the incoming stack is aligned to a 2 raised to \fInum\fR byte
-boundary. If \fB\-mincoming\-stack\-boundary\fR is not specified,
-the one specified by \fB\-mpreferred\-stack\-boundary\fR is used.
-.Sp
-On Pentium and Pentium Pro, \f(CW\*(C`double\*(C'\fR and \f(CW\*(C`long double\*(C'\fR values
-should be aligned to an 8\-byte boundary (see \fB\-malign\-double\fR) or
-suffer significant run time performance penalties. On Pentium \s-1III,\s0 the
-Streaming \s-1SIMD\s0 Extension (\s-1SSE\s0) data type \f(CW\*(C`_\|_m128\*(C'\fR may not work
-properly if it is not 16\-byte aligned.
-.Sp
-To ensure proper alignment of this values on the stack, the stack boundary
-must be as aligned as that required by any value stored on the stack.
-Further, every function must be generated such that it keeps the stack
-aligned. Thus calling a function compiled with a higher preferred
-stack boundary from a function compiled with a lower preferred stack
-boundary most likely misaligns the stack. It is recommended that
-libraries that use callbacks always use the default setting.
-.Sp
-This extra alignment does consume extra stack space, and generally
-increases code size. Code that is sensitive to stack space usage, such
-as embedded systems and operating system kernels, may want to reduce the
-preferred alignment to \fB\-mpreferred\-stack\-boundary=2\fR.
-.IP "\fB\-mmmx\fR" 4
-.IX Item "-mmmx"
-.PD 0
-.IP "\fB\-mno\-mmx\fR" 4
-.IX Item "-mno-mmx"
-.IP "\fB\-msse\fR" 4
-.IX Item "-msse"
-.IP "\fB\-mno\-sse\fR" 4
-.IX Item "-mno-sse"
-.IP "\fB\-msse2\fR" 4
-.IX Item "-msse2"
-.IP "\fB\-mno\-sse2\fR" 4
-.IX Item "-mno-sse2"
-.IP "\fB\-msse3\fR" 4
-.IX Item "-msse3"
-.IP "\fB\-mno\-sse3\fR" 4
-.IX Item "-mno-sse3"
-.IP "\fB\-mssse3\fR" 4
-.IX Item "-mssse3"
-.IP "\fB\-mno\-ssse3\fR" 4
-.IX Item "-mno-ssse3"
-.IP "\fB\-msse4.1\fR" 4
-.IX Item "-msse4.1"
-.IP "\fB\-mno\-sse4.1\fR" 4
-.IX Item "-mno-sse4.1"
-.IP "\fB\-msse4.2\fR" 4
-.IX Item "-msse4.2"
-.IP "\fB\-mno\-sse4.2\fR" 4
-.IX Item "-mno-sse4.2"
-.IP "\fB\-msse4\fR" 4
-.IX Item "-msse4"
-.IP "\fB\-mno\-sse4\fR" 4
-.IX Item "-mno-sse4"
-.IP "\fB\-mavx\fR" 4
-.IX Item "-mavx"
-.IP "\fB\-mno\-avx\fR" 4
-.IX Item "-mno-avx"
-.IP "\fB\-mavx2\fR" 4
-.IX Item "-mavx2"
-.IP "\fB\-mno\-avx2\fR" 4
-.IX Item "-mno-avx2"
-.IP "\fB\-mavx512f\fR" 4
-.IX Item "-mavx512f"
-.IP "\fB\-mno\-avx512f\fR" 4
-.IX Item "-mno-avx512f"
-.IP "\fB\-mavx512pf\fR" 4
-.IX Item "-mavx512pf"
-.IP "\fB\-mno\-avx512pf\fR" 4
-.IX Item "-mno-avx512pf"
-.IP "\fB\-mavx512er\fR" 4
-.IX Item "-mavx512er"
-.IP "\fB\-mno\-avx512er\fR" 4
-.IX Item "-mno-avx512er"
-.IP "\fB\-mavx512cd\fR" 4
-.IX Item "-mavx512cd"
-.IP "\fB\-mno\-avx512cd\fR" 4
-.IX Item "-mno-avx512cd"
-.IP "\fB\-msha\fR" 4
-.IX Item "-msha"
-.IP "\fB\-mno\-sha\fR" 4
-.IX Item "-mno-sha"
-.IP "\fB\-maes\fR" 4
-.IX Item "-maes"
-.IP "\fB\-mno\-aes\fR" 4
-.IX Item "-mno-aes"
-.IP "\fB\-mpclmul\fR" 4
-.IX Item "-mpclmul"
-.IP "\fB\-mno\-pclmul\fR" 4
-.IX Item "-mno-pclmul"
-.IP "\fB\-mfsgsbase\fR" 4
-.IX Item "-mfsgsbase"
-.IP "\fB\-mno\-fsgsbase\fR" 4
-.IX Item "-mno-fsgsbase"
-.IP "\fB\-mrdrnd\fR" 4
-.IX Item "-mrdrnd"
-.IP "\fB\-mno\-rdrnd\fR" 4
-.IX Item "-mno-rdrnd"
-.IP "\fB\-mf16c\fR" 4
-.IX Item "-mf16c"
-.IP "\fB\-mno\-f16c\fR" 4
-.IX Item "-mno-f16c"
-.IP "\fB\-mfma\fR" 4
-.IX Item "-mfma"
-.IP "\fB\-mno\-fma\fR" 4
-.IX Item "-mno-fma"
-.IP "\fB\-mprefetchwt1\fR" 4
-.IX Item "-mprefetchwt1"
-.IP "\fB\-mno\-prefetchwt1\fR" 4
-.IX Item "-mno-prefetchwt1"
-.IP "\fB\-msse4a\fR" 4
-.IX Item "-msse4a"
-.IP "\fB\-mno\-sse4a\fR" 4
-.IX Item "-mno-sse4a"
-.IP "\fB\-mfma4\fR" 4
-.IX Item "-mfma4"
-.IP "\fB\-mno\-fma4\fR" 4
-.IX Item "-mno-fma4"
-.IP "\fB\-mxop\fR" 4
-.IX Item "-mxop"
-.IP "\fB\-mno\-xop\fR" 4
-.IX Item "-mno-xop"
-.IP "\fB\-mlwp\fR" 4
-.IX Item "-mlwp"
-.IP "\fB\-mno\-lwp\fR" 4
-.IX Item "-mno-lwp"
-.IP "\fB\-m3dnow\fR" 4
-.IX Item "-m3dnow"
-.IP "\fB\-mno\-3dnow\fR" 4
-.IX Item "-mno-3dnow"
-.IP "\fB\-mpopcnt\fR" 4
-.IX Item "-mpopcnt"
-.IP "\fB\-mno\-popcnt\fR" 4
-.IX Item "-mno-popcnt"
-.IP "\fB\-mabm\fR" 4
-.IX Item "-mabm"
-.IP "\fB\-mno\-abm\fR" 4
-.IX Item "-mno-abm"
-.IP "\fB\-mbmi\fR" 4
-.IX Item "-mbmi"
-.IP "\fB\-mbmi2\fR" 4
-.IX Item "-mbmi2"
-.IP "\fB\-mno\-bmi\fR" 4
-.IX Item "-mno-bmi"
-.IP "\fB\-mno\-bmi2\fR" 4
-.IX Item "-mno-bmi2"
-.IP "\fB\-mlzcnt\fR" 4
-.IX Item "-mlzcnt"
-.IP "\fB\-mno\-lzcnt\fR" 4
-.IX Item "-mno-lzcnt"
-.IP "\fB\-mfxsr\fR" 4
-.IX Item "-mfxsr"
-.IP "\fB\-mxsave\fR" 4
-.IX Item "-mxsave"
-.IP "\fB\-mxsaveopt\fR" 4
-.IX Item "-mxsaveopt"
-.IP "\fB\-mrtm\fR" 4
-.IX Item "-mrtm"
-.IP "\fB\-mtbm\fR" 4
-.IX Item "-mtbm"
-.IP "\fB\-mno\-tbm\fR" 4
-.IX Item "-mno-tbm"
-.PD
-These switches enable or disable the use of instructions in the \s-1MMX, SSE,
-SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
-SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
-BMI, BMI2, FXSR, XSAVE, XSAVEOPT, LZCNT, RTM,\s0 or 3DNow!
-extended instruction sets.
-These extensions are also available as built-in functions: see
-\&\fBX86 Built-in Functions\fR, for details of the functions enabled and
-disabled by these switches.
-.Sp
-To generate \s-1SSE/SSE2\s0 instructions automatically from floating-point
-code (as opposed to 387 instructions), see \fB\-mfpmath=sse\fR.
-.Sp
-\&\s-1GCC\s0 depresses SSEx instructions when \fB\-mavx\fR is used. Instead, it
-generates new \s-1AVX\s0 instructions or \s-1AVX\s0 equivalence for all SSEx instructions
-when needed.
-.Sp
-These options enable \s-1GCC\s0 to use these extended instructions in
-generated code, even without \fB\-mfpmath=sse\fR. Applications that
-perform run-time \s-1CPU\s0 detection must compile separate files for each
-supported architecture, using the appropriate flags. In particular,
-the file containing the \s-1CPU\s0 detection code should be compiled without
-these options.
-.IP "\fB\-mdump\-tune\-features\fR" 4
-.IX Item "-mdump-tune-features"
-This option instructs \s-1GCC\s0 to dump the names of the x86 performance
-tuning features and default settings. The names can be used in
-\&\fB\-mtune\-ctrl=\fR\fIfeature-list\fR.
-.IP "\fB\-mtune\-ctrl=\fR\fIfeature-list\fR" 4
-.IX Item "-mtune-ctrl=feature-list"
-This option is used to do fine grain control of x86 code generation features.
-\&\fIfeature-list\fR is a comma separated list of \fIfeature\fR names. See also
-\&\fB\-mdump\-tune\-features\fR. When specified, the \fIfeature\fR will be turned
-on if it is not preceded with \f(CW\*(C`^\*(C'\fR, otherwise, it will be turned off.
-\&\fB\-mtune\-ctrl=\fR\fIfeature-list\fR is intended to be used by \s-1GCC\s0
-developers. Using it may lead to code paths not covered by testing and can
-potentially result in compiler ICEs or runtime errors.
-.IP "\fB\-mno\-default\fR" 4
-.IX Item "-mno-default"
-This option instructs \s-1GCC\s0 to turn off all tunable features. See also
-\&\fB\-mtune\-ctrl=\fR\fIfeature-list\fR and \fB\-mdump\-tune\-features\fR.
-.IP "\fB\-mcld\fR" 4
-.IX Item "-mcld"
-This option instructs \s-1GCC\s0 to emit a \f(CW\*(C`cld\*(C'\fR instruction in the prologue
-of functions that use string instructions. String instructions depend on
-the \s-1DF\s0 flag to select between autoincrement or autodecrement mode. While the
-\&\s-1ABI\s0 specifies the \s-1DF\s0 flag to be cleared on function entry, some operating
-systems violate this specification by not clearing the \s-1DF\s0 flag in their
-exception dispatchers. The exception handler can be invoked with the \s-1DF\s0 flag
-set, which leads to wrong direction mode when string instructions are used.
-This option can be enabled by default on 32\-bit x86 targets by configuring
-\&\s-1GCC\s0 with the \fB\-\-enable\-cld\fR configure option. Generation of \f(CW\*(C`cld\*(C'\fR
-instructions can be suppressed with the \fB\-mno\-cld\fR compiler option
-in this case.
-.IP "\fB\-mvzeroupper\fR" 4
-.IX Item "-mvzeroupper"
-This option instructs \s-1GCC\s0 to emit a \f(CW\*(C`vzeroupper\*(C'\fR instruction
-before a transfer of control flow out of the function to minimize
-the \s-1AVX\s0 to \s-1SSE\s0 transition penalty as well as remove unnecessary \f(CW\*(C`zeroupper\*(C'\fR
-intrinsics.
-.IP "\fB\-mprefer\-avx128\fR" 4
-.IX Item "-mprefer-avx128"
-This option instructs \s-1GCC\s0 to use 128\-bit \s-1AVX\s0 instructions instead of
-256\-bit \s-1AVX\s0 instructions in the auto-vectorizer.
-.IP "\fB\-mcx16\fR" 4
-.IX Item "-mcx16"
-This option enables \s-1GCC\s0 to generate \f(CW\*(C`CMPXCHG16B\*(C'\fR instructions.
-\&\f(CW\*(C`CMPXCHG16B\*(C'\fR allows for atomic operations on 128\-bit double quadword
-(or oword) data types.
-This is useful for high-resolution counters that can be updated
-by multiple processors (or cores). This instruction is generated as part of
-atomic built-in functions: see \fB_\|_sync Builtins\fR or
-\&\fB_\|_atomic Builtins\fR for details.
-.IP "\fB\-msahf\fR" 4
-.IX Item "-msahf"
-This option enables generation of \f(CW\*(C`SAHF\*(C'\fR instructions in 64\-bit code.
-Early Intel Pentium 4 CPUs with Intel 64 support,
-prior to the introduction of Pentium 4 G1 step in December 2005,
-lacked the \f(CW\*(C`LAHF\*(C'\fR and \f(CW\*(C`SAHF\*(C'\fR instructions
-which were supported by \s-1AMD64.\s0
-These are load and store instructions, respectively, for certain status flags.
-In 64\-bit mode, the \f(CW\*(C`SAHF\*(C'\fR instruction is used to optimize \f(CW\*(C`fmod\*(C'\fR,
-\&\f(CW\*(C`drem\*(C'\fR, and \f(CW\*(C`remainder\*(C'\fR built-in functions;
-see \fBOther Builtins\fR for details.
-.IP "\fB\-mmovbe\fR" 4
-.IX Item "-mmovbe"
-This option enables use of the \f(CW\*(C`movbe\*(C'\fR instruction to implement
-\&\f(CW\*(C`_\|_builtin_bswap32\*(C'\fR and \f(CW\*(C`_\|_builtin_bswap64\*(C'\fR.
-.IP "\fB\-mcrc32\fR" 4
-.IX Item "-mcrc32"
-This option enables built-in functions \f(CW\*(C`_\|_builtin_ia32_crc32qi\*(C'\fR,
-\&\f(CW\*(C`_\|_builtin_ia32_crc32hi\*(C'\fR, \f(CW\*(C`_\|_builtin_ia32_crc32si\*(C'\fR and
-\&\f(CW\*(C`_\|_builtin_ia32_crc32di\*(C'\fR to generate the \f(CW\*(C`crc32\*(C'\fR machine instruction.
-.IP "\fB\-mrecip\fR" 4
-.IX Item "-mrecip"
-This option enables use of \f(CW\*(C`RCPSS\*(C'\fR and \f(CW\*(C`RSQRTSS\*(C'\fR instructions
-(and their vectorized variants \f(CW\*(C`RCPPS\*(C'\fR and \f(CW\*(C`RSQRTPS\*(C'\fR)
-with an additional Newton-Raphson step
-to increase precision instead of \f(CW\*(C`DIVSS\*(C'\fR and \f(CW\*(C`SQRTSS\*(C'\fR
-(and their vectorized
-variants) for single-precision floating-point arguments. These instructions
-are generated only when \fB\-funsafe\-math\-optimizations\fR is enabled
-together with \fB\-finite\-math\-only\fR and \fB\-fno\-trapping\-math\fR.
-Note that while the throughput of the sequence is higher than the throughput
-of the non-reciprocal instruction, the precision of the sequence can be
-decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
-.Sp
-Note that \s-1GCC\s0 implements \f(CW\*(C`1.0f/sqrtf(\f(CIx\f(CW)\*(C'\fR in terms of \f(CW\*(C`RSQRTSS\*(C'\fR
-(or \f(CW\*(C`RSQRTPS\*(C'\fR) already with \fB\-ffast\-math\fR (or the above option
-combination), and doesn't need \fB\-mrecip\fR.
-.Sp
-Also note that \s-1GCC\s0 emits the above sequence with additional Newton-Raphson step
-for vectorized single-float division and vectorized \f(CW\*(C`sqrtf(\f(CIx\f(CW)\*(C'\fR
-already with \fB\-ffast\-math\fR (or the above option combination), and
-doesn't need \fB\-mrecip\fR.
-.IP "\fB\-mrecip=\fR\fIopt\fR" 4
-.IX Item "-mrecip=opt"
-This option controls which reciprocal estimate instructions
-may be used. \fIopt\fR is a comma-separated list of options, which may
-be preceded by a \fB!\fR to invert the option:
-.RS 4
-.IP "\fBall\fR" 4
-.IX Item "all"
-Enable all estimate instructions.
-.IP "\fBdefault\fR" 4
-.IX Item "default"
-Enable the default instructions, equivalent to \fB\-mrecip\fR.
-.IP "\fBnone\fR" 4
-.IX Item "none"
-Disable all estimate instructions, equivalent to \fB\-mno\-recip\fR.
-.IP "\fBdiv\fR" 4
-.IX Item "div"
-Enable the approximation for scalar division.
-.IP "\fBvec-div\fR" 4
-.IX Item "vec-div"
-Enable the approximation for vectorized division.
-.IP "\fBsqrt\fR" 4
-.IX Item "sqrt"
-Enable the approximation for scalar square root.
-.IP "\fBvec-sqrt\fR" 4
-.IX Item "vec-sqrt"
-Enable the approximation for vectorized square root.
-.RE
-.RS 4
-.Sp
-So, for example, \fB\-mrecip=all,!sqrt\fR enables
-all of the reciprocal approximations, except for square root.
-.RE
-.IP "\fB\-mveclibabi=\fR\fItype\fR" 4
-.IX Item "-mveclibabi=type"
-Specifies the \s-1ABI\s0 type to use for vectorizing intrinsics using an
-external library. Supported values for \fItype\fR are \fBsvml\fR
-for the Intel short
-vector math library and \fBacml\fR for the \s-1AMD\s0 math core library.
-To use this option, both \fB\-ftree\-vectorize\fR and
-\&\fB\-funsafe\-math\-optimizations\fR have to be enabled, and an \s-1SVML\s0 or \s-1ACML \s0
-ABI-compatible library must be specified at link time.
-.Sp
-\&\s-1GCC\s0 currently emits calls to \f(CW\*(C`vmldExp2\*(C'\fR,
-\&\f(CW\*(C`vmldLn2\*(C'\fR, \f(CW\*(C`vmldLog102\*(C'\fR, \f(CW\*(C`vmldLog102\*(C'\fR, \f(CW\*(C`vmldPow2\*(C'\fR,
-\&\f(CW\*(C`vmldTanh2\*(C'\fR, \f(CW\*(C`vmldTan2\*(C'\fR, \f(CW\*(C`vmldAtan2\*(C'\fR, \f(CW\*(C`vmldAtanh2\*(C'\fR,
-\&\f(CW\*(C`vmldCbrt2\*(C'\fR, \f(CW\*(C`vmldSinh2\*(C'\fR, \f(CW\*(C`vmldSin2\*(C'\fR, \f(CW\*(C`vmldAsinh2\*(C'\fR,
-\&\f(CW\*(C`vmldAsin2\*(C'\fR, \f(CW\*(C`vmldCosh2\*(C'\fR, \f(CW\*(C`vmldCos2\*(C'\fR, \f(CW\*(C`vmldAcosh2\*(C'\fR,
-\&\f(CW\*(C`vmldAcos2\*(C'\fR, \f(CW\*(C`vmlsExp4\*(C'\fR, \f(CW\*(C`vmlsLn4\*(C'\fR, \f(CW\*(C`vmlsLog104\*(C'\fR,
-\&\f(CW\*(C`vmlsLog104\*(C'\fR, \f(CW\*(C`vmlsPow4\*(C'\fR, \f(CW\*(C`vmlsTanh4\*(C'\fR, \f(CW\*(C`vmlsTan4\*(C'\fR,
-\&\f(CW\*(C`vmlsAtan4\*(C'\fR, \f(CW\*(C`vmlsAtanh4\*(C'\fR, \f(CW\*(C`vmlsCbrt4\*(C'\fR, \f(CW\*(C`vmlsSinh4\*(C'\fR,
-\&\f(CW\*(C`vmlsSin4\*(C'\fR, \f(CW\*(C`vmlsAsinh4\*(C'\fR, \f(CW\*(C`vmlsAsin4\*(C'\fR, \f(CW\*(C`vmlsCosh4\*(C'\fR,
-\&\f(CW\*(C`vmlsCos4\*(C'\fR, \f(CW\*(C`vmlsAcosh4\*(C'\fR and \f(CW\*(C`vmlsAcos4\*(C'\fR for corresponding
-function type when \fB\-mveclibabi=svml\fR is used, and \f(CW\*(C`_\|_vrd2_sin\*(C'\fR,
-\&\f(CW\*(C`_\|_vrd2_cos\*(C'\fR, \f(CW\*(C`_\|_vrd2_exp\*(C'\fR, \f(CW\*(C`_\|_vrd2_log\*(C'\fR, \f(CW\*(C`_\|_vrd2_log2\*(C'\fR,
-\&\f(CW\*(C`_\|_vrd2_log10\*(C'\fR, \f(CW\*(C`_\|_vrs4_sinf\*(C'\fR, \f(CW\*(C`_\|_vrs4_cosf\*(C'\fR,
-\&\f(CW\*(C`_\|_vrs4_expf\*(C'\fR, \f(CW\*(C`_\|_vrs4_logf\*(C'\fR, \f(CW\*(C`_\|_vrs4_log2f\*(C'\fR,
-\&\f(CW\*(C`_\|_vrs4_log10f\*(C'\fR and \f(CW\*(C`_\|_vrs4_powf\*(C'\fR for the corresponding function type
-when \fB\-mveclibabi=acml\fR is used.
-.IP "\fB\-mabi=\fR\fIname\fR" 4
-.IX Item "-mabi=name"
-Generate code for the specified calling convention. Permissible values
-are \fBsysv\fR for the \s-1ABI\s0 used on GNU/Linux and other systems, and
-\&\fBms\fR for the Microsoft \s-1ABI. \s0 The default is to use the Microsoft
-\&\s-1ABI\s0 when targeting Microsoft Windows and the SysV \s-1ABI\s0 on all other systems.
-You can control this behavior for a specific function by
-using the function attribute \fBms_abi\fR/\fBsysv_abi\fR.
-.IP "\fB\-mtls\-dialect=\fR\fItype\fR" 4
-.IX Item "-mtls-dialect=type"
-Generate code to access thread-local storage using the \fBgnu\fR or
-\&\fBgnu2\fR conventions. \fBgnu\fR is the conservative default;
-\&\fBgnu2\fR is more efficient, but it may add compile\- and run-time
-requirements that cannot be satisfied on all systems.
-.IP "\fB\-mpush\-args\fR" 4
-.IX Item "-mpush-args"
-.PD 0
-.IP "\fB\-mno\-push\-args\fR" 4
-.IX Item "-mno-push-args"
-.PD
-Use \s-1PUSH\s0 operations to store outgoing parameters. This method is shorter
-and usually equally fast as method using \s-1SUB/MOV\s0 operations and is enabled
-by default. In some cases disabling it may improve performance because of
-improved scheduling and reduced dependencies.
-.IP "\fB\-maccumulate\-outgoing\-args\fR" 4
-.IX Item "-maccumulate-outgoing-args"
-If enabled, the maximum amount of space required for outgoing arguments is
-computed in the function prologue. This is faster on most modern CPUs
-because of reduced dependencies, improved scheduling and reduced stack usage
-when the preferred stack boundary is not equal to 2. The drawback is a notable
-increase in code size. This switch implies \fB\-mno\-push\-args\fR.
-.IP "\fB\-mthreads\fR" 4
-.IX Item "-mthreads"
-Support thread-safe exception handling on MinGW. Programs that rely
-on thread-safe exception handling must compile and link all code with the
-\&\fB\-mthreads\fR option. When compiling, \fB\-mthreads\fR defines
-\&\f(CW\*(C`\-D_MT\*(C'\fR; when linking, it links in a special thread helper library
-\&\fB\-lmingwthrd\fR which cleans up per-thread exception-handling data.
-.IP "\fB\-mno\-align\-stringops\fR" 4
-.IX Item "-mno-align-stringops"
-Do not align the destination of inlined string operations. This switch reduces
-code size and improves performance in case the destination is already aligned,
-but \s-1GCC\s0 doesn't know about it.
-.IP "\fB\-minline\-all\-stringops\fR" 4
-.IX Item "-minline-all-stringops"
-By default \s-1GCC\s0 inlines string operations only when the destination is
-known to be aligned to least a 4\-byte boundary.
-This enables more inlining and increases code
-size, but may improve performance of code that depends on fast
-\&\f(CW\*(C`memcpy\*(C'\fR, \f(CW\*(C`strlen\*(C'\fR,
-and \f(CW\*(C`memset\*(C'\fR for short lengths.
-.IP "\fB\-minline\-stringops\-dynamically\fR" 4
-.IX Item "-minline-stringops-dynamically"
-For string operations of unknown size, use run-time checks with
-inline code for small blocks and a library call for large blocks.
-.IP "\fB\-mstringop\-strategy=\fR\fIalg\fR" 4
-.IX Item "-mstringop-strategy=alg"
-Override the internal decision heuristic for the particular algorithm to use
-for inlining string operations. The allowed values for \fIalg\fR are:
-.RS 4
-.IP "\fBrep_byte\fR" 4
-.IX Item "rep_byte"
-.PD 0
-.IP "\fBrep_4byte\fR" 4
-.IX Item "rep_4byte"
-.IP "\fBrep_8byte\fR" 4
-.IX Item "rep_8byte"
-.PD
-Expand using i386 \f(CW\*(C`rep\*(C'\fR prefix of the specified size.
-.IP "\fBbyte_loop\fR" 4
-.IX Item "byte_loop"
-.PD 0
-.IP "\fBloop\fR" 4
-.IX Item "loop"
-.IP "\fBunrolled_loop\fR" 4
-.IX Item "unrolled_loop"
-.PD
-Expand into an inline loop.
-.IP "\fBlibcall\fR" 4
-.IX Item "libcall"
-Always use a library call.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mmemcpy\-strategy=\fR\fIstrategy\fR" 4
-.IX Item "-mmemcpy-strategy=strategy"
-Override the internal decision heuristic to decide if \f(CW\*(C`_\|_builtin_memcpy\*(C'\fR
-should be inlined and what inline algorithm to use when the expected size
-of the copy operation is known. \fIstrategy\fR
-is a comma-separated list of \fIalg\fR:\fImax_size\fR:\fIdest_align\fR triplets.
-\&\fIalg\fR is specified in \fB\-mstringop\-strategy\fR, \fImax_size\fR specifies
-the max byte size with which inline algorithm \fIalg\fR is allowed. For the last
-triplet, the \fImax_size\fR must be \f(CW\*(C`\-1\*(C'\fR. The \fImax_size\fR of the triplets
-in the list must be specified in increasing order. The minimal byte size for
-\&\fIalg\fR is \f(CW0\fR for the first triplet and \f(CW\*(C`\f(CImax_size\f(CW + 1\*(C'\fR of the
-preceding range.
-.IP "\fB\-mmemset\-strategy=\fR\fIstrategy\fR" 4
-.IX Item "-mmemset-strategy=strategy"
-The option is similar to \fB\-mmemcpy\-strategy=\fR except that it is to control
-\&\f(CW\*(C`_\|_builtin_memset\*(C'\fR expansion.
-.IP "\fB\-momit\-leaf\-frame\-pointer\fR" 4
-.IX Item "-momit-leaf-frame-pointer"
-Don't keep the frame pointer in a register for leaf functions. This
-avoids the instructions to save, set up, and restore frame pointers and
-makes an extra register available in leaf functions. The option
-\&\fB\-fomit\-leaf\-frame\-pointer\fR removes the frame pointer for leaf functions,
-which might make debugging harder.
-.IP "\fB\-mtls\-direct\-seg\-refs\fR" 4
-.IX Item "-mtls-direct-seg-refs"
-.PD 0
-.IP "\fB\-mno\-tls\-direct\-seg\-refs\fR" 4
-.IX Item "-mno-tls-direct-seg-refs"
-.PD
-Controls whether \s-1TLS\s0 variables may be accessed with offsets from the
-\&\s-1TLS\s0 segment register (\f(CW%gs\fR for 32\-bit, \f(CW%fs\fR for 64\-bit),
-or whether the thread base pointer must be added. Whether or not this
-is valid depends on the operating system, and whether it maps the
-segment to cover the entire \s-1TLS\s0 area.
-.Sp
-For systems that use the \s-1GNU C\s0 Library, the default is on.
-.IP "\fB\-msse2avx\fR" 4
-.IX Item "-msse2avx"
-.PD 0
-.IP "\fB\-mno\-sse2avx\fR" 4
-.IX Item "-mno-sse2avx"
-.PD
-Specify that the assembler should encode \s-1SSE\s0 instructions with \s-1VEX\s0
-prefix. The option \fB\-mavx\fR turns this on by default.
-.IP "\fB\-mfentry\fR" 4
-.IX Item "-mfentry"
-.PD 0
-.IP "\fB\-mno\-fentry\fR" 4
-.IX Item "-mno-fentry"
-.PD
-If profiling is active (\fB\-pg\fR), put the profiling
-counter call before the prologue.
-Note: On x86 architectures the attribute \f(CW\*(C`ms_hook_prologue\*(C'\fR
-isn't possible at the moment for \fB\-mfentry\fR and \fB\-pg\fR.
-.IP "\fB\-m8bit\-idiv\fR" 4
-.IX Item "-m8bit-idiv"
-.PD 0
-.IP "\fB\-mno\-8bit\-idiv\fR" 4
-.IX Item "-mno-8bit-idiv"
-.PD
-On some processors, like Intel Atom, 8\-bit unsigned integer divide is
-much faster than 32\-bit/64\-bit integer divide. This option generates a
-run-time check. If both dividend and divisor are within range of 0
-to 255, 8\-bit unsigned integer divide is used instead of
-32\-bit/64\-bit integer divide.
-.IP "\fB\-mavx256\-split\-unaligned\-load\fR" 4
-.IX Item "-mavx256-split-unaligned-load"
-.PD 0
-.IP "\fB\-mavx256\-split\-unaligned\-store\fR" 4
-.IX Item "-mavx256-split-unaligned-store"
-.PD
-Split 32\-byte \s-1AVX\s0 unaligned load and store.
-.IP "\fB\-mstack\-protector\-guard=\fR\fIguard\fR" 4
-.IX Item "-mstack-protector-guard=guard"
-Generate stack protection code using canary at \fIguard\fR. Supported
-locations are \fBglobal\fR for global canary or \fBtls\fR for per-thread
-canary in the \s-1TLS\s0 block (the default). This option has effect only when
-\&\fB\-fstack\-protector\fR or \fB\-fstack\-protector\-all\fR is specified.
-.PP
-These \fB\-m\fR switches are supported in addition to the above
-on x86\-64 processors in 64\-bit environments.
-.IP "\fB\-m32\fR" 4
-.IX Item "-m32"
-.PD 0
-.IP "\fB\-m64\fR" 4
-.IX Item "-m64"
-.IP "\fB\-mx32\fR" 4
-.IX Item "-mx32"
-.IP "\fB\-m16\fR" 4
-.IX Item "-m16"
-.PD
-Generate code for a 16\-bit, 32\-bit or 64\-bit environment.
-The \fB\-m32\fR option sets \f(CW\*(C`int\*(C'\fR, \f(CW\*(C`long\*(C'\fR, and pointer types
-to 32 bits, and
-generates code that runs on any i386 system.
-.Sp
-The \fB\-m64\fR option sets \f(CW\*(C`int\*(C'\fR to 32 bits and \f(CW\*(C`long\*(C'\fR and pointer
-types to 64 bits, and generates code for the x86\-64 architecture.
-For Darwin only the \fB\-m64\fR option also turns off the \fB\-fno\-pic\fR
-and \fB\-mdynamic\-no\-pic\fR options.
-.Sp
-The \fB\-mx32\fR option sets \f(CW\*(C`int\*(C'\fR, \f(CW\*(C`long\*(C'\fR, and pointer types
-to 32 bits, and
-generates code for the x86\-64 architecture.
-.Sp
-The \fB\-m16\fR option is the same as \fB\-m32\fR, except for that
-it outputs the \f(CW\*(C`.code16gcc\*(C'\fR assembly directive at the beginning of
-the assembly output so that the binary can run in 16\-bit mode.
-.IP "\fB\-mno\-red\-zone\fR" 4
-.IX Item "-mno-red-zone"
-Do not use a so-called \*(L"red zone\*(R" for x86\-64 code. The red zone is mandated
-by the x86\-64 \s-1ABI\s0; it is a 128\-byte area beyond the location of the
-stack pointer that is not modified by signal or interrupt handlers
-and therefore can be used for temporary data without adjusting the stack
-pointer. The flag \fB\-mno\-red\-zone\fR disables this red zone.
-.IP "\fB\-mcmodel=small\fR" 4
-.IX Item "-mcmodel=small"
-Generate code for the small code model: the program and its symbols must
-be linked in the lower 2 \s-1GB\s0 of the address space. Pointers are 64 bits.
-Programs can be statically or dynamically linked. This is the default
-code model.
-.IP "\fB\-mcmodel=kernel\fR" 4
-.IX Item "-mcmodel=kernel"
-Generate code for the kernel code model. The kernel runs in the
-negative 2 \s-1GB\s0 of the address space.
-This model has to be used for Linux kernel code.
-.IP "\fB\-mcmodel=medium\fR" 4
-.IX Item "-mcmodel=medium"
-Generate code for the medium model: the program is linked in the lower 2
-\&\s-1GB\s0 of the address space. Small symbols are also placed there. Symbols
-with sizes larger than \fB\-mlarge\-data\-threshold\fR are put into
-large data or \s-1BSS\s0 sections and can be located above 2GB. Programs can
-be statically or dynamically linked.
-.IP "\fB\-mcmodel=large\fR" 4
-.IX Item "-mcmodel=large"
-Generate code for the large model. This model makes no assumptions
-about addresses and sizes of sections.
-.IP "\fB\-maddress\-mode=long\fR" 4
-.IX Item "-maddress-mode=long"
-Generate code for long address mode. This is only supported for 64\-bit
-and x32 environments. It is the default address mode for 64\-bit
-environments.
-.IP "\fB\-maddress\-mode=short\fR" 4
-.IX Item "-maddress-mode=short"
-Generate code for short address mode. This is only supported for 32\-bit
-and x32 environments. It is the default address mode for 32\-bit and
-x32 environments.
-.PP
-\fIi386 and x86\-64 Windows Options\fR
-.IX Subsection "i386 and x86-64 Windows Options"
-.PP
-These additional options are available for Microsoft Windows targets:
-.IP "\fB\-mconsole\fR" 4
-.IX Item "-mconsole"
-This option
-specifies that a console application is to be generated, by
-instructing the linker to set the \s-1PE\s0 header subsystem type
-required for console applications.
-This option is available for Cygwin and MinGW targets and is
-enabled by default on those targets.
-.IP "\fB\-mdll\fR" 4
-.IX Item "-mdll"
-This option is available for Cygwin and MinGW targets. It
-specifies that a DLL\-\-\-a dynamic link library\-\-\-is to be
-generated, enabling the selection of the required runtime
-startup object and entry point.
-.IP "\fB\-mnop\-fun\-dllimport\fR" 4
-.IX Item "-mnop-fun-dllimport"
-This option is available for Cygwin and MinGW targets. It
-specifies that the \f(CW\*(C`dllimport\*(C'\fR attribute should be ignored.
-.IP "\fB\-mthread\fR" 4
-.IX Item "-mthread"
-This option is available for MinGW targets. It specifies
-that MinGW-specific thread support is to be used.
-.IP "\fB\-municode\fR" 4
-.IX Item "-municode"
-This option is available for MinGW\-w64 targets. It causes
-the \f(CW\*(C`UNICODE\*(C'\fR preprocessor macro to be predefined, and
-chooses Unicode-capable runtime startup code.
-.IP "\fB\-mwin32\fR" 4
-.IX Item "-mwin32"
-This option is available for Cygwin and MinGW targets. It
-specifies that the typical Microsoft Windows predefined macros are to
-be set in the pre-processor, but does not influence the choice
-of runtime library/startup code.
-.IP "\fB\-mwindows\fR" 4
-.IX Item "-mwindows"
-This option is available for Cygwin and MinGW targets. It
-specifies that a \s-1GUI\s0 application is to be generated by
-instructing the linker to set the \s-1PE\s0 header subsystem type
-appropriately.
-.IP "\fB\-fno\-set\-stack\-executable\fR" 4
-.IX Item "-fno-set-stack-executable"
-This option is available for MinGW targets. It specifies that
-the executable flag for the stack used by nested functions isn't
-set. This is necessary for binaries running in kernel mode of
-Microsoft Windows, as there the User32 \s-1API,\s0 which is used to set executable
-privileges, isn't available.
-.IP "\fB\-fwritable\-relocated\-rdata\fR" 4
-.IX Item "-fwritable-relocated-rdata"
-This option is available for MinGW and Cygwin targets. It specifies
-that relocated-data in read-only section is put into .data
-section. This is a necessary for older runtimes not supporting
-modification of .rdata sections for pseudo-relocation.
-.IP "\fB\-mpe\-aligned\-commons\fR" 4
-.IX Item "-mpe-aligned-commons"
-This option is available for Cygwin and MinGW targets. It
-specifies that the \s-1GNU\s0 extension to the \s-1PE\s0 file format that
-permits the correct alignment of \s-1COMMON\s0 variables should be
-used when generating code. It is enabled by default if
-\&\s-1GCC\s0 detects that the target assembler found during configuration
-supports the feature.
-.PP
-See also under \fBi386 and x86\-64 Options\fR for standard options.
-.PP
-\fI\s-1IA\-64\s0 Options\fR
-.IX Subsection "IA-64 Options"
-.PP
-These are the \fB\-m\fR options defined for the Intel \s-1IA\-64\s0 architecture.
-.IP "\fB\-mbig\-endian\fR" 4
-.IX Item "-mbig-endian"
-Generate code for a big-endian target. This is the default for HP-UX.
-.IP "\fB\-mlittle\-endian\fR" 4
-.IX Item "-mlittle-endian"
-Generate code for a little-endian target. This is the default for \s-1AIX5\s0
-and GNU/Linux.
-.IP "\fB\-mgnu\-as\fR" 4
-.IX Item "-mgnu-as"
-.PD 0
-.IP "\fB\-mno\-gnu\-as\fR" 4
-.IX Item "-mno-gnu-as"
-.PD
-Generate (or don't) code for the \s-1GNU\s0 assembler. This is the default.
-.IP "\fB\-mgnu\-ld\fR" 4
-.IX Item "-mgnu-ld"
-.PD 0
-.IP "\fB\-mno\-gnu\-ld\fR" 4
-.IX Item "-mno-gnu-ld"
-.PD
-Generate (or don't) code for the \s-1GNU\s0 linker. This is the default.
-.IP "\fB\-mno\-pic\fR" 4
-.IX Item "-mno-pic"
-Generate code that does not use a global pointer register. The result
-is not position independent code, and violates the \s-1IA\-64 ABI.\s0
-.IP "\fB\-mvolatile\-asm\-stop\fR" 4
-.IX Item "-mvolatile-asm-stop"
-.PD 0
-.IP "\fB\-mno\-volatile\-asm\-stop\fR" 4
-.IX Item "-mno-volatile-asm-stop"
-.PD
-Generate (or don't) a stop bit immediately before and after volatile asm
-statements.
-.IP "\fB\-mregister\-names\fR" 4
-.IX Item "-mregister-names"
-.PD 0
-.IP "\fB\-mno\-register\-names\fR" 4
-.IX Item "-mno-register-names"
-.PD
-Generate (or don't) \fBin\fR, \fBloc\fR, and \fBout\fR register names for
-the stacked registers. This may make assembler output more readable.
-.IP "\fB\-mno\-sdata\fR" 4
-.IX Item "-mno-sdata"
-.PD 0
-.IP "\fB\-msdata\fR" 4
-.IX Item "-msdata"
-.PD
-Disable (or enable) optimizations that use the small data section. This may
-be useful for working around optimizer bugs.
-.IP "\fB\-mconstant\-gp\fR" 4
-.IX Item "-mconstant-gp"
-Generate code that uses a single constant global pointer value. This is
-useful when compiling kernel code.
-.IP "\fB\-mauto\-pic\fR" 4
-.IX Item "-mauto-pic"
-Generate code that is self-relocatable. This implies \fB\-mconstant\-gp\fR.
-This is useful when compiling firmware code.
-.IP "\fB\-minline\-float\-divide\-min\-latency\fR" 4
-.IX Item "-minline-float-divide-min-latency"
-Generate code for inline divides of floating-point values
-using the minimum latency algorithm.
-.IP "\fB\-minline\-float\-divide\-max\-throughput\fR" 4
-.IX Item "-minline-float-divide-max-throughput"
-Generate code for inline divides of floating-point values
-using the maximum throughput algorithm.
-.IP "\fB\-mno\-inline\-float\-divide\fR" 4
-.IX Item "-mno-inline-float-divide"
-Do not generate inline code for divides of floating-point values.
-.IP "\fB\-minline\-int\-divide\-min\-latency\fR" 4
-.IX Item "-minline-int-divide-min-latency"
-Generate code for inline divides of integer values
-using the minimum latency algorithm.
-.IP "\fB\-minline\-int\-divide\-max\-throughput\fR" 4
-.IX Item "-minline-int-divide-max-throughput"
-Generate code for inline divides of integer values
-using the maximum throughput algorithm.
-.IP "\fB\-mno\-inline\-int\-divide\fR" 4
-.IX Item "-mno-inline-int-divide"
-Do not generate inline code for divides of integer values.
-.IP "\fB\-minline\-sqrt\-min\-latency\fR" 4
-.IX Item "-minline-sqrt-min-latency"
-Generate code for inline square roots
-using the minimum latency algorithm.
-.IP "\fB\-minline\-sqrt\-max\-throughput\fR" 4
-.IX Item "-minline-sqrt-max-throughput"
-Generate code for inline square roots
-using the maximum throughput algorithm.
-.IP "\fB\-mno\-inline\-sqrt\fR" 4
-.IX Item "-mno-inline-sqrt"
-Do not generate inline code for \f(CW\*(C`sqrt\*(C'\fR.
-.IP "\fB\-mfused\-madd\fR" 4
-.IX Item "-mfused-madd"
-.PD 0
-.IP "\fB\-mno\-fused\-madd\fR" 4
-.IX Item "-mno-fused-madd"
-.PD
-Do (don't) generate code that uses the fused multiply/add or multiply/subtract
-instructions. The default is to use these instructions.
-.IP "\fB\-mno\-dwarf2\-asm\fR" 4
-.IX Item "-mno-dwarf2-asm"
-.PD 0
-.IP "\fB\-mdwarf2\-asm\fR" 4
-.IX Item "-mdwarf2-asm"
-.PD
-Don't (or do) generate assembler code for the \s-1DWARF 2\s0 line number debugging
-info. This may be useful when not using the \s-1GNU\s0 assembler.
-.IP "\fB\-mearly\-stop\-bits\fR" 4
-.IX Item "-mearly-stop-bits"
-.PD 0
-.IP "\fB\-mno\-early\-stop\-bits\fR" 4
-.IX Item "-mno-early-stop-bits"
-.PD
-Allow stop bits to be placed earlier than immediately preceding the
-instruction that triggered the stop bit. This can improve instruction
-scheduling, but does not always do so.
-.IP "\fB\-mfixed\-range=\fR\fIregister-range\fR" 4
-.IX Item "-mfixed-range=register-range"
-Generate code treating the given register range as fixed registers.
-A fixed register is one that the register allocator cannot use. This is
-useful when compiling kernel code. A register range is specified as
-two registers separated by a dash. Multiple register ranges can be
-specified separated by a comma.
-.IP "\fB\-mtls\-size=\fR\fItls-size\fR" 4
-.IX Item "-mtls-size=tls-size"
-Specify bit size of immediate \s-1TLS\s0 offsets. Valid values are 14, 22, and
-64.
-.IP "\fB\-mtune=\fR\fIcpu-type\fR" 4
-.IX Item "-mtune=cpu-type"
-Tune the instruction scheduling for a particular \s-1CPU,\s0 Valid values are
-\&\fBitanium\fR, \fBitanium1\fR, \fBmerced\fR, \fBitanium2\fR,
-and \fBmckinley\fR.
-.IP "\fB\-milp32\fR" 4
-.IX Item "-milp32"
-.PD 0
-.IP "\fB\-mlp64\fR" 4
-.IX Item "-mlp64"
-.PD
-Generate code for a 32\-bit or 64\-bit environment.
-The 32\-bit environment sets int, long and pointer to 32 bits.
-The 64\-bit environment sets int to 32 bits and long and pointer
-to 64 bits. These are HP-UX specific flags.
-.IP "\fB\-mno\-sched\-br\-data\-spec\fR" 4
-.IX Item "-mno-sched-br-data-spec"
-.PD 0
-.IP "\fB\-msched\-br\-data\-spec\fR" 4
-.IX Item "-msched-br-data-spec"
-.PD
-(Dis/En)able data speculative scheduling before reload.
-This results in generation of \f(CW\*(C`ld.a\*(C'\fR instructions and
-the corresponding check instructions (\f(CW\*(C`ld.c\*(C'\fR / \f(CW\*(C`chk.a\*(C'\fR).
-The default is 'disable'.
-.IP "\fB\-msched\-ar\-data\-spec\fR" 4
-.IX Item "-msched-ar-data-spec"
-.PD 0
-.IP "\fB\-mno\-sched\-ar\-data\-spec\fR" 4
-.IX Item "-mno-sched-ar-data-spec"
-.PD
-(En/Dis)able data speculative scheduling after reload.
-This results in generation of \f(CW\*(C`ld.a\*(C'\fR instructions and
-the corresponding check instructions (\f(CW\*(C`ld.c\*(C'\fR / \f(CW\*(C`chk.a\*(C'\fR).
-The default is 'enable'.
-.IP "\fB\-mno\-sched\-control\-spec\fR" 4
-.IX Item "-mno-sched-control-spec"
-.PD 0
-.IP "\fB\-msched\-control\-spec\fR" 4
-.IX Item "-msched-control-spec"
-.PD
-(Dis/En)able control speculative scheduling. This feature is
-available only during region scheduling (i.e. before reload).
-This results in generation of the \f(CW\*(C`ld.s\*(C'\fR instructions and
-the corresponding check instructions \f(CW\*(C`chk.s\*(C'\fR.
-The default is 'disable'.
-.IP "\fB\-msched\-br\-in\-data\-spec\fR" 4
-.IX Item "-msched-br-in-data-spec"
-.PD 0
-.IP "\fB\-mno\-sched\-br\-in\-data\-spec\fR" 4
-.IX Item "-mno-sched-br-in-data-spec"
-.PD
-(En/Dis)able speculative scheduling of the instructions that
-are dependent on the data speculative loads before reload.
-This is effective only with \fB\-msched\-br\-data\-spec\fR enabled.
-The default is 'enable'.
-.IP "\fB\-msched\-ar\-in\-data\-spec\fR" 4
-.IX Item "-msched-ar-in-data-spec"
-.PD 0
-.IP "\fB\-mno\-sched\-ar\-in\-data\-spec\fR" 4
-.IX Item "-mno-sched-ar-in-data-spec"
-.PD
-(En/Dis)able speculative scheduling of the instructions that
-are dependent on the data speculative loads after reload.
-This is effective only with \fB\-msched\-ar\-data\-spec\fR enabled.
-The default is 'enable'.
-.IP "\fB\-msched\-in\-control\-spec\fR" 4
-.IX Item "-msched-in-control-spec"
-.PD 0
-.IP "\fB\-mno\-sched\-in\-control\-spec\fR" 4
-.IX Item "-mno-sched-in-control-spec"
-.PD
-(En/Dis)able speculative scheduling of the instructions that
-are dependent on the control speculative loads.
-This is effective only with \fB\-msched\-control\-spec\fR enabled.
-The default is 'enable'.
-.IP "\fB\-mno\-sched\-prefer\-non\-data\-spec\-insns\fR" 4
-.IX Item "-mno-sched-prefer-non-data-spec-insns"
-.PD 0
-.IP "\fB\-msched\-prefer\-non\-data\-spec\-insns\fR" 4
-.IX Item "-msched-prefer-non-data-spec-insns"
-.PD
-If enabled, data-speculative instructions are chosen for schedule
-only if there are no other choices at the moment. This makes
-the use of the data speculation much more conservative.
-The default is 'disable'.
-.IP "\fB\-mno\-sched\-prefer\-non\-control\-spec\-insns\fR" 4
-.IX Item "-mno-sched-prefer-non-control-spec-insns"
-.PD 0
-.IP "\fB\-msched\-prefer\-non\-control\-spec\-insns\fR" 4
-.IX Item "-msched-prefer-non-control-spec-insns"
-.PD
-If enabled, control-speculative instructions are chosen for schedule
-only if there are no other choices at the moment. This makes
-the use of the control speculation much more conservative.
-The default is 'disable'.
-.IP "\fB\-mno\-sched\-count\-spec\-in\-critical\-path\fR" 4
-.IX Item "-mno-sched-count-spec-in-critical-path"
-.PD 0
-.IP "\fB\-msched\-count\-spec\-in\-critical\-path\fR" 4
-.IX Item "-msched-count-spec-in-critical-path"
-.PD
-If enabled, speculative dependencies are considered during
-computation of the instructions priorities. This makes the use of the
-speculation a bit more conservative.
-The default is 'disable'.
-.IP "\fB\-msched\-spec\-ldc\fR" 4
-.IX Item "-msched-spec-ldc"
-Use a simple data speculation check. This option is on by default.
-.IP "\fB\-msched\-control\-spec\-ldc\fR" 4
-.IX Item "-msched-control-spec-ldc"
-Use a simple check for control speculation. This option is on by default.
-.IP "\fB\-msched\-stop\-bits\-after\-every\-cycle\fR" 4
-.IX Item "-msched-stop-bits-after-every-cycle"
-Place a stop bit after every cycle when scheduling. This option is on
-by default.
-.IP "\fB\-msched\-fp\-mem\-deps\-zero\-cost\fR" 4
-.IX Item "-msched-fp-mem-deps-zero-cost"
-Assume that floating-point stores and loads are not likely to cause a conflict
-when placed into the same instruction group. This option is disabled by
-default.
-.IP "\fB\-msel\-sched\-dont\-check\-control\-spec\fR" 4
-.IX Item "-msel-sched-dont-check-control-spec"
-Generate checks for control speculation in selective scheduling.
-This flag is disabled by default.
-.IP "\fB\-msched\-max\-memory\-insns=\fR\fImax-insns\fR" 4
-.IX Item "-msched-max-memory-insns=max-insns"
-Limit on the number of memory insns per instruction group, giving lower
-priority to subsequent memory insns attempting to schedule in the same
-instruction group. Frequently useful to prevent cache bank conflicts.
-The default value is 1.
-.IP "\fB\-msched\-max\-memory\-insns\-hard\-limit\fR" 4
-.IX Item "-msched-max-memory-insns-hard-limit"
-Makes the limit specified by \fBmsched-max-memory-insns\fR a hard limit,
-disallowing more than that number in an instruction group.
-Otherwise, the limit is \*(L"soft\*(R", meaning that non-memory operations
-are preferred when the limit is reached, but memory operations may still
-be scheduled.
-.PP
-\fI\s-1LM32\s0 Options\fR
-.IX Subsection "LM32 Options"
-.PP
-These \fB\-m\fR options are defined for the LatticeMico32 architecture:
-.IP "\fB\-mbarrel\-shift\-enabled\fR" 4
-.IX Item "-mbarrel-shift-enabled"
-Enable barrel-shift instructions.
-.IP "\fB\-mdivide\-enabled\fR" 4
-.IX Item "-mdivide-enabled"
-Enable divide and modulus instructions.
-.IP "\fB\-mmultiply\-enabled\fR" 4
-.IX Item "-mmultiply-enabled"
-Enable multiply instructions.
-.IP "\fB\-msign\-extend\-enabled\fR" 4
-.IX Item "-msign-extend-enabled"
-Enable sign extend instructions.
-.IP "\fB\-muser\-enabled\fR" 4
-.IX Item "-muser-enabled"
-Enable user-defined instructions.
-.PP
-\fIM32C Options\fR
-.IX Subsection "M32C Options"
-.IP "\fB\-mcpu=\fR\fIname\fR" 4
-.IX Item "-mcpu=name"
-Select the \s-1CPU\s0 for which code is generated. \fIname\fR may be one of
-\&\fBr8c\fR for the R8C/Tiny series, \fBm16c\fR for the M16C (up to
-/60) series, \fBm32cm\fR for the M16C/80 series, or \fBm32c\fR for
-the M32C/80 series.
-.IP "\fB\-msim\fR" 4
-.IX Item "-msim"
-Specifies that the program will be run on the simulator. This causes
-an alternate runtime library to be linked in which supports, for
-example, file I/O. You must not use this option when generating
-programs that will run on real hardware; you must provide your own
-runtime library for whatever I/O functions are needed.
-.IP "\fB\-memregs=\fR\fInumber\fR" 4
-.IX Item "-memregs=number"
-Specifies the number of memory-based pseudo-registers \s-1GCC\s0 uses
-during code generation. These pseudo-registers are used like real
-registers, so there is a tradeoff between \s-1GCC\s0's ability to fit the
-code into available registers, and the performance penalty of using
-memory instead of registers. Note that all modules in a program must
-be compiled with the same value for this option. Because of that, you
-must not use this option with \s-1GCC\s0's default runtime libraries.
-.PP
-\fIM32R/D Options\fR
-.IX Subsection "M32R/D Options"
-.PP
-These \fB\-m\fR options are defined for Renesas M32R/D architectures:
-.IP "\fB\-m32r2\fR" 4
-.IX Item "-m32r2"
-Generate code for the M32R/2.
-.IP "\fB\-m32rx\fR" 4
-.IX Item "-m32rx"
-Generate code for the M32R/X.
-.IP "\fB\-m32r\fR" 4
-.IX Item "-m32r"
-Generate code for the M32R. This is the default.
-.IP "\fB\-mmodel=small\fR" 4
-.IX Item "-mmodel=small"
-Assume all objects live in the lower 16MB of memory (so that their addresses
-can be loaded with the \f(CW\*(C`ld24\*(C'\fR instruction), and assume all subroutines
-are reachable with the \f(CW\*(C`bl\*(C'\fR instruction.
-This is the default.
-.Sp
-The addressability of a particular object can be set with the
-\&\f(CW\*(C`model\*(C'\fR attribute.
-.IP "\fB\-mmodel=medium\fR" 4
-.IX Item "-mmodel=medium"
-Assume objects may be anywhere in the 32\-bit address space (the compiler
-generates \f(CW\*(C`seth/add3\*(C'\fR instructions to load their addresses), and
-assume all subroutines are reachable with the \f(CW\*(C`bl\*(C'\fR instruction.
-.IP "\fB\-mmodel=large\fR" 4
-.IX Item "-mmodel=large"
-Assume objects may be anywhere in the 32\-bit address space (the compiler
-generates \f(CW\*(C`seth/add3\*(C'\fR instructions to load their addresses), and
-assume subroutines may not be reachable with the \f(CW\*(C`bl\*(C'\fR instruction
-(the compiler generates the much slower \f(CW\*(C`seth/add3/jl\*(C'\fR
-instruction sequence).
-.IP "\fB\-msdata=none\fR" 4
-.IX Item "-msdata=none"
-Disable use of the small data area. Variables are put into
-one of \fB.data\fR, \fB.bss\fR, or \fB.rodata\fR (unless the
-\&\f(CW\*(C`section\*(C'\fR attribute has been specified).
-This is the default.
-.Sp
-The small data area consists of sections \fB.sdata\fR and \fB.sbss\fR.
-Objects may be explicitly put in the small data area with the
-\&\f(CW\*(C`section\*(C'\fR attribute using one of these sections.
-.IP "\fB\-msdata=sdata\fR" 4
-.IX Item "-msdata=sdata"
-Put small global and static data in the small data area, but do not
-generate special code to reference them.
-.IP "\fB\-msdata=use\fR" 4
-.IX Item "-msdata=use"
-Put small global and static data in the small data area, and generate
-special instructions to reference them.
-.IP "\fB\-G\fR \fInum\fR" 4
-.IX Item "-G num"
-Put global and static objects less than or equal to \fInum\fR bytes
-into the small data or \s-1BSS\s0 sections instead of the normal data or \s-1BSS\s0
-sections. The default value of \fInum\fR is 8.
-The \fB\-msdata\fR option must be set to one of \fBsdata\fR or \fBuse\fR
-for this option to have any effect.
-.Sp
-All modules should be compiled with the same \fB\-G\fR \fInum\fR value.
-Compiling with different values of \fInum\fR may or may not work; if it
-doesn't the linker gives an error message\-\-\-incorrect code is not
-generated.
-.IP "\fB\-mdebug\fR" 4
-.IX Item "-mdebug"
-Makes the M32R\-specific code in the compiler display some statistics
-that might help in debugging programs.
-.IP "\fB\-malign\-loops\fR" 4
-.IX Item "-malign-loops"
-Align all loops to a 32\-byte boundary.
-.IP "\fB\-mno\-align\-loops\fR" 4
-.IX Item "-mno-align-loops"
-Do not enforce a 32\-byte alignment for loops. This is the default.
-.IP "\fB\-missue\-rate=\fR\fInumber\fR" 4
-.IX Item "-missue-rate=number"
-Issue \fInumber\fR instructions per cycle. \fInumber\fR can only be 1
-or 2.
-.IP "\fB\-mbranch\-cost=\fR\fInumber\fR" 4
-.IX Item "-mbranch-cost=number"
-\&\fInumber\fR can only be 1 or 2. If it is 1 then branches are
-preferred over conditional code, if it is 2, then the opposite applies.
-.IP "\fB\-mflush\-trap=\fR\fInumber\fR" 4
-.IX Item "-mflush-trap=number"
-Specifies the trap number to use to flush the cache. The default is
-12. Valid numbers are between 0 and 15 inclusive.
-.IP "\fB\-mno\-flush\-trap\fR" 4
-.IX Item "-mno-flush-trap"
-Specifies that the cache cannot be flushed by using a trap.
-.IP "\fB\-mflush\-func=\fR\fIname\fR" 4
-.IX Item "-mflush-func=name"
-Specifies the name of the operating system function to call to flush
-the cache. The default is \fI_flush_cache\fR, but a function call
-is only used if a trap is not available.
-.IP "\fB\-mno\-flush\-func\fR" 4
-.IX Item "-mno-flush-func"
-Indicates that there is no \s-1OS\s0 function for flushing the cache.
-.PP
-\fIM680x0 Options\fR
-.IX Subsection "M680x0 Options"
-.PP
-These are the \fB\-m\fR options defined for M680x0 and ColdFire processors.
-The default settings depend on which architecture was selected when
-the compiler was configured; the defaults for the most common choices
-are given below.
-.IP "\fB\-march=\fR\fIarch\fR" 4
-.IX Item "-march=arch"
-Generate code for a specific M680x0 or ColdFire instruction set
-architecture. Permissible values of \fIarch\fR for M680x0
-architectures are: \fB68000\fR, \fB68010\fR, \fB68020\fR,
-\&\fB68030\fR, \fB68040\fR, \fB68060\fR and \fBcpu32\fR. ColdFire
-architectures are selected according to Freescale's \s-1ISA\s0 classification
-and the permissible values are: \fBisaa\fR, \fBisaaplus\fR,
-\&\fBisab\fR and \fBisac\fR.
-.Sp
-\&\s-1GCC\s0 defines a macro \fB_\|_mcf\fR\fIarch\fR\fB_\|_\fR whenever it is generating
-code for a ColdFire target. The \fIarch\fR in this macro is one of the
-\&\fB\-march\fR arguments given above.
-.Sp
-When used together, \fB\-march\fR and \fB\-mtune\fR select code
-that runs on a family of similar processors but that is optimized
-for a particular microarchitecture.
-.IP "\fB\-mcpu=\fR\fIcpu\fR" 4
-.IX Item "-mcpu=cpu"
-Generate code for a specific M680x0 or ColdFire processor.
-The M680x0 \fIcpu\fRs are: \fB68000\fR, \fB68010\fR, \fB68020\fR,
-\&\fB68030\fR, \fB68040\fR, \fB68060\fR, \fB68302\fR, \fB68332\fR
-and \fBcpu32\fR. The ColdFire \fIcpu\fRs are given by the table
-below, which also classifies the CPUs into families:
-.RS 4
-.IP "Family : \fB\-mcpu\fR arguments" 4
-.IX Item "Family : -mcpu arguments"
-.PD 0
-.IP "\fB51\fR : \fB51\fR \fB51ac\fR \fB51ag\fR \fB51cn\fR \fB51em\fR \fB51je\fR \fB51jf\fR \fB51jg\fR \fB51jm\fR \fB51mm\fR \fB51qe\fR \fB51qm\fR" 4
-.IX Item "51 : 51 51ac 51ag 51cn 51em 51je 51jf 51jg 51jm 51mm 51qe 51qm"
-.IP "\fB5206\fR : \fB5202\fR \fB5204\fR \fB5206\fR" 4
-.IX Item "5206 : 5202 5204 5206"
-.IP "\fB5206e\fR : \fB5206e\fR" 4
-.IX Item "5206e : 5206e"
-.IP "\fB5208\fR : \fB5207\fR \fB5208\fR" 4
-.IX Item "5208 : 5207 5208"
-.IP "\fB5211a\fR : \fB5210a\fR \fB5211a\fR" 4
-.IX Item "5211a : 5210a 5211a"
-.IP "\fB5213\fR : \fB5211\fR \fB5212\fR \fB5213\fR" 4
-.IX Item "5213 : 5211 5212 5213"
-.IP "\fB5216\fR : \fB5214\fR \fB5216\fR" 4
-.IX Item "5216 : 5214 5216"
-.IP "\fB52235\fR : \fB52230\fR \fB52231\fR \fB52232\fR \fB52233\fR \fB52234\fR \fB52235\fR" 4
-.IX Item "52235 : 52230 52231 52232 52233 52234 52235"
-.IP "\fB5225\fR : \fB5224\fR \fB5225\fR" 4
-.IX Item "5225 : 5224 5225"
-.IP "\fB52259\fR : \fB52252\fR \fB52254\fR \fB52255\fR \fB52256\fR \fB52258\fR \fB52259\fR" 4
-.IX Item "52259 : 52252 52254 52255 52256 52258 52259"
-.IP "\fB5235\fR : \fB5232\fR \fB5233\fR \fB5234\fR \fB5235\fR \fB523x\fR" 4
-.IX Item "5235 : 5232 5233 5234 5235 523x"
-.IP "\fB5249\fR : \fB5249\fR" 4
-.IX Item "5249 : 5249"
-.IP "\fB5250\fR : \fB5250\fR" 4
-.IX Item "5250 : 5250"
-.IP "\fB5271\fR : \fB5270\fR \fB5271\fR" 4
-.IX Item "5271 : 5270 5271"
-.IP "\fB5272\fR : \fB5272\fR" 4
-.IX Item "5272 : 5272"
-.IP "\fB5275\fR : \fB5274\fR \fB5275\fR" 4
-.IX Item "5275 : 5274 5275"
-.IP "\fB5282\fR : \fB5280\fR \fB5281\fR \fB5282\fR \fB528x\fR" 4
-.IX Item "5282 : 5280 5281 5282 528x"
-.IP "\fB53017\fR : \fB53011\fR \fB53012\fR \fB53013\fR \fB53014\fR \fB53015\fR \fB53016\fR \fB53017\fR" 4
-.IX Item "53017 : 53011 53012 53013 53014 53015 53016 53017"
-.IP "\fB5307\fR : \fB5307\fR" 4
-.IX Item "5307 : 5307"
-.IP "\fB5329\fR : \fB5327\fR \fB5328\fR \fB5329\fR \fB532x\fR" 4
-.IX Item "5329 : 5327 5328 5329 532x"
-.IP "\fB5373\fR : \fB5372\fR \fB5373\fR \fB537x\fR" 4
-.IX Item "5373 : 5372 5373 537x"
-.IP "\fB5407\fR : \fB5407\fR" 4
-.IX Item "5407 : 5407"
-.IP "\fB5475\fR : \fB5470\fR \fB5471\fR \fB5472\fR \fB5473\fR \fB5474\fR \fB5475\fR \fB547x\fR \fB5480\fR \fB5481\fR \fB5482\fR \fB5483\fR \fB5484\fR \fB5485\fR" 4
-.IX Item "5475 : 5470 5471 5472 5473 5474 5475 547x 5480 5481 5482 5483 5484 5485"
-.RE
-.RS 4
-.PD
-.Sp
-\&\fB\-mcpu=\fR\fIcpu\fR overrides \fB\-march=\fR\fIarch\fR if
-\&\fIarch\fR is compatible with \fIcpu\fR. Other combinations of
-\&\fB\-mcpu\fR and \fB\-march\fR are rejected.
-.Sp
-\&\s-1GCC\s0 defines the macro \fB_\|_mcf_cpu_\fR\fIcpu\fR when ColdFire target
-\&\fIcpu\fR is selected. It also defines \fB_\|_mcf_family_\fR\fIfamily\fR,
-where the value of \fIfamily\fR is given by the table above.
-.RE
-.IP "\fB\-mtune=\fR\fItune\fR" 4
-.IX Item "-mtune=tune"
-Tune the code for a particular microarchitecture within the
-constraints set by \fB\-march\fR and \fB\-mcpu\fR.
-The M680x0 microarchitectures are: \fB68000\fR, \fB68010\fR,
-\&\fB68020\fR, \fB68030\fR, \fB68040\fR, \fB68060\fR
-and \fBcpu32\fR. The ColdFire microarchitectures
-are: \fBcfv1\fR, \fBcfv2\fR, \fBcfv3\fR, \fBcfv4\fR and \fBcfv4e\fR.
-.Sp
-You can also use \fB\-mtune=68020\-40\fR for code that needs
-to run relatively well on 68020, 68030 and 68040 targets.
-\&\fB\-mtune=68020\-60\fR is similar but includes 68060 targets
-as well. These two options select the same tuning decisions as
-\&\fB\-m68020\-40\fR and \fB\-m68020\-60\fR respectively.
-.Sp
-\&\s-1GCC\s0 defines the macros \fB_\|_mc\fR\fIarch\fR and \fB_\|_mc\fR\fIarch\fR\fB_\|_\fR
-when tuning for 680x0 architecture \fIarch\fR. It also defines
-\&\fBmc\fR\fIarch\fR unless either \fB\-ansi\fR or a non-GNU \fB\-std\fR
-option is used. If \s-1GCC\s0 is tuning for a range of architectures,
-as selected by \fB\-mtune=68020\-40\fR or \fB\-mtune=68020\-60\fR,
-it defines the macros for every architecture in the range.
-.Sp
-\&\s-1GCC\s0 also defines the macro \fB_\|_m\fR\fIuarch\fR\fB_\|_\fR when tuning for
-ColdFire microarchitecture \fIuarch\fR, where \fIuarch\fR is one
-of the arguments given above.
-.IP "\fB\-m68000\fR" 4
-.IX Item "-m68000"
-.PD 0
-.IP "\fB\-mc68000\fR" 4
-.IX Item "-mc68000"
-.PD
-Generate output for a 68000. This is the default
-when the compiler is configured for 68000\-based systems.
-It is equivalent to \fB\-march=68000\fR.
-.Sp
-Use this option for microcontrollers with a 68000 or \s-1EC000\s0 core,
-including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
-.IP "\fB\-m68010\fR" 4
-.IX Item "-m68010"
-Generate output for a 68010. This is the default
-when the compiler is configured for 68010\-based systems.
-It is equivalent to \fB\-march=68010\fR.
-.IP "\fB\-m68020\fR" 4
-.IX Item "-m68020"
-.PD 0
-.IP "\fB\-mc68020\fR" 4
-.IX Item "-mc68020"
-.PD
-Generate output for a 68020. This is the default
-when the compiler is configured for 68020\-based systems.
-It is equivalent to \fB\-march=68020\fR.
-.IP "\fB\-m68030\fR" 4
-.IX Item "-m68030"
-Generate output for a 68030. This is the default when the compiler is
-configured for 68030\-based systems. It is equivalent to
-\&\fB\-march=68030\fR.
-.IP "\fB\-m68040\fR" 4
-.IX Item "-m68040"
-Generate output for a 68040. This is the default when the compiler is
-configured for 68040\-based systems. It is equivalent to
-\&\fB\-march=68040\fR.
-.Sp
-This option inhibits the use of 68881/68882 instructions that have to be
-emulated by software on the 68040. Use this option if your 68040 does not
-have code to emulate those instructions.
-.IP "\fB\-m68060\fR" 4
-.IX Item "-m68060"
-Generate output for a 68060. This is the default when the compiler is
-configured for 68060\-based systems. It is equivalent to
-\&\fB\-march=68060\fR.
-.Sp
-This option inhibits the use of 68020 and 68881/68882 instructions that
-have to be emulated by software on the 68060. Use this option if your 68060
-does not have code to emulate those instructions.
-.IP "\fB\-mcpu32\fR" 4
-.IX Item "-mcpu32"
-Generate output for a \s-1CPU32. \s0 This is the default
-when the compiler is configured for CPU32\-based systems.
-It is equivalent to \fB\-march=cpu32\fR.
-.Sp
-Use this option for microcontrollers with a
-\&\s-1CPU32\s0 or \s-1CPU32+\s0 core, including the 68330, 68331, 68332, 68333, 68334,
-68336, 68340, 68341, 68349 and 68360.
-.IP "\fB\-m5200\fR" 4
-.IX Item "-m5200"
-Generate output for a 520X ColdFire \s-1CPU. \s0 This is the default
-when the compiler is configured for 520X\-based systems.
-It is equivalent to \fB\-mcpu=5206\fR, and is now deprecated
-in favor of that option.
-.Sp
-Use this option for microcontroller with a 5200 core, including
-the \s-1MCF5202, MCF5203, MCF5204\s0 and \s-1MCF5206.\s0
-.IP "\fB\-m5206e\fR" 4
-.IX Item "-m5206e"
-Generate output for a 5206e ColdFire \s-1CPU. \s0 The option is now
-deprecated in favor of the equivalent \fB\-mcpu=5206e\fR.
-.IP "\fB\-m528x\fR" 4
-.IX Item "-m528x"
-Generate output for a member of the ColdFire 528X family.
-The option is now deprecated in favor of the equivalent
-\&\fB\-mcpu=528x\fR.
-.IP "\fB\-m5307\fR" 4
-.IX Item "-m5307"
-Generate output for a ColdFire 5307 \s-1CPU. \s0 The option is now deprecated
-in favor of the equivalent \fB\-mcpu=5307\fR.
-.IP "\fB\-m5407\fR" 4
-.IX Item "-m5407"
-Generate output for a ColdFire 5407 \s-1CPU. \s0 The option is now deprecated
-in favor of the equivalent \fB\-mcpu=5407\fR.
-.IP "\fB\-mcfv4e\fR" 4
-.IX Item "-mcfv4e"
-Generate output for a ColdFire V4e family \s-1CPU \s0(e.g. 547x/548x).
-This includes use of hardware floating-point instructions.
-The option is equivalent to \fB\-mcpu=547x\fR, and is now
-deprecated in favor of that option.
-.IP "\fB\-m68020\-40\fR" 4
-.IX Item "-m68020-40"
-Generate output for a 68040, without using any of the new instructions.
-This results in code that can run relatively efficiently on either a
-68020/68881 or a 68030 or a 68040. The generated code does use the
-68881 instructions that are emulated on the 68040.
-.Sp
-The option is equivalent to \fB\-march=68020\fR \fB\-mtune=68020\-40\fR.
-.IP "\fB\-m68020\-60\fR" 4
-.IX Item "-m68020-60"
-Generate output for a 68060, without using any of the new instructions.
-This results in code that can run relatively efficiently on either a
-68020/68881 or a 68030 or a 68040. The generated code does use the
-68881 instructions that are emulated on the 68060.
-.Sp
-The option is equivalent to \fB\-march=68020\fR \fB\-mtune=68020\-60\fR.
-.IP "\fB\-mhard\-float\fR" 4
-.IX Item "-mhard-float"
-.PD 0
-.IP "\fB\-m68881\fR" 4
-.IX Item "-m68881"
-.PD
-Generate floating-point instructions. This is the default for 68020
-and above, and for ColdFire devices that have an \s-1FPU. \s0 It defines the
-macro \fB_\|_HAVE_68881_\|_\fR on M680x0 targets and \fB_\|_mcffpu_\|_\fR
-on ColdFire targets.
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-Do not generate floating-point instructions; use library calls instead.
-This is the default for 68000, 68010, and 68832 targets. It is also
-the default for ColdFire devices that have no \s-1FPU.\s0
-.IP "\fB\-mdiv\fR" 4
-.IX Item "-mdiv"
-.PD 0
-.IP "\fB\-mno\-div\fR" 4
-.IX Item "-mno-div"
-.PD
-Generate (do not generate) ColdFire hardware divide and remainder
-instructions. If \fB\-march\fR is used without \fB\-mcpu\fR,
-the default is \*(L"on\*(R" for ColdFire architectures and \*(L"off\*(R" for M680x0
-architectures. Otherwise, the default is taken from the target \s-1CPU
-\&\s0(either the default \s-1CPU,\s0 or the one specified by \fB\-mcpu\fR). For
-example, the default is \*(L"off\*(R" for \fB\-mcpu=5206\fR and \*(L"on\*(R" for
-\&\fB\-mcpu=5206e\fR.
-.Sp
-\&\s-1GCC\s0 defines the macro \fB_\|_mcfhwdiv_\|_\fR when this option is enabled.
-.IP "\fB\-mshort\fR" 4
-.IX Item "-mshort"
-Consider type \f(CW\*(C`int\*(C'\fR to be 16 bits wide, like \f(CW\*(C`short int\*(C'\fR.
-Additionally, parameters passed on the stack are also aligned to a
-16\-bit boundary even on targets whose \s-1API\s0 mandates promotion to 32\-bit.
-.IP "\fB\-mno\-short\fR" 4
-.IX Item "-mno-short"
-Do not consider type \f(CW\*(C`int\*(C'\fR to be 16 bits wide. This is the default.
-.IP "\fB\-mnobitfield\fR" 4
-.IX Item "-mnobitfield"
-.PD 0
-.IP "\fB\-mno\-bitfield\fR" 4
-.IX Item "-mno-bitfield"
-.PD
-Do not use the bit-field instructions. The \fB\-m68000\fR, \fB\-mcpu32\fR
-and \fB\-m5200\fR options imply \fB\-mnobitfield\fR.
-.IP "\fB\-mbitfield\fR" 4
-.IX Item "-mbitfield"
-Do use the bit-field instructions. The \fB\-m68020\fR option implies
-\&\fB\-mbitfield\fR. This is the default if you use a configuration
-designed for a 68020.
-.IP "\fB\-mrtd\fR" 4
-.IX Item "-mrtd"
-Use a different function-calling convention, in which functions
-that take a fixed number of arguments return with the \f(CW\*(C`rtd\*(C'\fR
-instruction, which pops their arguments while returning. This
-saves one instruction in the caller since there is no need to pop
-the arguments there.
-.Sp
-This calling convention is incompatible with the one normally
-used on Unix, so you cannot use it if you need to call libraries
-compiled with the Unix compiler.
-.Sp
-Also, you must provide function prototypes for all functions that
-take variable numbers of arguments (including \f(CW\*(C`printf\*(C'\fR);
-otherwise incorrect code is generated for calls to those
-functions.
-.Sp
-In addition, seriously incorrect code results if you call a
-function with too many arguments. (Normally, extra arguments are
-harmlessly ignored.)
-.Sp
-The \f(CW\*(C`rtd\*(C'\fR instruction is supported by the 68010, 68020, 68030,
-68040, 68060 and \s-1CPU32\s0 processors, but not by the 68000 or 5200.
-.IP "\fB\-mno\-rtd\fR" 4
-.IX Item "-mno-rtd"
-Do not use the calling conventions selected by \fB\-mrtd\fR.
-This is the default.
-.IP "\fB\-malign\-int\fR" 4
-.IX Item "-malign-int"
-.PD 0
-.IP "\fB\-mno\-align\-int\fR" 4
-.IX Item "-mno-align-int"
-.PD
-Control whether \s-1GCC\s0 aligns \f(CW\*(C`int\*(C'\fR, \f(CW\*(C`long\*(C'\fR, \f(CW\*(C`long long\*(C'\fR,
-\&\f(CW\*(C`float\*(C'\fR, \f(CW\*(C`double\*(C'\fR, and \f(CW\*(C`long double\*(C'\fR variables on a 32\-bit
-boundary (\fB\-malign\-int\fR) or a 16\-bit boundary (\fB\-mno\-align\-int\fR).
-Aligning variables on 32\-bit boundaries produces code that runs somewhat
-faster on processors with 32\-bit busses at the expense of more memory.
-.Sp
-\&\fBWarning:\fR if you use the \fB\-malign\-int\fR switch, \s-1GCC\s0
-aligns structures containing the above types differently than
-most published application binary interface specifications for the m68k.
-.IP "\fB\-mpcrel\fR" 4
-.IX Item "-mpcrel"
-Use the pc-relative addressing mode of the 68000 directly, instead of
-using a global offset table. At present, this option implies \fB\-fpic\fR,
-allowing at most a 16\-bit offset for pc-relative addressing. \fB\-fPIC\fR is
-not presently supported with \fB\-mpcrel\fR, though this could be supported for
-68020 and higher processors.
-.IP "\fB\-mno\-strict\-align\fR" 4
-.IX Item "-mno-strict-align"
-.PD 0
-.IP "\fB\-mstrict\-align\fR" 4
-.IX Item "-mstrict-align"
-.PD
-Do not (do) assume that unaligned memory references are handled by
-the system.
-.IP "\fB\-msep\-data\fR" 4
-.IX Item "-msep-data"
-Generate code that allows the data segment to be located in a different
-area of memory from the text segment. This allows for execute-in-place in
-an environment without virtual memory management. This option implies
-\&\fB\-fPIC\fR.
-.IP "\fB\-mno\-sep\-data\fR" 4
-.IX Item "-mno-sep-data"
-Generate code that assumes that the data segment follows the text segment.
-This is the default.
-.IP "\fB\-mid\-shared\-library\fR" 4
-.IX Item "-mid-shared-library"
-Generate code that supports shared libraries via the library \s-1ID\s0 method.
-This allows for execute-in-place and shared libraries in an environment
-without virtual memory management. This option implies \fB\-fPIC\fR.
-.IP "\fB\-mno\-id\-shared\-library\fR" 4
-.IX Item "-mno-id-shared-library"
-Generate code that doesn't assume ID-based shared libraries are being used.
-This is the default.
-.IP "\fB\-mshared\-library\-id=n\fR" 4
-.IX Item "-mshared-library-id=n"
-Specifies the identification number of the ID-based shared library being
-compiled. Specifying a value of 0 generates more compact code; specifying
-other values forces the allocation of that number to the current
-library, but is no more space\- or time-efficient than omitting this option.
-.IP "\fB\-mxgot\fR" 4
-.IX Item "-mxgot"
-.PD 0
-.IP "\fB\-mno\-xgot\fR" 4
-.IX Item "-mno-xgot"
-.PD
-When generating position-independent code for ColdFire, generate code
-that works if the \s-1GOT\s0 has more than 8192 entries. This code is
-larger and slower than code generated without this option. On M680x0
-processors, this option is not needed; \fB\-fPIC\fR suffices.
-.Sp
-\&\s-1GCC\s0 normally uses a single instruction to load values from the \s-1GOT.\s0
-While this is relatively efficient, it only works if the \s-1GOT\s0
-is smaller than about 64k. Anything larger causes the linker
-to report an error such as:
-.Sp
-.Vb 1
-\& relocation truncated to fit: R_68K_GOT16O foobar
-.Ve
-.Sp
-If this happens, you should recompile your code with \fB\-mxgot\fR.
-It should then work with very large GOTs. However, code generated with
-\&\fB\-mxgot\fR is less efficient, since it takes 4 instructions to fetch
-the value of a global symbol.
-.Sp
-Note that some linkers, including newer versions of the \s-1GNU\s0 linker,
-can create multiple GOTs and sort \s-1GOT\s0 entries. If you have such a linker,
-you should only need to use \fB\-mxgot\fR when compiling a single
-object file that accesses more than 8192 \s-1GOT\s0 entries. Very few do.
-.Sp
-These options have no effect unless \s-1GCC\s0 is generating
-position-independent code.
-.PP
-\fIMCore Options\fR
-.IX Subsection "MCore Options"
-.PP
-These are the \fB\-m\fR options defined for the Motorola M*Core
-processors.
-.IP "\fB\-mhardlit\fR" 4
-.IX Item "-mhardlit"
-.PD 0
-.IP "\fB\-mno\-hardlit\fR" 4
-.IX Item "-mno-hardlit"
-.PD
-Inline constants into the code stream if it can be done in two
-instructions or less.
-.IP "\fB\-mdiv\fR" 4
-.IX Item "-mdiv"
-.PD 0
-.IP "\fB\-mno\-div\fR" 4
-.IX Item "-mno-div"
-.PD
-Use the divide instruction. (Enabled by default).
-.IP "\fB\-mrelax\-immediate\fR" 4
-.IX Item "-mrelax-immediate"
-.PD 0
-.IP "\fB\-mno\-relax\-immediate\fR" 4
-.IX Item "-mno-relax-immediate"
-.PD
-Allow arbitrary-sized immediates in bit operations.
-.IP "\fB\-mwide\-bitfields\fR" 4
-.IX Item "-mwide-bitfields"
-.PD 0
-.IP "\fB\-mno\-wide\-bitfields\fR" 4
-.IX Item "-mno-wide-bitfields"
-.PD
-Always treat bit-fields as \f(CW\*(C`int\*(C'\fR\-sized.
-.IP "\fB\-m4byte\-functions\fR" 4
-.IX Item "-m4byte-functions"
-.PD 0
-.IP "\fB\-mno\-4byte\-functions\fR" 4
-.IX Item "-mno-4byte-functions"
-.PD
-Force all functions to be aligned to a 4\-byte boundary.
-.IP "\fB\-mcallgraph\-data\fR" 4
-.IX Item "-mcallgraph-data"
-.PD 0
-.IP "\fB\-mno\-callgraph\-data\fR" 4
-.IX Item "-mno-callgraph-data"
-.PD
-Emit callgraph information.
-.IP "\fB\-mslow\-bytes\fR" 4
-.IX Item "-mslow-bytes"
-.PD 0
-.IP "\fB\-mno\-slow\-bytes\fR" 4
-.IX Item "-mno-slow-bytes"
-.PD
-Prefer word access when reading byte quantities.
-.IP "\fB\-mlittle\-endian\fR" 4
-.IX Item "-mlittle-endian"
-.PD 0
-.IP "\fB\-mbig\-endian\fR" 4
-.IX Item "-mbig-endian"
-.PD
-Generate code for a little-endian target.
-.IP "\fB\-m210\fR" 4
-.IX Item "-m210"
-.PD 0
-.IP "\fB\-m340\fR" 4
-.IX Item "-m340"
-.PD
-Generate code for the 210 processor.
-.IP "\fB\-mno\-lsim\fR" 4
-.IX Item "-mno-lsim"
-Assume that runtime support has been provided and so omit the
-simulator library (\fIlibsim.a)\fR from the linker command line.
-.IP "\fB\-mstack\-increment=\fR\fIsize\fR" 4
-.IX Item "-mstack-increment=size"
-Set the maximum amount for a single stack increment operation. Large
-values can increase the speed of programs that contain functions
-that need a large amount of stack space, but they can also trigger a
-segmentation fault if the stack is extended too much. The default
-value is 0x1000.
-.PP
-\fIMeP Options\fR
-.IX Subsection "MeP Options"
-.IP "\fB\-mabsdiff\fR" 4
-.IX Item "-mabsdiff"
-Enables the \f(CW\*(C`abs\*(C'\fR instruction, which is the absolute difference
-between two registers.
-.IP "\fB\-mall\-opts\fR" 4
-.IX Item "-mall-opts"
-Enables all the optional instructions\-\-\-average, multiply, divide, bit
-operations, leading zero, absolute difference, min/max, clip, and
-saturation.
-.IP "\fB\-maverage\fR" 4
-.IX Item "-maverage"
-Enables the \f(CW\*(C`ave\*(C'\fR instruction, which computes the average of two
-registers.
-.IP "\fB\-mbased=\fR\fIn\fR" 4
-.IX Item "-mbased=n"
-Variables of size \fIn\fR bytes or smaller are placed in the
-\&\f(CW\*(C`.based\*(C'\fR section by default. Based variables use the \f(CW$tp\fR
-register as a base register, and there is a 128\-byte limit to the
-\&\f(CW\*(C`.based\*(C'\fR section.
-.IP "\fB\-mbitops\fR" 4
-.IX Item "-mbitops"
-Enables the bit operation instructions\-\-\-bit test (\f(CW\*(C`btstm\*(C'\fR), set
-(\f(CW\*(C`bsetm\*(C'\fR), clear (\f(CW\*(C`bclrm\*(C'\fR), invert (\f(CW\*(C`bnotm\*(C'\fR), and
-test-and-set (\f(CW\*(C`tas\*(C'\fR).
-.IP "\fB\-mc=\fR\fIname\fR" 4
-.IX Item "-mc=name"
-Selects which section constant data is placed in. \fIname\fR may
-be \f(CW\*(C`tiny\*(C'\fR, \f(CW\*(C`near\*(C'\fR, or \f(CW\*(C`far\*(C'\fR.
-.IP "\fB\-mclip\fR" 4
-.IX Item "-mclip"
-Enables the \f(CW\*(C`clip\*(C'\fR instruction. Note that \f(CW\*(C`\-mclip\*(C'\fR is not
-useful unless you also provide \f(CW\*(C`\-mminmax\*(C'\fR.
-.IP "\fB\-mconfig=\fR\fIname\fR" 4
-.IX Item "-mconfig=name"
-Selects one of the built-in core configurations. Each MeP chip has
-one or more modules in it; each module has a core \s-1CPU\s0 and a variety of
-coprocessors, optional instructions, and peripherals. The
-\&\f(CW\*(C`MeP\-Integrator\*(C'\fR tool, not part of \s-1GCC,\s0 provides these
-configurations through this option; using this option is the same as
-using all the corresponding command-line options. The default
-configuration is \f(CW\*(C`default\*(C'\fR.
-.IP "\fB\-mcop\fR" 4
-.IX Item "-mcop"
-Enables the coprocessor instructions. By default, this is a 32\-bit
-coprocessor. Note that the coprocessor is normally enabled via the
-\&\f(CW\*(C`\-mconfig=\*(C'\fR option.
-.IP "\fB\-mcop32\fR" 4
-.IX Item "-mcop32"
-Enables the 32\-bit coprocessor's instructions.
-.IP "\fB\-mcop64\fR" 4
-.IX Item "-mcop64"
-Enables the 64\-bit coprocessor's instructions.
-.IP "\fB\-mivc2\fR" 4
-.IX Item "-mivc2"
-Enables \s-1IVC2\s0 scheduling. \s-1IVC2\s0 is a 64\-bit \s-1VLIW\s0 coprocessor.
-.IP "\fB\-mdc\fR" 4
-.IX Item "-mdc"
-Causes constant variables to be placed in the \f(CW\*(C`.near\*(C'\fR section.
-.IP "\fB\-mdiv\fR" 4
-.IX Item "-mdiv"
-Enables the \f(CW\*(C`div\*(C'\fR and \f(CW\*(C`divu\*(C'\fR instructions.
-.IP "\fB\-meb\fR" 4
-.IX Item "-meb"
-Generate big-endian code.
-.IP "\fB\-mel\fR" 4
-.IX Item "-mel"
-Generate little-endian code.
-.IP "\fB\-mio\-volatile\fR" 4
-.IX Item "-mio-volatile"
-Tells the compiler that any variable marked with the \f(CW\*(C`io\*(C'\fR
-attribute is to be considered volatile.
-.IP "\fB\-ml\fR" 4
-.IX Item "-ml"
-Causes variables to be assigned to the \f(CW\*(C`.far\*(C'\fR section by default.
-.IP "\fB\-mleadz\fR" 4
-.IX Item "-mleadz"
-Enables the \f(CW\*(C`leadz\*(C'\fR (leading zero) instruction.
-.IP "\fB\-mm\fR" 4
-.IX Item "-mm"
-Causes variables to be assigned to the \f(CW\*(C`.near\*(C'\fR section by default.
-.IP "\fB\-mminmax\fR" 4
-.IX Item "-mminmax"
-Enables the \f(CW\*(C`min\*(C'\fR and \f(CW\*(C`max\*(C'\fR instructions.
-.IP "\fB\-mmult\fR" 4
-.IX Item "-mmult"
-Enables the multiplication and multiply-accumulate instructions.
-.IP "\fB\-mno\-opts\fR" 4
-.IX Item "-mno-opts"
-Disables all the optional instructions enabled by \f(CW\*(C`\-mall\-opts\*(C'\fR.
-.IP "\fB\-mrepeat\fR" 4
-.IX Item "-mrepeat"
-Enables the \f(CW\*(C`repeat\*(C'\fR and \f(CW\*(C`erepeat\*(C'\fR instructions, used for
-low-overhead looping.
-.IP "\fB\-ms\fR" 4
-.IX Item "-ms"
-Causes all variables to default to the \f(CW\*(C`.tiny\*(C'\fR section. Note
-that there is a 65536\-byte limit to this section. Accesses to these
-variables use the \f(CW%gp\fR base register.
-.IP "\fB\-msatur\fR" 4
-.IX Item "-msatur"
-Enables the saturation instructions. Note that the compiler does not
-currently generate these itself, but this option is included for
-compatibility with other tools, like \f(CW\*(C`as\*(C'\fR.
-.IP "\fB\-msdram\fR" 4
-.IX Item "-msdram"
-Link the SDRAM-based runtime instead of the default ROM-based runtime.
-.IP "\fB\-msim\fR" 4
-.IX Item "-msim"
-Link the simulator run-time libraries.
-.IP "\fB\-msimnovec\fR" 4
-.IX Item "-msimnovec"
-Link the simulator runtime libraries, excluding built-in support
-for reset and exception vectors and tables.
-.IP "\fB\-mtf\fR" 4
-.IX Item "-mtf"
-Causes all functions to default to the \f(CW\*(C`.far\*(C'\fR section. Without
-this option, functions default to the \f(CW\*(C`.near\*(C'\fR section.
-.IP "\fB\-mtiny=\fR\fIn\fR" 4
-.IX Item "-mtiny=n"
-Variables that are \fIn\fR bytes or smaller are allocated to the
-\&\f(CW\*(C`.tiny\*(C'\fR section. These variables use the \f(CW$gp\fR base
-register. The default for this option is 4, but note that there's a
-65536\-byte limit to the \f(CW\*(C`.tiny\*(C'\fR section.
-.PP
-\fIMicroBlaze Options\fR
-.IX Subsection "MicroBlaze Options"
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-Use software emulation for floating point (default).
-.IP "\fB\-mhard\-float\fR" 4
-.IX Item "-mhard-float"
-Use hardware floating-point instructions.
-.IP "\fB\-mmemcpy\fR" 4
-.IX Item "-mmemcpy"
-Do not optimize block moves, use \f(CW\*(C`memcpy\*(C'\fR.
-.IP "\fB\-mno\-clearbss\fR" 4
-.IX Item "-mno-clearbss"
-This option is deprecated. Use \fB\-fno\-zero\-initialized\-in\-bss\fR instead.
-.IP "\fB\-mcpu=\fR\fIcpu-type\fR" 4
-.IX Item "-mcpu=cpu-type"
-Use features of, and schedule code for, the given \s-1CPU.\s0
-Supported values are in the format \fBv\fR\fIX\fR\fB.\fR\fI\s-1YY\s0\fR\fB.\fR\fIZ\fR,
-where \fIX\fR is a major version, \fI\s-1YY\s0\fR is the minor version, and
-\&\fIZ\fR is compatibility code. Example values are \fBv3.00.a\fR,
-\&\fBv4.00.b\fR, \fBv5.00.a\fR, \fBv5.00.b\fR, \fBv5.00.b\fR, \fBv6.00.a\fR.
-.IP "\fB\-mxl\-soft\-mul\fR" 4
-.IX Item "-mxl-soft-mul"
-Use software multiply emulation (default).
-.IP "\fB\-mxl\-soft\-div\fR" 4
-.IX Item "-mxl-soft-div"
-Use software emulation for divides (default).
-.IP "\fB\-mxl\-barrel\-shift\fR" 4
-.IX Item "-mxl-barrel-shift"
-Use the hardware barrel shifter.
-.IP "\fB\-mxl\-pattern\-compare\fR" 4
-.IX Item "-mxl-pattern-compare"
-Use pattern compare instructions.
-.IP "\fB\-msmall\-divides\fR" 4
-.IX Item "-msmall-divides"
-Use table lookup optimization for small signed integer divisions.
-.IP "\fB\-mxl\-stack\-check\fR" 4
-.IX Item "-mxl-stack-check"
-This option is deprecated. Use \fB\-fstack\-check\fR instead.
-.IP "\fB\-mxl\-gp\-opt\fR" 4
-.IX Item "-mxl-gp-opt"
-Use GP-relative \f(CW\*(C`.sdata\*(C'\fR/\f(CW\*(C`.sbss\*(C'\fR sections.
-.IP "\fB\-mxl\-multiply\-high\fR" 4
-.IX Item "-mxl-multiply-high"
-Use multiply high instructions for high part of 32x32 multiply.
-.IP "\fB\-mxl\-float\-convert\fR" 4
-.IX Item "-mxl-float-convert"
-Use hardware floating-point conversion instructions.
-.IP "\fB\-mxl\-float\-sqrt\fR" 4
-.IX Item "-mxl-float-sqrt"
-Use hardware floating-point square root instruction.
-.IP "\fB\-mbig\-endian\fR" 4
-.IX Item "-mbig-endian"
-Generate code for a big-endian target.
-.IP "\fB\-mlittle\-endian\fR" 4
-.IX Item "-mlittle-endian"
-Generate code for a little-endian target.
-.IP "\fB\-mxl\-reorder\fR" 4
-.IX Item "-mxl-reorder"
-Use reorder instructions (swap and byte reversed load/store).
-.IP "\fB\-mxl\-mode\-\fR\fIapp-model\fR" 4
-.IX Item "-mxl-mode-app-model"
-Select application model \fIapp-model\fR. Valid models are
-.RS 4
-.IP "\fBexecutable\fR" 4
-.IX Item "executable"
-normal executable (default), uses startup code \fIcrt0.o\fR.
-.IP "\fBxmdstub\fR" 4
-.IX Item "xmdstub"
-for use with Xilinx Microprocessor Debugger (\s-1XMD\s0) based
-software intrusive debug agent called xmdstub. This uses startup file
-\&\fIcrt1.o\fR and sets the start address of the program to 0x800.
-.IP "\fBbootstrap\fR" 4
-.IX Item "bootstrap"
-for applications that are loaded using a bootloader.
-This model uses startup file \fIcrt2.o\fR which does not contain a processor
-reset vector handler. This is suitable for transferring control on a
-processor reset to the bootloader rather than the application.
-.IP "\fBnovectors\fR" 4
-.IX Item "novectors"
-for applications that do not require any of the
-MicroBlaze vectors. This option may be useful for applications running
-within a monitoring application. This model uses \fIcrt3.o\fR as a startup file.
-.RE
-.RS 4
-.Sp
-Option \fB\-xl\-mode\-\fR\fIapp-model\fR is a deprecated alias for
-\&\fB\-mxl\-mode\-\fR\fIapp-model\fR.
-.RE
-.PP
-\fI\s-1MIPS\s0 Options\fR
-.IX Subsection "MIPS Options"
-.IP "\fB\-EB\fR" 4
-.IX Item "-EB"
-Generate big-endian code.
-.IP "\fB\-EL\fR" 4
-.IX Item "-EL"
-Generate little-endian code. This is the default for \fBmips*el\-*\-*\fR
-configurations.
-.IP "\fB\-march=\fR\fIarch\fR" 4
-.IX Item "-march=arch"
-Generate code that runs on \fIarch\fR, which can be the name of a
-generic \s-1MIPS ISA,\s0 or the name of a particular processor.
-The \s-1ISA\s0 names are:
-\&\fBmips1\fR, \fBmips2\fR, \fBmips3\fR, \fBmips4\fR,
-\&\fBmips32\fR, \fBmips32r2\fR, \fBmips64\fR and \fBmips64r2\fR.
-The processor names are:
-\&\fB4kc\fR, \fB4km\fR, \fB4kp\fR, \fB4ksc\fR,
-\&\fB4kec\fR, \fB4kem\fR, \fB4kep\fR, \fB4ksd\fR,
-\&\fB5kc\fR, \fB5kf\fR,
-\&\fB20kc\fR,
-\&\fB24kc\fR, \fB24kf2_1\fR, \fB24kf1_1\fR,
-\&\fB24kec\fR, \fB24kef2_1\fR, \fB24kef1_1\fR,
-\&\fB34kc\fR, \fB34kf2_1\fR, \fB34kf1_1\fR, \fB34kn\fR,
-\&\fB74kc\fR, \fB74kf2_1\fR, \fB74kf1_1\fR, \fB74kf3_2\fR,
-\&\fB1004kc\fR, \fB1004kf2_1\fR, \fB1004kf1_1\fR,
-\&\fBloongson2e\fR, \fBloongson2f\fR, \fBloongson3a\fR,
-\&\fBm4k\fR,
-\&\fBm14k\fR, \fBm14kc\fR, \fBm14ke\fR, \fBm14kec\fR,
-\&\fBocteon\fR, \fBocteon+\fR, \fBocteon2\fR,
-\&\fBorion\fR,
-\&\fBr2000\fR, \fBr3000\fR, \fBr3900\fR, \fBr4000\fR, \fBr4400\fR,
-\&\fBr4600\fR, \fBr4650\fR, \fBr4700\fR, \fBr6000\fR, \fBr8000\fR,
-\&\fBrm7000\fR, \fBrm9000\fR,
-\&\fBr10000\fR, \fBr12000\fR, \fBr14000\fR, \fBr16000\fR,
-\&\fBsb1\fR,
-\&\fBsr71000\fR,
-\&\fBvr4100\fR, \fBvr4111\fR, \fBvr4120\fR, \fBvr4130\fR, \fBvr4300\fR,
-\&\fBvr5000\fR, \fBvr5400\fR, \fBvr5500\fR,
-\&\fBxlr\fR and \fBxlp\fR.
-The special value \fBfrom-abi\fR selects the
-most compatible architecture for the selected \s-1ABI \s0(that is,
-\&\fBmips1\fR for 32\-bit ABIs and \fBmips3\fR for 64\-bit ABIs).
-.Sp
-The native Linux/GNU toolchain also supports the value \fBnative\fR,
-which selects the best architecture option for the host processor.
-\&\fB\-march=native\fR has no effect if \s-1GCC\s0 does not recognize
-the processor.
-.Sp
-In processor names, a final \fB000\fR can be abbreviated as \fBk\fR
-(for example, \fB\-march=r2k\fR). Prefixes are optional, and
-\&\fBvr\fR may be written \fBr\fR.
-.Sp
-Names of the form \fIn\fR\fBf2_1\fR refer to processors with
-FPUs clocked at half the rate of the core, names of the form
-\&\fIn\fR\fBf1_1\fR refer to processors with FPUs clocked at the same
-rate as the core, and names of the form \fIn\fR\fBf3_2\fR refer to
-processors with FPUs clocked a ratio of 3:2 with respect to the core.
-For compatibility reasons, \fIn\fR\fBf\fR is accepted as a synonym
-for \fIn\fR\fBf2_1\fR while \fIn\fR\fBx\fR and \fIb\fR\fBfx\fR are
-accepted as synonyms for \fIn\fR\fBf1_1\fR.
-.Sp
-\&\s-1GCC\s0 defines two macros based on the value of this option. The first
-is \fB_MIPS_ARCH\fR, which gives the name of target architecture, as
-a string. The second has the form \fB_MIPS_ARCH_\fR\fIfoo\fR,
-where \fIfoo\fR is the capitalized value of \fB_MIPS_ARCH\fR.
-For example, \fB\-march=r2000\fR sets \fB_MIPS_ARCH\fR
-to \fB\*(L"r2000\*(R"\fR and defines the macro \fB_MIPS_ARCH_R2000\fR.
-.Sp
-Note that the \fB_MIPS_ARCH\fR macro uses the processor names given
-above. In other words, it has the full prefix and does not
-abbreviate \fB000\fR as \fBk\fR. In the case of \fBfrom-abi\fR,
-the macro names the resolved architecture (either \fB\*(L"mips1\*(R"\fR or
-\&\fB\*(L"mips3\*(R"\fR). It names the default architecture when no
-\&\fB\-march\fR option is given.
-.IP "\fB\-mtune=\fR\fIarch\fR" 4
-.IX Item "-mtune=arch"
-Optimize for \fIarch\fR. Among other things, this option controls
-the way instructions are scheduled, and the perceived cost of arithmetic
-operations. The list of \fIarch\fR values is the same as for
-\&\fB\-march\fR.
-.Sp
-When this option is not used, \s-1GCC\s0 optimizes for the processor
-specified by \fB\-march\fR. By using \fB\-march\fR and
-\&\fB\-mtune\fR together, it is possible to generate code that
-runs on a family of processors, but optimize the code for one
-particular member of that family.
-.Sp
-\&\fB\-mtune\fR defines the macros \fB_MIPS_TUNE\fR and
-\&\fB_MIPS_TUNE_\fR\fIfoo\fR, which work in the same way as the
-\&\fB\-march\fR ones described above.
-.IP "\fB\-mips1\fR" 4
-.IX Item "-mips1"
-Equivalent to \fB\-march=mips1\fR.
-.IP "\fB\-mips2\fR" 4
-.IX Item "-mips2"
-Equivalent to \fB\-march=mips2\fR.
-.IP "\fB\-mips3\fR" 4
-.IX Item "-mips3"
-Equivalent to \fB\-march=mips3\fR.
-.IP "\fB\-mips4\fR" 4
-.IX Item "-mips4"
-Equivalent to \fB\-march=mips4\fR.
-.IP "\fB\-mips32\fR" 4
-.IX Item "-mips32"
-Equivalent to \fB\-march=mips32\fR.
-.IP "\fB\-mips32r2\fR" 4
-.IX Item "-mips32r2"
-Equivalent to \fB\-march=mips32r2\fR.
-.IP "\fB\-mips64\fR" 4
-.IX Item "-mips64"
-Equivalent to \fB\-march=mips64\fR.
-.IP "\fB\-mips64r2\fR" 4
-.IX Item "-mips64r2"
-Equivalent to \fB\-march=mips64r2\fR.
-.IP "\fB\-mips16\fR" 4
-.IX Item "-mips16"
-.PD 0
-.IP "\fB\-mno\-mips16\fR" 4
-.IX Item "-mno-mips16"
-.PD
-Generate (do not generate) \s-1MIPS16\s0 code. If \s-1GCC\s0 is targeting a
-\&\s-1MIPS32\s0 or \s-1MIPS64\s0 architecture, it makes use of the MIPS16e \s-1ASE.\s0
-.Sp
-\&\s-1MIPS16\s0 code generation can also be controlled on a per-function basis
-by means of \f(CW\*(C`mips16\*(C'\fR and \f(CW\*(C`nomips16\*(C'\fR attributes.
-.IP "\fB\-mflip\-mips16\fR" 4
-.IX Item "-mflip-mips16"
-Generate \s-1MIPS16\s0 code on alternating functions. This option is provided
-for regression testing of mixed MIPS16/non\-MIPS16 code generation, and is
-not intended for ordinary use in compiling user code.
-.IP "\fB\-minterlink\-compressed\fR" 4
-.IX Item "-minterlink-compressed"
-.PD 0
-.IP "\fB\-mno\-interlink\-compressed\fR" 4
-.IX Item "-mno-interlink-compressed"
-.PD
-Require (do not require) that code using the standard (uncompressed) \s-1MIPS ISA\s0
-be link-compatible with \s-1MIPS16\s0 and microMIPS code, and vice versa.
-.Sp
-For example, code using the standard \s-1ISA\s0 encoding cannot jump directly
-to \s-1MIPS16\s0 or microMIPS code; it must either use a call or an indirect jump.
-\&\fB\-minterlink\-compressed\fR therefore disables direct jumps unless \s-1GCC\s0
-knows that the target of the jump is not compressed.
-.IP "\fB\-minterlink\-mips16\fR" 4
-.IX Item "-minterlink-mips16"
-.PD 0
-.IP "\fB\-mno\-interlink\-mips16\fR" 4
-.IX Item "-mno-interlink-mips16"
-.PD
-Aliases of \fB\-minterlink\-compressed\fR and
-\&\fB\-mno\-interlink\-compressed\fR. These options predate the microMIPS \s-1ASE\s0
-and are retained for backwards compatibility.
-.IP "\fB\-mabi=32\fR" 4
-.IX Item "-mabi=32"
-.PD 0
-.IP "\fB\-mabi=o64\fR" 4
-.IX Item "-mabi=o64"
-.IP "\fB\-mabi=n32\fR" 4
-.IX Item "-mabi=n32"
-.IP "\fB\-mabi=64\fR" 4
-.IX Item "-mabi=64"
-.IP "\fB\-mabi=eabi\fR" 4
-.IX Item "-mabi=eabi"
-.PD
-Generate code for the given \s-1ABI.\s0
-.Sp
-Note that the \s-1EABI\s0 has a 32\-bit and a 64\-bit variant. \s-1GCC\s0 normally
-generates 64\-bit code when you select a 64\-bit architecture, but you
-can use \fB\-mgp32\fR to get 32\-bit code instead.
-.Sp
-For information about the O64 \s-1ABI,\s0 see
-<\fBhttp://gcc.gnu.org/projects/mipso64\-abi.html\fR>.
-.Sp
-\&\s-1GCC\s0 supports a variant of the o32 \s-1ABI\s0 in which floating-point registers
-are 64 rather than 32 bits wide. You can select this combination with
-\&\fB\-mabi=32\fR \fB\-mfp64\fR. This \s-1ABI\s0 relies on the \f(CW\*(C`mthc1\*(C'\fR
-and \f(CW\*(C`mfhc1\*(C'\fR instructions and is therefore only supported for
-\&\s-1MIPS32R2\s0 processors.
-.Sp
-The register assignments for arguments and return values remain the
-same, but each scalar value is passed in a single 64\-bit register
-rather than a pair of 32\-bit registers. For example, scalar
-floating-point values are returned in \fB\f(CB$f0\fB\fR only, not a
-\&\fB\f(CB$f0\fB\fR/\fB\f(CB$f1\fB\fR pair. The set of call-saved registers also
-remains the same, but all 64 bits are saved.
-.IP "\fB\-mabicalls\fR" 4
-.IX Item "-mabicalls"
-.PD 0
-.IP "\fB\-mno\-abicalls\fR" 4
-.IX Item "-mno-abicalls"
-.PD
-Generate (do not generate) code that is suitable for SVR4\-style
-dynamic objects. \fB\-mabicalls\fR is the default for SVR4\-based
-systems.
-.IP "\fB\-mshared\fR" 4
-.IX Item "-mshared"
-.PD 0
-.IP "\fB\-mno\-shared\fR" 4
-.IX Item "-mno-shared"
-.PD
-Generate (do not generate) code that is fully position-independent,
-and that can therefore be linked into shared libraries. This option
-only affects \fB\-mabicalls\fR.
-.Sp
-All \fB\-mabicalls\fR code has traditionally been position-independent,
-regardless of options like \fB\-fPIC\fR and \fB\-fpic\fR. However,
-as an extension, the \s-1GNU\s0 toolchain allows executables to use absolute
-accesses for locally-binding symbols. It can also use shorter \s-1GP\s0
-initialization sequences and generate direct calls to locally-defined
-functions. This mode is selected by \fB\-mno\-shared\fR.
-.Sp
-\&\fB\-mno\-shared\fR depends on binutils 2.16 or higher and generates
-objects that can only be linked by the \s-1GNU\s0 linker. However, the option
-does not affect the \s-1ABI\s0 of the final executable; it only affects the \s-1ABI\s0
-of relocatable objects. Using \fB\-mno\-shared\fR generally makes
-executables both smaller and quicker.
-.Sp
-\&\fB\-mshared\fR is the default.
-.IP "\fB\-mplt\fR" 4
-.IX Item "-mplt"
-.PD 0
-.IP "\fB\-mno\-plt\fR" 4
-.IX Item "-mno-plt"
-.PD
-Assume (do not assume) that the static and dynamic linkers
-support PLTs and copy relocations. This option only affects
-\&\fB\-mno\-shared \-mabicalls\fR. For the n64 \s-1ABI,\s0 this option
-has no effect without \fB\-msym32\fR.
-.Sp
-You can make \fB\-mplt\fR the default by configuring
-\&\s-1GCC\s0 with \fB\-\-with\-mips\-plt\fR. The default is
-\&\fB\-mno\-plt\fR otherwise.
-.IP "\fB\-mxgot\fR" 4
-.IX Item "-mxgot"
-.PD 0
-.IP "\fB\-mno\-xgot\fR" 4
-.IX Item "-mno-xgot"
-.PD
-Lift (do not lift) the usual restrictions on the size of the global
-offset table.
-.Sp
-\&\s-1GCC\s0 normally uses a single instruction to load values from the \s-1GOT.\s0
-While this is relatively efficient, it only works if the \s-1GOT\s0
-is smaller than about 64k. Anything larger causes the linker
-to report an error such as:
-.Sp
-.Vb 1
-\& relocation truncated to fit: R_MIPS_GOT16 foobar
-.Ve
-.Sp
-If this happens, you should recompile your code with \fB\-mxgot\fR.
-This works with very large GOTs, although the code is also
-less efficient, since it takes three instructions to fetch the
-value of a global symbol.
-.Sp
-Note that some linkers can create multiple GOTs. If you have such a
-linker, you should only need to use \fB\-mxgot\fR when a single object
-file accesses more than 64k's worth of \s-1GOT\s0 entries. Very few do.
-.Sp
-These options have no effect unless \s-1GCC\s0 is generating position
-independent code.
-.IP "\fB\-mgp32\fR" 4
-.IX Item "-mgp32"
-Assume that general-purpose registers are 32 bits wide.
-.IP "\fB\-mgp64\fR" 4
-.IX Item "-mgp64"
-Assume that general-purpose registers are 64 bits wide.
-.IP "\fB\-mfp32\fR" 4
-.IX Item "-mfp32"
-Assume that floating-point registers are 32 bits wide.
-.IP "\fB\-mfp64\fR" 4
-.IX Item "-mfp64"
-Assume that floating-point registers are 64 bits wide.
-.IP "\fB\-mhard\-float\fR" 4
-.IX Item "-mhard-float"
-Use floating-point coprocessor instructions.
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-Do not use floating-point coprocessor instructions. Implement
-floating-point calculations using library calls instead.
-.IP "\fB\-mno\-float\fR" 4
-.IX Item "-mno-float"
-Equivalent to \fB\-msoft\-float\fR, but additionally asserts that the
-program being compiled does not perform any floating-point operations.
-This option is presently supported only by some bare-metal \s-1MIPS\s0
-configurations, where it may select a special set of libraries
-that lack all floating-point support (including, for example, the
-floating-point \f(CW\*(C`printf\*(C'\fR formats).
-If code compiled with \f(CW\*(C`\-mno\-float\*(C'\fR accidentally contains
-floating-point operations, it is likely to suffer a link-time
-or run-time failure.
-.IP "\fB\-msingle\-float\fR" 4
-.IX Item "-msingle-float"
-Assume that the floating-point coprocessor only supports single-precision
-operations.
-.IP "\fB\-mdouble\-float\fR" 4
-.IX Item "-mdouble-float"
-Assume that the floating-point coprocessor supports double-precision
-operations. This is the default.
-.IP "\fB\-mabs=2008\fR" 4
-.IX Item "-mabs=2008"
-.PD 0
-.IP "\fB\-mabs=legacy\fR" 4
-.IX Item "-mabs=legacy"
-.PD
-These options control the treatment of the special not-a-number (NaN)
-\&\s-1IEEE 754\s0 floating-point data with the \f(CW\*(C`abs.\f(CIfmt\f(CW\*(C'\fR and
-\&\f(CW\*(C`neg.\f(CIfmt\f(CW\*(C'\fR machine instructions.
-.Sp
-By default or when the \fB\-mabs=legacy\fR is used the legacy
-treatment is selected. In this case these instructions are considered
-arithmetic and avoided where correct operation is required and the
-input operand might be a NaN. A longer sequence of instructions that
-manipulate the sign bit of floating-point datum manually is used
-instead unless the \fB\-ffinite\-math\-only\fR option has also been
-specified.
-.Sp
-The \fB\-mabs=2008\fR option selects the \s-1IEEE 754\-2008\s0 treatment. In
-this case these instructions are considered non-arithmetic and therefore
-operating correctly in all cases, including in particular where the
-input operand is a NaN. These instructions are therefore always used
-for the respective operations.
-.IP "\fB\-mnan=2008\fR" 4
-.IX Item "-mnan=2008"
-.PD 0
-.IP "\fB\-mnan=legacy\fR" 4
-.IX Item "-mnan=legacy"
-.PD
-These options control the encoding of the special not-a-number (NaN)
-\&\s-1IEEE 754\s0 floating-point data.
-.Sp
-The \fB\-mnan=legacy\fR option selects the legacy encoding. In this
-case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
-significand field being 0, whereas signalling NaNs (sNaNs) are denoted
-by the first bit of their trailing significand field being 1.
-.Sp
-The \fB\-mnan=2008\fR option selects the \s-1IEEE 754\-2008\s0 encoding. In
-this case qNaNs are denoted by the first bit of their trailing
-significand field being 1, whereas sNaNs are denoted by the first bit of
-their trailing significand field being 0.
-.Sp
-The default is \fB\-mnan=legacy\fR unless \s-1GCC\s0 has been configured with
-\&\fB\-\-with\-nan=2008\fR.
-.IP "\fB\-mllsc\fR" 4
-.IX Item "-mllsc"
-.PD 0
-.IP "\fB\-mno\-llsc\fR" 4
-.IX Item "-mno-llsc"
-.PD
-Use (do not use) \fBll\fR, \fBsc\fR, and \fBsync\fR instructions to
-implement atomic memory built-in functions. When neither option is
-specified, \s-1GCC\s0 uses the instructions if the target architecture
-supports them.
-.Sp
-\&\fB\-mllsc\fR is useful if the runtime environment can emulate the
-instructions and \fB\-mno\-llsc\fR can be useful when compiling for
-nonstandard ISAs. You can make either option the default by
-configuring \s-1GCC\s0 with \fB\-\-with\-llsc\fR and \fB\-\-without\-llsc\fR
-respectively. \fB\-\-with\-llsc\fR is the default for some
-configurations; see the installation documentation for details.
-.IP "\fB\-mdsp\fR" 4
-.IX Item "-mdsp"
-.PD 0
-.IP "\fB\-mno\-dsp\fR" 4
-.IX Item "-mno-dsp"
-.PD
-Use (do not use) revision 1 of the \s-1MIPS DSP ASE.
- \s0 This option defines the
-preprocessor macro \fB_\|_mips_dsp\fR. It also defines
-\&\fB_\|_mips_dsp_rev\fR to 1.
-.IP "\fB\-mdspr2\fR" 4
-.IX Item "-mdspr2"
-.PD 0
-.IP "\fB\-mno\-dspr2\fR" 4
-.IX Item "-mno-dspr2"
-.PD
-Use (do not use) revision 2 of the \s-1MIPS DSP ASE.
- \s0 This option defines the
-preprocessor macros \fB_\|_mips_dsp\fR and \fB_\|_mips_dspr2\fR.
-It also defines \fB_\|_mips_dsp_rev\fR to 2.
-.IP "\fB\-msmartmips\fR" 4
-.IX Item "-msmartmips"
-.PD 0
-.IP "\fB\-mno\-smartmips\fR" 4
-.IX Item "-mno-smartmips"
-.PD
-Use (do not use) the \s-1MIPS\s0 SmartMIPS \s-1ASE.\s0
-.IP "\fB\-mpaired\-single\fR" 4
-.IX Item "-mpaired-single"
-.PD 0
-.IP "\fB\-mno\-paired\-single\fR" 4
-.IX Item "-mno-paired-single"
-.PD
-Use (do not use) paired-single floating-point instructions.
- This option requires
-hardware floating-point support to be enabled.
-.IP "\fB\-mdmx\fR" 4
-.IX Item "-mdmx"
-.PD 0
-.IP "\fB\-mno\-mdmx\fR" 4
-.IX Item "-mno-mdmx"
-.PD
-Use (do not use) \s-1MIPS\s0 Digital Media Extension instructions.
-This option can only be used when generating 64\-bit code and requires
-hardware floating-point support to be enabled.
-.IP "\fB\-mips3d\fR" 4
-.IX Item "-mips3d"
-.PD 0
-.IP "\fB\-mno\-mips3d\fR" 4
-.IX Item "-mno-mips3d"
-.PD
-Use (do not use) the \s-1MIPS\-3D ASE. \s0
-The option \fB\-mips3d\fR implies \fB\-mpaired\-single\fR.
-.IP "\fB\-mmicromips\fR" 4
-.IX Item "-mmicromips"
-.PD 0
-.IP "\fB\-mno\-micromips\fR" 4
-.IX Item "-mno-micromips"
-.PD
-Generate (do not generate) microMIPS code.
-.Sp
-MicroMIPS code generation can also be controlled on a per-function basis
-by means of \f(CW\*(C`micromips\*(C'\fR and \f(CW\*(C`nomicromips\*(C'\fR attributes.
-.IP "\fB\-mmt\fR" 4
-.IX Item "-mmt"
-.PD 0
-.IP "\fB\-mno\-mt\fR" 4
-.IX Item "-mno-mt"
-.PD
-Use (do not use) \s-1MT\s0 Multithreading instructions.
-.IP "\fB\-mmcu\fR" 4
-.IX Item "-mmcu"
-.PD 0
-.IP "\fB\-mno\-mcu\fR" 4
-.IX Item "-mno-mcu"
-.PD
-Use (do not use) the \s-1MIPS MCU ASE\s0 instructions.
-.IP "\fB\-meva\fR" 4
-.IX Item "-meva"
-.PD 0
-.IP "\fB\-mno\-eva\fR" 4
-.IX Item "-mno-eva"
-.PD
-Use (do not use) the \s-1MIPS\s0 Enhanced Virtual Addressing instructions.
-.IP "\fB\-mvirt\fR" 4
-.IX Item "-mvirt"
-.PD 0
-.IP "\fB\-mno\-virt\fR" 4
-.IX Item "-mno-virt"
-.PD
-Use (do not use) the \s-1MIPS\s0 Virtualization Application Specific instructions.
-.IP "\fB\-mlong64\fR" 4
-.IX Item "-mlong64"
-Force \f(CW\*(C`long\*(C'\fR types to be 64 bits wide. See \fB\-mlong32\fR for
-an explanation of the default and the way that the pointer size is
-determined.
-.IP "\fB\-mlong32\fR" 4
-.IX Item "-mlong32"
-Force \f(CW\*(C`long\*(C'\fR, \f(CW\*(C`int\*(C'\fR, and pointer types to be 32 bits wide.
-.Sp
-The default size of \f(CW\*(C`int\*(C'\fRs, \f(CW\*(C`long\*(C'\fRs and pointers depends on
-the \s-1ABI. \s0 All the supported ABIs use 32\-bit \f(CW\*(C`int\*(C'\fRs. The n64 \s-1ABI\s0
-uses 64\-bit \f(CW\*(C`long\*(C'\fRs, as does the 64\-bit \s-1EABI\s0; the others use
-32\-bit \f(CW\*(C`long\*(C'\fRs. Pointers are the same size as \f(CW\*(C`long\*(C'\fRs,
-or the same size as integer registers, whichever is smaller.
-.IP "\fB\-msym32\fR" 4
-.IX Item "-msym32"
-.PD 0
-.IP "\fB\-mno\-sym32\fR" 4
-.IX Item "-mno-sym32"
-.PD
-Assume (do not assume) that all symbols have 32\-bit values, regardless
-of the selected \s-1ABI. \s0 This option is useful in combination with
-\&\fB\-mabi=64\fR and \fB\-mno\-abicalls\fR because it allows \s-1GCC\s0
-to generate shorter and faster references to symbolic addresses.
-.IP "\fB\-G\fR \fInum\fR" 4
-.IX Item "-G num"
-Put definitions of externally-visible data in a small data section
-if that data is no bigger than \fInum\fR bytes. \s-1GCC\s0 can then generate
-more efficient accesses to the data; see \fB\-mgpopt\fR for details.
-.Sp
-The default \fB\-G\fR option depends on the configuration.
-.IP "\fB\-mlocal\-sdata\fR" 4
-.IX Item "-mlocal-sdata"
-.PD 0
-.IP "\fB\-mno\-local\-sdata\fR" 4
-.IX Item "-mno-local-sdata"
-.PD
-Extend (do not extend) the \fB\-G\fR behavior to local data too,
-such as to static variables in C. \fB\-mlocal\-sdata\fR is the
-default for all configurations.
-.Sp
-If the linker complains that an application is using too much small data,
-you might want to try rebuilding the less performance-critical parts with
-\&\fB\-mno\-local\-sdata\fR. You might also want to build large
-libraries with \fB\-mno\-local\-sdata\fR, so that the libraries leave
-more room for the main program.
-.IP "\fB\-mextern\-sdata\fR" 4
-.IX Item "-mextern-sdata"
-.PD 0
-.IP "\fB\-mno\-extern\-sdata\fR" 4
-.IX Item "-mno-extern-sdata"
-.PD
-Assume (do not assume) that externally-defined data is in
-a small data section if the size of that data is within the \fB\-G\fR limit.
-\&\fB\-mextern\-sdata\fR is the default for all configurations.
-.Sp
-If you compile a module \fIMod\fR with \fB\-mextern\-sdata\fR \fB\-G\fR
-\&\fInum\fR \fB\-mgpopt\fR, and \fIMod\fR references a variable \fIVar\fR
-that is no bigger than \fInum\fR bytes, you must make sure that \fIVar\fR
-is placed in a small data section. If \fIVar\fR is defined by another
-module, you must either compile that module with a high-enough
-\&\fB\-G\fR setting or attach a \f(CW\*(C`section\*(C'\fR attribute to \fIVar\fR's
-definition. If \fIVar\fR is common, you must link the application
-with a high-enough \fB\-G\fR setting.
-.Sp
-The easiest way of satisfying these restrictions is to compile
-and link every module with the same \fB\-G\fR option. However,
-you may wish to build a library that supports several different
-small data limits. You can do this by compiling the library with
-the highest supported \fB\-G\fR setting and additionally using
-\&\fB\-mno\-extern\-sdata\fR to stop the library from making assumptions
-about externally-defined data.
-.IP "\fB\-mgpopt\fR" 4
-.IX Item "-mgpopt"
-.PD 0
-.IP "\fB\-mno\-gpopt\fR" 4
-.IX Item "-mno-gpopt"
-.PD
-Use (do not use) GP-relative accesses for symbols that are known to be
-in a small data section; see \fB\-G\fR, \fB\-mlocal\-sdata\fR and
-\&\fB\-mextern\-sdata\fR. \fB\-mgpopt\fR is the default for all
-configurations.
-.Sp
-\&\fB\-mno\-gpopt\fR is useful for cases where the \f(CW$gp\fR register
-might not hold the value of \f(CW\*(C`_gp\*(C'\fR. For example, if the code is
-part of a library that might be used in a boot monitor, programs that
-call boot monitor routines pass an unknown value in \f(CW$gp\fR.
-(In such situations, the boot monitor itself is usually compiled
-with \fB\-G0\fR.)
-.Sp
-\&\fB\-mno\-gpopt\fR implies \fB\-mno\-local\-sdata\fR and
-\&\fB\-mno\-extern\-sdata\fR.
-.IP "\fB\-membedded\-data\fR" 4
-.IX Item "-membedded-data"
-.PD 0
-.IP "\fB\-mno\-embedded\-data\fR" 4
-.IX Item "-mno-embedded-data"
-.PD
-Allocate variables to the read-only data section first if possible, then
-next in the small data section if possible, otherwise in data. This gives
-slightly slower code than the default, but reduces the amount of \s-1RAM\s0 required
-when executing, and thus may be preferred for some embedded systems.
-.IP "\fB\-muninit\-const\-in\-rodata\fR" 4
-.IX Item "-muninit-const-in-rodata"
-.PD 0
-.IP "\fB\-mno\-uninit\-const\-in\-rodata\fR" 4
-.IX Item "-mno-uninit-const-in-rodata"
-.PD
-Put uninitialized \f(CW\*(C`const\*(C'\fR variables in the read-only data section.
-This option is only meaningful in conjunction with \fB\-membedded\-data\fR.
-.IP "\fB\-mcode\-readable=\fR\fIsetting\fR" 4
-.IX Item "-mcode-readable=setting"
-Specify whether \s-1GCC\s0 may generate code that reads from executable sections.
-There are three possible settings:
-.RS 4
-.IP "\fB\-mcode\-readable=yes\fR" 4
-.IX Item "-mcode-readable=yes"
-Instructions may freely access executable sections. This is the
-default setting.
-.IP "\fB\-mcode\-readable=pcrel\fR" 4
-.IX Item "-mcode-readable=pcrel"
-\&\s-1MIPS16\s0 PC-relative load instructions can access executable sections,
-but other instructions must not do so. This option is useful on 4KSc
-and 4KSd processors when the code TLBs have the Read Inhibit bit set.
-It is also useful on processors that can be configured to have a dual
-instruction/data \s-1SRAM\s0 interface and that, like the M4K, automatically
-redirect PC-relative loads to the instruction \s-1RAM.\s0
-.IP "\fB\-mcode\-readable=no\fR" 4
-.IX Item "-mcode-readable=no"
-Instructions must not access executable sections. This option can be
-useful on targets that are configured to have a dual instruction/data
-\&\s-1SRAM\s0 interface but that (unlike the M4K) do not automatically redirect
-PC-relative loads to the instruction \s-1RAM.\s0
-.RE
-.RS 4
-.RE
-.IP "\fB\-msplit\-addresses\fR" 4
-.IX Item "-msplit-addresses"
-.PD 0
-.IP "\fB\-mno\-split\-addresses\fR" 4
-.IX Item "-mno-split-addresses"
-.PD
-Enable (disable) use of the \f(CW\*(C`%hi()\*(C'\fR and \f(CW\*(C`%lo()\*(C'\fR assembler
-relocation operators. This option has been superseded by
-\&\fB\-mexplicit\-relocs\fR but is retained for backwards compatibility.
-.IP "\fB\-mexplicit\-relocs\fR" 4
-.IX Item "-mexplicit-relocs"
-.PD 0
-.IP "\fB\-mno\-explicit\-relocs\fR" 4
-.IX Item "-mno-explicit-relocs"
-.PD
-Use (do not use) assembler relocation operators when dealing with symbolic
-addresses. The alternative, selected by \fB\-mno\-explicit\-relocs\fR,
-is to use assembler macros instead.
-.Sp
-\&\fB\-mexplicit\-relocs\fR is the default if \s-1GCC\s0 was configured
-to use an assembler that supports relocation operators.
-.IP "\fB\-mcheck\-zero\-division\fR" 4
-.IX Item "-mcheck-zero-division"
-.PD 0
-.IP "\fB\-mno\-check\-zero\-division\fR" 4
-.IX Item "-mno-check-zero-division"
-.PD
-Trap (do not trap) on integer division by zero.
-.Sp
-The default is \fB\-mcheck\-zero\-division\fR.
-.IP "\fB\-mdivide\-traps\fR" 4
-.IX Item "-mdivide-traps"
-.PD 0
-.IP "\fB\-mdivide\-breaks\fR" 4
-.IX Item "-mdivide-breaks"
-.PD
-\&\s-1MIPS\s0 systems check for division by zero by generating either a
-conditional trap or a break instruction. Using traps results in
-smaller code, but is only supported on \s-1MIPS II\s0 and later. Also, some
-versions of the Linux kernel have a bug that prevents trap from
-generating the proper signal (\f(CW\*(C`SIGFPE\*(C'\fR). Use \fB\-mdivide\-traps\fR to
-allow conditional traps on architectures that support them and
-\&\fB\-mdivide\-breaks\fR to force the use of breaks.
-.Sp
-The default is usually \fB\-mdivide\-traps\fR, but this can be
-overridden at configure time using \fB\-\-with\-divide=breaks\fR.
-Divide-by-zero checks can be completely disabled using
-\&\fB\-mno\-check\-zero\-division\fR.
-.IP "\fB\-mmemcpy\fR" 4
-.IX Item "-mmemcpy"
-.PD 0
-.IP "\fB\-mno\-memcpy\fR" 4
-.IX Item "-mno-memcpy"
-.PD
-Force (do not force) the use of \f(CW\*(C`memcpy()\*(C'\fR for non-trivial block
-moves. The default is \fB\-mno\-memcpy\fR, which allows \s-1GCC\s0 to inline
-most constant-sized copies.
-.IP "\fB\-mlong\-calls\fR" 4
-.IX Item "-mlong-calls"
-.PD 0
-.IP "\fB\-mno\-long\-calls\fR" 4
-.IX Item "-mno-long-calls"
-.PD
-Disable (do not disable) use of the \f(CW\*(C`jal\*(C'\fR instruction. Calling
-functions using \f(CW\*(C`jal\*(C'\fR is more efficient but requires the caller
-and callee to be in the same 256 megabyte segment.
-.Sp
-This option has no effect on abicalls code. The default is
-\&\fB\-mno\-long\-calls\fR.
-.IP "\fB\-mmad\fR" 4
-.IX Item "-mmad"
-.PD 0
-.IP "\fB\-mno\-mad\fR" 4
-.IX Item "-mno-mad"
-.PD
-Enable (disable) use of the \f(CW\*(C`mad\*(C'\fR, \f(CW\*(C`madu\*(C'\fR and \f(CW\*(C`mul\*(C'\fR
-instructions, as provided by the R4650 \s-1ISA.\s0
-.IP "\fB\-mimadd\fR" 4
-.IX Item "-mimadd"
-.PD 0
-.IP "\fB\-mno\-imadd\fR" 4
-.IX Item "-mno-imadd"
-.PD
-Enable (disable) use of the \f(CW\*(C`madd\*(C'\fR and \f(CW\*(C`msub\*(C'\fR integer
-instructions. The default is \fB\-mimadd\fR on architectures
-that support \f(CW\*(C`madd\*(C'\fR and \f(CW\*(C`msub\*(C'\fR except for the 74k
-architecture where it was found to generate slower code.
-.IP "\fB\-mfused\-madd\fR" 4
-.IX Item "-mfused-madd"
-.PD 0
-.IP "\fB\-mno\-fused\-madd\fR" 4
-.IX Item "-mno-fused-madd"
-.PD
-Enable (disable) use of the floating-point multiply-accumulate
-instructions, when they are available. The default is
-\&\fB\-mfused\-madd\fR.
-.Sp
-On the R8000 \s-1CPU\s0 when multiply-accumulate instructions are used,
-the intermediate product is calculated to infinite precision
-and is not subject to the \s-1FCSR\s0 Flush to Zero bit. This may be
-undesirable in some circumstances. On other processors the result
-is numerically identical to the equivalent computation using
-separate multiply, add, subtract and negate instructions.
-.IP "\fB\-nocpp\fR" 4
-.IX Item "-nocpp"
-Tell the \s-1MIPS\s0 assembler to not run its preprocessor over user
-assembler files (with a \fB.s\fR suffix) when assembling them.
-.IP "\fB\-mfix\-24k\fR" 4
-.IX Item "-mfix-24k"
-.PD 0
-.IP "\fB\-mno\-fix\-24k\fR" 4
-.IX Item "-mno-fix-24k"
-.PD
-Work around the 24K E48 (lost data on stores during refill) errata.
-The workarounds are implemented by the assembler rather than by \s-1GCC.\s0
-.IP "\fB\-mfix\-r4000\fR" 4
-.IX Item "-mfix-r4000"
-.PD 0
-.IP "\fB\-mno\-fix\-r4000\fR" 4
-.IX Item "-mno-fix-r4000"
-.PD
-Work around certain R4000 \s-1CPU\s0 errata:
-.RS 4
-.IP "\-" 4
-A double-word or a variable shift may give an incorrect result if executed
-immediately after starting an integer division.
-.IP "\-" 4
-A double-word or a variable shift may give an incorrect result if executed
-while an integer multiplication is in progress.
-.IP "\-" 4
-An integer division may give an incorrect result if started in a delay slot
-of a taken branch or a jump.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mfix\-r4400\fR" 4
-.IX Item "-mfix-r4400"
-.PD 0
-.IP "\fB\-mno\-fix\-r4400\fR" 4
-.IX Item "-mno-fix-r4400"
-.PD
-Work around certain R4400 \s-1CPU\s0 errata:
-.RS 4
-.IP "\-" 4
-A double-word or a variable shift may give an incorrect result if executed
-immediately after starting an integer division.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mfix\-r10000\fR" 4
-.IX Item "-mfix-r10000"
-.PD 0
-.IP "\fB\-mno\-fix\-r10000\fR" 4
-.IX Item "-mno-fix-r10000"
-.PD
-Work around certain R10000 errata:
-.RS 4
-.IP "\-" 4
-\&\f(CW\*(C`ll\*(C'\fR/\f(CW\*(C`sc\*(C'\fR sequences may not behave atomically on revisions
-prior to 3.0. They may deadlock on revisions 2.6 and earlier.
-.RE
-.RS 4
-.Sp
-This option can only be used if the target architecture supports
-branch-likely instructions. \fB\-mfix\-r10000\fR is the default when
-\&\fB\-march=r10000\fR is used; \fB\-mno\-fix\-r10000\fR is the default
-otherwise.
-.RE
-.IP "\fB\-mfix\-rm7000\fR" 4
-.IX Item "-mfix-rm7000"
-.PD 0
-.IP "\fB\-mno\-fix\-rm7000\fR" 4
-.IX Item "-mno-fix-rm7000"
-.PD
-Work around the \s-1RM7000 \s0\f(CW\*(C`dmult\*(C'\fR/\f(CW\*(C`dmultu\*(C'\fR errata. The
-workarounds are implemented by the assembler rather than by \s-1GCC.\s0
-.IP "\fB\-mfix\-vr4120\fR" 4
-.IX Item "-mfix-vr4120"
-.PD 0
-.IP "\fB\-mno\-fix\-vr4120\fR" 4
-.IX Item "-mno-fix-vr4120"
-.PD
-Work around certain \s-1VR4120\s0 errata:
-.RS 4
-.IP "\-" 4
-\&\f(CW\*(C`dmultu\*(C'\fR does not always produce the correct result.
-.IP "\-" 4
-\&\f(CW\*(C`div\*(C'\fR and \f(CW\*(C`ddiv\*(C'\fR do not always produce the correct result if one
-of the operands is negative.
-.RE
-.RS 4
-.Sp
-The workarounds for the division errata rely on special functions in
-\&\fIlibgcc.a\fR. At present, these functions are only provided by
-the \f(CW\*(C`mips64vr*\-elf\*(C'\fR configurations.
-.Sp
-Other \s-1VR4120\s0 errata require a \s-1NOP\s0 to be inserted between certain pairs of
-instructions. These errata are handled by the assembler, not by \s-1GCC\s0 itself.
-.RE
-.IP "\fB\-mfix\-vr4130\fR" 4
-.IX Item "-mfix-vr4130"
-Work around the \s-1VR4130 \s0\f(CW\*(C`mflo\*(C'\fR/\f(CW\*(C`mfhi\*(C'\fR errata. The
-workarounds are implemented by the assembler rather than by \s-1GCC,\s0
-although \s-1GCC\s0 avoids using \f(CW\*(C`mflo\*(C'\fR and \f(CW\*(C`mfhi\*(C'\fR if the
-\&\s-1VR4130 \s0\f(CW\*(C`macc\*(C'\fR, \f(CW\*(C`macchi\*(C'\fR, \f(CW\*(C`dmacc\*(C'\fR and \f(CW\*(C`dmacchi\*(C'\fR
-instructions are available instead.
-.IP "\fB\-mfix\-sb1\fR" 4
-.IX Item "-mfix-sb1"
-.PD 0
-.IP "\fB\-mno\-fix\-sb1\fR" 4
-.IX Item "-mno-fix-sb1"
-.PD
-Work around certain \s-1SB\-1 CPU\s0 core errata.
-(This flag currently works around the \s-1SB\-1\s0 revision 2
-\&\*(L"F1\*(R" and \*(L"F2\*(R" floating-point errata.)
-.IP "\fB\-mr10k\-cache\-barrier=\fR\fIsetting\fR" 4
-.IX Item "-mr10k-cache-barrier=setting"
-Specify whether \s-1GCC\s0 should insert cache barriers to avoid the
-side-effects of speculation on R10K processors.
-.Sp
-In common with many processors, the R10K tries to predict the outcome
-of a conditional branch and speculatively executes instructions from
-the \*(L"taken\*(R" branch. It later aborts these instructions if the
-predicted outcome is wrong. However, on the R10K, even aborted
-instructions can have side effects.
-.Sp
-This problem only affects kernel stores and, depending on the system,
-kernel loads. As an example, a speculatively-executed store may load
-the target memory into cache and mark the cache line as dirty, even if
-the store itself is later aborted. If a \s-1DMA\s0 operation writes to the
-same area of memory before the \*(L"dirty\*(R" line is flushed, the cached
-data overwrites the DMA-ed data. See the R10K processor manual
-for a full description, including other potential problems.
-.Sp
-One workaround is to insert cache barrier instructions before every memory
-access that might be speculatively executed and that might have side
-effects even if aborted. \fB\-mr10k\-cache\-barrier=\fR\fIsetting\fR
-controls \s-1GCC\s0's implementation of this workaround. It assumes that
-aborted accesses to any byte in the following regions does not have
-side effects:
-.RS 4
-.IP "1." 4
-the memory occupied by the current function's stack frame;
-.IP "2." 4
-the memory occupied by an incoming stack argument;
-.IP "3." 4
-the memory occupied by an object with a link-time-constant address.
-.RE
-.RS 4
-.Sp
-It is the kernel's responsibility to ensure that speculative
-accesses to these regions are indeed safe.
-.Sp
-If the input program contains a function declaration such as:
-.Sp
-.Vb 1
-\& void foo (void);
-.Ve
-.Sp
-then the implementation of \f(CW\*(C`foo\*(C'\fR must allow \f(CW\*(C`j foo\*(C'\fR and
-\&\f(CW\*(C`jal foo\*(C'\fR to be executed speculatively. \s-1GCC\s0 honors this
-restriction for functions it compiles itself. It expects non-GCC
-functions (such as hand-written assembly code) to do the same.
-.Sp
-The option has three forms:
-.IP "\fB\-mr10k\-cache\-barrier=load\-store\fR" 4
-.IX Item "-mr10k-cache-barrier=load-store"
-Insert a cache barrier before a load or store that might be
-speculatively executed and that might have side effects even
-if aborted.
-.IP "\fB\-mr10k\-cache\-barrier=store\fR" 4
-.IX Item "-mr10k-cache-barrier=store"
-Insert a cache barrier before a store that might be speculatively
-executed and that might have side effects even if aborted.
-.IP "\fB\-mr10k\-cache\-barrier=none\fR" 4
-.IX Item "-mr10k-cache-barrier=none"
-Disable the insertion of cache barriers. This is the default setting.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mflush\-func=\fR\fIfunc\fR" 4
-.IX Item "-mflush-func=func"
-.PD 0
-.IP "\fB\-mno\-flush\-func\fR" 4
-.IX Item "-mno-flush-func"
-.PD
-Specifies the function to call to flush the I and D caches, or to not
-call any such function. If called, the function must take the same
-arguments as the common \f(CW\*(C`_flush_func()\*(C'\fR, that is, the address of the
-memory range for which the cache is being flushed, the size of the
-memory range, and the number 3 (to flush both caches). The default
-depends on the target \s-1GCC\s0 was configured for, but commonly is either
-\&\fB_flush_func\fR or \fB_\|_cpu_flush\fR.
-.IP "\fBmbranch\-cost=\fR\fInum\fR" 4
-.IX Item "mbranch-cost=num"
-Set the cost of branches to roughly \fInum\fR \*(L"simple\*(R" instructions.
-This cost is only a heuristic and is not guaranteed to produce
-consistent results across releases. A zero cost redundantly selects
-the default, which is based on the \fB\-mtune\fR setting.
-.IP "\fB\-mbranch\-likely\fR" 4
-.IX Item "-mbranch-likely"
-.PD 0
-.IP "\fB\-mno\-branch\-likely\fR" 4
-.IX Item "-mno-branch-likely"
-.PD
-Enable or disable use of Branch Likely instructions, regardless of the
-default for the selected architecture. By default, Branch Likely
-instructions may be generated if they are supported by the selected
-architecture. An exception is for the \s-1MIPS32\s0 and \s-1MIPS64\s0 architectures
-and processors that implement those architectures; for those, Branch
-Likely instructions are not be generated by default because the \s-1MIPS32\s0
-and \s-1MIPS64\s0 architectures specifically deprecate their use.
-.IP "\fB\-mfp\-exceptions\fR" 4
-.IX Item "-mfp-exceptions"
-.PD 0
-.IP "\fB\-mno\-fp\-exceptions\fR" 4
-.IX Item "-mno-fp-exceptions"
-.PD
-Specifies whether \s-1FP\s0 exceptions are enabled. This affects how
-\&\s-1FP\s0 instructions are scheduled for some processors.
-The default is that \s-1FP\s0 exceptions are
-enabled.
-.Sp
-For instance, on the \s-1SB\-1,\s0 if \s-1FP\s0 exceptions are disabled, and we are emitting
-64\-bit code, then we can use both \s-1FP\s0 pipes. Otherwise, we can only use one
-\&\s-1FP\s0 pipe.
-.IP "\fB\-mvr4130\-align\fR" 4
-.IX Item "-mvr4130-align"
-.PD 0
-.IP "\fB\-mno\-vr4130\-align\fR" 4
-.IX Item "-mno-vr4130-align"
-.PD
-The \s-1VR4130\s0 pipeline is two-way superscalar, but can only issue two
-instructions together if the first one is 8\-byte aligned. When this
-option is enabled, \s-1GCC\s0 aligns pairs of instructions that it
-thinks should execute in parallel.
-.Sp
-This option only has an effect when optimizing for the \s-1VR4130.\s0
-It normally makes code faster, but at the expense of making it bigger.
-It is enabled by default at optimization level \fB\-O3\fR.
-.IP "\fB\-msynci\fR" 4
-.IX Item "-msynci"
-.PD 0
-.IP "\fB\-mno\-synci\fR" 4
-.IX Item "-mno-synci"
-.PD
-Enable (disable) generation of \f(CW\*(C`synci\*(C'\fR instructions on
-architectures that support it. The \f(CW\*(C`synci\*(C'\fR instructions (if
-enabled) are generated when \f(CW\*(C`_\|_builtin_\|_\|_clear_cache()\*(C'\fR is
-compiled.
-.Sp
-This option defaults to \f(CW\*(C`\-mno\-synci\*(C'\fR, but the default can be
-overridden by configuring with \f(CW\*(C`\-\-with\-synci\*(C'\fR.
-.Sp
-When compiling code for single processor systems, it is generally safe
-to use \f(CW\*(C`synci\*(C'\fR. However, on many multi-core (\s-1SMP\s0) systems, it
-does not invalidate the instruction caches on all cores and may lead
-to undefined behavior.
-.IP "\fB\-mrelax\-pic\-calls\fR" 4
-.IX Item "-mrelax-pic-calls"
-.PD 0
-.IP "\fB\-mno\-relax\-pic\-calls\fR" 4
-.IX Item "-mno-relax-pic-calls"
-.PD
-Try to turn \s-1PIC\s0 calls that are normally dispatched via register
-\&\f(CW$25\fR into direct calls. This is only possible if the linker can
-resolve the destination at link-time and if the destination is within
-range for a direct call.
-.Sp
-\&\fB\-mrelax\-pic\-calls\fR is the default if \s-1GCC\s0 was configured to use
-an assembler and a linker that support the \f(CW\*(C`.reloc\*(C'\fR assembly
-directive and \f(CW\*(C`\-mexplicit\-relocs\*(C'\fR is in effect. With
-\&\f(CW\*(C`\-mno\-explicit\-relocs\*(C'\fR, this optimization can be performed by the
-assembler and the linker alone without help from the compiler.
-.IP "\fB\-mmcount\-ra\-address\fR" 4
-.IX Item "-mmcount-ra-address"
-.PD 0
-.IP "\fB\-mno\-mcount\-ra\-address\fR" 4
-.IX Item "-mno-mcount-ra-address"
-.PD
-Emit (do not emit) code that allows \f(CW\*(C`_mcount\*(C'\fR to modify the
-calling function's return address. When enabled, this option extends
-the usual \f(CW\*(C`_mcount\*(C'\fR interface with a new \fIra-address\fR
-parameter, which has type \f(CW\*(C`intptr_t *\*(C'\fR and is passed in register
-\&\f(CW$12\fR. \f(CW\*(C`_mcount\*(C'\fR can then modify the return address by
-doing both of the following:
-.RS 4
-.IP "\(bu" 4
-Returning the new address in register \f(CW$31\fR.
-.IP "\(bu" 4
-Storing the new address in \f(CW\*(C`*\f(CIra\-address\f(CW\*(C'\fR,
-if \fIra-address\fR is nonnull.
-.RE
-.RS 4
-.Sp
-The default is \fB\-mno\-mcount\-ra\-address\fR.
-.RE
-.PP
-\fI\s-1MMIX\s0 Options\fR
-.IX Subsection "MMIX Options"
-.PP
-These options are defined for the \s-1MMIX:\s0
-.IP "\fB\-mlibfuncs\fR" 4
-.IX Item "-mlibfuncs"
-.PD 0
-.IP "\fB\-mno\-libfuncs\fR" 4
-.IX Item "-mno-libfuncs"
-.PD
-Specify that intrinsic library functions are being compiled, passing all
-values in registers, no matter the size.
-.IP "\fB\-mepsilon\fR" 4
-.IX Item "-mepsilon"
-.PD 0
-.IP "\fB\-mno\-epsilon\fR" 4
-.IX Item "-mno-epsilon"
-.PD
-Generate floating-point comparison instructions that compare with respect
-to the \f(CW\*(C`rE\*(C'\fR epsilon register.
-.IP "\fB\-mabi=mmixware\fR" 4
-.IX Item "-mabi=mmixware"
-.PD 0
-.IP "\fB\-mabi=gnu\fR" 4
-.IX Item "-mabi=gnu"
-.PD
-Generate code that passes function parameters and return values that (in
-the called function) are seen as registers \f(CW$0\fR and up, as opposed to
-the \s-1GNU ABI\s0 which uses global registers \f(CW$231\fR and up.
-.IP "\fB\-mzero\-extend\fR" 4
-.IX Item "-mzero-extend"
-.PD 0
-.IP "\fB\-mno\-zero\-extend\fR" 4
-.IX Item "-mno-zero-extend"
-.PD
-When reading data from memory in sizes shorter than 64 bits, use (do not
-use) zero-extending load instructions by default, rather than
-sign-extending ones.
-.IP "\fB\-mknuthdiv\fR" 4
-.IX Item "-mknuthdiv"
-.PD 0
-.IP "\fB\-mno\-knuthdiv\fR" 4
-.IX Item "-mno-knuthdiv"
-.PD
-Make the result of a division yielding a remainder have the same sign as
-the divisor. With the default, \fB\-mno\-knuthdiv\fR, the sign of the
-remainder follows the sign of the dividend. Both methods are
-arithmetically valid, the latter being almost exclusively used.
-.IP "\fB\-mtoplevel\-symbols\fR" 4
-.IX Item "-mtoplevel-symbols"
-.PD 0
-.IP "\fB\-mno\-toplevel\-symbols\fR" 4
-.IX Item "-mno-toplevel-symbols"
-.PD
-Prepend (do not prepend) a \fB:\fR to all global symbols, so the assembly
-code can be used with the \f(CW\*(C`PREFIX\*(C'\fR assembly directive.
-.IP "\fB\-melf\fR" 4
-.IX Item "-melf"
-Generate an executable in the \s-1ELF\s0 format, rather than the default
-\&\fBmmo\fR format used by the \fBmmix\fR simulator.
-.IP "\fB\-mbranch\-predict\fR" 4
-.IX Item "-mbranch-predict"
-.PD 0
-.IP "\fB\-mno\-branch\-predict\fR" 4
-.IX Item "-mno-branch-predict"
-.PD
-Use (do not use) the probable-branch instructions, when static branch
-prediction indicates a probable branch.
-.IP "\fB\-mbase\-addresses\fR" 4
-.IX Item "-mbase-addresses"
-.PD 0
-.IP "\fB\-mno\-base\-addresses\fR" 4
-.IX Item "-mno-base-addresses"
-.PD
-Generate (do not generate) code that uses \fIbase addresses\fR. Using a
-base address automatically generates a request (handled by the assembler
-and the linker) for a constant to be set up in a global register. The
-register is used for one or more base address requests within the range 0
-to 255 from the value held in the register. The generally leads to short
-and fast code, but the number of different data items that can be
-addressed is limited. This means that a program that uses lots of static
-data may require \fB\-mno\-base\-addresses\fR.
-.IP "\fB\-msingle\-exit\fR" 4
-.IX Item "-msingle-exit"
-.PD 0
-.IP "\fB\-mno\-single\-exit\fR" 4
-.IX Item "-mno-single-exit"
-.PD
-Force (do not force) generated code to have a single exit point in each
-function.
-.PP
-\fI\s-1MN10300\s0 Options\fR
-.IX Subsection "MN10300 Options"
-.PP
-These \fB\-m\fR options are defined for Matsushita \s-1MN10300\s0 architectures:
-.IP "\fB\-mmult\-bug\fR" 4
-.IX Item "-mmult-bug"
-Generate code to avoid bugs in the multiply instructions for the \s-1MN10300\s0
-processors. This is the default.
-.IP "\fB\-mno\-mult\-bug\fR" 4
-.IX Item "-mno-mult-bug"
-Do not generate code to avoid bugs in the multiply instructions for the
-\&\s-1MN10300\s0 processors.
-.IP "\fB\-mam33\fR" 4
-.IX Item "-mam33"
-Generate code using features specific to the \s-1AM33\s0 processor.
-.IP "\fB\-mno\-am33\fR" 4
-.IX Item "-mno-am33"
-Do not generate code using features specific to the \s-1AM33\s0 processor. This
-is the default.
-.IP "\fB\-mam33\-2\fR" 4
-.IX Item "-mam33-2"
-Generate code using features specific to the \s-1AM33/2.0\s0 processor.
-.IP "\fB\-mam34\fR" 4
-.IX Item "-mam34"
-Generate code using features specific to the \s-1AM34\s0 processor.
-.IP "\fB\-mtune=\fR\fIcpu-type\fR" 4
-.IX Item "-mtune=cpu-type"
-Use the timing characteristics of the indicated \s-1CPU\s0 type when
-scheduling instructions. This does not change the targeted processor
-type. The \s-1CPU\s0 type must be one of \fBmn10300\fR, \fBam33\fR,
-\&\fBam33\-2\fR or \fBam34\fR.
-.IP "\fB\-mreturn\-pointer\-on\-d0\fR" 4
-.IX Item "-mreturn-pointer-on-d0"
-When generating a function that returns a pointer, return the pointer
-in both \f(CW\*(C`a0\*(C'\fR and \f(CW\*(C`d0\*(C'\fR. Otherwise, the pointer is returned
-only in \f(CW\*(C`a0\*(C'\fR, and attempts to call such functions without a prototype
-result in errors. Note that this option is on by default; use
-\&\fB\-mno\-return\-pointer\-on\-d0\fR to disable it.
-.IP "\fB\-mno\-crt0\fR" 4
-.IX Item "-mno-crt0"
-Do not link in the C run-time initialization object file.
-.IP "\fB\-mrelax\fR" 4
-.IX Item "-mrelax"
-Indicate to the linker that it should perform a relaxation optimization pass
-to shorten branches, calls and absolute memory addresses. This option only
-has an effect when used on the command line for the final link step.
-.Sp
-This option makes symbolic debugging impossible.
-.IP "\fB\-mliw\fR" 4
-.IX Item "-mliw"
-Allow the compiler to generate \fILong Instruction Word\fR
-instructions if the target is the \fB\s-1AM33\s0\fR or later. This is the
-default. This option defines the preprocessor macro \fB_\|_LIW_\|_\fR.
-.IP "\fB\-mnoliw\fR" 4
-.IX Item "-mnoliw"
-Do not allow the compiler to generate \fILong Instruction Word\fR
-instructions. This option defines the preprocessor macro
-\&\fB_\|_NO_LIW_\|_\fR.
-.IP "\fB\-msetlb\fR" 4
-.IX Item "-msetlb"
-Allow the compiler to generate the \fI\s-1SETLB\s0\fR and \fILcc\fR
-instructions if the target is the \fB\s-1AM33\s0\fR or later. This is the
-default. This option defines the preprocessor macro \fB_\|_SETLB_\|_\fR.
-.IP "\fB\-mnosetlb\fR" 4
-.IX Item "-mnosetlb"
-Do not allow the compiler to generate \fI\s-1SETLB\s0\fR or \fILcc\fR
-instructions. This option defines the preprocessor macro
-\&\fB_\|_NO_SETLB_\|_\fR.
-.PP
-\fIMoxie Options\fR
-.IX Subsection "Moxie Options"
-.IP "\fB\-meb\fR" 4
-.IX Item "-meb"
-Generate big-endian code. This is the default for \fBmoxie\-*\-*\fR
-configurations.
-.IP "\fB\-mel\fR" 4
-.IX Item "-mel"
-Generate little-endian code.
-.IP "\fB\-mno\-crt0\fR" 4
-.IX Item "-mno-crt0"
-Do not link in the C run-time initialization object file.
-.PP
-\fI\s-1MSP430\s0 Options\fR
-.IX Subsection "MSP430 Options"
-.PP
-These options are defined for the \s-1MSP430:\s0
-.IP "\fB\-masm\-hex\fR" 4
-.IX Item "-masm-hex"
-Force assembly output to always use hex constants. Normally such
-constants are signed decimals, but this option is available for
-testsuite and/or aesthetic purposes.
-.IP "\fB\-mmcu=\fR" 4
-.IX Item "-mmcu="
-Select the \s-1MCU\s0 to target. This is used to create a C preprocessor
-symbol based upon the \s-1MCU\s0 name, converted to upper case and pre\- and
-post\- fixed with \f(CW\*(C`_\|_\*(C'\fR. This in turn will be used by the
-\&\f(CW\*(C`msp430.h\*(C'\fR header file to select an \s-1MCU\s0 specific supplimentary
-header file.
-.Sp
-The option also sets the \s-1ISA\s0 to use. If the \s-1MCU\s0 name is one that is
-known to only support the 430 \s-1ISA\s0 then that is selected, otherwise the
-430X \s-1ISA\s0 is selected. A generic \s-1MCU\s0 name of \f(CW\*(C`msp430\*(C'\fR can also be
-used to select the 430 \s-1ISA. \s0 Similarly the generic \f(CW\*(C`msp430x\*(C'\fR \s-1MCU\s0
-name will select the 430X \s-1ISA.\s0
-.Sp
-In addition an \s-1MCU\s0 specific linker script will be added to the linker
-command line. The script's name is the name of the \s-1MCU\s0 with
-\&\f(CW\*(C`.ld\*(C'\fR appended. Thus specifying \fB\-mmcu=xxx\fR on the gcc
-command line will define the C preprocessor symbol \f(CW\*(C`_\|_XXX_\|_\*(C'\fR and
-cause the linker to search for a script called \fIxxx.ld\fR.
-.Sp
-This option is also passed on to the assembler.
-.IP "\fB\-mcpu=\fR" 4
-.IX Item "-mcpu="
-Specifies the \s-1ISA\s0 to use. Accepted values are \f(CW\*(C`msp430\*(C'\fR,
-\&\f(CW\*(C`msp430x\*(C'\fR and \f(CW\*(C`msp430xv2\*(C'\fR. This option is deprecated. The
-\&\fB\-mmcu=\fR option should be used to select the \s-1ISA.\s0
-.IP "\fB\-msim\fR" 4
-.IX Item "-msim"
-Link to the simulator runtime libraries and linker script. Overrides
-any scripts that would be selected by the \fB\-mmcu=\fR option.
-.IP "\fB\-mlarge\fR" 4
-.IX Item "-mlarge"
-Use large-model addressing (20\-bit pointers, 32\-bit \f(CW\*(C`size_t\*(C'\fR).
-.IP "\fB\-msmall\fR" 4
-.IX Item "-msmall"
-Use small-model addressing (16\-bit pointers, 16\-bit \f(CW\*(C`size_t\*(C'\fR).
-.IP "\fB\-mrelax\fR" 4
-.IX Item "-mrelax"
-This option is passed to the assembler and linker, and allows the
-linker to perform certain optimizations that cannot be done until
-the final link.
-.PP
-\fI\s-1NDS32\s0 Options\fR
-.IX Subsection "NDS32 Options"
-.PP
-These options are defined for \s-1NDS32\s0 implementations:
-.IP "\fB\-mbig\-endian\fR" 4
-.IX Item "-mbig-endian"
-Generate code in big-endian mode.
-.IP "\fB\-mlittle\-endian\fR" 4
-.IX Item "-mlittle-endian"
-Generate code in little-endian mode.
-.IP "\fB\-mreduced\-regs\fR" 4
-.IX Item "-mreduced-regs"
-Use reduced-set registers for register allocation.
-.IP "\fB\-mfull\-regs\fR" 4
-.IX Item "-mfull-regs"
-Use full-set registers for register allocation.
-.IP "\fB\-mcmov\fR" 4
-.IX Item "-mcmov"
-Generate conditional move instructions.
-.IP "\fB\-mno\-cmov\fR" 4
-.IX Item "-mno-cmov"
-Do not generate conditional move instructions.
-.IP "\fB\-mperf\-ext\fR" 4
-.IX Item "-mperf-ext"
-Generate performance extension instructions.
-.IP "\fB\-mno\-perf\-ext\fR" 4
-.IX Item "-mno-perf-ext"
-Do not generate performance extension instructions.
-.IP "\fB\-mv3push\fR" 4
-.IX Item "-mv3push"
-Generate v3 push25/pop25 instructions.
-.IP "\fB\-mno\-v3push\fR" 4
-.IX Item "-mno-v3push"
-Do not generate v3 push25/pop25 instructions.
-.IP "\fB\-m16\-bit\fR" 4
-.IX Item "-m16-bit"
-Generate 16\-bit instructions.
-.IP "\fB\-mno\-16\-bit\fR" 4
-.IX Item "-mno-16-bit"
-Do not generate 16\-bit instructions.
-.IP "\fB\-mgp\-direct\fR" 4
-.IX Item "-mgp-direct"
-Generate \s-1GP\s0 base instructions directly.
-.IP "\fB\-mno\-gp\-direct\fR" 4
-.IX Item "-mno-gp-direct"
-Do no generate \s-1GP\s0 base instructions directly.
-.IP "\fB\-misr\-vector\-size=\fR\fInum\fR" 4
-.IX Item "-misr-vector-size=num"
-Specify the size of each interrupt vector, which must be 4 or 16.
-.IP "\fB\-mcache\-block\-size=\fR\fInum\fR" 4
-.IX Item "-mcache-block-size=num"
-Specify the size of each cache block,
-which must be a power of 2 between 4 and 512.
-.IP "\fB\-march=\fR\fIarch\fR" 4
-.IX Item "-march=arch"
-Specify the name of the target architecture.
-.IP "\fB\-mforce\-fp\-as\-gp\fR" 4
-.IX Item "-mforce-fp-as-gp"
-Prevent \f(CW$fp\fR being allocated during register allocation so that compiler
-is able to force performing fp-as-gp optimization.
-.IP "\fB\-mforbid\-fp\-as\-gp\fR" 4
-.IX Item "-mforbid-fp-as-gp"
-Forbid using \f(CW$fp\fR to access static and global variables.
-This option strictly forbids fp-as-gp optimization
-regardless of \fB\-mforce\-fp\-as\-gp\fR.
-.IP "\fB\-mex9\fR" 4
-.IX Item "-mex9"
-Use special directives to guide linker doing ex9 optimization.
-.IP "\fB\-mctor\-dtor\fR" 4
-.IX Item "-mctor-dtor"
-Enable constructor/destructor feature.
-.IP "\fB\-mrelax\fR" 4
-.IX Item "-mrelax"
-Guide linker to relax instructions.
-.PP
-\fINios \s-1II\s0 Options\fR
-.IX Subsection "Nios II Options"
-.PP
-These are the options defined for the Altera Nios \s-1II\s0 processor.
-.IP "\fB\-G\fR \fInum\fR" 4
-.IX Item "-G num"
-Put global and static objects less than or equal to \fInum\fR bytes
-into the small data or \s-1BSS\s0 sections instead of the normal data or \s-1BSS\s0
-sections. The default value of \fInum\fR is 8.
-.IP "\fB\-mgpopt\fR" 4
-.IX Item "-mgpopt"
-.PD 0
-.IP "\fB\-mno\-gpopt\fR" 4
-.IX Item "-mno-gpopt"
-.PD
-Generate (do not generate) GP-relative accesses for objects in the
-small data or \s-1BSS\s0 sections. The default is \fB\-mgpopt\fR except
-when \fB\-fpic\fR or \fB\-fPIC\fR is specified to generate
-position-independent code. Note that the Nios \s-1II ABI\s0 does not permit
-GP-relative accesses from shared libraries.
-.Sp
-You may need to specify \fB\-mno\-gpopt\fR explicitly when building
-programs that include large amounts of small data, including large
-\&\s-1GOT\s0 data sections. In this case, the 16\-bit offset for GP-relative
-addressing may not be large enough to allow access to the entire
-small data section.
-.IP "\fB\-mel\fR" 4
-.IX Item "-mel"
-.PD 0
-.IP "\fB\-meb\fR" 4
-.IX Item "-meb"
-.PD
-Generate little-endian (default) or big-endian (experimental) code,
-respectively.
-.IP "\fB\-mbypass\-cache\fR" 4
-.IX Item "-mbypass-cache"
-.PD 0
-.IP "\fB\-mno\-bypass\-cache\fR" 4
-.IX Item "-mno-bypass-cache"
-.PD
-Force all load and store instructions to always bypass cache by
-using I/O variants of the instructions. The default is not to
-bypass the cache.
-.IP "\fB\-mno\-cache\-volatile\fR" 4
-.IX Item "-mno-cache-volatile"
-.PD 0
-.IP "\fB\-mcache\-volatile\fR" 4
-.IX Item "-mcache-volatile"
-.PD
-Volatile memory access bypass the cache using the I/O variants of
-the load and store instructions. The default is not to bypass the cache.
-.IP "\fB\-mno\-fast\-sw\-div\fR" 4
-.IX Item "-mno-fast-sw-div"
-.PD 0
-.IP "\fB\-mfast\-sw\-div\fR" 4
-.IX Item "-mfast-sw-div"
-.PD
-Do not use table-based fast divide for small numbers. The default
-is to use the fast divide at \fB\-O3\fR and above.
-.IP "\fB\-mno\-hw\-mul\fR" 4
-.IX Item "-mno-hw-mul"
-.PD 0
-.IP "\fB\-mhw\-mul\fR" 4
-.IX Item "-mhw-mul"
-.IP "\fB\-mno\-hw\-mulx\fR" 4
-.IX Item "-mno-hw-mulx"
-.IP "\fB\-mhw\-mulx\fR" 4
-.IX Item "-mhw-mulx"
-.IP "\fB\-mno\-hw\-div\fR" 4
-.IX Item "-mno-hw-div"
-.IP "\fB\-mhw\-div\fR" 4
-.IX Item "-mhw-div"
-.PD
-Enable or disable emitting \f(CW\*(C`mul\*(C'\fR, \f(CW\*(C`mulx\*(C'\fR and \f(CW\*(C`div\*(C'\fR family of
-instructions by the compiler. The default is to emit \f(CW\*(C`mul\*(C'\fR
-and not emit \f(CW\*(C`div\*(C'\fR and \f(CW\*(C`mulx\*(C'\fR.
-.IP "\fB\-mcustom\-\fR\fIinsn\fR\fB=\fR\fIN\fR" 4
-.IX Item "-mcustom-insn=N"
-.PD 0
-.IP "\fB\-mno\-custom\-\fR\fIinsn\fR" 4
-.IX Item "-mno-custom-insn"
-.PD
-Each \fB\-mcustom\-\fR\fIinsn\fR\fB=\fR\fIN\fR option enables use of a
-custom instruction with encoding \fIN\fR when generating code that uses
-\&\fIinsn\fR. For example, \f(CW\*(C`\-mcustom\-fadds=253\*(C'\fR generates custom
-instruction 253 for single-precision floating-point add operations instead
-of the default behavior of using a library call.
-.Sp
-The following values of \fIinsn\fR are supported. Except as otherwise
-noted, floating-point operations are expected to be implemented with
-normal \s-1IEEE 754\s0 semantics and correspond directly to the C operators or the
-equivalent \s-1GCC\s0 built-in functions.
-.Sp
-Single-precision floating point:
-.RS 4
-.IP "\fBfadds\fR, \fBfsubs\fR, \fBfdivs\fR, \fBfmuls\fR" 4
-.IX Item "fadds, fsubs, fdivs, fmuls"
-Binary arithmetic operations.
-.IP "\fBfnegs\fR" 4
-.IX Item "fnegs"
-Unary negation.
-.IP "\fBfabss\fR" 4
-.IX Item "fabss"
-Unary absolute value.
-.IP "\fBfcmpeqs\fR, \fBfcmpges\fR, \fBfcmpgts\fR, \fBfcmples\fR, \fBfcmplts\fR, \fBfcmpnes\fR" 4
-.IX Item "fcmpeqs, fcmpges, fcmpgts, fcmples, fcmplts, fcmpnes"
-Comparison operations.
-.IP "\fBfmins\fR, \fBfmaxs\fR" 4
-.IX Item "fmins, fmaxs"
-Floating-point minimum and maximum. These instructions are only
-generated if \fB\-ffinite\-math\-only\fR is specified.
-.IP "\fBfsqrts\fR" 4
-.IX Item "fsqrts"
-Unary square root operation.
-.IP "\fBfcoss\fR, \fBfsins\fR, \fBftans\fR, \fBfatans\fR, \fBfexps\fR, \fBflogs\fR" 4
-.IX Item "fcoss, fsins, ftans, fatans, fexps, flogs"
-Floating-point trigonometric and exponential functions. These instructions
-are only generated if \fB\-funsafe\-math\-optimizations\fR is also specified.
-.RE
-.RS 4
-.Sp
-Double-precision floating point:
-.IP "\fBfaddd\fR, \fBfsubd\fR, \fBfdivd\fR, \fBfmuld\fR" 4
-.IX Item "faddd, fsubd, fdivd, fmuld"
-Binary arithmetic operations.
-.IP "\fBfnegd\fR" 4
-.IX Item "fnegd"
-Unary negation.
-.IP "\fBfabsd\fR" 4
-.IX Item "fabsd"
-Unary absolute value.
-.IP "\fBfcmpeqd\fR, \fBfcmpged\fR, \fBfcmpgtd\fR, \fBfcmpled\fR, \fBfcmpltd\fR, \fBfcmpned\fR" 4
-.IX Item "fcmpeqd, fcmpged, fcmpgtd, fcmpled, fcmpltd, fcmpned"
-Comparison operations.
-.IP "\fBfmind\fR, \fBfmaxd\fR" 4
-.IX Item "fmind, fmaxd"
-Double-precision minimum and maximum. These instructions are only
-generated if \fB\-ffinite\-math\-only\fR is specified.
-.IP "\fBfsqrtd\fR" 4
-.IX Item "fsqrtd"
-Unary square root operation.
-.IP "\fBfcosd\fR, \fBfsind\fR, \fBftand\fR, \fBfatand\fR, \fBfexpd\fR, \fBflogd\fR" 4
-.IX Item "fcosd, fsind, ftand, fatand, fexpd, flogd"
-Double-precision trigonometric and exponential functions. These instructions
-are only generated if \fB\-funsafe\-math\-optimizations\fR is also specified.
-.RE
-.RS 4
-.Sp
-Conversions:
-.IP "\fBfextsd\fR" 4
-.IX Item "fextsd"
-Conversion from single precision to double precision.
-.IP "\fBftruncds\fR" 4
-.IX Item "ftruncds"
-Conversion from double precision to single precision.
-.IP "\fBfixsi\fR, \fBfixsu\fR, \fBfixdi\fR, \fBfixdu\fR" 4
-.IX Item "fixsi, fixsu, fixdi, fixdu"
-Conversion from floating point to signed or unsigned integer types, with
-truncation towards zero.
-.IP "\fBfloatis\fR, \fBfloatus\fR, \fBfloatid\fR, \fBfloatud\fR" 4
-.IX Item "floatis, floatus, floatid, floatud"
-Conversion from signed or unsigned integer types to floating-point types.
-.RE
-.RS 4
-.Sp
-In addition, all of the following transfer instructions for internal
-registers X and Y must be provided to use any of the double-precision
-floating-point instructions. Custom instructions taking two
-double-precision source operands expect the first operand in the
-64\-bit register X. The other operand (or only operand of a unary
-operation) is given to the custom arithmetic instruction with the
-least significant half in source register \fIsrc1\fR and the most
-significant half in \fIsrc2\fR. A custom instruction that returns a
-double-precision result returns the most significant 32 bits in the
-destination register and the other half in 32\-bit register Y.
-\&\s-1GCC\s0 automatically generates the necessary code sequences to write
-register X and/or read register Y when double-precision floating-point
-instructions are used.
-.IP "\fBfwrx\fR" 4
-.IX Item "fwrx"
-Write \fIsrc1\fR into the least significant half of X and \fIsrc2\fR into
-the most significant half of X.
-.IP "\fBfwry\fR" 4
-.IX Item "fwry"
-Write \fIsrc1\fR into Y.
-.IP "\fBfrdxhi\fR, \fBfrdxlo\fR" 4
-.IX Item "frdxhi, frdxlo"
-Read the most or least (respectively) significant half of X and store it in
-\&\fIdest\fR.
-.IP "\fBfrdy\fR" 4
-.IX Item "frdy"
-Read the value of Y and store it into \fIdest\fR.
-.RE
-.RS 4
-.Sp
-Note that you can gain more local control over generation of Nios \s-1II\s0 custom
-instructions by using the \f(CW\*(C`target("custom\-\f(CIinsn\f(CW=\f(CIN\f(CW")\*(C'\fR
-and \f(CW\*(C`target("no\-custom\-\f(CIinsn\f(CW")\*(C'\fR function attributes
-or pragmas.
-.RE
-.IP "\fB\-mcustom\-fpu\-cfg=\fR\fIname\fR" 4
-.IX Item "-mcustom-fpu-cfg=name"
-This option enables a predefined, named set of custom instruction encodings
-(see \fB\-mcustom\-\fR\fIinsn\fR above).
-Currently, the following sets are defined:
-.Sp
-\&\fB\-mcustom\-fpu\-cfg=60\-1\fR is equivalent to:
-\&\fB\-mcustom\-fmuls=252
-\&\-mcustom\-fadds=253
-\&\-mcustom\-fsubs=254
-\&\-fsingle\-precision\-constant\fR
-.Sp
-\&\fB\-mcustom\-fpu\-cfg=60\-2\fR is equivalent to:
-\&\fB\-mcustom\-fmuls=252
-\&\-mcustom\-fadds=253
-\&\-mcustom\-fsubs=254
-\&\-mcustom\-fdivs=255
-\&\-fsingle\-precision\-constant\fR
-.Sp
-\&\fB\-mcustom\-fpu\-cfg=72\-3\fR is equivalent to:
-\&\fB\-mcustom\-floatus=243
-\&\-mcustom\-fixsi=244
-\&\-mcustom\-floatis=245
-\&\-mcustom\-fcmpgts=246
-\&\-mcustom\-fcmples=249
-\&\-mcustom\-fcmpeqs=250
-\&\-mcustom\-fcmpnes=251
-\&\-mcustom\-fmuls=252
-\&\-mcustom\-fadds=253
-\&\-mcustom\-fsubs=254
-\&\-mcustom\-fdivs=255
-\&\-fsingle\-precision\-constant\fR
-.Sp
-Custom instruction assignments given by individual
-\&\fB\-mcustom\-\fR\fIinsn\fR\fB=\fR options override those given by
-\&\fB\-mcustom\-fpu\-cfg=\fR, regardless of the
-order of the options on the command line.
-.Sp
-Note that you can gain more local control over selection of a \s-1FPU\s0
-configuration by using the \f(CW\*(C`target("custom\-fpu\-cfg=\f(CIname\f(CW")\*(C'\fR
-function attribute
-or pragma.
-.PP
-These additional \fB\-m\fR options are available for the Altera Nios \s-1II
-ELF \s0(bare-metal) target:
-.IP "\fB\-mhal\fR" 4
-.IX Item "-mhal"
-Link with \s-1HAL BSP. \s0 This suppresses linking with the GCC-provided C runtime
-startup and termination code, and is typically used in conjunction with
-\&\fB\-msys\-crt0=\fR to specify the location of the alternate startup code
-provided by the \s-1HAL BSP.\s0
-.IP "\fB\-msmallc\fR" 4
-.IX Item "-msmallc"
-Link with a limited version of the C library, \fB\-lsmallc\fR, rather than
-Newlib.
-.IP "\fB\-msys\-crt0=\fR\fIstartfile\fR" 4
-.IX Item "-msys-crt0=startfile"
-\&\fIstartfile\fR is the file name of the startfile (crt0) to use
-when linking. This option is only useful in conjunction with \fB\-mhal\fR.
-.IP "\fB\-msys\-lib=\fR\fIsystemlib\fR" 4
-.IX Item "-msys-lib=systemlib"
-\&\fIsystemlib\fR is the library name of the library that provides
-low-level system calls required by the C library,
-e.g. \f(CW\*(C`read\*(C'\fR and \f(CW\*(C`write\*(C'\fR.
-This option is typically used to link with a library provided by a \s-1HAL BSP.\s0
-.PP
-\fI\s-1PDP\-11\s0 Options\fR
-.IX Subsection "PDP-11 Options"
-.PP
-These options are defined for the \s-1PDP\-11:\s0
-.IP "\fB\-mfpu\fR" 4
-.IX Item "-mfpu"
-Use hardware \s-1FPP\s0 floating point. This is the default. (\s-1FIS\s0 floating
-point on the \s-1PDP\-11/40\s0 is not supported.)
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-Do not use hardware floating point.
-.IP "\fB\-mac0\fR" 4
-.IX Item "-mac0"
-Return floating-point results in ac0 (fr0 in Unix assembler syntax).
-.IP "\fB\-mno\-ac0\fR" 4
-.IX Item "-mno-ac0"
-Return floating-point results in memory. This is the default.
-.IP "\fB\-m40\fR" 4
-.IX Item "-m40"
-Generate code for a \s-1PDP\-11/40.\s0
-.IP "\fB\-m45\fR" 4
-.IX Item "-m45"
-Generate code for a \s-1PDP\-11/45. \s0 This is the default.
-.IP "\fB\-m10\fR" 4
-.IX Item "-m10"
-Generate code for a \s-1PDP\-11/10.\s0
-.IP "\fB\-mbcopy\-builtin\fR" 4
-.IX Item "-mbcopy-builtin"
-Use inline \f(CW\*(C`movmemhi\*(C'\fR patterns for copying memory. This is the
-default.
-.IP "\fB\-mbcopy\fR" 4
-.IX Item "-mbcopy"
-Do not use inline \f(CW\*(C`movmemhi\*(C'\fR patterns for copying memory.
-.IP "\fB\-mint16\fR" 4
-.IX Item "-mint16"
-.PD 0
-.IP "\fB\-mno\-int32\fR" 4
-.IX Item "-mno-int32"
-.PD
-Use 16\-bit \f(CW\*(C`int\*(C'\fR. This is the default.
-.IP "\fB\-mint32\fR" 4
-.IX Item "-mint32"
-.PD 0
-.IP "\fB\-mno\-int16\fR" 4
-.IX Item "-mno-int16"
-.PD
-Use 32\-bit \f(CW\*(C`int\*(C'\fR.
-.IP "\fB\-mfloat64\fR" 4
-.IX Item "-mfloat64"
-.PD 0
-.IP "\fB\-mno\-float32\fR" 4
-.IX Item "-mno-float32"
-.PD
-Use 64\-bit \f(CW\*(C`float\*(C'\fR. This is the default.
-.IP "\fB\-mfloat32\fR" 4
-.IX Item "-mfloat32"
-.PD 0
-.IP "\fB\-mno\-float64\fR" 4
-.IX Item "-mno-float64"
-.PD
-Use 32\-bit \f(CW\*(C`float\*(C'\fR.
-.IP "\fB\-mabshi\fR" 4
-.IX Item "-mabshi"
-Use \f(CW\*(C`abshi2\*(C'\fR pattern. This is the default.
-.IP "\fB\-mno\-abshi\fR" 4
-.IX Item "-mno-abshi"
-Do not use \f(CW\*(C`abshi2\*(C'\fR pattern.
-.IP "\fB\-mbranch\-expensive\fR" 4
-.IX Item "-mbranch-expensive"
-Pretend that branches are expensive. This is for experimenting with
-code generation only.
-.IP "\fB\-mbranch\-cheap\fR" 4
-.IX Item "-mbranch-cheap"
-Do not pretend that branches are expensive. This is the default.
-.IP "\fB\-munix\-asm\fR" 4
-.IX Item "-munix-asm"
-Use Unix assembler syntax. This is the default when configured for
-\&\fBpdp11\-*\-bsd\fR.
-.IP "\fB\-mdec\-asm\fR" 4
-.IX Item "-mdec-asm"
-Use \s-1DEC\s0 assembler syntax. This is the default when configured for any
-\&\s-1PDP\-11\s0 target other than \fBpdp11\-*\-bsd\fR.
-.PP
-\fIpicoChip Options\fR
-.IX Subsection "picoChip Options"
-.PP
-These \fB\-m\fR options are defined for picoChip implementations:
-.IP "\fB\-mae=\fR\fIae_type\fR" 4
-.IX Item "-mae=ae_type"
-Set the instruction set, register set, and instruction scheduling
-parameters for array element type \fIae_type\fR. Supported values
-for \fIae_type\fR are \fB\s-1ANY\s0\fR, \fB\s-1MUL\s0\fR, and \fB\s-1MAC\s0\fR.
-.Sp
-\&\fB\-mae=ANY\fR selects a completely generic \s-1AE\s0 type. Code
-generated with this option runs on any of the other \s-1AE\s0 types. The
-code is not as efficient as it would be if compiled for a specific
-\&\s-1AE\s0 type, and some types of operation (e.g., multiplication) do not
-work properly on all types of \s-1AE.\s0
-.Sp
-\&\fB\-mae=MUL\fR selects a \s-1MUL AE\s0 type. This is the most useful \s-1AE\s0 type
-for compiled code, and is the default.
-.Sp
-\&\fB\-mae=MAC\fR selects a DSP-style \s-1MAC AE. \s0 Code compiled with this
-option may suffer from poor performance of byte (char) manipulation,
-since the \s-1DSP AE\s0 does not provide hardware support for byte load/stores.
-.IP "\fB\-msymbol\-as\-address\fR" 4
-.IX Item "-msymbol-as-address"
-Enable the compiler to directly use a symbol name as an address in a
-load/store instruction, without first loading it into a
-register. Typically, the use of this option generates larger
-programs, which run faster than when the option isn't used. However, the
-results vary from program to program, so it is left as a user option,
-rather than being permanently enabled.
-.IP "\fB\-mno\-inefficient\-warnings\fR" 4
-.IX Item "-mno-inefficient-warnings"
-Disables warnings about the generation of inefficient code. These
-warnings can be generated, for example, when compiling code that
-performs byte-level memory operations on the \s-1MAC AE\s0 type. The \s-1MAC AE\s0 has
-no hardware support for byte-level memory operations, so all byte
-load/stores must be synthesized from word load/store operations. This is
-inefficient and a warning is generated to indicate
-that you should rewrite the code to avoid byte operations, or to target
-an \s-1AE\s0 type that has the necessary hardware support. This option disables
-these warnings.
-.PP
-\fIPowerPC Options\fR
-.IX Subsection "PowerPC Options"
-.PP
-These are listed under
-.PP
-\fI\s-1RL78\s0 Options\fR
-.IX Subsection "RL78 Options"
-.IP "\fB\-msim\fR" 4
-.IX Item "-msim"
-Links in additional target libraries to support operation within a
-simulator.
-.IP "\fB\-mmul=none\fR" 4
-.IX Item "-mmul=none"
-.PD 0
-.IP "\fB\-mmul=g13\fR" 4
-.IX Item "-mmul=g13"
-.IP "\fB\-mmul=rl78\fR" 4
-.IX Item "-mmul=rl78"
-.PD
-Specifies the type of hardware multiplication support to be used. The
-default is \f(CW\*(C`none\*(C'\fR, which uses software multiplication functions.
-The \f(CW\*(C`g13\*(C'\fR option is for the hardware multiply/divide peripheral
-only on the \s-1RL78/G13\s0 targets. The \f(CW\*(C`rl78\*(C'\fR option is for the
-standard hardware multiplication defined in the \s-1RL78\s0 software manual.
-.PP
-\fI\s-1IBM RS/6000\s0 and PowerPC Options\fR
-.IX Subsection "IBM RS/6000 and PowerPC Options"
-.PP
-These \fB\-m\fR options are defined for the \s-1IBM RS/6000\s0 and PowerPC:
-.IP "\fB\-mpowerpc\-gpopt\fR" 4
-.IX Item "-mpowerpc-gpopt"
-.PD 0
-.IP "\fB\-mno\-powerpc\-gpopt\fR" 4
-.IX Item "-mno-powerpc-gpopt"
-.IP "\fB\-mpowerpc\-gfxopt\fR" 4
-.IX Item "-mpowerpc-gfxopt"
-.IP "\fB\-mno\-powerpc\-gfxopt\fR" 4
-.IX Item "-mno-powerpc-gfxopt"
-.IP "\fB\-mpowerpc64\fR" 4
-.IX Item "-mpowerpc64"
-.IP "\fB\-mno\-powerpc64\fR" 4
-.IX Item "-mno-powerpc64"
-.IP "\fB\-mmfcrf\fR" 4
-.IX Item "-mmfcrf"
-.IP "\fB\-mno\-mfcrf\fR" 4
-.IX Item "-mno-mfcrf"
-.IP "\fB\-mpopcntb\fR" 4
-.IX Item "-mpopcntb"
-.IP "\fB\-mno\-popcntb\fR" 4
-.IX Item "-mno-popcntb"
-.IP "\fB\-mpopcntd\fR" 4
-.IX Item "-mpopcntd"
-.IP "\fB\-mno\-popcntd\fR" 4
-.IX Item "-mno-popcntd"
-.IP "\fB\-mfprnd\fR" 4
-.IX Item "-mfprnd"
-.IP "\fB\-mno\-fprnd\fR" 4
-.IX Item "-mno-fprnd"
-.IP "\fB\-mcmpb\fR" 4
-.IX Item "-mcmpb"
-.IP "\fB\-mno\-cmpb\fR" 4
-.IX Item "-mno-cmpb"
-.IP "\fB\-mmfpgpr\fR" 4
-.IX Item "-mmfpgpr"
-.IP "\fB\-mno\-mfpgpr\fR" 4
-.IX Item "-mno-mfpgpr"
-.IP "\fB\-mhard\-dfp\fR" 4
-.IX Item "-mhard-dfp"
-.IP "\fB\-mno\-hard\-dfp\fR" 4
-.IX Item "-mno-hard-dfp"
-.PD
-You use these options to specify which instructions are available on the
-processor you are using. The default value of these options is
-determined when configuring \s-1GCC. \s0 Specifying the
-\&\fB\-mcpu=\fR\fIcpu_type\fR overrides the specification of these
-options. We recommend you use the \fB\-mcpu=\fR\fIcpu_type\fR option
-rather than the options listed above.
-.Sp
-Specifying \fB\-mpowerpc\-gpopt\fR allows
-\&\s-1GCC\s0 to use the optional PowerPC architecture instructions in the
-General Purpose group, including floating-point square root. Specifying
-\&\fB\-mpowerpc\-gfxopt\fR allows \s-1GCC\s0 to
-use the optional PowerPC architecture instructions in the Graphics
-group, including floating-point select.
-.Sp
-The \fB\-mmfcrf\fR option allows \s-1GCC\s0 to generate the move from
-condition register field instruction implemented on the \s-1POWER4\s0
-processor and other processors that support the PowerPC V2.01
-architecture.
-The \fB\-mpopcntb\fR option allows \s-1GCC\s0 to generate the popcount and
-double-precision \s-1FP\s0 reciprocal estimate instruction implemented on the
-\&\s-1POWER5\s0 processor and other processors that support the PowerPC V2.02
-architecture.
-The \fB\-mpopcntd\fR option allows \s-1GCC\s0 to generate the popcount
-instruction implemented on the \s-1POWER7\s0 processor and other processors
-that support the PowerPC V2.06 architecture.
-The \fB\-mfprnd\fR option allows \s-1GCC\s0 to generate the \s-1FP\s0 round to
-integer instructions implemented on the \s-1POWER5+\s0 processor and other
-processors that support the PowerPC V2.03 architecture.
-The \fB\-mcmpb\fR option allows \s-1GCC\s0 to generate the compare bytes
-instruction implemented on the \s-1POWER6\s0 processor and other processors
-that support the PowerPC V2.05 architecture.
-The \fB\-mmfpgpr\fR option allows \s-1GCC\s0 to generate the \s-1FP\s0 move to/from
-general-purpose register instructions implemented on the \s-1POWER6X\s0
-processor and other processors that support the extended PowerPC V2.05
-architecture.
-The \fB\-mhard\-dfp\fR option allows \s-1GCC\s0 to generate the decimal
-floating-point instructions implemented on some \s-1POWER\s0 processors.
-.Sp
-The \fB\-mpowerpc64\fR option allows \s-1GCC\s0 to generate the additional
-64\-bit instructions that are found in the full PowerPC64 architecture
-and to treat GPRs as 64\-bit, doubleword quantities. \s-1GCC\s0 defaults to
-\&\fB\-mno\-powerpc64\fR.
-.IP "\fB\-mcpu=\fR\fIcpu_type\fR" 4
-.IX Item "-mcpu=cpu_type"
-Set architecture type, register usage, and
-instruction scheduling parameters for machine type \fIcpu_type\fR.
-Supported values for \fIcpu_type\fR are \fB401\fR, \fB403\fR,
-\&\fB405\fR, \fB405fp\fR, \fB440\fR, \fB440fp\fR, \fB464\fR, \fB464fp\fR,
-\&\fB476\fR, \fB476fp\fR, \fB505\fR, \fB601\fR, \fB602\fR, \fB603\fR,
-\&\fB603e\fR, \fB604\fR, \fB604e\fR, \fB620\fR, \fB630\fR, \fB740\fR,
-\&\fB7400\fR, \fB7450\fR, \fB750\fR, \fB801\fR, \fB821\fR, \fB823\fR,
-\&\fB860\fR, \fB970\fR, \fB8540\fR, \fBa2\fR, \fBe300c2\fR,
-\&\fBe300c3\fR, \fBe500mc\fR, \fBe500mc64\fR, \fBe5500\fR,
-\&\fBe6500\fR, \fBec603e\fR, \fBG3\fR, \fBG4\fR, \fBG5\fR,
-\&\fBtitan\fR, \fBpower3\fR, \fBpower4\fR, \fBpower5\fR, \fBpower5+\fR,
-\&\fBpower6\fR, \fBpower6x\fR, \fBpower7\fR, \fBpower8\fR, \fBpowerpc\fR,
-\&\fBpowerpc64\fR, and \fBrs64\fR.
-.Sp
-\&\fB\-mcpu=powerpc\fR, and \fB\-mcpu=powerpc64\fR specify pure 32\-bit
-PowerPC and 64\-bit PowerPC architecture machine
-types, with an appropriate, generic processor model assumed for
-scheduling purposes.
-.Sp
-The other options specify a specific processor. Code generated under
-those options runs best on that processor, and may not run at all on
-others.
-.Sp
-The \fB\-mcpu\fR options automatically enable or disable the
-following options:
-.Sp
-\&\fB\-maltivec \-mfprnd \-mhard\-float \-mmfcrf \-mmultiple
-\&\-mpopcntb \-mpopcntd \-mpowerpc64
-\&\-mpowerpc\-gpopt \-mpowerpc\-gfxopt \-msingle\-float \-mdouble\-float
-\&\-msimple\-fpu \-mstring \-mmulhw \-mdlmzb \-mmfpgpr \-mvsx
-\&\-mcrypto \-mdirect\-move \-mpower8\-fusion \-mpower8\-vector
-\&\-mquad\-memory \-mquad\-memory\-atomic\fR
-.Sp
-The particular options set for any particular \s-1CPU\s0 varies between
-compiler versions, depending on what setting seems to produce optimal
-code for that \s-1CPU\s0; it doesn't necessarily reflect the actual hardware's
-capabilities. If you wish to set an individual option to a particular
-value, you may specify it after the \fB\-mcpu\fR option, like
-\&\fB\-mcpu=970 \-mno\-altivec\fR.
-.Sp
-On \s-1AIX,\s0 the \fB\-maltivec\fR and \fB\-mpowerpc64\fR options are
-not enabled or disabled by the \fB\-mcpu\fR option at present because
-\&\s-1AIX\s0 does not have full support for these options. You may still
-enable or disable them individually if you're sure it'll work in your
-environment.
-.IP "\fB\-mtune=\fR\fIcpu_type\fR" 4
-.IX Item "-mtune=cpu_type"
-Set the instruction scheduling parameters for machine type
-\&\fIcpu_type\fR, but do not set the architecture type or register usage,
-as \fB\-mcpu=\fR\fIcpu_type\fR does. The same
-values for \fIcpu_type\fR are used for \fB\-mtune\fR as for
-\&\fB\-mcpu\fR. If both are specified, the code generated uses the
-architecture and registers set by \fB\-mcpu\fR, but the
-scheduling parameters set by \fB\-mtune\fR.
-.IP "\fB\-mcmodel=small\fR" 4
-.IX Item "-mcmodel=small"
-Generate PowerPC64 code for the small model: The \s-1TOC\s0 is limited to
-64k.
-.IP "\fB\-mcmodel=medium\fR" 4
-.IX Item "-mcmodel=medium"
-Generate PowerPC64 code for the medium model: The \s-1TOC\s0 and other static
-data may be up to a total of 4G in size.
-.IP "\fB\-mcmodel=large\fR" 4
-.IX Item "-mcmodel=large"
-Generate PowerPC64 code for the large model: The \s-1TOC\s0 may be up to 4G
-in size. Other data and code is only limited by the 64\-bit address
-space.
-.IP "\fB\-maltivec\fR" 4
-.IX Item "-maltivec"
-.PD 0
-.IP "\fB\-mno\-altivec\fR" 4
-.IX Item "-mno-altivec"
-.PD
-Generate code that uses (does not use) AltiVec instructions, and also
-enable the use of built-in functions that allow more direct access to
-the AltiVec instruction set. You may also need to set
-\&\fB\-mabi=altivec\fR to adjust the current \s-1ABI\s0 with AltiVec \s-1ABI\s0
-enhancements.
-.Sp
-When \fB\-maltivec\fR is used, rather than \fB\-maltivec=le\fR or
-\&\fB\-maltivec=be\fR, the element order for Altivec intrinsics such
-as \f(CW\*(C`vec_splat\*(C'\fR, \f(CW\*(C`vec_extract\*(C'\fR, and \f(CW\*(C`vec_insert\*(C'\fR will
-match array element order corresponding to the endianness of the
-target. That is, element zero identifies the leftmost element in a
-vector register when targeting a big-endian platform, and identifies
-the rightmost element in a vector register when targeting a
-little-endian platform.
-.IP "\fB\-maltivec=be\fR" 4
-.IX Item "-maltivec=be"
-Generate Altivec instructions using big-endian element order,
-regardless of whether the target is big\- or little-endian. This is
-the default when targeting a big-endian platform.
-.Sp
-The element order is used to interpret element numbers in Altivec
-intrinsics such as \f(CW\*(C`vec_splat\*(C'\fR, \f(CW\*(C`vec_extract\*(C'\fR, and
-\&\f(CW\*(C`vec_insert\*(C'\fR. By default, these will match array element order
-corresponding to the endianness for the target.
-.IP "\fB\-maltivec=le\fR" 4
-.IX Item "-maltivec=le"
-Generate Altivec instructions using little-endian element order,
-regardless of whether the target is big\- or little-endian. This is
-the default when targeting a little-endian platform. This option is
-currently ignored when targeting a big-endian platform.
-.Sp
-The element order is used to interpret element numbers in Altivec
-intrinsics such as \f(CW\*(C`vec_splat\*(C'\fR, \f(CW\*(C`vec_extract\*(C'\fR, and
-\&\f(CW\*(C`vec_insert\*(C'\fR. By default, these will match array element order
-corresponding to the endianness for the target.
-.IP "\fB\-mvrsave\fR" 4
-.IX Item "-mvrsave"
-.PD 0
-.IP "\fB\-mno\-vrsave\fR" 4
-.IX Item "-mno-vrsave"
-.PD
-Generate \s-1VRSAVE\s0 instructions when generating AltiVec code.
-.IP "\fB\-mgen\-cell\-microcode\fR" 4
-.IX Item "-mgen-cell-microcode"
-Generate Cell microcode instructions.
-.IP "\fB\-mwarn\-cell\-microcode\fR" 4
-.IX Item "-mwarn-cell-microcode"
-Warn when a Cell microcode instruction is emitted. An example
-of a Cell microcode instruction is a variable shift.
-.IP "\fB\-msecure\-plt\fR" 4
-.IX Item "-msecure-plt"
-Generate code that allows \fBld\fR and \fBld.so\fR
-to build executables and shared
-libraries with non-executable \f(CW\*(C`.plt\*(C'\fR and \f(CW\*(C`.got\*(C'\fR sections.
-This is a PowerPC
-32\-bit \s-1SYSV ABI\s0 option.
-.IP "\fB\-mbss\-plt\fR" 4
-.IX Item "-mbss-plt"
-Generate code that uses a \s-1BSS \s0\f(CW\*(C`.plt\*(C'\fR section that \fBld.so\fR
-fills in, and
-requires \f(CW\*(C`.plt\*(C'\fR and \f(CW\*(C`.got\*(C'\fR
-sections that are both writable and executable.
-This is a PowerPC 32\-bit \s-1SYSV ABI\s0 option.
-.IP "\fB\-misel\fR" 4
-.IX Item "-misel"
-.PD 0
-.IP "\fB\-mno\-isel\fR" 4
-.IX Item "-mno-isel"
-.PD
-This switch enables or disables the generation of \s-1ISEL\s0 instructions.
-.IP "\fB\-misel=\fR\fIyes/no\fR" 4
-.IX Item "-misel=yes/no"
-This switch has been deprecated. Use \fB\-misel\fR and
-\&\fB\-mno\-isel\fR instead.
-.IP "\fB\-mspe\fR" 4
-.IX Item "-mspe"
-.PD 0
-.IP "\fB\-mno\-spe\fR" 4
-.IX Item "-mno-spe"
-.PD
-This switch enables or disables the generation of \s-1SPE\s0 simd
-instructions.
-.IP "\fB\-mpaired\fR" 4
-.IX Item "-mpaired"
-.PD 0
-.IP "\fB\-mno\-paired\fR" 4
-.IX Item "-mno-paired"
-.PD
-This switch enables or disables the generation of \s-1PAIRED\s0 simd
-instructions.
-.IP "\fB\-mspe=\fR\fIyes/no\fR" 4
-.IX Item "-mspe=yes/no"
-This option has been deprecated. Use \fB\-mspe\fR and
-\&\fB\-mno\-spe\fR instead.
-.IP "\fB\-mvsx\fR" 4
-.IX Item "-mvsx"
-.PD 0
-.IP "\fB\-mno\-vsx\fR" 4
-.IX Item "-mno-vsx"
-.PD
-Generate code that uses (does not use) vector/scalar (\s-1VSX\s0)
-instructions, and also enable the use of built-in functions that allow
-more direct access to the \s-1VSX\s0 instruction set.
-.IP "\fB\-mcrypto\fR" 4
-.IX Item "-mcrypto"
-.PD 0
-.IP "\fB\-mno\-crypto\fR" 4
-.IX Item "-mno-crypto"
-.PD
-Enable the use (disable) of the built-in functions that allow direct
-access to the cryptographic instructions that were added in version
-2.07 of the PowerPC \s-1ISA.\s0
-.IP "\fB\-mdirect\-move\fR" 4
-.IX Item "-mdirect-move"
-.PD 0
-.IP "\fB\-mno\-direct\-move\fR" 4
-.IX Item "-mno-direct-move"
-.PD
-Generate code that uses (does not use) the instructions to move data
-between the general purpose registers and the vector/scalar (\s-1VSX\s0)
-registers that were added in version 2.07 of the PowerPC \s-1ISA.\s0
-.IP "\fB\-mpower8\-fusion\fR" 4
-.IX Item "-mpower8-fusion"
-.PD 0
-.IP "\fB\-mno\-power8\-fusion\fR" 4
-.IX Item "-mno-power8-fusion"
-.PD
-Generate code that keeps (does not keeps) some integer operations
-adjacent so that the instructions can be fused together on power8 and
-later processors.
-.IP "\fB\-mpower8\-vector\fR" 4
-.IX Item "-mpower8-vector"
-.PD 0
-.IP "\fB\-mno\-power8\-vector\fR" 4
-.IX Item "-mno-power8-vector"
-.PD
-Generate code that uses (does not use) the vector and scalar
-instructions that were added in version 2.07 of the PowerPC \s-1ISA. \s0 Also
-enable the use of built-in functions that allow more direct access to
-the vector instructions.
-.IP "\fB\-mquad\-memory\fR" 4
-.IX Item "-mquad-memory"
-.PD 0
-.IP "\fB\-mno\-quad\-memory\fR" 4
-.IX Item "-mno-quad-memory"
-.PD
-Generate code that uses (does not use) the non-atomic quad word memory
-instructions. The \fB\-mquad\-memory\fR option requires use of
-64\-bit mode.
-.IP "\fB\-mquad\-memory\-atomic\fR" 4
-.IX Item "-mquad-memory-atomic"
-.PD 0
-.IP "\fB\-mno\-quad\-memory\-atomic\fR" 4
-.IX Item "-mno-quad-memory-atomic"
-.PD
-Generate code that uses (does not use) the atomic quad word memory
-instructions. The \fB\-mquad\-memory\-atomic\fR option requires use of
-64\-bit mode.
-.IP "\fB\-mfloat\-gprs=\fR\fIyes/single/double/no\fR" 4
-.IX Item "-mfloat-gprs=yes/single/double/no"
-.PD 0
-.IP "\fB\-mfloat\-gprs\fR" 4
-.IX Item "-mfloat-gprs"
-.PD
-This switch enables or disables the generation of floating-point
-operations on the general-purpose registers for architectures that
-support it.
-.Sp
-The argument \fIyes\fR or \fIsingle\fR enables the use of
-single-precision floating-point operations.
-.Sp
-The argument \fIdouble\fR enables the use of single and
-double-precision floating-point operations.
-.Sp
-The argument \fIno\fR disables floating-point operations on the
-general-purpose registers.
-.Sp
-This option is currently only available on the MPC854x.
-.IP "\fB\-m32\fR" 4
-.IX Item "-m32"
-.PD 0
-.IP "\fB\-m64\fR" 4
-.IX Item "-m64"
-.PD
-Generate code for 32\-bit or 64\-bit environments of Darwin and \s-1SVR4\s0
-targets (including GNU/Linux). The 32\-bit environment sets int, long
-and pointer to 32 bits and generates code that runs on any PowerPC
-variant. The 64\-bit environment sets int to 32 bits and long and
-pointer to 64 bits, and generates code for PowerPC64, as for
-\&\fB\-mpowerpc64\fR.
-.IP "\fB\-mfull\-toc\fR" 4
-.IX Item "-mfull-toc"
-.PD 0
-.IP "\fB\-mno\-fp\-in\-toc\fR" 4
-.IX Item "-mno-fp-in-toc"
-.IP "\fB\-mno\-sum\-in\-toc\fR" 4
-.IX Item "-mno-sum-in-toc"
-.IP "\fB\-mminimal\-toc\fR" 4
-.IX Item "-mminimal-toc"
-.PD
-Modify generation of the \s-1TOC \s0(Table Of Contents), which is created for
-every executable file. The \fB\-mfull\-toc\fR option is selected by
-default. In that case, \s-1GCC\s0 allocates at least one \s-1TOC\s0 entry for
-each unique non-automatic variable reference in your program. \s-1GCC\s0
-also places floating-point constants in the \s-1TOC. \s0 However, only
-16,384 entries are available in the \s-1TOC.\s0
-.Sp
-If you receive a linker error message that saying you have overflowed
-the available \s-1TOC\s0 space, you can reduce the amount of \s-1TOC\s0 space used
-with the \fB\-mno\-fp\-in\-toc\fR and \fB\-mno\-sum\-in\-toc\fR options.
-\&\fB\-mno\-fp\-in\-toc\fR prevents \s-1GCC\s0 from putting floating-point
-constants in the \s-1TOC\s0 and \fB\-mno\-sum\-in\-toc\fR forces \s-1GCC\s0 to
-generate code to calculate the sum of an address and a constant at
-run time instead of putting that sum into the \s-1TOC. \s0 You may specify one
-or both of these options. Each causes \s-1GCC\s0 to produce very slightly
-slower and larger code at the expense of conserving \s-1TOC\s0 space.
-.Sp
-If you still run out of space in the \s-1TOC\s0 even when you specify both of
-these options, specify \fB\-mminimal\-toc\fR instead. This option causes
-\&\s-1GCC\s0 to make only one \s-1TOC\s0 entry for every file. When you specify this
-option, \s-1GCC\s0 produces code that is slower and larger but which
-uses extremely little \s-1TOC\s0 space. You may wish to use this option
-only on files that contain less frequently-executed code.
-.IP "\fB\-maix64\fR" 4
-.IX Item "-maix64"
-.PD 0
-.IP "\fB\-maix32\fR" 4
-.IX Item "-maix32"
-.PD
-Enable 64\-bit \s-1AIX ABI\s0 and calling convention: 64\-bit pointers, 64\-bit
-\&\f(CW\*(C`long\*(C'\fR type, and the infrastructure needed to support them.
-Specifying \fB\-maix64\fR implies \fB\-mpowerpc64\fR,
-while \fB\-maix32\fR disables the 64\-bit \s-1ABI\s0 and
-implies \fB\-mno\-powerpc64\fR. \s-1GCC\s0 defaults to \fB\-maix32\fR.
-.IP "\fB\-mxl\-compat\fR" 4
-.IX Item "-mxl-compat"
-.PD 0
-.IP "\fB\-mno\-xl\-compat\fR" 4
-.IX Item "-mno-xl-compat"
-.PD
-Produce code that conforms more closely to \s-1IBM XL\s0 compiler semantics
-when using AIX-compatible \s-1ABI. \s0 Pass floating-point arguments to
-prototyped functions beyond the register save area (\s-1RSA\s0) on the stack
-in addition to argument FPRs. Do not assume that most significant
-double in 128\-bit long double value is properly rounded when comparing
-values and converting to double. Use \s-1XL\s0 symbol names for long double
-support routines.
-.Sp
-The \s-1AIX\s0 calling convention was extended but not initially documented to
-handle an obscure K&R C case of calling a function that takes the
-address of its arguments with fewer arguments than declared. \s-1IBM XL\s0
-compilers access floating-point arguments that do not fit in the
-\&\s-1RSA\s0 from the stack when a subroutine is compiled without
-optimization. Because always storing floating-point arguments on the
-stack is inefficient and rarely needed, this option is not enabled by
-default and only is necessary when calling subroutines compiled by \s-1IBM
-XL\s0 compilers without optimization.
-.IP "\fB\-mpe\fR" 4
-.IX Item "-mpe"
-Support \fI\s-1IBM RS/6000 SP\s0\fR \fIParallel Environment\fR (\s-1PE\s0). Link an
-application written to use message passing with special startup code to
-enable the application to run. The system must have \s-1PE\s0 installed in the
-standard location (\fI/usr/lpp/ppe.poe/\fR), or the \fIspecs\fR file
-must be overridden with the \fB\-specs=\fR option to specify the
-appropriate directory location. The Parallel Environment does not
-support threads, so the \fB\-mpe\fR option and the \fB\-pthread\fR
-option are incompatible.
-.IP "\fB\-malign\-natural\fR" 4
-.IX Item "-malign-natural"
-.PD 0
-.IP "\fB\-malign\-power\fR" 4
-.IX Item "-malign-power"
-.PD
-On \s-1AIX,\s0 32\-bit Darwin, and 64\-bit PowerPC GNU/Linux, the option
-\&\fB\-malign\-natural\fR overrides the ABI-defined alignment of larger
-types, such as floating-point doubles, on their natural size-based boundary.
-The option \fB\-malign\-power\fR instructs \s-1GCC\s0 to follow the ABI-specified
-alignment rules. \s-1GCC\s0 defaults to the standard alignment defined in the \s-1ABI.\s0
-.Sp
-On 64\-bit Darwin, natural alignment is the default, and \fB\-malign\-power\fR
-is not supported.
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-.PD 0
-.IP "\fB\-mhard\-float\fR" 4
-.IX Item "-mhard-float"
-.PD
-Generate code that does not use (uses) the floating-point register set.
-Software floating-point emulation is provided if you use the
-\&\fB\-msoft\-float\fR option, and pass the option to \s-1GCC\s0 when linking.
-.IP "\fB\-msingle\-float\fR" 4
-.IX Item "-msingle-float"
-.PD 0
-.IP "\fB\-mdouble\-float\fR" 4
-.IX Item "-mdouble-float"
-.PD
-Generate code for single\- or double-precision floating-point operations.
-\&\fB\-mdouble\-float\fR implies \fB\-msingle\-float\fR.
-.IP "\fB\-msimple\-fpu\fR" 4
-.IX Item "-msimple-fpu"
-Do not generate \f(CW\*(C`sqrt\*(C'\fR and \f(CW\*(C`div\*(C'\fR instructions for hardware
-floating-point unit.
-.IP "\fB\-mfpu=\fR\fIname\fR" 4
-.IX Item "-mfpu=name"
-Specify type of floating-point unit. Valid values for \fIname\fR are
-\&\fBsp_lite\fR (equivalent to \fB\-msingle\-float \-msimple\-fpu\fR),
-\&\fBdp_lite\fR (equivalent to \fB\-mdouble\-float \-msimple\-fpu\fR),
-\&\fBsp_full\fR (equivalent to \fB\-msingle\-float\fR),
-and \fBdp_full\fR (equivalent to \fB\-mdouble\-float\fR).
-.IP "\fB\-mxilinx\-fpu\fR" 4
-.IX Item "-mxilinx-fpu"
-Perform optimizations for the floating-point unit on Xilinx \s-1PPC 405/440.\s0
-.IP "\fB\-mmultiple\fR" 4
-.IX Item "-mmultiple"
-.PD 0
-.IP "\fB\-mno\-multiple\fR" 4
-.IX Item "-mno-multiple"
-.PD
-Generate code that uses (does not use) the load multiple word
-instructions and the store multiple word instructions. These
-instructions are generated by default on \s-1POWER\s0 systems, and not
-generated on PowerPC systems. Do not use \fB\-mmultiple\fR on little-endian
-PowerPC systems, since those instructions do not work when the
-processor is in little-endian mode. The exceptions are \s-1PPC740\s0 and
-\&\s-1PPC750\s0 which permit these instructions in little-endian mode.
-.IP "\fB\-mstring\fR" 4
-.IX Item "-mstring"
-.PD 0
-.IP "\fB\-mno\-string\fR" 4
-.IX Item "-mno-string"
-.PD
-Generate code that uses (does not use) the load string instructions
-and the store string word instructions to save multiple registers and
-do small block moves. These instructions are generated by default on
-\&\s-1POWER\s0 systems, and not generated on PowerPC systems. Do not use
-\&\fB\-mstring\fR on little-endian PowerPC systems, since those
-instructions do not work when the processor is in little-endian mode.
-The exceptions are \s-1PPC740\s0 and \s-1PPC750\s0 which permit these instructions
-in little-endian mode.
-.IP "\fB\-mupdate\fR" 4
-.IX Item "-mupdate"
-.PD 0
-.IP "\fB\-mno\-update\fR" 4
-.IX Item "-mno-update"
-.PD
-Generate code that uses (does not use) the load or store instructions
-that update the base register to the address of the calculated memory
-location. These instructions are generated by default. If you use
-\&\fB\-mno\-update\fR, there is a small window between the time that the
-stack pointer is updated and the address of the previous frame is
-stored, which means code that walks the stack frame across interrupts or
-signals may get corrupted data.
-.IP "\fB\-mavoid\-indexed\-addresses\fR" 4
-.IX Item "-mavoid-indexed-addresses"
-.PD 0
-.IP "\fB\-mno\-avoid\-indexed\-addresses\fR" 4
-.IX Item "-mno-avoid-indexed-addresses"
-.PD
-Generate code that tries to avoid (not avoid) the use of indexed load
-or store instructions. These instructions can incur a performance
-penalty on Power6 processors in certain situations, such as when
-stepping through large arrays that cross a 16M boundary. This option
-is enabled by default when targeting Power6 and disabled otherwise.
-.IP "\fB\-mfused\-madd\fR" 4
-.IX Item "-mfused-madd"
-.PD 0
-.IP "\fB\-mno\-fused\-madd\fR" 4
-.IX Item "-mno-fused-madd"
-.PD
-Generate code that uses (does not use) the floating-point multiply and
-accumulate instructions. These instructions are generated by default
-if hardware floating point is used. The machine-dependent
-\&\fB\-mfused\-madd\fR option is now mapped to the machine-independent
-\&\fB\-ffp\-contract=fast\fR option, and \fB\-mno\-fused\-madd\fR is
-mapped to \fB\-ffp\-contract=off\fR.
-.IP "\fB\-mmulhw\fR" 4
-.IX Item "-mmulhw"
-.PD 0
-.IP "\fB\-mno\-mulhw\fR" 4
-.IX Item "-mno-mulhw"
-.PD
-Generate code that uses (does not use) the half-word multiply and
-multiply-accumulate instructions on the \s-1IBM 405, 440, 464\s0 and 476 processors.
-These instructions are generated by default when targeting those
-processors.
-.IP "\fB\-mdlmzb\fR" 4
-.IX Item "-mdlmzb"
-.PD 0
-.IP "\fB\-mno\-dlmzb\fR" 4
-.IX Item "-mno-dlmzb"
-.PD
-Generate code that uses (does not use) the string-search \fBdlmzb\fR
-instruction on the \s-1IBM 405, 440, 464\s0 and 476 processors. This instruction is
-generated by default when targeting those processors.
-.IP "\fB\-mno\-bit\-align\fR" 4
-.IX Item "-mno-bit-align"
-.PD 0
-.IP "\fB\-mbit\-align\fR" 4
-.IX Item "-mbit-align"
-.PD
-On System V.4 and embedded PowerPC systems do not (do) force structures
-and unions that contain bit-fields to be aligned to the base type of the
-bit-field.
-.Sp
-For example, by default a structure containing nothing but 8
-\&\f(CW\*(C`unsigned\*(C'\fR bit-fields of length 1 is aligned to a 4\-byte
-boundary and has a size of 4 bytes. By using \fB\-mno\-bit\-align\fR,
-the structure is aligned to a 1\-byte boundary and is 1 byte in
-size.
-.IP "\fB\-mno\-strict\-align\fR" 4
-.IX Item "-mno-strict-align"
-.PD 0
-.IP "\fB\-mstrict\-align\fR" 4
-.IX Item "-mstrict-align"
-.PD
-On System V.4 and embedded PowerPC systems do not (do) assume that
-unaligned memory references are handled by the system.
-.IP "\fB\-mrelocatable\fR" 4
-.IX Item "-mrelocatable"
-.PD 0
-.IP "\fB\-mno\-relocatable\fR" 4
-.IX Item "-mno-relocatable"
-.PD
-Generate code that allows (does not allow) a static executable to be
-relocated to a different address at run time. A simple embedded
-PowerPC system loader should relocate the entire contents of
-\&\f(CW\*(C`.got2\*(C'\fR and 4\-byte locations listed in the \f(CW\*(C`.fixup\*(C'\fR section,
-a table of 32\-bit addresses generated by this option. For this to
-work, all objects linked together must be compiled with
-\&\fB\-mrelocatable\fR or \fB\-mrelocatable\-lib\fR.
-\&\fB\-mrelocatable\fR code aligns the stack to an 8\-byte boundary.
-.IP "\fB\-mrelocatable\-lib\fR" 4
-.IX Item "-mrelocatable-lib"
-.PD 0
-.IP "\fB\-mno\-relocatable\-lib\fR" 4
-.IX Item "-mno-relocatable-lib"
-.PD
-Like \fB\-mrelocatable\fR, \fB\-mrelocatable\-lib\fR generates a
-\&\f(CW\*(C`.fixup\*(C'\fR section to allow static executables to be relocated at
-run time, but \fB\-mrelocatable\-lib\fR does not use the smaller stack
-alignment of \fB\-mrelocatable\fR. Objects compiled with
-\&\fB\-mrelocatable\-lib\fR may be linked with objects compiled with
-any combination of the \fB\-mrelocatable\fR options.
-.IP "\fB\-mno\-toc\fR" 4
-.IX Item "-mno-toc"
-.PD 0
-.IP "\fB\-mtoc\fR" 4
-.IX Item "-mtoc"
-.PD
-On System V.4 and embedded PowerPC systems do not (do) assume that
-register 2 contains a pointer to a global area pointing to the addresses
-used in the program.
-.IP "\fB\-mlittle\fR" 4
-.IX Item "-mlittle"
-.PD 0
-.IP "\fB\-mlittle\-endian\fR" 4
-.IX Item "-mlittle-endian"
-.PD
-On System V.4 and embedded PowerPC systems compile code for the
-processor in little-endian mode. The \fB\-mlittle\-endian\fR option is
-the same as \fB\-mlittle\fR.
-.IP "\fB\-mbig\fR" 4
-.IX Item "-mbig"
-.PD 0
-.IP "\fB\-mbig\-endian\fR" 4
-.IX Item "-mbig-endian"
-.PD
-On System V.4 and embedded PowerPC systems compile code for the
-processor in big-endian mode. The \fB\-mbig\-endian\fR option is
-the same as \fB\-mbig\fR.
-.IP "\fB\-mdynamic\-no\-pic\fR" 4
-.IX Item "-mdynamic-no-pic"
-On Darwin and Mac \s-1OS X\s0 systems, compile code so that it is not
-relocatable, but that its external references are relocatable. The
-resulting code is suitable for applications, but not shared
-libraries.
-.IP "\fB\-msingle\-pic\-base\fR" 4
-.IX Item "-msingle-pic-base"
-Treat the register used for \s-1PIC\s0 addressing as read-only, rather than
-loading it in the prologue for each function. The runtime system is
-responsible for initializing this register with an appropriate value
-before execution begins.
-.IP "\fB\-mprioritize\-restricted\-insns=\fR\fIpriority\fR" 4
-.IX Item "-mprioritize-restricted-insns=priority"
-This option controls the priority that is assigned to
-dispatch-slot restricted instructions during the second scheduling
-pass. The argument \fIpriority\fR takes the value \fB0\fR, \fB1\fR,
-or \fB2\fR to assign no, highest, or second-highest (respectively)
-priority to dispatch-slot restricted
-instructions.
-.IP "\fB\-msched\-costly\-dep=\fR\fIdependence_type\fR" 4
-.IX Item "-msched-costly-dep=dependence_type"
-This option controls which dependences are considered costly
-by the target during instruction scheduling. The argument
-\&\fIdependence_type\fR takes one of the following values:
-.RS 4
-.IP "\fBno\fR" 4
-.IX Item "no"
-No dependence is costly.
-.IP "\fBall\fR" 4
-.IX Item "all"
-All dependences are costly.
-.IP "\fBtrue_store_to_load\fR" 4
-.IX Item "true_store_to_load"
-A true dependence from store to load is costly.
-.IP "\fBstore_to_load\fR" 4
-.IX Item "store_to_load"
-Any dependence from store to load is costly.
-.IP "\fInumber\fR" 4
-.IX Item "number"
-Any dependence for which the latency is greater than or equal to
-\&\fInumber\fR is costly.
-.RE
-.RS 4
-.RE
-.IP "\fB\-minsert\-sched\-nops=\fR\fIscheme\fR" 4
-.IX Item "-minsert-sched-nops=scheme"
-This option controls which \s-1NOP\s0 insertion scheme is used during
-the second scheduling pass. The argument \fIscheme\fR takes one of the
-following values:
-.RS 4
-.IP "\fBno\fR" 4
-.IX Item "no"
-Don't insert NOPs.
-.IP "\fBpad\fR" 4
-.IX Item "pad"
-Pad with NOPs any dispatch group that has vacant issue slots,
-according to the scheduler's grouping.
-.IP "\fBregroup_exact\fR" 4
-.IX Item "regroup_exact"
-Insert NOPs to force costly dependent insns into
-separate groups. Insert exactly as many NOPs as needed to force an insn
-to a new group, according to the estimated processor grouping.
-.IP "\fInumber\fR" 4
-.IX Item "number"
-Insert NOPs to force costly dependent insns into
-separate groups. Insert \fInumber\fR NOPs to force an insn to a new group.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mcall\-sysv\fR" 4
-.IX Item "-mcall-sysv"
-On System V.4 and embedded PowerPC systems compile code using calling
-conventions that adhere to the March 1995 draft of the System V
-Application Binary Interface, PowerPC processor supplement. This is the
-default unless you configured \s-1GCC\s0 using \fBpowerpc\-*\-eabiaix\fR.
-.IP "\fB\-mcall\-sysv\-eabi\fR" 4
-.IX Item "-mcall-sysv-eabi"
-.PD 0
-.IP "\fB\-mcall\-eabi\fR" 4
-.IX Item "-mcall-eabi"
-.PD
-Specify both \fB\-mcall\-sysv\fR and \fB\-meabi\fR options.
-.IP "\fB\-mcall\-sysv\-noeabi\fR" 4
-.IX Item "-mcall-sysv-noeabi"
-Specify both \fB\-mcall\-sysv\fR and \fB\-mno\-eabi\fR options.
-.IP "\fB\-mcall\-aixdesc\fR" 4
-.IX Item "-mcall-aixdesc"
-On System V.4 and embedded PowerPC systems compile code for the \s-1AIX\s0
-operating system.
-.IP "\fB\-mcall\-linux\fR" 4
-.IX Item "-mcall-linux"
-On System V.4 and embedded PowerPC systems compile code for the
-Linux-based \s-1GNU\s0 system.
-.IP "\fB\-mcall\-freebsd\fR" 4
-.IX Item "-mcall-freebsd"
-On System V.4 and embedded PowerPC systems compile code for the
-FreeBSD operating system.
-.IP "\fB\-mcall\-netbsd\fR" 4
-.IX Item "-mcall-netbsd"
-On System V.4 and embedded PowerPC systems compile code for the
-NetBSD operating system.
-.IP "\fB\-mcall\-openbsd\fR" 4
-.IX Item "-mcall-openbsd"
-On System V.4 and embedded PowerPC systems compile code for the
-OpenBSD operating system.
-.IP "\fB\-maix\-struct\-return\fR" 4
-.IX Item "-maix-struct-return"
-Return all structures in memory (as specified by the \s-1AIX ABI\s0).
-.IP "\fB\-msvr4\-struct\-return\fR" 4
-.IX Item "-msvr4-struct-return"
-Return structures smaller than 8 bytes in registers (as specified by the
-\&\s-1SVR4 ABI\s0).
-.IP "\fB\-mabi=\fR\fIabi-type\fR" 4
-.IX Item "-mabi=abi-type"
-Extend the current \s-1ABI\s0 with a particular extension, or remove such extension.
-Valid values are \fIaltivec\fR, \fIno-altivec\fR, \fIspe\fR,
-\&\fIno-spe\fR, \fIibmlongdouble\fR, \fIieeelongdouble\fR,
-\&\fIelfv1\fR, \fIelfv2\fR.
-.IP "\fB\-mabi=spe\fR" 4
-.IX Item "-mabi=spe"
-Extend the current \s-1ABI\s0 with \s-1SPE ABI\s0 extensions. This does not change
-the default \s-1ABI,\s0 instead it adds the \s-1SPE ABI\s0 extensions to the current
-\&\s-1ABI.\s0
-.IP "\fB\-mabi=no\-spe\fR" 4
-.IX Item "-mabi=no-spe"
-Disable Book-E \s-1SPE ABI\s0 extensions for the current \s-1ABI.\s0
-.IP "\fB\-mabi=ibmlongdouble\fR" 4
-.IX Item "-mabi=ibmlongdouble"
-Change the current \s-1ABI\s0 to use \s-1IBM\s0 extended-precision long double.
-This is a PowerPC 32\-bit \s-1SYSV ABI\s0 option.
-.IP "\fB\-mabi=ieeelongdouble\fR" 4
-.IX Item "-mabi=ieeelongdouble"
-Change the current \s-1ABI\s0 to use \s-1IEEE\s0 extended-precision long double.
-This is a PowerPC 32\-bit Linux \s-1ABI\s0 option.
-.IP "\fB\-mabi=elfv1\fR" 4
-.IX Item "-mabi=elfv1"
-Change the current \s-1ABI\s0 to use the ELFv1 \s-1ABI.\s0
-This is the default \s-1ABI\s0 for big-endian PowerPC 64\-bit Linux.
-Overriding the default \s-1ABI\s0 requires special system support and is
-likely to fail in spectacular ways.
-.IP "\fB\-mabi=elfv2\fR" 4
-.IX Item "-mabi=elfv2"
-Change the current \s-1ABI\s0 to use the ELFv2 \s-1ABI.\s0
-This is the default \s-1ABI\s0 for little-endian PowerPC 64\-bit Linux.
-Overriding the default \s-1ABI\s0 requires special system support and is
-likely to fail in spectacular ways.
-.IP "\fB\-mprototype\fR" 4
-.IX Item "-mprototype"
-.PD 0
-.IP "\fB\-mno\-prototype\fR" 4
-.IX Item "-mno-prototype"
-.PD
-On System V.4 and embedded PowerPC systems assume that all calls to
-variable argument functions are properly prototyped. Otherwise, the
-compiler must insert an instruction before every non-prototyped call to
-set or clear bit 6 of the condition code register (\fI\s-1CR\s0\fR) to
-indicate whether floating-point values are passed in the floating-point
-registers in case the function takes variable arguments. With
-\&\fB\-mprototype\fR, only calls to prototyped variable argument functions
-set or clear the bit.
-.IP "\fB\-msim\fR" 4
-.IX Item "-msim"
-On embedded PowerPC systems, assume that the startup module is called
-\&\fIsim\-crt0.o\fR and that the standard C libraries are \fIlibsim.a\fR and
-\&\fIlibc.a\fR. This is the default for \fBpowerpc\-*\-eabisim\fR
-configurations.
-.IP "\fB\-mmvme\fR" 4
-.IX Item "-mmvme"
-On embedded PowerPC systems, assume that the startup module is called
-\&\fIcrt0.o\fR and the standard C libraries are \fIlibmvme.a\fR and
-\&\fIlibc.a\fR.
-.IP "\fB\-mads\fR" 4
-.IX Item "-mads"
-On embedded PowerPC systems, assume that the startup module is called
-\&\fIcrt0.o\fR and the standard C libraries are \fIlibads.a\fR and
-\&\fIlibc.a\fR.
-.IP "\fB\-myellowknife\fR" 4
-.IX Item "-myellowknife"
-On embedded PowerPC systems, assume that the startup module is called
-\&\fIcrt0.o\fR and the standard C libraries are \fIlibyk.a\fR and
-\&\fIlibc.a\fR.
-.IP "\fB\-mvxworks\fR" 4
-.IX Item "-mvxworks"
-On System V.4 and embedded PowerPC systems, specify that you are
-compiling for a VxWorks system.
-.IP "\fB\-memb\fR" 4
-.IX Item "-memb"
-On embedded PowerPC systems, set the \fI\s-1PPC_EMB\s0\fR bit in the \s-1ELF\s0 flags
-header to indicate that \fBeabi\fR extended relocations are used.
-.IP "\fB\-meabi\fR" 4
-.IX Item "-meabi"
-.PD 0
-.IP "\fB\-mno\-eabi\fR" 4
-.IX Item "-mno-eabi"
-.PD
-On System V.4 and embedded PowerPC systems do (do not) adhere to the
-Embedded Applications Binary Interface (\s-1EABI\s0), which is a set of
-modifications to the System V.4 specifications. Selecting \fB\-meabi\fR
-means that the stack is aligned to an 8\-byte boundary, a function
-\&\f(CW\*(C`_\|_eabi\*(C'\fR is called from \f(CW\*(C`main\*(C'\fR to set up the \s-1EABI\s0
-environment, and the \fB\-msdata\fR option can use both \f(CW\*(C`r2\*(C'\fR and
-\&\f(CW\*(C`r13\*(C'\fR to point to two separate small data areas. Selecting
-\&\fB\-mno\-eabi\fR means that the stack is aligned to a 16\-byte boundary,
-no \s-1EABI\s0 initialization function is called from \f(CW\*(C`main\*(C'\fR, and the
-\&\fB\-msdata\fR option only uses \f(CW\*(C`r13\*(C'\fR to point to a single
-small data area. The \fB\-meabi\fR option is on by default if you
-configured \s-1GCC\s0 using one of the \fBpowerpc*\-*\-eabi*\fR options.
-.IP "\fB\-msdata=eabi\fR" 4
-.IX Item "-msdata=eabi"
-On System V.4 and embedded PowerPC systems, put small initialized
-\&\f(CW\*(C`const\*(C'\fR global and static data in the \fB.sdata2\fR section, which
-is pointed to by register \f(CW\*(C`r2\*(C'\fR. Put small initialized
-non\-\f(CW\*(C`const\*(C'\fR global and static data in the \fB.sdata\fR section,
-which is pointed to by register \f(CW\*(C`r13\*(C'\fR. Put small uninitialized
-global and static data in the \fB.sbss\fR section, which is adjacent to
-the \fB.sdata\fR section. The \fB\-msdata=eabi\fR option is
-incompatible with the \fB\-mrelocatable\fR option. The
-\&\fB\-msdata=eabi\fR option also sets the \fB\-memb\fR option.
-.IP "\fB\-msdata=sysv\fR" 4
-.IX Item "-msdata=sysv"
-On System V.4 and embedded PowerPC systems, put small global and static
-data in the \fB.sdata\fR section, which is pointed to by register
-\&\f(CW\*(C`r13\*(C'\fR. Put small uninitialized global and static data in the
-\&\fB.sbss\fR section, which is adjacent to the \fB.sdata\fR section.
-The \fB\-msdata=sysv\fR option is incompatible with the
-\&\fB\-mrelocatable\fR option.
-.IP "\fB\-msdata=default\fR" 4
-.IX Item "-msdata=default"
-.PD 0
-.IP "\fB\-msdata\fR" 4
-.IX Item "-msdata"
-.PD
-On System V.4 and embedded PowerPC systems, if \fB\-meabi\fR is used,
-compile code the same as \fB\-msdata=eabi\fR, otherwise compile code the
-same as \fB\-msdata=sysv\fR.
-.IP "\fB\-msdata=data\fR" 4
-.IX Item "-msdata=data"
-On System V.4 and embedded PowerPC systems, put small global
-data in the \fB.sdata\fR section. Put small uninitialized global
-data in the \fB.sbss\fR section. Do not use register \f(CW\*(C`r13\*(C'\fR
-to address small data however. This is the default behavior unless
-other \fB\-msdata\fR options are used.
-.IP "\fB\-msdata=none\fR" 4
-.IX Item "-msdata=none"
-.PD 0
-.IP "\fB\-mno\-sdata\fR" 4
-.IX Item "-mno-sdata"
-.PD
-On embedded PowerPC systems, put all initialized global and static data
-in the \fB.data\fR section, and all uninitialized data in the
-\&\fB.bss\fR section.
-.IP "\fB\-mblock\-move\-inline\-limit=\fR\fInum\fR" 4
-.IX Item "-mblock-move-inline-limit=num"
-Inline all block moves (such as calls to \f(CW\*(C`memcpy\*(C'\fR or structure
-copies) less than or equal to \fInum\fR bytes. The minimum value for
-\&\fInum\fR is 32 bytes on 32\-bit targets and 64 bytes on 64\-bit
-targets. The default value is target-specific.
-.IP "\fB\-G\fR \fInum\fR" 4
-.IX Item "-G num"
-On embedded PowerPC systems, put global and static items less than or
-equal to \fInum\fR bytes into the small data or \s-1BSS\s0 sections instead of
-the normal data or \s-1BSS\s0 section. By default, \fInum\fR is 8. The
-\&\fB\-G\fR \fInum\fR switch is also passed to the linker.
-All modules should be compiled with the same \fB\-G\fR \fInum\fR value.
-.IP "\fB\-mregnames\fR" 4
-.IX Item "-mregnames"
-.PD 0
-.IP "\fB\-mno\-regnames\fR" 4
-.IX Item "-mno-regnames"
-.PD
-On System V.4 and embedded PowerPC systems do (do not) emit register
-names in the assembly language output using symbolic forms.
-.IP "\fB\-mlongcall\fR" 4
-.IX Item "-mlongcall"
-.PD 0
-.IP "\fB\-mno\-longcall\fR" 4
-.IX Item "-mno-longcall"
-.PD
-By default assume that all calls are far away so that a longer and more
-expensive calling sequence is required. This is required for calls
-farther than 32 megabytes (33,554,432 bytes) from the current location.
-A short call is generated if the compiler knows
-the call cannot be that far away. This setting can be overridden by
-the \f(CW\*(C`shortcall\*(C'\fR function attribute, or by \f(CW\*(C`#pragma
-longcall(0)\*(C'\fR.
-.Sp
-Some linkers are capable of detecting out-of-range calls and generating
-glue code on the fly. On these systems, long calls are unnecessary and
-generate slower code. As of this writing, the \s-1AIX\s0 linker can do this,
-as can the \s-1GNU\s0 linker for PowerPC/64. It is planned to add this feature
-to the \s-1GNU\s0 linker for 32\-bit PowerPC systems as well.
-.Sp
-On Darwin/PPC systems, \f(CW\*(C`#pragma longcall\*(C'\fR generates \f(CW\*(C`jbsr
-callee, L42\*(C'\fR, plus a \fIbranch island\fR (glue code). The two target
-addresses represent the callee and the branch island. The
-Darwin/PPC linker prefers the first address and generates a \f(CW\*(C`bl
-callee\*(C'\fR if the \s-1PPC \s0\f(CW\*(C`bl\*(C'\fR instruction reaches the callee directly;
-otherwise, the linker generates \f(CW\*(C`bl L42\*(C'\fR to call the branch
-island. The branch island is appended to the body of the
-calling function; it computes the full 32\-bit address of the callee
-and jumps to it.
-.Sp
-On Mach-O (Darwin) systems, this option directs the compiler emit to
-the glue for every direct call, and the Darwin linker decides whether
-to use or discard it.
-.Sp
-In the future, \s-1GCC\s0 may ignore all longcall specifications
-when the linker is known to generate glue.
-.IP "\fB\-mtls\-markers\fR" 4
-.IX Item "-mtls-markers"
-.PD 0
-.IP "\fB\-mno\-tls\-markers\fR" 4
-.IX Item "-mno-tls-markers"
-.PD
-Mark (do not mark) calls to \f(CW\*(C`_\|_tls_get_addr\*(C'\fR with a relocation
-specifying the function argument. The relocation allows the linker to
-reliably associate function call with argument setup instructions for
-\&\s-1TLS\s0 optimization, which in turn allows \s-1GCC\s0 to better schedule the
-sequence.
-.IP "\fB\-pthread\fR" 4
-.IX Item "-pthread"
-Adds support for multithreading with the \fIpthreads\fR library.
-This option sets flags for both the preprocessor and linker.
-.IP "\fB\-mrecip\fR" 4
-.IX Item "-mrecip"
-.PD 0
-.IP "\fB\-mno\-recip\fR" 4
-.IX Item "-mno-recip"
-.PD
-This option enables use of the reciprocal estimate and
-reciprocal square root estimate instructions with additional
-Newton-Raphson steps to increase precision instead of doing a divide or
-square root and divide for floating-point arguments. You should use
-the \fB\-ffast\-math\fR option when using \fB\-mrecip\fR (or at
-least \fB\-funsafe\-math\-optimizations\fR,
-\&\fB\-finite\-math\-only\fR, \fB\-freciprocal\-math\fR and
-\&\fB\-fno\-trapping\-math\fR). Note that while the throughput of the
-sequence is generally higher than the throughput of the non-reciprocal
-instruction, the precision of the sequence can be decreased by up to 2
-ulp (i.e. the inverse of 1.0 equals 0.99999994) for reciprocal square
-roots.
-.IP "\fB\-mrecip=\fR\fIopt\fR" 4
-.IX Item "-mrecip=opt"
-This option controls which reciprocal estimate instructions
-may be used. \fIopt\fR is a comma-separated list of options, which may
-be preceded by a \f(CW\*(C`!\*(C'\fR to invert the option:
-\&\f(CW\*(C`all\*(C'\fR: enable all estimate instructions,
-\&\f(CW\*(C`default\*(C'\fR: enable the default instructions, equivalent to \fB\-mrecip\fR,
-\&\f(CW\*(C`none\*(C'\fR: disable all estimate instructions, equivalent to \fB\-mno\-recip\fR;
-\&\f(CW\*(C`div\*(C'\fR: enable the reciprocal approximation instructions for both single and double precision;
-\&\f(CW\*(C`divf\*(C'\fR: enable the single-precision reciprocal approximation instructions;
-\&\f(CW\*(C`divd\*(C'\fR: enable the double-precision reciprocal approximation instructions;
-\&\f(CW\*(C`rsqrt\*(C'\fR: enable the reciprocal square root approximation instructions for both single and double precision;
-\&\f(CW\*(C`rsqrtf\*(C'\fR: enable the single-precision reciprocal square root approximation instructions;
-\&\f(CW\*(C`rsqrtd\*(C'\fR: enable the double-precision reciprocal square root approximation instructions;
-.Sp
-So, for example, \fB\-mrecip=all,!rsqrtd\fR enables
-all of the reciprocal estimate instructions, except for the
-\&\f(CW\*(C`FRSQRTE\*(C'\fR, \f(CW\*(C`XSRSQRTEDP\*(C'\fR, and \f(CW\*(C`XVRSQRTEDP\*(C'\fR instructions
-which handle the double-precision reciprocal square root calculations.
-.IP "\fB\-mrecip\-precision\fR" 4
-.IX Item "-mrecip-precision"
-.PD 0
-.IP "\fB\-mno\-recip\-precision\fR" 4
-.IX Item "-mno-recip-precision"
-.PD
-Assume (do not assume) that the reciprocal estimate instructions
-provide higher-precision estimates than is mandated by the PowerPC
-\&\s-1ABI. \s0 Selecting \fB\-mcpu=power6\fR, \fB\-mcpu=power7\fR or
-\&\fB\-mcpu=power8\fR automatically selects \fB\-mrecip\-precision\fR.
-The double-precision square root estimate instructions are not generated by
-default on low-precision machines, since they do not provide an
-estimate that converges after three steps.
-.IP "\fB\-mveclibabi=\fR\fItype\fR" 4
-.IX Item "-mveclibabi=type"
-Specifies the \s-1ABI\s0 type to use for vectorizing intrinsics using an
-external library. The only type supported at present is \f(CW\*(C`mass\*(C'\fR,
-which specifies to use \s-1IBM\s0's Mathematical Acceleration Subsystem
-(\s-1MASS\s0) libraries for vectorizing intrinsics using external libraries.
-\&\s-1GCC\s0 currently emits calls to \f(CW\*(C`acosd2\*(C'\fR, \f(CW\*(C`acosf4\*(C'\fR,
-\&\f(CW\*(C`acoshd2\*(C'\fR, \f(CW\*(C`acoshf4\*(C'\fR, \f(CW\*(C`asind2\*(C'\fR, \f(CW\*(C`asinf4\*(C'\fR,
-\&\f(CW\*(C`asinhd2\*(C'\fR, \f(CW\*(C`asinhf4\*(C'\fR, \f(CW\*(C`atan2d2\*(C'\fR, \f(CW\*(C`atan2f4\*(C'\fR,
-\&\f(CW\*(C`atand2\*(C'\fR, \f(CW\*(C`atanf4\*(C'\fR, \f(CW\*(C`atanhd2\*(C'\fR, \f(CW\*(C`atanhf4\*(C'\fR,
-\&\f(CW\*(C`cbrtd2\*(C'\fR, \f(CW\*(C`cbrtf4\*(C'\fR, \f(CW\*(C`cosd2\*(C'\fR, \f(CW\*(C`cosf4\*(C'\fR,
-\&\f(CW\*(C`coshd2\*(C'\fR, \f(CW\*(C`coshf4\*(C'\fR, \f(CW\*(C`erfcd2\*(C'\fR, \f(CW\*(C`erfcf4\*(C'\fR,
-\&\f(CW\*(C`erfd2\*(C'\fR, \f(CW\*(C`erff4\*(C'\fR, \f(CW\*(C`exp2d2\*(C'\fR, \f(CW\*(C`exp2f4\*(C'\fR,
-\&\f(CW\*(C`expd2\*(C'\fR, \f(CW\*(C`expf4\*(C'\fR, \f(CW\*(C`expm1d2\*(C'\fR, \f(CW\*(C`expm1f4\*(C'\fR,
-\&\f(CW\*(C`hypotd2\*(C'\fR, \f(CW\*(C`hypotf4\*(C'\fR, \f(CW\*(C`lgammad2\*(C'\fR, \f(CW\*(C`lgammaf4\*(C'\fR,
-\&\f(CW\*(C`log10d2\*(C'\fR, \f(CW\*(C`log10f4\*(C'\fR, \f(CW\*(C`log1pd2\*(C'\fR, \f(CW\*(C`log1pf4\*(C'\fR,
-\&\f(CW\*(C`log2d2\*(C'\fR, \f(CW\*(C`log2f4\*(C'\fR, \f(CW\*(C`logd2\*(C'\fR, \f(CW\*(C`logf4\*(C'\fR,
-\&\f(CW\*(C`powd2\*(C'\fR, \f(CW\*(C`powf4\*(C'\fR, \f(CW\*(C`sind2\*(C'\fR, \f(CW\*(C`sinf4\*(C'\fR, \f(CW\*(C`sinhd2\*(C'\fR,
-\&\f(CW\*(C`sinhf4\*(C'\fR, \f(CW\*(C`sqrtd2\*(C'\fR, \f(CW\*(C`sqrtf4\*(C'\fR, \f(CW\*(C`tand2\*(C'\fR,
-\&\f(CW\*(C`tanf4\*(C'\fR, \f(CW\*(C`tanhd2\*(C'\fR, and \f(CW\*(C`tanhf4\*(C'\fR when generating code
-for power7. Both \fB\-ftree\-vectorize\fR and
-\&\fB\-funsafe\-math\-optimizations\fR must also be enabled. The \s-1MASS\s0
-libraries must be specified at link time.
-.IP "\fB\-mfriz\fR" 4
-.IX Item "-mfriz"
-.PD 0
-.IP "\fB\-mno\-friz\fR" 4
-.IX Item "-mno-friz"
-.PD
-Generate (do not generate) the \f(CW\*(C`friz\*(C'\fR instruction when the
-\&\fB\-funsafe\-math\-optimizations\fR option is used to optimize
-rounding of floating-point values to 64\-bit integer and back to floating
-point. The \f(CW\*(C`friz\*(C'\fR instruction does not return the same value if
-the floating-point number is too large to fit in an integer.
-.IP "\fB\-mpointers\-to\-nested\-functions\fR" 4
-.IX Item "-mpointers-to-nested-functions"
-.PD 0
-.IP "\fB\-mno\-pointers\-to\-nested\-functions\fR" 4
-.IX Item "-mno-pointers-to-nested-functions"
-.PD
-Generate (do not generate) code to load up the static chain register
-(\fIr11\fR) when calling through a pointer on \s-1AIX\s0 and 64\-bit Linux
-systems where a function pointer points to a 3\-word descriptor giving
-the function address, \s-1TOC\s0 value to be loaded in register \fIr2\fR, and
-static chain value to be loaded in register \fIr11\fR. The
-\&\fB\-mpointers\-to\-nested\-functions\fR is on by default. You cannot
-call through pointers to nested functions or pointers
-to functions compiled in other languages that use the static chain if
-you use the \fB\-mno\-pointers\-to\-nested\-functions\fR.
-.IP "\fB\-msave\-toc\-indirect\fR" 4
-.IX Item "-msave-toc-indirect"
-.PD 0
-.IP "\fB\-mno\-save\-toc\-indirect\fR" 4
-.IX Item "-mno-save-toc-indirect"
-.PD
-Generate (do not generate) code to save the \s-1TOC\s0 value in the reserved
-stack location in the function prologue if the function calls through
-a pointer on \s-1AIX\s0 and 64\-bit Linux systems. If the \s-1TOC\s0 value is not
-saved in the prologue, it is saved just before the call through the
-pointer. The \fB\-mno\-save\-toc\-indirect\fR option is the default.
-.IP "\fB\-mcompat\-align\-parm\fR" 4
-.IX Item "-mcompat-align-parm"
-.PD 0
-.IP "\fB\-mno\-compat\-align\-parm\fR" 4
-.IX Item "-mno-compat-align-parm"
-.PD
-Generate (do not generate) code to pass structure parameters with a
-maximum alignment of 64 bits, for compatibility with older versions
-of \s-1GCC.\s0
-.Sp
-Older versions of \s-1GCC \s0(prior to 4.9.0) incorrectly did not align a
-structure parameter on a 128\-bit boundary when that structure contained
-a member requiring 128\-bit alignment. This is corrected in more
-recent versions of \s-1GCC. \s0 This option may be used to generate code
-that is compatible with functions compiled with older versions of
-\&\s-1GCC.\s0
-.Sp
-The \fB\-mno\-compat\-align\-parm\fR option is the default.
-.PP
-\fI\s-1RX\s0 Options\fR
-.IX Subsection "RX Options"
-.PP
-These command-line options are defined for \s-1RX\s0 targets:
-.IP "\fB\-m64bit\-doubles\fR" 4
-.IX Item "-m64bit-doubles"
-.PD 0
-.IP "\fB\-m32bit\-doubles\fR" 4
-.IX Item "-m32bit-doubles"
-.PD
-Make the \f(CW\*(C`double\*(C'\fR data type be 64 bits (\fB\-m64bit\-doubles\fR)
-or 32 bits (\fB\-m32bit\-doubles\fR) in size. The default is
-\&\fB\-m32bit\-doubles\fR. \fINote\fR \s-1RX\s0 floating-point hardware only
-works on 32\-bit values, which is why the default is
-\&\fB\-m32bit\-doubles\fR.
-.IP "\fB\-fpu\fR" 4
-.IX Item "-fpu"
-.PD 0
-.IP "\fB\-nofpu\fR" 4
-.IX Item "-nofpu"
-.PD
-Enables (\fB\-fpu\fR) or disables (\fB\-nofpu\fR) the use of \s-1RX\s0
-floating-point hardware. The default is enabled for the \fI\s-1RX600\s0\fR
-series and disabled for the \fI\s-1RX200\s0\fR series.
-.Sp
-Floating-point instructions are only generated for 32\-bit floating-point
-values, however, so the \s-1FPU\s0 hardware is not used for doubles if the
-\&\fB\-m64bit\-doubles\fR option is used.
-.Sp
-\&\fINote\fR If the \fB\-fpu\fR option is enabled then
-\&\fB\-funsafe\-math\-optimizations\fR is also enabled automatically.
-This is because the \s-1RX FPU\s0 instructions are themselves unsafe.
-.IP "\fB\-mcpu=\fR\fIname\fR" 4
-.IX Item "-mcpu=name"
-Selects the type of \s-1RX CPU\s0 to be targeted. Currently three types are
-supported, the generic \fI\s-1RX600\s0\fR and \fI\s-1RX200\s0\fR series hardware and
-the specific \fI\s-1RX610\s0\fR \s-1CPU. \s0 The default is \fI\s-1RX600\s0\fR.
-.Sp
-The only difference between \fI\s-1RX600\s0\fR and \fI\s-1RX610\s0\fR is that the
-\&\fI\s-1RX610\s0\fR does not support the \f(CW\*(C`MVTIPL\*(C'\fR instruction.
-.Sp
-The \fI\s-1RX200\s0\fR series does not have a hardware floating-point unit
-and so \fB\-nofpu\fR is enabled by default when this type is
-selected.
-.IP "\fB\-mbig\-endian\-data\fR" 4
-.IX Item "-mbig-endian-data"
-.PD 0
-.IP "\fB\-mlittle\-endian\-data\fR" 4
-.IX Item "-mlittle-endian-data"
-.PD
-Store data (but not code) in the big-endian format. The default is
-\&\fB\-mlittle\-endian\-data\fR, i.e. to store data in the little-endian
-format.
-.IP "\fB\-msmall\-data\-limit=\fR\fIN\fR" 4
-.IX Item "-msmall-data-limit=N"
-Specifies the maximum size in bytes of global and static variables
-which can be placed into the small data area. Using the small data
-area can lead to smaller and faster code, but the size of area is
-limited and it is up to the programmer to ensure that the area does
-not overflow. Also when the small data area is used one of the \s-1RX\s0's
-registers (usually \f(CW\*(C`r13\*(C'\fR) is reserved for use pointing to this
-area, so it is no longer available for use by the compiler. This
-could result in slower and/or larger code if variables are pushed onto
-the stack instead of being held in this register.
-.Sp
-Note, common variables (variables that have not been initialized) and
-constants are not placed into the small data area as they are assigned
-to other sections in the output executable.
-.Sp
-The default value is zero, which disables this feature. Note, this
-feature is not enabled by default with higher optimization levels
-(\fB\-O2\fR etc) because of the potentially detrimental effects of
-reserving a register. It is up to the programmer to experiment and
-discover whether this feature is of benefit to their program. See the
-description of the \fB\-mpid\fR option for a description of how the
-actual register to hold the small data area pointer is chosen.
-.IP "\fB\-msim\fR" 4
-.IX Item "-msim"
-.PD 0
-.IP "\fB\-mno\-sim\fR" 4
-.IX Item "-mno-sim"
-.PD
-Use the simulator runtime. The default is to use the libgloss
-board-specific runtime.
-.IP "\fB\-mas100\-syntax\fR" 4
-.IX Item "-mas100-syntax"
-.PD 0
-.IP "\fB\-mno\-as100\-syntax\fR" 4
-.IX Item "-mno-as100-syntax"
-.PD
-When generating assembler output use a syntax that is compatible with
-Renesas's \s-1AS100\s0 assembler. This syntax can also be handled by the \s-1GAS\s0
-assembler, but it has some restrictions so it is not generated by default.
-.IP "\fB\-mmax\-constant\-size=\fR\fIN\fR" 4
-.IX Item "-mmax-constant-size=N"
-Specifies the maximum size, in bytes, of a constant that can be used as
-an operand in a \s-1RX\s0 instruction. Although the \s-1RX\s0 instruction set does
-allow constants of up to 4 bytes in length to be used in instructions,
-a longer value equates to a longer instruction. Thus in some
-circumstances it can be beneficial to restrict the size of constants
-that are used in instructions. Constants that are too big are instead
-placed into a constant pool and referenced via register indirection.
-.Sp
-The value \fIN\fR can be between 0 and 4. A value of 0 (the default)
-or 4 means that constants of any size are allowed.
-.IP "\fB\-mrelax\fR" 4
-.IX Item "-mrelax"
-Enable linker relaxation. Linker relaxation is a process whereby the
-linker attempts to reduce the size of a program by finding shorter
-versions of various instructions. Disabled by default.
-.IP "\fB\-mint\-register=\fR\fIN\fR" 4
-.IX Item "-mint-register=N"
-Specify the number of registers to reserve for fast interrupt handler
-functions. The value \fIN\fR can be between 0 and 4. A value of 1
-means that register \f(CW\*(C`r13\*(C'\fR is reserved for the exclusive use
-of fast interrupt handlers. A value of 2 reserves \f(CW\*(C`r13\*(C'\fR and
-\&\f(CW\*(C`r12\*(C'\fR. A value of 3 reserves \f(CW\*(C`r13\*(C'\fR, \f(CW\*(C`r12\*(C'\fR and
-\&\f(CW\*(C`r11\*(C'\fR, and a value of 4 reserves \f(CW\*(C`r13\*(C'\fR through \f(CW\*(C`r10\*(C'\fR.
-A value of 0, the default, does not reserve any registers.
-.IP "\fB\-msave\-acc\-in\-interrupts\fR" 4
-.IX Item "-msave-acc-in-interrupts"
-Specifies that interrupt handler functions should preserve the
-accumulator register. This is only necessary if normal code might use
-the accumulator register, for example because it performs 64\-bit
-multiplications. The default is to ignore the accumulator as this
-makes the interrupt handlers faster.
-.IP "\fB\-mpid\fR" 4
-.IX Item "-mpid"
-.PD 0
-.IP "\fB\-mno\-pid\fR" 4
-.IX Item "-mno-pid"
-.PD
-Enables the generation of position independent data. When enabled any
-access to constant data is done via an offset from a base address
-held in a register. This allows the location of constant data to be
-determined at run time without requiring the executable to be
-relocated, which is a benefit to embedded applications with tight
-memory constraints. Data that can be modified is not affected by this
-option.
-.Sp
-Note, using this feature reserves a register, usually \f(CW\*(C`r13\*(C'\fR, for
-the constant data base address. This can result in slower and/or
-larger code, especially in complicated functions.
-.Sp
-The actual register chosen to hold the constant data base address
-depends upon whether the \fB\-msmall\-data\-limit\fR and/or the
-\&\fB\-mint\-register\fR command-line options are enabled. Starting
-with register \f(CW\*(C`r13\*(C'\fR and proceeding downwards, registers are
-allocated first to satisfy the requirements of \fB\-mint\-register\fR,
-then \fB\-mpid\fR and finally \fB\-msmall\-data\-limit\fR. Thus it
-is possible for the small data area register to be \f(CW\*(C`r8\*(C'\fR if both
-\&\fB\-mint\-register=4\fR and \fB\-mpid\fR are specified on the
-command line.
-.Sp
-By default this feature is not enabled. The default can be restored
-via the \fB\-mno\-pid\fR command-line option.
-.IP "\fB\-mno\-warn\-multiple\-fast\-interrupts\fR" 4
-.IX Item "-mno-warn-multiple-fast-interrupts"
-.PD 0
-.IP "\fB\-mwarn\-multiple\-fast\-interrupts\fR" 4
-.IX Item "-mwarn-multiple-fast-interrupts"
-.PD
-Prevents \s-1GCC\s0 from issuing a warning message if it finds more than one
-fast interrupt handler when it is compiling a file. The default is to
-issue a warning for each extra fast interrupt handler found, as the \s-1RX\s0
-only supports one such interrupt.
-.PP
-\&\fINote:\fR The generic \s-1GCC\s0 command-line option \fB\-ffixed\-\fR\fIreg\fR
-has special significance to the \s-1RX\s0 port when used with the
-\&\f(CW\*(C`interrupt\*(C'\fR function attribute. This attribute indicates a
-function intended to process fast interrupts. \s-1GCC\s0 ensures
-that it only uses the registers \f(CW\*(C`r10\*(C'\fR, \f(CW\*(C`r11\*(C'\fR, \f(CW\*(C`r12\*(C'\fR
-and/or \f(CW\*(C`r13\*(C'\fR and only provided that the normal use of the
-corresponding registers have been restricted via the
-\&\fB\-ffixed\-\fR\fIreg\fR or \fB\-mint\-register\fR command-line
-options.
-.PP
-\fIS/390 and zSeries Options\fR
-.IX Subsection "S/390 and zSeries Options"
-.PP
-These are the \fB\-m\fR options defined for the S/390 and zSeries architecture.
-.IP "\fB\-mhard\-float\fR" 4
-.IX Item "-mhard-float"
-.PD 0
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-.PD
-Use (do not use) the hardware floating-point instructions and registers
-for floating-point operations. When \fB\-msoft\-float\fR is specified,
-functions in \fIlibgcc.a\fR are used to perform floating-point
-operations. When \fB\-mhard\-float\fR is specified, the compiler
-generates \s-1IEEE\s0 floating-point instructions. This is the default.
-.IP "\fB\-mhard\-dfp\fR" 4
-.IX Item "-mhard-dfp"
-.PD 0
-.IP "\fB\-mno\-hard\-dfp\fR" 4
-.IX Item "-mno-hard-dfp"
-.PD
-Use (do not use) the hardware decimal-floating-point instructions for
-decimal-floating-point operations. When \fB\-mno\-hard\-dfp\fR is
-specified, functions in \fIlibgcc.a\fR are used to perform
-decimal-floating-point operations. When \fB\-mhard\-dfp\fR is
-specified, the compiler generates decimal-floating-point hardware
-instructions. This is the default for \fB\-march=z9\-ec\fR or higher.
-.IP "\fB\-mlong\-double\-64\fR" 4
-.IX Item "-mlong-double-64"
-.PD 0
-.IP "\fB\-mlong\-double\-128\fR" 4
-.IX Item "-mlong-double-128"
-.PD
-These switches control the size of \f(CW\*(C`long double\*(C'\fR type. A size
-of 64 bits makes the \f(CW\*(C`long double\*(C'\fR type equivalent to the \f(CW\*(C`double\*(C'\fR
-type. This is the default.
-.IP "\fB\-mbackchain\fR" 4
-.IX Item "-mbackchain"
-.PD 0
-.IP "\fB\-mno\-backchain\fR" 4
-.IX Item "-mno-backchain"
-.PD
-Store (do not store) the address of the caller's frame as backchain pointer
-into the callee's stack frame.
-A backchain may be needed to allow debugging using tools that do not understand
-\&\s-1DWARF 2\s0 call frame information.
-When \fB\-mno\-packed\-stack\fR is in effect, the backchain pointer is stored
-at the bottom of the stack frame; when \fB\-mpacked\-stack\fR is in effect,
-the backchain is placed into the topmost word of the 96/160 byte register
-save area.
-.Sp
-In general, code compiled with \fB\-mbackchain\fR is call-compatible with
-code compiled with \fB\-mmo\-backchain\fR; however, use of the backchain
-for debugging purposes usually requires that the whole binary is built with
-\&\fB\-mbackchain\fR. Note that the combination of \fB\-mbackchain\fR,
-\&\fB\-mpacked\-stack\fR and \fB\-mhard\-float\fR is not supported. In order
-to build a linux kernel use \fB\-msoft\-float\fR.
-.Sp
-The default is to not maintain the backchain.
-.IP "\fB\-mpacked\-stack\fR" 4
-.IX Item "-mpacked-stack"
-.PD 0
-.IP "\fB\-mno\-packed\-stack\fR" 4
-.IX Item "-mno-packed-stack"
-.PD
-Use (do not use) the packed stack layout. When \fB\-mno\-packed\-stack\fR is
-specified, the compiler uses the all fields of the 96/160 byte register save
-area only for their default purpose; unused fields still take up stack space.
-When \fB\-mpacked\-stack\fR is specified, register save slots are densely
-packed at the top of the register save area; unused space is reused for other
-purposes, allowing for more efficient use of the available stack space.
-However, when \fB\-mbackchain\fR is also in effect, the topmost word of
-the save area is always used to store the backchain, and the return address
-register is always saved two words below the backchain.
-.Sp
-As long as the stack frame backchain is not used, code generated with
-\&\fB\-mpacked\-stack\fR is call-compatible with code generated with
-\&\fB\-mno\-packed\-stack\fR. Note that some non-FSF releases of \s-1GCC 2.95\s0 for
-S/390 or zSeries generated code that uses the stack frame backchain at run
-time, not just for debugging purposes. Such code is not call-compatible
-with code compiled with \fB\-mpacked\-stack\fR. Also, note that the
-combination of \fB\-mbackchain\fR,
-\&\fB\-mpacked\-stack\fR and \fB\-mhard\-float\fR is not supported. In order
-to build a linux kernel use \fB\-msoft\-float\fR.
-.Sp
-The default is to not use the packed stack layout.
-.IP "\fB\-msmall\-exec\fR" 4
-.IX Item "-msmall-exec"
-.PD 0
-.IP "\fB\-mno\-small\-exec\fR" 4
-.IX Item "-mno-small-exec"
-.PD
-Generate (or do not generate) code using the \f(CW\*(C`bras\*(C'\fR instruction
-to do subroutine calls.
-This only works reliably if the total executable size does not
-exceed 64k. The default is to use the \f(CW\*(C`basr\*(C'\fR instruction instead,
-which does not have this limitation.
-.IP "\fB\-m64\fR" 4
-.IX Item "-m64"
-.PD 0
-.IP "\fB\-m31\fR" 4
-.IX Item "-m31"
-.PD
-When \fB\-m31\fR is specified, generate code compliant to the
-GNU/Linux for S/390 \s-1ABI. \s0 When \fB\-m64\fR is specified, generate
-code compliant to the GNU/Linux for zSeries \s-1ABI. \s0 This allows \s-1GCC\s0 in
-particular to generate 64\-bit instructions. For the \fBs390\fR
-targets, the default is \fB\-m31\fR, while the \fBs390x\fR
-targets default to \fB\-m64\fR.
-.IP "\fB\-mzarch\fR" 4
-.IX Item "-mzarch"
-.PD 0
-.IP "\fB\-mesa\fR" 4
-.IX Item "-mesa"
-.PD
-When \fB\-mzarch\fR is specified, generate code using the
-instructions available on z/Architecture.
-When \fB\-mesa\fR is specified, generate code using the
-instructions available on \s-1ESA/390. \s0 Note that \fB\-mesa\fR is
-not possible with \fB\-m64\fR.
-When generating code compliant to the GNU/Linux for S/390 \s-1ABI,\s0
-the default is \fB\-mesa\fR. When generating code compliant
-to the GNU/Linux for zSeries \s-1ABI,\s0 the default is \fB\-mzarch\fR.
-.IP "\fB\-mmvcle\fR" 4
-.IX Item "-mmvcle"
-.PD 0
-.IP "\fB\-mno\-mvcle\fR" 4
-.IX Item "-mno-mvcle"
-.PD
-Generate (or do not generate) code using the \f(CW\*(C`mvcle\*(C'\fR instruction
-to perform block moves. When \fB\-mno\-mvcle\fR is specified,
-use a \f(CW\*(C`mvc\*(C'\fR loop instead. This is the default unless optimizing for
-size.
-.IP "\fB\-mdebug\fR" 4
-.IX Item "-mdebug"
-.PD 0
-.IP "\fB\-mno\-debug\fR" 4
-.IX Item "-mno-debug"
-.PD
-Print (or do not print) additional debug information when compiling.
-The default is to not print debug information.
-.IP "\fB\-march=\fR\fIcpu-type\fR" 4
-.IX Item "-march=cpu-type"
-Generate code that runs on \fIcpu-type\fR, which is the name of a system
-representing a certain processor type. Possible values for
-\&\fIcpu-type\fR are \fBg5\fR, \fBg6\fR, \fBz900\fR, \fBz990\fR,
-\&\fBz9\-109\fR, \fBz9\-ec\fR and \fBz10\fR.
-When generating code using the instructions available on z/Architecture,
-the default is \fB\-march=z900\fR. Otherwise, the default is
-\&\fB\-march=g5\fR.
-.IP "\fB\-mtune=\fR\fIcpu-type\fR" 4
-.IX Item "-mtune=cpu-type"
-Tune to \fIcpu-type\fR everything applicable about the generated code,
-except for the \s-1ABI\s0 and the set of available instructions.
-The list of \fIcpu-type\fR values is the same as for \fB\-march\fR.
-The default is the value used for \fB\-march\fR.
-.IP "\fB\-mtpf\-trace\fR" 4
-.IX Item "-mtpf-trace"
-.PD 0
-.IP "\fB\-mno\-tpf\-trace\fR" 4
-.IX Item "-mno-tpf-trace"
-.PD
-Generate code that adds (does not add) in \s-1TPF OS\s0 specific branches to trace
-routines in the operating system. This option is off by default, even
-when compiling for the \s-1TPF OS.\s0
-.IP "\fB\-mfused\-madd\fR" 4
-.IX Item "-mfused-madd"
-.PD 0
-.IP "\fB\-mno\-fused\-madd\fR" 4
-.IX Item "-mno-fused-madd"
-.PD
-Generate code that uses (does not use) the floating-point multiply and
-accumulate instructions. These instructions are generated by default if
-hardware floating point is used.
-.IP "\fB\-mwarn\-framesize=\fR\fIframesize\fR" 4
-.IX Item "-mwarn-framesize=framesize"
-Emit a warning if the current function exceeds the given frame size. Because
-this is a compile-time check it doesn't need to be a real problem when the program
-runs. It is intended to identify functions that most probably cause
-a stack overflow. It is useful to be used in an environment with limited stack
-size e.g. the linux kernel.
-.IP "\fB\-mwarn\-dynamicstack\fR" 4
-.IX Item "-mwarn-dynamicstack"
-Emit a warning if the function calls \f(CW\*(C`alloca\*(C'\fR or uses dynamically-sized
-arrays. This is generally a bad idea with a limited stack size.
-.IP "\fB\-mstack\-guard=\fR\fIstack-guard\fR" 4
-.IX Item "-mstack-guard=stack-guard"
-.PD 0
-.IP "\fB\-mstack\-size=\fR\fIstack-size\fR" 4
-.IX Item "-mstack-size=stack-size"
-.PD
-If these options are provided the S/390 back end emits additional instructions in
-the function prologue that trigger a trap if the stack size is \fIstack-guard\fR
-bytes above the \fIstack-size\fR (remember that the stack on S/390 grows downward).
-If the \fIstack-guard\fR option is omitted the smallest power of 2 larger than
-the frame size of the compiled function is chosen.
-These options are intended to be used to help debugging stack overflow problems.
-The additionally emitted code causes only little overhead and hence can also be
-used in production-like systems without greater performance degradation. The given
-values have to be exact powers of 2 and \fIstack-size\fR has to be greater than
-\&\fIstack-guard\fR without exceeding 64k.
-In order to be efficient the extra code makes the assumption that the stack starts
-at an address aligned to the value given by \fIstack-size\fR.
-The \fIstack-guard\fR option can only be used in conjunction with \fIstack-size\fR.
-.IP "\fB\-mhotpatch[=\fR\fIhalfwords\fR\fB]\fR" 4
-.IX Item "-mhotpatch[=halfwords]"
-.PD 0
-.IP "\fB\-mno\-hotpatch\fR" 4
-.IX Item "-mno-hotpatch"
-.PD
-If the hotpatch option is enabled, a \*(L"hot-patching\*(R" function
-prologue is generated for all functions in the compilation unit.
-The funtion label is prepended with the given number of two-byte
-Nop instructions (\fIhalfwords\fR, maximum 1000000) or 12 Nop
-instructions if no argument is present. Functions with a
-hot-patching prologue are never inlined automatically, and a
-hot-patching prologue is never generated for functions functions
-that are explicitly inline.
-.Sp
-This option can be overridden for individual functions with the
-\&\f(CW\*(C`hotpatch\*(C'\fR attribute.
-.PP
-\fIScore Options\fR
-.IX Subsection "Score Options"
-.PP
-These options are defined for Score implementations:
-.IP "\fB\-meb\fR" 4
-.IX Item "-meb"
-Compile code for big-endian mode. This is the default.
-.IP "\fB\-mel\fR" 4
-.IX Item "-mel"
-Compile code for little-endian mode.
-.IP "\fB\-mnhwloop\fR" 4
-.IX Item "-mnhwloop"
-Disable generation of \f(CW\*(C`bcnz\*(C'\fR instructions.
-.IP "\fB\-muls\fR" 4
-.IX Item "-muls"
-Enable generation of unaligned load and store instructions.
-.IP "\fB\-mmac\fR" 4
-.IX Item "-mmac"
-Enable the use of multiply-accumulate instructions. Disabled by default.
-.IP "\fB\-mscore5\fR" 4
-.IX Item "-mscore5"
-Specify the \s-1SCORE5\s0 as the target architecture.
-.IP "\fB\-mscore5u\fR" 4
-.IX Item "-mscore5u"
-Specify the \s-1SCORE5U\s0 of the target architecture.
-.IP "\fB\-mscore7\fR" 4
-.IX Item "-mscore7"
-Specify the \s-1SCORE7\s0 as the target architecture. This is the default.
-.IP "\fB\-mscore7d\fR" 4
-.IX Item "-mscore7d"
-Specify the \s-1SCORE7D\s0 as the target architecture.
-.PP
-\fI\s-1SH\s0 Options\fR
-.IX Subsection "SH Options"
-.PP
-These \fB\-m\fR options are defined for the \s-1SH\s0 implementations:
-.IP "\fB\-m1\fR" 4
-.IX Item "-m1"
-Generate code for the \s-1SH1.\s0
-.IP "\fB\-m2\fR" 4
-.IX Item "-m2"
-Generate code for the \s-1SH2.\s0
-.IP "\fB\-m2e\fR" 4
-.IX Item "-m2e"
-Generate code for the SH2e.
-.IP "\fB\-m2a\-nofpu\fR" 4
-.IX Item "-m2a-nofpu"
-Generate code for the SH2a without \s-1FPU,\s0 or for a SH2a\-FPU in such a way
-that the floating-point unit is not used.
-.IP "\fB\-m2a\-single\-only\fR" 4
-.IX Item "-m2a-single-only"
-Generate code for the SH2a\-FPU, in such a way that no double-precision
-floating-point operations are used.
-.IP "\fB\-m2a\-single\fR" 4
-.IX Item "-m2a-single"
-Generate code for the SH2a\-FPU assuming the floating-point unit is in
-single-precision mode by default.
-.IP "\fB\-m2a\fR" 4
-.IX Item "-m2a"
-Generate code for the SH2a\-FPU assuming the floating-point unit is in
-double-precision mode by default.
-.IP "\fB\-m3\fR" 4
-.IX Item "-m3"
-Generate code for the \s-1SH3.\s0
-.IP "\fB\-m3e\fR" 4
-.IX Item "-m3e"
-Generate code for the SH3e.
-.IP "\fB\-m4\-nofpu\fR" 4
-.IX Item "-m4-nofpu"
-Generate code for the \s-1SH4\s0 without a floating-point unit.
-.IP "\fB\-m4\-single\-only\fR" 4
-.IX Item "-m4-single-only"
-Generate code for the \s-1SH4\s0 with a floating-point unit that only
-supports single-precision arithmetic.
-.IP "\fB\-m4\-single\fR" 4
-.IX Item "-m4-single"
-Generate code for the \s-1SH4\s0 assuming the floating-point unit is in
-single-precision mode by default.
-.IP "\fB\-m4\fR" 4
-.IX Item "-m4"
-Generate code for the \s-1SH4.\s0
-.IP "\fB\-m4a\-nofpu\fR" 4
-.IX Item "-m4a-nofpu"
-Generate code for the SH4al\-dsp, or for a SH4a in such a way that the
-floating-point unit is not used.
-.IP "\fB\-m4a\-single\-only\fR" 4
-.IX Item "-m4a-single-only"
-Generate code for the SH4a, in such a way that no double-precision
-floating-point operations are used.
-.IP "\fB\-m4a\-single\fR" 4
-.IX Item "-m4a-single"
-Generate code for the SH4a assuming the floating-point unit is in
-single-precision mode by default.
-.IP "\fB\-m4a\fR" 4
-.IX Item "-m4a"
-Generate code for the SH4a.
-.IP "\fB\-m4al\fR" 4
-.IX Item "-m4al"
-Same as \fB\-m4a\-nofpu\fR, except that it implicitly passes
-\&\fB\-dsp\fR to the assembler. \s-1GCC\s0 doesn't generate any \s-1DSP\s0
-instructions at the moment.
-.IP "\fB\-mb\fR" 4
-.IX Item "-mb"
-Compile code for the processor in big-endian mode.
-.IP "\fB\-ml\fR" 4
-.IX Item "-ml"
-Compile code for the processor in little-endian mode.
-.IP "\fB\-mdalign\fR" 4
-.IX Item "-mdalign"
-Align doubles at 64\-bit boundaries. Note that this changes the calling
-conventions, and thus some functions from the standard C library do
-not work unless you recompile it first with \fB\-mdalign\fR.
-.IP "\fB\-mrelax\fR" 4
-.IX Item "-mrelax"
-Shorten some address references at link time, when possible; uses the
-linker option \fB\-relax\fR.
-.IP "\fB\-mbigtable\fR" 4
-.IX Item "-mbigtable"
-Use 32\-bit offsets in \f(CW\*(C`switch\*(C'\fR tables. The default is to use
-16\-bit offsets.
-.IP "\fB\-mbitops\fR" 4
-.IX Item "-mbitops"
-Enable the use of bit manipulation instructions on \s-1SH2A.\s0
-.IP "\fB\-mfmovd\fR" 4
-.IX Item "-mfmovd"
-Enable the use of the instruction \f(CW\*(C`fmovd\*(C'\fR. Check \fB\-mdalign\fR for
-alignment constraints.
-.IP "\fB\-mhitachi\fR" 4
-.IX Item "-mhitachi"
-Comply with the calling conventions defined by Renesas.
-.IP "\fB\-mrenesas\fR" 4
-.IX Item "-mrenesas"
-Comply with the calling conventions defined by Renesas.
-.IP "\fB\-mno\-renesas\fR" 4
-.IX Item "-mno-renesas"
-Comply with the calling conventions defined for \s-1GCC\s0 before the Renesas
-conventions were available. This option is the default for all
-targets of the \s-1SH\s0 toolchain.
-.IP "\fB\-mnomacsave\fR" 4
-.IX Item "-mnomacsave"
-Mark the \f(CW\*(C`MAC\*(C'\fR register as call-clobbered, even if
-\&\fB\-mhitachi\fR is given.
-.IP "\fB\-mieee\fR" 4
-.IX Item "-mieee"
-.PD 0
-.IP "\fB\-mno\-ieee\fR" 4
-.IX Item "-mno-ieee"
-.PD
-Control the \s-1IEEE\s0 compliance of floating-point comparisons, which affects the
-handling of cases where the result of a comparison is unordered. By default
-\&\fB\-mieee\fR is implicitly enabled. If \fB\-ffinite\-math\-only\fR is
-enabled \fB\-mno\-ieee\fR is implicitly set, which results in faster
-floating-point greater-equal and less-equal comparisons. The implcit settings
-can be overridden by specifying either \fB\-mieee\fR or \fB\-mno\-ieee\fR.
-.IP "\fB\-minline\-ic_invalidate\fR" 4
-.IX Item "-minline-ic_invalidate"
-Inline code to invalidate instruction cache entries after setting up
-nested function trampolines.
-This option has no effect if \fB\-musermode\fR is in effect and the selected
-code generation option (e.g. \fB\-m4\fR) does not allow the use of the \f(CW\*(C`icbi\*(C'\fR
-instruction.
-If the selected code generation option does not allow the use of the \f(CW\*(C`icbi\*(C'\fR
-instruction, and \fB\-musermode\fR is not in effect, the inlined code
-manipulates the instruction cache address array directly with an associative
-write. This not only requires privileged mode at run time, but it also
-fails if the cache line had been mapped via the \s-1TLB\s0 and has become unmapped.
-.IP "\fB\-misize\fR" 4
-.IX Item "-misize"
-Dump instruction size and location in the assembly code.
-.IP "\fB\-mpadstruct\fR" 4
-.IX Item "-mpadstruct"
-This option is deprecated. It pads structures to multiple of 4 bytes,
-which is incompatible with the \s-1SH ABI.\s0
-.IP "\fB\-matomic\-model=\fR\fImodel\fR" 4
-.IX Item "-matomic-model=model"
-Sets the model of atomic operations and additional parameters as a comma
-separated list. For details on the atomic built-in functions see
-\&\fB_\|_atomic Builtins\fR. The following models and parameters are supported:
-.RS 4
-.IP "\fBnone\fR" 4
-.IX Item "none"
-Disable compiler generated atomic sequences and emit library calls for atomic
-operations. This is the default if the target is not \f(CW\*(C`sh\-*\-linux*\*(C'\fR.
-.IP "\fBsoft-gusa\fR" 4
-.IX Item "soft-gusa"
-Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
-built-in functions. The generated atomic sequences require additional support
-from the interrupt/exception handling code of the system and are only suitable
-for SH3* and SH4* single-core systems. This option is enabled by default when
-the target is \f(CW\*(C`sh\-*\-linux*\*(C'\fR and SH3* or SH4*. When the target is \s-1SH4A,\s0
-this option will also partially utilize the hardware atomic instructions
-\&\f(CW\*(C`movli.l\*(C'\fR and \f(CW\*(C`movco.l\*(C'\fR to create more efficient code, unless
-\&\fBstrict\fR is specified.
-.IP "\fBsoft-tcb\fR" 4
-.IX Item "soft-tcb"
-Generate software atomic sequences that use a variable in the thread control
-block. This is a variation of the gUSA sequences which can also be used on
-SH1* and SH2* targets. The generated atomic sequences require additional
-support from the interrupt/exception handling code of the system and are only
-suitable for single-core systems. When using this model, the \fBgbr\-offset=\fR
-parameter has to be specified as well.
-.IP "\fBsoft-imask\fR" 4
-.IX Item "soft-imask"
-Generate software atomic sequences that temporarily disable interrupts by
-setting \f(CW\*(C`SR.IMASK = 1111\*(C'\fR. This model works only when the program runs
-in privileged mode and is only suitable for single-core systems. Additional
-support from the interrupt/exception handling code of the system is not
-required. This model is enabled by default when the target is
-\&\f(CW\*(C`sh\-*\-linux*\*(C'\fR and SH1* or SH2*.
-.IP "\fBhard-llcs\fR" 4
-.IX Item "hard-llcs"
-Generate hardware atomic sequences using the \f(CW\*(C`movli.l\*(C'\fR and \f(CW\*(C`movco.l\*(C'\fR
-instructions only. This is only available on \s-1SH4A\s0 and is suitable for
-multi-core systems. Since the hardware instructions support only 32 bit atomic
-variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
-Code compiled with this option will also be compatible with other software
-atomic model interrupt/exception handling systems if executed on an \s-1SH4A\s0
-system. Additional support from the interrupt/exception handling code of the
-system is not required for this model.
-.IP "\fBgbr\-offset=\fR" 4
-.IX Item "gbr-offset="
-This parameter specifies the offset in bytes of the variable in the thread
-control block structure that should be used by the generated atomic sequences
-when the \fBsoft-tcb\fR model has been selected. For other models this
-parameter is ignored. The specified value must be an integer multiple of four
-and in the range 0\-1020.
-.IP "\fBstrict\fR" 4
-.IX Item "strict"
-This parameter prevents mixed usage of multiple atomic models, even though they
-would be compatible, and will make the compiler generate atomic sequences of the
-specified model only.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mtas\fR" 4
-.IX Item "-mtas"
-Generate the \f(CW\*(C`tas.b\*(C'\fR opcode for \f(CW\*(C`_\|_atomic_test_and_set\*(C'\fR.
-Notice that depending on the particular hardware and software configuration
-this can degrade overall performance due to the operand cache line flushes
-that are implied by the \f(CW\*(C`tas.b\*(C'\fR instruction. On multi-core \s-1SH4A\s0
-processors the \f(CW\*(C`tas.b\*(C'\fR instruction must be used with caution since it
-can result in data corruption for certain cache configurations.
-.IP "\fB\-mspace\fR" 4
-.IX Item "-mspace"
-Optimize for space instead of speed. Implied by \fB\-Os\fR.
-.IP "\fB\-mprefergot\fR" 4
-.IX Item "-mprefergot"
-When generating position-independent code, emit function calls using
-the Global Offset Table instead of the Procedure Linkage Table.
-.IP "\fB\-musermode\fR" 4
-.IX Item "-musermode"
-Don't generate privileged mode only code. This option
-implies \fB\-mno\-inline\-ic_invalidate\fR
-if the inlined code would not work in user mode.
-This is the default when the target is \f(CW\*(C`sh\-*\-linux*\*(C'\fR.
-.IP "\fB\-multcost=\fR\fInumber\fR" 4
-.IX Item "-multcost=number"
-Set the cost to assume for a multiply insn.
-.IP "\fB\-mdiv=\fR\fIstrategy\fR" 4
-.IX Item "-mdiv=strategy"
-Set the division strategy to be used for integer division operations.
-For SHmedia \fIstrategy\fR can be one of:
-.RS 4
-.IP "\fBfp\fR" 4
-.IX Item "fp"
-Performs the operation in floating point. This has a very high latency,
-but needs only a few instructions, so it might be a good choice if
-your code has enough easily-exploitable \s-1ILP\s0 to allow the compiler to
-schedule the floating-point instructions together with other instructions.
-Division by zero causes a floating-point exception.
-.IP "\fBinv\fR" 4
-.IX Item "inv"
-Uses integer operations to calculate the inverse of the divisor,
-and then multiplies the dividend with the inverse. This strategy allows
-\&\s-1CSE\s0 and hoisting of the inverse calculation. Division by zero calculates
-an unspecified result, but does not trap.
-.IP "\fBinv:minlat\fR" 4
-.IX Item "inv:minlat"
-A variant of \fBinv\fR where, if no \s-1CSE\s0 or hoisting opportunities
-have been found, or if the entire operation has been hoisted to the same
-place, the last stages of the inverse calculation are intertwined with the
-final multiply to reduce the overall latency, at the expense of using a few
-more instructions, and thus offering fewer scheduling opportunities with
-other code.
-.IP "\fBcall\fR" 4
-.IX Item "call"
-Calls a library function that usually implements the \fBinv:minlat\fR
-strategy.
-This gives high code density for \f(CW\*(C`m5\-*media\-nofpu\*(C'\fR compilations.
-.IP "\fBcall2\fR" 4
-.IX Item "call2"
-Uses a different entry point of the same library function, where it
-assumes that a pointer to a lookup table has already been set up, which
-exposes the pointer load to \s-1CSE\s0 and code hoisting optimizations.
-.IP "\fBinv:call\fR" 4
-.IX Item "inv:call"
-.PD 0
-.IP "\fBinv:call2\fR" 4
-.IX Item "inv:call2"
-.IP "\fBinv:fp\fR" 4
-.IX Item "inv:fp"
-.PD
-Use the \fBinv\fR algorithm for initial
-code generation, but if the code stays unoptimized, revert to the \fBcall\fR,
-\&\fBcall2\fR, or \fBfp\fR strategies, respectively. Note that the
-potentially-trapping side effect of division by zero is carried by a
-separate instruction, so it is possible that all the integer instructions
-are hoisted out, but the marker for the side effect stays where it is.
-A recombination to floating-point operations or a call is not possible
-in that case.
-.IP "\fBinv20u\fR" 4
-.IX Item "inv20u"
-.PD 0
-.IP "\fBinv20l\fR" 4
-.IX Item "inv20l"
-.PD
-Variants of the \fBinv:minlat\fR strategy. In the case
-that the inverse calculation is not separated from the multiply, they speed
-up division where the dividend fits into 20 bits (plus sign where applicable)
-by inserting a test to skip a number of operations in this case; this test
-slows down the case of larger dividends. \fBinv20u\fR assumes the case of a such
-a small dividend to be unlikely, and \fBinv20l\fR assumes it to be likely.
-.RE
-.RS 4
-.Sp
-For targets other than SHmedia \fIstrategy\fR can be one of:
-.IP "\fBcall\-div1\fR" 4
-.IX Item "call-div1"
-Calls a library function that uses the single-step division instruction
-\&\f(CW\*(C`div1\*(C'\fR to perform the operation. Division by zero calculates an
-unspecified result and does not trap. This is the default except for \s-1SH4,
-SH2A\s0 and SHcompact.
-.IP "\fBcall-fp\fR" 4
-.IX Item "call-fp"
-Calls a library function that performs the operation in double precision
-floating point. Division by zero causes a floating-point exception. This is
-the default for SHcompact with \s-1FPU. \s0 Specifying this for targets that do not
-have a double precision \s-1FPU\s0 will default to \f(CW\*(C`call\-div1\*(C'\fR.
-.IP "\fBcall-table\fR" 4
-.IX Item "call-table"
-Calls a library function that uses a lookup table for small divisors and
-the \f(CW\*(C`div1\*(C'\fR instruction with case distinction for larger divisors. Division
-by zero calculates an unspecified result and does not trap. This is the default
-for \s-1SH4. \s0 Specifying this for targets that do not have dynamic shift
-instructions will default to \f(CW\*(C`call\-div1\*(C'\fR.
-.RE
-.RS 4
-.Sp
-When a division strategy has not been specified the default strategy will be
-selected based on the current target. For \s-1SH2A\s0 the default strategy is to
-use the \f(CW\*(C`divs\*(C'\fR and \f(CW\*(C`divu\*(C'\fR instructions instead of library function
-calls.
-.RE
-.IP "\fB\-maccumulate\-outgoing\-args\fR" 4
-.IX Item "-maccumulate-outgoing-args"
-Reserve space once for outgoing arguments in the function prologue rather
-than around each call. Generally beneficial for performance and size. Also
-needed for unwinding to avoid changing the stack frame around conditional code.
-.IP "\fB\-mdivsi3_libfunc=\fR\fIname\fR" 4
-.IX Item "-mdivsi3_libfunc=name"
-Set the name of the library function used for 32\-bit signed division to
-\&\fIname\fR.
-This only affects the name used in the \fBcall\fR and \fBinv:call\fR
-division strategies, and the compiler still expects the same
-sets of input/output/clobbered registers as if this option were not present.
-.IP "\fB\-mfixed\-range=\fR\fIregister-range\fR" 4
-.IX Item "-mfixed-range=register-range"
-Generate code treating the given register range as fixed registers.
-A fixed register is one that the register allocator can not use. This is
-useful when compiling kernel code. A register range is specified as
-two registers separated by a dash. Multiple register ranges can be
-specified separated by a comma.
-.IP "\fB\-mindexed\-addressing\fR" 4
-.IX Item "-mindexed-addressing"
-Enable the use of the indexed addressing mode for SHmedia32/SHcompact.
-This is only safe if the hardware and/or \s-1OS\s0 implement 32\-bit wrap-around
-semantics for the indexed addressing mode. The architecture allows the
-implementation of processors with 64\-bit \s-1MMU,\s0 which the \s-1OS\s0 could use to
-get 32\-bit addressing, but since no current hardware implementation supports
-this or any other way to make the indexed addressing mode safe to use in
-the 32\-bit \s-1ABI,\s0 the default is \fB\-mno\-indexed\-addressing\fR.
-.IP "\fB\-mgettrcost=\fR\fInumber\fR" 4
-.IX Item "-mgettrcost=number"
-Set the cost assumed for the \f(CW\*(C`gettr\*(C'\fR instruction to \fInumber\fR.
-The default is 2 if \fB\-mpt\-fixed\fR is in effect, 100 otherwise.
-.IP "\fB\-mpt\-fixed\fR" 4
-.IX Item "-mpt-fixed"
-Assume \f(CW\*(C`pt*\*(C'\fR instructions won't trap. This generally generates
-better-scheduled code, but is unsafe on current hardware.
-The current architecture
-definition says that \f(CW\*(C`ptabs\*(C'\fR and \f(CW\*(C`ptrel\*(C'\fR trap when the target
-anded with 3 is 3.
-This has the unintentional effect of making it unsafe to schedule these
-instructions before a branch, or hoist them out of a loop. For example,
-\&\f(CW\*(C`_\|_do_global_ctors\*(C'\fR, a part of \fIlibgcc\fR
-that runs constructors at program
-startup, calls functions in a list which is delimited by \-1. With the
-\&\fB\-mpt\-fixed\fR option, the \f(CW\*(C`ptabs\*(C'\fR is done before testing against \-1.
-That means that all the constructors run a bit more quickly, but when
-the loop comes to the end of the list, the program crashes because \f(CW\*(C`ptabs\*(C'\fR
-loads \-1 into a target register.
-.Sp
-Since this option is unsafe for any
-hardware implementing the current architecture specification, the default
-is \fB\-mno\-pt\-fixed\fR. Unless specified explicitly with
-\&\fB\-mgettrcost\fR, \fB\-mno\-pt\-fixed\fR also implies \fB\-mgettrcost=100\fR;
-this deters register allocation from using target registers for storing
-ordinary integers.
-.IP "\fB\-minvalid\-symbols\fR" 4
-.IX Item "-minvalid-symbols"
-Assume symbols might be invalid. Ordinary function symbols generated by
-the compiler are always valid to load with
-\&\f(CW\*(C`movi\*(C'\fR/\f(CW\*(C`shori\*(C'\fR/\f(CW\*(C`ptabs\*(C'\fR or
-\&\f(CW\*(C`movi\*(C'\fR/\f(CW\*(C`shori\*(C'\fR/\f(CW\*(C`ptrel\*(C'\fR,
-but with assembler and/or linker tricks it is possible
-to generate symbols that cause \f(CW\*(C`ptabs\*(C'\fR or \f(CW\*(C`ptrel\*(C'\fR to trap.
-This option is only meaningful when \fB\-mno\-pt\-fixed\fR is in effect.
-It prevents cross-basic-block \s-1CSE,\s0 hoisting and most scheduling
-of symbol loads. The default is \fB\-mno\-invalid\-symbols\fR.
-.IP "\fB\-mbranch\-cost=\fR\fInum\fR" 4
-.IX Item "-mbranch-cost=num"
-Assume \fInum\fR to be the cost for a branch instruction. Higher numbers
-make the compiler try to generate more branch-free code if possible.
-If not specified the value is selected depending on the processor type that
-is being compiled for.
-.IP "\fB\-mzdcbranch\fR" 4
-.IX Item "-mzdcbranch"
-.PD 0
-.IP "\fB\-mno\-zdcbranch\fR" 4
-.IX Item "-mno-zdcbranch"
-.PD
-Assume (do not assume) that zero displacement conditional branch instructions
-\&\f(CW\*(C`bt\*(C'\fR and \f(CW\*(C`bf\*(C'\fR are fast. If \fB\-mzdcbranch\fR is specified, the
-compiler will try to prefer zero displacement branch code sequences. This is
-enabled by default when generating code for \s-1SH4\s0 and \s-1SH4A. \s0 It can be explicitly
-disabled by specifying \fB\-mno\-zdcbranch\fR.
-.IP "\fB\-mfused\-madd\fR" 4
-.IX Item "-mfused-madd"
-.PD 0
-.IP "\fB\-mno\-fused\-madd\fR" 4
-.IX Item "-mno-fused-madd"
-.PD
-Generate code that uses (does not use) the floating-point multiply and
-accumulate instructions. These instructions are generated by default
-if hardware floating point is used. The machine-dependent
-\&\fB\-mfused\-madd\fR option is now mapped to the machine-independent
-\&\fB\-ffp\-contract=fast\fR option, and \fB\-mno\-fused\-madd\fR is
-mapped to \fB\-ffp\-contract=off\fR.
-.IP "\fB\-mfsca\fR" 4
-.IX Item "-mfsca"
-.PD 0
-.IP "\fB\-mno\-fsca\fR" 4
-.IX Item "-mno-fsca"
-.PD
-Allow or disallow the compiler to emit the \f(CW\*(C`fsca\*(C'\fR instruction for sine
-and cosine approximations. The option \f(CW\*(C`\-mfsca\*(C'\fR must be used in
-combination with \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR. It is enabled by default
-when generating code for \s-1SH4A. \s0 Using \f(CW\*(C`\-mno\-fsca\*(C'\fR disables sine and cosine
-approximations even if \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR is in effect.
-.IP "\fB\-mfsrra\fR" 4
-.IX Item "-mfsrra"
-.PD 0
-.IP "\fB\-mno\-fsrra\fR" 4
-.IX Item "-mno-fsrra"
-.PD
-Allow or disallow the compiler to emit the \f(CW\*(C`fsrra\*(C'\fR instruction for
-reciprocal square root approximations. The option \f(CW\*(C`\-mfsrra\*(C'\fR must be used
-in combination with \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR and
-\&\f(CW\*(C`\-ffinite\-math\-only\*(C'\fR. It is enabled by default when generating code for
-\&\s-1SH4A. \s0 Using \f(CW\*(C`\-mno\-fsrra\*(C'\fR disables reciprocal square root approximations
-even if \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR and \f(CW\*(C`\-ffinite\-math\-only\*(C'\fR are
-in effect.
-.IP "\fB\-mpretend\-cmove\fR" 4
-.IX Item "-mpretend-cmove"
-Prefer zero-displacement conditional branches for conditional move instruction
-patterns. This can result in faster code on the \s-1SH4\s0 processor.
-.PP
-\fISolaris 2 Options\fR
-.IX Subsection "Solaris 2 Options"
-.PP
-These \fB\-m\fR options are supported on Solaris 2:
-.IP "\fB\-mimpure\-text\fR" 4
-.IX Item "-mimpure-text"
-\&\fB\-mimpure\-text\fR, used in addition to \fB\-shared\fR, tells
-the compiler to not pass \fB\-z text\fR to the linker when linking a
-shared object. Using this option, you can link position-dependent
-code into a shared object.
-.Sp
-\&\fB\-mimpure\-text\fR suppresses the \*(L"relocations remain against
-allocatable but non-writable sections\*(R" linker error message.
-However, the necessary relocations trigger copy-on-write, and the
-shared object is not actually shared across processes. Instead of
-using \fB\-mimpure\-text\fR, you should compile all source code with
-\&\fB\-fpic\fR or \fB\-fPIC\fR.
-.PP
-These switches are supported in addition to the above on Solaris 2:
-.IP "\fB\-pthreads\fR" 4
-.IX Item "-pthreads"
-Add support for multithreading using the \s-1POSIX\s0 threads library. This
-option sets flags for both the preprocessor and linker. This option does
-not affect the thread safety of object code produced by the compiler or
-that of libraries supplied with it.
-.IP "\fB\-pthread\fR" 4
-.IX Item "-pthread"
-This is a synonym for \fB\-pthreads\fR.
-.PP
-\fI\s-1SPARC\s0 Options\fR
-.IX Subsection "SPARC Options"
-.PP
-These \fB\-m\fR options are supported on the \s-1SPARC:\s0
-.IP "\fB\-mno\-app\-regs\fR" 4
-.IX Item "-mno-app-regs"
-.PD 0
-.IP "\fB\-mapp\-regs\fR" 4
-.IX Item "-mapp-regs"
-.PD
-Specify \fB\-mapp\-regs\fR to generate output using the global registers
-2 through 4, which the \s-1SPARC SVR4 ABI\s0 reserves for applications. Like the
-global register 1, each global register 2 through 4 is then treated as an
-allocable register that is clobbered by function calls. This is the default.
-.Sp
-To be fully \s-1SVR4\s0 ABI-compliant at the cost of some performance loss,
-specify \fB\-mno\-app\-regs\fR. You should compile libraries and system
-software with this option.
-.IP "\fB\-mflat\fR" 4
-.IX Item "-mflat"
-.PD 0
-.IP "\fB\-mno\-flat\fR" 4
-.IX Item "-mno-flat"
-.PD
-With \fB\-mflat\fR, the compiler does not generate save/restore instructions
-and uses a \*(L"flat\*(R" or single register window model. This model is compatible
-with the regular register window model. The local registers and the input
-registers (0\-\-5) are still treated as \*(L"call-saved\*(R" registers and are
-saved on the stack as needed.
-.Sp
-With \fB\-mno\-flat\fR (the default), the compiler generates save/restore
-instructions (except for leaf functions). This is the normal operating mode.
-.IP "\fB\-mfpu\fR" 4
-.IX Item "-mfpu"
-.PD 0
-.IP "\fB\-mhard\-float\fR" 4
-.IX Item "-mhard-float"
-.PD
-Generate output containing floating-point instructions. This is the
-default.
-.IP "\fB\-mno\-fpu\fR" 4
-.IX Item "-mno-fpu"
-.PD 0
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-.PD
-Generate output containing library calls for floating point.
-\&\fBWarning:\fR the requisite libraries are not available for all \s-1SPARC\s0
-targets. Normally the facilities of the machine's usual C compiler are
-used, but this cannot be done directly in cross-compilation. You must make
-your own arrangements to provide suitable library functions for
-cross-compilation. The embedded targets \fBsparc\-*\-aout\fR and
-\&\fBsparclite\-*\-*\fR do provide software floating-point support.
-.Sp
-\&\fB\-msoft\-float\fR changes the calling convention in the output file;
-therefore, it is only useful if you compile \fIall\fR of a program with
-this option. In particular, you need to compile \fIlibgcc.a\fR, the
-library that comes with \s-1GCC,\s0 with \fB\-msoft\-float\fR in order for
-this to work.
-.IP "\fB\-mhard\-quad\-float\fR" 4
-.IX Item "-mhard-quad-float"
-Generate output containing quad-word (long double) floating-point
-instructions.
-.IP "\fB\-msoft\-quad\-float\fR" 4
-.IX Item "-msoft-quad-float"
-Generate output containing library calls for quad-word (long double)
-floating-point instructions. The functions called are those specified
-in the \s-1SPARC ABI. \s0 This is the default.
-.Sp
-As of this writing, there are no \s-1SPARC\s0 implementations that have hardware
-support for the quad-word floating-point instructions. They all invoke
-a trap handler for one of these instructions, and then the trap handler
-emulates the effect of the instruction. Because of the trap handler overhead,
-this is much slower than calling the \s-1ABI\s0 library routines. Thus the
-\&\fB\-msoft\-quad\-float\fR option is the default.
-.IP "\fB\-mno\-unaligned\-doubles\fR" 4
-.IX Item "-mno-unaligned-doubles"
-.PD 0
-.IP "\fB\-munaligned\-doubles\fR" 4
-.IX Item "-munaligned-doubles"
-.PD
-Assume that doubles have 8\-byte alignment. This is the default.
-.Sp
-With \fB\-munaligned\-doubles\fR, \s-1GCC\s0 assumes that doubles have 8\-byte
-alignment only if they are contained in another type, or if they have an
-absolute address. Otherwise, it assumes they have 4\-byte alignment.
-Specifying this option avoids some rare compatibility problems with code
-generated by other compilers. It is not the default because it results
-in a performance loss, especially for floating-point code.
-.IP "\fB\-mno\-faster\-structs\fR" 4
-.IX Item "-mno-faster-structs"
-.PD 0
-.IP "\fB\-mfaster\-structs\fR" 4
-.IX Item "-mfaster-structs"
-.PD
-With \fB\-mfaster\-structs\fR, the compiler assumes that structures
-should have 8\-byte alignment. This enables the use of pairs of
-\&\f(CW\*(C`ldd\*(C'\fR and \f(CW\*(C`std\*(C'\fR instructions for copies in structure
-assignment, in place of twice as many \f(CW\*(C`ld\*(C'\fR and \f(CW\*(C`st\*(C'\fR pairs.
-However, the use of this changed alignment directly violates the \s-1SPARC
-ABI. \s0 Thus, it's intended only for use on targets where the developer
-acknowledges that their resulting code is not directly in line with
-the rules of the \s-1ABI.\s0
-.IP "\fB\-mcpu=\fR\fIcpu_type\fR" 4
-.IX Item "-mcpu=cpu_type"
-Set the instruction set, register set, and instruction scheduling parameters
-for machine type \fIcpu_type\fR. Supported values for \fIcpu_type\fR are
-\&\fBv7\fR, \fBcypress\fR, \fBv8\fR, \fBsupersparc\fR, \fBhypersparc\fR,
-\&\fBleon\fR, \fBleon3\fR, \fBsparclite\fR, \fBf930\fR, \fBf934\fR,
-\&\fBsparclite86x\fR, \fBsparclet\fR, \fBtsc701\fR, \fBv9\fR,
-\&\fBultrasparc\fR, \fBultrasparc3\fR, \fBniagara\fR, \fBniagara2\fR,
-\&\fBniagara3\fR and \fBniagara4\fR.
-.Sp
-Native Solaris and GNU/Linux toolchains also support the value \fBnative\fR,
-which selects the best architecture option for the host processor.
-\&\fB\-mcpu=native\fR has no effect if \s-1GCC\s0 does not recognize
-the processor.
-.Sp
-Default instruction scheduling parameters are used for values that select
-an architecture and not an implementation. These are \fBv7\fR, \fBv8\fR,
-\&\fBsparclite\fR, \fBsparclet\fR, \fBv9\fR.
-.Sp
-Here is a list of each supported architecture and their supported
-implementations.
-.RS 4
-.IP "v7" 4
-.IX Item "v7"
-cypress
-.IP "v8" 4
-.IX Item "v8"
-supersparc, hypersparc, leon, leon3
-.IP "sparclite" 4
-.IX Item "sparclite"
-f930, f934, sparclite86x
-.IP "sparclet" 4
-.IX Item "sparclet"
-tsc701
-.IP "v9" 4
-.IX Item "v9"
-ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4
-.RE
-.RS 4
-.Sp
-By default (unless configured otherwise), \s-1GCC\s0 generates code for the V7
-variant of the \s-1SPARC\s0 architecture. With \fB\-mcpu=cypress\fR, the compiler
-additionally optimizes it for the Cypress \s-1CY7C602\s0 chip, as used in the
-SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
-SPARCStation 1, 2, \s-1IPX\s0 etc.
-.Sp
-With \fB\-mcpu=v8\fR, \s-1GCC\s0 generates code for the V8 variant of the \s-1SPARC\s0
-architecture. The only difference from V7 code is that the compiler emits
-the integer multiply and integer divide instructions which exist in \s-1SPARC\-V8\s0
-but not in \s-1SPARC\-V7. \s0 With \fB\-mcpu=supersparc\fR, the compiler additionally
-optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
-2000 series.
-.Sp
-With \fB\-mcpu=sparclite\fR, \s-1GCC\s0 generates code for the SPARClite variant of
-the \s-1SPARC\s0 architecture. This adds the integer multiply, integer divide step
-and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which exist in SPARClite but not in \s-1SPARC\-V7.\s0
-With \fB\-mcpu=f930\fR, the compiler additionally optimizes it for the
-Fujitsu \s-1MB86930\s0 chip, which is the original SPARClite, with no \s-1FPU. \s0 With
-\&\fB\-mcpu=f934\fR, the compiler additionally optimizes it for the Fujitsu
-\&\s-1MB86934\s0 chip, which is the more recent SPARClite with \s-1FPU.\s0
-.Sp
-With \fB\-mcpu=sparclet\fR, \s-1GCC\s0 generates code for the SPARClet variant of
-the \s-1SPARC\s0 architecture. This adds the integer multiply, multiply/accumulate,
-integer divide step and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which exist in SPARClet
-but not in \s-1SPARC\-V7. \s0 With \fB\-mcpu=tsc701\fR, the compiler additionally
-optimizes it for the \s-1TEMIC\s0 SPARClet chip.
-.Sp
-With \fB\-mcpu=v9\fR, \s-1GCC\s0 generates code for the V9 variant of the \s-1SPARC\s0
-architecture. This adds 64\-bit integer and floating-point move instructions,
-3 additional floating-point condition code registers and conditional move
-instructions. With \fB\-mcpu=ultrasparc\fR, the compiler additionally
-optimizes it for the Sun UltraSPARC I/II/IIi chips. With
-\&\fB\-mcpu=ultrasparc3\fR, the compiler additionally optimizes it for the
-Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
-\&\fB\-mcpu=niagara\fR, the compiler additionally optimizes it for
-Sun UltraSPARC T1 chips. With \fB\-mcpu=niagara2\fR, the compiler
-additionally optimizes it for Sun UltraSPARC T2 chips. With
-\&\fB\-mcpu=niagara3\fR, the compiler additionally optimizes it for Sun
-UltraSPARC T3 chips. With \fB\-mcpu=niagara4\fR, the compiler
-additionally optimizes it for Sun UltraSPARC T4 chips.
-.RE
-.IP "\fB\-mtune=\fR\fIcpu_type\fR" 4
-.IX Item "-mtune=cpu_type"
-Set the instruction scheduling parameters for machine type
-\&\fIcpu_type\fR, but do not set the instruction set or register set that the
-option \fB\-mcpu=\fR\fIcpu_type\fR does.
-.Sp
-The same values for \fB\-mcpu=\fR\fIcpu_type\fR can be used for
-\&\fB\-mtune=\fR\fIcpu_type\fR, but the only useful values are those
-that select a particular \s-1CPU\s0 implementation. Those are \fBcypress\fR,
-\&\fBsupersparc\fR, \fBhypersparc\fR, \fBleon\fR, \fBleon3\fR, \fBf930\fR,
-\&\fBf934\fR, \fBsparclite86x\fR, \fBtsc701\fR, \fBultrasparc\fR,
-\&\fBultrasparc3\fR, \fBniagara\fR, \fBniagara2\fR, \fBniagara3\fR and
-\&\fBniagara4\fR. With native Solaris and GNU/Linux toolchains, \fBnative\fR
-can also be used.
-.IP "\fB\-mv8plus\fR" 4
-.IX Item "-mv8plus"
-.PD 0
-.IP "\fB\-mno\-v8plus\fR" 4
-.IX Item "-mno-v8plus"
-.PD
-With \fB\-mv8plus\fR, \s-1GCC\s0 generates code for the \s-1SPARC\-V8+ ABI. \s0 The
-difference from the V8 \s-1ABI\s0 is that the global and out registers are
-considered 64 bits wide. This is enabled by default on Solaris in 32\-bit
-mode for all \s-1SPARC\-V9\s0 processors.
-.IP "\fB\-mvis\fR" 4
-.IX Item "-mvis"
-.PD 0
-.IP "\fB\-mno\-vis\fR" 4
-.IX Item "-mno-vis"
-.PD
-With \fB\-mvis\fR, \s-1GCC\s0 generates code that takes advantage of the UltraSPARC
-Visual Instruction Set extensions. The default is \fB\-mno\-vis\fR.
-.IP "\fB\-mvis2\fR" 4
-.IX Item "-mvis2"
-.PD 0
-.IP "\fB\-mno\-vis2\fR" 4
-.IX Item "-mno-vis2"
-.PD
-With \fB\-mvis2\fR, \s-1GCC\s0 generates code that takes advantage of
-version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
-default is \fB\-mvis2\fR when targeting a cpu that supports such
-instructions, such as UltraSPARC-III and later. Setting \fB\-mvis2\fR
-also sets \fB\-mvis\fR.
-.IP "\fB\-mvis3\fR" 4
-.IX Item "-mvis3"
-.PD 0
-.IP "\fB\-mno\-vis3\fR" 4
-.IX Item "-mno-vis3"
-.PD
-With \fB\-mvis3\fR, \s-1GCC\s0 generates code that takes advantage of
-version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
-default is \fB\-mvis3\fR when targeting a cpu that supports such
-instructions, such as niagara\-3 and later. Setting \fB\-mvis3\fR
-also sets \fB\-mvis2\fR and \fB\-mvis\fR.
-.IP "\fB\-mcbcond\fR" 4
-.IX Item "-mcbcond"
-.PD 0
-.IP "\fB\-mno\-cbcond\fR" 4
-.IX Item "-mno-cbcond"
-.PD
-With \fB\-mcbcond\fR, \s-1GCC\s0 generates code that takes advantage of
-compare-and-branch instructions, as defined in the Sparc Architecture 2011.
-The default is \fB\-mcbcond\fR when targeting a cpu that supports such
-instructions, such as niagara\-4 and later.
-.IP "\fB\-mpopc\fR" 4
-.IX Item "-mpopc"
-.PD 0
-.IP "\fB\-mno\-popc\fR" 4
-.IX Item "-mno-popc"
-.PD
-With \fB\-mpopc\fR, \s-1GCC\s0 generates code that takes advantage of the UltraSPARC
-population count instruction. The default is \fB\-mpopc\fR
-when targeting a cpu that supports such instructions, such as Niagara\-2 and
-later.
-.IP "\fB\-mfmaf\fR" 4
-.IX Item "-mfmaf"
-.PD 0
-.IP "\fB\-mno\-fmaf\fR" 4
-.IX Item "-mno-fmaf"
-.PD
-With \fB\-mfmaf\fR, \s-1GCC\s0 generates code that takes advantage of the UltraSPARC
-Fused Multiply-Add Floating-point extensions. The default is \fB\-mfmaf\fR
-when targeting a cpu that supports such instructions, such as Niagara\-3 and
-later.
-.IP "\fB\-mfix\-at697f\fR" 4
-.IX Item "-mfix-at697f"
-Enable the documented workaround for the single erratum of the Atmel \s-1AT697F\s0
-processor (which corresponds to erratum #13 of the \s-1AT697E\s0 processor).
-.IP "\fB\-mfix\-ut699\fR" 4
-.IX Item "-mfix-ut699"
-Enable the documented workarounds for the floating-point errata and the data
-cache nullify errata of the \s-1UT699\s0 processor.
-.PP
-These \fB\-m\fR options are supported in addition to the above
-on \s-1SPARC\-V9\s0 processors in 64\-bit environments:
-.IP "\fB\-m32\fR" 4
-.IX Item "-m32"
-.PD 0
-.IP "\fB\-m64\fR" 4
-.IX Item "-m64"
-.PD
-Generate code for a 32\-bit or 64\-bit environment.
-The 32\-bit environment sets int, long and pointer to 32 bits.
-The 64\-bit environment sets int to 32 bits and long and pointer
-to 64 bits.
-.IP "\fB\-mcmodel=\fR\fIwhich\fR" 4
-.IX Item "-mcmodel=which"
-Set the code model to one of
-.RS 4
-.IP "\fBmedlow\fR" 4
-.IX Item "medlow"
-The Medium/Low code model: 64\-bit addresses, programs
-must be linked in the low 32 bits of memory. Programs can be statically
-or dynamically linked.
-.IP "\fBmedmid\fR" 4
-.IX Item "medmid"
-The Medium/Middle code model: 64\-bit addresses, programs
-must be linked in the low 44 bits of memory, the text and data segments must
-be less than 2GB in size and the data segment must be located within 2GB of
-the text segment.
-.IP "\fBmedany\fR" 4
-.IX Item "medany"
-The Medium/Anywhere code model: 64\-bit addresses, programs
-may be linked anywhere in memory, the text and data segments must be less
-than 2GB in size and the data segment must be located within 2GB of the
-text segment.
-.IP "\fBembmedany\fR" 4
-.IX Item "embmedany"
-The Medium/Anywhere code model for embedded systems:
-64\-bit addresses, the text and data segments must be less than 2GB in
-size, both starting anywhere in memory (determined at link time). The
-global register \f(CW%g4\fR points to the base of the data segment. Programs
-are statically linked and \s-1PIC\s0 is not supported.
-.RE
-.RS 4
-.RE
-.IP "\fB\-mmemory\-model=\fR\fImem-model\fR" 4
-.IX Item "-mmemory-model=mem-model"
-Set the memory model in force on the processor to one of
-.RS 4
-.IP "\fBdefault\fR" 4
-.IX Item "default"
-The default memory model for the processor and operating system.
-.IP "\fBrmo\fR" 4
-.IX Item "rmo"
-Relaxed Memory Order
-.IP "\fBpso\fR" 4
-.IX Item "pso"
-Partial Store Order
-.IP "\fBtso\fR" 4
-.IX Item "tso"
-Total Store Order
-.IP "\fBsc\fR" 4
-.IX Item "sc"
-Sequential Consistency
-.RE
-.RS 4
-.Sp
-These memory models are formally defined in Appendix D of the Sparc V9
-architecture manual, as set in the processor's \f(CW\*(C`PSTATE.MM\*(C'\fR field.
-.RE
-.IP "\fB\-mstack\-bias\fR" 4
-.IX Item "-mstack-bias"
-.PD 0
-.IP "\fB\-mno\-stack\-bias\fR" 4
-.IX Item "-mno-stack-bias"
-.PD
-With \fB\-mstack\-bias\fR, \s-1GCC\s0 assumes that the stack pointer, and
-frame pointer if present, are offset by \-2047 which must be added back
-when making stack frame references. This is the default in 64\-bit mode.
-Otherwise, assume no such offset is present.
-.PP
-\fI\s-1SPU\s0 Options\fR
-.IX Subsection "SPU Options"
-.PP
-These \fB\-m\fR options are supported on the \s-1SPU:\s0
-.IP "\fB\-mwarn\-reloc\fR" 4
-.IX Item "-mwarn-reloc"
-.PD 0
-.IP "\fB\-merror\-reloc\fR" 4
-.IX Item "-merror-reloc"
-.PD
-The loader for \s-1SPU\s0 does not handle dynamic relocations. By default, \s-1GCC\s0
-gives an error when it generates code that requires a dynamic
-relocation. \fB\-mno\-error\-reloc\fR disables the error,
-\&\fB\-mwarn\-reloc\fR generates a warning instead.
-.IP "\fB\-msafe\-dma\fR" 4
-.IX Item "-msafe-dma"
-.PD 0
-.IP "\fB\-munsafe\-dma\fR" 4
-.IX Item "-munsafe-dma"
-.PD
-Instructions that initiate or test completion of \s-1DMA\s0 must not be
-reordered with respect to loads and stores of the memory that is being
-accessed.
-With \fB\-munsafe\-dma\fR you must use the \f(CW\*(C`volatile\*(C'\fR keyword to protect
-memory accesses, but that can lead to inefficient code in places where the
-memory is known to not change. Rather than mark the memory as volatile,
-you can use \fB\-msafe\-dma\fR to tell the compiler to treat
-the \s-1DMA\s0 instructions as potentially affecting all memory.
-.IP "\fB\-mbranch\-hints\fR" 4
-.IX Item "-mbranch-hints"
-By default, \s-1GCC\s0 generates a branch hint instruction to avoid
-pipeline stalls for always-taken or probably-taken branches. A hint
-is not generated closer than 8 instructions away from its branch.
-There is little reason to disable them, except for debugging purposes,
-or to make an object a little bit smaller.
-.IP "\fB\-msmall\-mem\fR" 4
-.IX Item "-msmall-mem"
-.PD 0
-.IP "\fB\-mlarge\-mem\fR" 4
-.IX Item "-mlarge-mem"
-.PD
-By default, \s-1GCC\s0 generates code assuming that addresses are never larger
-than 18 bits. With \fB\-mlarge\-mem\fR code is generated that assumes
-a full 32\-bit address.
-.IP "\fB\-mstdmain\fR" 4
-.IX Item "-mstdmain"
-By default, \s-1GCC\s0 links against startup code that assumes the SPU-style
-main function interface (which has an unconventional parameter list).
-With \fB\-mstdmain\fR, \s-1GCC\s0 links your program against startup
-code that assumes a C99\-style interface to \f(CW\*(C`main\*(C'\fR, including a
-local copy of \f(CW\*(C`argv\*(C'\fR strings.
-.IP "\fB\-mfixed\-range=\fR\fIregister-range\fR" 4
-.IX Item "-mfixed-range=register-range"
-Generate code treating the given register range as fixed registers.
-A fixed register is one that the register allocator cannot use. This is
-useful when compiling kernel code. A register range is specified as
-two registers separated by a dash. Multiple register ranges can be
-specified separated by a comma.
-.IP "\fB\-mea32\fR" 4
-.IX Item "-mea32"
-.PD 0
-.IP "\fB\-mea64\fR" 4
-.IX Item "-mea64"
-.PD
-Compile code assuming that pointers to the \s-1PPU\s0 address space accessed
-via the \f(CW\*(C`_\|_ea\*(C'\fR named address space qualifier are either 32 or 64
-bits wide. The default is 32 bits. As this is an ABI-changing option,
-all object code in an executable must be compiled with the same setting.
-.IP "\fB\-maddress\-space\-conversion\fR" 4
-.IX Item "-maddress-space-conversion"
-.PD 0
-.IP "\fB\-mno\-address\-space\-conversion\fR" 4
-.IX Item "-mno-address-space-conversion"
-.PD
-Allow/disallow treating the \f(CW\*(C`_\|_ea\*(C'\fR address space as superset
-of the generic address space. This enables explicit type casts
-between \f(CW\*(C`_\|_ea\*(C'\fR and generic pointer as well as implicit
-conversions of generic pointers to \f(CW\*(C`_\|_ea\*(C'\fR pointers. The
-default is to allow address space pointer conversions.
-.IP "\fB\-mcache\-size=\fR\fIcache-size\fR" 4
-.IX Item "-mcache-size=cache-size"
-This option controls the version of libgcc that the compiler links to an
-executable and selects a software-managed cache for accessing variables
-in the \f(CW\*(C`_\|_ea\*(C'\fR address space with a particular cache size. Possible
-options for \fIcache-size\fR are \fB8\fR, \fB16\fR, \fB32\fR, \fB64\fR
-and \fB128\fR. The default cache size is 64KB.
-.IP "\fB\-matomic\-updates\fR" 4
-.IX Item "-matomic-updates"
-.PD 0
-.IP "\fB\-mno\-atomic\-updates\fR" 4
-.IX Item "-mno-atomic-updates"
-.PD
-This option controls the version of libgcc that the compiler links to an
-executable and selects whether atomic updates to the software-managed
-cache of PPU-side variables are used. If you use atomic updates, changes
-to a \s-1PPU\s0 variable from \s-1SPU\s0 code using the \f(CW\*(C`_\|_ea\*(C'\fR named address space
-qualifier do not interfere with changes to other \s-1PPU\s0 variables residing
-in the same cache line from \s-1PPU\s0 code. If you do not use atomic updates,
-such interference may occur; however, writing back cache lines is
-more efficient. The default behavior is to use atomic updates.
-.IP "\fB\-mdual\-nops\fR" 4
-.IX Item "-mdual-nops"
-.PD 0
-.IP "\fB\-mdual\-nops=\fR\fIn\fR" 4
-.IX Item "-mdual-nops=n"
-.PD
-By default, \s-1GCC\s0 inserts nops to increase dual issue when it expects
-it to increase performance. \fIn\fR can be a value from 0 to 10. A
-smaller \fIn\fR inserts fewer nops. 10 is the default, 0 is the
-same as \fB\-mno\-dual\-nops\fR. Disabled with \fB\-Os\fR.
-.IP "\fB\-mhint\-max\-nops=\fR\fIn\fR" 4
-.IX Item "-mhint-max-nops=n"
-Maximum number of nops to insert for a branch hint. A branch hint must
-be at least 8 instructions away from the branch it is affecting. \s-1GCC\s0
-inserts up to \fIn\fR nops to enforce this, otherwise it does not
-generate the branch hint.
-.IP "\fB\-mhint\-max\-distance=\fR\fIn\fR" 4
-.IX Item "-mhint-max-distance=n"
-The encoding of the branch hint instruction limits the hint to be within
-256 instructions of the branch it is affecting. By default, \s-1GCC\s0 makes
-sure it is within 125.
-.IP "\fB\-msafe\-hints\fR" 4
-.IX Item "-msafe-hints"
-Work around a hardware bug that causes the \s-1SPU\s0 to stall indefinitely.
-By default, \s-1GCC\s0 inserts the \f(CW\*(C`hbrp\*(C'\fR instruction to make sure
-this stall won't happen.
-.PP
-\fIOptions for System V\fR
-.IX Subsection "Options for System V"
-.PP
-These additional options are available on System V Release 4 for
-compatibility with other compilers on those systems:
-.IP "\fB\-G\fR" 4
-.IX Item "-G"
-Create a shared object.
-It is recommended that \fB\-symbolic\fR or \fB\-shared\fR be used instead.
-.IP "\fB\-Qy\fR" 4
-.IX Item "-Qy"
-Identify the versions of each tool used by the compiler, in a
-\&\f(CW\*(C`.ident\*(C'\fR assembler directive in the output.
-.IP "\fB\-Qn\fR" 4
-.IX Item "-Qn"
-Refrain from adding \f(CW\*(C`.ident\*(C'\fR directives to the output file (this is
-the default).
-.IP "\fB\-YP,\fR\fIdirs\fR" 4
-.IX Item "-YP,dirs"
-Search the directories \fIdirs\fR, and no others, for libraries
-specified with \fB\-l\fR.
-.IP "\fB\-Ym,\fR\fIdir\fR" 4
-.IX Item "-Ym,dir"
-Look in the directory \fIdir\fR to find the M4 preprocessor.
-The assembler uses this option.
-.PP
-\fITILE-Gx Options\fR
-.IX Subsection "TILE-Gx Options"
-.PP
-These \fB\-m\fR options are supported on the TILE-Gx:
-.IP "\fB\-mcmodel=small\fR" 4
-.IX Item "-mcmodel=small"
-Generate code for the small model. The distance for direct calls is
-limited to 500M in either direction. PC-relative addresses are 32
-bits. Absolute addresses support the full address range.
-.IP "\fB\-mcmodel=large\fR" 4
-.IX Item "-mcmodel=large"
-Generate code for the large model. There is no limitation on call
-distance, pc-relative addresses, or absolute addresses.
-.IP "\fB\-mcpu=\fR\fIname\fR" 4
-.IX Item "-mcpu=name"
-Selects the type of \s-1CPU\s0 to be targeted. Currently the only supported
-type is \fBtilegx\fR.
-.IP "\fB\-m32\fR" 4
-.IX Item "-m32"
-.PD 0
-.IP "\fB\-m64\fR" 4
-.IX Item "-m64"
-.PD
-Generate code for a 32\-bit or 64\-bit environment. The 32\-bit
-environment sets int, long, and pointer to 32 bits. The 64\-bit
-environment sets int to 32 bits and long and pointer to 64 bits.
-.IP "\fB\-mbig\-endian\fR" 4
-.IX Item "-mbig-endian"
-.PD 0
-.IP "\fB\-mlittle\-endian\fR" 4
-.IX Item "-mlittle-endian"
-.PD
-Generate code in big/little endian mode, respectively.
-.PP
-\fITILEPro Options\fR
-.IX Subsection "TILEPro Options"
-.PP
-These \fB\-m\fR options are supported on the TILEPro:
-.IP "\fB\-mcpu=\fR\fIname\fR" 4
-.IX Item "-mcpu=name"
-Selects the type of \s-1CPU\s0 to be targeted. Currently the only supported
-type is \fBtilepro\fR.
-.IP "\fB\-m32\fR" 4
-.IX Item "-m32"
-Generate code for a 32\-bit environment, which sets int, long, and
-pointer to 32 bits. This is the only supported behavior so the flag
-is essentially ignored.
-.PP
-\fIV850 Options\fR
-.IX Subsection "V850 Options"
-.PP
-These \fB\-m\fR options are defined for V850 implementations:
-.IP "\fB\-mlong\-calls\fR" 4
-.IX Item "-mlong-calls"
-.PD 0
-.IP "\fB\-mno\-long\-calls\fR" 4
-.IX Item "-mno-long-calls"
-.PD
-Treat all calls as being far away (near). If calls are assumed to be
-far away, the compiler always loads the function's address into a
-register, and calls indirect through the pointer.
-.IP "\fB\-mno\-ep\fR" 4
-.IX Item "-mno-ep"
-.PD 0
-.IP "\fB\-mep\fR" 4
-.IX Item "-mep"
-.PD
-Do not optimize (do optimize) basic blocks that use the same index
-pointer 4 or more times to copy pointer into the \f(CW\*(C`ep\*(C'\fR register, and
-use the shorter \f(CW\*(C`sld\*(C'\fR and \f(CW\*(C`sst\*(C'\fR instructions. The \fB\-mep\fR
-option is on by default if you optimize.
-.IP "\fB\-mno\-prolog\-function\fR" 4
-.IX Item "-mno-prolog-function"
-.PD 0
-.IP "\fB\-mprolog\-function\fR" 4
-.IX Item "-mprolog-function"
-.PD
-Do not use (do use) external functions to save and restore registers
-at the prologue and epilogue of a function. The external functions
-are slower, but use less code space if more than one function saves
-the same number of registers. The \fB\-mprolog\-function\fR option
-is on by default if you optimize.
-.IP "\fB\-mspace\fR" 4
-.IX Item "-mspace"
-Try to make the code as small as possible. At present, this just turns
-on the \fB\-mep\fR and \fB\-mprolog\-function\fR options.
-.IP "\fB\-mtda=\fR\fIn\fR" 4
-.IX Item "-mtda=n"
-Put static or global variables whose size is \fIn\fR bytes or less into
-the tiny data area that register \f(CW\*(C`ep\*(C'\fR points to. The tiny data
-area can hold up to 256 bytes in total (128 bytes for byte references).
-.IP "\fB\-msda=\fR\fIn\fR" 4
-.IX Item "-msda=n"
-Put static or global variables whose size is \fIn\fR bytes or less into
-the small data area that register \f(CW\*(C`gp\*(C'\fR points to. The small data
-area can hold up to 64 kilobytes.
-.IP "\fB\-mzda=\fR\fIn\fR" 4
-.IX Item "-mzda=n"
-Put static or global variables whose size is \fIn\fR bytes or less into
-the first 32 kilobytes of memory.
-.IP "\fB\-mv850\fR" 4
-.IX Item "-mv850"
-Specify that the target processor is the V850.
-.IP "\fB\-mv850e3v5\fR" 4
-.IX Item "-mv850e3v5"
-Specify that the target processor is the V850E3V5. The preprocessor
-constant \fB_\|_v850e3v5_\|_\fR is defined if this option is used.
-.IP "\fB\-mv850e2v4\fR" 4
-.IX Item "-mv850e2v4"
-Specify that the target processor is the V850E3V5. This is an alias for
-the \fB\-mv850e3v5\fR option.
-.IP "\fB\-mv850e2v3\fR" 4
-.IX Item "-mv850e2v3"
-Specify that the target processor is the V850E2V3. The preprocessor
-constant \fB_\|_v850e2v3_\|_\fR is defined if this option is used.
-.IP "\fB\-mv850e2\fR" 4
-.IX Item "-mv850e2"
-Specify that the target processor is the V850E2. The preprocessor
-constant \fB_\|_v850e2_\|_\fR is defined if this option is used.
-.IP "\fB\-mv850e1\fR" 4
-.IX Item "-mv850e1"
-Specify that the target processor is the V850E1. The preprocessor
-constants \fB_\|_v850e1_\|_\fR and \fB_\|_v850e_\|_\fR are defined if
-this option is used.
-.IP "\fB\-mv850es\fR" 4
-.IX Item "-mv850es"
-Specify that the target processor is the V850ES. This is an alias for
-the \fB\-mv850e1\fR option.
-.IP "\fB\-mv850e\fR" 4
-.IX Item "-mv850e"
-Specify that the target processor is the V850E. The preprocessor
-constant \fB_\|_v850e_\|_\fR is defined if this option is used.
-.Sp
-If neither \fB\-mv850\fR nor \fB\-mv850e\fR nor \fB\-mv850e1\fR
-nor \fB\-mv850e2\fR nor \fB\-mv850e2v3\fR nor \fB\-mv850e3v5\fR
-are defined then a default target processor is chosen and the
-relevant \fB_\|_v850*_\|_\fR preprocessor constant is defined.
-.Sp
-The preprocessor constants \fB_\|_v850\fR and \fB_\|_v851_\|_\fR are always
-defined, regardless of which processor variant is the target.
-.IP "\fB\-mdisable\-callt\fR" 4
-.IX Item "-mdisable-callt"
-.PD 0
-.IP "\fB\-mno\-disable\-callt\fR" 4
-.IX Item "-mno-disable-callt"
-.PD
-This option suppresses generation of the \f(CW\*(C`CALLT\*(C'\fR instruction for the
-v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
-architecture.
-.Sp
-This option is enabled by default when the \s-1RH850 ABI\s0 is
-in use (see \fB\-mrh850\-abi\fR), and disabled by default when the
-\&\s-1GCC ABI\s0 is in use. If \f(CW\*(C`CALLT\*(C'\fR instructions are being generated
-then the C preprocessor symbol \f(CW\*(C`_\|_V850_CALLT_\|_\*(C'\fR will be defined.
-.IP "\fB\-mrelax\fR" 4
-.IX Item "-mrelax"
-.PD 0
-.IP "\fB\-mno\-relax\fR" 4
-.IX Item "-mno-relax"
-.PD
-Pass on (or do not pass on) the \fB\-mrelax\fR command line option
-to the assembler.
-.IP "\fB\-mlong\-jumps\fR" 4
-.IX Item "-mlong-jumps"
-.PD 0
-.IP "\fB\-mno\-long\-jumps\fR" 4
-.IX Item "-mno-long-jumps"
-.PD
-Disable (or re-enable) the generation of PC-relative jump instructions.
-.IP "\fB\-msoft\-float\fR" 4
-.IX Item "-msoft-float"
-.PD 0
-.IP "\fB\-mhard\-float\fR" 4
-.IX Item "-mhard-float"
-.PD
-Disable (or re-enable) the generation of hardware floating point
-instructions. This option is only significant when the target
-architecture is \fBV850E2V3\fR or higher. If hardware floating point
-instructions are being generated then the C preprocessor symbol
-\&\f(CW\*(C`_\|_FPU_OK_\|_\*(C'\fR will be defined, otherwise the symbol
-\&\f(CW\*(C`_\|_NO_FPU_\|_\*(C'\fR will be defined.
-.IP "\fB\-mloop\fR" 4
-.IX Item "-mloop"
-Enables the use of the e3v5 \s-1LOOP\s0 instruction. The use of this
-instruction is not enabled by default when the e3v5 architecture is
-selected because its use is still experimental.
-.IP "\fB\-mrh850\-abi\fR" 4
-.IX Item "-mrh850-abi"
-.PD 0
-.IP "\fB\-mghs\fR" 4
-.IX Item "-mghs"
-.PD
-Enables support for the \s-1RH850\s0 version of the V850 \s-1ABI. \s0 This is the
-default. With this version of the \s-1ABI\s0 the following rules apply:
-.RS 4
-.IP "\(bu" 4
-Integer sized structures and unions are returned via a memory pointer
-rather than a register.
-.IP "\(bu" 4
-Large structures and unions (more than 8 bytes in size) are passed by
-value.
-.IP "\(bu" 4
-Functions are aligned to 16\-bit boundaries.
-.IP "\(bu" 4
-The \fB\-m8byte\-align\fR command line option is supported.
-.IP "\(bu" 4
-The \fB\-mdisable\-callt\fR command line option is enabled by
-default. The \fB\-mno\-disable\-callt\fR command line option is not
-supported.
-.RE
-.RS 4
-.Sp
-When this version of the \s-1ABI\s0 is enabled the C preprocessor symbol
-\&\f(CW\*(C`_\|_V850_RH850_ABI_\|_\*(C'\fR is defined.
-.RE
-.IP "\fB\-mgcc\-abi\fR" 4
-.IX Item "-mgcc-abi"
-Enables support for the old \s-1GCC\s0 version of the V850 \s-1ABI. \s0 With this
-version of the \s-1ABI\s0 the following rules apply:
-.RS 4
-.IP "\(bu" 4
-Integer sized structures and unions are returned in register \f(CW\*(C`r10\*(C'\fR.
-.IP "\(bu" 4
-Large structures and unions (more than 8 bytes in size) are passed by
-reference.
-.IP "\(bu" 4
-Functions are aligned to 32\-bit boundaries, unless optimizing for
-size.
-.IP "\(bu" 4
-The \fB\-m8byte\-align\fR command line option is not supported.
-.IP "\(bu" 4
-The \fB\-mdisable\-callt\fR command line option is supported but not
-enabled by default.
-.RE
-.RS 4
-.Sp
-When this version of the \s-1ABI\s0 is enabled the C preprocessor symbol
-\&\f(CW\*(C`_\|_V850_GCC_ABI_\|_\*(C'\fR is defined.
-.RE
-.IP "\fB\-m8byte\-align\fR" 4
-.IX Item "-m8byte-align"
-.PD 0
-.IP "\fB\-mno\-8byte\-align\fR" 4
-.IX Item "-mno-8byte-align"
-.PD
-Enables support for \f(CW\*(C`doubles\*(C'\fR and \f(CW\*(C`long long\*(C'\fR types to be
-aligned on 8\-byte boundaries. The default is to restrict the
-alignment of all objects to at most 4\-bytes. When
-\&\fB\-m8byte\-align\fR is in effect the C preprocessor symbol
-\&\f(CW\*(C`_\|_V850_8BYTE_ALIGN_\|_\*(C'\fR will be defined.
-.IP "\fB\-mbig\-switch\fR" 4
-.IX Item "-mbig-switch"
-Generate code suitable for big switch tables. Use this option only if
-the assembler/linker complain about out of range branches within a switch
-table.
-.IP "\fB\-mapp\-regs\fR" 4
-.IX Item "-mapp-regs"
-This option causes r2 and r5 to be used in the code generated by
-the compiler. This setting is the default.
-.IP "\fB\-mno\-app\-regs\fR" 4
-.IX Item "-mno-app-regs"
-This option causes r2 and r5 to be treated as fixed registers.
-.PP
-\fI\s-1VAX\s0 Options\fR
-.IX Subsection "VAX Options"
-.PP
-These \fB\-m\fR options are defined for the \s-1VAX:\s0
-.IP "\fB\-munix\fR" 4
-.IX Item "-munix"
-Do not output certain jump instructions (\f(CW\*(C`aobleq\*(C'\fR and so on)
-that the Unix assembler for the \s-1VAX\s0 cannot handle across long
-ranges.
-.IP "\fB\-mgnu\fR" 4
-.IX Item "-mgnu"
-Do output those jump instructions, on the assumption that the
-\&\s-1GNU\s0 assembler is being used.
-.IP "\fB\-mg\fR" 4
-.IX Item "-mg"
-Output code for G\-format floating-point numbers instead of D\-format.
-.PP
-\fI\s-1VMS\s0 Options\fR
-.IX Subsection "VMS Options"
-.PP
-These \fB\-m\fR options are defined for the \s-1VMS\s0 implementations:
-.IP "\fB\-mvms\-return\-codes\fR" 4
-.IX Item "-mvms-return-codes"
-Return \s-1VMS\s0 condition codes from \f(CW\*(C`main\*(C'\fR. The default is to return POSIX-style
-condition (e.g. error) codes.
-.IP "\fB\-mdebug\-main=\fR\fIprefix\fR" 4
-.IX Item "-mdebug-main=prefix"
-Flag the first routine whose name starts with \fIprefix\fR as the main
-routine for the debugger.
-.IP "\fB\-mmalloc64\fR" 4
-.IX Item "-mmalloc64"
-Default to 64\-bit memory allocation routines.
-.IP "\fB\-mpointer\-size=\fR\fIsize\fR" 4
-.IX Item "-mpointer-size=size"
-Set the default size of pointers. Possible options for \fIsize\fR are
-\&\fB32\fR or \fBshort\fR for 32 bit pointers, \fB64\fR or \fBlong\fR
-for 64 bit pointers, and \fBno\fR for supporting only 32 bit pointers.
-The later option disables \f(CW\*(C`pragma pointer_size\*(C'\fR.
-.PP
-\fIVxWorks Options\fR
-.IX Subsection "VxWorks Options"
-.PP
-The options in this section are defined for all VxWorks targets.
-Options specific to the target hardware are listed with the other
-options for that target.
-.IP "\fB\-mrtp\fR" 4
-.IX Item "-mrtp"
-\&\s-1GCC\s0 can generate code for both VxWorks kernels and real time processes
-(RTPs). This option switches from the former to the latter. It also
-defines the preprocessor macro \f(CW\*(C`_\|_RTP_\|_\*(C'\fR.
-.IP "\fB\-non\-static\fR" 4
-.IX Item "-non-static"
-Link an \s-1RTP\s0 executable against shared libraries rather than static
-libraries. The options \fB\-static\fR and \fB\-shared\fR can
-also be used for RTPs; \fB\-static\fR
-is the default.
-.IP "\fB\-Bstatic\fR" 4
-.IX Item "-Bstatic"
-.PD 0
-.IP "\fB\-Bdynamic\fR" 4
-.IX Item "-Bdynamic"
-.PD
-These options are passed down to the linker. They are defined for
-compatibility with Diab.
-.IP "\fB\-Xbind\-lazy\fR" 4
-.IX Item "-Xbind-lazy"
-Enable lazy binding of function calls. This option is equivalent to
-\&\fB\-Wl,\-z,now\fR and is defined for compatibility with Diab.
-.IP "\fB\-Xbind\-now\fR" 4
-.IX Item "-Xbind-now"
-Disable lazy binding of function calls. This option is the default and
-is defined for compatibility with Diab.
-.PP
-\fIx86\-64 Options\fR
-.IX Subsection "x86-64 Options"
-.PP
-These are listed under
-.PP
-\fIXstormy16 Options\fR
-.IX Subsection "Xstormy16 Options"
-.PP
-These options are defined for Xstormy16:
-.IP "\fB\-msim\fR" 4
-.IX Item "-msim"
-Choose startup files and linker script suitable for the simulator.
-.PP
-\fIXtensa Options\fR
-.IX Subsection "Xtensa Options"
-.PP
-These options are supported for Xtensa targets:
-.IP "\fB\-mconst16\fR" 4
-.IX Item "-mconst16"
-.PD 0
-.IP "\fB\-mno\-const16\fR" 4
-.IX Item "-mno-const16"
-.PD
-Enable or disable use of \f(CW\*(C`CONST16\*(C'\fR instructions for loading
-constant values. The \f(CW\*(C`CONST16\*(C'\fR instruction is currently not a
-standard option from Tensilica. When enabled, \f(CW\*(C`CONST16\*(C'\fR
-instructions are always used in place of the standard \f(CW\*(C`L32R\*(C'\fR
-instructions. The use of \f(CW\*(C`CONST16\*(C'\fR is enabled by default only if
-the \f(CW\*(C`L32R\*(C'\fR instruction is not available.
-.IP "\fB\-mfused\-madd\fR" 4
-.IX Item "-mfused-madd"
-.PD 0
-.IP "\fB\-mno\-fused\-madd\fR" 4
-.IX Item "-mno-fused-madd"
-.PD
-Enable or disable use of fused multiply/add and multiply/subtract
-instructions in the floating-point option. This has no effect if the
-floating-point option is not also enabled. Disabling fused multiply/add
-and multiply/subtract instructions forces the compiler to use separate
-instructions for the multiply and add/subtract operations. This may be
-desirable in some cases where strict \s-1IEEE\s0 754\-compliant results are
-required: the fused multiply add/subtract instructions do not round the
-intermediate result, thereby producing results with \fImore\fR bits of
-precision than specified by the \s-1IEEE\s0 standard. Disabling fused multiply
-add/subtract instructions also ensures that the program output is not
-sensitive to the compiler's ability to combine multiply and add/subtract
-operations.
-.IP "\fB\-mserialize\-volatile\fR" 4
-.IX Item "-mserialize-volatile"
-.PD 0
-.IP "\fB\-mno\-serialize\-volatile\fR" 4
-.IX Item "-mno-serialize-volatile"
-.PD
-When this option is enabled, \s-1GCC\s0 inserts \f(CW\*(C`MEMW\*(C'\fR instructions before
-\&\f(CW\*(C`volatile\*(C'\fR memory references to guarantee sequential consistency.
-The default is \fB\-mserialize\-volatile\fR. Use
-\&\fB\-mno\-serialize\-volatile\fR to omit the \f(CW\*(C`MEMW\*(C'\fR instructions.
-.IP "\fB\-mforce\-no\-pic\fR" 4
-.IX Item "-mforce-no-pic"
-For targets, like GNU/Linux, where all user-mode Xtensa code must be
-position-independent code (\s-1PIC\s0), this option disables \s-1PIC\s0 for compiling
-kernel code.
-.IP "\fB\-mtext\-section\-literals\fR" 4
-.IX Item "-mtext-section-literals"
-.PD 0
-.IP "\fB\-mno\-text\-section\-literals\fR" 4
-.IX Item "-mno-text-section-literals"
-.PD
-Control the treatment of literal pools. The default is
-\&\fB\-mno\-text\-section\-literals\fR, which places literals in a separate
-section in the output file. This allows the literal pool to be placed
-in a data \s-1RAM/ROM,\s0 and it also allows the linker to combine literal
-pools from separate object files to remove redundant literals and
-improve code size. With \fB\-mtext\-section\-literals\fR, the literals
-are interspersed in the text section in order to keep them as close as
-possible to their references. This may be necessary for large assembly
-files.
-.IP "\fB\-mtarget\-align\fR" 4
-.IX Item "-mtarget-align"
-.PD 0
-.IP "\fB\-mno\-target\-align\fR" 4
-.IX Item "-mno-target-align"
-.PD
-When this option is enabled, \s-1GCC\s0 instructs the assembler to
-automatically align instructions to reduce branch penalties at the
-expense of some code density. The assembler attempts to widen density
-instructions to align branch targets and the instructions following call
-instructions. If there are not enough preceding safe density
-instructions to align a target, no widening is performed. The
-default is \fB\-mtarget\-align\fR. These options do not affect the
-treatment of auto-aligned instructions like \f(CW\*(C`LOOP\*(C'\fR, which the
-assembler always aligns, either by widening density instructions or
-by inserting \s-1NOP\s0 instructions.
-.IP "\fB\-mlongcalls\fR" 4
-.IX Item "-mlongcalls"
-.PD 0
-.IP "\fB\-mno\-longcalls\fR" 4
-.IX Item "-mno-longcalls"
-.PD
-When this option is enabled, \s-1GCC\s0 instructs the assembler to translate
-direct calls to indirect calls unless it can determine that the target
-of a direct call is in the range allowed by the call instruction. This
-translation typically occurs for calls to functions in other source
-files. Specifically, the assembler translates a direct \f(CW\*(C`CALL\*(C'\fR
-instruction into an \f(CW\*(C`L32R\*(C'\fR followed by a \f(CW\*(C`CALLX\*(C'\fR instruction.
-The default is \fB\-mno\-longcalls\fR. This option should be used in
-programs where the call target can potentially be out of range. This
-option is implemented in the assembler, not the compiler, so the
-assembly code generated by \s-1GCC\s0 still shows direct call
-instructions\-\-\-look at the disassembled object code to see the actual
-instructions. Note that the assembler uses an indirect call for
-every cross-file call, not just those that really are out of range.
-.PP
-\fIzSeries Options\fR
-.IX Subsection "zSeries Options"
-.PP
-These are listed under
-.SS "Options for Code Generation Conventions"
-.IX Subsection "Options for Code Generation Conventions"
-These machine-independent options control the interface conventions
-used in code generation.
-.PP
-Most of them have both positive and negative forms; the negative form
-of \fB\-ffoo\fR is \fB\-fno\-foo\fR. In the table below, only
-one of the forms is listed\-\-\-the one that is not the default. You
-can figure out the other form by either removing \fBno\-\fR or adding
-it.
-.IP "\fB\-fbounds\-check\fR" 4
-.IX Item "-fbounds-check"
-For front ends that support it, generate additional code to check that
-indices used to access arrays are within the declared range. This is
-currently only supported by the Java and Fortran front ends, where
-this option defaults to true and false respectively.
-.IP "\fB\-fstack\-reuse=\fR\fIreuse-level\fR" 4
-.IX Item "-fstack-reuse=reuse-level"
-This option controls stack space reuse for user declared local/auto variables
-and compiler generated temporaries. \fIreuse_level\fR can be \fBall\fR,
-\&\fBnamed_vars\fR, or \fBnone\fR. \fBall\fR enables stack reuse for all
-local variables and temporaries, \fBnamed_vars\fR enables the reuse only for
-user defined local variables with names, and \fBnone\fR disables stack reuse
-completely. The default value is \fBall\fR. The option is needed when the
-program extends the lifetime of a scoped local variable or a compiler generated
-temporary beyond the end point defined by the language. When a lifetime of
-a variable ends, and if the variable lives in memory, the optimizing compiler
-has the freedom to reuse its stack space with other temporaries or scoped
-local variables whose live range does not overlap with it. Legacy code extending
-local lifetime will likely to break with the stack reuse optimization.
-.Sp
-For example,
-.Sp
-.Vb 3
-\& int *p;
-\& {
-\& int local1;
-\&
-\& p = &local1;
-\& local1 = 10;
-\& ....
-\& }
-\& {
-\& int local2;
-\& local2 = 20;
-\& ...
-\& }
-\&
-\& if (*p == 10) // out of scope use of local1
-\& {
-\&
-\& }
-.Ve
-.Sp
-Another example:
-.Sp
-.Vb 6
-\& struct A
-\& {
-\& A(int k) : i(k), j(k) { }
-\& int i;
-\& int j;
-\& };
-\&
-\& A *ap;
-\&
-\& void foo(const A& ar)
-\& {
-\& ap = &ar;
-\& }
-\&
-\& void bar()
-\& {
-\& foo(A(10)); // temp object\*(Aqs lifetime ends when foo returns
-\&
-\& {
-\& A a(20);
-\& ....
-\& }
-\& ap\->i+= 10; // ap references out of scope temp whose space
-\& // is reused with a. What is the value of ap\->i?
-\& }
-.Ve
-.Sp
-The lifetime of a compiler generated temporary is well defined by the \*(C+
-standard. When a lifetime of a temporary ends, and if the temporary lives
-in memory, the optimizing compiler has the freedom to reuse its stack
-space with other temporaries or scoped local variables whose live range
-does not overlap with it. However some of the legacy code relies on
-the behavior of older compilers in which temporaries' stack space is
-not reused, the aggressive stack reuse can lead to runtime errors. This
-option is used to control the temporary stack reuse optimization.
-.IP "\fB\-ftrapv\fR" 4
-.IX Item "-ftrapv"
-This option generates traps for signed overflow on addition, subtraction,
-multiplication operations.
-.IP "\fB\-fwrapv\fR" 4
-.IX Item "-fwrapv"
-This option instructs the compiler to assume that signed arithmetic
-overflow of addition, subtraction and multiplication wraps around
-using twos-complement representation. This flag enables some optimizations
-and disables others. This option is enabled by default for the Java
-front end, as required by the Java language specification.
-.IP "\fB\-fexceptions\fR" 4
-.IX Item "-fexceptions"
-Enable exception handling. Generates extra code needed to propagate
-exceptions. For some targets, this implies \s-1GCC\s0 generates frame
-unwind information for all functions, which can produce significant data
-size overhead, although it does not affect execution. If you do not
-specify this option, \s-1GCC\s0 enables it by default for languages like
-\&\*(C+ that normally require exception handling, and disables it for
-languages like C that do not normally require it. However, you may need
-to enable this option when compiling C code that needs to interoperate
-properly with exception handlers written in \*(C+. You may also wish to
-disable this option if you are compiling older \*(C+ programs that don't
-use exception handling.
-.IP "\fB\-fnon\-call\-exceptions\fR" 4
-.IX Item "-fnon-call-exceptions"
-Generate code that allows trapping instructions to throw exceptions.
-Note that this requires platform-specific runtime support that does
-not exist everywhere. Moreover, it only allows \fItrapping\fR
-instructions to throw exceptions, i.e. memory references or floating-point
-instructions. It does not allow exceptions to be thrown from
-arbitrary signal handlers such as \f(CW\*(C`SIGALRM\*(C'\fR.
-.IP "\fB\-fdelete\-dead\-exceptions\fR" 4
-.IX Item "-fdelete-dead-exceptions"
-Consider that instructions that may throw exceptions but don't otherwise
-contribute to the execution of the program can be optimized away.
-This option is enabled by default for the Ada front end, as permitted by
-the Ada language specification.
-Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
-.IP "\fB\-funwind\-tables\fR" 4
-.IX Item "-funwind-tables"
-Similar to \fB\-fexceptions\fR, except that it just generates any needed
-static data, but does not affect the generated code in any other way.
-You normally do not need to enable this option; instead, a language processor
-that needs this handling enables it on your behalf.
-.IP "\fB\-fasynchronous\-unwind\-tables\fR" 4
-.IX Item "-fasynchronous-unwind-tables"
-Generate unwind table in \s-1DWARF 2\s0 format, if supported by target machine. The
-table is exact at each instruction boundary, so it can be used for stack
-unwinding from asynchronous events (such as debugger or garbage collector).
-.IP "\fB\-fno\-gnu\-unique\fR" 4
-.IX Item "-fno-gnu-unique"
-On systems with recent \s-1GNU\s0 assembler and C library, the \*(C+ compiler
-uses the \f(CW\*(C`STB_GNU_UNIQUE\*(C'\fR binding to make sure that definitions
-of template static data members and static local variables in inline
-functions are unique even in the presence of \f(CW\*(C`RTLD_LOCAL\*(C'\fR; this
-is necessary to avoid problems with a library used by two different
-\&\f(CW\*(C`RTLD_LOCAL\*(C'\fR plugins depending on a definition in one of them and
-therefore disagreeing with the other one about the binding of the
-symbol. But this causes \f(CW\*(C`dlclose\*(C'\fR to be ignored for affected
-DSOs; if your program relies on reinitialization of a \s-1DSO\s0 via
-\&\f(CW\*(C`dlclose\*(C'\fR and \f(CW\*(C`dlopen\*(C'\fR, you can use
-\&\fB\-fno\-gnu\-unique\fR.
-.IP "\fB\-fpcc\-struct\-return\fR" 4
-.IX Item "-fpcc-struct-return"
-Return \*(L"short\*(R" \f(CW\*(C`struct\*(C'\fR and \f(CW\*(C`union\*(C'\fR values in memory like
-longer ones, rather than in registers. This convention is less
-efficient, but it has the advantage of allowing intercallability between
-GCC-compiled files and files compiled with other compilers, particularly
-the Portable C Compiler (pcc).
-.Sp
-The precise convention for returning structures in memory depends
-on the target configuration macros.
-.Sp
-Short structures and unions are those whose size and alignment match
-that of some integer type.
-.Sp
-\&\fBWarning:\fR code compiled with the \fB\-fpcc\-struct\-return\fR
-switch is not binary compatible with code compiled with the
-\&\fB\-freg\-struct\-return\fR switch.
-Use it to conform to a non-default application binary interface.
-.IP "\fB\-freg\-struct\-return\fR" 4
-.IX Item "-freg-struct-return"
-Return \f(CW\*(C`struct\*(C'\fR and \f(CW\*(C`union\*(C'\fR values in registers when possible.
-This is more efficient for small structures than
-\&\fB\-fpcc\-struct\-return\fR.
-.Sp
-If you specify neither \fB\-fpcc\-struct\-return\fR nor
-\&\fB\-freg\-struct\-return\fR, \s-1GCC\s0 defaults to whichever convention is
-standard for the target. If there is no standard convention, \s-1GCC\s0
-defaults to \fB\-fpcc\-struct\-return\fR, except on targets where \s-1GCC\s0 is
-the principal compiler. In those cases, we can choose the standard, and
-we chose the more efficient register return alternative.
-.Sp
-\&\fBWarning:\fR code compiled with the \fB\-freg\-struct\-return\fR
-switch is not binary compatible with code compiled with the
-\&\fB\-fpcc\-struct\-return\fR switch.
-Use it to conform to a non-default application binary interface.
-.IP "\fB\-fshort\-enums\fR" 4
-.IX Item "-fshort-enums"
-Allocate to an \f(CW\*(C`enum\*(C'\fR type only as many bytes as it needs for the
-declared range of possible values. Specifically, the \f(CW\*(C`enum\*(C'\fR type
-is equivalent to the smallest integer type that has enough room.
-.Sp
-\&\fBWarning:\fR the \fB\-fshort\-enums\fR switch causes \s-1GCC\s0 to generate
-code that is not binary compatible with code generated without that switch.
-Use it to conform to a non-default application binary interface.
-.IP "\fB\-fshort\-double\fR" 4
-.IX Item "-fshort-double"
-Use the same size for \f(CW\*(C`double\*(C'\fR as for \f(CW\*(C`float\*(C'\fR.
-.Sp
-\&\fBWarning:\fR the \fB\-fshort\-double\fR switch causes \s-1GCC\s0 to generate
-code that is not binary compatible with code generated without that switch.
-Use it to conform to a non-default application binary interface.
-.IP "\fB\-fshort\-wchar\fR" 4
-.IX Item "-fshort-wchar"
-Override the underlying type for \fBwchar_t\fR to be \fBshort
-unsigned int\fR instead of the default for the target. This option is
-useful for building programs to run under \s-1WINE.\s0
-.Sp
-\&\fBWarning:\fR the \fB\-fshort\-wchar\fR switch causes \s-1GCC\s0 to generate
-code that is not binary compatible with code generated without that switch.
-Use it to conform to a non-default application binary interface.
-.IP "\fB\-fno\-common\fR" 4
-.IX Item "-fno-common"
-In C code, controls the placement of uninitialized global variables.
-Unix C compilers have traditionally permitted multiple definitions of
-such variables in different compilation units by placing the variables
-in a common block.
-This is the behavior specified by \fB\-fcommon\fR, and is the default
-for \s-1GCC\s0 on most targets.
-On the other hand, this behavior is not required by \s-1ISO C,\s0 and on some
-targets may carry a speed or code size penalty on variable references.
-The \fB\-fno\-common\fR option specifies that the compiler should place
-uninitialized global variables in the data section of the object file,
-rather than generating them as common blocks.
-This has the effect that if the same variable is declared
-(without \f(CW\*(C`extern\*(C'\fR) in two different compilations,
-you get a multiple-definition error when you link them.
-In this case, you must compile with \fB\-fcommon\fR instead.
-Compiling with \fB\-fno\-common\fR is useful on targets for which
-it provides better performance, or if you wish to verify that the
-program will work on other systems that always treat uninitialized
-variable declarations this way.
-.IP "\fB\-fno\-ident\fR" 4
-.IX Item "-fno-ident"
-Ignore the \fB#ident\fR directive.
-.IP "\fB\-finhibit\-size\-directive\fR" 4
-.IX Item "-finhibit-size-directive"
-Don't output a \f(CW\*(C`.size\*(C'\fR assembler directive, or anything else that
-would cause trouble if the function is split in the middle, and the
-two halves are placed at locations far apart in memory. This option is
-used when compiling \fIcrtstuff.c\fR; you should not need to use it
-for anything else.
-.IP "\fB\-fverbose\-asm\fR" 4
-.IX Item "-fverbose-asm"
-Put extra commentary information in the generated assembly code to
-make it more readable. This option is generally only of use to those
-who actually need to read the generated assembly code (perhaps while
-debugging the compiler itself).
-.Sp
-\&\fB\-fno\-verbose\-asm\fR, the default, causes the
-extra information to be omitted and is useful when comparing two assembler
-files.
-.IP "\fB\-frecord\-gcc\-switches\fR" 4
-.IX Item "-frecord-gcc-switches"
-This switch causes the command line used to invoke the
-compiler to be recorded into the object file that is being created.
-This switch is only implemented on some targets and the exact format
-of the recording is target and binary file format dependent, but it
-usually takes the form of a section containing \s-1ASCII\s0 text. This
-switch is related to the \fB\-fverbose\-asm\fR switch, but that
-switch only records information in the assembler output file as
-comments, so it never reaches the object file.
-See also \fB\-grecord\-gcc\-switches\fR for another
-way of storing compiler options into the object file.
-.IP "\fB\-fpic\fR" 4
-.IX Item "-fpic"
-Generate position-independent code (\s-1PIC\s0) suitable for use in a shared
-library, if supported for the target machine. Such code accesses all
-constant addresses through a global offset table (\s-1GOT\s0). The dynamic
-loader resolves the \s-1GOT\s0 entries when the program starts (the dynamic
-loader is not part of \s-1GCC\s0; it is part of the operating system). If
-the \s-1GOT\s0 size for the linked executable exceeds a machine-specific
-maximum size, you get an error message from the linker indicating that
-\&\fB\-fpic\fR does not work; in that case, recompile with \fB\-fPIC\fR
-instead. (These maximums are 8k on the \s-1SPARC\s0 and 32k
-on the m68k and \s-1RS/6000. \s0 The 386 has no such limit.)
-.Sp
-Position-independent code requires special support, and therefore works
-only on certain machines. For the 386, \s-1GCC\s0 supports \s-1PIC\s0 for System V
-but not for the Sun 386i. Code generated for the \s-1IBM RS/6000\s0 is always
-position-independent.
-.Sp
-When this flag is set, the macros \f(CW\*(C`_\|_pic_\|_\*(C'\fR and \f(CW\*(C`_\|_PIC_\|_\*(C'\fR
-are defined to 1.
-.IP "\fB\-fPIC\fR" 4
-.IX Item "-fPIC"
-If supported for the target machine, emit position-independent code,
-suitable for dynamic linking and avoiding any limit on the size of the
-global offset table. This option makes a difference on the m68k,
-PowerPC and \s-1SPARC.\s0
-.Sp
-Position-independent code requires special support, and therefore works
-only on certain machines.
-.Sp
-When this flag is set, the macros \f(CW\*(C`_\|_pic_\|_\*(C'\fR and \f(CW\*(C`_\|_PIC_\|_\*(C'\fR
-are defined to 2.
-.IP "\fB\-fpie\fR" 4
-.IX Item "-fpie"
-.PD 0
-.IP "\fB\-fPIE\fR" 4
-.IX Item "-fPIE"
-.PD
-These options are similar to \fB\-fpic\fR and \fB\-fPIC\fR, but
-generated position independent code can be only linked into executables.
-Usually these options are used when \fB\-pie\fR \s-1GCC\s0 option is
-used during linking.
-.Sp
-\&\fB\-fpie\fR and \fB\-fPIE\fR both define the macros
-\&\f(CW\*(C`_\|_pie_\|_\*(C'\fR and \f(CW\*(C`_\|_PIE_\|_\*(C'\fR. The macros have the value 1
-for \fB\-fpie\fR and 2 for \fB\-fPIE\fR.
-.IP "\fB\-fno\-jump\-tables\fR" 4
-.IX Item "-fno-jump-tables"
-Do not use jump tables for switch statements even where it would be
-more efficient than other code generation strategies. This option is
-of use in conjunction with \fB\-fpic\fR or \fB\-fPIC\fR for
-building code that forms part of a dynamic linker and cannot
-reference the address of a jump table. On some targets, jump tables
-do not require a \s-1GOT\s0 and this option is not needed.
-.IP "\fB\-ffixed\-\fR\fIreg\fR" 4
-.IX Item "-ffixed-reg"
-Treat the register named \fIreg\fR as a fixed register; generated code
-should never refer to it (except perhaps as a stack pointer, frame
-pointer or in some other fixed role).
-.Sp
-\&\fIreg\fR must be the name of a register. The register names accepted
-are machine-specific and are defined in the \f(CW\*(C`REGISTER_NAMES\*(C'\fR
-macro in the machine description macro file.
-.Sp
-This flag does not have a negative form, because it specifies a
-three-way choice.
-.IP "\fB\-fcall\-used\-\fR\fIreg\fR" 4
-.IX Item "-fcall-used-reg"
-Treat the register named \fIreg\fR as an allocable register that is
-clobbered by function calls. It may be allocated for temporaries or
-variables that do not live across a call. Functions compiled this way
-do not save and restore the register \fIreg\fR.
-.Sp
-It is an error to use this flag with the frame pointer or stack pointer.
-Use of this flag for other registers that have fixed pervasive roles in
-the machine's execution model produces disastrous results.
-.Sp
-This flag does not have a negative form, because it specifies a
-three-way choice.
-.IP "\fB\-fcall\-saved\-\fR\fIreg\fR" 4
-.IX Item "-fcall-saved-reg"
-Treat the register named \fIreg\fR as an allocable register saved by
-functions. It may be allocated even for temporaries or variables that
-live across a call. Functions compiled this way save and restore
-the register \fIreg\fR if they use it.
-.Sp
-It is an error to use this flag with the frame pointer or stack pointer.
-Use of this flag for other registers that have fixed pervasive roles in
-the machine's execution model produces disastrous results.
-.Sp
-A different sort of disaster results from the use of this flag for
-a register in which function values may be returned.
-.Sp
-This flag does not have a negative form, because it specifies a
-three-way choice.
-.IP "\fB\-fpack\-struct[=\fR\fIn\fR\fB]\fR" 4
-.IX Item "-fpack-struct[=n]"
-Without a value specified, pack all structure members together without
-holes. When a value is specified (which must be a small power of two), pack
-structure members according to this value, representing the maximum
-alignment (that is, objects with default alignment requirements larger than
-this are output potentially unaligned at the next fitting location.
-.Sp
-\&\fBWarning:\fR the \fB\-fpack\-struct\fR switch causes \s-1GCC\s0 to generate
-code that is not binary compatible with code generated without that switch.
-Additionally, it makes the code suboptimal.
-Use it to conform to a non-default application binary interface.
-.IP "\fB\-finstrument\-functions\fR" 4
-.IX Item "-finstrument-functions"
-Generate instrumentation calls for entry and exit to functions. Just
-after function entry and just before function exit, the following
-profiling functions are called with the address of the current
-function and its call site. (On some platforms,
-\&\f(CW\*(C`_\|_builtin_return_address\*(C'\fR does not work beyond the current
-function, so the call site information may not be available to the
-profiling functions otherwise.)
-.Sp
-.Vb 4
-\& void _\|_cyg_profile_func_enter (void *this_fn,
-\& void *call_site);
-\& void _\|_cyg_profile_func_exit (void *this_fn,
-\& void *call_site);
-.Ve
-.Sp
-The first argument is the address of the start of the current function,
-which may be looked up exactly in the symbol table.
-.Sp
-This instrumentation is also done for functions expanded inline in other
-functions. The profiling calls indicate where, conceptually, the
-inline function is entered and exited. This means that addressable
-versions of such functions must be available. If all your uses of a
-function are expanded inline, this may mean an additional expansion of
-code size. If you use \fBextern inline\fR in your C code, an
-addressable version of such functions must be provided. (This is
-normally the case anyway, but if you get lucky and the optimizer always
-expands the functions inline, you might have gotten away without
-providing static copies.)
-.Sp
-A function may be given the attribute \f(CW\*(C`no_instrument_function\*(C'\fR, in
-which case this instrumentation is not done. This can be used, for
-example, for the profiling functions listed above, high-priority
-interrupt routines, and any functions from which the profiling functions
-cannot safely be called (perhaps signal handlers, if the profiling
-routines generate output or allocate memory).
-.IP "\fB\-finstrument\-functions\-exclude\-file\-list=\fR\fIfile\fR\fB,\fR\fIfile\fR\fB,...\fR" 4
-.IX Item "-finstrument-functions-exclude-file-list=file,file,..."
-Set the list of functions that are excluded from instrumentation (see
-the description of \f(CW\*(C`\-finstrument\-functions\*(C'\fR). If the file that
-contains a function definition matches with one of \fIfile\fR, then
-that function is not instrumented. The match is done on substrings:
-if the \fIfile\fR parameter is a substring of the file name, it is
-considered to be a match.
-.Sp
-For example:
-.Sp
-.Vb 1
-\& \-finstrument\-functions\-exclude\-file\-list=/bits/stl,include/sys
-.Ve
-.Sp
-excludes any inline function defined in files whose pathnames
-contain \f(CW\*(C`/bits/stl\*(C'\fR or \f(CW\*(C`include/sys\*(C'\fR.
-.Sp
-If, for some reason, you want to include letter \f(CW\*(Aq,\*(Aq\fR in one of
-\&\fIsym\fR, write \f(CW\*(Aq,\*(Aq\fR. For example,
-\&\f(CW\*(C`\-finstrument\-functions\-exclude\-file\-list=\*(Aq,,tmp\*(Aq\*(C'\fR
-(note the single quote surrounding the option).
-.IP "\fB\-finstrument\-functions\-exclude\-function\-list=\fR\fIsym\fR\fB,\fR\fIsym\fR\fB,...\fR" 4
-.IX Item "-finstrument-functions-exclude-function-list=sym,sym,..."
-This is similar to \f(CW\*(C`\-finstrument\-functions\-exclude\-file\-list\*(C'\fR,
-but this option sets the list of function names to be excluded from
-instrumentation. The function name to be matched is its user-visible
-name, such as \f(CW\*(C`vector<int> blah(const vector<int> &)\*(C'\fR, not the
-internal mangled name (e.g., \f(CW\*(C`_Z4blahRSt6vectorIiSaIiEE\*(C'\fR). The
-match is done on substrings: if the \fIsym\fR parameter is a substring
-of the function name, it is considered to be a match. For C99 and \*(C+
-extended identifiers, the function name must be given in \s-1UTF\-8,\s0 not
-using universal character names.
-.IP "\fB\-fstack\-check\fR" 4
-.IX Item "-fstack-check"
-Generate code to verify that you do not go beyond the boundary of the
-stack. You should specify this flag if you are running in an
-environment with multiple threads, but you only rarely need to specify it in
-a single-threaded environment since stack overflow is automatically
-detected on nearly all systems if there is only one stack.
-.Sp
-Note that this switch does not actually cause checking to be done; the
-operating system or the language runtime must do that. The switch causes
-generation of code to ensure that they see the stack being extended.
-.Sp
-You can additionally specify a string parameter: \f(CW\*(C`no\*(C'\fR means no
-checking, \f(CW\*(C`generic\*(C'\fR means force the use of old-style checking,
-\&\f(CW\*(C`specific\*(C'\fR means use the best checking method and is equivalent
-to bare \fB\-fstack\-check\fR.
-.Sp
-Old-style checking is a generic mechanism that requires no specific
-target support in the compiler but comes with the following drawbacks:
-.RS 4
-.IP "1." 4
-Modified allocation strategy for large objects: they are always
-allocated dynamically if their size exceeds a fixed threshold.
-.IP "2." 4
-Fixed limit on the size of the static frame of functions: when it is
-topped by a particular function, stack checking is not reliable and
-a warning is issued by the compiler.
-.IP "3." 4
-Inefficiency: because of both the modified allocation strategy and the
-generic implementation, code performance is hampered.
-.RE
-.RS 4
-.Sp
-Note that old-style stack checking is also the fallback method for
-\&\f(CW\*(C`specific\*(C'\fR if no target support has been added in the compiler.
-.RE
-.IP "\fB\-fstack\-limit\-register=\fR\fIreg\fR" 4
-.IX Item "-fstack-limit-register=reg"
-.PD 0
-.IP "\fB\-fstack\-limit\-symbol=\fR\fIsym\fR" 4
-.IX Item "-fstack-limit-symbol=sym"
-.IP "\fB\-fno\-stack\-limit\fR" 4
-.IX Item "-fno-stack-limit"
-.PD
-Generate code to ensure that the stack does not grow beyond a certain value,
-either the value of a register or the address of a symbol. If a larger
-stack is required, a signal is raised at run time. For most targets,
-the signal is raised before the stack overruns the boundary, so
-it is possible to catch the signal without taking special precautions.
-.Sp
-For instance, if the stack starts at absolute address \fB0x80000000\fR
-and grows downwards, you can use the flags
-\&\fB\-fstack\-limit\-symbol=_\|_stack_limit\fR and
-\&\fB\-Wl,\-\-defsym,_\|_stack_limit=0x7ffe0000\fR to enforce a stack limit
-of 128KB. Note that this may only work with the \s-1GNU\s0 linker.
-.IP "\fB\-fsplit\-stack\fR" 4
-.IX Item "-fsplit-stack"
-Generate code to automatically split the stack before it overflows.
-The resulting program has a discontiguous stack which can only
-overflow if the program is unable to allocate any more memory. This
-is most useful when running threaded programs, as it is no longer
-necessary to calculate a good stack size to use for each thread. This
-is currently only implemented for the i386 and x86_64 back ends running
-GNU/Linux.
-.Sp
-When code compiled with \fB\-fsplit\-stack\fR calls code compiled
-without \fB\-fsplit\-stack\fR, there may not be much stack space
-available for the latter code to run. If compiling all code,
-including library code, with \fB\-fsplit\-stack\fR is not an option,
-then the linker can fix up these calls so that the code compiled
-without \fB\-fsplit\-stack\fR always has a large stack. Support for
-this is implemented in the gold linker in \s-1GNU\s0 binutils release 2.21
-and later.
-.IP "\fB\-fleading\-underscore\fR" 4
-.IX Item "-fleading-underscore"
-This option and its counterpart, \fB\-fno\-leading\-underscore\fR, forcibly
-change the way C symbols are represented in the object file. One use
-is to help link with legacy assembly code.
-.Sp
-\&\fBWarning:\fR the \fB\-fleading\-underscore\fR switch causes \s-1GCC\s0 to
-generate code that is not binary compatible with code generated without that
-switch. Use it to conform to a non-default application binary interface.
-Not all targets provide complete support for this switch.
-.IP "\fB\-ftls\-model=\fR\fImodel\fR" 4
-.IX Item "-ftls-model=model"
-Alter the thread-local storage model to be used.
-The \fImodel\fR argument should be one of \f(CW\*(C`global\-dynamic\*(C'\fR,
-\&\f(CW\*(C`local\-dynamic\*(C'\fR, \f(CW\*(C`initial\-exec\*(C'\fR or \f(CW\*(C`local\-exec\*(C'\fR.
-Note that the choice is subject to optimization: the compiler may use
-a more efficient model for symbols not visible outside of the translation
-unit, or if \fB\-fpic\fR is not given on the command line.
-.Sp
-The default without \fB\-fpic\fR is \f(CW\*(C`initial\-exec\*(C'\fR; with
-\&\fB\-fpic\fR the default is \f(CW\*(C`global\-dynamic\*(C'\fR.
-.IP "\fB\-fvisibility=\fR\fIdefault|internal|hidden|protected\fR" 4
-.IX Item "-fvisibility=default|internal|hidden|protected"
-Set the default \s-1ELF\s0 image symbol visibility to the specified option\-\-\-all
-symbols are marked with this unless overridden within the code.
-Using this feature can very substantially improve linking and
-load times of shared object libraries, produce more optimized
-code, provide near-perfect \s-1API\s0 export and prevent symbol clashes.
-It is \fBstrongly\fR recommended that you use this in any shared objects
-you distribute.
-.Sp
-Despite the nomenclature, \f(CW\*(C`default\*(C'\fR always means public; i.e.,
-available to be linked against from outside the shared object.
-\&\f(CW\*(C`protected\*(C'\fR and \f(CW\*(C`internal\*(C'\fR are pretty useless in real-world
-usage so the only other commonly used option is \f(CW\*(C`hidden\*(C'\fR.
-The default if \fB\-fvisibility\fR isn't specified is
-\&\f(CW\*(C`default\*(C'\fR, i.e., make every
-symbol public\-\-\-this causes the same behavior as previous versions of
-\&\s-1GCC.\s0
-.Sp
-A good explanation of the benefits offered by ensuring \s-1ELF\s0
-symbols have the correct visibility is given by \*(L"How To Write
-Shared Libraries\*(R" by Ulrich Drepper (which can be found at
-<\fBhttp://people.redhat.com/~drepper/\fR>)\-\-\-however a superior
-solution made possible by this option to marking things hidden when
-the default is public is to make the default hidden and mark things
-public. This is the norm with DLLs on Windows and with \fB\-fvisibility=hidden\fR
-and \f(CW\*(C`_\|_attribute_\|_ ((visibility("default")))\*(C'\fR instead of
-\&\f(CW\*(C`_\|_declspec(dllexport)\*(C'\fR you get almost identical semantics with
-identical syntax. This is a great boon to those working with
-cross-platform projects.
-.Sp
-For those adding visibility support to existing code, you may find
-\&\fB#pragma \s-1GCC\s0 visibility\fR of use. This works by you enclosing
-the declarations you wish to set visibility for with (for example)
-\&\fB#pragma \s-1GCC\s0 visibility push(hidden)\fR and
-\&\fB#pragma \s-1GCC\s0 visibility pop\fR.
-Bear in mind that symbol visibility should be viewed \fBas
-part of the \s-1API\s0 interface contract\fR and thus all new code should
-always specify visibility when it is not the default; i.e., declarations
-only for use within the local \s-1DSO\s0 should \fBalways\fR be marked explicitly
-as hidden as so to avoid \s-1PLT\s0 indirection overheads\-\-\-making this
-abundantly clear also aids readability and self-documentation of the code.
-Note that due to \s-1ISO \*(C+\s0 specification requirements, \f(CW\*(C`operator new\*(C'\fR and
-\&\f(CW\*(C`operator delete\*(C'\fR must always be of default visibility.
-.Sp
-Be aware that headers from outside your project, in particular system
-headers and headers from any other library you use, may not be
-expecting to be compiled with visibility other than the default. You
-may need to explicitly say \fB#pragma \s-1GCC\s0 visibility push(default)\fR
-before including any such headers.
-.Sp
-\&\fBextern\fR declarations are not affected by \fB\-fvisibility\fR, so
-a lot of code can be recompiled with \fB\-fvisibility=hidden\fR with
-no modifications. However, this means that calls to \f(CW\*(C`extern\*(C'\fR
-functions with no explicit visibility use the \s-1PLT,\s0 so it is more
-effective to use \f(CW\*(C`_\|_attribute ((visibility))\*(C'\fR and/or
-\&\f(CW\*(C`#pragma GCC visibility\*(C'\fR to tell the compiler which \f(CW\*(C`extern\*(C'\fR
-declarations should be treated as hidden.
-.Sp
-Note that \fB\-fvisibility\fR does affect \*(C+ vague linkage
-entities. This means that, for instance, an exception class that is
-be thrown between DSOs must be explicitly marked with default
-visibility so that the \fBtype_info\fR nodes are unified between
-the DSOs.
-.Sp
-An overview of these techniques, their benefits and how to use them
-is at <\fBhttp://gcc.gnu.org/wiki/Visibility\fR>.
-.IP "\fB\-fstrict\-volatile\-bitfields\fR" 4
-.IX Item "-fstrict-volatile-bitfields"
-This option should be used if accesses to volatile bit-fields (or other
-structure fields, although the compiler usually honors those types
-anyway) should use a single access of the width of the
-field's type, aligned to a natural alignment if possible. For
-example, targets with memory-mapped peripheral registers might require
-all such accesses to be 16 bits wide; with this flag you can
-declare all peripheral bit-fields as \f(CW\*(C`unsigned short\*(C'\fR (assuming short
-is 16 bits on these targets) to force \s-1GCC\s0 to use 16\-bit accesses
-instead of, perhaps, a more efficient 32\-bit access.
-.Sp
-If this option is disabled, the compiler uses the most efficient
-instruction. In the previous example, that might be a 32\-bit load
-instruction, even though that accesses bytes that do not contain
-any portion of the bit-field, or memory-mapped registers unrelated to
-the one being updated.
-.Sp
-In some cases, such as when the \f(CW\*(C`packed\*(C'\fR attribute is applied to a
-structure field, it may not be possible to access the field with a single
-read or write that is correctly aligned for the target machine. In this
-case \s-1GCC\s0 falls back to generating multiple accesses rather than code that
-will fault or truncate the result at run time.
-.Sp
-Note: Due to restrictions of the C/\*(C+11 memory model, write accesses are
-not allowed to touch non bit-field members. It is therefore recommended
-to define all bits of the field's type as bit-field members.
-.Sp
-The default value of this option is determined by the application binary
-interface for the target processor.
-.IP "\fB\-fsync\-libcalls\fR" 4
-.IX Item "-fsync-libcalls"
-This option controls whether any out-of-line instance of the \f(CW\*(C`_\|_sync\*(C'\fR
-family of functions may be used to implement the \*(C+11 \f(CW\*(C`_\|_atomic\*(C'\fR
-family of functions.
-.Sp
-The default value of this option is enabled, thus the only useful form
-of the option is \fB\-fno\-sync\-libcalls\fR. This option is used in
-the implementation of the \fIlibatomic\fR runtime library.
-.SH "ENVIRONMENT"
-.IX Header "ENVIRONMENT"
-This section describes several environment variables that affect how \s-1GCC\s0
-operates. Some of them work by specifying directories or prefixes to use
-when searching for various kinds of files. Some are used to specify other
-aspects of the compilation environment.
-.PP
-Note that you can also specify places to search using options such as
-\&\fB\-B\fR, \fB\-I\fR and \fB\-L\fR. These
-take precedence over places specified using environment variables, which
-in turn take precedence over those specified by the configuration of \s-1GCC.\s0
-.IP "\fB\s-1LANG\s0\fR" 4
-.IX Item "LANG"
-.PD 0
-.IP "\fB\s-1LC_CTYPE\s0\fR" 4
-.IX Item "LC_CTYPE"
-.IP "\fB\s-1LC_MESSAGES\s0\fR" 4
-.IX Item "LC_MESSAGES"
-.IP "\fB\s-1LC_ALL\s0\fR" 4
-.IX Item "LC_ALL"
-.PD
-These environment variables control the way that \s-1GCC\s0 uses
-localization information which allows \s-1GCC\s0 to work with different
-national conventions. \s-1GCC\s0 inspects the locale categories
-\&\fB\s-1LC_CTYPE\s0\fR and \fB\s-1LC_MESSAGES\s0\fR if it has been configured to do
-so. These locale categories can be set to any value supported by your
-installation. A typical value is \fBen_GB.UTF\-8\fR for English in the United
-Kingdom encoded in \s-1UTF\-8.\s0
-.Sp
-The \fB\s-1LC_CTYPE\s0\fR environment variable specifies character
-classification. \s-1GCC\s0 uses it to determine the character boundaries in
-a string; this is needed for some multibyte encodings that contain quote
-and escape characters that are otherwise interpreted as a string
-end or escape.
-.Sp
-The \fB\s-1LC_MESSAGES\s0\fR environment variable specifies the language to
-use in diagnostic messages.
-.Sp
-If the \fB\s-1LC_ALL\s0\fR environment variable is set, it overrides the value
-of \fB\s-1LC_CTYPE\s0\fR and \fB\s-1LC_MESSAGES\s0\fR; otherwise, \fB\s-1LC_CTYPE\s0\fR
-and \fB\s-1LC_MESSAGES\s0\fR default to the value of the \fB\s-1LANG\s0\fR
-environment variable. If none of these variables are set, \s-1GCC\s0
-defaults to traditional C English behavior.
-.IP "\fB\s-1TMPDIR\s0\fR" 4
-.IX Item "TMPDIR"
-If \fB\s-1TMPDIR\s0\fR is set, it specifies the directory to use for temporary
-files. \s-1GCC\s0 uses temporary files to hold the output of one stage of
-compilation which is to be used as input to the next stage: for example,
-the output of the preprocessor, which is the input to the compiler
-proper.
-.IP "\fB\s-1GCC_COMPARE_DEBUG\s0\fR" 4
-.IX Item "GCC_COMPARE_DEBUG"
-Setting \fB\s-1GCC_COMPARE_DEBUG\s0\fR is nearly equivalent to passing
-\&\fB\-fcompare\-debug\fR to the compiler driver. See the documentation
-of this option for more details.
-.IP "\fB\s-1GCC_EXEC_PREFIX\s0\fR" 4
-.IX Item "GCC_EXEC_PREFIX"
-If \fB\s-1GCC_EXEC_PREFIX\s0\fR is set, it specifies a prefix to use in the
-names of the subprograms executed by the compiler. No slash is added
-when this prefix is combined with the name of a subprogram, but you can
-specify a prefix that ends with a slash if you wish.
-.Sp
-If \fB\s-1GCC_EXEC_PREFIX\s0\fR is not set, \s-1GCC\s0 attempts to figure out
-an appropriate prefix to use based on the pathname it is invoked with.
-.Sp
-If \s-1GCC\s0 cannot find the subprogram using the specified prefix, it
-tries looking in the usual places for the subprogram.
-.Sp
-The default value of \fB\s-1GCC_EXEC_PREFIX\s0\fR is
-\&\fI\fIprefix\fI/lib/gcc/\fR where \fIprefix\fR is the prefix to
-the installed compiler. In many cases \fIprefix\fR is the value
-of \f(CW\*(C`prefix\*(C'\fR when you ran the \fIconfigure\fR script.
-.Sp
-Other prefixes specified with \fB\-B\fR take precedence over this prefix.
-.Sp
-This prefix is also used for finding files such as \fIcrt0.o\fR that are
-used for linking.
-.Sp
-In addition, the prefix is used in an unusual way in finding the
-directories to search for header files. For each of the standard
-directories whose name normally begins with \fB/usr/local/lib/gcc\fR
-(more precisely, with the value of \fB\s-1GCC_INCLUDE_DIR\s0\fR), \s-1GCC\s0 tries
-replacing that beginning with the specified prefix to produce an
-alternate directory name. Thus, with \fB\-Bfoo/\fR, \s-1GCC\s0 searches
-\&\fIfoo/bar\fR just before it searches the standard directory
-\&\fI/usr/local/lib/bar\fR.
-If a standard directory begins with the configured
-\&\fIprefix\fR then the value of \fIprefix\fR is replaced by
-\&\fB\s-1GCC_EXEC_PREFIX\s0\fR when looking for header files.
-.IP "\fB\s-1COMPILER_PATH\s0\fR" 4
-.IX Item "COMPILER_PATH"
-The value of \fB\s-1COMPILER_PATH\s0\fR is a colon-separated list of
-directories, much like \fB\s-1PATH\s0\fR. \s-1GCC\s0 tries the directories thus
-specified when searching for subprograms, if it can't find the
-subprograms using \fB\s-1GCC_EXEC_PREFIX\s0\fR.
-.IP "\fB\s-1LIBRARY_PATH\s0\fR" 4
-.IX Item "LIBRARY_PATH"
-The value of \fB\s-1LIBRARY_PATH\s0\fR is a colon-separated list of
-directories, much like \fB\s-1PATH\s0\fR. When configured as a native compiler,
-\&\s-1GCC\s0 tries the directories thus specified when searching for special
-linker files, if it can't find them using \fB\s-1GCC_EXEC_PREFIX\s0\fR. Linking
-using \s-1GCC\s0 also uses these directories when searching for ordinary
-libraries for the \fB\-l\fR option (but directories specified with
-\&\fB\-L\fR come first).
-.IP "\fB\s-1LANG\s0\fR" 4
-.IX Item "LANG"
-This variable is used to pass locale information to the compiler. One way in
-which this information is used is to determine the character set to be used
-when character literals, string literals and comments are parsed in C and \*(C+.
-When the compiler is configured to allow multibyte characters,
-the following values for \fB\s-1LANG\s0\fR are recognized:
-.RS 4
-.IP "\fBC\-JIS\fR" 4
-.IX Item "C-JIS"
-Recognize \s-1JIS\s0 characters.
-.IP "\fBC\-SJIS\fR" 4
-.IX Item "C-SJIS"
-Recognize \s-1SJIS\s0 characters.
-.IP "\fBC\-EUCJP\fR" 4
-.IX Item "C-EUCJP"
-Recognize \s-1EUCJP\s0 characters.
-.RE
-.RS 4
-.Sp
-If \fB\s-1LANG\s0\fR is not defined, or if it has some other value, then the
-compiler uses \f(CW\*(C`mblen\*(C'\fR and \f(CW\*(C`mbtowc\*(C'\fR as defined by the default locale to
-recognize and translate multibyte characters.
-.RE
-.PP
-Some additional environment variables affect the behavior of the
-preprocessor.
-.IP "\fB\s-1CPATH\s0\fR" 4
-.IX Item "CPATH"
-.PD 0
-.IP "\fBC_INCLUDE_PATH\fR" 4
-.IX Item "C_INCLUDE_PATH"
-.IP "\fB\s-1CPLUS_INCLUDE_PATH\s0\fR" 4
-.IX Item "CPLUS_INCLUDE_PATH"
-.IP "\fB\s-1OBJC_INCLUDE_PATH\s0\fR" 4
-.IX Item "OBJC_INCLUDE_PATH"
-.PD
-Each variable's value is a list of directories separated by a special
-character, much like \fB\s-1PATH\s0\fR, in which to look for header files.
-The special character, \f(CW\*(C`PATH_SEPARATOR\*(C'\fR, is target-dependent and
-determined at \s-1GCC\s0 build time. For Microsoft Windows-based targets it is a
-semicolon, and for almost all other targets it is a colon.
-.Sp
-\&\fB\s-1CPATH\s0\fR specifies a list of directories to be searched as if
-specified with \fB\-I\fR, but after any paths given with \fB\-I\fR
-options on the command line. This environment variable is used
-regardless of which language is being preprocessed.
-.Sp
-The remaining environment variables apply only when preprocessing the
-particular language indicated. Each specifies a list of directories
-to be searched as if specified with \fB\-isystem\fR, but after any
-paths given with \fB\-isystem\fR options on the command line.
-.Sp
-In all these variables, an empty element instructs the compiler to
-search its current working directory. Empty elements can appear at the
-beginning or end of a path. For instance, if the value of
-\&\fB\s-1CPATH\s0\fR is \f(CW\*(C`:/special/include\*(C'\fR, that has the same
-effect as \fB\-I.\ \-I/special/include\fR.
-.IP "\fB\s-1DEPENDENCIES_OUTPUT\s0\fR" 4
-.IX Item "DEPENDENCIES_OUTPUT"
-If this variable is set, its value specifies how to output
-dependencies for Make based on the non-system header files processed
-by the compiler. System header files are ignored in the dependency
-output.
-.Sp
-The value of \fB\s-1DEPENDENCIES_OUTPUT\s0\fR can be just a file name, in
-which case the Make rules are written to that file, guessing the target
-name from the source file name. Or the value can have the form
-\&\fIfile\fR\fB \fR\fItarget\fR, in which case the rules are written to
-file \fIfile\fR using \fItarget\fR as the target name.
-.Sp
-In other words, this environment variable is equivalent to combining
-the options \fB\-MM\fR and \fB\-MF\fR,
-with an optional \fB\-MT\fR switch too.
-.IP "\fB\s-1SUNPRO_DEPENDENCIES\s0\fR" 4
-.IX Item "SUNPRO_DEPENDENCIES"
-This variable is the same as \fB\s-1DEPENDENCIES_OUTPUT\s0\fR (see above),
-except that system header files are not ignored, so it implies
-\&\fB\-M\fR rather than \fB\-MM\fR. However, the dependence on the
-main input file is omitted.
-.SH "BUGS"
-.IX Header "BUGS"
-For instructions on reporting bugs, see
-<\fBhttp://gcc.gnu.org/bugs.html\fR>.
-.SH "FOOTNOTES"
-.IX Header "FOOTNOTES"
-.IP "1." 4
-On some systems, \fBgcc \-shared\fR
-needs to build supplementary stub code for constructors to work. On
-multi-libbed systems, \fBgcc \-shared\fR must select the correct support
-libraries to link against. Failing to supply the correct flags may lead
-to subtle defects. Supplying them in cases where they are not necessary
-is innocuous.
-.SH "SEE ALSO"
-.IX Header "SEE ALSO"
-\&\fIgpl\fR\|(7), \fIgfdl\fR\|(7), \fIfsf\-funding\fR\|(7),
-\&\fIcpp\fR\|(1), \fIgcov\fR\|(1), \fIas\fR\|(1), \fIld\fR\|(1), \fIgdb\fR\|(1), \fIadb\fR\|(1), \fIdbx\fR\|(1), \fIsdb\fR\|(1)
-and the Info entries for \fIgcc\fR, \fIcpp\fR, \fIas\fR,
-\&\fIld\fR, \fIbinutils\fR and \fIgdb\fR.
-.SH "AUTHOR"
-.IX Header "AUTHOR"
-See the Info entry for \fBgcc\fR, or
-<\fBhttp://gcc.gnu.org/onlinedocs/gcc/Contributors.html\fR>,
-for contributors to \s-1GCC.\s0
-.SH "COPYRIGHT"
-.IX Header "COPYRIGHT"
-Copyright (c) 1988\-2014 Free Software Foundation, Inc.
-.PP
-Permission is granted to copy, distribute and/or modify this document
-under the terms of the \s-1GNU\s0 Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with the
-Invariant Sections being \*(L"\s-1GNU\s0 General Public License\*(R" and \*(L"Funding
-Free Software\*(R", the Front-Cover texts being (a) (see below), and with
-the Back-Cover Texts being (b) (see below). A copy of the license is
-included in the \fIgfdl\fR\|(7) man page.
-.PP
-(a) The \s-1FSF\s0's Front-Cover Text is:
-.PP
-.Vb 1
-\& A GNU Manual
-.Ve
-.PP
-(b) The \s-1FSF\s0's Back-Cover Text is:
-.PP
-.Vb 3
-\& You have freedom to copy and modify this GNU Manual, like GNU
-\& software. Copies published by the Free Software Foundation raise
-\& funds for GNU development.
-.Ve
diff --git a/gcc-4.9/gcc/doc/gcc.info b/gcc-4.9/gcc/doc/gcc.info
deleted file mode 100644
index 29f054977..000000000
--- a/gcc-4.9/gcc/doc/gcc.info
+++ /dev/null
@@ -1,56908 +0,0 @@
-This is gcc.info, produced by makeinfo version 5.1 from gcc.texi.
-
-Copyright (C) 1988-2014 Free Software Foundation, Inc.
-
- Permission is granted to copy, distribute and/or modify this document
-under the terms of the GNU Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with the
-Invariant Sections being "Funding Free Software", the Front-Cover Texts
-being (a) (see below), and with the Back-Cover Texts being (b) (see
-below). A copy of the license is included in the section entitled "GNU
-Free Documentation License".
-
- (a) The FSF's Front-Cover Text is:
-
- A GNU Manual
-
- (b) The FSF's Back-Cover Text is:
-
- You have freedom to copy and modify this GNU Manual, like GNU software.
-Copies published by the Free Software Foundation raise funds for GNU
-development.
-INFO-DIR-SECTION Software development
-START-INFO-DIR-ENTRY
-* gcc: (gcc). The GNU Compiler Collection.
-* g++: (gcc). The GNU C++ compiler.
-* gcov: (gcc) Gcov. 'gcov'--a test coverage program.
-END-INFO-DIR-ENTRY
-
- This file documents the use of the GNU compilers.
-
- Copyright (C) 1988-2014 Free Software Foundation, Inc.
-
- Permission is granted to copy, distribute and/or modify this document
-under the terms of the GNU Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with the
-Invariant Sections being "Funding Free Software", the Front-Cover Texts
-being (a) (see below), and with the Back-Cover Texts being (b) (see
-below). A copy of the license is included in the section entitled "GNU
-Free Documentation License".
-
- (a) The FSF's Front-Cover Text is:
-
- A GNU Manual
-
- (b) The FSF's Back-Cover Text is:
-
- You have freedom to copy and modify this GNU Manual, like GNU software.
-Copies published by the Free Software Foundation raise funds for GNU
-development.
-
-
-File: gcc.info, Node: Top, Next: G++ and GCC, Up: (DIR)
-
-Introduction
-************
-
-This manual documents how to use the GNU compilers, as well as their
-features and incompatibilities, and how to report bugs. It corresponds
-to the compilers (GCC) version 4.9.0. The internals of the GNU
-compilers, including how to port them to new targets and some
-information about how to write front ends for new languages, are
-documented in a separate manual. *Note Introduction: (gccint)Top.
-
-* Menu:
-
-* G++ and GCC:: You can compile C or C++ programs.
-* Standards:: Language standards supported by GCC.
-* Invoking GCC:: Command options supported by 'gcc'.
-* C Implementation:: How GCC implements the ISO C specification.
-* C++ Implementation:: How GCC implements the ISO C++ specification.
-* C Extensions:: GNU extensions to the C language family.
-* C++ Extensions:: GNU extensions to the C++ language.
-* Objective-C:: GNU Objective-C runtime features.
-* Compatibility:: Binary Compatibility
-* Gcov:: 'gcov'--a test coverage program.
-* Trouble:: If you have trouble using GCC.
-* Bugs:: How, why and where to report bugs.
-* Service:: How To Get Help with GCC
-* Contributing:: How to contribute to testing and developing GCC.
-
-* Funding:: How to help assure funding for free software.
-* GNU Project:: The GNU Project and GNU/Linux.
-
-* Copying:: GNU General Public License says
- how you can copy and share GCC.
-* GNU Free Documentation License:: How you can copy and share this manual.
-* Contributors:: People who have contributed to GCC.
-
-* Option Index:: Index to command line options.
-* Keyword Index:: Index of concepts and symbol names.
-
-
-File: gcc.info, Node: G++ and GCC, Next: Standards, Up: Top
-
-1 Programming Languages Supported by GCC
-****************************************
-
-GCC stands for "GNU Compiler Collection". GCC is an integrated
-distribution of compilers for several major programming languages.
-These languages currently include C, C++, Objective-C, Objective-C++,
-Java, Fortran, Ada, and Go.
-
- The abbreviation "GCC" has multiple meanings in common use. The
-current official meaning is "GNU Compiler Collection", which refers
-generically to the complete suite of tools. The name historically stood
-for "GNU C Compiler", and this usage is still common when the emphasis
-is on compiling C programs. Finally, the name is also used when
-speaking of the "language-independent" component of GCC: code shared
-among the compilers for all supported languages.
-
- The language-independent component of GCC includes the majority of the
-optimizers, as well as the "back ends" that generate machine code for
-various processors.
-
- The part of a compiler that is specific to a particular language is
-called the "front end". In addition to the front ends that are
-integrated components of GCC, there are several other front ends that
-are maintained separately. These support languages such as Pascal,
-Mercury, and COBOL. To use these, they must be built together with GCC
-proper.
-
- Most of the compilers for languages other than C have their own names.
-The C++ compiler is G++, the Ada compiler is GNAT, and so on. When we
-talk about compiling one of those languages, we might refer to that
-compiler by its own name, or as GCC. Either is correct.
-
- Historically, compilers for many languages, including C++ and Fortran,
-have been implemented as "preprocessors" which emit another high level
-language such as C. None of the compilers included in GCC are
-implemented this way; they all generate machine code directly. This
-sort of preprocessor should not be confused with the "C preprocessor",
-which is an integral feature of the C, C++, Objective-C and
-Objective-C++ languages.
-
-
-File: gcc.info, Node: Standards, Next: Invoking GCC, Prev: G++ and GCC, Up: Top
-
-2 Language Standards Supported by GCC
-*************************************
-
-For each language compiled by GCC for which there is a standard, GCC
-attempts to follow one or more versions of that standard, possibly with
-some exceptions, and possibly with some extensions.
-
-2.1 C language
-==============
-
-GCC supports three versions of the C standard, although support for the
-most recent version is not yet complete.
-
- The original ANSI C standard (X3.159-1989) was ratified in 1989 and
-published in 1990. This standard was ratified as an ISO standard
-(ISO/IEC 9899:1990) later in 1990. There were no technical differences
-between these publications, although the sections of the ANSI standard
-were renumbered and became clauses in the ISO standard. This standard,
-in both its forms, is commonly known as "C89", or occasionally as "C90",
-from the dates of ratification. The ANSI standard, but not the ISO
-standard, also came with a Rationale document. To select this standard
-in GCC, use one of the options '-ansi', '-std=c90' or
-'-std=iso9899:1990'; to obtain all the diagnostics required by the
-standard, you should also specify '-pedantic' (or '-pedantic-errors' if
-you want them to be errors rather than warnings). *Note Options
-Controlling C Dialect: C Dialect Options.
-
- Errors in the 1990 ISO C standard were corrected in two Technical
-Corrigenda published in 1994 and 1996. GCC does not support the
-uncorrected version.
-
- An amendment to the 1990 standard was published in 1995. This
-amendment added digraphs and '__STDC_VERSION__' to the language, but
-otherwise concerned the library. This amendment is commonly known as
-"AMD1"; the amended standard is sometimes known as "C94" or "C95". To
-select this standard in GCC, use the option '-std=iso9899:199409' (with,
-as for other standard versions, '-pedantic' to receive all required
-diagnostics).
-
- A new edition of the ISO C standard was published in 1999 as ISO/IEC
-9899:1999, and is commonly known as "C99". GCC has substantially
-complete support for this standard version; see
-<http://gcc.gnu.org/c99status.html> for details. To select this
-standard, use '-std=c99' or '-std=iso9899:1999'. (While in development,
-drafts of this standard version were referred to as "C9X".)
-
- Errors in the 1999 ISO C standard were corrected in three Technical
-Corrigenda published in 2001, 2004 and 2007. GCC does not support the
-uncorrected version.
-
- A fourth version of the C standard, known as "C11", was published in
-2011 as ISO/IEC 9899:2011. GCC has substantially complete support for
-this standard, enabled with '-std=c11' or '-std=iso9899:2011'. (While
-in development, drafts of this standard version were referred to as
-"C1X".)
-
- By default, GCC provides some extensions to the C language that on rare
-occasions conflict with the C standard. *Note Extensions to the C
-Language Family: C Extensions. Use of the '-std' options listed above
-will disable these extensions where they conflict with the C standard
-version selected. You may also select an extended version of the C
-language explicitly with '-std=gnu90' (for C90 with GNU extensions),
-'-std=gnu99' (for C99 with GNU extensions) or '-std=gnu11' (for C11 with
-GNU extensions). The default, if no C language dialect options are
-given, is '-std=gnu90'; this is intended to change to '-std=gnu11' in
-some future release. Some features that are part of the C99 standard
-are accepted as extensions in C90 mode, and some features that are part
-of the C11 standard are accepted as extensions in C90 and C99 modes.
-
- The ISO C standard defines (in clause 4) two classes of conforming
-implementation. A "conforming hosted implementation" supports the whole
-standard including all the library facilities; a "conforming
-freestanding implementation" is only required to provide certain library
-facilities: those in '<float.h>', '<limits.h>', '<stdarg.h>', and
-'<stddef.h>'; since AMD1, also those in '<iso646.h>'; since C99, also
-those in '<stdbool.h>' and '<stdint.h>'; and since C11, also those in
-'<stdalign.h>' and '<stdnoreturn.h>'. In addition, complex types, added
-in C99, are not required for freestanding implementations. The standard
-also defines two environments for programs, a "freestanding
-environment", required of all implementations and which may not have
-library facilities beyond those required of freestanding
-implementations, where the handling of program startup and termination
-are implementation-defined, and a "hosted environment", which is not
-required, in which all the library facilities are provided and startup
-is through a function 'int main (void)' or 'int main (int, char *[])'.
-An OS kernel would be a freestanding environment; a program using the
-facilities of an operating system would normally be in a hosted
-implementation.
-
- GCC aims towards being usable as a conforming freestanding
-implementation, or as the compiler for a conforming hosted
-implementation. By default, it will act as the compiler for a hosted
-implementation, defining '__STDC_HOSTED__' as '1' and presuming that
-when the names of ISO C functions are used, they have the semantics
-defined in the standard. To make it act as a conforming freestanding
-implementation for a freestanding environment, use the option
-'-ffreestanding'; it will then define '__STDC_HOSTED__' to '0' and not
-make assumptions about the meanings of function names from the standard
-library, with exceptions noted below. To build an OS kernel, you may
-well still need to make your own arrangements for linking and startup.
-*Note Options Controlling C Dialect: C Dialect Options.
-
- GCC does not provide the library facilities required only of hosted
-implementations, nor yet all the facilities required by C99 of
-freestanding implementations on all platforms; to use the facilities of
-a hosted environment, you will need to find them elsewhere (for example,
-in the GNU C library). *Note Standard Libraries: Standard Libraries.
-
- Most of the compiler support routines used by GCC are present in
-'libgcc', but there are a few exceptions. GCC requires the freestanding
-environment provide 'memcpy', 'memmove', 'memset' and 'memcmp'.
-Finally, if '__builtin_trap' is used, and the target does not implement
-the 'trap' pattern, then GCC will emit a call to 'abort'.
-
- For references to Technical Corrigenda, Rationale documents and
-information concerning the history of C that is available online, see
-<http://gcc.gnu.org/readings.html>
-
-2.2 C++ language
-================
-
-GCC supports the original ISO C++ standard (1998) and contains
-experimental support for the second ISO C++ standard (2011).
-
- The original ISO C++ standard was published as the ISO standard
-(ISO/IEC 14882:1998) and amended by a Technical Corrigenda published in
-2003 (ISO/IEC 14882:2003). These standards are referred to as C++98 and
-C++03, respectively. GCC implements the majority of C++98 ('export' is
-a notable exception) and most of the changes in C++03. To select this
-standard in GCC, use one of the options '-ansi', '-std=c++98', or
-'-std=c++03'; to obtain all the diagnostics required by the standard,
-you should also specify '-pedantic' (or '-pedantic-errors' if you want
-them to be errors rather than warnings).
-
- A revised ISO C++ standard was published in 2011 as ISO/IEC 14882:2011,
-and is referred to as C++11; before its publication it was commonly
-referred to as C++0x. C++11 contains several changes to the C++
-language, most of which have been implemented in an experimental C++11
-mode in GCC. For information regarding the C++11 features available in
-the experimental C++11 mode, see
-<http://gcc.gnu.org/projects/cxx0x.html>. To select this standard in
-GCC, use the option '-std=c++11'; to obtain all the diagnostics required
-by the standard, you should also specify '-pedantic' (or
-'-pedantic-errors' if you want them to be errors rather than warnings).
-
- More information about the C++ standards is available on the ISO C++
-committee's web site at <http://www.open-std.org/jtc1/sc22/wg21/>.
-
- By default, GCC provides some extensions to the C++ language; *Note
-Options Controlling C++ Dialect: C++ Dialect Options. Use of the '-std'
-option listed above will disable these extensions. You may also select
-an extended version of the C++ language explicitly with '-std=gnu++98'
-(for C++98 with GNU extensions) or '-std=gnu++11' (for C++11 with GNU
-extensions). The default, if no C++ language dialect options are given,
-is '-std=gnu++98'.
-
-2.3 Objective-C and Objective-C++ languages
-===========================================
-
-GCC supports "traditional" Objective-C (also known as "Objective-C 1.0")
-and contains support for the Objective-C exception and synchronization
-syntax. It has also support for a number of "Objective-C 2.0" language
-extensions, including properties, fast enumeration (only for
-Objective-C), method attributes and the @optional and @required keywords
-in protocols. GCC supports Objective-C++ and features available in
-Objective-C are also available in Objective-C++.
-
- GCC by default uses the GNU Objective-C runtime library, which is part
-of GCC and is not the same as the Apple/NeXT Objective-C runtime library
-used on Apple systems. There are a number of differences documented in
-this manual. The options '-fgnu-runtime' and '-fnext-runtime' allow you
-to switch between producing output that works with the GNU Objective-C
-runtime library and output that works with the Apple/NeXT Objective-C
-runtime library.
-
- There is no formal written standard for Objective-C or Objective-C++.
-The authoritative manual on traditional Objective-C (1.0) is
-"Object-Oriented Programming and the Objective-C Language", available at
-a number of web sites:
- * <http://www.gnustep.org/resources/documentation/ObjectivCBook.pdf>
- is the original NeXTstep document;
- * <http://objc.toodarkpark.net> is the same document in another
- format;
- *
- <http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/>
- has an updated version but make sure you search for "Object
- Oriented Programming and the Objective-C Programming Language 1.0",
- not documentation on the newer "Objective-C 2.0" language
-
- The Objective-C exception and synchronization syntax (that is, the
-keywords @try, @throw, @catch, @finally and @synchronized) is supported
-by GCC and is enabled with the option '-fobjc-exceptions'. The syntax
-is briefly documented in this manual and in the Objective-C 2.0 manuals
-from Apple.
-
- The Objective-C 2.0 language extensions and features are automatically
-enabled; they include properties (via the @property, @synthesize and
-@dynamic keywords), fast enumeration (not available in Objective-C++),
-attributes for methods (such as deprecated, noreturn, sentinel, format),
-the unused attribute for method arguments, the @package keyword for
-instance variables and the @optional and @required keywords in
-protocols. You can disable all these Objective-C 2.0 language
-extensions with the option '-fobjc-std=objc1', which causes the compiler
-to recognize the same Objective-C language syntax recognized by GCC 4.0,
-and to produce an error if one of the new features is used.
-
- GCC has currently no support for non-fragile instance variables.
-
- The authoritative manual on Objective-C 2.0 is available from Apple:
- *
- <http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/>
-
- For more information concerning the history of Objective-C that is
-available online, see <http://gcc.gnu.org/readings.html>
-
-2.4 Go language
-===============
-
-As of the GCC 4.7.1 release, GCC supports the Go 1 language standard,
-described at <http://golang.org/doc/go1.html>.
-
-2.5 References for other languages
-==================================
-
-*Note GNAT Reference Manual: (gnat_rm)Top, for information on standard
-conformance and compatibility of the Ada compiler.
-
- *Note Standards: (gfortran)Standards, for details of standards
-supported by GNU Fortran.
-
- *Note Compatibility with the Java Platform: (gcj)Compatibility, for
-details of compatibility between 'gcj' and the Java Platform.
-
-
-File: gcc.info, Node: Invoking GCC, Next: C Implementation, Prev: Standards, Up: Top
-
-3 GCC Command Options
-*********************
-
-When you invoke GCC, it normally does preprocessing, compilation,
-assembly and linking. The "overall options" allow you to stop this
-process at an intermediate stage. For example, the '-c' option says not
-to run the linker. Then the output consists of object files output by
-the assembler.
-
- Other options are passed on to one stage of processing. Some options
-control the preprocessor and others the compiler itself. Yet other
-options control the assembler and linker; most of these are not
-documented here, since you rarely need to use any of them.
-
- Most of the command-line options that you can use with GCC are useful
-for C programs; when an option is only useful with another language
-(usually C++), the explanation says so explicitly. If the description
-for a particular option does not mention a source language, you can use
-that option with all supported languages.
-
- *Note Compiling C++ Programs: Invoking G++, for a summary of special
-options for compiling C++ programs.
-
- The 'gcc' program accepts options and file names as operands. Many
-options have multi-letter names; therefore multiple single-letter
-options may _not_ be grouped: '-dv' is very different from '-d -v'.
-
- You can mix options and other arguments. For the most part, the order
-you use doesn't matter. Order does matter when you use several options
-of the same kind; for example, if you specify '-L' more than once, the
-directories are searched in the order specified. Also, the placement of
-the '-l' option is significant.
-
- Many options have long names starting with '-f' or with '-W'--for
-example, '-fmove-loop-invariants', '-Wformat' and so on. Most of these
-have both positive and negative forms; the negative form of '-ffoo' is
-'-fno-foo'. This manual documents only one of these two forms,
-whichever one is not the default.
-
- *Note Option Index::, for an index to GCC's options.
-
-* Menu:
-
-* Option Summary:: Brief list of all options, without explanations.
-* Overall Options:: Controlling the kind of output:
- an executable, object files, assembler files,
- or preprocessed source.
-* Invoking G++:: Compiling C++ programs.
-* C Dialect Options:: Controlling the variant of C language compiled.
-* C++ Dialect Options:: Variations on C++.
-* Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
- and Objective-C++.
-* Language Independent Options:: Controlling how diagnostics should be
- formatted.
-* Warning Options:: How picky should the compiler be?
-* Debugging Options:: Symbol tables, measurements, and debugging dumps.
-* Optimize Options:: How much optimization?
-* Preprocessor Options:: Controlling header files and macro definitions.
- Also, getting dependency information for Make.
-* Assembler Options:: Passing options to the assembler.
-* Link Options:: Specifying libraries and so on.
-* Directory Options:: Where to find header files and libraries.
- Where to find the compiler executable files.
-* Spec Files:: How to pass switches to sub-processes.
-* Target Options:: Running a cross-compiler, or an old version of GCC.
-* Submodel Options:: Specifying minor hardware or convention variations,
- such as 68010 vs 68020.
-* Code Gen Options:: Specifying conventions for function calls, data layout
- and register usage.
-* Environment Variables:: Env vars that affect GCC.
-* Precompiled Headers:: Compiling a header once, and using it many times.
-
-
-File: gcc.info, Node: Option Summary, Next: Overall Options, Up: Invoking GCC
-
-3.1 Option Summary
-==================
-
-Here is a summary of all the options, grouped by type. Explanations are
-in the following sections.
-
-_Overall Options_
- *Note Options Controlling the Kind of Output: Overall Options.
- -c -S -E -o FILE -no-canonical-prefixes
- -pipe -pass-exit-codes
- -x LANGUAGE -v -### --help[=CLASS[,...]] --target-help
- --version -wrapper @FILE -fplugin=FILE -fplugin-arg-NAME=ARG
- -fdump-ada-spec[-slim] -fada-spec-parent=UNIT -fdump-go-spec=FILE
-
-_C Language Options_
- *Note Options Controlling C Dialect: C Dialect Options.
- -ansi -std=STANDARD -fgnu89-inline
- -aux-info FILENAME -fallow-parameterless-variadic-functions
- -fno-asm -fno-builtin -fno-builtin-FUNCTION
- -fhosted -ffreestanding -fopenmp -fopenmp-simd -fms-extensions
- -fplan9-extensions -trigraphs -traditional -traditional-cpp
- -fallow-single-precision -fcond-mismatch -flax-vector-conversions
- -fsigned-bitfields -fsigned-char
- -funsigned-bitfields -funsigned-char
-
-_C++ Language Options_
- *Note Options Controlling C++ Dialect: C++ Dialect Options.
- -fabi-version=N -fno-access-control -fcheck-new
- -fconstexpr-depth=N -ffriend-injection
- -fno-elide-constructors
- -fno-enforce-eh-specs
- -ffor-scope -fno-for-scope -fno-gnu-keywords
- -fno-implicit-templates
- -fno-implicit-inline-templates
- -fno-implement-inlines -fms-extensions
- -fno-nonansi-builtins -fnothrow-opt -fno-operator-names
- -fno-optional-diags -fpermissive
- -fno-pretty-templates
- -frepo -fno-rtti -fstats -ftemplate-backtrace-limit=N
- -ftemplate-depth=N
- -fno-threadsafe-statics -fuse-cxa-atexit -fno-weak -nostdinc++
- -fvisibility-inlines-hidden
- -fvtable-verify=STD|PREINIT|NONE
- -fvtv-counts -fvtv-debug
- -fvisibility-ms-compat
- -fext-numeric-literals
- -Wabi -Wconversion-null -Wctor-dtor-privacy
- -Wdelete-non-virtual-dtor -Wliteral-suffix -Wnarrowing
- -Wnoexcept -Wnon-virtual-dtor -Wreorder
- -Weffc++ -Wstrict-null-sentinel
- -Wno-non-template-friend -Wold-style-cast
- -Woverloaded-virtual -Wno-pmf-conversions
- -Wsign-promo
-
-_Objective-C and Objective-C++ Language Options_
- *Note Options Controlling Objective-C and Objective-C++ Dialects:
- Objective-C and Objective-C++ Dialect Options.
- -fconstant-string-class=CLASS-NAME
- -fgnu-runtime -fnext-runtime
- -fno-nil-receivers
- -fobjc-abi-version=N
- -fobjc-call-cxx-cdtors
- -fobjc-direct-dispatch
- -fobjc-exceptions
- -fobjc-gc
- -fobjc-nilcheck
- -fobjc-std=objc1
- -freplace-objc-classes
- -fzero-link
- -gen-decls
- -Wassign-intercept
- -Wno-protocol -Wselector
- -Wstrict-selector-match
- -Wundeclared-selector
-
-_Language Independent Options_
- *Note Options to Control Diagnostic Messages Formatting: Language
- Independent Options.
- -fmessage-length=N
- -fdiagnostics-show-location=[once|every-line]
- -fdiagnostics-color=[auto|never|always]
- -fno-diagnostics-show-option -fno-diagnostics-show-caret
-
-_Warning Options_
- *Note Options to Request or Suppress Warnings: Warning Options.
- -fsyntax-only -fmax-errors=N -Wpedantic
- -pedantic-errors
- -w -Wextra -Wall -Waddress -Waggregate-return
- -Waggressive-loop-optimizations -Warray-bounds
- -Wno-attributes -Wno-builtin-macro-redefined
- -Wc++-compat -Wc++11-compat -Wcast-align -Wcast-qual
- -Wchar-subscripts -Wclobbered -Wcomment -Wconditionally-supported
- -Wconversion -Wcoverage-mismatch -Wdate-time -Wdelete-incomplete -Wno-cpp
- -Wno-deprecated -Wno-deprecated-declarations -Wdisabled-optimization
- -Wno-div-by-zero -Wdouble-promotion -Wempty-body -Wenum-compare
- -Wno-endif-labels -Werror -Werror=*
- -Wfatal-errors -Wfloat-equal -Wformat -Wformat=2
- -Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral
- -Wformat-security -Wformat-y2k
- -Wframe-larger-than=LEN -Wno-free-nonheap-object -Wjump-misses-init
- -Wignored-qualifiers
- -Wimplicit -Wimplicit-function-declaration -Wimplicit-int
- -Winit-self -Winline -Wmaybe-uninitialized
- -Wno-int-to-pointer-cast -Wno-invalid-offsetof
- -Winvalid-pch -Wlarger-than=LEN -Wunsafe-loop-optimizations
- -Wlogical-op -Wlong-long
- -Wmain -Wmaybe-uninitialized -Wmissing-braces -Wmissing-field-initializers
- -Wmissing-include-dirs
- -Wno-multichar -Wnonnull -Wno-overflow -Wopenmp-simd
- -Woverlength-strings -Wpacked -Wpacked-bitfield-compat -Wpadded
- -Wparentheses -Wpedantic-ms-format -Wno-pedantic-ms-format
- -Wpointer-arith -Wno-pointer-to-int-cast
- -Wredundant-decls -Wno-return-local-addr
- -Wreturn-type -Wsequence-point -Wshadow
- -Wsign-compare -Wsign-conversion -Wfloat-conversion
- -Wsizeof-pointer-memaccess
- -Wstack-protector -Wstack-usage=LEN -Wstrict-aliasing
- -Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=N
- -Wsuggest-attribute=[pure|const|noreturn|format]
- -Wmissing-format-attribute
- -Wswitch -Wswitch-default -Wswitch-enum -Wsync-nand
- -Wsystem-headers -Wtrampolines -Wtrigraphs -Wtype-limits -Wundef
- -Wuninitialized -Wunknown-pragmas -Wno-pragmas
- -Wunsuffixed-float-constants -Wunused -Wunused-function
- -Wunused-label -Wunused-local-typedefs -Wunused-parameter
- -Wno-unused-result -Wunused-value -Wunused-variable
- -Wunused-but-set-parameter -Wunused-but-set-variable
- -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance
- -Wvla -Wvolatile-register-var -Wwrite-strings -Wzero-as-null-pointer-constant
-
-_C and Objective-C-only Warning Options_
- -Wbad-function-cast -Wmissing-declarations
- -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs
- -Wold-style-declaration -Wold-style-definition
- -Wstrict-prototypes -Wtraditional -Wtraditional-conversion
- -Wdeclaration-after-statement -Wpointer-sign
-
-_Debugging Options_
- *Note Options for Debugging Your Program or GCC: Debugging Options.
- -dLETTERS -dumpspecs -dumpmachine -dumpversion
- -fsanitize=STYLE
- -fdbg-cnt-list -fdbg-cnt=COUNTER-VALUE-LIST
- -fdisable-ipa-PASS_NAME
- -fdisable-rtl-PASS_NAME
- -fdisable-rtl-PASS-NAME=RANGE-LIST
- -fdisable-tree-PASS_NAME
- -fdisable-tree-PASS-NAME=RANGE-LIST
- -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links
- -fdump-translation-unit[-N]
- -fdump-class-hierarchy[-N]
- -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline
- -fdump-passes
- -fdump-statistics
- -fdump-tree-all
- -fdump-tree-original[-N]
- -fdump-tree-optimized[-N]
- -fdump-tree-cfg -fdump-tree-alias
- -fdump-tree-ch
- -fdump-tree-ssa[-N] -fdump-tree-pre[-N]
- -fdump-tree-ccp[-N] -fdump-tree-dce[-N]
- -fdump-tree-gimple[-raw]
- -fdump-tree-dom[-N]
- -fdump-tree-dse[-N]
- -fdump-tree-phiprop[-N]
- -fdump-tree-phiopt[-N]
- -fdump-tree-forwprop[-N]
- -fdump-tree-copyrename[-N]
- -fdump-tree-nrv -fdump-tree-vect
- -fdump-tree-sink
- -fdump-tree-sra[-N]
- -fdump-tree-forwprop[-N]
- -fdump-tree-fre[-N]
- -fdump-tree-vtable-verify
- -fdump-tree-vrp[-N]
- -fdump-tree-storeccp[-N]
- -fdump-final-insns=FILE
- -fcompare-debug[=OPTS] -fcompare-debug-second
- -feliminate-dwarf2-dups -fno-eliminate-unused-debug-types
- -feliminate-unused-debug-symbols -femit-class-debug-always
- -fenable-KIND-PASS
- -fenable-KIND-PASS=RANGE-LIST
- -fdebug-types-section -fmem-report-wpa
- -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs
- -fopt-info
- -fopt-info-OPTIONS[=FILE]
- -frandom-seed=STRING -fsched-verbose=N
- -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose
- -fstack-usage -ftest-coverage -ftime-report -fvar-tracking
- -fvar-tracking-assignments -fvar-tracking-assignments-toggle
- -g -gLEVEL -gtoggle -gcoff -gdwarf-VERSION
- -ggdb -grecord-gcc-switches -gno-record-gcc-switches
- -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf
- -gvms -gxcoff -gxcoff+
- -fno-merge-debug-strings -fno-dwarf2-cfi-asm
- -fdebug-prefix-map=OLD=NEW
- -femit-struct-debug-baseonly -femit-struct-debug-reduced
- -femit-struct-debug-detailed[=SPEC-LIST]
- -p -pg -print-file-name=LIBRARY -print-libgcc-file-name
- -print-multi-directory -print-multi-lib -print-multi-os-directory
- -print-prog-name=PROGRAM -print-search-dirs -Q
- -print-sysroot -print-sysroot-headers-suffix
- -save-temps -save-temps=cwd -save-temps=obj -time[=FILE]
-
-_Optimization Options_
- *Note Options that Control Optimization: Optimize Options.
- -faggressive-loop-optimizations -falign-functions[=N]
- -falign-jumps[=N]
- -falign-labels[=N] -falign-loops[=N]
- -fassociative-math -fauto-inc-dec -fbranch-probabilities
- -fbranch-target-load-optimize -fbranch-target-load-optimize2
- -fbtr-bb-exclusive -fcaller-saves
- -fcheck-data-deps -fcombine-stack-adjustments -fconserve-stack
- -fcompare-elim -fcprop-registers -fcrossjumping
- -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules
- -fcx-limited-range
- -fdata-sections -fdce -fdelayed-branch
- -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively -fdse
- -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects
- -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=STYLE
- -fforward-propagate -ffp-contract=STYLE -ffunction-sections
- -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity
- -fgcse-sm -fhoist-adjacent-loads -fif-conversion
- -fif-conversion2 -findirect-inlining
- -finline-functions -finline-functions-called-once -finline-limit=N
- -finline-small-functions -fipa-cp -fipa-cp-clone
- -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference
- -fira-algorithm=ALGORITHM
- -fira-region=REGION -fira-hoist-pressure
- -fira-loop-pressure -fno-ira-share-save-slots
- -fno-ira-share-spill-slots -fira-verbose=N
- -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute
- -fivopts -fkeep-inline-functions -fkeep-static-consts -flive-range-shrinkage
- -floop-block -floop-interchange -floop-strip-mine -floop-nest-optimize
- -floop-parallelize-all -flto -flto-compression-level
- -flto-partition=ALG -flto-report -flto-report-wpa -fmerge-all-constants
- -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves
- -fmove-loop-invariants -fno-branch-count-reg
- -fno-defer-pop -fno-function-cse -fno-guess-branch-probability
- -fno-inline -fno-math-errno -fno-peephole -fno-peephole2
- -fno-sched-interblock -fno-sched-spec -fno-signed-zeros
- -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss
- -fomit-frame-pointer -foptimize-sibling-calls
- -fpartial-inlining -fpeel-loops -fpredictive-commoning
- -fprefetch-loop-arrays -fprofile-report
- -fprofile-correction -fprofile-dir=PATH -fprofile-generate
- -fprofile-generate=PATH
- -fprofile-use -fprofile-use=PATH -fprofile-values -fprofile-reorder-functions
- -freciprocal-math -free -frename-registers -freorder-blocks
- -freorder-blocks-and-partition -freorder-functions
- -frerun-cse-after-loop -freschedule-modulo-scheduled-loops
- -frounding-math -fsched2-use-superblocks -fsched-pressure
- -fsched-spec-load -fsched-spec-load-dangerous
- -fsched-stalled-insns-dep[=N] -fsched-stalled-insns[=N]
- -fsched-group-heuristic -fsched-critical-path-heuristic
- -fsched-spec-insn-heuristic -fsched-rank-heuristic
- -fsched-last-insn-heuristic -fsched-dep-count-heuristic
- -fschedule-insns -fschedule-insns2 -fsection-anchors
- -fselective-scheduling -fselective-scheduling2
- -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops
- -fshrink-wrap -fsignaling-nans -fsingle-precision-constant
- -fsplit-ivs-in-unroller -fsplit-wide-types -fstack-protector
- -fstack-protector-all -fstack-protector-strong -fstrict-aliasing
- -fstrict-overflow -fthread-jumps -ftracer -ftree-bit-ccp
- -ftree-builtin-call-dce -ftree-ccp -ftree-ch
- -ftree-coalesce-inline-vars -ftree-coalesce-vars -ftree-copy-prop
- -ftree-copyrename -ftree-dce -ftree-dominator-opts -ftree-dse
- -ftree-forwprop -ftree-fre -ftree-loop-if-convert
- -ftree-loop-if-convert-stores -ftree-loop-im
- -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns
- -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize
- -ftree-loop-vectorize
- -ftree-parallelize-loops=N -ftree-pre -ftree-partial-pre -ftree-pta
- -ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra
- -ftree-switch-conversion -ftree-tail-merge -ftree-ter
- -ftree-vectorize -ftree-vrp
- -funit-at-a-time -funroll-all-loops -funroll-loops
- -funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops
- -fvariable-expansion-in-unroller -fvect-cost-model -fvpt -fweb
- -fwhole-program -fwpa -fuse-ld=LINKER -fuse-linker-plugin
- --param NAME=VALUE
- -O -O0 -O1 -O2 -O3 -Os -Ofast -Og
-
-_Preprocessor Options_
- *Note Options Controlling the Preprocessor: Preprocessor Options.
- -AQUESTION=ANSWER
- -A-QUESTION[=ANSWER]
- -C -dD -dI -dM -dN
- -DMACRO[=DEFN] -E -H
- -idirafter DIR
- -include FILE -imacros FILE
- -iprefix FILE -iwithprefix DIR
- -iwithprefixbefore DIR -isystem DIR
- -imultilib DIR -isysroot DIR
- -M -MM -MF -MG -MP -MQ -MT -nostdinc
- -P -fdebug-cpp -ftrack-macro-expansion -fworking-directory
- -remap -trigraphs -undef -UMACRO
- -Wp,OPTION -Xpreprocessor OPTION -no-integrated-cpp
-
-_Assembler Option_
- *Note Passing Options to the Assembler: Assembler Options.
- -Wa,OPTION -Xassembler OPTION
-
-_Linker Options_
- *Note Options for Linking: Link Options.
- OBJECT-FILE-NAME -lLIBRARY
- -nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic
- -s -static -static-libgcc -static-libstdc++
- -static-libasan -static-libtsan -static-liblsan -static-libubsan
- -shared -shared-libgcc -symbolic
- -T SCRIPT -Wl,OPTION -Xlinker OPTION
- -u SYMBOL
-
-_Directory Options_
- *Note Options for Directory Search: Directory Options.
- -BPREFIX -IDIR -iplugindir=DIR
- -iquoteDIR -LDIR -specs=FILE -I-
- --sysroot=DIR --no-sysroot-suffix
-
-_Machine Dependent Options_
- *Note Hardware Models and Configurations: Submodel Options.
-
- _AArch64 Options_
- -mabi=NAME -mbig-endian -mlittle-endian
- -mgeneral-regs-only
- -mcmodel=tiny -mcmodel=small -mcmodel=large
- -mstrict-align
- -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer
- -mtls-dialect=desc -mtls-dialect=traditional
- -march=NAME -mcpu=NAME -mtune=NAME
-
- _Adapteva Epiphany Options_
- -mhalf-reg-file -mprefer-short-insn-regs
- -mbranch-cost=NUM -mcmove -mnops=NUM -msoft-cmpsf
- -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=NUM
- -mround-nearest -mlong-calls -mshort-calls -msmall16
- -mfp-mode=MODE -mvect-double -max-vect-align=NUM
- -msplit-vecmove-early -m1reg-REG
-
- _ARC Options_
- -mbarrel-shifter
- -mcpu=CPU -mA6 -mARC600 -mA7 -mARC700
- -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr
- -mea -mno-mpy -mmul32x16 -mmul64
- -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap
- -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape
- -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof
- -mepilogue-cfi -mlong-calls -mmedium-calls -msdata
- -mucb-mcount -mvolatile-cache
- -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc
- -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi
- -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none
- -mlra-priority-compact mlra-priority-noncompact -mno-millicode
- -mmixed-code -mq-class -mRcq -mRcw -msize-level=LEVEL
- -mtune=CPU -mmultcost=NUM -munalign-prob-threshold=PROBABILITY
-
- _ARM Options_
- -mapcs-frame -mno-apcs-frame
- -mabi=NAME
- -mapcs-stack-check -mno-apcs-stack-check
- -mapcs-float -mno-apcs-float
- -mapcs-reentrant -mno-apcs-reentrant
- -msched-prolog -mno-sched-prolog
- -mlittle-endian -mbig-endian -mwords-little-endian
- -mfloat-abi=NAME
- -mfp16-format=NAME
- -mthumb-interwork -mno-thumb-interwork
- -mcpu=NAME -march=NAME -mfpu=NAME
- -mstructure-size-boundary=N
- -mabort-on-noreturn
- -mlong-calls -mno-long-calls
- -msingle-pic-base -mno-single-pic-base
- -mpic-register=REG
- -mnop-fun-dllimport
- -mpoke-function-name
- -mthumb -marm
- -mtpcs-frame -mtpcs-leaf-frame
- -mcaller-super-interworking -mcallee-super-interworking
- -mtp=NAME -mtls-dialect=DIALECT
- -mword-relocations
- -mfix-cortex-m3-ldrd
- -munaligned-access
- -mneon-for-64bits
- -mslow-flash-data
- -mrestrict-it
-
- _AVR Options_
- -mmcu=MCU -maccumulate-args -mbranch-cost=COST
- -mcall-prologues -mint8 -mno-interrupts -mrelax
- -mstrict-X -mtiny-stack -Waddr-space-convert
-
- _Blackfin Options_
- -mcpu=CPU[-SIREVISION]
- -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer
- -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly
- -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library
- -mno-id-shared-library -mshared-library-id=N
- -mleaf-id-shared-library -mno-leaf-id-shared-library
- -msep-data -mno-sep-data -mlong-calls -mno-long-calls
- -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram
- -micplb
-
- _C6X Options_
- -mbig-endian -mlittle-endian -march=CPU
- -msim -msdata=SDATA-TYPE
-
- _CRIS Options_
- -mcpu=CPU -march=CPU -mtune=CPU
- -mmax-stack-frame=N -melinux-stacksize=N
- -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects
- -mstack-align -mdata-align -mconst-align
- -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt
- -melf -maout -melinux -mlinux -sim -sim2
- -mmul-bug-workaround -mno-mul-bug-workaround
-
- _CR16 Options_
- -mmac
- -mcr16cplus -mcr16c
- -msim -mint32 -mbit-ops
- -mdata-model=MODEL
-
- _Darwin Options_
- -all_load -allowable_client -arch -arch_errors_fatal
- -arch_only -bind_at_load -bundle -bundle_loader
- -client_name -compatibility_version -current_version
- -dead_strip
- -dependency-file -dylib_file -dylinker_install_name
- -dynamic -dynamiclib -exported_symbols_list
- -filelist -flat_namespace -force_cpusubtype_ALL
- -force_flat_namespace -headerpad_max_install_names
- -iframework
- -image_base -init -install_name -keep_private_externs
- -multi_module -multiply_defined -multiply_defined_unused
- -noall_load -no_dead_strip_inits_and_terms
- -nofixprebinding -nomultidefs -noprebind -noseglinkedit
- -pagezero_size -prebind -prebind_all_twolevel_modules
- -private_bundle -read_only_relocs -sectalign
- -sectobjectsymbols -whyload -seg1addr
- -sectcreate -sectobjectsymbols -sectorder
- -segaddr -segs_read_only_addr -segs_read_write_addr
- -seg_addr_table -seg_addr_table_filename -seglinkedit
- -segprot -segs_read_only_addr -segs_read_write_addr
- -single_module -static -sub_library -sub_umbrella
- -twolevel_namespace -umbrella -undefined
- -unexported_symbols_list -weak_reference_mismatches
- -whatsloaded -F -gused -gfull -mmacosx-version-min=VERSION
- -mkernel -mone-byte-bool
-
- _DEC Alpha Options_
- -mno-fp-regs -msoft-float
- -mieee -mieee-with-inexact -mieee-conformant
- -mfp-trap-mode=MODE -mfp-rounding-mode=MODE
- -mtrap-precision=MODE -mbuild-constants
- -mcpu=CPU-TYPE -mtune=CPU-TYPE
- -mbwx -mmax -mfix -mcix
- -mfloat-vax -mfloat-ieee
- -mexplicit-relocs -msmall-data -mlarge-data
- -msmall-text -mlarge-text
- -mmemory-latency=TIME
-
- _FR30 Options_
- -msmall-model -mno-lsim
-
- _FRV Options_
- -mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64
- -mhard-float -msoft-float
- -malloc-cc -mfixed-cc -mdword -mno-dword
- -mdouble -mno-double
- -mmedia -mno-media -mmuladd -mno-muladd
- -mfdpic -minline-plt -mgprel-ro -multilib-library-pic
- -mlinked-fp -mlong-calls -malign-labels
- -mlibrary-pic -macc-4 -macc-8
- -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move
- -moptimize-membar -mno-optimize-membar
- -mscc -mno-scc -mcond-exec -mno-cond-exec
- -mvliw-branch -mno-vliw-branch
- -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec
- -mno-nested-cond-exec -mtomcat-stats
- -mTLS -mtls
- -mcpu=CPU
-
- _GNU/Linux Options_
- -mglibc -muclibc -mbionic -mandroid
- -tno-android-cc -tno-android-ld
-
- _H8/300 Options_
- -mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300
-
- _HPPA Options_
- -march=ARCHITECTURE-TYPE
- -mdisable-fpregs -mdisable-indexing
- -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld
- -mfixed-range=REGISTER-RANGE
- -mjump-in-delay -mlinker-opt -mlong-calls
- -mlong-load-store -mno-disable-fpregs
- -mno-disable-indexing -mno-fast-indirect-calls -mno-gas
- -mno-jump-in-delay -mno-long-load-store
- -mno-portable-runtime -mno-soft-float
- -mno-space-regs -msoft-float -mpa-risc-1-0
- -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime
- -mschedule=CPU-TYPE -mspace-regs -msio -mwsio
- -munix=UNIX-STD -nolibdld -static -threads
-
- _i386 and x86-64 Options_
- -mtune=CPU-TYPE -march=CPU-TYPE
- -mtune-ctrl=FEATURE-LIST -mdump-tune-features -mno-default
- -mfpmath=UNIT
- -masm=DIALECT -mno-fancy-math-387
- -mno-fp-ret-in-387 -msoft-float
- -mno-wide-multiply -mrtd -malign-double
- -mpreferred-stack-boundary=NUM
- -mincoming-stack-boundary=NUM
- -mcld -mcx16 -msahf -mmovbe -mcrc32
- -mrecip -mrecip=OPT
- -mvzeroupper -mprefer-avx128
- -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx
- -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -msha
- -maes -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mprefetchwt1
- -msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlzcnt
- -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mthreads
- -mno-align-stringops -minline-all-stringops
- -minline-stringops-dynamically -mstringop-strategy=ALG
- -mmemcpy-strategy=STRATEGY -mmemset-strategy=STRATEGY
- -mpush-args -maccumulate-outgoing-args -m128bit-long-double
- -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128
- -mregparm=NUM -msseregparm
- -mveclibabi=TYPE -mvect8-ret-in-mem
- -mpc32 -mpc64 -mpc80 -mstackrealign
- -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs
- -mcmodel=CODE-MODEL -mabi=NAME -maddress-mode=MODE
- -m32 -m64 -mx32 -m16 -mlarge-data-threshold=NUM
- -msse2avx -mfentry -m8bit-idiv
- -mavx256-split-unaligned-load -mavx256-split-unaligned-store
- -mstack-protector-guard=GUARD
-
- _i386 and x86-64 Windows Options_
- -mconsole -mcygwin -mno-cygwin -mdll
- -mnop-fun-dllimport -mthread
- -municode -mwin32 -mwindows -fno-set-stack-executable
-
- _IA-64 Options_
- -mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic
- -mvolatile-asm-stop -mregister-names -msdata -mno-sdata
- -mconstant-gp -mauto-pic -mfused-madd
- -minline-float-divide-min-latency
- -minline-float-divide-max-throughput
- -mno-inline-float-divide
- -minline-int-divide-min-latency
- -minline-int-divide-max-throughput
- -mno-inline-int-divide
- -minline-sqrt-min-latency -minline-sqrt-max-throughput
- -mno-inline-sqrt
- -mdwarf2-asm -mearly-stop-bits
- -mfixed-range=REGISTER-RANGE -mtls-size=TLS-SIZE
- -mtune=CPU-TYPE -milp32 -mlp64
- -msched-br-data-spec -msched-ar-data-spec -msched-control-spec
- -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec
- -msched-spec-ldc -msched-spec-control-ldc
- -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns
- -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path
- -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost
- -msched-max-memory-insns-hard-limit -msched-max-memory-insns=MAX-INSNS
-
- _LM32 Options_
- -mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled
- -msign-extend-enabled -muser-enabled
-
- _M32R/D Options_
- -m32r2 -m32rx -m32r
- -mdebug
- -malign-loops -mno-align-loops
- -missue-rate=NUMBER
- -mbranch-cost=NUMBER
- -mmodel=CODE-SIZE-MODEL-TYPE
- -msdata=SDATA-TYPE
- -mno-flush-func -mflush-func=NAME
- -mno-flush-trap -mflush-trap=NUMBER
- -G NUM
-
- _M32C Options_
- -mcpu=CPU -msim -memregs=NUMBER
-
- _M680x0 Options_
- -march=ARCH -mcpu=CPU -mtune=TUNE
- -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040
- -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407
- -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020
- -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort
- -mno-short -mhard-float -m68881 -msoft-float -mpcrel
- -malign-int -mstrict-align -msep-data -mno-sep-data
- -mshared-library-id=n -mid-shared-library -mno-id-shared-library
- -mxgot -mno-xgot
-
- _MCore Options_
- -mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates
- -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields
- -m4byte-functions -mno-4byte-functions -mcallgraph-data
- -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim
- -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment
-
- _MeP Options_
- -mabsdiff -mall-opts -maverage -mbased=N -mbitops
- -mc=N -mclip -mconfig=NAME -mcop -mcop32 -mcop64 -mivc2
- -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax
- -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf
- -mtiny=N
-
- _MicroBlaze Options_
- -msoft-float -mhard-float -msmall-divides -mcpu=CPU
- -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift
- -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss
- -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt
- -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-APP-MODEL
-
- _MIPS Options_
- -EL -EB -march=ARCH -mtune=ARCH
- -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2
- -mips64 -mips64r2
- -mips16 -mno-mips16 -mflip-mips16
- -minterlink-compressed -mno-interlink-compressed
- -minterlink-mips16 -mno-interlink-mips16
- -mabi=ABI -mabicalls -mno-abicalls
- -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot
- -mgp32 -mgp64 -mfp32 -mfp64 -mhard-float -msoft-float
- -mno-float -msingle-float -mdouble-float
- -mabs=MODE -mnan=ENCODING
- -mdsp -mno-dsp -mdspr2 -mno-dspr2
- -mmcu -mmno-mcu
- -meva -mno-eva
- -mvirt -mno-virt
- -mmicromips -mno-micromips
- -mfpu=FPU-TYPE
- -msmartmips -mno-smartmips
- -mpaired-single -mno-paired-single -mdmx -mno-mdmx
- -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc
- -mlong64 -mlong32 -msym32 -mno-sym32
- -GNUM -mlocal-sdata -mno-local-sdata
- -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt
- -membedded-data -mno-embedded-data
- -muninit-const-in-rodata -mno-uninit-const-in-rodata
- -mcode-readable=SETTING
- -msplit-addresses -mno-split-addresses
- -mexplicit-relocs -mno-explicit-relocs
- -mcheck-zero-division -mno-check-zero-division
- -mdivide-traps -mdivide-breaks
- -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls
- -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp
- -mfix-24k -mno-fix-24k
- -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400
- -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000
- -mfix-vr4120 -mno-fix-vr4120
- -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1
- -mflush-func=FUNC -mno-flush-func
- -mbranch-cost=NUM -mbranch-likely -mno-branch-likely
- -mfp-exceptions -mno-fp-exceptions
- -mvr4130-align -mno-vr4130-align -msynci -mno-synci
- -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address
-
- _MMIX Options_
- -mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu
- -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols
- -melf -mbranch-predict -mno-branch-predict -mbase-addresses
- -mno-base-addresses -msingle-exit -mno-single-exit
-
- _MN10300 Options_
- -mmult-bug -mno-mult-bug
- -mno-am33 -mam33 -mam33-2 -mam34
- -mtune=CPU-TYPE
- -mreturn-pointer-on-d0
- -mno-crt0 -mrelax -mliw -msetlb
-
- _Moxie Options_
- -meb -mel -mno-crt0
-
- _MSP430 Options_
- -msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax
-
- _NDS32 Options_
- -mbig-endian -mlittle-endian
- -mreduced-regs -mfull-regs
- -mcmov -mno-cmov
- -mperf-ext -mno-perf-ext
- -mv3push -mno-v3push
- -m16bit -mno-16bit
- -mgp-direct -mno-gp-direct
- -misr-vector-size=NUM
- -mcache-block-size=NUM
- -march=ARCH
- -mforce-fp-as-gp -mforbid-fp-as-gp
- -mex9 -mctor-dtor -mrelax
-
- _Nios II Options_
- -G NUM -mgpopt -mno-gpopt -mel -meb
- -mno-bypass-cache -mbypass-cache
- -mno-cache-volatile -mcache-volatile
- -mno-fast-sw-div -mfast-sw-div
- -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div
- -mcustom-INSN=N -mno-custom-INSN
- -mcustom-fpu-cfg=NAME
- -mhal -msmallc -msys-crt0=NAME -msys-lib=NAME
-
- _PDP-11 Options_
- -mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10
- -mbcopy -mbcopy-builtin -mint32 -mno-int16
- -mint16 -mno-int32 -mfloat32 -mno-float64
- -mfloat64 -mno-float32 -mabshi -mno-abshi
- -mbranch-expensive -mbranch-cheap
- -munix-asm -mdec-asm
-
- _picoChip Options_
- -mae=AE_TYPE -mvliw-lookahead=N
- -msymbol-as-address -mno-inefficient-warnings
-
- _PowerPC Options_ See RS/6000 and PowerPC Options.
-
- _RL78 Options_
- -msim -mmul=none -mmul=g13 -mmul=rl78
-
- _RS/6000 and PowerPC Options_
- -mcpu=CPU-TYPE
- -mtune=CPU-TYPE
- -mcmodel=CODE-MODEL
- -mpowerpc64
- -maltivec -mno-altivec
- -mpowerpc-gpopt -mno-powerpc-gpopt
- -mpowerpc-gfxopt -mno-powerpc-gfxopt
- -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd
- -mfprnd -mno-fprnd
- -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp
- -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc
- -m64 -m32 -mxl-compat -mno-xl-compat -mpe
- -malign-power -malign-natural
- -msoft-float -mhard-float -mmultiple -mno-multiple
- -msingle-float -mdouble-float -msimple-fpu
- -mstring -mno-string -mupdate -mno-update
- -mavoid-indexed-addresses -mno-avoid-indexed-addresses
- -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
- -mstrict-align -mno-strict-align -mrelocatable
- -mno-relocatable -mrelocatable-lib -mno-relocatable-lib
- -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
- -mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base
- -mprioritize-restricted-insns=PRIORITY
- -msched-costly-dep=DEPENDENCE_TYPE
- -minsert-sched-nops=SCHEME
- -mcall-sysv -mcall-netbsd
- -maix-struct-return -msvr4-struct-return
- -mabi=ABI-TYPE -msecure-plt -mbss-plt
- -mblock-move-inline-limit=NUM
- -misel -mno-isel
- -misel=yes -misel=no
- -mspe -mno-spe
- -mspe=yes -mspe=no
- -mpaired
- -mgen-cell-microcode -mwarn-cell-microcode
- -mvrsave -mno-vrsave
- -mmulhw -mno-mulhw
- -mdlmzb -mno-dlmzb
- -mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double
- -mprototype -mno-prototype
- -msim -mmvme -mads -myellowknife -memb -msdata
- -msdata=OPT -mvxworks -G NUM -pthread
- -mrecip -mrecip=OPT -mno-recip -mrecip-precision
- -mno-recip-precision
- -mveclibabi=TYPE -mfriz -mno-friz
- -mpointers-to-nested-functions -mno-pointers-to-nested-functions
- -msave-toc-indirect -mno-save-toc-indirect
- -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector
- -mcrypto -mno-crypto -mdirect-move -mno-direct-move
- -mquad-memory -mno-quad-memory
- -mquad-memory-atomic -mno-quad-memory-atomic
- -mcompat-align-parm -mno-compat-align-parm
-
- _RX Options_
- -m64bit-doubles -m32bit-doubles -fpu -nofpu
- -mcpu=
- -mbig-endian-data -mlittle-endian-data
- -msmall-data
- -msim -mno-sim
- -mas100-syntax -mno-as100-syntax
- -mrelax
- -mmax-constant-size=
- -mint-register=
- -mpid
- -mno-warn-multiple-fast-interrupts
- -msave-acc-in-interrupts
-
- _S/390 and zSeries Options_
- -mtune=CPU-TYPE -march=CPU-TYPE
- -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp
- -mlong-double-64 -mlong-double-128
- -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack
- -msmall-exec -mno-small-exec -mmvcle -mno-mvcle
- -m64 -m31 -mdebug -mno-debug -mesa -mzarch
- -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd
- -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard
- -mhotpatch[=HALFWORDS] -mno-hotpatch
-
- _Score Options_
- -meb -mel
- -mnhwloop
- -muls
- -mmac
- -mscore5 -mscore5u -mscore7 -mscore7d
-
- _SH Options_
- -m1 -m2 -m2e
- -m2a-nofpu -m2a-single-only -m2a-single -m2a
- -m3 -m3e
- -m4-nofpu -m4-single-only -m4-single -m4
- -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al
- -m5-64media -m5-64media-nofpu
- -m5-32media -m5-32media-nofpu
- -m5-compact -m5-compact-nofpu
- -mb -ml -mdalign -mrelax
- -mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave
- -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct
- -mspace -mprefergot -musermode -multcost=NUMBER -mdiv=STRATEGY
- -mdivsi3_libfunc=NAME -mfixed-range=REGISTER-RANGE
- -mindexed-addressing -mgettrcost=NUMBER -mpt-fixed
- -maccumulate-outgoing-args -minvalid-symbols
- -matomic-model=ATOMIC-MODEL
- -mbranch-cost=NUM -mzdcbranch -mno-zdcbranch
- -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra
- -mpretend-cmove -mtas
-
- _Solaris 2 Options_
- -mimpure-text -mno-impure-text
- -pthreads -pthread
-
- _SPARC Options_
- -mcpu=CPU-TYPE
- -mtune=CPU-TYPE
- -mcmodel=CODE-MODEL
- -mmemory-model=MEM-MODEL
- -m32 -m64 -mapp-regs -mno-app-regs
- -mfaster-structs -mno-faster-structs -mflat -mno-flat
- -mfpu -mno-fpu -mhard-float -msoft-float
- -mhard-quad-float -msoft-quad-float
- -mstack-bias -mno-stack-bias
- -munaligned-doubles -mno-unaligned-doubles
- -mv8plus -mno-v8plus -mvis -mno-vis
- -mvis2 -mno-vis2 -mvis3 -mno-vis3
- -mcbcond -mno-cbcond
- -mfmaf -mno-fmaf -mpopc -mno-popc
- -mfix-at697f -mfix-ut699
-
- _SPU Options_
- -mwarn-reloc -merror-reloc
- -msafe-dma -munsafe-dma
- -mbranch-hints
- -msmall-mem -mlarge-mem -mstdmain
- -mfixed-range=REGISTER-RANGE
- -mea32 -mea64
- -maddress-space-conversion -mno-address-space-conversion
- -mcache-size=CACHE-SIZE
- -matomic-updates -mno-atomic-updates
-
- _System V Options_
- -Qy -Qn -YP,PATHS -Ym,DIR
-
- _TILE-Gx Options_
- -mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian
- -mcmodel=CODE-MODEL
-
- _TILEPro Options_
- -mcpu=CPU -m32
-
- _V850 Options_
- -mlong-calls -mno-long-calls -mep -mno-ep
- -mprolog-function -mno-prolog-function -mspace
- -mtda=N -msda=N -mzda=N
- -mapp-regs -mno-app-regs
- -mdisable-callt -mno-disable-callt
- -mv850e2v3 -mv850e2 -mv850e1 -mv850es
- -mv850e -mv850 -mv850e3v5
- -mloop
- -mrelax
- -mlong-jumps
- -msoft-float
- -mhard-float
- -mgcc-abi
- -mrh850-abi
- -mbig-switch
-
- _VAX Options_
- -mg -mgnu -munix
-
- _VMS Options_
- -mvms-return-codes -mdebug-main=PREFIX -mmalloc64
- -mpointer-size=SIZE
-
- _VxWorks Options_
- -mrtp -non-static -Bstatic -Bdynamic
- -Xbind-lazy -Xbind-now
-
- _x86-64 Options_ See i386 and x86-64 Options.
-
- _Xstormy16 Options_
- -msim
-
- _Xtensa Options_
- -mconst16 -mno-const16
- -mfused-madd -mno-fused-madd
- -mforce-no-pic
- -mserialize-volatile -mno-serialize-volatile
- -mtext-section-literals -mno-text-section-literals
- -mtarget-align -mno-target-align
- -mlongcalls -mno-longcalls
-
- _zSeries Options_ See S/390 and zSeries Options.
-
-_Code Generation Options_
- *Note Options for Code Generation Conventions: Code Gen Options.
- -fcall-saved-REG -fcall-used-REG
- -ffixed-REG -fexceptions
- -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables
- -fasynchronous-unwind-tables
- -fno-gnu-unique
- -finhibit-size-directive -finstrument-functions
- -finstrument-functions-exclude-function-list=SYM,SYM,...
- -finstrument-functions-exclude-file-list=FILE,FILE,...
- -fno-common -fno-ident
- -fpcc-struct-return -fpic -fPIC -fpie -fPIE
- -fno-jump-tables
- -frecord-gcc-switches
- -freg-struct-return -fshort-enums
- -fshort-double -fshort-wchar
- -fverbose-asm -fpack-struct[=N] -fstack-check
- -fstack-limit-register=REG -fstack-limit-symbol=SYM
- -fno-stack-limit -fsplit-stack
- -fleading-underscore -ftls-model=MODEL
- -fstack-reuse=REUSE_LEVEL
- -ftrapv -fwrapv -fbounds-check
- -fvisibility -fstrict-volatile-bitfields -fsync-libcalls
-
-
-File: gcc.info, Node: Overall Options, Next: Invoking G++, Prev: Option Summary, Up: Invoking GCC
-
-3.2 Options Controlling the Kind of Output
-==========================================
-
-Compilation can involve up to four stages: preprocessing, compilation
-proper, assembly and linking, always in that order. GCC is capable of
-preprocessing and compiling several files either into several assembler
-input files, or into one assembler input file; then each assembler input
-file produces an object file, and linking combines all the object files
-(those newly compiled, and those specified as input) into an executable
-file.
-
- For any given input file, the file name suffix determines what kind of
-compilation is done:
-
-'FILE.c'
- C source code that must be preprocessed.
-
-'FILE.i'
- C source code that should not be preprocessed.
-
-'FILE.ii'
- C++ source code that should not be preprocessed.
-
-'FILE.m'
- Objective-C source code. Note that you must link with the
- 'libobjc' library to make an Objective-C program work.
-
-'FILE.mi'
- Objective-C source code that should not be preprocessed.
-
-'FILE.mm'
-'FILE.M'
- Objective-C++ source code. Note that you must link with the
- 'libobjc' library to make an Objective-C++ program work. Note that
- '.M' refers to a literal capital M.
-
-'FILE.mii'
- Objective-C++ source code that should not be preprocessed.
-
-'FILE.h'
- C, C++, Objective-C or Objective-C++ header file to be turned into
- a precompiled header (default), or C, C++ header file to be turned
- into an Ada spec (via the '-fdump-ada-spec' switch).
-
-'FILE.cc'
-'FILE.cp'
-'FILE.cxx'
-'FILE.cpp'
-'FILE.CPP'
-'FILE.c++'
-'FILE.C'
- C++ source code that must be preprocessed. Note that in '.cxx',
- the last two letters must both be literally 'x'. Likewise, '.C'
- refers to a literal capital C.
-
-'FILE.mm'
-'FILE.M'
- Objective-C++ source code that must be preprocessed.
-
-'FILE.mii'
- Objective-C++ source code that should not be preprocessed.
-
-'FILE.hh'
-'FILE.H'
-'FILE.hp'
-'FILE.hxx'
-'FILE.hpp'
-'FILE.HPP'
-'FILE.h++'
-'FILE.tcc'
- C++ header file to be turned into a precompiled header or Ada spec.
-
-'FILE.f'
-'FILE.for'
-'FILE.ftn'
- Fixed form Fortran source code that should not be preprocessed.
-
-'FILE.F'
-'FILE.FOR'
-'FILE.fpp'
-'FILE.FPP'
-'FILE.FTN'
- Fixed form Fortran source code that must be preprocessed (with the
- traditional preprocessor).
-
-'FILE.f90'
-'FILE.f95'
-'FILE.f03'
-'FILE.f08'
- Free form Fortran source code that should not be preprocessed.
-
-'FILE.F90'
-'FILE.F95'
-'FILE.F03'
-'FILE.F08'
- Free form Fortran source code that must be preprocessed (with the
- traditional preprocessor).
-
-'FILE.go'
- Go source code.
-
-'FILE.ads'
- Ada source code file that contains a library unit declaration (a
- declaration of a package, subprogram, or generic, or a generic
- instantiation), or a library unit renaming declaration (a package,
- generic, or subprogram renaming declaration). Such files are also
- called "specs".
-
-'FILE.adb'
- Ada source code file containing a library unit body (a subprogram
- or package body). Such files are also called "bodies".
-
-'FILE.s'
- Assembler code.
-
-'FILE.S'
-'FILE.sx'
- Assembler code that must be preprocessed.
-
-'OTHER'
- An object file to be fed straight into linking. Any file name with
- no recognized suffix is treated this way.
-
- You can specify the input language explicitly with the '-x' option:
-
-'-x LANGUAGE'
- Specify explicitly the LANGUAGE for the following input files
- (rather than letting the compiler choose a default based on the
- file name suffix). This option applies to all following input
- files until the next '-x' option. Possible values for LANGUAGE
- are:
- c c-header cpp-output
- c++ c++-header c++-cpp-output
- objective-c objective-c-header objective-c-cpp-output
- objective-c++ objective-c++-header objective-c++-cpp-output
- assembler assembler-with-cpp
- ada
- f77 f77-cpp-input f95 f95-cpp-input
- go
- java
-
-'-x none'
- Turn off any specification of a language, so that subsequent files
- are handled according to their file name suffixes (as they are if
- '-x' has not been used at all).
-
-'-pass-exit-codes'
- Normally the 'gcc' program exits with the code of 1 if any phase of
- the compiler returns a non-success return code. If you specify
- '-pass-exit-codes', the 'gcc' program instead returns with the
- numerically highest error produced by any phase returning an error
- indication. The C, C++, and Fortran front ends return 4 if an
- internal compiler error is encountered.
-
- If you only want some of the stages of compilation, you can use '-x'
-(or filename suffixes) to tell 'gcc' where to start, and one of the
-options '-c', '-S', or '-E' to say where 'gcc' is to stop. Note that
-some combinations (for example, '-x cpp-output -E') instruct 'gcc' to do
-nothing at all.
-
-'-c'
- Compile or assemble the source files, but do not link. The linking
- stage simply is not done. The ultimate output is in the form of an
- object file for each source file.
-
- By default, the object file name for a source file is made by
- replacing the suffix '.c', '.i', '.s', etc., with '.o'.
-
- Unrecognized input files, not requiring compilation or assembly,
- are ignored.
-
-'-S'
- Stop after the stage of compilation proper; do not assemble. The
- output is in the form of an assembler code file for each
- non-assembler input file specified.
-
- By default, the assembler file name for a source file is made by
- replacing the suffix '.c', '.i', etc., with '.s'.
-
- Input files that don't require compilation are ignored.
-
-'-E'
- Stop after the preprocessing stage; do not run the compiler proper.
- The output is in the form of preprocessed source code, which is
- sent to the standard output.
-
- Input files that don't require preprocessing are ignored.
-
-'-o FILE'
- Place output in file FILE. This applies to whatever sort of output
- is being produced, whether it be an executable file, an object
- file, an assembler file or preprocessed C code.
-
- If '-o' is not specified, the default is to put an executable file
- in 'a.out', the object file for 'SOURCE.SUFFIX' in 'SOURCE.o', its
- assembler file in 'SOURCE.s', a precompiled header file in
- 'SOURCE.SUFFIX.gch', and all preprocessed C source on standard
- output.
-
-'-v'
- Print (on standard error output) the commands executed to run the
- stages of compilation. Also print the version number of the
- compiler driver program and of the preprocessor and the compiler
- proper.
-
-'-###'
- Like '-v' except the commands are not executed and arguments are
- quoted unless they contain only alphanumeric characters or './-_'.
- This is useful for shell scripts to capture the driver-generated
- command lines.
-
-'-pipe'
- Use pipes rather than temporary files for communication between the
- various stages of compilation. This fails to work on some systems
- where the assembler is unable to read from a pipe; but the GNU
- assembler has no trouble.
-
-'--help'
- Print (on the standard output) a description of the command-line
- options understood by 'gcc'. If the '-v' option is also specified
- then '--help' is also passed on to the various processes invoked by
- 'gcc', so that they can display the command-line options they
- accept. If the '-Wextra' option has also been specified (prior to
- the '--help' option), then command-line options that have no
- documentation associated with them are also displayed.
-
-'--target-help'
- Print (on the standard output) a description of target-specific
- command-line options for each tool. For some targets extra
- target-specific information may also be printed.
-
-'--help={CLASS|[^]QUALIFIER}[,...]'
- Print (on the standard output) a description of the command-line
- options understood by the compiler that fit into all specified
- classes and qualifiers. These are the supported classes:
-
- 'optimizers'
- Display all of the optimization options supported by the
- compiler.
-
- 'warnings'
- Display all of the options controlling warning messages
- produced by the compiler.
-
- 'target'
- Display target-specific options. Unlike the '--target-help'
- option however, target-specific options of the linker and
- assembler are not displayed. This is because those tools do
- not currently support the extended '--help=' syntax.
-
- 'params'
- Display the values recognized by the '--param' option.
-
- LANGUAGE
- Display the options supported for LANGUAGE, where LANGUAGE is
- the name of one of the languages supported in this version of
- GCC.
-
- 'common'
- Display the options that are common to all languages.
-
- These are the supported qualifiers:
-
- 'undocumented'
- Display only those options that are undocumented.
-
- 'joined'
- Display options taking an argument that appears after an equal
- sign in the same continuous piece of text, such as:
- '--help=target'.
-
- 'separate'
- Display options taking an argument that appears as a separate
- word following the original option, such as: '-o output-file'.
-
- Thus for example to display all the undocumented target-specific
- switches supported by the compiler, use:
-
- --help=target,undocumented
-
- The sense of a qualifier can be inverted by prefixing it with the
- '^' character, so for example to display all binary warning options
- (i.e., ones that are either on or off and that do not take an
- argument) that have a description, use:
-
- --help=warnings,^joined,^undocumented
-
- The argument to '--help=' should not consist solely of inverted
- qualifiers.
-
- Combining several classes is possible, although this usually
- restricts the output so much that there is nothing to display. One
- case where it does work, however, is when one of the classes is
- TARGET. For example, to display all the target-specific
- optimization options, use:
-
- --help=target,optimizers
-
- The '--help=' option can be repeated on the command line. Each
- successive use displays its requested class of options, skipping
- those that have already been displayed.
-
- If the '-Q' option appears on the command line before the '--help='
- option, then the descriptive text displayed by '--help=' is
- changed. Instead of describing the displayed options, an
- indication is given as to whether the option is enabled, disabled
- or set to a specific value (assuming that the compiler knows this
- at the point where the '--help=' option is used).
-
- Here is a truncated example from the ARM port of 'gcc':
-
- % gcc -Q -mabi=2 --help=target -c
- The following options are target specific:
- -mabi= 2
- -mabort-on-noreturn [disabled]
- -mapcs [disabled]
-
- The output is sensitive to the effects of previous command-line
- options, so for example it is possible to find out which
- optimizations are enabled at '-O2' by using:
-
- -Q -O2 --help=optimizers
-
- Alternatively you can discover which binary optimizations are
- enabled by '-O3' by using:
-
- gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
- gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
- diff /tmp/O2-opts /tmp/O3-opts | grep enabled
-
-'-no-canonical-prefixes'
- Do not expand any symbolic links, resolve references to '/../' or
- '/./', or make the path absolute when generating a relative prefix.
-
-'--version'
- Display the version number and copyrights of the invoked GCC.
-
-'-wrapper'
- Invoke all subcommands under a wrapper program. The name of the
- wrapper program and its parameters are passed as a comma separated
- list.
-
- gcc -c t.c -wrapper gdb,--args
-
- This invokes all subprograms of 'gcc' under 'gdb --args', thus the
- invocation of 'cc1' is 'gdb --args cc1 ...'.
-
-'-fplugin=NAME.so'
- Load the plugin code in file NAME.so, assumed to be a shared object
- to be dlopen'd by the compiler. The base name of the shared object
- file is used to identify the plugin for the purposes of argument
- parsing (See '-fplugin-arg-NAME-KEY=VALUE' below). Each plugin
- should define the callback functions specified in the Plugins API.
-
-'-fplugin-arg-NAME-KEY=VALUE'
- Define an argument called KEY with a value of VALUE for the plugin
- called NAME.
-
-'-fdump-ada-spec[-slim]'
- For C and C++ source and include files, generate corresponding Ada
- specs. *Note (gnat_ugn)Generating Ada Bindings for C and C++
- headers::, which provides detailed documentation on this feature.
-
-'-fada-spec-parent=UNIT'
- In conjunction with '-fdump-ada-spec[-slim]' above, generate Ada
- specs as child units of parent UNIT.
-
-'-fdump-go-spec=FILE'
- For input files in any language, generate corresponding Go
- declarations in FILE. This generates Go 'const', 'type', 'var',
- and 'func' declarations which may be a useful way to start writing
- a Go interface to code written in some other language.
-
-'@FILE'
- Read command-line options from FILE. The options read are inserted
- in place of the original @FILE option. If FILE does not exist, or
- cannot be read, then the option will be treated literally, and not
- removed.
-
- Options in FILE are separated by whitespace. A whitespace
- character may be included in an option by surrounding the entire
- option in either single or double quotes. Any character (including
- a backslash) may be included by prefixing the character to be
- included with a backslash. The FILE may itself contain additional
- @FILE options; any such options will be processed recursively.
-
-
-File: gcc.info, Node: Invoking G++, Next: C Dialect Options, Prev: Overall Options, Up: Invoking GCC
-
-3.3 Compiling C++ Programs
-==========================
-
-C++ source files conventionally use one of the suffixes '.C', '.cc',
-'.cpp', '.CPP', '.c++', '.cp', or '.cxx'; C++ header files often use
-'.hh', '.hpp', '.H', or (for shared template code) '.tcc'; and
-preprocessed C++ files use the suffix '.ii'. GCC recognizes files with
-these names and compiles them as C++ programs even if you call the
-compiler the same way as for compiling C programs (usually with the name
-'gcc').
-
- However, the use of 'gcc' does not add the C++ library. 'g++' is a
-program that calls GCC and automatically specifies linking against the
-C++ library. It treats '.c', '.h' and '.i' files as C++ source files
-instead of C source files unless '-x' is used. This program is also
-useful when precompiling a C header file with a '.h' extension for use
-in C++ compilations. On many systems, 'g++' is also installed with the
-name 'c++'.
-
- When you compile C++ programs, you may specify many of the same
-command-line options that you use for compiling programs in any
-language; or command-line options meaningful for C and related
-languages; or options that are meaningful only for C++ programs. *Note
-Options Controlling C Dialect: C Dialect Options, for explanations of
-options for languages related to C. *Note Options Controlling C++
-Dialect: C++ Dialect Options, for explanations of options that are
-meaningful only for C++ programs.
-
-
-File: gcc.info, Node: C Dialect Options, Next: C++ Dialect Options, Prev: Invoking G++, Up: Invoking GCC
-
-3.4 Options Controlling C Dialect
-=================================
-
-The following options control the dialect of C (or languages derived
-from C, such as C++, Objective-C and Objective-C++) that the compiler
-accepts:
-
-'-ansi'
- In C mode, this is equivalent to '-std=c90'. In C++ mode, it is
- equivalent to '-std=c++98'.
-
- This turns off certain features of GCC that are incompatible with
- ISO C90 (when compiling C code), or of standard C++ (when compiling
- C++ code), such as the 'asm' and 'typeof' keywords, and predefined
- macros such as 'unix' and 'vax' that identify the type of system
- you are using. It also enables the undesirable and rarely used ISO
- trigraph feature. For the C compiler, it disables recognition of
- C++ style '//' comments as well as the 'inline' keyword.
-
- The alternate keywords '__asm__', '__extension__', '__inline__' and
- '__typeof__' continue to work despite '-ansi'. You would not want
- to use them in an ISO C program, of course, but it is useful to put
- them in header files that might be included in compilations done
- with '-ansi'. Alternate predefined macros such as '__unix__' and
- '__vax__' are also available, with or without '-ansi'.
-
- The '-ansi' option does not cause non-ISO programs to be rejected
- gratuitously. For that, '-Wpedantic' is required in addition to
- '-ansi'. *Note Warning Options::.
-
- The macro '__STRICT_ANSI__' is predefined when the '-ansi' option
- is used. Some header files may notice this macro and refrain from
- declaring certain functions or defining certain macros that the ISO
- standard doesn't call for; this is to avoid interfering with any
- programs that might use these names for other things.
-
- Functions that are normally built in but do not have semantics
- defined by ISO C (such as 'alloca' and 'ffs') are not built-in
- functions when '-ansi' is used. *Note Other built-in functions
- provided by GCC: Other Builtins, for details of the functions
- affected.
-
-'-std='
- Determine the language standard. *Note Language Standards
- Supported by GCC: Standards, for details of these standard
- versions. This option is currently only supported when compiling C
- or C++.
-
- The compiler can accept several base standards, such as 'c90' or
- 'c++98', and GNU dialects of those standards, such as 'gnu90' or
- 'gnu++98'. When a base standard is specified, the compiler accepts
- all programs following that standard plus those using GNU
- extensions that do not contradict it. For example, '-std=c90'
- turns off certain features of GCC that are incompatible with ISO
- C90, such as the 'asm' and 'typeof' keywords, but not other GNU
- extensions that do not have a meaning in ISO C90, such as omitting
- the middle term of a '?:' expression. On the other hand, when a
- GNU dialect of a standard is specified, all features supported by
- the compiler are enabled, even when those features change the
- meaning of the base standard. As a result, some strict-conforming
- programs may be rejected. The particular standard is used by
- '-Wpedantic' to identify which features are GNU extensions given
- that version of the standard. For example '-std=gnu90 -Wpedantic'
- warns about C++ style '//' comments, while '-std=gnu99 -Wpedantic'
- does not.
-
- A value for this option must be provided; possible values are
-
- 'c90'
- 'c89'
- 'iso9899:1990'
- Support all ISO C90 programs (certain GNU extensions that
- conflict with ISO C90 are disabled). Same as '-ansi' for C
- code.
-
- 'iso9899:199409'
- ISO C90 as modified in amendment 1.
-
- 'c99'
- 'c9x'
- 'iso9899:1999'
- 'iso9899:199x'
- ISO C99. This standard is substantially completely supported,
- modulo bugs, extended identifiers (supported except for corner
- cases when '-fextended-identifiers' is used) and
- floating-point issues (mainly but not entirely relating to
- optional C99 features from Annexes F and G). See <http://gcc.gnu.org/c99status.html>
- for more information. The names 'c9x' and 'iso9899:199x' are
- deprecated.
-
- 'c11'
- 'c1x'
- 'iso9899:2011'
- ISO C11, the 2011 revision of the ISO C standard. This
- standard is substantially completely supported, modulo bugs,
- extended identifiers (supported except for corner cases when
- '-fextended-identifiers' is used), floating-point issues
- (mainly but not entirely relating to optional C11 features
- from Annexes F and G) and the optional Annexes K
- (Bounds-checking interfaces) and L (Analyzability). The name
- 'c1x' is deprecated.
-
- 'gnu90'
- 'gnu89'
- GNU dialect of ISO C90 (including some C99 features). This is
- the default for C code.
-
- 'gnu99'
- 'gnu9x'
- GNU dialect of ISO C99. The name 'gnu9x' is deprecated.
-
- 'gnu11'
- 'gnu1x'
- GNU dialect of ISO C11. This is intended to become the
- default in a future release of GCC. The name 'gnu1x' is
- deprecated.
-
- 'c++98'
- 'c++03'
- The 1998 ISO C++ standard plus the 2003 technical corrigendum
- and some additional defect reports. Same as '-ansi' for C++
- code.
-
- 'gnu++98'
- 'gnu++03'
- GNU dialect of '-std=c++98'. This is the default for C++
- code.
-
- 'c++11'
- 'c++0x'
- The 2011 ISO C++ standard plus amendments. The name 'c++0x'
- is deprecated.
-
- 'gnu++11'
- 'gnu++0x'
- GNU dialect of '-std=c++11'. The name 'gnu++0x' is
- deprecated.
-
- 'c++1y'
- The next revision of the ISO C++ standard, tentatively planned
- for 2014. Support is highly experimental, and will almost
- certainly change in incompatible ways in future releases.
-
- 'gnu++1y'
- GNU dialect of '-std=c++1y'. Support is highly experimental,
- and will almost certainly change in incompatible ways in
- future releases.
-
-'-fgnu89-inline'
- The option '-fgnu89-inline' tells GCC to use the traditional GNU
- semantics for 'inline' functions when in C99 mode. *Note An Inline
- Function is As Fast As a Macro: Inline. This option is accepted
- and ignored by GCC versions 4.1.3 up to but not including 4.3. In
- GCC versions 4.3 and later it changes the behavior of GCC in C99
- mode. Using this option is roughly equivalent to adding the
- 'gnu_inline' function attribute to all inline functions (*note
- Function Attributes::).
-
- The option '-fno-gnu89-inline' explicitly tells GCC to use the C99
- semantics for 'inline' when in C99 or gnu99 mode (i.e., it
- specifies the default behavior). This option was first supported
- in GCC 4.3. This option is not supported in '-std=c90' or
- '-std=gnu90' mode.
-
- The preprocessor macros '__GNUC_GNU_INLINE__' and
- '__GNUC_STDC_INLINE__' may be used to check which semantics are in
- effect for 'inline' functions. *Note (cpp)Common Predefined
- Macros::.
-
-'-aux-info FILENAME'
- Output to the given filename prototyped declarations for all
- functions declared and/or defined in a translation unit, including
- those in header files. This option is silently ignored in any
- language other than C.
-
- Besides declarations, the file indicates, in comments, the origin
- of each declaration (source file and line), whether the declaration
- was implicit, prototyped or unprototyped ('I', 'N' for new or 'O'
- for old, respectively, in the first character after the line number
- and the colon), and whether it came from a declaration or a
- definition ('C' or 'F', respectively, in the following character).
- In the case of function definitions, a K&R-style list of arguments
- followed by their declarations is also provided, inside comments,
- after the declaration.
-
-'-fallow-parameterless-variadic-functions'
- Accept variadic functions without named parameters.
-
- Although it is possible to define such a function, this is not very
- useful as it is not possible to read the arguments. This is only
- supported for C as this construct is allowed by C++.
-
-'-fno-asm'
- Do not recognize 'asm', 'inline' or 'typeof' as a keyword, so that
- code can use these words as identifiers. You can use the keywords
- '__asm__', '__inline__' and '__typeof__' instead. '-ansi' implies
- '-fno-asm'.
-
- In C++, this switch only affects the 'typeof' keyword, since 'asm'
- and 'inline' are standard keywords. You may want to use the
- '-fno-gnu-keywords' flag instead, which has the same effect. In
- C99 mode ('-std=c99' or '-std=gnu99'), this switch only affects the
- 'asm' and 'typeof' keywords, since 'inline' is a standard keyword
- in ISO C99.
-
-'-fno-builtin'
-'-fno-builtin-FUNCTION'
- Don't recognize built-in functions that do not begin with
- '__builtin_' as prefix. *Note Other built-in functions provided by
- GCC: Other Builtins, for details of the functions affected,
- including those which are not built-in functions when '-ansi' or
- '-std' options for strict ISO C conformance are used because they
- do not have an ISO standard meaning.
-
- GCC normally generates special code to handle certain built-in
- functions more efficiently; for instance, calls to 'alloca' may
- become single instructions which adjust the stack directly, and
- calls to 'memcpy' may become inline copy loops. The resulting code
- is often both smaller and faster, but since the function calls no
- longer appear as such, you cannot set a breakpoint on those calls,
- nor can you change the behavior of the functions by linking with a
- different library. In addition, when a function is recognized as a
- built-in function, GCC may use information about that function to
- warn about problems with calls to that function, or to generate
- more efficient code, even if the resulting code still contains
- calls to that function. For example, warnings are given with
- '-Wformat' for bad calls to 'printf' when 'printf' is built in and
- 'strlen' is known not to modify global memory.
-
- With the '-fno-builtin-FUNCTION' option only the built-in function
- FUNCTION is disabled. FUNCTION must not begin with '__builtin_'.
- If a function is named that is not built-in in this version of GCC,
- this option is ignored. There is no corresponding
- '-fbuiltin-FUNCTION' option; if you wish to enable built-in
- functions selectively when using '-fno-builtin' or
- '-ffreestanding', you may define macros such as:
-
- #define abs(n) __builtin_abs ((n))
- #define strcpy(d, s) __builtin_strcpy ((d), (s))
-
-'-fhosted'
-
- Assert that compilation targets a hosted environment. This implies
- '-fbuiltin'. A hosted environment is one in which the entire
- standard library is available, and in which 'main' has a return
- type of 'int'. Examples are nearly everything except a kernel.
- This is equivalent to '-fno-freestanding'.
-
-'-ffreestanding'
-
- Assert that compilation targets a freestanding environment. This
- implies '-fno-builtin'. A freestanding environment is one in which
- the standard library may not exist, and program startup may not
- necessarily be at 'main'. The most obvious example is an OS
- kernel. This is equivalent to '-fno-hosted'.
-
- *Note Language Standards Supported by GCC: Standards, for details
- of freestanding and hosted environments.
-
-'-fopenmp'
- Enable handling of OpenMP directives '#pragma omp' in C/C++ and
- '!$omp' in Fortran. When '-fopenmp' is specified, the compiler
- generates parallel code according to the OpenMP Application Program
- Interface v4.0 <http://www.openmp.org/>. This option implies
- '-pthread', and thus is only supported on targets that have support
- for '-pthread'. '-fopenmp' implies '-fopenmp-simd'.
-
-'-fopenmp-simd'
- Enable handling of OpenMP's SIMD directives with '#pragma omp' in
- C/C++ and '!$omp' in Fortran. Other OpenMP directives are ignored.
-
-'-fcilkplus'
- Enable the usage of Cilk Plus language extension features for
- C/C++. When the option '-fcilkplus' is specified, enable the usage
- of the Cilk Plus Language extension features for C/C++. The
- present implementation follows ABI version 1.2. This is an
- experimental feature that is only partially complete, and whose
- interface may change in future versions of GCC as the official
- specification changes. Currently, all features but '_Cilk_for'
- have been implemented.
-
-'-fgnu-tm'
- When the option '-fgnu-tm' is specified, the compiler generates
- code for the Linux variant of Intel's current Transactional Memory
- ABI specification document (Revision 1.1, May 6 2009). This is an
- experimental feature whose interface may change in future versions
- of GCC, as the official specification changes. Please note that
- not all architectures are supported for this feature.
-
- For more information on GCC's support for transactional memory,
- *Note The GNU Transactional Memory Library: (libitm)Enabling
- libitm.
-
- Note that the transactional memory feature is not supported with
- non-call exceptions ('-fnon-call-exceptions').
-
-'-fms-extensions'
- Accept some non-standard constructs used in Microsoft header files.
-
- In C++ code, this allows member names in structures to be similar
- to previous types declarations.
-
- typedef int UOW;
- struct ABC {
- UOW UOW;
- };
-
- Some cases of unnamed fields in structures and unions are only
- accepted with this option. *Note Unnamed struct/union fields
- within structs/unions: Unnamed Fields, for details.
-
- Note that this option is off for all targets but i?86 and x86_64
- targets using ms-abi.
-'-fplan9-extensions'
- Accept some non-standard constructs used in Plan 9 code.
-
- This enables '-fms-extensions', permits passing pointers to
- structures with anonymous fields to functions that expect pointers
- to elements of the type of the field, and permits referring to
- anonymous fields declared using a typedef. *Note Unnamed
- struct/union fields within structs/unions: Unnamed Fields, for
- details. This is only supported for C, not C++.
-
-'-trigraphs'
- Support ISO C trigraphs. The '-ansi' option (and '-std' options
- for strict ISO C conformance) implies '-trigraphs'.
-
-'-traditional'
-'-traditional-cpp'
- Formerly, these options caused GCC to attempt to emulate a
- pre-standard C compiler. They are now only supported with the '-E'
- switch. The preprocessor continues to support a pre-standard mode.
- See the GNU CPP manual for details.
-
-'-fcond-mismatch'
- Allow conditional expressions with mismatched types in the second
- and third arguments. The value of such an expression is void.
- This option is not supported for C++.
-
-'-flax-vector-conversions'
- Allow implicit conversions between vectors with differing numbers
- of elements and/or incompatible element types. This option should
- not be used for new code.
-
-'-funsigned-char'
- Let the type 'char' be unsigned, like 'unsigned char'.
-
- Each kind of machine has a default for what 'char' should be. It
- is either like 'unsigned char' by default or like 'signed char' by
- default.
-
- Ideally, a portable program should always use 'signed char' or
- 'unsigned char' when it depends on the signedness of an object.
- But many programs have been written to use plain 'char' and expect
- it to be signed, or expect it to be unsigned, depending on the
- machines they were written for. This option, and its inverse, let
- you make such a program work with the opposite default.
-
- The type 'char' is always a distinct type from each of 'signed
- char' or 'unsigned char', even though its behavior is always just
- like one of those two.
-
-'-fsigned-char'
- Let the type 'char' be signed, like 'signed char'.
-
- Note that this is equivalent to '-fno-unsigned-char', which is the
- negative form of '-funsigned-char'. Likewise, the option
- '-fno-signed-char' is equivalent to '-funsigned-char'.
-
-'-fsigned-bitfields'
-'-funsigned-bitfields'
-'-fno-signed-bitfields'
-'-fno-unsigned-bitfields'
- These options control whether a bit-field is signed or unsigned,
- when the declaration does not use either 'signed' or 'unsigned'.
- By default, such a bit-field is signed, because this is consistent:
- the basic integer types such as 'int' are signed types.
-
-
-File: gcc.info, Node: C++ Dialect Options, Next: Objective-C and Objective-C++ Dialect Options, Prev: C Dialect Options, Up: Invoking GCC
-
-3.5 Options Controlling C++ Dialect
-===================================
-
-This section describes the command-line options that are only meaningful
-for C++ programs. You can also use most of the GNU compiler options
-regardless of what language your program is in. For example, you might
-compile a file 'firstClass.C' like this:
-
- g++ -g -frepo -O -c firstClass.C
-
-In this example, only '-frepo' is an option meant only for C++ programs;
-you can use the other options with any language supported by GCC.
-
- Here is a list of options that are _only_ for compiling C++ programs:
-
-'-fabi-version=N'
- Use version N of the C++ ABI. The default is version 2.
-
- Version 0 refers to the version conforming most closely to the C++
- ABI specification. Therefore, the ABI obtained using version 0
- will change in different versions of G++ as ABI bugs are fixed.
-
- Version 1 is the version of the C++ ABI that first appeared in G++
- 3.2.
-
- Version 2 is the version of the C++ ABI that first appeared in G++
- 3.4.
-
- Version 3 corrects an error in mangling a constant address as a
- template argument.
-
- Version 4, which first appeared in G++ 4.5, implements a standard
- mangling for vector types.
-
- Version 5, which first appeared in G++ 4.6, corrects the mangling
- of attribute const/volatile on function pointer types, decltype of
- a plain decl, and use of a function parameter in the declaration of
- another parameter.
-
- Version 6, which first appeared in G++ 4.7, corrects the promotion
- behavior of C++11 scoped enums and the mangling of template
- argument packs, const/static_cast, prefix ++ and -, and a class
- scope function used as a template argument.
-
- See also '-Wabi'.
-
-'-fno-access-control'
- Turn off all access checking. This switch is mainly useful for
- working around bugs in the access control code.
-
-'-fcheck-new'
- Check that the pointer returned by 'operator new' is non-null
- before attempting to modify the storage allocated. This check is
- normally unnecessary because the C++ standard specifies that
- 'operator new' only returns '0' if it is declared 'throw()', in
- which case the compiler always checks the return value even without
- this option. In all other cases, when 'operator new' has a
- non-empty exception specification, memory exhaustion is signalled
- by throwing 'std::bad_alloc'. See also 'new (nothrow)'.
-
-'-fconstexpr-depth=N'
- Set the maximum nested evaluation depth for C++11 constexpr
- functions to N. A limit is needed to detect endless recursion
- during constant expression evaluation. The minimum specified by
- the standard is 512.
-
-'-fdeduce-init-list'
- Enable deduction of a template type parameter as
- 'std::initializer_list' from a brace-enclosed initializer list,
- i.e.
-
- template <class T> auto forward(T t) -> decltype (realfn (t))
- {
- return realfn (t);
- }
-
- void f()
- {
- forward({1,2}); // call forward<std::initializer_list<int>>
- }
-
- This deduction was implemented as a possible extension to the
- originally proposed semantics for the C++11 standard, but was not
- part of the final standard, so it is disabled by default. This
- option is deprecated, and may be removed in a future version of
- G++.
-
-'-ffriend-injection'
- Inject friend functions into the enclosing namespace, so that they
- are visible outside the scope of the class in which they are
- declared. Friend functions were documented to work this way in the
- old Annotated C++ Reference Manual, and versions of G++ before 4.1
- always worked that way. However, in ISO C++ a friend function that
- is not declared in an enclosing scope can only be found using
- argument dependent lookup. This option causes friends to be
- injected as they were in earlier releases.
-
- This option is for compatibility, and may be removed in a future
- release of G++.
-
-'-fno-elide-constructors'
- The C++ standard allows an implementation to omit creating a
- temporary that is only used to initialize another object of the
- same type. Specifying this option disables that optimization, and
- forces G++ to call the copy constructor in all cases.
-
-'-fno-enforce-eh-specs'
- Don't generate code to check for violation of exception
- specifications at run time. This option violates the C++ standard,
- but may be useful for reducing code size in production builds, much
- like defining 'NDEBUG'. This does not give user code permission to
- throw exceptions in violation of the exception specifications; the
- compiler still optimizes based on the specifications, so throwing
- an unexpected exception results in undefined behavior at run time.
-
-'-fextern-tls-init'
-'-fno-extern-tls-init'
- The C++11 and OpenMP standards allow 'thread_local' and
- 'threadprivate' variables to have dynamic (runtime) initialization.
- To support this, any use of such a variable goes through a wrapper
- function that performs any necessary initialization. When the use
- and definition of the variable are in the same translation unit,
- this overhead can be optimized away, but when the use is in a
- different translation unit there is significant overhead even if
- the variable doesn't actually need dynamic initialization. If the
- programmer can be sure that no use of the variable in a
- non-defining TU needs to trigger dynamic initialization (either
- because the variable is statically initialized, or a use of the
- variable in the defining TU will be executed before any uses in
- another TU), they can avoid this overhead with the
- '-fno-extern-tls-init' option.
-
- On targets that support symbol aliases, the default is
- '-fextern-tls-init'. On targets that do not support symbol
- aliases, the default is '-fno-extern-tls-init'.
-
-'-ffor-scope'
-'-fno-for-scope'
- If '-ffor-scope' is specified, the scope of variables declared in a
- for-init-statement is limited to the 'for' loop itself, as
- specified by the C++ standard. If '-fno-for-scope' is specified,
- the scope of variables declared in a for-init-statement extends to
- the end of the enclosing scope, as was the case in old versions of
- G++, and other (traditional) implementations of C++.
-
- If neither flag is given, the default is to follow the standard,
- but to allow and give a warning for old-style code that would
- otherwise be invalid, or have different behavior.
-
-'-fno-gnu-keywords'
- Do not recognize 'typeof' as a keyword, so that code can use this
- word as an identifier. You can use the keyword '__typeof__'
- instead. '-ansi' implies '-fno-gnu-keywords'.
-
-'-fno-implicit-templates'
- Never emit code for non-inline templates that are instantiated
- implicitly (i.e. by use); only emit code for explicit
- instantiations. *Note Template Instantiation::, for more
- information.
-
-'-fno-implicit-inline-templates'
- Don't emit code for implicit instantiations of inline templates,
- either. The default is to handle inlines differently so that
- compiles with and without optimization need the same set of
- explicit instantiations.
-
-'-fno-implement-inlines'
- To save space, do not emit out-of-line copies of inline functions
- controlled by '#pragma implementation'. This causes linker errors
- if these functions are not inlined everywhere they are called.
-
-'-fms-extensions'
- Disable Wpedantic warnings about constructs used in MFC, such as
- implicit int and getting a pointer to member function via
- non-standard syntax.
-
-'-fno-nonansi-builtins'
- Disable built-in declarations of functions that are not mandated by
- ANSI/ISO C. These include 'ffs', 'alloca', '_exit', 'index',
- 'bzero', 'conjf', and other related functions.
-
-'-fnothrow-opt'
- Treat a 'throw()' exception specification as if it were a
- 'noexcept' specification to reduce or eliminate the text size
- overhead relative to a function with no exception specification.
- If the function has local variables of types with non-trivial
- destructors, the exception specification actually makes the
- function smaller because the EH cleanups for those variables can be
- optimized away. The semantic effect is that an exception thrown
- out of a function with such an exception specification results in a
- call to 'terminate' rather than 'unexpected'.
-
-'-fno-operator-names'
- Do not treat the operator name keywords 'and', 'bitand', 'bitor',
- 'compl', 'not', 'or' and 'xor' as synonyms as keywords.
-
-'-fno-optional-diags'
- Disable diagnostics that the standard says a compiler does not need
- to issue. Currently, the only such diagnostic issued by G++ is the
- one for a name having multiple meanings within a class.
-
-'-fpermissive'
- Downgrade some diagnostics about nonconformant code from errors to
- warnings. Thus, using '-fpermissive' allows some nonconforming
- code to compile.
-
-'-fno-pretty-templates'
- When an error message refers to a specialization of a function
- template, the compiler normally prints the signature of the
- template followed by the template arguments and any typedefs or
- typenames in the signature (e.g. 'void f(T) [with T = int]' rather
- than 'void f(int)') so that it's clear which template is involved.
- When an error message refers to a specialization of a class
- template, the compiler omits any template arguments that match the
- default template arguments for that template. If either of these
- behaviors make it harder to understand the error message rather
- than easier, you can use '-fno-pretty-templates' to disable them.
-
-'-frepo'
- Enable automatic template instantiation at link time. This option
- also implies '-fno-implicit-templates'. *Note Template
- Instantiation::, for more information.
-
-'-fno-rtti'
- Disable generation of information about every class with virtual
- functions for use by the C++ run-time type identification features
- ('dynamic_cast' and 'typeid'). If you don't use those parts of the
- language, you can save some space by using this flag. Note that
- exception handling uses the same information, but G++ generates it
- as needed. The 'dynamic_cast' operator can still be used for casts
- that do not require run-time type information, i.e. casts to 'void
- *' or to unambiguous base classes.
-
-'-fstats'
- Emit statistics about front-end processing at the end of the
- compilation. This information is generally only useful to the G++
- development team.
-
-'-fstrict-enums'
- Allow the compiler to optimize using the assumption that a value of
- enumerated type can only be one of the values of the enumeration
- (as defined in the C++ standard; basically, a value that can be
- represented in the minimum number of bits needed to represent all
- the enumerators). This assumption may not be valid if the program
- uses a cast to convert an arbitrary integer value to the enumerated
- type.
-
-'-ftemplate-backtrace-limit=N'
- Set the maximum number of template instantiation notes for a single
- warning or error to N. The default value is 10.
-
-'-ftemplate-depth=N'
- Set the maximum instantiation depth for template classes to N. A
- limit on the template instantiation depth is needed to detect
- endless recursions during template class instantiation. ANSI/ISO
- C++ conforming programs must not rely on a maximum depth greater
- than 17 (changed to 1024 in C++11). The default value is 900, as
- the compiler can run out of stack space before hitting 1024 in some
- situations.
-
-'-fno-threadsafe-statics'
- Do not emit the extra code to use the routines specified in the C++
- ABI for thread-safe initialization of local statics. You can use
- this option to reduce code size slightly in code that doesn't need
- to be thread-safe.
-
-'-fuse-cxa-atexit'
- Register destructors for objects with static storage duration with
- the '__cxa_atexit' function rather than the 'atexit' function.
- This option is required for fully standards-compliant handling of
- static destructors, but only works if your C library supports
- '__cxa_atexit'.
-
-'-fno-use-cxa-get-exception-ptr'
- Don't use the '__cxa_get_exception_ptr' runtime routine. This
- causes 'std::uncaught_exception' to be incorrect, but is necessary
- if the runtime routine is not available.
-
-'-fvisibility-inlines-hidden'
- This switch declares that the user does not attempt to compare
- pointers to inline functions or methods where the addresses of the
- two functions are taken in different shared objects.
-
- The effect of this is that GCC may, effectively, mark inline
- methods with '__attribute__ ((visibility ("hidden")))' so that they
- do not appear in the export table of a DSO and do not require a PLT
- indirection when used within the DSO. Enabling this option can
- have a dramatic effect on load and link times of a DSO as it
- massively reduces the size of the dynamic export table when the
- library makes heavy use of templates.
-
- The behavior of this switch is not quite the same as marking the
- methods as hidden directly, because it does not affect static
- variables local to the function or cause the compiler to deduce
- that the function is defined in only one shared object.
-
- You may mark a method as having a visibility explicitly to negate
- the effect of the switch for that method. For example, if you do
- want to compare pointers to a particular inline method, you might
- mark it as having default visibility. Marking the enclosing class
- with explicit visibility has no effect.
-
- Explicitly instantiated inline methods are unaffected by this
- option as their linkage might otherwise cross a shared library
- boundary. *Note Template Instantiation::.
-
-'-fvisibility-ms-compat'
- This flag attempts to use visibility settings to make GCC's C++
- linkage model compatible with that of Microsoft Visual Studio.
-
- The flag makes these changes to GCC's linkage model:
-
- 1. It sets the default visibility to 'hidden', like
- '-fvisibility=hidden'.
-
- 2. Types, but not their members, are not hidden by default.
-
- 3. The One Definition Rule is relaxed for types without explicit
- visibility specifications that are defined in more than one
- shared object: those declarations are permitted if they are
- permitted when this option is not used.
-
- In new code it is better to use '-fvisibility=hidden' and export
- those classes that are intended to be externally visible.
- Unfortunately it is possible for code to rely, perhaps
- accidentally, on the Visual Studio behavior.
-
- Among the consequences of these changes are that static data
- members of the same type with the same name but defined in
- different shared objects are different, so changing one does not
- change the other; and that pointers to function members defined in
- different shared objects may not compare equal. When this flag is
- given, it is a violation of the ODR to define types with the same
- name differently.
-
-'-fvtable-verify=STD|PREINIT|NONE'
- Turn on (or off, if using '-fvtable-verify=none') the security
- feature that verifies at runtime, for every virtual call that is
- made, that the vtable pointer through which the call is made is
- valid for the type of the object, and has not been corrupted or
- overwritten. If an invalid vtable pointer is detected (at
- runtime), an error is reported and execution of the program is
- immediately halted.
-
- This option causes runtime data structures to be built, at program
- start up, for verifying the vtable pointers. The options 'std' and
- 'preinit' control the timing of when these data structures are
- built. In both cases the data structures are built before
- execution reaches 'main'. The '-fvtable-verify=std' causes these
- data structure to be built after the shared libraries have been
- loaded and initialized. '-fvtable-verify=preinit' causes them to
- be built before the shared libraries have been loaded and
- initialized.
-
- If this option appears multiple times in the compiler line, with
- different values specified, 'none' will take highest priority over
- both 'std' and 'preinit'; 'preinit' will take priority over 'std'.
-
-'-fvtv-debug'
- Causes debug versions of the runtime functions for the vtable
- verification feature to be called. This assumes the
- '-fvtable-verify=std' or '-fvtable-verify=preinit' has been used.
- This flag will also cause the compiler to keep track of which
- vtable pointers it found for each class, and record that
- information in the file "vtv_set_ptr_data.log", in the dump file
- directory on the user's machine.
-
- Note: This feature APPENDS data to the log file. If you want a
- fresh log file, be sure to delete any existing one.
-
-'-fvtv-counts'
- This is a debugging flag. When used in conjunction with
- '-fvtable-verify=std' or '-fvtable-verify=preinit', this causes the
- compiler to keep track of the total number of virtual calls it
- encountered and the number of verifications it inserted. It also
- counts the number of calls to certain runtime library functions
- that it inserts. This information, for each compilation unit, is
- written to a file named "vtv_count_data.log", in the dump_file
- directory on the user's machine. It also counts the size of the
- vtable pointer sets for each class, and writes this information to
- "vtv_class_set_sizes.log" in the same directory.
-
- Note: This feature APPENDS data to the log files. To get a fresh
- log files, be sure to delete any existing ones.
-
-'-fno-weak'
- Do not use weak symbol support, even if it is provided by the
- linker. By default, G++ uses weak symbols if they are available.
- This option exists only for testing, and should not be used by
- end-users; it results in inferior code and has no benefits. This
- option may be removed in a future release of G++.
-
-'-nostdinc++'
- Do not search for header files in the standard directories specific
- to C++, but do still search the other standard directories. (This
- option is used when building the C++ library.)
-
- In addition, these optimization, warning, and code generation options
-have meanings only for C++ programs:
-
-'-Wabi (C, Objective-C, C++ and Objective-C++ only)'
- Warn when G++ generates code that is probably not compatible with
- the vendor-neutral C++ ABI. Although an effort has been made to
- warn about all such cases, there are probably some cases that are
- not warned about, even though G++ is generating incompatible code.
- There may also be cases where warnings are emitted even though the
- code that is generated is compatible.
-
- You should rewrite your code to avoid these warnings if you are
- concerned about the fact that code generated by G++ may not be
- binary compatible with code generated by other compilers.
-
- The known incompatibilities in '-fabi-version=2' (the default)
- include:
-
- * A template with a non-type template parameter of reference
- type is mangled incorrectly:
- extern int N;
- template <int &> struct S {};
- void n (S<N>) {2}
-
- This is fixed in '-fabi-version=3'.
-
- * SIMD vector types declared using '__attribute ((vector_size))'
- are mangled in a non-standard way that does not allow for
- overloading of functions taking vectors of different sizes.
-
- The mangling is changed in '-fabi-version=4'.
-
- The known incompatibilities in '-fabi-version=1' include:
-
- * Incorrect handling of tail-padding for bit-fields. G++ may
- attempt to pack data into the same byte as a base class. For
- example:
-
- struct A { virtual void f(); int f1 : 1; };
- struct B : public A { int f2 : 1; };
-
- In this case, G++ places 'B::f2' into the same byte as
- 'A::f1'; other compilers do not. You can avoid this problem
- by explicitly padding 'A' so that its size is a multiple of
- the byte size on your platform; that causes G++ and other
- compilers to lay out 'B' identically.
-
- * Incorrect handling of tail-padding for virtual bases. G++
- does not use tail padding when laying out virtual bases. For
- example:
-
- struct A { virtual void f(); char c1; };
- struct B { B(); char c2; };
- struct C : public A, public virtual B {};
-
- In this case, G++ does not place 'B' into the tail-padding for
- 'A'; other compilers do. You can avoid this problem by
- explicitly padding 'A' so that its size is a multiple of its
- alignment (ignoring virtual base classes); that causes G++ and
- other compilers to lay out 'C' identically.
-
- * Incorrect handling of bit-fields with declared widths greater
- than that of their underlying types, when the bit-fields
- appear in a union. For example:
-
- union U { int i : 4096; };
-
- Assuming that an 'int' does not have 4096 bits, G++ makes the
- union too small by the number of bits in an 'int'.
-
- * Empty classes can be placed at incorrect offsets. For
- example:
-
- struct A {};
-
- struct B {
- A a;
- virtual void f ();
- };
-
- struct C : public B, public A {};
-
- G++ places the 'A' base class of 'C' at a nonzero offset; it
- should be placed at offset zero. G++ mistakenly believes that
- the 'A' data member of 'B' is already at offset zero.
-
- * Names of template functions whose types involve 'typename' or
- template template parameters can be mangled incorrectly.
-
- template <typename Q>
- void f(typename Q::X) {}
-
- template <template <typename> class Q>
- void f(typename Q<int>::X) {}
-
- Instantiations of these templates may be mangled incorrectly.
-
- It also warns about psABI-related changes. The known psABI changes
- at this point include:
-
- * For SysV/x86-64, unions with 'long double' members are passed
- in memory as specified in psABI. For example:
-
- union U {
- long double ld;
- int i;
- };
-
- 'union U' is always passed in memory.
-
-'-Wctor-dtor-privacy (C++ and Objective-C++ only)'
- Warn when a class seems unusable because all the constructors or
- destructors in that class are private, and it has neither friends
- nor public static member functions. Also warn if there are no
- non-private methods, and there's at least one private member
- function that isn't a constructor or destructor.
-
-'-Wdelete-non-virtual-dtor (C++ and Objective-C++ only)'
- Warn when 'delete' is used to destroy an instance of a class that
- has virtual functions and non-virtual destructor. It is unsafe to
- delete an instance of a derived class through a pointer to a base
- class if the base class does not have a virtual destructor. This
- warning is enabled by '-Wall'.
-
-'-Wliteral-suffix (C++ and Objective-C++ only)'
- Warn when a string or character literal is followed by a ud-suffix
- which does not begin with an underscore. As a conforming
- extension, GCC treats such suffixes as separate preprocessing
- tokens in order to maintain backwards compatibility with code that
- uses formatting macros from '<inttypes.h>'. For example:
-
- #define __STDC_FORMAT_MACROS
- #include <inttypes.h>
- #include <stdio.h>
-
- int main() {
- int64_t i64 = 123;
- printf("My int64: %"PRId64"\n", i64);
- }
-
- In this case, 'PRId64' is treated as a separate preprocessing
- token.
-
- This warning is enabled by default.
-
-'-Wnarrowing (C++ and Objective-C++ only)'
- Warn when a narrowing conversion prohibited by C++11 occurs within
- '{ }', e.g.
-
- int i = { 2.2 }; // error: narrowing from double to int
-
- This flag is included in '-Wall' and '-Wc++11-compat'.
-
- With '-std=c++11', '-Wno-narrowing' suppresses the diagnostic
- required by the standard. Note that this does not affect the
- meaning of well-formed code; narrowing conversions are still
- considered ill-formed in SFINAE context.
-
-'-Wnoexcept (C++ and Objective-C++ only)'
- Warn when a noexcept-expression evaluates to false because of a
- call to a function that does not have a non-throwing exception
- specification (i.e. 'throw()' or 'noexcept') but is known by the
- compiler to never throw an exception.
-
-'-Wnon-virtual-dtor (C++ and Objective-C++ only)'
- Warn when a class has virtual functions and an accessible
- non-virtual destructor itself or in an accessible polymorphic base
- class, in which case it is possible but unsafe to delete an
- instance of a derived class through a pointer to the class itself
- or base class. This warning is automatically enabled if '-Weffc++'
- is specified.
-
-'-Wreorder (C++ and Objective-C++ only)'
- Warn when the order of member initializers given in the code does
- not match the order in which they must be executed. For instance:
-
- struct A {
- int i;
- int j;
- A(): j (0), i (1) { }
- };
-
- The compiler rearranges the member initializers for 'i' and 'j' to
- match the declaration order of the members, emitting a warning to
- that effect. This warning is enabled by '-Wall'.
-
-'-fext-numeric-literals (C++ and Objective-C++ only)'
- Accept imaginary, fixed-point, or machine-defined literal number
- suffixes as GNU extensions. When this option is turned off these
- suffixes are treated as C++11 user-defined literal numeric
- suffixes. This is on by default for all pre-C++11 dialects and all
- GNU dialects: '-std=c++98', '-std=gnu++98', '-std=gnu++11',
- '-std=gnu++1y'. This option is off by default for ISO C++11
- onwards ('-std=c++11', ...).
-
- The following '-W...' options are not affected by '-Wall'.
-
-'-Weffc++ (C++ and Objective-C++ only)'
- Warn about violations of the following style guidelines from Scott
- Meyers' 'Effective C++' series of books:
-
- * Define a copy constructor and an assignment operator for
- classes with dynamically-allocated memory.
-
- * Prefer initialization to assignment in constructors.
-
- * Have 'operator=' return a reference to '*this'.
-
- * Don't try to return a reference when you must return an
- object.
-
- * Distinguish between prefix and postfix forms of increment and
- decrement operators.
-
- * Never overload '&&', '||', or ','.
-
- This option also enables '-Wnon-virtual-dtor', which is also one of
- the effective C++ recommendations. However, the check is extended
- to warn about the lack of virtual destructor in accessible
- non-polymorphic bases classes too.
-
- When selecting this option, be aware that the standard library
- headers do not obey all of these guidelines; use 'grep -v' to
- filter out those warnings.
-
-'-Wstrict-null-sentinel (C++ and Objective-C++ only)'
- Warn about the use of an uncasted 'NULL' as sentinel. When
- compiling only with GCC this is a valid sentinel, as 'NULL' is
- defined to '__null'. Although it is a null pointer constant rather
- than a null pointer, it is guaranteed to be of the same size as a
- pointer. But this use is not portable across different compilers.
-
-'-Wno-non-template-friend (C++ and Objective-C++ only)'
- Disable warnings when non-templatized friend functions are declared
- within a template. Since the advent of explicit template
- specification support in G++, if the name of the friend is an
- unqualified-id (i.e., 'friend foo(int)'), the C++ language
- specification demands that the friend declare or define an
- ordinary, nontemplate function. (Section 14.5.3). Before G++
- implemented explicit specification, unqualified-ids could be
- interpreted as a particular specialization of a templatized
- function. Because this non-conforming behavior is no longer the
- default behavior for G++, '-Wnon-template-friend' allows the
- compiler to check existing code for potential trouble spots and is
- on by default. This new compiler behavior can be turned off with
- '-Wno-non-template-friend', which keeps the conformant compiler
- code but disables the helpful warning.
-
-'-Wold-style-cast (C++ and Objective-C++ only)'
- Warn if an old-style (C-style) cast to a non-void type is used
- within a C++ program. The new-style casts ('dynamic_cast',
- 'static_cast', 'reinterpret_cast', and 'const_cast') are less
- vulnerable to unintended effects and much easier to search for.
-
-'-Woverloaded-virtual (C++ and Objective-C++ only)'
- Warn when a function declaration hides virtual functions from a
- base class. For example, in:
-
- struct A {
- virtual void f();
- };
-
- struct B: public A {
- void f(int);
- };
-
- the 'A' class version of 'f' is hidden in 'B', and code like:
-
- B* b;
- b->f();
-
- fails to compile.
-
-'-Wno-pmf-conversions (C++ and Objective-C++ only)'
- Disable the diagnostic for converting a bound pointer to member
- function to a plain pointer.
-
-'-Wsign-promo (C++ and Objective-C++ only)'
- Warn when overload resolution chooses a promotion from unsigned or
- enumerated type to a signed type, over a conversion to an unsigned
- type of the same size. Previous versions of G++ tried to preserve
- unsignedness, but the standard mandates the current behavior.
-
-
-File: gcc.info, Node: Objective-C and Objective-C++ Dialect Options, Next: Language Independent Options, Prev: C++ Dialect Options, Up: Invoking GCC
-
-3.6 Options Controlling Objective-C and Objective-C++ Dialects
-==============================================================
-
-(NOTE: This manual does not describe the Objective-C and Objective-C++
-languages themselves. *Note Language Standards Supported by GCC:
-Standards, for references.)
-
- This section describes the command-line options that are only
-meaningful for Objective-C and Objective-C++ programs. You can also use
-most of the language-independent GNU compiler options. For example, you
-might compile a file 'some_class.m' like this:
-
- gcc -g -fgnu-runtime -O -c some_class.m
-
-In this example, '-fgnu-runtime' is an option meant only for Objective-C
-and Objective-C++ programs; you can use the other options with any
-language supported by GCC.
-
- Note that since Objective-C is an extension of the C language,
-Objective-C compilations may also use options specific to the C
-front-end (e.g., '-Wtraditional'). Similarly, Objective-C++
-compilations may use C++-specific options (e.g., '-Wabi').
-
- Here is a list of options that are _only_ for compiling Objective-C and
-Objective-C++ programs:
-
-'-fconstant-string-class=CLASS-NAME'
- Use CLASS-NAME as the name of the class to instantiate for each
- literal string specified with the syntax '@"..."'. The default
- class name is 'NXConstantString' if the GNU runtime is being used,
- and 'NSConstantString' if the NeXT runtime is being used (see
- below). The '-fconstant-cfstrings' option, if also present,
- overrides the '-fconstant-string-class' setting and cause '@"..."'
- literals to be laid out as constant CoreFoundation strings.
-
-'-fgnu-runtime'
- Generate object code compatible with the standard GNU Objective-C
- runtime. This is the default for most types of systems.
-
-'-fnext-runtime'
- Generate output compatible with the NeXT runtime. This is the
- default for NeXT-based systems, including Darwin and Mac OS X. The
- macro '__NEXT_RUNTIME__' is predefined if (and only if) this option
- is used.
-
-'-fno-nil-receivers'
- Assume that all Objective-C message dispatches ('[receiver
- message:arg]') in this translation unit ensure that the receiver is
- not 'nil'. This allows for more efficient entry points in the
- runtime to be used. This option is only available in conjunction
- with the NeXT runtime and ABI version 0 or 1.
-
-'-fobjc-abi-version=N'
- Use version N of the Objective-C ABI for the selected runtime.
- This option is currently supported only for the NeXT runtime. In
- that case, Version 0 is the traditional (32-bit) ABI without
- support for properties and other Objective-C 2.0 additions.
- Version 1 is the traditional (32-bit) ABI with support for
- properties and other Objective-C 2.0 additions. Version 2 is the
- modern (64-bit) ABI. If nothing is specified, the default is
- Version 0 on 32-bit target machines, and Version 2 on 64-bit target
- machines.
-
-'-fobjc-call-cxx-cdtors'
- For each Objective-C class, check if any of its instance variables
- is a C++ object with a non-trivial default constructor. If so,
- synthesize a special '- (id) .cxx_construct' instance method which
- runs non-trivial default constructors on any such instance
- variables, in order, and then return 'self'. Similarly, check if
- any instance variable is a C++ object with a non-trivial
- destructor, and if so, synthesize a special '- (void)
- .cxx_destruct' method which runs all such default destructors, in
- reverse order.
-
- The '- (id) .cxx_construct' and '- (void) .cxx_destruct' methods
- thusly generated only operate on instance variables declared in the
- current Objective-C class, and not those inherited from
- superclasses. It is the responsibility of the Objective-C runtime
- to invoke all such methods in an object's inheritance hierarchy.
- The '- (id) .cxx_construct' methods are invoked by the runtime
- immediately after a new object instance is allocated; the '- (void)
- .cxx_destruct' methods are invoked immediately before the runtime
- deallocates an object instance.
-
- As of this writing, only the NeXT runtime on Mac OS X 10.4 and
- later has support for invoking the '- (id) .cxx_construct' and '-
- (void) .cxx_destruct' methods.
-
-'-fobjc-direct-dispatch'
- Allow fast jumps to the message dispatcher. On Darwin this is
- accomplished via the comm page.
-
-'-fobjc-exceptions'
- Enable syntactic support for structured exception handling in
- Objective-C, similar to what is offered by C++ and Java. This
- option is required to use the Objective-C keywords '@try',
- '@throw', '@catch', '@finally' and '@synchronized'. This option is
- available with both the GNU runtime and the NeXT runtime (but not
- available in conjunction with the NeXT runtime on Mac OS X 10.2 and
- earlier).
-
-'-fobjc-gc'
- Enable garbage collection (GC) in Objective-C and Objective-C++
- programs. This option is only available with the NeXT runtime; the
- GNU runtime has a different garbage collection implementation that
- does not require special compiler flags.
-
-'-fobjc-nilcheck'
- For the NeXT runtime with version 2 of the ABI, check for a nil
- receiver in method invocations before doing the actual method call.
- This is the default and can be disabled using '-fno-objc-nilcheck'.
- Class methods and super calls are never checked for nil in this way
- no matter what this flag is set to. Currently this flag does
- nothing when the GNU runtime, or an older version of the NeXT
- runtime ABI, is used.
-
-'-fobjc-std=objc1'
- Conform to the language syntax of Objective-C 1.0, the language
- recognized by GCC 4.0. This only affects the Objective-C additions
- to the C/C++ language; it does not affect conformance to C/C++
- standards, which is controlled by the separate C/C++ dialect option
- flags. When this option is used with the Objective-C or
- Objective-C++ compiler, any Objective-C syntax that is not
- recognized by GCC 4.0 is rejected. This is useful if you need to
- make sure that your Objective-C code can be compiled with older
- versions of GCC.
-
-'-freplace-objc-classes'
- Emit a special marker instructing 'ld(1)' not to statically link in
- the resulting object file, and allow 'dyld(1)' to load it in at run
- time instead. This is used in conjunction with the
- Fix-and-Continue debugging mode, where the object file in question
- may be recompiled and dynamically reloaded in the course of program
- execution, without the need to restart the program itself.
- Currently, Fix-and-Continue functionality is only available in
- conjunction with the NeXT runtime on Mac OS X 10.3 and later.
-
-'-fzero-link'
- When compiling for the NeXT runtime, the compiler ordinarily
- replaces calls to 'objc_getClass("...")' (when the name of the
- class is known at compile time) with static class references that
- get initialized at load time, which improves run-time performance.
- Specifying the '-fzero-link' flag suppresses this behavior and
- causes calls to 'objc_getClass("...")' to be retained. This is
- useful in Zero-Link debugging mode, since it allows for individual
- class implementations to be modified during program execution. The
- GNU runtime currently always retains calls to
- 'objc_get_class("...")' regardless of command-line options.
-
-'-gen-decls'
- Dump interface declarations for all classes seen in the source file
- to a file named 'SOURCENAME.decl'.
-
-'-Wassign-intercept (Objective-C and Objective-C++ only)'
- Warn whenever an Objective-C assignment is being intercepted by the
- garbage collector.
-
-'-Wno-protocol (Objective-C and Objective-C++ only)'
- If a class is declared to implement a protocol, a warning is issued
- for every method in the protocol that is not implemented by the
- class. The default behavior is to issue a warning for every method
- not explicitly implemented in the class, even if a method
- implementation is inherited from the superclass. If you use the
- '-Wno-protocol' option, then methods inherited from the superclass
- are considered to be implemented, and no warning is issued for
- them.
-
-'-Wselector (Objective-C and Objective-C++ only)'
- Warn if multiple methods of different types for the same selector
- are found during compilation. The check is performed on the list
- of methods in the final stage of compilation. Additionally, a
- check is performed for each selector appearing in a
- '@selector(...)' expression, and a corresponding method for that
- selector has been found during compilation. Because these checks
- scan the method table only at the end of compilation, these
- warnings are not produced if the final stage of compilation is not
- reached, for example because an error is found during compilation,
- or because the '-fsyntax-only' option is being used.
-
-'-Wstrict-selector-match (Objective-C and Objective-C++ only)'
- Warn if multiple methods with differing argument and/or return
- types are found for a given selector when attempting to send a
- message using this selector to a receiver of type 'id' or 'Class'.
- When this flag is off (which is the default behavior), the compiler
- omits such warnings if any differences found are confined to types
- that share the same size and alignment.
-
-'-Wundeclared-selector (Objective-C and Objective-C++ only)'
- Warn if a '@selector(...)' expression referring to an undeclared
- selector is found. A selector is considered undeclared if no
- method with that name has been declared before the '@selector(...)'
- expression, either explicitly in an '@interface' or '@protocol'
- declaration, or implicitly in an '@implementation' section. This
- option always performs its checks as soon as a '@selector(...)'
- expression is found, while '-Wselector' only performs its checks in
- the final stage of compilation. This also enforces the coding
- style convention that methods and selectors must be declared before
- being used.
-
-'-print-objc-runtime-info'
- Generate C header describing the largest structure that is passed
- by value, if any.
-
-
-File: gcc.info, Node: Language Independent Options, Next: Warning Options, Prev: Objective-C and Objective-C++ Dialect Options, Up: Invoking GCC
-
-3.7 Options to Control Diagnostic Messages Formatting
-=====================================================
-
-Traditionally, diagnostic messages have been formatted irrespective of
-the output device's aspect (e.g. its width, ...). You can use the
-options described below to control the formatting algorithm for
-diagnostic messages, e.g. how many characters per line, how often source
-location information should be reported. Note that some language front
-ends may not honor these options.
-
-'-fmessage-length=N'
- Try to format error messages so that they fit on lines of about N
- characters. The default is 72 characters for 'g++' and 0 for the
- rest of the front ends supported by GCC. If N is zero, then no
- line-wrapping is done; each error message appears on a single line.
-
-'-fdiagnostics-show-location=once'
- Only meaningful in line-wrapping mode. Instructs the diagnostic
- messages reporter to emit source location information _once_; that
- is, in case the message is too long to fit on a single physical
- line and has to be wrapped, the source location won't be emitted
- (as prefix) again, over and over, in subsequent continuation lines.
- This is the default behavior.
-
-'-fdiagnostics-show-location=every-line'
- Only meaningful in line-wrapping mode. Instructs the diagnostic
- messages reporter to emit the same source location information (as
- prefix) for physical lines that result from the process of breaking
- a message which is too long to fit on a single line.
-
-'-fdiagnostics-color[=WHEN]'
-'-fno-diagnostics-color'
- Use color in diagnostics. WHEN is 'never', 'always', or 'auto'.
- The default is 'never' if 'GCC_COLORS' environment variable isn't
- present in the environment, and 'auto' otherwise. 'auto' means to
- use color only when the standard error is a terminal. The forms
- '-fdiagnostics-color' and '-fno-diagnostics-color' are aliases for
- '-fdiagnostics-color=always' and '-fdiagnostics-color=never',
- respectively.
-
- The colors are defined by the environment variable 'GCC_COLORS'.
- Its value is a colon-separated list of capabilities and Select
- Graphic Rendition (SGR) substrings. SGR commands are interpreted
- by the terminal or terminal emulator. (See the section in the
- documentation of your text terminal for permitted values and their
- meanings as character attributes.) These substring values are
- integers in decimal representation and can be concatenated with
- semicolons. Common values to concatenate include '1' for bold, '4'
- for underline, '5' for blink, '7' for inverse, '39' for default
- foreground color, '30' to '37' for foreground colors, '90' to '97'
- for 16-color mode foreground colors, '38;5;0' to '38;5;255' for
- 88-color and 256-color modes foreground colors, '49' for default
- background color, '40' to '47' for background colors, '100' to
- '107' for 16-color mode background colors, and '48;5;0' to
- '48;5;255' for 88-color and 256-color modes background colors.
-
- The default 'GCC_COLORS' is
- 'error=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01'
- where '01;31' is bold red, '01;35' is bold magenta, '01;36' is bold
- cyan, '01;32' is bold green and '01' is bold. Setting 'GCC_COLORS'
- to the empty string disables colors. Supported capabilities are as
- follows.
-
- 'error='
- SGR substring for error: markers.
-
- 'warning='
- SGR substring for warning: markers.
-
- 'note='
- SGR substring for note: markers.
-
- 'caret='
- SGR substring for caret line.
-
- 'locus='
- SGR substring for location information, 'file:line' or
- 'file:line:column' etc.
-
- 'quote='
- SGR substring for information printed within quotes.
-
-'-fno-diagnostics-show-option'
- By default, each diagnostic emitted includes text indicating the
- command-line option that directly controls the diagnostic (if such
- an option is known to the diagnostic machinery). Specifying the
- '-fno-diagnostics-show-option' flag suppresses that behavior.
-
-'-fno-diagnostics-show-caret'
- By default, each diagnostic emitted includes the original source
- line and a caret '^' indicating the column. This option suppresses
- this information.
-
-
-File: gcc.info, Node: Warning Options, Next: Debugging Options, Prev: Language Independent Options, Up: Invoking GCC
-
-3.8 Options to Request or Suppress Warnings
-===========================================
-
-Warnings are diagnostic messages that report constructions that are not
-inherently erroneous but that are risky or suggest there may have been
-an error.
-
- The following language-independent options do not enable specific
-warnings but control the kinds of diagnostics produced by GCC.
-
-'-fsyntax-only'
- Check the code for syntax errors, but don't do anything beyond
- that.
-
-'-fmax-errors=N'
- Limits the maximum number of error messages to N, at which point
- GCC bails out rather than attempting to continue processing the
- source code. If N is 0 (the default), there is no limit on the
- number of error messages produced. If '-Wfatal-errors' is also
- specified, then '-Wfatal-errors' takes precedence over this option.
-
-'-w'
- Inhibit all warning messages.
-
-'-Werror'
- Make all warnings into errors.
-
-'-Werror='
- Make the specified warning into an error. The specifier for a
- warning is appended; for example '-Werror=switch' turns the
- warnings controlled by '-Wswitch' into errors. This switch takes a
- negative form, to be used to negate '-Werror' for specific
- warnings; for example '-Wno-error=switch' makes '-Wswitch' warnings
- not be errors, even when '-Werror' is in effect.
-
- The warning message for each controllable warning includes the
- option that controls the warning. That option can then be used
- with '-Werror=' and '-Wno-error=' as described above. (Printing of
- the option in the warning message can be disabled using the
- '-fno-diagnostics-show-option' flag.)
-
- Note that specifying '-Werror='FOO automatically implies '-W'FOO.
- However, '-Wno-error='FOO does not imply anything.
-
-'-Wfatal-errors'
- This option causes the compiler to abort compilation on the first
- error occurred rather than trying to keep going and printing
- further error messages.
-
- You can request many specific warnings with options beginning with
-'-W', for example '-Wimplicit' to request warnings on implicit
-declarations. Each of these specific warning options also has a
-negative form beginning '-Wno-' to turn off warnings; for example,
-'-Wno-implicit'. This manual lists only one of the two forms, whichever
-is not the default. For further language-specific options also refer to
-*note C++ Dialect Options:: and *note Objective-C and Objective-C++
-Dialect Options::.
-
- When an unrecognized warning option is requested (e.g.,
-'-Wunknown-warning'), GCC emits a diagnostic stating that the option is
-not recognized. However, if the '-Wno-' form is used, the behavior is
-slightly different: no diagnostic is produced for '-Wno-unknown-warning'
-unless other diagnostics are being produced. This allows the use of new
-'-Wno-' options with old compilers, but if something goes wrong, the
-compiler warns that an unrecognized option is present.
-
-'-Wpedantic'
-'-pedantic'
- Issue all the warnings demanded by strict ISO C and ISO C++; reject
- all programs that use forbidden extensions, and some other programs
- that do not follow ISO C and ISO C++. For ISO C, follows the
- version of the ISO C standard specified by any '-std' option used.
-
- Valid ISO C and ISO C++ programs should compile properly with or
- without this option (though a rare few require '-ansi' or a '-std'
- option specifying the required version of ISO C). However, without
- this option, certain GNU extensions and traditional C and C++
- features are supported as well. With this option, they are
- rejected.
-
- '-Wpedantic' does not cause warning messages for use of the
- alternate keywords whose names begin and end with '__'. Pedantic
- warnings are also disabled in the expression that follows
- '__extension__'. However, only system header files should use
- these escape routes; application programs should avoid them. *Note
- Alternate Keywords::.
-
- Some users try to use '-Wpedantic' to check programs for strict ISO
- C conformance. They soon find that it does not do quite what they
- want: it finds some non-ISO practices, but not all--only those for
- which ISO C _requires_ a diagnostic, and some others for which
- diagnostics have been added.
-
- A feature to report any failure to conform to ISO C might be useful
- in some instances, but would require considerable additional work
- and would be quite different from '-Wpedantic'. We don't have
- plans to support such a feature in the near future.
-
- Where the standard specified with '-std' represents a GNU extended
- dialect of C, such as 'gnu90' or 'gnu99', there is a corresponding
- "base standard", the version of ISO C on which the GNU extended
- dialect is based. Warnings from '-Wpedantic' are given where they
- are required by the base standard. (It does not make sense for
- such warnings to be given only for features not in the specified
- GNU C dialect, since by definition the GNU dialects of C include
- all features the compiler supports with the given option, and there
- would be nothing to warn about.)
-
-'-pedantic-errors'
- Like '-Wpedantic', except that errors are produced rather than
- warnings.
-
-'-Wall'
- This enables all the warnings about constructions that some users
- consider questionable, and that are easy to avoid (or modify to
- prevent the warning), even in conjunction with macros. This also
- enables some language-specific warnings described in *note C++
- Dialect Options:: and *note Objective-C and Objective-C++ Dialect
- Options::.
-
- '-Wall' turns on the following warning flags:
-
- -Waddress
- -Warray-bounds (only with -O2)
- -Wc++11-compat
- -Wchar-subscripts
- -Wenum-compare (in C/ObjC; this is on by default in C++)
- -Wimplicit-int (C and Objective-C only)
- -Wimplicit-function-declaration (C and Objective-C only)
- -Wcomment
- -Wformat
- -Wmain (only for C/ObjC and unless -ffreestanding)
- -Wmaybe-uninitialized
- -Wmissing-braces (only for C/ObjC)
- -Wnonnull
- -Wopenmp-simd
- -Wparentheses
- -Wpointer-sign
- -Wreorder
- -Wreturn-type
- -Wsequence-point
- -Wsign-compare (only in C++)
- -Wstrict-aliasing
- -Wstrict-overflow=1
- -Wswitch
- -Wtrigraphs
- -Wuninitialized
- -Wunknown-pragmas
- -Wunused-function
- -Wunused-label
- -Wunused-value
- -Wunused-variable
- -Wvolatile-register-var
-
- Note that some warning flags are not implied by '-Wall'. Some of
- them warn about constructions that users generally do not consider
- questionable, but which occasionally you might wish to check for;
- others warn about constructions that are necessary or hard to avoid
- in some cases, and there is no simple way to modify the code to
- suppress the warning. Some of them are enabled by '-Wextra' but
- many of them must be enabled individually.
-
-'-Wextra'
- This enables some extra warning flags that are not enabled by
- '-Wall'. (This option used to be called '-W'. The older name is
- still supported, but the newer name is more descriptive.)
-
- -Wclobbered
- -Wempty-body
- -Wignored-qualifiers
- -Wmissing-field-initializers
- -Wmissing-parameter-type (C only)
- -Wold-style-declaration (C only)
- -Woverride-init
- -Wsign-compare
- -Wtype-limits
- -Wuninitialized
- -Wunused-parameter (only with -Wunused or -Wall)
- -Wunused-but-set-parameter (only with -Wunused or -Wall)
-
- The option '-Wextra' also prints warning messages for the following
- cases:
-
- * A pointer is compared against integer zero with '<', '<=',
- '>', or '>='.
-
- * (C++ only) An enumerator and a non-enumerator both appear in a
- conditional expression.
-
- * (C++ only) Ambiguous virtual bases.
-
- * (C++ only) Subscripting an array that has been declared
- 'register'.
-
- * (C++ only) Taking the address of a variable that has been
- declared 'register'.
-
- * (C++ only) A base class is not initialized in a derived
- class's copy constructor.
-
-'-Wchar-subscripts'
- Warn if an array subscript has type 'char'. This is a common cause
- of error, as programmers often forget that this type is signed on
- some machines. This warning is enabled by '-Wall'.
-
-'-Wcomment'
- Warn whenever a comment-start sequence '/*' appears in a '/*'
- comment, or whenever a Backslash-Newline appears in a '//' comment.
- This warning is enabled by '-Wall'.
-
-'-Wno-coverage-mismatch'
- Warn if feedback profiles do not match when using the
- '-fprofile-use' option. If a source file is changed between
- compiling with '-fprofile-gen' and with '-fprofile-use', the files
- with the profile feedback can fail to match the source file and GCC
- cannot use the profile feedback information. By default, this
- warning is enabled and is treated as an error.
- '-Wno-coverage-mismatch' can be used to disable the warning or
- '-Wno-error=coverage-mismatch' can be used to disable the error.
- Disabling the error for this warning can result in poorly optimized
- code and is useful only in the case of very minor changes such as
- bug fixes to an existing code-base. Completely disabling the
- warning is not recommended.
-
-'-Wno-cpp'
- (C, Objective-C, C++, Objective-C++ and Fortran only)
-
- Suppress warning messages emitted by '#warning' directives.
-
-'-Wdouble-promotion (C, C++, Objective-C and Objective-C++ only)'
- Give a warning when a value of type 'float' is implicitly promoted
- to 'double'. CPUs with a 32-bit "single-precision" floating-point
- unit implement 'float' in hardware, but emulate 'double' in
- software. On such a machine, doing computations using 'double'
- values is much more expensive because of the overhead required for
- software emulation.
-
- It is easy to accidentally do computations with 'double' because
- floating-point literals are implicitly of type 'double'. For
- example, in:
- float area(float radius)
- {
- return 3.14159 * radius * radius;
- }
- the compiler performs the entire computation with 'double' because
- the floating-point literal is a 'double'.
-
-'-Wformat'
-'-Wformat=N'
- Check calls to 'printf' and 'scanf', etc., to make sure that the
- arguments supplied have types appropriate to the format string
- specified, and that the conversions specified in the format string
- make sense. This includes standard functions, and others specified
- by format attributes (*note Function Attributes::), in the
- 'printf', 'scanf', 'strftime' and 'strfmon' (an X/Open extension,
- not in the C standard) families (or other target-specific
- families). Which functions are checked without format attributes
- having been specified depends on the standard version selected, and
- such checks of functions without the attribute specified are
- disabled by '-ffreestanding' or '-fno-builtin'.
-
- The formats are checked against the format features supported by
- GNU libc version 2.2. These include all ISO C90 and C99 features,
- as well as features from the Single Unix Specification and some BSD
- and GNU extensions. Other library implementations may not support
- all these features; GCC does not support warning about features
- that go beyond a particular library's limitations. However, if
- '-Wpedantic' is used with '-Wformat', warnings are given about
- format features not in the selected standard version (but not for
- 'strfmon' formats, since those are not in any version of the C
- standard). *Note Options Controlling C Dialect: C Dialect Options.
-
- '-Wformat=1'
- '-Wformat'
- Option '-Wformat' is equivalent to '-Wformat=1', and
- '-Wno-format' is equivalent to '-Wformat=0'. Since '-Wformat'
- also checks for null format arguments for several functions,
- '-Wformat' also implies '-Wnonnull'. Some aspects of this
- level of format checking can be disabled by the options:
- '-Wno-format-contains-nul', '-Wno-format-extra-args', and
- '-Wno-format-zero-length'. '-Wformat' is enabled by '-Wall'.
-
- '-Wno-format-contains-nul'
- If '-Wformat' is specified, do not warn about format strings
- that contain NUL bytes.
-
- '-Wno-format-extra-args'
- If '-Wformat' is specified, do not warn about excess arguments
- to a 'printf' or 'scanf' format function. The C standard
- specifies that such arguments are ignored.
-
- Where the unused arguments lie between used arguments that are
- specified with '$' operand number specifications, normally
- warnings are still given, since the implementation could not
- know what type to pass to 'va_arg' to skip the unused
- arguments. However, in the case of 'scanf' formats, this
- option suppresses the warning if the unused arguments are all
- pointers, since the Single Unix Specification says that such
- unused arguments are allowed.
-
- '-Wno-format-zero-length'
- If '-Wformat' is specified, do not warn about zero-length
- formats. The C standard specifies that zero-length formats
- are allowed.
-
- '-Wformat=2'
- Enable '-Wformat' plus additional format checks. Currently
- equivalent to '-Wformat -Wformat-nonliteral -Wformat-security
- -Wformat-y2k'.
-
- '-Wformat-nonliteral'
- If '-Wformat' is specified, also warn if the format string is
- not a string literal and so cannot be checked, unless the
- format function takes its format arguments as a 'va_list'.
-
- '-Wformat-security'
- If '-Wformat' is specified, also warn about uses of format
- functions that represent possible security problems. At
- present, this warns about calls to 'printf' and 'scanf'
- functions where the format string is not a string literal and
- there are no format arguments, as in 'printf (foo);'. This
- may be a security hole if the format string came from
- untrusted input and contains '%n'. (This is currently a
- subset of what '-Wformat-nonliteral' warns about, but in
- future warnings may be added to '-Wformat-security' that are
- not included in '-Wformat-nonliteral'.)
-
- '-Wformat-y2k'
- If '-Wformat' is specified, also warn about 'strftime' formats
- that may yield only a two-digit year.
-
-'-Wnonnull'
- Warn about passing a null pointer for arguments marked as requiring
- a non-null value by the 'nonnull' function attribute.
-
- '-Wnonnull' is included in '-Wall' and '-Wformat'. It can be
- disabled with the '-Wno-nonnull' option.
-
-'-Winit-self (C, C++, Objective-C and Objective-C++ only)'
- Warn about uninitialized variables that are initialized with
- themselves. Note this option can only be used with the
- '-Wuninitialized' option.
-
- For example, GCC warns about 'i' being uninitialized in the
- following snippet only when '-Winit-self' has been specified:
- int f()
- {
- int i = i;
- return i;
- }
-
- This warning is enabled by '-Wall' in C++.
-
-'-Wimplicit-int (C and Objective-C only)'
- Warn when a declaration does not specify a type. This warning is
- enabled by '-Wall'.
-
-'-Wimplicit-function-declaration (C and Objective-C only)'
- Give a warning whenever a function is used before being declared.
- In C99 mode ('-std=c99' or '-std=gnu99'), this warning is enabled
- by default and it is made into an error by '-pedantic-errors'.
- This warning is also enabled by '-Wall'.
-
-'-Wimplicit (C and Objective-C only)'
- Same as '-Wimplicit-int' and '-Wimplicit-function-declaration'.
- This warning is enabled by '-Wall'.
-
-'-Wignored-qualifiers (C and C++ only)'
- Warn if the return type of a function has a type qualifier such as
- 'const'. For ISO C such a type qualifier has no effect, since the
- value returned by a function is not an lvalue. For C++, the
- warning is only emitted for scalar types or 'void'. ISO C
- prohibits qualified 'void' return types on function definitions, so
- such return types always receive a warning even without this
- option.
-
- This warning is also enabled by '-Wextra'.
-
-'-Wmain'
- Warn if the type of 'main' is suspicious. 'main' should be a
- function with external linkage, returning int, taking either zero
- arguments, two, or three arguments of appropriate types. This
- warning is enabled by default in C++ and is enabled by either
- '-Wall' or '-Wpedantic'.
-
-'-Wmissing-braces'
- Warn if an aggregate or union initializer is not fully bracketed.
- In the following example, the initializer for 'a' is not fully
- bracketed, but that for 'b' is fully bracketed. This warning is
- enabled by '-Wall' in C.
-
- int a[2][2] = { 0, 1, 2, 3 };
- int b[2][2] = { { 0, 1 }, { 2, 3 } };
-
- This warning is enabled by '-Wall'.
-
-'-Wmissing-include-dirs (C, C++, Objective-C and Objective-C++ only)'
- Warn if a user-supplied include directory does not exist.
-
-'-Wparentheses'
- Warn if parentheses are omitted in certain contexts, such as when
- there is an assignment in a context where a truth value is
- expected, or when operators are nested whose precedence people
- often get confused about.
-
- Also warn if a comparison like 'x<=y<=z' appears; this is
- equivalent to '(x<=y ? 1 : 0) <= z', which is a different
- interpretation from that of ordinary mathematical notation.
-
- Also warn about constructions where there may be confusion to which
- 'if' statement an 'else' branch belongs. Here is an example of
- such a case:
-
- {
- if (a)
- if (b)
- foo ();
- else
- bar ();
- }
-
- In C/C++, every 'else' branch belongs to the innermost possible
- 'if' statement, which in this example is 'if (b)'. This is often
- not what the programmer expected, as illustrated in the above
- example by indentation the programmer chose. When there is the
- potential for this confusion, GCC issues a warning when this flag
- is specified. To eliminate the warning, add explicit braces around
- the innermost 'if' statement so there is no way the 'else' can
- belong to the enclosing 'if'. The resulting code looks like this:
-
- {
- if (a)
- {
- if (b)
- foo ();
- else
- bar ();
- }
- }
-
- Also warn for dangerous uses of the GNU extension to '?:' with
- omitted middle operand. When the condition in the '?': operator is
- a boolean expression, the omitted value is always 1. Often
- programmers expect it to be a value computed inside the conditional
- expression instead.
-
- This warning is enabled by '-Wall'.
-
-'-Wsequence-point'
- Warn about code that may have undefined semantics because of
- violations of sequence point rules in the C and C++ standards.
-
- The C and C++ standards define the order in which expressions in a
- C/C++ program are evaluated in terms of "sequence points", which
- represent a partial ordering between the execution of parts of the
- program: those executed before the sequence point, and those
- executed after it. These occur after the evaluation of a full
- expression (one which is not part of a larger expression), after
- the evaluation of the first operand of a '&&', '||', '? :' or ','
- (comma) operator, before a function is called (but after the
- evaluation of its arguments and the expression denoting the called
- function), and in certain other places. Other than as expressed by
- the sequence point rules, the order of evaluation of subexpressions
- of an expression is not specified. All these rules describe only a
- partial order rather than a total order, since, for example, if two
- functions are called within one expression with no sequence point
- between them, the order in which the functions are called is not
- specified. However, the standards committee have ruled that
- function calls do not overlap.
-
- It is not specified when between sequence points modifications to
- the values of objects take effect. Programs whose behavior depends
- on this have undefined behavior; the C and C++ standards specify
- that "Between the previous and next sequence point an object shall
- have its stored value modified at most once by the evaluation of an
- expression. Furthermore, the prior value shall be read only to
- determine the value to be stored.". If a program breaks these
- rules, the results on any particular implementation are entirely
- unpredictable.
-
- Examples of code with undefined behavior are 'a = a++;', 'a[n] =
- b[n++]' and 'a[i++] = i;'. Some more complicated cases are not
- diagnosed by this option, and it may give an occasional false
- positive result, but in general it has been found fairly effective
- at detecting this sort of problem in programs.
-
- The standard is worded confusingly, therefore there is some debate
- over the precise meaning of the sequence point rules in subtle
- cases. Links to discussions of the problem, including proposed
- formal definitions, may be found on the GCC readings page, at
- <http://gcc.gnu.org/readings.html>.
-
- This warning is enabled by '-Wall' for C and C++.
-
-'-Wno-return-local-addr'
- Do not warn about returning a pointer (or in C++, a reference) to a
- variable that goes out of scope after the function returns.
-
-'-Wreturn-type'
- Warn whenever a function is defined with a return type that
- defaults to 'int'. Also warn about any 'return' statement with no
- return value in a function whose return type is not 'void' (falling
- off the end of the function body is considered returning without a
- value), and about a 'return' statement with an expression in a
- function whose return type is 'void'.
-
- For C++, a function without return type always produces a
- diagnostic message, even when '-Wno-return-type' is specified. The
- only exceptions are 'main' and functions defined in system headers.
-
- This warning is enabled by '-Wall'.
-
-'-Wswitch'
- Warn whenever a 'switch' statement has an index of enumerated type
- and lacks a 'case' for one or more of the named codes of that
- enumeration. (The presence of a 'default' label prevents this
- warning.) 'case' labels outside the enumeration range also provoke
- warnings when this option is used (even if there is a 'default'
- label). This warning is enabled by '-Wall'.
-
-'-Wswitch-default'
- Warn whenever a 'switch' statement does not have a 'default' case.
-
-'-Wswitch-enum'
- Warn whenever a 'switch' statement has an index of enumerated type
- and lacks a 'case' for one or more of the named codes of that
- enumeration. 'case' labels outside the enumeration range also
- provoke warnings when this option is used. The only difference
- between '-Wswitch' and this option is that this option gives a
- warning about an omitted enumeration code even if there is a
- 'default' label.
-
-'-Wsync-nand (C and C++ only)'
- Warn when '__sync_fetch_and_nand' and '__sync_nand_and_fetch'
- built-in functions are used. These functions changed semantics in
- GCC 4.4.
-
-'-Wtrigraphs'
- Warn if any trigraphs are encountered that might change the meaning
- of the program (trigraphs within comments are not warned about).
- This warning is enabled by '-Wall'.
-
-'-Wunused-but-set-parameter'
- Warn whenever a function parameter is assigned to, but otherwise
- unused (aside from its declaration).
-
- To suppress this warning use the 'unused' attribute (*note Variable
- Attributes::).
-
- This warning is also enabled by '-Wunused' together with '-Wextra'.
-
-'-Wunused-but-set-variable'
- Warn whenever a local variable is assigned to, but otherwise unused
- (aside from its declaration). This warning is enabled by '-Wall'.
-
- To suppress this warning use the 'unused' attribute (*note Variable
- Attributes::).
-
- This warning is also enabled by '-Wunused', which is enabled by
- '-Wall'.
-
-'-Wunused-function'
- Warn whenever a static function is declared but not defined or a
- non-inline static function is unused. This warning is enabled by
- '-Wall'.
-
-'-Wunused-label'
- Warn whenever a label is declared but not used. This warning is
- enabled by '-Wall'.
-
- To suppress this warning use the 'unused' attribute (*note Variable
- Attributes::).
-
-'-Wunused-local-typedefs (C, Objective-C, C++ and Objective-C++ only)'
- Warn when a typedef locally defined in a function is not used.
- This warning is enabled by '-Wall'.
-
-'-Wunused-parameter'
- Warn whenever a function parameter is unused aside from its
- declaration.
-
- To suppress this warning use the 'unused' attribute (*note Variable
- Attributes::).
-
-'-Wno-unused-result'
- Do not warn if a caller of a function marked with attribute
- 'warn_unused_result' (*note Function Attributes::) does not use its
- return value. The default is '-Wunused-result'.
-
-'-Wunused-variable'
- Warn whenever a local variable or non-constant static variable is
- unused aside from its declaration. This warning is enabled by
- '-Wall'.
-
- To suppress this warning use the 'unused' attribute (*note Variable
- Attributes::).
-
-'-Wunused-value'
- Warn whenever a statement computes a result that is explicitly not
- used. To suppress this warning cast the unused expression to
- 'void'. This includes an expression-statement or the left-hand
- side of a comma expression that contains no side effects. For
- example, an expression such as 'x[i,j]' causes a warning, while
- 'x[(void)i,j]' does not.
-
- This warning is enabled by '-Wall'.
-
-'-Wunused'
- All the above '-Wunused' options combined.
-
- In order to get a warning about an unused function parameter, you
- must either specify '-Wextra -Wunused' (note that '-Wall' implies
- '-Wunused'), or separately specify '-Wunused-parameter'.
-
-'-Wuninitialized'
- Warn if an automatic variable is used without first being
- initialized or if a variable may be clobbered by a 'setjmp' call.
- In C++, warn if a non-static reference or non-static 'const' member
- appears in a class without constructors.
-
- If you want to warn about code that uses the uninitialized value of
- the variable in its own initializer, use the '-Winit-self' option.
-
- These warnings occur for individual uninitialized or clobbered
- elements of structure, union or array variables as well as for
- variables that are uninitialized or clobbered as a whole. They do
- not occur for variables or elements declared 'volatile'. Because
- these warnings depend on optimization, the exact variables or
- elements for which there are warnings depends on the precise
- optimization options and version of GCC used.
-
- Note that there may be no warning about a variable that is used
- only to compute a value that itself is never used, because such
- computations may be deleted by data flow analysis before the
- warnings are printed.
-
-'-Wmaybe-uninitialized'
- For an automatic variable, if there exists a path from the function
- entry to a use of the variable that is initialized, but there exist
- some other paths for which the variable is not initialized, the
- compiler emits a warning if it cannot prove the uninitialized paths
- are not executed at run time. These warnings are made optional
- because GCC is not smart enough to see all the reasons why the code
- might be correct in spite of appearing to have an error. Here is
- one example of how this can happen:
-
- {
- int x;
- switch (y)
- {
- case 1: x = 1;
- break;
- case 2: x = 4;
- break;
- case 3: x = 5;
- }
- foo (x);
- }
-
- If the value of 'y' is always 1, 2 or 3, then 'x' is always
- initialized, but GCC doesn't know this. To suppress the warning,
- you need to provide a default case with assert(0) or similar code.
-
- This option also warns when a non-volatile automatic variable might
- be changed by a call to 'longjmp'. These warnings as well are
- possible only in optimizing compilation.
-
- The compiler sees only the calls to 'setjmp'. It cannot know where
- 'longjmp' will be called; in fact, a signal handler could call it
- at any point in the code. As a result, you may get a warning even
- when there is in fact no problem because 'longjmp' cannot in fact
- be called at the place that would cause a problem.
-
- Some spurious warnings can be avoided if you declare all the
- functions you use that never return as 'noreturn'. *Note Function
- Attributes::.
-
- This warning is enabled by '-Wall' or '-Wextra'.
-
-'-Wunknown-pragmas'
- Warn when a '#pragma' directive is encountered that is not
- understood by GCC. If this command-line option is used, warnings
- are even issued for unknown pragmas in system header files. This
- is not the case if the warnings are only enabled by the '-Wall'
- command-line option.
-
-'-Wno-pragmas'
- Do not warn about misuses of pragmas, such as incorrect parameters,
- invalid syntax, or conflicts between pragmas. See also
- '-Wunknown-pragmas'.
-
-'-Wstrict-aliasing'
- This option is only active when '-fstrict-aliasing' is active. It
- warns about code that might break the strict aliasing rules that
- the compiler is using for optimization. The warning does not catch
- all cases, but does attempt to catch the more common pitfalls. It
- is included in '-Wall'. It is equivalent to '-Wstrict-aliasing=3'
-
-'-Wstrict-aliasing=n'
- This option is only active when '-fstrict-aliasing' is active. It
- warns about code that might break the strict aliasing rules that
- the compiler is using for optimization. Higher levels correspond
- to higher accuracy (fewer false positives). Higher levels also
- correspond to more effort, similar to the way '-O' works.
- '-Wstrict-aliasing' is equivalent to '-Wstrict-aliasing=3'.
-
- Level 1: Most aggressive, quick, least accurate. Possibly useful
- when higher levels do not warn but '-fstrict-aliasing' still breaks
- the code, as it has very few false negatives. However, it has many
- false positives. Warns for all pointer conversions between
- possibly incompatible types, even if never dereferenced. Runs in
- the front end only.
-
- Level 2: Aggressive, quick, not too precise. May still have many
- false positives (not as many as level 1 though), and few false
- negatives (but possibly more than level 1). Unlike level 1, it
- only warns when an address is taken. Warns about incomplete types.
- Runs in the front end only.
-
- Level 3 (default for '-Wstrict-aliasing'): Should have very few
- false positives and few false negatives. Slightly slower than
- levels 1 or 2 when optimization is enabled. Takes care of the
- common pun+dereference pattern in the front end:
- '*(int*)&some_float'. If optimization is enabled, it also runs in
- the back end, where it deals with multiple statement cases using
- flow-sensitive points-to information. Only warns when the
- converted pointer is dereferenced. Does not warn about incomplete
- types.
-
-'-Wstrict-overflow'
-'-Wstrict-overflow=N'
- This option is only active when '-fstrict-overflow' is active. It
- warns about cases where the compiler optimizes based on the
- assumption that signed overflow does not occur. Note that it does
- not warn about all cases where the code might overflow: it only
- warns about cases where the compiler implements some optimization.
- Thus this warning depends on the optimization level.
-
- An optimization that assumes that signed overflow does not occur is
- perfectly safe if the values of the variables involved are such
- that overflow never does, in fact, occur. Therefore this warning
- can easily give a false positive: a warning about code that is not
- actually a problem. To help focus on important issues, several
- warning levels are defined. No warnings are issued for the use of
- undefined signed overflow when estimating how many iterations a
- loop requires, in particular when determining whether a loop will
- be executed at all.
-
- '-Wstrict-overflow=1'
- Warn about cases that are both questionable and easy to avoid.
- For example, with '-fstrict-overflow', the compiler simplifies
- 'x + 1 > x' to '1'. This level of '-Wstrict-overflow' is
- enabled by '-Wall'; higher levels are not, and must be
- explicitly requested.
-
- '-Wstrict-overflow=2'
- Also warn about other cases where a comparison is simplified
- to a constant. For example: 'abs (x) >= 0'. This can only be
- simplified when '-fstrict-overflow' is in effect, because 'abs
- (INT_MIN)' overflows to 'INT_MIN', which is less than zero.
- '-Wstrict-overflow' (with no level) is the same as
- '-Wstrict-overflow=2'.
-
- '-Wstrict-overflow=3'
- Also warn about other cases where a comparison is simplified.
- For example: 'x + 1 > 1' is simplified to 'x > 0'.
-
- '-Wstrict-overflow=4'
- Also warn about other simplifications not covered by the above
- cases. For example: '(x * 10) / 5' is simplified to 'x * 2'.
-
- '-Wstrict-overflow=5'
- Also warn about cases where the compiler reduces the magnitude
- of a constant involved in a comparison. For example: 'x + 2 >
- y' is simplified to 'x + 1 >= y'. This is reported only at
- the highest warning level because this simplification applies
- to many comparisons, so this warning level gives a very large
- number of false positives.
-
-'-Wsuggest-attribute=[pure|const|noreturn|format]'
- Warn for cases where adding an attribute may be beneficial. The
- attributes currently supported are listed below.
-
- '-Wsuggest-attribute=pure'
- '-Wsuggest-attribute=const'
- '-Wsuggest-attribute=noreturn'
-
- Warn about functions that might be candidates for attributes
- 'pure', 'const' or 'noreturn'. The compiler only warns for
- functions visible in other compilation units or (in the case
- of 'pure' and 'const') if it cannot prove that the function
- returns normally. A function returns normally if it doesn't
- contain an infinite loop or return abnormally by throwing,
- calling 'abort()' or trapping. This analysis requires option
- '-fipa-pure-const', which is enabled by default at '-O' and
- higher. Higher optimization levels improve the accuracy of
- the analysis.
-
- '-Wsuggest-attribute=format'
- '-Wmissing-format-attribute'
-
- Warn about function pointers that might be candidates for
- 'format' attributes. Note these are only possible candidates,
- not absolute ones. GCC guesses that function pointers with
- 'format' attributes that are used in assignment,
- initialization, parameter passing or return statements should
- have a corresponding 'format' attribute in the resulting type.
- I.e. the left-hand side of the assignment or initialization,
- the type of the parameter variable, or the return type of the
- containing function respectively should also have a 'format'
- attribute to avoid the warning.
-
- GCC also warns about function definitions that might be
- candidates for 'format' attributes. Again, these are only
- possible candidates. GCC guesses that 'format' attributes
- might be appropriate for any function that calls a function
- like 'vprintf' or 'vscanf', but this might not always be the
- case, and some functions for which 'format' attributes are
- appropriate may not be detected.
-
-'-Warray-bounds'
- This option is only active when '-ftree-vrp' is active (default for
- '-O2' and above). It warns about subscripts to arrays that are
- always out of bounds. This warning is enabled by '-Wall'.
-
-'-Wno-div-by-zero'
- Do not warn about compile-time integer division by zero.
- Floating-point division by zero is not warned about, as it can be a
- legitimate way of obtaining infinities and NaNs.
-
-'-Wsystem-headers'
- Print warning messages for constructs found in system header files.
- Warnings from system headers are normally suppressed, on the
- assumption that they usually do not indicate real problems and
- would only make the compiler output harder to read. Using this
- command-line option tells GCC to emit warnings from system headers
- as if they occurred in user code. However, note that using '-Wall'
- in conjunction with this option does _not_ warn about unknown
- pragmas in system headers--for that, '-Wunknown-pragmas' must also
- be used.
-
-'-Wtrampolines'
- Warn about trampolines generated for pointers to nested functions.
-
- A trampoline is a small piece of data or code that is created at
- run time on the stack when the address of a nested function is
- taken, and is used to call the nested function indirectly. For
- some targets, it is made up of data only and thus requires no
- special treatment. But, for most targets, it is made up of code
- and thus requires the stack to be made executable in order for the
- program to work properly.
-
-'-Wfloat-equal'
- Warn if floating-point values are used in equality comparisons.
-
- The idea behind this is that sometimes it is convenient (for the
- programmer) to consider floating-point values as approximations to
- infinitely precise real numbers. If you are doing this, then you
- need to compute (by analyzing the code, or in some other way) the
- maximum or likely maximum error that the computation introduces,
- and allow for it when performing comparisons (and when producing
- output, but that's a different problem). In particular, instead of
- testing for equality, you should check to see whether the two
- values have ranges that overlap; and this is done with the
- relational operators, so equality comparisons are probably
- mistaken.
-
-'-Wtraditional (C and Objective-C only)'
- Warn about certain constructs that behave differently in
- traditional and ISO C. Also warn about ISO C constructs that have
- no traditional C equivalent, and/or problematic constructs that
- should be avoided.
-
- * Macro parameters that appear within string literals in the
- macro body. In traditional C macro replacement takes place
- within string literals, but in ISO C it does not.
-
- * In traditional C, some preprocessor directives did not exist.
- Traditional preprocessors only considered a line to be a
- directive if the '#' appeared in column 1 on the line.
- Therefore '-Wtraditional' warns about directives that
- traditional C understands but ignores because the '#' does not
- appear as the first character on the line. It also suggests
- you hide directives like '#pragma' not understood by
- traditional C by indenting them. Some traditional
- implementations do not recognize '#elif', so this option
- suggests avoiding it altogether.
-
- * A function-like macro that appears without arguments.
-
- * The unary plus operator.
-
- * The 'U' integer constant suffix, or the 'F' or 'L'
- floating-point constant suffixes. (Traditional C does support
- the 'L' suffix on integer constants.) Note, these suffixes
- appear in macros defined in the system headers of most modern
- systems, e.g. the '_MIN'/'_MAX' macros in '<limits.h>'. Use
- of these macros in user code might normally lead to spurious
- warnings, however GCC's integrated preprocessor has enough
- context to avoid warning in these cases.
-
- * A function declared external in one block and then used after
- the end of the block.
-
- * A 'switch' statement has an operand of type 'long'.
-
- * A non-'static' function declaration follows a 'static' one.
- This construct is not accepted by some traditional C
- compilers.
-
- * The ISO type of an integer constant has a different width or
- signedness from its traditional type. This warning is only
- issued if the base of the constant is ten. I.e. hexadecimal
- or octal values, which typically represent bit patterns, are
- not warned about.
-
- * Usage of ISO string concatenation is detected.
-
- * Initialization of automatic aggregates.
-
- * Identifier conflicts with labels. Traditional C lacks a
- separate namespace for labels.
-
- * Initialization of unions. If the initializer is zero, the
- warning is omitted. This is done under the assumption that
- the zero initializer in user code appears conditioned on e.g.
- '__STDC__' to avoid missing initializer warnings and relies on
- default initialization to zero in the traditional C case.
-
- * Conversions by prototypes between fixed/floating-point values
- and vice versa. The absence of these prototypes when
- compiling with traditional C causes serious problems. This is
- a subset of the possible conversion warnings; for the full set
- use '-Wtraditional-conversion'.
-
- * Use of ISO C style function definitions. This warning
- intentionally is _not_ issued for prototype declarations or
- variadic functions because these ISO C features appear in your
- code when using libiberty's traditional C compatibility
- macros, 'PARAMS' and 'VPARAMS'. This warning is also bypassed
- for nested functions because that feature is already a GCC
- extension and thus not relevant to traditional C
- compatibility.
-
-'-Wtraditional-conversion (C and Objective-C only)'
- Warn if a prototype causes a type conversion that is different from
- what would happen to the same argument in the absence of a
- prototype. This includes conversions of fixed point to floating
- and vice versa, and conversions changing the width or signedness of
- a fixed-point argument except when the same as the default
- promotion.
-
-'-Wdeclaration-after-statement (C and Objective-C only)'
- Warn when a declaration is found after a statement in a block.
- This construct, known from C++, was introduced with ISO C99 and is
- by default allowed in GCC. It is not supported by ISO C90 and was
- not supported by GCC versions before GCC 3.0. *Note Mixed
- Declarations::.
-
-'-Wundef'
- Warn if an undefined identifier is evaluated in an '#if' directive.
-
-'-Wno-endif-labels'
- Do not warn whenever an '#else' or an '#endif' are followed by
- text.
-
-'-Wshadow'
- Warn whenever a local variable or type declaration shadows another
- variable, parameter, type, or class member (in C++), or whenever a
- built-in function is shadowed. Note that in C++, the compiler
- warns if a local variable shadows an explicit typedef, but not if
- it shadows a struct/class/enum.
-
-'-Wlarger-than=LEN'
- Warn whenever an object of larger than LEN bytes is defined.
-
-'-Wframe-larger-than=LEN'
- Warn if the size of a function frame is larger than LEN bytes. The
- computation done to determine the stack frame size is approximate
- and not conservative. The actual requirements may be somewhat
- greater than LEN even if you do not get a warning. In addition,
- any space allocated via 'alloca', variable-length arrays, or
- related constructs is not included by the compiler when determining
- whether or not to issue a warning.
-
-'-Wno-free-nonheap-object'
- Do not warn when attempting to free an object that was not
- allocated on the heap.
-
-'-Wstack-usage=LEN'
- Warn if the stack usage of a function might be larger than LEN
- bytes. The computation done to determine the stack usage is
- conservative. Any space allocated via 'alloca', variable-length
- arrays, or related constructs is included by the compiler when
- determining whether or not to issue a warning.
-
- The message is in keeping with the output of '-fstack-usage'.
-
- * If the stack usage is fully static but exceeds the specified
- amount, it's:
-
- warning: stack usage is 1120 bytes
- * If the stack usage is (partly) dynamic but bounded, it's:
-
- warning: stack usage might be 1648 bytes
- * If the stack usage is (partly) dynamic and not bounded, it's:
-
- warning: stack usage might be unbounded
-
-'-Wunsafe-loop-optimizations'
- Warn if the loop cannot be optimized because the compiler cannot
- assume anything on the bounds of the loop indices. With
- '-funsafe-loop-optimizations' warn if the compiler makes such
- assumptions.
-
-'-Wno-pedantic-ms-format (MinGW targets only)'
- When used in combination with '-Wformat' and '-pedantic' without
- GNU extensions, this option disables the warnings about non-ISO
- 'printf' / 'scanf' format width specifiers 'I32', 'I64', and 'I'
- used on Windows targets, which depend on the MS runtime.
-
-'-Wpointer-arith'
- Warn about anything that depends on the "size of" a function type
- or of 'void'. GNU C assigns these types a size of 1, for
- convenience in calculations with 'void *' pointers and pointers to
- functions. In C++, warn also when an arithmetic operation involves
- 'NULL'. This warning is also enabled by '-Wpedantic'.
-
-'-Wtype-limits'
- Warn if a comparison is always true or always false due to the
- limited range of the data type, but do not warn for constant
- expressions. For example, warn if an unsigned variable is compared
- against zero with '<' or '>='. This warning is also enabled by
- '-Wextra'.
-
-'-Wbad-function-cast (C and Objective-C only)'
- Warn whenever a function call is cast to a non-matching type. For
- example, warn if 'int malloc()' is cast to 'anything *'.
-
-'-Wc++-compat (C and Objective-C only)'
- Warn about ISO C constructs that are outside of the common subset
- of ISO C and ISO C++, e.g. request for implicit conversion from
- 'void *' to a pointer to non-'void' type.
-
-'-Wc++11-compat (C++ and Objective-C++ only)'
- Warn about C++ constructs whose meaning differs between ISO C++
- 1998 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are
- keywords in ISO C++ 2011. This warning turns on '-Wnarrowing' and
- is enabled by '-Wall'.
-
-'-Wcast-qual'
- Warn whenever a pointer is cast so as to remove a type qualifier
- from the target type. For example, warn if a 'const char *' is
- cast to an ordinary 'char *'.
-
- Also warn when making a cast that introduces a type qualifier in an
- unsafe way. For example, casting 'char **' to 'const char **' is
- unsafe, as in this example:
-
- /* p is char ** value. */
- const char **q = (const char **) p;
- /* Assignment of readonly string to const char * is OK. */
- *q = "string";
- /* Now char** pointer points to read-only memory. */
- **p = 'b';
-
-'-Wcast-align'
- Warn whenever a pointer is cast such that the required alignment of
- the target is increased. For example, warn if a 'char *' is cast
- to an 'int *' on machines where integers can only be accessed at
- two- or four-byte boundaries.
-
-'-Wwrite-strings'
- When compiling C, give string constants the type 'const
- char[LENGTH]' so that copying the address of one into a non-'const'
- 'char *' pointer produces a warning. These warnings help you find
- at compile time code that can try to write into a string constant,
- but only if you have been very careful about using 'const' in
- declarations and prototypes. Otherwise, it is just a nuisance.
- This is why we did not make '-Wall' request these warnings.
-
- When compiling C++, warn about the deprecated conversion from
- string literals to 'char *'. This warning is enabled by default
- for C++ programs.
-
-'-Wclobbered'
- Warn for variables that might be changed by 'longjmp' or 'vfork'.
- This warning is also enabled by '-Wextra'.
-
-'-Wconditionally-supported (C++ and Objective-C++ only)'
- Warn for conditionally-supported (C++11 [intro.defs]) constructs.
-
-'-Wconversion'
- Warn for implicit conversions that may alter a value. This
- includes conversions between real and integer, like 'abs (x)' when
- 'x' is 'double'; conversions between signed and unsigned, like
- 'unsigned ui = -1'; and conversions to smaller types, like 'sqrtf
- (M_PI)'. Do not warn for explicit casts like 'abs ((int) x)' and
- 'ui = (unsigned) -1', or if the value is not changed by the
- conversion like in 'abs (2.0)'. Warnings about conversions between
- signed and unsigned integers can be disabled by using
- '-Wno-sign-conversion'.
-
- For C++, also warn for confusing overload resolution for
- user-defined conversions; and conversions that never use a type
- conversion operator: conversions to 'void', the same type, a base
- class or a reference to them. Warnings about conversions between
- signed and unsigned integers are disabled by default in C++ unless
- '-Wsign-conversion' is explicitly enabled.
-
-'-Wno-conversion-null (C++ and Objective-C++ only)'
- Do not warn for conversions between 'NULL' and non-pointer types.
- '-Wconversion-null' is enabled by default.
-
-'-Wzero-as-null-pointer-constant (C++ and Objective-C++ only)'
- Warn when a literal '0' is used as null pointer constant. This can
- be useful to facilitate the conversion to 'nullptr' in C++11.
-
-'-Wdate-time'
- Warn when macros '__TIME__', '__DATE__' or '__TIMESTAMP__' are
- encountered as they might prevent bit-wise-identical reproducible
- compilations.
-
-'-Wdelete-incomplete (C++ and Objective-C++ only)'
- Warn when deleting a pointer to incomplete type, which may cause
- undefined behavior at runtime. This warning is enabled by default.
-
-'-Wuseless-cast (C++ and Objective-C++ only)'
- Warn when an expression is casted to its own type.
-
-'-Wempty-body'
- Warn if an empty body occurs in an 'if', 'else' or 'do while'
- statement. This warning is also enabled by '-Wextra'.
-
-'-Wenum-compare'
- Warn about a comparison between values of different enumerated
- types. In C++ enumeral mismatches in conditional expressions are
- also diagnosed and the warning is enabled by default. In C this
- warning is enabled by '-Wall'.
-
-'-Wjump-misses-init (C, Objective-C only)'
- Warn if a 'goto' statement or a 'switch' statement jumps forward
- across the initialization of a variable, or jumps backward to a
- label after the variable has been initialized. This only warns
- about variables that are initialized when they are declared. This
- warning is only supported for C and Objective-C; in C++ this sort
- of branch is an error in any case.
-
- '-Wjump-misses-init' is included in '-Wc++-compat'. It can be
- disabled with the '-Wno-jump-misses-init' option.
-
-'-Wsign-compare'
- Warn when a comparison between signed and unsigned values could
- produce an incorrect result when the signed value is converted to
- unsigned. This warning is also enabled by '-Wextra'; to get the
- other warnings of '-Wextra' without this warning, use '-Wextra
- -Wno-sign-compare'.
-
-'-Wsign-conversion'
- Warn for implicit conversions that may change the sign of an
- integer value, like assigning a signed integer expression to an
- unsigned integer variable. An explicit cast silences the warning.
- In C, this option is enabled also by '-Wconversion'.
-
-'-Wfloat-conversion'
- Warn for implicit conversions that reduce the precision of a real
- value. This includes conversions from real to integer, and from
- higher precision real to lower precision real values. This option
- is also enabled by '-Wconversion'.
-
-'-Wsizeof-pointer-memaccess'
- Warn for suspicious length parameters to certain string and memory
- built-in functions if the argument uses 'sizeof'. This warning
- warns e.g. about 'memset (ptr, 0, sizeof (ptr));' if 'ptr' is not
- an array, but a pointer, and suggests a possible fix, or about
- 'memcpy (&foo, ptr, sizeof (&foo));'. This warning is enabled by
- '-Wall'.
-
-'-Waddress'
- Warn about suspicious uses of memory addresses. These include
- using the address of a function in a conditional expression, such
- as 'void func(void); if (func)', and comparisons against the memory
- address of a string literal, such as 'if (x == "abc")'. Such uses
- typically indicate a programmer error: the address of a function
- always evaluates to true, so their use in a conditional usually
- indicate that the programmer forgot the parentheses in a function
- call; and comparisons against string literals result in unspecified
- behavior and are not portable in C, so they usually indicate that
- the programmer intended to use 'strcmp'. This warning is enabled
- by '-Wall'.
-
-'-Wlogical-op'
- Warn about suspicious uses of logical operators in expressions.
- This includes using logical operators in contexts where a bit-wise
- operator is likely to be expected.
-
-'-Waggregate-return'
- Warn if any functions that return structures or unions are defined
- or called. (In languages where you can return an array, this also
- elicits a warning.)
-
-'-Wno-aggressive-loop-optimizations'
- Warn if in a loop with constant number of iterations the compiler
- detects undefined behavior in some statement during one or more of
- the iterations.
-
-'-Wno-attributes'
- Do not warn if an unexpected '__attribute__' is used, such as
- unrecognized attributes, function attributes applied to variables,
- etc. This does not stop errors for incorrect use of supported
- attributes.
-
-'-Wno-builtin-macro-redefined'
- Do not warn if certain built-in macros are redefined. This
- suppresses warnings for redefinition of '__TIMESTAMP__',
- '__TIME__', '__DATE__', '__FILE__', and '__BASE_FILE__'.
-
-'-Wstrict-prototypes (C and Objective-C only)'
- Warn if a function is declared or defined without specifying the
- argument types. (An old-style function definition is permitted
- without a warning if preceded by a declaration that specifies the
- argument types.)
-
-'-Wold-style-declaration (C and Objective-C only)'
- Warn for obsolescent usages, according to the C Standard, in a
- declaration. For example, warn if storage-class specifiers like
- 'static' are not the first things in a declaration. This warning
- is also enabled by '-Wextra'.
-
-'-Wold-style-definition (C and Objective-C only)'
- Warn if an old-style function definition is used. A warning is
- given even if there is a previous prototype.
-
-'-Wmissing-parameter-type (C and Objective-C only)'
- A function parameter is declared without a type specifier in
- K&R-style functions:
-
- void foo(bar) { }
-
- This warning is also enabled by '-Wextra'.
-
-'-Wmissing-prototypes (C and Objective-C only)'
- Warn if a global function is defined without a previous prototype
- declaration. This warning is issued even if the definition itself
- provides a prototype. Use this option to detect global functions
- that do not have a matching prototype declaration in a header file.
- This option is not valid for C++ because all function declarations
- provide prototypes and a non-matching declaration will declare an
- overload rather than conflict with an earlier declaration. Use
- '-Wmissing-declarations' to detect missing declarations in C++.
-
-'-Wmissing-declarations'
- Warn if a global function is defined without a previous
- declaration. Do so even if the definition itself provides a
- prototype. Use this option to detect global functions that are not
- declared in header files. In C, no warnings are issued for
- functions with previous non-prototype declarations; use
- '-Wmissing-prototype' to detect missing prototypes. In C++, no
- warnings are issued for function templates, or for inline
- functions, or for functions in anonymous namespaces.
-
-'-Wmissing-field-initializers'
- Warn if a structure's initializer has some fields missing. For
- example, the following code causes such a warning, because 'x.h' is
- implicitly zero:
-
- struct s { int f, g, h; };
- struct s x = { 3, 4 };
-
- This option does not warn about designated initializers, so the
- following modification does not trigger a warning:
-
- struct s { int f, g, h; };
- struct s x = { .f = 3, .g = 4 };
-
- This warning is included in '-Wextra'. To get other '-Wextra'
- warnings without this one, use '-Wextra
- -Wno-missing-field-initializers'.
-
-'-Wno-multichar'
- Do not warn if a multicharacter constant (''FOOF'') is used.
- Usually they indicate a typo in the user's code, as they have
- implementation-defined values, and should not be used in portable
- code.
-
-'-Wnormalized=<none|id|nfc|nfkc>'
- In ISO C and ISO C++, two identifiers are different if they are
- different sequences of characters. However, sometimes when
- characters outside the basic ASCII character set are used, you can
- have two different character sequences that look the same. To
- avoid confusion, the ISO 10646 standard sets out some
- "normalization rules" which when applied ensure that two sequences
- that look the same are turned into the same sequence. GCC can warn
- you if you are using identifiers that have not been normalized;
- this option controls that warning.
-
- There are four levels of warning supported by GCC. The default is
- '-Wnormalized=nfc', which warns about any identifier that is not in
- the ISO 10646 "C" normalized form, "NFC". NFC is the recommended
- form for most uses.
-
- Unfortunately, there are some characters allowed in identifiers by
- ISO C and ISO C++ that, when turned into NFC, are not allowed in
- identifiers. That is, there's no way to use these symbols in
- portable ISO C or C++ and have all your identifiers in NFC.
- '-Wnormalized=id' suppresses the warning for these characters. It
- is hoped that future versions of the standards involved will
- correct this, which is why this option is not the default.
-
- You can switch the warning off for all characters by writing
- '-Wnormalized=none'. You should only do this if you are using some
- other normalization scheme (like "D"), because otherwise you can
- easily create bugs that are literally impossible to see.
-
- Some characters in ISO 10646 have distinct meanings but look
- identical in some fonts or display methodologies, especially once
- formatting has been applied. For instance '\u207F', "SUPERSCRIPT
- LATIN SMALL LETTER N", displays just like a regular 'n' that has
- been placed in a superscript. ISO 10646 defines the "NFKC"
- normalization scheme to convert all these into a standard form as
- well, and GCC warns if your code is not in NFKC if you use
- '-Wnormalized=nfkc'. This warning is comparable to warning about
- every identifier that contains the letter O because it might be
- confused with the digit 0, and so is not the default, but may be
- useful as a local coding convention if the programming environment
- cannot be fixed to display these characters distinctly.
-
-'-Wno-deprecated'
- Do not warn about usage of deprecated features. *Note Deprecated
- Features::.
-
-'-Wno-deprecated-declarations'
- Do not warn about uses of functions (*note Function Attributes::),
- variables (*note Variable Attributes::), and types (*note Type
- Attributes::) marked as deprecated by using the 'deprecated'
- attribute.
-
-'-Wno-overflow'
- Do not warn about compile-time overflow in constant expressions.
-
-'-Wopenmp-simd'
- Warn if the vectorizer cost model overrides the OpenMP or the Cilk
- Plus simd directive set by user. The '-fsimd-cost-model=unlimited'
- can be used to relax the cost model.
-
-'-Woverride-init (C and Objective-C only)'
- Warn if an initialized field without side effects is overridden
- when using designated initializers (*note Designated Initializers:
- Designated Inits.).
-
- This warning is included in '-Wextra'. To get other '-Wextra'
- warnings without this one, use '-Wextra -Wno-override-init'.
-
-'-Wpacked'
- Warn if a structure is given the packed attribute, but the packed
- attribute has no effect on the layout or size of the structure.
- Such structures may be mis-aligned for little benefit. For
- instance, in this code, the variable 'f.x' in 'struct bar' is
- misaligned even though 'struct bar' does not itself have the packed
- attribute:
-
- struct foo {
- int x;
- char a, b, c, d;
- } __attribute__((packed));
- struct bar {
- char z;
- struct foo f;
- };
-
-'-Wpacked-bitfield-compat'
- The 4.1, 4.2 and 4.3 series of GCC ignore the 'packed' attribute on
- bit-fields of type 'char'. This has been fixed in GCC 4.4 but the
- change can lead to differences in the structure layout. GCC
- informs you when the offset of such a field has changed in GCC 4.4.
- For example there is no longer a 4-bit padding between field 'a'
- and 'b' in this structure:
-
- struct foo
- {
- char a:4;
- char b:8;
- } __attribute__ ((packed));
-
- This warning is enabled by default. Use
- '-Wno-packed-bitfield-compat' to disable this warning.
-
-'-Wpadded'
- Warn if padding is included in a structure, either to align an
- element of the structure or to align the whole structure.
- Sometimes when this happens it is possible to rearrange the fields
- of the structure to reduce the padding and so make the structure
- smaller.
-
-'-Wredundant-decls'
- Warn if anything is declared more than once in the same scope, even
- in cases where multiple declaration is valid and changes nothing.
-
-'-Wnested-externs (C and Objective-C only)'
- Warn if an 'extern' declaration is encountered within a function.
-
-'-Wno-inherited-variadic-ctor'
- Suppress warnings about use of C++11 inheriting constructors when
- the base class inherited from has a C variadic constructor; the
- warning is on by default because the ellipsis is not inherited.
-
-'-Winline'
- Warn if a function that is declared as inline cannot be inlined.
- Even with this option, the compiler does not warn about failures to
- inline functions declared in system headers.
-
- The compiler uses a variety of heuristics to determine whether or
- not to inline a function. For example, the compiler takes into
- account the size of the function being inlined and the amount of
- inlining that has already been done in the current function.
- Therefore, seemingly insignificant changes in the source program
- can cause the warnings produced by '-Winline' to appear or
- disappear.
-
-'-Wno-invalid-offsetof (C++ and Objective-C++ only)'
- Suppress warnings from applying the 'offsetof' macro to a non-POD
- type. According to the 1998 ISO C++ standard, applying 'offsetof'
- to a non-POD type is undefined. In existing C++ implementations,
- however, 'offsetof' typically gives meaningful results even when
- applied to certain kinds of non-POD types (such as a simple
- 'struct' that fails to be a POD type only by virtue of having a
- constructor). This flag is for users who are aware that they are
- writing nonportable code and who have deliberately chosen to ignore
- the warning about it.
-
- The restrictions on 'offsetof' may be relaxed in a future version
- of the C++ standard.
-
-'-Wno-int-to-pointer-cast'
- Suppress warnings from casts to pointer type of an integer of a
- different size. In C++, casting to a pointer type of smaller size
- is an error. 'Wint-to-pointer-cast' is enabled by default.
-
-'-Wno-pointer-to-int-cast (C and Objective-C only)'
- Suppress warnings from casts from a pointer to an integer type of a
- different size.
-
-'-Winvalid-pch'
- Warn if a precompiled header (*note Precompiled Headers::) is found
- in the search path but can't be used.
-
-'-Wlong-long'
- Warn if 'long long' type is used. This is enabled by either
- '-Wpedantic' or '-Wtraditional' in ISO C90 and C++98 modes. To
- inhibit the warning messages, use '-Wno-long-long'.
-
-'-Wvariadic-macros'
- Warn if variadic macros are used in pedantic ISO C90 mode, or the
- GNU alternate syntax when in pedantic ISO C99 mode. This is
- default. To inhibit the warning messages, use
- '-Wno-variadic-macros'.
-
-'-Wvarargs'
- Warn upon questionable usage of the macros used to handle variable
- arguments like 'va_start'. This is default. To inhibit the
- warning messages, use '-Wno-varargs'.
-
-'-Wvector-operation-performance'
- Warn if vector operation is not implemented via SIMD capabilities
- of the architecture. Mainly useful for the performance tuning.
- Vector operation can be implemented 'piecewise', which means that
- the scalar operation is performed on every vector element; 'in
- parallel', which means that the vector operation is implemented
- using scalars of wider type, which normally is more performance
- efficient; and 'as a single scalar', which means that vector fits
- into a scalar type.
-
-'-Wno-virtual-move-assign'
- Suppress warnings about inheriting from a virtual base with a
- non-trivial C++11 move assignment operator. This is dangerous
- because if the virtual base is reachable along more than one path,
- it will be moved multiple times, which can mean both objects end up
- in the moved-from state. If the move assignment operator is
- written to avoid moving from a moved-from object, this warning can
- be disabled.
-
-'-Wvla'
- Warn if variable length array is used in the code. '-Wno-vla'
- prevents the '-Wpedantic' warning of the variable length array.
-
-'-Wvolatile-register-var'
- Warn if a register variable is declared volatile. The volatile
- modifier does not inhibit all optimizations that may eliminate
- reads and/or writes to register variables. This warning is enabled
- by '-Wall'.
-
-'-Wdisabled-optimization'
- Warn if a requested optimization pass is disabled. This warning
- does not generally indicate that there is anything wrong with your
- code; it merely indicates that GCC's optimizers are unable to
- handle the code effectively. Often, the problem is that your code
- is too big or too complex; GCC refuses to optimize programs when
- the optimization itself is likely to take inordinate amounts of
- time.
-
-'-Wpointer-sign (C and Objective-C only)'
- Warn for pointer argument passing or assignment with different
- signedness. This option is only supported for C and Objective-C.
- It is implied by '-Wall' and by '-Wpedantic', which can be disabled
- with '-Wno-pointer-sign'.
-
-'-Wstack-protector'
- This option is only active when '-fstack-protector' is active. It
- warns about functions that are not protected against stack
- smashing.
-
-'-Woverlength-strings'
- Warn about string constants that are longer than the "minimum
- maximum" length specified in the C standard. Modern compilers
- generally allow string constants that are much longer than the
- standard's minimum limit, but very portable programs should avoid
- using longer strings.
-
- The limit applies _after_ string constant concatenation, and does
- not count the trailing NUL. In C90, the limit was 509 characters;
- in C99, it was raised to 4095. C++98 does not specify a normative
- minimum maximum, so we do not diagnose overlength strings in C++.
-
- This option is implied by '-Wpedantic', and can be disabled with
- '-Wno-overlength-strings'.
-
-'-Wunsuffixed-float-constants (C and Objective-C only)'
-
- Issue a warning for any floating constant that does not have a
- suffix. When used together with '-Wsystem-headers' it warns about
- such constants in system header files. This can be useful when
- preparing code to use with the 'FLOAT_CONST_DECIMAL64' pragma from
- the decimal floating-point extension to C99.
-
-
-File: gcc.info, Node: Debugging Options, Next: Optimize Options, Prev: Warning Options, Up: Invoking GCC
-
-3.9 Options for Debugging Your Program or GCC
-=============================================
-
-GCC has various special options that are used for debugging either your
-program or GCC:
-
-'-g'
- Produce debugging information in the operating system's native
- format (stabs, COFF, XCOFF, or DWARF 2). GDB can work with this
- debugging information.
-
- On most systems that use stabs format, '-g' enables use of extra
- debugging information that only GDB can use; this extra information
- makes debugging work better in GDB but probably makes other
- debuggers crash or refuse to read the program. If you want to
- control for certain whether to generate the extra information, use
- '-gstabs+', '-gstabs', '-gxcoff+', '-gxcoff', or '-gvms' (see
- below).
-
- GCC allows you to use '-g' with '-O'. The shortcuts taken by
- optimized code may occasionally produce surprising results: some
- variables you declared may not exist at all; flow of control may
- briefly move where you did not expect it; some statements may not
- be executed because they compute constant results or their values
- are already at hand; some statements may execute in different
- places because they have been moved out of loops.
-
- Nevertheless it proves possible to debug optimized output. This
- makes it reasonable to use the optimizer for programs that might
- have bugs.
-
- The following options are useful when GCC is generated with the
- capability for more than one debugging format.
-
-'-gsplit-dwarf'
- Separate as much dwarf debugging information as possible into a
- separate output file with the extension .dwo. This option allows
- the build system to avoid linking files with debug information. To
- be useful, this option requires a debugger capable of reading .dwo
- files.
-
-'-ggdb'
- Produce debugging information for use by GDB. This means to use
- the most expressive format available (DWARF 2, stabs, or the native
- format if neither of those are supported), including GDB extensions
- if at all possible.
-
-'-gpubnames'
- Generate dwarf .debug_pubnames and .debug_pubtypes sections.
-
-'-ggnu-pubnames'
- Generate .debug_pubnames and .debug_pubtypes sections in a format
- suitable for conversion into a GDB index. This option is only
- useful with a linker that can produce GDB index version 7.
-
-'-gstabs'
- Produce debugging information in stabs format (if that is
- supported), without GDB extensions. This is the format used by DBX
- on most BSD systems. On MIPS, Alpha and System V Release 4 systems
- this option produces stabs debugging output that is not understood
- by DBX or SDB. On System V Release 4 systems this option requires
- the GNU assembler.
-
-'-feliminate-unused-debug-symbols'
- Produce debugging information in stabs format (if that is
- supported), for only symbols that are actually used.
-
-'-femit-class-debug-always'
- Instead of emitting debugging information for a C++ class in only
- one object file, emit it in all object files using the class. This
- option should be used only with debuggers that are unable to handle
- the way GCC normally emits debugging information for classes
- because using this option increases the size of debugging
- information by as much as a factor of two.
-
-'-fdebug-types-section'
- When using DWARF Version 4 or higher, type DIEs can be put into
- their own '.debug_types' section instead of making them part of the
- '.debug_info' section. It is more efficient to put them in a
- separate comdat sections since the linker can then remove
- duplicates. But not all DWARF consumers support '.debug_types'
- sections yet and on some objects '.debug_types' produces larger
- instead of smaller debugging information.
-
-'-gstabs+'
- Produce debugging information in stabs format (if that is
- supported), using GNU extensions understood only by the GNU
- debugger (GDB). The use of these extensions is likely to make
- other debuggers crash or refuse to read the program.
-
-'-gcoff'
- Produce debugging information in COFF format (if that is
- supported). This is the format used by SDB on most System V
- systems prior to System V Release 4.
-
-'-gxcoff'
- Produce debugging information in XCOFF format (if that is
- supported). This is the format used by the DBX debugger on IBM
- RS/6000 systems.
-
-'-gxcoff+'
- Produce debugging information in XCOFF format (if that is
- supported), using GNU extensions understood only by the GNU
- debugger (GDB). The use of these extensions is likely to make
- other debuggers crash or refuse to read the program, and may cause
- assemblers other than the GNU assembler (GAS) to fail with an
- error.
-
-'-gdwarf-VERSION'
- Produce debugging information in DWARF format (if that is
- supported). The value of VERSION may be either 2, 3 or 4; the
- default version for most targets is 4.
-
- Note that with DWARF Version 2, some ports require and always use
- some non-conflicting DWARF 3 extensions in the unwind tables.
-
- Version 4 may require GDB 7.0 and '-fvar-tracking-assignments' for
- maximum benefit.
-
-'-grecord-gcc-switches'
- This switch causes the command-line options used to invoke the
- compiler that may affect code generation to be appended to the
- DW_AT_producer attribute in DWARF debugging information. The
- options are concatenated with spaces separating them from each
- other and from the compiler version. See also
- '-frecord-gcc-switches' for another way of storing compiler options
- into the object file. This is the default.
-
-'-gno-record-gcc-switches'
- Disallow appending command-line options to the DW_AT_producer
- attribute in DWARF debugging information.
-
-'-gstrict-dwarf'
- Disallow using extensions of later DWARF standard version than
- selected with '-gdwarf-VERSION'. On most targets using
- non-conflicting DWARF extensions from later standard versions is
- allowed.
-
-'-gno-strict-dwarf'
- Allow using extensions of later DWARF standard version than
- selected with '-gdwarf-VERSION'.
-
-'-gvms'
- Produce debugging information in Alpha/VMS debug format (if that is
- supported). This is the format used by DEBUG on Alpha/VMS systems.
-
-'-gLEVEL'
-'-ggdbLEVEL'
-'-gstabsLEVEL'
-'-gcoffLEVEL'
-'-gxcoffLEVEL'
-'-gvmsLEVEL'
- Request debugging information and also use LEVEL to specify how
- much information. The default level is 2.
-
- Level 0 produces no debug information at all. Thus, '-g0' negates
- '-g'.
-
- Level 1 produces minimal information, enough for making backtraces
- in parts of the program that you don't plan to debug. This
- includes descriptions of functions and external variables, and line
- number tables, but no information about local variables.
-
- Level 3 includes extra information, such as all the macro
- definitions present in the program. Some debuggers support macro
- expansion when you use '-g3'.
-
- '-gdwarf-2' does not accept a concatenated debug level, because GCC
- used to support an option '-gdwarf' that meant to generate debug
- information in version 1 of the DWARF format (which is very
- different from version 2), and it would have been too confusing.
- That debug format is long obsolete, but the option cannot be
- changed now. Instead use an additional '-gLEVEL' option to change
- the debug level for DWARF.
-
-'-gtoggle'
- Turn off generation of debug info, if leaving out this option
- generates it, or turn it on at level 2 otherwise. The position of
- this argument in the command line does not matter; it takes effect
- after all other options are processed, and it does so only once, no
- matter how many times it is given. This is mainly intended to be
- used with '-fcompare-debug'.
-
-'-fsanitize=address'
- Enable AddressSanitizer, a fast memory error detector. Memory
- access instructions will be instrumented to detect out-of-bounds
- and use-after-free bugs. See
- <http://code.google.com/p/address-sanitizer/> for more details.
- The run-time behavior can be influenced using the 'ASAN_OPTIONS'
- environment variable; see
- <https://code.google.com/p/address-sanitizer/wiki/Flags#Run-time_flags>
- for a list of supported options.
-
-'-fsanitize=thread'
- Enable ThreadSanitizer, a fast data race detector. Memory access
- instructions will be instrumented to detect data race bugs. See
- <http://code.google.com/p/thread-sanitizer/> for more details. The
- run-time behavior can be influenced using the 'TSAN_OPTIONS'
- environment variable; see
- <https://code.google.com/p/thread-sanitizer/wiki/Flags> for a list
- of supported options.
-
-'-fsanitize=leak'
- Enable LeakSanitizer, a memory leak detector. This option only
- matters for linking of executables and if neither
- '-fsanitize=address' nor '-fsanitize=thread' is used. In that case
- it will link the executable against a library that overrides
- 'malloc' and other allocator functions. See
- <https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer>
- for more details. The run-time behavior can be influenced using
- the 'LSAN_OPTIONS' environment variable.
-
-'-fsanitize=undefined'
- Enable UndefinedBehaviorSanitizer, a fast undefined behavior
- detector. Various computations will be instrumented to detect
- undefined behavior at runtime. Current suboptions are:
-
- '-fsanitize=shift'
-
- This option enables checking that the result of a shift
- operation is not undefined. Note that what exactly is
- considered undefined differs slightly between C and C++, as
- well as between ISO C90 and C99, etc.
-
- '-fsanitize=integer-divide-by-zero'
-
- Detect integer division by zero as well as 'INT_MIN / -1'
- division.
-
- '-fsanitize=unreachable'
-
- With this option, the compiler will turn the
- '__builtin_unreachable' call into a diagnostics message call
- instead. When reaching the '__builtin_unreachable' call, the
- behavior is undefined.
-
- '-fsanitize=vla-bound'
-
- This option instructs the compiler to check that the size of a
- variable length array is positive. This option does not have
- any effect in '-std=c++1y' mode, as the standard requires the
- exception be thrown instead.
-
- '-fsanitize=null'
-
- This option enables pointer checking. Particularly, the
- application built with this option turned on will issue an
- error message when it tries to dereference a NULL pointer, or
- if a reference (possibly an rvalue reference) is bound to a
- NULL pointer.
-
- '-fsanitize=return'
-
- This option enables return statement checking. Programs built
- with this option turned on will issue an error message when
- the end of a non-void function is reached without actually
- returning a value. This option works in C++ only.
-
- '-fsanitize=signed-integer-overflow'
-
- This option enables signed integer overflow checking. We
- check that the result of '+', '*', and both unary and binary
- '-' does not overflow in the signed arithmetics. Note,
- integer promotion rules must be taken into account. That is,
- the following is not an overflow:
- signed char a = SCHAR_MAX;
- a++;
-
- While '-ftrapv' causes traps for signed overflows to be emitted,
- '-fsanitize=undefined' gives a diagnostic message. This currently
- works only for the C family of languages.
-
-'-fdump-final-insns[=FILE]'
- Dump the final internal representation (RTL) to FILE. If the
- optional argument is omitted (or if FILE is '.'), the name of the
- dump file is determined by appending '.gkd' to the compilation
- output file name.
-
-'-fcompare-debug[=OPTS]'
- If no error occurs during compilation, run the compiler a second
- time, adding OPTS and '-fcompare-debug-second' to the arguments
- passed to the second compilation. Dump the final internal
- representation in both compilations, and print an error if they
- differ.
-
- If the equal sign is omitted, the default '-gtoggle' is used.
-
- The environment variable 'GCC_COMPARE_DEBUG', if defined, non-empty
- and nonzero, implicitly enables '-fcompare-debug'. If
- 'GCC_COMPARE_DEBUG' is defined to a string starting with a dash,
- then it is used for OPTS, otherwise the default '-gtoggle' is used.
-
- '-fcompare-debug=', with the equal sign but without OPTS, is
- equivalent to '-fno-compare-debug', which disables the dumping of
- the final representation and the second compilation, preventing
- even 'GCC_COMPARE_DEBUG' from taking effect.
-
- To verify full coverage during '-fcompare-debug' testing, set
- 'GCC_COMPARE_DEBUG' to say '-fcompare-debug-not-overridden', which
- GCC rejects as an invalid option in any actual compilation (rather
- than preprocessing, assembly or linking). To get just a warning,
- setting 'GCC_COMPARE_DEBUG' to '-w%n-fcompare-debug not overridden'
- will do.
-
-'-fcompare-debug-second'
- This option is implicitly passed to the compiler for the second
- compilation requested by '-fcompare-debug', along with options to
- silence warnings, and omitting other options that would cause
- side-effect compiler outputs to files or to the standard output.
- Dump files and preserved temporary files are renamed so as to
- contain the '.gk' additional extension during the second
- compilation, to avoid overwriting those generated by the first.
-
- When this option is passed to the compiler driver, it causes the
- _first_ compilation to be skipped, which makes it useful for little
- other than debugging the compiler proper.
-
-'-feliminate-dwarf2-dups'
- Compress DWARF 2 debugging information by eliminating duplicated
- information about each symbol. This option only makes sense when
- generating DWARF 2 debugging information with '-gdwarf-2'.
-
-'-femit-struct-debug-baseonly'
- Emit debug information for struct-like types only when the base
- name of the compilation source file matches the base name of file
- in which the struct is defined.
-
- This option substantially reduces the size of debugging
- information, but at significant potential loss in type information
- to the debugger. See '-femit-struct-debug-reduced' for a less
- aggressive option. See '-femit-struct-debug-detailed' for more
- detailed control.
-
- This option works only with DWARF 2.
-
-'-femit-struct-debug-reduced'
- Emit debug information for struct-like types only when the base
- name of the compilation source file matches the base name of file
- in which the type is defined, unless the struct is a template or
- defined in a system header.
-
- This option significantly reduces the size of debugging
- information, with some potential loss in type information to the
- debugger. See '-femit-struct-debug-baseonly' for a more aggressive
- option. See '-femit-struct-debug-detailed' for more detailed
- control.
-
- This option works only with DWARF 2.
-
-'-femit-struct-debug-detailed[=SPEC-LIST]'
- Specify the struct-like types for which the compiler generates
- debug information. The intent is to reduce duplicate struct debug
- information between different object files within the same program.
-
- This option is a detailed version of '-femit-struct-debug-reduced'
- and '-femit-struct-debug-baseonly', which serves for most needs.
-
- A specification has the syntax
- ['dir:'|'ind:']['ord:'|'gen:']('any'|'sys'|'base'|'none')
-
- The optional first word limits the specification to structs that
- are used directly ('dir:') or used indirectly ('ind:'). A struct
- type is used directly when it is the type of a variable, member.
- Indirect uses arise through pointers to structs. That is, when use
- of an incomplete struct is valid, the use is indirect. An example
- is 'struct one direct; struct two * indirect;'.
-
- The optional second word limits the specification to ordinary
- structs ('ord:') or generic structs ('gen:'). Generic structs are
- a bit complicated to explain. For C++, these are non-explicit
- specializations of template classes, or non-template classes within
- the above. Other programming languages have generics, but
- '-femit-struct-debug-detailed' does not yet implement them.
-
- The third word specifies the source files for those structs for
- which the compiler should emit debug information. The values
- 'none' and 'any' have the normal meaning. The value 'base' means
- that the base of name of the file in which the type declaration
- appears must match the base of the name of the main compilation
- file. In practice, this means that when compiling 'foo.c', debug
- information is generated for types declared in that file and
- 'foo.h', but not other header files. The value 'sys' means those
- types satisfying 'base' or declared in system or compiler headers.
-
- You may need to experiment to determine the best settings for your
- application.
-
- The default is '-femit-struct-debug-detailed=all'.
-
- This option works only with DWARF 2.
-
-'-fno-merge-debug-strings'
- Direct the linker to not merge together strings in the debugging
- information that are identical in different object files. Merging
- is not supported by all assemblers or linkers. Merging decreases
- the size of the debug information in the output file at the cost of
- increasing link processing time. Merging is enabled by default.
-
-'-fdebug-prefix-map=OLD=NEW'
- When compiling files in directory 'OLD', record debugging
- information describing them as in 'NEW' instead.
-
-'-fno-dwarf2-cfi-asm'
- Emit DWARF 2 unwind info as compiler generated '.eh_frame' section
- instead of using GAS '.cfi_*' directives.
-
-'-p'
- Generate extra code to write profile information suitable for the
- analysis program 'prof'. You must use this option when compiling
- the source files you want data about, and you must also use it when
- linking.
-
-'-pg'
- Generate extra code to write profile information suitable for the
- analysis program 'gprof'. You must use this option when compiling
- the source files you want data about, and you must also use it when
- linking.
-
-'-Q'
- Makes the compiler print out each function name as it is compiled,
- and print some statistics about each pass when it finishes.
-
-'-ftime-report'
- Makes the compiler print some statistics about the time consumed by
- each pass when it finishes.
-
-'-fmem-report'
- Makes the compiler print some statistics about permanent memory
- allocation when it finishes.
-
-'-fmem-report-wpa'
- Makes the compiler print some statistics about permanent memory
- allocation for the WPA phase only.
-
-'-fpre-ipa-mem-report'
-'-fpost-ipa-mem-report'
- Makes the compiler print some statistics about permanent memory
- allocation before or after interprocedural optimization.
-
-'-fprofile-report'
- Makes the compiler print some statistics about consistency of the
- (estimated) profile and effect of individual passes.
-
-'-fstack-usage'
- Makes the compiler output stack usage information for the program,
- on a per-function basis. The filename for the dump is made by
- appending '.su' to the AUXNAME. AUXNAME is generated from the name
- of the output file, if explicitly specified and it is not an
- executable, otherwise it is the basename of the source file. An
- entry is made up of three fields:
-
- * The name of the function.
- * A number of bytes.
- * One or more qualifiers: 'static', 'dynamic', 'bounded'.
-
- The qualifier 'static' means that the function manipulates the
- stack statically: a fixed number of bytes are allocated for the
- frame on function entry and released on function exit; no stack
- adjustments are otherwise made in the function. The second field
- is this fixed number of bytes.
-
- The qualifier 'dynamic' means that the function manipulates the
- stack dynamically: in addition to the static allocation described
- above, stack adjustments are made in the body of the function, for
- example to push/pop arguments around function calls. If the
- qualifier 'bounded' is also present, the amount of these
- adjustments is bounded at compile time and the second field is an
- upper bound of the total amount of stack used by the function. If
- it is not present, the amount of these adjustments is not bounded
- at compile time and the second field only represents the bounded
- part.
-
-'-fprofile-arcs'
- Add code so that program flow "arcs" are instrumented. During
- execution the program records how many times each branch and call
- is executed and how many times it is taken or returns. When the
- compiled program exits it saves this data to a file called
- 'AUXNAME.gcda' for each source file. The data may be used for
- profile-directed optimizations ('-fbranch-probabilities'), or for
- test coverage analysis ('-ftest-coverage'). Each object file's
- AUXNAME is generated from the name of the output file, if
- explicitly specified and it is not the final executable, otherwise
- it is the basename of the source file. In both cases any suffix is
- removed (e.g. 'foo.gcda' for input file 'dir/foo.c', or
- 'dir/foo.gcda' for output file specified as '-o dir/foo.o'). *Note
- Cross-profiling::.
-
-'--coverage'
-
- This option is used to compile and link code instrumented for
- coverage analysis. The option is a synonym for '-fprofile-arcs'
- '-ftest-coverage' (when compiling) and '-lgcov' (when linking).
- See the documentation for those options for more details.
-
- * Compile the source files with '-fprofile-arcs' plus
- optimization and code generation options. For test coverage
- analysis, use the additional '-ftest-coverage' option. You do
- not need to profile every source file in a program.
-
- * Link your object files with '-lgcov' or '-fprofile-arcs' (the
- latter implies the former).
-
- * Run the program on a representative workload to generate the
- arc profile information. This may be repeated any number of
- times. You can run concurrent instances of your program, and
- provided that the file system supports locking, the data files
- will be correctly updated. Also 'fork' calls are detected and
- correctly handled (double counting will not happen).
-
- * For profile-directed optimizations, compile the source files
- again with the same optimization and code generation options
- plus '-fbranch-probabilities' (*note Options that Control
- Optimization: Optimize Options.).
-
- * For test coverage analysis, use 'gcov' to produce human
- readable information from the '.gcno' and '.gcda' files.
- Refer to the 'gcov' documentation for further information.
-
- With '-fprofile-arcs', for each function of your program GCC
- creates a program flow graph, then finds a spanning tree for the
- graph. Only arcs that are not on the spanning tree have to be
- instrumented: the compiler adds code to count the number of times
- that these arcs are executed. When an arc is the only exit or only
- entrance to a block, the instrumentation code can be added to the
- block; otherwise, a new basic block must be created to hold the
- instrumentation code.
-
-'-ftest-coverage'
- Produce a notes file that the 'gcov' code-coverage utility (*note
- 'gcov'--a Test Coverage Program: Gcov.) can use to show program
- coverage. Each source file's note file is called 'AUXNAME.gcno'.
- Refer to the '-fprofile-arcs' option above for a description of
- AUXNAME and instructions on how to generate test coverage data.
- Coverage data matches the source files more closely if you do not
- optimize.
-
-'-fdbg-cnt-list'
- Print the name and the counter upper bound for all debug counters.
-
-'-fdbg-cnt=COUNTER-VALUE-LIST'
- Set the internal debug counter upper bound. COUNTER-VALUE-LIST is
- a comma-separated list of NAME:VALUE pairs which sets the upper
- bound of each debug counter NAME to VALUE. All debug counters have
- the initial upper bound of 'UINT_MAX'; thus 'dbg_cnt()' returns
- true always unless the upper bound is set by this option. For
- example, with '-fdbg-cnt=dce:10,tail_call:0', 'dbg_cnt(dce)'
- returns true only for first 10 invocations.
-
-'-fenable-KIND-PASS'
-'-fdisable-KIND-PASS=RANGE-LIST'
-
- This is a set of options that are used to explicitly disable/enable
- optimization passes. These options are intended for use for
- debugging GCC. Compiler users should use regular options for
- enabling/disabling passes instead.
-
- '-fdisable-ipa-PASS'
- Disable IPA pass PASS. PASS is the pass name. If the same
- pass is statically invoked in the compiler multiple times, the
- pass name should be appended with a sequential number starting
- from 1.
-
- '-fdisable-rtl-PASS'
- '-fdisable-rtl-PASS=RANGE-LIST'
- Disable RTL pass PASS. PASS is the pass name. If the same
- pass is statically invoked in the compiler multiple times, the
- pass name should be appended with a sequential number starting
- from 1. RANGE-LIST is a comma-separated list of function
- ranges or assembler names. Each range is a number pair
- separated by a colon. The range is inclusive in both ends.
- If the range is trivial, the number pair can be simplified as
- a single number. If the function's call graph node's UID
- falls within one of the specified ranges, the PASS is disabled
- for that function. The UID is shown in the function header of
- a dump file, and the pass names can be dumped by using option
- '-fdump-passes'.
-
- '-fdisable-tree-PASS'
- '-fdisable-tree-PASS=RANGE-LIST'
- Disable tree pass PASS. See '-fdisable-rtl' for the
- description of option arguments.
-
- '-fenable-ipa-PASS'
- Enable IPA pass PASS. PASS is the pass name. If the same
- pass is statically invoked in the compiler multiple times, the
- pass name should be appended with a sequential number starting
- from 1.
-
- '-fenable-rtl-PASS'
- '-fenable-rtl-PASS=RANGE-LIST'
- Enable RTL pass PASS. See '-fdisable-rtl' for option argument
- description and examples.
-
- '-fenable-tree-PASS'
- '-fenable-tree-PASS=RANGE-LIST'
- Enable tree pass PASS. See '-fdisable-rtl' for the
- description of option arguments.
-
- Here are some examples showing uses of these options.
-
-
- # disable ccp1 for all functions
- -fdisable-tree-ccp1
- # disable complete unroll for function whose cgraph node uid is 1
- -fenable-tree-cunroll=1
- # disable gcse2 for functions at the following ranges [1,1],
- # [300,400], and [400,1000]
- # disable gcse2 for functions foo and foo2
- -fdisable-rtl-gcse2=foo,foo2
- # disable early inlining
- -fdisable-tree-einline
- # disable ipa inlining
- -fdisable-ipa-inline
- # enable tree full unroll
- -fenable-tree-unroll
-
-'-dLETTERS'
-'-fdump-rtl-PASS'
-'-fdump-rtl-PASS=FILENAME'
- Says to make debugging dumps during compilation at times specified
- by LETTERS. This is used for debugging the RTL-based passes of the
- compiler. The file names for most of the dumps are made by
- appending a pass number and a word to the DUMPNAME, and the files
- are created in the directory of the output file. In case of
- '=FILENAME' option, the dump is output on the given file instead of
- the pass numbered dump files. Note that the pass number is
- computed statically as passes get registered into the pass manager.
- Thus the numbering is not related to the dynamic order of execution
- of passes. In particular, a pass installed by a plugin could have
- a number over 200 even if it executed quite early. DUMPNAME is
- generated from the name of the output file, if explicitly specified
- and it is not an executable, otherwise it is the basename of the
- source file. These switches may have different effects when '-E'
- is used for preprocessing.
-
- Debug dumps can be enabled with a '-fdump-rtl' switch or some '-d'
- option LETTERS. Here are the possible letters for use in PASS and
- LETTERS, and their meanings:
-
- '-fdump-rtl-alignments'
- Dump after branch alignments have been computed.
-
- '-fdump-rtl-asmcons'
- Dump after fixing rtl statements that have unsatisfied in/out
- constraints.
-
- '-fdump-rtl-auto_inc_dec'
- Dump after auto-inc-dec discovery. This pass is only run on
- architectures that have auto inc or auto dec instructions.
-
- '-fdump-rtl-barriers'
- Dump after cleaning up the barrier instructions.
-
- '-fdump-rtl-bbpart'
- Dump after partitioning hot and cold basic blocks.
-
- '-fdump-rtl-bbro'
- Dump after block reordering.
-
- '-fdump-rtl-btl1'
- '-fdump-rtl-btl2'
- '-fdump-rtl-btl1' and '-fdump-rtl-btl2' enable dumping after
- the two branch target load optimization passes.
-
- '-fdump-rtl-bypass'
- Dump after jump bypassing and control flow optimizations.
-
- '-fdump-rtl-combine'
- Dump after the RTL instruction combination pass.
-
- '-fdump-rtl-compgotos'
- Dump after duplicating the computed gotos.
-
- '-fdump-rtl-ce1'
- '-fdump-rtl-ce2'
- '-fdump-rtl-ce3'
- '-fdump-rtl-ce1', '-fdump-rtl-ce2', and '-fdump-rtl-ce3'
- enable dumping after the three if conversion passes.
-
- '-fdump-rtl-cprop_hardreg'
- Dump after hard register copy propagation.
-
- '-fdump-rtl-csa'
- Dump after combining stack adjustments.
-
- '-fdump-rtl-cse1'
- '-fdump-rtl-cse2'
- '-fdump-rtl-cse1' and '-fdump-rtl-cse2' enable dumping after
- the two common subexpression elimination passes.
-
- '-fdump-rtl-dce'
- Dump after the standalone dead code elimination passes.
-
- '-fdump-rtl-dbr'
- Dump after delayed branch scheduling.
-
- '-fdump-rtl-dce1'
- '-fdump-rtl-dce2'
- '-fdump-rtl-dce1' and '-fdump-rtl-dce2' enable dumping after
- the two dead store elimination passes.
-
- '-fdump-rtl-eh'
- Dump after finalization of EH handling code.
-
- '-fdump-rtl-eh_ranges'
- Dump after conversion of EH handling range regions.
-
- '-fdump-rtl-expand'
- Dump after RTL generation.
-
- '-fdump-rtl-fwprop1'
- '-fdump-rtl-fwprop2'
- '-fdump-rtl-fwprop1' and '-fdump-rtl-fwprop2' enable dumping
- after the two forward propagation passes.
-
- '-fdump-rtl-gcse1'
- '-fdump-rtl-gcse2'
- '-fdump-rtl-gcse1' and '-fdump-rtl-gcse2' enable dumping after
- global common subexpression elimination.
-
- '-fdump-rtl-init-regs'
- Dump after the initialization of the registers.
-
- '-fdump-rtl-initvals'
- Dump after the computation of the initial value sets.
-
- '-fdump-rtl-into_cfglayout'
- Dump after converting to cfglayout mode.
-
- '-fdump-rtl-ira'
- Dump after iterated register allocation.
-
- '-fdump-rtl-jump'
- Dump after the second jump optimization.
-
- '-fdump-rtl-loop2'
- '-fdump-rtl-loop2' enables dumping after the rtl loop
- optimization passes.
-
- '-fdump-rtl-mach'
- Dump after performing the machine dependent reorganization
- pass, if that pass exists.
-
- '-fdump-rtl-mode_sw'
- Dump after removing redundant mode switches.
-
- '-fdump-rtl-rnreg'
- Dump after register renumbering.
-
- '-fdump-rtl-outof_cfglayout'
- Dump after converting from cfglayout mode.
-
- '-fdump-rtl-peephole2'
- Dump after the peephole pass.
-
- '-fdump-rtl-postreload'
- Dump after post-reload optimizations.
-
- '-fdump-rtl-pro_and_epilogue'
- Dump after generating the function prologues and epilogues.
-
- '-fdump-rtl-sched1'
- '-fdump-rtl-sched2'
- '-fdump-rtl-sched1' and '-fdump-rtl-sched2' enable dumping
- after the basic block scheduling passes.
-
- '-fdump-rtl-ree'
- Dump after sign/zero extension elimination.
-
- '-fdump-rtl-seqabstr'
- Dump after common sequence discovery.
-
- '-fdump-rtl-shorten'
- Dump after shortening branches.
-
- '-fdump-rtl-sibling'
- Dump after sibling call optimizations.
-
- '-fdump-rtl-split1'
- '-fdump-rtl-split2'
- '-fdump-rtl-split3'
- '-fdump-rtl-split4'
- '-fdump-rtl-split5'
- '-fdump-rtl-split1', '-fdump-rtl-split2', '-fdump-rtl-split3',
- '-fdump-rtl-split4' and '-fdump-rtl-split5' enable dumping
- after five rounds of instruction splitting.
-
- '-fdump-rtl-sms'
- Dump after modulo scheduling. This pass is only run on some
- architectures.
-
- '-fdump-rtl-stack'
- Dump after conversion from GCC's "flat register file"
- registers to the x87's stack-like registers. This pass is
- only run on x86 variants.
-
- '-fdump-rtl-subreg1'
- '-fdump-rtl-subreg2'
- '-fdump-rtl-subreg1' and '-fdump-rtl-subreg2' enable dumping
- after the two subreg expansion passes.
-
- '-fdump-rtl-unshare'
- Dump after all rtl has been unshared.
-
- '-fdump-rtl-vartrack'
- Dump after variable tracking.
-
- '-fdump-rtl-vregs'
- Dump after converting virtual registers to hard registers.
-
- '-fdump-rtl-web'
- Dump after live range splitting.
-
- '-fdump-rtl-regclass'
- '-fdump-rtl-subregs_of_mode_init'
- '-fdump-rtl-subregs_of_mode_finish'
- '-fdump-rtl-dfinit'
- '-fdump-rtl-dfinish'
- These dumps are defined but always produce empty files.
-
- '-da'
- '-fdump-rtl-all'
- Produce all the dumps listed above.
-
- '-dA'
- Annotate the assembler output with miscellaneous debugging
- information.
-
- '-dD'
- Dump all macro definitions, at the end of preprocessing, in
- addition to normal output.
-
- '-dH'
- Produce a core dump whenever an error occurs.
-
- '-dp'
- Annotate the assembler output with a comment indicating which
- pattern and alternative is used. The length of each
- instruction is also printed.
-
- '-dP'
- Dump the RTL in the assembler output as a comment before each
- instruction. Also turns on '-dp' annotation.
-
- '-dx'
- Just generate RTL for a function instead of compiling it.
- Usually used with '-fdump-rtl-expand'.
-
-'-fdump-noaddr'
- When doing debugging dumps, suppress address output. This makes it
- more feasible to use diff on debugging dumps for compiler
- invocations with different compiler binaries and/or different text
- / bss / data / heap / stack / dso start locations.
-
-'-fdump-unnumbered'
- When doing debugging dumps, suppress instruction numbers and
- address output. This makes it more feasible to use diff on
- debugging dumps for compiler invocations with different options, in
- particular with and without '-g'.
-
-'-fdump-unnumbered-links'
- When doing debugging dumps (see '-d' option above), suppress
- instruction numbers for the links to the previous and next
- instructions in a sequence.
-
-'-fdump-translation-unit (C++ only)'
-'-fdump-translation-unit-OPTIONS (C++ only)'
- Dump a representation of the tree structure for the entire
- translation unit to a file. The file name is made by appending
- '.tu' to the source file name, and the file is created in the same
- directory as the output file. If the '-OPTIONS' form is used,
- OPTIONS controls the details of the dump as described for the
- '-fdump-tree' options.
-
-'-fdump-class-hierarchy (C++ only)'
-'-fdump-class-hierarchy-OPTIONS (C++ only)'
- Dump a representation of each class's hierarchy and virtual
- function table layout to a file. The file name is made by
- appending '.class' to the source file name, and the file is created
- in the same directory as the output file. If the '-OPTIONS' form
- is used, OPTIONS controls the details of the dump as described for
- the '-fdump-tree' options.
-
-'-fdump-ipa-SWITCH'
- Control the dumping at various stages of inter-procedural analysis
- language tree to a file. The file name is generated by appending a
- switch specific suffix to the source file name, and the file is
- created in the same directory as the output file. The following
- dumps are possible:
-
- 'all'
- Enables all inter-procedural analysis dumps.
-
- 'cgraph'
- Dumps information about call-graph optimization, unused
- function removal, and inlining decisions.
-
- 'inline'
- Dump after function inlining.
-
-'-fdump-passes'
- Dump the list of optimization passes that are turned on and off by
- the current command-line options.
-
-'-fdump-statistics-OPTION'
- Enable and control dumping of pass statistics in a separate file.
- The file name is generated by appending a suffix ending in
- '.statistics' to the source file name, and the file is created in
- the same directory as the output file. If the '-OPTION' form is
- used, '-stats' causes counters to be summed over the whole
- compilation unit while '-details' dumps every event as the passes
- generate them. The default with no option is to sum counters for
- each function compiled.
-
-'-fdump-tree-SWITCH'
-'-fdump-tree-SWITCH-OPTIONS'
-'-fdump-tree-SWITCH-OPTIONS=FILENAME'
- Control the dumping at various stages of processing the
- intermediate language tree to a file. The file name is generated
- by appending a switch-specific suffix to the source file name, and
- the file is created in the same directory as the output file. In
- case of '=FILENAME' option, the dump is output on the given file
- instead of the auto named dump files. If the '-OPTIONS' form is
- used, OPTIONS is a list of '-' separated options which control the
- details of the dump. Not all options are applicable to all dumps;
- those that are not meaningful are ignored. The following options
- are available
-
- 'address'
- Print the address of each node. Usually this is not
- meaningful as it changes according to the environment and
- source file. Its primary use is for tying up a dump file with
- a debug environment.
- 'asmname'
- If 'DECL_ASSEMBLER_NAME' has been set for a given decl, use
- that in the dump instead of 'DECL_NAME'. Its primary use is
- ease of use working backward from mangled names in the
- assembly file.
- 'slim'
- When dumping front-end intermediate representations, inhibit
- dumping of members of a scope or body of a function merely
- because that scope has been reached. Only dump such items
- when they are directly reachable by some other path.
-
- When dumping pretty-printed trees, this option inhibits
- dumping the bodies of control structures.
-
- When dumping RTL, print the RTL in slim (condensed) form
- instead of the default LISP-like representation.
- 'raw'
- Print a raw representation of the tree. By default, trees are
- pretty-printed into a C-like representation.
- 'details'
- Enable more detailed dumps (not honored by every dump option).
- Also include information from the optimization passes.
- 'stats'
- Enable dumping various statistics about the pass (not honored
- by every dump option).
- 'blocks'
- Enable showing basic block boundaries (disabled in raw dumps).
- 'graph'
- For each of the other indicated dump files
- ('-fdump-rtl-PASS'), dump a representation of the control flow
- graph suitable for viewing with GraphViz to
- 'FILE.PASSID.PASS.dot'. Each function in the file is
- pretty-printed as a subgraph, so that GraphViz can render them
- all in a single plot.
-
- This option currently only works for RTL dumps, and the RTL is
- always dumped in slim form.
- 'vops'
- Enable showing virtual operands for every statement.
- 'lineno'
- Enable showing line numbers for statements.
- 'uid'
- Enable showing the unique ID ('DECL_UID') for each variable.
- 'verbose'
- Enable showing the tree dump for each statement.
- 'eh'
- Enable showing the EH region number holding each statement.
- 'scev'
- Enable showing scalar evolution analysis details.
- 'optimized'
- Enable showing optimization information (only available in
- certain passes).
- 'missed'
- Enable showing missed optimization information (only available
- in certain passes).
- 'notes'
- Enable other detailed optimization information (only available
- in certain passes).
- '=FILENAME'
- Instead of an auto named dump file, output into the given file
- name. The file names 'stdout' and 'stderr' are treated
- specially and are considered already open standard streams.
- For example,
-
- gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
- -fdump-tree-pre=stderr file.c
-
- outputs vectorizer dump into 'foo.dump', while the PRE dump is
- output on to 'stderr'. If two conflicting dump filenames are
- given for the same pass, then the latter option overrides the
- earlier one.
-
- 'all'
- Turn on all options, except 'raw', 'slim', 'verbose' and
- 'lineno'.
-
- 'optall'
- Turn on all optimization options, i.e., 'optimized', 'missed',
- and 'note'.
-
- The following tree dumps are possible:
-
- 'original'
- Dump before any tree based optimization, to 'FILE.original'.
-
- 'optimized'
- Dump after all tree based optimization, to 'FILE.optimized'.
-
- 'gimple'
- Dump each function before and after the gimplification pass to
- a file. The file name is made by appending '.gimple' to the
- source file name.
-
- 'cfg'
- Dump the control flow graph of each function to a file. The
- file name is made by appending '.cfg' to the source file name.
-
- 'ch'
- Dump each function after copying loop headers. The file name
- is made by appending '.ch' to the source file name.
-
- 'ssa'
- Dump SSA related information to a file. The file name is made
- by appending '.ssa' to the source file name.
-
- 'alias'
- Dump aliasing information for each function. The file name is
- made by appending '.alias' to the source file name.
-
- 'ccp'
- Dump each function after CCP. The file name is made by
- appending '.ccp' to the source file name.
-
- 'storeccp'
- Dump each function after STORE-CCP. The file name is made by
- appending '.storeccp' to the source file name.
-
- 'pre'
- Dump trees after partial redundancy elimination. The file
- name is made by appending '.pre' to the source file name.
-
- 'fre'
- Dump trees after full redundancy elimination. The file name
- is made by appending '.fre' to the source file name.
-
- 'copyprop'
- Dump trees after copy propagation. The file name is made by
- appending '.copyprop' to the source file name.
-
- 'store_copyprop'
- Dump trees after store copy-propagation. The file name is
- made by appending '.store_copyprop' to the source file name.
-
- 'dce'
- Dump each function after dead code elimination. The file name
- is made by appending '.dce' to the source file name.
-
- 'sra'
- Dump each function after performing scalar replacement of
- aggregates. The file name is made by appending '.sra' to the
- source file name.
-
- 'sink'
- Dump each function after performing code sinking. The file
- name is made by appending '.sink' to the source file name.
-
- 'dom'
- Dump each function after applying dominator tree
- optimizations. The file name is made by appending '.dom' to
- the source file name.
-
- 'dse'
- Dump each function after applying dead store elimination. The
- file name is made by appending '.dse' to the source file name.
-
- 'phiopt'
- Dump each function after optimizing PHI nodes into
- straightline code. The file name is made by appending
- '.phiopt' to the source file name.
-
- 'forwprop'
- Dump each function after forward propagating single use
- variables. The file name is made by appending '.forwprop' to
- the source file name.
-
- 'copyrename'
- Dump each function after applying the copy rename
- optimization. The file name is made by appending
- '.copyrename' to the source file name.
-
- 'nrv'
- Dump each function after applying the named return value
- optimization on generic trees. The file name is made by
- appending '.nrv' to the source file name.
-
- 'vect'
- Dump each function after applying vectorization of loops. The
- file name is made by appending '.vect' to the source file
- name.
-
- 'slp'
- Dump each function after applying vectorization of basic
- blocks. The file name is made by appending '.slp' to the
- source file name.
-
- 'vrp'
- Dump each function after Value Range Propagation (VRP). The
- file name is made by appending '.vrp' to the source file name.
-
- 'all'
- Enable all the available tree dumps with the flags provided in
- this option.
-
-'-fopt-info'
-'-fopt-info-OPTIONS'
-'-fopt-info-OPTIONS=FILENAME'
- Controls optimization dumps from various optimization passes. If
- the '-OPTIONS' form is used, OPTIONS is a list of '-' separated
- options to select the dump details and optimizations. If OPTIONS
- is not specified, it defaults to 'optimized' for details and
- 'optall' for optimization groups. If the FILENAME is not
- specified, it defaults to 'stderr'. Note that the output FILENAME
- will be overwritten in case of multiple translation units. If a
- combined output from multiple translation units is desired,
- 'stderr' should be used instead.
-
- The options can be divided into two groups, 1) options describing
- the verbosity of the dump, and 2) options describing which
- optimizations should be included. The options from both the groups
- can be freely mixed as they are non-overlapping. However, in case
- of any conflicts, the latter options override the earlier options
- on the command line. Though multiple -fopt-info options are
- accepted, only one of them can have '=filename'. If other
- filenames are provided then all but the first one are ignored.
-
- The dump verbosity has the following options
-
- 'optimized'
- Print information when an optimization is successfully
- applied. It is up to a pass to decide which information is
- relevant. For example, the vectorizer passes print the source
- location of loops which got successfully vectorized.
- 'missed'
- Print information about missed optimizations. Individual
- passes control which information to include in the output.
- For example,
-
- gcc -O2 -ftree-vectorize -fopt-info-vec-missed
-
- will print information about missed optimization opportunities
- from vectorization passes on stderr.
- 'note'
- Print verbose information about optimizations, such as certain
- transformations, more detailed messages about decisions etc.
- 'all'
- Print detailed optimization information. This includes
- OPTIMIZED, MISSED, and NOTE.
-
- The second set of options describes a group of optimizations and
- may include one or more of the following.
-
- 'ipa'
- Enable dumps from all interprocedural optimizations.
- 'loop'
- Enable dumps from all loop optimizations.
- 'inline'
- Enable dumps from all inlining optimizations.
- 'vec'
- Enable dumps from all vectorization optimizations.
- 'optall'
- Enable dumps from all optimizations. This is a superset of
- the optimization groups listed above.
-
- For example,
- gcc -O3 -fopt-info-missed=missed.all
-
- outputs missed optimization report from all the passes into
- 'missed.all'.
-
- As another example,
- gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
-
- will output information about missed optimizations as well as
- optimized locations from all the inlining passes into 'inline.txt'.
-
- If the FILENAME is provided, then the dumps from all the applicable
- optimizations are concatenated into the 'filename'. Otherwise the
- dump is output onto 'stderr'. If OPTIONS is omitted, it defaults
- to 'all-optall', which means dump all available optimization info
- from all the passes. In the following example, all optimization
- info is output on to 'stderr'.
-
- gcc -O3 -fopt-info
-
- Note that '-fopt-info-vec-missed' behaves the same as
- '-fopt-info-missed-vec'.
-
- As another example, consider
-
- gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
-
- Here the two output filenames 'vec.miss' and 'loop.opt' are in
- conflict since only one output file is allowed. In this case, only
- the first option takes effect and the subsequent options are
- ignored. Thus only the 'vec.miss' is produced which contains dumps
- from the vectorizer about missed opportunities.
-
-'-frandom-seed=STRING'
- This option provides a seed that GCC uses in place of random
- numbers in generating certain symbol names that have to be
- different in every compiled file. It is also used to place unique
- stamps in coverage data files and the object files that produce
- them. You can use the '-frandom-seed' option to produce
- reproducibly identical object files.
-
- The STRING should be different for every file you compile.
-
-'-fsched-verbose=N'
- On targets that use instruction scheduling, this option controls
- the amount of debugging output the scheduler prints. This
- information is written to standard error, unless
- '-fdump-rtl-sched1' or '-fdump-rtl-sched2' is specified, in which
- case it is output to the usual dump listing file, '.sched1' or
- '.sched2' respectively. However for N greater than nine, the
- output is always printed to standard error.
-
- For N greater than zero, '-fsched-verbose' outputs the same
- information as '-fdump-rtl-sched1' and '-fdump-rtl-sched2'. For N
- greater than one, it also output basic block probabilities,
- detailed ready list information and unit/insn info. For N greater
- than two, it includes RTL at abort point, control-flow and regions
- info. And for N over four, '-fsched-verbose' also includes
- dependence info.
-
-'-save-temps'
-'-save-temps=cwd'
- Store the usual "temporary" intermediate files permanently; place
- them in the current directory and name them based on the source
- file. Thus, compiling 'foo.c' with '-c -save-temps' produces files
- 'foo.i' and 'foo.s', as well as 'foo.o'. This creates a
- preprocessed 'foo.i' output file even though the compiler now
- normally uses an integrated preprocessor.
-
- When used in combination with the '-x' command-line option,
- '-save-temps' is sensible enough to avoid over writing an input
- source file with the same extension as an intermediate file. The
- corresponding intermediate file may be obtained by renaming the
- source file before using '-save-temps'.
-
- If you invoke GCC in parallel, compiling several different source
- files that share a common base name in different subdirectories or
- the same source file compiled for multiple output destinations, it
- is likely that the different parallel compilers will interfere with
- each other, and overwrite the temporary files. For instance:
-
- gcc -save-temps -o outdir1/foo.o indir1/foo.c&
- gcc -save-temps -o outdir2/foo.o indir2/foo.c&
-
- may result in 'foo.i' and 'foo.o' being written to simultaneously
- by both compilers.
-
-'-save-temps=obj'
- Store the usual "temporary" intermediate files permanently. If the
- '-o' option is used, the temporary files are based on the object
- file. If the '-o' option is not used, the '-save-temps=obj' switch
- behaves like '-save-temps'.
-
- For example:
-
- gcc -save-temps=obj -c foo.c
- gcc -save-temps=obj -c bar.c -o dir/xbar.o
- gcc -save-temps=obj foobar.c -o dir2/yfoobar
-
- creates 'foo.i', 'foo.s', 'dir/xbar.i', 'dir/xbar.s',
- 'dir2/yfoobar.i', 'dir2/yfoobar.s', and 'dir2/yfoobar.o'.
-
-'-time[=FILE]'
- Report the CPU time taken by each subprocess in the compilation
- sequence. For C source files, this is the compiler proper and
- assembler (plus the linker if linking is done).
-
- Without the specification of an output file, the output looks like
- this:
-
- # cc1 0.12 0.01
- # as 0.00 0.01
-
- The first number on each line is the "user time", that is time
- spent executing the program itself. The second number is "system
- time", time spent executing operating system routines on behalf of
- the program. Both numbers are in seconds.
-
- With the specification of an output file, the output is appended to
- the named file, and it looks like this:
-
- 0.12 0.01 cc1 OPTIONS
- 0.00 0.01 as OPTIONS
-
- The "user time" and the "system time" are moved before the program
- name, and the options passed to the program are displayed, so that
- one can later tell what file was being compiled, and with which
- options.
-
-'-fvar-tracking'
- Run variable tracking pass. It computes where variables are stored
- at each position in code. Better debugging information is then
- generated (if the debugging information format supports this
- information).
-
- It is enabled by default when compiling with optimization ('-Os',
- '-O', '-O2', ...), debugging information ('-g') and the debug info
- format supports it.
-
-'-fvar-tracking-assignments'
- Annotate assignments to user variables early in the compilation and
- attempt to carry the annotations over throughout the compilation
- all the way to the end, in an attempt to improve debug information
- while optimizing. Use of '-gdwarf-4' is recommended along with it.
-
- It can be enabled even if var-tracking is disabled, in which case
- annotations are created and maintained, but discarded at the end.
-
-'-fvar-tracking-assignments-toggle'
- Toggle '-fvar-tracking-assignments', in the same way that
- '-gtoggle' toggles '-g'.
-
-'-print-file-name=LIBRARY'
- Print the full absolute name of the library file LIBRARY that would
- be used when linking--and don't do anything else. With this
- option, GCC does not compile or link anything; it just prints the
- file name.
-
-'-print-multi-directory'
- Print the directory name corresponding to the multilib selected by
- any other switches present in the command line. This directory is
- supposed to exist in 'GCC_EXEC_PREFIX'.
-
-'-print-multi-lib'
- Print the mapping from multilib directory names to compiler
- switches that enable them. The directory name is separated from
- the switches by ';', and each switch starts with an '@' instead of
- the '-', without spaces between multiple switches. This is
- supposed to ease shell processing.
-
-'-print-multi-os-directory'
- Print the path to OS libraries for the selected multilib, relative
- to some 'lib' subdirectory. If OS libraries are present in the
- 'lib' subdirectory and no multilibs are used, this is usually just
- '.', if OS libraries are present in 'libSUFFIX' sibling directories
- this prints e.g. '../lib64', '../lib' or '../lib32', or if OS
- libraries are present in 'lib/SUBDIR' subdirectories it prints e.g.
- 'amd64', 'sparcv9' or 'ev6'.
-
-'-print-multiarch'
- Print the path to OS libraries for the selected multiarch, relative
- to some 'lib' subdirectory.
-
-'-print-prog-name=PROGRAM'
- Like '-print-file-name', but searches for a program such as 'cpp'.
-
-'-print-libgcc-file-name'
- Same as '-print-file-name=libgcc.a'.
-
- This is useful when you use '-nostdlib' or '-nodefaultlibs' but you
- do want to link with 'libgcc.a'. You can do:
-
- gcc -nostdlib FILES... `gcc -print-libgcc-file-name`
-
-'-print-search-dirs'
- Print the name of the configured installation directory and a list
- of program and library directories 'gcc' searches--and don't do
- anything else.
-
- This is useful when 'gcc' prints the error message 'installation
- problem, cannot exec cpp0: No such file or directory'. To resolve
- this you either need to put 'cpp0' and the other compiler
- components where 'gcc' expects to find them, or you can set the
- environment variable 'GCC_EXEC_PREFIX' to the directory where you
- installed them. Don't forget the trailing '/'. *Note Environment
- Variables::.
-
-'-print-sysroot'
- Print the target sysroot directory that is used during compilation.
- This is the target sysroot specified either at configure time or
- using the '--sysroot' option, possibly with an extra suffix that
- depends on compilation options. If no target sysroot is specified,
- the option prints nothing.
-
-'-print-sysroot-headers-suffix'
- Print the suffix added to the target sysroot when searching for
- headers, or give an error if the compiler is not configured with
- such a suffix--and don't do anything else.
-
-'-dumpmachine'
- Print the compiler's target machine (for example,
- 'i686-pc-linux-gnu')--and don't do anything else.
-
-'-dumpversion'
- Print the compiler version (for example, '3.0')--and don't do
- anything else.
-
-'-dumpspecs'
- Print the compiler's built-in specs--and don't do anything else.
- (This is used when GCC itself is being built.) *Note Spec Files::.
-
-'-fno-eliminate-unused-debug-types'
- Normally, when producing DWARF 2 output, GCC avoids producing debug
- symbol output for types that are nowhere used in the source file
- being compiled. Sometimes it is useful to have GCC emit debugging
- information for all types declared in a compilation unit,
- regardless of whether or not they are actually used in that
- compilation unit, for example if, in the debugger, you want to cast
- a value to a type that is not actually used in your program (but is
- declared). More often, however, this results in a significant
- amount of wasted space.
-
-
-File: gcc.info, Node: Optimize Options, Next: Preprocessor Options, Prev: Debugging Options, Up: Invoking GCC
-
-3.10 Options That Control Optimization
-======================================
-
-These options control various sorts of optimizations.
-
- Without any optimization option, the compiler's goal is to reduce the
-cost of compilation and to make debugging produce the expected results.
-Statements are independent: if you stop the program with a breakpoint
-between statements, you can then assign a new value to any variable or
-change the program counter to any other statement in the function and
-get exactly the results you expect from the source code.
-
- Turning on optimization flags makes the compiler attempt to improve the
-performance and/or code size at the expense of compilation time and
-possibly the ability to debug the program.
-
- The compiler performs optimization based on the knowledge it has of the
-program. Compiling multiple files at once to a single output file mode
-allows the compiler to use information gained from all of the files when
-compiling each of them.
-
- Not all optimizations are controlled directly by a flag. Only
-optimizations that have a flag are listed in this section.
-
- Most optimizations are only enabled if an '-O' level is set on the
-command line. Otherwise they are disabled, even if individual
-optimization flags are specified.
-
- Depending on the target and how GCC was configured, a slightly
-different set of optimizations may be enabled at each '-O' level than
-those listed here. You can invoke GCC with '-Q --help=optimizers' to
-find out the exact set of optimizations that are enabled at each level.
-*Note Overall Options::, for examples.
-
-'-O'
-'-O1'
- Optimize. Optimizing compilation takes somewhat more time, and a
- lot more memory for a large function.
-
- With '-O', the compiler tries to reduce code size and execution
- time, without performing any optimizations that take a great deal
- of compilation time.
-
- '-O' turns on the following optimization flags:
- -fauto-inc-dec
- -fcompare-elim
- -fcprop-registers
- -fdce
- -fdefer-pop
- -fdelayed-branch
- -fdse
- -fguess-branch-probability
- -fif-conversion2
- -fif-conversion
- -fipa-pure-const
- -fipa-profile
- -fipa-reference
- -fmerge-constants
- -fsplit-wide-types
- -ftree-bit-ccp
- -ftree-builtin-call-dce
- -ftree-ccp
- -ftree-ch
- -ftree-copyrename
- -ftree-dce
- -ftree-dominator-opts
- -ftree-dse
- -ftree-forwprop
- -ftree-fre
- -ftree-phiprop
- -ftree-slsr
- -ftree-sra
- -ftree-pta
- -ftree-ter
- -funit-at-a-time
-
- '-O' also turns on '-fomit-frame-pointer' on machines where doing
- so does not interfere with debugging.
-
-'-O2'
- Optimize even more. GCC performs nearly all supported
- optimizations that do not involve a space-speed tradeoff. As
- compared to '-O', this option increases both compilation time and
- the performance of the generated code.
-
- '-O2' turns on all optimization flags specified by '-O'. It also
- turns on the following optimization flags:
- -fthread-jumps
- -falign-functions -falign-jumps
- -falign-loops -falign-labels
- -fcaller-saves
- -fcrossjumping
- -fcse-follow-jumps -fcse-skip-blocks
- -fdelete-null-pointer-checks
- -fdevirtualize -fdevirtualize-speculatively
- -fexpensive-optimizations
- -fgcse -fgcse-lm
- -fhoist-adjacent-loads
- -finline-small-functions
- -findirect-inlining
- -fipa-sra
- -fisolate-erroneous-paths-dereference
- -foptimize-sibling-calls
- -fpartial-inlining
- -fpeephole2
- -freorder-blocks -freorder-functions
- -frerun-cse-after-loop
- -fsched-interblock -fsched-spec
- -fschedule-insns -fschedule-insns2
- -fstrict-aliasing -fstrict-overflow
- -ftree-switch-conversion -ftree-tail-merge
- -ftree-pre
- -ftree-vrp
-
- Please note the warning under '-fgcse' about invoking '-O2' on
- programs that use computed gotos.
-
-'-O3'
- Optimize yet more. '-O3' turns on all optimizations specified by
- '-O2' and also turns on the '-finline-functions',
- '-funswitch-loops', '-fpredictive-commoning',
- '-fgcse-after-reload', '-ftree-loop-vectorize',
- '-ftree-slp-vectorize', '-fvect-cost-model', '-ftree-partial-pre'
- and '-fipa-cp-clone' options.
-
-'-O0'
- Reduce compilation time and make debugging produce the expected
- results. This is the default.
-
-'-Os'
- Optimize for size. '-Os' enables all '-O2' optimizations that do
- not typically increase code size. It also performs further
- optimizations designed to reduce code size.
-
- '-Os' disables the following optimization flags:
- -falign-functions -falign-jumps -falign-loops
- -falign-labels -freorder-blocks -freorder-blocks-and-partition
- -fprefetch-loop-arrays
-
-'-Ofast'
- Disregard strict standards compliance. '-Ofast' enables all '-O3'
- optimizations. It also enables optimizations that are not valid
- for all standard-compliant programs. It turns on '-ffast-math' and
- the Fortran-specific '-fno-protect-parens' and '-fstack-arrays'.
-
-'-Og'
- Optimize debugging experience. '-Og' enables optimizations that do
- not interfere with debugging. It should be the optimization level
- of choice for the standard edit-compile-debug cycle, offering a
- reasonable level of optimization while maintaining fast compilation
- and a good debugging experience.
-
- If you use multiple '-O' options, with or without level numbers,
- the last such option is the one that is effective.
-
- Options of the form '-fFLAG' specify machine-independent flags. Most
-flags have both positive and negative forms; the negative form of
-'-ffoo' is '-fno-foo'. In the table below, only one of the forms is
-listed--the one you typically use. You can figure out the other form by
-either removing 'no-' or adding it.
-
- The following options control specific optimizations. They are either
-activated by '-O' options or are related to ones that are. You can use
-the following flags in the rare cases when "fine-tuning" of
-optimizations to be performed is desired.
-
-'-fno-defer-pop'
- Always pop the arguments to each function call as soon as that
- function returns. For machines that must pop arguments after a
- function call, the compiler normally lets arguments accumulate on
- the stack for several function calls and pops them all at once.
-
- Disabled at levels '-O', '-O2', '-O3', '-Os'.
-
-'-fforward-propagate'
- Perform a forward propagation pass on RTL. The pass tries to
- combine two instructions and checks if the result can be
- simplified. If loop unrolling is active, two passes are performed
- and the second is scheduled after loop unrolling.
-
- This option is enabled by default at optimization levels '-O',
- '-O2', '-O3', '-Os'.
-
-'-ffp-contract=STYLE'
- '-ffp-contract=off' disables floating-point expression contraction.
- '-ffp-contract=fast' enables floating-point expression contraction
- such as forming of fused multiply-add operations if the target has
- native support for them. '-ffp-contract=on' enables floating-point
- expression contraction if allowed by the language standard. This
- is currently not implemented and treated equal to
- '-ffp-contract=off'.
-
- The default is '-ffp-contract=fast'.
-
-'-fomit-frame-pointer'
- Don't keep the frame pointer in a register for functions that don't
- need one. This avoids the instructions to save, set up and restore
- frame pointers; it also makes an extra register available in many
- functions. *It also makes debugging impossible on some machines.*
-
- On some machines, such as the VAX, this flag has no effect, because
- the standard calling sequence automatically handles the frame
- pointer and nothing is saved by pretending it doesn't exist. The
- machine-description macro 'FRAME_POINTER_REQUIRED' controls whether
- a target machine supports this flag. *Note Register Usage:
- (gccint)Registers.
-
- Starting with GCC version 4.6, the default setting (when not
- optimizing for size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86
- targets has been changed to '-fomit-frame-pointer'. The default
- can be reverted to '-fno-omit-frame-pointer' by configuring GCC
- with the '--enable-frame-pointer' configure option.
-
- Enabled at levels '-O', '-O2', '-O3', '-Os'.
-
-'-foptimize-sibling-calls'
- Optimize sibling and tail recursive calls.
-
- Enabled at levels '-O2', '-O3', '-Os'.
-
-'-fno-inline'
- Do not expand any functions inline apart from those marked with the
- 'always_inline' attribute. This is the default when not
- optimizing.
-
- Single functions can be exempted from inlining by marking them with
- the 'noinline' attribute.
-
-'-finline-small-functions'
- Integrate functions into their callers when their body is smaller
- than expected function call code (so overall size of program gets
- smaller). The compiler heuristically decides which functions are
- simple enough to be worth integrating in this way. This inlining
- applies to all functions, even those not declared inline.
-
- Enabled at level '-O2'.
-
-'-findirect-inlining'
- Inline also indirect calls that are discovered to be known at
- compile time thanks to previous inlining. This option has any
- effect only when inlining itself is turned on by the
- '-finline-functions' or '-finline-small-functions' options.
-
- Enabled at level '-O2'.
-
-'-finline-functions'
- Consider all functions for inlining, even if they are not declared
- inline. The compiler heuristically decides which functions are
- worth integrating in this way.
-
- If all calls to a given function are integrated, and the function
- is declared 'static', then the function is normally not output as
- assembler code in its own right.
-
- Enabled at level '-O3'.
-
-'-finline-functions-called-once'
- Consider all 'static' functions called once for inlining into their
- caller even if they are not marked 'inline'. If a call to a given
- function is integrated, then the function is not output as
- assembler code in its own right.
-
- Enabled at levels '-O1', '-O2', '-O3' and '-Os'.
-
-'-fearly-inlining'
- Inline functions marked by 'always_inline' and functions whose body
- seems smaller than the function call overhead early before doing
- '-fprofile-generate' instrumentation and real inlining pass. Doing
- so makes profiling significantly cheaper and usually inlining
- faster on programs having large chains of nested wrapper functions.
-
- Enabled by default.
-
-'-fipa-sra'
- Perform interprocedural scalar replacement of aggregates, removal
- of unused parameters and replacement of parameters passed by
- reference by parameters passed by value.
-
- Enabled at levels '-O2', '-O3' and '-Os'.
-
-'-finline-limit=N'
- By default, GCC limits the size of functions that can be inlined.
- This flag allows coarse control of this limit. N is the size of
- functions that can be inlined in number of pseudo instructions.
-
- Inlining is actually controlled by a number of parameters, which
- may be specified individually by using '--param NAME=VALUE'. The
- '-finline-limit=N' option sets some of these parameters as follows:
-
- 'max-inline-insns-single'
- is set to N/2.
- 'max-inline-insns-auto'
- is set to N/2.
-
- See below for a documentation of the individual parameters
- controlling inlining and for the defaults of these parameters.
-
- _Note:_ there may be no value to '-finline-limit' that results in
- default behavior.
-
- _Note:_ pseudo instruction represents, in this particular context,
- an abstract measurement of function's size. In no way does it
- represent a count of assembly instructions and as such its exact
- meaning might change from one release to an another.
-
-'-fno-keep-inline-dllexport'
- This is a more fine-grained version of '-fkeep-inline-functions',
- which applies only to functions that are declared using the
- 'dllexport' attribute or declspec (*Note Declaring Attributes of
- Functions: Function Attributes.)
-
-'-fkeep-inline-functions'
- In C, emit 'static' functions that are declared 'inline' into the
- object file, even if the function has been inlined into all of its
- callers. This switch does not affect functions using the 'extern
- inline' extension in GNU C90. In C++, emit any and all inline
- functions into the object file.
-
-'-fkeep-static-consts'
- Emit variables declared 'static const' when optimization isn't
- turned on, even if the variables aren't referenced.
-
- GCC enables this option by default. If you want to force the
- compiler to check if a variable is referenced, regardless of
- whether or not optimization is turned on, use the
- '-fno-keep-static-consts' option.
-
-'-fmerge-constants'
- Attempt to merge identical constants (string constants and
- floating-point constants) across compilation units.
-
- This option is the default for optimized compilation if the
- assembler and linker support it. Use '-fno-merge-constants' to
- inhibit this behavior.
-
- Enabled at levels '-O', '-O2', '-O3', '-Os'.
-
-'-fmerge-all-constants'
- Attempt to merge identical constants and identical variables.
-
- This option implies '-fmerge-constants'. In addition to
- '-fmerge-constants' this considers e.g. even constant initialized
- arrays or initialized constant variables with integral or
- floating-point types. Languages like C or C++ require each
- variable, including multiple instances of the same variable in
- recursive calls, to have distinct locations, so using this option
- results in non-conforming behavior.
-
-'-fmodulo-sched'
- Perform swing modulo scheduling immediately before the first
- scheduling pass. This pass looks at innermost loops and reorders
- their instructions by overlapping different iterations.
-
-'-fmodulo-sched-allow-regmoves'
- Perform more aggressive SMS-based modulo scheduling with register
- moves allowed. By setting this flag certain anti-dependences edges
- are deleted, which triggers the generation of reg-moves based on
- the life-range analysis. This option is effective only with
- '-fmodulo-sched' enabled.
-
-'-fno-branch-count-reg'
- Do not use "decrement and branch" instructions on a count register,
- but instead generate a sequence of instructions that decrement a
- register, compare it against zero, then branch based upon the
- result. This option is only meaningful on architectures that
- support such instructions, which include x86, PowerPC, IA-64 and
- S/390.
-
- The default is '-fbranch-count-reg'.
-
-'-fno-function-cse'
- Do not put function addresses in registers; make each instruction
- that calls a constant function contain the function's address
- explicitly.
-
- This option results in less efficient code, but some strange hacks
- that alter the assembler output may be confused by the
- optimizations performed when this option is not used.
-
- The default is '-ffunction-cse'
-
-'-fno-zero-initialized-in-bss'
- If the target supports a BSS section, GCC by default puts variables
- that are initialized to zero into BSS. This can save space in the
- resulting code.
-
- This option turns off this behavior because some programs
- explicitly rely on variables going to the data section--e.g., so
- that the resulting executable can find the beginning of that
- section and/or make assumptions based on that.
-
- The default is '-fzero-initialized-in-bss'.
-
-'-fthread-jumps'
- Perform optimizations that check to see if a jump branches to a
- location where another comparison subsumed by the first is found.
- If so, the first branch is redirected to either the destination of
- the second branch or a point immediately following it, depending on
- whether the condition is known to be true or false.
-
- Enabled at levels '-O2', '-O3', '-Os'.
-
-'-fsplit-wide-types'
- When using a type that occupies multiple registers, such as 'long
- long' on a 32-bit system, split the registers apart and allocate
- them independently. This normally generates better code for those
- types, but may make debugging more difficult.
-
- Enabled at levels '-O', '-O2', '-O3', '-Os'.
-
-'-fcse-follow-jumps'
- In common subexpression elimination (CSE), scan through jump
- instructions when the target of the jump is not reached by any
- other path. For example, when CSE encounters an 'if' statement
- with an 'else' clause, CSE follows the jump when the condition
- tested is false.
-
- Enabled at levels '-O2', '-O3', '-Os'.
-
-'-fcse-skip-blocks'
- This is similar to '-fcse-follow-jumps', but causes CSE to follow
- jumps that conditionally skip over blocks. When CSE encounters a
- simple 'if' statement with no else clause, '-fcse-skip-blocks'
- causes CSE to follow the jump around the body of the 'if'.
-
- Enabled at levels '-O2', '-O3', '-Os'.
-
-'-frerun-cse-after-loop'
- Re-run common subexpression elimination after loop optimizations
- are performed.
-
- Enabled at levels '-O2', '-O3', '-Os'.
-
-'-fgcse'
- Perform a global common subexpression elimination pass. This pass
- also performs global constant and copy propagation.
-
- _Note:_ When compiling a program using computed gotos, a GCC
- extension, you may get better run-time performance if you disable
- the global common subexpression elimination pass by adding
- '-fno-gcse' to the command line.
-
- Enabled at levels '-O2', '-O3', '-Os'.
-
-'-fgcse-lm'
- When '-fgcse-lm' is enabled, global common subexpression
- elimination attempts to move loads that are only killed by stores
- into themselves. This allows a loop containing a load/store
- sequence to be changed to a load outside the loop, and a copy/store
- within the loop.
-
- Enabled by default when '-fgcse' is enabled.
-
-'-fgcse-sm'
- When '-fgcse-sm' is enabled, a store motion pass is run after
- global common subexpression elimination. This pass attempts to
- move stores out of loops. When used in conjunction with
- '-fgcse-lm', loops containing a load/store sequence can be changed
- to a load before the loop and a store after the loop.
-
- Not enabled at any optimization level.
-
-'-fgcse-las'
- When '-fgcse-las' is enabled, the global common subexpression
- elimination pass eliminates redundant loads that come after stores
- to the same memory location (both partial and full redundancies).
-
- Not enabled at any optimization level.
-
-'-fgcse-after-reload'
- When '-fgcse-after-reload' is enabled, a redundant load elimination
- pass is performed after reload. The purpose of this pass is to
- clean up redundant spilling.
-
-'-faggressive-loop-optimizations'
- This option tells the loop optimizer to use language constraints to
- derive bounds for the number of iterations of a loop. This assumes
- that loop code does not invoke undefined behavior by for example
- causing signed integer overflows or out-of-bound array accesses.
- The bounds for the number of iterations of a loop are used to guide
- loop unrolling and peeling and loop exit test optimizations. This
- option is enabled by default.
-
-'-funsafe-loop-optimizations'
- This option tells the loop optimizer to assume that loop indices do
- not overflow, and that loops with nontrivial exit condition are not
- infinite. This enables a wider range of loop optimizations even if
- the loop optimizer itself cannot prove that these assumptions are
- valid. If you use '-Wunsafe-loop-optimizations', the compiler
- warns you if it finds this kind of loop.
-
-'-fcrossjumping'
- Perform cross-jumping transformation. This transformation unifies
- equivalent code and saves code size. The resulting code may or may
- not perform better than without cross-jumping.
-
- Enabled at levels '-O2', '-O3', '-Os'.
-
-'-fauto-inc-dec'
- Combine increments or decrements of addresses with memory accesses.
- This pass is always skipped on architectures that do not have
- instructions to support this. Enabled by default at '-O' and
- higher on architectures that support this.
-
-'-fdce'
- Perform dead code elimination (DCE) on RTL. Enabled by default at
- '-O' and higher.
-
-'-fdse'
- Perform dead store elimination (DSE) on RTL. Enabled by default at
- '-O' and higher.
-
-'-fif-conversion'
- Attempt to transform conditional jumps into branch-less
- equivalents. This includes use of conditional moves, min, max, set
- flags and abs instructions, and some tricks doable by standard
- arithmetics. The use of conditional execution on chips where it is
- available is controlled by 'if-conversion2'.
-
- Enabled at levels '-O', '-O2', '-O3', '-Os'.
-
-'-fif-conversion2'
- Use conditional execution (where available) to transform
- conditional jumps into branch-less equivalents.
-
- Enabled at levels '-O', '-O2', '-O3', '-Os'.
-
-'-fdeclone-ctor-dtor'
- The C++ ABI requires multiple entry points for constructors and
- destructors: one for a base subobject, one for a complete object,
- and one for a virtual destructor that calls operator delete
- afterwards. For a hierarchy with virtual bases, the base and
- complete variants are clones, which means two copies of the
- function. With this option, the base and complete variants are
- changed to be thunks that call a common implementation.
-
- Enabled by '-Os'.
-
-'-fdelete-null-pointer-checks'
- Assume that programs cannot safely dereference null pointers, and
- that no code or data element resides there. This enables simple
- constant folding optimizations at all optimization levels. In
- addition, other optimization passes in GCC use this flag to control
- global dataflow analyses that eliminate useless checks for null
- pointers; these assume that if a pointer is checked after it has
- already been dereferenced, it cannot be null.
-
- Note however that in some environments this assumption is not true.
- Use '-fno-delete-null-pointer-checks' to disable this optimization
- for programs that depend on that behavior.
-
- Some targets, especially embedded ones, disable this option at all
- levels. Otherwise it is enabled at all levels: '-O0', '-O1',
- '-O2', '-O3', '-Os'. Passes that use the information are enabled
- independently at different optimization levels.
-
-'-fdevirtualize'
- Attempt to convert calls to virtual functions to direct calls.
- This is done both within a procedure and interprocedurally as part
- of indirect inlining ('-findirect-inlining') and interprocedural
- constant propagation ('-fipa-cp'). Enabled at levels '-O2', '-O3',
- '-Os'.
-
-'-fdevirtualize-speculatively'
- Attempt to convert calls to virtual functions to speculative direct
- calls. Based on the analysis of the type inheritance graph,
- determine for a given call the set of likely targets. If the set
- is small, preferably of size 1, change the call into an conditional
- deciding on direct and indirect call. The speculative calls enable
- more optimizations, such as inlining. When they seem useless after
- further optimization, they are converted back into original form.
-
-'-fexpensive-optimizations'
- Perform a number of minor optimizations that are relatively
- expensive.
-
- Enabled at levels '-O2', '-O3', '-Os'.
-
-'-free'
- Attempt to remove redundant extension instructions. This is
- especially helpful for the x86-64 architecture, which implicitly
- zero-extends in 64-bit registers after writing to their lower
- 32-bit half.
-
- Enabled for AArch64 and x86 at levels '-O2', '-O3'.
-
-'-flive-range-shrinkage'
- Attempt to decrease register pressure through register live range
- shrinkage. This is helpful for fast processors with small or
- moderate size register sets.
-
-'-fira-algorithm=ALGORITHM'
- Use the specified coloring algorithm for the integrated register
- allocator. The ALGORITHM argument can be 'priority', which
- specifies Chow's priority coloring, or 'CB', which specifies
- Chaitin-Briggs coloring. Chaitin-Briggs coloring is not
- implemented for all architectures, but for those targets that do
- support it, it is the default because it generates better code.
-
-'-fira-region=REGION'
- Use specified regions for the integrated register allocator. The
- REGION argument should be one of the following:
-
- 'all'
- Use all loops as register allocation regions. This can give
- the best results for machines with a small and/or irregular
- register set.
-
- 'mixed'
- Use all loops except for loops with small register pressure as
- the regions. This value usually gives the best results in
- most cases and for most architectures, and is enabled by
- default when compiling with optimization for speed ('-O',
- '-O2', ...).
-
- 'one'
- Use all functions as a single region. This typically results
- in the smallest code size, and is enabled by default for '-Os'
- or '-O0'.
-
-'-fira-hoist-pressure'
- Use IRA to evaluate register pressure in the code hoisting pass for
- decisions to hoist expressions. This option usually results in
- smaller code, but it can slow the compiler down.
-
- This option is enabled at level '-Os' for all targets.
-
-'-fira-loop-pressure'
- Use IRA to evaluate register pressure in loops for decisions to
- move loop invariants. This option usually results in generation of
- faster and smaller code on machines with large register files (>=
- 32 registers), but it can slow the compiler down.
-
- This option is enabled at level '-O3' for some targets.
-
-'-fno-ira-share-save-slots'
- Disable sharing of stack slots used for saving call-used hard
- registers living through a call. Each hard register gets a
- separate stack slot, and as a result function stack frames are
- larger.
-
-'-fno-ira-share-spill-slots'
- Disable sharing of stack slots allocated for pseudo-registers.
- Each pseudo-register that does not get a hard register gets a
- separate stack slot, and as a result function stack frames are
- larger.
-
-'-fira-verbose=N'
- Control the verbosity of the dump file for the integrated register
- allocator. The default value is 5. If the value N is greater or
- equal to 10, the dump output is sent to stderr using the same
- format as N minus 10.
-
-'-fdelayed-branch'
- If supported for the target machine, attempt to reorder
- instructions to exploit instruction slots available after delayed
- branch instructions.
-
- Enabled at levels '-O', '-O2', '-O3', '-Os'.
-
-'-fschedule-insns'
- If supported for the target machine, attempt to reorder
- instructions to eliminate execution stalls due to required data
- being unavailable. This helps machines that have slow floating
- point or memory load instructions by allowing other instructions to
- be issued until the result of the load or floating-point
- instruction is required.
-
- Enabled at levels '-O2', '-O3'.
-
-'-fschedule-insns2'
- Similar to '-fschedule-insns', but requests an additional pass of
- instruction scheduling after register allocation has been done.
- This is especially useful on machines with a relatively small
- number of registers and where memory load instructions take more
- than one cycle.
-
- Enabled at levels '-O2', '-O3', '-Os'.
-
-'-fno-sched-interblock'
- Don't schedule instructions across basic blocks. This is normally
- enabled by default when scheduling before register allocation, i.e.
- with '-fschedule-insns' or at '-O2' or higher.
-
-'-fno-sched-spec'
- Don't allow speculative motion of non-load instructions. This is
- normally enabled by default when scheduling before register
- allocation, i.e. with '-fschedule-insns' or at '-O2' or higher.
-
-'-fsched-pressure'
- Enable register pressure sensitive insn scheduling before register
- allocation. This only makes sense when scheduling before register
- allocation is enabled, i.e. with '-fschedule-insns' or at '-O2' or
- higher. Usage of this option can improve the generated code and
- decrease its size by preventing register pressure increase above
- the number of available hard registers and subsequent spills in
- register allocation.
-
-'-fsched-spec-load'
- Allow speculative motion of some load instructions. This only
- makes sense when scheduling before register allocation, i.e. with
- '-fschedule-insns' or at '-O2' or higher.
-
-'-fsched-spec-load-dangerous'
- Allow speculative motion of more load instructions. This only
- makes sense when scheduling before register allocation, i.e. with
- '-fschedule-insns' or at '-O2' or higher.
-
-'-fsched-stalled-insns'
-'-fsched-stalled-insns=N'
- Define how many insns (if any) can be moved prematurely from the
- queue of stalled insns into the ready list during the second
- scheduling pass. '-fno-sched-stalled-insns' means that no insns
- are moved prematurely, '-fsched-stalled-insns=0' means there is no
- limit on how many queued insns can be moved prematurely.
- '-fsched-stalled-insns' without a value is equivalent to
- '-fsched-stalled-insns=1'.
-
-'-fsched-stalled-insns-dep'
-'-fsched-stalled-insns-dep=N'
- Define how many insn groups (cycles) are examined for a dependency
- on a stalled insn that is a candidate for premature removal from
- the queue of stalled insns. This has an effect only during the
- second scheduling pass, and only if '-fsched-stalled-insns' is
- used. '-fno-sched-stalled-insns-dep' is equivalent to
- '-fsched-stalled-insns-dep=0'. '-fsched-stalled-insns-dep' without
- a value is equivalent to '-fsched-stalled-insns-dep=1'.
-
-'-fsched2-use-superblocks'
- When scheduling after register allocation, use superblock
- scheduling. This allows motion across basic block boundaries,
- resulting in faster schedules. This option is experimental, as not
- all machine descriptions used by GCC model the CPU closely enough
- to avoid unreliable results from the algorithm.
-
- This only makes sense when scheduling after register allocation,
- i.e. with '-fschedule-insns2' or at '-O2' or higher.
-
-'-fsched-group-heuristic'
- Enable the group heuristic in the scheduler. This heuristic favors
- the instruction that belongs to a schedule group. This is enabled
- by default when scheduling is enabled, i.e. with '-fschedule-insns'
- or '-fschedule-insns2' or at '-O2' or higher.
-
-'-fsched-critical-path-heuristic'
- Enable the critical-path heuristic in the scheduler. This
- heuristic favors instructions on the critical path. This is
- enabled by default when scheduling is enabled, i.e. with
- '-fschedule-insns' or '-fschedule-insns2' or at '-O2' or higher.
-
-'-fsched-spec-insn-heuristic'
- Enable the speculative instruction heuristic in the scheduler.
- This heuristic favors speculative instructions with greater
- dependency weakness. This is enabled by default when scheduling is
- enabled, i.e. with '-fschedule-insns' or '-fschedule-insns2' or at
- '-O2' or higher.
-
-'-fsched-rank-heuristic'
- Enable the rank heuristic in the scheduler. This heuristic favors
- the instruction belonging to a basic block with greater size or
- frequency. This is enabled by default when scheduling is enabled,
- i.e. with '-fschedule-insns' or '-fschedule-insns2' or at '-O2' or
- higher.
-
-'-fsched-last-insn-heuristic'
- Enable the last-instruction heuristic in the scheduler. This
- heuristic favors the instruction that is less dependent on the last
- instruction scheduled. This is enabled by default when scheduling
- is enabled, i.e. with '-fschedule-insns' or '-fschedule-insns2' or
- at '-O2' or higher.
-
-'-fsched-dep-count-heuristic'
- Enable the dependent-count heuristic in the scheduler. This
- heuristic favors the instruction that has more instructions
- depending on it. This is enabled by default when scheduling is
- enabled, i.e. with '-fschedule-insns' or '-fschedule-insns2' or at
- '-O2' or higher.
-
-'-freschedule-modulo-scheduled-loops'
- Modulo scheduling is performed before traditional scheduling. If a
- loop is modulo scheduled, later scheduling passes may change its
- schedule. Use this option to control that behavior.
-
-'-fselective-scheduling'
- Schedule instructions using selective scheduling algorithm.
- Selective scheduling runs instead of the first scheduler pass.
-
-'-fselective-scheduling2'
- Schedule instructions using selective scheduling algorithm.
- Selective scheduling runs instead of the second scheduler pass.
-
-'-fsel-sched-pipelining'
- Enable software pipelining of innermost loops during selective
- scheduling. This option has no effect unless one of
- '-fselective-scheduling' or '-fselective-scheduling2' is turned on.
-
-'-fsel-sched-pipelining-outer-loops'
- When pipelining loops during selective scheduling, also pipeline
- outer loops. This option has no effect unless
- '-fsel-sched-pipelining' is turned on.
-
-'-fshrink-wrap'
- Emit function prologues only before parts of the function that need
- it, rather than at the top of the function. This flag is enabled
- by default at '-O' and higher.
-
-'-fcaller-saves'
- Enable allocation of values to registers that are clobbered by
- function calls, by emitting extra instructions to save and restore
- the registers around such calls. Such allocation is done only when
- it seems to result in better code.
-
- This option is always enabled by default on certain machines,
- usually those which have no call-preserved registers to use
- instead.
-
- Enabled at levels '-O2', '-O3', '-Os'.
-
-'-fcombine-stack-adjustments'
- Tracks stack adjustments (pushes and pops) and stack memory
- references and then tries to find ways to combine them.
-
- Enabled by default at '-O1' and higher.
-
-'-fconserve-stack'
- Attempt to minimize stack usage. The compiler attempts to use less
- stack space, even if that makes the program slower. This option
- implies setting the 'large-stack-frame' parameter to 100 and the
- 'large-stack-frame-growth' parameter to 400.
-
-'-ftree-reassoc'
- Perform reassociation on trees. This flag is enabled by default at
- '-O' and higher.
-
-'-ftree-pre'
- Perform partial redundancy elimination (PRE) on trees. This flag
- is enabled by default at '-O2' and '-O3'.
-
-'-ftree-partial-pre'
- Make partial redundancy elimination (PRE) more aggressive. This
- flag is enabled by default at '-O3'.
-
-'-ftree-forwprop'
- Perform forward propagation on trees. This flag is enabled by
- default at '-O' and higher.
-
-'-ftree-fre'
- Perform full redundancy elimination (FRE) on trees. The difference
- between FRE and PRE is that FRE only considers expressions that are
- computed on all paths leading to the redundant computation. This
- analysis is faster than PRE, though it exposes fewer redundancies.
- This flag is enabled by default at '-O' and higher.
-
-'-ftree-phiprop'
- Perform hoisting of loads from conditional pointers on trees. This
- pass is enabled by default at '-O' and higher.
-
-'-fhoist-adjacent-loads'
- Speculatively hoist loads from both branches of an if-then-else if
- the loads are from adjacent locations in the same structure and the
- target architecture has a conditional move instruction. This flag
- is enabled by default at '-O2' and higher.
-
-'-ftree-copy-prop'
- Perform copy propagation on trees. This pass eliminates
- unnecessary copy operations. This flag is enabled by default at
- '-O' and higher.
-
-'-fipa-pure-const'
- Discover which functions are pure or constant. Enabled by default
- at '-O' and higher.
-
-'-fipa-reference'
- Discover which static variables do not escape the compilation unit.
- Enabled by default at '-O' and higher.
-
-'-fipa-pta'
- Perform interprocedural pointer analysis and interprocedural
- modification and reference analysis. This option can cause
- excessive memory and compile-time usage on large compilation units.
- It is not enabled by default at any optimization level.
-
-'-fipa-profile'
- Perform interprocedural profile propagation. The functions called
- only from cold functions are marked as cold. Also functions
- executed once (such as 'cold', 'noreturn', static constructors or
- destructors) are identified. Cold functions and loop less parts of
- functions executed once are then optimized for size. Enabled by
- default at '-O' and higher.
-
-'-fipa-cp'
- Perform interprocedural constant propagation. This optimization
- analyzes the program to determine when values passed to functions
- are constants and then optimizes accordingly. This optimization
- can substantially increase performance if the application has
- constants passed to functions. This flag is enabled by default at
- '-O2', '-Os' and '-O3'.
-
-'-fipa-cp-clone'
- Perform function cloning to make interprocedural constant
- propagation stronger. When enabled, interprocedural constant
- propagation performs function cloning when externally visible
- function can be called with constant arguments. Because this
- optimization can create multiple copies of functions, it may
- significantly increase code size (see '--param
- ipcp-unit-growth=VALUE'). This flag is enabled by default at
- '-O3'.
-
-'-fisolate-erroneous-paths-dereference'
- Detect paths which trigger erroneous or undefined behaviour due to
- dereferencing a NULL pointer. Isolate those paths from the main
- control flow and turn the statement with erroneous or undefined
- behaviour into a trap.
-
-'-fisolate-erroneous-paths-attribute'
- Detect paths which trigger erroneous or undefined behaviour due a
- NULL value being used in a way which is forbidden by a
- 'returns_nonnull' or 'nonnull' attribute. Isolate those paths from
- the main control flow and turn the statement with erroneous or
- undefined behaviour into a trap. This is not currently enabled,
- but may be enabled by '-O2' in the future.
-
-'-ftree-sink'
- Perform forward store motion on trees. This flag is enabled by
- default at '-O' and higher.
-
-'-ftree-bit-ccp'
- Perform sparse conditional bit constant propagation on trees and
- propagate pointer alignment information. This pass only operates
- on local scalar variables and is enabled by default at '-O' and
- higher. It requires that '-ftree-ccp' is enabled.
-
-'-ftree-ccp'
- Perform sparse conditional constant propagation (CCP) on trees.
- This pass only operates on local scalar variables and is enabled by
- default at '-O' and higher.
-
-'-ftree-switch-conversion'
- Perform conversion of simple initializations in a switch to
- initializations from a scalar array. This flag is enabled by
- default at '-O2' and higher.
-
-'-ftree-tail-merge'
- Look for identical code sequences. When found, replace one with a
- jump to the other. This optimization is known as tail merging or
- cross jumping. This flag is enabled by default at '-O2' and
- higher. The compilation time in this pass can be limited using
- 'max-tail-merge-comparisons' parameter and
- 'max-tail-merge-iterations' parameter.
-
-'-ftree-dce'
- Perform dead code elimination (DCE) on trees. This flag is enabled
- by default at '-O' and higher.
-
-'-ftree-builtin-call-dce'
- Perform conditional dead code elimination (DCE) for calls to
- built-in functions that may set 'errno' but are otherwise
- side-effect free. This flag is enabled by default at '-O2' and
- higher if '-Os' is not also specified.
-
-'-ftree-dominator-opts'
- Perform a variety of simple scalar cleanups (constant/copy
- propagation, redundancy elimination, range propagation and
- expression simplification) based on a dominator tree traversal.
- This also performs jump threading (to reduce jumps to jumps). This
- flag is enabled by default at '-O' and higher.
-
-'-ftree-dse'
- Perform dead store elimination (DSE) on trees. A dead store is a
- store into a memory location that is later overwritten by another
- store without any intervening loads. In this case the earlier
- store can be deleted. This flag is enabled by default at '-O' and
- higher.
-
-'-ftree-ch'
- Perform loop header copying on trees. This is beneficial since it
- increases effectiveness of code motion optimizations. It also
- saves one jump. This flag is enabled by default at '-O' and
- higher. It is not enabled for '-Os', since it usually increases
- code size.
-
-'-ftree-loop-optimize'
- Perform loop optimizations on trees. This flag is enabled by
- default at '-O' and higher.
-
-'-ftree-loop-linear'
- Perform loop interchange transformations on tree. Same as
- '-floop-interchange'. To use this code transformation, GCC has to
- be configured with '--with-ppl' and '--with-cloog' to enable the
- Graphite loop transformation infrastructure.
-
-'-floop-interchange'
- Perform loop interchange transformations on loops. Interchanging
- two nested loops switches the inner and outer loops. For example,
- given a loop like:
- DO J = 1, M
- DO I = 1, N
- A(J, I) = A(J, I) * C
- ENDDO
- ENDDO
- loop interchange transforms the loop as if it were written:
- DO I = 1, N
- DO J = 1, M
- A(J, I) = A(J, I) * C
- ENDDO
- ENDDO
- which can be beneficial when 'N' is larger than the caches, because
- in Fortran, the elements of an array are stored in memory
- contiguously by column, and the original loop iterates over rows,
- potentially creating at each access a cache miss. This
- optimization applies to all the languages supported by GCC and is
- not limited to Fortran. To use this code transformation, GCC has
- to be configured with '--with-ppl' and '--with-cloog' to enable the
- Graphite loop transformation infrastructure.
-
-'-floop-strip-mine'
- Perform loop strip mining transformations on loops. Strip mining
- splits a loop into two nested loops. The outer loop has strides
- equal to the strip size and the inner loop has strides of the
- original loop within a strip. The strip length can be changed
- using the 'loop-block-tile-size' parameter. For example, given a
- loop like:
- DO I = 1, N
- A(I) = A(I) + C
- ENDDO
- loop strip mining transforms the loop as if it were written:
- DO II = 1, N, 51
- DO I = II, min (II + 50, N)
- A(I) = A(I) + C
- ENDDO
- ENDDO
- This optimization applies to all the languages supported by GCC and
- is not limited to Fortran. To use this code transformation, GCC
- has to be configured with '--with-ppl' and '--with-cloog' to enable
- the Graphite loop transformation infrastructure.
-
-'-floop-block'
- Perform loop blocking transformations on loops. Blocking strip
- mines each loop in the loop nest such that the memory accesses of
- the element loops fit inside caches. The strip length can be
- changed using the 'loop-block-tile-size' parameter. For example,
- given a loop like:
- DO I = 1, N
- DO J = 1, M
- A(J, I) = B(I) + C(J)
- ENDDO
- ENDDO
- loop blocking transforms the loop as if it were written:
- DO II = 1, N, 51
- DO JJ = 1, M, 51
- DO I = II, min (II + 50, N)
- DO J = JJ, min (JJ + 50, M)
- A(J, I) = B(I) + C(J)
- ENDDO
- ENDDO
- ENDDO
- ENDDO
- which can be beneficial when 'M' is larger than the caches, because
- the innermost loop iterates over a smaller amount of data which can
- be kept in the caches. This optimization applies to all the
- languages supported by GCC and is not limited to Fortran. To use
- this code transformation, GCC has to be configured with
- '--with-ppl' and '--with-cloog' to enable the Graphite loop
- transformation infrastructure.
-
-'-fgraphite-identity'
- Enable the identity transformation for graphite. For every SCoP we
- generate the polyhedral representation and transform it back to
- gimple. Using '-fgraphite-identity' we can check the costs or
- benefits of the GIMPLE -> GRAPHITE -> GIMPLE transformation. Some
- minimal optimizations are also performed by the code generator
- CLooG, like index splitting and dead code elimination in loops.
-
-'-floop-nest-optimize'
- Enable the ISL based loop nest optimizer. This is a generic loop
- nest optimizer based on the Pluto optimization algorithms. It
- calculates a loop structure optimized for data-locality and
- parallelism. This option is experimental.
-
-'-floop-parallelize-all'
- Use the Graphite data dependence analysis to identify loops that
- can be parallelized. Parallelize all the loops that can be
- analyzed to not contain loop carried dependences without checking
- that it is profitable to parallelize the loops.
-
-'-fcheck-data-deps'
- Compare the results of several data dependence analyzers. This
- option is used for debugging the data dependence analyzers.
-
-'-ftree-loop-if-convert'
- Attempt to transform conditional jumps in the innermost loops to
- branch-less equivalents. The intent is to remove control-flow from
- the innermost loops in order to improve the ability of the
- vectorization pass to handle these loops. This is enabled by
- default if vectorization is enabled.
-
-'-ftree-loop-if-convert-stores'
- Attempt to also if-convert conditional jumps containing memory
- writes. This transformation can be unsafe for multi-threaded
- programs as it transforms conditional memory writes into
- unconditional memory writes. For example,
- for (i = 0; i < N; i++)
- if (cond)
- A[i] = expr;
- is transformed to
- for (i = 0; i < N; i++)
- A[i] = cond ? expr : A[i];
- potentially producing data races.
-
-'-ftree-loop-distribution'
- Perform loop distribution. This flag can improve cache performance
- on big loop bodies and allow further loop optimizations, like
- parallelization or vectorization, to take place. For example, the
- loop
- DO I = 1, N
- A(I) = B(I) + C
- D(I) = E(I) * F
- ENDDO
- is transformed to
- DO I = 1, N
- A(I) = B(I) + C
- ENDDO
- DO I = 1, N
- D(I) = E(I) * F
- ENDDO
-
-'-ftree-loop-distribute-patterns'
- Perform loop distribution of patterns that can be code generated
- with calls to a library. This flag is enabled by default at '-O3'.
-
- This pass distributes the initialization loops and generates a call
- to memset zero. For example, the loop
- DO I = 1, N
- A(I) = 0
- B(I) = A(I) + I
- ENDDO
- is transformed to
- DO I = 1, N
- A(I) = 0
- ENDDO
- DO I = 1, N
- B(I) = A(I) + I
- ENDDO
- and the initialization loop is transformed into a call to memset
- zero.
-
-'-ftree-loop-im'
- Perform loop invariant motion on trees. This pass moves only
- invariants that are hard to handle at RTL level (function calls,
- operations that expand to nontrivial sequences of insns). With
- '-funswitch-loops' it also moves operands of conditions that are
- invariant out of the loop, so that we can use just trivial
- invariantness analysis in loop unswitching. The pass also includes
- store motion.
-
-'-ftree-loop-ivcanon'
- Create a canonical counter for number of iterations in loops for
- which determining number of iterations requires complicated
- analysis. Later optimizations then may determine the number
- easily. Useful especially in connection with unrolling.
-
-'-fivopts'
- Perform induction variable optimizations (strength reduction,
- induction variable merging and induction variable elimination) on
- trees.
-
-'-ftree-parallelize-loops=n'
- Parallelize loops, i.e., split their iteration space to run in n
- threads. This is only possible for loops whose iterations are
- independent and can be arbitrarily reordered. The optimization is
- only profitable on multiprocessor machines, for loops that are
- CPU-intensive, rather than constrained e.g. by memory bandwidth.
- This option implies '-pthread', and thus is only supported on
- targets that have support for '-pthread'.
-
-'-ftree-pta'
- Perform function-local points-to analysis on trees. This flag is
- enabled by default at '-O' and higher.
-
-'-ftree-sra'
- Perform scalar replacement of aggregates. This pass replaces
- structure references with scalars to prevent committing structures
- to memory too early. This flag is enabled by default at '-O' and
- higher.
-
-'-ftree-copyrename'
- Perform copy renaming on trees. This pass attempts to rename
- compiler temporaries to other variables at copy locations, usually
- resulting in variable names which more closely resemble the
- original variables. This flag is enabled by default at '-O' and
- higher.
-
-'-ftree-coalesce-inlined-vars'
- Tell the copyrename pass (see '-ftree-copyrename') to attempt to
- combine small user-defined variables too, but only if they were
- inlined from other functions. It is a more limited form of
- '-ftree-coalesce-vars'. This may harm debug information of such
- inlined variables, but it will keep variables of the inlined-into
- function apart from each other, such that they are more likely to
- contain the expected values in a debugging session. This was the
- default in GCC versions older than 4.7.
-
-'-ftree-coalesce-vars'
- Tell the copyrename pass (see '-ftree-copyrename') to attempt to
- combine small user-defined variables too, instead of just compiler
- temporaries. This may severely limit the ability to debug an
- optimized program compiled with '-fno-var-tracking-assignments'.
- In the negated form, this flag prevents SSA coalescing of user
- variables, including inlined ones. This option is enabled by
- default.
-
-'-ftree-ter'
- Perform temporary expression replacement during the SSA->normal
- phase. Single use/single def temporaries are replaced at their use
- location with their defining expression. This results in
- non-GIMPLE code, but gives the expanders much more complex trees to
- work on resulting in better RTL generation. This is enabled by
- default at '-O' and higher.
-
-'-ftree-slsr'
- Perform straight-line strength reduction on trees. This recognizes
- related expressions involving multiplications and replaces them by
- less expensive calculations when possible. This is enabled by
- default at '-O' and higher.
-
-'-ftree-vectorize'
- Perform vectorization on trees. This flag enables
- '-ftree-loop-vectorize' and '-ftree-slp-vectorize' if not
- explicitly specified.
-
-'-ftree-loop-vectorize'
- Perform loop vectorization on trees. This flag is enabled by
- default at '-O3' and when '-ftree-vectorize' is enabled.
-
-'-ftree-slp-vectorize'
- Perform basic block vectorization on trees. This flag is enabled
- by default at '-O3' and when '-ftree-vectorize' is enabled.
-
-'-fvect-cost-model=MODEL'
- Alter the cost model used for vectorization. The MODEL argument
- should be one of 'unlimited', 'dynamic' or 'cheap'. With the
- 'unlimited' model the vectorized code-path is assumed to be
- profitable while with the 'dynamic' model a runtime check will
- guard the vectorized code-path to enable it only for iteration
- counts that will likely execute faster than when executing the
- original scalar loop. The 'cheap' model will disable vectorization
- of loops where doing so would be cost prohibitive for example due
- to required runtime checks for data dependence or alignment but
- otherwise is equal to the 'dynamic' model. The default cost model
- depends on other optimization flags and is either 'dynamic' or
- 'cheap'.
-
-'-fsimd-cost-model=MODEL'
- Alter the cost model used for vectorization of loops marked with
- the OpenMP or Cilk Plus simd directive. The MODEL argument should
- be one of 'unlimited', 'dynamic', 'cheap'. All values of MODEL
- have the same meaning as described in '-fvect-cost-model' and by
- default a cost model defined with '-fvect-cost-model' is used.
-
-'-ftree-vrp'
- Perform Value Range Propagation on trees. This is similar to the
- constant propagation pass, but instead of values, ranges of values
- are propagated. This allows the optimizers to remove unnecessary
- range checks like array bound checks and null pointer checks. This
- is enabled by default at '-O2' and higher. Null pointer check
- elimination is only done if '-fdelete-null-pointer-checks' is
- enabled.
-
-'-ftracer'
- Perform tail duplication to enlarge superblock size. This
- transformation simplifies the control flow of the function allowing
- other optimizations to do a better job.
-
-'-funroll-loops'
- Unroll loops whose number of iterations can be determined at
- compile time or upon entry to the loop. '-funroll-loops' implies
- '-frerun-cse-after-loop'. This option makes code larger, and may
- or may not make it run faster.
-
-'-funroll-all-loops'
- Unroll all loops, even if their number of iterations is uncertain
- when the loop is entered. This usually makes programs run more
- slowly. '-funroll-all-loops' implies the same options as
- '-funroll-loops',
-
-'-fsplit-ivs-in-unroller'
- Enables expression of values of induction variables in later
- iterations of the unrolled loop using the value in the first
- iteration. This breaks long dependency chains, thus improving
- efficiency of the scheduling passes.
-
- A combination of '-fweb' and CSE is often sufficient to obtain the
- same effect. However, that is not reliable in cases where the loop
- body is more complicated than a single basic block. It also does
- not work at all on some architectures due to restrictions in the
- CSE pass.
-
- This optimization is enabled by default.
-
-'-fvariable-expansion-in-unroller'
- With this option, the compiler creates multiple copies of some
- local variables when unrolling a loop, which can result in superior
- code.
-
-'-fpartial-inlining'
- Inline parts of functions. This option has any effect only when
- inlining itself is turned on by the '-finline-functions' or
- '-finline-small-functions' options.
-
- Enabled at level '-O2'.
-
-'-fpredictive-commoning'
- Perform predictive commoning optimization, i.e., reusing
- computations (especially memory loads and stores) performed in
- previous iterations of loops.
-
- This option is enabled at level '-O3'.
-
-'-fprefetch-loop-arrays'
- If supported by the target machine, generate instructions to
- prefetch memory to improve the performance of loops that access
- large arrays.
-
- This option may generate better or worse code; results are highly
- dependent on the structure of loops within the source code.
-
- Disabled at level '-Os'.
-
-'-fno-peephole'
-'-fno-peephole2'
- Disable any machine-specific peephole optimizations. The
- difference between '-fno-peephole' and '-fno-peephole2' is in how
- they are implemented in the compiler; some targets use one, some
- use the other, a few use both.
-
- '-fpeephole' is enabled by default. '-fpeephole2' enabled at
- levels '-O2', '-O3', '-Os'.
-
-'-fno-guess-branch-probability'
- Do not guess branch probabilities using heuristics.
-
- GCC uses heuristics to guess branch probabilities if they are not
- provided by profiling feedback ('-fprofile-arcs'). These
- heuristics are based on the control flow graph. If some branch
- probabilities are specified by '__builtin_expect', then the
- heuristics are used to guess branch probabilities for the rest of
- the control flow graph, taking the '__builtin_expect' info into
- account. The interactions between the heuristics and
- '__builtin_expect' can be complex, and in some cases, it may be
- useful to disable the heuristics so that the effects of
- '__builtin_expect' are easier to understand.
-
- The default is '-fguess-branch-probability' at levels '-O', '-O2',
- '-O3', '-Os'.
-
-'-freorder-blocks'
- Reorder basic blocks in the compiled function in order to reduce
- number of taken branches and improve code locality.
-
- Enabled at levels '-O2', '-O3'.
-
-'-freorder-blocks-and-partition'
- In addition to reordering basic blocks in the compiled function, in
- order to reduce number of taken branches, partitions hot and cold
- basic blocks into separate sections of the assembly and .o files,
- to improve paging and cache locality performance.
-
- This optimization is automatically turned off in the presence of
- exception handling, for linkonce sections, for functions with a
- user-defined section attribute and on any architecture that does
- not support named sections.
-
- Enabled for x86 at levels '-O2', '-O3'.
-
-'-freorder-functions'
- Reorder functions in the object file in order to improve code
- locality. This is implemented by using special subsections
- '.text.hot' for most frequently executed functions and
- '.text.unlikely' for unlikely executed functions. Reordering is
- done by the linker so object file format must support named
- sections and linker must place them in a reasonable way.
-
- Also profile feedback must be available to make this option
- effective. See '-fprofile-arcs' for details.
-
- Enabled at levels '-O2', '-O3', '-Os'.
-
-'-fstrict-aliasing'
- Allow the compiler to assume the strictest aliasing rules
- applicable to the language being compiled. For C (and C++), this
- activates optimizations based on the type of expressions. In
- particular, an object of one type is assumed never to reside at the
- same address as an object of a different type, unless the types are
- almost the same. For example, an 'unsigned int' can alias an
- 'int', but not a 'void*' or a 'double'. A character type may alias
- any other type.
-
- Pay special attention to code like this:
- union a_union {
- int i;
- double d;
- };
-
- int f() {
- union a_union t;
- t.d = 3.0;
- return t.i;
- }
- The practice of reading from a different union member than the one
- most recently written to (called "type-punning") is common. Even
- with '-fstrict-aliasing', type-punning is allowed, provided the
- memory is accessed through the union type. So, the code above
- works as expected. *Note Structures unions enumerations and
- bit-fields implementation::. However, this code might not:
- int f() {
- union a_union t;
- int* ip;
- t.d = 3.0;
- ip = &t.i;
- return *ip;
- }
-
- Similarly, access by taking the address, casting the resulting
- pointer and dereferencing the result has undefined behavior, even
- if the cast uses a union type, e.g.:
- int f() {
- double d = 3.0;
- return ((union a_union *) &d)->i;
- }
-
- The '-fstrict-aliasing' option is enabled at levels '-O2', '-O3',
- '-Os'.
-
-'-fstrict-overflow'
- Allow the compiler to assume strict signed overflow rules,
- depending on the language being compiled. For C (and C++) this
- means that overflow when doing arithmetic with signed numbers is
- undefined, which means that the compiler may assume that it does
- not happen. This permits various optimizations. For example, the
- compiler assumes that an expression like 'i + 10 > i' is always
- true for signed 'i'. This assumption is only valid if signed
- overflow is undefined, as the expression is false if 'i + 10'
- overflows when using twos complement arithmetic. When this option
- is in effect any attempt to determine whether an operation on
- signed numbers overflows must be written carefully to not actually
- involve overflow.
-
- This option also allows the compiler to assume strict pointer
- semantics: given a pointer to an object, if adding an offset to
- that pointer does not produce a pointer to the same object, the
- addition is undefined. This permits the compiler to conclude that
- 'p + u > p' is always true for a pointer 'p' and unsigned integer
- 'u'. This assumption is only valid because pointer wraparound is
- undefined, as the expression is false if 'p + u' overflows using
- twos complement arithmetic.
-
- See also the '-fwrapv' option. Using '-fwrapv' means that integer
- signed overflow is fully defined: it wraps. When '-fwrapv' is
- used, there is no difference between '-fstrict-overflow' and
- '-fno-strict-overflow' for integers. With '-fwrapv' certain types
- of overflow are permitted. For example, if the compiler gets an
- overflow when doing arithmetic on constants, the overflowed value
- can still be used with '-fwrapv', but not otherwise.
-
- The '-fstrict-overflow' option is enabled at levels '-O2', '-O3',
- '-Os'.
-
-'-falign-functions'
-'-falign-functions=N'
- Align the start of functions to the next power-of-two greater than
- N, skipping up to N bytes. For instance, '-falign-functions=32'
- aligns functions to the next 32-byte boundary, but
- '-falign-functions=24' aligns to the next 32-byte boundary only if
- this can be done by skipping 23 bytes or less.
-
- '-fno-align-functions' and '-falign-functions=1' are equivalent and
- mean that functions are not aligned.
-
- Some assemblers only support this flag when N is a power of two; in
- that case, it is rounded up.
-
- If N is not specified or is zero, use a machine-dependent default.
-
- Enabled at levels '-O2', '-O3'.
-
-'-falign-labels'
-'-falign-labels=N'
- Align all branch targets to a power-of-two boundary, skipping up to
- N bytes like '-falign-functions'. This option can easily make code
- slower, because it must insert dummy operations for when the branch
- target is reached in the usual flow of the code.
-
- '-fno-align-labels' and '-falign-labels=1' are equivalent and mean
- that labels are not aligned.
-
- If '-falign-loops' or '-falign-jumps' are applicable and are
- greater than this value, then their values are used instead.
-
- If N is not specified or is zero, use a machine-dependent default
- which is very likely to be '1', meaning no alignment.
-
- Enabled at levels '-O2', '-O3'.
-
-'-falign-loops'
-'-falign-loops=N'
- Align loops to a power-of-two boundary, skipping up to N bytes like
- '-falign-functions'. If the loops are executed many times, this
- makes up for any execution of the dummy operations.
-
- '-fno-align-loops' and '-falign-loops=1' are equivalent and mean
- that loops are not aligned.
-
- If N is not specified or is zero, use a machine-dependent default.
-
- Enabled at levels '-O2', '-O3'.
-
-'-falign-jumps'
-'-falign-jumps=N'
- Align branch targets to a power-of-two boundary, for branch targets
- where the targets can only be reached by jumping, skipping up to N
- bytes like '-falign-functions'. In this case, no dummy operations
- need be executed.
-
- '-fno-align-jumps' and '-falign-jumps=1' are equivalent and mean
- that loops are not aligned.
-
- If N is not specified or is zero, use a machine-dependent default.
-
- Enabled at levels '-O2', '-O3'.
-
-'-funit-at-a-time'
- This option is left for compatibility reasons. '-funit-at-a-time'
- has no effect, while '-fno-unit-at-a-time' implies
- '-fno-toplevel-reorder' and '-fno-section-anchors'.
-
- Enabled by default.
-
-'-fno-toplevel-reorder'
- Do not reorder top-level functions, variables, and 'asm'
- statements. Output them in the same order that they appear in the
- input file. When this option is used, unreferenced static
- variables are not removed. This option is intended to support
- existing code that relies on a particular ordering. For new code,
- it is better to use attributes when possible.
-
- Enabled at level '-O0'. When disabled explicitly, it also implies
- '-fno-section-anchors', which is otherwise enabled at '-O0' on some
- targets.
-
-'-fweb'
- Constructs webs as commonly used for register allocation purposes
- and assign each web individual pseudo register. This allows the
- register allocation pass to operate on pseudos directly, but also
- strengthens several other optimization passes, such as CSE, loop
- optimizer and trivial dead code remover. It can, however, make
- debugging impossible, since variables no longer stay in a "home
- register".
-
- Enabled by default with '-funroll-loops'.
-
-'-fwhole-program'
- Assume that the current compilation unit represents the whole
- program being compiled. All public functions and variables with
- the exception of 'main' and those merged by attribute
- 'externally_visible' become static functions and in effect are
- optimized more aggressively by interprocedural optimizers.
-
- This option should not be used in combination with '-flto'.
- Instead relying on a linker plugin should provide safer and more
- precise information.
-
-'-flto[=N]'
- This option runs the standard link-time optimizer. When invoked
- with source code, it generates GIMPLE (one of GCC's internal
- representations) and writes it to special ELF sections in the
- object file. When the object files are linked together, all the
- function bodies are read from these ELF sections and instantiated
- as if they had been part of the same translation unit.
-
- To use the link-time optimizer, '-flto' and optimization options
- should be specified at compile time and during the final link. For
- example:
-
- gcc -c -O2 -flto foo.c
- gcc -c -O2 -flto bar.c
- gcc -o myprog -flto -O2 foo.o bar.o
-
- The first two invocations to GCC save a bytecode representation of
- GIMPLE into special ELF sections inside 'foo.o' and 'bar.o'. The
- final invocation reads the GIMPLE bytecode from 'foo.o' and
- 'bar.o', merges the two files into a single internal image, and
- compiles the result as usual. Since both 'foo.o' and 'bar.o' are
- merged into a single image, this causes all the interprocedural
- analyses and optimizations in GCC to work across the two files as
- if they were a single one. This means, for example, that the
- inliner is able to inline functions in 'bar.o' into functions in
- 'foo.o' and vice-versa.
-
- Another (simpler) way to enable link-time optimization is:
-
- gcc -o myprog -flto -O2 foo.c bar.c
-
- The above generates bytecode for 'foo.c' and 'bar.c', merges them
- together into a single GIMPLE representation and optimizes them as
- usual to produce 'myprog'.
-
- The only important thing to keep in mind is that to enable
- link-time optimizations you need to use the GCC driver to perform
- the link-step. GCC then automatically performs link-time
- optimization if any of the objects involved were compiled with the
- '-flto'. You generally should specify the optimization options to
- be used for link-time optimization though GCC will try to be clever
- at guessing an optimization level to use from the options used at
- compile-time if you fail to specify one at link-time. You can
- always override the automatic decision to do link-time optimization
- at link-time by passing '-fno-lto' to the link command.
-
- To make whole program optimization effective, it is necessary to
- make certain whole program assumptions. The compiler needs to know
- what functions and variables can be accessed by libraries and
- runtime outside of the link-time optimized unit. When supported by
- the linker, the linker plugin (see '-fuse-linker-plugin') passes
- information to the compiler about used and externally visible
- symbols. When the linker plugin is not available,
- '-fwhole-program' should be used to allow the compiler to make
- these assumptions, which leads to more aggressive optimization
- decisions.
-
- When '-fuse-linker-plugin' is not enabled then, when a file is
- compiled with '-flto', the generated object file is larger than a
- regular object file because it contains GIMPLE bytecodes and the
- usual final code (see '-ffat-lto-objects'. This means that object
- files with LTO information can be linked as normal object files; if
- '-fno-lto' is passed to the linker, no interprocedural
- optimizations are applied. Note that when '-fno-fat-lto-objects'
- is enabled the compile-stage is faster but you cannot perform a
- regular, non-LTO link on them.
-
- Additionally, the optimization flags used to compile individual
- files are not necessarily related to those used at link time. For
- instance,
-
- gcc -c -O0 -ffat-lto-objects -flto foo.c
- gcc -c -O0 -ffat-lto-objects -flto bar.c
- gcc -o myprog -O3 foo.o bar.o
-
- This produces individual object files with unoptimized assembler
- code, but the resulting binary 'myprog' is optimized at '-O3'. If,
- instead, the final binary is generated with '-fno-lto', then
- 'myprog' is not optimized.
-
- When producing the final binary, GCC only applies link-time
- optimizations to those files that contain bytecode. Therefore, you
- can mix and match object files and libraries with GIMPLE bytecodes
- and final object code. GCC automatically selects which files to
- optimize in LTO mode and which files to link without further
- processing.
-
- There are some code generation flags preserved by GCC when
- generating bytecodes, as they need to be used during the final link
- stage. Generally options specified at link-time override those
- specified at compile-time.
-
- If you do not specify an optimization level option '-O' at
- link-time then GCC will compute one based on the optimization
- levels used when compiling the object files. The highest
- optimization level will win here.
-
- Currently, the following options and their setting are take from
- the first object file that explicitely specified it: '-fPIC',
- '-fpic', '-fpie', '-fcommon', '-fexceptions',
- '-fnon-call-exceptions', '-fgnu-tm' and all the '-m' target flags.
-
- Certain ABI changing flags are required to match in all
- compilation-units and trying to override this at link-time with a
- conflicting value is ignored. This includes options such as
- '-freg-struct-return' and '-fpcc-struct-return'.
-
- Other options such as '-ffp-contract', '-fno-strict-overflow',
- '-fwrapv', '-fno-trapv' or '-fno-strict-aliasing' are passed
- through to the link stage and merged conservatively for conflicting
- translation units. Specifically '-fno-strict-overflow', '-fwrapv'
- and '-fno-trapv' take precedence and for example
- '-ffp-contract=off' takes precedence over '-ffp-contract=fast'.
- You can override them at linke-time.
-
- It is recommended that you compile all the files participating in
- the same link with the same options and also specify those options
- at link time.
-
- If LTO encounters objects with C linkage declared with incompatible
- types in separate translation units to be linked together
- (undefined behavior according to ISO C99 6.2.7), a non-fatal
- diagnostic may be issued. The behavior is still undefined at run
- time. Similar diagnostics may be raised for other languages.
-
- Another feature of LTO is that it is possible to apply
- interprocedural optimizations on files written in different
- languages:
-
- gcc -c -flto foo.c
- g++ -c -flto bar.cc
- gfortran -c -flto baz.f90
- g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
-
- Notice that the final link is done with 'g++' to get the C++
- runtime libraries and '-lgfortran' is added to get the Fortran
- runtime libraries. In general, when mixing languages in LTO mode,
- you should use the same link command options as when mixing
- languages in a regular (non-LTO) compilation.
-
- If object files containing GIMPLE bytecode are stored in a library
- archive, say 'libfoo.a', it is possible to extract and use them in
- an LTO link if you are using a linker with plugin support. To
- create static libraries suitable for LTO, use 'gcc-ar' and
- 'gcc-ranlib' instead of 'ar' and 'ranlib'; to show the symbols of
- object files with GIMPLE bytecode, use 'gcc-nm'. Those commands
- require that 'ar', 'ranlib' and 'nm' have been compiled with plugin
- support. At link time, use the the flag '-fuse-linker-plugin' to
- ensure that the library participates in the LTO optimization
- process:
-
- gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
-
- With the linker plugin enabled, the linker extracts the needed
- GIMPLE files from 'libfoo.a' and passes them on to the running GCC
- to make them part of the aggregated GIMPLE image to be optimized.
-
- If you are not using a linker with plugin support and/or do not
- enable the linker plugin, then the objects inside 'libfoo.a' are
- extracted and linked as usual, but they do not participate in the
- LTO optimization process. In order to make a static library
- suitable for both LTO optimization and usual linkage, compile its
- object files with '-flto' '-ffat-lto-objects'.
-
- Link-time optimizations do not require the presence of the whole
- program to operate. If the program does not require any symbols to
- be exported, it is possible to combine '-flto' and
- '-fwhole-program' to allow the interprocedural optimizers to use
- more aggressive assumptions which may lead to improved optimization
- opportunities. Use of '-fwhole-program' is not needed when linker
- plugin is active (see '-fuse-linker-plugin').
-
- The current implementation of LTO makes no attempt to generate
- bytecode that is portable between different types of hosts. The
- bytecode files are versioned and there is a strict version check,
- so bytecode files generated in one version of GCC will not work
- with an older or newer version of GCC.
-
- Link-time optimization does not work well with generation of
- debugging information. Combining '-flto' with '-g' is currently
- experimental and expected to produce unexpected results.
-
- If you specify the optional N, the optimization and code generation
- done at link time is executed in parallel using N parallel jobs by
- utilizing an installed 'make' program. The environment variable
- 'MAKE' may be used to override the program used. The default value
- for N is 1.
-
- You can also specify '-flto=jobserver' to use GNU make's job server
- mode to determine the number of parallel jobs. This is useful when
- the Makefile calling GCC is already executing in parallel. You
- must prepend a '+' to the command recipe in the parent Makefile for
- this to work. This option likely only works if 'MAKE' is GNU make.
-
-'-flto-partition=ALG'
- Specify the partitioning algorithm used by the link-time optimizer.
- The value is either '1to1' to specify a partitioning mirroring the
- original source files or 'balanced' to specify partitioning into
- equally sized chunks (whenever possible) or 'max' to create new
- partition for every symbol where possible. Specifying 'none' as an
- algorithm disables partitioning and streaming completely. The
- default value is 'balanced'. While '1to1' can be used as an
- workaround for various code ordering issues, the 'max' partitioning
- is intended for internal testing only.
-
-'-flto-compression-level=N'
- This option specifies the level of compression used for
- intermediate language written to LTO object files, and is only
- meaningful in conjunction with LTO mode ('-flto'). Valid values
- are 0 (no compression) to 9 (maximum compression). Values outside
- this range are clamped to either 0 or 9. If the option is not
- given, a default balanced compression setting is used.
-
-'-flto-report'
- Prints a report with internal details on the workings of the
- link-time optimizer. The contents of this report vary from version
- to version. It is meant to be useful to GCC developers when
- processing object files in LTO mode (via '-flto').
-
- Disabled by default.
-
-'-flto-report-wpa'
- Like '-flto-report', but only print for the WPA phase of Link Time
- Optimization.
-
-'-fuse-linker-plugin'
- Enables the use of a linker plugin during link-time optimization.
- This option relies on plugin support in the linker, which is
- available in gold or in GNU ld 2.21 or newer.
-
- This option enables the extraction of object files with GIMPLE
- bytecode out of library archives. This improves the quality of
- optimization by exposing more code to the link-time optimizer.
- This information specifies what symbols can be accessed externally
- (by non-LTO object or during dynamic linking). Resulting code
- quality improvements on binaries (and shared libraries that use
- hidden visibility) are similar to '-fwhole-program'. See '-flto'
- for a description of the effect of this flag and how to use it.
-
- This option is enabled by default when LTO support in GCC is
- enabled and GCC was configured for use with a linker supporting
- plugins (GNU ld 2.21 or newer or gold).
-
-'-ffat-lto-objects'
- Fat LTO objects are object files that contain both the intermediate
- language and the object code. This makes them usable for both LTO
- linking and normal linking. This option is effective only when
- compiling with '-flto' and is ignored at link time.
-
- '-fno-fat-lto-objects' improves compilation time over plain LTO,
- but requires the complete toolchain to be aware of LTO. It requires
- a linker with linker plugin support for basic functionality.
- Additionally, 'nm', 'ar' and 'ranlib' need to support linker
- plugins to allow a full-featured build environment (capable of
- building static libraries etc). GCC provides the 'gcc-ar',
- 'gcc-nm', 'gcc-ranlib' wrappers to pass the right options to these
- tools. With non fat LTO makefiles need to be modified to use them.
-
- The default is '-fno-fat-lto-objects' on targets with linker plugin
- support.
-
-'-fcompare-elim'
- After register allocation and post-register allocation instruction
- splitting, identify arithmetic instructions that compute processor
- flags similar to a comparison operation based on that arithmetic.
- If possible, eliminate the explicit comparison operation.
-
- This pass only applies to certain targets that cannot explicitly
- represent the comparison operation before register allocation is
- complete.
-
- Enabled at levels '-O', '-O2', '-O3', '-Os'.
-
-'-fuse-ld=bfd'
- Use the 'bfd' linker instead of the default linker.
-
-'-fuse-ld=gold'
- Use the 'gold' linker instead of the default linker.
-
-'-fcprop-registers'
- After register allocation and post-register allocation instruction
- splitting, perform a copy-propagation pass to try to reduce
- scheduling dependencies and occasionally eliminate the copy.
-
- Enabled at levels '-O', '-O2', '-O3', '-Os'.
-
-'-fprofile-correction'
- Profiles collected using an instrumented binary for multi-threaded
- programs may be inconsistent due to missed counter updates. When
- this option is specified, GCC uses heuristics to correct or smooth
- out such inconsistencies. By default, GCC emits an error message
- when an inconsistent profile is detected.
-
-'-fprofile-dir=PATH'
-
- Set the directory to search for the profile data files in to PATH.
- This option affects only the profile data generated by
- '-fprofile-generate', '-ftest-coverage', '-fprofile-arcs' and used
- by '-fprofile-use' and '-fbranch-probabilities' and its related
- options. Both absolute and relative paths can be used. By
- default, GCC uses the current directory as PATH, thus the profile
- data file appears in the same directory as the object file.
-
-'-fprofile-generate'
-'-fprofile-generate=PATH'
-
- Enable options usually used for instrumenting application to
- produce profile useful for later recompilation with profile
- feedback based optimization. You must use '-fprofile-generate'
- both when compiling and when linking your program.
-
- The following options are enabled: '-fprofile-arcs',
- '-fprofile-values', '-fvpt'.
-
- If PATH is specified, GCC looks at the PATH to find the profile
- feedback data files. See '-fprofile-dir'.
-
-'-fprofile-use'
-'-fprofile-use=PATH'
- Enable profile feedback directed optimizations, and optimizations
- generally profitable only with profile feedback available.
-
- The following options are enabled: '-fbranch-probabilities',
- '-fvpt', '-funroll-loops', '-fpeel-loops', '-ftracer',
- '-ftree-vectorize', 'ftree-loop-distribute-patterns'
-
- By default, GCC emits an error message if the feedback profiles do
- not match the source code. This error can be turned into a warning
- by using '-Wcoverage-mismatch'. Note this may result in poorly
- optimized code.
-
- If PATH is specified, GCC looks at the PATH to find the profile
- feedback data files. See '-fprofile-dir'.
-
- The following options control compiler behavior regarding
-floating-point arithmetic. These options trade off between speed and
-correctness. All must be specifically enabled.
-
-'-ffloat-store'
- Do not store floating-point variables in registers, and inhibit
- other options that might change whether a floating-point value is
- taken from a register or memory.
-
- This option prevents undesirable excess precision on machines such
- as the 68000 where the floating registers (of the 68881) keep more
- precision than a 'double' is supposed to have. Similarly for the
- x86 architecture. For most programs, the excess precision does
- only good, but a few programs rely on the precise definition of
- IEEE floating point. Use '-ffloat-store' for such programs, after
- modifying them to store all pertinent intermediate computations
- into variables.
-
-'-fexcess-precision=STYLE'
- This option allows further control over excess precision on
- machines where floating-point registers have more precision than
- the IEEE 'float' and 'double' types and the processor does not
- support operations rounding to those types. By default,
- '-fexcess-precision=fast' is in effect; this means that operations
- are carried out in the precision of the registers and that it is
- unpredictable when rounding to the types specified in the source
- code takes place. When compiling C, if
- '-fexcess-precision=standard' is specified then excess precision
- follows the rules specified in ISO C99; in particular, both casts
- and assignments cause values to be rounded to their semantic types
- (whereas '-ffloat-store' only affects assignments). This option is
- enabled by default for C if a strict conformance option such as
- '-std=c99' is used.
-
- '-fexcess-precision=standard' is not implemented for languages
- other than C, and has no effect if '-funsafe-math-optimizations' or
- '-ffast-math' is specified. On the x86, it also has no effect if
- '-mfpmath=sse' or '-mfpmath=sse+387' is specified; in the former
- case, IEEE semantics apply without excess precision, and in the
- latter, rounding is unpredictable.
-
-'-ffast-math'
- Sets '-fno-math-errno', '-funsafe-math-optimizations',
- '-ffinite-math-only', '-fno-rounding-math', '-fno-signaling-nans'
- and '-fcx-limited-range'.
-
- This option causes the preprocessor macro '__FAST_MATH__' to be
- defined.
-
- This option is not turned on by any '-O' option besides '-Ofast'
- since it can result in incorrect output for programs that depend on
- an exact implementation of IEEE or ISO rules/specifications for
- math functions. It may, however, yield faster code for programs
- that do not require the guarantees of these specifications.
-
-'-fno-math-errno'
- Do not set 'errno' after calling math functions that are executed
- with a single instruction, e.g., 'sqrt'. A program that relies on
- IEEE exceptions for math error handling may want to use this flag
- for speed while maintaining IEEE arithmetic compatibility.
-
- This option is not turned on by any '-O' option since it can result
- in incorrect output for programs that depend on an exact
- implementation of IEEE or ISO rules/specifications for math
- functions. It may, however, yield faster code for programs that do
- not require the guarantees of these specifications.
-
- The default is '-fmath-errno'.
-
- On Darwin systems, the math library never sets 'errno'. There is
- therefore no reason for the compiler to consider the possibility
- that it might, and '-fno-math-errno' is the default.
-
-'-funsafe-math-optimizations'
-
- Allow optimizations for floating-point arithmetic that (a) assume
- that arguments and results are valid and (b) may violate IEEE or
- ANSI standards. When used at link-time, it may include libraries
- or startup files that change the default FPU control word or other
- similar optimizations.
-
- This option is not turned on by any '-O' option since it can result
- in incorrect output for programs that depend on an exact
- implementation of IEEE or ISO rules/specifications for math
- functions. It may, however, yield faster code for programs that do
- not require the guarantees of these specifications. Enables
- '-fno-signed-zeros', '-fno-trapping-math', '-fassociative-math' and
- '-freciprocal-math'.
-
- The default is '-fno-unsafe-math-optimizations'.
-
-'-fassociative-math'
-
- Allow re-association of operands in series of floating-point
- operations. This violates the ISO C and C++ language standard by
- possibly changing computation result. NOTE: re-ordering may change
- the sign of zero as well as ignore NaNs and inhibit or create
- underflow or overflow (and thus cannot be used on code that relies
- on rounding behavior like '(x + 2**52) - 2**52'. May also reorder
- floating-point comparisons and thus may not be used when ordered
- comparisons are required. This option requires that both
- '-fno-signed-zeros' and '-fno-trapping-math' be in effect.
- Moreover, it doesn't make much sense with '-frounding-math'. For
- Fortran the option is automatically enabled when both
- '-fno-signed-zeros' and '-fno-trapping-math' are in effect.
-
- The default is '-fno-associative-math'.
-
-'-freciprocal-math'
-
- Allow the reciprocal of a value to be used instead of dividing by
- the value if this enables optimizations. For example 'x / y' can
- be replaced with 'x * (1/y)', which is useful if '(1/y)' is subject
- to common subexpression elimination. Note that this loses
- precision and increases the number of flops operating on the value.
-
- The default is '-fno-reciprocal-math'.
-
-'-ffinite-math-only'
- Allow optimizations for floating-point arithmetic that assume that
- arguments and results are not NaNs or +-Infs.
-
- This option is not turned on by any '-O' option since it can result
- in incorrect output for programs that depend on an exact
- implementation of IEEE or ISO rules/specifications for math
- functions. It may, however, yield faster code for programs that do
- not require the guarantees of these specifications.
-
- The default is '-fno-finite-math-only'.
-
-'-fno-signed-zeros'
- Allow optimizations for floating-point arithmetic that ignore the
- signedness of zero. IEEE arithmetic specifies the behavior of
- distinct +0.0 and -0.0 values, which then prohibits simplification
- of expressions such as x+0.0 or 0.0*x (even with
- '-ffinite-math-only'). This option implies that the sign of a zero
- result isn't significant.
-
- The default is '-fsigned-zeros'.
-
-'-fno-trapping-math'
- Compile code assuming that floating-point operations cannot
- generate user-visible traps. These traps include division by zero,
- overflow, underflow, inexact result and invalid operation. This
- option requires that '-fno-signaling-nans' be in effect. Setting
- this option may allow faster code if one relies on "non-stop" IEEE
- arithmetic, for example.
-
- This option should never be turned on by any '-O' option since it
- can result in incorrect output for programs that depend on an exact
- implementation of IEEE or ISO rules/specifications for math
- functions.
-
- The default is '-ftrapping-math'.
-
-'-frounding-math'
- Disable transformations and optimizations that assume default
- floating-point rounding behavior. This is round-to-zero for all
- floating point to integer conversions, and round-to-nearest for all
- other arithmetic truncations. This option should be specified for
- programs that change the FP rounding mode dynamically, or that may
- be executed with a non-default rounding mode. This option disables
- constant folding of floating-point expressions at compile time
- (which may be affected by rounding mode) and arithmetic
- transformations that are unsafe in the presence of sign-dependent
- rounding modes.
-
- The default is '-fno-rounding-math'.
-
- This option is experimental and does not currently guarantee to
- disable all GCC optimizations that are affected by rounding mode.
- Future versions of GCC may provide finer control of this setting
- using C99's 'FENV_ACCESS' pragma. This command-line option will be
- used to specify the default state for 'FENV_ACCESS'.
-
-'-fsignaling-nans'
- Compile code assuming that IEEE signaling NaNs may generate
- user-visible traps during floating-point operations. Setting this
- option disables optimizations that may change the number of
- exceptions visible with signaling NaNs. This option implies
- '-ftrapping-math'.
-
- This option causes the preprocessor macro '__SUPPORT_SNAN__' to be
- defined.
-
- The default is '-fno-signaling-nans'.
-
- This option is experimental and does not currently guarantee to
- disable all GCC optimizations that affect signaling NaN behavior.
-
-'-fsingle-precision-constant'
- Treat floating-point constants as single precision instead of
- implicitly converting them to double-precision constants.
-
-'-fcx-limited-range'
- When enabled, this option states that a range reduction step is not
- needed when performing complex division. Also, there is no
- checking whether the result of a complex multiplication or division
- is 'NaN + I*NaN', with an attempt to rescue the situation in that
- case. The default is '-fno-cx-limited-range', but is enabled by
- '-ffast-math'.
-
- This option controls the default setting of the ISO C99
- 'CX_LIMITED_RANGE' pragma. Nevertheless, the option applies to all
- languages.
-
-'-fcx-fortran-rules'
- Complex multiplication and division follow Fortran rules. Range
- reduction is done as part of complex division, but there is no
- checking whether the result of a complex multiplication or division
- is 'NaN + I*NaN', with an attempt to rescue the situation in that
- case.
-
- The default is '-fno-cx-fortran-rules'.
-
- The following options control optimizations that may improve
-performance, but are not enabled by any '-O' options. This section
-includes experimental options that may produce broken code.
-
-'-fbranch-probabilities'
- After running a program compiled with '-fprofile-arcs' (*note
- Options for Debugging Your Program or 'gcc': Debugging Options.),
- you can compile it a second time using '-fbranch-probabilities', to
- improve optimizations based on the number of times each branch was
- taken. When a program compiled with '-fprofile-arcs' exits, it
- saves arc execution counts to a file called 'SOURCENAME.gcda' for
- each source file. The information in this data file is very
- dependent on the structure of the generated code, so you must use
- the same source code and the same optimization options for both
- compilations.
-
- With '-fbranch-probabilities', GCC puts a 'REG_BR_PROB' note on
- each 'JUMP_INSN' and 'CALL_INSN'. These can be used to improve
- optimization. Currently, they are only used in one place: in
- 'reorg.c', instead of guessing which path a branch is most likely
- to take, the 'REG_BR_PROB' values are used to exactly determine
- which path is taken more often.
-
-'-fprofile-values'
- If combined with '-fprofile-arcs', it adds code so that some data
- about values of expressions in the program is gathered.
-
- With '-fbranch-probabilities', it reads back the data gathered from
- profiling values of expressions for usage in optimizations.
-
- Enabled with '-fprofile-generate' and '-fprofile-use'.
-
-'-fprofile-reorder-functions'
- Function reordering based on profile instrumentation collects first
- time of execution of a function and orders these functions in
- ascending order.
-
- Enabled with '-fprofile-use'.
-
-'-fvpt'
- If combined with '-fprofile-arcs', this option instructs the
- compiler to add code to gather information about values of
- expressions.
-
- With '-fbranch-probabilities', it reads back the data gathered and
- actually performs the optimizations based on them. Currently the
- optimizations include specialization of division operations using
- the knowledge about the value of the denominator.
-
-'-frename-registers'
- Attempt to avoid false dependencies in scheduled code by making use
- of registers left over after register allocation. This
- optimization most benefits processors with lots of registers.
- Depending on the debug information format adopted by the target,
- however, it can make debugging impossible, since variables no
- longer stay in a "home register".
-
- Enabled by default with '-funroll-loops' and '-fpeel-loops'.
-
-'-ftracer'
- Perform tail duplication to enlarge superblock size. This
- transformation simplifies the control flow of the function allowing
- other optimizations to do a better job.
-
- Enabled with '-fprofile-use'.
-
-'-funroll-loops'
- Unroll loops whose number of iterations can be determined at
- compile time or upon entry to the loop. '-funroll-loops' implies
- '-frerun-cse-after-loop', '-fweb' and '-frename-registers'. It
- also turns on complete loop peeling (i.e. complete removal of loops
- with a small constant number of iterations). This option makes
- code larger, and may or may not make it run faster.
-
- Enabled with '-fprofile-use'.
-
-'-funroll-all-loops'
- Unroll all loops, even if their number of iterations is uncertain
- when the loop is entered. This usually makes programs run more
- slowly. '-funroll-all-loops' implies the same options as
- '-funroll-loops'.
-
-'-fpeel-loops'
- Peels loops for which there is enough information that they do not
- roll much (from profile feedback). It also turns on complete loop
- peeling (i.e. complete removal of loops with small constant number
- of iterations).
-
- Enabled with '-fprofile-use'.
-
-'-fmove-loop-invariants'
- Enables the loop invariant motion pass in the RTL loop optimizer.
- Enabled at level '-O1'
-
-'-funswitch-loops'
- Move branches with loop invariant conditions out of the loop, with
- duplicates of the loop on both branches (modified according to
- result of the condition).
-
-'-ffunction-sections'
-'-fdata-sections'
- Place each function or data item into its own section in the output
- file if the target supports arbitrary sections. The name of the
- function or the name of the data item determines the section's name
- in the output file.
-
- Use these options on systems where the linker can perform
- optimizations to improve locality of reference in the instruction
- space. Most systems using the ELF object format and SPARC
- processors running Solaris 2 have linkers with such optimizations.
- AIX may have these optimizations in the future.
-
- Only use these options when there are significant benefits from
- doing so. When you specify these options, the assembler and linker
- create larger object and executable files and are also slower. You
- cannot use 'gprof' on all systems if you specify this option, and
- you may have problems with debugging if you specify both this
- option and '-g'.
-
-'-fbranch-target-load-optimize'
- Perform branch target register load optimization before prologue /
- epilogue threading. The use of target registers can typically be
- exposed only during reload, thus hoisting loads out of loops and
- doing inter-block scheduling needs a separate optimization pass.
-
-'-fbranch-target-load-optimize2'
- Perform branch target register load optimization after prologue /
- epilogue threading.
-
-'-fbtr-bb-exclusive'
- When performing branch target register load optimization, don't
- reuse branch target registers within any basic block.
-
-'-fstack-protector'
- Emit extra code to check for buffer overflows, such as stack
- smashing attacks. This is done by adding a guard variable to
- functions with vulnerable objects. This includes functions that
- call 'alloca', and functions with buffers larger than 8 bytes. The
- guards are initialized when a function is entered and then checked
- when the function exits. If a guard check fails, an error message
- is printed and the program exits.
-
-'-fstack-protector-all'
- Like '-fstack-protector' except that all functions are protected.
-
-'-fstack-protector-strong'
- Like '-fstack-protector' but includes additional functions to be
- protected -- those that have local array definitions, or have
- references to local frame addresses.
-
-'-fsection-anchors'
- Try to reduce the number of symbolic address calculations by using
- shared "anchor" symbols to address nearby objects. This
- transformation can help to reduce the number of GOT entries and GOT
- accesses on some targets.
-
- For example, the implementation of the following function 'foo':
-
- static int a, b, c;
- int foo (void) { return a + b + c; }
-
- usually calculates the addresses of all three variables, but if you
- compile it with '-fsection-anchors', it accesses the variables from
- a common anchor point instead. The effect is similar to the
- following pseudocode (which isn't valid C):
-
- int foo (void)
- {
- register int *xr = &x;
- return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
- }
-
- Not all targets support this option.
-
-'--param NAME=VALUE'
- In some places, GCC uses various constants to control the amount of
- optimization that is done. For example, GCC does not inline
- functions that contain more than a certain number of instructions.
- You can control some of these constants on the command line using
- the '--param' option.
-
- The names of specific parameters, and the meaning of the values,
- are tied to the internals of the compiler, and are subject to
- change without notice in future releases.
-
- In each case, the VALUE is an integer. The allowable choices for
- NAME are:
-
- 'predictable-branch-outcome'
- When branch is predicted to be taken with probability lower
- than this threshold (in percent), then it is considered well
- predictable. The default is 10.
-
- 'max-crossjump-edges'
- The maximum number of incoming edges to consider for
- cross-jumping. The algorithm used by '-fcrossjumping' is
- O(N^2) in the number of edges incoming to each block.
- Increasing values mean more aggressive optimization, making
- the compilation time increase with probably small improvement
- in executable size.
-
- 'min-crossjump-insns'
- The minimum number of instructions that must be matched at the
- end of two blocks before cross-jumping is performed on them.
- This value is ignored in the case where all instructions in
- the block being cross-jumped from are matched. The default
- value is 5.
-
- 'max-grow-copy-bb-insns'
- The maximum code size expansion factor when copying basic
- blocks instead of jumping. The expansion is relative to a
- jump instruction. The default value is 8.
-
- 'max-goto-duplication-insns'
- The maximum number of instructions to duplicate to a block
- that jumps to a computed goto. To avoid O(N^2) behavior in a
- number of passes, GCC factors computed gotos early in the
- compilation process, and unfactors them as late as possible.
- Only computed jumps at the end of a basic blocks with no more
- than max-goto-duplication-insns are unfactored. The default
- value is 8.
-
- 'max-delay-slot-insn-search'
- The maximum number of instructions to consider when looking
- for an instruction to fill a delay slot. If more than this
- arbitrary number of instructions are searched, the time
- savings from filling the delay slot are minimal, so stop
- searching. Increasing values mean more aggressive
- optimization, making the compilation time increase with
- probably small improvement in execution time.
-
- 'max-delay-slot-live-search'
- When trying to fill delay slots, the maximum number of
- instructions to consider when searching for a block with valid
- live register information. Increasing this arbitrarily chosen
- value means more aggressive optimization, increasing the
- compilation time. This parameter should be removed when the
- delay slot code is rewritten to maintain the control-flow
- graph.
-
- 'max-gcse-memory'
- The approximate maximum amount of memory that can be allocated
- in order to perform the global common subexpression
- elimination optimization. If more memory than specified is
- required, the optimization is not done.
-
- 'max-gcse-insertion-ratio'
- If the ratio of expression insertions to deletions is larger
- than this value for any expression, then RTL PRE inserts or
- removes the expression and thus leaves partially redundant
- computations in the instruction stream. The default value is
- 20.
-
- 'max-pending-list-length'
- The maximum number of pending dependencies scheduling allows
- before flushing the current state and starting over. Large
- functions with few branches or calls can create excessively
- large lists which needlessly consume memory and resources.
-
- 'max-modulo-backtrack-attempts'
- The maximum number of backtrack attempts the scheduler should
- make when modulo scheduling a loop. Larger values can
- exponentially increase compilation time.
-
- 'max-inline-insns-single'
- Several parameters control the tree inliner used in GCC. This
- number sets the maximum number of instructions (counted in
- GCC's internal representation) in a single function that the
- tree inliner considers for inlining. This only affects
- functions declared inline and methods implemented in a class
- declaration (C++). The default value is 400.
-
- 'max-inline-insns-auto'
- When you use '-finline-functions' (included in '-O3'), a lot
- of functions that would otherwise not be considered for
- inlining by the compiler are investigated. To those
- functions, a different (more restrictive) limit compared to
- functions declared inline can be applied. The default value
- is 40.
-
- 'inline-min-speedup'
- When estimated performance improvement of caller + callee
- runtime exceeds this threshold (in precent), the function can
- be inlined regardless the limit on '--param
- max-inline-insns-single' and '--param max-inline-insns-auto'.
-
- 'large-function-insns'
- The limit specifying really large functions. For functions
- larger than this limit after inlining, inlining is constrained
- by '--param large-function-growth'. This parameter is useful
- primarily to avoid extreme compilation time caused by
- non-linear algorithms used by the back end. The default value
- is 2700.
-
- 'large-function-growth'
- Specifies maximal growth of large function caused by inlining
- in percents. The default value is 100 which limits large
- function growth to 2.0 times the original size.
-
- 'large-unit-insns'
- The limit specifying large translation unit. Growth caused by
- inlining of units larger than this limit is limited by
- '--param inline-unit-growth'. For small units this might be
- too tight. For example, consider a unit consisting of
- function A that is inline and B that just calls A three times.
- If B is small relative to A, the growth of unit is 300\% and
- yet such inlining is very sane. For very large units
- consisting of small inlineable functions, however, the overall
- unit growth limit is needed to avoid exponential explosion of
- code size. Thus for smaller units, the size is increased to
- '--param large-unit-insns' before applying '--param
- inline-unit-growth'. The default is 10000.
-
- 'inline-unit-growth'
- Specifies maximal overall growth of the compilation unit
- caused by inlining. The default value is 30 which limits unit
- growth to 1.3 times the original size.
-
- 'ipcp-unit-growth'
- Specifies maximal overall growth of the compilation unit
- caused by interprocedural constant propagation. The default
- value is 10 which limits unit growth to 1.1 times the original
- size.
-
- 'large-stack-frame'
- The limit specifying large stack frames. While inlining the
- algorithm is trying to not grow past this limit too much. The
- default value is 256 bytes.
-
- 'large-stack-frame-growth'
- Specifies maximal growth of large stack frames caused by
- inlining in percents. The default value is 1000 which limits
- large stack frame growth to 11 times the original size.
-
- 'max-inline-insns-recursive'
- 'max-inline-insns-recursive-auto'
- Specifies the maximum number of instructions an out-of-line
- copy of a self-recursive inline function can grow into by
- performing recursive inlining.
-
- For functions declared inline, '--param
- max-inline-insns-recursive' is taken into account. For
- functions not declared inline, recursive inlining happens only
- when '-finline-functions' (included in '-O3') is enabled and
- '--param max-inline-insns-recursive-auto' is used. The
- default value is 450.
-
- 'max-inline-recursive-depth'
- 'max-inline-recursive-depth-auto'
- Specifies the maximum recursion depth used for recursive
- inlining.
-
- For functions declared inline, '--param
- max-inline-recursive-depth' is taken into account. For
- functions not declared inline, recursive inlining happens only
- when '-finline-functions' (included in '-O3') is enabled and
- '--param max-inline-recursive-depth-auto' is used. The
- default value is 8.
-
- 'min-inline-recursive-probability'
- Recursive inlining is profitable only for function having deep
- recursion in average and can hurt for function having little
- recursion depth by increasing the prologue size or complexity
- of function body to other optimizers.
-
- When profile feedback is available (see '-fprofile-generate')
- the actual recursion depth can be guessed from probability
- that function recurses via a given call expression. This
- parameter limits inlining only to call expressions whose
- probability exceeds the given threshold (in percents). The
- default value is 10.
-
- 'early-inlining-insns'
- Specify growth that the early inliner can make. In effect it
- increases the amount of inlining for code having a large
- abstraction penalty. The default value is 10.
-
- 'max-early-inliner-iterations'
- 'max-early-inliner-iterations'
- Limit of iterations of the early inliner. This basically
- bounds the number of nested indirect calls the early inliner
- can resolve. Deeper chains are still handled by late
- inlining.
-
- 'comdat-sharing-probability'
- 'comdat-sharing-probability'
- Probability (in percent) that C++ inline function with comdat
- visibility are shared across multiple compilation units. The
- default value is 20.
-
- 'min-vect-loop-bound'
- The minimum number of iterations under which loops are not
- vectorized when '-ftree-vectorize' is used. The number of
- iterations after vectorization needs to be greater than the
- value specified by this option to allow vectorization. The
- default value is 0.
-
- 'gcse-cost-distance-ratio'
- Scaling factor in calculation of maximum distance an
- expression can be moved by GCSE optimizations. This is
- currently supported only in the code hoisting pass. The
- bigger the ratio, the more aggressive code hoisting is with
- simple expressions, i.e., the expressions that have cost less
- than 'gcse-unrestricted-cost'. Specifying 0 disables hoisting
- of simple expressions. The default value is 10.
-
- 'gcse-unrestricted-cost'
- Cost, roughly measured as the cost of a single typical machine
- instruction, at which GCSE optimizations do not constrain the
- distance an expression can travel. This is currently
- supported only in the code hoisting pass. The lesser the
- cost, the more aggressive code hoisting is. Specifying 0
- allows all expressions to travel unrestricted distances. The
- default value is 3.
-
- 'max-hoist-depth'
- The depth of search in the dominator tree for expressions to
- hoist. This is used to avoid quadratic behavior in hoisting
- algorithm. The value of 0 does not limit on the search, but
- may slow down compilation of huge functions. The default
- value is 30.
-
- 'max-tail-merge-comparisons'
- The maximum amount of similar bbs to compare a bb with. This
- is used to avoid quadratic behavior in tree tail merging. The
- default value is 10.
-
- 'max-tail-merge-iterations'
- The maximum amount of iterations of the pass over the
- function. This is used to limit compilation time in tree tail
- merging. The default value is 2.
-
- 'max-unrolled-insns'
- The maximum number of instructions that a loop may have to be
- unrolled. If a loop is unrolled, this parameter also
- determines how many times the loop code is unrolled.
-
- 'max-average-unrolled-insns'
- The maximum number of instructions biased by probabilities of
- their execution that a loop may have to be unrolled. If a
- loop is unrolled, this parameter also determines how many
- times the loop code is unrolled.
-
- 'max-unroll-times'
- The maximum number of unrollings of a single loop.
-
- 'max-peeled-insns'
- The maximum number of instructions that a loop may have to be
- peeled. If a loop is peeled, this parameter also determines
- how many times the loop code is peeled.
-
- 'max-peel-times'
- The maximum number of peelings of a single loop.
-
- 'max-peel-branches'
- The maximum number of branches on the hot path through the
- peeled sequence.
-
- 'max-completely-peeled-insns'
- The maximum number of insns of a completely peeled loop.
-
- 'max-completely-peel-times'
- The maximum number of iterations of a loop to be suitable for
- complete peeling.
-
- 'max-completely-peel-loop-nest-depth'
- The maximum depth of a loop nest suitable for complete
- peeling.
-
- 'max-unswitch-insns'
- The maximum number of insns of an unswitched loop.
-
- 'max-unswitch-level'
- The maximum number of branches unswitched in a single loop.
-
- 'lim-expensive'
- The minimum cost of an expensive expression in the loop
- invariant motion.
-
- 'iv-consider-all-candidates-bound'
- Bound on number of candidates for induction variables, below
- which all candidates are considered for each use in induction
- variable optimizations. If there are more candidates than
- this, only the most relevant ones are considered to avoid
- quadratic time complexity.
-
- 'iv-max-considered-uses'
- The induction variable optimizations give up on loops that
- contain more induction variable uses.
-
- 'iv-always-prune-cand-set-bound'
- If the number of candidates in the set is smaller than this
- value, always try to remove unnecessary ivs from the set when
- adding a new one.
-
- 'scev-max-expr-size'
- Bound on size of expressions used in the scalar evolutions
- analyzer. Large expressions slow the analyzer.
-
- 'scev-max-expr-complexity'
- Bound on the complexity of the expressions in the scalar
- evolutions analyzer. Complex expressions slow the analyzer.
-
- 'omega-max-vars'
- The maximum number of variables in an Omega constraint system.
- The default value is 128.
-
- 'omega-max-geqs'
- The maximum number of inequalities in an Omega constraint
- system. The default value is 256.
-
- 'omega-max-eqs'
- The maximum number of equalities in an Omega constraint
- system. The default value is 128.
-
- 'omega-max-wild-cards'
- The maximum number of wildcard variables that the Omega solver
- is able to insert. The default value is 18.
-
- 'omega-hash-table-size'
- The size of the hash table in the Omega solver. The default
- value is 550.
-
- 'omega-max-keys'
- The maximal number of keys used by the Omega solver. The
- default value is 500.
-
- 'omega-eliminate-redundant-constraints'
- When set to 1, use expensive methods to eliminate all
- redundant constraints. The default value is 0.
-
- 'vect-max-version-for-alignment-checks'
- The maximum number of run-time checks that can be performed
- when doing loop versioning for alignment in the vectorizer.
-
- 'vect-max-version-for-alias-checks'
- The maximum number of run-time checks that can be performed
- when doing loop versioning for alias in the vectorizer.
-
- 'vect-max-peeling-for-alignment'
- The maximum number of loop peels to enhance access alignment
- for vectorizer. Value -1 means 'no limit'.
-
- 'max-iterations-to-track'
- The maximum number of iterations of a loop the brute-force
- algorithm for analysis of the number of iterations of the loop
- tries to evaluate.
-
- 'hot-bb-count-ws-permille'
- A basic block profile count is considered hot if it
- contributes to the given permillage (i.e. 0...1000) of the
- entire profiled execution.
-
- 'hot-bb-frequency-fraction'
- Select fraction of the entry block frequency of executions of
- basic block in function given basic block needs to have to be
- considered hot.
-
- 'max-predicted-iterations'
- The maximum number of loop iterations we predict statically.
- This is useful in cases where a function contains a single
- loop with known bound and another loop with unknown bound.
- The known number of iterations is predicted correctly, while
- the unknown number of iterations average to roughly 10. This
- means that the loop without bounds appears artificially cold
- relative to the other one.
-
- 'builtin-expect-probability'
- Control the probability of the expression having the specified
- value. This parameter takes a percentage (i.e. 0 ... 100)
- as input. The default probability of 90 is obtained
- empirically.
-
- 'align-threshold'
-
- Select fraction of the maximal frequency of executions of a
- basic block in a function to align the basic block.
-
- 'align-loop-iterations'
-
- A loop expected to iterate at least the selected number of
- iterations is aligned.
-
- 'tracer-dynamic-coverage'
- 'tracer-dynamic-coverage-feedback'
-
- This value is used to limit superblock formation once the
- given percentage of executed instructions is covered. This
- limits unnecessary code size expansion.
-
- The 'tracer-dynamic-coverage-feedback' is used only when
- profile feedback is available. The real profiles (as opposed
- to statically estimated ones) are much less balanced allowing
- the threshold to be larger value.
-
- 'tracer-max-code-growth'
- Stop tail duplication once code growth has reached given
- percentage. This is a rather artificial limit, as most of the
- duplicates are eliminated later in cross jumping, so it may be
- set to much higher values than is the desired code growth.
-
- 'tracer-min-branch-ratio'
-
- Stop reverse growth when the reverse probability of best edge
- is less than this threshold (in percent).
-
- 'tracer-min-branch-ratio'
- 'tracer-min-branch-ratio-feedback'
-
- Stop forward growth if the best edge has probability lower
- than this threshold.
-
- Similarly to 'tracer-dynamic-coverage' two values are present,
- one for compilation for profile feedback and one for
- compilation without. The value for compilation with profile
- feedback needs to be more conservative (higher) in order to
- make tracer effective.
-
- 'max-cse-path-length'
-
- The maximum number of basic blocks on path that CSE considers.
- The default is 10.
-
- 'max-cse-insns'
- The maximum number of instructions CSE processes before
- flushing. The default is 1000.
-
- 'ggc-min-expand'
-
- GCC uses a garbage collector to manage its own memory
- allocation. This parameter specifies the minimum percentage
- by which the garbage collector's heap should be allowed to
- expand between collections. Tuning this may improve
- compilation speed; it has no effect on code generation.
-
- The default is 30% + 70% * (RAM/1GB) with an upper bound of
- 100% when RAM >= 1GB. If 'getrlimit' is available, the notion
- of "RAM" is the smallest of actual RAM and 'RLIMIT_DATA' or
- 'RLIMIT_AS'. If GCC is not able to calculate RAM on a
- particular platform, the lower bound of 30% is used. Setting
- this parameter and 'ggc-min-heapsize' to zero causes a full
- collection to occur at every opportunity. This is extremely
- slow, but can be useful for debugging.
-
- 'ggc-min-heapsize'
-
- Minimum size of the garbage collector's heap before it begins
- bothering to collect garbage. The first collection occurs
- after the heap expands by 'ggc-min-expand'% beyond
- 'ggc-min-heapsize'. Again, tuning this may improve
- compilation speed, and has no effect on code generation.
-
- The default is the smaller of RAM/8, RLIMIT_RSS, or a limit
- that tries to ensure that RLIMIT_DATA or RLIMIT_AS are not
- exceeded, but with a lower bound of 4096 (four megabytes) and
- an upper bound of 131072 (128 megabytes). If GCC is not able
- to calculate RAM on a particular platform, the lower bound is
- used. Setting this parameter very large effectively disables
- garbage collection. Setting this parameter and
- 'ggc-min-expand' to zero causes a full collection to occur at
- every opportunity.
-
- 'max-reload-search-insns'
- The maximum number of instruction reload should look backward
- for equivalent register. Increasing values mean more
- aggressive optimization, making the compilation time increase
- with probably slightly better performance. The default value
- is 100.
-
- 'max-cselib-memory-locations'
- The maximum number of memory locations cselib should take into
- account. Increasing values mean more aggressive optimization,
- making the compilation time increase with probably slightly
- better performance. The default value is 500.
-
- 'reorder-blocks-duplicate'
- 'reorder-blocks-duplicate-feedback'
-
- Used by the basic block reordering pass to decide whether to
- use unconditional branch or duplicate the code on its
- destination. Code is duplicated when its estimated size is
- smaller than this value multiplied by the estimated size of
- unconditional jump in the hot spots of the program.
-
- The 'reorder-block-duplicate-feedback' is used only when
- profile feedback is available. It may be set to higher values
- than 'reorder-block-duplicate' since information about the hot
- spots is more accurate.
-
- 'max-sched-ready-insns'
- The maximum number of instructions ready to be issued the
- scheduler should consider at any given time during the first
- scheduling pass. Increasing values mean more thorough
- searches, making the compilation time increase with probably
- little benefit. The default value is 100.
-
- 'max-sched-region-blocks'
- The maximum number of blocks in a region to be considered for
- interblock scheduling. The default value is 10.
-
- 'max-pipeline-region-blocks'
- The maximum number of blocks in a region to be considered for
- pipelining in the selective scheduler. The default value is
- 15.
-
- 'max-sched-region-insns'
- The maximum number of insns in a region to be considered for
- interblock scheduling. The default value is 100.
-
- 'max-pipeline-region-insns'
- The maximum number of insns in a region to be considered for
- pipelining in the selective scheduler. The default value is
- 200.
-
- 'min-spec-prob'
- The minimum probability (in percents) of reaching a source
- block for interblock speculative scheduling. The default
- value is 40.
-
- 'max-sched-extend-regions-iters'
- The maximum number of iterations through CFG to extend
- regions. A value of 0 (the default) disables region
- extensions.
-
- 'max-sched-insn-conflict-delay'
- The maximum conflict delay for an insn to be considered for
- speculative motion. The default value is 3.
-
- 'sched-spec-prob-cutoff'
- The minimal probability of speculation success (in percents),
- so that speculative insns are scheduled. The default value is
- 40.
-
- 'sched-spec-state-edge-prob-cutoff'
- The minimum probability an edge must have for the scheduler to
- save its state across it. The default value is 10.
-
- 'sched-mem-true-dep-cost'
- Minimal distance (in CPU cycles) between store and load
- targeting same memory locations. The default value is 1.
-
- 'selsched-max-lookahead'
- The maximum size of the lookahead window of selective
- scheduling. It is a depth of search for available
- instructions. The default value is 50.
-
- 'selsched-max-sched-times'
- The maximum number of times that an instruction is scheduled
- during selective scheduling. This is the limit on the number
- of iterations through which the instruction may be pipelined.
- The default value is 2.
-
- 'selsched-max-insns-to-rename'
- The maximum number of best instructions in the ready list that
- are considered for renaming in the selective scheduler. The
- default value is 2.
-
- 'sms-min-sc'
- The minimum value of stage count that swing modulo scheduler
- generates. The default value is 2.
-
- 'max-last-value-rtl'
- The maximum size measured as number of RTLs that can be
- recorded in an expression in combiner for a pseudo register as
- last known value of that register. The default is 10000.
-
- 'integer-share-limit'
- Small integer constants can use a shared data structure,
- reducing the compiler's memory usage and increasing its speed.
- This sets the maximum value of a shared integer constant. The
- default value is 256.
-
- 'ssp-buffer-size'
- The minimum size of buffers (i.e. arrays) that receive stack
- smashing protection when '-fstack-protection' is used.
-
- 'min-size-for-stack-sharing'
- The minimum size of variables taking part in stack slot
- sharing when not optimizing. The default value is 32.
-
- 'max-jump-thread-duplication-stmts'
- Maximum number of statements allowed in a block that needs to
- be duplicated when threading jumps.
-
- 'max-fields-for-field-sensitive'
- Maximum number of fields in a structure treated in a field
- sensitive manner during pointer analysis. The default is zero
- for '-O0' and '-O1', and 100 for '-Os', '-O2', and '-O3'.
-
- 'prefetch-latency'
- Estimate on average number of instructions that are executed
- before prefetch finishes. The distance prefetched ahead is
- proportional to this constant. Increasing this number may
- also lead to less streams being prefetched (see
- 'simultaneous-prefetches').
-
- 'simultaneous-prefetches'
- Maximum number of prefetches that can run at the same time.
-
- 'l1-cache-line-size'
- The size of cache line in L1 cache, in bytes.
-
- 'l1-cache-size'
- The size of L1 cache, in kilobytes.
-
- 'l2-cache-size'
- The size of L2 cache, in kilobytes.
-
- 'min-insn-to-prefetch-ratio'
- The minimum ratio between the number of instructions and the
- number of prefetches to enable prefetching in a loop.
-
- 'prefetch-min-insn-to-mem-ratio'
- The minimum ratio between the number of instructions and the
- number of memory references to enable prefetching in a loop.
-
- 'use-canonical-types'
- Whether the compiler should use the "canonical" type system.
- By default, this should always be 1, which uses a more
- efficient internal mechanism for comparing types in C++ and
- Objective-C++. However, if bugs in the canonical type system
- are causing compilation failures, set this value to 0 to
- disable canonical types.
-
- 'switch-conversion-max-branch-ratio'
- Switch initialization conversion refuses to create arrays that
- are bigger than 'switch-conversion-max-branch-ratio' times the
- number of branches in the switch.
-
- 'max-partial-antic-length'
- Maximum length of the partial antic set computed during the
- tree partial redundancy elimination optimization
- ('-ftree-pre') when optimizing at '-O3' and above. For some
- sorts of source code the enhanced partial redundancy
- elimination optimization can run away, consuming all of the
- memory available on the host machine. This parameter sets a
- limit on the length of the sets that are computed, which
- prevents the runaway behavior. Setting a value of 0 for this
- parameter allows an unlimited set length.
-
- 'sccvn-max-scc-size'
- Maximum size of a strongly connected component (SCC) during
- SCCVN processing. If this limit is hit, SCCVN processing for
- the whole function is not done and optimizations depending on
- it are disabled. The default maximum SCC size is 10000.
-
- 'sccvn-max-alias-queries-per-access'
- Maximum number of alias-oracle queries we perform when looking
- for redundancies for loads and stores. If this limit is hit
- the search is aborted and the load or store is not considered
- redundant. The number of queries is algorithmically limited
- to the number of stores on all paths from the load to the
- function entry. The default maxmimum number of queries is
- 1000.
-
- 'ira-max-loops-num'
- IRA uses regional register allocation by default. If a
- function contains more loops than the number given by this
- parameter, only at most the given number of the most
- frequently-executed loops form regions for regional register
- allocation. The default value of the parameter is 100.
-
- 'ira-max-conflict-table-size'
- Although IRA uses a sophisticated algorithm to compress the
- conflict table, the table can still require excessive amounts
- of memory for huge functions. If the conflict table for a
- function could be more than the size in MB given by this
- parameter, the register allocator instead uses a faster,
- simpler, and lower-quality algorithm that does not require
- building a pseudo-register conflict table. The default value
- of the parameter is 2000.
-
- 'ira-loop-reserved-regs'
- IRA can be used to evaluate more accurate register pressure in
- loops for decisions to move loop invariants (see '-O3'). The
- number of available registers reserved for some other purposes
- is given by this parameter. The default value of the
- parameter is 2, which is the minimal number of registers
- needed by typical instructions. This value is the best found
- from numerous experiments.
-
- 'loop-invariant-max-bbs-in-loop'
- Loop invariant motion can be very expensive, both in
- compilation time and in amount of needed compile-time memory,
- with very large loops. Loops with more basic blocks than this
- parameter won't have loop invariant motion optimization
- performed on them. The default value of the parameter is 1000
- for '-O1' and 10000 for '-O2' and above.
-
- 'loop-max-datarefs-for-datadeps'
- Building data dapendencies is expensive for very large loops.
- This parameter limits the number of data references in loops
- that are considered for data dependence analysis. These large
- loops are no handled by the optimizations using loop data
- dependencies. The default value is 1000.
-
- 'max-vartrack-size'
- Sets a maximum number of hash table slots to use during
- variable tracking dataflow analysis of any function. If this
- limit is exceeded with variable tracking at assignments
- enabled, analysis for that function is retried without it,
- after removing all debug insns from the function. If the
- limit is exceeded even without debug insns, var tracking
- analysis is completely disabled for the function. Setting the
- parameter to zero makes it unlimited.
-
- 'max-vartrack-expr-depth'
- Sets a maximum number of recursion levels when attempting to
- map variable names or debug temporaries to value expressions.
- This trades compilation time for more complete debug
- information. If this is set too low, value expressions that
- are available and could be represented in debug information
- may end up not being used; setting this higher may enable the
- compiler to find more complex debug expressions, but compile
- time and memory use may grow. The default is 12.
-
- 'min-nondebug-insn-uid'
- Use uids starting at this parameter for nondebug insns. The
- range below the parameter is reserved exclusively for debug
- insns created by '-fvar-tracking-assignments', but debug insns
- may get (non-overlapping) uids above it if the reserved range
- is exhausted.
-
- 'ipa-sra-ptr-growth-factor'
- IPA-SRA replaces a pointer to an aggregate with one or more
- new parameters only when their cumulative size is less or
- equal to 'ipa-sra-ptr-growth-factor' times the size of the
- original pointer parameter.
-
- 'tm-max-aggregate-size'
- When making copies of thread-local variables in a transaction,
- this parameter specifies the size in bytes after which
- variables are saved with the logging functions as opposed to
- save/restore code sequence pairs. This option only applies
- when using '-fgnu-tm'.
-
- 'graphite-max-nb-scop-params'
- To avoid exponential effects in the Graphite loop transforms,
- the number of parameters in a Static Control Part (SCoP) is
- bounded. The default value is 10 parameters. A variable
- whose value is unknown at compilation time and defined outside
- a SCoP is a parameter of the SCoP.
-
- 'graphite-max-bbs-per-function'
- To avoid exponential effects in the detection of SCoPs, the
- size of the functions analyzed by Graphite is bounded. The
- default value is 100 basic blocks.
-
- 'loop-block-tile-size'
- Loop blocking or strip mining transforms, enabled with
- '-floop-block' or '-floop-strip-mine', strip mine each loop in
- the loop nest by a given number of iterations. The strip
- length can be changed using the 'loop-block-tile-size'
- parameter. The default value is 51 iterations.
-
- 'ipa-cp-value-list-size'
- IPA-CP attempts to track all possible values and types passed
- to a function's parameter in order to propagate them and
- perform devirtualization. 'ipa-cp-value-list-size' is the
- maximum number of values and types it stores per one formal
- parameter of a function.
-
- 'lto-partitions'
- Specify desired number of partitions produced during WHOPR
- compilation. The number of partitions should exceed the
- number of CPUs used for compilation. The default value is 32.
-
- 'lto-minpartition'
- Size of minimal partition for WHOPR (in estimated
- instructions). This prevents expenses of splitting very small
- programs into too many partitions.
-
- 'cxx-max-namespaces-for-diagnostic-help'
- The maximum number of namespaces to consult for suggestions
- when C++ name lookup fails for an identifier. The default is
- 1000.
-
- 'sink-frequency-threshold'
- The maximum relative execution frequency (in percents) of the
- target block relative to a statement's original block to allow
- statement sinking of a statement. Larger numbers result in
- more aggressive statement sinking. The default value is 75.
- A small positive adjustment is applied for statements with
- memory operands as those are even more profitable so sink.
-
- 'max-stores-to-sink'
- The maximum number of conditional stores paires that can be
- sunk. Set to 0 if either vectorization ('-ftree-vectorize')
- or if-conversion ('-ftree-loop-if-convert') is disabled. The
- default is 2.
-
- 'allow-load-data-races'
- Allow optimizers to introduce new data races on loads. Set to
- 1 to allow, otherwise to 0. This option is enabled by default
- unless implicitly set by the '-fmemory-model=' option.
-
- 'allow-store-data-races'
- Allow optimizers to introduce new data races on stores. Set
- to 1 to allow, otherwise to 0. This option is enabled by
- default unless implicitly set by the '-fmemory-model=' option.
-
- 'allow-packed-load-data-races'
- Allow optimizers to introduce new data races on packed data
- loads. Set to 1 to allow, otherwise to 0. This option is
- enabled by default unless implicitly set by the
- '-fmemory-model=' option.
-
- 'allow-packed-store-data-races'
- Allow optimizers to introduce new data races on packed data
- stores. Set to 1 to allow, otherwise to 0. This option is
- enabled by default unless implicitly set by the
- '-fmemory-model=' option.
-
- 'case-values-threshold'
- The smallest number of different values for which it is best
- to use a jump-table instead of a tree of conditional branches.
- If the value is 0, use the default for the machine. The
- default is 0.
-
- 'tree-reassoc-width'
- Set the maximum number of instructions executed in parallel in
- reassociated tree. This parameter overrides target dependent
- heuristics used by default if has non zero value.
-
- 'sched-pressure-algorithm'
- Choose between the two available implementations of
- '-fsched-pressure'. Algorithm 1 is the original
- implementation and is the more likely to prevent instructions
- from being reordered. Algorithm 2 was designed to be a
- compromise between the relatively conservative approach taken
- by algorithm 1 and the rather aggressive approach taken by the
- default scheduler. It relies more heavily on having a regular
- register file and accurate register pressure classes. See
- 'haifa-sched.c' in the GCC sources for more details.
-
- The default choice depends on the target.
-
- 'max-slsr-cand-scan'
- Set the maximum number of existing candidates that will be
- considered when seeking a basis for a new straight-line
- strength reduction candidate.
-
- 'asan-globals'
- Enable buffer overflow detection for global objects. This
- kind of protection is enabled by default if you are using
- '-fsanitize=address' option. To disable global objects
- protection use '--param asan-globals=0'.
-
- 'asan-stack'
- Enable buffer overflow detection for stack objects. This kind
- of protection is enabled by default when
- using'-fsanitize=address'. To disable stack protection use
- '--param asan-stack=0' option.
-
- 'asan-instrument-reads'
- Enable buffer overflow detection for memory reads. This kind
- of protection is enabled by default when using
- '-fsanitize=address'. To disable memory reads protection use
- '--param asan-instrument-reads=0'.
-
- 'asan-instrument-writes'
- Enable buffer overflow detection for memory writes. This kind
- of protection is enabled by default when using
- '-fsanitize=address'. To disable memory writes protection use
- '--param asan-instrument-writes=0' option.
-
- 'asan-memintrin'
- Enable detection for built-in functions. This kind of
- protection is enabled by default when using
- '-fsanitize=address'. To disable built-in functions
- protection use '--param asan-memintrin=0'.
-
- 'asan-use-after-return'
- Enable detection of use-after-return. This kind of protection
- is enabled by default when using '-fsanitize=address' option.
- To disable use-after-return detection use '--param
- asan-use-after-return=0'.
-
-
-File: gcc.info, Node: Preprocessor Options, Next: Assembler Options, Prev: Optimize Options, Up: Invoking GCC
-
-3.11 Options Controlling the Preprocessor
-=========================================
-
-These options control the C preprocessor, which is run on each C source
-file before actual compilation.
-
- If you use the '-E' option, nothing is done except preprocessing. Some
-of these options make sense only together with '-E' because they cause
-the preprocessor output to be unsuitable for actual compilation.
-
-'-Wp,OPTION'
- You can use '-Wp,OPTION' to bypass the compiler driver and pass
- OPTION directly through to the preprocessor. If OPTION contains
- commas, it is split into multiple options at the commas. However,
- many options are modified, translated or interpreted by the
- compiler driver before being passed to the preprocessor, and '-Wp'
- forcibly bypasses this phase. The preprocessor's direct interface
- is undocumented and subject to change, so whenever possible you
- should avoid using '-Wp' and let the driver handle the options
- instead.
-
-'-Xpreprocessor OPTION'
- Pass OPTION as an option to the preprocessor. You can use this to
- supply system-specific preprocessor options that GCC does not
- recognize.
-
- If you want to pass an option that takes an argument, you must use
- '-Xpreprocessor' twice, once for the option and once for the
- argument.
-
-'-no-integrated-cpp'
- Perform preprocessing as a separate pass before compilation. By
- default, GCC performs preprocessing as an integrated part of input
- tokenization and parsing. If this option is provided, the
- appropriate language front end ('cc1', 'cc1plus', or 'cc1obj' for
- C, C++, and Objective-C, respectively) is instead invoked twice,
- once for preprocessing only and once for actual compilation of the
- preprocessed input. This option may be useful in conjunction with
- the '-B' or '-wrapper' options to specify an alternate preprocessor
- or perform additional processing of the program source between
- normal preprocessing and compilation.
-
-'-D NAME'
- Predefine NAME as a macro, with definition '1'.
-
-'-D NAME=DEFINITION'
- The contents of DEFINITION are tokenized and processed as if they
- appeared during translation phase three in a '#define' directive.
- In particular, the definition will be truncated by embedded newline
- characters.
-
- If you are invoking the preprocessor from a shell or shell-like
- program you may need to use the shell's quoting syntax to protect
- characters such as spaces that have a meaning in the shell syntax.
-
- If you wish to define a function-like macro on the command line,
- write its argument list with surrounding parentheses before the
- equals sign (if any). Parentheses are meaningful to most shells,
- so you will need to quote the option. With 'sh' and 'csh',
- '-D'NAME(ARGS...)=DEFINITION'' works.
-
- '-D' and '-U' options are processed in the order they are given on
- the command line. All '-imacros FILE' and '-include FILE' options
- are processed after all '-D' and '-U' options.
-
-'-U NAME'
- Cancel any previous definition of NAME, either built in or provided
- with a '-D' option.
-
-'-undef'
- Do not predefine any system-specific or GCC-specific macros. The
- standard predefined macros remain defined.
-
-'-I DIR'
- Add the directory DIR to the list of directories to be searched for
- header files. Directories named by '-I' are searched before the
- standard system include directories. If the directory DIR is a
- standard system include directory, the option is ignored to ensure
- that the default search order for system directories and the
- special treatment of system headers are not defeated . If DIR
- begins with '=', then the '=' will be replaced by the sysroot
- prefix; see '--sysroot' and '-isysroot'.
-
-'-o FILE'
- Write output to FILE. This is the same as specifying FILE as the
- second non-option argument to 'cpp'. 'gcc' has a different
- interpretation of a second non-option argument, so you must use
- '-o' to specify the output file.
-
-'-Wall'
- Turns on all optional warnings which are desirable for normal code.
- At present this is '-Wcomment', '-Wtrigraphs', '-Wmultichar' and a
- warning about integer promotion causing a change of sign in '#if'
- expressions. Note that many of the preprocessor's warnings are on
- by default and have no options to control them.
-
-'-Wcomment'
-'-Wcomments'
- Warn whenever a comment-start sequence '/*' appears in a '/*'
- comment, or whenever a backslash-newline appears in a '//' comment.
- (Both forms have the same effect.)
-
-'-Wtrigraphs'
- Most trigraphs in comments cannot affect the meaning of the
- program. However, a trigraph that would form an escaped newline
- ('??/' at the end of a line) can, by changing where the comment
- begins or ends. Therefore, only trigraphs that would form escaped
- newlines produce warnings inside a comment.
-
- This option is implied by '-Wall'. If '-Wall' is not given, this
- option is still enabled unless trigraphs are enabled. To get
- trigraph conversion without warnings, but get the other '-Wall'
- warnings, use '-trigraphs -Wall -Wno-trigraphs'.
-
-'-Wtraditional'
- Warn about certain constructs that behave differently in
- traditional and ISO C. Also warn about ISO C constructs that have
- no traditional C equivalent, and problematic constructs which
- should be avoided.
-
-'-Wundef'
- Warn whenever an identifier which is not a macro is encountered in
- an '#if' directive, outside of 'defined'. Such identifiers are
- replaced with zero.
-
-'-Wunused-macros'
- Warn about macros defined in the main file that are unused. A
- macro is "used" if it is expanded or tested for existence at least
- once. The preprocessor will also warn if the macro has not been
- used at the time it is redefined or undefined.
-
- Built-in macros, macros defined on the command line, and macros
- defined in include files are not warned about.
-
- _Note:_ If a macro is actually used, but only used in skipped
- conditional blocks, then CPP will report it as unused. To avoid
- the warning in such a case, you might improve the scope of the
- macro's definition by, for example, moving it into the first
- skipped block. Alternatively, you could provide a dummy use with
- something like:
-
- #if defined the_macro_causing_the_warning
- #endif
-
-'-Wendif-labels'
- Warn whenever an '#else' or an '#endif' are followed by text. This
- usually happens in code of the form
-
- #if FOO
- ...
- #else FOO
- ...
- #endif FOO
-
- The second and third 'FOO' should be in comments, but often are not
- in older programs. This warning is on by default.
-
-'-Werror'
- Make all warnings into hard errors. Source code which triggers
- warnings will be rejected.
-
-'-Wsystem-headers'
- Issue warnings for code in system headers. These are normally
- unhelpful in finding bugs in your own code, therefore suppressed.
- If you are responsible for the system library, you may want to see
- them.
-
-'-w'
- Suppress all warnings, including those which GNU CPP issues by
- default.
-
-'-pedantic'
- Issue all the mandatory diagnostics listed in the C standard. Some
- of them are left out by default, since they trigger frequently on
- harmless code.
-
-'-pedantic-errors'
- Issue all the mandatory diagnostics, and make all mandatory
- diagnostics into errors. This includes mandatory diagnostics that
- GCC issues without '-pedantic' but treats as warnings.
-
-'-M'
- Instead of outputting the result of preprocessing, output a rule
- suitable for 'make' describing the dependencies of the main source
- file. The preprocessor outputs one 'make' rule containing the
- object file name for that source file, a colon, and the names of
- all the included files, including those coming from '-include' or
- '-imacros' command line options.
-
- Unless specified explicitly (with '-MT' or '-MQ'), the object file
- name consists of the name of the source file with any suffix
- replaced with object file suffix and with any leading directory
- parts removed. If there are many included files then the rule is
- split into several lines using '\'-newline. The rule has no
- commands.
-
- This option does not suppress the preprocessor's debug output, such
- as '-dM'. To avoid mixing such debug output with the dependency
- rules you should explicitly specify the dependency output file with
- '-MF', or use an environment variable like 'DEPENDENCIES_OUTPUT'
- (*note Environment Variables::). Debug output will still be sent
- to the regular output stream as normal.
-
- Passing '-M' to the driver implies '-E', and suppresses warnings
- with an implicit '-w'.
-
-'-MM'
- Like '-M' but do not mention header files that are found in system
- header directories, nor header files that are included, directly or
- indirectly, from such a header.
-
- This implies that the choice of angle brackets or double quotes in
- an '#include' directive does not in itself determine whether that
- header will appear in '-MM' dependency output. This is a slight
- change in semantics from GCC versions 3.0 and earlier.
-
-'-MF FILE'
- When used with '-M' or '-MM', specifies a file to write the
- dependencies to. If no '-MF' switch is given the preprocessor
- sends the rules to the same place it would have sent preprocessed
- output.
-
- When used with the driver options '-MD' or '-MMD', '-MF' overrides
- the default dependency output file.
-
-'-MG'
- In conjunction with an option such as '-M' requesting dependency
- generation, '-MG' assumes missing header files are generated files
- and adds them to the dependency list without raising an error. The
- dependency filename is taken directly from the '#include' directive
- without prepending any path. '-MG' also suppresses preprocessed
- output, as a missing header file renders this useless.
-
- This feature is used in automatic updating of makefiles.
-
-'-MP'
- This option instructs CPP to add a phony target for each dependency
- other than the main file, causing each to depend on nothing. These
- dummy rules work around errors 'make' gives if you remove header
- files without updating the 'Makefile' to match.
-
- This is typical output:
-
- test.o: test.c test.h
-
- test.h:
-
-'-MT TARGET'
-
- Change the target of the rule emitted by dependency generation. By
- default CPP takes the name of the main input file, deletes any
- directory components and any file suffix such as '.c', and appends
- the platform's usual object suffix. The result is the target.
-
- An '-MT' option will set the target to be exactly the string you
- specify. If you want multiple targets, you can specify them as a
- single argument to '-MT', or use multiple '-MT' options.
-
- For example, '-MT '$(objpfx)foo.o'' might give
-
- $(objpfx)foo.o: foo.c
-
-'-MQ TARGET'
-
- Same as '-MT', but it quotes any characters which are special to
- Make. '-MQ '$(objpfx)foo.o'' gives
-
- $$(objpfx)foo.o: foo.c
-
- The default target is automatically quoted, as if it were given
- with '-MQ'.
-
-'-MD'
- '-MD' is equivalent to '-M -MF FILE', except that '-E' is not
- implied. The driver determines FILE based on whether an '-o'
- option is given. If it is, the driver uses its argument but with a
- suffix of '.d', otherwise it takes the name of the input file,
- removes any directory components and suffix, and applies a '.d'
- suffix.
-
- If '-MD' is used in conjunction with '-E', any '-o' switch is
- understood to specify the dependency output file (*note -MF:
- dashMF.), but if used without '-E', each '-o' is understood to
- specify a target object file.
-
- Since '-E' is not implied, '-MD' can be used to generate a
- dependency output file as a side-effect of the compilation process.
-
-'-MMD'
- Like '-MD' except mention only user header files, not system header
- files.
-
-'-fpch-deps'
- When using precompiled headers (*note Precompiled Headers::), this
- flag will cause the dependency-output flags to also list the files
- from the precompiled header's dependencies. If not specified only
- the precompiled header would be listed and not the files that were
- used to create it because those files are not consulted when a
- precompiled header is used.
-
-'-fpch-preprocess'
- This option allows use of a precompiled header (*note Precompiled
- Headers::) together with '-E'. It inserts a special '#pragma',
- '#pragma GCC pch_preprocess "FILENAME"' in the output to mark the
- place where the precompiled header was found, and its FILENAME.
- When '-fpreprocessed' is in use, GCC recognizes this '#pragma' and
- loads the PCH.
-
- This option is off by default, because the resulting preprocessed
- output is only really suitable as input to GCC. It is switched on
- by '-save-temps'.
-
- You should not write this '#pragma' in your own code, but it is
- safe to edit the filename if the PCH file is available in a
- different location. The filename may be absolute or it may be
- relative to GCC's current directory.
-
-'-x c'
-'-x c++'
-'-x objective-c'
-'-x assembler-with-cpp'
- Specify the source language: C, C++, Objective-C, or assembly.
- This has nothing to do with standards conformance or extensions; it
- merely selects which base syntax to expect. If you give none of
- these options, cpp will deduce the language from the extension of
- the source file: '.c', '.cc', '.m', or '.S'. Some other common
- extensions for C++ and assembly are also recognized. If cpp does
- not recognize the extension, it will treat the file as C; this is
- the most generic mode.
-
- _Note:_ Previous versions of cpp accepted a '-lang' option which
- selected both the language and the standards conformance level.
- This option has been removed, because it conflicts with the '-l'
- option.
-
-'-std=STANDARD'
-'-ansi'
- Specify the standard to which the code should conform. Currently
- CPP knows about C and C++ standards; others may be added in the
- future.
-
- STANDARD may be one of:
- 'c90'
- 'c89'
- 'iso9899:1990'
- The ISO C standard from 1990. 'c90' is the customary
- shorthand for this version of the standard.
-
- The '-ansi' option is equivalent to '-std=c90'.
-
- 'iso9899:199409'
- The 1990 C standard, as amended in 1994.
-
- 'iso9899:1999'
- 'c99'
- 'iso9899:199x'
- 'c9x'
- The revised ISO C standard, published in December 1999.
- Before publication, this was known as C9X.
-
- 'iso9899:2011'
- 'c11'
- 'c1x'
- The revised ISO C standard, published in December 2011.
- Before publication, this was known as C1X.
-
- 'gnu90'
- 'gnu89'
- The 1990 C standard plus GNU extensions. This is the default.
-
- 'gnu99'
- 'gnu9x'
- The 1999 C standard plus GNU extensions.
-
- 'gnu11'
- 'gnu1x'
- The 2011 C standard plus GNU extensions.
-
- 'c++98'
- The 1998 ISO C++ standard plus amendments.
-
- 'gnu++98'
- The same as '-std=c++98' plus GNU extensions. This is the
- default for C++ code.
-
-'-I-'
- Split the include path. Any directories specified with '-I'
- options before '-I-' are searched only for headers requested with
- '#include "FILE"'; they are not searched for '#include <FILE>'. If
- additional directories are specified with '-I' options after the
- '-I-', those directories are searched for all '#include'
- directives.
-
- In addition, '-I-' inhibits the use of the directory of the current
- file directory as the first search directory for '#include "FILE"'.
- This option has been deprecated.
-
-'-nostdinc'
- Do not search the standard system directories for header files.
- Only the directories you have specified with '-I' options (and the
- directory of the current file, if appropriate) are searched.
-
-'-nostdinc++'
- Do not search for header files in the C++-specific standard
- directories, but do still search the other standard directories.
- (This option is used when building the C++ library.)
-
-'-include FILE'
- Process FILE as if '#include "file"' appeared as the first line of
- the primary source file. However, the first directory searched for
- FILE is the preprocessor's working directory _instead of_ the
- directory containing the main source file. If not found there, it
- is searched for in the remainder of the '#include "..."' search
- chain as normal.
-
- If multiple '-include' options are given, the files are included in
- the order they appear on the command line.
-
-'-imacros FILE'
- Exactly like '-include', except that any output produced by
- scanning FILE is thrown away. Macros it defines remain defined.
- This allows you to acquire all the macros from a header without
- also processing its declarations.
-
- All files specified by '-imacros' are processed before all files
- specified by '-include'.
-
-'-idirafter DIR'
- Search DIR for header files, but do it _after_ all directories
- specified with '-I' and the standard system directories have been
- exhausted. DIR is treated as a system include directory. If DIR
- begins with '=', then the '=' will be replaced by the sysroot
- prefix; see '--sysroot' and '-isysroot'.
-
-'-iprefix PREFIX'
- Specify PREFIX as the prefix for subsequent '-iwithprefix' options.
- If the prefix represents a directory, you should include the final
- '/'.
-
-'-iwithprefix DIR'
-'-iwithprefixbefore DIR'
- Append DIR to the prefix specified previously with '-iprefix', and
- add the resulting directory to the include search path.
- '-iwithprefixbefore' puts it in the same place '-I' would;
- '-iwithprefix' puts it where '-idirafter' would.
-
-'-isysroot DIR'
- This option is like the '--sysroot' option, but applies only to
- header files (except for Darwin targets, where it applies to both
- header files and libraries). See the '--sysroot' option for more
- information.
-
-'-imultilib DIR'
- Use DIR as a subdirectory of the directory containing
- target-specific C++ headers.
-
-'-isystem DIR'
- Search DIR for header files, after all directories specified by
- '-I' but before the standard system directories. Mark it as a
- system directory, so that it gets the same special treatment as is
- applied to the standard system directories. If DIR begins with
- '=', then the '=' will be replaced by the sysroot prefix; see
- '--sysroot' and '-isysroot'.
-
-'-iquote DIR'
- Search DIR only for header files requested with '#include "FILE"';
- they are not searched for '#include <FILE>', before all directories
- specified by '-I' and before the standard system directories. If
- DIR begins with '=', then the '=' will be replaced by the sysroot
- prefix; see '--sysroot' and '-isysroot'.
-
-'-fdirectives-only'
- When preprocessing, handle directives, but do not expand macros.
-
- The option's behavior depends on the '-E' and '-fpreprocessed'
- options.
-
- With '-E', preprocessing is limited to the handling of directives
- such as '#define', '#ifdef', and '#error'. Other preprocessor
- operations, such as macro expansion and trigraph conversion are not
- performed. In addition, the '-dD' option is implicitly enabled.
-
- With '-fpreprocessed', predefinition of command line and most
- builtin macros is disabled. Macros such as '__LINE__', which are
- contextually dependent, are handled normally. This enables
- compilation of files previously preprocessed with '-E
- -fdirectives-only'.
-
- With both '-E' and '-fpreprocessed', the rules for '-fpreprocessed'
- take precedence. This enables full preprocessing of files
- previously preprocessed with '-E -fdirectives-only'.
-
-'-fdollars-in-identifiers'
- Accept '$' in identifiers.
-
-'-fextended-identifiers'
- Accept universal character names in identifiers. This option is
- experimental; in a future version of GCC, it will be enabled by
- default for C99 and C++.
-
-'-fno-canonical-system-headers'
- When preprocessing, do not shorten system header paths with
- canonicalization.
-
-'-fpreprocessed'
- Indicate to the preprocessor that the input file has already been
- preprocessed. This suppresses things like macro expansion,
- trigraph conversion, escaped newline splicing, and processing of
- most directives. The preprocessor still recognizes and removes
- comments, so that you can pass a file preprocessed with '-C' to the
- compiler without problems. In this mode the integrated
- preprocessor is little more than a tokenizer for the front ends.
-
- '-fpreprocessed' is implicit if the input file has one of the
- extensions '.i', '.ii' or '.mi'. These are the extensions that GCC
- uses for preprocessed files created by '-save-temps'.
-
-'-ftabstop=WIDTH'
- Set the distance between tab stops. This helps the preprocessor
- report correct column numbers in warnings or errors, even if tabs
- appear on the line. If the value is less than 1 or greater than
- 100, the option is ignored. The default is 8.
-
-'-fdebug-cpp'
- This option is only useful for debugging GCC. When used with '-E',
- dumps debugging information about location maps. Every token in
- the output is preceded by the dump of the map its location belongs
- to. The dump of the map holding the location of a token would be:
- {'P':/file/path;'F':/includer/path;'L':LINE_NUM;'C':COL_NUM;'S':SYSTEM_HEADER_P;'M':MAP_ADDRESS;'E':MACRO_EXPANSION_P,'loc':LOCATION}
-
- When used without '-E', this option has no effect.
-
-'-ftrack-macro-expansion[=LEVEL]'
- Track locations of tokens across macro expansions. This allows the
- compiler to emit diagnostic about the current macro expansion stack
- when a compilation error occurs in a macro expansion. Using this
- option makes the preprocessor and the compiler consume more memory.
- The LEVEL parameter can be used to choose the level of precision of
- token location tracking thus decreasing the memory consumption if
- necessary. Value '0' of LEVEL de-activates this option just as if
- no '-ftrack-macro-expansion' was present on the command line.
- Value '1' tracks tokens locations in a degraded mode for the sake
- of minimal memory overhead. In this mode all tokens resulting from
- the expansion of an argument of a function-like macro have the same
- location. Value '2' tracks tokens locations completely. This
- value is the most memory hungry. When this option is given no
- argument, the default parameter value is '2'.
-
- Note that -ftrack-macro-expansion=2 is activated by default.
-
-'-fexec-charset=CHARSET'
- Set the execution character set, used for string and character
- constants. The default is UTF-8. CHARSET can be any encoding
- supported by the system's 'iconv' library routine.
-
-'-fwide-exec-charset=CHARSET'
- Set the wide execution character set, used for wide string and
- character constants. The default is UTF-32 or UTF-16, whichever
- corresponds to the width of 'wchar_t'. As with '-fexec-charset',
- CHARSET can be any encoding supported by the system's 'iconv'
- library routine; however, you will have problems with encodings
- that do not fit exactly in 'wchar_t'.
-
-'-finput-charset=CHARSET'
- Set the input character set, used for translation from the
- character set of the input file to the source character set used by
- GCC. If the locale does not specify, or GCC cannot get this
- information from the locale, the default is UTF-8. This can be
- overridden by either the locale or this command line option.
- Currently the command line option takes precedence if there's a
- conflict. CHARSET can be any encoding supported by the system's
- 'iconv' library routine.
-
-'-fworking-directory'
- Enable generation of linemarkers in the preprocessor output that
- will let the compiler know the current working directory at the
- time of preprocessing. When this option is enabled, the
- preprocessor will emit, after the initial linemarker, a second
- linemarker with the current working directory followed by two
- slashes. GCC will use this directory, when it's present in the
- preprocessed input, as the directory emitted as the current working
- directory in some debugging information formats. This option is
- implicitly enabled if debugging information is enabled, but this
- can be inhibited with the negated form '-fno-working-directory'.
- If the '-P' flag is present in the command line, this option has no
- effect, since no '#line' directives are emitted whatsoever.
-
-'-fno-show-column'
- Do not print column numbers in diagnostics. This may be necessary
- if diagnostics are being scanned by a program that does not
- understand the column numbers, such as 'dejagnu'.
-
-'-A PREDICATE=ANSWER'
- Make an assertion with the predicate PREDICATE and answer ANSWER.
- This form is preferred to the older form '-A PREDICATE(ANSWER)',
- which is still supported, because it does not use shell special
- characters.
-
-'-A -PREDICATE=ANSWER'
- Cancel an assertion with the predicate PREDICATE and answer ANSWER.
-
-'-dCHARS'
- CHARS is a sequence of one or more of the following characters, and
- must not be preceded by a space. Other characters are interpreted
- by the compiler proper, or reserved for future versions of GCC, and
- so are silently ignored. If you specify characters whose behavior
- conflicts, the result is undefined.
-
- 'M'
- Instead of the normal output, generate a list of '#define'
- directives for all the macros defined during the execution of
- the preprocessor, including predefined macros. This gives you
- a way of finding out what is predefined in your version of the
- preprocessor. Assuming you have no file 'foo.h', the command
-
- touch foo.h; cpp -dM foo.h
-
- will show all the predefined macros.
-
- If you use '-dM' without the '-E' option, '-dM' is interpreted
- as a synonym for '-fdump-rtl-mach'. *Note (gcc)Debugging
- Options::.
-
- 'D'
- Like 'M' except in two respects: it does _not_ include the
- predefined macros, and it outputs _both_ the '#define'
- directives and the result of preprocessing. Both kinds of
- output go to the standard output file.
-
- 'N'
- Like 'D', but emit only the macro names, not their expansions.
-
- 'I'
- Output '#include' directives in addition to the result of
- preprocessing.
-
- 'U'
- Like 'D' except that only macros that are expanded, or whose
- definedness is tested in preprocessor directives, are output;
- the output is delayed until the use or test of the macro; and
- '#undef' directives are also output for macros tested but
- undefined at the time.
-
-'-P'
- Inhibit generation of linemarkers in the output from the
- preprocessor. This might be useful when running the preprocessor
- on something that is not C code, and will be sent to a program
- which might be confused by the linemarkers.
-
-'-C'
- Do not discard comments. All comments are passed through to the
- output file, except for comments in processed directives, which are
- deleted along with the directive.
-
- You should be prepared for side effects when using '-C'; it causes
- the preprocessor to treat comments as tokens in their own right.
- For example, comments appearing at the start of what would be a
- directive line have the effect of turning that line into an
- ordinary source line, since the first token on the line is no
- longer a '#'.
-
-'-CC'
- Do not discard comments, including during macro expansion. This is
- like '-C', except that comments contained within macros are also
- passed through to the output file where the macro is expanded.
-
- In addition to the side-effects of the '-C' option, the '-CC'
- option causes all C++-style comments inside a macro to be converted
- to C-style comments. This is to prevent later use of that macro
- from inadvertently commenting out the remainder of the source line.
-
- The '-CC' option is generally used to support lint comments.
-
-'-traditional-cpp'
- Try to imitate the behavior of old-fashioned C preprocessors, as
- opposed to ISO C preprocessors.
-
-'-trigraphs'
- Process trigraph sequences. These are three-character sequences,
- all starting with '??', that are defined by ISO C to stand for
- single characters. For example, '??/' stands for '\', so ''??/n''
- is a character constant for a newline. By default, GCC ignores
- trigraphs, but in standard-conforming modes it converts them. See
- the '-std' and '-ansi' options.
-
- The nine trigraphs and their replacements are
-
- Trigraph: ??( ??) ??< ??> ??= ??/ ??' ??! ??-
- Replacement: [ ] { } # \ ^ | ~
-
-'-remap'
- Enable special code to work around file systems which only permit
- very short file names, such as MS-DOS.
-
-'--help'
-'--target-help'
- Print text describing all the command line options instead of
- preprocessing anything.
-
-'-v'
- Verbose mode. Print out GNU CPP's version number at the beginning
- of execution, and report the final form of the include path.
-
-'-H'
- Print the name of each header file used, in addition to other
- normal activities. Each name is indented to show how deep in the
- '#include' stack it is. Precompiled header files are also printed,
- even if they are found to be invalid; an invalid precompiled header
- file is printed with '...x' and a valid one with '...!' .
-
-'-version'
-'--version'
- Print out GNU CPP's version number. With one dash, proceed to
- preprocess as normal. With two dashes, exit immediately.
-
-
-File: gcc.info, Node: Assembler Options, Next: Link Options, Prev: Preprocessor Options, Up: Invoking GCC
-
-3.12 Passing Options to the Assembler
-=====================================
-
-You can pass options to the assembler.
-
-'-Wa,OPTION'
- Pass OPTION as an option to the assembler. If OPTION contains
- commas, it is split into multiple options at the commas.
-
-'-Xassembler OPTION'
- Pass OPTION as an option to the assembler. You can use this to
- supply system-specific assembler options that GCC does not
- recognize.
-
- If you want to pass an option that takes an argument, you must use
- '-Xassembler' twice, once for the option and once for the argument.
-
-
-File: gcc.info, Node: Link Options, Next: Directory Options, Prev: Assembler Options, Up: Invoking GCC
-
-3.13 Options for Linking
-========================
-
-These options come into play when the compiler links object files into
-an executable output file. They are meaningless if the compiler is not
-doing a link step.
-
-'OBJECT-FILE-NAME'
- A file name that does not end in a special recognized suffix is
- considered to name an object file or library. (Object files are
- distinguished from libraries by the linker according to the file
- contents.) If linking is done, these object files are used as
- input to the linker.
-
-'-c'
-'-S'
-'-E'
- If any of these options is used, then the linker is not run, and
- object file names should not be used as arguments. *Note Overall
- Options::.
-
-'-lLIBRARY'
-'-l LIBRARY'
- Search the library named LIBRARY when linking. (The second
- alternative with the library as a separate argument is only for
- POSIX compliance and is not recommended.)
-
- It makes a difference where in the command you write this option;
- the linker searches and processes libraries and object files in the
- order they are specified. Thus, 'foo.o -lz bar.o' searches library
- 'z' after file 'foo.o' but before 'bar.o'. If 'bar.o' refers to
- functions in 'z', those functions may not be loaded.
-
- The linker searches a standard list of directories for the library,
- which is actually a file named 'libLIBRARY.a'. The linker then
- uses this file as if it had been specified precisely by name.
-
- The directories searched include several standard system
- directories plus any that you specify with '-L'.
-
- Normally the files found this way are library files--archive files
- whose members are object files. The linker handles an archive file
- by scanning through it for members which define symbols that have
- so far been referenced but not defined. But if the file that is
- found is an ordinary object file, it is linked in the usual
- fashion. The only difference between using an '-l' option and
- specifying a file name is that '-l' surrounds LIBRARY with 'lib'
- and '.a' and searches several directories.
-
-'-lobjc'
- You need this special case of the '-l' option in order to link an
- Objective-C or Objective-C++ program.
-
-'-nostartfiles'
- Do not use the standard system startup files when linking. The
- standard system libraries are used normally, unless '-nostdlib' or
- '-nodefaultlibs' is used.
-
-'-nodefaultlibs'
- Do not use the standard system libraries when linking. Only the
- libraries you specify are passed to the linker, and options
- specifying linkage of the system libraries, such as
- '-static-libgcc' or '-shared-libgcc', are ignored. The standard
- startup files are used normally, unless '-nostartfiles' is used.
-
- The compiler may generate calls to 'memcmp', 'memset', 'memcpy' and
- 'memmove'. These entries are usually resolved by entries in libc.
- These entry points should be supplied through some other mechanism
- when this option is specified.
-
-'-nostdlib'
- Do not use the standard system startup files or libraries when
- linking. No startup files and only the libraries you specify are
- passed to the linker, and options specifying linkage of the system
- libraries, such as '-static-libgcc' or '-shared-libgcc', are
- ignored.
-
- The compiler may generate calls to 'memcmp', 'memset', 'memcpy' and
- 'memmove'. These entries are usually resolved by entries in libc.
- These entry points should be supplied through some other mechanism
- when this option is specified.
-
- One of the standard libraries bypassed by '-nostdlib' and
- '-nodefaultlibs' is 'libgcc.a', a library of internal subroutines
- which GCC uses to overcome shortcomings of particular machines, or
- special needs for some languages. (*Note Interfacing to GCC
- Output: (gccint)Interface, for more discussion of 'libgcc.a'.) In
- most cases, you need 'libgcc.a' even when you want to avoid other
- standard libraries. In other words, when you specify '-nostdlib'
- or '-nodefaultlibs' you should usually specify '-lgcc' as well.
- This ensures that you have no unresolved references to internal GCC
- library subroutines. (An example of such an internal subroutine is
- '__main', used to ensure C++ constructors are called; *note
- 'collect2': (gccint)Collect2.)
-
-'-pie'
- Produce a position independent executable on targets that support
- it. For predictable results, you must also specify the same set of
- options used for compilation ('-fpie', '-fPIE', or model
- suboptions) when you specify this linker option.
-
-'-rdynamic'
- Pass the flag '-export-dynamic' to the ELF linker, on targets that
- support it. This instructs the linker to add all symbols, not only
- used ones, to the dynamic symbol table. This option is needed for
- some uses of 'dlopen' or to allow obtaining backtraces from within
- a program.
-
-'-s'
- Remove all symbol table and relocation information from the
- executable.
-
-'-static'
- On systems that support dynamic linking, this prevents linking with
- the shared libraries. On other systems, this option has no effect.
-
-'-shared'
- Produce a shared object which can then be linked with other objects
- to form an executable. Not all systems support this option. For
- predictable results, you must also specify the same set of options
- used for compilation ('-fpic', '-fPIC', or model suboptions) when
- you specify this linker option.(1)
-
-'-shared-libgcc'
-'-static-libgcc'
- On systems that provide 'libgcc' as a shared library, these options
- force the use of either the shared or static version, respectively.
- If no shared version of 'libgcc' was built when the compiler was
- configured, these options have no effect.
-
- There are several situations in which an application should use the
- shared 'libgcc' instead of the static version. The most common of
- these is when the application wishes to throw and catch exceptions
- across different shared libraries. In that case, each of the
- libraries as well as the application itself should use the shared
- 'libgcc'.
-
- Therefore, the G++ and GCJ drivers automatically add
- '-shared-libgcc' whenever you build a shared library or a main
- executable, because C++ and Java programs typically use exceptions,
- so this is the right thing to do.
-
- If, instead, you use the GCC driver to create shared libraries, you
- may find that they are not always linked with the shared 'libgcc'.
- If GCC finds, at its configuration time, that you have a non-GNU
- linker or a GNU linker that does not support option
- '--eh-frame-hdr', it links the shared version of 'libgcc' into
- shared libraries by default. Otherwise, it takes advantage of the
- linker and optimizes away the linking with the shared version of
- 'libgcc', linking with the static version of libgcc by default.
- This allows exceptions to propagate through such shared libraries,
- without incurring relocation costs at library load time.
-
- However, if a library or main executable is supposed to throw or
- catch exceptions, you must link it using the G++ or GCJ driver, as
- appropriate for the languages used in the program, or using the
- option '-shared-libgcc', such that it is linked with the shared
- 'libgcc'.
-
-'-static-libasan'
- When the '-fsanitize=address' option is used to link a program, the
- GCC driver automatically links against 'libasan'. If 'libasan' is
- available as a shared library, and the '-static' option is not
- used, then this links against the shared version of 'libasan'. The
- '-static-libasan' option directs the GCC driver to link 'libasan'
- statically, without necessarily linking other libraries statically.
-
-'-static-libtsan'
- When the '-fsanitize=thread' option is used to link a program, the
- GCC driver automatically links against 'libtsan'. If 'libtsan' is
- available as a shared library, and the '-static' option is not
- used, then this links against the shared version of 'libtsan'. The
- '-static-libtsan' option directs the GCC driver to link 'libtsan'
- statically, without necessarily linking other libraries statically.
-
-'-static-liblsan'
- When the '-fsanitize=leak' option is used to link a program, the
- GCC driver automatically links against 'liblsan'. If 'liblsan' is
- available as a shared library, and the '-static' option is not
- used, then this links against the shared version of 'liblsan'. The
- '-static-liblsan' option directs the GCC driver to link 'liblsan'
- statically, without necessarily linking other libraries statically.
-
-'-static-libubsan'
- When the '-fsanitize=undefined' option is used to link a program,
- the GCC driver automatically links against 'libubsan'. If
- 'libubsan' is available as a shared library, and the '-static'
- option is not used, then this links against the shared version of
- 'libubsan'. The '-static-libubsan' option directs the GCC driver
- to link 'libubsan' statically, without necessarily linking other
- libraries statically.
-
-'-static-libstdc++'
- When the 'g++' program is used to link a C++ program, it normally
- automatically links against 'libstdc++'. If 'libstdc++' is
- available as a shared library, and the '-static' option is not
- used, then this links against the shared version of 'libstdc++'.
- That is normally fine. However, it is sometimes useful to freeze
- the version of 'libstdc++' used by the program without going all
- the way to a fully static link. The '-static-libstdc++' option
- directs the 'g++' driver to link 'libstdc++' statically, without
- necessarily linking other libraries statically.
-
-'-symbolic'
- Bind references to global symbols when building a shared object.
- Warn about any unresolved references (unless overridden by the link
- editor option '-Xlinker -z -Xlinker defs'). Only a few systems
- support this option.
-
-'-T SCRIPT'
- Use SCRIPT as the linker script. This option is supported by most
- systems using the GNU linker. On some targets, such as bare-board
- targets without an operating system, the '-T' option may be
- required when linking to avoid references to undefined symbols.
-
-'-Xlinker OPTION'
- Pass OPTION as an option to the linker. You can use this to supply
- system-specific linker options that GCC does not recognize.
-
- If you want to pass an option that takes a separate argument, you
- must use '-Xlinker' twice, once for the option and once for the
- argument. For example, to pass '-assert definitions', you must
- write '-Xlinker -assert -Xlinker definitions'. It does not work to
- write '-Xlinker "-assert definitions"', because this passes the
- entire string as a single argument, which is not what the linker
- expects.
-
- When using the GNU linker, it is usually more convenient to pass
- arguments to linker options using the 'OPTION=VALUE' syntax than as
- separate arguments. For example, you can specify '-Xlinker
- -Map=output.map' rather than '-Xlinker -Map -Xlinker output.map'.
- Other linkers may not support this syntax for command-line options.
-
-'-Wl,OPTION'
- Pass OPTION as an option to the linker. If OPTION contains commas,
- it is split into multiple options at the commas. You can use this
- syntax to pass an argument to the option. For example,
- '-Wl,-Map,output.map' passes '-Map output.map' to the linker. When
- using the GNU linker, you can also get the same effect with
- '-Wl,-Map=output.map'.
-
-'-u SYMBOL'
- Pretend the symbol SYMBOL is undefined, to force linking of library
- modules to define it. You can use '-u' multiple times with
- different symbols to force loading of additional library modules.
-
- ---------- Footnotes ----------
-
- (1) On some systems, 'gcc -shared' needs to build supplementary stub
-code for constructors to work. On multi-libbed systems, 'gcc -shared'
-must select the correct support libraries to link against. Failing to
-supply the correct flags may lead to subtle defects. Supplying them in
-cases where they are not necessary is innocuous.
-
-
-File: gcc.info, Node: Directory Options, Next: Spec Files, Prev: Link Options, Up: Invoking GCC
-
-3.14 Options for Directory Search
-=================================
-
-These options specify directories to search for header files, for
-libraries and for parts of the compiler:
-
-'-IDIR'
- Add the directory DIR to the head of the list of directories to be
- searched for header files. This can be used to override a system
- header file, substituting your own version, since these directories
- are searched before the system header file directories. However,
- you should not use this option to add directories that contain
- vendor-supplied system header files (use '-isystem' for that). If
- you use more than one '-I' option, the directories are scanned in
- left-to-right order; the standard system directories come after.
-
- If a standard system include directory, or a directory specified
- with '-isystem', is also specified with '-I', the '-I' option is
- ignored. The directory is still searched but as a system directory
- at its normal position in the system include chain. This is to
- ensure that GCC's procedure to fix buggy system headers and the
- ordering for the 'include_next' directive are not inadvertently
- changed. If you really need to change the search order for system
- directories, use the '-nostdinc' and/or '-isystem' options.
-
-'-iplugindir=DIR'
- Set the directory to search for plugins that are passed by
- '-fplugin=NAME' instead of '-fplugin=PATH/NAME.so'. This option is
- not meant to be used by the user, but only passed by the driver.
-
-'-iquoteDIR'
- Add the directory DIR to the head of the list of directories to be
- searched for header files only for the case of '#include "FILE"';
- they are not searched for '#include <FILE>', otherwise just like
- '-I'.
-
-'-LDIR'
- Add directory DIR to the list of directories to be searched for
- '-l'.
-
-'-BPREFIX'
- This option specifies where to find the executables, libraries,
- include files, and data files of the compiler itself.
-
- The compiler driver program runs one or more of the subprograms
- 'cpp', 'cc1', 'as' and 'ld'. It tries PREFIX as a prefix for each
- program it tries to run, both with and without 'MACHINE/VERSION/'
- (*note Target Options::).
-
- For each subprogram to be run, the compiler driver first tries the
- '-B' prefix, if any. If that name is not found, or if '-B' is not
- specified, the driver tries two standard prefixes, '/usr/lib/gcc/'
- and '/usr/local/lib/gcc/'. If neither of those results in a file
- name that is found, the unmodified program name is searched for
- using the directories specified in your 'PATH' environment
- variable.
-
- The compiler checks to see if the path provided by the '-B' refers
- to a directory, and if necessary it adds a directory separator
- character at the end of the path.
-
- '-B' prefixes that effectively specify directory names also apply
- to libraries in the linker, because the compiler translates these
- options into '-L' options for the linker. They also apply to
- include files in the preprocessor, because the compiler translates
- these options into '-isystem' options for the preprocessor. In
- this case, the compiler appends 'include' to the prefix.
-
- The runtime support file 'libgcc.a' can also be searched for using
- the '-B' prefix, if needed. If it is not found there, the two
- standard prefixes above are tried, and that is all. The file is
- left out of the link if it is not found by those means.
-
- Another way to specify a prefix much like the '-B' prefix is to use
- the environment variable 'GCC_EXEC_PREFIX'. *Note Environment
- Variables::.
-
- As a special kludge, if the path provided by '-B' is
- '[dir/]stageN/', where N is a number in the range 0 to 9, then it
- is replaced by '[dir/]include'. This is to help with
- boot-strapping the compiler.
-
-'-specs=FILE'
- Process FILE after the compiler reads in the standard 'specs' file,
- in order to override the defaults which the 'gcc' driver program
- uses when determining what switches to pass to 'cc1', 'cc1plus',
- 'as', 'ld', etc. More than one '-specs=FILE' can be specified on
- the command line, and they are processed in order, from left to
- right.
-
-'--sysroot=DIR'
- Use DIR as the logical root directory for headers and libraries.
- For example, if the compiler normally searches for headers in
- '/usr/include' and libraries in '/usr/lib', it instead searches
- 'DIR/usr/include' and 'DIR/usr/lib'.
-
- If you use both this option and the '-isysroot' option, then the
- '--sysroot' option applies to libraries, but the '-isysroot' option
- applies to header files.
-
- The GNU linker (beginning with version 2.16) has the necessary
- support for this option. If your linker does not support this
- option, the header file aspect of '--sysroot' still works, but the
- library aspect does not.
-
-'--no-sysroot-suffix'
- For some targets, a suffix is added to the root directory specified
- with '--sysroot', depending on the other options used, so that
- headers may for example be found in 'DIR/SUFFIX/usr/include'
- instead of 'DIR/usr/include'. This option disables the addition of
- such a suffix.
-
-'-I-'
- This option has been deprecated. Please use '-iquote' instead for
- '-I' directories before the '-I-' and remove the '-I-'. Any
- directories you specify with '-I' options before the '-I-' option
- are searched only for the case of '#include "FILE"'; they are not
- searched for '#include <FILE>'.
-
- If additional directories are specified with '-I' options after the
- '-I-', these directories are searched for all '#include'
- directives. (Ordinarily _all_ '-I' directories are used this way.)
-
- In addition, the '-I-' option inhibits the use of the current
- directory (where the current input file came from) as the first
- search directory for '#include "FILE"'. There is no way to
- override this effect of '-I-'. With '-I.' you can specify
- searching the directory that is current when the compiler is
- invoked. That is not exactly the same as what the preprocessor
- does by default, but it is often satisfactory.
-
- '-I-' does not inhibit the use of the standard system directories
- for header files. Thus, '-I-' and '-nostdinc' are independent.
-
-
-File: gcc.info, Node: Spec Files, Next: Target Options, Prev: Directory Options, Up: Invoking GCC
-
-3.15 Specifying subprocesses and the switches to pass to them
-=============================================================
-
-'gcc' is a driver program. It performs its job by invoking a sequence
-of other programs to do the work of compiling, assembling and linking.
-GCC interprets its command-line parameters and uses these to deduce
-which programs it should invoke, and which command-line options it ought
-to place on their command lines. This behavior is controlled by "spec
-strings". In most cases there is one spec string for each program that
-GCC can invoke, but a few programs have multiple spec strings to control
-their behavior. The spec strings built into GCC can be overridden by
-using the '-specs=' command-line switch to specify a spec file.
-
- "Spec files" are plaintext files that are used to construct spec
-strings. They consist of a sequence of directives separated by blank
-lines. The type of directive is determined by the first non-whitespace
-character on the line, which can be one of the following:
-
-'%COMMAND'
- Issues a COMMAND to the spec file processor. The commands that can
- appear here are:
-
- '%include <FILE>'
- Search for FILE and insert its text at the current point in
- the specs file.
-
- '%include_noerr <FILE>'
- Just like '%include', but do not generate an error message if
- the include file cannot be found.
-
- '%rename OLD_NAME NEW_NAME'
- Rename the spec string OLD_NAME to NEW_NAME.
-
-'*[SPEC_NAME]:'
- This tells the compiler to create, override or delete the named
- spec string. All lines after this directive up to the next
- directive or blank line are considered to be the text for the spec
- string. If this results in an empty string then the spec is
- deleted. (Or, if the spec did not exist, then nothing happens.)
- Otherwise, if the spec does not currently exist a new spec is
- created. If the spec does exist then its contents are overridden
- by the text of this directive, unless the first character of that
- text is the '+' character, in which case the text is appended to
- the spec.
-
-'[SUFFIX]:'
- Creates a new '[SUFFIX] spec' pair. All lines after this directive
- and up to the next directive or blank line are considered to make
- up the spec string for the indicated suffix. When the compiler
- encounters an input file with the named suffix, it processes the
- spec string in order to work out how to compile that file. For
- example:
-
- .ZZ:
- z-compile -input %i
-
- This says that any input file whose name ends in '.ZZ' should be
- passed to the program 'z-compile', which should be invoked with the
- command-line switch '-input' and with the result of performing the
- '%i' substitution. (See below.)
-
- As an alternative to providing a spec string, the text following a
- suffix directive can be one of the following:
-
- '@LANGUAGE'
- This says that the suffix is an alias for a known LANGUAGE.
- This is similar to using the '-x' command-line switch to GCC
- to specify a language explicitly. For example:
-
- .ZZ:
- @c++
-
- Says that .ZZ files are, in fact, C++ source files.
-
- '#NAME'
- This causes an error messages saying:
-
- NAME compiler not installed on this system.
-
- GCC already has an extensive list of suffixes built into it. This
- directive adds an entry to the end of the list of suffixes, but
- since the list is searched from the end backwards, it is
- effectively possible to override earlier entries using this
- technique.
-
- GCC has the following spec strings built into it. Spec files can
-override these strings or create their own. Note that individual
-targets can also add their own spec strings to this list.
-
- asm Options to pass to the assembler
- asm_final Options to pass to the assembler post-processor
- cpp Options to pass to the C preprocessor
- cc1 Options to pass to the C compiler
- cc1plus Options to pass to the C++ compiler
- endfile Object files to include at the end of the link
- link Options to pass to the linker
- lib Libraries to include on the command line to the linker
- libgcc Decides which GCC support library to pass to the linker
- linker Sets the name of the linker
- predefines Defines to be passed to the C preprocessor
- signed_char Defines to pass to CPP to say whether char is signed
- by default
- startfile Object files to include at the start of the link
-
- Here is a small example of a spec file:
-
- %rename lib old_lib
-
- *lib:
- --start-group -lgcc -lc -leval1 --end-group %(old_lib)
-
- This example renames the spec called 'lib' to 'old_lib' and then
-overrides the previous definition of 'lib' with a new one. The new
-definition adds in some extra command-line options before including the
-text of the old definition.
-
- "Spec strings" are a list of command-line options to be passed to their
-corresponding program. In addition, the spec strings can contain
-'%'-prefixed sequences to substitute variable text or to conditionally
-insert text into the command line. Using these constructs it is
-possible to generate quite complex command lines.
-
- Here is a table of all defined '%'-sequences for spec strings. Note
-that spaces are not generated automatically around the results of
-expanding these sequences. Therefore you can concatenate them together
-or combine them with constant text in a single argument.
-
-'%%'
- Substitute one '%' into the program name or argument.
-
-'%i'
- Substitute the name of the input file being processed.
-
-'%b'
- Substitute the basename of the input file being processed. This is
- the substring up to (and not including) the last period and not
- including the directory.
-
-'%B'
- This is the same as '%b', but include the file suffix (text after
- the last period).
-
-'%d'
- Marks the argument containing or following the '%d' as a temporary
- file name, so that that file is deleted if GCC exits successfully.
- Unlike '%g', this contributes no text to the argument.
-
-'%gSUFFIX'
- Substitute a file name that has suffix SUFFIX and is chosen once
- per compilation, and mark the argument in the same way as '%d'. To
- reduce exposure to denial-of-service attacks, the file name is now
- chosen in a way that is hard to predict even when previously chosen
- file names are known. For example, '%g.s ... %g.o ... %g.s' might
- turn into 'ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s'. SUFFIX matches the
- regexp '[.A-Za-z]*' or the special string '%O', which is treated
- exactly as if '%O' had been preprocessed. Previously, '%g' was
- simply substituted with a file name chosen once per compilation,
- without regard to any appended suffix (which was therefore treated
- just like ordinary text), making such attacks more likely to
- succeed.
-
-'%uSUFFIX'
- Like '%g', but generates a new temporary file name each time it
- appears instead of once per compilation.
-
-'%USUFFIX'
- Substitutes the last file name generated with '%uSUFFIX',
- generating a new one if there is no such last file name. In the
- absence of any '%uSUFFIX', this is just like '%gSUFFIX', except
- they don't share the same suffix _space_, so '%g.s ... %U.s ...
- %g.s ... %U.s' involves the generation of two distinct file names,
- one for each '%g.s' and another for each '%U.s'. Previously, '%U'
- was simply substituted with a file name chosen for the previous
- '%u', without regard to any appended suffix.
-
-'%jSUFFIX'
- Substitutes the name of the 'HOST_BIT_BUCKET', if any, and if it is
- writable, and if '-save-temps' is not used; otherwise, substitute
- the name of a temporary file, just like '%u'. This temporary file
- is not meant for communication between processes, but rather as a
- junk disposal mechanism.
-
-'%|SUFFIX'
-'%mSUFFIX'
- Like '%g', except if '-pipe' is in effect. In that case '%|'
- substitutes a single dash and '%m' substitutes nothing at all.
- These are the two most common ways to instruct a program that it
- should read from standard input or write to standard output. If
- you need something more elaborate you can use an '%{pipe:'X'}'
- construct: see for example 'f/lang-specs.h'.
-
-'%.SUFFIX'
- Substitutes .SUFFIX for the suffixes of a matched switch's args
- when it is subsequently output with '%*'. SUFFIX is terminated by
- the next space or %.
-
-'%w'
- Marks the argument containing or following the '%w' as the
- designated output file of this compilation. This puts the argument
- into the sequence of arguments that '%o' substitutes.
-
-'%o'
- Substitutes the names of all the output files, with spaces
- automatically placed around them. You should write spaces around
- the '%o' as well or the results are undefined. '%o' is for use in
- the specs for running the linker. Input files whose names have no
- recognized suffix are not compiled at all, but they are included
- among the output files, so they are linked.
-
-'%O'
- Substitutes the suffix for object files. Note that this is handled
- specially when it immediately follows '%g, %u, or %U', because of
- the need for those to form complete file names. The handling is
- such that '%O' is treated exactly as if it had already been
- substituted, except that '%g, %u, and %U' do not currently support
- additional SUFFIX characters following '%O' as they do following,
- for example, '.o'.
-
-'%p'
- Substitutes the standard macro predefinitions for the current
- target machine. Use this when running 'cpp'.
-
-'%P'
- Like '%p', but puts '__' before and after the name of each
- predefined macro, except for macros that start with '__' or with
- '_L', where L is an uppercase letter. This is for ISO C.
-
-'%I'
- Substitute any of '-iprefix' (made from 'GCC_EXEC_PREFIX'),
- '-isysroot' (made from 'TARGET_SYSTEM_ROOT'), '-isystem' (made from
- 'COMPILER_PATH' and '-B' options) and '-imultilib' as necessary.
-
-'%s'
- Current argument is the name of a library or startup file of some
- sort. Search for that file in a standard list of directories and
- substitute the full name found. The current working directory is
- included in the list of directories scanned.
-
-'%T'
- Current argument is the name of a linker script. Search for that
- file in the current list of directories to scan for libraries. If
- the file is located insert a '--script' option into the command
- line followed by the full path name found. If the file is not
- found then generate an error message. Note: the current working
- directory is not searched.
-
-'%eSTR'
- Print STR as an error message. STR is terminated by a newline.
- Use this when inconsistent options are detected.
-
-'%(NAME)'
- Substitute the contents of spec string NAME at this point.
-
-'%x{OPTION}'
- Accumulate an option for '%X'.
-
-'%X'
- Output the accumulated linker options specified by '-Wl' or a '%x'
- spec string.
-
-'%Y'
- Output the accumulated assembler options specified by '-Wa'.
-
-'%Z'
- Output the accumulated preprocessor options specified by '-Wp'.
-
-'%a'
- Process the 'asm' spec. This is used to compute the switches to be
- passed to the assembler.
-
-'%A'
- Process the 'asm_final' spec. This is a spec string for passing
- switches to an assembler post-processor, if such a program is
- needed.
-
-'%l'
- Process the 'link' spec. This is the spec for computing the
- command line passed to the linker. Typically it makes use of the
- '%L %G %S %D and %E' sequences.
-
-'%D'
- Dump out a '-L' option for each directory that GCC believes might
- contain startup files. If the target supports multilibs then the
- current multilib directory is prepended to each of these paths.
-
-'%L'
- Process the 'lib' spec. This is a spec string for deciding which
- libraries are included on the command line to the linker.
-
-'%G'
- Process the 'libgcc' spec. This is a spec string for deciding
- which GCC support library is included on the command line to the
- linker.
-
-'%S'
- Process the 'startfile' spec. This is a spec for deciding which
- object files are the first ones passed to the linker. Typically
- this might be a file named 'crt0.o'.
-
-'%E'
- Process the 'endfile' spec. This is a spec string that specifies
- the last object files that are passed to the linker.
-
-'%C'
- Process the 'cpp' spec. This is used to construct the arguments to
- be passed to the C preprocessor.
-
-'%1'
- Process the 'cc1' spec. This is used to construct the options to
- be passed to the actual C compiler ('cc1').
-
-'%2'
- Process the 'cc1plus' spec. This is used to construct the options
- to be passed to the actual C++ compiler ('cc1plus').
-
-'%*'
- Substitute the variable part of a matched option. See below. Note
- that each comma in the substituted string is replaced by a single
- space.
-
-'%<S'
- Remove all occurrences of '-S' from the command line. Note--this
- command is position dependent. '%' commands in the spec string
- before this one see '-S', '%' commands in the spec string after
- this one do not.
-
-'%:FUNCTION(ARGS)'
- Call the named function FUNCTION, passing it ARGS. ARGS is first
- processed as a nested spec string, then split into an argument
- vector in the usual fashion. The function returns a string which
- is processed as if it had appeared literally as part of the current
- spec.
-
- The following built-in spec functions are provided:
-
- 'getenv'
- The 'getenv' spec function takes two arguments: an environment
- variable name and a string. If the environment variable is
- not defined, a fatal error is issued. Otherwise, the return
- value is the value of the environment variable concatenated
- with the string. For example, if 'TOPDIR' is defined as
- '/path/to/top', then:
-
- %:getenv(TOPDIR /include)
-
- expands to '/path/to/top/include'.
-
- 'if-exists'
- The 'if-exists' spec function takes one argument, an absolute
- pathname to a file. If the file exists, 'if-exists' returns
- the pathname. Here is a small example of its usage:
-
- *startfile:
- crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
-
- 'if-exists-else'
- The 'if-exists-else' spec function is similar to the
- 'if-exists' spec function, except that it takes two arguments.
- The first argument is an absolute pathname to a file. If the
- file exists, 'if-exists-else' returns the pathname. If it
- does not exist, it returns the second argument. This way,
- 'if-exists-else' can be used to select one file or another,
- based on the existence of the first. Here is a small example
- of its usage:
-
- *startfile:
- crt0%O%s %:if-exists(crti%O%s) \
- %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
-
- 'replace-outfile'
- The 'replace-outfile' spec function takes two arguments. It
- looks for the first argument in the outfiles array and
- replaces it with the second argument. Here is a small example
- of its usage:
-
- %{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)}
-
- 'remove-outfile'
- The 'remove-outfile' spec function takes one argument. It
- looks for the first argument in the outfiles array and removes
- it. Here is a small example its usage:
-
- %:remove-outfile(-lm)
-
- 'pass-through-libs'
- The 'pass-through-libs' spec function takes any number of
- arguments. It finds any '-l' options and any non-options
- ending in '.a' (which it assumes are the names of linker input
- library archive files) and returns a result containing all the
- found arguments each prepended by '-plugin-opt=-pass-through='
- and joined by spaces. This list is intended to be passed to
- the LTO linker plugin.
-
- %:pass-through-libs(%G %L %G)
-
- 'print-asm-header'
- The 'print-asm-header' function takes no arguments and simply
- prints a banner like:
-
- Assembler options
- =================
-
- Use "-Wa,OPTION" to pass "OPTION" to the assembler.
-
- It is used to separate compiler options from assembler options
- in the '--target-help' output.
-
-'%{S}'
- Substitutes the '-S' switch, if that switch is given to GCC. If
- that switch is not specified, this substitutes nothing. Note that
- the leading dash is omitted when specifying this option, and it is
- automatically inserted if the substitution is performed. Thus the
- spec string '%{foo}' matches the command-line option '-foo' and
- outputs the command-line option '-foo'.
-
-'%W{S}'
- Like %{'S'} but mark last argument supplied within as a file to be
- deleted on failure.
-
-'%{S*}'
- Substitutes all the switches specified to GCC whose names start
- with '-S', but which also take an argument. This is used for
- switches like '-o', '-D', '-I', etc. GCC considers '-o foo' as
- being one switch whose name starts with 'o'. %{o*} substitutes
- this text, including the space. Thus two arguments are generated.
-
-'%{S*&T*}'
- Like %{'S'*}, but preserve order of 'S' and 'T' options (the order
- of 'S' and 'T' in the spec is not significant). There can be any
- number of ampersand-separated variables; for each the wild card is
- optional. Useful for CPP as '%{D*&U*&A*}'.
-
-'%{S:X}'
- Substitutes 'X', if the '-S' switch is given to GCC.
-
-'%{!S:X}'
- Substitutes 'X', if the '-S' switch is _not_ given to GCC.
-
-'%{S*:X}'
- Substitutes 'X' if one or more switches whose names start with '-S'
- are specified to GCC. Normally 'X' is substituted only once, no
- matter how many such switches appeared. However, if '%*' appears
- somewhere in 'X', then 'X' is substituted once for each matching
- switch, with the '%*' replaced by the part of that switch matching
- the '*'.
-
- If '%*' appears as the last part of a spec sequence then a space
- will be added after the end of the last substitution. If there is
- more text in the sequence however then a space will not be
- generated. This allows the '%*' substitution to be used as part of
- a larger string. For example, a spec string like this:
-
- %{mcu=*:--script=%*/memory.ld}
-
- when matching an option like '-mcu=newchip' will produce:
-
- --script=newchip/memory.ld
-
-'%{.S:X}'
- Substitutes 'X', if processing a file with suffix 'S'.
-
-'%{!.S:X}'
- Substitutes 'X', if _not_ processing a file with suffix 'S'.
-
-'%{,S:X}'
- Substitutes 'X', if processing a file for language 'S'.
-
-'%{!,S:X}'
- Substitutes 'X', if not processing a file for language 'S'.
-
-'%{S|P:X}'
- Substitutes 'X' if either '-S' or '-P' is given to GCC. This may
- be combined with '!', '.', ',', and '*' sequences as well, although
- they have a stronger binding than the '|'. If '%*' appears in 'X',
- all of the alternatives must be starred, and only the first
- matching alternative is substituted.
-
- For example, a spec string like this:
-
- %{.c:-foo} %{!.c:-bar} %{.c|d:-baz} %{!.c|d:-boggle}
-
- outputs the following command-line options from the following input
- command-line options:
-
- fred.c -foo -baz
- jim.d -bar -boggle
- -d fred.c -foo -baz -boggle
- -d jim.d -bar -baz -boggle
-
-'%{S:X; T:Y; :D}'
-
- If 'S' is given to GCC, substitutes 'X'; else if 'T' is given to
- GCC, substitutes 'Y'; else substitutes 'D'. There can be as many
- clauses as you need. This may be combined with '.', ',', '!', '|',
- and '*' as needed.
-
- The conditional text 'X' in a %{'S':'X'} or similar construct may
-contain other nested '%' constructs or spaces, or even newlines. They
-are processed as usual, as described above. Trailing white space in 'X'
-is ignored. White space may also appear anywhere on the left side of
-the colon in these constructs, except between '.' or '*' and the
-corresponding word.
-
- The '-O', '-f', '-m', and '-W' switches are handled specifically in
-these constructs. If another value of '-O' or the negated form of a
-'-f', '-m', or '-W' switch is found later in the command line, the
-earlier switch value is ignored, except with {'S'*} where 'S' is just
-one letter, which passes all matching options.
-
- The character '|' at the beginning of the predicate text is used to
-indicate that a command should be piped to the following command, but
-only if '-pipe' is specified.
-
- It is built into GCC which switches take arguments and which do not.
-(You might think it would be useful to generalize this to allow each
-compiler's spec to say which switches take arguments. But this cannot
-be done in a consistent fashion. GCC cannot even decide which input
-files have been specified without knowing which switches take arguments,
-and it must know which input files to compile in order to tell which
-compilers to run).
-
- GCC also knows implicitly that arguments starting in '-l' are to be
-treated as compiler output files, and passed to the linker in their
-proper position among the other output files.
-
-
-File: gcc.info, Node: Target Options, Next: Submodel Options, Prev: Spec Files, Up: Invoking GCC
-
-3.16 Specifying Target Machine and Compiler Version
-===================================================
-
-The usual way to run GCC is to run the executable called 'gcc', or
-'MACHINE-gcc' when cross-compiling, or 'MACHINE-gcc-VERSION' to run a
-version other than the one that was installed last.
-
-
-File: gcc.info, Node: Submodel Options, Next: Code Gen Options, Prev: Target Options, Up: Invoking GCC
-
-3.17 Hardware Models and Configurations
-=======================================
-
-Each target machine types can have its own special options, starting
-with '-m', to choose among various hardware models or
-configurations--for example, 68010 vs 68020, floating coprocessor or
-none. A single installed version of the compiler can compile for any
-model or configuration, according to the options specified.
-
- Some configurations of the compiler also support additional special
-options, usually for compatibility with other compilers on the same
-platform.
-
-* Menu:
-
-* AArch64 Options::
-* Adapteva Epiphany Options::
-* ARC Options::
-* ARM Options::
-* AVR Options::
-* Blackfin Options::
-* C6X Options::
-* CRIS Options::
-* CR16 Options::
-* Darwin Options::
-* DEC Alpha Options::
-* FR30 Options::
-* FRV Options::
-* GNU/Linux Options::
-* H8/300 Options::
-* HPPA Options::
-* i386 and x86-64 Options::
-* i386 and x86-64 Windows Options::
-* IA-64 Options::
-* LM32 Options::
-* M32C Options::
-* M32R/D Options::
-* M680x0 Options::
-* MCore Options::
-* MeP Options::
-* MicroBlaze Options::
-* MIPS Options::
-* MMIX Options::
-* MN10300 Options::
-* Moxie Options::
-* MSP430 Options::
-* NDS32 Options::
-* Nios II Options::
-* PDP-11 Options::
-* picoChip Options::
-* PowerPC Options::
-* RL78 Options::
-* RS/6000 and PowerPC Options::
-* RX Options::
-* S/390 and zSeries Options::
-* Score Options::
-* SH Options::
-* Solaris 2 Options::
-* SPARC Options::
-* SPU Options::
-* System V Options::
-* TILE-Gx Options::
-* TILEPro Options::
-* V850 Options::
-* VAX Options::
-* VMS Options::
-* VxWorks Options::
-* x86-64 Options::
-* Xstormy16 Options::
-* Xtensa Options::
-* zSeries Options::
-
-
-File: gcc.info, Node: AArch64 Options, Next: Adapteva Epiphany Options, Up: Submodel Options
-
-3.17.1 AArch64 Options
-----------------------
-
-These options are defined for AArch64 implementations:
-
-'-mabi=NAME'
- Generate code for the specified data model. Permissible values are
- 'ilp32' for SysV-like data model where int, long int and pointer
- are 32-bit, and 'lp64' for SysV-like data model where int is
- 32-bit, but long int and pointer are 64-bit.
-
- The default depends on the specific target configuration. Note
- that the LP64 and ILP32 ABIs are not link-compatible; you must
- compile your entire program with the same ABI, and link with a
- compatible set of libraries.
-
-'-mbig-endian'
- Generate big-endian code. This is the default when GCC is
- configured for an 'aarch64_be-*-*' target.
-
-'-mgeneral-regs-only'
- Generate code which uses only the general registers.
-
-'-mlittle-endian'
- Generate little-endian code. This is the default when GCC is
- configured for an 'aarch64-*-*' but not an 'aarch64_be-*-*' target.
-
-'-mcmodel=tiny'
- Generate code for the tiny code model. The program and its
- statically defined symbols must be within 1GB of each other.
- Pointers are 64 bits. Programs can be statically or dynamically
- linked. This model is not fully implemented and mostly treated as
- 'small'.
-
-'-mcmodel=small'
- Generate code for the small code model. The program and its
- statically defined symbols must be within 4GB of each other.
- Pointers are 64 bits. Programs can be statically or dynamically
- linked. This is the default code model.
-
-'-mcmodel=large'
- Generate code for the large code model. This makes no assumptions
- about addresses and sizes of sections. Pointers are 64 bits.
- Programs can be statically linked only.
-
-'-mstrict-align'
- Do not assume that unaligned memory references will be handled by
- the system.
-
-'-momit-leaf-frame-pointer'
-'-mno-omit-leaf-frame-pointer'
- Omit or keep the frame pointer in leaf functions. The former
- behaviour is the default.
-
-'-mtls-dialect=desc'
- Use TLS descriptors as the thread-local storage mechanism for
- dynamic accesses of TLS variables. This is the default.
-
-'-mtls-dialect=traditional'
- Use traditional TLS as the thread-local storage mechanism for
- dynamic accesses of TLS variables.
-
-'-march=NAME'
- Specify the name of the target architecture, optionally suffixed by
- one or more feature modifiers. This option has the form
- '-march=ARCH{+[no]FEATURE}*', where the only permissible value for
- ARCH is 'armv8-a'. The permissible values for FEATURE are
- documented in the sub-section below.
-
- Where conflicting feature modifiers are specified, the right-most
- feature is used.
-
- GCC uses this name to determine what kind of instructions it can
- emit when generating assembly code.
-
- Where '-march' is specified without either of '-mtune' or '-mcpu'
- also being specified, the code will be tuned to perform well across
- a range of target processors implementing the target architecture.
-
-'-mtune=NAME'
- Specify the name of the target processor for which GCC should tune
- the performance of the code. Permissible values for this option
- are: 'generic', 'cortex-a53', 'cortex-a57'.
-
- Additionally, this option can specify that GCC should tune the
- performance of the code for a big.LITTLE system. The only
- permissible value is 'cortex-a57.cortex-a53'.
-
- Where none of '-mtune=', '-mcpu=' or '-march=' are specified, the
- code will be tuned to perform well across a range of target
- processors.
-
- This option cannot be suffixed by feature modifiers.
-
-'-mcpu=NAME'
- Specify the name of the target processor, optionally suffixed by
- one or more feature modifiers. This option has the form
- '-mcpu=CPU{+[no]FEATURE}*', where the permissible values for CPU
- are the same as those available for '-mtune'.
-
- The permissible values for FEATURE are documented in the
- sub-section below.
-
- Where conflicting feature modifiers are specified, the right-most
- feature is used.
-
- GCC uses this name to determine what kind of instructions it can
- emit when generating assembly code (as if by '-march') and to
- determine the target processor for which to tune for performance
- (as if by '-mtune'). Where this option is used in conjunction with
- '-march' or '-mtune', those options take precedence over the
- appropriate part of this option.
-
-3.17.1.1 '-march' and '-mcpu' feature modifiers
-...............................................
-
-Feature modifiers used with '-march' and '-mcpu' can be one the
-following:
-
-'crc'
- Enable CRC extension.
-'crypto'
- Enable Crypto extension. This implies Advanced SIMD is enabled.
-'fp'
- Enable floating-point instructions.
-'simd'
- Enable Advanced SIMD instructions. This implies floating-point
- instructions are enabled. This is the default for all current
- possible values for options '-march' and '-mcpu='.
-
-
-File: gcc.info, Node: Adapteva Epiphany Options, Next: ARC Options, Prev: AArch64 Options, Up: Submodel Options
-
-3.17.2 Adapteva Epiphany Options
---------------------------------
-
-These '-m' options are defined for Adapteva Epiphany:
-
-'-mhalf-reg-file'
- Don't allocate any register in the range 'r32'...'r63'. That
- allows code to run on hardware variants that lack these registers.
-
-'-mprefer-short-insn-regs'
- Preferrentially allocate registers that allow short instruction
- generation. This can result in increased instruction count, so
- this may either reduce or increase overall code size.
-
-'-mbranch-cost=NUM'
- Set the cost of branches to roughly NUM "simple" instructions.
- This cost is only a heuristic and is not guaranteed to produce
- consistent results across releases.
-
-'-mcmove'
- Enable the generation of conditional moves.
-
-'-mnops=NUM'
- Emit NUM NOPs before every other generated instruction.
-
-'-mno-soft-cmpsf'
- For single-precision floating-point comparisons, emit an 'fsub'
- instruction and test the flags. This is faster than a software
- comparison, but can get incorrect results in the presence of NaNs,
- or when two different small numbers are compared such that their
- difference is calculated as zero. The default is '-msoft-cmpsf',
- which uses slower, but IEEE-compliant, software comparisons.
-
-'-mstack-offset=NUM'
- Set the offset between the top of the stack and the stack pointer.
- E.g., a value of 8 means that the eight bytes in the range
- 'sp+0...sp+7' can be used by leaf functions without stack
- allocation. Values other than '8' or '16' are untested and
- unlikely to work. Note also that this option changes the ABI;
- compiling a program with a different stack offset than the
- libraries have been compiled with generally does not work. This
- option can be useful if you want to evaluate if a different stack
- offset would give you better code, but to actually use a different
- stack offset to build working programs, it is recommended to
- configure the toolchain with the appropriate
- '--with-stack-offset=NUM' option.
-
-'-mno-round-nearest'
- Make the scheduler assume that the rounding mode has been set to
- truncating. The default is '-mround-nearest'.
-
-'-mlong-calls'
- If not otherwise specified by an attribute, assume all calls might
- be beyond the offset range of the 'b' / 'bl' instructions, and
- therefore load the function address into a register before
- performing a (otherwise direct) call. This is the default.
-
-'-mshort-calls'
- If not otherwise specified by an attribute, assume all direct calls
- are in the range of the 'b' / 'bl' instructions, so use these
- instructions for direct calls. The default is '-mlong-calls'.
-
-'-msmall16'
- Assume addresses can be loaded as 16-bit unsigned values. This
- does not apply to function addresses for which '-mlong-calls'
- semantics are in effect.
-
-'-mfp-mode=MODE'
- Set the prevailing mode of the floating-point unit. This
- determines the floating-point mode that is provided and expected at
- function call and return time. Making this mode match the mode you
- predominantly need at function start can make your programs smaller
- and faster by avoiding unnecessary mode switches.
-
- MODE can be set to one the following values:
-
- 'caller'
- Any mode at function entry is valid, and retained or restored
- when the function returns, and when it calls other functions.
- This mode is useful for compiling libraries or other
- compilation units you might want to incorporate into different
- programs with different prevailing FPU modes, and the
- convenience of being able to use a single object file
- outweighs the size and speed overhead for any extra mode
- switching that might be needed, compared with what would be
- needed with a more specific choice of prevailing FPU mode.
-
- 'truncate'
- This is the mode used for floating-point calculations with
- truncating (i.e. round towards zero) rounding mode. That
- includes conversion from floating point to integer.
-
- 'round-nearest'
- This is the mode used for floating-point calculations with
- round-to-nearest-or-even rounding mode.
-
- 'int'
- This is the mode used to perform integer calculations in the
- FPU, e.g. integer multiply, or integer
- multiply-and-accumulate.
-
- The default is '-mfp-mode=caller'
-
-'-mnosplit-lohi'
-'-mno-postinc'
-'-mno-postmodify'
- Code generation tweaks that disable, respectively, splitting of
- 32-bit loads, generation of post-increment addresses, and
- generation of post-modify addresses. The defaults are
- 'msplit-lohi', '-mpost-inc', and '-mpost-modify'.
-
-'-mnovect-double'
- Change the preferred SIMD mode to SImode. The default is
- '-mvect-double', which uses DImode as preferred SIMD mode.
-
-'-max-vect-align=NUM'
- The maximum alignment for SIMD vector mode types. NUM may be 4 or
- 8. The default is 8. Note that this is an ABI change, even though
- many library function interfaces are unaffected if they don't use
- SIMD vector modes in places that affect size and/or alignment of
- relevant types.
-
-'-msplit-vecmove-early'
- Split vector moves into single word moves before reload. In theory
- this can give better register allocation, but so far the reverse
- seems to be generally the case.
-
-'-m1reg-REG'
- Specify a register to hold the constant -1, which makes loading
- small negative constants and certain bitmasks faster. Allowable
- values for REG are 'r43' and 'r63', which specify use of that
- register as a fixed register, and 'none', which means that no
- register is used for this purpose. The default is '-m1reg-none'.
-
-
-File: gcc.info, Node: ARC Options, Next: ARM Options, Prev: Adapteva Epiphany Options, Up: Submodel Options
-
-3.17.3 ARC Options
-------------------
-
-The following options control the architecture variant for which code is
-being compiled:
-
-'-mbarrel-shifter'
- Generate instructions supported by barrel shifter. This is the
- default unless '-mcpu=ARC601' is in effect.
-
-'-mcpu=CPU'
- Set architecture type, register usage, and instruction scheduling
- parameters for CPU. There are also shortcut alias options
- available for backward compatibility and convenience. Supported
- values for CPU are
-
- 'ARC600'
- Compile for ARC600. Aliases: '-mA6', '-mARC600'.
-
- 'ARC601'
- Compile for ARC601. Alias: '-mARC601'.
-
- 'ARC700'
- Compile for ARC700. Aliases: '-mA7', '-mARC700'. This is the
- default when configured with '--with-cpu=arc700'.
-
-'-mdpfp'
-'-mdpfp-compact'
- FPX: Generate Double Precision FPX instructions, tuned for the
- compact implementation.
-
-'-mdpfp-fast'
- FPX: Generate Double Precision FPX instructions, tuned for the fast
- implementation.
-
-'-mno-dpfp-lrsr'
- Disable LR and SR instructions from using FPX extension aux
- registers.
-
-'-mea'
- Generate Extended arithmetic instructions. Currently only 'divaw',
- 'adds', 'subs', and 'sat16' are supported. This is always enabled
- for '-mcpu=ARC700'.
-
-'-mno-mpy'
- Do not generate mpy instructions for ARC700.
-
-'-mmul32x16'
- Generate 32x16 bit multiply and mac instructions.
-
-'-mmul64'
- Generate mul64 and mulu64 instructions. Only valid for
- '-mcpu=ARC600'.
-
-'-mnorm'
- Generate norm instruction. This is the default if '-mcpu=ARC700'
- is in effect.
-
-'-mspfp'
-'-mspfp-compact'
- FPX: Generate Single Precision FPX instructions, tuned for the
- compact implementation.
-
-'-mspfp-fast'
- FPX: Generate Single Precision FPX instructions, tuned for the fast
- implementation.
-
-'-msimd'
- Enable generation of ARC SIMD instructions via target-specific
- builtins. Only valid for '-mcpu=ARC700'.
-
-'-msoft-float'
- This option ignored; it is provided for compatibility purposes
- only. Software floating point code is emitted by default, and this
- default can overridden by FPX options; 'mspfp', 'mspfp-compact', or
- 'mspfp-fast' for single precision, and 'mdpfp', 'mdpfp-compact', or
- 'mdpfp-fast' for double precision.
-
-'-mswap'
- Generate swap instructions.
-
- The following options are passed through to the assembler, and also
-define preprocessor macro symbols.
-
-'-mdsp-packa'
- Passed down to the assembler to enable the DSP Pack A extensions.
- Also sets the preprocessor symbol '__Xdsp_packa'.
-
-'-mdvbf'
- Passed down to the assembler to enable the dual viterbi butterfly
- extension. Also sets the preprocessor symbol '__Xdvbf'.
-
-'-mlock'
- Passed down to the assembler to enable the Locked Load/Store
- Conditional extension. Also sets the preprocessor symbol
- '__Xlock'.
-
-'-mmac-d16'
- Passed down to the assembler. Also sets the preprocessor symbol
- '__Xxmac_d16'.
-
-'-mmac-24'
- Passed down to the assembler. Also sets the preprocessor symbol
- '__Xxmac_24'.
-
-'-mrtsc'
- Passed down to the assembler to enable the 64-bit Time-Stamp
- Counter extension instruction. Also sets the preprocessor symbol
- '__Xrtsc'.
-
-'-mswape'
- Passed down to the assembler to enable the swap byte ordering
- extension instruction. Also sets the preprocessor symbol
- '__Xswape'.
-
-'-mtelephony'
- Passed down to the assembler to enable dual and single operand
- instructions for telephony. Also sets the preprocessor symbol
- '__Xtelephony'.
-
-'-mxy'
- Passed down to the assembler to enable the XY Memory extension.
- Also sets the preprocessor symbol '__Xxy'.
-
- The following options control how the assembly code is annotated:
-
-'-misize'
- Annotate assembler instructions with estimated addresses.
-
-'-mannotate-align'
- Explain what alignment considerations lead to the decision to make
- an instruction short or long.
-
- The following options are passed through to the linker:
-
-'-marclinux'
- Passed through to the linker, to specify use of the 'arclinux'
- emulation. This option is enabled by default in tool chains built
- for 'arc-linux-uclibc' and 'arceb-linux-uclibc' targets when
- profiling is not requested.
-
-'-marclinux_prof'
- Passed through to the linker, to specify use of the 'arclinux_prof'
- emulation. This option is enabled by default in tool chains built
- for 'arc-linux-uclibc' and 'arceb-linux-uclibc' targets when
- profiling is requested.
-
- The following options control the semantics of generated code:
-
-'-mepilogue-cfi'
- Enable generation of call frame information for epilogues.
-
-'-mno-epilogue-cfi'
- Disable generation of call frame information for epilogues.
-
-'-mlong-calls'
- Generate call insns as register indirect calls, thus providing
- access to the full 32-bit address range.
-
-'-mmedium-calls'
- Don't use less than 25 bit addressing range for calls, which is the
- offset available for an unconditional branch-and-link instruction.
- Conditional execution of function calls is suppressed, to allow use
- of the 25-bit range, rather than the 21-bit range with conditional
- branch-and-link. This is the default for tool chains built for 'arc-linux-uclibc'
- and 'arceb-linux-uclibc' targets.
-
-'-mno-sdata'
- Do not generate sdata references. This is the default for tool
- chains built for 'arc-linux-uclibc' and 'arceb-linux-uclibc'
- targets.
-
-'-mucb-mcount'
- Instrument with mcount calls as used in UCB code. I.e. do the
- counting in the callee, not the caller. By default ARC
- instrumentation counts in the caller.
-
-'-mvolatile-cache'
- Use ordinarily cached memory accesses for volatile references.
- This is the default.
-
-'-mno-volatile-cache'
- Enable cache bypass for volatile references.
-
- The following options fine tune code generation:
-'-malign-call'
- Do alignment optimizations for call instructions.
-
-'-mauto-modify-reg'
- Enable the use of pre/post modify with register displacement.
-
-'-mbbit-peephole'
- Enable bbit peephole2.
-
-'-mno-brcc'
- This option disables a target-specific pass in 'arc_reorg' to
- generate 'BRcc' instructions. It has no effect on 'BRcc'
- generation driven by the combiner pass.
-
-'-mcase-vector-pcrel'
- Use pc-relative switch case tables - this enables case table
- shortening. This is the default for '-Os'.
-
-'-mcompact-casesi'
- Enable compact casesi pattern. This is the default for '-Os'.
-
-'-mno-cond-exec'
- Disable ARCompact specific pass to generate conditional execution
- instructions. Due to delay slot scheduling and interactions
- between operand numbers, literal sizes, instruction lengths, and
- the support for conditional execution, the target-independent pass
- to generate conditional execution is often lacking, so the ARC port
- has kept a special pass around that tries to find more conditional
- execution generating opportunities after register allocation,
- branch shortening, and delay slot scheduling have been done. This
- pass generally, but not always, improves performance and code size,
- at the cost of extra compilation time, which is why there is an
- option to switch it off. If you have a problem with call
- instructions exceeding their allowable offset range because they
- are conditionalized, you should consider using '-mmedium-calls'
- instead.
-
-'-mearly-cbranchsi'
- Enable pre-reload use of the cbranchsi pattern.
-
-'-mexpand-adddi'
- Expand 'adddi3' and 'subdi3' at rtl generation time into 'add.f',
- 'adc' etc.
-
-'-mindexed-loads'
- Enable the use of indexed loads. This can be problematic because
- some optimizers will then assume the that indexed stores exist,
- which is not the case.
-
-'-mlra'
- Enable Local Register Allocation. This is still experimental for
- ARC, so by default the compiler uses standard reload (i.e.
- '-mno-lra').
-
-'-mlra-priority-none'
- Don't indicate any priority for target registers.
-
-'-mlra-priority-compact'
- Indicate target register priority for r0..r3 / r12..r15.
-
-'-mlra-priority-noncompact'
- Reduce target regsiter priority for r0..r3 / r12..r15.
-
-'-mno-millicode'
- When optimizing for size (using '-Os'), prologues and epilogues
- that have to save or restore a large number of registers are often
- shortened by using call to a special function in libgcc; this is
- referred to as a _millicode_ call. As these calls can pose
- performance issues, and/or cause linking issues when linking in a
- nonstandard way, this option is provided to turn off millicode call
- generation.
-
-'-mmixed-code'
- Tweak register allocation to help 16-bit instruction generation.
- This generally has the effect of decreasing the average instruction
- size while increasing the instruction count.
-
-'-mq-class'
- Enable 'q' instruction alternatives. This is the default for
- '-Os'.
-
-'-mRcq'
- Enable Rcq constraint handling - most short code generation depends
- on this. This is the default.
-
-'-mRcw'
- Enable Rcw constraint handling - ccfsm condexec mostly depends on
- this. This is the default.
-
-'-msize-level=LEVEL'
- Fine-tune size optimization with regards to instruction lengths and
- alignment. The recognized values for LEVEL are:
- '0'
- No size optimization. This level is deprecated and treated
- like '1'.
-
- '1'
- Short instructions are used opportunistically.
-
- '2'
- In addition, alignment of loops and of code after barriers are
- dropped.
-
- '3'
- In addition, optional data alignment is dropped, and the
- option 'Os' is enabled.
-
- This defaults to '3' when '-Os' is in effect. Otherwise, the
- behavior when this is not set is equivalent to level '1'.
-
-'-mtune=CPU'
- Set instruction scheduling parameters for CPU, overriding any
- implied by '-mcpu='.
-
- Supported values for CPU are
-
- 'ARC600'
- Tune for ARC600 cpu.
-
- 'ARC601'
- Tune for ARC601 cpu.
-
- 'ARC700'
- Tune for ARC700 cpu with standard multiplier block.
-
- 'ARC700-xmac'
- Tune for ARC700 cpu with XMAC block.
-
- 'ARC725D'
- Tune for ARC725D cpu.
-
- 'ARC750D'
- Tune for ARC750D cpu.
-
-'-mmultcost=NUM'
- Cost to assume for a multiply instruction, with '4' being equal to
- a normal instruction.
-
-'-munalign-prob-threshold=PROBABILITY'
- Set probability threshold for unaligning branches. When tuning for
- 'ARC700' and optimizing for speed, branches without filled delay
- slot are preferably emitted unaligned and long, unless profiling
- indicates that the probability for the branch to be taken is below
- PROBABILITY. *Note Cross-profiling::. The default is
- (REG_BR_PROB_BASE/2), i.e. 5000.
-
- The following options are maintained for backward compatibility, but
-are now deprecated and will be removed in a future release:
-
-'-margonaut'
- Obsolete FPX.
-
-'-mbig-endian'
-'-EB'
- Compile code for big endian targets. Use of these options is now
- deprecated. Users wanting big-endian code, should use the 'arceb-elf32'
- and 'arceb-linux-uclibc' targets when building the tool chain, for
- which big-endian is the default.
-
-'-mlittle-endian'
-'-EL'
- Compile code for little endian targets. Use of these options is
- now deprecated. Users wanting little-endian code should use the 'arc-elf32'
- and 'arc-linux-uclibc' targets when building the tool chain, for
- which little-endian is the default.
-
-'-mbarrel_shifter'
- Replaced by '-mbarrel-shifter'
-
-'-mdpfp_compact'
- Replaced by '-mdpfp-compact'
-
-'-mdpfp_fast'
- Replaced by '-mdpfp-fast'
-
-'-mdsp_packa'
- Replaced by '-mdsp-packa'
-
-'-mEA'
- Replaced by '-mea'
-
-'-mmac_24'
- Replaced by '-mmac-24'
-
-'-mmac_d16'
- Replaced by '-mmac-d16'
-
-'-mspfp_compact'
- Replaced by '-mspfp-compact'
-
-'-mspfp_fast'
- Replaced by '-mspfp-fast'
-
-'-mtune=CPU'
- Values 'arc600', 'arc601', 'arc700' and 'arc700-xmac' for CPU are
- replaced by 'ARC600', 'ARC601', 'ARC700' and 'ARC700-xmac'
- respectively
-
-'-multcost=NUM'
- Replaced by '-mmultcost'.
-
-
-File: gcc.info, Node: ARM Options, Next: AVR Options, Prev: ARC Options, Up: Submodel Options
-
-3.17.4 ARM Options
-------------------
-
-These '-m' options are defined for Advanced RISC Machines (ARM)
-architectures:
-
-'-mabi=NAME'
- Generate code for the specified ABI. Permissible values are:
- 'apcs-gnu', 'atpcs', 'aapcs', 'aapcs-linux' and 'iwmmxt'.
-
-'-mapcs-frame'
- Generate a stack frame that is compliant with the ARM Procedure
- Call Standard for all functions, even if this is not strictly
- necessary for correct execution of the code. Specifying
- '-fomit-frame-pointer' with this option causes the stack frames not
- to be generated for leaf functions. The default is
- '-mno-apcs-frame'.
-
-'-mapcs'
- This is a synonym for '-mapcs-frame'.
-
-'-mthumb-interwork'
- Generate code that supports calling between the ARM and Thumb
- instruction sets. Without this option, on pre-v5 architectures,
- the two instruction sets cannot be reliably used inside one
- program. The default is '-mno-thumb-interwork', since slightly
- larger code is generated when '-mthumb-interwork' is specified. In
- AAPCS configurations this option is meaningless.
-
-'-mno-sched-prolog'
- Prevent the reordering of instructions in the function prologue, or
- the merging of those instruction with the instructions in the
- function's body. This means that all functions start with a
- recognizable set of instructions (or in fact one of a choice from a
- small set of different function prologues), and this information
- can be used to locate the start of functions inside an executable
- piece of code. The default is '-msched-prolog'.
-
-'-mfloat-abi=NAME'
- Specifies which floating-point ABI to use. Permissible values are:
- 'soft', 'softfp' and 'hard'.
-
- Specifying 'soft' causes GCC to generate output containing library
- calls for floating-point operations. 'softfp' allows the
- generation of code using hardware floating-point instructions, but
- still uses the soft-float calling conventions. 'hard' allows
- generation of floating-point instructions and uses FPU-specific
- calling conventions.
-
- The default depends on the specific target configuration. Note
- that the hard-float and soft-float ABIs are not link-compatible;
- you must compile your entire program with the same ABI, and link
- with a compatible set of libraries.
-
-'-mlittle-endian'
- Generate code for a processor running in little-endian mode. This
- is the default for all standard configurations.
-
-'-mbig-endian'
- Generate code for a processor running in big-endian mode; the
- default is to compile code for a little-endian processor.
-
-'-mwords-little-endian'
- This option only applies when generating code for big-endian
- processors. Generate code for a little-endian word order but a
- big-endian byte order. That is, a byte order of the form
- '32107654'. Note: this option should only be used if you require
- compatibility with code for big-endian ARM processors generated by
- versions of the compiler prior to 2.8. This option is now
- deprecated.
-
-'-march=NAME'
- This specifies the name of the target ARM architecture. GCC uses
- this name to determine what kind of instructions it can emit when
- generating assembly code. This option can be used in conjunction
- with or instead of the '-mcpu=' option. Permissible names are:
- 'armv2', 'armv2a', 'armv3', 'armv3m', 'armv4', 'armv4t', 'armv5',
- 'armv5t', 'armv5e', 'armv5te', 'armv6', 'armv6j', 'armv6t2',
- 'armv6z', 'armv6zk', 'armv6-m', 'armv7', 'armv7-a', 'armv7-r',
- 'armv7-m', 'armv7e-m', 'armv7ve', 'armv8-a', 'armv8-a+crc',
- 'iwmmxt', 'iwmmxt2', 'ep9312'.
-
- '-march=armv7ve' is the armv7-a architecture with virtualization
- extensions.
-
- '-march=armv8-a+crc' enables code generation for the ARMv8-A
- architecture together with the optional CRC32 extensions.
-
- '-march=native' causes the compiler to auto-detect the architecture
- of the build computer. At present, this feature is only supported
- on Linux, and not all architectures are recognized. If the
- auto-detect is unsuccessful the option has no effect.
-
-'-mtune=NAME'
- This option specifies the name of the target ARM processor for
- which GCC should tune the performance of the code. For some ARM
- implementations better performance can be obtained by using this
- option. Permissible names are: 'arm2', 'arm250', 'arm3', 'arm6',
- 'arm60', 'arm600', 'arm610', 'arm620', 'arm7', 'arm7m', 'arm7d',
- 'arm7dm', 'arm7di', 'arm7dmi', 'arm70', 'arm700', 'arm700i',
- 'arm710', 'arm710c', 'arm7100', 'arm720', 'arm7500', 'arm7500fe',
- 'arm7tdmi', 'arm7tdmi-s', 'arm710t', 'arm720t', 'arm740t',
- 'strongarm', 'strongarm110', 'strongarm1100', 'strongarm1110',
- 'arm8', 'arm810', 'arm9', 'arm9e', 'arm920', 'arm920t', 'arm922t',
- 'arm946e-s', 'arm966e-s', 'arm968e-s', 'arm926ej-s', 'arm940t',
- 'arm9tdmi', 'arm10tdmi', 'arm1020t', 'arm1026ej-s', 'arm10e',
- 'arm1020e', 'arm1022e', 'arm1136j-s', 'arm1136jf-s', 'mpcore',
- 'mpcorenovfp', 'arm1156t2-s', 'arm1156t2f-s', 'arm1176jz-s',
- 'arm1176jzf-s', 'cortex-a5', 'cortex-a7', 'cortex-a8', 'cortex-a9',
- 'cortex-a12', 'cortex-a15', 'cortex-a53', 'cortex-a57',
- 'cortex-r4', 'cortex-r4f', 'cortex-r5', 'cortex-r7', 'cortex-m4',
- 'cortex-m3', 'cortex-m1', 'cortex-m0', 'cortex-m0plus',
- 'marvell-pj4', 'xscale', 'iwmmxt', 'iwmmxt2', 'ep9312', 'fa526',
- 'fa626', 'fa606te', 'fa626te', 'fmp626', 'fa726te'.
-
- Additionally, this option can specify that GCC should tune the
- performance of the code for a big.LITTLE system. Permissible names
- are: 'cortex-a15.cortex-a7', 'cortex-a57.cortex-a53'.
-
- '-mtune=generic-ARCH' specifies that GCC should tune the
- performance for a blend of processors within architecture ARCH.
- The aim is to generate code that run well on the current most
- popular processors, balancing between optimizations that benefit
- some CPUs in the range, and avoiding performance pitfalls of other
- CPUs. The effects of this option may change in future GCC versions
- as CPU models come and go.
-
- '-mtune=native' causes the compiler to auto-detect the CPU of the
- build computer. At present, this feature is only supported on
- Linux, and not all architectures are recognized. If the
- auto-detect is unsuccessful the option has no effect.
-
-'-mcpu=NAME'
- This specifies the name of the target ARM processor. GCC uses this
- name to derive the name of the target ARM architecture (as if
- specified by '-march') and the ARM processor type for which to tune
- for performance (as if specified by '-mtune'). Where this option
- is used in conjunction with '-march' or '-mtune', those options
- take precedence over the appropriate part of this option.
-
- Permissible names for this option are the same as those for
- '-mtune'.
-
- '-mcpu=generic-ARCH' is also permissible, and is equivalent to
- '-march=ARCH -mtune=generic-ARCH'. See '-mtune' for more
- information.
-
- '-mcpu=native' causes the compiler to auto-detect the CPU of the
- build computer. At present, this feature is only supported on
- Linux, and not all architectures are recognized. If the
- auto-detect is unsuccessful the option has no effect.
-
-'-mfpu=NAME'
- This specifies what floating-point hardware (or hardware emulation)
- is available on the target. Permissible names are: 'vfp', 'vfpv3',
- 'vfpv3-fp16', 'vfpv3-d16', 'vfpv3-d16-fp16', 'vfpv3xd',
- 'vfpv3xd-fp16', 'neon', 'neon-fp16', 'vfpv4', 'vfpv4-d16',
- 'fpv4-sp-d16', 'neon-vfpv4', 'fp-armv8', 'neon-fp-armv8', and
- 'crypto-neon-fp-armv8'.
-
- If '-msoft-float' is specified this specifies the format of
- floating-point values.
-
- If the selected floating-point hardware includes the NEON extension
- (e.g. '-mfpu'='neon'), note that floating-point operations are not
- generated by GCC's auto-vectorization pass unless
- '-funsafe-math-optimizations' is also specified. This is because
- NEON hardware does not fully implement the IEEE 754 standard for
- floating-point arithmetic (in particular denormal values are
- treated as zero), so the use of NEON instructions may lead to a
- loss of precision.
-
-'-mfp16-format=NAME'
- Specify the format of the '__fp16' half-precision floating-point
- type. Permissible names are 'none', 'ieee', and 'alternative'; the
- default is 'none', in which case the '__fp16' type is not defined.
- *Note Half-Precision::, for more information.
-
-'-mstructure-size-boundary=N'
- The sizes of all structures and unions are rounded up to a multiple
- of the number of bits set by this option. Permissible values are
- 8, 32 and 64. The default value varies for different toolchains.
- For the COFF targeted toolchain the default value is 8. A value of
- 64 is only allowed if the underlying ABI supports it.
-
- Specifying a larger number can produce faster, more efficient code,
- but can also increase the size of the program. Different values
- are potentially incompatible. Code compiled with one value cannot
- necessarily expect to work with code or libraries compiled with
- another value, if they exchange information using structures or
- unions.
-
-'-mabort-on-noreturn'
- Generate a call to the function 'abort' at the end of a 'noreturn'
- function. It is executed if the function tries to return.
-
-'-mlong-calls'
-'-mno-long-calls'
- Tells the compiler to perform function calls by first loading the
- address of the function into a register and then performing a
- subroutine call on this register. This switch is needed if the
- target function lies outside of the 64-megabyte addressing range of
- the offset-based version of subroutine call instruction.
-
- Even if this switch is enabled, not all function calls are turned
- into long calls. The heuristic is that static functions, functions
- that have the 'short-call' attribute, functions that are inside the
- scope of a '#pragma no_long_calls' directive, and functions whose
- definitions have already been compiled within the current
- compilation unit are not turned into long calls. The exceptions to
- this rule are that weak function definitions, functions with the
- 'long-call' attribute or the 'section' attribute, and functions
- that are within the scope of a '#pragma long_calls' directive are
- always turned into long calls.
-
- This feature is not enabled by default. Specifying
- '-mno-long-calls' restores the default behavior, as does placing
- the function calls within the scope of a '#pragma long_calls_off'
- directive. Note these switches have no effect on how the compiler
- generates code to handle function calls via function pointers.
-
-'-msingle-pic-base'
- Treat the register used for PIC addressing as read-only, rather
- than loading it in the prologue for each function. The runtime
- system is responsible for initializing this register with an
- appropriate value before execution begins.
-
-'-mpic-register=REG'
- Specify the register to be used for PIC addressing. For standard
- PIC base case, the default will be any suitable register determined
- by compiler. For single PIC base case, the default is 'R9' if
- target is EABI based or stack-checking is enabled, otherwise the
- default is 'R10'.
-
-'-mpic-data-is-text-relative'
- Assume that each data segments are relative to text segment at load
- time. Therefore, it permits addressing data using PC-relative
- operations. This option is on by default for targets other than
- VxWorks RTP.
-
-'-mpoke-function-name'
- Write the name of each function into the text section, directly
- preceding the function prologue. The generated code is similar to
- this:
-
- t0
- .ascii "arm_poke_function_name", 0
- .align
- t1
- .word 0xff000000 + (t1 - t0)
- arm_poke_function_name
- mov ip, sp
- stmfd sp!, {fp, ip, lr, pc}
- sub fp, ip, #4
-
- When performing a stack backtrace, code can inspect the value of
- 'pc' stored at 'fp + 0'. If the trace function then looks at
- location 'pc - 12' and the top 8 bits are set, then we know that
- there is a function name embedded immediately preceding this
- location and has length '((pc[-3]) & 0xff000000)'.
-
-'-mthumb'
-'-marm'
-
- Select between generating code that executes in ARM and Thumb
- states. The default for most configurations is to generate code
- that executes in ARM state, but the default can be changed by
- configuring GCC with the '--with-mode='STATE configure option.
-
-'-mtpcs-frame'
- Generate a stack frame that is compliant with the Thumb Procedure
- Call Standard for all non-leaf functions. (A leaf function is one
- that does not call any other functions.) The default is
- '-mno-tpcs-frame'.
-
-'-mtpcs-leaf-frame'
- Generate a stack frame that is compliant with the Thumb Procedure
- Call Standard for all leaf functions. (A leaf function is one that
- does not call any other functions.) The default is
- '-mno-apcs-leaf-frame'.
-
-'-mcallee-super-interworking'
- Gives all externally visible functions in the file being compiled
- an ARM instruction set header which switches to Thumb mode before
- executing the rest of the function. This allows these functions to
- be called from non-interworking code. This option is not valid in
- AAPCS configurations because interworking is enabled by default.
-
-'-mcaller-super-interworking'
- Allows calls via function pointers (including virtual functions) to
- execute correctly regardless of whether the target code has been
- compiled for interworking or not. There is a small overhead in the
- cost of executing a function pointer if this option is enabled.
- This option is not valid in AAPCS configurations because
- interworking is enabled by default.
-
-'-mtp=NAME'
- Specify the access model for the thread local storage pointer. The
- valid models are 'soft', which generates calls to
- '__aeabi_read_tp', 'cp15', which fetches the thread pointer from
- 'cp15' directly (supported in the arm6k architecture), and 'auto',
- which uses the best available method for the selected processor.
- The default setting is 'auto'.
-
-'-mtls-dialect=DIALECT'
- Specify the dialect to use for accessing thread local storage. Two
- DIALECTs are supported--'gnu' and 'gnu2'. The 'gnu' dialect
- selects the original GNU scheme for supporting local and global
- dynamic TLS models. The 'gnu2' dialect selects the GNU descriptor
- scheme, which provides better performance for shared libraries.
- The GNU descriptor scheme is compatible with the original scheme,
- but does require new assembler, linker and library support.
- Initial and local exec TLS models are unaffected by this option and
- always use the original scheme.
-
-'-mword-relocations'
- Only generate absolute relocations on word-sized values (i.e.
- R_ARM_ABS32). This is enabled by default on targets (uClinux,
- SymbianOS) where the runtime loader imposes this restriction, and
- when '-fpic' or '-fPIC' is specified.
-
-'-mfix-cortex-m3-ldrd'
- Some Cortex-M3 cores can cause data corruption when 'ldrd'
- instructions with overlapping destination and base registers are
- used. This option avoids generating these instructions. This
- option is enabled by default when '-mcpu=cortex-m3' is specified.
-
-'-munaligned-access'
-'-mno-unaligned-access'
- Enables (or disables) reading and writing of 16- and 32- bit values
- from addresses that are not 16- or 32- bit aligned. By default
- unaligned access is disabled for all pre-ARMv6 and all ARMv6-M
- architectures, and enabled for all other architectures. If
- unaligned access is not enabled then words in packed data
- structures will be accessed a byte at a time.
-
- The ARM attribute 'Tag_CPU_unaligned_access' will be set in the
- generated object file to either true or false, depending upon the
- setting of this option. If unaligned access is enabled then the
- preprocessor symbol '__ARM_FEATURE_UNALIGNED' will also be defined.
-
-'-mneon-for-64bits'
- Enables using Neon to handle scalar 64-bits operations. This is
- disabled by default since the cost of moving data from core
- registers to Neon is high.
-
-'-mslow-flash-data'
- Assume loading data from flash is slower than fetching instruction.
- Therefore literal load is minimized for better performance. This
- option is only supported when compiling for ARMv7 M-profile and off
- by default.
-
-'-mrestrict-it'
- Restricts generation of IT blocks to conform to the rules of ARMv8.
- IT blocks can only contain a single 16-bit instruction from a
- select set of instructions. This option is on by default for ARMv8
- Thumb mode.
-
-
-File: gcc.info, Node: AVR Options, Next: Blackfin Options, Prev: ARM Options, Up: Submodel Options
-
-3.17.5 AVR Options
-------------------
-
-These options are defined for AVR implementations:
-
-'-mmcu=MCU'
- Specify Atmel AVR instruction set architectures (ISA) or MCU type.
-
- The default for this option is 'avr2'.
-
- GCC supports the following AVR devices and ISAs:
-
- 'avr2'
- "Classic" devices with up to 8 KiB of program memory.
- MCU = 'attiny22', 'attiny26', 'at90c8534', 'at90s2313',
- 'at90s2323', 'at90s2333', 'at90s2343', 'at90s4414',
- 'at90s4433', 'at90s4434', 'at90s8515', 'at90s8535'.
-
- 'avr25'
- "Classic" devices with up to 8 KiB of program memory and with
- the 'MOVW' instruction.
- MCU = 'ata5272', 'ata6289', 'attiny13', 'attiny13a',
- 'attiny2313', 'attiny2313a', 'attiny24', 'attiny24a',
- 'attiny25', 'attiny261', 'attiny261a', 'attiny43u',
- 'attiny4313', 'attiny44', 'attiny44a', 'attiny45',
- 'attiny461', 'attiny461a', 'attiny48', 'attiny84',
- 'attiny84a', 'attiny85', 'attiny861', 'attiny861a',
- 'attiny87', 'attiny88', 'at86rf401'.
-
- 'avr3'
- "Classic" devices with 16 KiB up to 64 KiB of program memory.
- MCU = 'at43usb355', 'at76c711'.
-
- 'avr31'
- "Classic" devices with 128 KiB of program memory.
- MCU = 'atmega103', 'at43usb320'.
-
- 'avr35'
- "Classic" devices with 16 KiB up to 64 KiB of program memory
- and with the 'MOVW' instruction.
- MCU = 'ata5505', 'atmega16u2', 'atmega32u2', 'atmega8u2',
- 'attiny1634', 'attiny167', 'at90usb162', 'at90usb82'.
-
- 'avr4'
- "Enhanced" devices with up to 8 KiB of program memory.
- MCU = 'ata6285', 'ata6286', 'atmega48', 'atmega48a',
- 'atmega48p', 'atmega48pa', 'atmega8', 'atmega8a',
- 'atmega8hva', 'atmega8515', 'atmega8535', 'atmega88',
- 'atmega88a', 'atmega88p', 'atmega88pa', 'at90pwm1',
- 'at90pwm2', 'at90pwm2b', 'at90pwm3', 'at90pwm3b', 'at90pwm81'.
-
- 'avr5'
- "Enhanced" devices with 16 KiB up to 64 KiB of program memory.
-
- MCU = 'ata5790', 'ata5790n', 'ata5795', 'atmega16',
- 'atmega16a', 'atmega16hva', 'atmega16hva2', 'atmega16hvb',
- 'atmega16hvbrevb', 'atmega16m1', 'atmega16u4', 'atmega161',
- 'atmega162', 'atmega163', 'atmega164a', 'atmega164p',
- 'atmega164pa', 'atmega165', 'atmega165a', 'atmega165p',
- 'atmega165pa', 'atmega168', 'atmega168a', 'atmega168p',
- 'atmega168pa', 'atmega169', 'atmega169a', 'atmega169p',
- 'atmega169pa', 'atmega26hvg', 'atmega32', 'atmega32a',
- 'atmega32c1', 'atmega32hvb', 'atmega32hvbrevb', 'atmega32m1',
- 'atmega32u4', 'atmega32u6', 'atmega323', 'atmega324a',
- 'atmega324p', 'atmega324pa', 'atmega325', 'atmega325a',
- 'atmega325p', 'atmega3250', 'atmega3250a', 'atmega3250p',
- 'atmega3250pa', 'atmega328', 'atmega328p', 'atmega329',
- 'atmega329a', 'atmega329p', 'atmega329pa', 'atmega3290',
- 'atmega3290a', 'atmega3290p', 'atmega3290pa', 'atmega406',
- 'atmega48hvf', 'atmega64', 'atmega64a', 'atmega64c1',
- 'atmega64hve', 'atmega64m1', 'atmega64rfa2', 'atmega64rfr2',
- 'atmega640', 'atmega644', 'atmega644a', 'atmega644p',
- 'atmega644pa', 'atmega645', 'atmega645a', 'atmega645p',
- 'atmega6450', 'atmega6450a', 'atmega6450p', 'atmega649',
- 'atmega649a', 'atmega649p', 'atmega6490', 'atmega6490a',
- 'atmega6490p', 'at90can32', 'at90can64', 'at90pwm161',
- 'at90pwm216', 'at90pwm316', 'at90scr100', 'at90usb646',
- 'at90usb647', 'at94k', 'm3000'.
-
- 'avr51'
- "Enhanced" devices with 128 KiB of program memory.
- MCU = 'atmega128', 'atmega128a', 'atmega128rfa1',
- 'atmega1280', 'atmega1281', 'atmega1284', 'atmega1284p',
- 'at90can128', 'at90usb1286', 'at90usb1287'.
-
- 'avr6'
- "Enhanced" devices with 3-byte PC, i.e. with more than 128 KiB
- of program memory.
- MCU = 'atmega2560', 'atmega2561'.
-
- 'avrxmega2'
- "XMEGA" devices with more than 8 KiB and up to 64 KiB of
- program memory.
- MCU = 'atmxt112sl', 'atmxt224', 'atmxt224e', 'atmxt336s',
- 'atxmega16a4', 'atxmega16a4u', 'atxmega16c4', 'atxmega16d4',
- 'atxmega32a4', 'atxmega32a4u', 'atxmega32c4', 'atxmega32d4',
- 'atxmega32e5', 'atxmega32x1'.
-
- 'avrxmega4'
- "XMEGA" devices with more than 64 KiB and up to 128 KiB of
- program memory.
- MCU = 'atxmega64a3', 'atxmega64a3u', 'atxmega64a4u',
- 'atxmega64b1', 'atxmega64b3', 'atxmega64c3', 'atxmega64d3',
- 'atxmega64d4'.
-
- 'avrxmega5'
- "XMEGA" devices with more than 64 KiB and up to 128 KiB of
- program memory and more than 64 KiB of RAM.
- MCU = 'atxmega64a1', 'atxmega64a1u'.
-
- 'avrxmega6'
- "XMEGA" devices with more than 128 KiB of program memory.
- MCU = 'atmxt540s', 'atmxt540sreva', 'atxmega128a3',
- 'atxmega128a3u', 'atxmega128b1', 'atxmega128b3',
- 'atxmega128c3', 'atxmega128d3', 'atxmega128d4',
- 'atxmega192a3', 'atxmega192a3u', 'atxmega192c3',
- 'atxmega192d3', 'atxmega256a3', 'atxmega256a3b',
- 'atxmega256a3bu', 'atxmega256a3u', 'atxmega256c3',
- 'atxmega256d3', 'atxmega384c3', 'atxmega384d3'.
-
- 'avrxmega7'
- "XMEGA" devices with more than 128 KiB of program memory and
- more than 64 KiB of RAM.
- MCU = 'atxmega128a1', 'atxmega128a1u', 'atxmega128a4u'.
-
- 'avr1'
- This ISA is implemented by the minimal AVR core and supported
- for assembler only.
- MCU = 'attiny11', 'attiny12', 'attiny15', 'attiny28',
- 'at90s1200'.
-
-'-maccumulate-args'
- Accumulate outgoing function arguments and acquire/release the
- needed stack space for outgoing function arguments once in function
- prologue/epilogue. Without this option, outgoing arguments are
- pushed before calling a function and popped afterwards.
-
- Popping the arguments after the function call can be expensive on
- AVR so that accumulating the stack space might lead to smaller
- executables because arguments need not to be removed from the stack
- after such a function call.
-
- This option can lead to reduced code size for functions that
- perform several calls to functions that get their arguments on the
- stack like calls to printf-like functions.
-
-'-mbranch-cost=COST'
- Set the branch costs for conditional branch instructions to COST.
- Reasonable values for COST are small, non-negative integers. The
- default branch cost is 0.
-
-'-mcall-prologues'
- Functions prologues/epilogues are expanded as calls to appropriate
- subroutines. Code size is smaller.
-
-'-mint8'
- Assume 'int' to be 8-bit integer. This affects the sizes of all
- types: a 'char' is 1 byte, an 'int' is 1 byte, a 'long' is 2 bytes,
- and 'long long' is 4 bytes. Please note that this option does not
- conform to the C standards, but it results in smaller code size.
-
-'-mno-interrupts'
- Generated code is not compatible with hardware interrupts. Code
- size is smaller.
-
-'-mrelax'
- Try to replace 'CALL' resp. 'JMP' instruction by the shorter
- 'RCALL' resp. 'RJMP' instruction if applicable. Setting '-mrelax'
- just adds the '--relax' option to the linker command line when the
- linker is called.
-
- Jump relaxing is performed by the linker because jump offsets are
- not known before code is located. Therefore, the assembler code
- generated by the compiler is the same, but the instructions in the
- executable may differ from instructions in the assembler code.
-
- Relaxing must be turned on if linker stubs are needed, see the
- section on 'EIND' and linker stubs below.
-
-'-msp8'
- Treat the stack pointer register as an 8-bit register, i.e. assume
- the high byte of the stack pointer is zero. In general, you don't
- need to set this option by hand.
-
- This option is used internally by the compiler to select and build
- multilibs for architectures 'avr2' and 'avr25'. These
- architectures mix devices with and without 'SPH'. For any setting
- other than '-mmcu=avr2' or '-mmcu=avr25' the compiler driver will
- add or remove this option from the compiler proper's command line,
- because the compiler then knows if the device or architecture has
- an 8-bit stack pointer and thus no 'SPH' register or not.
-
-'-mstrict-X'
- Use address register 'X' in a way proposed by the hardware. This
- means that 'X' is only used in indirect, post-increment or
- pre-decrement addressing.
-
- Without this option, the 'X' register may be used in the same way
- as 'Y' or 'Z' which then is emulated by additional instructions.
- For example, loading a value with 'X+const' addressing with a small
- non-negative 'const < 64' to a register RN is performed as
-
- adiw r26, const ; X += const
- ld RN, X ; RN = *X
- sbiw r26, const ; X -= const
-
-'-mtiny-stack'
- Only change the lower 8 bits of the stack pointer.
-
-'-Waddr-space-convert'
- Warn about conversions between address spaces in the case where the
- resulting address space is not contained in the incoming address
- space.
-
-3.17.5.1 'EIND' and Devices with more than 128 Ki Bytes of Flash
-................................................................
-
-Pointers in the implementation are 16 bits wide. The address of a
-function or label is represented as word address so that indirect jumps
-and calls can target any code address in the range of 64 Ki words.
-
- In order to facilitate indirect jump on devices with more than 128 Ki
-bytes of program memory space, there is a special function register
-called 'EIND' that serves as most significant part of the target address
-when 'EICALL' or 'EIJMP' instructions are used.
-
- Indirect jumps and calls on these devices are handled as follows by the
-compiler and are subject to some limitations:
-
- * The compiler never sets 'EIND'.
-
- * The compiler uses 'EIND' implicitely in 'EICALL'/'EIJMP'
- instructions or might read 'EIND' directly in order to emulate an
- indirect call/jump by means of a 'RET' instruction.
-
- * The compiler assumes that 'EIND' never changes during the startup
- code or during the application. In particular, 'EIND' is not
- saved/restored in function or interrupt service routine
- prologue/epilogue.
-
- * For indirect calls to functions and computed goto, the linker
- generates _stubs_. Stubs are jump pads sometimes also called
- _trampolines_. Thus, the indirect call/jump jumps to such a stub.
- The stub contains a direct jump to the desired address.
-
- * Linker relaxation must be turned on so that the linker will
- generate the stubs correctly an all situaltion. See the compiler
- option '-mrelax' and the linler option '--relax'. There are corner
- cases where the linker is supposed to generate stubs but aborts
- without relaxation and without a helpful error message.
-
- * The default linker script is arranged for code with 'EIND = 0'. If
- code is supposed to work for a setup with 'EIND != 0', a custom
- linker script has to be used in order to place the sections whose
- name start with '.trampolines' into the segment where 'EIND' points
- to.
-
- * The startup code from libgcc never sets 'EIND'. Notice that
- startup code is a blend of code from libgcc and AVR-LibC. For the
- impact of AVR-LibC on 'EIND', see the
- AVR-LibC user manual (http://nongnu.org/avr-libc/user-manual/).
-
- * It is legitimate for user-specific startup code to set up 'EIND'
- early, for example by means of initialization code located in
- section '.init3'. Such code runs prior to general startup code
- that initializes RAM and calls constructors, but after the bit of
- startup code from AVR-LibC that sets 'EIND' to the segment where
- the vector table is located.
- #include <avr/io.h>
-
- static void
- __attribute__((section(".init3"),naked,used,no_instrument_function))
- init3_set_eind (void)
- {
- __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
- "out %i0,r24" :: "n" (&EIND) : "r24","memory");
- }
-
- The '__trampolines_start' symbol is defined in the linker script.
-
- * Stubs are generated automatically by the linker if the following
- two conditions are met:
-
- - The address of a label is taken by means of the 'gs' modifier
- (short for _generate stubs_) like so:
- LDI r24, lo8(gs(FUNC))
- LDI r25, hi8(gs(FUNC))
- - The final location of that label is in a code segment
- _outside_ the segment where the stubs are located.
-
- * The compiler emits such 'gs' modifiers for code labels in the
- following situations:
- - Taking address of a function or code label.
- - Computed goto.
- - If prologue-save function is used, see '-mcall-prologues'
- command-line option.
- - Switch/case dispatch tables. If you do not want such dispatch
- tables you can specify the '-fno-jump-tables' command-line
- option.
- - C and C++ constructors/destructors called during
- startup/shutdown.
- - If the tools hit a 'gs()' modifier explained above.
-
- * Jumping to non-symbolic addresses like so is _not_ supported:
-
- int main (void)
- {
- /* Call function at word address 0x2 */
- return ((int(*)(void)) 0x2)();
- }
-
- Instead, a stub has to be set up, i.e. the function has to be
- called through a symbol ('func_4' in the example):
-
- int main (void)
- {
- extern int func_4 (void);
-
- /* Call function at byte address 0x4 */
- return func_4();
- }
-
- and the application be linked with '-Wl,--defsym,func_4=0x4'.
- Alternatively, 'func_4' can be defined in the linker script.
-
-3.17.5.2 Handling of the 'RAMPD', 'RAMPX', 'RAMPY' and 'RAMPZ' Special Function Registers
-.........................................................................................
-
-Some AVR devices support memories larger than the 64 KiB range that can
-be accessed with 16-bit pointers. To access memory locations outside
-this 64 KiB range, the contentent of a 'RAMP' register is used as high
-part of the address: The 'X', 'Y', 'Z' address register is concatenated
-with the 'RAMPX', 'RAMPY', 'RAMPZ' special function register,
-respectively, to get a wide address. Similarly, 'RAMPD' is used
-together with direct addressing.
-
- * The startup code initializes the 'RAMP' special function registers
- with zero.
-
- * If a *note named address space: AVR Named Address Spaces. other
- than generic or '__flash' is used, then 'RAMPZ' is set as needed
- before the operation.
-
- * If the device supports RAM larger than 64 KiB and the compiler
- needs to change 'RAMPZ' to accomplish an operation, 'RAMPZ' is
- reset to zero after the operation.
-
- * If the device comes with a specific 'RAMP' register, the ISR
- prologue/epilogue saves/restores that SFR and initializes it with
- zero in case the ISR code might (implicitly) use it.
-
- * RAM larger than 64 KiB is not supported by GCC for AVR targets. If
- you use inline assembler to read from locations outside the 16-bit
- address range and change one of the 'RAMP' registers, you must
- reset it to zero after the access.
-
-3.17.5.3 AVR Built-in Macros
-............................
-
-GCC defines several built-in macros so that the user code can test for
-the presence or absence of features. Almost any of the following
-built-in macros are deduced from device capabilities and thus triggered
-by the '-mmcu=' command-line option.
-
- For even more AVR-specific built-in macros see *note AVR Named Address
-Spaces:: and *note AVR Built-in Functions::.
-
-'__AVR_ARCH__'
- Build-in macro that resolves to a decimal number that identifies
- the architecture and depends on the '-mmcu=MCU' option. Possible
- values are:
-
- '2', '25', '3', '31', '35', '4', '5', '51', '6', '102', '104',
- '105', '106', '107'
-
- for MCU='avr2', 'avr25', 'avr3', 'avr31', 'avr35', 'avr4', 'avr5',
- 'avr51', 'avr6', 'avrxmega2', 'avrxmega4', 'avrxmega5',
- 'avrxmega6', 'avrxmega7', respectively. If MCU specifies a device,
- this built-in macro is set accordingly. For example, with
- '-mmcu=atmega8' the macro will be defined to '4'.
-
-'__AVR_DEVICE__'
- Setting '-mmcu=DEVICE' defines this built-in macro which reflects
- the device's name. For example, '-mmcu=atmega8' defines the
- built-in macro '__AVR_ATmega8__', '-mmcu=attiny261a' defines
- '__AVR_ATtiny261A__', etc.
-
- The built-in macros' names follow the scheme '__AVR_DEVICE__' where
- DEVICE is the device name as from the AVR user manual. The
- difference between DEVICE in the built-in macro and DEVICE in
- '-mmcu=DEVICE' is that the latter is always lowercase.
-
- If DEVICE is not a device but only a core architecture like
- 'avr51', this macro will not be defined.
-
-'__AVR_XMEGA__'
- The device / architecture belongs to the XMEGA family of devices.
-
-'__AVR_HAVE_ELPM__'
- The device has the the 'ELPM' instruction.
-
-'__AVR_HAVE_ELPMX__'
- The device has the 'ELPM RN,Z' and 'ELPM RN,Z+' instructions.
-
-'__AVR_HAVE_MOVW__'
- The device has the 'MOVW' instruction to perform 16-bit
- register-register moves.
-
-'__AVR_HAVE_LPMX__'
- The device has the 'LPM RN,Z' and 'LPM RN,Z+' instructions.
-
-'__AVR_HAVE_MUL__'
- The device has a hardware multiplier.
-
-'__AVR_HAVE_JMP_CALL__'
- The device has the 'JMP' and 'CALL' instructions. This is the case
- for devices with at least 16 KiB of program memory.
-
-'__AVR_HAVE_EIJMP_EICALL__'
-'__AVR_3_BYTE_PC__'
- The device has the 'EIJMP' and 'EICALL' instructions. This is the
- case for devices with more than 128 KiB of program memory. This
- also means that the program counter (PC) is 3 bytes wide.
-
-'__AVR_2_BYTE_PC__'
- The program counter (PC) is 2 bytes wide. This is the case for
- devices with up to 128 KiB of program memory.
-
-'__AVR_HAVE_8BIT_SP__'
-'__AVR_HAVE_16BIT_SP__'
- The stack pointer (SP) register is treated as 8-bit respectively
- 16-bit register by the compiler. The definition of these macros is
- affected by '-mtiny-stack'.
-
-'__AVR_HAVE_SPH__'
-'__AVR_SP8__'
- The device has the SPH (high part of stack pointer) special
- function register or has an 8-bit stack pointer, respectively. The
- definition of these macros is affected by '-mmcu=' and in the cases
- of '-mmcu=avr2' and '-mmcu=avr25' also by '-msp8'.
-
-'__AVR_HAVE_RAMPD__'
-'__AVR_HAVE_RAMPX__'
-'__AVR_HAVE_RAMPY__'
-'__AVR_HAVE_RAMPZ__'
- The device has the 'RAMPD', 'RAMPX', 'RAMPY', 'RAMPZ' special
- function register, respectively.
-
-'__NO_INTERRUPTS__'
- This macro reflects the '-mno-interrupts' command line option.
-
-'__AVR_ERRATA_SKIP__'
-'__AVR_ERRATA_SKIP_JMP_CALL__'
- Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
- instructions because of a hardware erratum. Skip instructions are
- 'SBRS', 'SBRC', 'SBIS', 'SBIC' and 'CPSE'. The second macro is
- only defined if '__AVR_HAVE_JMP_CALL__' is also set.
-
-'__AVR_ISA_RMW__'
- The device has Read-Modify-Write instructions (XCH, LAC, LAS and
- LAT).
-
-'__AVR_SFR_OFFSET__=OFFSET'
- Instructions that can address I/O special function registers
- directly like 'IN', 'OUT', 'SBI', etc. may use a different address
- as if addressed by an instruction to access RAM like 'LD' or 'STS'.
- This offset depends on the device architecture and has to be
- subtracted from the RAM address in order to get the respective
- I/O address.
-
-'__WITH_AVRLIBC__'
- The compiler is configured to be used together with AVR-Libc. See
- the '--with-avrlibc' configure option.
-
-
-File: gcc.info, Node: Blackfin Options, Next: C6X Options, Prev: AVR Options, Up: Submodel Options
-
-3.17.6 Blackfin Options
------------------------
-
-'-mcpu=CPU[-SIREVISION]'
- Specifies the name of the target Blackfin processor. Currently,
- CPU can be one of 'bf512', 'bf514', 'bf516', 'bf518', 'bf522',
- 'bf523', 'bf524', 'bf525', 'bf526', 'bf527', 'bf531', 'bf532',
- 'bf533', 'bf534', 'bf536', 'bf537', 'bf538', 'bf539', 'bf542',
- 'bf544', 'bf547', 'bf548', 'bf549', 'bf542m', 'bf544m', 'bf547m',
- 'bf548m', 'bf549m', 'bf561', 'bf592'.
-
- The optional SIREVISION specifies the silicon revision of the
- target Blackfin processor. Any workarounds available for the
- targeted silicon revision are enabled. If SIREVISION is 'none', no
- workarounds are enabled. If SIREVISION is 'any', all workarounds
- for the targeted processor are enabled. The '__SILICON_REVISION__'
- macro is defined to two hexadecimal digits representing the major
- and minor numbers in the silicon revision. If SIREVISION is
- 'none', the '__SILICON_REVISION__' is not defined. If SIREVISION
- is 'any', the '__SILICON_REVISION__' is defined to be '0xffff'. If
- this optional SIREVISION is not used, GCC assumes the latest known
- silicon revision of the targeted Blackfin processor.
-
- GCC defines a preprocessor macro for the specified CPU. For the
- 'bfin-elf' toolchain, this option causes the hardware BSP provided
- by libgloss to be linked in if '-msim' is not given.
-
- Without this option, 'bf532' is used as the processor by default.
-
- Note that support for 'bf561' is incomplete. For 'bf561', only the
- preprocessor macro is defined.
-
-'-msim'
- Specifies that the program will be run on the simulator. This
- causes the simulator BSP provided by libgloss to be linked in.
- This option has effect only for 'bfin-elf' toolchain. Certain
- other options, such as '-mid-shared-library' and '-mfdpic', imply
- '-msim'.
-
-'-momit-leaf-frame-pointer'
- Don't keep the frame pointer in a register for leaf functions.
- This avoids the instructions to save, set up and restore frame
- pointers and makes an extra register available in leaf functions.
- The option '-fomit-frame-pointer' removes the frame pointer for all
- functions, which might make debugging harder.
-
-'-mspecld-anomaly'
- When enabled, the compiler ensures that the generated code does not
- contain speculative loads after jump instructions. If this option
- is used, '__WORKAROUND_SPECULATIVE_LOADS' is defined.
-
-'-mno-specld-anomaly'
- Don't generate extra code to prevent speculative loads from
- occurring.
-
-'-mcsync-anomaly'
- When enabled, the compiler ensures that the generated code does not
- contain CSYNC or SSYNC instructions too soon after conditional
- branches. If this option is used, '__WORKAROUND_SPECULATIVE_SYNCS'
- is defined.
-
-'-mno-csync-anomaly'
- Don't generate extra code to prevent CSYNC or SSYNC instructions
- from occurring too soon after a conditional branch.
-
-'-mlow-64k'
- When enabled, the compiler is free to take advantage of the
- knowledge that the entire program fits into the low 64k of memory.
-
-'-mno-low-64k'
- Assume that the program is arbitrarily large. This is the default.
-
-'-mstack-check-l1'
- Do stack checking using information placed into L1 scratchpad
- memory by the uClinux kernel.
-
-'-mid-shared-library'
- Generate code that supports shared libraries via the library ID
- method. This allows for execute in place and shared libraries in
- an environment without virtual memory management. This option
- implies '-fPIC'. With a 'bfin-elf' target, this option implies
- '-msim'.
-
-'-mno-id-shared-library'
- Generate code that doesn't assume ID-based shared libraries are
- being used. This is the default.
-
-'-mleaf-id-shared-library'
- Generate code that supports shared libraries via the library ID
- method, but assumes that this library or executable won't link
- against any other ID shared libraries. That allows the compiler to
- use faster code for jumps and calls.
-
-'-mno-leaf-id-shared-library'
- Do not assume that the code being compiled won't link against any
- ID shared libraries. Slower code is generated for jump and call
- insns.
-
-'-mshared-library-id=n'
- Specifies the identification number of the ID-based shared library
- being compiled. Specifying a value of 0 generates more compact
- code; specifying other values forces the allocation of that number
- to the current library but is no more space- or time-efficient than
- omitting this option.
-
-'-msep-data'
- Generate code that allows the data segment to be located in a
- different area of memory from the text segment. This allows for
- execute in place in an environment without virtual memory
- management by eliminating relocations against the text section.
-
-'-mno-sep-data'
- Generate code that assumes that the data segment follows the text
- segment. This is the default.
-
-'-mlong-calls'
-'-mno-long-calls'
- Tells the compiler to perform function calls by first loading the
- address of the function into a register and then performing a
- subroutine call on this register. This switch is needed if the
- target function lies outside of the 24-bit addressing range of the
- offset-based version of subroutine call instruction.
-
- This feature is not enabled by default. Specifying
- '-mno-long-calls' restores the default behavior. Note these
- switches have no effect on how the compiler generates code to
- handle function calls via function pointers.
-
-'-mfast-fp'
- Link with the fast floating-point library. This library relaxes
- some of the IEEE floating-point standard's rules for checking
- inputs against Not-a-Number (NAN), in the interest of performance.
-
-'-minline-plt'
- Enable inlining of PLT entries in function calls to functions that
- are not known to bind locally. It has no effect without '-mfdpic'.
-
-'-mmulticore'
- Build a standalone application for multicore Blackfin processors.
- This option causes proper start files and link scripts supporting
- multicore to be used, and defines the macro '__BFIN_MULTICORE'. It
- can only be used with '-mcpu=bf561[-SIREVISION]'.
-
- This option can be used with '-mcorea' or '-mcoreb', which selects
- the one-application-per-core programming model. Without '-mcorea'
- or '-mcoreb', the single-application/dual-core programming model is
- used. In this model, the main function of Core B should be named
- as 'coreb_main'.
-
- If this option is not used, the single-core application programming
- model is used.
-
-'-mcorea'
- Build a standalone application for Core A of BF561 when using the
- one-application-per-core programming model. Proper start files and
- link scripts are used to support Core A, and the macro
- '__BFIN_COREA' is defined. This option can only be used in
- conjunction with '-mmulticore'.
-
-'-mcoreb'
- Build a standalone application for Core B of BF561 when using the
- one-application-per-core programming model. Proper start files and
- link scripts are used to support Core B, and the macro
- '__BFIN_COREB' is defined. When this option is used, 'coreb_main'
- should be used instead of 'main'. This option can only be used in
- conjunction with '-mmulticore'.
-
-'-msdram'
- Build a standalone application for SDRAM. Proper start files and
- link scripts are used to put the application into SDRAM, and the
- macro '__BFIN_SDRAM' is defined. The loader should initialize
- SDRAM before loading the application.
-
-'-micplb'
- Assume that ICPLBs are enabled at run time. This has an effect on
- certain anomaly workarounds. For Linux targets, the default is to
- assume ICPLBs are enabled; for standalone applications the default
- is off.
-
-
-File: gcc.info, Node: C6X Options, Next: CRIS Options, Prev: Blackfin Options, Up: Submodel Options
-
-3.17.7 C6X Options
-------------------
-
-'-march=NAME'
- This specifies the name of the target architecture. GCC uses this
- name to determine what kind of instructions it can emit when
- generating assembly code. Permissible names are: 'c62x', 'c64x',
- 'c64x+', 'c67x', 'c67x+', 'c674x'.
-
-'-mbig-endian'
- Generate code for a big-endian target.
-
-'-mlittle-endian'
- Generate code for a little-endian target. This is the default.
-
-'-msim'
- Choose startup files and linker script suitable for the simulator.
-
-'-msdata=default'
- Put small global and static data in the '.neardata' section, which
- is pointed to by register 'B14'. Put small uninitialized global
- and static data in the '.bss' section, which is adjacent to the
- '.neardata' section. Put small read-only data into the '.rodata'
- section. The corresponding sections used for large pieces of data
- are '.fardata', '.far' and '.const'.
-
-'-msdata=all'
- Put all data, not just small objects, into the sections reserved
- for small data, and use addressing relative to the 'B14' register
- to access them.
-
-'-msdata=none'
- Make no use of the sections reserved for small data, and use
- absolute addresses to access all data. Put all initialized global
- and static data in the '.fardata' section, and all uninitialized
- data in the '.far' section. Put all constant data into the
- '.const' section.
-
-
-File: gcc.info, Node: CRIS Options, Next: CR16 Options, Prev: C6X Options, Up: Submodel Options
-
-3.17.8 CRIS Options
--------------------
-
-These options are defined specifically for the CRIS ports.
-
-'-march=ARCHITECTURE-TYPE'
-'-mcpu=ARCHITECTURE-TYPE'
- Generate code for the specified architecture. The choices for
- ARCHITECTURE-TYPE are 'v3', 'v8' and 'v10' for respectively
- ETRAX 4, ETRAX 100, and ETRAX 100 LX. Default is 'v0' except for
- cris-axis-linux-gnu, where the default is 'v10'.
-
-'-mtune=ARCHITECTURE-TYPE'
- Tune to ARCHITECTURE-TYPE everything applicable about the generated
- code, except for the ABI and the set of available instructions.
- The choices for ARCHITECTURE-TYPE are the same as for
- '-march=ARCHITECTURE-TYPE'.
-
-'-mmax-stack-frame=N'
- Warn when the stack frame of a function exceeds N bytes.
-
-'-metrax4'
-'-metrax100'
- The options '-metrax4' and '-metrax100' are synonyms for
- '-march=v3' and '-march=v8' respectively.
-
-'-mmul-bug-workaround'
-'-mno-mul-bug-workaround'
- Work around a bug in the 'muls' and 'mulu' instructions for CPU
- models where it applies. This option is active by default.
-
-'-mpdebug'
- Enable CRIS-specific verbose debug-related information in the
- assembly code. This option also has the effect of turning off the
- '#NO_APP' formatted-code indicator to the assembler at the
- beginning of the assembly file.
-
-'-mcc-init'
- Do not use condition-code results from previous instruction; always
- emit compare and test instructions before use of condition codes.
-
-'-mno-side-effects'
- Do not emit instructions with side effects in addressing modes
- other than post-increment.
-
-'-mstack-align'
-'-mno-stack-align'
-'-mdata-align'
-'-mno-data-align'
-'-mconst-align'
-'-mno-const-align'
- These options ('no-' options) arrange (eliminate arrangements) for
- the stack frame, individual data and constants to be aligned for
- the maximum single data access size for the chosen CPU model. The
- default is to arrange for 32-bit alignment. ABI details such as
- structure layout are not affected by these options.
-
-'-m32-bit'
-'-m16-bit'
-'-m8-bit'
- Similar to the stack- data- and const-align options above, these
- options arrange for stack frame, writable data and constants to all
- be 32-bit, 16-bit or 8-bit aligned. The default is 32-bit
- alignment.
-
-'-mno-prologue-epilogue'
-'-mprologue-epilogue'
- With '-mno-prologue-epilogue', the normal function prologue and
- epilogue which set up the stack frame are omitted and no return
- instructions or return sequences are generated in the code. Use
- this option only together with visual inspection of the compiled
- code: no warnings or errors are generated when call-saved registers
- must be saved, or storage for local variables needs to be
- allocated.
-
-'-mno-gotplt'
-'-mgotplt'
- With '-fpic' and '-fPIC', don't generate (do generate) instruction
- sequences that load addresses for functions from the PLT part of
- the GOT rather than (traditional on other architectures) calls to
- the PLT. The default is '-mgotplt'.
-
-'-melf'
- Legacy no-op option only recognized with the cris-axis-elf and
- cris-axis-linux-gnu targets.
-
-'-mlinux'
- Legacy no-op option only recognized with the cris-axis-linux-gnu
- target.
-
-'-sim'
- This option, recognized for the cris-axis-elf, arranges to link
- with input-output functions from a simulator library. Code,
- initialized data and zero-initialized data are allocated
- consecutively.
-
-'-sim2'
- Like '-sim', but pass linker options to locate initialized data at
- 0x40000000 and zero-initialized data at 0x80000000.
-
-
-File: gcc.info, Node: CR16 Options, Next: Darwin Options, Prev: CRIS Options, Up: Submodel Options
-
-3.17.9 CR16 Options
--------------------
-
-These options are defined specifically for the CR16 ports.
-
-'-mmac'
- Enable the use of multiply-accumulate instructions. Disabled by
- default.
-
-'-mcr16cplus'
-'-mcr16c'
- Generate code for CR16C or CR16C+ architecture. CR16C+
- architecture is default.
-
-'-msim'
- Links the library libsim.a which is in compatible with simulator.
- Applicable to ELF compiler only.
-
-'-mint32'
- Choose integer type as 32-bit wide.
-
-'-mbit-ops'
- Generates 'sbit'/'cbit' instructions for bit manipulations.
-
-'-mdata-model=MODEL'
- Choose a data model. The choices for MODEL are 'near', 'far' or
- 'medium'. 'medium' is default. However, 'far' is not valid with
- '-mcr16c', as the CR16C architecture does not support the far data
- model.
-
-
-File: gcc.info, Node: Darwin Options, Next: DEC Alpha Options, Prev: CR16 Options, Up: Submodel Options
-
-3.17.10 Darwin Options
-----------------------
-
-These options are defined for all architectures running the Darwin
-operating system.
-
- FSF GCC on Darwin does not create "fat" object files; it creates an
-object file for the single architecture that GCC was built to target.
-Apple's GCC on Darwin does create "fat" files if multiple '-arch'
-options are used; it does so by running the compiler or linker multiple
-times and joining the results together with 'lipo'.
-
- The subtype of the file created (like 'ppc7400' or 'ppc970' or 'i686')
-is determined by the flags that specify the ISA that GCC is targeting,
-like '-mcpu' or '-march'. The '-force_cpusubtype_ALL' option can be
-used to override this.
-
- The Darwin tools vary in their behavior when presented with an ISA
-mismatch. The assembler, 'as', only permits instructions to be used
-that are valid for the subtype of the file it is generating, so you
-cannot put 64-bit instructions in a 'ppc750' object file. The linker
-for shared libraries, '/usr/bin/libtool', fails and prints an error if
-asked to create a shared library with a less restrictive subtype than
-its input files (for instance, trying to put a 'ppc970' object file in a
-'ppc7400' library). The linker for executables, 'ld', quietly gives the
-executable the most restrictive subtype of any of its input files.
-
-'-FDIR'
- Add the framework directory DIR to the head of the list of
- directories to be searched for header files. These directories are
- interleaved with those specified by '-I' options and are scanned in
- a left-to-right order.
-
- A framework directory is a directory with frameworks in it. A
- framework is a directory with a 'Headers' and/or 'PrivateHeaders'
- directory contained directly in it that ends in '.framework'. The
- name of a framework is the name of this directory excluding the
- '.framework'. Headers associated with the framework are found in
- one of those two directories, with 'Headers' being searched first.
- A subframework is a framework directory that is in a framework's
- 'Frameworks' directory. Includes of subframework headers can only
- appear in a header of a framework that contains the subframework,
- or in a sibling subframework header. Two subframeworks are
- siblings if they occur in the same framework. A subframework
- should not have the same name as a framework; a warning is issued
- if this is violated. Currently a subframework cannot have
- subframeworks; in the future, the mechanism may be extended to
- support this. The standard frameworks can be found in
- '/System/Library/Frameworks' and '/Library/Frameworks'. An example
- include looks like '#include <Framework/header.h>', where
- 'Framework' denotes the name of the framework and 'header.h' is
- found in the 'PrivateHeaders' or 'Headers' directory.
-
-'-iframeworkDIR'
- Like '-F' except the directory is a treated as a system directory.
- The main difference between this '-iframework' and '-F' is that
- with '-iframework' the compiler does not warn about constructs
- contained within header files found via DIR. This option is valid
- only for the C family of languages.
-
-'-gused'
- Emit debugging information for symbols that are used. For stabs
- debugging format, this enables '-feliminate-unused-debug-symbols'.
- This is by default ON.
-
-'-gfull'
- Emit debugging information for all symbols and types.
-
-'-mmacosx-version-min=VERSION'
- The earliest version of MacOS X that this executable will run on is
- VERSION. Typical values of VERSION include '10.1', '10.2', and
- '10.3.9'.
-
- If the compiler was built to use the system's headers by default,
- then the default for this option is the system version on which the
- compiler is running, otherwise the default is to make choices that
- are compatible with as many systems and code bases as possible.
-
-'-mkernel'
- Enable kernel development mode. The '-mkernel' option sets
- '-static', '-fno-common', '-fno-cxa-atexit', '-fno-exceptions',
- '-fno-non-call-exceptions', '-fapple-kext', '-fno-weak' and
- '-fno-rtti' where applicable. This mode also sets '-mno-altivec',
- '-msoft-float', '-fno-builtin' and '-mlong-branch' for PowerPC
- targets.
-
-'-mone-byte-bool'
- Override the defaults for 'bool' so that 'sizeof(bool)==1'. By
- default 'sizeof(bool)' is '4' when compiling for Darwin/PowerPC and
- '1' when compiling for Darwin/x86, so this option has no effect on
- x86.
-
- *Warning:* The '-mone-byte-bool' switch causes GCC to generate code
- that is not binary compatible with code generated without that
- switch. Using this switch may require recompiling all other
- modules in a program, including system libraries. Use this switch
- to conform to a non-default data model.
-
-'-mfix-and-continue'
-'-ffix-and-continue'
-'-findirect-data'
- Generate code suitable for fast turnaround development, such as to
- allow GDB to dynamically load '.o' files into already-running
- programs. '-findirect-data' and '-ffix-and-continue' are provided
- for backwards compatibility.
-
-'-all_load'
- Loads all members of static archive libraries. See man ld(1) for
- more information.
-
-'-arch_errors_fatal'
- Cause the errors having to do with files that have the wrong
- architecture to be fatal.
-
-'-bind_at_load'
- Causes the output file to be marked such that the dynamic linker
- will bind all undefined references when the file is loaded or
- launched.
-
-'-bundle'
- Produce a Mach-o bundle format file. See man ld(1) for more
- information.
-
-'-bundle_loader EXECUTABLE'
- This option specifies the EXECUTABLE that will load the build
- output file being linked. See man ld(1) for more information.
-
-'-dynamiclib'
- When passed this option, GCC produces a dynamic library instead of
- an executable when linking, using the Darwin 'libtool' command.
-
-'-force_cpusubtype_ALL'
- This causes GCC's output file to have the ALL subtype, instead of
- one controlled by the '-mcpu' or '-march' option.
-
-'-allowable_client CLIENT_NAME'
-'-client_name'
-'-compatibility_version'
-'-current_version'
-'-dead_strip'
-'-dependency-file'
-'-dylib_file'
-'-dylinker_install_name'
-'-dynamic'
-'-exported_symbols_list'
-'-filelist'
-'-flat_namespace'
-'-force_flat_namespace'
-'-headerpad_max_install_names'
-'-image_base'
-'-init'
-'-install_name'
-'-keep_private_externs'
-'-multi_module'
-'-multiply_defined'
-'-multiply_defined_unused'
-'-noall_load'
-'-no_dead_strip_inits_and_terms'
-'-nofixprebinding'
-'-nomultidefs'
-'-noprebind'
-'-noseglinkedit'
-'-pagezero_size'
-'-prebind'
-'-prebind_all_twolevel_modules'
-'-private_bundle'
-'-read_only_relocs'
-'-sectalign'
-'-sectobjectsymbols'
-'-whyload'
-'-seg1addr'
-'-sectcreate'
-'-sectobjectsymbols'
-'-sectorder'
-'-segaddr'
-'-segs_read_only_addr'
-'-segs_read_write_addr'
-'-seg_addr_table'
-'-seg_addr_table_filename'
-'-seglinkedit'
-'-segprot'
-'-segs_read_only_addr'
-'-segs_read_write_addr'
-'-single_module'
-'-static'
-'-sub_library'
-'-sub_umbrella'
-'-twolevel_namespace'
-'-umbrella'
-'-undefined'
-'-unexported_symbols_list'
-'-weak_reference_mismatches'
-'-whatsloaded'
- These options are passed to the Darwin linker. The Darwin linker
- man page describes them in detail.
-
-
-File: gcc.info, Node: DEC Alpha Options, Next: FR30 Options, Prev: Darwin Options, Up: Submodel Options
-
-3.17.11 DEC Alpha Options
--------------------------
-
-These '-m' options are defined for the DEC Alpha implementations:
-
-'-mno-soft-float'
-'-msoft-float'
- Use (do not use) the hardware floating-point instructions for
- floating-point operations. When '-msoft-float' is specified,
- functions in 'libgcc.a' are used to perform floating-point
- operations. Unless they are replaced by routines that emulate the
- floating-point operations, or compiled in such a way as to call
- such emulations routines, these routines issue floating-point
- operations. If you are compiling for an Alpha without
- floating-point operations, you must ensure that the library is
- built so as not to call them.
-
- Note that Alpha implementations without floating-point operations
- are required to have floating-point registers.
-
-'-mfp-reg'
-'-mno-fp-regs'
- Generate code that uses (does not use) the floating-point register
- set. '-mno-fp-regs' implies '-msoft-float'. If the floating-point
- register set is not used, floating-point operands are passed in
- integer registers as if they were integers and floating-point
- results are passed in '$0' instead of '$f0'. This is a
- non-standard calling sequence, so any function with a
- floating-point argument or return value called by code compiled
- with '-mno-fp-regs' must also be compiled with that option.
-
- A typical use of this option is building a kernel that does not
- use, and hence need not save and restore, any floating-point
- registers.
-
-'-mieee'
- The Alpha architecture implements floating-point hardware optimized
- for maximum performance. It is mostly compliant with the IEEE
- floating-point standard. However, for full compliance, software
- assistance is required. This option generates code fully
- IEEE-compliant code _except_ that the INEXACT-FLAG is not
- maintained (see below). If this option is turned on, the
- preprocessor macro '_IEEE_FP' is defined during compilation. The
- resulting code is less efficient but is able to correctly support
- denormalized numbers and exceptional IEEE values such as
- not-a-number and plus/minus infinity. Other Alpha compilers call
- this option '-ieee_with_no_inexact'.
-
-'-mieee-with-inexact'
- This is like '-mieee' except the generated code also maintains the
- IEEE INEXACT-FLAG. Turning on this option causes the generated
- code to implement fully-compliant IEEE math. In addition to
- '_IEEE_FP', '_IEEE_FP_EXACT' is defined as a preprocessor macro.
- On some Alpha implementations the resulting code may execute
- significantly slower than the code generated by default. Since
- there is very little code that depends on the INEXACT-FLAG, you
- should normally not specify this option. Other Alpha compilers
- call this option '-ieee_with_inexact'.
-
-'-mfp-trap-mode=TRAP-MODE'
- This option controls what floating-point related traps are enabled.
- Other Alpha compilers call this option '-fptm TRAP-MODE'. The trap
- mode can be set to one of four values:
-
- 'n'
- This is the default (normal) setting. The only traps that are
- enabled are the ones that cannot be disabled in software
- (e.g., division by zero trap).
-
- 'u'
- In addition to the traps enabled by 'n', underflow traps are
- enabled as well.
-
- 'su'
- Like 'u', but the instructions are marked to be safe for
- software completion (see Alpha architecture manual for
- details).
-
- 'sui'
- Like 'su', but inexact traps are enabled as well.
-
-'-mfp-rounding-mode=ROUNDING-MODE'
- Selects the IEEE rounding mode. Other Alpha compilers call this
- option '-fprm ROUNDING-MODE'. The ROUNDING-MODE can be one of:
-
- 'n'
- Normal IEEE rounding mode. Floating-point numbers are rounded
- towards the nearest machine number or towards the even machine
- number in case of a tie.
-
- 'm'
- Round towards minus infinity.
-
- 'c'
- Chopped rounding mode. Floating-point numbers are rounded
- towards zero.
-
- 'd'
- Dynamic rounding mode. A field in the floating-point control
- register (FPCR, see Alpha architecture reference manual)
- controls the rounding mode in effect. The C library
- initializes this register for rounding towards plus infinity.
- Thus, unless your program modifies the FPCR, 'd' corresponds
- to round towards plus infinity.
-
-'-mtrap-precision=TRAP-PRECISION'
- In the Alpha architecture, floating-point traps are imprecise.
- This means without software assistance it is impossible to recover
- from a floating trap and program execution normally needs to be
- terminated. GCC can generate code that can assist operating system
- trap handlers in determining the exact location that caused a
- floating-point trap. Depending on the requirements of an
- application, different levels of precisions can be selected:
-
- 'p'
- Program precision. This option is the default and means a
- trap handler can only identify which program caused a
- floating-point exception.
-
- 'f'
- Function precision. The trap handler can determine the
- function that caused a floating-point exception.
-
- 'i'
- Instruction precision. The trap handler can determine the
- exact instruction that caused a floating-point exception.
-
- Other Alpha compilers provide the equivalent options called
- '-scope_safe' and '-resumption_safe'.
-
-'-mieee-conformant'
- This option marks the generated code as IEEE conformant. You must
- not use this option unless you also specify '-mtrap-precision=i'
- and either '-mfp-trap-mode=su' or '-mfp-trap-mode=sui'. Its only
- effect is to emit the line '.eflag 48' in the function prologue of
- the generated assembly file.
-
-'-mbuild-constants'
- Normally GCC examines a 32- or 64-bit integer constant to see if it
- can construct it from smaller constants in two or three
- instructions. If it cannot, it outputs the constant as a literal
- and generates code to load it from the data segment at run time.
-
- Use this option to require GCC to construct _all_ integer constants
- using code, even if it takes more instructions (the maximum is
- six).
-
- You typically use this option to build a shared library dynamic
- loader. Itself a shared library, it must relocate itself in memory
- before it can find the variables and constants in its own data
- segment.
-
-'-mbwx'
-'-mno-bwx'
-'-mcix'
-'-mno-cix'
-'-mfix'
-'-mno-fix'
-'-mmax'
-'-mno-max'
- Indicate whether GCC should generate code to use the optional BWX,
- CIX, FIX and MAX instruction sets. The default is to use the
- instruction sets supported by the CPU type specified via '-mcpu='
- option or that of the CPU on which GCC was built if none is
- specified.
-
-'-mfloat-vax'
-'-mfloat-ieee'
- Generate code that uses (does not use) VAX F and G floating-point
- arithmetic instead of IEEE single and double precision.
-
-'-mexplicit-relocs'
-'-mno-explicit-relocs'
- Older Alpha assemblers provided no way to generate symbol
- relocations except via assembler macros. Use of these macros does
- not allow optimal instruction scheduling. GNU binutils as of
- version 2.12 supports a new syntax that allows the compiler to
- explicitly mark which relocations should apply to which
- instructions. This option is mostly useful for debugging, as GCC
- detects the capabilities of the assembler when it is built and sets
- the default accordingly.
-
-'-msmall-data'
-'-mlarge-data'
- When '-mexplicit-relocs' is in effect, static data is accessed via
- "gp-relative" relocations. When '-msmall-data' is used, objects 8
- bytes long or smaller are placed in a "small data area" (the
- '.sdata' and '.sbss' sections) and are accessed via 16-bit
- relocations off of the '$gp' register. This limits the size of the
- small data area to 64KB, but allows the variables to be directly
- accessed via a single instruction.
-
- The default is '-mlarge-data'. With this option the data area is
- limited to just below 2GB. Programs that require more than 2GB of
- data must use 'malloc' or 'mmap' to allocate the data in the heap
- instead of in the program's data segment.
-
- When generating code for shared libraries, '-fpic' implies
- '-msmall-data' and '-fPIC' implies '-mlarge-data'.
-
-'-msmall-text'
-'-mlarge-text'
- When '-msmall-text' is used, the compiler assumes that the code of
- the entire program (or shared library) fits in 4MB, and is thus
- reachable with a branch instruction. When '-msmall-data' is used,
- the compiler can assume that all local symbols share the same '$gp'
- value, and thus reduce the number of instructions required for a
- function call from 4 to 1.
-
- The default is '-mlarge-text'.
-
-'-mcpu=CPU_TYPE'
- Set the instruction set and instruction scheduling parameters for
- machine type CPU_TYPE. You can specify either the 'EV' style name
- or the corresponding chip number. GCC supports scheduling
- parameters for the EV4, EV5 and EV6 family of processors and
- chooses the default values for the instruction set from the
- processor you specify. If you do not specify a processor type, GCC
- defaults to the processor on which the compiler was built.
-
- Supported values for CPU_TYPE are
-
- 'ev4'
- 'ev45'
- '21064'
- Schedules as an EV4 and has no instruction set extensions.
-
- 'ev5'
- '21164'
- Schedules as an EV5 and has no instruction set extensions.
-
- 'ev56'
- '21164a'
- Schedules as an EV5 and supports the BWX extension.
-
- 'pca56'
- '21164pc'
- '21164PC'
- Schedules as an EV5 and supports the BWX and MAX extensions.
-
- 'ev6'
- '21264'
- Schedules as an EV6 and supports the BWX, FIX, and MAX
- extensions.
-
- 'ev67'
- '21264a'
- Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX
- extensions.
-
- Native toolchains also support the value 'native', which selects
- the best architecture option for the host processor.
- '-mcpu=native' has no effect if GCC does not recognize the
- processor.
-
-'-mtune=CPU_TYPE'
- Set only the instruction scheduling parameters for machine type
- CPU_TYPE. The instruction set is not changed.
-
- Native toolchains also support the value 'native', which selects
- the best architecture option for the host processor.
- '-mtune=native' has no effect if GCC does not recognize the
- processor.
-
-'-mmemory-latency=TIME'
- Sets the latency the scheduler should assume for typical memory
- references as seen by the application. This number is highly
- dependent on the memory access patterns used by the application and
- the size of the external cache on the machine.
-
- Valid options for TIME are
-
- 'NUMBER'
- A decimal number representing clock cycles.
-
- 'L1'
- 'L2'
- 'L3'
- 'main'
- The compiler contains estimates of the number of clock cycles
- for "typical" EV4 & EV5 hardware for the Level 1, 2 & 3 caches
- (also called Dcache, Scache, and Bcache), as well as to main
- memory. Note that L3 is only valid for EV5.
-
-
-File: gcc.info, Node: FR30 Options, Next: FRV Options, Prev: DEC Alpha Options, Up: Submodel Options
-
-3.17.12 FR30 Options
---------------------
-
-These options are defined specifically for the FR30 port.
-
-'-msmall-model'
- Use the small address space model. This can produce smaller code,
- but it does assume that all symbolic values and addresses fit into
- a 20-bit range.
-
-'-mno-lsim'
- Assume that runtime support has been provided and so there is no
- need to include the simulator library ('libsim.a') on the linker
- command line.
-
-
-File: gcc.info, Node: FRV Options, Next: GNU/Linux Options, Prev: FR30 Options, Up: Submodel Options
-
-3.17.13 FRV Options
--------------------
-
-'-mgpr-32'
-
- Only use the first 32 general-purpose registers.
-
-'-mgpr-64'
-
- Use all 64 general-purpose registers.
-
-'-mfpr-32'
-
- Use only the first 32 floating-point registers.
-
-'-mfpr-64'
-
- Use all 64 floating-point registers.
-
-'-mhard-float'
-
- Use hardware instructions for floating-point operations.
-
-'-msoft-float'
-
- Use library routines for floating-point operations.
-
-'-malloc-cc'
-
- Dynamically allocate condition code registers.
-
-'-mfixed-cc'
-
- Do not try to dynamically allocate condition code registers, only
- use 'icc0' and 'fcc0'.
-
-'-mdword'
-
- Change ABI to use double word insns.
-
-'-mno-dword'
-
- Do not use double word instructions.
-
-'-mdouble'
-
- Use floating-point double instructions.
-
-'-mno-double'
-
- Do not use floating-point double instructions.
-
-'-mmedia'
-
- Use media instructions.
-
-'-mno-media'
-
- Do not use media instructions.
-
-'-mmuladd'
-
- Use multiply and add/subtract instructions.
-
-'-mno-muladd'
-
- Do not use multiply and add/subtract instructions.
-
-'-mfdpic'
-
- Select the FDPIC ABI, which uses function descriptors to represent
- pointers to functions. Without any PIC/PIE-related options, it
- implies '-fPIE'. With '-fpic' or '-fpie', it assumes GOT entries
- and small data are within a 12-bit range from the GOT base address;
- with '-fPIC' or '-fPIE', GOT offsets are computed with 32 bits.
- With a 'bfin-elf' target, this option implies '-msim'.
-
-'-minline-plt'
-
- Enable inlining of PLT entries in function calls to functions that
- are not known to bind locally. It has no effect without '-mfdpic'.
- It's enabled by default if optimizing for speed and compiling for
- shared libraries (i.e., '-fPIC' or '-fpic'), or when an
- optimization option such as '-O3' or above is present in the
- command line.
-
-'-mTLS'
-
- Assume a large TLS segment when generating thread-local code.
-
-'-mtls'
-
- Do not assume a large TLS segment when generating thread-local
- code.
-
-'-mgprel-ro'
-
- Enable the use of 'GPREL' relocations in the FDPIC ABI for data
- that is known to be in read-only sections. It's enabled by
- default, except for '-fpic' or '-fpie': even though it may help
- make the global offset table smaller, it trades 1 instruction for
- 4. With '-fPIC' or '-fPIE', it trades 3 instructions for 4, one of
- which may be shared by multiple symbols, and it avoids the need for
- a GOT entry for the referenced symbol, so it's more likely to be a
- win. If it is not, '-mno-gprel-ro' can be used to disable it.
-
-'-multilib-library-pic'
-
- Link with the (library, not FD) pic libraries. It's implied by
- '-mlibrary-pic', as well as by '-fPIC' and '-fpic' without
- '-mfdpic'. You should never have to use it explicitly.
-
-'-mlinked-fp'
-
- Follow the EABI requirement of always creating a frame pointer
- whenever a stack frame is allocated. This option is enabled by
- default and can be disabled with '-mno-linked-fp'.
-
-'-mlong-calls'
-
- Use indirect addressing to call functions outside the current
- compilation unit. This allows the functions to be placed anywhere
- within the 32-bit address space.
-
-'-malign-labels'
-
- Try to align labels to an 8-byte boundary by inserting NOPs into
- the previous packet. This option only has an effect when VLIW
- packing is enabled. It doesn't create new packets; it merely adds
- NOPs to existing ones.
-
-'-mlibrary-pic'
-
- Generate position-independent EABI code.
-
-'-macc-4'
-
- Use only the first four media accumulator registers.
-
-'-macc-8'
-
- Use all eight media accumulator registers.
-
-'-mpack'
-
- Pack VLIW instructions.
-
-'-mno-pack'
-
- Do not pack VLIW instructions.
-
-'-mno-eflags'
-
- Do not mark ABI switches in e_flags.
-
-'-mcond-move'
-
- Enable the use of conditional-move instructions (default).
-
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
-
-'-mno-cond-move'
-
- Disable the use of conditional-move instructions.
-
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
-
-'-mscc'
-
- Enable the use of conditional set instructions (default).
-
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
-
-'-mno-scc'
-
- Disable the use of conditional set instructions.
-
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
-
-'-mcond-exec'
-
- Enable the use of conditional execution (default).
-
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
-
-'-mno-cond-exec'
-
- Disable the use of conditional execution.
-
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
-
-'-mvliw-branch'
-
- Run a pass to pack branches into VLIW instructions (default).
-
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
-
-'-mno-vliw-branch'
-
- Do not run a pass to pack branches into VLIW instructions.
-
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
-
-'-mmulti-cond-exec'
-
- Enable optimization of '&&' and '||' in conditional execution
- (default).
-
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
-
-'-mno-multi-cond-exec'
-
- Disable optimization of '&&' and '||' in conditional execution.
-
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
-
-'-mnested-cond-exec'
-
- Enable nested conditional execution optimizations (default).
-
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
-
-'-mno-nested-cond-exec'
-
- Disable nested conditional execution optimizations.
-
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
-
-'-moptimize-membar'
-
- This switch removes redundant 'membar' instructions from the
- compiler-generated code. It is enabled by default.
-
-'-mno-optimize-membar'
-
- This switch disables the automatic removal of redundant 'membar'
- instructions from the generated code.
-
-'-mtomcat-stats'
-
- Cause gas to print out tomcat statistics.
-
-'-mcpu=CPU'
-
- Select the processor type for which to generate code. Possible
- values are 'frv', 'fr550', 'tomcat', 'fr500', 'fr450', 'fr405',
- 'fr400', 'fr300' and 'simple'.
-
-
-File: gcc.info, Node: GNU/Linux Options, Next: H8/300 Options, Prev: FRV Options, Up: Submodel Options
-
-3.17.14 GNU/Linux Options
--------------------------
-
-These '-m' options are defined for GNU/Linux targets:
-
-'-mglibc'
- Use the GNU C library. This is the default except on
- '*-*-linux-*uclibc*' and '*-*-linux-*android*' targets.
-
-'-muclibc'
- Use uClibc C library. This is the default on '*-*-linux-*uclibc*'
- targets.
-
-'-mbionic'
- Use Bionic C library. This is the default on '*-*-linux-*android*'
- targets.
-
-'-mandroid'
- Compile code compatible with Android platform. This is the default
- on '*-*-linux-*android*' targets.
-
- When compiling, this option enables '-mbionic', '-fPIC',
- '-fno-exceptions' and '-fno-rtti' by default. When linking, this
- option makes the GCC driver pass Android-specific options to the
- linker. Finally, this option causes the preprocessor macro
- '__ANDROID__' to be defined.
-
-'-tno-android-cc'
- Disable compilation effects of '-mandroid', i.e., do not enable
- '-mbionic', '-fPIC', '-fno-exceptions' and '-fno-rtti' by default.
-
-'-tno-android-ld'
- Disable linking effects of '-mandroid', i.e., pass standard Linux
- linking options to the linker.
-
-
-File: gcc.info, Node: H8/300 Options, Next: HPPA Options, Prev: GNU/Linux Options, Up: Submodel Options
-
-3.17.15 H8/300 Options
-----------------------
-
-These '-m' options are defined for the H8/300 implementations:
-
-'-mrelax'
- Shorten some address references at link time, when possible; uses
- the linker option '-relax'. *Note 'ld' and the H8/300: (ld)H8/300,
- for a fuller description.
-
-'-mh'
- Generate code for the H8/300H.
-
-'-ms'
- Generate code for the H8S.
-
-'-mn'
- Generate code for the H8S and H8/300H in the normal mode. This
- switch must be used either with '-mh' or '-ms'.
-
-'-ms2600'
- Generate code for the H8S/2600. This switch must be used with
- '-ms'.
-
-'-mexr'
- Extended registers are stored on stack before execution of function
- with monitor attribute. Default option is '-mexr'. This option is
- valid only for H8S targets.
-
-'-mno-exr'
- Extended registers are not stored on stack before execution of
- function with monitor attribute. Default option is '-mno-exr'.
- This option is valid only for H8S targets.
-
-'-mint32'
- Make 'int' data 32 bits by default.
-
-'-malign-300'
- On the H8/300H and H8S, use the same alignment rules as for the
- H8/300. The default for the H8/300H and H8S is to align longs and
- floats on 4-byte boundaries. '-malign-300' causes them to be
- aligned on 2-byte boundaries. This option has no effect on the
- H8/300.
-
-
-File: gcc.info, Node: HPPA Options, Next: i386 and x86-64 Options, Prev: H8/300 Options, Up: Submodel Options
-
-3.17.16 HPPA Options
---------------------
-
-These '-m' options are defined for the HPPA family of computers:
-
-'-march=ARCHITECTURE-TYPE'
- Generate code for the specified architecture. The choices for
- ARCHITECTURE-TYPE are '1.0' for PA 1.0, '1.1' for PA 1.1, and '2.0'
- for PA 2.0 processors. Refer to '/usr/lib/sched.models' on an
- HP-UX system to determine the proper architecture option for your
- machine. Code compiled for lower numbered architectures runs on
- higher numbered architectures, but not the other way around.
-
-'-mpa-risc-1-0'
-'-mpa-risc-1-1'
-'-mpa-risc-2-0'
- Synonyms for '-march=1.0', '-march=1.1', and '-march=2.0'
- respectively.
-
-'-mjump-in-delay'
- Fill delay slots of function calls with unconditional jump
- instructions by modifying the return pointer for the function call
- to be the target of the conditional jump.
-
-'-mdisable-fpregs'
- Prevent floating-point registers from being used in any manner.
- This is necessary for compiling kernels that perform lazy context
- switching of floating-point registers. If you use this option and
- attempt to perform floating-point operations, the compiler aborts.
-
-'-mdisable-indexing'
- Prevent the compiler from using indexing address modes. This
- avoids some rather obscure problems when compiling MIG generated
- code under MACH.
-
-'-mno-space-regs'
- Generate code that assumes the target has no space registers. This
- allows GCC to generate faster indirect calls and use unscaled index
- address modes.
-
- Such code is suitable for level 0 PA systems and kernels.
-
-'-mfast-indirect-calls'
- Generate code that assumes calls never cross space boundaries.
- This allows GCC to emit code that performs faster indirect calls.
-
- This option does not work in the presence of shared libraries or
- nested functions.
-
-'-mfixed-range=REGISTER-RANGE'
- Generate code treating the given register range as fixed registers.
- A fixed register is one that the register allocator cannot use.
- This is useful when compiling kernel code. A register range is
- specified as two registers separated by a dash. Multiple register
- ranges can be specified separated by a comma.
-
-'-mlong-load-store'
- Generate 3-instruction load and store sequences as sometimes
- required by the HP-UX 10 linker. This is equivalent to the '+k'
- option to the HP compilers.
-
-'-mportable-runtime'
- Use the portable calling conventions proposed by HP for ELF
- systems.
-
-'-mgas'
- Enable the use of assembler directives only GAS understands.
-
-'-mschedule=CPU-TYPE'
- Schedule code according to the constraints for the machine type
- CPU-TYPE. The choices for CPU-TYPE are '700' '7100', '7100LC',
- '7200', '7300' and '8000'. Refer to '/usr/lib/sched.models' on an
- HP-UX system to determine the proper scheduling option for your
- machine. The default scheduling is '8000'.
-
-'-mlinker-opt'
- Enable the optimization pass in the HP-UX linker. Note this makes
- symbolic debugging impossible. It also triggers a bug in the HP-UX
- 8 and HP-UX 9 linkers in which they give bogus error messages when
- linking some programs.
-
-'-msoft-float'
- Generate output containing library calls for floating point.
- *Warning:* the requisite libraries are not available for all HPPA
- targets. Normally the facilities of the machine's usual C compiler
- are used, but this cannot be done directly in cross-compilation.
- You must make your own arrangements to provide suitable library
- functions for cross-compilation.
-
- '-msoft-float' changes the calling convention in the output file;
- therefore, it is only useful if you compile _all_ of a program with
- this option. In particular, you need to compile 'libgcc.a', the
- library that comes with GCC, with '-msoft-float' in order for this
- to work.
-
-'-msio'
- Generate the predefine, '_SIO', for server IO. The default is
- '-mwsio'. This generates the predefines, '__hp9000s700',
- '__hp9000s700__' and '_WSIO', for workstation IO. These options
- are available under HP-UX and HI-UX.
-
-'-mgnu-ld'
- Use options specific to GNU 'ld'. This passes '-shared' to 'ld'
- when building a shared library. It is the default when GCC is
- configured, explicitly or implicitly, with the GNU linker. This
- option does not affect which 'ld' is called; it only changes what
- parameters are passed to that 'ld'. The 'ld' that is called is
- determined by the '--with-ld' configure option, GCC's program
- search path, and finally by the user's 'PATH'. The linker used by
- GCC can be printed using 'which `gcc -print-prog-name=ld`'. This
- option is only available on the 64-bit HP-UX GCC, i.e. configured
- with 'hppa*64*-*-hpux*'.
-
-'-mhp-ld'
- Use options specific to HP 'ld'. This passes '-b' to 'ld' when
- building a shared library and passes '+Accept TypeMismatch' to 'ld'
- on all links. It is the default when GCC is configured, explicitly
- or implicitly, with the HP linker. This option does not affect
- which 'ld' is called; it only changes what parameters are passed to
- that 'ld'. The 'ld' that is called is determined by the
- '--with-ld' configure option, GCC's program search path, and
- finally by the user's 'PATH'. The linker used by GCC can be
- printed using 'which `gcc -print-prog-name=ld`'. This option is
- only available on the 64-bit HP-UX GCC, i.e. configured with
- 'hppa*64*-*-hpux*'.
-
-'-mlong-calls'
- Generate code that uses long call sequences. This ensures that a
- call is always able to reach linker generated stubs. The default
- is to generate long calls only when the distance from the call site
- to the beginning of the function or translation unit, as the case
- may be, exceeds a predefined limit set by the branch type being
- used. The limits for normal calls are 7,600,000 and 240,000 bytes,
- respectively for the PA 2.0 and PA 1.X architectures. Sibcalls are
- always limited at 240,000 bytes.
-
- Distances are measured from the beginning of functions when using
- the '-ffunction-sections' option, or when using the '-mgas' and
- '-mno-portable-runtime' options together under HP-UX with the SOM
- linker.
-
- It is normally not desirable to use this option as it degrades
- performance. However, it may be useful in large applications,
- particularly when partial linking is used to build the application.
-
- The types of long calls used depends on the capabilities of the
- assembler and linker, and the type of code being generated. The
- impact on systems that support long absolute calls, and long pic
- symbol-difference or pc-relative calls should be relatively small.
- However, an indirect call is used on 32-bit ELF systems in pic code
- and it is quite long.
-
-'-munix=UNIX-STD'
- Generate compiler predefines and select a startfile for the
- specified UNIX standard. The choices for UNIX-STD are '93', '95'
- and '98'. '93' is supported on all HP-UX versions. '95' is
- available on HP-UX 10.10 and later. '98' is available on HP-UX
- 11.11 and later. The default values are '93' for HP-UX 10.00, '95'
- for HP-UX 10.10 though to 11.00, and '98' for HP-UX 11.11 and
- later.
-
- '-munix=93' provides the same predefines as GCC 3.3 and 3.4.
- '-munix=95' provides additional predefines for 'XOPEN_UNIX' and
- '_XOPEN_SOURCE_EXTENDED', and the startfile 'unix95.o'.
- '-munix=98' provides additional predefines for '_XOPEN_UNIX',
- '_XOPEN_SOURCE_EXTENDED', '_INCLUDE__STDC_A1_SOURCE' and
- '_INCLUDE_XOPEN_SOURCE_500', and the startfile 'unix98.o'.
-
- It is _important_ to note that this option changes the interfaces
- for various library routines. It also affects the operational
- behavior of the C library. Thus, _extreme_ care is needed in using
- this option.
-
- Library code that is intended to operate with more than one UNIX
- standard must test, set and restore the variable
- __XPG4_EXTENDED_MASK as appropriate. Most GNU software doesn't
- provide this capability.
-
-'-nolibdld'
- Suppress the generation of link options to search libdld.sl when
- the '-static' option is specified on HP-UX 10 and later.
-
-'-static'
- The HP-UX implementation of setlocale in libc has a dependency on
- libdld.sl. There isn't an archive version of libdld.sl. Thus,
- when the '-static' option is specified, special link options are
- needed to resolve this dependency.
-
- On HP-UX 10 and later, the GCC driver adds the necessary options to
- link with libdld.sl when the '-static' option is specified. This
- causes the resulting binary to be dynamic. On the 64-bit port, the
- linkers generate dynamic binaries by default in any case. The
- '-nolibdld' option can be used to prevent the GCC driver from
- adding these link options.
-
-'-threads'
- Add support for multithreading with the "dce thread" library under
- HP-UX. This option sets flags for both the preprocessor and
- linker.
-
-
-File: gcc.info, Node: i386 and x86-64 Options, Next: i386 and x86-64 Windows Options, Prev: HPPA Options, Up: Submodel Options
-
-3.17.17 Intel 386 and AMD x86-64 Options
-----------------------------------------
-
-These '-m' options are defined for the i386 and x86-64 family of
-computers:
-
-'-march=CPU-TYPE'
- Generate instructions for the machine type CPU-TYPE. In contrast
- to '-mtune=CPU-TYPE', which merely tunes the generated code for the
- specified CPU-TYPE, '-march=CPU-TYPE' allows GCC to generate code
- that may not run at all on processors other than the one indicated.
- Specifying '-march=CPU-TYPE' implies '-mtune=CPU-TYPE'.
-
- The choices for CPU-TYPE are:
-
- 'native'
- This selects the CPU to generate code for at compilation time
- by determining the processor type of the compiling machine.
- Using '-march=native' enables all instruction subsets
- supported by the local machine (hence the result might not run
- on different machines). Using '-mtune=native' produces code
- optimized for the local machine under the constraints of the
- selected instruction set.
-
- 'i386'
- Original Intel i386 CPU.
-
- 'i486'
- Intel i486 CPU. (No scheduling is implemented for this chip.)
-
- 'i586'
- 'pentium'
- Intel Pentium CPU with no MMX support.
-
- 'pentium-mmx'
- Intel Pentium MMX CPU, based on Pentium core with MMX
- instruction set support.
-
- 'pentiumpro'
- Intel Pentium Pro CPU.
-
- 'i686'
- When used with '-march', the Pentium Pro instruction set is
- used, so the code runs on all i686 family chips. When used
- with '-mtune', it has the same meaning as 'generic'.
-
- 'pentium2'
- Intel Pentium II CPU, based on Pentium Pro core with MMX
- instruction set support.
-
- 'pentium3'
- 'pentium3m'
- Intel Pentium III CPU, based on Pentium Pro core with MMX and
- SSE instruction set support.
-
- 'pentium-m'
- Intel Pentium M; low-power version of Intel Pentium III CPU
- with MMX, SSE and SSE2 instruction set support. Used by
- Centrino notebooks.
-
- 'pentium4'
- 'pentium4m'
- Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set
- support.
-
- 'prescott'
- Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2
- and SSE3 instruction set support.
-
- 'nocona'
- Improved version of Intel Pentium 4 CPU with 64-bit
- extensions, MMX, SSE, SSE2 and SSE3 instruction set support.
-
- 'core2'
- Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3
- and SSSE3 instruction set support.
-
- 'nehalem'
- Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2,
- SSE3, SSSE3, SSE4.1, SSE4.2 and POPCNT instruction set
- support.
-
- 'westmere'
- Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2,
- SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AES and PCLMUL
- instruction set support.
-
- 'sandybridge'
- Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2,
- SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL
- instruction set support.
-
- 'ivybridge'
- Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2,
- SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL,
- FSGSBASE, RDRND and F16C instruction set support.
-
- 'haswell'
- Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE,
- SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES,
- PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2 and F16C instruction
- set support.
-
- 'broadwell'
- Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE,
- SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES,
- PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX
- and PREFETCHW instruction set support.
-
- 'bonnell'
- Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE,
- SSE2, SSE3 and SSSE3 instruction set support.
-
- 'silvermont'
- Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE,
- SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and
- RDRND instruction set support.
-
- 'k6'
- AMD K6 CPU with MMX instruction set support.
-
- 'k6-2'
- 'k6-3'
- Improved versions of AMD K6 CPU with MMX and 3DNow!
- instruction set support.
-
- 'athlon'
- 'athlon-tbird'
- AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow! and SSE
- prefetch instructions support.
-
- 'athlon-4'
- 'athlon-xp'
- 'athlon-mp'
- Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow! and
- full SSE instruction set support.
-
- 'k8'
- 'opteron'
- 'athlon64'
- 'athlon-fx'
- Processors based on the AMD K8 core with x86-64 instruction
- set support, including the AMD Opteron, Athlon 64, and Athlon
- 64 FX processors. (This supersets MMX, SSE, SSE2, 3DNow!,
- enhanced 3DNow! and 64-bit instruction set extensions.)
-
- 'k8-sse3'
- 'opteron-sse3'
- 'athlon64-sse3'
- Improved versions of AMD K8 cores with SSE3 instruction set
- support.
-
- 'amdfam10'
- 'barcelona'
- CPUs based on AMD Family 10h cores with x86-64 instruction set
- support. (This supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!,
- enhanced 3DNow!, ABM and 64-bit instruction set extensions.)
-
- 'bdver1'
- CPUs based on AMD Family 15h cores with x86-64 instruction set
- support. (This supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL,
- CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM
- and 64-bit instruction set extensions.)
- 'bdver2'
- AMD Family 15h core based CPUs with x86-64 instruction set
- support. (This supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP,
- LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
- SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
- 'bdver3'
- AMD Family 15h core based CPUs with x86-64 instruction set
- support. (This supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE,
- AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3,
- SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
- extensions.
- 'bdver4'
- AMD Family 15h core based CPUs with x86-64 instruction set
- support. (This supersets BMI, BMI2, TBM, F16C, FMA, FMA4,
- FSGSBASE, AVX, AVX2, XOP, LWP, AES, PCL_MUL, CX16, MOVBE, MMX,
- SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit
- instruction set extensions.
-
- 'btver1'
- CPUs based on AMD Family 14h cores with x86-64 instruction set
- support. (This supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A,
- CX16, ABM and 64-bit instruction set extensions.)
-
- 'btver2'
- CPUs based on AMD Family 16h cores with x86-64 instruction set
- support. This includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES,
- SSE4.2, SSE4.1, CX16, ABM, SSE4A, SSSE3, SSE3, SSE2, SSE, MMX
- and 64-bit instruction set extensions.
-
- 'winchip-c6'
- IDT WinChip C6 CPU, dealt in same way as i486 with additional
- MMX instruction set support.
-
- 'winchip2'
- IDT WinChip 2 CPU, dealt in same way as i486 with additional
- MMX and 3DNow! instruction set support.
-
- 'c3'
- VIA C3 CPU with MMX and 3DNow! instruction set support. (No
- scheduling is implemented for this chip.)
-
- 'c3-2'
- VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set
- support. (No scheduling is implemented for this chip.)
-
- 'geode'
- AMD Geode embedded processor with MMX and 3DNow! instruction
- set support.
-
-'-mtune=CPU-TYPE'
- Tune to CPU-TYPE everything applicable about the generated code,
- except for the ABI and the set of available instructions. While
- picking a specific CPU-TYPE schedules things appropriately for that
- particular chip, the compiler does not generate any code that
- cannot run on the default machine type unless you use a
- '-march=CPU-TYPE' option. For example, if GCC is configured for
- i686-pc-linux-gnu then '-mtune=pentium4' generates code that is
- tuned for Pentium 4 but still runs on i686 machines.
-
- The choices for CPU-TYPE are the same as for '-march'. In
- addition, '-mtune' supports 2 extra choices for CPU-TYPE:
-
- 'generic'
- Produce code optimized for the most common IA32/AMD64/EM64T
- processors. If you know the CPU on which your code will run,
- then you should use the corresponding '-mtune' or '-march'
- option instead of '-mtune=generic'. But, if you do not know
- exactly what CPU users of your application will have, then you
- should use this option.
-
- As new processors are deployed in the marketplace, the
- behavior of this option will change. Therefore, if you
- upgrade to a newer version of GCC, code generation controlled
- by this option will change to reflect the processors that are
- most common at the time that version of GCC is released.
-
- There is no '-march=generic' option because '-march' indicates
- the instruction set the compiler can use, and there is no
- generic instruction set applicable to all processors. In
- contrast, '-mtune' indicates the processor (or, in this case,
- collection of processors) for which the code is optimized.
-
- 'intel'
- Produce code optimized for the most current Intel processors,
- which are Haswell and Silvermont for this version of GCC. If
- you know the CPU on which your code will run, then you should
- use the corresponding '-mtune' or '-march' option instead of
- '-mtune=intel'. But, if you want your application performs
- better on both Haswell and Silvermont, then you should use
- this option.
-
- As new Intel processors are deployed in the marketplace, the
- behavior of this option will change. Therefore, if you
- upgrade to a newer version of GCC, code generation controlled
- by this option will change to reflect the most current Intel
- processors at the time that version of GCC is released.
-
- There is no '-march=intel' option because '-march' indicates
- the instruction set the compiler can use, and there is no
- common instruction set applicable to all processors. In
- contrast, '-mtune' indicates the processor (or, in this case,
- collection of processors) for which the code is optimized.
-
-'-mcpu=CPU-TYPE'
- A deprecated synonym for '-mtune'.
-
-'-mfpmath=UNIT'
- Generate floating-point arithmetic for selected unit UNIT. The
- choices for UNIT are:
-
- '387'
- Use the standard 387 floating-point coprocessor present on the
- majority of chips and emulated otherwise. Code compiled with
- this option runs almost everywhere. The temporary results are
- computed in 80-bit precision instead of the precision
- specified by the type, resulting in slightly different results
- compared to most of other chips. See '-ffloat-store' for more
- detailed description.
-
- This is the default choice for i386 compiler.
-
- 'sse'
- Use scalar floating-point instructions present in the SSE
- instruction set. This instruction set is supported by Pentium
- III and newer chips, and in the AMD line by Athlon-4, Athlon
- XP and Athlon MP chips. The earlier version of the SSE
- instruction set supports only single-precision arithmetic,
- thus the double and extended-precision arithmetic are still
- done using 387. A later version, present only in Pentium 4
- and AMD x86-64 chips, supports double-precision arithmetic
- too.
-
- For the i386 compiler, you must use '-march=CPU-TYPE', '-msse'
- or '-msse2' switches to enable SSE extensions and make this
- option effective. For the x86-64 compiler, these extensions
- are enabled by default.
-
- The resulting code should be considerably faster in the
- majority of cases and avoid the numerical instability problems
- of 387 code, but may break some existing code that expects
- temporaries to be 80 bits.
-
- This is the default choice for the x86-64 compiler.
-
- 'sse,387'
- 'sse+387'
- 'both'
- Attempt to utilize both instruction sets at once. This
- effectively doubles the amount of available registers, and on
- chips with separate execution units for 387 and SSE the
- execution resources too. Use this option with care, as it is
- still experimental, because the GCC register allocator does
- not model separate functional units well, resulting in
- unstable performance.
-
-'-masm=DIALECT'
- Output assembly instructions using selected DIALECT. Supported
- choices are 'intel' or 'att' (the default). Darwin does not
- support 'intel'.
-
-'-mieee-fp'
-'-mno-ieee-fp'
- Control whether or not the compiler uses IEEE floating-point
- comparisons. These correctly handle the case where the result of a
- comparison is unordered.
-
-'-msoft-float'
- Generate output containing library calls for floating point.
-
- *Warning:* the requisite libraries are not part of GCC. Normally
- the facilities of the machine's usual C compiler are used, but this
- can't be done directly in cross-compilation. You must make your
- own arrangements to provide suitable library functions for
- cross-compilation.
-
- On machines where a function returns floating-point results in the
- 80387 register stack, some floating-point opcodes may be emitted
- even if '-msoft-float' is used.
-
-'-mno-fp-ret-in-387'
- Do not use the FPU registers for return values of functions.
-
- The usual calling convention has functions return values of types
- 'float' and 'double' in an FPU register, even if there is no FPU.
- The idea is that the operating system should emulate an FPU.
-
- The option '-mno-fp-ret-in-387' causes such values to be returned
- in ordinary CPU registers instead.
-
-'-mno-fancy-math-387'
- Some 387 emulators do not support the 'sin', 'cos' and 'sqrt'
- instructions for the 387. Specify this option to avoid generating
- those instructions. This option is the default on FreeBSD, OpenBSD
- and NetBSD. This option is overridden when '-march' indicates that
- the target CPU always has an FPU and so the instruction does not
- need emulation. These instructions are not generated unless you
- also use the '-funsafe-math-optimizations' switch.
-
-'-malign-double'
-'-mno-align-double'
- Control whether GCC aligns 'double', 'long double', and 'long long'
- variables on a two-word boundary or a one-word boundary. Aligning
- 'double' variables on a two-word boundary produces code that runs
- somewhat faster on a Pentium at the expense of more memory.
-
- On x86-64, '-malign-double' is enabled by default.
-
- *Warning:* if you use the '-malign-double' switch, structures
- containing the above types are aligned differently than the
- published application binary interface specifications for the 386
- and are not binary compatible with structures in code compiled
- without that switch.
-
-'-m96bit-long-double'
-'-m128bit-long-double'
- These switches control the size of 'long double' type. The i386
- application binary interface specifies the size to be 96 bits, so
- '-m96bit-long-double' is the default in 32-bit mode.
-
- Modern architectures (Pentium and newer) prefer 'long double' to be
- aligned to an 8- or 16-byte boundary. In arrays or structures
- conforming to the ABI, this is not possible. So specifying
- '-m128bit-long-double' aligns 'long double' to a 16-byte boundary
- by padding the 'long double' with an additional 32-bit zero.
-
- In the x86-64 compiler, '-m128bit-long-double' is the default
- choice as its ABI specifies that 'long double' is aligned on
- 16-byte boundary.
-
- Notice that neither of these options enable any extra precision
- over the x87 standard of 80 bits for a 'long double'.
-
- *Warning:* if you override the default value for your target ABI,
- this changes the size of structures and arrays containing 'long
- double' variables, as well as modifying the function calling
- convention for functions taking 'long double'. Hence they are not
- binary-compatible with code compiled without that switch.
-
-'-mlong-double-64'
-'-mlong-double-80'
-'-mlong-double-128'
- These switches control the size of 'long double' type. A size of
- 64 bits makes the 'long double' type equivalent to the 'double'
- type. This is the default for 32-bit Bionic C library. A size of
- 128 bits makes the 'long double' type equivalent to the
- '__float128' type. This is the default for 64-bit Bionic C
- library.
-
- *Warning:* if you override the default value for your target ABI,
- this changes the size of structures and arrays containing 'long
- double' variables, as well as modifying the function calling
- convention for functions taking 'long double'. Hence they are not
- binary-compatible with code compiled without that switch.
-
-'-mlarge-data-threshold=THRESHOLD'
- When '-mcmodel=medium' is specified, data objects larger than
- THRESHOLD are placed in the large data section. This value must be
- the same across all objects linked into the binary, and defaults to
- 65535.
-
-'-mrtd'
- Use a different function-calling convention, in which functions
- that take a fixed number of arguments return with the 'ret NUM'
- instruction, which pops their arguments while returning. This
- saves one instruction in the caller since there is no need to pop
- the arguments there.
-
- You can specify that an individual function is called with this
- calling sequence with the function attribute 'stdcall'. You can
- also override the '-mrtd' option by using the function attribute
- 'cdecl'. *Note Function Attributes::.
-
- *Warning:* this calling convention is incompatible with the one
- normally used on Unix, so you cannot use it if you need to call
- libraries compiled with the Unix compiler.
-
- Also, you must provide function prototypes for all functions that
- take variable numbers of arguments (including 'printf'); otherwise
- incorrect code is generated for calls to those functions.
-
- In addition, seriously incorrect code results if you call a
- function with too many arguments. (Normally, extra arguments are
- harmlessly ignored.)
-
-'-mregparm=NUM'
- Control how many registers are used to pass integer arguments. By
- default, no registers are used to pass arguments, and at most 3
- registers can be used. You can control this behavior for a
- specific function by using the function attribute 'regparm'. *Note
- Function Attributes::.
-
- *Warning:* if you use this switch, and NUM is nonzero, then you
- must build all modules with the same value, including any
- libraries. This includes the system libraries and startup modules.
-
-'-msseregparm'
- Use SSE register passing conventions for float and double arguments
- and return values. You can control this behavior for a specific
- function by using the function attribute 'sseregparm'. *Note
- Function Attributes::.
-
- *Warning:* if you use this switch then you must build all modules
- with the same value, including any libraries. This includes the
- system libraries and startup modules.
-
-'-mvect8-ret-in-mem'
- Return 8-byte vectors in memory instead of MMX registers. This is
- the default on Solaris 8 and 9 and VxWorks to match the ABI of the
- Sun Studio compilers until version 12. Later compiler versions
- (starting with Studio 12 Update 1) follow the ABI used by other x86
- targets, which is the default on Solaris 10 and later. _Only_ use
- this option if you need to remain compatible with existing code
- produced by those previous compiler versions or older versions of
- GCC.
-
-'-mpc32'
-'-mpc64'
-'-mpc80'
-
- Set 80387 floating-point precision to 32, 64 or 80 bits. When
- '-mpc32' is specified, the significands of results of
- floating-point operations are rounded to 24 bits (single
- precision); '-mpc64' rounds the significands of results of
- floating-point operations to 53 bits (double precision) and
- '-mpc80' rounds the significands of results of floating-point
- operations to 64 bits (extended double precision), which is the
- default. When this option is used, floating-point operations in
- higher precisions are not available to the programmer without
- setting the FPU control word explicitly.
-
- Setting the rounding of floating-point operations to less than the
- default 80 bits can speed some programs by 2% or more. Note that
- some mathematical libraries assume that extended-precision (80-bit)
- floating-point operations are enabled by default; routines in such
- libraries could suffer significant loss of accuracy, typically
- through so-called "catastrophic cancellation", when this option is
- used to set the precision to less than extended precision.
-
-'-mstackrealign'
- Realign the stack at entry. On the Intel x86, the '-mstackrealign'
- option generates an alternate prologue and epilogue that realigns
- the run-time stack if necessary. This supports mixing legacy codes
- that keep 4-byte stack alignment with modern codes that keep
- 16-byte stack alignment for SSE compatibility. See also the
- attribute 'force_align_arg_pointer', applicable to individual
- functions.
-
-'-mpreferred-stack-boundary=NUM'
- Attempt to keep the stack boundary aligned to a 2 raised to NUM
- byte boundary. If '-mpreferred-stack-boundary' is not specified,
- the default is 4 (16 bytes or 128 bits).
-
- *Warning:* When generating code for the x86-64 architecture with
- SSE extensions disabled, '-mpreferred-stack-boundary=3' can be used
- to keep the stack boundary aligned to 8 byte boundary. Since
- x86-64 ABI require 16 byte stack alignment, this is ABI
- incompatible and intended to be used in controlled environment
- where stack space is important limitation. This option will lead
- to wrong code when functions compiled with 16 byte stack alignment
- (such as functions from a standard library) are called with
- misaligned stack. In this case, SSE instructions may lead to
- misaligned memory access traps. In addition, variable arguments
- will be handled incorrectly for 16 byte aligned objects (including
- x87 long double and __int128), leading to wrong results. You must
- build all modules with '-mpreferred-stack-boundary=3', including
- any libraries. This includes the system libraries and startup
- modules.
-
-'-mincoming-stack-boundary=NUM'
- Assume the incoming stack is aligned to a 2 raised to NUM byte
- boundary. If '-mincoming-stack-boundary' is not specified, the one
- specified by '-mpreferred-stack-boundary' is used.
-
- On Pentium and Pentium Pro, 'double' and 'long double' values
- should be aligned to an 8-byte boundary (see '-malign-double') or
- suffer significant run time performance penalties. On Pentium III,
- the Streaming SIMD Extension (SSE) data type '__m128' may not work
- properly if it is not 16-byte aligned.
-
- To ensure proper alignment of this values on the stack, the stack
- boundary must be as aligned as that required by any value stored on
- the stack. Further, every function must be generated such that it
- keeps the stack aligned. Thus calling a function compiled with a
- higher preferred stack boundary from a function compiled with a
- lower preferred stack boundary most likely misaligns the stack. It
- is recommended that libraries that use callbacks always use the
- default setting.
-
- This extra alignment does consume extra stack space, and generally
- increases code size. Code that is sensitive to stack space usage,
- such as embedded systems and operating system kernels, may want to
- reduce the preferred alignment to '-mpreferred-stack-boundary=2'.
-
-'-mmmx'
-'-mno-mmx'
-'-msse'
-'-mno-sse'
-'-msse2'
-'-mno-sse2'
-'-msse3'
-'-mno-sse3'
-'-mssse3'
-'-mno-ssse3'
-'-msse4.1'
-'-mno-sse4.1'
-'-msse4.2'
-'-mno-sse4.2'
-'-msse4'
-'-mno-sse4'
-'-mavx'
-'-mno-avx'
-'-mavx2'
-'-mno-avx2'
-'-mavx512f'
-'-mno-avx512f'
-'-mavx512pf'
-'-mno-avx512pf'
-'-mavx512er'
-'-mno-avx512er'
-'-mavx512cd'
-'-mno-avx512cd'
-'-msha'
-'-mno-sha'
-'-maes'
-'-mno-aes'
-'-mpclmul'
-'-mno-pclmul'
-'-mfsgsbase'
-'-mno-fsgsbase'
-'-mrdrnd'
-'-mno-rdrnd'
-'-mf16c'
-'-mno-f16c'
-'-mfma'
-'-mno-fma'
-'-mprefetchwt1'
-'-mno-prefetchwt1'
-'-msse4a'
-'-mno-sse4a'
-'-mfma4'
-'-mno-fma4'
-'-mxop'
-'-mno-xop'
-'-mlwp'
-'-mno-lwp'
-'-m3dnow'
-'-mno-3dnow'
-'-mpopcnt'
-'-mno-popcnt'
-'-mabm'
-'-mno-abm'
-'-mbmi'
-'-mbmi2'
-'-mno-bmi'
-'-mno-bmi2'
-'-mlzcnt'
-'-mno-lzcnt'
-'-mfxsr'
-'-mxsave'
-'-mxsaveopt'
-'-mrtm'
-'-mtbm'
-'-mno-tbm'
- These switches enable or disable the use of instructions in the
- MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF,
- AVX512ER, AVX512CD, SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA,
- SSE4A, FMA4, XOP, LWP, ABM, BMI, BMI2, FXSR, XSAVE, XSAVEOPT,
- LZCNT, RTM, or 3DNow! extended instruction sets. These extensions
- are also available as built-in functions: see *note X86 Built-in
- Functions::, for details of the functions enabled and disabled by
- these switches.
-
- To generate SSE/SSE2 instructions automatically from floating-point
- code (as opposed to 387 instructions), see '-mfpmath=sse'.
-
- GCC depresses SSEx instructions when '-mavx' is used. Instead, it
- generates new AVX instructions or AVX equivalence for all SSEx
- instructions when needed.
-
- These options enable GCC to use these extended instructions in
- generated code, even without '-mfpmath=sse'. Applications that
- perform run-time CPU detection must compile separate files for each
- supported architecture, using the appropriate flags. In
- particular, the file containing the CPU detection code should be
- compiled without these options.
-
-'-mdump-tune-features'
- This option instructs GCC to dump the names of the x86 performance
- tuning features and default settings. The names can be used in
- '-mtune-ctrl=FEATURE-LIST'.
-
-'-mtune-ctrl=FEATURE-LIST'
- This option is used to do fine grain control of x86 code generation
- features. FEATURE-LIST is a comma separated list of FEATURE names.
- See also '-mdump-tune-features'. When specified, the FEATURE will
- be turned on if it is not preceded with '^', otherwise, it will be
- turned off. '-mtune-ctrl=FEATURE-LIST' is intended to be used by
- GCC developers. Using it may lead to code paths not covered by
- testing and can potentially result in compiler ICEs or runtime
- errors.
-
-'-mno-default'
- This option instructs GCC to turn off all tunable features. See
- also '-mtune-ctrl=FEATURE-LIST' and '-mdump-tune-features'.
-
-'-mcld'
- This option instructs GCC to emit a 'cld' instruction in the
- prologue of functions that use string instructions. String
- instructions depend on the DF flag to select between autoincrement
- or autodecrement mode. While the ABI specifies the DF flag to be
- cleared on function entry, some operating systems violate this
- specification by not clearing the DF flag in their exception
- dispatchers. The exception handler can be invoked with the DF flag
- set, which leads to wrong direction mode when string instructions
- are used. This option can be enabled by default on 32-bit x86
- targets by configuring GCC with the '--enable-cld' configure
- option. Generation of 'cld' instructions can be suppressed with
- the '-mno-cld' compiler option in this case.
-
-'-mvzeroupper'
- This option instructs GCC to emit a 'vzeroupper' instruction before
- a transfer of control flow out of the function to minimize the AVX
- to SSE transition penalty as well as remove unnecessary 'zeroupper'
- intrinsics.
-
-'-mprefer-avx128'
- This option instructs GCC to use 128-bit AVX instructions instead
- of 256-bit AVX instructions in the auto-vectorizer.
-
-'-mcx16'
- This option enables GCC to generate 'CMPXCHG16B' instructions.
- 'CMPXCHG16B' allows for atomic operations on 128-bit double
- quadword (or oword) data types. This is useful for high-resolution
- counters that can be updated by multiple processors (or cores).
- This instruction is generated as part of atomic built-in functions:
- see *note __sync Builtins:: or *note __atomic Builtins:: for
- details.
-
-'-msahf'
- This option enables generation of 'SAHF' instructions in 64-bit
- code. Early Intel Pentium 4 CPUs with Intel 64 support, prior to
- the introduction of Pentium 4 G1 step in December 2005, lacked the
- 'LAHF' and 'SAHF' instructions which were supported by AMD64.
- These are load and store instructions, respectively, for certain
- status flags. In 64-bit mode, the 'SAHF' instruction is used to
- optimize 'fmod', 'drem', and 'remainder' built-in functions; see
- *note Other Builtins:: for details.
-
-'-mmovbe'
- This option enables use of the 'movbe' instruction to implement
- '__builtin_bswap32' and '__builtin_bswap64'.
-
-'-mcrc32'
- This option enables built-in functions '__builtin_ia32_crc32qi',
- '__builtin_ia32_crc32hi', '__builtin_ia32_crc32si' and
- '__builtin_ia32_crc32di' to generate the 'crc32' machine
- instruction.
-
-'-mrecip'
- This option enables use of 'RCPSS' and 'RSQRTSS' instructions (and
- their vectorized variants 'RCPPS' and 'RSQRTPS') with an additional
- Newton-Raphson step to increase precision instead of 'DIVSS' and
- 'SQRTSS' (and their vectorized variants) for single-precision
- floating-point arguments. These instructions are generated only
- when '-funsafe-math-optimizations' is enabled together with
- '-finite-math-only' and '-fno-trapping-math'. Note that while the
- throughput of the sequence is higher than the throughput of the
- non-reciprocal instruction, the precision of the sequence can be
- decreased by up to 2 ulp (i.e. the inverse of 1.0 equals
- 0.99999994).
-
- Note that GCC implements '1.0f/sqrtf(X)' in terms of 'RSQRTSS' (or
- 'RSQRTPS') already with '-ffast-math' (or the above option
- combination), and doesn't need '-mrecip'.
-
- Also note that GCC emits the above sequence with additional
- Newton-Raphson step for vectorized single-float division and
- vectorized 'sqrtf(X)' already with '-ffast-math' (or the above
- option combination), and doesn't need '-mrecip'.
-
-'-mrecip=OPT'
- This option controls which reciprocal estimate instructions may be
- used. OPT is a comma-separated list of options, which may be
- preceded by a '!' to invert the option:
-
- 'all'
- Enable all estimate instructions.
-
- 'default'
- Enable the default instructions, equivalent to '-mrecip'.
-
- 'none'
- Disable all estimate instructions, equivalent to '-mno-recip'.
-
- 'div'
- Enable the approximation for scalar division.
-
- 'vec-div'
- Enable the approximation for vectorized division.
-
- 'sqrt'
- Enable the approximation for scalar square root.
-
- 'vec-sqrt'
- Enable the approximation for vectorized square root.
-
- So, for example, '-mrecip=all,!sqrt' enables all of the reciprocal
- approximations, except for square root.
-
-'-mveclibabi=TYPE'
- Specifies the ABI type to use for vectorizing intrinsics using an
- external library. Supported values for TYPE are 'svml' for the
- Intel short vector math library and 'acml' for the AMD math core
- library. To use this option, both '-ftree-vectorize' and
- '-funsafe-math-optimizations' have to be enabled, and an SVML or
- ACML ABI-compatible library must be specified at link time.
-
- GCC currently emits calls to 'vmldExp2', 'vmldLn2', 'vmldLog102',
- 'vmldLog102', 'vmldPow2', 'vmldTanh2', 'vmldTan2', 'vmldAtan2',
- 'vmldAtanh2', 'vmldCbrt2', 'vmldSinh2', 'vmldSin2', 'vmldAsinh2',
- 'vmldAsin2', 'vmldCosh2', 'vmldCos2', 'vmldAcosh2', 'vmldAcos2',
- 'vmlsExp4', 'vmlsLn4', 'vmlsLog104', 'vmlsLog104', 'vmlsPow4',
- 'vmlsTanh4', 'vmlsTan4', 'vmlsAtan4', 'vmlsAtanh4', 'vmlsCbrt4',
- 'vmlsSinh4', 'vmlsSin4', 'vmlsAsinh4', 'vmlsAsin4', 'vmlsCosh4',
- 'vmlsCos4', 'vmlsAcosh4' and 'vmlsAcos4' for corresponding function
- type when '-mveclibabi=svml' is used, and '__vrd2_sin',
- '__vrd2_cos', '__vrd2_exp', '__vrd2_log', '__vrd2_log2',
- '__vrd2_log10', '__vrs4_sinf', '__vrs4_cosf', '__vrs4_expf',
- '__vrs4_logf', '__vrs4_log2f', '__vrs4_log10f' and '__vrs4_powf'
- for the corresponding function type when '-mveclibabi=acml' is
- used.
-
-'-mabi=NAME'
- Generate code for the specified calling convention. Permissible
- values are 'sysv' for the ABI used on GNU/Linux and other systems,
- and 'ms' for the Microsoft ABI. The default is to use the Microsoft
- ABI when targeting Microsoft Windows and the SysV ABI on all other
- systems. You can control this behavior for a specific function by
- using the function attribute 'ms_abi'/'sysv_abi'. *Note Function
- Attributes::.
-
-'-mtls-dialect=TYPE'
- Generate code to access thread-local storage using the 'gnu' or
- 'gnu2' conventions. 'gnu' is the conservative default; 'gnu2' is
- more efficient, but it may add compile- and run-time requirements
- that cannot be satisfied on all systems.
-
-'-mpush-args'
-'-mno-push-args'
- Use PUSH operations to store outgoing parameters. This method is
- shorter and usually equally fast as method using SUB/MOV operations
- and is enabled by default. In some cases disabling it may improve
- performance because of improved scheduling and reduced
- dependencies.
-
-'-maccumulate-outgoing-args'
- If enabled, the maximum amount of space required for outgoing
- arguments is computed in the function prologue. This is faster on
- most modern CPUs because of reduced dependencies, improved
- scheduling and reduced stack usage when the preferred stack
- boundary is not equal to 2. The drawback is a notable increase in
- code size. This switch implies '-mno-push-args'.
-
-'-mthreads'
- Support thread-safe exception handling on MinGW. Programs that rely
- on thread-safe exception handling must compile and link all code
- with the '-mthreads' option. When compiling, '-mthreads' defines
- '-D_MT'; when linking, it links in a special thread helper library
- '-lmingwthrd' which cleans up per-thread exception-handling data.
-
-'-mno-align-stringops'
- Do not align the destination of inlined string operations. This
- switch reduces code size and improves performance in case the
- destination is already aligned, but GCC doesn't know about it.
-
-'-minline-all-stringops'
- By default GCC inlines string operations only when the destination
- is known to be aligned to least a 4-byte boundary. This enables
- more inlining and increases code size, but may improve performance
- of code that depends on fast 'memcpy', 'strlen', and 'memset' for
- short lengths.
-
-'-minline-stringops-dynamically'
- For string operations of unknown size, use run-time checks with
- inline code for small blocks and a library call for large blocks.
-
-'-mstringop-strategy=ALG'
- Override the internal decision heuristic for the particular
- algorithm to use for inlining string operations. The allowed
- values for ALG are:
-
- 'rep_byte'
- 'rep_4byte'
- 'rep_8byte'
- Expand using i386 'rep' prefix of the specified size.
-
- 'byte_loop'
- 'loop'
- 'unrolled_loop'
- Expand into an inline loop.
-
- 'libcall'
- Always use a library call.
-
-'-mmemcpy-strategy=STRATEGY'
- Override the internal decision heuristic to decide if
- '__builtin_memcpy' should be inlined and what inline algorithm to
- use when the expected size of the copy operation is known.
- STRATEGY is a comma-separated list of ALG:MAX_SIZE:DEST_ALIGN
- triplets. ALG is specified in '-mstringop-strategy', MAX_SIZE
- specifies the max byte size with which inline algorithm ALG is
- allowed. For the last triplet, the MAX_SIZE must be '-1'. The
- MAX_SIZE of the triplets in the list must be specified in
- increasing order. The minimal byte size for ALG is '0' for the
- first triplet and 'MAX_SIZE + 1' of the preceding range.
-
-'-mmemset-strategy=STRATEGY'
- The option is similar to '-mmemcpy-strategy=' except that it is to
- control '__builtin_memset' expansion.
-
-'-momit-leaf-frame-pointer'
- Don't keep the frame pointer in a register for leaf functions.
- This avoids the instructions to save, set up, and restore frame
- pointers and makes an extra register available in leaf functions.
- The option '-fomit-leaf-frame-pointer' removes the frame pointer
- for leaf functions, which might make debugging harder.
-
-'-mtls-direct-seg-refs'
-'-mno-tls-direct-seg-refs'
- Controls whether TLS variables may be accessed with offsets from
- the TLS segment register ('%gs' for 32-bit, '%fs' for 64-bit), or
- whether the thread base pointer must be added. Whether or not this
- is valid depends on the operating system, and whether it maps the
- segment to cover the entire TLS area.
-
- For systems that use the GNU C Library, the default is on.
-
-'-msse2avx'
-'-mno-sse2avx'
- Specify that the assembler should encode SSE instructions with VEX
- prefix. The option '-mavx' turns this on by default.
-
-'-mfentry'
-'-mno-fentry'
- If profiling is active ('-pg'), put the profiling counter call
- before the prologue. Note: On x86 architectures the attribute
- 'ms_hook_prologue' isn't possible at the moment for '-mfentry' and
- '-pg'.
-
-'-m8bit-idiv'
-'-mno-8bit-idiv'
- On some processors, like Intel Atom, 8-bit unsigned integer divide
- is much faster than 32-bit/64-bit integer divide. This option
- generates a run-time check. If both dividend and divisor are
- within range of 0 to 255, 8-bit unsigned integer divide is used
- instead of 32-bit/64-bit integer divide.
-
-'-mavx256-split-unaligned-load'
-'-mavx256-split-unaligned-store'
- Split 32-byte AVX unaligned load and store.
-
-'-mstack-protector-guard=GUARD'
- Generate stack protection code using canary at GUARD. Supported
- locations are 'global' for global canary or 'tls' for per-thread
- canary in the TLS block (the default). This option has effect only
- when '-fstack-protector' or '-fstack-protector-all' is specified.
-
- These '-m' switches are supported in addition to the above on x86-64
-processors in 64-bit environments.
-
-'-m32'
-'-m64'
-'-mx32'
-'-m16'
- Generate code for a 16-bit, 32-bit or 64-bit environment. The
- '-m32' option sets 'int', 'long', and pointer types to 32 bits, and
- generates code that runs on any i386 system.
-
- The '-m64' option sets 'int' to 32 bits and 'long' and pointer
- types to 64 bits, and generates code for the x86-64 architecture.
- For Darwin only the '-m64' option also turns off the '-fno-pic' and
- '-mdynamic-no-pic' options.
-
- The '-mx32' option sets 'int', 'long', and pointer types to 32
- bits, and generates code for the x86-64 architecture.
-
- The '-m16' option is the same as '-m32', except for that it outputs
- the '.code16gcc' assembly directive at the beginning of the
- assembly output so that the binary can run in 16-bit mode.
-
-'-mno-red-zone'
- Do not use a so-called "red zone" for x86-64 code. The red zone is
- mandated by the x86-64 ABI; it is a 128-byte area beyond the
- location of the stack pointer that is not modified by signal or
- interrupt handlers and therefore can be used for temporary data
- without adjusting the stack pointer. The flag '-mno-red-zone'
- disables this red zone.
-
-'-mcmodel=small'
- Generate code for the small code model: the program and its symbols
- must be linked in the lower 2 GB of the address space. Pointers
- are 64 bits. Programs can be statically or dynamically linked.
- This is the default code model.
-
-'-mcmodel=kernel'
- Generate code for the kernel code model. The kernel runs in the
- negative 2 GB of the address space. This model has to be used for
- Linux kernel code.
-
-'-mcmodel=medium'
- Generate code for the medium model: the program is linked in the
- lower 2 GB of the address space. Small symbols are also placed
- there. Symbols with sizes larger than '-mlarge-data-threshold' are
- put into large data or BSS sections and can be located above 2GB.
- Programs can be statically or dynamically linked.
-
-'-mcmodel=large'
- Generate code for the large model. This model makes no assumptions
- about addresses and sizes of sections.
-
-'-maddress-mode=long'
- Generate code for long address mode. This is only supported for
- 64-bit and x32 environments. It is the default address mode for
- 64-bit environments.
-
-'-maddress-mode=short'
- Generate code for short address mode. This is only supported for
- 32-bit and x32 environments. It is the default address mode for
- 32-bit and x32 environments.
-
-
-File: gcc.info, Node: i386 and x86-64 Windows Options, Next: IA-64 Options, Prev: i386 and x86-64 Options, Up: Submodel Options
-
-3.17.18 i386 and x86-64 Windows Options
----------------------------------------
-
-These additional options are available for Microsoft Windows targets:
-
-'-mconsole'
- This option specifies that a console application is to be
- generated, by instructing the linker to set the PE header subsystem
- type required for console applications. This option is available
- for Cygwin and MinGW targets and is enabled by default on those
- targets.
-
-'-mdll'
- This option is available for Cygwin and MinGW targets. It
- specifies that a DLL--a dynamic link library--is to be generated,
- enabling the selection of the required runtime startup object and
- entry point.
-
-'-mnop-fun-dllimport'
- This option is available for Cygwin and MinGW targets. It
- specifies that the 'dllimport' attribute should be ignored.
-
-'-mthread'
- This option is available for MinGW targets. It specifies that
- MinGW-specific thread support is to be used.
-
-'-municode'
- This option is available for MinGW-w64 targets. It causes the
- 'UNICODE' preprocessor macro to be predefined, and chooses
- Unicode-capable runtime startup code.
-
-'-mwin32'
- This option is available for Cygwin and MinGW targets. It
- specifies that the typical Microsoft Windows predefined macros are
- to be set in the pre-processor, but does not influence the choice
- of runtime library/startup code.
-
-'-mwindows'
- This option is available for Cygwin and MinGW targets. It
- specifies that a GUI application is to be generated by instructing
- the linker to set the PE header subsystem type appropriately.
-
-'-fno-set-stack-executable'
- This option is available for MinGW targets. It specifies that the
- executable flag for the stack used by nested functions isn't set.
- This is necessary for binaries running in kernel mode of Microsoft
- Windows, as there the User32 API, which is used to set executable
- privileges, isn't available.
-
-'-fwritable-relocated-rdata'
- This option is available for MinGW and Cygwin targets. It
- specifies that relocated-data in read-only section is put into
- .data section. This is a necessary for older runtimes not
- supporting modification of .rdata sections for pseudo-relocation.
-
-'-mpe-aligned-commons'
- This option is available for Cygwin and MinGW targets. It
- specifies that the GNU extension to the PE file format that permits
- the correct alignment of COMMON variables should be used when
- generating code. It is enabled by default if GCC detects that the
- target assembler found during configuration supports the feature.
-
- See also under *note i386 and x86-64 Options:: for standard options.
-
-
-File: gcc.info, Node: IA-64 Options, Next: LM32 Options, Prev: i386 and x86-64 Windows Options, Up: Submodel Options
-
-3.17.19 IA-64 Options
----------------------
-
-These are the '-m' options defined for the Intel IA-64 architecture.
-
-'-mbig-endian'
- Generate code for a big-endian target. This is the default for
- HP-UX.
-
-'-mlittle-endian'
- Generate code for a little-endian target. This is the default for
- AIX5 and GNU/Linux.
-
-'-mgnu-as'
-'-mno-gnu-as'
- Generate (or don't) code for the GNU assembler. This is the
- default.
-
-'-mgnu-ld'
-'-mno-gnu-ld'
- Generate (or don't) code for the GNU linker. This is the default.
-
-'-mno-pic'
- Generate code that does not use a global pointer register. The
- result is not position independent code, and violates the IA-64
- ABI.
-
-'-mvolatile-asm-stop'
-'-mno-volatile-asm-stop'
- Generate (or don't) a stop bit immediately before and after
- volatile asm statements.
-
-'-mregister-names'
-'-mno-register-names'
- Generate (or don't) 'in', 'loc', and 'out' register names for the
- stacked registers. This may make assembler output more readable.
-
-'-mno-sdata'
-'-msdata'
- Disable (or enable) optimizations that use the small data section.
- This may be useful for working around optimizer bugs.
-
-'-mconstant-gp'
- Generate code that uses a single constant global pointer value.
- This is useful when compiling kernel code.
-
-'-mauto-pic'
- Generate code that is self-relocatable. This implies
- '-mconstant-gp'. This is useful when compiling firmware code.
-
-'-minline-float-divide-min-latency'
- Generate code for inline divides of floating-point values using the
- minimum latency algorithm.
-
-'-minline-float-divide-max-throughput'
- Generate code for inline divides of floating-point values using the
- maximum throughput algorithm.
-
-'-mno-inline-float-divide'
- Do not generate inline code for divides of floating-point values.
-
-'-minline-int-divide-min-latency'
- Generate code for inline divides of integer values using the
- minimum latency algorithm.
-
-'-minline-int-divide-max-throughput'
- Generate code for inline divides of integer values using the
- maximum throughput algorithm.
-
-'-mno-inline-int-divide'
- Do not generate inline code for divides of integer values.
-
-'-minline-sqrt-min-latency'
- Generate code for inline square roots using the minimum latency
- algorithm.
-
-'-minline-sqrt-max-throughput'
- Generate code for inline square roots using the maximum throughput
- algorithm.
-
-'-mno-inline-sqrt'
- Do not generate inline code for 'sqrt'.
-
-'-mfused-madd'
-'-mno-fused-madd'
- Do (don't) generate code that uses the fused multiply/add or
- multiply/subtract instructions. The default is to use these
- instructions.
-
-'-mno-dwarf2-asm'
-'-mdwarf2-asm'
- Don't (or do) generate assembler code for the DWARF 2 line number
- debugging info. This may be useful when not using the GNU
- assembler.
-
-'-mearly-stop-bits'
-'-mno-early-stop-bits'
- Allow stop bits to be placed earlier than immediately preceding the
- instruction that triggered the stop bit. This can improve
- instruction scheduling, but does not always do so.
-
-'-mfixed-range=REGISTER-RANGE'
- Generate code treating the given register range as fixed registers.
- A fixed register is one that the register allocator cannot use.
- This is useful when compiling kernel code. A register range is
- specified as two registers separated by a dash. Multiple register
- ranges can be specified separated by a comma.
-
-'-mtls-size=TLS-SIZE'
- Specify bit size of immediate TLS offsets. Valid values are 14,
- 22, and 64.
-
-'-mtune=CPU-TYPE'
- Tune the instruction scheduling for a particular CPU, Valid values
- are 'itanium', 'itanium1', 'merced', 'itanium2', and 'mckinley'.
-
-'-milp32'
-'-mlp64'
- Generate code for a 32-bit or 64-bit environment. The 32-bit
- environment sets int, long and pointer to 32 bits. The 64-bit
- environment sets int to 32 bits and long and pointer to 64 bits.
- These are HP-UX specific flags.
-
-'-mno-sched-br-data-spec'
-'-msched-br-data-spec'
- (Dis/En)able data speculative scheduling before reload. This
- results in generation of 'ld.a' instructions and the corresponding
- check instructions ('ld.c' / 'chk.a'). The default is 'disable'.
-
-'-msched-ar-data-spec'
-'-mno-sched-ar-data-spec'
- (En/Dis)able data speculative scheduling after reload. This
- results in generation of 'ld.a' instructions and the corresponding
- check instructions ('ld.c' / 'chk.a'). The default is 'enable'.
-
-'-mno-sched-control-spec'
-'-msched-control-spec'
- (Dis/En)able control speculative scheduling. This feature is
- available only during region scheduling (i.e. before reload). This
- results in generation of the 'ld.s' instructions and the
- corresponding check instructions 'chk.s'. The default is
- 'disable'.
-
-'-msched-br-in-data-spec'
-'-mno-sched-br-in-data-spec'
- (En/Dis)able speculative scheduling of the instructions that are
- dependent on the data speculative loads before reload. This is
- effective only with '-msched-br-data-spec' enabled. The default is
- 'enable'.
-
-'-msched-ar-in-data-spec'
-'-mno-sched-ar-in-data-spec'
- (En/Dis)able speculative scheduling of the instructions that are
- dependent on the data speculative loads after reload. This is
- effective only with '-msched-ar-data-spec' enabled. The default is
- 'enable'.
-
-'-msched-in-control-spec'
-'-mno-sched-in-control-spec'
- (En/Dis)able speculative scheduling of the instructions that are
- dependent on the control speculative loads. This is effective only
- with '-msched-control-spec' enabled. The default is 'enable'.
-
-'-mno-sched-prefer-non-data-spec-insns'
-'-msched-prefer-non-data-spec-insns'
- If enabled, data-speculative instructions are chosen for schedule
- only if there are no other choices at the moment. This makes the
- use of the data speculation much more conservative. The default is
- 'disable'.
-
-'-mno-sched-prefer-non-control-spec-insns'
-'-msched-prefer-non-control-spec-insns'
- If enabled, control-speculative instructions are chosen for
- schedule only if there are no other choices at the moment. This
- makes the use of the control speculation much more conservative.
- The default is 'disable'.
-
-'-mno-sched-count-spec-in-critical-path'
-'-msched-count-spec-in-critical-path'
- If enabled, speculative dependencies are considered during
- computation of the instructions priorities. This makes the use of
- the speculation a bit more conservative. The default is 'disable'.
-
-'-msched-spec-ldc'
- Use a simple data speculation check. This option is on by default.
-
-'-msched-control-spec-ldc'
- Use a simple check for control speculation. This option is on by
- default.
-
-'-msched-stop-bits-after-every-cycle'
- Place a stop bit after every cycle when scheduling. This option is
- on by default.
-
-'-msched-fp-mem-deps-zero-cost'
- Assume that floating-point stores and loads are not likely to cause
- a conflict when placed into the same instruction group. This
- option is disabled by default.
-
-'-msel-sched-dont-check-control-spec'
- Generate checks for control speculation in selective scheduling.
- This flag is disabled by default.
-
-'-msched-max-memory-insns=MAX-INSNS'
- Limit on the number of memory insns per instruction group, giving
- lower priority to subsequent memory insns attempting to schedule in
- the same instruction group. Frequently useful to prevent cache
- bank conflicts. The default value is 1.
-
-'-msched-max-memory-insns-hard-limit'
- Makes the limit specified by 'msched-max-memory-insns' a hard
- limit, disallowing more than that number in an instruction group.
- Otherwise, the limit is "soft", meaning that non-memory operations
- are preferred when the limit is reached, but memory operations may
- still be scheduled.
-
-
-File: gcc.info, Node: LM32 Options, Next: M32C Options, Prev: IA-64 Options, Up: Submodel Options
-
-3.17.20 LM32 Options
---------------------
-
-These '-m' options are defined for the LatticeMico32 architecture:
-
-'-mbarrel-shift-enabled'
- Enable barrel-shift instructions.
-
-'-mdivide-enabled'
- Enable divide and modulus instructions.
-
-'-mmultiply-enabled'
- Enable multiply instructions.
-
-'-msign-extend-enabled'
- Enable sign extend instructions.
-
-'-muser-enabled'
- Enable user-defined instructions.
-
-
-File: gcc.info, Node: M32C Options, Next: M32R/D Options, Prev: LM32 Options, Up: Submodel Options
-
-3.17.21 M32C Options
---------------------
-
-'-mcpu=NAME'
- Select the CPU for which code is generated. NAME may be one of
- 'r8c' for the R8C/Tiny series, 'm16c' for the M16C (up to /60)
- series, 'm32cm' for the M16C/80 series, or 'm32c' for the M32C/80
- series.
-
-'-msim'
- Specifies that the program will be run on the simulator. This
- causes an alternate runtime library to be linked in which supports,
- for example, file I/O. You must not use this option when
- generating programs that will run on real hardware; you must
- provide your own runtime library for whatever I/O functions are
- needed.
-
-'-memregs=NUMBER'
- Specifies the number of memory-based pseudo-registers GCC uses
- during code generation. These pseudo-registers are used like real
- registers, so there is a tradeoff between GCC's ability to fit the
- code into available registers, and the performance penalty of using
- memory instead of registers. Note that all modules in a program
- must be compiled with the same value for this option. Because of
- that, you must not use this option with GCC's default runtime
- libraries.
-
-
-File: gcc.info, Node: M32R/D Options, Next: M680x0 Options, Prev: M32C Options, Up: Submodel Options
-
-3.17.22 M32R/D Options
-----------------------
-
-These '-m' options are defined for Renesas M32R/D architectures:
-
-'-m32r2'
- Generate code for the M32R/2.
-
-'-m32rx'
- Generate code for the M32R/X.
-
-'-m32r'
- Generate code for the M32R. This is the default.
-
-'-mmodel=small'
- Assume all objects live in the lower 16MB of memory (so that their
- addresses can be loaded with the 'ld24' instruction), and assume
- all subroutines are reachable with the 'bl' instruction. This is
- the default.
-
- The addressability of a particular object can be set with the
- 'model' attribute.
-
-'-mmodel=medium'
- Assume objects may be anywhere in the 32-bit address space (the
- compiler generates 'seth/add3' instructions to load their
- addresses), and assume all subroutines are reachable with the 'bl'
- instruction.
-
-'-mmodel=large'
- Assume objects may be anywhere in the 32-bit address space (the
- compiler generates 'seth/add3' instructions to load their
- addresses), and assume subroutines may not be reachable with the
- 'bl' instruction (the compiler generates the much slower
- 'seth/add3/jl' instruction sequence).
-
-'-msdata=none'
- Disable use of the small data area. Variables are put into one of
- '.data', '.bss', or '.rodata' (unless the 'section' attribute has
- been specified). This is the default.
-
- The small data area consists of sections '.sdata' and '.sbss'.
- Objects may be explicitly put in the small data area with the
- 'section' attribute using one of these sections.
-
-'-msdata=sdata'
- Put small global and static data in the small data area, but do not
- generate special code to reference them.
-
-'-msdata=use'
- Put small global and static data in the small data area, and
- generate special instructions to reference them.
-
-'-G NUM'
- Put global and static objects less than or equal to NUM bytes into
- the small data or BSS sections instead of the normal data or BSS
- sections. The default value of NUM is 8. The '-msdata' option
- must be set to one of 'sdata' or 'use' for this option to have any
- effect.
-
- All modules should be compiled with the same '-G NUM' value.
- Compiling with different values of NUM may or may not work; if it
- doesn't the linker gives an error message--incorrect code is not
- generated.
-
-'-mdebug'
- Makes the M32R-specific code in the compiler display some
- statistics that might help in debugging programs.
-
-'-malign-loops'
- Align all loops to a 32-byte boundary.
-
-'-mno-align-loops'
- Do not enforce a 32-byte alignment for loops. This is the default.
-
-'-missue-rate=NUMBER'
- Issue NUMBER instructions per cycle. NUMBER can only be 1 or 2.
-
-'-mbranch-cost=NUMBER'
- NUMBER can only be 1 or 2. If it is 1 then branches are preferred
- over conditional code, if it is 2, then the opposite applies.
-
-'-mflush-trap=NUMBER'
- Specifies the trap number to use to flush the cache. The default
- is 12. Valid numbers are between 0 and 15 inclusive.
-
-'-mno-flush-trap'
- Specifies that the cache cannot be flushed by using a trap.
-
-'-mflush-func=NAME'
- Specifies the name of the operating system function to call to
- flush the cache. The default is __flush_cache_, but a function
- call is only used if a trap is not available.
-
-'-mno-flush-func'
- Indicates that there is no OS function for flushing the cache.
-
-
-File: gcc.info, Node: M680x0 Options, Next: MCore Options, Prev: M32R/D Options, Up: Submodel Options
-
-3.17.23 M680x0 Options
-----------------------
-
-These are the '-m' options defined for M680x0 and ColdFire processors.
-The default settings depend on which architecture was selected when the
-compiler was configured; the defaults for the most common choices are
-given below.
-
-'-march=ARCH'
- Generate code for a specific M680x0 or ColdFire instruction set
- architecture. Permissible values of ARCH for M680x0 architectures
- are: '68000', '68010', '68020', '68030', '68040', '68060' and
- 'cpu32'. ColdFire architectures are selected according to
- Freescale's ISA classification and the permissible values are:
- 'isaa', 'isaaplus', 'isab' and 'isac'.
-
- GCC defines a macro '__mcfARCH__' whenever it is generating code
- for a ColdFire target. The ARCH in this macro is one of the
- '-march' arguments given above.
-
- When used together, '-march' and '-mtune' select code that runs on
- a family of similar processors but that is optimized for a
- particular microarchitecture.
-
-'-mcpu=CPU'
- Generate code for a specific M680x0 or ColdFire processor. The
- M680x0 CPUs are: '68000', '68010', '68020', '68030', '68040',
- '68060', '68302', '68332' and 'cpu32'. The ColdFire CPUs are given
- by the table below, which also classifies the CPUs into families:
-
- *Family* *'-mcpu' arguments*
- '51' '51' '51ac' '51ag' '51cn' '51em' '51je' '51jf' '51jg'
- '51jm' '51mm' '51qe' '51qm'
- '5206' '5202' '5204' '5206'
- '5206e' '5206e'
- '5208' '5207' '5208'
- '5211a' '5210a' '5211a'
- '5213' '5211' '5212' '5213'
- '5216' '5214' '5216'
- '52235' '52230' '52231' '52232' '52233' '52234' '52235'
- '5225' '5224' '5225'
- '52259' '52252' '52254' '52255' '52256' '52258' '52259'
- '5235' '5232' '5233' '5234' '5235' '523x'
- '5249' '5249'
- '5250' '5250'
- '5271' '5270' '5271'
- '5272' '5272'
- '5275' '5274' '5275'
- '5282' '5280' '5281' '5282' '528x'
- '53017' '53011' '53012' '53013' '53014' '53015' '53016' '53017'
- '5307' '5307'
- '5329' '5327' '5328' '5329' '532x'
- '5373' '5372' '5373' '537x'
- '5407' '5407'
- '5475' '5470' '5471' '5472' '5473' '5474' '5475' '547x' '5480'
- '5481' '5482' '5483' '5484' '5485'
-
- '-mcpu=CPU' overrides '-march=ARCH' if ARCH is compatible with CPU.
- Other combinations of '-mcpu' and '-march' are rejected.
-
- GCC defines the macro '__mcf_cpu_CPU' when ColdFire target CPU is
- selected. It also defines '__mcf_family_FAMILY', where the value
- of FAMILY is given by the table above.
-
-'-mtune=TUNE'
- Tune the code for a particular microarchitecture within the
- constraints set by '-march' and '-mcpu'. The M680x0
- microarchitectures are: '68000', '68010', '68020', '68030',
- '68040', '68060' and 'cpu32'. The ColdFire microarchitectures are:
- 'cfv1', 'cfv2', 'cfv3', 'cfv4' and 'cfv4e'.
-
- You can also use '-mtune=68020-40' for code that needs to run
- relatively well on 68020, 68030 and 68040 targets.
- '-mtune=68020-60' is similar but includes 68060 targets as well.
- These two options select the same tuning decisions as '-m68020-40'
- and '-m68020-60' respectively.
-
- GCC defines the macros '__mcARCH' and '__mcARCH__' when tuning for
- 680x0 architecture ARCH. It also defines 'mcARCH' unless either
- '-ansi' or a non-GNU '-std' option is used. If GCC is tuning for a
- range of architectures, as selected by '-mtune=68020-40' or
- '-mtune=68020-60', it defines the macros for every architecture in
- the range.
-
- GCC also defines the macro '__mUARCH__' when tuning for ColdFire
- microarchitecture UARCH, where UARCH is one of the arguments given
- above.
-
-'-m68000'
-'-mc68000'
- Generate output for a 68000. This is the default when the compiler
- is configured for 68000-based systems. It is equivalent to
- '-march=68000'.
-
- Use this option for microcontrollers with a 68000 or EC000 core,
- including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
-
-'-m68010'
- Generate output for a 68010. This is the default when the compiler
- is configured for 68010-based systems. It is equivalent to
- '-march=68010'.
-
-'-m68020'
-'-mc68020'
- Generate output for a 68020. This is the default when the compiler
- is configured for 68020-based systems. It is equivalent to
- '-march=68020'.
-
-'-m68030'
- Generate output for a 68030. This is the default when the compiler
- is configured for 68030-based systems. It is equivalent to
- '-march=68030'.
-
-'-m68040'
- Generate output for a 68040. This is the default when the compiler
- is configured for 68040-based systems. It is equivalent to
- '-march=68040'.
-
- This option inhibits the use of 68881/68882 instructions that have
- to be emulated by software on the 68040. Use this option if your
- 68040 does not have code to emulate those instructions.
-
-'-m68060'
- Generate output for a 68060. This is the default when the compiler
- is configured for 68060-based systems. It is equivalent to
- '-march=68060'.
-
- This option inhibits the use of 68020 and 68881/68882 instructions
- that have to be emulated by software on the 68060. Use this option
- if your 68060 does not have code to emulate those instructions.
-
-'-mcpu32'
- Generate output for a CPU32. This is the default when the compiler
- is configured for CPU32-based systems. It is equivalent to
- '-march=cpu32'.
-
- Use this option for microcontrollers with a CPU32 or CPU32+ core,
- including the 68330, 68331, 68332, 68333, 68334, 68336, 68340,
- 68341, 68349 and 68360.
-
-'-m5200'
- Generate output for a 520X ColdFire CPU. This is the default when
- the compiler is configured for 520X-based systems. It is
- equivalent to '-mcpu=5206', and is now deprecated in favor of that
- option.
-
- Use this option for microcontroller with a 5200 core, including the
- MCF5202, MCF5203, MCF5204 and MCF5206.
-
-'-m5206e'
- Generate output for a 5206e ColdFire CPU. The option is now
- deprecated in favor of the equivalent '-mcpu=5206e'.
-
-'-m528x'
- Generate output for a member of the ColdFire 528X family. The
- option is now deprecated in favor of the equivalent '-mcpu=528x'.
-
-'-m5307'
- Generate output for a ColdFire 5307 CPU. The option is now
- deprecated in favor of the equivalent '-mcpu=5307'.
-
-'-m5407'
- Generate output for a ColdFire 5407 CPU. The option is now
- deprecated in favor of the equivalent '-mcpu=5407'.
-
-'-mcfv4e'
- Generate output for a ColdFire V4e family CPU (e.g. 547x/548x).
- This includes use of hardware floating-point instructions. The
- option is equivalent to '-mcpu=547x', and is now deprecated in
- favor of that option.
-
-'-m68020-40'
- Generate output for a 68040, without using any of the new
- instructions. This results in code that can run relatively
- efficiently on either a 68020/68881 or a 68030 or a 68040. The
- generated code does use the 68881 instructions that are emulated on
- the 68040.
-
- The option is equivalent to '-march=68020' '-mtune=68020-40'.
-
-'-m68020-60'
- Generate output for a 68060, without using any of the new
- instructions. This results in code that can run relatively
- efficiently on either a 68020/68881 or a 68030 or a 68040. The
- generated code does use the 68881 instructions that are emulated on
- the 68060.
-
- The option is equivalent to '-march=68020' '-mtune=68020-60'.
-
-'-mhard-float'
-'-m68881'
- Generate floating-point instructions. This is the default for
- 68020 and above, and for ColdFire devices that have an FPU. It
- defines the macro '__HAVE_68881__' on M680x0 targets and
- '__mcffpu__' on ColdFire targets.
-
-'-msoft-float'
- Do not generate floating-point instructions; use library calls
- instead. This is the default for 68000, 68010, and 68832 targets.
- It is also the default for ColdFire devices that have no FPU.
-
-'-mdiv'
-'-mno-div'
- Generate (do not generate) ColdFire hardware divide and remainder
- instructions. If '-march' is used without '-mcpu', the default is
- "on" for ColdFire architectures and "off" for M680x0 architectures.
- Otherwise, the default is taken from the target CPU (either the
- default CPU, or the one specified by '-mcpu'). For example, the
- default is "off" for '-mcpu=5206' and "on" for '-mcpu=5206e'.
-
- GCC defines the macro '__mcfhwdiv__' when this option is enabled.
-
-'-mshort'
- Consider type 'int' to be 16 bits wide, like 'short int'.
- Additionally, parameters passed on the stack are also aligned to a
- 16-bit boundary even on targets whose API mandates promotion to
- 32-bit.
-
-'-mno-short'
- Do not consider type 'int' to be 16 bits wide. This is the
- default.
-
-'-mnobitfield'
-'-mno-bitfield'
- Do not use the bit-field instructions. The '-m68000', '-mcpu32'
- and '-m5200' options imply '-mnobitfield'.
-
-'-mbitfield'
- Do use the bit-field instructions. The '-m68020' option implies
- '-mbitfield'. This is the default if you use a configuration
- designed for a 68020.
-
-'-mrtd'
- Use a different function-calling convention, in which functions
- that take a fixed number of arguments return with the 'rtd'
- instruction, which pops their arguments while returning. This
- saves one instruction in the caller since there is no need to pop
- the arguments there.
-
- This calling convention is incompatible with the one normally used
- on Unix, so you cannot use it if you need to call libraries
- compiled with the Unix compiler.
-
- Also, you must provide function prototypes for all functions that
- take variable numbers of arguments (including 'printf'); otherwise
- incorrect code is generated for calls to those functions.
-
- In addition, seriously incorrect code results if you call a
- function with too many arguments. (Normally, extra arguments are
- harmlessly ignored.)
-
- The 'rtd' instruction is supported by the 68010, 68020, 68030,
- 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
-
-'-mno-rtd'
- Do not use the calling conventions selected by '-mrtd'. This is
- the default.
-
-'-malign-int'
-'-mno-align-int'
- Control whether GCC aligns 'int', 'long', 'long long', 'float',
- 'double', and 'long double' variables on a 32-bit boundary
- ('-malign-int') or a 16-bit boundary ('-mno-align-int'). Aligning
- variables on 32-bit boundaries produces code that runs somewhat
- faster on processors with 32-bit busses at the expense of more
- memory.
-
- *Warning:* if you use the '-malign-int' switch, GCC aligns
- structures containing the above types differently than most
- published application binary interface specifications for the m68k.
-
-'-mpcrel'
- Use the pc-relative addressing mode of the 68000 directly, instead
- of using a global offset table. At present, this option implies
- '-fpic', allowing at most a 16-bit offset for pc-relative
- addressing. '-fPIC' is not presently supported with '-mpcrel',
- though this could be supported for 68020 and higher processors.
-
-'-mno-strict-align'
-'-mstrict-align'
- Do not (do) assume that unaligned memory references are handled by
- the system.
-
-'-msep-data'
- Generate code that allows the data segment to be located in a
- different area of memory from the text segment. This allows for
- execute-in-place in an environment without virtual memory
- management. This option implies '-fPIC'.
-
-'-mno-sep-data'
- Generate code that assumes that the data segment follows the text
- segment. This is the default.
-
-'-mid-shared-library'
- Generate code that supports shared libraries via the library ID
- method. This allows for execute-in-place and shared libraries in
- an environment without virtual memory management. This option
- implies '-fPIC'.
-
-'-mno-id-shared-library'
- Generate code that doesn't assume ID-based shared libraries are
- being used. This is the default.
-
-'-mshared-library-id=n'
- Specifies the identification number of the ID-based shared library
- being compiled. Specifying a value of 0 generates more compact
- code; specifying other values forces the allocation of that number
- to the current library, but is no more space- or time-efficient
- than omitting this option.
-
-'-mxgot'
-'-mno-xgot'
- When generating position-independent code for ColdFire, generate
- code that works if the GOT has more than 8192 entries. This code
- is larger and slower than code generated without this option. On
- M680x0 processors, this option is not needed; '-fPIC' suffices.
-
- GCC normally uses a single instruction to load values from the GOT.
- While this is relatively efficient, it only works if the GOT is
- smaller than about 64k. Anything larger causes the linker to
- report an error such as:
-
- relocation truncated to fit: R_68K_GOT16O foobar
-
- If this happens, you should recompile your code with '-mxgot'. It
- should then work with very large GOTs. However, code generated
- with '-mxgot' is less efficient, since it takes 4 instructions to
- fetch the value of a global symbol.
-
- Note that some linkers, including newer versions of the GNU linker,
- can create multiple GOTs and sort GOT entries. If you have such a
- linker, you should only need to use '-mxgot' when compiling a
- single object file that accesses more than 8192 GOT entries. Very
- few do.
-
- These options have no effect unless GCC is generating
- position-independent code.
-
-
-File: gcc.info, Node: MCore Options, Next: MeP Options, Prev: M680x0 Options, Up: Submodel Options
-
-3.17.24 MCore Options
----------------------
-
-These are the '-m' options defined for the Motorola M*Core processors.
-
-'-mhardlit'
-'-mno-hardlit'
- Inline constants into the code stream if it can be done in two
- instructions or less.
-
-'-mdiv'
-'-mno-div'
- Use the divide instruction. (Enabled by default).
-
-'-mrelax-immediate'
-'-mno-relax-immediate'
- Allow arbitrary-sized immediates in bit operations.
-
-'-mwide-bitfields'
-'-mno-wide-bitfields'
- Always treat bit-fields as 'int'-sized.
-
-'-m4byte-functions'
-'-mno-4byte-functions'
- Force all functions to be aligned to a 4-byte boundary.
-
-'-mcallgraph-data'
-'-mno-callgraph-data'
- Emit callgraph information.
-
-'-mslow-bytes'
-'-mno-slow-bytes'
- Prefer word access when reading byte quantities.
-
-'-mlittle-endian'
-'-mbig-endian'
- Generate code for a little-endian target.
-
-'-m210'
-'-m340'
- Generate code for the 210 processor.
-
-'-mno-lsim'
- Assume that runtime support has been provided and so omit the
- simulator library ('libsim.a)' from the linker command line.
-
-'-mstack-increment=SIZE'
- Set the maximum amount for a single stack increment operation.
- Large values can increase the speed of programs that contain
- functions that need a large amount of stack space, but they can
- also trigger a segmentation fault if the stack is extended too
- much. The default value is 0x1000.
-
-
-File: gcc.info, Node: MeP Options, Next: MicroBlaze Options, Prev: MCore Options, Up: Submodel Options
-
-3.17.25 MeP Options
--------------------
-
-'-mabsdiff'
- Enables the 'abs' instruction, which is the absolute difference
- between two registers.
-
-'-mall-opts'
- Enables all the optional instructions--average, multiply, divide,
- bit operations, leading zero, absolute difference, min/max, clip,
- and saturation.
-
-'-maverage'
- Enables the 'ave' instruction, which computes the average of two
- registers.
-
-'-mbased=N'
- Variables of size N bytes or smaller are placed in the '.based'
- section by default. Based variables use the '$tp' register as a
- base register, and there is a 128-byte limit to the '.based'
- section.
-
-'-mbitops'
- Enables the bit operation instructions--bit test ('btstm'), set
- ('bsetm'), clear ('bclrm'), invert ('bnotm'), and test-and-set
- ('tas').
-
-'-mc=NAME'
- Selects which section constant data is placed in. NAME may be
- 'tiny', 'near', or 'far'.
-
-'-mclip'
- Enables the 'clip' instruction. Note that '-mclip' is not useful
- unless you also provide '-mminmax'.
-
-'-mconfig=NAME'
- Selects one of the built-in core configurations. Each MeP chip has
- one or more modules in it; each module has a core CPU and a variety
- of coprocessors, optional instructions, and peripherals. The
- 'MeP-Integrator' tool, not part of GCC, provides these
- configurations through this option; using this option is the same
- as using all the corresponding command-line options. The default
- configuration is 'default'.
-
-'-mcop'
- Enables the coprocessor instructions. By default, this is a 32-bit
- coprocessor. Note that the coprocessor is normally enabled via the
- '-mconfig=' option.
-
-'-mcop32'
- Enables the 32-bit coprocessor's instructions.
-
-'-mcop64'
- Enables the 64-bit coprocessor's instructions.
-
-'-mivc2'
- Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
-
-'-mdc'
- Causes constant variables to be placed in the '.near' section.
-
-'-mdiv'
- Enables the 'div' and 'divu' instructions.
-
-'-meb'
- Generate big-endian code.
-
-'-mel'
- Generate little-endian code.
-
-'-mio-volatile'
- Tells the compiler that any variable marked with the 'io' attribute
- is to be considered volatile.
-
-'-ml'
- Causes variables to be assigned to the '.far' section by default.
-
-'-mleadz'
- Enables the 'leadz' (leading zero) instruction.
-
-'-mm'
- Causes variables to be assigned to the '.near' section by default.
-
-'-mminmax'
- Enables the 'min' and 'max' instructions.
-
-'-mmult'
- Enables the multiplication and multiply-accumulate instructions.
-
-'-mno-opts'
- Disables all the optional instructions enabled by '-mall-opts'.
-
-'-mrepeat'
- Enables the 'repeat' and 'erepeat' instructions, used for
- low-overhead looping.
-
-'-ms'
- Causes all variables to default to the '.tiny' section. Note that
- there is a 65536-byte limit to this section. Accesses to these
- variables use the '%gp' base register.
-
-'-msatur'
- Enables the saturation instructions. Note that the compiler does
- not currently generate these itself, but this option is included
- for compatibility with other tools, like 'as'.
-
-'-msdram'
- Link the SDRAM-based runtime instead of the default ROM-based
- runtime.
-
-'-msim'
- Link the simulator run-time libraries.
-
-'-msimnovec'
- Link the simulator runtime libraries, excluding built-in support
- for reset and exception vectors and tables.
-
-'-mtf'
- Causes all functions to default to the '.far' section. Without
- this option, functions default to the '.near' section.
-
-'-mtiny=N'
- Variables that are N bytes or smaller are allocated to the '.tiny'
- section. These variables use the '$gp' base register. The default
- for this option is 4, but note that there's a 65536-byte limit to
- the '.tiny' section.
-
-
-File: gcc.info, Node: MicroBlaze Options, Next: MIPS Options, Prev: MeP Options, Up: Submodel Options
-
-3.17.26 MicroBlaze Options
---------------------------
-
-'-msoft-float'
- Use software emulation for floating point (default).
-
-'-mhard-float'
- Use hardware floating-point instructions.
-
-'-mmemcpy'
- Do not optimize block moves, use 'memcpy'.
-
-'-mno-clearbss'
- This option is deprecated. Use '-fno-zero-initialized-in-bss'
- instead.
-
-'-mcpu=CPU-TYPE'
- Use features of, and schedule code for, the given CPU. Supported
- values are in the format 'vX.YY.Z', where X is a major version, YY
- is the minor version, and Z is compatibility code. Example values
- are 'v3.00.a', 'v4.00.b', 'v5.00.a', 'v5.00.b', 'v5.00.b',
- 'v6.00.a'.
-
-'-mxl-soft-mul'
- Use software multiply emulation (default).
-
-'-mxl-soft-div'
- Use software emulation for divides (default).
-
-'-mxl-barrel-shift'
- Use the hardware barrel shifter.
-
-'-mxl-pattern-compare'
- Use pattern compare instructions.
-
-'-msmall-divides'
- Use table lookup optimization for small signed integer divisions.
-
-'-mxl-stack-check'
- This option is deprecated. Use '-fstack-check' instead.
-
-'-mxl-gp-opt'
- Use GP-relative '.sdata'/'.sbss' sections.
-
-'-mxl-multiply-high'
- Use multiply high instructions for high part of 32x32 multiply.
-
-'-mxl-float-convert'
- Use hardware floating-point conversion instructions.
-
-'-mxl-float-sqrt'
- Use hardware floating-point square root instruction.
-
-'-mbig-endian'
- Generate code for a big-endian target.
-
-'-mlittle-endian'
- Generate code for a little-endian target.
-
-'-mxl-reorder'
- Use reorder instructions (swap and byte reversed load/store).
-
-'-mxl-mode-APP-MODEL'
- Select application model APP-MODEL. Valid models are
- 'executable'
- normal executable (default), uses startup code 'crt0.o'.
-
- 'xmdstub'
- for use with Xilinx Microprocessor Debugger (XMD) based
- software intrusive debug agent called xmdstub. This uses
- startup file 'crt1.o' and sets the start address of the
- program to 0x800.
-
- 'bootstrap'
- for applications that are loaded using a bootloader. This
- model uses startup file 'crt2.o' which does not contain a
- processor reset vector handler. This is suitable for
- transferring control on a processor reset to the bootloader
- rather than the application.
-
- 'novectors'
- for applications that do not require any of the MicroBlaze
- vectors. This option may be useful for applications running
- within a monitoring application. This model uses 'crt3.o' as
- a startup file.
-
- Option '-xl-mode-APP-MODEL' is a deprecated alias for
- '-mxl-mode-APP-MODEL'.
-
-
-File: gcc.info, Node: MIPS Options, Next: MMIX Options, Prev: MicroBlaze Options, Up: Submodel Options
-
-3.17.27 MIPS Options
---------------------
-
-'-EB'
- Generate big-endian code.
-
-'-EL'
- Generate little-endian code. This is the default for 'mips*el-*-*'
- configurations.
-
-'-march=ARCH'
- Generate code that runs on ARCH, which can be the name of a generic
- MIPS ISA, or the name of a particular processor. The ISA names
- are: 'mips1', 'mips2', 'mips3', 'mips4', 'mips32', 'mips32r2',
- 'mips64' and 'mips64r2'. The processor names are: '4kc', '4km',
- '4kp', '4ksc', '4kec', '4kem', '4kep', '4ksd', '5kc', '5kf',
- '20kc', '24kc', '24kf2_1', '24kf1_1', '24kec', '24kef2_1',
- '24kef1_1', '34kc', '34kf2_1', '34kf1_1', '34kn', '74kc',
- '74kf2_1', '74kf1_1', '74kf3_2', '1004kc', '1004kf2_1',
- '1004kf1_1', 'loongson2e', 'loongson2f', 'loongson3a', 'm4k',
- 'm14k', 'm14kc', 'm14ke', 'm14kec', 'octeon', 'octeon+', 'octeon2',
- 'orion', 'r2000', 'r3000', 'r3900', 'r4000', 'r4400', 'r4600',
- 'r4650', 'r4700', 'r6000', 'r8000', 'rm7000', 'rm9000', 'r10000',
- 'r12000', 'r14000', 'r16000', 'sb1', 'sr71000', 'vr4100', 'vr4111',
- 'vr4120', 'vr4130', 'vr4300', 'vr5000', 'vr5400', 'vr5500', 'xlr'
- and 'xlp'. The special value 'from-abi' selects the most
- compatible architecture for the selected ABI (that is, 'mips1' for
- 32-bit ABIs and 'mips3' for 64-bit ABIs).
-
- The native Linux/GNU toolchain also supports the value 'native',
- which selects the best architecture option for the host processor.
- '-march=native' has no effect if GCC does not recognize the
- processor.
-
- In processor names, a final '000' can be abbreviated as 'k' (for
- example, '-march=r2k'). Prefixes are optional, and 'vr' may be
- written 'r'.
-
- Names of the form 'Nf2_1' refer to processors with FPUs clocked at
- half the rate of the core, names of the form 'Nf1_1' refer to
- processors with FPUs clocked at the same rate as the core, and
- names of the form 'Nf3_2' refer to processors with FPUs clocked a
- ratio of 3:2 with respect to the core. For compatibility reasons,
- 'Nf' is accepted as a synonym for 'Nf2_1' while 'Nx' and 'Bfx' are
- accepted as synonyms for 'Nf1_1'.
-
- GCC defines two macros based on the value of this option. The
- first is '_MIPS_ARCH', which gives the name of target architecture,
- as a string. The second has the form '_MIPS_ARCH_FOO', where FOO
- is the capitalized value of '_MIPS_ARCH'. For example,
- '-march=r2000' sets '_MIPS_ARCH' to '"r2000"' and defines the macro
- '_MIPS_ARCH_R2000'.
-
- Note that the '_MIPS_ARCH' macro uses the processor names given
- above. In other words, it has the full prefix and does not
- abbreviate '000' as 'k'. In the case of 'from-abi', the macro
- names the resolved architecture (either '"mips1"' or '"mips3"').
- It names the default architecture when no '-march' option is given.
-
-'-mtune=ARCH'
- Optimize for ARCH. Among other things, this option controls the
- way instructions are scheduled, and the perceived cost of
- arithmetic operations. The list of ARCH values is the same as for
- '-march'.
-
- When this option is not used, GCC optimizes for the processor
- specified by '-march'. By using '-march' and '-mtune' together, it
- is possible to generate code that runs on a family of processors,
- but optimize the code for one particular member of that family.
-
- '-mtune' defines the macros '_MIPS_TUNE' and '_MIPS_TUNE_FOO',
- which work in the same way as the '-march' ones described above.
-
-'-mips1'
- Equivalent to '-march=mips1'.
-
-'-mips2'
- Equivalent to '-march=mips2'.
-
-'-mips3'
- Equivalent to '-march=mips3'.
-
-'-mips4'
- Equivalent to '-march=mips4'.
-
-'-mips32'
- Equivalent to '-march=mips32'.
-
-'-mips32r2'
- Equivalent to '-march=mips32r2'.
-
-'-mips64'
- Equivalent to '-march=mips64'.
-
-'-mips64r2'
- Equivalent to '-march=mips64r2'.
-
-'-mips16'
-'-mno-mips16'
- Generate (do not generate) MIPS16 code. If GCC is targeting a
- MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE.
-
- MIPS16 code generation can also be controlled on a per-function
- basis by means of 'mips16' and 'nomips16' attributes. *Note
- Function Attributes::, for more information.
-
-'-mflip-mips16'
- Generate MIPS16 code on alternating functions. This option is
- provided for regression testing of mixed MIPS16/non-MIPS16 code
- generation, and is not intended for ordinary use in compiling user
- code.
-
-'-minterlink-compressed'
-'-mno-interlink-compressed'
- Require (do not require) that code using the standard
- (uncompressed) MIPS ISA be link-compatible with MIPS16 and
- microMIPS code, and vice versa.
-
- For example, code using the standard ISA encoding cannot jump
- directly to MIPS16 or microMIPS code; it must either use a call or
- an indirect jump. '-minterlink-compressed' therefore disables
- direct jumps unless GCC knows that the target of the jump is not
- compressed.
-
-'-minterlink-mips16'
-'-mno-interlink-mips16'
- Aliases of '-minterlink-compressed' and
- '-mno-interlink-compressed'. These options predate the microMIPS
- ASE and are retained for backwards compatibility.
-
-'-mabi=32'
-'-mabi=o64'
-'-mabi=n32'
-'-mabi=64'
-'-mabi=eabi'
- Generate code for the given ABI.
-
- Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
- generates 64-bit code when you select a 64-bit architecture, but
- you can use '-mgp32' to get 32-bit code instead.
-
- For information about the O64 ABI, see
- <http://gcc.gnu.org/projects/mipso64-abi.html>.
-
- GCC supports a variant of the o32 ABI in which floating-point
- registers are 64 rather than 32 bits wide. You can select this
- combination with '-mabi=32' '-mfp64'. This ABI relies on the
- 'mthc1' and 'mfhc1' instructions and is therefore only supported
- for MIPS32R2 processors.
-
- The register assignments for arguments and return values remain the
- same, but each scalar value is passed in a single 64-bit register
- rather than a pair of 32-bit registers. For example, scalar
- floating-point values are returned in '$f0' only, not a '$f0'/'$f1'
- pair. The set of call-saved registers also remains the same, but
- all 64 bits are saved.
-
-'-mabicalls'
-'-mno-abicalls'
- Generate (do not generate) code that is suitable for SVR4-style
- dynamic objects. '-mabicalls' is the default for SVR4-based
- systems.
-
-'-mshared'
-'-mno-shared'
- Generate (do not generate) code that is fully position-independent,
- and that can therefore be linked into shared libraries. This
- option only affects '-mabicalls'.
-
- All '-mabicalls' code has traditionally been position-independent,
- regardless of options like '-fPIC' and '-fpic'. However, as an
- extension, the GNU toolchain allows executables to use absolute
- accesses for locally-binding symbols. It can also use shorter GP
- initialization sequences and generate direct calls to
- locally-defined functions. This mode is selected by '-mno-shared'.
-
- '-mno-shared' depends on binutils 2.16 or higher and generates
- objects that can only be linked by the GNU linker. However, the
- option does not affect the ABI of the final executable; it only
- affects the ABI of relocatable objects. Using '-mno-shared'
- generally makes executables both smaller and quicker.
-
- '-mshared' is the default.
-
-'-mplt'
-'-mno-plt'
- Assume (do not assume) that the static and dynamic linkers support
- PLTs and copy relocations. This option only affects '-mno-shared
- -mabicalls'. For the n64 ABI, this option has no effect without
- '-msym32'.
-
- You can make '-mplt' the default by configuring GCC with
- '--with-mips-plt'. The default is '-mno-plt' otherwise.
-
-'-mxgot'
-'-mno-xgot'
- Lift (do not lift) the usual restrictions on the size of the global
- offset table.
-
- GCC normally uses a single instruction to load values from the GOT.
- While this is relatively efficient, it only works if the GOT is
- smaller than about 64k. Anything larger causes the linker to
- report an error such as:
-
- relocation truncated to fit: R_MIPS_GOT16 foobar
-
- If this happens, you should recompile your code with '-mxgot'.
- This works with very large GOTs, although the code is also less
- efficient, since it takes three instructions to fetch the value of
- a global symbol.
-
- Note that some linkers can create multiple GOTs. If you have such
- a linker, you should only need to use '-mxgot' when a single object
- file accesses more than 64k's worth of GOT entries. Very few do.
-
- These options have no effect unless GCC is generating position
- independent code.
-
-'-mgp32'
- Assume that general-purpose registers are 32 bits wide.
-
-'-mgp64'
- Assume that general-purpose registers are 64 bits wide.
-
-'-mfp32'
- Assume that floating-point registers are 32 bits wide.
-
-'-mfp64'
- Assume that floating-point registers are 64 bits wide.
-
-'-mhard-float'
- Use floating-point coprocessor instructions.
-
-'-msoft-float'
- Do not use floating-point coprocessor instructions. Implement
- floating-point calculations using library calls instead.
-
-'-mno-float'
- Equivalent to '-msoft-float', but additionally asserts that the
- program being compiled does not perform any floating-point
- operations. This option is presently supported only by some
- bare-metal MIPS configurations, where it may select a special set
- of libraries that lack all floating-point support (including, for
- example, the floating-point 'printf' formats). If code compiled
- with '-mno-float' accidentally contains floating-point operations,
- it is likely to suffer a link-time or run-time failure.
-
-'-msingle-float'
- Assume that the floating-point coprocessor only supports
- single-precision operations.
-
-'-mdouble-float'
- Assume that the floating-point coprocessor supports
- double-precision operations. This is the default.
-
-'-mabs=2008'
-'-mabs=legacy'
- These options control the treatment of the special not-a-number
- (NaN) IEEE 754 floating-point data with the 'abs.fmt' and 'neg.fmt'
- machine instructions.
-
- By default or when the '-mabs=legacy' is used the legacy treatment
- is selected. In this case these instructions are considered
- arithmetic and avoided where correct operation is required and the
- input operand might be a NaN. A longer sequence of instructions
- that manipulate the sign bit of floating-point datum manually is
- used instead unless the '-ffinite-math-only' option has also been
- specified.
-
- The '-mabs=2008' option selects the IEEE 754-2008 treatment. In
- this case these instructions are considered non-arithmetic and
- therefore operating correctly in all cases, including in particular
- where the input operand is a NaN. These instructions are therefore
- always used for the respective operations.
-
-'-mnan=2008'
-'-mnan=legacy'
- These options control the encoding of the special not-a-number
- (NaN) IEEE 754 floating-point data.
-
- The '-mnan=legacy' option selects the legacy encoding. In this
- case quiet NaNs (qNaNs) are denoted by the first bit of their
- trailing significand field being 0, whereas signalling NaNs (sNaNs)
- are denoted by the first bit of their trailing significand field
- being 1.
-
- The '-mnan=2008' option selects the IEEE 754-2008 encoding. In
- this case qNaNs are denoted by the first bit of their trailing
- significand field being 1, whereas sNaNs are denoted by the first
- bit of their trailing significand field being 0.
-
- The default is '-mnan=legacy' unless GCC has been configured with
- '--with-nan=2008'.
-
-'-mllsc'
-'-mno-llsc'
- Use (do not use) 'll', 'sc', and 'sync' instructions to implement
- atomic memory built-in functions. When neither option is
- specified, GCC uses the instructions if the target architecture
- supports them.
-
- '-mllsc' is useful if the runtime environment can emulate the
- instructions and '-mno-llsc' can be useful when compiling for
- nonstandard ISAs. You can make either option the default by
- configuring GCC with '--with-llsc' and '--without-llsc'
- respectively. '--with-llsc' is the default for some
- configurations; see the installation documentation for details.
-
-'-mdsp'
-'-mno-dsp'
- Use (do not use) revision 1 of the MIPS DSP ASE. *Note MIPS DSP
- Built-in Functions::. This option defines the preprocessor macro
- '__mips_dsp'. It also defines '__mips_dsp_rev' to 1.
-
-'-mdspr2'
-'-mno-dspr2'
- Use (do not use) revision 2 of the MIPS DSP ASE. *Note MIPS DSP
- Built-in Functions::. This option defines the preprocessor macros
- '__mips_dsp' and '__mips_dspr2'. It also defines '__mips_dsp_rev'
- to 2.
-
-'-msmartmips'
-'-mno-smartmips'
- Use (do not use) the MIPS SmartMIPS ASE.
-
-'-mpaired-single'
-'-mno-paired-single'
- Use (do not use) paired-single floating-point instructions. *Note
- MIPS Paired-Single Support::. This option requires hardware
- floating-point support to be enabled.
-
-'-mdmx'
-'-mno-mdmx'
- Use (do not use) MIPS Digital Media Extension instructions. This
- option can only be used when generating 64-bit code and requires
- hardware floating-point support to be enabled.
-
-'-mips3d'
-'-mno-mips3d'
- Use (do not use) the MIPS-3D ASE. *Note MIPS-3D Built-in
- Functions::. The option '-mips3d' implies '-mpaired-single'.
-
-'-mmicromips'
-'-mno-micromips'
- Generate (do not generate) microMIPS code.
-
- MicroMIPS code generation can also be controlled on a per-function
- basis by means of 'micromips' and 'nomicromips' attributes. *Note
- Function Attributes::, for more information.
-
-'-mmt'
-'-mno-mt'
- Use (do not use) MT Multithreading instructions.
-
-'-mmcu'
-'-mno-mcu'
- Use (do not use) the MIPS MCU ASE instructions.
-
-'-meva'
-'-mno-eva'
- Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
-
-'-mvirt'
-'-mno-virt'
- Use (do not use) the MIPS Virtualization Application Specific
- instructions.
-
-'-mlong64'
- Force 'long' types to be 64 bits wide. See '-mlong32' for an
- explanation of the default and the way that the pointer size is
- determined.
-
-'-mlong32'
- Force 'long', 'int', and pointer types to be 32 bits wide.
-
- The default size of 'int's, 'long's and pointers depends on the
- ABI. All the supported ABIs use 32-bit 'int's. The n64 ABI uses
- 64-bit 'long's, as does the 64-bit EABI; the others use 32-bit
- 'long's. Pointers are the same size as 'long's, or the same size
- as integer registers, whichever is smaller.
-
-'-msym32'
-'-mno-sym32'
- Assume (do not assume) that all symbols have 32-bit values,
- regardless of the selected ABI. This option is useful in
- combination with '-mabi=64' and '-mno-abicalls' because it allows
- GCC to generate shorter and faster references to symbolic
- addresses.
-
-'-G NUM'
- Put definitions of externally-visible data in a small data section
- if that data is no bigger than NUM bytes. GCC can then generate
- more efficient accesses to the data; see '-mgpopt' for details.
-
- The default '-G' option depends on the configuration.
-
-'-mlocal-sdata'
-'-mno-local-sdata'
- Extend (do not extend) the '-G' behavior to local data too, such as
- to static variables in C. '-mlocal-sdata' is the default for all
- configurations.
-
- If the linker complains that an application is using too much small
- data, you might want to try rebuilding the less
- performance-critical parts with '-mno-local-sdata'. You might also
- want to build large libraries with '-mno-local-sdata', so that the
- libraries leave more room for the main program.
-
-'-mextern-sdata'
-'-mno-extern-sdata'
- Assume (do not assume) that externally-defined data is in a small
- data section if the size of that data is within the '-G' limit.
- '-mextern-sdata' is the default for all configurations.
-
- If you compile a module MOD with '-mextern-sdata' '-G NUM'
- '-mgpopt', and MOD references a variable VAR that is no bigger than
- NUM bytes, you must make sure that VAR is placed in a small data
- section. If VAR is defined by another module, you must either
- compile that module with a high-enough '-G' setting or attach a
- 'section' attribute to VAR's definition. If VAR is common, you
- must link the application with a high-enough '-G' setting.
-
- The easiest way of satisfying these restrictions is to compile and
- link every module with the same '-G' option. However, you may wish
- to build a library that supports several different small data
- limits. You can do this by compiling the library with the highest
- supported '-G' setting and additionally using '-mno-extern-sdata'
- to stop the library from making assumptions about
- externally-defined data.
-
-'-mgpopt'
-'-mno-gpopt'
- Use (do not use) GP-relative accesses for symbols that are known to
- be in a small data section; see '-G', '-mlocal-sdata' and
- '-mextern-sdata'. '-mgpopt' is the default for all configurations.
-
- '-mno-gpopt' is useful for cases where the '$gp' register might not
- hold the value of '_gp'. For example, if the code is part of a
- library that might be used in a boot monitor, programs that call
- boot monitor routines pass an unknown value in '$gp'. (In such
- situations, the boot monitor itself is usually compiled with
- '-G0'.)
-
- '-mno-gpopt' implies '-mno-local-sdata' and '-mno-extern-sdata'.
-
-'-membedded-data'
-'-mno-embedded-data'
- Allocate variables to the read-only data section first if possible,
- then next in the small data section if possible, otherwise in data.
- This gives slightly slower code than the default, but reduces the
- amount of RAM required when executing, and thus may be preferred
- for some embedded systems.
-
-'-muninit-const-in-rodata'
-'-mno-uninit-const-in-rodata'
- Put uninitialized 'const' variables in the read-only data section.
- This option is only meaningful in conjunction with
- '-membedded-data'.
-
-'-mcode-readable=SETTING'
- Specify whether GCC may generate code that reads from executable
- sections. There are three possible settings:
-
- '-mcode-readable=yes'
- Instructions may freely access executable sections. This is
- the default setting.
-
- '-mcode-readable=pcrel'
- MIPS16 PC-relative load instructions can access executable
- sections, but other instructions must not do so. This option
- is useful on 4KSc and 4KSd processors when the code TLBs have
- the Read Inhibit bit set. It is also useful on processors
- that can be configured to have a dual instruction/data SRAM
- interface and that, like the M4K, automatically redirect
- PC-relative loads to the instruction RAM.
-
- '-mcode-readable=no'
- Instructions must not access executable sections. This option
- can be useful on targets that are configured to have a dual
- instruction/data SRAM interface but that (unlike the M4K) do
- not automatically redirect PC-relative loads to the
- instruction RAM.
-
-'-msplit-addresses'
-'-mno-split-addresses'
- Enable (disable) use of the '%hi()' and '%lo()' assembler
- relocation operators. This option has been superseded by
- '-mexplicit-relocs' but is retained for backwards compatibility.
-
-'-mexplicit-relocs'
-'-mno-explicit-relocs'
- Use (do not use) assembler relocation operators when dealing with
- symbolic addresses. The alternative, selected by
- '-mno-explicit-relocs', is to use assembler macros instead.
-
- '-mexplicit-relocs' is the default if GCC was configured to use an
- assembler that supports relocation operators.
-
-'-mcheck-zero-division'
-'-mno-check-zero-division'
- Trap (do not trap) on integer division by zero.
-
- The default is '-mcheck-zero-division'.
-
-'-mdivide-traps'
-'-mdivide-breaks'
- MIPS systems check for division by zero by generating either a
- conditional trap or a break instruction. Using traps results in
- smaller code, but is only supported on MIPS II and later. Also,
- some versions of the Linux kernel have a bug that prevents trap
- from generating the proper signal ('SIGFPE'). Use '-mdivide-traps'
- to allow conditional traps on architectures that support them and
- '-mdivide-breaks' to force the use of breaks.
-
- The default is usually '-mdivide-traps', but this can be overridden
- at configure time using '--with-divide=breaks'. Divide-by-zero
- checks can be completely disabled using '-mno-check-zero-division'.
-
-'-mmemcpy'
-'-mno-memcpy'
- Force (do not force) the use of 'memcpy()' for non-trivial block
- moves. The default is '-mno-memcpy', which allows GCC to inline
- most constant-sized copies.
-
-'-mlong-calls'
-'-mno-long-calls'
- Disable (do not disable) use of the 'jal' instruction. Calling
- functions using 'jal' is more efficient but requires the caller and
- callee to be in the same 256 megabyte segment.
-
- This option has no effect on abicalls code. The default is
- '-mno-long-calls'.
-
-'-mmad'
-'-mno-mad'
- Enable (disable) use of the 'mad', 'madu' and 'mul' instructions,
- as provided by the R4650 ISA.
-
-'-mimadd'
-'-mno-imadd'
- Enable (disable) use of the 'madd' and 'msub' integer instructions.
- The default is '-mimadd' on architectures that support 'madd' and
- 'msub' except for the 74k architecture where it was found to
- generate slower code.
-
-'-mfused-madd'
-'-mno-fused-madd'
- Enable (disable) use of the floating-point multiply-accumulate
- instructions, when they are available. The default is
- '-mfused-madd'.
-
- On the R8000 CPU when multiply-accumulate instructions are used,
- the intermediate product is calculated to infinite precision and is
- not subject to the FCSR Flush to Zero bit. This may be undesirable
- in some circumstances. On other processors the result is
- numerically identical to the equivalent computation using separate
- multiply, add, subtract and negate instructions.
-
-'-nocpp'
- Tell the MIPS assembler to not run its preprocessor over user
- assembler files (with a '.s' suffix) when assembling them.
-
-'-mfix-24k'
-'-mno-fix-24k'
- Work around the 24K E48 (lost data on stores during refill) errata.
- The workarounds are implemented by the assembler rather than by
- GCC.
-
-'-mfix-r4000'
-'-mno-fix-r4000'
- Work around certain R4000 CPU errata:
- - A double-word or a variable shift may give an incorrect result
- if executed immediately after starting an integer division.
- - A double-word or a variable shift may give an incorrect result
- if executed while an integer multiplication is in progress.
- - An integer division may give an incorrect result if started in
- a delay slot of a taken branch or a jump.
-
-'-mfix-r4400'
-'-mno-fix-r4400'
- Work around certain R4400 CPU errata:
- - A double-word or a variable shift may give an incorrect result
- if executed immediately after starting an integer division.
-
-'-mfix-r10000'
-'-mno-fix-r10000'
- Work around certain R10000 errata:
- - 'll'/'sc' sequences may not behave atomically on revisions
- prior to 3.0. They may deadlock on revisions 2.6 and earlier.
-
- This option can only be used if the target architecture supports
- branch-likely instructions. '-mfix-r10000' is the default when
- '-march=r10000' is used; '-mno-fix-r10000' is the default
- otherwise.
-
-'-mfix-rm7000'
-'-mno-fix-rm7000'
- Work around the RM7000 'dmult'/'dmultu' errata. The workarounds
- are implemented by the assembler rather than by GCC.
-
-'-mfix-vr4120'
-'-mno-fix-vr4120'
- Work around certain VR4120 errata:
- - 'dmultu' does not always produce the correct result.
- - 'div' and 'ddiv' do not always produce the correct result if
- one of the operands is negative.
- The workarounds for the division errata rely on special functions
- in 'libgcc.a'. At present, these functions are only provided by
- the 'mips64vr*-elf' configurations.
-
- Other VR4120 errata require a NOP to be inserted between certain
- pairs of instructions. These errata are handled by the assembler,
- not by GCC itself.
-
-'-mfix-vr4130'
- Work around the VR4130 'mflo'/'mfhi' errata. The workarounds are
- implemented by the assembler rather than by GCC, although GCC
- avoids using 'mflo' and 'mfhi' if the VR4130 'macc', 'macchi',
- 'dmacc' and 'dmacchi' instructions are available instead.
-
-'-mfix-sb1'
-'-mno-fix-sb1'
- Work around certain SB-1 CPU core errata. (This flag currently
- works around the SB-1 revision 2 "F1" and "F2" floating-point
- errata.)
-
-'-mr10k-cache-barrier=SETTING'
- Specify whether GCC should insert cache barriers to avoid the
- side-effects of speculation on R10K processors.
-
- In common with many processors, the R10K tries to predict the
- outcome of a conditional branch and speculatively executes
- instructions from the "taken" branch. It later aborts these
- instructions if the predicted outcome is wrong. However, on the
- R10K, even aborted instructions can have side effects.
-
- This problem only affects kernel stores and, depending on the
- system, kernel loads. As an example, a speculatively-executed
- store may load the target memory into cache and mark the cache line
- as dirty, even if the store itself is later aborted. If a DMA
- operation writes to the same area of memory before the "dirty" line
- is flushed, the cached data overwrites the DMA-ed data. See the
- R10K processor manual for a full description, including other
- potential problems.
-
- One workaround is to insert cache barrier instructions before every
- memory access that might be speculatively executed and that might
- have side effects even if aborted. '-mr10k-cache-barrier=SETTING'
- controls GCC's implementation of this workaround. It assumes that
- aborted accesses to any byte in the following regions does not have
- side effects:
-
- 1. the memory occupied by the current function's stack frame;
-
- 2. the memory occupied by an incoming stack argument;
-
- 3. the memory occupied by an object with a link-time-constant
- address.
-
- It is the kernel's responsibility to ensure that speculative
- accesses to these regions are indeed safe.
-
- If the input program contains a function declaration such as:
-
- void foo (void);
-
- then the implementation of 'foo' must allow 'j foo' and 'jal foo'
- to be executed speculatively. GCC honors this restriction for
- functions it compiles itself. It expects non-GCC functions (such
- as hand-written assembly code) to do the same.
-
- The option has three forms:
-
- '-mr10k-cache-barrier=load-store'
- Insert a cache barrier before a load or store that might be
- speculatively executed and that might have side effects even
- if aborted.
-
- '-mr10k-cache-barrier=store'
- Insert a cache barrier before a store that might be
- speculatively executed and that might have side effects even
- if aborted.
-
- '-mr10k-cache-barrier=none'
- Disable the insertion of cache barriers. This is the default
- setting.
-
-'-mflush-func=FUNC'
-'-mno-flush-func'
- Specifies the function to call to flush the I and D caches, or to
- not call any such function. If called, the function must take the
- same arguments as the common '_flush_func()', that is, the address
- of the memory range for which the cache is being flushed, the size
- of the memory range, and the number 3 (to flush both caches). The
- default depends on the target GCC was configured for, but commonly
- is either '_flush_func' or '__cpu_flush'.
-
-'mbranch-cost=NUM'
- Set the cost of branches to roughly NUM "simple" instructions.
- This cost is only a heuristic and is not guaranteed to produce
- consistent results across releases. A zero cost redundantly
- selects the default, which is based on the '-mtune' setting.
-
-'-mbranch-likely'
-'-mno-branch-likely'
- Enable or disable use of Branch Likely instructions, regardless of
- the default for the selected architecture. By default, Branch
- Likely instructions may be generated if they are supported by the
- selected architecture. An exception is for the MIPS32 and MIPS64
- architectures and processors that implement those architectures;
- for those, Branch Likely instructions are not be generated by
- default because the MIPS32 and MIPS64 architectures specifically
- deprecate their use.
-
-'-mfp-exceptions'
-'-mno-fp-exceptions'
- Specifies whether FP exceptions are enabled. This affects how FP
- instructions are scheduled for some processors. The default is
- that FP exceptions are enabled.
-
- For instance, on the SB-1, if FP exceptions are disabled, and we
- are emitting 64-bit code, then we can use both FP pipes.
- Otherwise, we can only use one FP pipe.
-
-'-mvr4130-align'
-'-mno-vr4130-align'
- The VR4130 pipeline is two-way superscalar, but can only issue two
- instructions together if the first one is 8-byte aligned. When
- this option is enabled, GCC aligns pairs of instructions that it
- thinks should execute in parallel.
-
- This option only has an effect when optimizing for the VR4130. It
- normally makes code faster, but at the expense of making it bigger.
- It is enabled by default at optimization level '-O3'.
-
-'-msynci'
-'-mno-synci'
- Enable (disable) generation of 'synci' instructions on
- architectures that support it. The 'synci' instructions (if
- enabled) are generated when '__builtin___clear_cache()' is
- compiled.
-
- This option defaults to '-mno-synci', but the default can be
- overridden by configuring with '--with-synci'.
-
- When compiling code for single processor systems, it is generally
- safe to use 'synci'. However, on many multi-core (SMP) systems, it
- does not invalidate the instruction caches on all cores and may
- lead to undefined behavior.
-
-'-mrelax-pic-calls'
-'-mno-relax-pic-calls'
- Try to turn PIC calls that are normally dispatched via register
- '$25' into direct calls. This is only possible if the linker can
- resolve the destination at link-time and if the destination is
- within range for a direct call.
-
- '-mrelax-pic-calls' is the default if GCC was configured to use an
- assembler and a linker that support the '.reloc' assembly directive
- and '-mexplicit-relocs' is in effect. With '-mno-explicit-relocs',
- this optimization can be performed by the assembler and the linker
- alone without help from the compiler.
-
-'-mmcount-ra-address'
-'-mno-mcount-ra-address'
- Emit (do not emit) code that allows '_mcount' to modify the calling
- function's return address. When enabled, this option extends the
- usual '_mcount' interface with a new RA-ADDRESS parameter, which
- has type 'intptr_t *' and is passed in register '$12'. '_mcount'
- can then modify the return address by doing both of the following:
- * Returning the new address in register '$31'.
- * Storing the new address in '*RA-ADDRESS', if RA-ADDRESS is
- nonnull.
-
- The default is '-mno-mcount-ra-address'.
-
-
-File: gcc.info, Node: MMIX Options, Next: MN10300 Options, Prev: MIPS Options, Up: Submodel Options
-
-3.17.28 MMIX Options
---------------------
-
-These options are defined for the MMIX:
-
-'-mlibfuncs'
-'-mno-libfuncs'
- Specify that intrinsic library functions are being compiled,
- passing all values in registers, no matter the size.
-
-'-mepsilon'
-'-mno-epsilon'
- Generate floating-point comparison instructions that compare with
- respect to the 'rE' epsilon register.
-
-'-mabi=mmixware'
-'-mabi=gnu'
- Generate code that passes function parameters and return values
- that (in the called function) are seen as registers '$0' and up, as
- opposed to the GNU ABI which uses global registers '$231' and up.
-
-'-mzero-extend'
-'-mno-zero-extend'
- When reading data from memory in sizes shorter than 64 bits, use
- (do not use) zero-extending load instructions by default, rather
- than sign-extending ones.
-
-'-mknuthdiv'
-'-mno-knuthdiv'
- Make the result of a division yielding a remainder have the same
- sign as the divisor. With the default, '-mno-knuthdiv', the sign
- of the remainder follows the sign of the dividend. Both methods
- are arithmetically valid, the latter being almost exclusively used.
-
-'-mtoplevel-symbols'
-'-mno-toplevel-symbols'
- Prepend (do not prepend) a ':' to all global symbols, so the
- assembly code can be used with the 'PREFIX' assembly directive.
-
-'-melf'
- Generate an executable in the ELF format, rather than the default
- 'mmo' format used by the 'mmix' simulator.
-
-'-mbranch-predict'
-'-mno-branch-predict'
- Use (do not use) the probable-branch instructions, when static
- branch prediction indicates a probable branch.
-
-'-mbase-addresses'
-'-mno-base-addresses'
- Generate (do not generate) code that uses _base addresses_. Using
- a base address automatically generates a request (handled by the
- assembler and the linker) for a constant to be set up in a global
- register. The register is used for one or more base address
- requests within the range 0 to 255 from the value held in the
- register. The generally leads to short and fast code, but the
- number of different data items that can be addressed is limited.
- This means that a program that uses lots of static data may require
- '-mno-base-addresses'.
-
-'-msingle-exit'
-'-mno-single-exit'
- Force (do not force) generated code to have a single exit point in
- each function.
-
-
-File: gcc.info, Node: MN10300 Options, Next: Moxie Options, Prev: MMIX Options, Up: Submodel Options
-
-3.17.29 MN10300 Options
------------------------
-
-These '-m' options are defined for Matsushita MN10300 architectures:
-
-'-mmult-bug'
- Generate code to avoid bugs in the multiply instructions for the
- MN10300 processors. This is the default.
-
-'-mno-mult-bug'
- Do not generate code to avoid bugs in the multiply instructions for
- the MN10300 processors.
-
-'-mam33'
- Generate code using features specific to the AM33 processor.
-
-'-mno-am33'
- Do not generate code using features specific to the AM33 processor.
- This is the default.
-
-'-mam33-2'
- Generate code using features specific to the AM33/2.0 processor.
-
-'-mam34'
- Generate code using features specific to the AM34 processor.
-
-'-mtune=CPU-TYPE'
- Use the timing characteristics of the indicated CPU type when
- scheduling instructions. This does not change the targeted
- processor type. The CPU type must be one of 'mn10300', 'am33',
- 'am33-2' or 'am34'.
-
-'-mreturn-pointer-on-d0'
- When generating a function that returns a pointer, return the
- pointer in both 'a0' and 'd0'. Otherwise, the pointer is returned
- only in 'a0', and attempts to call such functions without a
- prototype result in errors. Note that this option is on by
- default; use '-mno-return-pointer-on-d0' to disable it.
-
-'-mno-crt0'
- Do not link in the C run-time initialization object file.
-
-'-mrelax'
- Indicate to the linker that it should perform a relaxation
- optimization pass to shorten branches, calls and absolute memory
- addresses. This option only has an effect when used on the command
- line for the final link step.
-
- This option makes symbolic debugging impossible.
-
-'-mliw'
- Allow the compiler to generate _Long Instruction Word_ instructions
- if the target is the 'AM33' or later. This is the default. This
- option defines the preprocessor macro '__LIW__'.
-
-'-mnoliw'
- Do not allow the compiler to generate _Long Instruction Word_
- instructions. This option defines the preprocessor macro
- '__NO_LIW__'.
-
-'-msetlb'
- Allow the compiler to generate the _SETLB_ and _Lcc_ instructions
- if the target is the 'AM33' or later. This is the default. This
- option defines the preprocessor macro '__SETLB__'.
-
-'-mnosetlb'
- Do not allow the compiler to generate _SETLB_ or _Lcc_
- instructions. This option defines the preprocessor macro
- '__NO_SETLB__'.
-
-
-File: gcc.info, Node: Moxie Options, Next: MSP430 Options, Prev: MN10300 Options, Up: Submodel Options
-
-3.17.30 Moxie Options
----------------------
-
-'-meb'
- Generate big-endian code. This is the default for 'moxie-*-*'
- configurations.
-
-'-mel'
- Generate little-endian code.
-
-'-mno-crt0'
- Do not link in the C run-time initialization object file.
-
-
-File: gcc.info, Node: MSP430 Options, Next: NDS32 Options, Prev: Moxie Options, Up: Submodel Options
-
-3.17.31 MSP430 Options
-----------------------
-
-These options are defined for the MSP430:
-
-'-masm-hex'
- Force assembly output to always use hex constants. Normally such
- constants are signed decimals, but this option is available for
- testsuite and/or aesthetic purposes.
-
-'-mmcu='
- Select the MCU to target. This is used to create a C preprocessor
- symbol based upon the MCU name, converted to upper case and pre-
- and post- fixed with '__'. This in turn will be used by the
- 'msp430.h' header file to select an MCU specific supplimentary
- header file.
-
- The option also sets the ISA to use. If the MCU name is one that
- is known to only support the 430 ISA then that is selected,
- otherwise the 430X ISA is selected. A generic MCU name of 'msp430'
- can also be used to select the 430 ISA. Similarly the generic
- 'msp430x' MCU name will select the 430X ISA.
-
- In addition an MCU specific linker script will be added to the
- linker command line. The script's name is the name of the MCU with
- '.ld' appended. Thus specifying '-mmcu=xxx' on the gcc command
- line will define the C preprocessor symbol '__XXX__' and cause the
- linker to search for a script called 'xxx.ld'.
-
- This option is also passed on to the assembler.
-
-'-mcpu='
- Specifies the ISA to use. Accepted values are 'msp430', 'msp430x'
- and 'msp430xv2'. This option is deprecated. The '-mmcu=' option
- should be used to select the ISA.
-
-'-msim'
- Link to the simulator runtime libraries and linker script.
- Overrides any scripts that would be selected by the '-mmcu='
- option.
-
-'-mlarge'
- Use large-model addressing (20-bit pointers, 32-bit 'size_t').
-
-'-msmall'
- Use small-model addressing (16-bit pointers, 16-bit 'size_t').
-
-'-mrelax'
- This option is passed to the assembler and linker, and allows the
- linker to perform certain optimizations that cannot be done until
- the final link.
-
-
-File: gcc.info, Node: NDS32 Options, Next: Nios II Options, Prev: MSP430 Options, Up: Submodel Options
-
-3.17.32 NDS32 Options
----------------------
-
-These options are defined for NDS32 implementations:
-
-'-mbig-endian'
- Generate code in big-endian mode.
-
-'-mlittle-endian'
- Generate code in little-endian mode.
-
-'-mreduced-regs'
- Use reduced-set registers for register allocation.
-
-'-mfull-regs'
- Use full-set registers for register allocation.
-
-'-mcmov'
- Generate conditional move instructions.
-
-'-mno-cmov'
- Do not generate conditional move instructions.
-
-'-mperf-ext'
- Generate performance extension instructions.
-
-'-mno-perf-ext'
- Do not generate performance extension instructions.
-
-'-mv3push'
- Generate v3 push25/pop25 instructions.
-
-'-mno-v3push'
- Do not generate v3 push25/pop25 instructions.
-
-'-m16-bit'
- Generate 16-bit instructions.
-
-'-mno-16-bit'
- Do not generate 16-bit instructions.
-
-'-mgp-direct'
- Generate GP base instructions directly.
-
-'-mno-gp-direct'
- Do no generate GP base instructions directly.
-
-'-misr-vector-size=NUM'
- Specify the size of each interrupt vector, which must be 4 or 16.
-
-'-mcache-block-size=NUM'
- Specify the size of each cache block, which must be a power of 2
- between 4 and 512.
-
-'-march=ARCH'
- Specify the name of the target architecture.
-
-'-mforce-fp-as-gp'
- Prevent $fp being allocated during register allocation so that
- compiler is able to force performing fp-as-gp optimization.
-
-'-mforbid-fp-as-gp'
- Forbid using $fp to access static and global variables. This
- option strictly forbids fp-as-gp optimization regardless of
- '-mforce-fp-as-gp'.
-
-'-mex9'
- Use special directives to guide linker doing ex9 optimization.
-
-'-mctor-dtor'
- Enable constructor/destructor feature.
-
-'-mrelax'
- Guide linker to relax instructions.
-
-
-File: gcc.info, Node: Nios II Options, Next: PDP-11 Options, Prev: NDS32 Options, Up: Submodel Options
-
-3.17.33 Nios II Options
------------------------
-
-These are the options defined for the Altera Nios II processor.
-
-'-G NUM'
- Put global and static objects less than or equal to NUM bytes into
- the small data or BSS sections instead of the normal data or BSS
- sections. The default value of NUM is 8.
-
-'-mgpopt'
-'-mno-gpopt'
- Generate (do not generate) GP-relative accesses for objects in the
- small data or BSS sections. The default is '-mgpopt' except when
- '-fpic' or '-fPIC' is specified to generate position-independent
- code. Note that the Nios II ABI does not permit GP-relative
- accesses from shared libraries.
-
- You may need to specify '-mno-gpopt' explicitly when building
- programs that include large amounts of small data, including large
- GOT data sections. In this case, the 16-bit offset for GP-relative
- addressing may not be large enough to allow access to the entire
- small data section.
-
-'-mel'
-'-meb'
- Generate little-endian (default) or big-endian (experimental) code,
- respectively.
-
-'-mbypass-cache'
-'-mno-bypass-cache'
- Force all load and store instructions to always bypass cache by
- using I/O variants of the instructions. The default is not to
- bypass the cache.
-
-'-mno-cache-volatile'
-'-mcache-volatile'
- Volatile memory access bypass the cache using the I/O variants of
- the load and store instructions. The default is not to bypass the
- cache.
-
-'-mno-fast-sw-div'
-'-mfast-sw-div'
- Do not use table-based fast divide for small numbers. The default
- is to use the fast divide at '-O3' and above.
-
-'-mno-hw-mul'
-'-mhw-mul'
-'-mno-hw-mulx'
-'-mhw-mulx'
-'-mno-hw-div'
-'-mhw-div'
- Enable or disable emitting 'mul', 'mulx' and 'div' family of
- instructions by the compiler. The default is to emit 'mul' and not
- emit 'div' and 'mulx'.
-
-'-mcustom-INSN=N'
-'-mno-custom-INSN'
- Each '-mcustom-INSN=N' option enables use of a custom instruction
- with encoding N when generating code that uses INSN. For example,
- '-mcustom-fadds=253' generates custom instruction 253 for
- single-precision floating-point add operations instead of the
- default behavior of using a library call.
-
- The following values of INSN are supported. Except as otherwise
- noted, floating-point operations are expected to be implemented
- with normal IEEE 754 semantics and correspond directly to the C
- operators or the equivalent GCC built-in functions (*note Other
- Builtins::).
-
- Single-precision floating point:
-
- 'fadds', 'fsubs', 'fdivs', 'fmuls'
- Binary arithmetic operations.
-
- 'fnegs'
- Unary negation.
-
- 'fabss'
- Unary absolute value.
-
- 'fcmpeqs', 'fcmpges', 'fcmpgts', 'fcmples', 'fcmplts', 'fcmpnes'
- Comparison operations.
-
- 'fmins', 'fmaxs'
- Floating-point minimum and maximum. These instructions are
- only generated if '-ffinite-math-only' is specified.
-
- 'fsqrts'
- Unary square root operation.
-
- 'fcoss', 'fsins', 'ftans', 'fatans', 'fexps', 'flogs'
- Floating-point trigonometric and exponential functions. These
- instructions are only generated if
- '-funsafe-math-optimizations' is also specified.
-
- Double-precision floating point:
-
- 'faddd', 'fsubd', 'fdivd', 'fmuld'
- Binary arithmetic operations.
-
- 'fnegd'
- Unary negation.
-
- 'fabsd'
- Unary absolute value.
-
- 'fcmpeqd', 'fcmpged', 'fcmpgtd', 'fcmpled', 'fcmpltd', 'fcmpned'
- Comparison operations.
-
- 'fmind', 'fmaxd'
- Double-precision minimum and maximum. These instructions are
- only generated if '-ffinite-math-only' is specified.
-
- 'fsqrtd'
- Unary square root operation.
-
- 'fcosd', 'fsind', 'ftand', 'fatand', 'fexpd', 'flogd'
- Double-precision trigonometric and exponential functions.
- These instructions are only generated if
- '-funsafe-math-optimizations' is also specified.
-
- Conversions:
- 'fextsd'
- Conversion from single precision to double precision.
-
- 'ftruncds'
- Conversion from double precision to single precision.
-
- 'fixsi', 'fixsu', 'fixdi', 'fixdu'
- Conversion from floating point to signed or unsigned integer
- types, with truncation towards zero.
-
- 'floatis', 'floatus', 'floatid', 'floatud'
- Conversion from signed or unsigned integer types to
- floating-point types.
-
- In addition, all of the following transfer instructions for
- internal registers X and Y must be provided to use any of the
- double-precision floating-point instructions. Custom instructions
- taking two double-precision source operands expect the first
- operand in the 64-bit register X. The other operand (or only
- operand of a unary operation) is given to the custom arithmetic
- instruction with the least significant half in source register SRC1
- and the most significant half in SRC2. A custom instruction that
- returns a double-precision result returns the most significant 32
- bits in the destination register and the other half in 32-bit
- register Y. GCC automatically generates the necessary code
- sequences to write register X and/or read register Y when
- double-precision floating-point instructions are used.
-
- 'fwrx'
- Write SRC1 into the least significant half of X and SRC2 into
- the most significant half of X.
-
- 'fwry'
- Write SRC1 into Y.
-
- 'frdxhi', 'frdxlo'
- Read the most or least (respectively) significant half of X
- and store it in DEST.
-
- 'frdy'
- Read the value of Y and store it into DEST.
-
- Note that you can gain more local control over generation of Nios
- II custom instructions by using the 'target("custom-INSN=N")' and
- 'target("no-custom-INSN")' function attributes (*note Function
- Attributes::) or pragmas (*note Function Specific Option
- Pragmas::).
-
-'-mcustom-fpu-cfg=NAME'
-
- This option enables a predefined, named set of custom instruction
- encodings (see '-mcustom-INSN' above). Currently, the following
- sets are defined:
-
- '-mcustom-fpu-cfg=60-1' is equivalent to:
- -mcustom-fmuls=252
- -mcustom-fadds=253
- -mcustom-fsubs=254
- -fsingle-precision-constant
-
- '-mcustom-fpu-cfg=60-2' is equivalent to:
- -mcustom-fmuls=252
- -mcustom-fadds=253
- -mcustom-fsubs=254
- -mcustom-fdivs=255
- -fsingle-precision-constant
-
- '-mcustom-fpu-cfg=72-3' is equivalent to:
- -mcustom-floatus=243
- -mcustom-fixsi=244
- -mcustom-floatis=245
- -mcustom-fcmpgts=246
- -mcustom-fcmples=249
- -mcustom-fcmpeqs=250
- -mcustom-fcmpnes=251
- -mcustom-fmuls=252
- -mcustom-fadds=253
- -mcustom-fsubs=254
- -mcustom-fdivs=255
- -fsingle-precision-constant
-
- Custom instruction assignments given by individual '-mcustom-INSN='
- options override those given by '-mcustom-fpu-cfg=', regardless of
- the order of the options on the command line.
-
- Note that you can gain more local control over selection of a FPU
- configuration by using the 'target("custom-fpu-cfg=NAME")' function
- attribute (*note Function Attributes::) or pragma (*note Function
- Specific Option Pragmas::).
-
- These additional '-m' options are available for the Altera Nios II ELF
-(bare-metal) target:
-
-'-mhal'
- Link with HAL BSP. This suppresses linking with the GCC-provided C
- runtime startup and termination code, and is typically used in
- conjunction with '-msys-crt0=' to specify the location of the
- alternate startup code provided by the HAL BSP.
-
-'-msmallc'
- Link with a limited version of the C library, '-lsmallc', rather
- than Newlib.
-
-'-msys-crt0=STARTFILE'
- STARTFILE is the file name of the startfile (crt0) to use when
- linking. This option is only useful in conjunction with '-mhal'.
-
-'-msys-lib=SYSTEMLIB'
- SYSTEMLIB is the library name of the library that provides
- low-level system calls required by the C library, e.g. 'read' and
- 'write'. This option is typically used to link with a library
- provided by a HAL BSP.
-
-
-File: gcc.info, Node: PDP-11 Options, Next: picoChip Options, Prev: Nios II Options, Up: Submodel Options
-
-3.17.34 PDP-11 Options
-----------------------
-
-These options are defined for the PDP-11:
-
-'-mfpu'
- Use hardware FPP floating point. This is the default. (FIS
- floating point on the PDP-11/40 is not supported.)
-
-'-msoft-float'
- Do not use hardware floating point.
-
-'-mac0'
- Return floating-point results in ac0 (fr0 in Unix assembler
- syntax).
-
-'-mno-ac0'
- Return floating-point results in memory. This is the default.
-
-'-m40'
- Generate code for a PDP-11/40.
-
-'-m45'
- Generate code for a PDP-11/45. This is the default.
-
-'-m10'
- Generate code for a PDP-11/10.
-
-'-mbcopy-builtin'
- Use inline 'movmemhi' patterns for copying memory. This is the
- default.
-
-'-mbcopy'
- Do not use inline 'movmemhi' patterns for copying memory.
-
-'-mint16'
-'-mno-int32'
- Use 16-bit 'int'. This is the default.
-
-'-mint32'
-'-mno-int16'
- Use 32-bit 'int'.
-
-'-mfloat64'
-'-mno-float32'
- Use 64-bit 'float'. This is the default.
-
-'-mfloat32'
-'-mno-float64'
- Use 32-bit 'float'.
-
-'-mabshi'
- Use 'abshi2' pattern. This is the default.
-
-'-mno-abshi'
- Do not use 'abshi2' pattern.
-
-'-mbranch-expensive'
- Pretend that branches are expensive. This is for experimenting
- with code generation only.
-
-'-mbranch-cheap'
- Do not pretend that branches are expensive. This is the default.
-
-'-munix-asm'
- Use Unix assembler syntax. This is the default when configured for
- 'pdp11-*-bsd'.
-
-'-mdec-asm'
- Use DEC assembler syntax. This is the default when configured for
- any PDP-11 target other than 'pdp11-*-bsd'.
-
-
-File: gcc.info, Node: picoChip Options, Next: PowerPC Options, Prev: PDP-11 Options, Up: Submodel Options
-
-3.17.35 picoChip Options
-------------------------
-
-These '-m' options are defined for picoChip implementations:
-
-'-mae=AE_TYPE'
- Set the instruction set, register set, and instruction scheduling
- parameters for array element type AE_TYPE. Supported values for
- AE_TYPE are 'ANY', 'MUL', and 'MAC'.
-
- '-mae=ANY' selects a completely generic AE type. Code generated
- with this option runs on any of the other AE types. The code is
- not as efficient as it would be if compiled for a specific AE type,
- and some types of operation (e.g., multiplication) do not work
- properly on all types of AE.
-
- '-mae=MUL' selects a MUL AE type. This is the most useful AE type
- for compiled code, and is the default.
-
- '-mae=MAC' selects a DSP-style MAC AE. Code compiled with this
- option may suffer from poor performance of byte (char)
- manipulation, since the DSP AE does not provide hardware support
- for byte load/stores.
-
-'-msymbol-as-address'
- Enable the compiler to directly use a symbol name as an address in
- a load/store instruction, without first loading it into a register.
- Typically, the use of this option generates larger programs, which
- run faster than when the option isn't used. However, the results
- vary from program to program, so it is left as a user option,
- rather than being permanently enabled.
-
-'-mno-inefficient-warnings'
- Disables warnings about the generation of inefficient code. These
- warnings can be generated, for example, when compiling code that
- performs byte-level memory operations on the MAC AE type. The MAC
- AE has no hardware support for byte-level memory operations, so all
- byte load/stores must be synthesized from word load/store
- operations. This is inefficient and a warning is generated to
- indicate that you should rewrite the code to avoid byte operations,
- or to target an AE type that has the necessary hardware support.
- This option disables these warnings.
-
-
-File: gcc.info, Node: PowerPC Options, Next: RL78 Options, Prev: picoChip Options, Up: Submodel Options
-
-3.17.36 PowerPC Options
------------------------
-
-These are listed under *Note RS/6000 and PowerPC Options::.
-
-
-File: gcc.info, Node: RL78 Options, Next: RS/6000 and PowerPC Options, Prev: PowerPC Options, Up: Submodel Options
-
-3.17.37 RL78 Options
---------------------
-
-'-msim'
- Links in additional target libraries to support operation within a
- simulator.
-
-'-mmul=none'
-'-mmul=g13'
-'-mmul=rl78'
- Specifies the type of hardware multiplication support to be used.
- The default is 'none', which uses software multiplication
- functions. The 'g13' option is for the hardware multiply/divide
- peripheral only on the RL78/G13 targets. The 'rl78' option is for
- the standard hardware multiplication defined in the RL78 software
- manual.
-
-
-File: gcc.info, Node: RS/6000 and PowerPC Options, Next: RX Options, Prev: RL78 Options, Up: Submodel Options
-
-3.17.38 IBM RS/6000 and PowerPC Options
----------------------------------------
-
-These '-m' options are defined for the IBM RS/6000 and PowerPC:
-'-mpowerpc-gpopt'
-'-mno-powerpc-gpopt'
-'-mpowerpc-gfxopt'
-'-mno-powerpc-gfxopt'
-'-mpowerpc64'
-'-mno-powerpc64'
-'-mmfcrf'
-'-mno-mfcrf'
-'-mpopcntb'
-'-mno-popcntb'
-'-mpopcntd'
-'-mno-popcntd'
-'-mfprnd'
-'-mno-fprnd'
-'-mcmpb'
-'-mno-cmpb'
-'-mmfpgpr'
-'-mno-mfpgpr'
-'-mhard-dfp'
-'-mno-hard-dfp'
- You use these options to specify which instructions are available
- on the processor you are using. The default value of these options
- is determined when configuring GCC. Specifying the
- '-mcpu=CPU_TYPE' overrides the specification of these options. We
- recommend you use the '-mcpu=CPU_TYPE' option rather than the
- options listed above.
-
- Specifying '-mpowerpc-gpopt' allows GCC to use the optional PowerPC
- architecture instructions in the General Purpose group, including
- floating-point square root. Specifying '-mpowerpc-gfxopt' allows
- GCC to use the optional PowerPC architecture instructions in the
- Graphics group, including floating-point select.
-
- The '-mmfcrf' option allows GCC to generate the move from condition
- register field instruction implemented on the POWER4 processor and
- other processors that support the PowerPC V2.01 architecture. The
- '-mpopcntb' option allows GCC to generate the popcount and
- double-precision FP reciprocal estimate instruction implemented on
- the POWER5 processor and other processors that support the PowerPC
- V2.02 architecture. The '-mpopcntd' option allows GCC to generate
- the popcount instruction implemented on the POWER7 processor and
- other processors that support the PowerPC V2.06 architecture. The
- '-mfprnd' option allows GCC to generate the FP round to integer
- instructions implemented on the POWER5+ processor and other
- processors that support the PowerPC V2.03 architecture. The
- '-mcmpb' option allows GCC to generate the compare bytes
- instruction implemented on the POWER6 processor and other
- processors that support the PowerPC V2.05 architecture. The
- '-mmfpgpr' option allows GCC to generate the FP move to/from
- general-purpose register instructions implemented on the POWER6X
- processor and other processors that support the extended PowerPC
- V2.05 architecture. The '-mhard-dfp' option allows GCC to generate
- the decimal floating-point instructions implemented on some POWER
- processors.
-
- The '-mpowerpc64' option allows GCC to generate the additional
- 64-bit instructions that are found in the full PowerPC64
- architecture and to treat GPRs as 64-bit, doubleword quantities.
- GCC defaults to '-mno-powerpc64'.
-
-'-mcpu=CPU_TYPE'
- Set architecture type, register usage, and instruction scheduling
- parameters for machine type CPU_TYPE. Supported values for
- CPU_TYPE are '401', '403', '405', '405fp', '440', '440fp', '464',
- '464fp', '476', '476fp', '505', '601', '602', '603', '603e', '604',
- '604e', '620', '630', '740', '7400', '7450', '750', '801', '821',
- '823', '860', '970', '8540', 'a2', 'e300c2', 'e300c3', 'e500mc',
- 'e500mc64', 'e5500', 'e6500', 'ec603e', 'G3', 'G4', 'G5', 'titan',
- 'power3', 'power4', 'power5', 'power5+', 'power6', 'power6x',
- 'power7', 'power8', 'powerpc', 'powerpc64', and 'rs64'.
-
- '-mcpu=powerpc', and '-mcpu=powerpc64' specify pure 32-bit PowerPC
- and 64-bit PowerPC architecture machine types, with an appropriate,
- generic processor model assumed for scheduling purposes.
-
- The other options specify a specific processor. Code generated
- under those options runs best on that processor, and may not run at
- all on others.
-
- The '-mcpu' options automatically enable or disable the following
- options:
-
- -maltivec -mfprnd -mhard-float -mmfcrf -mmultiple
- -mpopcntb -mpopcntd -mpowerpc64
- -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float
- -msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx
- -mcrypto -mdirect-move -mpower8-fusion -mpower8-vector
- -mquad-memory -mquad-memory-atomic
-
- The particular options set for any particular CPU varies between
- compiler versions, depending on what setting seems to produce
- optimal code for that CPU; it doesn't necessarily reflect the
- actual hardware's capabilities. If you wish to set an individual
- option to a particular value, you may specify it after the '-mcpu'
- option, like '-mcpu=970 -mno-altivec'.
-
- On AIX, the '-maltivec' and '-mpowerpc64' options are not enabled
- or disabled by the '-mcpu' option at present because AIX does not
- have full support for these options. You may still enable or
- disable them individually if you're sure it'll work in your
- environment.
-
-'-mtune=CPU_TYPE'
- Set the instruction scheduling parameters for machine type
- CPU_TYPE, but do not set the architecture type or register usage,
- as '-mcpu=CPU_TYPE' does. The same values for CPU_TYPE are used
- for '-mtune' as for '-mcpu'. If both are specified, the code
- generated uses the architecture and registers set by '-mcpu', but
- the scheduling parameters set by '-mtune'.
-
-'-mcmodel=small'
- Generate PowerPC64 code for the small model: The TOC is limited to
- 64k.
-
-'-mcmodel=medium'
- Generate PowerPC64 code for the medium model: The TOC and other
- static data may be up to a total of 4G in size.
-
-'-mcmodel=large'
- Generate PowerPC64 code for the large model: The TOC may be up to
- 4G in size. Other data and code is only limited by the 64-bit
- address space.
-
-'-maltivec'
-'-mno-altivec'
- Generate code that uses (does not use) AltiVec instructions, and
- also enable the use of built-in functions that allow more direct
- access to the AltiVec instruction set. You may also need to set
- '-mabi=altivec' to adjust the current ABI with AltiVec ABI
- enhancements.
-
- When '-maltivec' is used, rather than '-maltivec=le' or
- '-maltivec=be', the element order for Altivec intrinsics such as
- 'vec_splat', 'vec_extract', and 'vec_insert' will match array
- element order corresponding to the endianness of the target. That
- is, element zero identifies the leftmost element in a vector
- register when targeting a big-endian platform, and identifies the
- rightmost element in a vector register when targeting a
- little-endian platform.
-
-'-maltivec=be'
- Generate Altivec instructions using big-endian element order,
- regardless of whether the target is big- or little-endian. This is
- the default when targeting a big-endian platform.
-
- The element order is used to interpret element numbers in Altivec
- intrinsics such as 'vec_splat', 'vec_extract', and 'vec_insert'.
- By default, these will match array element order corresponding to
- the endianness for the target.
-
-'-maltivec=le'
- Generate Altivec instructions using little-endian element order,
- regardless of whether the target is big- or little-endian. This is
- the default when targeting a little-endian platform. This option
- is currently ignored when targeting a big-endian platform.
-
- The element order is used to interpret element numbers in Altivec
- intrinsics such as 'vec_splat', 'vec_extract', and 'vec_insert'.
- By default, these will match array element order corresponding to
- the endianness for the target.
-
-'-mvrsave'
-'-mno-vrsave'
- Generate VRSAVE instructions when generating AltiVec code.
-
-'-mgen-cell-microcode'
- Generate Cell microcode instructions.
-
-'-mwarn-cell-microcode'
- Warn when a Cell microcode instruction is emitted. An example of a
- Cell microcode instruction is a variable shift.
-
-'-msecure-plt'
- Generate code that allows 'ld' and 'ld.so' to build executables and
- shared libraries with non-executable '.plt' and '.got' sections.
- This is a PowerPC 32-bit SYSV ABI option.
-
-'-mbss-plt'
- Generate code that uses a BSS '.plt' section that 'ld.so' fills in,
- and requires '.plt' and '.got' sections that are both writable and
- executable. This is a PowerPC 32-bit SYSV ABI option.
-
-'-misel'
-'-mno-isel'
- This switch enables or disables the generation of ISEL
- instructions.
-
-'-misel=YES/NO'
- This switch has been deprecated. Use '-misel' and '-mno-isel'
- instead.
-
-'-mspe'
-'-mno-spe'
- This switch enables or disables the generation of SPE simd
- instructions.
-
-'-mpaired'
-'-mno-paired'
- This switch enables or disables the generation of PAIRED simd
- instructions.
-
-'-mspe=YES/NO'
- This option has been deprecated. Use '-mspe' and '-mno-spe'
- instead.
-
-'-mvsx'
-'-mno-vsx'
- Generate code that uses (does not use) vector/scalar (VSX)
- instructions, and also enable the use of built-in functions that
- allow more direct access to the VSX instruction set.
-
-'-mcrypto'
-'-mno-crypto'
- Enable the use (disable) of the built-in functions that allow
- direct access to the cryptographic instructions that were added in
- version 2.07 of the PowerPC ISA.
-
-'-mdirect-move'
-'-mno-direct-move'
- Generate code that uses (does not use) the instructions to move
- data between the general purpose registers and the vector/scalar
- (VSX) registers that were added in version 2.07 of the PowerPC ISA.
-
-'-mpower8-fusion'
-'-mno-power8-fusion'
- Generate code that keeps (does not keeps) some integer operations
- adjacent so that the instructions can be fused together on power8
- and later processors.
-
-'-mpower8-vector'
-'-mno-power8-vector'
- Generate code that uses (does not use) the vector and scalar
- instructions that were added in version 2.07 of the PowerPC ISA.
- Also enable the use of built-in functions that allow more direct
- access to the vector instructions.
-
-'-mquad-memory'
-'-mno-quad-memory'
- Generate code that uses (does not use) the non-atomic quad word
- memory instructions. The '-mquad-memory' option requires use of
- 64-bit mode.
-
-'-mquad-memory-atomic'
-'-mno-quad-memory-atomic'
- Generate code that uses (does not use) the atomic quad word memory
- instructions. The '-mquad-memory-atomic' option requires use of
- 64-bit mode.
-
-'-mfloat-gprs=YES/SINGLE/DOUBLE/NO'
-'-mfloat-gprs'
- This switch enables or disables the generation of floating-point
- operations on the general-purpose registers for architectures that
- support it.
-
- The argument YES or SINGLE enables the use of single-precision
- floating-point operations.
-
- The argument DOUBLE enables the use of single and double-precision
- floating-point operations.
-
- The argument NO disables floating-point operations on the
- general-purpose registers.
-
- This option is currently only available on the MPC854x.
-
-'-m32'
-'-m64'
- Generate code for 32-bit or 64-bit environments of Darwin and SVR4
- targets (including GNU/Linux). The 32-bit environment sets int,
- long and pointer to 32 bits and generates code that runs on any
- PowerPC variant. The 64-bit environment sets int to 32 bits and
- long and pointer to 64 bits, and generates code for PowerPC64, as
- for '-mpowerpc64'.
-
-'-mfull-toc'
-'-mno-fp-in-toc'
-'-mno-sum-in-toc'
-'-mminimal-toc'
- Modify generation of the TOC (Table Of Contents), which is created
- for every executable file. The '-mfull-toc' option is selected by
- default. In that case, GCC allocates at least one TOC entry for
- each unique non-automatic variable reference in your program. GCC
- also places floating-point constants in the TOC. However, only
- 16,384 entries are available in the TOC.
-
- If you receive a linker error message that saying you have
- overflowed the available TOC space, you can reduce the amount of
- TOC space used with the '-mno-fp-in-toc' and '-mno-sum-in-toc'
- options. '-mno-fp-in-toc' prevents GCC from putting floating-point
- constants in the TOC and '-mno-sum-in-toc' forces GCC to generate
- code to calculate the sum of an address and a constant at run time
- instead of putting that sum into the TOC. You may specify one or
- both of these options. Each causes GCC to produce very slightly
- slower and larger code at the expense of conserving TOC space.
-
- If you still run out of space in the TOC even when you specify both
- of these options, specify '-mminimal-toc' instead. This option
- causes GCC to make only one TOC entry for every file. When you
- specify this option, GCC produces code that is slower and larger
- but which uses extremely little TOC space. You may wish to use
- this option only on files that contain less frequently-executed
- code.
-
-'-maix64'
-'-maix32'
- Enable 64-bit AIX ABI and calling convention: 64-bit pointers,
- 64-bit 'long' type, and the infrastructure needed to support them.
- Specifying '-maix64' implies '-mpowerpc64', while '-maix32'
- disables the 64-bit ABI and implies '-mno-powerpc64'. GCC defaults
- to '-maix32'.
-
-'-mxl-compat'
-'-mno-xl-compat'
- Produce code that conforms more closely to IBM XL compiler
- semantics when using AIX-compatible ABI. Pass floating-point
- arguments to prototyped functions beyond the register save area
- (RSA) on the stack in addition to argument FPRs. Do not assume
- that most significant double in 128-bit long double value is
- properly rounded when comparing values and converting to double.
- Use XL symbol names for long double support routines.
-
- The AIX calling convention was extended but not initially
- documented to handle an obscure K&R C case of calling a function
- that takes the address of its arguments with fewer arguments than
- declared. IBM XL compilers access floating-point arguments that do
- not fit in the RSA from the stack when a subroutine is compiled
- without optimization. Because always storing floating-point
- arguments on the stack is inefficient and rarely needed, this
- option is not enabled by default and only is necessary when calling
- subroutines compiled by IBM XL compilers without optimization.
-
-'-mpe'
- Support "IBM RS/6000 SP" "Parallel Environment" (PE). Link an
- application written to use message passing with special startup
- code to enable the application to run. The system must have PE
- installed in the standard location ('/usr/lpp/ppe.poe/'), or the
- 'specs' file must be overridden with the '-specs=' option to
- specify the appropriate directory location. The Parallel
- Environment does not support threads, so the '-mpe' option and the
- '-pthread' option are incompatible.
-
-'-malign-natural'
-'-malign-power'
- On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
- '-malign-natural' overrides the ABI-defined alignment of larger
- types, such as floating-point doubles, on their natural size-based
- boundary. The option '-malign-power' instructs GCC to follow the
- ABI-specified alignment rules. GCC defaults to the standard
- alignment defined in the ABI.
-
- On 64-bit Darwin, natural alignment is the default, and
- '-malign-power' is not supported.
-
-'-msoft-float'
-'-mhard-float'
- Generate code that does not use (uses) the floating-point register
- set. Software floating-point emulation is provided if you use the
- '-msoft-float' option, and pass the option to GCC when linking.
-
-'-msingle-float'
-'-mdouble-float'
- Generate code for single- or double-precision floating-point
- operations. '-mdouble-float' implies '-msingle-float'.
-
-'-msimple-fpu'
- Do not generate 'sqrt' and 'div' instructions for hardware
- floating-point unit.
-
-'-mfpu=NAME'
- Specify type of floating-point unit. Valid values for NAME are
- 'sp_lite' (equivalent to '-msingle-float -msimple-fpu'), 'dp_lite'
- (equivalent to '-mdouble-float -msimple-fpu'), 'sp_full'
- (equivalent to '-msingle-float'), and 'dp_full' (equivalent to
- '-mdouble-float').
-
-'-mxilinx-fpu'
- Perform optimizations for the floating-point unit on Xilinx PPC
- 405/440.
-
-'-mmultiple'
-'-mno-multiple'
- Generate code that uses (does not use) the load multiple word
- instructions and the store multiple word instructions. These
- instructions are generated by default on POWER systems, and not
- generated on PowerPC systems. Do not use '-mmultiple' on
- little-endian PowerPC systems, since those instructions do not work
- when the processor is in little-endian mode. The exceptions are
- PPC740 and PPC750 which permit these instructions in little-endian
- mode.
-
-'-mstring'
-'-mno-string'
- Generate code that uses (does not use) the load string instructions
- and the store string word instructions to save multiple registers
- and do small block moves. These instructions are generated by
- default on POWER systems, and not generated on PowerPC systems. Do
- not use '-mstring' on little-endian PowerPC systems, since those
- instructions do not work when the processor is in little-endian
- mode. The exceptions are PPC740 and PPC750 which permit these
- instructions in little-endian mode.
-
-'-mupdate'
-'-mno-update'
- Generate code that uses (does not use) the load or store
- instructions that update the base register to the address of the
- calculated memory location. These instructions are generated by
- default. If you use '-mno-update', there is a small window between
- the time that the stack pointer is updated and the address of the
- previous frame is stored, which means code that walks the stack
- frame across interrupts or signals may get corrupted data.
-
-'-mavoid-indexed-addresses'
-'-mno-avoid-indexed-addresses'
- Generate code that tries to avoid (not avoid) the use of indexed
- load or store instructions. These instructions can incur a
- performance penalty on Power6 processors in certain situations,
- such as when stepping through large arrays that cross a 16M
- boundary. This option is enabled by default when targeting Power6
- and disabled otherwise.
-
-'-mfused-madd'
-'-mno-fused-madd'
- Generate code that uses (does not use) the floating-point multiply
- and accumulate instructions. These instructions are generated by
- default if hardware floating point is used. The machine-dependent
- '-mfused-madd' option is now mapped to the machine-independent
- '-ffp-contract=fast' option, and '-mno-fused-madd' is mapped to
- '-ffp-contract=off'.
-
-'-mmulhw'
-'-mno-mulhw'
- Generate code that uses (does not use) the half-word multiply and
- multiply-accumulate instructions on the IBM 405, 440, 464 and 476
- processors. These instructions are generated by default when
- targeting those processors.
-
-'-mdlmzb'
-'-mno-dlmzb'
- Generate code that uses (does not use) the string-search 'dlmzb'
- instruction on the IBM 405, 440, 464 and 476 processors. This
- instruction is generated by default when targeting those
- processors.
-
-'-mno-bit-align'
-'-mbit-align'
- On System V.4 and embedded PowerPC systems do not (do) force
- structures and unions that contain bit-fields to be aligned to the
- base type of the bit-field.
-
- For example, by default a structure containing nothing but 8
- 'unsigned' bit-fields of length 1 is aligned to a 4-byte boundary
- and has a size of 4 bytes. By using '-mno-bit-align', the
- structure is aligned to a 1-byte boundary and is 1 byte in size.
-
-'-mno-strict-align'
-'-mstrict-align'
- On System V.4 and embedded PowerPC systems do not (do) assume that
- unaligned memory references are handled by the system.
-
-'-mrelocatable'
-'-mno-relocatable'
- Generate code that allows (does not allow) a static executable to
- be relocated to a different address at run time. A simple embedded
- PowerPC system loader should relocate the entire contents of
- '.got2' and 4-byte locations listed in the '.fixup' section, a
- table of 32-bit addresses generated by this option. For this to
- work, all objects linked together must be compiled with
- '-mrelocatable' or '-mrelocatable-lib'. '-mrelocatable' code
- aligns the stack to an 8-byte boundary.
-
-'-mrelocatable-lib'
-'-mno-relocatable-lib'
- Like '-mrelocatable', '-mrelocatable-lib' generates a '.fixup'
- section to allow static executables to be relocated at run time,
- but '-mrelocatable-lib' does not use the smaller stack alignment of
- '-mrelocatable'. Objects compiled with '-mrelocatable-lib' may be
- linked with objects compiled with any combination of the
- '-mrelocatable' options.
-
-'-mno-toc'
-'-mtoc'
- On System V.4 and embedded PowerPC systems do not (do) assume that
- register 2 contains a pointer to a global area pointing to the
- addresses used in the program.
-
-'-mlittle'
-'-mlittle-endian'
- On System V.4 and embedded PowerPC systems compile code for the
- processor in little-endian mode. The '-mlittle-endian' option is
- the same as '-mlittle'.
-
-'-mbig'
-'-mbig-endian'
- On System V.4 and embedded PowerPC systems compile code for the
- processor in big-endian mode. The '-mbig-endian' option is the
- same as '-mbig'.
-
-'-mdynamic-no-pic'
- On Darwin and Mac OS X systems, compile code so that it is not
- relocatable, but that its external references are relocatable. The
- resulting code is suitable for applications, but not shared
- libraries.
-
-'-msingle-pic-base'
- Treat the register used for PIC addressing as read-only, rather
- than loading it in the prologue for each function. The runtime
- system is responsible for initializing this register with an
- appropriate value before execution begins.
-
-'-mprioritize-restricted-insns=PRIORITY'
- This option controls the priority that is assigned to dispatch-slot
- restricted instructions during the second scheduling pass. The
- argument PRIORITY takes the value '0', '1', or '2' to assign no,
- highest, or second-highest (respectively) priority to dispatch-slot
- restricted instructions.
-
-'-msched-costly-dep=DEPENDENCE_TYPE'
- This option controls which dependences are considered costly by the
- target during instruction scheduling. The argument DEPENDENCE_TYPE
- takes one of the following values:
-
- 'no'
- No dependence is costly.
-
- 'all'
- All dependences are costly.
-
- 'true_store_to_load'
- A true dependence from store to load is costly.
-
- 'store_to_load'
- Any dependence from store to load is costly.
-
- NUMBER
- Any dependence for which the latency is greater than or equal
- to NUMBER is costly.
-
-'-minsert-sched-nops=SCHEME'
- This option controls which NOP insertion scheme is used during the
- second scheduling pass. The argument SCHEME takes one of the
- following values:
-
- 'no'
- Don't insert NOPs.
-
- 'pad'
- Pad with NOPs any dispatch group that has vacant issue slots,
- according to the scheduler's grouping.
-
- 'regroup_exact'
- Insert NOPs to force costly dependent insns into separate
- groups. Insert exactly as many NOPs as needed to force an
- insn to a new group, according to the estimated processor
- grouping.
-
- NUMBER
- Insert NOPs to force costly dependent insns into separate
- groups. Insert NUMBER NOPs to force an insn to a new group.
-
-'-mcall-sysv'
- On System V.4 and embedded PowerPC systems compile code using
- calling conventions that adhere to the March 1995 draft of the
- System V Application Binary Interface, PowerPC processor
- supplement. This is the default unless you configured GCC using
- 'powerpc-*-eabiaix'.
-
-'-mcall-sysv-eabi'
-'-mcall-eabi'
- Specify both '-mcall-sysv' and '-meabi' options.
-
-'-mcall-sysv-noeabi'
- Specify both '-mcall-sysv' and '-mno-eabi' options.
-
-'-mcall-aixdesc'
- On System V.4 and embedded PowerPC systems compile code for the AIX
- operating system.
-
-'-mcall-linux'
- On System V.4 and embedded PowerPC systems compile code for the
- Linux-based GNU system.
-
-'-mcall-freebsd'
- On System V.4 and embedded PowerPC systems compile code for the
- FreeBSD operating system.
-
-'-mcall-netbsd'
- On System V.4 and embedded PowerPC systems compile code for the
- NetBSD operating system.
-
-'-mcall-openbsd'
- On System V.4 and embedded PowerPC systems compile code for the
- OpenBSD operating system.
-
-'-maix-struct-return'
- Return all structures in memory (as specified by the AIX ABI).
-
-'-msvr4-struct-return'
- Return structures smaller than 8 bytes in registers (as specified
- by the SVR4 ABI).
-
-'-mabi=ABI-TYPE'
- Extend the current ABI with a particular extension, or remove such
- extension. Valid values are ALTIVEC, NO-ALTIVEC, SPE, NO-SPE,
- IBMLONGDOUBLE, IEEELONGDOUBLE, ELFV1, ELFV2.
-
-'-mabi=spe'
- Extend the current ABI with SPE ABI extensions. This does not
- change the default ABI, instead it adds the SPE ABI extensions to
- the current ABI.
-
-'-mabi=no-spe'
- Disable Book-E SPE ABI extensions for the current ABI.
-
-'-mabi=ibmlongdouble'
- Change the current ABI to use IBM extended-precision long double.
- This is a PowerPC 32-bit SYSV ABI option.
-
-'-mabi=ieeelongdouble'
- Change the current ABI to use IEEE extended-precision long double.
- This is a PowerPC 32-bit Linux ABI option.
-
-'-mabi=elfv1'
- Change the current ABI to use the ELFv1 ABI. This is the default
- ABI for big-endian PowerPC 64-bit Linux. Overriding the default
- ABI requires special system support and is likely to fail in
- spectacular ways.
-
-'-mabi=elfv2'
- Change the current ABI to use the ELFv2 ABI. This is the default
- ABI for little-endian PowerPC 64-bit Linux. Overriding the default
- ABI requires special system support and is likely to fail in
- spectacular ways.
-
-'-mprototype'
-'-mno-prototype'
- On System V.4 and embedded PowerPC systems assume that all calls to
- variable argument functions are properly prototyped. Otherwise,
- the compiler must insert an instruction before every non-prototyped
- call to set or clear bit 6 of the condition code register (CR) to
- indicate whether floating-point values are passed in the
- floating-point registers in case the function takes variable
- arguments. With '-mprototype', only calls to prototyped variable
- argument functions set or clear the bit.
-
-'-msim'
- On embedded PowerPC systems, assume that the startup module is
- called 'sim-crt0.o' and that the standard C libraries are
- 'libsim.a' and 'libc.a'. This is the default for
- 'powerpc-*-eabisim' configurations.
-
-'-mmvme'
- On embedded PowerPC systems, assume that the startup module is
- called 'crt0.o' and the standard C libraries are 'libmvme.a' and
- 'libc.a'.
-
-'-mads'
- On embedded PowerPC systems, assume that the startup module is
- called 'crt0.o' and the standard C libraries are 'libads.a' and
- 'libc.a'.
-
-'-myellowknife'
- On embedded PowerPC systems, assume that the startup module is
- called 'crt0.o' and the standard C libraries are 'libyk.a' and
- 'libc.a'.
-
-'-mvxworks'
- On System V.4 and embedded PowerPC systems, specify that you are
- compiling for a VxWorks system.
-
-'-memb'
- On embedded PowerPC systems, set the PPC_EMB bit in the ELF flags
- header to indicate that 'eabi' extended relocations are used.
-
-'-meabi'
-'-mno-eabi'
- On System V.4 and embedded PowerPC systems do (do not) adhere to
- the Embedded Applications Binary Interface (EABI), which is a set
- of modifications to the System V.4 specifications. Selecting
- '-meabi' means that the stack is aligned to an 8-byte boundary, a
- function '__eabi' is called from 'main' to set up the EABI
- environment, and the '-msdata' option can use both 'r2' and 'r13'
- to point to two separate small data areas. Selecting '-mno-eabi'
- means that the stack is aligned to a 16-byte boundary, no EABI
- initialization function is called from 'main', and the '-msdata'
- option only uses 'r13' to point to a single small data area. The
- '-meabi' option is on by default if you configured GCC using one of
- the 'powerpc*-*-eabi*' options.
-
-'-msdata=eabi'
- On System V.4 and embedded PowerPC systems, put small initialized
- 'const' global and static data in the '.sdata2' section, which is
- pointed to by register 'r2'. Put small initialized non-'const'
- global and static data in the '.sdata' section, which is pointed to
- by register 'r13'. Put small uninitialized global and static data
- in the '.sbss' section, which is adjacent to the '.sdata' section.
- The '-msdata=eabi' option is incompatible with the '-mrelocatable'
- option. The '-msdata=eabi' option also sets the '-memb' option.
-
-'-msdata=sysv'
- On System V.4 and embedded PowerPC systems, put small global and
- static data in the '.sdata' section, which is pointed to by
- register 'r13'. Put small uninitialized global and static data in
- the '.sbss' section, which is adjacent to the '.sdata' section.
- The '-msdata=sysv' option is incompatible with the '-mrelocatable'
- option.
-
-'-msdata=default'
-'-msdata'
- On System V.4 and embedded PowerPC systems, if '-meabi' is used,
- compile code the same as '-msdata=eabi', otherwise compile code the
- same as '-msdata=sysv'.
-
-'-msdata=data'
- On System V.4 and embedded PowerPC systems, put small global data
- in the '.sdata' section. Put small uninitialized global data in
- the '.sbss' section. Do not use register 'r13' to address small
- data however. This is the default behavior unless other '-msdata'
- options are used.
-
-'-msdata=none'
-'-mno-sdata'
- On embedded PowerPC systems, put all initialized global and static
- data in the '.data' section, and all uninitialized data in the
- '.bss' section.
-
-'-mblock-move-inline-limit=NUM'
- Inline all block moves (such as calls to 'memcpy' or structure
- copies) less than or equal to NUM bytes. The minimum value for NUM
- is 32 bytes on 32-bit targets and 64 bytes on 64-bit targets. The
- default value is target-specific.
-
-'-G NUM'
- On embedded PowerPC systems, put global and static items less than
- or equal to NUM bytes into the small data or BSS sections instead
- of the normal data or BSS section. By default, NUM is 8. The '-G
- NUM' switch is also passed to the linker. All modules should be
- compiled with the same '-G NUM' value.
-
-'-mregnames'
-'-mno-regnames'
- On System V.4 and embedded PowerPC systems do (do not) emit
- register names in the assembly language output using symbolic
- forms.
-
-'-mlongcall'
-'-mno-longcall'
- By default assume that all calls are far away so that a longer and
- more expensive calling sequence is required. This is required for
- calls farther than 32 megabytes (33,554,432 bytes) from the current
- location. A short call is generated if the compiler knows the call
- cannot be that far away. This setting can be overridden by the
- 'shortcall' function attribute, or by '#pragma longcall(0)'.
-
- Some linkers are capable of detecting out-of-range calls and
- generating glue code on the fly. On these systems, long calls are
- unnecessary and generate slower code. As of this writing, the AIX
- linker can do this, as can the GNU linker for PowerPC/64. It is
- planned to add this feature to the GNU linker for 32-bit PowerPC
- systems as well.
-
- On Darwin/PPC systems, '#pragma longcall' generates 'jbsr callee,
- L42', plus a "branch island" (glue code). The two target addresses
- represent the callee and the branch island. The Darwin/PPC linker
- prefers the first address and generates a 'bl callee' if the PPC
- 'bl' instruction reaches the callee directly; otherwise, the linker
- generates 'bl L42' to call the branch island. The branch island is
- appended to the body of the calling function; it computes the full
- 32-bit address of the callee and jumps to it.
-
- On Mach-O (Darwin) systems, this option directs the compiler emit
- to the glue for every direct call, and the Darwin linker decides
- whether to use or discard it.
-
- In the future, GCC may ignore all longcall specifications when the
- linker is known to generate glue.
-
-'-mtls-markers'
-'-mno-tls-markers'
- Mark (do not mark) calls to '__tls_get_addr' with a relocation
- specifying the function argument. The relocation allows the linker
- to reliably associate function call with argument setup
- instructions for TLS optimization, which in turn allows GCC to
- better schedule the sequence.
-
-'-pthread'
- Adds support for multithreading with the "pthreads" library. This
- option sets flags for both the preprocessor and linker.
-
-'-mrecip'
-'-mno-recip'
- This option enables use of the reciprocal estimate and reciprocal
- square root estimate instructions with additional Newton-Raphson
- steps to increase precision instead of doing a divide or square
- root and divide for floating-point arguments. You should use the
- '-ffast-math' option when using '-mrecip' (or at least
- '-funsafe-math-optimizations', '-finite-math-only',
- '-freciprocal-math' and '-fno-trapping-math'). Note that while the
- throughput of the sequence is generally higher than the throughput
- of the non-reciprocal instruction, the precision of the sequence
- can be decreased by up to 2 ulp (i.e. the inverse of 1.0 equals
- 0.99999994) for reciprocal square roots.
-
-'-mrecip=OPT'
- This option controls which reciprocal estimate instructions may be
- used. OPT is a comma-separated list of options, which may be
- preceded by a '!' to invert the option: 'all': enable all estimate
- instructions, 'default': enable the default instructions,
- equivalent to '-mrecip', 'none': disable all estimate instructions,
- equivalent to '-mno-recip'; 'div': enable the reciprocal
- approximation instructions for both single and double precision;
- 'divf': enable the single-precision reciprocal approximation
- instructions; 'divd': enable the double-precision reciprocal
- approximation instructions; 'rsqrt': enable the reciprocal square
- root approximation instructions for both single and double
- precision; 'rsqrtf': enable the single-precision reciprocal square
- root approximation instructions; 'rsqrtd': enable the
- double-precision reciprocal square root approximation instructions;
-
- So, for example, '-mrecip=all,!rsqrtd' enables all of the
- reciprocal estimate instructions, except for the 'FRSQRTE',
- 'XSRSQRTEDP', and 'XVRSQRTEDP' instructions which handle the
- double-precision reciprocal square root calculations.
-
-'-mrecip-precision'
-'-mno-recip-precision'
- Assume (do not assume) that the reciprocal estimate instructions
- provide higher-precision estimates than is mandated by the PowerPC
- ABI. Selecting '-mcpu=power6', '-mcpu=power7' or '-mcpu=power8'
- automatically selects '-mrecip-precision'. The double-precision
- square root estimate instructions are not generated by default on
- low-precision machines, since they do not provide an estimate that
- converges after three steps.
-
-'-mveclibabi=TYPE'
- Specifies the ABI type to use for vectorizing intrinsics using an
- external library. The only type supported at present is 'mass',
- which specifies to use IBM's Mathematical Acceleration Subsystem
- (MASS) libraries for vectorizing intrinsics using external
- libraries. GCC currently emits calls to 'acosd2', 'acosf4',
- 'acoshd2', 'acoshf4', 'asind2', 'asinf4', 'asinhd2', 'asinhf4',
- 'atan2d2', 'atan2f4', 'atand2', 'atanf4', 'atanhd2', 'atanhf4',
- 'cbrtd2', 'cbrtf4', 'cosd2', 'cosf4', 'coshd2', 'coshf4', 'erfcd2',
- 'erfcf4', 'erfd2', 'erff4', 'exp2d2', 'exp2f4', 'expd2', 'expf4',
- 'expm1d2', 'expm1f4', 'hypotd2', 'hypotf4', 'lgammad2', 'lgammaf4',
- 'log10d2', 'log10f4', 'log1pd2', 'log1pf4', 'log2d2', 'log2f4',
- 'logd2', 'logf4', 'powd2', 'powf4', 'sind2', 'sinf4', 'sinhd2',
- 'sinhf4', 'sqrtd2', 'sqrtf4', 'tand2', 'tanf4', 'tanhd2', and
- 'tanhf4' when generating code for power7. Both '-ftree-vectorize'
- and '-funsafe-math-optimizations' must also be enabled. The MASS
- libraries must be specified at link time.
-
-'-mfriz'
-'-mno-friz'
- Generate (do not generate) the 'friz' instruction when the
- '-funsafe-math-optimizations' option is used to optimize rounding
- of floating-point values to 64-bit integer and back to floating
- point. The 'friz' instruction does not return the same value if
- the floating-point number is too large to fit in an integer.
-
-'-mpointers-to-nested-functions'
-'-mno-pointers-to-nested-functions'
- Generate (do not generate) code to load up the static chain
- register (R11) when calling through a pointer on AIX and 64-bit
- Linux systems where a function pointer points to a 3-word
- descriptor giving the function address, TOC value to be loaded in
- register R2, and static chain value to be loaded in register R11.
- The '-mpointers-to-nested-functions' is on by default. You cannot
- call through pointers to nested functions or pointers to functions
- compiled in other languages that use the static chain if you use
- the '-mno-pointers-to-nested-functions'.
-
-'-msave-toc-indirect'
-'-mno-save-toc-indirect'
- Generate (do not generate) code to save the TOC value in the
- reserved stack location in the function prologue if the function
- calls through a pointer on AIX and 64-bit Linux systems. If the
- TOC value is not saved in the prologue, it is saved just before the
- call through the pointer. The '-mno-save-toc-indirect' option is
- the default.
-
-'-mcompat-align-parm'
-'-mno-compat-align-parm'
- Generate (do not generate) code to pass structure parameters with a
- maximum alignment of 64 bits, for compatibility with older versions
- of GCC.
-
- Older versions of GCC (prior to 4.9.0) incorrectly did not align a
- structure parameter on a 128-bit boundary when that structure
- contained a member requiring 128-bit alignment. This is corrected
- in more recent versions of GCC. This option may be used to generate
- code that is compatible with functions compiled with older versions
- of GCC.
-
- The '-mno-compat-align-parm' option is the default.
-
-
-File: gcc.info, Node: RX Options, Next: S/390 and zSeries Options, Prev: RS/6000 and PowerPC Options, Up: Submodel Options
-
-3.17.39 RX Options
-------------------
-
-These command-line options are defined for RX targets:
-
-'-m64bit-doubles'
-'-m32bit-doubles'
- Make the 'double' data type be 64 bits ('-m64bit-doubles') or 32
- bits ('-m32bit-doubles') in size. The default is
- '-m32bit-doubles'. _Note_ RX floating-point hardware only works on
- 32-bit values, which is why the default is '-m32bit-doubles'.
-
-'-fpu'
-'-nofpu'
- Enables ('-fpu') or disables ('-nofpu') the use of RX
- floating-point hardware. The default is enabled for the RX600
- series and disabled for the RX200 series.
-
- Floating-point instructions are only generated for 32-bit
- floating-point values, however, so the FPU hardware is not used for
- doubles if the '-m64bit-doubles' option is used.
-
- _Note_ If the '-fpu' option is enabled then
- '-funsafe-math-optimizations' is also enabled automatically. This
- is because the RX FPU instructions are themselves unsafe.
-
-'-mcpu=NAME'
- Selects the type of RX CPU to be targeted. Currently three types
- are supported, the generic RX600 and RX200 series hardware and the
- specific RX610 CPU. The default is RX600.
-
- The only difference between RX600 and RX610 is that the RX610 does
- not support the 'MVTIPL' instruction.
-
- The RX200 series does not have a hardware floating-point unit and
- so '-nofpu' is enabled by default when this type is selected.
-
-'-mbig-endian-data'
-'-mlittle-endian-data'
- Store data (but not code) in the big-endian format. The default is
- '-mlittle-endian-data', i.e. to store data in the little-endian
- format.
-
-'-msmall-data-limit=N'
- Specifies the maximum size in bytes of global and static variables
- which can be placed into the small data area. Using the small data
- area can lead to smaller and faster code, but the size of area is
- limited and it is up to the programmer to ensure that the area does
- not overflow. Also when the small data area is used one of the
- RX's registers (usually 'r13') is reserved for use pointing to this
- area, so it is no longer available for use by the compiler. This
- could result in slower and/or larger code if variables are pushed
- onto the stack instead of being held in this register.
-
- Note, common variables (variables that have not been initialized)
- and constants are not placed into the small data area as they are
- assigned to other sections in the output executable.
-
- The default value is zero, which disables this feature. Note, this
- feature is not enabled by default with higher optimization levels
- ('-O2' etc) because of the potentially detrimental effects of
- reserving a register. It is up to the programmer to experiment and
- discover whether this feature is of benefit to their program. See
- the description of the '-mpid' option for a description of how the
- actual register to hold the small data area pointer is chosen.
-
-'-msim'
-'-mno-sim'
- Use the simulator runtime. The default is to use the libgloss
- board-specific runtime.
-
-'-mas100-syntax'
-'-mno-as100-syntax'
- When generating assembler output use a syntax that is compatible
- with Renesas's AS100 assembler. This syntax can also be handled by
- the GAS assembler, but it has some restrictions so it is not
- generated by default.
-
-'-mmax-constant-size=N'
- Specifies the maximum size, in bytes, of a constant that can be
- used as an operand in a RX instruction. Although the RX
- instruction set does allow constants of up to 4 bytes in length to
- be used in instructions, a longer value equates to a longer
- instruction. Thus in some circumstances it can be beneficial to
- restrict the size of constants that are used in instructions.
- Constants that are too big are instead placed into a constant pool
- and referenced via register indirection.
-
- The value N can be between 0 and 4. A value of 0 (the default) or
- 4 means that constants of any size are allowed.
-
-'-mrelax'
- Enable linker relaxation. Linker relaxation is a process whereby
- the linker attempts to reduce the size of a program by finding
- shorter versions of various instructions. Disabled by default.
-
-'-mint-register=N'
- Specify the number of registers to reserve for fast interrupt
- handler functions. The value N can be between 0 and 4. A value of
- 1 means that register 'r13' is reserved for the exclusive use of
- fast interrupt handlers. A value of 2 reserves 'r13' and 'r12'. A
- value of 3 reserves 'r13', 'r12' and 'r11', and a value of 4
- reserves 'r13' through 'r10'. A value of 0, the default, does not
- reserve any registers.
-
-'-msave-acc-in-interrupts'
- Specifies that interrupt handler functions should preserve the
- accumulator register. This is only necessary if normal code might
- use the accumulator register, for example because it performs
- 64-bit multiplications. The default is to ignore the accumulator
- as this makes the interrupt handlers faster.
-
-'-mpid'
-'-mno-pid'
- Enables the generation of position independent data. When enabled
- any access to constant data is done via an offset from a base
- address held in a register. This allows the location of constant
- data to be determined at run time without requiring the executable
- to be relocated, which is a benefit to embedded applications with
- tight memory constraints. Data that can be modified is not
- affected by this option.
-
- Note, using this feature reserves a register, usually 'r13', for
- the constant data base address. This can result in slower and/or
- larger code, especially in complicated functions.
-
- The actual register chosen to hold the constant data base address
- depends upon whether the '-msmall-data-limit' and/or the
- '-mint-register' command-line options are enabled. Starting with
- register 'r13' and proceeding downwards, registers are allocated
- first to satisfy the requirements of '-mint-register', then '-mpid'
- and finally '-msmall-data-limit'. Thus it is possible for the
- small data area register to be 'r8' if both '-mint-register=4' and
- '-mpid' are specified on the command line.
-
- By default this feature is not enabled. The default can be
- restored via the '-mno-pid' command-line option.
-
-'-mno-warn-multiple-fast-interrupts'
-'-mwarn-multiple-fast-interrupts'
- Prevents GCC from issuing a warning message if it finds more than
- one fast interrupt handler when it is compiling a file. The
- default is to issue a warning for each extra fast interrupt handler
- found, as the RX only supports one such interrupt.
-
- _Note:_ The generic GCC command-line option '-ffixed-REG' has special
-significance to the RX port when used with the 'interrupt' function
-attribute. This attribute indicates a function intended to process fast
-interrupts. GCC ensures that it only uses the registers 'r10', 'r11',
-'r12' and/or 'r13' and only provided that the normal use of the
-corresponding registers have been restricted via the '-ffixed-REG' or
-'-mint-register' command-line options.
-
-
-File: gcc.info, Node: S/390 and zSeries Options, Next: Score Options, Prev: RX Options, Up: Submodel Options
-
-3.17.40 S/390 and zSeries Options
----------------------------------
-
-These are the '-m' options defined for the S/390 and zSeries
-architecture.
-
-'-mhard-float'
-'-msoft-float'
- Use (do not use) the hardware floating-point instructions and
- registers for floating-point operations. When '-msoft-float' is
- specified, functions in 'libgcc.a' are used to perform
- floating-point operations. When '-mhard-float' is specified, the
- compiler generates IEEE floating-point instructions. This is the
- default.
-
-'-mhard-dfp'
-'-mno-hard-dfp'
- Use (do not use) the hardware decimal-floating-point instructions
- for decimal-floating-point operations. When '-mno-hard-dfp' is
- specified, functions in 'libgcc.a' are used to perform
- decimal-floating-point operations. When '-mhard-dfp' is specified,
- the compiler generates decimal-floating-point hardware
- instructions. This is the default for '-march=z9-ec' or higher.
-
-'-mlong-double-64'
-'-mlong-double-128'
- These switches control the size of 'long double' type. A size of
- 64 bits makes the 'long double' type equivalent to the 'double'
- type. This is the default.
-
-'-mbackchain'
-'-mno-backchain'
- Store (do not store) the address of the caller's frame as backchain
- pointer into the callee's stack frame. A backchain may be needed
- to allow debugging using tools that do not understand DWARF 2 call
- frame information. When '-mno-packed-stack' is in effect, the
- backchain pointer is stored at the bottom of the stack frame; when
- '-mpacked-stack' is in effect, the backchain is placed into the
- topmost word of the 96/160 byte register save area.
-
- In general, code compiled with '-mbackchain' is call-compatible
- with code compiled with '-mmo-backchain'; however, use of the
- backchain for debugging purposes usually requires that the whole
- binary is built with '-mbackchain'. Note that the combination of
- '-mbackchain', '-mpacked-stack' and '-mhard-float' is not
- supported. In order to build a linux kernel use '-msoft-float'.
-
- The default is to not maintain the backchain.
-
-'-mpacked-stack'
-'-mno-packed-stack'
- Use (do not use) the packed stack layout. When '-mno-packed-stack'
- is specified, the compiler uses the all fields of the 96/160 byte
- register save area only for their default purpose; unused fields
- still take up stack space. When '-mpacked-stack' is specified,
- register save slots are densely packed at the top of the register
- save area; unused space is reused for other purposes, allowing for
- more efficient use of the available stack space. However, when
- '-mbackchain' is also in effect, the topmost word of the save area
- is always used to store the backchain, and the return address
- register is always saved two words below the backchain.
-
- As long as the stack frame backchain is not used, code generated
- with '-mpacked-stack' is call-compatible with code generated with
- '-mno-packed-stack'. Note that some non-FSF releases of GCC 2.95
- for S/390 or zSeries generated code that uses the stack frame
- backchain at run time, not just for debugging purposes. Such code
- is not call-compatible with code compiled with '-mpacked-stack'.
- Also, note that the combination of '-mbackchain', '-mpacked-stack'
- and '-mhard-float' is not supported. In order to build a linux
- kernel use '-msoft-float'.
-
- The default is to not use the packed stack layout.
-
-'-msmall-exec'
-'-mno-small-exec'
- Generate (or do not generate) code using the 'bras' instruction to
- do subroutine calls. This only works reliably if the total
- executable size does not exceed 64k. The default is to use the
- 'basr' instruction instead, which does not have this limitation.
-
-'-m64'
-'-m31'
- When '-m31' is specified, generate code compliant to the GNU/Linux
- for S/390 ABI. When '-m64' is specified, generate code compliant
- to the GNU/Linux for zSeries ABI. This allows GCC in particular to
- generate 64-bit instructions. For the 's390' targets, the default
- is '-m31', while the 's390x' targets default to '-m64'.
-
-'-mzarch'
-'-mesa'
- When '-mzarch' is specified, generate code using the instructions
- available on z/Architecture. When '-mesa' is specified, generate
- code using the instructions available on ESA/390. Note that
- '-mesa' is not possible with '-m64'. When generating code
- compliant to the GNU/Linux for S/390 ABI, the default is '-mesa'.
- When generating code compliant to the GNU/Linux for zSeries ABI,
- the default is '-mzarch'.
-
-'-mmvcle'
-'-mno-mvcle'
- Generate (or do not generate) code using the 'mvcle' instruction to
- perform block moves. When '-mno-mvcle' is specified, use a 'mvc'
- loop instead. This is the default unless optimizing for size.
-
-'-mdebug'
-'-mno-debug'
- Print (or do not print) additional debug information when
- compiling. The default is to not print debug information.
-
-'-march=CPU-TYPE'
- Generate code that runs on CPU-TYPE, which is the name of a system
- representing a certain processor type. Possible values for
- CPU-TYPE are 'g5', 'g6', 'z900', 'z990', 'z9-109', 'z9-ec' and
- 'z10'. When generating code using the instructions available on
- z/Architecture, the default is '-march=z900'. Otherwise, the
- default is '-march=g5'.
-
-'-mtune=CPU-TYPE'
- Tune to CPU-TYPE everything applicable about the generated code,
- except for the ABI and the set of available instructions. The list
- of CPU-TYPE values is the same as for '-march'. The default is the
- value used for '-march'.
-
-'-mtpf-trace'
-'-mno-tpf-trace'
- Generate code that adds (does not add) in TPF OS specific branches
- to trace routines in the operating system. This option is off by
- default, even when compiling for the TPF OS.
-
-'-mfused-madd'
-'-mno-fused-madd'
- Generate code that uses (does not use) the floating-point multiply
- and accumulate instructions. These instructions are generated by
- default if hardware floating point is used.
-
-'-mwarn-framesize=FRAMESIZE'
- Emit a warning if the current function exceeds the given frame
- size. Because this is a compile-time check it doesn't need to be a
- real problem when the program runs. It is intended to identify
- functions that most probably cause a stack overflow. It is useful
- to be used in an environment with limited stack size e.g. the linux
- kernel.
-
-'-mwarn-dynamicstack'
- Emit a warning if the function calls 'alloca' or uses
- dynamically-sized arrays. This is generally a bad idea with a
- limited stack size.
-
-'-mstack-guard=STACK-GUARD'
-'-mstack-size=STACK-SIZE'
- If these options are provided the S/390 back end emits additional
- instructions in the function prologue that trigger a trap if the
- stack size is STACK-GUARD bytes above the STACK-SIZE (remember that
- the stack on S/390 grows downward). If the STACK-GUARD option is
- omitted the smallest power of 2 larger than the frame size of the
- compiled function is chosen. These options are intended to be used
- to help debugging stack overflow problems. The additionally
- emitted code causes only little overhead and hence can also be used
- in production-like systems without greater performance degradation.
- The given values have to be exact powers of 2 and STACK-SIZE has to
- be greater than STACK-GUARD without exceeding 64k. In order to be
- efficient the extra code makes the assumption that the stack starts
- at an address aligned to the value given by STACK-SIZE. The
- STACK-GUARD option can only be used in conjunction with STACK-SIZE.
-
-'-mhotpatch[=HALFWORDS]'
-'-mno-hotpatch'
- If the hotpatch option is enabled, a "hot-patching" function
- prologue is generated for all functions in the compilation unit.
- The funtion label is prepended with the given number of two-byte
- Nop instructions (HALFWORDS, maximum 1000000) or 12 Nop
- instructions if no argument is present. Functions with a
- hot-patching prologue are never inlined automatically, and a
- hot-patching prologue is never generated for functions functions
- that are explicitly inline.
-
- This option can be overridden for individual functions with the
- 'hotpatch' attribute.
-
-
-File: gcc.info, Node: Score Options, Next: SH Options, Prev: S/390 and zSeries Options, Up: Submodel Options
-
-3.17.41 Score Options
----------------------
-
-These options are defined for Score implementations:
-
-'-meb'
- Compile code for big-endian mode. This is the default.
-
-'-mel'
- Compile code for little-endian mode.
-
-'-mnhwloop'
- Disable generation of 'bcnz' instructions.
-
-'-muls'
- Enable generation of unaligned load and store instructions.
-
-'-mmac'
- Enable the use of multiply-accumulate instructions. Disabled by
- default.
-
-'-mscore5'
- Specify the SCORE5 as the target architecture.
-
-'-mscore5u'
- Specify the SCORE5U of the target architecture.
-
-'-mscore7'
- Specify the SCORE7 as the target architecture. This is the
- default.
-
-'-mscore7d'
- Specify the SCORE7D as the target architecture.
-
-
-File: gcc.info, Node: SH Options, Next: Solaris 2 Options, Prev: Score Options, Up: Submodel Options
-
-3.17.42 SH Options
-------------------
-
-These '-m' options are defined for the SH implementations:
-
-'-m1'
- Generate code for the SH1.
-
-'-m2'
- Generate code for the SH2.
-
-'-m2e'
- Generate code for the SH2e.
-
-'-m2a-nofpu'
- Generate code for the SH2a without FPU, or for a SH2a-FPU in such a
- way that the floating-point unit is not used.
-
-'-m2a-single-only'
- Generate code for the SH2a-FPU, in such a way that no
- double-precision floating-point operations are used.
-
-'-m2a-single'
- Generate code for the SH2a-FPU assuming the floating-point unit is
- in single-precision mode by default.
-
-'-m2a'
- Generate code for the SH2a-FPU assuming the floating-point unit is
- in double-precision mode by default.
-
-'-m3'
- Generate code for the SH3.
-
-'-m3e'
- Generate code for the SH3e.
-
-'-m4-nofpu'
- Generate code for the SH4 without a floating-point unit.
-
-'-m4-single-only'
- Generate code for the SH4 with a floating-point unit that only
- supports single-precision arithmetic.
-
-'-m4-single'
- Generate code for the SH4 assuming the floating-point unit is in
- single-precision mode by default.
-
-'-m4'
- Generate code for the SH4.
-
-'-m4a-nofpu'
- Generate code for the SH4al-dsp, or for a SH4a in such a way that
- the floating-point unit is not used.
-
-'-m4a-single-only'
- Generate code for the SH4a, in such a way that no double-precision
- floating-point operations are used.
-
-'-m4a-single'
- Generate code for the SH4a assuming the floating-point unit is in
- single-precision mode by default.
-
-'-m4a'
- Generate code for the SH4a.
-
-'-m4al'
- Same as '-m4a-nofpu', except that it implicitly passes '-dsp' to
- the assembler. GCC doesn't generate any DSP instructions at the
- moment.
-
-'-mb'
- Compile code for the processor in big-endian mode.
-
-'-ml'
- Compile code for the processor in little-endian mode.
-
-'-mdalign'
- Align doubles at 64-bit boundaries. Note that this changes the
- calling conventions, and thus some functions from the standard C
- library do not work unless you recompile it first with '-mdalign'.
-
-'-mrelax'
- Shorten some address references at link time, when possible; uses
- the linker option '-relax'.
-
-'-mbigtable'
- Use 32-bit offsets in 'switch' tables. The default is to use
- 16-bit offsets.
-
-'-mbitops'
- Enable the use of bit manipulation instructions on SH2A.
-
-'-mfmovd'
- Enable the use of the instruction 'fmovd'. Check '-mdalign' for
- alignment constraints.
-
-'-mhitachi'
- Comply with the calling conventions defined by Renesas.
-
-'-mrenesas'
- Comply with the calling conventions defined by Renesas.
-
-'-mno-renesas'
- Comply with the calling conventions defined for GCC before the
- Renesas conventions were available. This option is the default for
- all targets of the SH toolchain.
-
-'-mnomacsave'
- Mark the 'MAC' register as call-clobbered, even if '-mhitachi' is
- given.
-
-'-mieee'
-'-mno-ieee'
- Control the IEEE compliance of floating-point comparisons, which
- affects the handling of cases where the result of a comparison is
- unordered. By default '-mieee' is implicitly enabled. If
- '-ffinite-math-only' is enabled '-mno-ieee' is implicitly set,
- which results in faster floating-point greater-equal and less-equal
- comparisons. The implcit settings can be overridden by specifying
- either '-mieee' or '-mno-ieee'.
-
-'-minline-ic_invalidate'
- Inline code to invalidate instruction cache entries after setting
- up nested function trampolines. This option has no effect if
- '-musermode' is in effect and the selected code generation option
- (e.g. '-m4') does not allow the use of the 'icbi' instruction. If
- the selected code generation option does not allow the use of the
- 'icbi' instruction, and '-musermode' is not in effect, the inlined
- code manipulates the instruction cache address array directly with
- an associative write. This not only requires privileged mode at
- run time, but it also fails if the cache line had been mapped via
- the TLB and has become unmapped.
-
-'-misize'
- Dump instruction size and location in the assembly code.
-
-'-mpadstruct'
- This option is deprecated. It pads structures to multiple of 4
- bytes, which is incompatible with the SH ABI.
-
-'-matomic-model=MODEL'
- Sets the model of atomic operations and additional parameters as a
- comma separated list. For details on the atomic built-in functions
- see *note __atomic Builtins::. The following models and parameters
- are supported:
-
- 'none'
- Disable compiler generated atomic sequences and emit library
- calls for atomic operations. This is the default if the
- target is not 'sh-*-linux*'.
-
- 'soft-gusa'
- Generate GNU/Linux compatible gUSA software atomic sequences
- for the atomic built-in functions. The generated atomic
- sequences require additional support from the
- interrupt/exception handling code of the system and are only
- suitable for SH3* and SH4* single-core systems. This option
- is enabled by default when the target is 'sh-*-linux*' and
- SH3* or SH4*. When the target is SH4A, this option will also
- partially utilize the hardware atomic instructions 'movli.l'
- and 'movco.l' to create more efficient code, unless 'strict'
- is specified.
-
- 'soft-tcb'
- Generate software atomic sequences that use a variable in the
- thread control block. This is a variation of the gUSA
- sequences which can also be used on SH1* and SH2* targets.
- The generated atomic sequences require additional support from
- the interrupt/exception handling code of the system and are
- only suitable for single-core systems. When using this model,
- the 'gbr-offset=' parameter has to be specified as well.
-
- 'soft-imask'
- Generate software atomic sequences that temporarily disable
- interrupts by setting 'SR.IMASK = 1111'. This model works
- only when the program runs in privileged mode and is only
- suitable for single-core systems. Additional support from the
- interrupt/exception handling code of the system is not
- required. This model is enabled by default when the target is
- 'sh-*-linux*' and SH1* or SH2*.
-
- 'hard-llcs'
- Generate hardware atomic sequences using the 'movli.l' and
- 'movco.l' instructions only. This is only available on SH4A
- and is suitable for multi-core systems. Since the hardware
- instructions support only 32 bit atomic variables access to 8
- or 16 bit variables is emulated with 32 bit accesses. Code
- compiled with this option will also be compatible with other
- software atomic model interrupt/exception handling systems if
- executed on an SH4A system. Additional support from the
- interrupt/exception handling code of the system is not
- required for this model.
-
- 'gbr-offset='
- This parameter specifies the offset in bytes of the variable
- in the thread control block structure that should be used by
- the generated atomic sequences when the 'soft-tcb' model has
- been selected. For other models this parameter is ignored.
- The specified value must be an integer multiple of four and in
- the range 0-1020.
-
- 'strict'
- This parameter prevents mixed usage of multiple atomic models,
- even though they would be compatible, and will make the
- compiler generate atomic sequences of the specified model
- only.
-
-'-mtas'
- Generate the 'tas.b' opcode for '__atomic_test_and_set'. Notice
- that depending on the particular hardware and software
- configuration this can degrade overall performance due to the
- operand cache line flushes that are implied by the 'tas.b'
- instruction. On multi-core SH4A processors the 'tas.b' instruction
- must be used with caution since it can result in data corruption
- for certain cache configurations.
-
-'-mspace'
- Optimize for space instead of speed. Implied by '-Os'.
-
-'-mprefergot'
- When generating position-independent code, emit function calls
- using the Global Offset Table instead of the Procedure Linkage
- Table.
-
-'-musermode'
- Don't generate privileged mode only code. This option implies
- '-mno-inline-ic_invalidate' if the inlined code would not work in
- user mode. This is the default when the target is 'sh-*-linux*'.
-
-'-multcost=NUMBER'
- Set the cost to assume for a multiply insn.
-
-'-mdiv=STRATEGY'
- Set the division strategy to be used for integer division
- operations. For SHmedia STRATEGY can be one of:
-
- 'fp'
- Performs the operation in floating point. This has a very
- high latency, but needs only a few instructions, so it might
- be a good choice if your code has enough easily-exploitable
- ILP to allow the compiler to schedule the floating-point
- instructions together with other instructions. Division by
- zero causes a floating-point exception.
-
- 'inv'
- Uses integer operations to calculate the inverse of the
- divisor, and then multiplies the dividend with the inverse.
- This strategy allows CSE and hoisting of the inverse
- calculation. Division by zero calculates an unspecified
- result, but does not trap.
-
- 'inv:minlat'
- A variant of 'inv' where, if no CSE or hoisting opportunities
- have been found, or if the entire operation has been hoisted
- to the same place, the last stages of the inverse calculation
- are intertwined with the final multiply to reduce the overall
- latency, at the expense of using a few more instructions, and
- thus offering fewer scheduling opportunities with other code.
-
- 'call'
- Calls a library function that usually implements the
- 'inv:minlat' strategy. This gives high code density for
- 'm5-*media-nofpu' compilations.
-
- 'call2'
- Uses a different entry point of the same library function,
- where it assumes that a pointer to a lookup table has already
- been set up, which exposes the pointer load to CSE and code
- hoisting optimizations.
-
- 'inv:call'
- 'inv:call2'
- 'inv:fp'
- Use the 'inv' algorithm for initial code generation, but if
- the code stays unoptimized, revert to the 'call', 'call2', or
- 'fp' strategies, respectively. Note that the
- potentially-trapping side effect of division by zero is
- carried by a separate instruction, so it is possible that all
- the integer instructions are hoisted out, but the marker for
- the side effect stays where it is. A recombination to
- floating-point operations or a call is not possible in that
- case.
-
- 'inv20u'
- 'inv20l'
- Variants of the 'inv:minlat' strategy. In the case that the
- inverse calculation is not separated from the multiply, they
- speed up division where the dividend fits into 20 bits (plus
- sign where applicable) by inserting a test to skip a number of
- operations in this case; this test slows down the case of
- larger dividends. 'inv20u' assumes the case of a such a small
- dividend to be unlikely, and 'inv20l' assumes it to be likely.
-
- For targets other than SHmedia STRATEGY can be one of:
-
- 'call-div1'
- Calls a library function that uses the single-step division
- instruction 'div1' to perform the operation. Division by zero
- calculates an unspecified result and does not trap. This is
- the default except for SH4, SH2A and SHcompact.
-
- 'call-fp'
- Calls a library function that performs the operation in double
- precision floating point. Division by zero causes a
- floating-point exception. This is the default for SHcompact
- with FPU. Specifying this for targets that do not have a
- double precision FPU will default to 'call-div1'.
-
- 'call-table'
- Calls a library function that uses a lookup table for small
- divisors and the 'div1' instruction with case distinction for
- larger divisors. Division by zero calculates an unspecified
- result and does not trap. This is the default for SH4.
- Specifying this for targets that do not have dynamic shift
- instructions will default to 'call-div1'.
-
- When a division strategy has not been specified the default
- strategy will be selected based on the current target. For SH2A
- the default strategy is to use the 'divs' and 'divu' instructions
- instead of library function calls.
-
-'-maccumulate-outgoing-args'
- Reserve space once for outgoing arguments in the function prologue
- rather than around each call. Generally beneficial for performance
- and size. Also needed for unwinding to avoid changing the stack
- frame around conditional code.
-
-'-mdivsi3_libfunc=NAME'
- Set the name of the library function used for 32-bit signed
- division to NAME. This only affects the name used in the 'call'
- and 'inv:call' division strategies, and the compiler still expects
- the same sets of input/output/clobbered registers as if this option
- were not present.
-
-'-mfixed-range=REGISTER-RANGE'
- Generate code treating the given register range as fixed registers.
- A fixed register is one that the register allocator can not use.
- This is useful when compiling kernel code. A register range is
- specified as two registers separated by a dash. Multiple register
- ranges can be specified separated by a comma.
-
-'-mindexed-addressing'
- Enable the use of the indexed addressing mode for
- SHmedia32/SHcompact. This is only safe if the hardware and/or OS
- implement 32-bit wrap-around semantics for the indexed addressing
- mode. The architecture allows the implementation of processors
- with 64-bit MMU, which the OS could use to get 32-bit addressing,
- but since no current hardware implementation supports this or any
- other way to make the indexed addressing mode safe to use in the
- 32-bit ABI, the default is '-mno-indexed-addressing'.
-
-'-mgettrcost=NUMBER'
- Set the cost assumed for the 'gettr' instruction to NUMBER. The
- default is 2 if '-mpt-fixed' is in effect, 100 otherwise.
-
-'-mpt-fixed'
- Assume 'pt*' instructions won't trap. This generally generates
- better-scheduled code, but is unsafe on current hardware. The
- current architecture definition says that 'ptabs' and 'ptrel' trap
- when the target anded with 3 is 3. This has the unintentional
- effect of making it unsafe to schedule these instructions before a
- branch, or hoist them out of a loop. For example,
- '__do_global_ctors', a part of 'libgcc' that runs constructors at
- program startup, calls functions in a list which is delimited by
- -1. With the '-mpt-fixed' option, the 'ptabs' is done before
- testing against -1. That means that all the constructors run a bit
- more quickly, but when the loop comes to the end of the list, the
- program crashes because 'ptabs' loads -1 into a target register.
-
- Since this option is unsafe for any hardware implementing the
- current architecture specification, the default is '-mno-pt-fixed'.
- Unless specified explicitly with '-mgettrcost', '-mno-pt-fixed'
- also implies '-mgettrcost=100'; this deters register allocation
- from using target registers for storing ordinary integers.
-
-'-minvalid-symbols'
- Assume symbols might be invalid. Ordinary function symbols
- generated by the compiler are always valid to load with
- 'movi'/'shori'/'ptabs' or 'movi'/'shori'/'ptrel', but with
- assembler and/or linker tricks it is possible to generate symbols
- that cause 'ptabs' or 'ptrel' to trap. This option is only
- meaningful when '-mno-pt-fixed' is in effect. It prevents
- cross-basic-block CSE, hoisting and most scheduling of symbol
- loads. The default is '-mno-invalid-symbols'.
-
-'-mbranch-cost=NUM'
- Assume NUM to be the cost for a branch instruction. Higher numbers
- make the compiler try to generate more branch-free code if
- possible. If not specified the value is selected depending on the
- processor type that is being compiled for.
-
-'-mzdcbranch'
-'-mno-zdcbranch'
- Assume (do not assume) that zero displacement conditional branch
- instructions 'bt' and 'bf' are fast. If '-mzdcbranch' is
- specified, the compiler will try to prefer zero displacement branch
- code sequences. This is enabled by default when generating code
- for SH4 and SH4A. It can be explicitly disabled by specifying
- '-mno-zdcbranch'.
-
-'-mfused-madd'
-'-mno-fused-madd'
- Generate code that uses (does not use) the floating-point multiply
- and accumulate instructions. These instructions are generated by
- default if hardware floating point is used. The machine-dependent
- '-mfused-madd' option is now mapped to the machine-independent
- '-ffp-contract=fast' option, and '-mno-fused-madd' is mapped to
- '-ffp-contract=off'.
-
-'-mfsca'
-'-mno-fsca'
- Allow or disallow the compiler to emit the 'fsca' instruction for
- sine and cosine approximations. The option '-mfsca' must be used
- in combination with '-funsafe-math-optimizations'. It is enabled
- by default when generating code for SH4A. Using '-mno-fsca'
- disables sine and cosine approximations even if
- '-funsafe-math-optimizations' is in effect.
-
-'-mfsrra'
-'-mno-fsrra'
- Allow or disallow the compiler to emit the 'fsrra' instruction for
- reciprocal square root approximations. The option '-mfsrra' must
- be used in combination with '-funsafe-math-optimizations' and
- '-ffinite-math-only'. It is enabled by default when generating
- code for SH4A. Using '-mno-fsrra' disables reciprocal square root
- approximations even if '-funsafe-math-optimizations' and
- '-ffinite-math-only' are in effect.
-
-'-mpretend-cmove'
- Prefer zero-displacement conditional branches for conditional move
- instruction patterns. This can result in faster code on the SH4
- processor.
-
-
-File: gcc.info, Node: Solaris 2 Options, Next: SPARC Options, Prev: SH Options, Up: Submodel Options
-
-3.17.43 Solaris 2 Options
--------------------------
-
-These '-m' options are supported on Solaris 2:
-
-'-mimpure-text'
- '-mimpure-text', used in addition to '-shared', tells the compiler
- to not pass '-z text' to the linker when linking a shared object.
- Using this option, you can link position-dependent code into a
- shared object.
-
- '-mimpure-text' suppresses the "relocations remain against
- allocatable but non-writable sections" linker error message.
- However, the necessary relocations trigger copy-on-write, and the
- shared object is not actually shared across processes. Instead of
- using '-mimpure-text', you should compile all source code with
- '-fpic' or '-fPIC'.
-
- These switches are supported in addition to the above on Solaris 2:
-
-'-pthreads'
- Add support for multithreading using the POSIX threads library.
- This option sets flags for both the preprocessor and linker. This
- option does not affect the thread safety of object code produced by
- the compiler or that of libraries supplied with it.
-
-'-pthread'
- This is a synonym for '-pthreads'.
-
-
-File: gcc.info, Node: SPARC Options, Next: SPU Options, Prev: Solaris 2 Options, Up: Submodel Options
-
-3.17.44 SPARC Options
----------------------
-
-These '-m' options are supported on the SPARC:
-
-'-mno-app-regs'
-'-mapp-regs'
- Specify '-mapp-regs' to generate output using the global registers
- 2 through 4, which the SPARC SVR4 ABI reserves for applications.
- Like the global register 1, each global register 2 through 4 is
- then treated as an allocable register that is clobbered by function
- calls. This is the default.
-
- To be fully SVR4 ABI-compliant at the cost of some performance
- loss, specify '-mno-app-regs'. You should compile libraries and
- system software with this option.
-
-'-mflat'
-'-mno-flat'
- With '-mflat', the compiler does not generate save/restore
- instructions and uses a "flat" or single register window model.
- This model is compatible with the regular register window model.
- The local registers and the input registers (0-5) are still treated
- as "call-saved" registers and are saved on the stack as needed.
-
- With '-mno-flat' (the default), the compiler generates save/restore
- instructions (except for leaf functions). This is the normal
- operating mode.
-
-'-mfpu'
-'-mhard-float'
- Generate output containing floating-point instructions. This is
- the default.
-
-'-mno-fpu'
-'-msoft-float'
- Generate output containing library calls for floating point.
- *Warning:* the requisite libraries are not available for all SPARC
- targets. Normally the facilities of the machine's usual C compiler
- are used, but this cannot be done directly in cross-compilation.
- You must make your own arrangements to provide suitable library
- functions for cross-compilation. The embedded targets
- 'sparc-*-aout' and 'sparclite-*-*' do provide software
- floating-point support.
-
- '-msoft-float' changes the calling convention in the output file;
- therefore, it is only useful if you compile _all_ of a program with
- this option. In particular, you need to compile 'libgcc.a', the
- library that comes with GCC, with '-msoft-float' in order for this
- to work.
-
-'-mhard-quad-float'
- Generate output containing quad-word (long double) floating-point
- instructions.
-
-'-msoft-quad-float'
- Generate output containing library calls for quad-word (long
- double) floating-point instructions. The functions called are
- those specified in the SPARC ABI. This is the default.
-
- As of this writing, there are no SPARC implementations that have
- hardware support for the quad-word floating-point instructions.
- They all invoke a trap handler for one of these instructions, and
- then the trap handler emulates the effect of the instruction.
- Because of the trap handler overhead, this is much slower than
- calling the ABI library routines. Thus the '-msoft-quad-float'
- option is the default.
-
-'-mno-unaligned-doubles'
-'-munaligned-doubles'
- Assume that doubles have 8-byte alignment. This is the default.
-
- With '-munaligned-doubles', GCC assumes that doubles have 8-byte
- alignment only if they are contained in another type, or if they
- have an absolute address. Otherwise, it assumes they have 4-byte
- alignment. Specifying this option avoids some rare compatibility
- problems with code generated by other compilers. It is not the
- default because it results in a performance loss, especially for
- floating-point code.
-
-'-mno-faster-structs'
-'-mfaster-structs'
- With '-mfaster-structs', the compiler assumes that structures
- should have 8-byte alignment. This enables the use of pairs of
- 'ldd' and 'std' instructions for copies in structure assignment, in
- place of twice as many 'ld' and 'st' pairs. However, the use of
- this changed alignment directly violates the SPARC ABI. Thus, it's
- intended only for use on targets where the developer acknowledges
- that their resulting code is not directly in line with the rules of
- the ABI.
-
-'-mcpu=CPU_TYPE'
- Set the instruction set, register set, and instruction scheduling
- parameters for machine type CPU_TYPE. Supported values for
- CPU_TYPE are 'v7', 'cypress', 'v8', 'supersparc', 'hypersparc',
- 'leon', 'leon3', 'sparclite', 'f930', 'f934', 'sparclite86x',
- 'sparclet', 'tsc701', 'v9', 'ultrasparc', 'ultrasparc3', 'niagara',
- 'niagara2', 'niagara3' and 'niagara4'.
-
- Native Solaris and GNU/Linux toolchains also support the value
- 'native', which selects the best architecture option for the host
- processor. '-mcpu=native' has no effect if GCC does not recognize
- the processor.
-
- Default instruction scheduling parameters are used for values that
- select an architecture and not an implementation. These are 'v7',
- 'v8', 'sparclite', 'sparclet', 'v9'.
-
- Here is a list of each supported architecture and their supported
- implementations.
-
- v7
- cypress
-
- v8
- supersparc, hypersparc, leon, leon3
-
- sparclite
- f930, f934, sparclite86x
-
- sparclet
- tsc701
-
- v9
- ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4
-
- By default (unless configured otherwise), GCC generates code for
- the V7 variant of the SPARC architecture. With '-mcpu=cypress',
- the compiler additionally optimizes it for the Cypress CY7C602
- chip, as used in the SPARCStation/SPARCServer 3xx series. This is
- also appropriate for the older SPARCStation 1, 2, IPX etc.
-
- With '-mcpu=v8', GCC generates code for the V8 variant of the SPARC
- architecture. The only difference from V7 code is that the
- compiler emits the integer multiply and integer divide instructions
- which exist in SPARC-V8 but not in SPARC-V7. With
- '-mcpu=supersparc', the compiler additionally optimizes it for the
- SuperSPARC chip, as used in the SPARCStation 10, 1000 and 2000
- series.
-
- With '-mcpu=sparclite', GCC generates code for the SPARClite
- variant of the SPARC architecture. This adds the integer multiply,
- integer divide step and scan ('ffs') instructions which exist in
- SPARClite but not in SPARC-V7. With '-mcpu=f930', the compiler
- additionally optimizes it for the Fujitsu MB86930 chip, which is
- the original SPARClite, with no FPU. With '-mcpu=f934', the
- compiler additionally optimizes it for the Fujitsu MB86934 chip,
- which is the more recent SPARClite with FPU.
-
- With '-mcpu=sparclet', GCC generates code for the SPARClet variant
- of the SPARC architecture. This adds the integer multiply,
- multiply/accumulate, integer divide step and scan ('ffs')
- instructions which exist in SPARClet but not in SPARC-V7. With
- '-mcpu=tsc701', the compiler additionally optimizes it for the
- TEMIC SPARClet chip.
-
- With '-mcpu=v9', GCC generates code for the V9 variant of the SPARC
- architecture. This adds 64-bit integer and floating-point move
- instructions, 3 additional floating-point condition code registers
- and conditional move instructions. With '-mcpu=ultrasparc', the
- compiler additionally optimizes it for the Sun UltraSPARC I/II/IIi
- chips. With '-mcpu=ultrasparc3', the compiler additionally
- optimizes it for the Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+
- chips. With '-mcpu=niagara', the compiler additionally optimizes
- it for Sun UltraSPARC T1 chips. With '-mcpu=niagara2', the
- compiler additionally optimizes it for Sun UltraSPARC T2 chips.
- With '-mcpu=niagara3', the compiler additionally optimizes it for
- Sun UltraSPARC T3 chips. With '-mcpu=niagara4', the compiler
- additionally optimizes it for Sun UltraSPARC T4 chips.
-
-'-mtune=CPU_TYPE'
- Set the instruction scheduling parameters for machine type
- CPU_TYPE, but do not set the instruction set or register set that
- the option '-mcpu=CPU_TYPE' does.
-
- The same values for '-mcpu=CPU_TYPE' can be used for
- '-mtune=CPU_TYPE', but the only useful values are those that select
- a particular CPU implementation. Those are 'cypress',
- 'supersparc', 'hypersparc', 'leon', 'leon3', 'f930', 'f934',
- 'sparclite86x', 'tsc701', 'ultrasparc', 'ultrasparc3', 'niagara',
- 'niagara2', 'niagara3' and 'niagara4'. With native Solaris and
- GNU/Linux toolchains, 'native' can also be used.
-
-'-mv8plus'
-'-mno-v8plus'
- With '-mv8plus', GCC generates code for the SPARC-V8+ ABI. The
- difference from the V8 ABI is that the global and out registers are
- considered 64 bits wide. This is enabled by default on Solaris in
- 32-bit mode for all SPARC-V9 processors.
-
-'-mvis'
-'-mno-vis'
- With '-mvis', GCC generates code that takes advantage of the
- UltraSPARC Visual Instruction Set extensions. The default is
- '-mno-vis'.
-
-'-mvis2'
-'-mno-vis2'
- With '-mvis2', GCC generates code that takes advantage of version
- 2.0 of the UltraSPARC Visual Instruction Set extensions. The
- default is '-mvis2' when targeting a cpu that supports such
- instructions, such as UltraSPARC-III and later. Setting '-mvis2'
- also sets '-mvis'.
-
-'-mvis3'
-'-mno-vis3'
- With '-mvis3', GCC generates code that takes advantage of version
- 3.0 of the UltraSPARC Visual Instruction Set extensions. The
- default is '-mvis3' when targeting a cpu that supports such
- instructions, such as niagara-3 and later. Setting '-mvis3' also
- sets '-mvis2' and '-mvis'.
-
-'-mcbcond'
-'-mno-cbcond'
- With '-mcbcond', GCC generates code that takes advantage of
- compare-and-branch instructions, as defined in the Sparc
- Architecture 2011. The default is '-mcbcond' when targeting a cpu
- that supports such instructions, such as niagara-4 and later.
-
-'-mpopc'
-'-mno-popc'
- With '-mpopc', GCC generates code that takes advantage of the
- UltraSPARC population count instruction. The default is '-mpopc'
- when targeting a cpu that supports such instructions, such as
- Niagara-2 and later.
-
-'-mfmaf'
-'-mno-fmaf'
- With '-mfmaf', GCC generates code that takes advantage of the
- UltraSPARC Fused Multiply-Add Floating-point extensions. The
- default is '-mfmaf' when targeting a cpu that supports such
- instructions, such as Niagara-3 and later.
-
-'-mfix-at697f'
- Enable the documented workaround for the single erratum of the
- Atmel AT697F processor (which corresponds to erratum #13 of the
- AT697E processor).
-
-'-mfix-ut699'
- Enable the documented workarounds for the floating-point errata and
- the data cache nullify errata of the UT699 processor.
-
- These '-m' options are supported in addition to the above on SPARC-V9
-processors in 64-bit environments:
-
-'-m32'
-'-m64'
- Generate code for a 32-bit or 64-bit environment. The 32-bit
- environment sets int, long and pointer to 32 bits. The 64-bit
- environment sets int to 32 bits and long and pointer to 64 bits.
-
-'-mcmodel=WHICH'
- Set the code model to one of
-
- 'medlow'
- The Medium/Low code model: 64-bit addresses, programs must be
- linked in the low 32 bits of memory. Programs can be
- statically or dynamically linked.
-
- 'medmid'
- The Medium/Middle code model: 64-bit addresses, programs must
- be linked in the low 44 bits of memory, the text and data
- segments must be less than 2GB in size and the data segment
- must be located within 2GB of the text segment.
-
- 'medany'
- The Medium/Anywhere code model: 64-bit addresses, programs may
- be linked anywhere in memory, the text and data segments must
- be less than 2GB in size and the data segment must be located
- within 2GB of the text segment.
-
- 'embmedany'
- The Medium/Anywhere code model for embedded systems: 64-bit
- addresses, the text and data segments must be less than 2GB in
- size, both starting anywhere in memory (determined at link
- time). The global register %g4 points to the base of the data
- segment. Programs are statically linked and PIC is not
- supported.
-
-'-mmemory-model=MEM-MODEL'
- Set the memory model in force on the processor to one of
-
- 'default'
- The default memory model for the processor and operating
- system.
-
- 'rmo'
- Relaxed Memory Order
-
- 'pso'
- Partial Store Order
-
- 'tso'
- Total Store Order
-
- 'sc'
- Sequential Consistency
-
- These memory models are formally defined in Appendix D of the Sparc
- V9 architecture manual, as set in the processor's 'PSTATE.MM'
- field.
-
-'-mstack-bias'
-'-mno-stack-bias'
- With '-mstack-bias', GCC assumes that the stack pointer, and frame
- pointer if present, are offset by -2047 which must be added back
- when making stack frame references. This is the default in 64-bit
- mode. Otherwise, assume no such offset is present.
-
-
-File: gcc.info, Node: SPU Options, Next: System V Options, Prev: SPARC Options, Up: Submodel Options
-
-3.17.45 SPU Options
--------------------
-
-These '-m' options are supported on the SPU:
-
-'-mwarn-reloc'
-'-merror-reloc'
-
- The loader for SPU does not handle dynamic relocations. By
- default, GCC gives an error when it generates code that requires a
- dynamic relocation. '-mno-error-reloc' disables the error,
- '-mwarn-reloc' generates a warning instead.
-
-'-msafe-dma'
-'-munsafe-dma'
-
- Instructions that initiate or test completion of DMA must not be
- reordered with respect to loads and stores of the memory that is
- being accessed. With '-munsafe-dma' you must use the 'volatile'
- keyword to protect memory accesses, but that can lead to
- inefficient code in places where the memory is known to not change.
- Rather than mark the memory as volatile, you can use '-msafe-dma'
- to tell the compiler to treat the DMA instructions as potentially
- affecting all memory.
-
-'-mbranch-hints'
-
- By default, GCC generates a branch hint instruction to avoid
- pipeline stalls for always-taken or probably-taken branches. A
- hint is not generated closer than 8 instructions away from its
- branch. There is little reason to disable them, except for
- debugging purposes, or to make an object a little bit smaller.
-
-'-msmall-mem'
-'-mlarge-mem'
-
- By default, GCC generates code assuming that addresses are never
- larger than 18 bits. With '-mlarge-mem' code is generated that
- assumes a full 32-bit address.
-
-'-mstdmain'
-
- By default, GCC links against startup code that assumes the
- SPU-style main function interface (which has an unconventional
- parameter list). With '-mstdmain', GCC links your program against
- startup code that assumes a C99-style interface to 'main',
- including a local copy of 'argv' strings.
-
-'-mfixed-range=REGISTER-RANGE'
- Generate code treating the given register range as fixed registers.
- A fixed register is one that the register allocator cannot use.
- This is useful when compiling kernel code. A register range is
- specified as two registers separated by a dash. Multiple register
- ranges can be specified separated by a comma.
-
-'-mea32'
-'-mea64'
- Compile code assuming that pointers to the PPU address space
- accessed via the '__ea' named address space qualifier are either 32
- or 64 bits wide. The default is 32 bits. As this is an
- ABI-changing option, all object code in an executable must be
- compiled with the same setting.
-
-'-maddress-space-conversion'
-'-mno-address-space-conversion'
- Allow/disallow treating the '__ea' address space as superset of the
- generic address space. This enables explicit type casts between
- '__ea' and generic pointer as well as implicit conversions of
- generic pointers to '__ea' pointers. The default is to allow
- address space pointer conversions.
-
-'-mcache-size=CACHE-SIZE'
- This option controls the version of libgcc that the compiler links
- to an executable and selects a software-managed cache for accessing
- variables in the '__ea' address space with a particular cache size.
- Possible options for CACHE-SIZE are '8', '16', '32', '64' and
- '128'. The default cache size is 64KB.
-
-'-matomic-updates'
-'-mno-atomic-updates'
- This option controls the version of libgcc that the compiler links
- to an executable and selects whether atomic updates to the
- software-managed cache of PPU-side variables are used. If you use
- atomic updates, changes to a PPU variable from SPU code using the
- '__ea' named address space qualifier do not interfere with changes
- to other PPU variables residing in the same cache line from PPU
- code. If you do not use atomic updates, such interference may
- occur; however, writing back cache lines is more efficient. The
- default behavior is to use atomic updates.
-
-'-mdual-nops'
-'-mdual-nops=N'
- By default, GCC inserts nops to increase dual issue when it expects
- it to increase performance. N can be a value from 0 to 10. A
- smaller N inserts fewer nops. 10 is the default, 0 is the same as
- '-mno-dual-nops'. Disabled with '-Os'.
-
-'-mhint-max-nops=N'
- Maximum number of nops to insert for a branch hint. A branch hint
- must be at least 8 instructions away from the branch it is
- affecting. GCC inserts up to N nops to enforce this, otherwise it
- does not generate the branch hint.
-
-'-mhint-max-distance=N'
- The encoding of the branch hint instruction limits the hint to be
- within 256 instructions of the branch it is affecting. By default,
- GCC makes sure it is within 125.
-
-'-msafe-hints'
- Work around a hardware bug that causes the SPU to stall
- indefinitely. By default, GCC inserts the 'hbrp' instruction to
- make sure this stall won't happen.
-
-
-File: gcc.info, Node: System V Options, Next: TILE-Gx Options, Prev: SPU Options, Up: Submodel Options
-
-3.17.46 Options for System V
-----------------------------
-
-These additional options are available on System V Release 4 for
-compatibility with other compilers on those systems:
-
-'-G'
- Create a shared object. It is recommended that '-symbolic' or
- '-shared' be used instead.
-
-'-Qy'
- Identify the versions of each tool used by the compiler, in a
- '.ident' assembler directive in the output.
-
-'-Qn'
- Refrain from adding '.ident' directives to the output file (this is
- the default).
-
-'-YP,DIRS'
- Search the directories DIRS, and no others, for libraries specified
- with '-l'.
-
-'-Ym,DIR'
- Look in the directory DIR to find the M4 preprocessor. The
- assembler uses this option.
-
-
-File: gcc.info, Node: TILE-Gx Options, Next: TILEPro Options, Prev: System V Options, Up: Submodel Options
-
-3.17.47 TILE-Gx Options
------------------------
-
-These '-m' options are supported on the TILE-Gx:
-
-'-mcmodel=small'
- Generate code for the small model. The distance for direct calls
- is limited to 500M in either direction. PC-relative addresses are
- 32 bits. Absolute addresses support the full address range.
-
-'-mcmodel=large'
- Generate code for the large model. There is no limitation on call
- distance, pc-relative addresses, or absolute addresses.
-
-'-mcpu=NAME'
- Selects the type of CPU to be targeted. Currently the only
- supported type is 'tilegx'.
-
-'-m32'
-'-m64'
- Generate code for a 32-bit or 64-bit environment. The 32-bit
- environment sets int, long, and pointer to 32 bits. The 64-bit
- environment sets int to 32 bits and long and pointer to 64 bits.
-
-'-mbig-endian'
-'-mlittle-endian'
- Generate code in big/little endian mode, respectively.
-
-
-File: gcc.info, Node: TILEPro Options, Next: V850 Options, Prev: TILE-Gx Options, Up: Submodel Options
-
-3.17.48 TILEPro Options
------------------------
-
-These '-m' options are supported on the TILEPro:
-
-'-mcpu=NAME'
- Selects the type of CPU to be targeted. Currently the only
- supported type is 'tilepro'.
-
-'-m32'
- Generate code for a 32-bit environment, which sets int, long, and
- pointer to 32 bits. This is the only supported behavior so the
- flag is essentially ignored.
-
-
-File: gcc.info, Node: V850 Options, Next: VAX Options, Prev: TILEPro Options, Up: Submodel Options
-
-3.17.49 V850 Options
---------------------
-
-These '-m' options are defined for V850 implementations:
-
-'-mlong-calls'
-'-mno-long-calls'
- Treat all calls as being far away (near). If calls are assumed to
- be far away, the compiler always loads the function's address into
- a register, and calls indirect through the pointer.
-
-'-mno-ep'
-'-mep'
- Do not optimize (do optimize) basic blocks that use the same index
- pointer 4 or more times to copy pointer into the 'ep' register, and
- use the shorter 'sld' and 'sst' instructions. The '-mep' option is
- on by default if you optimize.
-
-'-mno-prolog-function'
-'-mprolog-function'
- Do not use (do use) external functions to save and restore
- registers at the prologue and epilogue of a function. The external
- functions are slower, but use less code space if more than one
- function saves the same number of registers. The
- '-mprolog-function' option is on by default if you optimize.
-
-'-mspace'
- Try to make the code as small as possible. At present, this just
- turns on the '-mep' and '-mprolog-function' options.
-
-'-mtda=N'
- Put static or global variables whose size is N bytes or less into
- the tiny data area that register 'ep' points to. The tiny data
- area can hold up to 256 bytes in total (128 bytes for byte
- references).
-
-'-msda=N'
- Put static or global variables whose size is N bytes or less into
- the small data area that register 'gp' points to. The small data
- area can hold up to 64 kilobytes.
-
-'-mzda=N'
- Put static or global variables whose size is N bytes or less into
- the first 32 kilobytes of memory.
-
-'-mv850'
- Specify that the target processor is the V850.
-
-'-mv850e3v5'
- Specify that the target processor is the V850E3V5. The
- preprocessor constant '__v850e3v5__' is defined if this option is
- used.
-
-'-mv850e2v4'
- Specify that the target processor is the V850E3V5. This is an
- alias for the '-mv850e3v5' option.
-
-'-mv850e2v3'
- Specify that the target processor is the V850E2V3. The
- preprocessor constant '__v850e2v3__' is defined if this option is
- used.
-
-'-mv850e2'
- Specify that the target processor is the V850E2. The preprocessor
- constant '__v850e2__' is defined if this option is used.
-
-'-mv850e1'
- Specify that the target processor is the V850E1. The preprocessor
- constants '__v850e1__' and '__v850e__' are defined if this option
- is used.
-
-'-mv850es'
- Specify that the target processor is the V850ES. This is an alias
- for the '-mv850e1' option.
-
-'-mv850e'
- Specify that the target processor is the V850E. The preprocessor
- constant '__v850e__' is defined if this option is used.
-
- If neither '-mv850' nor '-mv850e' nor '-mv850e1' nor '-mv850e2' nor
- '-mv850e2v3' nor '-mv850e3v5' are defined then a default target
- processor is chosen and the relevant '__v850*__' preprocessor
- constant is defined.
-
- The preprocessor constants '__v850' and '__v851__' are always
- defined, regardless of which processor variant is the target.
-
-'-mdisable-callt'
-'-mno-disable-callt'
- This option suppresses generation of the 'CALLT' instruction for
- the v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the
- v850 architecture.
-
- This option is enabled by default when the RH850 ABI is in use (see
- '-mrh850-abi'), and disabled by default when the GCC ABI is in use.
- If 'CALLT' instructions are being generated then the C preprocessor
- symbol '__V850_CALLT__' will be defined.
-
-'-mrelax'
-'-mno-relax'
- Pass on (or do not pass on) the '-mrelax' command line option to
- the assembler.
-
-'-mlong-jumps'
-'-mno-long-jumps'
- Disable (or re-enable) the generation of PC-relative jump
- instructions.
-
-'-msoft-float'
-'-mhard-float'
- Disable (or re-enable) the generation of hardware floating point
- instructions. This option is only significant when the target
- architecture is 'V850E2V3' or higher. If hardware floating point
- instructions are being generated then the C preprocessor symbol
- '__FPU_OK__' will be defined, otherwise the symbol '__NO_FPU__'
- will be defined.
-
-'-mloop'
- Enables the use of the e3v5 LOOP instruction. The use of this
- instruction is not enabled by default when the e3v5 architecture is
- selected because its use is still experimental.
-
-'-mrh850-abi'
-'-mghs'
- Enables support for the RH850 version of the V850 ABI. This is the
- default. With this version of the ABI the following rules apply:
-
- * Integer sized structures and unions are returned via a memory
- pointer rather than a register.
-
- * Large structures and unions (more than 8 bytes in size) are
- passed by value.
-
- * Functions are aligned to 16-bit boundaries.
-
- * The '-m8byte-align' command line option is supported.
-
- * The '-mdisable-callt' command line option is enabled by
- default. The '-mno-disable-callt' command line option is not
- supported.
-
- When this version of the ABI is enabled the C preprocessor symbol
- '__V850_RH850_ABI__' is defined.
-
-'-mgcc-abi'
- Enables support for the old GCC version of the V850 ABI. With this
- version of the ABI the following rules apply:
-
- * Integer sized structures and unions are returned in register
- 'r10'.
-
- * Large structures and unions (more than 8 bytes in size) are
- passed by reference.
-
- * Functions are aligned to 32-bit boundaries, unless optimizing
- for size.
-
- * The '-m8byte-align' command line option is not supported.
-
- * The '-mdisable-callt' command line option is supported but not
- enabled by default.
-
- When this version of the ABI is enabled the C preprocessor symbol
- '__V850_GCC_ABI__' is defined.
-
-'-m8byte-align'
-'-mno-8byte-align'
- Enables support for 'doubles' and 'long long' types to be aligned
- on 8-byte boundaries. The default is to restrict the alignment of
- all objects to at most 4-bytes. When '-m8byte-align' is in effect
- the C preprocessor symbol '__V850_8BYTE_ALIGN__' will be defined.
-
-'-mbig-switch'
- Generate code suitable for big switch tables. Use this option only
- if the assembler/linker complain about out of range branches within
- a switch table.
-
-'-mapp-regs'
- This option causes r2 and r5 to be used in the code generated by
- the compiler. This setting is the default.
-
-'-mno-app-regs'
- This option causes r2 and r5 to be treated as fixed registers.
-
-
-File: gcc.info, Node: VAX Options, Next: VMS Options, Prev: V850 Options, Up: Submodel Options
-
-3.17.50 VAX Options
--------------------
-
-These '-m' options are defined for the VAX:
-
-'-munix'
- Do not output certain jump instructions ('aobleq' and so on) that
- the Unix assembler for the VAX cannot handle across long ranges.
-
-'-mgnu'
- Do output those jump instructions, on the assumption that the GNU
- assembler is being used.
-
-'-mg'
- Output code for G-format floating-point numbers instead of
- D-format.
-
-
-File: gcc.info, Node: VMS Options, Next: VxWorks Options, Prev: VAX Options, Up: Submodel Options
-
-3.17.51 VMS Options
--------------------
-
-These '-m' options are defined for the VMS implementations:
-
-'-mvms-return-codes'
- Return VMS condition codes from 'main'. The default is to return
- POSIX-style condition (e.g. error) codes.
-
-'-mdebug-main=PREFIX'
- Flag the first routine whose name starts with PREFIX as the main
- routine for the debugger.
-
-'-mmalloc64'
- Default to 64-bit memory allocation routines.
-
-'-mpointer-size=SIZE'
- Set the default size of pointers. Possible options for SIZE are
- '32' or 'short' for 32 bit pointers, '64' or 'long' for 64 bit
- pointers, and 'no' for supporting only 32 bit pointers. The later
- option disables 'pragma pointer_size'.
-
-
-File: gcc.info, Node: VxWorks Options, Next: x86-64 Options, Prev: VMS Options, Up: Submodel Options
-
-3.17.52 VxWorks Options
------------------------
-
-The options in this section are defined for all VxWorks targets.
-Options specific to the target hardware are listed with the other
-options for that target.
-
-'-mrtp'
- GCC can generate code for both VxWorks kernels and real time
- processes (RTPs). This option switches from the former to the
- latter. It also defines the preprocessor macro '__RTP__'.
-
-'-non-static'
- Link an RTP executable against shared libraries rather than static
- libraries. The options '-static' and '-shared' can also be used
- for RTPs (*note Link Options::); '-static' is the default.
-
-'-Bstatic'
-'-Bdynamic'
- These options are passed down to the linker. They are defined for
- compatibility with Diab.
-
-'-Xbind-lazy'
- Enable lazy binding of function calls. This option is equivalent
- to '-Wl,-z,now' and is defined for compatibility with Diab.
-
-'-Xbind-now'
- Disable lazy binding of function calls. This option is the default
- and is defined for compatibility with Diab.
-
-
-File: gcc.info, Node: x86-64 Options, Next: Xstormy16 Options, Prev: VxWorks Options, Up: Submodel Options
-
-3.17.53 x86-64 Options
-----------------------
-
-These are listed under *Note i386 and x86-64 Options::.
-
-
-File: gcc.info, Node: Xstormy16 Options, Next: Xtensa Options, Prev: x86-64 Options, Up: Submodel Options
-
-3.17.54 Xstormy16 Options
--------------------------
-
-These options are defined for Xstormy16:
-
-'-msim'
- Choose startup files and linker script suitable for the simulator.
-
-
-File: gcc.info, Node: Xtensa Options, Next: zSeries Options, Prev: Xstormy16 Options, Up: Submodel Options
-
-3.17.55 Xtensa Options
-----------------------
-
-These options are supported for Xtensa targets:
-
-'-mconst16'
-'-mno-const16'
- Enable or disable use of 'CONST16' instructions for loading
- constant values. The 'CONST16' instruction is currently not a
- standard option from Tensilica. When enabled, 'CONST16'
- instructions are always used in place of the standard 'L32R'
- instructions. The use of 'CONST16' is enabled by default only if
- the 'L32R' instruction is not available.
-
-'-mfused-madd'
-'-mno-fused-madd'
- Enable or disable use of fused multiply/add and multiply/subtract
- instructions in the floating-point option. This has no effect if
- the floating-point option is not also enabled. Disabling fused
- multiply/add and multiply/subtract instructions forces the compiler
- to use separate instructions for the multiply and add/subtract
- operations. This may be desirable in some cases where strict IEEE
- 754-compliant results are required: the fused multiply add/subtract
- instructions do not round the intermediate result, thereby
- producing results with _more_ bits of precision than specified by
- the IEEE standard. Disabling fused multiply add/subtract
- instructions also ensures that the program output is not sensitive
- to the compiler's ability to combine multiply and add/subtract
- operations.
-
-'-mserialize-volatile'
-'-mno-serialize-volatile'
- When this option is enabled, GCC inserts 'MEMW' instructions before
- 'volatile' memory references to guarantee sequential consistency.
- The default is '-mserialize-volatile'. Use
- '-mno-serialize-volatile' to omit the 'MEMW' instructions.
-
-'-mforce-no-pic'
- For targets, like GNU/Linux, where all user-mode Xtensa code must
- be position-independent code (PIC), this option disables PIC for
- compiling kernel code.
-
-'-mtext-section-literals'
-'-mno-text-section-literals'
- Control the treatment of literal pools. The default is
- '-mno-text-section-literals', which places literals in a separate
- section in the output file. This allows the literal pool to be
- placed in a data RAM/ROM, and it also allows the linker to combine
- literal pools from separate object files to remove redundant
- literals and improve code size. With '-mtext-section-literals',
- the literals are interspersed in the text section in order to keep
- them as close as possible to their references. This may be
- necessary for large assembly files.
-
-'-mtarget-align'
-'-mno-target-align'
- When this option is enabled, GCC instructs the assembler to
- automatically align instructions to reduce branch penalties at the
- expense of some code density. The assembler attempts to widen
- density instructions to align branch targets and the instructions
- following call instructions. If there are not enough preceding
- safe density instructions to align a target, no widening is
- performed. The default is '-mtarget-align'. These options do not
- affect the treatment of auto-aligned instructions like 'LOOP',
- which the assembler always aligns, either by widening density
- instructions or by inserting NOP instructions.
-
-'-mlongcalls'
-'-mno-longcalls'
- When this option is enabled, GCC instructs the assembler to
- translate direct calls to indirect calls unless it can determine
- that the target of a direct call is in the range allowed by the
- call instruction. This translation typically occurs for calls to
- functions in other source files. Specifically, the assembler
- translates a direct 'CALL' instruction into an 'L32R' followed by a
- 'CALLX' instruction. The default is '-mno-longcalls'. This option
- should be used in programs where the call target can potentially be
- out of range. This option is implemented in the assembler, not the
- compiler, so the assembly code generated by GCC still shows direct
- call instructions--look at the disassembled object code to see the
- actual instructions. Note that the assembler uses an indirect call
- for every cross-file call, not just those that really are out of
- range.
-
-
-File: gcc.info, Node: zSeries Options, Prev: Xtensa Options, Up: Submodel Options
-
-3.17.56 zSeries Options
------------------------
-
-These are listed under *Note S/390 and zSeries Options::.
-
-
-File: gcc.info, Node: Code Gen Options, Next: Environment Variables, Prev: Submodel Options, Up: Invoking GCC
-
-3.18 Options for Code Generation Conventions
-============================================
-
-These machine-independent options control the interface conventions used
-in code generation.
-
- Most of them have both positive and negative forms; the negative form
-of '-ffoo' is '-fno-foo'. In the table below, only one of the forms is
-listed--the one that is not the default. You can figure out the other
-form by either removing 'no-' or adding it.
-
-'-fbounds-check'
- For front ends that support it, generate additional code to check
- that indices used to access arrays are within the declared range.
- This is currently only supported by the Java and Fortran front
- ends, where this option defaults to true and false respectively.
-
-'-fstack-reuse=REUSE-LEVEL'
- This option controls stack space reuse for user declared local/auto
- variables and compiler generated temporaries. REUSE_LEVEL can be
- 'all', 'named_vars', or 'none'. 'all' enables stack reuse for all
- local variables and temporaries, 'named_vars' enables the reuse
- only for user defined local variables with names, and 'none'
- disables stack reuse completely. The default value is 'all'. The
- option is needed when the program extends the lifetime of a scoped
- local variable or a compiler generated temporary beyond the end
- point defined by the language. When a lifetime of a variable ends,
- and if the variable lives in memory, the optimizing compiler has
- the freedom to reuse its stack space with other temporaries or
- scoped local variables whose live range does not overlap with it.
- Legacy code extending local lifetime will likely to break with the
- stack reuse optimization.
-
- For example,
-
- int *p;
- {
- int local1;
-
- p = &local1;
- local1 = 10;
- ....
- }
- {
- int local2;
- local2 = 20;
- ...
- }
-
- if (*p == 10) // out of scope use of local1
- {
-
- }
-
- Another example:
-
- struct A
- {
- A(int k) : i(k), j(k) { }
- int i;
- int j;
- };
-
- A *ap;
-
- void foo(const A& ar)
- {
- ap = &ar;
- }
-
- void bar()
- {
- foo(A(10)); // temp object's lifetime ends when foo returns
-
- {
- A a(20);
- ....
- }
- ap->i+= 10; // ap references out of scope temp whose space
- // is reused with a. What is the value of ap->i?
- }
-
- The lifetime of a compiler generated temporary is well defined by
- the C++ standard. When a lifetime of a temporary ends, and if the
- temporary lives in memory, the optimizing compiler has the freedom
- to reuse its stack space with other temporaries or scoped local
- variables whose live range does not overlap with it. However some
- of the legacy code relies on the behavior of older compilers in
- which temporaries' stack space is not reused, the aggressive stack
- reuse can lead to runtime errors. This option is used to control
- the temporary stack reuse optimization.
-
-'-ftrapv'
- This option generates traps for signed overflow on addition,
- subtraction, multiplication operations.
-
-'-fwrapv'
- This option instructs the compiler to assume that signed arithmetic
- overflow of addition, subtraction and multiplication wraps around
- using twos-complement representation. This flag enables some
- optimizations and disables others. This option is enabled by
- default for the Java front end, as required by the Java language
- specification.
-
-'-fexceptions'
- Enable exception handling. Generates extra code needed to
- propagate exceptions. For some targets, this implies GCC generates
- frame unwind information for all functions, which can produce
- significant data size overhead, although it does not affect
- execution. If you do not specify this option, GCC enables it by
- default for languages like C++ that normally require exception
- handling, and disables it for languages like C that do not normally
- require it. However, you may need to enable this option when
- compiling C code that needs to interoperate properly with exception
- handlers written in C++. You may also wish to disable this option
- if you are compiling older C++ programs that don't use exception
- handling.
-
-'-fnon-call-exceptions'
- Generate code that allows trapping instructions to throw
- exceptions. Note that this requires platform-specific runtime
- support that does not exist everywhere. Moreover, it only allows
- _trapping_ instructions to throw exceptions, i.e. memory references
- or floating-point instructions. It does not allow exceptions to be
- thrown from arbitrary signal handlers such as 'SIGALRM'.
-
-'-fdelete-dead-exceptions'
- Consider that instructions that may throw exceptions but don't
- otherwise contribute to the execution of the program can be
- optimized away. This option is enabled by default for the Ada
- front end, as permitted by the Ada language specification.
- Optimization passes that cause dead exceptions to be removed are
- enabled independently at different optimization levels.
-
-'-funwind-tables'
- Similar to '-fexceptions', except that it just generates any needed
- static data, but does not affect the generated code in any other
- way. You normally do not need to enable this option; instead, a
- language processor that needs this handling enables it on your
- behalf.
-
-'-fasynchronous-unwind-tables'
- Generate unwind table in DWARF 2 format, if supported by target
- machine. The table is exact at each instruction boundary, so it
- can be used for stack unwinding from asynchronous events (such as
- debugger or garbage collector).
-
-'-fno-gnu-unique'
- On systems with recent GNU assembler and C library, the C++
- compiler uses the 'STB_GNU_UNIQUE' binding to make sure that
- definitions of template static data members and static local
- variables in inline functions are unique even in the presence of
- 'RTLD_LOCAL'; this is necessary to avoid problems with a library
- used by two different 'RTLD_LOCAL' plugins depending on a
- definition in one of them and therefore disagreeing with the other
- one about the binding of the symbol. But this causes 'dlclose' to
- be ignored for affected DSOs; if your program relies on
- reinitialization of a DSO via 'dlclose' and 'dlopen', you can use
- '-fno-gnu-unique'.
-
-'-fpcc-struct-return'
- Return "short" 'struct' and 'union' values in memory like longer
- ones, rather than in registers. This convention is less efficient,
- but it has the advantage of allowing intercallability between
- GCC-compiled files and files compiled with other compilers,
- particularly the Portable C Compiler (pcc).
-
- The precise convention for returning structures in memory depends
- on the target configuration macros.
-
- Short structures and unions are those whose size and alignment
- match that of some integer type.
-
- *Warning:* code compiled with the '-fpcc-struct-return' switch is
- not binary compatible with code compiled with the
- '-freg-struct-return' switch. Use it to conform to a non-default
- application binary interface.
-
-'-freg-struct-return'
- Return 'struct' and 'union' values in registers when possible.
- This is more efficient for small structures than
- '-fpcc-struct-return'.
-
- If you specify neither '-fpcc-struct-return' nor
- '-freg-struct-return', GCC defaults to whichever convention is
- standard for the target. If there is no standard convention, GCC
- defaults to '-fpcc-struct-return', except on targets where GCC is
- the principal compiler. In those cases, we can choose the
- standard, and we chose the more efficient register return
- alternative.
-
- *Warning:* code compiled with the '-freg-struct-return' switch is
- not binary compatible with code compiled with the
- '-fpcc-struct-return' switch. Use it to conform to a non-default
- application binary interface.
-
-'-fshort-enums'
- Allocate to an 'enum' type only as many bytes as it needs for the
- declared range of possible values. Specifically, the 'enum' type
- is equivalent to the smallest integer type that has enough room.
-
- *Warning:* the '-fshort-enums' switch causes GCC to generate code
- that is not binary compatible with code generated without that
- switch. Use it to conform to a non-default application binary
- interface.
-
-'-fshort-double'
- Use the same size for 'double' as for 'float'.
-
- *Warning:* the '-fshort-double' switch causes GCC to generate code
- that is not binary compatible with code generated without that
- switch. Use it to conform to a non-default application binary
- interface.
-
-'-fshort-wchar'
- Override the underlying type for 'wchar_t' to be 'short unsigned
- int' instead of the default for the target. This option is useful
- for building programs to run under WINE.
-
- *Warning:* the '-fshort-wchar' switch causes GCC to generate code
- that is not binary compatible with code generated without that
- switch. Use it to conform to a non-default application binary
- interface.
-
-'-fno-common'
- In C code, controls the placement of uninitialized global
- variables. Unix C compilers have traditionally permitted multiple
- definitions of such variables in different compilation units by
- placing the variables in a common block. This is the behavior
- specified by '-fcommon', and is the default for GCC on most
- targets. On the other hand, this behavior is not required by ISO
- C, and on some targets may carry a speed or code size penalty on
- variable references. The '-fno-common' option specifies that the
- compiler should place uninitialized global variables in the data
- section of the object file, rather than generating them as common
- blocks. This has the effect that if the same variable is declared
- (without 'extern') in two different compilations, you get a
- multiple-definition error when you link them. In this case, you
- must compile with '-fcommon' instead. Compiling with '-fno-common'
- is useful on targets for which it provides better performance, or
- if you wish to verify that the program will work on other systems
- that always treat uninitialized variable declarations this way.
-
-'-fno-ident'
- Ignore the '#ident' directive.
-
-'-finhibit-size-directive'
- Don't output a '.size' assembler directive, or anything else that
- would cause trouble if the function is split in the middle, and the
- two halves are placed at locations far apart in memory. This
- option is used when compiling 'crtstuff.c'; you should not need to
- use it for anything else.
-
-'-fverbose-asm'
- Put extra commentary information in the generated assembly code to
- make it more readable. This option is generally only of use to
- those who actually need to read the generated assembly code
- (perhaps while debugging the compiler itself).
-
- '-fno-verbose-asm', the default, causes the extra information to be
- omitted and is useful when comparing two assembler files.
-
-'-frecord-gcc-switches'
- This switch causes the command line used to invoke the compiler to
- be recorded into the object file that is being created. This
- switch is only implemented on some targets and the exact format of
- the recording is target and binary file format dependent, but it
- usually takes the form of a section containing ASCII text. This
- switch is related to the '-fverbose-asm' switch, but that switch
- only records information in the assembler output file as comments,
- so it never reaches the object file. See also
- '-grecord-gcc-switches' for another way of storing compiler options
- into the object file.
-
-'-fpic'
- Generate position-independent code (PIC) suitable for use in a
- shared library, if supported for the target machine. Such code
- accesses all constant addresses through a global offset table
- (GOT). The dynamic loader resolves the GOT entries when the
- program starts (the dynamic loader is not part of GCC; it is part
- of the operating system). If the GOT size for the linked
- executable exceeds a machine-specific maximum size, you get an
- error message from the linker indicating that '-fpic' does not
- work; in that case, recompile with '-fPIC' instead. (These
- maximums are 8k on the SPARC and 32k on the m68k and RS/6000. The
- 386 has no such limit.)
-
- Position-independent code requires special support, and therefore
- works only on certain machines. For the 386, GCC supports PIC for
- System V but not for the Sun 386i. Code generated for the IBM
- RS/6000 is always position-independent.
-
- When this flag is set, the macros '__pic__' and '__PIC__' are
- defined to 1.
-
-'-fPIC'
- If supported for the target machine, emit position-independent
- code, suitable for dynamic linking and avoiding any limit on the
- size of the global offset table. This option makes a difference on
- the m68k, PowerPC and SPARC.
-
- Position-independent code requires special support, and therefore
- works only on certain machines.
-
- When this flag is set, the macros '__pic__' and '__PIC__' are
- defined to 2.
-
-'-fpie'
-'-fPIE'
- These options are similar to '-fpic' and '-fPIC', but generated
- position independent code can be only linked into executables.
- Usually these options are used when '-pie' GCC option is used
- during linking.
-
- '-fpie' and '-fPIE' both define the macros '__pie__' and '__PIE__'.
- The macros have the value 1 for '-fpie' and 2 for '-fPIE'.
-
-'-fno-jump-tables'
- Do not use jump tables for switch statements even where it would be
- more efficient than other code generation strategies. This option
- is of use in conjunction with '-fpic' or '-fPIC' for building code
- that forms part of a dynamic linker and cannot reference the
- address of a jump table. On some targets, jump tables do not
- require a GOT and this option is not needed.
-
-'-ffixed-REG'
- Treat the register named REG as a fixed register; generated code
- should never refer to it (except perhaps as a stack pointer, frame
- pointer or in some other fixed role).
-
- REG must be the name of a register. The register names accepted
- are machine-specific and are defined in the 'REGISTER_NAMES' macro
- in the machine description macro file.
-
- This flag does not have a negative form, because it specifies a
- three-way choice.
-
-'-fcall-used-REG'
- Treat the register named REG as an allocable register that is
- clobbered by function calls. It may be allocated for temporaries
- or variables that do not live across a call. Functions compiled
- this way do not save and restore the register REG.
-
- It is an error to use this flag with the frame pointer or stack
- pointer. Use of this flag for other registers that have fixed
- pervasive roles in the machine's execution model produces
- disastrous results.
-
- This flag does not have a negative form, because it specifies a
- three-way choice.
-
-'-fcall-saved-REG'
- Treat the register named REG as an allocable register saved by
- functions. It may be allocated even for temporaries or variables
- that live across a call. Functions compiled this way save and
- restore the register REG if they use it.
-
- It is an error to use this flag with the frame pointer or stack
- pointer. Use of this flag for other registers that have fixed
- pervasive roles in the machine's execution model produces
- disastrous results.
-
- A different sort of disaster results from the use of this flag for
- a register in which function values may be returned.
-
- This flag does not have a negative form, because it specifies a
- three-way choice.
-
-'-fpack-struct[=N]'
- Without a value specified, pack all structure members together
- without holes. When a value is specified (which must be a small
- power of two), pack structure members according to this value,
- representing the maximum alignment (that is, objects with default
- alignment requirements larger than this are output potentially
- unaligned at the next fitting location.
-
- *Warning:* the '-fpack-struct' switch causes GCC to generate code
- that is not binary compatible with code generated without that
- switch. Additionally, it makes the code suboptimal. Use it to
- conform to a non-default application binary interface.
-
-'-finstrument-functions'
- Generate instrumentation calls for entry and exit to functions.
- Just after function entry and just before function exit, the
- following profiling functions are called with the address of the
- current function and its call site. (On some platforms,
- '__builtin_return_address' does not work beyond the current
- function, so the call site information may not be available to the
- profiling functions otherwise.)
-
- void __cyg_profile_func_enter (void *this_fn,
- void *call_site);
- void __cyg_profile_func_exit (void *this_fn,
- void *call_site);
-
- The first argument is the address of the start of the current
- function, which may be looked up exactly in the symbol table.
-
- This instrumentation is also done for functions expanded inline in
- other functions. The profiling calls indicate where, conceptually,
- the inline function is entered and exited. This means that
- addressable versions of such functions must be available. If all
- your uses of a function are expanded inline, this may mean an
- additional expansion of code size. If you use 'extern inline' in
- your C code, an addressable version of such functions must be
- provided. (This is normally the case anyway, but if you get lucky
- and the optimizer always expands the functions inline, you might
- have gotten away without providing static copies.)
-
- A function may be given the attribute 'no_instrument_function', in
- which case this instrumentation is not done. This can be used, for
- example, for the profiling functions listed above, high-priority
- interrupt routines, and any functions from which the profiling
- functions cannot safely be called (perhaps signal handlers, if the
- profiling routines generate output or allocate memory).
-
-'-finstrument-functions-exclude-file-list=FILE,FILE,...'
-
- Set the list of functions that are excluded from instrumentation
- (see the description of '-finstrument-functions'). If the file
- that contains a function definition matches with one of FILE, then
- that function is not instrumented. The match is done on
- substrings: if the FILE parameter is a substring of the file name,
- it is considered to be a match.
-
- For example:
-
- -finstrument-functions-exclude-file-list=/bits/stl,include/sys
-
- excludes any inline function defined in files whose pathnames
- contain '/bits/stl' or 'include/sys'.
-
- If, for some reason, you want to include letter '','' in one of
- SYM, write ''\,''. For example,
- '-finstrument-functions-exclude-file-list='\,\,tmp'' (note the
- single quote surrounding the option).
-
-'-finstrument-functions-exclude-function-list=SYM,SYM,...'
-
- This is similar to '-finstrument-functions-exclude-file-list', but
- this option sets the list of function names to be excluded from
- instrumentation. The function name to be matched is its
- user-visible name, such as 'vector<int> blah(const vector<int> &)',
- not the internal mangled name (e.g., '_Z4blahRSt6vectorIiSaIiEE').
- The match is done on substrings: if the SYM parameter is a
- substring of the function name, it is considered to be a match.
- For C99 and C++ extended identifiers, the function name must be
- given in UTF-8, not using universal character names.
-
-'-fstack-check'
- Generate code to verify that you do not go beyond the boundary of
- the stack. You should specify this flag if you are running in an
- environment with multiple threads, but you only rarely need to
- specify it in a single-threaded environment since stack overflow is
- automatically detected on nearly all systems if there is only one
- stack.
-
- Note that this switch does not actually cause checking to be done;
- the operating system or the language runtime must do that. The
- switch causes generation of code to ensure that they see the stack
- being extended.
-
- You can additionally specify a string parameter: 'no' means no
- checking, 'generic' means force the use of old-style checking,
- 'specific' means use the best checking method and is equivalent to
- bare '-fstack-check'.
-
- Old-style checking is a generic mechanism that requires no specific
- target support in the compiler but comes with the following
- drawbacks:
-
- 1. Modified allocation strategy for large objects: they are
- always allocated dynamically if their size exceeds a fixed
- threshold.
-
- 2. Fixed limit on the size of the static frame of functions: when
- it is topped by a particular function, stack checking is not
- reliable and a warning is issued by the compiler.
-
- 3. Inefficiency: because of both the modified allocation strategy
- and the generic implementation, code performance is hampered.
-
- Note that old-style stack checking is also the fallback method for
- 'specific' if no target support has been added in the compiler.
-
-'-fstack-limit-register=REG'
-'-fstack-limit-symbol=SYM'
-'-fno-stack-limit'
- Generate code to ensure that the stack does not grow beyond a
- certain value, either the value of a register or the address of a
- symbol. If a larger stack is required, a signal is raised at run
- time. For most targets, the signal is raised before the stack
- overruns the boundary, so it is possible to catch the signal
- without taking special precautions.
-
- For instance, if the stack starts at absolute address '0x80000000'
- and grows downwards, you can use the flags
- '-fstack-limit-symbol=__stack_limit' and
- '-Wl,--defsym,__stack_limit=0x7ffe0000' to enforce a stack limit of
- 128KB. Note that this may only work with the GNU linker.
-
-'-fsplit-stack'
- Generate code to automatically split the stack before it overflows.
- The resulting program has a discontiguous stack which can only
- overflow if the program is unable to allocate any more memory.
- This is most useful when running threaded programs, as it is no
- longer necessary to calculate a good stack size to use for each
- thread. This is currently only implemented for the i386 and x86_64
- back ends running GNU/Linux.
-
- When code compiled with '-fsplit-stack' calls code compiled without
- '-fsplit-stack', there may not be much stack space available for
- the latter code to run. If compiling all code, including library
- code, with '-fsplit-stack' is not an option, then the linker can
- fix up these calls so that the code compiled without
- '-fsplit-stack' always has a large stack. Support for this is
- implemented in the gold linker in GNU binutils release 2.21 and
- later.
-
-'-fleading-underscore'
- This option and its counterpart, '-fno-leading-underscore',
- forcibly change the way C symbols are represented in the object
- file. One use is to help link with legacy assembly code.
-
- *Warning:* the '-fleading-underscore' switch causes GCC to generate
- code that is not binary compatible with code generated without that
- switch. Use it to conform to a non-default application binary
- interface. Not all targets provide complete support for this
- switch.
-
-'-ftls-model=MODEL'
- Alter the thread-local storage model to be used (*note
- Thread-Local::). The MODEL argument should be one of
- 'global-dynamic', 'local-dynamic', 'initial-exec' or 'local-exec'.
- Note that the choice is subject to optimization: the compiler may
- use a more efficient model for symbols not visible outside of the
- translation unit, or if '-fpic' is not given on the command line.
-
- The default without '-fpic' is 'initial-exec'; with '-fpic' the
- default is 'global-dynamic'.
-
-'-fvisibility=DEFAULT|INTERNAL|HIDDEN|PROTECTED'
- Set the default ELF image symbol visibility to the specified
- option--all symbols are marked with this unless overridden within
- the code. Using this feature can very substantially improve
- linking and load times of shared object libraries, produce more
- optimized code, provide near-perfect API export and prevent symbol
- clashes. It is *strongly* recommended that you use this in any
- shared objects you distribute.
-
- Despite the nomenclature, 'default' always means public; i.e.,
- available to be linked against from outside the shared object.
- 'protected' and 'internal' are pretty useless in real-world usage
- so the only other commonly used option is 'hidden'. The default if
- '-fvisibility' isn't specified is 'default', i.e., make every
- symbol public--this causes the same behavior as previous versions
- of GCC.
-
- A good explanation of the benefits offered by ensuring ELF symbols
- have the correct visibility is given by "How To Write Shared
- Libraries" by Ulrich Drepper (which can be found at
- <http://people.redhat.com/~drepper/>)--however a superior solution
- made possible by this option to marking things hidden when the
- default is public is to make the default hidden and mark things
- public. This is the norm with DLLs on Windows and with
- '-fvisibility=hidden' and '__attribute__ ((visibility("default")))'
- instead of '__declspec(dllexport)' you get almost identical
- semantics with identical syntax. This is a great boon to those
- working with cross-platform projects.
-
- For those adding visibility support to existing code, you may find
- '#pragma GCC visibility' of use. This works by you enclosing the
- declarations you wish to set visibility for with (for example)
- '#pragma GCC visibility push(hidden)' and '#pragma GCC visibility
- pop'. Bear in mind that symbol visibility should be viewed *as
- part of the API interface contract* and thus all new code should
- always specify visibility when it is not the default; i.e.,
- declarations only for use within the local DSO should *always* be
- marked explicitly as hidden as so to avoid PLT indirection
- overheads--making this abundantly clear also aids readability and
- self-documentation of the code. Note that due to ISO C++
- specification requirements, 'operator new' and 'operator delete'
- must always be of default visibility.
-
- Be aware that headers from outside your project, in particular
- system headers and headers from any other library you use, may not
- be expecting to be compiled with visibility other than the default.
- You may need to explicitly say '#pragma GCC visibility
- push(default)' before including any such headers.
-
- 'extern' declarations are not affected by '-fvisibility', so a lot
- of code can be recompiled with '-fvisibility=hidden' with no
- modifications. However, this means that calls to 'extern'
- functions with no explicit visibility use the PLT, so it is more
- effective to use '__attribute ((visibility))' and/or '#pragma GCC
- visibility' to tell the compiler which 'extern' declarations should
- be treated as hidden.
-
- Note that '-fvisibility' does affect C++ vague linkage entities.
- This means that, for instance, an exception class that is be thrown
- between DSOs must be explicitly marked with default visibility so
- that the 'type_info' nodes are unified between the DSOs.
-
- An overview of these techniques, their benefits and how to use them
- is at <http://gcc.gnu.org/wiki/Visibility>.
-
-'-fstrict-volatile-bitfields'
- This option should be used if accesses to volatile bit-fields (or
- other structure fields, although the compiler usually honors those
- types anyway) should use a single access of the width of the
- field's type, aligned to a natural alignment if possible. For
- example, targets with memory-mapped peripheral registers might
- require all such accesses to be 16 bits wide; with this flag you
- can declare all peripheral bit-fields as 'unsigned short' (assuming
- short is 16 bits on these targets) to force GCC to use 16-bit
- accesses instead of, perhaps, a more efficient 32-bit access.
-
- If this option is disabled, the compiler uses the most efficient
- instruction. In the previous example, that might be a 32-bit load
- instruction, even though that accesses bytes that do not contain
- any portion of the bit-field, or memory-mapped registers unrelated
- to the one being updated.
-
- In some cases, such as when the 'packed' attribute is applied to a
- structure field, it may not be possible to access the field with a
- single read or write that is correctly aligned for the target
- machine. In this case GCC falls back to generating multiple
- accesses rather than code that will fault or truncate the result at
- run time.
-
- Note: Due to restrictions of the C/C++11 memory model, write
- accesses are not allowed to touch non bit-field members. It is
- therefore recommended to define all bits of the field's type as
- bit-field members.
-
- The default value of this option is determined by the application
- binary interface for the target processor.
-
-'-fsync-libcalls'
- This option controls whether any out-of-line instance of the
- '__sync' family of functions may be used to implement the C++11
- '__atomic' family of functions.
-
- The default value of this option is enabled, thus the only useful
- form of the option is '-fno-sync-libcalls'. This option is used in
- the implementation of the 'libatomic' runtime library.
-
-
-File: gcc.info, Node: Environment Variables, Next: Precompiled Headers, Prev: Code Gen Options, Up: Invoking GCC
-
-3.19 Environment Variables Affecting GCC
-========================================
-
-This section describes several environment variables that affect how GCC
-operates. Some of them work by specifying directories or prefixes to
-use when searching for various kinds of files. Some are used to specify
-other aspects of the compilation environment.
-
- Note that you can also specify places to search using options such as
-'-B', '-I' and '-L' (*note Directory Options::). These take precedence
-over places specified using environment variables, which in turn take
-precedence over those specified by the configuration of GCC. *Note
-Controlling the Compilation Driver 'gcc': (gccint)Driver.
-
-'LANG'
-'LC_CTYPE'
-'LC_MESSAGES'
-'LC_ALL'
- These environment variables control the way that GCC uses
- localization information which allows GCC to work with different
- national conventions. GCC inspects the locale categories
- 'LC_CTYPE' and 'LC_MESSAGES' if it has been configured to do so.
- These locale categories can be set to any value supported by your
- installation. A typical value is 'en_GB.UTF-8' for English in the
- United Kingdom encoded in UTF-8.
-
- The 'LC_CTYPE' environment variable specifies character
- classification. GCC uses it to determine the character boundaries
- in a string; this is needed for some multibyte encodings that
- contain quote and escape characters that are otherwise interpreted
- as a string end or escape.
-
- The 'LC_MESSAGES' environment variable specifies the language to
- use in diagnostic messages.
-
- If the 'LC_ALL' environment variable is set, it overrides the value
- of 'LC_CTYPE' and 'LC_MESSAGES'; otherwise, 'LC_CTYPE' and
- 'LC_MESSAGES' default to the value of the 'LANG' environment
- variable. If none of these variables are set, GCC defaults to
- traditional C English behavior.
-
-'TMPDIR'
- If 'TMPDIR' is set, it specifies the directory to use for temporary
- files. GCC uses temporary files to hold the output of one stage of
- compilation which is to be used as input to the next stage: for
- example, the output of the preprocessor, which is the input to the
- compiler proper.
-
-'GCC_COMPARE_DEBUG'
- Setting 'GCC_COMPARE_DEBUG' is nearly equivalent to passing
- '-fcompare-debug' to the compiler driver. See the documentation of
- this option for more details.
-
-'GCC_EXEC_PREFIX'
- If 'GCC_EXEC_PREFIX' is set, it specifies a prefix to use in the
- names of the subprograms executed by the compiler. No slash is
- added when this prefix is combined with the name of a subprogram,
- but you can specify a prefix that ends with a slash if you wish.
-
- If 'GCC_EXEC_PREFIX' is not set, GCC attempts to figure out an
- appropriate prefix to use based on the pathname it is invoked with.
-
- If GCC cannot find the subprogram using the specified prefix, it
- tries looking in the usual places for the subprogram.
-
- The default value of 'GCC_EXEC_PREFIX' is 'PREFIX/lib/gcc/' where
- PREFIX is the prefix to the installed compiler. In many cases
- PREFIX is the value of 'prefix' when you ran the 'configure'
- script.
-
- Other prefixes specified with '-B' take precedence over this
- prefix.
-
- This prefix is also used for finding files such as 'crt0.o' that
- are used for linking.
-
- In addition, the prefix is used in an unusual way in finding the
- directories to search for header files. For each of the standard
- directories whose name normally begins with '/usr/local/lib/gcc'
- (more precisely, with the value of 'GCC_INCLUDE_DIR'), GCC tries
- replacing that beginning with the specified prefix to produce an
- alternate directory name. Thus, with '-Bfoo/', GCC searches
- 'foo/bar' just before it searches the standard directory
- '/usr/local/lib/bar'. If a standard directory begins with the
- configured PREFIX then the value of PREFIX is replaced by
- 'GCC_EXEC_PREFIX' when looking for header files.
-
-'COMPILER_PATH'
- The value of 'COMPILER_PATH' is a colon-separated list of
- directories, much like 'PATH'. GCC tries the directories thus
- specified when searching for subprograms, if it can't find the
- subprograms using 'GCC_EXEC_PREFIX'.
-
-'LIBRARY_PATH'
- The value of 'LIBRARY_PATH' is a colon-separated list of
- directories, much like 'PATH'. When configured as a native
- compiler, GCC tries the directories thus specified when searching
- for special linker files, if it can't find them using
- 'GCC_EXEC_PREFIX'. Linking using GCC also uses these directories
- when searching for ordinary libraries for the '-l' option (but
- directories specified with '-L' come first).
-
-'LANG'
- This variable is used to pass locale information to the compiler.
- One way in which this information is used is to determine the
- character set to be used when character literals, string literals
- and comments are parsed in C and C++. When the compiler is
- configured to allow multibyte characters, the following values for
- 'LANG' are recognized:
-
- 'C-JIS'
- Recognize JIS characters.
- 'C-SJIS'
- Recognize SJIS characters.
- 'C-EUCJP'
- Recognize EUCJP characters.
-
- If 'LANG' is not defined, or if it has some other value, then the
- compiler uses 'mblen' and 'mbtowc' as defined by the default locale
- to recognize and translate multibyte characters.
-
-Some additional environment variables affect the behavior of the
-preprocessor.
-
-'CPATH'
-'C_INCLUDE_PATH'
-'CPLUS_INCLUDE_PATH'
-'OBJC_INCLUDE_PATH'
- Each variable's value is a list of directories separated by a
- special character, much like 'PATH', in which to look for header
- files. The special character, 'PATH_SEPARATOR', is
- target-dependent and determined at GCC build time. For Microsoft
- Windows-based targets it is a semicolon, and for almost all other
- targets it is a colon.
-
- 'CPATH' specifies a list of directories to be searched as if
- specified with '-I', but after any paths given with '-I' options on
- the command line. This environment variable is used regardless of
- which language is being preprocessed.
-
- The remaining environment variables apply only when preprocessing
- the particular language indicated. Each specifies a list of
- directories to be searched as if specified with '-isystem', but
- after any paths given with '-isystem' options on the command line.
-
- In all these variables, an empty element instructs the compiler to
- search its current working directory. Empty elements can appear at
- the beginning or end of a path. For instance, if the value of
- 'CPATH' is ':/special/include', that has the same effect as
- '-I. -I/special/include'.
-
-'DEPENDENCIES_OUTPUT'
- If this variable is set, its value specifies how to output
- dependencies for Make based on the non-system header files
- processed by the compiler. System header files are ignored in the
- dependency output.
-
- The value of 'DEPENDENCIES_OUTPUT' can be just a file name, in
- which case the Make rules are written to that file, guessing the
- target name from the source file name. Or the value can have the
- form 'FILE TARGET', in which case the rules are written to file
- FILE using TARGET as the target name.
-
- In other words, this environment variable is equivalent to
- combining the options '-MM' and '-MF' (*note Preprocessor
- Options::), with an optional '-MT' switch too.
-
-'SUNPRO_DEPENDENCIES'
- This variable is the same as 'DEPENDENCIES_OUTPUT' (see above),
- except that system header files are not ignored, so it implies '-M'
- rather than '-MM'. However, the dependence on the main input file
- is omitted. *Note Preprocessor Options::.
-
-
-File: gcc.info, Node: Precompiled Headers, Prev: Environment Variables, Up: Invoking GCC
-
-3.20 Using Precompiled Headers
-==============================
-
-Often large projects have many header files that are included in every
-source file. The time the compiler takes to process these header files
-over and over again can account for nearly all of the time required to
-build the project. To make builds faster, GCC allows you to
-"precompile" a header file.
-
- To create a precompiled header file, simply compile it as you would any
-other file, if necessary using the '-x' option to make the driver treat
-it as a C or C++ header file. You may want to use a tool like 'make' to
-keep the precompiled header up-to-date when the headers it contains
-change.
-
- A precompiled header file is searched for when '#include' is seen in
-the compilation. As it searches for the included file (*note Search
-Path: (cpp)Search Path.) the compiler looks for a precompiled header in
-each directory just before it looks for the include file in that
-directory. The name searched for is the name specified in the
-'#include' with '.gch' appended. If the precompiled header file can't
-be used, it is ignored.
-
- For instance, if you have '#include "all.h"', and you have 'all.h.gch'
-in the same directory as 'all.h', then the precompiled header file is
-used if possible, and the original header is used otherwise.
-
- Alternatively, you might decide to put the precompiled header file in a
-directory and use '-I' to ensure that directory is searched before (or
-instead of) the directory containing the original header. Then, if you
-want to check that the precompiled header file is always used, you can
-put a file of the same name as the original header in this directory
-containing an '#error' command.
-
- This also works with '-include'. So yet another way to use precompiled
-headers, good for projects not designed with precompiled header files in
-mind, is to simply take most of the header files used by a project,
-include them from another header file, precompile that header file, and
-'-include' the precompiled header. If the header files have guards
-against multiple inclusion, they are skipped because they've already
-been included (in the precompiled header).
-
- If you need to precompile the same header file for different languages,
-targets, or compiler options, you can instead make a _directory_ named
-like 'all.h.gch', and put each precompiled header in the directory,
-perhaps using '-o'. It doesn't matter what you call the files in the
-directory; every precompiled header in the directory is considered. The
-first precompiled header encountered in the directory that is valid for
-this compilation is used; they're searched in no particular order.
-
- There are many other possibilities, limited only by your imagination,
-good sense, and the constraints of your build system.
-
- A precompiled header file can be used only when these conditions apply:
-
- * Only one precompiled header can be used in a particular
- compilation.
-
- * A precompiled header can't be used once the first C token is seen.
- You can have preprocessor directives before a precompiled header;
- you cannot include a precompiled header from inside another header.
-
- * The precompiled header file must be produced for the same language
- as the current compilation. You can't use a C precompiled header
- for a C++ compilation.
-
- * The precompiled header file must have been produced by the same
- compiler binary as the current compilation is using.
-
- * Any macros defined before the precompiled header is included must
- either be defined in the same way as when the precompiled header
- was generated, or must not affect the precompiled header, which
- usually means that they don't appear in the precompiled header at
- all.
-
- The '-D' option is one way to define a macro before a precompiled
- header is included; using a '#define' can also do it. There are
- also some options that define macros implicitly, like '-O' and
- '-Wdeprecated'; the same rule applies to macros defined this way.
-
- * If debugging information is output when using the precompiled
- header, using '-g' or similar, the same kind of debugging
- information must have been output when building the precompiled
- header. However, a precompiled header built using '-g' can be used
- in a compilation when no debugging information is being output.
-
- * The same '-m' options must generally be used when building and
- using the precompiled header. *Note Submodel Options::, for any
- cases where this rule is relaxed.
-
- * Each of the following options must be the same when building and
- using the precompiled header:
-
- -fexceptions
-
- * Some other command-line options starting with '-f', '-p', or '-O'
- must be defined in the same way as when the precompiled header was
- generated. At present, it's not clear which options are safe to
- change and which are not; the safest choice is to use exactly the
- same options when generating and using the precompiled header. The
- following are known to be safe:
-
- -fmessage-length= -fpreprocessed -fsched-interblock
- -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous
- -fsched-verbose=NUMBER -fschedule-insns -fvisibility=
- -pedantic-errors
-
- For all of these except the last, the compiler automatically ignores
-the precompiled header if the conditions aren't met. If you find an
-option combination that doesn't work and doesn't cause the precompiled
-header to be ignored, please consider filing a bug report, see *note
-Bugs::.
-
- If you do use differing options when generating and using the
-precompiled header, the actual behavior is a mixture of the behavior for
-the options. For instance, if you use '-g' to generate the precompiled
-header but not when using it, you may or may not get debugging
-information for routines in the precompiled header.
-
-
-File: gcc.info, Node: C Implementation, Next: C++ Implementation, Prev: Invoking GCC, Up: Top
-
-4 C Implementation-defined behavior
-***********************************
-
-A conforming implementation of ISO C is required to document its choice
-of behavior in each of the areas that are designated "implementation
-defined". The following lists all such areas, along with the section
-numbers from the ISO/IEC 9899:1990, ISO/IEC 9899:1999 and ISO/IEC
-9899:2011 standards. Some areas are only implementation-defined in one
-version of the standard.
-
- Some choices depend on the externally determined ABI for the platform
-(including standard character encodings) which GCC follows; these are
-listed as "determined by ABI" below. *Note Binary Compatibility:
-Compatibility, and <http://gcc.gnu.org/readings.html>. Some choices are
-documented in the preprocessor manual. *Note Implementation-defined
-behavior: (cpp)Implementation-defined behavior. Some choices are made
-by the library and operating system (or other environment when compiling
-for a freestanding environment); refer to their documentation for
-details.
-
-* Menu:
-
-* Translation implementation::
-* Environment implementation::
-* Identifiers implementation::
-* Characters implementation::
-* Integers implementation::
-* Floating point implementation::
-* Arrays and pointers implementation::
-* Hints implementation::
-* Structures unions enumerations and bit-fields implementation::
-* Qualifiers implementation::
-* Declarators implementation::
-* Statements implementation::
-* Preprocessing directives implementation::
-* Library functions implementation::
-* Architecture implementation::
-* Locale-specific behavior implementation::
-
-
-File: gcc.info, Node: Translation implementation, Next: Environment implementation, Up: C Implementation
-
-4.1 Translation
-===============
-
- * 'How a diagnostic is identified (C90 3.7, C99 and C11 3.10, C90,
- C99 and C11 5.1.1.3).'
-
- Diagnostics consist of all the output sent to stderr by GCC.
-
- * 'Whether each nonempty sequence of white-space characters other
- than new-line is retained or replaced by one space character in
- translation phase 3 (C90, C99 and C11 5.1.1.2).'
-
- *Note Implementation-defined behavior: (cpp)Implementation-defined
- behavior.
-
-
-File: gcc.info, Node: Environment implementation, Next: Identifiers implementation, Prev: Translation implementation, Up: C Implementation
-
-4.2 Environment
-===============
-
-The behavior of most of these points are dependent on the implementation
-of the C library, and are not defined by GCC itself.
-
- * 'The mapping between physical source file multibyte characters and
- the source character set in translation phase 1 (C90, C99 and C11
- 5.1.1.2).'
-
- *Note Implementation-defined behavior: (cpp)Implementation-defined
- behavior.
-
-
-File: gcc.info, Node: Identifiers implementation, Next: Characters implementation, Prev: Environment implementation, Up: C Implementation
-
-4.3 Identifiers
-===============
-
- * 'Which additional multibyte characters may appear in identifiers
- and their correspondence to universal character names (C99 and C11
- 6.4.2).'
-
- *Note Implementation-defined behavior: (cpp)Implementation-defined
- behavior.
-
- * 'The number of significant initial characters in an identifier (C90
- 6.1.2, C90, C99 and C11 5.2.4.1, C99 and C11 6.4.2).'
-
- For internal names, all characters are significant. For external
- names, the number of significant characters are defined by the
- linker; for almost all targets, all characters are significant.
-
- * 'Whether case distinctions are significant in an identifier with
- external linkage (C90 6.1.2).'
-
- This is a property of the linker. C99 and C11 require that case
- distinctions are always significant in identifiers with external
- linkage and systems without this property are not supported by GCC.
-
-
-File: gcc.info, Node: Characters implementation, Next: Integers implementation, Prev: Identifiers implementation, Up: C Implementation
-
-4.4 Characters
-==============
-
- * 'The number of bits in a byte (C90 3.4, C99 and C11 3.6).'
-
- Determined by ABI.
-
- * 'The values of the members of the execution character set (C90, C99
- and C11 5.2.1).'
-
- Determined by ABI.
-
- * 'The unique value of the member of the execution character set
- produced for each of the standard alphabetic escape sequences (C90,
- C99 and C11 5.2.2).'
-
- Determined by ABI.
-
- * 'The value of a 'char' object into which has been stored any
- character other than a member of the basic execution character set
- (C90 6.1.2.5, C99 and C11 6.2.5).'
-
- Determined by ABI.
-
- * 'Which of 'signed char' or 'unsigned char' has the same range,
- representation, and behavior as "plain" 'char' (C90 6.1.2.5, C90
- 6.2.1.1, C99 and C11 6.2.5, C99 and C11 6.3.1.1).'
-
- Determined by ABI. The options '-funsigned-char' and
- '-fsigned-char' change the default. *Note Options Controlling C
- Dialect: C Dialect Options.
-
- * 'The mapping of members of the source character set (in character
- constants and string literals) to members of the execution
- character set (C90 6.1.3.4, C99 and C11 6.4.4.4, C90, C99 and C11
- 5.1.1.2).'
-
- Determined by ABI.
-
- * 'The value of an integer character constant containing more than
- one character or containing a character or escape sequence that
- does not map to a single-byte execution character (C90 6.1.3.4, C99
- and C11 6.4.4.4).'
-
- *Note Implementation-defined behavior: (cpp)Implementation-defined
- behavior.
-
- * 'The value of a wide character constant containing more than one
- multibyte character or a single multibyte character that maps to
- multiple members of the extended execution character set, or
- containing a multibyte character or escape sequence not represented
- in the extended execution character set (C90 6.1.3.4, C99 and C11
- 6.4.4.4).'
-
- *Note Implementation-defined behavior: (cpp)Implementation-defined
- behavior.
-
- * 'The current locale used to convert a wide character constant
- consisting of a single multibyte character that maps to a member of
- the extended execution character set into a corresponding wide
- character code (C90 6.1.3.4, C99 and C11 6.4.4.4).'
-
- *Note Implementation-defined behavior: (cpp)Implementation-defined
- behavior.
-
- * 'Whether differently-prefixed wide string literal tokens can be
- concatenated and, if so, the treatment of the resulting multibyte
- character sequence (C11 6.4.5).'
-
- Such tokens may not be concatenated.
-
- * 'The current locale used to convert a wide string literal into
- corresponding wide character codes (C90 6.1.4, C99 and C11 6.4.5).'
-
- *Note Implementation-defined behavior: (cpp)Implementation-defined
- behavior.
-
- * 'The value of a string literal containing a multibyte character or
- escape sequence not represented in the execution character set (C90
- 6.1.4, C99 and C11 6.4.5).'
-
- *Note Implementation-defined behavior: (cpp)Implementation-defined
- behavior.
-
- * 'The encoding of any of 'wchar_t', 'char16_t', and 'char32_t' where
- the corresponding standard encoding macro ('__STDC_ISO_10646__',
- '__STDC_UTF_16__', or '__STDC_UTF_32__') is not defined (C11
- 6.10.8.2).'
-
- *Note Implementation-defined behavior: (cpp)Implementation-defined
- behavior. 'char16_t' and 'char32_t' literals are always encoded in
- UTF-16 and UTF-32 respectively.
-
-
-File: gcc.info, Node: Integers implementation, Next: Floating point implementation, Prev: Characters implementation, Up: C Implementation
-
-4.5 Integers
-============
-
- * 'Any extended integer types that exist in the implementation (C99
- and C11 6.2.5).'
-
- GCC does not support any extended integer types.
-
- * 'Whether signed integer types are represented using sign and
- magnitude, two's complement, or one's complement, and whether the
- extraordinary value is a trap representation or an ordinary value
- (C99 and C11 6.2.6.2).'
-
- GCC supports only two's complement integer types, and all bit
- patterns are ordinary values.
-
- * 'The rank of any extended integer type relative to another extended
- integer type with the same precision (C99 and C11 6.3.1.1).'
-
- GCC does not support any extended integer types.
-
- * 'The result of, or the signal raised by, converting an integer to a
- signed integer type when the value cannot be represented in an
- object of that type (C90 6.2.1.2, C99 and C11 6.3.1.3).'
-
- For conversion to a type of width N, the value is reduced modulo
- 2^N to be within range of the type; no signal is raised.
-
- * 'The results of some bitwise operations on signed integers (C90
- 6.3, C99 and C11 6.5).'
-
- Bitwise operators act on the representation of the value including
- both the sign and value bits, where the sign bit is considered
- immediately above the highest-value value bit. Signed '>>' acts on
- negative numbers by sign extension.
-
- GCC does not use the latitude given in C99 and C11 only to treat
- certain aspects of signed '<<' as undefined, but this is subject to
- change.
-
- * 'The sign of the remainder on integer division (C90 6.3.5).'
-
- GCC always follows the C99 and C11 requirement that the result of
- division is truncated towards zero.
-
-
-File: gcc.info, Node: Floating point implementation, Next: Arrays and pointers implementation, Prev: Integers implementation, Up: C Implementation
-
-4.6 Floating point
-==================
-
- * 'The accuracy of the floating-point operations and of the library
- functions in '<math.h>' and '<complex.h>' that return
- floating-point results (C90, C99 and C11 5.2.4.2.2).'
-
- The accuracy is unknown.
-
- * 'The rounding behaviors characterized by non-standard values of
- 'FLT_ROUNDS' (C90, C99 and C11 5.2.4.2.2).'
-
- GCC does not use such values.
-
- * 'The evaluation methods characterized by non-standard negative
- values of 'FLT_EVAL_METHOD' (C99 and C11 5.2.4.2.2).'
-
- GCC does not use such values.
-
- * 'The direction of rounding when an integer is converted to a
- floating-point number that cannot exactly represent the original
- value (C90 6.2.1.3, C99 and C11 6.3.1.4).'
-
- C99 Annex F is followed.
-
- * 'The direction of rounding when a floating-point number is
- converted to a narrower floating-point number (C90 6.2.1.4, C99 and
- C11 6.3.1.5).'
-
- C99 Annex F is followed.
-
- * 'How the nearest representable value or the larger or smaller
- representable value immediately adjacent to the nearest
- representable value is chosen for certain floating constants (C90
- 6.1.3.1, C99 and C11 6.4.4.2).'
-
- C99 Annex F is followed.
-
- * 'Whether and how floating expressions are contracted when not
- disallowed by the 'FP_CONTRACT' pragma (C99 and C11 6.5).'
-
- Expressions are currently only contracted if '-ffp-contract=fast',
- '-funsafe-math-optimizations' or '-ffast-math' are used. This is
- subject to change.
-
- * 'The default state for the 'FENV_ACCESS' pragma (C99 and C11
- 7.6.1).'
-
- This pragma is not implemented, but the default is to "off" unless
- '-frounding-math' is used in which case it is "on".
-
- * 'Additional floating-point exceptions, rounding modes,
- environments, and classifications, and their macro names (C99 and
- C11 7.6, C99 and C11 7.12).'
-
- This is dependent on the implementation of the C library, and is
- not defined by GCC itself.
-
- * 'The default state for the 'FP_CONTRACT' pragma (C99 and C11
- 7.12.2).'
-
- This pragma is not implemented. Expressions are currently only
- contracted if '-ffp-contract=fast', '-funsafe-math-optimizations'
- or '-ffast-math' are used. This is subject to change.
-
- * 'Whether the "inexact" floating-point exception can be raised when
- the rounded result actually does equal the mathematical result in
- an IEC 60559 conformant implementation (C99 F.9).'
-
- This is dependent on the implementation of the C library, and is
- not defined by GCC itself.
-
- * 'Whether the "underflow" (and "inexact") floating-point exception
- can be raised when a result is tiny but not inexact in an IEC 60559
- conformant implementation (C99 F.9).'
-
- This is dependent on the implementation of the C library, and is
- not defined by GCC itself.
-
-
-File: gcc.info, Node: Arrays and pointers implementation, Next: Hints implementation, Prev: Floating point implementation, Up: C Implementation
-
-4.7 Arrays and pointers
-=======================
-
- * 'The result of converting a pointer to an integer or vice versa
- (C90 6.3.4, C99 and C11 6.3.2.3).'
-
- A cast from pointer to integer discards most-significant bits if
- the pointer representation is larger than the integer type,
- sign-extends(1) if the pointer representation is smaller than the
- integer type, otherwise the bits are unchanged.
-
- A cast from integer to pointer discards most-significant bits if
- the pointer representation is smaller than the integer type,
- extends according to the signedness of the integer type if the
- pointer representation is larger than the integer type, otherwise
- the bits are unchanged.
-
- When casting from pointer to integer and back again, the resulting
- pointer must reference the same object as the original pointer,
- otherwise the behavior is undefined. That is, one may not use
- integer arithmetic to avoid the undefined behavior of pointer
- arithmetic as proscribed in C99 and C11 6.5.6/8.
-
- * 'The size of the result of subtracting two pointers to elements of
- the same array (C90 6.3.6, C99 and C11 6.5.6).'
-
- The value is as specified in the standard and the type is
- determined by the ABI.
-
- ---------- Footnotes ----------
-
- (1) Future versions of GCC may zero-extend, or use a target-defined
-'ptr_extend' pattern. Do not rely on sign extension.
-
-
-File: gcc.info, Node: Hints implementation, Next: Structures unions enumerations and bit-fields implementation, Prev: Arrays and pointers implementation, Up: C Implementation
-
-4.8 Hints
-=========
-
- * 'The extent to which suggestions made by using the 'register'
- storage-class specifier are effective (C90 6.5.1, C99 and C11
- 6.7.1).'
-
- The 'register' specifier affects code generation only in these
- ways:
-
- * When used as part of the register variable extension, see
- *note Explicit Reg Vars::.
-
- * When '-O0' is in use, the compiler allocates distinct stack
- memory for all variables that do not have the 'register'
- storage-class specifier; if 'register' is specified, the
- variable may have a shorter lifespan than the code would
- indicate and may never be placed in memory.
-
- * On some rare x86 targets, 'setjmp' doesn't save the registers
- in all circumstances. In those cases, GCC doesn't allocate
- any variables in registers unless they are marked 'register'.
-
- * 'The extent to which suggestions made by using the inline function
- specifier are effective (C99 and C11 6.7.4).'
-
- GCC will not inline any functions if the '-fno-inline' option is
- used or if '-O0' is used. Otherwise, GCC may still be unable to
- inline a function for many reasons; the '-Winline' option may be
- used to determine if a function has not been inlined and why not.
-
-
-File: gcc.info, Node: Structures unions enumerations and bit-fields implementation, Next: Qualifiers implementation, Prev: Hints implementation, Up: C Implementation
-
-4.9 Structures, unions, enumerations, and bit-fields
-====================================================
-
- * 'A member of a union object is accessed using a member of a
- different type (C90 6.3.2.3).'
-
- The relevant bytes of the representation of the object are treated
- as an object of the type used for the access. *Note
- Type-punning::. This may be a trap representation.
-
- * 'Whether a "plain" 'int' bit-field is treated as a 'signed int'
- bit-field or as an 'unsigned int' bit-field (C90 6.5.2, C90
- 6.5.2.1, C99 and C11 6.7.2, C99 and C11 6.7.2.1).'
-
- By default it is treated as 'signed int' but this may be changed by
- the '-funsigned-bitfields' option.
-
- * 'Allowable bit-field types other than '_Bool', 'signed int', and
- 'unsigned int' (C99 and C11 6.7.2.1).'
-
- Other integer types, such as 'long int', and enumerated types are
- permitted even in strictly conforming mode.
-
- * 'Whether atomic types are permitted for bit-fields (C11 6.7.2.1).'
-
- Atomic types are not permitted for bit-fields.
-
- * 'Whether a bit-field can straddle a storage-unit boundary (C90
- 6.5.2.1, C99 and C11 6.7.2.1).'
-
- Determined by ABI.
-
- * 'The order of allocation of bit-fields within a unit (C90 6.5.2.1,
- C99 and C11 6.7.2.1).'
-
- Determined by ABI.
-
- * 'The alignment of non-bit-field members of structures (C90 6.5.2.1,
- C99 and C11 6.7.2.1).'
-
- Determined by ABI.
-
- * 'The integer type compatible with each enumerated type (C90
- 6.5.2.2, C99 and C11 6.7.2.2).'
-
- Normally, the type is 'unsigned int' if there are no negative
- values in the enumeration, otherwise 'int'. If '-fshort-enums' is
- specified, then if there are negative values it is the first of
- 'signed char', 'short' and 'int' that can represent all the values,
- otherwise it is the first of 'unsigned char', 'unsigned short' and
- 'unsigned int' that can represent all the values.
-
- On some targets, '-fshort-enums' is the default; this is determined
- by the ABI.
-
-
-File: gcc.info, Node: Qualifiers implementation, Next: Declarators implementation, Prev: Structures unions enumerations and bit-fields implementation, Up: C Implementation
-
-4.10 Qualifiers
-===============
-
- * 'What constitutes an access to an object that has
- volatile-qualified type (C90 6.5.3, C99 and C11 6.7.3).'
-
- Such an object is normally accessed by pointers and used for
- accessing hardware. In most expressions, it is intuitively obvious
- what is a read and what is a write. For example
-
- volatile int *dst = SOMEVALUE;
- volatile int *src = SOMEOTHERVALUE;
- *dst = *src;
-
- will cause a read of the volatile object pointed to by SRC and
- store the value into the volatile object pointed to by DST. There
- is no guarantee that these reads and writes are atomic, especially
- for objects larger than 'int'.
-
- However, if the volatile storage is not being modified, and the
- value of the volatile storage is not used, then the situation is
- less obvious. For example
-
- volatile int *src = SOMEVALUE;
- *src;
-
- According to the C standard, such an expression is an rvalue whose
- type is the unqualified version of its original type, i.e. 'int'.
- Whether GCC interprets this as a read of the volatile object being
- pointed to or only as a request to evaluate the expression for its
- side-effects depends on this type.
-
- If it is a scalar type, or on most targets an aggregate type whose
- only member object is of a scalar type, or a union type whose
- member objects are of scalar types, the expression is interpreted
- by GCC as a read of the volatile object; in the other cases, the
- expression is only evaluated for its side-effects.
-
-
-File: gcc.info, Node: Declarators implementation, Next: Statements implementation, Prev: Qualifiers implementation, Up: C Implementation
-
-4.11 Declarators
-================
-
- * 'The maximum number of declarators that may modify an arithmetic,
- structure or union type (C90 6.5.4).'
-
- GCC is only limited by available memory.
-
-
-File: gcc.info, Node: Statements implementation, Next: Preprocessing directives implementation, Prev: Declarators implementation, Up: C Implementation
-
-4.12 Statements
-===============
-
- * 'The maximum number of 'case' values in a 'switch' statement (C90
- 6.6.4.2).'
-
- GCC is only limited by available memory.
-
-
-File: gcc.info, Node: Preprocessing directives implementation, Next: Library functions implementation, Prev: Statements implementation, Up: C Implementation
-
-4.13 Preprocessing directives
-=============================
-
-*Note Implementation-defined behavior: (cpp)Implementation-defined
-behavior, for details of these aspects of implementation-defined
-behavior.
-
- * 'The locations within '#pragma' directives where header name
- preprocessing tokens are recognized (C11 6.4, C11 6.4.7).'
-
- * 'How sequences in both forms of header names are mapped to headers
- or external source file names (C90 6.1.7, C99 and C11 6.4.7).'
-
- * 'Whether the value of a character constant in a constant expression
- that controls conditional inclusion matches the value of the same
- character constant in the execution character set (C90 6.8.1, C99
- and C11 6.10.1).'
-
- * 'Whether the value of a single-character character constant in a
- constant expression that controls conditional inclusion may have a
- negative value (C90 6.8.1, C99 and C11 6.10.1).'
-
- * 'The places that are searched for an included '<>' delimited
- header, and how the places are specified or the header is
- identified (C90 6.8.2, C99 and C11 6.10.2).'
-
- * 'How the named source file is searched for in an included '""'
- delimited header (C90 6.8.2, C99 and C11 6.10.2).'
-
- * 'The method by which preprocessing tokens (possibly resulting from
- macro expansion) in a '#include' directive are combined into a
- header name (C90 6.8.2, C99 and C11 6.10.2).'
-
- * 'The nesting limit for '#include' processing (C90 6.8.2, C99 and
- C11 6.10.2).'
-
- * 'Whether the '#' operator inserts a '\' character before the '\'
- character that begins a universal character name in a character
- constant or string literal (C99 and C11 6.10.3.2).'
-
- * 'The behavior on each recognized non-'STDC #pragma' directive (C90
- 6.8.6, C99 and C11 6.10.6).'
-
- *Note Pragmas: (cpp)Pragmas, for details of pragmas accepted by GCC
- on all targets. *Note Pragmas Accepted by GCC: Pragmas, for
- details of target-specific pragmas.
-
- * 'The definitions for '__DATE__' and '__TIME__' when respectively,
- the date and time of translation are not available (C90 6.8.8, C99
- 6.10.8, C11 6.10.8.1).'
-
-
-File: gcc.info, Node: Library functions implementation, Next: Architecture implementation, Prev: Preprocessing directives implementation, Up: C Implementation
-
-4.14 Library functions
-======================
-
-The behavior of most of these points are dependent on the implementation
-of the C library, and are not defined by GCC itself.
-
- * 'The null pointer constant to which the macro 'NULL' expands (C90
- 7.1.6, C99 7.17, C11 7.19).'
-
- In '<stddef.h>', 'NULL' expands to '((void *)0)'. GCC does not
- provide the other headers which define 'NULL' and some library
- implementations may use other definitions in those headers.
-
-
-File: gcc.info, Node: Architecture implementation, Next: Locale-specific behavior implementation, Prev: Library functions implementation, Up: C Implementation
-
-4.15 Architecture
-=================
-
- * 'The values or expressions assigned to the macros specified in the
- headers '<float.h>', '<limits.h>', and '<stdint.h>' (C90, C99 and
- C11 5.2.4.2, C99 7.18.2, C99 7.18.3, C11 7.20.2, C11 7.20.3).'
-
- Determined by ABI.
-
- * 'The result of attempting to indirectly access an object with
- automatic or thread storage duration from a thread other than the
- one with which it is associated (C11 6.2.4).'
-
- Such accesses are supported, subject to the same requirements for
- synchronization for concurrent accesses as for concurrent accesses
- to any object.
-
- * 'The number, order, and encoding of bytes in any object (when not
- explicitly specified in this International Standard) (C99 and C11
- 6.2.6.1).'
-
- Determined by ABI.
-
- * 'Whether any extended alignments are supported and the contexts in
- which they are supported (C11 6.2.8).'
-
- Extended alignments up to 2^{28} (bytes) are supported for objects
- of automatic storage duration. Alignments supported for objects of
- static and thread storage duration are determined by the ABI.
-
- * 'Valid alignment values other than those returned by an _Alignof
- expression for fundamental types, if any (C11 6.2.8).'
-
- Valid alignments are powers of 2 up to and including 2^{28}.
-
- * 'The value of the result of the 'sizeof' and '_Alignof' operators
- (C90 6.3.3.4, C99 and C11 6.5.3.4).'
-
- Determined by ABI.
-
-
-File: gcc.info, Node: Locale-specific behavior implementation, Prev: Architecture implementation, Up: C Implementation
-
-4.16 Locale-specific behavior
-=============================
-
-The behavior of these points are dependent on the implementation of the
-C library, and are not defined by GCC itself.
-
-
-File: gcc.info, Node: C++ Implementation, Next: C Extensions, Prev: C Implementation, Up: Top
-
-5 C++ Implementation-defined behavior
-*************************************
-
-A conforming implementation of ISO C++ is required to document its
-choice of behavior in each of the areas that are designated
-"implementation defined". The following lists all such areas, along
-with the section numbers from the ISO/IEC 14882:1998 and ISO/IEC
-14882:2003 standards. Some areas are only implementation-defined in one
-version of the standard.
-
- Some choices depend on the externally determined ABI for the platform
-(including standard character encodings) which GCC follows; these are
-listed as "determined by ABI" below. *Note Binary Compatibility:
-Compatibility, and <http://gcc.gnu.org/readings.html>. Some choices are
-documented in the preprocessor manual. *Note Implementation-defined
-behavior: (cpp)Implementation-defined behavior. Some choices are
-documented in the corresponding document for the C language. *Note C
-Implementation::. Some choices are made by the library and operating
-system (or other environment when compiling for a freestanding
-environment); refer to their documentation for details.
-
-* Menu:
-
-* Conditionally-supported behavior::
-* Exception handling::
-
-
-File: gcc.info, Node: Conditionally-supported behavior, Next: Exception handling, Up: C++ Implementation
-
-5.1 Conditionally-supported behavior
-====================================
-
-'Each implementation shall include documentation that identifies all
-conditionally-supported constructs that it does not support (C++0x
-1.4).'
-
- * 'Whether an argument of class type with a non-trivial copy
- constructor or destructor can be passed to ... (C++0x 5.2.2).'
-
- Such argument passing is not supported.
-
-
-File: gcc.info, Node: Exception handling, Prev: Conditionally-supported behavior, Up: C++ Implementation
-
-5.2 Exception handling
-======================
-
- * 'In the situation where no matching handler is found, it is
- implementation-defined whether or not the stack is unwound before
- std::terminate() is called (C++98 15.5.1).'
-
- The stack is not unwound before std::terminate is called.
-
-
-File: gcc.info, Node: C Extensions, Next: C++ Extensions, Prev: C++ Implementation, Up: Top
-
-6 Extensions to the C Language Family
-*************************************
-
-GNU C provides several language features not found in ISO standard C.
-(The '-pedantic' option directs GCC to print a warning message if any of
-these features is used.) To test for the availability of these features
-in conditional compilation, check for a predefined macro '__GNUC__',
-which is always defined under GCC.
-
- These extensions are available in C and Objective-C. Most of them are
-also available in C++. *Note Extensions to the C++ Language: C++
-Extensions, for extensions that apply _only_ to C++.
-
- Some features that are in ISO C99 but not C90 or C++ are also, as
-extensions, accepted by GCC in C90 mode and in C++.
-
-* Menu:
-
-* Statement Exprs:: Putting statements and declarations inside expressions.
-* Local Labels:: Labels local to a block.
-* Labels as Values:: Getting pointers to labels, and computed gotos.
-* Nested Functions:: As in Algol and Pascal, lexical scoping of functions.
-* Constructing Calls:: Dispatching a call to another function.
-* Typeof:: 'typeof': referring to the type of an expression.
-* Conditionals:: Omitting the middle operand of a '?:' expression.
-* __int128:: 128-bit integers--'__int128'.
-* Long Long:: Double-word integers--'long long int'.
-* Complex:: Data types for complex numbers.
-* Floating Types:: Additional Floating Types.
-* Half-Precision:: Half-Precision Floating Point.
-* Decimal Float:: Decimal Floating Types.
-* Hex Floats:: Hexadecimal floating-point constants.
-* Fixed-Point:: Fixed-Point Types.
-* Named Address Spaces::Named address spaces.
-* Zero Length:: Zero-length arrays.
-* Empty Structures:: Structures with no members.
-* Variable Length:: Arrays whose length is computed at run time.
-* Variadic Macros:: Macros with a variable number of arguments.
-* Escaped Newlines:: Slightly looser rules for escaped newlines.
-* Subscripting:: Any array can be subscripted, even if not an lvalue.
-* Pointer Arith:: Arithmetic on 'void'-pointers and function pointers.
-* Initializers:: Non-constant initializers.
-* Compound Literals:: Compound literals give structures, unions
- or arrays as values.
-* Designated Inits:: Labeling elements of initializers.
-* Case Ranges:: 'case 1 ... 9' and such.
-* Cast to Union:: Casting to union type from any member of the union.
-* Mixed Declarations:: Mixing declarations and code.
-* Function Attributes:: Declaring that functions have no side effects,
- or that they can never return.
-* Attribute Syntax:: Formal syntax for attributes.
-* Function Prototypes:: Prototype declarations and old-style definitions.
-* C++ Comments:: C++ comments are recognized.
-* Dollar Signs:: Dollar sign is allowed in identifiers.
-* Character Escapes:: '\e' stands for the character <ESC>.
-* Variable Attributes:: Specifying attributes of variables.
-* Type Attributes:: Specifying attributes of types.
-* Alignment:: Inquiring about the alignment of a type or variable.
-* Inline:: Defining inline functions (as fast as macros).
-* Volatiles:: What constitutes an access to a volatile object.
-* Extended Asm:: Assembler instructions with C expressions as operands.
- (With them you can define "built-in" functions.)
-* Constraints:: Constraints for asm operands
-* Asm Labels:: Specifying the assembler name to use for a C symbol.
-* Explicit Reg Vars:: Defining variables residing in specified registers.
-* Alternate Keywords:: '__const__', '__asm__', etc., for header files.
-* Incomplete Enums:: 'enum foo;', with details to follow.
-* Function Names:: Printable strings which are the name of the current
- function.
-* Return Address:: Getting the return or frame address of a function.
-* Vector Extensions:: Using vector instructions through built-in functions.
-* Offsetof:: Special syntax for implementing 'offsetof'.
-* __sync Builtins:: Legacy built-in functions for atomic memory access.
-* __atomic Builtins:: Atomic built-in functions with memory model.
-* x86 specific memory model extensions for transactional memory:: x86 memory models.
-* Object Size Checking:: Built-in functions for limited buffer overflow
- checking.
-* Cilk Plus Builtins:: Built-in functions for the Cilk Plus language extension.
-* Other Builtins:: Other built-in functions.
-* Target Builtins:: Built-in functions specific to particular targets.
-* Target Format Checks:: Format checks specific to particular targets.
-* Pragmas:: Pragmas accepted by GCC.
-* Unnamed Fields:: Unnamed struct/union fields within structs/unions.
-* Thread-Local:: Per-thread variables.
-* Binary constants:: Binary constants using the '0b' prefix.
-
-
-File: gcc.info, Node: Statement Exprs, Next: Local Labels, Up: C Extensions
-
-6.1 Statements and Declarations in Expressions
-==============================================
-
-A compound statement enclosed in parentheses may appear as an expression
-in GNU C. This allows you to use loops, switches, and local variables
-within an expression.
-
- Recall that a compound statement is a sequence of statements surrounded
-by braces; in this construct, parentheses go around the braces. For
-example:
-
- ({ int y = foo (); int z;
- if (y > 0) z = y;
- else z = - y;
- z; })
-
-is a valid (though slightly more complex than necessary) expression for
-the absolute value of 'foo ()'.
-
- The last thing in the compound statement should be an expression
-followed by a semicolon; the value of this subexpression serves as the
-value of the entire construct. (If you use some other kind of statement
-last within the braces, the construct has type 'void', and thus
-effectively no value.)
-
- This feature is especially useful in making macro definitions "safe"
-(so that they evaluate each operand exactly once). For example, the
-"maximum" function is commonly defined as a macro in standard C as
-follows:
-
- #define max(a,b) ((a) > (b) ? (a) : (b))
-
-But this definition computes either A or B twice, with bad results if
-the operand has side effects. In GNU C, if you know the type of the
-operands (here taken as 'int'), you can define the macro safely as
-follows:
-
- #define maxint(a,b) \
- ({int _a = (a), _b = (b); _a > _b ? _a : _b; })
-
- Embedded statements are not allowed in constant expressions, such as
-the value of an enumeration constant, the width of a bit-field, or the
-initial value of a static variable.
-
- If you don't know the type of the operand, you can still do this, but
-you must use 'typeof' or '__auto_type' (*note Typeof::).
-
- In G++, the result value of a statement expression undergoes array and
-function pointer decay, and is returned by value to the enclosing
-expression. For instance, if 'A' is a class, then
-
- A a;
-
- ({a;}).Foo ()
-
-constructs a temporary 'A' object to hold the result of the statement
-expression, and that is used to invoke 'Foo'. Therefore the 'this'
-pointer observed by 'Foo' is not the address of 'a'.
-
- In a statement expression, any temporaries created within a statement
-are destroyed at that statement's end. This makes statement expressions
-inside macros slightly different from function calls. In the latter
-case temporaries introduced during argument evaluation are destroyed at
-the end of the statement that includes the function call. In the
-statement expression case they are destroyed during the statement
-expression. For instance,
-
- #define macro(a) ({__typeof__(a) b = (a); b + 3; })
- template<typename T> T function(T a) { T b = a; return b + 3; }
-
- void foo ()
- {
- macro (X ());
- function (X ());
- }
-
-has different places where temporaries are destroyed. For the 'macro'
-case, the temporary 'X' is destroyed just after the initialization of
-'b'. In the 'function' case that temporary is destroyed when the
-function returns.
-
- These considerations mean that it is probably a bad idea to use
-statement expressions of this form in header files that are designed to
-work with C++. (Note that some versions of the GNU C Library contained
-header files using statement expressions that lead to precisely this
-bug.)
-
- Jumping into a statement expression with 'goto' or using a 'switch'
-statement outside the statement expression with a 'case' or 'default'
-label inside the statement expression is not permitted. Jumping into a
-statement expression with a computed 'goto' (*note Labels as Values::)
-has undefined behavior. Jumping out of a statement expression is
-permitted, but if the statement expression is part of a larger
-expression then it is unspecified which other subexpressions of that
-expression have been evaluated except where the language definition
-requires certain subexpressions to be evaluated before or after the
-statement expression. In any case, as with a function call, the
-evaluation of a statement expression is not interleaved with the
-evaluation of other parts of the containing expression. For example,
-
- foo (), (({ bar1 (); goto a; 0; }) + bar2 ()), baz();
-
-calls 'foo' and 'bar1' and does not call 'baz' but may or may not call
-'bar2'. If 'bar2' is called, it is called after 'foo' and before
-'bar1'.
-
-
-File: gcc.info, Node: Local Labels, Next: Labels as Values, Prev: Statement Exprs, Up: C Extensions
-
-6.2 Locally Declared Labels
-===========================
-
-GCC allows you to declare "local labels" in any nested block scope. A
-local label is just like an ordinary label, but you can only reference
-it (with a 'goto' statement, or by taking its address) within the block
-in which it is declared.
-
- A local label declaration looks like this:
-
- __label__ LABEL;
-
-or
-
- __label__ LABEL1, LABEL2, /* ... */;
-
- Local label declarations must come at the beginning of the block,
-before any ordinary declarations or statements.
-
- The label declaration defines the label _name_, but does not define the
-label itself. You must do this in the usual way, with 'LABEL:', within
-the statements of the statement expression.
-
- The local label feature is useful for complex macros. If a macro
-contains nested loops, a 'goto' can be useful for breaking out of them.
-However, an ordinary label whose scope is the whole function cannot be
-used: if the macro can be expanded several times in one function, the
-label is multiply defined in that function. A local label avoids this
-problem. For example:
-
- #define SEARCH(value, array, target) \
- do { \
- __label__ found; \
- typeof (target) _SEARCH_target = (target); \
- typeof (*(array)) *_SEARCH_array = (array); \
- int i, j; \
- int value; \
- for (i = 0; i < max; i++) \
- for (j = 0; j < max; j++) \
- if (_SEARCH_array[i][j] == _SEARCH_target) \
- { (value) = i; goto found; } \
- (value) = -1; \
- found:; \
- } while (0)
-
- This could also be written using a statement expression:
-
- #define SEARCH(array, target) \
- ({ \
- __label__ found; \
- typeof (target) _SEARCH_target = (target); \
- typeof (*(array)) *_SEARCH_array = (array); \
- int i, j; \
- int value; \
- for (i = 0; i < max; i++) \
- for (j = 0; j < max; j++) \
- if (_SEARCH_array[i][j] == _SEARCH_target) \
- { value = i; goto found; } \
- value = -1; \
- found: \
- value; \
- })
-
- Local label declarations also make the labels they declare visible to
-nested functions, if there are any. *Note Nested Functions::, for
-details.
-
-
-File: gcc.info, Node: Labels as Values, Next: Nested Functions, Prev: Local Labels, Up: C Extensions
-
-6.3 Labels as Values
-====================
-
-You can get the address of a label defined in the current function (or a
-containing function) with the unary operator '&&'. The value has type
-'void *'. This value is a constant and can be used wherever a constant
-of that type is valid. For example:
-
- void *ptr;
- /* ... */
- ptr = &&foo;
-
- To use these values, you need to be able to jump to one. This is done
-with the computed goto statement(1), 'goto *EXP;'. For example,
-
- goto *ptr;
-
-Any expression of type 'void *' is allowed.
-
- One way of using these constants is in initializing a static array that
-serves as a jump table:
-
- static void *array[] = { &&foo, &&bar, &&hack };
-
-Then you can select a label with indexing, like this:
-
- goto *array[i];
-
-Note that this does not check whether the subscript is in bounds--array
-indexing in C never does that.
-
- Such an array of label values serves a purpose much like that of the
-'switch' statement. The 'switch' statement is cleaner, so use that
-rather than an array unless the problem does not fit a 'switch'
-statement very well.
-
- Another use of label values is in an interpreter for threaded code.
-The labels within the interpreter function can be stored in the threaded
-code for super-fast dispatching.
-
- You may not use this mechanism to jump to code in a different function.
-If you do that, totally unpredictable things happen. The best way to
-avoid this is to store the label address only in automatic variables and
-never pass it as an argument.
-
- An alternate way to write the above example is
-
- static const int array[] = { &&foo - &&foo, &&bar - &&foo,
- &&hack - &&foo };
- goto *(&&foo + array[i]);
-
-This is more friendly to code living in shared libraries, as it reduces
-the number of dynamic relocations that are needed, and by consequence,
-allows the data to be read-only.
-
- The '&&foo' expressions for the same label might have different values
-if the containing function is inlined or cloned. If a program relies on
-them being always the same, '__attribute__((__noinline__,__noclone__))'
-should be used to prevent inlining and cloning. If '&&foo' is used in a
-static variable initializer, inlining and cloning is forbidden.
-
- ---------- Footnotes ----------
-
- (1) The analogous feature in Fortran is called an assigned goto, but
-that name seems inappropriate in C, where one can do more than simply
-store label addresses in label variables.
-
-
-File: gcc.info, Node: Nested Functions, Next: Constructing Calls, Prev: Labels as Values, Up: C Extensions
-
-6.4 Nested Functions
-====================
-
-A "nested function" is a function defined inside another function.
-Nested functions are supported as an extension in GNU C, but are not
-supported by GNU C++.
-
- The nested function's name is local to the block where it is defined.
-For example, here we define a nested function named 'square', and call
-it twice:
-
- foo (double a, double b)
- {
- double square (double z) { return z * z; }
-
- return square (a) + square (b);
- }
-
- The nested function can access all the variables of the containing
-function that are visible at the point of its definition. This is
-called "lexical scoping". For example, here we show a nested function
-which uses an inherited variable named 'offset':
-
- bar (int *array, int offset, int size)
- {
- int access (int *array, int index)
- { return array[index + offset]; }
- int i;
- /* ... */
- for (i = 0; i < size; i++)
- /* ... */ access (array, i) /* ... */
- }
-
- Nested function definitions are permitted within functions in the
-places where variable definitions are allowed; that is, in any block,
-mixed with the other declarations and statements in the block.
-
- It is possible to call the nested function from outside the scope of
-its name by storing its address or passing the address to another
-function:
-
- hack (int *array, int size)
- {
- void store (int index, int value)
- { array[index] = value; }
-
- intermediate (store, size);
- }
-
- Here, the function 'intermediate' receives the address of 'store' as an
-argument. If 'intermediate' calls 'store', the arguments given to
-'store' are used to store into 'array'. But this technique works only
-so long as the containing function ('hack', in this example) does not
-exit.
-
- If you try to call the nested function through its address after the
-containing function exits, all hell breaks loose. If you try to call it
-after a containing scope level exits, and if it refers to some of the
-variables that are no longer in scope, you may be lucky, but it's not
-wise to take the risk. If, however, the nested function does not refer
-to anything that has gone out of scope, you should be safe.
-
- GCC implements taking the address of a nested function using a
-technique called "trampolines". This technique was described in
-'Lexical Closures for C++' (Thomas M. Breuel, USENIX C++ Conference
-Proceedings, October 17-21, 1988).
-
- A nested function can jump to a label inherited from a containing
-function, provided the label is explicitly declared in the containing
-function (*note Local Labels::). Such a jump returns instantly to the
-containing function, exiting the nested function that did the 'goto' and
-any intermediate functions as well. Here is an example:
-
- bar (int *array, int offset, int size)
- {
- __label__ failure;
- int access (int *array, int index)
- {
- if (index > size)
- goto failure;
- return array[index + offset];
- }
- int i;
- /* ... */
- for (i = 0; i < size; i++)
- /* ... */ access (array, i) /* ... */
- /* ... */
- return 0;
-
- /* Control comes here from 'access'
- if it detects an error. */
- failure:
- return -1;
- }
-
- A nested function always has no linkage. Declaring one with 'extern'
-or 'static' is erroneous. If you need to declare the nested function
-before its definition, use 'auto' (which is otherwise meaningless for
-function declarations).
-
- bar (int *array, int offset, int size)
- {
- __label__ failure;
- auto int access (int *, int);
- /* ... */
- int access (int *array, int index)
- {
- if (index > size)
- goto failure;
- return array[index + offset];
- }
- /* ... */
- }
-
-
-File: gcc.info, Node: Constructing Calls, Next: Typeof, Prev: Nested Functions, Up: C Extensions
-
-6.5 Constructing Function Calls
-===============================
-
-Using the built-in functions described below, you can record the
-arguments a function received, and call another function with the same
-arguments, without knowing the number or types of the arguments.
-
- You can also record the return value of that function call, and later
-return that value, without knowing what data type the function tried to
-return (as long as your caller expects that data type).
-
- However, these built-in functions may interact badly with some
-sophisticated features or other extensions of the language. It is,
-therefore, not recommended to use them outside very simple functions
-acting as mere forwarders for their arguments.
-
- -- Built-in Function: void * __builtin_apply_args ()
- This built-in function returns a pointer to data describing how to
- perform a call with the same arguments as are passed to the current
- function.
-
- The function saves the arg pointer register, structure value
- address, and all registers that might be used to pass arguments to
- a function into a block of memory allocated on the stack. Then it
- returns the address of that block.
-
- -- Built-in Function: void * __builtin_apply (void (*FUNCTION)(), void
- *ARGUMENTS, size_t SIZE)
- This built-in function invokes FUNCTION with a copy of the
- parameters described by ARGUMENTS and SIZE.
-
- The value of ARGUMENTS should be the value returned by
- '__builtin_apply_args'. The argument SIZE specifies the size of
- the stack argument data, in bytes.
-
- This function returns a pointer to data describing how to return
- whatever value is returned by FUNCTION. The data is saved in a
- block of memory allocated on the stack.
-
- It is not always simple to compute the proper value for SIZE. The
- value is used by '__builtin_apply' to compute the amount of data
- that should be pushed on the stack and copied from the incoming
- argument area.
-
- -- Built-in Function: void __builtin_return (void *RESULT)
- This built-in function returns the value described by RESULT from
- the containing function. You should specify, for RESULT, a value
- returned by '__builtin_apply'.
-
- -- Built-in Function: __builtin_va_arg_pack ()
- This built-in function represents all anonymous arguments of an
- inline function. It can be used only in inline functions that are
- always inlined, never compiled as a separate function, such as
- those using '__attribute__ ((__always_inline__))' or '__attribute__
- ((__gnu_inline__))' extern inline functions. It must be only
- passed as last argument to some other function with variable
- arguments. This is useful for writing small wrapper inlines for
- variable argument functions, when using preprocessor macros is
- undesirable. For example:
- extern int myprintf (FILE *f, const char *format, ...);
- extern inline __attribute__ ((__gnu_inline__)) int
- myprintf (FILE *f, const char *format, ...)
- {
- int r = fprintf (f, "myprintf: ");
- if (r < 0)
- return r;
- int s = fprintf (f, format, __builtin_va_arg_pack ());
- if (s < 0)
- return s;
- return r + s;
- }
-
- -- Built-in Function: size_t __builtin_va_arg_pack_len ()
- This built-in function returns the number of anonymous arguments of
- an inline function. It can be used only in inline functions that
- are always inlined, never compiled as a separate function, such as
- those using '__attribute__ ((__always_inline__))' or '__attribute__
- ((__gnu_inline__))' extern inline functions. For example following
- does link- or run-time checking of open arguments for optimized
- code:
- #ifdef __OPTIMIZE__
- extern inline __attribute__((__gnu_inline__)) int
- myopen (const char *path, int oflag, ...)
- {
- if (__builtin_va_arg_pack_len () > 1)
- warn_open_too_many_arguments ();
-
- if (__builtin_constant_p (oflag))
- {
- if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
- {
- warn_open_missing_mode ();
- return __open_2 (path, oflag);
- }
- return open (path, oflag, __builtin_va_arg_pack ());
- }
-
- if (__builtin_va_arg_pack_len () < 1)
- return __open_2 (path, oflag);
-
- return open (path, oflag, __builtin_va_arg_pack ());
- }
- #endif
-
-
-File: gcc.info, Node: Typeof, Next: Conditionals, Prev: Constructing Calls, Up: C Extensions
-
-6.6 Referring to a Type with 'typeof'
-=====================================
-
-Another way to refer to the type of an expression is with 'typeof'. The
-syntax of using of this keyword looks like 'sizeof', but the construct
-acts semantically like a type name defined with 'typedef'.
-
- There are two ways of writing the argument to 'typeof': with an
-expression or with a type. Here is an example with an expression:
-
- typeof (x[0](1))
-
-This assumes that 'x' is an array of pointers to functions; the type
-described is that of the values of the functions.
-
- Here is an example with a typename as the argument:
-
- typeof (int *)
-
-Here the type described is that of pointers to 'int'.
-
- If you are writing a header file that must work when included in ISO C
-programs, write '__typeof__' instead of 'typeof'. *Note Alternate
-Keywords::.
-
- A 'typeof' construct can be used anywhere a typedef name can be used.
-For example, you can use it in a declaration, in a cast, or inside of
-'sizeof' or 'typeof'.
-
- The operand of 'typeof' is evaluated for its side effects if and only
-if it is an expression of variably modified type or the name of such a
-type.
-
- 'typeof' is often useful in conjunction with statement expressions
-(*note Statement Exprs::). Here is how the two together can be used to
-define a safe "maximum" macro which operates on any arithmetic type and
-evaluates each of its arguments exactly once:
-
- #define max(a,b) \
- ({ typeof (a) _a = (a); \
- typeof (b) _b = (b); \
- _a > _b ? _a : _b; })
-
- The reason for using names that start with underscores for the local
-variables is to avoid conflicts with variable names that occur within
-the expressions that are substituted for 'a' and 'b'. Eventually we
-hope to design a new form of declaration syntax that allows you to
-declare variables whose scopes start only after their initializers; this
-will be a more reliable way to prevent such conflicts.
-
-Some more examples of the use of 'typeof':
-
- * This declares 'y' with the type of what 'x' points to.
-
- typeof (*x) y;
-
- * This declares 'y' as an array of such values.
-
- typeof (*x) y[4];
-
- * This declares 'y' as an array of pointers to characters:
-
- typeof (typeof (char *)[4]) y;
-
- It is equivalent to the following traditional C declaration:
-
- char *y[4];
-
- To see the meaning of the declaration using 'typeof', and why it
- might be a useful way to write, rewrite it with these macros:
-
- #define pointer(T) typeof(T *)
- #define array(T, N) typeof(T [N])
-
- Now the declaration can be rewritten this way:
-
- array (pointer (char), 4) y;
-
- Thus, 'array (pointer (char), 4)' is the type of arrays of 4
- pointers to 'char'.
-
- In GNU C, but not GNU C++, you may also declare the type of a variable
-as '__auto_type'. In that case, the declaration must declare only one
-variable, whose declarator must just be an identifier, the declaration
-must be initialized, and the type of the variable is determined by the
-initializer; the name of the variable is not in scope until after the
-initializer. (In C++, you should use C++11 'auto' for this purpose.)
-Using '__auto_type', the "maximum" macro above could be written as:
-
- #define max(a,b) \
- ({ __auto_type _a = (a); \
- __auto_type _b = (b); \
- _a > _b ? _a : _b; })
-
- Using '__auto_type' instead of 'typeof' has two advantages:
-
- * Each argument to the macro appears only once in the expansion of
- the macro. This prevents the size of the macro expansion growing
- exponentially when calls to such macros are nested inside arguments
- of such macros.
-
- * If the argument to the macro has variably modified type, it is
- evaluated only once when using '__auto_type', but twice if 'typeof'
- is used.
-
- _Compatibility Note:_ In addition to 'typeof', GCC 2 supported a more
-limited extension that permitted one to write
-
- typedef T = EXPR;
-
-with the effect of declaring T to have the type of the expression EXPR.
-This extension does not work with GCC 3 (versions between 3.0 and 3.2
-crash; 3.2.1 and later give an error). Code that relies on it should be
-rewritten to use 'typeof':
-
- typedef typeof(EXPR) T;
-
-This works with all versions of GCC.
-
-
-File: gcc.info, Node: Conditionals, Next: __int128, Prev: Typeof, Up: C Extensions
-
-6.7 Conditionals with Omitted Operands
-======================================
-
-The middle operand in a conditional expression may be omitted. Then if
-the first operand is nonzero, its value is the value of the conditional
-expression.
-
- Therefore, the expression
-
- x ? : y
-
-has the value of 'x' if that is nonzero; otherwise, the value of 'y'.
-
- This example is perfectly equivalent to
-
- x ? x : y
-
-In this simple case, the ability to omit the middle operand is not
-especially useful. When it becomes useful is when the first operand
-does, or may (if it is a macro argument), contain a side effect. Then
-repeating the operand in the middle would perform the side effect twice.
-Omitting the middle operand uses the value already computed without the
-undesirable effects of recomputing it.
-
-
-File: gcc.info, Node: __int128, Next: Long Long, Prev: Conditionals, Up: C Extensions
-
-6.8 128-bit integers
-====================
-
-As an extension the integer scalar type '__int128' is supported for
-targets which have an integer mode wide enough to hold 128 bits. Simply
-write '__int128' for a signed 128-bit integer, or 'unsigned __int128'
-for an unsigned 128-bit integer. There is no support in GCC for
-expressing an integer constant of type '__int128' for targets with 'long
-long' integer less than 128 bits wide.
-
-
-File: gcc.info, Node: Long Long, Next: Complex, Prev: __int128, Up: C Extensions
-
-6.9 Double-Word Integers
-========================
-
-ISO C99 supports data types for integers that are at least 64 bits wide,
-and as an extension GCC supports them in C90 mode and in C++. Simply
-write 'long long int' for a signed integer, or 'unsigned long long int'
-for an unsigned integer. To make an integer constant of type 'long long
-int', add the suffix 'LL' to the integer. To make an integer constant
-of type 'unsigned long long int', add the suffix 'ULL' to the integer.
-
- You can use these types in arithmetic like any other integer types.
-Addition, subtraction, and bitwise boolean operations on these types are
-open-coded on all types of machines. Multiplication is open-coded if
-the machine supports a fullword-to-doubleword widening multiply
-instruction. Division and shifts are open-coded only on machines that
-provide special support. The operations that are not open-coded use
-special library routines that come with GCC.
-
- There may be pitfalls when you use 'long long' types for function
-arguments without function prototypes. If a function expects type 'int'
-for its argument, and you pass a value of type 'long long int',
-confusion results because the caller and the subroutine disagree about
-the number of bytes for the argument. Likewise, if the function expects
-'long long int' and you pass 'int'. The best way to avoid such problems
-is to use prototypes.
-
-
-File: gcc.info, Node: Complex, Next: Floating Types, Prev: Long Long, Up: C Extensions
-
-6.10 Complex Numbers
-====================
-
-ISO C99 supports complex floating data types, and as an extension GCC
-supports them in C90 mode and in C++. GCC also supports complex integer
-data types which are not part of ISO C99. You can declare complex types
-using the keyword '_Complex'. As an extension, the older GNU keyword
-'__complex__' is also supported.
-
- For example, '_Complex double x;' declares 'x' as a variable whose real
-part and imaginary part are both of type 'double'. '_Complex short int
-y;' declares 'y' to have real and imaginary parts of type 'short int';
-this is not likely to be useful, but it shows that the set of complex
-types is complete.
-
- To write a constant with a complex data type, use the suffix 'i' or 'j'
-(either one; they are equivalent). For example, '2.5fi' has type
-'_Complex float' and '3i' has type '_Complex int'. Such a constant
-always has a pure imaginary value, but you can form any complex value
-you like by adding one to a real constant. This is a GNU extension; if
-you have an ISO C99 conforming C library (such as the GNU C Library),
-and want to construct complex constants of floating type, you should
-include '<complex.h>' and use the macros 'I' or '_Complex_I' instead.
-
- To extract the real part of a complex-valued expression EXP, write
-'__real__ EXP'. Likewise, use '__imag__' to extract the imaginary part.
-This is a GNU extension; for values of floating type, you should use the
-ISO C99 functions 'crealf', 'creal', 'creall', 'cimagf', 'cimag' and
-'cimagl', declared in '<complex.h>' and also provided as built-in
-functions by GCC.
-
- The operator '~' performs complex conjugation when used on a value with
-a complex type. This is a GNU extension; for values of floating type,
-you should use the ISO C99 functions 'conjf', 'conj' and 'conjl',
-declared in '<complex.h>' and also provided as built-in functions by
-GCC.
-
- GCC can allocate complex automatic variables in a noncontiguous
-fashion; it's even possible for the real part to be in a register while
-the imaginary part is on the stack (or vice versa). Only the DWARF 2
-debug info format can represent this, so use of DWARF 2 is recommended.
-If you are using the stabs debug info format, GCC describes a
-noncontiguous complex variable as if it were two separate variables of
-noncomplex type. If the variable's actual name is 'foo', the two
-fictitious variables are named 'foo$real' and 'foo$imag'. You can
-examine and set these two fictitious variables with your debugger.
-
-
-File: gcc.info, Node: Floating Types, Next: Half-Precision, Prev: Complex, Up: C Extensions
-
-6.11 Additional Floating Types
-==============================
-
-As an extension, GNU C supports additional floating types, '__float80'
-and '__float128' to support 80-bit ('XFmode') and 128-bit ('TFmode')
-floating types. Support for additional types includes the arithmetic
-operators: add, subtract, multiply, divide; unary arithmetic operators;
-relational operators; equality operators; and conversions to and from
-integer and other floating types. Use a suffix 'w' or 'W' in a literal
-constant of type '__float80' and 'q' or 'Q' for '_float128'. You can
-declare complex types using the corresponding internal complex type,
-'XCmode' for '__float80' type and 'TCmode' for '__float128' type:
-
- typedef _Complex float __attribute__((mode(TC))) _Complex128;
- typedef _Complex float __attribute__((mode(XC))) _Complex80;
-
- Not all targets support additional floating-point types. '__float80'
-and '__float128' types are supported on i386, x86_64 and IA-64 targets.
-The '__float128' type is supported on hppa HP-UX targets.
-
-
-File: gcc.info, Node: Half-Precision, Next: Decimal Float, Prev: Floating Types, Up: C Extensions
-
-6.12 Half-Precision Floating Point
-==================================
-
-On ARM targets, GCC supports half-precision (16-bit) floating point via
-the '__fp16' type. You must enable this type explicitly with the
-'-mfp16-format' command-line option in order to use it.
-
- ARM supports two incompatible representations for half-precision
-floating-point values. You must choose one of the representations and
-use it consistently in your program.
-
- Specifying '-mfp16-format=ieee' selects the IEEE 754-2008 format. This
-format can represent normalized values in the range of 2^{-14} to 65504.
-There are 11 bits of significand precision, approximately 3 decimal
-digits.
-
- Specifying '-mfp16-format=alternative' selects the ARM alternative
-format. This representation is similar to the IEEE format, but does not
-support infinities or NaNs. Instead, the range of exponents is
-extended, so that this format can represent normalized values in the
-range of 2^{-14} to 131008.
-
- The '__fp16' type is a storage format only. For purposes of arithmetic
-and other operations, '__fp16' values in C or C++ expressions are
-automatically promoted to 'float'. In addition, you cannot declare a
-function with a return value or parameters of type '__fp16'.
-
- Note that conversions from 'double' to '__fp16' involve an intermediate
-conversion to 'float'. Because of rounding, this can sometimes produce
-a different result than a direct conversion.
-
- ARM provides hardware support for conversions between '__fp16' and
-'float' values as an extension to VFP and NEON (Advanced SIMD). GCC
-generates code using these hardware instructions if you compile with
-options to select an FPU that provides them; for example,
-'-mfpu=neon-fp16 -mfloat-abi=softfp', in addition to the '-mfp16-format'
-option to select a half-precision format.
-
- Language-level support for the '__fp16' data type is independent of
-whether GCC generates code using hardware floating-point instructions.
-In cases where hardware support is not specified, GCC implements
-conversions between '__fp16' and 'float' values as library calls.
-
-
-File: gcc.info, Node: Decimal Float, Next: Hex Floats, Prev: Half-Precision, Up: C Extensions
-
-6.13 Decimal Floating Types
-===========================
-
-As an extension, GNU C supports decimal floating types as defined in the
-N1312 draft of ISO/IEC WDTR24732. Support for decimal floating types in
-GCC will evolve as the draft technical report changes. Calling
-conventions for any target might also change. Not all targets support
-decimal floating types.
-
- The decimal floating types are '_Decimal32', '_Decimal64', and
-'_Decimal128'. They use a radix of ten, unlike the floating types
-'float', 'double', and 'long double' whose radix is not specified by the
-C standard but is usually two.
-
- Support for decimal floating types includes the arithmetic operators
-add, subtract, multiply, divide; unary arithmetic operators; relational
-operators; equality operators; and conversions to and from integer and
-other floating types. Use a suffix 'df' or 'DF' in a literal constant
-of type '_Decimal32', 'dd' or 'DD' for '_Decimal64', and 'dl' or 'DL'
-for '_Decimal128'.
-
- GCC support of decimal float as specified by the draft technical report
-is incomplete:
-
- * When the value of a decimal floating type cannot be represented in
- the integer type to which it is being converted, the result is
- undefined rather than the result value specified by the draft
- technical report.
-
- * GCC does not provide the C library functionality associated with
- 'math.h', 'fenv.h', 'stdio.h', 'stdlib.h', and 'wchar.h', which
- must come from a separate C library implementation. Because of
- this the GNU C compiler does not define macro '__STDC_DEC_FP__' to
- indicate that the implementation conforms to the technical report.
-
- Types '_Decimal32', '_Decimal64', and '_Decimal128' are supported by
-the DWARF 2 debug information format.
-
-
-File: gcc.info, Node: Hex Floats, Next: Fixed-Point, Prev: Decimal Float, Up: C Extensions
-
-6.14 Hex Floats
-===============
-
-ISO C99 supports floating-point numbers written not only in the usual
-decimal notation, such as '1.55e1', but also numbers such as '0x1.fp3'
-written in hexadecimal format. As a GNU extension, GCC supports this in
-C90 mode (except in some cases when strictly conforming) and in C++. In
-that format the '0x' hex introducer and the 'p' or 'P' exponent field
-are mandatory. The exponent is a decimal number that indicates the
-power of 2 by which the significant part is multiplied. Thus '0x1.f' is
-1 15/16, 'p3' multiplies it by 8, and the value of '0x1.fp3' is the same
-as '1.55e1'.
-
- Unlike for floating-point numbers in the decimal notation the exponent
-is always required in the hexadecimal notation. Otherwise the compiler
-would not be able to resolve the ambiguity of, e.g., '0x1.f'. This
-could mean '1.0f' or '1.9375' since 'f' is also the extension for
-floating-point constants of type 'float'.
-
-
-File: gcc.info, Node: Fixed-Point, Next: Named Address Spaces, Prev: Hex Floats, Up: C Extensions
-
-6.15 Fixed-Point Types
-======================
-
-As an extension, GNU C supports fixed-point types as defined in the
-N1169 draft of ISO/IEC DTR 18037. Support for fixed-point types in GCC
-will evolve as the draft technical report changes. Calling conventions
-for any target might also change. Not all targets support fixed-point
-types.
-
- The fixed-point types are 'short _Fract', '_Fract', 'long _Fract',
-'long long _Fract', 'unsigned short _Fract', 'unsigned _Fract',
-'unsigned long _Fract', 'unsigned long long _Fract', '_Sat short
-_Fract', '_Sat _Fract', '_Sat long _Fract', '_Sat long long _Fract',
-'_Sat unsigned short _Fract', '_Sat unsigned _Fract', '_Sat unsigned
-long _Fract', '_Sat unsigned long long _Fract', 'short _Accum',
-'_Accum', 'long _Accum', 'long long _Accum', 'unsigned short _Accum',
-'unsigned _Accum', 'unsigned long _Accum', 'unsigned long long _Accum',
-'_Sat short _Accum', '_Sat _Accum', '_Sat long _Accum', '_Sat long long
-_Accum', '_Sat unsigned short _Accum', '_Sat unsigned _Accum', '_Sat
-unsigned long _Accum', '_Sat unsigned long long _Accum'.
-
- Fixed-point data values contain fractional and optional integral parts.
-The format of fixed-point data varies and depends on the target machine.
-
- Support for fixed-point types includes:
- * prefix and postfix increment and decrement operators ('++', '--')
- * unary arithmetic operators ('+', '-', '!')
- * binary arithmetic operators ('+', '-', '*', '/')
- * binary shift operators ('<<', '>>')
- * relational operators ('<', '<=', '>=', '>')
- * equality operators ('==', '!=')
- * assignment operators ('+=', '-=', '*=', '/=', '<<=', '>>=')
- * conversions to and from integer, floating-point, or fixed-point
- types
-
- Use a suffix in a fixed-point literal constant:
- * 'hr' or 'HR' for 'short _Fract' and '_Sat short _Fract'
- * 'r' or 'R' for '_Fract' and '_Sat _Fract'
- * 'lr' or 'LR' for 'long _Fract' and '_Sat long _Fract'
- * 'llr' or 'LLR' for 'long long _Fract' and '_Sat long long _Fract'
- * 'uhr' or 'UHR' for 'unsigned short _Fract' and '_Sat unsigned short
- _Fract'
- * 'ur' or 'UR' for 'unsigned _Fract' and '_Sat unsigned _Fract'
- * 'ulr' or 'ULR' for 'unsigned long _Fract' and '_Sat unsigned long
- _Fract'
- * 'ullr' or 'ULLR' for 'unsigned long long _Fract' and '_Sat unsigned
- long long _Fract'
- * 'hk' or 'HK' for 'short _Accum' and '_Sat short _Accum'
- * 'k' or 'K' for '_Accum' and '_Sat _Accum'
- * 'lk' or 'LK' for 'long _Accum' and '_Sat long _Accum'
- * 'llk' or 'LLK' for 'long long _Accum' and '_Sat long long _Accum'
- * 'uhk' or 'UHK' for 'unsigned short _Accum' and '_Sat unsigned short
- _Accum'
- * 'uk' or 'UK' for 'unsigned _Accum' and '_Sat unsigned _Accum'
- * 'ulk' or 'ULK' for 'unsigned long _Accum' and '_Sat unsigned long
- _Accum'
- * 'ullk' or 'ULLK' for 'unsigned long long _Accum' and '_Sat unsigned
- long long _Accum'
-
- GCC support of fixed-point types as specified by the draft technical
-report is incomplete:
-
- * Pragmas to control overflow and rounding behaviors are not
- implemented.
-
- Fixed-point types are supported by the DWARF 2 debug information
-format.
-
-
-File: gcc.info, Node: Named Address Spaces, Next: Zero Length, Prev: Fixed-Point, Up: C Extensions
-
-6.16 Named Address Spaces
-=========================
-
-As an extension, GNU C supports named address spaces as defined in the
-N1275 draft of ISO/IEC DTR 18037. Support for named address spaces in
-GCC will evolve as the draft technical report changes. Calling
-conventions for any target might also change. At present, only the AVR,
-SPU, M32C, and RL78 targets support address spaces other than the
-generic address space.
-
- Address space identifiers may be used exactly like any other C type
-qualifier (e.g., 'const' or 'volatile'). See the N1275 document for
-more details.
-
-6.16.1 AVR Named Address Spaces
--------------------------------
-
-On the AVR target, there are several address spaces that can be used in
-order to put read-only data into the flash memory and access that data
-by means of the special instructions 'LPM' or 'ELPM' needed to read from
-flash.
-
- Per default, any data including read-only data is located in RAM (the
-generic address space) so that non-generic address spaces are needed to
-locate read-only data in flash memory _and_ to generate the right
-instructions to access this data without using (inline) assembler code.
-
-'__flash'
- The '__flash' qualifier locates data in the '.progmem.data'
- section. Data is read using the 'LPM' instruction. Pointers to
- this address space are 16 bits wide.
-
-'__flash1'
-'__flash2'
-'__flash3'
-'__flash4'
-'__flash5'
- These are 16-bit address spaces locating data in section
- '.progmemN.data' where N refers to address space '__flashN'. The
- compiler sets the 'RAMPZ' segment register appropriately before
- reading data by means of the 'ELPM' instruction.
-
-'__memx'
- This is a 24-bit address space that linearizes flash and RAM: If
- the high bit of the address is set, data is read from RAM using the
- lower two bytes as RAM address. If the high bit of the address is
- clear, data is read from flash with 'RAMPZ' set according to the
- high byte of the address. *Note '__builtin_avr_flash_segment': AVR
- Built-in Functions.
-
- Objects in this address space are located in '.progmemx.data'.
-
- Example
-
- char my_read (const __flash char ** p)
- {
- /* p is a pointer to RAM that points to a pointer to flash.
- The first indirection of p reads that flash pointer
- from RAM and the second indirection reads a char from this
- flash address. */
-
- return **p;
- }
-
- /* Locate array[] in flash memory */
- const __flash int array[] = { 3, 5, 7, 11, 13, 17, 19 };
-
- int i = 1;
-
- int main (void)
- {
- /* Return 17 by reading from flash memory */
- return array[array[i]];
- }
-
-For each named address space supported by avr-gcc there is an equally
-named but uppercase built-in macro defined. The purpose is to
-facilitate testing if respective address space support is available or
-not:
-
- #ifdef __FLASH
- const __flash int var = 1;
-
- int read_var (void)
- {
- return var;
- }
- #else
- #include <avr/pgmspace.h> /* From AVR-LibC */
-
- const int var PROGMEM = 1;
-
- int read_var (void)
- {
- return (int) pgm_read_word (&var);
- }
- #endif /* __FLASH */
-
-Notice that attribute *note 'progmem': AVR Variable Attributes. locates
-data in flash but accesses to these data read from generic address
-space, i.e. from RAM, so that you need special accessors like
-'pgm_read_byte' from AVR-LibC (http://nongnu.org/avr-libc/user-manual/)
-together with attribute 'progmem'.
-
-Limitations and caveats
-
- * Reading across the 64 KiB section boundary of the '__flash' or
- '__flashN' address spaces shows undefined behavior. The only
- address space that supports reading across the 64 KiB flash segment
- boundaries is '__memx'.
-
- * If you use one of the '__flashN' address spaces you must arrange
- your linker script to locate the '.progmemN.data' sections
- according to your needs.
-
- * Any data or pointers to the non-generic address spaces must be
- qualified as 'const', i.e. as read-only data. This still applies
- if the data in one of these address spaces like software version
- number or calibration lookup table are intended to be changed after
- load time by, say, a boot loader. In this case the right
- qualification is 'const' 'volatile' so that the compiler must not
- optimize away known values or insert them as immediates into
- operands of instructions.
-
- * The following code initializes a variable 'pfoo' located in static
- storage with a 24-bit address:
- extern const __memx char foo;
- const __memx void *pfoo = &foo;
-
- Such code requires at least binutils 2.23, see
- PR13503 (http://sourceware.org/PR13503).
-
-6.16.2 M32C Named Address Spaces
---------------------------------
-
-On the M32C target, with the R8C and M16C CPU variants, variables
-qualified with '__far' are accessed using 32-bit addresses in order to
-access memory beyond the first 64 Ki bytes. If '__far' is used with the
-M32CM or M32C CPU variants, it has no effect.
-
-6.16.3 RL78 Named Address Spaces
---------------------------------
-
-On the RL78 target, variables qualified with '__far' are accessed with
-32-bit pointers (20-bit addresses) rather than the default 16-bit
-addresses. Non-far variables are assumed to appear in the topmost
-64 KiB of the address space.
-
-6.16.4 SPU Named Address Spaces
--------------------------------
-
-On the SPU target variables may be declared as belonging to another
-address space by qualifying the type with the '__ea' address space
-identifier:
-
- extern int __ea i;
-
-The compiler generates special code to access the variable 'i'. It may
-use runtime library support, or generate special machine instructions to
-access that address space.
-
-
-File: gcc.info, Node: Zero Length, Next: Empty Structures, Prev: Named Address Spaces, Up: C Extensions
-
-6.17 Arrays of Length Zero
-==========================
-
-Zero-length arrays are allowed in GNU C. They are very useful as the
-last element of a structure that is really a header for a
-variable-length object:
-
- struct line {
- int length;
- char contents[0];
- };
-
- struct line *thisline = (struct line *)
- malloc (sizeof (struct line) + this_length);
- thisline->length = this_length;
-
- In ISO C90, you would have to give 'contents' a length of 1, which
-means either you waste space or complicate the argument to 'malloc'.
-
- In ISO C99, you would use a "flexible array member", which is slightly
-different in syntax and semantics:
-
- * Flexible array members are written as 'contents[]' without the '0'.
-
- * Flexible array members have incomplete type, and so the 'sizeof'
- operator may not be applied. As a quirk of the original
- implementation of zero-length arrays, 'sizeof' evaluates to zero.
-
- * Flexible array members may only appear as the last member of a
- 'struct' that is otherwise non-empty.
-
- * A structure containing a flexible array member, or a union
- containing such a structure (possibly recursively), may not be a
- member of a structure or an element of an array. (However, these
- uses are permitted by GCC as extensions.)
-
- GCC versions before 3.0 allowed zero-length arrays to be statically
-initialized, as if they were flexible arrays. In addition to those
-cases that were useful, it also allowed initializations in situations
-that would corrupt later data. Non-empty initialization of zero-length
-arrays is now treated like any case where there are more initializer
-elements than the array holds, in that a suitable warning about "excess
-elements in array" is given, and the excess elements (all of them, in
-this case) are ignored.
-
- Instead GCC allows static initialization of flexible array members.
-This is equivalent to defining a new structure containing the original
-structure followed by an array of sufficient size to contain the data.
-E.g. in the following, 'f1' is constructed as if it were declared like
-'f2'.
-
- struct f1 {
- int x; int y[];
- } f1 = { 1, { 2, 3, 4 } };
-
- struct f2 {
- struct f1 f1; int data[3];
- } f2 = { { 1 }, { 2, 3, 4 } };
-
-The convenience of this extension is that 'f1' has the desired type,
-eliminating the need to consistently refer to 'f2.f1'.
-
- This has symmetry with normal static arrays, in that an array of
-unknown size is also written with '[]'.
-
- Of course, this extension only makes sense if the extra data comes at
-the end of a top-level object, as otherwise we would be overwriting data
-at subsequent offsets. To avoid undue complication and confusion with
-initialization of deeply nested arrays, we simply disallow any non-empty
-initialization except when the structure is the top-level object. For
-example:
-
- struct foo { int x; int y[]; };
- struct bar { struct foo z; };
-
- struct foo a = { 1, { 2, 3, 4 } }; // Valid.
- struct bar b = { { 1, { 2, 3, 4 } } }; // Invalid.
- struct bar c = { { 1, { } } }; // Valid.
- struct foo d[1] = { { 1 { 2, 3, 4 } } }; // Invalid.
-
-
-File: gcc.info, Node: Empty Structures, Next: Variable Length, Prev: Zero Length, Up: C Extensions
-
-6.18 Structures With No Members
-===============================
-
-GCC permits a C structure to have no members:
-
- struct empty {
- };
-
- The structure has size zero. In C++, empty structures are part of the
-language. G++ treats empty structures as if they had a single member of
-type 'char'.
-
-
-File: gcc.info, Node: Variable Length, Next: Variadic Macros, Prev: Empty Structures, Up: C Extensions
-
-6.19 Arrays of Variable Length
-==============================
-
-Variable-length automatic arrays are allowed in ISO C99, and as an
-extension GCC accepts them in C90 mode and in C++. These arrays are
-declared like any other automatic arrays, but with a length that is not
-a constant expression. The storage is allocated at the point of
-declaration and deallocated when the block scope containing the
-declaration exits. For example:
-
- FILE *
- concat_fopen (char *s1, char *s2, char *mode)
- {
- char str[strlen (s1) + strlen (s2) + 1];
- strcpy (str, s1);
- strcat (str, s2);
- return fopen (str, mode);
- }
-
- Jumping or breaking out of the scope of the array name deallocates the
-storage. Jumping into the scope is not allowed; you get an error
-message for it.
-
- As an extension, GCC accepts variable-length arrays as a member of a
-structure or a union. For example:
-
- void
- foo (int n)
- {
- struct S { int x[n]; };
- }
-
- You can use the function 'alloca' to get an effect much like
-variable-length arrays. The function 'alloca' is available in many
-other C implementations (but not in all). On the other hand,
-variable-length arrays are more elegant.
-
- There are other differences between these two methods. Space allocated
-with 'alloca' exists until the containing _function_ returns. The space
-for a variable-length array is deallocated as soon as the array name's
-scope ends. (If you use both variable-length arrays and 'alloca' in the
-same function, deallocation of a variable-length array also deallocates
-anything more recently allocated with 'alloca'.)
-
- You can also use variable-length arrays as arguments to functions:
-
- struct entry
- tester (int len, char data[len][len])
- {
- /* ... */
- }
-
- The length of an array is computed once when the storage is allocated
-and is remembered for the scope of the array in case you access it with
-'sizeof'.
-
- If you want to pass the array first and the length afterward, you can
-use a forward declaration in the parameter list--another GNU extension.
-
- struct entry
- tester (int len; char data[len][len], int len)
- {
- /* ... */
- }
-
- The 'int len' before the semicolon is a "parameter forward
-declaration", and it serves the purpose of making the name 'len' known
-when the declaration of 'data' is parsed.
-
- You can write any number of such parameter forward declarations in the
-parameter list. They can be separated by commas or semicolons, but the
-last one must end with a semicolon, which is followed by the "real"
-parameter declarations. Each forward declaration must match a "real"
-declaration in parameter name and data type. ISO C99 does not support
-parameter forward declarations.
-
-
-File: gcc.info, Node: Variadic Macros, Next: Escaped Newlines, Prev: Variable Length, Up: C Extensions
-
-6.20 Macros with a Variable Number of Arguments.
-================================================
-
-In the ISO C standard of 1999, a macro can be declared to accept a
-variable number of arguments much as a function can. The syntax for
-defining the macro is similar to that of a function. Here is an
-example:
-
- #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
-
-Here '...' is a "variable argument". In the invocation of such a macro,
-it represents the zero or more tokens until the closing parenthesis that
-ends the invocation, including any commas. This set of tokens replaces
-the identifier '__VA_ARGS__' in the macro body wherever it appears. See
-the CPP manual for more information.
-
- GCC has long supported variadic macros, and used a different syntax
-that allowed you to give a name to the variable arguments just like any
-other argument. Here is an example:
-
- #define debug(format, args...) fprintf (stderr, format, args)
-
-This is in all ways equivalent to the ISO C example above, but arguably
-more readable and descriptive.
-
- GNU CPP has two further variadic macro extensions, and permits them to
-be used with either of the above forms of macro definition.
-
- In standard C, you are not allowed to leave the variable argument out
-entirely; but you are allowed to pass an empty argument. For example,
-this invocation is invalid in ISO C, because there is no comma after the
-string:
-
- debug ("A message")
-
- GNU CPP permits you to completely omit the variable arguments in this
-way. In the above examples, the compiler would complain, though since
-the expansion of the macro still has the extra comma after the format
-string.
-
- To help solve this problem, CPP behaves specially for variable
-arguments used with the token paste operator, '##'. If instead you
-write
-
- #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
-
-and if the variable arguments are omitted or empty, the '##' operator
-causes the preprocessor to remove the comma before it. If you do
-provide some variable arguments in your macro invocation, GNU CPP does
-not complain about the paste operation and instead places the variable
-arguments after the comma. Just like any other pasted macro argument,
-these arguments are not macro expanded.
-
-
-File: gcc.info, Node: Escaped Newlines, Next: Subscripting, Prev: Variadic Macros, Up: C Extensions
-
-6.21 Slightly Looser Rules for Escaped Newlines
-===============================================
-
-Recently, the preprocessor has relaxed its treatment of escaped
-newlines. Previously, the newline had to immediately follow a
-backslash. The current implementation allows whitespace in the form of
-spaces, horizontal and vertical tabs, and form feeds between the
-backslash and the subsequent newline. The preprocessor issues a
-warning, but treats it as a valid escaped newline and combines the two
-lines to form a single logical line. This works within comments and
-tokens, as well as between tokens. Comments are _not_ treated as
-whitespace for the purposes of this relaxation, since they have not yet
-been replaced with spaces.
-
-
-File: gcc.info, Node: Subscripting, Next: Pointer Arith, Prev: Escaped Newlines, Up: C Extensions
-
-6.22 Non-Lvalue Arrays May Have Subscripts
-==========================================
-
-In ISO C99, arrays that are not lvalues still decay to pointers, and may
-be subscripted, although they may not be modified or used after the next
-sequence point and the unary '&' operator may not be applied to them.
-As an extension, GNU C allows such arrays to be subscripted in C90 mode,
-though otherwise they do not decay to pointers outside C99 mode. For
-example, this is valid in GNU C though not valid in C90:
-
- struct foo {int a[4];};
-
- struct foo f();
-
- bar (int index)
- {
- return f().a[index];
- }
-
-
-File: gcc.info, Node: Pointer Arith, Next: Initializers, Prev: Subscripting, Up: C Extensions
-
-6.23 Arithmetic on 'void'- and Function-Pointers
-================================================
-
-In GNU C, addition and subtraction operations are supported on pointers
-to 'void' and on pointers to functions. This is done by treating the
-size of a 'void' or of a function as 1.
-
- A consequence of this is that 'sizeof' is also allowed on 'void' and on
-function types, and returns 1.
-
- The option '-Wpointer-arith' requests a warning if these extensions are
-used.
-
-
-File: gcc.info, Node: Initializers, Next: Compound Literals, Prev: Pointer Arith, Up: C Extensions
-
-6.24 Non-Constant Initializers
-==============================
-
-As in standard C++ and ISO C99, the elements of an aggregate initializer
-for an automatic variable are not required to be constant expressions in
-GNU C. Here is an example of an initializer with run-time varying
-elements:
-
- foo (float f, float g)
- {
- float beat_freqs[2] = { f-g, f+g };
- /* ... */
- }
-
-
-File: gcc.info, Node: Compound Literals, Next: Designated Inits, Prev: Initializers, Up: C Extensions
-
-6.25 Compound Literals
-======================
-
-ISO C99 supports compound literals. A compound literal looks like a
-cast containing an initializer. Its value is an object of the type
-specified in the cast, containing the elements specified in the
-initializer; it is an lvalue. As an extension, GCC supports compound
-literals in C90 mode and in C++, though the semantics are somewhat
-different in C++.
-
- Usually, the specified type is a structure. Assume that 'struct foo'
-and 'structure' are declared as shown:
-
- struct foo {int a; char b[2];} structure;
-
-Here is an example of constructing a 'struct foo' with a compound
-literal:
-
- structure = ((struct foo) {x + y, 'a', 0});
-
-This is equivalent to writing the following:
-
- {
- struct foo temp = {x + y, 'a', 0};
- structure = temp;
- }
-
- You can also construct an array, though this is dangerous in C++, as
-explained below. If all the elements of the compound literal are (made
-up of) simple constant expressions, suitable for use in initializers of
-objects of static storage duration, then the compound literal can be
-coerced to a pointer to its first element and used in such an
-initializer, as shown here:
-
- char **foo = (char *[]) { "x", "y", "z" };
-
- Compound literals for scalar types and union types are also allowed,
-but then the compound literal is equivalent to a cast.
-
- As a GNU extension, GCC allows initialization of objects with static
-storage duration by compound literals (which is not possible in ISO C99,
-because the initializer is not a constant). It is handled as if the
-object is initialized only with the bracket enclosed list if the types
-of the compound literal and the object match. The initializer list of
-the compound literal must be constant. If the object being initialized
-has array type of unknown size, the size is determined by compound
-literal size.
-
- static struct foo x = (struct foo) {1, 'a', 'b'};
- static int y[] = (int []) {1, 2, 3};
- static int z[] = (int [3]) {1};
-
-The above lines are equivalent to the following:
- static struct foo x = {1, 'a', 'b'};
- static int y[] = {1, 2, 3};
- static int z[] = {1, 0, 0};
-
- In C, a compound literal designates an unnamed object with static or
-automatic storage duration. In C++, a compound literal designates a
-temporary object, which only lives until the end of its full-expression.
-As a result, well-defined C code that takes the address of a subobject
-of a compound literal can be undefined in C++. For instance, if the
-array compound literal example above appeared inside a function, any
-subsequent use of 'foo' in C++ has undefined behavior because the
-lifetime of the array ends after the declaration of 'foo'. As a result,
-the C++ compiler now rejects the conversion of a temporary array to a
-pointer.
-
- As an optimization, the C++ compiler sometimes gives array compound
-literals longer lifetimes: when the array either appears outside a
-function or has const-qualified type. If 'foo' and its initializer had
-elements of 'char *const' type rather than 'char *', or if 'foo' were a
-global variable, the array would have static storage duration. But it
-is probably safest just to avoid the use of array compound literals in
-code compiled as C++.
-
-
-File: gcc.info, Node: Designated Inits, Next: Case Ranges, Prev: Compound Literals, Up: C Extensions
-
-6.26 Designated Initializers
-============================
-
-Standard C90 requires the elements of an initializer to appear in a
-fixed order, the same as the order of the elements in the array or
-structure being initialized.
-
- In ISO C99 you can give the elements in any order, specifying the array
-indices or structure field names they apply to, and GNU C allows this as
-an extension in C90 mode as well. This extension is not implemented in
-GNU C++.
-
- To specify an array index, write '[INDEX] =' before the element value.
-For example,
-
- int a[6] = { [4] = 29, [2] = 15 };
-
-is equivalent to
-
- int a[6] = { 0, 0, 15, 0, 29, 0 };
-
-The index values must be constant expressions, even if the array being
-initialized is automatic.
-
- An alternative syntax for this that has been obsolete since GCC 2.5 but
-GCC still accepts is to write '[INDEX]' before the element value, with
-no '='.
-
- To initialize a range of elements to the same value, write '[FIRST ...
-LAST] = VALUE'. This is a GNU extension. For example,
-
- int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 };
-
-If the value in it has side-effects, the side-effects happen only once,
-not for each initialized field by the range initializer.
-
-Note that the length of the array is the highest value specified plus
-one.
-
- In a structure initializer, specify the name of a field to initialize
-with '.FIELDNAME =' before the element value. For example, given the
-following structure,
-
- struct point { int x, y; };
-
-the following initialization
-
- struct point p = { .y = yvalue, .x = xvalue };
-
-is equivalent to
-
- struct point p = { xvalue, yvalue };
-
- Another syntax that has the same meaning, obsolete since GCC 2.5, is
-'FIELDNAME:', as shown here:
-
- struct point p = { y: yvalue, x: xvalue };
-
- Omitted field members are implicitly initialized the same as objects
-that have static storage duration.
-
- The '[INDEX]' or '.FIELDNAME' is known as a "designator". You can also
-use a designator (or the obsolete colon syntax) when initializing a
-union, to specify which element of the union should be used. For
-example,
-
- union foo { int i; double d; };
-
- union foo f = { .d = 4 };
-
-converts 4 to a 'double' to store it in the union using the second
-element. By contrast, casting 4 to type 'union foo' stores it into the
-union as the integer 'i', since it is an integer. (*Note Cast to
-Union::.)
-
- You can combine this technique of naming elements with ordinary C
-initialization of successive elements. Each initializer element that
-does not have a designator applies to the next consecutive element of
-the array or structure. For example,
-
- int a[6] = { [1] = v1, v2, [4] = v4 };
-
-is equivalent to
-
- int a[6] = { 0, v1, v2, 0, v4, 0 };
-
- Labeling the elements of an array initializer is especially useful when
-the indices are characters or belong to an 'enum' type. For example:
-
- int whitespace[256]
- = { [' '] = 1, ['\t'] = 1, ['\h'] = 1,
- ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 };
-
- You can also write a series of '.FIELDNAME' and '[INDEX]' designators
-before an '=' to specify a nested subobject to initialize; the list is
-taken relative to the subobject corresponding to the closest surrounding
-brace pair. For example, with the 'struct point' declaration above:
-
- struct point ptarray[10] = { [2].y = yv2, [2].x = xv2, [0].x = xv0 };
-
-If the same field is initialized multiple times, it has the value from
-the last initialization. If any such overridden initialization has
-side-effect, it is unspecified whether the side-effect happens or not.
-Currently, GCC discards them and issues a warning.
-
-
-File: gcc.info, Node: Case Ranges, Next: Cast to Union, Prev: Designated Inits, Up: C Extensions
-
-6.27 Case Ranges
-================
-
-You can specify a range of consecutive values in a single 'case' label,
-like this:
-
- case LOW ... HIGH:
-
-This has the same effect as the proper number of individual 'case'
-labels, one for each integer value from LOW to HIGH, inclusive.
-
- This feature is especially useful for ranges of ASCII character codes:
-
- case 'A' ... 'Z':
-
- *Be careful:* Write spaces around the '...', for otherwise it may be
-parsed wrong when you use it with integer values. For example, write
-this:
-
- case 1 ... 5:
-
-rather than this:
-
- case 1...5:
-
-
-File: gcc.info, Node: Cast to Union, Next: Mixed Declarations, Prev: Case Ranges, Up: C Extensions
-
-6.28 Cast to a Union Type
-=========================
-
-A cast to union type is similar to other casts, except that the type
-specified is a union type. You can specify the type either with 'union
-TAG' or with a typedef name. A cast to union is actually a constructor,
-not a cast, and hence does not yield an lvalue like normal casts.
-(*Note Compound Literals::.)
-
- The types that may be cast to the union type are those of the members
-of the union. Thus, given the following union and variables:
-
- union foo { int i; double d; };
- int x;
- double y;
-
-both 'x' and 'y' can be cast to type 'union foo'.
-
- Using the cast as the right-hand side of an assignment to a variable of
-union type is equivalent to storing in a member of the union:
-
- union foo u;
- /* ... */
- u = (union foo) x == u.i = x
- u = (union foo) y == u.d = y
-
- You can also use the union cast as a function argument:
-
- void hack (union foo);
- /* ... */
- hack ((union foo) x);
-
-
-File: gcc.info, Node: Mixed Declarations, Next: Function Attributes, Prev: Cast to Union, Up: C Extensions
-
-6.29 Mixed Declarations and Code
-================================
-
-ISO C99 and ISO C++ allow declarations and code to be freely mixed
-within compound statements. As an extension, GNU C also allows this in
-C90 mode. For example, you could do:
-
- int i;
- /* ... */
- i++;
- int j = i + 2;
-
- Each identifier is visible from where it is declared until the end of
-the enclosing block.
-
-
-File: gcc.info, Node: Function Attributes, Next: Attribute Syntax, Prev: Mixed Declarations, Up: C Extensions
-
-6.30 Declaring Attributes of Functions
-======================================
-
-In GNU C, you declare certain things about functions called in your
-program which help the compiler optimize function calls and check your
-code more carefully.
-
- The keyword '__attribute__' allows you to specify special attributes
-when making a declaration. This keyword is followed by an attribute
-specification inside double parentheses. The following attributes are
-currently defined for functions on all targets: 'aligned', 'alloc_size',
-'alloc_align', 'assume_aligned', 'noreturn', 'returns_twice',
-'noinline', 'noclone', 'always_inline', 'flatten', 'pure', 'const',
-'nothrow', 'sentinel', 'format', 'format_arg', 'no_instrument_function',
-'no_split_stack', 'section', 'constructor', 'destructor', 'used',
-'unused', 'deprecated', 'weak', 'malloc', 'alias', 'ifunc',
-'warn_unused_result', 'nonnull', 'returns_nonnull', 'gnu_inline',
-'externally_visible', 'hot', 'cold', 'artificial',
-'no_sanitize_address', 'no_address_safety_analysis',
-'no_sanitize_undefined', 'error' and 'warning'. Several other
-attributes are defined for functions on particular target systems.
-Other attributes, including 'section' are supported for variables
-declarations (*note Variable Attributes::) and for types (*note Type
-Attributes::).
-
- GCC plugins may provide their own attributes.
-
- You may also specify attributes with '__' preceding and following each
-keyword. This allows you to use them in header files without being
-concerned about a possible macro of the same name. For example, you may
-use '__noreturn__' instead of 'noreturn'.
-
- *Note Attribute Syntax::, for details of the exact syntax for using
-attributes.
-
-'alias ("TARGET")'
- The 'alias' attribute causes the declaration to be emitted as an
- alias for another symbol, which must be specified. For instance,
-
- void __f () { /* Do something. */; }
- void f () __attribute__ ((weak, alias ("__f")));
-
- defines 'f' to be a weak alias for '__f'. In C++, the mangled name
- for the target must be used. It is an error if '__f' is not
- defined in the same translation unit.
-
- Not all target machines support this attribute.
-
-'aligned (ALIGNMENT)'
- This attribute specifies a minimum alignment for the function,
- measured in bytes.
-
- You cannot use this attribute to decrease the alignment of a
- function, only to increase it. However, when you explicitly
- specify a function alignment this overrides the effect of the
- '-falign-functions' (*note Optimize Options::) option for this
- function.
-
- Note that the effectiveness of 'aligned' attributes may be limited
- by inherent limitations in your linker. On many systems, the
- linker is only able to arrange for functions to be aligned up to a
- certain maximum alignment. (For some linkers, the maximum
- supported alignment may be very very small.) See your linker
- documentation for further information.
-
- The 'aligned' attribute can also be used for variables and fields
- (*note Variable Attributes::.)
-
-'alloc_size'
- The 'alloc_size' attribute is used to tell the compiler that the
- function return value points to memory, where the size is given by
- one or two of the functions parameters. GCC uses this information
- to improve the correctness of '__builtin_object_size'.
-
- The function parameter(s) denoting the allocated size are specified
- by one or two integer arguments supplied to the attribute. The
- allocated size is either the value of the single function argument
- specified or the product of the two function arguments specified.
- Argument numbering starts at one.
-
- For instance,
-
- void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
- void* my_realloc(void*, size_t) __attribute__((alloc_size(2)))
-
- declares that 'my_calloc' returns memory of the size given by the
- product of parameter 1 and 2 and that 'my_realloc' returns memory
- of the size given by parameter 2.
-
-'alloc_align'
- The 'alloc_align' attribute is used to tell the compiler that the
- function return value points to memory, where the returned pointer
- minimum alignment is given by one of the functions parameters. GCC
- uses this information to improve pointer alignment analysis.
-
- The function parameter denoting the allocated alignment is
- specified by one integer argument, whose number is the argument of
- the attribute. Argument numbering starts at one.
-
- For instance,
-
- void* my_memalign(size_t, size_t) __attribute__((alloc_align(1)))
-
- declares that 'my_memalign' returns memory with minimum alignment
- given by parameter 1.
-
-'assume_aligned'
- The 'assume_aligned' attribute is used to tell the compiler that
- the function return value points to memory, where the returned
- pointer minimum alignment is given by the first argument. If the
- attribute has two arguments, the second argument is misalignment
- offset.
-
- For instance
-
- void* my_alloc1(size_t) __attribute__((assume_aligned(16)))
- void* my_alloc2(size_t) __attribute__((assume_aligned(32, 8)))
-
- declares that 'my_alloc1' returns 16-byte aligned pointer and that
- 'my_alloc2' returns a pointer whose value modulo 32 is equal to 8.
-
-'always_inline'
- Generally, functions are not inlined unless optimization is
- specified. For functions declared inline, this attribute inlines
- the function even if no optimization level is specified.
-
-'gnu_inline'
- This attribute should be used with a function that is also declared
- with the 'inline' keyword. It directs GCC to treat the function as
- if it were defined in gnu90 mode even when compiling in C99 or
- gnu99 mode.
-
- If the function is declared 'extern', then this definition of the
- function is used only for inlining. In no case is the function
- compiled as a standalone function, not even if you take its address
- explicitly. Such an address becomes an external reference, as if
- you had only declared the function, and had not defined it. This
- has almost the effect of a macro. The way to use this is to put a
- function definition in a header file with this attribute, and put
- another copy of the function, without 'extern', in a library file.
- The definition in the header file causes most calls to the function
- to be inlined. If any uses of the function remain, they refer to
- the single copy in the library. Note that the two definitions of
- the functions need not be precisely the same, although if they do
- not have the same effect your program may behave oddly.
-
- In C, if the function is neither 'extern' nor 'static', then the
- function is compiled as a standalone function, as well as being
- inlined where possible.
-
- This is how GCC traditionally handled functions declared 'inline'.
- Since ISO C99 specifies a different semantics for 'inline', this
- function attribute is provided as a transition measure and as a
- useful feature in its own right. This attribute is available in
- GCC 4.1.3 and later. It is available if either of the preprocessor
- macros '__GNUC_GNU_INLINE__' or '__GNUC_STDC_INLINE__' are defined.
- *Note An Inline Function is As Fast As a Macro: Inline.
-
- In C++, this attribute does not depend on 'extern' in any way, but
- it still requires the 'inline' keyword to enable its special
- behavior.
-
-'artificial'
- This attribute is useful for small inline wrappers that if possible
- should appear during debugging as a unit. Depending on the debug
- info format it either means marking the function as artificial or
- using the caller location for all instructions within the inlined
- body.
-
-'bank_switch'
- When added to an interrupt handler with the M32C port, causes the
- prologue and epilogue to use bank switching to preserve the
- registers rather than saving them on the stack.
-
-'flatten'
- Generally, inlining into a function is limited. For a function
- marked with this attribute, every call inside this function is
- inlined, if possible. Whether the function itself is considered
- for inlining depends on its size and the current inlining
- parameters.
-
-'error ("MESSAGE")'
- If this attribute is used on a function declaration and a call to
- such a function is not eliminated through dead code elimination or
- other optimizations, an error that includes MESSAGE is diagnosed.
- This is useful for compile-time checking, especially together with
- '__builtin_constant_p' and inline functions where checking the
- inline function arguments is not possible through 'extern char
- [(condition) ? 1 : -1];' tricks. While it is possible to leave the
- function undefined and thus invoke a link failure, when using this
- attribute the problem is diagnosed earlier and with exact location
- of the call even in presence of inline functions or when not
- emitting debugging information.
-
-'warning ("MESSAGE")'
- If this attribute is used on a function declaration and a call to
- such a function is not eliminated through dead code elimination or
- other optimizations, a warning that includes MESSAGE is diagnosed.
- This is useful for compile-time checking, especially together with
- '__builtin_constant_p' and inline functions. While it is possible
- to define the function with a message in '.gnu.warning*' section,
- when using this attribute the problem is diagnosed earlier and with
- exact location of the call even in presence of inline functions or
- when not emitting debugging information.
-
-'cdecl'
- On the Intel 386, the 'cdecl' attribute causes the compiler to
- assume that the calling function pops off the stack space used to
- pass arguments. This is useful to override the effects of the
- '-mrtd' switch.
-
-'const'
- Many functions do not examine any values except their arguments,
- and have no effects except the return value. Basically this is
- just slightly more strict class than the 'pure' attribute below,
- since function is not allowed to read global memory.
-
- Note that a function that has pointer arguments and examines the
- data pointed to must _not_ be declared 'const'. Likewise, a
- function that calls a non-'const' function usually must not be
- 'const'. It does not make sense for a 'const' function to return
- 'void'.
-
- The attribute 'const' is not implemented in GCC versions earlier
- than 2.5. An alternative way to declare that a function has no
- side effects, which works in the current version and in some older
- versions, is as follows:
-
- typedef int intfn ();
-
- extern const intfn square;
-
- This approach does not work in GNU C++ from 2.6.0 on, since the
- language specifies that the 'const' must be attached to the return
- value.
-
-'constructor'
-'destructor'
-'constructor (PRIORITY)'
-'destructor (PRIORITY)'
- The 'constructor' attribute causes the function to be called
- automatically before execution enters 'main ()'. Similarly, the
- 'destructor' attribute causes the function to be called
- automatically after 'main ()' completes or 'exit ()' is called.
- Functions with these attributes are useful for initializing data
- that is used implicitly during the execution of the program.
-
- You may provide an optional integer priority to control the order
- in which constructor and destructor functions are run. A
- constructor with a smaller priority number runs before a
- constructor with a larger priority number; the opposite
- relationship holds for destructors. So, if you have a constructor
- that allocates a resource and a destructor that deallocates the
- same resource, both functions typically have the same priority.
- The priorities for constructor and destructor functions are the
- same as those specified for namespace-scope C++ objects (*note C++
- Attributes::).
-
- These attributes are not currently implemented for Objective-C.
-
-'deprecated'
-'deprecated (MSG)'
- The 'deprecated' attribute results in a warning if the function is
- used anywhere in the source file. This is useful when identifying
- functions that are expected to be removed in a future version of a
- program. The warning also includes the location of the declaration
- of the deprecated function, to enable users to easily find further
- information about why the function is deprecated, or what they
- should do instead. Note that the warnings only occurs for uses:
-
- int old_fn () __attribute__ ((deprecated));
- int old_fn ();
- int (*fn_ptr)() = old_fn;
-
- results in a warning on line 3 but not line 2. The optional MSG
- argument, which must be a string, is printed in the warning if
- present.
-
- The 'deprecated' attribute can also be used for variables and types
- (*note Variable Attributes::, *note Type Attributes::.)
-
-'disinterrupt'
- On Epiphany and MeP targets, this attribute causes the compiler to
- emit instructions to disable interrupts for the duration of the
- given function.
-
-'dllexport'
- On Microsoft Windows targets and Symbian OS targets the 'dllexport'
- attribute causes the compiler to provide a global pointer to a
- pointer in a DLL, so that it can be referenced with the 'dllimport'
- attribute. On Microsoft Windows targets, the pointer name is
- formed by combining '_imp__' and the function or variable name.
-
- You can use '__declspec(dllexport)' as a synonym for '__attribute__
- ((dllexport))' for compatibility with other compilers.
-
- On systems that support the 'visibility' attribute, this attribute
- also implies "default" visibility. It is an error to explicitly
- specify any other visibility.
-
- In previous versions of GCC, the 'dllexport' attribute was ignored
- for inlined functions, unless the '-fkeep-inline-functions' flag
- had been used. The default behavior now is to emit all dllexported
- inline functions; however, this can cause object file-size bloat,
- in which case the old behavior can be restored by using
- '-fno-keep-inline-dllexport'.
-
- The attribute is also ignored for undefined symbols.
-
- When applied to C++ classes, the attribute marks defined
- non-inlined member functions and static data members as exports.
- Static consts initialized in-class are not marked unless they are
- also defined out-of-class.
-
- For Microsoft Windows targets there are alternative methods for
- including the symbol in the DLL's export table such as using a
- '.def' file with an 'EXPORTS' section or, with GNU ld, using the
- '--export-all' linker flag.
-
-'dllimport'
- On Microsoft Windows and Symbian OS targets, the 'dllimport'
- attribute causes the compiler to reference a function or variable
- via a global pointer to a pointer that is set up by the DLL
- exporting the symbol. The attribute implies 'extern'. On
- Microsoft Windows targets, the pointer name is formed by combining
- '_imp__' and the function or variable name.
-
- You can use '__declspec(dllimport)' as a synonym for '__attribute__
- ((dllimport))' for compatibility with other compilers.
-
- On systems that support the 'visibility' attribute, this attribute
- also implies "default" visibility. It is an error to explicitly
- specify any other visibility.
-
- Currently, the attribute is ignored for inlined functions. If the
- attribute is applied to a symbol _definition_, an error is
- reported. If a symbol previously declared 'dllimport' is later
- defined, the attribute is ignored in subsequent references, and a
- warning is emitted. The attribute is also overridden by a
- subsequent declaration as 'dllexport'.
-
- When applied to C++ classes, the attribute marks non-inlined member
- functions and static data members as imports. However, the
- attribute is ignored for virtual methods to allow creation of
- vtables using thunks.
-
- On the SH Symbian OS target the 'dllimport' attribute also has
- another affect--it can cause the vtable and run-time type
- information for a class to be exported. This happens when the
- class has a dllimported constructor or a non-inline, non-pure
- virtual function and, for either of those two conditions, the class
- also has an inline constructor or destructor and has a key function
- that is defined in the current translation unit.
-
- For Microsoft Windows targets the use of the 'dllimport' attribute
- on functions is not necessary, but provides a small performance
- benefit by eliminating a thunk in the DLL. The use of the
- 'dllimport' attribute on imported variables was required on older
- versions of the GNU linker, but can now be avoided by passing the
- '--enable-auto-import' switch to the GNU linker. As with
- functions, using the attribute for a variable eliminates a thunk in
- the DLL.
-
- One drawback to using this attribute is that a pointer to a
- _variable_ marked as 'dllimport' cannot be used as a constant
- address. However, a pointer to a _function_ with the 'dllimport'
- attribute can be used as a constant initializer; in this case, the
- address of a stub function in the import lib is referenced. On
- Microsoft Windows targets, the attribute can be disabled for
- functions by setting the '-mnop-fun-dllimport' flag.
-
-'eightbit_data'
- Use this attribute on the H8/300, H8/300H, and H8S to indicate that
- the specified variable should be placed into the eight-bit data
- section. The compiler generates more efficient code for certain
- operations on data in the eight-bit data area. Note the eight-bit
- data area is limited to 256 bytes of data.
-
- You must use GAS and GLD from GNU binutils version 2.7 or later for
- this attribute to work correctly.
-
-'exception'
- Use this attribute on the NDS32 target to indicate that the
- specified function is an exception handler. The compiler will
- generate corresponding sections for use in an exception handler.
-
-'exception_handler'
- Use this attribute on the Blackfin to indicate that the specified
- function is an exception handler. The compiler generates function
- entry and exit sequences suitable for use in an exception handler
- when this attribute is present.
-
-'externally_visible'
- This attribute, attached to a global variable or function,
- nullifies the effect of the '-fwhole-program' command-line option,
- so the object remains visible outside the current compilation unit.
-
- If '-fwhole-program' is used together with '-flto' and 'gold' is
- used as the linker plugin, 'externally_visible' attributes are
- automatically added to functions (not variable yet due to a current
- 'gold' issue) that are accessed outside of LTO objects according to
- resolution file produced by 'gold'. For other linkers that cannot
- generate resolution file, explicit 'externally_visible' attributes
- are still necessary.
-
-'far'
- On 68HC11 and 68HC12 the 'far' attribute causes the compiler to use
- a calling convention that takes care of switching memory banks when
- entering and leaving a function. This calling convention is also
- the default when using the '-mlong-calls' option.
-
- On 68HC12 the compiler uses the 'call' and 'rtc' instructions to
- call and return from a function.
-
- On 68HC11 the compiler generates a sequence of instructions to
- invoke a board-specific routine to switch the memory bank and call
- the real function. The board-specific routine simulates a 'call'.
- At the end of a function, it jumps to a board-specific routine
- instead of using 'rts'. The board-specific return routine
- simulates the 'rtc'.
-
- On MeP targets this causes the compiler to use a calling convention
- that assumes the called function is too far away for the built-in
- addressing modes.
-
-'fast_interrupt'
- Use this attribute on the M32C and RX ports to indicate that the
- specified function is a fast interrupt handler. This is just like
- the 'interrupt' attribute, except that 'freit' is used to return
- instead of 'reit'.
-
-'fastcall'
- On the Intel 386, the 'fastcall' attribute causes the compiler to
- pass the first argument (if of integral type) in the register ECX
- and the second argument (if of integral type) in the register EDX.
- Subsequent and other typed arguments are passed on the stack. The
- called function pops the arguments off the stack. If the number of
- arguments is variable all arguments are pushed on the stack.
-
-'thiscall'
- On the Intel 386, the 'thiscall' attribute causes the compiler to
- pass the first argument (if of integral type) in the register ECX.
- Subsequent and other typed arguments are passed on the stack. The
- called function pops the arguments off the stack. If the number of
- arguments is variable all arguments are pushed on the stack. The
- 'thiscall' attribute is intended for C++ non-static member
- functions. As a GCC extension, this calling convention can be used
- for C functions and for static member methods.
-
-'format (ARCHETYPE, STRING-INDEX, FIRST-TO-CHECK)'
- The 'format' attribute specifies that a function takes 'printf',
- 'scanf', 'strftime' or 'strfmon' style arguments that should be
- type-checked against a format string. For example, the
- declaration:
-
- extern int
- my_printf (void *my_object, const char *my_format, ...)
- __attribute__ ((format (printf, 2, 3)));
-
- causes the compiler to check the arguments in calls to 'my_printf'
- for consistency with the 'printf' style format string argument
- 'my_format'.
-
- The parameter ARCHETYPE determines how the format string is
- interpreted, and should be 'printf', 'scanf', 'strftime',
- 'gnu_printf', 'gnu_scanf', 'gnu_strftime' or 'strfmon'. (You can
- also use '__printf__', '__scanf__', '__strftime__' or
- '__strfmon__'.) On MinGW targets, 'ms_printf', 'ms_scanf', and
- 'ms_strftime' are also present. ARCHETYPE values such as 'printf'
- refer to the formats accepted by the system's C runtime library,
- while values prefixed with 'gnu_' always refer to the formats
- accepted by the GNU C Library. On Microsoft Windows targets,
- values prefixed with 'ms_' refer to the formats accepted by the
- 'msvcrt.dll' library. The parameter STRING-INDEX specifies which
- argument is the format string argument (starting from 1), while
- FIRST-TO-CHECK is the number of the first argument to check against
- the format string. For functions where the arguments are not
- available to be checked (such as 'vprintf'), specify the third
- parameter as zero. In this case the compiler only checks the
- format string for consistency. For 'strftime' formats, the third
- parameter is required to be zero. Since non-static C++ methods
- have an implicit 'this' argument, the arguments of such methods
- should be counted from two, not one, when giving values for
- STRING-INDEX and FIRST-TO-CHECK.
-
- In the example above, the format string ('my_format') is the second
- argument of the function 'my_print', and the arguments to check
- start with the third argument, so the correct parameters for the
- format attribute are 2 and 3.
-
- The 'format' attribute allows you to identify your own functions
- that take format strings as arguments, so that GCC can check the
- calls to these functions for errors. The compiler always (unless
- '-ffreestanding' or '-fno-builtin' is used) checks formats for the
- standard library functions 'printf', 'fprintf', 'sprintf', 'scanf',
- 'fscanf', 'sscanf', 'strftime', 'vprintf', 'vfprintf' and
- 'vsprintf' whenever such warnings are requested (using '-Wformat'),
- so there is no need to modify the header file 'stdio.h'. In C99
- mode, the functions 'snprintf', 'vsnprintf', 'vscanf', 'vfscanf'
- and 'vsscanf' are also checked. Except in strictly conforming C
- standard modes, the X/Open function 'strfmon' is also checked as
- are 'printf_unlocked' and 'fprintf_unlocked'. *Note Options
- Controlling C Dialect: C Dialect Options.
-
- For Objective-C dialects, 'NSString' (or '__NSString__') is
- recognized in the same context. Declarations including these
- format attributes are parsed for correct syntax, however the result
- of checking of such format strings is not yet defined, and is not
- carried out by this version of the compiler.
-
- The target may also provide additional types of format checks.
- *Note Format Checks Specific to Particular Target Machines: Target
- Format Checks.
-
-'format_arg (STRING-INDEX)'
- The 'format_arg' attribute specifies that a function takes a format
- string for a 'printf', 'scanf', 'strftime' or 'strfmon' style
- function and modifies it (for example, to translate it into another
- language), so the result can be passed to a 'printf', 'scanf',
- 'strftime' or 'strfmon' style function (with the remaining
- arguments to the format function the same as they would have been
- for the unmodified string). For example, the declaration:
-
- extern char *
- my_dgettext (char *my_domain, const char *my_format)
- __attribute__ ((format_arg (2)));
-
- causes the compiler to check the arguments in calls to a 'printf',
- 'scanf', 'strftime' or 'strfmon' type function, whose format string
- argument is a call to the 'my_dgettext' function, for consistency
- with the format string argument 'my_format'. If the 'format_arg'
- attribute had not been specified, all the compiler could tell in
- such calls to format functions would be that the format string
- argument is not constant; this would generate a warning when
- '-Wformat-nonliteral' is used, but the calls could not be checked
- without the attribute.
-
- The parameter STRING-INDEX specifies which argument is the format
- string argument (starting from one). Since non-static C++ methods
- have an implicit 'this' argument, the arguments of such methods
- should be counted from two.
-
- The 'format_arg' attribute allows you to identify your own
- functions that modify format strings, so that GCC can check the
- calls to 'printf', 'scanf', 'strftime' or 'strfmon' type function
- whose operands are a call to one of your own function. The
- compiler always treats 'gettext', 'dgettext', and 'dcgettext' in
- this manner except when strict ISO C support is requested by
- '-ansi' or an appropriate '-std' option, or '-ffreestanding' or
- '-fno-builtin' is used. *Note Options Controlling C Dialect: C
- Dialect Options.
-
- For Objective-C dialects, the 'format-arg' attribute may refer to
- an 'NSString' reference for compatibility with the 'format'
- attribute above.
-
- The target may also allow additional types in 'format-arg'
- attributes. *Note Format Checks Specific to Particular Target
- Machines: Target Format Checks.
-
-'function_vector'
- Use this attribute on the H8/300, H8/300H, and H8S to indicate that
- the specified function should be called through the function
- vector. Calling a function through the function vector reduces
- code size, however; the function vector has a limited size (maximum
- 128 entries on the H8/300 and 64 entries on the H8/300H and H8S)
- and shares space with the interrupt vector.
-
- On SH2A targets, this attribute declares a function to be called
- using the TBR relative addressing mode. The argument to this
- attribute is the entry number of the same function in a vector
- table containing all the TBR relative addressable functions. For
- correct operation the TBR must be setup accordingly to point to the
- start of the vector table before any functions with this attribute
- are invoked. Usually a good place to do the initialization is the
- startup routine. The TBR relative vector table can have at max 256
- function entries. The jumps to these functions are generated using
- a SH2A specific, non delayed branch instruction JSR/N @(disp8,TBR).
- You must use GAS and GLD from GNU binutils version 2.7 or later for
- this attribute to work correctly.
-
- Please refer the example of M16C target, to see the use of this
- attribute while declaring a function,
-
- In an application, for a function being called once, this attribute
- saves at least 8 bytes of code; and if other successive calls are
- being made to the same function, it saves 2 bytes of code per each
- of these calls.
-
- On M16C/M32C targets, the 'function_vector' attribute declares a
- special page subroutine call function. Use of this attribute
- reduces the code size by 2 bytes for each call generated to the
- subroutine. The argument to the attribute is the vector number
- entry from the special page vector table which contains the 16
- low-order bits of the subroutine's entry address. Each vector
- table has special page number (18 to 255) that is used in 'jsrs'
- instructions. Jump addresses of the routines are generated by
- adding 0x0F0000 (in case of M16C targets) or 0xFF0000 (in case of
- M32C targets), to the 2-byte addresses set in the vector table.
- Therefore you need to ensure that all the special page vector
- routines should get mapped within the address range 0x0F0000 to
- 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF (for M32C).
-
- In the following example 2 bytes are saved for each call to
- function 'foo'.
-
- void foo (void) __attribute__((function_vector(0x18)));
- void foo (void)
- {
- }
-
- void bar (void)
- {
- foo();
- }
-
- If functions are defined in one file and are called in another
- file, then be sure to write this declaration in both files.
-
- This attribute is ignored for R8C target.
-
-'ifunc ("RESOLVER")'
- The 'ifunc' attribute is used to mark a function as an indirect
- function using the STT_GNU_IFUNC symbol type extension to the ELF
- standard. This allows the resolution of the symbol value to be
- determined dynamically at load time, and an optimized version of
- the routine can be selected for the particular processor or other
- system characteristics determined then. To use this attribute,
- first define the implementation functions available, and a resolver
- function that returns a pointer to the selected implementation
- function. The implementation functions' declarations must match
- the API of the function being implemented, the resolver's
- declaration is be a function returning pointer to void function
- returning void:
-
- void *my_memcpy (void *dst, const void *src, size_t len)
- {
- ...
- }
-
- static void (*resolve_memcpy (void)) (void)
- {
- return my_memcpy; // we'll just always select this routine
- }
-
- The exported header file declaring the function the user calls
- would contain:
-
- extern void *memcpy (void *, const void *, size_t);
-
- allowing the user to call this as a regular function, unaware of
- the implementation. Finally, the indirect function needs to be
- defined in the same translation unit as the resolver function:
-
- void *memcpy (void *, const void *, size_t)
- __attribute__ ((ifunc ("resolve_memcpy")));
-
- Indirect functions cannot be weak, and require a recent binutils
- (at least version 2.20.1), and GNU C library (at least version
- 2.11.1).
-
-'interrupt'
- Use this attribute on the ARC, ARM, AVR, CR16, Epiphany, M32C,
- M32R/D, m68k, MeP, MIPS, MSP430, RL78, RX and Xstormy16 ports to
- indicate that the specified function is an interrupt handler. The
- compiler generates function entry and exit sequences suitable for
- use in an interrupt handler when this attribute is present. With
- Epiphany targets it may also generate a special section with code
- to initialize the interrupt vector table.
-
- Note, interrupt handlers for the Blackfin, H8/300, H8/300H, H8S,
- MicroBlaze, and SH processors can be specified via the
- 'interrupt_handler' attribute.
-
- Note, on the ARC, you must specify the kind of interrupt to be
- handled in a parameter to the interrupt attribute like this:
-
- void f () __attribute__ ((interrupt ("ilink1")));
-
- Permissible values for this parameter are: 'ilink1' and 'ilink2'.
-
- Note, on the AVR, the hardware globally disables interrupts when an
- interrupt is executed. The first instruction of an interrupt
- handler declared with this attribute is a 'SEI' instruction to
- re-enable interrupts. See also the 'signal' function attribute
- that does not insert a 'SEI' instruction. If both 'signal' and
- 'interrupt' are specified for the same function, 'signal' is
- silently ignored.
-
- Note, for the ARM, you can specify the kind of interrupt to be
- handled by adding an optional parameter to the interrupt attribute
- like this:
-
- void f () __attribute__ ((interrupt ("IRQ")));
-
- Permissible values for this parameter are: 'IRQ', 'FIQ', 'SWI',
- 'ABORT' and 'UNDEF'.
-
- On ARMv7-M the interrupt type is ignored, and the attribute means
- the function may be called with a word-aligned stack pointer.
-
- Note, for the MSP430 you can provide an argument to the interrupt
- attribute which specifies a name or number. If the argument is a
- number it indicates the slot in the interrupt vector table (0 - 31)
- to which this handler should be assigned. If the argument is a
- name it is treated as a symbolic name for the vector slot. These
- names should match up with appropriate entries in the linker
- script. By default the names 'watchdog' for vector 26, 'nmi' for
- vector 30 and 'reset' for vector 31 are recognised.
-
- You can also use the following function attributes to modify how
- normal functions interact with interrupt functions:
-
- 'critical'
- Critical functions disable interrupts upon entry and restore
- the previous interrupt state upon exit. Critical functions
- cannot also have the 'naked' or 'reentrant' attributes. They
- can have the 'interrupt' attribute.
-
- 'reentrant'
- Reentrant functions disable interrupts upon entry and enable
- them upon exit. Reentrant functions cannot also have the
- 'naked' or 'critical' attributes. They can have the
- 'interrupt' attribute.
-
- 'wakeup'
- This attribute only applies to interrupt functions. It is
- silently ignored if applied to a non-interrupt function. A
- wakeup interrupt function will rouse the processor from any
- low-power state that it might be in when the function exits.
-
- On Epiphany targets one or more optional parameters can be added
- like this:
-
- void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
-
- Permissible values for these parameters are: 'reset',
- 'software_exception', 'page_miss', 'timer0', 'timer1', 'message',
- 'dma0', 'dma1', 'wand' and 'swi'. Multiple parameters indicate
- that multiple entries in the interrupt vector table should be
- initialized for this function, i.e. for each parameter NAME, a jump
- to the function is emitted in the section ivt_entry_NAME. The
- parameter(s) may be omitted entirely, in which case no interrupt
- vector table entry is provided.
-
- Note, on Epiphany targets, interrupts are enabled inside the
- function unless the 'disinterrupt' attribute is also specified.
-
- On Epiphany targets, you can also use the following attribute to
- modify the behavior of an interrupt handler:
- 'forwarder_section'
- The interrupt handler may be in external memory which cannot
- be reached by a branch instruction, so generate a local memory
- trampoline to transfer control. The single parameter
- identifies the section where the trampoline is placed.
-
- The following examples are all valid uses of these attributes on
- Epiphany targets:
- void __attribute__ ((interrupt)) universal_handler ();
- void __attribute__ ((interrupt ("dma1"))) dma1_handler ();
- void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
- void __attribute__ ((interrupt ("timer0"), disinterrupt))
- fast_timer_handler ();
- void __attribute__ ((interrupt ("dma0, dma1"), forwarder_section ("tramp")))
- external_dma_handler ();
-
- On MIPS targets, you can use the following attributes to modify the
- behavior of an interrupt handler:
- 'use_shadow_register_set'
- Assume that the handler uses a shadow register set, instead of
- the main general-purpose registers.
-
- 'keep_interrupts_masked'
- Keep interrupts masked for the whole function. Without this
- attribute, GCC tries to reenable interrupts for as much of the
- function as it can.
-
- 'use_debug_exception_return'
- Return using the 'deret' instruction. Interrupt handlers that
- don't have this attribute return using 'eret' instead.
-
- You can use any combination of these attributes, as shown below:
- void __attribute__ ((interrupt)) v0 ();
- void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
- void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
- void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
- void __attribute__ ((interrupt, use_shadow_register_set,
- keep_interrupts_masked)) v4 ();
- void __attribute__ ((interrupt, use_shadow_register_set,
- use_debug_exception_return)) v5 ();
- void __attribute__ ((interrupt, keep_interrupts_masked,
- use_debug_exception_return)) v6 ();
- void __attribute__ ((interrupt, use_shadow_register_set,
- keep_interrupts_masked,
- use_debug_exception_return)) v7 ();
-
- On NDS32 target, this attribute is to indicate that the specified
- function is an interrupt handler. The compiler will generate
- corresponding sections for use in an interrupt handler. You can
- use the following attributes to modify the behavior:
- 'nested'
- This interrupt service routine is interruptible.
- 'not_nested'
- This interrupt service routine is not interruptible.
- 'nested_ready'
- This interrupt service routine is interruptible after
- 'PSW.GIE' (global interrupt enable) is set. This allows
- interrupt service routine to finish some short critical code
- before enabling interrupts.
- 'save_all'
- The system will help save all registers into stack before
- entering interrupt handler.
- 'partial_save'
- The system will help save caller registers into stack before
- entering interrupt handler.
-
- On RL78, use 'brk_interrupt' instead of 'interrupt' for handlers
- intended to be used with the 'BRK' opcode (i.e. those that must end
- with 'RETB' instead of 'RETI').
-
-'interrupt_handler'
- Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and
- SH to indicate that the specified function is an interrupt handler.
- The compiler generates function entry and exit sequences suitable
- for use in an interrupt handler when this attribute is present.
-
-'interrupt_thread'
- Use this attribute on fido, a subarchitecture of the m68k, to
- indicate that the specified function is an interrupt handler that
- is designed to run as a thread. The compiler omits generate
- prologue/epilogue sequences and replaces the return instruction
- with a 'sleep' instruction. This attribute is available only on
- fido.
-
-'isr'
- Use this attribute on ARM to write Interrupt Service Routines.
- This is an alias to the 'interrupt' attribute above.
-
-'kspisusp'
- When used together with 'interrupt_handler', 'exception_handler' or
- 'nmi_handler', code is generated to load the stack pointer from the
- USP register in the function prologue.
-
-'l1_text'
- This attribute specifies a function to be placed into L1
- Instruction SRAM. The function is put into a specific section
- named '.l1.text'. With '-mfdpic', function calls with a such
- function as the callee or caller uses inlined PLT.
-
-'l2'
- On the Blackfin, this attribute specifies a function to be placed
- into L2 SRAM. The function is put into a specific section named
- '.l1.text'. With '-mfdpic', callers of such functions use an
- inlined PLT.
-
-'leaf'
- Calls to external functions with this attribute must return to the
- current compilation unit only by return or by exception handling.
- In particular, leaf functions are not allowed to call callback
- function passed to it from the current compilation unit or directly
- call functions exported by the unit or longjmp into the unit. Leaf
- function might still call functions from other compilation units
- and thus they are not necessarily leaf in the sense that they
- contain no function calls at all.
-
- The attribute is intended for library functions to improve dataflow
- analysis. The compiler takes the hint that any data not escaping
- the current compilation unit can not be used or modified by the
- leaf function. For example, the 'sin' function is a leaf function,
- but 'qsort' is not.
-
- Note that leaf functions might invoke signals and signal handlers
- might be defined in the current compilation unit and use static
- variables. The only compliant way to write such a signal handler
- is to declare such variables 'volatile'.
-
- The attribute has no effect on functions defined within the current
- compilation unit. This is to allow easy merging of multiple
- compilation units into one, for example, by using the link-time
- optimization. For this reason the attribute is not allowed on
- types to annotate indirect calls.
-
-'long_call/medium_call/short_call'
- These attributes specify how a particular function is called on
- ARC, ARM and Epiphany - with 'medium_call' being specific to ARC.
- These attributes override the '-mlong-calls' (*note ARM Options::
- and *note ARC Options::) and '-mmedium-calls' (*note ARC Options::)
- command-line switches and '#pragma long_calls' settings. For ARM,
- the 'long_call' attribute indicates that the function might be far
- away from the call site and require a different (more expensive)
- calling sequence. The 'short_call' attribute always places the
- offset to the function from the call site into the 'BL' instruction
- directly.
-
- For ARC, a function marked with the 'long_call' attribute is always
- called using register-indirect jump-and-link instructions, thereby
- enabling the called function to be placed anywhere within the
- 32-bit address space. A function marked with the 'medium_call'
- attribute will always be close enough to be called with an
- unconditional branch-and-link instruction, which has a 25-bit
- offset from the call site. A function marked with the 'short_call'
- attribute will always be close enough to be called with a
- conditional branch-and-link instruction, which has a 21-bit offset
- from the call site.
-
-'longcall/shortcall'
- On the Blackfin, RS/6000 and PowerPC, the 'longcall' attribute
- indicates that the function might be far away from the call site
- and require a different (more expensive) calling sequence. The
- 'shortcall' attribute indicates that the function is always close
- enough for the shorter calling sequence to be used. These
- attributes override both the '-mlongcall' switch and, on the
- RS/6000 and PowerPC, the '#pragma longcall' setting.
-
- *Note RS/6000 and PowerPC Options::, for more information on
- whether long calls are necessary.
-
-'long_call/near/far'
- These attributes specify how a particular function is called on
- MIPS. The attributes override the '-mlong-calls' (*note MIPS
- Options::) command-line switch. The 'long_call' and 'far'
- attributes are synonyms, and cause the compiler to always call the
- function by first loading its address into a register, and then
- using the contents of that register. The 'near' attribute has the
- opposite effect; it specifies that non-PIC calls should be made
- using the more efficient 'jal' instruction.
-
-'malloc'
- The 'malloc' attribute is used to tell the compiler that a function
- may be treated as if any non-'NULL' pointer it returns cannot alias
- any other pointer valid when the function returns and that the
- memory has undefined content. This often improves optimization.
- Standard functions with this property include 'malloc' and
- 'calloc'. 'realloc'-like functions do not have this property as
- the memory pointed to does not have undefined content.
-
-'mips16/nomips16'
-
- On MIPS targets, you can use the 'mips16' and 'nomips16' function
- attributes to locally select or turn off MIPS16 code generation. A
- function with the 'mips16' attribute is emitted as MIPS16 code,
- while MIPS16 code generation is disabled for functions with the
- 'nomips16' attribute. These attributes override the '-mips16' and
- '-mno-mips16' options on the command line (*note MIPS Options::).
-
- When compiling files containing mixed MIPS16 and non-MIPS16 code,
- the preprocessor symbol '__mips16' reflects the setting on the
- command line, not that within individual functions. Mixed MIPS16
- and non-MIPS16 code may interact badly with some GCC extensions
- such as '__builtin_apply' (*note Constructing Calls::).
-
-'micromips/nomicromips'
-
- On MIPS targets, you can use the 'micromips' and 'nomicromips'
- function attributes to locally select or turn off microMIPS code
- generation. A function with the 'micromips' attribute is emitted
- as microMIPS code, while microMIPS code generation is disabled for
- functions with the 'nomicromips' attribute. These attributes
- override the '-mmicromips' and '-mno-micromips' options on the
- command line (*note MIPS Options::).
-
- When compiling files containing mixed microMIPS and non-microMIPS
- code, the preprocessor symbol '__mips_micromips' reflects the
- setting on the command line, not that within individual functions.
- Mixed microMIPS and non-microMIPS code may interact badly with some
- GCC extensions such as '__builtin_apply' (*note Constructing
- Calls::).
-
-'model (MODEL-NAME)'
-
- On the M32R/D, use this attribute to set the addressability of an
- object, and of the code generated for a function. The identifier
- MODEL-NAME is one of 'small', 'medium', or 'large', representing
- each of the code models.
-
- Small model objects live in the lower 16MB of memory (so that their
- addresses can be loaded with the 'ld24' instruction), and are
- callable with the 'bl' instruction.
-
- Medium model objects may live anywhere in the 32-bit address space
- (the compiler generates 'seth/add3' instructions to load their
- addresses), and are callable with the 'bl' instruction.
-
- Large model objects may live anywhere in the 32-bit address space
- (the compiler generates 'seth/add3' instructions to load their
- addresses), and may not be reachable with the 'bl' instruction (the
- compiler generates the much slower 'seth/add3/jl' instruction
- sequence).
-
- On IA-64, use this attribute to set the addressability of an
- object. At present, the only supported identifier for MODEL-NAME
- is 'small', indicating addressability via "small" (22-bit)
- addresses (so that their addresses can be loaded with the 'addl'
- instruction). Caveat: such addressing is by definition not
- position independent and hence this attribute must not be used for
- objects defined by shared libraries.
-
-'ms_abi/sysv_abi'
-
- On 32-bit and 64-bit (i?86|x86_64)-*-* targets, you can use an ABI
- attribute to indicate which calling convention should be used for a
- function. The 'ms_abi' attribute tells the compiler to use the
- Microsoft ABI, while the 'sysv_abi' attribute tells the compiler to
- use the ABI used on GNU/Linux and other systems. The default is to
- use the Microsoft ABI when targeting Windows. On all other
- systems, the default is the x86/AMD ABI.
-
- Note, the 'ms_abi' attribute for Microsoft Windows 64-bit targets
- currently requires the '-maccumulate-outgoing-args' option.
-
-'callee_pop_aggregate_return (NUMBER)'
-
- On 32-bit i?86-*-* targets, you can use this attribute to control
- how aggregates are returned in memory. If the caller is
- responsible for popping the hidden pointer together with the rest
- of the arguments, specify NUMBER equal to zero. If callee is
- responsible for popping the hidden pointer, specify NUMBER equal to
- one.
-
- The default i386 ABI assumes that the callee pops the stack for
- hidden pointer. However, on 32-bit i386 Microsoft Windows targets,
- the compiler assumes that the caller pops the stack for hidden
- pointer.
-
-'ms_hook_prologue'
-
- On 32-bit i[34567]86-*-* targets and 64-bit x86_64-*-* targets, you
- can use this function attribute to make GCC generate the
- "hot-patching" function prologue used in Win32 API functions in
- Microsoft Windows XP Service Pack 2 and newer.
-
-'hotpatch [(PROLOGUE-HALFWORDS)]'
-
- On S/390 System z targets, you can use this function attribute to
- make GCC generate a "hot-patching" function prologue. The
- 'hotpatch' has no effect on funtions that are explicitly inline.
- If the '-mhotpatch' or '-mno-hotpatch' command-line option is used
- at the same time, the 'hotpatch' attribute takes precedence. If an
- argument is given, the maximum allowed value is 1000000.
-
-'naked'
- Use this attribute on the ARM, AVR, MCORE, MSP430, NDS32, RL78, RX
- and SPU ports to indicate that the specified function does not need
- prologue/epilogue sequences generated by the compiler. It is up to
- the programmer to provide these sequences. The only statements
- that can be safely included in naked functions are 'asm' statements
- that do not have operands. All other statements, including
- declarations of local variables, 'if' statements, and so forth,
- should be avoided. Naked functions should be used to implement the
- body of an assembly function, while allowing the compiler to
- construct the requisite function declaration for the assembler.
-
-'near'
- On 68HC11 and 68HC12 the 'near' attribute causes the compiler to
- use the normal calling convention based on 'jsr' and 'rts'. This
- attribute can be used to cancel the effect of the '-mlong-calls'
- option.
-
- On MeP targets this attribute causes the compiler to assume the
- called function is close enough to use the normal calling
- convention, overriding the '-mtf' command-line option.
-
-'nesting'
- Use this attribute together with 'interrupt_handler',
- 'exception_handler' or 'nmi_handler' to indicate that the function
- entry code should enable nested interrupts or exceptions.
-
-'nmi_handler'
- Use this attribute on the Blackfin to indicate that the specified
- function is an NMI handler. The compiler generates function entry
- and exit sequences suitable for use in an NMI handler when this
- attribute is present.
-
-'nocompression'
- On MIPS targets, you can use the 'nocompression' function attribute
- to locally turn off MIPS16 and microMIPS code generation. This
- attribute overrides the '-mips16' and '-mmicromips' options on the
- command line (*note MIPS Options::).
-
-'no_instrument_function'
- If '-finstrument-functions' is given, profiling function calls are
- generated at entry and exit of most user-compiled functions.
- Functions with this attribute are not so instrumented.
-
-'no_split_stack'
- If '-fsplit-stack' is given, functions have a small prologue which
- decides whether to split the stack. Functions with the
- 'no_split_stack' attribute do not have that prologue, and thus may
- run with only a small amount of stack space available.
-
-'noinline'
- This function attribute prevents a function from being considered
- for inlining. If the function does not have side-effects, there
- are optimizations other than inlining that cause function calls to
- be optimized away, although the function call is live. To keep
- such calls from being optimized away, put
- asm ("");
-
- (*note Extended Asm::) in the called function, to serve as a
- special side-effect.
-
-'noclone'
- This function attribute prevents a function from being considered
- for cloning--a mechanism that produces specialized copies of
- functions and which is (currently) performed by interprocedural
- constant propagation.
-
-'nonnull (ARG-INDEX, ...)'
- The 'nonnull' attribute specifies that some function parameters
- should be non-null pointers. For instance, the declaration:
-
- extern void *
- my_memcpy (void *dest, const void *src, size_t len)
- __attribute__((nonnull (1, 2)));
-
- causes the compiler to check that, in calls to 'my_memcpy',
- arguments DEST and SRC are non-null. If the compiler determines
- that a null pointer is passed in an argument slot marked as
- non-null, and the '-Wnonnull' option is enabled, a warning is
- issued. The compiler may also choose to make optimizations based
- on the knowledge that certain function arguments will never be
- null.
-
- If no argument index list is given to the 'nonnull' attribute, all
- pointer arguments are marked as non-null. To illustrate, the
- following declaration is equivalent to the previous example:
-
- extern void *
- my_memcpy (void *dest, const void *src, size_t len)
- __attribute__((nonnull));
-
-'returns_nonnull'
- The 'returns_nonnull' attribute specifies that the function return
- value should be a non-null pointer. For instance, the declaration:
-
- extern void *
- mymalloc (size_t len) __attribute__((returns_nonnull));
-
- lets the compiler optimize callers based on the knowledge that the
- return value will never be null.
-
-'noreturn'
- A few standard library functions, such as 'abort' and 'exit',
- cannot return. GCC knows this automatically. Some programs define
- their own functions that never return. You can declare them
- 'noreturn' to tell the compiler this fact. For example,
-
- void fatal () __attribute__ ((noreturn));
-
- void
- fatal (/* ... */)
- {
- /* ... */ /* Print error message. */ /* ... */
- exit (1);
- }
-
- The 'noreturn' keyword tells the compiler to assume that 'fatal'
- cannot return. It can then optimize without regard to what would
- happen if 'fatal' ever did return. This makes slightly better
- code. More importantly, it helps avoid spurious warnings of
- uninitialized variables.
-
- The 'noreturn' keyword does not affect the exceptional path when
- that applies: a 'noreturn'-marked function may still return to the
- caller by throwing an exception or calling 'longjmp'.
-
- Do not assume that registers saved by the calling function are
- restored before calling the 'noreturn' function.
-
- It does not make sense for a 'noreturn' function to have a return
- type other than 'void'.
-
- The attribute 'noreturn' is not implemented in GCC versions earlier
- than 2.5. An alternative way to declare that a function does not
- return, which works in the current version and in some older
- versions, is as follows:
-
- typedef void voidfn ();
-
- volatile voidfn fatal;
-
- This approach does not work in GNU C++.
-
-'nothrow'
- The 'nothrow' attribute is used to inform the compiler that a
- function cannot throw an exception. For example, most functions in
- the standard C library can be guaranteed not to throw an exception
- with the notable exceptions of 'qsort' and 'bsearch' that take
- function pointer arguments. The 'nothrow' attribute is not
- implemented in GCC versions earlier than 3.3.
-
-'nosave_low_regs'
- Use this attribute on SH targets to indicate that an
- 'interrupt_handler' function should not save and restore registers
- R0..R7. This can be used on SH3* and SH4* targets that have a
- second R0..R7 register bank for non-reentrant interrupt handlers.
-
-'optimize'
- The 'optimize' attribute is used to specify that a function is to
- be compiled with different optimization options than specified on
- the command line. Arguments can either be numbers or strings.
- Numbers are assumed to be an optimization level. Strings that
- begin with 'O' are assumed to be an optimization option, while
- other options are assumed to be used with a '-f' prefix. You can
- also use the '#pragma GCC optimize' pragma to set the optimization
- options that affect more than one function. *Note Function
- Specific Option Pragmas::, for details about the '#pragma GCC
- optimize' pragma.
-
- This can be used for instance to have frequently-executed functions
- compiled with more aggressive optimization options that produce
- faster and larger code, while other functions can be compiled with
- less aggressive options.
-
-'OS_main/OS_task'
- On AVR, functions with the 'OS_main' or 'OS_task' attribute do not
- save/restore any call-saved register in their prologue/epilogue.
-
- The 'OS_main' attribute can be used when there _is guarantee_ that
- interrupts are disabled at the time when the function is entered.
- This saves resources when the stack pointer has to be changed to
- set up a frame for local variables.
-
- The 'OS_task' attribute can be used when there is _no guarantee_
- that interrupts are disabled at that time when the function is
- entered like for, e.g. task functions in a multi-threading
- operating system. In that case, changing the stack pointer
- register is guarded by save/clear/restore of the global interrupt
- enable flag.
-
- The differences to the 'naked' function attribute are:
- * 'naked' functions do not have a return instruction whereas
- 'OS_main' and 'OS_task' functions have a 'RET' or 'RETI'
- return instruction.
- * 'naked' functions do not set up a frame for local variables or
- a frame pointer whereas 'OS_main' and 'OS_task' do this as
- needed.
-
-'pcs'
-
- The 'pcs' attribute can be used to control the calling convention
- used for a function on ARM. The attribute takes an argument that
- specifies the calling convention to use.
-
- When compiling using the AAPCS ABI (or a variant of it) then valid
- values for the argument are '"aapcs"' and '"aapcs-vfp"'. In order
- to use a variant other than '"aapcs"' then the compiler must be
- permitted to use the appropriate co-processor registers (i.e., the
- VFP registers must be available in order to use '"aapcs-vfp"').
- For example,
-
- /* Argument passed in r0, and result returned in r0+r1. */
- double f2d (float) __attribute__((pcs("aapcs")));
-
- Variadic functions always use the '"aapcs"' calling convention and
- the compiler rejects attempts to specify an alternative.
-
-'pure'
- Many functions have no effects except the return value and their
- return value depends only on the parameters and/or global
- variables. Such a function can be subject to common subexpression
- elimination and loop optimization just as an arithmetic operator
- would be. These functions should be declared with the attribute
- 'pure'. For example,
-
- int square (int) __attribute__ ((pure));
-
- says that the hypothetical function 'square' is safe to call fewer
- times than the program says.
-
- Some of common examples of pure functions are 'strlen' or 'memcmp'.
- Interesting non-pure functions are functions with infinite loops or
- those depending on volatile memory or other system resource, that
- may change between two consecutive calls (such as 'feof' in a
- multithreading environment).
-
- The attribute 'pure' is not implemented in GCC versions earlier
- than 2.96.
-
-'hot'
- The 'hot' attribute on a function is used to inform the compiler
- that the function is a hot spot of the compiled program. The
- function is optimized more aggressively and on many target it is
- placed into special subsection of the text section so all hot
- functions appears close together improving locality.
-
- When profile feedback is available, via '-fprofile-use', hot
- functions are automatically detected and this attribute is ignored.
-
- The 'hot' attribute on functions is not implemented in GCC versions
- earlier than 4.3.
-
- The 'hot' attribute on a label is used to inform the compiler that
- path following the label are more likely than paths that are not so
- annotated. This attribute is used in cases where
- '__builtin_expect' cannot be used, for instance with computed goto
- or 'asm goto'.
-
- The 'hot' attribute on labels is not implemented in GCC versions
- earlier than 4.8.
-
-'cold'
- The 'cold' attribute on functions is used to inform the compiler
- that the function is unlikely to be executed. The function is
- optimized for size rather than speed and on many targets it is
- placed into special subsection of the text section so all cold
- functions appears close together improving code locality of
- non-cold parts of program. The paths leading to call of cold
- functions within code are marked as unlikely by the branch
- prediction mechanism. It is thus useful to mark functions used to
- handle unlikely conditions, such as 'perror', as cold to improve
- optimization of hot functions that do call marked functions in rare
- occasions.
-
- When profile feedback is available, via '-fprofile-use', cold
- functions are automatically detected and this attribute is ignored.
-
- The 'cold' attribute on functions is not implemented in GCC
- versions earlier than 4.3.
-
- The 'cold' attribute on labels is used to inform the compiler that
- the path following the label is unlikely to be executed. This
- attribute is used in cases where '__builtin_expect' cannot be used,
- for instance with computed goto or 'asm goto'.
-
- The 'cold' attribute on labels is not implemented in GCC versions
- earlier than 4.8.
-
-'no_sanitize_address'
-'no_address_safety_analysis'
- The 'no_sanitize_address' attribute on functions is used to inform
- the compiler that it should not instrument memory accesses in the
- function when compiling with the '-fsanitize=address' option. The
- 'no_address_safety_analysis' is a deprecated alias of the
- 'no_sanitize_address' attribute, new code should use
- 'no_sanitize_address'.
-
-'no_sanitize_undefined'
- The 'no_sanitize_undefined' attribute on functions is used to
- inform the compiler that it should not check for undefined behavior
- in the function when compiling with the '-fsanitize=undefined'
- option.
-
-'regparm (NUMBER)'
- On the Intel 386, the 'regparm' attribute causes the compiler to
- pass arguments number one to NUMBER if they are of integral type in
- registers EAX, EDX, and ECX instead of on the stack. Functions
- that take a variable number of arguments continue to be passed all
- of their arguments on the stack.
-
- Beware that on some ELF systems this attribute is unsuitable for
- global functions in shared libraries with lazy binding (which is
- the default). Lazy binding sends the first call via resolving code
- in the loader, which might assume EAX, EDX and ECX can be
- clobbered, as per the standard calling conventions. Solaris 8 is
- affected by this. Systems with the GNU C Library version 2.1 or
- higher and FreeBSD are believed to be safe since the loaders there
- save EAX, EDX and ECX. (Lazy binding can be disabled with the
- linker or the loader if desired, to avoid the problem.)
-
-'reset'
- Use this attribute on the NDS32 target to indicate that the
- specified function is a reset handler. The compiler will generate
- corresponding sections for use in a reset handler. You can use the
- following attributes to provide extra exception handling:
- 'nmi'
- Provide a user-defined function to handle NMI exception.
- 'warm'
- Provide a user-defined function to handle warm reset
- exception.
-
-'sseregparm'
- On the Intel 386 with SSE support, the 'sseregparm' attribute
- causes the compiler to pass up to 3 floating-point arguments in SSE
- registers instead of on the stack. Functions that take a variable
- number of arguments continue to pass all of their floating-point
- arguments on the stack.
-
-'force_align_arg_pointer'
- On the Intel x86, the 'force_align_arg_pointer' attribute may be
- applied to individual function definitions, generating an alternate
- prologue and epilogue that realigns the run-time stack if
- necessary. This supports mixing legacy codes that run with a
- 4-byte aligned stack with modern codes that keep a 16-byte stack
- for SSE compatibility.
-
-'renesas'
- On SH targets this attribute specifies that the function or struct
- follows the Renesas ABI.
-
-'resbank'
- On the SH2A target, this attribute enables the high-speed register
- saving and restoration using a register bank for
- 'interrupt_handler' routines. Saving to the bank is performed
- automatically after the CPU accepts an interrupt that uses a
- register bank.
-
- The nineteen 32-bit registers comprising general register R0 to
- R14, control register GBR, and system registers MACH, MACL, and PR
- and the vector table address offset are saved into a register bank.
- Register banks are stacked in first-in last-out (FILO) sequence.
- Restoration from the bank is executed by issuing a RESBANK
- instruction.
-
-'returns_twice'
- The 'returns_twice' attribute tells the compiler that a function
- may return more than one time. The compiler ensures that all
- registers are dead before calling such a function and emits a
- warning about the variables that may be clobbered after the second
- return from the function. Examples of such functions are 'setjmp'
- and 'vfork'. The 'longjmp'-like counterpart of such function, if
- any, might need to be marked with the 'noreturn' attribute.
-
-'saveall'
- Use this attribute on the Blackfin, H8/300, H8/300H, and H8S to
- indicate that all registers except the stack pointer should be
- saved in the prologue regardless of whether they are used or not.
-
-'save_volatiles'
- Use this attribute on the MicroBlaze to indicate that the function
- is an interrupt handler. All volatile registers (in addition to
- non-volatile registers) are saved in the function prologue. If the
- function is a leaf function, only volatiles used by the function
- are saved. A normal function return is generated instead of a
- return from interrupt.
-
-'section ("SECTION-NAME")'
- Normally, the compiler places the code it generates in the 'text'
- section. Sometimes, however, you need additional sections, or you
- need certain particular functions to appear in special sections.
- The 'section' attribute specifies that a function lives in a
- particular section. For example, the declaration:
-
- extern void foobar (void) __attribute__ ((section ("bar")));
-
- puts the function 'foobar' in the 'bar' section.
-
- Some file formats do not support arbitrary sections so the
- 'section' attribute is not available on all platforms. If you need
- to map the entire contents of a module to a particular section,
- consider using the facilities of the linker instead.
-
-'sentinel'
- This function attribute ensures that a parameter in a function call
- is an explicit 'NULL'. The attribute is only valid on variadic
- functions. By default, the sentinel is located at position zero,
- the last parameter of the function call. If an optional integer
- position argument P is supplied to the attribute, the sentinel must
- be located at position P counting backwards from the end of the
- argument list.
-
- __attribute__ ((sentinel))
- is equivalent to
- __attribute__ ((sentinel(0)))
-
- The attribute is automatically set with a position of 0 for the
- built-in functions 'execl' and 'execlp'. The built-in function
- 'execle' has the attribute set with a position of 1.
-
- A valid 'NULL' in this context is defined as zero with any pointer
- type. If your system defines the 'NULL' macro with an integer type
- then you need to add an explicit cast. GCC replaces 'stddef.h'
- with a copy that redefines NULL appropriately.
-
- The warnings for missing or incorrect sentinels are enabled with
- '-Wformat'.
-
-'short_call'
- See 'long_call/short_call'.
-
-'shortcall'
- See 'longcall/shortcall'.
-
-'signal'
- Use this attribute on the AVR to indicate that the specified
- function is an interrupt handler. The compiler generates function
- entry and exit sequences suitable for use in an interrupt handler
- when this attribute is present.
-
- See also the 'interrupt' function attribute.
-
- The AVR hardware globally disables interrupts when an interrupt is
- executed. Interrupt handler functions defined with the 'signal'
- attribute do not re-enable interrupts. It is save to enable
- interrupts in a 'signal' handler. This "save" only applies to the
- code generated by the compiler and not to the IRQ layout of the
- application which is responsibility of the application.
-
- If both 'signal' and 'interrupt' are specified for the same
- function, 'signal' is silently ignored.
-
-'sp_switch'
- Use this attribute on the SH to indicate an 'interrupt_handler'
- function should switch to an alternate stack. It expects a string
- argument that names a global variable holding the address of the
- alternate stack.
-
- void *alt_stack;
- void f () __attribute__ ((interrupt_handler,
- sp_switch ("alt_stack")));
-
-'stdcall'
- On the Intel 386, the 'stdcall' attribute causes the compiler to
- assume that the called function pops off the stack space used to
- pass arguments, unless it takes a variable number of arguments.
-
-'syscall_linkage'
- This attribute is used to modify the IA-64 calling convention by
- marking all input registers as live at all function exits. This
- makes it possible to restart a system call after an interrupt
- without having to save/restore the input registers. This also
- prevents kernel data from leaking into application code.
-
-'target'
- The 'target' attribute is used to specify that a function is to be
- compiled with different target options than specified on the
- command line. This can be used for instance to have functions
- compiled with a different ISA (instruction set architecture) than
- the default. You can also use the '#pragma GCC target' pragma to
- set more than one function to be compiled with specific target
- options. *Note Function Specific Option Pragmas::, for details
- about the '#pragma GCC target' pragma.
-
- For instance on a 386, you could compile one function with
- 'target("sse4.1,arch=core2")' and another with
- 'target("sse4a,arch=amdfam10")'. This is equivalent to compiling
- the first function with '-msse4.1' and '-march=core2' options, and
- the second function with '-msse4a' and '-march=amdfam10' options.
- It is up to the user to make sure that a function is only invoked
- on a machine that supports the particular ISA it is compiled for
- (for example by using 'cpuid' on 386 to determine what feature bits
- and architecture family are used).
-
- int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
- int sse3_func (void) __attribute__ ((__target__ ("sse3")));
-
- You can either use multiple strings to specify multiple options, or
- separate the options with a comma (',').
-
- The 'target' attribute is presently implemented for i386/x86_64,
- PowerPC, and Nios II targets only. The options supported are
- specific to each target.
-
- On the 386, the following options are allowed:
-
- 'abm'
- 'no-abm'
- Enable/disable the generation of the advanced bit
- instructions.
-
- 'aes'
- 'no-aes'
- Enable/disable the generation of the AES instructions.
-
- 'default'
- *Note Function Multiversioning::, where it is used to specify
- the default function version.
-
- 'mmx'
- 'no-mmx'
- Enable/disable the generation of the MMX instructions.
-
- 'pclmul'
- 'no-pclmul'
- Enable/disable the generation of the PCLMUL instructions.
-
- 'popcnt'
- 'no-popcnt'
- Enable/disable the generation of the POPCNT instruction.
-
- 'sse'
- 'no-sse'
- Enable/disable the generation of the SSE instructions.
-
- 'sse2'
- 'no-sse2'
- Enable/disable the generation of the SSE2 instructions.
-
- 'sse3'
- 'no-sse3'
- Enable/disable the generation of the SSE3 instructions.
-
- 'sse4'
- 'no-sse4'
- Enable/disable the generation of the SSE4 instructions (both
- SSE4.1 and SSE4.2).
-
- 'sse4.1'
- 'no-sse4.1'
- Enable/disable the generation of the sse4.1 instructions.
-
- 'sse4.2'
- 'no-sse4.2'
- Enable/disable the generation of the sse4.2 instructions.
-
- 'sse4a'
- 'no-sse4a'
- Enable/disable the generation of the SSE4A instructions.
-
- 'fma4'
- 'no-fma4'
- Enable/disable the generation of the FMA4 instructions.
-
- 'xop'
- 'no-xop'
- Enable/disable the generation of the XOP instructions.
-
- 'lwp'
- 'no-lwp'
- Enable/disable the generation of the LWP instructions.
-
- 'ssse3'
- 'no-ssse3'
- Enable/disable the generation of the SSSE3 instructions.
-
- 'cld'
- 'no-cld'
- Enable/disable the generation of the CLD before string moves.
-
- 'fancy-math-387'
- 'no-fancy-math-387'
- Enable/disable the generation of the 'sin', 'cos', and 'sqrt'
- instructions on the 387 floating-point unit.
-
- 'fused-madd'
- 'no-fused-madd'
- Enable/disable the generation of the fused multiply/add
- instructions.
-
- 'ieee-fp'
- 'no-ieee-fp'
- Enable/disable the generation of floating point that depends
- on IEEE arithmetic.
-
- 'inline-all-stringops'
- 'no-inline-all-stringops'
- Enable/disable inlining of string operations.
-
- 'inline-stringops-dynamically'
- 'no-inline-stringops-dynamically'
- Enable/disable the generation of the inline code to do small
- string operations and calling the library routines for large
- operations.
-
- 'align-stringops'
- 'no-align-stringops'
- Do/do not align destination of inlined string operations.
-
- 'recip'
- 'no-recip'
- Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and
- RSQRTPS instructions followed an additional Newton-Raphson
- step instead of doing a floating-point division.
-
- 'arch=ARCH'
- Specify the architecture to generate code for in compiling the
- function.
-
- 'tune=TUNE'
- Specify the architecture to tune for in compiling the
- function.
-
- 'fpmath=FPMATH'
- Specify which floating-point unit to use. The
- 'target("fpmath=sse,387")' option must be specified as
- 'target("fpmath=sse+387")' because the comma would separate
- different options.
-
- On the PowerPC, the following options are allowed:
-
- 'altivec'
- 'no-altivec'
- Generate code that uses (does not use) AltiVec instructions.
- In 32-bit code, you cannot enable AltiVec instructions unless
- '-mabi=altivec' is used on the command line.
-
- 'cmpb'
- 'no-cmpb'
- Generate code that uses (does not use) the compare bytes
- instruction implemented on the POWER6 processor and other
- processors that support the PowerPC V2.05 architecture.
-
- 'dlmzb'
- 'no-dlmzb'
- Generate code that uses (does not use) the string-search
- 'dlmzb' instruction on the IBM 405, 440, 464 and 476
- processors. This instruction is generated by default when
- targeting those processors.
-
- 'fprnd'
- 'no-fprnd'
- Generate code that uses (does not use) the FP round to integer
- instructions implemented on the POWER5+ processor and other
- processors that support the PowerPC V2.03 architecture.
-
- 'hard-dfp'
- 'no-hard-dfp'
- Generate code that uses (does not use) the decimal
- floating-point instructions implemented on some POWER
- processors.
-
- 'isel'
- 'no-isel'
- Generate code that uses (does not use) ISEL instruction.
-
- 'mfcrf'
- 'no-mfcrf'
- Generate code that uses (does not use) the move from condition
- register field instruction implemented on the POWER4 processor
- and other processors that support the PowerPC V2.01
- architecture.
-
- 'mfpgpr'
- 'no-mfpgpr'
- Generate code that uses (does not use) the FP move to/from
- general purpose register instructions implemented on the
- POWER6X processor and other processors that support the
- extended PowerPC V2.05 architecture.
-
- 'mulhw'
- 'no-mulhw'
- Generate code that uses (does not use) the half-word multiply
- and multiply-accumulate instructions on the IBM 405, 440, 464
- and 476 processors. These instructions are generated by
- default when targeting those processors.
-
- 'multiple'
- 'no-multiple'
- Generate code that uses (does not use) the load multiple word
- instructions and the store multiple word instructions.
-
- 'update'
- 'no-update'
- Generate code that uses (does not use) the load or store
- instructions that update the base register to the address of
- the calculated memory location.
-
- 'popcntb'
- 'no-popcntb'
- Generate code that uses (does not use) the popcount and
- double-precision FP reciprocal estimate instruction
- implemented on the POWER5 processor and other processors that
- support the PowerPC V2.02 architecture.
-
- 'popcntd'
- 'no-popcntd'
- Generate code that uses (does not use) the popcount
- instruction implemented on the POWER7 processor and other
- processors that support the PowerPC V2.06 architecture.
-
- 'powerpc-gfxopt'
- 'no-powerpc-gfxopt'
- Generate code that uses (does not use) the optional PowerPC
- architecture instructions in the Graphics group, including
- floating-point select.
-
- 'powerpc-gpopt'
- 'no-powerpc-gpopt'
- Generate code that uses (does not use) the optional PowerPC
- architecture instructions in the General Purpose group,
- including floating-point square root.
-
- 'recip-precision'
- 'no-recip-precision'
- Assume (do not assume) that the reciprocal estimate
- instructions provide higher-precision estimates than is
- mandated by the powerpc ABI.
-
- 'string'
- 'no-string'
- Generate code that uses (does not use) the load string
- instructions and the store string word instructions to save
- multiple registers and do small block moves.
-
- 'vsx'
- 'no-vsx'
- Generate code that uses (does not use) vector/scalar (VSX)
- instructions, and also enable the use of built-in functions
- that allow more direct access to the VSX instruction set. In
- 32-bit code, you cannot enable VSX or AltiVec instructions
- unless '-mabi=altivec' is used on the command line.
-
- 'friz'
- 'no-friz'
- Generate (do not generate) the 'friz' instruction when the
- '-funsafe-math-optimizations' option is used to optimize
- rounding a floating-point value to 64-bit integer and back to
- floating point. The 'friz' instruction does not return the
- same value if the floating-point number is too large to fit in
- an integer.
-
- 'avoid-indexed-addresses'
- 'no-avoid-indexed-addresses'
- Generate code that tries to avoid (not avoid) the use of
- indexed load or store instructions.
-
- 'paired'
- 'no-paired'
- Generate code that uses (does not use) the generation of
- PAIRED simd instructions.
-
- 'longcall'
- 'no-longcall'
- Generate code that assumes (does not assume) that all calls
- are far away so that a longer more expensive calling sequence
- is required.
-
- 'cpu=CPU'
- Specify the architecture to generate code for when compiling
- the function. If you select the 'target("cpu=power7")'
- attribute when generating 32-bit code, VSX and AltiVec
- instructions are not generated unless you use the
- '-mabi=altivec' option on the command line.
-
- 'tune=TUNE'
- Specify the architecture to tune for when compiling the
- function. If you do not specify the 'target("tune=TUNE")'
- attribute and you do specify the 'target("cpu=CPU")'
- attribute, compilation tunes for the CPU architecture, and not
- the default tuning specified on the command line.
-
- When compiling for Nios II, the following options are allowed:
-
- 'custom-INSN=N'
- 'no-custom-INSN'
- Each 'custom-INSN=N' attribute locally enables use of a custom
- instruction with encoding N when generating code that uses
- INSN. Similarly, 'no-custom-INSN' locally inhibits use of the
- custom instruction INSN. These target attributes correspond
- to the '-mcustom-INSN=N' and '-mno-custom-INSN' command-line
- options, and support the same set of INSN keywords. *Note
- Nios II Options::, for more information.
-
- 'custom-fpu-cfg=NAME'
- This attribute corresponds to the '-mcustom-fpu-cfg=NAME'
- command-line option, to select a predefined set of custom
- instructions named NAME. *Note Nios II Options::, for more
- information.
-
- On the 386/x86_64 and PowerPC back ends, the inliner does not
- inline a function that has different target options than the
- caller, unless the callee has a subset of the target options of the
- caller. For example a function declared with 'target("sse3")' can
- inline a function with 'target("sse2")', since '-msse3' implies
- '-msse2'.
-
-'tiny_data'
- Use this attribute on the H8/300H and H8S to indicate that the
- specified variable should be placed into the tiny data section.
- The compiler generates more efficient code for loads and stores on
- data in the tiny data section. Note the tiny data area is limited
- to slightly under 32KB of data.
-
-'trap_exit'
- Use this attribute on the SH for an 'interrupt_handler' to return
- using 'trapa' instead of 'rte'. This attribute expects an integer
- argument specifying the trap number to be used.
-
-'trapa_handler'
- On SH targets this function attribute is similar to
- 'interrupt_handler' but it does not save and restore all registers.
-
-'unused'
- This attribute, attached to a function, means that the function is
- meant to be possibly unused. GCC does not produce a warning for
- this function.
-
-'used'
- This attribute, attached to a function, means that code must be
- emitted for the function even if it appears that the function is
- not referenced. This is useful, for example, when the function is
- referenced only in inline assembly.
-
- When applied to a member function of a C++ class template, the
- attribute also means that the function is instantiated if the class
- itself is instantiated.
-
-'version_id'
- This IA-64 HP-UX attribute, attached to a global variable or
- function, renames a symbol to contain a version string, thus
- allowing for function level versioning. HP-UX system header files
- may use function level versioning for some system calls.
-
- extern int foo () __attribute__((version_id ("20040821")));
-
- Calls to FOO are mapped to calls to FOO{20040821}.
-
-'visibility ("VISIBILITY_TYPE")'
- This attribute affects the linkage of the declaration to which it
- is attached. There are four supported VISIBILITY_TYPE values:
- default, hidden, protected or internal visibility.
-
- void __attribute__ ((visibility ("protected")))
- f () { /* Do something. */; }
- int i __attribute__ ((visibility ("hidden")));
-
- The possible values of VISIBILITY_TYPE correspond to the visibility
- settings in the ELF gABI.
-
- "default"
- Default visibility is the normal case for the object file
- format. This value is available for the visibility attribute
- to override other options that may change the assumed
- visibility of entities.
-
- On ELF, default visibility means that the declaration is
- visible to other modules and, in shared libraries, means that
- the declared entity may be overridden.
-
- On Darwin, default visibility means that the declaration is
- visible to other modules.
-
- Default visibility corresponds to "external linkage" in the
- language.
-
- "hidden"
- Hidden visibility indicates that the entity declared has a new
- form of linkage, which we call "hidden linkage". Two
- declarations of an object with hidden linkage refer to the
- same object if they are in the same shared object.
-
- "internal"
- Internal visibility is like hidden visibility, but with
- additional processor specific semantics. Unless otherwise
- specified by the psABI, GCC defines internal visibility to
- mean that a function is _never_ called from another module.
- Compare this with hidden functions which, while they cannot be
- referenced directly by other modules, can be referenced
- indirectly via function pointers. By indicating that a
- function cannot be called from outside the module, GCC may for
- instance omit the load of a PIC register since it is known
- that the calling function loaded the correct value.
-
- "protected"
- Protected visibility is like default visibility except that it
- indicates that references within the defining module bind to
- the definition in that module. That is, the declared entity
- cannot be overridden by another module.
-
- All visibilities are supported on many, but not all, ELF targets
- (supported when the assembler supports the '.visibility'
- pseudo-op). Default visibility is supported everywhere. Hidden
- visibility is supported on Darwin targets.
-
- The visibility attribute should be applied only to declarations
- that would otherwise have external linkage. The attribute should
- be applied consistently, so that the same entity should not be
- declared with different settings of the attribute.
-
- In C++, the visibility attribute applies to types as well as
- functions and objects, because in C++ types have linkage. A class
- must not have greater visibility than its non-static data member
- types and bases, and class members default to the visibility of
- their class. Also, a declaration without explicit visibility is
- limited to the visibility of its type.
-
- In C++, you can mark member functions and static member variables
- of a class with the visibility attribute. This is useful if you
- know a particular method or static member variable should only be
- used from one shared object; then you can mark it hidden while the
- rest of the class has default visibility. Care must be taken to
- avoid breaking the One Definition Rule; for example, it is usually
- not useful to mark an inline method as hidden without marking the
- whole class as hidden.
-
- A C++ namespace declaration can also have the visibility attribute.
-
- namespace nspace1 __attribute__ ((visibility ("protected")))
- { /* Do something. */; }
-
- This attribute applies only to the particular namespace body, not
- to other definitions of the same namespace; it is equivalent to
- using '#pragma GCC visibility' before and after the namespace
- definition (*note Visibility Pragmas::).
-
- In C++, if a template argument has limited visibility, this
- restriction is implicitly propagated to the template instantiation.
- Otherwise, template instantiations and specializations default to
- the visibility of their template.
-
- If both the template and enclosing class have explicit visibility,
- the visibility from the template is used.
-
-'vliw'
- On MeP, the 'vliw' attribute tells the compiler to emit
- instructions in VLIW mode instead of core mode. Note that this
- attribute is not allowed unless a VLIW coprocessor has been
- configured and enabled through command-line options.
-
-'warn_unused_result'
- The 'warn_unused_result' attribute causes a warning to be emitted
- if a caller of the function with this attribute does not use its
- return value. This is useful for functions where not checking the
- result is either a security problem or always a bug, such as
- 'realloc'.
-
- int fn () __attribute__ ((warn_unused_result));
- int foo ()
- {
- if (fn () < 0) return -1;
- fn ();
- return 0;
- }
-
- results in warning on line 5.
-
-'weak'
- The 'weak' attribute causes the declaration to be emitted as a weak
- symbol rather than a global. This is primarily useful in defining
- library functions that can be overridden in user code, though it
- can also be used with non-function declarations. Weak symbols are
- supported for ELF targets, and also for a.out targets when using
- the GNU assembler and linker.
-
-'weakref'
-'weakref ("TARGET")'
- The 'weakref' attribute marks a declaration as a weak reference.
- Without arguments, it should be accompanied by an 'alias' attribute
- naming the target symbol. Optionally, the TARGET may be given as
- an argument to 'weakref' itself. In either case, 'weakref'
- implicitly marks the declaration as 'weak'. Without a TARGET,
- given as an argument to 'weakref' or to 'alias', 'weakref' is
- equivalent to 'weak'.
-
- static int x() __attribute__ ((weakref ("y")));
- /* is equivalent to... */
- static int x() __attribute__ ((weak, weakref, alias ("y")));
- /* and to... */
- static int x() __attribute__ ((weakref));
- static int x() __attribute__ ((alias ("y")));
-
- A weak reference is an alias that does not by itself require a
- definition to be given for the target symbol. If the target symbol
- is only referenced through weak references, then it becomes a
- 'weak' undefined symbol. If it is directly referenced, however,
- then such strong references prevail, and a definition is required
- for the symbol, not necessarily in the same translation unit.
-
- The effect is equivalent to moving all references to the alias to a
- separate translation unit, renaming the alias to the aliased
- symbol, declaring it as weak, compiling the two separate
- translation units and performing a reloadable link on them.
-
- At present, a declaration to which 'weakref' is attached can only
- be 'static'.
-
- You can specify multiple attributes in a declaration by separating them
-by commas within the double parentheses or by immediately following an
-attribute declaration with another attribute declaration.
-
- Some people object to the '__attribute__' feature, suggesting that ISO
-C's '#pragma' should be used instead. At the time '__attribute__' was
-designed, there were two reasons for not doing this.
-
- 1. It is impossible to generate '#pragma' commands from a macro.
-
- 2. There is no telling what the same '#pragma' might mean in another
- compiler.
-
- These two reasons applied to almost any application that might have
-been proposed for '#pragma'. It was basically a mistake to use
-'#pragma' for _anything_.
-
- The ISO C99 standard includes '_Pragma', which now allows pragmas to be
-generated from macros. In addition, a '#pragma GCC' namespace is now in
-use for GCC-specific pragmas. However, it has been found convenient to
-use '__attribute__' to achieve a natural attachment of attributes to
-their corresponding declarations, whereas '#pragma GCC' is of use for
-constructs that do not naturally form part of the grammar. *Note
-Pragmas Accepted by GCC: Pragmas.
-
-
-File: gcc.info, Node: Attribute Syntax, Next: Function Prototypes, Prev: Function Attributes, Up: C Extensions
-
-6.31 Attribute Syntax
-=====================
-
-This section describes the syntax with which '__attribute__' may be
-used, and the constructs to which attribute specifiers bind, for the C
-language. Some details may vary for C++ and Objective-C. Because of
-infelicities in the grammar for attributes, some forms described here
-may not be successfully parsed in all cases.
-
- There are some problems with the semantics of attributes in C++. For
-example, there are no manglings for attributes, although they may affect
-code generation, so problems may arise when attributed types are used in
-conjunction with templates or overloading. Similarly, 'typeid' does not
-distinguish between types with different attributes. Support for
-attributes in C++ may be restricted in future to attributes on
-declarations only, but not on nested declarators.
-
- *Note Function Attributes::, for details of the semantics of attributes
-applying to functions. *Note Variable Attributes::, for details of the
-semantics of attributes applying to variables. *Note Type Attributes::,
-for details of the semantics of attributes applying to structure, union
-and enumerated types.
-
- An "attribute specifier" is of the form '__attribute__
-((ATTRIBUTE-LIST))'. An "attribute list" is a possibly empty
-comma-separated sequence of "attributes", where each attribute is one of
-the following:
-
- * Empty. Empty attributes are ignored.
-
- * A word (which may be an identifier such as 'unused', or a reserved
- word such as 'const').
-
- * A word, followed by, in parentheses, parameters for the attribute.
- These parameters take one of the following forms:
-
- * An identifier. For example, 'mode' attributes use this form.
-
- * An identifier followed by a comma and a non-empty
- comma-separated list of expressions. For example, 'format'
- attributes use this form.
-
- * A possibly empty comma-separated list of expressions. For
- example, 'format_arg' attributes use this form with the list
- being a single integer constant expression, and 'alias'
- attributes use this form with the list being a single string
- constant.
-
- An "attribute specifier list" is a sequence of one or more attribute
-specifiers, not separated by any other tokens.
-
- In GNU C, an attribute specifier list may appear after the colon
-following a label, other than a 'case' or 'default' label. The only
-attribute it makes sense to use after a label is 'unused'. This feature
-is intended for program-generated code that may contain unused labels,
-but which is compiled with '-Wall'. It is not normally appropriate to
-use in it human-written code, though it could be useful in cases where
-the code that jumps to the label is contained within an '#ifdef'
-conditional. GNU C++ only permits attributes on labels if the attribute
-specifier is immediately followed by a semicolon (i.e., the label
-applies to an empty statement). If the semicolon is missing, C++ label
-attributes are ambiguous, as it is permissible for a declaration, which
-could begin with an attribute list, to be labelled in C++. Declarations
-cannot be labelled in C90 or C99, so the ambiguity does not arise there.
-
- An attribute specifier list may appear as part of a 'struct', 'union'
-or 'enum' specifier. It may go either immediately after the 'struct',
-'union' or 'enum' keyword, or after the closing brace. The former
-syntax is preferred. Where attribute specifiers follow the closing
-brace, they are considered to relate to the structure, union or
-enumerated type defined, not to any enclosing declaration the type
-specifier appears in, and the type defined is not complete until after
-the attribute specifiers.
-
- Otherwise, an attribute specifier appears as part of a declaration,
-counting declarations of unnamed parameters and type names, and relates
-to that declaration (which may be nested in another declaration, for
-example in the case of a parameter declaration), or to a particular
-declarator within a declaration. Where an attribute specifier is
-applied to a parameter declared as a function or an array, it should
-apply to the function or array rather than the pointer to which the
-parameter is implicitly converted, but this is not yet correctly
-implemented.
-
- Any list of specifiers and qualifiers at the start of a declaration may
-contain attribute specifiers, whether or not such a list may in that
-context contain storage class specifiers. (Some attributes, however,
-are essentially in the nature of storage class specifiers, and only make
-sense where storage class specifiers may be used; for example,
-'section'.) There is one necessary limitation to this syntax: the first
-old-style parameter declaration in a function definition cannot begin
-with an attribute specifier, because such an attribute applies to the
-function instead by syntax described below (which, however, is not yet
-implemented in this case). In some other cases, attribute specifiers
-are permitted by this grammar but not yet supported by the compiler.
-All attribute specifiers in this place relate to the declaration as a
-whole. In the obsolescent usage where a type of 'int' is implied by the
-absence of type specifiers, such a list of specifiers and qualifiers may
-be an attribute specifier list with no other specifiers or qualifiers.
-
- At present, the first parameter in a function prototype must have some
-type specifier that is not an attribute specifier; this resolves an
-ambiguity in the interpretation of 'void f(int (__attribute__((foo))
-x))', but is subject to change. At present, if the parentheses of a
-function declarator contain only attributes then those attributes are
-ignored, rather than yielding an error or warning or implying a single
-parameter of type int, but this is subject to change.
-
- An attribute specifier list may appear immediately before a declarator
-(other than the first) in a comma-separated list of declarators in a
-declaration of more than one identifier using a single list of
-specifiers and qualifiers. Such attribute specifiers apply only to the
-identifier before whose declarator they appear. For example, in
-
- __attribute__((noreturn)) void d0 (void),
- __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
- d2 (void)
-
-the 'noreturn' attribute applies to all the functions declared; the
-'format' attribute only applies to 'd1'.
-
- An attribute specifier list may appear immediately before the comma,
-'=' or semicolon terminating the declaration of an identifier other than
-a function definition. Such attribute specifiers apply to the declared
-object or function. Where an assembler name for an object or function
-is specified (*note Asm Labels::), the attribute must follow the 'asm'
-specification.
-
- An attribute specifier list may, in future, be permitted to appear
-after the declarator in a function definition (before any old-style
-parameter declarations or the function body).
-
- Attribute specifiers may be mixed with type qualifiers appearing inside
-the '[]' of a parameter array declarator, in the C99 construct by which
-such qualifiers are applied to the pointer to which the array is
-implicitly converted. Such attribute specifiers apply to the pointer,
-not to the array, but at present this is not implemented and they are
-ignored.
-
- An attribute specifier list may appear at the start of a nested
-declarator. At present, there are some limitations in this usage: the
-attributes correctly apply to the declarator, but for most individual
-attributes the semantics this implies are not implemented. When
-attribute specifiers follow the '*' of a pointer declarator, they may be
-mixed with any type qualifiers present. The following describes the
-formal semantics of this syntax. It makes the most sense if you are
-familiar with the formal specification of declarators in the ISO C
-standard.
-
- Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration 'T D1',
-where 'T' contains declaration specifiers that specify a type TYPE (such
-as 'int') and 'D1' is a declarator that contains an identifier IDENT.
-The type specified for IDENT for derived declarators whose type does not
-include an attribute specifier is as in the ISO C standard.
-
- If 'D1' has the form '( ATTRIBUTE-SPECIFIER-LIST D )', and the
-declaration 'T D' specifies the type "DERIVED-DECLARATOR-TYPE-LIST TYPE"
-for IDENT, then 'T D1' specifies the type "DERIVED-DECLARATOR-TYPE-LIST
-ATTRIBUTE-SPECIFIER-LIST TYPE" for IDENT.
-
- If 'D1' has the form '* TYPE-QUALIFIER-AND-ATTRIBUTE-SPECIFIER-LIST D',
-and the declaration 'T D' specifies the type
-"DERIVED-DECLARATOR-TYPE-LIST TYPE" for IDENT, then 'T D1' specifies the
-type "DERIVED-DECLARATOR-TYPE-LIST
-TYPE-QUALIFIER-AND-ATTRIBUTE-SPECIFIER-LIST pointer to TYPE" for IDENT.
-
- For example,
-
- void (__attribute__((noreturn)) ****f) (void);
-
-specifies the type "pointer to pointer to pointer to pointer to
-non-returning function returning 'void'". As another example,
-
- char *__attribute__((aligned(8))) *f;
-
-specifies the type "pointer to 8-byte-aligned pointer to 'char'". Note
-again that this does not work with most attributes; for example, the
-usage of 'aligned' and 'noreturn' attributes given above is not yet
-supported.
-
- For compatibility with existing code written for compiler versions that
-did not implement attributes on nested declarators, some laxity is
-allowed in the placing of attributes. If an attribute that only applies
-to types is applied to a declaration, it is treated as applying to the
-type of that declaration. If an attribute that only applies to
-declarations is applied to the type of a declaration, it is treated as
-applying to that declaration; and, for compatibility with code placing
-the attributes immediately before the identifier declared, such an
-attribute applied to a function return type is treated as applying to
-the function type, and such an attribute applied to an array element
-type is treated as applying to the array type. If an attribute that
-only applies to function types is applied to a pointer-to-function type,
-it is treated as applying to the pointer target type; if such an
-attribute is applied to a function return type that is not a
-pointer-to-function type, it is treated as applying to the function
-type.
-
-
-File: gcc.info, Node: Function Prototypes, Next: C++ Comments, Prev: Attribute Syntax, Up: C Extensions
-
-6.32 Prototypes and Old-Style Function Definitions
-==================================================
-
-GNU C extends ISO C to allow a function prototype to override a later
-old-style non-prototype definition. Consider the following example:
-
- /* Use prototypes unless the compiler is old-fashioned. */
- #ifdef __STDC__
- #define P(x) x
- #else
- #define P(x) ()
- #endif
-
- /* Prototype function declaration. */
- int isroot P((uid_t));
-
- /* Old-style function definition. */
- int
- isroot (x) /* ??? lossage here ??? */
- uid_t x;
- {
- return x == 0;
- }
-
- Suppose the type 'uid_t' happens to be 'short'. ISO C does not allow
-this example, because subword arguments in old-style non-prototype
-definitions are promoted. Therefore in this example the function
-definition's argument is really an 'int', which does not match the
-prototype argument type of 'short'.
-
- This restriction of ISO C makes it hard to write code that is portable
-to traditional C compilers, because the programmer does not know whether
-the 'uid_t' type is 'short', 'int', or 'long'. Therefore, in cases like
-these GNU C allows a prototype to override a later old-style definition.
-More precisely, in GNU C, a function prototype argument type overrides
-the argument type specified by a later old-style definition if the
-former type is the same as the latter type before promotion. Thus in
-GNU C the above example is equivalent to the following:
-
- int isroot (uid_t);
-
- int
- isroot (uid_t x)
- {
- return x == 0;
- }
-
-GNU C++ does not support old-style function definitions, so this
-extension is irrelevant.
-
-
-File: gcc.info, Node: C++ Comments, Next: Dollar Signs, Prev: Function Prototypes, Up: C Extensions
-
-6.33 C++ Style Comments
-=======================
-
-In GNU C, you may use C++ style comments, which start with '//' and
-continue until the end of the line. Many other C implementations allow
-such comments, and they are included in the 1999 C standard. However,
-C++ style comments are not recognized if you specify an '-std' option
-specifying a version of ISO C before C99, or '-ansi' (equivalent to
-'-std=c90').
-
-
-File: gcc.info, Node: Dollar Signs, Next: Character Escapes, Prev: C++ Comments, Up: C Extensions
-
-6.34 Dollar Signs in Identifier Names
-=====================================
-
-In GNU C, you may normally use dollar signs in identifier names. This
-is because many traditional C implementations allow such identifiers.
-However, dollar signs in identifiers are not supported on a few target
-machines, typically because the target assembler does not allow them.
-
-
-File: gcc.info, Node: Character Escapes, Next: Variable Attributes, Prev: Dollar Signs, Up: C Extensions
-
-6.35 The Character <ESC> in Constants
-=====================================
-
-You can use the sequence '\e' in a string or character constant to stand
-for the ASCII character <ESC>.
-
-
-File: gcc.info, Node: Variable Attributes, Next: Type Attributes, Prev: Character Escapes, Up: C Extensions
-
-6.36 Specifying Attributes of Variables
-=======================================
-
-The keyword '__attribute__' allows you to specify special attributes of
-variables or structure fields. This keyword is followed by an attribute
-specification inside double parentheses. Some attributes are currently
-defined generically for variables. Other attributes are defined for
-variables on particular target systems. Other attributes are available
-for functions (*note Function Attributes::) and for types (*note Type
-Attributes::). Other front ends might define more attributes (*note
-Extensions to the C++ Language: C++ Extensions.).
-
- You may also specify attributes with '__' preceding and following each
-keyword. This allows you to use them in header files without being
-concerned about a possible macro of the same name. For example, you may
-use '__aligned__' instead of 'aligned'.
-
- *Note Attribute Syntax::, for details of the exact syntax for using
-attributes.
-
-'aligned (ALIGNMENT)'
- This attribute specifies a minimum alignment for the variable or
- structure field, measured in bytes. For example, the declaration:
-
- int x __attribute__ ((aligned (16))) = 0;
-
- causes the compiler to allocate the global variable 'x' on a
- 16-byte boundary. On a 68040, this could be used in conjunction
- with an 'asm' expression to access the 'move16' instruction which
- requires 16-byte aligned operands.
-
- You can also specify the alignment of structure fields. For
- example, to create a double-word aligned 'int' pair, you could
- write:
-
- struct foo { int x[2] __attribute__ ((aligned (8))); };
-
- This is an alternative to creating a union with a 'double' member,
- which forces the union to be double-word aligned.
-
- As in the preceding examples, you can explicitly specify the
- alignment (in bytes) that you wish the compiler to use for a given
- variable or structure field. Alternatively, you can leave out the
- alignment factor and just ask the compiler to align a variable or
- field to the default alignment for the target architecture you are
- compiling for. The default alignment is sufficient for all scalar
- types, but may not be enough for all vector types on a target that
- supports vector operations. The default alignment is fixed for a
- particular target ABI.
-
- GCC also provides a target specific macro '__BIGGEST_ALIGNMENT__',
- which is the largest alignment ever used for any data type on the
- target machine you are compiling for. For example, you could
- write:
-
- short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
-
- The compiler automatically sets the alignment for the declared
- variable or field to '__BIGGEST_ALIGNMENT__'. Doing this can often
- make copy operations more efficient, because the compiler can use
- whatever instructions copy the biggest chunks of memory when
- performing copies to or from the variables or fields that you have
- aligned this way. Note that the value of '__BIGGEST_ALIGNMENT__'
- may change depending on command-line options.
-
- When used on a struct, or struct member, the 'aligned' attribute
- can only increase the alignment; in order to decrease it, the
- 'packed' attribute must be specified as well. When used as part of
- a typedef, the 'aligned' attribute can both increase and decrease
- alignment, and specifying the 'packed' attribute generates a
- warning.
-
- Note that the effectiveness of 'aligned' attributes may be limited
- by inherent limitations in your linker. On many systems, the
- linker is only able to arrange for variables to be aligned up to a
- certain maximum alignment. (For some linkers, the maximum
- supported alignment may be very very small.) If your linker is
- only able to align variables up to a maximum of 8-byte alignment,
- then specifying 'aligned(16)' in an '__attribute__' still only
- provides you with 8-byte alignment. See your linker documentation
- for further information.
-
- The 'aligned' attribute can also be used for functions (*note
- Function Attributes::.)
-
-'cleanup (CLEANUP_FUNCTION)'
- The 'cleanup' attribute runs a function when the variable goes out
- of scope. This attribute can only be applied to auto function
- scope variables; it may not be applied to parameters or variables
- with static storage duration. The function must take one
- parameter, a pointer to a type compatible with the variable. The
- return value of the function (if any) is ignored.
-
- If '-fexceptions' is enabled, then CLEANUP_FUNCTION is run during
- the stack unwinding that happens during the processing of the
- exception. Note that the 'cleanup' attribute does not allow the
- exception to be caught, only to perform an action. It is undefined
- what happens if CLEANUP_FUNCTION does not return normally.
-
-'common'
-'nocommon'
- The 'common' attribute requests GCC to place a variable in "common"
- storage. The 'nocommon' attribute requests the opposite--to
- allocate space for it directly.
-
- These attributes override the default chosen by the '-fno-common'
- and '-fcommon' flags respectively.
-
-'deprecated'
-'deprecated (MSG)'
- The 'deprecated' attribute results in a warning if the variable is
- used anywhere in the source file. This is useful when identifying
- variables that are expected to be removed in a future version of a
- program. The warning also includes the location of the declaration
- of the deprecated variable, to enable users to easily find further
- information about why the variable is deprecated, or what they
- should do instead. Note that the warning only occurs for uses:
-
- extern int old_var __attribute__ ((deprecated));
- extern int old_var;
- int new_fn () { return old_var; }
-
- results in a warning on line 3 but not line 2. The optional MSG
- argument, which must be a string, is printed in the warning if
- present.
-
- The 'deprecated' attribute can also be used for functions and types
- (*note Function Attributes::, *note Type Attributes::.)
-
-'mode (MODE)'
- This attribute specifies the data type for the
- declaration--whichever type corresponds to the mode MODE. This in
- effect lets you request an integer or floating-point type according
- to its width.
-
- You may also specify a mode of 'byte' or '__byte__' to indicate the
- mode corresponding to a one-byte integer, 'word' or '__word__' for
- the mode of a one-word integer, and 'pointer' or '__pointer__' for
- the mode used to represent pointers.
-
-'packed'
- The 'packed' attribute specifies that a variable or structure field
- should have the smallest possible alignment--one byte for a
- variable, and one bit for a field, unless you specify a larger
- value with the 'aligned' attribute.
-
- Here is a structure in which the field 'x' is packed, so that it
- immediately follows 'a':
-
- struct foo
- {
- char a;
- int x[2] __attribute__ ((packed));
- };
-
- _Note:_ The 4.1, 4.2 and 4.3 series of GCC ignore the 'packed'
- attribute on bit-fields of type 'char'. This has been fixed in GCC
- 4.4 but the change can lead to differences in the structure layout.
- See the documentation of '-Wpacked-bitfield-compat' for more
- information.
-
-'section ("SECTION-NAME")'
- Normally, the compiler places the objects it generates in sections
- like 'data' and 'bss'. Sometimes, however, you need additional
- sections, or you need certain particular variables to appear in
- special sections, for example to map to special hardware. The
- 'section' attribute specifies that a variable (or function) lives
- in a particular section. For example, this small program uses
- several specific section names:
-
- struct duart a __attribute__ ((section ("DUART_A"))) = { 0 };
- struct duart b __attribute__ ((section ("DUART_B"))) = { 0 };
- char stack[10000] __attribute__ ((section ("STACK"))) = { 0 };
- int init_data __attribute__ ((section ("INITDATA")));
-
- main()
- {
- /* Initialize stack pointer */
- init_sp (stack + sizeof (stack));
-
- /* Initialize initialized data */
- memcpy (&init_data, &data, &edata - &data);
-
- /* Turn on the serial ports */
- init_duart (&a);
- init_duart (&b);
- }
-
- Use the 'section' attribute with _global_ variables and not _local_
- variables, as shown in the example.
-
- You may use the 'section' attribute with initialized or
- uninitialized global variables but the linker requires each object
- be defined once, with the exception that uninitialized variables
- tentatively go in the 'common' (or 'bss') section and can be
- multiply "defined". Using the 'section' attribute changes what
- section the variable goes into and may cause the linker to issue an
- error if an uninitialized variable has multiple definitions. You
- can force a variable to be initialized with the '-fno-common' flag
- or the 'nocommon' attribute.
-
- Some file formats do not support arbitrary sections so the
- 'section' attribute is not available on all platforms. If you need
- to map the entire contents of a module to a particular section,
- consider using the facilities of the linker instead.
-
-'shared'
- On Microsoft Windows, in addition to putting variable definitions
- in a named section, the section can also be shared among all
- running copies of an executable or DLL. For example, this small
- program defines shared data by putting it in a named section
- 'shared' and marking the section shareable:
-
- int foo __attribute__((section ("shared"), shared)) = 0;
-
- int
- main()
- {
- /* Read and write foo. All running
- copies see the same value. */
- return 0;
- }
-
- You may only use the 'shared' attribute along with 'section'
- attribute with a fully-initialized global definition because of the
- way linkers work. See 'section' attribute for more information.
-
- The 'shared' attribute is only available on Microsoft Windows.
-
-'tls_model ("TLS_MODEL")'
- The 'tls_model' attribute sets thread-local storage model (*note
- Thread-Local::) of a particular '__thread' variable, overriding
- '-ftls-model=' command-line switch on a per-variable basis. The
- TLS_MODEL argument should be one of 'global-dynamic',
- 'local-dynamic', 'initial-exec' or 'local-exec'.
-
- Not all targets support this attribute.
-
-'unused'
- This attribute, attached to a variable, means that the variable is
- meant to be possibly unused. GCC does not produce a warning for
- this variable.
-
-'used'
- This attribute, attached to a variable with the static storage,
- means that the variable must be emitted even if it appears that the
- variable is not referenced.
-
- When applied to a static data member of a C++ class template, the
- attribute also means that the member is instantiated if the class
- itself is instantiated.
-
-'vector_size (BYTES)'
- This attribute specifies the vector size for the variable, measured
- in bytes. For example, the declaration:
-
- int foo __attribute__ ((vector_size (16)));
-
- causes the compiler to set the mode for 'foo', to be 16 bytes,
- divided into 'int' sized units. Assuming a 32-bit int (a vector of
- 4 units of 4 bytes), the corresponding mode of 'foo' is V4SI.
-
- This attribute is only applicable to integral and float scalars,
- although arrays, pointers, and function return values are allowed
- in conjunction with this construct.
-
- Aggregates with this attribute are invalid, even if they are of the
- same size as a corresponding scalar. For example, the declaration:
-
- struct S { int a; };
- struct S __attribute__ ((vector_size (16))) foo;
-
- is invalid even if the size of the structure is the same as the
- size of the 'int'.
-
-'selectany'
- The 'selectany' attribute causes an initialized global variable to
- have link-once semantics. When multiple definitions of the
- variable are encountered by the linker, the first is selected and
- the remainder are discarded. Following usage by the Microsoft
- compiler, the linker is told _not_ to warn about size or content
- differences of the multiple definitions.
-
- Although the primary usage of this attribute is for POD types, the
- attribute can also be applied to global C++ objects that are
- initialized by a constructor. In this case, the static
- initialization and destruction code for the object is emitted in
- each translation defining the object, but the calls to the
- constructor and destructor are protected by a link-once guard
- variable.
-
- The 'selectany' attribute is only available on Microsoft Windows
- targets. You can use '__declspec (selectany)' as a synonym for
- '__attribute__ ((selectany))' for compatibility with other
- compilers.
-
-'weak'
- The 'weak' attribute is described in *note Function Attributes::.
-
-'dllimport'
- The 'dllimport' attribute is described in *note Function
- Attributes::.
-
-'dllexport'
- The 'dllexport' attribute is described in *note Function
- Attributes::.
-
-6.36.1 AVR Variable Attributes
-------------------------------
-
-'progmem'
- The 'progmem' attribute is used on the AVR to place read-only data
- in the non-volatile program memory (flash). The 'progmem'
- attribute accomplishes this by putting respective variables into a
- section whose name starts with '.progmem'.
-
- This attribute works similar to the 'section' attribute but adds
- additional checking. Notice that just like the 'section'
- attribute, 'progmem' affects the location of the data but not how
- this data is accessed.
-
- In order to read data located with the 'progmem' attribute (inline)
- assembler must be used.
- /* Use custom macros from AVR-LibC (http://nongnu.org/avr-libc/user-manual/) */
- #include <avr/pgmspace.h>
-
- /* Locate var in flash memory */
- const int var[2] PROGMEM = { 1, 2 };
-
- int read_var (int i)
- {
- /* Access var[] by accessor macro from avr/pgmspace.h */
- return (int) pgm_read_word (& var[i]);
- }
-
- AVR is a Harvard architecture processor and data and read-only data
- normally resides in the data memory (RAM).
-
- See also the *note AVR Named Address Spaces:: section for an
- alternate way to locate and access data in flash memory.
-
-6.36.2 Blackfin Variable Attributes
------------------------------------
-
-Three attributes are currently defined for the Blackfin.
-
-'l1_data'
-'l1_data_A'
-'l1_data_B'
- Use these attributes on the Blackfin to place the variable into L1
- Data SRAM. Variables with 'l1_data' attribute are put into the
- specific section named '.l1.data'. Those with 'l1_data_A'
- attribute are put into the specific section named '.l1.data.A'.
- Those with 'l1_data_B' attribute are put into the specific section
- named '.l1.data.B'.
-
-'l2'
- Use this attribute on the Blackfin to place the variable into L2
- SRAM. Variables with 'l2' attribute are put into the specific
- section named '.l2.data'.
-
-6.36.3 M32R/D Variable Attributes
----------------------------------
-
-One attribute is currently defined for the M32R/D.
-
-'model (MODEL-NAME)'
- Use this attribute on the M32R/D to set the addressability of an
- object. The identifier MODEL-NAME is one of 'small', 'medium', or
- 'large', representing each of the code models.
-
- Small model objects live in the lower 16MB of memory (so that their
- addresses can be loaded with the 'ld24' instruction).
-
- Medium and large model objects may live anywhere in the 32-bit
- address space (the compiler generates 'seth/add3' instructions to
- load their addresses).
-
-6.36.4 MeP Variable Attributes
-------------------------------
-
-The MeP target has a number of addressing modes and busses. The 'near'
-space spans the standard memory space's first 16 megabytes (24 bits).
-The 'far' space spans the entire 32-bit memory space. The 'based' space
-is a 128-byte region in the memory space that is addressed relative to
-the '$tp' register. The 'tiny' space is a 65536-byte region relative to
-the '$gp' register. In addition to these memory regions, the MeP target
-has a separate 16-bit control bus which is specified with 'cb'
-attributes.
-
-'based'
- Any variable with the 'based' attribute is assigned to the '.based'
- section, and is accessed with relative to the '$tp' register.
-
-'tiny'
- Likewise, the 'tiny' attribute assigned variables to the '.tiny'
- section, relative to the '$gp' register.
-
-'near'
- Variables with the 'near' attribute are assumed to have addresses
- that fit in a 24-bit addressing mode. This is the default for
- large variables ('-mtiny=4' is the default) but this attribute can
- override '-mtiny=' for small variables, or override '-ml'.
-
-'far'
- Variables with the 'far' attribute are addressed using a full
- 32-bit address. Since this covers the entire memory space, this
- allows modules to make no assumptions about where variables might
- be stored.
-
-'io'
-'io (ADDR)'
- Variables with the 'io' attribute are used to address memory-mapped
- peripherals. If an address is specified, the variable is assigned
- that address, else it is not assigned an address (it is assumed
- some other module assigns an address). Example:
-
- int timer_count __attribute__((io(0x123)));
-
-'cb'
-'cb (ADDR)'
- Variables with the 'cb' attribute are used to access the control
- bus, using special instructions. 'addr' indicates the control bus
- address. Example:
-
- int cpu_clock __attribute__((cb(0x123)));
-
-6.36.5 i386 Variable Attributes
--------------------------------
-
-Two attributes are currently defined for i386 configurations:
-'ms_struct' and 'gcc_struct'
-
-'ms_struct'
-'gcc_struct'
-
- If 'packed' is used on a structure, or if bit-fields are used, it
- may be that the Microsoft ABI lays out the structure differently
- than the way GCC normally does. Particularly when moving packed
- data between functions compiled with GCC and the native Microsoft
- compiler (either via function call or as data in a file), it may be
- necessary to access either format.
-
- Currently '-m[no-]ms-bitfields' is provided for the Microsoft
- Windows X86 compilers to match the native Microsoft compiler.
-
- The Microsoft structure layout algorithm is fairly simple with the
- exception of the bit-field packing. The padding and alignment of
- members of structures and whether a bit-field can straddle a
- storage-unit boundary are determine by these rules:
-
- 1. Structure members are stored sequentially in the order in
- which they are declared: the first member has the lowest
- memory address and the last member the highest.
-
- 2. Every data object has an alignment requirement. The alignment
- requirement for all data except structures, unions, and arrays
- is either the size of the object or the current packing size
- (specified with either the 'aligned' attribute or the 'pack'
- pragma), whichever is less. For structures, unions, and
- arrays, the alignment requirement is the largest alignment
- requirement of its members. Every object is allocated an
- offset so that:
-
- offset % alignment_requirement == 0
-
- 3. Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte
- allocation unit if the integral types are the same size and if
- the next bit-field fits into the current allocation unit
- without crossing the boundary imposed by the common alignment
- requirements of the bit-fields.
-
- MSVC interprets zero-length bit-fields in the following ways:
-
- 1. If a zero-length bit-field is inserted between two bit-fields
- that are normally coalesced, the bit-fields are not coalesced.
-
- For example:
-
- struct
- {
- unsigned long bf_1 : 12;
- unsigned long : 0;
- unsigned long bf_2 : 12;
- } t1;
-
- The size of 't1' is 8 bytes with the zero-length bit-field.
- If the zero-length bit-field were removed, 't1''s size would
- be 4 bytes.
-
- 2. If a zero-length bit-field is inserted after a bit-field,
- 'foo', and the alignment of the zero-length bit-field is
- greater than the member that follows it, 'bar', 'bar' is
- aligned as the type of the zero-length bit-field.
-
- For example:
-
- struct
- {
- char foo : 4;
- short : 0;
- char bar;
- } t2;
-
- struct
- {
- char foo : 4;
- short : 0;
- double bar;
- } t3;
-
- For 't2', 'bar' is placed at offset 2, rather than offset 1.
- Accordingly, the size of 't2' is 4. For 't3', the zero-length
- bit-field does not affect the alignment of 'bar' or, as a
- result, the size of the structure.
-
- Taking this into account, it is important to note the
- following:
-
- 1. If a zero-length bit-field follows a normal bit-field,
- the type of the zero-length bit-field may affect the
- alignment of the structure as whole. For example, 't2'
- has a size of 4 bytes, since the zero-length bit-field
- follows a normal bit-field, and is of type short.
-
- 2. Even if a zero-length bit-field is not followed by a
- normal bit-field, it may still affect the alignment of
- the structure:
-
- struct
- {
- char foo : 6;
- long : 0;
- } t4;
-
- Here, 't4' takes up 4 bytes.
-
- 3. Zero-length bit-fields following non-bit-field members are
- ignored:
-
- struct
- {
- char foo;
- long : 0;
- char bar;
- } t5;
-
- Here, 't5' takes up 2 bytes.
-
-6.36.6 PowerPC Variable Attributes
-----------------------------------
-
-Three attributes currently are defined for PowerPC configurations:
-'altivec', 'ms_struct' and 'gcc_struct'.
-
- For full documentation of the struct attributes please see the
-documentation in *note i386 Variable Attributes::.
-
- For documentation of 'altivec' attribute please see the documentation
-in *note PowerPC Type Attributes::.
-
-6.36.7 SPU Variable Attributes
-------------------------------
-
-The SPU supports the 'spu_vector' attribute for variables. For
-documentation of this attribute please see the documentation in *note
-SPU Type Attributes::.
-
-6.36.8 Xstormy16 Variable Attributes
-------------------------------------
-
-One attribute is currently defined for xstormy16 configurations:
-'below100'.
-
-'below100'
-
- If a variable has the 'below100' attribute ('BELOW100' is allowed
- also), GCC places the variable in the first 0x100 bytes of memory
- and use special opcodes to access it. Such variables are placed in
- either the '.bss_below100' section or the '.data_below100' section.
-
-
-File: gcc.info, Node: Type Attributes, Next: Alignment, Prev: Variable Attributes, Up: C Extensions
-
-6.37 Specifying Attributes of Types
-===================================
-
-The keyword '__attribute__' allows you to specify special attributes of
-'struct' and 'union' types when you define such types. This keyword is
-followed by an attribute specification inside double parentheses. Seven
-attributes are currently defined for types: 'aligned', 'packed',
-'transparent_union', 'unused', 'deprecated', 'visibility', and
-'may_alias'. Other attributes are defined for functions (*note Function
-Attributes::) and for variables (*note Variable Attributes::).
-
- You may also specify any one of these attributes with '__' preceding
-and following its keyword. This allows you to use these attributes in
-header files without being concerned about a possible macro of the same
-name. For example, you may use '__aligned__' instead of 'aligned'.
-
- You may specify type attributes in an enum, struct or union type
-declaration or definition, or for other types in a 'typedef'
-declaration.
-
- For an enum, struct or union type, you may specify attributes either
-between the enum, struct or union tag and the name of the type, or just
-past the closing curly brace of the _definition_. The former syntax is
-preferred.
-
- *Note Attribute Syntax::, for details of the exact syntax for using
-attributes.
-
-'aligned (ALIGNMENT)'
- This attribute specifies a minimum alignment (in bytes) for
- variables of the specified type. For example, the declarations:
-
- struct S { short f[3]; } __attribute__ ((aligned (8)));
- typedef int more_aligned_int __attribute__ ((aligned (8)));
-
- force the compiler to ensure (as far as it can) that each variable
- whose type is 'struct S' or 'more_aligned_int' is allocated and
- aligned _at least_ on a 8-byte boundary. On a SPARC, having all
- variables of type 'struct S' aligned to 8-byte boundaries allows
- the compiler to use the 'ldd' and 'std' (doubleword load and store)
- instructions when copying one variable of type 'struct S' to
- another, thus improving run-time efficiency.
-
- Note that the alignment of any given 'struct' or 'union' type is
- required by the ISO C standard to be at least a perfect multiple of
- the lowest common multiple of the alignments of all of the members
- of the 'struct' or 'union' in question. This means that you _can_
- effectively adjust the alignment of a 'struct' or 'union' type by
- attaching an 'aligned' attribute to any one of the members of such
- a type, but the notation illustrated in the example above is a more
- obvious, intuitive, and readable way to request the compiler to
- adjust the alignment of an entire 'struct' or 'union' type.
-
- As in the preceding example, you can explicitly specify the
- alignment (in bytes) that you wish the compiler to use for a given
- 'struct' or 'union' type. Alternatively, you can leave out the
- alignment factor and just ask the compiler to align a type to the
- maximum useful alignment for the target machine you are compiling
- for. For example, you could write:
-
- struct S { short f[3]; } __attribute__ ((aligned));
-
- Whenever you leave out the alignment factor in an 'aligned'
- attribute specification, the compiler automatically sets the
- alignment for the type to the largest alignment that is ever used
- for any data type on the target machine you are compiling for.
- Doing this can often make copy operations more efficient, because
- the compiler can use whatever instructions copy the biggest chunks
- of memory when performing copies to or from the variables that have
- types that you have aligned this way.
-
- In the example above, if the size of each 'short' is 2 bytes, then
- the size of the entire 'struct S' type is 6 bytes. The smallest
- power of two that is greater than or equal to that is 8, so the
- compiler sets the alignment for the entire 'struct S' type to 8
- bytes.
-
- Note that although you can ask the compiler to select a
- time-efficient alignment for a given type and then declare only
- individual stand-alone objects of that type, the compiler's ability
- to select a time-efficient alignment is primarily useful only when
- you plan to create arrays of variables having the relevant
- (efficiently aligned) type. If you declare or use arrays of
- variables of an efficiently-aligned type, then it is likely that
- your program also does pointer arithmetic (or subscripting, which
- amounts to the same thing) on pointers to the relevant type, and
- the code that the compiler generates for these pointer arithmetic
- operations is often more efficient for efficiently-aligned types
- than for other types.
-
- The 'aligned' attribute can only increase the alignment; but you
- can decrease it by specifying 'packed' as well. See below.
-
- Note that the effectiveness of 'aligned' attributes may be limited
- by inherent limitations in your linker. On many systems, the
- linker is only able to arrange for variables to be aligned up to a
- certain maximum alignment. (For some linkers, the maximum
- supported alignment may be very very small.) If your linker is
- only able to align variables up to a maximum of 8-byte alignment,
- then specifying 'aligned(16)' in an '__attribute__' still only
- provides you with 8-byte alignment. See your linker documentation
- for further information.
-
-'packed'
- This attribute, attached to 'struct' or 'union' type definition,
- specifies that each member (other than zero-width bit-fields) of
- the structure or union is placed to minimize the memory required.
- When attached to an 'enum' definition, it indicates that the
- smallest integral type should be used.
-
- Specifying this attribute for 'struct' and 'union' types is
- equivalent to specifying the 'packed' attribute on each of the
- structure or union members. Specifying the '-fshort-enums' flag on
- the line is equivalent to specifying the 'packed' attribute on all
- 'enum' definitions.
-
- In the following example 'struct my_packed_struct''s members are
- packed closely together, but the internal layout of its 's' member
- is not packed--to do that, 'struct my_unpacked_struct' needs to be
- packed too.
-
- struct my_unpacked_struct
- {
- char c;
- int i;
- };
-
- struct __attribute__ ((__packed__)) my_packed_struct
- {
- char c;
- int i;
- struct my_unpacked_struct s;
- };
-
- You may only specify this attribute on the definition of an 'enum',
- 'struct' or 'union', not on a 'typedef' that does not also define
- the enumerated type, structure or union.
-
-'transparent_union'
- This attribute, attached to a 'union' type definition, indicates
- that any function parameter having that union type causes calls to
- that function to be treated in a special way.
-
- First, the argument corresponding to a transparent union type can
- be of any type in the union; no cast is required. Also, if the
- union contains a pointer type, the corresponding argument can be a
- null pointer constant or a void pointer expression; and if the
- union contains a void pointer type, the corresponding argument can
- be any pointer expression. If the union member type is a pointer,
- qualifiers like 'const' on the referenced type must be respected,
- just as with normal pointer conversions.
-
- Second, the argument is passed to the function using the calling
- conventions of the first member of the transparent union, not the
- calling conventions of the union itself. All members of the union
- must have the same machine representation; this is necessary for
- this argument passing to work properly.
-
- Transparent unions are designed for library functions that have
- multiple interfaces for compatibility reasons. For example,
- suppose the 'wait' function must accept either a value of type 'int
- *' to comply with POSIX, or a value of type 'union wait *' to
- comply with the 4.1BSD interface. If 'wait''s parameter were 'void
- *', 'wait' would accept both kinds of arguments, but it would also
- accept any other pointer type and this would make argument type
- checking less useful. Instead, '<sys/wait.h>' might define the
- interface as follows:
-
- typedef union __attribute__ ((__transparent_union__))
- {
- int *__ip;
- union wait *__up;
- } wait_status_ptr_t;
-
- pid_t wait (wait_status_ptr_t);
-
- This interface allows either 'int *' or 'union wait *' arguments to
- be passed, using the 'int *' calling convention. The program can
- call 'wait' with arguments of either type:
-
- int w1 () { int w; return wait (&w); }
- int w2 () { union wait w; return wait (&w); }
-
- With this interface, 'wait''s implementation might look like this:
-
- pid_t wait (wait_status_ptr_t p)
- {
- return waitpid (-1, p.__ip, 0);
- }
-
-'unused'
- When attached to a type (including a 'union' or a 'struct'), this
- attribute means that variables of that type are meant to appear
- possibly unused. GCC does not produce a warning for any variables
- of that type, even if the variable appears to do nothing. This is
- often the case with lock or thread classes, which are usually
- defined and then not referenced, but contain constructors and
- destructors that have nontrivial bookkeeping functions.
-
-'deprecated'
-'deprecated (MSG)'
- The 'deprecated' attribute results in a warning if the type is used
- anywhere in the source file. This is useful when identifying types
- that are expected to be removed in a future version of a program.
- If possible, the warning also includes the location of the
- declaration of the deprecated type, to enable users to easily find
- further information about why the type is deprecated, or what they
- should do instead. Note that the warnings only occur for uses and
- then only if the type is being applied to an identifier that itself
- is not being declared as deprecated.
-
- typedef int T1 __attribute__ ((deprecated));
- T1 x;
- typedef T1 T2;
- T2 y;
- typedef T1 T3 __attribute__ ((deprecated));
- T3 z __attribute__ ((deprecated));
-
- results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
- warning is issued for line 4 because T2 is not explicitly
- deprecated. Line 5 has no warning because T3 is explicitly
- deprecated. Similarly for line 6. The optional MSG argument,
- which must be a string, is printed in the warning if present.
-
- The 'deprecated' attribute can also be used for functions and
- variables (*note Function Attributes::, *note Variable
- Attributes::.)
-
-'may_alias'
- Accesses through pointers to types with this attribute are not
- subject to type-based alias analysis, but are instead assumed to be
- able to alias any other type of objects. In the context of section
- 6.5 paragraph 7 of the C99 standard, an lvalue expression
- dereferencing such a pointer is treated like having a character
- type. See '-fstrict-aliasing' for more information on aliasing
- issues. This extension exists to support some vector APIs, in
- which pointers to one vector type are permitted to alias pointers
- to a different vector type.
-
- Note that an object of a type with this attribute does not have any
- special semantics.
-
- Example of use:
-
- typedef short __attribute__((__may_alias__)) short_a;
-
- int
- main (void)
- {
- int a = 0x12345678;
- short_a *b = (short_a *) &a;
-
- b[1] = 0;
-
- if (a == 0x12345678)
- abort();
-
- exit(0);
- }
-
- If you replaced 'short_a' with 'short' in the variable declaration,
- the above program would abort when compiled with
- '-fstrict-aliasing', which is on by default at '-O2' or above in
- recent GCC versions.
-
-'visibility'
- In C++, attribute visibility (*note Function Attributes::) can also
- be applied to class, struct, union and enum types. Unlike other
- type attributes, the attribute must appear between the initial
- keyword and the name of the type; it cannot appear after the body
- of the type.
-
- Note that the type visibility is applied to vague linkage entities
- associated with the class (vtable, typeinfo node, etc.). In
- particular, if a class is thrown as an exception in one shared
- object and caught in another, the class must have default
- visibility. Otherwise the two shared objects are unable to use the
- same typeinfo node and exception handling will break.
-
- To specify multiple attributes, separate them by commas within the
-double parentheses: for example, '__attribute__ ((aligned (16),
-packed))'.
-
-6.37.1 ARM Type Attributes
---------------------------
-
-On those ARM targets that support 'dllimport' (such as Symbian OS), you
-can use the 'notshared' attribute to indicate that the virtual table and
-other similar data for a class should not be exported from a DLL. For
-example:
-
- class __declspec(notshared) C {
- public:
- __declspec(dllimport) C();
- virtual void f();
- }
-
- __declspec(dllexport)
- C::C() {}
-
-In this code, 'C::C' is exported from the current DLL, but the virtual
-table for 'C' is not exported. (You can use '__attribute__' instead of
-'__declspec' if you prefer, but most Symbian OS code uses '__declspec'.)
-
-6.37.2 MeP Type Attributes
---------------------------
-
-Many of the MeP variable attributes may be applied to types as well.
-Specifically, the 'based', 'tiny', 'near', and 'far' attributes may be
-applied to either. The 'io' and 'cb' attributes may not be applied to
-types.
-
-6.37.3 i386 Type Attributes
----------------------------
-
-Two attributes are currently defined for i386 configurations:
-'ms_struct' and 'gcc_struct'.
-
-'ms_struct'
-'gcc_struct'
-
- If 'packed' is used on a structure, or if bit-fields are used it
- may be that the Microsoft ABI packs them differently than GCC
- normally packs them. Particularly when moving packed data between
- functions compiled with GCC and the native Microsoft compiler
- (either via function call or as data in a file), it may be
- necessary to access either format.
-
- Currently '-m[no-]ms-bitfields' is provided for the Microsoft
- Windows X86 compilers to match the native Microsoft compiler.
-
-6.37.4 PowerPC Type Attributes
-------------------------------
-
-Three attributes currently are defined for PowerPC configurations:
-'altivec', 'ms_struct' and 'gcc_struct'.
-
- For full documentation of the 'ms_struct' and 'gcc_struct' attributes
-please see the documentation in *note i386 Type Attributes::.
-
- The 'altivec' attribute allows one to declare AltiVec vector data types
-supported by the AltiVec Programming Interface Manual. The attribute
-requires an argument to specify one of three vector types: 'vector__',
-'pixel__' (always followed by unsigned short), and 'bool__' (always
-followed by unsigned).
-
- __attribute__((altivec(vector__)))
- __attribute__((altivec(pixel__))) unsigned short
- __attribute__((altivec(bool__))) unsigned
-
- These attributes mainly are intended to support the '__vector',
-'__pixel', and '__bool' AltiVec keywords.
-
-6.37.5 SPU Type Attributes
---------------------------
-
-The SPU supports the 'spu_vector' attribute for types. This attribute
-allows one to declare vector data types supported by the
-Sony/Toshiba/IBM SPU Language Extensions Specification. It is intended
-to support the '__vector' keyword.
-
-
-File: gcc.info, Node: Alignment, Next: Inline, Prev: Type Attributes, Up: C Extensions
-
-6.38 Inquiring on Alignment of Types or Variables
-=================================================
-
-The keyword '__alignof__' allows you to inquire about how an object is
-aligned, or the minimum alignment usually required by a type. Its
-syntax is just like 'sizeof'.
-
- For example, if the target machine requires a 'double' value to be
-aligned on an 8-byte boundary, then '__alignof__ (double)' is 8. This
-is true on many RISC machines. On more traditional machine designs,
-'__alignof__ (double)' is 4 or even 2.
-
- Some machines never actually require alignment; they allow reference to
-any data type even at an odd address. For these machines, '__alignof__'
-reports the smallest alignment that GCC gives the data type, usually as
-mandated by the target ABI.
-
- If the operand of '__alignof__' is an lvalue rather than a type, its
-value is the required alignment for its type, taking into account any
-minimum alignment specified with GCC's '__attribute__' extension (*note
-Variable Attributes::). For example, after this declaration:
-
- struct foo { int x; char y; } foo1;
-
-the value of '__alignof__ (foo1.y)' is 1, even though its actual
-alignment is probably 2 or 4, the same as '__alignof__ (int)'.
-
- It is an error to ask for the alignment of an incomplete type.
-
-
-File: gcc.info, Node: Inline, Next: Volatiles, Prev: Alignment, Up: C Extensions
-
-6.39 An Inline Function is As Fast As a Macro
-=============================================
-
-By declaring a function inline, you can direct GCC to make calls to that
-function faster. One way GCC can achieve this is to integrate that
-function's code into the code for its callers. This makes execution
-faster by eliminating the function-call overhead; in addition, if any of
-the actual argument values are constant, their known values may permit
-simplifications at compile time so that not all of the inline function's
-code needs to be included. The effect on code size is less predictable;
-object code may be larger or smaller with function inlining, depending
-on the particular case. You can also direct GCC to try to integrate all
-"simple enough" functions into their callers with the option
-'-finline-functions'.
-
- GCC implements three different semantics of declaring a function
-inline. One is available with '-std=gnu89' or '-fgnu89-inline' or when
-'gnu_inline' attribute is present on all inline declarations, another
-when '-std=c99', '-std=c11', '-std=gnu99' or '-std=gnu11' (without
-'-fgnu89-inline'), and the third is used when compiling C++.
-
- To declare a function inline, use the 'inline' keyword in its
-declaration, like this:
-
- static inline int
- inc (int *a)
- {
- return (*a)++;
- }
-
- If you are writing a header file to be included in ISO C90 programs,
-write '__inline__' instead of 'inline'. *Note Alternate Keywords::.
-
- The three types of inlining behave similarly in two important cases:
-when the 'inline' keyword is used on a 'static' function, like the
-example above, and when a function is first declared without using the
-'inline' keyword and then is defined with 'inline', like this:
-
- extern int inc (int *a);
- inline int
- inc (int *a)
- {
- return (*a)++;
- }
-
- In both of these common cases, the program behaves the same as if you
-had not used the 'inline' keyword, except for its speed.
-
- When a function is both inline and 'static', if all calls to the
-function are integrated into the caller, and the function's address is
-never used, then the function's own assembler code is never referenced.
-In this case, GCC does not actually output assembler code for the
-function, unless you specify the option '-fkeep-inline-functions'. Some
-calls cannot be integrated for various reasons (in particular, calls
-that precede the function's definition cannot be integrated, and neither
-can recursive calls within the definition). If there is a nonintegrated
-call, then the function is compiled to assembler code as usual. The
-function must also be compiled as usual if the program refers to its
-address, because that can't be inlined.
-
- Note that certain usages in a function definition can make it
-unsuitable for inline substitution. Among these usages are: variadic
-functions, use of 'alloca', use of variable-length data types (*note
-Variable Length::), use of computed goto (*note Labels as Values::), use
-of nonlocal goto, and nested functions (*note Nested Functions::).
-Using '-Winline' warns when a function marked 'inline' could not be
-substituted, and gives the reason for the failure.
-
- As required by ISO C++, GCC considers member functions defined within
-the body of a class to be marked inline even if they are not explicitly
-declared with the 'inline' keyword. You can override this with
-'-fno-default-inline'; *note Options Controlling C++ Dialect: C++
-Dialect Options.
-
- GCC does not inline any functions when not optimizing unless you
-specify the 'always_inline' attribute for the function, like this:
-
- /* Prototype. */
- inline void foo (const char) __attribute__((always_inline));
-
- The remainder of this section is specific to GNU C90 inlining.
-
- When an inline function is not 'static', then the compiler must assume
-that there may be calls from other source files; since a global symbol
-can be defined only once in any program, the function must not be
-defined in the other source files, so the calls therein cannot be
-integrated. Therefore, a non-'static' inline function is always
-compiled on its own in the usual fashion.
-
- If you specify both 'inline' and 'extern' in the function definition,
-then the definition is used only for inlining. In no case is the
-function compiled on its own, not even if you refer to its address
-explicitly. Such an address becomes an external reference, as if you
-had only declared the function, and had not defined it.
-
- This combination of 'inline' and 'extern' has almost the effect of a
-macro. The way to use it is to put a function definition in a header
-file with these keywords, and put another copy of the definition
-(lacking 'inline' and 'extern') in a library file. The definition in
-the header file causes most calls to the function to be inlined. If any
-uses of the function remain, they refer to the single copy in the
-library.
-
-
-File: gcc.info, Node: Volatiles, Next: Extended Asm, Prev: Inline, Up: C Extensions
-
-6.40 When is a Volatile Object Accessed?
-========================================
-
-C has the concept of volatile objects. These are normally accessed by
-pointers and used for accessing hardware or inter-thread communication.
-The standard encourages compilers to refrain from optimizations
-concerning accesses to volatile objects, but leaves it implementation
-defined as to what constitutes a volatile access. The minimum
-requirement is that at a sequence point all previous accesses to
-volatile objects have stabilized and no subsequent accesses have
-occurred. Thus an implementation is free to reorder and combine
-volatile accesses that occur between sequence points, but cannot do so
-for accesses across a sequence point. The use of volatile does not
-allow you to violate the restriction on updating objects multiple times
-between two sequence points.
-
- Accesses to non-volatile objects are not ordered with respect to
-volatile accesses. You cannot use a volatile object as a memory barrier
-to order a sequence of writes to non-volatile memory. For instance:
-
- int *ptr = SOMETHING;
- volatile int vobj;
- *ptr = SOMETHING;
- vobj = 1;
-
-Unless *PTR and VOBJ can be aliased, it is not guaranteed that the write
-to *PTR occurs by the time the update of VOBJ happens. If you need this
-guarantee, you must use a stronger memory barrier such as:
-
- int *ptr = SOMETHING;
- volatile int vobj;
- *ptr = SOMETHING;
- asm volatile ("" : : : "memory");
- vobj = 1;
-
- A scalar volatile object is read when it is accessed in a void context:
-
- volatile int *src = SOMEVALUE;
- *src;
-
- Such expressions are rvalues, and GCC implements this as a read of the
-volatile object being pointed to.
-
- Assignments are also expressions and have an rvalue. However when
-assigning to a scalar volatile, the volatile object is not reread,
-regardless of whether the assignment expression's rvalue is used or not.
-If the assignment's rvalue is used, the value is that assigned to the
-volatile object. For instance, there is no read of VOBJ in all the
-following cases:
-
- int obj;
- volatile int vobj;
- vobj = SOMETHING;
- obj = vobj = SOMETHING;
- obj ? vobj = ONETHING : vobj = ANOTHERTHING;
- obj = (SOMETHING, vobj = ANOTHERTHING);
-
- If you need to read the volatile object after an assignment has
-occurred, you must use a separate expression with an intervening
-sequence point.
-
- As bit-fields are not individually addressable, volatile bit-fields may
-be implicitly read when written to, or when adjacent bit-fields are
-accessed. Bit-field operations may be optimized such that adjacent
-bit-fields are only partially accessed, if they straddle a storage unit
-boundary. For these reasons it is unwise to use volatile bit-fields to
-access hardware.
-
-
-File: gcc.info, Node: Extended Asm, Next: Constraints, Prev: Volatiles, Up: C Extensions
-
-6.41 Assembler Instructions with C Expression Operands
-======================================================
-
-In an assembler instruction using 'asm', you can specify the operands of
-the instruction using C expressions. This means you need not guess
-which registers or memory locations contain the data you want to use.
-
- You must specify an assembler instruction template much like what
-appears in a machine description, plus an operand constraint string for
-each operand.
-
- For example, here is how to use the 68881's 'fsinx' instruction:
-
- asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));
-
-Here 'angle' is the C expression for the input operand while 'result' is
-that of the output operand. Each has '"f"' as its operand constraint,
-saying that a floating-point register is required. The '=' in '=f'
-indicates that the operand is an output; all output operands'
-constraints must use '='. The constraints use the same language used in
-the machine description (*note Constraints::).
-
- Each operand is described by an operand-constraint string followed by
-the C expression in parentheses. A colon separates the assembler
-template from the first output operand and another separates the last
-output operand from the first input, if any. Commas separate the
-operands within each group. The total number of operands is currently
-limited to 30; this limitation may be lifted in some future version of
-GCC.
-
- If there are no output operands but there are input operands, you must
-place two consecutive colons surrounding the place where the output
-operands would go.
-
- As of GCC version 3.1, it is also possible to specify input and output
-operands using symbolic names which can be referenced within the
-assembler code. These names are specified inside square brackets
-preceding the constraint string, and can be referenced inside the
-assembler code using '%[NAME]' instead of a percentage sign followed by
-the operand number. Using named operands the above example could look
-like:
-
- asm ("fsinx %[angle],%[output]"
- : [output] "=f" (result)
- : [angle] "f" (angle));
-
-Note that the symbolic operand names have no relation whatsoever to
-other C identifiers. You may use any name you like, even those of
-existing C symbols, but you must ensure that no two operands within the
-same assembler construct use the same symbolic name.
-
- Output operand expressions must be lvalues; the compiler can check
-this. The input operands need not be lvalues. The compiler cannot
-check whether the operands have data types that are reasonable for the
-instruction being executed. It does not parse the assembler instruction
-template and does not know what it means or even whether it is valid
-assembler input. The extended 'asm' feature is most often used for
-machine instructions the compiler itself does not know exist. If the
-output expression cannot be directly addressed (for example, it is a
-bit-field), your constraint must allow a register. In that case, GCC
-uses the register as the output of the 'asm', and then stores that
-register into the output.
-
- The ordinary output operands must be write-only; GCC assumes that the
-values in these operands before the instruction are dead and need not be
-generated. Extended asm supports input-output or read-write operands.
-Use the constraint character '+' to indicate such an operand and list it
-with the output operands.
-
- You may, as an alternative, logically split its function into two
-separate operands, one input operand and one write-only output operand.
-The connection between them is expressed by constraints that say they
-need to be in the same location when the instruction executes. You can
-use the same C expression for both operands, or different expressions.
-For example, here we write the (fictitious) 'combine' instruction with
-'bar' as its read-only source operand and 'foo' as its read-write
-destination:
-
- asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));
-
-The constraint '"0"' for operand 1 says that it must occupy the same
-location as operand 0. A number in constraint is allowed only in an
-input operand and it must refer to an output operand.
-
- Only a number in the constraint can guarantee that one operand is in
-the same place as another. The mere fact that 'foo' is the value of
-both operands is not enough to guarantee that they are in the same place
-in the generated assembler code. The following does not work reliably:
-
- asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));
-
- Various optimizations or reloading could cause operands 0 and 1 to be
-in different registers; GCC knows no reason not to do so. For example,
-the compiler might find a copy of the value of 'foo' in one register and
-use it for operand 1, but generate the output operand 0 in a different
-register (copying it afterward to 'foo''s own address). Of course,
-since the register for operand 1 is not even mentioned in the assembler
-code, the result will not work, but GCC can't tell that.
-
- As of GCC version 3.1, one may write '[NAME]' instead of the operand
-number for a matching constraint. For example:
-
- asm ("cmoveq %1,%2,%[result]"
- : [result] "=r"(result)
- : "r" (test), "r"(new), "[result]"(old));
-
- Sometimes you need to make an 'asm' operand be a specific register, but
-there's no matching constraint letter for that register _by itself_. To
-force the operand into that register, use a local variable for the
-operand and specify the register in the variable declaration. *Note
-Explicit Reg Vars::. Then for the 'asm' operand, use any register
-constraint letter that matches the register:
-
- register int *p1 asm ("r0") = ...;
- register int *p2 asm ("r1") = ...;
- register int *result asm ("r0");
- asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
-
- In the above example, beware that a register that is call-clobbered by
-the target ABI will be overwritten by any function call in the
-assignment, including library calls for arithmetic operators. Also a
-register may be clobbered when generating some operations, like variable
-shift, memory copy or memory move on x86. Assuming it is a
-call-clobbered register, this may happen to 'r0' above by the assignment
-to 'p2'. If you have to use such a register, use temporary variables
-for expressions between the register assignment and use:
-
- int t1 = ...;
- register int *p1 asm ("r0") = ...;
- register int *p2 asm ("r1") = t1;
- register int *result asm ("r0");
- asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
-
- Some instructions clobber specific hard registers. To describe this,
-write a third colon after the input operands, followed by the names of
-the clobbered hard registers (given as strings). Here is a realistic
-example for the VAX:
-
- asm volatile ("movc3 %0,%1,%2"
- : /* no outputs */
- : "g" (from), "g" (to), "g" (count)
- : "r0", "r1", "r2", "r3", "r4", "r5");
-
- You may not write a clobber description in a way that overlaps with an
-input or output operand. For example, you may not have an operand
-describing a register class with one member if you mention that register
-in the clobber list. Variables declared to live in specific registers
-(*note Explicit Reg Vars::), and used as asm input or output operands
-must have no part mentioned in the clobber description. There is no way
-for you to specify that an input operand is modified without also
-specifying it as an output operand. Note that if all the output
-operands you specify are for this purpose (and hence unused), you then
-also need to specify 'volatile' for the 'asm' construct, as described
-below, to prevent GCC from deleting the 'asm' statement as unused.
-
- If you refer to a particular hardware register from the assembler code,
-you probably have to list the register after the third colon to tell the
-compiler the register's value is modified. In some assemblers, the
-register names begin with '%'; to produce one '%' in the assembler code,
-you must write '%%' in the input.
-
- If your assembler instruction can alter the condition code register,
-add 'cc' to the list of clobbered registers. GCC on some machines
-represents the condition codes as a specific hardware register; 'cc'
-serves to name this register. On other machines, the condition code is
-handled differently, and specifying 'cc' has no effect. But it is valid
-no matter what the machine.
-
- If your assembler instructions access memory in an unpredictable
-fashion, add 'memory' to the list of clobbered registers. This causes
-GCC to not keep memory values cached in registers across the assembler
-instruction and not optimize stores or loads to that memory. You also
-should add the 'volatile' keyword if the memory affected is not listed
-in the inputs or outputs of the 'asm', as the 'memory' clobber does not
-count as a side-effect of the 'asm'. If you know how large the accessed
-memory is, you can add it as input or output but if this is not known,
-you should add 'memory'. As an example, if you access ten bytes of a
-string, you can use a memory input like:
-
- {"m"( ({ struct { char x[10]; } *p = (void *)ptr ; *p; }) )}.
-
- Note that in the following example the memory input is necessary,
-otherwise GCC might optimize the store to 'x' away:
- int foo ()
- {
- int x = 42;
- int *y = &x;
- int result;
- asm ("magic stuff accessing an 'int' pointed to by '%1'"
- : "=&d" (result) : "a" (y), "m" (*y));
- return result;
- }
-
- You can put multiple assembler instructions together in a single 'asm'
-template, separated by the characters normally used in assembly code for
-the system. A combination that works in most places is a newline to
-break the line, plus a tab character to move to the instruction field
-(written as '\n\t'). Sometimes semicolons can be used, if the assembler
-allows semicolons as a line-breaking character. Note that some
-assembler dialects use semicolons to start a comment. The input
-operands are guaranteed not to use any of the clobbered registers, and
-neither do the output operands' addresses, so you can read and write the
-clobbered registers as many times as you like. Here is an example of
-multiple instructions in a template; it assumes the subroutine '_foo'
-accepts arguments in registers 9 and 10:
-
- asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo"
- : /* no outputs */
- : "g" (from), "g" (to)
- : "r9", "r10");
-
- Unless an output operand has the '&' constraint modifier, GCC may
-allocate it in the same register as an unrelated input operand, on the
-assumption the inputs are consumed before the outputs are produced.
-This assumption may be false if the assembler code actually consists of
-more than one instruction. In such a case, use '&' for each output
-operand that may not overlap an input. *Note Modifiers::.
-
- If you want to test the condition code produced by an assembler
-instruction, you must include a branch and a label in the 'asm'
-construct, as follows:
-
- asm ("clr %0\n\tfrob %1\n\tbeq 0f\n\tmov #1,%0\n0:"
- : "g" (result)
- : "g" (input));
-
-This assumes your assembler supports local labels, as the GNU assembler
-and most Unix assemblers do.
-
- Speaking of labels, jumps from one 'asm' to another are not supported.
-The compiler's optimizers do not know about these jumps, and therefore
-they cannot take account of them when deciding how to optimize. *Note
-Extended asm with goto::.
-
- Usually the most convenient way to use these 'asm' instructions is to
-encapsulate them in macros that look like functions. For example,
-
- #define sin(x) \
- ({ double __value, __arg = (x); \
- asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \
- __value; })
-
-Here the variable '__arg' is used to make sure that the instruction
-operates on a proper 'double' value, and to accept only those arguments
-'x' that can convert automatically to a 'double'.
-
- Another way to make sure the instruction operates on the correct data
-type is to use a cast in the 'asm'. This is different from using a
-variable '__arg' in that it converts more different types. For example,
-if the desired type is 'int', casting the argument to 'int' accepts a
-pointer with no complaint, while assigning the argument to an 'int'
-variable named '__arg' warns about using a pointer unless the caller
-explicitly casts it.
-
- If an 'asm' has output operands, GCC assumes for optimization purposes
-the instruction has no side effects except to change the output
-operands. This does not mean instructions with a side effect cannot be
-used, but you must be careful, because the compiler may eliminate them
-if the output operands aren't used, or move them out of loops, or
-replace two with one if they constitute a common subexpression. Also,
-if your instruction does have a side effect on a variable that otherwise
-appears not to change, the old value of the variable may be reused later
-if it happens to be found in a register.
-
- You can prevent an 'asm' instruction from being deleted by writing the
-keyword 'volatile' after the 'asm'. For example:
-
- #define get_and_set_priority(new) \
- ({ int __old; \
- asm volatile ("get_and_set_priority %0, %1" \
- : "=g" (__old) : "g" (new)); \
- __old; })
-
-The 'volatile' keyword indicates that the instruction has important
-side-effects. GCC does not delete a volatile 'asm' if it is reachable.
-(The instruction can still be deleted if GCC can prove that control flow
-never reaches the location of the instruction.) Note that even a
-volatile 'asm' instruction can be moved relative to other code,
-including across jump instructions. For example, on many targets there
-is a system register that can be set to control the rounding mode of
-floating-point operations. You might try setting it with a volatile
-'asm', like this PowerPC example:
-
- asm volatile("mtfsf 255,%0" : : "f" (fpenv));
- sum = x + y;
-
-This does not work reliably, as the compiler may move the addition back
-before the volatile 'asm'. To make it work you need to add an
-artificial dependency to the 'asm' referencing a variable in the code
-you don't want moved, for example:
-
- asm volatile ("mtfsf 255,%1" : "=X"(sum): "f"(fpenv));
- sum = x + y;
-
- Similarly, you can't expect a sequence of volatile 'asm' instructions
-to remain perfectly consecutive. If you want consecutive output, use a
-single 'asm'. Also, GCC performs some optimizations across a volatile
-'asm' instruction; GCC does not "forget everything" when it encounters a
-volatile 'asm' instruction the way some other compilers do.
-
- An 'asm' instruction without any output operands is treated identically
-to a volatile 'asm' instruction.
-
- It is a natural idea to look for a way to give access to the condition
-code left by the assembler instruction. However, when we attempted to
-implement this, we found no way to make it work reliably. The problem
-is that output operands might need reloading, which result in additional
-following "store" instructions. On most machines, these instructions
-alter the condition code before there is time to test it. This problem
-doesn't arise for ordinary "test" and "compare" instructions because
-they don't have any output operands.
-
- For reasons similar to those described above, it is not possible to
-give an assembler instruction access to the condition code left by
-previous instructions.
-
- As of GCC version 4.5, 'asm goto' may be used to have the assembly jump
-to one or more C labels. In this form, a fifth section after the
-clobber list contains a list of all C labels to which the assembly may
-jump. Each label operand is implicitly self-named. The 'asm' is also
-assumed to fall through to the next statement.
-
- This form of 'asm' is restricted to not have outputs. This is due to a
-internal restriction in the compiler that control transfer instructions
-cannot have outputs. This restriction on 'asm goto' may be lifted in
-some future version of the compiler. In the meantime, 'asm goto' may
-include a memory clobber, and so leave outputs in memory.
-
- int frob(int x)
- {
- int y;
- asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
- : : "r"(x), "r"(&y) : "r5", "memory" : error);
- return y;
- error:
- return -1;
- }
-
-In this (inefficient) example, the 'frob' instruction sets the carry bit
-to indicate an error. The 'jc' instruction detects this and branches to
-the 'error' label. Finally, the output of the 'frob' instruction
-('%r5') is stored into the memory for variable 'y', which is later read
-by the 'return' statement.
-
- void doit(void)
- {
- int i = 0;
- asm goto ("mfsr %%r1, 123; jmp %%r1;"
- ".pushsection doit_table;"
- ".long %l0, %l1, %l2, %l3;"
- ".popsection"
- : : : "r1" : label1, label2, label3, label4);
- __builtin_unreachable ();
-
- label1:
- f1();
- return;
- label2:
- f2();
- return;
- label3:
- i = 1;
- label4:
- f3(i);
- }
-
-In this (also inefficient) example, the 'mfsr' instruction reads an
-address from some out-of-band machine register, and the following 'jmp'
-instruction branches to that address. The address read by the 'mfsr'
-instruction is assumed to have been previously set via some
-application-specific mechanism to be one of the four values stored in
-the 'doit_table' section. Finally, the 'asm' is followed by a call to
-'__builtin_unreachable' to indicate that the 'asm' does not in fact fall
-through.
-
- #define TRACE1(NUM) \
- do { \
- asm goto ("0: nop;" \
- ".pushsection trace_table;" \
- ".long 0b, %l0;" \
- ".popsection" \
- : : : : trace#NUM); \
- if (0) { trace#NUM: trace(); } \
- } while (0)
- #define TRACE TRACE1(__COUNTER__)
-
-In this example (which in fact inspired the 'asm goto' feature) we want
-on rare occasions to call the 'trace' function; on other occasions we'd
-like to keep the overhead to the absolute minimum. The normal code path
-consists of a single 'nop' instruction. However, we record the address
-of this 'nop' together with the address of a label that calls the
-'trace' function. This allows the 'nop' instruction to be patched at
-run time to be an unconditional branch to the stored label. It is
-assumed that an optimizing compiler moves the labeled block out of line,
-to optimize the fall through path from the 'asm'.
-
- If you are writing a header file that should be includable in ISO C
-programs, write '__asm__' instead of 'asm'. *Note Alternate Keywords::.
-
-6.41.1 Size of an 'asm'
------------------------
-
-Some targets require that GCC track the size of each instruction used in
-order to generate correct code. Because the final length of an 'asm' is
-only known by the assembler, GCC must make an estimate as to how big it
-will be. The estimate is formed by counting the number of statements in
-the pattern of the 'asm' and multiplying that by the length of the
-longest instruction on that processor. Statements in the 'asm' are
-identified by newline characters and whatever statement separator
-characters are supported by the assembler; on most processors this is
-the ';' character.
-
- Normally, GCC's estimate is perfectly adequate to ensure that correct
-code is generated, but it is possible to confuse the compiler if you use
-pseudo instructions or assembler macros that expand into multiple real
-instructions or if you use assembler directives that expand to more
-space in the object file than is needed for a single instruction. If
-this happens then the assembler produces a diagnostic saying that a
-label is unreachable.
-
-6.41.2 i386 floating-point asm operands
----------------------------------------
-
-On i386 targets, there are several rules on the usage of stack-like
-registers in the operands of an 'asm'. These rules apply only to the
-operands that are stack-like registers:
-
- 1. Given a set of input registers that die in an 'asm', it is
- necessary to know which are implicitly popped by the 'asm', and
- which must be explicitly popped by GCC.
-
- An input register that is implicitly popped by the 'asm' must be
- explicitly clobbered, unless it is constrained to match an output
- operand.
-
- 2. For any input register that is implicitly popped by an 'asm', it is
- necessary to know how to adjust the stack to compensate for the
- pop. If any non-popped input is closer to the top of the reg-stack
- than the implicitly popped register, it would not be possible to
- know what the stack looked like--it's not clear how the rest of the
- stack "slides up".
-
- All implicitly popped input registers must be closer to the top of
- the reg-stack than any input that is not implicitly popped.
-
- It is possible that if an input dies in an 'asm', the compiler
- might use the input register for an output reload. Consider this
- example:
-
- asm ("foo" : "=t" (a) : "f" (b));
-
- This code says that input 'b' is not popped by the 'asm', and that
- the 'asm' pushes a result onto the reg-stack, i.e., the stack is
- one deeper after the 'asm' than it was before. But, it is possible
- that reload may think that it can use the same register for both
- the input and the output.
-
- To prevent this from happening, if any input operand uses the 'f'
- constraint, all output register constraints must use the '&'
- early-clobber modifier.
-
- The example above would be correctly written as:
-
- asm ("foo" : "=&t" (a) : "f" (b));
-
- 3. Some operands need to be in particular places on the stack. All
- output operands fall in this category--GCC has no other way to know
- which registers the outputs appear in unless you indicate this in
- the constraints.
-
- Output operands must specifically indicate which register an output
- appears in after an 'asm'. '=f' is not allowed: the operand
- constraints must select a class with a single register.
-
- 4. Output operands may not be "inserted" between existing stack
- registers. Since no 387 opcode uses a read/write operand, all
- output operands are dead before the 'asm', and are pushed by the
- 'asm'. It makes no sense to push anywhere but the top of the
- reg-stack.
-
- Output operands must start at the top of the reg-stack: output
- operands may not "skip" a register.
-
- 5. Some 'asm' statements may need extra stack space for internal
- calculations. This can be guaranteed by clobbering stack registers
- unrelated to the inputs and outputs.
-
- Here are a couple of reasonable 'asm's to want to write. This 'asm'
-takes one input, which is internally popped, and produces two outputs.
-
- asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
-
-This 'asm' takes two inputs, which are popped by the 'fyl2xp1' opcode,
-and replaces them with one output. The 'st(1)' clobber is necessary for
-the compiler to know that 'fyl2xp1' pops both inputs.
-
- asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
-
-
-File: gcc.info, Node: Constraints, Next: Asm Labels, Prev: Extended Asm, Up: C Extensions
-
-6.42 Constraints for 'asm' Operands
-===================================
-
-Here are specific details on what constraint letters you can use with
-'asm' operands. Constraints can say whether an operand may be in a
-register, and which kinds of register; whether the operand can be a
-memory reference, and which kinds of address; whether the operand may be
-an immediate constant, and which possible values it may have.
-Constraints can also require two operands to match. Side-effects aren't
-allowed in operands of inline 'asm', unless '<' or '>' constraints are
-used, because there is no guarantee that the side-effects will happen
-exactly once in an instruction that can update the addressing register.
-
-* Menu:
-
-* Simple Constraints:: Basic use of constraints.
-* Multi-Alternative:: When an insn has two alternative constraint-patterns.
-* Modifiers:: More precise control over effects of constraints.
-* Machine Constraints:: Special constraints for some particular machines.
-
-
-File: gcc.info, Node: Simple Constraints, Next: Multi-Alternative, Up: Constraints
-
-6.42.1 Simple Constraints
--------------------------
-
-The simplest kind of constraint is a string full of letters, each of
-which describes one kind of operand that is permitted. Here are the
-letters that are allowed:
-
-whitespace
- Whitespace characters are ignored and can be inserted at any
- position except the first. This enables each alternative for
- different operands to be visually aligned in the machine
- description even if they have different number of constraints and
- modifiers.
-
-'m'
- A memory operand is allowed, with any kind of address that the
- machine supports in general. Note that the letter used for the
- general memory constraint can be re-defined by a back end using the
- 'TARGET_MEM_CONSTRAINT' macro.
-
-'o'
- A memory operand is allowed, but only if the address is
- "offsettable". This means that adding a small integer (actually,
- the width in bytes of the operand, as determined by its machine
- mode) may be added to the address and the result is also a valid
- memory address.
-
- For example, an address which is constant is offsettable; so is an
- address that is the sum of a register and a constant (as long as a
- slightly larger constant is also within the range of
- address-offsets supported by the machine); but an autoincrement or
- autodecrement address is not offsettable. More complicated
- indirect/indexed addresses may or may not be offsettable depending
- on the other addressing modes that the machine supports.
-
- Note that in an output operand which can be matched by another
- operand, the constraint letter 'o' is valid only when accompanied
- by both '<' (if the target machine has predecrement addressing) and
- '>' (if the target machine has preincrement addressing).
-
-'V'
- A memory operand that is not offsettable. In other words, anything
- that would fit the 'm' constraint but not the 'o' constraint.
-
-'<'
- A memory operand with autodecrement addressing (either predecrement
- or postdecrement) is allowed. In inline 'asm' this constraint is
- only allowed if the operand is used exactly once in an instruction
- that can handle the side-effects. Not using an operand with '<' in
- constraint string in the inline 'asm' pattern at all or using it in
- multiple instructions isn't valid, because the side-effects
- wouldn't be performed or would be performed more than once.
- Furthermore, on some targets the operand with '<' in constraint
- string must be accompanied by special instruction suffixes like
- '%U0' instruction suffix on PowerPC or '%P0' on IA-64.
-
-'>'
- A memory operand with autoincrement addressing (either preincrement
- or postincrement) is allowed. In inline 'asm' the same
- restrictions as for '<' apply.
-
-'r'
- A register operand is allowed provided that it is in a general
- register.
-
-'i'
- An immediate integer operand (one with constant value) is allowed.
- This includes symbolic constants whose values will be known only at
- assembly time or later.
-
-'n'
- An immediate integer operand with a known numeric value is allowed.
- Many systems cannot support assembly-time constants for operands
- less than a word wide. Constraints for these operands should use
- 'n' rather than 'i'.
-
-'I', 'J', 'K', ... 'P'
- Other letters in the range 'I' through 'P' may be defined in a
- machine-dependent fashion to permit immediate integer operands with
- explicit integer values in specified ranges. For example, on the
- 68000, 'I' is defined to stand for the range of values 1 to 8.
- This is the range permitted as a shift count in the shift
- instructions.
-
-'E'
- An immediate floating operand (expression code 'const_double') is
- allowed, but only if the target floating point format is the same
- as that of the host machine (on which the compiler is running).
-
-'F'
- An immediate floating operand (expression code 'const_double' or
- 'const_vector') is allowed.
-
-'G', 'H'
- 'G' and 'H' may be defined in a machine-dependent fashion to permit
- immediate floating operands in particular ranges of values.
-
-'s'
- An immediate integer operand whose value is not an explicit integer
- is allowed.
-
- This might appear strange; if an insn allows a constant operand
- with a value not known at compile time, it certainly must allow any
- known value. So why use 's' instead of 'i'? Sometimes it allows
- better code to be generated.
-
- For example, on the 68000 in a fullword instruction it is possible
- to use an immediate operand; but if the immediate value is between
- -128 and 127, better code results from loading the value into a
- register and using the register. This is because the load into the
- register can be done with a 'moveq' instruction. We arrange for
- this to happen by defining the letter 'K' to mean "any integer
- outside the range -128 to 127", and then specifying 'Ks' in the
- operand constraints.
-
-'g'
- Any register, memory or immediate integer operand is allowed,
- except for registers that are not general registers.
-
-'X'
- Any operand whatsoever is allowed.
-
-'0', '1', '2', ... '9'
- An operand that matches the specified operand number is allowed.
- If a digit is used together with letters within the same
- alternative, the digit should come last.
-
- This number is allowed to be more than a single digit. If multiple
- digits are encountered consecutively, they are interpreted as a
- single decimal integer. There is scant chance for ambiguity, since
- to-date it has never been desirable that '10' be interpreted as
- matching either operand 1 _or_ operand 0. Should this be desired,
- one can use multiple alternatives instead.
-
- This is called a "matching constraint" and what it really means is
- that the assembler has only a single operand that fills two roles
- which 'asm' distinguishes. For example, an add instruction uses
- two input operands and an output operand, but on most CISC machines
- an add instruction really has only two operands, one of them an
- input-output operand:
-
- addl #35,r12
-
- Matching constraints are used in these circumstances. More
- precisely, the two operands that match must include one input-only
- operand and one output-only operand. Moreover, the digit must be a
- smaller number than the number of the operand that uses it in the
- constraint.
-
-'p'
- An operand that is a valid memory address is allowed. This is for
- "load address" and "push address" instructions.
-
- 'p' in the constraint must be accompanied by 'address_operand' as
- the predicate in the 'match_operand'. This predicate interprets
- the mode specified in the 'match_operand' as the mode of the memory
- reference for which the address would be valid.
-
-OTHER-LETTERS
- Other letters can be defined in machine-dependent fashion to stand
- for particular classes of registers or other arbitrary operand
- types. 'd', 'a' and 'f' are defined on the 68000/68020 to stand
- for data, address and floating point registers.
-
-
-File: gcc.info, Node: Multi-Alternative, Next: Modifiers, Prev: Simple Constraints, Up: Constraints
-
-6.42.2 Multiple Alternative Constraints
----------------------------------------
-
-Sometimes a single instruction has multiple alternative sets of possible
-operands. For example, on the 68000, a logical-or instruction can
-combine register or an immediate value into memory, or it can combine
-any kind of operand into a register; but it cannot combine one memory
-location into another.
-
- These constraints are represented as multiple alternatives. An
-alternative can be described by a series of letters for each operand.
-The overall constraint for an operand is made from the letters for this
-operand from the first alternative, a comma, the letters for this
-operand from the second alternative, a comma, and so on until the last
-alternative.
-
- If all the operands fit any one alternative, the instruction is valid.
-Otherwise, for each alternative, the compiler counts how many
-instructions must be added to copy the operands so that that alternative
-applies. The alternative requiring the least copying is chosen. If two
-alternatives need the same amount of copying, the one that comes first
-is chosen. These choices can be altered with the '?' and '!'
-characters:
-
-'?'
- Disparage slightly the alternative that the '?' appears in, as a
- choice when no alternative applies exactly. The compiler regards
- this alternative as one unit more costly for each '?' that appears
- in it.
-
-'!'
- Disparage severely the alternative that the '!' appears in. This
- alternative can still be used if it fits without reloading, but if
- reloading is needed, some other alternative will be used.
-
-
-File: gcc.info, Node: Modifiers, Next: Machine Constraints, Prev: Multi-Alternative, Up: Constraints
-
-6.42.3 Constraint Modifier Characters
--------------------------------------
-
-Here are constraint modifier characters.
-
-'='
- Means that this operand is write-only for this instruction: the
- previous value is discarded and replaced by output data.
-
-'+'
- Means that this operand is both read and written by the
- instruction.
-
- When the compiler fixes up the operands to satisfy the constraints,
- it needs to know which operands are inputs to the instruction and
- which are outputs from it. '=' identifies an output; '+'
- identifies an operand that is both input and output; all other
- operands are assumed to be input only.
-
- If you specify '=' or '+' in a constraint, you put it in the first
- character of the constraint string.
-
-'&'
- Means (in a particular alternative) that this operand is an
- "earlyclobber" operand, which is modified before the instruction is
- finished using the input operands. Therefore, this operand may not
- lie in a register that is used as an input operand or as part of
- any memory address.
-
- '&' applies only to the alternative in which it is written. In
- constraints with multiple alternatives, sometimes one alternative
- requires '&' while others do not. See, for example, the 'movdf'
- insn of the 68000.
-
- An input operand can be tied to an earlyclobber operand if its only
- use as an input occurs before the early result is written. Adding
- alternatives of this form often allows GCC to produce better code
- when only some of the inputs can be affected by the earlyclobber.
- See, for example, the 'mulsi3' insn of the ARM.
-
- '&' does not obviate the need to write '='.
-
-'%'
- Declares the instruction to be commutative for this operand and the
- following operand. This means that the compiler may interchange
- the two operands if that is the cheapest way to make all operands
- fit the constraints. GCC can only handle one commutative pair in
- an asm; if you use more, the compiler may fail. Note that you need
- not use the modifier if the two alternatives are strictly
- identical; this would only waste time in the reload pass. The
- modifier is not operational after register allocation, so the
- result of 'define_peephole2' and 'define_split's performed after
- reload cannot rely on '%' to make the intended insn match.
-
-'#'
- Says that all following characters, up to the next comma, are to be
- ignored as a constraint. They are significant only for choosing
- register preferences.
-
-'*'
- Says that the following character should be ignored when choosing
- register preferences. '*' has no effect on the meaning of the
- constraint as a constraint, and no effect on reloading. For LRA
- '*' additionally disparages slightly the alternative if the
- following character matches the operand.
-
-
-File: gcc.info, Node: Machine Constraints, Prev: Modifiers, Up: Constraints
-
-6.42.4 Constraints for Particular Machines
-------------------------------------------
-
-Whenever possible, you should use the general-purpose constraint letters
-in 'asm' arguments, since they will convey meaning more readily to
-people reading your code. Failing that, use the constraint letters that
-usually have very similar meanings across architectures. The most
-commonly used constraints are 'm' and 'r' (for memory and
-general-purpose registers respectively; *note Simple Constraints::), and
-'I', usually the letter indicating the most common immediate-constant
-format.
-
- Each architecture defines additional constraints. These constraints
-are used by the compiler itself for instruction generation, as well as
-for 'asm' statements; therefore, some of the constraints are not
-particularly useful for 'asm'. Here is a summary of some of the
-machine-dependent constraints available on some particular machines; it
-includes both constraints that are useful for 'asm' and constraints that
-aren't. The compiler source file mentioned in the table heading for
-each architecture is the definitive reference for the meanings of that
-architecture's constraints.
-
-_AArch64 family--'config/aarch64/constraints.md'_
- 'k'
- The stack pointer register ('SP')
-
- 'w'
- Floating point or SIMD vector register
-
- 'I'
- Integer constant that is valid as an immediate operand in an
- 'ADD' instruction
-
- 'J'
- Integer constant that is valid as an immediate operand in a
- 'SUB' instruction (once negated)
-
- 'K'
- Integer constant that can be used with a 32-bit logical
- instruction
-
- 'L'
- Integer constant that can be used with a 64-bit logical
- instruction
-
- 'M'
- Integer constant that is valid as an immediate operand in a
- 32-bit 'MOV' pseudo instruction. The 'MOV' may be assembled
- to one of several different machine instructions depending on
- the value
-
- 'N'
- Integer constant that is valid as an immediate operand in a
- 64-bit 'MOV' pseudo instruction
-
- 'S'
- An absolute symbolic address or a label reference
-
- 'Y'
- Floating point constant zero
-
- 'Z'
- Integer constant zero
-
- 'Ush'
- The high part (bits 12 and upwards) of the pc-relative address
- of a symbol within 4GB of the instruction
-
- 'Q'
- A memory address which uses a single base register with no
- offset
-
- 'Ump'
- A memory address suitable for a load/store pair instruction in
- SI, DI, SF and DF modes
-
-_ARC --'config/arc/constraints.md'_
- 'q'
- Registers usable in ARCompact 16-bit instructions: 'r0'-'r3',
- 'r12'-'r15'. This constraint can only match when the '-mq'
- option is in effect.
-
- 'e'
- Registers usable as base-regs of memory addresses in ARCompact
- 16-bit memory instructions: 'r0'-'r3', 'r12'-'r15', 'sp'.
- This constraint can only match when the '-mq' option is in
- effect.
- 'D'
- ARC FPX (dpfp) 64-bit registers. 'D0', 'D1'.
-
- 'I'
- A signed 12-bit integer constant.
-
- 'Cal'
- constant for arithmetic/logical operations. This might be any
- constant that can be put into a long immediate by the assmbler
- or linker without involving a PIC relocation.
-
- 'K'
- A 3-bit unsigned integer constant.
-
- 'L'
- A 6-bit unsigned integer constant.
-
- 'CnL'
- One's complement of a 6-bit unsigned integer constant.
-
- 'CmL'
- Two's complement of a 6-bit unsigned integer constant.
-
- 'M'
- A 5-bit unsigned integer constant.
-
- 'O'
- A 7-bit unsigned integer constant.
-
- 'P'
- A 8-bit unsigned integer constant.
-
- 'H'
- Any const_double value.
-
-_ARM family--'config/arm/constraints.md'_
- 'w'
- VFP floating-point register
-
- 'G'
- The floating-point constant 0.0
-
- 'I'
- Integer that is valid as an immediate operand in a data
- processing instruction. That is, an integer in the range 0 to
- 255 rotated by a multiple of 2
-
- 'J'
- Integer in the range -4095 to 4095
-
- 'K'
- Integer that satisfies constraint 'I' when inverted (ones
- complement)
-
- 'L'
- Integer that satisfies constraint 'I' when negated (twos
- complement)
-
- 'M'
- Integer in the range 0 to 32
-
- 'Q'
- A memory reference where the exact address is in a single
- register (''m'' is preferable for 'asm' statements)
-
- 'R'
- An item in the constant pool
-
- 'S'
- A symbol in the text segment of the current file
-
- 'Uv'
- A memory reference suitable for VFP load/store insns
- (reg+constant offset)
-
- 'Uy'
- A memory reference suitable for iWMMXt load/store
- instructions.
-
- 'Uq'
- A memory reference suitable for the ARMv4 ldrsb instruction.
-
-_AVR family--'config/avr/constraints.md'_
- 'l'
- Registers from r0 to r15
-
- 'a'
- Registers from r16 to r23
-
- 'd'
- Registers from r16 to r31
-
- 'w'
- Registers from r24 to r31. These registers can be used in
- 'adiw' command
-
- 'e'
- Pointer register (r26-r31)
-
- 'b'
- Base pointer register (r28-r31)
-
- 'q'
- Stack pointer register (SPH:SPL)
-
- 't'
- Temporary register r0
-
- 'x'
- Register pair X (r27:r26)
-
- 'y'
- Register pair Y (r29:r28)
-
- 'z'
- Register pair Z (r31:r30)
-
- 'I'
- Constant greater than -1, less than 64
-
- 'J'
- Constant greater than -64, less than 1
-
- 'K'
- Constant integer 2
-
- 'L'
- Constant integer 0
-
- 'M'
- Constant that fits in 8 bits
-
- 'N'
- Constant integer -1
-
- 'O'
- Constant integer 8, 16, or 24
-
- 'P'
- Constant integer 1
-
- 'G'
- A floating point constant 0.0
-
- 'Q'
- A memory address based on Y or Z pointer with displacement.
-
-_Epiphany--'config/epiphany/constraints.md'_
- 'U16'
- An unsigned 16-bit constant.
-
- 'K'
- An unsigned 5-bit constant.
-
- 'L'
- A signed 11-bit constant.
-
- 'Cm1'
- A signed 11-bit constant added to -1. Can only match when the
- '-m1reg-REG' option is active.
-
- 'Cl1'
- Left-shift of -1, i.e., a bit mask with a block of leading
- ones, the rest being a block of trailing zeroes. Can only
- match when the '-m1reg-REG' option is active.
-
- 'Cr1'
- Right-shift of -1, i.e., a bit mask with a trailing block of
- ones, the rest being zeroes. Or to put it another way, one
- less than a power of two. Can only match when the
- '-m1reg-REG' option is active.
-
- 'Cal'
- Constant for arithmetic/logical operations. This is like 'i',
- except that for position independent code, no symbols /
- expressions needing relocations are allowed.
-
- 'Csy'
- Symbolic constant for call/jump instruction.
-
- 'Rcs'
- The register class usable in short insns. This is a register
- class constraint, and can thus drive register allocation.
- This constraint won't match unless '-mprefer-short-insn-regs'
- is in effect.
-
- 'Rsc'
- The the register class of registers that can be used to hold a
- sibcall call address. I.e., a caller-saved register.
-
- 'Rct'
- Core control register class.
-
- 'Rgs'
- The register group usable in short insns. This constraint
- does not use a register class, so that it only passively
- matches suitable registers, and doesn't drive register
- allocation.
-
- 'Rra'
- Matches the return address if it can be replaced with the link
- register.
-
- 'Rcc'
- Matches the integer condition code register.
-
- 'Sra'
- Matches the return address if it is in a stack slot.
-
- 'Cfm'
- Matches control register values to switch fp mode, which are
- encapsulated in 'UNSPEC_FP_MODE'.
-
-_CR16 Architecture--'config/cr16/cr16.h'_
-
- 'b'
- Registers from r0 to r14 (registers without stack pointer)
-
- 't'
- Register from r0 to r11 (all 16-bit registers)
-
- 'p'
- Register from r12 to r15 (all 32-bit registers)
-
- 'I'
- Signed constant that fits in 4 bits
-
- 'J'
- Signed constant that fits in 5 bits
-
- 'K'
- Signed constant that fits in 6 bits
-
- 'L'
- Unsigned constant that fits in 4 bits
-
- 'M'
- Signed constant that fits in 32 bits
-
- 'N'
- Check for 64 bits wide constants for add/sub instructions
-
- 'G'
- Floating point constant that is legal for store immediate
-
-_Hewlett-Packard PA-RISC--'config/pa/pa.h'_
- 'a'
- General register 1
-
- 'f'
- Floating point register
-
- 'q'
- Shift amount register
-
- 'x'
- Floating point register (deprecated)
-
- 'y'
- Upper floating point register (32-bit), floating point
- register (64-bit)
-
- 'Z'
- Any register
-
- 'I'
- Signed 11-bit integer constant
-
- 'J'
- Signed 14-bit integer constant
-
- 'K'
- Integer constant that can be deposited with a 'zdepi'
- instruction
-
- 'L'
- Signed 5-bit integer constant
-
- 'M'
- Integer constant 0
-
- 'N'
- Integer constant that can be loaded with a 'ldil' instruction
-
- 'O'
- Integer constant whose value plus one is a power of 2
-
- 'P'
- Integer constant that can be used for 'and' operations in
- 'depi' and 'extru' instructions
-
- 'S'
- Integer constant 31
-
- 'U'
- Integer constant 63
-
- 'G'
- Floating-point constant 0.0
-
- 'A'
- A 'lo_sum' data-linkage-table memory operand
-
- 'Q'
- A memory operand that can be used as the destination operand
- of an integer store instruction
-
- 'R'
- A scaled or unscaled indexed memory operand
-
- 'T'
- A memory operand for floating-point loads and stores
-
- 'W'
- A register indirect memory operand
-
-_picoChip family--'picochip.h'_
- 'k'
- Stack register.
-
- 'f'
- Pointer register. A register which can be used to access
- memory without supplying an offset. Any other register can be
- used to access memory, but will need a constant offset. In
- the case of the offset being zero, it is more efficient to use
- a pointer register, since this reduces code size.
-
- 't'
- A twin register. A register which may be paired with an
- adjacent register to create a 32-bit register.
-
- 'a'
- Any absolute memory address (e.g., symbolic constant, symbolic
- constant + offset).
-
- 'I'
- 4-bit signed integer.
-
- 'J'
- 4-bit unsigned integer.
-
- 'K'
- 8-bit signed integer.
-
- 'M'
- Any constant whose absolute value is no greater than 4-bits.
-
- 'N'
- 10-bit signed integer
-
- 'O'
- 16-bit signed integer.
-
-_PowerPC and IBM RS6000--'config/rs6000/constraints.md'_
- 'b'
- Address base register
-
- 'd'
- Floating point register (containing 64-bit value)
-
- 'f'
- Floating point register (containing 32-bit value)
-
- 'v'
- Altivec vector register
-
- 'wa'
- Any VSX register if the -mvsx option was used or NO_REGS.
-
- 'wd'
- VSX vector register to hold vector double data or NO_REGS.
-
- 'wf'
- VSX vector register to hold vector float data or NO_REGS.
-
- 'wg'
- If '-mmfpgpr' was used, a floating point register or NO_REGS.
-
- 'wl'
- Floating point register if the LFIWAX instruction is enabled
- or NO_REGS.
-
- 'wm'
- VSX register if direct move instructions are enabled, or
- NO_REGS.
-
- 'wn'
- No register (NO_REGS).
-
- 'wr'
- General purpose register if 64-bit instructions are enabled or
- NO_REGS.
-
- 'ws'
- VSX vector register to hold scalar double values or NO_REGS.
-
- 'wt'
- VSX vector register to hold 128 bit integer or NO_REGS.
-
- 'wu'
- Altivec register to use for float/32-bit int loads/stores or
- NO_REGS.
-
- 'wv'
- Altivec register to use for double loads/stores or NO_REGS.
-
- 'ww'
- FP or VSX register to perform float operations under '-mvsx'
- or NO_REGS.
-
- 'wx'
- Floating point register if the STFIWX instruction is enabled
- or NO_REGS.
-
- 'wy'
- VSX vector register to hold scalar float values or NO_REGS.
-
- 'wz'
- Floating point register if the LFIWZX instruction is enabled
- or NO_REGS.
-
- 'wD'
- Int constant that is the element number of the 64-bit scalar
- in a vector.
-
- 'wQ'
- A memory address that will work with the 'lq' and 'stq'
- instructions.
-
- 'h'
- 'MQ', 'CTR', or 'LINK' register
-
- 'q'
- 'MQ' register
-
- 'c'
- 'CTR' register
-
- 'l'
- 'LINK' register
-
- 'x'
- 'CR' register (condition register) number 0
-
- 'y'
- 'CR' register (condition register)
-
- 'z'
- 'XER[CA]' carry bit (part of the XER register)
-
- 'I'
- Signed 16-bit constant
-
- 'J'
- Unsigned 16-bit constant shifted left 16 bits (use 'L' instead
- for 'SImode' constants)
-
- 'K'
- Unsigned 16-bit constant
-
- 'L'
- Signed 16-bit constant shifted left 16 bits
-
- 'M'
- Constant larger than 31
-
- 'N'
- Exact power of 2
-
- 'O'
- Zero
-
- 'P'
- Constant whose negation is a signed 16-bit constant
-
- 'G'
- Floating point constant that can be loaded into a register
- with one instruction per word
-
- 'H'
- Integer/Floating point constant that can be loaded into a
- register using three instructions
-
- 'm'
- Memory operand. Normally, 'm' does not allow addresses that
- update the base register. If '<' or '>' constraint is also
- used, they are allowed and therefore on PowerPC targets in
- that case it is only safe to use 'm<>' in an 'asm' statement
- if that 'asm' statement accesses the operand exactly once.
- The 'asm' statement must also use '%U<OPNO>' as a placeholder
- for the "update" flag in the corresponding load or store
- instruction. For example:
-
- asm ("st%U0 %1,%0" : "=m<>" (mem) : "r" (val));
-
- is correct but:
-
- asm ("st %1,%0" : "=m<>" (mem) : "r" (val));
-
- is not.
-
- 'es'
- A "stable" memory operand; that is, one which does not include
- any automodification of the base register. This used to be
- useful when 'm' allowed automodification of the base register,
- but as those are now only allowed when '<' or '>' is used,
- 'es' is basically the same as 'm' without '<' and '>'.
-
- 'Q'
- Memory operand that is an offset from a register (it is
- usually better to use 'm' or 'es' in 'asm' statements)
-
- 'Z'
- Memory operand that is an indexed or indirect from a register
- (it is usually better to use 'm' or 'es' in 'asm' statements)
-
- 'R'
- AIX TOC entry
-
- 'a'
- Address operand that is an indexed or indirect from a register
- ('p' is preferable for 'asm' statements)
-
- 'S'
- Constant suitable as a 64-bit mask operand
-
- 'T'
- Constant suitable as a 32-bit mask operand
-
- 'U'
- System V Release 4 small data area reference
-
- 't'
- AND masks that can be performed by two rldic{l, r}
- instructions
-
- 'W'
- Vector constant that does not require memory
-
- 'j'
- Vector constant that is all zeros.
-
-_Intel 386--'config/i386/constraints.md'_
- 'R'
- Legacy register--the eight integer registers available on all
- i386 processors ('a', 'b', 'c', 'd', 'si', 'di', 'bp', 'sp').
-
- 'q'
- Any register accessible as 'Rl'. In 32-bit mode, 'a', 'b',
- 'c', and 'd'; in 64-bit mode, any integer register.
-
- 'Q'
- Any register accessible as 'Rh': 'a', 'b', 'c', and 'd'.
-
- 'a'
- The 'a' register.
-
- 'b'
- The 'b' register.
-
- 'c'
- The 'c' register.
-
- 'd'
- The 'd' register.
-
- 'S'
- The 'si' register.
-
- 'D'
- The 'di' register.
-
- 'A'
- The 'a' and 'd' registers. This class is used for
- instructions that return double word results in the 'ax:dx'
- register pair. Single word values will be allocated either in
- 'ax' or 'dx'. For example on i386 the following implements
- 'rdtsc':
-
- unsigned long long rdtsc (void)
- {
- unsigned long long tick;
- __asm__ __volatile__("rdtsc":"=A"(tick));
- return tick;
- }
-
- This is not correct on x86_64 as it would allocate tick in
- either 'ax' or 'dx'. You have to use the following variant
- instead:
-
- unsigned long long rdtsc (void)
- {
- unsigned int tickl, tickh;
- __asm__ __volatile__("rdtsc":"=a"(tickl),"=d"(tickh));
- return ((unsigned long long)tickh << 32)|tickl;
- }
-
- 'f'
- Any 80387 floating-point (stack) register.
-
- 't'
- Top of 80387 floating-point stack ('%st(0)').
-
- 'u'
- Second from top of 80387 floating-point stack ('%st(1)').
-
- 'y'
- Any MMX register.
-
- 'x'
- Any SSE register.
-
- 'Yz'
- First SSE register ('%xmm0').
-
- 'I'
- Integer constant in the range 0 ... 31, for 32-bit shifts.
-
- 'J'
- Integer constant in the range 0 ... 63, for 64-bit shifts.
-
- 'K'
- Signed 8-bit integer constant.
-
- 'L'
- '0xFF' or '0xFFFF', for andsi as a zero-extending move.
-
- 'M'
- 0, 1, 2, or 3 (shifts for the 'lea' instruction).
-
- 'N'
- Unsigned 8-bit integer constant (for 'in' and 'out'
- instructions).
-
- 'G'
- Standard 80387 floating point constant.
-
- 'C'
- Standard SSE floating point constant.
-
- 'e'
- 32-bit signed integer constant, or a symbolic reference known
- to fit that range (for immediate operands in sign-extending
- x86-64 instructions).
-
- 'Z'
- 32-bit unsigned integer constant, or a symbolic reference
- known to fit that range (for immediate operands in
- zero-extending x86-64 instructions).
-
-_Intel IA-64--'config/ia64/ia64.h'_
- 'a'
- General register 'r0' to 'r3' for 'addl' instruction
-
- 'b'
- Branch register
-
- 'c'
- Predicate register ('c' as in "conditional")
-
- 'd'
- Application register residing in M-unit
-
- 'e'
- Application register residing in I-unit
-
- 'f'
- Floating-point register
-
- 'm'
- Memory operand. If used together with '<' or '>', the operand
- can have postincrement and postdecrement which require
- printing with '%Pn' on IA-64.
-
- 'G'
- Floating-point constant 0.0 or 1.0
-
- 'I'
- 14-bit signed integer constant
-
- 'J'
- 22-bit signed integer constant
-
- 'K'
- 8-bit signed integer constant for logical instructions
-
- 'L'
- 8-bit adjusted signed integer constant for compare pseudo-ops
-
- 'M'
- 6-bit unsigned integer constant for shift counts
-
- 'N'
- 9-bit signed integer constant for load and store
- postincrements
-
- 'O'
- The constant zero
-
- 'P'
- 0 or -1 for 'dep' instruction
-
- 'Q'
- Non-volatile memory for floating-point loads and stores
-
- 'R'
- Integer constant in the range 1 to 4 for 'shladd' instruction
-
- 'S'
- Memory operand except postincrement and postdecrement. This
- is now roughly the same as 'm' when not used together with '<'
- or '>'.
-
-_FRV--'config/frv/frv.h'_
- 'a'
- Register in the class 'ACC_REGS' ('acc0' to 'acc7').
-
- 'b'
- Register in the class 'EVEN_ACC_REGS' ('acc0' to 'acc7').
-
- 'c'
- Register in the class 'CC_REGS' ('fcc0' to 'fcc3' and 'icc0'
- to 'icc3').
-
- 'd'
- Register in the class 'GPR_REGS' ('gr0' to 'gr63').
-
- 'e'
- Register in the class 'EVEN_REGS' ('gr0' to 'gr63'). Odd
- registers are excluded not in the class but through the use of
- a machine mode larger than 4 bytes.
-
- 'f'
- Register in the class 'FPR_REGS' ('fr0' to 'fr63').
-
- 'h'
- Register in the class 'FEVEN_REGS' ('fr0' to 'fr63'). Odd
- registers are excluded not in the class but through the use of
- a machine mode larger than 4 bytes.
-
- 'l'
- Register in the class 'LR_REG' (the 'lr' register).
-
- 'q'
- Register in the class 'QUAD_REGS' ('gr2' to 'gr63'). Register
- numbers not divisible by 4 are excluded not in the class but
- through the use of a machine mode larger than 8 bytes.
-
- 't'
- Register in the class 'ICC_REGS' ('icc0' to 'icc3').
-
- 'u'
- Register in the class 'FCC_REGS' ('fcc0' to 'fcc3').
-
- 'v'
- Register in the class 'ICR_REGS' ('cc4' to 'cc7').
-
- 'w'
- Register in the class 'FCR_REGS' ('cc0' to 'cc3').
-
- 'x'
- Register in the class 'QUAD_FPR_REGS' ('fr0' to 'fr63').
- Register numbers not divisible by 4 are excluded not in the
- class but through the use of a machine mode larger than 8
- bytes.
-
- 'z'
- Register in the class 'SPR_REGS' ('lcr' and 'lr').
-
- 'A'
- Register in the class 'QUAD_ACC_REGS' ('acc0' to 'acc7').
-
- 'B'
- Register in the class 'ACCG_REGS' ('accg0' to 'accg7').
-
- 'C'
- Register in the class 'CR_REGS' ('cc0' to 'cc7').
-
- 'G'
- Floating point constant zero
-
- 'I'
- 6-bit signed integer constant
-
- 'J'
- 10-bit signed integer constant
-
- 'L'
- 16-bit signed integer constant
-
- 'M'
- 16-bit unsigned integer constant
-
- 'N'
- 12-bit signed integer constant that is negative--i.e. in the
- range of -2048 to -1
-
- 'O'
- Constant zero
-
- 'P'
- 12-bit signed integer constant that is greater than zero--i.e.
- in the range of 1 to 2047.
-
-_Blackfin family--'config/bfin/constraints.md'_
- 'a'
- P register
-
- 'd'
- D register
-
- 'z'
- A call clobbered P register.
-
- 'qN'
- A single register. If N is in the range 0 to 7, the
- corresponding D register. If it is 'A', then the register P0.
-
- 'D'
- Even-numbered D register
-
- 'W'
- Odd-numbered D register
-
- 'e'
- Accumulator register.
-
- 'A'
- Even-numbered accumulator register.
-
- 'B'
- Odd-numbered accumulator register.
-
- 'b'
- I register
-
- 'v'
- B register
-
- 'f'
- M register
-
- 'c'
- Registers used for circular buffering, i.e. I, B, or L
- registers.
-
- 'C'
- The CC register.
-
- 't'
- LT0 or LT1.
-
- 'k'
- LC0 or LC1.
-
- 'u'
- LB0 or LB1.
-
- 'x'
- Any D, P, B, M, I or L register.
-
- 'y'
- Additional registers typically used only in prologues and
- epilogues: RETS, RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and
- USP.
-
- 'w'
- Any register except accumulators or CC.
-
- 'Ksh'
- Signed 16 bit integer (in the range -32768 to 32767)
-
- 'Kuh'
- Unsigned 16 bit integer (in the range 0 to 65535)
-
- 'Ks7'
- Signed 7 bit integer (in the range -64 to 63)
-
- 'Ku7'
- Unsigned 7 bit integer (in the range 0 to 127)
-
- 'Ku5'
- Unsigned 5 bit integer (in the range 0 to 31)
-
- 'Ks4'
- Signed 4 bit integer (in the range -8 to 7)
-
- 'Ks3'
- Signed 3 bit integer (in the range -3 to 4)
-
- 'Ku3'
- Unsigned 3 bit integer (in the range 0 to 7)
-
- 'PN'
- Constant N, where N is a single-digit constant in the range 0
- to 4.
-
- 'PA'
- An integer equal to one of the MACFLAG_XXX constants that is
- suitable for use with either accumulator.
-
- 'PB'
- An integer equal to one of the MACFLAG_XXX constants that is
- suitable for use only with accumulator A1.
-
- 'M1'
- Constant 255.
-
- 'M2'
- Constant 65535.
-
- 'J'
- An integer constant with exactly a single bit set.
-
- 'L'
- An integer constant with all bits set except exactly one.
-
- 'H'
-
- 'Q'
- Any SYMBOL_REF.
-
-_M32C--'config/m32c/m32c.c'_
- 'Rsp'
- 'Rfb'
- 'Rsb'
- '$sp', '$fb', '$sb'.
-
- 'Rcr'
- Any control register, when they're 16 bits wide (nothing if
- control registers are 24 bits wide)
-
- 'Rcl'
- Any control register, when they're 24 bits wide.
-
- 'R0w'
- 'R1w'
- 'R2w'
- 'R3w'
- $r0, $r1, $r2, $r3.
-
- 'R02'
- $r0 or $r2, or $r2r0 for 32 bit values.
-
- 'R13'
- $r1 or $r3, or $r3r1 for 32 bit values.
-
- 'Rdi'
- A register that can hold a 64 bit value.
-
- 'Rhl'
- $r0 or $r1 (registers with addressable high/low bytes)
-
- 'R23'
- $r2 or $r3
-
- 'Raa'
- Address registers
-
- 'Raw'
- Address registers when they're 16 bits wide.
-
- 'Ral'
- Address registers when they're 24 bits wide.
-
- 'Rqi'
- Registers that can hold QI values.
-
- 'Rad'
- Registers that can be used with displacements ($a0, $a1, $sb).
-
- 'Rsi'
- Registers that can hold 32 bit values.
-
- 'Rhi'
- Registers that can hold 16 bit values.
-
- 'Rhc'
- Registers chat can hold 16 bit values, including all control
- registers.
-
- 'Rra'
- $r0 through R1, plus $a0 and $a1.
-
- 'Rfl'
- The flags register.
-
- 'Rmm'
- The memory-based pseudo-registers $mem0 through $mem15.
-
- 'Rpi'
- Registers that can hold pointers (16 bit registers for r8c,
- m16c; 24 bit registers for m32cm, m32c).
-
- 'Rpa'
- Matches multiple registers in a PARALLEL to form a larger
- register. Used to match function return values.
-
- 'Is3'
- -8 ... 7
-
- 'IS1'
- -128 ... 127
-
- 'IS2'
- -32768 ... 32767
-
- 'IU2'
- 0 ... 65535
-
- 'In4'
- -8 ... -1 or 1 ... 8
-
- 'In5'
- -16 ... -1 or 1 ... 16
-
- 'In6'
- -32 ... -1 or 1 ... 32
-
- 'IM2'
- -65536 ... -1
-
- 'Ilb'
- An 8 bit value with exactly one bit set.
-
- 'Ilw'
- A 16 bit value with exactly one bit set.
-
- 'Sd'
- The common src/dest memory addressing modes.
-
- 'Sa'
- Memory addressed using $a0 or $a1.
-
- 'Si'
- Memory addressed with immediate addresses.
-
- 'Ss'
- Memory addressed using the stack pointer ($sp).
-
- 'Sf'
- Memory addressed using the frame base register ($fb).
-
- 'Ss'
- Memory addressed using the small base register ($sb).
-
- 'S1'
- $r1h
-
-_MeP--'config/mep/constraints.md'_
-
- 'a'
- The $sp register.
-
- 'b'
- The $tp register.
-
- 'c'
- Any control register.
-
- 'd'
- Either the $hi or the $lo register.
-
- 'em'
- Coprocessor registers that can be directly loaded ($c0-$c15).
-
- 'ex'
- Coprocessor registers that can be moved to each other.
-
- 'er'
- Coprocessor registers that can be moved to core registers.
-
- 'h'
- The $hi register.
-
- 'j'
- The $rpc register.
-
- 'l'
- The $lo register.
-
- 't'
- Registers which can be used in $tp-relative addressing.
-
- 'v'
- The $gp register.
-
- 'x'
- The coprocessor registers.
-
- 'y'
- The coprocessor control registers.
-
- 'z'
- The $0 register.
-
- 'A'
- User-defined register set A.
-
- 'B'
- User-defined register set B.
-
- 'C'
- User-defined register set C.
-
- 'D'
- User-defined register set D.
-
- 'I'
- Offsets for $gp-rel addressing.
-
- 'J'
- Constants that can be used directly with boolean insns.
-
- 'K'
- Constants that can be moved directly to registers.
-
- 'L'
- Small constants that can be added to registers.
-
- 'M'
- Long shift counts.
-
- 'N'
- Small constants that can be compared to registers.
-
- 'O'
- Constants that can be loaded into the top half of registers.
-
- 'S'
- Signed 8-bit immediates.
-
- 'T'
- Symbols encoded for $tp-rel or $gp-rel addressing.
-
- 'U'
- Non-constant addresses for loading/saving coprocessor
- registers.
-
- 'W'
- The top half of a symbol's value.
-
- 'Y'
- A register indirect address without offset.
-
- 'Z'
- Symbolic references to the control bus.
-
-_MicroBlaze--'config/microblaze/constraints.md'_
- 'd'
- A general register ('r0' to 'r31').
-
- 'z'
- A status register ('rmsr', '$fcc1' to '$fcc7').
-
-_MIPS--'config/mips/constraints.md'_
- 'd'
- An address register. This is equivalent to 'r' unless
- generating MIPS16 code.
-
- 'f'
- A floating-point register (if available).
-
- 'h'
- Formerly the 'hi' register. This constraint is no longer
- supported.
-
- 'l'
- The 'lo' register. Use this register to store values that are
- no bigger than a word.
-
- 'x'
- The concatenated 'hi' and 'lo' registers. Use this register
- to store doubleword values.
-
- 'c'
- A register suitable for use in an indirect jump. This will
- always be '$25' for '-mabicalls'.
-
- 'v'
- Register '$3'. Do not use this constraint in new code; it is
- retained only for compatibility with glibc.
-
- 'y'
- Equivalent to 'r'; retained for backwards compatibility.
-
- 'z'
- A floating-point condition code register.
-
- 'I'
- A signed 16-bit constant (for arithmetic instructions).
-
- 'J'
- Integer zero.
-
- 'K'
- An unsigned 16-bit constant (for logic instructions).
-
- 'L'
- A signed 32-bit constant in which the lower 16 bits are zero.
- Such constants can be loaded using 'lui'.
-
- 'M'
- A constant that cannot be loaded using 'lui', 'addiu' or
- 'ori'.
-
- 'N'
- A constant in the range -65535 to -1 (inclusive).
-
- 'O'
- A signed 15-bit constant.
-
- 'P'
- A constant in the range 1 to 65535 (inclusive).
-
- 'G'
- Floating-point zero.
-
- 'R'
- An address that can be used in a non-macro load or store.
-
- 'ZC'
- When compiling microMIPS code, this constraint matches a
- memory operand whose address is formed from a base register
- and a 12-bit offset. These operands can be used for microMIPS
- instructions such as 'll' and 'sc'. When not compiling for
- microMIPS code, 'ZC' is equivalent to 'R'.
-
- 'ZD'
- When compiling microMIPS code, this constraint matches an
- address operand that is formed from a base register and a
- 12-bit offset. These operands can be used for microMIPS
- instructions such as 'prefetch'. When not compiling for
- microMIPS code, 'ZD' is equivalent to 'p'.
-
-_Motorola 680x0--'config/m68k/constraints.md'_
- 'a'
- Address register
-
- 'd'
- Data register
-
- 'f'
- 68881 floating-point register, if available
-
- 'I'
- Integer in the range 1 to 8
-
- 'J'
- 16-bit signed number
-
- 'K'
- Signed number whose magnitude is greater than 0x80
-
- 'L'
- Integer in the range -8 to -1
-
- 'M'
- Signed number whose magnitude is greater than 0x100
-
- 'N'
- Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate
-
- 'O'
- 16 (for rotate using swap)
-
- 'P'
- Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate
-
- 'R'
- Numbers that mov3q can handle
-
- 'G'
- Floating point constant that is not a 68881 constant
-
- 'S'
- Operands that satisfy 'm' when -mpcrel is in effect
-
- 'T'
- Operands that satisfy 's' when -mpcrel is not in effect
-
- 'Q'
- Address register indirect addressing mode
-
- 'U'
- Register offset addressing
-
- 'W'
- const_call_operand
-
- 'Cs'
- symbol_ref or const
-
- 'Ci'
- const_int
-
- 'C0'
- const_int 0
-
- 'Cj'
- Range of signed numbers that don't fit in 16 bits
-
- 'Cmvq'
- Integers valid for mvq
-
- 'Capsw'
- Integers valid for a moveq followed by a swap
-
- 'Cmvz'
- Integers valid for mvz
-
- 'Cmvs'
- Integers valid for mvs
-
- 'Ap'
- push_operand
-
- 'Ac'
- Non-register operands allowed in clr
-
-_Moxie--'config/moxie/constraints.md'_
- 'A'
- An absolute address
-
- 'B'
- An offset address
-
- 'W'
- A register indirect memory operand
-
- 'I'
- A constant in the range of 0 to 255.
-
- 'N'
- A constant in the range of 0 to -255.
-
-_MSP430-'config/msp430/constraints.md'_
-
- 'R12'
- Register R12.
-
- 'R13'
- Register R13.
-
- 'K'
- Integer constant 1.
-
- 'L'
- Integer constant -1^20..1^19.
-
- 'M'
- Integer constant 1-4.
-
- 'Ya'
- Memory references which do not require an extended MOVX
- instruction.
-
- 'Yl'
- Memory reference, labels only.
-
- 'Ys'
- Memory reference, stack only.
-
-_NDS32--'config/nds32/constraints.md'_
- 'w'
- LOW register class $r0 to $r7 constraint for V3/V3M ISA.
- 'l'
- LOW register class $r0 to $r7.
- 'd'
- MIDDLE register class $r0 to $r11, $r16 to $r19.
- 'h'
- HIGH register class $r12 to $r14, $r20 to $r31.
- 't'
- Temporary assist register $ta (i.e. $r15).
- 'k'
- Stack register $sp.
- 'Iu03'
- Unsigned immediate 3-bit value.
- 'In03'
- Negative immediate 3-bit value in the range of -7-0.
- 'Iu04'
- Unsigned immediate 4-bit value.
- 'Is05'
- Signed immediate 5-bit value.
- 'Iu05'
- Unsigned immediate 5-bit value.
- 'In05'
- Negative immediate 5-bit value in the range of -31-0.
- 'Ip05'
- Unsigned immediate 5-bit value for movpi45 instruction with
- range 16-47.
- 'Iu06'
- Unsigned immediate 6-bit value constraint for addri36.sp
- instruction.
- 'Iu08'
- Unsigned immediate 8-bit value.
- 'Iu09'
- Unsigned immediate 9-bit value.
- 'Is10'
- Signed immediate 10-bit value.
- 'Is11'
- Signed immediate 11-bit value.
- 'Is15'
- Signed immediate 15-bit value.
- 'Iu15'
- Unsigned immediate 15-bit value.
- 'Ic15'
- A constant which is not in the range of imm15u but ok for bclr
- instruction.
- 'Ie15'
- A constant which is not in the range of imm15u but ok for bset
- instruction.
- 'It15'
- A constant which is not in the range of imm15u but ok for btgl
- instruction.
- 'Ii15'
- A constant whose compliment value is in the range of imm15u
- and ok for bitci instruction.
- 'Is16'
- Signed immediate 16-bit value.
- 'Is17'
- Signed immediate 17-bit value.
- 'Is19'
- Signed immediate 19-bit value.
- 'Is20'
- Signed immediate 20-bit value.
- 'Ihig'
- The immediate value that can be simply set high 20-bit.
- 'Izeb'
- The immediate value 0xff.
- 'Izeh'
- The immediate value 0xffff.
- 'Ixls'
- The immediate value 0x01.
- 'Ix11'
- The immediate value 0x7ff.
- 'Ibms'
- The immediate value with power of 2.
- 'Ifex'
- The immediate value with power of 2 minus 1.
- 'U33'
- Memory constraint for 333 format.
- 'U45'
- Memory constraint for 45 format.
- 'U37'
- Memory constraint for 37 format.
-
-_Nios II family--'config/nios2/constraints.md'_
-
- 'I'
- Integer that is valid as an immediate operand in an
- instruction taking a signed 16-bit number. Range -32768 to
- 32767.
-
- 'J'
- Integer that is valid as an immediate operand in an
- instruction taking an unsigned 16-bit number. Range 0 to
- 65535.
-
- 'K'
- Integer that is valid as an immediate operand in an
- instruction taking only the upper 16-bits of a 32-bit number.
- Range 32-bit numbers with the lower 16-bits being 0.
-
- 'L'
- Integer that is valid as an immediate operand for a shift
- instruction. Range 0 to 31.
-
- 'M'
- Integer that is valid as an immediate operand for only the
- value 0. Can be used in conjunction with the format modifier
- 'z' to use 'r0' instead of '0' in the assembly output.
-
- 'N'
- Integer that is valid as an immediate operand for a custom
- instruction opcode. Range 0 to 255.
-
- 'S'
- Matches immediates which are addresses in the small data
- section and therefore can be added to 'gp' as a 16-bit
- immediate to re-create their 32-bit value.
-
-_PDP-11--'config/pdp11/constraints.md'_
- 'a'
- Floating point registers AC0 through AC3. These can be loaded
- from/to memory with a single instruction.
-
- 'd'
- Odd numbered general registers (R1, R3, R5). These are used
- for 16-bit multiply operations.
-
- 'f'
- Any of the floating point registers (AC0 through AC5).
-
- 'G'
- Floating point constant 0.
-
- 'I'
- An integer constant that fits in 16 bits.
-
- 'J'
- An integer constant whose low order 16 bits are zero.
-
- 'K'
- An integer constant that does not meet the constraints for
- codes 'I' or 'J'.
-
- 'L'
- The integer constant 1.
-
- 'M'
- The integer constant -1.
-
- 'N'
- The integer constant 0.
-
- 'O'
- Integer constants -4 through -1 and 1 through 4; shifts by
- these amounts are handled as multiple single-bit shifts rather
- than a single variable-length shift.
-
- 'Q'
- A memory reference which requires an additional word (address
- or offset) after the opcode.
-
- 'R'
- A memory reference that is encoded within the opcode.
-
-_RL78--'config/rl78/constraints.md'_
-
- 'Int3'
- An integer constant in the range 1 ... 7.
- 'Int8'
- An integer constant in the range 0 ... 255.
- 'J'
- An integer constant in the range -255 ... 0
- 'K'
- The integer constant 1.
- 'L'
- The integer constant -1.
- 'M'
- The integer constant 0.
- 'N'
- The integer constant 2.
- 'O'
- The integer constant -2.
- 'P'
- An integer constant in the range 1 ... 15.
- 'Qbi'
- The built-in compare types-eq, ne, gtu, ltu, geu, and leu.
- 'Qsc'
- The synthetic compare types-gt, lt, ge, and le.
- 'Wab'
- A memory reference with an absolute address.
- 'Wbc'
- A memory reference using 'BC' as a base register, with an
- optional offset.
- 'Wca'
- A memory reference using 'AX', 'BC', 'DE', or 'HL' for the
- address, for calls.
- 'Wcv'
- A memory reference using any 16-bit register pair for the
- address, for calls.
- 'Wd2'
- A memory reference using 'DE' as a base register, with an
- optional offset.
- 'Wde'
- A memory reference using 'DE' as a base register, without any
- offset.
- 'Wfr'
- Any memory reference to an address in the far address space.
- 'Wh1'
- A memory reference using 'HL' as a base register, with an
- optional one-byte offset.
- 'Whb'
- A memory reference using 'HL' as a base register, with 'B' or
- 'C' as the index register.
- 'Whl'
- A memory reference using 'HL' as a base register, without any
- offset.
- 'Ws1'
- A memory reference using 'SP' as a base register, with an
- optional one-byte offset.
- 'Y'
- Any memory reference to an address in the near address space.
- 'A'
- The 'AX' register.
- 'B'
- The 'BC' register.
- 'D'
- The 'DE' register.
- 'R'
- 'A' through 'L' registers.
- 'S'
- The 'SP' register.
- 'T'
- The 'HL' register.
- 'Z08W'
- The 16-bit 'R8' register.
- 'Z10W'
- The 16-bit 'R10' register.
- 'Zint'
- The registers reserved for interrupts ('R24' to 'R31').
- 'a'
- The 'A' register.
- 'b'
- The 'B' register.
- 'c'
- The 'C' register.
- 'd'
- The 'D' register.
- 'e'
- The 'E' register.
- 'h'
- The 'H' register.
- 'l'
- The 'L' register.
- 'v'
- The virtual registers.
- 'w'
- The 'PSW' register.
- 'x'
- The 'X' register.
-
-_RX--'config/rx/constraints.md'_
- 'Q'
- An address which does not involve register indirect addressing
- or pre/post increment/decrement addressing.
-
- 'Symbol'
- A symbol reference.
-
- 'Int08'
- A constant in the range -256 to 255, inclusive.
-
- 'Sint08'
- A constant in the range -128 to 127, inclusive.
-
- 'Sint16'
- A constant in the range -32768 to 32767, inclusive.
-
- 'Sint24'
- A constant in the range -8388608 to 8388607, inclusive.
-
- 'Uint04'
- A constant in the range 0 to 15, inclusive.
-
-_SPARC--'config/sparc/sparc.h'_
- 'f'
- Floating-point register on the SPARC-V8 architecture and lower
- floating-point register on the SPARC-V9 architecture.
-
- 'e'
- Floating-point register. It is equivalent to 'f' on the
- SPARC-V8 architecture and contains both lower and upper
- floating-point registers on the SPARC-V9 architecture.
-
- 'c'
- Floating-point condition code register.
-
- 'd'
- Lower floating-point register. It is only valid on the
- SPARC-V9 architecture when the Visual Instruction Set is
- available.
-
- 'b'
- Floating-point register. It is only valid on the SPARC-V9
- architecture when the Visual Instruction Set is available.
-
- 'h'
- 64-bit global or out register for the SPARC-V8+ architecture.
-
- 'C'
- The constant all-ones, for floating-point.
-
- 'A'
- Signed 5-bit constant
-
- 'D'
- A vector constant
-
- 'I'
- Signed 13-bit constant
-
- 'J'
- Zero
-
- 'K'
- 32-bit constant with the low 12 bits clear (a constant that
- can be loaded with the 'sethi' instruction)
-
- 'L'
- A constant in the range supported by 'movcc' instructions
- (11-bit signed immediate)
-
- 'M'
- A constant in the range supported by 'movrcc' instructions
- (10-bit signed immediate)
-
- 'N'
- Same as 'K', except that it verifies that bits that are not in
- the lower 32-bit range are all zero. Must be used instead of
- 'K' for modes wider than 'SImode'
-
- 'O'
- The constant 4096
-
- 'G'
- Floating-point zero
-
- 'H'
- Signed 13-bit constant, sign-extended to 32 or 64 bits
-
- 'P'
- The constant -1
-
- 'Q'
- Floating-point constant whose integral representation can be
- moved into an integer register using a single sethi
- instruction
-
- 'R'
- Floating-point constant whose integral representation can be
- moved into an integer register using a single mov instruction
-
- 'S'
- Floating-point constant whose integral representation can be
- moved into an integer register using a high/lo_sum instruction
- sequence
-
- 'T'
- Memory address aligned to an 8-byte boundary
-
- 'U'
- Even register
-
- 'W'
- Memory address for 'e' constraint registers
-
- 'w'
- Memory address with only a base register
-
- 'Y'
- Vector zero
-
-_SPU--'config/spu/spu.h'_
- 'a'
- An immediate which can be loaded with the il/ila/ilh/ilhu
- instructions. const_int is treated as a 64 bit value.
-
- 'c'
- An immediate for and/xor/or instructions. const_int is
- treated as a 64 bit value.
-
- 'd'
- An immediate for the 'iohl' instruction. const_int is treated
- as a 64 bit value.
-
- 'f'
- An immediate which can be loaded with 'fsmbi'.
-
- 'A'
- An immediate which can be loaded with the il/ila/ilh/ilhu
- instructions. const_int is treated as a 32 bit value.
-
- 'B'
- An immediate for most arithmetic instructions. const_int is
- treated as a 32 bit value.
-
- 'C'
- An immediate for and/xor/or instructions. const_int is
- treated as a 32 bit value.
-
- 'D'
- An immediate for the 'iohl' instruction. const_int is treated
- as a 32 bit value.
-
- 'I'
- A constant in the range [-64, 63] for shift/rotate
- instructions.
-
- 'J'
- An unsigned 7-bit constant for conversion/nop/channel
- instructions.
-
- 'K'
- A signed 10-bit constant for most arithmetic instructions.
-
- 'M'
- A signed 16 bit immediate for 'stop'.
-
- 'N'
- An unsigned 16-bit constant for 'iohl' and 'fsmbi'.
-
- 'O'
- An unsigned 7-bit constant whose 3 least significant bits are
- 0.
-
- 'P'
- An unsigned 3-bit constant for 16-byte rotates and shifts
-
- 'R'
- Call operand, reg, for indirect calls
-
- 'S'
- Call operand, symbol, for relative calls.
-
- 'T'
- Call operand, const_int, for absolute calls.
-
- 'U'
- An immediate which can be loaded with the il/ila/ilh/ilhu
- instructions. const_int is sign extended to 128 bit.
-
- 'W'
- An immediate for shift and rotate instructions. const_int is
- treated as a 32 bit value.
-
- 'Y'
- An immediate for and/xor/or instructions. const_int is sign
- extended as a 128 bit.
-
- 'Z'
- An immediate for the 'iohl' instruction. const_int is sign
- extended to 128 bit.
-
-_S/390 and zSeries--'config/s390/s390.h'_
- 'a'
- Address register (general purpose register except r0)
-
- 'c'
- Condition code register
-
- 'd'
- Data register (arbitrary general purpose register)
-
- 'f'
- Floating-point register
-
- 'I'
- Unsigned 8-bit constant (0-255)
-
- 'J'
- Unsigned 12-bit constant (0-4095)
-
- 'K'
- Signed 16-bit constant (-32768-32767)
-
- 'L'
- Value appropriate as displacement.
- '(0..4095)'
- for short displacement
- '(-524288..524287)'
- for long displacement
-
- 'M'
- Constant integer with a value of 0x7fffffff.
-
- 'N'
- Multiple letter constraint followed by 4 parameter letters.
- '0..9:'
- number of the part counting from most to least
- significant
- 'H,Q:'
- mode of the part
- 'D,S,H:'
- mode of the containing operand
- '0,F:'
- value of the other parts (F--all bits set)
- The constraint matches if the specified part of a constant has
- a value different from its other parts.
-
- 'Q'
- Memory reference without index register and with short
- displacement.
-
- 'R'
- Memory reference with index register and short displacement.
-
- 'S'
- Memory reference without index register but with long
- displacement.
-
- 'T'
- Memory reference with index register and long displacement.
-
- 'U'
- Pointer with short displacement.
-
- 'W'
- Pointer with long displacement.
-
- 'Y'
- Shift count operand.
-
-_Score family--'config/score/score.h'_
- 'd'
- Registers from r0 to r32.
-
- 'e'
- Registers from r0 to r16.
-
- 't'
- r8--r11 or r22--r27 registers.
-
- 'h'
- hi register.
-
- 'l'
- lo register.
-
- 'x'
- hi + lo register.
-
- 'q'
- cnt register.
-
- 'y'
- lcb register.
-
- 'z'
- scb register.
-
- 'a'
- cnt + lcb + scb register.
-
- 'c'
- cr0--cr15 register.
-
- 'b'
- cp1 registers.
-
- 'f'
- cp2 registers.
-
- 'i'
- cp3 registers.
-
- 'j'
- cp1 + cp2 + cp3 registers.
-
- 'I'
- High 16-bit constant (32-bit constant with 16 LSBs zero).
-
- 'J'
- Unsigned 5 bit integer (in the range 0 to 31).
-
- 'K'
- Unsigned 16 bit integer (in the range 0 to 65535).
-
- 'L'
- Signed 16 bit integer (in the range -32768 to 32767).
-
- 'M'
- Unsigned 14 bit integer (in the range 0 to 16383).
-
- 'N'
- Signed 14 bit integer (in the range -8192 to 8191).
-
- 'Z'
- Any SYMBOL_REF.
-
-_Xstormy16--'config/stormy16/stormy16.h'_
- 'a'
- Register r0.
-
- 'b'
- Register r1.
-
- 'c'
- Register r2.
-
- 'd'
- Register r8.
-
- 'e'
- Registers r0 through r7.
-
- 't'
- Registers r0 and r1.
-
- 'y'
- The carry register.
-
- 'z'
- Registers r8 and r9.
-
- 'I'
- A constant between 0 and 3 inclusive.
-
- 'J'
- A constant that has exactly one bit set.
-
- 'K'
- A constant that has exactly one bit clear.
-
- 'L'
- A constant between 0 and 255 inclusive.
-
- 'M'
- A constant between -255 and 0 inclusive.
-
- 'N'
- A constant between -3 and 0 inclusive.
-
- 'O'
- A constant between 1 and 4 inclusive.
-
- 'P'
- A constant between -4 and -1 inclusive.
-
- 'Q'
- A memory reference that is a stack push.
-
- 'R'
- A memory reference that is a stack pop.
-
- 'S'
- A memory reference that refers to a constant address of known
- value.
-
- 'T'
- The register indicated by Rx (not implemented yet).
-
- 'U'
- A constant that is not between 2 and 15 inclusive.
-
- 'Z'
- The constant 0.
-
-_TI C6X family--'config/c6x/constraints.md'_
- 'a'
- Register file A (A0-A31).
-
- 'b'
- Register file B (B0-B31).
-
- 'A'
- Predicate registers in register file A (A0-A2 on C64X and
- higher, A1 and A2 otherwise).
-
- 'B'
- Predicate registers in register file B (B0-B2).
-
- 'C'
- A call-used register in register file B (B0-B9, B16-B31).
-
- 'Da'
- Register file A, excluding predicate registers (A3-A31, plus
- A0 if not C64X or higher).
-
- 'Db'
- Register file B, excluding predicate registers (B3-B31).
-
- 'Iu4'
- Integer constant in the range 0 ... 15.
-
- 'Iu5'
- Integer constant in the range 0 ... 31.
-
- 'In5'
- Integer constant in the range -31 ... 0.
-
- 'Is5'
- Integer constant in the range -16 ... 15.
-
- 'I5x'
- Integer constant that can be the operand of an ADDA or a SUBA
- insn.
-
- 'IuB'
- Integer constant in the range 0 ... 65535.
-
- 'IsB'
- Integer constant in the range -32768 ... 32767.
-
- 'IsC'
- Integer constant in the range -2^{20} ... 2^{20} - 1.
-
- 'Jc'
- Integer constant that is a valid mask for the clr instruction.
-
- 'Js'
- Integer constant that is a valid mask for the set instruction.
-
- 'Q'
- Memory location with A base register.
-
- 'R'
- Memory location with B base register.
-
- 'Z'
- Register B14 (aka DP).
-
-_TILE-Gx--'config/tilegx/constraints.md'_
- 'R00'
- 'R01'
- 'R02'
- 'R03'
- 'R04'
- 'R05'
- 'R06'
- 'R07'
- 'R08'
- 'R09'
- 'R10'
- Each of these represents a register constraint for an
- individual register, from r0 to r10.
-
- 'I'
- Signed 8-bit integer constant.
-
- 'J'
- Signed 16-bit integer constant.
-
- 'K'
- Unsigned 16-bit integer constant.
-
- 'L'
- Integer constant that fits in one signed byte when incremented
- by one (-129 ... 126).
-
- 'm'
- Memory operand. If used together with '<' or '>', the operand
- can have postincrement which requires printing with '%In' and
- '%in' on TILE-Gx. For example:
-
- asm ("st_add %I0,%1,%i0" : "=m<>" (*mem) : "r" (val));
-
- 'M'
- A bit mask suitable for the BFINS instruction.
-
- 'N'
- Integer constant that is a byte tiled out eight times.
-
- 'O'
- The integer zero constant.
-
- 'P'
- Integer constant that is a sign-extended byte tiled out as
- four shorts.
-
- 'Q'
- Integer constant that fits in one signed byte when incremented
- (-129 ... 126), but excluding -1.
-
- 'S'
- Integer constant that has all 1 bits consecutive and starting
- at bit 0.
-
- 'T'
- A 16-bit fragment of a got, tls, or pc-relative reference.
-
- 'U'
- Memory operand except postincrement. This is roughly the same
- as 'm' when not used together with '<' or '>'.
-
- 'W'
- An 8-element vector constant with identical elements.
-
- 'Y'
- A 4-element vector constant with identical elements.
-
- 'Z0'
- The integer constant 0xffffffff.
-
- 'Z1'
- The integer constant 0xffffffff00000000.
-
-_TILEPro--'config/tilepro/constraints.md'_
- 'R00'
- 'R01'
- 'R02'
- 'R03'
- 'R04'
- 'R05'
- 'R06'
- 'R07'
- 'R08'
- 'R09'
- 'R10'
- Each of these represents a register constraint for an
- individual register, from r0 to r10.
-
- 'I'
- Signed 8-bit integer constant.
-
- 'J'
- Signed 16-bit integer constant.
-
- 'K'
- Nonzero integer constant with low 16 bits zero.
-
- 'L'
- Integer constant that fits in one signed byte when incremented
- by one (-129 ... 126).
-
- 'm'
- Memory operand. If used together with '<' or '>', the operand
- can have postincrement which requires printing with '%In' and
- '%in' on TILEPro. For example:
-
- asm ("swadd %I0,%1,%i0" : "=m<>" (mem) : "r" (val));
-
- 'M'
- A bit mask suitable for the MM instruction.
-
- 'N'
- Integer constant that is a byte tiled out four times.
-
- 'O'
- The integer zero constant.
-
- 'P'
- Integer constant that is a sign-extended byte tiled out as two
- shorts.
-
- 'Q'
- Integer constant that fits in one signed byte when incremented
- (-129 ... 126), but excluding -1.
-
- 'T'
- A symbolic operand, or a 16-bit fragment of a got, tls, or
- pc-relative reference.
-
- 'U'
- Memory operand except postincrement. This is roughly the same
- as 'm' when not used together with '<' or '>'.
-
- 'W'
- A 4-element vector constant with identical elements.
-
- 'Y'
- A 2-element vector constant with identical elements.
-
-_Xtensa--'config/xtensa/constraints.md'_
- 'a'
- General-purpose 32-bit register
-
- 'b'
- One-bit boolean register
-
- 'A'
- MAC16 40-bit accumulator register
-
- 'I'
- Signed 12-bit integer constant, for use in MOVI instructions
-
- 'J'
- Signed 8-bit integer constant, for use in ADDI instructions
-
- 'K'
- Integer constant valid for BccI instructions
-
- 'L'
- Unsigned constant valid for BccUI instructions
-
-
-File: gcc.info, Node: Asm Labels, Next: Explicit Reg Vars, Prev: Constraints, Up: C Extensions
-
-6.43 Controlling Names Used in Assembler Code
-=============================================
-
-You can specify the name to be used in the assembler code for a C
-function or variable by writing the 'asm' (or '__asm__') keyword after
-the declarator as follows:
-
- int foo asm ("myfoo") = 2;
-
-This specifies that the name to be used for the variable 'foo' in the
-assembler code should be 'myfoo' rather than the usual '_foo'.
-
- On systems where an underscore is normally prepended to the name of a C
-function or variable, this feature allows you to define names for the
-linker that do not start with an underscore.
-
- It does not make sense to use this feature with a non-static local
-variable since such variables do not have assembler names. If you are
-trying to put the variable in a particular register, see *note Explicit
-Reg Vars::. GCC presently accepts such code with a warning, but will
-probably be changed to issue an error, rather than a warning, in the
-future.
-
- You cannot use 'asm' in this way in a function _definition_; but you
-can get the same effect by writing a declaration for the function before
-its definition and putting 'asm' there, like this:
-
- extern func () asm ("FUNC");
-
- func (x, y)
- int x, y;
- /* ... */
-
- It is up to you to make sure that the assembler names you choose do not
-conflict with any other assembler symbols. Also, you must not use a
-register name; that would produce completely invalid assembler code.
-GCC does not as yet have the ability to store static variables in
-registers. Perhaps that will be added.
-
-
-File: gcc.info, Node: Explicit Reg Vars, Next: Alternate Keywords, Prev: Asm Labels, Up: C Extensions
-
-6.44 Variables in Specified Registers
-=====================================
-
-GNU C allows you to put a few global variables into specified hardware
-registers. You can also specify the register in which an ordinary
-register variable should be allocated.
-
- * Global register variables reserve registers throughout the program.
- This may be useful in programs such as programming language
- interpreters that have a couple of global variables that are
- accessed very often.
-
- * Local register variables in specific registers do not reserve the
- registers, except at the point where they are used as input or
- output operands in an 'asm' statement and the 'asm' statement
- itself is not deleted. The compiler's data flow analysis is
- capable of determining where the specified registers contain live
- values, and where they are available for other uses. Stores into
- local register variables may be deleted when they appear to be dead
- according to dataflow analysis. References to local register
- variables may be deleted or moved or simplified.
-
- These local variables are sometimes convenient for use with the
- extended 'asm' feature (*note Extended Asm::), if you want to write
- one output of the assembler instruction directly into a particular
- register. (This works provided the register you specify fits the
- constraints specified for that operand in the 'asm'.)
-
-* Menu:
-
-* Global Reg Vars::
-* Local Reg Vars::
-
-
-File: gcc.info, Node: Global Reg Vars, Next: Local Reg Vars, Up: Explicit Reg Vars
-
-6.44.1 Defining Global Register Variables
------------------------------------------
-
-You can define a global register variable in GNU C like this:
-
- register int *foo asm ("a5");
-
-Here 'a5' is the name of the register that should be used. Choose a
-register that is normally saved and restored by function calls on your
-machine, so that library routines will not clobber it.
-
- Naturally the register name is cpu-dependent, so you need to
-conditionalize your program according to cpu type. The register 'a5' is
-a good choice on a 68000 for a variable of pointer type. On machines
-with register windows, be sure to choose a "global" register that is not
-affected magically by the function call mechanism.
-
- In addition, different operating systems on the same CPU may differ in
-how they name the registers; then you need additional conditionals. For
-example, some 68000 operating systems call this register '%a5'.
-
- Eventually there may be a way of asking the compiler to choose a
-register automatically, but first we need to figure out how it should
-choose and how to enable you to guide the choice. No solution is
-evident.
-
- Defining a global register variable in a certain register reserves that
-register entirely for this use, at least within the current compilation.
-The register is not allocated for any other purpose in the functions in
-the current compilation, and is not saved and restored by these
-functions. Stores into this register are never deleted even if they
-appear to be dead, but references may be deleted or moved or simplified.
-
- It is not safe to access the global register variables from signal
-handlers, or from more than one thread of control, because the system
-library routines may temporarily use the register for other things
-(unless you recompile them specially for the task at hand).
-
- It is not safe for one function that uses a global register variable to
-call another such function 'foo' by way of a third function 'lose' that
-is compiled without knowledge of this variable (i.e. in a different
-source file in which the variable isn't declared). This is because
-'lose' might save the register and put some other value there. For
-example, you can't expect a global register variable to be available in
-the comparison-function that you pass to 'qsort', since 'qsort' might
-have put something else in that register. (If you are prepared to
-recompile 'qsort' with the same global register variable, you can solve
-this problem.)
-
- If you want to recompile 'qsort' or other source files that do not
-actually use your global register variable, so that they do not use that
-register for any other purpose, then it suffices to specify the compiler
-option '-ffixed-REG'. You need not actually add a global register
-declaration to their source code.
-
- A function that can alter the value of a global register variable
-cannot safely be called from a function compiled without this variable,
-because it could clobber the value the caller expects to find there on
-return. Therefore, the function that is the entry point into the part
-of the program that uses the global register variable must explicitly
-save and restore the value that belongs to its caller.
-
- On most machines, 'longjmp' restores to each global register variable
-the value it had at the time of the 'setjmp'. On some machines,
-however, 'longjmp' does not change the value of global register
-variables. To be portable, the function that called 'setjmp' should
-make other arrangements to save the values of the global register
-variables, and to restore them in a 'longjmp'. This way, the same thing
-happens regardless of what 'longjmp' does.
-
- All global register variable declarations must precede all function
-definitions. If such a declaration could appear after function
-definitions, the declaration would be too late to prevent the register
-from being used for other purposes in the preceding functions.
-
- Global register variables may not have initial values, because an
-executable file has no means to supply initial contents for a register.
-
- On the SPARC, there are reports that g3 ... g7 are suitable registers,
-but certain library functions, such as 'getwd', as well as the
-subroutines for division and remainder, modify g3 and g4. g1 and g2 are
-local temporaries.
-
- On the 68000, a2 ... a5 should be suitable, as should d2 ... d7. Of
-course, it does not do to use more than a few of those.
-
-
-File: gcc.info, Node: Local Reg Vars, Prev: Global Reg Vars, Up: Explicit Reg Vars
-
-6.44.2 Specifying Registers for Local Variables
------------------------------------------------
-
-You can define a local register variable with a specified register like
-this:
-
- register int *foo asm ("a5");
-
-Here 'a5' is the name of the register that should be used. Note that
-this is the same syntax used for defining global register variables, but
-for a local variable it appears within a function.
-
- Naturally the register name is cpu-dependent, but this is not a
-problem, since specific registers are most often useful with explicit
-assembler instructions (*note Extended Asm::). Both of these things
-generally require that you conditionalize your program according to cpu
-type.
-
- In addition, operating systems on one type of cpu may differ in how
-they name the registers; then you need additional conditionals. For
-example, some 68000 operating systems call this register '%a5'.
-
- Defining such a register variable does not reserve the register; it
-remains available for other uses in places where flow control determines
-the variable's value is not live.
-
- This option does not guarantee that GCC generates code that has this
-variable in the register you specify at all times. You may not code an
-explicit reference to this register in the _assembler instruction
-template_ part of an 'asm' statement and assume it always refers to this
-variable. However, using the variable as an 'asm' _operand_ guarantees
-that the specified register is used for the operand.
-
- Stores into local register variables may be deleted when they appear to
-be dead according to dataflow analysis. References to local register
-variables may be deleted or moved or simplified.
-
- As for global register variables, it's recommended that you choose a
-register that is normally saved and restored by function calls on your
-machine, so that library routines will not clobber it. A common pitfall
-is to initialize multiple call-clobbered registers with arbitrary
-expressions, where a function call or library call for an arithmetic
-operator overwrites a register value from a previous assignment, for
-example 'r0' below:
- register int *p1 asm ("r0") = ...;
- register int *p2 asm ("r1") = ...;
-
-In those cases, a solution is to use a temporary variable for each
-arbitrary expression. *Note Example of asm with clobbered asm reg::.
-
-
-File: gcc.info, Node: Alternate Keywords, Next: Incomplete Enums, Prev: Explicit Reg Vars, Up: C Extensions
-
-6.45 Alternate Keywords
-=======================
-
-'-ansi' and the various '-std' options disable certain keywords. This
-causes trouble when you want to use GNU C extensions, or a
-general-purpose header file that should be usable by all programs,
-including ISO C programs. The keywords 'asm', 'typeof' and 'inline' are
-not available in programs compiled with '-ansi' or '-std' (although
-'inline' can be used in a program compiled with '-std=c99' or
-'-std=c11'). The ISO C99 keyword 'restrict' is only available when
-'-std=gnu99' (which will eventually be the default) or '-std=c99' (or
-the equivalent '-std=iso9899:1999'), or an option for a later standard
-version, is used.
-
- The way to solve these problems is to put '__' at the beginning and end
-of each problematical keyword. For example, use '__asm__' instead of
-'asm', and '__inline__' instead of 'inline'.
-
- Other C compilers won't accept these alternative keywords; if you want
-to compile with another compiler, you can define the alternate keywords
-as macros to replace them with the customary keywords. It looks like
-this:
-
- #ifndef __GNUC__
- #define __asm__ asm
- #endif
-
- '-pedantic' and other options cause warnings for many GNU C extensions.
-You can prevent such warnings within one expression by writing
-'__extension__' before the expression. '__extension__' has no effect
-aside from this.
-
-
-File: gcc.info, Node: Incomplete Enums, Next: Function Names, Prev: Alternate Keywords, Up: C Extensions
-
-6.46 Incomplete 'enum' Types
-============================
-
-You can define an 'enum' tag without specifying its possible values.
-This results in an incomplete type, much like what you get if you write
-'struct foo' without describing the elements. A later declaration that
-does specify the possible values completes the type.
-
- You can't allocate variables or storage using the type while it is
-incomplete. However, you can work with pointers to that type.
-
- This extension may not be very useful, but it makes the handling of
-'enum' more consistent with the way 'struct' and 'union' are handled.
-
- This extension is not supported by GNU C++.
-
-
-File: gcc.info, Node: Function Names, Next: Return Address, Prev: Incomplete Enums, Up: C Extensions
-
-6.47 Function Names as Strings
-==============================
-
-GCC provides three magic variables that hold the name of the current
-function, as a string. The first of these is '__func__', which is part
-of the C99 standard:
-
- The identifier '__func__' is implicitly declared by the translator as
-if, immediately following the opening brace of each function definition,
-the declaration
-
- static const char __func__[] = "function-name";
-
-appeared, where function-name is the name of the lexically-enclosing
-function. This name is the unadorned name of the function.
-
- '__FUNCTION__' is another name for '__func__'. Older versions of GCC
-recognize only this name. However, it is not standardized. For maximum
-portability, we recommend you use '__func__', but provide a fallback
-definition with the preprocessor:
-
- #if __STDC_VERSION__ < 199901L
- # if __GNUC__ >= 2
- # define __func__ __FUNCTION__
- # else
- # define __func__ "<unknown>"
- # endif
- #endif
-
- In C, '__PRETTY_FUNCTION__' is yet another name for '__func__'.
-However, in C++, '__PRETTY_FUNCTION__' contains the type signature of
-the function as well as its bare name. For example, this program:
-
- extern "C" {
- extern int printf (char *, ...);
- }
-
- class a {
- public:
- void sub (int i)
- {
- printf ("__FUNCTION__ = %s\n", __FUNCTION__);
- printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
- }
- };
-
- int
- main (void)
- {
- a ax;
- ax.sub (0);
- return 0;
- }
-
-gives this output:
-
- __FUNCTION__ = sub
- __PRETTY_FUNCTION__ = void a::sub(int)
-
- These identifiers are not preprocessor macros. In GCC 3.3 and earlier,
-in C only, '__FUNCTION__' and '__PRETTY_FUNCTION__' were treated as
-string literals; they could be used to initialize 'char' arrays, and
-they could be concatenated with other string literals. GCC 3.4 and
-later treat them as variables, like '__func__'. In C++, '__FUNCTION__'
-and '__PRETTY_FUNCTION__' have always been variables.
-
-
-File: gcc.info, Node: Return Address, Next: Vector Extensions, Prev: Function Names, Up: C Extensions
-
-6.48 Getting the Return or Frame Address of a Function
-======================================================
-
-These functions may be used to get information about the callers of a
-function.
-
- -- Built-in Function: void * __builtin_return_address (unsigned int
- LEVEL)
- This function returns the return address of the current function,
- or of one of its callers. The LEVEL argument is number of frames
- to scan up the call stack. A value of '0' yields the return
- address of the current function, a value of '1' yields the return
- address of the caller of the current function, and so forth. When
- inlining the expected behavior is that the function returns the
- address of the function that is returned to. To work around this
- behavior use the 'noinline' function attribute.
-
- The LEVEL argument must be a constant integer.
-
- On some machines it may be impossible to determine the return
- address of any function other than the current one; in such cases,
- or when the top of the stack has been reached, this function
- returns '0' or a random value. In addition,
- '__builtin_frame_address' may be used to determine if the top of
- the stack has been reached.
-
- Additional post-processing of the returned value may be needed, see
- '__builtin_extract_return_addr'.
-
- This function should only be used with a nonzero argument for
- debugging purposes.
-
- -- Built-in Function: void * __builtin_extract_return_addr (void *ADDR)
- The address as returned by '__builtin_return_address' may have to
- be fed through this function to get the actual encoded address.
- For example, on the 31-bit S/390 platform the highest bit has to be
- masked out, or on SPARC platforms an offset has to be added for the
- true next instruction to be executed.
-
- If no fixup is needed, this function simply passes through ADDR.
-
- -- Built-in Function: void * __builtin_frob_return_address (void *ADDR)
- This function does the reverse of '__builtin_extract_return_addr'.
-
- -- Built-in Function: void * __builtin_frame_address (unsigned int
- LEVEL)
- This function is similar to '__builtin_return_address', but it
- returns the address of the function frame rather than the return
- address of the function. Calling '__builtin_frame_address' with a
- value of '0' yields the frame address of the current function, a
- value of '1' yields the frame address of the caller of the current
- function, and so forth.
-
- The frame is the area on the stack that holds local variables and
- saved registers. The frame address is normally the address of the
- first word pushed on to the stack by the function. However, the
- exact definition depends upon the processor and the calling
- convention. If the processor has a dedicated frame pointer
- register, and the function has a frame, then
- '__builtin_frame_address' returns the value of the frame pointer
- register.
-
- On some machines it may be impossible to determine the frame
- address of any function other than the current one; in such cases,
- or when the top of the stack has been reached, this function
- returns '0' if the first frame pointer is properly initialized by
- the startup code.
-
- This function should only be used with a nonzero argument for
- debugging purposes.
-
-
-File: gcc.info, Node: Vector Extensions, Next: Offsetof, Prev: Return Address, Up: C Extensions
-
-6.49 Using Vector Instructions through Built-in Functions
-=========================================================
-
-On some targets, the instruction set contains SIMD vector instructions
-which operate on multiple values contained in one large register at the
-same time. For example, on the i386 the MMX, 3DNow! and SSE extensions
-can be used this way.
-
- The first step in using these extensions is to provide the necessary
-data types. This should be done using an appropriate 'typedef':
-
- typedef int v4si __attribute__ ((vector_size (16)));
-
-The 'int' type specifies the base type, while the attribute specifies
-the vector size for the variable, measured in bytes. For example, the
-declaration above causes the compiler to set the mode for the 'v4si'
-type to be 16 bytes wide and divided into 'int' sized units. For a
-32-bit 'int' this means a vector of 4 units of 4 bytes, and the
-corresponding mode of 'foo' is V4SI.
-
- The 'vector_size' attribute is only applicable to integral and float
-scalars, although arrays, pointers, and function return values are
-allowed in conjunction with this construct. Only sizes that are a power
-of two are currently allowed.
-
- All the basic integer types can be used as base types, both as signed
-and as unsigned: 'char', 'short', 'int', 'long', 'long long'. In
-addition, 'float' and 'double' can be used to build floating-point
-vector types.
-
- Specifying a combination that is not valid for the current architecture
-causes GCC to synthesize the instructions using a narrower mode. For
-example, if you specify a variable of type 'V4SI' and your architecture
-does not allow for this specific SIMD type, GCC produces code that uses
-4 'SIs'.
-
- The types defined in this manner can be used with a subset of normal C
-operations. Currently, GCC allows using the following operators on
-these types: '+, -, *, /, unary minus, ^, |, &, ~, %'.
-
- The operations behave like C++ 'valarrays'. Addition is defined as the
-addition of the corresponding elements of the operands. For example, in
-the code below, each of the 4 elements in A is added to the
-corresponding 4 elements in B and the resulting vector is stored in C.
-
- typedef int v4si __attribute__ ((vector_size (16)));
-
- v4si a, b, c;
-
- c = a + b;
-
- Subtraction, multiplication, division, and the logical operations
-operate in a similar manner. Likewise, the result of using the unary
-minus or complement operators on a vector type is a vector whose
-elements are the negative or complemented values of the corresponding
-elements in the operand.
-
- It is possible to use shifting operators '<<', '>>' on integer-type
-vectors. The operation is defined as following: '{a0, a1, ..., an} >>
-{b0, b1, ..., bn} == {a0 >> b0, a1 >> b1, ..., an >> bn}'. Vector
-operands must have the same number of elements.
-
- For convenience, it is allowed to use a binary vector operation where
-one operand is a scalar. In that case the compiler transforms the
-scalar operand into a vector where each element is the scalar from the
-operation. The transformation happens only if the scalar could be
-safely converted to the vector-element type. Consider the following
-code.
-
- typedef int v4si __attribute__ ((vector_size (16)));
-
- v4si a, b, c;
- long l;
-
- a = b + 1; /* a = b + {1,1,1,1}; */
- a = 2 * b; /* a = {2,2,2,2} * b; */
-
- a = l + a; /* Error, cannot convert long to int. */
-
- Vectors can be subscripted as if the vector were an array with the same
-number of elements and base type. Out of bound accesses invoke
-undefined behavior at run time. Warnings for out of bound accesses for
-vector subscription can be enabled with '-Warray-bounds'.
-
- Vector comparison is supported with standard comparison operators: '==,
-!=, <, <=, >, >='. Comparison operands can be vector expressions of
-integer-type or real-type. Comparison between integer-type vectors and
-real-type vectors are not supported. The result of the comparison is a
-vector of the same width and number of elements as the comparison
-operands with a signed integral element type.
-
- Vectors are compared element-wise producing 0 when comparison is false
-and -1 (constant of the appropriate type where all bits are set)
-otherwise. Consider the following example.
-
- typedef int v4si __attribute__ ((vector_size (16)));
-
- v4si a = {1,2,3,4};
- v4si b = {3,2,1,4};
- v4si c;
-
- c = a > b; /* The result would be {0, 0,-1, 0} */
- c = a == b; /* The result would be {0,-1, 0,-1} */
-
- In C++, the ternary operator '?:' is available. 'a?b:c', where 'b' and
-'c' are vectors of the same type and 'a' is an integer vector with the
-same number of elements of the same size as 'b' and 'c', computes all
-three arguments and creates a vector '{a[0]?b[0]:c[0], a[1]?b[1]:c[1],
-...}'. Note that unlike in OpenCL, 'a' is thus interpreted as 'a != 0'
-and not 'a < 0'. As in the case of binary operations, this syntax is
-also accepted when one of 'b' or 'c' is a scalar that is then
-transformed into a vector. If both 'b' and 'c' are scalars and the type
-of 'true?b:c' has the same size as the element type of 'a', then 'b' and
-'c' are converted to a vector type whose elements have this type and
-with the same number of elements as 'a'.
-
- Vector shuffling is available using functions '__builtin_shuffle (vec,
-mask)' and '__builtin_shuffle (vec0, vec1, mask)'. Both functions
-construct a permutation of elements from one or two vectors and return a
-vector of the same type as the input vector(s). The MASK is an integral
-vector with the same width (W) and element count (N) as the output
-vector.
-
- The elements of the input vectors are numbered in memory ordering of
-VEC0 beginning at 0 and VEC1 beginning at N. The elements of MASK are
-considered modulo N in the single-operand case and modulo 2*N in the
-two-operand case.
-
- Consider the following example,
-
- typedef int v4si __attribute__ ((vector_size (16)));
-
- v4si a = {1,2,3,4};
- v4si b = {5,6,7,8};
- v4si mask1 = {0,1,1,3};
- v4si mask2 = {0,4,2,5};
- v4si res;
-
- res = __builtin_shuffle (a, mask1); /* res is {1,2,2,4} */
- res = __builtin_shuffle (a, b, mask2); /* res is {1,5,3,6} */
-
- Note that '__builtin_shuffle' is intentionally semantically compatible
-with the OpenCL 'shuffle' and 'shuffle2' functions.
-
- You can declare variables and use them in function calls and returns,
-as well as in assignments and some casts. You can specify a vector type
-as a return type for a function. Vector types can also be used as
-function arguments. It is possible to cast from one vector type to
-another, provided they are of the same size (in fact, you can also cast
-vectors to and from other datatypes of the same size).
-
- You cannot operate between vectors of different lengths or different
-signedness without a cast.
-
-
-File: gcc.info, Node: Offsetof, Next: __sync Builtins, Prev: Vector Extensions, Up: C Extensions
-
-6.50 Offsetof
-=============
-
-GCC implements for both C and C++ a syntactic extension to implement the
-'offsetof' macro.
-
- primary:
- "__builtin_offsetof" "(" typename "," offsetof_member_designator ")"
-
- offsetof_member_designator:
- identifier
- | offsetof_member_designator "." identifier
- | offsetof_member_designator "[" expr "]"
-
- This extension is sufficient such that
-
- #define offsetof(TYPE, MEMBER) __builtin_offsetof (TYPE, MEMBER)
-
-is a suitable definition of the 'offsetof' macro. In C++, TYPE may be
-dependent. In either case, MEMBER may consist of a single identifier,
-or a sequence of member accesses and array references.
-
-
-File: gcc.info, Node: __sync Builtins, Next: __atomic Builtins, Prev: Offsetof, Up: C Extensions
-
-6.51 Legacy __sync Built-in Functions for Atomic Memory Access
-==============================================================
-
-The following built-in functions are intended to be compatible with
-those described in the 'Intel Itanium Processor-specific Application
-Binary Interface', section 7.4. As such, they depart from the normal
-GCC practice of using the '__builtin_' prefix, and further that they are
-overloaded such that they work on multiple types.
-
- The definition given in the Intel documentation allows only for the use
-of the types 'int', 'long', 'long long' as well as their unsigned
-counterparts. GCC allows any integral scalar or pointer type that is 1,
-2, 4 or 8 bytes in length.
-
- Not all operations are supported by all target processors. If a
-particular operation cannot be implemented on the target processor, a
-warning is generated and a call an external function is generated. The
-external function carries the same name as the built-in version, with an
-additional suffix '_N' where N is the size of the data type.
-
- In most cases, these built-in functions are considered a "full
-barrier". That is, no memory operand is moved across the operation,
-either forward or backward. Further, instructions are issued as
-necessary to prevent the processor from speculating loads across the
-operation and from queuing stores after the operation.
-
- All of the routines are described in the Intel documentation to take
-"an optional list of variables protected by the memory barrier". It's
-not clear what is meant by that; it could mean that _only_ the following
-variables are protected, or it could mean that these variables should in
-addition be protected. At present GCC ignores this list and protects
-all variables that are globally accessible. If in the future we make
-some use of this list, an empty list will continue to mean all globally
-accessible variables.
-
-'TYPE __sync_fetch_and_add (TYPE *ptr, TYPE value, ...)'
-'TYPE __sync_fetch_and_sub (TYPE *ptr, TYPE value, ...)'
-'TYPE __sync_fetch_and_or (TYPE *ptr, TYPE value, ...)'
-'TYPE __sync_fetch_and_and (TYPE *ptr, TYPE value, ...)'
-'TYPE __sync_fetch_and_xor (TYPE *ptr, TYPE value, ...)'
-'TYPE __sync_fetch_and_nand (TYPE *ptr, TYPE value, ...)'
- These built-in functions perform the operation suggested by the
- name, and returns the value that had previously been in memory.
- That is,
-
- { tmp = *ptr; *ptr OP= value; return tmp; }
- { tmp = *ptr; *ptr = ~(tmp & value); return tmp; } // nand
-
- _Note:_ GCC 4.4 and later implement '__sync_fetch_and_nand' as
- '*ptr = ~(tmp & value)' instead of '*ptr = ~tmp & value'.
-
-'TYPE __sync_add_and_fetch (TYPE *ptr, TYPE value, ...)'
-'TYPE __sync_sub_and_fetch (TYPE *ptr, TYPE value, ...)'
-'TYPE __sync_or_and_fetch (TYPE *ptr, TYPE value, ...)'
-'TYPE __sync_and_and_fetch (TYPE *ptr, TYPE value, ...)'
-'TYPE __sync_xor_and_fetch (TYPE *ptr, TYPE value, ...)'
-'TYPE __sync_nand_and_fetch (TYPE *ptr, TYPE value, ...)'
- These built-in functions perform the operation suggested by the
- name, and return the new value. That is,
-
- { *ptr OP= value; return *ptr; }
- { *ptr = ~(*ptr & value); return *ptr; } // nand
-
- _Note:_ GCC 4.4 and later implement '__sync_nand_and_fetch' as
- '*ptr = ~(*ptr & value)' instead of '*ptr = ~*ptr & value'.
-
-'bool __sync_bool_compare_and_swap (TYPE *ptr, TYPE oldval, TYPE newval, ...)'
-'TYPE __sync_val_compare_and_swap (TYPE *ptr, TYPE oldval, TYPE newval, ...)'
- These built-in functions perform an atomic compare and swap. That
- is, if the current value of '*PTR' is OLDVAL, then write NEWVAL
- into '*PTR'.
-
- The "bool" version returns true if the comparison is successful and
- NEWVAL is written. The "val" version returns the contents of
- '*PTR' before the operation.
-
-'__sync_synchronize (...)'
- This built-in function issues a full memory barrier.
-
-'TYPE __sync_lock_test_and_set (TYPE *ptr, TYPE value, ...)'
- This built-in function, as described by Intel, is not a traditional
- test-and-set operation, but rather an atomic exchange operation.
- It writes VALUE into '*PTR', and returns the previous contents of
- '*PTR'.
-
- Many targets have only minimal support for such locks, and do not
- support a full exchange operation. In this case, a target may
- support reduced functionality here by which the _only_ valid value
- to store is the immediate constant 1. The exact value actually
- stored in '*PTR' is implementation defined.
-
- This built-in function is not a full barrier, but rather an
- "acquire barrier". This means that references after the operation
- cannot move to (or be speculated to) before the operation, but
- previous memory stores may not be globally visible yet, and
- previous memory loads may not yet be satisfied.
-
-'void __sync_lock_release (TYPE *ptr, ...)'
- This built-in function releases the lock acquired by
- '__sync_lock_test_and_set'. Normally this means writing the
- constant 0 to '*PTR'.
-
- This built-in function is not a full barrier, but rather a "release
- barrier". This means that all previous memory stores are globally
- visible, and all previous memory loads have been satisfied, but
- following memory reads are not prevented from being speculated to
- before the barrier.
-
-
-File: gcc.info, Node: __atomic Builtins, Next: x86 specific memory model extensions for transactional memory, Prev: __sync Builtins, Up: C Extensions
-
-6.52 Built-in functions for memory model aware atomic operations
-================================================================
-
-The following built-in functions approximately match the requirements
-for C++11 memory model. Many are similar to the '__sync' prefixed
-built-in functions, but all also have a memory model parameter. These
-are all identified by being prefixed with '__atomic', and most are
-overloaded such that they work with multiple types.
-
- GCC allows any integral scalar or pointer type that is 1, 2, 4, or 8
-bytes in length. 16-byte integral types are also allowed if '__int128'
-(*note __int128::) is supported by the architecture.
-
- Target architectures are encouraged to provide their own patterns for
-each of these built-in functions. If no target is provided, the
-original non-memory model set of '__sync' atomic built-in functions are
-utilized, along with any required synchronization fences surrounding it
-in order to achieve the proper behavior. Execution in this case is
-subject to the same restrictions as those built-in functions.
-
- If there is no pattern or mechanism to provide a lock free instruction
-sequence, a call is made to an external routine with the same parameters
-to be resolved at run time.
-
- The four non-arithmetic functions (load, store, exchange, and
-compare_exchange) all have a generic version as well. This generic
-version works on any data type. If the data type size maps to one of
-the integral sizes that may have lock free support, the generic version
-utilizes the lock free built-in function. Otherwise an external call is
-left to be resolved at run time. This external call is the same format
-with the addition of a 'size_t' parameter inserted as the first
-parameter indicating the size of the object being pointed to. All
-objects must be the same size.
-
- There are 6 different memory models that can be specified. These map
-to the same names in the C++11 standard. Refer there or to the GCC wiki
-on atomic synchronization
-(http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync) for more detailed
-definitions. These memory models integrate both barriers to code motion
-as well as synchronization requirements with other threads. These are
-listed in approximately ascending order of strength. It is also
-possible to use target specific flags for memory model flags, like
-Hardware Lock Elision.
-
-'__ATOMIC_RELAXED'
- No barriers or synchronization.
-'__ATOMIC_CONSUME'
- Data dependency only for both barrier and synchronization with
- another thread.
-'__ATOMIC_ACQUIRE'
- Barrier to hoisting of code and synchronizes with release (or
- stronger) semantic stores from another thread.
-'__ATOMIC_RELEASE'
- Barrier to sinking of code and synchronizes with acquire (or
- stronger) semantic loads from another thread.
-'__ATOMIC_ACQ_REL'
- Full barrier in both directions and synchronizes with acquire loads
- and release stores in another thread.
-'__ATOMIC_SEQ_CST'
- Full barrier in both directions and synchronizes with acquire loads
- and release stores in all threads.
-
- When implementing patterns for these built-in functions, the memory
-model parameter can be ignored as long as the pattern implements the
-most restrictive '__ATOMIC_SEQ_CST' model. Any of the other memory
-models execute correctly with this memory model but they may not execute
-as efficiently as they could with a more appropriate implementation of
-the relaxed requirements.
-
- Note that the C++11 standard allows for the memory model parameter to
-be determined at run time rather than at compile time. These built-in
-functions map any run-time value to '__ATOMIC_SEQ_CST' rather than
-invoke a runtime library call or inline a switch statement. This is
-standard compliant, safe, and the simplest approach for now.
-
- The memory model parameter is a signed int, but only the lower 8 bits
-are reserved for the memory model. The remainder of the signed int is
-reserved for future use and should be 0. Use of the predefined atomic
-values ensures proper usage.
-
- -- Built-in Function: TYPE __atomic_load_n (TYPE *ptr, int memmodel)
- This built-in function implements an atomic load operation. It
- returns the contents of '*PTR'.
-
- The valid memory model variants are '__ATOMIC_RELAXED',
- '__ATOMIC_SEQ_CST', '__ATOMIC_ACQUIRE', and '__ATOMIC_CONSUME'.
-
- -- Built-in Function: void __atomic_load (TYPE *ptr, TYPE *ret, int
- memmodel)
- This is the generic version of an atomic load. It returns the
- contents of '*PTR' in '*RET'.
-
- -- Built-in Function: void __atomic_store_n (TYPE *ptr, TYPE val, int
- memmodel)
- This built-in function implements an atomic store operation. It
- writes 'VAL' into '*PTR'.
-
- The valid memory model variants are '__ATOMIC_RELAXED',
- '__ATOMIC_SEQ_CST', and '__ATOMIC_RELEASE'.
-
- -- Built-in Function: void __atomic_store (TYPE *ptr, TYPE *val, int
- memmodel)
- This is the generic version of an atomic store. It stores the
- value of '*VAL' into '*PTR'.
-
- -- Built-in Function: TYPE __atomic_exchange_n (TYPE *ptr, TYPE val,
- int memmodel)
- This built-in function implements an atomic exchange operation. It
- writes VAL into '*PTR', and returns the previous contents of
- '*PTR'.
-
- The valid memory model variants are '__ATOMIC_RELAXED',
- '__ATOMIC_SEQ_CST', '__ATOMIC_ACQUIRE', '__ATOMIC_RELEASE', and
- '__ATOMIC_ACQ_REL'.
-
- -- Built-in Function: void __atomic_exchange (TYPE *ptr, TYPE *val,
- TYPE *ret, int memmodel)
- This is the generic version of an atomic exchange. It stores the
- contents of '*VAL' into '*PTR'. The original value of '*PTR' is
- copied into '*RET'.
-
- -- Built-in Function: bool __atomic_compare_exchange_n (TYPE *ptr, TYPE
- *expected, TYPE desired, bool weak, int success_memmodel, int
- failure_memmodel)
- This built-in function implements an atomic compare and exchange
- operation. This compares the contents of '*PTR' with the contents
- of '*EXPECTED' and if equal, writes DESIRED into '*PTR'. If they
- are not equal, the current contents of '*PTR' is written into
- '*EXPECTED'. WEAK is true for weak compare_exchange, and false for
- the strong variation. Many targets only offer the strong variation
- and ignore the parameter. When in doubt, use the strong variation.
-
- True is returned if DESIRED is written into '*PTR' and the
- execution is considered to conform to the memory model specified by
- SUCCESS_MEMMODEL. There are no restrictions on what memory model
- can be used here.
-
- False is returned otherwise, and the execution is considered to
- conform to FAILURE_MEMMODEL. This memory model cannot be
- '__ATOMIC_RELEASE' nor '__ATOMIC_ACQ_REL'. It also cannot be a
- stronger model than that specified by SUCCESS_MEMMODEL.
-
- -- Built-in Function: bool __atomic_compare_exchange (TYPE *ptr, TYPE
- *expected, TYPE *desired, bool weak, int success_memmodel, int
- failure_memmodel)
- This built-in function implements the generic version of
- '__atomic_compare_exchange'. The function is virtually identical
- to '__atomic_compare_exchange_n', except the desired value is also
- a pointer.
-
- -- Built-in Function: TYPE __atomic_add_fetch (TYPE *ptr, TYPE val, int
- memmodel)
- -- Built-in Function: TYPE __atomic_sub_fetch (TYPE *ptr, TYPE val, int
- memmodel)
- -- Built-in Function: TYPE __atomic_and_fetch (TYPE *ptr, TYPE val, int
- memmodel)
- -- Built-in Function: TYPE __atomic_xor_fetch (TYPE *ptr, TYPE val, int
- memmodel)
- -- Built-in Function: TYPE __atomic_or_fetch (TYPE *ptr, TYPE val, int
- memmodel)
- -- Built-in Function: TYPE __atomic_nand_fetch (TYPE *ptr, TYPE val,
- int memmodel)
- These built-in functions perform the operation suggested by the
- name, and return the result of the operation. That is,
-
- { *ptr OP= val; return *ptr; }
-
- All memory models are valid.
-
- -- Built-in Function: TYPE __atomic_fetch_add (TYPE *ptr, TYPE val, int
- memmodel)
- -- Built-in Function: TYPE __atomic_fetch_sub (TYPE *ptr, TYPE val, int
- memmodel)
- -- Built-in Function: TYPE __atomic_fetch_and (TYPE *ptr, TYPE val, int
- memmodel)
- -- Built-in Function: TYPE __atomic_fetch_xor (TYPE *ptr, TYPE val, int
- memmodel)
- -- Built-in Function: TYPE __atomic_fetch_or (TYPE *ptr, TYPE val, int
- memmodel)
- -- Built-in Function: TYPE __atomic_fetch_nand (TYPE *ptr, TYPE val,
- int memmodel)
- These built-in functions perform the operation suggested by the
- name, and return the value that had previously been in '*PTR'.
- That is,
-
- { tmp = *ptr; *ptr OP= val; return tmp; }
-
- All memory models are valid.
-
- -- Built-in Function: bool __atomic_test_and_set (void *ptr, int
- memmodel)
-
- This built-in function performs an atomic test-and-set operation on
- the byte at '*PTR'. The byte is set to some implementation defined
- nonzero "set" value and the return value is 'true' if and only if
- the previous contents were "set". It should be only used for
- operands of type 'bool' or 'char'. For other types only part of
- the value may be set.
-
- All memory models are valid.
-
- -- Built-in Function: void __atomic_clear (bool *ptr, int memmodel)
-
- This built-in function performs an atomic clear operation on
- '*PTR'. After the operation, '*PTR' contains 0. It should be only
- used for operands of type 'bool' or 'char' and in conjunction with
- '__atomic_test_and_set'. For other types it may only clear
- partially. If the type is not 'bool' prefer using
- '__atomic_store'.
-
- The valid memory model variants are '__ATOMIC_RELAXED',
- '__ATOMIC_SEQ_CST', and '__ATOMIC_RELEASE'.
-
- -- Built-in Function: void __atomic_thread_fence (int memmodel)
-
- This built-in function acts as a synchronization fence between
- threads based on the specified memory model.
-
- All memory orders are valid.
-
- -- Built-in Function: void __atomic_signal_fence (int memmodel)
-
- This built-in function acts as a synchronization fence between a
- thread and signal handlers based in the same thread.
-
- All memory orders are valid.
-
- -- Built-in Function: bool __atomic_always_lock_free (size_t size, void
- *ptr)
-
- This built-in function returns true if objects of SIZE bytes always
- generate lock free atomic instructions for the target architecture.
- SIZE must resolve to a compile-time constant and the result also
- resolves to a compile-time constant.
-
- PTR is an optional pointer to the object that may be used to
- determine alignment. A value of 0 indicates typical alignment
- should be used. The compiler may also ignore this parameter.
-
- if (_atomic_always_lock_free (sizeof (long long), 0))
-
- -- Built-in Function: bool __atomic_is_lock_free (size_t size, void
- *ptr)
-
- This built-in function returns true if objects of SIZE bytes always
- generate lock free atomic instructions for the target architecture.
- If it is not known to be lock free a call is made to a runtime
- routine named '__atomic_is_lock_free'.
-
- PTR is an optional pointer to the object that may be used to
- determine alignment. A value of 0 indicates typical alignment
- should be used. The compiler may also ignore this parameter.
-
-
-File: gcc.info, Node: x86 specific memory model extensions for transactional memory, Next: Object Size Checking, Prev: __atomic Builtins, Up: C Extensions
-
-6.53 x86 specific memory model extensions for transactional memory
-==================================================================
-
-The i386 architecture supports additional memory ordering flags to mark
-lock critical sections for hardware lock elision. These must be
-specified in addition to an existing memory model to atomic intrinsics.
-
-'__ATOMIC_HLE_ACQUIRE'
- Start lock elision on a lock variable. Memory model must be
- '__ATOMIC_ACQUIRE' or stronger.
-'__ATOMIC_HLE_RELEASE'
- End lock elision on a lock variable. Memory model must be
- '__ATOMIC_RELEASE' or stronger.
-
- When a lock acquire fails it is required for good performance to abort
-the transaction quickly. This can be done with a '_mm_pause'
-
- #include <immintrin.h> // For _mm_pause
-
- int lockvar;
-
- /* Acquire lock with lock elision */
- while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE))
- _mm_pause(); /* Abort failed transaction */
- ...
- /* Free lock with lock elision */
- __atomic_store_n(&lockvar, 0, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);
-
-
-File: gcc.info, Node: Object Size Checking, Next: Cilk Plus Builtins, Prev: x86 specific memory model extensions for transactional memory, Up: C Extensions
-
-6.54 Object Size Checking Built-in Functions
-============================================
-
-GCC implements a limited buffer overflow protection mechanism that can
-prevent some buffer overflow attacks.
-
- -- Built-in Function: size_t __builtin_object_size (void * PTR, int
- TYPE)
- is a built-in construct that returns a constant number of bytes
- from PTR to the end of the object PTR pointer points to (if known
- at compile time). '__builtin_object_size' never evaluates its
- arguments for side-effects. If there are any side-effects in them,
- it returns '(size_t) -1' for TYPE 0 or 1 and '(size_t) 0' for TYPE
- 2 or 3. If there are multiple objects PTR can point to and all of
- them are known at compile time, the returned number is the maximum
- of remaining byte counts in those objects if TYPE & 2 is 0 and
- minimum if nonzero. If it is not possible to determine which
- objects PTR points to at compile time, '__builtin_object_size'
- should return '(size_t) -1' for TYPE 0 or 1 and '(size_t) 0' for
- TYPE 2 or 3.
-
- TYPE is an integer constant from 0 to 3. If the least significant
- bit is clear, objects are whole variables, if it is set, a closest
- surrounding subobject is considered the object a pointer points to.
- The second bit determines if maximum or minimum of remaining bytes
- is computed.
-
- struct V { char buf1[10]; int b; char buf2[10]; } var;
- char *p = &var.buf1[1], *q = &var.b;
-
- /* Here the object p points to is var. */
- assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
- /* The subobject p points to is var.buf1. */
- assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
- /* The object q points to is var. */
- assert (__builtin_object_size (q, 0)
- == (char *) (&var + 1) - (char *) &var.b);
- /* The subobject q points to is var.b. */
- assert (__builtin_object_size (q, 1) == sizeof (var.b));
-
- There are built-in functions added for many common string operation
-functions, e.g., for 'memcpy' '__builtin___memcpy_chk' built-in is
-provided. This built-in has an additional last argument, which is the
-number of bytes remaining in object the DEST argument points to or
-'(size_t) -1' if the size is not known.
-
- The built-in functions are optimized into the normal string functions
-like 'memcpy' if the last argument is '(size_t) -1' or if it is known at
-compile time that the destination object will not be overflown. If the
-compiler can determine at compile time the object will be always
-overflown, it issues a warning.
-
- The intended use can be e.g.
-
- #undef memcpy
- #define bos0(dest) __builtin_object_size (dest, 0)
- #define memcpy(dest, src, n) \
- __builtin___memcpy_chk (dest, src, n, bos0 (dest))
-
- char *volatile p;
- char buf[10];
- /* It is unknown what object p points to, so this is optimized
- into plain memcpy - no checking is possible. */
- memcpy (p, "abcde", n);
- /* Destination is known and length too. It is known at compile
- time there will be no overflow. */
- memcpy (&buf[5], "abcde", 5);
- /* Destination is known, but the length is not known at compile time.
- This will result in __memcpy_chk call that can check for overflow
- at run time. */
- memcpy (&buf[5], "abcde", n);
- /* Destination is known and it is known at compile time there will
- be overflow. There will be a warning and __memcpy_chk call that
- will abort the program at run time. */
- memcpy (&buf[6], "abcde", 5);
-
- Such built-in functions are provided for 'memcpy', 'mempcpy',
-'memmove', 'memset', 'strcpy', 'stpcpy', 'strncpy', 'strcat' and
-'strncat'.
-
- There are also checking built-in functions for formatted output
-functions.
- int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
- int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
- const char *fmt, ...);
- int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
- va_list ap);
- int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
- const char *fmt, va_list ap);
-
- The added FLAG argument is passed unchanged to '__sprintf_chk' etc.
-functions and can contain implementation specific flags on what
-additional security measures the checking function might take, such as
-handling '%n' differently.
-
- The OS argument is the object size S points to, like in the other
-built-in functions. There is a small difference in the behavior though,
-if OS is '(size_t) -1', the built-in functions are optimized into the
-non-checking functions only if FLAG is 0, otherwise the checking
-function is called with OS argument set to '(size_t) -1'.
-
- In addition to this, there are checking built-in functions
-'__builtin___printf_chk', '__builtin___vprintf_chk',
-'__builtin___fprintf_chk' and '__builtin___vfprintf_chk'. These have
-just one additional argument, FLAG, right before format string FMT. If
-the compiler is able to optimize them to 'fputc' etc. functions, it
-does, otherwise the checking function is called and the FLAG argument
-passed to it.
-
-
-File: gcc.info, Node: Cilk Plus Builtins, Next: Other Builtins, Prev: Object Size Checking, Up: C Extensions
-
-6.55 Cilk Plus C/C++ language extension Built-in Functions.
-===========================================================
-
-GCC provides support for the following built-in reduction funtions if
-Cilk Plus is enabled. Cilk Plus can be enabled using the '-fcilkplus'
-flag.
-
- * __sec_implicit_index
- * __sec_reduce
- * __sec_reduce_add
- * __sec_reduce_all_nonzero
- * __sec_reduce_all_zero
- * __sec_reduce_any_nonzero
- * __sec_reduce_any_zero
- * __sec_reduce_max
- * __sec_reduce_min
- * __sec_reduce_max_ind
- * __sec_reduce_min_ind
- * __sec_reduce_mul
- * __sec_reduce_mutating
-
- Further details and examples about these built-in functions are
-described in the Cilk Plus language manual which can be found at
-<http://www.cilkplus.org>.
-
-
-File: gcc.info, Node: Other Builtins, Next: Target Builtins, Prev: Cilk Plus Builtins, Up: C Extensions
-
-6.56 Other Built-in Functions Provided by GCC
-=============================================
-
-GCC provides a large number of built-in functions other than the ones
-mentioned above. Some of these are for internal use in the processing
-of exceptions or variable-length argument lists and are not documented
-here because they may change from time to time; we do not recommend
-general use of these functions.
-
- The remaining functions are provided for optimization purposes.
-
- GCC includes built-in versions of many of the functions in the standard
-C library. The versions prefixed with '__builtin_' are always treated
-as having the same meaning as the C library function even if you specify
-the '-fno-builtin' option. (*note C Dialect Options::) Many of these
-functions are only optimized in certain cases; if they are not optimized
-in a particular case, a call to the library function is emitted.
-
- Outside strict ISO C mode ('-ansi', '-std=c90', '-std=c99' or
-'-std=c11'), the functions '_exit', 'alloca', 'bcmp', 'bzero',
-'dcgettext', 'dgettext', 'dremf', 'dreml', 'drem', 'exp10f', 'exp10l',
-'exp10', 'ffsll', 'ffsl', 'ffs', 'fprintf_unlocked', 'fputs_unlocked',
-'gammaf', 'gammal', 'gamma', 'gammaf_r', 'gammal_r', 'gamma_r',
-'gettext', 'index', 'isascii', 'j0f', 'j0l', 'j0', 'j1f', 'j1l', 'j1',
-'jnf', 'jnl', 'jn', 'lgammaf_r', 'lgammal_r', 'lgamma_r', 'mempcpy',
-'pow10f', 'pow10l', 'pow10', 'printf_unlocked', 'rindex', 'scalbf',
-'scalbl', 'scalb', 'signbit', 'signbitf', 'signbitl', 'signbitd32',
-'signbitd64', 'signbitd128', 'significandf', 'significandl',
-'significand', 'sincosf', 'sincosl', 'sincos', 'stpcpy', 'stpncpy',
-'strcasecmp', 'strdup', 'strfmon', 'strncasecmp', 'strndup', 'toascii',
-'y0f', 'y0l', 'y0', 'y1f', 'y1l', 'y1', 'ynf', 'ynl' and 'yn' may be
-handled as built-in functions. All these functions have corresponding
-versions prefixed with '__builtin_', which may be used even in strict
-C90 mode.
-
- The ISO C99 functions '_Exit', 'acoshf', 'acoshl', 'acosh', 'asinhf',
-'asinhl', 'asinh', 'atanhf', 'atanhl', 'atanh', 'cabsf', 'cabsl',
-'cabs', 'cacosf', 'cacoshf', 'cacoshl', 'cacosh', 'cacosl', 'cacos',
-'cargf', 'cargl', 'carg', 'casinf', 'casinhf', 'casinhl', 'casinh',
-'casinl', 'casin', 'catanf', 'catanhf', 'catanhl', 'catanh', 'catanl',
-'catan', 'cbrtf', 'cbrtl', 'cbrt', 'ccosf', 'ccoshf', 'ccoshl', 'ccosh',
-'ccosl', 'ccos', 'cexpf', 'cexpl', 'cexp', 'cimagf', 'cimagl', 'cimag',
-'clogf', 'clogl', 'clog', 'conjf', 'conjl', 'conj', 'copysignf',
-'copysignl', 'copysign', 'cpowf', 'cpowl', 'cpow', 'cprojf', 'cprojl',
-'cproj', 'crealf', 'creall', 'creal', 'csinf', 'csinhf', 'csinhl',
-'csinh', 'csinl', 'csin', 'csqrtf', 'csqrtl', 'csqrt', 'ctanf',
-'ctanhf', 'ctanhl', 'ctanh', 'ctanl', 'ctan', 'erfcf', 'erfcl', 'erfc',
-'erff', 'erfl', 'erf', 'exp2f', 'exp2l', 'exp2', 'expm1f', 'expm1l',
-'expm1', 'fdimf', 'fdiml', 'fdim', 'fmaf', 'fmal', 'fmaxf', 'fmaxl',
-'fmax', 'fma', 'fminf', 'fminl', 'fmin', 'hypotf', 'hypotl', 'hypot',
-'ilogbf', 'ilogbl', 'ilogb', 'imaxabs', 'isblank', 'iswblank',
-'lgammaf', 'lgammal', 'lgamma', 'llabs', 'llrintf', 'llrintl', 'llrint',
-'llroundf', 'llroundl', 'llround', 'log1pf', 'log1pl', 'log1p', 'log2f',
-'log2l', 'log2', 'logbf', 'logbl', 'logb', 'lrintf', 'lrintl', 'lrint',
-'lroundf', 'lroundl', 'lround', 'nearbyintf', 'nearbyintl', 'nearbyint',
-'nextafterf', 'nextafterl', 'nextafter', 'nexttowardf', 'nexttowardl',
-'nexttoward', 'remainderf', 'remainderl', 'remainder', 'remquof',
-'remquol', 'remquo', 'rintf', 'rintl', 'rint', 'roundf', 'roundl',
-'round', 'scalblnf', 'scalblnl', 'scalbln', 'scalbnf', 'scalbnl',
-'scalbn', 'snprintf', 'tgammaf', 'tgammal', 'tgamma', 'truncf',
-'truncl', 'trunc', 'vfscanf', 'vscanf', 'vsnprintf' and 'vsscanf' are
-handled as built-in functions except in strict ISO C90 mode ('-ansi' or
-'-std=c90').
-
- There are also built-in versions of the ISO C99 functions 'acosf',
-'acosl', 'asinf', 'asinl', 'atan2f', 'atan2l', 'atanf', 'atanl',
-'ceilf', 'ceill', 'cosf', 'coshf', 'coshl', 'cosl', 'expf', 'expl',
-'fabsf', 'fabsl', 'floorf', 'floorl', 'fmodf', 'fmodl', 'frexpf',
-'frexpl', 'ldexpf', 'ldexpl', 'log10f', 'log10l', 'logf', 'logl',
-'modfl', 'modf', 'powf', 'powl', 'sinf', 'sinhf', 'sinhl', 'sinl',
-'sqrtf', 'sqrtl', 'tanf', 'tanhf', 'tanhl' and 'tanl' that are
-recognized in any mode since ISO C90 reserves these names for the
-purpose to which ISO C99 puts them. All these functions have
-corresponding versions prefixed with '__builtin_'.
-
- The ISO C94 functions 'iswalnum', 'iswalpha', 'iswcntrl', 'iswdigit',
-'iswgraph', 'iswlower', 'iswprint', 'iswpunct', 'iswspace', 'iswupper',
-'iswxdigit', 'towlower' and 'towupper' are handled as built-in functions
-except in strict ISO C90 mode ('-ansi' or '-std=c90').
-
- The ISO C90 functions 'abort', 'abs', 'acos', 'asin', 'atan2', 'atan',
-'calloc', 'ceil', 'cosh', 'cos', 'exit', 'exp', 'fabs', 'floor', 'fmod',
-'fprintf', 'fputs', 'frexp', 'fscanf', 'isalnum', 'isalpha', 'iscntrl',
-'isdigit', 'isgraph', 'islower', 'isprint', 'ispunct', 'isspace',
-'isupper', 'isxdigit', 'tolower', 'toupper', 'labs', 'ldexp', 'log10',
-'log', 'malloc', 'memchr', 'memcmp', 'memcpy', 'memset', 'modf', 'pow',
-'printf', 'putchar', 'puts', 'scanf', 'sinh', 'sin', 'snprintf',
-'sprintf', 'sqrt', 'sscanf', 'strcat', 'strchr', 'strcmp', 'strcpy',
-'strcspn', 'strlen', 'strncat', 'strncmp', 'strncpy', 'strpbrk',
-'strrchr', 'strspn', 'strstr', 'tanh', 'tan', 'vfprintf', 'vprintf' and
-'vsprintf' are all recognized as built-in functions unless
-'-fno-builtin' is specified (or '-fno-builtin-FUNCTION' is specified for
-an individual function). All of these functions have corresponding
-versions prefixed with '__builtin_'.
-
- GCC provides built-in versions of the ISO C99 floating-point comparison
-macros that avoid raising exceptions for unordered operands. They have
-the same names as the standard macros ( 'isgreater', 'isgreaterequal',
-'isless', 'islessequal', 'islessgreater', and 'isunordered') , with
-'__builtin_' prefixed. We intend for a library implementor to be able
-to simply '#define' each standard macro to its built-in equivalent. In
-the same fashion, GCC provides 'fpclassify', 'isfinite', 'isinf_sign'
-and 'isnormal' built-ins used with '__builtin_' prefixed. The 'isinf'
-and 'isnan' built-in functions appear both with and without the
-'__builtin_' prefix.
-
- -- Built-in Function: int __builtin_types_compatible_p (TYPE1, TYPE2)
-
- You can use the built-in function '__builtin_types_compatible_p' to
- determine whether two types are the same.
-
- This built-in function returns 1 if the unqualified versions of the
- types TYPE1 and TYPE2 (which are types, not expressions) are
- compatible, 0 otherwise. The result of this built-in function can
- be used in integer constant expressions.
-
- This built-in function ignores top level qualifiers (e.g., 'const',
- 'volatile'). For example, 'int' is equivalent to 'const int'.
-
- The type 'int[]' and 'int[5]' are compatible. On the other hand,
- 'int' and 'char *' are not compatible, even if the size of their
- types, on the particular architecture are the same. Also, the
- amount of pointer indirection is taken into account when
- determining similarity. Consequently, 'short *' is not similar to
- 'short **'. Furthermore, two types that are typedefed are
- considered compatible if their underlying types are compatible.
-
- An 'enum' type is not considered to be compatible with another
- 'enum' type even if both are compatible with the same integer type;
- this is what the C standard specifies. For example, 'enum {foo,
- bar}' is not similar to 'enum {hot, dog}'.
-
- You typically use this function in code whose execution varies
- depending on the arguments' types. For example:
-
- #define foo(x) \
- ({ \
- typeof (x) tmp = (x); \
- if (__builtin_types_compatible_p (typeof (x), long double)) \
- tmp = foo_long_double (tmp); \
- else if (__builtin_types_compatible_p (typeof (x), double)) \
- tmp = foo_double (tmp); \
- else if (__builtin_types_compatible_p (typeof (x), float)) \
- tmp = foo_float (tmp); \
- else \
- abort (); \
- tmp; \
- })
-
- _Note:_ This construct is only available for C.
-
- -- Built-in Function: TYPE __builtin_choose_expr (CONST_EXP, EXP1,
- EXP2)
-
- You can use the built-in function '__builtin_choose_expr' to
- evaluate code depending on the value of a constant expression.
- This built-in function returns EXP1 if CONST_EXP, which is an
- integer constant expression, is nonzero. Otherwise it returns
- EXP2.
-
- This built-in function is analogous to the '? :' operator in C,
- except that the expression returned has its type unaltered by
- promotion rules. Also, the built-in function does not evaluate the
- expression that is not chosen. For example, if CONST_EXP evaluates
- to true, EXP2 is not evaluated even if it has side-effects.
-
- This built-in function can return an lvalue if the chosen argument
- is an lvalue.
-
- If EXP1 is returned, the return type is the same as EXP1's type.
- Similarly, if EXP2 is returned, its return type is the same as
- EXP2.
-
- Example:
-
- #define foo(x) \
- __builtin_choose_expr ( \
- __builtin_types_compatible_p (typeof (x), double), \
- foo_double (x), \
- __builtin_choose_expr ( \
- __builtin_types_compatible_p (typeof (x), float), \
- foo_float (x), \
- /* The void expression results in a compile-time error \
- when assigning the result to something. */ \
- (void)0))
-
- _Note:_ This construct is only available for C. Furthermore, the
- unused expression (EXP1 or EXP2 depending on the value of
- CONST_EXP) may still generate syntax errors. This may change in
- future revisions.
-
- -- Built-in Function: TYPE __builtin_complex (REAL, IMAG)
-
- The built-in function '__builtin_complex' is provided for use in
- implementing the ISO C11 macros 'CMPLXF', 'CMPLX' and 'CMPLXL'.
- REAL and IMAG must have the same type, a real binary floating-point
- type, and the result has the corresponding complex type with real
- and imaginary parts REAL and IMAG. Unlike 'REAL + I * IMAG', this
- works even when infinities, NaNs and negative zeros are involved.
-
- -- Built-in Function: int __builtin_constant_p (EXP)
- You can use the built-in function '__builtin_constant_p' to
- determine if a value is known to be constant at compile time and
- hence that GCC can perform constant-folding on expressions
- involving that value. The argument of the function is the value to
- test. The function returns the integer 1 if the argument is known
- to be a compile-time constant and 0 if it is not known to be a
- compile-time constant. A return of 0 does not indicate that the
- value is _not_ a constant, but merely that GCC cannot prove it is a
- constant with the specified value of the '-O' option.
-
- You typically use this function in an embedded application where
- memory is a critical resource. If you have some complex
- calculation, you may want it to be folded if it involves constants,
- but need to call a function if it does not. For example:
-
- #define Scale_Value(X) \
- (__builtin_constant_p (X) \
- ? ((X) * SCALE + OFFSET) : Scale (X))
-
- You may use this built-in function in either a macro or an inline
- function. However, if you use it in an inlined function and pass
- an argument of the function as the argument to the built-in, GCC
- never returns 1 when you call the inline function with a string
- constant or compound literal (*note Compound Literals::) and does
- not return 1 when you pass a constant numeric value to the inline
- function unless you specify the '-O' option.
-
- You may also use '__builtin_constant_p' in initializers for static
- data. For instance, you can write
-
- static const int table[] = {
- __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
- /* ... */
- };
-
- This is an acceptable initializer even if EXPRESSION is not a
- constant expression, including the case where
- '__builtin_constant_p' returns 1 because EXPRESSION can be folded
- to a constant but EXPRESSION contains operands that are not
- otherwise permitted in a static initializer (for example, '0 && foo
- ()'). GCC must be more conservative about evaluating the built-in
- in this case, because it has no opportunity to perform
- optimization.
-
- Previous versions of GCC did not accept this built-in in data
- initializers. The earliest version where it is completely safe is
- 3.0.1.
-
- -- Built-in Function: long __builtin_expect (long EXP, long C)
- You may use '__builtin_expect' to provide the compiler with branch
- prediction information. In general, you should prefer to use
- actual profile feedback for this ('-fprofile-arcs'), as programmers
- are notoriously bad at predicting how their programs actually
- perform. However, there are applications in which this data is
- hard to collect.
-
- The return value is the value of EXP, which should be an integral
- expression. The semantics of the built-in are that it is expected
- that EXP == C. For example:
-
- if (__builtin_expect (x, 0))
- foo ();
-
- indicates that we do not expect to call 'foo', since we expect 'x'
- to be zero. Since you are limited to integral expressions for EXP,
- you should use constructions such as
-
- if (__builtin_expect (ptr != NULL, 1))
- foo (*ptr);
-
- when testing pointer or floating-point values.
-
- -- Built-in Function: void __builtin_trap (void)
- This function causes the program to exit abnormally. GCC
- implements this function by using a target-dependent mechanism
- (such as intentionally executing an illegal instruction) or by
- calling 'abort'. The mechanism used may vary from release to
- release so you should not rely on any particular implementation.
-
- -- Built-in Function: void __builtin_unreachable (void)
- If control flow reaches the point of the '__builtin_unreachable',
- the program is undefined. It is useful in situations where the
- compiler cannot deduce the unreachability of the code.
-
- One such case is immediately following an 'asm' statement that
- either never terminates, or one that transfers control elsewhere
- and never returns. In this example, without the
- '__builtin_unreachable', GCC issues a warning that control reaches
- the end of a non-void function. It also generates code to return
- after the 'asm'.
-
- int f (int c, int v)
- {
- if (c)
- {
- return v;
- }
- else
- {
- asm("jmp error_handler");
- __builtin_unreachable ();
- }
- }
-
- Because the 'asm' statement unconditionally transfers control out
- of the function, control never reaches the end of the function
- body. The '__builtin_unreachable' is in fact unreachable and
- communicates this fact to the compiler.
-
- Another use for '__builtin_unreachable' is following a call a
- function that never returns but that is not declared
- '__attribute__((noreturn))', as in this example:
-
- void function_that_never_returns (void);
-
- int g (int c)
- {
- if (c)
- {
- return 1;
- }
- else
- {
- function_that_never_returns ();
- __builtin_unreachable ();
- }
- }
-
- -- Built-in Function: void *__builtin_assume_aligned (const void *EXP,
- size_t ALIGN, ...)
- This function returns its first argument, and allows the compiler
- to assume that the returned pointer is at least ALIGN bytes
- aligned. This built-in can have either two or three arguments, if
- it has three, the third argument should have integer type, and if
- it is nonzero means misalignment offset. For example:
-
- void *x = __builtin_assume_aligned (arg, 16);
-
- means that the compiler can assume 'x', set to 'arg', is at least
- 16-byte aligned, while:
-
- void *x = __builtin_assume_aligned (arg, 32, 8);
-
- means that the compiler can assume for 'x', set to 'arg', that
- '(char *) x - 8' is 32-byte aligned.
-
- -- Built-in Function: int __builtin_LINE ()
- This function is the equivalent to the preprocessor '__LINE__'
- macro and returns the line number of the invocation of the
- built-in. In a C++ default argument for a function F, it gets the
- line number of the call to F.
-
- -- Built-in Function: const char * __builtin_FUNCTION ()
- This function is the equivalent to the preprocessor '__FUNCTION__'
- macro and returns the function name the invocation of the built-in
- is in.
-
- -- Built-in Function: const char * __builtin_FILE ()
- This function is the equivalent to the preprocessor '__FILE__'
- macro and returns the file name the invocation of the built-in is
- in. In a C++ default argument for a function F, it gets the file
- name of the call to F.
-
- -- Built-in Function: void __builtin___clear_cache (char *BEGIN, char
- *END)
- This function is used to flush the processor's instruction cache
- for the region of memory between BEGIN inclusive and END exclusive.
- Some targets require that the instruction cache be flushed, after
- modifying memory containing code, in order to obtain deterministic
- behavior.
-
- If the target does not require instruction cache flushes,
- '__builtin___clear_cache' has no effect. Otherwise either
- instructions are emitted in-line to clear the instruction cache or
- a call to the '__clear_cache' function in libgcc is made.
-
- -- Built-in Function: void __builtin_prefetch (const void *ADDR, ...)
- This function is used to minimize cache-miss latency by moving data
- into a cache before it is accessed. You can insert calls to
- '__builtin_prefetch' into code for which you know addresses of data
- in memory that is likely to be accessed soon. If the target
- supports them, data prefetch instructions are generated. If the
- prefetch is done early enough before the access then the data will
- be in the cache by the time it is accessed.
-
- The value of ADDR is the address of the memory to prefetch. There
- are two optional arguments, RW and LOCALITY. The value of RW is a
- compile-time constant one or zero; one means that the prefetch is
- preparing for a write to the memory address and zero, the default,
- means that the prefetch is preparing for a read. The value
- LOCALITY must be a compile-time constant integer between zero and
- three. A value of zero means that the data has no temporal
- locality, so it need not be left in the cache after the access. A
- value of three means that the data has a high degree of temporal
- locality and should be left in all levels of cache possible.
- Values of one and two mean, respectively, a low or moderate degree
- of temporal locality. The default is three.
-
- for (i = 0; i < n; i++)
- {
- a[i] = a[i] + b[i];
- __builtin_prefetch (&a[i+j], 1, 1);
- __builtin_prefetch (&b[i+j], 0, 1);
- /* ... */
- }
-
- Data prefetch does not generate faults if ADDR is invalid, but the
- address expression itself must be valid. For example, a prefetch
- of 'p->next' does not fault if 'p->next' is not a valid address,
- but evaluation faults if 'p' is not a valid address.
-
- If the target does not support data prefetch, the address
- expression is evaluated if it includes side effects but no other
- code is generated and GCC does not issue a warning.
-
- -- Built-in Function: double __builtin_huge_val (void)
- Returns a positive infinity, if supported by the floating-point
- format, else 'DBL_MAX'. This function is suitable for implementing
- the ISO C macro 'HUGE_VAL'.
-
- -- Built-in Function: float __builtin_huge_valf (void)
- Similar to '__builtin_huge_val', except the return type is 'float'.
-
- -- Built-in Function: long double __builtin_huge_vall (void)
- Similar to '__builtin_huge_val', except the return type is 'long
- double'.
-
- -- Built-in Function: int __builtin_fpclassify (int, int, int, int,
- int, ...)
- This built-in implements the C99 fpclassify functionality. The
- first five int arguments should be the target library's notion of
- the possible FP classes and are used for return values. They must
- be constant values and they must appear in this order: 'FP_NAN',
- 'FP_INFINITE', 'FP_NORMAL', 'FP_SUBNORMAL' and 'FP_ZERO'. The
- ellipsis is for exactly one floating-point value to classify. GCC
- treats the last argument as type-generic, which means it does not
- do default promotion from float to double.
-
- -- Built-in Function: double __builtin_inf (void)
- Similar to '__builtin_huge_val', except a warning is generated if
- the target floating-point format does not support infinities.
-
- -- Built-in Function: _Decimal32 __builtin_infd32 (void)
- Similar to '__builtin_inf', except the return type is '_Decimal32'.
-
- -- Built-in Function: _Decimal64 __builtin_infd64 (void)
- Similar to '__builtin_inf', except the return type is '_Decimal64'.
-
- -- Built-in Function: _Decimal128 __builtin_infd128 (void)
- Similar to '__builtin_inf', except the return type is
- '_Decimal128'.
-
- -- Built-in Function: float __builtin_inff (void)
- Similar to '__builtin_inf', except the return type is 'float'.
- This function is suitable for implementing the ISO C99 macro
- 'INFINITY'.
-
- -- Built-in Function: long double __builtin_infl (void)
- Similar to '__builtin_inf', except the return type is 'long
- double'.
-
- -- Built-in Function: int __builtin_isinf_sign (...)
- Similar to 'isinf', except the return value is -1 for an argument
- of '-Inf' and 1 for an argument of '+Inf'. Note while the
- parameter list is an ellipsis, this function only accepts exactly
- one floating-point argument. GCC treats this parameter as
- type-generic, which means it does not do default promotion from
- float to double.
-
- -- Built-in Function: double __builtin_nan (const char *str)
- This is an implementation of the ISO C99 function 'nan'.
-
- Since ISO C99 defines this function in terms of 'strtod', which we
- do not implement, a description of the parsing is in order. The
- string is parsed as by 'strtol'; that is, the base is recognized by
- leading '0' or '0x' prefixes. The number parsed is placed in the
- significand such that the least significant bit of the number is at
- the least significant bit of the significand. The number is
- truncated to fit the significand field provided. The significand
- is forced to be a quiet NaN.
-
- This function, if given a string literal all of which would have
- been consumed by 'strtol', is evaluated early enough that it is
- considered a compile-time constant.
-
- -- Built-in Function: _Decimal32 __builtin_nand32 (const char *str)
- Similar to '__builtin_nan', except the return type is '_Decimal32'.
-
- -- Built-in Function: _Decimal64 __builtin_nand64 (const char *str)
- Similar to '__builtin_nan', except the return type is '_Decimal64'.
-
- -- Built-in Function: _Decimal128 __builtin_nand128 (const char *str)
- Similar to '__builtin_nan', except the return type is
- '_Decimal128'.
-
- -- Built-in Function: float __builtin_nanf (const char *str)
- Similar to '__builtin_nan', except the return type is 'float'.
-
- -- Built-in Function: long double __builtin_nanl (const char *str)
- Similar to '__builtin_nan', except the return type is 'long
- double'.
-
- -- Built-in Function: double __builtin_nans (const char *str)
- Similar to '__builtin_nan', except the significand is forced to be
- a signaling NaN. The 'nans' function is proposed by WG14 N965.
-
- -- Built-in Function: float __builtin_nansf (const char *str)
- Similar to '__builtin_nans', except the return type is 'float'.
-
- -- Built-in Function: long double __builtin_nansl (const char *str)
- Similar to '__builtin_nans', except the return type is 'long
- double'.
-
- -- Built-in Function: int __builtin_ffs (int x)
- Returns one plus the index of the least significant 1-bit of X, or
- if X is zero, returns zero.
-
- -- Built-in Function: int __builtin_clz (unsigned int x)
- Returns the number of leading 0-bits in X, starting at the most
- significant bit position. If X is 0, the result is undefined.
-
- -- Built-in Function: int __builtin_ctz (unsigned int x)
- Returns the number of trailing 0-bits in X, starting at the least
- significant bit position. If X is 0, the result is undefined.
-
- -- Built-in Function: int __builtin_clrsb (int x)
- Returns the number of leading redundant sign bits in X, i.e. the
- number of bits following the most significant bit that are
- identical to it. There are no special cases for 0 or other values.
-
- -- Built-in Function: int __builtin_popcount (unsigned int x)
- Returns the number of 1-bits in X.
-
- -- Built-in Function: int __builtin_parity (unsigned int x)
- Returns the parity of X, i.e. the number of 1-bits in X modulo 2.
-
- -- Built-in Function: int __builtin_ffsl (long)
- Similar to '__builtin_ffs', except the argument type is 'long'.
-
- -- Built-in Function: int __builtin_clzl (unsigned long)
- Similar to '__builtin_clz', except the argument type is 'unsigned
- long'.
-
- -- Built-in Function: int __builtin_ctzl (unsigned long)
- Similar to '__builtin_ctz', except the argument type is 'unsigned
- long'.
-
- -- Built-in Function: int __builtin_clrsbl (long)
- Similar to '__builtin_clrsb', except the argument type is 'long'.
-
- -- Built-in Function: int __builtin_popcountl (unsigned long)
- Similar to '__builtin_popcount', except the argument type is
- 'unsigned long'.
-
- -- Built-in Function: int __builtin_parityl (unsigned long)
- Similar to '__builtin_parity', except the argument type is
- 'unsigned long'.
-
- -- Built-in Function: int __builtin_ffsll (long long)
- Similar to '__builtin_ffs', except the argument type is 'long
- long'.
-
- -- Built-in Function: int __builtin_clzll (unsigned long long)
- Similar to '__builtin_clz', except the argument type is 'unsigned
- long long'.
-
- -- Built-in Function: int __builtin_ctzll (unsigned long long)
- Similar to '__builtin_ctz', except the argument type is 'unsigned
- long long'.
-
- -- Built-in Function: int __builtin_clrsbll (long long)
- Similar to '__builtin_clrsb', except the argument type is 'long
- long'.
-
- -- Built-in Function: int __builtin_popcountll (unsigned long long)
- Similar to '__builtin_popcount', except the argument type is
- 'unsigned long long'.
-
- -- Built-in Function: int __builtin_parityll (unsigned long long)
- Similar to '__builtin_parity', except the argument type is
- 'unsigned long long'.
-
- -- Built-in Function: double __builtin_powi (double, int)
- Returns the first argument raised to the power of the second.
- Unlike the 'pow' function no guarantees about precision and
- rounding are made.
-
- -- Built-in Function: float __builtin_powif (float, int)
- Similar to '__builtin_powi', except the argument and return types
- are 'float'.
-
- -- Built-in Function: long double __builtin_powil (long double, int)
- Similar to '__builtin_powi', except the argument and return types
- are 'long double'.
-
- -- Built-in Function: uint16_t __builtin_bswap16 (uint16_t x)
- Returns X with the order of the bytes reversed; for example,
- '0xaabb' becomes '0xbbaa'. Byte here always means exactly 8 bits.
-
- -- Built-in Function: uint32_t __builtin_bswap32 (uint32_t x)
- Similar to '__builtin_bswap16', except the argument and return
- types are 32 bit.
-
- -- Built-in Function: uint64_t __builtin_bswap64 (uint64_t x)
- Similar to '__builtin_bswap32', except the argument and return
- types are 64 bit.
-
-
-File: gcc.info, Node: Target Builtins, Next: Target Format Checks, Prev: Other Builtins, Up: C Extensions
-
-6.57 Built-in Functions Specific to Particular Target Machines
-==============================================================
-
-On some target machines, GCC supports many built-in functions specific
-to those machines. Generally these generate calls to specific machine
-instructions, but allow the compiler to schedule those calls.
-
-* Menu:
-
-* Alpha Built-in Functions::
-* Altera Nios II Built-in Functions::
-* ARC Built-in Functions::
-* ARC SIMD Built-in Functions::
-* ARM iWMMXt Built-in Functions::
-* ARM NEON Intrinsics::
-* ARM ACLE Intrinsics::
-* AVR Built-in Functions::
-* Blackfin Built-in Functions::
-* FR-V Built-in Functions::
-* X86 Built-in Functions::
-* X86 transactional memory intrinsics::
-* MIPS DSP Built-in Functions::
-* MIPS Paired-Single Support::
-* MIPS Loongson Built-in Functions::
-* Other MIPS Built-in Functions::
-* MSP430 Built-in Functions::
-* NDS32 Built-in Functions::
-* picoChip Built-in Functions::
-* PowerPC Built-in Functions::
-* PowerPC AltiVec/VSX Built-in Functions::
-* PowerPC Hardware Transactional Memory Built-in Functions::
-* RX Built-in Functions::
-* S/390 System z Built-in Functions::
-* SH Built-in Functions::
-* SPARC VIS Built-in Functions::
-* SPU Built-in Functions::
-* TI C6X Built-in Functions::
-* TILE-Gx Built-in Functions::
-* TILEPro Built-in Functions::
-
-
-File: gcc.info, Node: Alpha Built-in Functions, Next: Altera Nios II Built-in Functions, Up: Target Builtins
-
-6.57.1 Alpha Built-in Functions
--------------------------------
-
-These built-in functions are available for the Alpha family of
-processors, depending on the command-line switches used.
-
- The following built-in functions are always available. They all
-generate the machine instruction that is part of the name.
-
- long __builtin_alpha_implver (void)
- long __builtin_alpha_rpcc (void)
- long __builtin_alpha_amask (long)
- long __builtin_alpha_cmpbge (long, long)
- long __builtin_alpha_extbl (long, long)
- long __builtin_alpha_extwl (long, long)
- long __builtin_alpha_extll (long, long)
- long __builtin_alpha_extql (long, long)
- long __builtin_alpha_extwh (long, long)
- long __builtin_alpha_extlh (long, long)
- long __builtin_alpha_extqh (long, long)
- long __builtin_alpha_insbl (long, long)
- long __builtin_alpha_inswl (long, long)
- long __builtin_alpha_insll (long, long)
- long __builtin_alpha_insql (long, long)
- long __builtin_alpha_inswh (long, long)
- long __builtin_alpha_inslh (long, long)
- long __builtin_alpha_insqh (long, long)
- long __builtin_alpha_mskbl (long, long)
- long __builtin_alpha_mskwl (long, long)
- long __builtin_alpha_mskll (long, long)
- long __builtin_alpha_mskql (long, long)
- long __builtin_alpha_mskwh (long, long)
- long __builtin_alpha_msklh (long, long)
- long __builtin_alpha_mskqh (long, long)
- long __builtin_alpha_umulh (long, long)
- long __builtin_alpha_zap (long, long)
- long __builtin_alpha_zapnot (long, long)
-
- The following built-in functions are always with '-mmax' or '-mcpu=CPU'
-where CPU is 'pca56' or later. They all generate the machine
-instruction that is part of the name.
-
- long __builtin_alpha_pklb (long)
- long __builtin_alpha_pkwb (long)
- long __builtin_alpha_unpkbl (long)
- long __builtin_alpha_unpkbw (long)
- long __builtin_alpha_minub8 (long, long)
- long __builtin_alpha_minsb8 (long, long)
- long __builtin_alpha_minuw4 (long, long)
- long __builtin_alpha_minsw4 (long, long)
- long __builtin_alpha_maxub8 (long, long)
- long __builtin_alpha_maxsb8 (long, long)
- long __builtin_alpha_maxuw4 (long, long)
- long __builtin_alpha_maxsw4 (long, long)
- long __builtin_alpha_perr (long, long)
-
- The following built-in functions are always with '-mcix' or '-mcpu=CPU'
-where CPU is 'ev67' or later. They all generate the machine instruction
-that is part of the name.
-
- long __builtin_alpha_cttz (long)
- long __builtin_alpha_ctlz (long)
- long __builtin_alpha_ctpop (long)
-
- The following built-in functions are available on systems that use the
-OSF/1 PALcode. Normally they invoke the 'rduniq' and 'wruniq' PAL
-calls, but when invoked with '-mtls-kernel', they invoke 'rdval' and
-'wrval'.
-
- void *__builtin_thread_pointer (void)
- void __builtin_set_thread_pointer (void *)
-
-
-File: gcc.info, Node: Altera Nios II Built-in Functions, Next: ARC Built-in Functions, Prev: Alpha Built-in Functions, Up: Target Builtins
-
-6.57.2 Altera Nios II Built-in Functions
-----------------------------------------
-
-These built-in functions are available for the Altera Nios II family of
-processors.
-
- The following built-in functions are always available. They all
-generate the machine instruction that is part of the name.
-
- int __builtin_ldbio (volatile const void *)
- int __builtin_ldbuio (volatile const void *)
- int __builtin_ldhio (volatile const void *)
- int __builtin_ldhuio (volatile const void *)
- int __builtin_ldwio (volatile const void *)
- void __builtin_stbio (volatile void *, int)
- void __builtin_sthio (volatile void *, int)
- void __builtin_stwio (volatile void *, int)
- void __builtin_sync (void)
- int __builtin_rdctl (int)
- void __builtin_wrctl (int, int)
-
- The following built-in functions are always available. They all
-generate a Nios II Custom Instruction. The name of the function
-represents the types that the function takes and returns. The letter
-before the 'n' is the return type or void if absent. The 'n' represents
-the first parameter to all the custom instructions, the custom
-instruction number. The two letters after the 'n' represent the up to
-two parameters to the function.
-
- The letters represent the following data types:
-'<no letter>'
- 'void' for return type and no parameter for parameter types.
-
-'i'
- 'int' for return type and parameter type
-
-'f'
- 'float' for return type and parameter type
-
-'p'
- 'void *' for return type and parameter type
-
- And the function names are:
- void __builtin_custom_n (void)
- void __builtin_custom_ni (int)
- void __builtin_custom_nf (float)
- void __builtin_custom_np (void *)
- void __builtin_custom_nii (int, int)
- void __builtin_custom_nif (int, float)
- void __builtin_custom_nip (int, void *)
- void __builtin_custom_nfi (float, int)
- void __builtin_custom_nff (float, float)
- void __builtin_custom_nfp (float, void *)
- void __builtin_custom_npi (void *, int)
- void __builtin_custom_npf (void *, float)
- void __builtin_custom_npp (void *, void *)
- int __builtin_custom_in (void)
- int __builtin_custom_ini (int)
- int __builtin_custom_inf (float)
- int __builtin_custom_inp (void *)
- int __builtin_custom_inii (int, int)
- int __builtin_custom_inif (int, float)
- int __builtin_custom_inip (int, void *)
- int __builtin_custom_infi (float, int)
- int __builtin_custom_inff (float, float)
- int __builtin_custom_infp (float, void *)
- int __builtin_custom_inpi (void *, int)
- int __builtin_custom_inpf (void *, float)
- int __builtin_custom_inpp (void *, void *)
- float __builtin_custom_fn (void)
- float __builtin_custom_fni (int)
- float __builtin_custom_fnf (float)
- float __builtin_custom_fnp (void *)
- float __builtin_custom_fnii (int, int)
- float __builtin_custom_fnif (int, float)
- float __builtin_custom_fnip (int, void *)
- float __builtin_custom_fnfi (float, int)
- float __builtin_custom_fnff (float, float)
- float __builtin_custom_fnfp (float, void *)
- float __builtin_custom_fnpi (void *, int)
- float __builtin_custom_fnpf (void *, float)
- float __builtin_custom_fnpp (void *, void *)
- void * __builtin_custom_pn (void)
- void * __builtin_custom_pni (int)
- void * __builtin_custom_pnf (float)
- void * __builtin_custom_pnp (void *)
- void * __builtin_custom_pnii (int, int)
- void * __builtin_custom_pnif (int, float)
- void * __builtin_custom_pnip (int, void *)
- void * __builtin_custom_pnfi (float, int)
- void * __builtin_custom_pnff (float, float)
- void * __builtin_custom_pnfp (float, void *)
- void * __builtin_custom_pnpi (void *, int)
- void * __builtin_custom_pnpf (void *, float)
- void * __builtin_custom_pnpp (void *, void *)
-
-
-File: gcc.info, Node: ARC Built-in Functions, Next: ARC SIMD Built-in Functions, Prev: Altera Nios II Built-in Functions, Up: Target Builtins
-
-6.57.3 ARC Built-in Functions
------------------------------
-
-The following built-in functions are provided for ARC targets. The
-built-ins generate the corresponding assembly instructions. In the
-examples given below, the generated code often requires an operand or
-result to be in a register. Where necessary further code will be
-generated to ensure this is true, but for brevity this is not described
-in each case.
-
- _Note:_ Using a built-in to generate an instruction not supported by a
-target may cause problems. At present the compiler is not guaranteed to
-detect such misuse, and as a result an internal compiler error may be
-generated.
-
- -- Built-in Function: int __builtin_arc_aligned (void *VAL, int
- ALIGNVAL)
- Return 1 if VAL is known to have the byte alignment given by
- ALIGNVAL, otherwise return 0. Note that this is different from
- __alignof__(*(char *)VAL) >= alignval
- because __alignof__ sees only the type of the dereference, whereas
- __builtin_arc_align uses alignment information from the pointer as
- well as from the pointed-to type. The information available will
- depend on optimization level.
-
- -- Built-in Function: void __builtin_arc_brk (void)
- Generates
- brk
-
- -- Built-in Function: unsigned int __builtin_arc_core_read (unsigned
- int REGNO)
- The operand is the number of a register to be read. Generates:
- mov DEST, rREGNO
- where the value in DEST will be the result returned from the
- built-in.
-
- -- Built-in Function: void __builtin_arc_core_write (unsigned int
- REGNO, unsigned int VAL)
- The first operand is the number of a register to be written, the
- second operand is a compile time constant to write into that
- register. Generates:
- mov rREGNO, VAL
-
- -- Built-in Function: int __builtin_arc_divaw (int A, int B)
- Only available if either '-mcpu=ARC700' or '-meA' is set.
- Generates:
- divaw DEST, A, B
- where the value in DEST will be the result returned from the
- built-in.
-
- -- Built-in Function: void __builtin_arc_flag (unsigned int A)
- Generates
- flag A
-
- -- Built-in Function: unsigned int __builtin_arc_lr (unsigned int AUXR)
- The operand, AUXV, is the address of an auxiliary register and must
- be a compile time constant. Generates:
- lr DEST, [AUXR]
- Where the value in DEST will be the result returned from the
- built-in.
-
- -- Built-in Function: void __builtin_arc_mul64 (int A, int B)
- Only available with '-mmul64'. Generates:
- mul64 A, B
-
- -- Built-in Function: void __builtin_arc_mulu64 (unsigned int A,
- unsigned int B)
- Only available with '-mmul64'. Generates:
- mulu64 A, B
-
- -- Built-in Function: void __builtin_arc_nop (void)
- Generates:
- nop
-
- -- Built-in Function: int __builtin_arc_norm (int SRC)
- Only valid if the 'norm' instruction is available through the
- '-mnorm' option or by default with '-mcpu=ARC700'. Generates:
- norm DEST, SRC
- Where the value in DEST will be the result returned from the
- built-in.
-
- -- Built-in Function: short int __builtin_arc_normw (short int SRC)
- Only valid if the 'normw' instruction is available through the
- '-mnorm' option or by default with '-mcpu=ARC700'. Generates:
- normw DEST, SRC
- Where the value in DEST will be the result returned from the
- built-in.
-
- -- Built-in Function: void __builtin_arc_rtie (void)
- Generates:
- rtie
-
- -- Built-in Function: void __builtin_arc_sleep (int A
- Generates:
- sleep A
-
- -- Built-in Function: void __builtin_arc_sr (unsigned int AUXR,
- unsigned int VAL)
- The first argument, AUXV, is the address of an auxiliary register,
- the second argument, VAL, is a compile time constant to be written
- to the register. Generates:
- sr AUXR, [VAL]
-
- -- Built-in Function: int __builtin_arc_swap (int SRC)
- Only valid with '-mswap'. Generates:
- swap DEST, SRC
- Where the value in DEST will be the result returned from the
- built-in.
-
- -- Built-in Function: void __builtin_arc_swi (void)
- Generates:
- swi
-
- -- Built-in Function: void __builtin_arc_sync (void)
- Only available with '-mcpu=ARC700'. Generates:
- sync
-
- -- Built-in Function: void __builtin_arc_trap_s (unsigned int C)
- Only available with '-mcpu=ARC700'. Generates:
- trap_s C
-
- -- Built-in Function: void __builtin_arc_unimp_s (void)
- Only available with '-mcpu=ARC700'. Generates:
- unimp_s
-
- The instructions generated by the following builtins are not considered
-as candidates for scheduling. They are not moved around by the compiler
-during scheduling, and thus can be expected to appear where they are put
-in the C code:
- __builtin_arc_brk()
- __builtin_arc_core_read()
- __builtin_arc_core_write()
- __builtin_arc_flag()
- __builtin_arc_lr()
- __builtin_arc_sleep()
- __builtin_arc_sr()
- __builtin_arc_swi()
-
-
-File: gcc.info, Node: ARC SIMD Built-in Functions, Next: ARM iWMMXt Built-in Functions, Prev: ARC Built-in Functions, Up: Target Builtins
-
-6.57.4 ARC SIMD Built-in Functions
-----------------------------------
-
-SIMD builtins provided by the compiler can be used to generate the
-vector instructions. This section describes the available builtins and
-their usage in programs. With the '-msimd' option, the compiler
-provides 128-bit vector types, which can be specified using the
-'vector_size' attribute. The header file 'arc-simd.h' can be included
-to use the following predefined types:
- typedef int __v4si __attribute__((vector_size(16)));
- typedef short __v8hi __attribute__((vector_size(16)));
-
- These types can be used to define 128-bit variables. The built-in
-functions listed in the following section can be used on these variables
-to generate the vector operations.
-
- For all builtins, '__builtin_arc_SOMEINSN', the header file
-'arc-simd.h' also provides equivalent macros called '_SOMEINSN' that can
-be used for programming ease and improved readability. The following
-macros for DMA control are also provided:
- #define _setup_dma_in_channel_reg _vdiwr
- #define _setup_dma_out_channel_reg _vdowr
-
- The following is a complete list of all the SIMD built-ins provided for
-ARC, grouped by calling signature.
-
- The following take two '__v8hi' arguments and return a '__v8hi' result:
- __v8hi __builtin_arc_vaddaw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vaddw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vand (__v8hi, __v8hi)
- __v8hi __builtin_arc_vandaw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vavb (__v8hi, __v8hi)
- __v8hi __builtin_arc_vavrb (__v8hi, __v8hi)
- __v8hi __builtin_arc_vbic (__v8hi, __v8hi)
- __v8hi __builtin_arc_vbicaw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vdifaw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vdifw (__v8hi, __v8hi)
- __v8hi __builtin_arc_veqw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vh264f (__v8hi, __v8hi)
- __v8hi __builtin_arc_vh264ft (__v8hi, __v8hi)
- __v8hi __builtin_arc_vh264fw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vlew (__v8hi, __v8hi)
- __v8hi __builtin_arc_vltw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmaxaw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmaxw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vminaw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vminw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr1aw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr1w (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr2aw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr2w (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr3aw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr3w (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr4aw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr4w (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr5aw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr5w (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr6aw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr6w (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr7aw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr7w (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmrb (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmulaw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmulfaw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmulfw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmulw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vnew (__v8hi, __v8hi)
- __v8hi __builtin_arc_vor (__v8hi, __v8hi)
- __v8hi __builtin_arc_vsubaw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vsubw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vsummw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vvc1f (__v8hi, __v8hi)
- __v8hi __builtin_arc_vvc1ft (__v8hi, __v8hi)
- __v8hi __builtin_arc_vxor (__v8hi, __v8hi)
- __v8hi __builtin_arc_vxoraw (__v8hi, __v8hi)
-
- The following take one '__v8hi' and one 'int' argument and return a
-'__v8hi' result:
-
- __v8hi __builtin_arc_vbaddw (__v8hi, int)
- __v8hi __builtin_arc_vbmaxw (__v8hi, int)
- __v8hi __builtin_arc_vbminw (__v8hi, int)
- __v8hi __builtin_arc_vbmulaw (__v8hi, int)
- __v8hi __builtin_arc_vbmulfw (__v8hi, int)
- __v8hi __builtin_arc_vbmulw (__v8hi, int)
- __v8hi __builtin_arc_vbrsubw (__v8hi, int)
- __v8hi __builtin_arc_vbsubw (__v8hi, int)
-
- The following take one '__v8hi' argument and one 'int' argument which
-must be a 3-bit compile time constant indicating a register number
-I0-I7. They return a '__v8hi' result.
- __v8hi __builtin_arc_vasrw (__v8hi, const int)
- __v8hi __builtin_arc_vsr8 (__v8hi, const int)
- __v8hi __builtin_arc_vsr8aw (__v8hi, const int)
-
- The following take one '__v8hi' argument and one 'int' argument which
-must be a 6-bit compile time constant. They return a '__v8hi' result.
- __v8hi __builtin_arc_vasrpwbi (__v8hi, const int)
- __v8hi __builtin_arc_vasrrpwbi (__v8hi, const int)
- __v8hi __builtin_arc_vasrrwi (__v8hi, const int)
- __v8hi __builtin_arc_vasrsrwi (__v8hi, const int)
- __v8hi __builtin_arc_vasrwi (__v8hi, const int)
- __v8hi __builtin_arc_vsr8awi (__v8hi, const int)
- __v8hi __builtin_arc_vsr8i (__v8hi, const int)
-
- The following take one '__v8hi' argument and one 'int' argument which
-must be a 8-bit compile time constant. They return a '__v8hi' result.
- __v8hi __builtin_arc_vd6tapf (__v8hi, const int)
- __v8hi __builtin_arc_vmvaw (__v8hi, const int)
- __v8hi __builtin_arc_vmvw (__v8hi, const int)
- __v8hi __builtin_arc_vmvzw (__v8hi, const int)
-
- The following take two 'int' arguments, the second of which which must
-be a 8-bit compile time constant. They return a '__v8hi' result:
- __v8hi __builtin_arc_vmovaw (int, const int)
- __v8hi __builtin_arc_vmovw (int, const int)
- __v8hi __builtin_arc_vmovzw (int, const int)
-
- The following take a single '__v8hi' argument and return a '__v8hi'
-result:
- __v8hi __builtin_arc_vabsaw (__v8hi)
- __v8hi __builtin_arc_vabsw (__v8hi)
- __v8hi __builtin_arc_vaddsuw (__v8hi)
- __v8hi __builtin_arc_vexch1 (__v8hi)
- __v8hi __builtin_arc_vexch2 (__v8hi)
- __v8hi __builtin_arc_vexch4 (__v8hi)
- __v8hi __builtin_arc_vsignw (__v8hi)
- __v8hi __builtin_arc_vupbaw (__v8hi)
- __v8hi __builtin_arc_vupbw (__v8hi)
- __v8hi __builtin_arc_vupsbaw (__v8hi)
- __v8hi __builtin_arc_vupsbw (__v8hi)
-
- The followign take two 'int' arguments and return no result:
- void __builtin_arc_vdirun (int, int)
- void __builtin_arc_vdorun (int, int)
-
- The following take two 'int' arguments and return no result. The first
-argument must a 3-bit compile time constant indicating one of the
-DR0-DR7 DMA setup channels:
- void __builtin_arc_vdiwr (const int, int)
- void __builtin_arc_vdowr (const int, int)
-
- The following take an 'int' argument and return no result:
- void __builtin_arc_vendrec (int)
- void __builtin_arc_vrec (int)
- void __builtin_arc_vrecrun (int)
- void __builtin_arc_vrun (int)
-
- The following take a '__v8hi' argument and two 'int' arguments and
-return a '__v8hi' result. The second argument must be a 3-bit compile
-time constants, indicating one the registers I0-I7, and the third
-argument must be an 8-bit compile time constant.
-
- _Note:_ Although the equivalent hardware instructions do not take an
-SIMD register as an operand, these builtins overwrite the relevant bits
-of the '__v8hi' register provided as the first argument with the value
-loaded from the '[Ib, u8]' location in the SDM.
-
- __v8hi __builtin_arc_vld32 (__v8hi, const int, const int)
- __v8hi __builtin_arc_vld32wh (__v8hi, const int, const int)
- __v8hi __builtin_arc_vld32wl (__v8hi, const int, const int)
- __v8hi __builtin_arc_vld64 (__v8hi, const int, const int)
-
- The following take two 'int' arguments and return a '__v8hi' result.
-The first argument must be a 3-bit compile time constants, indicating
-one the registers I0-I7, and the second argument must be an 8-bit
-compile time constant.
-
- __v8hi __builtin_arc_vld128 (const int, const int)
- __v8hi __builtin_arc_vld64w (const int, const int)
-
- The following take a '__v8hi' argument and two 'int' arguments and
-return no result. The second argument must be a 3-bit compile time
-constants, indicating one the registers I0-I7, and the third argument
-must be an 8-bit compile time constant.
-
- void __builtin_arc_vst128 (__v8hi, const int, const int)
- void __builtin_arc_vst64 (__v8hi, const int, const int)
-
- The following take a '__v8hi' argument and three 'int' arguments and
-return no result. The second argument must be a 3-bit compile-time
-constant, identifying the 16-bit sub-register to be stored, the third
-argument must be a 3-bit compile time constants, indicating one the
-registers I0-I7, and the fourth argument must be an 8-bit compile time
-constant.
-
- void __builtin_arc_vst16_n (__v8hi, const int, const int, const int)
- void __builtin_arc_vst32_n (__v8hi, const int, const int, const int)
-
-
-File: gcc.info, Node: ARM iWMMXt Built-in Functions, Next: ARM NEON Intrinsics, Prev: ARC SIMD Built-in Functions, Up: Target Builtins
-
-6.57.5 ARM iWMMXt Built-in Functions
-------------------------------------
-
-These built-in functions are available for the ARM family of processors
-when the '-mcpu=iwmmxt' switch is used:
-
- typedef int v2si __attribute__ ((vector_size (8)));
- typedef short v4hi __attribute__ ((vector_size (8)));
- typedef char v8qi __attribute__ ((vector_size (8)));
-
- int __builtin_arm_getwcgr0 (void)
- void __builtin_arm_setwcgr0 (int)
- int __builtin_arm_getwcgr1 (void)
- void __builtin_arm_setwcgr1 (int)
- int __builtin_arm_getwcgr2 (void)
- void __builtin_arm_setwcgr2 (int)
- int __builtin_arm_getwcgr3 (void)
- void __builtin_arm_setwcgr3 (int)
- int __builtin_arm_textrmsb (v8qi, int)
- int __builtin_arm_textrmsh (v4hi, int)
- int __builtin_arm_textrmsw (v2si, int)
- int __builtin_arm_textrmub (v8qi, int)
- int __builtin_arm_textrmuh (v4hi, int)
- int __builtin_arm_textrmuw (v2si, int)
- v8qi __builtin_arm_tinsrb (v8qi, int, int)
- v4hi __builtin_arm_tinsrh (v4hi, int, int)
- v2si __builtin_arm_tinsrw (v2si, int, int)
- long long __builtin_arm_tmia (long long, int, int)
- long long __builtin_arm_tmiabb (long long, int, int)
- long long __builtin_arm_tmiabt (long long, int, int)
- long long __builtin_arm_tmiaph (long long, int, int)
- long long __builtin_arm_tmiatb (long long, int, int)
- long long __builtin_arm_tmiatt (long long, int, int)
- int __builtin_arm_tmovmskb (v8qi)
- int __builtin_arm_tmovmskh (v4hi)
- int __builtin_arm_tmovmskw (v2si)
- long long __builtin_arm_waccb (v8qi)
- long long __builtin_arm_wacch (v4hi)
- long long __builtin_arm_waccw (v2si)
- v8qi __builtin_arm_waddb (v8qi, v8qi)
- v8qi __builtin_arm_waddbss (v8qi, v8qi)
- v8qi __builtin_arm_waddbus (v8qi, v8qi)
- v4hi __builtin_arm_waddh (v4hi, v4hi)
- v4hi __builtin_arm_waddhss (v4hi, v4hi)
- v4hi __builtin_arm_waddhus (v4hi, v4hi)
- v2si __builtin_arm_waddw (v2si, v2si)
- v2si __builtin_arm_waddwss (v2si, v2si)
- v2si __builtin_arm_waddwus (v2si, v2si)
- v8qi __builtin_arm_walign (v8qi, v8qi, int)
- long long __builtin_arm_wand(long long, long long)
- long long __builtin_arm_wandn (long long, long long)
- v8qi __builtin_arm_wavg2b (v8qi, v8qi)
- v8qi __builtin_arm_wavg2br (v8qi, v8qi)
- v4hi __builtin_arm_wavg2h (v4hi, v4hi)
- v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
- v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
- v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
- v2si __builtin_arm_wcmpeqw (v2si, v2si)
- v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
- v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
- v2si __builtin_arm_wcmpgtsw (v2si, v2si)
- v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
- v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
- v2si __builtin_arm_wcmpgtuw (v2si, v2si)
- long long __builtin_arm_wmacs (long long, v4hi, v4hi)
- long long __builtin_arm_wmacsz (v4hi, v4hi)
- long long __builtin_arm_wmacu (long long, v4hi, v4hi)
- long long __builtin_arm_wmacuz (v4hi, v4hi)
- v4hi __builtin_arm_wmadds (v4hi, v4hi)
- v4hi __builtin_arm_wmaddu (v4hi, v4hi)
- v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
- v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
- v2si __builtin_arm_wmaxsw (v2si, v2si)
- v8qi __builtin_arm_wmaxub (v8qi, v8qi)
- v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
- v2si __builtin_arm_wmaxuw (v2si, v2si)
- v8qi __builtin_arm_wminsb (v8qi, v8qi)
- v4hi __builtin_arm_wminsh (v4hi, v4hi)
- v2si __builtin_arm_wminsw (v2si, v2si)
- v8qi __builtin_arm_wminub (v8qi, v8qi)
- v4hi __builtin_arm_wminuh (v4hi, v4hi)
- v2si __builtin_arm_wminuw (v2si, v2si)
- v4hi __builtin_arm_wmulsm (v4hi, v4hi)
- v4hi __builtin_arm_wmulul (v4hi, v4hi)
- v4hi __builtin_arm_wmulum (v4hi, v4hi)
- long long __builtin_arm_wor (long long, long long)
- v2si __builtin_arm_wpackdss (long long, long long)
- v2si __builtin_arm_wpackdus (long long, long long)
- v8qi __builtin_arm_wpackhss (v4hi, v4hi)
- v8qi __builtin_arm_wpackhus (v4hi, v4hi)
- v4hi __builtin_arm_wpackwss (v2si, v2si)
- v4hi __builtin_arm_wpackwus (v2si, v2si)
- long long __builtin_arm_wrord (long long, long long)
- long long __builtin_arm_wrordi (long long, int)
- v4hi __builtin_arm_wrorh (v4hi, long long)
- v4hi __builtin_arm_wrorhi (v4hi, int)
- v2si __builtin_arm_wrorw (v2si, long long)
- v2si __builtin_arm_wrorwi (v2si, int)
- v2si __builtin_arm_wsadb (v2si, v8qi, v8qi)
- v2si __builtin_arm_wsadbz (v8qi, v8qi)
- v2si __builtin_arm_wsadh (v2si, v4hi, v4hi)
- v2si __builtin_arm_wsadhz (v4hi, v4hi)
- v4hi __builtin_arm_wshufh (v4hi, int)
- long long __builtin_arm_wslld (long long, long long)
- long long __builtin_arm_wslldi (long long, int)
- v4hi __builtin_arm_wsllh (v4hi, long long)
- v4hi __builtin_arm_wsllhi (v4hi, int)
- v2si __builtin_arm_wsllw (v2si, long long)
- v2si __builtin_arm_wsllwi (v2si, int)
- long long __builtin_arm_wsrad (long long, long long)
- long long __builtin_arm_wsradi (long long, int)
- v4hi __builtin_arm_wsrah (v4hi, long long)
- v4hi __builtin_arm_wsrahi (v4hi, int)
- v2si __builtin_arm_wsraw (v2si, long long)
- v2si __builtin_arm_wsrawi (v2si, int)
- long long __builtin_arm_wsrld (long long, long long)
- long long __builtin_arm_wsrldi (long long, int)
- v4hi __builtin_arm_wsrlh (v4hi, long long)
- v4hi __builtin_arm_wsrlhi (v4hi, int)
- v2si __builtin_arm_wsrlw (v2si, long long)
- v2si __builtin_arm_wsrlwi (v2si, int)
- v8qi __builtin_arm_wsubb (v8qi, v8qi)
- v8qi __builtin_arm_wsubbss (v8qi, v8qi)
- v8qi __builtin_arm_wsubbus (v8qi, v8qi)
- v4hi __builtin_arm_wsubh (v4hi, v4hi)
- v4hi __builtin_arm_wsubhss (v4hi, v4hi)
- v4hi __builtin_arm_wsubhus (v4hi, v4hi)
- v2si __builtin_arm_wsubw (v2si, v2si)
- v2si __builtin_arm_wsubwss (v2si, v2si)
- v2si __builtin_arm_wsubwus (v2si, v2si)
- v4hi __builtin_arm_wunpckehsb (v8qi)
- v2si __builtin_arm_wunpckehsh (v4hi)
- long long __builtin_arm_wunpckehsw (v2si)
- v4hi __builtin_arm_wunpckehub (v8qi)
- v2si __builtin_arm_wunpckehuh (v4hi)
- long long __builtin_arm_wunpckehuw (v2si)
- v4hi __builtin_arm_wunpckelsb (v8qi)
- v2si __builtin_arm_wunpckelsh (v4hi)
- long long __builtin_arm_wunpckelsw (v2si)
- v4hi __builtin_arm_wunpckelub (v8qi)
- v2si __builtin_arm_wunpckeluh (v4hi)
- long long __builtin_arm_wunpckeluw (v2si)
- v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
- v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
- v2si __builtin_arm_wunpckihw (v2si, v2si)
- v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
- v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
- v2si __builtin_arm_wunpckilw (v2si, v2si)
- long long __builtin_arm_wxor (long long, long long)
- long long __builtin_arm_wzero ()
-
-
-File: gcc.info, Node: ARM NEON Intrinsics, Next: ARM ACLE Intrinsics, Prev: ARM iWMMXt Built-in Functions, Up: Target Builtins
-
-6.57.6 ARM NEON Intrinsics
---------------------------
-
-These built-in intrinsics for the ARM Advanced SIMD extension are
-available when the '-mfpu=neon' switch is used:
-
-6.57.6.1 Addition
-.................
-
- * uint32x2_t vadd_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vadd.i32 D0, D0, D0'
-
- * uint16x4_t vadd_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vadd.i16 D0, D0, D0'
-
- * uint8x8_t vadd_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vadd.i8 D0, D0, D0'
-
- * int32x2_t vadd_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vadd.i32 D0, D0, D0'
-
- * int16x4_t vadd_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vadd.i16 D0, D0, D0'
-
- * int8x8_t vadd_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vadd.i8 D0, D0, D0'
-
- * float32x2_t vadd_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vadd.f32 D0, D0, D0'
-
- * uint64x1_t vadd_u64 (uint64x1_t, uint64x1_t)
-
- * int64x1_t vadd_s64 (int64x1_t, int64x1_t)
-
- * uint32x4_t vaddq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vadd.i32 Q0, Q0, Q0'
-
- * uint16x8_t vaddq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vadd.i16 Q0, Q0, Q0'
-
- * uint8x16_t vaddq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vadd.i8 Q0, Q0, Q0'
-
- * int32x4_t vaddq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vadd.i32 Q0, Q0, Q0'
-
- * int16x8_t vaddq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vadd.i16 Q0, Q0, Q0'
-
- * int8x16_t vaddq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vadd.i8 Q0, Q0, Q0'
-
- * uint64x2_t vaddq_u64 (uint64x2_t, uint64x2_t)
- _Form of expected instruction(s):_ 'vadd.i64 Q0, Q0, Q0'
-
- * int64x2_t vaddq_s64 (int64x2_t, int64x2_t)
- _Form of expected instruction(s):_ 'vadd.i64 Q0, Q0, Q0'
-
- * float32x4_t vaddq_f32 (float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vadd.f32 Q0, Q0, Q0'
-
- * uint64x2_t vaddl_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vaddl.u32 Q0, D0, D0'
-
- * uint32x4_t vaddl_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vaddl.u16 Q0, D0, D0'
-
- * uint16x8_t vaddl_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vaddl.u8 Q0, D0, D0'
-
- * int64x2_t vaddl_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vaddl.s32 Q0, D0, D0'
-
- * int32x4_t vaddl_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vaddl.s16 Q0, D0, D0'
-
- * int16x8_t vaddl_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vaddl.s8 Q0, D0, D0'
-
- * uint64x2_t vaddw_u32 (uint64x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vaddw.u32 Q0, Q0, D0'
-
- * uint32x4_t vaddw_u16 (uint32x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vaddw.u16 Q0, Q0, D0'
-
- * uint16x8_t vaddw_u8 (uint16x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vaddw.u8 Q0, Q0, D0'
-
- * int64x2_t vaddw_s32 (int64x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vaddw.s32 Q0, Q0, D0'
-
- * int32x4_t vaddw_s16 (int32x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vaddw.s16 Q0, Q0, D0'
-
- * int16x8_t vaddw_s8 (int16x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vaddw.s8 Q0, Q0, D0'
-
- * uint32x2_t vhadd_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vhadd.u32 D0, D0, D0'
-
- * uint16x4_t vhadd_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vhadd.u16 D0, D0, D0'
-
- * uint8x8_t vhadd_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vhadd.u8 D0, D0, D0'
-
- * int32x2_t vhadd_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vhadd.s32 D0, D0, D0'
-
- * int16x4_t vhadd_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vhadd.s16 D0, D0, D0'
-
- * int8x8_t vhadd_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vhadd.s8 D0, D0, D0'
-
- * uint32x4_t vhaddq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vhadd.u32 Q0, Q0, Q0'
-
- * uint16x8_t vhaddq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vhadd.u16 Q0, Q0, Q0'
-
- * uint8x16_t vhaddq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vhadd.u8 Q0, Q0, Q0'
-
- * int32x4_t vhaddq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vhadd.s32 Q0, Q0, Q0'
-
- * int16x8_t vhaddq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vhadd.s16 Q0, Q0, Q0'
-
- * int8x16_t vhaddq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vhadd.s8 Q0, Q0, Q0'
-
- * uint32x2_t vrhadd_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vrhadd.u32 D0, D0, D0'
-
- * uint16x4_t vrhadd_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vrhadd.u16 D0, D0, D0'
-
- * uint8x8_t vrhadd_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vrhadd.u8 D0, D0, D0'
-
- * int32x2_t vrhadd_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vrhadd.s32 D0, D0, D0'
-
- * int16x4_t vrhadd_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vrhadd.s16 D0, D0, D0'
-
- * int8x8_t vrhadd_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vrhadd.s8 D0, D0, D0'
-
- * uint32x4_t vrhaddq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vrhadd.u32 Q0, Q0, Q0'
-
- * uint16x8_t vrhaddq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vrhadd.u16 Q0, Q0, Q0'
-
- * uint8x16_t vrhaddq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vrhadd.u8 Q0, Q0, Q0'
-
- * int32x4_t vrhaddq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vrhadd.s32 Q0, Q0, Q0'
-
- * int16x8_t vrhaddq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vrhadd.s16 Q0, Q0, Q0'
-
- * int8x16_t vrhaddq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vrhadd.s8 Q0, Q0, Q0'
-
- * uint32x2_t vqadd_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vqadd.u32 D0, D0, D0'
-
- * uint16x4_t vqadd_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vqadd.u16 D0, D0, D0'
-
- * uint8x8_t vqadd_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vqadd.u8 D0, D0, D0'
-
- * int32x2_t vqadd_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vqadd.s32 D0, D0, D0'
-
- * int16x4_t vqadd_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vqadd.s16 D0, D0, D0'
-
- * int8x8_t vqadd_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vqadd.s8 D0, D0, D0'
-
- * uint64x1_t vqadd_u64 (uint64x1_t, uint64x1_t)
- _Form of expected instruction(s):_ 'vqadd.u64 D0, D0, D0'
-
- * int64x1_t vqadd_s64 (int64x1_t, int64x1_t)
- _Form of expected instruction(s):_ 'vqadd.s64 D0, D0, D0'
-
- * uint32x4_t vqaddq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vqadd.u32 Q0, Q0, Q0'
-
- * uint16x8_t vqaddq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vqadd.u16 Q0, Q0, Q0'
-
- * uint8x16_t vqaddq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vqadd.u8 Q0, Q0, Q0'
-
- * int32x4_t vqaddq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vqadd.s32 Q0, Q0, Q0'
-
- * int16x8_t vqaddq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vqadd.s16 Q0, Q0, Q0'
-
- * int8x16_t vqaddq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vqadd.s8 Q0, Q0, Q0'
-
- * uint64x2_t vqaddq_u64 (uint64x2_t, uint64x2_t)
- _Form of expected instruction(s):_ 'vqadd.u64 Q0, Q0, Q0'
-
- * int64x2_t vqaddq_s64 (int64x2_t, int64x2_t)
- _Form of expected instruction(s):_ 'vqadd.s64 Q0, Q0, Q0'
-
- * uint32x2_t vaddhn_u64 (uint64x2_t, uint64x2_t)
- _Form of expected instruction(s):_ 'vaddhn.i64 D0, Q0, Q0'
-
- * uint16x4_t vaddhn_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vaddhn.i32 D0, Q0, Q0'
-
- * uint8x8_t vaddhn_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vaddhn.i16 D0, Q0, Q0'
-
- * int32x2_t vaddhn_s64 (int64x2_t, int64x2_t)
- _Form of expected instruction(s):_ 'vaddhn.i64 D0, Q0, Q0'
-
- * int16x4_t vaddhn_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vaddhn.i32 D0, Q0, Q0'
-
- * int8x8_t vaddhn_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vaddhn.i16 D0, Q0, Q0'
-
- * uint32x2_t vraddhn_u64 (uint64x2_t, uint64x2_t)
- _Form of expected instruction(s):_ 'vraddhn.i64 D0, Q0, Q0'
-
- * uint16x4_t vraddhn_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vraddhn.i32 D0, Q0, Q0'
-
- * uint8x8_t vraddhn_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vraddhn.i16 D0, Q0, Q0'
-
- * int32x2_t vraddhn_s64 (int64x2_t, int64x2_t)
- _Form of expected instruction(s):_ 'vraddhn.i64 D0, Q0, Q0'
-
- * int16x4_t vraddhn_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vraddhn.i32 D0, Q0, Q0'
-
- * int8x8_t vraddhn_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vraddhn.i16 D0, Q0, Q0'
-
-6.57.6.2 Multiplication
-.......................
-
- * uint32x2_t vmul_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vmul.i32 D0, D0, D0'
-
- * uint16x4_t vmul_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vmul.i16 D0, D0, D0'
-
- * uint8x8_t vmul_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vmul.i8 D0, D0, D0'
-
- * int32x2_t vmul_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vmul.i32 D0, D0, D0'
-
- * int16x4_t vmul_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vmul.i16 D0, D0, D0'
-
- * int8x8_t vmul_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vmul.i8 D0, D0, D0'
-
- * float32x2_t vmul_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vmul.f32 D0, D0, D0'
-
- * poly8x8_t vmul_p8 (poly8x8_t, poly8x8_t)
- _Form of expected instruction(s):_ 'vmul.p8 D0, D0, D0'
-
- * uint32x4_t vmulq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vmul.i32 Q0, Q0, Q0'
-
- * uint16x8_t vmulq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vmul.i16 Q0, Q0, Q0'
-
- * uint8x16_t vmulq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vmul.i8 Q0, Q0, Q0'
-
- * int32x4_t vmulq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vmul.i32 Q0, Q0, Q0'
-
- * int16x8_t vmulq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vmul.i16 Q0, Q0, Q0'
-
- * int8x16_t vmulq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vmul.i8 Q0, Q0, Q0'
-
- * float32x4_t vmulq_f32 (float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vmul.f32 Q0, Q0, Q0'
-
- * poly8x16_t vmulq_p8 (poly8x16_t, poly8x16_t)
- _Form of expected instruction(s):_ 'vmul.p8 Q0, Q0, Q0'
-
- * int32x2_t vqdmulh_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vqdmulh.s32 D0, D0, D0'
-
- * int16x4_t vqdmulh_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vqdmulh.s16 D0, D0, D0'
-
- * int32x4_t vqdmulhq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vqdmulh.s32 Q0, Q0, Q0'
-
- * int16x8_t vqdmulhq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vqdmulh.s16 Q0, Q0, Q0'
-
- * int32x2_t vqrdmulh_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vqrdmulh.s32 D0, D0, D0'
-
- * int16x4_t vqrdmulh_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vqrdmulh.s16 D0, D0, D0'
-
- * int32x4_t vqrdmulhq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vqrdmulh.s32 Q0, Q0, Q0'
-
- * int16x8_t vqrdmulhq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vqrdmulh.s16 Q0, Q0, Q0'
-
- * uint64x2_t vmull_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vmull.u32 Q0, D0, D0'
-
- * uint32x4_t vmull_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vmull.u16 Q0, D0, D0'
-
- * uint16x8_t vmull_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vmull.u8 Q0, D0, D0'
-
- * int64x2_t vmull_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vmull.s32 Q0, D0, D0'
-
- * int32x4_t vmull_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vmull.s16 Q0, D0, D0'
-
- * int16x8_t vmull_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vmull.s8 Q0, D0, D0'
-
- * poly16x8_t vmull_p8 (poly8x8_t, poly8x8_t)
- _Form of expected instruction(s):_ 'vmull.p8 Q0, D0, D0'
-
- * int64x2_t vqdmull_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vqdmull.s32 Q0, D0, D0'
-
- * int32x4_t vqdmull_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vqdmull.s16 Q0, D0, D0'
-
-6.57.6.3 Multiply-accumulate
-............................
-
- * uint32x2_t vmla_u32 (uint32x2_t, uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vmla.i32 D0, D0, D0'
-
- * uint16x4_t vmla_u16 (uint16x4_t, uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vmla.i16 D0, D0, D0'
-
- * uint8x8_t vmla_u8 (uint8x8_t, uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vmla.i8 D0, D0, D0'
-
- * int32x2_t vmla_s32 (int32x2_t, int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vmla.i32 D0, D0, D0'
-
- * int16x4_t vmla_s16 (int16x4_t, int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vmla.i16 D0, D0, D0'
-
- * int8x8_t vmla_s8 (int8x8_t, int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vmla.i8 D0, D0, D0'
-
- * float32x2_t vmla_f32 (float32x2_t, float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vmla.f32 D0, D0, D0'
-
- * uint32x4_t vmlaq_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vmla.i32 Q0, Q0, Q0'
-
- * uint16x8_t vmlaq_u16 (uint16x8_t, uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vmla.i16 Q0, Q0, Q0'
-
- * uint8x16_t vmlaq_u8 (uint8x16_t, uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vmla.i8 Q0, Q0, Q0'
-
- * int32x4_t vmlaq_s32 (int32x4_t, int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vmla.i32 Q0, Q0, Q0'
-
- * int16x8_t vmlaq_s16 (int16x8_t, int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vmla.i16 Q0, Q0, Q0'
-
- * int8x16_t vmlaq_s8 (int8x16_t, int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vmla.i8 Q0, Q0, Q0'
-
- * float32x4_t vmlaq_f32 (float32x4_t, float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vmla.f32 Q0, Q0, Q0'
-
- * uint64x2_t vmlal_u32 (uint64x2_t, uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vmlal.u32 Q0, D0, D0'
-
- * uint32x4_t vmlal_u16 (uint32x4_t, uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vmlal.u16 Q0, D0, D0'
-
- * uint16x8_t vmlal_u8 (uint16x8_t, uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vmlal.u8 Q0, D0, D0'
-
- * int64x2_t vmlal_s32 (int64x2_t, int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vmlal.s32 Q0, D0, D0'
-
- * int32x4_t vmlal_s16 (int32x4_t, int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vmlal.s16 Q0, D0, D0'
-
- * int16x8_t vmlal_s8 (int16x8_t, int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vmlal.s8 Q0, D0, D0'
-
- * int64x2_t vqdmlal_s32 (int64x2_t, int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vqdmlal.s32 Q0, D0, D0'
-
- * int32x4_t vqdmlal_s16 (int32x4_t, int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vqdmlal.s16 Q0, D0, D0'
-
-6.57.6.4 Multiply-subtract
-..........................
-
- * uint32x2_t vmls_u32 (uint32x2_t, uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vmls.i32 D0, D0, D0'
-
- * uint16x4_t vmls_u16 (uint16x4_t, uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vmls.i16 D0, D0, D0'
-
- * uint8x8_t vmls_u8 (uint8x8_t, uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vmls.i8 D0, D0, D0'
-
- * int32x2_t vmls_s32 (int32x2_t, int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vmls.i32 D0, D0, D0'
-
- * int16x4_t vmls_s16 (int16x4_t, int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vmls.i16 D0, D0, D0'
-
- * int8x8_t vmls_s8 (int8x8_t, int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vmls.i8 D0, D0, D0'
-
- * float32x2_t vmls_f32 (float32x2_t, float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vmls.f32 D0, D0, D0'
-
- * uint32x4_t vmlsq_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vmls.i32 Q0, Q0, Q0'
-
- * uint16x8_t vmlsq_u16 (uint16x8_t, uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vmls.i16 Q0, Q0, Q0'
-
- * uint8x16_t vmlsq_u8 (uint8x16_t, uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vmls.i8 Q0, Q0, Q0'
-
- * int32x4_t vmlsq_s32 (int32x4_t, int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vmls.i32 Q0, Q0, Q0'
-
- * int16x8_t vmlsq_s16 (int16x8_t, int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vmls.i16 Q0, Q0, Q0'
-
- * int8x16_t vmlsq_s8 (int8x16_t, int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vmls.i8 Q0, Q0, Q0'
-
- * float32x4_t vmlsq_f32 (float32x4_t, float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vmls.f32 Q0, Q0, Q0'
-
- * uint64x2_t vmlsl_u32 (uint64x2_t, uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vmlsl.u32 Q0, D0, D0'
-
- * uint32x4_t vmlsl_u16 (uint32x4_t, uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vmlsl.u16 Q0, D0, D0'
-
- * uint16x8_t vmlsl_u8 (uint16x8_t, uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vmlsl.u8 Q0, D0, D0'
-
- * int64x2_t vmlsl_s32 (int64x2_t, int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vmlsl.s32 Q0, D0, D0'
-
- * int32x4_t vmlsl_s16 (int32x4_t, int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vmlsl.s16 Q0, D0, D0'
-
- * int16x8_t vmlsl_s8 (int16x8_t, int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vmlsl.s8 Q0, D0, D0'
-
- * int64x2_t vqdmlsl_s32 (int64x2_t, int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vqdmlsl.s32 Q0, D0, D0'
-
- * int32x4_t vqdmlsl_s16 (int32x4_t, int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vqdmlsl.s16 Q0, D0, D0'
-
-6.57.6.5 Fused-multiply-accumulate
-..................................
-
- * float32x2_t vfma_f32 (float32x2_t, float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vfma.f32 D0, D0, D0'
-
- * float32x4_t vfmaq_f32 (float32x4_t, float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vfma.f32 Q0, Q0, Q0'
-
-6.57.6.6 Fused-multiply-subtract
-................................
-
- * float32x2_t vfms_f32 (float32x2_t, float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vfms.f32 D0, D0, D0'
-
- * float32x4_t vfmsq_f32 (float32x4_t, float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vfms.f32 Q0, Q0, Q0'
-
-6.57.6.7 Round to integral (to nearest, ties to even)
-.....................................................
-
- * float32x2_t vrndn_f32 (float32x2_t)
- _Form of expected instruction(s):_ 'vrintn.f32 D0, D0'
-
- * float32x4_t vrndqn_f32 (float32x4_t)
- _Form of expected instruction(s):_ 'vrintn.f32 Q0, Q0'
-
-6.57.6.8 Round to integral (to nearest, ties away from zero)
-............................................................
-
- * float32x2_t vrnda_f32 (float32x2_t)
- _Form of expected instruction(s):_ 'vrinta.f32 D0, D0'
-
- * float32x4_t vrndqa_f32 (float32x4_t)
- _Form of expected instruction(s):_ 'vrinta.f32 Q0, Q0'
-
-6.57.6.9 Round to integral (towards +Inf)
-.........................................
-
- * float32x2_t vrndp_f32 (float32x2_t)
- _Form of expected instruction(s):_ 'vrintp.f32 D0, D0'
-
- * float32x4_t vrndqp_f32 (float32x4_t)
- _Form of expected instruction(s):_ 'vrintp.f32 Q0, Q0'
-
-6.57.6.10 Round to integral (towards -Inf)
-..........................................
-
- * float32x2_t vrndm_f32 (float32x2_t)
- _Form of expected instruction(s):_ 'vrintm.f32 D0, D0'
-
- * float32x4_t vrndqm_f32 (float32x4_t)
- _Form of expected instruction(s):_ 'vrintm.f32 Q0, Q0'
-
-6.57.6.11 Round to integral (towards 0)
-.......................................
-
- * float32x2_t vrnd_f32 (float32x2_t)
- _Form of expected instruction(s):_ 'vrintz.f32 D0, D0'
-
- * float32x4_t vrndq_f32 (float32x4_t)
- _Form of expected instruction(s):_ 'vrintz.f32 Q0, Q0'
-
-6.57.6.12 Subtraction
-.....................
-
- * uint32x2_t vsub_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vsub.i32 D0, D0, D0'
-
- * uint16x4_t vsub_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vsub.i16 D0, D0, D0'
-
- * uint8x8_t vsub_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vsub.i8 D0, D0, D0'
-
- * int32x2_t vsub_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vsub.i32 D0, D0, D0'
-
- * int16x4_t vsub_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vsub.i16 D0, D0, D0'
-
- * int8x8_t vsub_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vsub.i8 D0, D0, D0'
-
- * float32x2_t vsub_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vsub.f32 D0, D0, D0'
-
- * uint64x1_t vsub_u64 (uint64x1_t, uint64x1_t)
-
- * int64x1_t vsub_s64 (int64x1_t, int64x1_t)
-
- * uint32x4_t vsubq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vsub.i32 Q0, Q0, Q0'
-
- * uint16x8_t vsubq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vsub.i16 Q0, Q0, Q0'
-
- * uint8x16_t vsubq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vsub.i8 Q0, Q0, Q0'
-
- * int32x4_t vsubq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vsub.i32 Q0, Q0, Q0'
-
- * int16x8_t vsubq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vsub.i16 Q0, Q0, Q0'
-
- * int8x16_t vsubq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vsub.i8 Q0, Q0, Q0'
-
- * uint64x2_t vsubq_u64 (uint64x2_t, uint64x2_t)
- _Form of expected instruction(s):_ 'vsub.i64 Q0, Q0, Q0'
-
- * int64x2_t vsubq_s64 (int64x2_t, int64x2_t)
- _Form of expected instruction(s):_ 'vsub.i64 Q0, Q0, Q0'
-
- * float32x4_t vsubq_f32 (float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vsub.f32 Q0, Q0, Q0'
-
- * uint64x2_t vsubl_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vsubl.u32 Q0, D0, D0'
-
- * uint32x4_t vsubl_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vsubl.u16 Q0, D0, D0'
-
- * uint16x8_t vsubl_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vsubl.u8 Q0, D0, D0'
-
- * int64x2_t vsubl_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vsubl.s32 Q0, D0, D0'
-
- * int32x4_t vsubl_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vsubl.s16 Q0, D0, D0'
-
- * int16x8_t vsubl_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vsubl.s8 Q0, D0, D0'
-
- * uint64x2_t vsubw_u32 (uint64x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vsubw.u32 Q0, Q0, D0'
-
- * uint32x4_t vsubw_u16 (uint32x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vsubw.u16 Q0, Q0, D0'
-
- * uint16x8_t vsubw_u8 (uint16x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vsubw.u8 Q0, Q0, D0'
-
- * int64x2_t vsubw_s32 (int64x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vsubw.s32 Q0, Q0, D0'
-
- * int32x4_t vsubw_s16 (int32x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vsubw.s16 Q0, Q0, D0'
-
- * int16x8_t vsubw_s8 (int16x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vsubw.s8 Q0, Q0, D0'
-
- * uint32x2_t vhsub_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vhsub.u32 D0, D0, D0'
-
- * uint16x4_t vhsub_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vhsub.u16 D0, D0, D0'
-
- * uint8x8_t vhsub_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vhsub.u8 D0, D0, D0'
-
- * int32x2_t vhsub_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vhsub.s32 D0, D0, D0'
-
- * int16x4_t vhsub_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vhsub.s16 D0, D0, D0'
-
- * int8x8_t vhsub_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vhsub.s8 D0, D0, D0'
-
- * uint32x4_t vhsubq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vhsub.u32 Q0, Q0, Q0'
-
- * uint16x8_t vhsubq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vhsub.u16 Q0, Q0, Q0'
-
- * uint8x16_t vhsubq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vhsub.u8 Q0, Q0, Q0'
-
- * int32x4_t vhsubq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vhsub.s32 Q0, Q0, Q0'
-
- * int16x8_t vhsubq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vhsub.s16 Q0, Q0, Q0'
-
- * int8x16_t vhsubq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vhsub.s8 Q0, Q0, Q0'
-
- * uint32x2_t vqsub_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vqsub.u32 D0, D0, D0'
-
- * uint16x4_t vqsub_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vqsub.u16 D0, D0, D0'
-
- * uint8x8_t vqsub_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vqsub.u8 D0, D0, D0'
-
- * int32x2_t vqsub_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vqsub.s32 D0, D0, D0'
-
- * int16x4_t vqsub_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vqsub.s16 D0, D0, D0'
-
- * int8x8_t vqsub_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vqsub.s8 D0, D0, D0'
-
- * uint64x1_t vqsub_u64 (uint64x1_t, uint64x1_t)
- _Form of expected instruction(s):_ 'vqsub.u64 D0, D0, D0'
-
- * int64x1_t vqsub_s64 (int64x1_t, int64x1_t)
- _Form of expected instruction(s):_ 'vqsub.s64 D0, D0, D0'
-
- * uint32x4_t vqsubq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vqsub.u32 Q0, Q0, Q0'
-
- * uint16x8_t vqsubq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vqsub.u16 Q0, Q0, Q0'
-
- * uint8x16_t vqsubq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vqsub.u8 Q0, Q0, Q0'
-
- * int32x4_t vqsubq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vqsub.s32 Q0, Q0, Q0'
-
- * int16x8_t vqsubq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vqsub.s16 Q0, Q0, Q0'
-
- * int8x16_t vqsubq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vqsub.s8 Q0, Q0, Q0'
-
- * uint64x2_t vqsubq_u64 (uint64x2_t, uint64x2_t)
- _Form of expected instruction(s):_ 'vqsub.u64 Q0, Q0, Q0'
-
- * int64x2_t vqsubq_s64 (int64x2_t, int64x2_t)
- _Form of expected instruction(s):_ 'vqsub.s64 Q0, Q0, Q0'
-
- * uint32x2_t vsubhn_u64 (uint64x2_t, uint64x2_t)
- _Form of expected instruction(s):_ 'vsubhn.i64 D0, Q0, Q0'
-
- * uint16x4_t vsubhn_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vsubhn.i32 D0, Q0, Q0'
-
- * uint8x8_t vsubhn_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vsubhn.i16 D0, Q0, Q0'
-
- * int32x2_t vsubhn_s64 (int64x2_t, int64x2_t)
- _Form of expected instruction(s):_ 'vsubhn.i64 D0, Q0, Q0'
-
- * int16x4_t vsubhn_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vsubhn.i32 D0, Q0, Q0'
-
- * int8x8_t vsubhn_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vsubhn.i16 D0, Q0, Q0'
-
- * uint32x2_t vrsubhn_u64 (uint64x2_t, uint64x2_t)
- _Form of expected instruction(s):_ 'vrsubhn.i64 D0, Q0, Q0'
-
- * uint16x4_t vrsubhn_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vrsubhn.i32 D0, Q0, Q0'
-
- * uint8x8_t vrsubhn_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vrsubhn.i16 D0, Q0, Q0'
-
- * int32x2_t vrsubhn_s64 (int64x2_t, int64x2_t)
- _Form of expected instruction(s):_ 'vrsubhn.i64 D0, Q0, Q0'
-
- * int16x4_t vrsubhn_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vrsubhn.i32 D0, Q0, Q0'
-
- * int8x8_t vrsubhn_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vrsubhn.i16 D0, Q0, Q0'
-
-6.57.6.13 Comparison (equal-to)
-...............................
-
- * uint32x2_t vceq_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vceq.i32 D0, D0, D0'
-
- * uint16x4_t vceq_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vceq.i16 D0, D0, D0'
-
- * uint8x8_t vceq_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vceq.i8 D0, D0, D0'
-
- * uint32x2_t vceq_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vceq.i32 D0, D0, D0'
-
- * uint16x4_t vceq_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vceq.i16 D0, D0, D0'
-
- * uint8x8_t vceq_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vceq.i8 D0, D0, D0'
-
- * uint32x2_t vceq_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vceq.f32 D0, D0, D0'
-
- * uint8x8_t vceq_p8 (poly8x8_t, poly8x8_t)
- _Form of expected instruction(s):_ 'vceq.i8 D0, D0, D0'
-
- * uint32x4_t vceqq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vceq.i32 Q0, Q0, Q0'
-
- * uint16x8_t vceqq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vceq.i16 Q0, Q0, Q0'
-
- * uint8x16_t vceqq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vceq.i8 Q0, Q0, Q0'
-
- * uint32x4_t vceqq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vceq.i32 Q0, Q0, Q0'
-
- * uint16x8_t vceqq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vceq.i16 Q0, Q0, Q0'
-
- * uint8x16_t vceqq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vceq.i8 Q0, Q0, Q0'
-
- * uint32x4_t vceqq_f32 (float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vceq.f32 Q0, Q0, Q0'
-
- * uint8x16_t vceqq_p8 (poly8x16_t, poly8x16_t)
- _Form of expected instruction(s):_ 'vceq.i8 Q0, Q0, Q0'
-
-6.57.6.14 Comparison (greater-than-or-equal-to)
-...............................................
-
- * uint32x2_t vcge_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vcge.s32 D0, D0, D0'
-
- * uint16x4_t vcge_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vcge.s16 D0, D0, D0'
-
- * uint8x8_t vcge_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vcge.s8 D0, D0, D0'
-
- * uint32x2_t vcge_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vcge.f32 D0, D0, D0'
-
- * uint32x2_t vcge_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vcge.u32 D0, D0, D0'
-
- * uint16x4_t vcge_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vcge.u16 D0, D0, D0'
-
- * uint8x8_t vcge_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vcge.u8 D0, D0, D0'
-
- * uint32x4_t vcgeq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vcge.s32 Q0, Q0, Q0'
-
- * uint16x8_t vcgeq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vcge.s16 Q0, Q0, Q0'
-
- * uint8x16_t vcgeq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vcge.s8 Q0, Q0, Q0'
-
- * uint32x4_t vcgeq_f32 (float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vcge.f32 Q0, Q0, Q0'
-
- * uint32x4_t vcgeq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vcge.u32 Q0, Q0, Q0'
-
- * uint16x8_t vcgeq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vcge.u16 Q0, Q0, Q0'
-
- * uint8x16_t vcgeq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vcge.u8 Q0, Q0, Q0'
-
-6.57.6.15 Comparison (less-than-or-equal-to)
-............................................
-
- * uint32x2_t vcle_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vcge.s32 D0, D0, D0'
-
- * uint16x4_t vcle_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vcge.s16 D0, D0, D0'
-
- * uint8x8_t vcle_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vcge.s8 D0, D0, D0'
-
- * uint32x2_t vcle_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vcge.f32 D0, D0, D0'
-
- * uint32x2_t vcle_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vcge.u32 D0, D0, D0'
-
- * uint16x4_t vcle_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vcge.u16 D0, D0, D0'
-
- * uint8x8_t vcle_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vcge.u8 D0, D0, D0'
-
- * uint32x4_t vcleq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vcge.s32 Q0, Q0, Q0'
-
- * uint16x8_t vcleq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vcge.s16 Q0, Q0, Q0'
-
- * uint8x16_t vcleq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vcge.s8 Q0, Q0, Q0'
-
- * uint32x4_t vcleq_f32 (float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vcge.f32 Q0, Q0, Q0'
-
- * uint32x4_t vcleq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vcge.u32 Q0, Q0, Q0'
-
- * uint16x8_t vcleq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vcge.u16 Q0, Q0, Q0'
-
- * uint8x16_t vcleq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vcge.u8 Q0, Q0, Q0'
-
-6.57.6.16 Comparison (greater-than)
-...................................
-
- * uint32x2_t vcgt_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vcgt.s32 D0, D0, D0'
-
- * uint16x4_t vcgt_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vcgt.s16 D0, D0, D0'
-
- * uint8x8_t vcgt_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vcgt.s8 D0, D0, D0'
-
- * uint32x2_t vcgt_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vcgt.f32 D0, D0, D0'
-
- * uint32x2_t vcgt_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vcgt.u32 D0, D0, D0'
-
- * uint16x4_t vcgt_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vcgt.u16 D0, D0, D0'
-
- * uint8x8_t vcgt_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vcgt.u8 D0, D0, D0'
-
- * uint32x4_t vcgtq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vcgt.s32 Q0, Q0, Q0'
-
- * uint16x8_t vcgtq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vcgt.s16 Q0, Q0, Q0'
-
- * uint8x16_t vcgtq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vcgt.s8 Q0, Q0, Q0'
-
- * uint32x4_t vcgtq_f32 (float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vcgt.f32 Q0, Q0, Q0'
-
- * uint32x4_t vcgtq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vcgt.u32 Q0, Q0, Q0'
-
- * uint16x8_t vcgtq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vcgt.u16 Q0, Q0, Q0'
-
- * uint8x16_t vcgtq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vcgt.u8 Q0, Q0, Q0'
-
-6.57.6.17 Comparison (less-than)
-................................
-
- * uint32x2_t vclt_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vcgt.s32 D0, D0, D0'
-
- * uint16x4_t vclt_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vcgt.s16 D0, D0, D0'
-
- * uint8x8_t vclt_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vcgt.s8 D0, D0, D0'
-
- * uint32x2_t vclt_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vcgt.f32 D0, D0, D0'
-
- * uint32x2_t vclt_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vcgt.u32 D0, D0, D0'
-
- * uint16x4_t vclt_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vcgt.u16 D0, D0, D0'
-
- * uint8x8_t vclt_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vcgt.u8 D0, D0, D0'
-
- * uint32x4_t vcltq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vcgt.s32 Q0, Q0, Q0'
-
- * uint16x8_t vcltq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vcgt.s16 Q0, Q0, Q0'
-
- * uint8x16_t vcltq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vcgt.s8 Q0, Q0, Q0'
-
- * uint32x4_t vcltq_f32 (float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vcgt.f32 Q0, Q0, Q0'
-
- * uint32x4_t vcltq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vcgt.u32 Q0, Q0, Q0'
-
- * uint16x8_t vcltq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vcgt.u16 Q0, Q0, Q0'
-
- * uint8x16_t vcltq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vcgt.u8 Q0, Q0, Q0'
-
-6.57.6.18 Comparison (absolute greater-than-or-equal-to)
-........................................................
-
- * uint32x2_t vcage_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vacge.f32 D0, D0, D0'
-
- * uint32x4_t vcageq_f32 (float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vacge.f32 Q0, Q0, Q0'
-
-6.57.6.19 Comparison (absolute less-than-or-equal-to)
-.....................................................
-
- * uint32x2_t vcale_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vacge.f32 D0, D0, D0'
-
- * uint32x4_t vcaleq_f32 (float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vacge.f32 Q0, Q0, Q0'
-
-6.57.6.20 Comparison (absolute greater-than)
-............................................
-
- * uint32x2_t vcagt_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vacgt.f32 D0, D0, D0'
-
- * uint32x4_t vcagtq_f32 (float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vacgt.f32 Q0, Q0, Q0'
-
-6.57.6.21 Comparison (absolute less-than)
-.........................................
-
- * uint32x2_t vcalt_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vacgt.f32 D0, D0, D0'
-
- * uint32x4_t vcaltq_f32 (float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vacgt.f32 Q0, Q0, Q0'
-
-6.57.6.22 Test bits
-...................
-
- * uint32x2_t vtst_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vtst.32 D0, D0, D0'
-
- * uint16x4_t vtst_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vtst.16 D0, D0, D0'
-
- * uint8x8_t vtst_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vtst.8 D0, D0, D0'
-
- * uint32x2_t vtst_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vtst.32 D0, D0, D0'
-
- * uint16x4_t vtst_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vtst.16 D0, D0, D0'
-
- * uint8x8_t vtst_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vtst.8 D0, D0, D0'
-
- * uint8x8_t vtst_p8 (poly8x8_t, poly8x8_t)
- _Form of expected instruction(s):_ 'vtst.8 D0, D0, D0'
-
- * uint32x4_t vtstq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vtst.32 Q0, Q0, Q0'
-
- * uint16x8_t vtstq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vtst.16 Q0, Q0, Q0'
-
- * uint8x16_t vtstq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vtst.8 Q0, Q0, Q0'
-
- * uint32x4_t vtstq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vtst.32 Q0, Q0, Q0'
-
- * uint16x8_t vtstq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vtst.16 Q0, Q0, Q0'
-
- * uint8x16_t vtstq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vtst.8 Q0, Q0, Q0'
-
- * uint8x16_t vtstq_p8 (poly8x16_t, poly8x16_t)
- _Form of expected instruction(s):_ 'vtst.8 Q0, Q0, Q0'
-
-6.57.6.23 Absolute difference
-.............................
-
- * uint32x2_t vabd_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vabd.u32 D0, D0, D0'
-
- * uint16x4_t vabd_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vabd.u16 D0, D0, D0'
-
- * uint8x8_t vabd_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vabd.u8 D0, D0, D0'
-
- * int32x2_t vabd_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vabd.s32 D0, D0, D0'
-
- * int16x4_t vabd_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vabd.s16 D0, D0, D0'
-
- * int8x8_t vabd_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vabd.s8 D0, D0, D0'
-
- * float32x2_t vabd_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vabd.f32 D0, D0, D0'
-
- * uint32x4_t vabdq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vabd.u32 Q0, Q0, Q0'
-
- * uint16x8_t vabdq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vabd.u16 Q0, Q0, Q0'
-
- * uint8x16_t vabdq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vabd.u8 Q0, Q0, Q0'
-
- * int32x4_t vabdq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vabd.s32 Q0, Q0, Q0'
-
- * int16x8_t vabdq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vabd.s16 Q0, Q0, Q0'
-
- * int8x16_t vabdq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vabd.s8 Q0, Q0, Q0'
-
- * float32x4_t vabdq_f32 (float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vabd.f32 Q0, Q0, Q0'
-
- * uint64x2_t vabdl_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vabdl.u32 Q0, D0, D0'
-
- * uint32x4_t vabdl_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vabdl.u16 Q0, D0, D0'
-
- * uint16x8_t vabdl_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vabdl.u8 Q0, D0, D0'
-
- * int64x2_t vabdl_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vabdl.s32 Q0, D0, D0'
-
- * int32x4_t vabdl_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vabdl.s16 Q0, D0, D0'
-
- * int16x8_t vabdl_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vabdl.s8 Q0, D0, D0'
-
-6.57.6.24 Absolute difference and accumulate
-............................................
-
- * uint32x2_t vaba_u32 (uint32x2_t, uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vaba.u32 D0, D0, D0'
-
- * uint16x4_t vaba_u16 (uint16x4_t, uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vaba.u16 D0, D0, D0'
-
- * uint8x8_t vaba_u8 (uint8x8_t, uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vaba.u8 D0, D0, D0'
-
- * int32x2_t vaba_s32 (int32x2_t, int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vaba.s32 D0, D0, D0'
-
- * int16x4_t vaba_s16 (int16x4_t, int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vaba.s16 D0, D0, D0'
-
- * int8x8_t vaba_s8 (int8x8_t, int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vaba.s8 D0, D0, D0'
-
- * uint32x4_t vabaq_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vaba.u32 Q0, Q0, Q0'
-
- * uint16x8_t vabaq_u16 (uint16x8_t, uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vaba.u16 Q0, Q0, Q0'
-
- * uint8x16_t vabaq_u8 (uint8x16_t, uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vaba.u8 Q0, Q0, Q0'
-
- * int32x4_t vabaq_s32 (int32x4_t, int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vaba.s32 Q0, Q0, Q0'
-
- * int16x8_t vabaq_s16 (int16x8_t, int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vaba.s16 Q0, Q0, Q0'
-
- * int8x16_t vabaq_s8 (int8x16_t, int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vaba.s8 Q0, Q0, Q0'
-
- * uint64x2_t vabal_u32 (uint64x2_t, uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vabal.u32 Q0, D0, D0'
-
- * uint32x4_t vabal_u16 (uint32x4_t, uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vabal.u16 Q0, D0, D0'
-
- * uint16x8_t vabal_u8 (uint16x8_t, uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vabal.u8 Q0, D0, D0'
-
- * int64x2_t vabal_s32 (int64x2_t, int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vabal.s32 Q0, D0, D0'
-
- * int32x4_t vabal_s16 (int32x4_t, int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vabal.s16 Q0, D0, D0'
-
- * int16x8_t vabal_s8 (int16x8_t, int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vabal.s8 Q0, D0, D0'
-
-6.57.6.25 Maximum
-.................
-
- * uint32x2_t vmax_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vmax.u32 D0, D0, D0'
-
- * uint16x4_t vmax_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vmax.u16 D0, D0, D0'
-
- * uint8x8_t vmax_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vmax.u8 D0, D0, D0'
-
- * int32x2_t vmax_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vmax.s32 D0, D0, D0'
-
- * int16x4_t vmax_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vmax.s16 D0, D0, D0'
-
- * int8x8_t vmax_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vmax.s8 D0, D0, D0'
-
- * float32x2_t vmax_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vmax.f32 D0, D0, D0'
-
- * uint32x4_t vmaxq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vmax.u32 Q0, Q0, Q0'
-
- * uint16x8_t vmaxq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vmax.u16 Q0, Q0, Q0'
-
- * uint8x16_t vmaxq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vmax.u8 Q0, Q0, Q0'
-
- * int32x4_t vmaxq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vmax.s32 Q0, Q0, Q0'
-
- * int16x8_t vmaxq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vmax.s16 Q0, Q0, Q0'
-
- * int8x16_t vmaxq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vmax.s8 Q0, Q0, Q0'
-
- * float32x4_t vmaxq_f32 (float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vmax.f32 Q0, Q0, Q0'
-
-6.57.6.26 Minimum
-.................
-
- * uint32x2_t vmin_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vmin.u32 D0, D0, D0'
-
- * uint16x4_t vmin_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vmin.u16 D0, D0, D0'
-
- * uint8x8_t vmin_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vmin.u8 D0, D0, D0'
-
- * int32x2_t vmin_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vmin.s32 D0, D0, D0'
-
- * int16x4_t vmin_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vmin.s16 D0, D0, D0'
-
- * int8x8_t vmin_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vmin.s8 D0, D0, D0'
-
- * float32x2_t vmin_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vmin.f32 D0, D0, D0'
-
- * uint32x4_t vminq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vmin.u32 Q0, Q0, Q0'
-
- * uint16x8_t vminq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vmin.u16 Q0, Q0, Q0'
-
- * uint8x16_t vminq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vmin.u8 Q0, Q0, Q0'
-
- * int32x4_t vminq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vmin.s32 Q0, Q0, Q0'
-
- * int16x8_t vminq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vmin.s16 Q0, Q0, Q0'
-
- * int8x16_t vminq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vmin.s8 Q0, Q0, Q0'
-
- * float32x4_t vminq_f32 (float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vmin.f32 Q0, Q0, Q0'
-
-6.57.6.27 Pairwise add
-......................
-
- * uint32x2_t vpadd_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vpadd.i32 D0, D0, D0'
-
- * uint16x4_t vpadd_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vpadd.i16 D0, D0, D0'
-
- * uint8x8_t vpadd_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vpadd.i8 D0, D0, D0'
-
- * int32x2_t vpadd_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vpadd.i32 D0, D0, D0'
-
- * int16x4_t vpadd_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vpadd.i16 D0, D0, D0'
-
- * int8x8_t vpadd_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vpadd.i8 D0, D0, D0'
-
- * float32x2_t vpadd_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vpadd.f32 D0, D0, D0'
-
- * uint64x1_t vpaddl_u32 (uint32x2_t)
- _Form of expected instruction(s):_ 'vpaddl.u32 D0, D0'
-
- * uint32x2_t vpaddl_u16 (uint16x4_t)
- _Form of expected instruction(s):_ 'vpaddl.u16 D0, D0'
-
- * uint16x4_t vpaddl_u8 (uint8x8_t)
- _Form of expected instruction(s):_ 'vpaddl.u8 D0, D0'
-
- * int64x1_t vpaddl_s32 (int32x2_t)
- _Form of expected instruction(s):_ 'vpaddl.s32 D0, D0'
-
- * int32x2_t vpaddl_s16 (int16x4_t)
- _Form of expected instruction(s):_ 'vpaddl.s16 D0, D0'
-
- * int16x4_t vpaddl_s8 (int8x8_t)
- _Form of expected instruction(s):_ 'vpaddl.s8 D0, D0'
-
- * uint64x2_t vpaddlq_u32 (uint32x4_t)
- _Form of expected instruction(s):_ 'vpaddl.u32 Q0, Q0'
-
- * uint32x4_t vpaddlq_u16 (uint16x8_t)
- _Form of expected instruction(s):_ 'vpaddl.u16 Q0, Q0'
-
- * uint16x8_t vpaddlq_u8 (uint8x16_t)
- _Form of expected instruction(s):_ 'vpaddl.u8 Q0, Q0'
-
- * int64x2_t vpaddlq_s32 (int32x4_t)
- _Form of expected instruction(s):_ 'vpaddl.s32 Q0, Q0'
-
- * int32x4_t vpaddlq_s16 (int16x8_t)
- _Form of expected instruction(s):_ 'vpaddl.s16 Q0, Q0'
-
- * int16x8_t vpaddlq_s8 (int8x16_t)
- _Form of expected instruction(s):_ 'vpaddl.s8 Q0, Q0'
-
-6.57.6.28 Pairwise add, single_opcode widen and accumulate
-..........................................................
-
- * uint64x1_t vpadal_u32 (uint64x1_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vpadal.u32 D0, D0'
-
- * uint32x2_t vpadal_u16 (uint32x2_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vpadal.u16 D0, D0'
-
- * uint16x4_t vpadal_u8 (uint16x4_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vpadal.u8 D0, D0'
-
- * int64x1_t vpadal_s32 (int64x1_t, int32x2_t)
- _Form of expected instruction(s):_ 'vpadal.s32 D0, D0'
-
- * int32x2_t vpadal_s16 (int32x2_t, int16x4_t)
- _Form of expected instruction(s):_ 'vpadal.s16 D0, D0'
-
- * int16x4_t vpadal_s8 (int16x4_t, int8x8_t)
- _Form of expected instruction(s):_ 'vpadal.s8 D0, D0'
-
- * uint64x2_t vpadalq_u32 (uint64x2_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vpadal.u32 Q0, Q0'
-
- * uint32x4_t vpadalq_u16 (uint32x4_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vpadal.u16 Q0, Q0'
-
- * uint16x8_t vpadalq_u8 (uint16x8_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vpadal.u8 Q0, Q0'
-
- * int64x2_t vpadalq_s32 (int64x2_t, int32x4_t)
- _Form of expected instruction(s):_ 'vpadal.s32 Q0, Q0'
-
- * int32x4_t vpadalq_s16 (int32x4_t, int16x8_t)
- _Form of expected instruction(s):_ 'vpadal.s16 Q0, Q0'
-
- * int16x8_t vpadalq_s8 (int16x8_t, int8x16_t)
- _Form of expected instruction(s):_ 'vpadal.s8 Q0, Q0'
-
-6.57.6.29 Folding maximum
-.........................
-
- * uint32x2_t vpmax_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vpmax.u32 D0, D0, D0'
-
- * uint16x4_t vpmax_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vpmax.u16 D0, D0, D0'
-
- * uint8x8_t vpmax_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vpmax.u8 D0, D0, D0'
-
- * int32x2_t vpmax_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vpmax.s32 D0, D0, D0'
-
- * int16x4_t vpmax_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vpmax.s16 D0, D0, D0'
-
- * int8x8_t vpmax_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vpmax.s8 D0, D0, D0'
-
- * float32x2_t vpmax_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vpmax.f32 D0, D0, D0'
-
-6.57.6.30 Folding minimum
-.........................
-
- * uint32x2_t vpmin_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vpmin.u32 D0, D0, D0'
-
- * uint16x4_t vpmin_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vpmin.u16 D0, D0, D0'
-
- * uint8x8_t vpmin_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vpmin.u8 D0, D0, D0'
-
- * int32x2_t vpmin_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vpmin.s32 D0, D0, D0'
-
- * int16x4_t vpmin_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vpmin.s16 D0, D0, D0'
-
- * int8x8_t vpmin_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vpmin.s8 D0, D0, D0'
-
- * float32x2_t vpmin_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vpmin.f32 D0, D0, D0'
-
-6.57.6.31 Reciprocal step
-.........................
-
- * float32x2_t vrecps_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vrecps.f32 D0, D0, D0'
-
- * float32x4_t vrecpsq_f32 (float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vrecps.f32 Q0, Q0, Q0'
-
- * float32x2_t vrsqrts_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vrsqrts.f32 D0, D0, D0'
-
- * float32x4_t vrsqrtsq_f32 (float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vrsqrts.f32 Q0, Q0, Q0'
-
-6.57.6.32 Vector shift left
-...........................
-
- * uint32x2_t vshl_u32 (uint32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vshl.u32 D0, D0, D0'
-
- * uint16x4_t vshl_u16 (uint16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vshl.u16 D0, D0, D0'
-
- * uint8x8_t vshl_u8 (uint8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vshl.u8 D0, D0, D0'
-
- * int32x2_t vshl_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vshl.s32 D0, D0, D0'
-
- * int16x4_t vshl_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vshl.s16 D0, D0, D0'
-
- * int8x8_t vshl_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vshl.s8 D0, D0, D0'
-
- * uint64x1_t vshl_u64 (uint64x1_t, int64x1_t)
- _Form of expected instruction(s):_ 'vshl.u64 D0, D0, D0'
-
- * int64x1_t vshl_s64 (int64x1_t, int64x1_t)
- _Form of expected instruction(s):_ 'vshl.s64 D0, D0, D0'
-
- * uint32x4_t vshlq_u32 (uint32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vshl.u32 Q0, Q0, Q0'
-
- * uint16x8_t vshlq_u16 (uint16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vshl.u16 Q0, Q0, Q0'
-
- * uint8x16_t vshlq_u8 (uint8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vshl.u8 Q0, Q0, Q0'
-
- * int32x4_t vshlq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vshl.s32 Q0, Q0, Q0'
-
- * int16x8_t vshlq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vshl.s16 Q0, Q0, Q0'
-
- * int8x16_t vshlq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vshl.s8 Q0, Q0, Q0'
-
- * uint64x2_t vshlq_u64 (uint64x2_t, int64x2_t)
- _Form of expected instruction(s):_ 'vshl.u64 Q0, Q0, Q0'
-
- * int64x2_t vshlq_s64 (int64x2_t, int64x2_t)
- _Form of expected instruction(s):_ 'vshl.s64 Q0, Q0, Q0'
-
- * uint32x2_t vrshl_u32 (uint32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vrshl.u32 D0, D0, D0'
-
- * uint16x4_t vrshl_u16 (uint16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vrshl.u16 D0, D0, D0'
-
- * uint8x8_t vrshl_u8 (uint8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vrshl.u8 D0, D0, D0'
-
- * int32x2_t vrshl_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vrshl.s32 D0, D0, D0'
-
- * int16x4_t vrshl_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vrshl.s16 D0, D0, D0'
-
- * int8x8_t vrshl_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vrshl.s8 D0, D0, D0'
-
- * uint64x1_t vrshl_u64 (uint64x1_t, int64x1_t)
- _Form of expected instruction(s):_ 'vrshl.u64 D0, D0, D0'
-
- * int64x1_t vrshl_s64 (int64x1_t, int64x1_t)
- _Form of expected instruction(s):_ 'vrshl.s64 D0, D0, D0'
-
- * uint32x4_t vrshlq_u32 (uint32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vrshl.u32 Q0, Q0, Q0'
-
- * uint16x8_t vrshlq_u16 (uint16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vrshl.u16 Q0, Q0, Q0'
-
- * uint8x16_t vrshlq_u8 (uint8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vrshl.u8 Q0, Q0, Q0'
-
- * int32x4_t vrshlq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vrshl.s32 Q0, Q0, Q0'
-
- * int16x8_t vrshlq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vrshl.s16 Q0, Q0, Q0'
-
- * int8x16_t vrshlq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vrshl.s8 Q0, Q0, Q0'
-
- * uint64x2_t vrshlq_u64 (uint64x2_t, int64x2_t)
- _Form of expected instruction(s):_ 'vrshl.u64 Q0, Q0, Q0'
-
- * int64x2_t vrshlq_s64 (int64x2_t, int64x2_t)
- _Form of expected instruction(s):_ 'vrshl.s64 Q0, Q0, Q0'
-
- * uint32x2_t vqshl_u32 (uint32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vqshl.u32 D0, D0, D0'
-
- * uint16x4_t vqshl_u16 (uint16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vqshl.u16 D0, D0, D0'
-
- * uint8x8_t vqshl_u8 (uint8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vqshl.u8 D0, D0, D0'
-
- * int32x2_t vqshl_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vqshl.s32 D0, D0, D0'
-
- * int16x4_t vqshl_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vqshl.s16 D0, D0, D0'
-
- * int8x8_t vqshl_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vqshl.s8 D0, D0, D0'
-
- * uint64x1_t vqshl_u64 (uint64x1_t, int64x1_t)
- _Form of expected instruction(s):_ 'vqshl.u64 D0, D0, D0'
-
- * int64x1_t vqshl_s64 (int64x1_t, int64x1_t)
- _Form of expected instruction(s):_ 'vqshl.s64 D0, D0, D0'
-
- * uint32x4_t vqshlq_u32 (uint32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vqshl.u32 Q0, Q0, Q0'
-
- * uint16x8_t vqshlq_u16 (uint16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vqshl.u16 Q0, Q0, Q0'
-
- * uint8x16_t vqshlq_u8 (uint8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vqshl.u8 Q0, Q0, Q0'
-
- * int32x4_t vqshlq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vqshl.s32 Q0, Q0, Q0'
-
- * int16x8_t vqshlq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vqshl.s16 Q0, Q0, Q0'
-
- * int8x16_t vqshlq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vqshl.s8 Q0, Q0, Q0'
-
- * uint64x2_t vqshlq_u64 (uint64x2_t, int64x2_t)
- _Form of expected instruction(s):_ 'vqshl.u64 Q0, Q0, Q0'
-
- * int64x2_t vqshlq_s64 (int64x2_t, int64x2_t)
- _Form of expected instruction(s):_ 'vqshl.s64 Q0, Q0, Q0'
-
- * uint32x2_t vqrshl_u32 (uint32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vqrshl.u32 D0, D0, D0'
-
- * uint16x4_t vqrshl_u16 (uint16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vqrshl.u16 D0, D0, D0'
-
- * uint8x8_t vqrshl_u8 (uint8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vqrshl.u8 D0, D0, D0'
-
- * int32x2_t vqrshl_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vqrshl.s32 D0, D0, D0'
-
- * int16x4_t vqrshl_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vqrshl.s16 D0, D0, D0'
-
- * int8x8_t vqrshl_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vqrshl.s8 D0, D0, D0'
-
- * uint64x1_t vqrshl_u64 (uint64x1_t, int64x1_t)
- _Form of expected instruction(s):_ 'vqrshl.u64 D0, D0, D0'
-
- * int64x1_t vqrshl_s64 (int64x1_t, int64x1_t)
- _Form of expected instruction(s):_ 'vqrshl.s64 D0, D0, D0'
-
- * uint32x4_t vqrshlq_u32 (uint32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vqrshl.u32 Q0, Q0, Q0'
-
- * uint16x8_t vqrshlq_u16 (uint16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vqrshl.u16 Q0, Q0, Q0'
-
- * uint8x16_t vqrshlq_u8 (uint8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vqrshl.u8 Q0, Q0, Q0'
-
- * int32x4_t vqrshlq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vqrshl.s32 Q0, Q0, Q0'
-
- * int16x8_t vqrshlq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vqrshl.s16 Q0, Q0, Q0'
-
- * int8x16_t vqrshlq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vqrshl.s8 Q0, Q0, Q0'
-
- * uint64x2_t vqrshlq_u64 (uint64x2_t, int64x2_t)
- _Form of expected instruction(s):_ 'vqrshl.u64 Q0, Q0, Q0'
-
- * int64x2_t vqrshlq_s64 (int64x2_t, int64x2_t)
- _Form of expected instruction(s):_ 'vqrshl.s64 Q0, Q0, Q0'
-
-6.57.6.33 Vector shift left by constant
-.......................................
-
- * uint32x2_t vshl_n_u32 (uint32x2_t, const int)
- _Form of expected instruction(s):_ 'vshl.i32 D0, D0, #0'
-
- * uint16x4_t vshl_n_u16 (uint16x4_t, const int)
- _Form of expected instruction(s):_ 'vshl.i16 D0, D0, #0'
-
- * uint8x8_t vshl_n_u8 (uint8x8_t, const int)
- _Form of expected instruction(s):_ 'vshl.i8 D0, D0, #0'
-
- * int32x2_t vshl_n_s32 (int32x2_t, const int)
- _Form of expected instruction(s):_ 'vshl.i32 D0, D0, #0'
-
- * int16x4_t vshl_n_s16 (int16x4_t, const int)
- _Form of expected instruction(s):_ 'vshl.i16 D0, D0, #0'
-
- * int8x8_t vshl_n_s8 (int8x8_t, const int)
- _Form of expected instruction(s):_ 'vshl.i8 D0, D0, #0'
-
- * uint64x1_t vshl_n_u64 (uint64x1_t, const int)
- _Form of expected instruction(s):_ 'vshl.i64 D0, D0, #0'
-
- * int64x1_t vshl_n_s64 (int64x1_t, const int)
- _Form of expected instruction(s):_ 'vshl.i64 D0, D0, #0'
-
- * uint32x4_t vshlq_n_u32 (uint32x4_t, const int)
- _Form of expected instruction(s):_ 'vshl.i32 Q0, Q0, #0'
-
- * uint16x8_t vshlq_n_u16 (uint16x8_t, const int)
- _Form of expected instruction(s):_ 'vshl.i16 Q0, Q0, #0'
-
- * uint8x16_t vshlq_n_u8 (uint8x16_t, const int)
- _Form of expected instruction(s):_ 'vshl.i8 Q0, Q0, #0'
-
- * int32x4_t vshlq_n_s32 (int32x4_t, const int)
- _Form of expected instruction(s):_ 'vshl.i32 Q0, Q0, #0'
-
- * int16x8_t vshlq_n_s16 (int16x8_t, const int)
- _Form of expected instruction(s):_ 'vshl.i16 Q0, Q0, #0'
-
- * int8x16_t vshlq_n_s8 (int8x16_t, const int)
- _Form of expected instruction(s):_ 'vshl.i8 Q0, Q0, #0'
-
- * uint64x2_t vshlq_n_u64 (uint64x2_t, const int)
- _Form of expected instruction(s):_ 'vshl.i64 Q0, Q0, #0'
-
- * int64x2_t vshlq_n_s64 (int64x2_t, const int)
- _Form of expected instruction(s):_ 'vshl.i64 Q0, Q0, #0'
-
- * uint32x2_t vqshl_n_u32 (uint32x2_t, const int)
- _Form of expected instruction(s):_ 'vqshl.u32 D0, D0, #0'
-
- * uint16x4_t vqshl_n_u16 (uint16x4_t, const int)
- _Form of expected instruction(s):_ 'vqshl.u16 D0, D0, #0'
-
- * uint8x8_t vqshl_n_u8 (uint8x8_t, const int)
- _Form of expected instruction(s):_ 'vqshl.u8 D0, D0, #0'
-
- * int32x2_t vqshl_n_s32 (int32x2_t, const int)
- _Form of expected instruction(s):_ 'vqshl.s32 D0, D0, #0'
-
- * int16x4_t vqshl_n_s16 (int16x4_t, const int)
- _Form of expected instruction(s):_ 'vqshl.s16 D0, D0, #0'
-
- * int8x8_t vqshl_n_s8 (int8x8_t, const int)
- _Form of expected instruction(s):_ 'vqshl.s8 D0, D0, #0'
-
- * uint64x1_t vqshl_n_u64 (uint64x1_t, const int)
- _Form of expected instruction(s):_ 'vqshl.u64 D0, D0, #0'
-
- * int64x1_t vqshl_n_s64 (int64x1_t, const int)
- _Form of expected instruction(s):_ 'vqshl.s64 D0, D0, #0'
-
- * uint32x4_t vqshlq_n_u32 (uint32x4_t, const int)
- _Form of expected instruction(s):_ 'vqshl.u32 Q0, Q0, #0'
-
- * uint16x8_t vqshlq_n_u16 (uint16x8_t, const int)
- _Form of expected instruction(s):_ 'vqshl.u16 Q0, Q0, #0'
-
- * uint8x16_t vqshlq_n_u8 (uint8x16_t, const int)
- _Form of expected instruction(s):_ 'vqshl.u8 Q0, Q0, #0'
-
- * int32x4_t vqshlq_n_s32 (int32x4_t, const int)
- _Form of expected instruction(s):_ 'vqshl.s32 Q0, Q0, #0'
-
- * int16x8_t vqshlq_n_s16 (int16x8_t, const int)
- _Form of expected instruction(s):_ 'vqshl.s16 Q0, Q0, #0'
-
- * int8x16_t vqshlq_n_s8 (int8x16_t, const int)
- _Form of expected instruction(s):_ 'vqshl.s8 Q0, Q0, #0'
-
- * uint64x2_t vqshlq_n_u64 (uint64x2_t, const int)
- _Form of expected instruction(s):_ 'vqshl.u64 Q0, Q0, #0'
-
- * int64x2_t vqshlq_n_s64 (int64x2_t, const int)
- _Form of expected instruction(s):_ 'vqshl.s64 Q0, Q0, #0'
-
- * uint64x1_t vqshlu_n_s64 (int64x1_t, const int)
- _Form of expected instruction(s):_ 'vqshlu.s64 D0, D0, #0'
-
- * uint32x2_t vqshlu_n_s32 (int32x2_t, const int)
- _Form of expected instruction(s):_ 'vqshlu.s32 D0, D0, #0'
-
- * uint16x4_t vqshlu_n_s16 (int16x4_t, const int)
- _Form of expected instruction(s):_ 'vqshlu.s16 D0, D0, #0'
-
- * uint8x8_t vqshlu_n_s8 (int8x8_t, const int)
- _Form of expected instruction(s):_ 'vqshlu.s8 D0, D0, #0'
-
- * uint64x2_t vqshluq_n_s64 (int64x2_t, const int)
- _Form of expected instruction(s):_ 'vqshlu.s64 Q0, Q0, #0'
-
- * uint32x4_t vqshluq_n_s32 (int32x4_t, const int)
- _Form of expected instruction(s):_ 'vqshlu.s32 Q0, Q0, #0'
-
- * uint16x8_t vqshluq_n_s16 (int16x8_t, const int)
- _Form of expected instruction(s):_ 'vqshlu.s16 Q0, Q0, #0'
-
- * uint8x16_t vqshluq_n_s8 (int8x16_t, const int)
- _Form of expected instruction(s):_ 'vqshlu.s8 Q0, Q0, #0'
-
- * uint64x2_t vshll_n_u32 (uint32x2_t, const int)
- _Form of expected instruction(s):_ 'vshll.u32 Q0, D0, #0'
-
- * uint32x4_t vshll_n_u16 (uint16x4_t, const int)
- _Form of expected instruction(s):_ 'vshll.u16 Q0, D0, #0'
-
- * uint16x8_t vshll_n_u8 (uint8x8_t, const int)
- _Form of expected instruction(s):_ 'vshll.u8 Q0, D0, #0'
-
- * int64x2_t vshll_n_s32 (int32x2_t, const int)
- _Form of expected instruction(s):_ 'vshll.s32 Q0, D0, #0'
-
- * int32x4_t vshll_n_s16 (int16x4_t, const int)
- _Form of expected instruction(s):_ 'vshll.s16 Q0, D0, #0'
-
- * int16x8_t vshll_n_s8 (int8x8_t, const int)
- _Form of expected instruction(s):_ 'vshll.s8 Q0, D0, #0'
-
-6.57.6.34 Vector shift right by constant
-........................................
-
- * uint32x2_t vshr_n_u32 (uint32x2_t, const int)
- _Form of expected instruction(s):_ 'vshr.u32 D0, D0, #0'
-
- * uint16x4_t vshr_n_u16 (uint16x4_t, const int)
- _Form of expected instruction(s):_ 'vshr.u16 D0, D0, #0'
-
- * uint8x8_t vshr_n_u8 (uint8x8_t, const int)
- _Form of expected instruction(s):_ 'vshr.u8 D0, D0, #0'
-
- * int32x2_t vshr_n_s32 (int32x2_t, const int)
- _Form of expected instruction(s):_ 'vshr.s32 D0, D0, #0'
-
- * int16x4_t vshr_n_s16 (int16x4_t, const int)
- _Form of expected instruction(s):_ 'vshr.s16 D0, D0, #0'
-
- * int8x8_t vshr_n_s8 (int8x8_t, const int)
- _Form of expected instruction(s):_ 'vshr.s8 D0, D0, #0'
-
- * uint64x1_t vshr_n_u64 (uint64x1_t, const int)
- _Form of expected instruction(s):_ 'vshr.u64 D0, D0, #0'
-
- * int64x1_t vshr_n_s64 (int64x1_t, const int)
- _Form of expected instruction(s):_ 'vshr.s64 D0, D0, #0'
-
- * uint32x4_t vshrq_n_u32 (uint32x4_t, const int)
- _Form of expected instruction(s):_ 'vshr.u32 Q0, Q0, #0'
-
- * uint16x8_t vshrq_n_u16 (uint16x8_t, const int)
- _Form of expected instruction(s):_ 'vshr.u16 Q0, Q0, #0'
-
- * uint8x16_t vshrq_n_u8 (uint8x16_t, const int)
- _Form of expected instruction(s):_ 'vshr.u8 Q0, Q0, #0'
-
- * int32x4_t vshrq_n_s32 (int32x4_t, const int)
- _Form of expected instruction(s):_ 'vshr.s32 Q0, Q0, #0'
-
- * int16x8_t vshrq_n_s16 (int16x8_t, const int)
- _Form of expected instruction(s):_ 'vshr.s16 Q0, Q0, #0'
-
- * int8x16_t vshrq_n_s8 (int8x16_t, const int)
- _Form of expected instruction(s):_ 'vshr.s8 Q0, Q0, #0'
-
- * uint64x2_t vshrq_n_u64 (uint64x2_t, const int)
- _Form of expected instruction(s):_ 'vshr.u64 Q0, Q0, #0'
-
- * int64x2_t vshrq_n_s64 (int64x2_t, const int)
- _Form of expected instruction(s):_ 'vshr.s64 Q0, Q0, #0'
-
- * uint32x2_t vrshr_n_u32 (uint32x2_t, const int)
- _Form of expected instruction(s):_ 'vrshr.u32 D0, D0, #0'
-
- * uint16x4_t vrshr_n_u16 (uint16x4_t, const int)
- _Form of expected instruction(s):_ 'vrshr.u16 D0, D0, #0'
-
- * uint8x8_t vrshr_n_u8 (uint8x8_t, const int)
- _Form of expected instruction(s):_ 'vrshr.u8 D0, D0, #0'
-
- * int32x2_t vrshr_n_s32 (int32x2_t, const int)
- _Form of expected instruction(s):_ 'vrshr.s32 D0, D0, #0'
-
- * int16x4_t vrshr_n_s16 (int16x4_t, const int)
- _Form of expected instruction(s):_ 'vrshr.s16 D0, D0, #0'
-
- * int8x8_t vrshr_n_s8 (int8x8_t, const int)
- _Form of expected instruction(s):_ 'vrshr.s8 D0, D0, #0'
-
- * uint64x1_t vrshr_n_u64 (uint64x1_t, const int)
- _Form of expected instruction(s):_ 'vrshr.u64 D0, D0, #0'
-
- * int64x1_t vrshr_n_s64 (int64x1_t, const int)
- _Form of expected instruction(s):_ 'vrshr.s64 D0, D0, #0'
-
- * uint32x4_t vrshrq_n_u32 (uint32x4_t, const int)
- _Form of expected instruction(s):_ 'vrshr.u32 Q0, Q0, #0'
-
- * uint16x8_t vrshrq_n_u16 (uint16x8_t, const int)
- _Form of expected instruction(s):_ 'vrshr.u16 Q0, Q0, #0'
-
- * uint8x16_t vrshrq_n_u8 (uint8x16_t, const int)
- _Form of expected instruction(s):_ 'vrshr.u8 Q0, Q0, #0'
-
- * int32x4_t vrshrq_n_s32 (int32x4_t, const int)
- _Form of expected instruction(s):_ 'vrshr.s32 Q0, Q0, #0'
-
- * int16x8_t vrshrq_n_s16 (int16x8_t, const int)
- _Form of expected instruction(s):_ 'vrshr.s16 Q0, Q0, #0'
-
- * int8x16_t vrshrq_n_s8 (int8x16_t, const int)
- _Form of expected instruction(s):_ 'vrshr.s8 Q0, Q0, #0'
-
- * uint64x2_t vrshrq_n_u64 (uint64x2_t, const int)
- _Form of expected instruction(s):_ 'vrshr.u64 Q0, Q0, #0'
-
- * int64x2_t vrshrq_n_s64 (int64x2_t, const int)
- _Form of expected instruction(s):_ 'vrshr.s64 Q0, Q0, #0'
-
- * uint32x2_t vshrn_n_u64 (uint64x2_t, const int)
- _Form of expected instruction(s):_ 'vshrn.i64 D0, Q0, #0'
-
- * uint16x4_t vshrn_n_u32 (uint32x4_t, const int)
- _Form of expected instruction(s):_ 'vshrn.i32 D0, Q0, #0'
-
- * uint8x8_t vshrn_n_u16 (uint16x8_t, const int)
- _Form of expected instruction(s):_ 'vshrn.i16 D0, Q0, #0'
-
- * int32x2_t vshrn_n_s64 (int64x2_t, const int)
- _Form of expected instruction(s):_ 'vshrn.i64 D0, Q0, #0'
-
- * int16x4_t vshrn_n_s32 (int32x4_t, const int)
- _Form of expected instruction(s):_ 'vshrn.i32 D0, Q0, #0'
-
- * int8x8_t vshrn_n_s16 (int16x8_t, const int)
- _Form of expected instruction(s):_ 'vshrn.i16 D0, Q0, #0'
-
- * uint32x2_t vrshrn_n_u64 (uint64x2_t, const int)
- _Form of expected instruction(s):_ 'vrshrn.i64 D0, Q0, #0'
-
- * uint16x4_t vrshrn_n_u32 (uint32x4_t, const int)
- _Form of expected instruction(s):_ 'vrshrn.i32 D0, Q0, #0'
-
- * uint8x8_t vrshrn_n_u16 (uint16x8_t, const int)
- _Form of expected instruction(s):_ 'vrshrn.i16 D0, Q0, #0'
-
- * int32x2_t vrshrn_n_s64 (int64x2_t, const int)
- _Form of expected instruction(s):_ 'vrshrn.i64 D0, Q0, #0'
-
- * int16x4_t vrshrn_n_s32 (int32x4_t, const int)
- _Form of expected instruction(s):_ 'vrshrn.i32 D0, Q0, #0'
-
- * int8x8_t vrshrn_n_s16 (int16x8_t, const int)
- _Form of expected instruction(s):_ 'vrshrn.i16 D0, Q0, #0'
-
- * uint32x2_t vqshrn_n_u64 (uint64x2_t, const int)
- _Form of expected instruction(s):_ 'vqshrn.u64 D0, Q0, #0'
-
- * uint16x4_t vqshrn_n_u32 (uint32x4_t, const int)
- _Form of expected instruction(s):_ 'vqshrn.u32 D0, Q0, #0'
-
- * uint8x8_t vqshrn_n_u16 (uint16x8_t, const int)
- _Form of expected instruction(s):_ 'vqshrn.u16 D0, Q0, #0'
-
- * int32x2_t vqshrn_n_s64 (int64x2_t, const int)
- _Form of expected instruction(s):_ 'vqshrn.s64 D0, Q0, #0'
-
- * int16x4_t vqshrn_n_s32 (int32x4_t, const int)
- _Form of expected instruction(s):_ 'vqshrn.s32 D0, Q0, #0'
-
- * int8x8_t vqshrn_n_s16 (int16x8_t, const int)
- _Form of expected instruction(s):_ 'vqshrn.s16 D0, Q0, #0'
-
- * uint32x2_t vqrshrn_n_u64 (uint64x2_t, const int)
- _Form of expected instruction(s):_ 'vqrshrn.u64 D0, Q0, #0'
-
- * uint16x4_t vqrshrn_n_u32 (uint32x4_t, const int)
- _Form of expected instruction(s):_ 'vqrshrn.u32 D0, Q0, #0'
-
- * uint8x8_t vqrshrn_n_u16 (uint16x8_t, const int)
- _Form of expected instruction(s):_ 'vqrshrn.u16 D0, Q0, #0'
-
- * int32x2_t vqrshrn_n_s64 (int64x2_t, const int)
- _Form of expected instruction(s):_ 'vqrshrn.s64 D0, Q0, #0'
-
- * int16x4_t vqrshrn_n_s32 (int32x4_t, const int)
- _Form of expected instruction(s):_ 'vqrshrn.s32 D0, Q0, #0'
-
- * int8x8_t vqrshrn_n_s16 (int16x8_t, const int)
- _Form of expected instruction(s):_ 'vqrshrn.s16 D0, Q0, #0'
-
- * uint32x2_t vqshrun_n_s64 (int64x2_t, const int)
- _Form of expected instruction(s):_ 'vqshrun.s64 D0, Q0, #0'
-
- * uint16x4_t vqshrun_n_s32 (int32x4_t, const int)
- _Form of expected instruction(s):_ 'vqshrun.s32 D0, Q0, #0'
-
- * uint8x8_t vqshrun_n_s16 (int16x8_t, const int)
- _Form of expected instruction(s):_ 'vqshrun.s16 D0, Q0, #0'
-
- * uint32x2_t vqrshrun_n_s64 (int64x2_t, const int)
- _Form of expected instruction(s):_ 'vqrshrun.s64 D0, Q0, #0'
-
- * uint16x4_t vqrshrun_n_s32 (int32x4_t, const int)
- _Form of expected instruction(s):_ 'vqrshrun.s32 D0, Q0, #0'
-
- * uint8x8_t vqrshrun_n_s16 (int16x8_t, const int)
- _Form of expected instruction(s):_ 'vqrshrun.s16 D0, Q0, #0'
-
-6.57.6.35 Vector shift right by constant and accumulate
-.......................................................
-
- * uint32x2_t vsra_n_u32 (uint32x2_t, uint32x2_t, const int)
- _Form of expected instruction(s):_ 'vsra.u32 D0, D0, #0'
-
- * uint16x4_t vsra_n_u16 (uint16x4_t, uint16x4_t, const int)
- _Form of expected instruction(s):_ 'vsra.u16 D0, D0, #0'
-
- * uint8x8_t vsra_n_u8 (uint8x8_t, uint8x8_t, const int)
- _Form of expected instruction(s):_ 'vsra.u8 D0, D0, #0'
-
- * int32x2_t vsra_n_s32 (int32x2_t, int32x2_t, const int)
- _Form of expected instruction(s):_ 'vsra.s32 D0, D0, #0'
-
- * int16x4_t vsra_n_s16 (int16x4_t, int16x4_t, const int)
- _Form of expected instruction(s):_ 'vsra.s16 D0, D0, #0'
-
- * int8x8_t vsra_n_s8 (int8x8_t, int8x8_t, const int)
- _Form of expected instruction(s):_ 'vsra.s8 D0, D0, #0'
-
- * uint64x1_t vsra_n_u64 (uint64x1_t, uint64x1_t, const int)
- _Form of expected instruction(s):_ 'vsra.u64 D0, D0, #0'
-
- * int64x1_t vsra_n_s64 (int64x1_t, int64x1_t, const int)
- _Form of expected instruction(s):_ 'vsra.s64 D0, D0, #0'
-
- * uint32x4_t vsraq_n_u32 (uint32x4_t, uint32x4_t, const int)
- _Form of expected instruction(s):_ 'vsra.u32 Q0, Q0, #0'
-
- * uint16x8_t vsraq_n_u16 (uint16x8_t, uint16x8_t, const int)
- _Form of expected instruction(s):_ 'vsra.u16 Q0, Q0, #0'
-
- * uint8x16_t vsraq_n_u8 (uint8x16_t, uint8x16_t, const int)
- _Form of expected instruction(s):_ 'vsra.u8 Q0, Q0, #0'
-
- * int32x4_t vsraq_n_s32 (int32x4_t, int32x4_t, const int)
- _Form of expected instruction(s):_ 'vsra.s32 Q0, Q0, #0'
-
- * int16x8_t vsraq_n_s16 (int16x8_t, int16x8_t, const int)
- _Form of expected instruction(s):_ 'vsra.s16 Q0, Q0, #0'
-
- * int8x16_t vsraq_n_s8 (int8x16_t, int8x16_t, const int)
- _Form of expected instruction(s):_ 'vsra.s8 Q0, Q0, #0'
-
- * uint64x2_t vsraq_n_u64 (uint64x2_t, uint64x2_t, const int)
- _Form of expected instruction(s):_ 'vsra.u64 Q0, Q0, #0'
-
- * int64x2_t vsraq_n_s64 (int64x2_t, int64x2_t, const int)
- _Form of expected instruction(s):_ 'vsra.s64 Q0, Q0, #0'
-
- * uint32x2_t vrsra_n_u32 (uint32x2_t, uint32x2_t, const int)
- _Form of expected instruction(s):_ 'vrsra.u32 D0, D0, #0'
-
- * uint16x4_t vrsra_n_u16 (uint16x4_t, uint16x4_t, const int)
- _Form of expected instruction(s):_ 'vrsra.u16 D0, D0, #0'
-
- * uint8x8_t vrsra_n_u8 (uint8x8_t, uint8x8_t, const int)
- _Form of expected instruction(s):_ 'vrsra.u8 D0, D0, #0'
-
- * int32x2_t vrsra_n_s32 (int32x2_t, int32x2_t, const int)
- _Form of expected instruction(s):_ 'vrsra.s32 D0, D0, #0'
-
- * int16x4_t vrsra_n_s16 (int16x4_t, int16x4_t, const int)
- _Form of expected instruction(s):_ 'vrsra.s16 D0, D0, #0'
-
- * int8x8_t vrsra_n_s8 (int8x8_t, int8x8_t, const int)
- _Form of expected instruction(s):_ 'vrsra.s8 D0, D0, #0'
-
- * uint64x1_t vrsra_n_u64 (uint64x1_t, uint64x1_t, const int)
- _Form of expected instruction(s):_ 'vrsra.u64 D0, D0, #0'
-
- * int64x1_t vrsra_n_s64 (int64x1_t, int64x1_t, const int)
- _Form of expected instruction(s):_ 'vrsra.s64 D0, D0, #0'
-
- * uint32x4_t vrsraq_n_u32 (uint32x4_t, uint32x4_t, const int)
- _Form of expected instruction(s):_ 'vrsra.u32 Q0, Q0, #0'
-
- * uint16x8_t vrsraq_n_u16 (uint16x8_t, uint16x8_t, const int)
- _Form of expected instruction(s):_ 'vrsra.u16 Q0, Q0, #0'
-
- * uint8x16_t vrsraq_n_u8 (uint8x16_t, uint8x16_t, const int)
- _Form of expected instruction(s):_ 'vrsra.u8 Q0, Q0, #0'
-
- * int32x4_t vrsraq_n_s32 (int32x4_t, int32x4_t, const int)
- _Form of expected instruction(s):_ 'vrsra.s32 Q0, Q0, #0'
-
- * int16x8_t vrsraq_n_s16 (int16x8_t, int16x8_t, const int)
- _Form of expected instruction(s):_ 'vrsra.s16 Q0, Q0, #0'
-
- * int8x16_t vrsraq_n_s8 (int8x16_t, int8x16_t, const int)
- _Form of expected instruction(s):_ 'vrsra.s8 Q0, Q0, #0'
-
- * uint64x2_t vrsraq_n_u64 (uint64x2_t, uint64x2_t, const int)
- _Form of expected instruction(s):_ 'vrsra.u64 Q0, Q0, #0'
-
- * int64x2_t vrsraq_n_s64 (int64x2_t, int64x2_t, const int)
- _Form of expected instruction(s):_ 'vrsra.s64 Q0, Q0, #0'
-
-6.57.6.36 Vector shift right and insert
-.......................................
-
- * poly64x1_t vsri_n_p64 (poly64x1_t, poly64x1_t, const int)
- _Form of expected instruction(s):_ 'vsri.64 D0, D0, #0'
-
- * uint32x2_t vsri_n_u32 (uint32x2_t, uint32x2_t, const int)
- _Form of expected instruction(s):_ 'vsri.32 D0, D0, #0'
-
- * uint16x4_t vsri_n_u16 (uint16x4_t, uint16x4_t, const int)
- _Form of expected instruction(s):_ 'vsri.16 D0, D0, #0'
-
- * uint8x8_t vsri_n_u8 (uint8x8_t, uint8x8_t, const int)
- _Form of expected instruction(s):_ 'vsri.8 D0, D0, #0'
-
- * int32x2_t vsri_n_s32 (int32x2_t, int32x2_t, const int)
- _Form of expected instruction(s):_ 'vsri.32 D0, D0, #0'
-
- * int16x4_t vsri_n_s16 (int16x4_t, int16x4_t, const int)
- _Form of expected instruction(s):_ 'vsri.16 D0, D0, #0'
-
- * int8x8_t vsri_n_s8 (int8x8_t, int8x8_t, const int)
- _Form of expected instruction(s):_ 'vsri.8 D0, D0, #0'
-
- * uint64x1_t vsri_n_u64 (uint64x1_t, uint64x1_t, const int)
- _Form of expected instruction(s):_ 'vsri.64 D0, D0, #0'
-
- * int64x1_t vsri_n_s64 (int64x1_t, int64x1_t, const int)
- _Form of expected instruction(s):_ 'vsri.64 D0, D0, #0'
-
- * poly16x4_t vsri_n_p16 (poly16x4_t, poly16x4_t, const int)
- _Form of expected instruction(s):_ 'vsri.16 D0, D0, #0'
-
- * poly8x8_t vsri_n_p8 (poly8x8_t, poly8x8_t, const int)
- _Form of expected instruction(s):_ 'vsri.8 D0, D0, #0'
-
- * poly64x2_t vsriq_n_p64 (poly64x2_t, poly64x2_t, const int)
- _Form of expected instruction(s):_ 'vsri.64 Q0, Q0, #0'
-
- * uint32x4_t vsriq_n_u32 (uint32x4_t, uint32x4_t, const int)
- _Form of expected instruction(s):_ 'vsri.32 Q0, Q0, #0'
-
- * uint16x8_t vsriq_n_u16 (uint16x8_t, uint16x8_t, const int)
- _Form of expected instruction(s):_ 'vsri.16 Q0, Q0, #0'
-
- * uint8x16_t vsriq_n_u8 (uint8x16_t, uint8x16_t, const int)
- _Form of expected instruction(s):_ 'vsri.8 Q0, Q0, #0'
-
- * int32x4_t vsriq_n_s32 (int32x4_t, int32x4_t, const int)
- _Form of expected instruction(s):_ 'vsri.32 Q0, Q0, #0'
-
- * int16x8_t vsriq_n_s16 (int16x8_t, int16x8_t, const int)
- _Form of expected instruction(s):_ 'vsri.16 Q0, Q0, #0'
-
- * int8x16_t vsriq_n_s8 (int8x16_t, int8x16_t, const int)
- _Form of expected instruction(s):_ 'vsri.8 Q0, Q0, #0'
-
- * uint64x2_t vsriq_n_u64 (uint64x2_t, uint64x2_t, const int)
- _Form of expected instruction(s):_ 'vsri.64 Q0, Q0, #0'
-
- * int64x2_t vsriq_n_s64 (int64x2_t, int64x2_t, const int)
- _Form of expected instruction(s):_ 'vsri.64 Q0, Q0, #0'
-
- * poly16x8_t vsriq_n_p16 (poly16x8_t, poly16x8_t, const int)
- _Form of expected instruction(s):_ 'vsri.16 Q0, Q0, #0'
-
- * poly8x16_t vsriq_n_p8 (poly8x16_t, poly8x16_t, const int)
- _Form of expected instruction(s):_ 'vsri.8 Q0, Q0, #0'
-
-6.57.6.37 Vector shift left and insert
-......................................
-
- * poly64x1_t vsli_n_p64 (poly64x1_t, poly64x1_t, const int)
- _Form of expected instruction(s):_ 'vsli.64 D0, D0, #0'
-
- * uint32x2_t vsli_n_u32 (uint32x2_t, uint32x2_t, const int)
- _Form of expected instruction(s):_ 'vsli.32 D0, D0, #0'
-
- * uint16x4_t vsli_n_u16 (uint16x4_t, uint16x4_t, const int)
- _Form of expected instruction(s):_ 'vsli.16 D0, D0, #0'
-
- * uint8x8_t vsli_n_u8 (uint8x8_t, uint8x8_t, const int)
- _Form of expected instruction(s):_ 'vsli.8 D0, D0, #0'
-
- * int32x2_t vsli_n_s32 (int32x2_t, int32x2_t, const int)
- _Form of expected instruction(s):_ 'vsli.32 D0, D0, #0'
-
- * int16x4_t vsli_n_s16 (int16x4_t, int16x4_t, const int)
- _Form of expected instruction(s):_ 'vsli.16 D0, D0, #0'
-
- * int8x8_t vsli_n_s8 (int8x8_t, int8x8_t, const int)
- _Form of expected instruction(s):_ 'vsli.8 D0, D0, #0'
-
- * uint64x1_t vsli_n_u64 (uint64x1_t, uint64x1_t, const int)
- _Form of expected instruction(s):_ 'vsli.64 D0, D0, #0'
-
- * int64x1_t vsli_n_s64 (int64x1_t, int64x1_t, const int)
- _Form of expected instruction(s):_ 'vsli.64 D0, D0, #0'
-
- * poly16x4_t vsli_n_p16 (poly16x4_t, poly16x4_t, const int)
- _Form of expected instruction(s):_ 'vsli.16 D0, D0, #0'
-
- * poly8x8_t vsli_n_p8 (poly8x8_t, poly8x8_t, const int)
- _Form of expected instruction(s):_ 'vsli.8 D0, D0, #0'
-
- * poly64x2_t vsliq_n_p64 (poly64x2_t, poly64x2_t, const int)
- _Form of expected instruction(s):_ 'vsli.64 Q0, Q0, #0'
-
- * uint32x4_t vsliq_n_u32 (uint32x4_t, uint32x4_t, const int)
- _Form of expected instruction(s):_ 'vsli.32 Q0, Q0, #0'
-
- * uint16x8_t vsliq_n_u16 (uint16x8_t, uint16x8_t, const int)
- _Form of expected instruction(s):_ 'vsli.16 Q0, Q0, #0'
-
- * uint8x16_t vsliq_n_u8 (uint8x16_t, uint8x16_t, const int)
- _Form of expected instruction(s):_ 'vsli.8 Q0, Q0, #0'
-
- * int32x4_t vsliq_n_s32 (int32x4_t, int32x4_t, const int)
- _Form of expected instruction(s):_ 'vsli.32 Q0, Q0, #0'
-
- * int16x8_t vsliq_n_s16 (int16x8_t, int16x8_t, const int)
- _Form of expected instruction(s):_ 'vsli.16 Q0, Q0, #0'
-
- * int8x16_t vsliq_n_s8 (int8x16_t, int8x16_t, const int)
- _Form of expected instruction(s):_ 'vsli.8 Q0, Q0, #0'
-
- * uint64x2_t vsliq_n_u64 (uint64x2_t, uint64x2_t, const int)
- _Form of expected instruction(s):_ 'vsli.64 Q0, Q0, #0'
-
- * int64x2_t vsliq_n_s64 (int64x2_t, int64x2_t, const int)
- _Form of expected instruction(s):_ 'vsli.64 Q0, Q0, #0'
-
- * poly16x8_t vsliq_n_p16 (poly16x8_t, poly16x8_t, const int)
- _Form of expected instruction(s):_ 'vsli.16 Q0, Q0, #0'
-
- * poly8x16_t vsliq_n_p8 (poly8x16_t, poly8x16_t, const int)
- _Form of expected instruction(s):_ 'vsli.8 Q0, Q0, #0'
-
-6.57.6.38 Absolute value
-........................
-
- * float32x2_t vabs_f32 (float32x2_t)
- _Form of expected instruction(s):_ 'vabs.f32 D0, D0'
-
- * int32x2_t vabs_s32 (int32x2_t)
- _Form of expected instruction(s):_ 'vabs.s32 D0, D0'
-
- * int16x4_t vabs_s16 (int16x4_t)
- _Form of expected instruction(s):_ 'vabs.s16 D0, D0'
-
- * int8x8_t vabs_s8 (int8x8_t)
- _Form of expected instruction(s):_ 'vabs.s8 D0, D0'
-
- * float32x4_t vabsq_f32 (float32x4_t)
- _Form of expected instruction(s):_ 'vabs.f32 Q0, Q0'
-
- * int32x4_t vabsq_s32 (int32x4_t)
- _Form of expected instruction(s):_ 'vabs.s32 Q0, Q0'
-
- * int16x8_t vabsq_s16 (int16x8_t)
- _Form of expected instruction(s):_ 'vabs.s16 Q0, Q0'
-
- * int8x16_t vabsq_s8 (int8x16_t)
- _Form of expected instruction(s):_ 'vabs.s8 Q0, Q0'
-
- * int32x2_t vqabs_s32 (int32x2_t)
- _Form of expected instruction(s):_ 'vqabs.s32 D0, D0'
-
- * int16x4_t vqabs_s16 (int16x4_t)
- _Form of expected instruction(s):_ 'vqabs.s16 D0, D0'
-
- * int8x8_t vqabs_s8 (int8x8_t)
- _Form of expected instruction(s):_ 'vqabs.s8 D0, D0'
-
- * int32x4_t vqabsq_s32 (int32x4_t)
- _Form of expected instruction(s):_ 'vqabs.s32 Q0, Q0'
-
- * int16x8_t vqabsq_s16 (int16x8_t)
- _Form of expected instruction(s):_ 'vqabs.s16 Q0, Q0'
-
- * int8x16_t vqabsq_s8 (int8x16_t)
- _Form of expected instruction(s):_ 'vqabs.s8 Q0, Q0'
-
-6.57.6.39 Negation
-..................
-
- * float32x2_t vneg_f32 (float32x2_t)
- _Form of expected instruction(s):_ 'vneg.f32 D0, D0'
-
- * int32x2_t vneg_s32 (int32x2_t)
- _Form of expected instruction(s):_ 'vneg.s32 D0, D0'
-
- * int16x4_t vneg_s16 (int16x4_t)
- _Form of expected instruction(s):_ 'vneg.s16 D0, D0'
-
- * int8x8_t vneg_s8 (int8x8_t)
- _Form of expected instruction(s):_ 'vneg.s8 D0, D0'
-
- * float32x4_t vnegq_f32 (float32x4_t)
- _Form of expected instruction(s):_ 'vneg.f32 Q0, Q0'
-
- * int32x4_t vnegq_s32 (int32x4_t)
- _Form of expected instruction(s):_ 'vneg.s32 Q0, Q0'
-
- * int16x8_t vnegq_s16 (int16x8_t)
- _Form of expected instruction(s):_ 'vneg.s16 Q0, Q0'
-
- * int8x16_t vnegq_s8 (int8x16_t)
- _Form of expected instruction(s):_ 'vneg.s8 Q0, Q0'
-
- * int32x2_t vqneg_s32 (int32x2_t)
- _Form of expected instruction(s):_ 'vqneg.s32 D0, D0'
-
- * int16x4_t vqneg_s16 (int16x4_t)
- _Form of expected instruction(s):_ 'vqneg.s16 D0, D0'
-
- * int8x8_t vqneg_s8 (int8x8_t)
- _Form of expected instruction(s):_ 'vqneg.s8 D0, D0'
-
- * int32x4_t vqnegq_s32 (int32x4_t)
- _Form of expected instruction(s):_ 'vqneg.s32 Q0, Q0'
-
- * int16x8_t vqnegq_s16 (int16x8_t)
- _Form of expected instruction(s):_ 'vqneg.s16 Q0, Q0'
-
- * int8x16_t vqnegq_s8 (int8x16_t)
- _Form of expected instruction(s):_ 'vqneg.s8 Q0, Q0'
-
-6.57.6.40 Bitwise not
-.....................
-
- * uint32x2_t vmvn_u32 (uint32x2_t)
- _Form of expected instruction(s):_ 'vmvn D0, D0'
-
- * uint16x4_t vmvn_u16 (uint16x4_t)
- _Form of expected instruction(s):_ 'vmvn D0, D0'
-
- * uint8x8_t vmvn_u8 (uint8x8_t)
- _Form of expected instruction(s):_ 'vmvn D0, D0'
-
- * int32x2_t vmvn_s32 (int32x2_t)
- _Form of expected instruction(s):_ 'vmvn D0, D0'
-
- * int16x4_t vmvn_s16 (int16x4_t)
- _Form of expected instruction(s):_ 'vmvn D0, D0'
-
- * int8x8_t vmvn_s8 (int8x8_t)
- _Form of expected instruction(s):_ 'vmvn D0, D0'
-
- * poly8x8_t vmvn_p8 (poly8x8_t)
- _Form of expected instruction(s):_ 'vmvn D0, D0'
-
- * uint32x4_t vmvnq_u32 (uint32x4_t)
- _Form of expected instruction(s):_ 'vmvn Q0, Q0'
-
- * uint16x8_t vmvnq_u16 (uint16x8_t)
- _Form of expected instruction(s):_ 'vmvn Q0, Q0'
-
- * uint8x16_t vmvnq_u8 (uint8x16_t)
- _Form of expected instruction(s):_ 'vmvn Q0, Q0'
-
- * int32x4_t vmvnq_s32 (int32x4_t)
- _Form of expected instruction(s):_ 'vmvn Q0, Q0'
-
- * int16x8_t vmvnq_s16 (int16x8_t)
- _Form of expected instruction(s):_ 'vmvn Q0, Q0'
-
- * int8x16_t vmvnq_s8 (int8x16_t)
- _Form of expected instruction(s):_ 'vmvn Q0, Q0'
-
- * poly8x16_t vmvnq_p8 (poly8x16_t)
- _Form of expected instruction(s):_ 'vmvn Q0, Q0'
-
-6.57.6.41 Count leading sign bits
-.................................
-
- * int32x2_t vcls_s32 (int32x2_t)
- _Form of expected instruction(s):_ 'vcls.s32 D0, D0'
-
- * int16x4_t vcls_s16 (int16x4_t)
- _Form of expected instruction(s):_ 'vcls.s16 D0, D0'
-
- * int8x8_t vcls_s8 (int8x8_t)
- _Form of expected instruction(s):_ 'vcls.s8 D0, D0'
-
- * int32x4_t vclsq_s32 (int32x4_t)
- _Form of expected instruction(s):_ 'vcls.s32 Q0, Q0'
-
- * int16x8_t vclsq_s16 (int16x8_t)
- _Form of expected instruction(s):_ 'vcls.s16 Q0, Q0'
-
- * int8x16_t vclsq_s8 (int8x16_t)
- _Form of expected instruction(s):_ 'vcls.s8 Q0, Q0'
-
-6.57.6.42 Count leading zeros
-.............................
-
- * uint32x2_t vclz_u32 (uint32x2_t)
- _Form of expected instruction(s):_ 'vclz.i32 D0, D0'
-
- * uint16x4_t vclz_u16 (uint16x4_t)
- _Form of expected instruction(s):_ 'vclz.i16 D0, D0'
-
- * uint8x8_t vclz_u8 (uint8x8_t)
- _Form of expected instruction(s):_ 'vclz.i8 D0, D0'
-
- * int32x2_t vclz_s32 (int32x2_t)
- _Form of expected instruction(s):_ 'vclz.i32 D0, D0'
-
- * int16x4_t vclz_s16 (int16x4_t)
- _Form of expected instruction(s):_ 'vclz.i16 D0, D0'
-
- * int8x8_t vclz_s8 (int8x8_t)
- _Form of expected instruction(s):_ 'vclz.i8 D0, D0'
-
- * uint32x4_t vclzq_u32 (uint32x4_t)
- _Form of expected instruction(s):_ 'vclz.i32 Q0, Q0'
-
- * uint16x8_t vclzq_u16 (uint16x8_t)
- _Form of expected instruction(s):_ 'vclz.i16 Q0, Q0'
-
- * uint8x16_t vclzq_u8 (uint8x16_t)
- _Form of expected instruction(s):_ 'vclz.i8 Q0, Q0'
-
- * int32x4_t vclzq_s32 (int32x4_t)
- _Form of expected instruction(s):_ 'vclz.i32 Q0, Q0'
-
- * int16x8_t vclzq_s16 (int16x8_t)
- _Form of expected instruction(s):_ 'vclz.i16 Q0, Q0'
-
- * int8x16_t vclzq_s8 (int8x16_t)
- _Form of expected instruction(s):_ 'vclz.i8 Q0, Q0'
-
-6.57.6.43 Count number of set bits
-..................................
-
- * uint8x8_t vcnt_u8 (uint8x8_t)
- _Form of expected instruction(s):_ 'vcnt.8 D0, D0'
-
- * int8x8_t vcnt_s8 (int8x8_t)
- _Form of expected instruction(s):_ 'vcnt.8 D0, D0'
-
- * poly8x8_t vcnt_p8 (poly8x8_t)
- _Form of expected instruction(s):_ 'vcnt.8 D0, D0'
-
- * uint8x16_t vcntq_u8 (uint8x16_t)
- _Form of expected instruction(s):_ 'vcnt.8 Q0, Q0'
-
- * int8x16_t vcntq_s8 (int8x16_t)
- _Form of expected instruction(s):_ 'vcnt.8 Q0, Q0'
-
- * poly8x16_t vcntq_p8 (poly8x16_t)
- _Form of expected instruction(s):_ 'vcnt.8 Q0, Q0'
-
-6.57.6.44 Reciprocal estimate
-.............................
-
- * float32x2_t vrecpe_f32 (float32x2_t)
- _Form of expected instruction(s):_ 'vrecpe.f32 D0, D0'
-
- * uint32x2_t vrecpe_u32 (uint32x2_t)
- _Form of expected instruction(s):_ 'vrecpe.u32 D0, D0'
-
- * float32x4_t vrecpeq_f32 (float32x4_t)
- _Form of expected instruction(s):_ 'vrecpe.f32 Q0, Q0'
-
- * uint32x4_t vrecpeq_u32 (uint32x4_t)
- _Form of expected instruction(s):_ 'vrecpe.u32 Q0, Q0'
-
-6.57.6.45 Reciprocal square-root estimate
-.........................................
-
- * float32x2_t vrsqrte_f32 (float32x2_t)
- _Form of expected instruction(s):_ 'vrsqrte.f32 D0, D0'
-
- * uint32x2_t vrsqrte_u32 (uint32x2_t)
- _Form of expected instruction(s):_ 'vrsqrte.u32 D0, D0'
-
- * float32x4_t vrsqrteq_f32 (float32x4_t)
- _Form of expected instruction(s):_ 'vrsqrte.f32 Q0, Q0'
-
- * uint32x4_t vrsqrteq_u32 (uint32x4_t)
- _Form of expected instruction(s):_ 'vrsqrte.u32 Q0, Q0'
-
-6.57.6.46 Get lanes from a vector
-.................................
-
- * uint32_t vget_lane_u32 (uint32x2_t, const int)
- _Form of expected instruction(s):_ 'vmov.32 R0, D0[0]'
-
- * uint16_t vget_lane_u16 (uint16x4_t, const int)
- _Form of expected instruction(s):_ 'vmov.u16 R0, D0[0]'
-
- * uint8_t vget_lane_u8 (uint8x8_t, const int)
- _Form of expected instruction(s):_ 'vmov.u8 R0, D0[0]'
-
- * int32_t vget_lane_s32 (int32x2_t, const int)
- _Form of expected instruction(s):_ 'vmov.32 R0, D0[0]'
-
- * int16_t vget_lane_s16 (int16x4_t, const int)
- _Form of expected instruction(s):_ 'vmov.s16 R0, D0[0]'
-
- * int8_t vget_lane_s8 (int8x8_t, const int)
- _Form of expected instruction(s):_ 'vmov.s8 R0, D0[0]'
-
- * float32_t vget_lane_f32 (float32x2_t, const int)
- _Form of expected instruction(s):_ 'vmov.32 R0, D0[0]'
-
- * poly16_t vget_lane_p16 (poly16x4_t, const int)
- _Form of expected instruction(s):_ 'vmov.u16 R0, D0[0]'
-
- * poly8_t vget_lane_p8 (poly8x8_t, const int)
- _Form of expected instruction(s):_ 'vmov.u8 R0, D0[0]'
-
- * uint64_t vget_lane_u64 (uint64x1_t, const int)
-
- * int64_t vget_lane_s64 (int64x1_t, const int)
-
- * uint32_t vgetq_lane_u32 (uint32x4_t, const int)
- _Form of expected instruction(s):_ 'vmov.32 R0, D0[0]'
-
- * uint16_t vgetq_lane_u16 (uint16x8_t, const int)
- _Form of expected instruction(s):_ 'vmov.u16 R0, D0[0]'
-
- * uint8_t vgetq_lane_u8 (uint8x16_t, const int)
- _Form of expected instruction(s):_ 'vmov.u8 R0, D0[0]'
-
- * int32_t vgetq_lane_s32 (int32x4_t, const int)
- _Form of expected instruction(s):_ 'vmov.32 R0, D0[0]'
-
- * int16_t vgetq_lane_s16 (int16x8_t, const int)
- _Form of expected instruction(s):_ 'vmov.s16 R0, D0[0]'
-
- * int8_t vgetq_lane_s8 (int8x16_t, const int)
- _Form of expected instruction(s):_ 'vmov.s8 R0, D0[0]'
-
- * float32_t vgetq_lane_f32 (float32x4_t, const int)
- _Form of expected instruction(s):_ 'vmov.32 R0, D0[0]'
-
- * poly16_t vgetq_lane_p16 (poly16x8_t, const int)
- _Form of expected instruction(s):_ 'vmov.u16 R0, D0[0]'
-
- * poly8_t vgetq_lane_p8 (poly8x16_t, const int)
- _Form of expected instruction(s):_ 'vmov.u8 R0, D0[0]'
-
- * uint64_t vgetq_lane_u64 (uint64x2_t, const int)
- _Form of expected instruction(s):_ 'vmov R0, R0, D0' _or_ 'fmrrd
- R0, R0, D0'
-
- * int64_t vgetq_lane_s64 (int64x2_t, const int)
- _Form of expected instruction(s):_ 'vmov R0, R0, D0' _or_ 'fmrrd
- R0, R0, D0'
-
-6.57.6.47 Set lanes in a vector
-...............................
-
- * uint32x2_t vset_lane_u32 (uint32_t, uint32x2_t, const int)
- _Form of expected instruction(s):_ 'vmov.32 D0[0], R0'
-
- * uint16x4_t vset_lane_u16 (uint16_t, uint16x4_t, const int)
- _Form of expected instruction(s):_ 'vmov.16 D0[0], R0'
-
- * uint8x8_t vset_lane_u8 (uint8_t, uint8x8_t, const int)
- _Form of expected instruction(s):_ 'vmov.8 D0[0], R0'
-
- * int32x2_t vset_lane_s32 (int32_t, int32x2_t, const int)
- _Form of expected instruction(s):_ 'vmov.32 D0[0], R0'
-
- * int16x4_t vset_lane_s16 (int16_t, int16x4_t, const int)
- _Form of expected instruction(s):_ 'vmov.16 D0[0], R0'
-
- * int8x8_t vset_lane_s8 (int8_t, int8x8_t, const int)
- _Form of expected instruction(s):_ 'vmov.8 D0[0], R0'
-
- * float32x2_t vset_lane_f32 (float32_t, float32x2_t, const int)
- _Form of expected instruction(s):_ 'vmov.32 D0[0], R0'
-
- * poly16x4_t vset_lane_p16 (poly16_t, poly16x4_t, const int)
- _Form of expected instruction(s):_ 'vmov.16 D0[0], R0'
-
- * poly8x8_t vset_lane_p8 (poly8_t, poly8x8_t, const int)
- _Form of expected instruction(s):_ 'vmov.8 D0[0], R0'
-
- * uint64x1_t vset_lane_u64 (uint64_t, uint64x1_t, const int)
-
- * int64x1_t vset_lane_s64 (int64_t, int64x1_t, const int)
-
- * uint32x4_t vsetq_lane_u32 (uint32_t, uint32x4_t, const int)
- _Form of expected instruction(s):_ 'vmov.32 D0[0], R0'
-
- * uint16x8_t vsetq_lane_u16 (uint16_t, uint16x8_t, const int)
- _Form of expected instruction(s):_ 'vmov.16 D0[0], R0'
-
- * uint8x16_t vsetq_lane_u8 (uint8_t, uint8x16_t, const int)
- _Form of expected instruction(s):_ 'vmov.8 D0[0], R0'
-
- * int32x4_t vsetq_lane_s32 (int32_t, int32x4_t, const int)
- _Form of expected instruction(s):_ 'vmov.32 D0[0], R0'
-
- * int16x8_t vsetq_lane_s16 (int16_t, int16x8_t, const int)
- _Form of expected instruction(s):_ 'vmov.16 D0[0], R0'
-
- * int8x16_t vsetq_lane_s8 (int8_t, int8x16_t, const int)
- _Form of expected instruction(s):_ 'vmov.8 D0[0], R0'
-
- * float32x4_t vsetq_lane_f32 (float32_t, float32x4_t, const int)
- _Form of expected instruction(s):_ 'vmov.32 D0[0], R0'
-
- * poly16x8_t vsetq_lane_p16 (poly16_t, poly16x8_t, const int)
- _Form of expected instruction(s):_ 'vmov.16 D0[0], R0'
-
- * poly8x16_t vsetq_lane_p8 (poly8_t, poly8x16_t, const int)
- _Form of expected instruction(s):_ 'vmov.8 D0[0], R0'
-
- * uint64x2_t vsetq_lane_u64 (uint64_t, uint64x2_t, const int)
- _Form of expected instruction(s):_ 'vmov D0, R0, R0'
-
- * int64x2_t vsetq_lane_s64 (int64_t, int64x2_t, const int)
- _Form of expected instruction(s):_ 'vmov D0, R0, R0'
-
-6.57.6.48 Create vector from literal bit pattern
-................................................
-
- * poly64x1_t vcreate_p64 (uint64_t)
-
- * uint32x2_t vcreate_u32 (uint64_t)
-
- * uint16x4_t vcreate_u16 (uint64_t)
-
- * uint8x8_t vcreate_u8 (uint64_t)
-
- * int32x2_t vcreate_s32 (uint64_t)
-
- * int16x4_t vcreate_s16 (uint64_t)
-
- * int8x8_t vcreate_s8 (uint64_t)
-
- * uint64x1_t vcreate_u64 (uint64_t)
-
- * int64x1_t vcreate_s64 (uint64_t)
-
- * float32x2_t vcreate_f32 (uint64_t)
-
- * poly16x4_t vcreate_p16 (uint64_t)
-
- * poly8x8_t vcreate_p8 (uint64_t)
-
-6.57.6.49 Set all lanes to the same value
-.........................................
-
- * uint32x2_t vdup_n_u32 (uint32_t)
- _Form of expected instruction(s):_ 'vdup.32 D0, R0'
-
- * uint16x4_t vdup_n_u16 (uint16_t)
- _Form of expected instruction(s):_ 'vdup.16 D0, R0'
-
- * uint8x8_t vdup_n_u8 (uint8_t)
- _Form of expected instruction(s):_ 'vdup.8 D0, R0'
-
- * int32x2_t vdup_n_s32 (int32_t)
- _Form of expected instruction(s):_ 'vdup.32 D0, R0'
-
- * int16x4_t vdup_n_s16 (int16_t)
- _Form of expected instruction(s):_ 'vdup.16 D0, R0'
-
- * int8x8_t vdup_n_s8 (int8_t)
- _Form of expected instruction(s):_ 'vdup.8 D0, R0'
-
- * float32x2_t vdup_n_f32 (float32_t)
- _Form of expected instruction(s):_ 'vdup.32 D0, R0'
-
- * poly16x4_t vdup_n_p16 (poly16_t)
- _Form of expected instruction(s):_ 'vdup.16 D0, R0'
-
- * poly8x8_t vdup_n_p8 (poly8_t)
- _Form of expected instruction(s):_ 'vdup.8 D0, R0'
-
- * poly64x1_t vdup_n_p64 (poly64_t)
-
- * uint64x1_t vdup_n_u64 (uint64_t)
-
- * int64x1_t vdup_n_s64 (int64_t)
-
- * poly64x2_t vdupq_n_p64 (poly64_t)
-
- * uint32x4_t vdupq_n_u32 (uint32_t)
- _Form of expected instruction(s):_ 'vdup.32 Q0, R0'
-
- * uint16x8_t vdupq_n_u16 (uint16_t)
- _Form of expected instruction(s):_ 'vdup.16 Q0, R0'
-
- * uint8x16_t vdupq_n_u8 (uint8_t)
- _Form of expected instruction(s):_ 'vdup.8 Q0, R0'
-
- * int32x4_t vdupq_n_s32 (int32_t)
- _Form of expected instruction(s):_ 'vdup.32 Q0, R0'
-
- * int16x8_t vdupq_n_s16 (int16_t)
- _Form of expected instruction(s):_ 'vdup.16 Q0, R0'
-
- * int8x16_t vdupq_n_s8 (int8_t)
- _Form of expected instruction(s):_ 'vdup.8 Q0, R0'
-
- * float32x4_t vdupq_n_f32 (float32_t)
- _Form of expected instruction(s):_ 'vdup.32 Q0, R0'
-
- * poly16x8_t vdupq_n_p16 (poly16_t)
- _Form of expected instruction(s):_ 'vdup.16 Q0, R0'
-
- * poly8x16_t vdupq_n_p8 (poly8_t)
- _Form of expected instruction(s):_ 'vdup.8 Q0, R0'
-
- * uint64x2_t vdupq_n_u64 (uint64_t)
-
- * int64x2_t vdupq_n_s64 (int64_t)
-
- * uint32x2_t vmov_n_u32 (uint32_t)
- _Form of expected instruction(s):_ 'vdup.32 D0, R0'
-
- * uint16x4_t vmov_n_u16 (uint16_t)
- _Form of expected instruction(s):_ 'vdup.16 D0, R0'
-
- * uint8x8_t vmov_n_u8 (uint8_t)
- _Form of expected instruction(s):_ 'vdup.8 D0, R0'
-
- * int32x2_t vmov_n_s32 (int32_t)
- _Form of expected instruction(s):_ 'vdup.32 D0, R0'
-
- * int16x4_t vmov_n_s16 (int16_t)
- _Form of expected instruction(s):_ 'vdup.16 D0, R0'
-
- * int8x8_t vmov_n_s8 (int8_t)
- _Form of expected instruction(s):_ 'vdup.8 D0, R0'
-
- * float32x2_t vmov_n_f32 (float32_t)
- _Form of expected instruction(s):_ 'vdup.32 D0, R0'
-
- * poly16x4_t vmov_n_p16 (poly16_t)
- _Form of expected instruction(s):_ 'vdup.16 D0, R0'
-
- * poly8x8_t vmov_n_p8 (poly8_t)
- _Form of expected instruction(s):_ 'vdup.8 D0, R0'
-
- * uint64x1_t vmov_n_u64 (uint64_t)
-
- * int64x1_t vmov_n_s64 (int64_t)
-
- * uint32x4_t vmovq_n_u32 (uint32_t)
- _Form of expected instruction(s):_ 'vdup.32 Q0, R0'
-
- * uint16x8_t vmovq_n_u16 (uint16_t)
- _Form of expected instruction(s):_ 'vdup.16 Q0, R0'
-
- * uint8x16_t vmovq_n_u8 (uint8_t)
- _Form of expected instruction(s):_ 'vdup.8 Q0, R0'
-
- * int32x4_t vmovq_n_s32 (int32_t)
- _Form of expected instruction(s):_ 'vdup.32 Q0, R0'
-
- * int16x8_t vmovq_n_s16 (int16_t)
- _Form of expected instruction(s):_ 'vdup.16 Q0, R0'
-
- * int8x16_t vmovq_n_s8 (int8_t)
- _Form of expected instruction(s):_ 'vdup.8 Q0, R0'
-
- * float32x4_t vmovq_n_f32 (float32_t)
- _Form of expected instruction(s):_ 'vdup.32 Q0, R0'
-
- * poly16x8_t vmovq_n_p16 (poly16_t)
- _Form of expected instruction(s):_ 'vdup.16 Q0, R0'
-
- * poly8x16_t vmovq_n_p8 (poly8_t)
- _Form of expected instruction(s):_ 'vdup.8 Q0, R0'
-
- * uint64x2_t vmovq_n_u64 (uint64_t)
-
- * int64x2_t vmovq_n_s64 (int64_t)
-
- * uint32x2_t vdup_lane_u32 (uint32x2_t, const int)
- _Form of expected instruction(s):_ 'vdup.32 D0, D0[0]'
-
- * uint16x4_t vdup_lane_u16 (uint16x4_t, const int)
- _Form of expected instruction(s):_ 'vdup.16 D0, D0[0]'
-
- * uint8x8_t vdup_lane_u8 (uint8x8_t, const int)
- _Form of expected instruction(s):_ 'vdup.8 D0, D0[0]'
-
- * int32x2_t vdup_lane_s32 (int32x2_t, const int)
- _Form of expected instruction(s):_ 'vdup.32 D0, D0[0]'
-
- * int16x4_t vdup_lane_s16 (int16x4_t, const int)
- _Form of expected instruction(s):_ 'vdup.16 D0, D0[0]'
-
- * int8x8_t vdup_lane_s8 (int8x8_t, const int)
- _Form of expected instruction(s):_ 'vdup.8 D0, D0[0]'
-
- * float32x2_t vdup_lane_f32 (float32x2_t, const int)
- _Form of expected instruction(s):_ 'vdup.32 D0, D0[0]'
-
- * poly16x4_t vdup_lane_p16 (poly16x4_t, const int)
- _Form of expected instruction(s):_ 'vdup.16 D0, D0[0]'
-
- * poly8x8_t vdup_lane_p8 (poly8x8_t, const int)
- _Form of expected instruction(s):_ 'vdup.8 D0, D0[0]'
-
- * poly64x1_t vdup_lane_p64 (poly64x1_t, const int)
-
- * uint64x1_t vdup_lane_u64 (uint64x1_t, const int)
-
- * int64x1_t vdup_lane_s64 (int64x1_t, const int)
-
- * uint32x4_t vdupq_lane_u32 (uint32x2_t, const int)
- _Form of expected instruction(s):_ 'vdup.32 Q0, D0[0]'
-
- * uint16x8_t vdupq_lane_u16 (uint16x4_t, const int)
- _Form of expected instruction(s):_ 'vdup.16 Q0, D0[0]'
-
- * uint8x16_t vdupq_lane_u8 (uint8x8_t, const int)
- _Form of expected instruction(s):_ 'vdup.8 Q0, D0[0]'
-
- * int32x4_t vdupq_lane_s32 (int32x2_t, const int)
- _Form of expected instruction(s):_ 'vdup.32 Q0, D0[0]'
-
- * int16x8_t vdupq_lane_s16 (int16x4_t, const int)
- _Form of expected instruction(s):_ 'vdup.16 Q0, D0[0]'
-
- * int8x16_t vdupq_lane_s8 (int8x8_t, const int)
- _Form of expected instruction(s):_ 'vdup.8 Q0, D0[0]'
-
- * float32x4_t vdupq_lane_f32 (float32x2_t, const int)
- _Form of expected instruction(s):_ 'vdup.32 Q0, D0[0]'
-
- * poly16x8_t vdupq_lane_p16 (poly16x4_t, const int)
- _Form of expected instruction(s):_ 'vdup.16 Q0, D0[0]'
-
- * poly8x16_t vdupq_lane_p8 (poly8x8_t, const int)
- _Form of expected instruction(s):_ 'vdup.8 Q0, D0[0]'
-
- * poly64x2_t vdupq_lane_p64 (poly64x1_t, const int)
-
- * uint64x2_t vdupq_lane_u64 (uint64x1_t, const int)
-
- * int64x2_t vdupq_lane_s64 (int64x1_t, const int)
-
-6.57.6.50 Combining vectors
-...........................
-
- * poly64x2_t vcombine_p64 (poly64x1_t, poly64x1_t)
-
- * uint32x4_t vcombine_u32 (uint32x2_t, uint32x2_t)
-
- * uint16x8_t vcombine_u16 (uint16x4_t, uint16x4_t)
-
- * uint8x16_t vcombine_u8 (uint8x8_t, uint8x8_t)
-
- * int32x4_t vcombine_s32 (int32x2_t, int32x2_t)
-
- * int16x8_t vcombine_s16 (int16x4_t, int16x4_t)
-
- * int8x16_t vcombine_s8 (int8x8_t, int8x8_t)
-
- * uint64x2_t vcombine_u64 (uint64x1_t, uint64x1_t)
-
- * int64x2_t vcombine_s64 (int64x1_t, int64x1_t)
-
- * float32x4_t vcombine_f32 (float32x2_t, float32x2_t)
-
- * poly16x8_t vcombine_p16 (poly16x4_t, poly16x4_t)
-
- * poly8x16_t vcombine_p8 (poly8x8_t, poly8x8_t)
-
-6.57.6.51 Splitting vectors
-...........................
-
- * poly64x1_t vget_high_p64 (poly64x2_t)
-
- * uint32x2_t vget_high_u32 (uint32x4_t)
-
- * uint16x4_t vget_high_u16 (uint16x8_t)
-
- * uint8x8_t vget_high_u8 (uint8x16_t)
-
- * int32x2_t vget_high_s32 (int32x4_t)
-
- * int16x4_t vget_high_s16 (int16x8_t)
-
- * int8x8_t vget_high_s8 (int8x16_t)
-
- * uint64x1_t vget_high_u64 (uint64x2_t)
-
- * int64x1_t vget_high_s64 (int64x2_t)
-
- * float32x2_t vget_high_f32 (float32x4_t)
-
- * poly16x4_t vget_high_p16 (poly16x8_t)
-
- * poly8x8_t vget_high_p8 (poly8x16_t)
-
- * uint32x2_t vget_low_u32 (uint32x4_t)
- _Form of expected instruction(s):_ 'vmov D0, D0'
-
- * uint16x4_t vget_low_u16 (uint16x8_t)
- _Form of expected instruction(s):_ 'vmov D0, D0'
-
- * uint8x8_t vget_low_u8 (uint8x16_t)
- _Form of expected instruction(s):_ 'vmov D0, D0'
-
- * int32x2_t vget_low_s32 (int32x4_t)
- _Form of expected instruction(s):_ 'vmov D0, D0'
-
- * int16x4_t vget_low_s16 (int16x8_t)
- _Form of expected instruction(s):_ 'vmov D0, D0'
-
- * int8x8_t vget_low_s8 (int8x16_t)
- _Form of expected instruction(s):_ 'vmov D0, D0'
-
- * float32x2_t vget_low_f32 (float32x4_t)
- _Form of expected instruction(s):_ 'vmov D0, D0'
-
- * poly16x4_t vget_low_p16 (poly16x8_t)
- _Form of expected instruction(s):_ 'vmov D0, D0'
-
- * poly8x8_t vget_low_p8 (poly8x16_t)
- _Form of expected instruction(s):_ 'vmov D0, D0'
-
- * poly64x1_t vget_low_p64 (poly64x2_t)
-
- * uint64x1_t vget_low_u64 (uint64x2_t)
-
- * int64x1_t vget_low_s64 (int64x2_t)
-
-6.57.6.52 Conversions
-.....................
-
- * float32x2_t vcvt_f32_u32 (uint32x2_t)
- _Form of expected instruction(s):_ 'vcvt.f32.u32 D0, D0'
-
- * float32x2_t vcvt_f32_s32 (int32x2_t)
- _Form of expected instruction(s):_ 'vcvt.f32.s32 D0, D0'
-
- * uint32x2_t vcvt_u32_f32 (float32x2_t)
- _Form of expected instruction(s):_ 'vcvt.u32.f32 D0, D0'
-
- * int32x2_t vcvt_s32_f32 (float32x2_t)
- _Form of expected instruction(s):_ 'vcvt.s32.f32 D0, D0'
-
- * float32x4_t vcvtq_f32_u32 (uint32x4_t)
- _Form of expected instruction(s):_ 'vcvt.f32.u32 Q0, Q0'
-
- * float32x4_t vcvtq_f32_s32 (int32x4_t)
- _Form of expected instruction(s):_ 'vcvt.f32.s32 Q0, Q0'
-
- * uint32x4_t vcvtq_u32_f32 (float32x4_t)
- _Form of expected instruction(s):_ 'vcvt.u32.f32 Q0, Q0'
-
- * int32x4_t vcvtq_s32_f32 (float32x4_t)
- _Form of expected instruction(s):_ 'vcvt.s32.f32 Q0, Q0'
-
- * float16x4_t vcvt_f16_f32 (float32x4_t)
- _Form of expected instruction(s):_ 'vcvt.f16.f32 D0, Q0'
-
- * float32x4_t vcvt_f32_f16 (float16x4_t)
- _Form of expected instruction(s):_ 'vcvt.f32.f16 Q0, D0'
-
- * float32x2_t vcvt_n_f32_u32 (uint32x2_t, const int)
- _Form of expected instruction(s):_ 'vcvt.f32.u32 D0, D0, #0'
-
- * float32x2_t vcvt_n_f32_s32 (int32x2_t, const int)
- _Form of expected instruction(s):_ 'vcvt.f32.s32 D0, D0, #0'
-
- * uint32x2_t vcvt_n_u32_f32 (float32x2_t, const int)
- _Form of expected instruction(s):_ 'vcvt.u32.f32 D0, D0, #0'
-
- * int32x2_t vcvt_n_s32_f32 (float32x2_t, const int)
- _Form of expected instruction(s):_ 'vcvt.s32.f32 D0, D0, #0'
-
- * float32x4_t vcvtq_n_f32_u32 (uint32x4_t, const int)
- _Form of expected instruction(s):_ 'vcvt.f32.u32 Q0, Q0, #0'
-
- * float32x4_t vcvtq_n_f32_s32 (int32x4_t, const int)
- _Form of expected instruction(s):_ 'vcvt.f32.s32 Q0, Q0, #0'
-
- * uint32x4_t vcvtq_n_u32_f32 (float32x4_t, const int)
- _Form of expected instruction(s):_ 'vcvt.u32.f32 Q0, Q0, #0'
-
- * int32x4_t vcvtq_n_s32_f32 (float32x4_t, const int)
- _Form of expected instruction(s):_ 'vcvt.s32.f32 Q0, Q0, #0'
-
-6.57.6.53 Move, single_opcode narrowing
-.......................................
-
- * uint32x2_t vmovn_u64 (uint64x2_t)
- _Form of expected instruction(s):_ 'vmovn.i64 D0, Q0'
-
- * uint16x4_t vmovn_u32 (uint32x4_t)
- _Form of expected instruction(s):_ 'vmovn.i32 D0, Q0'
-
- * uint8x8_t vmovn_u16 (uint16x8_t)
- _Form of expected instruction(s):_ 'vmovn.i16 D0, Q0'
-
- * int32x2_t vmovn_s64 (int64x2_t)
- _Form of expected instruction(s):_ 'vmovn.i64 D0, Q0'
-
- * int16x4_t vmovn_s32 (int32x4_t)
- _Form of expected instruction(s):_ 'vmovn.i32 D0, Q0'
-
- * int8x8_t vmovn_s16 (int16x8_t)
- _Form of expected instruction(s):_ 'vmovn.i16 D0, Q0'
-
- * uint32x2_t vqmovn_u64 (uint64x2_t)
- _Form of expected instruction(s):_ 'vqmovn.u64 D0, Q0'
-
- * uint16x4_t vqmovn_u32 (uint32x4_t)
- _Form of expected instruction(s):_ 'vqmovn.u32 D0, Q0'
-
- * uint8x8_t vqmovn_u16 (uint16x8_t)
- _Form of expected instruction(s):_ 'vqmovn.u16 D0, Q0'
-
- * int32x2_t vqmovn_s64 (int64x2_t)
- _Form of expected instruction(s):_ 'vqmovn.s64 D0, Q0'
-
- * int16x4_t vqmovn_s32 (int32x4_t)
- _Form of expected instruction(s):_ 'vqmovn.s32 D0, Q0'
-
- * int8x8_t vqmovn_s16 (int16x8_t)
- _Form of expected instruction(s):_ 'vqmovn.s16 D0, Q0'
-
- * uint32x2_t vqmovun_s64 (int64x2_t)
- _Form of expected instruction(s):_ 'vqmovun.s64 D0, Q0'
-
- * uint16x4_t vqmovun_s32 (int32x4_t)
- _Form of expected instruction(s):_ 'vqmovun.s32 D0, Q0'
-
- * uint8x8_t vqmovun_s16 (int16x8_t)
- _Form of expected instruction(s):_ 'vqmovun.s16 D0, Q0'
-
-6.57.6.54 Move, single_opcode long
-..................................
-
- * uint64x2_t vmovl_u32 (uint32x2_t)
- _Form of expected instruction(s):_ 'vmovl.u32 Q0, D0'
-
- * uint32x4_t vmovl_u16 (uint16x4_t)
- _Form of expected instruction(s):_ 'vmovl.u16 Q0, D0'
-
- * uint16x8_t vmovl_u8 (uint8x8_t)
- _Form of expected instruction(s):_ 'vmovl.u8 Q0, D0'
-
- * int64x2_t vmovl_s32 (int32x2_t)
- _Form of expected instruction(s):_ 'vmovl.s32 Q0, D0'
-
- * int32x4_t vmovl_s16 (int16x4_t)
- _Form of expected instruction(s):_ 'vmovl.s16 Q0, D0'
-
- * int16x8_t vmovl_s8 (int8x8_t)
- _Form of expected instruction(s):_ 'vmovl.s8 Q0, D0'
-
-6.57.6.55 Table lookup
-......................
-
- * poly8x8_t vtbl1_p8 (poly8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vtbl.8 D0, {D0}, D0'
-
- * int8x8_t vtbl1_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vtbl.8 D0, {D0}, D0'
-
- * uint8x8_t vtbl1_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vtbl.8 D0, {D0}, D0'
-
- * poly8x8_t vtbl2_p8 (poly8x8x2_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1}, D0'
-
- * int8x8_t vtbl2_s8 (int8x8x2_t, int8x8_t)
- _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1}, D0'
-
- * uint8x8_t vtbl2_u8 (uint8x8x2_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1}, D0'
-
- * poly8x8_t vtbl3_p8 (poly8x8x3_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1, D2}, D0'
-
- * int8x8_t vtbl3_s8 (int8x8x3_t, int8x8_t)
- _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1, D2}, D0'
-
- * uint8x8_t vtbl3_u8 (uint8x8x3_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1, D2}, D0'
-
- * poly8x8_t vtbl4_p8 (poly8x8x4_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1, D2, D3},
- D0'
-
- * int8x8_t vtbl4_s8 (int8x8x4_t, int8x8_t)
- _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1, D2, D3},
- D0'
-
- * uint8x8_t vtbl4_u8 (uint8x8x4_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1, D2, D3},
- D0'
-
-6.57.6.56 Extended table lookup
-...............................
-
- * poly8x8_t vtbx1_p8 (poly8x8_t, poly8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vtbx.8 D0, {D0}, D0'
-
- * int8x8_t vtbx1_s8 (int8x8_t, int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vtbx.8 D0, {D0}, D0'
-
- * uint8x8_t vtbx1_u8 (uint8x8_t, uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vtbx.8 D0, {D0}, D0'
-
- * poly8x8_t vtbx2_p8 (poly8x8_t, poly8x8x2_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1}, D0'
-
- * int8x8_t vtbx2_s8 (int8x8_t, int8x8x2_t, int8x8_t)
- _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1}, D0'
-
- * uint8x8_t vtbx2_u8 (uint8x8_t, uint8x8x2_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1}, D0'
-
- * poly8x8_t vtbx3_p8 (poly8x8_t, poly8x8x3_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1, D2}, D0'
-
- * int8x8_t vtbx3_s8 (int8x8_t, int8x8x3_t, int8x8_t)
- _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1, D2}, D0'
-
- * uint8x8_t vtbx3_u8 (uint8x8_t, uint8x8x3_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1, D2}, D0'
-
- * poly8x8_t vtbx4_p8 (poly8x8_t, poly8x8x4_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1, D2, D3},
- D0'
-
- * int8x8_t vtbx4_s8 (int8x8_t, int8x8x4_t, int8x8_t)
- _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1, D2, D3},
- D0'
-
- * uint8x8_t vtbx4_u8 (uint8x8_t, uint8x8x4_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1, D2, D3},
- D0'
-
-6.57.6.57 Multiply, lane
-........................
-
- * float32x2_t vmul_lane_f32 (float32x2_t, float32x2_t, const int)
- _Form of expected instruction(s):_ 'vmul.f32 D0, D0, D0[0]'
-
- * uint32x2_t vmul_lane_u32 (uint32x2_t, uint32x2_t, const int)
- _Form of expected instruction(s):_ 'vmul.i32 D0, D0, D0[0]'
-
- * uint16x4_t vmul_lane_u16 (uint16x4_t, uint16x4_t, const int)
- _Form of expected instruction(s):_ 'vmul.i16 D0, D0, D0[0]'
-
- * int32x2_t vmul_lane_s32 (int32x2_t, int32x2_t, const int)
- _Form of expected instruction(s):_ 'vmul.i32 D0, D0, D0[0]'
-
- * int16x4_t vmul_lane_s16 (int16x4_t, int16x4_t, const int)
- _Form of expected instruction(s):_ 'vmul.i16 D0, D0, D0[0]'
-
- * float32x4_t vmulq_lane_f32 (float32x4_t, float32x2_t, const int)
- _Form of expected instruction(s):_ 'vmul.f32 Q0, Q0, D0[0]'
-
- * uint32x4_t vmulq_lane_u32 (uint32x4_t, uint32x2_t, const int)
- _Form of expected instruction(s):_ 'vmul.i32 Q0, Q0, D0[0]'
-
- * uint16x8_t vmulq_lane_u16 (uint16x8_t, uint16x4_t, const int)
- _Form of expected instruction(s):_ 'vmul.i16 Q0, Q0, D0[0]'
-
- * int32x4_t vmulq_lane_s32 (int32x4_t, int32x2_t, const int)
- _Form of expected instruction(s):_ 'vmul.i32 Q0, Q0, D0[0]'
-
- * int16x8_t vmulq_lane_s16 (int16x8_t, int16x4_t, const int)
- _Form of expected instruction(s):_ 'vmul.i16 Q0, Q0, D0[0]'
-
-6.57.6.58 Long multiply, lane
-.............................
-
- * uint64x2_t vmull_lane_u32 (uint32x2_t, uint32x2_t, const int)
- _Form of expected instruction(s):_ 'vmull.u32 Q0, D0, D0[0]'
-
- * uint32x4_t vmull_lane_u16 (uint16x4_t, uint16x4_t, const int)
- _Form of expected instruction(s):_ 'vmull.u16 Q0, D0, D0[0]'
-
- * int64x2_t vmull_lane_s32 (int32x2_t, int32x2_t, const int)
- _Form of expected instruction(s):_ 'vmull.s32 Q0, D0, D0[0]'
-
- * int32x4_t vmull_lane_s16 (int16x4_t, int16x4_t, const int)
- _Form of expected instruction(s):_ 'vmull.s16 Q0, D0, D0[0]'
-
-6.57.6.59 Saturating doubling long multiply, lane
-.................................................
-
- * int64x2_t vqdmull_lane_s32 (int32x2_t, int32x2_t, const int)
- _Form of expected instruction(s):_ 'vqdmull.s32 Q0, D0, D0[0]'
-
- * int32x4_t vqdmull_lane_s16 (int16x4_t, int16x4_t, const int)
- _Form of expected instruction(s):_ 'vqdmull.s16 Q0, D0, D0[0]'
-
-6.57.6.60 Saturating doubling multiply high, lane
-.................................................
-
- * int32x4_t vqdmulhq_lane_s32 (int32x4_t, int32x2_t, const int)
- _Form of expected instruction(s):_ 'vqdmulh.s32 Q0, Q0, D0[0]'
-
- * int16x8_t vqdmulhq_lane_s16 (int16x8_t, int16x4_t, const int)
- _Form of expected instruction(s):_ 'vqdmulh.s16 Q0, Q0, D0[0]'
-
- * int32x2_t vqdmulh_lane_s32 (int32x2_t, int32x2_t, const int)
- _Form of expected instruction(s):_ 'vqdmulh.s32 D0, D0, D0[0]'
-
- * int16x4_t vqdmulh_lane_s16 (int16x4_t, int16x4_t, const int)
- _Form of expected instruction(s):_ 'vqdmulh.s16 D0, D0, D0[0]'
-
- * int32x4_t vqrdmulhq_lane_s32 (int32x4_t, int32x2_t, const int)
- _Form of expected instruction(s):_ 'vqrdmulh.s32 Q0, Q0, D0[0]'
-
- * int16x8_t vqrdmulhq_lane_s16 (int16x8_t, int16x4_t, const int)
- _Form of expected instruction(s):_ 'vqrdmulh.s16 Q0, Q0, D0[0]'
-
- * int32x2_t vqrdmulh_lane_s32 (int32x2_t, int32x2_t, const int)
- _Form of expected instruction(s):_ 'vqrdmulh.s32 D0, D0, D0[0]'
-
- * int16x4_t vqrdmulh_lane_s16 (int16x4_t, int16x4_t, const int)
- _Form of expected instruction(s):_ 'vqrdmulh.s16 D0, D0, D0[0]'
-
-6.57.6.61 Multiply-accumulate, lane
-...................................
-
- * float32x2_t vmla_lane_f32 (float32x2_t, float32x2_t, float32x2_t,
- const int)
- _Form of expected instruction(s):_ 'vmla.f32 D0, D0, D0[0]'
-
- * uint32x2_t vmla_lane_u32 (uint32x2_t, uint32x2_t, uint32x2_t, const
- int)
- _Form of expected instruction(s):_ 'vmla.i32 D0, D0, D0[0]'
-
- * uint16x4_t vmla_lane_u16 (uint16x4_t, uint16x4_t, uint16x4_t, const
- int)
- _Form of expected instruction(s):_ 'vmla.i16 D0, D0, D0[0]'
-
- * int32x2_t vmla_lane_s32 (int32x2_t, int32x2_t, int32x2_t, const
- int)
- _Form of expected instruction(s):_ 'vmla.i32 D0, D0, D0[0]'
-
- * int16x4_t vmla_lane_s16 (int16x4_t, int16x4_t, int16x4_t, const
- int)
- _Form of expected instruction(s):_ 'vmla.i16 D0, D0, D0[0]'
-
- * float32x4_t vmlaq_lane_f32 (float32x4_t, float32x4_t, float32x2_t,
- const int)
- _Form of expected instruction(s):_ 'vmla.f32 Q0, Q0, D0[0]'
-
- * uint32x4_t vmlaq_lane_u32 (uint32x4_t, uint32x4_t, uint32x2_t,
- const int)
- _Form of expected instruction(s):_ 'vmla.i32 Q0, Q0, D0[0]'
-
- * uint16x8_t vmlaq_lane_u16 (uint16x8_t, uint16x8_t, uint16x4_t,
- const int)
- _Form of expected instruction(s):_ 'vmla.i16 Q0, Q0, D0[0]'
-
- * int32x4_t vmlaq_lane_s32 (int32x4_t, int32x4_t, int32x2_t, const
- int)
- _Form of expected instruction(s):_ 'vmla.i32 Q0, Q0, D0[0]'
-
- * int16x8_t vmlaq_lane_s16 (int16x8_t, int16x8_t, int16x4_t, const
- int)
- _Form of expected instruction(s):_ 'vmla.i16 Q0, Q0, D0[0]'
-
- * uint64x2_t vmlal_lane_u32 (uint64x2_t, uint32x2_t, uint32x2_t,
- const int)
- _Form of expected instruction(s):_ 'vmlal.u32 Q0, D0, D0[0]'
-
- * uint32x4_t vmlal_lane_u16 (uint32x4_t, uint16x4_t, uint16x4_t,
- const int)
- _Form of expected instruction(s):_ 'vmlal.u16 Q0, D0, D0[0]'
-
- * int64x2_t vmlal_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const
- int)
- _Form of expected instruction(s):_ 'vmlal.s32 Q0, D0, D0[0]'
-
- * int32x4_t vmlal_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const
- int)
- _Form of expected instruction(s):_ 'vmlal.s16 Q0, D0, D0[0]'
-
- * int64x2_t vqdmlal_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const
- int)
- _Form of expected instruction(s):_ 'vqdmlal.s32 Q0, D0, D0[0]'
-
- * int32x4_t vqdmlal_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const
- int)
- _Form of expected instruction(s):_ 'vqdmlal.s16 Q0, D0, D0[0]'
-
-6.57.6.62 Multiply-subtract, lane
-.................................
-
- * float32x2_t vmls_lane_f32 (float32x2_t, float32x2_t, float32x2_t,
- const int)
- _Form of expected instruction(s):_ 'vmls.f32 D0, D0, D0[0]'
-
- * uint32x2_t vmls_lane_u32 (uint32x2_t, uint32x2_t, uint32x2_t, const
- int)
- _Form of expected instruction(s):_ 'vmls.i32 D0, D0, D0[0]'
-
- * uint16x4_t vmls_lane_u16 (uint16x4_t, uint16x4_t, uint16x4_t, const
- int)
- _Form of expected instruction(s):_ 'vmls.i16 D0, D0, D0[0]'
-
- * int32x2_t vmls_lane_s32 (int32x2_t, int32x2_t, int32x2_t, const
- int)
- _Form of expected instruction(s):_ 'vmls.i32 D0, D0, D0[0]'
-
- * int16x4_t vmls_lane_s16 (int16x4_t, int16x4_t, int16x4_t, const
- int)
- _Form of expected instruction(s):_ 'vmls.i16 D0, D0, D0[0]'
-
- * float32x4_t vmlsq_lane_f32 (float32x4_t, float32x4_t, float32x2_t,
- const int)
- _Form of expected instruction(s):_ 'vmls.f32 Q0, Q0, D0[0]'
-
- * uint32x4_t vmlsq_lane_u32 (uint32x4_t, uint32x4_t, uint32x2_t,
- const int)
- _Form of expected instruction(s):_ 'vmls.i32 Q0, Q0, D0[0]'
-
- * uint16x8_t vmlsq_lane_u16 (uint16x8_t, uint16x8_t, uint16x4_t,
- const int)
- _Form of expected instruction(s):_ 'vmls.i16 Q0, Q0, D0[0]'
-
- * int32x4_t vmlsq_lane_s32 (int32x4_t, int32x4_t, int32x2_t, const
- int)
- _Form of expected instruction(s):_ 'vmls.i32 Q0, Q0, D0[0]'
-
- * int16x8_t vmlsq_lane_s16 (int16x8_t, int16x8_t, int16x4_t, const
- int)
- _Form of expected instruction(s):_ 'vmls.i16 Q0, Q0, D0[0]'
-
- * uint64x2_t vmlsl_lane_u32 (uint64x2_t, uint32x2_t, uint32x2_t,
- const int)
- _Form of expected instruction(s):_ 'vmlsl.u32 Q0, D0, D0[0]'
-
- * uint32x4_t vmlsl_lane_u16 (uint32x4_t, uint16x4_t, uint16x4_t,
- const int)
- _Form of expected instruction(s):_ 'vmlsl.u16 Q0, D0, D0[0]'
-
- * int64x2_t vmlsl_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const
- int)
- _Form of expected instruction(s):_ 'vmlsl.s32 Q0, D0, D0[0]'
-
- * int32x4_t vmlsl_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const
- int)
- _Form of expected instruction(s):_ 'vmlsl.s16 Q0, D0, D0[0]'
-
- * int64x2_t vqdmlsl_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const
- int)
- _Form of expected instruction(s):_ 'vqdmlsl.s32 Q0, D0, D0[0]'
-
- * int32x4_t vqdmlsl_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const
- int)
- _Form of expected instruction(s):_ 'vqdmlsl.s16 Q0, D0, D0[0]'
-
-6.57.6.63 Vector multiply by scalar
-...................................
-
- * float32x2_t vmul_n_f32 (float32x2_t, float32_t)
- _Form of expected instruction(s):_ 'vmul.f32 D0, D0, D0[0]'
-
- * uint32x2_t vmul_n_u32 (uint32x2_t, uint32_t)
- _Form of expected instruction(s):_ 'vmul.i32 D0, D0, D0[0]'
-
- * uint16x4_t vmul_n_u16 (uint16x4_t, uint16_t)
- _Form of expected instruction(s):_ 'vmul.i16 D0, D0, D0[0]'
-
- * int32x2_t vmul_n_s32 (int32x2_t, int32_t)
- _Form of expected instruction(s):_ 'vmul.i32 D0, D0, D0[0]'
-
- * int16x4_t vmul_n_s16 (int16x4_t, int16_t)
- _Form of expected instruction(s):_ 'vmul.i16 D0, D0, D0[0]'
-
- * float32x4_t vmulq_n_f32 (float32x4_t, float32_t)
- _Form of expected instruction(s):_ 'vmul.f32 Q0, Q0, D0[0]'
-
- * uint32x4_t vmulq_n_u32 (uint32x4_t, uint32_t)
- _Form of expected instruction(s):_ 'vmul.i32 Q0, Q0, D0[0]'
-
- * uint16x8_t vmulq_n_u16 (uint16x8_t, uint16_t)
- _Form of expected instruction(s):_ 'vmul.i16 Q0, Q0, D0[0]'
-
- * int32x4_t vmulq_n_s32 (int32x4_t, int32_t)
- _Form of expected instruction(s):_ 'vmul.i32 Q0, Q0, D0[0]'
-
- * int16x8_t vmulq_n_s16 (int16x8_t, int16_t)
- _Form of expected instruction(s):_ 'vmul.i16 Q0, Q0, D0[0]'
-
-6.57.6.64 Vector long multiply by scalar
-........................................
-
- * uint64x2_t vmull_n_u32 (uint32x2_t, uint32_t)
- _Form of expected instruction(s):_ 'vmull.u32 Q0, D0, D0[0]'
-
- * uint32x4_t vmull_n_u16 (uint16x4_t, uint16_t)
- _Form of expected instruction(s):_ 'vmull.u16 Q0, D0, D0[0]'
-
- * int64x2_t vmull_n_s32 (int32x2_t, int32_t)
- _Form of expected instruction(s):_ 'vmull.s32 Q0, D0, D0[0]'
-
- * int32x4_t vmull_n_s16 (int16x4_t, int16_t)
- _Form of expected instruction(s):_ 'vmull.s16 Q0, D0, D0[0]'
-
-6.57.6.65 Vector saturating doubling long multiply by scalar
-............................................................
-
- * int64x2_t vqdmull_n_s32 (int32x2_t, int32_t)
- _Form of expected instruction(s):_ 'vqdmull.s32 Q0, D0, D0[0]'
-
- * int32x4_t vqdmull_n_s16 (int16x4_t, int16_t)
- _Form of expected instruction(s):_ 'vqdmull.s16 Q0, D0, D0[0]'
-
-6.57.6.66 Vector saturating doubling multiply high by scalar
-............................................................
-
- * int32x4_t vqdmulhq_n_s32 (int32x4_t, int32_t)
- _Form of expected instruction(s):_ 'vqdmulh.s32 Q0, Q0, D0[0]'
-
- * int16x8_t vqdmulhq_n_s16 (int16x8_t, int16_t)
- _Form of expected instruction(s):_ 'vqdmulh.s16 Q0, Q0, D0[0]'
-
- * int32x2_t vqdmulh_n_s32 (int32x2_t, int32_t)
- _Form of expected instruction(s):_ 'vqdmulh.s32 D0, D0, D0[0]'
-
- * int16x4_t vqdmulh_n_s16 (int16x4_t, int16_t)
- _Form of expected instruction(s):_ 'vqdmulh.s16 D0, D0, D0[0]'
-
- * int32x4_t vqrdmulhq_n_s32 (int32x4_t, int32_t)
- _Form of expected instruction(s):_ 'vqrdmulh.s32 Q0, Q0, D0[0]'
-
- * int16x8_t vqrdmulhq_n_s16 (int16x8_t, int16_t)
- _Form of expected instruction(s):_ 'vqrdmulh.s16 Q0, Q0, D0[0]'
-
- * int32x2_t vqrdmulh_n_s32 (int32x2_t, int32_t)
- _Form of expected instruction(s):_ 'vqrdmulh.s32 D0, D0, D0[0]'
-
- * int16x4_t vqrdmulh_n_s16 (int16x4_t, int16_t)
- _Form of expected instruction(s):_ 'vqrdmulh.s16 D0, D0, D0[0]'
-
-6.57.6.67 Vector multiply-accumulate by scalar
-..............................................
-
- * float32x2_t vmla_n_f32 (float32x2_t, float32x2_t, float32_t)
- _Form of expected instruction(s):_ 'vmla.f32 D0, D0, D0[0]'
-
- * uint32x2_t vmla_n_u32 (uint32x2_t, uint32x2_t, uint32_t)
- _Form of expected instruction(s):_ 'vmla.i32 D0, D0, D0[0]'
-
- * uint16x4_t vmla_n_u16 (uint16x4_t, uint16x4_t, uint16_t)
- _Form of expected instruction(s):_ 'vmla.i16 D0, D0, D0[0]'
-
- * int32x2_t vmla_n_s32 (int32x2_t, int32x2_t, int32_t)
- _Form of expected instruction(s):_ 'vmla.i32 D0, D0, D0[0]'
-
- * int16x4_t vmla_n_s16 (int16x4_t, int16x4_t, int16_t)
- _Form of expected instruction(s):_ 'vmla.i16 D0, D0, D0[0]'
-
- * float32x4_t vmlaq_n_f32 (float32x4_t, float32x4_t, float32_t)
- _Form of expected instruction(s):_ 'vmla.f32 Q0, Q0, D0[0]'
-
- * uint32x4_t vmlaq_n_u32 (uint32x4_t, uint32x4_t, uint32_t)
- _Form of expected instruction(s):_ 'vmla.i32 Q0, Q0, D0[0]'
-
- * uint16x8_t vmlaq_n_u16 (uint16x8_t, uint16x8_t, uint16_t)
- _Form of expected instruction(s):_ 'vmla.i16 Q0, Q0, D0[0]'
-
- * int32x4_t vmlaq_n_s32 (int32x4_t, int32x4_t, int32_t)
- _Form of expected instruction(s):_ 'vmla.i32 Q0, Q0, D0[0]'
-
- * int16x8_t vmlaq_n_s16 (int16x8_t, int16x8_t, int16_t)
- _Form of expected instruction(s):_ 'vmla.i16 Q0, Q0, D0[0]'
-
- * uint64x2_t vmlal_n_u32 (uint64x2_t, uint32x2_t, uint32_t)
- _Form of expected instruction(s):_ 'vmlal.u32 Q0, D0, D0[0]'
-
- * uint32x4_t vmlal_n_u16 (uint32x4_t, uint16x4_t, uint16_t)
- _Form of expected instruction(s):_ 'vmlal.u16 Q0, D0, D0[0]'
-
- * int64x2_t vmlal_n_s32 (int64x2_t, int32x2_t, int32_t)
- _Form of expected instruction(s):_ 'vmlal.s32 Q0, D0, D0[0]'
-
- * int32x4_t vmlal_n_s16 (int32x4_t, int16x4_t, int16_t)
- _Form of expected instruction(s):_ 'vmlal.s16 Q0, D0, D0[0]'
-
- * int64x2_t vqdmlal_n_s32 (int64x2_t, int32x2_t, int32_t)
- _Form of expected instruction(s):_ 'vqdmlal.s32 Q0, D0, D0[0]'
-
- * int32x4_t vqdmlal_n_s16 (int32x4_t, int16x4_t, int16_t)
- _Form of expected instruction(s):_ 'vqdmlal.s16 Q0, D0, D0[0]'
-
-6.57.6.68 Vector multiply-subtract by scalar
-............................................
-
- * float32x2_t vmls_n_f32 (float32x2_t, float32x2_t, float32_t)
- _Form of expected instruction(s):_ 'vmls.f32 D0, D0, D0[0]'
-
- * uint32x2_t vmls_n_u32 (uint32x2_t, uint32x2_t, uint32_t)
- _Form of expected instruction(s):_ 'vmls.i32 D0, D0, D0[0]'
-
- * uint16x4_t vmls_n_u16 (uint16x4_t, uint16x4_t, uint16_t)
- _Form of expected instruction(s):_ 'vmls.i16 D0, D0, D0[0]'
-
- * int32x2_t vmls_n_s32 (int32x2_t, int32x2_t, int32_t)
- _Form of expected instruction(s):_ 'vmls.i32 D0, D0, D0[0]'
-
- * int16x4_t vmls_n_s16 (int16x4_t, int16x4_t, int16_t)
- _Form of expected instruction(s):_ 'vmls.i16 D0, D0, D0[0]'
-
- * float32x4_t vmlsq_n_f32 (float32x4_t, float32x4_t, float32_t)
- _Form of expected instruction(s):_ 'vmls.f32 Q0, Q0, D0[0]'
-
- * uint32x4_t vmlsq_n_u32 (uint32x4_t, uint32x4_t, uint32_t)
- _Form of expected instruction(s):_ 'vmls.i32 Q0, Q0, D0[0]'
-
- * uint16x8_t vmlsq_n_u16 (uint16x8_t, uint16x8_t, uint16_t)
- _Form of expected instruction(s):_ 'vmls.i16 Q0, Q0, D0[0]'
-
- * int32x4_t vmlsq_n_s32 (int32x4_t, int32x4_t, int32_t)
- _Form of expected instruction(s):_ 'vmls.i32 Q0, Q0, D0[0]'
-
- * int16x8_t vmlsq_n_s16 (int16x8_t, int16x8_t, int16_t)
- _Form of expected instruction(s):_ 'vmls.i16 Q0, Q0, D0[0]'
-
- * uint64x2_t vmlsl_n_u32 (uint64x2_t, uint32x2_t, uint32_t)
- _Form of expected instruction(s):_ 'vmlsl.u32 Q0, D0, D0[0]'
-
- * uint32x4_t vmlsl_n_u16 (uint32x4_t, uint16x4_t, uint16_t)
- _Form of expected instruction(s):_ 'vmlsl.u16 Q0, D0, D0[0]'
-
- * int64x2_t vmlsl_n_s32 (int64x2_t, int32x2_t, int32_t)
- _Form of expected instruction(s):_ 'vmlsl.s32 Q0, D0, D0[0]'
-
- * int32x4_t vmlsl_n_s16 (int32x4_t, int16x4_t, int16_t)
- _Form of expected instruction(s):_ 'vmlsl.s16 Q0, D0, D0[0]'
-
- * int64x2_t vqdmlsl_n_s32 (int64x2_t, int32x2_t, int32_t)
- _Form of expected instruction(s):_ 'vqdmlsl.s32 Q0, D0, D0[0]'
-
- * int32x4_t vqdmlsl_n_s16 (int32x4_t, int16x4_t, int16_t)
- _Form of expected instruction(s):_ 'vqdmlsl.s16 Q0, D0, D0[0]'
-
-6.57.6.69 Vector extract
-........................
-
- * poly64x1_t vext_p64 (poly64x1_t, poly64x1_t, const int)
- _Form of expected instruction(s):_ 'vext.64 D0, D0, D0, #0'
-
- * uint32x2_t vext_u32 (uint32x2_t, uint32x2_t, const int)
- _Form of expected instruction(s):_ 'vext.32 D0, D0, D0, #0'
-
- * uint16x4_t vext_u16 (uint16x4_t, uint16x4_t, const int)
- _Form of expected instruction(s):_ 'vext.16 D0, D0, D0, #0'
-
- * uint8x8_t vext_u8 (uint8x8_t, uint8x8_t, const int)
- _Form of expected instruction(s):_ 'vext.8 D0, D0, D0, #0'
-
- * int32x2_t vext_s32 (int32x2_t, int32x2_t, const int)
- _Form of expected instruction(s):_ 'vext.32 D0, D0, D0, #0'
-
- * int16x4_t vext_s16 (int16x4_t, int16x4_t, const int)
- _Form of expected instruction(s):_ 'vext.16 D0, D0, D0, #0'
-
- * int8x8_t vext_s8 (int8x8_t, int8x8_t, const int)
- _Form of expected instruction(s):_ 'vext.8 D0, D0, D0, #0'
-
- * uint64x1_t vext_u64 (uint64x1_t, uint64x1_t, const int)
- _Form of expected instruction(s):_ 'vext.64 D0, D0, D0, #0'
-
- * int64x1_t vext_s64 (int64x1_t, int64x1_t, const int)
- _Form of expected instruction(s):_ 'vext.64 D0, D0, D0, #0'
-
- * float32x2_t vext_f32 (float32x2_t, float32x2_t, const int)
- _Form of expected instruction(s):_ 'vext.32 D0, D0, D0, #0'
-
- * poly16x4_t vext_p16 (poly16x4_t, poly16x4_t, const int)
- _Form of expected instruction(s):_ 'vext.16 D0, D0, D0, #0'
-
- * poly8x8_t vext_p8 (poly8x8_t, poly8x8_t, const int)
- _Form of expected instruction(s):_ 'vext.8 D0, D0, D0, #0'
-
- * poly64x2_t vextq_p64 (poly64x2_t, poly64x2_t, const int)
- _Form of expected instruction(s):_ 'vext.64 Q0, Q0, Q0, #0'
-
- * uint32x4_t vextq_u32 (uint32x4_t, uint32x4_t, const int)
- _Form of expected instruction(s):_ 'vext.32 Q0, Q0, Q0, #0'
-
- * uint16x8_t vextq_u16 (uint16x8_t, uint16x8_t, const int)
- _Form of expected instruction(s):_ 'vext.16 Q0, Q0, Q0, #0'
-
- * uint8x16_t vextq_u8 (uint8x16_t, uint8x16_t, const int)
- _Form of expected instruction(s):_ 'vext.8 Q0, Q0, Q0, #0'
-
- * int32x4_t vextq_s32 (int32x4_t, int32x4_t, const int)
- _Form of expected instruction(s):_ 'vext.32 Q0, Q0, Q0, #0'
-
- * int16x8_t vextq_s16 (int16x8_t, int16x8_t, const int)
- _Form of expected instruction(s):_ 'vext.16 Q0, Q0, Q0, #0'
-
- * int8x16_t vextq_s8 (int8x16_t, int8x16_t, const int)
- _Form of expected instruction(s):_ 'vext.8 Q0, Q0, Q0, #0'
-
- * uint64x2_t vextq_u64 (uint64x2_t, uint64x2_t, const int)
- _Form of expected instruction(s):_ 'vext.64 Q0, Q0, Q0, #0'
-
- * int64x2_t vextq_s64 (int64x2_t, int64x2_t, const int)
- _Form of expected instruction(s):_ 'vext.64 Q0, Q0, Q0, #0'
-
- * float32x4_t vextq_f32 (float32x4_t, float32x4_t, const int)
- _Form of expected instruction(s):_ 'vext.32 Q0, Q0, Q0, #0'
-
- * poly16x8_t vextq_p16 (poly16x8_t, poly16x8_t, const int)
- _Form of expected instruction(s):_ 'vext.16 Q0, Q0, Q0, #0'
-
- * poly8x16_t vextq_p8 (poly8x16_t, poly8x16_t, const int)
- _Form of expected instruction(s):_ 'vext.8 Q0, Q0, Q0, #0'
-
-6.57.6.70 Reverse elements
-..........................
-
- * uint32x2_t vrev64_u32 (uint32x2_t)
- _Form of expected instruction(s):_ 'vrev64.32 D0, D0'
-
- * uint16x4_t vrev64_u16 (uint16x4_t)
- _Form of expected instruction(s):_ 'vrev64.16 D0, D0'
-
- * uint8x8_t vrev64_u8 (uint8x8_t)
- _Form of expected instruction(s):_ 'vrev64.8 D0, D0'
-
- * int32x2_t vrev64_s32 (int32x2_t)
- _Form of expected instruction(s):_ 'vrev64.32 D0, D0'
-
- * int16x4_t vrev64_s16 (int16x4_t)
- _Form of expected instruction(s):_ 'vrev64.16 D0, D0'
-
- * int8x8_t vrev64_s8 (int8x8_t)
- _Form of expected instruction(s):_ 'vrev64.8 D0, D0'
-
- * float32x2_t vrev64_f32 (float32x2_t)
- _Form of expected instruction(s):_ 'vrev64.32 D0, D0'
-
- * poly16x4_t vrev64_p16 (poly16x4_t)
- _Form of expected instruction(s):_ 'vrev64.16 D0, D0'
-
- * poly8x8_t vrev64_p8 (poly8x8_t)
- _Form of expected instruction(s):_ 'vrev64.8 D0, D0'
-
- * uint32x4_t vrev64q_u32 (uint32x4_t)
- _Form of expected instruction(s):_ 'vrev64.32 Q0, Q0'
-
- * uint16x8_t vrev64q_u16 (uint16x8_t)
- _Form of expected instruction(s):_ 'vrev64.16 Q0, Q0'
-
- * uint8x16_t vrev64q_u8 (uint8x16_t)
- _Form of expected instruction(s):_ 'vrev64.8 Q0, Q0'
-
- * int32x4_t vrev64q_s32 (int32x4_t)
- _Form of expected instruction(s):_ 'vrev64.32 Q0, Q0'
-
- * int16x8_t vrev64q_s16 (int16x8_t)
- _Form of expected instruction(s):_ 'vrev64.16 Q0, Q0'
-
- * int8x16_t vrev64q_s8 (int8x16_t)
- _Form of expected instruction(s):_ 'vrev64.8 Q0, Q0'
-
- * float32x4_t vrev64q_f32 (float32x4_t)
- _Form of expected instruction(s):_ 'vrev64.32 Q0, Q0'
-
- * poly16x8_t vrev64q_p16 (poly16x8_t)
- _Form of expected instruction(s):_ 'vrev64.16 Q0, Q0'
-
- * poly8x16_t vrev64q_p8 (poly8x16_t)
- _Form of expected instruction(s):_ 'vrev64.8 Q0, Q0'
-
- * uint16x4_t vrev32_u16 (uint16x4_t)
- _Form of expected instruction(s):_ 'vrev32.16 D0, D0'
-
- * int16x4_t vrev32_s16 (int16x4_t)
- _Form of expected instruction(s):_ 'vrev32.16 D0, D0'
-
- * uint8x8_t vrev32_u8 (uint8x8_t)
- _Form of expected instruction(s):_ 'vrev32.8 D0, D0'
-
- * int8x8_t vrev32_s8 (int8x8_t)
- _Form of expected instruction(s):_ 'vrev32.8 D0, D0'
-
- * poly16x4_t vrev32_p16 (poly16x4_t)
- _Form of expected instruction(s):_ 'vrev32.16 D0, D0'
-
- * poly8x8_t vrev32_p8 (poly8x8_t)
- _Form of expected instruction(s):_ 'vrev32.8 D0, D0'
-
- * uint16x8_t vrev32q_u16 (uint16x8_t)
- _Form of expected instruction(s):_ 'vrev32.16 Q0, Q0'
-
- * int16x8_t vrev32q_s16 (int16x8_t)
- _Form of expected instruction(s):_ 'vrev32.16 Q0, Q0'
-
- * uint8x16_t vrev32q_u8 (uint8x16_t)
- _Form of expected instruction(s):_ 'vrev32.8 Q0, Q0'
-
- * int8x16_t vrev32q_s8 (int8x16_t)
- _Form of expected instruction(s):_ 'vrev32.8 Q0, Q0'
-
- * poly16x8_t vrev32q_p16 (poly16x8_t)
- _Form of expected instruction(s):_ 'vrev32.16 Q0, Q0'
-
- * poly8x16_t vrev32q_p8 (poly8x16_t)
- _Form of expected instruction(s):_ 'vrev32.8 Q0, Q0'
-
- * uint8x8_t vrev16_u8 (uint8x8_t)
- _Form of expected instruction(s):_ 'vrev16.8 D0, D0'
-
- * int8x8_t vrev16_s8 (int8x8_t)
- _Form of expected instruction(s):_ 'vrev16.8 D0, D0'
-
- * poly8x8_t vrev16_p8 (poly8x8_t)
- _Form of expected instruction(s):_ 'vrev16.8 D0, D0'
-
- * uint8x16_t vrev16q_u8 (uint8x16_t)
- _Form of expected instruction(s):_ 'vrev16.8 Q0, Q0'
-
- * int8x16_t vrev16q_s8 (int8x16_t)
- _Form of expected instruction(s):_ 'vrev16.8 Q0, Q0'
-
- * poly8x16_t vrev16q_p8 (poly8x16_t)
- _Form of expected instruction(s):_ 'vrev16.8 Q0, Q0'
-
-6.57.6.71 Bit selection
-.......................
-
- * poly64x1_t vbsl_p64 (uint64x1_t, poly64x1_t, poly64x1_t)
- _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0,
- D0, D0' _or_ 'vbif D0, D0, D0'
-
- * uint32x2_t vbsl_u32 (uint32x2_t, uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0,
- D0, D0' _or_ 'vbif D0, D0, D0'
-
- * uint16x4_t vbsl_u16 (uint16x4_t, uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0,
- D0, D0' _or_ 'vbif D0, D0, D0'
-
- * uint8x8_t vbsl_u8 (uint8x8_t, uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0,
- D0, D0' _or_ 'vbif D0, D0, D0'
-
- * int32x2_t vbsl_s32 (uint32x2_t, int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0,
- D0, D0' _or_ 'vbif D0, D0, D0'
-
- * int16x4_t vbsl_s16 (uint16x4_t, int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0,
- D0, D0' _or_ 'vbif D0, D0, D0'
-
- * int8x8_t vbsl_s8 (uint8x8_t, int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0,
- D0, D0' _or_ 'vbif D0, D0, D0'
-
- * uint64x1_t vbsl_u64 (uint64x1_t, uint64x1_t, uint64x1_t)
- _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0,
- D0, D0' _or_ 'vbif D0, D0, D0'
-
- * int64x1_t vbsl_s64 (uint64x1_t, int64x1_t, int64x1_t)
- _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0,
- D0, D0' _or_ 'vbif D0, D0, D0'
-
- * float32x2_t vbsl_f32 (uint32x2_t, float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0,
- D0, D0' _or_ 'vbif D0, D0, D0'
-
- * poly16x4_t vbsl_p16 (uint16x4_t, poly16x4_t, poly16x4_t)
- _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0,
- D0, D0' _or_ 'vbif D0, D0, D0'
-
- * poly8x8_t vbsl_p8 (uint8x8_t, poly8x8_t, poly8x8_t)
- _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0,
- D0, D0' _or_ 'vbif D0, D0, D0'
-
- * poly64x2_t vbslq_p64 (uint64x2_t, poly64x2_t, poly64x2_t)
- _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0,
- Q0, Q0' _or_ 'vbif Q0, Q0, Q0'
-
- * uint32x4_t vbslq_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0,
- Q0, Q0' _or_ 'vbif Q0, Q0, Q0'
-
- * uint16x8_t vbslq_u16 (uint16x8_t, uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0,
- Q0, Q0' _or_ 'vbif Q0, Q0, Q0'
-
- * uint8x16_t vbslq_u8 (uint8x16_t, uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0,
- Q0, Q0' _or_ 'vbif Q0, Q0, Q0'
-
- * int32x4_t vbslq_s32 (uint32x4_t, int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0,
- Q0, Q0' _or_ 'vbif Q0, Q0, Q0'
-
- * int16x8_t vbslq_s16 (uint16x8_t, int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0,
- Q0, Q0' _or_ 'vbif Q0, Q0, Q0'
-
- * int8x16_t vbslq_s8 (uint8x16_t, int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0,
- Q0, Q0' _or_ 'vbif Q0, Q0, Q0'
-
- * uint64x2_t vbslq_u64 (uint64x2_t, uint64x2_t, uint64x2_t)
- _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0,
- Q0, Q0' _or_ 'vbif Q0, Q0, Q0'
-
- * int64x2_t vbslq_s64 (uint64x2_t, int64x2_t, int64x2_t)
- _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0,
- Q0, Q0' _or_ 'vbif Q0, Q0, Q0'
-
- * float32x4_t vbslq_f32 (uint32x4_t, float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0,
- Q0, Q0' _or_ 'vbif Q0, Q0, Q0'
-
- * poly16x8_t vbslq_p16 (uint16x8_t, poly16x8_t, poly16x8_t)
- _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0,
- Q0, Q0' _or_ 'vbif Q0, Q0, Q0'
-
- * poly8x16_t vbslq_p8 (uint8x16_t, poly8x16_t, poly8x16_t)
- _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0,
- Q0, Q0' _or_ 'vbif Q0, Q0, Q0'
-
-6.57.6.72 Transpose elements
-............................
-
- * uint16x4x2_t vtrn_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vtrn.16 D0, D1'
-
- * uint8x8x2_t vtrn_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vtrn.8 D0, D1'
-
- * int16x4x2_t vtrn_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vtrn.16 D0, D1'
-
- * int8x8x2_t vtrn_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vtrn.8 D0, D1'
-
- * poly16x4x2_t vtrn_p16 (poly16x4_t, poly16x4_t)
- _Form of expected instruction(s):_ 'vtrn.16 D0, D1'
-
- * poly8x8x2_t vtrn_p8 (poly8x8_t, poly8x8_t)
- _Form of expected instruction(s):_ 'vtrn.8 D0, D1'
-
- * float32x2x2_t vtrn_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vuzp.32 D0, D1'
-
- * uint32x2x2_t vtrn_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vuzp.32 D0, D1'
-
- * int32x2x2_t vtrn_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vuzp.32 D0, D1'
-
- * uint32x4x2_t vtrnq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vtrn.32 Q0, Q1'
-
- * uint16x8x2_t vtrnq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vtrn.16 Q0, Q1'
-
- * uint8x16x2_t vtrnq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vtrn.8 Q0, Q1'
-
- * int32x4x2_t vtrnq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vtrn.32 Q0, Q1'
-
- * int16x8x2_t vtrnq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vtrn.16 Q0, Q1'
-
- * int8x16x2_t vtrnq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vtrn.8 Q0, Q1'
-
- * float32x4x2_t vtrnq_f32 (float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vtrn.32 Q0, Q1'
-
- * poly16x8x2_t vtrnq_p16 (poly16x8_t, poly16x8_t)
- _Form of expected instruction(s):_ 'vtrn.16 Q0, Q1'
-
- * poly8x16x2_t vtrnq_p8 (poly8x16_t, poly8x16_t)
- _Form of expected instruction(s):_ 'vtrn.8 Q0, Q1'
-
-6.57.6.73 Zip elements
-......................
-
- * uint16x4x2_t vzip_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vzip.16 D0, D1'
-
- * uint8x8x2_t vzip_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vzip.8 D0, D1'
-
- * int16x4x2_t vzip_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vzip.16 D0, D1'
-
- * int8x8x2_t vzip_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vzip.8 D0, D1'
-
- * poly16x4x2_t vzip_p16 (poly16x4_t, poly16x4_t)
- _Form of expected instruction(s):_ 'vzip.16 D0, D1'
-
- * poly8x8x2_t vzip_p8 (poly8x8_t, poly8x8_t)
- _Form of expected instruction(s):_ 'vzip.8 D0, D1'
-
- * float32x2x2_t vzip_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vuzp.32 D0, D1'
-
- * uint32x2x2_t vzip_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vuzp.32 D0, D1'
-
- * int32x2x2_t vzip_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vuzp.32 D0, D1'
-
- * uint32x4x2_t vzipq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vzip.32 Q0, Q1'
-
- * uint16x8x2_t vzipq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vzip.16 Q0, Q1'
-
- * uint8x16x2_t vzipq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vzip.8 Q0, Q1'
-
- * int32x4x2_t vzipq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vzip.32 Q0, Q1'
-
- * int16x8x2_t vzipq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vzip.16 Q0, Q1'
-
- * int8x16x2_t vzipq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vzip.8 Q0, Q1'
-
- * float32x4x2_t vzipq_f32 (float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vzip.32 Q0, Q1'
-
- * poly16x8x2_t vzipq_p16 (poly16x8_t, poly16x8_t)
- _Form of expected instruction(s):_ 'vzip.16 Q0, Q1'
-
- * poly8x16x2_t vzipq_p8 (poly8x16_t, poly8x16_t)
- _Form of expected instruction(s):_ 'vzip.8 Q0, Q1'
-
-6.57.6.74 Unzip elements
-........................
-
- * uint32x2x2_t vuzp_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vuzp.32 D0, D1'
-
- * uint16x4x2_t vuzp_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vuzp.16 D0, D1'
-
- * uint8x8x2_t vuzp_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vuzp.8 D0, D1'
-
- * int32x2x2_t vuzp_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vuzp.32 D0, D1'
-
- * int16x4x2_t vuzp_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vuzp.16 D0, D1'
-
- * int8x8x2_t vuzp_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vuzp.8 D0, D1'
-
- * float32x2x2_t vuzp_f32 (float32x2_t, float32x2_t)
- _Form of expected instruction(s):_ 'vuzp.32 D0, D1'
-
- * poly16x4x2_t vuzp_p16 (poly16x4_t, poly16x4_t)
- _Form of expected instruction(s):_ 'vuzp.16 D0, D1'
-
- * poly8x8x2_t vuzp_p8 (poly8x8_t, poly8x8_t)
- _Form of expected instruction(s):_ 'vuzp.8 D0, D1'
-
- * uint32x4x2_t vuzpq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vuzp.32 Q0, Q1'
-
- * uint16x8x2_t vuzpq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vuzp.16 Q0, Q1'
-
- * uint8x16x2_t vuzpq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vuzp.8 Q0, Q1'
-
- * int32x4x2_t vuzpq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vuzp.32 Q0, Q1'
-
- * int16x8x2_t vuzpq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vuzp.16 Q0, Q1'
-
- * int8x16x2_t vuzpq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vuzp.8 Q0, Q1'
-
- * float32x4x2_t vuzpq_f32 (float32x4_t, float32x4_t)
- _Form of expected instruction(s):_ 'vuzp.32 Q0, Q1'
-
- * poly16x8x2_t vuzpq_p16 (poly16x8_t, poly16x8_t)
- _Form of expected instruction(s):_ 'vuzp.16 Q0, Q1'
-
- * poly8x16x2_t vuzpq_p8 (poly8x16_t, poly8x16_t)
- _Form of expected instruction(s):_ 'vuzp.8 Q0, Q1'
-
-6.57.6.75 Element/structure loads, VLD1 variants
-................................................
-
- * poly64x1_t vld1_p64 (const poly64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]'
-
- * uint32x2_t vld1_u32 (const uint32_t *)
- _Form of expected instruction(s):_ 'vld1.32 {D0}, [R0]'
-
- * uint16x4_t vld1_u16 (const uint16_t *)
- _Form of expected instruction(s):_ 'vld1.16 {D0}, [R0]'
-
- * uint8x8_t vld1_u8 (const uint8_t *)
- _Form of expected instruction(s):_ 'vld1.8 {D0}, [R0]'
-
- * int32x2_t vld1_s32 (const int32_t *)
- _Form of expected instruction(s):_ 'vld1.32 {D0}, [R0]'
-
- * int16x4_t vld1_s16 (const int16_t *)
- _Form of expected instruction(s):_ 'vld1.16 {D0}, [R0]'
-
- * int8x8_t vld1_s8 (const int8_t *)
- _Form of expected instruction(s):_ 'vld1.8 {D0}, [R0]'
-
- * uint64x1_t vld1_u64 (const uint64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]'
-
- * int64x1_t vld1_s64 (const int64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]'
-
- * float32x2_t vld1_f32 (const float32_t *)
- _Form of expected instruction(s):_ 'vld1.32 {D0}, [R0]'
-
- * poly16x4_t vld1_p16 (const poly16_t *)
- _Form of expected instruction(s):_ 'vld1.16 {D0}, [R0]'
-
- * poly8x8_t vld1_p8 (const poly8_t *)
- _Form of expected instruction(s):_ 'vld1.8 {D0}, [R0]'
-
- * poly64x2_t vld1q_p64 (const poly64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]'
-
- * uint32x4_t vld1q_u32 (const uint32_t *)
- _Form of expected instruction(s):_ 'vld1.32 {D0, D1}, [R0]'
-
- * uint16x8_t vld1q_u16 (const uint16_t *)
- _Form of expected instruction(s):_ 'vld1.16 {D0, D1}, [R0]'
-
- * uint8x16_t vld1q_u8 (const uint8_t *)
- _Form of expected instruction(s):_ 'vld1.8 {D0, D1}, [R0]'
-
- * int32x4_t vld1q_s32 (const int32_t *)
- _Form of expected instruction(s):_ 'vld1.32 {D0, D1}, [R0]'
-
- * int16x8_t vld1q_s16 (const int16_t *)
- _Form of expected instruction(s):_ 'vld1.16 {D0, D1}, [R0]'
-
- * int8x16_t vld1q_s8 (const int8_t *)
- _Form of expected instruction(s):_ 'vld1.8 {D0, D1}, [R0]'
-
- * uint64x2_t vld1q_u64 (const uint64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]'
-
- * int64x2_t vld1q_s64 (const int64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]'
-
- * float32x4_t vld1q_f32 (const float32_t *)
- _Form of expected instruction(s):_ 'vld1.32 {D0, D1}, [R0]'
-
- * poly16x8_t vld1q_p16 (const poly16_t *)
- _Form of expected instruction(s):_ 'vld1.16 {D0, D1}, [R0]'
-
- * poly8x16_t vld1q_p8 (const poly8_t *)
- _Form of expected instruction(s):_ 'vld1.8 {D0, D1}, [R0]'
-
- * uint32x2_t vld1_lane_u32 (const uint32_t *, uint32x2_t, const int)
- _Form of expected instruction(s):_ 'vld1.32 {D0[0]}, [R0]'
-
- * uint16x4_t vld1_lane_u16 (const uint16_t *, uint16x4_t, const int)
- _Form of expected instruction(s):_ 'vld1.16 {D0[0]}, [R0]'
-
- * uint8x8_t vld1_lane_u8 (const uint8_t *, uint8x8_t, const int)
- _Form of expected instruction(s):_ 'vld1.8 {D0[0]}, [R0]'
-
- * int32x2_t vld1_lane_s32 (const int32_t *, int32x2_t, const int)
- _Form of expected instruction(s):_ 'vld1.32 {D0[0]}, [R0]'
-
- * int16x4_t vld1_lane_s16 (const int16_t *, int16x4_t, const int)
- _Form of expected instruction(s):_ 'vld1.16 {D0[0]}, [R0]'
-
- * int8x8_t vld1_lane_s8 (const int8_t *, int8x8_t, const int)
- _Form of expected instruction(s):_ 'vld1.8 {D0[0]}, [R0]'
-
- * float32x2_t vld1_lane_f32 (const float32_t *, float32x2_t, const
- int)
- _Form of expected instruction(s):_ 'vld1.32 {D0[0]}, [R0]'
-
- * poly16x4_t vld1_lane_p16 (const poly16_t *, poly16x4_t, const int)
- _Form of expected instruction(s):_ 'vld1.16 {D0[0]}, [R0]'
-
- * poly8x8_t vld1_lane_p8 (const poly8_t *, poly8x8_t, const int)
- _Form of expected instruction(s):_ 'vld1.8 {D0[0]}, [R0]'
-
- * poly64x1_t vld1_lane_p64 (const poly64_t *, poly64x1_t, const int)
- _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]'
-
- * uint64x1_t vld1_lane_u64 (const uint64_t *, uint64x1_t, const int)
- _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]'
-
- * int64x1_t vld1_lane_s64 (const int64_t *, int64x1_t, const int)
- _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]'
-
- * uint32x4_t vld1q_lane_u32 (const uint32_t *, uint32x4_t, const int)
-
- _Form of expected instruction(s):_ 'vld1.32 {D0[0]}, [R0]'
-
- * uint16x8_t vld1q_lane_u16 (const uint16_t *, uint16x8_t, const int)
-
- _Form of expected instruction(s):_ 'vld1.16 {D0[0]}, [R0]'
-
- * uint8x16_t vld1q_lane_u8 (const uint8_t *, uint8x16_t, const int)
- _Form of expected instruction(s):_ 'vld1.8 {D0[0]}, [R0]'
-
- * int32x4_t vld1q_lane_s32 (const int32_t *, int32x4_t, const int)
- _Form of expected instruction(s):_ 'vld1.32 {D0[0]}, [R0]'
-
- * int16x8_t vld1q_lane_s16 (const int16_t *, int16x8_t, const int)
- _Form of expected instruction(s):_ 'vld1.16 {D0[0]}, [R0]'
-
- * int8x16_t vld1q_lane_s8 (const int8_t *, int8x16_t, const int)
- _Form of expected instruction(s):_ 'vld1.8 {D0[0]}, [R0]'
-
- * float32x4_t vld1q_lane_f32 (const float32_t *, float32x4_t, const
- int)
- _Form of expected instruction(s):_ 'vld1.32 {D0[0]}, [R0]'
-
- * poly16x8_t vld1q_lane_p16 (const poly16_t *, poly16x8_t, const int)
-
- _Form of expected instruction(s):_ 'vld1.16 {D0[0]}, [R0]'
-
- * poly8x16_t vld1q_lane_p8 (const poly8_t *, poly8x16_t, const int)
- _Form of expected instruction(s):_ 'vld1.8 {D0[0]}, [R0]'
-
- * poly64x2_t vld1q_lane_p64 (const poly64_t *, poly64x2_t, const int)
-
- _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]'
-
- * uint64x2_t vld1q_lane_u64 (const uint64_t *, uint64x2_t, const int)
-
- _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]'
-
- * int64x2_t vld1q_lane_s64 (const int64_t *, int64x2_t, const int)
- _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]'
-
- * uint32x2_t vld1_dup_u32 (const uint32_t *)
- _Form of expected instruction(s):_ 'vld1.32 {D0[]}, [R0]'
-
- * uint16x4_t vld1_dup_u16 (const uint16_t *)
- _Form of expected instruction(s):_ 'vld1.16 {D0[]}, [R0]'
-
- * uint8x8_t vld1_dup_u8 (const uint8_t *)
- _Form of expected instruction(s):_ 'vld1.8 {D0[]}, [R0]'
-
- * int32x2_t vld1_dup_s32 (const int32_t *)
- _Form of expected instruction(s):_ 'vld1.32 {D0[]}, [R0]'
-
- * int16x4_t vld1_dup_s16 (const int16_t *)
- _Form of expected instruction(s):_ 'vld1.16 {D0[]}, [R0]'
-
- * int8x8_t vld1_dup_s8 (const int8_t *)
- _Form of expected instruction(s):_ 'vld1.8 {D0[]}, [R0]'
-
- * float32x2_t vld1_dup_f32 (const float32_t *)
- _Form of expected instruction(s):_ 'vld1.32 {D0[]}, [R0]'
-
- * poly16x4_t vld1_dup_p16 (const poly16_t *)
- _Form of expected instruction(s):_ 'vld1.16 {D0[]}, [R0]'
-
- * poly8x8_t vld1_dup_p8 (const poly8_t *)
- _Form of expected instruction(s):_ 'vld1.8 {D0[]}, [R0]'
-
- * poly64x1_t vld1_dup_p64 (const poly64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]'
-
- * uint64x1_t vld1_dup_u64 (const uint64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]'
-
- * int64x1_t vld1_dup_s64 (const int64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]'
-
- * uint32x4_t vld1q_dup_u32 (const uint32_t *)
- _Form of expected instruction(s):_ 'vld1.32 {D0[], D1[]}, [R0]'
-
- * uint16x8_t vld1q_dup_u16 (const uint16_t *)
- _Form of expected instruction(s):_ 'vld1.16 {D0[], D1[]}, [R0]'
-
- * uint8x16_t vld1q_dup_u8 (const uint8_t *)
- _Form of expected instruction(s):_ 'vld1.8 {D0[], D1[]}, [R0]'
-
- * int32x4_t vld1q_dup_s32 (const int32_t *)
- _Form of expected instruction(s):_ 'vld1.32 {D0[], D1[]}, [R0]'
-
- * int16x8_t vld1q_dup_s16 (const int16_t *)
- _Form of expected instruction(s):_ 'vld1.16 {D0[], D1[]}, [R0]'
-
- * int8x16_t vld1q_dup_s8 (const int8_t *)
- _Form of expected instruction(s):_ 'vld1.8 {D0[], D1[]}, [R0]'
-
- * float32x4_t vld1q_dup_f32 (const float32_t *)
- _Form of expected instruction(s):_ 'vld1.32 {D0[], D1[]}, [R0]'
-
- * poly16x8_t vld1q_dup_p16 (const poly16_t *)
- _Form of expected instruction(s):_ 'vld1.16 {D0[], D1[]}, [R0]'
-
- * poly8x16_t vld1q_dup_p8 (const poly8_t *)
- _Form of expected instruction(s):_ 'vld1.8 {D0[], D1[]}, [R0]'
-
- * poly64x2_t vld1q_dup_p64 (const poly64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]'
-
- * uint64x2_t vld1q_dup_u64 (const uint64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]'
-
- * int64x2_t vld1q_dup_s64 (const int64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]'
-
-6.57.6.76 Element/structure stores, VST1 variants
-.................................................
-
- * void vst1_p64 (poly64_t *, poly64x1_t)
- _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]'
-
- * void vst1_u32 (uint32_t *, uint32x2_t)
- _Form of expected instruction(s):_ 'vst1.32 {D0}, [R0]'
-
- * void vst1_u16 (uint16_t *, uint16x4_t)
- _Form of expected instruction(s):_ 'vst1.16 {D0}, [R0]'
-
- * void vst1_u8 (uint8_t *, uint8x8_t)
- _Form of expected instruction(s):_ 'vst1.8 {D0}, [R0]'
-
- * void vst1_s32 (int32_t *, int32x2_t)
- _Form of expected instruction(s):_ 'vst1.32 {D0}, [R0]'
-
- * void vst1_s16 (int16_t *, int16x4_t)
- _Form of expected instruction(s):_ 'vst1.16 {D0}, [R0]'
-
- * void vst1_s8 (int8_t *, int8x8_t)
- _Form of expected instruction(s):_ 'vst1.8 {D0}, [R0]'
-
- * void vst1_u64 (uint64_t *, uint64x1_t)
- _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]'
-
- * void vst1_s64 (int64_t *, int64x1_t)
- _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]'
-
- * void vst1_f32 (float32_t *, float32x2_t)
- _Form of expected instruction(s):_ 'vst1.32 {D0}, [R0]'
-
- * void vst1_p16 (poly16_t *, poly16x4_t)
- _Form of expected instruction(s):_ 'vst1.16 {D0}, [R0]'
-
- * void vst1_p8 (poly8_t *, poly8x8_t)
- _Form of expected instruction(s):_ 'vst1.8 {D0}, [R0]'
-
- * void vst1q_p64 (poly64_t *, poly64x2_t)
- _Form of expected instruction(s):_ 'vst1.64 {D0, D1}, [R0]'
-
- * void vst1q_u32 (uint32_t *, uint32x4_t)
- _Form of expected instruction(s):_ 'vst1.32 {D0, D1}, [R0]'
-
- * void vst1q_u16 (uint16_t *, uint16x8_t)
- _Form of expected instruction(s):_ 'vst1.16 {D0, D1}, [R0]'
-
- * void vst1q_u8 (uint8_t *, uint8x16_t)
- _Form of expected instruction(s):_ 'vst1.8 {D0, D1}, [R0]'
-
- * void vst1q_s32 (int32_t *, int32x4_t)
- _Form of expected instruction(s):_ 'vst1.32 {D0, D1}, [R0]'
-
- * void vst1q_s16 (int16_t *, int16x8_t)
- _Form of expected instruction(s):_ 'vst1.16 {D0, D1}, [R0]'
-
- * void vst1q_s8 (int8_t *, int8x16_t)
- _Form of expected instruction(s):_ 'vst1.8 {D0, D1}, [R0]'
-
- * void vst1q_u64 (uint64_t *, uint64x2_t)
- _Form of expected instruction(s):_ 'vst1.64 {D0, D1}, [R0]'
-
- * void vst1q_s64 (int64_t *, int64x2_t)
- _Form of expected instruction(s):_ 'vst1.64 {D0, D1}, [R0]'
-
- * void vst1q_f32 (float32_t *, float32x4_t)
- _Form of expected instruction(s):_ 'vst1.32 {D0, D1}, [R0]'
-
- * void vst1q_p16 (poly16_t *, poly16x8_t)
- _Form of expected instruction(s):_ 'vst1.16 {D0, D1}, [R0]'
-
- * void vst1q_p8 (poly8_t *, poly8x16_t)
- _Form of expected instruction(s):_ 'vst1.8 {D0, D1}, [R0]'
-
- * void vst1_lane_u32 (uint32_t *, uint32x2_t, const int)
- _Form of expected instruction(s):_ 'vst1.32 {D0[0]}, [R0]'
-
- * void vst1_lane_u16 (uint16_t *, uint16x4_t, const int)
- _Form of expected instruction(s):_ 'vst1.16 {D0[0]}, [R0]'
-
- * void vst1_lane_u8 (uint8_t *, uint8x8_t, const int)
- _Form of expected instruction(s):_ 'vst1.8 {D0[0]}, [R0]'
-
- * void vst1_lane_s32 (int32_t *, int32x2_t, const int)
- _Form of expected instruction(s):_ 'vst1.32 {D0[0]}, [R0]'
-
- * void vst1_lane_s16 (int16_t *, int16x4_t, const int)
- _Form of expected instruction(s):_ 'vst1.16 {D0[0]}, [R0]'
-
- * void vst1_lane_s8 (int8_t *, int8x8_t, const int)
- _Form of expected instruction(s):_ 'vst1.8 {D0[0]}, [R0]'
-
- * void vst1_lane_f32 (float32_t *, float32x2_t, const int)
- _Form of expected instruction(s):_ 'vst1.32 {D0[0]}, [R0]'
-
- * void vst1_lane_p16 (poly16_t *, poly16x4_t, const int)
- _Form of expected instruction(s):_ 'vst1.16 {D0[0]}, [R0]'
-
- * void vst1_lane_p8 (poly8_t *, poly8x8_t, const int)
- _Form of expected instruction(s):_ 'vst1.8 {D0[0]}, [R0]'
-
- * void vst1_lane_p64 (poly64_t *, poly64x1_t, const int)
- _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]'
-
- * void vst1_lane_s64 (int64_t *, int64x1_t, const int)
- _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]'
-
- * void vst1_lane_u64 (uint64_t *, uint64x1_t, const int)
- _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]'
-
- * void vst1q_lane_u32 (uint32_t *, uint32x4_t, const int)
- _Form of expected instruction(s):_ 'vst1.32 {D0[0]}, [R0]'
-
- * void vst1q_lane_u16 (uint16_t *, uint16x8_t, const int)
- _Form of expected instruction(s):_ 'vst1.16 {D0[0]}, [R0]'
-
- * void vst1q_lane_u8 (uint8_t *, uint8x16_t, const int)
- _Form of expected instruction(s):_ 'vst1.8 {D0[0]}, [R0]'
-
- * void vst1q_lane_s32 (int32_t *, int32x4_t, const int)
- _Form of expected instruction(s):_ 'vst1.32 {D0[0]}, [R0]'
-
- * void vst1q_lane_s16 (int16_t *, int16x8_t, const int)
- _Form of expected instruction(s):_ 'vst1.16 {D0[0]}, [R0]'
-
- * void vst1q_lane_s8 (int8_t *, int8x16_t, const int)
- _Form of expected instruction(s):_ 'vst1.8 {D0[0]}, [R0]'
-
- * void vst1q_lane_f32 (float32_t *, float32x4_t, const int)
- _Form of expected instruction(s):_ 'vst1.32 {D0[0]}, [R0]'
-
- * void vst1q_lane_p16 (poly16_t *, poly16x8_t, const int)
- _Form of expected instruction(s):_ 'vst1.16 {D0[0]}, [R0]'
-
- * void vst1q_lane_p8 (poly8_t *, poly8x16_t, const int)
- _Form of expected instruction(s):_ 'vst1.8 {D0[0]}, [R0]'
-
- * void vst1q_lane_p64 (poly64_t *, poly64x2_t, const int)
- _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]'
-
- * void vst1q_lane_s64 (int64_t *, int64x2_t, const int)
- _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]'
-
- * void vst1q_lane_u64 (uint64_t *, uint64x2_t, const int)
- _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]'
-
-6.57.6.77 Element/structure loads, VLD2 variants
-................................................
-
- * uint32x2x2_t vld2_u32 (const uint32_t *)
- _Form of expected instruction(s):_ 'vld2.32 {D0, D1}, [R0]'
-
- * uint16x4x2_t vld2_u16 (const uint16_t *)
- _Form of expected instruction(s):_ 'vld2.16 {D0, D1}, [R0]'
-
- * uint8x8x2_t vld2_u8 (const uint8_t *)
- _Form of expected instruction(s):_ 'vld2.8 {D0, D1}, [R0]'
-
- * int32x2x2_t vld2_s32 (const int32_t *)
- _Form of expected instruction(s):_ 'vld2.32 {D0, D1}, [R0]'
-
- * int16x4x2_t vld2_s16 (const int16_t *)
- _Form of expected instruction(s):_ 'vld2.16 {D0, D1}, [R0]'
-
- * int8x8x2_t vld2_s8 (const int8_t *)
- _Form of expected instruction(s):_ 'vld2.8 {D0, D1}, [R0]'
-
- * float32x2x2_t vld2_f32 (const float32_t *)
- _Form of expected instruction(s):_ 'vld2.32 {D0, D1}, [R0]'
-
- * poly16x4x2_t vld2_p16 (const poly16_t *)
- _Form of expected instruction(s):_ 'vld2.16 {D0, D1}, [R0]'
-
- * poly8x8x2_t vld2_p8 (const poly8_t *)
- _Form of expected instruction(s):_ 'vld2.8 {D0, D1}, [R0]'
-
- * poly64x1x2_t vld2_p64 (const poly64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]'
-
- * uint64x1x2_t vld2_u64 (const uint64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]'
-
- * int64x1x2_t vld2_s64 (const int64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]'
-
- * uint32x4x2_t vld2q_u32 (const uint32_t *)
- _Form of expected instruction(s):_ 'vld2.32 {D0, D1}, [R0]'
-
- * uint16x8x2_t vld2q_u16 (const uint16_t *)
- _Form of expected instruction(s):_ 'vld2.16 {D0, D1}, [R0]'
-
- * uint8x16x2_t vld2q_u8 (const uint8_t *)
- _Form of expected instruction(s):_ 'vld2.8 {D0, D1}, [R0]'
-
- * int32x4x2_t vld2q_s32 (const int32_t *)
- _Form of expected instruction(s):_ 'vld2.32 {D0, D1}, [R0]'
-
- * int16x8x2_t vld2q_s16 (const int16_t *)
- _Form of expected instruction(s):_ 'vld2.16 {D0, D1}, [R0]'
-
- * int8x16x2_t vld2q_s8 (const int8_t *)
- _Form of expected instruction(s):_ 'vld2.8 {D0, D1}, [R0]'
-
- * float32x4x2_t vld2q_f32 (const float32_t *)
- _Form of expected instruction(s):_ 'vld2.32 {D0, D1}, [R0]'
-
- * poly16x8x2_t vld2q_p16 (const poly16_t *)
- _Form of expected instruction(s):_ 'vld2.16 {D0, D1}, [R0]'
-
- * poly8x16x2_t vld2q_p8 (const poly8_t *)
- _Form of expected instruction(s):_ 'vld2.8 {D0, D1}, [R0]'
-
- * uint32x2x2_t vld2_lane_u32 (const uint32_t *, uint32x2x2_t, const
- int)
- _Form of expected instruction(s):_ 'vld2.32 {D0[0], D1[0]}, [R0]'
-
- * uint16x4x2_t vld2_lane_u16 (const uint16_t *, uint16x4x2_t, const
- int)
- _Form of expected instruction(s):_ 'vld2.16 {D0[0], D1[0]}, [R0]'
-
- * uint8x8x2_t vld2_lane_u8 (const uint8_t *, uint8x8x2_t, const int)
- _Form of expected instruction(s):_ 'vld2.8 {D0[0], D1[0]}, [R0]'
-
- * int32x2x2_t vld2_lane_s32 (const int32_t *, int32x2x2_t, const int)
-
- _Form of expected instruction(s):_ 'vld2.32 {D0[0], D1[0]}, [R0]'
-
- * int16x4x2_t vld2_lane_s16 (const int16_t *, int16x4x2_t, const int)
-
- _Form of expected instruction(s):_ 'vld2.16 {D0[0], D1[0]}, [R0]'
-
- * int8x8x2_t vld2_lane_s8 (const int8_t *, int8x8x2_t, const int)
- _Form of expected instruction(s):_ 'vld2.8 {D0[0], D1[0]}, [R0]'
-
- * float32x2x2_t vld2_lane_f32 (const float32_t *, float32x2x2_t,
- const int)
- _Form of expected instruction(s):_ 'vld2.32 {D0[0], D1[0]}, [R0]'
-
- * poly16x4x2_t vld2_lane_p16 (const poly16_t *, poly16x4x2_t, const
- int)
- _Form of expected instruction(s):_ 'vld2.16 {D0[0], D1[0]}, [R0]'
-
- * poly8x8x2_t vld2_lane_p8 (const poly8_t *, poly8x8x2_t, const int)
- _Form of expected instruction(s):_ 'vld2.8 {D0[0], D1[0]}, [R0]'
-
- * int32x4x2_t vld2q_lane_s32 (const int32_t *, int32x4x2_t, const
- int)
- _Form of expected instruction(s):_ 'vld2.32 {D0[0], D1[0]}, [R0]'
-
- * int16x8x2_t vld2q_lane_s16 (const int16_t *, int16x8x2_t, const
- int)
- _Form of expected instruction(s):_ 'vld2.16 {D0[0], D1[0]}, [R0]'
-
- * uint32x4x2_t vld2q_lane_u32 (const uint32_t *, uint32x4x2_t, const
- int)
- _Form of expected instruction(s):_ 'vld2.32 {D0[0], D1[0]}, [R0]'
-
- * uint16x8x2_t vld2q_lane_u16 (const uint16_t *, uint16x8x2_t, const
- int)
- _Form of expected instruction(s):_ 'vld2.16 {D0[0], D1[0]}, [R0]'
-
- * float32x4x2_t vld2q_lane_f32 (const float32_t *, float32x4x2_t,
- const int)
- _Form of expected instruction(s):_ 'vld2.32 {D0[0], D1[0]}, [R0]'
-
- * poly16x8x2_t vld2q_lane_p16 (const poly16_t *, poly16x8x2_t, const
- int)
- _Form of expected instruction(s):_ 'vld2.16 {D0[0], D1[0]}, [R0]'
-
- * uint32x2x2_t vld2_dup_u32 (const uint32_t *)
- _Form of expected instruction(s):_ 'vld2.32 {D0[], D1[]}, [R0]'
-
- * uint16x4x2_t vld2_dup_u16 (const uint16_t *)
- _Form of expected instruction(s):_ 'vld2.16 {D0[], D1[]}, [R0]'
-
- * uint8x8x2_t vld2_dup_u8 (const uint8_t *)
- _Form of expected instruction(s):_ 'vld2.8 {D0[], D1[]}, [R0]'
-
- * int32x2x2_t vld2_dup_s32 (const int32_t *)
- _Form of expected instruction(s):_ 'vld2.32 {D0[], D1[]}, [R0]'
-
- * int16x4x2_t vld2_dup_s16 (const int16_t *)
- _Form of expected instruction(s):_ 'vld2.16 {D0[], D1[]}, [R0]'
-
- * int8x8x2_t vld2_dup_s8 (const int8_t *)
- _Form of expected instruction(s):_ 'vld2.8 {D0[], D1[]}, [R0]'
-
- * float32x2x2_t vld2_dup_f32 (const float32_t *)
- _Form of expected instruction(s):_ 'vld2.32 {D0[], D1[]}, [R0]'
-
- * poly16x4x2_t vld2_dup_p16 (const poly16_t *)
- _Form of expected instruction(s):_ 'vld2.16 {D0[], D1[]}, [R0]'
-
- * poly8x8x2_t vld2_dup_p8 (const poly8_t *)
- _Form of expected instruction(s):_ 'vld2.8 {D0[], D1[]}, [R0]'
-
- * poly64x1x2_t vld2_dup_p64 (const poly64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]'
-
- * uint64x1x2_t vld2_dup_u64 (const uint64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]'
-
- * int64x1x2_t vld2_dup_s64 (const int64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]'
-
-6.57.6.78 Element/structure stores, VST2 variants
-.................................................
-
- * void vst2_u32 (uint32_t *, uint32x2x2_t)
- _Form of expected instruction(s):_ 'vst2.32 {D0, D1}, [R0]'
-
- * void vst2_u16 (uint16_t *, uint16x4x2_t)
- _Form of expected instruction(s):_ 'vst2.16 {D0, D1}, [R0]'
-
- * void vst2_u8 (uint8_t *, uint8x8x2_t)
- _Form of expected instruction(s):_ 'vst2.8 {D0, D1}, [R0]'
-
- * void vst2_s32 (int32_t *, int32x2x2_t)
- _Form of expected instruction(s):_ 'vst2.32 {D0, D1}, [R0]'
-
- * void vst2_s16 (int16_t *, int16x4x2_t)
- _Form of expected instruction(s):_ 'vst2.16 {D0, D1}, [R0]'
-
- * void vst2_s8 (int8_t *, int8x8x2_t)
- _Form of expected instruction(s):_ 'vst2.8 {D0, D1}, [R0]'
-
- * void vst2_f32 (float32_t *, float32x2x2_t)
- _Form of expected instruction(s):_ 'vst2.32 {D0, D1}, [R0]'
-
- * void vst2_p16 (poly16_t *, poly16x4x2_t)
- _Form of expected instruction(s):_ 'vst2.16 {D0, D1}, [R0]'
-
- * void vst2_p8 (poly8_t *, poly8x8x2_t)
- _Form of expected instruction(s):_ 'vst2.8 {D0, D1}, [R0]'
-
- * void vst2_p64 (poly64_t *, poly64x1x2_t)
- _Form of expected instruction(s):_ 'vst1.64 {D0, D1}, [R0]'
-
- * void vst2_u64 (uint64_t *, uint64x1x2_t)
- _Form of expected instruction(s):_ 'vst1.64 {D0, D1}, [R0]'
-
- * void vst2_s64 (int64_t *, int64x1x2_t)
- _Form of expected instruction(s):_ 'vst1.64 {D0, D1}, [R0]'
-
- * void vst2q_u32 (uint32_t *, uint32x4x2_t)
- _Form of expected instruction(s):_ 'vst2.32 {D0, D1}, [R0]'
-
- * void vst2q_u16 (uint16_t *, uint16x8x2_t)
- _Form of expected instruction(s):_ 'vst2.16 {D0, D1}, [R0]'
-
- * void vst2q_u8 (uint8_t *, uint8x16x2_t)
- _Form of expected instruction(s):_ 'vst2.8 {D0, D1}, [R0]'
-
- * void vst2q_s32 (int32_t *, int32x4x2_t)
- _Form of expected instruction(s):_ 'vst2.32 {D0, D1}, [R0]'
-
- * void vst2q_s16 (int16_t *, int16x8x2_t)
- _Form of expected instruction(s):_ 'vst2.16 {D0, D1}, [R0]'
-
- * void vst2q_s8 (int8_t *, int8x16x2_t)
- _Form of expected instruction(s):_ 'vst2.8 {D0, D1}, [R0]'
-
- * void vst2q_f32 (float32_t *, float32x4x2_t)
- _Form of expected instruction(s):_ 'vst2.32 {D0, D1}, [R0]'
-
- * void vst2q_p16 (poly16_t *, poly16x8x2_t)
- _Form of expected instruction(s):_ 'vst2.16 {D0, D1}, [R0]'
-
- * void vst2q_p8 (poly8_t *, poly8x16x2_t)
- _Form of expected instruction(s):_ 'vst2.8 {D0, D1}, [R0]'
-
- * void vst2_lane_u32 (uint32_t *, uint32x2x2_t, const int)
- _Form of expected instruction(s):_ 'vst2.32 {D0[0], D1[0]}, [R0]'
-
- * void vst2_lane_u16 (uint16_t *, uint16x4x2_t, const int)
- _Form of expected instruction(s):_ 'vst2.16 {D0[0], D1[0]}, [R0]'
-
- * void vst2_lane_u8 (uint8_t *, uint8x8x2_t, const int)
- _Form of expected instruction(s):_ 'vst2.8 {D0[0], D1[0]}, [R0]'
-
- * void vst2_lane_s32 (int32_t *, int32x2x2_t, const int)
- _Form of expected instruction(s):_ 'vst2.32 {D0[0], D1[0]}, [R0]'
-
- * void vst2_lane_s16 (int16_t *, int16x4x2_t, const int)
- _Form of expected instruction(s):_ 'vst2.16 {D0[0], D1[0]}, [R0]'
-
- * void vst2_lane_s8 (int8_t *, int8x8x2_t, const int)
- _Form of expected instruction(s):_ 'vst2.8 {D0[0], D1[0]}, [R0]'
-
- * void vst2_lane_f32 (float32_t *, float32x2x2_t, const int)
- _Form of expected instruction(s):_ 'vst2.32 {D0[0], D1[0]}, [R0]'
-
- * void vst2_lane_p16 (poly16_t *, poly16x4x2_t, const int)
- _Form of expected instruction(s):_ 'vst2.16 {D0[0], D1[0]}, [R0]'
-
- * void vst2_lane_p8 (poly8_t *, poly8x8x2_t, const int)
- _Form of expected instruction(s):_ 'vst2.8 {D0[0], D1[0]}, [R0]'
-
- * void vst2q_lane_s32 (int32_t *, int32x4x2_t, const int)
- _Form of expected instruction(s):_ 'vst2.32 {D0[0], D1[0]}, [R0]'
-
- * void vst2q_lane_s16 (int16_t *, int16x8x2_t, const int)
- _Form of expected instruction(s):_ 'vst2.16 {D0[0], D1[0]}, [R0]'
-
- * void vst2q_lane_u32 (uint32_t *, uint32x4x2_t, const int)
- _Form of expected instruction(s):_ 'vst2.32 {D0[0], D1[0]}, [R0]'
-
- * void vst2q_lane_u16 (uint16_t *, uint16x8x2_t, const int)
- _Form of expected instruction(s):_ 'vst2.16 {D0[0], D1[0]}, [R0]'
-
- * void vst2q_lane_f32 (float32_t *, float32x4x2_t, const int)
- _Form of expected instruction(s):_ 'vst2.32 {D0[0], D1[0]}, [R0]'
-
- * void vst2q_lane_p16 (poly16_t *, poly16x8x2_t, const int)
- _Form of expected instruction(s):_ 'vst2.16 {D0[0], D1[0]}, [R0]'
-
-6.57.6.79 Element/structure loads, VLD3 variants
-................................................
-
- * uint32x2x3_t vld3_u32 (const uint32_t *)
- _Form of expected instruction(s):_ 'vld3.32 {D0, D1, D2}, [R0]'
-
- * uint16x4x3_t vld3_u16 (const uint16_t *)
- _Form of expected instruction(s):_ 'vld3.16 {D0, D1, D2}, [R0]'
-
- * uint8x8x3_t vld3_u8 (const uint8_t *)
- _Form of expected instruction(s):_ 'vld3.8 {D0, D1, D2}, [R0]'
-
- * int32x2x3_t vld3_s32 (const int32_t *)
- _Form of expected instruction(s):_ 'vld3.32 {D0, D1, D2}, [R0]'
-
- * int16x4x3_t vld3_s16 (const int16_t *)
- _Form of expected instruction(s):_ 'vld3.16 {D0, D1, D2}, [R0]'
-
- * int8x8x3_t vld3_s8 (const int8_t *)
- _Form of expected instruction(s):_ 'vld3.8 {D0, D1, D2}, [R0]'
-
- * float32x2x3_t vld3_f32 (const float32_t *)
- _Form of expected instruction(s):_ 'vld3.32 {D0, D1, D2}, [R0]'
-
- * poly16x4x3_t vld3_p16 (const poly16_t *)
- _Form of expected instruction(s):_ 'vld3.16 {D0, D1, D2}, [R0]'
-
- * poly8x8x3_t vld3_p8 (const poly8_t *)
- _Form of expected instruction(s):_ 'vld3.8 {D0, D1, D2}, [R0]'
-
- * poly64x1x3_t vld3_p64 (const poly64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2}, [R0]'
-
- * uint64x1x3_t vld3_u64 (const uint64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2}, [R0]'
-
- * int64x1x3_t vld3_s64 (const int64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2}, [R0]'
-
- * uint32x4x3_t vld3q_u32 (const uint32_t *)
- _Form of expected instruction(s):_ 'vld3.32 {D0, D1, D2}, [R0]'
-
- * uint16x8x3_t vld3q_u16 (const uint16_t *)
- _Form of expected instruction(s):_ 'vld3.16 {D0, D1, D2}, [R0]'
-
- * uint8x16x3_t vld3q_u8 (const uint8_t *)
- _Form of expected instruction(s):_ 'vld3.8 {D0, D1, D2}, [R0]'
-
- * int32x4x3_t vld3q_s32 (const int32_t *)
- _Form of expected instruction(s):_ 'vld3.32 {D0, D1, D2}, [R0]'
-
- * int16x8x3_t vld3q_s16 (const int16_t *)
- _Form of expected instruction(s):_ 'vld3.16 {D0, D1, D2}, [R0]'
-
- * int8x16x3_t vld3q_s8 (const int8_t *)
- _Form of expected instruction(s):_ 'vld3.8 {D0, D1, D2}, [R0]'
-
- * float32x4x3_t vld3q_f32 (const float32_t *)
- _Form of expected instruction(s):_ 'vld3.32 {D0, D1, D2}, [R0]'
-
- * poly16x8x3_t vld3q_p16 (const poly16_t *)
- _Form of expected instruction(s):_ 'vld3.16 {D0, D1, D2}, [R0]'
-
- * poly8x16x3_t vld3q_p8 (const poly8_t *)
- _Form of expected instruction(s):_ 'vld3.8 {D0, D1, D2}, [R0]'
-
- * uint32x2x3_t vld3_lane_u32 (const uint32_t *, uint32x2x3_t, const
- int)
- _Form of expected instruction(s):_ 'vld3.32 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * uint16x4x3_t vld3_lane_u16 (const uint16_t *, uint16x4x3_t, const
- int)
- _Form of expected instruction(s):_ 'vld3.16 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * uint8x8x3_t vld3_lane_u8 (const uint8_t *, uint8x8x3_t, const int)
- _Form of expected instruction(s):_ 'vld3.8 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * int32x2x3_t vld3_lane_s32 (const int32_t *, int32x2x3_t, const int)
-
- _Form of expected instruction(s):_ 'vld3.32 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * int16x4x3_t vld3_lane_s16 (const int16_t *, int16x4x3_t, const int)
-
- _Form of expected instruction(s):_ 'vld3.16 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * int8x8x3_t vld3_lane_s8 (const int8_t *, int8x8x3_t, const int)
- _Form of expected instruction(s):_ 'vld3.8 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * float32x2x3_t vld3_lane_f32 (const float32_t *, float32x2x3_t,
- const int)
- _Form of expected instruction(s):_ 'vld3.32 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * poly16x4x3_t vld3_lane_p16 (const poly16_t *, poly16x4x3_t, const
- int)
- _Form of expected instruction(s):_ 'vld3.16 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * poly8x8x3_t vld3_lane_p8 (const poly8_t *, poly8x8x3_t, const int)
- _Form of expected instruction(s):_ 'vld3.8 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * int32x4x3_t vld3q_lane_s32 (const int32_t *, int32x4x3_t, const
- int)
- _Form of expected instruction(s):_ 'vld3.32 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * int16x8x3_t vld3q_lane_s16 (const int16_t *, int16x8x3_t, const
- int)
- _Form of expected instruction(s):_ 'vld3.16 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * uint32x4x3_t vld3q_lane_u32 (const uint32_t *, uint32x4x3_t, const
- int)
- _Form of expected instruction(s):_ 'vld3.32 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * uint16x8x3_t vld3q_lane_u16 (const uint16_t *, uint16x8x3_t, const
- int)
- _Form of expected instruction(s):_ 'vld3.16 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * float32x4x3_t vld3q_lane_f32 (const float32_t *, float32x4x3_t,
- const int)
- _Form of expected instruction(s):_ 'vld3.32 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * poly16x8x3_t vld3q_lane_p16 (const poly16_t *, poly16x8x3_t, const
- int)
- _Form of expected instruction(s):_ 'vld3.16 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * uint32x2x3_t vld3_dup_u32 (const uint32_t *)
- _Form of expected instruction(s):_ 'vld3.32 {D0[], D1[], D2[]},
- [R0]'
-
- * uint16x4x3_t vld3_dup_u16 (const uint16_t *)
- _Form of expected instruction(s):_ 'vld3.16 {D0[], D1[], D2[]},
- [R0]'
-
- * uint8x8x3_t vld3_dup_u8 (const uint8_t *)
- _Form of expected instruction(s):_ 'vld3.8 {D0[], D1[], D2[]},
- [R0]'
-
- * int32x2x3_t vld3_dup_s32 (const int32_t *)
- _Form of expected instruction(s):_ 'vld3.32 {D0[], D1[], D2[]},
- [R0]'
-
- * int16x4x3_t vld3_dup_s16 (const int16_t *)
- _Form of expected instruction(s):_ 'vld3.16 {D0[], D1[], D2[]},
- [R0]'
-
- * int8x8x3_t vld3_dup_s8 (const int8_t *)
- _Form of expected instruction(s):_ 'vld3.8 {D0[], D1[], D2[]},
- [R0]'
-
- * float32x2x3_t vld3_dup_f32 (const float32_t *)
- _Form of expected instruction(s):_ 'vld3.32 {D0[], D1[], D2[]},
- [R0]'
-
- * poly16x4x3_t vld3_dup_p16 (const poly16_t *)
- _Form of expected instruction(s):_ 'vld3.16 {D0[], D1[], D2[]},
- [R0]'
-
- * poly8x8x3_t vld3_dup_p8 (const poly8_t *)
- _Form of expected instruction(s):_ 'vld3.8 {D0[], D1[], D2[]},
- [R0]'
-
- * poly64x1x3_t vld3_dup_p64 (const poly64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2}, [R0]'
-
- * uint64x1x3_t vld3_dup_u64 (const uint64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2}, [R0]'
-
- * int64x1x3_t vld3_dup_s64 (const int64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2}, [R0]'
-
-6.57.6.80 Element/structure stores, VST3 variants
-.................................................
-
- * void vst3_u32 (uint32_t *, uint32x2x3_t)
- _Form of expected instruction(s):_ 'vst3.32 {D0, D1, D2, D3}, [R0]'
-
- * void vst3_u16 (uint16_t *, uint16x4x3_t)
- _Form of expected instruction(s):_ 'vst3.16 {D0, D1, D2, D3}, [R0]'
-
- * void vst3_u8 (uint8_t *, uint8x8x3_t)
- _Form of expected instruction(s):_ 'vst3.8 {D0, D1, D2, D3}, [R0]'
-
- * void vst3_s32 (int32_t *, int32x2x3_t)
- _Form of expected instruction(s):_ 'vst3.32 {D0, D1, D2, D3}, [R0]'
-
- * void vst3_s16 (int16_t *, int16x4x3_t)
- _Form of expected instruction(s):_ 'vst3.16 {D0, D1, D2, D3}, [R0]'
-
- * void vst3_s8 (int8_t *, int8x8x3_t)
- _Form of expected instruction(s):_ 'vst3.8 {D0, D1, D2, D3}, [R0]'
-
- * void vst3_f32 (float32_t *, float32x2x3_t)
- _Form of expected instruction(s):_ 'vst3.32 {D0, D1, D2, D3}, [R0]'
-
- * void vst3_p16 (poly16_t *, poly16x4x3_t)
- _Form of expected instruction(s):_ 'vst3.16 {D0, D1, D2, D3}, [R0]'
-
- * void vst3_p8 (poly8_t *, poly8x8x3_t)
- _Form of expected instruction(s):_ 'vst3.8 {D0, D1, D2, D3}, [R0]'
-
- * void vst3_p64 (poly64_t *, poly64x1x3_t)
- _Form of expected instruction(s):_ 'vst1.64 {D0, D1, D2, D3}, [R0]'
-
- * void vst3_u64 (uint64_t *, uint64x1x3_t)
- _Form of expected instruction(s):_ 'vst1.64 {D0, D1, D2, D3}, [R0]'
-
- * void vst3_s64 (int64_t *, int64x1x3_t)
- _Form of expected instruction(s):_ 'vst1.64 {D0, D1, D2, D3}, [R0]'
-
- * void vst3q_u32 (uint32_t *, uint32x4x3_t)
- _Form of expected instruction(s):_ 'vst3.32 {D0, D1, D2}, [R0]'
-
- * void vst3q_u16 (uint16_t *, uint16x8x3_t)
- _Form of expected instruction(s):_ 'vst3.16 {D0, D1, D2}, [R0]'
-
- * void vst3q_u8 (uint8_t *, uint8x16x3_t)
- _Form of expected instruction(s):_ 'vst3.8 {D0, D1, D2}, [R0]'
-
- * void vst3q_s32 (int32_t *, int32x4x3_t)
- _Form of expected instruction(s):_ 'vst3.32 {D0, D1, D2}, [R0]'
-
- * void vst3q_s16 (int16_t *, int16x8x3_t)
- _Form of expected instruction(s):_ 'vst3.16 {D0, D1, D2}, [R0]'
-
- * void vst3q_s8 (int8_t *, int8x16x3_t)
- _Form of expected instruction(s):_ 'vst3.8 {D0, D1, D2}, [R0]'
-
- * void vst3q_f32 (float32_t *, float32x4x3_t)
- _Form of expected instruction(s):_ 'vst3.32 {D0, D1, D2}, [R0]'
-
- * void vst3q_p16 (poly16_t *, poly16x8x3_t)
- _Form of expected instruction(s):_ 'vst3.16 {D0, D1, D2}, [R0]'
-
- * void vst3q_p8 (poly8_t *, poly8x16x3_t)
- _Form of expected instruction(s):_ 'vst3.8 {D0, D1, D2}, [R0]'
-
- * void vst3_lane_u32 (uint32_t *, uint32x2x3_t, const int)
- _Form of expected instruction(s):_ 'vst3.32 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * void vst3_lane_u16 (uint16_t *, uint16x4x3_t, const int)
- _Form of expected instruction(s):_ 'vst3.16 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * void vst3_lane_u8 (uint8_t *, uint8x8x3_t, const int)
- _Form of expected instruction(s):_ 'vst3.8 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * void vst3_lane_s32 (int32_t *, int32x2x3_t, const int)
- _Form of expected instruction(s):_ 'vst3.32 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * void vst3_lane_s16 (int16_t *, int16x4x3_t, const int)
- _Form of expected instruction(s):_ 'vst3.16 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * void vst3_lane_s8 (int8_t *, int8x8x3_t, const int)
- _Form of expected instruction(s):_ 'vst3.8 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * void vst3_lane_f32 (float32_t *, float32x2x3_t, const int)
- _Form of expected instruction(s):_ 'vst3.32 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * void vst3_lane_p16 (poly16_t *, poly16x4x3_t, const int)
- _Form of expected instruction(s):_ 'vst3.16 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * void vst3_lane_p8 (poly8_t *, poly8x8x3_t, const int)
- _Form of expected instruction(s):_ 'vst3.8 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * void vst3q_lane_s32 (int32_t *, int32x4x3_t, const int)
- _Form of expected instruction(s):_ 'vst3.32 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * void vst3q_lane_s16 (int16_t *, int16x8x3_t, const int)
- _Form of expected instruction(s):_ 'vst3.16 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * void vst3q_lane_u32 (uint32_t *, uint32x4x3_t, const int)
- _Form of expected instruction(s):_ 'vst3.32 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * void vst3q_lane_u16 (uint16_t *, uint16x8x3_t, const int)
- _Form of expected instruction(s):_ 'vst3.16 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * void vst3q_lane_f32 (float32_t *, float32x4x3_t, const int)
- _Form of expected instruction(s):_ 'vst3.32 {D0[0], D1[0], D2[0]},
- [R0]'
-
- * void vst3q_lane_p16 (poly16_t *, poly16x8x3_t, const int)
- _Form of expected instruction(s):_ 'vst3.16 {D0[0], D1[0], D2[0]},
- [R0]'
-
-6.57.6.81 Element/structure loads, VLD4 variants
-................................................
-
- * uint32x2x4_t vld4_u32 (const uint32_t *)
- _Form of expected instruction(s):_ 'vld4.32 {D0, D1, D2, D3}, [R0]'
-
- * uint16x4x4_t vld4_u16 (const uint16_t *)
- _Form of expected instruction(s):_ 'vld4.16 {D0, D1, D2, D3}, [R0]'
-
- * uint8x8x4_t vld4_u8 (const uint8_t *)
- _Form of expected instruction(s):_ 'vld4.8 {D0, D1, D2, D3}, [R0]'
-
- * int32x2x4_t vld4_s32 (const int32_t *)
- _Form of expected instruction(s):_ 'vld4.32 {D0, D1, D2, D3}, [R0]'
-
- * int16x4x4_t vld4_s16 (const int16_t *)
- _Form of expected instruction(s):_ 'vld4.16 {D0, D1, D2, D3}, [R0]'
-
- * int8x8x4_t vld4_s8 (const int8_t *)
- _Form of expected instruction(s):_ 'vld4.8 {D0, D1, D2, D3}, [R0]'
-
- * float32x2x4_t vld4_f32 (const float32_t *)
- _Form of expected instruction(s):_ 'vld4.32 {D0, D1, D2, D3}, [R0]'
-
- * poly16x4x4_t vld4_p16 (const poly16_t *)
- _Form of expected instruction(s):_ 'vld4.16 {D0, D1, D2, D3}, [R0]'
-
- * poly8x8x4_t vld4_p8 (const poly8_t *)
- _Form of expected instruction(s):_ 'vld4.8 {D0, D1, D2, D3}, [R0]'
-
- * poly64x1x4_t vld4_p64 (const poly64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2, D3}, [R0]'
-
- * uint64x1x4_t vld4_u64 (const uint64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2, D3}, [R0]'
-
- * int64x1x4_t vld4_s64 (const int64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2, D3}, [R0]'
-
- * uint32x4x4_t vld4q_u32 (const uint32_t *)
- _Form of expected instruction(s):_ 'vld4.32 {D0, D1, D2, D3}, [R0]'
-
- * uint16x8x4_t vld4q_u16 (const uint16_t *)
- _Form of expected instruction(s):_ 'vld4.16 {D0, D1, D2, D3}, [R0]'
-
- * uint8x16x4_t vld4q_u8 (const uint8_t *)
- _Form of expected instruction(s):_ 'vld4.8 {D0, D1, D2, D3}, [R0]'
-
- * int32x4x4_t vld4q_s32 (const int32_t *)
- _Form of expected instruction(s):_ 'vld4.32 {D0, D1, D2, D3}, [R0]'
-
- * int16x8x4_t vld4q_s16 (const int16_t *)
- _Form of expected instruction(s):_ 'vld4.16 {D0, D1, D2, D3}, [R0]'
-
- * int8x16x4_t vld4q_s8 (const int8_t *)
- _Form of expected instruction(s):_ 'vld4.8 {D0, D1, D2, D3}, [R0]'
-
- * float32x4x4_t vld4q_f32 (const float32_t *)
- _Form of expected instruction(s):_ 'vld4.32 {D0, D1, D2, D3}, [R0]'
-
- * poly16x8x4_t vld4q_p16 (const poly16_t *)
- _Form of expected instruction(s):_ 'vld4.16 {D0, D1, D2, D3}, [R0]'
-
- * poly8x16x4_t vld4q_p8 (const poly8_t *)
- _Form of expected instruction(s):_ 'vld4.8 {D0, D1, D2, D3}, [R0]'
-
- * uint32x2x4_t vld4_lane_u32 (const uint32_t *, uint32x2x4_t, const
- int)
- _Form of expected instruction(s):_ 'vld4.32 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * uint16x4x4_t vld4_lane_u16 (const uint16_t *, uint16x4x4_t, const
- int)
- _Form of expected instruction(s):_ 'vld4.16 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * uint8x8x4_t vld4_lane_u8 (const uint8_t *, uint8x8x4_t, const int)
- _Form of expected instruction(s):_ 'vld4.8 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * int32x2x4_t vld4_lane_s32 (const int32_t *, int32x2x4_t, const int)
-
- _Form of expected instruction(s):_ 'vld4.32 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * int16x4x4_t vld4_lane_s16 (const int16_t *, int16x4x4_t, const int)
-
- _Form of expected instruction(s):_ 'vld4.16 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * int8x8x4_t vld4_lane_s8 (const int8_t *, int8x8x4_t, const int)
- _Form of expected instruction(s):_ 'vld4.8 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * float32x2x4_t vld4_lane_f32 (const float32_t *, float32x2x4_t,
- const int)
- _Form of expected instruction(s):_ 'vld4.32 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * poly16x4x4_t vld4_lane_p16 (const poly16_t *, poly16x4x4_t, const
- int)
- _Form of expected instruction(s):_ 'vld4.16 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * poly8x8x4_t vld4_lane_p8 (const poly8_t *, poly8x8x4_t, const int)
- _Form of expected instruction(s):_ 'vld4.8 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * int32x4x4_t vld4q_lane_s32 (const int32_t *, int32x4x4_t, const
- int)
- _Form of expected instruction(s):_ 'vld4.32 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * int16x8x4_t vld4q_lane_s16 (const int16_t *, int16x8x4_t, const
- int)
- _Form of expected instruction(s):_ 'vld4.16 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * uint32x4x4_t vld4q_lane_u32 (const uint32_t *, uint32x4x4_t, const
- int)
- _Form of expected instruction(s):_ 'vld4.32 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * uint16x8x4_t vld4q_lane_u16 (const uint16_t *, uint16x8x4_t, const
- int)
- _Form of expected instruction(s):_ 'vld4.16 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * float32x4x4_t vld4q_lane_f32 (const float32_t *, float32x4x4_t,
- const int)
- _Form of expected instruction(s):_ 'vld4.32 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * poly16x8x4_t vld4q_lane_p16 (const poly16_t *, poly16x8x4_t, const
- int)
- _Form of expected instruction(s):_ 'vld4.16 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * uint32x2x4_t vld4_dup_u32 (const uint32_t *)
- _Form of expected instruction(s):_ 'vld4.32 {D0[], D1[], D2[],
- D3[]}, [R0]'
-
- * uint16x4x4_t vld4_dup_u16 (const uint16_t *)
- _Form of expected instruction(s):_ 'vld4.16 {D0[], D1[], D2[],
- D3[]}, [R0]'
-
- * uint8x8x4_t vld4_dup_u8 (const uint8_t *)
- _Form of expected instruction(s):_ 'vld4.8 {D0[], D1[], D2[],
- D3[]}, [R0]'
-
- * int32x2x4_t vld4_dup_s32 (const int32_t *)
- _Form of expected instruction(s):_ 'vld4.32 {D0[], D1[], D2[],
- D3[]}, [R0]'
-
- * int16x4x4_t vld4_dup_s16 (const int16_t *)
- _Form of expected instruction(s):_ 'vld4.16 {D0[], D1[], D2[],
- D3[]}, [R0]'
-
- * int8x8x4_t vld4_dup_s8 (const int8_t *)
- _Form of expected instruction(s):_ 'vld4.8 {D0[], D1[], D2[],
- D3[]}, [R0]'
-
- * float32x2x4_t vld4_dup_f32 (const float32_t *)
- _Form of expected instruction(s):_ 'vld4.32 {D0[], D1[], D2[],
- D3[]}, [R0]'
-
- * poly16x4x4_t vld4_dup_p16 (const poly16_t *)
- _Form of expected instruction(s):_ 'vld4.16 {D0[], D1[], D2[],
- D3[]}, [R0]'
-
- * poly8x8x4_t vld4_dup_p8 (const poly8_t *)
- _Form of expected instruction(s):_ 'vld4.8 {D0[], D1[], D2[],
- D3[]}, [R0]'
-
- * poly64x1x4_t vld4_dup_p64 (const poly64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2, D3}, [R0]'
-
- * uint64x1x4_t vld4_dup_u64 (const uint64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2, D3}, [R0]'
-
- * int64x1x4_t vld4_dup_s64 (const int64_t *)
- _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2, D3}, [R0]'
-
-6.57.6.82 Element/structure stores, VST4 variants
-.................................................
-
- * void vst4_u32 (uint32_t *, uint32x2x4_t)
- _Form of expected instruction(s):_ 'vst4.32 {D0, D1, D2, D3}, [R0]'
-
- * void vst4_u16 (uint16_t *, uint16x4x4_t)
- _Form of expected instruction(s):_ 'vst4.16 {D0, D1, D2, D3}, [R0]'
-
- * void vst4_u8 (uint8_t *, uint8x8x4_t)
- _Form of expected instruction(s):_ 'vst4.8 {D0, D1, D2, D3}, [R0]'
-
- * void vst4_s32 (int32_t *, int32x2x4_t)
- _Form of expected instruction(s):_ 'vst4.32 {D0, D1, D2, D3}, [R0]'
-
- * void vst4_s16 (int16_t *, int16x4x4_t)
- _Form of expected instruction(s):_ 'vst4.16 {D0, D1, D2, D3}, [R0]'
-
- * void vst4_s8 (int8_t *, int8x8x4_t)
- _Form of expected instruction(s):_ 'vst4.8 {D0, D1, D2, D3}, [R0]'
-
- * void vst4_f32 (float32_t *, float32x2x4_t)
- _Form of expected instruction(s):_ 'vst4.32 {D0, D1, D2, D3}, [R0]'
-
- * void vst4_p16 (poly16_t *, poly16x4x4_t)
- _Form of expected instruction(s):_ 'vst4.16 {D0, D1, D2, D3}, [R0]'
-
- * void vst4_p8 (poly8_t *, poly8x8x4_t)
- _Form of expected instruction(s):_ 'vst4.8 {D0, D1, D2, D3}, [R0]'
-
- * void vst4_p64 (poly64_t *, poly64x1x4_t)
- _Form of expected instruction(s):_ 'vst1.64 {D0, D1, D2, D3}, [R0]'
-
- * void vst4_u64 (uint64_t *, uint64x1x4_t)
- _Form of expected instruction(s):_ 'vst1.64 {D0, D1, D2, D3}, [R0]'
-
- * void vst4_s64 (int64_t *, int64x1x4_t)
- _Form of expected instruction(s):_ 'vst1.64 {D0, D1, D2, D3}, [R0]'
-
- * void vst4q_u32 (uint32_t *, uint32x4x4_t)
- _Form of expected instruction(s):_ 'vst4.32 {D0, D1, D2, D3}, [R0]'
-
- * void vst4q_u16 (uint16_t *, uint16x8x4_t)
- _Form of expected instruction(s):_ 'vst4.16 {D0, D1, D2, D3}, [R0]'
-
- * void vst4q_u8 (uint8_t *, uint8x16x4_t)
- _Form of expected instruction(s):_ 'vst4.8 {D0, D1, D2, D3}, [R0]'
-
- * void vst4q_s32 (int32_t *, int32x4x4_t)
- _Form of expected instruction(s):_ 'vst4.32 {D0, D1, D2, D3}, [R0]'
-
- * void vst4q_s16 (int16_t *, int16x8x4_t)
- _Form of expected instruction(s):_ 'vst4.16 {D0, D1, D2, D3}, [R0]'
-
- * void vst4q_s8 (int8_t *, int8x16x4_t)
- _Form of expected instruction(s):_ 'vst4.8 {D0, D1, D2, D3}, [R0]'
-
- * void vst4q_f32 (float32_t *, float32x4x4_t)
- _Form of expected instruction(s):_ 'vst4.32 {D0, D1, D2, D3}, [R0]'
-
- * void vst4q_p16 (poly16_t *, poly16x8x4_t)
- _Form of expected instruction(s):_ 'vst4.16 {D0, D1, D2, D3}, [R0]'
-
- * void vst4q_p8 (poly8_t *, poly8x16x4_t)
- _Form of expected instruction(s):_ 'vst4.8 {D0, D1, D2, D3}, [R0]'
-
- * void vst4_lane_u32 (uint32_t *, uint32x2x4_t, const int)
- _Form of expected instruction(s):_ 'vst4.32 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * void vst4_lane_u16 (uint16_t *, uint16x4x4_t, const int)
- _Form of expected instruction(s):_ 'vst4.16 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * void vst4_lane_u8 (uint8_t *, uint8x8x4_t, const int)
- _Form of expected instruction(s):_ 'vst4.8 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * void vst4_lane_s32 (int32_t *, int32x2x4_t, const int)
- _Form of expected instruction(s):_ 'vst4.32 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * void vst4_lane_s16 (int16_t *, int16x4x4_t, const int)
- _Form of expected instruction(s):_ 'vst4.16 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * void vst4_lane_s8 (int8_t *, int8x8x4_t, const int)
- _Form of expected instruction(s):_ 'vst4.8 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * void vst4_lane_f32 (float32_t *, float32x2x4_t, const int)
- _Form of expected instruction(s):_ 'vst4.32 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * void vst4_lane_p16 (poly16_t *, poly16x4x4_t, const int)
- _Form of expected instruction(s):_ 'vst4.16 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * void vst4_lane_p8 (poly8_t *, poly8x8x4_t, const int)
- _Form of expected instruction(s):_ 'vst4.8 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * void vst4q_lane_s32 (int32_t *, int32x4x4_t, const int)
- _Form of expected instruction(s):_ 'vst4.32 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * void vst4q_lane_s16 (int16_t *, int16x8x4_t, const int)
- _Form of expected instruction(s):_ 'vst4.16 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * void vst4q_lane_u32 (uint32_t *, uint32x4x4_t, const int)
- _Form of expected instruction(s):_ 'vst4.32 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * void vst4q_lane_u16 (uint16_t *, uint16x8x4_t, const int)
- _Form of expected instruction(s):_ 'vst4.16 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * void vst4q_lane_f32 (float32_t *, float32x4x4_t, const int)
- _Form of expected instruction(s):_ 'vst4.32 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
- * void vst4q_lane_p16 (poly16_t *, poly16x8x4_t, const int)
- _Form of expected instruction(s):_ 'vst4.16 {D0[0], D1[0], D2[0],
- D3[0]}, [R0]'
-
-6.57.6.83 Logical operations (AND)
-..................................
-
- * uint32x2_t vand_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vand D0, D0, D0'
-
- * uint16x4_t vand_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vand D0, D0, D0'
-
- * uint8x8_t vand_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vand D0, D0, D0'
-
- * int32x2_t vand_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vand D0, D0, D0'
-
- * int16x4_t vand_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vand D0, D0, D0'
-
- * int8x8_t vand_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vand D0, D0, D0'
-
- * uint64x1_t vand_u64 (uint64x1_t, uint64x1_t)
-
- * int64x1_t vand_s64 (int64x1_t, int64x1_t)
-
- * uint32x4_t vandq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vand Q0, Q0, Q0'
-
- * uint16x8_t vandq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vand Q0, Q0, Q0'
-
- * uint8x16_t vandq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vand Q0, Q0, Q0'
-
- * int32x4_t vandq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vand Q0, Q0, Q0'
-
- * int16x8_t vandq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vand Q0, Q0, Q0'
-
- * int8x16_t vandq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vand Q0, Q0, Q0'
-
- * uint64x2_t vandq_u64 (uint64x2_t, uint64x2_t)
- _Form of expected instruction(s):_ 'vand Q0, Q0, Q0'
-
- * int64x2_t vandq_s64 (int64x2_t, int64x2_t)
- _Form of expected instruction(s):_ 'vand Q0, Q0, Q0'
-
-6.57.6.84 Logical operations (OR)
-.................................
-
- * uint32x2_t vorr_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vorr D0, D0, D0'
-
- * uint16x4_t vorr_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vorr D0, D0, D0'
-
- * uint8x8_t vorr_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vorr D0, D0, D0'
-
- * int32x2_t vorr_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vorr D0, D0, D0'
-
- * int16x4_t vorr_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vorr D0, D0, D0'
-
- * int8x8_t vorr_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vorr D0, D0, D0'
-
- * uint64x1_t vorr_u64 (uint64x1_t, uint64x1_t)
-
- * int64x1_t vorr_s64 (int64x1_t, int64x1_t)
-
- * uint32x4_t vorrq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0'
-
- * uint16x8_t vorrq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0'
-
- * uint8x16_t vorrq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0'
-
- * int32x4_t vorrq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0'
-
- * int16x8_t vorrq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0'
-
- * int8x16_t vorrq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0'
-
- * uint64x2_t vorrq_u64 (uint64x2_t, uint64x2_t)
- _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0'
-
- * int64x2_t vorrq_s64 (int64x2_t, int64x2_t)
- _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0'
-
-6.57.6.85 Logical operations (exclusive OR)
-...........................................
-
- * uint32x2_t veor_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'veor D0, D0, D0'
-
- * uint16x4_t veor_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'veor D0, D0, D0'
-
- * uint8x8_t veor_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'veor D0, D0, D0'
-
- * int32x2_t veor_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'veor D0, D0, D0'
-
- * int16x4_t veor_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'veor D0, D0, D0'
-
- * int8x8_t veor_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'veor D0, D0, D0'
-
- * uint64x1_t veor_u64 (uint64x1_t, uint64x1_t)
-
- * int64x1_t veor_s64 (int64x1_t, int64x1_t)
-
- * uint32x4_t veorq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'veor Q0, Q0, Q0'
-
- * uint16x8_t veorq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'veor Q0, Q0, Q0'
-
- * uint8x16_t veorq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'veor Q0, Q0, Q0'
-
- * int32x4_t veorq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'veor Q0, Q0, Q0'
-
- * int16x8_t veorq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'veor Q0, Q0, Q0'
-
- * int8x16_t veorq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'veor Q0, Q0, Q0'
-
- * uint64x2_t veorq_u64 (uint64x2_t, uint64x2_t)
- _Form of expected instruction(s):_ 'veor Q0, Q0, Q0'
-
- * int64x2_t veorq_s64 (int64x2_t, int64x2_t)
- _Form of expected instruction(s):_ 'veor Q0, Q0, Q0'
-
-6.57.6.86 Logical operations (AND-NOT)
-......................................
-
- * uint32x2_t vbic_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vbic D0, D0, D0'
-
- * uint16x4_t vbic_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vbic D0, D0, D0'
-
- * uint8x8_t vbic_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vbic D0, D0, D0'
-
- * int32x2_t vbic_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vbic D0, D0, D0'
-
- * int16x4_t vbic_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vbic D0, D0, D0'
-
- * int8x8_t vbic_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vbic D0, D0, D0'
-
- * uint64x1_t vbic_u64 (uint64x1_t, uint64x1_t)
-
- * int64x1_t vbic_s64 (int64x1_t, int64x1_t)
-
- * uint32x4_t vbicq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0'
-
- * uint16x8_t vbicq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0'
-
- * uint8x16_t vbicq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0'
-
- * int32x4_t vbicq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0'
-
- * int16x8_t vbicq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0'
-
- * int8x16_t vbicq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0'
-
- * uint64x2_t vbicq_u64 (uint64x2_t, uint64x2_t)
- _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0'
-
- * int64x2_t vbicq_s64 (int64x2_t, int64x2_t)
- _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0'
-
-6.57.6.87 Logical operations (OR-NOT)
-.....................................
-
- * uint32x2_t vorn_u32 (uint32x2_t, uint32x2_t)
- _Form of expected instruction(s):_ 'vorn D0, D0, D0'
-
- * uint16x4_t vorn_u16 (uint16x4_t, uint16x4_t)
- _Form of expected instruction(s):_ 'vorn D0, D0, D0'
-
- * uint8x8_t vorn_u8 (uint8x8_t, uint8x8_t)
- _Form of expected instruction(s):_ 'vorn D0, D0, D0'
-
- * int32x2_t vorn_s32 (int32x2_t, int32x2_t)
- _Form of expected instruction(s):_ 'vorn D0, D0, D0'
-
- * int16x4_t vorn_s16 (int16x4_t, int16x4_t)
- _Form of expected instruction(s):_ 'vorn D0, D0, D0'
-
- * int8x8_t vorn_s8 (int8x8_t, int8x8_t)
- _Form of expected instruction(s):_ 'vorn D0, D0, D0'
-
- * uint64x1_t vorn_u64 (uint64x1_t, uint64x1_t)
-
- * int64x1_t vorn_s64 (int64x1_t, int64x1_t)
-
- * uint32x4_t vornq_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0'
-
- * uint16x8_t vornq_u16 (uint16x8_t, uint16x8_t)
- _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0'
-
- * uint8x16_t vornq_u8 (uint8x16_t, uint8x16_t)
- _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0'
-
- * int32x4_t vornq_s32 (int32x4_t, int32x4_t)
- _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0'
-
- * int16x8_t vornq_s16 (int16x8_t, int16x8_t)
- _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0'
-
- * int8x16_t vornq_s8 (int8x16_t, int8x16_t)
- _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0'
-
- * uint64x2_t vornq_u64 (uint64x2_t, uint64x2_t)
- _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0'
-
- * int64x2_t vornq_s64 (int64x2_t, int64x2_t)
- _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0'
-
-6.57.6.88 Reinterpret casts
-...........................
-
- * poly8x8_t vreinterpret_p8_p16 (poly16x4_t)
-
- * poly8x8_t vreinterpret_p8_f32 (float32x2_t)
-
- * poly8x8_t vreinterpret_p8_p64 (poly64x1_t)
-
- * poly8x8_t vreinterpret_p8_s64 (int64x1_t)
-
- * poly8x8_t vreinterpret_p8_u64 (uint64x1_t)
-
- * poly8x8_t vreinterpret_p8_s8 (int8x8_t)
-
- * poly8x8_t vreinterpret_p8_s16 (int16x4_t)
-
- * poly8x8_t vreinterpret_p8_s32 (int32x2_t)
-
- * poly8x8_t vreinterpret_p8_u8 (uint8x8_t)
-
- * poly8x8_t vreinterpret_p8_u16 (uint16x4_t)
-
- * poly8x8_t vreinterpret_p8_u32 (uint32x2_t)
-
- * poly16x4_t vreinterpret_p16_p8 (poly8x8_t)
-
- * poly16x4_t vreinterpret_p16_f32 (float32x2_t)
-
- * poly16x4_t vreinterpret_p16_p64 (poly64x1_t)
-
- * poly16x4_t vreinterpret_p16_s64 (int64x1_t)
-
- * poly16x4_t vreinterpret_p16_u64 (uint64x1_t)
-
- * poly16x4_t vreinterpret_p16_s8 (int8x8_t)
-
- * poly16x4_t vreinterpret_p16_s16 (int16x4_t)
-
- * poly16x4_t vreinterpret_p16_s32 (int32x2_t)
-
- * poly16x4_t vreinterpret_p16_u8 (uint8x8_t)
-
- * poly16x4_t vreinterpret_p16_u16 (uint16x4_t)
-
- * poly16x4_t vreinterpret_p16_u32 (uint32x2_t)
-
- * float32x2_t vreinterpret_f32_p8 (poly8x8_t)
-
- * float32x2_t vreinterpret_f32_p16 (poly16x4_t)
-
- * float32x2_t vreinterpret_f32_p64 (poly64x1_t)
-
- * float32x2_t vreinterpret_f32_s64 (int64x1_t)
-
- * float32x2_t vreinterpret_f32_u64 (uint64x1_t)
-
- * float32x2_t vreinterpret_f32_s8 (int8x8_t)
-
- * float32x2_t vreinterpret_f32_s16 (int16x4_t)
-
- * float32x2_t vreinterpret_f32_s32 (int32x2_t)
-
- * float32x2_t vreinterpret_f32_u8 (uint8x8_t)
-
- * float32x2_t vreinterpret_f32_u16 (uint16x4_t)
-
- * float32x2_t vreinterpret_f32_u32 (uint32x2_t)
-
- * poly64x1_t vreinterpret_p64_p8 (poly8x8_t)
-
- * poly64x1_t vreinterpret_p64_p16 (poly16x4_t)
-
- * poly64x1_t vreinterpret_p64_f32 (float32x2_t)
-
- * poly64x1_t vreinterpret_p64_s64 (int64x1_t)
-
- * poly64x1_t vreinterpret_p64_u64 (uint64x1_t)
-
- * poly64x1_t vreinterpret_p64_s8 (int8x8_t)
-
- * poly64x1_t vreinterpret_p64_s16 (int16x4_t)
-
- * poly64x1_t vreinterpret_p64_s32 (int32x2_t)
-
- * poly64x1_t vreinterpret_p64_u8 (uint8x8_t)
-
- * poly64x1_t vreinterpret_p64_u16 (uint16x4_t)
-
- * poly64x1_t vreinterpret_p64_u32 (uint32x2_t)
-
- * int64x1_t vreinterpret_s64_p8 (poly8x8_t)
-
- * int64x1_t vreinterpret_s64_p16 (poly16x4_t)
-
- * int64x1_t vreinterpret_s64_f32 (float32x2_t)
-
- * int64x1_t vreinterpret_s64_p64 (poly64x1_t)
-
- * int64x1_t vreinterpret_s64_u64 (uint64x1_t)
-
- * int64x1_t vreinterpret_s64_s8 (int8x8_t)
-
- * int64x1_t vreinterpret_s64_s16 (int16x4_t)
-
- * int64x1_t vreinterpret_s64_s32 (int32x2_t)
-
- * int64x1_t vreinterpret_s64_u8 (uint8x8_t)
-
- * int64x1_t vreinterpret_s64_u16 (uint16x4_t)
-
- * int64x1_t vreinterpret_s64_u32 (uint32x2_t)
-
- * uint64x1_t vreinterpret_u64_p8 (poly8x8_t)
-
- * uint64x1_t vreinterpret_u64_p16 (poly16x4_t)
-
- * uint64x1_t vreinterpret_u64_f32 (float32x2_t)
-
- * uint64x1_t vreinterpret_u64_p64 (poly64x1_t)
-
- * uint64x1_t vreinterpret_u64_s64 (int64x1_t)
-
- * uint64x1_t vreinterpret_u64_s8 (int8x8_t)
-
- * uint64x1_t vreinterpret_u64_s16 (int16x4_t)
-
- * uint64x1_t vreinterpret_u64_s32 (int32x2_t)
-
- * uint64x1_t vreinterpret_u64_u8 (uint8x8_t)
-
- * uint64x1_t vreinterpret_u64_u16 (uint16x4_t)
-
- * uint64x1_t vreinterpret_u64_u32 (uint32x2_t)
-
- * int8x8_t vreinterpret_s8_p8 (poly8x8_t)
-
- * int8x8_t vreinterpret_s8_p16 (poly16x4_t)
-
- * int8x8_t vreinterpret_s8_f32 (float32x2_t)
-
- * int8x8_t vreinterpret_s8_p64 (poly64x1_t)
-
- * int8x8_t vreinterpret_s8_s64 (int64x1_t)
-
- * int8x8_t vreinterpret_s8_u64 (uint64x1_t)
-
- * int8x8_t vreinterpret_s8_s16 (int16x4_t)
-
- * int8x8_t vreinterpret_s8_s32 (int32x2_t)
-
- * int8x8_t vreinterpret_s8_u8 (uint8x8_t)
-
- * int8x8_t vreinterpret_s8_u16 (uint16x4_t)
-
- * int8x8_t vreinterpret_s8_u32 (uint32x2_t)
-
- * int16x4_t vreinterpret_s16_p8 (poly8x8_t)
-
- * int16x4_t vreinterpret_s16_p16 (poly16x4_t)
-
- * int16x4_t vreinterpret_s16_f32 (float32x2_t)
-
- * int16x4_t vreinterpret_s16_p64 (poly64x1_t)
-
- * int16x4_t vreinterpret_s16_s64 (int64x1_t)
-
- * int16x4_t vreinterpret_s16_u64 (uint64x1_t)
-
- * int16x4_t vreinterpret_s16_s8 (int8x8_t)
-
- * int16x4_t vreinterpret_s16_s32 (int32x2_t)
-
- * int16x4_t vreinterpret_s16_u8 (uint8x8_t)
-
- * int16x4_t vreinterpret_s16_u16 (uint16x4_t)
-
- * int16x4_t vreinterpret_s16_u32 (uint32x2_t)
-
- * int32x2_t vreinterpret_s32_p8 (poly8x8_t)
-
- * int32x2_t vreinterpret_s32_p16 (poly16x4_t)
-
- * int32x2_t vreinterpret_s32_f32 (float32x2_t)
-
- * int32x2_t vreinterpret_s32_p64 (poly64x1_t)
-
- * int32x2_t vreinterpret_s32_s64 (int64x1_t)
-
- * int32x2_t vreinterpret_s32_u64 (uint64x1_t)
-
- * int32x2_t vreinterpret_s32_s8 (int8x8_t)
-
- * int32x2_t vreinterpret_s32_s16 (int16x4_t)
-
- * int32x2_t vreinterpret_s32_u8 (uint8x8_t)
-
- * int32x2_t vreinterpret_s32_u16 (uint16x4_t)
-
- * int32x2_t vreinterpret_s32_u32 (uint32x2_t)
-
- * uint8x8_t vreinterpret_u8_p8 (poly8x8_t)
-
- * uint8x8_t vreinterpret_u8_p16 (poly16x4_t)
-
- * uint8x8_t vreinterpret_u8_f32 (float32x2_t)
-
- * uint8x8_t vreinterpret_u8_p64 (poly64x1_t)
-
- * uint8x8_t vreinterpret_u8_s64 (int64x1_t)
-
- * uint8x8_t vreinterpret_u8_u64 (uint64x1_t)
-
- * uint8x8_t vreinterpret_u8_s8 (int8x8_t)
-
- * uint8x8_t vreinterpret_u8_s16 (int16x4_t)
-
- * uint8x8_t vreinterpret_u8_s32 (int32x2_t)
-
- * uint8x8_t vreinterpret_u8_u16 (uint16x4_t)
-
- * uint8x8_t vreinterpret_u8_u32 (uint32x2_t)
-
- * uint16x4_t vreinterpret_u16_p8 (poly8x8_t)
-
- * uint16x4_t vreinterpret_u16_p16 (poly16x4_t)
-
- * uint16x4_t vreinterpret_u16_f32 (float32x2_t)
-
- * uint16x4_t vreinterpret_u16_p64 (poly64x1_t)
-
- * uint16x4_t vreinterpret_u16_s64 (int64x1_t)
-
- * uint16x4_t vreinterpret_u16_u64 (uint64x1_t)
-
- * uint16x4_t vreinterpret_u16_s8 (int8x8_t)
-
- * uint16x4_t vreinterpret_u16_s16 (int16x4_t)
-
- * uint16x4_t vreinterpret_u16_s32 (int32x2_t)
-
- * uint16x4_t vreinterpret_u16_u8 (uint8x8_t)
-
- * uint16x4_t vreinterpret_u16_u32 (uint32x2_t)
-
- * uint32x2_t vreinterpret_u32_p8 (poly8x8_t)
-
- * uint32x2_t vreinterpret_u32_p16 (poly16x4_t)
-
- * uint32x2_t vreinterpret_u32_f32 (float32x2_t)
-
- * uint32x2_t vreinterpret_u32_p64 (poly64x1_t)
-
- * uint32x2_t vreinterpret_u32_s64 (int64x1_t)
-
- * uint32x2_t vreinterpret_u32_u64 (uint64x1_t)
-
- * uint32x2_t vreinterpret_u32_s8 (int8x8_t)
-
- * uint32x2_t vreinterpret_u32_s16 (int16x4_t)
-
- * uint32x2_t vreinterpret_u32_s32 (int32x2_t)
-
- * uint32x2_t vreinterpret_u32_u8 (uint8x8_t)
-
- * uint32x2_t vreinterpret_u32_u16 (uint16x4_t)
-
- * poly8x16_t vreinterpretq_p8_p16 (poly16x8_t)
-
- * poly8x16_t vreinterpretq_p8_f32 (float32x4_t)
-
- * poly8x16_t vreinterpretq_p8_p64 (poly64x2_t)
-
- * poly8x16_t vreinterpretq_p8_p128 (poly128_t)
-
- * poly8x16_t vreinterpretq_p8_s64 (int64x2_t)
-
- * poly8x16_t vreinterpretq_p8_u64 (uint64x2_t)
-
- * poly8x16_t vreinterpretq_p8_s8 (int8x16_t)
-
- * poly8x16_t vreinterpretq_p8_s16 (int16x8_t)
-
- * poly8x16_t vreinterpretq_p8_s32 (int32x4_t)
-
- * poly8x16_t vreinterpretq_p8_u8 (uint8x16_t)
-
- * poly8x16_t vreinterpretq_p8_u16 (uint16x8_t)
-
- * poly8x16_t vreinterpretq_p8_u32 (uint32x4_t)
-
- * poly16x8_t vreinterpretq_p16_p8 (poly8x16_t)
-
- * poly16x8_t vreinterpretq_p16_f32 (float32x4_t)
-
- * poly16x8_t vreinterpretq_p16_p64 (poly64x2_t)
-
- * poly16x8_t vreinterpretq_p16_p128 (poly128_t)
-
- * poly16x8_t vreinterpretq_p16_s64 (int64x2_t)
-
- * poly16x8_t vreinterpretq_p16_u64 (uint64x2_t)
-
- * poly16x8_t vreinterpretq_p16_s8 (int8x16_t)
-
- * poly16x8_t vreinterpretq_p16_s16 (int16x8_t)
-
- * poly16x8_t vreinterpretq_p16_s32 (int32x4_t)
-
- * poly16x8_t vreinterpretq_p16_u8 (uint8x16_t)
-
- * poly16x8_t vreinterpretq_p16_u16 (uint16x8_t)
-
- * poly16x8_t vreinterpretq_p16_u32 (uint32x4_t)
-
- * float32x4_t vreinterpretq_f32_p8 (poly8x16_t)
-
- * float32x4_t vreinterpretq_f32_p16 (poly16x8_t)
-
- * float32x4_t vreinterpretq_f32_p64 (poly64x2_t)
-
- * float32x4_t vreinterpretq_f32_p128 (poly128_t)
-
- * float32x4_t vreinterpretq_f32_s64 (int64x2_t)
-
- * float32x4_t vreinterpretq_f32_u64 (uint64x2_t)
-
- * float32x4_t vreinterpretq_f32_s8 (int8x16_t)
-
- * float32x4_t vreinterpretq_f32_s16 (int16x8_t)
-
- * float32x4_t vreinterpretq_f32_s32 (int32x4_t)
-
- * float32x4_t vreinterpretq_f32_u8 (uint8x16_t)
-
- * float32x4_t vreinterpretq_f32_u16 (uint16x8_t)
-
- * float32x4_t vreinterpretq_f32_u32 (uint32x4_t)
-
- * poly64x2_t vreinterpretq_p64_p8 (poly8x16_t)
-
- * poly64x2_t vreinterpretq_p64_p16 (poly16x8_t)
-
- * poly64x2_t vreinterpretq_p64_f32 (float32x4_t)
-
- * poly64x2_t vreinterpretq_p64_p128 (poly128_t)
-
- * poly64x2_t vreinterpretq_p64_s64 (int64x2_t)
-
- * poly64x2_t vreinterpretq_p64_u64 (uint64x2_t)
-
- * poly64x2_t vreinterpretq_p64_s8 (int8x16_t)
-
- * poly64x2_t vreinterpretq_p64_s16 (int16x8_t)
-
- * poly64x2_t vreinterpretq_p64_s32 (int32x4_t)
-
- * poly64x2_t vreinterpretq_p64_u8 (uint8x16_t)
-
- * poly64x2_t vreinterpretq_p64_u16 (uint16x8_t)
-
- * poly64x2_t vreinterpretq_p64_u32 (uint32x4_t)
-
- * poly128_t vreinterpretq_p128_p8 (poly8x16_t)
-
- * poly128_t vreinterpretq_p128_p16 (poly16x8_t)
-
- * poly128_t vreinterpretq_p128_f32 (float32x4_t)
-
- * poly128_t vreinterpretq_p128_p64 (poly64x2_t)
-
- * poly128_t vreinterpretq_p128_s64 (int64x2_t)
-
- * poly128_t vreinterpretq_p128_u64 (uint64x2_t)
-
- * poly128_t vreinterpretq_p128_s8 (int8x16_t)
-
- * poly128_t vreinterpretq_p128_s16 (int16x8_t)
-
- * poly128_t vreinterpretq_p128_s32 (int32x4_t)
-
- * poly128_t vreinterpretq_p128_u8 (uint8x16_t)
-
- * poly128_t vreinterpretq_p128_u16 (uint16x8_t)
-
- * poly128_t vreinterpretq_p128_u32 (uint32x4_t)
-
- * int64x2_t vreinterpretq_s64_p8 (poly8x16_t)
-
- * int64x2_t vreinterpretq_s64_p16 (poly16x8_t)
-
- * int64x2_t vreinterpretq_s64_f32 (float32x4_t)
-
- * int64x2_t vreinterpretq_s64_p64 (poly64x2_t)
-
- * int64x2_t vreinterpretq_s64_p128 (poly128_t)
-
- * int64x2_t vreinterpretq_s64_u64 (uint64x2_t)
-
- * int64x2_t vreinterpretq_s64_s8 (int8x16_t)
-
- * int64x2_t vreinterpretq_s64_s16 (int16x8_t)
-
- * int64x2_t vreinterpretq_s64_s32 (int32x4_t)
-
- * int64x2_t vreinterpretq_s64_u8 (uint8x16_t)
-
- * int64x2_t vreinterpretq_s64_u16 (uint16x8_t)
-
- * int64x2_t vreinterpretq_s64_u32 (uint32x4_t)
-
- * uint64x2_t vreinterpretq_u64_p8 (poly8x16_t)
-
- * uint64x2_t vreinterpretq_u64_p16 (poly16x8_t)
-
- * uint64x2_t vreinterpretq_u64_f32 (float32x4_t)
-
- * uint64x2_t vreinterpretq_u64_p64 (poly64x2_t)
-
- * uint64x2_t vreinterpretq_u64_p128 (poly128_t)
-
- * uint64x2_t vreinterpretq_u64_s64 (int64x2_t)
-
- * uint64x2_t vreinterpretq_u64_s8 (int8x16_t)
-
- * uint64x2_t vreinterpretq_u64_s16 (int16x8_t)
-
- * uint64x2_t vreinterpretq_u64_s32 (int32x4_t)
-
- * uint64x2_t vreinterpretq_u64_u8 (uint8x16_t)
-
- * uint64x2_t vreinterpretq_u64_u16 (uint16x8_t)
-
- * uint64x2_t vreinterpretq_u64_u32 (uint32x4_t)
-
- * int8x16_t vreinterpretq_s8_p8 (poly8x16_t)
-
- * int8x16_t vreinterpretq_s8_p16 (poly16x8_t)
-
- * int8x16_t vreinterpretq_s8_f32 (float32x4_t)
-
- * int8x16_t vreinterpretq_s8_p64 (poly64x2_t)
-
- * int8x16_t vreinterpretq_s8_p128 (poly128_t)
-
- * int8x16_t vreinterpretq_s8_s64 (int64x2_t)
-
- * int8x16_t vreinterpretq_s8_u64 (uint64x2_t)
-
- * int8x16_t vreinterpretq_s8_s16 (int16x8_t)
-
- * int8x16_t vreinterpretq_s8_s32 (int32x4_t)
-
- * int8x16_t vreinterpretq_s8_u8 (uint8x16_t)
-
- * int8x16_t vreinterpretq_s8_u16 (uint16x8_t)
-
- * int8x16_t vreinterpretq_s8_u32 (uint32x4_t)
-
- * int16x8_t vreinterpretq_s16_p8 (poly8x16_t)
-
- * int16x8_t vreinterpretq_s16_p16 (poly16x8_t)
-
- * int16x8_t vreinterpretq_s16_f32 (float32x4_t)
-
- * int16x8_t vreinterpretq_s16_p64 (poly64x2_t)
-
- * int16x8_t vreinterpretq_s16_p128 (poly128_t)
-
- * int16x8_t vreinterpretq_s16_s64 (int64x2_t)
-
- * int16x8_t vreinterpretq_s16_u64 (uint64x2_t)
-
- * int16x8_t vreinterpretq_s16_s8 (int8x16_t)
-
- * int16x8_t vreinterpretq_s16_s32 (int32x4_t)
-
- * int16x8_t vreinterpretq_s16_u8 (uint8x16_t)
-
- * int16x8_t vreinterpretq_s16_u16 (uint16x8_t)
-
- * int16x8_t vreinterpretq_s16_u32 (uint32x4_t)
-
- * int32x4_t vreinterpretq_s32_p8 (poly8x16_t)
-
- * int32x4_t vreinterpretq_s32_p16 (poly16x8_t)
-
- * int32x4_t vreinterpretq_s32_f32 (float32x4_t)
-
- * int32x4_t vreinterpretq_s32_p64 (poly64x2_t)
-
- * int32x4_t vreinterpretq_s32_p128 (poly128_t)
-
- * int32x4_t vreinterpretq_s32_s64 (int64x2_t)
-
- * int32x4_t vreinterpretq_s32_u64 (uint64x2_t)
-
- * int32x4_t vreinterpretq_s32_s8 (int8x16_t)
-
- * int32x4_t vreinterpretq_s32_s16 (int16x8_t)
-
- * int32x4_t vreinterpretq_s32_u8 (uint8x16_t)
-
- * int32x4_t vreinterpretq_s32_u16 (uint16x8_t)
-
- * int32x4_t vreinterpretq_s32_u32 (uint32x4_t)
-
- * uint8x16_t vreinterpretq_u8_p8 (poly8x16_t)
-
- * uint8x16_t vreinterpretq_u8_p16 (poly16x8_t)
-
- * uint8x16_t vreinterpretq_u8_f32 (float32x4_t)
-
- * uint8x16_t vreinterpretq_u8_p64 (poly64x2_t)
-
- * uint8x16_t vreinterpretq_u8_p128 (poly128_t)
-
- * uint8x16_t vreinterpretq_u8_s64 (int64x2_t)
-
- * uint8x16_t vreinterpretq_u8_u64 (uint64x2_t)
-
- * uint8x16_t vreinterpretq_u8_s8 (int8x16_t)
-
- * uint8x16_t vreinterpretq_u8_s16 (int16x8_t)
-
- * uint8x16_t vreinterpretq_u8_s32 (int32x4_t)
-
- * uint8x16_t vreinterpretq_u8_u16 (uint16x8_t)
-
- * uint8x16_t vreinterpretq_u8_u32 (uint32x4_t)
-
- * uint16x8_t vreinterpretq_u16_p8 (poly8x16_t)
-
- * uint16x8_t vreinterpretq_u16_p16 (poly16x8_t)
-
- * uint16x8_t vreinterpretq_u16_f32 (float32x4_t)
-
- * uint16x8_t vreinterpretq_u16_p64 (poly64x2_t)
-
- * uint16x8_t vreinterpretq_u16_p128 (poly128_t)
-
- * uint16x8_t vreinterpretq_u16_s64 (int64x2_t)
-
- * uint16x8_t vreinterpretq_u16_u64 (uint64x2_t)
-
- * uint16x8_t vreinterpretq_u16_s8 (int8x16_t)
-
- * uint16x8_t vreinterpretq_u16_s16 (int16x8_t)
-
- * uint16x8_t vreinterpretq_u16_s32 (int32x4_t)
-
- * uint16x8_t vreinterpretq_u16_u8 (uint8x16_t)
-
- * uint16x8_t vreinterpretq_u16_u32 (uint32x4_t)
-
- * uint32x4_t vreinterpretq_u32_p8 (poly8x16_t)
-
- * uint32x4_t vreinterpretq_u32_p16 (poly16x8_t)
-
- * uint32x4_t vreinterpretq_u32_f32 (float32x4_t)
-
- * uint32x4_t vreinterpretq_u32_p64 (poly64x2_t)
-
- * uint32x4_t vreinterpretq_u32_p128 (poly128_t)
-
- * uint32x4_t vreinterpretq_u32_s64 (int64x2_t)
-
- * uint32x4_t vreinterpretq_u32_u64 (uint64x2_t)
-
- * uint32x4_t vreinterpretq_u32_s8 (int8x16_t)
-
- * uint32x4_t vreinterpretq_u32_s16 (int16x8_t)
-
- * uint32x4_t vreinterpretq_u32_s32 (int32x4_t)
-
- * uint32x4_t vreinterpretq_u32_u8 (uint8x16_t)
-
- * uint32x4_t vreinterpretq_u32_u16 (uint16x8_t)
-
- * poly128_t vldrq_p128(poly128_t const *)
-
- * void vstrq_p128(poly128_t *, poly128_t)
-
- * uint64x1_t vceq_p64 (poly64x1_t, poly64x1_t)
-
- * uint64x1_t vtst_p64 (poly64x1_t, poly64x1_t)
-
- * uint32_t vsha1h_u32 (uint32_t)
- _Form of expected instruction(s):_ 'sha1h.32 Q0, Q1'
-
- * uint32x4_t vsha1cq_u32 (uint32x4_t, uint32_t, uint32x4_t)
- _Form of expected instruction(s):_ 'sha1c.32 Q0, Q1, Q2'
-
- * uint32x4_t vsha1pq_u32 (uint32x4_t, uint32_t, uint32x4_t)
- _Form of expected instruction(s):_ 'sha1p.32 Q0, Q1, Q2'
-
- * uint32x4_t vsha1mq_u32 (uint32x4_t, uint32_t, uint32x4_t)
- _Form of expected instruction(s):_ 'sha1m.32 Q0, Q1, Q2'
-
- * uint32x4_t vsha1su0q_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'sha1su0.32 Q0, Q1, Q2'
-
- * uint32x4_t vsha1su1q_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'sha1su1.32 Q0, Q1, Q2'
-
- * uint32x4_t vsha256hq_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'sha256h.32 Q0, Q1, Q2'
-
- * uint32x4_t vsha256h2q_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'sha256h2.32 Q0, Q1, Q2'
-
- * uint32x4_t vsha256su0q_u32 (uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'sha256su0.32 Q0, Q1'
-
- * uint32x4_t vsha256su1q_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
- _Form of expected instruction(s):_ 'sha256su1.32 Q0, Q1, Q2'
-
- * poly128_t vmull_p64 (poly64_t a, poly64_t b)
- _Form of expected instruction(s):_ 'vmull.p64 Q0, D1, D2'
-
- * poly128_t vmull_high_p64 (poly64x2_t a, poly64x2_t b)
- _Form of expected instruction(s):_ 'vmull.p64 Q0, D1, D2'
-
-
-File: gcc.info, Node: ARM ACLE Intrinsics, Next: AVR Built-in Functions, Prev: ARM NEON Intrinsics, Up: Target Builtins
-
-6.57.7 ARM ACLE Intrinsics
---------------------------
-
-These built-in intrinsics for the ARMv8-A CRC32 extension are available
-when the '-march=armv8-a+crc' switch is used:
-
-6.57.7.1 CRC32 intrinsics
-.........................
-
- * uint32_t __crc32b (uint32_t, uint8_t)
- _Form of expected instruction(s):_ 'crc32b R0, R0, R0'
-
- * uint32_t __crc32h (uint32_t, uint16_t)
- _Form of expected instruction(s):_ 'crc32h R0, R0, R0'
-
- * uint32_t __crc32w (uint32_t, uint32_t)
- _Form of expected instruction(s):_ 'crc32w R0, R0, R0'
-
- * uint32_t __crc32d (uint32_t, uint64_t)
- _Form of expected instruction(s):_ Two 'crc32w R0, R0, R0'
- instructions for AArch32. One 'crc32w W0, W0, X0' instruction for
- AArch64.
-
- * uint32_t __crc32cb (uint32_t, uint8_t)
- _Form of expected instruction(s):_ 'crc32cb R0, R0, R0'
-
- * uint32_t __crc32ch (uint32_t, uint16_t)
- _Form of expected instruction(s):_ 'crc32ch R0, R0, R0'
-
- * uint32_t __crc32cw (uint32_t, uint32_t)
- _Form of expected instruction(s):_ 'crc32cw R0, R0, R0'
-
- * uint32_t __crc32cd (uint32_t, uint64_t)
- _Form of expected instruction(s):_ Two 'crc32cw R0, R0, R0'
- instructions for AArch32. One 'crc32cw W0, W0, X0' instruction for
- AArch64.
-
-
-File: gcc.info, Node: AVR Built-in Functions, Next: Blackfin Built-in Functions, Prev: ARM ACLE Intrinsics, Up: Target Builtins
-
-6.57.8 AVR Built-in Functions
------------------------------
-
-For each built-in function for AVR, there is an equally named, uppercase
-built-in macro defined. That way users can easily query if or if not a
-specific built-in is implemented or not. For example, if
-'__builtin_avr_nop' is available the macro '__BUILTIN_AVR_NOP' is
-defined to '1' and undefined otherwise.
-
- The following built-in functions map to the respective machine
-instruction, i.e. 'nop', 'sei', 'cli', 'sleep', 'wdr', 'swap', 'fmul',
-'fmuls' resp. 'fmulsu'. The three 'fmul*' built-ins are implemented as
-library call if no hardware multiplier is available.
-
- void __builtin_avr_nop (void)
- void __builtin_avr_sei (void)
- void __builtin_avr_cli (void)
- void __builtin_avr_sleep (void)
- void __builtin_avr_wdr (void)
- unsigned char __builtin_avr_swap (unsigned char)
- unsigned int __builtin_avr_fmul (unsigned char, unsigned char)
- int __builtin_avr_fmuls (char, char)
- int __builtin_avr_fmulsu (char, unsigned char)
-
- In order to delay execution for a specific number of cycles, GCC
-implements
- void __builtin_avr_delay_cycles (unsigned long ticks)
-
-'ticks' is the number of ticks to delay execution. Note that this
-built-in does not take into account the effect of interrupts that might
-increase delay time. 'ticks' must be a compile-time integer constant;
-delays with a variable number of cycles are not supported.
-
- char __builtin_avr_flash_segment (const __memx void*)
-
-This built-in takes a byte address to the 24-bit *note address space:
-AVR Named Address Spaces. '__memx' and returns the number of the flash
-segment (the 64 KiB chunk) where the address points to. Counting starts
-at '0'. If the address does not point to flash memory, return '-1'.
-
- unsigned char __builtin_avr_insert_bits (unsigned long map, unsigned char bits, unsigned char val)
-
-Insert bits from BITS into VAL and return the resulting value. The
-nibbles of MAP determine how the insertion is performed: Let X be the
-N-th nibble of MAP
- 1. If X is '0xf', then the N-th bit of VAL is returned unaltered.
-
- 2. If X is in the range 0...7, then the N-th result bit is set to the
- X-th bit of BITS
-
- 3. If X is in the range 8...'0xe', then the N-th result bit is
- undefined.
-
-One typical use case for this built-in is adjusting input and output
-values to non-contiguous port layouts. Some examples:
-
- // same as val, bits is unused
- __builtin_avr_insert_bits (0xffffffff, bits, val)
-
- // same as bits, val is unused
- __builtin_avr_insert_bits (0x76543210, bits, val)
-
- // same as rotating bits by 4
- __builtin_avr_insert_bits (0x32107654, bits, 0)
-
- // high nibble of result is the high nibble of val
- // low nibble of result is the low nibble of bits
- __builtin_avr_insert_bits (0xffff3210, bits, val)
-
- // reverse the bit order of bits
- __builtin_avr_insert_bits (0x01234567, bits, 0)
-
-
-File: gcc.info, Node: Blackfin Built-in Functions, Next: FR-V Built-in Functions, Prev: AVR Built-in Functions, Up: Target Builtins
-
-6.57.9 Blackfin Built-in Functions
-----------------------------------
-
-Currently, there are two Blackfin-specific built-in functions. These
-are used for generating 'CSYNC' and 'SSYNC' machine insns without using
-inline assembly; by using these built-in functions the compiler can
-automatically add workarounds for hardware errata involving these
-instructions. These functions are named as follows:
-
- void __builtin_bfin_csync (void)
- void __builtin_bfin_ssync (void)
-
-
-File: gcc.info, Node: FR-V Built-in Functions, Next: X86 Built-in Functions, Prev: Blackfin Built-in Functions, Up: Target Builtins
-
-6.57.10 FR-V Built-in Functions
--------------------------------
-
-GCC provides many FR-V-specific built-in functions. In general, these
-functions are intended to be compatible with those described by 'FR-V
-Family, Softune C/C++ Compiler Manual (V6), Fujitsu Semiconductor'. The
-two exceptions are '__MDUNPACKH' and '__MBTOHE', the GCC forms of which
-pass 128-bit values by pointer rather than by value.
-
- Most of the functions are named after specific FR-V instructions. Such
-functions are said to be "directly mapped" and are summarized here in
-tabular form.
-
-* Menu:
-
-* Argument Types::
-* Directly-mapped Integer Functions::
-* Directly-mapped Media Functions::
-* Raw read/write Functions::
-* Other Built-in Functions::
-
-
-File: gcc.info, Node: Argument Types, Next: Directly-mapped Integer Functions, Up: FR-V Built-in Functions
-
-6.57.10.1 Argument Types
-........................
-
-The arguments to the built-in functions can be divided into three
-groups: register numbers, compile-time constants and run-time values.
-In order to make this classification clear at a glance, the arguments
-and return values are given the following pseudo types:
-
-Pseudo type Real C type Constant? Description
-'uh' 'unsigned short' No an unsigned halfword
-'uw1' 'unsigned int' No an unsigned word
-'sw1' 'int' No a signed word
-'uw2' 'unsigned long long' No an unsigned doubleword
-'sw2' 'long long' No a signed doubleword
-'const' 'int' Yes an integer constant
-'acc' 'int' Yes an ACC register number
-'iacc' 'int' Yes an IACC register number
-
- These pseudo types are not defined by GCC, they are simply a notational
-convenience used in this manual.
-
- Arguments of type 'uh', 'uw1', 'sw1', 'uw2' and 'sw2' are evaluated at
-run time. They correspond to register operands in the underlying FR-V
-instructions.
-
- 'const' arguments represent immediate operands in the underlying FR-V
-instructions. They must be compile-time constants.
-
- 'acc' arguments are evaluated at compile time and specify the number of
-an accumulator register. For example, an 'acc' argument of 2 selects
-the ACC2 register.
-
- 'iacc' arguments are similar to 'acc' arguments but specify the number
-of an IACC register. See *note Other Built-in Functions:: for more
-details.
-
-
-File: gcc.info, Node: Directly-mapped Integer Functions, Next: Directly-mapped Media Functions, Prev: Argument Types, Up: FR-V Built-in Functions
-
-6.57.10.2 Directly-mapped Integer Functions
-...........................................
-
-The functions listed below map directly to FR-V I-type instructions.
-
-Function prototype Example usage Assembly output
-'sw1 __ADDSS (sw1, sw1)' 'C = __ADDSS (A, B)' 'ADDSS A,B,C'
-'sw1 __SCAN (sw1, sw1)' 'C = __SCAN (A, B)' 'SCAN A,B,C'
-'sw1 __SCUTSS (sw1)' 'B = __SCUTSS (A)' 'SCUTSS A,B'
-'sw1 __SLASS (sw1, sw1)' 'C = __SLASS (A, B)' 'SLASS A,B,C'
-'void __SMASS (sw1, sw1)' '__SMASS (A, B)' 'SMASS A,B'
-'void __SMSSS (sw1, sw1)' '__SMSSS (A, B)' 'SMSSS A,B'
-'void __SMU (sw1, sw1)' '__SMU (A, B)' 'SMU A,B'
-'sw2 __SMUL (sw1, sw1)' 'C = __SMUL (A, B)' 'SMUL A,B,C'
-'sw1 __SUBSS (sw1, sw1)' 'C = __SUBSS (A, B)' 'SUBSS A,B,C'
-'uw2 __UMUL (uw1, uw1)' 'C = __UMUL (A, B)' 'UMUL A,B,C'
-
-
-File: gcc.info, Node: Directly-mapped Media Functions, Next: Raw read/write Functions, Prev: Directly-mapped Integer Functions, Up: FR-V Built-in Functions
-
-6.57.10.3 Directly-mapped Media Functions
-.........................................
-
-The functions listed below map directly to FR-V M-type instructions.
-
-Function prototype Example usage Assembly output
-'uw1 __MABSHS (sw1)' 'B = __MABSHS (A)' 'MABSHS A,B'
-'void __MADDACCS (acc, acc)' '__MADDACCS (B, A)' 'MADDACCS A,B'
-'sw1 __MADDHSS (sw1, sw1)' 'C = __MADDHSS (A, 'MADDHSS A,B,C'
- B)'
-'uw1 __MADDHUS (uw1, uw1)' 'C = __MADDHUS (A, 'MADDHUS A,B,C'
- B)'
-'uw1 __MAND (uw1, uw1)' 'C = __MAND (A, B)' 'MAND A,B,C'
-'void __MASACCS (acc, acc)' '__MASACCS (B, A)' 'MASACCS A,B'
-'uw1 __MAVEH (uw1, uw1)' 'C = __MAVEH (A, B)' 'MAVEH A,B,C'
-'uw2 __MBTOH (uw1)' 'B = __MBTOH (A)' 'MBTOH A,B'
-'void __MBTOHE (uw1 *, uw1)' '__MBTOHE (&B, A)' 'MBTOHE A,B'
-'void __MCLRACC (acc)' '__MCLRACC (A)' 'MCLRACC A'
-'void __MCLRACCA (void)' '__MCLRACCA ()' 'MCLRACCA'
-'uw1 __Mcop1 (uw1, uw1)' 'C = __Mcop1 (A, B)' 'Mcop1 A,B,C'
-'uw1 __Mcop2 (uw1, uw1)' 'C = __Mcop2 (A, B)' 'Mcop2 A,B,C'
-'uw1 __MCPLHI (uw2, const)' 'C = __MCPLHI (A, B)' 'MCPLHI A,#B,C'
-'uw1 __MCPLI (uw2, const)' 'C = __MCPLI (A, B)' 'MCPLI A,#B,C'
-'void __MCPXIS (acc, sw1, '__MCPXIS (C, A, B)' 'MCPXIS A,B,C'
-sw1)'
-'void __MCPXIU (acc, uw1, '__MCPXIU (C, A, B)' 'MCPXIU A,B,C'
-uw1)'
-'void __MCPXRS (acc, sw1, '__MCPXRS (C, A, B)' 'MCPXRS A,B,C'
-sw1)'
-'void __MCPXRU (acc, uw1, '__MCPXRU (C, A, B)' 'MCPXRU A,B,C'
-uw1)'
-'uw1 __MCUT (acc, uw1)' 'C = __MCUT (A, B)' 'MCUT A,B,C'
-'uw1 __MCUTSS (acc, sw1)' 'C = __MCUTSS (A, B)' 'MCUTSS A,B,C'
-'void __MDADDACCS (acc, acc)' '__MDADDACCS (B, A)' 'MDADDACCS A,B'
-'void __MDASACCS (acc, acc)' '__MDASACCS (B, A)' 'MDASACCS A,B'
-'uw2 __MDCUTSSI (acc, const)' 'C = __MDCUTSSI (A, 'MDCUTSSI
- B)' A,#B,C'
-'uw2 __MDPACKH (uw2, uw2)' 'C = __MDPACKH (A, 'MDPACKH A,B,C'
- B)'
-'uw2 __MDROTLI (uw2, const)' 'C = __MDROTLI (A, 'MDROTLI
- B)' A,#B,C'
-'void __MDSUBACCS (acc, acc)' '__MDSUBACCS (B, A)' 'MDSUBACCS A,B'
-'void __MDUNPACKH (uw1 *, '__MDUNPACKH (&B, A)' 'MDUNPACKH A,B'
-uw2)'
-'uw2 __MEXPDHD (uw1, const)' 'C = __MEXPDHD (A, 'MEXPDHD
- B)' A,#B,C'
-'uw1 __MEXPDHW (uw1, const)' 'C = __MEXPDHW (A, 'MEXPDHW
- B)' A,#B,C'
-'uw1 __MHDSETH (uw1, const)' 'C = __MHDSETH (A, 'MHDSETH
- B)' A,#B,C'
-'sw1 __MHDSETS (const)' 'B = __MHDSETS (A)' 'MHDSETS #A,B'
-'uw1 __MHSETHIH (uw1, const)' 'B = __MHSETHIH (B, 'MHSETHIH #A,B'
- A)'
-'sw1 __MHSETHIS (sw1, const)' 'B = __MHSETHIS (B, 'MHSETHIS #A,B'
- A)'
-'uw1 __MHSETLOH (uw1, const)' 'B = __MHSETLOH (B, 'MHSETLOH #A,B'
- A)'
-'sw1 __MHSETLOS (sw1, const)' 'B = __MHSETLOS (B, 'MHSETLOS #A,B'
- A)'
-'uw1 __MHTOB (uw2)' 'B = __MHTOB (A)' 'MHTOB A,B'
-'void __MMACHS (acc, sw1, '__MMACHS (C, A, B)' 'MMACHS A,B,C'
-sw1)'
-'void __MMACHU (acc, uw1, '__MMACHU (C, A, B)' 'MMACHU A,B,C'
-uw1)'
-'void __MMRDHS (acc, sw1, '__MMRDHS (C, A, B)' 'MMRDHS A,B,C'
-sw1)'
-'void __MMRDHU (acc, uw1, '__MMRDHU (C, A, B)' 'MMRDHU A,B,C'
-uw1)'
-'void __MMULHS (acc, sw1, '__MMULHS (C, A, B)' 'MMULHS A,B,C'
-sw1)'
-'void __MMULHU (acc, uw1, '__MMULHU (C, A, B)' 'MMULHU A,B,C'
-uw1)'
-'void __MMULXHS (acc, sw1, '__MMULXHS (C, A, B)' 'MMULXHS A,B,C'
-sw1)'
-'void __MMULXHU (acc, uw1, '__MMULXHU (C, A, B)' 'MMULXHU A,B,C'
-uw1)'
-'uw1 __MNOT (uw1)' 'B = __MNOT (A)' 'MNOT A,B'
-'uw1 __MOR (uw1, uw1)' 'C = __MOR (A, B)' 'MOR A,B,C'
-'uw1 __MPACKH (uh, uh)' 'C = __MPACKH (A, B)' 'MPACKH A,B,C'
-'sw2 __MQADDHSS (sw2, sw2)' 'C = __MQADDHSS (A, 'MQADDHSS
- B)' A,B,C'
-'uw2 __MQADDHUS (uw2, uw2)' 'C = __MQADDHUS (A, 'MQADDHUS
- B)' A,B,C'
-'void __MQCPXIS (acc, sw2, '__MQCPXIS (C, A, B)' 'MQCPXIS A,B,C'
-sw2)'
-'void __MQCPXIU (acc, uw2, '__MQCPXIU (C, A, B)' 'MQCPXIU A,B,C'
-uw2)'
-'void __MQCPXRS (acc, sw2, '__MQCPXRS (C, A, B)' 'MQCPXRS A,B,C'
-sw2)'
-'void __MQCPXRU (acc, uw2, '__MQCPXRU (C, A, B)' 'MQCPXRU A,B,C'
-uw2)'
-'sw2 __MQLCLRHS (sw2, sw2)' 'C = __MQLCLRHS (A, 'MQLCLRHS
- B)' A,B,C'
-'sw2 __MQLMTHS (sw2, sw2)' 'C = __MQLMTHS (A, 'MQLMTHS A,B,C'
- B)'
-'void __MQMACHS (acc, sw2, '__MQMACHS (C, A, B)' 'MQMACHS A,B,C'
-sw2)'
-'void __MQMACHU (acc, uw2, '__MQMACHU (C, A, B)' 'MQMACHU A,B,C'
-uw2)'
-'void __MQMACXHS (acc, sw2, '__MQMACXHS (C, A, 'MQMACXHS
-sw2)' B)' A,B,C'
-'void __MQMULHS (acc, sw2, '__MQMULHS (C, A, B)' 'MQMULHS A,B,C'
-sw2)'
-'void __MQMULHU (acc, uw2, '__MQMULHU (C, A, B)' 'MQMULHU A,B,C'
-uw2)'
-'void __MQMULXHS (acc, sw2, '__MQMULXHS (C, A, 'MQMULXHS
-sw2)' B)' A,B,C'
-'void __MQMULXHU (acc, uw2, '__MQMULXHU (C, A, 'MQMULXHU
-uw2)' B)' A,B,C'
-'sw2 __MQSATHS (sw2, sw2)' 'C = __MQSATHS (A, 'MQSATHS A,B,C'
- B)'
-'uw2 __MQSLLHI (uw2, int)' 'C = __MQSLLHI (A, 'MQSLLHI A,B,C'
- B)'
-'sw2 __MQSRAHI (sw2, int)' 'C = __MQSRAHI (A, 'MQSRAHI A,B,C'
- B)'
-'sw2 __MQSUBHSS (sw2, sw2)' 'C = __MQSUBHSS (A, 'MQSUBHSS
- B)' A,B,C'
-'uw2 __MQSUBHUS (uw2, uw2)' 'C = __MQSUBHUS (A, 'MQSUBHUS
- B)' A,B,C'
-'void __MQXMACHS (acc, sw2, '__MQXMACHS (C, A, 'MQXMACHS
-sw2)' B)' A,B,C'
-'void __MQXMACXHS (acc, sw2, '__MQXMACXHS (C, A, 'MQXMACXHS
-sw2)' B)' A,B,C'
-'uw1 __MRDACC (acc)' 'B = __MRDACC (A)' 'MRDACC A,B'
-'uw1 __MRDACCG (acc)' 'B = __MRDACCG (A)' 'MRDACCG A,B'
-'uw1 __MROTLI (uw1, const)' 'C = __MROTLI (A, B)' 'MROTLI A,#B,C'
-'uw1 __MROTRI (uw1, const)' 'C = __MROTRI (A, B)' 'MROTRI A,#B,C'
-'sw1 __MSATHS (sw1, sw1)' 'C = __MSATHS (A, B)' 'MSATHS A,B,C'
-'uw1 __MSATHU (uw1, uw1)' 'C = __MSATHU (A, B)' 'MSATHU A,B,C'
-'uw1 __MSLLHI (uw1, const)' 'C = __MSLLHI (A, B)' 'MSLLHI A,#B,C'
-'sw1 __MSRAHI (sw1, const)' 'C = __MSRAHI (A, B)' 'MSRAHI A,#B,C'
-'uw1 __MSRLHI (uw1, const)' 'C = __MSRLHI (A, B)' 'MSRLHI A,#B,C'
-'void __MSUBACCS (acc, acc)' '__MSUBACCS (B, A)' 'MSUBACCS A,B'
-'sw1 __MSUBHSS (sw1, sw1)' 'C = __MSUBHSS (A, 'MSUBHSS A,B,C'
- B)'
-'uw1 __MSUBHUS (uw1, uw1)' 'C = __MSUBHUS (A, 'MSUBHUS A,B,C'
- B)'
-'void __MTRAP (void)' '__MTRAP ()' 'MTRAP'
-'uw2 __MUNPACKH (uw1)' 'B = __MUNPACKH (A)' 'MUNPACKH A,B'
-'uw1 __MWCUT (uw2, uw1)' 'C = __MWCUT (A, B)' 'MWCUT A,B,C'
-'void __MWTACC (acc, uw1)' '__MWTACC (B, A)' 'MWTACC A,B'
-'void __MWTACCG (acc, uw1)' '__MWTACCG (B, A)' 'MWTACCG A,B'
-'uw1 __MXOR (uw1, uw1)' 'C = __MXOR (A, B)' 'MXOR A,B,C'
-
-
-File: gcc.info, Node: Raw read/write Functions, Next: Other Built-in Functions, Prev: Directly-mapped Media Functions, Up: FR-V Built-in Functions
-
-6.57.10.4 Raw read/write Functions
-..................................
-
-This sections describes built-in functions related to read and write
-instructions to access memory. These functions generate 'membar'
-instructions to flush the I/O load and stores where appropriate, as
-described in Fujitsu's manual described above.
-
-'unsigned char __builtin_read8 (void *DATA)'
-'unsigned short __builtin_read16 (void *DATA)'
-'unsigned long __builtin_read32 (void *DATA)'
-'unsigned long long __builtin_read64 (void *DATA)'
-
-'void __builtin_write8 (void *DATA, unsigned char DATUM)'
-'void __builtin_write16 (void *DATA, unsigned short DATUM)'
-'void __builtin_write32 (void *DATA, unsigned long DATUM)'
-'void __builtin_write64 (void *DATA, unsigned long long DATUM)'
-
-
-File: gcc.info, Node: Other Built-in Functions, Prev: Raw read/write Functions, Up: FR-V Built-in Functions
-
-6.57.10.5 Other Built-in Functions
-..................................
-
-This section describes built-in functions that are not named after a
-specific FR-V instruction.
-
-'sw2 __IACCreadll (iacc REG)'
- Return the full 64-bit value of IACC0. The REG argument is
- reserved for future expansion and must be 0.
-
-'sw1 __IACCreadl (iacc REG)'
- Return the value of IACC0H if REG is 0 and IACC0L if REG is 1.
- Other values of REG are rejected as invalid.
-
-'void __IACCsetll (iacc REG, sw2 X)'
- Set the full 64-bit value of IACC0 to X. The REG argument is
- reserved for future expansion and must be 0.
-
-'void __IACCsetl (iacc REG, sw1 X)'
- Set IACC0H to X if REG is 0 and IACC0L to X if REG is 1. Other
- values of REG are rejected as invalid.
-
-'void __data_prefetch0 (const void *X)'
- Use the 'dcpl' instruction to load the contents of address X into
- the data cache.
-
-'void __data_prefetch (const void *X)'
- Use the 'nldub' instruction to load the contents of address X into
- the data cache. The instruction is issued in slot I1.
-
-
-File: gcc.info, Node: X86 Built-in Functions, Next: X86 transactional memory intrinsics, Prev: FR-V Built-in Functions, Up: Target Builtins
-
-6.57.11 X86 Built-in Functions
-------------------------------
-
-These built-in functions are available for the i386 and x86-64 family of
-computers, depending on the command-line switches used.
-
- If you specify command-line switches such as '-msse', the compiler
-could use the extended instruction sets even if the built-ins are not
-used explicitly in the program. For this reason, applications that
-perform run-time CPU detection must compile separate files for each
-supported architecture, using the appropriate flags. In particular, the
-file containing the CPU detection code should be compiled without these
-options.
-
- The following machine modes are available for use with MMX built-in
-functions (*note Vector Extensions::): 'V2SI' for a vector of two 32-bit
-integers, 'V4HI' for a vector of four 16-bit integers, and 'V8QI' for a
-vector of eight 8-bit integers. Some of the built-in functions operate
-on MMX registers as a whole 64-bit entity, these use 'V1DI' as their
-mode.
-
- If 3DNow! extensions are enabled, 'V2SF' is used as a mode for a vector
-of two 32-bit floating-point values.
-
- If SSE extensions are enabled, 'V4SF' is used for a vector of four
-32-bit floating-point values. Some instructions use a vector of four
-32-bit integers, these use 'V4SI'. Finally, some instructions operate
-on an entire vector register, interpreting it as a 128-bit integer,
-these use mode 'TI'.
-
- In 64-bit mode, the x86-64 family of processors uses additional
-built-in functions for efficient use of 'TF' ('__float128') 128-bit
-floating point and 'TC' 128-bit complex floating-point values.
-
- The following floating-point built-in functions are available in 64-bit
-mode. All of them implement the function that is part of the name.
-
- __float128 __builtin_fabsq (__float128)
- __float128 __builtin_copysignq (__float128, __float128)
-
- The following built-in function is always available.
-
-'void __builtin_ia32_pause (void)'
- Generates the 'pause' machine instruction with a compiler memory
- barrier.
-
- The following floating-point built-in functions are made available in
-the 64-bit mode.
-
-'__float128 __builtin_infq (void)'
- Similar to '__builtin_inf', except the return type is '__float128'.
-
-'__float128 __builtin_huge_valq (void)'
- Similar to '__builtin_huge_val', except the return type is
- '__float128'.
-
- The following built-in functions are always available and can be used
-to check the target platform type.
-
- -- Built-in Function: void __builtin_cpu_init (void)
- This function runs the CPU detection code to check the type of CPU
- and the features supported. This built-in function needs to be
- invoked along with the built-in functions to check CPU type and
- features, '__builtin_cpu_is' and '__builtin_cpu_supports', only
- when used in a function that is executed before any constructors
- are called. The CPU detection code is automatically executed in a
- very high priority constructor.
-
- For example, this function has to be used in 'ifunc' resolvers that
- check for CPU type using the built-in functions '__builtin_cpu_is'
- and '__builtin_cpu_supports', or in constructors on targets that
- don't support constructor priority.
-
- static void (*resolve_memcpy (void)) (void)
- {
- // ifunc resolvers fire before constructors, explicitly call the init
- // function.
- __builtin_cpu_init ();
- if (__builtin_cpu_supports ("ssse3"))
- return ssse3_memcpy; // super fast memcpy with ssse3 instructions.
- else
- return default_memcpy;
- }
-
- void *memcpy (void *, const void *, size_t)
- __attribute__ ((ifunc ("resolve_memcpy")));
-
- -- Built-in Function: int __builtin_cpu_is (const char *CPUNAME)
- This function returns a positive integer if the run-time CPU is of
- type CPUNAME and returns '0' otherwise. The following CPU names
- can be detected:
-
- 'intel'
- Intel CPU.
-
- 'atom'
- Intel Atom CPU.
-
- 'core2'
- Intel Core 2 CPU.
-
- 'corei7'
- Intel Core i7 CPU.
-
- 'nehalem'
- Intel Core i7 Nehalem CPU.
-
- 'westmere'
- Intel Core i7 Westmere CPU.
-
- 'sandybridge'
- Intel Core i7 Sandy Bridge CPU.
-
- 'amd'
- AMD CPU.
-
- 'amdfam10h'
- AMD Family 10h CPU.
-
- 'barcelona'
- AMD Family 10h Barcelona CPU.
-
- 'shanghai'
- AMD Family 10h Shanghai CPU.
-
- 'istanbul'
- AMD Family 10h Istanbul CPU.
-
- 'btver1'
- AMD Family 14h CPU.
-
- 'amdfam15h'
- AMD Family 15h CPU.
-
- 'bdver1'
- AMD Family 15h Bulldozer version 1.
-
- 'bdver2'
- AMD Family 15h Bulldozer version 2.
-
- 'bdver3'
- AMD Family 15h Bulldozer version 3.
-
- 'bdver4'
- AMD Family 15h Bulldozer version 4.
-
- 'btver2'
- AMD Family 16h CPU.
-
- Here is an example:
- if (__builtin_cpu_is ("corei7"))
- {
- do_corei7 (); // Core i7 specific implementation.
- }
- else
- {
- do_generic (); // Generic implementation.
- }
-
- -- Built-in Function: int __builtin_cpu_supports (const char *FEATURE)
- This function returns a positive integer if the run-time CPU
- supports FEATURE and returns '0' otherwise. The following features
- can be detected:
-
- 'cmov'
- CMOV instruction.
- 'mmx'
- MMX instructions.
- 'popcnt'
- POPCNT instruction.
- 'sse'
- SSE instructions.
- 'sse2'
- SSE2 instructions.
- 'sse3'
- SSE3 instructions.
- 'ssse3'
- SSSE3 instructions.
- 'sse4.1'
- SSE4.1 instructions.
- 'sse4.2'
- SSE4.2 instructions.
- 'avx'
- AVX instructions.
- 'avx2'
- AVX2 instructions.
-
- Here is an example:
- if (__builtin_cpu_supports ("popcnt"))
- {
- asm("popcnt %1,%0" : "=r"(count) : "rm"(n) : "cc");
- }
- else
- {
- count = generic_countbits (n); //generic implementation.
- }
-
- The following built-in functions are made available by '-mmmx'. All of
-them generate the machine instruction that is part of the name.
-
- v8qi __builtin_ia32_paddb (v8qi, v8qi)
- v4hi __builtin_ia32_paddw (v4hi, v4hi)
- v2si __builtin_ia32_paddd (v2si, v2si)
- v8qi __builtin_ia32_psubb (v8qi, v8qi)
- v4hi __builtin_ia32_psubw (v4hi, v4hi)
- v2si __builtin_ia32_psubd (v2si, v2si)
- v8qi __builtin_ia32_paddsb (v8qi, v8qi)
- v4hi __builtin_ia32_paddsw (v4hi, v4hi)
- v8qi __builtin_ia32_psubsb (v8qi, v8qi)
- v4hi __builtin_ia32_psubsw (v4hi, v4hi)
- v8qi __builtin_ia32_paddusb (v8qi, v8qi)
- v4hi __builtin_ia32_paddusw (v4hi, v4hi)
- v8qi __builtin_ia32_psubusb (v8qi, v8qi)
- v4hi __builtin_ia32_psubusw (v4hi, v4hi)
- v4hi __builtin_ia32_pmullw (v4hi, v4hi)
- v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
- di __builtin_ia32_pand (di, di)
- di __builtin_ia32_pandn (di,di)
- di __builtin_ia32_por (di, di)
- di __builtin_ia32_pxor (di, di)
- v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
- v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
- v2si __builtin_ia32_pcmpeqd (v2si, v2si)
- v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
- v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
- v2si __builtin_ia32_pcmpgtd (v2si, v2si)
- v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
- v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
- v2si __builtin_ia32_punpckhdq (v2si, v2si)
- v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
- v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
- v2si __builtin_ia32_punpckldq (v2si, v2si)
- v8qi __builtin_ia32_packsswb (v4hi, v4hi)
- v4hi __builtin_ia32_packssdw (v2si, v2si)
- v8qi __builtin_ia32_packuswb (v4hi, v4hi)
-
- v4hi __builtin_ia32_psllw (v4hi, v4hi)
- v2si __builtin_ia32_pslld (v2si, v2si)
- v1di __builtin_ia32_psllq (v1di, v1di)
- v4hi __builtin_ia32_psrlw (v4hi, v4hi)
- v2si __builtin_ia32_psrld (v2si, v2si)
- v1di __builtin_ia32_psrlq (v1di, v1di)
- v4hi __builtin_ia32_psraw (v4hi, v4hi)
- v2si __builtin_ia32_psrad (v2si, v2si)
- v4hi __builtin_ia32_psllwi (v4hi, int)
- v2si __builtin_ia32_pslldi (v2si, int)
- v1di __builtin_ia32_psllqi (v1di, int)
- v4hi __builtin_ia32_psrlwi (v4hi, int)
- v2si __builtin_ia32_psrldi (v2si, int)
- v1di __builtin_ia32_psrlqi (v1di, int)
- v4hi __builtin_ia32_psrawi (v4hi, int)
- v2si __builtin_ia32_psradi (v2si, int)
-
- The following built-in functions are made available either with
-'-msse', or with a combination of '-m3dnow' and '-march=athlon'. All of
-them generate the machine instruction that is part of the name.
-
- v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
- v8qi __builtin_ia32_pavgb (v8qi, v8qi)
- v4hi __builtin_ia32_pavgw (v4hi, v4hi)
- v1di __builtin_ia32_psadbw (v8qi, v8qi)
- v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
- v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
- v8qi __builtin_ia32_pminub (v8qi, v8qi)
- v4hi __builtin_ia32_pminsw (v4hi, v4hi)
- int __builtin_ia32_pmovmskb (v8qi)
- void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
- void __builtin_ia32_movntq (di *, di)
- void __builtin_ia32_sfence (void)
-
- The following built-in functions are available when '-msse' is used.
-All of them generate the machine instruction that is part of the name.
-
- int __builtin_ia32_comieq (v4sf, v4sf)
- int __builtin_ia32_comineq (v4sf, v4sf)
- int __builtin_ia32_comilt (v4sf, v4sf)
- int __builtin_ia32_comile (v4sf, v4sf)
- int __builtin_ia32_comigt (v4sf, v4sf)
- int __builtin_ia32_comige (v4sf, v4sf)
- int __builtin_ia32_ucomieq (v4sf, v4sf)
- int __builtin_ia32_ucomineq (v4sf, v4sf)
- int __builtin_ia32_ucomilt (v4sf, v4sf)
- int __builtin_ia32_ucomile (v4sf, v4sf)
- int __builtin_ia32_ucomigt (v4sf, v4sf)
- int __builtin_ia32_ucomige (v4sf, v4sf)
- v4sf __builtin_ia32_addps (v4sf, v4sf)
- v4sf __builtin_ia32_subps (v4sf, v4sf)
- v4sf __builtin_ia32_mulps (v4sf, v4sf)
- v4sf __builtin_ia32_divps (v4sf, v4sf)
- v4sf __builtin_ia32_addss (v4sf, v4sf)
- v4sf __builtin_ia32_subss (v4sf, v4sf)
- v4sf __builtin_ia32_mulss (v4sf, v4sf)
- v4sf __builtin_ia32_divss (v4sf, v4sf)
- v4sf __builtin_ia32_cmpeqps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpltps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpleps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpgtps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpgeps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpunordps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpneqps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpnltps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpnleps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpngtps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpngeps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpordps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpeqss (v4sf, v4sf)
- v4sf __builtin_ia32_cmpltss (v4sf, v4sf)
- v4sf __builtin_ia32_cmpless (v4sf, v4sf)
- v4sf __builtin_ia32_cmpunordss (v4sf, v4sf)
- v4sf __builtin_ia32_cmpneqss (v4sf, v4sf)
- v4sf __builtin_ia32_cmpnltss (v4sf, v4sf)
- v4sf __builtin_ia32_cmpnless (v4sf, v4sf)
- v4sf __builtin_ia32_cmpordss (v4sf, v4sf)
- v4sf __builtin_ia32_maxps (v4sf, v4sf)
- v4sf __builtin_ia32_maxss (v4sf, v4sf)
- v4sf __builtin_ia32_minps (v4sf, v4sf)
- v4sf __builtin_ia32_minss (v4sf, v4sf)
- v4sf __builtin_ia32_andps (v4sf, v4sf)
- v4sf __builtin_ia32_andnps (v4sf, v4sf)
- v4sf __builtin_ia32_orps (v4sf, v4sf)
- v4sf __builtin_ia32_xorps (v4sf, v4sf)
- v4sf __builtin_ia32_movss (v4sf, v4sf)
- v4sf __builtin_ia32_movhlps (v4sf, v4sf)
- v4sf __builtin_ia32_movlhps (v4sf, v4sf)
- v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
- v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
- v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
- v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
- v2si __builtin_ia32_cvtps2pi (v4sf)
- int __builtin_ia32_cvtss2si (v4sf)
- v2si __builtin_ia32_cvttps2pi (v4sf)
- int __builtin_ia32_cvttss2si (v4sf)
- v4sf __builtin_ia32_rcpps (v4sf)
- v4sf __builtin_ia32_rsqrtps (v4sf)
- v4sf __builtin_ia32_sqrtps (v4sf)
- v4sf __builtin_ia32_rcpss (v4sf)
- v4sf __builtin_ia32_rsqrtss (v4sf)
- v4sf __builtin_ia32_sqrtss (v4sf)
- v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
- void __builtin_ia32_movntps (float *, v4sf)
- int __builtin_ia32_movmskps (v4sf)
-
- The following built-in functions are available when '-msse' is used.
-
-'v4sf __builtin_ia32_loadups (float *)'
- Generates the 'movups' machine instruction as a load from memory.
-'void __builtin_ia32_storeups (float *, v4sf)'
- Generates the 'movups' machine instruction as a store to memory.
-'v4sf __builtin_ia32_loadss (float *)'
- Generates the 'movss' machine instruction as a load from memory.
-'v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)'
- Generates the 'movhps' machine instruction as a load from memory.
-'v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)'
- Generates the 'movlps' machine instruction as a load from memory
-'void __builtin_ia32_storehps (v2sf *, v4sf)'
- Generates the 'movhps' machine instruction as a store to memory.
-'void __builtin_ia32_storelps (v2sf *, v4sf)'
- Generates the 'movlps' machine instruction as a store to memory.
-
- The following built-in functions are available when '-msse2' is used.
-All of them generate the machine instruction that is part of the name.
-
- int __builtin_ia32_comisdeq (v2df, v2df)
- int __builtin_ia32_comisdlt (v2df, v2df)
- int __builtin_ia32_comisdle (v2df, v2df)
- int __builtin_ia32_comisdgt (v2df, v2df)
- int __builtin_ia32_comisdge (v2df, v2df)
- int __builtin_ia32_comisdneq (v2df, v2df)
- int __builtin_ia32_ucomisdeq (v2df, v2df)
- int __builtin_ia32_ucomisdlt (v2df, v2df)
- int __builtin_ia32_ucomisdle (v2df, v2df)
- int __builtin_ia32_ucomisdgt (v2df, v2df)
- int __builtin_ia32_ucomisdge (v2df, v2df)
- int __builtin_ia32_ucomisdneq (v2df, v2df)
- v2df __builtin_ia32_cmpeqpd (v2df, v2df)
- v2df __builtin_ia32_cmpltpd (v2df, v2df)
- v2df __builtin_ia32_cmplepd (v2df, v2df)
- v2df __builtin_ia32_cmpgtpd (v2df, v2df)
- v2df __builtin_ia32_cmpgepd (v2df, v2df)
- v2df __builtin_ia32_cmpunordpd (v2df, v2df)
- v2df __builtin_ia32_cmpneqpd (v2df, v2df)
- v2df __builtin_ia32_cmpnltpd (v2df, v2df)
- v2df __builtin_ia32_cmpnlepd (v2df, v2df)
- v2df __builtin_ia32_cmpngtpd (v2df, v2df)
- v2df __builtin_ia32_cmpngepd (v2df, v2df)
- v2df __builtin_ia32_cmpordpd (v2df, v2df)
- v2df __builtin_ia32_cmpeqsd (v2df, v2df)
- v2df __builtin_ia32_cmpltsd (v2df, v2df)
- v2df __builtin_ia32_cmplesd (v2df, v2df)
- v2df __builtin_ia32_cmpunordsd (v2df, v2df)
- v2df __builtin_ia32_cmpneqsd (v2df, v2df)
- v2df __builtin_ia32_cmpnltsd (v2df, v2df)
- v2df __builtin_ia32_cmpnlesd (v2df, v2df)
- v2df __builtin_ia32_cmpordsd (v2df, v2df)
- v2di __builtin_ia32_paddq (v2di, v2di)
- v2di __builtin_ia32_psubq (v2di, v2di)
- v2df __builtin_ia32_addpd (v2df, v2df)
- v2df __builtin_ia32_subpd (v2df, v2df)
- v2df __builtin_ia32_mulpd (v2df, v2df)
- v2df __builtin_ia32_divpd (v2df, v2df)
- v2df __builtin_ia32_addsd (v2df, v2df)
- v2df __builtin_ia32_subsd (v2df, v2df)
- v2df __builtin_ia32_mulsd (v2df, v2df)
- v2df __builtin_ia32_divsd (v2df, v2df)
- v2df __builtin_ia32_minpd (v2df, v2df)
- v2df __builtin_ia32_maxpd (v2df, v2df)
- v2df __builtin_ia32_minsd (v2df, v2df)
- v2df __builtin_ia32_maxsd (v2df, v2df)
- v2df __builtin_ia32_andpd (v2df, v2df)
- v2df __builtin_ia32_andnpd (v2df, v2df)
- v2df __builtin_ia32_orpd (v2df, v2df)
- v2df __builtin_ia32_xorpd (v2df, v2df)
- v2df __builtin_ia32_movsd (v2df, v2df)
- v2df __builtin_ia32_unpckhpd (v2df, v2df)
- v2df __builtin_ia32_unpcklpd (v2df, v2df)
- v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
- v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
- v4si __builtin_ia32_paddd128 (v4si, v4si)
- v2di __builtin_ia32_paddq128 (v2di, v2di)
- v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
- v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
- v4si __builtin_ia32_psubd128 (v4si, v4si)
- v2di __builtin_ia32_psubq128 (v2di, v2di)
- v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
- v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
- v2di __builtin_ia32_pand128 (v2di, v2di)
- v2di __builtin_ia32_pandn128 (v2di, v2di)
- v2di __builtin_ia32_por128 (v2di, v2di)
- v2di __builtin_ia32_pxor128 (v2di, v2di)
- v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
- v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
- v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
- v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
- v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
- v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
- v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
- v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
- v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
- v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
- v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
- v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
- v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
- v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
- v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
- v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
- v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
- v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
- v4si __builtin_ia32_punpckldq128 (v4si, v4si)
- v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
- v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
- v8hi __builtin_ia32_packssdw128 (v4si, v4si)
- v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
- v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
- void __builtin_ia32_maskmovdqu (v16qi, v16qi)
- v2df __builtin_ia32_loadupd (double *)
- void __builtin_ia32_storeupd (double *, v2df)
- v2df __builtin_ia32_loadhpd (v2df, double const *)
- v2df __builtin_ia32_loadlpd (v2df, double const *)
- int __builtin_ia32_movmskpd (v2df)
- int __builtin_ia32_pmovmskb128 (v16qi)
- void __builtin_ia32_movnti (int *, int)
- void __builtin_ia32_movnti64 (long long int *, long long int)
- void __builtin_ia32_movntpd (double *, v2df)
- void __builtin_ia32_movntdq (v2df *, v2df)
- v4si __builtin_ia32_pshufd (v4si, int)
- v8hi __builtin_ia32_pshuflw (v8hi, int)
- v8hi __builtin_ia32_pshufhw (v8hi, int)
- v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
- v2df __builtin_ia32_sqrtpd (v2df)
- v2df __builtin_ia32_sqrtsd (v2df)
- v2df __builtin_ia32_shufpd (v2df, v2df, int)
- v2df __builtin_ia32_cvtdq2pd (v4si)
- v4sf __builtin_ia32_cvtdq2ps (v4si)
- v4si __builtin_ia32_cvtpd2dq (v2df)
- v2si __builtin_ia32_cvtpd2pi (v2df)
- v4sf __builtin_ia32_cvtpd2ps (v2df)
- v4si __builtin_ia32_cvttpd2dq (v2df)
- v2si __builtin_ia32_cvttpd2pi (v2df)
- v2df __builtin_ia32_cvtpi2pd (v2si)
- int __builtin_ia32_cvtsd2si (v2df)
- int __builtin_ia32_cvttsd2si (v2df)
- long long __builtin_ia32_cvtsd2si64 (v2df)
- long long __builtin_ia32_cvttsd2si64 (v2df)
- v4si __builtin_ia32_cvtps2dq (v4sf)
- v2df __builtin_ia32_cvtps2pd (v4sf)
- v4si __builtin_ia32_cvttps2dq (v4sf)
- v2df __builtin_ia32_cvtsi2sd (v2df, int)
- v2df __builtin_ia32_cvtsi642sd (v2df, long long)
- v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
- v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
- void __builtin_ia32_clflush (const void *)
- void __builtin_ia32_lfence (void)
- void __builtin_ia32_mfence (void)
- v16qi __builtin_ia32_loaddqu (const char *)
- void __builtin_ia32_storedqu (char *, v16qi)
- v1di __builtin_ia32_pmuludq (v2si, v2si)
- v2di __builtin_ia32_pmuludq128 (v4si, v4si)
- v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
- v4si __builtin_ia32_pslld128 (v4si, v4si)
- v2di __builtin_ia32_psllq128 (v2di, v2di)
- v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
- v4si __builtin_ia32_psrld128 (v4si, v4si)
- v2di __builtin_ia32_psrlq128 (v2di, v2di)
- v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
- v4si __builtin_ia32_psrad128 (v4si, v4si)
- v2di __builtin_ia32_pslldqi128 (v2di, int)
- v8hi __builtin_ia32_psllwi128 (v8hi, int)
- v4si __builtin_ia32_pslldi128 (v4si, int)
- v2di __builtin_ia32_psllqi128 (v2di, int)
- v2di __builtin_ia32_psrldqi128 (v2di, int)
- v8hi __builtin_ia32_psrlwi128 (v8hi, int)
- v4si __builtin_ia32_psrldi128 (v4si, int)
- v2di __builtin_ia32_psrlqi128 (v2di, int)
- v8hi __builtin_ia32_psrawi128 (v8hi, int)
- v4si __builtin_ia32_psradi128 (v4si, int)
- v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
- v2di __builtin_ia32_movq128 (v2di)
-
- The following built-in functions are available when '-msse3' is used.
-All of them generate the machine instruction that is part of the name.
-
- v2df __builtin_ia32_addsubpd (v2df, v2df)
- v4sf __builtin_ia32_addsubps (v4sf, v4sf)
- v2df __builtin_ia32_haddpd (v2df, v2df)
- v4sf __builtin_ia32_haddps (v4sf, v4sf)
- v2df __builtin_ia32_hsubpd (v2df, v2df)
- v4sf __builtin_ia32_hsubps (v4sf, v4sf)
- v16qi __builtin_ia32_lddqu (char const *)
- void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
- v4sf __builtin_ia32_movshdup (v4sf)
- v4sf __builtin_ia32_movsldup (v4sf)
- void __builtin_ia32_mwait (unsigned int, unsigned int)
-
- The following built-in functions are available when '-mssse3' is used.
-All of them generate the machine instruction that is part of the name.
-
- v2si __builtin_ia32_phaddd (v2si, v2si)
- v4hi __builtin_ia32_phaddw (v4hi, v4hi)
- v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
- v2si __builtin_ia32_phsubd (v2si, v2si)
- v4hi __builtin_ia32_phsubw (v4hi, v4hi)
- v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
- v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
- v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
- v8qi __builtin_ia32_pshufb (v8qi, v8qi)
- v8qi __builtin_ia32_psignb (v8qi, v8qi)
- v2si __builtin_ia32_psignd (v2si, v2si)
- v4hi __builtin_ia32_psignw (v4hi, v4hi)
- v1di __builtin_ia32_palignr (v1di, v1di, int)
- v8qi __builtin_ia32_pabsb (v8qi)
- v2si __builtin_ia32_pabsd (v2si)
- v4hi __builtin_ia32_pabsw (v4hi)
-
- The following built-in functions are available when '-mssse3' is used.
-All of them generate the machine instruction that is part of the name.
-
- v4si __builtin_ia32_phaddd128 (v4si, v4si)
- v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
- v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
- v4si __builtin_ia32_phsubd128 (v4si, v4si)
- v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
- v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
- v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
- v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
- v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
- v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
- v4si __builtin_ia32_psignd128 (v4si, v4si)
- v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
- v2di __builtin_ia32_palignr128 (v2di, v2di, int)
- v16qi __builtin_ia32_pabsb128 (v16qi)
- v4si __builtin_ia32_pabsd128 (v4si)
- v8hi __builtin_ia32_pabsw128 (v8hi)
-
- The following built-in functions are available when '-msse4.1' is used.
-All of them generate the machine instruction that is part of the name.
-
- v2df __builtin_ia32_blendpd (v2df, v2df, const int)
- v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
- v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
- v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
- v2df __builtin_ia32_dppd (v2df, v2df, const int)
- v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
- v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
- v2di __builtin_ia32_movntdqa (v2di *);
- v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
- v8hi __builtin_ia32_packusdw128 (v4si, v4si)
- v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
- v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
- v2di __builtin_ia32_pcmpeqq (v2di, v2di)
- v8hi __builtin_ia32_phminposuw128 (v8hi)
- v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
- v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
- v4si __builtin_ia32_pmaxud128 (v4si, v4si)
- v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
- v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
- v4si __builtin_ia32_pminsd128 (v4si, v4si)
- v4si __builtin_ia32_pminud128 (v4si, v4si)
- v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
- v4si __builtin_ia32_pmovsxbd128 (v16qi)
- v2di __builtin_ia32_pmovsxbq128 (v16qi)
- v8hi __builtin_ia32_pmovsxbw128 (v16qi)
- v2di __builtin_ia32_pmovsxdq128 (v4si)
- v4si __builtin_ia32_pmovsxwd128 (v8hi)
- v2di __builtin_ia32_pmovsxwq128 (v8hi)
- v4si __builtin_ia32_pmovzxbd128 (v16qi)
- v2di __builtin_ia32_pmovzxbq128 (v16qi)
- v8hi __builtin_ia32_pmovzxbw128 (v16qi)
- v2di __builtin_ia32_pmovzxdq128 (v4si)
- v4si __builtin_ia32_pmovzxwd128 (v8hi)
- v2di __builtin_ia32_pmovzxwq128 (v8hi)
- v2di __builtin_ia32_pmuldq128 (v4si, v4si)
- v4si __builtin_ia32_pmulld128 (v4si, v4si)
- int __builtin_ia32_ptestc128 (v2di, v2di)
- int __builtin_ia32_ptestnzc128 (v2di, v2di)
- int __builtin_ia32_ptestz128 (v2di, v2di)
- v2df __builtin_ia32_roundpd (v2df, const int)
- v4sf __builtin_ia32_roundps (v4sf, const int)
- v2df __builtin_ia32_roundsd (v2df, v2df, const int)
- v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
-
- The following built-in functions are available when '-msse4.1' is used.
-
-'v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)'
- Generates the 'insertps' machine instruction.
-'int __builtin_ia32_vec_ext_v16qi (v16qi, const int)'
- Generates the 'pextrb' machine instruction.
-'v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)'
- Generates the 'pinsrb' machine instruction.
-'v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)'
- Generates the 'pinsrd' machine instruction.
-'v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)'
- Generates the 'pinsrq' machine instruction in 64bit mode.
-
- The following built-in functions are changed to generate new SSE4.1
-instructions when '-msse4.1' is used.
-
-'float __builtin_ia32_vec_ext_v4sf (v4sf, const int)'
- Generates the 'extractps' machine instruction.
-'int __builtin_ia32_vec_ext_v4si (v4si, const int)'
- Generates the 'pextrd' machine instruction.
-'long long __builtin_ia32_vec_ext_v2di (v2di, const int)'
- Generates the 'pextrq' machine instruction in 64bit mode.
-
- The following built-in functions are available when '-msse4.2' is used.
-All of them generate the machine instruction that is part of the name.
-
- v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
- int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
- int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
- int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
- int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
- int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
- int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
- v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
- int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
- int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
- int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
- int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
- int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
- int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
- v2di __builtin_ia32_pcmpgtq (v2di, v2di)
-
- The following built-in functions are available when '-msse4.2' is used.
-
-'unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)'
- Generates the 'crc32b' machine instruction.
-'unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)'
- Generates the 'crc32w' machine instruction.
-'unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)'
- Generates the 'crc32l' machine instruction.
-'unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)'
- Generates the 'crc32q' machine instruction.
-
- The following built-in functions are changed to generate new SSE4.2
-instructions when '-msse4.2' is used.
-
-'int __builtin_popcount (unsigned int)'
- Generates the 'popcntl' machine instruction.
-'int __builtin_popcountl (unsigned long)'
- Generates the 'popcntl' or 'popcntq' machine instruction, depending
- on the size of 'unsigned long'.
-'int __builtin_popcountll (unsigned long long)'
- Generates the 'popcntq' machine instruction.
-
- The following built-in functions are available when '-mavx' is used.
-All of them generate the machine instruction that is part of the name.
-
- v4df __builtin_ia32_addpd256 (v4df,v4df)
- v8sf __builtin_ia32_addps256 (v8sf,v8sf)
- v4df __builtin_ia32_addsubpd256 (v4df,v4df)
- v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
- v4df __builtin_ia32_andnpd256 (v4df,v4df)
- v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
- v4df __builtin_ia32_andpd256 (v4df,v4df)
- v8sf __builtin_ia32_andps256 (v8sf,v8sf)
- v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
- v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
- v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
- v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
- v2df __builtin_ia32_cmppd (v2df,v2df,int)
- v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
- v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
- v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
- v2df __builtin_ia32_cmpsd (v2df,v2df,int)
- v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
- v4df __builtin_ia32_cvtdq2pd256 (v4si)
- v8sf __builtin_ia32_cvtdq2ps256 (v8si)
- v4si __builtin_ia32_cvtpd2dq256 (v4df)
- v4sf __builtin_ia32_cvtpd2ps256 (v4df)
- v8si __builtin_ia32_cvtps2dq256 (v8sf)
- v4df __builtin_ia32_cvtps2pd256 (v4sf)
- v4si __builtin_ia32_cvttpd2dq256 (v4df)
- v8si __builtin_ia32_cvttps2dq256 (v8sf)
- v4df __builtin_ia32_divpd256 (v4df,v4df)
- v8sf __builtin_ia32_divps256 (v8sf,v8sf)
- v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
- v4df __builtin_ia32_haddpd256 (v4df,v4df)
- v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
- v4df __builtin_ia32_hsubpd256 (v4df,v4df)
- v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
- v32qi __builtin_ia32_lddqu256 (pcchar)
- v32qi __builtin_ia32_loaddqu256 (pcchar)
- v4df __builtin_ia32_loadupd256 (pcdouble)
- v8sf __builtin_ia32_loadups256 (pcfloat)
- v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
- v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
- v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
- v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
- void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
- void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
- void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
- void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
- v4df __builtin_ia32_maxpd256 (v4df,v4df)
- v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
- v4df __builtin_ia32_minpd256 (v4df,v4df)
- v8sf __builtin_ia32_minps256 (v8sf,v8sf)
- v4df __builtin_ia32_movddup256 (v4df)
- int __builtin_ia32_movmskpd256 (v4df)
- int __builtin_ia32_movmskps256 (v8sf)
- v8sf __builtin_ia32_movshdup256 (v8sf)
- v8sf __builtin_ia32_movsldup256 (v8sf)
- v4df __builtin_ia32_mulpd256 (v4df,v4df)
- v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
- v4df __builtin_ia32_orpd256 (v4df,v4df)
- v8sf __builtin_ia32_orps256 (v8sf,v8sf)
- v2df __builtin_ia32_pd_pd256 (v4df)
- v4df __builtin_ia32_pd256_pd (v2df)
- v4sf __builtin_ia32_ps_ps256 (v8sf)
- v8sf __builtin_ia32_ps256_ps (v4sf)
- int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
- int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
- int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
- v8sf __builtin_ia32_rcpps256 (v8sf)
- v4df __builtin_ia32_roundpd256 (v4df,int)
- v8sf __builtin_ia32_roundps256 (v8sf,int)
- v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
- v8sf __builtin_ia32_rsqrtps256 (v8sf)
- v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
- v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
- v4si __builtin_ia32_si_si256 (v8si)
- v8si __builtin_ia32_si256_si (v4si)
- v4df __builtin_ia32_sqrtpd256 (v4df)
- v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
- v8sf __builtin_ia32_sqrtps256 (v8sf)
- void __builtin_ia32_storedqu256 (pchar,v32qi)
- void __builtin_ia32_storeupd256 (pdouble,v4df)
- void __builtin_ia32_storeups256 (pfloat,v8sf)
- v4df __builtin_ia32_subpd256 (v4df,v4df)
- v8sf __builtin_ia32_subps256 (v8sf,v8sf)
- v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
- v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
- v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
- v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
- v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
- v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
- v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
- v4sf __builtin_ia32_vbroadcastss (pcfloat)
- v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
- v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
- v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
- v4si __builtin_ia32_vextractf128_si256 (v8si,int)
- v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
- v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
- v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
- v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
- v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
- v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
- v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
- v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
- v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
- v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
- v2df __builtin_ia32_vpermilpd (v2df,int)
- v4df __builtin_ia32_vpermilpd256 (v4df,int)
- v4sf __builtin_ia32_vpermilps (v4sf,int)
- v8sf __builtin_ia32_vpermilps256 (v8sf,int)
- v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
- v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
- v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
- v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
- int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
- int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
- int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
- int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
- int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
- int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
- int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
- int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
- int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
- int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
- int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
- int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
- void __builtin_ia32_vzeroall (void)
- void __builtin_ia32_vzeroupper (void)
- v4df __builtin_ia32_xorpd256 (v4df,v4df)
- v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
-
- The following built-in functions are available when '-mavx2' is used.
-All of them generate the machine instruction that is part of the name.
-
- v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,v32qi,int)
- v32qi __builtin_ia32_pabsb256 (v32qi)
- v16hi __builtin_ia32_pabsw256 (v16hi)
- v8si __builtin_ia32_pabsd256 (v8si)
- v16hi __builtin_ia32_packssdw256 (v8si,v8si)
- v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)
- v16hi __builtin_ia32_packusdw256 (v8si,v8si)
- v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)
- v32qi __builtin_ia32_paddb256 (v32qi,v32qi)
- v16hi __builtin_ia32_paddw256 (v16hi,v16hi)
- v8si __builtin_ia32_paddd256 (v8si,v8si)
- v4di __builtin_ia32_paddq256 (v4di,v4di)
- v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)
- v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)
- v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)
- v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)
- v4di __builtin_ia32_palignr256 (v4di,v4di,int)
- v4di __builtin_ia32_andsi256 (v4di,v4di)
- v4di __builtin_ia32_andnotsi256 (v4di,v4di)
- v32qi __builtin_ia32_pavgb256 (v32qi,v32qi)
- v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)
- v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)
- v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)
- v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)
- v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)
- v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)
- v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)
- v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)
- v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)
- v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)
- v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)
- v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)
- v8si __builtin_ia32_phaddd256 (v8si,v8si)
- v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)
- v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)
- v8si __builtin_ia32_phsubd256 (v8si,v8si)
- v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)
- v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)
- v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)
- v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)
- v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)
- v8si __builtin_ia32_pmaxsd256 (v8si,v8si)
- v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)
- v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)
- v8si __builtin_ia32_pmaxud256 (v8si,v8si)
- v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)
- v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)
- v8si __builtin_ia32_pminsd256 (v8si,v8si)
- v32qi __builtin_ia32_pminub256 (v32qi,v32qi)
- v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)
- v8si __builtin_ia32_pminud256 (v8si,v8si)
- int __builtin_ia32_pmovmskb256 (v32qi)
- v16hi __builtin_ia32_pmovsxbw256 (v16qi)
- v8si __builtin_ia32_pmovsxbd256 (v16qi)
- v4di __builtin_ia32_pmovsxbq256 (v16qi)
- v8si __builtin_ia32_pmovsxwd256 (v8hi)
- v4di __builtin_ia32_pmovsxwq256 (v8hi)
- v4di __builtin_ia32_pmovsxdq256 (v4si)
- v16hi __builtin_ia32_pmovzxbw256 (v16qi)
- v8si __builtin_ia32_pmovzxbd256 (v16qi)
- v4di __builtin_ia32_pmovzxbq256 (v16qi)
- v8si __builtin_ia32_pmovzxwd256 (v8hi)
- v4di __builtin_ia32_pmovzxwq256 (v8hi)
- v4di __builtin_ia32_pmovzxdq256 (v4si)
- v4di __builtin_ia32_pmuldq256 (v8si,v8si)
- v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)
- v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)
- v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)
- v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)
- v8si __builtin_ia32_pmulld256 (v8si,v8si)
- v4di __builtin_ia32_pmuludq256 (v8si,v8si)
- v4di __builtin_ia32_por256 (v4di,v4di)
- v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)
- v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)
- v8si __builtin_ia32_pshufd256 (v8si,int)
- v16hi __builtin_ia32_pshufhw256 (v16hi,int)
- v16hi __builtin_ia32_pshuflw256 (v16hi,int)
- v32qi __builtin_ia32_psignb256 (v32qi,v32qi)
- v16hi __builtin_ia32_psignw256 (v16hi,v16hi)
- v8si __builtin_ia32_psignd256 (v8si,v8si)
- v4di __builtin_ia32_pslldqi256 (v4di,int)
- v16hi __builtin_ia32_psllwi256 (16hi,int)
- v16hi __builtin_ia32_psllw256(v16hi,v8hi)
- v8si __builtin_ia32_pslldi256 (v8si,int)
- v8si __builtin_ia32_pslld256(v8si,v4si)
- v4di __builtin_ia32_psllqi256 (v4di,int)
- v4di __builtin_ia32_psllq256(v4di,v2di)
- v16hi __builtin_ia32_psrawi256 (v16hi,int)
- v16hi __builtin_ia32_psraw256 (v16hi,v8hi)
- v8si __builtin_ia32_psradi256 (v8si,int)
- v8si __builtin_ia32_psrad256 (v8si,v4si)
- v4di __builtin_ia32_psrldqi256 (v4di, int)
- v16hi __builtin_ia32_psrlwi256 (v16hi,int)
- v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)
- v8si __builtin_ia32_psrldi256 (v8si,int)
- v8si __builtin_ia32_psrld256 (v8si,v4si)
- v4di __builtin_ia32_psrlqi256 (v4di,int)
- v4di __builtin_ia32_psrlq256(v4di,v2di)
- v32qi __builtin_ia32_psubb256 (v32qi,v32qi)
- v32hi __builtin_ia32_psubw256 (v16hi,v16hi)
- v8si __builtin_ia32_psubd256 (v8si,v8si)
- v4di __builtin_ia32_psubq256 (v4di,v4di)
- v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)
- v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)
- v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)
- v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)
- v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)
- v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)
- v8si __builtin_ia32_punpckhdq256 (v8si,v8si)
- v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)
- v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)
- v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)
- v8si __builtin_ia32_punpckldq256 (v8si,v8si)
- v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)
- v4di __builtin_ia32_pxor256 (v4di,v4di)
- v4di __builtin_ia32_movntdqa256 (pv4di)
- v4sf __builtin_ia32_vbroadcastss_ps (v4sf)
- v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)
- v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)
- v4di __builtin_ia32_vbroadcastsi256 (v2di)
- v4si __builtin_ia32_pblendd128 (v4si,v4si)
- v8si __builtin_ia32_pblendd256 (v8si,v8si)
- v32qi __builtin_ia32_pbroadcastb256 (v16qi)
- v16hi __builtin_ia32_pbroadcastw256 (v8hi)
- v8si __builtin_ia32_pbroadcastd256 (v4si)
- v4di __builtin_ia32_pbroadcastq256 (v2di)
- v16qi __builtin_ia32_pbroadcastb128 (v16qi)
- v8hi __builtin_ia32_pbroadcastw128 (v8hi)
- v4si __builtin_ia32_pbroadcastd128 (v4si)
- v2di __builtin_ia32_pbroadcastq128 (v2di)
- v8si __builtin_ia32_permvarsi256 (v8si,v8si)
- v4df __builtin_ia32_permdf256 (v4df,int)
- v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)
- v4di __builtin_ia32_permdi256 (v4di,int)
- v4di __builtin_ia32_permti256 (v4di,v4di,int)
- v4di __builtin_ia32_extract128i256 (v4di,int)
- v4di __builtin_ia32_insert128i256 (v4di,v2di,int)
- v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)
- v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)
- v4si __builtin_ia32_maskloadd (pcv4si,v4si)
- v2di __builtin_ia32_maskloadq (pcv2di,v2di)
- void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)
- void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)
- void __builtin_ia32_maskstored (pv4si,v4si,v4si)
- void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)
- v8si __builtin_ia32_psllv8si (v8si,v8si)
- v4si __builtin_ia32_psllv4si (v4si,v4si)
- v4di __builtin_ia32_psllv4di (v4di,v4di)
- v2di __builtin_ia32_psllv2di (v2di,v2di)
- v8si __builtin_ia32_psrav8si (v8si,v8si)
- v4si __builtin_ia32_psrav4si (v4si,v4si)
- v8si __builtin_ia32_psrlv8si (v8si,v8si)
- v4si __builtin_ia32_psrlv4si (v4si,v4si)
- v4di __builtin_ia32_psrlv4di (v4di,v4di)
- v2di __builtin_ia32_psrlv2di (v2di,v2di)
- v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)
- v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)
- v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)
- v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)
- v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)
- v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)
- v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)
- v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)
- v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)
- v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)
- v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)
- v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)
- v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)
- v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)
- v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)
- v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)
-
- The following built-in functions are available when '-maes' is used.
-All of them generate the machine instruction that is part of the name.
-
- v2di __builtin_ia32_aesenc128 (v2di, v2di)
- v2di __builtin_ia32_aesenclast128 (v2di, v2di)
- v2di __builtin_ia32_aesdec128 (v2di, v2di)
- v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
- v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
- v2di __builtin_ia32_aesimc128 (v2di)
-
- The following built-in function is available when '-mpclmul' is used.
-
-'v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)'
- Generates the 'pclmulqdq' machine instruction.
-
- The following built-in function is available when '-mfsgsbase' is used.
-All of them generate the machine instruction that is part of the name.
-
- unsigned int __builtin_ia32_rdfsbase32 (void)
- unsigned long long __builtin_ia32_rdfsbase64 (void)
- unsigned int __builtin_ia32_rdgsbase32 (void)
- unsigned long long __builtin_ia32_rdgsbase64 (void)
- void _writefsbase_u32 (unsigned int)
- void _writefsbase_u64 (unsigned long long)
- void _writegsbase_u32 (unsigned int)
- void _writegsbase_u64 (unsigned long long)
-
- The following built-in function is available when '-mrdrnd' is used.
-All of them generate the machine instruction that is part of the name.
-
- unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
- unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
- unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
-
- The following built-in functions are available when '-msse4a' is used.
-All of them generate the machine instruction that is part of the name.
-
- void __builtin_ia32_movntsd (double *, v2df)
- void __builtin_ia32_movntss (float *, v4sf)
- v2di __builtin_ia32_extrq (v2di, v16qi)
- v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
- v2di __builtin_ia32_insertq (v2di, v2di)
- v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
-
- The following built-in functions are available when '-mxop' is used.
- v2df __builtin_ia32_vfrczpd (v2df)
- v4sf __builtin_ia32_vfrczps (v4sf)
- v2df __builtin_ia32_vfrczsd (v2df, v2df)
- v4sf __builtin_ia32_vfrczss (v4sf, v4sf)
- v4df __builtin_ia32_vfrczpd256 (v4df)
- v8sf __builtin_ia32_vfrczps256 (v8sf)
- v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
- v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
- v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
- v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
- v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
- v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
- v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
- v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
- v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
- v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
- v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
- v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
- v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
- v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
- v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
- v4si __builtin_ia32_vpcomeqd (v4si, v4si)
- v2di __builtin_ia32_vpcomeqq (v2di, v2di)
- v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
- v4si __builtin_ia32_vpcomequd (v4si, v4si)
- v2di __builtin_ia32_vpcomequq (v2di, v2di)
- v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
- v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
- v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
- v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
- v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
- v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
- v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
- v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
- v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
- v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
- v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
- v4si __builtin_ia32_vpcomged (v4si, v4si)
- v2di __builtin_ia32_vpcomgeq (v2di, v2di)
- v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
- v4si __builtin_ia32_vpcomgeud (v4si, v4si)
- v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
- v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
- v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
- v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
- v4si __builtin_ia32_vpcomgtd (v4si, v4si)
- v2di __builtin_ia32_vpcomgtq (v2di, v2di)
- v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
- v4si __builtin_ia32_vpcomgtud (v4si, v4si)
- v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
- v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
- v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
- v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
- v4si __builtin_ia32_vpcomled (v4si, v4si)
- v2di __builtin_ia32_vpcomleq (v2di, v2di)
- v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
- v4si __builtin_ia32_vpcomleud (v4si, v4si)
- v2di __builtin_ia32_vpcomleuq (v2di, v2di)
- v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
- v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
- v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
- v4si __builtin_ia32_vpcomltd (v4si, v4si)
- v2di __builtin_ia32_vpcomltq (v2di, v2di)
- v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
- v4si __builtin_ia32_vpcomltud (v4si, v4si)
- v2di __builtin_ia32_vpcomltuq (v2di, v2di)
- v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
- v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
- v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
- v4si __builtin_ia32_vpcomned (v4si, v4si)
- v2di __builtin_ia32_vpcomneq (v2di, v2di)
- v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
- v4si __builtin_ia32_vpcomneud (v4si, v4si)
- v2di __builtin_ia32_vpcomneuq (v2di, v2di)
- v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
- v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
- v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
- v4si __builtin_ia32_vpcomtrued (v4si, v4si)
- v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
- v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
- v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
- v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
- v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
- v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
- v4si __builtin_ia32_vphaddbd (v16qi)
- v2di __builtin_ia32_vphaddbq (v16qi)
- v8hi __builtin_ia32_vphaddbw (v16qi)
- v2di __builtin_ia32_vphadddq (v4si)
- v4si __builtin_ia32_vphaddubd (v16qi)
- v2di __builtin_ia32_vphaddubq (v16qi)
- v8hi __builtin_ia32_vphaddubw (v16qi)
- v2di __builtin_ia32_vphaddudq (v4si)
- v4si __builtin_ia32_vphadduwd (v8hi)
- v2di __builtin_ia32_vphadduwq (v8hi)
- v4si __builtin_ia32_vphaddwd (v8hi)
- v2di __builtin_ia32_vphaddwq (v8hi)
- v8hi __builtin_ia32_vphsubbw (v16qi)
- v2di __builtin_ia32_vphsubdq (v4si)
- v4si __builtin_ia32_vphsubwd (v8hi)
- v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
- v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
- v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
- v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
- v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
- v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
- v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
- v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
- v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
- v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
- v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
- v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
- v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
- v16qi __builtin_ia32_vprotb (v16qi, v16qi)
- v4si __builtin_ia32_vprotd (v4si, v4si)
- v2di __builtin_ia32_vprotq (v2di, v2di)
- v8hi __builtin_ia32_vprotw (v8hi, v8hi)
- v16qi __builtin_ia32_vpshab (v16qi, v16qi)
- v4si __builtin_ia32_vpshad (v4si, v4si)
- v2di __builtin_ia32_vpshaq (v2di, v2di)
- v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
- v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
- v4si __builtin_ia32_vpshld (v4si, v4si)
- v2di __builtin_ia32_vpshlq (v2di, v2di)
- v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
-
- The following built-in functions are available when '-mfma4' is used.
-All of them generate the machine instruction that is part of the name.
-
- v2df __builtin_ia32_vfmaddpd (v2df, v2df, v2df)
- v4sf __builtin_ia32_vfmaddps (v4sf, v4sf, v4sf)
- v2df __builtin_ia32_vfmaddsd (v2df, v2df, v2df)
- v4sf __builtin_ia32_vfmaddss (v4sf, v4sf, v4sf)
- v2df __builtin_ia32_vfmsubpd (v2df, v2df, v2df)
- v4sf __builtin_ia32_vfmsubps (v4sf, v4sf, v4sf)
- v2df __builtin_ia32_vfmsubsd (v2df, v2df, v2df)
- v4sf __builtin_ia32_vfmsubss (v4sf, v4sf, v4sf)
- v2df __builtin_ia32_vfnmaddpd (v2df, v2df, v2df)
- v4sf __builtin_ia32_vfnmaddps (v4sf, v4sf, v4sf)
- v2df __builtin_ia32_vfnmaddsd (v2df, v2df, v2df)
- v4sf __builtin_ia32_vfnmaddss (v4sf, v4sf, v4sf)
- v2df __builtin_ia32_vfnmsubpd (v2df, v2df, v2df)
- v4sf __builtin_ia32_vfnmsubps (v4sf, v4sf, v4sf)
- v2df __builtin_ia32_vfnmsubsd (v2df, v2df, v2df)
- v4sf __builtin_ia32_vfnmsubss (v4sf, v4sf, v4sf)
- v2df __builtin_ia32_vfmaddsubpd (v2df, v2df, v2df)
- v4sf __builtin_ia32_vfmaddsubps (v4sf, v4sf, v4sf)
- v2df __builtin_ia32_vfmsubaddpd (v2df, v2df, v2df)
- v4sf __builtin_ia32_vfmsubaddps (v4sf, v4sf, v4sf)
- v4df __builtin_ia32_vfmaddpd256 (v4df, v4df, v4df)
- v8sf __builtin_ia32_vfmaddps256 (v8sf, v8sf, v8sf)
- v4df __builtin_ia32_vfmsubpd256 (v4df, v4df, v4df)
- v8sf __builtin_ia32_vfmsubps256 (v8sf, v8sf, v8sf)
- v4df __builtin_ia32_vfnmaddpd256 (v4df, v4df, v4df)
- v8sf __builtin_ia32_vfnmaddps256 (v8sf, v8sf, v8sf)
- v4df __builtin_ia32_vfnmsubpd256 (v4df, v4df, v4df)
- v8sf __builtin_ia32_vfnmsubps256 (v8sf, v8sf, v8sf)
- v4df __builtin_ia32_vfmaddsubpd256 (v4df, v4df, v4df)
- v8sf __builtin_ia32_vfmaddsubps256 (v8sf, v8sf, v8sf)
- v4df __builtin_ia32_vfmsubaddpd256 (v4df, v4df, v4df)
- v8sf __builtin_ia32_vfmsubaddps256 (v8sf, v8sf, v8sf)
-
- The following built-in functions are available when '-mlwp' is used.
-
- void __builtin_ia32_llwpcb16 (void *);
- void __builtin_ia32_llwpcb32 (void *);
- void __builtin_ia32_llwpcb64 (void *);
- void * __builtin_ia32_llwpcb16 (void);
- void * __builtin_ia32_llwpcb32 (void);
- void * __builtin_ia32_llwpcb64 (void);
- void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
- void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
- void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
- unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
- unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
- unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
-
- The following built-in functions are available when '-mbmi' is used.
-All of them generate the machine instruction that is part of the name.
- unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
- unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
-
- The following built-in functions are available when '-mbmi2' is used.
-All of them generate the machine instruction that is part of the name.
- unsigned int _bzhi_u32 (unsigned int, unsigned int)
- unsigned int _pdep_u32 (unsigned int, unsigned int)
- unsigned int _pext_u32 (unsigned int, unsigned int)
- unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)
- unsigned long long _pdep_u64 (unsigned long long, unsigned long long)
- unsigned long long _pext_u64 (unsigned long long, unsigned long long)
-
- The following built-in functions are available when '-mlzcnt' is used.
-All of them generate the machine instruction that is part of the name.
- unsigned short __builtin_ia32_lzcnt_16(unsigned short);
- unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
- unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
-
- The following built-in functions are available when '-mfxsr' is used.
-All of them generate the machine instruction that is part of the name.
- void __builtin_ia32_fxsave (void *)
- void __builtin_ia32_fxrstor (void *)
- void __builtin_ia32_fxsave64 (void *)
- void __builtin_ia32_fxrstor64 (void *)
-
- The following built-in functions are available when '-mxsave' is used.
-All of them generate the machine instruction that is part of the name.
- void __builtin_ia32_xsave (void *, long long)
- void __builtin_ia32_xrstor (void *, long long)
- void __builtin_ia32_xsave64 (void *, long long)
- void __builtin_ia32_xrstor64 (void *, long long)
-
- The following built-in functions are available when '-mxsaveopt' is
-used. All of them generate the machine instruction that is part of the
-name.
- void __builtin_ia32_xsaveopt (void *, long long)
- void __builtin_ia32_xsaveopt64 (void *, long long)
-
- The following built-in functions are available when '-mtbm' is used.
-Both of them generate the immediate form of the bextr machine
-instruction.
- unsigned int __builtin_ia32_bextri_u32 (unsigned int, const unsigned int);
- unsigned long long __builtin_ia32_bextri_u64 (unsigned long long, const unsigned long long);
-
- The following built-in functions are available when '-m3dnow' is used.
-All of them generate the machine instruction that is part of the name.
-
- void __builtin_ia32_femms (void)
- v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
- v2si __builtin_ia32_pf2id (v2sf)
- v2sf __builtin_ia32_pfacc (v2sf, v2sf)
- v2sf __builtin_ia32_pfadd (v2sf, v2sf)
- v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
- v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
- v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
- v2sf __builtin_ia32_pfmax (v2sf, v2sf)
- v2sf __builtin_ia32_pfmin (v2sf, v2sf)
- v2sf __builtin_ia32_pfmul (v2sf, v2sf)
- v2sf __builtin_ia32_pfrcp (v2sf)
- v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
- v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
- v2sf __builtin_ia32_pfrsqrt (v2sf)
- v2sf __builtin_ia32_pfsub (v2sf, v2sf)
- v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
- v2sf __builtin_ia32_pi2fd (v2si)
- v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
-
- The following built-in functions are available when both '-m3dnow' and
-'-march=athlon' are used. All of them generate the machine instruction
-that is part of the name.
-
- v2si __builtin_ia32_pf2iw (v2sf)
- v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
- v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
- v2sf __builtin_ia32_pi2fw (v2si)
- v2sf __builtin_ia32_pswapdsf (v2sf)
- v2si __builtin_ia32_pswapdsi (v2si)
-
- The following built-in functions are available when '-mrtm' is used
-They are used for restricted transactional memory. These are the
-internal low level functions. Normally the functions in *note X86
-transactional memory intrinsics:: should be used instead.
-
- int __builtin_ia32_xbegin ()
- void __builtin_ia32_xend ()
- void __builtin_ia32_xabort (status)
- int __builtin_ia32_xtest ()
-
-
-File: gcc.info, Node: X86 transactional memory intrinsics, Next: MIPS DSP Built-in Functions, Prev: X86 Built-in Functions, Up: Target Builtins
-
-6.57.12 X86 transaction memory intrinsics
------------------------------------------
-
-Hardware transactional memory intrinsics for i386. These allow to use
-memory transactions with RTM (Restricted Transactional Memory). For
-using HLE (Hardware Lock Elision) see *note x86 specific memory model
-extensions for transactional memory:: instead. This support is enabled
-with the '-mrtm' option.
-
- A memory transaction commits all changes to memory in an atomic way, as
-visible to other threads. If the transaction fails it is rolled back
-and all side effects discarded.
-
- Generally there is no guarantee that a memory transaction ever succeeds
-and suitable fallback code always needs to be supplied.
-
- -- RTM Function: unsigned _xbegin ()
- Start a RTM (Restricted Transactional Memory) transaction. Returns
- _XBEGIN_STARTED when the transaction started successfully (note
- this is not 0, so the constant has to be explicitely tested). When
- the transaction aborts all side effects are undone and an abort
- code is returned. There is no guarantee any transaction ever
- succeeds, so there always needs to be a valid tested fallback path.
-
- #include <immintrin.h>
-
- if ((status = _xbegin ()) == _XBEGIN_STARTED) {
- ... transaction code...
- _xend ();
- } else {
- ... non transactional fallback path...
- }
-
- Valid abort status bits (when the value is not '_XBEGIN_STARTED') are:
-
-'_XABORT_EXPLICIT'
- Transaction explicitely aborted with '_xabort'. The parameter
- passed to '_xabort' is available with '_XABORT_CODE(status)'
-'_XABORT_RETRY'
- Transaction retry is possible.
-'_XABORT_CONFLICT'
- Transaction abort due to a memory conflict with another thread
-'_XABORT_CAPACITY'
- Transaction abort due to the transaction using too much memory
-'_XABORT_DEBUG'
- Transaction abort due to a debug trap
-'_XABORT_NESTED'
- Transaction abort in a inner nested transaction
-
- -- RTM Function: void _xend ()
- Commit the current transaction. When no transaction is active this
- will fault. All memory side effects of the transactions will
- become visible to other threads in an atomic matter.
-
- -- RTM Function: int _xtest ()
- Return a value not zero when a transaction is currently active,
- otherwise 0.
-
- -- RTM Function: void _xabort (status)
- Abort the current transaction. When no transaction is active this
- is a no-op. status must be a 8bit constant, that is included in
- the status code returned by '_xbegin'
-
-
-File: gcc.info, Node: MIPS DSP Built-in Functions, Next: MIPS Paired-Single Support, Prev: X86 transactional memory intrinsics, Up: Target Builtins
-
-6.57.13 MIPS DSP Built-in Functions
------------------------------------
-
-The MIPS DSP Application-Specific Extension (ASE) includes new
-instructions that are designed to improve the performance of DSP and
-media applications. It provides instructions that operate on packed
-8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
-
- GCC supports MIPS DSP operations using both the generic vector
-extensions (*note Vector Extensions::) and a collection of MIPS-specific
-built-in functions. Both kinds of support are enabled by the '-mdsp'
-command-line option.
-
- Revision 2 of the ASE was introduced in the second half of 2006. This
-revision adds extra instructions to the original ASE, but is otherwise
-backwards-compatible with it. You can select revision 2 using the
-command-line option '-mdspr2'; this option implies '-mdsp'.
-
- The SCOUNT and POS bits of the DSP control register are global. The
-WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and POS
-bits. During optimization, the compiler does not delete these
-instructions and it does not delete calls to functions containing these
-instructions.
-
- At present, GCC only provides support for operations on 32-bit vectors.
-The vector type associated with 8-bit integer data is usually called
-'v4i8', the vector type associated with Q7 is usually called 'v4q7', the
-vector type associated with 16-bit integer data is usually called
-'v2i16', and the vector type associated with Q15 is usually called
-'v2q15'. They can be defined in C as follows:
-
- typedef signed char v4i8 __attribute__ ((vector_size(4)));
- typedef signed char v4q7 __attribute__ ((vector_size(4)));
- typedef short v2i16 __attribute__ ((vector_size(4)));
- typedef short v2q15 __attribute__ ((vector_size(4)));
-
- 'v4i8', 'v4q7', 'v2i16' and 'v2q15' values are initialized in the same
-way as aggregates. For example:
-
- v4i8 a = {1, 2, 3, 4};
- v4i8 b;
- b = (v4i8) {5, 6, 7, 8};
-
- v2q15 c = {0x0fcb, 0x3a75};
- v2q15 d;
- d = (v2q15) {0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15};
-
- _Note:_ The CPU's endianness determines the order in which values are
-packed. On little-endian targets, the first value is the least
-significant and the last value is the most significant. The opposite
-order applies to big-endian targets. For example, the code above sets
-the lowest byte of 'a' to '1' on little-endian targets and '4' on
-big-endian targets.
-
- _Note:_ Q7, Q15 and Q31 values must be initialized with their integer
-representation. As shown in this example, the integer representation of
-a Q7 value can be obtained by multiplying the fractional value by
-'0x1.0p7'. The equivalent for Q15 values is to multiply by '0x1.0p15'.
-The equivalent for Q31 values is to multiply by '0x1.0p31'.
-
- The table below lists the 'v4i8' and 'v2q15' operations for which
-hardware support exists. 'a' and 'b' are 'v4i8' values, and 'c' and 'd'
-are 'v2q15' values.
-
-C code MIPS instruction
-'a + b' 'addu.qb'
-'c + d' 'addq.ph'
-'a - b' 'subu.qb'
-'c - d' 'subq.ph'
-
- The table below lists the 'v2i16' operation for which hardware support
-exists for the DSP ASE REV 2. 'e' and 'f' are 'v2i16' values.
-
-C code MIPS instruction
-'e * f' 'mul.ph'
-
- It is easier to describe the DSP built-in functions if we first define
-the following types:
-
- typedef int q31;
- typedef int i32;
- typedef unsigned int ui32;
- typedef long long a64;
-
- 'q31' and 'i32' are actually the same as 'int', but we use 'q31' to
-indicate a Q31 fractional value and 'i32' to indicate a 32-bit integer
-value. Similarly, 'a64' is the same as 'long long', but we use 'a64' to
-indicate values that are placed in one of the four DSP accumulators
-('$ac0', '$ac1', '$ac2' or '$ac3').
-
- Also, some built-in functions prefer or require immediate numbers as
-parameters, because the corresponding DSP instructions accept both
-immediate numbers and register operands, or accept immediate numbers
-only. The immediate parameters are listed as follows.
-
- imm0_3: 0 to 3.
- imm0_7: 0 to 7.
- imm0_15: 0 to 15.
- imm0_31: 0 to 31.
- imm0_63: 0 to 63.
- imm0_255: 0 to 255.
- imm_n32_31: -32 to 31.
- imm_n512_511: -512 to 511.
-
- The following built-in functions map directly to a particular MIPS DSP
-instruction. Please refer to the architecture specification for details
-on what each instruction does.
-
- v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
- v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
- q31 __builtin_mips_addq_s_w (q31, q31)
- v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
- v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
- v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
- v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
- q31 __builtin_mips_subq_s_w (q31, q31)
- v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
- v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
- i32 __builtin_mips_addsc (i32, i32)
- i32 __builtin_mips_addwc (i32, i32)
- i32 __builtin_mips_modsub (i32, i32)
- i32 __builtin_mips_raddu_w_qb (v4i8)
- v2q15 __builtin_mips_absq_s_ph (v2q15)
- q31 __builtin_mips_absq_s_w (q31)
- v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
- v2q15 __builtin_mips_precrq_ph_w (q31, q31)
- v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
- v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
- q31 __builtin_mips_preceq_w_phl (v2q15)
- q31 __builtin_mips_preceq_w_phr (v2q15)
- v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
- v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
- v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
- v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
- v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
- v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
- v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
- v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
- v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
- v4i8 __builtin_mips_shll_qb (v4i8, i32)
- v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
- v2q15 __builtin_mips_shll_ph (v2q15, i32)
- v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
- v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
- q31 __builtin_mips_shll_s_w (q31, imm0_31)
- q31 __builtin_mips_shll_s_w (q31, i32)
- v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
- v4i8 __builtin_mips_shrl_qb (v4i8, i32)
- v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
- v2q15 __builtin_mips_shra_ph (v2q15, i32)
- v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
- v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
- q31 __builtin_mips_shra_r_w (q31, imm0_31)
- q31 __builtin_mips_shra_r_w (q31, i32)
- v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
- v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
- v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
- q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
- q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
- a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
- a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
- a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
- a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
- a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
- a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
- a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
- a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
- a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
- a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
- a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
- a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
- a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
- i32 __builtin_mips_bitrev (i32)
- i32 __builtin_mips_insv (i32, i32)
- v4i8 __builtin_mips_repl_qb (imm0_255)
- v4i8 __builtin_mips_repl_qb (i32)
- v2q15 __builtin_mips_repl_ph (imm_n512_511)
- v2q15 __builtin_mips_repl_ph (i32)
- void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
- void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
- void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
- i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
- i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
- i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
- void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
- void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
- void __builtin_mips_cmp_le_ph (v2q15, v2q15)
- v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
- v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
- v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
- i32 __builtin_mips_extr_w (a64, imm0_31)
- i32 __builtin_mips_extr_w (a64, i32)
- i32 __builtin_mips_extr_r_w (a64, imm0_31)
- i32 __builtin_mips_extr_s_h (a64, i32)
- i32 __builtin_mips_extr_rs_w (a64, imm0_31)
- i32 __builtin_mips_extr_rs_w (a64, i32)
- i32 __builtin_mips_extr_s_h (a64, imm0_31)
- i32 __builtin_mips_extr_r_w (a64, i32)
- i32 __builtin_mips_extp (a64, imm0_31)
- i32 __builtin_mips_extp (a64, i32)
- i32 __builtin_mips_extpdp (a64, imm0_31)
- i32 __builtin_mips_extpdp (a64, i32)
- a64 __builtin_mips_shilo (a64, imm_n32_31)
- a64 __builtin_mips_shilo (a64, i32)
- a64 __builtin_mips_mthlip (a64, i32)
- void __builtin_mips_wrdsp (i32, imm0_63)
- i32 __builtin_mips_rddsp (imm0_63)
- i32 __builtin_mips_lbux (void *, i32)
- i32 __builtin_mips_lhx (void *, i32)
- i32 __builtin_mips_lwx (void *, i32)
- a64 __builtin_mips_ldx (void *, i32) [MIPS64 only]
- i32 __builtin_mips_bposge32 (void)
- a64 __builtin_mips_madd (a64, i32, i32);
- a64 __builtin_mips_maddu (a64, ui32, ui32);
- a64 __builtin_mips_msub (a64, i32, i32);
- a64 __builtin_mips_msubu (a64, ui32, ui32);
- a64 __builtin_mips_mult (i32, i32);
- a64 __builtin_mips_multu (ui32, ui32);
-
- The following built-in functions map directly to a particular MIPS DSP
-REV 2 instruction. Please refer to the architecture specification for
-details on what each instruction does.
-
- v4q7 __builtin_mips_absq_s_qb (v4q7);
- v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
- v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
- v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
- v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
- i32 __builtin_mips_append (i32, i32, imm0_31);
- i32 __builtin_mips_balign (i32, i32, imm0_3);
- i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
- i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
- i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
- a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
- a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
- v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
- v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
- q31 __builtin_mips_mulq_rs_w (q31, q31);
- v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
- q31 __builtin_mips_mulq_s_w (q31, q31);
- a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
- v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
- v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
- v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
- i32 __builtin_mips_prepend (i32, i32, imm0_31);
- v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
- v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
- v4i8 __builtin_mips_shra_qb (v4i8, i32);
- v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
- v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
- v2i16 __builtin_mips_shrl_ph (v2i16, i32);
- v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
- v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
- v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
- v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
- v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
- v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
- q31 __builtin_mips_addqh_w (q31, q31);
- q31 __builtin_mips_addqh_r_w (q31, q31);
- v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
- v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
- q31 __builtin_mips_subqh_w (q31, q31);
- q31 __builtin_mips_subqh_r_w (q31, q31);
- a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
- a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
- a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
- a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
- a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
- a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
-
-
-File: gcc.info, Node: MIPS Paired-Single Support, Next: MIPS Loongson Built-in Functions, Prev: MIPS DSP Built-in Functions, Up: Target Builtins
-
-6.57.14 MIPS Paired-Single Support
-----------------------------------
-
-The MIPS64 architecture includes a number of instructions that operate
-on pairs of single-precision floating-point values. Each pair is packed
-into a 64-bit floating-point register, with one element being designated
-the "upper half" and the other being designated the "lower half".
-
- GCC supports paired-single operations using both the generic vector
-extensions (*note Vector Extensions::) and a collection of MIPS-specific
-built-in functions. Both kinds of support are enabled by the
-'-mpaired-single' command-line option.
-
- The vector type associated with paired-single values is usually called
-'v2sf'. It can be defined in C as follows:
-
- typedef float v2sf __attribute__ ((vector_size (8)));
-
- 'v2sf' values are initialized in the same way as aggregates. For
-example:
-
- v2sf a = {1.5, 9.1};
- v2sf b;
- float e, f;
- b = (v2sf) {e, f};
-
- _Note:_ The CPU's endianness determines which value is stored in the
-upper half of a register and which value is stored in the lower half.
-On little-endian targets, the first value is the lower one and the
-second value is the upper one. The opposite order applies to big-endian
-targets. For example, the code above sets the lower half of 'a' to
-'1.5' on little-endian targets and '9.1' on big-endian targets.
-
-
-File: gcc.info, Node: MIPS Loongson Built-in Functions, Next: Other MIPS Built-in Functions, Prev: MIPS Paired-Single Support, Up: Target Builtins
-
-6.57.15 MIPS Loongson Built-in Functions
-----------------------------------------
-
-GCC provides intrinsics to access the SIMD instructions provided by the
-ST Microelectronics Loongson-2E and -2F processors. These intrinsics,
-available after inclusion of the 'loongson.h' header file, operate on
-the following 64-bit vector types:
-
- * 'uint8x8_t', a vector of eight unsigned 8-bit integers;
- * 'uint16x4_t', a vector of four unsigned 16-bit integers;
- * 'uint32x2_t', a vector of two unsigned 32-bit integers;
- * 'int8x8_t', a vector of eight signed 8-bit integers;
- * 'int16x4_t', a vector of four signed 16-bit integers;
- * 'int32x2_t', a vector of two signed 32-bit integers.
-
- The intrinsics provided are listed below; each is named after the
-machine instruction to which it corresponds, with suffixes added as
-appropriate to distinguish intrinsics that expand to the same machine
-instruction yet have different argument types. Refer to the
-architecture documentation for a description of the functionality of
-each instruction.
-
- int16x4_t packsswh (int32x2_t s, int32x2_t t);
- int8x8_t packsshb (int16x4_t s, int16x4_t t);
- uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
- uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
- uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
- uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
- int32x2_t paddw_s (int32x2_t s, int32x2_t t);
- int16x4_t paddh_s (int16x4_t s, int16x4_t t);
- int8x8_t paddb_s (int8x8_t s, int8x8_t t);
- uint64_t paddd_u (uint64_t s, uint64_t t);
- int64_t paddd_s (int64_t s, int64_t t);
- int16x4_t paddsh (int16x4_t s, int16x4_t t);
- int8x8_t paddsb (int8x8_t s, int8x8_t t);
- uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
- uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
- uint64_t pandn_ud (uint64_t s, uint64_t t);
- uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
- uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
- uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
- int64_t pandn_sd (int64_t s, int64_t t);
- int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
- int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
- int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
- uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
- uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
- uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
- uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
- uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
- int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
- int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
- int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
- uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
- uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
- uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
- int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
- int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
- int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
- uint16x4_t pextrh_u (uint16x4_t s, int field);
- int16x4_t pextrh_s (int16x4_t s, int field);
- uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
- uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
- uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
- uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
- int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
- int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
- int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
- int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
- int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
- int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
- uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
- int16x4_t pminsh (int16x4_t s, int16x4_t t);
- uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
- uint8x8_t pmovmskb_u (uint8x8_t s);
- int8x8_t pmovmskb_s (int8x8_t s);
- uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
- int16x4_t pmulhh (int16x4_t s, int16x4_t t);
- int16x4_t pmullh (int16x4_t s, int16x4_t t);
- int64_t pmuluw (uint32x2_t s, uint32x2_t t);
- uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
- uint16x4_t biadd (uint8x8_t s);
- uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
- uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
- int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
- uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
- int16x4_t psllh_s (int16x4_t s, uint8_t amount);
- uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
- int32x2_t psllw_s (int32x2_t s, uint8_t amount);
- uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
- int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
- uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
- int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
- uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
- int16x4_t psrah_s (int16x4_t s, uint8_t amount);
- uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
- int32x2_t psraw_s (int32x2_t s, uint8_t amount);
- uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
- uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
- uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
- int32x2_t psubw_s (int32x2_t s, int32x2_t t);
- int16x4_t psubh_s (int16x4_t s, int16x4_t t);
- int8x8_t psubb_s (int8x8_t s, int8x8_t t);
- uint64_t psubd_u (uint64_t s, uint64_t t);
- int64_t psubd_s (int64_t s, int64_t t);
- int16x4_t psubsh (int16x4_t s, int16x4_t t);
- int8x8_t psubsb (int8x8_t s, int8x8_t t);
- uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
- uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
- uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
- uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
- uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
- int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
- int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
- int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
- uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
- uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
- uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
- int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
- int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
- int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
-
-* Menu:
-
-* Paired-Single Arithmetic::
-* Paired-Single Built-in Functions::
-* MIPS-3D Built-in Functions::
-
-
-File: gcc.info, Node: Paired-Single Arithmetic, Next: Paired-Single Built-in Functions, Up: MIPS Loongson Built-in Functions
-
-6.57.15.1 Paired-Single Arithmetic
-..................................
-
-The table below lists the 'v2sf' operations for which hardware support
-exists. 'a', 'b' and 'c' are 'v2sf' values and 'x' is an integral
-value.
-
-C code MIPS instruction
-'a + b' 'add.ps'
-'a - b' 'sub.ps'
-'-a' 'neg.ps'
-'a * b' 'mul.ps'
-'a * b + c' 'madd.ps'
-'a * b - c' 'msub.ps'
-'-(a * b + c)' 'nmadd.ps'
-'-(a * b - c)' 'nmsub.ps'
-'x ? a : b' 'movn.ps'/'movz.ps'
-
- Note that the multiply-accumulate instructions can be disabled using
-the command-line option '-mno-fused-madd'.
-
-
-File: gcc.info, Node: Paired-Single Built-in Functions, Next: MIPS-3D Built-in Functions, Prev: Paired-Single Arithmetic, Up: MIPS Loongson Built-in Functions
-
-6.57.15.2 Paired-Single Built-in Functions
-..........................................
-
-The following paired-single functions map directly to a particular MIPS
-instruction. Please refer to the architecture specification for details
-on what each instruction does.
-
-'v2sf __builtin_mips_pll_ps (v2sf, v2sf)'
- Pair lower lower ('pll.ps').
-
-'v2sf __builtin_mips_pul_ps (v2sf, v2sf)'
- Pair upper lower ('pul.ps').
-
-'v2sf __builtin_mips_plu_ps (v2sf, v2sf)'
- Pair lower upper ('plu.ps').
-
-'v2sf __builtin_mips_puu_ps (v2sf, v2sf)'
- Pair upper upper ('puu.ps').
-
-'v2sf __builtin_mips_cvt_ps_s (float, float)'
- Convert pair to paired single ('cvt.ps.s').
-
-'float __builtin_mips_cvt_s_pl (v2sf)'
- Convert pair lower to single ('cvt.s.pl').
-
-'float __builtin_mips_cvt_s_pu (v2sf)'
- Convert pair upper to single ('cvt.s.pu').
-
-'v2sf __builtin_mips_abs_ps (v2sf)'
- Absolute value ('abs.ps').
-
-'v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)'
- Align variable ('alnv.ps').
-
- _Note:_ The value of the third parameter must be 0 or 4 modulo 8,
- otherwise the result is unpredictable. Please read the instruction
- description for details.
-
- The following multi-instruction functions are also available. In each
-case, COND can be any of the 16 floating-point conditions: 'f', 'un',
-'eq', 'ueq', 'olt', 'ult', 'ole', 'ule', 'sf', 'ngle', 'seq', 'ngl',
-'lt', 'nge', 'le' or 'ngt'.
-
-'v2sf __builtin_mips_movt_c_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)'
-'v2sf __builtin_mips_movf_c_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)'
- Conditional move based on floating-point comparison ('c.COND.ps',
- 'movt.ps'/'movf.ps').
-
- The 'movt' functions return the value X computed by:
-
- c.COND.ps CC,A,B
- mov.ps X,C
- movt.ps X,D,CC
-
- The 'movf' functions are similar but use 'movf.ps' instead of
- 'movt.ps'.
-
-'int __builtin_mips_upper_c_COND_ps (v2sf A, v2sf B)'
-'int __builtin_mips_lower_c_COND_ps (v2sf A, v2sf B)'
- Comparison of two paired-single values ('c.COND.ps',
- 'bc1t'/'bc1f').
-
- These functions compare A and B using 'c.COND.ps' and return either
- the upper or lower half of the result. For example:
-
- v2sf a, b;
- if (__builtin_mips_upper_c_eq_ps (a, b))
- upper_halves_are_equal ();
- else
- upper_halves_are_unequal ();
-
- if (__builtin_mips_lower_c_eq_ps (a, b))
- lower_halves_are_equal ();
- else
- lower_halves_are_unequal ();
-
-
-File: gcc.info, Node: MIPS-3D Built-in Functions, Prev: Paired-Single Built-in Functions, Up: MIPS Loongson Built-in Functions
-
-6.57.15.3 MIPS-3D Built-in Functions
-....................................
-
-The MIPS-3D Application-Specific Extension (ASE) includes additional
-paired-single instructions that are designed to improve the performance
-of 3D graphics operations. Support for these instructions is controlled
-by the '-mips3d' command-line option.
-
- The functions listed below map directly to a particular MIPS-3D
-instruction. Please refer to the architecture specification for more
-details on what each instruction does.
-
-'v2sf __builtin_mips_addr_ps (v2sf, v2sf)'
- Reduction add ('addr.ps').
-
-'v2sf __builtin_mips_mulr_ps (v2sf, v2sf)'
- Reduction multiply ('mulr.ps').
-
-'v2sf __builtin_mips_cvt_pw_ps (v2sf)'
- Convert paired single to paired word ('cvt.pw.ps').
-
-'v2sf __builtin_mips_cvt_ps_pw (v2sf)'
- Convert paired word to paired single ('cvt.ps.pw').
-
-'float __builtin_mips_recip1_s (float)'
-'double __builtin_mips_recip1_d (double)'
-'v2sf __builtin_mips_recip1_ps (v2sf)'
- Reduced-precision reciprocal (sequence step 1) ('recip1.FMT').
-
-'float __builtin_mips_recip2_s (float, float)'
-'double __builtin_mips_recip2_d (double, double)'
-'v2sf __builtin_mips_recip2_ps (v2sf, v2sf)'
- Reduced-precision reciprocal (sequence step 2) ('recip2.FMT').
-
-'float __builtin_mips_rsqrt1_s (float)'
-'double __builtin_mips_rsqrt1_d (double)'
-'v2sf __builtin_mips_rsqrt1_ps (v2sf)'
- Reduced-precision reciprocal square root (sequence step 1)
- ('rsqrt1.FMT').
-
-'float __builtin_mips_rsqrt2_s (float, float)'
-'double __builtin_mips_rsqrt2_d (double, double)'
-'v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)'
- Reduced-precision reciprocal square root (sequence step 2)
- ('rsqrt2.FMT').
-
- The following multi-instruction functions are also available. In each
-case, COND can be any of the 16 floating-point conditions: 'f', 'un',
-'eq', 'ueq', 'olt', 'ult', 'ole', 'ule', 'sf', 'ngle', 'seq', 'ngl',
-'lt', 'nge', 'le' or 'ngt'.
-
-'int __builtin_mips_cabs_COND_s (float A, float B)'
-'int __builtin_mips_cabs_COND_d (double A, double B)'
- Absolute comparison of two scalar values ('cabs.COND.FMT',
- 'bc1t'/'bc1f').
-
- These functions compare A and B using 'cabs.COND.s' or
- 'cabs.COND.d' and return the result as a boolean value. For
- example:
-
- float a, b;
- if (__builtin_mips_cabs_eq_s (a, b))
- true ();
- else
- false ();
-
-'int __builtin_mips_upper_cabs_COND_ps (v2sf A, v2sf B)'
-'int __builtin_mips_lower_cabs_COND_ps (v2sf A, v2sf B)'
- Absolute comparison of two paired-single values ('cabs.COND.ps',
- 'bc1t'/'bc1f').
-
- These functions compare A and B using 'cabs.COND.ps' and return
- either the upper or lower half of the result. For example:
-
- v2sf a, b;
- if (__builtin_mips_upper_cabs_eq_ps (a, b))
- upper_halves_are_equal ();
- else
- upper_halves_are_unequal ();
-
- if (__builtin_mips_lower_cabs_eq_ps (a, b))
- lower_halves_are_equal ();
- else
- lower_halves_are_unequal ();
-
-'v2sf __builtin_mips_movt_cabs_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)'
-'v2sf __builtin_mips_movf_cabs_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)'
- Conditional move based on absolute comparison ('cabs.COND.ps',
- 'movt.ps'/'movf.ps').
-
- The 'movt' functions return the value X computed by:
-
- cabs.COND.ps CC,A,B
- mov.ps X,C
- movt.ps X,D,CC
-
- The 'movf' functions are similar but use 'movf.ps' instead of
- 'movt.ps'.
-
-'int __builtin_mips_any_c_COND_ps (v2sf A, v2sf B)'
-'int __builtin_mips_all_c_COND_ps (v2sf A, v2sf B)'
-'int __builtin_mips_any_cabs_COND_ps (v2sf A, v2sf B)'
-'int __builtin_mips_all_cabs_COND_ps (v2sf A, v2sf B)'
- Comparison of two paired-single values ('c.COND.ps'/'cabs.COND.ps',
- 'bc1any2t'/'bc1any2f').
-
- These functions compare A and B using 'c.COND.ps' or
- 'cabs.COND.ps'. The 'any' forms return true if either result is
- true and the 'all' forms return true if both results are true. For
- example:
-
- v2sf a, b;
- if (__builtin_mips_any_c_eq_ps (a, b))
- one_is_true ();
- else
- both_are_false ();
-
- if (__builtin_mips_all_c_eq_ps (a, b))
- both_are_true ();
- else
- one_is_false ();
-
-'int __builtin_mips_any_c_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)'
-'int __builtin_mips_all_c_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)'
-'int __builtin_mips_any_cabs_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)'
-'int __builtin_mips_all_cabs_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)'
- Comparison of four paired-single values
- ('c.COND.ps'/'cabs.COND.ps', 'bc1any4t'/'bc1any4f').
-
- These functions use 'c.COND.ps' or 'cabs.COND.ps' to compare A with
- B and to compare C with D. The 'any' forms return true if any of
- the four results are true and the 'all' forms return true if all
- four results are true. For example:
-
- v2sf a, b, c, d;
- if (__builtin_mips_any_c_eq_4s (a, b, c, d))
- some_are_true ();
- else
- all_are_false ();
-
- if (__builtin_mips_all_c_eq_4s (a, b, c, d))
- all_are_true ();
- else
- some_are_false ();
-
-
-File: gcc.info, Node: Other MIPS Built-in Functions, Next: MSP430 Built-in Functions, Prev: MIPS Loongson Built-in Functions, Up: Target Builtins
-
-6.57.16 Other MIPS Built-in Functions
--------------------------------------
-
-GCC provides other MIPS-specific built-in functions:
-
-'void __builtin_mips_cache (int OP, const volatile void *ADDR)'
- Insert a 'cache' instruction with operands OP and ADDR. GCC
- defines the preprocessor macro '___GCC_HAVE_BUILTIN_MIPS_CACHE'
- when this function is available.
-
-'unsigned int __builtin_mips_get_fcsr (void)'
-'void __builtin_mips_set_fcsr (unsigned int VALUE)'
- Get and set the contents of the floating-point control and status
- register (FPU control register 31). These functions are only
- available in hard-float code but can be called in both MIPS16 and
- non-MIPS16 contexts.
-
- '__builtin_mips_set_fcsr' can be used to change any bit of the
- register except the condition codes, which GCC assumes are
- preserved.
-
-
-File: gcc.info, Node: MSP430 Built-in Functions, Next: NDS32 Built-in Functions, Prev: Other MIPS Built-in Functions, Up: Target Builtins
-
-6.57.17 MSP430 Built-in Functions
----------------------------------
-
-GCC provides a couple of special builtin functions to aid in the writing
-of interrupt handlers in C.
-
-'__bic_SR_register_on_exit (int MASK)'
- This clears the indicated bits in the saved copy of the status
- register currently residing on the stack. This only works inside
- interrupt handlers and the changes to the status register will only
- take affect once the handler returns.
-
-'__bis_SR_register_on_exit (int MASK)'
- This sets the indicated bits in the saved copy of the status
- register currently residing on the stack. This only works inside
- interrupt handlers and the changes to the status register will only
- take affect once the handler returns.
-
-
-File: gcc.info, Node: NDS32 Built-in Functions, Next: picoChip Built-in Functions, Prev: MSP430 Built-in Functions, Up: Target Builtins
-
-6.57.18 NDS32 Built-in Functions
---------------------------------
-
-These built-in functions are available for the NDS32 target:
-
- -- Built-in Function: void __builtin_nds32_isync (int *ADDR)
- Insert an ISYNC instruction into the instruction stream where ADDR
- is an instruction address for serialization.
-
- -- Built-in Function: void __builtin_nds32_isb (void)
- Insert an ISB instruction into the instruction stream.
-
- -- Built-in Function: int __builtin_nds32_mfsr (int SR)
- Return the content of a system register which is mapped by SR.
-
- -- Built-in Function: int __builtin_nds32_mfusr (int USR)
- Return the content of a user space register which is mapped by USR.
-
- -- Built-in Function: void __builtin_nds32_mtsr (int VALUE, int SR)
- Move the VALUE to a system register which is mapped by SR.
-
- -- Built-in Function: void __builtin_nds32_mtusr (int VALUE, int USR)
- Move the VALUE to a user space register which is mapped by USR.
-
- -- Built-in Function: void __builtin_nds32_setgie_en (void)
- Enable global interrupt.
-
- -- Built-in Function: void __builtin_nds32_setgie_dis (void)
- Disable global interrupt.
-
-
-File: gcc.info, Node: picoChip Built-in Functions, Next: PowerPC Built-in Functions, Prev: NDS32 Built-in Functions, Up: Target Builtins
-
-6.57.19 picoChip Built-in Functions
------------------------------------
-
-GCC provides an interface to selected machine instructions from the
-picoChip instruction set.
-
-'int __builtin_sbc (int VALUE)'
- Sign bit count. Return the number of consecutive bits in VALUE
- that have the same value as the sign bit. The result is the number
- of leading sign bits minus one, giving the number of redundant sign
- bits in VALUE.
-
-'int __builtin_byteswap (int VALUE)'
- Byte swap. Return the result of swapping the upper and lower bytes
- of VALUE.
-
-'int __builtin_brev (int VALUE)'
- Bit reversal. Return the result of reversing the bits in VALUE.
- Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1, and so
- on.
-
-'int __builtin_adds (int X, int Y)'
- Saturating addition. Return the result of adding X and Y, storing
- the value 32767 if the result overflows.
-
-'int __builtin_subs (int X, int Y)'
- Saturating subtraction. Return the result of subtracting Y from X,
- storing the value -32768 if the result overflows.
-
-'void __builtin_halt (void)'
- Halt. The processor stops execution. This built-in is useful for
- implementing assertions.
-
-
-File: gcc.info, Node: PowerPC Built-in Functions, Next: PowerPC AltiVec/VSX Built-in Functions, Prev: picoChip Built-in Functions, Up: Target Builtins
-
-6.57.20 PowerPC Built-in Functions
-----------------------------------
-
-These built-in functions are available for the PowerPC family of
-processors:
- float __builtin_recipdivf (float, float);
- float __builtin_rsqrtf (float);
- double __builtin_recipdiv (double, double);
- double __builtin_rsqrt (double);
- long __builtin_bpermd (long, long);
- uint64_t __builtin_ppc_get_timebase ();
- unsigned long __builtin_ppc_mftb ();
-
- The 'vec_rsqrt', '__builtin_rsqrt', and '__builtin_rsqrtf' functions
-generate multiple instructions to implement the reciprocal sqrt
-functionality using reciprocal sqrt estimate instructions.
-
- The '__builtin_recipdiv', and '__builtin_recipdivf' functions generate
-multiple instructions to implement division using the reciprocal
-estimate instructions.
-
- The '__builtin_ppc_get_timebase' and '__builtin_ppc_mftb' functions
-generate instructions to read the Time Base Register. The
-'__builtin_ppc_get_timebase' function may generate multiple instructions
-and always returns the 64 bits of the Time Base Register. The
-'__builtin_ppc_mftb' function always generates one instruction and
-returns the Time Base Register value as an unsigned long, throwing away
-the most significant word on 32-bit environments.
-
-
-File: gcc.info, Node: PowerPC AltiVec/VSX Built-in Functions, Next: PowerPC Hardware Transactional Memory Built-in Functions, Prev: PowerPC Built-in Functions, Up: Target Builtins
-
-6.57.21 PowerPC AltiVec Built-in Functions
-------------------------------------------
-
-GCC provides an interface for the PowerPC family of processors to access
-the AltiVec operations described in Motorola's AltiVec Programming
-Interface Manual. The interface is made available by including
-'<altivec.h>' and using '-maltivec' and '-mabi=altivec'. The interface
-supports the following vector types.
-
- vector unsigned char
- vector signed char
- vector bool char
-
- vector unsigned short
- vector signed short
- vector bool short
- vector pixel
-
- vector unsigned int
- vector signed int
- vector bool int
- vector float
-
- If '-mvsx' is used the following additional vector types are
-implemented.
-
- vector unsigned long
- vector signed long
- vector double
-
- The long types are only implemented for 64-bit code generation, and the
-long type is only used in the floating point/integer conversion
-instructions.
-
- GCC's implementation of the high-level language interface available
-from C and C++ code differs from Motorola's documentation in several
-ways.
-
- * A vector constant is a list of constant expressions within curly
- braces.
-
- * A vector initializer requires no cast if the vector constant is of
- the same type as the variable it is initializing.
-
- * If 'signed' or 'unsigned' is omitted, the signedness of the vector
- type is the default signedness of the base type. The default
- varies depending on the operating system, so a portable program
- should always specify the signedness.
-
- * Compiling with '-maltivec' adds keywords '__vector', 'vector',
- '__pixel', 'pixel', '__bool' and 'bool'. When compiling ISO C, the
- context-sensitive substitution of the keywords 'vector', 'pixel'
- and 'bool' is disabled. To use them, you must include
- '<altivec.h>' instead.
-
- * GCC allows using a 'typedef' name as the type specifier for a
- vector type.
-
- * For C, overloaded functions are implemented with macros so the
- following does not work:
-
- vec_add ((vector signed int){1, 2, 3, 4}, foo);
-
- Since 'vec_add' is a macro, the vector constant in the example is
- treated as four separate arguments. Wrap the entire argument in
- parentheses for this to work.
-
- _Note:_ Only the '<altivec.h>' interface is supported. Internally, GCC
-uses built-in functions to achieve the functionality in the
-aforementioned header file, but they are not supported and are subject
-to change without notice.
-
- The following interfaces are supported for the generic and specific
-AltiVec operations and the AltiVec predicates. In cases where there is
-a direct mapping between generic and specific operations, only the
-generic names are shown here, although the specific operations can also
-be used.
-
- Arguments that are documented as 'const int' require literal integral
-values within the range required for that operation.
-
- vector signed char vec_abs (vector signed char);
- vector signed short vec_abs (vector signed short);
- vector signed int vec_abs (vector signed int);
- vector float vec_abs (vector float);
-
- vector signed char vec_abss (vector signed char);
- vector signed short vec_abss (vector signed short);
- vector signed int vec_abss (vector signed int);
-
- vector signed char vec_add (vector bool char, vector signed char);
- vector signed char vec_add (vector signed char, vector bool char);
- vector signed char vec_add (vector signed char, vector signed char);
- vector unsigned char vec_add (vector bool char, vector unsigned char);
- vector unsigned char vec_add (vector unsigned char, vector bool char);
- vector unsigned char vec_add (vector unsigned char,
- vector unsigned char);
- vector signed short vec_add (vector bool short, vector signed short);
- vector signed short vec_add (vector signed short, vector bool short);
- vector signed short vec_add (vector signed short, vector signed short);
- vector unsigned short vec_add (vector bool short,
- vector unsigned short);
- vector unsigned short vec_add (vector unsigned short,
- vector bool short);
- vector unsigned short vec_add (vector unsigned short,
- vector unsigned short);
- vector signed int vec_add (vector bool int, vector signed int);
- vector signed int vec_add (vector signed int, vector bool int);
- vector signed int vec_add (vector signed int, vector signed int);
- vector unsigned int vec_add (vector bool int, vector unsigned int);
- vector unsigned int vec_add (vector unsigned int, vector bool int);
- vector unsigned int vec_add (vector unsigned int, vector unsigned int);
- vector float vec_add (vector float, vector float);
-
- vector float vec_vaddfp (vector float, vector float);
-
- vector signed int vec_vadduwm (vector bool int, vector signed int);
- vector signed int vec_vadduwm (vector signed int, vector bool int);
- vector signed int vec_vadduwm (vector signed int, vector signed int);
- vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
- vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
- vector unsigned int vec_vadduwm (vector unsigned int,
- vector unsigned int);
-
- vector signed short vec_vadduhm (vector bool short,
- vector signed short);
- vector signed short vec_vadduhm (vector signed short,
- vector bool short);
- vector signed short vec_vadduhm (vector signed short,
- vector signed short);
- vector unsigned short vec_vadduhm (vector bool short,
- vector unsigned short);
- vector unsigned short vec_vadduhm (vector unsigned short,
- vector bool short);
- vector unsigned short vec_vadduhm (vector unsigned short,
- vector unsigned short);
-
- vector signed char vec_vaddubm (vector bool char, vector signed char);
- vector signed char vec_vaddubm (vector signed char, vector bool char);
- vector signed char vec_vaddubm (vector signed char, vector signed char);
- vector unsigned char vec_vaddubm (vector bool char,
- vector unsigned char);
- vector unsigned char vec_vaddubm (vector unsigned char,
- vector bool char);
- vector unsigned char vec_vaddubm (vector unsigned char,
- vector unsigned char);
-
- vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
-
- vector unsigned char vec_adds (vector bool char, vector unsigned char);
- vector unsigned char vec_adds (vector unsigned char, vector bool char);
- vector unsigned char vec_adds (vector unsigned char,
- vector unsigned char);
- vector signed char vec_adds (vector bool char, vector signed char);
- vector signed char vec_adds (vector signed char, vector bool char);
- vector signed char vec_adds (vector signed char, vector signed char);
- vector unsigned short vec_adds (vector bool short,
- vector unsigned short);
- vector unsigned short vec_adds (vector unsigned short,
- vector bool short);
- vector unsigned short vec_adds (vector unsigned short,
- vector unsigned short);
- vector signed short vec_adds (vector bool short, vector signed short);
- vector signed short vec_adds (vector signed short, vector bool short);
- vector signed short vec_adds (vector signed short, vector signed short);
- vector unsigned int vec_adds (vector bool int, vector unsigned int);
- vector unsigned int vec_adds (vector unsigned int, vector bool int);
- vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
- vector signed int vec_adds (vector bool int, vector signed int);
- vector signed int vec_adds (vector signed int, vector bool int);
- vector signed int vec_adds (vector signed int, vector signed int);
-
- vector signed int vec_vaddsws (vector bool int, vector signed int);
- vector signed int vec_vaddsws (vector signed int, vector bool int);
- vector signed int vec_vaddsws (vector signed int, vector signed int);
-
- vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
- vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
- vector unsigned int vec_vadduws (vector unsigned int,
- vector unsigned int);
-
- vector signed short vec_vaddshs (vector bool short,
- vector signed short);
- vector signed short vec_vaddshs (vector signed short,
- vector bool short);
- vector signed short vec_vaddshs (vector signed short,
- vector signed short);
-
- vector unsigned short vec_vadduhs (vector bool short,
- vector unsigned short);
- vector unsigned short vec_vadduhs (vector unsigned short,
- vector bool short);
- vector unsigned short vec_vadduhs (vector unsigned short,
- vector unsigned short);
-
- vector signed char vec_vaddsbs (vector bool char, vector signed char);
- vector signed char vec_vaddsbs (vector signed char, vector bool char);
- vector signed char vec_vaddsbs (vector signed char, vector signed char);
-
- vector unsigned char vec_vaddubs (vector bool char,
- vector unsigned char);
- vector unsigned char vec_vaddubs (vector unsigned char,
- vector bool char);
- vector unsigned char vec_vaddubs (vector unsigned char,
- vector unsigned char);
-
- vector float vec_and (vector float, vector float);
- vector float vec_and (vector float, vector bool int);
- vector float vec_and (vector bool int, vector float);
- vector bool int vec_and (vector bool int, vector bool int);
- vector signed int vec_and (vector bool int, vector signed int);
- vector signed int vec_and (vector signed int, vector bool int);
- vector signed int vec_and (vector signed int, vector signed int);
- vector unsigned int vec_and (vector bool int, vector unsigned int);
- vector unsigned int vec_and (vector unsigned int, vector bool int);
- vector unsigned int vec_and (vector unsigned int, vector unsigned int);
- vector bool short vec_and (vector bool short, vector bool short);
- vector signed short vec_and (vector bool short, vector signed short);
- vector signed short vec_and (vector signed short, vector bool short);
- vector signed short vec_and (vector signed short, vector signed short);
- vector unsigned short vec_and (vector bool short,
- vector unsigned short);
- vector unsigned short vec_and (vector unsigned short,
- vector bool short);
- vector unsigned short vec_and (vector unsigned short,
- vector unsigned short);
- vector signed char vec_and (vector bool char, vector signed char);
- vector bool char vec_and (vector bool char, vector bool char);
- vector signed char vec_and (vector signed char, vector bool char);
- vector signed char vec_and (vector signed char, vector signed char);
- vector unsigned char vec_and (vector bool char, vector unsigned char);
- vector unsigned char vec_and (vector unsigned char, vector bool char);
- vector unsigned char vec_and (vector unsigned char,
- vector unsigned char);
-
- vector float vec_andc (vector float, vector float);
- vector float vec_andc (vector float, vector bool int);
- vector float vec_andc (vector bool int, vector float);
- vector bool int vec_andc (vector bool int, vector bool int);
- vector signed int vec_andc (vector bool int, vector signed int);
- vector signed int vec_andc (vector signed int, vector bool int);
- vector signed int vec_andc (vector signed int, vector signed int);
- vector unsigned int vec_andc (vector bool int, vector unsigned int);
- vector unsigned int vec_andc (vector unsigned int, vector bool int);
- vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
- vector bool short vec_andc (vector bool short, vector bool short);
- vector signed short vec_andc (vector bool short, vector signed short);
- vector signed short vec_andc (vector signed short, vector bool short);
- vector signed short vec_andc (vector signed short, vector signed short);
- vector unsigned short vec_andc (vector bool short,
- vector unsigned short);
- vector unsigned short vec_andc (vector unsigned short,
- vector bool short);
- vector unsigned short vec_andc (vector unsigned short,
- vector unsigned short);
- vector signed char vec_andc (vector bool char, vector signed char);
- vector bool char vec_andc (vector bool char, vector bool char);
- vector signed char vec_andc (vector signed char, vector bool char);
- vector signed char vec_andc (vector signed char, vector signed char);
- vector unsigned char vec_andc (vector bool char, vector unsigned char);
- vector unsigned char vec_andc (vector unsigned char, vector bool char);
- vector unsigned char vec_andc (vector unsigned char,
- vector unsigned char);
-
- vector unsigned char vec_avg (vector unsigned char,
- vector unsigned char);
- vector signed char vec_avg (vector signed char, vector signed char);
- vector unsigned short vec_avg (vector unsigned short,
- vector unsigned short);
- vector signed short vec_avg (vector signed short, vector signed short);
- vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
- vector signed int vec_avg (vector signed int, vector signed int);
-
- vector signed int vec_vavgsw (vector signed int, vector signed int);
-
- vector unsigned int vec_vavguw (vector unsigned int,
- vector unsigned int);
-
- vector signed short vec_vavgsh (vector signed short,
- vector signed short);
-
- vector unsigned short vec_vavguh (vector unsigned short,
- vector unsigned short);
-
- vector signed char vec_vavgsb (vector signed char, vector signed char);
-
- vector unsigned char vec_vavgub (vector unsigned char,
- vector unsigned char);
-
- vector float vec_copysign (vector float);
-
- vector float vec_ceil (vector float);
-
- vector signed int vec_cmpb (vector float, vector float);
-
- vector bool char vec_cmpeq (vector signed char, vector signed char);
- vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
- vector bool short vec_cmpeq (vector signed short, vector signed short);
- vector bool short vec_cmpeq (vector unsigned short,
- vector unsigned short);
- vector bool int vec_cmpeq (vector signed int, vector signed int);
- vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
- vector bool int vec_cmpeq (vector float, vector float);
-
- vector bool int vec_vcmpeqfp (vector float, vector float);
-
- vector bool int vec_vcmpequw (vector signed int, vector signed int);
- vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
-
- vector bool short vec_vcmpequh (vector signed short,
- vector signed short);
- vector bool short vec_vcmpequh (vector unsigned short,
- vector unsigned short);
-
- vector bool char vec_vcmpequb (vector signed char, vector signed char);
- vector bool char vec_vcmpequb (vector unsigned char,
- vector unsigned char);
-
- vector bool int vec_cmpge (vector float, vector float);
-
- vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
- vector bool char vec_cmpgt (vector signed char, vector signed char);
- vector bool short vec_cmpgt (vector unsigned short,
- vector unsigned short);
- vector bool short vec_cmpgt (vector signed short, vector signed short);
- vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
- vector bool int vec_cmpgt (vector signed int, vector signed int);
- vector bool int vec_cmpgt (vector float, vector float);
-
- vector bool int vec_vcmpgtfp (vector float, vector float);
-
- vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
-
- vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
-
- vector bool short vec_vcmpgtsh (vector signed short,
- vector signed short);
-
- vector bool short vec_vcmpgtuh (vector unsigned short,
- vector unsigned short);
-
- vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
-
- vector bool char vec_vcmpgtub (vector unsigned char,
- vector unsigned char);
-
- vector bool int vec_cmple (vector float, vector float);
-
- vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
- vector bool char vec_cmplt (vector signed char, vector signed char);
- vector bool short vec_cmplt (vector unsigned short,
- vector unsigned short);
- vector bool short vec_cmplt (vector signed short, vector signed short);
- vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
- vector bool int vec_cmplt (vector signed int, vector signed int);
- vector bool int vec_cmplt (vector float, vector float);
-
- vector float vec_ctf (vector unsigned int, const int);
- vector float vec_ctf (vector signed int, const int);
-
- vector float vec_vcfsx (vector signed int, const int);
-
- vector float vec_vcfux (vector unsigned int, const int);
-
- vector signed int vec_cts (vector float, const int);
-
- vector unsigned int vec_ctu (vector float, const int);
-
- void vec_dss (const int);
-
- void vec_dssall (void);
-
- void vec_dst (const vector unsigned char *, int, const int);
- void vec_dst (const vector signed char *, int, const int);
- void vec_dst (const vector bool char *, int, const int);
- void vec_dst (const vector unsigned short *, int, const int);
- void vec_dst (const vector signed short *, int, const int);
- void vec_dst (const vector bool short *, int, const int);
- void vec_dst (const vector pixel *, int, const int);
- void vec_dst (const vector unsigned int *, int, const int);
- void vec_dst (const vector signed int *, int, const int);
- void vec_dst (const vector bool int *, int, const int);
- void vec_dst (const vector float *, int, const int);
- void vec_dst (const unsigned char *, int, const int);
- void vec_dst (const signed char *, int, const int);
- void vec_dst (const unsigned short *, int, const int);
- void vec_dst (const short *, int, const int);
- void vec_dst (const unsigned int *, int, const int);
- void vec_dst (const int *, int, const int);
- void vec_dst (const unsigned long *, int, const int);
- void vec_dst (const long *, int, const int);
- void vec_dst (const float *, int, const int);
-
- void vec_dstst (const vector unsigned char *, int, const int);
- void vec_dstst (const vector signed char *, int, const int);
- void vec_dstst (const vector bool char *, int, const int);
- void vec_dstst (const vector unsigned short *, int, const int);
- void vec_dstst (const vector signed short *, int, const int);
- void vec_dstst (const vector bool short *, int, const int);
- void vec_dstst (const vector pixel *, int, const int);
- void vec_dstst (const vector unsigned int *, int, const int);
- void vec_dstst (const vector signed int *, int, const int);
- void vec_dstst (const vector bool int *, int, const int);
- void vec_dstst (const vector float *, int, const int);
- void vec_dstst (const unsigned char *, int, const int);
- void vec_dstst (const signed char *, int, const int);
- void vec_dstst (const unsigned short *, int, const int);
- void vec_dstst (const short *, int, const int);
- void vec_dstst (const unsigned int *, int, const int);
- void vec_dstst (const int *, int, const int);
- void vec_dstst (const unsigned long *, int, const int);
- void vec_dstst (const long *, int, const int);
- void vec_dstst (const float *, int, const int);
-
- void vec_dststt (const vector unsigned char *, int, const int);
- void vec_dststt (const vector signed char *, int, const int);
- void vec_dststt (const vector bool char *, int, const int);
- void vec_dststt (const vector unsigned short *, int, const int);
- void vec_dststt (const vector signed short *, int, const int);
- void vec_dststt (const vector bool short *, int, const int);
- void vec_dststt (const vector pixel *, int, const int);
- void vec_dststt (const vector unsigned int *, int, const int);
- void vec_dststt (const vector signed int *, int, const int);
- void vec_dststt (const vector bool int *, int, const int);
- void vec_dststt (const vector float *, int, const int);
- void vec_dststt (const unsigned char *, int, const int);
- void vec_dststt (const signed char *, int, const int);
- void vec_dststt (const unsigned short *, int, const int);
- void vec_dststt (const short *, int, const int);
- void vec_dststt (const unsigned int *, int, const int);
- void vec_dststt (const int *, int, const int);
- void vec_dststt (const unsigned long *, int, const int);
- void vec_dststt (const long *, int, const int);
- void vec_dststt (const float *, int, const int);
-
- void vec_dstt (const vector unsigned char *, int, const int);
- void vec_dstt (const vector signed char *, int, const int);
- void vec_dstt (const vector bool char *, int, const int);
- void vec_dstt (const vector unsigned short *, int, const int);
- void vec_dstt (const vector signed short *, int, const int);
- void vec_dstt (const vector bool short *, int, const int);
- void vec_dstt (const vector pixel *, int, const int);
- void vec_dstt (const vector unsigned int *, int, const int);
- void vec_dstt (const vector signed int *, int, const int);
- void vec_dstt (const vector bool int *, int, const int);
- void vec_dstt (const vector float *, int, const int);
- void vec_dstt (const unsigned char *, int, const int);
- void vec_dstt (const signed char *, int, const int);
- void vec_dstt (const unsigned short *, int, const int);
- void vec_dstt (const short *, int, const int);
- void vec_dstt (const unsigned int *, int, const int);
- void vec_dstt (const int *, int, const int);
- void vec_dstt (const unsigned long *, int, const int);
- void vec_dstt (const long *, int, const int);
- void vec_dstt (const float *, int, const int);
-
- vector float vec_expte (vector float);
-
- vector float vec_floor (vector float);
-
- vector float vec_ld (int, const vector float *);
- vector float vec_ld (int, const float *);
- vector bool int vec_ld (int, const vector bool int *);
- vector signed int vec_ld (int, const vector signed int *);
- vector signed int vec_ld (int, const int *);
- vector signed int vec_ld (int, const long *);
- vector unsigned int vec_ld (int, const vector unsigned int *);
- vector unsigned int vec_ld (int, const unsigned int *);
- vector unsigned int vec_ld (int, const unsigned long *);
- vector bool short vec_ld (int, const vector bool short *);
- vector pixel vec_ld (int, const vector pixel *);
- vector signed short vec_ld (int, const vector signed short *);
- vector signed short vec_ld (int, const short *);
- vector unsigned short vec_ld (int, const vector unsigned short *);
- vector unsigned short vec_ld (int, const unsigned short *);
- vector bool char vec_ld (int, const vector bool char *);
- vector signed char vec_ld (int, const vector signed char *);
- vector signed char vec_ld (int, const signed char *);
- vector unsigned char vec_ld (int, const vector unsigned char *);
- vector unsigned char vec_ld (int, const unsigned char *);
-
- vector signed char vec_lde (int, const signed char *);
- vector unsigned char vec_lde (int, const unsigned char *);
- vector signed short vec_lde (int, const short *);
- vector unsigned short vec_lde (int, const unsigned short *);
- vector float vec_lde (int, const float *);
- vector signed int vec_lde (int, const int *);
- vector unsigned int vec_lde (int, const unsigned int *);
- vector signed int vec_lde (int, const long *);
- vector unsigned int vec_lde (int, const unsigned long *);
-
- vector float vec_lvewx (int, float *);
- vector signed int vec_lvewx (int, int *);
- vector unsigned int vec_lvewx (int, unsigned int *);
- vector signed int vec_lvewx (int, long *);
- vector unsigned int vec_lvewx (int, unsigned long *);
-
- vector signed short vec_lvehx (int, short *);
- vector unsigned short vec_lvehx (int, unsigned short *);
-
- vector signed char vec_lvebx (int, char *);
- vector unsigned char vec_lvebx (int, unsigned char *);
-
- vector float vec_ldl (int, const vector float *);
- vector float vec_ldl (int, const float *);
- vector bool int vec_ldl (int, const vector bool int *);
- vector signed int vec_ldl (int, const vector signed int *);
- vector signed int vec_ldl (int, const int *);
- vector signed int vec_ldl (int, const long *);
- vector unsigned int vec_ldl (int, const vector unsigned int *);
- vector unsigned int vec_ldl (int, const unsigned int *);
- vector unsigned int vec_ldl (int, const unsigned long *);
- vector bool short vec_ldl (int, const vector bool short *);
- vector pixel vec_ldl (int, const vector pixel *);
- vector signed short vec_ldl (int, const vector signed short *);
- vector signed short vec_ldl (int, const short *);
- vector unsigned short vec_ldl (int, const vector unsigned short *);
- vector unsigned short vec_ldl (int, const unsigned short *);
- vector bool char vec_ldl (int, const vector bool char *);
- vector signed char vec_ldl (int, const vector signed char *);
- vector signed char vec_ldl (int, const signed char *);
- vector unsigned char vec_ldl (int, const vector unsigned char *);
- vector unsigned char vec_ldl (int, const unsigned char *);
-
- vector float vec_loge (vector float);
-
- vector unsigned char vec_lvsl (int, const volatile unsigned char *);
- vector unsigned char vec_lvsl (int, const volatile signed char *);
- vector unsigned char vec_lvsl (int, const volatile unsigned short *);
- vector unsigned char vec_lvsl (int, const volatile short *);
- vector unsigned char vec_lvsl (int, const volatile unsigned int *);
- vector unsigned char vec_lvsl (int, const volatile int *);
- vector unsigned char vec_lvsl (int, const volatile unsigned long *);
- vector unsigned char vec_lvsl (int, const volatile long *);
- vector unsigned char vec_lvsl (int, const volatile float *);
-
- vector unsigned char vec_lvsr (int, const volatile unsigned char *);
- vector unsigned char vec_lvsr (int, const volatile signed char *);
- vector unsigned char vec_lvsr (int, const volatile unsigned short *);
- vector unsigned char vec_lvsr (int, const volatile short *);
- vector unsigned char vec_lvsr (int, const volatile unsigned int *);
- vector unsigned char vec_lvsr (int, const volatile int *);
- vector unsigned char vec_lvsr (int, const volatile unsigned long *);
- vector unsigned char vec_lvsr (int, const volatile long *);
- vector unsigned char vec_lvsr (int, const volatile float *);
-
- vector float vec_madd (vector float, vector float, vector float);
-
- vector signed short vec_madds (vector signed short,
- vector signed short,
- vector signed short);
-
- vector unsigned char vec_max (vector bool char, vector unsigned char);
- vector unsigned char vec_max (vector unsigned char, vector bool char);
- vector unsigned char vec_max (vector unsigned char,
- vector unsigned char);
- vector signed char vec_max (vector bool char, vector signed char);
- vector signed char vec_max (vector signed char, vector bool char);
- vector signed char vec_max (vector signed char, vector signed char);
- vector unsigned short vec_max (vector bool short,
- vector unsigned short);
- vector unsigned short vec_max (vector unsigned short,
- vector bool short);
- vector unsigned short vec_max (vector unsigned short,
- vector unsigned short);
- vector signed short vec_max (vector bool short, vector signed short);
- vector signed short vec_max (vector signed short, vector bool short);
- vector signed short vec_max (vector signed short, vector signed short);
- vector unsigned int vec_max (vector bool int, vector unsigned int);
- vector unsigned int vec_max (vector unsigned int, vector bool int);
- vector unsigned int vec_max (vector unsigned int, vector unsigned int);
- vector signed int vec_max (vector bool int, vector signed int);
- vector signed int vec_max (vector signed int, vector bool int);
- vector signed int vec_max (vector signed int, vector signed int);
- vector float vec_max (vector float, vector float);
-
- vector float vec_vmaxfp (vector float, vector float);
-
- vector signed int vec_vmaxsw (vector bool int, vector signed int);
- vector signed int vec_vmaxsw (vector signed int, vector bool int);
- vector signed int vec_vmaxsw (vector signed int, vector signed int);
-
- vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
- vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
- vector unsigned int vec_vmaxuw (vector unsigned int,
- vector unsigned int);
-
- vector signed short vec_vmaxsh (vector bool short, vector signed short);
- vector signed short vec_vmaxsh (vector signed short, vector bool short);
- vector signed short vec_vmaxsh (vector signed short,
- vector signed short);
-
- vector unsigned short vec_vmaxuh (vector bool short,
- vector unsigned short);
- vector unsigned short vec_vmaxuh (vector unsigned short,
- vector bool short);
- vector unsigned short vec_vmaxuh (vector unsigned short,
- vector unsigned short);
-
- vector signed char vec_vmaxsb (vector bool char, vector signed char);
- vector signed char vec_vmaxsb (vector signed char, vector bool char);
- vector signed char vec_vmaxsb (vector signed char, vector signed char);
-
- vector unsigned char vec_vmaxub (vector bool char,
- vector unsigned char);
- vector unsigned char vec_vmaxub (vector unsigned char,
- vector bool char);
- vector unsigned char vec_vmaxub (vector unsigned char,
- vector unsigned char);
-
- vector bool char vec_mergeh (vector bool char, vector bool char);
- vector signed char vec_mergeh (vector signed char, vector signed char);
- vector unsigned char vec_mergeh (vector unsigned char,
- vector unsigned char);
- vector bool short vec_mergeh (vector bool short, vector bool short);
- vector pixel vec_mergeh (vector pixel, vector pixel);
- vector signed short vec_mergeh (vector signed short,
- vector signed short);
- vector unsigned short vec_mergeh (vector unsigned short,
- vector unsigned short);
- vector float vec_mergeh (vector float, vector float);
- vector bool int vec_mergeh (vector bool int, vector bool int);
- vector signed int vec_mergeh (vector signed int, vector signed int);
- vector unsigned int vec_mergeh (vector unsigned int,
- vector unsigned int);
-
- vector float vec_vmrghw (vector float, vector float);
- vector bool int vec_vmrghw (vector bool int, vector bool int);
- vector signed int vec_vmrghw (vector signed int, vector signed int);
- vector unsigned int vec_vmrghw (vector unsigned int,
- vector unsigned int);
-
- vector bool short vec_vmrghh (vector bool short, vector bool short);
- vector signed short vec_vmrghh (vector signed short,
- vector signed short);
- vector unsigned short vec_vmrghh (vector unsigned short,
- vector unsigned short);
- vector pixel vec_vmrghh (vector pixel, vector pixel);
-
- vector bool char vec_vmrghb (vector bool char, vector bool char);
- vector signed char vec_vmrghb (vector signed char, vector signed char);
- vector unsigned char vec_vmrghb (vector unsigned char,
- vector unsigned char);
-
- vector bool char vec_mergel (vector bool char, vector bool char);
- vector signed char vec_mergel (vector signed char, vector signed char);
- vector unsigned char vec_mergel (vector unsigned char,
- vector unsigned char);
- vector bool short vec_mergel (vector bool short, vector bool short);
- vector pixel vec_mergel (vector pixel, vector pixel);
- vector signed short vec_mergel (vector signed short,
- vector signed short);
- vector unsigned short vec_mergel (vector unsigned short,
- vector unsigned short);
- vector float vec_mergel (vector float, vector float);
- vector bool int vec_mergel (vector bool int, vector bool int);
- vector signed int vec_mergel (vector signed int, vector signed int);
- vector unsigned int vec_mergel (vector unsigned int,
- vector unsigned int);
-
- vector float vec_vmrglw (vector float, vector float);
- vector signed int vec_vmrglw (vector signed int, vector signed int);
- vector unsigned int vec_vmrglw (vector unsigned int,
- vector unsigned int);
- vector bool int vec_vmrglw (vector bool int, vector bool int);
-
- vector bool short vec_vmrglh (vector bool short, vector bool short);
- vector signed short vec_vmrglh (vector signed short,
- vector signed short);
- vector unsigned short vec_vmrglh (vector unsigned short,
- vector unsigned short);
- vector pixel vec_vmrglh (vector pixel, vector pixel);
-
- vector bool char vec_vmrglb (vector bool char, vector bool char);
- vector signed char vec_vmrglb (vector signed char, vector signed char);
- vector unsigned char vec_vmrglb (vector unsigned char,
- vector unsigned char);
-
- vector unsigned short vec_mfvscr (void);
-
- vector unsigned char vec_min (vector bool char, vector unsigned char);
- vector unsigned char vec_min (vector unsigned char, vector bool char);
- vector unsigned char vec_min (vector unsigned char,
- vector unsigned char);
- vector signed char vec_min (vector bool char, vector signed char);
- vector signed char vec_min (vector signed char, vector bool char);
- vector signed char vec_min (vector signed char, vector signed char);
- vector unsigned short vec_min (vector bool short,
- vector unsigned short);
- vector unsigned short vec_min (vector unsigned short,
- vector bool short);
- vector unsigned short vec_min (vector unsigned short,
- vector unsigned short);
- vector signed short vec_min (vector bool short, vector signed short);
- vector signed short vec_min (vector signed short, vector bool short);
- vector signed short vec_min (vector signed short, vector signed short);
- vector unsigned int vec_min (vector bool int, vector unsigned int);
- vector unsigned int vec_min (vector unsigned int, vector bool int);
- vector unsigned int vec_min (vector unsigned int, vector unsigned int);
- vector signed int vec_min (vector bool int, vector signed int);
- vector signed int vec_min (vector signed int, vector bool int);
- vector signed int vec_min (vector signed int, vector signed int);
- vector float vec_min (vector float, vector float);
-
- vector float vec_vminfp (vector float, vector float);
-
- vector signed int vec_vminsw (vector bool int, vector signed int);
- vector signed int vec_vminsw (vector signed int, vector bool int);
- vector signed int vec_vminsw (vector signed int, vector signed int);
-
- vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
- vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
- vector unsigned int vec_vminuw (vector unsigned int,
- vector unsigned int);
-
- vector signed short vec_vminsh (vector bool short, vector signed short);
- vector signed short vec_vminsh (vector signed short, vector bool short);
- vector signed short vec_vminsh (vector signed short,
- vector signed short);
-
- vector unsigned short vec_vminuh (vector bool short,
- vector unsigned short);
- vector unsigned short vec_vminuh (vector unsigned short,
- vector bool short);
- vector unsigned short vec_vminuh (vector unsigned short,
- vector unsigned short);
-
- vector signed char vec_vminsb (vector bool char, vector signed char);
- vector signed char vec_vminsb (vector signed char, vector bool char);
- vector signed char vec_vminsb (vector signed char, vector signed char);
-
- vector unsigned char vec_vminub (vector bool char,
- vector unsigned char);
- vector unsigned char vec_vminub (vector unsigned char,
- vector bool char);
- vector unsigned char vec_vminub (vector unsigned char,
- vector unsigned char);
-
- vector signed short vec_mladd (vector signed short,
- vector signed short,
- vector signed short);
- vector signed short vec_mladd (vector signed short,
- vector unsigned short,
- vector unsigned short);
- vector signed short vec_mladd (vector unsigned short,
- vector signed short,
- vector signed short);
- vector unsigned short vec_mladd (vector unsigned short,
- vector unsigned short,
- vector unsigned short);
-
- vector signed short vec_mradds (vector signed short,
- vector signed short,
- vector signed short);
-
- vector unsigned int vec_msum (vector unsigned char,
- vector unsigned char,
- vector unsigned int);
- vector signed int vec_msum (vector signed char,
- vector unsigned char,
- vector signed int);
- vector unsigned int vec_msum (vector unsigned short,
- vector unsigned short,
- vector unsigned int);
- vector signed int vec_msum (vector signed short,
- vector signed short,
- vector signed int);
-
- vector signed int vec_vmsumshm (vector signed short,
- vector signed short,
- vector signed int);
-
- vector unsigned int vec_vmsumuhm (vector unsigned short,
- vector unsigned short,
- vector unsigned int);
-
- vector signed int vec_vmsummbm (vector signed char,
- vector unsigned char,
- vector signed int);
-
- vector unsigned int vec_vmsumubm (vector unsigned char,
- vector unsigned char,
- vector unsigned int);
-
- vector unsigned int vec_msums (vector unsigned short,
- vector unsigned short,
- vector unsigned int);
- vector signed int vec_msums (vector signed short,
- vector signed short,
- vector signed int);
-
- vector signed int vec_vmsumshs (vector signed short,
- vector signed short,
- vector signed int);
-
- vector unsigned int vec_vmsumuhs (vector unsigned short,
- vector unsigned short,
- vector unsigned int);
-
- void vec_mtvscr (vector signed int);
- void vec_mtvscr (vector unsigned int);
- void vec_mtvscr (vector bool int);
- void vec_mtvscr (vector signed short);
- void vec_mtvscr (vector unsigned short);
- void vec_mtvscr (vector bool short);
- void vec_mtvscr (vector pixel);
- void vec_mtvscr (vector signed char);
- void vec_mtvscr (vector unsigned char);
- void vec_mtvscr (vector bool char);
-
- vector unsigned short vec_mule (vector unsigned char,
- vector unsigned char);
- vector signed short vec_mule (vector signed char,
- vector signed char);
- vector unsigned int vec_mule (vector unsigned short,
- vector unsigned short);
- vector signed int vec_mule (vector signed short, vector signed short);
-
- vector signed int vec_vmulesh (vector signed short,
- vector signed short);
-
- vector unsigned int vec_vmuleuh (vector unsigned short,
- vector unsigned short);
-
- vector signed short vec_vmulesb (vector signed char,
- vector signed char);
-
- vector unsigned short vec_vmuleub (vector unsigned char,
- vector unsigned char);
-
- vector unsigned short vec_mulo (vector unsigned char,
- vector unsigned char);
- vector signed short vec_mulo (vector signed char, vector signed char);
- vector unsigned int vec_mulo (vector unsigned short,
- vector unsigned short);
- vector signed int vec_mulo (vector signed short, vector signed short);
-
- vector signed int vec_vmulosh (vector signed short,
- vector signed short);
-
- vector unsigned int vec_vmulouh (vector unsigned short,
- vector unsigned short);
-
- vector signed short vec_vmulosb (vector signed char,
- vector signed char);
-
- vector unsigned short vec_vmuloub (vector unsigned char,
- vector unsigned char);
-
- vector float vec_nmsub (vector float, vector float, vector float);
-
- vector float vec_nor (vector float, vector float);
- vector signed int vec_nor (vector signed int, vector signed int);
- vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
- vector bool int vec_nor (vector bool int, vector bool int);
- vector signed short vec_nor (vector signed short, vector signed short);
- vector unsigned short vec_nor (vector unsigned short,
- vector unsigned short);
- vector bool short vec_nor (vector bool short, vector bool short);
- vector signed char vec_nor (vector signed char, vector signed char);
- vector unsigned char vec_nor (vector unsigned char,
- vector unsigned char);
- vector bool char vec_nor (vector bool char, vector bool char);
-
- vector float vec_or (vector float, vector float);
- vector float vec_or (vector float, vector bool int);
- vector float vec_or (vector bool int, vector float);
- vector bool int vec_or (vector bool int, vector bool int);
- vector signed int vec_or (vector bool int, vector signed int);
- vector signed int vec_or (vector signed int, vector bool int);
- vector signed int vec_or (vector signed int, vector signed int);
- vector unsigned int vec_or (vector bool int, vector unsigned int);
- vector unsigned int vec_or (vector unsigned int, vector bool int);
- vector unsigned int vec_or (vector unsigned int, vector unsigned int);
- vector bool short vec_or (vector bool short, vector bool short);
- vector signed short vec_or (vector bool short, vector signed short);
- vector signed short vec_or (vector signed short, vector bool short);
- vector signed short vec_or (vector signed short, vector signed short);
- vector unsigned short vec_or (vector bool short, vector unsigned short);
- vector unsigned short vec_or (vector unsigned short, vector bool short);
- vector unsigned short vec_or (vector unsigned short,
- vector unsigned short);
- vector signed char vec_or (vector bool char, vector signed char);
- vector bool char vec_or (vector bool char, vector bool char);
- vector signed char vec_or (vector signed char, vector bool char);
- vector signed char vec_or (vector signed char, vector signed char);
- vector unsigned char vec_or (vector bool char, vector unsigned char);
- vector unsigned char vec_or (vector unsigned char, vector bool char);
- vector unsigned char vec_or (vector unsigned char,
- vector unsigned char);
-
- vector signed char vec_pack (vector signed short, vector signed short);
- vector unsigned char vec_pack (vector unsigned short,
- vector unsigned short);
- vector bool char vec_pack (vector bool short, vector bool short);
- vector signed short vec_pack (vector signed int, vector signed int);
- vector unsigned short vec_pack (vector unsigned int,
- vector unsigned int);
- vector bool short vec_pack (vector bool int, vector bool int);
-
- vector bool short vec_vpkuwum (vector bool int, vector bool int);
- vector signed short vec_vpkuwum (vector signed int, vector signed int);
- vector unsigned short vec_vpkuwum (vector unsigned int,
- vector unsigned int);
-
- vector bool char vec_vpkuhum (vector bool short, vector bool short);
- vector signed char vec_vpkuhum (vector signed short,
- vector signed short);
- vector unsigned char vec_vpkuhum (vector unsigned short,
- vector unsigned short);
-
- vector pixel vec_packpx (vector unsigned int, vector unsigned int);
-
- vector unsigned char vec_packs (vector unsigned short,
- vector unsigned short);
- vector signed char vec_packs (vector signed short, vector signed short);
- vector unsigned short vec_packs (vector unsigned int,
- vector unsigned int);
- vector signed short vec_packs (vector signed int, vector signed int);
-
- vector signed short vec_vpkswss (vector signed int, vector signed int);
-
- vector unsigned short vec_vpkuwus (vector unsigned int,
- vector unsigned int);
-
- vector signed char vec_vpkshss (vector signed short,
- vector signed short);
-
- vector unsigned char vec_vpkuhus (vector unsigned short,
- vector unsigned short);
-
- vector unsigned char vec_packsu (vector unsigned short,
- vector unsigned short);
- vector unsigned char vec_packsu (vector signed short,
- vector signed short);
- vector unsigned short vec_packsu (vector unsigned int,
- vector unsigned int);
- vector unsigned short vec_packsu (vector signed int, vector signed int);
-
- vector unsigned short vec_vpkswus (vector signed int,
- vector signed int);
-
- vector unsigned char vec_vpkshus (vector signed short,
- vector signed short);
-
- vector float vec_perm (vector float,
- vector float,
- vector unsigned char);
- vector signed int vec_perm (vector signed int,
- vector signed int,
- vector unsigned char);
- vector unsigned int vec_perm (vector unsigned int,
- vector unsigned int,
- vector unsigned char);
- vector bool int vec_perm (vector bool int,
- vector bool int,
- vector unsigned char);
- vector signed short vec_perm (vector signed short,
- vector signed short,
- vector unsigned char);
- vector unsigned short vec_perm (vector unsigned short,
- vector unsigned short,
- vector unsigned char);
- vector bool short vec_perm (vector bool short,
- vector bool short,
- vector unsigned char);
- vector pixel vec_perm (vector pixel,
- vector pixel,
- vector unsigned char);
- vector signed char vec_perm (vector signed char,
- vector signed char,
- vector unsigned char);
- vector unsigned char vec_perm (vector unsigned char,
- vector unsigned char,
- vector unsigned char);
- vector bool char vec_perm (vector bool char,
- vector bool char,
- vector unsigned char);
-
- vector float vec_re (vector float);
-
- vector signed char vec_rl (vector signed char,
- vector unsigned char);
- vector unsigned char vec_rl (vector unsigned char,
- vector unsigned char);
- vector signed short vec_rl (vector signed short, vector unsigned short);
- vector unsigned short vec_rl (vector unsigned short,
- vector unsigned short);
- vector signed int vec_rl (vector signed int, vector unsigned int);
- vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
-
- vector signed int vec_vrlw (vector signed int, vector unsigned int);
- vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
-
- vector signed short vec_vrlh (vector signed short,
- vector unsigned short);
- vector unsigned short vec_vrlh (vector unsigned short,
- vector unsigned short);
-
- vector signed char vec_vrlb (vector signed char, vector unsigned char);
- vector unsigned char vec_vrlb (vector unsigned char,
- vector unsigned char);
-
- vector float vec_round (vector float);
-
- vector float vec_recip (vector float, vector float);
-
- vector float vec_rsqrt (vector float);
-
- vector float vec_rsqrte (vector float);
-
- vector float vec_sel (vector float, vector float, vector bool int);
- vector float vec_sel (vector float, vector float, vector unsigned int);
- vector signed int vec_sel (vector signed int,
- vector signed int,
- vector bool int);
- vector signed int vec_sel (vector signed int,
- vector signed int,
- vector unsigned int);
- vector unsigned int vec_sel (vector unsigned int,
- vector unsigned int,
- vector bool int);
- vector unsigned int vec_sel (vector unsigned int,
- vector unsigned int,
- vector unsigned int);
- vector bool int vec_sel (vector bool int,
- vector bool int,
- vector bool int);
- vector bool int vec_sel (vector bool int,
- vector bool int,
- vector unsigned int);
- vector signed short vec_sel (vector signed short,
- vector signed short,
- vector bool short);
- vector signed short vec_sel (vector signed short,
- vector signed short,
- vector unsigned short);
- vector unsigned short vec_sel (vector unsigned short,
- vector unsigned short,
- vector bool short);
- vector unsigned short vec_sel (vector unsigned short,
- vector unsigned short,
- vector unsigned short);
- vector bool short vec_sel (vector bool short,
- vector bool short,
- vector bool short);
- vector bool short vec_sel (vector bool short,
- vector bool short,
- vector unsigned short);
- vector signed char vec_sel (vector signed char,
- vector signed char,
- vector bool char);
- vector signed char vec_sel (vector signed char,
- vector signed char,
- vector unsigned char);
- vector unsigned char vec_sel (vector unsigned char,
- vector unsigned char,
- vector bool char);
- vector unsigned char vec_sel (vector unsigned char,
- vector unsigned char,
- vector unsigned char);
- vector bool char vec_sel (vector bool char,
- vector bool char,
- vector bool char);
- vector bool char vec_sel (vector bool char,
- vector bool char,
- vector unsigned char);
-
- vector signed char vec_sl (vector signed char,
- vector unsigned char);
- vector unsigned char vec_sl (vector unsigned char,
- vector unsigned char);
- vector signed short vec_sl (vector signed short, vector unsigned short);
- vector unsigned short vec_sl (vector unsigned short,
- vector unsigned short);
- vector signed int vec_sl (vector signed int, vector unsigned int);
- vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
-
- vector signed int vec_vslw (vector signed int, vector unsigned int);
- vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
-
- vector signed short vec_vslh (vector signed short,
- vector unsigned short);
- vector unsigned short vec_vslh (vector unsigned short,
- vector unsigned short);
-
- vector signed char vec_vslb (vector signed char, vector unsigned char);
- vector unsigned char vec_vslb (vector unsigned char,
- vector unsigned char);
-
- vector float vec_sld (vector float, vector float, const int);
- vector signed int vec_sld (vector signed int,
- vector signed int,
- const int);
- vector unsigned int vec_sld (vector unsigned int,
- vector unsigned int,
- const int);
- vector bool int vec_sld (vector bool int,
- vector bool int,
- const int);
- vector signed short vec_sld (vector signed short,
- vector signed short,
- const int);
- vector unsigned short vec_sld (vector unsigned short,
- vector unsigned short,
- const int);
- vector bool short vec_sld (vector bool short,
- vector bool short,
- const int);
- vector pixel vec_sld (vector pixel,
- vector pixel,
- const int);
- vector signed char vec_sld (vector signed char,
- vector signed char,
- const int);
- vector unsigned char vec_sld (vector unsigned char,
- vector unsigned char,
- const int);
- vector bool char vec_sld (vector bool char,
- vector bool char,
- const int);
-
- vector signed int vec_sll (vector signed int,
- vector unsigned int);
- vector signed int vec_sll (vector signed int,
- vector unsigned short);
- vector signed int vec_sll (vector signed int,
- vector unsigned char);
- vector unsigned int vec_sll (vector unsigned int,
- vector unsigned int);
- vector unsigned int vec_sll (vector unsigned int,
- vector unsigned short);
- vector unsigned int vec_sll (vector unsigned int,
- vector unsigned char);
- vector bool int vec_sll (vector bool int,
- vector unsigned int);
- vector bool int vec_sll (vector bool int,
- vector unsigned short);
- vector bool int vec_sll (vector bool int,
- vector unsigned char);
- vector signed short vec_sll (vector signed short,
- vector unsigned int);
- vector signed short vec_sll (vector signed short,
- vector unsigned short);
- vector signed short vec_sll (vector signed short,
- vector unsigned char);
- vector unsigned short vec_sll (vector unsigned short,
- vector unsigned int);
- vector unsigned short vec_sll (vector unsigned short,
- vector unsigned short);
- vector unsigned short vec_sll (vector unsigned short,
- vector unsigned char);
- vector bool short vec_sll (vector bool short, vector unsigned int);
- vector bool short vec_sll (vector bool short, vector unsigned short);
- vector bool short vec_sll (vector bool short, vector unsigned char);
- vector pixel vec_sll (vector pixel, vector unsigned int);
- vector pixel vec_sll (vector pixel, vector unsigned short);
- vector pixel vec_sll (vector pixel, vector unsigned char);
- vector signed char vec_sll (vector signed char, vector unsigned int);
- vector signed char vec_sll (vector signed char, vector unsigned short);
- vector signed char vec_sll (vector signed char, vector unsigned char);
- vector unsigned char vec_sll (vector unsigned char,
- vector unsigned int);
- vector unsigned char vec_sll (vector unsigned char,
- vector unsigned short);
- vector unsigned char vec_sll (vector unsigned char,
- vector unsigned char);
- vector bool char vec_sll (vector bool char, vector unsigned int);
- vector bool char vec_sll (vector bool char, vector unsigned short);
- vector bool char vec_sll (vector bool char, vector unsigned char);
-
- vector float vec_slo (vector float, vector signed char);
- vector float vec_slo (vector float, vector unsigned char);
- vector signed int vec_slo (vector signed int, vector signed char);
- vector signed int vec_slo (vector signed int, vector unsigned char);
- vector unsigned int vec_slo (vector unsigned int, vector signed char);
- vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
- vector signed short vec_slo (vector signed short, vector signed char);
- vector signed short vec_slo (vector signed short, vector unsigned char);
- vector unsigned short vec_slo (vector unsigned short,
- vector signed char);
- vector unsigned short vec_slo (vector unsigned short,
- vector unsigned char);
- vector pixel vec_slo (vector pixel, vector signed char);
- vector pixel vec_slo (vector pixel, vector unsigned char);
- vector signed char vec_slo (vector signed char, vector signed char);
- vector signed char vec_slo (vector signed char, vector unsigned char);
- vector unsigned char vec_slo (vector unsigned char, vector signed char);
- vector unsigned char vec_slo (vector unsigned char,
- vector unsigned char);
-
- vector signed char vec_splat (vector signed char, const int);
- vector unsigned char vec_splat (vector unsigned char, const int);
- vector bool char vec_splat (vector bool char, const int);
- vector signed short vec_splat (vector signed short, const int);
- vector unsigned short vec_splat (vector unsigned short, const int);
- vector bool short vec_splat (vector bool short, const int);
- vector pixel vec_splat (vector pixel, const int);
- vector float vec_splat (vector float, const int);
- vector signed int vec_splat (vector signed int, const int);
- vector unsigned int vec_splat (vector unsigned int, const int);
- vector bool int vec_splat (vector bool int, const int);
-
- vector float vec_vspltw (vector float, const int);
- vector signed int vec_vspltw (vector signed int, const int);
- vector unsigned int vec_vspltw (vector unsigned int, const int);
- vector bool int vec_vspltw (vector bool int, const int);
-
- vector bool short vec_vsplth (vector bool short, const int);
- vector signed short vec_vsplth (vector signed short, const int);
- vector unsigned short vec_vsplth (vector unsigned short, const int);
- vector pixel vec_vsplth (vector pixel, const int);
-
- vector signed char vec_vspltb (vector signed char, const int);
- vector unsigned char vec_vspltb (vector unsigned char, const int);
- vector bool char vec_vspltb (vector bool char, const int);
-
- vector signed char vec_splat_s8 (const int);
-
- vector signed short vec_splat_s16 (const int);
-
- vector signed int vec_splat_s32 (const int);
-
- vector unsigned char vec_splat_u8 (const int);
-
- vector unsigned short vec_splat_u16 (const int);
-
- vector unsigned int vec_splat_u32 (const int);
-
- vector signed char vec_sr (vector signed char, vector unsigned char);
- vector unsigned char vec_sr (vector unsigned char,
- vector unsigned char);
- vector signed short vec_sr (vector signed short,
- vector unsigned short);
- vector unsigned short vec_sr (vector unsigned short,
- vector unsigned short);
- vector signed int vec_sr (vector signed int, vector unsigned int);
- vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
-
- vector signed int vec_vsrw (vector signed int, vector unsigned int);
- vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
-
- vector signed short vec_vsrh (vector signed short,
- vector unsigned short);
- vector unsigned short vec_vsrh (vector unsigned short,
- vector unsigned short);
-
- vector signed char vec_vsrb (vector signed char, vector unsigned char);
- vector unsigned char vec_vsrb (vector unsigned char,
- vector unsigned char);
-
- vector signed char vec_sra (vector signed char, vector unsigned char);
- vector unsigned char vec_sra (vector unsigned char,
- vector unsigned char);
- vector signed short vec_sra (vector signed short,
- vector unsigned short);
- vector unsigned short vec_sra (vector unsigned short,
- vector unsigned short);
- vector signed int vec_sra (vector signed int, vector unsigned int);
- vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
-
- vector signed int vec_vsraw (vector signed int, vector unsigned int);
- vector unsigned int vec_vsraw (vector unsigned int,
- vector unsigned int);
-
- vector signed short vec_vsrah (vector signed short,
- vector unsigned short);
- vector unsigned short vec_vsrah (vector unsigned short,
- vector unsigned short);
-
- vector signed char vec_vsrab (vector signed char, vector unsigned char);
- vector unsigned char vec_vsrab (vector unsigned char,
- vector unsigned char);
-
- vector signed int vec_srl (vector signed int, vector unsigned int);
- vector signed int vec_srl (vector signed int, vector unsigned short);
- vector signed int vec_srl (vector signed int, vector unsigned char);
- vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
- vector unsigned int vec_srl (vector unsigned int,
- vector unsigned short);
- vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
- vector bool int vec_srl (vector bool int, vector unsigned int);
- vector bool int vec_srl (vector bool int, vector unsigned short);
- vector bool int vec_srl (vector bool int, vector unsigned char);
- vector signed short vec_srl (vector signed short, vector unsigned int);
- vector signed short vec_srl (vector signed short,
- vector unsigned short);
- vector signed short vec_srl (vector signed short, vector unsigned char);
- vector unsigned short vec_srl (vector unsigned short,
- vector unsigned int);
- vector unsigned short vec_srl (vector unsigned short,
- vector unsigned short);
- vector unsigned short vec_srl (vector unsigned short,
- vector unsigned char);
- vector bool short vec_srl (vector bool short, vector unsigned int);
- vector bool short vec_srl (vector bool short, vector unsigned short);
- vector bool short vec_srl (vector bool short, vector unsigned char);
- vector pixel vec_srl (vector pixel, vector unsigned int);
- vector pixel vec_srl (vector pixel, vector unsigned short);
- vector pixel vec_srl (vector pixel, vector unsigned char);
- vector signed char vec_srl (vector signed char, vector unsigned int);
- vector signed char vec_srl (vector signed char, vector unsigned short);
- vector signed char vec_srl (vector signed char, vector unsigned char);
- vector unsigned char vec_srl (vector unsigned char,
- vector unsigned int);
- vector unsigned char vec_srl (vector unsigned char,
- vector unsigned short);
- vector unsigned char vec_srl (vector unsigned char,
- vector unsigned char);
- vector bool char vec_srl (vector bool char, vector unsigned int);
- vector bool char vec_srl (vector bool char, vector unsigned short);
- vector bool char vec_srl (vector bool char, vector unsigned char);
-
- vector float vec_sro (vector float, vector signed char);
- vector float vec_sro (vector float, vector unsigned char);
- vector signed int vec_sro (vector signed int, vector signed char);
- vector signed int vec_sro (vector signed int, vector unsigned char);
- vector unsigned int vec_sro (vector unsigned int, vector signed char);
- vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
- vector signed short vec_sro (vector signed short, vector signed char);
- vector signed short vec_sro (vector signed short, vector unsigned char);
- vector unsigned short vec_sro (vector unsigned short,
- vector signed char);
- vector unsigned short vec_sro (vector unsigned short,
- vector unsigned char);
- vector pixel vec_sro (vector pixel, vector signed char);
- vector pixel vec_sro (vector pixel, vector unsigned char);
- vector signed char vec_sro (vector signed char, vector signed char);
- vector signed char vec_sro (vector signed char, vector unsigned char);
- vector unsigned char vec_sro (vector unsigned char, vector signed char);
- vector unsigned char vec_sro (vector unsigned char,
- vector unsigned char);
-
- void vec_st (vector float, int, vector float *);
- void vec_st (vector float, int, float *);
- void vec_st (vector signed int, int, vector signed int *);
- void vec_st (vector signed int, int, int *);
- void vec_st (vector unsigned int, int, vector unsigned int *);
- void vec_st (vector unsigned int, int, unsigned int *);
- void vec_st (vector bool int, int, vector bool int *);
- void vec_st (vector bool int, int, unsigned int *);
- void vec_st (vector bool int, int, int *);
- void vec_st (vector signed short, int, vector signed short *);
- void vec_st (vector signed short, int, short *);
- void vec_st (vector unsigned short, int, vector unsigned short *);
- void vec_st (vector unsigned short, int, unsigned short *);
- void vec_st (vector bool short, int, vector bool short *);
- void vec_st (vector bool short, int, unsigned short *);
- void vec_st (vector pixel, int, vector pixel *);
- void vec_st (vector pixel, int, unsigned short *);
- void vec_st (vector pixel, int, short *);
- void vec_st (vector bool short, int, short *);
- void vec_st (vector signed char, int, vector signed char *);
- void vec_st (vector signed char, int, signed char *);
- void vec_st (vector unsigned char, int, vector unsigned char *);
- void vec_st (vector unsigned char, int, unsigned char *);
- void vec_st (vector bool char, int, vector bool char *);
- void vec_st (vector bool char, int, unsigned char *);
- void vec_st (vector bool char, int, signed char *);
-
- void vec_ste (vector signed char, int, signed char *);
- void vec_ste (vector unsigned char, int, unsigned char *);
- void vec_ste (vector bool char, int, signed char *);
- void vec_ste (vector bool char, int, unsigned char *);
- void vec_ste (vector signed short, int, short *);
- void vec_ste (vector unsigned short, int, unsigned short *);
- void vec_ste (vector bool short, int, short *);
- void vec_ste (vector bool short, int, unsigned short *);
- void vec_ste (vector pixel, int, short *);
- void vec_ste (vector pixel, int, unsigned short *);
- void vec_ste (vector float, int, float *);
- void vec_ste (vector signed int, int, int *);
- void vec_ste (vector unsigned int, int, unsigned int *);
- void vec_ste (vector bool int, int, int *);
- void vec_ste (vector bool int, int, unsigned int *);
-
- void vec_stvewx (vector float, int, float *);
- void vec_stvewx (vector signed int, int, int *);
- void vec_stvewx (vector unsigned int, int, unsigned int *);
- void vec_stvewx (vector bool int, int, int *);
- void vec_stvewx (vector bool int, int, unsigned int *);
-
- void vec_stvehx (vector signed short, int, short *);
- void vec_stvehx (vector unsigned short, int, unsigned short *);
- void vec_stvehx (vector bool short, int, short *);
- void vec_stvehx (vector bool short, int, unsigned short *);
- void vec_stvehx (vector pixel, int, short *);
- void vec_stvehx (vector pixel, int, unsigned short *);
-
- void vec_stvebx (vector signed char, int, signed char *);
- void vec_stvebx (vector unsigned char, int, unsigned char *);
- void vec_stvebx (vector bool char, int, signed char *);
- void vec_stvebx (vector bool char, int, unsigned char *);
-
- void vec_stl (vector float, int, vector float *);
- void vec_stl (vector float, int, float *);
- void vec_stl (vector signed int, int, vector signed int *);
- void vec_stl (vector signed int, int, int *);
- void vec_stl (vector unsigned int, int, vector unsigned int *);
- void vec_stl (vector unsigned int, int, unsigned int *);
- void vec_stl (vector bool int, int, vector bool int *);
- void vec_stl (vector bool int, int, unsigned int *);
- void vec_stl (vector bool int, int, int *);
- void vec_stl (vector signed short, int, vector signed short *);
- void vec_stl (vector signed short, int, short *);
- void vec_stl (vector unsigned short, int, vector unsigned short *);
- void vec_stl (vector unsigned short, int, unsigned short *);
- void vec_stl (vector bool short, int, vector bool short *);
- void vec_stl (vector bool short, int, unsigned short *);
- void vec_stl (vector bool short, int, short *);
- void vec_stl (vector pixel, int, vector pixel *);
- void vec_stl (vector pixel, int, unsigned short *);
- void vec_stl (vector pixel, int, short *);
- void vec_stl (vector signed char, int, vector signed char *);
- void vec_stl (vector signed char, int, signed char *);
- void vec_stl (vector unsigned char, int, vector unsigned char *);
- void vec_stl (vector unsigned char, int, unsigned char *);
- void vec_stl (vector bool char, int, vector bool char *);
- void vec_stl (vector bool char, int, unsigned char *);
- void vec_stl (vector bool char, int, signed char *);
-
- vector signed char vec_sub (vector bool char, vector signed char);
- vector signed char vec_sub (vector signed char, vector bool char);
- vector signed char vec_sub (vector signed char, vector signed char);
- vector unsigned char vec_sub (vector bool char, vector unsigned char);
- vector unsigned char vec_sub (vector unsigned char, vector bool char);
- vector unsigned char vec_sub (vector unsigned char,
- vector unsigned char);
- vector signed short vec_sub (vector bool short, vector signed short);
- vector signed short vec_sub (vector signed short, vector bool short);
- vector signed short vec_sub (vector signed short, vector signed short);
- vector unsigned short vec_sub (vector bool short,
- vector unsigned short);
- vector unsigned short vec_sub (vector unsigned short,
- vector bool short);
- vector unsigned short vec_sub (vector unsigned short,
- vector unsigned short);
- vector signed int vec_sub (vector bool int, vector signed int);
- vector signed int vec_sub (vector signed int, vector bool int);
- vector signed int vec_sub (vector signed int, vector signed int);
- vector unsigned int vec_sub (vector bool int, vector unsigned int);
- vector unsigned int vec_sub (vector unsigned int, vector bool int);
- vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
- vector float vec_sub (vector float, vector float);
-
- vector float vec_vsubfp (vector float, vector float);
-
- vector signed int vec_vsubuwm (vector bool int, vector signed int);
- vector signed int vec_vsubuwm (vector signed int, vector bool int);
- vector signed int vec_vsubuwm (vector signed int, vector signed int);
- vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
- vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
- vector unsigned int vec_vsubuwm (vector unsigned int,
- vector unsigned int);
-
- vector signed short vec_vsubuhm (vector bool short,
- vector signed short);
- vector signed short vec_vsubuhm (vector signed short,
- vector bool short);
- vector signed short vec_vsubuhm (vector signed short,
- vector signed short);
- vector unsigned short vec_vsubuhm (vector bool short,
- vector unsigned short);
- vector unsigned short vec_vsubuhm (vector unsigned short,
- vector bool short);
- vector unsigned short vec_vsubuhm (vector unsigned short,
- vector unsigned short);
-
- vector signed char vec_vsububm (vector bool char, vector signed char);
- vector signed char vec_vsububm (vector signed char, vector bool char);
- vector signed char vec_vsububm (vector signed char, vector signed char);
- vector unsigned char vec_vsububm (vector bool char,
- vector unsigned char);
- vector unsigned char vec_vsububm (vector unsigned char,
- vector bool char);
- vector unsigned char vec_vsububm (vector unsigned char,
- vector unsigned char);
-
- vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
-
- vector unsigned char vec_subs (vector bool char, vector unsigned char);
- vector unsigned char vec_subs (vector unsigned char, vector bool char);
- vector unsigned char vec_subs (vector unsigned char,
- vector unsigned char);
- vector signed char vec_subs (vector bool char, vector signed char);
- vector signed char vec_subs (vector signed char, vector bool char);
- vector signed char vec_subs (vector signed char, vector signed char);
- vector unsigned short vec_subs (vector bool short,
- vector unsigned short);
- vector unsigned short vec_subs (vector unsigned short,
- vector bool short);
- vector unsigned short vec_subs (vector unsigned short,
- vector unsigned short);
- vector signed short vec_subs (vector bool short, vector signed short);
- vector signed short vec_subs (vector signed short, vector bool short);
- vector signed short vec_subs (vector signed short, vector signed short);
- vector unsigned int vec_subs (vector bool int, vector unsigned int);
- vector unsigned int vec_subs (vector unsigned int, vector bool int);
- vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
- vector signed int vec_subs (vector bool int, vector signed int);
- vector signed int vec_subs (vector signed int, vector bool int);
- vector signed int vec_subs (vector signed int, vector signed int);
-
- vector signed int vec_vsubsws (vector bool int, vector signed int);
- vector signed int vec_vsubsws (vector signed int, vector bool int);
- vector signed int vec_vsubsws (vector signed int, vector signed int);
-
- vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
- vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
- vector unsigned int vec_vsubuws (vector unsigned int,
- vector unsigned int);
-
- vector signed short vec_vsubshs (vector bool short,
- vector signed short);
- vector signed short vec_vsubshs (vector signed short,
- vector bool short);
- vector signed short vec_vsubshs (vector signed short,
- vector signed short);
-
- vector unsigned short vec_vsubuhs (vector bool short,
- vector unsigned short);
- vector unsigned short vec_vsubuhs (vector unsigned short,
- vector bool short);
- vector unsigned short vec_vsubuhs (vector unsigned short,
- vector unsigned short);
-
- vector signed char vec_vsubsbs (vector bool char, vector signed char);
- vector signed char vec_vsubsbs (vector signed char, vector bool char);
- vector signed char vec_vsubsbs (vector signed char, vector signed char);
-
- vector unsigned char vec_vsububs (vector bool char,
- vector unsigned char);
- vector unsigned char vec_vsububs (vector unsigned char,
- vector bool char);
- vector unsigned char vec_vsububs (vector unsigned char,
- vector unsigned char);
-
- vector unsigned int vec_sum4s (vector unsigned char,
- vector unsigned int);
- vector signed int vec_sum4s (vector signed char, vector signed int);
- vector signed int vec_sum4s (vector signed short, vector signed int);
-
- vector signed int vec_vsum4shs (vector signed short, vector signed int);
-
- vector signed int vec_vsum4sbs (vector signed char, vector signed int);
-
- vector unsigned int vec_vsum4ubs (vector unsigned char,
- vector unsigned int);
-
- vector signed int vec_sum2s (vector signed int, vector signed int);
-
- vector signed int vec_sums (vector signed int, vector signed int);
-
- vector float vec_trunc (vector float);
-
- vector signed short vec_unpackh (vector signed char);
- vector bool short vec_unpackh (vector bool char);
- vector signed int vec_unpackh (vector signed short);
- vector bool int vec_unpackh (vector bool short);
- vector unsigned int vec_unpackh (vector pixel);
-
- vector bool int vec_vupkhsh (vector bool short);
- vector signed int vec_vupkhsh (vector signed short);
-
- vector unsigned int vec_vupkhpx (vector pixel);
-
- vector bool short vec_vupkhsb (vector bool char);
- vector signed short vec_vupkhsb (vector signed char);
-
- vector signed short vec_unpackl (vector signed char);
- vector bool short vec_unpackl (vector bool char);
- vector unsigned int vec_unpackl (vector pixel);
- vector signed int vec_unpackl (vector signed short);
- vector bool int vec_unpackl (vector bool short);
-
- vector unsigned int vec_vupklpx (vector pixel);
-
- vector bool int vec_vupklsh (vector bool short);
- vector signed int vec_vupklsh (vector signed short);
-
- vector bool short vec_vupklsb (vector bool char);
- vector signed short vec_vupklsb (vector signed char);
-
- vector float vec_xor (vector float, vector float);
- vector float vec_xor (vector float, vector bool int);
- vector float vec_xor (vector bool int, vector float);
- vector bool int vec_xor (vector bool int, vector bool int);
- vector signed int vec_xor (vector bool int, vector signed int);
- vector signed int vec_xor (vector signed int, vector bool int);
- vector signed int vec_xor (vector signed int, vector signed int);
- vector unsigned int vec_xor (vector bool int, vector unsigned int);
- vector unsigned int vec_xor (vector unsigned int, vector bool int);
- vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
- vector bool short vec_xor (vector bool short, vector bool short);
- vector signed short vec_xor (vector bool short, vector signed short);
- vector signed short vec_xor (vector signed short, vector bool short);
- vector signed short vec_xor (vector signed short, vector signed short);
- vector unsigned short vec_xor (vector bool short,
- vector unsigned short);
- vector unsigned short vec_xor (vector unsigned short,
- vector bool short);
- vector unsigned short vec_xor (vector unsigned short,
- vector unsigned short);
- vector signed char vec_xor (vector bool char, vector signed char);
- vector bool char vec_xor (vector bool char, vector bool char);
- vector signed char vec_xor (vector signed char, vector bool char);
- vector signed char vec_xor (vector signed char, vector signed char);
- vector unsigned char vec_xor (vector bool char, vector unsigned char);
- vector unsigned char vec_xor (vector unsigned char, vector bool char);
- vector unsigned char vec_xor (vector unsigned char,
- vector unsigned char);
-
- int vec_all_eq (vector signed char, vector bool char);
- int vec_all_eq (vector signed char, vector signed char);
- int vec_all_eq (vector unsigned char, vector bool char);
- int vec_all_eq (vector unsigned char, vector unsigned char);
- int vec_all_eq (vector bool char, vector bool char);
- int vec_all_eq (vector bool char, vector unsigned char);
- int vec_all_eq (vector bool char, vector signed char);
- int vec_all_eq (vector signed short, vector bool short);
- int vec_all_eq (vector signed short, vector signed short);
- int vec_all_eq (vector unsigned short, vector bool short);
- int vec_all_eq (vector unsigned short, vector unsigned short);
- int vec_all_eq (vector bool short, vector bool short);
- int vec_all_eq (vector bool short, vector unsigned short);
- int vec_all_eq (vector bool short, vector signed short);
- int vec_all_eq (vector pixel, vector pixel);
- int vec_all_eq (vector signed int, vector bool int);
- int vec_all_eq (vector signed int, vector signed int);
- int vec_all_eq (vector unsigned int, vector bool int);
- int vec_all_eq (vector unsigned int, vector unsigned int);
- int vec_all_eq (vector bool int, vector bool int);
- int vec_all_eq (vector bool int, vector unsigned int);
- int vec_all_eq (vector bool int, vector signed int);
- int vec_all_eq (vector float, vector float);
-
- int vec_all_ge (vector bool char, vector unsigned char);
- int vec_all_ge (vector unsigned char, vector bool char);
- int vec_all_ge (vector unsigned char, vector unsigned char);
- int vec_all_ge (vector bool char, vector signed char);
- int vec_all_ge (vector signed char, vector bool char);
- int vec_all_ge (vector signed char, vector signed char);
- int vec_all_ge (vector bool short, vector unsigned short);
- int vec_all_ge (vector unsigned short, vector bool short);
- int vec_all_ge (vector unsigned short, vector unsigned short);
- int vec_all_ge (vector signed short, vector signed short);
- int vec_all_ge (vector bool short, vector signed short);
- int vec_all_ge (vector signed short, vector bool short);
- int vec_all_ge (vector bool int, vector unsigned int);
- int vec_all_ge (vector unsigned int, vector bool int);
- int vec_all_ge (vector unsigned int, vector unsigned int);
- int vec_all_ge (vector bool int, vector signed int);
- int vec_all_ge (vector signed int, vector bool int);
- int vec_all_ge (vector signed int, vector signed int);
- int vec_all_ge (vector float, vector float);
-
- int vec_all_gt (vector bool char, vector unsigned char);
- int vec_all_gt (vector unsigned char, vector bool char);
- int vec_all_gt (vector unsigned char, vector unsigned char);
- int vec_all_gt (vector bool char, vector signed char);
- int vec_all_gt (vector signed char, vector bool char);
- int vec_all_gt (vector signed char, vector signed char);
- int vec_all_gt (vector bool short, vector unsigned short);
- int vec_all_gt (vector unsigned short, vector bool short);
- int vec_all_gt (vector unsigned short, vector unsigned short);
- int vec_all_gt (vector bool short, vector signed short);
- int vec_all_gt (vector signed short, vector bool short);
- int vec_all_gt (vector signed short, vector signed short);
- int vec_all_gt (vector bool int, vector unsigned int);
- int vec_all_gt (vector unsigned int, vector bool int);
- int vec_all_gt (vector unsigned int, vector unsigned int);
- int vec_all_gt (vector bool int, vector signed int);
- int vec_all_gt (vector signed int, vector bool int);
- int vec_all_gt (vector signed int, vector signed int);
- int vec_all_gt (vector float, vector float);
-
- int vec_all_in (vector float, vector float);
-
- int vec_all_le (vector bool char, vector unsigned char);
- int vec_all_le (vector unsigned char, vector bool char);
- int vec_all_le (vector unsigned char, vector unsigned char);
- int vec_all_le (vector bool char, vector signed char);
- int vec_all_le (vector signed char, vector bool char);
- int vec_all_le (vector signed char, vector signed char);
- int vec_all_le (vector bool short, vector unsigned short);
- int vec_all_le (vector unsigned short, vector bool short);
- int vec_all_le (vector unsigned short, vector unsigned short);
- int vec_all_le (vector bool short, vector signed short);
- int vec_all_le (vector signed short, vector bool short);
- int vec_all_le (vector signed short, vector signed short);
- int vec_all_le (vector bool int, vector unsigned int);
- int vec_all_le (vector unsigned int, vector bool int);
- int vec_all_le (vector unsigned int, vector unsigned int);
- int vec_all_le (vector bool int, vector signed int);
- int vec_all_le (vector signed int, vector bool int);
- int vec_all_le (vector signed int, vector signed int);
- int vec_all_le (vector float, vector float);
-
- int vec_all_lt (vector bool char, vector unsigned char);
- int vec_all_lt (vector unsigned char, vector bool char);
- int vec_all_lt (vector unsigned char, vector unsigned char);
- int vec_all_lt (vector bool char, vector signed char);
- int vec_all_lt (vector signed char, vector bool char);
- int vec_all_lt (vector signed char, vector signed char);
- int vec_all_lt (vector bool short, vector unsigned short);
- int vec_all_lt (vector unsigned short, vector bool short);
- int vec_all_lt (vector unsigned short, vector unsigned short);
- int vec_all_lt (vector bool short, vector signed short);
- int vec_all_lt (vector signed short, vector bool short);
- int vec_all_lt (vector signed short, vector signed short);
- int vec_all_lt (vector bool int, vector unsigned int);
- int vec_all_lt (vector unsigned int, vector bool int);
- int vec_all_lt (vector unsigned int, vector unsigned int);
- int vec_all_lt (vector bool int, vector signed int);
- int vec_all_lt (vector signed int, vector bool int);
- int vec_all_lt (vector signed int, vector signed int);
- int vec_all_lt (vector float, vector float);
-
- int vec_all_nan (vector float);
-
- int vec_all_ne (vector signed char, vector bool char);
- int vec_all_ne (vector signed char, vector signed char);
- int vec_all_ne (vector unsigned char, vector bool char);
- int vec_all_ne (vector unsigned char, vector unsigned char);
- int vec_all_ne (vector bool char, vector bool char);
- int vec_all_ne (vector bool char, vector unsigned char);
- int vec_all_ne (vector bool char, vector signed char);
- int vec_all_ne (vector signed short, vector bool short);
- int vec_all_ne (vector signed short, vector signed short);
- int vec_all_ne (vector unsigned short, vector bool short);
- int vec_all_ne (vector unsigned short, vector unsigned short);
- int vec_all_ne (vector bool short, vector bool short);
- int vec_all_ne (vector bool short, vector unsigned short);
- int vec_all_ne (vector bool short, vector signed short);
- int vec_all_ne (vector pixel, vector pixel);
- int vec_all_ne (vector signed int, vector bool int);
- int vec_all_ne (vector signed int, vector signed int);
- int vec_all_ne (vector unsigned int, vector bool int);
- int vec_all_ne (vector unsigned int, vector unsigned int);
- int vec_all_ne (vector bool int, vector bool int);
- int vec_all_ne (vector bool int, vector unsigned int);
- int vec_all_ne (vector bool int, vector signed int);
- int vec_all_ne (vector float, vector float);
-
- int vec_all_nge (vector float, vector float);
-
- int vec_all_ngt (vector float, vector float);
-
- int vec_all_nle (vector float, vector float);
-
- int vec_all_nlt (vector float, vector float);
-
- int vec_all_numeric (vector float);
-
- int vec_any_eq (vector signed char, vector bool char);
- int vec_any_eq (vector signed char, vector signed char);
- int vec_any_eq (vector unsigned char, vector bool char);
- int vec_any_eq (vector unsigned char, vector unsigned char);
- int vec_any_eq (vector bool char, vector bool char);
- int vec_any_eq (vector bool char, vector unsigned char);
- int vec_any_eq (vector bool char, vector signed char);
- int vec_any_eq (vector signed short, vector bool short);
- int vec_any_eq (vector signed short, vector signed short);
- int vec_any_eq (vector unsigned short, vector bool short);
- int vec_any_eq (vector unsigned short, vector unsigned short);
- int vec_any_eq (vector bool short, vector bool short);
- int vec_any_eq (vector bool short, vector unsigned short);
- int vec_any_eq (vector bool short, vector signed short);
- int vec_any_eq (vector pixel, vector pixel);
- int vec_any_eq (vector signed int, vector bool int);
- int vec_any_eq (vector signed int, vector signed int);
- int vec_any_eq (vector unsigned int, vector bool int);
- int vec_any_eq (vector unsigned int, vector unsigned int);
- int vec_any_eq (vector bool int, vector bool int);
- int vec_any_eq (vector bool int, vector unsigned int);
- int vec_any_eq (vector bool int, vector signed int);
- int vec_any_eq (vector float, vector float);
-
- int vec_any_ge (vector signed char, vector bool char);
- int vec_any_ge (vector unsigned char, vector bool char);
- int vec_any_ge (vector unsigned char, vector unsigned char);
- int vec_any_ge (vector signed char, vector signed char);
- int vec_any_ge (vector bool char, vector unsigned char);
- int vec_any_ge (vector bool char, vector signed char);
- int vec_any_ge (vector unsigned short, vector bool short);
- int vec_any_ge (vector unsigned short, vector unsigned short);
- int vec_any_ge (vector signed short, vector signed short);
- int vec_any_ge (vector signed short, vector bool short);
- int vec_any_ge (vector bool short, vector unsigned short);
- int vec_any_ge (vector bool short, vector signed short);
- int vec_any_ge (vector signed int, vector bool int);
- int vec_any_ge (vector unsigned int, vector bool int);
- int vec_any_ge (vector unsigned int, vector unsigned int);
- int vec_any_ge (vector signed int, vector signed int);
- int vec_any_ge (vector bool int, vector unsigned int);
- int vec_any_ge (vector bool int, vector signed int);
- int vec_any_ge (vector float, vector float);
-
- int vec_any_gt (vector bool char, vector unsigned char);
- int vec_any_gt (vector unsigned char, vector bool char);
- int vec_any_gt (vector unsigned char, vector unsigned char);
- int vec_any_gt (vector bool char, vector signed char);
- int vec_any_gt (vector signed char, vector bool char);
- int vec_any_gt (vector signed char, vector signed char);
- int vec_any_gt (vector bool short, vector unsigned short);
- int vec_any_gt (vector unsigned short, vector bool short);
- int vec_any_gt (vector unsigned short, vector unsigned short);
- int vec_any_gt (vector bool short, vector signed short);
- int vec_any_gt (vector signed short, vector bool short);
- int vec_any_gt (vector signed short, vector signed short);
- int vec_any_gt (vector bool int, vector unsigned int);
- int vec_any_gt (vector unsigned int, vector bool int);
- int vec_any_gt (vector unsigned int, vector unsigned int);
- int vec_any_gt (vector bool int, vector signed int);
- int vec_any_gt (vector signed int, vector bool int);
- int vec_any_gt (vector signed int, vector signed int);
- int vec_any_gt (vector float, vector float);
-
- int vec_any_le (vector bool char, vector unsigned char);
- int vec_any_le (vector unsigned char, vector bool char);
- int vec_any_le (vector unsigned char, vector unsigned char);
- int vec_any_le (vector bool char, vector signed char);
- int vec_any_le (vector signed char, vector bool char);
- int vec_any_le (vector signed char, vector signed char);
- int vec_any_le (vector bool short, vector unsigned short);
- int vec_any_le (vector unsigned short, vector bool short);
- int vec_any_le (vector unsigned short, vector unsigned short);
- int vec_any_le (vector bool short, vector signed short);
- int vec_any_le (vector signed short, vector bool short);
- int vec_any_le (vector signed short, vector signed short);
- int vec_any_le (vector bool int, vector unsigned int);
- int vec_any_le (vector unsigned int, vector bool int);
- int vec_any_le (vector unsigned int, vector unsigned int);
- int vec_any_le (vector bool int, vector signed int);
- int vec_any_le (vector signed int, vector bool int);
- int vec_any_le (vector signed int, vector signed int);
- int vec_any_le (vector float, vector float);
-
- int vec_any_lt (vector bool char, vector unsigned char);
- int vec_any_lt (vector unsigned char, vector bool char);
- int vec_any_lt (vector unsigned char, vector unsigned char);
- int vec_any_lt (vector bool char, vector signed char);
- int vec_any_lt (vector signed char, vector bool char);
- int vec_any_lt (vector signed char, vector signed char);
- int vec_any_lt (vector bool short, vector unsigned short);
- int vec_any_lt (vector unsigned short, vector bool short);
- int vec_any_lt (vector unsigned short, vector unsigned short);
- int vec_any_lt (vector bool short, vector signed short);
- int vec_any_lt (vector signed short, vector bool short);
- int vec_any_lt (vector signed short, vector signed short);
- int vec_any_lt (vector bool int, vector unsigned int);
- int vec_any_lt (vector unsigned int, vector bool int);
- int vec_any_lt (vector unsigned int, vector unsigned int);
- int vec_any_lt (vector bool int, vector signed int);
- int vec_any_lt (vector signed int, vector bool int);
- int vec_any_lt (vector signed int, vector signed int);
- int vec_any_lt (vector float, vector float);
-
- int vec_any_nan (vector float);
-
- int vec_any_ne (vector signed char, vector bool char);
- int vec_any_ne (vector signed char, vector signed char);
- int vec_any_ne (vector unsigned char, vector bool char);
- int vec_any_ne (vector unsigned char, vector unsigned char);
- int vec_any_ne (vector bool char, vector bool char);
- int vec_any_ne (vector bool char, vector unsigned char);
- int vec_any_ne (vector bool char, vector signed char);
- int vec_any_ne (vector signed short, vector bool short);
- int vec_any_ne (vector signed short, vector signed short);
- int vec_any_ne (vector unsigned short, vector bool short);
- int vec_any_ne (vector unsigned short, vector unsigned short);
- int vec_any_ne (vector bool short, vector bool short);
- int vec_any_ne (vector bool short, vector unsigned short);
- int vec_any_ne (vector bool short, vector signed short);
- int vec_any_ne (vector pixel, vector pixel);
- int vec_any_ne (vector signed int, vector bool int);
- int vec_any_ne (vector signed int, vector signed int);
- int vec_any_ne (vector unsigned int, vector bool int);
- int vec_any_ne (vector unsigned int, vector unsigned int);
- int vec_any_ne (vector bool int, vector bool int);
- int vec_any_ne (vector bool int, vector unsigned int);
- int vec_any_ne (vector bool int, vector signed int);
- int vec_any_ne (vector float, vector float);
-
- int vec_any_nge (vector float, vector float);
-
- int vec_any_ngt (vector float, vector float);
-
- int vec_any_nle (vector float, vector float);
-
- int vec_any_nlt (vector float, vector float);
-
- int vec_any_numeric (vector float);
-
- int vec_any_out (vector float, vector float);
-
- If the vector/scalar (VSX) instruction set is available, the following
-additional functions are available:
-
- vector double vec_abs (vector double);
- vector double vec_add (vector double, vector double);
- vector double vec_and (vector double, vector double);
- vector double vec_and (vector double, vector bool long);
- vector double vec_and (vector bool long, vector double);
- vector double vec_andc (vector double, vector double);
- vector double vec_andc (vector double, vector bool long);
- vector double vec_andc (vector bool long, vector double);
- vector double vec_ceil (vector double);
- vector bool long vec_cmpeq (vector double, vector double);
- vector bool long vec_cmpge (vector double, vector double);
- vector bool long vec_cmpgt (vector double, vector double);
- vector bool long vec_cmple (vector double, vector double);
- vector bool long vec_cmplt (vector double, vector double);
- vector float vec_div (vector float, vector float);
- vector double vec_div (vector double, vector double);
- vector double vec_floor (vector double);
- vector double vec_ld (int, const vector double *);
- vector double vec_ld (int, const double *);
- vector double vec_ldl (int, const vector double *);
- vector double vec_ldl (int, const double *);
- vector unsigned char vec_lvsl (int, const volatile double *);
- vector unsigned char vec_lvsr (int, const volatile double *);
- vector double vec_madd (vector double, vector double, vector double);
- vector double vec_max (vector double, vector double);
- vector double vec_min (vector double, vector double);
- vector float vec_msub (vector float, vector float, vector float);
- vector double vec_msub (vector double, vector double, vector double);
- vector float vec_mul (vector float, vector float);
- vector double vec_mul (vector double, vector double);
- vector float vec_nearbyint (vector float);
- vector double vec_nearbyint (vector double);
- vector float vec_nmadd (vector float, vector float, vector float);
- vector double vec_nmadd (vector double, vector double, vector double);
- vector double vec_nmsub (vector double, vector double, vector double);
- vector double vec_nor (vector double, vector double);
- vector double vec_or (vector double, vector double);
- vector double vec_or (vector double, vector bool long);
- vector double vec_or (vector bool long, vector double);
- vector double vec_perm (vector double,
- vector double,
- vector unsigned char);
- vector double vec_rint (vector double);
- vector double vec_recip (vector double, vector double);
- vector double vec_rsqrt (vector double);
- vector double vec_rsqrte (vector double);
- vector double vec_sel (vector double, vector double, vector bool long);
- vector double vec_sel (vector double, vector double, vector unsigned long);
- vector double vec_sub (vector double, vector double);
- vector float vec_sqrt (vector float);
- vector double vec_sqrt (vector double);
- void vec_st (vector double, int, vector double *);
- void vec_st (vector double, int, double *);
- vector double vec_trunc (vector double);
- vector double vec_xor (vector double, vector double);
- vector double vec_xor (vector double, vector bool long);
- vector double vec_xor (vector bool long, vector double);
- int vec_all_eq (vector double, vector double);
- int vec_all_ge (vector double, vector double);
- int vec_all_gt (vector double, vector double);
- int vec_all_le (vector double, vector double);
- int vec_all_lt (vector double, vector double);
- int vec_all_nan (vector double);
- int vec_all_ne (vector double, vector double);
- int vec_all_nge (vector double, vector double);
- int vec_all_ngt (vector double, vector double);
- int vec_all_nle (vector double, vector double);
- int vec_all_nlt (vector double, vector double);
- int vec_all_numeric (vector double);
- int vec_any_eq (vector double, vector double);
- int vec_any_ge (vector double, vector double);
- int vec_any_gt (vector double, vector double);
- int vec_any_le (vector double, vector double);
- int vec_any_lt (vector double, vector double);
- int vec_any_nan (vector double);
- int vec_any_ne (vector double, vector double);
- int vec_any_nge (vector double, vector double);
- int vec_any_ngt (vector double, vector double);
- int vec_any_nle (vector double, vector double);
- int vec_any_nlt (vector double, vector double);
- int vec_any_numeric (vector double);
-
- vector double vec_vsx_ld (int, const vector double *);
- vector double vec_vsx_ld (int, const double *);
- vector float vec_vsx_ld (int, const vector float *);
- vector float vec_vsx_ld (int, const float *);
- vector bool int vec_vsx_ld (int, const vector bool int *);
- vector signed int vec_vsx_ld (int, const vector signed int *);
- vector signed int vec_vsx_ld (int, const int *);
- vector signed int vec_vsx_ld (int, const long *);
- vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
- vector unsigned int vec_vsx_ld (int, const unsigned int *);
- vector unsigned int vec_vsx_ld (int, const unsigned long *);
- vector bool short vec_vsx_ld (int, const vector bool short *);
- vector pixel vec_vsx_ld (int, const vector pixel *);
- vector signed short vec_vsx_ld (int, const vector signed short *);
- vector signed short vec_vsx_ld (int, const short *);
- vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
- vector unsigned short vec_vsx_ld (int, const unsigned short *);
- vector bool char vec_vsx_ld (int, const vector bool char *);
- vector signed char vec_vsx_ld (int, const vector signed char *);
- vector signed char vec_vsx_ld (int, const signed char *);
- vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
- vector unsigned char vec_vsx_ld (int, const unsigned char *);
-
- void vec_vsx_st (vector double, int, vector double *);
- void vec_vsx_st (vector double, int, double *);
- void vec_vsx_st (vector float, int, vector float *);
- void vec_vsx_st (vector float, int, float *);
- void vec_vsx_st (vector signed int, int, vector signed int *);
- void vec_vsx_st (vector signed int, int, int *);
- void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
- void vec_vsx_st (vector unsigned int, int, unsigned int *);
- void vec_vsx_st (vector bool int, int, vector bool int *);
- void vec_vsx_st (vector bool int, int, unsigned int *);
- void vec_vsx_st (vector bool int, int, int *);
- void vec_vsx_st (vector signed short, int, vector signed short *);
- void vec_vsx_st (vector signed short, int, short *);
- void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
- void vec_vsx_st (vector unsigned short, int, unsigned short *);
- void vec_vsx_st (vector bool short, int, vector bool short *);
- void vec_vsx_st (vector bool short, int, unsigned short *);
- void vec_vsx_st (vector pixel, int, vector pixel *);
- void vec_vsx_st (vector pixel, int, unsigned short *);
- void vec_vsx_st (vector pixel, int, short *);
- void vec_vsx_st (vector bool short, int, short *);
- void vec_vsx_st (vector signed char, int, vector signed char *);
- void vec_vsx_st (vector signed char, int, signed char *);
- void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
- void vec_vsx_st (vector unsigned char, int, unsigned char *);
- void vec_vsx_st (vector bool char, int, vector bool char *);
- void vec_vsx_st (vector bool char, int, unsigned char *);
- void vec_vsx_st (vector bool char, int, signed char *);
-
- vector double vec_xxpermdi (vector double, vector double, int);
- vector float vec_xxpermdi (vector float, vector float, int);
- vector long long vec_xxpermdi (vector long long, vector long long, int);
- vector unsigned long long vec_xxpermdi (vector unsigned long long,
- vector unsigned long long, int);
- vector int vec_xxpermdi (vector int, vector int, int);
- vector unsigned int vec_xxpermdi (vector unsigned int,
- vector unsigned int, int);
- vector short vec_xxpermdi (vector short, vector short, int);
- vector unsigned short vec_xxpermdi (vector unsigned short,
- vector unsigned short, int);
- vector signed char vec_xxpermdi (vector signed char, vector signed char, int);
- vector unsigned char vec_xxpermdi (vector unsigned char,
- vector unsigned char, int);
-
- vector double vec_xxsldi (vector double, vector double, int);
- vector float vec_xxsldi (vector float, vector float, int);
- vector long long vec_xxsldi (vector long long, vector long long, int);
- vector unsigned long long vec_xxsldi (vector unsigned long long,
- vector unsigned long long, int);
- vector int vec_xxsldi (vector int, vector int, int);
- vector unsigned int vec_xxsldi (vector unsigned int, vector unsigned int, int);
- vector short vec_xxsldi (vector short, vector short, int);
- vector unsigned short vec_xxsldi (vector unsigned short,
- vector unsigned short, int);
- vector signed char vec_xxsldi (vector signed char, vector signed char, int);
- vector unsigned char vec_xxsldi (vector unsigned char,
- vector unsigned char, int);
-
- Note that the 'vec_ld' and 'vec_st' built-in functions always generate
-the AltiVec 'LVX' and 'STVX' instructions even if the VSX instruction
-set is available. The 'vec_vsx_ld' and 'vec_vsx_st' built-in functions
-always generate the VSX 'LXVD2X', 'LXVW4X', 'STXVD2X', and 'STXVW4X'
-instructions.
-
- If the ISA 2.07 additions to the vector/scalar (power8-vector)
-instruction set is available, the following additional functions are
-available for both 32-bit and 64-bit targets. For 64-bit targets, you
-can use VECTOR LONG instead of VECTOR LONG LONG, VECTOR BOOL LONG
-instead of VECTOR BOOL LONG LONG, and VECTOR UNSIGNED LONG instead of
-VECTOR UNSIGNED LONG LONG.
-
- vector long long vec_abs (vector long long);
-
- vector long long vec_add (vector long long, vector long long);
- vector unsigned long long vec_add (vector unsigned long long,
- vector unsigned long long);
-
- int vec_all_eq (vector long long, vector long long);
- int vec_all_ge (vector long long, vector long long);
- int vec_all_gt (vector long long, vector long long);
- int vec_all_le (vector long long, vector long long);
- int vec_all_lt (vector long long, vector long long);
- int vec_all_ne (vector long long, vector long long);
- int vec_any_eq (vector long long, vector long long);
- int vec_any_ge (vector long long, vector long long);
- int vec_any_gt (vector long long, vector long long);
- int vec_any_le (vector long long, vector long long);
- int vec_any_lt (vector long long, vector long long);
- int vec_any_ne (vector long long, vector long long);
-
- vector long long vec_eqv (vector long long, vector long long);
- vector long long vec_eqv (vector bool long long, vector long long);
- vector long long vec_eqv (vector long long, vector bool long long);
- vector unsigned long long vec_eqv (vector unsigned long long,
- vector unsigned long long);
- vector unsigned long long vec_eqv (vector bool long long,
- vector unsigned long long);
- vector unsigned long long vec_eqv (vector unsigned long long,
- vector bool long long);
- vector int vec_eqv (vector int, vector int);
- vector int vec_eqv (vector bool int, vector int);
- vector int vec_eqv (vector int, vector bool int);
- vector unsigned int vec_eqv (vector unsigned int, vector unsigned int);
- vector unsigned int vec_eqv (vector bool unsigned int,
- vector unsigned int);
- vector unsigned int vec_eqv (vector unsigned int,
- vector bool unsigned int);
- vector short vec_eqv (vector short, vector short);
- vector short vec_eqv (vector bool short, vector short);
- vector short vec_eqv (vector short, vector bool short);
- vector unsigned short vec_eqv (vector unsigned short, vector unsigned short);
- vector unsigned short vec_eqv (vector bool unsigned short,
- vector unsigned short);
- vector unsigned short vec_eqv (vector unsigned short,
- vector bool unsigned short);
- vector signed char vec_eqv (vector signed char, vector signed char);
- vector signed char vec_eqv (vector bool signed char, vector signed char);
- vector signed char vec_eqv (vector signed char, vector bool signed char);
- vector unsigned char vec_eqv (vector unsigned char, vector unsigned char);
- vector unsigned char vec_eqv (vector bool unsigned char, vector unsigned char);
- vector unsigned char vec_eqv (vector unsigned char, vector bool unsigned char);
-
- vector long long vec_max (vector long long, vector long long);
- vector unsigned long long vec_max (vector unsigned long long,
- vector unsigned long long);
-
- vector long long vec_min (vector long long, vector long long);
- vector unsigned long long vec_min (vector unsigned long long,
- vector unsigned long long);
-
- vector long long vec_nand (vector long long, vector long long);
- vector long long vec_nand (vector bool long long, vector long long);
- vector long long vec_nand (vector long long, vector bool long long);
- vector unsigned long long vec_nand (vector unsigned long long,
- vector unsigned long long);
- vector unsigned long long vec_nand (vector bool long long,
- vector unsigned long long);
- vector unsigned long long vec_nand (vector unsigned long long,
- vector bool long long);
- vector int vec_nand (vector int, vector int);
- vector int vec_nand (vector bool int, vector int);
- vector int vec_nand (vector int, vector bool int);
- vector unsigned int vec_nand (vector unsigned int, vector unsigned int);
- vector unsigned int vec_nand (vector bool unsigned int,
- vector unsigned int);
- vector unsigned int vec_nand (vector unsigned int,
- vector bool unsigned int);
- vector short vec_nand (vector short, vector short);
- vector short vec_nand (vector bool short, vector short);
- vector short vec_nand (vector short, vector bool short);
- vector unsigned short vec_nand (vector unsigned short, vector unsigned short);
- vector unsigned short vec_nand (vector bool unsigned short,
- vector unsigned short);
- vector unsigned short vec_nand (vector unsigned short,
- vector bool unsigned short);
- vector signed char vec_nand (vector signed char, vector signed char);
- vector signed char vec_nand (vector bool signed char, vector signed char);
- vector signed char vec_nand (vector signed char, vector bool signed char);
- vector unsigned char vec_nand (vector unsigned char, vector unsigned char);
- vector unsigned char vec_nand (vector bool unsigned char, vector unsigned char);
- vector unsigned char vec_nand (vector unsigned char, vector bool unsigned char);
-
- vector long long vec_orc (vector long long, vector long long);
- vector long long vec_orc (vector bool long long, vector long long);
- vector long long vec_orc (vector long long, vector bool long long);
- vector unsigned long long vec_orc (vector unsigned long long,
- vector unsigned long long);
- vector unsigned long long vec_orc (vector bool long long,
- vector unsigned long long);
- vector unsigned long long vec_orc (vector unsigned long long,
- vector bool long long);
- vector int vec_orc (vector int, vector int);
- vector int vec_orc (vector bool int, vector int);
- vector int vec_orc (vector int, vector bool int);
- vector unsigned int vec_orc (vector unsigned int, vector unsigned int);
- vector unsigned int vec_orc (vector bool unsigned int,
- vector unsigned int);
- vector unsigned int vec_orc (vector unsigned int,
- vector bool unsigned int);
- vector short vec_orc (vector short, vector short);
- vector short vec_orc (vector bool short, vector short);
- vector short vec_orc (vector short, vector bool short);
- vector unsigned short vec_orc (vector unsigned short, vector unsigned short);
- vector unsigned short vec_orc (vector bool unsigned short,
- vector unsigned short);
- vector unsigned short vec_orc (vector unsigned short,
- vector bool unsigned short);
- vector signed char vec_orc (vector signed char, vector signed char);
- vector signed char vec_orc (vector bool signed char, vector signed char);
- vector signed char vec_orc (vector signed char, vector bool signed char);
- vector unsigned char vec_orc (vector unsigned char, vector unsigned char);
- vector unsigned char vec_orc (vector bool unsigned char, vector unsigned char);
- vector unsigned char vec_orc (vector unsigned char, vector bool unsigned char);
-
- vector int vec_pack (vector long long, vector long long);
- vector unsigned int vec_pack (vector unsigned long long,
- vector unsigned long long);
- vector bool int vec_pack (vector bool long long, vector bool long long);
-
- vector int vec_packs (vector long long, vector long long);
- vector unsigned int vec_packs (vector unsigned long long,
- vector unsigned long long);
-
- vector unsigned int vec_packsu (vector long long, vector long long);
-
- vector long long vec_rl (vector long long,
- vector unsigned long long);
- vector long long vec_rl (vector unsigned long long,
- vector unsigned long long);
-
- vector long long vec_sl (vector long long, vector unsigned long long);
- vector long long vec_sl (vector unsigned long long,
- vector unsigned long long);
-
- vector long long vec_sr (vector long long, vector unsigned long long);
- vector unsigned long long char vec_sr (vector unsigned long long,
- vector unsigned long long);
-
- vector long long vec_sra (vector long long, vector unsigned long long);
- vector unsigned long long vec_sra (vector unsigned long long,
- vector unsigned long long);
-
- vector long long vec_sub (vector long long, vector long long);
- vector unsigned long long vec_sub (vector unsigned long long,
- vector unsigned long long);
-
- vector long long vec_unpackh (vector int);
- vector unsigned long long vec_unpackh (vector unsigned int);
-
- vector long long vec_unpackl (vector int);
- vector unsigned long long vec_unpackl (vector unsigned int);
-
- vector long long vec_vaddudm (vector long long, vector long long);
- vector long long vec_vaddudm (vector bool long long, vector long long);
- vector long long vec_vaddudm (vector long long, vector bool long long);
- vector unsigned long long vec_vaddudm (vector unsigned long long,
- vector unsigned long long);
- vector unsigned long long vec_vaddudm (vector bool unsigned long long,
- vector unsigned long long);
- vector unsigned long long vec_vaddudm (vector unsigned long long,
- vector bool unsigned long long);
-
- vector long long vec_vbpermq (vector signed char, vector signed char);
- vector long long vec_vbpermq (vector unsigned char, vector unsigned char);
-
- vector long long vec_vclz (vector long long);
- vector unsigned long long vec_vclz (vector unsigned long long);
- vector int vec_vclz (vector int);
- vector unsigned int vec_vclz (vector int);
- vector short vec_vclz (vector short);
- vector unsigned short vec_vclz (vector unsigned short);
- vector signed char vec_vclz (vector signed char);
- vector unsigned char vec_vclz (vector unsigned char);
-
- vector signed char vec_vclzb (vector signed char);
- vector unsigned char vec_vclzb (vector unsigned char);
-
- vector long long vec_vclzd (vector long long);
- vector unsigned long long vec_vclzd (vector unsigned long long);
-
- vector short vec_vclzh (vector short);
- vector unsigned short vec_vclzh (vector unsigned short);
-
- vector int vec_vclzw (vector int);
- vector unsigned int vec_vclzw (vector int);
-
- vector signed char vec_vgbbd (vector signed char);
- vector unsigned char vec_vgbbd (vector unsigned char);
-
- vector long long vec_vmaxsd (vector long long, vector long long);
-
- vector unsigned long long vec_vmaxud (vector unsigned long long,
- unsigned vector long long);
-
- vector long long vec_vminsd (vector long long, vector long long);
-
- vector unsigned long long vec_vminud (vector long long,
- vector long long);
-
- vector int vec_vpksdss (vector long long, vector long long);
- vector unsigned int vec_vpksdss (vector long long, vector long long);
-
- vector unsigned int vec_vpkudus (vector unsigned long long,
- vector unsigned long long);
-
- vector int vec_vpkudum (vector long long, vector long long);
- vector unsigned int vec_vpkudum (vector unsigned long long,
- vector unsigned long long);
- vector bool int vec_vpkudum (vector bool long long, vector bool long long);
-
- vector long long vec_vpopcnt (vector long long);
- vector unsigned long long vec_vpopcnt (vector unsigned long long);
- vector int vec_vpopcnt (vector int);
- vector unsigned int vec_vpopcnt (vector int);
- vector short vec_vpopcnt (vector short);
- vector unsigned short vec_vpopcnt (vector unsigned short);
- vector signed char vec_vpopcnt (vector signed char);
- vector unsigned char vec_vpopcnt (vector unsigned char);
-
- vector signed char vec_vpopcntb (vector signed char);
- vector unsigned char vec_vpopcntb (vector unsigned char);
-
- vector long long vec_vpopcntd (vector long long);
- vector unsigned long long vec_vpopcntd (vector unsigned long long);
-
- vector short vec_vpopcnth (vector short);
- vector unsigned short vec_vpopcnth (vector unsigned short);
-
- vector int vec_vpopcntw (vector int);
- vector unsigned int vec_vpopcntw (vector int);
-
- vector long long vec_vrld (vector long long, vector unsigned long long);
- vector unsigned long long vec_vrld (vector unsigned long long,
- vector unsigned long long);
-
- vector long long vec_vsld (vector long long, vector unsigned long long);
- vector long long vec_vsld (vector unsigned long long,
- vector unsigned long long);
-
- vector long long vec_vsrad (vector long long, vector unsigned long long);
- vector unsigned long long vec_vsrad (vector unsigned long long,
- vector unsigned long long);
-
- vector long long vec_vsrd (vector long long, vector unsigned long long);
- vector unsigned long long char vec_vsrd (vector unsigned long long,
- vector unsigned long long);
-
- vector long long vec_vsubudm (vector long long, vector long long);
- vector long long vec_vsubudm (vector bool long long, vector long long);
- vector long long vec_vsubudm (vector long long, vector bool long long);
- vector unsigned long long vec_vsubudm (vector unsigned long long,
- vector unsigned long long);
- vector unsigned long long vec_vsubudm (vector bool long long,
- vector unsigned long long);
- vector unsigned long long vec_vsubudm (vector unsigned long long,
- vector bool long long);
-
- vector long long vec_vupkhsw (vector int);
- vector unsigned long long vec_vupkhsw (vector unsigned int);
-
- vector long long vec_vupklsw (vector int);
- vector unsigned long long vec_vupklsw (vector int);
-
- If the ISA 2.07 additions to the vector/scalar (power8-vector)
-instruction set is available, the following additional functions are
-available for 64-bit targets. New vector types (VECTOR __INT128_T and
-VECTOR __UINT128_T) are available to hold the __INT128_T and __UINT128_T
-types to use these builtins.
-
- The normal vector extract, and set operations work on VECTOR __INT128_T
-and VECTOR __UINT128_T types, but the index value must be 0.
-
- vector __int128_t vec_vaddcuq (vector __int128_t, vector __int128_t);
- vector __uint128_t vec_vaddcuq (vector __uint128_t, vector __uint128_t);
-
- vector __int128_t vec_vadduqm (vector __int128_t, vector __int128_t);
- vector __uint128_t vec_vadduqm (vector __uint128_t, vector __uint128_t);
-
- vector __int128_t vec_vaddecuq (vector __int128_t, vector __int128_t,
- vector __int128_t);
- vector __uint128_t vec_vaddecuq (vector __uint128_t, vector __uint128_t,
- vector __uint128_t);
-
- vector __int128_t vec_vaddeuqm (vector __int128_t, vector __int128_t,
- vector __int128_t);
- vector __uint128_t vec_vaddeuqm (vector __uint128_t, vector __uint128_t,
- vector __uint128_t);
-
- vector __int128_t vec_vsubecuq (vector __int128_t, vector __int128_t,
- vector __int128_t);
- vector __uint128_t vec_vsubecuq (vector __uint128_t, vector __uint128_t,
- vector __uint128_t);
-
- vector __int128_t vec_vsubeuqm (vector __int128_t, vector __int128_t,
- vector __int128_t);
- vector __uint128_t vec_vsubeuqm (vector __uint128_t, vector __uint128_t,
- vector __uint128_t);
-
- vector __int128_t vec_vsubcuq (vector __int128_t, vector __int128_t);
- vector __uint128_t vec_vsubcuq (vector __uint128_t, vector __uint128_t);
-
- __int128_t vec_vsubuqm (__int128_t, __int128_t);
- __uint128_t vec_vsubuqm (__uint128_t, __uint128_t);
-
- If the cryptographic instructions are enabled ('-mcrypto' or
-'-mcpu=power8'), the following builtins are enabled.
-
- vector unsigned long long __builtin_crypto_vsbox (vector unsigned long long);
-
- vector unsigned long long __builtin_crypto_vcipher (vector unsigned long long,
- vector unsigned long long);
-
- vector unsigned long long __builtin_crypto_vcipherlast
- (vector unsigned long long,
- vector unsigned long long);
-
- vector unsigned long long __builtin_crypto_vncipher (vector unsigned long long,
- vector unsigned long long);
-
- vector unsigned long long __builtin_crypto_vncipherlast
- (vector unsigned long long,
- vector unsigned long long);
-
- vector unsigned char __builtin_crypto_vpermxor (vector unsigned char,
- vector unsigned char,
- vector unsigned char);
-
- vector unsigned short __builtin_crypto_vpermxor (vector unsigned short,
- vector unsigned short,
- vector unsigned short);
-
- vector unsigned int __builtin_crypto_vpermxor (vector unsigned int,
- vector unsigned int,
- vector unsigned int);
-
- vector unsigned long long __builtin_crypto_vpermxor (vector unsigned long long,
- vector unsigned long long,
- vector unsigned long long);
-
- vector unsigned char __builtin_crypto_vpmsumb (vector unsigned char,
- vector unsigned char);
-
- vector unsigned short __builtin_crypto_vpmsumb (vector unsigned short,
- vector unsigned short);
-
- vector unsigned int __builtin_crypto_vpmsumb (vector unsigned int,
- vector unsigned int);
-
- vector unsigned long long __builtin_crypto_vpmsumb (vector unsigned long long,
- vector unsigned long long);
-
- vector unsigned long long __builtin_crypto_vshasigmad
- (vector unsigned long long, int, int);
-
- vector unsigned int __builtin_crypto_vshasigmaw (vector unsigned int,
- int, int);
-
- The second argument to the __BUILTIN_CRYPTO_VSHASIGMAD and
-__BUILTIN_CRYPTO_VSHASIGMAW builtin functions must be a constant integer
-that is 0 or 1. The third argument to these builtin functions must be a
-constant integer in the range of 0 to 15.
-
-
-File: gcc.info, Node: PowerPC Hardware Transactional Memory Built-in Functions, Next: RX Built-in Functions, Prev: PowerPC AltiVec/VSX Built-in Functions, Up: Target Builtins
-
-6.57.22 PowerPC Hardware Transactional Memory Built-in Functions
-----------------------------------------------------------------
-
-GCC provides two interfaces for accessing the Hardware Transactional
-Memory (HTM) instructions available on some of the PowerPC family of
-prcoessors (eg, POWER8). The two interfaces come in a low level
-interface, consisting of built-in functions specific to PowerPC and a
-higher level interface consisting of inline functions that are common
-between PowerPC and S/390.
-
-6.57.22.1 PowerPC HTM Low Level Built-in Functions
-..................................................
-
-The following low level built-in functions are available with '-mhtm' or
-'-mcpu=CPU' where CPU is 'power8' or later. They all generate the
-machine instruction that is part of the name.
-
- The HTM built-ins return true or false depending on their success and
-their arguments match exactly the type and order of the associated
-hardware instruction's operands. Refer to the ISA manual for a
-description of each instruction's operands.
-
- unsigned int __builtin_tbegin (unsigned int)
- unsigned int __builtin_tend (unsigned int)
-
- unsigned int __builtin_tabort (unsigned int)
- unsigned int __builtin_tabortdc (unsigned int, unsigned int, unsigned int)
- unsigned int __builtin_tabortdci (unsigned int, unsigned int, int)
- unsigned int __builtin_tabortwc (unsigned int, unsigned int, unsigned int)
- unsigned int __builtin_tabortwci (unsigned int, unsigned int, int)
-
- unsigned int __builtin_tcheck (unsigned int)
- unsigned int __builtin_treclaim (unsigned int)
- unsigned int __builtin_trechkpt (void)
- unsigned int __builtin_tsr (unsigned int)
-
- In addition to the above HTM built-ins, we have added built-ins for
-some common extended mnemonics of the HTM instructions:
-
- unsigned int __builtin_tendall (void)
- unsigned int __builtin_tresume (void)
- unsigned int __builtin_tsuspend (void)
-
- The following set of built-in functions are available to gain access to
-the HTM specific special purpose registers.
-
- unsigned long __builtin_get_texasr (void)
- unsigned long __builtin_get_texasru (void)
- unsigned long __builtin_get_tfhar (void)
- unsigned long __builtin_get_tfiar (void)
-
- void __builtin_set_texasr (unsigned long);
- void __builtin_set_texasru (unsigned long);
- void __builtin_set_tfhar (unsigned long);
- void __builtin_set_tfiar (unsigned long);
-
- Example usage of these low level built-in functions may look like:
-
- #include <htmintrin.h>
-
- int num_retries = 10;
-
- while (1)
- {
- if (__builtin_tbegin (0))
- {
- /* Transaction State Initiated. */
- if (is_locked (lock))
- __builtin_tabort (0);
- ... transaction code...
- __builtin_tend (0);
- break;
- }
- else
- {
- /* Transaction State Failed. Use locks if the transaction
- failure is "persistent" or we've tried too many times. */
- if (num_retries-- <= 0
- || _TEXASRU_FAILURE_PERSISTENT (__builtin_get_texasru ()))
- {
- acquire_lock (lock);
- ... non transactional fallback path...
- release_lock (lock);
- break;
- }
- }
- }
-
- One final built-in function has been added that returns the value of
-the 2-bit Transaction State field of the Machine Status Register (MSR)
-as stored in 'CR0'.
-
- unsigned long __builtin_ttest (void)
-
- This built-in can be used to determine the current transaction state
-using the following code example:
-
- #include <htmintrin.h>
-
- unsigned char tx_state = _HTM_STATE (__builtin_ttest ());
-
- if (tx_state == _HTM_TRANSACTIONAL)
- {
- /* Code to use in transactional state. */
- }
- else if (tx_state == _HTM_NONTRANSACTIONAL)
- {
- /* Code to use in non-transactional state. */
- }
- else if (tx_state == _HTM_SUSPENDED)
- {
- /* Code to use in transaction suspended state. */
- }
-
-6.57.22.2 PowerPC HTM High Level Inline Functions
-.................................................
-
-The following high level HTM interface is made available by including
-'<htmxlintrin.h>' and using '-mhtm' or '-mcpu=CPU' where CPU is 'power8'
-or later. This interface is common between PowerPC and S/390, allowing
-users to write one HTM source implementation that can be compiled and
-executed on either system.
-
- long __TM_simple_begin (void)
- long __TM_begin (void* const TM_buff)
- long __TM_end (void)
- void __TM_abort (void)
- void __TM_named_abort (unsigned char const code)
- void __TM_resume (void)
- void __TM_suspend (void)
-
- long __TM_is_user_abort (void* const TM_buff)
- long __TM_is_named_user_abort (void* const TM_buff, unsigned char *code)
- long __TM_is_illegal (void* const TM_buff)
- long __TM_is_footprint_exceeded (void* const TM_buff)
- long __TM_nesting_depth (void* const TM_buff)
- long __TM_is_nested_too_deep(void* const TM_buff)
- long __TM_is_conflict(void* const TM_buff)
- long __TM_is_failure_persistent(void* const TM_buff)
- long __TM_failure_address(void* const TM_buff)
- long long __TM_failure_code(void* const TM_buff)
-
- Using these common set of HTM inline functions, we can create a more
-portable version of the HTM example in the previous section that will
-work on either PowerPC or S/390:
-
- #include <htmxlintrin.h>
-
- int num_retries = 10;
- TM_buff_type TM_buff;
-
- while (1)
- {
- if (__TM_begin (TM_buff))
- {
- /* Transaction State Initiated. */
- if (is_locked (lock))
- __TM_abort ();
- ... transaction code...
- __TM_end ();
- break;
- }
- else
- {
- /* Transaction State Failed. Use locks if the transaction
- failure is "persistent" or we've tried too many times. */
- if (num_retries-- <= 0
- || __TM_is_failure_persistent (TM_buff))
- {
- acquire_lock (lock);
- ... non transactional fallback path...
- release_lock (lock);
- break;
- }
- }
- }
-
-
-File: gcc.info, Node: RX Built-in Functions, Next: S/390 System z Built-in Functions, Prev: PowerPC Hardware Transactional Memory Built-in Functions, Up: Target Builtins
-
-6.57.23 RX Built-in Functions
------------------------------
-
-GCC supports some of the RX instructions which cannot be expressed in
-the C programming language via the use of built-in functions. The
-following functions are supported:
-
- -- Built-in Function: void __builtin_rx_brk (void)
- Generates the 'brk' machine instruction.
-
- -- Built-in Function: void __builtin_rx_clrpsw (int)
- Generates the 'clrpsw' machine instruction to clear the specified
- bit in the processor status word.
-
- -- Built-in Function: void __builtin_rx_int (int)
- Generates the 'int' machine instruction to generate an interrupt
- with the specified value.
-
- -- Built-in Function: void __builtin_rx_machi (int, int)
- Generates the 'machi' machine instruction to add the result of
- multiplying the top 16 bits of the two arguments into the
- accumulator.
-
- -- Built-in Function: void __builtin_rx_maclo (int, int)
- Generates the 'maclo' machine instruction to add the result of
- multiplying the bottom 16 bits of the two arguments into the
- accumulator.
-
- -- Built-in Function: void __builtin_rx_mulhi (int, int)
- Generates the 'mulhi' machine instruction to place the result of
- multiplying the top 16 bits of the two arguments into the
- accumulator.
-
- -- Built-in Function: void __builtin_rx_mullo (int, int)
- Generates the 'mullo' machine instruction to place the result of
- multiplying the bottom 16 bits of the two arguments into the
- accumulator.
-
- -- Built-in Function: int __builtin_rx_mvfachi (void)
- Generates the 'mvfachi' machine instruction to read the top 32 bits
- of the accumulator.
-
- -- Built-in Function: int __builtin_rx_mvfacmi (void)
- Generates the 'mvfacmi' machine instruction to read the middle 32
- bits of the accumulator.
-
- -- Built-in Function: int __builtin_rx_mvfc (int)
- Generates the 'mvfc' machine instruction which reads the control
- register specified in its argument and returns its value.
-
- -- Built-in Function: void __builtin_rx_mvtachi (int)
- Generates the 'mvtachi' machine instruction to set the top 32 bits
- of the accumulator.
-
- -- Built-in Function: void __builtin_rx_mvtaclo (int)
- Generates the 'mvtaclo' machine instruction to set the bottom 32
- bits of the accumulator.
-
- -- Built-in Function: void __builtin_rx_mvtc (int reg, int val)
- Generates the 'mvtc' machine instruction which sets control
- register number 'reg' to 'val'.
-
- -- Built-in Function: void __builtin_rx_mvtipl (int)
- Generates the 'mvtipl' machine instruction set the interrupt
- priority level.
-
- -- Built-in Function: void __builtin_rx_racw (int)
- Generates the 'racw' machine instruction to round the accumulator
- according to the specified mode.
-
- -- Built-in Function: int __builtin_rx_revw (int)
- Generates the 'revw' machine instruction which swaps the bytes in
- the argument so that bits 0-7 now occupy bits 8-15 and vice versa,
- and also bits 16-23 occupy bits 24-31 and vice versa.
-
- -- Built-in Function: void __builtin_rx_rmpa (void)
- Generates the 'rmpa' machine instruction which initiates a repeated
- multiply and accumulate sequence.
-
- -- Built-in Function: void __builtin_rx_round (float)
- Generates the 'round' machine instruction which returns the
- floating-point argument rounded according to the current rounding
- mode set in the floating-point status word register.
-
- -- Built-in Function: int __builtin_rx_sat (int)
- Generates the 'sat' machine instruction which returns the saturated
- value of the argument.
-
- -- Built-in Function: void __builtin_rx_setpsw (int)
- Generates the 'setpsw' machine instruction to set the specified bit
- in the processor status word.
-
- -- Built-in Function: void __builtin_rx_wait (void)
- Generates the 'wait' machine instruction.
-
-
-File: gcc.info, Node: S/390 System z Built-in Functions, Next: SH Built-in Functions, Prev: RX Built-in Functions, Up: Target Builtins
-
-6.57.24 S/390 System z Built-in Functions
------------------------------------------
-
- -- Built-in Function: int __builtin_tbegin (void*)
- Generates the 'tbegin' machine instruction starting a
- non-constraint hardware transaction. If the parameter is non-NULL
- the memory area is used to store the transaction diagnostic buffer
- and will be passed as first operand to 'tbegin'. This buffer can
- be defined using the 'struct __htm_tdb' C struct defined in
- 'htmintrin.h' and must reside on a double-word boundary. The
- second tbegin operand is set to '0xff0c'. This enables
- save/restore of all GPRs and disables aborts for FPR and AR
- manipulations inside the transaction body. The condition code set
- by the tbegin instruction is returned as integer value. The tbegin
- instruction by definition overwrites the content of all FPRs. The
- compiler will generate code which saves and restores the FPRs. For
- soft-float code it is recommended to used the '*_nofloat' variant.
- In order to prevent a TDB from being written it is required to pass
- an constant zero value as parameter. Passing the zero value
- through a variable is not sufficient. Although modifications of
- access registers inside the transaction will not trigger an
- transaction abort it is not supported to actually modify them.
- Access registers do not get saved when entering a transaction.
- They will have undefined state when reaching the abort code.
-
- Macros for the possible return codes of tbegin are defined in the
-'htmintrin.h' header file:
-
-'_HTM_TBEGIN_STARTED'
- 'tbegin' has been executed as part of normal processing. The
- transaction body is supposed to be executed.
-'_HTM_TBEGIN_INDETERMINATE'
- The transaction was aborted due to an indeterminate condition which
- might be persistent.
-'_HTM_TBEGIN_TRANSIENT'
- The transaction aborted due to a transient failure. The
- transaction should be re-executed in that case.
-'_HTM_TBEGIN_PERSISTENT'
- The transaction aborted due to a persistent failure. Re-execution
- under same circumstances will not be productive.
-
- -- Macro: _HTM_FIRST_USER_ABORT_CODE
- The '_HTM_FIRST_USER_ABORT_CODE' defined in 'htmintrin.h' specifies
- the first abort code which can be used for '__builtin_tabort'.
- Values below this threshold are reserved for machine use.
-
- -- Data type: struct __htm_tdb
- The 'struct __htm_tdb' defined in 'htmintrin.h' describes the
- structure of the transaction diagnostic block as specified in the
- Principles of Operation manual chapter 5-91.
-
- -- Built-in Function: int __builtin_tbegin_nofloat (void*)
- Same as '__builtin_tbegin' but without FPR saves and restores.
- Using this variant in code making use of FPRs will leave the FPRs
- in undefined state when entering the transaction abort handler
- code.
-
- -- Built-in Function: int __builtin_tbegin_retry (void*, int)
- In addition to '__builtin_tbegin' a loop for transient failures is
- generated. If tbegin returns a condition code of 2 the transaction
- will be retried as often as specified in the second argument. The
- perform processor assist instruction is used to tell the CPU about
- the number of fails so far.
-
- -- Built-in Function: int __builtin_tbegin_retry_nofloat (void*, int)
- Same as '__builtin_tbegin_retry' but without FPR saves and
- restores. Using this variant in code making use of FPRs will leave
- the FPRs in undefined state when entering the transaction abort
- handler code.
-
- -- Built-in Function: void __builtin_tbeginc (void)
- Generates the 'tbeginc' machine instruction starting a constraint
- hardware transaction. The second operand is set to '0xff08'.
-
- -- Built-in Function: int __builtin_tend (void)
- Generates the 'tend' machine instruction finishing a transaction
- and making the changes visible to other threads. The condition
- code generated by tend is returned as integer value.
-
- -- Built-in Function: void __builtin_tabort (int)
- Generates the 'tabort' machine instruction with the specified abort
- code. Abort codes from 0 through 255 are reserved and will result
- in an error message.
-
- -- Built-in Function: void __builtin_tx_assist (int)
- Generates the 'ppa rX,rY,1' machine instruction. Where the integer
- parameter is loaded into rX and a value of zero is loaded into rY.
- The integer parameter specifies the number of times the transaction
- repeatedly aborted.
-
- -- Built-in Function: int __builtin_tx_nesting_depth (void)
- Generates the 'etnd' machine instruction. The current nesting
- depth is returned as integer value. For a nesting depth of 0 the
- code is not executed as part of an transaction.
-
- -- Built-in Function: void __builtin_non_tx_store (uint64_t *,
- uint64_t)
-
- Generates the 'ntstg' machine instruction. The second argument is
- written to the first arguments location. The store operation will
- not be rolled-back in case of an transaction abort.
-
-
-File: gcc.info, Node: SH Built-in Functions, Next: SPARC VIS Built-in Functions, Prev: S/390 System z Built-in Functions, Up: Target Builtins
-
-6.57.25 SH Built-in Functions
------------------------------
-
-The following built-in functions are supported on the SH1, SH2, SH3 and
-SH4 families of processors:
-
- -- Built-in Function: void __builtin_set_thread_pointer (void *PTR)
- Sets the 'GBR' register to the specified value PTR. This is
- usually used by system code that manages threads and execution
- contexts. The compiler normally does not generate code that
- modifies the contents of 'GBR' and thus the value is preserved
- across function calls. Changing the 'GBR' value in user code must
- be done with caution, since the compiler might use 'GBR' in order
- to access thread local variables.
-
- -- Built-in Function: void * __builtin_thread_pointer (void)
- Returns the value that is currently set in the 'GBR' register.
- Memory loads and stores that use the thread pointer as a base
- address are turned into 'GBR' based displacement loads and stores,
- if possible. For example:
- struct my_tcb
- {
- int a, b, c, d, e;
- };
-
- int get_tcb_value (void)
- {
- // Generate 'mov.l @(8,gbr),r0' instruction
- return ((my_tcb*)__builtin_thread_pointer ())->c;
- }
-
-
-File: gcc.info, Node: SPARC VIS Built-in Functions, Next: SPU Built-in Functions, Prev: SH Built-in Functions, Up: Target Builtins
-
-6.57.26 SPARC VIS Built-in Functions
-------------------------------------
-
-GCC supports SIMD operations on the SPARC using both the generic vector
-extensions (*note Vector Extensions::) as well as built-in functions for
-the SPARC Visual Instruction Set (VIS). When you use the '-mvis' switch,
-the VIS extension is exposed as the following built-in functions:
-
- typedef int v1si __attribute__ ((vector_size (4)));
- typedef int v2si __attribute__ ((vector_size (8)));
- typedef short v4hi __attribute__ ((vector_size (8)));
- typedef short v2hi __attribute__ ((vector_size (4)));
- typedef unsigned char v8qi __attribute__ ((vector_size (8)));
- typedef unsigned char v4qi __attribute__ ((vector_size (4)));
-
- void __builtin_vis_write_gsr (int64_t);
- int64_t __builtin_vis_read_gsr (void);
-
- void * __builtin_vis_alignaddr (void *, long);
- void * __builtin_vis_alignaddrl (void *, long);
- int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
- v2si __builtin_vis_faligndatav2si (v2si, v2si);
- v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
- v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
-
- v4hi __builtin_vis_fexpand (v4qi);
-
- v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
- v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
- v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
- v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
- v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
- v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
- v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
-
- v4qi __builtin_vis_fpack16 (v4hi);
- v8qi __builtin_vis_fpack32 (v2si, v8qi);
- v2hi __builtin_vis_fpackfix (v2si);
- v8qi __builtin_vis_fpmerge (v4qi, v4qi);
-
- int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
-
- long __builtin_vis_edge8 (void *, void *);
- long __builtin_vis_edge8l (void *, void *);
- long __builtin_vis_edge16 (void *, void *);
- long __builtin_vis_edge16l (void *, void *);
- long __builtin_vis_edge32 (void *, void *);
- long __builtin_vis_edge32l (void *, void *);
-
- long __builtin_vis_fcmple16 (v4hi, v4hi);
- long __builtin_vis_fcmple32 (v2si, v2si);
- long __builtin_vis_fcmpne16 (v4hi, v4hi);
- long __builtin_vis_fcmpne32 (v2si, v2si);
- long __builtin_vis_fcmpgt16 (v4hi, v4hi);
- long __builtin_vis_fcmpgt32 (v2si, v2si);
- long __builtin_vis_fcmpeq16 (v4hi, v4hi);
- long __builtin_vis_fcmpeq32 (v2si, v2si);
-
- v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
- v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
- v2si __builtin_vis_fpadd32 (v2si, v2si);
- v1si __builtin_vis_fpadd32s (v1si, v1si);
- v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
- v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
- v2si __builtin_vis_fpsub32 (v2si, v2si);
- v1si __builtin_vis_fpsub32s (v1si, v1si);
-
- long __builtin_vis_array8 (long, long);
- long __builtin_vis_array16 (long, long);
- long __builtin_vis_array32 (long, long);
-
- When you use the '-mvis2' switch, the VIS version 2.0 built-in
-functions also become available:
-
- long __builtin_vis_bmask (long, long);
- int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
- v2si __builtin_vis_bshufflev2si (v2si, v2si);
- v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
- v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);
-
- long __builtin_vis_edge8n (void *, void *);
- long __builtin_vis_edge8ln (void *, void *);
- long __builtin_vis_edge16n (void *, void *);
- long __builtin_vis_edge16ln (void *, void *);
- long __builtin_vis_edge32n (void *, void *);
- long __builtin_vis_edge32ln (void *, void *);
-
- When you use the '-mvis3' switch, the VIS version 3.0 built-in
-functions also become available:
-
- void __builtin_vis_cmask8 (long);
- void __builtin_vis_cmask16 (long);
- void __builtin_vis_cmask32 (long);
-
- v4hi __builtin_vis_fchksm16 (v4hi, v4hi);
-
- v4hi __builtin_vis_fsll16 (v4hi, v4hi);
- v4hi __builtin_vis_fslas16 (v4hi, v4hi);
- v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
- v4hi __builtin_vis_fsra16 (v4hi, v4hi);
- v2si __builtin_vis_fsll16 (v2si, v2si);
- v2si __builtin_vis_fslas16 (v2si, v2si);
- v2si __builtin_vis_fsrl16 (v2si, v2si);
- v2si __builtin_vis_fsra16 (v2si, v2si);
-
- long __builtin_vis_pdistn (v8qi, v8qi);
-
- v4hi __builtin_vis_fmean16 (v4hi, v4hi);
-
- int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
- int64_t __builtin_vis_fpsub64 (int64_t, int64_t);
-
- v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
- v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
- v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
- v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
- v2si __builtin_vis_fpadds32 (v2si, v2si);
- v1si __builtin_vis_fpadds32s (v1si, v1si);
- v2si __builtin_vis_fpsubs32 (v2si, v2si);
- v1si __builtin_vis_fpsubs32s (v1si, v1si);
-
- long __builtin_vis_fucmple8 (v8qi, v8qi);
- long __builtin_vis_fucmpne8 (v8qi, v8qi);
- long __builtin_vis_fucmpgt8 (v8qi, v8qi);
- long __builtin_vis_fucmpeq8 (v8qi, v8qi);
-
- float __builtin_vis_fhadds (float, float);
- double __builtin_vis_fhaddd (double, double);
- float __builtin_vis_fhsubs (float, float);
- double __builtin_vis_fhsubd (double, double);
- float __builtin_vis_fnhadds (float, float);
- double __builtin_vis_fnhaddd (double, double);
-
- int64_t __builtin_vis_umulxhi (int64_t, int64_t);
- int64_t __builtin_vis_xmulx (int64_t, int64_t);
- int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
-
-
-File: gcc.info, Node: SPU Built-in Functions, Next: TI C6X Built-in Functions, Prev: SPARC VIS Built-in Functions, Up: Target Builtins
-
-6.57.27 SPU Built-in Functions
-------------------------------
-
-GCC provides extensions for the SPU processor as described in the
-Sony/Toshiba/IBM SPU Language Extensions Specification, which can be
-found at <http://cell.scei.co.jp/> or
-<http://www.ibm.com/developerworks/power/cell/>. GCC's implementation
-differs in several ways.
-
- * The optional extension of specifying vector constants in
- parentheses is not supported.
-
- * A vector initializer requires no cast if the vector constant is of
- the same type as the variable it is initializing.
-
- * If 'signed' or 'unsigned' is omitted, the signedness of the vector
- type is the default signedness of the base type. The default
- varies depending on the operating system, so a portable program
- should always specify the signedness.
-
- * By default, the keyword '__vector' is added. The macro 'vector' is
- defined in '<spu_intrinsics.h>' and can be undefined.
-
- * GCC allows using a 'typedef' name as the type specifier for a
- vector type.
-
- * For C, overloaded functions are implemented with macros so the
- following does not work:
-
- spu_add ((vector signed int){1, 2, 3, 4}, foo);
-
- Since 'spu_add' is a macro, the vector constant in the example is
- treated as four separate arguments. Wrap the entire argument in
- parentheses for this to work.
-
- * The extended version of '__builtin_expect' is not supported.
-
- _Note:_ Only the interface described in the aforementioned
-specification is supported. Internally, GCC uses built-in functions to
-implement the required functionality, but these are not supported and
-are subject to change without notice.
-
-
-File: gcc.info, Node: TI C6X Built-in Functions, Next: TILE-Gx Built-in Functions, Prev: SPU Built-in Functions, Up: Target Builtins
-
-6.57.28 TI C6X Built-in Functions
----------------------------------
-
-GCC provides intrinsics to access certain instructions of the TI C6X
-processors. These intrinsics, listed below, are available after
-inclusion of the 'c6x_intrinsics.h' header file. They map directly to
-C6X instructions.
-
-
- int _sadd (int, int)
- int _ssub (int, int)
- int _sadd2 (int, int)
- int _ssub2 (int, int)
- long long _mpy2 (int, int)
- long long _smpy2 (int, int)
- int _add4 (int, int)
- int _sub4 (int, int)
- int _saddu4 (int, int)
-
- int _smpy (int, int)
- int _smpyh (int, int)
- int _smpyhl (int, int)
- int _smpylh (int, int)
-
- int _sshl (int, int)
- int _subc (int, int)
-
- int _avg2 (int, int)
- int _avgu4 (int, int)
-
- int _clrr (int, int)
- int _extr (int, int)
- int _extru (int, int)
- int _abs (int)
- int _abs2 (int)
-
-
-File: gcc.info, Node: TILE-Gx Built-in Functions, Next: TILEPro Built-in Functions, Prev: TI C6X Built-in Functions, Up: Target Builtins
-
-6.57.29 TILE-Gx Built-in Functions
-----------------------------------
-
-GCC provides intrinsics to access every instruction of the TILE-Gx
-processor. The intrinsics are of the form:
-
-
- unsigned long long __insn_OP (...)
-
- Where OP is the name of the instruction. Refer to the ISA manual for
-the complete list of instructions.
-
- GCC also provides intrinsics to directly access the network registers.
-The intrinsics are:
-
-
- unsigned long long __tile_idn0_receive (void)
- unsigned long long __tile_idn1_receive (void)
- unsigned long long __tile_udn0_receive (void)
- unsigned long long __tile_udn1_receive (void)
- unsigned long long __tile_udn2_receive (void)
- unsigned long long __tile_udn3_receive (void)
- void __tile_idn_send (unsigned long long)
- void __tile_udn_send (unsigned long long)
-
- The intrinsic 'void __tile_network_barrier (void)' is used to guarantee
-that no network operations before it are reordered with those after it.
-
-
-File: gcc.info, Node: TILEPro Built-in Functions, Prev: TILE-Gx Built-in Functions, Up: Target Builtins
-
-6.57.30 TILEPro Built-in Functions
-----------------------------------
-
-GCC provides intrinsics to access every instruction of the TILEPro
-processor. The intrinsics are of the form:
-
-
- unsigned __insn_OP (...)
-
-where OP is the name of the instruction. Refer to the ISA manual for
-the complete list of instructions.
-
- GCC also provides intrinsics to directly access the network registers.
-The intrinsics are:
-
-
- unsigned __tile_idn0_receive (void)
- unsigned __tile_idn1_receive (void)
- unsigned __tile_sn_receive (void)
- unsigned __tile_udn0_receive (void)
- unsigned __tile_udn1_receive (void)
- unsigned __tile_udn2_receive (void)
- unsigned __tile_udn3_receive (void)
- void __tile_idn_send (unsigned)
- void __tile_sn_send (unsigned)
- void __tile_udn_send (unsigned)
-
- The intrinsic 'void __tile_network_barrier (void)' is used to guarantee
-that no network operations before it are reordered with those after it.
-
-
-File: gcc.info, Node: Target Format Checks, Next: Pragmas, Prev: Target Builtins, Up: C Extensions
-
-6.58 Format Checks Specific to Particular Target Machines
-=========================================================
-
-For some target machines, GCC supports additional options to the format
-attribute (*note Declaring Attributes of Functions: Function
-Attributes.).
-
-* Menu:
-
-* Solaris Format Checks::
-* Darwin Format Checks::
-
-
-File: gcc.info, Node: Solaris Format Checks, Next: Darwin Format Checks, Up: Target Format Checks
-
-6.58.1 Solaris Format Checks
-----------------------------
-
-Solaris targets support the 'cmn_err' (or '__cmn_err__') format check.
-'cmn_err' accepts a subset of the standard 'printf' conversions, and the
-two-argument '%b' conversion for displaying bit-fields. See the Solaris
-man page for 'cmn_err' for more information.
-
-
-File: gcc.info, Node: Darwin Format Checks, Prev: Solaris Format Checks, Up: Target Format Checks
-
-6.58.2 Darwin Format Checks
----------------------------
-
-Darwin targets support the 'CFString' (or '__CFString__') in the format
-attribute context. Declarations made with such attribution are parsed
-for correct syntax and format argument types. However, parsing of the
-format string itself is currently undefined and is not carried out by
-this version of the compiler.
-
- Additionally, 'CFStringRefs' (defined by the 'CoreFoundation' headers)
-may also be used as format arguments. Note that the relevant headers
-are only likely to be available on Darwin (OSX) installations. On such
-installations, the XCode and system documentation provide descriptions
-of 'CFString', 'CFStringRefs' and associated functions.
-
-
-File: gcc.info, Node: Pragmas, Next: Unnamed Fields, Prev: Target Format Checks, Up: C Extensions
-
-6.59 Pragmas Accepted by GCC
-============================
-
-GCC supports several types of pragmas, primarily in order to compile
-code originally written for other compilers. Note that in general we do
-not recommend the use of pragmas; *Note Function Attributes::, for
-further explanation.
-
-* Menu:
-
-* ARM Pragmas::
-* M32C Pragmas::
-* MeP Pragmas::
-* RS/6000 and PowerPC Pragmas::
-* Darwin Pragmas::
-* Solaris Pragmas::
-* Symbol-Renaming Pragmas::
-* Structure-Packing Pragmas::
-* Weak Pragmas::
-* Diagnostic Pragmas::
-* Visibility Pragmas::
-* Push/Pop Macro Pragmas::
-* Function Specific Option Pragmas::
-* Loop-Specific Pragmas::
-
-
-File: gcc.info, Node: ARM Pragmas, Next: M32C Pragmas, Up: Pragmas
-
-6.59.1 ARM Pragmas
-------------------
-
-The ARM target defines pragmas for controlling the default addition of
-'long_call' and 'short_call' attributes to functions. *Note Function
-Attributes::, for information about the effects of these attributes.
-
-'long_calls'
- Set all subsequent functions to have the 'long_call' attribute.
-
-'no_long_calls'
- Set all subsequent functions to have the 'short_call' attribute.
-
-'long_calls_off'
- Do not affect the 'long_call' or 'short_call' attributes of
- subsequent functions.
-
-
-File: gcc.info, Node: M32C Pragmas, Next: MeP Pragmas, Prev: ARM Pragmas, Up: Pragmas
-
-6.59.2 M32C Pragmas
--------------------
-
-'GCC memregs NUMBER'
- Overrides the command-line option '-memregs=' for the current file.
- Use with care! This pragma must be before any function in the
- file, and mixing different memregs values in different objects may
- make them incompatible. This pragma is useful when a
- performance-critical function uses a memreg for temporary values,
- as it may allow you to reduce the number of memregs used.
-
-'ADDRESS NAME ADDRESS'
- For any declared symbols matching NAME, this does three things to
- that symbol: it forces the symbol to be located at the given
- address (a number), it forces the symbol to be volatile, and it
- changes the symbol's scope to be static. This pragma exists for
- compatibility with other compilers, but note that the common
- '1234H' numeric syntax is not supported (use '0x1234' instead).
- Example:
-
- #pragma ADDRESS port3 0x103
- char port3;
-
-
-File: gcc.info, Node: MeP Pragmas, Next: RS/6000 and PowerPC Pragmas, Prev: M32C Pragmas, Up: Pragmas
-
-6.59.3 MeP Pragmas
-------------------
-
-'custom io_volatile (on|off)'
- Overrides the command-line option '-mio-volatile' for the current
- file. Note that for compatibility with future GCC releases, this
- option should only be used once before any 'io' variables in each
- file.
-
-'GCC coprocessor available REGISTERS'
- Specifies which coprocessor registers are available to the register
- allocator. REGISTERS may be a single register, register range
- separated by ellipses, or comma-separated list of those. Example:
-
- #pragma GCC coprocessor available $c0...$c10, $c28
-
-'GCC coprocessor call_saved REGISTERS'
- Specifies which coprocessor registers are to be saved and restored
- by any function using them. REGISTERS may be a single register,
- register range separated by ellipses, or comma-separated list of
- those. Example:
-
- #pragma GCC coprocessor call_saved $c4...$c6, $c31
-
-'GCC coprocessor subclass '(A|B|C|D)' = REGISTERS'
- Creates and defines a register class. These register classes can
- be used by inline 'asm' constructs. REGISTERS may be a single
- register, register range separated by ellipses, or comma-separated
- list of those. Example:
-
- #pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
-
- asm ("cpfoo %0" : "=B" (x));
-
-'GCC disinterrupt NAME , NAME ...'
- For the named functions, the compiler adds code to disable
- interrupts for the duration of those functions. If any functions
- so named are not encountered in the source, a warning is emitted
- that the pragma is not used. Examples:
-
- #pragma disinterrupt foo
- #pragma disinterrupt bar, grill
- int foo () { ... }
-
-'GCC call NAME , NAME ...'
- For the named functions, the compiler always uses a
- register-indirect call model when calling the named functions.
- Examples:
-
- extern int foo ();
- #pragma call foo
-
-
-File: gcc.info, Node: RS/6000 and PowerPC Pragmas, Next: Darwin Pragmas, Prev: MeP Pragmas, Up: Pragmas
-
-6.59.4 RS/6000 and PowerPC Pragmas
-----------------------------------
-
-The RS/6000 and PowerPC targets define one pragma for controlling
-whether or not the 'longcall' attribute is added to function
-declarations by default. This pragma overrides the '-mlongcall' option,
-but not the 'longcall' and 'shortcall' attributes. *Note RS/6000 and
-PowerPC Options::, for more information about when long calls are and
-are not necessary.
-
-'longcall (1)'
- Apply the 'longcall' attribute to all subsequent function
- declarations.
-
-'longcall (0)'
- Do not apply the 'longcall' attribute to subsequent function
- declarations.
-
-
-File: gcc.info, Node: Darwin Pragmas, Next: Solaris Pragmas, Prev: RS/6000 and PowerPC Pragmas, Up: Pragmas
-
-6.59.5 Darwin Pragmas
----------------------
-
-The following pragmas are available for all architectures running the
-Darwin operating system. These are useful for compatibility with other
-Mac OS compilers.
-
-'mark TOKENS...'
- This pragma is accepted, but has no effect.
-
-'options align=ALIGNMENT'
- This pragma sets the alignment of fields in structures. The values
- of ALIGNMENT may be 'mac68k', to emulate m68k alignment, or
- 'power', to emulate PowerPC alignment. Uses of this pragma nest
- properly; to restore the previous setting, use 'reset' for the
- ALIGNMENT.
-
-'segment TOKENS...'
- This pragma is accepted, but has no effect.
-
-'unused (VAR [, VAR]...)'
- This pragma declares variables to be possibly unused. GCC does not
- produce warnings for the listed variables. The effect is similar
- to that of the 'unused' attribute, except that this pragma may
- appear anywhere within the variables' scopes.
-
-
-File: gcc.info, Node: Solaris Pragmas, Next: Symbol-Renaming Pragmas, Prev: Darwin Pragmas, Up: Pragmas
-
-6.59.6 Solaris Pragmas
-----------------------
-
-The Solaris target supports '#pragma redefine_extname' (*note
-Symbol-Renaming Pragmas::). It also supports additional '#pragma'
-directives for compatibility with the system compiler.
-
-'align ALIGNMENT (VARIABLE [, VARIABLE]...)'
-
- Increase the minimum alignment of each VARIABLE to ALIGNMENT. This
- is the same as GCC's 'aligned' attribute *note Variable
- Attributes::). Macro expansion occurs on the arguments to this
- pragma when compiling C and Objective-C. It does not currently
- occur when compiling C++, but this is a bug which may be fixed in a
- future release.
-
-'fini (FUNCTION [, FUNCTION]...)'
-
- This pragma causes each listed FUNCTION to be called after main, or
- during shared module unloading, by adding a call to the '.fini'
- section.
-
-'init (FUNCTION [, FUNCTION]...)'
-
- This pragma causes each listed FUNCTION to be called during
- initialization (before 'main') or during shared module loading, by
- adding a call to the '.init' section.
-
-
-File: gcc.info, Node: Symbol-Renaming Pragmas, Next: Structure-Packing Pragmas, Prev: Solaris Pragmas, Up: Pragmas
-
-6.59.7 Symbol-Renaming Pragmas
-------------------------------
-
-For compatibility with the Solaris system headers, GCC supports two
-'#pragma' directives that change the name used in assembly for a given
-declaration. To get this effect on all platforms supported by GCC, use
-the asm labels extension (*note Asm Labels::).
-
-'redefine_extname OLDNAME NEWNAME'
-
- This pragma gives the C function OLDNAME the assembly symbol
- NEWNAME. The preprocessor macro '__PRAGMA_REDEFINE_EXTNAME' is
- defined if this pragma is available (currently on all platforms).
-
- This pragma and the asm labels extension interact in a complicated
-manner. Here are some corner cases you may want to be aware of.
-
- 1. Both pragmas silently apply only to declarations with external
- linkage. Asm labels do not have this restriction.
-
- 2. In C++, both pragmas silently apply only to declarations with "C"
- linkage. Again, asm labels do not have this restriction.
-
- 3. If any of the three ways of changing the assembly name of a
- declaration is applied to a declaration whose assembly name has
- already been determined (either by a previous use of one of these
- features, or because the compiler needed the assembly name in order
- to generate code), and the new name is different, a warning issues
- and the name does not change.
-
- 4. The OLDNAME used by '#pragma redefine_extname' is always the
- C-language name.
-
-
-File: gcc.info, Node: Structure-Packing Pragmas, Next: Weak Pragmas, Prev: Symbol-Renaming Pragmas, Up: Pragmas
-
-6.59.8 Structure-Packing Pragmas
---------------------------------
-
-For compatibility with Microsoft Windows compilers, GCC supports a set
-of '#pragma' directives that change the maximum alignment of members of
-structures (other than zero-width bit-fields), unions, and classes
-subsequently defined. The N value below always is required to be a
-small power of two and specifies the new alignment in bytes.
-
- 1. '#pragma pack(N)' simply sets the new alignment.
- 2. '#pragma pack()' sets the alignment to the one that was in effect
- when compilation started (see also command-line option
- '-fpack-struct[=N]' *note Code Gen Options::).
- 3. '#pragma pack(push[,N])' pushes the current alignment setting on an
- internal stack and then optionally sets the new alignment.
- 4. '#pragma pack(pop)' restores the alignment setting to the one saved
- at the top of the internal stack (and removes that stack entry).
- Note that '#pragma pack([N])' does not influence this internal
- stack; thus it is possible to have '#pragma pack(push)' followed by
- multiple '#pragma pack(N)' instances and finalized by a single
- '#pragma pack(pop)'.
-
- Some targets, e.g. i386 and PowerPC, support the 'ms_struct' '#pragma'
-which lays out a structure as the documented '__attribute__
-((ms_struct))'.
- 1. '#pragma ms_struct on' turns on the layout for structures declared.
- 2. '#pragma ms_struct off' turns off the layout for structures
- declared.
- 3. '#pragma ms_struct reset' goes back to the default layout.
-
-
-File: gcc.info, Node: Weak Pragmas, Next: Diagnostic Pragmas, Prev: Structure-Packing Pragmas, Up: Pragmas
-
-6.59.9 Weak Pragmas
--------------------
-
-For compatibility with SVR4, GCC supports a set of '#pragma' directives
-for declaring symbols to be weak, and defining weak aliases.
-
-'#pragma weak SYMBOL'
- This pragma declares SYMBOL to be weak, as if the declaration had
- the attribute of the same name. The pragma may appear before or
- after the declaration of SYMBOL. It is not an error for SYMBOL to
- never be defined at all.
-
-'#pragma weak SYMBOL1 = SYMBOL2'
- This pragma declares SYMBOL1 to be a weak alias of SYMBOL2. It is
- an error if SYMBOL2 is not defined in the current translation unit.
-
-
-File: gcc.info, Node: Diagnostic Pragmas, Next: Visibility Pragmas, Prev: Weak Pragmas, Up: Pragmas
-
-6.59.10 Diagnostic Pragmas
---------------------------
-
-GCC allows the user to selectively enable or disable certain types of
-diagnostics, and change the kind of the diagnostic. For example, a
-project's policy might require that all sources compile with '-Werror'
-but certain files might have exceptions allowing specific types of
-warnings. Or, a project might selectively enable diagnostics and treat
-them as errors depending on which preprocessor macros are defined.
-
-'#pragma GCC diagnostic KIND OPTION'
-
- Modifies the disposition of a diagnostic. Note that not all
- diagnostics are modifiable; at the moment only warnings (normally
- controlled by '-W...') can be controlled, and not all of them. Use
- '-fdiagnostics-show-option' to determine which diagnostics are
- controllable and which option controls them.
-
- KIND is 'error' to treat this diagnostic as an error, 'warning' to
- treat it like a warning (even if '-Werror' is in effect), or
- 'ignored' if the diagnostic is to be ignored. OPTION is a double
- quoted string that matches the command-line option.
-
- #pragma GCC diagnostic warning "-Wformat"
- #pragma GCC diagnostic error "-Wformat"
- #pragma GCC diagnostic ignored "-Wformat"
-
- Note that these pragmas override any command-line options. GCC
- keeps track of the location of each pragma, and issues diagnostics
- according to the state as of that point in the source file. Thus,
- pragmas occurring after a line do not affect diagnostics caused by
- that line.
-
-'#pragma GCC diagnostic push'
-'#pragma GCC diagnostic pop'
-
- Causes GCC to remember the state of the diagnostics as of each
- 'push', and restore to that point at each 'pop'. If a 'pop' has no
- matching 'push', the command-line options are restored.
-
- #pragma GCC diagnostic error "-Wuninitialized"
- foo(a); /* error is given for this one */
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wuninitialized"
- foo(b); /* no diagnostic for this one */
- #pragma GCC diagnostic pop
- foo(c); /* error is given for this one */
- #pragma GCC diagnostic pop
- foo(d); /* depends on command-line options */
-
- GCC also offers a simple mechanism for printing messages during
-compilation.
-
-'#pragma message STRING'
-
- Prints STRING as a compiler message on compilation. The message is
- informational only, and is neither a compilation warning nor an
- error.
-
- #pragma message "Compiling " __FILE__ "..."
-
- STRING may be parenthesized, and is printed with location
- information. For example,
-
- #define DO_PRAGMA(x) _Pragma (#x)
- #define TODO(x) DO_PRAGMA(message ("TODO - " #x))
-
- TODO(Remember to fix this)
-
- prints '/tmp/file.c:4: note: #pragma message: TODO - Remember to
- fix this'.
-
-
-File: gcc.info, Node: Visibility Pragmas, Next: Push/Pop Macro Pragmas, Prev: Diagnostic Pragmas, Up: Pragmas
-
-6.59.11 Visibility Pragmas
---------------------------
-
-'#pragma GCC visibility push(VISIBILITY)'
-'#pragma GCC visibility pop'
-
- This pragma allows the user to set the visibility for multiple
- declarations without having to give each a visibility attribute
- *Note Function Attributes::, for more information about visibility
- and the attribute syntax.
-
- In C++, '#pragma GCC visibility' affects only namespace-scope
- declarations. Class members and template specializations are not
- affected; if you want to override the visibility for a particular
- member or instantiation, you must use an attribute.
-
-
-File: gcc.info, Node: Push/Pop Macro Pragmas, Next: Function Specific Option Pragmas, Prev: Visibility Pragmas, Up: Pragmas
-
-6.59.12 Push/Pop Macro Pragmas
-------------------------------
-
-For compatibility with Microsoft Windows compilers, GCC supports
-'#pragma push_macro("MACRO_NAME")' and '#pragma
-pop_macro("MACRO_NAME")'.
-
-'#pragma push_macro("MACRO_NAME")'
- This pragma saves the value of the macro named as MACRO_NAME to the
- top of the stack for this macro.
-
-'#pragma pop_macro("MACRO_NAME")'
- This pragma sets the value of the macro named as MACRO_NAME to the
- value on top of the stack for this macro. If the stack for
- MACRO_NAME is empty, the value of the macro remains unchanged.
-
- For example:
-
- #define X 1
- #pragma push_macro("X")
- #undef X
- #define X -1
- #pragma pop_macro("X")
- int x [X];
-
-In this example, the definition of X as 1 is saved by '#pragma
-push_macro' and restored by '#pragma pop_macro'.
-
-
-File: gcc.info, Node: Function Specific Option Pragmas, Next: Loop-Specific Pragmas, Prev: Push/Pop Macro Pragmas, Up: Pragmas
-
-6.59.13 Function Specific Option Pragmas
-----------------------------------------
-
-'#pragma GCC target ("STRING"...)'
-
- This pragma allows you to set target specific options for functions
- defined later in the source file. One or more strings can be
- specified. Each function that is defined after this point is as if
- 'attribute((target("STRING")))' was specified for that function.
- The parenthesis around the options is optional. *Note Function
- Attributes::, for more information about the 'target' attribute and
- the attribute syntax.
-
- The '#pragma GCC target' pragma is presently implemented for
- i386/x86_64, PowerPC, and Nios II targets only.
-
-'#pragma GCC optimize ("STRING"...)'
-
- This pragma allows you to set global optimization options for
- functions defined later in the source file. One or more strings
- can be specified. Each function that is defined after this point
- is as if 'attribute((optimize("STRING")))' was specified for that
- function. The parenthesis around the options is optional. *Note
- Function Attributes::, for more information about the 'optimize'
- attribute and the attribute syntax.
-
- The '#pragma GCC optimize' pragma is not implemented in GCC
- versions earlier than 4.4.
-
-'#pragma GCC push_options'
-'#pragma GCC pop_options'
-
- These pragmas maintain a stack of the current target and
- optimization options. It is intended for include files where you
- temporarily want to switch to using a different '#pragma GCC
- target' or '#pragma GCC optimize' and then to pop back to the
- previous options.
-
- The '#pragma GCC push_options' and '#pragma GCC pop_options'
- pragmas are not implemented in GCC versions earlier than 4.4.
-
-'#pragma GCC reset_options'
-
- This pragma clears the current '#pragma GCC target' and '#pragma
- GCC optimize' to use the default switches as specified on the
- command line.
-
- The '#pragma GCC reset_options' pragma is not implemented in GCC
- versions earlier than 4.4.
-
-
-File: gcc.info, Node: Loop-Specific Pragmas, Prev: Function Specific Option Pragmas, Up: Pragmas
-
-6.59.14 Loop-Specific Pragmas
------------------------------
-
-'#pragma GCC ivdep'
-
- With this pragma, the programmer asserts that there are no loop-carried
-dependencies which would prevent that consecutive iterations of the
-following loop can be executed concurrently with SIMD (single
-instruction multiple data) instructions.
-
- For example, the compiler can only unconditionally vectorize the
-following loop with the pragma:
-
- void foo (int n, int *a, int *b, int *c)
- {
- int i, j;
- #pragma GCC ivdep
- for (i = 0; i < n; ++i)
- a[i] = b[i] + c[i];
- }
-
-In this example, using the 'restrict' qualifier had the same effect. In
-the following example, that would not be possible. Assume k < -m or k
->= m. Only with the pragma, the compiler knows that it can
-unconditionally vectorize the following loop:
-
- void ignore_vec_dep (int *a, int k, int c, int m)
- {
- #pragma GCC ivdep
- for (int i = 0; i < m; i++)
- a[i] = a[i + k] * c;
- }
-
-
-File: gcc.info, Node: Unnamed Fields, Next: Thread-Local, Prev: Pragmas, Up: C Extensions
-
-6.60 Unnamed struct/union fields within structs/unions
-======================================================
-
-As permitted by ISO C11 and for compatibility with other compilers, GCC
-allows you to define a structure or union that contains, as fields,
-structures and unions without names. For example:
-
- struct {
- int a;
- union {
- int b;
- float c;
- };
- int d;
- } foo;
-
-In this example, you are able to access members of the unnamed union
-with code like 'foo.b'. Note that only unnamed structs and unions are
-allowed, you may not have, for example, an unnamed 'int'.
-
- You must never create such structures that cause ambiguous field
-definitions. For example, in this structure:
-
- struct {
- int a;
- struct {
- int a;
- };
- } foo;
-
-it is ambiguous which 'a' is being referred to with 'foo.a'. The
-compiler gives errors for such constructs.
-
- Unless '-fms-extensions' is used, the unnamed field must be a structure
-or union definition without a tag (for example, 'struct { int a; };').
-If '-fms-extensions' is used, the field may also be a definition with a
-tag such as 'struct foo { int a; };', a reference to a previously
-defined structure or union such as 'struct foo;', or a reference to a
-'typedef' name for a previously defined structure or union type.
-
- The option '-fplan9-extensions' enables '-fms-extensions' as well as
-two other extensions. First, a pointer to a structure is automatically
-converted to a pointer to an anonymous field for assignments and
-function calls. For example:
-
- struct s1 { int a; };
- struct s2 { struct s1; };
- extern void f1 (struct s1 *);
- void f2 (struct s2 *p) { f1 (p); }
-
-In the call to 'f1' inside 'f2', the pointer 'p' is converted into a
-pointer to the anonymous field.
-
- Second, when the type of an anonymous field is a 'typedef' for a
-'struct' or 'union', code may refer to the field using the name of the
-'typedef'.
-
- typedef struct { int a; } s1;
- struct s2 { s1; };
- s1 f1 (struct s2 *p) { return p->s1; }
-
- These usages are only permitted when they are not ambiguous.
-
-
-File: gcc.info, Node: Thread-Local, Next: Binary constants, Prev: Unnamed Fields, Up: C Extensions
-
-6.61 Thread-Local Storage
-=========================
-
-Thread-local storage (TLS) is a mechanism by which variables are
-allocated such that there is one instance of the variable per extant
-thread. The runtime model GCC uses to implement this originates in the
-IA-64 processor-specific ABI, but has since been migrated to other
-processors as well. It requires significant support from the linker
-('ld'), dynamic linker ('ld.so'), and system libraries ('libc.so' and
-'libpthread.so'), so it is not available everywhere.
-
- At the user level, the extension is visible with a new storage class
-keyword: '__thread'. For example:
-
- __thread int i;
- extern __thread struct state s;
- static __thread char *p;
-
- The '__thread' specifier may be used alone, with the 'extern' or
-'static' specifiers, but with no other storage class specifier. When
-used with 'extern' or 'static', '__thread' must appear immediately after
-the other storage class specifier.
-
- The '__thread' specifier may be applied to any global, file-scoped
-static, function-scoped static, or static data member of a class. It
-may not be applied to block-scoped automatic or non-static data member.
-
- When the address-of operator is applied to a thread-local variable, it
-is evaluated at run time and returns the address of the current thread's
-instance of that variable. An address so obtained may be used by any
-thread. When a thread terminates, any pointers to thread-local
-variables in that thread become invalid.
-
- No static initialization may refer to the address of a thread-local
-variable.
-
- In C++, if an initializer is present for a thread-local variable, it
-must be a CONSTANT-EXPRESSION, as defined in 5.19.2 of the ANSI/ISO C++
-standard.
-
- See ELF Handling For Thread-Local Storage
-(http://www.akkadia.org/drepper/tls.pdf) for a detailed explanation of
-the four thread-local storage addressing models, and how the runtime is
-expected to function.
-
-* Menu:
-
-* C99 Thread-Local Edits::
-* C++98 Thread-Local Edits::
-
-
-File: gcc.info, Node: C99 Thread-Local Edits, Next: C++98 Thread-Local Edits, Up: Thread-Local
-
-6.61.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage
--------------------------------------------------------
-
-The following are a set of changes to ISO/IEC 9899:1999 (aka C99) that
-document the exact semantics of the language extension.
-
- * '5.1.2 Execution environments'
-
- Add new text after paragraph 1
-
- Within either execution environment, a "thread" is a flow of
- control within a program. It is implementation defined
- whether or not there may be more than one thread associated
- with a program. It is implementation defined how threads
- beyond the first are created, the name and type of the
- function called at thread startup, and how threads may be
- terminated. However, objects with thread storage duration
- shall be initialized before thread startup.
-
- * '6.2.4 Storage durations of objects'
-
- Add new text before paragraph 3
-
- An object whose identifier is declared with the storage-class
- specifier '__thread' has "thread storage duration". Its
- lifetime is the entire execution of the thread, and its stored
- value is initialized only once, prior to thread startup.
-
- * '6.4.1 Keywords'
-
- Add '__thread'.
-
- * '6.7.1 Storage-class specifiers'
-
- Add '__thread' to the list of storage class specifiers in paragraph
- 1.
-
- Change paragraph 2 to
-
- With the exception of '__thread', at most one storage-class
- specifier may be given [...]. The '__thread' specifier may be
- used alone, or immediately following 'extern' or 'static'.
-
- Add new text after paragraph 6
-
- The declaration of an identifier for a variable that has block
- scope that specifies '__thread' shall also specify either
- 'extern' or 'static'.
-
- The '__thread' specifier shall be used only with variables.
-
-
-File: gcc.info, Node: C++98 Thread-Local Edits, Prev: C99 Thread-Local Edits, Up: Thread-Local
-
-6.61.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage
---------------------------------------------------------
-
-The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
-that document the exact semantics of the language extension.
-
- * [intro.execution]
-
- New text after paragraph 4
-
- A "thread" is a flow of control within the abstract machine.
- It is implementation defined whether or not there may be more
- than one thread.
-
- New text after paragraph 7
-
- It is unspecified whether additional action must be taken to
- ensure when and whether side effects are visible to other
- threads.
-
- * [lex.key]
-
- Add '__thread'.
-
- * [basic.start.main]
-
- Add after paragraph 5
-
- The thread that begins execution at the 'main' function is
- called the "main thread". It is implementation defined how
- functions beginning threads other than the main thread are
- designated or typed. A function so designated, as well as the
- 'main' function, is called a "thread startup function". It is
- implementation defined what happens if a thread startup
- function returns. It is implementation defined what happens
- to other threads when any thread calls 'exit'.
-
- * [basic.start.init]
-
- Add after paragraph 4
-
- The storage for an object of thread storage duration shall be
- statically initialized before the first statement of the
- thread startup function. An object of thread storage duration
- shall not require dynamic initialization.
-
- * [basic.start.term]
-
- Add after paragraph 3
-
- The type of an object with thread storage duration shall not
- have a non-trivial destructor, nor shall it be an array type
- whose elements (directly or indirectly) have non-trivial
- destructors.
-
- * [basic.stc]
-
- Add "thread storage duration" to the list in paragraph 1.
-
- Change paragraph 2
-
- Thread, static, and automatic storage durations are associated
- with objects introduced by declarations [...].
-
- Add '__thread' to the list of specifiers in paragraph 3.
-
- * [basic.stc.thread]
-
- New section before [basic.stc.static]
-
- The keyword '__thread' applied to a non-local object gives the
- object thread storage duration.
-
- A local variable or class data member declared both 'static'
- and '__thread' gives the variable or member thread storage
- duration.
-
- * [basic.stc.static]
-
- Change paragraph 1
-
- All objects that have neither thread storage duration, dynamic
- storage duration nor are local [...].
-
- * [dcl.stc]
-
- Add '__thread' to the list in paragraph 1.
-
- Change paragraph 1
-
- With the exception of '__thread', at most one
- STORAGE-CLASS-SPECIFIER shall appear in a given
- DECL-SPECIFIER-SEQ. The '__thread' specifier may be used
- alone, or immediately following the 'extern' or 'static'
- specifiers. [...]
-
- Add after paragraph 5
-
- The '__thread' specifier can be applied only to the names of
- objects and to anonymous unions.
-
- * [class.mem]
-
- Add after paragraph 6
-
- Non-'static' members shall not be '__thread'.
-
-
-File: gcc.info, Node: Binary constants, Prev: Thread-Local, Up: C Extensions
-
-6.62 Binary constants using the '0b' prefix
-===========================================
-
-Integer constants can be written as binary constants, consisting of a
-sequence of '0' and '1' digits, prefixed by '0b' or '0B'. This is
-particularly useful in environments that operate a lot on the bit level
-(like microcontrollers).
-
- The following statements are identical:
-
- i = 42;
- i = 0x2a;
- i = 052;
- i = 0b101010;
-
- The type of these constants follows the same rules as for octal or
-hexadecimal integer constants, so suffixes like 'L' or 'UL' can be
-applied.
-
-
-File: gcc.info, Node: C++ Extensions, Next: Objective-C, Prev: C Extensions, Up: Top
-
-7 Extensions to the C++ Language
-********************************
-
-The GNU compiler provides these extensions to the C++ language (and you
-can also use most of the C language extensions in your C++ programs).
-If you want to write code that checks whether these features are
-available, you can test for the GNU compiler the same way as for C
-programs: check for a predefined macro '__GNUC__'. You can also use
-'__GNUG__' to test specifically for GNU C++ (*note Predefined Macros:
-(cpp)Common Predefined Macros.).
-
-* Menu:
-
-* C++ Volatiles:: What constitutes an access to a volatile object.
-* Restricted Pointers:: C99 restricted pointers and references.
-* Vague Linkage:: Where G++ puts inlines, vtables and such.
-* C++ Interface:: You can use a single C++ header file for both
- declarations and definitions.
-* Template Instantiation:: Methods for ensuring that exactly one copy of
- each needed template instantiation is emitted.
-* Bound member functions:: You can extract a function pointer to the
- method denoted by a '->*' or '.*' expression.
-* C++ Attributes:: Variable, function, and type attributes for C++ only.
-* Function Multiversioning:: Declaring multiple function versions.
-* Namespace Association:: Strong using-directives for namespace association.
-* Type Traits:: Compiler support for type traits
-* Java Exceptions:: Tweaking exception handling to work with Java.
-* Deprecated Features:: Things will disappear from G++.
-* Backwards Compatibility:: Compatibilities with earlier definitions of C++.
-
-
-File: gcc.info, Node: C++ Volatiles, Next: Restricted Pointers, Up: C++ Extensions
-
-7.1 When is a Volatile C++ Object Accessed?
-===========================================
-
-The C++ standard differs from the C standard in its treatment of
-volatile objects. It fails to specify what constitutes a volatile
-access, except to say that C++ should behave in a similar manner to C
-with respect to volatiles, where possible. However, the different
-lvalueness of expressions between C and C++ complicate the behavior.
-G++ behaves the same as GCC for volatile access, *Note Volatiles: C
-Extensions, for a description of GCC's behavior.
-
- The C and C++ language specifications differ when an object is accessed
-in a void context:
-
- volatile int *src = SOMEVALUE;
- *src;
-
- The C++ standard specifies that such expressions do not undergo lvalue
-to rvalue conversion, and that the type of the dereferenced object may
-be incomplete. The C++ standard does not specify explicitly that it is
-lvalue to rvalue conversion that is responsible for causing an access.
-There is reason to believe that it is, because otherwise certain simple
-expressions become undefined. However, because it would surprise most
-programmers, G++ treats dereferencing a pointer to volatile object of
-complete type as GCC would do for an equivalent type in C. When the
-object has incomplete type, G++ issues a warning; if you wish to force
-an error, you must force a conversion to rvalue with, for instance, a
-static cast.
-
- When using a reference to volatile, G++ does not treat equivalent
-expressions as accesses to volatiles, but instead issues a warning that
-no volatile is accessed. The rationale for this is that otherwise it
-becomes difficult to determine where volatile access occur, and not
-possible to ignore the return value from functions returning volatile
-references. Again, if you wish to force a read, cast the reference to
-an rvalue.
-
- G++ implements the same behavior as GCC does when assigning to a
-volatile object--there is no reread of the assigned-to object, the
-assigned rvalue is reused. Note that in C++ assignment expressions are
-lvalues, and if used as an lvalue, the volatile object is referred to.
-For instance, VREF refers to VOBJ, as expected, in the following
-example:
-
- volatile int vobj;
- volatile int &vref = vobj = SOMETHING;
-
-
-File: gcc.info, Node: Restricted Pointers, Next: Vague Linkage, Prev: C++ Volatiles, Up: C++ Extensions
-
-7.2 Restricting Pointer Aliasing
-================================
-
-As with the C front end, G++ understands the C99 feature of restricted
-pointers, specified with the '__restrict__', or '__restrict' type
-qualifier. Because you cannot compile C++ by specifying the '-std=c99'
-language flag, 'restrict' is not a keyword in C++.
-
- In addition to allowing restricted pointers, you can specify restricted
-references, which indicate that the reference is not aliased in the
-local context.
-
- void fn (int *__restrict__ rptr, int &__restrict__ rref)
- {
- /* ... */
- }
-
-In the body of 'fn', RPTR points to an unaliased integer and RREF refers
-to a (different) unaliased integer.
-
- You may also specify whether a member function's THIS pointer is
-unaliased by using '__restrict__' as a member function qualifier.
-
- void T::fn () __restrict__
- {
- /* ... */
- }
-
-Within the body of 'T::fn', THIS has the effective definition 'T
-*__restrict__ const this'. Notice that the interpretation of a
-'__restrict__' member function qualifier is different to that of 'const'
-or 'volatile' qualifier, in that it is applied to the pointer rather
-than the object. This is consistent with other compilers that implement
-restricted pointers.
-
- As with all outermost parameter qualifiers, '__restrict__' is ignored
-in function definition matching. This means you only need to specify
-'__restrict__' in a function definition, rather than in a function
-prototype as well.
-
-
-File: gcc.info, Node: Vague Linkage, Next: C++ Interface, Prev: Restricted Pointers, Up: C++ Extensions
-
-7.3 Vague Linkage
-=================
-
-There are several constructs in C++ that require space in the object
-file but are not clearly tied to a single translation unit. We say that
-these constructs have "vague linkage". Typically such constructs are
-emitted wherever they are needed, though sometimes we can be more
-clever.
-
-Inline Functions
- Inline functions are typically defined in a header file which can
- be included in many different compilations. Hopefully they can
- usually be inlined, but sometimes an out-of-line copy is necessary,
- if the address of the function is taken or if inlining fails. In
- general, we emit an out-of-line copy in all translation units where
- one is needed. As an exception, we only emit inline virtual
- functions with the vtable, since it always requires a copy.
-
- Local static variables and string constants used in an inline
- function are also considered to have vague linkage, since they must
- be shared between all inlined and out-of-line instances of the
- function.
-
-VTables
- C++ virtual functions are implemented in most compilers using a
- lookup table, known as a vtable. The vtable contains pointers to
- the virtual functions provided by a class, and each object of the
- class contains a pointer to its vtable (or vtables, in some
- multiple-inheritance situations). If the class declares any
- non-inline, non-pure virtual functions, the first one is chosen as
- the "key method" for the class, and the vtable is only emitted in
- the translation unit where the key method is defined.
-
- _Note:_ If the chosen key method is later defined as inline, the
- vtable is still emitted in every translation unit that defines it.
- Make sure that any inline virtuals are declared inline in the class
- body, even if they are not defined there.
-
-'type_info' objects
- C++ requires information about types to be written out in order to
- implement 'dynamic_cast', 'typeid' and exception handling. For
- polymorphic classes (classes with virtual functions), the
- 'type_info' object is written out along with the vtable so that
- 'dynamic_cast' can determine the dynamic type of a class object at
- run time. For all other types, we write out the 'type_info' object
- when it is used: when applying 'typeid' to an expression, throwing
- an object, or referring to a type in a catch clause or exception
- specification.
-
-Template Instantiations
- Most everything in this section also applies to template
- instantiations, but there are other options as well. *Note Where's
- the Template?: Template Instantiation.
-
- When used with GNU ld version 2.8 or later on an ELF system such as
-GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
-these constructs will be discarded at link time. This is known as
-COMDAT support.
-
- On targets that don't support COMDAT, but do support weak symbols, GCC
-uses them. This way one copy overrides all the others, but the unused
-copies still take up space in the executable.
-
- For targets that do not support either COMDAT or weak symbols, most
-entities with vague linkage are emitted as local symbols to avoid
-duplicate definition errors from the linker. This does not happen for
-local statics in inlines, however, as having multiple copies almost
-certainly breaks things.
-
- *Note Declarations and Definitions in One Header: C++ Interface, for
-another way to control placement of these constructs.
-
-
-File: gcc.info, Node: C++ Interface, Next: Template Instantiation, Prev: Vague Linkage, Up: C++ Extensions
-
-7.4 #pragma interface and implementation
-========================================
-
-'#pragma interface' and '#pragma implementation' provide the user with a
-way of explicitly directing the compiler to emit entities with vague
-linkage (and debugging information) in a particular translation unit.
-
- _Note:_ As of GCC 2.7.2, these '#pragma's are not useful in most cases,
-because of COMDAT support and the "key method" heuristic mentioned in
-*note Vague Linkage::. Using them can actually cause your program to
-grow due to unnecessary out-of-line copies of inline functions.
-Currently (3.4) the only benefit of these '#pragma's is reduced
-duplication of debugging information, and that should be addressed soon
-on DWARF 2 targets with the use of COMDAT groups.
-
-'#pragma interface'
-'#pragma interface "SUBDIR/OBJECTS.h"'
- Use this directive in _header files_ that define object classes, to
- save space in most of the object files that use those classes.
- Normally, local copies of certain information (backup copies of
- inline member functions, debugging information, and the internal
- tables that implement virtual functions) must be kept in each
- object file that includes class definitions. You can use this
- pragma to avoid such duplication. When a header file containing
- '#pragma interface' is included in a compilation, this auxiliary
- information is not generated (unless the main input source file
- itself uses '#pragma implementation'). Instead, the object files
- contain references to be resolved at link time.
-
- The second form of this directive is useful for the case where you
- have multiple headers with the same name in different directories.
- If you use this form, you must specify the same string to '#pragma
- implementation'.
-
-'#pragma implementation'
-'#pragma implementation "OBJECTS.h"'
- Use this pragma in a _main input file_, when you want full output
- from included header files to be generated (and made globally
- visible). The included header file, in turn, should use '#pragma
- interface'. Backup copies of inline member functions, debugging
- information, and the internal tables used to implement virtual
- functions are all generated in implementation files.
-
- If you use '#pragma implementation' with no argument, it applies to
- an include file with the same basename(1) as your source file. For
- example, in 'allclass.cc', giving just '#pragma implementation' by
- itself is equivalent to '#pragma implementation "allclass.h"'.
-
- In versions of GNU C++ prior to 2.6.0 'allclass.h' was treated as
- an implementation file whenever you would include it from
- 'allclass.cc' even if you never specified '#pragma implementation'.
- This was deemed to be more trouble than it was worth, however, and
- disabled.
-
- Use the string argument if you want a single implementation file to
- include code from multiple header files. (You must also use
- '#include' to include the header file; '#pragma implementation'
- only specifies how to use the file--it doesn't actually include
- it.)
-
- There is no way to split up the contents of a single header file
- into multiple implementation files.
-
- '#pragma implementation' and '#pragma interface' also have an effect on
-function inlining.
-
- If you define a class in a header file marked with '#pragma interface',
-the effect on an inline function defined in that class is similar to an
-explicit 'extern' declaration--the compiler emits no code at all to
-define an independent version of the function. Its definition is used
-only for inlining with its callers.
-
- Conversely, when you include the same header file in a main source file
-that declares it as '#pragma implementation', the compiler emits code
-for the function itself; this defines a version of the function that can
-be found via pointers (or by callers compiled without inlining). If all
-calls to the function can be inlined, you can avoid emitting the
-function by compiling with '-fno-implement-inlines'. If any calls are
-not inlined, you will get linker errors.
-
- ---------- Footnotes ----------
-
- (1) A file's "basename" is the name stripped of all leading path
-information and of trailing suffixes, such as '.h' or '.C' or '.cc'.
-
-
-File: gcc.info, Node: Template Instantiation, Next: Bound member functions, Prev: C++ Interface, Up: C++ Extensions
-
-7.5 Where's the Template?
-=========================
-
-C++ templates are the first language feature to require more
-intelligence from the environment than one usually finds on a UNIX
-system. Somehow the compiler and linker have to make sure that each
-template instance occurs exactly once in the executable if it is needed,
-and not at all otherwise. There are two basic approaches to this
-problem, which are referred to as the Borland model and the Cfront
-model.
-
-Borland model
- Borland C++ solved the template instantiation problem by adding the
- code equivalent of common blocks to their linker; the compiler
- emits template instances in each translation unit that uses them,
- and the linker collapses them together. The advantage of this
- model is that the linker only has to consider the object files
- themselves; there is no external complexity to worry about. This
- disadvantage is that compilation time is increased because the
- template code is being compiled repeatedly. Code written for this
- model tends to include definitions of all templates in the header
- file, since they must be seen to be instantiated.
-
-Cfront model
- The AT&T C++ translator, Cfront, solved the template instantiation
- problem by creating the notion of a template repository, an
- automatically maintained place where template instances are stored.
- A more modern version of the repository works as follows: As
- individual object files are built, the compiler places any template
- definitions and instantiations encountered in the repository. At
- link time, the link wrapper adds in the objects in the repository
- and compiles any needed instances that were not previously emitted.
- The advantages of this model are more optimal compilation speed and
- the ability to use the system linker; to implement the Borland
- model a compiler vendor also needs to replace the linker. The
- disadvantages are vastly increased complexity, and thus potential
- for error; for some code this can be just as transparent, but in
- practice it can been very difficult to build multiple programs in
- one directory and one program in multiple directories. Code
- written for this model tends to separate definitions of non-inline
- member templates into a separate file, which should be compiled
- separately.
-
- When used with GNU ld version 2.8 or later on an ELF system such as
-GNU/Linux or Solaris 2, or on Microsoft Windows, G++ supports the
-Borland model. On other systems, G++ implements neither automatic
-model.
-
- You have the following options for dealing with template
-instantiations:
-
- 1. Compile your template-using code with '-frepo'. The compiler
- generates files with the extension '.rpo' listing all of the
- template instantiations used in the corresponding object files that
- could be instantiated there; the link wrapper, 'collect2', then
- updates the '.rpo' files to tell the compiler where to place those
- instantiations and rebuild any affected object files. The
- link-time overhead is negligible after the first pass, as the
- compiler continues to place the instantiations in the same files.
-
- This is your best option for application code written for the
- Borland model, as it just works. Code written for the Cfront model
- needs to be modified so that the template definitions are available
- at one or more points of instantiation; usually this is as simple
- as adding '#include <tmethods.cc>' to the end of each template
- header.
-
- For library code, if you want the library to provide all of the
- template instantiations it needs, just try to link all of its
- object files together; the link will fail, but cause the
- instantiations to be generated as a side effect. Be warned,
- however, that this may cause conflicts if multiple libraries try to
- provide the same instantiations. For greater control, use explicit
- instantiation as described in the next option.
-
- 2. Compile your code with '-fno-implicit-templates' to disable the
- implicit generation of template instances, and explicitly
- instantiate all the ones you use. This approach requires more
- knowledge of exactly which instances you need than do the others,
- but it's less mysterious and allows greater control. You can
- scatter the explicit instantiations throughout your program,
- perhaps putting them in the translation units where the instances
- are used or the translation units that define the templates
- themselves; you can put all of the explicit instantiations you need
- into one big file; or you can create small files like
-
- #include "Foo.h"
- #include "Foo.cc"
-
- template class Foo<int>;
- template ostream& operator <<
- (ostream&, const Foo<int>&);
-
- for each of the instances you need, and create a template
- instantiation library from those.
-
- If you are using Cfront-model code, you can probably get away with
- not using '-fno-implicit-templates' when compiling files that don't
- '#include' the member template definitions.
-
- If you use one big file to do the instantiations, you may want to
- compile it without '-fno-implicit-templates' so you get all of the
- instances required by your explicit instantiations (but not by any
- other files) without having to specify them as well.
-
- The ISO C++ 2011 standard allows forward declaration of explicit
- instantiations (with 'extern'). G++ supports explicit
- instantiation declarations in C++98 mode and has extended the
- template instantiation syntax to support instantiation of the
- compiler support data for a template class (i.e. the vtable)
- without instantiating any of its members (with 'inline'), and
- instantiation of only the static data members of a template class,
- without the support data or member functions (with ('static'):
-
- extern template int max (int, int);
- inline template class Foo<int>;
- static template class Foo<int>;
-
- 3. Do nothing. Pretend G++ does implement automatic instantiation
- management. Code written for the Borland model works fine, but
- each translation unit contains instances of each of the templates
- it uses. In a large program, this can lead to an unacceptable
- amount of code duplication.
-
-
-File: gcc.info, Node: Bound member functions, Next: C++ Attributes, Prev: Template Instantiation, Up: C++ Extensions
-
-7.6 Extracting the function pointer from a bound pointer to member function
-===========================================================================
-
-In C++, pointer to member functions (PMFs) are implemented using a wide
-pointer of sorts to handle all the possible call mechanisms; the PMF
-needs to store information about how to adjust the 'this' pointer, and
-if the function pointed to is virtual, where to find the vtable, and
-where in the vtable to look for the member function. If you are using
-PMFs in an inner loop, you should really reconsider that decision. If
-that is not an option, you can extract the pointer to the function that
-would be called for a given object/PMF pair and call it directly inside
-the inner loop, to save a bit of time.
-
- Note that you still pay the penalty for the call through a function
-pointer; on most modern architectures, such a call defeats the branch
-prediction features of the CPU. This is also true of normal virtual
-function calls.
-
- The syntax for this extension is
-
- extern A a;
- extern int (A::*fp)();
- typedef int (*fptr)(A *);
-
- fptr p = (fptr)(a.*fp);
-
- For PMF constants (i.e. expressions of the form '&Klasse::Member'), no
-object is needed to obtain the address of the function. They can be
-converted to function pointers directly:
-
- fptr p1 = (fptr)(&A::foo);
-
- You must specify '-Wno-pmf-conversions' to use this extension.
-
-
-File: gcc.info, Node: C++ Attributes, Next: Function Multiversioning, Prev: Bound member functions, Up: C++ Extensions
-
-7.7 C++-Specific Variable, Function, and Type Attributes
-========================================================
-
-Some attributes only make sense for C++ programs.
-
-'abi_tag ("TAG", ...)'
- The 'abi_tag' attribute can be applied to a function or class
- declaration. It modifies the mangled name of the function or class
- to incorporate the tag name, in order to distinguish the function
- or class from an earlier version with a different ABI; perhaps the
- class has changed size, or the function has a different return type
- that is not encoded in the mangled name.
-
- The argument can be a list of strings of arbitrary length. The
- strings are sorted on output, so the order of the list is
- unimportant.
-
- A redeclaration of a function or class must not add new ABI tags,
- since doing so would change the mangled name.
-
- The ABI tags apply to a name, so all instantiations and
- specializations of a template have the same tags. The attribute
- will be ignored if applied to an explicit specialization or
- instantiation.
-
- The '-Wabi-tag' flag enables a warning about a class which does not
- have all the ABI tags used by its subobjects and virtual functions;
- for users with code that needs to coexist with an earlier ABI,
- using this option can help to find all affected types that need to
- be tagged.
-
-'init_priority (PRIORITY)'
-
- In Standard C++, objects defined at namespace scope are guaranteed
- to be initialized in an order in strict accordance with that of
- their definitions _in a given translation unit_. No guarantee is
- made for initializations across translation units. However, GNU
- C++ allows users to control the order of initialization of objects
- defined at namespace scope with the 'init_priority' attribute by
- specifying a relative PRIORITY, a constant integral expression
- currently bounded between 101 and 65535 inclusive. Lower numbers
- indicate a higher priority.
-
- In the following example, 'A' would normally be created before 'B',
- but the 'init_priority' attribute reverses that order:
-
- Some_Class A __attribute__ ((init_priority (2000)));
- Some_Class B __attribute__ ((init_priority (543)));
-
- Note that the particular values of PRIORITY do not matter; only
- their relative ordering.
-
-'java_interface'
-
- This type attribute informs C++ that the class is a Java interface.
- It may only be applied to classes declared within an 'extern
- "Java"' block. Calls to methods declared in this interface are
- dispatched using GCJ's interface table mechanism, instead of
- regular virtual table dispatch.
-
-'warn_unused'
-
- For C++ types with non-trivial constructors and/or destructors it
- is impossible for the compiler to determine whether a variable of
- this type is truly unused if it is not referenced. This type
- attribute informs the compiler that variables of this type should
- be warned about if they appear to be unused, just like variables of
- fundamental types.
-
- This attribute is appropriate for types which just represent a
- value, such as 'std::string'; it is not appropriate for types which
- control a resource, such as 'std::mutex'.
-
- This attribute is also accepted in C, but it is unnecessary because
- C does not have constructors or destructors.
-
- See also *note Namespace Association::.
-
-
-File: gcc.info, Node: Function Multiversioning, Next: Namespace Association, Prev: C++ Attributes, Up: C++ Extensions
-
-7.8 Function Multiversioning
-============================
-
-With the GNU C++ front end, for target i386, you may specify multiple
-versions of a function, where each function is specialized for a
-specific target feature. At runtime, the appropriate version of the
-function is automatically executed depending on the characteristics of
-the execution platform. Here is an example.
-
- __attribute__ ((target ("default")))
- int foo ()
- {
- // The default version of foo.
- return 0;
- }
-
- __attribute__ ((target ("sse4.2")))
- int foo ()
- {
- // foo version for SSE4.2
- return 1;
- }
-
- __attribute__ ((target ("arch=atom")))
- int foo ()
- {
- // foo version for the Intel ATOM processor
- return 2;
- }
-
- __attribute__ ((target ("arch=amdfam10")))
- int foo ()
- {
- // foo version for the AMD Family 0x10 processors.
- return 3;
- }
-
- int main ()
- {
- int (*p)() = &foo;
- assert ((*p) () == foo ());
- return 0;
- }
-
- In the above example, four versions of function foo are created. The
-first version of foo with the target attribute "default" is the default
-version. This version gets executed when no other target specific
-version qualifies for execution on a particular platform. A new version
-of foo is created by using the same function signature but with a
-different target string. Function foo is called or a pointer to it is
-taken just like a regular function. GCC takes care of doing the
-dispatching to call the right version at runtime. Refer to the GCC wiki
-on Function Multiversioning
-(http://gcc.gnu.org/wiki/FunctionMultiVersioning) for more details.
-
-
-File: gcc.info, Node: Namespace Association, Next: Type Traits, Prev: Function Multiversioning, Up: C++ Extensions
-
-7.9 Namespace Association
-=========================
-
-*Caution:* The semantics of this extension are equivalent to C++ 2011
-inline namespaces. Users should use inline namespaces instead as this
-extension will be removed in future versions of G++.
-
- A using-directive with '__attribute ((strong))' is stronger than a
-normal using-directive in two ways:
-
- * Templates from the used namespace can be specialized and explicitly
- instantiated as though they were members of the using namespace.
-
- * The using namespace is considered an associated namespace of all
- templates in the used namespace for purposes of argument-dependent
- name lookup.
-
- The used namespace must be nested within the using namespace so that
-normal unqualified lookup works properly.
-
- This is useful for composing a namespace transparently from
-implementation namespaces. For example:
-
- namespace std {
- namespace debug {
- template <class T> struct A { };
- }
- using namespace debug __attribute ((__strong__));
- template <> struct A<int> { }; // OK to specialize
-
- template <class T> void f (A<T>);
- }
-
- int main()
- {
- f (std::A<float>()); // lookup finds std::f
- f (std::A<int>());
- }
-
-
-File: gcc.info, Node: Type Traits, Next: Java Exceptions, Prev: Namespace Association, Up: C++ Extensions
-
-7.10 Type Traits
-================
-
-The C++ front end implements syntactic extensions that allow
-compile-time determination of various characteristics of a type (or of a
-pair of types).
-
-'__has_nothrow_assign (type)'
- If 'type' is const qualified or is a reference type then the trait
- is false. Otherwise if '__has_trivial_assign (type)' is true then
- the trait is true, else if 'type' is a cv class or union type with
- copy assignment operators that are known not to throw an exception
- then the trait is true, else it is false. Requires: 'type' shall
- be a complete type, (possibly cv-qualified) 'void', or an array of
- unknown bound.
-
-'__has_nothrow_copy (type)'
- If '__has_trivial_copy (type)' is true then the trait is true, else
- if 'type' is a cv class or union type with copy constructors that
- are known not to throw an exception then the trait is true, else it
- is false. Requires: 'type' shall be a complete type, (possibly
- cv-qualified) 'void', or an array of unknown bound.
-
-'__has_nothrow_constructor (type)'
- If '__has_trivial_constructor (type)' is true then the trait is
- true, else if 'type' is a cv class or union type (or array thereof)
- with a default constructor that is known not to throw an exception
- then the trait is true, else it is false. Requires: 'type' shall
- be a complete type, (possibly cv-qualified) 'void', or an array of
- unknown bound.
-
-'__has_trivial_assign (type)'
- If 'type' is const qualified or is a reference type then the trait
- is false. Otherwise if '__is_pod (type)' is true then the trait is
- true, else if 'type' is a cv class or union type with a trivial
- copy assignment ([class.copy]) then the trait is true, else it is
- false. Requires: 'type' shall be a complete type, (possibly
- cv-qualified) 'void', or an array of unknown bound.
-
-'__has_trivial_copy (type)'
- If '__is_pod (type)' is true or 'type' is a reference type then the
- trait is true, else if 'type' is a cv class or union type with a
- trivial copy constructor ([class.copy]) then the trait is true,
- else it is false. Requires: 'type' shall be a complete type,
- (possibly cv-qualified) 'void', or an array of unknown bound.
-
-'__has_trivial_constructor (type)'
- If '__is_pod (type)' is true then the trait is true, else if 'type'
- is a cv class or union type (or array thereof) with a trivial
- default constructor ([class.ctor]) then the trait is true, else it
- is false. Requires: 'type' shall be a complete type, (possibly
- cv-qualified) 'void', or an array of unknown bound.
-
-'__has_trivial_destructor (type)'
- If '__is_pod (type)' is true or 'type' is a reference type then the
- trait is true, else if 'type' is a cv class or union type (or array
- thereof) with a trivial destructor ([class.dtor]) then the trait is
- true, else it is false. Requires: 'type' shall be a complete type,
- (possibly cv-qualified) 'void', or an array of unknown bound.
-
-'__has_virtual_destructor (type)'
- If 'type' is a class type with a virtual destructor ([class.dtor])
- then the trait is true, else it is false. Requires: 'type' shall
- be a complete type, (possibly cv-qualified) 'void', or an array of
- unknown bound.
-
-'__is_abstract (type)'
- If 'type' is an abstract class ([class.abstract]) then the trait is
- true, else it is false. Requires: 'type' shall be a complete type,
- (possibly cv-qualified) 'void', or an array of unknown bound.
-
-'__is_base_of (base_type, derived_type)'
- If 'base_type' is a base class of 'derived_type' ([class.derived])
- then the trait is true, otherwise it is false. Top-level cv
- qualifications of 'base_type' and 'derived_type' are ignored. For
- the purposes of this trait, a class type is considered is own base.
- Requires: if '__is_class (base_type)' and '__is_class
- (derived_type)' are true and 'base_type' and 'derived_type' are not
- the same type (disregarding cv-qualifiers), 'derived_type' shall be
- a complete type. Diagnostic is produced if this requirement is not
- met.
-
-'__is_class (type)'
- If 'type' is a cv class type, and not a union type
- ([basic.compound]) the trait is true, else it is false.
-
-'__is_empty (type)'
- If '__is_class (type)' is false then the trait is false. Otherwise
- 'type' is considered empty if and only if: 'type' has no non-static
- data members, or all non-static data members, if any, are
- bit-fields of length 0, and 'type' has no virtual members, and
- 'type' has no virtual base classes, and 'type' has no base classes
- 'base_type' for which '__is_empty (base_type)' is false. Requires:
- 'type' shall be a complete type, (possibly cv-qualified) 'void', or
- an array of unknown bound.
-
-'__is_enum (type)'
- If 'type' is a cv enumeration type ([basic.compound]) the trait is
- true, else it is false.
-
-'__is_literal_type (type)'
- If 'type' is a literal type ([basic.types]) the trait is true, else
- it is false. Requires: 'type' shall be a complete type, (possibly
- cv-qualified) 'void', or an array of unknown bound.
-
-'__is_pod (type)'
- If 'type' is a cv POD type ([basic.types]) then the trait is true,
- else it is false. Requires: 'type' shall be a complete type,
- (possibly cv-qualified) 'void', or an array of unknown bound.
-
-'__is_polymorphic (type)'
- If 'type' is a polymorphic class ([class.virtual]) then the trait
- is true, else it is false. Requires: 'type' shall be a complete
- type, (possibly cv-qualified) 'void', or an array of unknown bound.
-
-'__is_standard_layout (type)'
- If 'type' is a standard-layout type ([basic.types]) the trait is
- true, else it is false. Requires: 'type' shall be a complete type,
- (possibly cv-qualified) 'void', or an array of unknown bound.
-
-'__is_trivial (type)'
- If 'type' is a trivial type ([basic.types]) the trait is true, else
- it is false. Requires: 'type' shall be a complete type, (possibly
- cv-qualified) 'void', or an array of unknown bound.
-
-'__is_union (type)'
- If 'type' is a cv union type ([basic.compound]) the trait is true,
- else it is false.
-
-'__underlying_type (type)'
- The underlying type of 'type'. Requires: 'type' shall be an
- enumeration type ([dcl.enum]).
-
-
-File: gcc.info, Node: Java Exceptions, Next: Deprecated Features, Prev: Type Traits, Up: C++ Extensions
-
-7.11 Java Exceptions
-====================
-
-The Java language uses a slightly different exception handling model
-from C++. Normally, GNU C++ automatically detects when you are writing
-C++ code that uses Java exceptions, and handle them appropriately.
-However, if C++ code only needs to execute destructors when Java
-exceptions are thrown through it, GCC guesses incorrectly. Sample
-problematic code is:
-
- struct S { ~S(); };
- extern void bar(); // is written in Java, and may throw exceptions
- void foo()
- {
- S s;
- bar();
- }
-
-The usual effect of an incorrect guess is a link failure, complaining of
-a missing routine called '__gxx_personality_v0'.
-
- You can inform the compiler that Java exceptions are to be used in a
-translation unit, irrespective of what it might think, by writing
-'#pragma GCC java_exceptions' at the head of the file. This '#pragma'
-must appear before any functions that throw or catch exceptions, or run
-destructors when exceptions are thrown through them.
-
- You cannot mix Java and C++ exceptions in the same translation unit.
-It is believed to be safe to throw a C++ exception from one file through
-another file compiled for the Java exception model, or vice versa, but
-there may be bugs in this area.
-
-
-File: gcc.info, Node: Deprecated Features, Next: Backwards Compatibility, Prev: Java Exceptions, Up: C++ Extensions
-
-7.12 Deprecated Features
-========================
-
-In the past, the GNU C++ compiler was extended to experiment with new
-features, at a time when the C++ language was still evolving. Now that
-the C++ standard is complete, some of those features are superseded by
-superior alternatives. Using the old features might cause a warning in
-some cases that the feature will be dropped in the future. In other
-cases, the feature might be gone already.
-
- While the list below is not exhaustive, it documents some of the
-options that are now deprecated:
-
-'-fexternal-templates'
-'-falt-external-templates'
- These are two of the many ways for G++ to implement template
- instantiation. *Note Template Instantiation::. The C++ standard
- clearly defines how template definitions have to be organized
- across implementation units. G++ has an implicit instantiation
- mechanism that should work just fine for standard-conforming code.
-
-'-fstrict-prototype'
-'-fno-strict-prototype'
- Previously it was possible to use an empty prototype parameter list
- to indicate an unspecified number of parameters (like C), rather
- than no parameters, as C++ demands. This feature has been removed,
- except where it is required for backwards compatibility. *Note
- Backwards Compatibility::.
-
- G++ allows a virtual function returning 'void *' to be overridden by
-one returning a different pointer type. This extension to the covariant
-return type rules is now deprecated and will be removed from a future
-version.
-
- The G++ minimum and maximum operators ('<?' and '>?') and their
-compound forms ('<?=') and '>?=') have been deprecated and are now
-removed from G++. Code using these operators should be modified to use
-'std::min' and 'std::max' instead.
-
- The named return value extension has been deprecated, and is now
-removed from G++.
-
- The use of initializer lists with new expressions has been deprecated,
-and is now removed from G++.
-
- Floating and complex non-type template parameters have been deprecated,
-and are now removed from G++.
-
- The implicit typename extension has been deprecated and is now removed
-from G++.
-
- The use of default arguments in function pointers, function typedefs
-and other places where they are not permitted by the standard is
-deprecated and will be removed from a future version of G++.
-
- G++ allows floating-point literals to appear in integral constant
-expressions, e.g. ' enum E { e = int(2.2 * 3.7) } ' This extension is
-deprecated and will be removed from a future version.
-
- G++ allows static data members of const floating-point type to be
-declared with an initializer in a class definition. The standard only
-allows initializers for static members of const integral types and const
-enumeration types so this extension has been deprecated and will be
-removed from a future version.
-
-
-File: gcc.info, Node: Backwards Compatibility, Prev: Deprecated Features, Up: C++ Extensions
-
-7.13 Backwards Compatibility
-============================
-
-Now that there is a definitive ISO standard C++, G++ has a specification
-to adhere to. The C++ language evolved over time, and features that
-used to be acceptable in previous drafts of the standard, such as the
-ARM [Annotated C++ Reference Manual], are no longer accepted. In order
-to allow compilation of C++ written to such drafts, G++ contains some
-backwards compatibilities. _All such backwards compatibility features
-are liable to disappear in future versions of G++._ They should be
-considered deprecated. *Note Deprecated Features::.
-
-'For scope'
- If a variable is declared at for scope, it used to remain in scope
- until the end of the scope that contained the for statement (rather
- than just within the for scope). G++ retains this, but issues a
- warning, if such a variable is accessed outside the for scope.
-
-'Implicit C language'
- Old C system header files did not contain an 'extern "C" {...}'
- scope to set the language. On such systems, all header files are
- implicitly scoped inside a C language scope. Also, an empty
- prototype '()' is treated as an unspecified number of arguments,
- rather than no arguments, as C++ demands.
-
-
-File: gcc.info, Node: Objective-C, Next: Compatibility, Prev: C++ Extensions, Up: Top
-
-8 GNU Objective-C features
-**************************
-
-This document is meant to describe some of the GNU Objective-C features.
-It is not intended to teach you Objective-C. There are several resources
-on the Internet that present the language.
-
-* Menu:
-
-* GNU Objective-C runtime API::
-* Executing code before main::
-* Type encoding::
-* Garbage Collection::
-* Constant string objects::
-* compatibility_alias::
-* Exceptions::
-* Synchronization::
-* Fast enumeration::
-* Messaging with the GNU Objective-C runtime::
-
-
-File: gcc.info, Node: GNU Objective-C runtime API, Next: Executing code before main, Up: Objective-C
-
-8.1 GNU Objective-C runtime API
-===============================
-
-This section is specific for the GNU Objective-C runtime. If you are
-using a different runtime, you can skip it.
-
- The GNU Objective-C runtime provides an API that allows you to interact
-with the Objective-C runtime system, querying the live runtime
-structures and even manipulating them. This allows you for example to
-inspect and navigate classes, methods and protocols; to define new
-classes or new methods, and even to modify existing classes or
-protocols.
-
- If you are using a "Foundation" library such as GNUstep-Base, this
-library will provide you with a rich set of functionality to do most of
-the inspection tasks, and you probably will only need direct access to
-the GNU Objective-C runtime API to define new classes or methods.
-
-* Menu:
-
-* Modern GNU Objective-C runtime API::
-* Traditional GNU Objective-C runtime API::
-
-
-File: gcc.info, Node: Modern GNU Objective-C runtime API, Next: Traditional GNU Objective-C runtime API, Up: GNU Objective-C runtime API
-
-8.1.1 Modern GNU Objective-C runtime API
-----------------------------------------
-
-The GNU Objective-C runtime provides an API which is similar to the one
-provided by the "Objective-C 2.0" Apple/NeXT Objective-C runtime. The
-API is documented in the public header files of the GNU Objective-C
-runtime:
-
- * 'objc/objc.h': this is the basic Objective-C header file, defining
- the basic Objective-C types such as 'id', 'Class' and 'BOOL'. You
- have to include this header to do almost anything with Objective-C.
-
- * 'objc/runtime.h': this header declares most of the public runtime
- API functions allowing you to inspect and manipulate the
- Objective-C runtime data structures. These functions are fairly
- standardized across Objective-C runtimes and are almost identical
- to the Apple/NeXT Objective-C runtime ones. It does not declare
- functions in some specialized areas (constructing and forwarding
- message invocations, threading) which are in the other headers
- below. You have to include 'objc/objc.h' and 'objc/runtime.h' to
- use any of the functions, such as 'class_getName()', declared in
- 'objc/runtime.h'.
-
- * 'objc/message.h': this header declares public functions used to
- construct, deconstruct and forward message invocations. Because
- messaging is done in quite a different way on different runtimes,
- functions in this header are specific to the GNU Objective-C
- runtime implementation.
-
- * 'objc/objc-exception.h': this header declares some public functions
- related to Objective-C exceptions. For example functions in this
- header allow you to throw an Objective-C exception from plain C/C++
- code.
-
- * 'objc/objc-sync.h': this header declares some public functions
- related to the Objective-C '@synchronized()' syntax, allowing you
- to emulate an Objective-C '@synchronized()' block in plain C/C++
- code.
-
- * 'objc/thr.h': this header declares a public runtime API threading
- layer that is only provided by the GNU Objective-C runtime. It
- declares functions such as 'objc_mutex_lock()', which provide a
- platform-independent set of threading functions.
-
- The header files contain detailed documentation for each function in
-the GNU Objective-C runtime API.
-
-
-File: gcc.info, Node: Traditional GNU Objective-C runtime API, Prev: Modern GNU Objective-C runtime API, Up: GNU Objective-C runtime API
-
-8.1.2 Traditional GNU Objective-C runtime API
----------------------------------------------
-
-The GNU Objective-C runtime used to provide a different API, which we
-call the "traditional" GNU Objective-C runtime API. Functions belonging
-to this API are easy to recognize because they use a different naming
-convention, such as 'class_get_super_class()' (traditional API) instead
-of 'class_getSuperclass()' (modern API). Software using this API
-includes the file 'objc/objc-api.h' where it is declared.
-
- Starting with GCC 4.7.0, the traditional GNU runtime API is no longer
-available.
-
-
-File: gcc.info, Node: Executing code before main, Next: Type encoding, Prev: GNU Objective-C runtime API, Up: Objective-C
-
-8.2 '+load': Executing code before main
-=======================================
-
-This section is specific for the GNU Objective-C runtime. If you are
-using a different runtime, you can skip it.
-
- The GNU Objective-C runtime provides a way that allows you to execute
-code before the execution of the program enters the 'main' function.
-The code is executed on a per-class and a per-category basis, through a
-special class method '+load'.
-
- This facility is very useful if you want to initialize global variables
-which can be accessed by the program directly, without sending a message
-to the class first. The usual way to initialize global variables, in
-the '+initialize' method, might not be useful because '+initialize' is
-only called when the first message is sent to a class object, which in
-some cases could be too late.
-
- Suppose for example you have a 'FileStream' class that declares
-'Stdin', 'Stdout' and 'Stderr' as global variables, like below:
-
-
- FileStream *Stdin = nil;
- FileStream *Stdout = nil;
- FileStream *Stderr = nil;
-
- @implementation FileStream
-
- + (void)initialize
- {
- Stdin = [[FileStream new] initWithFd:0];
- Stdout = [[FileStream new] initWithFd:1];
- Stderr = [[FileStream new] initWithFd:2];
- }
-
- /* Other methods here */
- @end
-
- In this example, the initialization of 'Stdin', 'Stdout' and 'Stderr'
-in '+initialize' occurs too late. The programmer can send a message to
-one of these objects before the variables are actually initialized, thus
-sending messages to the 'nil' object. The '+initialize' method which
-actually initializes the global variables is not invoked until the first
-message is sent to the class object. The solution would require these
-variables to be initialized just before entering 'main'.
-
- The correct solution of the above problem is to use the '+load' method
-instead of '+initialize':
-
-
- @implementation FileStream
-
- + (void)load
- {
- Stdin = [[FileStream new] initWithFd:0];
- Stdout = [[FileStream new] initWithFd:1];
- Stderr = [[FileStream new] initWithFd:2];
- }
-
- /* Other methods here */
- @end
-
- The '+load' is a method that is not overridden by categories. If a
-class and a category of it both implement '+load', both methods are
-invoked. This allows some additional initializations to be performed in
-a category.
-
- This mechanism is not intended to be a replacement for '+initialize'.
-You should be aware of its limitations when you decide to use it instead
-of '+initialize'.
-
-* Menu:
-
-* What you can and what you cannot do in +load::
-
-
-File: gcc.info, Node: What you can and what you cannot do in +load, Up: Executing code before main
-
-8.2.1 What you can and what you cannot do in '+load'
-----------------------------------------------------
-
-'+load' is to be used only as a last resort. Because it is executed
-very early, most of the Objective-C runtime machinery will not be ready
-when '+load' is executed; hence '+load' works best for executing C code
-that is independent on the Objective-C runtime.
-
- The '+load' implementation in the GNU runtime guarantees you the
-following things:
-
- * you can write whatever C code you like;
-
- * you can allocate and send messages to objects whose class is
- implemented in the same file;
-
- * the '+load' implementation of all super classes of a class are
- executed before the '+load' of that class is executed;
-
- * the '+load' implementation of a class is executed before the
- '+load' implementation of any category.
-
- In particular, the following things, even if they can work in a
-particular case, are not guaranteed:
-
- * allocation of or sending messages to arbitrary objects;
-
- * allocation of or sending messages to objects whose classes have a
- category implemented in the same file;
-
- * sending messages to Objective-C constant strings ('@"this is a
- constant string"');
-
- You should make no assumptions about receiving '+load' in sibling
-classes when you write '+load' of a class. The order in which sibling
-classes receive '+load' is not guaranteed.
-
- The order in which '+load' and '+initialize' are called could be
-problematic if this matters. If you don't allocate objects inside
-'+load', it is guaranteed that '+load' is called before '+initialize'.
-If you create an object inside '+load' the '+initialize' method of
-object's class is invoked even if '+load' was not invoked. Note if you
-explicitly call '+load' on a class, '+initialize' will be called first.
-To avoid possible problems try to implement only one of these methods.
-
- The '+load' method is also invoked when a bundle is dynamically loaded
-into your running program. This happens automatically without any
-intervening operation from you. When you write bundles and you need to
-write '+load' you can safely create and send messages to objects whose
-classes already exist in the running program. The same restrictions as
-above apply to classes defined in bundle.
-
-
-File: gcc.info, Node: Type encoding, Next: Garbage Collection, Prev: Executing code before main, Up: Objective-C
-
-8.3 Type encoding
-=================
-
-This is an advanced section. Type encodings are used extensively by the
-compiler and by the runtime, but you generally do not need to know about
-them to use Objective-C.
-
- The Objective-C compiler generates type encodings for all the types.
-These type encodings are used at runtime to find out information about
-selectors and methods and about objects and classes.
-
- The types are encoded in the following way:
-
-'_Bool' 'B'
-'char' 'c'
-'unsigned char' 'C'
-'short' 's'
-'unsigned short' 'S'
-'int' 'i'
-'unsigned int' 'I'
-'long' 'l'
-'unsigned long' 'L'
-'long long' 'q'
-'unsigned long 'Q'
-long'
-'float' 'f'
-'double' 'd'
-'long double' 'D'
-'void' 'v'
-'id' '@'
-'Class' '#'
-'SEL' ':'
-'char*' '*'
-'enum' an 'enum' is encoded exactly as the integer type
- that the compiler uses for it, which depends on the
- enumeration values. Often the compiler users
- 'unsigned int', which is then encoded as 'I'.
-unknown type '?'
-Complex types 'j' followed by the inner type. For example
- '_Complex double' is encoded as "jd".
-bit-fields 'b' followed by the starting position of the
- bit-field, the type of the bit-field and the size of
- the bit-field (the bit-fields encoding was changed
- from the NeXT's compiler encoding, see below)
-
- The encoding of bit-fields has changed to allow bit-fields to be
-properly handled by the runtime functions that compute sizes and
-alignments of types that contain bit-fields. The previous encoding
-contained only the size of the bit-field. Using only this information
-it is not possible to reliably compute the size occupied by the
-bit-field. This is very important in the presence of the Boehm's
-garbage collector because the objects are allocated using the typed
-memory facility available in this collector. The typed memory
-allocation requires information about where the pointers are located
-inside the object.
-
- The position in the bit-field is the position, counting in bits, of the
-bit closest to the beginning of the structure.
-
- The non-atomic types are encoded as follows:
-
-pointers '^' followed by the pointed type.
-arrays '[' followed by the number of elements in the array
- followed by the type of the elements followed by ']'
-structures '{' followed by the name of the structure (or '?' if the
- structure is unnamed), the '=' sign, the type of the
- members and by '}'
-unions '(' followed by the name of the structure (or '?' if the
- union is unnamed), the '=' sign, the type of the members
- followed by ')'
-vectors '![' followed by the vector_size (the number of bytes
- composing the vector) followed by a comma, followed by
- the alignment (in bytes) of the vector, followed by the
- type of the elements followed by ']'
-
- Here are some types and their encodings, as they are generated by the
-compiler on an i386 machine:
-
-
-Objective-C type Compiler encoding
- int a[10]; '[10i]'
- struct { '{?=i[3f]b128i3b131i2c}'
- int i;
- float f[3];
- int a:3;
- int b:2;
- char c;
- }
- int a __attribute__ ((vector_size (16)));'![16,16i]' (alignment would depend on the machine)
-
-
- In addition to the types the compiler also encodes the type specifiers.
-The table below describes the encoding of the current Objective-C type
-specifiers:
-
-
-Specifier Encoding
-'const' 'r'
-'in' 'n'
-'inout' 'N'
-'out' 'o'
-'bycopy' 'O'
-'byref' 'R'
-'oneway' 'V'
-
-
- The type specifiers are encoded just before the type. Unlike types
-however, the type specifiers are only encoded when they appear in method
-argument types.
-
- Note how 'const' interacts with pointers:
-
-
-Objective-C type Compiler encoding
- const int 'ri'
- const int* '^ri'
- int *const 'r^i'
-
-
- 'const int*' is a pointer to a 'const int', and so is encoded as '^ri'.
-'int* const', instead, is a 'const' pointer to an 'int', and so is
-encoded as 'r^i'.
-
- Finally, there is a complication when encoding 'const char *' versus
-'char * const'. Because 'char *' is encoded as '*' and not as '^c',
-there is no way to express the fact that 'r' applies to the pointer or
-to the pointee.
-
- Hence, it is assumed as a convention that 'r*' means 'const char *'
-(since it is what is most often meant), and there is no way to encode
-'char *const'. 'char *const' would simply be encoded as '*', and the
-'const' is lost.
-
-* Menu:
-
-* Legacy type encoding::
-* @encode::
-* Method signatures::
-
-
-File: gcc.info, Node: Legacy type encoding, Next: @encode, Up: Type encoding
-
-8.3.1 Legacy type encoding
---------------------------
-
-Unfortunately, historically GCC used to have a number of bugs in its
-encoding code. The NeXT runtime expects GCC to emit type encodings in
-this historical format (compatible with GCC-3.3), so when using the NeXT
-runtime, GCC will introduce on purpose a number of incorrect encodings:
-
- * the read-only qualifier of the pointee gets emitted before the '^'.
- The read-only qualifier of the pointer itself gets ignored, unless
- it is a typedef. Also, the 'r' is only emitted for the outermost
- type.
-
- * 32-bit longs are encoded as 'l' or 'L', but not always. For
- typedefs, the compiler uses 'i' or 'I' instead if encoding a struct
- field or a pointer.
-
- * 'enum's are always encoded as 'i' (int) even if they are actually
- unsigned or long.
-
- In addition to that, the NeXT runtime uses a different encoding for
-bitfields. It encodes them as 'b' followed by the size, without a bit
-offset or the underlying field type.
-
-
-File: gcc.info, Node: @encode, Next: Method signatures, Prev: Legacy type encoding, Up: Type encoding
-
-8.3.2 @encode
--------------
-
-GNU Objective-C supports the '@encode' syntax that allows you to create
-a type encoding from a C/Objective-C type. For example, '@encode(int)'
-is compiled by the compiler into '"i"'.
-
- '@encode' does not support type qualifiers other than 'const'. For
-example, '@encode(const char*)' is valid and is compiled into '"r*"',
-while '@encode(bycopy char *)' is invalid and will cause a compilation
-error.
-
-
-File: gcc.info, Node: Method signatures, Prev: @encode, Up: Type encoding
-
-8.3.3 Method signatures
------------------------
-
-This section documents the encoding of method types, which is rarely
-needed to use Objective-C. You should skip it at a first reading; the
-runtime provides functions that will work on methods and can walk
-through the list of parameters and interpret them for you. These
-functions are part of the public "API" and are the preferred way to
-interact with method signatures from user code.
-
- But if you need to debug a problem with method signatures and need to
-know how they are implemented (i.e., the "ABI"), read on.
-
- Methods have their "signature" encoded and made available to the
-runtime. The "signature" encodes all the information required to
-dynamically build invocations of the method at runtime: return type and
-arguments.
-
- The "signature" is a null-terminated string, composed of the following:
-
- * The return type, including type qualifiers. For example, a method
- returning 'int' would have 'i' here.
-
- * The total size (in bytes) required to pass all the parameters.
- This includes the two hidden parameters (the object 'self' and the
- method selector '_cmd').
-
- * Each argument, with the type encoding, followed by the offset (in
- bytes) of the argument in the list of parameters.
-
- For example, a method with no arguments and returning 'int' would have
-the signature 'i8@0:4' if the size of a pointer is 4. The signature is
-interpreted as follows: the 'i' is the return type (an 'int'), the '8'
-is the total size of the parameters in bytes (two pointers each of size
-4), the '@0' is the first parameter (an object at byte offset '0') and
-':4' is the second parameter (a 'SEL' at byte offset '4').
-
- You can easily find more examples by running the "strings" program on
-an Objective-C object file compiled by GCC. You'll see a lot of strings
-that look very much like 'i8@0:4'. They are signatures of Objective-C
-methods.
-
-
-File: gcc.info, Node: Garbage Collection, Next: Constant string objects, Prev: Type encoding, Up: Objective-C
-
-8.4 Garbage Collection
-======================
-
-This section is specific for the GNU Objective-C runtime. If you are
-using a different runtime, you can skip it.
-
- Support for garbage collection with the GNU runtime has been added by
-using a powerful conservative garbage collector, known as the
-Boehm-Demers-Weiser conservative garbage collector.
-
- To enable the support for it you have to configure the compiler using
-an additional argument, '--enable-objc-gc'. This will build the
-boehm-gc library, and build an additional runtime library which has
-several enhancements to support the garbage collector. The new library
-has a new name, 'libobjc_gc.a' to not conflict with the
-non-garbage-collected library.
-
- When the garbage collector is used, the objects are allocated using the
-so-called typed memory allocation mechanism available in the
-Boehm-Demers-Weiser collector. This mode requires precise information
-on where pointers are located inside objects. This information is
-computed once per class, immediately after the class has been
-initialized.
-
- There is a new runtime function 'class_ivar_set_gcinvisible()' which
-can be used to declare a so-called "weak pointer" reference. Such a
-pointer is basically hidden for the garbage collector; this can be
-useful in certain situations, especially when you want to keep track of
-the allocated objects, yet allow them to be collected. This kind of
-pointers can only be members of objects, you cannot declare a global
-pointer as a weak reference. Every type which is a pointer type can be
-declared a weak pointer, including 'id', 'Class' and 'SEL'.
-
- Here is an example of how to use this feature. Suppose you want to
-implement a class whose instances hold a weak pointer reference; the
-following class does this:
-
-
- @interface WeakPointer : Object
- {
- const void* weakPointer;
- }
-
- - initWithPointer:(const void*)p;
- - (const void*)weakPointer;
- @end
-
-
- @implementation WeakPointer
-
- + (void)initialize
- {
- if (self == objc_lookUpClass ("WeakPointer"))
- class_ivar_set_gcinvisible (self, "weakPointer", YES);
- }
-
- - initWithPointer:(const void*)p
- {
- weakPointer = p;
- return self;
- }
-
- - (const void*)weakPointer
- {
- return weakPointer;
- }
-
- @end
-
- Weak pointers are supported through a new type character specifier
-represented by the '!' character. The 'class_ivar_set_gcinvisible()'
-function adds or removes this specifier to the string type description
-of the instance variable named as argument.
-
-
-File: gcc.info, Node: Constant string objects, Next: compatibility_alias, Prev: Garbage Collection, Up: Objective-C
-
-8.5 Constant string objects
-===========================
-
-GNU Objective-C provides constant string objects that are generated
-directly by the compiler. You declare a constant string object by
-prefixing a C constant string with the character '@':
-
- id myString = @"this is a constant string object";
-
- The constant string objects are by default instances of the
-'NXConstantString' class which is provided by the GNU Objective-C
-runtime. To get the definition of this class you must include the
-'objc/NXConstStr.h' header file.
-
- User defined libraries may want to implement their own constant string
-class. To be able to support them, the GNU Objective-C compiler
-provides a new command line options
-'-fconstant-string-class=CLASS-NAME'. The provided class should adhere
-to a strict structure, the same as 'NXConstantString''s structure:
-
-
- @interface MyConstantStringClass
- {
- Class isa;
- char *c_string;
- unsigned int len;
- }
- @end
-
- 'NXConstantString' inherits from 'Object'; user class libraries may
-choose to inherit the customized constant string class from a different
-class than 'Object'. There is no requirement in the methods the
-constant string class has to implement, but the final ivar layout of the
-class must be the compatible with the given structure.
-
- When the compiler creates the statically allocated constant string
-object, the 'c_string' field will be filled by the compiler with the
-string; the 'length' field will be filled by the compiler with the
-string length; the 'isa' pointer will be filled with 'NULL' by the
-compiler, and it will later be fixed up automatically at runtime by the
-GNU Objective-C runtime library to point to the class which was set by
-the '-fconstant-string-class' option when the object file is loaded (if
-you wonder how it works behind the scenes, the name of the class to use,
-and the list of static objects to fixup, are stored by the compiler in
-the object file in a place where the GNU runtime library will find them
-at runtime).
-
- As a result, when a file is compiled with the '-fconstant-string-class'
-option, all the constant string objects will be instances of the class
-specified as argument to this option. It is possible to have multiple
-compilation units referring to different constant string classes,
-neither the compiler nor the linker impose any restrictions in doing
-this.
-
-
-File: gcc.info, Node: compatibility_alias, Next: Exceptions, Prev: Constant string objects, Up: Objective-C
-
-8.6 compatibility_alias
-=======================
-
-The keyword '@compatibility_alias' allows you to define a class name as
-equivalent to another class name. For example:
-
- @compatibility_alias WOApplication GSWApplication;
-
- tells the compiler that each time it encounters 'WOApplication' as a
-class name, it should replace it with 'GSWApplication' (that is,
-'WOApplication' is just an alias for 'GSWApplication').
-
- There are some constraints on how this can be used--
-
- * 'WOApplication' (the alias) must not be an existing class;
-
- * 'GSWApplication' (the real class) must be an existing class.
-
-
-File: gcc.info, Node: Exceptions, Next: Synchronization, Prev: compatibility_alias, Up: Objective-C
-
-8.7 Exceptions
-==============
-
-GNU Objective-C provides exception support built into the language, as
-in the following example:
-
- @try {
- ...
- @throw expr;
- ...
- }
- @catch (AnObjCClass *exc) {
- ...
- @throw expr;
- ...
- @throw;
- ...
- }
- @catch (AnotherClass *exc) {
- ...
- }
- @catch (id allOthers) {
- ...
- }
- @finally {
- ...
- @throw expr;
- ...
- }
-
- The '@throw' statement may appear anywhere in an Objective-C or
-Objective-C++ program; when used inside of a '@catch' block, the
-'@throw' may appear without an argument (as shown above), in which case
-the object caught by the '@catch' will be rethrown.
-
- Note that only (pointers to) Objective-C objects may be thrown and
-caught using this scheme. When an object is thrown, it will be caught
-by the nearest '@catch' clause capable of handling objects of that type,
-analogously to how 'catch' blocks work in C++ and Java. A '@catch(id
-...)' clause (as shown above) may also be provided to catch any and all
-Objective-C exceptions not caught by previous '@catch' clauses (if any).
-
- The '@finally' clause, if present, will be executed upon exit from the
-immediately preceding '@try ... @catch' section. This will happen
-regardless of whether any exceptions are thrown, caught or rethrown
-inside the '@try ... @catch' section, analogously to the behavior of the
-'finally' clause in Java.
-
- There are several caveats to using the new exception mechanism:
-
- * The '-fobjc-exceptions' command line option must be used when
- compiling Objective-C files that use exceptions.
-
- * With the GNU runtime, exceptions are always implemented as "native"
- exceptions and it is recommended that the '-fexceptions' and
- '-shared-libgcc' options are used when linking.
-
- * With the NeXT runtime, although currently designed to be binary
- compatible with 'NS_HANDLER'-style idioms provided by the
- 'NSException' class, the new exceptions can only be used on Mac OS
- X 10.3 (Panther) and later systems, due to additional functionality
- needed in the NeXT Objective-C runtime.
-
- * As mentioned above, the new exceptions do not support handling
- types other than Objective-C objects. Furthermore, when used from
- Objective-C++, the Objective-C exception model does not
- interoperate with C++ exceptions at this time. This means you
- cannot '@throw' an exception from Objective-C and 'catch' it in
- C++, or vice versa (i.e., 'throw ... @catch').
-
-
-File: gcc.info, Node: Synchronization, Next: Fast enumeration, Prev: Exceptions, Up: Objective-C
-
-8.8 Synchronization
-===================
-
-GNU Objective-C provides support for synchronized blocks:
-
- @synchronized (ObjCClass *guard) {
- ...
- }
-
- Upon entering the '@synchronized' block, a thread of execution shall
-first check whether a lock has been placed on the corresponding 'guard'
-object by another thread. If it has, the current thread shall wait
-until the other thread relinquishes its lock. Once 'guard' becomes
-available, the current thread will place its own lock on it, execute the
-code contained in the '@synchronized' block, and finally relinquish the
-lock (thereby making 'guard' available to other threads).
-
- Unlike Java, Objective-C does not allow for entire methods to be marked
-'@synchronized'. Note that throwing exceptions out of '@synchronized'
-blocks is allowed, and will cause the guarding object to be unlocked
-properly.
-
- Because of the interactions between synchronization and exception
-handling, you can only use '@synchronized' when compiling with
-exceptions enabled, that is with the command line option
-'-fobjc-exceptions'.
-
-
-File: gcc.info, Node: Fast enumeration, Next: Messaging with the GNU Objective-C runtime, Prev: Synchronization, Up: Objective-C
-
-8.9 Fast enumeration
-====================
-
-* Menu:
-
-* Using fast enumeration::
-* c99-like fast enumeration syntax::
-* Fast enumeration details::
-* Fast enumeration protocol::
-
-
-File: gcc.info, Node: Using fast enumeration, Next: c99-like fast enumeration syntax, Up: Fast enumeration
-
-8.9.1 Using fast enumeration
-----------------------------
-
-GNU Objective-C provides support for the fast enumeration syntax:
-
- id array = ...;
- id object;
-
- for (object in array)
- {
- /* Do something with 'object' */
- }
-
- 'array' needs to be an Objective-C object (usually a collection object,
-for example an array, a dictionary or a set) which implements the "Fast
-Enumeration Protocol" (see below). If you are using a Foundation
-library such as GNUstep Base or Apple Cocoa Foundation, all collection
-objects in the library implement this protocol and can be used in this
-way.
-
- The code above would iterate over all objects in 'array'. For each of
-them, it assigns it to 'object', then executes the 'Do something with
-'object'' statements.
-
- Here is a fully worked-out example using a Foundation library (which
-provides the implementation of 'NSArray', 'NSString' and 'NSLog'):
-
- NSArray *array = [NSArray arrayWithObjects: @"1", @"2", @"3", nil];
- NSString *object;
-
- for (object in array)
- NSLog (@"Iterating over %@", object);
-
-
-File: gcc.info, Node: c99-like fast enumeration syntax, Next: Fast enumeration details, Prev: Using fast enumeration, Up: Fast enumeration
-
-8.9.2 c99-like fast enumeration syntax
---------------------------------------
-
-A c99-like declaration syntax is also allowed:
-
- id array = ...;
-
- for (id object in array)
- {
- /* Do something with 'object' */
- }
-
- this is completely equivalent to:
-
- id array = ...;
-
- {
- id object;
- for (object in array)
- {
- /* Do something with 'object' */
- }
- }
-
- but can save some typing.
-
- Note that the option '-std=c99' is not required to allow this syntax in
-Objective-C.
-
-
-File: gcc.info, Node: Fast enumeration details, Next: Fast enumeration protocol, Prev: c99-like fast enumeration syntax, Up: Fast enumeration
-
-8.9.3 Fast enumeration details
-------------------------------
-
-Here is a more technical description with the gory details. Consider
-the code
-
- for (OBJECT EXPRESSION in COLLECTION EXPRESSION)
- {
- STATEMENTS
- }
-
- here is what happens when you run it:
-
- * 'COLLECTION EXPRESSION' is evaluated exactly once and the result is
- used as the collection object to iterate over. This means it is
- safe to write code such as 'for (object in [NSDictionary
- keyEnumerator]) ...'.
-
- * the iteration is implemented by the compiler by repeatedly getting
- batches of objects from the collection object using the fast
- enumeration protocol (see below), then iterating over all objects
- in the batch. This is faster than a normal enumeration where
- objects are retrieved one by one (hence the name "fast
- enumeration").
-
- * if there are no objects in the collection, then 'OBJECT EXPRESSION'
- is set to 'nil' and the loop immediately terminates.
-
- * if there are objects in the collection, then for each object in the
- collection (in the order they are returned) 'OBJECT EXPRESSION' is
- set to the object, then 'STATEMENTS' are executed.
-
- * 'STATEMENTS' can contain 'break' and 'continue' commands, which
- will abort the iteration or skip to the next loop iteration as
- expected.
-
- * when the iteration ends because there are no more objects to
- iterate over, 'OBJECT EXPRESSION' is set to 'nil'. This allows you
- to determine whether the iteration finished because a 'break'
- command was used (in which case 'OBJECT EXPRESSION' will remain set
- to the last object that was iterated over) or because it iterated
- over all the objects (in which case 'OBJECT EXPRESSION' will be set
- to 'nil').
-
- * 'STATEMENTS' must not make any changes to the collection object; if
- they do, it is a hard error and the fast enumeration terminates by
- invoking 'objc_enumerationMutation', a runtime function that
- normally aborts the program but which can be customized by
- Foundation libraries via 'objc_set_mutation_handler' to do
- something different, such as raising an exception.
-
-
-File: gcc.info, Node: Fast enumeration protocol, Prev: Fast enumeration details, Up: Fast enumeration
-
-8.9.4 Fast enumeration protocol
--------------------------------
-
-If you want your own collection object to be usable with fast
-enumeration, you need to have it implement the method
-
- - (unsigned long) countByEnumeratingWithState: (NSFastEnumerationState *)state
- objects: (id *)objects
- count: (unsigned long)len;
-
- where 'NSFastEnumerationState' must be defined in your code as follows:
-
- typedef struct
- {
- unsigned long state;
- id *itemsPtr;
- unsigned long *mutationsPtr;
- unsigned long extra[5];
- } NSFastEnumerationState;
-
- If no 'NSFastEnumerationState' is defined in your code, the compiler
-will automatically replace 'NSFastEnumerationState *' with 'struct
-__objcFastEnumerationState *', where that type is silently defined by
-the compiler in an identical way. This can be confusing and we
-recommend that you define 'NSFastEnumerationState' (as shown above)
-instead.
-
- The method is called repeatedly during a fast enumeration to retrieve
-batches of objects. Each invocation of the method should retrieve the
-next batch of objects.
-
- The return value of the method is the number of objects in the current
-batch; this should not exceed 'len', which is the maximum size of a
-batch as requested by the caller. The batch itself is returned in the
-'itemsPtr' field of the 'NSFastEnumerationState' struct.
-
- To help with returning the objects, the 'objects' array is a C array
-preallocated by the caller (on the stack) of size 'len'. In many cases
-you can put the objects you want to return in that 'objects' array, then
-do 'itemsPtr = objects'. But you don't have to; if your collection
-already has the objects to return in some form of C array, it could
-return them from there instead.
-
- The 'state' and 'extra' fields of the 'NSFastEnumerationState'
-structure allows your collection object to keep track of the state of
-the enumeration. In a simple array implementation, 'state' may keep
-track of the index of the last object that was returned, and 'extra' may
-be unused.
-
- The 'mutationsPtr' field of the 'NSFastEnumerationState' is used to
-keep track of mutations. It should point to a number; before working on
-each object, the fast enumeration loop will check that this number has
-not changed. If it has, a mutation has happened and the fast
-enumeration will abort. So, 'mutationsPtr' could be set to point to
-some sort of version number of your collection, which is increased by
-one every time there is a change (for example when an object is added or
-removed). Or, if you are content with less strict mutation checks, it
-could point to the number of objects in your collection or some other
-value that can be checked to perform an approximate check that the
-collection has not been mutated.
-
- Finally, note how we declared the 'len' argument and the return value
-to be of type 'unsigned long'. They could also be declared to be of
-type 'unsigned int' and everything would still work.
-
-
-File: gcc.info, Node: Messaging with the GNU Objective-C runtime, Prev: Fast enumeration, Up: Objective-C
-
-8.10 Messaging with the GNU Objective-C runtime
-===============================================
-
-This section is specific for the GNU Objective-C runtime. If you are
-using a different runtime, you can skip it.
-
- The implementation of messaging in the GNU Objective-C runtime is
-designed to be portable, and so is based on standard C.
-
- Sending a message in the GNU Objective-C runtime is composed of two
-separate steps. First, there is a call to the lookup function,
-'objc_msg_lookup ()' (or, in the case of messages to super,
-'objc_msg_lookup_super ()'). This runtime function takes as argument
-the receiver and the selector of the method to be called; it returns the
-'IMP', that is a pointer to the function implementing the method. The
-second step of method invocation consists of casting this pointer
-function to the appropriate function pointer type, and calling the
-function pointed to it with the right arguments.
-
- For example, when the compiler encounters a method invocation such as
-'[object init]', it compiles it into a call to 'objc_msg_lookup (object,
-@selector(init))' followed by a cast of the returned value to the
-appropriate function pointer type, and then it calls it.
-
-* Menu:
-
-* Dynamically registering methods::
-* Forwarding hook::
-
-
-File: gcc.info, Node: Dynamically registering methods, Next: Forwarding hook, Up: Messaging with the GNU Objective-C runtime
-
-8.10.1 Dynamically registering methods
---------------------------------------
-
-If 'objc_msg_lookup()' does not find a suitable method implementation,
-because the receiver does not implement the required method, it tries to
-see if the class can dynamically register the method.
-
- To do so, the runtime checks if the class of the receiver implements
-the method
-
- + (BOOL) resolveInstanceMethod: (SEL)selector;
-
- in the case of an instance method, or
-
- + (BOOL) resolveClassMethod: (SEL)selector;
-
- in the case of a class method. If the class implements it, the runtime
-invokes it, passing as argument the selector of the original method, and
-if it returns 'YES', the runtime tries the lookup again, which could now
-succeed if a matching method was added dynamically by
-'+resolveInstanceMethod:' or '+resolveClassMethod:'.
-
- This allows classes to dynamically register methods (by adding them to
-the class using 'class_addMethod') when they are first called. To do
-so, a class should implement '+resolveInstanceMethod:' (or, depending on
-the case, '+resolveClassMethod:') and have it recognize the selectors of
-methods that can be registered dynamically at runtime, register them,
-and return 'YES'. It should return 'NO' for methods that it does not
-dynamically registered at runtime.
-
- If '+resolveInstanceMethod:' (or '+resolveClassMethod:') is not
-implemented or returns 'NO', the runtime then tries the forwarding hook.
-
- Support for '+resolveInstanceMethod:' and 'resolveClassMethod:' was
-added to the GNU Objective-C runtime in GCC version 4.6.
-
-
-File: gcc.info, Node: Forwarding hook, Prev: Dynamically registering methods, Up: Messaging with the GNU Objective-C runtime
-
-8.10.2 Forwarding hook
-----------------------
-
-The GNU Objective-C runtime provides a hook, called
-'__objc_msg_forward2', which is called by 'objc_msg_lookup()' when it
-can't find a method implementation in the runtime tables and after
-calling '+resolveInstanceMethod:' and '+resolveClassMethod:' has been
-attempted and did not succeed in dynamically registering the method.
-
- To configure the hook, you set the global variable
-'__objc_msg_forward2' to a function with the same argument and return
-types of 'objc_msg_lookup()'. When 'objc_msg_lookup()' can not find a
-method implementation, it invokes the hook function you provided to get
-a method implementation to return. So, in practice
-'__objc_msg_forward2' allows you to extend 'objc_msg_lookup()' by adding
-some custom code that is called to do a further lookup when no standard
-method implementation can be found using the normal lookup.
-
- This hook is generally reserved for "Foundation" libraries such as
-GNUstep Base, which use it to implement their high-level method
-forwarding API, typically based around the 'forwardInvocation:' method.
-So, unless you are implementing your own "Foundation" library, you
-should not set this hook.
-
- In a typical forwarding implementation, the '__objc_msg_forward2' hook
-function determines the argument and return type of the method that is
-being looked up, and then creates a function that takes these arguments
-and has that return type, and returns it to the caller. Creating this
-function is non-trivial and is typically performed using a dedicated
-library such as 'libffi'.
-
- The forwarding method implementation thus created is returned by
-'objc_msg_lookup()' and is executed as if it was a normal method
-implementation. When the forwarding method implementation is called, it
-is usually expected to pack all arguments into some sort of object
-(typically, an 'NSInvocation' in a "Foundation" library), and hand it
-over to the programmer ('forwardInvocation:') who is then allowed to
-manipulate the method invocation using a high-level API provided by the
-"Foundation" library. For example, the programmer may want to examine
-the method invocation arguments and name and potentially change them
-before forwarding the method invocation to one or more local objects
-('performInvocation:') or even to remote objects (by using Distributed
-Objects or some other mechanism). When all this completes, the return
-value is passed back and must be returned correctly to the original
-caller.
-
- Note that the GNU Objective-C runtime currently provides no support for
-method forwarding or method invocations other than the
-'__objc_msg_forward2' hook.
-
- If the forwarding hook does not exist or returns 'NULL', the runtime
-currently attempts forwarding using an older, deprecated API, and if
-that fails, it aborts the program. In future versions of the GNU
-Objective-C runtime, the runtime will immediately abort.
-
-
-File: gcc.info, Node: Compatibility, Next: Gcov, Prev: Objective-C, Up: Top
-
-9 Binary Compatibility
-**********************
-
-Binary compatibility encompasses several related concepts:
-
-"application binary interface (ABI)"
- The set of runtime conventions followed by all of the tools that
- deal with binary representations of a program, including compilers,
- assemblers, linkers, and language runtime support. Some ABIs are
- formal with a written specification, possibly designed by multiple
- interested parties. Others are simply the way things are actually
- done by a particular set of tools.
-
-"ABI conformance"
- A compiler conforms to an ABI if it generates code that follows all
- of the specifications enumerated by that ABI. A library conforms
- to an ABI if it is implemented according to that ABI. An
- application conforms to an ABI if it is built using tools that
- conform to that ABI and does not contain source code that
- specifically changes behavior specified by the ABI.
-
-"calling conventions"
- Calling conventions are a subset of an ABI that specify of how
- arguments are passed and function results are returned.
-
-"interoperability"
- Different sets of tools are interoperable if they generate files
- that can be used in the same program. The set of tools includes
- compilers, assemblers, linkers, libraries, header files, startup
- files, and debuggers. Binaries produced by different sets of tools
- are not interoperable unless they implement the same ABI. This
- applies to different versions of the same tools as well as tools
- from different vendors.
-
-"intercallability"
- Whether a function in a binary built by one set of tools can call a
- function in a binary built by a different set of tools is a subset
- of interoperability.
-
-"implementation-defined features"
- Language standards include lists of implementation-defined features
- whose behavior can vary from one implementation to another. Some
- of these features are normally covered by a platform's ABI and
- others are not. The features that are not covered by an ABI
- generally affect how a program behaves, but not intercallability.
-
-"compatibility"
- Conformance to the same ABI and the same behavior of
- implementation-defined features are both relevant for
- compatibility.
-
- The application binary interface implemented by a C or C++ compiler
-affects code generation and runtime support for:
-
- * size and alignment of data types
- * layout of structured types
- * calling conventions
- * register usage conventions
- * interfaces for runtime arithmetic support
- * object file formats
-
- In addition, the application binary interface implemented by a C++
-compiler affects code generation and runtime support for:
- * name mangling
- * exception handling
- * invoking constructors and destructors
- * layout, alignment, and padding of classes
- * layout and alignment of virtual tables
-
- Some GCC compilation options cause the compiler to generate code that
-does not conform to the platform's default ABI. Other options cause
-different program behavior for implementation-defined features that are
-not covered by an ABI. These options are provided for consistency with
-other compilers that do not follow the platform's default ABI or the
-usual behavior of implementation-defined features for the platform. Be
-very careful about using such options.
-
- Most platforms have a well-defined ABI that covers C code, but ABIs
-that cover C++ functionality are not yet common.
-
- Starting with GCC 3.2, GCC binary conventions for C++ are based on a
-written, vendor-neutral C++ ABI that was designed to be specific to
-64-bit Itanium but also includes generic specifications that apply to
-any platform. This C++ ABI is also implemented by other compiler
-vendors on some platforms, notably GNU/Linux and BSD systems. We have
-tried hard to provide a stable ABI that will be compatible with future
-GCC releases, but it is possible that we will encounter problems that
-make this difficult. Such problems could include different
-interpretations of the C++ ABI by different vendors, bugs in the ABI, or
-bugs in the implementation of the ABI in different compilers. GCC's
-'-Wabi' switch warns when G++ generates code that is probably not
-compatible with the C++ ABI.
-
- The C++ library used with a C++ compiler includes the Standard C++
-Library, with functionality defined in the C++ Standard, plus language
-runtime support. The runtime support is included in a C++ ABI, but
-there is no formal ABI for the Standard C++ Library. Two
-implementations of that library are interoperable if one follows the
-de-facto ABI of the other and if they are both built with the same
-compiler, or with compilers that conform to the same ABI for C++
-compiler and runtime support.
-
- When G++ and another C++ compiler conform to the same C++ ABI, but the
-implementations of the Standard C++ Library that they normally use do
-not follow the same ABI for the Standard C++ Library, object files built
-with those compilers can be used in the same program only if they use
-the same C++ library. This requires specifying the location of the C++
-library header files when invoking the compiler whose usual library is
-not being used. The location of GCC's C++ header files depends on how
-the GCC build was configured, but can be seen by using the G++ '-v'
-option. With default configuration options for G++ 3.3 the compile line
-for a different C++ compiler needs to include
-
- -IGCC_INSTALL_DIRECTORY/include/c++/3.3
-
- Similarly, compiling code with G++ that must use a C++ library other
-than the GNU C++ library requires specifying the location of the header
-files for that other library.
-
- The most straightforward way to link a program to use a particular C++
-library is to use a C++ driver that specifies that C++ library by
-default. The 'g++' driver, for example, tells the linker where to find
-GCC's C++ library ('libstdc++') plus the other libraries and startup
-files it needs, in the proper order.
-
- If a program must use a different C++ library and it's not possible to
-do the final link using a C++ driver that uses that library by default,
-it is necessary to tell 'g++' the location and name of that library. It
-might also be necessary to specify different startup files and other
-runtime support libraries, and to suppress the use of GCC's support
-libraries with one or more of the options '-nostdlib', '-nostartfiles',
-and '-nodefaultlibs'.
-
-
-File: gcc.info, Node: Gcov, Next: Trouble, Prev: Compatibility, Up: Top
-
-10 'gcov'--a Test Coverage Program
-**********************************
-
-'gcov' is a tool you can use in conjunction with GCC to test code
-coverage in your programs.
-
-* Menu:
-
-* Gcov Intro:: Introduction to gcov.
-* Invoking Gcov:: How to use gcov.
-* Gcov and Optimization:: Using gcov with GCC optimization.
-* Gcov Data Files:: The files used by gcov.
-* Cross-profiling:: Data file relocation.
-
-
-File: gcc.info, Node: Gcov Intro, Next: Invoking Gcov, Up: Gcov
-
-10.1 Introduction to 'gcov'
-===========================
-
-'gcov' is a test coverage program. Use it in concert with GCC to
-analyze your programs to help create more efficient, faster running code
-and to discover untested parts of your program. You can use 'gcov' as a
-profiling tool to help discover where your optimization efforts will
-best affect your code. You can also use 'gcov' along with the other
-profiling tool, 'gprof', to assess which parts of your code use the
-greatest amount of computing time.
-
- Profiling tools help you analyze your code's performance. Using a
-profiler such as 'gcov' or 'gprof', you can find out some basic
-performance statistics, such as:
-
- * how often each line of code executes
-
- * what lines of code are actually executed
-
- * how much computing time each section of code uses
-
- Once you know these things about how your code works when compiled, you
-can look at each module to see which modules should be optimized.
-'gcov' helps you determine where to work on optimization.
-
- Software developers also use coverage testing in concert with
-testsuites, to make sure software is actually good enough for a release.
-Testsuites can verify that a program works as expected; a coverage
-program tests to see how much of the program is exercised by the
-testsuite. Developers can then determine what kinds of test cases need
-to be added to the testsuites to create both better testing and a better
-final product.
-
- You should compile your code without optimization if you plan to use
-'gcov' because the optimization, by combining some lines of code into
-one function, may not give you as much information as you need to look
-for 'hot spots' where the code is using a great deal of computer time.
-Likewise, because 'gcov' accumulates statistics by line (at the lowest
-resolution), it works best with a programming style that places only one
-statement on each line. If you use complicated macros that expand to
-loops or to other control structures, the statistics are less
-helpful--they only report on the line where the macro call appears. If
-your complex macros behave like functions, you can replace them with
-inline functions to solve this problem.
-
- 'gcov' creates a logfile called 'SOURCEFILE.gcov' which indicates how
-many times each line of a source file 'SOURCEFILE.c' has executed. You
-can use these logfiles along with 'gprof' to aid in fine-tuning the
-performance of your programs. 'gprof' gives timing information you can
-use along with the information you get from 'gcov'.
-
- 'gcov' works only on code compiled with GCC. It is not compatible with
-any other profiling or test coverage mechanism.
-
-
-File: gcc.info, Node: Invoking Gcov, Next: Gcov and Optimization, Prev: Gcov Intro, Up: Gcov
-
-10.2 Invoking 'gcov'
-====================
-
- gcov [OPTIONS] FILES
-
- 'gcov' accepts the following options:
-
-'-h'
-'--help'
- Display help about using 'gcov' (on the standard output), and exit
- without doing any further processing.
-
-'-v'
-'--version'
- Display the 'gcov' version number (on the standard output), and
- exit without doing any further processing.
-
-'-a'
-'--all-blocks'
- Write individual execution counts for every basic block. Normally
- gcov outputs execution counts only for the main blocks of a line.
- With this option you can determine if blocks within a single line
- are not being executed.
-
-'-b'
-'--branch-probabilities'
- Write branch frequencies to the output file, and write branch
- summary info to the standard output. This option allows you to see
- how often each branch in your program was taken. Unconditional
- branches will not be shown, unless the '-u' option is given.
-
-'-c'
-'--branch-counts'
- Write branch frequencies as the number of branches taken, rather
- than the percentage of branches taken.
-
-'-n'
-'--no-output'
- Do not create the 'gcov' output file.
-
-'-l'
-'--long-file-names'
- Create long file names for included source files. For example, if
- the header file 'x.h' contains code, and was included in the file
- 'a.c', then running 'gcov' on the file 'a.c' will produce an output
- file called 'a.c##x.h.gcov' instead of 'x.h.gcov'. This can be
- useful if 'x.h' is included in multiple source files and you want
- to see the individual contributions. If you use the '-p' option,
- both the including and included file names will be complete path
- names.
-
-'-p'
-'--preserve-paths'
- Preserve complete path information in the names of generated
- '.gcov' files. Without this option, just the filename component is
- used. With this option, all directories are used, with '/'
- characters translated to '#' characters, '.' directory components
- removed and unremoveable '..' components renamed to '^'. This is
- useful if sourcefiles are in several different directories.
-
-'-r'
-'--relative-only'
- Only output information about source files with a relative pathname
- (after source prefix elision). Absolute paths are usually system
- header files and coverage of any inline functions therein is
- normally uninteresting.
-
-'-f'
-'--function-summaries'
- Output summaries for each function in addition to the file level
- summary.
-
-'-o DIRECTORY|FILE'
-'--object-directory DIRECTORY'
-'--object-file FILE'
- Specify either the directory containing the gcov data files, or the
- object path name. The '.gcno', and '.gcda' data files are searched
- for using this option. If a directory is specified, the data files
- are in that directory and named after the input file name, without
- its extension. If a file is specified here, the data files are
- named after that file, without its extension.
-
-'-s DIRECTORY'
-'--source-prefix DIRECTORY'
- A prefix for source file names to remove when generating the output
- coverage files. This option is useful when building in a separate
- directory, and the pathname to the source directory is not wanted
- when determining the output file names. Note that this prefix
- detection is applied before determining whether the source file is
- absolute.
-
-'-u'
-'--unconditional-branches'
- When branch probabilities are given, include those of unconditional
- branches. Unconditional branches are normally not interesting.
-
-'-d'
-'--display-progress'
- Display the progress on the standard output.
-
-'-i'
-'--intermediate-format'
- Output gcov file in an easy-to-parse intermediate text format that
- can be used by 'lcov' or other tools. The output is a single
- '.gcov' file per '.gcda' file. No source code is required.
-
- The format of the intermediate '.gcov' file is plain text with one
- entry per line
-
- file:SOURCE_FILE_NAME
- function:LINE_NUMBER,EXECUTION_COUNT,FUNCTION_NAME
- lcount:LINE NUMBER,EXECUTION_COUNT
- branch:LINE_NUMBER,BRANCH_COVERAGE_TYPE
-
- Where the BRANCH_COVERAGE_TYPE is
- notexec (Branch not executed)
- taken (Branch executed and taken)
- nottaken (Branch executed, but not taken)
-
- There can be multiple FILE entries in an intermediate gcov
- file. All entries following a FILE pertain to that source file
- until the next FILE entry.
-
- Here is a sample when '-i' is used in conjunction with '-b' option:
-
- file:array.cc
- function:11,1,_Z3sumRKSt6vectorIPiSaIS0_EE
- function:22,1,main
- lcount:11,1
- lcount:12,1
- lcount:14,1
- branch:14,taken
- lcount:26,1
- branch:28,nottaken
-
-'-m'
-'--demangled-names'
- Display demangled function names in output. The default is to show
- mangled function names.
-
- 'gcov' should be run with the current directory the same as that when
-you invoked the compiler. Otherwise it will not be able to locate the
-source files. 'gcov' produces files called 'MANGLEDNAME.gcov' in the
-current directory. These contain the coverage information of the source
-file they correspond to. One '.gcov' file is produced for each source
-(or header) file containing code, which was compiled to produce the data
-files. The MANGLEDNAME part of the output file name is usually simply
-the source file name, but can be something more complicated if the '-l'
-or '-p' options are given. Refer to those options for details.
-
- If you invoke 'gcov' with multiple input files, the contributions from
-each input file are summed. Typically you would invoke it with the same
-list of files as the final link of your executable.
-
- The '.gcov' files contain the ':' separated fields along with program
-source code. The format is
-
- EXECUTION_COUNT:LINE_NUMBER:SOURCE LINE TEXT
-
- Additional block information may succeed each line, when requested by
-command line option. The EXECUTION_COUNT is '-' for lines containing no
-code. Unexecuted lines are marked '#####' or '====', depending on
-whether they are reachable by non-exceptional paths or only exceptional
-paths such as C++ exception handlers, respectively.
-
- Some lines of information at the start have LINE_NUMBER of zero. These
-preamble lines are of the form
-
- -:0:TAG:VALUE
-
- The ordering and number of these preamble lines will be augmented as
-'gcov' development progresses -- do not rely on them remaining
-unchanged. Use TAG to locate a particular preamble line.
-
- The additional block information is of the form
-
- TAG INFORMATION
-
- The INFORMATION is human readable, but designed to be simple enough for
-machine parsing too.
-
- When printing percentages, 0% and 100% are only printed when the values
-are _exactly_ 0% and 100% respectively. Other values which would
-conventionally be rounded to 0% or 100% are instead printed as the
-nearest non-boundary value.
-
- When using 'gcov', you must first compile your program with two special
-GCC options: '-fprofile-arcs -ftest-coverage'. This tells the compiler
-to generate additional information needed by gcov (basically a flow
-graph of the program) and also includes additional code in the object
-files for generating the extra profiling information needed by gcov.
-These additional files are placed in the directory where the object file
-is located.
-
- Running the program will cause profile output to be generated. For
-each source file compiled with '-fprofile-arcs', an accompanying '.gcda'
-file will be placed in the object file directory.
-
- Running 'gcov' with your program's source file names as arguments will
-now produce a listing of the code along with frequency of execution for
-each line. For example, if your program is called 'tmp.c', this is what
-you see when you use the basic 'gcov' facility:
-
- $ gcc -fprofile-arcs -ftest-coverage tmp.c
- $ a.out
- $ gcov tmp.c
- 90.00% of 10 source lines executed in file tmp.c
- Creating tmp.c.gcov.
-
- The file 'tmp.c.gcov' contains output from 'gcov'. Here is a sample:
-
- -: 0:Source:tmp.c
- -: 0:Graph:tmp.gcno
- -: 0:Data:tmp.gcda
- -: 0:Runs:1
- -: 0:Programs:1
- -: 1:#include <stdio.h>
- -: 2:
- -: 3:int main (void)
- 1: 4:{
- 1: 5: int i, total;
- -: 6:
- 1: 7: total = 0;
- -: 8:
- 11: 9: for (i = 0; i < 10; i++)
- 10: 10: total += i;
- -: 11:
- 1: 12: if (total != 45)
- #####: 13: printf ("Failure\n");
- -: 14: else
- 1: 15: printf ("Success\n");
- 1: 16: return 0;
- -: 17:}
-
- When you use the '-a' option, you will get individual block counts, and
-the output looks like this:
-
- -: 0:Source:tmp.c
- -: 0:Graph:tmp.gcno
- -: 0:Data:tmp.gcda
- -: 0:Runs:1
- -: 0:Programs:1
- -: 1:#include <stdio.h>
- -: 2:
- -: 3:int main (void)
- 1: 4:{
- 1: 4-block 0
- 1: 5: int i, total;
- -: 6:
- 1: 7: total = 0;
- -: 8:
- 11: 9: for (i = 0; i < 10; i++)
- 11: 9-block 0
- 10: 10: total += i;
- 10: 10-block 0
- -: 11:
- 1: 12: if (total != 45)
- 1: 12-block 0
- #####: 13: printf ("Failure\n");
- $$$$$: 13-block 0
- -: 14: else
- 1: 15: printf ("Success\n");
- 1: 15-block 0
- 1: 16: return 0;
- 1: 16-block 0
- -: 17:}
-
- In this mode, each basic block is only shown on one line - the last
-line of the block. A multi-line block will only contribute to the
-execution count of that last line, and other lines will not be shown to
-contain code, unless previous blocks end on those lines. The total
-execution count of a line is shown and subsequent lines show the
-execution counts for individual blocks that end on that line. After
-each block, the branch and call counts of the block will be shown, if
-the '-b' option is given.
-
- Because of the way GCC instruments calls, a call count can be shown
-after a line with no individual blocks. As you can see, line 13
-contains a basic block that was not executed.
-
- When you use the '-b' option, your output looks like this:
-
- $ gcov -b tmp.c
- 90.00% of 10 source lines executed in file tmp.c
- 80.00% of 5 branches executed in file tmp.c
- 80.00% of 5 branches taken at least once in file tmp.c
- 50.00% of 2 calls executed in file tmp.c
- Creating tmp.c.gcov.
-
- Here is a sample of a resulting 'tmp.c.gcov' file:
-
- -: 0:Source:tmp.c
- -: 0:Graph:tmp.gcno
- -: 0:Data:tmp.gcda
- -: 0:Runs:1
- -: 0:Programs:1
- -: 1:#include <stdio.h>
- -: 2:
- -: 3:int main (void)
- function main called 1 returned 1 blocks executed 75%
- 1: 4:{
- 1: 5: int i, total;
- -: 6:
- 1: 7: total = 0;
- -: 8:
- 11: 9: for (i = 0; i < 10; i++)
- branch 0 taken 91% (fallthrough)
- branch 1 taken 9%
- 10: 10: total += i;
- -: 11:
- 1: 12: if (total != 45)
- branch 0 taken 0% (fallthrough)
- branch 1 taken 100%
- #####: 13: printf ("Failure\n");
- call 0 never executed
- -: 14: else
- 1: 15: printf ("Success\n");
- call 0 called 1 returned 100%
- 1: 16: return 0;
- -: 17:}
-
- For each function, a line is printed showing how many times the
-function is called, how many times it returns and what percentage of the
-function's blocks were executed.
-
- For each basic block, a line is printed after the last line of the
-basic block describing the branch or call that ends the basic block.
-There can be multiple branches and calls listed for a single source line
-if there are multiple basic blocks that end on that line. In this case,
-the branches and calls are each given a number. There is no simple way
-to map these branches and calls back to source constructs. In general,
-though, the lowest numbered branch or call will correspond to the
-leftmost construct on the source line.
-
- For a branch, if it was executed at least once, then a percentage
-indicating the number of times the branch was taken divided by the
-number of times the branch was executed will be printed. Otherwise, the
-message "never executed" is printed.
-
- For a call, if it was executed at least once, then a percentage
-indicating the number of times the call returned divided by the number
-of times the call was executed will be printed. This will usually be
-100%, but may be less for functions that call 'exit' or 'longjmp', and
-thus may not return every time they are called.
-
- The execution counts are cumulative. If the example program were
-executed again without removing the '.gcda' file, the count for the
-number of times each line in the source was executed would be added to
-the results of the previous run(s). This is potentially useful in
-several ways. For example, it could be used to accumulate data over a
-number of program runs as part of a test verification suite, or to
-provide more accurate long-term information over a large number of
-program runs.
-
- The data in the '.gcda' files is saved immediately before the program
-exits. For each source file compiled with '-fprofile-arcs', the
-profiling code first attempts to read in an existing '.gcda' file; if
-the file doesn't match the executable (differing number of basic block
-counts) it will ignore the contents of the file. It then adds in the
-new execution counts and finally writes the data to the file.
-
-
-File: gcc.info, Node: Gcov and Optimization, Next: Gcov Data Files, Prev: Invoking Gcov, Up: Gcov
-
-10.3 Using 'gcov' with GCC Optimization
-=======================================
-
-If you plan to use 'gcov' to help optimize your code, you must first
-compile your program with two special GCC options: '-fprofile-arcs
--ftest-coverage'. Aside from that, you can use any other GCC options;
-but if you want to prove that every single line in your program was
-executed, you should not compile with optimization at the same time. On
-some machines the optimizer can eliminate some simple code lines by
-combining them with other lines. For example, code like this:
-
- if (a != b)
- c = 1;
- else
- c = 0;
-
-can be compiled into one instruction on some machines. In this case,
-there is no way for 'gcov' to calculate separate execution counts for
-each line because there isn't separate code for each line. Hence the
-'gcov' output looks like this if you compiled the program with
-optimization:
-
- 100: 12:if (a != b)
- 100: 13: c = 1;
- 100: 14:else
- 100: 15: c = 0;
-
- The output shows that this block of code, combined by optimization,
-executed 100 times. In one sense this result is correct, because there
-was only one instruction representing all four of these lines. However,
-the output does not indicate how many times the result was 0 and how
-many times the result was 1.
-
- Inlineable functions can create unexpected line counts. Line counts
-are shown for the source code of the inlineable function, but what is
-shown depends on where the function is inlined, or if it is not inlined
-at all.
-
- If the function is not inlined, the compiler must emit an out of line
-copy of the function, in any object file that needs it. If 'fileA.o'
-and 'fileB.o' both contain out of line bodies of a particular inlineable
-function, they will also both contain coverage counts for that function.
-When 'fileA.o' and 'fileB.o' are linked together, the linker will, on
-many systems, select one of those out of line bodies for all calls to
-that function, and remove or ignore the other. Unfortunately, it will
-not remove the coverage counters for the unused function body. Hence
-when instrumented, all but one use of that function will show zero
-counts.
-
- If the function is inlined in several places, the block structure in
-each location might not be the same. For instance, a condition might
-now be calculable at compile time in some instances. Because the
-coverage of all the uses of the inline function will be shown for the
-same source lines, the line counts themselves might seem inconsistent.
-
- Long-running applications can use the '_gcov_reset' and '_gcov_dump'
-facilities to restrict profile collection to the program region of
-interest. Calling '_gcov_reset(void)' will clear all profile counters
-to zero, and calling '_gcov_dump(void)' will cause the profile
-information collected at that point to be dumped to '.gcda' output
-files.
-
-
-File: gcc.info, Node: Gcov Data Files, Next: Cross-profiling, Prev: Gcov and Optimization, Up: Gcov
-
-10.4 Brief description of 'gcov' data files
-===========================================
-
-'gcov' uses two files for profiling. The names of these files are
-derived from the original _object_ file by substituting the file suffix
-with either '.gcno', or '.gcda'. The files contain coverage and profile
-data stored in a platform-independent format. The '.gcno' files are
-placed in the same directory as the object file. By default, the
-'.gcda' files are also stored in the same directory as the object file,
-but the GCC '-fprofile-dir' option may be used to store the '.gcda'
-files in a separate directory.
-
- The '.gcno' notes file is generated when the source file is compiled
-with the GCC '-ftest-coverage' option. It contains information to
-reconstruct the basic block graphs and assign source line numbers to
-blocks.
-
- The '.gcda' count data file is generated when a program containing
-object files built with the GCC '-fprofile-arcs' option is executed. A
-separate '.gcda' file is created for each object file compiled with this
-option. It contains arc transition counts, value profile counts, and
-some summary information.
-
- The full details of the file format is specified in 'gcov-io.h', and
-functions provided in that header file should be used to access the
-coverage files.
-
-
-File: gcc.info, Node: Cross-profiling, Prev: Gcov Data Files, Up: Gcov
-
-10.5 Data file relocation to support cross-profiling
-====================================================
-
-Running the program will cause profile output to be generated. For each
-source file compiled with '-fprofile-arcs', an accompanying '.gcda' file
-will be placed in the object file directory. That implicitly requires
-running the program on the same system as it was built or having the
-same absolute directory structure on the target system. The program
-will try to create the needed directory structure, if it is not already
-present.
-
- To support cross-profiling, a program compiled with '-fprofile-arcs'
-can relocate the data files based on two environment variables:
-
- * GCOV_PREFIX contains the prefix to add to the absolute paths in the
- object file. Prefix can be absolute, or relative. The default is
- no prefix.
-
- * GCOV_PREFIX_STRIP indicates the how many initial directory names to
- strip off the hardwired absolute paths. Default value is 0.
-
- _Note:_ If GCOV_PREFIX_STRIP is set without GCOV_PREFIX is
- undefined, then a relative path is made out of the hardwired
- absolute paths.
-
- For example, if the object file '/user/build/foo.o' was built with
-'-fprofile-arcs', the final executable will try to create the data file
-'/user/build/foo.gcda' when running on the target system. This will
-fail if the corresponding directory does not exist and it is unable to
-create it. This can be overcome by, for example, setting the
-environment as 'GCOV_PREFIX=/target/run' and 'GCOV_PREFIX_STRIP=1'.
-Such a setting will name the data file '/target/run/build/foo.gcda'.
-
- You must move the data files to the expected directory tree in order to
-use them for profile directed optimizations ('--use-profile'), or to use
-the 'gcov' tool.
-
-
-File: gcc.info, Node: Trouble, Next: Bugs, Prev: Gcov, Up: Top
-
-11 Known Causes of Trouble with GCC
-***********************************
-
-This section describes known problems that affect users of GCC. Most of
-these are not GCC bugs per se--if they were, we would fix them. But the
-result for a user may be like the result of a bug.
-
- Some of these problems are due to bugs in other software, some are
-missing features that are too much work to add, and some are places
-where people's opinions differ as to what is best.
-
-* Menu:
-
-* Actual Bugs:: Bugs we will fix later.
-* Interoperation:: Problems using GCC with other compilers,
- and with certain linkers, assemblers and debuggers.
-* Incompatibilities:: GCC is incompatible with traditional C.
-* Fixed Headers:: GCC uses corrected versions of system header files.
- This is necessary, but doesn't always work smoothly.
-* Standard Libraries:: GCC uses the system C library, which might not be
- compliant with the ISO C standard.
-* Disappointments:: Regrettable things we can't change, but not quite bugs.
-* C++ Misunderstandings:: Common misunderstandings with GNU C++.
-* Non-bugs:: Things we think are right, but some others disagree.
-* Warnings and Errors:: Which problems in your code get warnings,
- and which get errors.
-
-
-File: gcc.info, Node: Actual Bugs, Next: Interoperation, Up: Trouble
-
-11.1 Actual Bugs We Haven't Fixed Yet
-=====================================
-
- * The 'fixincludes' script interacts badly with automounters; if the
- directory of system header files is automounted, it tends to be
- unmounted while 'fixincludes' is running. This would seem to be a
- bug in the automounter. We don't know any good way to work around
- it.
-
-
-File: gcc.info, Node: Interoperation, Next: Incompatibilities, Prev: Actual Bugs, Up: Trouble
-
-11.2 Interoperation
-===================
-
-This section lists various difficulties encountered in using GCC
-together with other compilers or with the assemblers, linkers, libraries
-and debuggers on certain systems.
-
- * On many platforms, GCC supports a different ABI for C++ than do
- other compilers, so the object files compiled by GCC cannot be used
- with object files generated by another C++ compiler.
-
- An area where the difference is most apparent is name mangling.
- The use of different name mangling is intentional, to protect you
- from more subtle problems. Compilers differ as to many internal
- details of C++ implementation, including: how class instances are
- laid out, how multiple inheritance is implemented, and how virtual
- function calls are handled. If the name encoding were made the
- same, your programs would link against libraries provided from
- other compilers--but the programs would then crash when run.
- Incompatible libraries are then detected at link time, rather than
- at run time.
-
- * On some BSD systems, including some versions of Ultrix, use of
- profiling causes static variable destructors (currently used only
- in C++) not to be run.
-
- * On a SPARC, GCC aligns all values of type 'double' on an 8-byte
- boundary, and it expects every 'double' to be so aligned. The Sun
- compiler usually gives 'double' values 8-byte alignment, with one
- exception: function arguments of type 'double' may not be aligned.
-
- As a result, if a function compiled with Sun CC takes the address
- of an argument of type 'double' and passes this pointer of type
- 'double *' to a function compiled with GCC, dereferencing the
- pointer may cause a fatal signal.
-
- One way to solve this problem is to compile your entire program
- with GCC. Another solution is to modify the function that is
- compiled with Sun CC to copy the argument into a local variable;
- local variables are always properly aligned. A third solution is
- to modify the function that uses the pointer to dereference it via
- the following function 'access_double' instead of directly with
- '*':
-
- inline double
- access_double (double *unaligned_ptr)
- {
- union d2i { double d; int i[2]; };
-
- union d2i *p = (union d2i *) unaligned_ptr;
- union d2i u;
-
- u.i[0] = p->i[0];
- u.i[1] = p->i[1];
-
- return u.d;
- }
-
- Storing into the pointer can be done likewise with the same union.
-
- * On Solaris, the 'malloc' function in the 'libmalloc.a' library may
- allocate memory that is only 4 byte aligned. Since GCC on the
- SPARC assumes that doubles are 8 byte aligned, this may result in a
- fatal signal if doubles are stored in memory allocated by the
- 'libmalloc.a' library.
-
- The solution is to not use the 'libmalloc.a' library. Use instead
- 'malloc' and related functions from 'libc.a'; they do not have this
- problem.
-
- * On the HP PA machine, ADB sometimes fails to work on functions
- compiled with GCC. Specifically, it fails to work on functions
- that use 'alloca' or variable-size arrays. This is because GCC
- doesn't generate HP-UX unwind descriptors for such functions. It
- may even be impossible to generate them.
-
- * Debugging ('-g') is not supported on the HP PA machine, unless you
- use the preliminary GNU tools.
-
- * Taking the address of a label may generate errors from the HP-UX PA
- assembler. GAS for the PA does not have this problem.
-
- * Using floating point parameters for indirect calls to static
- functions will not work when using the HP assembler. There simply
- is no way for GCC to specify what registers hold arguments for
- static functions when using the HP assembler. GAS for the PA does
- not have this problem.
-
- * In extremely rare cases involving some very large functions you may
- receive errors from the HP linker complaining about an out of
- bounds unconditional branch offset. This used to occur more often
- in previous versions of GCC, but is now exceptionally rare. If you
- should run into it, you can work around by making your function
- smaller.
-
- * GCC compiled code sometimes emits warnings from the HP-UX assembler
- of the form:
-
- (warning) Use of GR3 when
- frame >= 8192 may cause conflict.
-
- These warnings are harmless and can be safely ignored.
-
- * In extremely rare cases involving some very large functions you may
- receive errors from the AIX Assembler complaining about a
- displacement that is too large. If you should run into it, you can
- work around by making your function smaller.
-
- * The 'libstdc++.a' library in GCC relies on the SVR4 dynamic linker
- semantics which merges global symbols between libraries and
- applications, especially necessary for C++ streams functionality.
- This is not the default behavior of AIX shared libraries and
- dynamic linking. 'libstdc++.a' is built on AIX with
- "runtime-linking" enabled so that symbol merging can occur. To
- utilize this feature, the application linked with 'libstdc++.a'
- must include the '-Wl,-brtl' flag on the link line. G++ cannot
- impose this because this option may interfere with the semantics of
- the user program and users may not always use 'g++' to link his or
- her application. Applications are not required to use the
- '-Wl,-brtl' flag on the link line--the rest of the 'libstdc++.a'
- library which is not dependent on the symbol merging semantics will
- continue to function correctly.
-
- * An application can interpose its own definition of functions for
- functions invoked by 'libstdc++.a' with "runtime-linking" enabled
- on AIX. To accomplish this the application must be linked with
- "runtime-linking" option and the functions explicitly must be
- exported by the application ('-Wl,-brtl,-bE:exportfile').
-
- * AIX on the RS/6000 provides support (NLS) for environments outside
- of the United States. Compilers and assemblers use NLS to support
- locale-specific representations of various objects including
- floating-point numbers ('.' vs ',' for separating decimal
- fractions). There have been problems reported where the library
- linked with GCC does not produce the same floating-point formats
- that the assembler accepts. If you have this problem, set the
- 'LANG' environment variable to 'C' or 'En_US'.
-
- * Even if you specify '-fdollars-in-identifiers', you cannot
- successfully use '$' in identifiers on the RS/6000 due to a
- restriction in the IBM assembler. GAS supports these identifiers.
-
-
-File: gcc.info, Node: Incompatibilities, Next: Fixed Headers, Prev: Interoperation, Up: Trouble
-
-11.3 Incompatibilities of GCC
-=============================
-
-There are several noteworthy incompatibilities between GNU C and K&R
-(non-ISO) versions of C.
-
- * GCC normally makes string constants read-only. If several
- identical-looking string constants are used, GCC stores only one
- copy of the string.
-
- One consequence is that you cannot call 'mktemp' with a string
- constant argument. The function 'mktemp' always alters the string
- its argument points to.
-
- Another consequence is that 'sscanf' does not work on some very old
- systems when passed a string constant as its format control string
- or input. This is because 'sscanf' incorrectly tries to write into
- the string constant. Likewise 'fscanf' and 'scanf'.
-
- The solution to these problems is to change the program to use
- 'char'-array variables with initialization strings for these
- purposes instead of string constants.
-
- * '-2147483648' is positive.
-
- This is because 2147483648 cannot fit in the type 'int', so
- (following the ISO C rules) its data type is 'unsigned long int'.
- Negating this value yields 2147483648 again.
-
- * GCC does not substitute macro arguments when they appear inside of
- string constants. For example, the following macro in GCC
-
- #define foo(a) "a"
-
- will produce output '"a"' regardless of what the argument A is.
-
- * When you use 'setjmp' and 'longjmp', the only automatic variables
- guaranteed to remain valid are those declared 'volatile'. This is
- a consequence of automatic register allocation. Consider this
- function:
-
- jmp_buf j;
-
- foo ()
- {
- int a, b;
-
- a = fun1 ();
- if (setjmp (j))
- return a;
-
- a = fun2 ();
- /* 'longjmp (j)' may occur in 'fun3'. */
- return a + fun3 ();
- }
-
- Here 'a' may or may not be restored to its first value when the
- 'longjmp' occurs. If 'a' is allocated in a register, then its
- first value is restored; otherwise, it keeps the last value stored
- in it.
-
- If you use the '-W' option with the '-O' option, you will get a
- warning when GCC thinks such a problem might be possible.
-
- * Programs that use preprocessing directives in the middle of macro
- arguments do not work with GCC. For example, a program like this
- will not work:
-
- foobar (
- #define luser
- hack)
-
- ISO C does not permit such a construct.
-
- * K&R compilers allow comments to cross over an inclusion boundary
- (i.e. started in an include file and ended in the including file).
-
- * Declarations of external variables and functions within a block
- apply only to the block containing the declaration. In other
- words, they have the same scope as any other declaration in the
- same place.
-
- In some other C compilers, an 'extern' declaration affects all the
- rest of the file even if it happens within a block.
-
- * In traditional C, you can combine 'long', etc., with a typedef
- name, as shown here:
-
- typedef int foo;
- typedef long foo bar;
-
- In ISO C, this is not allowed: 'long' and other type modifiers
- require an explicit 'int'.
-
- * PCC allows typedef names to be used as function parameters.
-
- * Traditional C allows the following erroneous pair of declarations
- to appear together in a given scope:
-
- typedef int foo;
- typedef foo foo;
-
- * GCC treats all characters of identifiers as significant. According
- to K&R-1 (2.2), "No more than the first eight characters are
- significant, although more may be used.". Also according to K&R-1
- (2.2), "An identifier is a sequence of letters and digits; the
- first character must be a letter. The underscore _ counts as a
- letter.", but GCC also allows dollar signs in identifiers.
-
- * PCC allows whitespace in the middle of compound assignment
- operators such as '+='. GCC, following the ISO standard, does not
- allow this.
-
- * GCC complains about unterminated character constants inside of
- preprocessing conditionals that fail. Some programs have English
- comments enclosed in conditionals that are guaranteed to fail; if
- these comments contain apostrophes, GCC will probably report an
- error. For example, this code would produce an error:
-
- #if 0
- You can't expect this to work.
- #endif
-
- The best solution to such a problem is to put the text into an
- actual C comment delimited by '/*...*/'.
-
- * Many user programs contain the declaration 'long time ();'. In the
- past, the system header files on many systems did not actually
- declare 'time', so it did not matter what type your program
- declared it to return. But in systems with ISO C headers, 'time'
- is declared to return 'time_t', and if that is not the same as
- 'long', then 'long time ();' is erroneous.
-
- The solution is to change your program to use appropriate system
- headers ('<time.h>' on systems with ISO C headers) and not to
- declare 'time' if the system header files declare it, or failing
- that to use 'time_t' as the return type of 'time'.
-
- * When compiling functions that return 'float', PCC converts it to a
- double. GCC actually returns a 'float'. If you are concerned with
- PCC compatibility, you should declare your functions to return
- 'double'; you might as well say what you mean.
-
- * When compiling functions that return structures or unions, GCC
- output code normally uses a method different from that used on most
- versions of Unix. As a result, code compiled with GCC cannot call
- a structure-returning function compiled with PCC, and vice versa.
-
- The method used by GCC is as follows: a structure or union which is
- 1, 2, 4 or 8 bytes long is returned like a scalar. A structure or
- union with any other size is stored into an address supplied by the
- caller (usually in a special, fixed register, but on some machines
- it is passed on the stack). The target hook
- 'TARGET_STRUCT_VALUE_RTX' tells GCC where to pass this address.
-
- By contrast, PCC on most target machines returns structures and
- unions of any size by copying the data into an area of static
- storage, and then returning the address of that storage as if it
- were a pointer value. The caller must copy the data from that
- memory area to the place where the value is wanted. GCC does not
- use this method because it is slower and nonreentrant.
-
- On some newer machines, PCC uses a reentrant convention for all
- structure and union returning. GCC on most of these machines uses
- a compatible convention when returning structures and unions in
- memory, but still returns small structures and unions in registers.
-
- You can tell GCC to use a compatible convention for all structure
- and union returning with the option '-fpcc-struct-return'.
-
- * GCC complains about program fragments such as '0x74ae-0x4000' which
- appear to be two hexadecimal constants separated by the minus
- operator. Actually, this string is a single "preprocessing token".
- Each such token must correspond to one token in C. Since this does
- not, GCC prints an error message. Although it may appear obvious
- that what is meant is an operator and two values, the ISO C
- standard specifically requires that this be treated as erroneous.
-
- A "preprocessing token" is a "preprocessing number" if it begins
- with a digit and is followed by letters, underscores, digits,
- periods and 'e+', 'e-', 'E+', 'E-', 'p+', 'p-', 'P+', or 'P-'
- character sequences. (In strict C90 mode, the sequences 'p+',
- 'p-', 'P+' and 'P-' cannot appear in preprocessing numbers.)
-
- To make the above program fragment valid, place whitespace in front
- of the minus sign. This whitespace will end the preprocessing
- number.
-
-
-File: gcc.info, Node: Fixed Headers, Next: Standard Libraries, Prev: Incompatibilities, Up: Trouble
-
-11.4 Fixed Header Files
-=======================
-
-GCC needs to install corrected versions of some system header files.
-This is because most target systems have some header files that won't
-work with GCC unless they are changed. Some have bugs, some are
-incompatible with ISO C, and some depend on special features of other
-compilers.
-
- Installing GCC automatically creates and installs the fixed header
-files, by running a program called 'fixincludes'. Normally, you don't
-need to pay attention to this. But there are cases where it doesn't do
-the right thing automatically.
-
- * If you update the system's header files, such as by installing a
- new system version, the fixed header files of GCC are not
- automatically updated. They can be updated using the 'mkheaders'
- script installed in 'LIBEXECDIR/gcc/TARGET/VERSION/install-tools/'.
-
- * On some systems, header file directories contain machine-specific
- symbolic links in certain places. This makes it possible to share
- most of the header files among hosts running the same version of
- the system on different machine models.
-
- The programs that fix the header files do not understand this
- special way of using symbolic links; therefore, the directory of
- fixed header files is good only for the machine model used to build
- it.
-
- It is possible to make separate sets of fixed header files for the
- different machine models, and arrange a structure of symbolic links
- so as to use the proper set, but you'll have to do this by hand.
-
-
-File: gcc.info, Node: Standard Libraries, Next: Disappointments, Prev: Fixed Headers, Up: Trouble
-
-11.5 Standard Libraries
-=======================
-
-GCC by itself attempts to be a conforming freestanding implementation.
-*Note Language Standards Supported by GCC: Standards, for details of
-what this means. Beyond the library facilities required of such an
-implementation, the rest of the C library is supplied by the vendor of
-the operating system. If that C library doesn't conform to the C
-standards, then your programs might get warnings (especially when using
-'-Wall') that you don't expect.
-
- For example, the 'sprintf' function on SunOS 4.1.3 returns 'char *'
-while the C standard says that 'sprintf' returns an 'int'. The
-'fixincludes' program could make the prototype for this function match
-the Standard, but that would be wrong, since the function will still
-return 'char *'.
-
- If you need a Standard compliant library, then you need to find one, as
-GCC does not provide one. The GNU C library (called 'glibc') provides
-ISO C, POSIX, BSD, SystemV and X/Open compatibility for GNU/Linux and
-HURD-based GNU systems; no recent version of it supports other systems,
-though some very old versions did. Version 2.2 of the GNU C library
-includes nearly complete C99 support. You could also ask your operating
-system vendor if newer libraries are available.
-
-
-File: gcc.info, Node: Disappointments, Next: C++ Misunderstandings, Prev: Standard Libraries, Up: Trouble
-
-11.6 Disappointments and Misunderstandings
-==========================================
-
-These problems are perhaps regrettable, but we don't know any practical
-way around them.
-
- * Certain local variables aren't recognized by debuggers when you
- compile with optimization.
-
- This occurs because sometimes GCC optimizes the variable out of
- existence. There is no way to tell the debugger how to compute the
- value such a variable "would have had", and it is not clear that
- would be desirable anyway. So GCC simply does not mention the
- eliminated variable when it writes debugging information.
-
- You have to expect a certain amount of disagreement between the
- executable and your source code, when you use optimization.
-
- * Users often think it is a bug when GCC reports an error for code
- like this:
-
- int foo (struct mumble *);
-
- struct mumble { ... };
-
- int foo (struct mumble *x)
- { ... }
-
- This code really is erroneous, because the scope of 'struct mumble'
- in the prototype is limited to the argument list containing it. It
- does not refer to the 'struct mumble' defined with file scope
- immediately below--they are two unrelated types with similar names
- in different scopes.
-
- But in the definition of 'foo', the file-scope type is used because
- that is available to be inherited. Thus, the definition and the
- prototype do not match, and you get an error.
-
- This behavior may seem silly, but it's what the ISO standard
- specifies. It is easy enough for you to make your code work by
- moving the definition of 'struct mumble' above the prototype. It's
- not worth being incompatible with ISO C just to avoid an error for
- the example shown above.
-
- * Accesses to bit-fields even in volatile objects works by accessing
- larger objects, such as a byte or a word. You cannot rely on what
- size of object is accessed in order to read or write the bit-field;
- it may even vary for a given bit-field according to the precise
- usage.
-
- If you care about controlling the amount of memory that is
- accessed, use volatile but do not use bit-fields.
-
- * GCC comes with shell scripts to fix certain known problems in
- system header files. They install corrected copies of various
- header files in a special directory where only GCC will normally
- look for them. The scripts adapt to various systems by searching
- all the system header files for the problem cases that we know
- about.
-
- If new system header files are installed, nothing automatically
- arranges to update the corrected header files. They can be updated
- using the 'mkheaders' script installed in
- 'LIBEXECDIR/gcc/TARGET/VERSION/install-tools/'.
-
- * On 68000 and x86 systems, for instance, you can get paradoxical
- results if you test the precise values of floating point numbers.
- For example, you can find that a floating point value which is not
- a NaN is not equal to itself. This results from the fact that the
- floating point registers hold a few more bits of precision than fit
- in a 'double' in memory. Compiled code moves values between memory
- and floating point registers at its convenience, and moving them
- into memory truncates them.
-
- You can partially avoid this problem by using the '-ffloat-store'
- option (*note Optimize Options::).
-
- * On AIX and other platforms without weak symbol support, templates
- need to be instantiated explicitly and symbols for static members
- of templates will not be generated.
-
- * On AIX, GCC scans object files and library archives for static
- constructors and destructors when linking an application before the
- linker prunes unreferenced symbols. This is necessary to prevent
- the AIX linker from mistakenly assuming that static constructor or
- destructor are unused and removing them before the scanning can
- occur. All static constructors and destructors found will be
- referenced even though the modules in which they occur may not be
- used by the program. This may lead to both increased executable
- size and unexpected symbol references.
-
-
-File: gcc.info, Node: C++ Misunderstandings, Next: Non-bugs, Prev: Disappointments, Up: Trouble
-
-11.7 Common Misunderstandings with GNU C++
-==========================================
-
-C++ is a complex language and an evolving one, and its standard
-definition (the ISO C++ standard) was only recently completed. As a
-result, your C++ compiler may occasionally surprise you, even when its
-behavior is correct. This section discusses some areas that frequently
-give rise to questions of this sort.
-
-* Menu:
-
-* Static Definitions:: Static member declarations are not definitions
-* Name lookup:: Name lookup, templates, and accessing members of base classes
-* Temporaries:: Temporaries may vanish before you expect
-* Copy Assignment:: Copy Assignment operators copy virtual bases twice
-
-
-File: gcc.info, Node: Static Definitions, Next: Name lookup, Up: C++ Misunderstandings
-
-11.7.1 Declare _and_ Define Static Members
-------------------------------------------
-
-When a class has static data members, it is not enough to _declare_ the
-static member; you must also _define_ it. For example:
-
- class Foo
- {
- ...
- void method();
- static int bar;
- };
-
- This declaration only establishes that the class 'Foo' has an 'int'
-named 'Foo::bar', and a member function named 'Foo::method'. But you
-still need to define _both_ 'method' and 'bar' elsewhere. According to
-the ISO standard, you must supply an initializer in one (and only one)
-source file, such as:
-
- int Foo::bar = 0;
-
- Other C++ compilers may not correctly implement the standard behavior.
-As a result, when you switch to 'g++' from one of these compilers, you
-may discover that a program that appeared to work correctly in fact does
-not conform to the standard: 'g++' reports as undefined symbols any
-static data members that lack definitions.
-
-
-File: gcc.info, Node: Name lookup, Next: Temporaries, Prev: Static Definitions, Up: C++ Misunderstandings
-
-11.7.2 Name lookup, templates, and accessing members of base classes
---------------------------------------------------------------------
-
-The C++ standard prescribes that all names that are not dependent on
-template parameters are bound to their present definitions when parsing
-a template function or class.(1) Only names that are dependent are
-looked up at the point of instantiation. For example, consider
-
- void foo(double);
-
- struct A {
- template <typename T>
- void f () {
- foo (1); // 1
- int i = N; // 2
- T t;
- t.bar(); // 3
- foo (t); // 4
- }
-
- static const int N;
- };
-
- Here, the names 'foo' and 'N' appear in a context that does not depend
-on the type of 'T'. The compiler will thus require that they are
-defined in the context of use in the template, not only before the point
-of instantiation, and will here use '::foo(double)' and 'A::N',
-respectively. In particular, it will convert the integer value to a
-'double' when passing it to '::foo(double)'.
-
- Conversely, 'bar' and the call to 'foo' in the fourth marked line are
-used in contexts that do depend on the type of 'T', so they are only
-looked up at the point of instantiation, and you can provide
-declarations for them after declaring the template, but before
-instantiating it. In particular, if you instantiate 'A::f<int>', the
-last line will call an overloaded '::foo(int)' if one was provided, even
-if after the declaration of 'struct A'.
-
- This distinction between lookup of dependent and non-dependent names is
-called two-stage (or dependent) name lookup. G++ implements it since
-version 3.4.
-
- Two-stage name lookup sometimes leads to situations with behavior
-different from non-template codes. The most common is probably this:
-
- template <typename T> struct Base {
- int i;
- };
-
- template <typename T> struct Derived : public Base<T> {
- int get_i() { return i; }
- };
-
- In 'get_i()', 'i' is not used in a dependent context, so the compiler
-will look for a name declared at the enclosing namespace scope (which is
-the global scope here). It will not look into the base class, since
-that is dependent and you may declare specializations of 'Base' even
-after declaring 'Derived', so the compiler can't really know what 'i'
-would refer to. If there is no global variable 'i', then you will get
-an error message.
-
- In order to make it clear that you want the member of the base class,
-you need to defer lookup until instantiation time, at which the base
-class is known. For this, you need to access 'i' in a dependent
-context, by either using 'this->i' (remember that 'this' is of type
-'Derived<T>*', so is obviously dependent), or using 'Base<T>::i'.
-Alternatively, 'Base<T>::i' might be brought into scope by a
-'using'-declaration.
-
- Another, similar example involves calling member functions of a base
-class:
-
- template <typename T> struct Base {
- int f();
- };
-
- template <typename T> struct Derived : Base<T> {
- int g() { return f(); };
- };
-
- Again, the call to 'f()' is not dependent on template arguments (there
-are no arguments that depend on the type 'T', and it is also not
-otherwise specified that the call should be in a dependent context).
-Thus a global declaration of such a function must be available, since
-the one in the base class is not visible until instantiation time. The
-compiler will consequently produce the following error message:
-
- x.cc: In member function `int Derived<T>::g()':
- x.cc:6: error: there are no arguments to `f' that depend on a template
- parameter, so a declaration of `f' must be available
- x.cc:6: error: (if you use `-fpermissive', G++ will accept your code, but
- allowing the use of an undeclared name is deprecated)
-
- To make the code valid either use 'this->f()', or 'Base<T>::f()'.
-Using the '-fpermissive' flag will also let the compiler accept the
-code, by marking all function calls for which no declaration is visible
-at the time of definition of the template for later lookup at
-instantiation time, as if it were a dependent call. We do not recommend
-using '-fpermissive' to work around invalid code, and it will also only
-catch cases where functions in base classes are called, not where
-variables in base classes are used (as in the example above).
-
- Note that some compilers (including G++ versions prior to 3.4) get
-these examples wrong and accept above code without an error. Those
-compilers do not implement two-stage name lookup correctly.
-
- ---------- Footnotes ----------
-
- (1) The C++ standard just uses the term "dependent" for names that
-depend on the type or value of template parameters. This shorter term
-will also be used in the rest of this section.
-
-
-File: gcc.info, Node: Temporaries, Next: Copy Assignment, Prev: Name lookup, Up: C++ Misunderstandings
-
-11.7.3 Temporaries May Vanish Before You Expect
------------------------------------------------
-
-It is dangerous to use pointers or references to _portions_ of a
-temporary object. The compiler may very well delete the object before
-you expect it to, leaving a pointer to garbage. The most common place
-where this problem crops up is in classes like string classes,
-especially ones that define a conversion function to type 'char *' or
-'const char *'--which is one reason why the standard 'string' class
-requires you to call the 'c_str' member function. However, any class
-that returns a pointer to some internal structure is potentially subject
-to this problem.
-
- For example, a program may use a function 'strfunc' that returns
-'string' objects, and another function 'charfunc' that operates on
-pointers to 'char':
-
- string strfunc ();
- void charfunc (const char *);
-
- void
- f ()
- {
- const char *p = strfunc().c_str();
- ...
- charfunc (p);
- ...
- charfunc (p);
- }
-
-In this situation, it may seem reasonable to save a pointer to the C
-string returned by the 'c_str' member function and use that rather than
-call 'c_str' repeatedly. However, the temporary string created by the
-call to 'strfunc' is destroyed after 'p' is initialized, at which point
-'p' is left pointing to freed memory.
-
- Code like this may run successfully under some other compilers,
-particularly obsolete cfront-based compilers that delete temporaries
-along with normal local variables. However, the GNU C++ behavior is
-standard-conforming, so if your program depends on late destruction of
-temporaries it is not portable.
-
- The safe way to write such code is to give the temporary a name, which
-forces it to remain until the end of the scope of the name. For
-example:
-
- const string& tmp = strfunc ();
- charfunc (tmp.c_str ());
-
-
-File: gcc.info, Node: Copy Assignment, Prev: Temporaries, Up: C++ Misunderstandings
-
-11.7.4 Implicit Copy-Assignment for Virtual Bases
--------------------------------------------------
-
-When a base class is virtual, only one subobject of the base class
-belongs to each full object. Also, the constructors and destructors are
-invoked only once, and called from the most-derived class. However,
-such objects behave unspecified when being assigned. For example:
-
- struct Base{
- char *name;
- Base(char *n) : name(strdup(n)){}
- Base& operator= (const Base& other){
- free (name);
- name = strdup (other.name);
- }
- };
-
- struct A:virtual Base{
- int val;
- A():Base("A"){}
- };
-
- struct B:virtual Base{
- int bval;
- B():Base("B"){}
- };
-
- struct Derived:public A, public B{
- Derived():Base("Derived"){}
- };
-
- void func(Derived &d1, Derived &d2)
- {
- d1 = d2;
- }
-
- The C++ standard specifies that 'Base::Base' is only called once when
-constructing or copy-constructing a Derived object. It is unspecified
-whether 'Base::operator=' is called more than once when the implicit
-copy-assignment for Derived objects is invoked (as it is inside 'func'
-in the example).
-
- G++ implements the "intuitive" algorithm for copy-assignment: assign
-all direct bases, then assign all members. In that algorithm, the
-virtual base subobject can be encountered more than once. In the
-example, copying proceeds in the following order: 'val', 'name' (via
-'strdup'), 'bval', and 'name' again.
-
- If application code relies on copy-assignment, a user-defined
-copy-assignment operator removes any uncertainties. With such an
-operator, the application can define whether and how the virtual base
-subobject is assigned.
-
-
-File: gcc.info, Node: Non-bugs, Next: Warnings and Errors, Prev: C++ Misunderstandings, Up: Trouble
-
-11.8 Certain Changes We Don't Want to Make
-==========================================
-
-This section lists changes that people frequently request, but which we
-do not make because we think GCC is better without them.
-
- * Checking the number and type of arguments to a function which has
- an old-fashioned definition and no prototype.
-
- Such a feature would work only occasionally--only for calls that
- appear in the same file as the called function, following the
- definition. The only way to check all calls reliably is to add a
- prototype for the function. But adding a prototype eliminates the
- motivation for this feature. So the feature is not worthwhile.
-
- * Warning about using an expression whose type is signed as a shift
- count.
-
- Shift count operands are probably signed more often than unsigned.
- Warning about this would cause far more annoyance than good.
-
- * Warning about assigning a signed value to an unsigned variable.
-
- Such assignments must be very common; warning about them would
- cause more annoyance than good.
-
- * Warning when a non-void function value is ignored.
-
- C contains many standard functions that return a value that most
- programs choose to ignore. One obvious example is 'printf'.
- Warning about this practice only leads the defensive programmer to
- clutter programs with dozens of casts to 'void'. Such casts are
- required so frequently that they become visual noise. Writing
- those casts becomes so automatic that they no longer convey useful
- information about the intentions of the programmer. For functions
- where the return value should never be ignored, use the
- 'warn_unused_result' function attribute (*note Function
- Attributes::).
-
- * Making '-fshort-enums' the default.
-
- This would cause storage layout to be incompatible with most other
- C compilers. And it doesn't seem very important, given that you
- can get the same result in other ways. The case where it matters
- most is when the enumeration-valued object is inside a structure,
- and in that case you can specify a field width explicitly.
-
- * Making bit-fields unsigned by default on particular machines where
- "the ABI standard" says to do so.
-
- The ISO C standard leaves it up to the implementation whether a
- bit-field declared plain 'int' is signed or not. This in effect
- creates two alternative dialects of C.
-
- The GNU C compiler supports both dialects; you can specify the
- signed dialect with '-fsigned-bitfields' and the unsigned dialect
- with '-funsigned-bitfields'. However, this leaves open the
- question of which dialect to use by default.
-
- Currently, the preferred dialect makes plain bit-fields signed,
- because this is simplest. Since 'int' is the same as 'signed int'
- in every other context, it is cleanest for them to be the same in
- bit-fields as well.
-
- Some computer manufacturers have published Application Binary
- Interface standards which specify that plain bit-fields should be
- unsigned. It is a mistake, however, to say anything about this
- issue in an ABI. This is because the handling of plain bit-fields
- distinguishes two dialects of C. Both dialects are meaningful on
- every type of machine. Whether a particular object file was
- compiled using signed bit-fields or unsigned is of no concern to
- other object files, even if they access the same bit-fields in the
- same data structures.
-
- A given program is written in one or the other of these two
- dialects. The program stands a chance to work on most any machine
- if it is compiled with the proper dialect. It is unlikely to work
- at all if compiled with the wrong dialect.
-
- Many users appreciate the GNU C compiler because it provides an
- environment that is uniform across machines. These users would be
- inconvenienced if the compiler treated plain bit-fields differently
- on certain machines.
-
- Occasionally users write programs intended only for a particular
- machine type. On these occasions, the users would benefit if the
- GNU C compiler were to support by default the same dialect as the
- other compilers on that machine. But such applications are rare.
- And users writing a program to run on more than one type of machine
- cannot possibly benefit from this kind of compatibility.
-
- This is why GCC does and will treat plain bit-fields in the same
- fashion on all types of machines (by default).
-
- There are some arguments for making bit-fields unsigned by default
- on all machines. If, for example, this becomes a universal de
- facto standard, it would make sense for GCC to go along with it.
- This is something to be considered in the future.
-
- (Of course, users strongly concerned about portability should
- indicate explicitly in each bit-field whether it is signed or not.
- In this way, they write programs which have the same meaning in
- both C dialects.)
-
- * Undefining '__STDC__' when '-ansi' is not used.
-
- Currently, GCC defines '__STDC__' unconditionally. This provides
- good results in practice.
-
- Programmers normally use conditionals on '__STDC__' to ask whether
- it is safe to use certain features of ISO C, such as function
- prototypes or ISO token concatenation. Since plain 'gcc' supports
- all the features of ISO C, the correct answer to these questions is
- "yes".
-
- Some users try to use '__STDC__' to check for the availability of
- certain library facilities. This is actually incorrect usage in an
- ISO C program, because the ISO C standard says that a conforming
- freestanding implementation should define '__STDC__' even though it
- does not have the library facilities. 'gcc -ansi -pedantic' is a
- conforming freestanding implementation, and it is therefore
- required to define '__STDC__', even though it does not come with an
- ISO C library.
-
- Sometimes people say that defining '__STDC__' in a compiler that
- does not completely conform to the ISO C standard somehow violates
- the standard. This is illogical. The standard is a standard for
- compilers that claim to support ISO C, such as 'gcc -ansi'--not for
- other compilers such as plain 'gcc'. Whatever the ISO C standard
- says is relevant to the design of plain 'gcc' without '-ansi' only
- for pragmatic reasons, not as a requirement.
-
- GCC normally defines '__STDC__' to be 1, and in addition defines
- '__STRICT_ANSI__' if you specify the '-ansi' option, or a '-std'
- option for strict conformance to some version of ISO C. On some
- hosts, system include files use a different convention, where
- '__STDC__' is normally 0, but is 1 if the user specifies strict
- conformance to the C Standard. GCC follows the host convention
- when processing system include files, but when processing user
- files it follows the usual GNU C convention.
-
- * Undefining '__STDC__' in C++.
-
- Programs written to compile with C++-to-C translators get the value
- of '__STDC__' that goes with the C compiler that is subsequently
- used. These programs must test '__STDC__' to determine what kind
- of C preprocessor that compiler uses: whether they should
- concatenate tokens in the ISO C fashion or in the traditional
- fashion.
-
- These programs work properly with GNU C++ if '__STDC__' is defined.
- They would not work otherwise.
-
- In addition, many header files are written to provide prototypes in
- ISO C but not in traditional C. Many of these header files can
- work without change in C++ provided '__STDC__' is defined. If
- '__STDC__' is not defined, they will all fail, and will all need to
- be changed to test explicitly for C++ as well.
-
- * Deleting "empty" loops.
-
- Historically, GCC has not deleted "empty" loops under the
- assumption that the most likely reason you would put one in a
- program is to have a delay, so deleting them will not make real
- programs run any faster.
-
- However, the rationale here is that optimization of a nonempty loop
- cannot produce an empty one. This held for carefully written C
- compiled with less powerful optimizers but is not always the case
- for carefully written C++ or with more powerful optimizers. Thus
- GCC will remove operations from loops whenever it can determine
- those operations are not externally visible (apart from the time
- taken to execute them, of course). In case the loop can be proved
- to be finite, GCC will also remove the loop itself.
-
- Be aware of this when performing timing tests, for instance the
- following loop can be completely removed, provided
- 'some_expression' can provably not change any global state.
-
- {
- int sum = 0;
- int ix;
-
- for (ix = 0; ix != 10000; ix++)
- sum += some_expression;
- }
-
- Even though 'sum' is accumulated in the loop, no use is made of
- that summation, so the accumulation can be removed.
-
- * Making side effects happen in the same order as in some other
- compiler.
-
- It is never safe to depend on the order of evaluation of side
- effects. For example, a function call like this may very well
- behave differently from one compiler to another:
-
- void func (int, int);
-
- int i = 2;
- func (i++, i++);
-
- There is no guarantee (in either the C or the C++ standard language
- definitions) that the increments will be evaluated in any
- particular order. Either increment might happen first. 'func'
- might get the arguments '2, 3', or it might get '3, 2', or even '2,
- 2'.
-
- * Making certain warnings into errors by default.
-
- Some ISO C testsuites report failure when the compiler does not
- produce an error message for a certain program.
-
- ISO C requires a "diagnostic" message for certain kinds of invalid
- programs, but a warning is defined by GCC to count as a diagnostic.
- If GCC produces a warning but not an error, that is correct ISO C
- support. If testsuites call this "failure", they should be run
- with the GCC option '-pedantic-errors', which will turn these
- warnings into errors.
-
-
-File: gcc.info, Node: Warnings and Errors, Prev: Non-bugs, Up: Trouble
-
-11.9 Warning Messages and Error Messages
-========================================
-
-The GNU compiler can produce two kinds of diagnostics: errors and
-warnings. Each kind has a different purpose:
-
- "Errors" report problems that make it impossible to compile your
- program. GCC reports errors with the source file name and line
- number where the problem is apparent.
-
- "Warnings" report other unusual conditions in your code that _may_
- indicate a problem, although compilation can (and does) proceed.
- Warning messages also report the source file name and line number,
- but include the text 'warning:' to distinguish them from error
- messages.
-
- Warnings may indicate danger points where you should check to make sure
-that your program really does what you intend; or the use of obsolete
-features; or the use of nonstandard features of GNU C or C++. Many
-warnings are issued only if you ask for them, with one of the '-W'
-options (for instance, '-Wall' requests a variety of useful warnings).
-
- GCC always tries to compile your program if possible; it never
-gratuitously rejects a program whose meaning is clear merely because
-(for instance) it fails to conform to a standard. In some cases,
-however, the C and C++ standards specify that certain extensions are
-forbidden, and a diagnostic _must_ be issued by a conforming compiler.
-The '-pedantic' option tells GCC to issue warnings in such cases;
-'-pedantic-errors' says to make them errors instead. This does not mean
-that _all_ non-ISO constructs get warnings or errors.
-
- *Note Options to Request or Suppress Warnings: Warning Options, for
-more detail on these and related command-line options.
-
-
-File: gcc.info, Node: Bugs, Next: Service, Prev: Trouble, Up: Top
-
-12 Reporting Bugs
-*****************
-
-Your bug reports play an essential role in making GCC reliable.
-
- When you encounter a problem, the first thing to do is to see if it is
-already known. *Note Trouble::. If it isn't known, then you should
-report the problem.
-
-* Menu:
-
-* Criteria: Bug Criteria. Have you really found a bug?
-* Reporting: Bug Reporting. How to report a bug effectively.
-
-
-File: gcc.info, Node: Bug Criteria, Next: Bug Reporting, Up: Bugs
-
-12.1 Have You Found a Bug?
-==========================
-
-If you are not sure whether you have found a bug, here are some
-guidelines:
-
- * If the compiler gets a fatal signal, for any input whatever, that
- is a compiler bug. Reliable compilers never crash.
-
- * If the compiler produces invalid assembly code, for any input
- whatever (except an 'asm' statement), that is a compiler bug,
- unless the compiler reports errors (not just warnings) which would
- ordinarily prevent the assembler from being run.
-
- * If the compiler produces valid assembly code that does not
- correctly execute the input source code, that is a compiler bug.
-
- However, you must double-check to make sure, because you may have a
- program whose behavior is undefined, which happened by chance to
- give the desired results with another C or C++ compiler.
-
- For example, in many nonoptimizing compilers, you can write 'x;' at
- the end of a function instead of 'return x;', with the same
- results. But the value of the function is undefined if 'return' is
- omitted; it is not a bug when GCC produces different results.
-
- Problems often result from expressions with two increment
- operators, as in 'f (*p++, *p++)'. Your previous compiler might
- have interpreted that expression the way you intended; GCC might
- interpret it another way. Neither compiler is wrong. The bug is
- in your code.
-
- After you have localized the error to a single source line, it
- should be easy to check for these things. If your program is
- correct and well defined, you have found a compiler bug.
-
- * If the compiler produces an error message for valid input, that is
- a compiler bug.
-
- * If the compiler does not produce an error message for invalid
- input, that is a compiler bug. However, you should note that your
- idea of "invalid input" might be someone else's idea of "an
- extension" or "support for traditional practice".
-
- * If you are an experienced user of one of the languages GCC
- supports, your suggestions for improvement of GCC are welcome in
- any case.
-
-
-File: gcc.info, Node: Bug Reporting, Prev: Bug Criteria, Up: Bugs
-
-12.2 How and where to Report Bugs
-=================================
-
-Bugs should be reported to the bug database at
-<http://gcc.gnu.org/bugs.html>.
-
-
-File: gcc.info, Node: Service, Next: Contributing, Prev: Bugs, Up: Top
-
-13 How To Get Help with GCC
-***************************
-
-If you need help installing, using or changing GCC, there are two ways
-to find it:
-
- * Send a message to a suitable network mailing list. First try
- <gcc-help@gcc.gnu.org> (for help installing or using GCC), and if
- that brings no response, try <gcc@gcc.gnu.org>. For help changing
- GCC, ask <gcc@gcc.gnu.org>. If you think you have found a bug in
- GCC, please report it following the instructions at *note Bug
- Reporting::.
-
- * Look in the service directory for someone who might help you for a
- fee. The service directory is found at
- <http://www.fsf.org/resources/service>.
-
- For further information, see <http://gcc.gnu.org/faq.html#support>.
-
-
-File: gcc.info, Node: Contributing, Next: Funding, Prev: Service, Up: Top
-
-14 Contributing to GCC Development
-**********************************
-
-If you would like to help pretest GCC releases to assure they work well,
-current development sources are available by SVN (see
-<http://gcc.gnu.org/svn.html>). Source and binary snapshots are also
-available for FTP; see <http://gcc.gnu.org/snapshots.html>.
-
- If you would like to work on improvements to GCC, please read the
-advice at these URLs:
-
- <http://gcc.gnu.org/contribute.html>
- <http://gcc.gnu.org/contributewhy.html>
-
-for information on how to make useful contributions and avoid
-duplication of effort. Suggested projects are listed at
-<http://gcc.gnu.org/projects/>.
-
-
-File: gcc.info, Node: Funding, Next: GNU Project, Prev: Contributing, Up: Top
-
-Funding Free Software
-*********************
-
-If you want to have more free software a few years from now, it makes
-sense for you to help encourage people to contribute funds for its
-development. The most effective approach known is to encourage
-commercial redistributors to donate.
-
- Users of free software systems can boost the pace of development by
-encouraging for-a-fee distributors to donate part of their selling price
-to free software developers--the Free Software Foundation, and others.
-
- The way to convince distributors to do this is to demand it and expect
-it from them. So when you compare distributors, judge them partly by
-how much they give to free software development. Show distributors they
-must compete to be the one who gives the most.
-
- To make this approach work, you must insist on numbers that you can
-compare, such as, "We will donate ten dollars to the Frobnitz project
-for each disk sold." Don't be satisfied with a vague promise, such as
-"A portion of the profits are donated," since it doesn't give a basis
-for comparison.
-
- Even a precise fraction "of the profits from this disk" is not very
-meaningful, since creative accounting and unrelated business decisions
-can greatly alter what fraction of the sales price counts as profit. If
-the price you pay is $50, ten percent of the profit is probably less
-than a dollar; it might be a few cents, or nothing at all.
-
- Some redistributors do development work themselves. This is useful
-too; but to keep everyone honest, you need to inquire how much they do,
-and what kind. Some kinds of development make much more long-term
-difference than others. For example, maintaining a separate version of
-a program contributes very little; maintaining the standard version of a
-program for the whole community contributes much. Easy new ports
-contribute little, since someone else would surely do them; difficult
-ports such as adding a new CPU to the GNU Compiler Collection contribute
-more; major new features or packages contribute the most.
-
- By establishing the idea that supporting further development is "the
-proper thing to do" when distributing free software for a fee, we can
-assure a steady flow of resources into making more free software.
-
- Copyright (C) 1994 Free Software Foundation, Inc.
- Verbatim copying and redistribution of this section is permitted
- without royalty; alteration is not permitted.
-
-
-File: gcc.info, Node: GNU Project, Next: Copying, Prev: Funding, Up: Top
-
-The GNU Project and GNU/Linux
-*****************************
-
-The GNU Project was launched in 1984 to develop a complete Unix-like
-operating system which is free software: the GNU system. (GNU is a
-recursive acronym for "GNU's Not Unix"; it is pronounced "guh-NEW".)
-Variants of the GNU operating system, which use the kernel Linux, are
-now widely used; though these systems are often referred to as "Linux",
-they are more accurately called GNU/Linux systems.
-
- For more information, see:
- <http://www.gnu.org/>
- <http://www.gnu.org/gnu/linux-and-gnu.html>
-
-
-File: gcc.info, Node: Copying, Next: GNU Free Documentation License, Prev: GNU Project, Up: Top
-
-GNU General Public License
-**************************
-
- Version 3, 29 June 2007
-
- Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
-
- Everyone is permitted to copy and distribute verbatim copies of this
- license document, but changing it is not allowed.
-
-Preamble
-========
-
-The GNU General Public License is a free, copyleft license for software
-and other kinds of works.
-
- The licenses for most software and other practical works are designed
-to take away your freedom to share and change the works. By contrast,
-the GNU General Public License is intended to guarantee your freedom to
-share and change all versions of a program-to make sure it remains free
-software for all its users. We, the Free Software Foundation, use the
-GNU General Public License for most of our software; it applies also to
-any other work released this way by its authors. You can apply it to
-your programs, too.
-
- When we speak of free software, we are referring to freedom, not price.
-Our General Public Licenses are designed to make sure that you have the
-freedom to distribute copies of free software (and charge for them if
-you wish), that you receive source code or can get it if you want it,
-that you can change the software or use pieces of it in new free
-programs, and that you know you can do these things.
-
- To protect your rights, we need to prevent others from denying you
-these rights or asking you to surrender the rights. Therefore, you have
-certain responsibilities if you distribute copies of the software, or if
-you modify it: responsibilities to respect the freedom of others.
-
- For example, if you distribute copies of such a program, whether gratis
-or for a fee, you must pass on to the recipients the same freedoms that
-you received. You must make sure that they, too, receive or can get the
-source code. And you must show them these terms so they know their
-rights.
-
- Developers that use the GNU GPL protect your rights with two steps: (1)
-assert copyright on the software, and (2) offer you this License giving
-you legal permission to copy, distribute and/or modify it.
-
- For the developers' and authors' protection, the GPL clearly explains
-that there is no warranty for this free software. For both users' and
-authors' sake, the GPL requires that modified versions be marked as
-changed, so that their problems will not be attributed erroneously to
-authors of previous versions.
-
- Some devices are designed to deny users access to install or run
-modified versions of the software inside them, although the manufacturer
-can do so. This is fundamentally incompatible with the aim of
-protecting users' freedom to change the software. The systematic
-pattern of such abuse occurs in the area of products for individuals to
-use, which is precisely where it is most unacceptable. Therefore, we
-have designed this version of the GPL to prohibit the practice for those
-products. If such problems arise substantially in other domains, we
-stand ready to extend this provision to those domains in future versions
-of the GPL, as needed to protect the freedom of users.
-
- Finally, every program is threatened constantly by software patents.
-States should not allow patents to restrict development and use of
-software on general-purpose computers, but in those that do, we wish to
-avoid the special danger that patents applied to a free program could
-make it effectively proprietary. To prevent this, the GPL assures that
-patents cannot be used to render the program non-free.
-
- The precise terms and conditions for copying, distribution and
-modification follow.
-
-TERMS AND CONDITIONS
-====================
-
- 0. Definitions.
-
- "This License" refers to version 3 of the GNU General Public
- License.
-
- "Copyright" also means copyright-like laws that apply to other
- kinds of works, such as semiconductor masks.
-
- "The Program" refers to any copyrightable work licensed under this
- License. Each licensee is addressed as "you". "Licensees" and
- "recipients" may be individuals or organizations.
-
- To "modify" a work means to copy from or adapt all or part of the
- work in a fashion requiring copyright permission, other than the
- making of an exact copy. The resulting work is called a "modified
- version" of the earlier work or a work "based on" the earlier work.
-
- A "covered work" means either the unmodified Program or a work
- based on the Program.
-
- To "propagate" a work means to do anything with it that, without
- permission, would make you directly or secondarily liable for
- infringement under applicable copyright law, except executing it on
- a computer or modifying a private copy. Propagation includes
- copying, distribution (with or without modification), making
- available to the public, and in some countries other activities as
- well.
-
- To "convey" a work means any kind of propagation that enables other
- parties to make or receive copies. Mere interaction with a user
- through a computer network, with no transfer of a copy, is not
- conveying.
-
- An interactive user interface displays "Appropriate Legal Notices"
- to the extent that it includes a convenient and prominently visible
- feature that (1) displays an appropriate copyright notice, and (2)
- tells the user that there is no warranty for the work (except to
- the extent that warranties are provided), that licensees may convey
- the work under this License, and how to view a copy of this
- License. If the interface presents a list of user commands or
- options, such as a menu, a prominent item in the list meets this
- criterion.
-
- 1. Source Code.
-
- The "source code" for a work means the preferred form of the work
- for making modifications to it. "Object code" means any non-source
- form of a work.
-
- A "Standard Interface" means an interface that either is an
- official standard defined by a recognized standards body, or, in
- the case of interfaces specified for a particular programming
- language, one that is widely used among developers working in that
- language.
-
- The "System Libraries" of an executable work include anything,
- other than the work as a whole, that (a) is included in the normal
- form of packaging a Major Component, but which is not part of that
- Major Component, and (b) serves only to enable use of the work with
- that Major Component, or to implement a Standard Interface for
- which an implementation is available to the public in source code
- form. A "Major Component", in this context, means a major
- essential component (kernel, window system, and so on) of the
- specific operating system (if any) on which the executable work
- runs, or a compiler used to produce the work, or an object code
- interpreter used to run it.
-
- The "Corresponding Source" for a work in object code form means all
- the source code needed to generate, install, and (for an executable
- work) run the object code and to modify the work, including scripts
- to control those activities. However, it does not include the
- work's System Libraries, or general-purpose tools or generally
- available free programs which are used unmodified in performing
- those activities but which are not part of the work. For example,
- Corresponding Source includes interface definition files associated
- with source files for the work, and the source code for shared
- libraries and dynamically linked subprograms that the work is
- specifically designed to require, such as by intimate data
- communication or control flow between those subprograms and other
- parts of the work.
-
- The Corresponding Source need not include anything that users can
- regenerate automatically from other parts of the Corresponding
- Source.
-
- The Corresponding Source for a work in source code form is that
- same work.
-
- 2. Basic Permissions.
-
- All rights granted under this License are granted for the term of
- copyright on the Program, and are irrevocable provided the stated
- conditions are met. This License explicitly affirms your unlimited
- permission to run the unmodified Program. The output from running
- a covered work is covered by this License only if the output, given
- its content, constitutes a covered work. This License acknowledges
- your rights of fair use or other equivalent, as provided by
- copyright law.
-
- You may make, run and propagate covered works that you do not
- convey, without conditions so long as your license otherwise
- remains in force. You may convey covered works to others for the
- sole purpose of having them make modifications exclusively for you,
- or provide you with facilities for running those works, provided
- that you comply with the terms of this License in conveying all
- material for which you do not control copyright. Those thus making
- or running the covered works for you must do so exclusively on your
- behalf, under your direction and control, on terms that prohibit
- them from making any copies of your copyrighted material outside
- their relationship with you.
-
- Conveying under any other circumstances is permitted solely under
- the conditions stated below. Sublicensing is not allowed; section
- 10 makes it unnecessary.
-
- 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
-
- No covered work shall be deemed part of an effective technological
- measure under any applicable law fulfilling obligations under
- article 11 of the WIPO copyright treaty adopted on 20 December
- 1996, or similar laws prohibiting or restricting circumvention of
- such measures.
-
- When you convey a covered work, you waive any legal power to forbid
- circumvention of technological measures to the extent such
- circumvention is effected by exercising rights under this License
- with respect to the covered work, and you disclaim any intention to
- limit operation or modification of the work as a means of
- enforcing, against the work's users, your or third parties' legal
- rights to forbid circumvention of technological measures.
-
- 4. Conveying Verbatim Copies.
-
- You may convey verbatim copies of the Program's source code as you
- receive it, in any medium, provided that you conspicuously and
- appropriately publish on each copy an appropriate copyright notice;
- keep intact all notices stating that this License and any
- non-permissive terms added in accord with section 7 apply to the
- code; keep intact all notices of the absence of any warranty; and
- give all recipients a copy of this License along with the Program.
-
- You may charge any price or no price for each copy that you convey,
- and you may offer support or warranty protection for a fee.
-
- 5. Conveying Modified Source Versions.
-
- You may convey a work based on the Program, or the modifications to
- produce it from the Program, in the form of source code under the
- terms of section 4, provided that you also meet all of these
- conditions:
-
- a. The work must carry prominent notices stating that you
- modified it, and giving a relevant date.
-
- b. The work must carry prominent notices stating that it is
- released under this License and any conditions added under
- section 7. This requirement modifies the requirement in
- section 4 to "keep intact all notices".
-
- c. You must license the entire work, as a whole, under this
- License to anyone who comes into possession of a copy. This
- License will therefore apply, along with any applicable
- section 7 additional terms, to the whole of the work, and all
- its parts, regardless of how they are packaged. This License
- gives no permission to license the work in any other way, but
- it does not invalidate such permission if you have separately
- received it.
-
- d. If the work has interactive user interfaces, each must display
- Appropriate Legal Notices; however, if the Program has
- interactive interfaces that do not display Appropriate Legal
- Notices, your work need not make them do so.
-
- A compilation of a covered work with other separate and independent
- works, which are not by their nature extensions of the covered
- work, and which are not combined with it such as to form a larger
- program, in or on a volume of a storage or distribution medium, is
- called an "aggregate" if the compilation and its resulting
- copyright are not used to limit the access or legal rights of the
- compilation's users beyond what the individual works permit.
- Inclusion of a covered work in an aggregate does not cause this
- License to apply to the other parts of the aggregate.
-
- 6. Conveying Non-Source Forms.
-
- You may convey a covered work in object code form under the terms
- of sections 4 and 5, provided that you also convey the
- machine-readable Corresponding Source under the terms of this
- License, in one of these ways:
-
- a. Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by the
- Corresponding Source fixed on a durable physical medium
- customarily used for software interchange.
-
- b. Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by a
- written offer, valid for at least three years and valid for as
- long as you offer spare parts or customer support for that
- product model, to give anyone who possesses the object code
- either (1) a copy of the Corresponding Source for all the
- software in the product that is covered by this License, on a
- durable physical medium customarily used for software
- interchange, for a price no more than your reasonable cost of
- physically performing this conveying of source, or (2) access
- to copy the Corresponding Source from a network server at no
- charge.
-
- c. Convey individual copies of the object code with a copy of the
- written offer to provide the Corresponding Source. This
- alternative is allowed only occasionally and noncommercially,
- and only if you received the object code with such an offer,
- in accord with subsection 6b.
-
- d. Convey the object code by offering access from a designated
- place (gratis or for a charge), and offer equivalent access to
- the Corresponding Source in the same way through the same
- place at no further charge. You need not require recipients
- to copy the Corresponding Source along with the object code.
- If the place to copy the object code is a network server, the
- Corresponding Source may be on a different server (operated by
- you or a third party) that supports equivalent copying
- facilities, provided you maintain clear directions next to the
- object code saying where to find the Corresponding Source.
- Regardless of what server hosts the Corresponding Source, you
- remain obligated to ensure that it is available for as long as
- needed to satisfy these requirements.
-
- e. Convey the object code using peer-to-peer transmission,
- provided you inform other peers where the object code and
- Corresponding Source of the work are being offered to the
- general public at no charge under subsection 6d.
-
- A separable portion of the object code, whose source code is
- excluded from the Corresponding Source as a System Library, need
- not be included in conveying the object code work.
-
- A "User Product" is either (1) a "consumer product", which means
- any tangible personal property which is normally used for personal,
- family, or household purposes, or (2) anything designed or sold for
- incorporation into a dwelling. In determining whether a product is
- a consumer product, doubtful cases shall be resolved in favor of
- coverage. For a particular product received by a particular user,
- "normally used" refers to a typical or common use of that class of
- product, regardless of the status of the particular user or of the
- way in which the particular user actually uses, or expects or is
- expected to use, the product. A product is a consumer product
- regardless of whether the product has substantial commercial,
- industrial or non-consumer uses, unless such uses represent the
- only significant mode of use of the product.
-
- "Installation Information" for a User Product means any methods,
- procedures, authorization keys, or other information required to
- install and execute modified versions of a covered work in that
- User Product from a modified version of its Corresponding Source.
- The information must suffice to ensure that the continued
- functioning of the modified object code is in no case prevented or
- interfered with solely because modification has been made.
-
- If you convey an object code work under this section in, or with,
- or specifically for use in, a User Product, and the conveying
- occurs as part of a transaction in which the right of possession
- and use of the User Product is transferred to the recipient in
- perpetuity or for a fixed term (regardless of how the transaction
- is characterized), the Corresponding Source conveyed under this
- section must be accompanied by the Installation Information. But
- this requirement does not apply if neither you nor any third party
- retains the ability to install modified object code on the User
- Product (for example, the work has been installed in ROM).
-
- The requirement to provide Installation Information does not
- include a requirement to continue to provide support service,
- warranty, or updates for a work that has been modified or installed
- by the recipient, or for the User Product in which it has been
- modified or installed. Access to a network may be denied when the
- modification itself materially and adversely affects the operation
- of the network or violates the rules and protocols for
- communication across the network.
-
- Corresponding Source conveyed, and Installation Information
- provided, in accord with this section must be in a format that is
- publicly documented (and with an implementation available to the
- public in source code form), and must require no special password
- or key for unpacking, reading or copying.
-
- 7. Additional Terms.
-
- "Additional permissions" are terms that supplement the terms of
- this License by making exceptions from one or more of its
- conditions. Additional permissions that are applicable to the
- entire Program shall be treated as though they were included in
- this License, to the extent that they are valid under applicable
- law. If additional permissions apply only to part of the Program,
- that part may be used separately under those permissions, but the
- entire Program remains governed by this License without regard to
- the additional permissions.
-
- When you convey a copy of a covered work, you may at your option
- remove any additional permissions from that copy, or from any part
- of it. (Additional permissions may be written to require their own
- removal in certain cases when you modify the work.) You may place
- additional permissions on material, added by you to a covered work,
- for which you have or can give appropriate copyright permission.
-
- Notwithstanding any other provision of this License, for material
- you add to a covered work, you may (if authorized by the copyright
- holders of that material) supplement the terms of this License with
- terms:
-
- a. Disclaiming warranty or limiting liability differently from
- the terms of sections 15 and 16 of this License; or
-
- b. Requiring preservation of specified reasonable legal notices
- or author attributions in that material or in the Appropriate
- Legal Notices displayed by works containing it; or
-
- c. Prohibiting misrepresentation of the origin of that material,
- or requiring that modified versions of such material be marked
- in reasonable ways as different from the original version; or
-
- d. Limiting the use for publicity purposes of names of licensors
- or authors of the material; or
-
- e. Declining to grant rights under trademark law for use of some
- trade names, trademarks, or service marks; or
-
- f. Requiring indemnification of licensors and authors of that
- material by anyone who conveys the material (or modified
- versions of it) with contractual assumptions of liability to
- the recipient, for any liability that these contractual
- assumptions directly impose on those licensors and authors.
-
- All other non-permissive additional terms are considered "further
- restrictions" within the meaning of section 10. If the Program as
- you received it, or any part of it, contains a notice stating that
- it is governed by this License along with a term that is a further
- restriction, you may remove that term. If a license document
- contains a further restriction but permits relicensing or conveying
- under this License, you may add to a covered work material governed
- by the terms of that license document, provided that the further
- restriction does not survive such relicensing or conveying.
-
- If you add terms to a covered work in accord with this section, you
- must place, in the relevant source files, a statement of the
- additional terms that apply to those files, or a notice indicating
- where to find the applicable terms.
-
- Additional terms, permissive or non-permissive, may be stated in
- the form of a separately written license, or stated as exceptions;
- the above requirements apply either way.
-
- 8. Termination.
-
- You may not propagate or modify a covered work except as expressly
- provided under this License. Any attempt otherwise to propagate or
- modify it is void, and will automatically terminate your rights
- under this License (including any patent licenses granted under the
- third paragraph of section 11).
-
- However, if you cease all violation of this License, then your
- license from a particular copyright holder is reinstated (a)
- provisionally, unless and until the copyright holder explicitly and
- finally terminates your license, and (b) permanently, if the
- copyright holder fails to notify you of the violation by some
- reasonable means prior to 60 days after the cessation.
-
- Moreover, your license from a particular copyright holder is
- reinstated permanently if the copyright holder notifies you of the
- violation by some reasonable means, this is the first time you have
- received notice of violation of this License (for any work) from
- that copyright holder, and you cure the violation prior to 30 days
- after your receipt of the notice.
-
- Termination of your rights under this section does not terminate
- the licenses of parties who have received copies or rights from you
- under this License. If your rights have been terminated and not
- permanently reinstated, you do not qualify to receive new licenses
- for the same material under section 10.
-
- 9. Acceptance Not Required for Having Copies.
-
- You are not required to accept this License in order to receive or
- run a copy of the Program. Ancillary propagation of a covered work
- occurring solely as a consequence of using peer-to-peer
- transmission to receive a copy likewise does not require
- acceptance. However, nothing other than this License grants you
- permission to propagate or modify any covered work. These actions
- infringe copyright if you do not accept this License. Therefore,
- by modifying or propagating a covered work, you indicate your
- acceptance of this License to do so.
-
- 10. Automatic Licensing of Downstream Recipients.
-
- Each time you convey a covered work, the recipient automatically
- receives a license from the original licensors, to run, modify and
- propagate that work, subject to this License. You are not
- responsible for enforcing compliance by third parties with this
- License.
-
- An "entity transaction" is a transaction transferring control of an
- organization, or substantially all assets of one, or subdividing an
- organization, or merging organizations. If propagation of a
- covered work results from an entity transaction, each party to that
- transaction who receives a copy of the work also receives whatever
- licenses to the work the party's predecessor in interest had or
- could give under the previous paragraph, plus a right to possession
- of the Corresponding Source of the work from the predecessor in
- interest, if the predecessor has it or can get it with reasonable
- efforts.
-
- You may not impose any further restrictions on the exercise of the
- rights granted or affirmed under this License. For example, you
- may not impose a license fee, royalty, or other charge for exercise
- of rights granted under this License, and you may not initiate
- litigation (including a cross-claim or counterclaim in a lawsuit)
- alleging that any patent claim is infringed by making, using,
- selling, offering for sale, or importing the Program or any portion
- of it.
-
- 11. Patents.
-
- A "contributor" is a copyright holder who authorizes use under this
- License of the Program or a work on which the Program is based.
- The work thus licensed is called the contributor's "contributor
- version".
-
- A contributor's "essential patent claims" are all patent claims
- owned or controlled by the contributor, whether already acquired or
- hereafter acquired, that would be infringed by some manner,
- permitted by this License, of making, using, or selling its
- contributor version, but do not include claims that would be
- infringed only as a consequence of further modification of the
- contributor version. For purposes of this definition, "control"
- includes the right to grant patent sublicenses in a manner
- consistent with the requirements of this License.
-
- Each contributor grants you a non-exclusive, worldwide,
- royalty-free patent license under the contributor's essential
- patent claims, to make, use, sell, offer for sale, import and
- otherwise run, modify and propagate the contents of its contributor
- version.
-
- In the following three paragraphs, a "patent license" is any
- express agreement or commitment, however denominated, not to
- enforce a patent (such as an express permission to practice a
- patent or covenant not to sue for patent infringement). To "grant"
- such a patent license to a party means to make such an agreement or
- commitment not to enforce a patent against the party.
-
- If you convey a covered work, knowingly relying on a patent
- license, and the Corresponding Source of the work is not available
- for anyone to copy, free of charge and under the terms of this
- License, through a publicly available network server or other
- readily accessible means, then you must either (1) cause the
- Corresponding Source to be so available, or (2) arrange to deprive
- yourself of the benefit of the patent license for this particular
- work, or (3) arrange, in a manner consistent with the requirements
- of this License, to extend the patent license to downstream
- recipients. "Knowingly relying" means you have actual knowledge
- that, but for the patent license, your conveying the covered work
- in a country, or your recipient's use of the covered work in a
- country, would infringe one or more identifiable patents in that
- country that you have reason to believe are valid.
-
- If, pursuant to or in connection with a single transaction or
- arrangement, you convey, or propagate by procuring conveyance of, a
- covered work, and grant a patent license to some of the parties
- receiving the covered work authorizing them to use, propagate,
- modify or convey a specific copy of the covered work, then the
- patent license you grant is automatically extended to all
- recipients of the covered work and works based on it.
-
- A patent license is "discriminatory" if it does not include within
- the scope of its coverage, prohibits the exercise of, or is
- conditioned on the non-exercise of one or more of the rights that
- are specifically granted under this License. You may not convey a
- covered work if you are a party to an arrangement with a third
- party that is in the business of distributing software, under which
- you make payment to the third party based on the extent of your
- activity of conveying the work, and under which the third party
- grants, to any of the parties who would receive the covered work
- from you, a discriminatory patent license (a) in connection with
- copies of the covered work conveyed by you (or copies made from
- those copies), or (b) primarily for and in connection with specific
- products or compilations that contain the covered work, unless you
- entered into that arrangement, or that patent license was granted,
- prior to 28 March 2007.
-
- Nothing in this License shall be construed as excluding or limiting
- any implied license or other defenses to infringement that may
- otherwise be available to you under applicable patent law.
-
- 12. No Surrender of Others' Freedom.
-
- If conditions are imposed on you (whether by court order, agreement
- or otherwise) that contradict the conditions of this License, they
- do not excuse you from the conditions of this License. If you
- cannot convey a covered work so as to satisfy simultaneously your
- obligations under this License and any other pertinent obligations,
- then as a consequence you may not convey it at all. For example,
- if you agree to terms that obligate you to collect a royalty for
- further conveying from those to whom you convey the Program, the
- only way you could satisfy both those terms and this License would
- be to refrain entirely from conveying the Program.
-
- 13. Use with the GNU Affero General Public License.
-
- Notwithstanding any other provision of this License, you have
- permission to link or combine any covered work with a work licensed
- under version 3 of the GNU Affero General Public License into a
- single combined work, and to convey the resulting work. The terms
- of this License will continue to apply to the part which is the
- covered work, but the special requirements of the GNU Affero
- General Public License, section 13, concerning interaction through
- a network will apply to the combination as such.
-
- 14. Revised Versions of this License.
-
- The Free Software Foundation may publish revised and/or new
- versions of the GNU General Public License from time to time. Such
- new versions will be similar in spirit to the present version, but
- may differ in detail to address new problems or concerns.
-
- Each version is given a distinguishing version number. If the
- Program specifies that a certain numbered version of the GNU
- General Public License "or any later version" applies to it, you
- have the option of following the terms and conditions either of
- that numbered version or of any later version published by the Free
- Software Foundation. If the Program does not specify a version
- number of the GNU General Public License, you may choose any
- version ever published by the Free Software Foundation.
-
- If the Program specifies that a proxy can decide which future
- versions of the GNU General Public License can be used, that
- proxy's public statement of acceptance of a version permanently
- authorizes you to choose that version for the Program.
-
- Later license versions may give you additional or different
- permissions. However, no additional obligations are imposed on any
- author or copyright holder as a result of your choosing to follow a
- later version.
-
- 15. Disclaimer of Warranty.
-
- THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
- APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
- COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"
- WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
- INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
- MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
- RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
- SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
- NECESSARY SERVICING, REPAIR OR CORRECTION.
-
- 16. Limitation of Liability.
-
- IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
- WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
- AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
- DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
- CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
- THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
- BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
- PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
- PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
- THE POSSIBILITY OF SUCH DAMAGES.
-
- 17. Interpretation of Sections 15 and 16.
-
- If the disclaimer of warranty and limitation of liability provided
- above cannot be given local legal effect according to their terms,
- reviewing courts shall apply local law that most closely
- approximates an absolute waiver of all civil liability in
- connection with the Program, unless a warranty or assumption of
- liability accompanies a copy of the Program in return for a fee.
-
-END OF TERMS AND CONDITIONS
-===========================
-
-How to Apply These Terms to Your New Programs
-=============================================
-
-If you develop a new program, and you want it to be of the greatest
-possible use to the public, the best way to achieve this is to make it
-free software which everyone can redistribute and change under these
-terms.
-
- To do so, attach the following notices to the program. It is safest to
-attach them to the start of each source file to most effectively state
-the exclusion of warranty; and each file should have at least the
-"copyright" line and a pointer to where the full notice is found.
-
- ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES.
- Copyright (C) YEAR NAME OF AUTHOR
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or (at
- your option) any later version.
-
- This program is distributed in the hope that it will be useful, but
- WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
-
- Also add information on how to contact you by electronic and paper
-mail.
-
- If the program does terminal interaction, make it output a short notice
-like this when it starts in an interactive mode:
-
- PROGRAM Copyright (C) YEAR NAME OF AUTHOR
- This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'.
- This is free software, and you are welcome to redistribute it
- under certain conditions; type 'show c' for details.
-
- The hypothetical commands 'show w' and 'show c' should show the
-appropriate parts of the General Public License. Of course, your
-program's commands might be different; for a GUI interface, you would
-use an "about box".
-
- You should also get your employer (if you work as a programmer) or
-school, if any, to sign a "copyright disclaimer" for the program, if
-necessary. For more information on this, and how to apply and follow
-the GNU GPL, see <http://www.gnu.org/licenses/>.
-
- The GNU General Public License does not permit incorporating your
-program into proprietary programs. If your program is a subroutine
-library, you may consider it more useful to permit linking proprietary
-applications with the library. If this is what you want to do, use the
-GNU Lesser General Public License instead of this License. But first,
-please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.
-
-
-File: gcc.info, Node: GNU Free Documentation License, Next: Contributors, Prev: Copying, Up: Top
-
-GNU Free Documentation License
-******************************
-
- Version 1.3, 3 November 2008
-
- Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
- <http://fsf.org/>
-
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
- 0. PREAMBLE
-
- The purpose of this License is to make a manual, textbook, or other
- functional and useful document "free" in the sense of freedom: to
- assure everyone the effective freedom to copy and redistribute it,
- with or without modifying it, either commercially or
- noncommercially. Secondarily, this License preserves for the
- author and publisher a way to get credit for their work, while not
- being considered responsible for modifications made by others.
-
- This License is a kind of "copyleft", which means that derivative
- works of the document must themselves be free in the same sense.
- It complements the GNU General Public License, which is a copyleft
- license designed for free software.
-
- We have designed this License in order to use it for manuals for
- free software, because free software needs free documentation: a
- free program should come with manuals providing the same freedoms
- that the software does. But this License is not limited to
- software manuals; it can be used for any textual work, regardless
- of subject matter or whether it is published as a printed book. We
- recommend this License principally for works whose purpose is
- instruction or reference.
-
- 1. APPLICABILITY AND DEFINITIONS
-
- This License applies to any manual or other work, in any medium,
- that contains a notice placed by the copyright holder saying it can
- be distributed under the terms of this License. Such a notice
- grants a world-wide, royalty-free license, unlimited in duration,
- to use that work under the conditions stated herein. The
- "Document", below, refers to any such manual or work. Any member
- of the public is a licensee, and is addressed as "you". You accept
- the license if you copy, modify or distribute the work in a way
- requiring permission under copyright law.
-
- A "Modified Version" of the Document means any work containing the
- Document or a portion of it, either copied verbatim, or with
- modifications and/or translated into another language.
-
- A "Secondary Section" is a named appendix or a front-matter section
- of the Document that deals exclusively with the relationship of the
- publishers or authors of the Document to the Document's overall
- subject (or to related matters) and contains nothing that could
- fall directly within that overall subject. (Thus, if the Document
- is in part a textbook of mathematics, a Secondary Section may not
- explain any mathematics.) The relationship could be a matter of
- historical connection with the subject or with related matters, or
- of legal, commercial, philosophical, ethical or political position
- regarding them.
-
- The "Invariant Sections" are certain Secondary Sections whose
- titles are designated, as being those of Invariant Sections, in the
- notice that says that the Document is released under this License.
- If a section does not fit the above definition of Secondary then it
- is not allowed to be designated as Invariant. The Document may
- contain zero Invariant Sections. If the Document does not identify
- any Invariant Sections then there are none.
-
- The "Cover Texts" are certain short passages of text that are
- listed, as Front-Cover Texts or Back-Cover Texts, in the notice
- that says that the Document is released under this License. A
- Front-Cover Text may be at most 5 words, and a Back-Cover Text may
- be at most 25 words.
-
- A "Transparent" copy of the Document means a machine-readable copy,
- represented in a format whose specification is available to the
- general public, that is suitable for revising the document
- straightforwardly with generic text editors or (for images composed
- of pixels) generic paint programs or (for drawings) some widely
- available drawing editor, and that is suitable for input to text
- formatters or for automatic translation to a variety of formats
- suitable for input to text formatters. A copy made in an otherwise
- Transparent file format whose markup, or absence of markup, has
- been arranged to thwart or discourage subsequent modification by
- readers is not Transparent. An image format is not Transparent if
- used for any substantial amount of text. A copy that is not
- "Transparent" is called "Opaque".
-
- Examples of suitable formats for Transparent copies include plain
- ASCII without markup, Texinfo input format, LaTeX input format,
- SGML or XML using a publicly available DTD, and standard-conforming
- simple HTML, PostScript or PDF designed for human modification.
- Examples of transparent image formats include PNG, XCF and JPG.
- Opaque formats include proprietary formats that can be read and
- edited only by proprietary word processors, SGML or XML for which
- the DTD and/or processing tools are not generally available, and
- the machine-generated HTML, PostScript or PDF produced by some word
- processors for output purposes only.
-
- The "Title Page" means, for a printed book, the title page itself,
- plus such following pages as are needed to hold, legibly, the
- material this License requires to appear in the title page. For
- works in formats which do not have any title page as such, "Title
- Page" means the text near the most prominent appearance of the
- work's title, preceding the beginning of the body of the text.
-
- The "publisher" means any person or entity that distributes copies
- of the Document to the public.
-
- A section "Entitled XYZ" means a named subunit of the Document
- whose title either is precisely XYZ or contains XYZ in parentheses
- following text that translates XYZ in another language. (Here XYZ
- stands for a specific section name mentioned below, such as
- "Acknowledgements", "Dedications", "Endorsements", or "History".)
- To "Preserve the Title" of such a section when you modify the
- Document means that it remains a section "Entitled XYZ" according
- to this definition.
-
- The Document may include Warranty Disclaimers next to the notice
- which states that this License applies to the Document. These
- Warranty Disclaimers are considered to be included by reference in
- this License, but only as regards disclaiming warranties: any other
- implication that these Warranty Disclaimers may have is void and
- has no effect on the meaning of this License.
-
- 2. VERBATIM COPYING
-
- You may copy and distribute the Document in any medium, either
- commercially or noncommercially, provided that this License, the
- copyright notices, and the license notice saying this License
- applies to the Document are reproduced in all copies, and that you
- add no other conditions whatsoever to those of this License. You
- may not use technical measures to obstruct or control the reading
- or further copying of the copies you make or distribute. However,
- you may accept compensation in exchange for copies. If you
- distribute a large enough number of copies you must also follow the
- conditions in section 3.
-
- You may also lend copies, under the same conditions stated above,
- and you may publicly display copies.
-
- 3. COPYING IN QUANTITY
-
- If you publish printed copies (or copies in media that commonly
- have printed covers) of the Document, numbering more than 100, and
- the Document's license notice requires Cover Texts, you must
- enclose the copies in covers that carry, clearly and legibly, all
- these Cover Texts: Front-Cover Texts on the front cover, and
- Back-Cover Texts on the back cover. Both covers must also clearly
- and legibly identify you as the publisher of these copies. The
- front cover must present the full title with all words of the title
- equally prominent and visible. You may add other material on the
- covers in addition. Copying with changes limited to the covers, as
- long as they preserve the title of the Document and satisfy these
- conditions, can be treated as verbatim copying in other respects.
-
- If the required texts for either cover are too voluminous to fit
- legibly, you should put the first ones listed (as many as fit
- reasonably) on the actual cover, and continue the rest onto
- adjacent pages.
-
- If you publish or distribute Opaque copies of the Document
- numbering more than 100, you must either include a machine-readable
- Transparent copy along with each Opaque copy, or state in or with
- each Opaque copy a computer-network location from which the general
- network-using public has access to download using public-standard
- network protocols a complete Transparent copy of the Document, free
- of added material. If you use the latter option, you must take
- reasonably prudent steps, when you begin distribution of Opaque
- copies in quantity, to ensure that this Transparent copy will
- remain thus accessible at the stated location until at least one
- year after the last time you distribute an Opaque copy (directly or
- through your agents or retailers) of that edition to the public.
-
- It is requested, but not required, that you contact the authors of
- the Document well before redistributing any large number of copies,
- to give them a chance to provide you with an updated version of the
- Document.
-
- 4. MODIFICATIONS
-
- You may copy and distribute a Modified Version of the Document
- under the conditions of sections 2 and 3 above, provided that you
- release the Modified Version under precisely this License, with the
- Modified Version filling the role of the Document, thus licensing
- distribution and modification of the Modified Version to whoever
- possesses a copy of it. In addition, you must do these things in
- the Modified Version:
-
- A. Use in the Title Page (and on the covers, if any) a title
- distinct from that of the Document, and from those of previous
- versions (which should, if there were any, be listed in the
- History section of the Document). You may use the same title
- as a previous version if the original publisher of that
- version gives permission.
-
- B. List on the Title Page, as authors, one or more persons or
- entities responsible for authorship of the modifications in
- the Modified Version, together with at least five of the
- principal authors of the Document (all of its principal
- authors, if it has fewer than five), unless they release you
- from this requirement.
-
- C. State on the Title page the name of the publisher of the
- Modified Version, as the publisher.
-
- D. Preserve all the copyright notices of the Document.
-
- E. Add an appropriate copyright notice for your modifications
- adjacent to the other copyright notices.
-
- F. Include, immediately after the copyright notices, a license
- notice giving the public permission to use the Modified
- Version under the terms of this License, in the form shown in
- the Addendum below.
-
- G. Preserve in that license notice the full lists of Invariant
- Sections and required Cover Texts given in the Document's
- license notice.
-
- H. Include an unaltered copy of this License.
-
- I. Preserve the section Entitled "History", Preserve its Title,
- and add to it an item stating at least the title, year, new
- authors, and publisher of the Modified Version as given on the
- Title Page. If there is no section Entitled "History" in the
- Document, create one stating the title, year, authors, and
- publisher of the Document as given on its Title Page, then add
- an item describing the Modified Version as stated in the
- previous sentence.
-
- J. Preserve the network location, if any, given in the Document
- for public access to a Transparent copy of the Document, and
- likewise the network locations given in the Document for
- previous versions it was based on. These may be placed in the
- "History" section. You may omit a network location for a work
- that was published at least four years before the Document
- itself, or if the original publisher of the version it refers
- to gives permission.
-
- K. For any section Entitled "Acknowledgements" or "Dedications",
- Preserve the Title of the section, and preserve in the section
- all the substance and tone of each of the contributor
- acknowledgements and/or dedications given therein.
-
- L. Preserve all the Invariant Sections of the Document, unaltered
- in their text and in their titles. Section numbers or the
- equivalent are not considered part of the section titles.
-
- M. Delete any section Entitled "Endorsements". Such a section
- may not be included in the Modified Version.
-
- N. Do not retitle any existing section to be Entitled
- "Endorsements" or to conflict in title with any Invariant
- Section.
-
- O. Preserve any Warranty Disclaimers.
-
- If the Modified Version includes new front-matter sections or
- appendices that qualify as Secondary Sections and contain no
- material copied from the Document, you may at your option designate
- some or all of these sections as invariant. To do this, add their
- titles to the list of Invariant Sections in the Modified Version's
- license notice. These titles must be distinct from any other
- section titles.
-
- You may add a section Entitled "Endorsements", provided it contains
- nothing but endorsements of your Modified Version by various
- parties--for example, statements of peer review or that the text
- has been approved by an organization as the authoritative
- definition of a standard.
-
- You may add a passage of up to five words as a Front-Cover Text,
- and a passage of up to 25 words as a Back-Cover Text, to the end of
- the list of Cover Texts in the Modified Version. Only one passage
- of Front-Cover Text and one of Back-Cover Text may be added by (or
- through arrangements made by) any one entity. If the Document
- already includes a cover text for the same cover, previously added
- by you or by arrangement made by the same entity you are acting on
- behalf of, you may not add another; but you may replace the old
- one, on explicit permission from the previous publisher that added
- the old one.
-
- The author(s) and publisher(s) of the Document do not by this
- License give permission to use their names for publicity for or to
- assert or imply endorsement of any Modified Version.
-
- 5. COMBINING DOCUMENTS
-
- You may combine the Document with other documents released under
- this License, under the terms defined in section 4 above for
- modified versions, provided that you include in the combination all
- of the Invariant Sections of all of the original documents,
- unmodified, and list them all as Invariant Sections of your
- combined work in its license notice, and that you preserve all
- their Warranty Disclaimers.
-
- The combined work need only contain one copy of this License, and
- multiple identical Invariant Sections may be replaced with a single
- copy. If there are multiple Invariant Sections with the same name
- but different contents, make the title of each such section unique
- by adding at the end of it, in parentheses, the name of the
- original author or publisher of that section if known, or else a
- unique number. Make the same adjustment to the section titles in
- the list of Invariant Sections in the license notice of the
- combined work.
-
- In the combination, you must combine any sections Entitled
- "History" in the various original documents, forming one section
- Entitled "History"; likewise combine any sections Entitled
- "Acknowledgements", and any sections Entitled "Dedications". You
- must delete all sections Entitled "Endorsements."
-
- 6. COLLECTIONS OF DOCUMENTS
-
- You may make a collection consisting of the Document and other
- documents released under this License, and replace the individual
- copies of this License in the various documents with a single copy
- that is included in the collection, provided that you follow the
- rules of this License for verbatim copying of each of the documents
- in all other respects.
-
- You may extract a single document from such a collection, and
- distribute it individually under this License, provided you insert
- a copy of this License into the extracted document, and follow this
- License in all other respects regarding verbatim copying of that
- document.
-
- 7. AGGREGATION WITH INDEPENDENT WORKS
-
- A compilation of the Document or its derivatives with other
- separate and independent documents or works, in or on a volume of a
- storage or distribution medium, is called an "aggregate" if the
- copyright resulting from the compilation is not used to limit the
- legal rights of the compilation's users beyond what the individual
- works permit. When the Document is included in an aggregate, this
- License does not apply to the other works in the aggregate which
- are not themselves derivative works of the Document.
-
- If the Cover Text requirement of section 3 is applicable to these
- copies of the Document, then if the Document is less than one half
- of the entire aggregate, the Document's Cover Texts may be placed
- on covers that bracket the Document within the aggregate, or the
- electronic equivalent of covers if the Document is in electronic
- form. Otherwise they must appear on printed covers that bracket
- the whole aggregate.
-
- 8. TRANSLATION
-
- Translation is considered a kind of modification, so you may
- distribute translations of the Document under the terms of section
- 4. Replacing Invariant Sections with translations requires special
- permission from their copyright holders, but you may include
- translations of some or all Invariant Sections in addition to the
- original versions of these Invariant Sections. You may include a
- translation of this License, and all the license notices in the
- Document, and any Warranty Disclaimers, provided that you also
- include the original English version of this License and the
- original versions of those notices and disclaimers. In case of a
- disagreement between the translation and the original version of
- this License or a notice or disclaimer, the original version will
- prevail.
-
- If a section in the Document is Entitled "Acknowledgements",
- "Dedications", or "History", the requirement (section 4) to
- Preserve its Title (section 1) will typically require changing the
- actual title.
-
- 9. TERMINATION
-
- You may not copy, modify, sublicense, or distribute the Document
- except as expressly provided under this License. Any attempt
- otherwise to copy, modify, sublicense, or distribute it is void,
- and will automatically terminate your rights under this License.
-
- However, if you cease all violation of this License, then your
- license from a particular copyright holder is reinstated (a)
- provisionally, unless and until the copyright holder explicitly and
- finally terminates your license, and (b) permanently, if the
- copyright holder fails to notify you of the violation by some
- reasonable means prior to 60 days after the cessation.
-
- Moreover, your license from a particular copyright holder is
- reinstated permanently if the copyright holder notifies you of the
- violation by some reasonable means, this is the first time you have
- received notice of violation of this License (for any work) from
- that copyright holder, and you cure the violation prior to 30 days
- after your receipt of the notice.
-
- Termination of your rights under this section does not terminate
- the licenses of parties who have received copies or rights from you
- under this License. If your rights have been terminated and not
- permanently reinstated, receipt of a copy of some or all of the
- same material does not give you any rights to use it.
-
- 10. FUTURE REVISIONS OF THIS LICENSE
-
- The Free Software Foundation may publish new, revised versions of
- the GNU Free Documentation License from time to time. Such new
- versions will be similar in spirit to the present version, but may
- differ in detail to address new problems or concerns. See
- <http://www.gnu.org/copyleft/>.
-
- Each version of the License is given a distinguishing version
- number. If the Document specifies that a particular numbered
- version of this License "or any later version" applies to it, you
- have the option of following the terms and conditions either of
- that specified version or of any later version that has been
- published (not as a draft) by the Free Software Foundation. If the
- Document does not specify a version number of this License, you may
- choose any version ever published (not as a draft) by the Free
- Software Foundation. If the Document specifies that a proxy can
- decide which future versions of this License can be used, that
- proxy's public statement of acceptance of a version permanently
- authorizes you to choose that version for the Document.
-
- 11. RELICENSING
-
- "Massive Multiauthor Collaboration Site" (or "MMC Site") means any
- World Wide Web server that publishes copyrightable works and also
- provides prominent facilities for anybody to edit those works. A
- public wiki that anybody can edit is an example of such a server.
- A "Massive Multiauthor Collaboration" (or "MMC") contained in the
- site means any set of copyrightable works thus published on the MMC
- site.
-
- "CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
- license published by Creative Commons Corporation, a not-for-profit
- corporation with a principal place of business in San Francisco,
- California, as well as future copyleft versions of that license
- published by that same organization.
-
- "Incorporate" means to publish or republish a Document, in whole or
- in part, as part of another Document.
-
- An MMC is "eligible for relicensing" if it is licensed under this
- License, and if all works that were first published under this
- License somewhere other than this MMC, and subsequently
- incorporated in whole or in part into the MMC, (1) had no cover
- texts or invariant sections, and (2) were thus incorporated prior
- to November 1, 2008.
-
- The operator of an MMC Site may republish an MMC contained in the
- site under CC-BY-SA on the same site at any time before August 1,
- 2009, provided the MMC is eligible for relicensing.
-
-ADDENDUM: How to use this License for your documents
-====================================================
-
-To use this License in a document you have written, include a copy of
-the License in the document and put the following copyright and license
-notices just after the title page:
-
- Copyright (C) YEAR YOUR NAME.
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3
- or any later version published by the Free Software Foundation;
- with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
- Texts. A copy of the license is included in the section entitled ``GNU
- Free Documentation License''.
-
- If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
-replace the "with...Texts." line with this:
-
- with the Invariant Sections being LIST THEIR TITLES, with
- the Front-Cover Texts being LIST, and with the Back-Cover Texts
- being LIST.
-
- If you have Invariant Sections without Cover Texts, or some other
-combination of the three, merge those two alternatives to suit the
-situation.
-
- If your document contains nontrivial examples of program code, we
-recommend releasing these examples in parallel under your choice of free
-software license, such as the GNU General Public License, to permit
-their use in free software.
-
-
-File: gcc.info, Node: Contributors, Next: Option Index, Prev: GNU Free Documentation License, Up: Top
-
-Contributors to GCC
-*******************
-
-The GCC project would like to thank its many contributors. Without them
-the project would not have been nearly as successful as it has been.
-Any omissions in this list are accidental. Feel free to contact
-<law@redhat.com> or <gerald@pfeifer.com> if you have been left out or
-some of your contributions are not listed. Please keep this list in
-alphabetical order.
-
- * Analog Devices helped implement the support for complex data types
- and iterators.
-
- * John David Anglin for threading-related fixes and improvements to
- libstdc++-v3, and the HP-UX port.
-
- * James van Artsdalen wrote the code that makes efficient use of the
- Intel 80387 register stack.
-
- * Abramo and Roberto Bagnara for the SysV68 Motorola 3300 Delta
- Series port.
-
- * Alasdair Baird for various bug fixes.
-
- * Giovanni Bajo for analyzing lots of complicated C++ problem
- reports.
-
- * Peter Barada for his work to improve code generation for new
- ColdFire cores.
-
- * Gerald Baumgartner added the signature extension to the C++ front
- end.
-
- * Godmar Back for his Java improvements and encouragement.
-
- * Scott Bambrough for help porting the Java compiler.
-
- * Wolfgang Bangerth for processing tons of bug reports.
-
- * Jon Beniston for his Microsoft Windows port of Java and port to
- Lattice Mico32.
-
- * Daniel Berlin for better DWARF2 support, faster/better
- optimizations, improved alias analysis, plus migrating GCC to
- Bugzilla.
-
- * Geoff Berry for his Java object serialization work and various
- patches.
-
- * David Binderman tests weekly snapshots of GCC trunk against Fedora
- Rawhide for several architectures.
-
- * Uros Bizjak for the implementation of x87 math built-in functions
- and for various middle end and i386 back end improvements and bug
- fixes.
-
- * Eric Blake for helping to make GCJ and libgcj conform to the
- specifications.
-
- * Janne Blomqvist for contributions to GNU Fortran.
-
- * Segher Boessenkool for various fixes.
-
- * Hans-J. Boehm for his garbage collector, IA-64 libffi port, and
- other Java work.
-
- * Neil Booth for work on cpplib, lang hooks, debug hooks and other
- miscellaneous clean-ups.
-
- * Steven Bosscher for integrating the GNU Fortran front end into GCC
- and for contributing to the tree-ssa branch.
-
- * Eric Botcazou for fixing middle- and backend bugs left and right.
-
- * Per Bothner for his direction via the steering committee and
- various improvements to the infrastructure for supporting new
- languages. Chill front end implementation. Initial
- implementations of cpplib, fix-header, config.guess, libio, and
- past C++ library (libg++) maintainer. Dreaming up, designing and
- implementing much of GCJ.
-
- * Devon Bowen helped port GCC to the Tahoe.
-
- * Don Bowman for mips-vxworks contributions.
-
- * Dave Brolley for work on cpplib and Chill.
-
- * Paul Brook for work on the ARM architecture and maintaining GNU
- Fortran.
-
- * Robert Brown implemented the support for Encore 32000 systems.
-
- * Christian Bruel for improvements to local store elimination.
-
- * Herman A.J. ten Brugge for various fixes.
-
- * Joerg Brunsmann for Java compiler hacking and help with the GCJ
- FAQ.
-
- * Joe Buck for his direction via the steering committee.
-
- * Craig Burley for leadership of the G77 Fortran effort.
-
- * Stephan Buys for contributing Doxygen notes for libstdc++.
-
- * Paolo Carlini for libstdc++ work: lots of efficiency improvements
- to the C++ strings, streambufs and formatted I/O, hard detective
- work on the frustrating localization issues, and keeping up with
- the problem reports.
-
- * John Carr for his alias work, SPARC hacking, infrastructure
- improvements, previous contributions to the steering committee,
- loop optimizations, etc.
-
- * Stephane Carrez for 68HC11 and 68HC12 ports.
-
- * Steve Chamberlain for support for the Renesas SH and H8 processors
- and the PicoJava processor, and for GCJ config fixes.
-
- * Glenn Chambers for help with the GCJ FAQ.
-
- * John-Marc Chandonia for various libgcj patches.
-
- * Denis Chertykov for contributing and maintaining the AVR port, the
- first GCC port for an 8-bit architecture.
-
- * Scott Christley for his Objective-C contributions.
-
- * Eric Christopher for his Java porting help and clean-ups.
-
- * Branko Cibej for more warning contributions.
-
- * The GNU Classpath project for all of their merged runtime code.
-
- * Nick Clifton for arm, mcore, fr30, v850, m32r, msp430 rx work,
- '--help', and other random hacking.
-
- * Michael Cook for libstdc++ cleanup patches to reduce warnings.
-
- * R. Kelley Cook for making GCC buildable from a read-only directory
- as well as other miscellaneous build process and documentation
- clean-ups.
-
- * Ralf Corsepius for SH testing and minor bug fixing.
-
- * Stan Cox for care and feeding of the x86 port and lots of behind
- the scenes hacking.
-
- * Alex Crain provided changes for the 3b1.
-
- * Ian Dall for major improvements to the NS32k port.
-
- * Paul Dale for his work to add uClinux platform support to the m68k
- backend.
-
- * Dario Dariol contributed the four varieties of sample programs that
- print a copy of their source.
-
- * Russell Davidson for fstream and stringstream fixes in libstdc++.
-
- * Bud Davis for work on the G77 and GNU Fortran compilers.
-
- * Mo DeJong for GCJ and libgcj bug fixes.
-
- * DJ Delorie for the DJGPP port, build and libiberty maintenance,
- various bug fixes, and the M32C, MeP, MSP430, and RL78 ports.
-
- * Arnaud Desitter for helping to debug GNU Fortran.
-
- * Gabriel Dos Reis for contributions to G++, contributions and
- maintenance of GCC diagnostics infrastructure, libstdc++-v3,
- including 'valarray<>', 'complex<>', maintaining the numerics
- library (including that pesky '<limits>' :-) and keeping up-to-date
- anything to do with numbers.
-
- * Ulrich Drepper for his work on glibc, testing of GCC using glibc,
- ISO C99 support, CFG dumping support, etc., plus support of the C++
- runtime libraries including for all kinds of C interface issues,
- contributing and maintaining 'complex<>', sanity checking and
- disbursement, configuration architecture, libio maintenance, and
- early math work.
-
- * Franc,ois Dumont for his work on libstdc++-v3, especially
- maintaining and improving 'debug-mode' and associative and
- unordered containers.
-
- * Zdenek Dvorak for a new loop unroller and various fixes.
-
- * Michael Eager for his work on the Xilinx MicroBlaze port.
-
- * Richard Earnshaw for his ongoing work with the ARM.
-
- * David Edelsohn for his direction via the steering committee,
- ongoing work with the RS6000/PowerPC port, help cleaning up Haifa
- loop changes, doing the entire AIX port of libstdc++ with his bare
- hands, and for ensuring GCC properly keeps working on AIX.
-
- * Kevin Ediger for the floating point formatting of num_put::do_put
- in libstdc++.
-
- * Phil Edwards for libstdc++ work including configuration hackery,
- documentation maintainer, chief breaker of the web pages, the
- occasional iostream bug fix, and work on shared library symbol
- versioning.
-
- * Paul Eggert for random hacking all over GCC.
-
- * Mark Elbrecht for various DJGPP improvements, and for libstdc++
- configuration support for locales and fstream-related fixes.
-
- * Vadim Egorov for libstdc++ fixes in strings, streambufs, and
- iostreams.
-
- * Christian Ehrhardt for dealing with bug reports.
-
- * Ben Elliston for his work to move the Objective-C runtime into its
- own subdirectory and for his work on autoconf.
-
- * Revital Eres for work on the PowerPC 750CL port.
-
- * Marc Espie for OpenBSD support.
-
- * Doug Evans for much of the global optimization framework, arc,
- m32r, and SPARC work.
-
- * Christopher Faylor for his work on the Cygwin port and for caring
- and feeding the gcc.gnu.org box and saving its users tons of spam.
-
- * Fred Fish for BeOS support and Ada fixes.
-
- * Ivan Fontes Garcia for the Portuguese translation of the GCJ FAQ.
-
- * Peter Gerwinski for various bug fixes and the Pascal front end.
-
- * Kaveh R. Ghazi for his direction via the steering committee,
- amazing work to make '-W -Wall -W* -Werror' useful, and testing GCC
- on a plethora of platforms. Kaveh extends his gratitude to the
- CAIP Center at Rutgers University for providing him with computing
- resources to work on Free Software from the late 1980s to 2010.
-
- * John Gilmore for a donation to the FSF earmarked improving GNU
- Java.
-
- * Judy Goldberg for c++ contributions.
-
- * Torbjorn Granlund for various fixes and the c-torture testsuite,
- multiply- and divide-by-constant optimization, improved long long
- support, improved leaf function register allocation, and his
- direction via the steering committee.
-
- * Anthony Green for his '-Os' contributions, the moxie port, and Java
- front end work.
-
- * Stu Grossman for gdb hacking, allowing GCJ developers to debug Java
- code.
-
- * Michael K. Gschwind contributed the port to the PDP-11.
-
- * Richard Biener for his ongoing middle-end contributions and bug
- fixes and for release management.
-
- * Ron Guilmette implemented the 'protoize' and 'unprotoize' tools,
- the support for Dwarf symbolic debugging information, and much of
- the support for System V Release 4. He has also worked heavily on
- the Intel 386 and 860 support.
-
- * Sumanth Gundapaneni for contributing the CR16 port.
-
- * Mostafa Hagog for Swing Modulo Scheduling (SMS) and post reload
- GCSE.
-
- * Bruno Haible for improvements in the runtime overhead for EH, new
- warnings and assorted bug fixes.
-
- * Andrew Haley for his amazing Java compiler and library efforts.
-
- * Chris Hanson assisted in making GCC work on HP-UX for the 9000
- series 300.
-
- * Michael Hayes for various thankless work he's done trying to get
- the c30/c40 ports functional. Lots of loop and unroll improvements
- and fixes.
-
- * Dara Hazeghi for wading through myriads of target-specific bug
- reports.
-
- * Kate Hedstrom for staking the G77 folks with an initial testsuite.
-
- * Richard Henderson for his ongoing SPARC, alpha, ia32, and ia64
- work, loop opts, and generally fixing lots of old problems we've
- ignored for years, flow rewrite and lots of further stuff,
- including reviewing tons of patches.
-
- * Aldy Hernandez for working on the PowerPC port, SIMD support, and
- various fixes.
-
- * Nobuyuki Hikichi of Software Research Associates, Tokyo,
- contributed the support for the Sony NEWS machine.
-
- * Kazu Hirata for caring and feeding the Renesas H8/300 port and
- various fixes.
-
- * Katherine Holcomb for work on GNU Fortran.
-
- * Manfred Hollstein for his ongoing work to keep the m88k alive, lots
- of testing and bug fixing, particularly of GCC configury code.
-
- * Steve Holmgren for MachTen patches.
-
- * Mat Hostetter for work on the TILE-Gx and TILEPro ports.
-
- * Jan Hubicka for his x86 port improvements.
-
- * Falk Hueffner for working on C and optimization bug reports.
-
- * Bernardo Innocenti for his m68k work, including merging of ColdFire
- improvements and uClinux support.
-
- * Christian Iseli for various bug fixes.
-
- * Kamil Iskra for general m68k hacking.
-
- * Lee Iverson for random fixes and MIPS testing.
-
- * Andreas Jaeger for testing and benchmarking of GCC and various bug
- fixes.
-
- * Jakub Jelinek for his SPARC work and sibling call optimizations as
- well as lots of bug fixes and test cases, and for improving the
- Java build system.
-
- * Janis Johnson for ia64 testing and fixes, her quality improvement
- sidetracks, and web page maintenance.
-
- * Kean Johnston for SCO OpenServer support and various fixes.
-
- * Tim Josling for the sample language treelang based originally on
- Richard Kenner's "toy" language.
-
- * Nicolai Josuttis for additional libstdc++ documentation.
-
- * Klaus Kaempf for his ongoing work to make alpha-vms a viable
- target.
-
- * Steven G. Kargl for work on GNU Fortran.
-
- * David Kashtan of SRI adapted GCC to VMS.
-
- * Ryszard Kabatek for many, many libstdc++ bug fixes and
- optimizations of strings, especially member functions, and for
- auto_ptr fixes.
-
- * Geoffrey Keating for his ongoing work to make the PPC work for
- GNU/Linux and his automatic regression tester.
-
- * Brendan Kehoe for his ongoing work with G++ and for a lot of early
- work in just about every part of libstdc++.
-
- * Oliver M. Kellogg of Deutsche Aerospace contributed the port to the
- MIL-STD-1750A.
-
- * Richard Kenner of the New York University Ultracomputer Research
- Laboratory wrote the machine descriptions for the AMD 29000, the
- DEC Alpha, the IBM RT PC, and the IBM RS/6000 as well as the
- support for instruction attributes. He also made changes to better
- support RISC processors including changes to common subexpression
- elimination, strength reduction, function calling sequence
- handling, and condition code support, in addition to generalizing
- the code for frame pointer elimination and delay slot scheduling.
- Richard Kenner was also the head maintainer of GCC for several
- years.
-
- * Mumit Khan for various contributions to the Cygwin and Mingw32
- ports and maintaining binary releases for Microsoft Windows hosts,
- and for massive libstdc++ porting work to Cygwin/Mingw32.
-
- * Robin Kirkham for cpu32 support.
-
- * Mark Klein for PA improvements.
-
- * Thomas Koenig for various bug fixes.
-
- * Bruce Korb for the new and improved fixincludes code.
-
- * Benjamin Kosnik for his G++ work and for leading the libstdc++-v3
- effort.
-
- * Charles LaBrec contributed the support for the Integrated Solutions
- 68020 system.
-
- * Asher Langton and Mike Kumbera for contributing Cray pointer
- support to GNU Fortran, and for other GNU Fortran improvements.
-
- * Jeff Law for his direction via the steering committee, coordinating
- the entire egcs project and GCC 2.95, rolling out snapshots and
- releases, handling merges from GCC2, reviewing tons of patches that
- might have fallen through the cracks else, and random but extensive
- hacking.
-
- * Walter Lee for work on the TILE-Gx and TILEPro ports.
-
- * Marc Lehmann for his direction via the steering committee and
- helping with analysis and improvements of x86 performance.
-
- * Victor Leikehman for work on GNU Fortran.
-
- * Ted Lemon wrote parts of the RTL reader and printer.
-
- * Kriang Lerdsuwanakij for C++ improvements including template as
- template parameter support, and many C++ fixes.
-
- * Warren Levy for tremendous work on libgcj (Java Runtime Library)
- and random work on the Java front end.
-
- * Alain Lichnewsky ported GCC to the MIPS CPU.
-
- * Oskar Liljeblad for hacking on AWT and his many Java bug reports
- and patches.
-
- * Robert Lipe for OpenServer support, new testsuites, testing, etc.
-
- * Chen Liqin for various S+core related fixes/improvement, and for
- maintaining the S+core port.
-
- * Weiwen Liu for testing and various bug fixes.
-
- * Manuel Lo'pez-Iba'n~ez for improving '-Wconversion' and many other
- diagnostics fixes and improvements.
-
- * Dave Love for his ongoing work with the Fortran front end and
- runtime libraries.
-
- * Martin von Lo"wis for internal consistency checking infrastructure,
- various C++ improvements including namespace support, and tons of
- assistance with libstdc++/compiler merges.
-
- * H.J. Lu for his previous contributions to the steering committee,
- many x86 bug reports, prototype patches, and keeping the GNU/Linux
- ports working.
-
- * Greg McGary for random fixes and (someday) bounded pointers.
-
- * Andrew MacLeod for his ongoing work in building a real EH system,
- various code generation improvements, work on the global optimizer,
- etc.
-
- * Vladimir Makarov for hacking some ugly i960 problems, PowerPC
- hacking improvements to compile-time performance, overall knowledge
- and direction in the area of instruction scheduling, and design and
- implementation of the automaton based instruction scheduler.
-
- * Bob Manson for his behind the scenes work on dejagnu.
-
- * Philip Martin for lots of libstdc++ string and vector iterator
- fixes and improvements, and string clean up and testsuites.
-
- * All of the Mauve project contributors, for Java test code.
-
- * Bryce McKinlay for numerous GCJ and libgcj fixes and improvements.
-
- * Adam Megacz for his work on the Microsoft Windows port of GCJ.
-
- * Michael Meissner for LRS framework, ia32, m32r, v850, m88k, MIPS,
- powerpc, haifa, ECOFF debug support, and other assorted hacking.
-
- * Jason Merrill for his direction via the steering committee and
- leading the G++ effort.
-
- * Martin Michlmayr for testing GCC on several architectures using the
- entire Debian archive.
-
- * David Miller for his direction via the steering committee, lots of
- SPARC work, improvements in jump.c and interfacing with the Linux
- kernel developers.
-
- * Gary Miller ported GCC to Charles River Data Systems machines.
-
- * Alfred Minarik for libstdc++ string and ios bug fixes, and turning
- the entire libstdc++ testsuite namespace-compatible.
-
- * Mark Mitchell for his direction via the steering committee,
- mountains of C++ work, load/store hoisting out of loops, alias
- analysis improvements, ISO C 'restrict' support, and serving as
- release manager from 2000 to 2011.
-
- * Alan Modra for various GNU/Linux bits and testing.
-
- * Toon Moene for his direction via the steering committee, Fortran
- maintenance, and his ongoing work to make us make Fortran run fast.
-
- * Jason Molenda for major help in the care and feeding of all the
- services on the gcc.gnu.org (formerly egcs.cygnus.com)
- machine--mail, web services, ftp services, etc etc. Doing all this
- work on scrap paper and the backs of envelopes would have been...
- difficult.
-
- * Catherine Moore for fixing various ugly problems we have sent her
- way, including the haifa bug which was killing the Alpha & PowerPC
- Linux kernels.
-
- * Mike Moreton for his various Java patches.
-
- * David Mosberger-Tang for various Alpha improvements, and for the
- initial IA-64 port.
-
- * Stephen Moshier contributed the floating point emulator that
- assists in cross-compilation and permits support for floating point
- numbers wider than 64 bits and for ISO C99 support.
-
- * Bill Moyer for his behind the scenes work on various issues.
-
- * Philippe De Muyter for his work on the m68k port.
-
- * Joseph S. Myers for his work on the PDP-11 port, format checking
- and ISO C99 support, and continuous emphasis on (and contributions
- to) documentation.
-
- * Nathan Myers for his work on libstdc++-v3: architecture and
- authorship through the first three snapshots, including
- implementation of locale infrastructure, string, shadow C headers,
- and the initial project documentation (DESIGN, CHECKLIST, and so
- forth). Later, more work on MT-safe string and shadow headers.
-
- * Felix Natter for documentation on porting libstdc++.
-
- * Nathanael Nerode for cleaning up the configuration/build process.
-
- * NeXT, Inc. donated the front end that supports the Objective-C
- language.
-
- * Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to the
- search engine setup, various documentation fixes and other small
- fixes.
-
- * Geoff Noer for his work on getting cygwin native builds working.
-
- * Diego Novillo for his work on Tree SSA, OpenMP, SPEC performance
- tracking web pages, GIMPLE tuples, and assorted fixes.
-
- * David O'Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64,
- FreeBSD/ARM, FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and related
- infrastructure improvements.
-
- * Alexandre Oliva for various build infrastructure improvements,
- scripts and amazing testing work, including keeping libtool issues
- sane and happy.
-
- * Stefan Olsson for work on mt_alloc.
-
- * Melissa O'Neill for various NeXT fixes.
-
- * Rainer Orth for random MIPS work, including improvements to GCC's
- o32 ABI support, improvements to dejagnu's MIPS support, Java
- configuration clean-ups and porting work, and maintaining the IRIX,
- Solaris 2, and Tru64 UNIX ports.
-
- * Hartmut Penner for work on the s390 port.
-
- * Paul Petersen wrote the machine description for the Alliant FX/8.
-
- * Alexandre Petit-Bianco for implementing much of the Java compiler
- and continued Java maintainership.
-
- * Matthias Pfaller for major improvements to the NS32k port.
-
- * Gerald Pfeifer for his direction via the steering committee,
- pointing out lots of problems we need to solve, maintenance of the
- web pages, and taking care of documentation maintenance in general.
-
- * Andrew Pinski for processing bug reports by the dozen.
-
- * Ovidiu Predescu for his work on the Objective-C front end and
- runtime libraries.
-
- * Jerry Quinn for major performance improvements in C++ formatted
- I/O.
-
- * Ken Raeburn for various improvements to checker, MIPS ports and
- various cleanups in the compiler.
-
- * Rolf W. Rasmussen for hacking on AWT.
-
- * David Reese of Sun Microsystems contributed to the Solaris on
- PowerPC port.
-
- * Volker Reichelt for keeping up with the problem reports.
-
- * Joern Rennecke for maintaining the sh port, loop, regmove & reload
- hacking and developing and maintaining the Epiphany port.
-
- * Loren J. Rittle for improvements to libstdc++-v3 including the
- FreeBSD port, threading fixes, thread-related configury changes,
- critical threading documentation, and solutions to really tricky
- I/O problems, as well as keeping GCC properly working on FreeBSD
- and continuous testing.
-
- * Craig Rodrigues for processing tons of bug reports.
-
- * Ola Ro"nnerup for work on mt_alloc.
-
- * Gavin Romig-Koch for lots of behind the scenes MIPS work.
-
- * David Ronis inspired and encouraged Craig to rewrite the G77
- documentation in texinfo format by contributing a first pass at a
- translation of the old 'g77-0.5.16/f/DOC' file.
-
- * Ken Rose for fixes to GCC's delay slot filling code.
-
- * Paul Rubin wrote most of the preprocessor.
-
- * Pe'tur Runo'lfsson for major performance improvements in C++
- formatted I/O and large file support in C++ filebuf.
-
- * Chip Salzenberg for libstdc++ patches and improvements to locales,
- traits, Makefiles, libio, libtool hackery, and "long long" support.
-
- * Juha Sarlin for improvements to the H8 code generator.
-
- * Greg Satz assisted in making GCC work on HP-UX for the 9000 series
- 300.
-
- * Roger Sayle for improvements to constant folding and GCC's RTL
- optimizers as well as for fixing numerous bugs.
-
- * Bradley Schatz for his work on the GCJ FAQ.
-
- * Peter Schauer wrote the code to allow debugging to work on the
- Alpha.
-
- * William Schelter did most of the work on the Intel 80386 support.
-
- * Tobias Schlu"ter for work on GNU Fortran.
-
- * Bernd Schmidt for various code generation improvements and major
- work in the reload pass, serving as release manager for GCC 2.95.3,
- and work on the Blackfin and C6X ports.
-
- * Peter Schmid for constant testing of libstdc++--especially
- application testing, going above and beyond what was requested for
- the release criteria--and libstdc++ header file tweaks.
-
- * Jason Schroeder for jcf-dump patches.
-
- * Andreas Schwab for his work on the m68k port.
-
- * Lars Segerlund for work on GNU Fortran.
-
- * Dodji Seketeli for numerous C++ bug fixes and debug info
- improvements.
-
- * Tim Shen for major work on '<regex>'.
-
- * Joel Sherrill for his direction via the steering committee, RTEMS
- contributions and RTEMS testing.
-
- * Nathan Sidwell for many C++ fixes/improvements.
-
- * Jeffrey Siegal for helping RMS with the original design of GCC,
- some code which handles the parse tree and RTL data structures,
- constant folding and help with the original VAX & m68k ports.
-
- * Kenny Simpson for prompting libstdc++ fixes due to defect reports
- from the LWG (thereby keeping GCC in line with updates from the
- ISO).
-
- * Franz Sirl for his ongoing work with making the PPC port stable for
- GNU/Linux.
-
- * Andrey Slepuhin for assorted AIX hacking.
-
- * Trevor Smigiel for contributing the SPU port.
-
- * Christopher Smith did the port for Convex machines.
-
- * Danny Smith for his major efforts on the Mingw (and Cygwin) ports.
-
- * Randy Smith finished the Sun FPA support.
-
- * Ed Smith-Rowland for his continuous work on libstdc++-v3, special
- functions, '<random>', and various improvements to C++11 features.
-
- * Scott Snyder for queue, iterator, istream, and string fixes and
- libstdc++ testsuite entries. Also for providing the patch to G77
- to add rudimentary support for 'INTEGER*1', 'INTEGER*2', and
- 'LOGICAL*1'.
-
- * Zdenek Sojka for running automated regression testing of GCC and
- reporting numerous bugs.
-
- * Jayant Sonar for contributing the CR16 port.
-
- * Brad Spencer for contributions to the GLIBCPP_FORCE_NEW technique.
-
- * Richard Stallman, for writing the original GCC and launching the
- GNU project.
-
- * Jan Stein of the Chalmers Computer Society provided support for
- Genix, as well as part of the 32000 machine description.
-
- * Nigel Stephens for various mips16 related fixes/improvements.
-
- * Jonathan Stone wrote the machine description for the Pyramid
- computer.
-
- * Graham Stott for various infrastructure improvements.
-
- * John Stracke for his Java HTTP protocol fixes.
-
- * Mike Stump for his Elxsi port, G++ contributions over the years and
- more recently his vxworks contributions
-
- * Jeff Sturm for Java porting help, bug fixes, and encouragement.
-
- * Shigeya Suzuki for this fixes for the bsdi platforms.
-
- * Ian Lance Taylor for the Go frontend, the initial mips16 and mips64
- support, general configury hacking, fixincludes, etc.
-
- * Holger Teutsch provided the support for the Clipper CPU.
-
- * Gary Thomas for his ongoing work to make the PPC work for
- GNU/Linux.
-
- * Philipp Thomas for random bug fixes throughout the compiler
-
- * Jason Thorpe for thread support in libstdc++ on NetBSD.
-
- * Kresten Krab Thorup wrote the run time support for the Objective-C
- language and the fantastic Java bytecode interpreter.
-
- * Michael Tiemann for random bug fixes, the first instruction
- scheduler, initial C++ support, function integration, NS32k, SPARC
- and M88k machine description work, delay slot scheduling.
-
- * Andreas Tobler for his work porting libgcj to Darwin.
-
- * Teemu Torma for thread safe exception handling support.
-
- * Leonard Tower wrote parts of the parser, RTL generator, and RTL
- definitions, and of the VAX machine description.
-
- * Daniel Towner and Hariharan Sandanagobalane contributed and
- maintain the picoChip port.
-
- * Tom Tromey for internationalization support and for his many Java
- contributions and libgcj maintainership.
-
- * Lassi Tuura for improvements to config.guess to determine HP
- processor types.
-
- * Petter Urkedal for libstdc++ CXXFLAGS, math, and algorithms fixes.
-
- * Andy Vaught for the design and initial implementation of the GNU
- Fortran front end.
-
- * Brent Verner for work with the libstdc++ cshadow files and their
- associated configure steps.
-
- * Todd Vierling for contributions for NetBSD ports.
-
- * Jonathan Wakely for contributing libstdc++ Doxygen notes and XHTML
- guidance.
-
- * Dean Wakerley for converting the install documentation from HTML to
- texinfo in time for GCC 3.0.
-
- * Krister Walfridsson for random bug fixes.
-
- * Feng Wang for contributions to GNU Fortran.
-
- * Stephen M. Webb for time and effort on making libstdc++ shadow
- files work with the tricky Solaris 8+ headers, and for pushing the
- build-time header tree. Also, for starting and driving the
- '<regex>' effort.
-
- * John Wehle for various improvements for the x86 code generator,
- related infrastructure improvements to help x86 code generation,
- value range propagation and other work, WE32k port.
-
- * Ulrich Weigand for work on the s390 port.
-
- * Zack Weinberg for major work on cpplib and various other bug fixes.
-
- * Matt Welsh for help with Linux Threads support in GCJ.
-
- * Urban Widmark for help fixing java.io.
-
- * Mark Wielaard for new Java library code and his work integrating
- with Classpath.
-
- * Dale Wiles helped port GCC to the Tahoe.
-
- * Bob Wilson from Tensilica, Inc. for the Xtensa port.
-
- * Jim Wilson for his direction via the steering committee, tackling
- hard problems in various places that nobody else wanted to work on,
- strength reduction and other loop optimizations.
-
- * Paul Woegerer and Tal Agmon for the CRX port.
-
- * Carlo Wood for various fixes.
-
- * Tom Wood for work on the m88k port.
-
- * Chung-Ju Wu for his work on the Andes NDS32 port.
-
- * Canqun Yang for work on GNU Fortran.
-
- * Masanobu Yuhara of Fujitsu Laboratories implemented the machine
- description for the Tron architecture (specifically, the Gmicro).
-
- * Kevin Zachmann helped port GCC to the Tahoe.
-
- * Ayal Zaks for Swing Modulo Scheduling (SMS).
-
- * Xiaoqiang Zhang for work on GNU Fortran.
-
- * Gilles Zunino for help porting Java to Irix.
-
- The following people are recognized for their contributions to GNAT,
-the Ada front end of GCC:
- * Bernard Banner
-
- * Romain Berrendonner
-
- * Geert Bosch
-
- * Emmanuel Briot
-
- * Joel Brobecker
-
- * Ben Brosgol
-
- * Vincent Celier
-
- * Arnaud Charlet
-
- * Chien Chieng
-
- * Cyrille Comar
-
- * Cyrille Crozes
-
- * Robert Dewar
-
- * Gary Dismukes
-
- * Robert Duff
-
- * Ed Falis
-
- * Ramon Fernandez
-
- * Sam Figueroa
-
- * Vasiliy Fofanov
-
- * Michael Friess
-
- * Franco Gasperoni
-
- * Ted Giering
-
- * Matthew Gingell
-
- * Laurent Guerby
-
- * Jerome Guitton
-
- * Olivier Hainque
-
- * Jerome Hugues
-
- * Hristian Kirtchev
-
- * Jerome Lambourg
-
- * Bruno Leclerc
-
- * Albert Lee
-
- * Sean McNeil
-
- * Javier Miranda
-
- * Laurent Nana
-
- * Pascal Obry
-
- * Dong-Ik Oh
-
- * Laurent Pautet
-
- * Brett Porter
-
- * Thomas Quinot
-
- * Nicolas Roche
-
- * Pat Rogers
-
- * Jose Ruiz
-
- * Douglas Rupp
-
- * Sergey Rybin
-
- * Gail Schenker
-
- * Ed Schonberg
-
- * Nicolas Setton
-
- * Samuel Tardieu
-
- The following people are recognized for their contributions of new
-features, bug reports, testing and integration of classpath/libgcj for
-GCC version 4.1:
- * Lillian Angel for 'JTree' implementation and lots Free Swing
- additions and bug fixes.
-
- * Wolfgang Baer for 'GapContent' bug fixes.
-
- * Anthony Balkissoon for 'JList', Free Swing 1.5 updates and mouse
- event fixes, lots of Free Swing work including 'JTable' editing.
-
- * Stuart Ballard for RMI constant fixes.
-
- * Goffredo Baroncelli for 'HTTPURLConnection' fixes.
-
- * Gary Benson for 'MessageFormat' fixes.
-
- * Daniel Bonniot for 'Serialization' fixes.
-
- * Chris Burdess for lots of gnu.xml and http protocol fixes, 'StAX'
- and 'DOM xml:id' support.
-
- * Ka-Hing Cheung for 'TreePath' and 'TreeSelection' fixes.
-
- * Archie Cobbs for build fixes, VM interface updates,
- 'URLClassLoader' updates.
-
- * Kelley Cook for build fixes.
-
- * Martin Cordova for Suggestions for better 'SocketTimeoutException'.
-
- * David Daney for 'BitSet' bug fixes, 'HttpURLConnection' rewrite and
- improvements.
-
- * Thomas Fitzsimmons for lots of upgrades to the gtk+ AWT and Cairo
- 2D support. Lots of imageio framework additions, lots of AWT and
- Free Swing bug fixes.
-
- * Jeroen Frijters for 'ClassLoader' and nio cleanups, serialization
- fixes, better 'Proxy' support, bug fixes and IKVM integration.
-
- * Santiago Gala for 'AccessControlContext' fixes.
-
- * Nicolas Geoffray for 'VMClassLoader' and 'AccessController'
- improvements.
-
- * David Gilbert for 'basic' and 'metal' icon and plaf support and
- lots of documenting, Lots of Free Swing and metal theme additions.
- 'MetalIconFactory' implementation.
-
- * Anthony Green for 'MIDI' framework, 'ALSA' and 'DSSI' providers.
-
- * Andrew Haley for 'Serialization' and 'URLClassLoader' fixes, gcj
- build speedups.
-
- * Kim Ho for 'JFileChooser' implementation.
-
- * Andrew John Hughes for 'Locale' and net fixes, URI RFC2986 updates,
- 'Serialization' fixes, 'Properties' XML support and generic branch
- work, VMIntegration guide update.
-
- * Bastiaan Huisman for 'TimeZone' bug fixing.
-
- * Andreas Jaeger for mprec updates.
-
- * Paul Jenner for better '-Werror' support.
-
- * Ito Kazumitsu for 'NetworkInterface' implementation and updates.
-
- * Roman Kennke for 'BoxLayout', 'GrayFilter' and 'SplitPane', plus
- bug fixes all over. Lots of Free Swing work including styled text.
-
- * Simon Kitching for 'String' cleanups and optimization suggestions.
-
- * Michael Koch for configuration fixes, 'Locale' updates, bug and
- build fixes.
-
- * Guilhem Lavaux for configuration, thread and channel fixes and
- Kaffe integration. JCL native 'Pointer' updates. Logger bug
- fixes.
-
- * David Lichteblau for JCL support library global/local reference
- cleanups.
-
- * Aaron Luchko for JDWP updates and documentation fixes.
-
- * Ziga Mahkovec for 'Graphics2D' upgraded to Cairo 0.5 and new regex
- features.
-
- * Sven de Marothy for BMP imageio support, CSS and 'TextLayout'
- fixes. 'GtkImage' rewrite, 2D, awt, free swing and date/time fixes
- and implementing the Qt4 peers.
-
- * Casey Marshall for crypto algorithm fixes, 'FileChannel' lock,
- 'SystemLogger' and 'FileHandler' rotate implementations, NIO
- 'FileChannel.map' support, security and policy updates.
-
- * Bryce McKinlay for RMI work.
-
- * Audrius Meskauskas for lots of Free Corba, RMI and HTML work plus
- testing and documenting.
-
- * Kalle Olavi Niemitalo for build fixes.
-
- * Rainer Orth for build fixes.
-
- * Andrew Overholt for 'File' locking fixes.
-
- * Ingo Proetel for 'Image', 'Logger' and 'URLClassLoader' updates.
-
- * Olga Rodimina for 'MenuSelectionManager' implementation.
-
- * Jan Roehrich for 'BasicTreeUI' and 'JTree' fixes.
-
- * Julian Scheid for documentation updates and gjdoc support.
-
- * Christian Schlichtherle for zip fixes and cleanups.
-
- * Robert Schuster for documentation updates and beans fixes,
- 'TreeNode' enumerations and 'ActionCommand' and various fixes, XML
- and URL, AWT and Free Swing bug fixes.
-
- * Keith Seitz for lots of JDWP work.
-
- * Christian Thalinger for 64-bit cleanups, Configuration and VM
- interface fixes and 'CACAO' integration, 'fdlibm' updates.
-
- * Gael Thomas for 'VMClassLoader' boot packages support suggestions.
-
- * Andreas Tobler for Darwin and Solaris testing and fixing, 'Qt4'
- support for Darwin/OS X, 'Graphics2D' support, 'gtk+' updates.
-
- * Dalibor Topic for better 'DEBUG' support, build cleanups and Kaffe
- integration. 'Qt4' build infrastructure, 'SHA1PRNG' and
- 'GdkPixbugDecoder' updates.
-
- * Tom Tromey for Eclipse integration, generics work, lots of bug
- fixes and gcj integration including coordinating The Big Merge.
-
- * Mark Wielaard for bug fixes, packaging and release management,
- 'Clipboard' implementation, system call interrupts and network
- timeouts and 'GdkPixpufDecoder' fixes.
-
- In addition to the above, all of which also contributed time and energy
-in testing GCC, we would like to thank the following for their
-contributions to testing:
-
- * Michael Abd-El-Malek
-
- * Thomas Arend
-
- * Bonzo Armstrong
-
- * Steven Ashe
-
- * Chris Baldwin
-
- * David Billinghurst
-
- * Jim Blandy
-
- * Stephane Bortzmeyer
-
- * Horst von Brand
-
- * Frank Braun
-
- * Rodney Brown
-
- * Sidney Cadot
-
- * Bradford Castalia
-
- * Robert Clark
-
- * Jonathan Corbet
-
- * Ralph Doncaster
-
- * Richard Emberson
-
- * Levente Farkas
-
- * Graham Fawcett
-
- * Mark Fernyhough
-
- * Robert A. French
-
- * Jo"rgen Freyh
-
- * Mark K. Gardner
-
- * Charles-Antoine Gauthier
-
- * Yung Shing Gene
-
- * David Gilbert
-
- * Simon Gornall
-
- * Fred Gray
-
- * John Griffin
-
- * Patrik Hagglund
-
- * Phil Hargett
-
- * Amancio Hasty
-
- * Takafumi Hayashi
-
- * Bryan W. Headley
-
- * Kevin B. Hendricks
-
- * Joep Jansen
-
- * Christian Joensson
-
- * Michel Kern
-
- * David Kidd
-
- * Tobias Kuipers
-
- * Anand Krishnaswamy
-
- * A. O. V. Le Blanc
-
- * llewelly
-
- * Damon Love
-
- * Brad Lucier
-
- * Matthias Klose
-
- * Martin Knoblauch
-
- * Rick Lutowski
-
- * Jesse Macnish
-
- * Stefan Morrell
-
- * Anon A. Mous
-
- * Matthias Mueller
-
- * Pekka Nikander
-
- * Rick Niles
-
- * Jon Olson
-
- * Magnus Persson
-
- * Chris Pollard
-
- * Richard Polton
-
- * Derk Reefman
-
- * David Rees
-
- * Paul Reilly
-
- * Tom Reilly
-
- * Torsten Rueger
-
- * Danny Sadinoff
-
- * Marc Schifer
-
- * Erik Schnetter
-
- * Wayne K. Schroll
-
- * David Schuler
-
- * Vin Shelton
-
- * Tim Souder
-
- * Adam Sulmicki
-
- * Bill Thorson
-
- * George Talbot
-
- * Pedro A. M. Vazquez
-
- * Gregory Warnes
-
- * Ian Watson
-
- * David E. Young
-
- * And many others
-
- And finally we'd like to thank everyone who uses the compiler, provides
-feedback and generally reminds us why we're doing this work in the first
-place.
-
-
-File: gcc.info, Node: Option Index, Next: Keyword Index, Prev: Contributors, Up: Top
-
-Option Index
-************
-
-GCC's command line options are indexed here without any initial '-' or
-'--'. Where an option has both positive and negative forms (such as
-'-fOPTION' and '-fno-OPTION'), relevant entries in the manual are
-indexed under the most appropriate form; it may sometimes be useful to
-look up both forms.
-
-
-* Menu:
-
-* ###: Overall Options. (line 209)
-* (fvtv-debug): C++ Dialect Options.
- (line 362)
-* -fno-keep-inline-dllexport: Optimize Options. (line 309)
-* -mcpu: RX Options. (line 30)
-* -mcpu=: MSP430 Options. (line 35)
-* -mpointer-size=SIZE: VMS Options. (line 20)
-* 8bit-idiv: i386 and x86-64 Options.
- (line 917)
-* A: Preprocessor Options.
- (line 596)
-* allowable_client: Darwin Options. (line 196)
-* all_load: Darwin Options. (line 110)
-* ansi: Standards. (line 16)
-* ansi <1>: C Dialect Options. (line 11)
-* ansi <2>: Preprocessor Options.
- (line 340)
-* ansi <3>: Other Builtins. (line 21)
-* ansi <4>: Non-bugs. (line 107)
-* arch_errors_fatal: Darwin Options. (line 114)
-* aux-info: C Dialect Options. (line 173)
-* avx256-split-unaligned-load: i386 and x86-64 Options.
- (line 925)
-* avx256-split-unaligned-store: i386 and x86-64 Options.
- (line 925)
-* B: Directory Options. (line 44)
-* Bdynamic: VxWorks Options. (line 22)
-* bind_at_load: Darwin Options. (line 118)
-* Bstatic: VxWorks Options. (line 22)
-* bundle: Darwin Options. (line 123)
-* bundle_loader: Darwin Options. (line 127)
-* c: Overall Options. (line 164)
-* C: Preprocessor Options.
- (line 653)
-* c <1>: Link Options. (line 20)
-* client_name: Darwin Options. (line 196)
-* compatibility_version: Darwin Options. (line 196)
-* coverage: Debugging Options. (line 491)
-* current_version: Darwin Options. (line 196)
-* d: Debugging Options. (line 622)
-* D: Preprocessor Options.
- (line 46)
-* da: Debugging Options. (line 825)
-* dA: Debugging Options. (line 828)
-* dD: Debugging Options. (line 832)
-* dD <1>: Preprocessor Options.
- (line 627)
-* dead_strip: Darwin Options. (line 196)
-* dependency-file: Darwin Options. (line 196)
-* dH: Debugging Options. (line 836)
-* dI: Preprocessor Options.
- (line 636)
-* dM: Preprocessor Options.
- (line 612)
-* dN: Preprocessor Options.
- (line 633)
-* dp: Debugging Options. (line 839)
-* dP: Debugging Options. (line 844)
-* dU: Preprocessor Options.
- (line 640)
-* dumpmachine: Debugging Options. (line 1410)
-* dumpspecs: Debugging Options. (line 1418)
-* dumpversion: Debugging Options. (line 1414)
-* dx: Debugging Options. (line 848)
-* dylib_file: Darwin Options. (line 196)
-* dylinker_install_name: Darwin Options. (line 196)
-* dynamic: Darwin Options. (line 196)
-* dynamiclib: Darwin Options. (line 131)
-* E: Overall Options. (line 185)
-* E <1>: Link Options. (line 20)
-* EB: ARC Options. (line 345)
-* EB <1>: MIPS Options. (line 7)
-* EL: ARC Options. (line 354)
-* EL <1>: MIPS Options. (line 10)
-* exported_symbols_list: Darwin Options. (line 196)
-* F: Darwin Options. (line 31)
-* fabi-version: C++ Dialect Options.
- (line 19)
-* fada-spec-parent: Overall Options. (line 367)
-* faggressive-loop-optimizations: Optimize Options. (line 478)
-* falign-functions: Optimize Options. (line 1472)
-* falign-jumps: Optimize Options. (line 1521)
-* falign-labels: Optimize Options. (line 1490)
-* falign-loops: Optimize Options. (line 1508)
-* fallow-parameterless-variadic-functions: C Dialect Options.
- (line 189)
-* fassociative-math: Optimize Options. (line 2000)
-* fasynchronous-unwind-tables: Code Gen Options. (line 145)
-* fauto-inc-dec: Optimize Options. (line 502)
-* fbounds-check: Code Gen Options. (line 15)
-* fbranch-probabilities: Optimize Options. (line 2128)
-* fbranch-target-load-optimize: Optimize Options. (line 2243)
-* fbranch-target-load-optimize2: Optimize Options. (line 2249)
-* fbtr-bb-exclusive: Optimize Options. (line 2253)
-* fcall-saved: Code Gen Options. (line 355)
-* fcall-used: Code Gen Options. (line 341)
-* fcaller-saves: Optimize Options. (line 810)
-* fcheck-data-deps: Optimize Options. (line 1089)
-* fcheck-new: C++ Dialect Options.
- (line 54)
-* fcilkplus: C Dialect Options. (line 276)
-* fcombine-stack-adjustments: Optimize Options. (line 822)
-* fcommon: Variable Attributes.
- (line 104)
-* fcompare-debug: Debugging Options. (line 282)
-* fcompare-debug-second: Debugging Options. (line 308)
-* fcompare-elim: Optimize Options. (line 1836)
-* fcond-mismatch: C Dialect Options. (line 339)
-* fconserve-stack: Optimize Options. (line 828)
-* fconstant-string-class: Objective-C and Objective-C++ Dialect Options.
- (line 30)
-* fconstexpr-depth: C++ Dialect Options.
- (line 64)
-* fcprop-registers: Optimize Options. (line 1854)
-* fcrossjumping: Optimize Options. (line 495)
-* fcse-follow-jumps: Optimize Options. (line 414)
-* fcse-skip-blocks: Optimize Options. (line 423)
-* fcx-fortran-rules: Optimize Options. (line 2115)
-* fcx-limited-range: Optimize Options. (line 2103)
-* fdata-sections: Optimize Options. (line 2224)
-* fdbg-cnt: Debugging Options. (line 543)
-* fdbg-cnt-list: Debugging Options. (line 540)
-* fdce: Optimize Options. (line 508)
-* fdebug-cpp: Preprocessor Options.
- (line 527)
-* fdebug-prefix-map: Debugging Options. (line 402)
-* fdebug-types-section: Debugging Options. (line 79)
-* fdeclone-ctor-dtor: Optimize Options. (line 531)
-* fdeduce-init-list: C++ Dialect Options.
- (line 70)
-* fdelayed-branch: Optimize Options. (line 657)
-* fdelete-dead-exceptions: Code Gen Options. (line 130)
-* fdelete-null-pointer-checks: Optimize Options. (line 542)
-* fdevirtualize: Optimize Options. (line 560)
-* fdevirtualize-speculatively: Optimize Options. (line 567)
-* fdiagnostics-color: Language Independent Options.
- (line 35)
-* fdiagnostics-show-caret: Language Independent Options.
- (line 92)
-* fdiagnostics-show-location: Language Independent Options.
- (line 20)
-* fdiagnostics-show-option: Language Independent Options.
- (line 86)
-* fdirectives-only: Preprocessor Options.
- (line 475)
-* fdisable-: Debugging Options. (line 553)
-* fdollars-in-identifiers: Preprocessor Options.
- (line 496)
-* fdollars-in-identifiers <1>: Interoperation. (line 141)
-* fdse: Optimize Options. (line 512)
-* fdump-ada-spec: Overall Options. (line 362)
-* fdump-class-hierarchy: Debugging Options. (line 879)
-* fdump-final-insns: Debugging Options. (line 276)
-* fdump-go-spec: Overall Options. (line 371)
-* fdump-ipa: Debugging Options. (line 887)
-* fdump-noaddr: Debugging Options. (line 852)
-* fdump-passes: Debugging Options. (line 904)
-* fdump-rtl-alignments: Debugging Options. (line 643)
-* fdump-rtl-all: Debugging Options. (line 825)
-* fdump-rtl-asmcons: Debugging Options. (line 646)
-* fdump-rtl-auto_inc_dec: Debugging Options. (line 650)
-* fdump-rtl-barriers: Debugging Options. (line 654)
-* fdump-rtl-bbpart: Debugging Options. (line 657)
-* fdump-rtl-bbro: Debugging Options. (line 660)
-* fdump-rtl-btl2: Debugging Options. (line 664)
-* fdump-rtl-btl2 <1>: Debugging Options. (line 664)
-* fdump-rtl-bypass: Debugging Options. (line 668)
-* fdump-rtl-ce1: Debugging Options. (line 679)
-* fdump-rtl-ce2: Debugging Options. (line 679)
-* fdump-rtl-ce3: Debugging Options. (line 679)
-* fdump-rtl-combine: Debugging Options. (line 671)
-* fdump-rtl-compgotos: Debugging Options. (line 674)
-* fdump-rtl-cprop_hardreg: Debugging Options. (line 683)
-* fdump-rtl-csa: Debugging Options. (line 686)
-* fdump-rtl-cse1: Debugging Options. (line 690)
-* fdump-rtl-cse2: Debugging Options. (line 690)
-* fdump-rtl-dbr: Debugging Options. (line 697)
-* fdump-rtl-dce: Debugging Options. (line 694)
-* fdump-rtl-dce1: Debugging Options. (line 701)
-* fdump-rtl-dce2: Debugging Options. (line 701)
-* fdump-rtl-dfinish: Debugging Options. (line 821)
-* fdump-rtl-dfinit: Debugging Options. (line 821)
-* fdump-rtl-eh: Debugging Options. (line 705)
-* fdump-rtl-eh_ranges: Debugging Options. (line 708)
-* fdump-rtl-expand: Debugging Options. (line 711)
-* fdump-rtl-fwprop1: Debugging Options. (line 715)
-* fdump-rtl-fwprop2: Debugging Options. (line 715)
-* fdump-rtl-gcse1: Debugging Options. (line 720)
-* fdump-rtl-gcse2: Debugging Options. (line 720)
-* fdump-rtl-init-regs: Debugging Options. (line 724)
-* fdump-rtl-initvals: Debugging Options. (line 727)
-* fdump-rtl-into_cfglayout: Debugging Options. (line 730)
-* fdump-rtl-ira: Debugging Options. (line 733)
-* fdump-rtl-jump: Debugging Options. (line 736)
-* fdump-rtl-loop2: Debugging Options. (line 739)
-* fdump-rtl-mach: Debugging Options. (line 743)
-* fdump-rtl-mode_sw: Debugging Options. (line 747)
-* fdump-rtl-outof_cfglayout: Debugging Options. (line 753)
-* fdump-rtl-PASS: Debugging Options. (line 622)
-* fdump-rtl-peephole2: Debugging Options. (line 756)
-* fdump-rtl-postreload: Debugging Options. (line 759)
-* fdump-rtl-pro_and_epilogue: Debugging Options. (line 762)
-* fdump-rtl-ree: Debugging Options. (line 770)
-* fdump-rtl-regclass: Debugging Options. (line 821)
-* fdump-rtl-rnreg: Debugging Options. (line 750)
-* fdump-rtl-sched1: Debugging Options. (line 766)
-* fdump-rtl-sched2: Debugging Options. (line 766)
-* fdump-rtl-seqabstr: Debugging Options. (line 773)
-* fdump-rtl-shorten: Debugging Options. (line 776)
-* fdump-rtl-sibling: Debugging Options. (line 779)
-* fdump-rtl-sms: Debugging Options. (line 791)
-* fdump-rtl-split1: Debugging Options. (line 786)
-* fdump-rtl-split2: Debugging Options. (line 786)
-* fdump-rtl-split3: Debugging Options. (line 786)
-* fdump-rtl-split4: Debugging Options. (line 786)
-* fdump-rtl-split5: Debugging Options. (line 786)
-* fdump-rtl-stack: Debugging Options. (line 795)
-* fdump-rtl-subreg1: Debugging Options. (line 801)
-* fdump-rtl-subreg2: Debugging Options. (line 801)
-* fdump-rtl-subregs_of_mode_finish: Debugging Options. (line 821)
-* fdump-rtl-subregs_of_mode_init: Debugging Options. (line 821)
-* fdump-rtl-unshare: Debugging Options. (line 805)
-* fdump-rtl-vartrack: Debugging Options. (line 808)
-* fdump-rtl-vregs: Debugging Options. (line 811)
-* fdump-rtl-web: Debugging Options. (line 814)
-* fdump-statistics: Debugging Options. (line 908)
-* fdump-translation-unit: Debugging Options. (line 870)
-* fdump-tree: Debugging Options. (line 920)
-* fdump-tree-alias: Debugging Options. (line 1042)
-* fdump-tree-all: Debugging Options. (line 1126)
-* fdump-tree-ccp: Debugging Options. (line 1046)
-* fdump-tree-cfg: Debugging Options. (line 1030)
-* fdump-tree-ch: Debugging Options. (line 1034)
-* fdump-tree-copyprop: Debugging Options. (line 1062)
-* fdump-tree-copyrename: Debugging Options. (line 1102)
-* fdump-tree-dce: Debugging Options. (line 1070)
-* fdump-tree-dom: Debugging Options. (line 1083)
-* fdump-tree-dse: Debugging Options. (line 1088)
-* fdump-tree-forwprop: Debugging Options. (line 1097)
-* fdump-tree-fre: Debugging Options. (line 1058)
-* fdump-tree-gimple: Debugging Options. (line 1025)
-* fdump-tree-nrv: Debugging Options. (line 1107)
-* fdump-tree-optimized: Debugging Options. (line 1022)
-* fdump-tree-original: Debugging Options. (line 1019)
-* fdump-tree-phiopt: Debugging Options. (line 1092)
-* fdump-tree-pre: Debugging Options. (line 1054)
-* fdump-tree-sink: Debugging Options. (line 1079)
-* fdump-tree-slp: Debugging Options. (line 1117)
-* fdump-tree-sra: Debugging Options. (line 1074)
-* fdump-tree-ssa: Debugging Options. (line 1038)
-* fdump-tree-storeccp: Debugging Options. (line 1050)
-* fdump-tree-store_copyprop: Debugging Options. (line 1066)
-* fdump-tree-vect: Debugging Options. (line 1112)
-* fdump-tree-vrp: Debugging Options. (line 1122)
-* fdump-unnumbered: Debugging Options. (line 858)
-* fdump-unnumbered-links: Debugging Options. (line 864)
-* fdwarf2-cfi-asm: Debugging Options. (line 406)
-* fearly-inlining: Optimize Options. (line 268)
-* feliminate-dwarf2-dups: Debugging Options. (line 321)
-* feliminate-unused-debug-symbols: Debugging Options. (line 67)
-* feliminate-unused-debug-types: Debugging Options. (line 1422)
-* femit-struct-debug-baseonly: Debugging Options. (line 326)
-* femit-struct-debug-reduced: Debugging Options. (line 339)
-* fenable-: Debugging Options. (line 553)
-* fexceptions: Code Gen Options. (line 108)
-* fexcess-precision: Optimize Options. (line 1927)
-* fexec-charset: Preprocessor Options.
- (line 554)
-* fexpensive-optimizations: Optimize Options. (line 576)
-* fext-numeric-literals: C++ Dialect Options.
- (line 587)
-* fextended-identifiers: Preprocessor Options.
- (line 499)
-* fextern-tls-init: C++ Dialect Options.
- (line 120)
-* ffast-math: Optimize Options. (line 1950)
-* ffat-lto-objects: Optimize Options. (line 1818)
-* ffinite-math-only: Optimize Options. (line 2027)
-* ffix-and-continue: Darwin Options. (line 104)
-* ffixed: Code Gen Options. (line 329)
-* ffloat-store: Optimize Options. (line 1913)
-* ffloat-store <1>: Disappointments. (line 77)
-* ffor-scope: C++ Dialect Options.
- (line 141)
-* fforward-propagate: Optimize Options. (line 178)
-* ffp-contract: Optimize Options. (line 187)
-* ffreestanding: Standards. (line 92)
-* ffreestanding <1>: C Dialect Options. (line 252)
-* ffreestanding <2>: Warning Options. (line 252)
-* ffreestanding <3>: Function Attributes.
- (line 493)
-* ffriend-injection: C++ Dialect Options.
- (line 91)
-* ffunction-sections: Optimize Options. (line 2224)
-* fgcse: Optimize Options. (line 437)
-* fgcse-after-reload: Optimize Options. (line 473)
-* fgcse-las: Optimize Options. (line 466)
-* fgcse-lm: Optimize Options. (line 448)
-* fgcse-sm: Optimize Options. (line 457)
-* fgnu-runtime: Objective-C and Objective-C++ Dialect Options.
- (line 39)
-* fgnu-tm: C Dialect Options. (line 286)
-* fgnu89-inline: C Dialect Options. (line 152)
-* fgraphite-identity: Optimize Options. (line 1069)
-* fhosted: C Dialect Options. (line 244)
-* fif-conversion: Optimize Options. (line 516)
-* fif-conversion2: Optimize Options. (line 525)
-* filelist: Darwin Options. (line 196)
-* findirect-data: Darwin Options. (line 104)
-* findirect-inlining: Optimize Options. (line 241)
-* finhibit-size-directive: Code Gen Options. (line 250)
-* finline-functions: Optimize Options. (line 249)
-* finline-functions-called-once: Optimize Options. (line 260)
-* finline-limit: Optimize Options. (line 284)
-* finline-small-functions: Optimize Options. (line 232)
-* finput-charset: Preprocessor Options.
- (line 567)
-* finstrument-functions: Code Gen Options. (line 385)
-* finstrument-functions <1>: Function Attributes.
- (line 1085)
-* finstrument-functions-exclude-file-list: Code Gen Options. (line 420)
-* finstrument-functions-exclude-function-list: Code Gen Options.
- (line 441)
-* fipa-cp: Optimize Options. (line 894)
-* fipa-cp-clone: Optimize Options. (line 902)
-* fipa-profile: Optimize Options. (line 886)
-* fipa-pta: Optimize Options. (line 880)
-* fipa-pure-const: Optimize Options. (line 872)
-* fipa-reference: Optimize Options. (line 876)
-* fipa-sra: Optimize Options. (line 277)
-* fira-hoist-pressure: Optimize Options. (line 624)
-* fira-loop-pressure: Optimize Options. (line 631)
-* fira-verbose: Optimize Options. (line 651)
-* fivopts: Optimize Options. (line 1165)
-* fkeep-inline-functions: Optimize Options. (line 315)
-* fkeep-inline-functions <1>: Inline. (line 51)
-* fkeep-static-consts: Optimize Options. (line 322)
-* flat_namespace: Darwin Options. (line 196)
-* flax-vector-conversions: C Dialect Options. (line 344)
-* fleading-underscore: Code Gen Options. (line 523)
-* flive-range-shrinkage: Optimize Options. (line 590)
-* floop-block: Optimize Options. (line 1040)
-* floop-interchange: Optimize Options. (line 995)
-* floop-nest-optimize: Optimize Options. (line 1077)
-* floop-parallelize-all: Optimize Options. (line 1083)
-* floop-strip-mine: Optimize Options. (line 1019)
-* flto: Optimize Options. (line 1575)
-* flto-partition: Optimize Options. (line 1769)
-* fmax-errors: Warning Options. (line 18)
-* fmem-report: Debugging Options. (line 430)
-* fmem-report-wpa: Debugging Options. (line 434)
-* fmerge-all-constants: Optimize Options. (line 341)
-* fmerge-constants: Optimize Options. (line 331)
-* fmerge-debug-strings: Debugging Options. (line 395)
-* fmessage-length: Language Independent Options.
- (line 14)
-* fmodulo-sched: Optimize Options. (line 352)
-* fmodulo-sched-allow-regmoves: Optimize Options. (line 357)
-* fmove-loop-invariants: Optimize Options. (line 2214)
-* fms-extensions: C Dialect Options. (line 301)
-* fms-extensions <1>: C++ Dialect Options.
- (line 175)
-* fms-extensions <2>: Unnamed Fields. (line 36)
-* fnext-runtime: Objective-C and Objective-C++ Dialect Options.
- (line 43)
-* fno-access-control: C++ Dialect Options.
- (line 50)
-* fno-asm: C Dialect Options. (line 196)
-* fno-branch-count-reg: Optimize Options. (line 364)
-* fno-builtin: C Dialect Options. (line 210)
-* fno-builtin <1>: Warning Options. (line 252)
-* fno-builtin <2>: Function Attributes.
- (line 493)
-* fno-builtin <3>: Other Builtins. (line 14)
-* fno-canonical-system-headers: Preprocessor Options.
- (line 504)
-* fno-common: Code Gen Options. (line 228)
-* fno-common <1>: Variable Attributes.
- (line 104)
-* fno-compare-debug: Debugging Options. (line 282)
-* fno-debug-types-section: Debugging Options. (line 79)
-* fno-default-inline: Inline. (line 71)
-* fno-defer-pop: Optimize Options. (line 170)
-* fno-diagnostics-show-caret: Language Independent Options.
- (line 92)
-* fno-diagnostics-show-option: Language Independent Options.
- (line 86)
-* fno-dwarf2-cfi-asm: Debugging Options. (line 406)
-* fno-elide-constructors: C++ Dialect Options.
- (line 104)
-* fno-eliminate-unused-debug-types: Debugging Options. (line 1422)
-* fno-enforce-eh-specs: C++ Dialect Options.
- (line 110)
-* fno-ext-numeric-literals: C++ Dialect Options.
- (line 587)
-* fno-extern-tls-init: C++ Dialect Options.
- (line 120)
-* fno-for-scope: C++ Dialect Options.
- (line 141)
-* fno-function-cse: Optimize Options. (line 374)
-* fno-gnu-keywords: C++ Dialect Options.
- (line 153)
-* fno-gnu-unique: Code Gen Options. (line 151)
-* fno-guess-branch-probability: Optimize Options. (line 1342)
-* fno-ident: Code Gen Options. (line 247)
-* fno-implement-inlines: C++ Dialect Options.
- (line 170)
-* fno-implement-inlines <1>: C++ Interface. (line 75)
-* fno-implicit-inline-templates: C++ Dialect Options.
- (line 164)
-* fno-implicit-templates: C++ Dialect Options.
- (line 158)
-* fno-implicit-templates <1>: Template Instantiation.
- (line 78)
-* fno-inline: Optimize Options. (line 224)
-* fno-ira-share-save-slots: Optimize Options. (line 639)
-* fno-ira-share-spill-slots: Optimize Options. (line 645)
-* fno-jump-tables: Code Gen Options. (line 321)
-* fno-math-errno: Optimize Options. (line 1964)
-* fno-merge-debug-strings: Debugging Options. (line 395)
-* fno-nil-receivers: Objective-C and Objective-C++ Dialect Options.
- (line 49)
-* fno-nonansi-builtins: C++ Dialect Options.
- (line 180)
-* fno-operator-names: C++ Dialect Options.
- (line 196)
-* fno-optional-diags: C++ Dialect Options.
- (line 200)
-* fno-peephole: Optimize Options. (line 1333)
-* fno-peephole2: Optimize Options. (line 1333)
-* fno-pretty-templates: C++ Dialect Options.
- (line 210)
-* fno-rtti: C++ Dialect Options.
- (line 227)
-* fno-sched-interblock: Optimize Options. (line 683)
-* fno-sched-spec: Optimize Options. (line 688)
-* fno-set-stack-executable: i386 and x86-64 Windows Options.
- (line 46)
-* fno-show-column: Preprocessor Options.
- (line 591)
-* fno-signed-bitfields: C Dialect Options. (line 377)
-* fno-signed-zeros: Optimize Options. (line 2039)
-* fno-stack-limit: Code Gen Options. (line 491)
-* fno-threadsafe-statics: C++ Dialect Options.
- (line 264)
-* fno-toplevel-reorder: Optimize Options. (line 1541)
-* fno-trapping-math: Optimize Options. (line 2049)
-* fno-unsigned-bitfields: C Dialect Options. (line 377)
-* fno-use-cxa-get-exception-ptr: C++ Dialect Options.
- (line 277)
-* fno-var-tracking-assignments: Debugging Options. (line 1330)
-* fno-var-tracking-assignments-toggle: Debugging Options. (line 1339)
-* fno-weak: C++ Dialect Options.
- (line 389)
-* fno-working-directory: Preprocessor Options.
- (line 577)
-* fno-writable-relocated-rdata: i386 and x86-64 Windows Options.
- (line 53)
-* fno-zero-initialized-in-bss: Optimize Options. (line 385)
-* fnon-call-exceptions: Code Gen Options. (line 122)
-* fnothrow-opt: C++ Dialect Options.
- (line 185)
-* fobjc-abi-version: Objective-C and Objective-C++ Dialect Options.
- (line 56)
-* fobjc-call-cxx-cdtors: Objective-C and Objective-C++ Dialect Options.
- (line 67)
-* fobjc-direct-dispatch: Objective-C and Objective-C++ Dialect Options.
- (line 92)
-* fobjc-exceptions: Objective-C and Objective-C++ Dialect Options.
- (line 96)
-* fobjc-gc: Objective-C and Objective-C++ Dialect Options.
- (line 105)
-* fobjc-nilcheck: Objective-C and Objective-C++ Dialect Options.
- (line 111)
-* fobjc-std: Objective-C and Objective-C++ Dialect Options.
- (line 120)
-* fomit-frame-pointer: Optimize Options. (line 198)
-* fopenmp: C Dialect Options. (line 263)
-* fopenmp-simd: C Dialect Options. (line 272)
-* fopt-info: Debugging Options. (line 1132)
-* foptimize-sibling-calls: Optimize Options. (line 219)
-* force_cpusubtype_ALL: Darwin Options. (line 135)
-* force_flat_namespace: Darwin Options. (line 196)
-* fpack-struct: Code Gen Options. (line 372)
-* fpartial-inlining: Optimize Options. (line 1308)
-* fpcc-struct-return: Code Gen Options. (line 164)
-* fpcc-struct-return <1>: Incompatibilities. (line 170)
-* fpch-deps: Preprocessor Options.
- (line 296)
-* fpch-preprocess: Preprocessor Options.
- (line 304)
-* fpeel-loops: Optimize Options. (line 2206)
-* fpermissive: C++ Dialect Options.
- (line 205)
-* fpic: Code Gen Options. (line 278)
-* fPIC: Code Gen Options. (line 299)
-* fpie: Code Gen Options. (line 312)
-* fPIE: Code Gen Options. (line 312)
-* fplan9-extensions: Unnamed Fields. (line 43)
-* fplugin: Overall Options. (line 351)
-* fplugin-arg: Overall Options. (line 358)
-* fpost-ipa-mem-report: Debugging Options. (line 439)
-* fpre-ipa-mem-report: Debugging Options. (line 438)
-* fpredictive-commoning: Optimize Options. (line 1315)
-* fprefetch-loop-arrays: Optimize Options. (line 1322)
-* fpreprocessed: Preprocessor Options.
- (line 508)
-* fprofile-arcs: Debugging Options. (line 476)
-* fprofile-arcs <1>: Other Builtins. (line 253)
-* fprofile-correction: Optimize Options. (line 1861)
-* fprofile-dir: Optimize Options. (line 1868)
-* fprofile-generate: Optimize Options. (line 1879)
-* fprofile-reorder-functions: Optimize Options. (line 2156)
-* fprofile-report: Debugging Options. (line 443)
-* fprofile-use: Optimize Options. (line 1893)
-* fprofile-values: Optimize Options. (line 2147)
-* fpu: RX Options. (line 17)
-* frandom-seed: Debugging Options. (line 1224)
-* freciprocal-math: Optimize Options. (line 2017)
-* frecord-gcc-switches: Code Gen Options. (line 266)
-* free: Optimize Options. (line 582)
-* freg-struct-return: Code Gen Options. (line 182)
-* frename-registers: Optimize Options. (line 2173)
-* freorder-blocks: Optimize Options. (line 1359)
-* freorder-blocks-and-partition: Optimize Options. (line 1365)
-* freorder-functions: Optimize Options. (line 1378)
-* freplace-objc-classes: Objective-C and Objective-C++ Dialect Options.
- (line 131)
-* frepo: C++ Dialect Options.
- (line 222)
-* frepo <1>: Template Instantiation.
- (line 54)
-* frerun-cse-after-loop: Optimize Options. (line 431)
-* freschedule-modulo-scheduled-loops: Optimize Options. (line 782)
-* frounding-math: Optimize Options. (line 2064)
-* fsanitize=address: Debugging Options. (line 187)
-* fsanitize=integer-divide-by-zero: Debugging Options. (line 228)
-* fsanitize=leak: Debugging Options. (line 206)
-* fsanitize=null: Debugging Options. (line 247)
-* fsanitize=return: Debugging Options. (line 255)
-* fsanitize=shift: Debugging Options. (line 221)
-* fsanitize=signed-integer-overflow: Debugging Options. (line 262)
-* fsanitize=thread: Debugging Options. (line 197)
-* fsanitize=undefined: Debugging Options. (line 216)
-* fsanitize=unreachable: Debugging Options. (line 233)
-* fsanitize=vla-bound: Debugging Options. (line 240)
-* fsched-critical-path-heuristic: Optimize Options. (line 748)
-* fsched-dep-count-heuristic: Optimize Options. (line 775)
-* fsched-group-heuristic: Optimize Options. (line 742)
-* fsched-last-insn-heuristic: Optimize Options. (line 768)
-* fsched-pressure: Optimize Options. (line 693)
-* fsched-rank-heuristic: Optimize Options. (line 761)
-* fsched-spec-insn-heuristic: Optimize Options. (line 754)
-* fsched-spec-load: Optimize Options. (line 702)
-* fsched-spec-load-dangerous: Optimize Options. (line 707)
-* fsched-stalled-insns: Optimize Options. (line 713)
-* fsched-stalled-insns-dep: Optimize Options. (line 723)
-* fsched-verbose: Debugging Options. (line 1234)
-* fsched2-use-superblocks: Optimize Options. (line 732)
-* fschedule-insns: Optimize Options. (line 664)
-* fschedule-insns2: Optimize Options. (line 674)
-* fsection-anchors: Optimize Options. (line 2274)
-* fsel-sched-pipelining: Optimize Options. (line 795)
-* fsel-sched-pipelining-outer-loops: Optimize Options. (line 800)
-* fselective-scheduling: Optimize Options. (line 787)
-* fselective-scheduling2: Optimize Options. (line 791)
-* fshort-double: Code Gen Options. (line 210)
-* fshort-enums: Code Gen Options. (line 200)
-* fshort-enums <1>: Structures unions enumerations and bit-fields implementation.
- (line 48)
-* fshort-enums <2>: Type Attributes. (line 113)
-* fshort-enums <3>: Non-bugs. (line 42)
-* fshort-wchar: Code Gen Options. (line 218)
-* fshrink-wrap: Optimize Options. (line 805)
-* fsignaling-nans: Optimize Options. (line 2084)
-* fsigned-bitfields: C Dialect Options. (line 377)
-* fsigned-bitfields <1>: Non-bugs. (line 57)
-* fsigned-char: C Dialect Options. (line 367)
-* fsigned-char <1>: Characters implementation.
- (line 31)
-* fsimd-cost-model: Optimize Options. (line 1256)
-* fsingle-precision-constant: Optimize Options. (line 2099)
-* fsplit-ivs-in-unroller: Optimize Options. (line 1289)
-* fsplit-stack: Code Gen Options. (line 505)
-* fsplit-stack <1>: Function Attributes.
- (line 1090)
-* fsplit-wide-types: Optimize Options. (line 406)
-* fstack-check: Code Gen Options. (line 453)
-* fstack-limit-register: Code Gen Options. (line 491)
-* fstack-limit-symbol: Code Gen Options. (line 491)
-* fstack-protector: Optimize Options. (line 2257)
-* fstack-protector-all: Optimize Options. (line 2266)
-* fstack-protector-strong: Optimize Options. (line 2269)
-* fstack-usage: Debugging Options. (line 447)
-* fstack_reuse: Code Gen Options. (line 21)
-* fstats: C++ Dialect Options.
- (line 237)
-* fstrict-aliasing: Optimize Options. (line 1391)
-* fstrict-enums: C++ Dialect Options.
- (line 242)
-* fstrict-overflow: Optimize Options. (line 1437)
-* fstrict-volatile-bitfields: Code Gen Options. (line 611)
-* fsync-libcalls: Code Gen Options. (line 643)
-* fsyntax-only: Warning Options. (line 14)
-* ftabstop: Preprocessor Options.
- (line 521)
-* ftemplate-backtrace-limit: C++ Dialect Options.
- (line 251)
-* ftemplate-depth: C++ Dialect Options.
- (line 255)
-* ftest-coverage: Debugging Options. (line 531)
-* fthread-jumps: Optimize Options. (line 397)
-* ftime-report: Debugging Options. (line 426)
-* ftls-model: Code Gen Options. (line 534)
-* ftracer: Optimize Options. (line 1272)
-* ftracer <1>: Optimize Options. (line 2183)
-* ftrack-macro-expansion: Preprocessor Options.
- (line 536)
-* ftrapv: Code Gen Options. (line 96)
-* ftree-bit-ccp: Optimize Options. (line 930)
-* ftree-builtin-call-dce: Optimize Options. (line 958)
-* ftree-ccp: Optimize Options. (line 936)
-* ftree-ch: Optimize Options. (line 978)
-* ftree-coalesce-inlined-vars: Optimize Options. (line 1196)
-* ftree-coalesce-vars: Optimize Options. (line 1206)
-* ftree-copy-prop: Optimize Options. (line 867)
-* ftree-copyrename: Optimize Options. (line 1189)
-* ftree-dce: Optimize Options. (line 954)
-* ftree-dominator-opts: Optimize Options. (line 964)
-* ftree-dse: Optimize Options. (line 971)
-* ftree-forwprop: Optimize Options. (line 846)
-* ftree-fre: Optimize Options. (line 850)
-* ftree-loop-im: Optimize Options. (line 1150)
-* ftree-loop-ivcanon: Optimize Options. (line 1159)
-* ftree-loop-linear: Optimize Options. (line 989)
-* ftree-loop-optimize: Optimize Options. (line 985)
-* ftree-loop-vectorize: Optimize Options. (line 1234)
-* ftree-parallelize-loops: Optimize Options. (line 1170)
-* ftree-partial-pre: Optimize Options. (line 842)
-* ftree-phiprop: Optimize Options. (line 857)
-* ftree-pre: Optimize Options. (line 838)
-* ftree-pta: Optimize Options. (line 1179)
-* ftree-reassoc: Optimize Options. (line 834)
-* ftree-sink: Optimize Options. (line 926)
-* ftree-slp-vectorize: Optimize Options. (line 1238)
-* ftree-slsr: Optimize Options. (line 1223)
-* ftree-sra: Optimize Options. (line 1183)
-* ftree-ter: Optimize Options. (line 1215)
-* ftree-vectorize: Optimize Options. (line 1229)
-* ftree-vrp: Optimize Options. (line 1263)
-* funit-at-a-time: Optimize Options. (line 1534)
-* funroll-all-loops: Optimize Options. (line 1283)
-* funroll-all-loops <1>: Optimize Options. (line 2200)
-* funroll-loops: Optimize Options. (line 1277)
-* funroll-loops <1>: Optimize Options. (line 2190)
-* funsafe-loop-optimizations: Optimize Options. (line 487)
-* funsafe-math-optimizations: Optimize Options. (line 1982)
-* funsigned-bitfields: C Dialect Options. (line 377)
-* funsigned-bitfields <1>: Structures unions enumerations and bit-fields implementation.
- (line 17)
-* funsigned-bitfields <2>: Non-bugs. (line 57)
-* funsigned-char: C Dialect Options. (line 349)
-* funsigned-char <1>: Characters implementation.
- (line 31)
-* funswitch-loops: Optimize Options. (line 2218)
-* funwind-tables: Code Gen Options. (line 138)
-* fuse-cxa-atexit: C++ Dialect Options.
- (line 270)
-* fuse-ld=bfd: Optimize Options. (line 1848)
-* fuse-ld=gold: Optimize Options. (line 1851)
-* fvar-tracking: Debugging Options. (line 1320)
-* fvar-tracking-assignments: Debugging Options. (line 1330)
-* fvar-tracking-assignments-toggle: Debugging Options. (line 1339)
-* fvariable-expansion-in-unroller: Optimize Options. (line 1303)
-* fvect-cost-model: Optimize Options. (line 1242)
-* fverbose-asm: Code Gen Options. (line 257)
-* fvisibility: Code Gen Options. (line 545)
-* fvisibility-inlines-hidden: C++ Dialect Options.
- (line 282)
-* fvisibility-ms-compat: C++ Dialect Options.
- (line 310)
-* fvpt: Optimize Options. (line 2163)
-* fvtable-verify: C++ Dialect Options.
- (line 339)
-* fvtv-counts: C++ Dialect Options.
- (line 374)
-* fweb: Optimize Options. (line 1553)
-* fwhole-program: Optimize Options. (line 1564)
-* fwide-exec-charset: Preprocessor Options.
- (line 559)
-* fworking-directory: Preprocessor Options.
- (line 577)
-* fwrapv: Code Gen Options. (line 100)
-* fzero-link: Objective-C and Objective-C++ Dialect Options.
- (line 141)
-* g: Debugging Options. (line 10)
-* G: M32R/D Options. (line 57)
-* G <1>: MIPS Options. (line 393)
-* G <2>: Nios II Options. (line 9)
-* G <3>: RS/6000 and PowerPC Options.
- (line 739)
-* G <4>: System V Options. (line 10)
-* gcoff: Debugging Options. (line 94)
-* gdwarf-VERSION: Debugging Options. (line 112)
-* gen-decls: Objective-C and Objective-C++ Dialect Options.
- (line 153)
-* gfull: Darwin Options. (line 69)
-* ggdb: Debugging Options. (line 45)
-* ggnu-pubnames: Debugging Options. (line 54)
-* gno-record-gcc-switches: Debugging Options. (line 132)
-* gno-strict-dwarf: Debugging Options. (line 142)
-* gpubnames: Debugging Options. (line 51)
-* grecord-gcc-switches: Debugging Options. (line 123)
-* gsplit-dwarf: Debugging Options. (line 38)
-* gstabs: Debugging Options. (line 59)
-* gstabs+: Debugging Options. (line 88)
-* gstrict-dwarf: Debugging Options. (line 136)
-* gtoggle: Debugging Options. (line 179)
-* gused: Darwin Options. (line 64)
-* gvms: Debugging Options. (line 146)
-* gxcoff: Debugging Options. (line 99)
-* gxcoff+: Debugging Options. (line 104)
-* H: Preprocessor Options.
- (line 707)
-* headerpad_max_install_names: Darwin Options. (line 196)
-* help: Overall Options. (line 221)
-* help <1>: Preprocessor Options.
- (line 699)
-* hoist-adjacent-loads: Optimize Options. (line 861)
-* I: Preprocessor Options.
- (line 77)
-* I <1>: Directory Options. (line 10)
-* I-: Preprocessor Options.
- (line 389)
-* I- <1>: Directory Options. (line 116)
-* idirafter: Preprocessor Options.
- (line 431)
-* iframework: Darwin Options. (line 57)
-* imacros: Preprocessor Options.
- (line 422)
-* image_base: Darwin Options. (line 196)
-* imultilib: Preprocessor Options.
- (line 456)
-* include: Preprocessor Options.
- (line 411)
-* init: Darwin Options. (line 196)
-* install_name: Darwin Options. (line 196)
-* iplugindir=: Directory Options. (line 29)
-* iprefix: Preprocessor Options.
- (line 438)
-* iquote: Preprocessor Options.
- (line 468)
-* iquote <1>: Directory Options. (line 34)
-* isysroot: Preprocessor Options.
- (line 450)
-* isystem: Preprocessor Options.
- (line 460)
-* iwithprefix: Preprocessor Options.
- (line 444)
-* iwithprefixbefore: Preprocessor Options.
- (line 444)
-* keep_private_externs: Darwin Options. (line 196)
-* l: Link Options. (line 26)
-* L: Directory Options. (line 40)
-* lobjc: Link Options. (line 53)
-* M: Preprocessor Options.
- (line 185)
-* m: RS/6000 and PowerPC Options.
- (line 581)
-* m1: SH Options. (line 9)
-* m10: PDP-11 Options. (line 29)
-* m128bit-long-double: i386 and x86-64 Options.
- (line 381)
-* m16: i386 and x86-64 Options.
- (line 940)
-* m16-bit: CRIS Options. (line 64)
-* m16-bit <1>: NDS32 Options. (line 39)
-* m1reg-: Adapteva Epiphany Options.
- (line 131)
-* m2: SH Options. (line 12)
-* m210: MCore Options. (line 43)
-* m2a: SH Options. (line 30)
-* m2a-nofpu: SH Options. (line 18)
-* m2a-single: SH Options. (line 26)
-* m2a-single-only: SH Options. (line 22)
-* m3: SH Options. (line 34)
-* m31: S/390 and zSeries Options.
- (line 86)
-* m32: i386 and x86-64 Options.
- (line 940)
-* m32 <1>: RS/6000 and PowerPC Options.
- (line 274)
-* m32 <2>: SPARC Options. (line 250)
-* m32 <3>: TILE-Gx Options. (line 23)
-* m32 <4>: TILEPro Options. (line 13)
-* m32-bit: CRIS Options. (line 64)
-* m32bit-doubles: RX Options. (line 10)
-* m32r: M32R/D Options. (line 15)
-* m32r2: M32R/D Options. (line 9)
-* m32rx: M32R/D Options. (line 12)
-* m340: MCore Options. (line 43)
-* m3dnow: i386 and x86-64 Options.
- (line 629)
-* m3e: SH Options. (line 37)
-* m4: SH Options. (line 51)
-* m4-nofpu: SH Options. (line 40)
-* m4-single: SH Options. (line 47)
-* m4-single-only: SH Options. (line 43)
-* m40: PDP-11 Options. (line 23)
-* m45: PDP-11 Options. (line 26)
-* m4a: SH Options. (line 66)
-* m4a-nofpu: SH Options. (line 54)
-* m4a-single: SH Options. (line 62)
-* m4a-single-only: SH Options. (line 58)
-* m4al: SH Options. (line 69)
-* m4byte-functions: MCore Options. (line 27)
-* m5200: M680x0 Options. (line 144)
-* m5206e: M680x0 Options. (line 153)
-* m528x: M680x0 Options. (line 157)
-* m5307: M680x0 Options. (line 161)
-* m5407: M680x0 Options. (line 165)
-* m64: i386 and x86-64 Options.
- (line 940)
-* m64 <1>: RS/6000 and PowerPC Options.
- (line 274)
-* m64 <2>: S/390 and zSeries Options.
- (line 86)
-* m64 <3>: SPARC Options. (line 250)
-* m64 <4>: TILE-Gx Options. (line 23)
-* m64bit-doubles: RX Options. (line 10)
-* m68000: M680x0 Options. (line 93)
-* m68010: M680x0 Options. (line 101)
-* m68020: M680x0 Options. (line 107)
-* m68020-40: M680x0 Options. (line 175)
-* m68020-60: M680x0 Options. (line 184)
-* m68030: M680x0 Options. (line 112)
-* m68040: M680x0 Options. (line 117)
-* m68060: M680x0 Options. (line 126)
-* m68881: M680x0 Options. (line 194)
-* m8-bit: CRIS Options. (line 64)
-* m8byte-align: V850 Options. (line 170)
-* m96bit-long-double: i386 and x86-64 Options.
- (line 381)
-* mA6: ARC Options. (line 19)
-* mA7: ARC Options. (line 26)
-* mabi: AArch64 Options. (line 9)
-* mabi <1>: ARM Options. (line 10)
-* mabi <2>: i386 and x86-64 Options.
- (line 799)
-* mabi <3>: RS/6000 and PowerPC Options.
- (line 608)
-* mabi=32: MIPS Options. (line 138)
-* mabi=64: MIPS Options. (line 138)
-* mabi=eabi: MIPS Options. (line 138)
-* mabi=elfv1: RS/6000 and PowerPC Options.
- (line 629)
-* mabi=elfv2: RS/6000 and PowerPC Options.
- (line 635)
-* mabi=gnu: MMIX Options. (line 20)
-* mabi=ibmlongdouble: RS/6000 and PowerPC Options.
- (line 621)
-* mabi=ieeelongdouble: RS/6000 and PowerPC Options.
- (line 625)
-* mabi=mmixware: MMIX Options. (line 20)
-* mabi=n32: MIPS Options. (line 138)
-* mabi=no-spe: RS/6000 and PowerPC Options.
- (line 618)
-* mabi=o64: MIPS Options. (line 138)
-* mabi=spe: RS/6000 and PowerPC Options.
- (line 613)
-* mabicalls: MIPS Options. (line 162)
-* mabort-on-noreturn: ARM Options. (line 196)
-* mabs=2008: MIPS Options. (line 260)
-* mabs=legacy: MIPS Options. (line 260)
-* mabsdiff: MeP Options. (line 7)
-* mabshi: PDP-11 Options. (line 55)
-* mac0: PDP-11 Options. (line 16)
-* macc-4: FRV Options. (line 139)
-* macc-8: FRV Options. (line 143)
-* maccumulate-args: AVR Options. (line 137)
-* maccumulate-outgoing-args: i386 and x86-64 Options.
- (line 822)
-* maccumulate-outgoing-args <1>: SH Options. (line 325)
-* maddress-mode=long: i386 and x86-64 Options.
- (line 987)
-* maddress-mode=short: i386 and x86-64 Options.
- (line 992)
-* maddress-space-conversion: SPU Options. (line 68)
-* mads: RS/6000 and PowerPC Options.
- (line 663)
-* maix-struct-return: RS/6000 and PowerPC Options.
- (line 601)
-* maix32: RS/6000 and PowerPC Options.
- (line 312)
-* maix64: RS/6000 and PowerPC Options.
- (line 312)
-* malign-300: H8/300 Options. (line 41)
-* malign-call: ARC Options. (line 192)
-* malign-double: i386 and x86-64 Options.
- (line 366)
-* malign-int: M680x0 Options. (line 263)
-* malign-labels: FRV Options. (line 128)
-* malign-loops: M32R/D Options. (line 73)
-* malign-natural: RS/6000 and PowerPC Options.
- (line 350)
-* malign-power: RS/6000 and PowerPC Options.
- (line 350)
-* mall-opts: MeP Options. (line 11)
-* malloc-cc: FRV Options. (line 31)
-* maltivec: RS/6000 and PowerPC Options.
- (line 132)
-* maltivec=be: RS/6000 and PowerPC Options.
- (line 148)
-* maltivec=le: RS/6000 and PowerPC Options.
- (line 158)
-* mam33: MN10300 Options. (line 17)
-* mam33-2: MN10300 Options. (line 24)
-* mam34: MN10300 Options. (line 27)
-* mandroid: GNU/Linux Options. (line 21)
-* mannotate-align: ARC Options. (line 133)
-* mapcs: ARM Options. (line 22)
-* mapcs-frame: ARM Options. (line 14)
-* mapp-regs: SPARC Options. (line 10)
-* mapp-regs <1>: V850 Options. (line 181)
-* mARC600: ARC Options. (line 19)
-* mARC601: ARC Options. (line 23)
-* mARC700: ARC Options. (line 26)
-* march: AArch64 Options. (line 66)
-* march <1>: ARM Options. (line 75)
-* march <2>: C6X Options. (line 7)
-* march <3>: CRIS Options. (line 10)
-* march <4>: HPPA Options. (line 9)
-* march <5>: HPPA Options. (line 156)
-* march <6>: i386 and x86-64 Options.
- (line 10)
-* march <7>: M680x0 Options. (line 12)
-* march <8>: MIPS Options. (line 14)
-* march <9>: NDS32 Options. (line 58)
-* march <10>: S/390 and zSeries Options.
- (line 114)
-* marclinux: ARC Options. (line 139)
-* marclinux_prof: ARC Options. (line 146)
-* margonaut: ARC Options. (line 341)
-* marm: ARM Options. (line 266)
-* mas100-syntax: RX Options. (line 76)
-* masm-hex: MSP430 Options. (line 9)
-* masm=DIALECT: i386 and x86-64 Options.
- (line 322)
-* matomic-model=MODEL: SH Options. (line 144)
-* matomic-updates: SPU Options. (line 83)
-* mauto-modify-reg: ARC Options. (line 195)
-* mauto-pic: IA-64 Options. (line 50)
-* maverage: MeP Options. (line 16)
-* mavoid-indexed-addresses: RS/6000 and PowerPC Options.
- (line 420)
-* max-vect-align: Adapteva Epiphany Options.
- (line 119)
-* mb: SH Options. (line 74)
-* mbackchain: S/390 and zSeries Options.
- (line 35)
-* mbarrel-shift-enabled: LM32 Options. (line 9)
-* mbarrel-shifter: ARC Options. (line 10)
-* mbarrel_shifter: ARC Options. (line 361)
-* mbase-addresses: MMIX Options. (line 53)
-* mbased=: MeP Options. (line 20)
-* mbbit-peephole: ARC Options. (line 198)
-* mbcopy: PDP-11 Options. (line 36)
-* mbcopy-builtin: PDP-11 Options. (line 32)
-* mbig: RS/6000 and PowerPC Options.
- (line 500)
-* mbig-endian: AArch64 Options. (line 20)
-* mbig-endian <1>: ARC Options. (line 344)
-* mbig-endian <2>: ARM Options. (line 62)
-* mbig-endian <3>: C6X Options. (line 13)
-* mbig-endian <4>: IA-64 Options. (line 9)
-* mbig-endian <5>: MCore Options. (line 39)
-* mbig-endian <6>: MicroBlaze Options. (line 57)
-* mbig-endian <7>: NDS32 Options. (line 9)
-* mbig-endian <8>: RS/6000 and PowerPC Options.
- (line 500)
-* mbig-endian <9>: TILE-Gx Options. (line 29)
-* mbig-endian-data: RX Options. (line 42)
-* mbig-switch: V850 Options. (line 176)
-* mbigtable: SH Options. (line 89)
-* mbionic: GNU/Linux Options. (line 17)
-* mbit-align: RS/6000 and PowerPC Options.
- (line 452)
-* mbit-ops: CR16 Options. (line 25)
-* mbitfield: M680x0 Options. (line 231)
-* mbitops: MeP Options. (line 26)
-* mbitops <1>: SH Options. (line 93)
-* mblock-move-inline-limit: RS/6000 and PowerPC Options.
- (line 733)
-* mbranch-cheap: PDP-11 Options. (line 65)
-* mbranch-cost: Adapteva Epiphany Options.
- (line 18)
-* mbranch-cost <1>: AVR Options. (line 152)
-* mbranch-cost <2>: MIPS Options. (line 701)
-* mbranch-cost=NUM: SH Options. (line 389)
-* mbranch-cost=NUMBER: M32R/D Options. (line 82)
-* mbranch-expensive: PDP-11 Options. (line 61)
-* mbranch-hints: SPU Options. (line 29)
-* mbranch-likely: MIPS Options. (line 708)
-* mbranch-predict: MMIX Options. (line 48)
-* mbss-plt: RS/6000 and PowerPC Options.
- (line 185)
-* mbuild-constants: DEC Alpha Options. (line 141)
-* mbwx: DEC Alpha Options. (line 163)
-* mbypass-cache: Nios II Options. (line 34)
-* mc68000: M680x0 Options. (line 93)
-* mc68020: M680x0 Options. (line 107)
-* mc=: MeP Options. (line 31)
-* mcache-block-size: NDS32 Options. (line 54)
-* mcache-size: SPU Options. (line 75)
-* mcache-volatile: Nios II Options. (line 40)
-* mcall-eabi: RS/6000 and PowerPC Options.
- (line 575)
-* mcall-freebsd: RS/6000 and PowerPC Options.
- (line 589)
-* mcall-linux: RS/6000 and PowerPC Options.
- (line 585)
-* mcall-netbsd: RS/6000 and PowerPC Options.
- (line 593)
-* mcall-netbsd <1>: RS/6000 and PowerPC Options.
- (line 597)
-* mcall-prologues: AVR Options. (line 157)
-* mcall-sysv: RS/6000 and PowerPC Options.
- (line 567)
-* mcall-sysv-eabi: RS/6000 and PowerPC Options.
- (line 575)
-* mcall-sysv-noeabi: RS/6000 and PowerPC Options.
- (line 578)
-* mcallee-super-interworking: ARM Options. (line 285)
-* mcaller-super-interworking: ARM Options. (line 292)
-* mcallgraph-data: MCore Options. (line 31)
-* mcase-vector-pcrel: ARC Options. (line 206)
-* mcbcond: SPARC Options. (line 217)
-* mcc-init: CRIS Options. (line 42)
-* mcfv4e: M680x0 Options. (line 169)
-* mcheck-zero-division: MIPS Options. (line 503)
-* mcix: DEC Alpha Options. (line 163)
-* mcld: i386 and x86-64 Options.
- (line 672)
-* mclip: MeP Options. (line 35)
-* mcmodel: SPARC Options. (line 255)
-* mcmodel=kernel: i386 and x86-64 Options.
- (line 971)
-* mcmodel=large: AArch64 Options. (line 44)
-* mcmodel=large <1>: i386 and x86-64 Options.
- (line 983)
-* mcmodel=large <2>: RS/6000 and PowerPC Options.
- (line 126)
-* mcmodel=large <3>: TILE-Gx Options. (line 14)
-* mcmodel=medium: i386 and x86-64 Options.
- (line 976)
-* mcmodel=medium <1>: RS/6000 and PowerPC Options.
- (line 122)
-* mcmodel=small: AArch64 Options. (line 38)
-* mcmodel=small <1>: i386 and x86-64 Options.
- (line 965)
-* mcmodel=small <2>: RS/6000 and PowerPC Options.
- (line 118)
-* mcmodel=small <3>: TILE-Gx Options. (line 9)
-* mcmodel=tiny: AArch64 Options. (line 31)
-* mcmov: NDS32 Options. (line 21)
-* mcmove: Adapteva Epiphany Options.
- (line 23)
-* mcmpb: RS/6000 and PowerPC Options.
- (line 27)
-* mcode-readable: MIPS Options. (line 463)
-* mcompact-casesi: ARC Options. (line 210)
-* mcompat-align-parm: RS/6000 and PowerPC Options.
- (line 889)
-* mcond-exec: FRV Options. (line 187)
-* mcond-move: FRV Options. (line 159)
-* mconfig=: MeP Options. (line 39)
-* mconsole: i386 and x86-64 Windows Options.
- (line 9)
-* mconst-align: CRIS Options. (line 55)
-* mconst16: Xtensa Options. (line 10)
-* mconstant-gp: IA-64 Options. (line 46)
-* mcop: MeP Options. (line 48)
-* mcop32: MeP Options. (line 53)
-* mcop64: MeP Options. (line 56)
-* mcorea: Blackfin Options. (line 156)
-* mcoreb: Blackfin Options. (line 163)
-* mcpu: AArch64 Options. (line 98)
-* mcpu <1>: ARC Options. (line 14)
-* mcpu <2>: ARM Options. (line 136)
-* mcpu <3>: CRIS Options. (line 10)
-* mcpu <4>: DEC Alpha Options. (line 215)
-* mcpu <5>: FRV Options. (line 258)
-* mcpu <6>: i386 and x86-64 Options.
- (line 270)
-* mcpu <7>: M680x0 Options. (line 28)
-* mcpu <8>: picoChip Options. (line 9)
-* mcpu <9>: RS/6000 and PowerPC Options.
- (line 68)
-* mcpu <10>: SPARC Options. (line 95)
-* mcpu <11>: TILE-Gx Options. (line 18)
-* mcpu <12>: TILEPro Options. (line 9)
-* mcpu32: M680x0 Options. (line 135)
-* mcpu=: Blackfin Options. (line 7)
-* mcpu= <1>: M32C Options. (line 7)
-* mcpu= <2>: MicroBlaze Options. (line 20)
-* mcr16c: CR16 Options. (line 14)
-* mcr16cplus: CR16 Options. (line 14)
-* mcrc32: i386 and x86-64 Options.
- (line 719)
-* mcrypto: RS/6000 and PowerPC Options.
- (line 220)
-* mcsync-anomaly: Blackfin Options. (line 59)
-* mctor-dtor: NDS32 Options. (line 73)
-* mcustom-fpu-cfg: Nios II Options. (line 175)
-* mcustom-INSN: Nios II Options. (line 61)
-* mcx16: i386 and x86-64 Options.
- (line 696)
-* MD: Preprocessor Options.
- (line 276)
-* mdalign: SH Options. (line 80)
-* mdata-align: CRIS Options. (line 55)
-* mdata-model: CR16 Options. (line 28)
-* mdc: MeP Options. (line 62)
-* mdebug: M32R/D Options. (line 69)
-* mdebug <1>: S/390 and zSeries Options.
- (line 110)
-* mdebug-main=PREFIX: VMS Options. (line 13)
-* mdec-asm: PDP-11 Options. (line 72)
-* mdirect-move: RS/6000 and PowerPC Options.
- (line 226)
-* mdisable-callt: V850 Options. (line 92)
-* mdisable-fpregs: HPPA Options. (line 28)
-* mdisable-indexing: HPPA Options. (line 34)
-* mdiv: M680x0 Options. (line 206)
-* mdiv <1>: MCore Options. (line 15)
-* mdiv <2>: MeP Options. (line 65)
-* mdiv=STRATEGY: SH Options. (line 236)
-* mdivide-breaks: MIPS Options. (line 509)
-* mdivide-enabled: LM32 Options. (line 12)
-* mdivide-traps: MIPS Options. (line 509)
-* mdivsi3_libfunc=NAME: SH Options. (line 331)
-* mdll: i386 and x86-64 Windows Options.
- (line 16)
-* mdlmzb: RS/6000 and PowerPC Options.
- (line 445)
-* mdmx: MIPS Options. (line 336)
-* mdouble: FRV Options. (line 48)
-* mdouble-float: MIPS Options. (line 255)
-* mdouble-float <1>: RS/6000 and PowerPC Options.
- (line 368)
-* mdpfp: ARC Options. (line 30)
-* mdpfp-compact: ARC Options. (line 31)
-* mdpfp-fast: ARC Options. (line 35)
-* mdpfp_compact: ARC Options. (line 364)
-* mdpfp_fast: ARC Options. (line 367)
-* mdsp: MIPS Options. (line 313)
-* mdsp-packa: ARC Options. (line 88)
-* mdspr2: MIPS Options. (line 319)
-* mdsp_packa: ARC Options. (line 370)
-* mdual-nops: SPU Options. (line 95)
-* mdump-tune-features: i386 and x86-64 Options.
- (line 653)
-* mdvbf: ARC Options. (line 92)
-* mdwarf2-asm: IA-64 Options. (line 94)
-* mdword: FRV Options. (line 40)
-* mdynamic-no-pic: RS/6000 and PowerPC Options.
- (line 505)
-* mea: ARC Options. (line 43)
-* mEA: ARC Options. (line 373)
-* mea32: SPU Options. (line 60)
-* mea64: SPU Options. (line 60)
-* meabi: RS/6000 and PowerPC Options.
- (line 682)
-* mearly-cbranchsi: ARC Options. (line 229)
-* mearly-stop-bits: IA-64 Options. (line 100)
-* meb: MeP Options. (line 68)
-* meb <1>: Moxie Options. (line 7)
-* meb <2>: Nios II Options. (line 29)
-* meb <3>: Score Options. (line 9)
-* mel: MeP Options. (line 71)
-* mel <1>: Moxie Options. (line 11)
-* mel <2>: Nios II Options. (line 29)
-* mel <3>: Score Options. (line 12)
-* melf: CRIS Options. (line 87)
-* melf <1>: MMIX Options. (line 43)
-* memb: RS/6000 and PowerPC Options.
- (line 677)
-* membedded-data: MIPS Options. (line 450)
-* memregs=: M32C Options. (line 21)
-* mep: V850 Options. (line 16)
-* mepilogue-cfi: ARC Options. (line 155)
-* mepsilon: MMIX Options. (line 15)
-* merror-reloc: SPU Options. (line 10)
-* mesa: S/390 and zSeries Options.
- (line 94)
-* metrax100: CRIS Options. (line 27)
-* metrax4: CRIS Options. (line 27)
-* meva: MIPS Options. (line 363)
-* mex9: NDS32 Options. (line 70)
-* mexpand-adddi: ARC Options. (line 232)
-* mexplicit-relocs: DEC Alpha Options. (line 176)
-* mexplicit-relocs <1>: MIPS Options. (line 494)
-* mexr: H8/300 Options. (line 28)
-* mextern-sdata: MIPS Options. (line 413)
-* MF: Preprocessor Options.
- (line 220)
-* mfast-fp: Blackfin Options. (line 132)
-* mfast-indirect-calls: HPPA Options. (line 46)
-* mfast-sw-div: Nios II Options. (line 46)
-* mfaster-structs: SPARC Options. (line 85)
-* mfdpic: FRV Options. (line 72)
-* mfentry: i386 and x86-64 Options.
- (line 910)
-* mfix: DEC Alpha Options. (line 163)
-* mfix-24k: MIPS Options. (line 567)
-* mfix-and-continue: Darwin Options. (line 104)
-* mfix-at697f: SPARC Options. (line 237)
-* mfix-cortex-m3-ldrd: ARM Options. (line 325)
-* mfix-r10000: MIPS Options. (line 589)
-* mfix-r4000: MIPS Options. (line 573)
-* mfix-r4400: MIPS Options. (line 583)
-* mfix-rm7000: MIPS Options. (line 600)
-* mfix-sb1: MIPS Options. (line 625)
-* mfix-ut699: SPARC Options. (line 242)
-* mfix-vr4120: MIPS Options. (line 605)
-* mfix-vr4130: MIPS Options. (line 618)
-* mfixed-cc: FRV Options. (line 35)
-* mfixed-range: HPPA Options. (line 53)
-* mfixed-range <1>: IA-64 Options. (line 105)
-* mfixed-range <2>: SH Options. (line 338)
-* mfixed-range <3>: SPU Options. (line 52)
-* mflat: SPARC Options. (line 22)
-* mflip-mips16: MIPS Options. (line 110)
-* mfloat-abi: ARM Options. (line 42)
-* mfloat-gprs: RS/6000 and PowerPC Options.
- (line 257)
-* mfloat-ieee: DEC Alpha Options. (line 171)
-* mfloat-vax: DEC Alpha Options. (line 171)
-* mfloat32: PDP-11 Options. (line 52)
-* mfloat64: PDP-11 Options. (line 48)
-* mflush-func: MIPS Options. (line 692)
-* mflush-func=NAME: M32R/D Options. (line 93)
-* mflush-trap=NUMBER: M32R/D Options. (line 86)
-* mfmaf: SPARC Options. (line 231)
-* mfmovd: SH Options. (line 96)
-* mforbid-fp-as-gp: NDS32 Options. (line 65)
-* mforce-fp-as-gp: NDS32 Options. (line 61)
-* mforce-no-pic: Xtensa Options. (line 41)
-* mfp-exceptions: MIPS Options. (line 719)
-* mfp-mode: Adapteva Epiphany Options.
- (line 71)
-* mfp-reg: DEC Alpha Options. (line 25)
-* mfp-rounding-mode: DEC Alpha Options. (line 85)
-* mfp-trap-mode: DEC Alpha Options. (line 63)
-* mfp16-format: ARM Options. (line 176)
-* mfp32: MIPS Options. (line 228)
-* mfp64: MIPS Options. (line 231)
-* mfpmath: Optimize Options. (line 1942)
-* mfpmath <1>: i386 and x86-64 Options.
- (line 273)
-* mfpr-32: FRV Options. (line 15)
-* mfpr-64: FRV Options. (line 19)
-* mfprnd: RS/6000 and PowerPC Options.
- (line 27)
-* mfpu: ARM Options. (line 156)
-* mfpu <1>: PDP-11 Options. (line 9)
-* mfpu <2>: RS/6000 and PowerPC Options.
- (line 376)
-* mfpu <3>: SPARC Options. (line 34)
-* mfriz: RS/6000 and PowerPC Options.
- (line 860)
-* mfsca: SH Options. (line 414)
-* mfsrra: SH Options. (line 423)
-* mfull-regs: NDS32 Options. (line 18)
-* mfull-toc: RS/6000 and PowerPC Options.
- (line 285)
-* mfused-madd: IA-64 Options. (line 88)
-* mfused-madd <1>: MIPS Options. (line 550)
-* mfused-madd <2>: RS/6000 and PowerPC Options.
- (line 429)
-* mfused-madd <3>: S/390 and zSeries Options.
- (line 135)
-* mfused-madd <4>: SH Options. (line 405)
-* mfused-madd <5>: Xtensa Options. (line 19)
-* MG: Preprocessor Options.
- (line 229)
-* mg: VAX Options. (line 17)
-* mgas: HPPA Options. (line 69)
-* mgcc-abi: V850 Options. (line 148)
-* mgen-cell-microcode: RS/6000 and PowerPC Options.
- (line 173)
-* mgeneral-regs-only: AArch64 Options. (line 24)
-* mgettrcost=NUMBER: SH Options. (line 355)
-* mghs: V850 Options. (line 127)
-* mglibc: GNU/Linux Options. (line 9)
-* mgnu: VAX Options. (line 13)
-* mgnu-as: IA-64 Options. (line 18)
-* mgnu-ld: HPPA Options. (line 105)
-* mgnu-ld <1>: IA-64 Options. (line 23)
-* mgotplt: CRIS Options. (line 81)
-* mgp-direct: NDS32 Options. (line 45)
-* mgp32: MIPS Options. (line 222)
-* mgp64: MIPS Options. (line 225)
-* mgpopt: MIPS Options. (line 435)
-* mgpopt <1>: Nios II Options. (line 15)
-* mgpr-32: FRV Options. (line 7)
-* mgpr-64: FRV Options. (line 11)
-* mgprel-ro: FRV Options. (line 99)
-* mh: H8/300 Options. (line 14)
-* mhal: Nios II Options. (line 220)
-* mhalf-reg-file: Adapteva Epiphany Options.
- (line 9)
-* mhard-dfp: RS/6000 and PowerPC Options.
- (line 27)
-* mhard-dfp <1>: S/390 and zSeries Options.
- (line 20)
-* mhard-float: FRV Options. (line 23)
-* mhard-float <1>: M680x0 Options. (line 194)
-* mhard-float <2>: MicroBlaze Options. (line 10)
-* mhard-float <3>: MIPS Options. (line 234)
-* mhard-float <4>: RS/6000 and PowerPC Options.
- (line 362)
-* mhard-float <5>: S/390 and zSeries Options.
- (line 11)
-* mhard-float <6>: SPARC Options. (line 34)
-* mhard-float <7>: V850 Options. (line 113)
-* mhard-quad-float: SPARC Options. (line 55)
-* mhardlit: MCore Options. (line 10)
-* mhint-max-distance: SPU Options. (line 107)
-* mhint-max-nops: SPU Options. (line 101)
-* mhitachi: SH Options. (line 100)
-* mhitachi <1>: SH Options. (line 103)
-* mhitachi <2>: SH Options. (line 106)
-* mhotpatch: S/390 and zSeries Options.
- (line 171)
-* mhp-ld: HPPA Options. (line 117)
-* mhw-div: Nios II Options. (line 55)
-* mhw-mul: Nios II Options. (line 55)
-* mhw-mulx: Nios II Options. (line 55)
-* micplb: Blackfin Options. (line 177)
-* mid-shared-library: Blackfin Options. (line 80)
-* mieee: DEC Alpha Options. (line 39)
-* mieee <1>: SH Options. (line 116)
-* mieee-conformant: DEC Alpha Options. (line 134)
-* mieee-fp: i386 and x86-64 Options.
- (line 328)
-* mieee-with-inexact: DEC Alpha Options. (line 52)
-* milp32: IA-64 Options. (line 121)
-* mimadd: MIPS Options. (line 543)
-* mimpure-text: Solaris 2 Options. (line 9)
-* mincoming-stack-boundary: i386 and x86-64 Options.
- (line 535)
-* mindexed-addressing: SH Options. (line 345)
-* mindexed-loads: ARC Options. (line 236)
-* minline-all-stringops: i386 and x86-64 Options.
- (line 842)
-* minline-float-divide-max-throughput: IA-64 Options. (line 58)
-* minline-float-divide-min-latency: IA-64 Options. (line 54)
-* minline-ic_invalidate: SH Options. (line 125)
-* minline-int-divide-max-throughput: IA-64 Options. (line 69)
-* minline-int-divide-min-latency: IA-64 Options. (line 65)
-* minline-plt: Blackfin Options. (line 137)
-* minline-plt <1>: FRV Options. (line 81)
-* minline-sqrt-max-throughput: IA-64 Options. (line 80)
-* minline-sqrt-min-latency: IA-64 Options. (line 76)
-* minline-stringops-dynamically: i386 and x86-64 Options.
- (line 849)
-* minsert-sched-nops: RS/6000 and PowerPC Options.
- (line 545)
-* mint-register: RX Options. (line 100)
-* mint16: PDP-11 Options. (line 40)
-* mint32: CR16 Options. (line 22)
-* mint32 <1>: H8/300 Options. (line 38)
-* mint32 <2>: PDP-11 Options. (line 44)
-* mint8: AVR Options. (line 161)
-* minterlink-compressed: MIPS Options. (line 117)
-* minterlink-mips16: MIPS Options. (line 129)
-* minvalid-symbols: SH Options. (line 379)
-* mio-volatile: MeP Options. (line 74)
-* mips1: MIPS Options. (line 77)
-* mips16: MIPS Options. (line 102)
-* mips2: MIPS Options. (line 80)
-* mips3: MIPS Options. (line 83)
-* mips32: MIPS Options. (line 89)
-* mips32r2: MIPS Options. (line 92)
-* mips3d: MIPS Options. (line 342)
-* mips4: MIPS Options. (line 86)
-* mips64: MIPS Options. (line 95)
-* mips64r2: MIPS Options. (line 98)
-* misel: RS/6000 and PowerPC Options.
- (line 191)
-* misize: ARC Options. (line 130)
-* misize <1>: SH Options. (line 137)
-* misr-vector-size: NDS32 Options. (line 51)
-* missue-rate=NUMBER: M32R/D Options. (line 79)
-* mivc2: MeP Options. (line 59)
-* mjump-in-delay: HPPA Options. (line 23)
-* mkernel: Darwin Options. (line 82)
-* mknuthdiv: MMIX Options. (line 32)
-* ml: MeP Options. (line 78)
-* ml <1>: SH Options. (line 77)
-* mlarge: MSP430 Options. (line 45)
-* mlarge-data: DEC Alpha Options. (line 187)
-* mlarge-data-threshold: i386 and x86-64 Options.
- (line 421)
-* mlarge-mem: SPU Options. (line 38)
-* mlarge-text: DEC Alpha Options. (line 205)
-* mleadz: MeP Options. (line 81)
-* mleaf-id-shared-library: Blackfin Options. (line 91)
-* mlibfuncs: MMIX Options. (line 10)
-* mlibrary-pic: FRV Options. (line 135)
-* mlinked-fp: FRV Options. (line 116)
-* mlinker-opt: HPPA Options. (line 79)
-* mlinux: CRIS Options. (line 91)
-* mlittle: RS/6000 and PowerPC Options.
- (line 494)
-* mlittle-endian: AArch64 Options. (line 27)
-* mlittle-endian <1>: ARC Options. (line 353)
-* mlittle-endian <2>: ARM Options. (line 58)
-* mlittle-endian <3>: C6X Options. (line 16)
-* mlittle-endian <4>: IA-64 Options. (line 13)
-* mlittle-endian <5>: MCore Options. (line 39)
-* mlittle-endian <6>: MicroBlaze Options. (line 60)
-* mlittle-endian <7>: NDS32 Options. (line 12)
-* mlittle-endian <8>: RS/6000 and PowerPC Options.
- (line 494)
-* mlittle-endian <9>: TILE-Gx Options. (line 29)
-* mlittle-endian-data: RX Options. (line 42)
-* mliw: MN10300 Options. (line 54)
-* mllsc: MIPS Options. (line 299)
-* mlocal-sdata: MIPS Options. (line 401)
-* mlock: ARC Options. (line 96)
-* mlong-calls: Adapteva Epiphany Options.
- (line 55)
-* mlong-calls <1>: ARC Options. (line 161)
-* mlong-calls <2>: ARM Options. (line 201)
-* mlong-calls <3>: Blackfin Options. (line 120)
-* mlong-calls <4>: FRV Options. (line 122)
-* mlong-calls <5>: MIPS Options. (line 529)
-* mlong-calls <6>: V850 Options. (line 10)
-* mlong-double-128: i386 and x86-64 Options.
- (line 407)
-* mlong-double-128 <1>: S/390 and zSeries Options.
- (line 29)
-* mlong-double-64: i386 and x86-64 Options.
- (line 407)
-* mlong-double-64 <1>: S/390 and zSeries Options.
- (line 29)
-* mlong-double-80: i386 and x86-64 Options.
- (line 407)
-* mlong-jumps: V850 Options. (line 108)
-* mlong-load-store: HPPA Options. (line 60)
-* mlong32: MIPS Options. (line 376)
-* mlong64: MIPS Options. (line 371)
-* mlongcall: RS/6000 and PowerPC Options.
- (line 753)
-* mlongcalls: Xtensa Options. (line 72)
-* mloop: V850 Options. (line 121)
-* mlow-64k: Blackfin Options. (line 69)
-* mlp64: IA-64 Options. (line 121)
-* mlra: ARC Options. (line 241)
-* mlra-priority-compact: ARC Options. (line 249)
-* mlra-priority-noncompact: ARC Options. (line 252)
-* mlra-priority-none: ARC Options. (line 246)
-* MM: Preprocessor Options.
- (line 210)
-* mm: MeP Options. (line 84)
-* mmac: CR16 Options. (line 9)
-* mmac <1>: Score Options. (line 21)
-* mmac-24: ARC Options. (line 105)
-* mmac-d16: ARC Options. (line 101)
-* mmac_24: ARC Options. (line 376)
-* mmac_d16: ARC Options. (line 379)
-* mmad: MIPS Options. (line 538)
-* mmalloc64: VMS Options. (line 17)
-* mmax: DEC Alpha Options. (line 163)
-* mmax-constant-size: RX Options. (line 82)
-* mmax-stack-frame: CRIS Options. (line 23)
-* mmcount-ra-address: MIPS Options. (line 768)
-* mmcu: AVR Options. (line 9)
-* mmcu <1>: MIPS Options. (line 359)
-* mmcu=: MSP430 Options. (line 14)
-* MMD: Preprocessor Options.
- (line 292)
-* mmedia: FRV Options. (line 56)
-* mmedium-calls: ARC Options. (line 165)
-* mmemcpy: MicroBlaze Options. (line 13)
-* mmemcpy <1>: MIPS Options. (line 523)
-* mmemcpy-strategy=STRATEGY: i386 and x86-64 Options.
- (line 871)
-* mmemory-latency: DEC Alpha Options. (line 268)
-* mmemory-model: SPARC Options. (line 283)
-* mmemset-strategy=STRATEGY: i386 and x86-64 Options.
- (line 883)
-* mmfcrf: RS/6000 and PowerPC Options.
- (line 27)
-* mmfpgpr: RS/6000 and PowerPC Options.
- (line 27)
-* mmicromips: MIPS Options. (line 347)
-* mminimal-toc: RS/6000 and PowerPC Options.
- (line 285)
-* mminmax: MeP Options. (line 87)
-* mmixed-code: ARC Options. (line 264)
-* mmmx: i386 and x86-64 Options.
- (line 629)
-* mmodel=large: M32R/D Options. (line 33)
-* mmodel=medium: M32R/D Options. (line 27)
-* mmodel=small: M32R/D Options. (line 18)
-* mmovbe: i386 and x86-64 Options.
- (line 715)
-* mmt: MIPS Options. (line 355)
-* mmul: RL78 Options. (line 13)
-* mmul-bug-workaround: CRIS Options. (line 32)
-* mmul32x16: ARC Options. (line 51)
-* mmul64: ARC Options. (line 54)
-* mmuladd: FRV Options. (line 64)
-* mmulhw: RS/6000 and PowerPC Options.
- (line 438)
-* mmult: MeP Options. (line 90)
-* mmult-bug: MN10300 Options. (line 9)
-* mmultcost: ARC Options. (line 326)
-* mmulti-cond-exec: FRV Options. (line 215)
-* mmulticore: Blackfin Options. (line 141)
-* mmultiple: RS/6000 and PowerPC Options.
- (line 388)
-* mmvcle: S/390 and zSeries Options.
- (line 104)
-* mmvme: RS/6000 and PowerPC Options.
- (line 658)
-* mn: H8/300 Options. (line 20)
-* mnan=2008: MIPS Options. (line 280)
-* mnan=legacy: MIPS Options. (line 280)
-* mneon-for-64bits: ARM Options. (line 345)
-* mnested-cond-exec: FRV Options. (line 230)
-* mnhwloop: Score Options. (line 15)
-* mno-16-bit: NDS32 Options. (line 42)
-* mno-3dnow: i386 and x86-64 Options.
- (line 629)
-* mno-4byte-functions: MCore Options. (line 27)
-* mno-8byte-align: V850 Options. (line 170)
-* mno-abicalls: MIPS Options. (line 162)
-* mno-abshi: PDP-11 Options. (line 58)
-* mno-ac0: PDP-11 Options. (line 20)
-* mno-address-space-conversion: SPU Options. (line 68)
-* mno-align-double: i386 and x86-64 Options.
- (line 366)
-* mno-align-int: M680x0 Options. (line 263)
-* mno-align-loops: M32R/D Options. (line 76)
-* mno-align-stringops: i386 and x86-64 Options.
- (line 837)
-* mno-altivec: RS/6000 and PowerPC Options.
- (line 132)
-* mno-am33: MN10300 Options. (line 20)
-* mno-app-regs: SPARC Options. (line 10)
-* mno-app-regs <1>: V850 Options. (line 185)
-* mno-as100-syntax: RX Options. (line 76)
-* mno-atomic-updates: SPU Options. (line 83)
-* mno-avoid-indexed-addresses: RS/6000 and PowerPC Options.
- (line 420)
-* mno-backchain: S/390 and zSeries Options.
- (line 35)
-* mno-base-addresses: MMIX Options. (line 53)
-* mno-bit-align: RS/6000 and PowerPC Options.
- (line 452)
-* mno-bitfield: M680x0 Options. (line 227)
-* mno-branch-likely: MIPS Options. (line 708)
-* mno-branch-predict: MMIX Options. (line 48)
-* mno-brcc: ARC Options. (line 201)
-* mno-bwx: DEC Alpha Options. (line 163)
-* mno-bypass-cache: Nios II Options. (line 34)
-* mno-cache-volatile: Nios II Options. (line 40)
-* mno-callgraph-data: MCore Options. (line 31)
-* mno-cbcond: SPARC Options. (line 217)
-* mno-check-zero-division: MIPS Options. (line 503)
-* mno-cix: DEC Alpha Options. (line 163)
-* mno-clearbss: MicroBlaze Options. (line 16)
-* mno-cmov: NDS32 Options. (line 24)
-* mno-cmpb: RS/6000 and PowerPC Options.
- (line 27)
-* mno-cond-exec: ARC Options. (line 213)
-* mno-cond-exec <1>: FRV Options. (line 194)
-* mno-cond-move: FRV Options. (line 166)
-* mno-const-align: CRIS Options. (line 55)
-* mno-const16: Xtensa Options. (line 10)
-* mno-crt0: MN10300 Options. (line 43)
-* mno-crt0 <1>: Moxie Options. (line 14)
-* mno-crypto: RS/6000 and PowerPC Options.
- (line 220)
-* mno-csync-anomaly: Blackfin Options. (line 65)
-* mno-custom-INSN: Nios II Options. (line 61)
-* mno-data-align: CRIS Options. (line 55)
-* mno-debug: S/390 and zSeries Options.
- (line 110)
-* mno-default: i386 and x86-64 Options.
- (line 668)
-* mno-direct-move: RS/6000 and PowerPC Options.
- (line 226)
-* mno-disable-callt: V850 Options. (line 92)
-* mno-div: M680x0 Options. (line 206)
-* mno-div <1>: MCore Options. (line 15)
-* mno-dlmzb: RS/6000 and PowerPC Options.
- (line 445)
-* mno-double: FRV Options. (line 52)
-* mno-dpfp-lrsr: ARC Options. (line 39)
-* mno-dsp: MIPS Options. (line 313)
-* mno-dspr2: MIPS Options. (line 319)
-* mno-dwarf2-asm: IA-64 Options. (line 94)
-* mno-dword: FRV Options. (line 44)
-* mno-eabi: RS/6000 and PowerPC Options.
- (line 682)
-* mno-early-stop-bits: IA-64 Options. (line 100)
-* mno-eflags: FRV Options. (line 155)
-* mno-embedded-data: MIPS Options. (line 450)
-* mno-ep: V850 Options. (line 16)
-* mno-epilogue-cfi: ARC Options. (line 158)
-* mno-epsilon: MMIX Options. (line 15)
-* mno-eva: MIPS Options. (line 363)
-* mno-explicit-relocs: DEC Alpha Options. (line 176)
-* mno-explicit-relocs <1>: MIPS Options. (line 494)
-* mno-exr: H8/300 Options. (line 33)
-* mno-extern-sdata: MIPS Options. (line 413)
-* mno-fancy-math-387: i386 and x86-64 Options.
- (line 356)
-* mno-fast-sw-div: Nios II Options. (line 46)
-* mno-faster-structs: SPARC Options. (line 85)
-* mno-fix: DEC Alpha Options. (line 163)
-* mno-fix-24k: MIPS Options. (line 567)
-* mno-fix-r10000: MIPS Options. (line 589)
-* mno-fix-r4000: MIPS Options. (line 573)
-* mno-fix-r4400: MIPS Options. (line 583)
-* mno-flat: SPARC Options. (line 22)
-* mno-float: MIPS Options. (line 241)
-* mno-float32: PDP-11 Options. (line 48)
-* mno-float64: PDP-11 Options. (line 52)
-* mno-flush-func: M32R/D Options. (line 98)
-* mno-flush-trap: M32R/D Options. (line 90)
-* mno-fmaf: SPARC Options. (line 231)
-* mno-fp-in-toc: RS/6000 and PowerPC Options.
- (line 285)
-* mno-fp-regs: DEC Alpha Options. (line 25)
-* mno-fp-ret-in-387: i386 and x86-64 Options.
- (line 346)
-* mno-fprnd: RS/6000 and PowerPC Options.
- (line 27)
-* mno-fpu: SPARC Options. (line 39)
-* mno-fsca: SH Options. (line 414)
-* mno-fsrra: SH Options. (line 423)
-* mno-fused-madd: IA-64 Options. (line 88)
-* mno-fused-madd <1>: MIPS Options. (line 550)
-* mno-fused-madd <2>: RS/6000 and PowerPC Options.
- (line 429)
-* mno-fused-madd <3>: S/390 and zSeries Options.
- (line 135)
-* mno-fused-madd <4>: SH Options. (line 405)
-* mno-fused-madd <5>: Xtensa Options. (line 19)
-* mno-gnu-as: IA-64 Options. (line 18)
-* mno-gnu-ld: IA-64 Options. (line 23)
-* mno-gotplt: CRIS Options. (line 81)
-* mno-gp-direct: NDS32 Options. (line 48)
-* mno-gpopt: MIPS Options. (line 435)
-* mno-gpopt <1>: Nios II Options. (line 15)
-* mno-hard-dfp: RS/6000 and PowerPC Options.
- (line 27)
-* mno-hard-dfp <1>: S/390 and zSeries Options.
- (line 20)
-* mno-hardlit: MCore Options. (line 10)
-* mno-hw-div: Nios II Options. (line 55)
-* mno-hw-mul: Nios II Options. (line 55)
-* mno-hw-mulx: Nios II Options. (line 55)
-* mno-id-shared-library: Blackfin Options. (line 87)
-* mno-ieee-fp: i386 and x86-64 Options.
- (line 328)
-* mno-imadd: MIPS Options. (line 543)
-* mno-inline-float-divide: IA-64 Options. (line 62)
-* mno-inline-int-divide: IA-64 Options. (line 73)
-* mno-inline-sqrt: IA-64 Options. (line 84)
-* mno-int16: PDP-11 Options. (line 44)
-* mno-int32: PDP-11 Options. (line 40)
-* mno-interlink-compressed: MIPS Options. (line 117)
-* mno-interlink-mips16: MIPS Options. (line 129)
-* mno-interrupts: AVR Options. (line 167)
-* mno-isel: RS/6000 and PowerPC Options.
- (line 191)
-* mno-knuthdiv: MMIX Options. (line 32)
-* mno-leaf-id-shared-library: Blackfin Options. (line 97)
-* mno-libfuncs: MMIX Options. (line 10)
-* mno-llsc: MIPS Options. (line 299)
-* mno-local-sdata: MIPS Options. (line 401)
-* mno-long-calls: ARM Options. (line 201)
-* mno-long-calls <1>: Blackfin Options. (line 120)
-* mno-long-calls <2>: HPPA Options. (line 130)
-* mno-long-calls <3>: MIPS Options. (line 529)
-* mno-long-calls <4>: V850 Options. (line 10)
-* mno-long-jumps: V850 Options. (line 108)
-* mno-longcall: RS/6000 and PowerPC Options.
- (line 753)
-* mno-longcalls: Xtensa Options. (line 72)
-* mno-low-64k: Blackfin Options. (line 73)
-* mno-lsim: FR30 Options. (line 14)
-* mno-lsim <1>: MCore Options. (line 46)
-* mno-mad: MIPS Options. (line 538)
-* mno-max: DEC Alpha Options. (line 163)
-* mno-mcount-ra-address: MIPS Options. (line 768)
-* mno-mcu: MIPS Options. (line 359)
-* mno-mdmx: MIPS Options. (line 336)
-* mno-media: FRV Options. (line 60)
-* mno-memcpy: MIPS Options. (line 523)
-* mno-mfcrf: RS/6000 and PowerPC Options.
- (line 27)
-* mno-mfpgpr: RS/6000 and PowerPC Options.
- (line 27)
-* mno-millicode: ARC Options. (line 255)
-* mno-mips16: MIPS Options. (line 102)
-* mno-mips3d: MIPS Options. (line 342)
-* mno-mmicromips: MIPS Options. (line 347)
-* mno-mmx: i386 and x86-64 Options.
- (line 629)
-* mno-mpy: ARC Options. (line 48)
-* mno-mt: MIPS Options. (line 355)
-* mno-mul-bug-workaround: CRIS Options. (line 32)
-* mno-muladd: FRV Options. (line 68)
-* mno-mulhw: RS/6000 and PowerPC Options.
- (line 438)
-* mno-mult-bug: MN10300 Options. (line 13)
-* mno-multi-cond-exec: FRV Options. (line 223)
-* mno-multiple: RS/6000 and PowerPC Options.
- (line 388)
-* mno-mvcle: S/390 and zSeries Options.
- (line 104)
-* mno-nested-cond-exec: FRV Options. (line 237)
-* mno-omit-leaf-frame-pointer: AArch64 Options. (line 54)
-* mno-optimize-membar: FRV Options. (line 249)
-* mno-opts: MeP Options. (line 93)
-* mno-pack: FRV Options. (line 151)
-* mno-packed-stack: S/390 and zSeries Options.
- (line 54)
-* mno-paired: RS/6000 and PowerPC Options.
- (line 205)
-* mno-paired-single: MIPS Options. (line 330)
-* mno-perf-ext: NDS32 Options. (line 30)
-* mno-pic: IA-64 Options. (line 26)
-* mno-pid: RX Options. (line 117)
-* mno-plt: MIPS Options. (line 189)
-* mno-popc: SPARC Options. (line 224)
-* mno-popcntb: RS/6000 and PowerPC Options.
- (line 27)
-* mno-popcntd: RS/6000 and PowerPC Options.
- (line 27)
-* mno-postinc: Adapteva Epiphany Options.
- (line 109)
-* mno-postmodify: Adapteva Epiphany Options.
- (line 109)
-* mno-power8-fusion: RS/6000 and PowerPC Options.
- (line 232)
-* mno-power8-vector: RS/6000 and PowerPC Options.
- (line 238)
-* mno-powerpc-gfxopt: RS/6000 and PowerPC Options.
- (line 27)
-* mno-powerpc-gpopt: RS/6000 and PowerPC Options.
- (line 27)
-* mno-powerpc64: RS/6000 and PowerPC Options.
- (line 27)
-* mno-prolog-function: V850 Options. (line 23)
-* mno-prologue-epilogue: CRIS Options. (line 71)
-* mno-prototype: RS/6000 and PowerPC Options.
- (line 642)
-* mno-push-args: i386 and x86-64 Options.
- (line 815)
-* mno-quad-memory: RS/6000 and PowerPC Options.
- (line 245)
-* mno-quad-memory-atomic: RS/6000 and PowerPC Options.
- (line 251)
-* mno-red-zone: i386 and x86-64 Options.
- (line 957)
-* mno-register-names: IA-64 Options. (line 37)
-* mno-regnames: RS/6000 and PowerPC Options.
- (line 747)
-* mno-relax: V850 Options. (line 103)
-* mno-relax-immediate: MCore Options. (line 19)
-* mno-relocatable: RS/6000 and PowerPC Options.
- (line 468)
-* mno-relocatable-lib: RS/6000 and PowerPC Options.
- (line 479)
-* mno-round-nearest: Adapteva Epiphany Options.
- (line 51)
-* mno-rtd: M680x0 Options. (line 258)
-* mno-scc: FRV Options. (line 180)
-* mno-sched-ar-data-spec: IA-64 Options. (line 134)
-* mno-sched-ar-in-data-spec: IA-64 Options. (line 155)
-* mno-sched-br-data-spec: IA-64 Options. (line 128)
-* mno-sched-br-in-data-spec: IA-64 Options. (line 148)
-* mno-sched-control-spec: IA-64 Options. (line 140)
-* mno-sched-count-spec-in-critical-path: IA-64 Options. (line 182)
-* mno-sched-in-control-spec: IA-64 Options. (line 162)
-* mno-sched-prefer-non-control-spec-insns: IA-64 Options. (line 175)
-* mno-sched-prefer-non-data-spec-insns: IA-64 Options. (line 168)
-* mno-sched-prolog: ARM Options. (line 33)
-* mno-sdata: ARC Options. (line 174)
-* mno-sdata <1>: IA-64 Options. (line 42)
-* mno-sdata <2>: RS/6000 and PowerPC Options.
- (line 728)
-* mno-sep-data: Blackfin Options. (line 115)
-* mno-serialize-volatile: Xtensa Options. (line 35)
-* mno-short: M680x0 Options. (line 222)
-* mno-side-effects: CRIS Options. (line 46)
-* mno-sim: RX Options. (line 71)
-* mno-single-exit: MMIX Options. (line 65)
-* mno-slow-bytes: MCore Options. (line 35)
-* mno-small-exec: S/390 and zSeries Options.
- (line 79)
-* mno-smartmips: MIPS Options. (line 326)
-* mno-soft-cmpsf: Adapteva Epiphany Options.
- (line 29)
-* mno-soft-float: DEC Alpha Options. (line 10)
-* mno-space-regs: HPPA Options. (line 39)
-* mno-spe: RS/6000 and PowerPC Options.
- (line 200)
-* mno-specld-anomaly: Blackfin Options. (line 55)
-* mno-split-addresses: MIPS Options. (line 488)
-* mno-sse: i386 and x86-64 Options.
- (line 629)
-* mno-stack-align: CRIS Options. (line 55)
-* mno-stack-bias: SPARC Options. (line 307)
-* mno-strict-align: M680x0 Options. (line 283)
-* mno-strict-align <1>: RS/6000 and PowerPC Options.
- (line 463)
-* mno-string: RS/6000 and PowerPC Options.
- (line 399)
-* mno-sum-in-toc: RS/6000 and PowerPC Options.
- (line 285)
-* mno-sym32: MIPS Options. (line 386)
-* mno-target-align: Xtensa Options. (line 59)
-* mno-text-section-literals: Xtensa Options. (line 47)
-* mno-tls-markers: RS/6000 and PowerPC Options.
- (line 785)
-* mno-toc: RS/6000 and PowerPC Options.
- (line 488)
-* mno-toplevel-symbols: MMIX Options. (line 39)
-* mno-tpf-trace: S/390 and zSeries Options.
- (line 129)
-* mno-unaligned-access: ARM Options. (line 332)
-* mno-unaligned-doubles: SPARC Options. (line 73)
-* mno-uninit-const-in-rodata: MIPS Options. (line 458)
-* mno-update: RS/6000 and PowerPC Options.
- (line 410)
-* mno-v3push: NDS32 Options. (line 36)
-* mno-v8plus: SPARC Options. (line 188)
-* mno-vect-double: Adapteva Epiphany Options.
- (line 115)
-* mno-virt: MIPS Options. (line 367)
-* mno-vis: SPARC Options. (line 195)
-* mno-vis2: SPARC Options. (line 201)
-* mno-vis3: SPARC Options. (line 209)
-* mno-vliw-branch: FRV Options. (line 208)
-* mno-volatile-asm-stop: IA-64 Options. (line 32)
-* mno-volatile-cache: ARC Options. (line 188)
-* mno-vrsave: RS/6000 and PowerPC Options.
- (line 170)
-* mno-vsx: RS/6000 and PowerPC Options.
- (line 214)
-* mno-warn-multiple-fast-interrupts: RX Options. (line 143)
-* mno-wide-bitfields: MCore Options. (line 23)
-* mno-xgot: M680x0 Options. (line 315)
-* mno-xgot <1>: MIPS Options. (line 199)
-* mno-xl-compat: RS/6000 and PowerPC Options.
- (line 320)
-* mno-zdcbranch: SH Options. (line 396)
-* mno-zero-extend: MMIX Options. (line 26)
-* mnobitfield: M680x0 Options. (line 227)
-* mnoieee: SH Options. (line 116)
-* mnoliw: MN10300 Options. (line 59)
-* mnomacsave: SH Options. (line 111)
-* mnop-fun-dllimport: i386 and x86-64 Windows Options.
- (line 22)
-* mnops: Adapteva Epiphany Options.
- (line 26)
-* mnorm: ARC Options. (line 58)
-* mnosetlb: MN10300 Options. (line 69)
-* mnosplit-lohi: Adapteva Epiphany Options.
- (line 109)
-* momit-leaf-frame-pointer: AArch64 Options. (line 54)
-* momit-leaf-frame-pointer <1>: Blackfin Options. (line 43)
-* momit-leaf-frame-pointer <2>: i386 and x86-64 Options.
- (line 887)
-* mone-byte-bool: Darwin Options. (line 90)
-* moptimize-membar: FRV Options. (line 244)
-* MP: Preprocessor Options.
- (line 239)
-* mpa-risc-1-0: HPPA Options. (line 19)
-* mpa-risc-1-1: HPPA Options. (line 19)
-* mpa-risc-2-0: HPPA Options. (line 19)
-* mpack: FRV Options. (line 147)
-* mpacked-stack: S/390 and zSeries Options.
- (line 54)
-* mpadstruct: SH Options. (line 140)
-* mpaired: RS/6000 and PowerPC Options.
- (line 205)
-* mpaired-single: MIPS Options. (line 330)
-* mpc32: i386 and x86-64 Options.
- (line 484)
-* mpc64: i386 and x86-64 Options.
- (line 484)
-* mpc80: i386 and x86-64 Options.
- (line 484)
-* mpcrel: M680x0 Options. (line 275)
-* mpdebug: CRIS Options. (line 36)
-* mpe: RS/6000 and PowerPC Options.
- (line 339)
-* mpe-aligned-commons: i386 and x86-64 Windows Options.
- (line 59)
-* mperf-ext: NDS32 Options. (line 27)
-* mpic-data-is-text-relative: ARM Options. (line 238)
-* mpic-register: ARM Options. (line 231)
-* mpid: RX Options. (line 117)
-* mplt: MIPS Options. (line 189)
-* mpointers-to-nested-functions: RS/6000 and PowerPC Options.
- (line 868)
-* mpoke-function-name: ARM Options. (line 244)
-* mpopc: SPARC Options. (line 224)
-* mpopcntb: RS/6000 and PowerPC Options.
- (line 27)
-* mpopcntd: RS/6000 and PowerPC Options.
- (line 27)
-* mportable-runtime: HPPA Options. (line 65)
-* mpower8-fusion: RS/6000 and PowerPC Options.
- (line 232)
-* mpower8-vector: RS/6000 and PowerPC Options.
- (line 238)
-* mpowerpc-gfxopt: RS/6000 and PowerPC Options.
- (line 27)
-* mpowerpc-gpopt: RS/6000 and PowerPC Options.
- (line 27)
-* mpowerpc64: RS/6000 and PowerPC Options.
- (line 27)
-* mprefer-avx128: i386 and x86-64 Options.
- (line 692)
-* mprefer-short-insn-regs: Adapteva Epiphany Options.
- (line 13)
-* mprefergot: SH Options. (line 223)
-* mpreferred-stack-boundary: i386 and x86-64 Options.
- (line 514)
-* mpretend-cmove: SH Options. (line 432)
-* mprioritize-restricted-insns: RS/6000 and PowerPC Options.
- (line 517)
-* mprolog-function: V850 Options. (line 23)
-* mprologue-epilogue: CRIS Options. (line 71)
-* mprototype: RS/6000 and PowerPC Options.
- (line 642)
-* mpt-fixed: SH Options. (line 359)
-* mpush-args: i386 and x86-64 Options.
- (line 815)
-* MQ: Preprocessor Options.
- (line 266)
-* mq-class: ARC Options. (line 269)
-* mquad-memory: RS/6000 and PowerPC Options.
- (line 245)
-* mquad-memory-atomic: RS/6000 and PowerPC Options.
- (line 251)
-* mr10k-cache-barrier: MIPS Options. (line 630)
-* mRcq: ARC Options. (line 273)
-* mRcw: ARC Options. (line 277)
-* mrecip: i386 and x86-64 Options.
- (line 725)
-* mrecip <1>: RS/6000 and PowerPC Options.
- (line 797)
-* mrecip-precision: RS/6000 and PowerPC Options.
- (line 832)
-* mrecip=opt: i386 and x86-64 Options.
- (line 747)
-* mrecip=opt <1>: RS/6000 and PowerPC Options.
- (line 810)
-* mreduced-regs: NDS32 Options. (line 15)
-* mregister-names: IA-64 Options. (line 37)
-* mregnames: RS/6000 and PowerPC Options.
- (line 747)
-* mregparm: i386 and x86-64 Options.
- (line 451)
-* mrelax: AVR Options. (line 171)
-* mrelax <1>: H8/300 Options. (line 9)
-* mrelax <2>: MN10300 Options. (line 46)
-* mrelax <3>: MSP430 Options. (line 51)
-* mrelax <4>: NDS32 Options. (line 76)
-* mrelax <5>: RX Options. (line 95)
-* mrelax <6>: SH Options. (line 85)
-* mrelax <7>: V850 Options. (line 103)
-* mrelax-immediate: MCore Options. (line 19)
-* mrelax-pic-calls: MIPS Options. (line 755)
-* mrelocatable: RS/6000 and PowerPC Options.
- (line 468)
-* mrelocatable-lib: RS/6000 and PowerPC Options.
- (line 479)
-* mrepeat: MeP Options. (line 96)
-* mrestrict-it: ARM Options. (line 356)
-* mreturn-pointer-on-d0: MN10300 Options. (line 36)
-* mrh850-abi: V850 Options. (line 127)
-* mrtd: i386 and x86-64 Options.
- (line 427)
-* mrtd <1>: M680x0 Options. (line 236)
-* mrtd <2>: Function Attributes.
- (line 209)
-* mrtp: VxWorks Options. (line 11)
-* mrtsc: ARC Options. (line 109)
-* ms: H8/300 Options. (line 17)
-* ms <1>: MeP Options. (line 100)
-* ms2600: H8/300 Options. (line 24)
-* msafe-dma: SPU Options. (line 18)
-* msafe-hints: SPU Options. (line 112)
-* msahf: i386 and x86-64 Options.
- (line 705)
-* msatur: MeP Options. (line 105)
-* msave-acc-in-interrupts: RX Options. (line 109)
-* msave-toc-indirect: RS/6000 and PowerPC Options.
- (line 880)
-* mscc: FRV Options. (line 173)
-* msched-ar-data-spec: IA-64 Options. (line 134)
-* msched-ar-in-data-spec: IA-64 Options. (line 155)
-* msched-br-data-spec: IA-64 Options. (line 128)
-* msched-br-in-data-spec: IA-64 Options. (line 148)
-* msched-control-spec: IA-64 Options. (line 140)
-* msched-costly-dep: RS/6000 and PowerPC Options.
- (line 524)
-* msched-count-spec-in-critical-path: IA-64 Options. (line 182)
-* msched-fp-mem-deps-zero-cost: IA-64 Options. (line 198)
-* msched-in-control-spec: IA-64 Options. (line 162)
-* msched-max-memory-insns: IA-64 Options. (line 207)
-* msched-max-memory-insns-hard-limit: IA-64 Options. (line 213)
-* msched-prefer-non-control-spec-insns: IA-64 Options. (line 175)
-* msched-prefer-non-data-spec-insns: IA-64 Options. (line 168)
-* msched-spec-ldc: IA-64 Options. (line 187)
-* msched-spec-ldc <1>: IA-64 Options. (line 190)
-* msched-stop-bits-after-every-cycle: IA-64 Options. (line 194)
-* mschedule: HPPA Options. (line 72)
-* mscore5: Score Options. (line 25)
-* mscore5u: Score Options. (line 28)
-* mscore7: Score Options. (line 31)
-* mscore7d: Score Options. (line 35)
-* msda: V850 Options. (line 40)
-* msdata: IA-64 Options. (line 42)
-* msdata <1>: RS/6000 and PowerPC Options.
- (line 715)
-* msdata=all: C6X Options. (line 30)
-* msdata=data: RS/6000 and PowerPC Options.
- (line 720)
-* msdata=default: C6X Options. (line 22)
-* msdata=default <1>: RS/6000 and PowerPC Options.
- (line 715)
-* msdata=eabi: RS/6000 and PowerPC Options.
- (line 696)
-* msdata=none: C6X Options. (line 35)
-* msdata=none <1>: M32R/D Options. (line 40)
-* msdata=none <2>: RS/6000 and PowerPC Options.
- (line 728)
-* msdata=sdata: M32R/D Options. (line 49)
-* msdata=sysv: RS/6000 and PowerPC Options.
- (line 706)
-* msdata=use: M32R/D Options. (line 53)
-* msdram: Blackfin Options. (line 171)
-* msdram <1>: MeP Options. (line 110)
-* msecure-plt: RS/6000 and PowerPC Options.
- (line 180)
-* msel-sched-dont-check-control-spec: IA-64 Options. (line 203)
-* msep-data: Blackfin Options. (line 109)
-* mserialize-volatile: Xtensa Options. (line 35)
-* msetlb: MN10300 Options. (line 64)
-* mshared-library-id: Blackfin Options. (line 102)
-* mshort: M680x0 Options. (line 216)
-* msign-extend-enabled: LM32 Options. (line 18)
-* msim: Blackfin Options. (line 36)
-* msim <1>: C6X Options. (line 19)
-* msim <2>: CR16 Options. (line 18)
-* msim <3>: M32C Options. (line 13)
-* msim <4>: MeP Options. (line 114)
-* msim <5>: MSP430 Options. (line 40)
-* msim <6>: RL78 Options. (line 7)
-* msim <7>: RS/6000 and PowerPC Options.
- (line 652)
-* msim <8>: RX Options. (line 71)
-* msim <9>: Xstormy16 Options. (line 9)
-* msimd: ARC Options. (line 71)
-* msimnovec: MeP Options. (line 117)
-* msimple-fpu: RS/6000 and PowerPC Options.
- (line 372)
-* msingle-exit: MMIX Options. (line 65)
-* msingle-float: MIPS Options. (line 251)
-* msingle-float <1>: RS/6000 and PowerPC Options.
- (line 368)
-* msingle-pic-base: ARM Options. (line 225)
-* msingle-pic-base <1>: RS/6000 and PowerPC Options.
- (line 511)
-* msio: HPPA Options. (line 99)
-* msize-level: ARC Options. (line 281)
-* mslow-bytes: MCore Options. (line 35)
-* mslow-flash-data: ARM Options. (line 350)
-* msmall: MSP430 Options. (line 48)
-* msmall-data: DEC Alpha Options. (line 187)
-* msmall-data-limit: RX Options. (line 47)
-* msmall-divides: MicroBlaze Options. (line 39)
-* msmall-exec: S/390 and zSeries Options.
- (line 79)
-* msmall-mem: SPU Options. (line 38)
-* msmall-model: FR30 Options. (line 9)
-* msmall-text: DEC Alpha Options. (line 205)
-* msmall16: Adapteva Epiphany Options.
- (line 66)
-* msmallc: Nios II Options. (line 226)
-* msmartmips: MIPS Options. (line 326)
-* msoft-float: ARC Options. (line 75)
-* msoft-float <1>: DEC Alpha Options. (line 10)
-* msoft-float <2>: FRV Options. (line 27)
-* msoft-float <3>: HPPA Options. (line 85)
-* msoft-float <4>: i386 and x86-64 Options.
- (line 333)
-* msoft-float <5>: M680x0 Options. (line 200)
-* msoft-float <6>: MicroBlaze Options. (line 7)
-* msoft-float <7>: MIPS Options. (line 237)
-* msoft-float <8>: PDP-11 Options. (line 13)
-* msoft-float <9>: RS/6000 and PowerPC Options.
- (line 362)
-* msoft-float <10>: S/390 and zSeries Options.
- (line 11)
-* msoft-float <11>: SPARC Options. (line 39)
-* msoft-float <12>: V850 Options. (line 113)
-* msoft-quad-float: SPARC Options. (line 59)
-* msp8: AVR Options. (line 185)
-* mspace: SH Options. (line 220)
-* mspace <1>: V850 Options. (line 30)
-* mspe: RS/6000 and PowerPC Options.
- (line 200)
-* mspecld-anomaly: Blackfin Options. (line 50)
-* mspfp: ARC Options. (line 62)
-* mspfp-compact: ARC Options. (line 63)
-* mspfp-fast: ARC Options. (line 67)
-* mspfp_compact: ARC Options. (line 382)
-* mspfp_fast: ARC Options. (line 385)
-* msplit-addresses: MIPS Options. (line 488)
-* msplit-vecmove-early: Adapteva Epiphany Options.
- (line 126)
-* msse: i386 and x86-64 Options.
- (line 629)
-* msse2avx: i386 and x86-64 Options.
- (line 905)
-* msseregparm: i386 and x86-64 Options.
- (line 462)
-* mstack-align: CRIS Options. (line 55)
-* mstack-bias: SPARC Options. (line 307)
-* mstack-check-l1: Blackfin Options. (line 76)
-* mstack-guard: S/390 and zSeries Options.
- (line 154)
-* mstack-increment: MCore Options. (line 50)
-* mstack-offset: Adapteva Epiphany Options.
- (line 37)
-* mstack-protector-guard=GUARD: i386 and x86-64 Options.
- (line 928)
-* mstack-size: S/390 and zSeries Options.
- (line 154)
-* mstackrealign: i386 and x86-64 Options.
- (line 505)
-* mstdmain: SPU Options. (line 44)
-* mstrict-align: AArch64 Options. (line 49)
-* mstrict-align <1>: M680x0 Options. (line 283)
-* mstrict-align <2>: RS/6000 and PowerPC Options.
- (line 463)
-* mstrict-X: AVR Options. (line 198)
-* mstring: RS/6000 and PowerPC Options.
- (line 399)
-* mstringop-strategy=ALG: i386 and x86-64 Options.
- (line 853)
-* mstructure-size-boundary: ARM Options. (line 182)
-* msvr4-struct-return: RS/6000 and PowerPC Options.
- (line 604)
-* mswap: ARC Options. (line 82)
-* mswape: ARC Options. (line 114)
-* msym32: MIPS Options. (line 386)
-* msynci: MIPS Options. (line 740)
-* msys-crt0: Nios II Options. (line 230)
-* msys-lib: Nios II Options. (line 234)
-* MT: Preprocessor Options.
- (line 251)
-* mtarget-align: Xtensa Options. (line 59)
-* mtas: SH Options. (line 211)
-* mtda: V850 Options. (line 34)
-* mtelephony: ARC Options. (line 119)
-* mtext-section-literals: Xtensa Options. (line 47)
-* mtf: MeP Options. (line 121)
-* mthread: i386 and x86-64 Windows Options.
- (line 26)
-* mthreads: i386 and x86-64 Options.
- (line 830)
-* mthumb: ARM Options. (line 266)
-* mthumb-interwork: ARM Options. (line 25)
-* mtiny-stack: AVR Options. (line 212)
-* mtiny=: MeP Options. (line 125)
-* mTLS: FRV Options. (line 90)
-* mtls: FRV Options. (line 94)
-* mtls-dialect: ARM Options. (line 308)
-* mtls-dialect <1>: i386 and x86-64 Options.
- (line 808)
-* mtls-dialect=desc: AArch64 Options. (line 58)
-* mtls-dialect=traditional: AArch64 Options. (line 62)
-* mtls-direct-seg-refs: i386 and x86-64 Options.
- (line 895)
-* mtls-markers: RS/6000 and PowerPC Options.
- (line 785)
-* mtls-size: IA-64 Options. (line 112)
-* mtoc: RS/6000 and PowerPC Options.
- (line 488)
-* mtomcat-stats: FRV Options. (line 254)
-* mtoplevel-symbols: MMIX Options. (line 39)
-* mtp: ARM Options. (line 300)
-* mtpcs-frame: ARM Options. (line 273)
-* mtpcs-leaf-frame: ARM Options. (line 279)
-* mtpf-trace: S/390 and zSeries Options.
- (line 129)
-* mtrap-precision: DEC Alpha Options. (line 109)
-* mtune: AArch64 Options. (line 83)
-* mtune <1>: ARC Options. (line 302)
-* mtune <2>: ARC Options. (line 388)
-* mtune <3>: ARM Options. (line 97)
-* mtune <4>: CRIS Options. (line 17)
-* mtune <5>: DEC Alpha Options. (line 259)
-* mtune <6>: i386 and x86-64 Options.
- (line 216)
-* mtune <7>: IA-64 Options. (line 116)
-* mtune <8>: M680x0 Options. (line 68)
-* mtune <9>: MIPS Options. (line 63)
-* mtune <10>: MN10300 Options. (line 30)
-* mtune <11>: RS/6000 and PowerPC Options.
- (line 110)
-* mtune <12>: S/390 and zSeries Options.
- (line 122)
-* mtune <13>: SPARC Options. (line 174)
-* mtune-ctrl=FEATURE-LIST: i386 and x86-64 Options.
- (line 658)
-* mucb-mcount: ARC Options. (line 179)
-* muclibc: GNU/Linux Options. (line 13)
-* muls: Score Options. (line 18)
-* multcost: ARC Options. (line 393)
-* multcost=NUMBER: SH Options. (line 233)
-* multilib-library-pic: FRV Options. (line 110)
-* multiply-enabled: LM32 Options. (line 15)
-* multiply_defined: Darwin Options. (line 196)
-* multiply_defined_unused: Darwin Options. (line 196)
-* multi_module: Darwin Options. (line 196)
-* munalign-prob-threshold: ARC Options. (line 330)
-* munaligned-access: ARM Options. (line 332)
-* munaligned-doubles: SPARC Options. (line 73)
-* municode: i386 and x86-64 Windows Options.
- (line 30)
-* muninit-const-in-rodata: MIPS Options. (line 458)
-* munix: VAX Options. (line 9)
-* munix-asm: PDP-11 Options. (line 68)
-* munsafe-dma: SPU Options. (line 18)
-* mupdate: RS/6000 and PowerPC Options.
- (line 410)
-* muser-enabled: LM32 Options. (line 21)
-* musermode: SH Options. (line 228)
-* mv3push: NDS32 Options. (line 33)
-* mv850: V850 Options. (line 49)
-* mv850e: V850 Options. (line 79)
-* mv850e1: V850 Options. (line 70)
-* mv850e2: V850 Options. (line 66)
-* mv850e2v3: V850 Options. (line 61)
-* mv850e2v4: V850 Options. (line 57)
-* mv850e3v5: V850 Options. (line 52)
-* mv850es: V850 Options. (line 75)
-* mv8plus: SPARC Options. (line 188)
-* mveclibabi: i386 and x86-64 Options.
- (line 776)
-* mveclibabi <1>: RS/6000 and PowerPC Options.
- (line 841)
-* mvect8-ret-in-mem: i386 and x86-64 Options.
- (line 472)
-* mvirt: MIPS Options. (line 367)
-* mvis: SPARC Options. (line 195)
-* mvis2: SPARC Options. (line 201)
-* mvis3: SPARC Options. (line 209)
-* mvliw-branch: FRV Options. (line 201)
-* mvms-return-codes: VMS Options. (line 9)
-* mvolatile-asm-stop: IA-64 Options. (line 32)
-* mvolatile-cache: ARC Options. (line 184)
-* mvr4130-align: MIPS Options. (line 729)
-* mvrsave: RS/6000 and PowerPC Options.
- (line 170)
-* mvsx: RS/6000 and PowerPC Options.
- (line 214)
-* mvxworks: RS/6000 and PowerPC Options.
- (line 673)
-* mvzeroupper: i386 and x86-64 Options.
- (line 686)
-* mwarn-cell-microcode: RS/6000 and PowerPC Options.
- (line 176)
-* mwarn-dynamicstack: S/390 and zSeries Options.
- (line 148)
-* mwarn-framesize: S/390 and zSeries Options.
- (line 140)
-* mwarn-multiple-fast-interrupts: RX Options. (line 143)
-* mwarn-reloc: SPU Options. (line 10)
-* mwide-bitfields: MCore Options. (line 23)
-* mwin32: i386 and x86-64 Windows Options.
- (line 35)
-* mwindows: i386 and x86-64 Windows Options.
- (line 41)
-* mword-relocations: ARM Options. (line 319)
-* mwords-little-endian: ARM Options. (line 66)
-* mx32: i386 and x86-64 Options.
- (line 940)
-* mxgot: M680x0 Options. (line 315)
-* mxgot <1>: MIPS Options. (line 199)
-* mxilinx-fpu: RS/6000 and PowerPC Options.
- (line 383)
-* mxl-barrel-shift: MicroBlaze Options. (line 33)
-* mxl-compat: RS/6000 and PowerPC Options.
- (line 320)
-* mxl-float-convert: MicroBlaze Options. (line 51)
-* mxl-float-sqrt: MicroBlaze Options. (line 54)
-* mxl-gp-opt: MicroBlaze Options. (line 45)
-* mxl-multiply-high: MicroBlaze Options. (line 48)
-* mxl-pattern-compare: MicroBlaze Options. (line 36)
-* mxl-reorder: MicroBlaze Options. (line 63)
-* mxl-soft-div: MicroBlaze Options. (line 30)
-* mxl-soft-mul: MicroBlaze Options. (line 27)
-* mxl-stack-check: MicroBlaze Options. (line 42)
-* mxy: ARC Options. (line 124)
-* myellowknife: RS/6000 and PowerPC Options.
- (line 668)
-* mzarch: S/390 and zSeries Options.
- (line 94)
-* mzda: V850 Options. (line 45)
-* mzdcbranch: SH Options. (line 396)
-* mzero-extend: MMIX Options. (line 26)
-* no-canonical-prefixes: Overall Options. (line 334)
-* no-integrated-cpp: Preprocessor Options.
- (line 34)
-* no-sysroot-suffix: Directory Options. (line 109)
-* noall_load: Darwin Options. (line 196)
-* nocpp: MIPS Options. (line 562)
-* nodefaultlibs: Link Options. (line 62)
-* nofixprebinding: Darwin Options. (line 196)
-* nofpu: RX Options. (line 17)
-* nolibdld: HPPA Options. (line 182)
-* nomultidefs: Darwin Options. (line 196)
-* non-static: VxWorks Options. (line 16)
-* noprebind: Darwin Options. (line 196)
-* noseglinkedit: Darwin Options. (line 196)
-* nostartfiles: Link Options. (line 57)
-* nostdinc: Preprocessor Options.
- (line 401)
-* nostdinc++: C++ Dialect Options.
- (line 396)
-* nostdinc++ <1>: Preprocessor Options.
- (line 406)
-* nostdlib: Link Options. (line 74)
-* no_dead_strip_inits_and_terms: Darwin Options. (line 196)
-* o: Overall Options. (line 192)
-* O: Optimize Options. (line 39)
-* o <1>: Preprocessor Options.
- (line 87)
-* O0: Optimize Options. (line 129)
-* O1: Optimize Options. (line 39)
-* O2: Optimize Options. (line 83)
-* O3: Optimize Options. (line 121)
-* Ofast: Optimize Options. (line 143)
-* Og: Optimize Options. (line 149)
-* Os: Optimize Options. (line 133)
-* p: Debugging Options. (line 410)
-* P: Preprocessor Options.
- (line 647)
-* pagezero_size: Darwin Options. (line 196)
-* param: Optimize Options. (line 2298)
-* pass-exit-codes: Overall Options. (line 150)
-* pedantic: Standards. (line 16)
-* pedantic <1>: Warning Options. (line 71)
-* pedantic <2>: Preprocessor Options.
- (line 175)
-* pedantic <3>: C Extensions. (line 6)
-* pedantic <4>: Alternate Keywords. (line 30)
-* pedantic <5>: Warnings and Errors.
- (line 25)
-* pedantic-errors: Standards. (line 16)
-* pedantic-errors <1>: Warning Options. (line 112)
-* pedantic-errors <2>: Preprocessor Options.
- (line 180)
-* pedantic-errors <3>: Non-bugs. (line 216)
-* pedantic-errors <4>: Warnings and Errors.
- (line 25)
-* pg: Debugging Options. (line 416)
-* pie: Link Options. (line 99)
-* pipe: Overall Options. (line 215)
-* prebind: Darwin Options. (line 196)
-* prebind_all_twolevel_modules: Darwin Options. (line 196)
-* print-file-name: Debugging Options. (line 1343)
-* print-libgcc-file-name: Debugging Options. (line 1377)
-* print-multi-directory: Debugging Options. (line 1349)
-* print-multi-lib: Debugging Options. (line 1354)
-* print-multi-os-directory: Debugging Options. (line 1361)
-* print-multiarch: Debugging Options. (line 1370)
-* print-objc-runtime-info: Objective-C and Objective-C++ Dialect Options.
- (line 203)
-* print-prog-name: Debugging Options. (line 1374)
-* print-search-dirs: Debugging Options. (line 1385)
-* print-sysroot: Debugging Options. (line 1398)
-* print-sysroot-headers-suffix: Debugging Options. (line 1405)
-* private_bundle: Darwin Options. (line 196)
-* pthread: RS/6000 and PowerPC Options.
- (line 792)
-* pthread <1>: Solaris 2 Options. (line 30)
-* pthreads: Solaris 2 Options. (line 24)
-* Q: Debugging Options. (line 422)
-* Qn: System V Options. (line 18)
-* Qy: System V Options. (line 14)
-* rdynamic: Link Options. (line 105)
-* read_only_relocs: Darwin Options. (line 196)
-* remap: Preprocessor Options.
- (line 694)
-* S: Overall Options. (line 175)
-* S <1>: Link Options. (line 20)
-* s: Link Options. (line 112)
-* save-temps: Debugging Options. (line 1252)
-* save-temps=obj: Debugging Options. (line 1278)
-* sectalign: Darwin Options. (line 196)
-* sectcreate: Darwin Options. (line 196)
-* sectobjectsymbols: Darwin Options. (line 196)
-* sectobjectsymbols <1>: Darwin Options. (line 196)
-* sectorder: Darwin Options. (line 196)
-* seg1addr: Darwin Options. (line 196)
-* segaddr: Darwin Options. (line 196)
-* seglinkedit: Darwin Options. (line 196)
-* segprot: Darwin Options. (line 196)
-* segs_read_only_addr: Darwin Options. (line 196)
-* segs_read_only_addr <1>: Darwin Options. (line 196)
-* segs_read_write_addr: Darwin Options. (line 196)
-* segs_read_write_addr <1>: Darwin Options. (line 196)
-* seg_addr_table: Darwin Options. (line 196)
-* seg_addr_table_filename: Darwin Options. (line 196)
-* shared: Link Options. (line 120)
-* shared-libgcc: Link Options. (line 128)
-* short-calls: Adapteva Epiphany Options.
- (line 61)
-* sim: CRIS Options. (line 95)
-* sim2: CRIS Options. (line 101)
-* single_module: Darwin Options. (line 196)
-* specs: Directory Options. (line 86)
-* static: Link Options. (line 116)
-* static <1>: Darwin Options. (line 196)
-* static <2>: HPPA Options. (line 186)
-* static-libasan: Link Options. (line 163)
-* static-libgcc: Link Options. (line 128)
-* static-liblsan: Link Options. (line 179)
-* static-libstdc++: Link Options. (line 196)
-* static-libtsan: Link Options. (line 171)
-* static-libubsan: Link Options. (line 187)
-* std: Standards. (line 16)
-* std <1>: C Dialect Options. (line 46)
-* std <2>: Other Builtins. (line 21)
-* std <3>: Non-bugs. (line 107)
-* std=: Preprocessor Options.
- (line 340)
-* sub_library: Darwin Options. (line 196)
-* sub_umbrella: Darwin Options. (line 196)
-* symbolic: Link Options. (line 207)
-* sysroot: Directory Options. (line 94)
-* T: Link Options. (line 213)
-* target-help: Overall Options. (line 230)
-* target-help <1>: Preprocessor Options.
- (line 699)
-* threads: HPPA Options. (line 199)
-* time: Debugging Options. (line 1293)
-* tno-android-cc: GNU/Linux Options. (line 31)
-* tno-android-ld: GNU/Linux Options. (line 35)
-* traditional: C Dialect Options. (line 333)
-* traditional <1>: Incompatibilities. (line 6)
-* traditional-cpp: C Dialect Options. (line 333)
-* traditional-cpp <1>: Preprocessor Options.
- (line 677)
-* trigraphs: C Dialect Options. (line 328)
-* trigraphs <1>: Preprocessor Options.
- (line 681)
-* twolevel_namespace: Darwin Options. (line 196)
-* U: Preprocessor Options.
- (line 69)
-* u: Link Options. (line 245)
-* umbrella: Darwin Options. (line 196)
-* undef: Preprocessor Options.
- (line 73)
-* undefined: Darwin Options. (line 196)
-* unexported_symbols_list: Darwin Options. (line 196)
-* v: Overall Options. (line 203)
-* v <1>: Preprocessor Options.
- (line 703)
-* version: Overall Options. (line 338)
-* version <1>: Preprocessor Options.
- (line 715)
-* w: Warning Options. (line 25)
-* W: Warning Options. (line 166)
-* W <1>: Warning Options. (line 1265)
-* W <2>: Warning Options. (line 1349)
-* w <1>: Preprocessor Options.
- (line 171)
-* W <3>: Incompatibilities. (line 64)
-* Wa: Assembler Options. (line 9)
-* Wabi: C++ Dialect Options.
- (line 404)
-* Waddr-space-convert: AVR Options. (line 215)
-* Waddress: Warning Options. (line 1182)
-* Waggregate-return: Warning Options. (line 1200)
-* Waggressive-loop-optimizations: Warning Options. (line 1205)
-* Wall: Warning Options. (line 116)
-* Wall <1>: Preprocessor Options.
- (line 93)
-* Wall <2>: Standard Libraries. (line 6)
-* Warray-bounds: Warning Options. (line 824)
-* Wassign-intercept: Objective-C and Objective-C++ Dialect Options.
- (line 157)
-* Wattributes: Warning Options. (line 1210)
-* Wbad-function-cast: Warning Options. (line 1039)
-* Wbuiltin-macro-redefined: Warning Options. (line 1216)
-* Wcast-align: Warning Options. (line 1070)
-* Wcast-qual: Warning Options. (line 1054)
-* Wchar-subscripts: Warning Options. (line 204)
-* Wclobbered: Warning Options. (line 1089)
-* Wcomment: Warning Options. (line 209)
-* Wcomment <1>: Preprocessor Options.
- (line 101)
-* Wcomments: Preprocessor Options.
- (line 101)
-* Wconditionally-supported: Warning Options. (line 1093)
-* Wconversion: Warning Options. (line 1096)
-* Wconversion-null: Warning Options. (line 1114)
-* Wctor-dtor-privacy: C++ Dialect Options.
- (line 511)
-* Wdate-time: Warning Options. (line 1122)
-* Wdeclaration-after-statement: Warning Options. (line 956)
-* Wdelete-incomplete: Warning Options. (line 1127)
-* Wdelete-non-virtual-dtor: C++ Dialect Options.
- (line 518)
-* Wdeprecated: Warning Options. (line 1331)
-* Wdeprecated-declarations: Warning Options. (line 1335)
-* Wdisabled-optimization: Warning Options. (line 1495)
-* Wdiv-by-zero: Warning Options. (line 829)
-* Wdouble-promotion: Warning Options. (line 233)
-* weak_reference_mismatches: Darwin Options. (line 196)
-* Weffc++: C++ Dialect Options.
- (line 598)
-* Wempty-body: Warning Options. (line 1134)
-* Wendif-labels: Warning Options. (line 966)
-* Wendif-labels <1>: Preprocessor Options.
- (line 148)
-* Wenum-compare: Warning Options. (line 1138)
-* Werror: Warning Options. (line 28)
-* Werror <1>: Preprocessor Options.
- (line 161)
-* Werror=: Warning Options. (line 31)
-* Wextra: Warning Options. (line 166)
-* Wextra <1>: Warning Options. (line 1265)
-* Wextra <2>: Warning Options. (line 1349)
-* Wfatal-errors: Warning Options. (line 48)
-* Wfloat-conversion: Warning Options. (line 1168)
-* Wfloat-equal: Warning Options. (line 856)
-* Wformat: Warning Options. (line 252)
-* Wformat <1>: Warning Options. (line 277)
-* Wformat <2>: Warning Options. (line 803)
-* Wformat <3>: Function Attributes.
- (line 453)
-* Wformat-contains-nul: Warning Options. (line 286)
-* Wformat-extra-args: Warning Options. (line 290)
-* Wformat-nonliteral: Warning Options. (line 314)
-* Wformat-nonliteral <1>: Function Attributes.
- (line 518)
-* Wformat-security: Warning Options. (line 319)
-* Wformat-y2k: Warning Options. (line 331)
-* Wformat-zero-length: Warning Options. (line 304)
-* Wformat=: Warning Options. (line 252)
-* Wformat=1: Warning Options. (line 277)
-* Wformat=2: Warning Options. (line 309)
-* Wframe-larger-than: Warning Options. (line 980)
-* Wfree-nonheap-object: Warning Options. (line 989)
-* whatsloaded: Darwin Options. (line 196)
-* whyload: Darwin Options. (line 196)
-* Wignored-qualifiers: Warning Options. (line 371)
-* Wimplicit: Warning Options. (line 367)
-* Wimplicit-function-declaration: Warning Options. (line 361)
-* Wimplicit-int: Warning Options. (line 357)
-* Winherited-variadic-ctor: Warning Options. (line 1405)
-* Winit-self: Warning Options. (line 342)
-* Winline: Warning Options. (line 1410)
-* Winline <1>: Inline. (line 63)
-* Wint-to-pointer-cast: Warning Options. (line 1437)
-* Winvalid-offsetof: Warning Options. (line 1423)
-* Winvalid-pch: Warning Options. (line 1446)
-* Wjump-misses-init: Warning Options. (line 1144)
-* Wl: Link Options. (line 237)
-* Wlarger-than-LEN: Warning Options. (line 977)
-* Wlarger-than=LEN: Warning Options. (line 977)
-* Wliteral-suffix: C++ Dialect Options.
- (line 525)
-* Wlogical-op: Warning Options. (line 1195)
-* Wlong-long: Warning Options. (line 1450)
-* Wmain: Warning Options. (line 382)
-* Wmaybe-uninitialized: Warning Options. (line 640)
-* Wmissing-braces: Warning Options. (line 389)
-* Wmissing-declarations: Warning Options. (line 1255)
-* Wmissing-field-initializers: Warning Options. (line 1265)
-* Wmissing-format-attribute: Warning Options. (line 803)
-* Wmissing-include-dirs: Warning Options. (line 400)
-* Wmissing-parameter-type: Warning Options. (line 1237)
-* Wmissing-prototypes: Warning Options. (line 1245)
-* Wmultichar: Warning Options. (line 1283)
-* Wnarrowing: C++ Dialect Options.
- (line 546)
-* Wnested-externs: Warning Options. (line 1402)
-* Wno-abi: C++ Dialect Options.
- (line 404)
-* Wno-address: Warning Options. (line 1182)
-* Wno-aggregate-return: Warning Options. (line 1200)
-* Wno-aggressive-loop-optimizations: Warning Options. (line 1205)
-* Wno-all: Warning Options. (line 116)
-* Wno-array-bounds: Warning Options. (line 824)
-* Wno-assign-intercept: Objective-C and Objective-C++ Dialect Options.
- (line 157)
-* Wno-attributes: Warning Options. (line 1210)
-* Wno-bad-function-cast: Warning Options. (line 1039)
-* Wno-builtin-macro-redefined: Warning Options. (line 1216)
-* Wno-cast-align: Warning Options. (line 1070)
-* Wno-cast-qual: Warning Options. (line 1054)
-* Wno-char-subscripts: Warning Options. (line 204)
-* Wno-clobbered: Warning Options. (line 1089)
-* Wno-comment: Warning Options. (line 209)
-* Wno-conditionally-supported: Warning Options. (line 1093)
-* Wno-conversion: Warning Options. (line 1096)
-* Wno-conversion-null: Warning Options. (line 1114)
-* Wno-coverage-mismatch: Warning Options. (line 214)
-* Wno-ctor-dtor-privacy: C++ Dialect Options.
- (line 511)
-* Wno-date-time: Warning Options. (line 1122)
-* Wno-declaration-after-statement: Warning Options. (line 956)
-* Wno-delete-incomplete: Warning Options. (line 1127)
-* Wno-delete-non-virtual-dtor: C++ Dialect Options.
- (line 518)
-* Wno-deprecated: Warning Options. (line 1331)
-* Wno-deprecated-declarations: Warning Options. (line 1335)
-* Wno-disabled-optimization: Warning Options. (line 1495)
-* Wno-div-by-zero: Warning Options. (line 829)
-* Wno-double-promotion: Warning Options. (line 233)
-* Wno-effc++: C++ Dialect Options.
- (line 598)
-* Wno-empty-body: Warning Options. (line 1134)
-* Wno-endif-labels: Warning Options. (line 966)
-* Wno-enum-compare: Warning Options. (line 1138)
-* Wno-error: Warning Options. (line 28)
-* Wno-error=: Warning Options. (line 31)
-* Wno-extra: Warning Options. (line 166)
-* Wno-extra <1>: Warning Options. (line 1265)
-* Wno-extra <2>: Warning Options. (line 1349)
-* Wno-fatal-errors: Warning Options. (line 48)
-* Wno-float-conversion: Warning Options. (line 1168)
-* Wno-float-equal: Warning Options. (line 856)
-* Wno-format: Warning Options. (line 252)
-* Wno-format <1>: Warning Options. (line 803)
-* Wno-format-contains-nul: Warning Options. (line 286)
-* Wno-format-extra-args: Warning Options. (line 290)
-* Wno-format-nonliteral: Warning Options. (line 314)
-* Wno-format-security: Warning Options. (line 319)
-* Wno-format-y2k: Warning Options. (line 331)
-* Wno-format-zero-length: Warning Options. (line 304)
-* Wno-free-nonheap-object: Warning Options. (line 989)
-* Wno-ignored-qualifiers: Warning Options. (line 371)
-* Wno-implicit: Warning Options. (line 367)
-* Wno-implicit-function-declaration: Warning Options. (line 361)
-* Wno-implicit-int: Warning Options. (line 357)
-* Wno-inherited-variadic-ctor: Warning Options. (line 1405)
-* Wno-init-self: Warning Options. (line 342)
-* Wno-inline: Warning Options. (line 1410)
-* Wno-int-to-pointer-cast: Warning Options. (line 1437)
-* Wno-invalid-offsetof: Warning Options. (line 1423)
-* Wno-invalid-pch: Warning Options. (line 1446)
-* Wno-jump-misses-init: Warning Options. (line 1144)
-* Wno-literal-suffix: C++ Dialect Options.
- (line 525)
-* Wno-logical-op: Warning Options. (line 1195)
-* Wno-long-long: Warning Options. (line 1450)
-* Wno-main: Warning Options. (line 382)
-* Wno-maybe-uninitialized: Warning Options. (line 640)
-* Wno-missing-braces: Warning Options. (line 389)
-* Wno-missing-declarations: Warning Options. (line 1255)
-* Wno-missing-field-initializers: Warning Options. (line 1265)
-* Wno-missing-format-attribute: Warning Options. (line 803)
-* Wno-missing-include-dirs: Warning Options. (line 400)
-* Wno-missing-parameter-type: Warning Options. (line 1237)
-* Wno-missing-prototypes: Warning Options. (line 1245)
-* Wno-multichar: Warning Options. (line 1283)
-* Wno-narrowing: C++ Dialect Options.
- (line 546)
-* Wno-nested-externs: Warning Options. (line 1402)
-* Wno-noexcept: C++ Dialect Options.
- (line 559)
-* Wno-non-template-friend: C++ Dialect Options.
- (line 633)
-* Wno-non-virtual-dtor: C++ Dialect Options.
- (line 565)
-* Wno-nonnull: Warning Options. (line 335)
-* Wno-old-style-cast: C++ Dialect Options.
- (line 649)
-* Wno-old-style-declaration: Warning Options. (line 1227)
-* Wno-old-style-definition: Warning Options. (line 1233)
-* Wno-overflow: Warning Options. (line 1341)
-* Wno-overlength-strings: Warning Options. (line 1515)
-* Wno-overloaded-virtual: C++ Dialect Options.
- (line 655)
-* Wno-override-init: Warning Options. (line 1349)
-* Wno-packed: Warning Options. (line 1357)
-* Wno-packed-bitfield-compat: Warning Options. (line 1374)
-* Wno-padded: Warning Options. (line 1391)
-* Wno-parentheses: Warning Options. (line 403)
-* Wno-pedantic-ms-format: Warning Options. (line 1019)
-* Wno-pmf-conversions: C++ Dialect Options.
- (line 674)
-* Wno-pmf-conversions <1>: Bound member functions.
- (line 35)
-* Wno-pointer-arith: Warning Options. (line 1025)
-* Wno-pointer-sign: Warning Options. (line 1504)
-* Wno-pointer-to-int-cast: Warning Options. (line 1442)
-* Wno-pragmas: Warning Options. (line 690)
-* Wno-protocol: Objective-C and Objective-C++ Dialect Options.
- (line 161)
-* Wno-redundant-decls: Warning Options. (line 1398)
-* Wno-reorder: C++ Dialect Options.
- (line 573)
-* Wno-return-local-addr: Warning Options. (line 498)
-* Wno-return-type: Warning Options. (line 502)
-* Wno-selector: Objective-C and Objective-C++ Dialect Options.
- (line 171)
-* Wno-sequence-point: Warning Options. (line 452)
-* Wno-shadow: Warning Options. (line 970)
-* Wno-sign-compare: Warning Options. (line 1155)
-* Wno-sign-conversion: Warning Options. (line 1162)
-* Wno-sign-promo: C++ Dialect Options.
- (line 678)
-* Wno-sizeof-pointer-memaccess: Warning Options. (line 1174)
-* Wno-stack-protector: Warning Options. (line 1510)
-* Wno-strict-aliasing: Warning Options. (line 695)
-* Wno-strict-null-sentinel: C++ Dialect Options.
- (line 626)
-* Wno-strict-overflow: Warning Options. (line 734)
-* Wno-strict-prototypes: Warning Options. (line 1221)
-* Wno-strict-selector-match: Objective-C and Objective-C++ Dialect Options.
- (line 183)
-* Wno-suggest-attribute=: Warning Options. (line 783)
-* Wno-suggest-attribute=const: Warning Options. (line 789)
-* Wno-suggest-attribute=format: Warning Options. (line 803)
-* Wno-suggest-attribute=noreturn: Warning Options. (line 789)
-* Wno-suggest-attribute=pure: Warning Options. (line 789)
-* Wno-switch: Warning Options. (line 516)
-* Wno-switch-default: Warning Options. (line 524)
-* Wno-switch-enum: Warning Options. (line 527)
-* Wno-sync-nand: Warning Options. (line 536)
-* Wno-system-headers: Warning Options. (line 834)
-* Wno-traditional: Warning Options. (line 871)
-* Wno-traditional-conversion: Warning Options. (line 948)
-* Wno-trampolines: Warning Options. (line 845)
-* Wno-trigraphs: Warning Options. (line 541)
-* Wno-type-limits: Warning Options. (line 1032)
-* Wno-undeclared-selector: Objective-C and Objective-C++ Dialect Options.
- (line 191)
-* Wno-undef: Warning Options. (line 963)
-* Wno-uninitialized: Warning Options. (line 618)
-* Wno-unknown-pragmas: Warning Options. (line 683)
-* Wno-unsafe-loop-optimizations: Warning Options. (line 1013)
-* Wno-unused: Warning Options. (line 611)
-* Wno-unused-but-set-parameter: Warning Options. (line 546)
-* Wno-unused-but-set-variable: Warning Options. (line 555)
-* Wno-unused-function: Warning Options. (line 565)
-* Wno-unused-label: Warning Options. (line 570)
-* Wno-unused-parameter: Warning Options. (line 581)
-* Wno-unused-result: Warning Options. (line 588)
-* Wno-unused-value: Warning Options. (line 601)
-* Wno-unused-variable: Warning Options. (line 593)
-* Wno-useless-cast: Warning Options. (line 1131)
-* Wno-varargs: Warning Options. (line 1461)
-* Wno-variadic-macros: Warning Options. (line 1455)
-* Wno-vector-operation-performance: Warning Options. (line 1466)
-* Wno-virtual-move-assign: Warning Options. (line 1476)
-* Wno-vla: Warning Options. (line 1485)
-* Wno-volatile-register-var: Warning Options. (line 1489)
-* Wno-write-strings: Warning Options. (line 1076)
-* Wno-zero-as-null-pointer-constant: Warning Options. (line 1118)
-* Wnoexcept: C++ Dialect Options.
- (line 559)
-* Wnon-template-friend: C++ Dialect Options.
- (line 633)
-* Wnon-virtual-dtor: C++ Dialect Options.
- (line 565)
-* Wnonnull: Warning Options. (line 335)
-* Wnormalized=: Warning Options. (line 1289)
-* Wold-style-cast: C++ Dialect Options.
- (line 649)
-* Wold-style-declaration: Warning Options. (line 1227)
-* Wold-style-definition: Warning Options. (line 1233)
-* Wopenm-simd: Warning Options. (line 1344)
-* Woverflow: Warning Options. (line 1341)
-* Woverlength-strings: Warning Options. (line 1515)
-* Woverloaded-virtual: C++ Dialect Options.
- (line 655)
-* Woverride-init: Warning Options. (line 1349)
-* Wp: Preprocessor Options.
- (line 14)
-* Wpacked: Warning Options. (line 1357)
-* Wpacked-bitfield-compat: Warning Options. (line 1374)
-* Wpadded: Warning Options. (line 1391)
-* Wparentheses: Warning Options. (line 403)
-* Wpedantic: Warning Options. (line 71)
-* Wpedantic-ms-format: Warning Options. (line 1019)
-* Wpmf-conversions: C++ Dialect Options.
- (line 674)
-* Wpointer-arith: Warning Options. (line 1025)
-* Wpointer-arith <1>: Pointer Arith. (line 13)
-* Wpointer-sign: Warning Options. (line 1504)
-* Wpointer-to-int-cast: Warning Options. (line 1442)
-* Wpragmas: Warning Options. (line 690)
-* Wprotocol: Objective-C and Objective-C++ Dialect Options.
- (line 161)
-* wrapper: Overall Options. (line 341)
-* Wredundant-decls: Warning Options. (line 1398)
-* Wreorder: C++ Dialect Options.
- (line 573)
-* Wreturn-local-addr: Warning Options. (line 498)
-* Wreturn-type: Warning Options. (line 502)
-* Wselector: Objective-C and Objective-C++ Dialect Options.
- (line 171)
-* Wsequence-point: Warning Options. (line 452)
-* Wshadow: Warning Options. (line 970)
-* Wsign-compare: Warning Options. (line 1155)
-* Wsign-conversion: Warning Options. (line 1162)
-* Wsign-promo: C++ Dialect Options.
- (line 678)
-* Wsizeof-pointer-memaccess: Warning Options. (line 1174)
-* Wstack-protector: Warning Options. (line 1510)
-* Wstack-usage: Warning Options. (line 993)
-* Wstrict-aliasing: Warning Options. (line 695)
-* Wstrict-aliasing=n: Warning Options. (line 702)
-* Wstrict-null-sentinel: C++ Dialect Options.
- (line 626)
-* Wstrict-overflow: Warning Options. (line 734)
-* Wstrict-prototypes: Warning Options. (line 1221)
-* Wstrict-selector-match: Objective-C and Objective-C++ Dialect Options.
- (line 183)
-* Wsuggest-attribute=: Warning Options. (line 783)
-* Wsuggest-attribute=const: Warning Options. (line 789)
-* Wsuggest-attribute=format: Warning Options. (line 803)
-* Wsuggest-attribute=noreturn: Warning Options. (line 789)
-* Wsuggest-attribute=pure: Warning Options. (line 789)
-* Wswitch: Warning Options. (line 516)
-* Wswitch-default: Warning Options. (line 524)
-* Wswitch-enum: Warning Options. (line 527)
-* Wsync-nand: Warning Options. (line 536)
-* Wsystem-headers: Warning Options. (line 834)
-* Wsystem-headers <1>: Preprocessor Options.
- (line 165)
-* Wtraditional: Warning Options. (line 871)
-* Wtraditional <1>: Preprocessor Options.
- (line 118)
-* Wtraditional-conversion: Warning Options. (line 948)
-* Wtrampolines: Warning Options. (line 845)
-* Wtrigraphs: Warning Options. (line 541)
-* Wtrigraphs <1>: Preprocessor Options.
- (line 106)
-* Wtype-limits: Warning Options. (line 1032)
-* Wundeclared-selector: Objective-C and Objective-C++ Dialect Options.
- (line 191)
-* Wundef: Warning Options. (line 963)
-* Wundef <1>: Preprocessor Options.
- (line 124)
-* Wuninitialized: Warning Options. (line 618)
-* Wunknown-pragmas: Warning Options. (line 683)
-* Wunsafe-loop-optimizations: Warning Options. (line 1013)
-* Wunsuffixed-float-constants: Warning Options. (line 1530)
-* Wunused: Warning Options. (line 611)
-* Wunused-but-set-parameter: Warning Options. (line 546)
-* Wunused-but-set-variable: Warning Options. (line 555)
-* Wunused-function: Warning Options. (line 565)
-* Wunused-label: Warning Options. (line 570)
-* Wunused-local-typedefs: Warning Options. (line 577)
-* Wunused-macros: Preprocessor Options.
- (line 129)
-* Wunused-parameter: Warning Options. (line 581)
-* Wunused-result: Warning Options. (line 588)
-* Wunused-value: Warning Options. (line 601)
-* Wunused-variable: Warning Options. (line 593)
-* Wuseless-cast: Warning Options. (line 1131)
-* Wvarargs: Warning Options. (line 1461)
-* Wvariadic-macros: Warning Options. (line 1455)
-* Wvector-operation-performance: Warning Options. (line 1466)
-* Wvirtual-move-assign: Warning Options. (line 1476)
-* Wvla: Warning Options. (line 1485)
-* Wvolatile-register-var: Warning Options. (line 1489)
-* Wwrite-strings: Warning Options. (line 1076)
-* Wzero-as-null-pointer-constant: Warning Options. (line 1118)
-* x: Overall Options. (line 126)
-* x <1>: Preprocessor Options.
- (line 324)
-* Xassembler: Assembler Options. (line 13)
-* Xbind-lazy: VxWorks Options. (line 26)
-* Xbind-now: VxWorks Options. (line 30)
-* Xlinker: Link Options. (line 219)
-* Xpreprocessor: Preprocessor Options.
- (line 25)
-* Ym: System V Options. (line 26)
-* YP: System V Options. (line 22)
-
-
-File: gcc.info, Node: Keyword Index, Prev: Option Index, Up: Top
-
-Keyword Index
-*************
-
-
-* Menu:
-
-* '!' in constraint: Multi-Alternative. (line 33)
-* '#' in constraint: Modifiers. (line 57)
-* '#pragma': Pragmas. (line 6)
-* #pragma implementation: C++ Interface. (line 39)
-* '#pragma implementation', implied: C++ Interface. (line 46)
-* #pragma interface: C++ Interface. (line 20)
-* '#pragma', reason for not using: Function Attributes.
- (line 2055)
-* $: Dollar Signs. (line 6)
-* '%' in constraint: Modifiers. (line 45)
-* '%include': Spec Files. (line 26)
-* '%include_noerr': Spec Files. (line 30)
-* '%rename': Spec Files. (line 34)
-* '&' in constraint: Modifiers. (line 25)
-* ''': Incompatibilities. (line 116)
-* '*' in constraint: Modifiers. (line 62)
-* *__builtin_assume_aligned: Other Builtins. (line 332)
-* '+' in constraint: Modifiers. (line 12)
-* '-lgcc', use with '-nodefaultlibs': Link Options. (line 85)
-* '-lgcc', use with '-nostdlib': Link Options. (line 85)
-* '-march' feature modifiers: AArch64 Options. (line 119)
-* '-mcpu' feature modifiers: AArch64 Options. (line 119)
-* '-nodefaultlibs' and unresolved references: Link Options. (line 85)
-* '-nostdlib' and unresolved references: Link Options. (line 85)
-* .sdata/.sdata2 references (PowerPC): RS/6000 and PowerPC Options.
- (line 739)
-* '//': C++ Comments. (line 6)
-* '0' in constraint: Simple Constraints. (line 125)
-* '<' in constraint: Simple Constraints. (line 47)
-* '=' in constraint: Modifiers. (line 8)
-* '>' in constraint: Simple Constraints. (line 59)
-* '?' in constraint: Multi-Alternative. (line 27)
-* '?:' extensions: Conditionals. (line 6)
-* '?:' side effect: Conditionals. (line 20)
-* '_' in variables in macros: Typeof. (line 46)
-* '_Accum' data type: Fixed-Point. (line 6)
-* '_Complex' keyword: Complex. (line 6)
-* '_Decimal128' data type: Decimal Float. (line 6)
-* '_Decimal32' data type: Decimal Float. (line 6)
-* '_Decimal64' data type: Decimal Float. (line 6)
-* _Exit: Other Builtins. (line 6)
-* _exit: Other Builtins. (line 6)
-* '_Fract' data type: Fixed-Point. (line 6)
-* _HTM_FIRST_USER_ABORT_CODE: S/390 System z Built-in Functions.
- (line 44)
-* '_Sat' data type: Fixed-Point. (line 6)
-* _xabort: X86 transactional memory intrinsics.
- (line 61)
-* _xbegin: X86 transactional memory intrinsics.
- (line 19)
-* _xend: X86 transactional memory intrinsics.
- (line 52)
-* _xtest: X86 transactional memory intrinsics.
- (line 57)
-* __atomic_add_fetch: __atomic Builtins. (line 153)
-* __atomic_always_lock_free: __atomic Builtins. (line 230)
-* __atomic_and_fetch: __atomic Builtins. (line 157)
-* __atomic_clear: __atomic Builtins. (line 204)
-* __atomic_compare_exchange: __atomic Builtins. (line 145)
-* __atomic_compare_exchange_n: __atomic Builtins. (line 124)
-* __atomic_exchange: __atomic Builtins. (line 118)
-* __atomic_exchange_n: __atomic Builtins. (line 108)
-* __atomic_fetch_add: __atomic Builtins. (line 172)
-* __atomic_fetch_and: __atomic Builtins. (line 176)
-* __atomic_fetch_nand: __atomic Builtins. (line 182)
-* __atomic_fetch_or: __atomic Builtins. (line 180)
-* __atomic_fetch_sub: __atomic Builtins. (line 174)
-* __atomic_fetch_xor: __atomic Builtins. (line 178)
-* __atomic_is_lock_free: __atomic Builtins. (line 244)
-* __atomic_load: __atomic Builtins. (line 90)
-* __atomic_load_n: __atomic Builtins. (line 83)
-* __atomic_nand_fetch: __atomic Builtins. (line 163)
-* __atomic_or_fetch: __atomic Builtins. (line 161)
-* __atomic_signal_fence: __atomic Builtins. (line 223)
-* __atomic_store: __atomic Builtins. (line 103)
-* __atomic_store_n: __atomic Builtins. (line 95)
-* __atomic_sub_fetch: __atomic Builtins. (line 155)
-* __atomic_test_and_set: __atomic Builtins. (line 192)
-* __atomic_thread_fence: __atomic Builtins. (line 216)
-* __atomic_xor_fetch: __atomic Builtins. (line 159)
-* __builtin_apply: Constructing Calls. (line 29)
-* __builtin_apply_args: Constructing Calls. (line 19)
-* __builtin_arc_aligned: ARC Built-in Functions.
- (line 18)
-* __builtin_arc_brk: ARC Built-in Functions.
- (line 28)
-* __builtin_arc_core_read: ARC Built-in Functions.
- (line 32)
-* __builtin_arc_core_write: ARC Built-in Functions.
- (line 39)
-* __builtin_arc_divaw: ARC Built-in Functions.
- (line 46)
-* __builtin_arc_flag: ARC Built-in Functions.
- (line 53)
-* __builtin_arc_lr: ARC Built-in Functions.
- (line 57)
-* __builtin_arc_mul64: ARC Built-in Functions.
- (line 64)
-* __builtin_arc_mulu64: ARC Built-in Functions.
- (line 68)
-* __builtin_arc_nop: ARC Built-in Functions.
- (line 73)
-* __builtin_arc_norm: ARC Built-in Functions.
- (line 77)
-* __builtin_arc_normw: ARC Built-in Functions.
- (line 84)
-* __builtin_arc_rtie: ARC Built-in Functions.
- (line 91)
-* __builtin_arc_sleep: ARC Built-in Functions.
- (line 95)
-* __builtin_arc_sr: ARC Built-in Functions.
- (line 99)
-* __builtin_arc_swap: ARC Built-in Functions.
- (line 106)
-* __builtin_arc_swi: ARC Built-in Functions.
- (line 112)
-* __builtin_arc_sync: ARC Built-in Functions.
- (line 116)
-* __builtin_arc_trap_s: ARC Built-in Functions.
- (line 120)
-* __builtin_arc_unimp_s: ARC Built-in Functions.
- (line 124)
-* __builtin_bswap16: Other Builtins. (line 599)
-* __builtin_bswap32: Other Builtins. (line 603)
-* __builtin_bswap64: Other Builtins. (line 607)
-* __builtin_choose_expr: Other Builtins. (line 154)
-* __builtin_clrsb: Other Builtins. (line 529)
-* __builtin_clrsbl: Other Builtins. (line 551)
-* __builtin_clrsbll: Other Builtins. (line 574)
-* __builtin_clz: Other Builtins. (line 521)
-* __builtin_clzl: Other Builtins. (line 543)
-* __builtin_clzll: Other Builtins. (line 566)
-* __builtin_complex: Other Builtins. (line 194)
-* __builtin_constant_p: Other Builtins. (line 203)
-* __builtin_cpu_init: X86 Built-in Functions.
- (line 62)
-* __builtin_cpu_is: X86 Built-in Functions.
- (line 90)
-* __builtin_cpu_supports: X86 Built-in Functions.
- (line 162)
-* __builtin_ctz: Other Builtins. (line 525)
-* __builtin_ctzl: Other Builtins. (line 547)
-* __builtin_ctzll: Other Builtins. (line 570)
-* __builtin_expect: Other Builtins. (line 252)
-* __builtin_extract_return_addr: Return Address. (line 35)
-* __builtin_ffs: Other Builtins. (line 517)
-* __builtin_ffsl: Other Builtins. (line 540)
-* __builtin_ffsll: Other Builtins. (line 562)
-* __builtin_FILE: Other Builtins. (line 361)
-* __builtin_fpclassify: Other Builtins. (line 6)
-* __builtin_fpclassify <1>: Other Builtins. (line 431)
-* __builtin_frame_address: Return Address. (line 47)
-* __builtin_frob_return_address: Return Address. (line 44)
-* __builtin_FUNCTION: Other Builtins. (line 356)
-* __builtin_huge_val: Other Builtins. (line 419)
-* __builtin_huge_valf: Other Builtins. (line 424)
-* __builtin_huge_vall: Other Builtins. (line 427)
-* __builtin_huge_valq: X86 Built-in Functions.
- (line 57)
-* __builtin_inf: Other Builtins. (line 442)
-* __builtin_infd128: Other Builtins. (line 452)
-* __builtin_infd32: Other Builtins. (line 446)
-* __builtin_infd64: Other Builtins. (line 449)
-* __builtin_inff: Other Builtins. (line 456)
-* __builtin_infl: Other Builtins. (line 461)
-* __builtin_infq: X86 Built-in Functions.
- (line 54)
-* __builtin_isfinite: Other Builtins. (line 6)
-* __builtin_isgreater: Other Builtins. (line 6)
-* __builtin_isgreaterequal: Other Builtins. (line 6)
-* __builtin_isinf_sign: Other Builtins. (line 6)
-* __builtin_isinf_sign <1>: Other Builtins. (line 465)
-* __builtin_isless: Other Builtins. (line 6)
-* __builtin_islessequal: Other Builtins. (line 6)
-* __builtin_islessgreater: Other Builtins. (line 6)
-* __builtin_isnormal: Other Builtins. (line 6)
-* __builtin_isunordered: Other Builtins. (line 6)
-* __builtin_LINE: Other Builtins. (line 350)
-* __builtin_nan: Other Builtins. (line 473)
-* __builtin_nand128: Other Builtins. (line 495)
-* __builtin_nand32: Other Builtins. (line 489)
-* __builtin_nand64: Other Builtins. (line 492)
-* __builtin_nanf: Other Builtins. (line 499)
-* __builtin_nanl: Other Builtins. (line 502)
-* __builtin_nans: Other Builtins. (line 506)
-* __builtin_nansf: Other Builtins. (line 510)
-* __builtin_nansl: Other Builtins. (line 513)
-* __builtin_nds32_isb: NDS32 Built-in Functions.
- (line 12)
-* __builtin_nds32_isync: NDS32 Built-in Functions.
- (line 8)
-* __builtin_nds32_mfsr: NDS32 Built-in Functions.
- (line 15)
-* __builtin_nds32_mfusr: NDS32 Built-in Functions.
- (line 18)
-* __builtin_nds32_mtsr: NDS32 Built-in Functions.
- (line 21)
-* __builtin_nds32_mtusr: NDS32 Built-in Functions.
- (line 24)
-* __builtin_nds32_setgie_dis: NDS32 Built-in Functions.
- (line 30)
-* __builtin_nds32_setgie_en: NDS32 Built-in Functions.
- (line 27)
-* __builtin_non_tx_store: S/390 System z Built-in Functions.
- (line 98)
-* __builtin_object_size: Object Size Checking.
- (line 6)
-* __builtin_object_size <1>: Object Size Checking.
- (line 9)
-* __builtin_offsetof: Offsetof. (line 6)
-* __builtin_parity: Other Builtins. (line 537)
-* __builtin_parityl: Other Builtins. (line 558)
-* __builtin_parityll: Other Builtins. (line 582)
-* __builtin_popcount: Other Builtins. (line 534)
-* __builtin_popcountl: Other Builtins. (line 554)
-* __builtin_popcountll: Other Builtins. (line 578)
-* __builtin_powi: Other Builtins. (line 6)
-* __builtin_powi <1>: Other Builtins. (line 586)
-* __builtin_powif: Other Builtins. (line 6)
-* __builtin_powif <1>: Other Builtins. (line 591)
-* __builtin_powil: Other Builtins. (line 6)
-* __builtin_powil <1>: Other Builtins. (line 595)
-* __builtin_prefetch: Other Builtins. (line 380)
-* __builtin_return: Constructing Calls. (line 47)
-* __builtin_return_address: Return Address. (line 9)
-* __builtin_rx_brk: RX Built-in Functions.
- (line 10)
-* __builtin_rx_clrpsw: RX Built-in Functions.
- (line 13)
-* __builtin_rx_int: RX Built-in Functions.
- (line 17)
-* __builtin_rx_machi: RX Built-in Functions.
- (line 21)
-* __builtin_rx_maclo: RX Built-in Functions.
- (line 26)
-* __builtin_rx_mulhi: RX Built-in Functions.
- (line 31)
-* __builtin_rx_mullo: RX Built-in Functions.
- (line 36)
-* __builtin_rx_mvfachi: RX Built-in Functions.
- (line 41)
-* __builtin_rx_mvfacmi: RX Built-in Functions.
- (line 45)
-* __builtin_rx_mvfc: RX Built-in Functions.
- (line 49)
-* __builtin_rx_mvtachi: RX Built-in Functions.
- (line 53)
-* __builtin_rx_mvtaclo: RX Built-in Functions.
- (line 57)
-* __builtin_rx_mvtc: RX Built-in Functions.
- (line 61)
-* __builtin_rx_mvtipl: RX Built-in Functions.
- (line 65)
-* __builtin_rx_racw: RX Built-in Functions.
- (line 69)
-* __builtin_rx_revw: RX Built-in Functions.
- (line 73)
-* __builtin_rx_rmpa: RX Built-in Functions.
- (line 78)
-* __builtin_rx_round: RX Built-in Functions.
- (line 82)
-* __builtin_rx_sat: RX Built-in Functions.
- (line 87)
-* __builtin_rx_setpsw: RX Built-in Functions.
- (line 91)
-* __builtin_rx_wait: RX Built-in Functions.
- (line 95)
-* __builtin_set_thread_pointer: SH Built-in Functions.
- (line 9)
-* __builtin_tabort: S/390 System z Built-in Functions.
- (line 82)
-* __builtin_tbegin: S/390 System z Built-in Functions.
- (line 6)
-* __builtin_tbeginc: S/390 System z Built-in Functions.
- (line 73)
-* __builtin_tbegin_nofloat: S/390 System z Built-in Functions.
- (line 54)
-* __builtin_tbegin_retry: S/390 System z Built-in Functions.
- (line 60)
-* __builtin_tbegin_retry_nofloat: S/390 System z Built-in Functions.
- (line 67)
-* __builtin_tend: S/390 System z Built-in Functions.
- (line 77)
-* __builtin_thread_pointer: SH Built-in Functions.
- (line 18)
-* __builtin_trap: Other Builtins. (line 276)
-* __builtin_tx_assist: S/390 System z Built-in Functions.
- (line 87)
-* __builtin_tx_nesting_depth: S/390 System z Built-in Functions.
- (line 93)
-* __builtin_types_compatible_p: Other Builtins. (line 109)
-* __builtin_unreachable: Other Builtins. (line 283)
-* __builtin_va_arg_pack: Constructing Calls. (line 52)
-* __builtin_va_arg_pack_len: Constructing Calls. (line 75)
-* __builtin___clear_cache: Other Builtins. (line 367)
-* __builtin___fprintf_chk: Object Size Checking.
- (line 6)
-* __builtin___memcpy_chk: Object Size Checking.
- (line 6)
-* __builtin___memmove_chk: Object Size Checking.
- (line 6)
-* __builtin___mempcpy_chk: Object Size Checking.
- (line 6)
-* __builtin___memset_chk: Object Size Checking.
- (line 6)
-* __builtin___printf_chk: Object Size Checking.
- (line 6)
-* __builtin___snprintf_chk: Object Size Checking.
- (line 6)
-* __builtin___sprintf_chk: Object Size Checking.
- (line 6)
-* __builtin___stpcpy_chk: Object Size Checking.
- (line 6)
-* __builtin___strcat_chk: Object Size Checking.
- (line 6)
-* __builtin___strcpy_chk: Object Size Checking.
- (line 6)
-* __builtin___strncat_chk: Object Size Checking.
- (line 6)
-* __builtin___strncpy_chk: Object Size Checking.
- (line 6)
-* __builtin___vfprintf_chk: Object Size Checking.
- (line 6)
-* __builtin___vprintf_chk: Object Size Checking.
- (line 6)
-* __builtin___vsnprintf_chk: Object Size Checking.
- (line 6)
-* __builtin___vsprintf_chk: Object Size Checking.
- (line 6)
-* '__complex__' keyword: Complex. (line 6)
-* '__declspec(dllexport)': Function Attributes.
- (line 290)
-* '__declspec(dllimport)': Function Attributes.
- (line 323)
-* '__ea' SPU Named Address Spaces: Named Address Spaces.
- (line 155)
-* __extension__: Alternate Keywords. (line 30)
-* '__far' M32C Named Address Spaces: Named Address Spaces.
- (line 138)
-* '__far' RL78 Named Address Spaces: Named Address Spaces.
- (line 147)
-* '__flash' AVR Named Address Spaces: Named Address Spaces.
- (line 31)
-* '__flash1' AVR Named Address Spaces: Named Address Spaces.
- (line 40)
-* '__flash2' AVR Named Address Spaces: Named Address Spaces.
- (line 40)
-* '__flash3' AVR Named Address Spaces: Named Address Spaces.
- (line 40)
-* '__flash4' AVR Named Address Spaces: Named Address Spaces.
- (line 40)
-* '__flash5' AVR Named Address Spaces: Named Address Spaces.
- (line 40)
-* '__float128' data type: Floating Types. (line 6)
-* '__float80' data type: Floating Types. (line 6)
-* '__fp16' data type: Half-Precision. (line 6)
-* '__FUNCTION__' identifier: Function Names. (line 6)
-* '__func__' identifier: Function Names. (line 6)
-* '__imag__' keyword: Complex. (line 27)
-* '__int128' data types: __int128. (line 6)
-* '__memx' AVR Named Address Spaces: Named Address Spaces.
- (line 46)
-* '__PRETTY_FUNCTION__' identifier: Function Names. (line 6)
-* '__real__' keyword: Complex. (line 27)
-* __STDC_HOSTED__: Standards. (line 13)
-* __sync_add_and_fetch: __sync Builtins. (line 60)
-* __sync_and_and_fetch: __sync Builtins. (line 60)
-* __sync_bool_compare_and_swap: __sync Builtins. (line 71)
-* __sync_fetch_and_add: __sync Builtins. (line 44)
-* __sync_fetch_and_and: __sync Builtins. (line 44)
-* __sync_fetch_and_nand: __sync Builtins. (line 44)
-* __sync_fetch_and_or: __sync Builtins. (line 44)
-* __sync_fetch_and_sub: __sync Builtins. (line 44)
-* __sync_fetch_and_xor: __sync Builtins. (line 44)
-* __sync_lock_release: __sync Builtins. (line 101)
-* __sync_lock_test_and_set: __sync Builtins. (line 83)
-* __sync_nand_and_fetch: __sync Builtins. (line 60)
-* __sync_or_and_fetch: __sync Builtins. (line 60)
-* __sync_sub_and_fetch: __sync Builtins. (line 60)
-* __sync_synchronize: __sync Builtins. (line 80)
-* __sync_val_compare_and_swap: __sync Builtins. (line 71)
-* __sync_xor_and_fetch: __sync Builtins. (line 60)
-* '__thread': Thread-Local. (line 6)
-* AArch64 Options: AArch64 Options. (line 6)
-* ABI: Compatibility. (line 6)
-* 'abi_tag' attribute: C++ Attributes. (line 9)
-* abort: Other Builtins. (line 6)
-* abs: Other Builtins. (line 6)
-* accessing volatiles: Volatiles. (line 6)
-* accessing volatiles <1>: C++ Volatiles. (line 6)
-* acos: Other Builtins. (line 6)
-* acosf: Other Builtins. (line 6)
-* acosh: Other Builtins. (line 6)
-* acoshf: Other Builtins. (line 6)
-* acoshl: Other Builtins. (line 6)
-* acosl: Other Builtins. (line 6)
-* Ada: G++ and GCC. (line 6)
-* Ada <1>: G++ and GCC. (line 30)
-* additional floating types: Floating Types. (line 6)
-* address constraints: Simple Constraints. (line 152)
-* address of a label: Labels as Values. (line 6)
-* address_operand: Simple Constraints. (line 156)
-* 'alias' attribute: Function Attributes.
- (line 39)
-* 'aligned' attribute: Function Attributes.
- (line 52)
-* 'aligned' attribute <1>: Variable Attributes.
- (line 23)
-* 'aligned' attribute <2>: Type Attributes. (line 31)
-* alignment: Alignment. (line 6)
-* alloca: Other Builtins. (line 6)
-* 'alloca' vs variable-length arrays: Variable Length. (line 35)
-* 'alloc_align' attribute: Function Attributes.
- (line 93)
-* 'alloc_size' attribute: Function Attributes.
- (line 72)
-* Allow nesting in an interrupt handler on the Blackfin processor.: Function Attributes.
- (line 1068)
-* Altera Nios II options: Nios II Options. (line 6)
-* alternate keywords: Alternate Keywords. (line 6)
-* 'always_inline' function attribute: Function Attributes.
- (line 125)
-* AMD x86-64 Options: i386 and x86-64 Options.
- (line 6)
-* AMD1: Standards. (line 13)
-* ANSI C: Standards. (line 13)
-* ANSI C standard: Standards. (line 13)
-* ANSI C89: Standards. (line 13)
-* ANSI support: C Dialect Options. (line 10)
-* ANSI X3.159-1989: Standards. (line 13)
-* apostrophes: Incompatibilities. (line 116)
-* application binary interface: Compatibility. (line 6)
-* ARC options: ARC Options. (line 6)
-* ARM options: ARM Options. (line 6)
-* ARM [Annotated C++ Reference Manual]: Backwards Compatibility.
- (line 6)
-* arrays of length zero: Zero Length. (line 6)
-* arrays of variable length: Variable Length. (line 6)
-* arrays, non-lvalue: Subscripting. (line 6)
-* 'artificial' function attribute: Function Attributes.
- (line 166)
-* asin: Other Builtins. (line 6)
-* asinf: Other Builtins. (line 6)
-* asinh: Other Builtins. (line 6)
-* asinhf: Other Builtins. (line 6)
-* asinhl: Other Builtins. (line 6)
-* asinl: Other Builtins. (line 6)
-* 'asm' constraints: Constraints. (line 6)
-* 'asm' expressions: Extended Asm. (line 6)
-* assembler instructions: Extended Asm. (line 6)
-* assembler names for identifiers: Asm Labels. (line 6)
-* assembly code, invalid: Bug Criteria. (line 12)
-* 'assume_aligned' attribute: Function Attributes.
- (line 110)
-* atan: Other Builtins. (line 6)
-* atan2: Other Builtins. (line 6)
-* atan2f: Other Builtins. (line 6)
-* atan2l: Other Builtins. (line 6)
-* atanf: Other Builtins. (line 6)
-* atanh: Other Builtins. (line 6)
-* atanhf: Other Builtins. (line 6)
-* atanhl: Other Builtins. (line 6)
-* atanl: Other Builtins. (line 6)
-* attribute of types: Type Attributes. (line 6)
-* attribute of variables: Variable Attributes.
- (line 6)
-* attribute syntax: Attribute Syntax. (line 6)
-* autoincrement/decrement addressing: Simple Constraints. (line 30)
-* automatic 'inline' for C++ member fns: Inline. (line 71)
-* AVR Options: AVR Options. (line 6)
-* Backwards Compatibility: Backwards Compatibility.
- (line 6)
-* base class members: Name lookup. (line 6)
-* bcmp: Other Builtins. (line 6)
-* 'below100' attribute: Variable Attributes.
- (line 578)
-* binary compatibility: Compatibility. (line 6)
-* Binary constants using the '0b' prefix: Binary constants. (line 6)
-* Blackfin Options: Blackfin Options. (line 6)
-* bound pointer to member function: Bound member functions.
- (line 6)
-* bug criteria: Bug Criteria. (line 6)
-* bugs: Bugs. (line 6)
-* bugs, known: Trouble. (line 6)
-* built-in functions: C Dialect Options. (line 210)
-* built-in functions <1>: Other Builtins. (line 6)
-* bzero: Other Builtins. (line 6)
-* C compilation options: Invoking GCC. (line 17)
-* C intermediate output, nonexistent: G++ and GCC. (line 35)
-* C language extensions: C Extensions. (line 6)
-* C language, traditional: C Dialect Options. (line 331)
-* C standard: Standards. (line 13)
-* C standards: Standards. (line 13)
-* c++: Invoking G++. (line 14)
-* C++: G++ and GCC. (line 30)
-* C++ comments: C++ Comments. (line 6)
-* C++ compilation options: Invoking GCC. (line 23)
-* C++ interface and implementation headers: C++ Interface. (line 6)
-* C++ language extensions: C++ Extensions. (line 6)
-* C++ member fns, automatically 'inline': Inline. (line 71)
-* C++ misunderstandings: C++ Misunderstandings.
- (line 6)
-* C++ options, command-line: C++ Dialect Options.
- (line 6)
-* C++ pragmas, effect on inlining: C++ Interface. (line 66)
-* C++ source file suffixes: Invoking G++. (line 6)
-* C++ static data, declaring and defining: Static Definitions.
- (line 6)
-* C11: Standards. (line 13)
-* C1X: Standards. (line 13)
-* C6X Options: C6X Options. (line 6)
-* C89: Standards. (line 13)
-* C90: Standards. (line 13)
-* C94: Standards. (line 13)
-* C95: Standards. (line 13)
-* C99: Standards. (line 13)
-* C9X: Standards. (line 13)
-* cabs: Other Builtins. (line 6)
-* cabsf: Other Builtins. (line 6)
-* cabsl: Other Builtins. (line 6)
-* cacos: Other Builtins. (line 6)
-* cacosf: Other Builtins. (line 6)
-* cacosh: Other Builtins. (line 6)
-* cacoshf: Other Builtins. (line 6)
-* cacoshl: Other Builtins. (line 6)
-* cacosl: Other Builtins. (line 6)
-* 'callee_pop_aggregate_return' attribute: Function Attributes.
- (line 1016)
-* calling functions through the function vector on H8/300, M16C, M32C and SH2A processors: Function Attributes.
- (line 564)
-* calloc: Other Builtins. (line 6)
-* caret GCC_COLORS capability: Language Independent Options.
- (line 76)
-* carg: Other Builtins. (line 6)
-* cargf: Other Builtins. (line 6)
-* cargl: Other Builtins. (line 6)
-* case labels in initializers: Designated Inits. (line 6)
-* case ranges: Case Ranges. (line 6)
-* casin: Other Builtins. (line 6)
-* casinf: Other Builtins. (line 6)
-* casinh: Other Builtins. (line 6)
-* casinhf: Other Builtins. (line 6)
-* casinhl: Other Builtins. (line 6)
-* casinl: Other Builtins. (line 6)
-* cast to a union: Cast to Union. (line 6)
-* catan: Other Builtins. (line 6)
-* catanf: Other Builtins. (line 6)
-* catanh: Other Builtins. (line 6)
-* catanhf: Other Builtins. (line 6)
-* catanhl: Other Builtins. (line 6)
-* catanl: Other Builtins. (line 6)
-* cbrt: Other Builtins. (line 6)
-* cbrtf: Other Builtins. (line 6)
-* cbrtl: Other Builtins. (line 6)
-* ccos: Other Builtins. (line 6)
-* ccosf: Other Builtins. (line 6)
-* ccosh: Other Builtins. (line 6)
-* ccoshf: Other Builtins. (line 6)
-* ccoshl: Other Builtins. (line 6)
-* ccosl: Other Builtins. (line 6)
-* ceil: Other Builtins. (line 6)
-* ceilf: Other Builtins. (line 6)
-* ceill: Other Builtins. (line 6)
-* cexp: Other Builtins. (line 6)
-* cexpf: Other Builtins. (line 6)
-* cexpl: Other Builtins. (line 6)
-* character set, execution: Preprocessor Options.
- (line 554)
-* character set, input: Preprocessor Options.
- (line 567)
-* character set, input normalization: Warning Options. (line 1289)
-* character set, wide execution: Preprocessor Options.
- (line 559)
-* cimag: Other Builtins. (line 6)
-* cimagf: Other Builtins. (line 6)
-* cimagl: Other Builtins. (line 6)
-* 'cleanup' attribute: Variable Attributes.
- (line 89)
-* clog: Other Builtins. (line 6)
-* clogf: Other Builtins. (line 6)
-* clogl: Other Builtins. (line 6)
-* COBOL: G++ and GCC. (line 23)
-* code generation conventions: Code Gen Options. (line 6)
-* code, mixed with declarations: Mixed Declarations. (line 6)
-* 'cold' function attribute: Function Attributes.
- (line 1307)
-* 'cold' label attribute: Function Attributes.
- (line 1325)
-* command options: Invoking GCC. (line 6)
-* comments, C++ style: C++ Comments. (line 6)
-* 'common' attribute: Variable Attributes.
- (line 104)
-* comparison of signed and unsigned values, warning: Warning Options.
- (line 1155)
-* compiler bugs, reporting: Bug Reporting. (line 6)
-* compiler compared to C++ preprocessor: G++ and GCC. (line 35)
-* compiler options, C++: C++ Dialect Options.
- (line 6)
-* compiler options, Objective-C and Objective-C++: Objective-C and Objective-C++ Dialect Options.
- (line 6)
-* compiler version, specifying: Target Options. (line 6)
-* COMPILER_PATH: Environment Variables.
- (line 91)
-* complex conjugation: Complex. (line 34)
-* complex numbers: Complex. (line 6)
-* compound literals: Compound Literals. (line 6)
-* computed gotos: Labels as Values. (line 6)
-* conditional expressions, extensions: Conditionals. (line 6)
-* conflicting types: Disappointments. (line 21)
-* conj: Other Builtins. (line 6)
-* conjf: Other Builtins. (line 6)
-* conjl: Other Builtins. (line 6)
-* 'const' applied to function: Function Attributes.
- (line 6)
-* 'const' function attribute: Function Attributes.
- (line 215)
-* constants in constraints: Simple Constraints. (line 68)
-* constraint modifier characters: Modifiers. (line 6)
-* constraint, matching: Simple Constraints. (line 137)
-* constraints, 'asm': Constraints. (line 6)
-* constraints, machine specific: Machine Constraints.
- (line 6)
-* constructing calls: Constructing Calls. (line 6)
-* constructor expressions: Compound Literals. (line 6)
-* 'constructor' function attribute: Function Attributes.
- (line 243)
-* contributors: Contributors. (line 6)
-* copysign: Other Builtins. (line 6)
-* copysignf: Other Builtins. (line 6)
-* copysignl: Other Builtins. (line 6)
-* core dump: Bug Criteria. (line 9)
-* cos: Other Builtins. (line 6)
-* cosf: Other Builtins. (line 6)
-* cosh: Other Builtins. (line 6)
-* coshf: Other Builtins. (line 6)
-* coshl: Other Builtins. (line 6)
-* cosl: Other Builtins. (line 6)
-* CPATH: Environment Variables.
- (line 127)
-* CPLUS_INCLUDE_PATH: Environment Variables.
- (line 129)
-* cpow: Other Builtins. (line 6)
-* cpowf: Other Builtins. (line 6)
-* cpowl: Other Builtins. (line 6)
-* cproj: Other Builtins. (line 6)
-* cprojf: Other Builtins. (line 6)
-* cprojl: Other Builtins. (line 6)
-* CR16 Options: CR16 Options. (line 6)
-* creal: Other Builtins. (line 6)
-* crealf: Other Builtins. (line 6)
-* creall: Other Builtins. (line 6)
-* CRIS Options: CRIS Options. (line 6)
-* 'critical' attribute: Function Attributes.
- (line 717)
-* cross compiling: Target Options. (line 6)
-* csin: Other Builtins. (line 6)
-* csinf: Other Builtins. (line 6)
-* csinh: Other Builtins. (line 6)
-* csinhf: Other Builtins. (line 6)
-* csinhl: Other Builtins. (line 6)
-* csinl: Other Builtins. (line 6)
-* csqrt: Other Builtins. (line 6)
-* csqrtf: Other Builtins. (line 6)
-* csqrtl: Other Builtins. (line 6)
-* ctan: Other Builtins. (line 6)
-* ctanf: Other Builtins. (line 6)
-* ctanh: Other Builtins. (line 6)
-* ctanhf: Other Builtins. (line 6)
-* ctanhl: Other Builtins. (line 6)
-* ctanl: Other Builtins. (line 6)
-* C_INCLUDE_PATH: Environment Variables.
- (line 128)
-* Darwin options: Darwin Options. (line 6)
-* dcgettext: Other Builtins. (line 6)
-* 'dd' integer suffix: Decimal Float. (line 6)
-* 'DD' integer suffix: Decimal Float. (line 6)
-* deallocating variable length arrays: Variable Length. (line 22)
-* debugging information options: Debugging Options. (line 6)
-* decimal floating types: Decimal Float. (line 6)
-* declaration scope: Incompatibilities. (line 80)
-* declarations inside expressions: Statement Exprs. (line 6)
-* declarations, mixed with code: Mixed Declarations. (line 6)
-* declaring attributes of functions: Function Attributes.
- (line 6)
-* declaring static data in C++: Static Definitions. (line 6)
-* defining static data in C++: Static Definitions. (line 6)
-* dependencies for make as output: Environment Variables.
- (line 155)
-* dependencies for make as output <1>: Environment Variables.
- (line 171)
-* dependencies, 'make': Preprocessor Options.
- (line 185)
-* DEPENDENCIES_OUTPUT: Environment Variables.
- (line 154)
-* dependent name lookup: Name lookup. (line 6)
-* 'deprecated' attribute: Variable Attributes.
- (line 113)
-* 'deprecated' attribute.: Function Attributes.
- (line 265)
-* designated initializers: Designated Inits. (line 6)
-* designator lists: Designated Inits. (line 96)
-* designators: Designated Inits. (line 64)
-* 'destructor' function attribute: Function Attributes.
- (line 243)
-* 'df' integer suffix: Decimal Float. (line 6)
-* 'DF' integer suffix: Decimal Float. (line 6)
-* dgettext: Other Builtins. (line 6)
-* diagnostic messages: Language Independent Options.
- (line 6)
-* dialect options: C Dialect Options. (line 6)
-* digits in constraint: Simple Constraints. (line 125)
-* directory options: Directory Options. (line 6)
-* 'disinterrupt' attribute: Function Attributes.
- (line 285)
-* 'dl' integer suffix: Decimal Float. (line 6)
-* 'DL' integer suffix: Decimal Float. (line 6)
-* dollar signs in identifier names: Dollar Signs. (line 6)
-* double-word arithmetic: Long Long. (line 6)
-* downward funargs: Nested Functions. (line 6)
-* drem: Other Builtins. (line 6)
-* dremf: Other Builtins. (line 6)
-* dreml: Other Builtins. (line 6)
-* 'E' in constraint: Simple Constraints. (line 87)
-* earlyclobber operand: Modifiers. (line 25)
-* eight-bit data on the H8/300, H8/300H, and H8S: Function Attributes.
- (line 375)
-* 'EIND': AVR Options. (line 222)
-* empty structures: Empty Structures. (line 6)
-* Enable Cilk Plus: C Dialect Options. (line 276)
-* environment variables: Environment Variables.
- (line 6)
-* erf: Other Builtins. (line 6)
-* erfc: Other Builtins. (line 6)
-* erfcf: Other Builtins. (line 6)
-* erfcl: Other Builtins. (line 6)
-* erff: Other Builtins. (line 6)
-* erfl: Other Builtins. (line 6)
-* 'error' function attribute: Function Attributes.
- (line 185)
-* error GCC_COLORS capability: Language Independent Options.
- (line 67)
-* error messages: Warnings and Errors.
- (line 6)
-* escaped newlines: Escaped Newlines. (line 6)
-* exception handler functions: Function Attributes.
- (line 385)
-* exception handler functions on the Blackfin processor: Function Attributes.
- (line 390)
-* exclamation point: Multi-Alternative. (line 33)
-* exit: Other Builtins. (line 6)
-* exp: Other Builtins. (line 6)
-* exp10: Other Builtins. (line 6)
-* exp10f: Other Builtins. (line 6)
-* exp10l: Other Builtins. (line 6)
-* exp2: Other Builtins. (line 6)
-* exp2f: Other Builtins. (line 6)
-* exp2l: Other Builtins. (line 6)
-* expf: Other Builtins. (line 6)
-* expl: Other Builtins. (line 6)
-* explicit register variables: Explicit Reg Vars. (line 6)
-* expm1: Other Builtins. (line 6)
-* expm1f: Other Builtins. (line 6)
-* expm1l: Other Builtins. (line 6)
-* expressions containing statements: Statement Exprs. (line 6)
-* expressions, constructor: Compound Literals. (line 6)
-* extended 'asm': Extended Asm. (line 6)
-* extensible constraints: Simple Constraints. (line 161)
-* extensions, '?:': Conditionals. (line 6)
-* extensions, C language: C Extensions. (line 6)
-* extensions, C++ language: C++ Extensions. (line 6)
-* external declaration scope: Incompatibilities. (line 80)
-* 'externally_visible' attribute.: Function Attributes.
- (line 396)
-* 'F' in constraint: Simple Constraints. (line 92)
-* fabs: Other Builtins. (line 6)
-* fabsf: Other Builtins. (line 6)
-* fabsl: Other Builtins. (line 6)
-* fatal signal: Bug Criteria. (line 9)
-* fdim: Other Builtins. (line 6)
-* fdimf: Other Builtins. (line 6)
-* fdiml: Other Builtins. (line 6)
-* FDL, GNU Free Documentation License: GNU Free Documentation License.
- (line 6)
-* ffs: Other Builtins. (line 6)
-* file name suffix: Overall Options. (line 14)
-* file names: Link Options. (line 10)
-* fixed-point types: Fixed-Point. (line 6)
-* 'flatten' function attribute: Function Attributes.
- (line 178)
-* flexible array members: Zero Length. (line 6)
-* 'float' as function value type: Incompatibilities. (line 141)
-* floating point precision: Disappointments. (line 68)
-* floating-point precision: Optimize Options. (line 1917)
-* floor: Other Builtins. (line 6)
-* floorf: Other Builtins. (line 6)
-* floorl: Other Builtins. (line 6)
-* fma: Other Builtins. (line 6)
-* fmaf: Other Builtins. (line 6)
-* fmal: Other Builtins. (line 6)
-* fmax: Other Builtins. (line 6)
-* fmaxf: Other Builtins. (line 6)
-* fmaxl: Other Builtins. (line 6)
-* fmin: Other Builtins. (line 6)
-* fminf: Other Builtins. (line 6)
-* fminl: Other Builtins. (line 6)
-* fmod: Other Builtins. (line 6)
-* fmodf: Other Builtins. (line 6)
-* fmodl: Other Builtins. (line 6)
-* 'force_align_arg_pointer' attribute: Function Attributes.
- (line 1384)
-* 'format' function attribute: Function Attributes.
- (line 453)
-* 'format_arg' function attribute: Function Attributes.
- (line 518)
-* Fortran: G++ and GCC. (line 6)
-* 'forwarder_section' attribute: Function Attributes.
- (line 756)
-* forwarding calls: Constructing Calls. (line 6)
-* fprintf: Other Builtins. (line 6)
-* fprintf_unlocked: Other Builtins. (line 6)
-* fputs: Other Builtins. (line 6)
-* fputs_unlocked: Other Builtins. (line 6)
-* FR30 Options: FR30 Options. (line 6)
-* freestanding environment: Standards. (line 13)
-* freestanding implementation: Standards. (line 13)
-* frexp: Other Builtins. (line 6)
-* frexpf: Other Builtins. (line 6)
-* frexpl: Other Builtins. (line 6)
-* FRV Options: FRV Options. (line 6)
-* fscanf: Other Builtins. (line 6)
-* 'fscanf', and constant strings: Incompatibilities. (line 17)
-* function addressability on the M32R/D: Function Attributes.
- (line 974)
-* function attributes: Function Attributes.
- (line 6)
-* function pointers, arithmetic: Pointer Arith. (line 6)
-* function prototype declarations: Function Prototypes.
- (line 6)
-* function versions: Function Multiversioning.
- (line 6)
-* function without a prologue/epilogue code: Function Attributes.
- (line 1046)
-* function, size of pointer to: Pointer Arith. (line 6)
-* functions called via pointer on the RS/6000 and PowerPC: Function Attributes.
- (line 911)
-* functions in arbitrary sections: Function Attributes.
- (line 6)
-* functions that are dynamically resolved: Function Attributes.
- (line 6)
-* functions that are passed arguments in registers on the 386: Function Attributes.
- (line 6)
-* functions that are passed arguments in registers on the 386 <1>: Function Attributes.
- (line 1349)
-* functions that behave like malloc: Function Attributes.
- (line 6)
-* functions that do not handle memory bank switching on 68HC11/68HC12: Function Attributes.
- (line 1058)
-* functions that do not pop the argument stack on the 386: Function Attributes.
- (line 6)
-* functions that do pop the argument stack on the 386: Function Attributes.
- (line 209)
-* functions that handle memory bank switching: Function Attributes.
- (line 409)
-* functions that have different compilation options on the 386: Function Attributes.
- (line 6)
-* functions that have different optimization options: Function Attributes.
- (line 6)
-* functions that have no side effects: Function Attributes.
- (line 6)
-* functions that never return: Function Attributes.
- (line 6)
-* functions that pop the argument stack on the 386: Function Attributes.
- (line 6)
-* functions that pop the argument stack on the 386 <1>: Function Attributes.
- (line 435)
-* functions that pop the argument stack on the 386 <2>: Function Attributes.
- (line 443)
-* functions that pop the argument stack on the 386 <3>: Function Attributes.
- (line 1507)
-* functions that return more than once: Function Attributes.
- (line 6)
-* functions with non-null pointer arguments: Function Attributes.
- (line 6)
-* functions with 'printf', 'scanf', 'strftime' or 'strfmon' style arguments: Function Attributes.
- (line 6)
-* 'G' in constraint: Simple Constraints. (line 96)
-* 'g' in constraint: Simple Constraints. (line 118)
-* g++: Invoking G++. (line 14)
-* G++: G++ and GCC. (line 30)
-* gamma: Other Builtins. (line 6)
-* gammaf: Other Builtins. (line 6)
-* gammaf_r: Other Builtins. (line 6)
-* gammal: Other Builtins. (line 6)
-* gammal_r: Other Builtins. (line 6)
-* gamma_r: Other Builtins. (line 6)
-* GCC: G++ and GCC. (line 6)
-* GCC command options: Invoking GCC. (line 6)
-* GCC_COLORS environment variable: Language Independent Options.
- (line 35)
-* GCC_COMPARE_DEBUG: Environment Variables.
- (line 52)
-* GCC_EXEC_PREFIX: Environment Variables.
- (line 57)
-* 'gcc_struct': Type Attributes. (line 323)
-* 'gcc_struct' attribute: Variable Attributes.
- (line 438)
-* 'gcov': Debugging Options. (line 490)
-* gettext: Other Builtins. (line 6)
-* global offset table: Code Gen Options. (line 278)
-* global register after 'longjmp': Global Reg Vars. (line 65)
-* global register variables: Global Reg Vars. (line 6)
-* GNAT: G++ and GCC. (line 30)
-* GNU C Compiler: G++ and GCC. (line 6)
-* GNU Compiler Collection: G++ and GCC. (line 6)
-* 'gnu_inline' function attribute: Function Attributes.
- (line 130)
-* Go: G++ and GCC. (line 6)
-* goto with computed label: Labels as Values. (line 6)
-* 'gprof': Debugging Options. (line 415)
-* grouping options: Invoking GCC. (line 26)
-* 'H' in constraint: Simple Constraints. (line 96)
-* half-precision floating point: Half-Precision. (line 6)
-* hardware models and configurations, specifying: Submodel Options.
- (line 6)
-* hex floats: Hex Floats. (line 6)
-* highlight, color, colour: Language Independent Options.
- (line 35)
-* 'hk' fixed-suffix: Fixed-Point. (line 6)
-* 'HK' fixed-suffix: Fixed-Point. (line 6)
-* hosted environment: Standards. (line 13)
-* hosted environment <1>: C Dialect Options. (line 244)
-* hosted environment <2>: C Dialect Options. (line 252)
-* hosted implementation: Standards. (line 13)
-* 'hot' function attribute: Function Attributes.
- (line 1285)
-* 'hot' label attribute: Function Attributes.
- (line 1297)
-* 'hotpatch' attribute: Function Attributes.
- (line 1037)
-* HPPA Options: HPPA Options. (line 6)
-* 'hr' fixed-suffix: Fixed-Point. (line 6)
-* 'HR' fixed-suffix: Fixed-Point. (line 6)
-* hypot: Other Builtins. (line 6)
-* hypotf: Other Builtins. (line 6)
-* hypotl: Other Builtins. (line 6)
-* 'i' in constraint: Simple Constraints. (line 68)
-* 'I' in constraint: Simple Constraints. (line 79)
-* i386 and x86-64 Windows Options: i386 and x86-64 Windows Options.
- (line 6)
-* i386 Options: i386 and x86-64 Options.
- (line 6)
-* IA-64 Options: IA-64 Options. (line 6)
-* IBM RS/6000 and PowerPC Options: RS/6000 and PowerPC Options.
- (line 6)
-* identifier names, dollar signs in: Dollar Signs. (line 6)
-* identifiers, names in assembler code: Asm Labels. (line 6)
-* 'ifunc' attribute: Function Attributes.
- (line 625)
-* ilogb: Other Builtins. (line 6)
-* ilogbf: Other Builtins. (line 6)
-* ilogbl: Other Builtins. (line 6)
-* imaxabs: Other Builtins. (line 6)
-* implementation-defined behavior, C language: C Implementation.
- (line 6)
-* implementation-defined behavior, C++ language: C++ Implementation.
- (line 6)
-* implied '#pragma implementation': C++ Interface. (line 46)
-* incompatibilities of GCC: Incompatibilities. (line 6)
-* increment operators: Bug Criteria. (line 17)
-* index: Other Builtins. (line 6)
-* indirect calls on ARC: Function Attributes.
- (line 888)
-* indirect calls on ARM: Function Attributes.
- (line 888)
-* indirect calls on Epiphany: Function Attributes.
- (line 888)
-* indirect calls on MIPS: Function Attributes.
- (line 923)
-* initializations in expressions: Compound Literals. (line 6)
-* initializers with labeled elements: Designated Inits. (line 6)
-* initializers, non-constant: Initializers. (line 6)
-* 'init_priority' attribute: C++ Attributes. (line 35)
-* 'inline' automatic for C++ member fns: Inline. (line 71)
-* inline functions: Inline. (line 6)
-* inline functions, omission of: Inline. (line 51)
-* inlining and C++ pragmas: C++ Interface. (line 66)
-* installation trouble: Trouble. (line 6)
-* integrating function code: Inline. (line 6)
-* Intel 386 Options: i386 and x86-64 Options.
- (line 6)
-* interface and implementation headers, C++: C++ Interface. (line 6)
-* intermediate C version, nonexistent: G++ and GCC. (line 35)
-* interrupt handler functions: Function Attributes.
- (line 173)
-* interrupt handler functions <1>: Function Attributes.
- (line 429)
-* interrupt handler functions <2>: Function Attributes.
- (line 665)
-* interrupt handler functions on the AVR processors: Function Attributes.
- (line 1479)
-* interrupt handler functions on the Blackfin, m68k, H8/300 and SH processors: Function Attributes.
- (line 826)
-* interrupt service routines on ARM: Function Attributes.
- (line 840)
-* interrupt thread functions on fido: Function Attributes.
- (line 832)
-* introduction: Top. (line 6)
-* invalid assembly code: Bug Criteria. (line 12)
-* invalid input: Bug Criteria. (line 42)
-* invoking 'g++': Invoking G++. (line 22)
-* isalnum: Other Builtins. (line 6)
-* isalpha: Other Builtins. (line 6)
-* isascii: Other Builtins. (line 6)
-* isblank: Other Builtins. (line 6)
-* iscntrl: Other Builtins. (line 6)
-* isdigit: Other Builtins. (line 6)
-* isgraph: Other Builtins. (line 6)
-* islower: Other Builtins. (line 6)
-* ISO 9899: Standards. (line 13)
-* ISO C: Standards. (line 13)
-* ISO C standard: Standards. (line 13)
-* ISO C11: Standards. (line 13)
-* ISO C1X: Standards. (line 13)
-* ISO C90: Standards. (line 13)
-* ISO C94: Standards. (line 13)
-* ISO C95: Standards. (line 13)
-* ISO C99: Standards. (line 13)
-* ISO C9X: Standards. (line 13)
-* ISO support: C Dialect Options. (line 10)
-* ISO/IEC 9899: Standards. (line 13)
-* isprint: Other Builtins. (line 6)
-* ispunct: Other Builtins. (line 6)
-* isspace: Other Builtins. (line 6)
-* isupper: Other Builtins. (line 6)
-* iswalnum: Other Builtins. (line 6)
-* iswalpha: Other Builtins. (line 6)
-* iswblank: Other Builtins. (line 6)
-* iswcntrl: Other Builtins. (line 6)
-* iswdigit: Other Builtins. (line 6)
-* iswgraph: Other Builtins. (line 6)
-* iswlower: Other Builtins. (line 6)
-* iswprint: Other Builtins. (line 6)
-* iswpunct: Other Builtins. (line 6)
-* iswspace: Other Builtins. (line 6)
-* iswupper: Other Builtins. (line 6)
-* iswxdigit: Other Builtins. (line 6)
-* isxdigit: Other Builtins. (line 6)
-* j0: Other Builtins. (line 6)
-* j0f: Other Builtins. (line 6)
-* j0l: Other Builtins. (line 6)
-* j1: Other Builtins. (line 6)
-* j1f: Other Builtins. (line 6)
-* j1l: Other Builtins. (line 6)
-* Java: G++ and GCC. (line 6)
-* 'java_interface' attribute: C++ Attributes. (line 56)
-* jn: Other Builtins. (line 6)
-* jnf: Other Builtins. (line 6)
-* jnl: Other Builtins. (line 6)
-* 'k' fixed-suffix: Fixed-Point. (line 6)
-* 'K' fixed-suffix: Fixed-Point. (line 6)
-* 'keep_interrupts_masked' attribute: Function Attributes.
- (line 778)
-* keywords, alternate: Alternate Keywords. (line 6)
-* known causes of trouble: Trouble. (line 6)
-* 'l1_data' variable attribute: Variable Attributes.
- (line 352)
-* 'l1_data_A' variable attribute: Variable Attributes.
- (line 352)
-* 'l1_data_B' variable attribute: Variable Attributes.
- (line 352)
-* 'l1_text' function attribute: Function Attributes.
- (line 849)
-* 'l2' function attribute: Function Attributes.
- (line 855)
-* 'l2' variable attribute: Variable Attributes.
- (line 360)
-* labeled elements in initializers: Designated Inits. (line 6)
-* labels as values: Labels as Values. (line 6)
-* labs: Other Builtins. (line 6)
-* LANG: Environment Variables.
- (line 21)
-* LANG <1>: Environment Variables.
- (line 106)
-* language dialect options: C Dialect Options. (line 6)
-* LC_ALL: Environment Variables.
- (line 21)
-* LC_CTYPE: Environment Variables.
- (line 21)
-* LC_MESSAGES: Environment Variables.
- (line 21)
-* ldexp: Other Builtins. (line 6)
-* ldexpf: Other Builtins. (line 6)
-* ldexpl: Other Builtins. (line 6)
-* 'leaf' function attribute: Function Attributes.
- (line 861)
-* length-zero arrays: Zero Length. (line 6)
-* lgamma: Other Builtins. (line 6)
-* lgammaf: Other Builtins. (line 6)
-* lgammaf_r: Other Builtins. (line 6)
-* lgammal: Other Builtins. (line 6)
-* lgammal_r: Other Builtins. (line 6)
-* lgamma_r: Other Builtins. (line 6)
-* Libraries: Link Options. (line 24)
-* LIBRARY_PATH: Environment Variables.
- (line 97)
-* link options: Link Options. (line 6)
-* linker script: Link Options. (line 213)
-* 'lk' fixed-suffix: Fixed-Point. (line 6)
-* 'LK' fixed-suffix: Fixed-Point. (line 6)
-* 'LL' integer suffix: Long Long. (line 6)
-* llabs: Other Builtins. (line 6)
-* 'llk' fixed-suffix: Fixed-Point. (line 6)
-* 'LLK' fixed-suffix: Fixed-Point. (line 6)
-* 'llr' fixed-suffix: Fixed-Point. (line 6)
-* 'LLR' fixed-suffix: Fixed-Point. (line 6)
-* llrint: Other Builtins. (line 6)
-* llrintf: Other Builtins. (line 6)
-* llrintl: Other Builtins. (line 6)
-* llround: Other Builtins. (line 6)
-* llroundf: Other Builtins. (line 6)
-* llroundl: Other Builtins. (line 6)
-* LM32 options: LM32 Options. (line 6)
-* load address instruction: Simple Constraints. (line 152)
-* local labels: Local Labels. (line 6)
-* local variables in macros: Typeof. (line 46)
-* local variables, specifying registers: Local Reg Vars. (line 6)
-* locale: Environment Variables.
- (line 21)
-* locale definition: Environment Variables.
- (line 106)
-* locus GCC_COLORS capability: Language Independent Options.
- (line 79)
-* log: Other Builtins. (line 6)
-* log10: Other Builtins. (line 6)
-* log10f: Other Builtins. (line 6)
-* log10l: Other Builtins. (line 6)
-* log1p: Other Builtins. (line 6)
-* log1pf: Other Builtins. (line 6)
-* log1pl: Other Builtins. (line 6)
-* log2: Other Builtins. (line 6)
-* log2f: Other Builtins. (line 6)
-* log2l: Other Builtins. (line 6)
-* logb: Other Builtins. (line 6)
-* logbf: Other Builtins. (line 6)
-* logbl: Other Builtins. (line 6)
-* logf: Other Builtins. (line 6)
-* logl: Other Builtins. (line 6)
-* 'long long' data types: Long Long. (line 6)
-* longjmp: Global Reg Vars. (line 65)
-* 'longjmp' incompatibilities: Incompatibilities. (line 39)
-* 'longjmp' warnings: Warning Options. (line 666)
-* 'lr' fixed-suffix: Fixed-Point. (line 6)
-* 'LR' fixed-suffix: Fixed-Point. (line 6)
-* lrint: Other Builtins. (line 6)
-* lrintf: Other Builtins. (line 6)
-* lrintl: Other Builtins. (line 6)
-* lround: Other Builtins. (line 6)
-* lroundf: Other Builtins. (line 6)
-* lroundl: Other Builtins. (line 6)
-* 'm' in constraint: Simple Constraints. (line 17)
-* M32C options: M32C Options. (line 6)
-* M32R/D options: M32R/D Options. (line 6)
-* M680x0 options: M680x0 Options. (line 6)
-* machine dependent options: Submodel Options. (line 6)
-* machine specific constraints: Machine Constraints.
- (line 6)
-* macro with variable arguments: Variadic Macros. (line 6)
-* macros containing 'asm': Extended Asm. (line 237)
-* macros, inline alternative: Inline. (line 6)
-* macros, local labels: Local Labels. (line 6)
-* macros, local variables in: Typeof. (line 46)
-* macros, statements in expressions: Statement Exprs. (line 6)
-* macros, types of arguments: Typeof. (line 6)
-* 'make': Preprocessor Options.
- (line 185)
-* malloc: Other Builtins. (line 6)
-* 'malloc' attribute: Function Attributes.
- (line 933)
-* matching constraint: Simple Constraints. (line 137)
-* MCore options: MCore Options. (line 6)
-* member fns, automatically 'inline': Inline. (line 71)
-* memchr: Other Builtins. (line 6)
-* memcmp: Other Builtins. (line 6)
-* memcpy: Other Builtins. (line 6)
-* memory references in constraints: Simple Constraints. (line 17)
-* mempcpy: Other Builtins. (line 6)
-* memset: Other Builtins. (line 6)
-* MeP options: MeP Options. (line 6)
-* Mercury: G++ and GCC. (line 23)
-* message formatting: Language Independent Options.
- (line 6)
-* messages, warning: Warning Options. (line 6)
-* messages, warning and error: Warnings and Errors.
- (line 6)
-* MicroBlaze Options: MicroBlaze Options. (line 6)
-* 'micromips' attribute: Function Attributes.
- (line 957)
-* middle-operands, omitted: Conditionals. (line 6)
-* MIPS options: MIPS Options. (line 6)
-* 'mips16' attribute: Function Attributes.
- (line 942)
-* misunderstandings in C++: C++ Misunderstandings.
- (line 6)
-* mixed declarations and code: Mixed Declarations. (line 6)
-* 'mktemp', and constant strings: Incompatibilities. (line 13)
-* MMIX Options: MMIX Options. (line 6)
-* MN10300 options: MN10300 Options. (line 6)
-* 'mode' attribute: Variable Attributes.
- (line 133)
-* modf: Other Builtins. (line 6)
-* modff: Other Builtins. (line 6)
-* modfl: Other Builtins. (line 6)
-* modifiers in constraints: Modifiers. (line 6)
-* Moxie Options: Moxie Options. (line 6)
-* MSP430 Options: MSP430 Options. (line 6)
-* 'ms_abi' attribute: Function Attributes.
- (line 1003)
-* 'ms_hook_prologue' attribute: Function Attributes.
- (line 1030)
-* 'ms_struct': Type Attributes. (line 323)
-* 'ms_struct' attribute: Variable Attributes.
- (line 438)
-* multiple alternative constraints: Multi-Alternative. (line 6)
-* multiprecision arithmetic: Long Long. (line 6)
-* 'n' in constraint: Simple Constraints. (line 73)
-* Named Address Spaces: Named Address Spaces.
- (line 6)
-* names used in assembler code: Asm Labels. (line 6)
-* naming convention, implementation headers: C++ Interface. (line 46)
-* NDS32 Options: NDS32 Options. (line 6)
-* nearbyint: Other Builtins. (line 6)
-* nearbyintf: Other Builtins. (line 6)
-* nearbyintl: Other Builtins. (line 6)
-* 'nested' attribute: Function Attributes.
- (line 806)
-* nested functions: Nested Functions. (line 6)
-* 'nested_ready' attribute: Function Attributes.
- (line 810)
-* newlines (escaped): Escaped Newlines. (line 6)
-* nextafter: Other Builtins. (line 6)
-* nextafterf: Other Builtins. (line 6)
-* nextafterl: Other Builtins. (line 6)
-* nexttoward: Other Builtins. (line 6)
-* nexttowardf: Other Builtins. (line 6)
-* nexttowardl: Other Builtins. (line 6)
-* NFC: Warning Options. (line 1289)
-* NFKC: Warning Options. (line 1289)
-* Nios II options: Nios II Options. (line 6)
-* 'nmi' attribute: Function Attributes.
- (line 1371)
-* NMI handler functions on the Blackfin processor: Function Attributes.
- (line 1073)
-* 'noclone' function attribute: Function Attributes.
- (line 1107)
-* 'nocommon' attribute: Variable Attributes.
- (line 104)
-* 'nocompression' attribute: Function Attributes.
- (line 1079)
-* 'noinline' function attribute: Function Attributes.
- (line 1096)
-* 'nomicromips' attribute: Function Attributes.
- (line 957)
-* 'nomips16' attribute: Function Attributes.
- (line 942)
-* non-constant initializers: Initializers. (line 6)
-* non-static inline function: Inline. (line 85)
-* 'nonnull' function attribute: Function Attributes.
- (line 1113)
-* 'noreturn' function attribute: Function Attributes.
- (line 1147)
-* 'nosave_low_regs' attribute: Function Attributes.
- (line 1197)
-* note GCC_COLORS capability: Language Independent Options.
- (line 73)
-* 'nothrow' function attribute: Function Attributes.
- (line 1189)
-* 'not_nested' attribute: Function Attributes.
- (line 808)
-* 'no_instrument_function' function attribute: Function Attributes.
- (line 1085)
-* 'no_sanitize_address' function attribute: Function Attributes.
- (line 1335)
-* 'no_sanitize_undefined' function attribute: Function Attributes.
- (line 1343)
-* 'no_split_stack' function attribute: Function Attributes.
- (line 1090)
-* 'o' in constraint: Simple Constraints. (line 23)
-* OBJC_INCLUDE_PATH: Environment Variables.
- (line 130)
-* Objective-C: G++ and GCC. (line 6)
-* Objective-C <1>: Standards. (line 162)
-* Objective-C and Objective-C++ options, command-line: Objective-C and Objective-C++ Dialect Options.
- (line 6)
-* Objective-C++: G++ and GCC. (line 6)
-* Objective-C++ <1>: Standards. (line 162)
-* offsettable address: Simple Constraints. (line 23)
-* old-style function definitions: Function Prototypes.
- (line 6)
-* omitted middle-operands: Conditionals. (line 6)
-* open coding: Inline. (line 6)
-* OpenMP parallel: C Dialect Options. (line 263)
-* OpenMP SIMD: C Dialect Options. (line 272)
-* operand constraints, 'asm': Constraints. (line 6)
-* 'optimize' function attribute: Function Attributes.
- (line 1203)
-* optimize options: Optimize Options. (line 6)
-* options to control diagnostics formatting: Language Independent Options.
- (line 6)
-* options to control warnings: Warning Options. (line 6)
-* options, C++: C++ Dialect Options.
- (line 6)
-* options, code generation: Code Gen Options. (line 6)
-* options, debugging: Debugging Options. (line 6)
-* options, dialect: C Dialect Options. (line 6)
-* options, directory search: Directory Options. (line 6)
-* options, GCC command: Invoking GCC. (line 6)
-* options, grouping: Invoking GCC. (line 26)
-* options, linking: Link Options. (line 6)
-* options, Objective-C and Objective-C++: Objective-C and Objective-C++ Dialect Options.
- (line 6)
-* options, optimization: Optimize Options. (line 6)
-* options, order: Invoking GCC. (line 30)
-* options, preprocessor: Preprocessor Options.
- (line 6)
-* order of evaluation, side effects: Non-bugs. (line 196)
-* order of options: Invoking GCC. (line 30)
-* 'OS_main' AVR function attribute: Function Attributes.
- (line 1220)
-* 'OS_task' AVR function attribute: Function Attributes.
- (line 1220)
-* other register constraints: Simple Constraints. (line 161)
-* output file option: Overall Options. (line 191)
-* overloaded virtual function, warning: C++ Dialect Options.
- (line 655)
-* 'p' in constraint: Simple Constraints. (line 152)
-* 'packed' attribute: Variable Attributes.
- (line 144)
-* parameter forward declaration: Variable Length. (line 68)
-* 'partial_save' attribute: Function Attributes.
- (line 818)
-* Pascal: G++ and GCC. (line 23)
-* 'pcs' function attribute: Function Attributes.
- (line 1244)
-* PDP-11 Options: PDP-11 Options. (line 6)
-* PIC: Code Gen Options. (line 278)
-* picoChip options: picoChip Options. (line 6)
-* pmf: Bound member functions.
- (line 6)
-* pointer arguments: Function Attributes.
- (line 220)
-* pointer to member function: Bound member functions.
- (line 6)
-* portions of temporary objects, pointers to: Temporaries. (line 6)
-* pow: Other Builtins. (line 6)
-* pow10: Other Builtins. (line 6)
-* pow10f: Other Builtins. (line 6)
-* pow10l: Other Builtins. (line 6)
-* PowerPC options: PowerPC Options. (line 6)
-* powf: Other Builtins. (line 6)
-* powl: Other Builtins. (line 6)
-* pragma GCC ivdep: Loop-Specific Pragmas.
- (line 7)
-* pragma GCC optimize: Function Specific Option Pragmas.
- (line 20)
-* pragma GCC pop_options: Function Specific Option Pragmas.
- (line 34)
-* pragma GCC push_options: Function Specific Option Pragmas.
- (line 34)
-* pragma GCC reset_options: Function Specific Option Pragmas.
- (line 45)
-* pragma GCC target: Function Specific Option Pragmas.
- (line 7)
-* pragma, address: M32C Pragmas. (line 15)
-* pragma, align: Solaris Pragmas. (line 11)
-* pragma, call: MeP Pragmas. (line 48)
-* pragma, coprocessor available: MeP Pragmas. (line 13)
-* pragma, coprocessor call_saved: MeP Pragmas. (line 20)
-* pragma, coprocessor subclass: MeP Pragmas. (line 28)
-* pragma, custom io_volatile: MeP Pragmas. (line 7)
-* pragma, diagnostic: Diagnostic Pragmas. (line 14)
-* pragma, diagnostic <1>: Diagnostic Pragmas. (line 57)
-* pragma, disinterrupt: MeP Pragmas. (line 38)
-* pragma, fini: Solaris Pragmas. (line 20)
-* pragma, init: Solaris Pragmas. (line 26)
-* pragma, longcall: RS/6000 and PowerPC Pragmas.
- (line 14)
-* pragma, long_calls: ARM Pragmas. (line 11)
-* pragma, long_calls_off: ARM Pragmas. (line 17)
-* pragma, mark: Darwin Pragmas. (line 11)
-* pragma, memregs: M32C Pragmas. (line 7)
-* pragma, no_long_calls: ARM Pragmas. (line 14)
-* pragma, options align: Darwin Pragmas. (line 14)
-* pragma, pop_macro: Push/Pop Macro Pragmas.
- (line 15)
-* pragma, push_macro: Push/Pop Macro Pragmas.
- (line 11)
-* pragma, reason for not using: Function Attributes.
- (line 2055)
-* pragma, redefine_extname: Symbol-Renaming Pragmas.
- (line 12)
-* pragma, segment: Darwin Pragmas. (line 21)
-* pragma, unused: Darwin Pragmas. (line 24)
-* pragma, visibility: Visibility Pragmas. (line 8)
-* pragma, weak: Weak Pragmas. (line 10)
-* pragmas: Pragmas. (line 6)
-* pragmas in C++, effect on inlining: C++ Interface. (line 66)
-* pragmas, interface and implementation: C++ Interface. (line 6)
-* pragmas, warning of unknown: Warning Options. (line 683)
-* precompiled headers: Precompiled Headers.
- (line 6)
-* preprocessing numbers: Incompatibilities. (line 173)
-* preprocessing tokens: Incompatibilities. (line 173)
-* preprocessor options: Preprocessor Options.
- (line 6)
-* printf: Other Builtins. (line 6)
-* printf_unlocked: Other Builtins. (line 6)
-* 'prof': Debugging Options. (line 409)
-* 'progmem' AVR variable attribute: Variable Attributes.
- (line 314)
-* promotion of formal parameters: Function Prototypes.
- (line 6)
-* 'pure' function attribute: Function Attributes.
- (line 1263)
-* push address instruction: Simple Constraints. (line 152)
-* putchar: Other Builtins. (line 6)
-* puts: Other Builtins. (line 6)
-* 'q' floating point suffix: Floating Types. (line 6)
-* 'Q' floating point suffix: Floating Types. (line 6)
-* 'qsort', and global register variables: Global Reg Vars. (line 41)
-* question mark: Multi-Alternative. (line 27)
-* quote GCC_COLORS capability: Language Independent Options.
- (line 83)
-* 'r' fixed-suffix: Fixed-Point. (line 6)
-* 'R' fixed-suffix: Fixed-Point. (line 6)
-* 'r' in constraint: Simple Constraints. (line 64)
-* 'RAMPD': AVR Options. (line 333)
-* 'RAMPX': AVR Options. (line 333)
-* 'RAMPY': AVR Options. (line 333)
-* 'RAMPZ': AVR Options. (line 333)
-* ranges in case statements: Case Ranges. (line 6)
-* read-only strings: Incompatibilities. (line 9)
-* 'reentrant' attribute: Function Attributes.
- (line 723)
-* register variable after 'longjmp': Global Reg Vars. (line 65)
-* registers: Extended Asm. (line 6)
-* registers for local variables: Local Reg Vars. (line 6)
-* registers in constraints: Simple Constraints. (line 64)
-* registers, global allocation: Explicit Reg Vars. (line 6)
-* registers, global variables in: Global Reg Vars. (line 6)
-* 'regparm' attribute: Function Attributes.
- (line 1349)
-* relocation truncated to fit (ColdFire): M680x0 Options. (line 325)
-* relocation truncated to fit (MIPS): MIPS Options. (line 207)
-* remainder: Other Builtins. (line 6)
-* remainderf: Other Builtins. (line 6)
-* remainderl: Other Builtins. (line 6)
-* remquo: Other Builtins. (line 6)
-* remquof: Other Builtins. (line 6)
-* remquol: Other Builtins. (line 6)
-* 'renesas' attribute: Function Attributes.
- (line 1392)
-* reordering, warning: C++ Dialect Options.
- (line 573)
-* reporting bugs: Bugs. (line 6)
-* 'resbank' attribute: Function Attributes.
- (line 1396)
-* reset handler functions: Function Attributes.
- (line 1366)
-* rest argument (in macro): Variadic Macros. (line 6)
-* restricted pointers: Restricted Pointers.
- (line 6)
-* restricted references: Restricted Pointers.
- (line 6)
-* restricted this pointer: Restricted Pointers.
- (line 6)
-* 'returns_nonnull' function attribute: Function Attributes.
- (line 1137)
-* 'returns_twice' attribute: Function Attributes.
- (line 1410)
-* rindex: Other Builtins. (line 6)
-* rint: Other Builtins. (line 6)
-* rintf: Other Builtins. (line 6)
-* rintl: Other Builtins. (line 6)
-* RL78 Options: RL78 Options. (line 6)
-* round: Other Builtins. (line 6)
-* roundf: Other Builtins. (line 6)
-* roundl: Other Builtins. (line 6)
-* RS/6000 and PowerPC Options: RS/6000 and PowerPC Options.
- (line 6)
-* RTTI: Vague Linkage. (line 42)
-* run-time options: Code Gen Options. (line 6)
-* RX Options: RX Options. (line 6)
-* 's' in constraint: Simple Constraints. (line 100)
-* S/390 and zSeries Options: S/390 and zSeries Options.
- (line 6)
-* save all registers on the Blackfin, H8/300, H8/300H, and H8S: Function Attributes.
- (line 1419)
-* save volatile registers on the MicroBlaze: Function Attributes.
- (line 1424)
-* 'save_all' attribute: Function Attributes.
- (line 815)
-* scalb: Other Builtins. (line 6)
-* scalbf: Other Builtins. (line 6)
-* scalbl: Other Builtins. (line 6)
-* scalbln: Other Builtins. (line 6)
-* scalblnf: Other Builtins. (line 6)
-* scalblnf <1>: Other Builtins. (line 6)
-* scalbn: Other Builtins. (line 6)
-* scalbnf: Other Builtins. (line 6)
-* 'scanf', and constant strings: Incompatibilities. (line 17)
-* scanfnl: Other Builtins. (line 6)
-* scope of a variable length array: Variable Length. (line 22)
-* scope of declaration: Disappointments. (line 21)
-* scope of external declarations: Incompatibilities. (line 80)
-* Score Options: Score Options. (line 6)
-* search path: Directory Options. (line 6)
-* 'section' function attribute: Function Attributes.
- (line 1432)
-* 'section' variable attribute: Variable Attributes.
- (line 165)
-* 'sentinel' function attribute: Function Attributes.
- (line 1448)
-* setjmp: Global Reg Vars. (line 65)
-* 'setjmp' incompatibilities: Incompatibilities. (line 39)
-* shared strings: Incompatibilities. (line 9)
-* 'shared' variable attribute: Variable Attributes.
- (line 210)
-* side effect in '?:': Conditionals. (line 20)
-* side effects, macro argument: Statement Exprs. (line 35)
-* side effects, order of evaluation: Non-bugs. (line 196)
-* signbit: Other Builtins. (line 6)
-* signbitd128: Other Builtins. (line 6)
-* signbitd32: Other Builtins. (line 6)
-* signbitd64: Other Builtins. (line 6)
-* signbitf: Other Builtins. (line 6)
-* signbitl: Other Builtins. (line 6)
-* signed and unsigned values, comparison warning: Warning Options.
- (line 1155)
-* significand: Other Builtins. (line 6)
-* significandf: Other Builtins. (line 6)
-* significandl: Other Builtins. (line 6)
-* SIMD: C Dialect Options. (line 272)
-* simple constraints: Simple Constraints. (line 6)
-* sin: Other Builtins. (line 6)
-* sincos: Other Builtins. (line 6)
-* sincosf: Other Builtins. (line 6)
-* sincosl: Other Builtins. (line 6)
-* sinf: Other Builtins. (line 6)
-* sinh: Other Builtins. (line 6)
-* sinhf: Other Builtins. (line 6)
-* sinhl: Other Builtins. (line 6)
-* sinl: Other Builtins. (line 6)
-* sizeof: Typeof. (line 6)
-* smaller data references: M32R/D Options. (line 57)
-* smaller data references <1>: Nios II Options. (line 9)
-* smaller data references (PowerPC): RS/6000 and PowerPC Options.
- (line 739)
-* snprintf: Other Builtins. (line 6)
-* Solaris 2 options: Solaris 2 Options. (line 6)
-* SPARC options: SPARC Options. (line 6)
-* Spec Files: Spec Files. (line 6)
-* specified registers: Explicit Reg Vars. (line 6)
-* specifying compiler version and target machine: Target Options.
- (line 6)
-* specifying hardware config: Submodel Options. (line 6)
-* specifying machine version: Target Options. (line 6)
-* specifying registers for local variables: Local Reg Vars. (line 6)
-* speed of compilation: Precompiled Headers.
- (line 6)
-* sprintf: Other Builtins. (line 6)
-* SPU options: SPU Options. (line 6)
-* 'sp_switch' attribute: Function Attributes.
- (line 1497)
-* sqrt: Other Builtins. (line 6)
-* sqrtf: Other Builtins. (line 6)
-* sqrtl: Other Builtins. (line 6)
-* sscanf: Other Builtins. (line 6)
-* 'sscanf', and constant strings: Incompatibilities. (line 17)
-* 'sseregparm' attribute: Function Attributes.
- (line 1377)
-* statements inside expressions: Statement Exprs. (line 6)
-* static data in C++, declaring and defining: Static Definitions.
- (line 6)
-* stpcpy: Other Builtins. (line 6)
-* stpncpy: Other Builtins. (line 6)
-* strcasecmp: Other Builtins. (line 6)
-* strcat: Other Builtins. (line 6)
-* strchr: Other Builtins. (line 6)
-* strcmp: Other Builtins. (line 6)
-* strcpy: Other Builtins. (line 6)
-* strcspn: Other Builtins. (line 6)
-* strdup: Other Builtins. (line 6)
-* strfmon: Other Builtins. (line 6)
-* strftime: Other Builtins. (line 6)
-* string constants: Incompatibilities. (line 9)
-* strlen: Other Builtins. (line 6)
-* strncasecmp: Other Builtins. (line 6)
-* strncat: Other Builtins. (line 6)
-* strncmp: Other Builtins. (line 6)
-* strncpy: Other Builtins. (line 6)
-* strndup: Other Builtins. (line 6)
-* strpbrk: Other Builtins. (line 6)
-* strrchr: Other Builtins. (line 6)
-* strspn: Other Builtins. (line 6)
-* strstr: Other Builtins. (line 6)
-* 'struct': Unnamed Fields. (line 6)
-* struct __htm_tdb: S/390 System z Built-in Functions.
- (line 49)
-* structures: Incompatibilities. (line 146)
-* structures, constructor expression: Compound Literals. (line 6)
-* submodel options: Submodel Options. (line 6)
-* subscripting: Subscripting. (line 6)
-* subscripting and function values: Subscripting. (line 6)
-* suffixes for C++ source: Invoking G++. (line 6)
-* SUNPRO_DEPENDENCIES: Environment Variables.
- (line 170)
-* suppressing warnings: Warning Options. (line 6)
-* surprises in C++: C++ Misunderstandings.
- (line 6)
-* syntax checking: Warning Options. (line 13)
-* 'syscall_linkage' attribute: Function Attributes.
- (line 1512)
-* system headers, warnings from: Warning Options. (line 834)
-* 'sysv_abi' attribute: Function Attributes.
- (line 1003)
-* tan: Other Builtins. (line 6)
-* tanf: Other Builtins. (line 6)
-* tanh: Other Builtins. (line 6)
-* tanhf: Other Builtins. (line 6)
-* tanhl: Other Builtins. (line 6)
-* tanl: Other Builtins. (line 6)
-* 'target' function attribute: Function Attributes.
- (line 1519)
-* target machine, specifying: Target Options. (line 6)
-* target options: Target Options. (line 6)
-* 'target("abm")' attribute: Function Attributes.
- (line 1552)
-* 'target("aes")' attribute: Function Attributes.
- (line 1557)
-* 'target("align-stringops")' attribute: Function Attributes.
- (line 1651)
-* 'target("altivec")' attribute: Function Attributes.
- (line 1677)
-* 'target("arch=ARCH")' attribute: Function Attributes.
- (line 1660)
-* 'target("avoid-indexed-addresses")' attribute: Function Attributes.
- (line 1798)
-* 'target("cld")' attribute: Function Attributes.
- (line 1622)
-* 'target("cmpb")' attribute: Function Attributes.
- (line 1683)
-* 'target("cpu=CPU")' attribute: Function Attributes.
- (line 1813)
-* 'target("custom-fpu-cfg=NAME")' attribute: Function Attributes.
- (line 1839)
-* 'target("custom-INSN=N")' attribute: Function Attributes.
- (line 1830)
-* 'target("default")' attribute: Function Attributes.
- (line 1560)
-* 'target("dlmzb")' attribute: Function Attributes.
- (line 1689)
-* 'target("fancy-math-387")' attribute: Function Attributes.
- (line 1626)
-* 'target("fma4")' attribute: Function Attributes.
- (line 1606)
-* 'target("fpmath=FPMATH")' attribute: Function Attributes.
- (line 1668)
-* 'target("fprnd")' attribute: Function Attributes.
- (line 1696)
-* 'target("friz")' attribute: Function Attributes.
- (line 1789)
-* 'target("fused-madd")' attribute: Function Attributes.
- (line 1631)
-* 'target("hard-dfp")' attribute: Function Attributes.
- (line 1702)
-* 'target("ieee-fp")' attribute: Function Attributes.
- (line 1636)
-* 'target("inline-all-stringops")' attribute: Function Attributes.
- (line 1641)
-* 'target("inline-stringops-dynamically")' attribute: Function Attributes.
- (line 1645)
-* 'target("isel")' attribute: Function Attributes.
- (line 1708)
-* 'target("longcall")' attribute: Function Attributes.
- (line 1808)
-* 'target("lwp")' attribute: Function Attributes.
- (line 1614)
-* 'target("mfcrf")' attribute: Function Attributes.
- (line 1712)
-* 'target("mfpgpr")' attribute: Function Attributes.
- (line 1719)
-* 'target("mmx")' attribute: Function Attributes.
- (line 1565)
-* 'target("mulhw")' attribute: Function Attributes.
- (line 1726)
-* 'target("multiple")' attribute: Function Attributes.
- (line 1733)
-* 'target("no-custom-INSN")' attribute: Function Attributes.
- (line 1830)
-* 'target("paired")' attribute: Function Attributes.
- (line 1803)
-* 'target("pclmul")' attribute: Function Attributes.
- (line 1569)
-* 'target("popcnt")' attribute: Function Attributes.
- (line 1573)
-* 'target("popcntb")' attribute: Function Attributes.
- (line 1744)
-* 'target("popcntd")' attribute: Function Attributes.
- (line 1751)
-* 'target("powerpc-gfxopt")' attribute: Function Attributes.
- (line 1757)
-* 'target("powerpc-gpopt")' attribute: Function Attributes.
- (line 1763)
-* 'target("recip")' attribute: Function Attributes.
- (line 1655)
-* 'target("recip-precision")' attribute: Function Attributes.
- (line 1769)
-* 'target("sse")' attribute: Function Attributes.
- (line 1577)
-* 'target("sse2")' attribute: Function Attributes.
- (line 1581)
-* 'target("sse3")' attribute: Function Attributes.
- (line 1585)
-* 'target("sse4")' attribute: Function Attributes.
- (line 1589)
-* 'target("sse4.1")' attribute: Function Attributes.
- (line 1594)
-* 'target("sse4.2")' attribute: Function Attributes.
- (line 1598)
-* 'target("sse4a")' attribute: Function Attributes.
- (line 1602)
-* 'target("ssse3")' attribute: Function Attributes.
- (line 1618)
-* 'target("string")' attribute: Function Attributes.
- (line 1775)
-* 'target("tune=TUNE")' attribute: Function Attributes.
- (line 1664)
-* 'target("tune=TUNE")' attribute <1>: Function Attributes.
- (line 1820)
-* 'target("update")' attribute: Function Attributes.
- (line 1738)
-* 'target("vsx")' attribute: Function Attributes.
- (line 1781)
-* 'target("xop")' attribute: Function Attributes.
- (line 1610)
-* TC1: Standards. (line 13)
-* TC2: Standards. (line 13)
-* TC3: Standards. (line 13)
-* Technical Corrigenda: Standards. (line 13)
-* Technical Corrigendum 1: Standards. (line 13)
-* Technical Corrigendum 2: Standards. (line 13)
-* Technical Corrigendum 3: Standards. (line 13)
-* template instantiation: Template Instantiation.
- (line 6)
-* temporaries, lifetime of: Temporaries. (line 6)
-* tgamma: Other Builtins. (line 6)
-* tgammaf: Other Builtins. (line 6)
-* tgammal: Other Builtins. (line 6)
-* Thread-Local Storage: Thread-Local. (line 6)
-* thunks: Nested Functions. (line 6)
-* TILE-Gx options: TILE-Gx Options. (line 6)
-* TILEPro options: TILEPro Options. (line 6)
-* tiny data section on the H8/300H and H8S: Function Attributes.
- (line 1852)
-* TLS: Thread-Local. (line 6)
-* 'tls_model' attribute: Variable Attributes.
- (line 233)
-* TMPDIR: Environment Variables.
- (line 45)
-* toascii: Other Builtins. (line 6)
-* tolower: Other Builtins. (line 6)
-* toupper: Other Builtins. (line 6)
-* towlower: Other Builtins. (line 6)
-* towupper: Other Builtins. (line 6)
-* traditional C language: C Dialect Options. (line 331)
-* 'trapa_handler' attribute: Function Attributes.
- (line 1864)
-* 'trap_exit' attribute: Function Attributes.
- (line 1859)
-* trunc: Other Builtins. (line 6)
-* truncf: Other Builtins. (line 6)
-* truncl: Other Builtins. (line 6)
-* two-stage name lookup: Name lookup. (line 6)
-* type alignment: Alignment. (line 6)
-* type attributes: Type Attributes. (line 6)
-* typedef names as function parameters: Incompatibilities. (line 97)
-* typeof: Typeof. (line 6)
-* 'type_info': Vague Linkage. (line 42)
-* 'uhk' fixed-suffix: Fixed-Point. (line 6)
-* 'UHK' fixed-suffix: Fixed-Point. (line 6)
-* 'uhr' fixed-suffix: Fixed-Point. (line 6)
-* 'UHR' fixed-suffix: Fixed-Point. (line 6)
-* 'uk' fixed-suffix: Fixed-Point. (line 6)
-* 'UK' fixed-suffix: Fixed-Point. (line 6)
-* 'ulk' fixed-suffix: Fixed-Point. (line 6)
-* 'ULK' fixed-suffix: Fixed-Point. (line 6)
-* 'ULL' integer suffix: Long Long. (line 6)
-* 'ullk' fixed-suffix: Fixed-Point. (line 6)
-* 'ULLK' fixed-suffix: Fixed-Point. (line 6)
-* 'ullr' fixed-suffix: Fixed-Point. (line 6)
-* 'ULLR' fixed-suffix: Fixed-Point. (line 6)
-* 'ulr' fixed-suffix: Fixed-Point. (line 6)
-* 'ULR' fixed-suffix: Fixed-Point. (line 6)
-* undefined behavior: Bug Criteria. (line 17)
-* undefined function value: Bug Criteria. (line 17)
-* underscores in variables in macros: Typeof. (line 46)
-* 'union': Unnamed Fields. (line 6)
-* union, casting to a: Cast to Union. (line 6)
-* unions: Incompatibilities. (line 146)
-* unknown pragmas, warning: Warning Options. (line 683)
-* unresolved references and '-nodefaultlibs': Link Options. (line 85)
-* unresolved references and '-nostdlib': Link Options. (line 85)
-* 'unused' attribute.: Function Attributes.
- (line 1868)
-* 'ur' fixed-suffix: Fixed-Point. (line 6)
-* 'UR' fixed-suffix: Fixed-Point. (line 6)
-* 'used' attribute.: Function Attributes.
- (line 1873)
-* User stack pointer in interrupts on the Blackfin: Function Attributes.
- (line 844)
-* 'use_debug_exception_return' attribute: Function Attributes.
- (line 783)
-* 'use_shadow_register_set' attribute: Function Attributes.
- (line 774)
-* 'V' in constraint: Simple Constraints. (line 43)
-* V850 Options: V850 Options. (line 6)
-* vague linkage: Vague Linkage. (line 6)
-* value after 'longjmp': Global Reg Vars. (line 65)
-* variable addressability on the IA-64: Function Attributes.
- (line 974)
-* variable addressability on the M32R/D: Variable Attributes.
- (line 370)
-* variable alignment: Alignment. (line 6)
-* variable attributes: Variable Attributes.
- (line 6)
-* variable number of arguments: Variadic Macros. (line 6)
-* variable-length array in a structure: Variable Length. (line 26)
-* variable-length array scope: Variable Length. (line 22)
-* variable-length arrays: Variable Length. (line 6)
-* variables in specified registers: Explicit Reg Vars. (line 6)
-* variables, local, in macros: Typeof. (line 46)
-* variadic macros: Variadic Macros. (line 6)
-* VAX options: VAX Options. (line 6)
-* 'version_id' attribute: Function Attributes.
- (line 1883)
-* vfprintf: Other Builtins. (line 6)
-* vfscanf: Other Builtins. (line 6)
-* 'visibility' attribute: Function Attributes.
- (line 1893)
-* VLAs: Variable Length. (line 6)
-* 'vliw' attribute: Function Attributes.
- (line 1989)
-* void pointers, arithmetic: Pointer Arith. (line 6)
-* void, size of pointer to: Pointer Arith. (line 6)
-* volatile access: Volatiles. (line 6)
-* volatile access <1>: C++ Volatiles. (line 6)
-* 'volatile' applied to function: Function Attributes.
- (line 6)
-* volatile read: Volatiles. (line 6)
-* volatile read <1>: C++ Volatiles. (line 6)
-* volatile write: Volatiles. (line 6)
-* volatile write <1>: C++ Volatiles. (line 6)
-* vprintf: Other Builtins. (line 6)
-* vscanf: Other Builtins. (line 6)
-* vsnprintf: Other Builtins. (line 6)
-* vsprintf: Other Builtins. (line 6)
-* vsscanf: Other Builtins. (line 6)
-* vtable: Vague Linkage. (line 27)
-* VxWorks Options: VxWorks Options. (line 6)
-* 'w' floating point suffix: Floating Types. (line 6)
-* 'W' floating point suffix: Floating Types. (line 6)
-* 'wakeup' attribute: Function Attributes.
- (line 729)
-* 'warm' attribute: Function Attributes.
- (line 1373)
-* warning for comparison of signed and unsigned values: Warning Options.
- (line 1155)
-* warning for overloaded virtual function: C++ Dialect Options.
- (line 655)
-* warning for reordering of member initializers: C++ Dialect Options.
- (line 573)
-* warning for unknown pragmas: Warning Options. (line 683)
-* 'warning' function attribute: Function Attributes.
- (line 198)
-* warning GCC_COLORS capability: Language Independent Options.
- (line 70)
-* warning messages: Warning Options. (line 6)
-* warnings from system headers: Warning Options. (line 834)
-* warnings vs errors: Warnings and Errors.
- (line 6)
-* 'warn_unused' attribute: C++ Attributes. (line 64)
-* 'warn_unused_result' attribute: Function Attributes.
- (line 1995)
-* 'weak' attribute: Function Attributes.
- (line 2012)
-* 'weakref' attribute: Function Attributes.
- (line 2021)
-* whitespace: Incompatibilities. (line 112)
-* 'X' in constraint: Simple Constraints. (line 122)
-* X3.159-1989: Standards. (line 13)
-* x86-64 Options: i386 and x86-64 Options.
- (line 6)
-* x86-64 options: x86-64 Options. (line 6)
-* Xstormy16 Options: Xstormy16 Options. (line 6)
-* Xtensa Options: Xtensa Options. (line 6)
-* y0: Other Builtins. (line 6)
-* y0f: Other Builtins. (line 6)
-* y0l: Other Builtins. (line 6)
-* y1: Other Builtins. (line 6)
-* y1f: Other Builtins. (line 6)
-* y1l: Other Builtins. (line 6)
-* yn: Other Builtins. (line 6)
-* ynf: Other Builtins. (line 6)
-* ynl: Other Builtins. (line 6)
-* zero-length arrays: Zero Length. (line 6)
-* zero-size structures: Empty Structures. (line 6)
-* zSeries options: zSeries Options. (line 6)
-
-
-
-Tag Table:
-Node: Top1881
-Node: G++ and GCC3629
-Node: Standards5686
-Node: Invoking GCC17845
-Node: Option Summary21590
-Node: Overall Options63276
-Node: Invoking G++77463
-Node: C Dialect Options78986
-Node: C++ Dialect Options95984
-Node: Objective-C and Objective-C++ Dialect Options126529
-Node: Language Independent Options137036
-Node: Warning Options141536
-Node: Debugging Options211575
-Node: Optimize Options271636
-Ref: Type-punning331182
-Node: Preprocessor Options413934
-Ref: Wtrigraphs418717
-Ref: dashMF423467
-Ref: fdollars-in-identifiers434348
-Node: Assembler Options444573
-Node: Link Options445264
-Ref: Link Options-Footnote-1457404
-Node: Directory Options457740
-Node: Spec Files464284
-Node: Target Options486113
-Node: Submodel Options486512
-Node: AArch64 Options488278
-Node: Adapteva Epiphany Options493403
-Node: ARC Options499351
-Node: ARM Options511795
-Node: AVR Options529093
-Node: Blackfin Options549318
-Node: C6X Options557336
-Node: CRIS Options558879
-Node: CR16 Options562618
-Node: Darwin Options563529
-Node: DEC Alpha Options570963
-Node: FR30 Options582579
-Node: FRV Options583143
-Node: GNU/Linux Options589907
-Node: H8/300 Options591167
-Node: HPPA Options592619
-Node: i386 and x86-64 Options601921
-Node: i386 and x86-64 Windows Options643992
-Node: IA-64 Options646845
-Node: LM32 Options654911
-Node: M32C Options655434
-Node: M32R/D Options656707
-Node: M680x0 Options660252
-Node: MCore Options674287
-Node: MeP Options675789
-Node: MicroBlaze Options679749
-Node: MIPS Options682551
-Node: MMIX Options714436
-Node: MN10300 Options716913
-Node: Moxie Options719454
-Node: MSP430 Options719824
-Node: NDS32 Options721913
-Node: Nios II Options723793
-Node: PDP-11 Options732258
-Node: picoChip Options733952
-Node: PowerPC Options736090
-Node: RL78 Options736311
-Node: RS/6000 and PowerPC Options736972
-Node: RX Options775902
-Node: S/390 and zSeries Options783234
-Node: Score Options791781
-Node: SH Options792630
-Node: Solaris 2 Options811301
-Node: SPARC Options812531
-Node: SPU Options825566
-Node: System V Options830505
-Node: TILE-Gx Options831331
-Node: TILEPro Options832349
-Node: V850 Options832853
-Node: VAX Options839561
-Node: VMS Options840096
-Node: VxWorks Options840909
-Node: x86-64 Options842064
-Node: Xstormy16 Options842282
-Node: Xtensa Options842571
-Node: zSeries Options846882
-Node: Code Gen Options847078
-Node: Environment Variables877946
-Node: Precompiled Headers885949
-Node: C Implementation891952
-Node: Translation implementation893642
-Node: Environment implementation894233
-Node: Identifiers implementation894787
-Node: Characters implementation895873
-Node: Integers implementation899523
-Node: Floating point implementation901408
-Node: Arrays and pointers implementation904471
-Ref: Arrays and pointers implementation-Footnote-1905931
-Node: Hints implementation906057
-Node: Structures unions enumerations and bit-fields implementation907542
-Node: Qualifiers implementation909766
-Node: Declarators implementation911546
-Node: Statements implementation911887
-Node: Preprocessing directives implementation912213
-Node: Library functions implementation914534
-Node: Architecture implementation915183
-Node: Locale-specific behavior implementation916828
-Node: C++ Implementation917133
-Node: Conditionally-supported behavior918416
-Node: Exception handling918925
-Node: C Extensions919333
-Node: Statement Exprs924403
-Node: Local Labels928880
-Node: Labels as Values931853
-Ref: Labels as Values-Footnote-1934254
-Node: Nested Functions934439
-Node: Constructing Calls938397
-Node: Typeof943114
-Node: Conditionals947496
-Node: __int128948385
-Node: Long Long948910
-Node: Complex950386
-Node: Floating Types952974
-Node: Half-Precision954102
-Node: Decimal Float956287
-Node: Hex Floats958143
-Node: Fixed-Point959180
-Node: Named Address Spaces962440
-Ref: AVR Named Address Spaces963121
-Node: Zero Length968329
-Node: Empty Structures971616
-Node: Variable Length972022
-Node: Variadic Macros974878
-Node: Escaped Newlines977256
-Node: Subscripting978095
-Node: Pointer Arith978820
-Node: Initializers979388
-Node: Compound Literals979884
-Node: Designated Inits983245
-Node: Case Ranges986983
-Node: Cast to Union987664
-Node: Mixed Declarations988754
-Node: Function Attributes989264
-Node: Attribute Syntax1083847
-Node: Function Prototypes1094237
-Node: C++ Comments1096017
-Node: Dollar Signs1096536
-Node: Character Escapes1097001
-Node: Variable Attributes1097295
-Ref: AVR Variable Attributes1110970
-Ref: MeP Variable Attributes1113632
-Ref: i386 Variable Attributes1115568
-Node: Type Attributes1121229
-Ref: MeP Type Attributes1135117
-Ref: i386 Type Attributes1135391
-Ref: PowerPC Type Attributes1136083
-Ref: SPU Type Attributes1136945
-Node: Alignment1137236
-Node: Inline1138606
-Node: Volatiles1143582
-Node: Extended Asm1146463
-Ref: Example of asm with clobbered asm reg1152367
-Ref: Extended asm with goto1162080
-Node: Constraints1169930
-Node: Simple Constraints1171014
-Node: Multi-Alternative1178324
-Node: Modifiers1180041
-Node: Machine Constraints1183054
-Node: Asm Labels1240008
-Node: Explicit Reg Vars1241684
-Node: Global Reg Vars1243282
-Node: Local Reg Vars1247778
-Node: Alternate Keywords1250194
-Node: Incomplete Enums1251680
-Node: Function Names1252436
-Node: Return Address1254597
-Node: Vector Extensions1258104
-Node: Offsetof1265033
-Node: __sync Builtins1265838
-Node: __atomic Builtins1271307
-Node: x86 specific memory model extensions for transactional memory1282941
-Node: Object Size Checking1284203
-Node: Cilk Plus Builtins1289696
-Node: Other Builtins1290565
-Node: Target Builtins1319872
-Node: Alpha Built-in Functions1321291
-Node: Altera Nios II Built-in Functions1324304
-Node: ARC Built-in Functions1328291
-Node: ARC SIMD Built-in Functions1333503
-Node: ARM iWMMXt Built-in Functions1342399
-Node: ARM NEON Intrinsics1349382
-Node: ARM ACLE Intrinsics1566876
-Node: AVR Built-in Functions1568257
-Node: Blackfin Built-in Functions1571335
-Node: FR-V Built-in Functions1571952
-Node: Argument Types1572815
-Node: Directly-mapped Integer Functions1574569
-Node: Directly-mapped Media Functions1575653
-Node: Raw read/write Functions1583859
-Node: Other Built-in Functions1584767
-Node: X86 Built-in Functions1585953
-Node: X86 transactional memory intrinsics1645162
-Node: MIPS DSP Built-in Functions1647838
-Node: MIPS Paired-Single Support1660347
-Node: MIPS Loongson Built-in Functions1661846
-Node: Paired-Single Arithmetic1668361
-Node: Paired-Single Built-in Functions1669309
-Node: MIPS-3D Built-in Functions1671976
-Node: Other MIPS Built-in Functions1677354
-Node: MSP430 Built-in Functions1678359
-Node: NDS32 Built-in Functions1679263
-Node: picoChip Built-in Functions1680556
-Node: PowerPC Built-in Functions1681899
-Node: PowerPC AltiVec/VSX Built-in Functions1683314
-Node: PowerPC Hardware Transactional Memory Built-in Functions1815519
-Node: RX Built-in Functions1822060
-Node: S/390 System z Built-in Functions1826093
-Node: SH Built-in Functions1831322
-Node: SPARC VIS Built-in Functions1832714
-Node: SPU Built-in Functions1838317
-Node: TI C6X Built-in Functions1840134
-Node: TILE-Gx Built-in Functions1841158
-Node: TILEPro Built-in Functions1842275
-Node: Target Format Checks1843342
-Node: Solaris Format Checks1843774
-Node: Darwin Format Checks1844200
-Node: Pragmas1845018
-Node: ARM Pragmas1845754
-Node: M32C Pragmas1846357
-Node: MeP Pragmas1847429
-Node: RS/6000 and PowerPC Pragmas1849497
-Node: Darwin Pragmas1850238
-Node: Solaris Pragmas1851305
-Node: Symbol-Renaming Pragmas1852469
-Node: Structure-Packing Pragmas1854025
-Node: Weak Pragmas1855670
-Node: Diagnostic Pragmas1856404
-Node: Visibility Pragmas1859513
-Node: Push/Pop Macro Pragmas1860265
-Node: Function Specific Option Pragmas1861238
-Node: Loop-Specific Pragmas1863429
-Node: Unnamed Fields1864528
-Node: Thread-Local1866755
-Node: C99 Thread-Local Edits1868860
-Node: C++98 Thread-Local Edits1870858
-Node: Binary constants1874303
-Node: C++ Extensions1874974
-Node: C++ Volatiles1876685
-Node: Restricted Pointers1879033
-Node: Vague Linkage1880624
-Node: C++ Interface1884247
-Ref: C++ Interface-Footnote-11888535
-Node: Template Instantiation1888673
-Node: Bound member functions1895259
-Node: C++ Attributes1896791
-Node: Function Multiversioning1900370
-Node: Namespace Association1902187
-Node: Type Traits1903567
-Node: Java Exceptions1910050
-Node: Deprecated Features1911440
-Node: Backwards Compatibility1914407
-Node: Objective-C1915754
-Node: GNU Objective-C runtime API1916361
-Node: Modern GNU Objective-C runtime API1917368
-Node: Traditional GNU Objective-C runtime API1919804
-Node: Executing code before main1920531
-Node: What you can and what you cannot do in +load1923269
-Node: Type encoding1925657
-Node: Legacy type encoding1930684
-Node: @encode1931774
-Node: Method signatures1932315
-Node: Garbage Collection1934307
-Node: Constant string objects1936996
-Node: compatibility_alias1939504
-Node: Exceptions1940225
-Node: Synchronization1942935
-Node: Fast enumeration1944119
-Node: Using fast enumeration1944431
-Node: c99-like fast enumeration syntax1945642
-Node: Fast enumeration details1946345
-Node: Fast enumeration protocol1948685
-Node: Messaging with the GNU Objective-C runtime1951837
-Node: Dynamically registering methods1953209
-Node: Forwarding hook1954900
-Node: Compatibility1957940
-Node: Gcov1964496
-Node: Gcov Intro1965029
-Node: Invoking Gcov1967747
-Node: Gcov and Optimization1981987
-Node: Gcov Data Files1984989
-Node: Cross-profiling1986384
-Node: Trouble1988238
-Node: Actual Bugs1989650
-Node: Interoperation1990097
-Node: Incompatibilities1996988
-Node: Fixed Headers2005140
-Node: Standard Libraries2006798
-Node: Disappointments2008170
-Node: C++ Misunderstandings2012529
-Node: Static Definitions2013340
-Node: Name lookup2014393
-Ref: Name lookup-Footnote-12019173
-Node: Temporaries2019362
-Node: Copy Assignment2021338
-Node: Non-bugs2023145
-Node: Warnings and Errors2033651
-Node: Bugs2035413
-Node: Bug Criteria2035880
-Node: Bug Reporting2038090
-Node: Service2038311
-Node: Contributing2039130
-Node: Funding2039870
-Node: GNU Project2042360
-Node: Copying2043006
-Node: GNU Free Documentation License2080514
-Node: Contributors2105631
-Node: Option Index2143500
-Node: Keyword Index2353567
-
-End Tag Table
diff --git a/gcc-4.9/gcc/doc/gcc.texi b/gcc-4.9/gcc/doc/gcc.texi
index c1f385774..7ae2e75c4 100644
--- a/gcc-4.9/gcc/doc/gcc.texi
+++ b/gcc-4.9/gcc/doc/gcc.texi
@@ -66,6 +66,7 @@ Texts being (a) (see below), and with the Back-Cover Texts being (b)
* gcc: (gcc). The GNU Compiler Collection.
* g++: (gcc). The GNU C++ compiler.
* gcov: (gcc) Gcov. @command{gcov}---a test coverage program.
+* gcov-tool: (gcc) Gcov-tool. @command{gcov-tool}---an offline gcda profile processing program.
@end direntry
This file documents the use of the GNU compilers.
@sp 1
@@ -138,6 +139,7 @@ Introduction, gccint, GNU Compiler Collection (GCC) Internals}.
* Objective-C:: GNU Objective-C runtime features.
* Compatibility:: Binary Compatibility
* Gcov:: @command{gcov}---a test coverage program.
+* Gcov-tool:: @command{gcov-tool}---an offline gcda profile processing program.
* Trouble:: If you have trouble using GCC.
* Bugs:: How, why and where to report bugs.
* Service:: How To Get Help with GCC
@@ -164,6 +166,7 @@ Introduction, gccint, GNU Compiler Collection (GCC) Internals}.
@include objc.texi
@include compat.texi
@include gcov.texi
+@include gcov-tool.texi
@include trouble.texi
@include bugreport.texi
@include service.texi
diff --git a/gcc-4.9/gcc/doc/gccinstall.info b/gcc-4.9/gcc/doc/gccinstall.info
deleted file mode 100644
index 5c8cb8c62..000000000
--- a/gcc-4.9/gcc/doc/gccinstall.info
+++ /dev/null
@@ -1,4679 +0,0 @@
-This is gccinstall.info, produced by makeinfo version 5.1 from
-install.texi.
-
-Copyright (C) 1988-2014 Free Software Foundation, Inc.
-
- Permission is granted to copy, distribute and/or modify this document
-under the terms of the GNU Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with no
-Invariant Sections, the Front-Cover texts being (a) (see below), and
-with the Back-Cover Texts being (b) (see below). A copy of the license
-is included in the section entitled "GNU Free Documentation License".
-
- (a) The FSF's Front-Cover Text is:
-
- A GNU Manual
-
- (b) The FSF's Back-Cover Text is:
-
- You have freedom to copy and modify this GNU Manual, like GNU
-software. Copies published by the Free Software Foundation raise funds
-for GNU development.
-INFO-DIR-SECTION Software development
-START-INFO-DIR-ENTRY
-* gccinstall: (gccinstall). Installing the GNU Compiler Collection.
-END-INFO-DIR-ENTRY
-
- Copyright (C) 1988-2014 Free Software Foundation, Inc.
-
- Permission is granted to copy, distribute and/or modify this document
-under the terms of the GNU Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with no
-Invariant Sections, the Front-Cover texts being (a) (see below), and
-with the Back-Cover Texts being (b) (see below). A copy of the license
-is included in the section entitled "GNU Free Documentation License".
-
- (a) The FSF's Front-Cover Text is:
-
- A GNU Manual
-
- (b) The FSF's Back-Cover Text is:
-
- You have freedom to copy and modify this GNU Manual, like GNU
-software. Copies published by the Free Software Foundation raise funds
-for GNU development.
-
-
-File: gccinstall.info, Node: Top, Up: (dir)
-
-* Menu:
-
-* Installing GCC:: This document describes the generic installation
- procedure for GCC as well as detailing some target
- specific installation instructions.
-
-* Specific:: Host/target specific installation notes for GCC.
-* Binaries:: Where to get pre-compiled binaries.
-
-* Old:: Old installation documentation.
-
-* GNU Free Documentation License:: How you can copy and share this manual.
-* Concept Index:: This index has two entries.
-
-
-File: gccinstall.info, Node: Installing GCC, Next: Binaries, Up: Top
-
-1 Installing GCC
-****************
-
-The latest version of this document is always available at
-http://gcc.gnu.org/install/. It refers to the current development
-sources, instructions for specific released versions are included with
-the sources.
-
- This document describes the generic installation procedure for GCC as
-well as detailing some target specific installation instructions.
-
- GCC includes several components that previously were separate
-distributions with their own installation instructions. This document
-supersedes all package-specific installation instructions.
-
- _Before_ starting the build/install procedure please check the *note
-host/target specific installation notes: Specific. We recommend you
-browse the entire generic installation instructions before you proceed.
-
- Lists of successful builds for released versions of GCC are available
-at <http://gcc.gnu.org/buildstat.html>. These lists are updated as new
-information becomes available.
-
- The installation procedure itself is broken into five steps.
-
-* Menu:
-
-* Prerequisites::
-* Downloading the source::
-* Configuration::
-* Building::
-* Testing:: (optional)
-* Final install::
-
- Please note that GCC does not support 'make uninstall' and probably
-won't do so in the near future as this would open a can of worms.
-Instead, we suggest that you install GCC into a directory of its own and
-simply remove that directory when you do not need that specific version
-of GCC any longer, and, if shared libraries are installed there as well,
-no more binaries exist that use them.
-
-
-File: gccinstall.info, Node: Prerequisites, Next: Downloading the source, Up: Installing GCC
-
-2 Prerequisites
-***************
-
-GCC requires that various tools and packages be available for use in the
-build procedure. Modifying GCC sources requires additional tools
-described below.
-
-Tools/packages necessary for building GCC
-=========================================
-
-ISO C++98 compiler
- Necessary to bootstrap GCC, although versions of GCC prior to 4.8
- also allow bootstrapping with a ISO C89 compiler and versions of
- GCC prior to 3.4 also allow bootstrapping with a traditional (K&R)
- C compiler.
-
- To build all languages in a cross-compiler or other configuration
- where 3-stage bootstrap is not performed, you need to start with an
- existing GCC binary (version 3.4 or later) because source code for
- language frontends other than C might use GCC extensions.
-
- Note that to bootstrap GCC with versions of GCC earlier than 3.4,
- you may need to use '--disable-stage1-checking', though
- bootstrapping the compiler with such earlier compilers is strongly
- discouraged.
-
-C standard library and headers
-
- In order to build GCC, the C standard library and headers must be
- present for all target variants for which target libraries will be
- built (and not only the variant of the host C++ compiler).
-
- This affects the popular 'x86_64-unknown-linux-gnu' platform (among
- other multilib targets), for which 64-bit ('x86_64') and 32-bit
- ('i386') libc headers are usually packaged separately. If you do a
- build of a native compiler on 'x86_64-unknown-linux-gnu', make sure
- you either have the 32-bit libc developer package properly
- installed (the exact name of the package depends on your distro) or
- you must build GCC as a 64-bit only compiler by configuring with
- the option '--disable-multilib'. Otherwise, you may encounter an
- error such as 'fatal error: gnu/stubs-32.h: No such file'
-
-GNAT
-
- In order to build the Ada compiler (GNAT) you must already have
- GNAT installed because portions of the Ada frontend are written in
- Ada (with GNAT extensions.) Refer to the Ada installation
- instructions for more specific information.
-
-A "working" POSIX compatible shell, or GNU bash
-
- Necessary when running 'configure' because some '/bin/sh' shells
- have bugs and may crash when configuring the target libraries. In
- other cases, '/bin/sh' or 'ksh' have disastrous corner-case
- performance problems. This can cause target 'configure' runs to
- literally take days to complete in some cases.
-
- So on some platforms '/bin/ksh' is sufficient, on others it isn't.
- See the host/target specific instructions for your platform, or use
- 'bash' to be sure. Then set 'CONFIG_SHELL' in your environment to
- your "good" shell prior to running 'configure'/'make'.
-
- 'zsh' is not a fully compliant POSIX shell and will not work when
- configuring GCC.
-
-A POSIX or SVR4 awk
-
- Necessary for creating some of the generated source files for GCC.
- If in doubt, use a recent GNU awk version, as some of the older
- ones are broken. GNU awk version 3.1.5 is known to work.
-
-GNU binutils
-
- Necessary in some circumstances, optional in others. See the
- host/target specific instructions for your platform for the exact
- requirements.
-
-gzip version 1.2.4 (or later) or
-bzip2 version 1.0.2 (or later)
-
- Necessary to uncompress GCC 'tar' files when source code is
- obtained via FTP mirror sites.
-
-GNU make version 3.80 (or later)
-
- You must have GNU make installed to build GCC.
-
-GNU tar version 1.14 (or later)
-
- Necessary (only on some platforms) to untar the source code. Many
- systems' 'tar' programs will also work, only try GNU 'tar' if you
- have problems.
-
-Perl version 5.6.1 (or later)
-
- Necessary when targeting Darwin, building 'libstdc++', and not
- using '--disable-symvers'. Necessary when targeting Solaris 2 with
- Sun 'ld' and not using '--disable-symvers'. The bundled 'perl' in
- Solaris 8 and up works.
-
- Necessary when regenerating 'Makefile' dependencies in libiberty.
- Necessary when regenerating 'libiberty/functions.texi'. Necessary
- when generating manpages from Texinfo manuals. Used by various
- scripts to generate some files included in SVN (mainly
- Unicode-related and rarely changing) from source tables.
-
-'jar', or InfoZIP ('zip' and 'unzip')
-
- Necessary to build libgcj, the GCJ runtime.
-
- Several support libraries are necessary to build GCC, some are
-required, others optional. While any sufficiently new version of
-required tools usually work, library requirements are generally
-stricter. Newer versions may work in some cases, but it's safer to use
-the exact versions documented. We appreciate bug reports about problems
-with newer versions, though. If your OS vendor provides packages for
-the support libraries then using those packages may be the simplest way
-to install the libraries.
-
-GNU Multiple Precision Library (GMP) version 4.3.2 (or later)
-
- Necessary to build GCC. If a GMP source distribution is found in a
- subdirectory of your GCC sources named 'gmp', it will be built
- together with GCC. Alternatively, if GMP is already installed but
- it is not in your library search path, you will have to configure
- with the '--with-gmp' configure option. See also '--with-gmp-lib'
- and '--with-gmp-include'.
-
-MPFR Library version 2.4.2 (or later)
-
- Necessary to build GCC. It can be downloaded from
- <http://www.mpfr.org/>. If an MPFR source distribution is found in
- a subdirectory of your GCC sources named 'mpfr', it will be built
- together with GCC. Alternatively, if MPFR is already installed but
- it is not in your default library search path, the '--with-mpfr'
- configure option should be used. See also '--with-mpfr-lib' and
- '--with-mpfr-include'.
-
-MPC Library version 0.8.1 (or later)
-
- Necessary to build GCC. It can be downloaded from
- <http://www.multiprecision.org/>. If an MPC source distribution is
- found in a subdirectory of your GCC sources named 'mpc', it will be
- built together with GCC. Alternatively, if MPC is already installed
- but it is not in your default library search path, the '--with-mpc'
- configure option should be used. See also '--with-mpc-lib' and
- '--with-mpc-include'.
-
-ISL Library version 0.12.2
-
- Necessary to build GCC with the Graphite loop optimizations. It
- can be downloaded from <ftp://gcc.gnu.org/pub/gcc/infrastructure/>
- as 'isl-0.12.2.tar.bz2'. If an ISL source distribution is found in
- a subdirectory of your GCC sources named 'isl', it will be built
- together with GCC. Alternatively, the '--with-isl' configure option
- should be used if ISL is not installed in your default library
- search path.
-
-CLooG 0.18.1
-
- Necessary to build GCC with the Graphite loop optimizations. It
- can be downloaded from <ftp://gcc.gnu.org/pub/gcc/infrastructure/>
- as 'cloog-0.18.1.tar.gz'. If a CLooG source distribution is found
- in a subdirectory of your GCC sources named 'cloog', it will be
- built together with GCC. Alternatively, the '--with-cloog'
- configure option should be used if CLooG is not installed in your
- default library search path.
-
- If you want to install CLooG separately it needs to be built
- against ISL 0.12.2 by using the '--with-isl=system' to direct CLooG
- to pick up an already installed ISL. Using the ISL library as
- bundled with CLooG is not supported.
-
-Tools/packages necessary for modifying GCC
-==========================================
-
-autoconf version 2.64
-GNU m4 version 1.4.6 (or later)
-
- Necessary when modifying 'configure.ac', 'aclocal.m4', etc. to
- regenerate 'configure' and 'config.in' files.
-
-automake version 1.11.1
-
- Necessary when modifying a 'Makefile.am' file to regenerate its
- associated 'Makefile.in'.
-
- Much of GCC does not use automake, so directly edit the
- 'Makefile.in' file. Specifically this applies to the 'gcc',
- 'intl', 'libcpp', 'libiberty', 'libobjc' directories as well as any
- of their subdirectories.
-
- For directories that use automake, GCC requires the latest release
- in the 1.11 series, which is currently 1.11.1. When regenerating a
- directory to a newer version, please update all the directories
- using an older 1.11 to the latest released version.
-
-gettext version 0.14.5 (or later)
-
- Needed to regenerate 'gcc.pot'.
-
-gperf version 2.7.2 (or later)
-
- Necessary when modifying 'gperf' input files, e.g.
- 'gcc/cp/cfns.gperf' to regenerate its associated header file, e.g.
- 'gcc/cp/cfns.h'.
-
-DejaGnu 1.4.4
-Expect
-Tcl
-
- Necessary to run the GCC testsuite; see the section on testing for
- details. Tcl 8.6 has a known regression in RE pattern handling
- that make parts of the testsuite fail. See
- <http://core.tcl.tk/tcl/tktview/267b7e2334ee2e9de34c4b00d6e72e2f1997085f>
- for more information.
-
-autogen version 5.5.4 (or later) and
-guile version 1.4.1 (or later)
-
- Necessary to regenerate 'fixinc/fixincl.x' from
- 'fixinc/inclhack.def' and 'fixinc/*.tpl'.
-
- Necessary to run 'make check' for 'fixinc'.
-
- Necessary to regenerate the top level 'Makefile.in' file from
- 'Makefile.tpl' and 'Makefile.def'.
-
-Flex version 2.5.4 (or later)
-
- Necessary when modifying '*.l' files.
-
- Necessary to build GCC during development because the generated
- output files are not included in the SVN repository. They are
- included in releases.
-
-Texinfo version 4.7 (or later)
-
- Necessary for running 'makeinfo' when modifying '*.texi' files to
- test your changes.
-
- Necessary for running 'make dvi' or 'make pdf' to create printable
- documentation in DVI or PDF format. Texinfo version 4.8 or later
- is required for 'make pdf'.
-
- Necessary to build GCC documentation during development because the
- generated output files are not included in the SVN repository.
- They are included in releases.
-
-TeX (any working version)
-
- Necessary for running 'texi2dvi' and 'texi2pdf', which are used
- when running 'make dvi' or 'make pdf' to create DVI or PDF files,
- respectively.
-
-SVN (any version)
-SSH (any version)
-
- Necessary to access the SVN repository. Public releases and weekly
- snapshots of the development sources are also available via FTP.
-
-GNU diffutils version 2.7 (or later)
-
- Useful when submitting patches for the GCC source code.
-
-patch version 2.5.4 (or later)
-
- Necessary when applying patches, created with 'diff', to one's own
- sources.
-
-ecj1
-gjavah
-
- If you wish to modify '.java' files in libjava, you will need to
- configure with '--enable-java-maintainer-mode', and you will need
- to have executables named 'ecj1' and 'gjavah' in your path. The
- 'ecj1' executable should run the Eclipse Java compiler via the
- GCC-specific entry point. You can download a suitable jar from
- <ftp://sourceware.org/pub/java/>, or by running the script
- 'contrib/download_ecj'.
-
-antlr.jar version 2.7.1 (or later)
-antlr binary
-
- If you wish to build the 'gjdoc' binary in libjava, you will need
- to have an 'antlr.jar' library available. The library is searched
- for in system locations but can be specified with
- '--with-antlr-jar=' instead. When configuring with
- '--enable-java-maintainer-mode', you will need to have one of the
- executables named 'cantlr', 'runantlr' or 'antlr' in your path.
-
-
-File: gccinstall.info, Node: Downloading the source, Next: Configuration, Prev: Prerequisites, Up: Installing GCC
-
-3 Downloading GCC
-*****************
-
-GCC is distributed via SVN and FTP tarballs compressed with 'gzip' or
-'bzip2'.
-
- Please refer to the releases web page for information on how to
-obtain GCC.
-
- The source distribution includes the C, C++, Objective-C, Fortran,
-Java, and Ada (in the case of GCC 3.1 and later) compilers, as well as
-runtime libraries for C++, Objective-C, Fortran, and Java. For previous
-versions these were downloadable as separate components such as the core
-GCC distribution, which included the C language front end and shared
-components, and language-specific distributions including the language
-front end and the language runtime (where appropriate).
-
- If you also intend to build binutils (either to upgrade an existing
-installation or for use in place of the corresponding tools of your OS),
-unpack the binutils distribution either in the same directory or a
-separate one. In the latter case, add symbolic links to any components
-of the binutils you intend to build alongside the compiler ('bfd',
-'binutils', 'gas', 'gprof', 'ld', 'opcodes', ...) to the directory
-containing the GCC sources.
-
- Likewise the GMP, MPFR and MPC libraries can be automatically built
-together with GCC. Unpack the GMP, MPFR and/or MPC source distributions
-in the directory containing the GCC sources and rename their directories
-to 'gmp', 'mpfr' and 'mpc', respectively (or use symbolic links with the
-same name).
-
-
-File: gccinstall.info, Node: Configuration, Next: Building, Prev: Downloading the source, Up: Installing GCC
-
-4 Installing GCC: Configuration
-*******************************
-
-Like most GNU software, GCC must be configured before it can be built.
-This document describes the recommended configuration procedure for both
-native and cross targets.
-
- We use SRCDIR to refer to the toplevel source directory for GCC; we
-use OBJDIR to refer to the toplevel build/object directory.
-
- If you obtained the sources via SVN, SRCDIR must refer to the top
-'gcc' directory, the one where the 'MAINTAINERS' file can be found, and
-not its 'gcc' subdirectory, otherwise the build will fail.
-
- If either SRCDIR or OBJDIR is located on an automounted NFS file
-system, the shell's built-in 'pwd' command will return temporary
-pathnames. Using these can lead to various sorts of build problems. To
-avoid this issue, set the 'PWDCMD' environment variable to an
-automounter-aware 'pwd' command, e.g., 'pawd' or 'amq -w', during the
-configuration and build phases.
-
- First, we *highly* recommend that GCC be built into a separate
-directory from the sources which does *not* reside within the source
-tree. This is how we generally build GCC; building where SRCDIR ==
-OBJDIR should still work, but doesn't get extensive testing; building
-where OBJDIR is a subdirectory of SRCDIR is unsupported.
-
- If you have previously built GCC in the same directory for a
-different target machine, do 'make distclean' to delete all files that
-might be invalid. One of the files this deletes is 'Makefile'; if 'make
-distclean' complains that 'Makefile' does not exist or issues a message
-like "don't know how to make distclean" it probably means that the
-directory is already suitably clean. However, with the recommended
-method of building in a separate OBJDIR, you should simply use a
-different OBJDIR for each target.
-
- Second, when configuring a native system, either 'cc' or 'gcc' must
-be in your path or you must set 'CC' in your environment before running
-configure. Otherwise the configuration scripts may fail.
-
- To configure GCC:
-
- % mkdir OBJDIR
- % cd OBJDIR
- % SRCDIR/configure [OPTIONS] [TARGET]
-
-Distributor options
-===================
-
-If you will be distributing binary versions of GCC, with modifications
-to the source code, you should use the options described in this section
-to make clear that your version contains modifications.
-
-'--with-pkgversion=VERSION'
- Specify a string that identifies your package. You may wish to
- include a build number or build date. This version string will be
- included in the output of 'gcc --version'. This suffix does not
- replace the default version string, only the 'GCC' part.
-
- The default value is 'GCC'.
-
-'--with-bugurl=URL'
- Specify the URL that users should visit if they wish to report a
- bug. You are of course welcome to forward bugs reported to you to
- the FSF, if you determine that they are not bugs in your
- modifications.
-
- The default value refers to the FSF's GCC bug tracker.
-
-Target specification
-====================
-
- * GCC has code to correctly determine the correct value for TARGET
- for nearly all native systems. Therefore, we highly recommend you
- do not provide a configure target when configuring a native
- compiler.
-
- * TARGET must be specified as '--target=TARGET' when configuring a
- cross compiler; examples of valid targets would be m68k-elf,
- sh-elf, etc.
-
- * Specifying just TARGET instead of '--target=TARGET' implies that
- the host defaults to TARGET.
-
-Options specification
-=====================
-
-Use OPTIONS to override several configure time options for GCC. A list
-of supported OPTIONS follows; 'configure --help' may list other options,
-but those not listed below may not work and should not normally be used.
-
- Note that each '--enable' option has a corresponding '--disable'
-option and that each '--with' option has a corresponding '--without'
-option.
-
-'--prefix=DIRNAME'
- Specify the toplevel installation directory. This is the
- recommended way to install the tools into a directory other than
- the default. The toplevel installation directory defaults to
- '/usr/local'.
-
- We *highly* recommend against DIRNAME being the same or a
- subdirectory of OBJDIR or vice versa. If specifying a directory
- beneath a user's home directory tree, some shells will not expand
- DIRNAME correctly if it contains the '~' metacharacter; use '$HOME'
- instead.
-
- The following standard 'autoconf' options are supported. Normally
- you should not need to use these options.
- '--exec-prefix=DIRNAME'
- Specify the toplevel installation directory for
- architecture-dependent files. The default is 'PREFIX'.
-
- '--bindir=DIRNAME'
- Specify the installation directory for the executables called
- by users (such as 'gcc' and 'g++'). The default is
- 'EXEC-PREFIX/bin'.
-
- '--libdir=DIRNAME'
- Specify the installation directory for object code libraries
- and internal data files of GCC. The default is
- 'EXEC-PREFIX/lib'.
-
- '--libexecdir=DIRNAME'
- Specify the installation directory for internal executables of
- GCC. The default is 'EXEC-PREFIX/libexec'.
-
- '--with-slibdir=DIRNAME'
- Specify the installation directory for the shared libgcc
- library. The default is 'LIBDIR'.
-
- '--datarootdir=DIRNAME'
- Specify the root of the directory tree for read-only
- architecture-independent data files referenced by GCC. The
- default is 'PREFIX/share'.
-
- '--infodir=DIRNAME'
- Specify the installation directory for documentation in info
- format. The default is 'DATAROOTDIR/info'.
-
- '--datadir=DIRNAME'
- Specify the installation directory for some
- architecture-independent data files referenced by GCC. The
- default is 'DATAROOTDIR'.
-
- '--docdir=DIRNAME'
- Specify the installation directory for documentation files
- (other than Info) for GCC. The default is 'DATAROOTDIR/doc'.
-
- '--htmldir=DIRNAME'
- Specify the installation directory for HTML documentation
- files. The default is 'DOCDIR'.
-
- '--pdfdir=DIRNAME'
- Specify the installation directory for PDF documentation
- files. The default is 'DOCDIR'.
-
- '--mandir=DIRNAME'
- Specify the installation directory for manual pages. The
- default is 'DATAROOTDIR/man'. (Note that the manual pages are
- only extracts from the full GCC manuals, which are provided in
- Texinfo format. The manpages are derived by an automatic
- conversion process from parts of the full manual.)
-
- '--with-gxx-include-dir=DIRNAME'
- Specify the installation directory for G++ header files. The
- default depends on other configuration options, and differs
- between cross and native configurations.
-
- '--with-specs=SPECS'
- Specify additional command line driver SPECS. This can be
- useful if you need to turn on a non-standard feature by
- default without modifying the compiler's source code, for
- instance
- '--with-specs=%{!fcommon:%{!fno-common:-fno-common}}'. *Note
- Specifying subprocesses and the switches to pass to them:
- (gcc)Spec Files,
-
-'--program-prefix=PREFIX'
- GCC supports some transformations of the names of its programs when
- installing them. This option prepends PREFIX to the names of
- programs to install in BINDIR (see above). For example, specifying
- '--program-prefix=foo-' would result in 'gcc' being installed as
- '/usr/local/bin/foo-gcc'.
-
-'--program-suffix=SUFFIX'
- Appends SUFFIX to the names of programs to install in BINDIR (see
- above). For example, specifying '--program-suffix=-3.1' would
- result in 'gcc' being installed as '/usr/local/bin/gcc-3.1'.
-
-'--program-transform-name=PATTERN'
- Applies the 'sed' script PATTERN to be applied to the names of
- programs to install in BINDIR (see above). PATTERN has to consist
- of one or more basic 'sed' editing commands, separated by
- semicolons. For example, if you want the 'gcc' program name to be
- transformed to the installed program '/usr/local/bin/myowngcc' and
- the 'g++' program name to be transformed to
- '/usr/local/bin/gspecial++' without changing other program names,
- you could use the pattern
- '--program-transform-name='s/^gcc$/myowngcc/; s/^g++$/gspecial++/''
- to achieve this effect.
-
- All three options can be combined and used together, resulting in
- more complex conversion patterns. As a basic rule, PREFIX (and
- SUFFIX) are prepended (appended) before further transformations can
- happen with a special transformation script PATTERN.
-
- As currently implemented, this option only takes effect for native
- builds; cross compiler binaries' names are not transformed even
- when a transformation is explicitly asked for by one of these
- options.
-
- For native builds, some of the installed programs are also
- installed with the target alias in front of their name, as in
- 'i686-pc-linux-gnu-gcc'. All of the above transformations happen
- before the target alias is prepended to the name--so, specifying
- '--program-prefix=foo-' and 'program-suffix=-3.1', the resulting
- binary would be installed as
- '/usr/local/bin/i686-pc-linux-gnu-foo-gcc-3.1'.
-
- As a last shortcoming, none of the installed Ada programs are
- transformed yet, which will be fixed in some time.
-
-'--with-local-prefix=DIRNAME'
- Specify the installation directory for local include files. The
- default is '/usr/local'. Specify this option if you want the
- compiler to search directory 'DIRNAME/include' for locally
- installed header files _instead_ of '/usr/local/include'.
-
- You should specify '--with-local-prefix' *only* if your site has a
- different convention (not '/usr/local') for where to put
- site-specific files.
-
- The default value for '--with-local-prefix' is '/usr/local'
- regardless of the value of '--prefix'. Specifying '--prefix' has
- no effect on which directory GCC searches for local header files.
- This may seem counterintuitive, but actually it is logical.
-
- The purpose of '--prefix' is to specify where to _install GCC_. The
- local header files in '/usr/local/include'--if you put any in that
- directory--are not part of GCC. They are part of other
- programs--perhaps many others. (GCC installs its own header files
- in another directory which is based on the '--prefix' value.)
-
- Both the local-prefix include directory and the GCC-prefix include
- directory are part of GCC's "system include" directories. Although
- these two directories are not fixed, they need to be searched in
- the proper order for the correct processing of the include_next
- directive. The local-prefix include directory is searched before
- the GCC-prefix include directory. Another characteristic of system
- include directories is that pedantic warnings are turned off for
- headers in these directories.
-
- Some autoconf macros add '-I DIRECTORY' options to the compiler
- command line, to ensure that directories containing installed
- packages' headers are searched. When DIRECTORY is one of GCC's
- system include directories, GCC will ignore the option so that
- system directories continue to be processed in the correct order.
- This may result in a search order different from what was specified
- but the directory will still be searched.
-
- GCC automatically searches for ordinary libraries using
- 'GCC_EXEC_PREFIX'. Thus, when the same installation prefix is used
- for both GCC and packages, GCC will automatically search for both
- headers and libraries. This provides a configuration that is easy
- to use. GCC behaves in a manner similar to that when it is
- installed as a system compiler in '/usr'.
-
- Sites that need to install multiple versions of GCC may not want to
- use the above simple configuration. It is possible to use the
- '--program-prefix', '--program-suffix' and
- '--program-transform-name' options to install multiple versions
- into a single directory, but it may be simpler to use different
- prefixes and the '--with-local-prefix' option to specify the
- location of the site-specific files for each version. It will then
- be necessary for users to specify explicitly the location of local
- site libraries (e.g., with 'LIBRARY_PATH').
-
- The same value can be used for both '--with-local-prefix' and
- '--prefix' provided it is not '/usr'. This can be used to avoid
- the default search of '/usr/local/include'.
-
- *Do not* specify '/usr' as the '--with-local-prefix'! The
- directory you use for '--with-local-prefix' *must not* contain any
- of the system's standard header files. If it did contain them,
- certain programs would be miscompiled (including GNU Emacs, on
- certain targets), because this would override and nullify the
- header file corrections made by the 'fixincludes' script.
-
- Indications are that people who use this option use it based on
- mistaken ideas of what it is for. People use it as if it specified
- where to install part of GCC. Perhaps they make this assumption
- because installing GCC creates the directory.
-
-'--with-native-system-header-dir=DIRNAME'
- Specifies that DIRNAME is the directory that contains native system
- header files, rather than '/usr/include'. This option is most
- useful if you are creating a compiler that should be isolated from
- the system as much as possible. It is most commonly used with the
- '--with-sysroot' option and will cause GCC to search DIRNAME inside
- the system root specified by that option.
-
-'--enable-shared[=PACKAGE[,...]]'
- Build shared versions of libraries, if shared libraries are
- supported on the target platform. Unlike GCC 2.95.x and earlier,
- shared libraries are enabled by default on all platforms that
- support shared libraries.
-
- If a list of packages is given as an argument, build shared
- libraries only for the listed packages. For other packages, only
- static libraries will be built. Package names currently recognized
- in the GCC tree are 'libgcc' (also known as 'gcc'), 'libstdc++'
- (not 'libstdc++-v3'), 'libffi', 'zlib', 'boehm-gc', 'ada',
- 'libada', 'libjava', 'libgo', and 'libobjc'. Note 'libiberty' does
- not support shared libraries at all.
-
- Use '--disable-shared' to build only static libraries. Note that
- '--disable-shared' does not accept a list of package names as
- argument, only '--enable-shared' does.
-
- Contrast with '--enable-host-shared', which affects _host_ code.
-
-'--enable-host-shared'
- Specify that the _host_ code should be built into
- position-independent machine code (with -fPIC), allowing it to be
- used within shared libraries, but yielding a slightly slower
- compiler.
-
- Currently this option is only of use to people developing GCC
- itself.
-
- Contrast with '--enable-shared', which affects _target_ libraries.
-
-'--with-gnu-as'
- Specify that the compiler should assume that the assembler it finds
- is the GNU assembler. However, this does not modify the rules to
- find an assembler and will result in confusion if the assembler
- found is not actually the GNU assembler. (Confusion may also
- result if the compiler finds the GNU assembler but has not been
- configured with '--with-gnu-as'.) If you have more than one
- assembler installed on your system, you may want to use this option
- in connection with '--with-as=PATHNAME' or
- '--with-build-time-tools=PATHNAME'.
-
- The following systems are the only ones where it makes a difference
- whether you use the GNU assembler. On any other system,
- '--with-gnu-as' has no effect.
-
- * 'hppa1.0-ANY-ANY'
- * 'hppa1.1-ANY-ANY'
- * 'sparc-sun-solaris2.ANY'
- * 'sparc64-ANY-solaris2.ANY'
-
-'--with-as=PATHNAME'
- Specify that the compiler should use the assembler pointed to by
- PATHNAME, rather than the one found by the standard rules to find
- an assembler, which are:
- * Unless GCC is being built with a cross compiler, check the
- 'LIBEXEC/gcc/TARGET/VERSION' directory. LIBEXEC defaults to
- 'EXEC-PREFIX/libexec'; EXEC-PREFIX defaults to PREFIX, which
- defaults to '/usr/local' unless overridden by the
- '--prefix=PATHNAME' switch described above. TARGET is the
- target system triple, such as 'sparc-sun-solaris2.7', and
- VERSION denotes the GCC version, such as 3.0.
-
- * If the target system is the same that you are building on,
- check operating system specific directories (e.g.
- '/usr/ccs/bin' on Sun Solaris 2).
-
- * Check in the 'PATH' for a tool whose name is prefixed by the
- target system triple.
-
- * Check in the 'PATH' for a tool whose name is not prefixed by
- the target system triple, if the host and target system triple
- are the same (in other words, we use a host tool if it can be
- used for the target as well).
-
- You may want to use '--with-as' if no assembler is installed in the
- directories listed above, or if you have multiple assemblers
- installed and want to choose one that is not found by the above
- rules.
-
-'--with-gnu-ld'
- Same as '--with-gnu-as' but for the linker.
-
-'--with-ld=PATHNAME'
- Same as '--with-as' but for the linker.
-
-'--with-stabs'
- Specify that stabs debugging information should be used instead of
- whatever format the host normally uses. Normally GCC uses the same
- debug format as the host system.
-
- On MIPS based systems and on Alphas, you must specify whether you
- want GCC to create the normal ECOFF debugging format, or to use
- BSD-style stabs passed through the ECOFF symbol table. The normal
- ECOFF debug format cannot fully handle languages other than C. BSD
- stabs format can handle other languages, but it only works with the
- GNU debugger GDB.
-
- Normally, GCC uses the ECOFF debugging format by default; if you
- prefer BSD stabs, specify '--with-stabs' when you configure GCC.
-
- No matter which default you choose when you configure GCC, the user
- can use the '-gcoff' and '-gstabs+' options to specify explicitly
- the debug format for a particular compilation.
-
- '--with-stabs' is meaningful on the ISC system on the 386, also, if
- '--with-gas' is used. It selects use of stabs debugging
- information embedded in COFF output. This kind of debugging
- information supports C++ well; ordinary COFF debugging information
- does not.
-
- '--with-stabs' is also meaningful on 386 systems running SVR4. It
- selects use of stabs debugging information embedded in ELF output.
- The C++ compiler currently (2.6.0) does not support the DWARF
- debugging information normally used on 386 SVR4 platforms; stabs
- provide a workable alternative. This requires gas and gdb, as the
- normal SVR4 tools can not generate or interpret stabs.
-
-'--with-tls=DIALECT'
- Specify the default TLS dialect, for systems were there is a
- choice. For ARM targets, possible values for DIALECT are 'gnu' or
- 'gnu2', which select between the original GNU dialect and the GNU
- TLS descriptor-based dialect.
-
-'--enable-multiarch'
- Specify whether to enable or disable multiarch support. The
- default is to check for glibc start files in a multiarch location,
- and enable it if the files are found. The auto detection is
- enabled for native builds, and for cross builds configured with
- '--with-sysroot', and without '--with-native-system-header-dir'.
- More documentation about multiarch can be found at
- <http://wiki.debian.org/Multiarch>.
-
-'--enable-vtable-verify'
- Specify whether to enable or disable the vtable verification
- feature. Enabling this feature causes libstdc++ to be built with
- its virtual calls in verifiable mode. This means that, when linked
- with libvtv, every virtual call in libstdc++ will verify the vtable
- pointer through which the call will be made before actually making
- the call. If not linked with libvtv, the verifier will call stub
- functions (in libstdc++ itself) and do nothing. If vtable
- verification is disabled, then libstdc++ is not built with its
- virtual calls in verifiable mode at all. However the libvtv
- library will still be built (see '--disable-libvtv' to turn off
- building libvtv). '--disable-vtable-verify' is the default.
-
-'--disable-multilib'
- Specify that multiple target libraries to support different target
- variants, calling conventions, etc. should not be built. The
- default is to build a predefined set of them.
-
- Some targets provide finer-grained control over which multilibs are
- built (e.g., '--disable-softfloat'):
- 'arm-*-*'
- fpu, 26bit, underscore, interwork, biendian, nofmult.
-
- 'm68*-*-*'
- softfloat, m68881, m68000, m68020.
-
- 'mips*-*-*'
- single-float, biendian, softfloat.
-
- 'powerpc*-*-*, rs6000*-*-*'
- aix64, pthread, softfloat, powercpu, powerpccpu, powerpcos,
- biendian, sysv, aix.
-
-'--with-multilib-list=LIST'
-'--without-multilib-list'
- Specify what multilibs to build. Currently only implemented for
- sh*-*-* and x86-64-*-linux*.
-
- 'sh*-*-*'
- LIST is a comma separated list of CPU names. These must be of
- the form 'sh*' or 'm*' (in which case they match the compiler
- option for that processor). The list should not contain any
- endian options - these are handled by '--with-endian'.
-
- If LIST is empty, then there will be no multilibs for extra
- processors. The multilib for the secondary endian remains
- enabled.
-
- As a special case, if an entry in the list starts with a '!'
- (exclamation point), then it is added to the list of excluded
- multilibs. Entries of this sort should be compatible with
- 'MULTILIB_EXCLUDES' (once the leading '!' has been stripped).
-
- If '--with-multilib-list' is not given, then a default set of
- multilibs is selected based on the value of '--target'. This
- is usually the complete set of libraries, but some targets
- imply a more specialized subset.
-
- Example 1: to configure a compiler for SH4A only, but
- supporting both endians, with little endian being the default:
- --with-cpu=sh4a --with-endian=little,big --with-multilib-list=
-
- Example 2: to configure a compiler for both SH4A and
- SH4AL-DSP, but with only little endian SH4AL:
- --with-cpu=sh4a --with-endian=little,big \
- --with-multilib-list=sh4al,!mb/m4al
-
- 'x86-64-*-linux*'
- LIST is a comma separated list of 'm32', 'm64' and 'mx32' to
- enable 32-bit, 64-bit and x32 run-time libraries,
- respectively. If LIST is empty, then there will be no
- multilibs and only the default run-time library will be
- enabled.
-
- If '--with-multilib-list' is not given, then only 32-bit and
- 64-bit run-time libraries will be enabled.
-
-'--with-endian=ENDIANS'
- Specify what endians to use. Currently only implemented for
- sh*-*-*.
-
- ENDIANS may be one of the following:
- 'big'
- Use big endian exclusively.
- 'little'
- Use little endian exclusively.
- 'big,little'
- Use big endian by default. Provide a multilib for little
- endian.
- 'little,big'
- Use little endian by default. Provide a multilib for big
- endian.
-
-'--enable-threads'
- Specify that the target supports threads. This affects the
- Objective-C compiler and runtime library, and exception handling
- for other languages like C++ and Java. On some systems, this is
- the default.
-
- In general, the best (and, in many cases, the only known) threading
- model available will be configured for use. Beware that on some
- systems, GCC has not been taught what threading models are
- generally available for the system. In this case,
- '--enable-threads' is an alias for '--enable-threads=single'.
-
-'--disable-threads'
- Specify that threading support should be disabled for the system.
- This is an alias for '--enable-threads=single'.
-
-'--enable-threads=LIB'
- Specify that LIB is the thread support library. This affects the
- Objective-C compiler and runtime library, and exception handling
- for other languages like C++ and Java. The possibilities for LIB
- are:
-
- 'aix'
- AIX thread support.
- 'dce'
- DCE thread support.
- 'lynx'
- LynxOS thread support.
- 'mipssde'
- MIPS SDE thread support.
- 'no'
- This is an alias for 'single'.
- 'posix'
- Generic POSIX/Unix98 thread support.
- 'rtems'
- RTEMS thread support.
- 'single'
- Disable thread support, should work for all platforms.
- 'tpf'
- TPF thread support.
- 'vxworks'
- VxWorks thread support.
- 'win32'
- Microsoft Win32 API thread support.
-
-'--enable-tls'
- Specify that the target supports TLS (Thread Local Storage).
- Usually configure can correctly determine if TLS is supported. In
- cases where it guesses incorrectly, TLS can be explicitly enabled
- or disabled with '--enable-tls' or '--disable-tls'. This can
- happen if the assembler supports TLS but the C library does not, or
- if the assumptions made by the configure test are incorrect.
-
-'--disable-tls'
- Specify that the target does not support TLS. This is an alias for
- '--enable-tls=no'.
-
-'--with-cpu=CPU'
-'--with-cpu-32=CPU'
-'--with-cpu-64=CPU'
- Specify which cpu variant the compiler should generate code for by
- default. CPU will be used as the default value of the '-mcpu='
- switch. This option is only supported on some targets, including
- ARC, ARM, i386, M68k, PowerPC, and SPARC. It is mandatory for ARC.
- The '--with-cpu-32' and '--with-cpu-64' options specify separate
- default CPUs for 32-bit and 64-bit modes; these options are only
- supported for i386, x86-64 and PowerPC.
-
-'--with-schedule=CPU'
-'--with-arch=CPU'
-'--with-arch-32=CPU'
-'--with-arch-64=CPU'
-'--with-tune=CPU'
-'--with-tune-32=CPU'
-'--with-tune-64=CPU'
-'--with-abi=ABI'
-'--with-fpu=TYPE'
-'--with-float=TYPE'
- These configure options provide default values for the
- '-mschedule=', '-march=', '-mtune=', '-mabi=', and '-mfpu=' options
- and for '-mhard-float' or '-msoft-float'. As with '--with-cpu',
- which switches will be accepted and acceptable values of the
- arguments depend on the target.
-
-'--with-mode=MODE'
- Specify if the compiler should default to '-marm' or '-mthumb'.
- This option is only supported on ARM targets.
-
-'--with-stack-offset=NUM'
- This option sets the default for the -mstack-offset=NUM option, and
- will thus generally also control the setting of this option for
- libraries. This option is only supported on Epiphany targets.
-
-'--with-fpmath=ISA'
- This options sets '-mfpmath=sse' by default and specifies the
- default ISA for floating-point arithmetics. You can select either
- 'sse' which enables '-msse2' or 'avx' which enables '-mavx' by
- default. This option is only supported on i386 and x86-64 targets.
-
-'--with-nan=ENCODING'
- On MIPS targets, set the default encoding convention to use for the
- special not-a-number (NaN) IEEE 754 floating-point data. The
- possibilities for ENCODING are:
- 'legacy'
- Use the legacy encoding, as with the '-mnan=legacy'
- command-line option.
- '2008'
- Use the 754-2008 encoding, as with the '-mnan=2008'
- command-line option.
- To use this configuration option you must have an assembler version
- installed that supports the '-mnan=' command-line option too. In
- the absence of this configuration option the default convention is
- the legacy encoding, as when neither of the '-mnan=2008' and
- '-mnan=legacy' command-line options has been used.
-
-'--with-divide=TYPE'
- Specify how the compiler should generate code for checking for
- division by zero. This option is only supported on the MIPS
- target. The possibilities for TYPE are:
- 'traps'
- Division by zero checks use conditional traps (this is the
- default on systems that support conditional traps).
- 'breaks'
- Division by zero checks use the break instruction.
-
-'--with-llsc'
- On MIPS targets, make '-mllsc' the default when no '-mno-llsc'
- option is passed. This is the default for Linux-based targets, as
- the kernel will emulate them if the ISA does not provide them.
-
-'--without-llsc'
- On MIPS targets, make '-mno-llsc' the default when no '-mllsc'
- option is passed.
-
-'--with-synci'
- On MIPS targets, make '-msynci' the default when no '-mno-synci'
- option is passed.
-
-'--without-synci'
- On MIPS targets, make '-mno-synci' the default when no '-msynci'
- option is passed. This is the default.
-
-'--with-mips-plt'
- On MIPS targets, make use of copy relocations and PLTs. These
- features are extensions to the traditional SVR4-based MIPS ABIs and
- require support from GNU binutils and the runtime C library.
-
-'--enable-__cxa_atexit'
- Define if you want to use __cxa_atexit, rather than atexit, to
- register C++ destructors for local statics and global objects.
- This is essential for fully standards-compliant handling of
- destructors, but requires __cxa_atexit in libc. This option is
- currently only available on systems with GNU libc. When enabled,
- this will cause '-fuse-cxa-atexit' to be passed by default.
-
-'--enable-gnu-indirect-function'
- Define if you want to enable the 'ifunc' attribute. This option is
- currently only available on systems with GNU libc on certain
- targets.
-
-'--enable-target-optspace'
- Specify that target libraries should be optimized for code space
- instead of code speed. This is the default for the m32r platform.
-
-'--with-cpp-install-dir=DIRNAME'
- Specify that the user visible 'cpp' program should be installed in
- 'PREFIX/DIRNAME/cpp', in addition to BINDIR.
-
-'--enable-comdat'
- Enable COMDAT group support. This is primarily used to override
- the automatically detected value.
-
-'--enable-initfini-array'
- Force the use of sections '.init_array' and '.fini_array' (instead
- of '.init' and '.fini') for constructors and destructors. Option
- '--disable-initfini-array' has the opposite effect. If neither
- option is specified, the configure script will try to guess whether
- the '.init_array' and '.fini_array' sections are supported and, if
- they are, use them.
-
-'--enable-link-mutex'
- When building GCC, use a mutex to avoid linking the compilers for
- multiple languages at the same time, to avoid thrashing on build
- systems with limited free memory. The default is not to use such a
- mutex.
-
-'--enable-maintainer-mode'
- The build rules that regenerate the Autoconf and Automake output
- files as well as the GCC master message catalog 'gcc.pot' are
- normally disabled. This is because it can only be rebuilt if the
- complete source tree is present. If you have changed the sources
- and want to rebuild the catalog, configuring with
- '--enable-maintainer-mode' will enable this. Note that you need a
- recent version of the 'gettext' tools to do so.
-
-'--disable-bootstrap'
- For a native build, the default configuration is to perform a
- 3-stage bootstrap of the compiler when 'make' is invoked, testing
- that GCC can compile itself correctly. If you want to disable this
- process, you can configure with '--disable-bootstrap'.
-
-'--enable-bootstrap'
- In special cases, you may want to perform a 3-stage build even if
- the target and host triplets are different. This is possible when
- the host can run code compiled for the target (e.g. host is
- i686-linux, target is i486-linux). Starting from GCC 4.2, to do
- this you have to configure explicitly with '--enable-bootstrap'.
-
-'--enable-generated-files-in-srcdir'
- Neither the .c and .h files that are generated from Bison and flex
- nor the info manuals and man pages that are built from the .texi
- files are present in the SVN development tree. When building GCC
- from that development tree, or from one of our snapshots, those
- generated files are placed in your build directory, which allows
- for the source to be in a readonly directory.
-
- If you configure with '--enable-generated-files-in-srcdir' then
- those generated files will go into the source directory. This is
- mainly intended for generating release or prerelease tarballs of
- the GCC sources, since it is not a requirement that the users of
- source releases to have flex, Bison, or makeinfo.
-
-'--enable-version-specific-runtime-libs'
- Specify that runtime libraries should be installed in the compiler
- specific subdirectory ('LIBDIR/gcc') rather than the usual places.
- In addition, 'libstdc++''s include files will be installed into
- 'LIBDIR' unless you overruled it by using
- '--with-gxx-include-dir=DIRNAME'. Using this option is
- particularly useful if you intend to use several versions of GCC in
- parallel. This is currently supported by 'libgfortran', 'libjava',
- 'libstdc++', and 'libobjc'.
-
-'--enable-languages=LANG1,LANG2,...'
- Specify that only a particular subset of compilers and their
- runtime libraries should be built. For a list of valid values for
- LANGN you can issue the following command in the 'gcc' directory of
- your GCC source tree:
- grep language= */config-lang.in
- Currently, you can use any of the following: 'all', 'ada', 'c',
- 'c++', 'fortran', 'go', 'java', 'objc', 'obj-c++'. Building the
- Ada compiler has special requirements, see below. If you do not
- pass this flag, or specify the option 'all', then all default
- languages available in the 'gcc' sub-tree will be configured. Ada,
- Go and Objective-C++ are not default languages; the rest are.
-
-'--enable-stage1-languages=LANG1,LANG2,...'
- Specify that a particular subset of compilers and their runtime
- libraries should be built with the system C compiler during stage 1
- of the bootstrap process, rather than only in later stages with the
- bootstrapped C compiler. The list of valid values is the same as
- for '--enable-languages', and the option 'all' will select all of
- the languages enabled by '--enable-languages'. This option is
- primarily useful for GCC development; for instance, when a
- development version of the compiler cannot bootstrap due to
- compiler bugs, or when one is debugging front ends other than the C
- front end. When this option is used, one can then build the target
- libraries for the specified languages with the stage-1 compiler by
- using 'make stage1-bubble all-target', or run the testsuite on the
- stage-1 compiler for the specified languages using 'make
- stage1-start check-gcc'.
-
-'--disable-libada'
- Specify that the run-time libraries and tools used by GNAT should
- not be built. This can be useful for debugging, or for
- compatibility with previous Ada build procedures, when it was
- required to explicitly do a 'make -C gcc gnatlib_and_tools'.
-
-'--disable-libssp'
- Specify that the run-time libraries for stack smashing protection
- should not be built.
-
-'--disable-libquadmath'
- Specify that the GCC quad-precision math library should not be
- built. On some systems, the library is required to be linkable
- when building the Fortran front end, unless
- '--disable-libquadmath-support' is used.
-
-'--disable-libquadmath-support'
- Specify that the Fortran front end and 'libgfortran' do not add
- support for 'libquadmath' on systems supporting it.
-
-'--disable-libgomp'
- Specify that the run-time libraries used by GOMP should not be
- built.
-
-'--disable-libvtv'
- Specify that the run-time libraries used by vtable verification
- should not be built.
-
-'--with-dwarf2'
- Specify that the compiler should use DWARF 2 debugging information
- as the default.
-
-'--enable-targets=all'
-'--enable-targets=TARGET_LIST'
- Some GCC targets, e.g. powerpc64-linux, build bi-arch compilers.
- These are compilers that are able to generate either 64-bit or
- 32-bit code. Typically, the corresponding 32-bit target, e.g.
- powerpc-linux for powerpc64-linux, only generates 32-bit code.
- This option enables the 32-bit target to be a bi-arch compiler,
- which is useful when you want a bi-arch compiler that defaults to
- 32-bit, and you are building a bi-arch or multi-arch binutils in a
- combined tree. On mips-linux, this will build a tri-arch compiler
- (ABI o32/n32/64), defaulted to o32. Currently, this option only
- affects sparc-linux, powerpc-linux, x86-linux, mips-linux and
- s390-linux.
-
-'--enable-secureplt'
- This option enables '-msecure-plt' by default for powerpc-linux.
- *Note RS/6000 and PowerPC Options: (gcc)RS/6000 and PowerPC
- Options,
-
-'--enable-cld'
- This option enables '-mcld' by default for 32-bit x86 targets.
- *Note i386 and x86-64 Options: (gcc)i386 and x86-64 Options,
-
-'--enable-win32-registry'
-'--enable-win32-registry=KEY'
-'--disable-win32-registry'
- The '--enable-win32-registry' option enables Microsoft
- Windows-hosted GCC to look up installations paths in the registry
- using the following key:
-
- HKEY_LOCAL_MACHINE\SOFTWARE\Free Software Foundation\KEY
-
- KEY defaults to GCC version number, and can be overridden by the
- '--enable-win32-registry=KEY' option. Vendors and distributors who
- use custom installers are encouraged to provide a different key,
- perhaps one comprised of vendor name and GCC version number, to
- avoid conflict with existing installations. This feature is
- enabled by default, and can be disabled by
- '--disable-win32-registry' option. This option has no effect on
- the other hosts.
-
-'--nfp'
- Specify that the machine does not have a floating point unit. This
- option only applies to 'm68k-sun-sunosN'. On any other system,
- '--nfp' has no effect.
-
-'--enable-werror'
-'--disable-werror'
-'--enable-werror=yes'
-'--enable-werror=no'
- When you specify this option, it controls whether certain files in
- the compiler are built with '-Werror' in bootstrap stage2 and
- later. If you don't specify it, '-Werror' is turned on for the
- main development trunk. However it defaults to off for release
- branches and final releases. The specific files which get
- '-Werror' are controlled by the Makefiles.
-
-'--enable-checking'
-'--enable-checking=LIST'
- When you specify this option, the compiler is built to perform
- internal consistency checks of the requested complexity. This does
- not change the generated code, but adds error checking within the
- compiler. This will slow down the compiler and may only work
- properly if you are building the compiler with GCC. This is 'yes'
- by default when building from SVN or snapshots, but 'release' for
- releases. The default for building the stage1 compiler is 'yes'.
- More control over the checks may be had by specifying LIST. The
- categories of checks available are 'yes' (most common checks
- 'assert,misc,tree,gc,rtlflag,runtime'), 'no' (no checks at all),
- 'all' (all but 'valgrind'), 'release' (cheapest checks
- 'assert,runtime') or 'none' (same as 'no'). Individual checks can
- be enabled with these flags 'assert', 'df', 'fold', 'gc', 'gcac'
- 'misc', 'rtl', 'rtlflag', 'runtime', 'tree', and 'valgrind'.
-
- The 'valgrind' check requires the external 'valgrind' simulator,
- available from <http://valgrind.org/>. The 'df', 'rtl', 'gcac' and
- 'valgrind' checks are very expensive. To disable all checking,
- '--disable-checking' or '--enable-checking=none' must be explicitly
- requested. Disabling assertions will make the compiler and runtime
- slightly faster but increase the risk of undetected internal errors
- causing wrong code to be generated.
-
-'--disable-stage1-checking'
-'--enable-stage1-checking'
-'--enable-stage1-checking=LIST'
- If no '--enable-checking' option is specified the stage1 compiler
- will be built with 'yes' checking enabled, otherwise the stage1
- checking flags are the same as specified by '--enable-checking'.
- To build the stage1 compiler with different checking options use
- '--enable-stage1-checking'. The list of checking options is the
- same as for '--enable-checking'. If your system is too slow or too
- small to bootstrap a released compiler with checking for stage1
- enabled, you can use '--disable-stage1-checking' to disable
- checking for the stage1 compiler.
-
-'--enable-coverage'
-'--enable-coverage=LEVEL'
- With this option, the compiler is built to collect self coverage
- information, every time it is run. This is for internal
- development purposes, and only works when the compiler is being
- built with gcc. The LEVEL argument controls whether the compiler
- is built optimized or not, values are 'opt' and 'noopt'. For
- coverage analysis you want to disable optimization, for performance
- analysis you want to enable optimization. When coverage is
- enabled, the default level is without optimization.
-
-'--enable-gather-detailed-mem-stats'
- When this option is specified more detailed information on memory
- allocation is gathered. This information is printed when using
- '-fmem-report'.
-
-'--enable-nls'
-'--disable-nls'
- The '--enable-nls' option enables Native Language Support (NLS),
- which lets GCC output diagnostics in languages other than American
- English. Native Language Support is enabled by default if not
- doing a canadian cross build. The '--disable-nls' option disables
- NLS.
-
-'--with-included-gettext'
- If NLS is enabled, the '--with-included-gettext' option causes the
- build procedure to prefer its copy of GNU 'gettext'.
-
-'--with-catgets'
- If NLS is enabled, and if the host lacks 'gettext' but has the
- inferior 'catgets' interface, the GCC build procedure normally
- ignores 'catgets' and instead uses GCC's copy of the GNU 'gettext'
- library. The '--with-catgets' option causes the build procedure to
- use the host's 'catgets' in this situation.
-
-'--with-libiconv-prefix=DIR'
- Search for libiconv header files in 'DIR/include' and libiconv
- library files in 'DIR/lib'.
-
-'--enable-obsolete'
- Enable configuration for an obsoleted system. If you attempt to
- configure GCC for a system (build, host, or target) which has been
- obsoleted, and you do not specify this flag, configure will halt
- with an error message.
-
- All support for systems which have been obsoleted in one release of
- GCC is removed entirely in the next major release, unless someone
- steps forward to maintain the port.
-
-'--enable-decimal-float'
-'--enable-decimal-float=yes'
-'--enable-decimal-float=no'
-'--enable-decimal-float=bid'
-'--enable-decimal-float=dpd'
-'--disable-decimal-float'
- Enable (or disable) support for the C decimal floating point
- extension that is in the IEEE 754-2008 standard. This is enabled
- by default only on PowerPC, i386, and x86_64 GNU/Linux systems.
- Other systems may also support it, but require the user to
- specifically enable it. You can optionally control which decimal
- floating point format is used (either 'bid' or 'dpd'). The 'bid'
- (binary integer decimal) format is default on i386 and x86_64
- systems, and the 'dpd' (densely packed decimal) format is default
- on PowerPC systems.
-
-'--enable-fixed-point'
-'--disable-fixed-point'
- Enable (or disable) support for C fixed-point arithmetic. This
- option is enabled by default for some targets (such as MIPS) which
- have hardware-support for fixed-point operations. On other
- targets, you may enable this option manually.
-
-'--with-long-double-128'
- Specify if 'long double' type should be 128-bit by default on
- selected GNU/Linux architectures. If using
- '--without-long-double-128', 'long double' will be by default
- 64-bit, the same as 'double' type. When neither of these configure
- options are used, the default will be 128-bit 'long double' when
- built against GNU C Library 2.4 and later, 64-bit 'long double'
- otherwise.
-
-'--with-gmp=PATHNAME'
-'--with-gmp-include=PATHNAME'
-'--with-gmp-lib=PATHNAME'
-'--with-mpfr=PATHNAME'
-'--with-mpfr-include=PATHNAME'
-'--with-mpfr-lib=PATHNAME'
-'--with-mpc=PATHNAME'
-'--with-mpc-include=PATHNAME'
-'--with-mpc-lib=PATHNAME'
- If you want to build GCC but do not have the GMP library, the MPFR
- library and/or the MPC library installed in a standard location and
- do not have their sources present in the GCC source tree then you
- can explicitly specify the directory where they are installed
- ('--with-gmp=GMPINSTALLDIR', '--with-mpfr=MPFRINSTALLDIR',
- '--with-mpc=MPCINSTALLDIR'). The '--with-gmp=GMPINSTALLDIR' option
- is shorthand for '--with-gmp-lib=GMPINSTALLDIR/lib' and
- '--with-gmp-include=GMPINSTALLDIR/include'. Likewise the
- '--with-mpfr=MPFRINSTALLDIR' option is shorthand for
- '--with-mpfr-lib=MPFRINSTALLDIR/lib' and
- '--with-mpfr-include=MPFRINSTALLDIR/include', also the
- '--with-mpc=MPCINSTALLDIR' option is shorthand for
- '--with-mpc-lib=MPCINSTALLDIR/lib' and
- '--with-mpc-include=MPCINSTALLDIR/include'. If these shorthand
- assumptions are not correct, you can use the explicit include and
- lib options directly. You might also need to ensure the shared
- libraries can be found by the dynamic linker when building and
- using GCC, for example by setting the runtime shared library path
- variable ('LD_LIBRARY_PATH' on GNU/Linux and Solaris systems).
-
- These flags are applicable to the host platform only. When
- building a cross compiler, they will not be used to configure
- target libraries.
-
-'--with-isl=PATHNAME'
-'--with-isl-include=PATHNAME'
-'--with-isl-lib=PATHNAME'
-'--with-cloog=PATHNAME'
-'--with-cloog-include=PATHNAME'
-'--with-cloog-lib=PATHNAME'
- If you do not have ISL and the CLooG libraries installed in a
- standard location and you want to build GCC, you can explicitly
- specify the directory where they are installed
- ('--with-isl=ISLINSTALLDIR', '--with-cloog=CLOOGINSTALLDIR'). The
- '--with-isl=ISLINSTALLDIR' option is shorthand for
- '--with-isl-lib=ISLINSTALLDIR/lib' and
- '--with-isl-include=ISLINSTALLDIR/include'. Likewise the
- '--with-cloog=CLOOGINSTALLDIR' option is shorthand for
- '--with-cloog-lib=CLOOGINSTALLDIR/lib' and
- '--with-cloog-include=CLOOGINSTALLDIR/include'. If these shorthand
- assumptions are not correct, you can use the explicit include and
- lib options directly.
-
- These flags are applicable to the host platform only. When
- building a cross compiler, they will not be used to configure
- target libraries.
-
-'--with-host-libstdcxx=LINKER-ARGS'
- If you are linking with a static copy of PPL, you can use this
- option to specify how the linker should find the standard C++
- library used internally by PPL. Typical values of LINKER-ARGS might
- be '-lstdc++' or '-Wl,-Bstatic,-lstdc++,-Bdynamic -lm'. If you are
- linking with a shared copy of PPL, you probably do not need this
- option; shared library dependencies will cause the linker to search
- for the standard C++ library automatically.
-
-'--with-stage1-ldflags=FLAGS'
- This option may be used to set linker flags to be used when linking
- stage 1 of GCC. These are also used when linking GCC if configured
- with '--disable-bootstrap'. By default no special flags are used.
-
-'--with-stage1-libs=LIBS'
- This option may be used to set libraries to be used when linking
- stage 1 of GCC. These are also used when linking GCC if configured
- with '--disable-bootstrap'. The default is the argument to
- '--with-host-libstdcxx', if specified.
-
-'--with-boot-ldflags=FLAGS'
- This option may be used to set linker flags to be used when linking
- stage 2 and later when bootstrapping GCC. If neither
- -with-boot-libs nor -with-host-libstdcxx is set to a value, then
- the default is '-static-libstdc++ -static-libgcc'.
-
-'--with-boot-libs=LIBS'
- This option may be used to set libraries to be used when linking
- stage 2 and later when bootstrapping GCC. The default is the
- argument to '--with-host-libstdcxx', if specified.
-
-'--with-debug-prefix-map=MAP'
- Convert source directory names using '-fdebug-prefix-map' when
- building runtime libraries. 'MAP' is a space-separated list of
- maps of the form 'OLD=NEW'.
-
-'--enable-linker-build-id'
- Tells GCC to pass '--build-id' option to the linker for all final
- links (links performed without the '-r' or '--relocatable' option),
- if the linker supports it. If you specify
- '--enable-linker-build-id', but your linker does not support
- '--build-id' option, a warning is issued and the
- '--enable-linker-build-id' option is ignored. The default is off.
-
-'--with-linker-hash-style=CHOICE'
- Tells GCC to pass '--hash-style=CHOICE' option to the linker for
- all final links. CHOICE can be one of 'sysv', 'gnu', and 'both'
- where 'sysv' is the default.
-
-'--enable-gnu-unique-object'
-'--disable-gnu-unique-object'
- Tells GCC to use the gnu_unique_object relocation for C++ template
- static data members and inline function local statics. Enabled by
- default for a toolchain with an assembler that accepts it and GLIBC
- 2.11 or above, otherwise disabled.
-
-'--enable-lto'
-'--disable-lto'
- Enable support for link-time optimization (LTO). This is enabled by
- default, and may be disabled using '--disable-lto'.
-
-'--with-plugin-ld=PATHNAME'
- Enable an alternate linker to be used at link-time optimization
- (LTO) link time when '-fuse-linker-plugin' is enabled. This linker
- should have plugin support such as gold starting with version 2.20
- or GNU ld starting with version 2.21. See '-fuse-linker-plugin'
- for details.
-
-'--enable-canonical-system-headers'
-'--disable-canonical-system-headers'
- Enable system header path canonicalization for 'libcpp'. This can
- produce shorter header file paths in diagnostics and dependency
- output files, but these changed header paths may conflict with some
- compilation environments. Enabled by default, and may be disabled
- using '--disable-canonical-system-headers'.
-
-'--with-glibc-version=MAJOR.MINOR'
- Tell GCC that when the GNU C Library (glibc) is used on the target
- it will be version MAJOR.MINOR or later. Normally this can be
- detected from the C library's header files, but this option may be
- needed when bootstrapping a cross toolchain without the header
- files available for building the initial bootstrap compiler.
-
- If GCC is configured with some multilibs that use glibc and some
- that do not, this option applies only to the multilibs that use
- glibc. However, such configurations may not work well as not all
- the relevant configuration in GCC is on a per-multilib basis.
-
-Cross-Compiler-Specific Options
--------------------------------
-
-The following options only apply to building cross compilers.
-
-'--with-sysroot'
-'--with-sysroot=DIR'
- Tells GCC to consider DIR as the root of a tree that contains (a
- subset of) the root filesystem of the target operating system.
- Target system headers, libraries and run-time object files will be
- searched for in there. More specifically, this acts as if
- '--sysroot=DIR' was added to the default options of the built
- compiler. The specified directory is not copied into the install
- tree, unlike the options '--with-headers' and '--with-libs' that
- this option obsoletes. The default value, in case '--with-sysroot'
- is not given an argument, is '${gcc_tooldir}/sys-root'. If the
- specified directory is a subdirectory of '${exec_prefix}', then it
- will be found relative to the GCC binaries if the installation tree
- is moved.
-
- This option affects the system root for the compiler used to build
- target libraries (which runs on the build system) and the compiler
- newly installed with 'make install'; it does not affect the
- compiler which is used to build GCC itself.
-
- If you specify the '--with-native-system-header-dir=DIRNAME' option
- then the compiler will search that directory within DIRNAME for
- native system headers rather than the default '/usr/include'.
-
-'--with-build-sysroot'
-'--with-build-sysroot=DIR'
- Tells GCC to consider DIR as the system root (see '--with-sysroot')
- while building target libraries, instead of the directory specified
- with '--with-sysroot'. This option is only useful when you are
- already using '--with-sysroot'. You can use '--with-build-sysroot'
- when you are configuring with '--prefix' set to a directory that is
- different from the one in which you are installing GCC and your
- target libraries.
-
- This option affects the system root for the compiler used to build
- target libraries (which runs on the build system); it does not
- affect the compiler which is used to build GCC itself.
-
- If you specify the '--with-native-system-header-dir=DIRNAME' option
- then the compiler will search that directory within DIRNAME for
- native system headers rather than the default '/usr/include'.
-
-'--with-headers'
-'--with-headers=DIR'
- Deprecated in favor of '--with-sysroot'. Specifies that target
- headers are available when building a cross compiler. The DIR
- argument specifies a directory which has the target include files.
- These include files will be copied into the 'gcc' install
- directory. _This option with the DIR argument is required_ when
- building a cross compiler, if 'PREFIX/TARGET/sys-include' doesn't
- pre-exist. If 'PREFIX/TARGET/sys-include' does pre-exist, the DIR
- argument may be omitted. 'fixincludes' will be run on these files
- to make them compatible with GCC.
-
-'--without-headers'
- Tells GCC not use any target headers from a libc when building a
- cross compiler. When crossing to GNU/Linux, you need the headers
- so GCC can build the exception handling for libgcc.
-
-'--with-libs'
-'--with-libs="DIR1 DIR2 ... DIRN"'
- Deprecated in favor of '--with-sysroot'. Specifies a list of
- directories which contain the target runtime libraries. These
- libraries will be copied into the 'gcc' install directory. If the
- directory list is omitted, this option has no effect.
-
-'--with-newlib'
- Specifies that 'newlib' is being used as the target C library.
- This causes '__eprintf' to be omitted from 'libgcc.a' on the
- assumption that it will be provided by 'newlib'.
-
-'--with-avrlibc'
- Specifies that 'AVR-Libc' is being used as the target C library.
- This causes float support functions like '__addsf3' to be omitted
- from 'libgcc.a' on the assumption that it will be provided by
- 'libm.a'. For more technical details, cf. PR54461. This option
- is only supported for the AVR target. It is not supported for
- RTEMS configurations, which currently use newlib. The option is
- supported since version 4.7.2 and is the default in 4.8.0 and
- newer.
-
-'--with-nds32-lib=LIBRARY'
- Specifies that LIBRARY setting is used for building 'libgcc.a'.
- Currently, the valid LIBRARY is 'newlib' or 'mculib'. This option
- is only supported for the NDS32 target.
-
-'--with-build-time-tools=DIR'
- Specifies where to find the set of target tools (assembler, linker,
- etc.) that will be used while building GCC itself. This option
- can be useful if the directory layouts are different between the
- system you are building GCC on, and the system where you will
- deploy it.
-
- For example, on an 'ia64-hp-hpux' system, you may have the GNU
- assembler and linker in '/usr/bin', and the native tools in a
- different path, and build a toolchain that expects to find the
- native tools in '/usr/bin'.
-
- When you use this option, you should ensure that DIR includes 'ar',
- 'as', 'ld', 'nm', 'ranlib' and 'strip' if necessary, and possibly
- 'objdump'. Otherwise, GCC may use an inconsistent set of tools.
-
-Java-Specific Options
----------------------
-
-The following option applies to the build of the Java front end.
-
-'--disable-libgcj'
- Specify that the run-time libraries used by GCJ should not be
- built. This is useful in case you intend to use GCJ with some
- other run-time, or you're going to install it separately, or it
- just happens not to build on your particular machine. In general,
- if the Java front end is enabled, the GCJ libraries will be enabled
- too, unless they're known to not work on the target platform. If
- GCJ is enabled but 'libgcj' isn't built, you may need to port it;
- in this case, before modifying the top-level 'configure.in' so that
- 'libgcj' is enabled by default on this platform, you may use
- '--enable-libgcj' to override the default.
-
- The following options apply to building 'libgcj'.
-
-General Options
-...............
-
-'--enable-java-maintainer-mode'
- By default the 'libjava' build will not attempt to compile the
- '.java' source files to '.class'. Instead, it will use the
- '.class' files from the source tree. If you use this option you
- must have executables named 'ecj1' and 'gjavah' in your path for
- use by the build. You must use this option if you intend to modify
- any '.java' files in 'libjava'.
-
-'--with-java-home=DIRNAME'
- This 'libjava' option overrides the default value of the
- 'java.home' system property. It is also used to set
- 'sun.boot.class.path' to 'DIRNAME/lib/rt.jar'. By default
- 'java.home' is set to 'PREFIX' and 'sun.boot.class.path' to
- 'DATADIR/java/libgcj-VERSION.jar'.
-
-'--with-ecj-jar=FILENAME'
- This option can be used to specify the location of an external jar
- file containing the Eclipse Java compiler. A specially modified
- version of this compiler is used by 'gcj' to parse '.java' source
- files. If this option is given, the 'libjava' build will create
- and install an 'ecj1' executable which uses this jar file at
- runtime.
-
- If this option is not given, but an 'ecj.jar' file is found in the
- topmost source tree at configure time, then the 'libgcj' build will
- create and install 'ecj1', and will also install the discovered
- 'ecj.jar' into a suitable place in the install tree.
-
- If 'ecj1' is not installed, then the user will have to supply one
- on his path in order for 'gcj' to properly parse '.java' source
- files. A suitable jar is available from
- <ftp://sourceware.org/pub/java/>.
-
-'--disable-getenv-properties'
- Don't set system properties from 'GCJ_PROPERTIES'.
-
-'--enable-hash-synchronization'
- Use a global hash table for monitor locks. Ordinarily, 'libgcj''s
- 'configure' script automatically makes the correct choice for this
- option for your platform. Only use this if you know you need the
- library to be configured differently.
-
-'--enable-interpreter'
- Enable the Java interpreter. The interpreter is automatically
- enabled by default on all platforms that support it. This option
- is really only useful if you want to disable the interpreter (using
- '--disable-interpreter').
-
-'--disable-java-net'
- Disable java.net. This disables the native part of java.net only,
- using non-functional stubs for native method implementations.
-
-'--disable-jvmpi'
- Disable JVMPI support.
-
-'--disable-libgcj-bc'
- Disable BC ABI compilation of certain parts of libgcj. By default,
- some portions of libgcj are compiled with '-findirect-dispatch' and
- '-fno-indirect-classes', allowing them to be overridden at
- run-time.
-
- If '--disable-libgcj-bc' is specified, libgcj is built without
- these options. This allows the compile-time linker to resolve
- dependencies when statically linking to libgcj. However it makes
- it impossible to override the affected portions of libgcj at
- run-time.
-
-'--enable-reduced-reflection'
- Build most of libgcj with '-freduced-reflection'. This reduces the
- size of libgcj at the expense of not being able to do accurate
- reflection on the classes it contains. This option is safe if you
- know that code using libgcj will never use reflection on the
- standard runtime classes in libgcj (including using serialization,
- RMI or CORBA).
-
-'--with-ecos'
- Enable runtime eCos target support.
-
-'--without-libffi'
- Don't use 'libffi'. This will disable the interpreter and JNI
- support as well, as these require 'libffi' to work.
-
-'--enable-libgcj-debug'
- Enable runtime debugging code.
-
-'--enable-libgcj-multifile'
- If specified, causes all '.java' source files to be compiled into
- '.class' files in one invocation of 'gcj'. This can speed up build
- time, but is more resource-intensive. If this option is
- unspecified or disabled, 'gcj' is invoked once for each '.java'
- file to compile into a '.class' file.
-
-'--with-libiconv-prefix=DIR'
- Search for libiconv in 'DIR/include' and 'DIR/lib'.
-
-'--enable-sjlj-exceptions'
- Force use of the 'setjmp'/'longjmp'-based scheme for exceptions.
- 'configure' ordinarily picks the correct value based on the
- platform. Only use this option if you are sure you need a
- different setting.
-
-'--with-system-zlib'
- Use installed 'zlib' rather than that included with GCC.
-
-'--with-win32-nlsapi=ansi, unicows or unicode'
- Indicates how MinGW 'libgcj' translates between UNICODE characters
- and the Win32 API.
-
-'--enable-java-home'
- If enabled, this creates a JPackage compatible SDK environment
- during install. Note that if -enable-java-home is used,
- -with-arch-directory=ARCH must also be specified.
-
-'--with-arch-directory=ARCH'
- Specifies the name to use for the 'jre/lib/ARCH' directory in the
- SDK environment created when -enable-java-home is passed. Typical
- names for this directory include i386, amd64, ia64, etc.
-
-'--with-os-directory=DIR'
- Specifies the OS directory for the SDK include directory. This is
- set to auto detect, and is typically 'linux'.
-
-'--with-origin-name=NAME'
- Specifies the JPackage origin name. This defaults to the 'gcj' in
- java-1.5.0-gcj.
-
-'--with-arch-suffix=SUFFIX'
- Specifies the suffix for the sdk directory. Defaults to the empty
- string. Examples include '.x86_64' in
- 'java-1.5.0-gcj-1.5.0.0.x86_64'.
-
-'--with-jvm-root-dir=DIR'
- Specifies where to install the SDK. Default is $(prefix)/lib/jvm.
-
-'--with-jvm-jar-dir=DIR'
- Specifies where to install jars. Default is
- $(prefix)/lib/jvm-exports.
-
-'--with-python-dir=DIR'
- Specifies where to install the Python modules used for aot-compile.
- DIR should not include the prefix used in installation. For
- example, if the Python modules are to be installed in
- /usr/lib/python2.5/site-packages, then
- -with-python-dir=/lib/python2.5/site-packages should be passed. If
- this is not specified, then the Python modules are installed in
- $(prefix)/share/python.
-
-'--enable-aot-compile-rpm'
- Adds aot-compile-rpm to the list of installed scripts.
-
-'--enable-browser-plugin'
- Build the gcjwebplugin web browser plugin.
-
-'--enable-static-libjava'
- Build static libraries in libjava. The default is to only build
- shared libraries.
-
- 'ansi'
- Use the single-byte 'char' and the Win32 A functions natively,
- translating to and from UNICODE when using these functions.
- If unspecified, this is the default.
-
- 'unicows'
- Use the 'WCHAR' and Win32 W functions natively. Adds
- '-lunicows' to 'libgcj.spec' to link with 'libunicows'.
- 'unicows.dll' needs to be deployed on Microsoft Windows 9X
- machines running built executables. 'libunicows.a', an
- open-source import library around Microsoft's 'unicows.dll',
- is obtained from <http://libunicows.sourceforge.net/>, which
- also gives details on getting 'unicows.dll' from Microsoft.
-
- 'unicode'
- Use the 'WCHAR' and Win32 W functions natively. Does _not_
- add '-lunicows' to 'libgcj.spec'. The built executables will
- only run on Microsoft Windows NT and above.
-
-AWT-Specific Options
-....................
-
-'--with-x'
- Use the X Window System.
-
-'--enable-java-awt=PEER(S)'
- Specifies the AWT peer library or libraries to build alongside
- 'libgcj'. If this option is unspecified or disabled, AWT will be
- non-functional. Current valid values are 'gtk' and 'xlib'.
- Multiple libraries should be separated by a comma (i.e.
- '--enable-java-awt=gtk,xlib').
-
-'--enable-gtk-cairo'
- Build the cairo Graphics2D implementation on GTK.
-
-'--enable-java-gc=TYPE'
- Choose garbage collector. Defaults to 'boehm' if unspecified.
-
-'--disable-gtktest'
- Do not try to compile and run a test GTK+ program.
-
-'--disable-glibtest'
- Do not try to compile and run a test GLIB program.
-
-'--with-libart-prefix=PFX'
- Prefix where libart is installed (optional).
-
-'--with-libart-exec-prefix=PFX'
- Exec prefix where libart is installed (optional).
-
-'--disable-libarttest'
- Do not try to compile and run a test libart program.
-
-Overriding 'configure' test results
-...................................
-
-Sometimes, it might be necessary to override the result of some
-'configure' test, for example in order to ease porting to a new system
-or work around a bug in a test. The toplevel 'configure' script
-provides three variables for this:
-
-'build_configargs'
- The contents of this variable is passed to all build 'configure'
- scripts.
-
-'host_configargs'
- The contents of this variable is passed to all host 'configure'
- scripts.
-
-'target_configargs'
- The contents of this variable is passed to all target 'configure'
- scripts.
-
- In order to avoid shell and 'make' quoting issues for complex
-overrides, you can pass a setting for 'CONFIG_SITE' and set variables in
-the site file.
-
-
-File: gccinstall.info, Node: Building, Next: Testing, Prev: Configuration, Up: Installing GCC
-
-5 Building
-**********
-
-Now that GCC is configured, you are ready to build the compiler and
-runtime libraries.
-
- Some commands executed when making the compiler may fail (return a
-nonzero status) and be ignored by 'make'. These failures, which are
-often due to files that were not found, are expected, and can safely be
-ignored.
-
- It is normal to have compiler warnings when compiling certain files.
-Unless you are a GCC developer, you can generally ignore these warnings
-unless they cause compilation to fail. Developers should attempt to fix
-any warnings encountered, however they can temporarily continue past
-warnings-as-errors by specifying the configure flag '--disable-werror'.
-
- On certain old systems, defining certain environment variables such
-as 'CC' can interfere with the functioning of 'make'.
-
- If you encounter seemingly strange errors when trying to build the
-compiler in a directory other than the source directory, it could be
-because you have previously configured the compiler in the source
-directory. Make sure you have done all the necessary preparations.
-
- If you build GCC on a BSD system using a directory stored in an old
-System V file system, problems may occur in running 'fixincludes' if the
-System V file system doesn't support symbolic links. These problems
-result in a failure to fix the declaration of 'size_t' in 'sys/types.h'.
-If you find that 'size_t' is a signed type and that type mismatches
-occur, this could be the cause.
-
- The solution is not to use such a directory for building GCC.
-
- Similarly, when building from SVN or snapshots, or if you modify
-'*.l' files, you need the Flex lexical analyzer generator installed. If
-you do not modify '*.l' files, releases contain the Flex-generated files
-and you do not need Flex installed to build them. There is still one
-Flex-based lexical analyzer (part of the build machinery, not of GCC
-itself) that is used even if you only build the C front end.
-
- When building from SVN or snapshots, or if you modify Texinfo
-documentation, you need version 4.7 or later of Texinfo installed if you
-want Info documentation to be regenerated. Releases contain Info
-documentation pre-built for the unmodified documentation in the release.
-
-5.1 Building a native compiler
-==============================
-
-For a native build, the default configuration is to perform a 3-stage
-bootstrap of the compiler when 'make' is invoked. This will build the
-entire GCC system and ensure that it compiles itself correctly. It can
-be disabled with the '--disable-bootstrap' parameter to 'configure', but
-bootstrapping is suggested because the compiler will be tested more
-completely and could also have better performance.
-
- The bootstrapping process will complete the following steps:
-
- * Build tools necessary to build the compiler.
-
- * Perform a 3-stage bootstrap of the compiler. This includes
- building three times the target tools for use by the compiler such
- as binutils (bfd, binutils, gas, gprof, ld, and opcodes) if they
- have been individually linked or moved into the top level GCC
- source tree before configuring.
-
- * Perform a comparison test of the stage2 and stage3 compilers.
-
- * Build runtime libraries using the stage3 compiler from the previous
- step.
-
- If you are short on disk space you might consider 'make
-bootstrap-lean' instead. The sequence of compilation is the same
-described above, but object files from the stage1 and stage2 of the
-3-stage bootstrap of the compiler are deleted as soon as they are no
-longer needed.
-
- If you wish to use non-default GCC flags when compiling the stage2
-and stage3 compilers, set 'BOOT_CFLAGS' on the command line when doing
-'make'. For example, if you want to save additional space during the
-bootstrap and in the final installation as well, you can build the
-compiler binaries without debugging information as in the following
-example. This will save roughly 40% of disk space both for the
-bootstrap and the final installation. (Libraries will still contain
-debugging information.)
-
- make BOOT_CFLAGS='-O' bootstrap
-
- You can place non-default optimization flags into 'BOOT_CFLAGS'; they
-are less well tested here than the default of '-g -O2', but should still
-work. In a few cases, you may find that you need to specify special
-flags such as '-msoft-float' here to complete the bootstrap; or, if the
-native compiler miscompiles the stage1 compiler, you may need to work
-around this, by choosing 'BOOT_CFLAGS' to avoid the parts of the stage1
-compiler that were miscompiled, or by using 'make bootstrap4' to
-increase the number of stages of bootstrap.
-
- 'BOOT_CFLAGS' does not apply to bootstrapped target libraries. Since
-these are always compiled with the compiler currently being
-bootstrapped, you can use 'CFLAGS_FOR_TARGET' to modify their
-compilation flags, as for non-bootstrapped target libraries. Again, if
-the native compiler miscompiles the stage1 compiler, you may need to
-work around this by avoiding non-working parts of the stage1 compiler.
-Use 'STAGE1_TFLAGS' to this end.
-
- If you used the flag '--enable-languages=...' to restrict the
-compilers to be built, only those you've actually enabled will be built.
-This will of course only build those runtime libraries, for which the
-particular compiler has been built. Please note, that re-defining
-'LANGUAGES' when calling 'make' *does not* work anymore!
-
- If the comparison of stage2 and stage3 fails, this normally indicates
-that the stage2 compiler has compiled GCC incorrectly, and is therefore
-a potentially serious bug which you should investigate and report. (On
-a few systems, meaningful comparison of object files is impossible; they
-always appear "different". If you encounter this problem, you will need
-to disable comparison in the 'Makefile'.)
-
- If you do not want to bootstrap your compiler, you can configure with
-'--disable-bootstrap'. In particular cases, you may want to bootstrap
-your compiler even if the target system is not the same as the one you
-are building on: for example, you could build a
-'powerpc-unknown-linux-gnu' toolchain on a 'powerpc64-unknown-linux-gnu'
-host. In this case, pass '--enable-bootstrap' to the configure script.
-
- 'BUILD_CONFIG' can be used to bring in additional customization to
-the build. It can be set to a whitespace-separated list of names. For
-each such 'NAME', top-level 'config/NAME.mk' will be included by the
-top-level 'Makefile', bringing in any settings it contains. The default
-'BUILD_CONFIG' can be set using the configure option
-'--with-build-config=NAME...'. Some examples of supported build
-configurations are:
-
-'bootstrap-O1'
- Removes any '-O'-started option from 'BOOT_CFLAGS', and adds '-O1'
- to it. 'BUILD_CONFIG=bootstrap-O1' is equivalent to
- 'BOOT_CFLAGS='-g -O1''.
-
-'bootstrap-O3'
- Analogous to 'bootstrap-O1'.
-
-'bootstrap-lto'
- Enables Link-Time Optimization for host tools during bootstrapping.
- 'BUILD_CONFIG=bootstrap-lto' is equivalent to adding '-flto' to
- 'BOOT_CFLAGS'.
-
-'bootstrap-debug'
- Verifies that the compiler generates the same executable code,
- whether or not it is asked to emit debug information. To this end,
- this option builds stage2 host programs without debug information,
- and uses 'contrib/compare-debug' to compare them with the stripped
- stage3 object files. If 'BOOT_CFLAGS' is overridden so as to not
- enable debug information, stage2 will have it, and stage3 won't.
- This option is enabled by default when GCC bootstrapping is
- enabled, if 'strip' can turn object files compiled with and without
- debug info into identical object files. In addition to better test
- coverage, this option makes default bootstraps faster and leaner.
-
-'bootstrap-debug-big'
- Rather than comparing stripped object files, as in
- 'bootstrap-debug', this option saves internal compiler dumps during
- stage2 and stage3 and compares them as well, which helps catch
- additional potential problems, but at a great cost in terms of disk
- space. It can be specified in addition to 'bootstrap-debug'.
-
-'bootstrap-debug-lean'
- This option saves disk space compared with 'bootstrap-debug-big',
- but at the expense of some recompilation. Instead of saving the
- dumps of stage2 and stage3 until the final compare, it uses
- '-fcompare-debug' to generate, compare and remove the dumps during
- stage3, repeating the compilation that already took place in
- stage2, whose dumps were not saved.
-
-'bootstrap-debug-lib'
- This option tests executable code invariance over debug information
- generation on target libraries, just like 'bootstrap-debug-lean'
- tests it on host programs. It builds stage3 libraries with
- '-fcompare-debug', and it can be used along with any of the
- 'bootstrap-debug' options above.
-
- There aren't '-lean' or '-big' counterparts to this option because
- most libraries are only build in stage3, so bootstrap compares
- would not get significant coverage. Moreover, the few libraries
- built in stage2 are used in stage3 host programs, so we wouldn't
- want to compile stage2 libraries with different options for
- comparison purposes.
-
-'bootstrap-debug-ckovw'
- Arranges for error messages to be issued if the compiler built on
- any stage is run without the option '-fcompare-debug'. This is
- useful to verify the full '-fcompare-debug' testing coverage. It
- must be used along with 'bootstrap-debug-lean' and
- 'bootstrap-debug-lib'.
-
-'bootstrap-time'
- Arranges for the run time of each program started by the GCC
- driver, built in any stage, to be logged to 'time.log', in the top
- level of the build tree.
-
-5.2 Building a cross compiler
-=============================
-
-When building a cross compiler, it is not generally possible to do a
-3-stage bootstrap of the compiler. This makes for an interesting
-problem as parts of GCC can only be built with GCC.
-
- To build a cross compiler, we recommend first building and installing
-a native compiler. You can then use the native GCC compiler to build
-the cross compiler. The installed native compiler needs to be GCC
-version 2.95 or later.
-
- If the cross compiler is to be built with support for the Java
-programming language and the ability to compile .java source files is
-desired, the installed native compiler used to build the cross compiler
-needs to be the same GCC version as the cross compiler. In addition the
-cross compiler needs to be configured with '--with-ecj-jar=...'.
-
- Assuming you have already installed a native copy of GCC and
-configured your cross compiler, issue the command 'make', which performs
-the following steps:
-
- * Build host tools necessary to build the compiler.
-
- * Build target tools for use by the compiler such as binutils (bfd,
- binutils, gas, gprof, ld, and opcodes) if they have been
- individually linked or moved into the top level GCC source tree
- before configuring.
-
- * Build the compiler (single stage only).
-
- * Build runtime libraries using the compiler from the previous step.
-
- Note that if an error occurs in any step the make process will exit.
-
- If you are not building GNU binutils in the same source tree as GCC,
-you will need a cross-assembler and cross-linker installed before
-configuring GCC. Put them in the directory 'PREFIX/TARGET/bin'. Here
-is a table of the tools you should put in this directory:
-
-'as'
- This should be the cross-assembler.
-
-'ld'
- This should be the cross-linker.
-
-'ar'
- This should be the cross-archiver: a program which can manipulate
- archive files (linker libraries) in the target machine's format.
-
-'ranlib'
- This should be a program to construct a symbol table in an archive
- file.
-
- The installation of GCC will find these programs in that directory,
-and copy or link them to the proper place to for the cross-compiler to
-find them when run later.
-
- The easiest way to provide these files is to build the Binutils
-package. Configure it with the same '--host' and '--target' options
-that you use for configuring GCC, then build and install them. They
-install their executables automatically into the proper directory.
-Alas, they do not support all the targets that GCC supports.
-
- If you are not building a C library in the same source tree as GCC,
-you should also provide the target libraries and headers before
-configuring GCC, specifying the directories with '--with-sysroot' or
-'--with-headers' and '--with-libs'. Many targets also require "start
-files" such as 'crt0.o' and 'crtn.o' which are linked into each
-executable. There may be several alternatives for 'crt0.o', for use
-with profiling or other compilation options. Check your target's
-definition of 'STARTFILE_SPEC' to find out what start files it uses.
-
-5.3 Building in parallel
-========================
-
-GNU Make 3.80 and above, which is necessary to build GCC, support
-building in parallel. To activate this, you can use 'make -j 2' instead
-of 'make'. You can also specify a bigger number, and in most cases
-using a value greater than the number of processors in your machine will
-result in fewer and shorter I/O latency hits, thus improving overall
-throughput; this is especially true for slow drives and network
-filesystems.
-
-5.4 Building the Ada compiler
-=============================
-
-In order to build GNAT, the Ada compiler, you need a working GNAT
-compiler (GCC version 4.0 or later). This includes GNAT tools such as
-'gnatmake' and 'gnatlink', since the Ada front end is written in Ada and
-uses some GNAT-specific extensions.
-
- In order to build a cross compiler, it is suggested to install the
-new compiler as native first, and then use it to build the cross
-compiler.
-
- 'configure' does not test whether the GNAT installation works and has
-a sufficiently recent version; if too old a GNAT version is installed,
-the build will fail unless '--enable-languages' is used to disable
-building the Ada front end.
-
- 'ADA_INCLUDE_PATH' and 'ADA_OBJECT_PATH' environment variables must
-not be set when building the Ada compiler, the Ada tools, or the Ada
-runtime libraries. You can check that your build environment is clean
-by verifying that 'gnatls -v' lists only one explicit path in each
-section.
-
-5.5 Building with profile feedback
-==================================
-
-It is possible to use profile feedback to optimize the compiler itself.
-This should result in a faster compiler binary. Experiments done on x86
-using gcc 3.3 showed approximately 7 percent speedup on compiling C
-programs. To bootstrap the compiler with profile feedback, use 'make
-profiledbootstrap'.
-
- When 'make profiledbootstrap' is run, it will first build a 'stage1'
-compiler. This compiler is used to build a 'stageprofile' compiler
-instrumented to collect execution counts of instruction and branch
-probabilities. Then runtime libraries are compiled with profile
-collected. Finally a 'stagefeedback' compiler is built using the
-information collected.
-
- Unlike standard bootstrap, several additional restrictions apply.
-The compiler used to build 'stage1' needs to support a 64-bit integral
-type. It is recommended to only use GCC for this. Also parallel make
-is currently not supported since collisions in profile collecting may
-occur.
-
-
-File: gccinstall.info, Node: Testing, Next: Final install, Prev: Building, Up: Installing GCC
-
-6 Installing GCC: Testing
-*************************
-
-Before you install GCC, we encourage you to run the testsuites and to
-compare your results with results from a similar configuration that have
-been submitted to the gcc-testresults mailing list. Some of these
-archived results are linked from the build status lists at
-<http://gcc.gnu.org/buildstat.html>, although not everyone who reports a
-successful build runs the testsuites and submits the results. This step
-is optional and may require you to download additional software, but it
-can give you confidence in your new GCC installation or point out
-problems before you install and start using your new GCC.
-
- First, you must have downloaded the testsuites. These are part of
-the full distribution, but if you downloaded the "core" compiler plus
-any front ends, you must download the testsuites separately.
-
- Second, you must have the testing tools installed. This includes
-DejaGnu, Tcl, and Expect; the DejaGnu site has links to these.
-
- If the directories where 'runtest' and 'expect' were installed are
-not in the 'PATH', you may need to set the following environment
-variables appropriately, as in the following example (which assumes that
-DejaGnu has been installed under '/usr/local'):
-
- TCL_LIBRARY = /usr/local/share/tcl8.0
- DEJAGNULIBS = /usr/local/share/dejagnu
-
- (On systems such as Cygwin, these paths are required to be actual
-paths, not mounts or links; presumably this is due to some lack of
-portability in the DejaGnu code.)
-
- Finally, you can run the testsuite (which may take a long time):
- cd OBJDIR; make -k check
-
- This will test various components of GCC, such as compiler front ends
-and runtime libraries. While running the testsuite, DejaGnu might emit
-some harmless messages resembling 'WARNING: Couldn't find the global
-config file.' or 'WARNING: Couldn't find tool init file' that can be
-ignored.
-
- If you are testing a cross-compiler, you may want to run the
-testsuite on a simulator as described at
-<http://gcc.gnu.org/simtest-howto.html>.
-
-6.1 How can you run the testsuite on selected tests?
-====================================================
-
-In order to run sets of tests selectively, there are targets 'make
-check-gcc' and language specific 'make check-c', 'make check-c++', 'make
-check-fortran', 'make check-java', 'make check-ada', 'make check-objc',
-'make check-obj-c++', 'make check-lto' in the 'gcc' subdirectory of the
-object directory. You can also just run 'make check' in a subdirectory
-of the object directory.
-
- A more selective way to just run all 'gcc' execute tests in the
-testsuite is to use
-
- make check-gcc RUNTESTFLAGS="execute.exp OTHER-OPTIONS"
-
- Likewise, in order to run only the 'g++' "old-deja" tests in the
-testsuite with filenames matching '9805*', you would use
-
- make check-g++ RUNTESTFLAGS="old-deja.exp=9805* OTHER-OPTIONS"
-
- The '*.exp' files are located in the testsuite directories of the GCC
-source, the most important ones being 'compile.exp', 'execute.exp',
-'dg.exp' and 'old-deja.exp'. To get a list of the possible '*.exp'
-files, pipe the output of 'make check' into a file and look at the
-'Running ... .exp' lines.
-
-6.2 Passing options and running multiple testsuites
-===================================================
-
-You can pass multiple options to the testsuite using the
-'--target_board' option of DejaGNU, either passed as part of
-'RUNTESTFLAGS', or directly to 'runtest' if you prefer to work outside
-the makefiles. For example,
-
- make check-g++ RUNTESTFLAGS="--target_board=unix/-O3/-fmerge-constants"
-
- will run the standard 'g++' testsuites ("unix" is the target name for
-a standard native testsuite situation), passing '-O3 -fmerge-constants'
-to the compiler on every test, i.e., slashes separate options.
-
- You can run the testsuites multiple times using combinations of
-options with a syntax similar to the brace expansion of popular shells:
-
- ..."--target_board=arm-sim\{-mhard-float,-msoft-float\}\{-O1,-O2,-O3,\}"
-
- (Note the empty option caused by the trailing comma in the final
-group.) The following will run each testsuite eight times using the
-'arm-sim' target, as if you had specified all possible combinations
-yourself:
-
- --target_board='arm-sim/-mhard-float/-O1 \
- arm-sim/-mhard-float/-O2 \
- arm-sim/-mhard-float/-O3 \
- arm-sim/-mhard-float \
- arm-sim/-msoft-float/-O1 \
- arm-sim/-msoft-float/-O2 \
- arm-sim/-msoft-float/-O3 \
- arm-sim/-msoft-float'
-
- They can be combined as many times as you wish, in arbitrary ways.
-This list:
-
- ..."--target_board=unix/-Wextra\{-O3,-fno-strength\}\{-fomit-frame,\}"
-
- will generate four combinations, all involving '-Wextra'.
-
- The disadvantage to this method is that the testsuites are run in
-serial, which is a waste on multiprocessor systems. For users with GNU
-Make and a shell which performs brace expansion, you can run the
-testsuites in parallel by having the shell perform the combinations and
-'make' do the parallel runs. Instead of using '--target_board', use a
-special makefile target:
-
- make -jN check-TESTSUITE//TEST-TARGET/OPTION1/OPTION2/...
-
- For example,
-
- make -j3 check-gcc//sh-hms-sim/{-m1,-m2,-m3,-m3e,-m4}/{,-nofpu}
-
- will run three concurrent "make-gcc" testsuites, eventually testing
-all ten combinations as described above. Note that this is currently
-only supported in the 'gcc' subdirectory. (To see how this works, try
-typing 'echo' before the example given here.)
-
-6.3 Additional testing for Java Class Libraries
-===============================================
-
-The Java runtime tests can be executed via 'make check' in the
-'TARGET/libjava/testsuite' directory in the build tree.
-
- The Mauve Project provides a suite of tests for the Java Class
-Libraries. This suite can be run as part of libgcj testing by placing
-the Mauve tree within the libjava testsuite at
-'libjava/testsuite/libjava.mauve/mauve', or by specifying the location
-of that tree when invoking 'make', as in 'make MAUVEDIR=~/mauve check'.
-
-6.4 How to interpret test results
-=================================
-
-The result of running the testsuite are various '*.sum' and '*.log'
-files in the testsuite subdirectories. The '*.log' files contain a
-detailed log of the compiler invocations and the corresponding results,
-the '*.sum' files summarize the results. These summaries contain status
-codes for all tests:
-
- * PASS: the test passed as expected
- * XPASS: the test unexpectedly passed
- * FAIL: the test unexpectedly failed
- * XFAIL: the test failed as expected
- * UNSUPPORTED: the test is not supported on this platform
- * ERROR: the testsuite detected an error
- * WARNING: the testsuite detected a possible problem
-
- It is normal for some tests to report unexpected failures. At the
-current time the testing harness does not allow fine grained control
-over whether or not a test is expected to fail. This problem should be
-fixed in future releases.
-
-6.5 Submitting test results
-===========================
-
-If you want to report the results to the GCC project, use the
-'contrib/test_summary' shell script. Start it in the OBJDIR with
-
- SRCDIR/contrib/test_summary -p your_commentary.txt \
- -m gcc-testresults@gcc.gnu.org |sh
-
- This script uses the 'Mail' program to send the results, so make sure
-it is in your 'PATH'. The file 'your_commentary.txt' is prepended to
-the testsuite summary and should contain any special remarks you have on
-your results or your build environment. Please do not edit the
-testsuite result block or the subject line, as these messages may be
-automatically processed.
-
-
-File: gccinstall.info, Node: Final install, Prev: Testing, Up: Installing GCC
-
-7 Installing GCC: Final installation
-************************************
-
-Now that GCC has been built (and optionally tested), you can install it
-with
- cd OBJDIR && make install
-
- We strongly recommend to install into a target directory where there
-is no previous version of GCC present. Also, the GNAT runtime should
-not be stripped, as this would break certain features of the debugger
-that depend on this debugging information (catching Ada exceptions for
-instance).
-
- That step completes the installation of GCC; user level binaries can
-be found in 'PREFIX/bin' where PREFIX is the value you specified with
-the '--prefix' to configure (or '/usr/local' by default). (If you
-specified '--bindir', that directory will be used instead; otherwise, if
-you specified '--exec-prefix', 'EXEC-PREFIX/bin' will be used.) Headers
-for the C++ and Java libraries are installed in 'PREFIX/include';
-libraries in 'LIBDIR' (normally 'PREFIX/lib'); internal parts of the
-compiler in 'LIBDIR/gcc' and 'LIBEXECDIR/gcc'; documentation in info
-format in 'INFODIR' (normally 'PREFIX/info').
-
- When installing cross-compilers, GCC's executables are not only
-installed into 'BINDIR', that is, 'EXEC-PREFIX/bin', but additionally
-into 'EXEC-PREFIX/TARGET-ALIAS/bin', if that directory exists.
-Typically, such "tooldirs" hold target-specific binutils, including
-assembler and linker.
-
- Installation into a temporary staging area or into a 'chroot' jail
-can be achieved with the command
-
- make DESTDIR=PATH-TO-ROOTDIR install
-
-where PATH-TO-ROOTDIR is the absolute path of a directory relative to
-which all installation paths will be interpreted. Note that the
-directory specified by 'DESTDIR' need not exist yet; it will be created
-if necessary.
-
- There is a subtle point with tooldirs and 'DESTDIR': If you relocate
-a cross-compiler installation with e.g. 'DESTDIR=ROOTDIR', then the
-directory 'ROOTDIR/EXEC-PREFIX/TARGET-ALIAS/bin' will be filled with
-duplicated GCC executables only if it already exists, it will not be
-created otherwise. This is regarded as a feature, not as a bug, because
-it gives slightly more control to the packagers using the 'DESTDIR'
-feature.
-
- You can install stripped programs and libraries with
-
- make install-strip
-
- If you are bootstrapping a released version of GCC then please
-quickly review the build status page for your release, available from
-<http://gcc.gnu.org/buildstat.html>. If your system is not listed for
-the version of GCC that you built, send a note to <gcc@gcc.gnu.org>
-indicating that you successfully built and installed GCC. Include the
-following information:
-
- * Output from running 'SRCDIR/config.guess'. Do not send that file
- itself, just the one-line output from running it.
-
- * The output of 'gcc -v' for your newly installed 'gcc'. This tells
- us which version of GCC you built and the options you passed to
- configure.
-
- * Whether you enabled all languages or a subset of them. If you used
- a full distribution then this information is part of the configure
- options in the output of 'gcc -v', but if you downloaded the "core"
- compiler plus additional front ends then it isn't apparent which
- ones you built unless you tell us about it.
-
- * If the build was for GNU/Linux, also include:
- * The distribution name and version (e.g., Red Hat 7.1 or Debian
- 2.2.3); this information should be available from
- '/etc/issue'.
-
- * The version of the Linux kernel, available from 'uname
- --version' or 'uname -a'.
-
- * The version of glibc you used; for RPM-based systems like Red
- Hat, Mandrake, and SuSE type 'rpm -q glibc' to get the glibc
- version, and on systems like Debian and Progeny use 'dpkg -l
- libc6'.
- For other systems, you can include similar information if you think
- it is relevant.
-
- * Any other information that you think would be useful to people
- building GCC on the same configuration. The new entry in the build
- status list will include a link to the archived copy of your
- message.
-
- We'd also like to know if the *note host/target specific installation
-notes: Specific. didn't include your host/target information or if that
-information is incomplete or out of date. Send a note to
-<gcc@gcc.gnu.org> detailing how the information should be changed.
-
- If you find a bug, please report it following the bug reporting
-guidelines.
-
- If you want to print the GCC manuals, do 'cd OBJDIR; make dvi'. You
-will need to have 'texi2dvi' (version at least 4.7) and TeX installed.
-This creates a number of '.dvi' files in subdirectories of 'OBJDIR';
-these may be converted for printing with programs such as 'dvips'.
-Alternately, by using 'make pdf' in place of 'make dvi', you can create
-documentation in the form of '.pdf' files; this requires 'texi2pdf',
-which is included with Texinfo version 4.8 and later. You can also buy
-printed manuals from the Free Software Foundation, though such manuals
-may not be for the most recent version of GCC.
-
- If you would like to generate online HTML documentation, do 'cd
-OBJDIR; make html' and HTML will be generated for the gcc manuals in
-'OBJDIR/gcc/HTML'.
-
-
-File: gccinstall.info, Node: Binaries, Next: Specific, Prev: Installing GCC, Up: Top
-
-8 Installing GCC: Binaries
-**************************
-
-We are often asked about pre-compiled versions of GCC. While we cannot
-provide these for all platforms, below you'll find links to binaries for
-various platforms where creating them by yourself is not easy due to
-various reasons.
-
- Please note that we did not create these binaries, nor do we support
-them. If you have any problems installing them, please contact their
-makers.
-
- * AIX:
- * Bull's Freeware and Shareware Archive for AIX;
-
- * Hudson Valley Community College Open Source Software for IBM
- System p;
-
- * AIX 5L and 6 Open Source Packages.
-
- * DOS--DJGPP.
-
- * Renesas H8/300[HS]--GNU Development Tools for the Renesas
- H8/300[HS] Series.
-
- * HP-UX:
- * HP-UX Porting Center;
-
- * Binaries for HP-UX 11.00 at Aachen University of Technology.
-
- * SCO OpenServer/Unixware.
-
- * Solaris 2 (SPARC, Intel):
- * Sunfreeware
-
- * Blastwave
-
- * OpenCSW
-
- * TGCware
-
- * Microsoft Windows:
- * The Cygwin project;
- * The MinGW project.
-
- * The Written Word offers binaries for AIX 4.3.3, 5.1 and 5.2,
- GNU/Linux (i386), HP-UX 10.20, 11.00, and 11.11, and Solaris/SPARC
- 2.5.1, 2.6, 7, 8, 9 and 10.
-
- * OpenPKG offers binaries for quite a number of platforms.
-
- * The GFortran Wiki has links to GNU Fortran binaries for several
- platforms.
-
-
-File: gccinstall.info, Node: Specific, Next: Old, Prev: Binaries, Up: Top
-
-9 Host/target specific installation notes for GCC
-*************************************************
-
-Please read this document carefully _before_ installing the GNU Compiler
-Collection on your machine.
-
- Note that this list of install notes is _not_ a list of supported
-hosts or targets. Not all supported hosts and targets are listed here,
-only the ones that require host-specific or target-specific information
-have to.
-
-alpha*-*-*
-==========
-
-This section contains general configuration information for all
-alpha-based platforms using ELF (in particular, ignore this section for
-DEC OSF/1, Digital UNIX and Tru64 UNIX). In addition to reading this
-section, please read all other sections that match your target.
-
- We require binutils 2.11.2 or newer. Previous binutils releases had
-a number of problems with DWARF 2 debugging information, not the least
-of which is incorrect linking of shared libraries.
-
-alpha*-dec-osf5.1
-=================
-
-Systems using processors that implement the DEC Alpha architecture and
-are running the DEC/Compaq/HP Unix (DEC OSF/1, Digital UNIX, or
-Compaq/HP Tru64 UNIX) operating system, for example the DEC Alpha AXP
-systems.
-
- Support for Tru64 UNIX V5.1 has been removed in GCC 4.8. As of GCC
-4.6, support for Tru64 UNIX V4.0 and V5.0 has been removed. As of GCC
-3.2, versions before 'alpha*-dec-osf4' are no longer supported. (These
-are the versions which identify themselves as DEC OSF/1.)
-
-amd64-*-solaris2.1[0-9]*
-========================
-
-This is a synonym for 'x86_64-*-solaris2.1[0-9]*'.
-
-arc-*-elf32
-===========
-
-Use 'configure --target=arc-elf32 --with-cpu=CPU
---enable-languages="c,c++"' to configure GCC, with CPU being one of
-'arc600', 'arc601', or 'arc700'.
-
-arc-linux-uclibc
-================
-
-Use 'configure --target=arc-linux-uclibc --with-cpu=arc700
---enable-languages="c,c++"' to configure GCC.
-
-arm-*-eabi
-==========
-
-ARM-family processors. Subtargets that use the ELF object format
-require GNU binutils 2.13 or newer. Such subtargets include:
-'arm-*-netbsdelf', 'arm-*-*linux-*' and 'arm-*-rtemseabi'.
-
-avr
-===
-
-ATMEL AVR-family micro controllers. These are used in embedded
-applications. There are no standard Unix configurations. *Note AVR
-Options: (gcc)AVR Options, for the list of supported MCU types.
-
- Use 'configure --target=avr --enable-languages="c"' to configure GCC.
-
- Further installation notes and other useful information about AVR
-tools can also be obtained from:
-
- * http://www.nongnu.org/avr/
- * http://www.amelek.gda.pl/avr/
-
- We _strongly_ recommend using binutils 2.13 or newer.
-
- The following error:
- Error: register required
-
- indicates that you should upgrade to a newer version of the binutils.
-
-Blackfin
-========
-
-The Blackfin processor, an Analog Devices DSP. *Note Blackfin Options:
-(gcc)Blackfin Options,
-
- More information, and a version of binutils with support for this
-processor, is available at <http://blackfin.uclinux.org>
-
-CR16
-====
-
-The CR16 CompactRISC architecture is a 16-bit architecture. This
-architecture is used in embedded applications.
-
- *Note CR16 Options: (gcc)CR16 Options,
-
- Use 'configure --target=cr16-elf --enable-languages=c,c++' to
-configure GCC for building a CR16 elf cross-compiler.
-
- Use 'configure --target=cr16-uclinux --enable-languages=c,c++' to
-configure GCC for building a CR16 uclinux cross-compiler.
-
-CRIS
-====
-
-CRIS is the CPU architecture in Axis Communications ETRAX
-system-on-a-chip series. These are used in embedded applications.
-
- *Note CRIS Options: (gcc)CRIS Options, for a list of CRIS-specific
-options.
-
- There are a few different CRIS targets:
-'cris-axis-elf'
- Mainly for monolithic embedded systems. Includes a multilib for
- the 'v10' core used in 'ETRAX 100 LX'.
-'cris-axis-linux-gnu'
- A GNU/Linux port for the CRIS architecture, currently targeting
- 'ETRAX 100 LX' by default.
-
- For 'cris-axis-elf' you need binutils 2.11 or newer. For
-'cris-axis-linux-gnu' you need binutils 2.12 or newer.
-
- Pre-packaged tools can be obtained from
-<ftp://ftp.axis.com/pub/axis/tools/cris/compiler-kit/>. More
-information about this platform is available at
-<http://developer.axis.com/>.
-
-DOS
-===
-
-Please have a look at the binaries page.
-
- You cannot install GCC by itself on MSDOS; it will not compile under
-any MSDOS compiler except itself. You need to get the complete
-compilation package DJGPP, which includes binaries as well as sources,
-and includes all the necessary compilation tools and libraries.
-
-epiphany-*-elf
-==============
-
-Adapteva Epiphany. This configuration is intended for embedded systems.
-
-*-*-freebsd*
-============
-
-Support for FreeBSD 1 was discontinued in GCC 3.2. Support for FreeBSD
-2 (and any mutant a.out variants of FreeBSD 3) was discontinued in GCC
-4.0.
-
- In order to better utilize FreeBSD base system functionality and
-match the configuration of the system compiler, GCC 4.5 and above as
-well as GCC 4.4 past 2010-06-20 leverage SSP support in libc (which is
-present on FreeBSD 7 or later) and the use of '__cxa_atexit' by default
-(on FreeBSD 6 or later). The use of 'dl_iterate_phdr' inside
-'libgcc_s.so.1' and boehm-gc (on FreeBSD 7 or later) is enabled by GCC
-4.5 and above.
-
- We support FreeBSD using the ELF file format with DWARF 2 debugging
-for all CPU architectures. You may use '-gstabs' instead of '-g', if
-you really want the old debugging format. There are no known issues
-with mixing object files and libraries with different debugging formats.
-Otherwise, this release of GCC should now match more of the
-configuration used in the stock FreeBSD configuration of GCC. In
-particular, '--enable-threads' is now configured by default. However,
-as a general user, do not attempt to replace the system compiler with
-this release. Known to bootstrap and check with good results on FreeBSD
-7.2-STABLE. In the past, known to bootstrap and check with good results
-on FreeBSD 3.0, 3.4, 4.0, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9 and 5-CURRENT.
-
- The version of binutils installed in '/usr/bin' probably works with
-this release of GCC. Bootstrapping against the latest GNU binutils
-and/or the version found in '/usr/ports/devel/binutils' has been known
-to enable additional features and improve overall testsuite results.
-However, it is currently known that boehm-gc (which itself is required
-for java) may not configure properly on FreeBSD prior to the FreeBSD 7.0
-release with GNU binutils after 2.16.1.
-
-h8300-hms
-=========
-
-Renesas H8/300 series of processors.
-
- Please have a look at the binaries page.
-
- The calling convention and structure layout has changed in release
-2.6. All code must be recompiled. The calling convention now passes
-the first three arguments in function calls in registers. Structures
-are no longer a multiple of 2 bytes.
-
-hppa*-hp-hpux*
-==============
-
-Support for HP-UX version 9 and older was discontinued in GCC 3.4.
-
- We require using gas/binutils on all hppa platforms. Version 2.19 or
-later is recommended.
-
- It may be helpful to configure GCC with the '--with-gnu-as' and
-'--with-as=...' options to ensure that GCC can find GAS.
-
- The HP assembler should not be used with GCC. It is rarely tested and
-may not work. It shouldn't be used with any languages other than C due
-to its many limitations.
-
- Specifically, '-g' does not work (HP-UX uses a peculiar debugging
-format which GCC does not know about). It also inserts timestamps into
-each object file it creates, causing the 3-stage comparison test to fail
-during a bootstrap. You should be able to continue by saying 'make
-all-host all-target' after getting the failure from 'make'.
-
- Various GCC features are not supported. For example, it does not
-support weak symbols or alias definitions. As a result, explicit
-template instantiations are required when using C++. This makes it
-difficult if not impossible to build many C++ applications.
-
- There are two default scheduling models for instructions. These are
-PROCESSOR_7100LC and PROCESSOR_8000. They are selected from the pa-risc
-architecture specified for the target machine when configuring.
-PROCESSOR_8000 is the default. PROCESSOR_7100LC is selected when the
-target is a 'hppa1*' machine.
-
- The PROCESSOR_8000 model is not well suited to older processors.
-Thus, it is important to completely specify the machine architecture
-when configuring if you want a model other than PROCESSOR_8000. The
-macro TARGET_SCHED_DEFAULT can be defined in BOOT_CFLAGS if a different
-default scheduling model is desired.
-
- As of GCC 4.0, GCC uses the UNIX 95 namespace for HP-UX 10.10 through
-11.00, and the UNIX 98 namespace for HP-UX 11.11 and later. This
-namespace change might cause problems when bootstrapping with an earlier
-version of GCC or the HP compiler as essentially the same namespace is
-required for an entire build. This problem can be avoided in a number
-of ways. With HP cc, 'UNIX_STD' can be set to '95' or '98'. Another
-way is to add an appropriate set of predefines to 'CC'. The description
-for the 'munix=' option contains a list of the predefines used with each
-standard.
-
- More specific information to 'hppa*-hp-hpux*' targets follows.
-
-hppa*-hp-hpux10
-===============
-
-For hpux10.20, we _highly_ recommend you pick up the latest sed patch
-'PHCO_19798' from HP.
-
- The C++ ABI has changed incompatibly in GCC 4.0. COMDAT subspaces
-are used for one-only code and data. This resolves many of the previous
-problems in using C++ on this target. However, the ABI is not
-compatible with the one implemented under HP-UX 11 using secondary
-definitions.
-
-hppa*-hp-hpux11
-===============
-
-GCC 3.0 and up support HP-UX 11. GCC 2.95.x is not supported and cannot
-be used to compile GCC 3.0 and up.
-
- The libffi and libjava libraries haven't been ported to 64-bit
-HP-UX and don't build.
-
- Refer to binaries for information about obtaining precompiled GCC
-binaries for HP-UX. Precompiled binaries must be obtained to build the
-Ada language as it can't be bootstrapped using C. Ada is only available
-for the 32-bit PA-RISC runtime.
-
- Starting with GCC 3.4 an ISO C compiler is required to bootstrap.
-The bundled compiler supports only traditional C; you will need either
-HP's unbundled compiler, or a binary distribution of GCC.
-
- It is possible to build GCC 3.3 starting with the bundled HP
-compiler, but the process requires several steps. GCC 3.3 can then be
-used to build later versions. The fastjar program contains ISO C code
-and can't be built with the HP bundled compiler. This problem can be
-avoided by not building the Java language. For example, use the
-'--enable-languages="c,c++,f77,objc"' option in your configure command.
-
- There are several possible approaches to building the distribution.
-Binutils can be built first using the HP tools. Then, the GCC
-distribution can be built. The second approach is to build GCC first
-using the HP tools, then build binutils, then rebuild GCC. There have
-been problems with various binary distributions, so it is best not to
-start from a binary distribution.
-
- On 64-bit capable systems, there are two distinct targets. Different
-installation prefixes must be used if both are to be installed on the
-same system. The 'hppa[1-2]*-hp-hpux11*' target generates code for the
-32-bit PA-RISC runtime architecture and uses the HP linker. The
-'hppa64-hp-hpux11*' target generates 64-bit code for the PA-RISC 2.0
-architecture.
-
- The script config.guess now selects the target type based on the
-compiler detected during configuration. You must define 'PATH' or 'CC'
-so that configure finds an appropriate compiler for the initial
-bootstrap. When 'CC' is used, the definition should contain the options
-that are needed whenever 'CC' is used.
-
- Specifically, options that determine the runtime architecture must be
-in 'CC' to correctly select the target for the build. It is also
-convenient to place many other compiler options in 'CC'. For example,
-'CC="cc -Ac +DA2.0W -Wp,-H16376 -D_CLASSIC_TYPES -D_HPUX_SOURCE"' can be
-used to bootstrap the GCC 3.3 branch with the HP compiler in 64-bit
-K&R/bundled mode. The '+DA2.0W' option will result in the automatic
-selection of the 'hppa64-hp-hpux11*' target. The macro definition table
-of cpp needs to be increased for a successful build with the HP
-compiler. _CLASSIC_TYPES and _HPUX_SOURCE need to be defined when
-building with the bundled compiler, or when using the '-Ac' option.
-These defines aren't necessary with '-Ae'.
-
- It is best to explicitly configure the 'hppa64-hp-hpux11*' target
-with the '--with-ld=...' option. This overrides the standard search for
-ld. The two linkers supported on this target require different
-commands. The default linker is determined during configuration. As a
-result, it's not possible to switch linkers in the middle of a GCC
-build. This has been reported to sometimes occur in unified builds of
-binutils and GCC.
-
- A recent linker patch must be installed for the correct operation of
-GCC 3.3 and later. 'PHSS_26559' and 'PHSS_24304' are the oldest linker
-patches that are known to work. They are for HP-UX 11.00 and 11.11,
-respectively. 'PHSS_24303', the companion to 'PHSS_24304', might be
-usable but it hasn't been tested. These patches have been superseded.
-Consult the HP patch database to obtain the currently recommended linker
-patch for your system.
-
- The patches are necessary for the support of weak symbols on the
-32-bit port, and for the running of initializers and finalizers. Weak
-symbols are implemented using SOM secondary definition symbols. Prior
-to HP-UX 11, there are bugs in the linker support for secondary symbols.
-The patches correct a problem of linker core dumps creating shared
-libraries containing secondary symbols, as well as various other linking
-issues involving secondary symbols.
-
- GCC 3.3 uses the ELF DT_INIT_ARRAY and DT_FINI_ARRAY capabilities to
-run initializers and finalizers on the 64-bit port. The 32-bit port
-uses the linker '+init' and '+fini' options for the same purpose. The
-patches correct various problems with the +init/+fini options, including
-program core dumps. Binutils 2.14 corrects a problem on the 64-bit port
-resulting from HP's non-standard use of the .init and .fini sections for
-array initializers and finalizers.
-
- Although the HP and GNU linkers are both supported for the
-'hppa64-hp-hpux11*' target, it is strongly recommended that the HP
-linker be used for link editing on this target.
-
- At this time, the GNU linker does not support the creation of long
-branch stubs. As a result, it can't successfully link binaries
-containing branch offsets larger than 8 megabytes. In addition, there
-are problems linking shared libraries, linking executables with
-'-static', and with dwarf2 unwind and exception support. It also
-doesn't provide stubs for internal calls to global functions in shared
-libraries, so these calls can't be overloaded.
-
- The HP dynamic loader does not support GNU symbol versioning, so
-symbol versioning is not supported. It may be necessary to disable
-symbol versioning with '--disable-symvers' when using GNU ld.
-
- POSIX threads are the default. The optional DCE thread library is
-not supported, so '--enable-threads=dce' does not work.
-
-*-*-linux-gnu
-=============
-
-Versions of libstdc++-v3 starting with 3.2.1 require bug fixes present
-in glibc 2.2.5 and later. More information is available in the
-libstdc++-v3 documentation.
-
-i?86-*-linux*
-=============
-
-As of GCC 3.3, binutils 2.13.1 or later is required for this platform.
-See bug 10877 for more information.
-
- If you receive Signal 11 errors when building on GNU/Linux, then it
-is possible you have a hardware problem. Further information on this
-can be found on www.bitwizard.nl.
-
-i?86-*-solaris2.9
-=================
-
-The Sun assembler in Solaris 9 has several bugs and limitations. While
-GCC works around them, several features are missing, so it is
-recommended to use the GNU assembler instead. There is no bundled
-version, but the current version, from GNU binutils 2.22, is known to
-work.
-
- Solaris 2/x86 doesn't support the execution of SSE/SSE2 instructions
-before Solaris 9 4/04, even if the CPU supports them. Programs will
-receive 'SIGILL' if they try. The fix is available both in Solaris 9
-Update 6 and kernel patch 112234-12 or newer. To avoid this problem,
-'-march' defaults to 'pentiumpro' on Solaris 9. If you have the patch
-installed, you can configure GCC with an appropriate '--with-arch'
-option, but need GNU 'as' for SSE2 support.
-
-i?86-*-solaris2.10
-==================
-
-Use this for Solaris 10 or later on x86 and x86-64 systems. Starting
-with GCC 4.7, there is also a 64-bit 'amd64-*-solaris2.1[0-9]*' or
-'x86_64-*-solaris2.1[0-9]*' configuration that corresponds to
-'sparcv9-sun-solaris2*'.
-
- It is recommended that you configure GCC to use the GNU assembler, in
-'/usr/sfw/bin/gas'. The versions included in Solaris 10, from GNU
-binutils 2.15, and Solaris 11, from GNU binutils 2.19, work fine,
-although the current version, from GNU binutils 2.22, is known to work,
-too. Recent versions of the Sun assembler in '/usr/ccs/bin/as' work
-almost as well, though.
-
- For linking, the Sun linker, is preferred. If you want to use the
-GNU linker instead, which is available in '/usr/sfw/bin/gld', note that
-due to a packaging bug the version in Solaris 10, from GNU binutils
-2.15, cannot be used, while the version in Solaris 11, from GNU binutils
-2.19, works, as does the latest version, from GNU binutils 2.22.
-
- To use GNU 'as', configure with the options '--with-gnu-as
---with-as=/usr/sfw/bin/gas'. It may be necessary to configure with
-'--without-gnu-ld --with-ld=/usr/ccs/bin/ld' to guarantee use of Sun
-'ld'.
-
-ia64-*-linux
-============
-
-IA-64 processor (also known as IPF, or Itanium Processor Family) running
-GNU/Linux.
-
- If you are using the installed system libunwind library with
-'--with-system-libunwind', then you must use libunwind 0.98 or later.
-
- None of the following versions of GCC has an ABI that is compatible
-with any of the other versions in this list, with the exception that Red
-Hat 2.96 and Trillian 000171 are compatible with each other: 3.1, 3.0.2,
-3.0.1, 3.0, Red Hat 2.96, and Trillian 000717. This primarily affects
-C++ programs and programs that create shared libraries. GCC 3.1 or
-later is recommended for compiling linux, the kernel. As of version 3.1
-GCC is believed to be fully ABI compliant, and hence no more major ABI
-changes are expected.
-
-ia64-*-hpux*
-============
-
-Building GCC on this target requires the GNU Assembler. The bundled HP
-assembler will not work. To prevent GCC from using the wrong assembler,
-the option '--with-gnu-as' may be necessary.
-
- The GCC libunwind library has not been ported to HPUX. This means
-that for GCC versions 3.2.3 and earlier, '--enable-libunwind-exceptions'
-is required to build GCC. For GCC 3.3 and later, this is the default.
-For gcc 3.4.3 and later, '--enable-libunwind-exceptions' is removed and
-the system libunwind library will always be used.
-
-aarch64*-*-*
-============
-
-Pre 2.24 binutils does not have support for selecting -mabi and does not
-support ILP32. If GCC 4.9 or later is built with pre 2.24, GCC will not
-support option -mabi=ilp32.
-
-*-ibm-aix*
-==========
-
-Support for AIX version 3 and older was discontinued in GCC 3.4.
-Support for AIX version 4.2 and older was discontinued in GCC 4.5.
-
- "out of memory" bootstrap failures may indicate a problem with
-process resource limits (ulimit). Hard limits are configured in the
-'/etc/security/limits' system configuration file.
-
- GCC can bootstrap with recent versions of IBM XLC, but bootstrapping
-with an earlier release of GCC is recommended. Bootstrapping with XLC
-requires a larger data segment, which can be enabled through the
-LDR_CNTRL environment variable, e.g.,
-
- % LDR_CNTRL=MAXDATA=0x50000000
- % export LDR_CNTRL
-
- One can start with a pre-compiled version of GCC to build from
-sources. One may delete GCC's "fixed" header files when starting with a
-version of GCC built for an earlier release of AIX.
-
- To speed up the configuration phases of bootstrapping and installing
-GCC, one may use GNU Bash instead of AIX '/bin/sh', e.g.,
-
- % CONFIG_SHELL=/opt/freeware/bin/bash
- % export CONFIG_SHELL
-
- and then proceed as described in the build instructions, where we
-strongly recommend specifying an absolute path to invoke
-SRCDIR/configure.
-
- Because GCC on AIX is built as a 32-bit executable by default,
-(although it can generate 64-bit programs) the GMP and MPFR libraries
-required by gfortran must be 32-bit libraries. Building GMP and MPFR as
-static archive libraries works better than shared libraries.
-
- Errors involving 'alloca' when building GCC generally are due to an
-incorrect definition of 'CC' in the Makefile or mixing files compiled
-with the native C compiler and GCC. During the stage1 phase of the
-build, the native AIX compiler *must* be invoked as 'cc' (not 'xlc').
-Once 'configure' has been informed of 'xlc', one needs to use 'make
-distclean' to remove the configure cache files and ensure that 'CC'
-environment variable does not provide a definition that will confuse
-'configure'. If this error occurs during stage2 or later, then the
-problem most likely is the version of Make (see above).
-
- The native 'as' and 'ld' are recommended for bootstrapping on AIX.
-The GNU Assembler, GNU Linker, and GNU Binutils version 2.20 is the
-minimum level that supports bootstrap on AIX 5. The GNU Assembler has
-not been updated to support AIX 6 or AIX 7. The native AIX tools do
-interoperate with GCC.
-
- AIX 5.3 TL10, AIX 6.1 TL05 and AIX 7.1 TL00 introduced an AIX
-assembler change that sometimes produces corrupt assembly files causing
-AIX linker errors. The bug breaks GCC bootstrap on AIX and can cause
-compilation failures with existing GCC installations. An AIX iFix for
-AIX 5.3 is available (APAR IZ98385 for AIX 5.3 TL10, APAR IZ98477 for
-AIX 5.3 TL11 and IZ98134 for AIX 5.3 TL12). AIX 5.3 TL11 SP8, AIX 5.3
-TL12 SP5, AIX 6.1 TL04 SP11, AIX 6.1 TL05 SP7, AIX 6.1 TL06 SP6, AIX 6.1
-TL07 and AIX 7.1 TL01 should include the fix.
-
- Building 'libstdc++.a' requires a fix for an AIX Assembler bug APAR
-IY26685 (AIX 4.3) or APAR IY25528 (AIX 5.1). It also requires a fix for
-another AIX Assembler bug and a co-dependent AIX Archiver fix referenced
-as APAR IY53606 (AIX 5.2) or as APAR IY54774 (AIX 5.1)
-
- 'libstdc++' in GCC 3.4 increments the major version number of the
-shared object and GCC installation places the 'libstdc++.a' shared
-library in a common location which will overwrite the and GCC 3.3
-version of the shared library. Applications either need to be re-linked
-against the new shared library or the GCC 3.1 and GCC 3.3 versions of
-the 'libstdc++' shared object needs to be available to the AIX runtime
-loader. The GCC 3.1 'libstdc++.so.4', if present, and GCC 3.3
-'libstdc++.so.5' shared objects can be installed for runtime dynamic
-loading using the following steps to set the 'F_LOADONLY' flag in the
-shared object for _each_ multilib 'libstdc++.a' installed:
-
- Extract the shared objects from the currently installed 'libstdc++.a'
-archive:
- % ar -x libstdc++.a libstdc++.so.4 libstdc++.so.5
-
- Enable the 'F_LOADONLY' flag so that the shared object will be
-available for runtime dynamic loading, but not linking:
- % strip -e libstdc++.so.4 libstdc++.so.5
-
- Archive the runtime-only shared object in the GCC 3.4 'libstdc++.a'
-archive:
- % ar -q libstdc++.a libstdc++.so.4 libstdc++.so.5
-
- Linking executables and shared libraries may produce warnings of
-duplicate symbols. The assembly files generated by GCC for AIX always
-have included multiple symbol definitions for certain global variable
-and function declarations in the original program. The warnings should
-not prevent the linker from producing a correct library or runnable
-executable.
-
- AIX 4.3 utilizes a "large format" archive to support both 32-bit and
-64-bit object modules. The routines provided in AIX 4.3.0 and AIX 4.3.1
-to parse archive libraries did not handle the new format correctly.
-These routines are used by GCC and result in error messages during
-linking such as "not a COFF file". The version of the routines shipped
-with AIX 4.3.1 should work for a 32-bit environment. The '-g' option of
-the archive command may be used to create archives of 32-bit objects
-using the original "small format". A correct version of the routines is
-shipped with AIX 4.3.2 and above.
-
- Some versions of the AIX binder (linker) can fail with a relocation
-overflow severe error when the '-bbigtoc' option is used to link
-GCC-produced object files into an executable that overflows the TOC. A
-fix for APAR IX75823 (OVERFLOW DURING LINK WHEN USING GCC AND -BBIGTOC)
-is available from IBM Customer Support and from its
-techsupport.services.ibm.com website as PTF U455193.
-
- The AIX 4.3.2.1 linker (bos.rte.bind_cmds Level 4.3.2.1) will dump
-core with a segmentation fault when invoked by any version of GCC. A
-fix for APAR IX87327 is available from IBM Customer Support and from its
-techsupport.services.ibm.com website as PTF U461879. This fix is
-incorporated in AIX 4.3.3 and above.
-
- The initial assembler shipped with AIX 4.3.0 generates incorrect
-object files. A fix for APAR IX74254 (64BIT DISASSEMBLED OUTPUT FROM
-COMPILER FAILS TO ASSEMBLE/BIND) is available from IBM Customer Support
-and from its techsupport.services.ibm.com website as PTF U453956. This
-fix is incorporated in AIX 4.3.1 and above.
-
- AIX provides National Language Support (NLS). Compilers and
-assemblers use NLS to support locale-specific representations of various
-data formats including floating-point numbers (e.g., '.' vs ',' for
-separating decimal fractions). There have been problems reported where
-GCC does not produce the same floating-point formats that the assembler
-expects. If one encounters this problem, set the 'LANG' environment
-variable to 'C' or 'En_US'.
-
- A default can be specified with the '-mcpu=CPU_TYPE' switch and using
-the configure option '--with-cpu-CPU_TYPE'.
-
-iq2000-*-elf
-============
-
-Vitesse IQ2000 processors. These are used in embedded applications.
-There are no standard Unix configurations.
-
-lm32-*-elf
-==========
-
-Lattice Mico32 processor. This configuration is intended for embedded
-systems.
-
-lm32-*-uclinux
-==============
-
-Lattice Mico32 processor. This configuration is intended for embedded
-systems running uClinux.
-
-m32c-*-elf
-==========
-
-Renesas M32C processor. This configuration is intended for embedded
-systems.
-
-m32r-*-elf
-==========
-
-Renesas M32R processor. This configuration is intended for embedded
-systems.
-
-m68k-*-*
-========
-
-By default, 'm68k-*-elf*', 'm68k-*-rtems', 'm68k-*-uclinux' and
-'m68k-*-linux' build libraries for both M680x0 and ColdFire processors.
-If you only need the M680x0 libraries, you can omit the ColdFire ones by
-passing '--with-arch=m68k' to 'configure'. Alternatively, you can omit
-the M680x0 libraries by passing '--with-arch=cf' to 'configure'. These
-targets default to 5206 or 5475 code as appropriate for the target
-system when configured with '--with-arch=cf' and 68020 code otherwise.
-
- The 'm68k-*-netbsd' and 'm68k-*-openbsd' targets also support the
-'--with-arch' option. They will generate ColdFire CFV4e code when
-configured with '--with-arch=cf' and 68020 code otherwise.
-
- You can override the default processors listed above by configuring
-with '--with-cpu=TARGET'. This TARGET can either be a '-mcpu' argument
-or one of the following values: 'm68000', 'm68010', 'm68020', 'm68030',
-'m68040', 'm68060', 'm68020-40' and 'm68020-60'.
-
- GCC requires at least binutils version 2.17 on these targets.
-
-m68k-*-uclinux
-==============
-
-GCC 4.3 changed the uClinux configuration so that it uses the
-'m68k-linux-gnu' ABI rather than the 'm68k-elf' ABI. It also added
-improved support for C++ and flat shared libraries, both of which were
-ABI changes.
-
-mep-*-elf
-=========
-
-Toshiba Media embedded Processor. This configuration is intended for
-embedded systems.
-
-microblaze-*-elf
-================
-
-Xilinx MicroBlaze processor. This configuration is intended for
-embedded systems.
-
-mips-*-*
-========
-
-If on a MIPS system you get an error message saying "does not have gp
-sections for all it's [sic] sectons [sic]", don't worry about it. This
-happens whenever you use GAS with the MIPS linker, but there is not
-really anything wrong, and it is okay to use the output file. You can
-stop such warnings by installing the GNU linker.
-
- It would be nice to extend GAS to produce the gp tables, but they are
-optional, and there should not be a warning about their absence.
-
- The libstdc++ atomic locking routines for MIPS targets requires MIPS
-II and later. A patch went in just after the GCC 3.3 release to make
-'mips*-*-*' use the generic implementation instead. You can also
-configure for 'mipsel-elf' as a workaround. The 'mips*-*-linux*' target
-continues to use the MIPS II routines. More work on this is expected in
-future releases.
-
- The built-in '__sync_*' functions are available on MIPS II and later
-systems and others that support the 'll', 'sc' and 'sync' instructions.
-This can be overridden by passing '--with-llsc' or '--without-llsc' when
-configuring GCC. Since the Linux kernel emulates these instructions if
-they are missing, the default for 'mips*-*-linux*' targets is
-'--with-llsc'. The '--with-llsc' and '--without-llsc' configure options
-may be overridden at compile time by passing the '-mllsc' or '-mno-llsc'
-options to the compiler.
-
- MIPS systems check for division by zero (unless
-'-mno-check-zero-division' is passed to the compiler) by generating
-either a conditional trap or a break instruction. Using trap results in
-smaller code, but is only supported on MIPS II and later. Also, some
-versions of the Linux kernel have a bug that prevents trap from
-generating the proper signal ('SIGFPE'). To enable the use of break,
-use the '--with-divide=breaks' 'configure' option when configuring GCC.
-The default is to use traps on systems that support them.
-
- The assembler from GNU binutils 2.17 and earlier has a bug in the way
-it sorts relocations for REL targets (o32, o64, EABI). This can cause
-bad code to be generated for simple C++ programs. Also the linker from
-GNU binutils versions prior to 2.17 has a bug which causes the runtime
-linker stubs in very large programs, like 'libgcj.so', to be incorrectly
-generated. GNU Binutils 2.18 and later (and snapshots made after Nov.
-9, 2006) should be free from both of these problems.
-
-mips-sgi-irix5
-==============
-
-Support for IRIX 5 has been removed in GCC 4.6.
-
-mips-sgi-irix6
-==============
-
-Support for IRIX 6.5 has been removed in GCC 4.8. Support for IRIX 6
-releases before 6.5 has been removed in GCC 4.6, as well as support for
-the O32 ABI.
-
-moxie-*-elf
-===========
-
-The moxie processor.
-
-msp430-*-elf
-============
-
-TI MSP430 processor. This configuration is intended for embedded
-systems.
-
-nds32le-*-elf
-=============
-
-Andes NDS32 target in little endian mode.
-
-nds32be-*-elf
-=============
-
-Andes NDS32 target in big endian mode.
-
-powerpc-*-*
-===========
-
-You can specify a default version for the '-mcpu=CPU_TYPE' switch by
-using the configure option '--with-cpu-CPU_TYPE'.
-
- You will need binutils 2.15 or newer for a working GCC.
-
-powerpc-*-darwin*
-=================
-
-PowerPC running Darwin (Mac OS X kernel).
-
- Pre-installed versions of Mac OS X may not include any developer
-tools, meaning that you will not be able to build GCC from source. Tool
-binaries are available at <http://opensource.apple.com/>.
-
- This version of GCC requires at least cctools-590.36. The
-cctools-590.36 package referenced from
-<http://gcc.gnu.org/ml/gcc/2006-03/msg00507.html> will not work on
-systems older than 10.3.9 (aka darwin7.9.0).
-
-powerpc-*-elf
-=============
-
-PowerPC system in big endian mode, running System V.4.
-
-powerpc*-*-linux-gnu*
-=====================
-
-PowerPC system in big endian mode running Linux.
-
-powerpc-*-netbsd*
-=================
-
-PowerPC system in big endian mode running NetBSD.
-
-powerpc-*-eabisim
-=================
-
-Embedded PowerPC system in big endian mode for use in running under the
-PSIM simulator.
-
-powerpc-*-eabi
-==============
-
-Embedded PowerPC system in big endian mode.
-
-powerpcle-*-elf
-===============
-
-PowerPC system in little endian mode, running System V.4.
-
-powerpcle-*-eabisim
-===================
-
-Embedded PowerPC system in little endian mode for use in running under
-the PSIM simulator.
-
-powerpcle-*-eabi
-================
-
-Embedded PowerPC system in little endian mode.
-
-rl78-*-elf
-==========
-
-The Renesas RL78 processor. This configuration is intended for embedded
-systems.
-
-rx-*-elf
-========
-
-The Renesas RX processor. See
-<http://eu.renesas.com/fmwk.jsp?cnt=rx600_series_landing.jsp&fp=/products/mpumcu/rx_family/rx600_series>
-for more information about this processor.
-
-s390-*-linux*
-=============
-
-S/390 system running GNU/Linux for S/390.
-
-s390x-*-linux*
-==============
-
-zSeries system (64-bit) running GNU/Linux for zSeries.
-
-s390x-ibm-tpf*
-==============
-
-zSeries system (64-bit) running TPF. This platform is supported as
-cross-compilation target only.
-
-*-*-solaris2*
-=============
-
-Support for Solaris 9 has been obsoleted in GCC 4.9, but can still be
-enabled by configuring with '--enable-obsolete'. Support will be
-removed in GCC 4.10. Support for Solaris 8 has removed in GCC 4.8.
-Support for Solaris 7 has been removed in GCC 4.6.
-
- Sun does not ship a C compiler with Solaris 2 before Solaris 10,
-though you can download the Sun Studio compilers for free. In Solaris
-10 and 11, GCC 3.4.3 is available as '/usr/sfw/bin/gcc'. Solaris 11
-also provides GCC 4.5.2 as '/usr/gcc/4.5/bin/gcc'. Alternatively, you
-can install a pre-built GCC to bootstrap and install GCC. See the
-binaries page for details.
-
- The Solaris 2 '/bin/sh' will often fail to configure 'libstdc++-v3',
-'boehm-gc' or 'libjava'. We therefore recommend using the following
-initial sequence of commands
-
- % CONFIG_SHELL=/bin/ksh
- % export CONFIG_SHELL
-
-and proceed as described in the configure instructions. In addition we
-strongly recommend specifying an absolute path to invoke
-'SRCDIR/configure'.
-
- Solaris 2 comes with a number of optional OS packages. Some of these
-are needed to use GCC fully, namely 'SUNWarc', 'SUNWbtool', 'SUNWesu',
-'SUNWhea', 'SUNWlibm', 'SUNWsprot', and 'SUNWtoo'. If you did not
-install all optional packages when installing Solaris 2, you will need
-to verify that the packages that GCC needs are installed.
-
- To check whether an optional package is installed, use the 'pkginfo'
-command. To add an optional package, use the 'pkgadd' command. For
-further details, see the Solaris 2 documentation.
-
- Trying to use the linker and other tools in '/usr/ucb' to install GCC
-has been observed to cause trouble. For example, the linker may hang
-indefinitely. The fix is to remove '/usr/ucb' from your 'PATH'.
-
- The build process works more smoothly with the legacy Sun tools so,
-if you have '/usr/xpg4/bin' in your 'PATH', we recommend that you place
-'/usr/bin' before '/usr/xpg4/bin' for the duration of the build.
-
- We recommend the use of the Sun assembler or the GNU assembler, in
-conjunction with the Sun linker. The GNU 'as' versions included in
-Solaris 10, from GNU binutils 2.15, and Solaris 11, from GNU binutils
-2.19, are known to work. They can be found in '/usr/sfw/bin/gas'.
-Current versions of GNU binutils (2.22) are known to work as well. Note
-that your mileage may vary if you use a combination of the GNU tools and
-the Sun tools: while the combination GNU 'as' + Sun 'ld' should
-reasonably work, the reverse combination Sun 'as' + GNU 'ld' may fail to
-build or cause memory corruption at runtime in some cases for C++
-programs. GNU 'ld' usually works as well, although the version included
-in Solaris 10 cannot be used due to several bugs. Again, the current
-version (2.22) is known to work, but generally lacks platform specific
-features, so better stay with Sun 'ld'. To use the LTO linker plugin
-('-fuse-linker-plugin') with GNU 'ld', GNU binutils _must_ be configured
-with '--enable-largefile'.
-
- To enable symbol versioning in 'libstdc++' with Sun 'ld', you need to
-have any version of GNU 'c++filt', which is part of GNU binutils.
-'libstdc++' symbol versioning will be disabled if no appropriate version
-is found. Sun 'c++filt' from the Sun Studio compilers does _not_ work.
-
- Sun bug 4296832 turns up when compiling X11 headers with GCC 2.95 or
-newer: 'g++' will complain that types are missing. These headers assume
-that omitting the type means 'int'; this assumption worked for C90 but
-is wrong for C++, and is now wrong for C99 also.
-
- Sun bug 4927647 sometimes causes random spurious testsuite failures
-related to missing diagnostic output. This bug doesn't affect GCC
-itself, rather it is a kernel bug triggered by the 'expect' program
-which is used only by the GCC testsuite driver. When the bug causes the
-'expect' program to miss anticipated output, extra testsuite failures
-appear.
-
- There are patches for Solaris 9 (117171-11 or newer for SPARC,
-117172-11 or newer for Intel) that address this problem.
-
- Thread-local storage (TLS) is supported in Solaris 9, but requires
-some patches. The 'libthread' patches provide the '__tls_get_addr'
-(SPARC, 64-bit x86) resp. '___tls_get_addr' (32-bit x86) functions. On
-Solaris 9, the necessary support on SPARC is present since FCS, while
-114432-05 or newer is required on Intel. Additionally, on
-Solaris 9/x86, patch 113986-02 or newer is required for the Sun 'ld' and
-runtime linker ('ld.so.1') support, while Solaris 9/SPARC works since
-FCS. The linker patches must be installed even if GNU 'ld' is used. Sun
-'as' in Solaris 9 doesn't support the necessary relocations, so GNU 'as'
-must be used. The 'configure' script checks for those prerequisites and
-automatically enables TLS support if they are met. Although those
-minimal patch versions should work, it is recommended to use the latest
-patch versions which include additional bug fixes.
-
-sparc*-*-*
-==========
-
-This section contains general configuration information for all
-SPARC-based platforms. In addition to reading this section, please read
-all other sections that match your target.
-
- Newer versions of the GNU Multiple Precision Library (GMP), the MPFR
-library and the MPC library are known to be miscompiled by earlier
-versions of GCC on these platforms. We therefore recommend the use of
-the exact versions of these libraries listed as minimal versions in the
-prerequisites.
-
-sparc-sun-solaris2*
-===================
-
-When GCC is configured to use GNU binutils 2.14 or later, the binaries
-produced are smaller than the ones produced using Sun's native tools;
-this difference is quite significant for binaries containing debugging
-information.
-
- Starting with Solaris 7, the operating system is capable of executing
-64-bit SPARC V9 binaries. GCC 3.1 and later properly supports this; the
-'-m64' option enables 64-bit code generation. However, if all you want
-is code tuned for the UltraSPARC CPU, you should try the
-'-mtune=ultrasparc' option instead, which produces code that, unlike
-full 64-bit code, can still run on non-UltraSPARC machines.
-
- When configuring on a Solaris 7 or later system that is running a
-kernel that supports only 32-bit binaries, one must configure with
-'--disable-multilib', since we will not be able to build the 64-bit
-target libraries.
-
- GCC 3.3 and GCC 3.4 trigger code generation bugs in earlier versions
-of the GNU compiler (especially GCC 3.0.x versions), which lead to the
-miscompilation of the stage1 compiler and the subsequent failure of the
-bootstrap process. A workaround is to use GCC 3.2.3 as an intermediary
-stage, i.e. to bootstrap that compiler with the base compiler and then
-use it to bootstrap the final compiler.
-
- GCC 3.4 triggers a code generation bug in versions 5.4 (Sun ONE
-Studio 7) and 5.5 (Sun ONE Studio 8) of the Sun compiler, which causes a
-bootstrap failure in form of a miscompilation of the stage1 compiler by
-the Sun compiler. This is Sun bug 4974440. This is fixed with patch
-112760-07.
-
- GCC 3.4 changed the default debugging format from Stabs to DWARF-2
-for 32-bit code on Solaris 7 and later. If you use the Sun assembler,
-this change apparently runs afoul of Sun bug 4910101 (which is
-referenced as an x86-only problem by Sun, probably because they do not
-use DWARF-2). A symptom of the problem is that you cannot compile C++
-programs like 'groff' 1.19.1 without getting messages similar to the
-following:
-
- ld: warning: relocation error: R_SPARC_UA32: ...
- external symbolic relocation against non-allocatable section
- .debug_info cannot be processed at runtime: relocation ignored.
-
-To work around this problem, compile with '-gstabs+' instead of plain
-'-g'.
-
- When configuring the GNU Multiple Precision Library (GMP), the MPFR
-library or the MPC library on a Solaris 7 or later system, the canonical
-target triplet must be specified as the 'build' parameter on the
-configure line. This target triplet can be obtained by invoking
-'./config.guess' in the toplevel source directory of GCC (and not that
-of GMP or MPFR or MPC). For example on a Solaris 9 system:
-
- % ./configure --build=sparc-sun-solaris2.9 --prefix=xxx
-
-sparc-sun-solaris2.10
-=====================
-
-There is a bug in older versions of the Sun assembler which breaks
-thread-local storage (TLS). A typical error message is
-
- ld: fatal: relocation error: R_SPARC_TLS_LE_HIX22: file /var/tmp//ccamPA1v.o:
- symbol <unknown>: bad symbol type SECT: symbol type must be TLS
-
-This bug is fixed in Sun patch 118683-03 or later.
-
-sparc-*-linux*
-==============
-
-GCC versions 3.0 and higher require binutils 2.11.2 and glibc 2.2.4 or
-newer on this platform. All earlier binutils and glibc releases
-mishandled unaligned relocations on 'sparc-*-*' targets.
-
-sparc64-*-solaris2*
-===================
-
-When configuring the GNU Multiple Precision Library (GMP), the MPFR
-library or the MPC library, the canonical target triplet must be
-specified as the 'build' parameter on the configure line. For example
-on a Solaris 9 system:
-
- % ./configure --build=sparc64-sun-solaris2.9 --prefix=xxx
-
- The following compiler flags must be specified in the configure step
-in order to bootstrap this target with the Sun compiler:
-
- % CC="cc -xarch=v9 -xildoff" SRCDIR/configure [OPTIONS] [TARGET]
-
-'-xarch=v9' specifies the SPARC-V9 architecture to the Sun toolchain and
-'-xildoff' turns off the incremental linker.
-
-sparcv9-*-solaris2*
-===================
-
-This is a synonym for 'sparc64-*-solaris2*'.
-
-c6x-*-*
-=======
-
-The C6X family of processors. This port requires binutils-2.22 or
-newer.
-
-tilegx-*-linux*
-===============
-
-The TILE-Gx processor in little endian mode, running GNU/Linux. This
-port requires binutils-2.22 or newer.
-
-tilegxbe-*-linux*
-=================
-
-The TILE-Gx processor in big endian mode, running GNU/Linux. This port
-requires binutils-2.23 or newer.
-
-tilepro-*-linux*
-================
-
-The TILEPro processor running GNU/Linux. This port requires
-binutils-2.22 or newer.
-
-*-*-vxworks*
-============
-
-Support for VxWorks is in flux. At present GCC supports _only_ the very
-recent VxWorks 5.5 (aka Tornado 2.2) release, and only on PowerPC. We
-welcome patches for other architectures supported by VxWorks 5.5.
-Support for VxWorks AE would also be welcome; we believe this is merely
-a matter of writing an appropriate "configlette" (see below). We are
-not interested in supporting older, a.out or COFF-based, versions of
-VxWorks in GCC 3.
-
- VxWorks comes with an older version of GCC installed in
-'$WIND_BASE/host'; we recommend you do not overwrite it. Choose an
-installation PREFIX entirely outside $WIND_BASE. Before running
-'configure', create the directories 'PREFIX' and 'PREFIX/bin'. Link or
-copy the appropriate assembler, linker, etc. into 'PREFIX/bin', and set
-your PATH to include that directory while running both 'configure' and
-'make'.
-
- You must give 'configure' the '--with-headers=$WIND_BASE/target/h'
-switch so that it can find the VxWorks system headers. Since VxWorks is
-a cross compilation target only, you must also specify
-'--target=TARGET'. 'configure' will attempt to create the directory
-'PREFIX/TARGET/sys-include' and copy files into it; make sure the user
-running 'configure' has sufficient privilege to do so.
-
- GCC's exception handling runtime requires a special "configlette"
-module, 'contrib/gthr_supp_vxw_5x.c'. Follow the instructions in that
-file to add the module to your kernel build. (Future versions of
-VxWorks will incorporate this module.)
-
-x86_64-*-*, amd64-*-*
-=====================
-
-GCC supports the x86-64 architecture implemented by the AMD64 processor
-(amd64-*-* is an alias for x86_64-*-*) on GNU/Linux, FreeBSD and NetBSD.
-On GNU/Linux the default is a bi-arch compiler which is able to generate
-both 64-bit x86-64 and 32-bit x86 code (via the '-m32' switch).
-
-x86_64-*-solaris2.1[0-9]*
-=========================
-
-GCC also supports the x86-64 architecture implemented by the AMD64
-processor ('amd64-*-*' is an alias for 'x86_64-*-*') on Solaris 10 or
-later. Unlike other systems, without special options a bi-arch compiler
-is built which generates 32-bit code by default, but can generate 64-bit
-x86-64 code with the '-m64' switch. Since GCC 4.7, there is also
-configuration that defaults to 64-bit code, but can generate 32-bit code
-with '-m32'. To configure and build this way, you have to provide all
-support libraries like 'libgmp' as 64-bit code, configure with
-'--target=x86_64-pc-solaris2.1x' and 'CC=gcc -m64'.
-
-xtensa*-*-elf
-=============
-
-This target is intended for embedded Xtensa systems using the 'newlib' C
-library. It uses ELF but does not support shared objects.
-Designed-defined instructions specified via the Tensilica Instruction
-Extension (TIE) language are only supported through inline assembly.
-
- The Xtensa configuration information must be specified prior to
-building GCC. The 'include/xtensa-config.h' header file contains the
-configuration information. If you created your own Xtensa configuration
-with the Xtensa Processor Generator, the downloaded files include a
-customized copy of this header file, which you can use to replace the
-default header file.
-
-xtensa*-*-linux*
-================
-
-This target is for Xtensa systems running GNU/Linux. It supports ELF
-shared objects and the GNU C library (glibc). It also generates
-position-independent code (PIC) regardless of whether the '-fpic' or
-'-fPIC' options are used. In other respects, this target is the same as
-the 'xtensa*-*-elf' target.
-
-Microsoft Windows
-=================
-
-Intel 16-bit versions
----------------------
-
-The 16-bit versions of Microsoft Windows, such as Windows 3.1, are not
-supported.
-
- However, the 32-bit port has limited support for Microsoft Windows
-3.11 in the Win32s environment, as a target only. See below.
-
-Intel 32-bit versions
----------------------
-
-The 32-bit versions of Windows, including Windows 95, Windows NT,
-Windows XP, and Windows Vista, are supported by several different target
-platforms. These targets differ in which Windows subsystem they target
-and which C libraries are used.
-
- * Cygwin *-*-cygwin: Cygwin provides a user-space Linux API emulation
- layer in the Win32 subsystem.
- * Interix *-*-interix: The Interix subsystem provides native support
- for POSIX.
- * MinGW *-*-mingw32: MinGW is a native GCC port for the Win32
- subsystem that provides a subset of POSIX.
- * MKS i386-pc-mks: NuTCracker from MKS. See
- <http://www.mkssoftware.com/> for more information.
-
-Intel 64-bit versions
----------------------
-
-GCC contains support for x86-64 using the mingw-w64 runtime library,
-available from <http://mingw-w64.sourceforge.net/>. This library should
-be used with the target triple x86_64-pc-mingw32.
-
- Presently Windows for Itanium is not supported.
-
-Windows CE
-----------
-
-Windows CE is supported as a target only on Hitachi SuperH
-(sh-wince-pe), and MIPS (mips-wince-pe).
-
-Other Windows Platforms
------------------------
-
-GCC no longer supports Windows NT on the Alpha or PowerPC.
-
- GCC no longer supports the Windows POSIX subsystem. However, it does
-support the Interix subsystem. See above.
-
- Old target names including *-*-winnt and *-*-windowsnt are no longer
-used.
-
- PW32 (i386-pc-pw32) support was never completed, and the project
-seems to be inactive. See <http://pw32.sourceforge.net/> for more
-information.
-
- UWIN support has been removed due to a lack of maintenance.
-
-*-*-cygwin
-==========
-
-Ports of GCC are included with the Cygwin environment.
-
- GCC will build under Cygwin without modification; it does not build
-with Microsoft's C++ compiler and there are no plans to make it do so.
-
- The Cygwin native compiler can be configured to target any 32-bit x86
-cpu architecture desired; the default is i686-pc-cygwin. It should be
-used with as up-to-date a version of binutils as possible; use either
-the latest official GNU binutils release in the Cygwin distribution, or
-version 2.20 or above if building your own.
-
-*-*-interix
-===========
-
-The Interix target is used by OpenNT, Interix, Services For UNIX (SFU),
-and Subsystem for UNIX-based Applications (SUA). Applications compiled
-with this target run in the Interix subsystem, which is separate from
-the Win32 subsystem. This target was last known to work in GCC 3.3.
-
-*-*-mingw32
-===========
-
-GCC will build with and support only MinGW runtime 3.12 and later.
-Earlier versions of headers are incompatible with the new default
-semantics of 'extern inline' in '-std=c99' and '-std=gnu99' modes.
-
-Older systems
-=============
-
-GCC contains support files for many older (1980s and early 1990s) Unix
-variants. For the most part, support for these systems has not been
-deliberately removed, but it has not been maintained for several years
-and may suffer from bitrot.
-
- Starting with GCC 3.1, each release has a list of "obsoleted"
-systems. Support for these systems is still present in that release,
-but 'configure' will fail unless the '--enable-obsolete' option is
-given. Unless a maintainer steps forward, support for these systems
-will be removed from the next release of GCC.
-
- Support for old systems as hosts for GCC can cause problems if the
-workarounds for compiler, library and operating system bugs affect the
-cleanliness or maintainability of the rest of GCC. In some cases, to
-bring GCC up on such a system, if still possible with current GCC, may
-require first installing an old version of GCC which did work on that
-system, and using it to compile a more recent GCC, to avoid bugs in the
-vendor compiler. Old releases of GCC 1 and GCC 2 are available in the
-'old-releases' directory on the GCC mirror sites. Header bugs may
-generally be avoided using 'fixincludes', but bugs or deficiencies in
-libraries and the operating system may still cause problems.
-
- Support for older systems as targets for cross-compilation is less
-problematic than support for them as hosts for GCC; if an enthusiast
-wishes to make such a target work again (including resurrecting any of
-the targets that never worked with GCC 2, starting from the last version
-before they were removed), patches following the usual requirements
-would be likely to be accepted, since they should not affect the support
-for more modern targets.
-
- For some systems, old versions of GNU binutils may also be useful,
-and are available from 'pub/binutils/old-releases' on sourceware.org
-mirror sites.
-
- Some of the information on specific systems above relates to such
-older systems, but much of the information about GCC on such systems
-(which may no longer be applicable to current GCC) is to be found in the
-GCC texinfo manual.
-
-all ELF targets (SVR4, Solaris 2, etc.)
-=======================================
-
-C++ support is significantly better on ELF targets if you use the GNU
-linker; duplicate copies of inlines, vtables and template instantiations
-will be discarded automatically.
-
-
-File: gccinstall.info, Node: Old, Next: GNU Free Documentation License, Prev: Specific, Up: Top
-
-10 Old installation documentation
-*********************************
-
-Note most of this information is out of date and superseded by the
-previous chapters of this manual. It is provided for historical
-reference only, because of a lack of volunteers to merge it into the
-main manual.
-
-* Menu:
-
-* Configurations:: Configurations Supported by GCC.
-
- Here is the procedure for installing GCC on a GNU or Unix system.
-
- 1. If you have chosen a configuration for GCC which requires other GNU
- tools (such as GAS or the GNU linker) instead of the standard
- system tools, install the required tools in the build directory
- under the names 'as', 'ld' or whatever is appropriate.
-
- Alternatively, you can do subsequent compilation using a value of
- the 'PATH' environment variable such that the necessary GNU tools
- come before the standard system tools.
-
- 2. Specify the host, build and target machine configurations. You do
- this when you run the 'configure' script.
-
- The "build" machine is the system which you are using, the "host"
- machine is the system where you want to run the resulting compiler
- (normally the build machine), and the "target" machine is the
- system for which you want the compiler to generate code.
-
- If you are building a compiler to produce code for the machine it
- runs on (a native compiler), you normally do not need to specify
- any operands to 'configure'; it will try to guess the type of
- machine you are on and use that as the build, host and target
- machines. So you don't need to specify a configuration when
- building a native compiler unless 'configure' cannot figure out
- what your configuration is or guesses wrong.
-
- In those cases, specify the build machine's "configuration name"
- with the '--host' option; the host and target will default to be
- the same as the host machine.
-
- Here is an example:
-
- ./configure --host=sparc-sun-sunos4.1
-
- A configuration name may be canonical or it may be more or less
- abbreviated.
-
- A canonical configuration name has three parts, separated by
- dashes. It looks like this: 'CPU-COMPANY-SYSTEM'. (The three
- parts may themselves contain dashes; 'configure' can figure out
- which dashes serve which purpose.) For example,
- 'm68k-sun-sunos4.1' specifies a Sun 3.
-
- You can also replace parts of the configuration by nicknames or
- aliases. For example, 'sun3' stands for 'm68k-sun', so
- 'sun3-sunos4.1' is another way to specify a Sun 3.
-
- You can specify a version number after any of the system types, and
- some of the CPU types. In most cases, the version is irrelevant,
- and will be ignored. So you might as well specify the version if
- you know it.
-
- See *note Configurations::, for a list of supported configuration
- names and notes on many of the configurations. You should check
- the notes in that section before proceeding any further with the
- installation of GCC.
-
-
-File: gccinstall.info, Node: Configurations, Up: Old
-
-10.1 Configurations Supported by GCC
-====================================
-
-Here are the possible CPU types:
-
- 1750a, a29k, alpha, arm, avr, cN, clipper, dsp16xx, elxsi, fr30,
- h8300, hppa1.0, hppa1.1, i370, i386, i486, i586, i686, i786, i860,
- i960, ip2k, m32r, m68000, m68k, m88k, mcore, mips, mipsel, mips64,
- mips64el, mn10200, mn10300, ns32k, pdp11, powerpc, powerpcle, romp,
- rs6000, sh, sparc, sparclite, sparc64, v850, vax, we32k.
-
- Here are the recognized company names. As you can see, customary
-abbreviations are used rather than the longer official names.
-
- acorn, alliant, altos, apollo, apple, att, bull, cbm, convergent,
- convex, crds, dec, dg, dolphin, elxsi, encore, harris, hitachi, hp,
- ibm, intergraph, isi, mips, motorola, ncr, next, ns, omron, plexus,
- sequent, sgi, sony, sun, tti, unicom, wrs.
-
- The company name is meaningful only to disambiguate when the rest of
-the information supplied is insufficient. You can omit it, writing just
-'CPU-SYSTEM', if it is not needed. For example, 'vax-ultrix4.2' is
-equivalent to 'vax-dec-ultrix4.2'.
-
- Here is a list of system types:
-
- 386bsd, aix, acis, amigaos, aos, aout, aux, bosx, bsd, clix, coff,
- ctix, cxux, dgux, dynix, ebmon, ecoff, elf, esix, freebsd, hms,
- genix, gnu, linux, linux-gnu, hiux, hpux, iris, irix, isc, luna,
- lynxos, mach, minix, msdos, mvs, netbsd, newsos, nindy, ns, osf,
- osfrose, ptx, riscix, riscos, rtu, sco, sim, solaris, sunos, sym,
- sysv, udi, ultrix, unicos, uniplus, unos, vms, vsta, vxworks,
- winnt, xenix.
-
-You can omit the system type; then 'configure' guesses the operating
-system from the CPU and company.
-
- You can add a version number to the system type; this may or may not
-make a difference. For example, you can write 'bsd4.3' or 'bsd4.4' to
-distinguish versions of BSD. In practice, the version number is most
-needed for 'sysv3' and 'sysv4', which are often treated differently.
-
- 'linux-gnu' is the canonical name for the GNU/Linux target; however
-GCC will also accept 'linux'. The version of the kernel in use is not
-relevant on these systems. A suffix such as 'libc1' or 'aout'
-distinguishes major versions of the C library; all of the suffixed
-versions are obsolete.
-
- If you specify an impossible combination such as 'i860-dg-vms', then
-you may get an error message from 'configure', or it may ignore part of
-the information and do the best it can with the rest. 'configure'
-always prints the canonical name for the alternative that it used. GCC
-does not support all possible alternatives.
-
- Often a particular model of machine has a name. Many machine names
-are recognized as aliases for CPU/company combinations. Thus, the
-machine name 'sun3', mentioned above, is an alias for 'm68k-sun'.
-Sometimes we accept a company name as a machine name, when the name is
-popularly used for a particular machine. Here is a table of the known
-machine names:
-
- 3300, 3b1, 3bN, 7300, altos3068, altos, apollo68, att-7300,
- balance, convex-cN, crds, decstation-3100, decstation, delta,
- encore, fx2800, gmicro, hp7NN, hp8NN, hp9k2NN, hp9k3NN, hp9k7NN,
- hp9k8NN, iris4d, iris, isi68, m3230, magnum, merlin, miniframe,
- mmax, news-3600, news800, news, next, pbd, pc532, pmax, powerpc,
- powerpcle, ps2, risc-news, rtpc, sun2, sun386i, sun386, sun3, sun4,
- symmetry, tower-32, tower.
-
-Remember that a machine name specifies both the cpu type and the company
-name.
-
-
-File: gccinstall.info, Node: GNU Free Documentation License, Next: Concept Index, Prev: Old, Up: Top
-
-GNU Free Documentation License
-******************************
-
- Version 1.3, 3 November 2008
-
- Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
- <http://fsf.org/>
-
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
- 0. PREAMBLE
-
- The purpose of this License is to make a manual, textbook, or other
- functional and useful document "free" in the sense of freedom: to
- assure everyone the effective freedom to copy and redistribute it,
- with or without modifying it, either commercially or
- noncommercially. Secondarily, this License preserves for the
- author and publisher a way to get credit for their work, while not
- being considered responsible for modifications made by others.
-
- This License is a kind of "copyleft", which means that derivative
- works of the document must themselves be free in the same sense.
- It complements the GNU General Public License, which is a copyleft
- license designed for free software.
-
- We have designed this License in order to use it for manuals for
- free software, because free software needs free documentation: a
- free program should come with manuals providing the same freedoms
- that the software does. But this License is not limited to
- software manuals; it can be used for any textual work, regardless
- of subject matter or whether it is published as a printed book. We
- recommend this License principally for works whose purpose is
- instruction or reference.
-
- 1. APPLICABILITY AND DEFINITIONS
-
- This License applies to any manual or other work, in any medium,
- that contains a notice placed by the copyright holder saying it can
- be distributed under the terms of this License. Such a notice
- grants a world-wide, royalty-free license, unlimited in duration,
- to use that work under the conditions stated herein. The
- "Document", below, refers to any such manual or work. Any member
- of the public is a licensee, and is addressed as "you". You accept
- the license if you copy, modify or distribute the work in a way
- requiring permission under copyright law.
-
- A "Modified Version" of the Document means any work containing the
- Document or a portion of it, either copied verbatim, or with
- modifications and/or translated into another language.
-
- A "Secondary Section" is a named appendix or a front-matter section
- of the Document that deals exclusively with the relationship of the
- publishers or authors of the Document to the Document's overall
- subject (or to related matters) and contains nothing that could
- fall directly within that overall subject. (Thus, if the Document
- is in part a textbook of mathematics, a Secondary Section may not
- explain any mathematics.) The relationship could be a matter of
- historical connection with the subject or with related matters, or
- of legal, commercial, philosophical, ethical or political position
- regarding them.
-
- The "Invariant Sections" are certain Secondary Sections whose
- titles are designated, as being those of Invariant Sections, in the
- notice that says that the Document is released under this License.
- If a section does not fit the above definition of Secondary then it
- is not allowed to be designated as Invariant. The Document may
- contain zero Invariant Sections. If the Document does not identify
- any Invariant Sections then there are none.
-
- The "Cover Texts" are certain short passages of text that are
- listed, as Front-Cover Texts or Back-Cover Texts, in the notice
- that says that the Document is released under this License. A
- Front-Cover Text may be at most 5 words, and a Back-Cover Text may
- be at most 25 words.
-
- A "Transparent" copy of the Document means a machine-readable copy,
- represented in a format whose specification is available to the
- general public, that is suitable for revising the document
- straightforwardly with generic text editors or (for images composed
- of pixels) generic paint programs or (for drawings) some widely
- available drawing editor, and that is suitable for input to text
- formatters or for automatic translation to a variety of formats
- suitable for input to text formatters. A copy made in an otherwise
- Transparent file format whose markup, or absence of markup, has
- been arranged to thwart or discourage subsequent modification by
- readers is not Transparent. An image format is not Transparent if
- used for any substantial amount of text. A copy that is not
- "Transparent" is called "Opaque".
-
- Examples of suitable formats for Transparent copies include plain
- ASCII without markup, Texinfo input format, LaTeX input format,
- SGML or XML using a publicly available DTD, and standard-conforming
- simple HTML, PostScript or PDF designed for human modification.
- Examples of transparent image formats include PNG, XCF and JPG.
- Opaque formats include proprietary formats that can be read and
- edited only by proprietary word processors, SGML or XML for which
- the DTD and/or processing tools are not generally available, and
- the machine-generated HTML, PostScript or PDF produced by some word
- processors for output purposes only.
-
- The "Title Page" means, for a printed book, the title page itself,
- plus such following pages as are needed to hold, legibly, the
- material this License requires to appear in the title page. For
- works in formats which do not have any title page as such, "Title
- Page" means the text near the most prominent appearance of the
- work's title, preceding the beginning of the body of the text.
-
- The "publisher" means any person or entity that distributes copies
- of the Document to the public.
-
- A section "Entitled XYZ" means a named subunit of the Document
- whose title either is precisely XYZ or contains XYZ in parentheses
- following text that translates XYZ in another language. (Here XYZ
- stands for a specific section name mentioned below, such as
- "Acknowledgements", "Dedications", "Endorsements", or "History".)
- To "Preserve the Title" of such a section when you modify the
- Document means that it remains a section "Entitled XYZ" according
- to this definition.
-
- The Document may include Warranty Disclaimers next to the notice
- which states that this License applies to the Document. These
- Warranty Disclaimers are considered to be included by reference in
- this License, but only as regards disclaiming warranties: any other
- implication that these Warranty Disclaimers may have is void and
- has no effect on the meaning of this License.
-
- 2. VERBATIM COPYING
-
- You may copy and distribute the Document in any medium, either
- commercially or noncommercially, provided that this License, the
- copyright notices, and the license notice saying this License
- applies to the Document are reproduced in all copies, and that you
- add no other conditions whatsoever to those of this License. You
- may not use technical measures to obstruct or control the reading
- or further copying of the copies you make or distribute. However,
- you may accept compensation in exchange for copies. If you
- distribute a large enough number of copies you must also follow the
- conditions in section 3.
-
- You may also lend copies, under the same conditions stated above,
- and you may publicly display copies.
-
- 3. COPYING IN QUANTITY
-
- If you publish printed copies (or copies in media that commonly
- have printed covers) of the Document, numbering more than 100, and
- the Document's license notice requires Cover Texts, you must
- enclose the copies in covers that carry, clearly and legibly, all
- these Cover Texts: Front-Cover Texts on the front cover, and
- Back-Cover Texts on the back cover. Both covers must also clearly
- and legibly identify you as the publisher of these copies. The
- front cover must present the full title with all words of the title
- equally prominent and visible. You may add other material on the
- covers in addition. Copying with changes limited to the covers, as
- long as they preserve the title of the Document and satisfy these
- conditions, can be treated as verbatim copying in other respects.
-
- If the required texts for either cover are too voluminous to fit
- legibly, you should put the first ones listed (as many as fit
- reasonably) on the actual cover, and continue the rest onto
- adjacent pages.
-
- If you publish or distribute Opaque copies of the Document
- numbering more than 100, you must either include a machine-readable
- Transparent copy along with each Opaque copy, or state in or with
- each Opaque copy a computer-network location from which the general
- network-using public has access to download using public-standard
- network protocols a complete Transparent copy of the Document, free
- of added material. If you use the latter option, you must take
- reasonably prudent steps, when you begin distribution of Opaque
- copies in quantity, to ensure that this Transparent copy will
- remain thus accessible at the stated location until at least one
- year after the last time you distribute an Opaque copy (directly or
- through your agents or retailers) of that edition to the public.
-
- It is requested, but not required, that you contact the authors of
- the Document well before redistributing any large number of copies,
- to give them a chance to provide you with an updated version of the
- Document.
-
- 4. MODIFICATIONS
-
- You may copy and distribute a Modified Version of the Document
- under the conditions of sections 2 and 3 above, provided that you
- release the Modified Version under precisely this License, with the
- Modified Version filling the role of the Document, thus licensing
- distribution and modification of the Modified Version to whoever
- possesses a copy of it. In addition, you must do these things in
- the Modified Version:
-
- A. Use in the Title Page (and on the covers, if any) a title
- distinct from that of the Document, and from those of previous
- versions (which should, if there were any, be listed in the
- History section of the Document). You may use the same title
- as a previous version if the original publisher of that
- version gives permission.
-
- B. List on the Title Page, as authors, one or more persons or
- entities responsible for authorship of the modifications in
- the Modified Version, together with at least five of the
- principal authors of the Document (all of its principal
- authors, if it has fewer than five), unless they release you
- from this requirement.
-
- C. State on the Title page the name of the publisher of the
- Modified Version, as the publisher.
-
- D. Preserve all the copyright notices of the Document.
-
- E. Add an appropriate copyright notice for your modifications
- adjacent to the other copyright notices.
-
- F. Include, immediately after the copyright notices, a license
- notice giving the public permission to use the Modified
- Version under the terms of this License, in the form shown in
- the Addendum below.
-
- G. Preserve in that license notice the full lists of Invariant
- Sections and required Cover Texts given in the Document's
- license notice.
-
- H. Include an unaltered copy of this License.
-
- I. Preserve the section Entitled "History", Preserve its Title,
- and add to it an item stating at least the title, year, new
- authors, and publisher of the Modified Version as given on the
- Title Page. If there is no section Entitled "History" in the
- Document, create one stating the title, year, authors, and
- publisher of the Document as given on its Title Page, then add
- an item describing the Modified Version as stated in the
- previous sentence.
-
- J. Preserve the network location, if any, given in the Document
- for public access to a Transparent copy of the Document, and
- likewise the network locations given in the Document for
- previous versions it was based on. These may be placed in the
- "History" section. You may omit a network location for a work
- that was published at least four years before the Document
- itself, or if the original publisher of the version it refers
- to gives permission.
-
- K. For any section Entitled "Acknowledgements" or "Dedications",
- Preserve the Title of the section, and preserve in the section
- all the substance and tone of each of the contributor
- acknowledgements and/or dedications given therein.
-
- L. Preserve all the Invariant Sections of the Document, unaltered
- in their text and in their titles. Section numbers or the
- equivalent are not considered part of the section titles.
-
- M. Delete any section Entitled "Endorsements". Such a section
- may not be included in the Modified Version.
-
- N. Do not retitle any existing section to be Entitled
- "Endorsements" or to conflict in title with any Invariant
- Section.
-
- O. Preserve any Warranty Disclaimers.
-
- If the Modified Version includes new front-matter sections or
- appendices that qualify as Secondary Sections and contain no
- material copied from the Document, you may at your option designate
- some or all of these sections as invariant. To do this, add their
- titles to the list of Invariant Sections in the Modified Version's
- license notice. These titles must be distinct from any other
- section titles.
-
- You may add a section Entitled "Endorsements", provided it contains
- nothing but endorsements of your Modified Version by various
- parties--for example, statements of peer review or that the text
- has been approved by an organization as the authoritative
- definition of a standard.
-
- You may add a passage of up to five words as a Front-Cover Text,
- and a passage of up to 25 words as a Back-Cover Text, to the end of
- the list of Cover Texts in the Modified Version. Only one passage
- of Front-Cover Text and one of Back-Cover Text may be added by (or
- through arrangements made by) any one entity. If the Document
- already includes a cover text for the same cover, previously added
- by you or by arrangement made by the same entity you are acting on
- behalf of, you may not add another; but you may replace the old
- one, on explicit permission from the previous publisher that added
- the old one.
-
- The author(s) and publisher(s) of the Document do not by this
- License give permission to use their names for publicity for or to
- assert or imply endorsement of any Modified Version.
-
- 5. COMBINING DOCUMENTS
-
- You may combine the Document with other documents released under
- this License, under the terms defined in section 4 above for
- modified versions, provided that you include in the combination all
- of the Invariant Sections of all of the original documents,
- unmodified, and list them all as Invariant Sections of your
- combined work in its license notice, and that you preserve all
- their Warranty Disclaimers.
-
- The combined work need only contain one copy of this License, and
- multiple identical Invariant Sections may be replaced with a single
- copy. If there are multiple Invariant Sections with the same name
- but different contents, make the title of each such section unique
- by adding at the end of it, in parentheses, the name of the
- original author or publisher of that section if known, or else a
- unique number. Make the same adjustment to the section titles in
- the list of Invariant Sections in the license notice of the
- combined work.
-
- In the combination, you must combine any sections Entitled
- "History" in the various original documents, forming one section
- Entitled "History"; likewise combine any sections Entitled
- "Acknowledgements", and any sections Entitled "Dedications". You
- must delete all sections Entitled "Endorsements."
-
- 6. COLLECTIONS OF DOCUMENTS
-
- You may make a collection consisting of the Document and other
- documents released under this License, and replace the individual
- copies of this License in the various documents with a single copy
- that is included in the collection, provided that you follow the
- rules of this License for verbatim copying of each of the documents
- in all other respects.
-
- You may extract a single document from such a collection, and
- distribute it individually under this License, provided you insert
- a copy of this License into the extracted document, and follow this
- License in all other respects regarding verbatim copying of that
- document.
-
- 7. AGGREGATION WITH INDEPENDENT WORKS
-
- A compilation of the Document or its derivatives with other
- separate and independent documents or works, in or on a volume of a
- storage or distribution medium, is called an "aggregate" if the
- copyright resulting from the compilation is not used to limit the
- legal rights of the compilation's users beyond what the individual
- works permit. When the Document is included in an aggregate, this
- License does not apply to the other works in the aggregate which
- are not themselves derivative works of the Document.
-
- If the Cover Text requirement of section 3 is applicable to these
- copies of the Document, then if the Document is less than one half
- of the entire aggregate, the Document's Cover Texts may be placed
- on covers that bracket the Document within the aggregate, or the
- electronic equivalent of covers if the Document is in electronic
- form. Otherwise they must appear on printed covers that bracket
- the whole aggregate.
-
- 8. TRANSLATION
-
- Translation is considered a kind of modification, so you may
- distribute translations of the Document under the terms of section
- 4. Replacing Invariant Sections with translations requires special
- permission from their copyright holders, but you may include
- translations of some or all Invariant Sections in addition to the
- original versions of these Invariant Sections. You may include a
- translation of this License, and all the license notices in the
- Document, and any Warranty Disclaimers, provided that you also
- include the original English version of this License and the
- original versions of those notices and disclaimers. In case of a
- disagreement between the translation and the original version of
- this License or a notice or disclaimer, the original version will
- prevail.
-
- If a section in the Document is Entitled "Acknowledgements",
- "Dedications", or "History", the requirement (section 4) to
- Preserve its Title (section 1) will typically require changing the
- actual title.
-
- 9. TERMINATION
-
- You may not copy, modify, sublicense, or distribute the Document
- except as expressly provided under this License. Any attempt
- otherwise to copy, modify, sublicense, or distribute it is void,
- and will automatically terminate your rights under this License.
-
- However, if you cease all violation of this License, then your
- license from a particular copyright holder is reinstated (a)
- provisionally, unless and until the copyright holder explicitly and
- finally terminates your license, and (b) permanently, if the
- copyright holder fails to notify you of the violation by some
- reasonable means prior to 60 days after the cessation.
-
- Moreover, your license from a particular copyright holder is
- reinstated permanently if the copyright holder notifies you of the
- violation by some reasonable means, this is the first time you have
- received notice of violation of this License (for any work) from
- that copyright holder, and you cure the violation prior to 30 days
- after your receipt of the notice.
-
- Termination of your rights under this section does not terminate
- the licenses of parties who have received copies or rights from you
- under this License. If your rights have been terminated and not
- permanently reinstated, receipt of a copy of some or all of the
- same material does not give you any rights to use it.
-
- 10. FUTURE REVISIONS OF THIS LICENSE
-
- The Free Software Foundation may publish new, revised versions of
- the GNU Free Documentation License from time to time. Such new
- versions will be similar in spirit to the present version, but may
- differ in detail to address new problems or concerns. See
- <http://www.gnu.org/copyleft/>.
-
- Each version of the License is given a distinguishing version
- number. If the Document specifies that a particular numbered
- version of this License "or any later version" applies to it, you
- have the option of following the terms and conditions either of
- that specified version or of any later version that has been
- published (not as a draft) by the Free Software Foundation. If the
- Document does not specify a version number of this License, you may
- choose any version ever published (not as a draft) by the Free
- Software Foundation. If the Document specifies that a proxy can
- decide which future versions of this License can be used, that
- proxy's public statement of acceptance of a version permanently
- authorizes you to choose that version for the Document.
-
- 11. RELICENSING
-
- "Massive Multiauthor Collaboration Site" (or "MMC Site") means any
- World Wide Web server that publishes copyrightable works and also
- provides prominent facilities for anybody to edit those works. A
- public wiki that anybody can edit is an example of such a server.
- A "Massive Multiauthor Collaboration" (or "MMC") contained in the
- site means any set of copyrightable works thus published on the MMC
- site.
-
- "CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
- license published by Creative Commons Corporation, a not-for-profit
- corporation with a principal place of business in San Francisco,
- California, as well as future copyleft versions of that license
- published by that same organization.
-
- "Incorporate" means to publish or republish a Document, in whole or
- in part, as part of another Document.
-
- An MMC is "eligible for relicensing" if it is licensed under this
- License, and if all works that were first published under this
- License somewhere other than this MMC, and subsequently
- incorporated in whole or in part into the MMC, (1) had no cover
- texts or invariant sections, and (2) were thus incorporated prior
- to November 1, 2008.
-
- The operator of an MMC Site may republish an MMC contained in the
- site under CC-BY-SA on the same site at any time before August 1,
- 2009, provided the MMC is eligible for relicensing.
-
-ADDENDUM: How to use this License for your documents
-====================================================
-
-To use this License in a document you have written, include a copy of
-the License in the document and put the following copyright and license
-notices just after the title page:
-
- Copyright (C) YEAR YOUR NAME.
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3
- or any later version published by the Free Software Foundation;
- with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
- Texts. A copy of the license is included in the section entitled ``GNU
- Free Documentation License''.
-
- If you have Invariant Sections, Front-Cover Texts and Back-Cover
-Texts, replace the "with...Texts." line with this:
-
- with the Invariant Sections being LIST THEIR TITLES, with
- the Front-Cover Texts being LIST, and with the Back-Cover Texts
- being LIST.
-
- If you have Invariant Sections without Cover Texts, or some other
-combination of the three, merge those two alternatives to suit the
-situation.
-
- If your document contains nontrivial examples of program code, we
-recommend releasing these examples in parallel under your choice of free
-software license, such as the GNU General Public License, to permit
-their use in free software.
-
-
-File: gccinstall.info, Node: Concept Index, Prev: GNU Free Documentation License, Up: Top
-
-Concept Index
-*************
-
-
-* Menu:
-
-* Binaries: Binaries. (line 6)
-* 'build_configargs': Configuration. (line 1492)
-* Configuration: Configuration. (line 6)
-* configurations supported by GCC: Configurations. (line 6)
-* Downloading GCC: Downloading the source.
- (line 6)
-* Downloading the Source: Downloading the source.
- (line 6)
-* FDL, GNU Free Documentation License: GNU Free Documentation License.
- (line 6)
-* Host specific installation: Specific. (line 6)
-* 'host_configargs': Configuration. (line 1496)
-* Installing GCC: Binaries: Binaries. (line 6)
-* Installing GCC: Building: Building. (line 6)
-* Installing GCC: Configuration: Configuration. (line 6)
-* Installing GCC: Testing: Testing. (line 6)
-* Prerequisites: Prerequisites. (line 6)
-* Specific: Specific. (line 6)
-* Specific installation notes: Specific. (line 6)
-* Target specific installation: Specific. (line 6)
-* Target specific installation notes: Specific. (line 6)
-* 'target_configargs': Configuration. (line 1500)
-* Testing: Testing. (line 6)
-* Testsuite: Testing. (line 6)
-
-
-
-Tag Table:
-Node: Top1696
-Node: Installing GCC2254
-Node: Prerequisites3888
-Node: Downloading the source15564
-Node: Configuration17114
-Ref: with-gnu-as32585
-Ref: with-as33480
-Ref: with-gnu-ld34893
-Node: Building84585
-Node: Testing100052
-Node: Final install107914
-Node: Binaries113225
-Node: Specific114733
-Ref: alpha-x-x115240
-Ref: alpha-dec-osf51115729
-Ref: amd64-x-solaris210116254
-Ref: arc-x-elf32116357
-Ref: arc-linux-uclibc116533
-Ref: arm-x-eabi116674
-Ref: avr116885
-Ref: bfin117524
-Ref: cr16117765
-Ref: cris118181
-Ref: dos118996
-Ref: epiphany-x-elf119319
-Ref: x-x-freebsd119424
-Ref: h8300-hms121260
-Ref: hppa-hp-hpux121612
-Ref: hppa-hp-hpux10123984
-Ref: hppa-hp-hpux11124397
-Ref: x-x-linux-gnu130056
-Ref: ix86-x-linux130249
-Ref: ix86-x-solaris29130562
-Ref: ix86-x-solaris210131341
-Ref: ia64-x-linux132532
-Ref: ia64-x-hpux133302
-Ref: aarch64-x-x133857
-Ref: x-ibm-aix134059
-Ref: iq2000-x-elf140922
-Ref: lm32-x-elf141062
-Ref: lm32-x-uclinux141166
-Ref: m32c-x-elf141294
-Ref: m32r-x-elf141396
-Ref: m68k-x-x141498
-Ref: m68k-x-uclinux142536
-Ref: mep-x-elf142781
-Ref: microblaze-x-elf142891
-Ref: mips-x-x143010
-Ref: mips-sgi-irix5145404
-Ref: mips-sgi-irix6145484
-Ref: moxie-x-elf145671
-Ref: msp430-x-elf145718
-Ref: nds32le-x-elf145821
-Ref: nds32be-x-elf145893
-Ref: powerpc-x-x145962
-Ref: powerpc-x-darwin146167
-Ref: powerpc-x-elf146661
-Ref: powerpc-x-linux-gnu146746
-Ref: powerpc-x-netbsd146841
-Ref: powerpc-x-eabisim146929
-Ref: powerpc-x-eabi147055
-Ref: powerpcle-x-elf147131
-Ref: powerpcle-x-eabisim147223
-Ref: powerpcle-x-eabi147356
-Ref: rl78-x-elf147439
-Ref: rx-x-elf147545
-Ref: s390-x-linux147744
-Ref: s390x-x-linux147816
-Ref: s390x-ibm-tpf147903
-Ref: x-x-solaris2148034
-Ref: sparc-x-x152955
-Ref: sparc-sun-solaris2153457
-Ref: sparc-sun-solaris210156210
-Ref: sparc-x-linux156585
-Ref: sparc64-x-solaris2156810
-Ref: sparcv9-x-solaris2157463
-Ref: c6x-x-x157550
-Ref: tilegx-*-linux157642
-Ref: tilegxbe-*-linux157784
-Ref: tilepro-*-linux157927
-Ref: x-x-vxworks158048
-Ref: x86-64-x-x159571
-Ref: x86-64-x-solaris210159899
-Ref: xtensa-x-elf160561
-Ref: xtensa-x-linux161232
-Ref: windows161573
-Ref: x-x-cygwin163506
-Ref: x-x-interix164059
-Ref: x-x-mingw32164367
-Ref: older164593
-Ref: elf166710
-Node: Old166968
-Node: Configurations170101
-Node: GNU Free Documentation License173639
-Node: Concept Index198766
-
-End Tag Table
diff --git a/gcc-4.9/gcc/doc/gccint.info b/gcc-4.9/gcc/doc/gccint.info
deleted file mode 100644
index c4b7319c9..000000000
--- a/gcc-4.9/gcc/doc/gccint.info
+++ /dev/null
@@ -1,50307 +0,0 @@
-This is gccint.info, produced by makeinfo version 5.1 from gccint.texi.
-
-Copyright (C) 1988-2014 Free Software Foundation, Inc.
-
- Permission is granted to copy, distribute and/or modify this document
-under the terms of the GNU Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with the
-Invariant Sections being "Funding Free Software", the Front-Cover Texts
-being (a) (see below), and with the Back-Cover Texts being (b) (see
-below). A copy of the license is included in the section entitled "GNU
-Free Documentation License".
-
- (a) The FSF's Front-Cover Text is:
-
- A GNU Manual
-
- (b) The FSF's Back-Cover Text is:
-
- You have freedom to copy and modify this GNU Manual, like GNU software.
-Copies published by the Free Software Foundation raise funds for GNU
-development.
-INFO-DIR-SECTION Software development
-START-INFO-DIR-ENTRY
-* gccint: (gccint). Internals of the GNU Compiler Collection.
-END-INFO-DIR-ENTRY
-
- This file documents the internals of the GNU compilers.
-
- Copyright (C) 1988-2014 Free Software Foundation, Inc.
-
- Permission is granted to copy, distribute and/or modify this document
-under the terms of the GNU Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with the
-Invariant Sections being "Funding Free Software", the Front-Cover Texts
-being (a) (see below), and with the Back-Cover Texts being (b) (see
-below). A copy of the license is included in the section entitled "GNU
-Free Documentation License".
-
- (a) The FSF's Front-Cover Text is:
-
- A GNU Manual
-
- (b) The FSF's Back-Cover Text is:
-
- You have freedom to copy and modify this GNU Manual, like GNU software.
-Copies published by the Free Software Foundation raise funds for GNU
-development.
-
-
-File: gccint.info, Node: Top, Next: Contributing, Up: (DIR)
-
-Introduction
-************
-
-This manual documents the internals of the GNU compilers, including how
-to port them to new targets and some information about how to write
-front ends for new languages. It corresponds to the compilers (GCC)
-version 4.9.0. The use of the GNU compilers is documented in a separate
-manual. *Note Introduction: (gcc)Top.
-
- This manual is mainly a reference manual rather than a tutorial. It
-discusses how to contribute to GCC (*note Contributing::), the
-characteristics of the machines supported by GCC as hosts and targets
-(*note Portability::), how GCC relates to the ABIs on such systems
-(*note Interface::), and the characteristics of the languages for which
-GCC front ends are written (*note Languages::). It then describes the
-GCC source tree structure and build system, some of the interfaces to
-GCC front ends, and how support for a target system is implemented in
-GCC.
-
- Additional tutorial information is linked to from
-<http://gcc.gnu.org/readings.html>.
-
-* Menu:
-
-* Contributing:: How to contribute to testing and developing GCC.
-* Portability:: Goals of GCC's portability features.
-* Interface:: Function-call interface of GCC output.
-* Libgcc:: Low-level runtime library used by GCC.
-* Languages:: Languages for which GCC front ends are written.
-* Source Tree:: GCC source tree structure and build system.
-* Testsuites:: GCC testsuites.
-* Options:: Option specification files.
-* Passes:: Order of passes, what they do, and what each file is for.
-* GENERIC:: Language-independent representation generated by Front Ends
-* GIMPLE:: Tuple representation used by Tree SSA optimizers
-* Tree SSA:: Analysis and optimization of GIMPLE
-* RTL:: Machine-dependent low-level intermediate representation.
-* Control Flow:: Maintaining and manipulating the control flow graph.
-* Loop Analysis and Representation:: Analysis and representation of loops
-* Machine Desc:: How to write machine description instruction patterns.
-* Target Macros:: How to write the machine description C macros and functions.
-* Host Config:: Writing the 'xm-MACHINE.h' file.
-* Fragments:: Writing the 't-TARGET' and 'x-HOST' files.
-* Collect2:: How 'collect2' works; how it finds 'ld'.
-* Header Dirs:: Understanding the standard header file directories.
-* Type Information:: GCC's memory management; generating type information.
-* Plugins:: Extending the compiler with plugins.
-* LTO:: Using Link-Time Optimization.
-
-* Funding:: How to help assure funding for free software.
-* GNU Project:: The GNU Project and GNU/Linux.
-
-* Copying:: GNU General Public License says
- how you can copy and share GCC.
-* GNU Free Documentation License:: How you can copy and share this manual.
-* Contributors:: People who have contributed to GCC.
-
-* Option Index:: Index to command line options.
-* Concept Index:: Index of concepts and symbol names.
-
-
-File: gccint.info, Node: Contributing, Next: Portability, Up: Top
-
-1 Contributing to GCC Development
-*********************************
-
-If you would like to help pretest GCC releases to assure they work well,
-current development sources are available by SVN (see
-<http://gcc.gnu.org/svn.html>). Source and binary snapshots are also
-available for FTP; see <http://gcc.gnu.org/snapshots.html>.
-
- If you would like to work on improvements to GCC, please read the
-advice at these URLs:
-
- <http://gcc.gnu.org/contribute.html>
- <http://gcc.gnu.org/contributewhy.html>
-
-for information on how to make useful contributions and avoid
-duplication of effort. Suggested projects are listed at
-<http://gcc.gnu.org/projects/>.
-
-
-File: gccint.info, Node: Portability, Next: Interface, Prev: Contributing, Up: Top
-
-2 GCC and Portability
-*********************
-
-GCC itself aims to be portable to any machine where 'int' is at least a
-32-bit type. It aims to target machines with a flat (non-segmented)
-byte addressed data address space (the code address space can be
-separate). Target ABIs may have 8, 16, 32 or 64-bit 'int' type. 'char'
-can be wider than 8 bits.
-
- GCC gets most of the information about the target machine from a
-machine description which gives an algebraic formula for each of the
-machine's instructions. This is a very clean way to describe the
-target. But when the compiler needs information that is difficult to
-express in this fashion, ad-hoc parameters have been defined for machine
-descriptions. The purpose of portability is to reduce the total work
-needed on the compiler; it was not of interest for its own sake.
-
- GCC does not contain machine dependent code, but it does contain code
-that depends on machine parameters such as endianness (whether the most
-significant byte has the highest or lowest address of the bytes in a
-word) and the availability of autoincrement addressing. In the
-RTL-generation pass, it is often necessary to have multiple strategies
-for generating code for a particular kind of syntax tree, strategies
-that are usable for different combinations of parameters. Often, not
-all possible cases have been addressed, but only the common ones or only
-the ones that have been encountered. As a result, a new target may
-require additional strategies. You will know if this happens because
-the compiler will call 'abort'. Fortunately, the new strategies can be
-added in a machine-independent fashion, and will affect only the target
-machines that need them.
-
-
-File: gccint.info, Node: Interface, Next: Libgcc, Prev: Portability, Up: Top
-
-3 Interfacing to GCC Output
-***************************
-
-GCC is normally configured to use the same function calling convention
-normally in use on the target system. This is done with the
-machine-description macros described (*note Target Macros::).
-
- However, returning of structure and union values is done differently on
-some target machines. As a result, functions compiled with PCC
-returning such types cannot be called from code compiled with GCC, and
-vice versa. This does not cause trouble often because few Unix library
-routines return structures or unions.
-
- GCC code returns structures and unions that are 1, 2, 4 or 8 bytes long
-in the same registers used for 'int' or 'double' return values. (GCC
-typically allocates variables of such types in registers also.)
-Structures and unions of other sizes are returned by storing them into
-an address passed by the caller (usually in a register). The target
-hook 'TARGET_STRUCT_VALUE_RTX' tells GCC where to pass this address.
-
- By contrast, PCC on most target machines returns structures and unions
-of any size by copying the data into an area of static storage, and then
-returning the address of that storage as if it were a pointer value.
-The caller must copy the data from that memory area to the place where
-the value is wanted. This is slower than the method used by GCC, and
-fails to be reentrant.
-
- On some target machines, such as RISC machines and the 80386, the
-standard system convention is to pass to the subroutine the address of
-where to return the value. On these machines, GCC has been configured
-to be compatible with the standard compiler, when this method is used.
-It may not be compatible for structures of 1, 2, 4 or 8 bytes.
-
- GCC uses the system's standard convention for passing arguments. On
-some machines, the first few arguments are passed in registers; in
-others, all are passed on the stack. It would be possible to use
-registers for argument passing on any machine, and this would probably
-result in a significant speedup. But the result would be complete
-incompatibility with code that follows the standard convention. So this
-change is practical only if you are switching to GCC as the sole C
-compiler for the system. We may implement register argument passing on
-certain machines once we have a complete GNU system so that we can
-compile the libraries with GCC.
-
- On some machines (particularly the SPARC), certain types of arguments
-are passed "by invisible reference". This means that the value is
-stored in memory, and the address of the memory location is passed to
-the subroutine.
-
- If you use 'longjmp', beware of automatic variables. ISO C says that
-automatic variables that are not declared 'volatile' have undefined
-values after a 'longjmp'. And this is all GCC promises to do, because
-it is very difficult to restore register variables correctly, and one of
-GCC's features is that it can put variables in registers without your
-asking it to.
-
-
-File: gccint.info, Node: Libgcc, Next: Languages, Prev: Interface, Up: Top
-
-4 The GCC low-level runtime library
-***********************************
-
-GCC provides a low-level runtime library, 'libgcc.a' or 'libgcc_s.so.1'
-on some platforms. GCC generates calls to routines in this library
-automatically, whenever it needs to perform some operation that is too
-complicated to emit inline code for.
-
- Most of the routines in 'libgcc' handle arithmetic operations that the
-target processor cannot perform directly. This includes integer
-multiply and divide on some machines, and all floating-point and
-fixed-point operations on other machines. 'libgcc' also includes
-routines for exception handling, and a handful of miscellaneous
-operations.
-
- Some of these routines can be defined in mostly machine-independent C.
-Others must be hand-written in assembly language for each processor that
-needs them.
-
- GCC will also generate calls to C library routines, such as 'memcpy'
-and 'memset', in some cases. The set of routines that GCC may possibly
-use is documented in *note (gcc)Other Builtins::.
-
- These routines take arguments and return values of a specific machine
-mode, not a specific C type. *Note Machine Modes::, for an explanation
-of this concept. For illustrative purposes, in this chapter the
-floating point type 'float' is assumed to correspond to 'SFmode';
-'double' to 'DFmode'; and 'long double' to both 'TFmode' and 'XFmode'.
-Similarly, the integer types 'int' and 'unsigned int' correspond to
-'SImode'; 'long' and 'unsigned long' to 'DImode'; and 'long long' and
-'unsigned long long' to 'TImode'.
-
-* Menu:
-
-* Integer library routines::
-* Soft float library routines::
-* Decimal float library routines::
-* Fixed-point fractional library routines::
-* Exception handling routines::
-* Miscellaneous routines::
-
-
-File: gccint.info, Node: Integer library routines, Next: Soft float library routines, Up: Libgcc
-
-4.1 Routines for integer arithmetic
-===================================
-
-The integer arithmetic routines are used on platforms that don't provide
-hardware support for arithmetic operations on some modes.
-
-4.1.1 Arithmetic functions
---------------------------
-
- -- Runtime Function: int __ashlsi3 (int A, int B)
- -- Runtime Function: long __ashldi3 (long A, int B)
- -- Runtime Function: long long __ashlti3 (long long A, int B)
- These functions return the result of shifting A left by B bits.
-
- -- Runtime Function: int __ashrsi3 (int A, int B)
- -- Runtime Function: long __ashrdi3 (long A, int B)
- -- Runtime Function: long long __ashrti3 (long long A, int B)
- These functions return the result of arithmetically shifting A
- right by B bits.
-
- -- Runtime Function: int __divsi3 (int A, int B)
- -- Runtime Function: long __divdi3 (long A, long B)
- -- Runtime Function: long long __divti3 (long long A, long long B)
- These functions return the quotient of the signed division of A and
- B.
-
- -- Runtime Function: int __lshrsi3 (int A, int B)
- -- Runtime Function: long __lshrdi3 (long A, int B)
- -- Runtime Function: long long __lshrti3 (long long A, int B)
- These functions return the result of logically shifting A right by
- B bits.
-
- -- Runtime Function: int __modsi3 (int A, int B)
- -- Runtime Function: long __moddi3 (long A, long B)
- -- Runtime Function: long long __modti3 (long long A, long long B)
- These functions return the remainder of the signed division of A
- and B.
-
- -- Runtime Function: int __mulsi3 (int A, int B)
- -- Runtime Function: long __muldi3 (long A, long B)
- -- Runtime Function: long long __multi3 (long long A, long long B)
- These functions return the product of A and B.
-
- -- Runtime Function: long __negdi2 (long A)
- -- Runtime Function: long long __negti2 (long long A)
- These functions return the negation of A.
-
- -- Runtime Function: unsigned int __udivsi3 (unsigned int A, unsigned
- int B)
- -- Runtime Function: unsigned long __udivdi3 (unsigned long A, unsigned
- long B)
- -- Runtime Function: unsigned long long __udivti3 (unsigned long long
- A, unsigned long long B)
- These functions return the quotient of the unsigned division of A
- and B.
-
- -- Runtime Function: unsigned long __udivmoddi4 (unsigned long A,
- unsigned long B, unsigned long *C)
- -- Runtime Function: unsigned long long __udivmodti4 (unsigned long
- long A, unsigned long long B, unsigned long long *C)
- These functions calculate both the quotient and remainder of the
- unsigned division of A and B. The return value is the quotient,
- and the remainder is placed in variable pointed to by C.
-
- -- Runtime Function: unsigned int __umodsi3 (unsigned int A, unsigned
- int B)
- -- Runtime Function: unsigned long __umoddi3 (unsigned long A, unsigned
- long B)
- -- Runtime Function: unsigned long long __umodti3 (unsigned long long
- A, unsigned long long B)
- These functions return the remainder of the unsigned division of A
- and B.
-
-4.1.2 Comparison functions
---------------------------
-
-The following functions implement integral comparisons. These functions
-implement a low-level compare, upon which the higher level comparison
-operators (such as less than and greater than or equal to) can be
-constructed. The returned values lie in the range zero to two, to allow
-the high-level operators to be implemented by testing the returned
-result using either signed or unsigned comparison.
-
- -- Runtime Function: int __cmpdi2 (long A, long B)
- -- Runtime Function: int __cmpti2 (long long A, long long B)
- These functions perform a signed comparison of A and B. If A is
- less than B, they return 0; if A is greater than B, they return 2;
- and if A and B are equal they return 1.
-
- -- Runtime Function: int __ucmpdi2 (unsigned long A, unsigned long B)
- -- Runtime Function: int __ucmpti2 (unsigned long long A, unsigned long
- long B)
- These functions perform an unsigned comparison of A and B. If A is
- less than B, they return 0; if A is greater than B, they return 2;
- and if A and B are equal they return 1.
-
-4.1.3 Trapping arithmetic functions
------------------------------------
-
-The following functions implement trapping arithmetic. These functions
-call the libc function 'abort' upon signed arithmetic overflow.
-
- -- Runtime Function: int __absvsi2 (int A)
- -- Runtime Function: long __absvdi2 (long A)
- These functions return the absolute value of A.
-
- -- Runtime Function: int __addvsi3 (int A, int B)
- -- Runtime Function: long __addvdi3 (long A, long B)
- These functions return the sum of A and B; that is 'A + B'.
-
- -- Runtime Function: int __mulvsi3 (int A, int B)
- -- Runtime Function: long __mulvdi3 (long A, long B)
- The functions return the product of A and B; that is 'A * B'.
-
- -- Runtime Function: int __negvsi2 (int A)
- -- Runtime Function: long __negvdi2 (long A)
- These functions return the negation of A; that is '-A'.
-
- -- Runtime Function: int __subvsi3 (int A, int B)
- -- Runtime Function: long __subvdi3 (long A, long B)
- These functions return the difference between B and A; that is 'A -
- B'.
-
-4.1.4 Bit operations
---------------------
-
- -- Runtime Function: int __clzsi2 (int A)
- -- Runtime Function: int __clzdi2 (long A)
- -- Runtime Function: int __clzti2 (long long A)
- These functions return the number of leading 0-bits in A, starting
- at the most significant bit position. If A is zero, the result is
- undefined.
-
- -- Runtime Function: int __ctzsi2 (int A)
- -- Runtime Function: int __ctzdi2 (long A)
- -- Runtime Function: int __ctzti2 (long long A)
- These functions return the number of trailing 0-bits in A, starting
- at the least significant bit position. If A is zero, the result is
- undefined.
-
- -- Runtime Function: int __ffsdi2 (long A)
- -- Runtime Function: int __ffsti2 (long long A)
- These functions return the index of the least significant 1-bit in
- A, or the value zero if A is zero. The least significant bit is
- index one.
-
- -- Runtime Function: int __paritysi2 (int A)
- -- Runtime Function: int __paritydi2 (long A)
- -- Runtime Function: int __parityti2 (long long A)
- These functions return the value zero if the number of bits set in
- A is even, and the value one otherwise.
-
- -- Runtime Function: int __popcountsi2 (int A)
- -- Runtime Function: int __popcountdi2 (long A)
- -- Runtime Function: int __popcountti2 (long long A)
- These functions return the number of bits set in A.
-
- -- Runtime Function: int32_t __bswapsi2 (int32_t A)
- -- Runtime Function: int64_t __bswapdi2 (int64_t A)
- These functions return the A byteswapped.
-
-
-File: gccint.info, Node: Soft float library routines, Next: Decimal float library routines, Prev: Integer library routines, Up: Libgcc
-
-4.2 Routines for floating point emulation
-=========================================
-
-The software floating point library is used on machines which do not
-have hardware support for floating point. It is also used whenever
-'-msoft-float' is used to disable generation of floating point
-instructions. (Not all targets support this switch.)
-
- For compatibility with other compilers, the floating point emulation
-routines can be renamed with the 'DECLARE_LIBRARY_RENAMES' macro (*note
-Library Calls::). In this section, the default names are used.
-
- Presently the library does not support 'XFmode', which is used for
-'long double' on some architectures.
-
-4.2.1 Arithmetic functions
---------------------------
-
- -- Runtime Function: float __addsf3 (float A, float B)
- -- Runtime Function: double __adddf3 (double A, double B)
- -- Runtime Function: long double __addtf3 (long double A, long double
- B)
- -- Runtime Function: long double __addxf3 (long double A, long double
- B)
- These functions return the sum of A and B.
-
- -- Runtime Function: float __subsf3 (float A, float B)
- -- Runtime Function: double __subdf3 (double A, double B)
- -- Runtime Function: long double __subtf3 (long double A, long double
- B)
- -- Runtime Function: long double __subxf3 (long double A, long double
- B)
- These functions return the difference between B and A; that is,
- A - B.
-
- -- Runtime Function: float __mulsf3 (float A, float B)
- -- Runtime Function: double __muldf3 (double A, double B)
- -- Runtime Function: long double __multf3 (long double A, long double
- B)
- -- Runtime Function: long double __mulxf3 (long double A, long double
- B)
- These functions return the product of A and B.
-
- -- Runtime Function: float __divsf3 (float A, float B)
- -- Runtime Function: double __divdf3 (double A, double B)
- -- Runtime Function: long double __divtf3 (long double A, long double
- B)
- -- Runtime Function: long double __divxf3 (long double A, long double
- B)
- These functions return the quotient of A and B; that is, A / B.
-
- -- Runtime Function: float __negsf2 (float A)
- -- Runtime Function: double __negdf2 (double A)
- -- Runtime Function: long double __negtf2 (long double A)
- -- Runtime Function: long double __negxf2 (long double A)
- These functions return the negation of A. They simply flip the
- sign bit, so they can produce negative zero and negative NaN.
-
-4.2.2 Conversion functions
---------------------------
-
- -- Runtime Function: double __extendsfdf2 (float A)
- -- Runtime Function: long double __extendsftf2 (float A)
- -- Runtime Function: long double __extendsfxf2 (float A)
- -- Runtime Function: long double __extenddftf2 (double A)
- -- Runtime Function: long double __extenddfxf2 (double A)
- These functions extend A to the wider mode of their return type.
-
- -- Runtime Function: double __truncxfdf2 (long double A)
- -- Runtime Function: double __trunctfdf2 (long double A)
- -- Runtime Function: float __truncxfsf2 (long double A)
- -- Runtime Function: float __trunctfsf2 (long double A)
- -- Runtime Function: float __truncdfsf2 (double A)
- These functions truncate A to the narrower mode of their return
- type, rounding toward zero.
-
- -- Runtime Function: int __fixsfsi (float A)
- -- Runtime Function: int __fixdfsi (double A)
- -- Runtime Function: int __fixtfsi (long double A)
- -- Runtime Function: int __fixxfsi (long double A)
- These functions convert A to a signed integer, rounding toward
- zero.
-
- -- Runtime Function: long __fixsfdi (float A)
- -- Runtime Function: long __fixdfdi (double A)
- -- Runtime Function: long __fixtfdi (long double A)
- -- Runtime Function: long __fixxfdi (long double A)
- These functions convert A to a signed long, rounding toward zero.
-
- -- Runtime Function: long long __fixsfti (float A)
- -- Runtime Function: long long __fixdfti (double A)
- -- Runtime Function: long long __fixtfti (long double A)
- -- Runtime Function: long long __fixxfti (long double A)
- These functions convert A to a signed long long, rounding toward
- zero.
-
- -- Runtime Function: unsigned int __fixunssfsi (float A)
- -- Runtime Function: unsigned int __fixunsdfsi (double A)
- -- Runtime Function: unsigned int __fixunstfsi (long double A)
- -- Runtime Function: unsigned int __fixunsxfsi (long double A)
- These functions convert A to an unsigned integer, rounding toward
- zero. Negative values all become zero.
-
- -- Runtime Function: unsigned long __fixunssfdi (float A)
- -- Runtime Function: unsigned long __fixunsdfdi (double A)
- -- Runtime Function: unsigned long __fixunstfdi (long double A)
- -- Runtime Function: unsigned long __fixunsxfdi (long double A)
- These functions convert A to an unsigned long, rounding toward
- zero. Negative values all become zero.
-
- -- Runtime Function: unsigned long long __fixunssfti (float A)
- -- Runtime Function: unsigned long long __fixunsdfti (double A)
- -- Runtime Function: unsigned long long __fixunstfti (long double A)
- -- Runtime Function: unsigned long long __fixunsxfti (long double A)
- These functions convert A to an unsigned long long, rounding toward
- zero. Negative values all become zero.
-
- -- Runtime Function: float __floatsisf (int I)
- -- Runtime Function: double __floatsidf (int I)
- -- Runtime Function: long double __floatsitf (int I)
- -- Runtime Function: long double __floatsixf (int I)
- These functions convert I, a signed integer, to floating point.
-
- -- Runtime Function: float __floatdisf (long I)
- -- Runtime Function: double __floatdidf (long I)
- -- Runtime Function: long double __floatditf (long I)
- -- Runtime Function: long double __floatdixf (long I)
- These functions convert I, a signed long, to floating point.
-
- -- Runtime Function: float __floattisf (long long I)
- -- Runtime Function: double __floattidf (long long I)
- -- Runtime Function: long double __floattitf (long long I)
- -- Runtime Function: long double __floattixf (long long I)
- These functions convert I, a signed long long, to floating point.
-
- -- Runtime Function: float __floatunsisf (unsigned int I)
- -- Runtime Function: double __floatunsidf (unsigned int I)
- -- Runtime Function: long double __floatunsitf (unsigned int I)
- -- Runtime Function: long double __floatunsixf (unsigned int I)
- These functions convert I, an unsigned integer, to floating point.
-
- -- Runtime Function: float __floatundisf (unsigned long I)
- -- Runtime Function: double __floatundidf (unsigned long I)
- -- Runtime Function: long double __floatunditf (unsigned long I)
- -- Runtime Function: long double __floatundixf (unsigned long I)
- These functions convert I, an unsigned long, to floating point.
-
- -- Runtime Function: float __floatuntisf (unsigned long long I)
- -- Runtime Function: double __floatuntidf (unsigned long long I)
- -- Runtime Function: long double __floatuntitf (unsigned long long I)
- -- Runtime Function: long double __floatuntixf (unsigned long long I)
- These functions convert I, an unsigned long long, to floating
- point.
-
-4.2.3 Comparison functions
---------------------------
-
-There are two sets of basic comparison functions.
-
- -- Runtime Function: int __cmpsf2 (float A, float B)
- -- Runtime Function: int __cmpdf2 (double A, double B)
- -- Runtime Function: int __cmptf2 (long double A, long double B)
- These functions calculate a <=> b. That is, if A is less than B,
- they return -1; if A is greater than B, they return 1; and if A and
- B are equal they return 0. If either argument is NaN they return
- 1, but you should not rely on this; if NaN is a possibility, use
- one of the higher-level comparison functions.
-
- -- Runtime Function: int __unordsf2 (float A, float B)
- -- Runtime Function: int __unorddf2 (double A, double B)
- -- Runtime Function: int __unordtf2 (long double A, long double B)
- These functions return a nonzero value if either argument is NaN,
- otherwise 0.
-
- There is also a complete group of higher level functions which
-correspond directly to comparison operators. They implement the ISO C
-semantics for floating-point comparisons, taking NaN into account. Pay
-careful attention to the return values defined for each set. Under the
-hood, all of these routines are implemented as
-
- if (__unordXf2 (a, b))
- return E;
- return __cmpXf2 (a, b);
-
-where E is a constant chosen to give the proper behavior for NaN. Thus,
-the meaning of the return value is different for each set. Do not rely
-on this implementation; only the semantics documented below are
-guaranteed.
-
- -- Runtime Function: int __eqsf2 (float A, float B)
- -- Runtime Function: int __eqdf2 (double A, double B)
- -- Runtime Function: int __eqtf2 (long double A, long double B)
- These functions return zero if neither argument is NaN, and A and B
- are equal.
-
- -- Runtime Function: int __nesf2 (float A, float B)
- -- Runtime Function: int __nedf2 (double A, double B)
- -- Runtime Function: int __netf2 (long double A, long double B)
- These functions return a nonzero value if either argument is NaN,
- or if A and B are unequal.
-
- -- Runtime Function: int __gesf2 (float A, float B)
- -- Runtime Function: int __gedf2 (double A, double B)
- -- Runtime Function: int __getf2 (long double A, long double B)
- These functions return a value greater than or equal to zero if
- neither argument is NaN, and A is greater than or equal to B.
-
- -- Runtime Function: int __ltsf2 (float A, float B)
- -- Runtime Function: int __ltdf2 (double A, double B)
- -- Runtime Function: int __lttf2 (long double A, long double B)
- These functions return a value less than zero if neither argument
- is NaN, and A is strictly less than B.
-
- -- Runtime Function: int __lesf2 (float A, float B)
- -- Runtime Function: int __ledf2 (double A, double B)
- -- Runtime Function: int __letf2 (long double A, long double B)
- These functions return a value less than or equal to zero if
- neither argument is NaN, and A is less than or equal to B.
-
- -- Runtime Function: int __gtsf2 (float A, float B)
- -- Runtime Function: int __gtdf2 (double A, double B)
- -- Runtime Function: int __gttf2 (long double A, long double B)
- These functions return a value greater than zero if neither
- argument is NaN, and A is strictly greater than B.
-
-4.2.4 Other floating-point functions
-------------------------------------
-
- -- Runtime Function: float __powisf2 (float A, int B)
- -- Runtime Function: double __powidf2 (double A, int B)
- -- Runtime Function: long double __powitf2 (long double A, int B)
- -- Runtime Function: long double __powixf2 (long double A, int B)
- These functions convert raise A to the power B.
-
- -- Runtime Function: complex float __mulsc3 (float A, float B, float C,
- float D)
- -- Runtime Function: complex double __muldc3 (double A, double B,
- double C, double D)
- -- Runtime Function: complex long double __multc3 (long double A, long
- double B, long double C, long double D)
- -- Runtime Function: complex long double __mulxc3 (long double A, long
- double B, long double C, long double D)
- These functions return the product of A + iB and C + iD, following
- the rules of C99 Annex G.
-
- -- Runtime Function: complex float __divsc3 (float A, float B, float C,
- float D)
- -- Runtime Function: complex double __divdc3 (double A, double B,
- double C, double D)
- -- Runtime Function: complex long double __divtc3 (long double A, long
- double B, long double C, long double D)
- -- Runtime Function: complex long double __divxc3 (long double A, long
- double B, long double C, long double D)
- These functions return the quotient of A + iB and C + iD (i.e., (A
- + iB) / (C + iD)), following the rules of C99 Annex G.
-
-
-File: gccint.info, Node: Decimal float library routines, Next: Fixed-point fractional library routines, Prev: Soft float library routines, Up: Libgcc
-
-4.3 Routines for decimal floating point emulation
-=================================================
-
-The software decimal floating point library implements IEEE 754-2008
-decimal floating point arithmetic and is only activated on selected
-targets.
-
- The software decimal floating point library supports either DPD
-(Densely Packed Decimal) or BID (Binary Integer Decimal) encoding as
-selected at configure time.
-
-4.3.1 Arithmetic functions
---------------------------
-
- -- Runtime Function: _Decimal32 __dpd_addsd3 (_Decimal32 A, _Decimal32
- B)
- -- Runtime Function: _Decimal32 __bid_addsd3 (_Decimal32 A, _Decimal32
- B)
- -- Runtime Function: _Decimal64 __dpd_adddd3 (_Decimal64 A, _Decimal64
- B)
- -- Runtime Function: _Decimal64 __bid_adddd3 (_Decimal64 A, _Decimal64
- B)
- -- Runtime Function: _Decimal128 __dpd_addtd3 (_Decimal128 A,
- _Decimal128 B)
- -- Runtime Function: _Decimal128 __bid_addtd3 (_Decimal128 A,
- _Decimal128 B)
- These functions return the sum of A and B.
-
- -- Runtime Function: _Decimal32 __dpd_subsd3 (_Decimal32 A, _Decimal32
- B)
- -- Runtime Function: _Decimal32 __bid_subsd3 (_Decimal32 A, _Decimal32
- B)
- -- Runtime Function: _Decimal64 __dpd_subdd3 (_Decimal64 A, _Decimal64
- B)
- -- Runtime Function: _Decimal64 __bid_subdd3 (_Decimal64 A, _Decimal64
- B)
- -- Runtime Function: _Decimal128 __dpd_subtd3 (_Decimal128 A,
- _Decimal128 B)
- -- Runtime Function: _Decimal128 __bid_subtd3 (_Decimal128 A,
- _Decimal128 B)
- These functions return the difference between B and A; that is,
- A - B.
-
- -- Runtime Function: _Decimal32 __dpd_mulsd3 (_Decimal32 A, _Decimal32
- B)
- -- Runtime Function: _Decimal32 __bid_mulsd3 (_Decimal32 A, _Decimal32
- B)
- -- Runtime Function: _Decimal64 __dpd_muldd3 (_Decimal64 A, _Decimal64
- B)
- -- Runtime Function: _Decimal64 __bid_muldd3 (_Decimal64 A, _Decimal64
- B)
- -- Runtime Function: _Decimal128 __dpd_multd3 (_Decimal128 A,
- _Decimal128 B)
- -- Runtime Function: _Decimal128 __bid_multd3 (_Decimal128 A,
- _Decimal128 B)
- These functions return the product of A and B.
-
- -- Runtime Function: _Decimal32 __dpd_divsd3 (_Decimal32 A, _Decimal32
- B)
- -- Runtime Function: _Decimal32 __bid_divsd3 (_Decimal32 A, _Decimal32
- B)
- -- Runtime Function: _Decimal64 __dpd_divdd3 (_Decimal64 A, _Decimal64
- B)
- -- Runtime Function: _Decimal64 __bid_divdd3 (_Decimal64 A, _Decimal64
- B)
- -- Runtime Function: _Decimal128 __dpd_divtd3 (_Decimal128 A,
- _Decimal128 B)
- -- Runtime Function: _Decimal128 __bid_divtd3 (_Decimal128 A,
- _Decimal128 B)
- These functions return the quotient of A and B; that is, A / B.
-
- -- Runtime Function: _Decimal32 __dpd_negsd2 (_Decimal32 A)
- -- Runtime Function: _Decimal32 __bid_negsd2 (_Decimal32 A)
- -- Runtime Function: _Decimal64 __dpd_negdd2 (_Decimal64 A)
- -- Runtime Function: _Decimal64 __bid_negdd2 (_Decimal64 A)
- -- Runtime Function: _Decimal128 __dpd_negtd2 (_Decimal128 A)
- -- Runtime Function: _Decimal128 __bid_negtd2 (_Decimal128 A)
- These functions return the negation of A. They simply flip the
- sign bit, so they can produce negative zero and negative NaN.
-
-4.3.2 Conversion functions
---------------------------
-
- -- Runtime Function: _Decimal64 __dpd_extendsddd2 (_Decimal32 A)
- -- Runtime Function: _Decimal64 __bid_extendsddd2 (_Decimal32 A)
- -- Runtime Function: _Decimal128 __dpd_extendsdtd2 (_Decimal32 A)
- -- Runtime Function: _Decimal128 __bid_extendsdtd2 (_Decimal32 A)
- -- Runtime Function: _Decimal128 __dpd_extendddtd2 (_Decimal64 A)
- -- Runtime Function: _Decimal128 __bid_extendddtd2 (_Decimal64 A)
- -- Runtime Function: _Decimal32 __dpd_truncddsd2 (_Decimal64 A)
- -- Runtime Function: _Decimal32 __bid_truncddsd2 (_Decimal64 A)
- -- Runtime Function: _Decimal32 __dpd_trunctdsd2 (_Decimal128 A)
- -- Runtime Function: _Decimal32 __bid_trunctdsd2 (_Decimal128 A)
- -- Runtime Function: _Decimal64 __dpd_trunctddd2 (_Decimal128 A)
- -- Runtime Function: _Decimal64 __bid_trunctddd2 (_Decimal128 A)
- These functions convert the value A from one decimal floating type
- to another.
-
- -- Runtime Function: _Decimal64 __dpd_extendsfdd (float A)
- -- Runtime Function: _Decimal64 __bid_extendsfdd (float A)
- -- Runtime Function: _Decimal128 __dpd_extendsftd (float A)
- -- Runtime Function: _Decimal128 __bid_extendsftd (float A)
- -- Runtime Function: _Decimal128 __dpd_extenddftd (double A)
- -- Runtime Function: _Decimal128 __bid_extenddftd (double A)
- -- Runtime Function: _Decimal128 __dpd_extendxftd (long double A)
- -- Runtime Function: _Decimal128 __bid_extendxftd (long double A)
- -- Runtime Function: _Decimal32 __dpd_truncdfsd (double A)
- -- Runtime Function: _Decimal32 __bid_truncdfsd (double A)
- -- Runtime Function: _Decimal32 __dpd_truncxfsd (long double A)
- -- Runtime Function: _Decimal32 __bid_truncxfsd (long double A)
- -- Runtime Function: _Decimal32 __dpd_trunctfsd (long double A)
- -- Runtime Function: _Decimal32 __bid_trunctfsd (long double A)
- -- Runtime Function: _Decimal64 __dpd_truncxfdd (long double A)
- -- Runtime Function: _Decimal64 __bid_truncxfdd (long double A)
- -- Runtime Function: _Decimal64 __dpd_trunctfdd (long double A)
- -- Runtime Function: _Decimal64 __bid_trunctfdd (long double A)
- These functions convert the value of A from a binary floating type
- to a decimal floating type of a different size.
-
- -- Runtime Function: float __dpd_truncddsf (_Decimal64 A)
- -- Runtime Function: float __bid_truncddsf (_Decimal64 A)
- -- Runtime Function: float __dpd_trunctdsf (_Decimal128 A)
- -- Runtime Function: float __bid_trunctdsf (_Decimal128 A)
- -- Runtime Function: double __dpd_extendsddf (_Decimal32 A)
- -- Runtime Function: double __bid_extendsddf (_Decimal32 A)
- -- Runtime Function: double __dpd_trunctddf (_Decimal128 A)
- -- Runtime Function: double __bid_trunctddf (_Decimal128 A)
- -- Runtime Function: long double __dpd_extendsdxf (_Decimal32 A)
- -- Runtime Function: long double __bid_extendsdxf (_Decimal32 A)
- -- Runtime Function: long double __dpd_extendddxf (_Decimal64 A)
- -- Runtime Function: long double __bid_extendddxf (_Decimal64 A)
- -- Runtime Function: long double __dpd_trunctdxf (_Decimal128 A)
- -- Runtime Function: long double __bid_trunctdxf (_Decimal128 A)
- -- Runtime Function: long double __dpd_extendsdtf (_Decimal32 A)
- -- Runtime Function: long double __bid_extendsdtf (_Decimal32 A)
- -- Runtime Function: long double __dpd_extendddtf (_Decimal64 A)
- -- Runtime Function: long double __bid_extendddtf (_Decimal64 A)
- These functions convert the value of A from a decimal floating type
- to a binary floating type of a different size.
-
- -- Runtime Function: _Decimal32 __dpd_extendsfsd (float A)
- -- Runtime Function: _Decimal32 __bid_extendsfsd (float A)
- -- Runtime Function: _Decimal64 __dpd_extenddfdd (double A)
- -- Runtime Function: _Decimal64 __bid_extenddfdd (double A)
- -- Runtime Function: _Decimal128 __dpd_extendtftd (long double A)
- -- Runtime Function: _Decimal128 __bid_extendtftd (long double A)
- -- Runtime Function: float __dpd_truncsdsf (_Decimal32 A)
- -- Runtime Function: float __bid_truncsdsf (_Decimal32 A)
- -- Runtime Function: double __dpd_truncdddf (_Decimal64 A)
- -- Runtime Function: double __bid_truncdddf (_Decimal64 A)
- -- Runtime Function: long double __dpd_trunctdtf (_Decimal128 A)
- -- Runtime Function: long double __bid_trunctdtf (_Decimal128 A)
- These functions convert the value of A between decimal and binary
- floating types of the same size.
-
- -- Runtime Function: int __dpd_fixsdsi (_Decimal32 A)
- -- Runtime Function: int __bid_fixsdsi (_Decimal32 A)
- -- Runtime Function: int __dpd_fixddsi (_Decimal64 A)
- -- Runtime Function: int __bid_fixddsi (_Decimal64 A)
- -- Runtime Function: int __dpd_fixtdsi (_Decimal128 A)
- -- Runtime Function: int __bid_fixtdsi (_Decimal128 A)
- These functions convert A to a signed integer.
-
- -- Runtime Function: long __dpd_fixsddi (_Decimal32 A)
- -- Runtime Function: long __bid_fixsddi (_Decimal32 A)
- -- Runtime Function: long __dpd_fixdddi (_Decimal64 A)
- -- Runtime Function: long __bid_fixdddi (_Decimal64 A)
- -- Runtime Function: long __dpd_fixtddi (_Decimal128 A)
- -- Runtime Function: long __bid_fixtddi (_Decimal128 A)
- These functions convert A to a signed long.
-
- -- Runtime Function: unsigned int __dpd_fixunssdsi (_Decimal32 A)
- -- Runtime Function: unsigned int __bid_fixunssdsi (_Decimal32 A)
- -- Runtime Function: unsigned int __dpd_fixunsddsi (_Decimal64 A)
- -- Runtime Function: unsigned int __bid_fixunsddsi (_Decimal64 A)
- -- Runtime Function: unsigned int __dpd_fixunstdsi (_Decimal128 A)
- -- Runtime Function: unsigned int __bid_fixunstdsi (_Decimal128 A)
- These functions convert A to an unsigned integer. Negative values
- all become zero.
-
- -- Runtime Function: unsigned long __dpd_fixunssddi (_Decimal32 A)
- -- Runtime Function: unsigned long __bid_fixunssddi (_Decimal32 A)
- -- Runtime Function: unsigned long __dpd_fixunsdddi (_Decimal64 A)
- -- Runtime Function: unsigned long __bid_fixunsdddi (_Decimal64 A)
- -- Runtime Function: unsigned long __dpd_fixunstddi (_Decimal128 A)
- -- Runtime Function: unsigned long __bid_fixunstddi (_Decimal128 A)
- These functions convert A to an unsigned long. Negative values all
- become zero.
-
- -- Runtime Function: _Decimal32 __dpd_floatsisd (int I)
- -- Runtime Function: _Decimal32 __bid_floatsisd (int I)
- -- Runtime Function: _Decimal64 __dpd_floatsidd (int I)
- -- Runtime Function: _Decimal64 __bid_floatsidd (int I)
- -- Runtime Function: _Decimal128 __dpd_floatsitd (int I)
- -- Runtime Function: _Decimal128 __bid_floatsitd (int I)
- These functions convert I, a signed integer, to decimal floating
- point.
-
- -- Runtime Function: _Decimal32 __dpd_floatdisd (long I)
- -- Runtime Function: _Decimal32 __bid_floatdisd (long I)
- -- Runtime Function: _Decimal64 __dpd_floatdidd (long I)
- -- Runtime Function: _Decimal64 __bid_floatdidd (long I)
- -- Runtime Function: _Decimal128 __dpd_floatditd (long I)
- -- Runtime Function: _Decimal128 __bid_floatditd (long I)
- These functions convert I, a signed long, to decimal floating
- point.
-
- -- Runtime Function: _Decimal32 __dpd_floatunssisd (unsigned int I)
- -- Runtime Function: _Decimal32 __bid_floatunssisd (unsigned int I)
- -- Runtime Function: _Decimal64 __dpd_floatunssidd (unsigned int I)
- -- Runtime Function: _Decimal64 __bid_floatunssidd (unsigned int I)
- -- Runtime Function: _Decimal128 __dpd_floatunssitd (unsigned int I)
- -- Runtime Function: _Decimal128 __bid_floatunssitd (unsigned int I)
- These functions convert I, an unsigned integer, to decimal floating
- point.
-
- -- Runtime Function: _Decimal32 __dpd_floatunsdisd (unsigned long I)
- -- Runtime Function: _Decimal32 __bid_floatunsdisd (unsigned long I)
- -- Runtime Function: _Decimal64 __dpd_floatunsdidd (unsigned long I)
- -- Runtime Function: _Decimal64 __bid_floatunsdidd (unsigned long I)
- -- Runtime Function: _Decimal128 __dpd_floatunsditd (unsigned long I)
- -- Runtime Function: _Decimal128 __bid_floatunsditd (unsigned long I)
- These functions convert I, an unsigned long, to decimal floating
- point.
-
-4.3.3 Comparison functions
---------------------------
-
- -- Runtime Function: int __dpd_unordsd2 (_Decimal32 A, _Decimal32 B)
- -- Runtime Function: int __bid_unordsd2 (_Decimal32 A, _Decimal32 B)
- -- Runtime Function: int __dpd_unorddd2 (_Decimal64 A, _Decimal64 B)
- -- Runtime Function: int __bid_unorddd2 (_Decimal64 A, _Decimal64 B)
- -- Runtime Function: int __dpd_unordtd2 (_Decimal128 A, _Decimal128 B)
- -- Runtime Function: int __bid_unordtd2 (_Decimal128 A, _Decimal128 B)
- These functions return a nonzero value if either argument is NaN,
- otherwise 0.
-
- There is also a complete group of higher level functions which
-correspond directly to comparison operators. They implement the ISO C
-semantics for floating-point comparisons, taking NaN into account. Pay
-careful attention to the return values defined for each set. Under the
-hood, all of these routines are implemented as
-
- if (__bid_unordXd2 (a, b))
- return E;
- return __bid_cmpXd2 (a, b);
-
-where E is a constant chosen to give the proper behavior for NaN. Thus,
-the meaning of the return value is different for each set. Do not rely
-on this implementation; only the semantics documented below are
-guaranteed.
-
- -- Runtime Function: int __dpd_eqsd2 (_Decimal32 A, _Decimal32 B)
- -- Runtime Function: int __bid_eqsd2 (_Decimal32 A, _Decimal32 B)
- -- Runtime Function: int __dpd_eqdd2 (_Decimal64 A, _Decimal64 B)
- -- Runtime Function: int __bid_eqdd2 (_Decimal64 A, _Decimal64 B)
- -- Runtime Function: int __dpd_eqtd2 (_Decimal128 A, _Decimal128 B)
- -- Runtime Function: int __bid_eqtd2 (_Decimal128 A, _Decimal128 B)
- These functions return zero if neither argument is NaN, and A and B
- are equal.
-
- -- Runtime Function: int __dpd_nesd2 (_Decimal32 A, _Decimal32 B)
- -- Runtime Function: int __bid_nesd2 (_Decimal32 A, _Decimal32 B)
- -- Runtime Function: int __dpd_nedd2 (_Decimal64 A, _Decimal64 B)
- -- Runtime Function: int __bid_nedd2 (_Decimal64 A, _Decimal64 B)
- -- Runtime Function: int __dpd_netd2 (_Decimal128 A, _Decimal128 B)
- -- Runtime Function: int __bid_netd2 (_Decimal128 A, _Decimal128 B)
- These functions return a nonzero value if either argument is NaN,
- or if A and B are unequal.
-
- -- Runtime Function: int __dpd_gesd2 (_Decimal32 A, _Decimal32 B)
- -- Runtime Function: int __bid_gesd2 (_Decimal32 A, _Decimal32 B)
- -- Runtime Function: int __dpd_gedd2 (_Decimal64 A, _Decimal64 B)
- -- Runtime Function: int __bid_gedd2 (_Decimal64 A, _Decimal64 B)
- -- Runtime Function: int __dpd_getd2 (_Decimal128 A, _Decimal128 B)
- -- Runtime Function: int __bid_getd2 (_Decimal128 A, _Decimal128 B)
- These functions return a value greater than or equal to zero if
- neither argument is NaN, and A is greater than or equal to B.
-
- -- Runtime Function: int __dpd_ltsd2 (_Decimal32 A, _Decimal32 B)
- -- Runtime Function: int __bid_ltsd2 (_Decimal32 A, _Decimal32 B)
- -- Runtime Function: int __dpd_ltdd2 (_Decimal64 A, _Decimal64 B)
- -- Runtime Function: int __bid_ltdd2 (_Decimal64 A, _Decimal64 B)
- -- Runtime Function: int __dpd_lttd2 (_Decimal128 A, _Decimal128 B)
- -- Runtime Function: int __bid_lttd2 (_Decimal128 A, _Decimal128 B)
- These functions return a value less than zero if neither argument
- is NaN, and A is strictly less than B.
-
- -- Runtime Function: int __dpd_lesd2 (_Decimal32 A, _Decimal32 B)
- -- Runtime Function: int __bid_lesd2 (_Decimal32 A, _Decimal32 B)
- -- Runtime Function: int __dpd_ledd2 (_Decimal64 A, _Decimal64 B)
- -- Runtime Function: int __bid_ledd2 (_Decimal64 A, _Decimal64 B)
- -- Runtime Function: int __dpd_letd2 (_Decimal128 A, _Decimal128 B)
- -- Runtime Function: int __bid_letd2 (_Decimal128 A, _Decimal128 B)
- These functions return a value less than or equal to zero if
- neither argument is NaN, and A is less than or equal to B.
-
- -- Runtime Function: int __dpd_gtsd2 (_Decimal32 A, _Decimal32 B)
- -- Runtime Function: int __bid_gtsd2 (_Decimal32 A, _Decimal32 B)
- -- Runtime Function: int __dpd_gtdd2 (_Decimal64 A, _Decimal64 B)
- -- Runtime Function: int __bid_gtdd2 (_Decimal64 A, _Decimal64 B)
- -- Runtime Function: int __dpd_gttd2 (_Decimal128 A, _Decimal128 B)
- -- Runtime Function: int __bid_gttd2 (_Decimal128 A, _Decimal128 B)
- These functions return a value greater than zero if neither
- argument is NaN, and A is strictly greater than B.
-
-
-File: gccint.info, Node: Fixed-point fractional library routines, Next: Exception handling routines, Prev: Decimal float library routines, Up: Libgcc
-
-4.4 Routines for fixed-point fractional emulation
-=================================================
-
-The software fixed-point library implements fixed-point fractional
-arithmetic, and is only activated on selected targets.
-
- For ease of comprehension 'fract' is an alias for the '_Fract' type,
-'accum' an alias for '_Accum', and 'sat' an alias for '_Sat'.
-
- For illustrative purposes, in this section the fixed-point fractional
-type 'short fract' is assumed to correspond to machine mode 'QQmode';
-'unsigned short fract' to 'UQQmode'; 'fract' to 'HQmode';
-'unsigned fract' to 'UHQmode'; 'long fract' to 'SQmode';
-'unsigned long fract' to 'USQmode'; 'long long fract' to 'DQmode'; and
-'unsigned long long fract' to 'UDQmode'. Similarly the fixed-point
-accumulator type 'short accum' corresponds to 'HAmode';
-'unsigned short accum' to 'UHAmode'; 'accum' to 'SAmode';
-'unsigned accum' to 'USAmode'; 'long accum' to 'DAmode';
-'unsigned long accum' to 'UDAmode'; 'long long accum' to 'TAmode'; and
-'unsigned long long accum' to 'UTAmode'.
-
-4.4.1 Arithmetic functions
---------------------------
-
- -- Runtime Function: short fract __addqq3 (short fract A, short fract
- B)
- -- Runtime Function: fract __addhq3 (fract A, fract B)
- -- Runtime Function: long fract __addsq3 (long fract A, long fract B)
- -- Runtime Function: long long fract __adddq3 (long long fract A, long
- long fract B)
- -- Runtime Function: unsigned short fract __adduqq3 (unsigned short
- fract A, unsigned short fract B)
- -- Runtime Function: unsigned fract __adduhq3 (unsigned fract A,
- unsigned fract B)
- -- Runtime Function: unsigned long fract __addusq3 (unsigned long fract
- A, unsigned long fract B)
- -- Runtime Function: unsigned long long fract __addudq3 (unsigned long
- long fract A, unsigned long long fract B)
- -- Runtime Function: short accum __addha3 (short accum A, short accum
- B)
- -- Runtime Function: accum __addsa3 (accum A, accum B)
- -- Runtime Function: long accum __addda3 (long accum A, long accum B)
- -- Runtime Function: long long accum __addta3 (long long accum A, long
- long accum B)
- -- Runtime Function: unsigned short accum __adduha3 (unsigned short
- accum A, unsigned short accum B)
- -- Runtime Function: unsigned accum __addusa3 (unsigned accum A,
- unsigned accum B)
- -- Runtime Function: unsigned long accum __adduda3 (unsigned long accum
- A, unsigned long accum B)
- -- Runtime Function: unsigned long long accum __adduta3 (unsigned long
- long accum A, unsigned long long accum B)
- These functions return the sum of A and B.
-
- -- Runtime Function: short fract __ssaddqq3 (short fract A, short fract
- B)
- -- Runtime Function: fract __ssaddhq3 (fract A, fract B)
- -- Runtime Function: long fract __ssaddsq3 (long fract A, long fract B)
- -- Runtime Function: long long fract __ssadddq3 (long long fract A,
- long long fract B)
- -- Runtime Function: short accum __ssaddha3 (short accum A, short accum
- B)
- -- Runtime Function: accum __ssaddsa3 (accum A, accum B)
- -- Runtime Function: long accum __ssaddda3 (long accum A, long accum B)
- -- Runtime Function: long long accum __ssaddta3 (long long accum A,
- long long accum B)
- These functions return the sum of A and B with signed saturation.
-
- -- Runtime Function: unsigned short fract __usadduqq3 (unsigned short
- fract A, unsigned short fract B)
- -- Runtime Function: unsigned fract __usadduhq3 (unsigned fract A,
- unsigned fract B)
- -- Runtime Function: unsigned long fract __usaddusq3 (unsigned long
- fract A, unsigned long fract B)
- -- Runtime Function: unsigned long long fract __usaddudq3 (unsigned
- long long fract A, unsigned long long fract B)
- -- Runtime Function: unsigned short accum __usadduha3 (unsigned short
- accum A, unsigned short accum B)
- -- Runtime Function: unsigned accum __usaddusa3 (unsigned accum A,
- unsigned accum B)
- -- Runtime Function: unsigned long accum __usadduda3 (unsigned long
- accum A, unsigned long accum B)
- -- Runtime Function: unsigned long long accum __usadduta3 (unsigned
- long long accum A, unsigned long long accum B)
- These functions return the sum of A and B with unsigned saturation.
-
- -- Runtime Function: short fract __subqq3 (short fract A, short fract
- B)
- -- Runtime Function: fract __subhq3 (fract A, fract B)
- -- Runtime Function: long fract __subsq3 (long fract A, long fract B)
- -- Runtime Function: long long fract __subdq3 (long long fract A, long
- long fract B)
- -- Runtime Function: unsigned short fract __subuqq3 (unsigned short
- fract A, unsigned short fract B)
- -- Runtime Function: unsigned fract __subuhq3 (unsigned fract A,
- unsigned fract B)
- -- Runtime Function: unsigned long fract __subusq3 (unsigned long fract
- A, unsigned long fract B)
- -- Runtime Function: unsigned long long fract __subudq3 (unsigned long
- long fract A, unsigned long long fract B)
- -- Runtime Function: short accum __subha3 (short accum A, short accum
- B)
- -- Runtime Function: accum __subsa3 (accum A, accum B)
- -- Runtime Function: long accum __subda3 (long accum A, long accum B)
- -- Runtime Function: long long accum __subta3 (long long accum A, long
- long accum B)
- -- Runtime Function: unsigned short accum __subuha3 (unsigned short
- accum A, unsigned short accum B)
- -- Runtime Function: unsigned accum __subusa3 (unsigned accum A,
- unsigned accum B)
- -- Runtime Function: unsigned long accum __subuda3 (unsigned long accum
- A, unsigned long accum B)
- -- Runtime Function: unsigned long long accum __subuta3 (unsigned long
- long accum A, unsigned long long accum B)
- These functions return the difference of A and B; that is, 'A - B'.
-
- -- Runtime Function: short fract __sssubqq3 (short fract A, short fract
- B)
- -- Runtime Function: fract __sssubhq3 (fract A, fract B)
- -- Runtime Function: long fract __sssubsq3 (long fract A, long fract B)
- -- Runtime Function: long long fract __sssubdq3 (long long fract A,
- long long fract B)
- -- Runtime Function: short accum __sssubha3 (short accum A, short accum
- B)
- -- Runtime Function: accum __sssubsa3 (accum A, accum B)
- -- Runtime Function: long accum __sssubda3 (long accum A, long accum B)
- -- Runtime Function: long long accum __sssubta3 (long long accum A,
- long long accum B)
- These functions return the difference of A and B with signed
- saturation; that is, 'A - B'.
-
- -- Runtime Function: unsigned short fract __ussubuqq3 (unsigned short
- fract A, unsigned short fract B)
- -- Runtime Function: unsigned fract __ussubuhq3 (unsigned fract A,
- unsigned fract B)
- -- Runtime Function: unsigned long fract __ussubusq3 (unsigned long
- fract A, unsigned long fract B)
- -- Runtime Function: unsigned long long fract __ussubudq3 (unsigned
- long long fract A, unsigned long long fract B)
- -- Runtime Function: unsigned short accum __ussubuha3 (unsigned short
- accum A, unsigned short accum B)
- -- Runtime Function: unsigned accum __ussubusa3 (unsigned accum A,
- unsigned accum B)
- -- Runtime Function: unsigned long accum __ussubuda3 (unsigned long
- accum A, unsigned long accum B)
- -- Runtime Function: unsigned long long accum __ussubuta3 (unsigned
- long long accum A, unsigned long long accum B)
- These functions return the difference of A and B with unsigned
- saturation; that is, 'A - B'.
-
- -- Runtime Function: short fract __mulqq3 (short fract A, short fract
- B)
- -- Runtime Function: fract __mulhq3 (fract A, fract B)
- -- Runtime Function: long fract __mulsq3 (long fract A, long fract B)
- -- Runtime Function: long long fract __muldq3 (long long fract A, long
- long fract B)
- -- Runtime Function: unsigned short fract __muluqq3 (unsigned short
- fract A, unsigned short fract B)
- -- Runtime Function: unsigned fract __muluhq3 (unsigned fract A,
- unsigned fract B)
- -- Runtime Function: unsigned long fract __mulusq3 (unsigned long fract
- A, unsigned long fract B)
- -- Runtime Function: unsigned long long fract __muludq3 (unsigned long
- long fract A, unsigned long long fract B)
- -- Runtime Function: short accum __mulha3 (short accum A, short accum
- B)
- -- Runtime Function: accum __mulsa3 (accum A, accum B)
- -- Runtime Function: long accum __mulda3 (long accum A, long accum B)
- -- Runtime Function: long long accum __multa3 (long long accum A, long
- long accum B)
- -- Runtime Function: unsigned short accum __muluha3 (unsigned short
- accum A, unsigned short accum B)
- -- Runtime Function: unsigned accum __mulusa3 (unsigned accum A,
- unsigned accum B)
- -- Runtime Function: unsigned long accum __muluda3 (unsigned long accum
- A, unsigned long accum B)
- -- Runtime Function: unsigned long long accum __muluta3 (unsigned long
- long accum A, unsigned long long accum B)
- These functions return the product of A and B.
-
- -- Runtime Function: short fract __ssmulqq3 (short fract A, short fract
- B)
- -- Runtime Function: fract __ssmulhq3 (fract A, fract B)
- -- Runtime Function: long fract __ssmulsq3 (long fract A, long fract B)
- -- Runtime Function: long long fract __ssmuldq3 (long long fract A,
- long long fract B)
- -- Runtime Function: short accum __ssmulha3 (short accum A, short accum
- B)
- -- Runtime Function: accum __ssmulsa3 (accum A, accum B)
- -- Runtime Function: long accum __ssmulda3 (long accum A, long accum B)
- -- Runtime Function: long long accum __ssmulta3 (long long accum A,
- long long accum B)
- These functions return the product of A and B with signed
- saturation.
-
- -- Runtime Function: unsigned short fract __usmuluqq3 (unsigned short
- fract A, unsigned short fract B)
- -- Runtime Function: unsigned fract __usmuluhq3 (unsigned fract A,
- unsigned fract B)
- -- Runtime Function: unsigned long fract __usmulusq3 (unsigned long
- fract A, unsigned long fract B)
- -- Runtime Function: unsigned long long fract __usmuludq3 (unsigned
- long long fract A, unsigned long long fract B)
- -- Runtime Function: unsigned short accum __usmuluha3 (unsigned short
- accum A, unsigned short accum B)
- -- Runtime Function: unsigned accum __usmulusa3 (unsigned accum A,
- unsigned accum B)
- -- Runtime Function: unsigned long accum __usmuluda3 (unsigned long
- accum A, unsigned long accum B)
- -- Runtime Function: unsigned long long accum __usmuluta3 (unsigned
- long long accum A, unsigned long long accum B)
- These functions return the product of A and B with unsigned
- saturation.
-
- -- Runtime Function: short fract __divqq3 (short fract A, short fract
- B)
- -- Runtime Function: fract __divhq3 (fract A, fract B)
- -- Runtime Function: long fract __divsq3 (long fract A, long fract B)
- -- Runtime Function: long long fract __divdq3 (long long fract A, long
- long fract B)
- -- Runtime Function: short accum __divha3 (short accum A, short accum
- B)
- -- Runtime Function: accum __divsa3 (accum A, accum B)
- -- Runtime Function: long accum __divda3 (long accum A, long accum B)
- -- Runtime Function: long long accum __divta3 (long long accum A, long
- long accum B)
- These functions return the quotient of the signed division of A and
- B.
-
- -- Runtime Function: unsigned short fract __udivuqq3 (unsigned short
- fract A, unsigned short fract B)
- -- Runtime Function: unsigned fract __udivuhq3 (unsigned fract A,
- unsigned fract B)
- -- Runtime Function: unsigned long fract __udivusq3 (unsigned long
- fract A, unsigned long fract B)
- -- Runtime Function: unsigned long long fract __udivudq3 (unsigned long
- long fract A, unsigned long long fract B)
- -- Runtime Function: unsigned short accum __udivuha3 (unsigned short
- accum A, unsigned short accum B)
- -- Runtime Function: unsigned accum __udivusa3 (unsigned accum A,
- unsigned accum B)
- -- Runtime Function: unsigned long accum __udivuda3 (unsigned long
- accum A, unsigned long accum B)
- -- Runtime Function: unsigned long long accum __udivuta3 (unsigned long
- long accum A, unsigned long long accum B)
- These functions return the quotient of the unsigned division of A
- and B.
-
- -- Runtime Function: short fract __ssdivqq3 (short fract A, short fract
- B)
- -- Runtime Function: fract __ssdivhq3 (fract A, fract B)
- -- Runtime Function: long fract __ssdivsq3 (long fract A, long fract B)
- -- Runtime Function: long long fract __ssdivdq3 (long long fract A,
- long long fract B)
- -- Runtime Function: short accum __ssdivha3 (short accum A, short accum
- B)
- -- Runtime Function: accum __ssdivsa3 (accum A, accum B)
- -- Runtime Function: long accum __ssdivda3 (long accum A, long accum B)
- -- Runtime Function: long long accum __ssdivta3 (long long accum A,
- long long accum B)
- These functions return the quotient of the signed division of A and
- B with signed saturation.
-
- -- Runtime Function: unsigned short fract __usdivuqq3 (unsigned short
- fract A, unsigned short fract B)
- -- Runtime Function: unsigned fract __usdivuhq3 (unsigned fract A,
- unsigned fract B)
- -- Runtime Function: unsigned long fract __usdivusq3 (unsigned long
- fract A, unsigned long fract B)
- -- Runtime Function: unsigned long long fract __usdivudq3 (unsigned
- long long fract A, unsigned long long fract B)
- -- Runtime Function: unsigned short accum __usdivuha3 (unsigned short
- accum A, unsigned short accum B)
- -- Runtime Function: unsigned accum __usdivusa3 (unsigned accum A,
- unsigned accum B)
- -- Runtime Function: unsigned long accum __usdivuda3 (unsigned long
- accum A, unsigned long accum B)
- -- Runtime Function: unsigned long long accum __usdivuta3 (unsigned
- long long accum A, unsigned long long accum B)
- These functions return the quotient of the unsigned division of A
- and B with unsigned saturation.
-
- -- Runtime Function: short fract __negqq2 (short fract A)
- -- Runtime Function: fract __neghq2 (fract A)
- -- Runtime Function: long fract __negsq2 (long fract A)
- -- Runtime Function: long long fract __negdq2 (long long fract A)
- -- Runtime Function: unsigned short fract __neguqq2 (unsigned short
- fract A)
- -- Runtime Function: unsigned fract __neguhq2 (unsigned fract A)
- -- Runtime Function: unsigned long fract __negusq2 (unsigned long fract
- A)
- -- Runtime Function: unsigned long long fract __negudq2 (unsigned long
- long fract A)
- -- Runtime Function: short accum __negha2 (short accum A)
- -- Runtime Function: accum __negsa2 (accum A)
- -- Runtime Function: long accum __negda2 (long accum A)
- -- Runtime Function: long long accum __negta2 (long long accum A)
- -- Runtime Function: unsigned short accum __neguha2 (unsigned short
- accum A)
- -- Runtime Function: unsigned accum __negusa2 (unsigned accum A)
- -- Runtime Function: unsigned long accum __neguda2 (unsigned long accum
- A)
- -- Runtime Function: unsigned long long accum __neguta2 (unsigned long
- long accum A)
- These functions return the negation of A.
-
- -- Runtime Function: short fract __ssnegqq2 (short fract A)
- -- Runtime Function: fract __ssneghq2 (fract A)
- -- Runtime Function: long fract __ssnegsq2 (long fract A)
- -- Runtime Function: long long fract __ssnegdq2 (long long fract A)
- -- Runtime Function: short accum __ssnegha2 (short accum A)
- -- Runtime Function: accum __ssnegsa2 (accum A)
- -- Runtime Function: long accum __ssnegda2 (long accum A)
- -- Runtime Function: long long accum __ssnegta2 (long long accum A)
- These functions return the negation of A with signed saturation.
-
- -- Runtime Function: unsigned short fract __usneguqq2 (unsigned short
- fract A)
- -- Runtime Function: unsigned fract __usneguhq2 (unsigned fract A)
- -- Runtime Function: unsigned long fract __usnegusq2 (unsigned long
- fract A)
- -- Runtime Function: unsigned long long fract __usnegudq2 (unsigned
- long long fract A)
- -- Runtime Function: unsigned short accum __usneguha2 (unsigned short
- accum A)
- -- Runtime Function: unsigned accum __usnegusa2 (unsigned accum A)
- -- Runtime Function: unsigned long accum __usneguda2 (unsigned long
- accum A)
- -- Runtime Function: unsigned long long accum __usneguta2 (unsigned
- long long accum A)
- These functions return the negation of A with unsigned saturation.
-
- -- Runtime Function: short fract __ashlqq3 (short fract A, int B)
- -- Runtime Function: fract __ashlhq3 (fract A, int B)
- -- Runtime Function: long fract __ashlsq3 (long fract A, int B)
- -- Runtime Function: long long fract __ashldq3 (long long fract A, int
- B)
- -- Runtime Function: unsigned short fract __ashluqq3 (unsigned short
- fract A, int B)
- -- Runtime Function: unsigned fract __ashluhq3 (unsigned fract A, int
- B)
- -- Runtime Function: unsigned long fract __ashlusq3 (unsigned long
- fract A, int B)
- -- Runtime Function: unsigned long long fract __ashludq3 (unsigned long
- long fract A, int B)
- -- Runtime Function: short accum __ashlha3 (short accum A, int B)
- -- Runtime Function: accum __ashlsa3 (accum A, int B)
- -- Runtime Function: long accum __ashlda3 (long accum A, int B)
- -- Runtime Function: long long accum __ashlta3 (long long accum A, int
- B)
- -- Runtime Function: unsigned short accum __ashluha3 (unsigned short
- accum A, int B)
- -- Runtime Function: unsigned accum __ashlusa3 (unsigned accum A, int
- B)
- -- Runtime Function: unsigned long accum __ashluda3 (unsigned long
- accum A, int B)
- -- Runtime Function: unsigned long long accum __ashluta3 (unsigned long
- long accum A, int B)
- These functions return the result of shifting A left by B bits.
-
- -- Runtime Function: short fract __ashrqq3 (short fract A, int B)
- -- Runtime Function: fract __ashrhq3 (fract A, int B)
- -- Runtime Function: long fract __ashrsq3 (long fract A, int B)
- -- Runtime Function: long long fract __ashrdq3 (long long fract A, int
- B)
- -- Runtime Function: short accum __ashrha3 (short accum A, int B)
- -- Runtime Function: accum __ashrsa3 (accum A, int B)
- -- Runtime Function: long accum __ashrda3 (long accum A, int B)
- -- Runtime Function: long long accum __ashrta3 (long long accum A, int
- B)
- These functions return the result of arithmetically shifting A
- right by B bits.
-
- -- Runtime Function: unsigned short fract __lshruqq3 (unsigned short
- fract A, int B)
- -- Runtime Function: unsigned fract __lshruhq3 (unsigned fract A, int
- B)
- -- Runtime Function: unsigned long fract __lshrusq3 (unsigned long
- fract A, int B)
- -- Runtime Function: unsigned long long fract __lshrudq3 (unsigned long
- long fract A, int B)
- -- Runtime Function: unsigned short accum __lshruha3 (unsigned short
- accum A, int B)
- -- Runtime Function: unsigned accum __lshrusa3 (unsigned accum A, int
- B)
- -- Runtime Function: unsigned long accum __lshruda3 (unsigned long
- accum A, int B)
- -- Runtime Function: unsigned long long accum __lshruta3 (unsigned long
- long accum A, int B)
- These functions return the result of logically shifting A right by
- B bits.
-
- -- Runtime Function: fract __ssashlhq3 (fract A, int B)
- -- Runtime Function: long fract __ssashlsq3 (long fract A, int B)
- -- Runtime Function: long long fract __ssashldq3 (long long fract A,
- int B)
- -- Runtime Function: short accum __ssashlha3 (short accum A, int B)
- -- Runtime Function: accum __ssashlsa3 (accum A, int B)
- -- Runtime Function: long accum __ssashlda3 (long accum A, int B)
- -- Runtime Function: long long accum __ssashlta3 (long long accum A,
- int B)
- These functions return the result of shifting A left by B bits with
- signed saturation.
-
- -- Runtime Function: unsigned short fract __usashluqq3 (unsigned short
- fract A, int B)
- -- Runtime Function: unsigned fract __usashluhq3 (unsigned fract A, int
- B)
- -- Runtime Function: unsigned long fract __usashlusq3 (unsigned long
- fract A, int B)
- -- Runtime Function: unsigned long long fract __usashludq3 (unsigned
- long long fract A, int B)
- -- Runtime Function: unsigned short accum __usashluha3 (unsigned short
- accum A, int B)
- -- Runtime Function: unsigned accum __usashlusa3 (unsigned accum A, int
- B)
- -- Runtime Function: unsigned long accum __usashluda3 (unsigned long
- accum A, int B)
- -- Runtime Function: unsigned long long accum __usashluta3 (unsigned
- long long accum A, int B)
- These functions return the result of shifting A left by B bits with
- unsigned saturation.
-
-4.4.2 Comparison functions
---------------------------
-
-The following functions implement fixed-point comparisons. These
-functions implement a low-level compare, upon which the higher level
-comparison operators (such as less than and greater than or equal to)
-can be constructed. The returned values lie in the range zero to two,
-to allow the high-level operators to be implemented by testing the
-returned result using either signed or unsigned comparison.
-
- -- Runtime Function: int __cmpqq2 (short fract A, short fract B)
- -- Runtime Function: int __cmphq2 (fract A, fract B)
- -- Runtime Function: int __cmpsq2 (long fract A, long fract B)
- -- Runtime Function: int __cmpdq2 (long long fract A, long long fract
- B)
- -- Runtime Function: int __cmpuqq2 (unsigned short fract A, unsigned
- short fract B)
- -- Runtime Function: int __cmpuhq2 (unsigned fract A, unsigned fract B)
- -- Runtime Function: int __cmpusq2 (unsigned long fract A, unsigned
- long fract B)
- -- Runtime Function: int __cmpudq2 (unsigned long long fract A,
- unsigned long long fract B)
- -- Runtime Function: int __cmpha2 (short accum A, short accum B)
- -- Runtime Function: int __cmpsa2 (accum A, accum B)
- -- Runtime Function: int __cmpda2 (long accum A, long accum B)
- -- Runtime Function: int __cmpta2 (long long accum A, long long accum
- B)
- -- Runtime Function: int __cmpuha2 (unsigned short accum A, unsigned
- short accum B)
- -- Runtime Function: int __cmpusa2 (unsigned accum A, unsigned accum B)
- -- Runtime Function: int __cmpuda2 (unsigned long accum A, unsigned
- long accum B)
- -- Runtime Function: int __cmputa2 (unsigned long long accum A,
- unsigned long long accum B)
- These functions perform a signed or unsigned comparison of A and B
- (depending on the selected machine mode). If A is less than B,
- they return 0; if A is greater than B, they return 2; and if A and
- B are equal they return 1.
-
-4.4.3 Conversion functions
---------------------------
-
- -- Runtime Function: fract __fractqqhq2 (short fract A)
- -- Runtime Function: long fract __fractqqsq2 (short fract A)
- -- Runtime Function: long long fract __fractqqdq2 (short fract A)
- -- Runtime Function: short accum __fractqqha (short fract A)
- -- Runtime Function: accum __fractqqsa (short fract A)
- -- Runtime Function: long accum __fractqqda (short fract A)
- -- Runtime Function: long long accum __fractqqta (short fract A)
- -- Runtime Function: unsigned short fract __fractqquqq (short fract A)
- -- Runtime Function: unsigned fract __fractqquhq (short fract A)
- -- Runtime Function: unsigned long fract __fractqqusq (short fract A)
- -- Runtime Function: unsigned long long fract __fractqqudq (short fract
- A)
- -- Runtime Function: unsigned short accum __fractqquha (short fract A)
- -- Runtime Function: unsigned accum __fractqqusa (short fract A)
- -- Runtime Function: unsigned long accum __fractqquda (short fract A)
- -- Runtime Function: unsigned long long accum __fractqquta (short fract
- A)
- -- Runtime Function: signed char __fractqqqi (short fract A)
- -- Runtime Function: short __fractqqhi (short fract A)
- -- Runtime Function: int __fractqqsi (short fract A)
- -- Runtime Function: long __fractqqdi (short fract A)
- -- Runtime Function: long long __fractqqti (short fract A)
- -- Runtime Function: float __fractqqsf (short fract A)
- -- Runtime Function: double __fractqqdf (short fract A)
- -- Runtime Function: short fract __fracthqqq2 (fract A)
- -- Runtime Function: long fract __fracthqsq2 (fract A)
- -- Runtime Function: long long fract __fracthqdq2 (fract A)
- -- Runtime Function: short accum __fracthqha (fract A)
- -- Runtime Function: accum __fracthqsa (fract A)
- -- Runtime Function: long accum __fracthqda (fract A)
- -- Runtime Function: long long accum __fracthqta (fract A)
- -- Runtime Function: unsigned short fract __fracthquqq (fract A)
- -- Runtime Function: unsigned fract __fracthquhq (fract A)
- -- Runtime Function: unsigned long fract __fracthqusq (fract A)
- -- Runtime Function: unsigned long long fract __fracthqudq (fract A)
- -- Runtime Function: unsigned short accum __fracthquha (fract A)
- -- Runtime Function: unsigned accum __fracthqusa (fract A)
- -- Runtime Function: unsigned long accum __fracthquda (fract A)
- -- Runtime Function: unsigned long long accum __fracthquta (fract A)
- -- Runtime Function: signed char __fracthqqi (fract A)
- -- Runtime Function: short __fracthqhi (fract A)
- -- Runtime Function: int __fracthqsi (fract A)
- -- Runtime Function: long __fracthqdi (fract A)
- -- Runtime Function: long long __fracthqti (fract A)
- -- Runtime Function: float __fracthqsf (fract A)
- -- Runtime Function: double __fracthqdf (fract A)
- -- Runtime Function: short fract __fractsqqq2 (long fract A)
- -- Runtime Function: fract __fractsqhq2 (long fract A)
- -- Runtime Function: long long fract __fractsqdq2 (long fract A)
- -- Runtime Function: short accum __fractsqha (long fract A)
- -- Runtime Function: accum __fractsqsa (long fract A)
- -- Runtime Function: long accum __fractsqda (long fract A)
- -- Runtime Function: long long accum __fractsqta (long fract A)
- -- Runtime Function: unsigned short fract __fractsquqq (long fract A)
- -- Runtime Function: unsigned fract __fractsquhq (long fract A)
- -- Runtime Function: unsigned long fract __fractsqusq (long fract A)
- -- Runtime Function: unsigned long long fract __fractsqudq (long fract
- A)
- -- Runtime Function: unsigned short accum __fractsquha (long fract A)
- -- Runtime Function: unsigned accum __fractsqusa (long fract A)
- -- Runtime Function: unsigned long accum __fractsquda (long fract A)
- -- Runtime Function: unsigned long long accum __fractsquta (long fract
- A)
- -- Runtime Function: signed char __fractsqqi (long fract A)
- -- Runtime Function: short __fractsqhi (long fract A)
- -- Runtime Function: int __fractsqsi (long fract A)
- -- Runtime Function: long __fractsqdi (long fract A)
- -- Runtime Function: long long __fractsqti (long fract A)
- -- Runtime Function: float __fractsqsf (long fract A)
- -- Runtime Function: double __fractsqdf (long fract A)
- -- Runtime Function: short fract __fractdqqq2 (long long fract A)
- -- Runtime Function: fract __fractdqhq2 (long long fract A)
- -- Runtime Function: long fract __fractdqsq2 (long long fract A)
- -- Runtime Function: short accum __fractdqha (long long fract A)
- -- Runtime Function: accum __fractdqsa (long long fract A)
- -- Runtime Function: long accum __fractdqda (long long fract A)
- -- Runtime Function: long long accum __fractdqta (long long fract A)
- -- Runtime Function: unsigned short fract __fractdquqq (long long fract
- A)
- -- Runtime Function: unsigned fract __fractdquhq (long long fract A)
- -- Runtime Function: unsigned long fract __fractdqusq (long long fract
- A)
- -- Runtime Function: unsigned long long fract __fractdqudq (long long
- fract A)
- -- Runtime Function: unsigned short accum __fractdquha (long long fract
- A)
- -- Runtime Function: unsigned accum __fractdqusa (long long fract A)
- -- Runtime Function: unsigned long accum __fractdquda (long long fract
- A)
- -- Runtime Function: unsigned long long accum __fractdquta (long long
- fract A)
- -- Runtime Function: signed char __fractdqqi (long long fract A)
- -- Runtime Function: short __fractdqhi (long long fract A)
- -- Runtime Function: int __fractdqsi (long long fract A)
- -- Runtime Function: long __fractdqdi (long long fract A)
- -- Runtime Function: long long __fractdqti (long long fract A)
- -- Runtime Function: float __fractdqsf (long long fract A)
- -- Runtime Function: double __fractdqdf (long long fract A)
- -- Runtime Function: short fract __fracthaqq (short accum A)
- -- Runtime Function: fract __fracthahq (short accum A)
- -- Runtime Function: long fract __fracthasq (short accum A)
- -- Runtime Function: long long fract __fracthadq (short accum A)
- -- Runtime Function: accum __fracthasa2 (short accum A)
- -- Runtime Function: long accum __fracthada2 (short accum A)
- -- Runtime Function: long long accum __fracthata2 (short accum A)
- -- Runtime Function: unsigned short fract __fracthauqq (short accum A)
- -- Runtime Function: unsigned fract __fracthauhq (short accum A)
- -- Runtime Function: unsigned long fract __fracthausq (short accum A)
- -- Runtime Function: unsigned long long fract __fracthaudq (short accum
- A)
- -- Runtime Function: unsigned short accum __fracthauha (short accum A)
- -- Runtime Function: unsigned accum __fracthausa (short accum A)
- -- Runtime Function: unsigned long accum __fracthauda (short accum A)
- -- Runtime Function: unsigned long long accum __fracthauta (short accum
- A)
- -- Runtime Function: signed char __fracthaqi (short accum A)
- -- Runtime Function: short __fracthahi (short accum A)
- -- Runtime Function: int __fracthasi (short accum A)
- -- Runtime Function: long __fracthadi (short accum A)
- -- Runtime Function: long long __fracthati (short accum A)
- -- Runtime Function: float __fracthasf (short accum A)
- -- Runtime Function: double __fracthadf (short accum A)
- -- Runtime Function: short fract __fractsaqq (accum A)
- -- Runtime Function: fract __fractsahq (accum A)
- -- Runtime Function: long fract __fractsasq (accum A)
- -- Runtime Function: long long fract __fractsadq (accum A)
- -- Runtime Function: short accum __fractsaha2 (accum A)
- -- Runtime Function: long accum __fractsada2 (accum A)
- -- Runtime Function: long long accum __fractsata2 (accum A)
- -- Runtime Function: unsigned short fract __fractsauqq (accum A)
- -- Runtime Function: unsigned fract __fractsauhq (accum A)
- -- Runtime Function: unsigned long fract __fractsausq (accum A)
- -- Runtime Function: unsigned long long fract __fractsaudq (accum A)
- -- Runtime Function: unsigned short accum __fractsauha (accum A)
- -- Runtime Function: unsigned accum __fractsausa (accum A)
- -- Runtime Function: unsigned long accum __fractsauda (accum A)
- -- Runtime Function: unsigned long long accum __fractsauta (accum A)
- -- Runtime Function: signed char __fractsaqi (accum A)
- -- Runtime Function: short __fractsahi (accum A)
- -- Runtime Function: int __fractsasi (accum A)
- -- Runtime Function: long __fractsadi (accum A)
- -- Runtime Function: long long __fractsati (accum A)
- -- Runtime Function: float __fractsasf (accum A)
- -- Runtime Function: double __fractsadf (accum A)
- -- Runtime Function: short fract __fractdaqq (long accum A)
- -- Runtime Function: fract __fractdahq (long accum A)
- -- Runtime Function: long fract __fractdasq (long accum A)
- -- Runtime Function: long long fract __fractdadq (long accum A)
- -- Runtime Function: short accum __fractdaha2 (long accum A)
- -- Runtime Function: accum __fractdasa2 (long accum A)
- -- Runtime Function: long long accum __fractdata2 (long accum A)
- -- Runtime Function: unsigned short fract __fractdauqq (long accum A)
- -- Runtime Function: unsigned fract __fractdauhq (long accum A)
- -- Runtime Function: unsigned long fract __fractdausq (long accum A)
- -- Runtime Function: unsigned long long fract __fractdaudq (long accum
- A)
- -- Runtime Function: unsigned short accum __fractdauha (long accum A)
- -- Runtime Function: unsigned accum __fractdausa (long accum A)
- -- Runtime Function: unsigned long accum __fractdauda (long accum A)
- -- Runtime Function: unsigned long long accum __fractdauta (long accum
- A)
- -- Runtime Function: signed char __fractdaqi (long accum A)
- -- Runtime Function: short __fractdahi (long accum A)
- -- Runtime Function: int __fractdasi (long accum A)
- -- Runtime Function: long __fractdadi (long accum A)
- -- Runtime Function: long long __fractdati (long accum A)
- -- Runtime Function: float __fractdasf (long accum A)
- -- Runtime Function: double __fractdadf (long accum A)
- -- Runtime Function: short fract __fracttaqq (long long accum A)
- -- Runtime Function: fract __fracttahq (long long accum A)
- -- Runtime Function: long fract __fracttasq (long long accum A)
- -- Runtime Function: long long fract __fracttadq (long long accum A)
- -- Runtime Function: short accum __fracttaha2 (long long accum A)
- -- Runtime Function: accum __fracttasa2 (long long accum A)
- -- Runtime Function: long accum __fracttada2 (long long accum A)
- -- Runtime Function: unsigned short fract __fracttauqq (long long accum
- A)
- -- Runtime Function: unsigned fract __fracttauhq (long long accum A)
- -- Runtime Function: unsigned long fract __fracttausq (long long accum
- A)
- -- Runtime Function: unsigned long long fract __fracttaudq (long long
- accum A)
- -- Runtime Function: unsigned short accum __fracttauha (long long accum
- A)
- -- Runtime Function: unsigned accum __fracttausa (long long accum A)
- -- Runtime Function: unsigned long accum __fracttauda (long long accum
- A)
- -- Runtime Function: unsigned long long accum __fracttauta (long long
- accum A)
- -- Runtime Function: signed char __fracttaqi (long long accum A)
- -- Runtime Function: short __fracttahi (long long accum A)
- -- Runtime Function: int __fracttasi (long long accum A)
- -- Runtime Function: long __fracttadi (long long accum A)
- -- Runtime Function: long long __fracttati (long long accum A)
- -- Runtime Function: float __fracttasf (long long accum A)
- -- Runtime Function: double __fracttadf (long long accum A)
- -- Runtime Function: short fract __fractuqqqq (unsigned short fract A)
- -- Runtime Function: fract __fractuqqhq (unsigned short fract A)
- -- Runtime Function: long fract __fractuqqsq (unsigned short fract A)
- -- Runtime Function: long long fract __fractuqqdq (unsigned short fract
- A)
- -- Runtime Function: short accum __fractuqqha (unsigned short fract A)
- -- Runtime Function: accum __fractuqqsa (unsigned short fract A)
- -- Runtime Function: long accum __fractuqqda (unsigned short fract A)
- -- Runtime Function: long long accum __fractuqqta (unsigned short fract
- A)
- -- Runtime Function: unsigned fract __fractuqquhq2 (unsigned short
- fract A)
- -- Runtime Function: unsigned long fract __fractuqqusq2 (unsigned short
- fract A)
- -- Runtime Function: unsigned long long fract __fractuqqudq2 (unsigned
- short fract A)
- -- Runtime Function: unsigned short accum __fractuqquha (unsigned short
- fract A)
- -- Runtime Function: unsigned accum __fractuqqusa (unsigned short fract
- A)
- -- Runtime Function: unsigned long accum __fractuqquda (unsigned short
- fract A)
- -- Runtime Function: unsigned long long accum __fractuqquta (unsigned
- short fract A)
- -- Runtime Function: signed char __fractuqqqi (unsigned short fract A)
- -- Runtime Function: short __fractuqqhi (unsigned short fract A)
- -- Runtime Function: int __fractuqqsi (unsigned short fract A)
- -- Runtime Function: long __fractuqqdi (unsigned short fract A)
- -- Runtime Function: long long __fractuqqti (unsigned short fract A)
- -- Runtime Function: float __fractuqqsf (unsigned short fract A)
- -- Runtime Function: double __fractuqqdf (unsigned short fract A)
- -- Runtime Function: short fract __fractuhqqq (unsigned fract A)
- -- Runtime Function: fract __fractuhqhq (unsigned fract A)
- -- Runtime Function: long fract __fractuhqsq (unsigned fract A)
- -- Runtime Function: long long fract __fractuhqdq (unsigned fract A)
- -- Runtime Function: short accum __fractuhqha (unsigned fract A)
- -- Runtime Function: accum __fractuhqsa (unsigned fract A)
- -- Runtime Function: long accum __fractuhqda (unsigned fract A)
- -- Runtime Function: long long accum __fractuhqta (unsigned fract A)
- -- Runtime Function: unsigned short fract __fractuhquqq2 (unsigned
- fract A)
- -- Runtime Function: unsigned long fract __fractuhqusq2 (unsigned fract
- A)
- -- Runtime Function: unsigned long long fract __fractuhqudq2 (unsigned
- fract A)
- -- Runtime Function: unsigned short accum __fractuhquha (unsigned fract
- A)
- -- Runtime Function: unsigned accum __fractuhqusa (unsigned fract A)
- -- Runtime Function: unsigned long accum __fractuhquda (unsigned fract
- A)
- -- Runtime Function: unsigned long long accum __fractuhquta (unsigned
- fract A)
- -- Runtime Function: signed char __fractuhqqi (unsigned fract A)
- -- Runtime Function: short __fractuhqhi (unsigned fract A)
- -- Runtime Function: int __fractuhqsi (unsigned fract A)
- -- Runtime Function: long __fractuhqdi (unsigned fract A)
- -- Runtime Function: long long __fractuhqti (unsigned fract A)
- -- Runtime Function: float __fractuhqsf (unsigned fract A)
- -- Runtime Function: double __fractuhqdf (unsigned fract A)
- -- Runtime Function: short fract __fractusqqq (unsigned long fract A)
- -- Runtime Function: fract __fractusqhq (unsigned long fract A)
- -- Runtime Function: long fract __fractusqsq (unsigned long fract A)
- -- Runtime Function: long long fract __fractusqdq (unsigned long fract
- A)
- -- Runtime Function: short accum __fractusqha (unsigned long fract A)
- -- Runtime Function: accum __fractusqsa (unsigned long fract A)
- -- Runtime Function: long accum __fractusqda (unsigned long fract A)
- -- Runtime Function: long long accum __fractusqta (unsigned long fract
- A)
- -- Runtime Function: unsigned short fract __fractusquqq2 (unsigned long
- fract A)
- -- Runtime Function: unsigned fract __fractusquhq2 (unsigned long fract
- A)
- -- Runtime Function: unsigned long long fract __fractusqudq2 (unsigned
- long fract A)
- -- Runtime Function: unsigned short accum __fractusquha (unsigned long
- fract A)
- -- Runtime Function: unsigned accum __fractusqusa (unsigned long fract
- A)
- -- Runtime Function: unsigned long accum __fractusquda (unsigned long
- fract A)
- -- Runtime Function: unsigned long long accum __fractusquta (unsigned
- long fract A)
- -- Runtime Function: signed char __fractusqqi (unsigned long fract A)
- -- Runtime Function: short __fractusqhi (unsigned long fract A)
- -- Runtime Function: int __fractusqsi (unsigned long fract A)
- -- Runtime Function: long __fractusqdi (unsigned long fract A)
- -- Runtime Function: long long __fractusqti (unsigned long fract A)
- -- Runtime Function: float __fractusqsf (unsigned long fract A)
- -- Runtime Function: double __fractusqdf (unsigned long fract A)
- -- Runtime Function: short fract __fractudqqq (unsigned long long fract
- A)
- -- Runtime Function: fract __fractudqhq (unsigned long long fract A)
- -- Runtime Function: long fract __fractudqsq (unsigned long long fract
- A)
- -- Runtime Function: long long fract __fractudqdq (unsigned long long
- fract A)
- -- Runtime Function: short accum __fractudqha (unsigned long long fract
- A)
- -- Runtime Function: accum __fractudqsa (unsigned long long fract A)
- -- Runtime Function: long accum __fractudqda (unsigned long long fract
- A)
- -- Runtime Function: long long accum __fractudqta (unsigned long long
- fract A)
- -- Runtime Function: unsigned short fract __fractudquqq2 (unsigned long
- long fract A)
- -- Runtime Function: unsigned fract __fractudquhq2 (unsigned long long
- fract A)
- -- Runtime Function: unsigned long fract __fractudqusq2 (unsigned long
- long fract A)
- -- Runtime Function: unsigned short accum __fractudquha (unsigned long
- long fract A)
- -- Runtime Function: unsigned accum __fractudqusa (unsigned long long
- fract A)
- -- Runtime Function: unsigned long accum __fractudquda (unsigned long
- long fract A)
- -- Runtime Function: unsigned long long accum __fractudquta (unsigned
- long long fract A)
- -- Runtime Function: signed char __fractudqqi (unsigned long long fract
- A)
- -- Runtime Function: short __fractudqhi (unsigned long long fract A)
- -- Runtime Function: int __fractudqsi (unsigned long long fract A)
- -- Runtime Function: long __fractudqdi (unsigned long long fract A)
- -- Runtime Function: long long __fractudqti (unsigned long long fract
- A)
- -- Runtime Function: float __fractudqsf (unsigned long long fract A)
- -- Runtime Function: double __fractudqdf (unsigned long long fract A)
- -- Runtime Function: short fract __fractuhaqq (unsigned short accum A)
- -- Runtime Function: fract __fractuhahq (unsigned short accum A)
- -- Runtime Function: long fract __fractuhasq (unsigned short accum A)
- -- Runtime Function: long long fract __fractuhadq (unsigned short accum
- A)
- -- Runtime Function: short accum __fractuhaha (unsigned short accum A)
- -- Runtime Function: accum __fractuhasa (unsigned short accum A)
- -- Runtime Function: long accum __fractuhada (unsigned short accum A)
- -- Runtime Function: long long accum __fractuhata (unsigned short accum
- A)
- -- Runtime Function: unsigned short fract __fractuhauqq (unsigned short
- accum A)
- -- Runtime Function: unsigned fract __fractuhauhq (unsigned short accum
- A)
- -- Runtime Function: unsigned long fract __fractuhausq (unsigned short
- accum A)
- -- Runtime Function: unsigned long long fract __fractuhaudq (unsigned
- short accum A)
- -- Runtime Function: unsigned accum __fractuhausa2 (unsigned short
- accum A)
- -- Runtime Function: unsigned long accum __fractuhauda2 (unsigned short
- accum A)
- -- Runtime Function: unsigned long long accum __fractuhauta2 (unsigned
- short accum A)
- -- Runtime Function: signed char __fractuhaqi (unsigned short accum A)
- -- Runtime Function: short __fractuhahi (unsigned short accum A)
- -- Runtime Function: int __fractuhasi (unsigned short accum A)
- -- Runtime Function: long __fractuhadi (unsigned short accum A)
- -- Runtime Function: long long __fractuhati (unsigned short accum A)
- -- Runtime Function: float __fractuhasf (unsigned short accum A)
- -- Runtime Function: double __fractuhadf (unsigned short accum A)
- -- Runtime Function: short fract __fractusaqq (unsigned accum A)
- -- Runtime Function: fract __fractusahq (unsigned accum A)
- -- Runtime Function: long fract __fractusasq (unsigned accum A)
- -- Runtime Function: long long fract __fractusadq (unsigned accum A)
- -- Runtime Function: short accum __fractusaha (unsigned accum A)
- -- Runtime Function: accum __fractusasa (unsigned accum A)
- -- Runtime Function: long accum __fractusada (unsigned accum A)
- -- Runtime Function: long long accum __fractusata (unsigned accum A)
- -- Runtime Function: unsigned short fract __fractusauqq (unsigned accum
- A)
- -- Runtime Function: unsigned fract __fractusauhq (unsigned accum A)
- -- Runtime Function: unsigned long fract __fractusausq (unsigned accum
- A)
- -- Runtime Function: unsigned long long fract __fractusaudq (unsigned
- accum A)
- -- Runtime Function: unsigned short accum __fractusauha2 (unsigned
- accum A)
- -- Runtime Function: unsigned long accum __fractusauda2 (unsigned accum
- A)
- -- Runtime Function: unsigned long long accum __fractusauta2 (unsigned
- accum A)
- -- Runtime Function: signed char __fractusaqi (unsigned accum A)
- -- Runtime Function: short __fractusahi (unsigned accum A)
- -- Runtime Function: int __fractusasi (unsigned accum A)
- -- Runtime Function: long __fractusadi (unsigned accum A)
- -- Runtime Function: long long __fractusati (unsigned accum A)
- -- Runtime Function: float __fractusasf (unsigned accum A)
- -- Runtime Function: double __fractusadf (unsigned accum A)
- -- Runtime Function: short fract __fractudaqq (unsigned long accum A)
- -- Runtime Function: fract __fractudahq (unsigned long accum A)
- -- Runtime Function: long fract __fractudasq (unsigned long accum A)
- -- Runtime Function: long long fract __fractudadq (unsigned long accum
- A)
- -- Runtime Function: short accum __fractudaha (unsigned long accum A)
- -- Runtime Function: accum __fractudasa (unsigned long accum A)
- -- Runtime Function: long accum __fractudada (unsigned long accum A)
- -- Runtime Function: long long accum __fractudata (unsigned long accum
- A)
- -- Runtime Function: unsigned short fract __fractudauqq (unsigned long
- accum A)
- -- Runtime Function: unsigned fract __fractudauhq (unsigned long accum
- A)
- -- Runtime Function: unsigned long fract __fractudausq (unsigned long
- accum A)
- -- Runtime Function: unsigned long long fract __fractudaudq (unsigned
- long accum A)
- -- Runtime Function: unsigned short accum __fractudauha2 (unsigned long
- accum A)
- -- Runtime Function: unsigned accum __fractudausa2 (unsigned long accum
- A)
- -- Runtime Function: unsigned long long accum __fractudauta2 (unsigned
- long accum A)
- -- Runtime Function: signed char __fractudaqi (unsigned long accum A)
- -- Runtime Function: short __fractudahi (unsigned long accum A)
- -- Runtime Function: int __fractudasi (unsigned long accum A)
- -- Runtime Function: long __fractudadi (unsigned long accum A)
- -- Runtime Function: long long __fractudati (unsigned long accum A)
- -- Runtime Function: float __fractudasf (unsigned long accum A)
- -- Runtime Function: double __fractudadf (unsigned long accum A)
- -- Runtime Function: short fract __fractutaqq (unsigned long long accum
- A)
- -- Runtime Function: fract __fractutahq (unsigned long long accum A)
- -- Runtime Function: long fract __fractutasq (unsigned long long accum
- A)
- -- Runtime Function: long long fract __fractutadq (unsigned long long
- accum A)
- -- Runtime Function: short accum __fractutaha (unsigned long long accum
- A)
- -- Runtime Function: accum __fractutasa (unsigned long long accum A)
- -- Runtime Function: long accum __fractutada (unsigned long long accum
- A)
- -- Runtime Function: long long accum __fractutata (unsigned long long
- accum A)
- -- Runtime Function: unsigned short fract __fractutauqq (unsigned long
- long accum A)
- -- Runtime Function: unsigned fract __fractutauhq (unsigned long long
- accum A)
- -- Runtime Function: unsigned long fract __fractutausq (unsigned long
- long accum A)
- -- Runtime Function: unsigned long long fract __fractutaudq (unsigned
- long long accum A)
- -- Runtime Function: unsigned short accum __fractutauha2 (unsigned long
- long accum A)
- -- Runtime Function: unsigned accum __fractutausa2 (unsigned long long
- accum A)
- -- Runtime Function: unsigned long accum __fractutauda2 (unsigned long
- long accum A)
- -- Runtime Function: signed char __fractutaqi (unsigned long long accum
- A)
- -- Runtime Function: short __fractutahi (unsigned long long accum A)
- -- Runtime Function: int __fractutasi (unsigned long long accum A)
- -- Runtime Function: long __fractutadi (unsigned long long accum A)
- -- Runtime Function: long long __fractutati (unsigned long long accum
- A)
- -- Runtime Function: float __fractutasf (unsigned long long accum A)
- -- Runtime Function: double __fractutadf (unsigned long long accum A)
- -- Runtime Function: short fract __fractqiqq (signed char A)
- -- Runtime Function: fract __fractqihq (signed char A)
- -- Runtime Function: long fract __fractqisq (signed char A)
- -- Runtime Function: long long fract __fractqidq (signed char A)
- -- Runtime Function: short accum __fractqiha (signed char A)
- -- Runtime Function: accum __fractqisa (signed char A)
- -- Runtime Function: long accum __fractqida (signed char A)
- -- Runtime Function: long long accum __fractqita (signed char A)
- -- Runtime Function: unsigned short fract __fractqiuqq (signed char A)
- -- Runtime Function: unsigned fract __fractqiuhq (signed char A)
- -- Runtime Function: unsigned long fract __fractqiusq (signed char A)
- -- Runtime Function: unsigned long long fract __fractqiudq (signed char
- A)
- -- Runtime Function: unsigned short accum __fractqiuha (signed char A)
- -- Runtime Function: unsigned accum __fractqiusa (signed char A)
- -- Runtime Function: unsigned long accum __fractqiuda (signed char A)
- -- Runtime Function: unsigned long long accum __fractqiuta (signed char
- A)
- -- Runtime Function: short fract __fracthiqq (short A)
- -- Runtime Function: fract __fracthihq (short A)
- -- Runtime Function: long fract __fracthisq (short A)
- -- Runtime Function: long long fract __fracthidq (short A)
- -- Runtime Function: short accum __fracthiha (short A)
- -- Runtime Function: accum __fracthisa (short A)
- -- Runtime Function: long accum __fracthida (short A)
- -- Runtime Function: long long accum __fracthita (short A)
- -- Runtime Function: unsigned short fract __fracthiuqq (short A)
- -- Runtime Function: unsigned fract __fracthiuhq (short A)
- -- Runtime Function: unsigned long fract __fracthiusq (short A)
- -- Runtime Function: unsigned long long fract __fracthiudq (short A)
- -- Runtime Function: unsigned short accum __fracthiuha (short A)
- -- Runtime Function: unsigned accum __fracthiusa (short A)
- -- Runtime Function: unsigned long accum __fracthiuda (short A)
- -- Runtime Function: unsigned long long accum __fracthiuta (short A)
- -- Runtime Function: short fract __fractsiqq (int A)
- -- Runtime Function: fract __fractsihq (int A)
- -- Runtime Function: long fract __fractsisq (int A)
- -- Runtime Function: long long fract __fractsidq (int A)
- -- Runtime Function: short accum __fractsiha (int A)
- -- Runtime Function: accum __fractsisa (int A)
- -- Runtime Function: long accum __fractsida (int A)
- -- Runtime Function: long long accum __fractsita (int A)
- -- Runtime Function: unsigned short fract __fractsiuqq (int A)
- -- Runtime Function: unsigned fract __fractsiuhq (int A)
- -- Runtime Function: unsigned long fract __fractsiusq (int A)
- -- Runtime Function: unsigned long long fract __fractsiudq (int A)
- -- Runtime Function: unsigned short accum __fractsiuha (int A)
- -- Runtime Function: unsigned accum __fractsiusa (int A)
- -- Runtime Function: unsigned long accum __fractsiuda (int A)
- -- Runtime Function: unsigned long long accum __fractsiuta (int A)
- -- Runtime Function: short fract __fractdiqq (long A)
- -- Runtime Function: fract __fractdihq (long A)
- -- Runtime Function: long fract __fractdisq (long A)
- -- Runtime Function: long long fract __fractdidq (long A)
- -- Runtime Function: short accum __fractdiha (long A)
- -- Runtime Function: accum __fractdisa (long A)
- -- Runtime Function: long accum __fractdida (long A)
- -- Runtime Function: long long accum __fractdita (long A)
- -- Runtime Function: unsigned short fract __fractdiuqq (long A)
- -- Runtime Function: unsigned fract __fractdiuhq (long A)
- -- Runtime Function: unsigned long fract __fractdiusq (long A)
- -- Runtime Function: unsigned long long fract __fractdiudq (long A)
- -- Runtime Function: unsigned short accum __fractdiuha (long A)
- -- Runtime Function: unsigned accum __fractdiusa (long A)
- -- Runtime Function: unsigned long accum __fractdiuda (long A)
- -- Runtime Function: unsigned long long accum __fractdiuta (long A)
- -- Runtime Function: short fract __fracttiqq (long long A)
- -- Runtime Function: fract __fracttihq (long long A)
- -- Runtime Function: long fract __fracttisq (long long A)
- -- Runtime Function: long long fract __fracttidq (long long A)
- -- Runtime Function: short accum __fracttiha (long long A)
- -- Runtime Function: accum __fracttisa (long long A)
- -- Runtime Function: long accum __fracttida (long long A)
- -- Runtime Function: long long accum __fracttita (long long A)
- -- Runtime Function: unsigned short fract __fracttiuqq (long long A)
- -- Runtime Function: unsigned fract __fracttiuhq (long long A)
- -- Runtime Function: unsigned long fract __fracttiusq (long long A)
- -- Runtime Function: unsigned long long fract __fracttiudq (long long
- A)
- -- Runtime Function: unsigned short accum __fracttiuha (long long A)
- -- Runtime Function: unsigned accum __fracttiusa (long long A)
- -- Runtime Function: unsigned long accum __fracttiuda (long long A)
- -- Runtime Function: unsigned long long accum __fracttiuta (long long
- A)
- -- Runtime Function: short fract __fractsfqq (float A)
- -- Runtime Function: fract __fractsfhq (float A)
- -- Runtime Function: long fract __fractsfsq (float A)
- -- Runtime Function: long long fract __fractsfdq (float A)
- -- Runtime Function: short accum __fractsfha (float A)
- -- Runtime Function: accum __fractsfsa (float A)
- -- Runtime Function: long accum __fractsfda (float A)
- -- Runtime Function: long long accum __fractsfta (float A)
- -- Runtime Function: unsigned short fract __fractsfuqq (float A)
- -- Runtime Function: unsigned fract __fractsfuhq (float A)
- -- Runtime Function: unsigned long fract __fractsfusq (float A)
- -- Runtime Function: unsigned long long fract __fractsfudq (float A)
- -- Runtime Function: unsigned short accum __fractsfuha (float A)
- -- Runtime Function: unsigned accum __fractsfusa (float A)
- -- Runtime Function: unsigned long accum __fractsfuda (float A)
- -- Runtime Function: unsigned long long accum __fractsfuta (float A)
- -- Runtime Function: short fract __fractdfqq (double A)
- -- Runtime Function: fract __fractdfhq (double A)
- -- Runtime Function: long fract __fractdfsq (double A)
- -- Runtime Function: long long fract __fractdfdq (double A)
- -- Runtime Function: short accum __fractdfha (double A)
- -- Runtime Function: accum __fractdfsa (double A)
- -- Runtime Function: long accum __fractdfda (double A)
- -- Runtime Function: long long accum __fractdfta (double A)
- -- Runtime Function: unsigned short fract __fractdfuqq (double A)
- -- Runtime Function: unsigned fract __fractdfuhq (double A)
- -- Runtime Function: unsigned long fract __fractdfusq (double A)
- -- Runtime Function: unsigned long long fract __fractdfudq (double A)
- -- Runtime Function: unsigned short accum __fractdfuha (double A)
- -- Runtime Function: unsigned accum __fractdfusa (double A)
- -- Runtime Function: unsigned long accum __fractdfuda (double A)
- -- Runtime Function: unsigned long long accum __fractdfuta (double A)
- These functions convert from fractional and signed non-fractionals
- to fractionals and signed non-fractionals, without saturation.
-
- -- Runtime Function: fract __satfractqqhq2 (short fract A)
- -- Runtime Function: long fract __satfractqqsq2 (short fract A)
- -- Runtime Function: long long fract __satfractqqdq2 (short fract A)
- -- Runtime Function: short accum __satfractqqha (short fract A)
- -- Runtime Function: accum __satfractqqsa (short fract A)
- -- Runtime Function: long accum __satfractqqda (short fract A)
- -- Runtime Function: long long accum __satfractqqta (short fract A)
- -- Runtime Function: unsigned short fract __satfractqquqq (short fract
- A)
- -- Runtime Function: unsigned fract __satfractqquhq (short fract A)
- -- Runtime Function: unsigned long fract __satfractqqusq (short fract
- A)
- -- Runtime Function: unsigned long long fract __satfractqqudq (short
- fract A)
- -- Runtime Function: unsigned short accum __satfractqquha (short fract
- A)
- -- Runtime Function: unsigned accum __satfractqqusa (short fract A)
- -- Runtime Function: unsigned long accum __satfractqquda (short fract
- A)
- -- Runtime Function: unsigned long long accum __satfractqquta (short
- fract A)
- -- Runtime Function: short fract __satfracthqqq2 (fract A)
- -- Runtime Function: long fract __satfracthqsq2 (fract A)
- -- Runtime Function: long long fract __satfracthqdq2 (fract A)
- -- Runtime Function: short accum __satfracthqha (fract A)
- -- Runtime Function: accum __satfracthqsa (fract A)
- -- Runtime Function: long accum __satfracthqda (fract A)
- -- Runtime Function: long long accum __satfracthqta (fract A)
- -- Runtime Function: unsigned short fract __satfracthquqq (fract A)
- -- Runtime Function: unsigned fract __satfracthquhq (fract A)
- -- Runtime Function: unsigned long fract __satfracthqusq (fract A)
- -- Runtime Function: unsigned long long fract __satfracthqudq (fract A)
- -- Runtime Function: unsigned short accum __satfracthquha (fract A)
- -- Runtime Function: unsigned accum __satfracthqusa (fract A)
- -- Runtime Function: unsigned long accum __satfracthquda (fract A)
- -- Runtime Function: unsigned long long accum __satfracthquta (fract A)
- -- Runtime Function: short fract __satfractsqqq2 (long fract A)
- -- Runtime Function: fract __satfractsqhq2 (long fract A)
- -- Runtime Function: long long fract __satfractsqdq2 (long fract A)
- -- Runtime Function: short accum __satfractsqha (long fract A)
- -- Runtime Function: accum __satfractsqsa (long fract A)
- -- Runtime Function: long accum __satfractsqda (long fract A)
- -- Runtime Function: long long accum __satfractsqta (long fract A)
- -- Runtime Function: unsigned short fract __satfractsquqq (long fract
- A)
- -- Runtime Function: unsigned fract __satfractsquhq (long fract A)
- -- Runtime Function: unsigned long fract __satfractsqusq (long fract A)
- -- Runtime Function: unsigned long long fract __satfractsqudq (long
- fract A)
- -- Runtime Function: unsigned short accum __satfractsquha (long fract
- A)
- -- Runtime Function: unsigned accum __satfractsqusa (long fract A)
- -- Runtime Function: unsigned long accum __satfractsquda (long fract A)
- -- Runtime Function: unsigned long long accum __satfractsquta (long
- fract A)
- -- Runtime Function: short fract __satfractdqqq2 (long long fract A)
- -- Runtime Function: fract __satfractdqhq2 (long long fract A)
- -- Runtime Function: long fract __satfractdqsq2 (long long fract A)
- -- Runtime Function: short accum __satfractdqha (long long fract A)
- -- Runtime Function: accum __satfractdqsa (long long fract A)
- -- Runtime Function: long accum __satfractdqda (long long fract A)
- -- Runtime Function: long long accum __satfractdqta (long long fract A)
- -- Runtime Function: unsigned short fract __satfractdquqq (long long
- fract A)
- -- Runtime Function: unsigned fract __satfractdquhq (long long fract A)
- -- Runtime Function: unsigned long fract __satfractdqusq (long long
- fract A)
- -- Runtime Function: unsigned long long fract __satfractdqudq (long
- long fract A)
- -- Runtime Function: unsigned short accum __satfractdquha (long long
- fract A)
- -- Runtime Function: unsigned accum __satfractdqusa (long long fract A)
- -- Runtime Function: unsigned long accum __satfractdquda (long long
- fract A)
- -- Runtime Function: unsigned long long accum __satfractdquta (long
- long fract A)
- -- Runtime Function: short fract __satfracthaqq (short accum A)
- -- Runtime Function: fract __satfracthahq (short accum A)
- -- Runtime Function: long fract __satfracthasq (short accum A)
- -- Runtime Function: long long fract __satfracthadq (short accum A)
- -- Runtime Function: accum __satfracthasa2 (short accum A)
- -- Runtime Function: long accum __satfracthada2 (short accum A)
- -- Runtime Function: long long accum __satfracthata2 (short accum A)
- -- Runtime Function: unsigned short fract __satfracthauqq (short accum
- A)
- -- Runtime Function: unsigned fract __satfracthauhq (short accum A)
- -- Runtime Function: unsigned long fract __satfracthausq (short accum
- A)
- -- Runtime Function: unsigned long long fract __satfracthaudq (short
- accum A)
- -- Runtime Function: unsigned short accum __satfracthauha (short accum
- A)
- -- Runtime Function: unsigned accum __satfracthausa (short accum A)
- -- Runtime Function: unsigned long accum __satfracthauda (short accum
- A)
- -- Runtime Function: unsigned long long accum __satfracthauta (short
- accum A)
- -- Runtime Function: short fract __satfractsaqq (accum A)
- -- Runtime Function: fract __satfractsahq (accum A)
- -- Runtime Function: long fract __satfractsasq (accum A)
- -- Runtime Function: long long fract __satfractsadq (accum A)
- -- Runtime Function: short accum __satfractsaha2 (accum A)
- -- Runtime Function: long accum __satfractsada2 (accum A)
- -- Runtime Function: long long accum __satfractsata2 (accum A)
- -- Runtime Function: unsigned short fract __satfractsauqq (accum A)
- -- Runtime Function: unsigned fract __satfractsauhq (accum A)
- -- Runtime Function: unsigned long fract __satfractsausq (accum A)
- -- Runtime Function: unsigned long long fract __satfractsaudq (accum A)
- -- Runtime Function: unsigned short accum __satfractsauha (accum A)
- -- Runtime Function: unsigned accum __satfractsausa (accum A)
- -- Runtime Function: unsigned long accum __satfractsauda (accum A)
- -- Runtime Function: unsigned long long accum __satfractsauta (accum A)
- -- Runtime Function: short fract __satfractdaqq (long accum A)
- -- Runtime Function: fract __satfractdahq (long accum A)
- -- Runtime Function: long fract __satfractdasq (long accum A)
- -- Runtime Function: long long fract __satfractdadq (long accum A)
- -- Runtime Function: short accum __satfractdaha2 (long accum A)
- -- Runtime Function: accum __satfractdasa2 (long accum A)
- -- Runtime Function: long long accum __satfractdata2 (long accum A)
- -- Runtime Function: unsigned short fract __satfractdauqq (long accum
- A)
- -- Runtime Function: unsigned fract __satfractdauhq (long accum A)
- -- Runtime Function: unsigned long fract __satfractdausq (long accum A)
- -- Runtime Function: unsigned long long fract __satfractdaudq (long
- accum A)
- -- Runtime Function: unsigned short accum __satfractdauha (long accum
- A)
- -- Runtime Function: unsigned accum __satfractdausa (long accum A)
- -- Runtime Function: unsigned long accum __satfractdauda (long accum A)
- -- Runtime Function: unsigned long long accum __satfractdauta (long
- accum A)
- -- Runtime Function: short fract __satfracttaqq (long long accum A)
- -- Runtime Function: fract __satfracttahq (long long accum A)
- -- Runtime Function: long fract __satfracttasq (long long accum A)
- -- Runtime Function: long long fract __satfracttadq (long long accum A)
- -- Runtime Function: short accum __satfracttaha2 (long long accum A)
- -- Runtime Function: accum __satfracttasa2 (long long accum A)
- -- Runtime Function: long accum __satfracttada2 (long long accum A)
- -- Runtime Function: unsigned short fract __satfracttauqq (long long
- accum A)
- -- Runtime Function: unsigned fract __satfracttauhq (long long accum A)
- -- Runtime Function: unsigned long fract __satfracttausq (long long
- accum A)
- -- Runtime Function: unsigned long long fract __satfracttaudq (long
- long accum A)
- -- Runtime Function: unsigned short accum __satfracttauha (long long
- accum A)
- -- Runtime Function: unsigned accum __satfracttausa (long long accum A)
- -- Runtime Function: unsigned long accum __satfracttauda (long long
- accum A)
- -- Runtime Function: unsigned long long accum __satfracttauta (long
- long accum A)
- -- Runtime Function: short fract __satfractuqqqq (unsigned short fract
- A)
- -- Runtime Function: fract __satfractuqqhq (unsigned short fract A)
- -- Runtime Function: long fract __satfractuqqsq (unsigned short fract
- A)
- -- Runtime Function: long long fract __satfractuqqdq (unsigned short
- fract A)
- -- Runtime Function: short accum __satfractuqqha (unsigned short fract
- A)
- -- Runtime Function: accum __satfractuqqsa (unsigned short fract A)
- -- Runtime Function: long accum __satfractuqqda (unsigned short fract
- A)
- -- Runtime Function: long long accum __satfractuqqta (unsigned short
- fract A)
- -- Runtime Function: unsigned fract __satfractuqquhq2 (unsigned short
- fract A)
- -- Runtime Function: unsigned long fract __satfractuqqusq2 (unsigned
- short fract A)
- -- Runtime Function: unsigned long long fract __satfractuqqudq2
- (unsigned short fract A)
- -- Runtime Function: unsigned short accum __satfractuqquha (unsigned
- short fract A)
- -- Runtime Function: unsigned accum __satfractuqqusa (unsigned short
- fract A)
- -- Runtime Function: unsigned long accum __satfractuqquda (unsigned
- short fract A)
- -- Runtime Function: unsigned long long accum __satfractuqquta
- (unsigned short fract A)
- -- Runtime Function: short fract __satfractuhqqq (unsigned fract A)
- -- Runtime Function: fract __satfractuhqhq (unsigned fract A)
- -- Runtime Function: long fract __satfractuhqsq (unsigned fract A)
- -- Runtime Function: long long fract __satfractuhqdq (unsigned fract A)
- -- Runtime Function: short accum __satfractuhqha (unsigned fract A)
- -- Runtime Function: accum __satfractuhqsa (unsigned fract A)
- -- Runtime Function: long accum __satfractuhqda (unsigned fract A)
- -- Runtime Function: long long accum __satfractuhqta (unsigned fract A)
- -- Runtime Function: unsigned short fract __satfractuhquqq2 (unsigned
- fract A)
- -- Runtime Function: unsigned long fract __satfractuhqusq2 (unsigned
- fract A)
- -- Runtime Function: unsigned long long fract __satfractuhqudq2
- (unsigned fract A)
- -- Runtime Function: unsigned short accum __satfractuhquha (unsigned
- fract A)
- -- Runtime Function: unsigned accum __satfractuhqusa (unsigned fract A)
- -- Runtime Function: unsigned long accum __satfractuhquda (unsigned
- fract A)
- -- Runtime Function: unsigned long long accum __satfractuhquta
- (unsigned fract A)
- -- Runtime Function: short fract __satfractusqqq (unsigned long fract
- A)
- -- Runtime Function: fract __satfractusqhq (unsigned long fract A)
- -- Runtime Function: long fract __satfractusqsq (unsigned long fract A)
- -- Runtime Function: long long fract __satfractusqdq (unsigned long
- fract A)
- -- Runtime Function: short accum __satfractusqha (unsigned long fract
- A)
- -- Runtime Function: accum __satfractusqsa (unsigned long fract A)
- -- Runtime Function: long accum __satfractusqda (unsigned long fract A)
- -- Runtime Function: long long accum __satfractusqta (unsigned long
- fract A)
- -- Runtime Function: unsigned short fract __satfractusquqq2 (unsigned
- long fract A)
- -- Runtime Function: unsigned fract __satfractusquhq2 (unsigned long
- fract A)
- -- Runtime Function: unsigned long long fract __satfractusqudq2
- (unsigned long fract A)
- -- Runtime Function: unsigned short accum __satfractusquha (unsigned
- long fract A)
- -- Runtime Function: unsigned accum __satfractusqusa (unsigned long
- fract A)
- -- Runtime Function: unsigned long accum __satfractusquda (unsigned
- long fract A)
- -- Runtime Function: unsigned long long accum __satfractusquta
- (unsigned long fract A)
- -- Runtime Function: short fract __satfractudqqq (unsigned long long
- fract A)
- -- Runtime Function: fract __satfractudqhq (unsigned long long fract A)
- -- Runtime Function: long fract __satfractudqsq (unsigned long long
- fract A)
- -- Runtime Function: long long fract __satfractudqdq (unsigned long
- long fract A)
- -- Runtime Function: short accum __satfractudqha (unsigned long long
- fract A)
- -- Runtime Function: accum __satfractudqsa (unsigned long long fract A)
- -- Runtime Function: long accum __satfractudqda (unsigned long long
- fract A)
- -- Runtime Function: long long accum __satfractudqta (unsigned long
- long fract A)
- -- Runtime Function: unsigned short fract __satfractudquqq2 (unsigned
- long long fract A)
- -- Runtime Function: unsigned fract __satfractudquhq2 (unsigned long
- long fract A)
- -- Runtime Function: unsigned long fract __satfractudqusq2 (unsigned
- long long fract A)
- -- Runtime Function: unsigned short accum __satfractudquha (unsigned
- long long fract A)
- -- Runtime Function: unsigned accum __satfractudqusa (unsigned long
- long fract A)
- -- Runtime Function: unsigned long accum __satfractudquda (unsigned
- long long fract A)
- -- Runtime Function: unsigned long long accum __satfractudquta
- (unsigned long long fract A)
- -- Runtime Function: short fract __satfractuhaqq (unsigned short accum
- A)
- -- Runtime Function: fract __satfractuhahq (unsigned short accum A)
- -- Runtime Function: long fract __satfractuhasq (unsigned short accum
- A)
- -- Runtime Function: long long fract __satfractuhadq (unsigned short
- accum A)
- -- Runtime Function: short accum __satfractuhaha (unsigned short accum
- A)
- -- Runtime Function: accum __satfractuhasa (unsigned short accum A)
- -- Runtime Function: long accum __satfractuhada (unsigned short accum
- A)
- -- Runtime Function: long long accum __satfractuhata (unsigned short
- accum A)
- -- Runtime Function: unsigned short fract __satfractuhauqq (unsigned
- short accum A)
- -- Runtime Function: unsigned fract __satfractuhauhq (unsigned short
- accum A)
- -- Runtime Function: unsigned long fract __satfractuhausq (unsigned
- short accum A)
- -- Runtime Function: unsigned long long fract __satfractuhaudq
- (unsigned short accum A)
- -- Runtime Function: unsigned accum __satfractuhausa2 (unsigned short
- accum A)
- -- Runtime Function: unsigned long accum __satfractuhauda2 (unsigned
- short accum A)
- -- Runtime Function: unsigned long long accum __satfractuhauta2
- (unsigned short accum A)
- -- Runtime Function: short fract __satfractusaqq (unsigned accum A)
- -- Runtime Function: fract __satfractusahq (unsigned accum A)
- -- Runtime Function: long fract __satfractusasq (unsigned accum A)
- -- Runtime Function: long long fract __satfractusadq (unsigned accum A)
- -- Runtime Function: short accum __satfractusaha (unsigned accum A)
- -- Runtime Function: accum __satfractusasa (unsigned accum A)
- -- Runtime Function: long accum __satfractusada (unsigned accum A)
- -- Runtime Function: long long accum __satfractusata (unsigned accum A)
- -- Runtime Function: unsigned short fract __satfractusauqq (unsigned
- accum A)
- -- Runtime Function: unsigned fract __satfractusauhq (unsigned accum A)
- -- Runtime Function: unsigned long fract __satfractusausq (unsigned
- accum A)
- -- Runtime Function: unsigned long long fract __satfractusaudq
- (unsigned accum A)
- -- Runtime Function: unsigned short accum __satfractusauha2 (unsigned
- accum A)
- -- Runtime Function: unsigned long accum __satfractusauda2 (unsigned
- accum A)
- -- Runtime Function: unsigned long long accum __satfractusauta2
- (unsigned accum A)
- -- Runtime Function: short fract __satfractudaqq (unsigned long accum
- A)
- -- Runtime Function: fract __satfractudahq (unsigned long accum A)
- -- Runtime Function: long fract __satfractudasq (unsigned long accum A)
- -- Runtime Function: long long fract __satfractudadq (unsigned long
- accum A)
- -- Runtime Function: short accum __satfractudaha (unsigned long accum
- A)
- -- Runtime Function: accum __satfractudasa (unsigned long accum A)
- -- Runtime Function: long accum __satfractudada (unsigned long accum A)
- -- Runtime Function: long long accum __satfractudata (unsigned long
- accum A)
- -- Runtime Function: unsigned short fract __satfractudauqq (unsigned
- long accum A)
- -- Runtime Function: unsigned fract __satfractudauhq (unsigned long
- accum A)
- -- Runtime Function: unsigned long fract __satfractudausq (unsigned
- long accum A)
- -- Runtime Function: unsigned long long fract __satfractudaudq
- (unsigned long accum A)
- -- Runtime Function: unsigned short accum __satfractudauha2 (unsigned
- long accum A)
- -- Runtime Function: unsigned accum __satfractudausa2 (unsigned long
- accum A)
- -- Runtime Function: unsigned long long accum __satfractudauta2
- (unsigned long accum A)
- -- Runtime Function: short fract __satfractutaqq (unsigned long long
- accum A)
- -- Runtime Function: fract __satfractutahq (unsigned long long accum A)
- -- Runtime Function: long fract __satfractutasq (unsigned long long
- accum A)
- -- Runtime Function: long long fract __satfractutadq (unsigned long
- long accum A)
- -- Runtime Function: short accum __satfractutaha (unsigned long long
- accum A)
- -- Runtime Function: accum __satfractutasa (unsigned long long accum A)
- -- Runtime Function: long accum __satfractutada (unsigned long long
- accum A)
- -- Runtime Function: long long accum __satfractutata (unsigned long
- long accum A)
- -- Runtime Function: unsigned short fract __satfractutauqq (unsigned
- long long accum A)
- -- Runtime Function: unsigned fract __satfractutauhq (unsigned long
- long accum A)
- -- Runtime Function: unsigned long fract __satfractutausq (unsigned
- long long accum A)
- -- Runtime Function: unsigned long long fract __satfractutaudq
- (unsigned long long accum A)
- -- Runtime Function: unsigned short accum __satfractutauha2 (unsigned
- long long accum A)
- -- Runtime Function: unsigned accum __satfractutausa2 (unsigned long
- long accum A)
- -- Runtime Function: unsigned long accum __satfractutauda2 (unsigned
- long long accum A)
- -- Runtime Function: short fract __satfractqiqq (signed char A)
- -- Runtime Function: fract __satfractqihq (signed char A)
- -- Runtime Function: long fract __satfractqisq (signed char A)
- -- Runtime Function: long long fract __satfractqidq (signed char A)
- -- Runtime Function: short accum __satfractqiha (signed char A)
- -- Runtime Function: accum __satfractqisa (signed char A)
- -- Runtime Function: long accum __satfractqida (signed char A)
- -- Runtime Function: long long accum __satfractqita (signed char A)
- -- Runtime Function: unsigned short fract __satfractqiuqq (signed char
- A)
- -- Runtime Function: unsigned fract __satfractqiuhq (signed char A)
- -- Runtime Function: unsigned long fract __satfractqiusq (signed char
- A)
- -- Runtime Function: unsigned long long fract __satfractqiudq (signed
- char A)
- -- Runtime Function: unsigned short accum __satfractqiuha (signed char
- A)
- -- Runtime Function: unsigned accum __satfractqiusa (signed char A)
- -- Runtime Function: unsigned long accum __satfractqiuda (signed char
- A)
- -- Runtime Function: unsigned long long accum __satfractqiuta (signed
- char A)
- -- Runtime Function: short fract __satfracthiqq (short A)
- -- Runtime Function: fract __satfracthihq (short A)
- -- Runtime Function: long fract __satfracthisq (short A)
- -- Runtime Function: long long fract __satfracthidq (short A)
- -- Runtime Function: short accum __satfracthiha (short A)
- -- Runtime Function: accum __satfracthisa (short A)
- -- Runtime Function: long accum __satfracthida (short A)
- -- Runtime Function: long long accum __satfracthita (short A)
- -- Runtime Function: unsigned short fract __satfracthiuqq (short A)
- -- Runtime Function: unsigned fract __satfracthiuhq (short A)
- -- Runtime Function: unsigned long fract __satfracthiusq (short A)
- -- Runtime Function: unsigned long long fract __satfracthiudq (short A)
- -- Runtime Function: unsigned short accum __satfracthiuha (short A)
- -- Runtime Function: unsigned accum __satfracthiusa (short A)
- -- Runtime Function: unsigned long accum __satfracthiuda (short A)
- -- Runtime Function: unsigned long long accum __satfracthiuta (short A)
- -- Runtime Function: short fract __satfractsiqq (int A)
- -- Runtime Function: fract __satfractsihq (int A)
- -- Runtime Function: long fract __satfractsisq (int A)
- -- Runtime Function: long long fract __satfractsidq (int A)
- -- Runtime Function: short accum __satfractsiha (int A)
- -- Runtime Function: accum __satfractsisa (int A)
- -- Runtime Function: long accum __satfractsida (int A)
- -- Runtime Function: long long accum __satfractsita (int A)
- -- Runtime Function: unsigned short fract __satfractsiuqq (int A)
- -- Runtime Function: unsigned fract __satfractsiuhq (int A)
- -- Runtime Function: unsigned long fract __satfractsiusq (int A)
- -- Runtime Function: unsigned long long fract __satfractsiudq (int A)
- -- Runtime Function: unsigned short accum __satfractsiuha (int A)
- -- Runtime Function: unsigned accum __satfractsiusa (int A)
- -- Runtime Function: unsigned long accum __satfractsiuda (int A)
- -- Runtime Function: unsigned long long accum __satfractsiuta (int A)
- -- Runtime Function: short fract __satfractdiqq (long A)
- -- Runtime Function: fract __satfractdihq (long A)
- -- Runtime Function: long fract __satfractdisq (long A)
- -- Runtime Function: long long fract __satfractdidq (long A)
- -- Runtime Function: short accum __satfractdiha (long A)
- -- Runtime Function: accum __satfractdisa (long A)
- -- Runtime Function: long accum __satfractdida (long A)
- -- Runtime Function: long long accum __satfractdita (long A)
- -- Runtime Function: unsigned short fract __satfractdiuqq (long A)
- -- Runtime Function: unsigned fract __satfractdiuhq (long A)
- -- Runtime Function: unsigned long fract __satfractdiusq (long A)
- -- Runtime Function: unsigned long long fract __satfractdiudq (long A)
- -- Runtime Function: unsigned short accum __satfractdiuha (long A)
- -- Runtime Function: unsigned accum __satfractdiusa (long A)
- -- Runtime Function: unsigned long accum __satfractdiuda (long A)
- -- Runtime Function: unsigned long long accum __satfractdiuta (long A)
- -- Runtime Function: short fract __satfracttiqq (long long A)
- -- Runtime Function: fract __satfracttihq (long long A)
- -- Runtime Function: long fract __satfracttisq (long long A)
- -- Runtime Function: long long fract __satfracttidq (long long A)
- -- Runtime Function: short accum __satfracttiha (long long A)
- -- Runtime Function: accum __satfracttisa (long long A)
- -- Runtime Function: long accum __satfracttida (long long A)
- -- Runtime Function: long long accum __satfracttita (long long A)
- -- Runtime Function: unsigned short fract __satfracttiuqq (long long A)
- -- Runtime Function: unsigned fract __satfracttiuhq (long long A)
- -- Runtime Function: unsigned long fract __satfracttiusq (long long A)
- -- Runtime Function: unsigned long long fract __satfracttiudq (long
- long A)
- -- Runtime Function: unsigned short accum __satfracttiuha (long long A)
- -- Runtime Function: unsigned accum __satfracttiusa (long long A)
- -- Runtime Function: unsigned long accum __satfracttiuda (long long A)
- -- Runtime Function: unsigned long long accum __satfracttiuta (long
- long A)
- -- Runtime Function: short fract __satfractsfqq (float A)
- -- Runtime Function: fract __satfractsfhq (float A)
- -- Runtime Function: long fract __satfractsfsq (float A)
- -- Runtime Function: long long fract __satfractsfdq (float A)
- -- Runtime Function: short accum __satfractsfha (float A)
- -- Runtime Function: accum __satfractsfsa (float A)
- -- Runtime Function: long accum __satfractsfda (float A)
- -- Runtime Function: long long accum __satfractsfta (float A)
- -- Runtime Function: unsigned short fract __satfractsfuqq (float A)
- -- Runtime Function: unsigned fract __satfractsfuhq (float A)
- -- Runtime Function: unsigned long fract __satfractsfusq (float A)
- -- Runtime Function: unsigned long long fract __satfractsfudq (float A)
- -- Runtime Function: unsigned short accum __satfractsfuha (float A)
- -- Runtime Function: unsigned accum __satfractsfusa (float A)
- -- Runtime Function: unsigned long accum __satfractsfuda (float A)
- -- Runtime Function: unsigned long long accum __satfractsfuta (float A)
- -- Runtime Function: short fract __satfractdfqq (double A)
- -- Runtime Function: fract __satfractdfhq (double A)
- -- Runtime Function: long fract __satfractdfsq (double A)
- -- Runtime Function: long long fract __satfractdfdq (double A)
- -- Runtime Function: short accum __satfractdfha (double A)
- -- Runtime Function: accum __satfractdfsa (double A)
- -- Runtime Function: long accum __satfractdfda (double A)
- -- Runtime Function: long long accum __satfractdfta (double A)
- -- Runtime Function: unsigned short fract __satfractdfuqq (double A)
- -- Runtime Function: unsigned fract __satfractdfuhq (double A)
- -- Runtime Function: unsigned long fract __satfractdfusq (double A)
- -- Runtime Function: unsigned long long fract __satfractdfudq (double
- A)
- -- Runtime Function: unsigned short accum __satfractdfuha (double A)
- -- Runtime Function: unsigned accum __satfractdfusa (double A)
- -- Runtime Function: unsigned long accum __satfractdfuda (double A)
- -- Runtime Function: unsigned long long accum __satfractdfuta (double
- A)
- The functions convert from fractional and signed non-fractionals to
- fractionals, with saturation.
-
- -- Runtime Function: unsigned char __fractunsqqqi (short fract A)
- -- Runtime Function: unsigned short __fractunsqqhi (short fract A)
- -- Runtime Function: unsigned int __fractunsqqsi (short fract A)
- -- Runtime Function: unsigned long __fractunsqqdi (short fract A)
- -- Runtime Function: unsigned long long __fractunsqqti (short fract A)
- -- Runtime Function: unsigned char __fractunshqqi (fract A)
- -- Runtime Function: unsigned short __fractunshqhi (fract A)
- -- Runtime Function: unsigned int __fractunshqsi (fract A)
- -- Runtime Function: unsigned long __fractunshqdi (fract A)
- -- Runtime Function: unsigned long long __fractunshqti (fract A)
- -- Runtime Function: unsigned char __fractunssqqi (long fract A)
- -- Runtime Function: unsigned short __fractunssqhi (long fract A)
- -- Runtime Function: unsigned int __fractunssqsi (long fract A)
- -- Runtime Function: unsigned long __fractunssqdi (long fract A)
- -- Runtime Function: unsigned long long __fractunssqti (long fract A)
- -- Runtime Function: unsigned char __fractunsdqqi (long long fract A)
- -- Runtime Function: unsigned short __fractunsdqhi (long long fract A)
- -- Runtime Function: unsigned int __fractunsdqsi (long long fract A)
- -- Runtime Function: unsigned long __fractunsdqdi (long long fract A)
- -- Runtime Function: unsigned long long __fractunsdqti (long long fract
- A)
- -- Runtime Function: unsigned char __fractunshaqi (short accum A)
- -- Runtime Function: unsigned short __fractunshahi (short accum A)
- -- Runtime Function: unsigned int __fractunshasi (short accum A)
- -- Runtime Function: unsigned long __fractunshadi (short accum A)
- -- Runtime Function: unsigned long long __fractunshati (short accum A)
- -- Runtime Function: unsigned char __fractunssaqi (accum A)
- -- Runtime Function: unsigned short __fractunssahi (accum A)
- -- Runtime Function: unsigned int __fractunssasi (accum A)
- -- Runtime Function: unsigned long __fractunssadi (accum A)
- -- Runtime Function: unsigned long long __fractunssati (accum A)
- -- Runtime Function: unsigned char __fractunsdaqi (long accum A)
- -- Runtime Function: unsigned short __fractunsdahi (long accum A)
- -- Runtime Function: unsigned int __fractunsdasi (long accum A)
- -- Runtime Function: unsigned long __fractunsdadi (long accum A)
- -- Runtime Function: unsigned long long __fractunsdati (long accum A)
- -- Runtime Function: unsigned char __fractunstaqi (long long accum A)
- -- Runtime Function: unsigned short __fractunstahi (long long accum A)
- -- Runtime Function: unsigned int __fractunstasi (long long accum A)
- -- Runtime Function: unsigned long __fractunstadi (long long accum A)
- -- Runtime Function: unsigned long long __fractunstati (long long accum
- A)
- -- Runtime Function: unsigned char __fractunsuqqqi (unsigned short
- fract A)
- -- Runtime Function: unsigned short __fractunsuqqhi (unsigned short
- fract A)
- -- Runtime Function: unsigned int __fractunsuqqsi (unsigned short fract
- A)
- -- Runtime Function: unsigned long __fractunsuqqdi (unsigned short
- fract A)
- -- Runtime Function: unsigned long long __fractunsuqqti (unsigned short
- fract A)
- -- Runtime Function: unsigned char __fractunsuhqqi (unsigned fract A)
- -- Runtime Function: unsigned short __fractunsuhqhi (unsigned fract A)
- -- Runtime Function: unsigned int __fractunsuhqsi (unsigned fract A)
- -- Runtime Function: unsigned long __fractunsuhqdi (unsigned fract A)
- -- Runtime Function: unsigned long long __fractunsuhqti (unsigned fract
- A)
- -- Runtime Function: unsigned char __fractunsusqqi (unsigned long fract
- A)
- -- Runtime Function: unsigned short __fractunsusqhi (unsigned long
- fract A)
- -- Runtime Function: unsigned int __fractunsusqsi (unsigned long fract
- A)
- -- Runtime Function: unsigned long __fractunsusqdi (unsigned long fract
- A)
- -- Runtime Function: unsigned long long __fractunsusqti (unsigned long
- fract A)
- -- Runtime Function: unsigned char __fractunsudqqi (unsigned long long
- fract A)
- -- Runtime Function: unsigned short __fractunsudqhi (unsigned long long
- fract A)
- -- Runtime Function: unsigned int __fractunsudqsi (unsigned long long
- fract A)
- -- Runtime Function: unsigned long __fractunsudqdi (unsigned long long
- fract A)
- -- Runtime Function: unsigned long long __fractunsudqti (unsigned long
- long fract A)
- -- Runtime Function: unsigned char __fractunsuhaqi (unsigned short
- accum A)
- -- Runtime Function: unsigned short __fractunsuhahi (unsigned short
- accum A)
- -- Runtime Function: unsigned int __fractunsuhasi (unsigned short accum
- A)
- -- Runtime Function: unsigned long __fractunsuhadi (unsigned short
- accum A)
- -- Runtime Function: unsigned long long __fractunsuhati (unsigned short
- accum A)
- -- Runtime Function: unsigned char __fractunsusaqi (unsigned accum A)
- -- Runtime Function: unsigned short __fractunsusahi (unsigned accum A)
- -- Runtime Function: unsigned int __fractunsusasi (unsigned accum A)
- -- Runtime Function: unsigned long __fractunsusadi (unsigned accum A)
- -- Runtime Function: unsigned long long __fractunsusati (unsigned accum
- A)
- -- Runtime Function: unsigned char __fractunsudaqi (unsigned long accum
- A)
- -- Runtime Function: unsigned short __fractunsudahi (unsigned long
- accum A)
- -- Runtime Function: unsigned int __fractunsudasi (unsigned long accum
- A)
- -- Runtime Function: unsigned long __fractunsudadi (unsigned long accum
- A)
- -- Runtime Function: unsigned long long __fractunsudati (unsigned long
- accum A)
- -- Runtime Function: unsigned char __fractunsutaqi (unsigned long long
- accum A)
- -- Runtime Function: unsigned short __fractunsutahi (unsigned long long
- accum A)
- -- Runtime Function: unsigned int __fractunsutasi (unsigned long long
- accum A)
- -- Runtime Function: unsigned long __fractunsutadi (unsigned long long
- accum A)
- -- Runtime Function: unsigned long long __fractunsutati (unsigned long
- long accum A)
- -- Runtime Function: short fract __fractunsqiqq (unsigned char A)
- -- Runtime Function: fract __fractunsqihq (unsigned char A)
- -- Runtime Function: long fract __fractunsqisq (unsigned char A)
- -- Runtime Function: long long fract __fractunsqidq (unsigned char A)
- -- Runtime Function: short accum __fractunsqiha (unsigned char A)
- -- Runtime Function: accum __fractunsqisa (unsigned char A)
- -- Runtime Function: long accum __fractunsqida (unsigned char A)
- -- Runtime Function: long long accum __fractunsqita (unsigned char A)
- -- Runtime Function: unsigned short fract __fractunsqiuqq (unsigned
- char A)
- -- Runtime Function: unsigned fract __fractunsqiuhq (unsigned char A)
- -- Runtime Function: unsigned long fract __fractunsqiusq (unsigned char
- A)
- -- Runtime Function: unsigned long long fract __fractunsqiudq (unsigned
- char A)
- -- Runtime Function: unsigned short accum __fractunsqiuha (unsigned
- char A)
- -- Runtime Function: unsigned accum __fractunsqiusa (unsigned char A)
- -- Runtime Function: unsigned long accum __fractunsqiuda (unsigned char
- A)
- -- Runtime Function: unsigned long long accum __fractunsqiuta (unsigned
- char A)
- -- Runtime Function: short fract __fractunshiqq (unsigned short A)
- -- Runtime Function: fract __fractunshihq (unsigned short A)
- -- Runtime Function: long fract __fractunshisq (unsigned short A)
- -- Runtime Function: long long fract __fractunshidq (unsigned short A)
- -- Runtime Function: short accum __fractunshiha (unsigned short A)
- -- Runtime Function: accum __fractunshisa (unsigned short A)
- -- Runtime Function: long accum __fractunshida (unsigned short A)
- -- Runtime Function: long long accum __fractunshita (unsigned short A)
- -- Runtime Function: unsigned short fract __fractunshiuqq (unsigned
- short A)
- -- Runtime Function: unsigned fract __fractunshiuhq (unsigned short A)
- -- Runtime Function: unsigned long fract __fractunshiusq (unsigned
- short A)
- -- Runtime Function: unsigned long long fract __fractunshiudq (unsigned
- short A)
- -- Runtime Function: unsigned short accum __fractunshiuha (unsigned
- short A)
- -- Runtime Function: unsigned accum __fractunshiusa (unsigned short A)
- -- Runtime Function: unsigned long accum __fractunshiuda (unsigned
- short A)
- -- Runtime Function: unsigned long long accum __fractunshiuta (unsigned
- short A)
- -- Runtime Function: short fract __fractunssiqq (unsigned int A)
- -- Runtime Function: fract __fractunssihq (unsigned int A)
- -- Runtime Function: long fract __fractunssisq (unsigned int A)
- -- Runtime Function: long long fract __fractunssidq (unsigned int A)
- -- Runtime Function: short accum __fractunssiha (unsigned int A)
- -- Runtime Function: accum __fractunssisa (unsigned int A)
- -- Runtime Function: long accum __fractunssida (unsigned int A)
- -- Runtime Function: long long accum __fractunssita (unsigned int A)
- -- Runtime Function: unsigned short fract __fractunssiuqq (unsigned int
- A)
- -- Runtime Function: unsigned fract __fractunssiuhq (unsigned int A)
- -- Runtime Function: unsigned long fract __fractunssiusq (unsigned int
- A)
- -- Runtime Function: unsigned long long fract __fractunssiudq (unsigned
- int A)
- -- Runtime Function: unsigned short accum __fractunssiuha (unsigned int
- A)
- -- Runtime Function: unsigned accum __fractunssiusa (unsigned int A)
- -- Runtime Function: unsigned long accum __fractunssiuda (unsigned int
- A)
- -- Runtime Function: unsigned long long accum __fractunssiuta (unsigned
- int A)
- -- Runtime Function: short fract __fractunsdiqq (unsigned long A)
- -- Runtime Function: fract __fractunsdihq (unsigned long A)
- -- Runtime Function: long fract __fractunsdisq (unsigned long A)
- -- Runtime Function: long long fract __fractunsdidq (unsigned long A)
- -- Runtime Function: short accum __fractunsdiha (unsigned long A)
- -- Runtime Function: accum __fractunsdisa (unsigned long A)
- -- Runtime Function: long accum __fractunsdida (unsigned long A)
- -- Runtime Function: long long accum __fractunsdita (unsigned long A)
- -- Runtime Function: unsigned short fract __fractunsdiuqq (unsigned
- long A)
- -- Runtime Function: unsigned fract __fractunsdiuhq (unsigned long A)
- -- Runtime Function: unsigned long fract __fractunsdiusq (unsigned long
- A)
- -- Runtime Function: unsigned long long fract __fractunsdiudq (unsigned
- long A)
- -- Runtime Function: unsigned short accum __fractunsdiuha (unsigned
- long A)
- -- Runtime Function: unsigned accum __fractunsdiusa (unsigned long A)
- -- Runtime Function: unsigned long accum __fractunsdiuda (unsigned long
- A)
- -- Runtime Function: unsigned long long accum __fractunsdiuta (unsigned
- long A)
- -- Runtime Function: short fract __fractunstiqq (unsigned long long A)
- -- Runtime Function: fract __fractunstihq (unsigned long long A)
- -- Runtime Function: long fract __fractunstisq (unsigned long long A)
- -- Runtime Function: long long fract __fractunstidq (unsigned long long
- A)
- -- Runtime Function: short accum __fractunstiha (unsigned long long A)
- -- Runtime Function: accum __fractunstisa (unsigned long long A)
- -- Runtime Function: long accum __fractunstida (unsigned long long A)
- -- Runtime Function: long long accum __fractunstita (unsigned long long
- A)
- -- Runtime Function: unsigned short fract __fractunstiuqq (unsigned
- long long A)
- -- Runtime Function: unsigned fract __fractunstiuhq (unsigned long long
- A)
- -- Runtime Function: unsigned long fract __fractunstiusq (unsigned long
- long A)
- -- Runtime Function: unsigned long long fract __fractunstiudq (unsigned
- long long A)
- -- Runtime Function: unsigned short accum __fractunstiuha (unsigned
- long long A)
- -- Runtime Function: unsigned accum __fractunstiusa (unsigned long long
- A)
- -- Runtime Function: unsigned long accum __fractunstiuda (unsigned long
- long A)
- -- Runtime Function: unsigned long long accum __fractunstiuta (unsigned
- long long A)
- These functions convert from fractionals to unsigned
- non-fractionals; and from unsigned non-fractionals to fractionals,
- without saturation.
-
- -- Runtime Function: short fract __satfractunsqiqq (unsigned char A)
- -- Runtime Function: fract __satfractunsqihq (unsigned char A)
- -- Runtime Function: long fract __satfractunsqisq (unsigned char A)
- -- Runtime Function: long long fract __satfractunsqidq (unsigned char
- A)
- -- Runtime Function: short accum __satfractunsqiha (unsigned char A)
- -- Runtime Function: accum __satfractunsqisa (unsigned char A)
- -- Runtime Function: long accum __satfractunsqida (unsigned char A)
- -- Runtime Function: long long accum __satfractunsqita (unsigned char
- A)
- -- Runtime Function: unsigned short fract __satfractunsqiuqq (unsigned
- char A)
- -- Runtime Function: unsigned fract __satfractunsqiuhq (unsigned char
- A)
- -- Runtime Function: unsigned long fract __satfractunsqiusq (unsigned
- char A)
- -- Runtime Function: unsigned long long fract __satfractunsqiudq
- (unsigned char A)
- -- Runtime Function: unsigned short accum __satfractunsqiuha (unsigned
- char A)
- -- Runtime Function: unsigned accum __satfractunsqiusa (unsigned char
- A)
- -- Runtime Function: unsigned long accum __satfractunsqiuda (unsigned
- char A)
- -- Runtime Function: unsigned long long accum __satfractunsqiuta
- (unsigned char A)
- -- Runtime Function: short fract __satfractunshiqq (unsigned short A)
- -- Runtime Function: fract __satfractunshihq (unsigned short A)
- -- Runtime Function: long fract __satfractunshisq (unsigned short A)
- -- Runtime Function: long long fract __satfractunshidq (unsigned short
- A)
- -- Runtime Function: short accum __satfractunshiha (unsigned short A)
- -- Runtime Function: accum __satfractunshisa (unsigned short A)
- -- Runtime Function: long accum __satfractunshida (unsigned short A)
- -- Runtime Function: long long accum __satfractunshita (unsigned short
- A)
- -- Runtime Function: unsigned short fract __satfractunshiuqq (unsigned
- short A)
- -- Runtime Function: unsigned fract __satfractunshiuhq (unsigned short
- A)
- -- Runtime Function: unsigned long fract __satfractunshiusq (unsigned
- short A)
- -- Runtime Function: unsigned long long fract __satfractunshiudq
- (unsigned short A)
- -- Runtime Function: unsigned short accum __satfractunshiuha (unsigned
- short A)
- -- Runtime Function: unsigned accum __satfractunshiusa (unsigned short
- A)
- -- Runtime Function: unsigned long accum __satfractunshiuda (unsigned
- short A)
- -- Runtime Function: unsigned long long accum __satfractunshiuta
- (unsigned short A)
- -- Runtime Function: short fract __satfractunssiqq (unsigned int A)
- -- Runtime Function: fract __satfractunssihq (unsigned int A)
- -- Runtime Function: long fract __satfractunssisq (unsigned int A)
- -- Runtime Function: long long fract __satfractunssidq (unsigned int A)
- -- Runtime Function: short accum __satfractunssiha (unsigned int A)
- -- Runtime Function: accum __satfractunssisa (unsigned int A)
- -- Runtime Function: long accum __satfractunssida (unsigned int A)
- -- Runtime Function: long long accum __satfractunssita (unsigned int A)
- -- Runtime Function: unsigned short fract __satfractunssiuqq (unsigned
- int A)
- -- Runtime Function: unsigned fract __satfractunssiuhq (unsigned int A)
- -- Runtime Function: unsigned long fract __satfractunssiusq (unsigned
- int A)
- -- Runtime Function: unsigned long long fract __satfractunssiudq
- (unsigned int A)
- -- Runtime Function: unsigned short accum __satfractunssiuha (unsigned
- int A)
- -- Runtime Function: unsigned accum __satfractunssiusa (unsigned int A)
- -- Runtime Function: unsigned long accum __satfractunssiuda (unsigned
- int A)
- -- Runtime Function: unsigned long long accum __satfractunssiuta
- (unsigned int A)
- -- Runtime Function: short fract __satfractunsdiqq (unsigned long A)
- -- Runtime Function: fract __satfractunsdihq (unsigned long A)
- -- Runtime Function: long fract __satfractunsdisq (unsigned long A)
- -- Runtime Function: long long fract __satfractunsdidq (unsigned long
- A)
- -- Runtime Function: short accum __satfractunsdiha (unsigned long A)
- -- Runtime Function: accum __satfractunsdisa (unsigned long A)
- -- Runtime Function: long accum __satfractunsdida (unsigned long A)
- -- Runtime Function: long long accum __satfractunsdita (unsigned long
- A)
- -- Runtime Function: unsigned short fract __satfractunsdiuqq (unsigned
- long A)
- -- Runtime Function: unsigned fract __satfractunsdiuhq (unsigned long
- A)
- -- Runtime Function: unsigned long fract __satfractunsdiusq (unsigned
- long A)
- -- Runtime Function: unsigned long long fract __satfractunsdiudq
- (unsigned long A)
- -- Runtime Function: unsigned short accum __satfractunsdiuha (unsigned
- long A)
- -- Runtime Function: unsigned accum __satfractunsdiusa (unsigned long
- A)
- -- Runtime Function: unsigned long accum __satfractunsdiuda (unsigned
- long A)
- -- Runtime Function: unsigned long long accum __satfractunsdiuta
- (unsigned long A)
- -- Runtime Function: short fract __satfractunstiqq (unsigned long long
- A)
- -- Runtime Function: fract __satfractunstihq (unsigned long long A)
- -- Runtime Function: long fract __satfractunstisq (unsigned long long
- A)
- -- Runtime Function: long long fract __satfractunstidq (unsigned long
- long A)
- -- Runtime Function: short accum __satfractunstiha (unsigned long long
- A)
- -- Runtime Function: accum __satfractunstisa (unsigned long long A)
- -- Runtime Function: long accum __satfractunstida (unsigned long long
- A)
- -- Runtime Function: long long accum __satfractunstita (unsigned long
- long A)
- -- Runtime Function: unsigned short fract __satfractunstiuqq (unsigned
- long long A)
- -- Runtime Function: unsigned fract __satfractunstiuhq (unsigned long
- long A)
- -- Runtime Function: unsigned long fract __satfractunstiusq (unsigned
- long long A)
- -- Runtime Function: unsigned long long fract __satfractunstiudq
- (unsigned long long A)
- -- Runtime Function: unsigned short accum __satfractunstiuha (unsigned
- long long A)
- -- Runtime Function: unsigned accum __satfractunstiusa (unsigned long
- long A)
- -- Runtime Function: unsigned long accum __satfractunstiuda (unsigned
- long long A)
- -- Runtime Function: unsigned long long accum __satfractunstiuta
- (unsigned long long A)
- These functions convert from unsigned non-fractionals to
- fractionals, with saturation.
-
-
-File: gccint.info, Node: Exception handling routines, Next: Miscellaneous routines, Prev: Fixed-point fractional library routines, Up: Libgcc
-
-4.5 Language-independent routines for exception handling
-========================================================
-
-document me!
-
- _Unwind_DeleteException
- _Unwind_Find_FDE
- _Unwind_ForcedUnwind
- _Unwind_GetGR
- _Unwind_GetIP
- _Unwind_GetLanguageSpecificData
- _Unwind_GetRegionStart
- _Unwind_GetTextRelBase
- _Unwind_GetDataRelBase
- _Unwind_RaiseException
- _Unwind_Resume
- _Unwind_SetGR
- _Unwind_SetIP
- _Unwind_FindEnclosingFunction
- _Unwind_SjLj_Register
- _Unwind_SjLj_Unregister
- _Unwind_SjLj_RaiseException
- _Unwind_SjLj_ForcedUnwind
- _Unwind_SjLj_Resume
- __deregister_frame
- __deregister_frame_info
- __deregister_frame_info_bases
- __register_frame
- __register_frame_info
- __register_frame_info_bases
- __register_frame_info_table
- __register_frame_info_table_bases
- __register_frame_table
-
-
-File: gccint.info, Node: Miscellaneous routines, Prev: Exception handling routines, Up: Libgcc
-
-4.6 Miscellaneous runtime library routines
-==========================================
-
-4.6.1 Cache control functions
------------------------------
-
- -- Runtime Function: void __clear_cache (char *BEG, char *END)
- This function clears the instruction cache between BEG and END.
-
-4.6.2 Split stack functions and variables
------------------------------------------
-
- -- Runtime Function: void * __splitstack_find (void *SEGMENT_ARG, void
- *SP, size_t LEN, void **NEXT_SEGMENT, void **NEXT_SP, void
- **INITIAL_SP)
- When using '-fsplit-stack', this call may be used to iterate over
- the stack segments. It may be called like this:
- void *next_segment = NULL;
- void *next_sp = NULL;
- void *initial_sp = NULL;
- void *stack;
- size_t stack_size;
- while ((stack = __splitstack_find (next_segment, next_sp,
- &stack_size, &next_segment,
- &next_sp, &initial_sp))
- != NULL)
- {
- /* Stack segment starts at stack and is
- stack_size bytes long. */
- }
-
- There is no way to iterate over the stack segments of a different
- thread. However, what is permitted is for one thread to call this
- with the SEGMENT_ARG and SP arguments NULL, to pass NEXT_SEGMENT,
- NEXT_SP, and INITIAL_SP to a different thread, and then to suspend
- one way or another. A different thread may run the subsequent
- '__splitstack_find' iterations. Of course, this will only work if
- the first thread is suspended while the second thread is calling
- '__splitstack_find'. If not, the second thread could be looking at
- the stack while it is changing, and anything could happen.
-
- -- Variable: __morestack_segments
- -- Variable: __morestack_current_segment
- -- Variable: __morestack_initial_sp
- Internal variables used by the '-fsplit-stack' implementation.
-
-
-File: gccint.info, Node: Languages, Next: Source Tree, Prev: Libgcc, Up: Top
-
-5 Language Front Ends in GCC
-****************************
-
-The interface to front ends for languages in GCC, and in particular the
-'tree' structure (*note GENERIC::), was initially designed for C, and
-many aspects of it are still somewhat biased towards C and C-like
-languages. It is, however, reasonably well suited to other procedural
-languages, and front ends for many such languages have been written for
-GCC.
-
- Writing a compiler as a front end for GCC, rather than compiling
-directly to assembler or generating C code which is then compiled by
-GCC, has several advantages:
-
- * GCC front ends benefit from the support for many different target
- machines already present in GCC.
- * GCC front ends benefit from all the optimizations in GCC. Some of
- these, such as alias analysis, may work better when GCC is
- compiling directly from source code then when it is compiling from
- generated C code.
- * Better debugging information is generated when compiling directly
- from source code than when going via intermediate generated C code.
-
- Because of the advantages of writing a compiler as a GCC front end, GCC
-front ends have also been created for languages very different from
-those for which GCC was designed, such as the declarative
-logic/functional language Mercury. For these reasons, it may also be
-useful to implement compilers created for specialized purposes (for
-example, as part of a research project) as GCC front ends.
-
-
-File: gccint.info, Node: Source Tree, Next: Testsuites, Prev: Languages, Up: Top
-
-6 Source Tree Structure and Build System
-****************************************
-
-This chapter describes the structure of the GCC source tree, and how GCC
-is built. The user documentation for building and installing GCC is in
-a separate manual (<http://gcc.gnu.org/install/>), with which it is
-presumed that you are familiar.
-
-* Menu:
-
-* Configure Terms:: Configuration terminology and history.
-* Top Level:: The top level source directory.
-* gcc Directory:: The 'gcc' subdirectory.
-
-
-File: gccint.info, Node: Configure Terms, Next: Top Level, Up: Source Tree
-
-6.1 Configure Terms and History
-===============================
-
-The configure and build process has a long and colorful history, and can
-be confusing to anyone who doesn't know why things are the way they are.
-While there are other documents which describe the configuration process
-in detail, here are a few things that everyone working on GCC should
-know.
-
- There are three system names that the build knows about: the machine
-you are building on ("build"), the machine that you are building for
-("host"), and the machine that GCC will produce code for ("target").
-When you configure GCC, you specify these with '--build=', '--host=',
-and '--target='.
-
- Specifying the host without specifying the build should be avoided, as
-'configure' may (and once did) assume that the host you specify is also
-the build, which may not be true.
-
- If build, host, and target are all the same, this is called a "native".
-If build and host are the same but target is different, this is called a
-"cross". If build, host, and target are all different this is called a
-"canadian" (for obscure reasons dealing with Canada's political party
-and the background of the person working on the build at that time). If
-host and target are the same, but build is different, you are using a
-cross-compiler to build a native for a different system. Some people
-call this a "host-x-host", "crossed native", or "cross-built native".
-If build and target are the same, but host is different, you are using a
-cross compiler to build a cross compiler that produces code for the
-machine you're building on. This is rare, so there is no common way of
-describing it. There is a proposal to call this a "crossback".
-
- If build and host are the same, the GCC you are building will also be
-used to build the target libraries (like 'libstdc++'). If build and
-host are different, you must have already built and installed a cross
-compiler that will be used to build the target libraries (if you
-configured with '--target=foo-bar', this compiler will be called
-'foo-bar-gcc').
-
- In the case of target libraries, the machine you're building for is the
-machine you specified with '--target'. So, build is the machine you're
-building on (no change there), host is the machine you're building for
-(the target libraries are built for the target, so host is the target
-you specified), and target doesn't apply (because you're not building a
-compiler, you're building libraries). The configure/make process will
-adjust these variables as needed. It also sets '$with_cross_host' to
-the original '--host' value in case you need it.
-
- The 'libiberty' support library is built up to three times: once for
-the host, once for the target (even if they are the same), and once for
-the build if build and host are different. This allows it to be used by
-all programs which are generated in the course of the build process.
-
-
-File: gccint.info, Node: Top Level, Next: gcc Directory, Prev: Configure Terms, Up: Source Tree
-
-6.2 Top Level Source Directory
-==============================
-
-The top level source directory in a GCC distribution contains several
-files and directories that are shared with other software distributions
-such as that of GNU Binutils. It also contains several subdirectories
-that contain parts of GCC and its runtime libraries:
-
-'boehm-gc'
- The Boehm conservative garbage collector, used as part of the Java
- runtime library.
-
-'config'
- Autoconf macros and Makefile fragments used throughout the tree.
-
-'contrib'
- Contributed scripts that may be found useful in conjunction with
- GCC. One of these, 'contrib/texi2pod.pl', is used to generate man
- pages from Texinfo manuals as part of the GCC build process.
-
-'fixincludes'
- The support for fixing system headers to work with GCC. See
- 'fixincludes/README' for more information. The headers fixed by
- this mechanism are installed in 'LIBSUBDIR/include-fixed'. Along
- with those headers, 'README-fixinc' is also installed, as
- 'LIBSUBDIR/include-fixed/README'.
-
-'gcc'
- The main sources of GCC itself (except for runtime libraries),
- including optimizers, support for different target architectures,
- language front ends, and testsuites. *Note The 'gcc' Subdirectory:
- gcc Directory, for details.
-
-'gnattools'
- Support tools for GNAT.
-
-'include'
- Headers for the 'libiberty' library.
-
-'intl'
- GNU 'libintl', from GNU 'gettext', for systems which do not include
- it in 'libc'.
-
-'libada'
- The Ada runtime library.
-
-'libatomic'
- The runtime support library for atomic operations (e.g. for
- '__sync' and '__atomic').
-
-'libcpp'
- The C preprocessor library.
-
-'libdecnumber'
- The Decimal Float support library.
-
-'libffi'
- The 'libffi' library, used as part of the Java runtime library.
-
-'libgcc'
- The GCC runtime library.
-
-'libgfortran'
- The Fortran runtime library.
-
-'libgo'
- The Go runtime library. The bulk of this library is mirrored from
- the master Go repository (http://code.google.com/p/go/).
-
-'libgomp'
- The GNU OpenMP runtime library.
-
-'libiberty'
- The 'libiberty' library, used for portability and for some
- generally useful data structures and algorithms. *Note
- Introduction: (libiberty)Top, for more information about this
- library.
-
-'libitm'
- The runtime support library for transactional memory.
-
-'libjava'
- The Java runtime library.
-
-'libobjc'
- The Objective-C and Objective-C++ runtime library.
-
-'libquadmath'
- The runtime support library for quad-precision math operations.
-
-'libssp'
- The Stack protector runtime library.
-
-'libstdc++-v3'
- The C++ runtime library.
-
-'lto-plugin'
- Plugin used by the linker if link-time optimizations are enabled.
-
-'maintainer-scripts'
- Scripts used by the 'gccadmin' account on 'gcc.gnu.org'.
-
-'zlib'
- The 'zlib' compression library, used by the Java front end, as part
- of the Java runtime library, and for compressing and uncompressing
- GCC's intermediate language in LTO object files.
-
- The build system in the top level directory, including how recursion
-into subdirectories works and how building runtime libraries for
-multilibs is handled, is documented in a separate manual, included with
-GNU Binutils. *Note GNU configure and build system: (configure)Top, for
-details.
-
-
-File: gccint.info, Node: gcc Directory, Prev: Top Level, Up: Source Tree
-
-6.3 The 'gcc' Subdirectory
-==========================
-
-The 'gcc' directory contains many files that are part of the C sources
-of GCC, other files used as part of the configuration and build process,
-and subdirectories including documentation and a testsuite. The files
-that are sources of GCC are documented in a separate chapter. *Note
-Passes and Files of the Compiler: Passes.
-
-* Menu:
-
-* Subdirectories:: Subdirectories of 'gcc'.
-* Configuration:: The configuration process, and the files it uses.
-* Build:: The build system in the 'gcc' directory.
-* Makefile:: Targets in 'gcc/Makefile'.
-* Library Files:: Library source files and headers under 'gcc/'.
-* Headers:: Headers installed by GCC.
-* Documentation:: Building documentation in GCC.
-* Front End:: Anatomy of a language front end.
-* Back End:: Anatomy of a target back end.
-
-
-File: gccint.info, Node: Subdirectories, Next: Configuration, Up: gcc Directory
-
-6.3.1 Subdirectories of 'gcc'
------------------------------
-
-The 'gcc' directory contains the following subdirectories:
-
-'LANGUAGE'
- Subdirectories for various languages. Directories containing a
- file 'config-lang.in' are language subdirectories. The contents of
- the subdirectories 'c' (for C), 'cp' (for C++), 'objc' (for
- Objective-C), 'objcp' (for Objective-C++), and 'lto' (for LTO) are
- documented in this manual (*note Passes and Files of the Compiler:
- Passes.); those for other languages are not. *Note Anatomy of a
- Language Front End: Front End, for details of the files in these
- directories.
-
-'common'
- Source files shared between the compiler drivers (such as 'gcc')
- and the compilers proper (such as 'cc1'). If an architecture
- defines target hooks shared between those places, it also has a
- subdirectory in 'common/config'. *Note Target Structure::.
-
-'config'
- Configuration files for supported architectures and operating
- systems. *Note Anatomy of a Target Back End: Back End, for details
- of the files in this directory.
-
-'doc'
- Texinfo documentation for GCC, together with automatically
- generated man pages and support for converting the installation
- manual to HTML. *Note Documentation::.
-
-'ginclude'
- System headers installed by GCC, mainly those required by the C
- standard of freestanding implementations. *Note Headers Installed
- by GCC: Headers, for details of when these and other headers are
- installed.
-
-'po'
- Message catalogs with translations of messages produced by GCC into
- various languages, 'LANGUAGE.po'. This directory also contains
- 'gcc.pot', the template for these message catalogues, 'exgettext',
- a wrapper around 'gettext' to extract the messages from the GCC
- sources and create 'gcc.pot', which is run by 'make gcc.pot', and
- 'EXCLUDES', a list of files from which messages should not be
- extracted.
-
-'testsuite'
- The GCC testsuites (except for those for runtime libraries). *Note
- Testsuites::.
-
-
-File: gccint.info, Node: Configuration, Next: Build, Prev: Subdirectories, Up: gcc Directory
-
-6.3.2 Configuration in the 'gcc' Directory
-------------------------------------------
-
-The 'gcc' directory is configured with an Autoconf-generated script
-'configure'. The 'configure' script is generated from 'configure.ac'
-and 'aclocal.m4'. From the files 'configure.ac' and 'acconfig.h',
-Autoheader generates the file 'config.in'. The file 'cstamp-h.in' is
-used as a timestamp.
-
-* Menu:
-
-* Config Fragments:: Scripts used by 'configure'.
-* System Config:: The 'config.build', 'config.host', and
- 'config.gcc' files.
-* Configuration Files:: Files created by running 'configure'.
-
-
-File: gccint.info, Node: Config Fragments, Next: System Config, Up: Configuration
-
-6.3.2.1 Scripts Used by 'configure'
-...................................
-
-'configure' uses some other scripts to help in its work:
-
- * The standard GNU 'config.sub' and 'config.guess' files, kept in the
- top level directory, are used.
-
- * The file 'config.gcc' is used to handle configuration specific to
- the particular target machine. The file 'config.build' is used to
- handle configuration specific to the particular build machine. The
- file 'config.host' is used to handle configuration specific to the
- particular host machine. (In general, these should only be used
- for features that cannot reasonably be tested in Autoconf feature
- tests.) *Note The 'config.build'; 'config.host'; and 'config.gcc'
- Files: System Config, for details of the contents of these files.
-
- * Each language subdirectory has a file 'LANGUAGE/config-lang.in'
- that is used for front-end-specific configuration. *Note The Front
- End 'config-lang.in' File: Front End Config, for details of this
- file.
-
- * A helper script 'configure.frag' is used as part of creating the
- output of 'configure'.
-
-
-File: gccint.info, Node: System Config, Next: Configuration Files, Prev: Config Fragments, Up: Configuration
-
-6.3.2.2 The 'config.build'; 'config.host'; and 'config.gcc' Files
-.................................................................
-
-The 'config.build' file contains specific rules for particular systems
-which GCC is built on. This should be used as rarely as possible, as
-the behavior of the build system can always be detected by autoconf.
-
- The 'config.host' file contains specific rules for particular systems
-which GCC will run on. This is rarely needed.
-
- The 'config.gcc' file contains specific rules for particular systems
-which GCC will generate code for. This is usually needed.
-
- Each file has a list of the shell variables it sets, with descriptions,
-at the top of the file.
-
- FIXME: document the contents of these files, and what variables should
-be set to control build, host and target configuration.
-
-
-File: gccint.info, Node: Configuration Files, Prev: System Config, Up: Configuration
-
-6.3.2.3 Files Created by 'configure'
-....................................
-
-Here we spell out what files will be set up by 'configure' in the 'gcc'
-directory. Some other files are created as temporary files in the
-configuration process, and are not used in the subsequent build; these
-are not documented.
-
- * 'Makefile' is constructed from 'Makefile.in', together with the
- host and target fragments (*note Makefile Fragments: Fragments.)
- 't-TARGET' and 'x-HOST' from 'config', if any, and language
- Makefile fragments 'LANGUAGE/Make-lang.in'.
- * 'auto-host.h' contains information about the host machine
- determined by 'configure'. If the host machine is different from
- the build machine, then 'auto-build.h' is also created, containing
- such information about the build machine.
- * 'config.status' is a script that may be run to recreate the current
- configuration.
- * 'configargs.h' is a header containing details of the arguments
- passed to 'configure' to configure GCC, and of the thread model
- used.
- * 'cstamp-h' is used as a timestamp.
- * If a language 'config-lang.in' file (*note The Front End
- 'config-lang.in' File: Front End Config.) sets 'outputs', then the
- files listed in 'outputs' there are also generated.
-
- The following configuration headers are created from the Makefile,
-using 'mkconfig.sh', rather than directly by 'configure'. 'config.h',
-'bconfig.h' and 'tconfig.h' all contain the 'xm-MACHINE.h' header, if
-any, appropriate to the host, build and target machines respectively,
-the configuration headers for the target, and some definitions; for the
-host and build machines, these include the autoconfigured headers
-generated by 'configure'. The other configuration headers are
-determined by 'config.gcc'. They also contain the typedefs for 'rtx',
-'rtvec' and 'tree'.
-
- * 'config.h', for use in programs that run on the host machine.
- * 'bconfig.h', for use in programs that run on the build machine.
- * 'tconfig.h', for use in programs and libraries for the target
- machine.
- * 'tm_p.h', which includes the header 'MACHINE-protos.h' that
- contains prototypes for functions in the target 'MACHINE.c' file.
- The header 'MACHINE-protos.h' can include prototypes of functions
- that use rtl and tree data structures inside appropriate '#ifdef
- RTX_CODE' and '#ifdef TREE_CODE' conditional code segements. The
- 'MACHINE-protos.h' is included after the 'rtl.h' and/or 'tree.h'
- would have been included. The 'tm_p.h' also includes the header
- 'tm-preds.h' which is generated by 'genpreds' program during the
- build to define the declarations and inline functions for the
- predicate functions.
-
-
-File: gccint.info, Node: Build, Next: Makefile, Prev: Configuration, Up: gcc Directory
-
-6.3.3 Build System in the 'gcc' Directory
------------------------------------------
-
-FIXME: describe the build system, including what is built in what
-stages. Also list the various source files that are used in the build
-process but aren't source files of GCC itself and so aren't documented
-below (*note Passes::).
-
-
-File: gccint.info, Node: Makefile, Next: Library Files, Prev: Build, Up: gcc Directory
-
-6.3.4 Makefile Targets
-----------------------
-
-These targets are available from the 'gcc' directory:
-
-'all'
- This is the default target. Depending on what your
- build/host/target configuration is, it coordinates all the things
- that need to be built.
-
-'doc'
- Produce info-formatted documentation and man pages. Essentially it
- calls 'make man' and 'make info'.
-
-'dvi'
- Produce DVI-formatted documentation.
-
-'pdf'
- Produce PDF-formatted documentation.
-
-'html'
- Produce HTML-formatted documentation.
-
-'man'
- Generate man pages.
-
-'info'
- Generate info-formatted pages.
-
-'mostlyclean'
- Delete the files made while building the compiler.
-
-'clean'
- That, and all the other files built by 'make all'.
-
-'distclean'
- That, and all the files created by 'configure'.
-
-'maintainer-clean'
- Distclean plus any file that can be generated from other files.
- Note that additional tools may be required beyond what is normally
- needed to build GCC.
-
-'srcextra'
- Generates files in the source directory that are not
- version-controlled but should go into a release tarball.
-
-'srcinfo'
-'srcman'
- Copies the info-formatted and manpage documentation into the source
- directory usually for the purpose of generating a release tarball.
-
-'install'
- Installs GCC.
-
-'uninstall'
- Deletes installed files, though this is not supported.
-
-'check'
- Run the testsuite. This creates a 'testsuite' subdirectory that
- has various '.sum' and '.log' files containing the results of the
- testing. You can run subsets with, for example, 'make check-gcc'.
- You can specify specific tests by setting 'RUNTESTFLAGS' to be the
- name of the '.exp' file, optionally followed by (for some tests) an
- equals and a file wildcard, like:
-
- make check-gcc RUNTESTFLAGS="execute.exp=19980413-*"
-
- Note that running the testsuite may require additional tools be
- installed, such as Tcl or DejaGnu.
-
- The toplevel tree from which you start GCC compilation is not the GCC
-directory, but rather a complex Makefile that coordinates the various
-steps of the build, including bootstrapping the compiler and using the
-new compiler to build target libraries.
-
- When GCC is configured for a native configuration, the default action
-for 'make' is to do a full three-stage bootstrap. This means that GCC
-is built three times--once with the native compiler, once with the
-native-built compiler it just built, and once with the compiler it built
-the second time. In theory, the last two should produce the same
-results, which 'make compare' can check. Each stage is configured
-separately and compiled into a separate directory, to minimize problems
-due to ABI incompatibilities between the native compiler and GCC.
-
- If you do a change, rebuilding will also start from the first stage and
-"bubble" up the change through the three stages. Each stage is taken
-from its build directory (if it had been built previously), rebuilt, and
-copied to its subdirectory. This will allow you to, for example,
-continue a bootstrap after fixing a bug which causes the stage2 build to
-crash. It does not provide as good coverage of the compiler as
-bootstrapping from scratch, but it ensures that the new code is
-syntactically correct (e.g., that you did not use GCC extensions by
-mistake), and avoids spurious bootstrap comparison failures(1).
-
- Other targets available from the top level include:
-
-'bootstrap-lean'
- Like 'bootstrap', except that the various stages are removed once
- they're no longer needed. This saves disk space.
-
-'bootstrap2'
-'bootstrap2-lean'
- Performs only the first two stages of bootstrap. Unlike a
- three-stage bootstrap, this does not perform a comparison to test
- that the compiler is running properly. Note that the disk space
- required by a "lean" bootstrap is approximately independent of the
- number of stages.
-
-'stageN-bubble (N = 1...4, profile, feedback)'
- Rebuild all the stages up to N, with the appropriate flags,
- "bubbling" the changes as described above.
-
-'all-stageN (N = 1...4, profile, feedback)'
- Assuming that stage N has already been built, rebuild it with the
- appropriate flags. This is rarely needed.
-
-'cleanstrap'
- Remove everything ('make clean') and rebuilds ('make bootstrap').
-
-'compare'
- Compares the results of stages 2 and 3. This ensures that the
- compiler is running properly, since it should produce the same
- object files regardless of how it itself was compiled.
-
-'profiledbootstrap'
- Builds a compiler with profiling feedback information. In this
- case, the second and third stages are named 'profile' and
- 'feedback', respectively. For more information, see *note Building
- with profile feedback: (gccinstall)Building.
-
-'restrap'
- Restart a bootstrap, so that everything that was not built with the
- system compiler is rebuilt.
-
-'stageN-start (N = 1...4, profile, feedback)'
- For each package that is bootstrapped, rename directories so that,
- for example, 'gcc' points to the stageN GCC, compiled with the
- stageN-1 GCC(2).
-
- You will invoke this target if you need to test or debug the stageN
- GCC. If you only need to execute GCC (but you need not run 'make'
- either to rebuild it or to run test suites), you should be able to
- work directly in the 'stageN-gcc' directory. This makes it easier
- to debug multiple stages in parallel.
-
-'stage'
- For each package that is bootstrapped, relocate its build directory
- to indicate its stage. For example, if the 'gcc' directory points
- to the stage2 GCC, after invoking this target it will be renamed to
- 'stage2-gcc'.
-
- If you wish to use non-default GCC flags when compiling the stage2 and
-stage3 compilers, set 'BOOT_CFLAGS' on the command line when doing
-'make'.
-
- Usually, the first stage only builds the languages that the compiler is
-written in: typically, C and maybe Ada. If you are debugging a
-miscompilation of a different stage2 front-end (for example, of the
-Fortran front-end), you may want to have front-ends for other languages
-in the first stage as well. To do so, set 'STAGE1_LANGUAGES' on the
-command line when doing 'make'.
-
- For example, in the aforementioned scenario of debugging a Fortran
-front-end miscompilation caused by the stage1 compiler, you may need a
-command like
-
- make stage2-bubble STAGE1_LANGUAGES=c,fortran
-
- Alternatively, you can use per-language targets to build and test
-languages that are not enabled by default in stage1. For example, 'make
-f951' will build a Fortran compiler even in the stage1 build directory.
-
- ---------- Footnotes ----------
-
- (1) Except if the compiler was buggy and miscompiled some of the
-files that were not modified. In this case, it's best to use 'make
-restrap'.
-
- (2) Customarily, the system compiler is also termed the 'stage0' GCC.
-
-
-File: gccint.info, Node: Library Files, Next: Headers, Prev: Makefile, Up: gcc Directory
-
-6.3.5 Library Source Files and Headers under the 'gcc' Directory
-----------------------------------------------------------------
-
-FIXME: list here, with explanation, all the C source files and headers
-under the 'gcc' directory that aren't built into the GCC executable but
-rather are part of runtime libraries and object files, such as
-'crtstuff.c' and 'unwind-dw2.c'. *Note Headers Installed by GCC:
-Headers, for more information about the 'ginclude' directory.
-
-
-File: gccint.info, Node: Headers, Next: Documentation, Prev: Library Files, Up: gcc Directory
-
-6.3.6 Headers Installed by GCC
-------------------------------
-
-In general, GCC expects the system C library to provide most of the
-headers to be used with it. However, GCC will fix those headers if
-necessary to make them work with GCC, and will install some headers
-required of freestanding implementations. These headers are installed
-in 'LIBSUBDIR/include'. Headers for non-C runtime libraries are also
-installed by GCC; these are not documented here. (FIXME: document them
-somewhere.)
-
- Several of the headers GCC installs are in the 'ginclude' directory.
-These headers, 'iso646.h', 'stdarg.h', 'stdbool.h', and 'stddef.h', are
-installed in 'LIBSUBDIR/include', unless the target Makefile fragment
-(*note Target Fragment::) overrides this by setting 'USER_H'.
-
- In addition to these headers and those generated by fixing system
-headers to work with GCC, some other headers may also be installed in
-'LIBSUBDIR/include'. 'config.gcc' may set 'extra_headers'; this
-specifies additional headers under 'config' to be installed on some
-systems.
-
- GCC installs its own version of '<float.h>', from 'ginclude/float.h'.
-This is done to cope with command-line options that change the
-representation of floating point numbers.
-
- GCC also installs its own version of '<limits.h>'; this is generated
-from 'glimits.h', together with 'limitx.h' and 'limity.h' if the system
-also has its own version of '<limits.h>'. (GCC provides its own header
-because it is required of ISO C freestanding implementations, but needs
-to include the system header from its own header as well because other
-standards such as POSIX specify additional values to be defined in
-'<limits.h>'.) The system's '<limits.h>' header is used via
-'LIBSUBDIR/include/syslimits.h', which is copied from 'gsyslimits.h' if
-it does not need fixing to work with GCC; if it needs fixing,
-'syslimits.h' is the fixed copy.
-
- GCC can also install '<tgmath.h>'. It will do this when 'config.gcc'
-sets 'use_gcc_tgmath' to 'yes'.
-
-
-File: gccint.info, Node: Documentation, Next: Front End, Prev: Headers, Up: gcc Directory
-
-6.3.7 Building Documentation
-----------------------------
-
-The main GCC documentation is in the form of manuals in Texinfo format.
-These are installed in Info format; DVI versions may be generated by
-'make dvi', PDF versions by 'make pdf', and HTML versions by 'make
-html'. In addition, some man pages are generated from the Texinfo
-manuals, there are some other text files with miscellaneous
-documentation, and runtime libraries have their own documentation
-outside the 'gcc' directory. FIXME: document the documentation for
-runtime libraries somewhere.
-
-* Menu:
-
-* Texinfo Manuals:: GCC manuals in Texinfo format.
-* Man Page Generation:: Generating man pages from Texinfo manuals.
-* Miscellaneous Docs:: Miscellaneous text files with documentation.
-
-
-File: gccint.info, Node: Texinfo Manuals, Next: Man Page Generation, Up: Documentation
-
-6.3.7.1 Texinfo Manuals
-.......................
-
-The manuals for GCC as a whole, and the C and C++ front ends, are in
-files 'doc/*.texi'. Other front ends have their own manuals in files
-'LANGUAGE/*.texi'. Common files 'doc/include/*.texi' are provided which
-may be included in multiple manuals; the following files are in
-'doc/include':
-
-'fdl.texi'
- The GNU Free Documentation License.
-'funding.texi'
- The section "Funding Free Software".
-'gcc-common.texi'
- Common definitions for manuals.
-'gpl_v3.texi'
- The GNU General Public License.
-'texinfo.tex'
- A copy of 'texinfo.tex' known to work with the GCC manuals.
-
- DVI-formatted manuals are generated by 'make dvi', which uses
-'texi2dvi' (via the Makefile macro '$(TEXI2DVI)'). PDF-formatted
-manuals are generated by 'make pdf', which uses 'texi2pdf' (via the
-Makefile macro '$(TEXI2PDF)'). HTML formatted manuals are generated by
-'make html'. Info manuals are generated by 'make info' (which is run as
-part of a bootstrap); this generates the manuals in the source
-directory, using 'makeinfo' via the Makefile macro '$(MAKEINFO)', and
-they are included in release distributions.
-
- Manuals are also provided on the GCC web site, in both HTML and
-PostScript forms. This is done via the script
-'maintainer-scripts/update_web_docs_svn'. Each manual to be provided
-online must be listed in the definition of 'MANUALS' in that file; a
-file 'NAME.texi' must only appear once in the source tree, and the
-output manual must have the same name as the source file. (However,
-other Texinfo files, included in manuals but not themselves the root
-files of manuals, may have names that appear more than once in the
-source tree.) The manual file 'NAME.texi' should only include other
-files in its own directory or in 'doc/include'. HTML manuals will be
-generated by 'makeinfo --html', PostScript manuals by 'texi2dvi' and
-'dvips', and PDF manuals by 'texi2pdf'. All Texinfo files that are
-parts of manuals must be version-controlled, even if they are generated
-files, for the generation of online manuals to work.
-
- The installation manual, 'doc/install.texi', is also provided on the
-GCC web site. The HTML version is generated by the script
-'doc/install.texi2html'.
-
-
-File: gccint.info, Node: Man Page Generation, Next: Miscellaneous Docs, Prev: Texinfo Manuals, Up: Documentation
-
-6.3.7.2 Man Page Generation
-...........................
-
-Because of user demand, in addition to full Texinfo manuals, man pages
-are provided which contain extracts from those manuals. These man pages
-are generated from the Texinfo manuals using 'contrib/texi2pod.pl' and
-'pod2man'. (The man page for 'g++', 'cp/g++.1', just contains a '.so'
-reference to 'gcc.1', but all the other man pages are generated from
-Texinfo manuals.)
-
- Because many systems may not have the necessary tools installed to
-generate the man pages, they are only generated if the 'configure'
-script detects that recent enough tools are installed, and the Makefiles
-allow generating man pages to fail without aborting the build. Man
-pages are also included in release distributions. They are generated in
-the source directory.
-
- Magic comments in Texinfo files starting '@c man' control what parts of
-a Texinfo file go into a man page. Only a subset of Texinfo is
-supported by 'texi2pod.pl', and it may be necessary to add support for
-more Texinfo features to this script when generating new man pages. To
-improve the man page output, some special Texinfo macros are provided in
-'doc/include/gcc-common.texi' which 'texi2pod.pl' understands:
-
-'@gcctabopt'
- Use in the form '@table @gcctabopt' for tables of options, where
- for printed output the effect of '@code' is better than that of
- '@option' but for man page output a different effect is wanted.
-'@gccoptlist'
- Use for summary lists of options in manuals.
-'@gol'
- Use at the end of each line inside '@gccoptlist'. This is
- necessary to avoid problems with differences in how the
- '@gccoptlist' macro is handled by different Texinfo formatters.
-
- FIXME: describe the 'texi2pod.pl' input language and magic comments in
-more detail.
-
-
-File: gccint.info, Node: Miscellaneous Docs, Prev: Man Page Generation, Up: Documentation
-
-6.3.7.3 Miscellaneous Documentation
-...................................
-
-In addition to the formal documentation that is installed by GCC, there
-are several other text files in the 'gcc' subdirectory with
-miscellaneous documentation:
-
-'ABOUT-GCC-NLS'
- Notes on GCC's Native Language Support. FIXME: this should be part
- of this manual rather than a separate file.
-'ABOUT-NLS'
- Notes on the Free Translation Project.
-'COPYING'
-'COPYING3'
- The GNU General Public License, Versions 2 and 3.
-'COPYING.LIB'
-'COPYING3.LIB'
- The GNU Lesser General Public License, Versions 2.1 and 3.
-'*ChangeLog*'
-'*/ChangeLog*'
- Change log files for various parts of GCC.
-'LANGUAGES'
- Details of a few changes to the GCC front-end interface. FIXME:
- the information in this file should be part of general
- documentation of the front-end interface in this manual.
-'ONEWS'
- Information about new features in old versions of GCC. (For recent
- versions, the information is on the GCC web site.)
-'README.Portability'
- Information about portability issues when writing code in GCC.
- FIXME: why isn't this part of this manual or of the GCC Coding
- Conventions?
-
- FIXME: document such files in subdirectories, at least 'config', 'c',
-'cp', 'objc', 'testsuite'.
-
-
-File: gccint.info, Node: Front End, Next: Back End, Prev: Documentation, Up: gcc Directory
-
-6.3.8 Anatomy of a Language Front End
--------------------------------------
-
-A front end for a language in GCC has the following parts:
-
- * A directory 'LANGUAGE' under 'gcc' containing source files for that
- front end. *Note The Front End 'LANGUAGE' Directory: Front End
- Directory, for details.
- * A mention of the language in the list of supported languages in
- 'gcc/doc/install.texi'.
- * A mention of the name under which the language's runtime library is
- recognized by '--enable-shared=PACKAGE' in the documentation of
- that option in 'gcc/doc/install.texi'.
- * A mention of any special prerequisites for building the front end
- in the documentation of prerequisites in 'gcc/doc/install.texi'.
- * Details of contributors to that front end in
- 'gcc/doc/contrib.texi'. If the details are in that front end's own
- manual then there should be a link to that manual's list in
- 'contrib.texi'.
- * Information about support for that language in
- 'gcc/doc/frontends.texi'.
- * Information about standards for that language, and the front end's
- support for them, in 'gcc/doc/standards.texi'. This may be a link
- to such information in the front end's own manual.
- * Details of source file suffixes for that language and '-x LANG'
- options supported, in 'gcc/doc/invoke.texi'.
- * Entries in 'default_compilers' in 'gcc.c' for source file suffixes
- for that language.
- * Preferably testsuites, which may be under 'gcc/testsuite' or
- runtime library directories. FIXME: document somewhere how to
- write testsuite harnesses.
- * Probably a runtime library for the language, outside the 'gcc'
- directory. FIXME: document this further.
- * Details of the directories of any runtime libraries in
- 'gcc/doc/sourcebuild.texi'.
- * Check targets in 'Makefile.def' for the top-level 'Makefile' to
- check just the compiler or the compiler and runtime library for the
- language.
-
- If the front end is added to the official GCC source repository, the
-following are also necessary:
-
- * At least one Bugzilla component for bugs in that front end and
- runtime libraries. This category needs to be added to the Bugzilla
- database.
- * Normally, one or more maintainers of that front end listed in
- 'MAINTAINERS'.
- * Mentions on the GCC web site in 'index.html' and 'frontends.html',
- with any relevant links on 'readings.html'. (Front ends that are
- not an official part of GCC may also be listed on 'frontends.html',
- with relevant links.)
- * A news item on 'index.html', and possibly an announcement on the
- <gcc-announce@gcc.gnu.org> mailing list.
- * The front end's manuals should be mentioned in
- 'maintainer-scripts/update_web_docs_svn' (*note Texinfo Manuals::)
- and the online manuals should be linked to from
- 'onlinedocs/index.html'.
- * Any old releases or CVS repositories of the front end, before its
- inclusion in GCC, should be made available on the GCC FTP site
- <ftp://gcc.gnu.org/pub/gcc/old-releases/>.
- * The release and snapshot script 'maintainer-scripts/gcc_release'
- should be updated to generate appropriate tarballs for this front
- end.
- * If this front end includes its own version files that include the
- current date, 'maintainer-scripts/update_version' should be updated
- accordingly.
-
-* Menu:
-
-* Front End Directory:: The front end 'LANGUAGE' directory.
-* Front End Config:: The front end 'config-lang.in' file.
-* Front End Makefile:: The front end 'Make-lang.in' file.
-
-
-File: gccint.info, Node: Front End Directory, Next: Front End Config, Up: Front End
-
-6.3.8.1 The Front End 'LANGUAGE' Directory
-..........................................
-
-A front end 'LANGUAGE' directory contains the source files of that front
-end (but not of any runtime libraries, which should be outside the 'gcc'
-directory). This includes documentation, and possibly some subsidiary
-programs built alongside the front end. Certain files are special and
-other parts of the compiler depend on their names:
-
-'config-lang.in'
- This file is required in all language subdirectories. *Note The
- Front End 'config-lang.in' File: Front End Config, for details of
- its contents
-'Make-lang.in'
- This file is required in all language subdirectories. *Note The
- Front End 'Make-lang.in' File: Front End Makefile, for details of
- its contents.
-'lang.opt'
- This file registers the set of switches that the front end accepts
- on the command line, and their '--help' text. *Note Options::.
-'lang-specs.h'
- This file provides entries for 'default_compilers' in 'gcc.c' which
- override the default of giving an error that a compiler for that
- language is not installed.
-'LANGUAGE-tree.def'
- This file, which need not exist, defines any language-specific tree
- codes.
-
-
-File: gccint.info, Node: Front End Config, Next: Front End Makefile, Prev: Front End Directory, Up: Front End
-
-6.3.8.2 The Front End 'config-lang.in' File
-...........................................
-
-Each language subdirectory contains a 'config-lang.in' file. This file
-is a shell script that may define some variables describing the
-language:
-
-'language'
- This definition must be present, and gives the name of the language
- for some purposes such as arguments to '--enable-languages'.
-'lang_requires'
- If defined, this variable lists (space-separated) language front
- ends other than C that this front end requires to be enabled (with
- the names given being their 'language' settings). For example, the
- Java front end depends on the C++ front end, so sets
- 'lang_requires=c++'.
-'subdir_requires'
- If defined, this variable lists (space-separated) front end
- directories other than C that this front end requires to be
- present. For example, the Objective-C++ front end uses source
- files from the C++ and Objective-C front ends, so sets
- 'subdir_requires="cp objc"'.
-'target_libs'
- If defined, this variable lists (space-separated) targets in the
- top level 'Makefile' to build the runtime libraries for this
- language, such as 'target-libobjc'.
-'lang_dirs'
- If defined, this variable lists (space-separated) top level
- directories (parallel to 'gcc'), apart from the runtime libraries,
- that should not be configured if this front end is not built.
-'build_by_default'
- If defined to 'no', this language front end is not built unless
- enabled in a '--enable-languages' argument. Otherwise, front ends
- are built by default, subject to any special logic in
- 'configure.ac' (as is present to disable the Ada front end if the
- Ada compiler is not already installed).
-'boot_language'
- If defined to 'yes', this front end is built in stage1 of the
- bootstrap. This is only relevant to front ends written in their
- own languages.
-'compilers'
- If defined, a space-separated list of compiler executables that
- will be run by the driver. The names here will each end with
- '\$(exeext)'.
-'outputs'
- If defined, a space-separated list of files that should be
- generated by 'configure' substituting values in them. This
- mechanism can be used to create a file 'LANGUAGE/Makefile' from
- 'LANGUAGE/Makefile.in', but this is deprecated, building everything
- from the single 'gcc/Makefile' is preferred.
-'gtfiles'
- If defined, a space-separated list of files that should be scanned
- by 'gengtype.c' to generate the garbage collection tables and
- routines for this language. This excludes the files that are
- common to all front ends. *Note Type Information::.
-
-
-File: gccint.info, Node: Front End Makefile, Prev: Front End Config, Up: Front End
-
-6.3.8.3 The Front End 'Make-lang.in' File
-.........................................
-
-Each language subdirectory contains a 'Make-lang.in' file. It contains
-targets 'LANG.HOOK' (where 'LANG' is the setting of 'language' in
-'config-lang.in') for the following values of 'HOOK', and any other
-Makefile rules required to build those targets (which may if necessary
-use other Makefiles specified in 'outputs' in 'config-lang.in', although
-this is deprecated). It also adds any testsuite targets that can use
-the standard rule in 'gcc/Makefile.in' to the variable 'lang_checks'.
-
-'all.cross'
-'start.encap'
-'rest.encap'
- FIXME: exactly what goes in each of these targets?
-'tags'
- Build an 'etags' 'TAGS' file in the language subdirectory in the
- source tree.
-'info'
- Build info documentation for the front end, in the build directory.
- This target is only called by 'make bootstrap' if a suitable
- version of 'makeinfo' is available, so does not need to check for
- this, and should fail if an error occurs.
-'dvi'
- Build DVI documentation for the front end, in the build directory.
- This should be done using '$(TEXI2DVI)', with appropriate '-I'
- arguments pointing to directories of included files.
-'pdf'
- Build PDF documentation for the front end, in the build directory.
- This should be done using '$(TEXI2PDF)', with appropriate '-I'
- arguments pointing to directories of included files.
-'html'
- Build HTML documentation for the front end, in the build directory.
-'man'
- Build generated man pages for the front end from Texinfo manuals
- (*note Man Page Generation::), in the build directory. This target
- is only called if the necessary tools are available, but should
- ignore errors so as not to stop the build if errors occur; man
- pages are optional and the tools involved may be installed in a
- broken way.
-'install-common'
- Install everything that is part of the front end, apart from the
- compiler executables listed in 'compilers' in 'config-lang.in'.
-'install-info'
- Install info documentation for the front end, if it is present in
- the source directory. This target should have dependencies on info
- files that should be installed.
-'install-man'
- Install man pages for the front end. This target should ignore
- errors.
-'install-plugin'
- Install headers needed for plugins.
-'srcextra'
- Copies its dependencies into the source directory. This generally
- should be used for generated files such as Bison output files which
- are not version-controlled, but should be included in any release
- tarballs. This target will be executed during a bootstrap if
- '--enable-generated-files-in-srcdir' was specified as a 'configure'
- option.
-'srcinfo'
-'srcman'
- Copies its dependencies into the source directory. These targets
- will be executed during a bootstrap if
- '--enable-generated-files-in-srcdir' was specified as a 'configure'
- option.
-'uninstall'
- Uninstall files installed by installing the compiler. This is
- currently documented not to be supported, so the hook need not do
- anything.
-'mostlyclean'
-'clean'
-'distclean'
-'maintainer-clean'
- The language parts of the standard GNU '*clean' targets. *Note
- Standard Targets for Users: (standards)Standard Targets, for
- details of the standard targets. For GCC, 'maintainer-clean'
- should delete all generated files in the source directory that are
- not version-controlled, but should not delete anything that is.
-
- 'Make-lang.in' must also define a variable 'LANG_OBJS' to a list of
-host object files that are used by that language.
-
-
-File: gccint.info, Node: Back End, Prev: Front End, Up: gcc Directory
-
-6.3.9 Anatomy of a Target Back End
-----------------------------------
-
-A back end for a target architecture in GCC has the following parts:
-
- * A directory 'MACHINE' under 'gcc/config', containing a machine
- description 'MACHINE.md' file (*note Machine Descriptions: Machine
- Desc.), header files 'MACHINE.h' and 'MACHINE-protos.h' and a
- source file 'MACHINE.c' (*note Target Description Macros and
- Functions: Target Macros.), possibly a target Makefile fragment
- 't-MACHINE' (*note The Target Makefile Fragment: Target Fragment.),
- and maybe some other files. The names of these files may be
- changed from the defaults given by explicit specifications in
- 'config.gcc'.
- * If necessary, a file 'MACHINE-modes.def' in the 'MACHINE'
- directory, containing additional machine modes to represent
- condition codes. *Note Condition Code::, for further details.
- * An optional 'MACHINE.opt' file in the 'MACHINE' directory,
- containing a list of target-specific options. You can also add
- other option files using the 'extra_options' variable in
- 'config.gcc'. *Note Options::.
- * Entries in 'config.gcc' (*note The 'config.gcc' File: System
- Config.) for the systems with this target architecture.
- * Documentation in 'gcc/doc/invoke.texi' for any command-line options
- supported by this target (*note Run-time Target Specification:
- Run-time Target.). This means both entries in the summary table of
- options and details of the individual options.
- * Documentation in 'gcc/doc/extend.texi' for any target-specific
- attributes supported (*note Defining target-specific uses of
- '__attribute__': Target Attributes.), including where the same
- attribute is already supported on some targets, which are
- enumerated in the manual.
- * Documentation in 'gcc/doc/extend.texi' for any target-specific
- pragmas supported.
- * Documentation in 'gcc/doc/extend.texi' of any target-specific
- built-in functions supported.
- * Documentation in 'gcc/doc/extend.texi' of any target-specific
- format checking styles supported.
- * Documentation in 'gcc/doc/md.texi' of any target-specific
- constraint letters (*note Constraints for Particular Machines:
- Machine Constraints.).
- * A note in 'gcc/doc/contrib.texi' under the person or people who
- contributed the target support.
- * Entries in 'gcc/doc/install.texi' for all target triplets supported
- with this target architecture, giving details of any special notes
- about installation for this target, or saying that there are no
- special notes if there are none.
- * Possibly other support outside the 'gcc' directory for runtime
- libraries. FIXME: reference docs for this. The 'libstdc++'
- porting manual needs to be installed as info for this to work, or
- to be a chapter of this manual.
-
- If the back end is added to the official GCC source repository, the
-following are also necessary:
-
- * An entry for the target architecture in 'readings.html' on the GCC
- web site, with any relevant links.
- * Details of the properties of the back end and target architecture
- in 'backends.html' on the GCC web site.
- * A news item about the contribution of support for that target
- architecture, in 'index.html' on the GCC web site.
- * Normally, one or more maintainers of that target listed in
- 'MAINTAINERS'. Some existing architectures may be unmaintained,
- but it would be unusual to add support for a target that does not
- have a maintainer when support is added.
- * Target triplets covering all 'config.gcc' stanzas for the target,
- in the list in 'contrib/config-list.mk'.
-
-
-File: gccint.info, Node: Testsuites, Next: Options, Prev: Source Tree, Up: Top
-
-7 Testsuites
-************
-
-GCC contains several testsuites to help maintain compiler quality. Most
-of the runtime libraries and language front ends in GCC have testsuites.
-Currently only the C language testsuites are documented here; FIXME:
-document the others.
-
-* Menu:
-
-* Test Idioms:: Idioms used in testsuite code.
-* Test Directives:: Directives used within DejaGnu tests.
-* Ada Tests:: The Ada language testsuites.
-* C Tests:: The C language testsuites.
-* libgcj Tests:: The Java library testsuites.
-* LTO Testing:: Support for testing link-time optimizations.
-* gcov Testing:: Support for testing gcov.
-* profopt Testing:: Support for testing profile-directed optimizations.
-* compat Testing:: Support for testing binary compatibility.
-* Torture Tests:: Support for torture testing using multiple options.
-
-
-File: gccint.info, Node: Test Idioms, Next: Test Directives, Up: Testsuites
-
-7.1 Idioms Used in Testsuite Code
-=================================
-
-In general, C testcases have a trailing '-N.c', starting with '-1.c', in
-case other testcases with similar names are added later. If the test is
-a test of some well-defined feature, it should have a name referring to
-that feature such as 'FEATURE-1.c'. If it does not test a well-defined
-feature but just happens to exercise a bug somewhere in the compiler,
-and a bug report has been filed for this bug in the GCC bug database,
-'prBUG-NUMBER-1.c' is the appropriate form of name. Otherwise (for
-miscellaneous bugs not filed in the GCC bug database), and previously
-more generally, test cases are named after the date on which they were
-added. This allows people to tell at a glance whether a test failure is
-because of a recently found bug that has not yet been fixed, or whether
-it may be a regression, but does not give any other information about
-the bug or where discussion of it may be found. Some other language
-testsuites follow similar conventions.
-
- In the 'gcc.dg' testsuite, it is often necessary to test that an error
-is indeed a hard error and not just a warning--for example, where it is
-a constraint violation in the C standard, which must become an error
-with '-pedantic-errors'. The following idiom, where the first line
-shown is line LINE of the file and the line that generates the error, is
-used for this:
-
- /* { dg-bogus "warning" "warning in place of error" } */
- /* { dg-error "REGEXP" "MESSAGE" { target *-*-* } LINE } */
-
- It may be necessary to check that an expression is an integer constant
-expression and has a certain value. To check that 'E' has value 'V', an
-idiom similar to the following is used:
-
- char x[((E) == (V) ? 1 : -1)];
-
- In 'gcc.dg' tests, '__typeof__' is sometimes used to make assertions
-about the types of expressions. See, for example,
-'gcc.dg/c99-condexpr-1.c'. The more subtle uses depend on the exact
-rules for the types of conditional expressions in the C standard; see,
-for example, 'gcc.dg/c99-intconst-1.c'.
-
- It is useful to be able to test that optimizations are being made
-properly. This cannot be done in all cases, but it can be done where
-the optimization will lead to code being optimized away (for example,
-where flow analysis or alias analysis should show that certain code
-cannot be called) or to functions not being called because they have
-been expanded as built-in functions. Such tests go in
-'gcc.c-torture/execute'. Where code should be optimized away, a call to
-a nonexistent function such as 'link_failure ()' may be inserted; a
-definition
-
- #ifndef __OPTIMIZE__
- void
- link_failure (void)
- {
- abort ();
- }
- #endif
-
-will also be needed so that linking still succeeds when the test is run
-without optimization. When all calls to a built-in function should have
-been optimized and no calls to the non-built-in version of the function
-should remain, that function may be defined as 'static' to call 'abort
-()' (although redeclaring a function as static may not work on all
-targets).
-
- All testcases must be portable. Target-specific testcases must have
-appropriate code to avoid causing failures on unsupported systems;
-unfortunately, the mechanisms for this differ by directory.
-
- FIXME: discuss non-C testsuites here.
-
-
-File: gccint.info, Node: Test Directives, Next: Ada Tests, Prev: Test Idioms, Up: Testsuites
-
-7.2 Directives used within DejaGnu tests
-========================================
-
-* Menu:
-
-* Directives:: Syntax and descriptions of test directives.
-* Selectors:: Selecting targets to which a test applies.
-* Effective-Target Keywords:: Keywords describing target attributes.
-* Add Options:: Features for 'dg-add-options'
-* Require Support:: Variants of 'dg-require-SUPPORT'
-* Final Actions:: Commands for use in 'dg-final'
-
-
-File: gccint.info, Node: Directives, Next: Selectors, Up: Test Directives
-
-7.2.1 Syntax and Descriptions of test directives
-------------------------------------------------
-
-Test directives appear within comments in a test source file and begin
-with 'dg-'. Some of these are defined within DejaGnu and others are
-local to the GCC testsuite.
-
- The order in which test directives appear in a test can be important:
-directives local to GCC sometimes override information used by the
-DejaGnu directives, which know nothing about the GCC directives, so the
-DejaGnu directives must precede GCC directives.
-
- Several test directives include selectors (*note Selectors::) which are
-usually preceded by the keyword 'target' or 'xfail'.
-
-7.2.1.1 Specify how to build the test
-.....................................
-
-'{ dg-do DO-WHAT-KEYWORD [{ target/xfail SELECTOR }] }'
- DO-WHAT-KEYWORD specifies how the test is compiled and whether it
- is executed. It is one of:
-
- 'preprocess'
- Compile with '-E' to run only the preprocessor.
- 'compile'
- Compile with '-S' to produce an assembly code file.
- 'assemble'
- Compile with '-c' to produce a relocatable object file.
- 'link'
- Compile, assemble, and link to produce an executable file.
- 'run'
- Produce and run an executable file, which is expected to
- return an exit code of 0.
-
- The default is 'compile'. That can be overridden for a set of
- tests by redefining 'dg-do-what-default' within the '.exp' file for
- those tests.
-
- If the directive includes the optional '{ target SELECTOR }' then
- the test is skipped unless the target system matches the SELECTOR.
-
- If DO-WHAT-KEYWORD is 'run' and the directive includes the optional
- '{ xfail SELECTOR }' and the selector is met then the test is
- expected to fail. The 'xfail' clause is ignored for other values
- of DO-WHAT-KEYWORD; those tests can use directive 'dg-xfail-if'.
-
-7.2.1.2 Specify additional compiler options
-...........................................
-
-'{ dg-options OPTIONS [{ target SELECTOR }] }'
- This DejaGnu directive provides a list of compiler options, to be
- used if the target system matches SELECTOR, that replace the
- default options used for this set of tests.
-
-'{ dg-add-options FEATURE ... }'
- Add any compiler options that are needed to access certain
- features. This directive does nothing on targets that enable the
- features by default, or that don't provide them at all. It must
- come after all 'dg-options' directives. For supported values of
- FEATURE see *note Add Options::.
-
-'{ dg-additional-options OPTIONS [{ target SELECTOR }] }'
- This directive provides a list of compiler options, to be used if
- the target system matches SELECTOR, that are added to the default
- options used for this set of tests.
-
-7.2.1.3 Modify the test timeout value
-.....................................
-
-The normal timeout limit, in seconds, is found by searching the
-following in order:
-
- * the value defined by an earlier 'dg-timeout' directive in the test
-
- * variable TOOL_TIMEOUT defined by the set of tests
-
- * GCC,TIMEOUT set in the target board
-
- * 300
-
-'{ dg-timeout N [{target SELECTOR }] }'
- Set the time limit for the compilation and for the execution of the
- test to the specified number of seconds.
-
-'{ dg-timeout-factor X [{ target SELECTOR }] }'
- Multiply the normal time limit for compilation and execution of the
- test by the specified floating-point factor.
-
-7.2.1.4 Skip a test for some targets
-....................................
-
-'{ dg-skip-if COMMENT { SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]] }'
- Arguments INCLUDE-OPTS and EXCLUDE-OPTS are lists in which each
- element is a string of zero or more GCC options. Skip the test if
- all of the following conditions are met:
- * the test system is included in SELECTOR
-
- * for at least one of the option strings in INCLUDE-OPTS, every
- option from that string is in the set of options with which
- the test would be compiled; use '"*"' for an INCLUDE-OPTS list
- that matches any options; that is the default if INCLUDE-OPTS
- is not specified
-
- * for each of the option strings in EXCLUDE-OPTS, at least one
- option from that string is not in the set of options with
- which the test would be compiled; use '""' for an empty
- EXCLUDE-OPTS list; that is the default if EXCLUDE-OPTS is not
- specified
-
- For example, to skip a test if option '-Os' is present:
-
- /* { dg-skip-if "" { *-*-* } { "-Os" } { "" } } */
-
- To skip a test if both options '-O2' and '-g' are present:
-
- /* { dg-skip-if "" { *-*-* } { "-O2 -g" } { "" } } */
-
- To skip a test if either '-O2' or '-O3' is present:
-
- /* { dg-skip-if "" { *-*-* } { "-O2" "-O3" } { "" } } */
-
- To skip a test unless option '-Os' is present:
-
- /* { dg-skip-if "" { *-*-* } { "*" } { "-Os" } } */
-
- To skip a test if either '-O2' or '-O3' is used with '-g' but not
- if '-fpic' is also present:
-
- /* { dg-skip-if "" { *-*-* } { "-O2 -g" "-O3 -g" } { "-fpic" } } */
-
-'{ dg-require-effective-target KEYWORD [{ SELECTOR }] }'
- Skip the test if the test target, including current multilib flags,
- is not covered by the effective-target keyword. If the directive
- includes the optional '{ SELECTOR }' then the effective-target test
- is only performed if the target system matches the SELECTOR. This
- directive must appear after any 'dg-do' directive in the test and
- before any 'dg-additional-sources' directive. *Note
- Effective-Target Keywords::.
-
-'{ dg-require-SUPPORT args }'
- Skip the test if the target does not provide the required support.
- These directives must appear after any 'dg-do' directive in the
- test and before any 'dg-additional-sources' directive. They
- require at least one argument, which can be an empty string if the
- specific procedure does not examine the argument. *Note Require
- Support::, for a complete list of these directives.
-
-7.2.1.5 Expect a test to fail for some targets
-..............................................
-
-'{ dg-xfail-if COMMENT { SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]] }'
- Expect the test to fail if the conditions (which are the same as
- for 'dg-skip-if') are met. This does not affect the execute step.
-
-'{ dg-xfail-run-if COMMENT { SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]] }'
- Expect the execute step of a test to fail if the conditions (which
- are the same as for 'dg-skip-if') are met.
-
-7.2.1.6 Expect the test executable to fail
-..........................................
-
-'{ dg-shouldfail COMMENT [{ SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]]] }'
- Expect the test executable to return a nonzero exit status if the
- conditions (which are the same as for 'dg-skip-if') are met.
-
-7.2.1.7 Verify compiler messages
-................................
-
-'{ dg-error REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] }]] }'
- This DejaGnu directive appears on a source line that is expected to
- get an error message, or else specifies the source line associated
- with the message. If there is no message for that line or if the
- text of that message is not matched by REGEXP then the check fails
- and COMMENT is included in the 'FAIL' message. The check does not
- look for the string 'error' unless it is part of REGEXP.
-
-'{ dg-warning REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] }]] }'
- This DejaGnu directive appears on a source line that is expected to
- get a warning message, or else specifies the source line associated
- with the message. If there is no message for that line or if the
- text of that message is not matched by REGEXP then the check fails
- and COMMENT is included in the 'FAIL' message. The check does not
- look for the string 'warning' unless it is part of REGEXP.
-
-'{ dg-message REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] }]] }'
- The line is expected to get a message other than an error or
- warning. If there is no message for that line or if the text of
- that message is not matched by REGEXP then the check fails and
- COMMENT is included in the 'FAIL' message.
-
-'{ dg-bogus REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] }]] }'
- This DejaGnu directive appears on a source line that should not get
- a message matching REGEXP, or else specifies the source line
- associated with the bogus message. It is usually used with 'xfail'
- to indicate that the message is a known problem for a particular
- set of targets.
-
-'{ dg-excess-errors COMMENT [{ target/xfail SELECTOR }] }'
- This DejaGnu directive indicates that the test is expected to fail
- due to compiler messages that are not handled by 'dg-error',
- 'dg-warning' or 'dg-bogus'. For this directive 'xfail' has the
- same effect as 'target'.
-
-'{ dg-prune-output REGEXP }'
- Prune messages matching REGEXP from the test output.
-
-7.2.1.8 Verify output of the test executable
-............................................
-
-'{ dg-output REGEXP [{ target/xfail SELECTOR }] }'
- This DejaGnu directive compares REGEXP to the combined output that
- the test executable writes to 'stdout' and 'stderr'.
-
-7.2.1.9 Specify additional files for a test
-...........................................
-
-'{ dg-additional-files "FILELIST" }'
- Specify additional files, other than source files, that must be
- copied to the system where the compiler runs.
-
-'{ dg-additional-sources "FILELIST" }'
- Specify additional source files to appear in the compile line
- following the main test file.
-
-7.2.1.10 Add checks at the end of a test
-........................................
-
-'{ dg-final { LOCAL-DIRECTIVE } }'
- This DejaGnu directive is placed within a comment anywhere in the
- source file and is processed after the test has been compiled and
- run. Multiple 'dg-final' commands are processed in the order in
- which they appear in the source file. *Note Final Actions::, for a
- list of directives that can be used within 'dg-final'.
-
-
-File: gccint.info, Node: Selectors, Next: Effective-Target Keywords, Prev: Directives, Up: Test Directives
-
-7.2.2 Selecting targets to which a test applies
------------------------------------------------
-
-Several test directives include SELECTORs to limit the targets for which
-a test is run or to declare that a test is expected to fail on
-particular targets.
-
- A selector is:
- * one or more target triplets, possibly including wildcard
- characters; use '*-*-*' to match any target
- * a single effective-target keyword (*note Effective-Target
- Keywords::)
- * a logical expression
-
- Depending on the context, the selector specifies whether a test is
-skipped and reported as unsupported or is expected to fail. A context
-that allows either 'target' or 'xfail' also allows '{ target SELECTOR1
-xfail SELECTOR2 }' to skip the test for targets that don't match
-SELECTOR1 and the test to fail for targets that match SELECTOR2.
-
- A selector expression appears within curly braces and uses a single
-logical operator: one of '!', '&&', or '||'. An operand is another
-selector expression, an effective-target keyword, a single target
-triplet, or a list of target triplets within quotes or curly braces.
-For example:
-
- { target { ! "hppa*-*-* ia64*-*-*" } }
- { target { powerpc*-*-* && lp64 } }
- { xfail { lp64 || vect_no_align } }
-
-
-File: gccint.info, Node: Effective-Target Keywords, Next: Add Options, Prev: Selectors, Up: Test Directives
-
-7.2.3 Keywords describing target attributes
--------------------------------------------
-
-Effective-target keywords identify sets of targets that support
-particular functionality. They are used to limit tests to be run only
-for particular targets, or to specify that particular sets of targets
-are expected to fail some tests.
-
- Effective-target keywords are defined in 'lib/target-supports.exp' in
-the GCC testsuite, with the exception of those that are documented as
-being local to a particular test directory.
-
- The 'effective target' takes into account all of the compiler options
-with which the test will be compiled, including the multilib options.
-By convention, keywords ending in '_nocache' can also include options
-specified for the particular test in an earlier 'dg-options' or
-'dg-add-options' directive.
-
-7.2.3.1 Data type sizes
-.......................
-
-'ilp32'
- Target has 32-bit 'int', 'long', and pointers.
-
-'lp64'
- Target has 32-bit 'int', 64-bit 'long' and pointers.
-
-'llp64'
- Target has 32-bit 'int' and 'long', 64-bit 'long long' and
- pointers.
-
-'double64'
- Target has 64-bit 'double'.
-
-'double64plus'
- Target has 'double' that is 64 bits or longer.
-
-'int32plus'
- Target has 'int' that is at 32 bits or longer.
-
-'int16'
- Target has 'int' that is 16 bits or shorter.
-
-'long_neq_int'
- Target has 'int' and 'long' with different sizes.
-
-'large_double'
- Target supports 'double' that is longer than 'float'.
-
-'large_long_double'
- Target supports 'long double' that is longer than 'double'.
-
-'ptr32plus'
- Target has pointers that are 32 bits or longer.
-
-'size32plus'
- Target supports array and structure sizes that are 32 bits or
- longer.
-
-'4byte_wchar_t'
- Target has 'wchar_t' that is at least 4 bytes.
-
-7.2.3.2 Fortran-specific attributes
-...................................
-
-'fortran_integer_16'
- Target supports Fortran 'integer' that is 16 bytes or longer.
-
-'fortran_large_int'
- Target supports Fortran 'integer' kinds larger than 'integer(8)'.
-
-'fortran_large_real'
- Target supports Fortran 'real' kinds larger than 'real(8)'.
-
-7.2.3.3 Vector-specific attributes
-..................................
-
-'vect_condition'
- Target supports vector conditional operations.
-
-'vect_double'
- Target supports hardware vectors of 'double'.
-
-'vect_float'
- Target supports hardware vectors of 'float'.
-
-'vect_int'
- Target supports hardware vectors of 'int'.
-
-'vect_long'
- Target supports hardware vectors of 'long'.
-
-'vect_long_long'
- Target supports hardware vectors of 'long long'.
-
-'vect_aligned_arrays'
- Target aligns arrays to vector alignment boundary.
-
-'vect_hw_misalign'
- Target supports a vector misalign access.
-
-'vect_no_align'
- Target does not support a vector alignment mechanism.
-
-'vect_no_int_max'
- Target does not support a vector max instruction on 'int'.
-
-'vect_no_int_add'
- Target does not support a vector add instruction on 'int'.
-
-'vect_no_bitwise'
- Target does not support vector bitwise instructions.
-
-'vect_char_mult'
- Target supports 'vector char' multiplication.
-
-'vect_short_mult'
- Target supports 'vector short' multiplication.
-
-'vect_int_mult'
- Target supports 'vector int' multiplication.
-
-'vect_extract_even_odd'
- Target supports vector even/odd element extraction.
-
-'vect_extract_even_odd_wide'
- Target supports vector even/odd element extraction of vectors with
- elements 'SImode' or larger.
-
-'vect_interleave'
- Target supports vector interleaving.
-
-'vect_strided'
- Target supports vector interleaving and extract even/odd.
-
-'vect_strided_wide'
- Target supports vector interleaving and extract even/odd for wide
- element types.
-
-'vect_perm'
- Target supports vector permutation.
-
-'vect_shift'
- Target supports a hardware vector shift operation.
-
-'vect_widen_sum_hi_to_si'
- Target supports a vector widening summation of 'short' operands
- into 'int' results, or can promote (unpack) from 'short' to 'int'.
-
-'vect_widen_sum_qi_to_hi'
- Target supports a vector widening summation of 'char' operands into
- 'short' results, or can promote (unpack) from 'char' to 'short'.
-
-'vect_widen_sum_qi_to_si'
- Target supports a vector widening summation of 'char' operands into
- 'int' results.
-
-'vect_widen_mult_qi_to_hi'
- Target supports a vector widening multiplication of 'char' operands
- into 'short' results, or can promote (unpack) from 'char' to
- 'short' and perform non-widening multiplication of 'short'.
-
-'vect_widen_mult_hi_to_si'
- Target supports a vector widening multiplication of 'short'
- operands into 'int' results, or can promote (unpack) from 'short'
- to 'int' and perform non-widening multiplication of 'int'.
-
-'vect_widen_mult_si_to_di_pattern'
- Target supports a vector widening multiplication of 'int' operands
- into 'long' results.
-
-'vect_sdot_qi'
- Target supports a vector dot-product of 'signed char'.
-
-'vect_udot_qi'
- Target supports a vector dot-product of 'unsigned char'.
-
-'vect_sdot_hi'
- Target supports a vector dot-product of 'signed short'.
-
-'vect_udot_hi'
- Target supports a vector dot-product of 'unsigned short'.
-
-'vect_pack_trunc'
- Target supports a vector demotion (packing) of 'short' to 'char'
- and from 'int' to 'short' using modulo arithmetic.
-
-'vect_unpack'
- Target supports a vector promotion (unpacking) of 'char' to 'short'
- and from 'char' to 'int'.
-
-'vect_intfloat_cvt'
- Target supports conversion from 'signed int' to 'float'.
-
-'vect_uintfloat_cvt'
- Target supports conversion from 'unsigned int' to 'float'.
-
-'vect_floatint_cvt'
- Target supports conversion from 'float' to 'signed int'.
-
-'vect_floatuint_cvt'
- Target supports conversion from 'float' to 'unsigned int'.
-
-7.2.3.4 Thread Local Storage attributes
-.......................................
-
-'tls'
- Target supports thread-local storage.
-
-'tls_native'
- Target supports native (rather than emulated) thread-local storage.
-
-'tls_runtime'
- Test system supports executing TLS executables.
-
-7.2.3.5 Decimal floating point attributes
-.........................................
-
-'dfp'
- Targets supports compiling decimal floating point extension to C.
-
-'dfp_nocache'
- Including the options used to compile this particular test, the
- target supports compiling decimal floating point extension to C.
-
-'dfprt'
- Test system can execute decimal floating point tests.
-
-'dfprt_nocache'
- Including the options used to compile this particular test, the
- test system can execute decimal floating point tests.
-
-'hard_dfp'
- Target generates decimal floating point instructions with current
- options.
-
-7.2.3.6 ARM-specific attributes
-...............................
-
-'arm32'
- ARM target generates 32-bit code.
-
-'arm_eabi'
- ARM target adheres to the ABI for the ARM Architecture.
-
-'arm_hf_eabi'
- ARM target adheres to the VFP and Advanced SIMD Register Arguments
- variant of the ABI for the ARM Architecture (as selected with
- '-mfloat-abi=hard').
-
-'arm_hard_vfp_ok'
- ARM target supports '-mfpu=vfp -mfloat-abi=hard'. Some multilibs
- may be incompatible with these options.
-
-'arm_iwmmxt_ok'
- ARM target supports '-mcpu=iwmmxt'. Some multilibs may be
- incompatible with this option.
-
-'arm_neon'
- ARM target supports generating NEON instructions.
-
-'arm_neon_hw'
- Test system supports executing NEON instructions.
-
-'arm_neonv2_hw'
- Test system supports executing NEON v2 instructions.
-
-'arm_neon_ok'
- ARM Target supports '-mfpu=neon -mfloat-abi=softfp' or compatible
- options. Some multilibs may be incompatible with these options.
-
-'arm_neonv2_ok'
- ARM Target supports '-mfpu=neon-vfpv4 -mfloat-abi=softfp' or
- compatible options. Some multilibs may be incompatible with these
- options.
-
-'arm_neon_fp16_ok'
- ARM Target supports '-mfpu=neon-fp16 -mfloat-abi=softfp' or
- compatible options. Some multilibs may be incompatible with these
- options.
-
-'arm_thumb1_ok'
- ARM target generates Thumb-1 code for '-mthumb'.
-
-'arm_thumb2_ok'
- ARM target generates Thumb-2 code for '-mthumb'.
-
-'arm_vfp_ok'
- ARM target supports '-mfpu=vfp -mfloat-abi=softfp'. Some multilibs
- may be incompatible with these options.
-
-'arm_vfp3_ok'
- ARM target supports '-mfpu=vfp3 -mfloat-abi=softfp'. Some
- multilibs may be incompatible with these options.
-
-'arm_v8_vfp_ok'
- ARM target supports '-mfpu=fp-armv8 -mfloat-abi=softfp'. Some
- multilibs may be incompatible with these options.
-
-'arm_v8_neon_ok'
- ARM target supports '-mfpu=neon-fp-armv8 -mfloat-abi=softfp'. Some
- multilibs may be incompatible with these options.
-
-'arm_prefer_ldrd_strd'
- ARM target prefers 'LDRD' and 'STRD' instructions over 'LDM' and
- 'STM' instructions.
-
-7.2.3.7 MIPS-specific attributes
-................................
-
-'mips64'
- MIPS target supports 64-bit instructions.
-
-'nomips16'
- MIPS target does not produce MIPS16 code.
-
-'mips16_attribute'
- MIPS target can generate MIPS16 code.
-
-'mips_loongson'
- MIPS target is a Loongson-2E or -2F target using an ABI that
- supports the Loongson vector modes.
-
-'mips_newabi_large_long_double'
- MIPS target supports 'long double' larger than 'double' when using
- the new ABI.
-
-'mpaired_single'
- MIPS target supports '-mpaired-single'.
-
-7.2.3.8 PowerPC-specific attributes
-...................................
-
-'powerpc64'
- Test system supports executing 64-bit instructions.
-
-'powerpc_altivec'
- PowerPC target supports AltiVec.
-
-'powerpc_altivec_ok'
- PowerPC target supports '-maltivec'.
-
-'powerpc_fprs'
- PowerPC target supports floating-point registers.
-
-'powerpc_hard_double'
- PowerPC target supports hardware double-precision floating-point.
-
-'powerpc_ppu_ok'
- PowerPC target supports '-mcpu=cell'.
-
-'powerpc_spe'
- PowerPC target supports PowerPC SPE.
-
-'powerpc_spe_nocache'
- Including the options used to compile this particular test, the
- PowerPC target supports PowerPC SPE.
-
-'powerpc_spu'
- PowerPC target supports PowerPC SPU.
-
-'spu_auto_overlay'
- SPU target has toolchain that supports automatic overlay
- generation.
-
-'powerpc_vsx_ok'
- PowerPC target supports '-mvsx'.
-
-'powerpc_405_nocache'
- Including the options used to compile this particular test, the
- PowerPC target supports PowerPC 405.
-
-'vmx_hw'
- PowerPC target supports executing AltiVec instructions.
-
-7.2.3.9 Other hardware attributes
-.................................
-
-'avx'
- Target supports compiling 'avx' instructions.
-
-'avx_runtime'
- Target supports the execution of 'avx' instructions.
-
-'cell_hw'
- Test system can execute AltiVec and Cell PPU instructions.
-
-'coldfire_fpu'
- Target uses a ColdFire FPU.
-
-'hard_float'
- Target supports FPU instructions.
-
-'sse'
- Target supports compiling 'sse' instructions.
-
-'sse_runtime'
- Target supports the execution of 'sse' instructions.
-
-'sse2'
- Target supports compiling 'sse2' instructions.
-
-'sse2_runtime'
- Target supports the execution of 'sse2' instructions.
-
-'sync_char_short'
- Target supports atomic operations on 'char' and 'short'.
-
-'sync_int_long'
- Target supports atomic operations on 'int' and 'long'.
-
-'ultrasparc_hw'
- Test environment appears to run executables on a simulator that
- accepts only 'EM_SPARC' executables and chokes on 'EM_SPARC32PLUS'
- or 'EM_SPARCV9' executables.
-
-'vect_cmdline_needed'
- Target requires a command line argument to enable a SIMD
- instruction set.
-
-7.2.3.10 Environment attributes
-...............................
-
-'c'
- The language for the compiler under test is C.
-
-'c++'
- The language for the compiler under test is C++.
-
-'c99_runtime'
- Target provides a full C99 runtime.
-
-'correct_iso_cpp_string_wchar_protos'
- Target 'string.h' and 'wchar.h' headers provide C++ required
- overloads for 'strchr' etc. functions.
-
-'dummy_wcsftime'
- Target uses a dummy 'wcsftime' function that always returns zero.
-
-'fd_truncate'
- Target can truncate a file from a file descriptor, as used by
- 'libgfortran/io/unix.c:fd_truncate'; i.e. 'ftruncate' or 'chsize'.
-
-'freestanding'
- Target is 'freestanding' as defined in section 4 of the C99
- standard. Effectively, it is a target which supports no extra
- headers or libraries other than what is considered essential.
-
-'init_priority'
- Target supports constructors with initialization priority
- arguments.
-
-'inttypes_types'
- Target has the basic signed and unsigned types in 'inttypes.h'.
- This is for tests that GCC's notions of these types agree with
- those in the header, as some systems have only 'inttypes.h'.
-
-'lax_strtofp'
- Target might have errors of a few ULP in string to floating-point
- conversion functions and overflow is not always detected correctly
- by those functions.
-
-'mmap'
- Target supports 'mmap'.
-
-'newlib'
- Target supports Newlib.
-
-'pow10'
- Target provides 'pow10' function.
-
-'pthread'
- Target can compile using 'pthread.h' with no errors or warnings.
-
-'pthread_h'
- Target has 'pthread.h'.
-
-'run_expensive_tests'
- Expensive testcases (usually those that consume excessive amounts
- of CPU time) should be run on this target. This can be enabled by
- setting the 'GCC_TEST_RUN_EXPENSIVE' environment variable to a
- non-empty string.
-
-'simulator'
- Test system runs executables on a simulator (i.e. slowly) rather
- than hardware (i.e. fast).
-
-'stdint_types'
- Target has the basic signed and unsigned C types in 'stdint.h'.
- This will be obsolete when GCC ensures a working 'stdint.h' for all
- targets.
-
-'trampolines'
- Target supports trampolines.
-
-'uclibc'
- Target supports uClibc.
-
-'unwrapped'
- Target does not use a status wrapper.
-
-'vxworks_kernel'
- Target is a VxWorks kernel.
-
-'vxworks_rtp'
- Target is a VxWorks RTP.
-
-'wchar'
- Target supports wide characters.
-
-7.2.3.11 Other attributes
-.........................
-
-'automatic_stack_alignment'
- Target supports automatic stack alignment.
-
-'cxa_atexit'
- Target uses '__cxa_atexit'.
-
-'default_packed'
- Target has packed layout of structure members by default.
-
-'fgraphite'
- Target supports Graphite optimizations.
-
-'fixed_point'
- Target supports fixed-point extension to C.
-
-'fopenmp'
- Target supports OpenMP via '-fopenmp'.
-
-'fpic'
- Target supports '-fpic' and '-fPIC'.
-
-'freorder'
- Target supports '-freorder-blocks-and-partition'.
-
-'fstack_protector'
- Target supports '-fstack-protector'.
-
-'gas'
- Target uses GNU 'as'.
-
-'gc_sections'
- Target supports '--gc-sections'.
-
-'gld'
- Target uses GNU 'ld'.
-
-'keeps_null_pointer_checks'
- Target keeps null pointer checks, either due to the use of
- '-fno-delete-null-pointer-checks' or hardwired into the target.
-
-'lto'
- Compiler has been configured to support link-time optimization
- (LTO).
-
-'naked_functions'
- Target supports the 'naked' function attribute.
-
-'named_sections'
- Target supports named sections.
-
-'natural_alignment_32'
- Target uses natural alignment (aligned to type size) for types of
- 32 bits or less.
-
-'target_natural_alignment_64'
- Target uses natural alignment (aligned to type size) for types of
- 64 bits or less.
-
-'nonpic'
- Target does not generate PIC by default.
-
-'pcc_bitfield_type_matters'
- Target defines 'PCC_BITFIELD_TYPE_MATTERS'.
-
-'pe_aligned_commons'
- Target supports '-mpe-aligned-commons'.
-
-'pie'
- Target supports '-pie', '-fpie' and '-fPIE'.
-
-'section_anchors'
- Target supports section anchors.
-
-'short_enums'
- Target defaults to short enums.
-
-'static'
- Target supports '-static'.
-
-'static_libgfortran'
- Target supports statically linking 'libgfortran'.
-
-'string_merging'
- Target supports merging string constants at link time.
-
-'ucn'
- Target supports compiling and assembling UCN.
-
-'ucn_nocache'
- Including the options used to compile this particular test, the
- target supports compiling and assembling UCN.
-
-'unaligned_stack'
- Target does not guarantee that its 'STACK_BOUNDARY' is greater than
- or equal to the required vector alignment.
-
-'vector_alignment_reachable'
- Vector alignment is reachable for types of 32 bits or less.
-
-'vector_alignment_reachable_for_64bit'
- Vector alignment is reachable for types of 64 bits or less.
-
-'wchar_t_char16_t_compatible'
- Target supports 'wchar_t' that is compatible with 'char16_t'.
-
-'wchar_t_char32_t_compatible'
- Target supports 'wchar_t' that is compatible with 'char32_t'.
-
-7.2.3.12 Local to tests in 'gcc.target/i386'
-............................................
-
-'3dnow'
- Target supports compiling '3dnow' instructions.
-
-'aes'
- Target supports compiling 'aes' instructions.
-
-'fma4'
- Target supports compiling 'fma4' instructions.
-
-'ms_hook_prologue'
- Target supports attribute 'ms_hook_prologue'.
-
-'pclmul'
- Target supports compiling 'pclmul' instructions.
-
-'sse3'
- Target supports compiling 'sse3' instructions.
-
-'sse4'
- Target supports compiling 'sse4' instructions.
-
-'sse4a'
- Target supports compiling 'sse4a' instructions.
-
-'ssse3'
- Target supports compiling 'ssse3' instructions.
-
-'vaes'
- Target supports compiling 'vaes' instructions.
-
-'vpclmul'
- Target supports compiling 'vpclmul' instructions.
-
-'xop'
- Target supports compiling 'xop' instructions.
-
-7.2.3.13 Local to tests in 'gcc.target/spu/ea'
-..............................................
-
-'ealib'
- Target '__ea' library functions are available.
-
-7.2.3.14 Local to tests in 'gcc.test-framework'
-...............................................
-
-'no'
- Always returns 0.
-
-'yes'
- Always returns 1.
-
-
-File: gccint.info, Node: Add Options, Next: Require Support, Prev: Effective-Target Keywords, Up: Test Directives
-
-7.2.4 Features for 'dg-add-options'
------------------------------------
-
-The supported values of FEATURE for directive 'dg-add-options' are:
-
-'arm_neon'
- NEON support. Only ARM targets support this feature, and only then
- in certain modes; see the *note arm_neon_ok effective target
- keyword: arm_neon_ok.
-
-'arm_neon_fp16'
- NEON and half-precision floating point support. Only ARM targets
- support this feature, and only then in certain modes; see the *note
- arm_neon_fp16_ok effective target keyword: arm_neon_ok.
-
-'arm_vfp3'
- arm vfp3 floating point support; see the *note arm_vfp3_ok
- effective target keyword: arm_vfp3_ok.
-
-'bind_pic_locally'
- Add the target-specific flags needed to enable functions to bind
- locally when using pic/PIC passes in the testsuite.
-
-'c99_runtime'
- Add the target-specific flags needed to access the C99 runtime.
-
-'ieee'
- Add the target-specific flags needed to enable full IEEE compliance
- mode.
-
-'mips16_attribute'
- 'mips16' function attributes. Only MIPS targets support this
- feature, and only then in certain modes.
-
-'tls'
- Add the target-specific flags needed to use thread-local storage.
-
-
-File: gccint.info, Node: Require Support, Next: Final Actions, Prev: Add Options, Up: Test Directives
-
-7.2.5 Variants of 'dg-require-SUPPORT'
---------------------------------------
-
-A few of the 'dg-require' directives take arguments.
-
-'dg-require-iconv CODESET'
- Skip the test if the target does not support iconv. CODESET is the
- codeset to convert to.
-
-'dg-require-profiling PROFOPT'
- Skip the test if the target does not support profiling with option
- PROFOPT.
-
-'dg-require-visibility VIS'
- Skip the test if the target does not support the 'visibility'
- attribute. If VIS is '""', support for 'visibility("hidden")' is
- checked, for 'visibility("VIS")' otherwise.
-
- The original 'dg-require' directives were defined before there was
-support for effective-target keywords. The directives that do not take
-arguments could be replaced with effective-target keywords.
-
-'dg-require-alias ""'
- Skip the test if the target does not support the 'alias' attribute.
-
-'dg-require-ascii-locale ""'
- Skip the test if the host does not support an ASCII locale.
-
-'dg-require-compat-dfp ""'
- Skip this test unless both compilers in a 'compat' testsuite
- support decimal floating point.
-
-'dg-require-cxa-atexit ""'
- Skip the test if the target does not support '__cxa_atexit'. This
- is equivalent to 'dg-require-effective-target cxa_atexit'.
-
-'dg-require-dll ""'
- Skip the test if the target does not support DLL attributes.
-
-'dg-require-fork ""'
- Skip the test if the target does not support 'fork'.
-
-'dg-require-gc-sections ""'
- Skip the test if the target's linker does not support the
- '--gc-sections' flags. This is equivalent to
- 'dg-require-effective-target gc-sections'.
-
-'dg-require-host-local ""'
- Skip the test if the host is remote, rather than the same as the
- build system. Some tests are incompatible with DejaGnu's handling
- of remote hosts, which involves copying the source file to the host
- and compiling it with a relative path and "'-o a.out'".
-
-'dg-require-mkfifo ""'
- Skip the test if the target does not support 'mkfifo'.
-
-'dg-require-named-sections ""'
- Skip the test is the target does not support named sections. This
- is equivalent to 'dg-require-effective-target named_sections'.
-
-'dg-require-weak ""'
- Skip the test if the target does not support weak symbols.
-
-'dg-require-weak-override ""'
- Skip the test if the target does not support overriding weak
- symbols.
-
-
-File: gccint.info, Node: Final Actions, Prev: Require Support, Up: Test Directives
-
-7.2.6 Commands for use in 'dg-final'
-------------------------------------
-
-The GCC testsuite defines the following directives to be used within
-'dg-final'.
-
-7.2.6.1 Scan a particular file
-..............................
-
-'scan-file FILENAME REGEXP [{ target/xfail SELECTOR }]'
- Passes if REGEXP matches text in FILENAME.
-'scan-file-not FILENAME REGEXP [{ target/xfail SELECTOR }]'
- Passes if REGEXP does not match text in FILENAME.
-'scan-module MODULE REGEXP [{ target/xfail SELECTOR }]'
- Passes if REGEXP matches in Fortran module MODULE.
-
-7.2.6.2 Scan the assembly output
-................................
-
-'scan-assembler REGEX [{ target/xfail SELECTOR }]'
- Passes if REGEX matches text in the test's assembler output.
-
-'scan-assembler-not REGEX [{ target/xfail SELECTOR }]'
- Passes if REGEX does not match text in the test's assembler output.
-
-'scan-assembler-times REGEX NUM [{ target/xfail SELECTOR }]'
- Passes if REGEX is matched exactly NUM times in the test's
- assembler output.
-
-'scan-assembler-dem REGEX [{ target/xfail SELECTOR }]'
- Passes if REGEX matches text in the test's demangled assembler
- output.
-
-'scan-assembler-dem-not REGEX [{ target/xfail SELECTOR }]'
- Passes if REGEX does not match text in the test's demangled
- assembler output.
-
-'scan-hidden SYMBOL [{ target/xfail SELECTOR }]'
- Passes if SYMBOL is defined as a hidden symbol in the test's
- assembly output.
-
-'scan-not-hidden SYMBOL [{ target/xfail SELECTOR }]'
- Passes if SYMBOL is not defined as a hidden symbol in the test's
- assembly output.
-
-7.2.6.3 Scan optimization dump files
-....................................
-
-These commands are available for KIND of 'tree', 'rtl', and 'ipa'.
-
-'scan-KIND-dump REGEX SUFFIX [{ target/xfail SELECTOR }]'
- Passes if REGEX matches text in the dump file with suffix SUFFIX.
-
-'scan-KIND-dump-not REGEX SUFFIX [{ target/xfail SELECTOR }]'
- Passes if REGEX does not match text in the dump file with suffix
- SUFFIX.
-
-'scan-KIND-dump-times REGEX NUM SUFFIX [{ target/xfail SELECTOR }]'
- Passes if REGEX is found exactly NUM times in the dump file with
- suffix SUFFIX.
-
-'scan-KIND-dump-dem REGEX SUFFIX [{ target/xfail SELECTOR }]'
- Passes if REGEX matches demangled text in the dump file with suffix
- SUFFIX.
-
-'scan-KIND-dump-dem-not REGEX SUFFIX [{ target/xfail SELECTOR }]'
- Passes if REGEX does not match demangled text in the dump file with
- suffix SUFFIX.
-
-7.2.6.4 Verify that an output files exists or not
-.................................................
-
-'output-exists [{ target/xfail SELECTOR }]'
- Passes if compiler output file exists.
-
-'output-exists-not [{ target/xfail SELECTOR }]'
- Passes if compiler output file does not exist.
-
-7.2.6.5 Check for LTO tests
-...........................
-
-'scan-symbol REGEXP [{ target/xfail SELECTOR }]'
- Passes if the pattern is present in the final executable.
-
-7.2.6.6 Checks for 'gcov' tests
-...............................
-
-'run-gcov SOURCEFILE'
- Check line counts in 'gcov' tests.
-
-'run-gcov [branches] [calls] { OPTS SOURCEFILE }'
- Check branch and/or call counts, in addition to line counts, in
- 'gcov' tests.
-
-7.2.6.7 Clean up generated test files
-.....................................
-
-'cleanup-coverage-files'
- Removes coverage data files generated for this test.
-
-'cleanup-ipa-dump SUFFIX'
- Removes IPA dump files generated for this test.
-
-'cleanup-modules "LIST-OF-EXTRA-MODULES"'
- Removes Fortran module files generated for this test, excluding the
- module names listed in keep-modules. Cleaning up module files is
- usually done automatically by the testsuite by looking at the
- source files and removing the modules after the test has been
- executed.
- module MoD1
- end module MoD1
- module Mod2
- end module Mod2
- module moD3
- end module moD3
- module mod4
- end module mod4
- ! { dg-final { cleanup-modules "mod1 mod2" } } ! redundant
- ! { dg-final { keep-modules "mod3 mod4" } }
-
-'keep-modules "LIST-OF-MODULES-NOT-TO-DELETE"'
- Whitespace separated list of module names that should not be
- deleted by cleanup-modules. If the list of modules is empty, all
- modules defined in this file are kept.
- module maybe_unneeded
- end module maybe_unneeded
- module keep1
- end module keep1
- module keep2
- end module keep2
- ! { dg-final { keep-modules "keep1 keep2" } } ! just keep these two
- ! { dg-final { keep-modules "" } } ! keep all
-
-'cleanup-profile-file'
- Removes profiling files generated for this test.
-
-'cleanup-repo-files'
- Removes files generated for this test for '-frepo'.
-
-'cleanup-rtl-dump SUFFIX'
- Removes RTL dump files generated for this test.
-
-'cleanup-saved-temps'
- Removes files for the current test which were kept for
- '-save-temps'.
-
-'cleanup-tree-dump SUFFIX'
- Removes tree dump files matching SUFFIX which were generated for
- this test.
-
-
-File: gccint.info, Node: Ada Tests, Next: C Tests, Prev: Test Directives, Up: Testsuites
-
-7.3 Ada Language Testsuites
-===========================
-
-The Ada testsuite includes executable tests from the ACATS testsuite,
-publicly available at <http://www.ada-auth.org/acats.html>.
-
- These tests are integrated in the GCC testsuite in the 'ada/acats'
-directory, and enabled automatically when running 'make check', assuming
-the Ada language has been enabled when configuring GCC.
-
- You can also run the Ada testsuite independently, using 'make
-check-ada', or run a subset of the tests by specifying which chapter to
-run, e.g.:
-
- $ make check-ada CHAPTERS="c3 c9"
-
- The tests are organized by directory, each directory corresponding to a
-chapter of the Ada Reference Manual. So for example, 'c9' corresponds
-to chapter 9, which deals with tasking features of the language.
-
- There is also an extra chapter called 'gcc' containing a template for
-creating new executable tests, although this is deprecated in favor of
-the 'gnat.dg' testsuite.
-
- The tests are run using two 'sh' scripts: 'run_acats' and 'run_all.sh'.
-To run the tests using a simulator or a cross target, see the small
-customization section at the top of 'run_all.sh'.
-
- These tests are run using the build tree: they can be run without doing
-a 'make install'.
-
-
-File: gccint.info, Node: C Tests, Next: libgcj Tests, Prev: Ada Tests, Up: Testsuites
-
-7.4 C Language Testsuites
-=========================
-
-GCC contains the following C language testsuites, in the 'gcc/testsuite'
-directory:
-
-'gcc.dg'
- This contains tests of particular features of the C compiler, using
- the more modern 'dg' harness. Correctness tests for various
- compiler features should go here if possible.
-
- Magic comments determine whether the file is preprocessed,
- compiled, linked or run. In these tests, error and warning message
- texts are compared against expected texts or regular expressions
- given in comments. These tests are run with the options '-ansi
- -pedantic' unless other options are given in the test. Except as
- noted below they are not run with multiple optimization options.
-'gcc.dg/compat'
- This subdirectory contains tests for binary compatibility using
- 'lib/compat.exp', which in turn uses the language-independent
- support (*note Support for testing binary compatibility: compat
- Testing.).
-'gcc.dg/cpp'
- This subdirectory contains tests of the preprocessor.
-'gcc.dg/debug'
- This subdirectory contains tests for debug formats. Tests in this
- subdirectory are run for each debug format that the compiler
- supports.
-'gcc.dg/format'
- This subdirectory contains tests of the '-Wformat' format checking.
- Tests in this directory are run with and without '-DWIDE'.
-'gcc.dg/noncompile'
- This subdirectory contains tests of code that should not compile
- and does not need any special compilation options. They are run
- with multiple optimization options, since sometimes invalid code
- crashes the compiler with optimization.
-'gcc.dg/special'
- FIXME: describe this.
-
-'gcc.c-torture'
- This contains particular code fragments which have historically
- broken easily. These tests are run with multiple optimization
- options, so tests for features which only break at some
- optimization levels belong here. This also contains tests to check
- that certain optimizations occur. It might be worthwhile to
- separate the correctness tests cleanly from the code quality tests,
- but it hasn't been done yet.
-
-'gcc.c-torture/compat'
- FIXME: describe this.
-
- This directory should probably not be used for new tests.
-'gcc.c-torture/compile'
- This testsuite contains test cases that should compile, but do not
- need to link or run. These test cases are compiled with several
- different combinations of optimization options. All warnings are
- disabled for these test cases, so this directory is not suitable if
- you wish to test for the presence or absence of compiler warnings.
- While special options can be set, and tests disabled on specific
- platforms, by the use of '.x' files, mostly these test cases should
- not contain platform dependencies. FIXME: discuss how defines such
- as 'NO_LABEL_VALUES' and 'STACK_SIZE' are used.
-'gcc.c-torture/execute'
- This testsuite contains test cases that should compile, link and
- run; otherwise the same comments as for 'gcc.c-torture/compile'
- apply.
-'gcc.c-torture/execute/ieee'
- This contains tests which are specific to IEEE floating point.
-'gcc.c-torture/unsorted'
- FIXME: describe this.
-
- This directory should probably not be used for new tests.
-'gcc.misc-tests'
- This directory contains C tests that require special handling.
- Some of these tests have individual expect files, and others share
- special-purpose expect files:
-
- 'bprob*.c'
- Test '-fbranch-probabilities' using
- 'gcc.misc-tests/bprob.exp', which in turn uses the generic,
- language-independent framework (*note Support for testing
- profile-directed optimizations: profopt Testing.).
-
- 'gcov*.c'
- Test 'gcov' output using 'gcov.exp', which in turn uses the
- language-independent support (*note Support for testing gcov:
- gcov Testing.).
-
- 'i386-pf-*.c'
- Test i386-specific support for data prefetch using
- 'i386-prefetch.exp'.
-
-'gcc.test-framework'
- 'dg-*.c'
- Test the testsuite itself using
- 'gcc.test-framework/test-framework.exp'.
-
- FIXME: merge in 'testsuite/README.gcc' and discuss the format of test
-cases and magic comments more.
-
-
-File: gccint.info, Node: libgcj Tests, Next: LTO Testing, Prev: C Tests, Up: Testsuites
-
-7.5 The Java library testsuites.
-================================
-
-Runtime tests are executed via 'make check' in the
-'TARGET/libjava/testsuite' directory in the build tree. Additional
-runtime tests can be checked into this testsuite.
-
- Regression testing of the core packages in libgcj is also covered by
-the Mauve testsuite. The Mauve Project develops tests for the Java
-Class Libraries. These tests are run as part of libgcj testing by
-placing the Mauve tree within the libjava testsuite sources at
-'libjava/testsuite/libjava.mauve/mauve', or by specifying the location
-of that tree when invoking 'make', as in 'make MAUVEDIR=~/mauve check'.
-
- To detect regressions, a mechanism in 'mauve.exp' compares the failures
-for a test run against the list of expected failures in
-'libjava/testsuite/libjava.mauve/xfails' from the source hierarchy.
-Update this file when adding new failing tests to Mauve, or when fixing
-bugs in libgcj that had caused Mauve test failures.
-
- We encourage developers to contribute test cases to Mauve.
-
-
-File: gccint.info, Node: LTO Testing, Next: gcov Testing, Prev: libgcj Tests, Up: Testsuites
-
-7.6 Support for testing link-time optimizations
-===============================================
-
-Tests for link-time optimizations usually require multiple source files
-that are compiled separately, perhaps with different sets of options.
-There are several special-purpose test directives used for these tests.
-
-'{ dg-lto-do DO-WHAT-KEYWORD }'
- DO-WHAT-KEYWORD specifies how the test is compiled and whether it
- is executed. It is one of:
-
- 'assemble'
- Compile with '-c' to produce a relocatable object file.
- 'link'
- Compile, assemble, and link to produce an executable file.
- 'run'
- Produce and run an executable file, which is expected to
- return an exit code of 0.
-
- The default is 'assemble'. That can be overridden for a set of
- tests by redefining 'dg-do-what-default' within the '.exp' file for
- those tests.
-
- Unlike 'dg-do', 'dg-lto-do' does not support an optional 'target'
- or 'xfail' list. Use 'dg-skip-if', 'dg-xfail-if', or
- 'dg-xfail-run-if'.
-
-'{ dg-lto-options { { OPTIONS } [{ OPTIONS }] } [{ target SELECTOR }]}'
- This directive provides a list of one or more sets of compiler
- options to override LTO_OPTIONS. Each test will be compiled and
- run with each of these sets of options.
-
-'{ dg-extra-ld-options OPTIONS [{ target SELECTOR }]}'
- This directive adds OPTIONS to the linker options used.
-
-'{ dg-suppress-ld-options OPTIONS [{ target SELECTOR }]}'
- This directive removes OPTIONS from the set of linker options used.
-
-
-File: gccint.info, Node: gcov Testing, Next: profopt Testing, Prev: LTO Testing, Up: Testsuites
-
-7.7 Support for testing 'gcov'
-==============================
-
-Language-independent support for testing 'gcov', and for checking that
-branch profiling produces expected values, is provided by the expect
-file 'lib/gcov.exp'. 'gcov' tests also rely on procedures in
-'lib/gcc-dg.exp' to compile and run the test program. A typical 'gcov'
-test contains the following DejaGnu commands within comments:
-
- { dg-options "-fprofile-arcs -ftest-coverage" }
- { dg-do run { target native } }
- { dg-final { run-gcov sourcefile } }
-
- Checks of 'gcov' output can include line counts, branch percentages,
-and call return percentages. All of these checks are requested via
-commands that appear in comments in the test's source file. Commands to
-check line counts are processed by default. Commands to check branch
-percentages and call return percentages are processed if the 'run-gcov'
-command has arguments 'branches' or 'calls', respectively. For example,
-the following specifies checking both, as well as passing '-b' to
-'gcov':
-
- { dg-final { run-gcov branches calls { -b sourcefile } } }
-
- A line count command appears within a comment on the source line that
-is expected to get the specified count and has the form 'count(CNT)'. A
-test should only check line counts for lines that will get the same
-count for any architecture.
-
- Commands to check branch percentages ('branch') and call return
-percentages ('returns') are very similar to each other. A beginning
-command appears on or before the first of a range of lines that will
-report the percentage, and the ending command follows that range of
-lines. The beginning command can include a list of percentages, all of
-which are expected to be found within the range. A range is terminated
-by the next command of the same kind. A command 'branch(end)' or
-'returns(end)' marks the end of a range without starting a new one. For
-example:
-
- if (i > 10 && j > i && j < 20) /* branch(27 50 75) */
- /* branch(end) */
- foo (i, j);
-
- For a call return percentage, the value specified is the percentage of
-calls reported to return. For a branch percentage, the value is either
-the expected percentage or 100 minus that value, since the direction of
-a branch can differ depending on the target or the optimization level.
-
- Not all branches and calls need to be checked. A test should not check
-for branches that might be optimized away or replaced with predicated
-instructions. Don't check for calls inserted by the compiler or ones
-that might be inlined or optimized away.
-
- A single test can check for combinations of line counts, branch
-percentages, and call return percentages. The command to check a line
-count must appear on the line that will report that count, but commands
-to check branch percentages and call return percentages can bracket the
-lines that report them.
-
-
-File: gccint.info, Node: profopt Testing, Next: compat Testing, Prev: gcov Testing, Up: Testsuites
-
-7.8 Support for testing profile-directed optimizations
-======================================================
-
-The file 'profopt.exp' provides language-independent support for
-checking correct execution of a test built with profile-directed
-optimization. This testing requires that a test program be built and
-executed twice. The first time it is compiled to generate profile data,
-and the second time it is compiled to use the data that was generated
-during the first execution. The second execution is to verify that the
-test produces the expected results.
-
- To check that the optimization actually generated better code, a test
-can be built and run a third time with normal optimizations to verify
-that the performance is better with the profile-directed optimizations.
-'profopt.exp' has the beginnings of this kind of support.
-
- 'profopt.exp' provides generic support for profile-directed
-optimizations. Each set of tests that uses it provides information
-about a specific optimization:
-
-'tool'
- tool being tested, e.g., 'gcc'
-
-'profile_option'
- options used to generate profile data
-
-'feedback_option'
- options used to optimize using that profile data
-
-'prof_ext'
- suffix of profile data files
-
-'PROFOPT_OPTIONS'
- list of options with which to run each test, similar to the lists
- for torture tests
-
-'{ dg-final-generate { LOCAL-DIRECTIVE } }'
- This directive is similar to 'dg-final', but the LOCAL-DIRECTIVE is
- run after the generation of profile data.
-
-'{ dg-final-use { LOCAL-DIRECTIVE } }'
- The LOCAL-DIRECTIVE is run after the profile data have been used.
-
-
-File: gccint.info, Node: compat Testing, Next: Torture Tests, Prev: profopt Testing, Up: Testsuites
-
-7.9 Support for testing binary compatibility
-============================================
-
-The file 'compat.exp' provides language-independent support for binary
-compatibility testing. It supports testing interoperability of two
-compilers that follow the same ABI, or of multiple sets of compiler
-options that should not affect binary compatibility. It is intended to
-be used for testsuites that complement ABI testsuites.
-
- A test supported by this framework has three parts, each in a separate
-source file: a main program and two pieces that interact with each other
-to split up the functionality being tested.
-
-'TESTNAME_main.SUFFIX'
- Contains the main program, which calls a function in file
- 'TESTNAME_x.SUFFIX'.
-
-'TESTNAME_x.SUFFIX'
- Contains at least one call to a function in 'TESTNAME_y.SUFFIX'.
-
-'TESTNAME_y.SUFFIX'
- Shares data with, or gets arguments from, 'TESTNAME_x.SUFFIX'.
-
- Within each test, the main program and one functional piece are
-compiled by the GCC under test. The other piece can be compiled by an
-alternate compiler. If no alternate compiler is specified, then all
-three source files are all compiled by the GCC under test. You can
-specify pairs of sets of compiler options. The first element of such a
-pair specifies options used with the GCC under test, and the second
-element of the pair specifies options used with the alternate compiler.
-Each test is compiled with each pair of options.
-
- 'compat.exp' defines default pairs of compiler options. These can be
-overridden by defining the environment variable 'COMPAT_OPTIONS' as:
-
- COMPAT_OPTIONS="[list [list {TST1} {ALT1}]
- ...[list {TSTN} {ALTN}]]"
-
- where TSTI and ALTI are lists of options, with TSTI used by the
-compiler under test and ALTI used by the alternate compiler. For
-example, with '[list [list {-g -O0} {-O3}] [list {-fpic} {-fPIC -O2}]]',
-the test is first built with '-g -O0' by the compiler under test and
-with '-O3' by the alternate compiler. The test is built a second time
-using '-fpic' by the compiler under test and '-fPIC -O2' by the
-alternate compiler.
-
- An alternate compiler is specified by defining an environment variable
-to be the full pathname of an installed compiler; for C define
-'ALT_CC_UNDER_TEST', and for C++ define 'ALT_CXX_UNDER_TEST'. These
-will be written to the 'site.exp' file used by DejaGnu. The default is
-to build each test with the compiler under test using the first of each
-pair of compiler options from 'COMPAT_OPTIONS'. When
-'ALT_CC_UNDER_TEST' or 'ALT_CXX_UNDER_TEST' is 'same', each test is
-built using the compiler under test but with combinations of the options
-from 'COMPAT_OPTIONS'.
-
- To run only the C++ compatibility suite using the compiler under test
-and another version of GCC using specific compiler options, do the
-following from 'OBJDIR/gcc':
-
- rm site.exp
- make -k \
- ALT_CXX_UNDER_TEST=${alt_prefix}/bin/g++ \
- COMPAT_OPTIONS="LISTS AS SHOWN ABOVE" \
- check-c++ \
- RUNTESTFLAGS="compat.exp"
-
- A test that fails when the source files are compiled with different
-compilers, but passes when the files are compiled with the same
-compiler, demonstrates incompatibility of the generated code or runtime
-support. A test that fails for the alternate compiler but passes for
-the compiler under test probably tests for a bug that was fixed in the
-compiler under test but is present in the alternate compiler.
-
- The binary compatibility tests support a small number of test framework
-commands that appear within comments in a test file.
-
-'dg-require-*'
- These commands can be used in 'TESTNAME_main.SUFFIX' to skip the
- test if specific support is not available on the target.
-
-'dg-options'
- The specified options are used for compiling this particular source
- file, appended to the options from 'COMPAT_OPTIONS'. When this
- command appears in 'TESTNAME_main.SUFFIX' the options are also used
- to link the test program.
-
-'dg-xfail-if'
- This command can be used in a secondary source file to specify that
- compilation is expected to fail for particular options on
- particular targets.
-
-
-File: gccint.info, Node: Torture Tests, Prev: compat Testing, Up: Testsuites
-
-7.10 Support for torture testing using multiple options
-=======================================================
-
-Throughout the compiler testsuite there are several directories whose
-tests are run multiple times, each with a different set of options.
-These are known as torture tests. 'lib/torture-options.exp' defines
-procedures to set up these lists:
-
-'torture-init'
- Initialize use of torture lists.
-'set-torture-options'
- Set lists of torture options to use for tests with and without
- loops. Optionally combine a set of torture options with a set of
- other options, as is done with Objective-C runtime options.
-'torture-finish'
- Finalize use of torture lists.
-
- The '.exp' file for a set of tests that use torture options must
-include calls to these three procedures if:
-
- * It calls 'gcc-dg-runtest' and overrides DG_TORTURE_OPTIONS.
-
- * It calls ${TOOL}'-torture' or ${TOOL}'-torture-execute', where TOOL
- is 'c', 'fortran', or 'objc'.
-
- * It calls 'dg-pch'.
-
- It is not necessary for a '.exp' file that calls 'gcc-dg-runtest' to
-call the torture procedures if the tests should use the list in
-DG_TORTURE_OPTIONS defined in 'gcc-dg.exp'.
-
- Most uses of torture options can override the default lists by defining
-TORTURE_OPTIONS or add to the default list by defining
-ADDITIONAL_TORTURE_OPTIONS. Define these in a '.dejagnurc' file or add
-them to the 'site.exp' file; for example
-
- set ADDITIONAL_TORTURE_OPTIONS [list \
- { -O2 -ftree-loop-linear } \
- { -O2 -fpeel-loops } ]
-
-
-File: gccint.info, Node: Options, Next: Passes, Prev: Testsuites, Up: Top
-
-8 Option specification files
-****************************
-
-Most GCC command-line options are described by special option definition
-files, the names of which conventionally end in '.opt'. This chapter
-describes the format of these files.
-
-* Menu:
-
-* Option file format:: The general layout of the files
-* Option properties:: Supported option properties
-
-
-File: gccint.info, Node: Option file format, Next: Option properties, Up: Options
-
-8.1 Option file format
-======================
-
-Option files are a simple list of records in which each field occupies
-its own line and in which the records themselves are separated by blank
-lines. Comments may appear on their own line anywhere within the file
-and are preceded by semicolons. Whitespace is allowed before the
-semicolon.
-
- The files can contain the following types of record:
-
- * A language definition record. These records have two fields: the
- string 'Language' and the name of the language. Once a language
- has been declared in this way, it can be used as an option
- property. *Note Option properties::.
-
- * A target specific save record to save additional information.
- These records have two fields: the string 'TargetSave', and a
- declaration type to go in the 'cl_target_option' structure.
-
- * A variable record to define a variable used to store option
- information. These records have two fields: the string 'Variable',
- and a declaration of the type and name of the variable, optionally
- with an initializer (but without any trailing ';'). These records
- may be used for variables used for many options where declaring the
- initializer in a single option definition record, or duplicating it
- in many records, would be inappropriate, or for variables set in
- option handlers rather than referenced by 'Var' properties.
-
- * A variable record to define a variable used to store option
- information. These records have two fields: the string
- 'TargetVariable', and a declaration of the type and name of the
- variable, optionally with an initializer (but without any trailing
- ';'). 'TargetVariable' is a combination of 'Variable' and
- 'TargetSave' records in that the variable is defined in the
- 'gcc_options' structure, but these variables are also stored in the
- 'cl_target_option' structure. The variables are saved in the
- target save code and restored in the target restore code.
-
- * A variable record to record any additional files that the
- 'options.h' file should include. This is useful to provide
- enumeration or structure definitions needed for target variables.
- These records have two fields: the string 'HeaderInclude' and the
- name of the include file.
-
- * A variable record to record any additional files that the
- 'options.c' or 'options-save.c' file should include. This is
- useful to provide inline functions needed for target variables
- and/or '#ifdef' sequences to properly set up the initialization.
- These records have two fields: the string 'SourceInclude' and the
- name of the include file.
-
- * An enumeration record to define a set of strings that may be used
- as arguments to an option or options. These records have three
- fields: the string 'Enum', a space-separated list of properties and
- help text used to describe the set of strings in '--help' output.
- Properties use the same format as option properties; the following
- are valid:
- 'Name(NAME)'
- This property is required; NAME must be a name (suitable for
- use in C identifiers) used to identify the set of strings in
- 'Enum' option properties.
-
- 'Type(TYPE)'
- This property is required; TYPE is the C type for variables
- set by options using this enumeration together with 'Var'.
-
- 'UnknownError(MESSAGE)'
- The message MESSAGE will be used as an error message if the
- argument is invalid; for enumerations without 'UnknownError',
- a generic error message is used. MESSAGE should contain a
- single '%qs' format, which will be used to format the invalid
- argument.
-
- * An enumeration value record to define one of the strings in a set
- given in an 'Enum' record. These records have two fields: the
- string 'EnumValue' and a space-separated list of properties.
- Properties use the same format as option properties; the following
- are valid:
- 'Enum(NAME)'
- This property is required; NAME says which 'Enum' record this
- 'EnumValue' record corresponds to.
-
- 'String(STRING)'
- This property is required; STRING is the string option
- argument being described by this record.
-
- 'Value(VALUE)'
- This property is required; it says what value (representable
- as 'int') should be used for the given string.
-
- 'Canonical'
- This property is optional. If present, it says the present
- string is the canonical one among all those with the given
- value. Other strings yielding that value will be mapped to
- this one so specs do not need to handle them.
-
- 'DriverOnly'
- This property is optional. If present, the present string
- will only be accepted by the driver. This is used for cases
- such as '-march=native' that are processed by the driver so
- that 'gcc -v' shows how the options chosen depended on the
- system on which the compiler was run.
-
- * An option definition record. These records have the following
- fields:
- 1. the name of the option, with the leading "-" removed
- 2. a space-separated list of option properties (*note Option
- properties::)
- 3. the help text to use for '--help' (omitted if the second field
- contains the 'Undocumented' property).
-
- By default, all options beginning with "f", "W" or "m" are
- implicitly assumed to take a "no-" form. This form should not be
- listed separately. If an option beginning with one of these
- letters does not have a "no-" form, you can use the
- 'RejectNegative' property to reject it.
-
- The help text is automatically line-wrapped before being displayed.
- Normally the name of the option is printed on the left-hand side of
- the output and the help text is printed on the right. However, if
- the help text contains a tab character, the text to the left of the
- tab is used instead of the option's name and the text to the right
- of the tab forms the help text. This allows you to elaborate on
- what type of argument the option takes.
-
- * A target mask record. These records have one field of the form
- 'Mask(X)'. The options-processing script will automatically
- allocate a bit in 'target_flags' (*note Run-time Target::) for each
- mask name X and set the macro 'MASK_X' to the appropriate bitmask.
- It will also declare a 'TARGET_X' macro that has the value 1 when
- bit 'MASK_X' is set and 0 otherwise.
-
- They are primarily intended to declare target masks that are not
- associated with user options, either because these masks represent
- internal switches or because the options are not available on all
- configurations and yet the masks always need to be defined.
-
-
-File: gccint.info, Node: Option properties, Prev: Option file format, Up: Options
-
-8.2 Option properties
-=====================
-
-The second field of an option record can specify any of the following
-properties. When an option takes an argument, it is enclosed in
-parentheses following the option property name. The parser that handles
-option files is quite simplistic, and will be tricked by any nested
-parentheses within the argument text itself; in this case, the entire
-option argument can be wrapped in curly braces within the parentheses to
-demarcate it, e.g.:
-
- Condition({defined (USE_CYGWIN_LIBSTDCXX_WRAPPERS)})
-
-'Common'
- The option is available for all languages and targets.
-
-'Target'
- The option is available for all languages but is target-specific.
-
-'Driver'
- The option is handled by the compiler driver using code not shared
- with the compilers proper ('cc1' etc.).
-
-'LANGUAGE'
- The option is available when compiling for the given language.
-
- It is possible to specify several different languages for the same
- option. Each LANGUAGE must have been declared by an earlier
- 'Language' record. *Note Option file format::.
-
-'RejectDriver'
- The option is only handled by the compilers proper ('cc1' etc.) and
- should not be accepted by the driver.
-
-'RejectNegative'
- The option does not have a "no-" form. All options beginning with
- "f", "W" or "m" are assumed to have a "no-" form unless this
- property is used.
-
-'Negative(OTHERNAME)'
- The option will turn off another option OTHERNAME, which is the
- option name with the leading "-" removed. This chain action will
- propagate through the 'Negative' property of the option to be
- turned off.
-
- As a consequence, if you have a group of mutually-exclusive
- options, their 'Negative' properties should form a circular chain.
- For example, if options '-A', '-B' and '-C' are mutually exclusive,
- their respective 'Negative' properties should be 'Negative(B)',
- 'Negative(C)' and 'Negative(A)'.
-
-'Joined'
-'Separate'
- The option takes a mandatory argument. 'Joined' indicates that the
- option and argument can be included in the same 'argv' entry (as
- with '-mflush-func=NAME', for example). 'Separate' indicates that
- the option and argument can be separate 'argv' entries (as with
- '-o'). An option is allowed to have both of these properties.
-
-'JoinedOrMissing'
- The option takes an optional argument. If the argument is given,
- it will be part of the same 'argv' entry as the option itself.
-
- This property cannot be used alongside 'Joined' or 'Separate'.
-
-'MissingArgError(MESSAGE)'
- For an option marked 'Joined' or 'Separate', the message MESSAGE
- will be used as an error message if the mandatory argument is
- missing; for options without 'MissingArgError', a generic error
- message is used. MESSAGE should contain a single '%qs' format,
- which will be used to format the name of the option passed.
-
-'Args(N)'
- For an option marked 'Separate', indicate that it takes N
- arguments. The default is 1.
-
-'UInteger'
- The option's argument is a non-negative integer. The option parser
- will check and convert the argument before passing it to the
- relevant option handler. 'UInteger' should also be used on options
- like '-falign-loops' where both '-falign-loops' and
- '-falign-loops'=N are supported to make sure the saved options are
- given a full integer.
-
-'ToLower'
- The option's argument should be converted to lowercase as part of
- putting it in canonical form, and before comparing with the strings
- indicated by any 'Enum' property.
-
-'NoDriverArg'
- For an option marked 'Separate', the option only takes an argument
- in the compiler proper, not in the driver. This is for
- compatibility with existing options that are used both directly and
- via '-Wp,'; new options should not have this property.
-
-'Var(VAR)'
- The state of this option should be stored in variable VAR (actually
- a macro for 'global_options.x_VAR'). The way that the state is
- stored depends on the type of option:
-
- * If the option uses the 'Mask' or 'InverseMask' properties, VAR
- is the integer variable that contains the mask.
-
- * If the option is a normal on/off switch, VAR is an integer
- variable that is nonzero when the option is enabled. The
- options parser will set the variable to 1 when the positive
- form of the option is used and 0 when the "no-" form is used.
-
- * If the option takes an argument and has the 'UInteger'
- property, VAR is an integer variable that stores the value of
- the argument.
-
- * If the option takes an argument and has the 'Enum' property,
- VAR is a variable (type given in the 'Type' property of the
- 'Enum' record whose 'Name' property has the same argument as
- the 'Enum' property of this option) that stores the value of
- the argument.
-
- * If the option has the 'Defer' property, VAR is a pointer to a
- 'VEC(cl_deferred_option,heap)' that stores the option for
- later processing. (VAR is declared with type 'void *' and
- needs to be cast to 'VEC(cl_deferred_option,heap)' before
- use.)
-
- * Otherwise, if the option takes an argument, VAR is a pointer
- to the argument string. The pointer will be null if the
- argument is optional and wasn't given.
-
- The option-processing script will usually zero-initialize VAR. You
- can modify this behavior using 'Init'.
-
-'Var(VAR, SET)'
- The option controls an integer variable VAR and is active when VAR
- equals SET. The option parser will set VAR to SET when the
- positive form of the option is used and '!SET' when the "no-" form
- is used.
-
- VAR is declared in the same way as for the single-argument form
- described above.
-
-'Init(VALUE)'
- The variable specified by the 'Var' property should be statically
- initialized to VALUE. If more than one option using the same
- variable specifies 'Init', all must specify the same initializer.
-
-'Mask(NAME)'
- The option is associated with a bit in the 'target_flags' variable
- (*note Run-time Target::) and is active when that bit is set. You
- may also specify 'Var' to select a variable other than
- 'target_flags'.
-
- The options-processing script will automatically allocate a unique
- bit for the option. If the option is attached to 'target_flags',
- the script will set the macro 'MASK_NAME' to the appropriate
- bitmask. It will also declare a 'TARGET_NAME' macro that has the
- value 1 when the option is active and 0 otherwise. If you use
- 'Var' to attach the option to a different variable, the bitmask
- macro with be called 'OPTION_MASK_NAME'.
-
-'InverseMask(OTHERNAME)'
-'InverseMask(OTHERNAME, THISNAME)'
- The option is the inverse of another option that has the
- 'Mask(OTHERNAME)' property. If THISNAME is given, the
- options-processing script will declare a 'TARGET_THISNAME' macro
- that is 1 when the option is active and 0 otherwise.
-
-'Enum(NAME)'
- The option's argument is a string from the set of strings
- associated with the corresponding 'Enum' record. The string is
- checked and converted to the integer specified in the corresponding
- 'EnumValue' record before being passed to option handlers.
-
-'Defer'
- The option should be stored in a vector, specified with 'Var', for
- later processing.
-
-'Alias(OPT)'
-'Alias(OPT, ARG)'
-'Alias(OPT, POSARG, NEGARG)'
- The option is an alias for '-OPT' (or the negative form of that
- option, depending on 'NegativeAlias'). In the first form, any
- argument passed to the alias is considered to be passed to '-OPT',
- and '-OPT' is considered to be negated if the alias is used in
- negated form. In the second form, the alias may not be negated or
- have an argument, and POSARG is considered to be passed as an
- argument to '-OPT'. In the third form, the alias may not have an
- argument, if the alias is used in the positive form then POSARG is
- considered to be passed to '-OPT', and if the alias is used in the
- negative form then NEGARG is considered to be passed to '-OPT'.
-
- Aliases should not specify 'Var' or 'Mask' or 'UInteger'. Aliases
- should normally specify the same languages as the target of the
- alias; the flags on the target will be used to determine any
- diagnostic for use of an option for the wrong language, while those
- on the alias will be used to identify what command-line text is the
- option and what text is any argument to that option.
-
- When an 'Alias' definition is used for an option, driver specs do
- not need to handle it and no 'OPT_' enumeration value is defined
- for it; only the canonical form of the option will be seen in those
- places.
-
-'NegativeAlias'
- For an option marked with 'Alias(OPT)', the option is considered to
- be an alias for the positive form of '-OPT' if negated and for the
- negative form of '-OPT' if not negated. 'NegativeAlias' may not be
- used with the forms of 'Alias' taking more than one argument.
-
-'Ignore'
- This option is ignored apart from printing any warning specified
- using 'Warn'. The option will not be seen by specs and no 'OPT_'
- enumeration value is defined for it.
-
-'SeparateAlias'
- For an option marked with 'Joined', 'Separate' and 'Alias', the
- option only acts as an alias when passed a separate argument; with
- a joined argument it acts as a normal option, with an 'OPT_'
- enumeration value. This is for compatibility with the Java '-d'
- option and should not be used for new options.
-
-'Warn(MESSAGE)'
- If this option is used, output the warning MESSAGE. MESSAGE is a
- format string, either taking a single operand with a '%qs' format
- which is the option name, or not taking any operands, which is
- passed to the 'warning' function. If an alias is marked 'Warn',
- the target of the alias must not also be marked 'Warn'.
-
-'Report'
- The state of the option should be printed by '-fverbose-asm'.
-
-'Warning'
- This is a warning option and should be shown as such in '--help'
- output. This flag does not currently affect anything other than
- '--help'.
-
-'Optimization'
- This is an optimization option. It should be shown as such in
- '--help' output, and any associated variable named using 'Var'
- should be saved and restored when the optimization level is changed
- with 'optimize' attributes.
-
-'Undocumented'
- The option is deliberately missing documentation and should not be
- included in the '--help' output.
-
-'Condition(COND)'
- The option should only be accepted if preprocessor condition COND
- is true. Note that any C declarations associated with the option
- will be present even if COND is false; COND simply controls whether
- the option is accepted and whether it is printed in the '--help'
- output.
-
-'Save'
- Build the 'cl_target_option' structure to hold a copy of the
- option, add the functions 'cl_target_option_save' and
- 'cl_target_option_restore' to save and restore the options.
-
-'SetByCombined'
- The option may also be set by a combined option such as
- '-ffast-math'. This causes the 'gcc_options' struct to have a
- field 'frontend_set_NAME', where 'NAME' is the name of the field
- holding the value of this option (without the leading 'x_'). This
- gives the front end a way to indicate that the value has been set
- explicitly and should not be changed by the combined option. For
- example, some front ends use this to prevent '-ffast-math' and
- '-fno-fast-math' from changing the value of '-fmath-errno' for
- languages that do not use 'errno'.
-
-'EnabledBy(OPT)'
-'EnabledBy(OPT && OPT2)'
- If not explicitly set, the option is set to the value of '-OPT'.
- The second form specifies that the option is only set if both OPT
- and OPT2 are set.
-
-'LangEnabledBy(LANGUAGE, OPT)'
-'LangEnabledBy(LANGUAGE, OPT, POSARG, NEGARG)'
- When compiling for the given language, the option is set to the
- value of '-OPT', if not explicitly set. In the second form, if OPT
- is used in the positive form then POSARG is considered to be passed
- to the option, and if OPT is used in the negative form then NEGARG
- is considered to be passed to the option. It is possible to
- specify several different languages. Each LANGUAGE must have been
- declared by an earlier 'Language' record. *Note Option file
- format::.
-
-'NoDWARFRecord'
- The option is omitted from the producer string written by
- '-grecord-gcc-switches'.
-
-'PchIgnore'
- Even if this is a target option, this option will not be recorded /
- compared to determine if a precompiled header file matches.
-
-
-File: gccint.info, Node: Passes, Next: GENERIC, Prev: Options, Up: Top
-
-9 Passes and Files of the Compiler
-**********************************
-
-This chapter is dedicated to giving an overview of the optimization and
-code generation passes of the compiler. In the process, it describes
-some of the language front end interface, though this description is no
-where near complete.
-
-* Menu:
-
-* Parsing pass:: The language front end turns text into bits.
-* Cilk Plus Transformation:: Transform Cilk Plus Code to equivalent C/C++.
-* Gimplification pass:: The bits are turned into something we can optimize.
-* Pass manager:: Sequencing the optimization passes.
-* Tree SSA passes:: Optimizations on a high-level representation.
-* RTL passes:: Optimizations on a low-level representation.
-* Optimization info:: Dumping optimization information from passes.
-
-
-File: gccint.info, Node: Parsing pass, Next: Cilk Plus Transformation, Up: Passes
-
-9.1 Parsing pass
-================
-
-The language front end is invoked only once, via
-'lang_hooks.parse_file', to parse the entire input. The language front
-end may use any intermediate language representation deemed appropriate.
-The C front end uses GENERIC trees (*note GENERIC::), plus a double
-handful of language specific tree codes defined in 'c-common.def'. The
-Fortran front end uses a completely different private representation.
-
- At some point the front end must translate the representation used in
-the front end to a representation understood by the language-independent
-portions of the compiler. Current practice takes one of two forms. The
-C front end manually invokes the gimplifier (*note GIMPLE::) on each
-function, and uses the gimplifier callbacks to convert the
-language-specific tree nodes directly to GIMPLE before passing the
-function off to be compiled. The Fortran front end converts from a
-private representation to GENERIC, which is later lowered to GIMPLE when
-the function is compiled. Which route to choose probably depends on how
-well GENERIC (plus extensions) can be made to match up with the source
-language and necessary parsing data structures.
-
- BUG: Gimplification must occur before nested function lowering, and
-nested function lowering must be done by the front end before passing
-the data off to cgraph.
-
- TODO: Cgraph should control nested function lowering. It would only be
-invoked when it is certain that the outer-most function is used.
-
- TODO: Cgraph needs a gimplify_function callback. It should be invoked
-when (1) it is certain that the function is used, (2) warning flags
-specified by the user require some amount of compilation in order to
-honor, (3) the language indicates that semantic analysis is not complete
-until gimplification occurs. Hum... this sounds overly complicated.
-Perhaps we should just have the front end gimplify always; in most cases
-it's only one function call.
-
- The front end needs to pass all function definitions and top level
-declarations off to the middle-end so that they can be compiled and
-emitted to the object file. For a simple procedural language, it is
-usually most convenient to do this as each top level declaration or
-definition is seen. There is also a distinction to be made between
-generating functional code and generating complete debug information.
-The only thing that is absolutely required for functional code is that
-function and data _definitions_ be passed to the middle-end. For
-complete debug information, function, data and type declarations should
-all be passed as well.
-
- In any case, the front end needs each complete top-level function or
-data declaration, and each data definition should be passed to
-'rest_of_decl_compilation'. Each complete type definition should be
-passed to 'rest_of_type_compilation'. Each function definition should
-be passed to 'cgraph_finalize_function'.
-
- TODO: I know rest_of_compilation currently has all sorts of RTL
-generation semantics. I plan to move all code generation bits (both
-Tree and RTL) to compile_function. Should we hide cgraph from the front
-ends and move back to rest_of_compilation as the official interface?
-Possibly we should rename all three interfaces such that the names match
-in some meaningful way and that is more descriptive than "rest_of".
-
- The middle-end will, at its option, emit the function and data
-definitions immediately or queue them for later processing.
-
-
-File: gccint.info, Node: Cilk Plus Transformation, Next: Gimplification pass, Prev: Parsing pass, Up: Passes
-
-9.2 Cilk Plus Transformation
-============================
-
-If Cilk Plus generation (flag '-fcilkplus') is enabled, all the Cilk
-Plus code is transformed into equivalent C and C++ functions. Majority
-of this transformation occurs toward the end of the parsing and right
-before the gimplification pass.
-
- These are the major components to the Cilk Plus language extension:
- * Array Notations: During parsing phase, all the array notation
- specific information is stored in 'ARRAY_NOTATION_REF' tree using
- the function 'c_parser_array_notation'. During the end of parsing,
- we check the entire function to see if there are any array notation
- specific code (using the function 'contains_array_notation_expr').
- If this function returns true, then we expand them using either
- 'expand_array_notation_exprs' or 'build_array_notation_expr'. For
- the cases where array notations are inside conditions, they are
- transformed using the function 'fix_conditional_array_notations'.
- The C language-specific routines are located in
- 'c/c-array-notation.c' and the equivalent C++ routines are in the
- file 'cp/cp-array-notation.c'. Common routines such as functions
- to initialize built-in functions are stored in
- 'array-notation-common.c'.
-
- * Cilk keywords:
- * '_Cilk_spawn': The '_Cilk_spawn' keyword is parsed and the
- function it contains is marked as a spawning function. The
- spawning function is called the spawner. At the end of the
- parsing phase, appropriate built-in functions are added to the
- spawner that are defined in the Cilk runtime. The appropriate
- locations of these functions, and the internal structures are
- detailed in 'cilk_init_builtins' in the file 'cilk-common.c'.
- The pointers to Cilk functions and fields of internal
- structures are described in 'cilk.h'. The built-in functions
- are described in 'cilk-builtins.def'.
-
- During gimplification, a new "spawn-helper" function is
- created. The spawned function is replaced with a spawn helper
- function in the spawner. The spawned function-call is moved
- into the spawn helper. The main function that does these
- transformations is 'gimplify_cilk_spawn' in 'c-family/cilk.c'.
- In the spawn-helper, the gimplification function
- 'gimplify_call_expr', inserts a function call
- '__cilkrts_detach'. This function is expanded by
- 'builtin_expand_cilk_detach' located in 'c-family/cilk.c'.
-
- * '_Cilk_sync': '_Cilk_sync' is parsed like a keyword. During
- gimplification, the function 'gimplify_cilk_sync' in
- 'c-family/cilk.c', will replace this keyword with a set of
- functions that are stored in the Cilk runtime. One of the
- internal functions inserted during gimplification,
- '__cilkrts_pop_frame' must be expanded by the compiler and is
- done by 'builtin_expand_cilk_pop_frame' in 'cilk-common.c'.
-
- Documentation about Cilk Plus and language specification is provided
-under the "Learn" section in <http://www.cilkplus.org/>. It is worth
-mentioning that the current implementation follows ABI 1.1.
-
-
-File: gccint.info, Node: Gimplification pass, Next: Pass manager, Prev: Cilk Plus Transformation, Up: Passes
-
-9.3 Gimplification pass
-=======================
-
-"Gimplification" is a whimsical term for the process of converting the
-intermediate representation of a function into the GIMPLE language
-(*note GIMPLE::). The term stuck, and so words like "gimplification",
-"gimplify", "gimplifier" and the like are sprinkled throughout this
-section of code.
-
- While a front end may certainly choose to generate GIMPLE directly if
-it chooses, this can be a moderately complex process unless the
-intermediate language used by the front end is already fairly simple.
-Usually it is easier to generate GENERIC trees plus extensions and let
-the language-independent gimplifier do most of the work.
-
- The main entry point to this pass is 'gimplify_function_tree' located
-in 'gimplify.c'. From here we process the entire function gimplifying
-each statement in turn. The main workhorse for this pass is
-'gimplify_expr'. Approximately everything passes through here at least
-once, and it is from here that we invoke the 'lang_hooks.gimplify_expr'
-callback.
-
- The callback should examine the expression in question and return
-'GS_UNHANDLED' if the expression is not a language specific construct
-that requires attention. Otherwise it should alter the expression in
-some way to such that forward progress is made toward producing valid
-GIMPLE. If the callback is certain that the transformation is complete
-and the expression is valid GIMPLE, it should return 'GS_ALL_DONE'.
-Otherwise it should return 'GS_OK', which will cause the expression to
-be processed again. If the callback encounters an error during the
-transformation (because the front end is relying on the gimplification
-process to finish semantic checks), it should return 'GS_ERROR'.
-
-
-File: gccint.info, Node: Pass manager, Next: Tree SSA passes, Prev: Gimplification pass, Up: Passes
-
-9.4 Pass manager
-================
-
-The pass manager is located in 'passes.c', 'tree-optimize.c' and
-'tree-pass.h'. It processes passes as described in 'passes.def'. Its
-job is to run all of the individual passes in the correct order, and
-take care of standard bookkeeping that applies to every pass.
-
- The theory of operation is that each pass defines a structure that
-represents everything we need to know about that pass--when it should be
-run, how it should be run, what intermediate language form or
-on-the-side data structures it needs. We register the pass to be run in
-some particular order, and the pass manager arranges for everything to
-happen in the correct order.
-
- The actuality doesn't completely live up to the theory at present.
-Command-line switches and 'timevar_id_t' enumerations must still be
-defined elsewhere. The pass manager validates constraints but does not
-attempt to (re-)generate data structures or lower intermediate language
-form based on the requirements of the next pass. Nevertheless, what is
-present is useful, and a far sight better than nothing at all.
-
- Each pass should have a unique name. Each pass may have its own dump
-file (for GCC debugging purposes). Passes with a name starting with a
-star do not dump anything. Sometimes passes are supposed to share a
-dump file / option name. To still give these unique names, you can use
-a prefix that is delimited by a space from the part that is used for the
-dump file / option name. E.g. When the pass name is "ud dce", the name
-used for dump file/options is "dce".
-
- TODO: describe the global variables set up by the pass manager, and a
-brief description of how a new pass should use it. I need to look at
-what info RTL passes use first...
-
-
-File: gccint.info, Node: Tree SSA passes, Next: RTL passes, Prev: Pass manager, Up: Passes
-
-9.5 Tree SSA passes
-===================
-
-The following briefly describes the Tree optimization passes that are
-run after gimplification and what source files they are located in.
-
- * Remove useless statements
-
- This pass is an extremely simple sweep across the gimple code in
- which we identify obviously dead code and remove it. Here we do
- things like simplify 'if' statements with constant conditions,
- remove exception handling constructs surrounding code that
- obviously cannot throw, remove lexical bindings that contain no
- variables, and other assorted simplistic cleanups. The idea is to
- get rid of the obvious stuff quickly rather than wait until later
- when it's more work to get rid of it. This pass is located in
- 'tree-cfg.c' and described by 'pass_remove_useless_stmts'.
-
- * OpenMP lowering
-
- If OpenMP generation ('-fopenmp') is enabled, this pass lowers
- OpenMP constructs into GIMPLE.
-
- Lowering of OpenMP constructs involves creating replacement
- expressions for local variables that have been mapped using data
- sharing clauses, exposing the control flow of most synchronization
- directives and adding region markers to facilitate the creation of
- the control flow graph. The pass is located in 'omp-low.c' and is
- described by 'pass_lower_omp'.
-
- * OpenMP expansion
-
- If OpenMP generation ('-fopenmp') is enabled, this pass expands
- parallel regions into their own functions to be invoked by the
- thread library. The pass is located in 'omp-low.c' and is
- described by 'pass_expand_omp'.
-
- * Lower control flow
-
- This pass flattens 'if' statements ('COND_EXPR') and moves lexical
- bindings ('BIND_EXPR') out of line. After this pass, all 'if'
- statements will have exactly two 'goto' statements in its 'then'
- and 'else' arms. Lexical binding information for each statement
- will be found in 'TREE_BLOCK' rather than being inferred from its
- position under a 'BIND_EXPR'. This pass is found in 'gimple-low.c'
- and is described by 'pass_lower_cf'.
-
- * Lower exception handling control flow
-
- This pass decomposes high-level exception handling constructs
- ('TRY_FINALLY_EXPR' and 'TRY_CATCH_EXPR') into a form that
- explicitly represents the control flow involved. After this pass,
- 'lookup_stmt_eh_region' will return a non-negative number for any
- statement that may have EH control flow semantics; examine
- 'tree_can_throw_internal' or 'tree_can_throw_external' for exact
- semantics. Exact control flow may be extracted from
- 'foreach_reachable_handler'. The EH region nesting tree is defined
- in 'except.h' and built in 'except.c'. The lowering pass itself is
- in 'tree-eh.c' and is described by 'pass_lower_eh'.
-
- * Build the control flow graph
-
- This pass decomposes a function into basic blocks and creates all
- of the edges that connect them. It is located in 'tree-cfg.c' and
- is described by 'pass_build_cfg'.
-
- * Find all referenced variables
-
- This pass walks the entire function and collects an array of all
- variables referenced in the function, 'referenced_vars'. The index
- at which a variable is found in the array is used as a UID for the
- variable within this function. This data is needed by the SSA
- rewriting routines. The pass is located in 'tree-dfa.c' and is
- described by 'pass_referenced_vars'.
-
- * Enter static single assignment form
-
- This pass rewrites the function such that it is in SSA form. After
- this pass, all 'is_gimple_reg' variables will be referenced by
- 'SSA_NAME', and all occurrences of other variables will be
- annotated with 'VDEFS' and 'VUSES'; PHI nodes will have been
- inserted as necessary for each basic block. This pass is located
- in 'tree-ssa.c' and is described by 'pass_build_ssa'.
-
- * Warn for uninitialized variables
-
- This pass scans the function for uses of 'SSA_NAME's that are fed
- by default definition. For non-parameter variables, such uses are
- uninitialized. The pass is run twice, before and after
- optimization (if turned on). In the first pass we only warn for
- uses that are positively uninitialized; in the second pass we warn
- for uses that are possibly uninitialized. The pass is located in
- 'tree-ssa.c' and is defined by 'pass_early_warn_uninitialized' and
- 'pass_late_warn_uninitialized'.
-
- * Dead code elimination
-
- This pass scans the function for statements without side effects
- whose result is unused. It does not do memory life analysis, so
- any value that is stored in memory is considered used. The pass is
- run multiple times throughout the optimization process. It is
- located in 'tree-ssa-dce.c' and is described by 'pass_dce'.
-
- * Dominator optimizations
-
- This pass performs trivial dominator-based copy and constant
- propagation, expression simplification, and jump threading. It is
- run multiple times throughout the optimization process. It is
- located in 'tree-ssa-dom.c' and is described by 'pass_dominator'.
-
- * Forward propagation of single-use variables
-
- This pass attempts to remove redundant computation by substituting
- variables that are used once into the expression that uses them and
- seeing if the result can be simplified. It is located in
- 'tree-ssa-forwprop.c' and is described by 'pass_forwprop'.
-
- * Copy Renaming
-
- This pass attempts to change the name of compiler temporaries
- involved in copy operations such that SSA->normal can coalesce the
- copy away. When compiler temporaries are copies of user variables,
- it also renames the compiler temporary to the user variable
- resulting in better use of user symbols. It is located in
- 'tree-ssa-copyrename.c' and is described by 'pass_copyrename'.
-
- * PHI node optimizations
-
- This pass recognizes forms of PHI inputs that can be represented as
- conditional expressions and rewrites them into straight line code.
- It is located in 'tree-ssa-phiopt.c' and is described by
- 'pass_phiopt'.
-
- * May-alias optimization
-
- This pass performs a flow sensitive SSA-based points-to analysis.
- The resulting may-alias, must-alias, and escape analysis
- information is used to promote variables from in-memory addressable
- objects to non-aliased variables that can be renamed into SSA form.
- We also update the 'VDEF'/'VUSE' memory tags for non-renameable
- aggregates so that we get fewer false kills. The pass is located
- in 'tree-ssa-alias.c' and is described by 'pass_may_alias'.
-
- Interprocedural points-to information is located in
- 'tree-ssa-structalias.c' and described by 'pass_ipa_pta'.
-
- * Profiling
-
- This pass rewrites the function in order to collect runtime block
- and value profiling data. Such data may be fed back into the
- compiler on a subsequent run so as to allow optimization based on
- expected execution frequencies. The pass is located in 'predict.c'
- and is described by 'pass_profile'.
-
- * Lower complex arithmetic
-
- This pass rewrites complex arithmetic operations into their
- component scalar arithmetic operations. The pass is located in
- 'tree-complex.c' and is described by 'pass_lower_complex'.
-
- * Scalar replacement of aggregates
-
- This pass rewrites suitable non-aliased local aggregate variables
- into a set of scalar variables. The resulting scalar variables are
- rewritten into SSA form, which allows subsequent optimization
- passes to do a significantly better job with them. The pass is
- located in 'tree-sra.c' and is described by 'pass_sra'.
-
- * Dead store elimination
-
- This pass eliminates stores to memory that are subsequently
- overwritten by another store, without any intervening loads. The
- pass is located in 'tree-ssa-dse.c' and is described by 'pass_dse'.
-
- * Tail recursion elimination
-
- This pass transforms tail recursion into a loop. It is located in
- 'tree-tailcall.c' and is described by 'pass_tail_recursion'.
-
- * Forward store motion
-
- This pass sinks stores and assignments down the flowgraph closer to
- their use point. The pass is located in 'tree-ssa-sink.c' and is
- described by 'pass_sink_code'.
-
- * Partial redundancy elimination
-
- This pass eliminates partially redundant computations, as well as
- performing load motion. The pass is located in 'tree-ssa-pre.c'
- and is described by 'pass_pre'.
-
- Just before partial redundancy elimination, if
- '-funsafe-math-optimizations' is on, GCC tries to convert divisions
- to multiplications by the reciprocal. The pass is located in
- 'tree-ssa-math-opts.c' and is described by 'pass_cse_reciprocal'.
-
- * Full redundancy elimination
-
- This is a simpler form of PRE that only eliminates redundancies
- that occur on all paths. It is located in 'tree-ssa-pre.c' and
- described by 'pass_fre'.
-
- * Loop optimization
-
- The main driver of the pass is placed in 'tree-ssa-loop.c' and
- described by 'pass_loop'.
-
- The optimizations performed by this pass are:
-
- Loop invariant motion. This pass moves only invariants that would
- be hard to handle on RTL level (function calls, operations that
- expand to nontrivial sequences of insns). With '-funswitch-loops'
- it also moves operands of conditions that are invariant out of the
- loop, so that we can use just trivial invariantness analysis in
- loop unswitching. The pass also includes store motion. The pass
- is implemented in 'tree-ssa-loop-im.c'.
-
- Canonical induction variable creation. This pass creates a simple
- counter for number of iterations of the loop and replaces the exit
- condition of the loop using it, in case when a complicated analysis
- is necessary to determine the number of iterations. Later
- optimizations then may determine the number easily. The pass is
- implemented in 'tree-ssa-loop-ivcanon.c'.
-
- Induction variable optimizations. This pass performs standard
- induction variable optimizations, including strength reduction,
- induction variable merging and induction variable elimination. The
- pass is implemented in 'tree-ssa-loop-ivopts.c'.
-
- Loop unswitching. This pass moves the conditional jumps that are
- invariant out of the loops. To achieve this, a duplicate of the
- loop is created for each possible outcome of conditional jump(s).
- The pass is implemented in 'tree-ssa-loop-unswitch.c'. This pass
- should eventually replace the RTL level loop unswitching in
- 'loop-unswitch.c', but currently the RTL level pass is not
- completely redundant yet due to deficiencies in tree level alias
- analysis.
-
- The optimizations also use various utility functions contained in
- 'tree-ssa-loop-manip.c', 'cfgloop.c', 'cfgloopanal.c' and
- 'cfgloopmanip.c'.
-
- Vectorization. This pass transforms loops to operate on vector
- types instead of scalar types. Data parallelism across loop
- iterations is exploited to group data elements from consecutive
- iterations into a vector and operate on them in parallel.
- Depending on available target support the loop is conceptually
- unrolled by a factor 'VF' (vectorization factor), which is the
- number of elements operated upon in parallel in each iteration, and
- the 'VF' copies of each scalar operation are fused to form a vector
- operation. Additional loop transformations such as peeling and
- versioning may take place to align the number of iterations, and to
- align the memory accesses in the loop. The pass is implemented in
- 'tree-vectorizer.c' (the main driver), 'tree-vect-loop.c' and
- 'tree-vect-loop-manip.c' (loop specific parts and general loop
- utilities), 'tree-vect-slp' (loop-aware SLP functionality),
- 'tree-vect-stmts.c' and 'tree-vect-data-refs.c'. Analysis of data
- references is in 'tree-data-ref.c'.
-
- SLP Vectorization. This pass performs vectorization of
- straight-line code. The pass is implemented in 'tree-vectorizer.c'
- (the main driver), 'tree-vect-slp.c', 'tree-vect-stmts.c' and
- 'tree-vect-data-refs.c'.
-
- Autoparallelization. This pass splits the loop iteration space to
- run into several threads. The pass is implemented in
- 'tree-parloops.c'.
-
- Graphite is a loop transformation framework based on the polyhedral
- model. Graphite stands for Gimple Represented as Polyhedra. The
- internals of this infrastructure are documented in
- <http://gcc.gnu.org/wiki/Graphite>. The passes working on this
- representation are implemented in the various 'graphite-*' files.
-
- * Tree level if-conversion for vectorizer
-
- This pass applies if-conversion to simple loops to help vectorizer.
- We identify if convertible loops, if-convert statements and merge
- basic blocks in one big block. The idea is to present loop in such
- form so that vectorizer can have one to one mapping between
- statements and available vector operations. This pass is located
- in 'tree-if-conv.c' and is described by 'pass_if_conversion'.
-
- * Conditional constant propagation
-
- This pass relaxes a lattice of values in order to identify those
- that must be constant even in the presence of conditional branches.
- The pass is located in 'tree-ssa-ccp.c' and is described by
- 'pass_ccp'.
-
- A related pass that works on memory loads and stores, and not just
- register values, is located in 'tree-ssa-ccp.c' and described by
- 'pass_store_ccp'.
-
- * Conditional copy propagation
-
- This is similar to constant propagation but the lattice of values
- is the "copy-of" relation. It eliminates redundant copies from the
- code. The pass is located in 'tree-ssa-copy.c' and described by
- 'pass_copy_prop'.
-
- A related pass that works on memory copies, and not just register
- copies, is located in 'tree-ssa-copy.c' and described by
- 'pass_store_copy_prop'.
-
- * Value range propagation
-
- This transformation is similar to constant propagation but instead
- of propagating single constant values, it propagates known value
- ranges. The implementation is based on Patterson's range
- propagation algorithm (Accurate Static Branch Prediction by Value
- Range Propagation, J. R. C. Patterson, PLDI '95). In contrast to
- Patterson's algorithm, this implementation does not propagate
- branch probabilities nor it uses more than a single range per SSA
- name. This means that the current implementation cannot be used
- for branch prediction (though adapting it would not be difficult).
- The pass is located in 'tree-vrp.c' and is described by 'pass_vrp'.
-
- * Folding built-in functions
-
- This pass simplifies built-in functions, as applicable, with
- constant arguments or with inferable string lengths. It is located
- in 'tree-ssa-ccp.c' and is described by 'pass_fold_builtins'.
-
- * Split critical edges
-
- This pass identifies critical edges and inserts empty basic blocks
- such that the edge is no longer critical. The pass is located in
- 'tree-cfg.c' and is described by 'pass_split_crit_edges'.
-
- * Control dependence dead code elimination
-
- This pass is a stronger form of dead code elimination that can
- eliminate unnecessary control flow statements. It is located in
- 'tree-ssa-dce.c' and is described by 'pass_cd_dce'.
-
- * Tail call elimination
-
- This pass identifies function calls that may be rewritten into
- jumps. No code transformation is actually applied here, but the
- data and control flow problem is solved. The code transformation
- requires target support, and so is delayed until RTL. In the
- meantime 'CALL_EXPR_TAILCALL' is set indicating the possibility.
- The pass is located in 'tree-tailcall.c' and is described by
- 'pass_tail_calls'. The RTL transformation is handled by
- 'fixup_tail_calls' in 'calls.c'.
-
- * Warn for function return without value
-
- For non-void functions, this pass locates return statements that do
- not specify a value and issues a warning. Such a statement may
- have been injected by falling off the end of the function. This
- pass is run last so that we have as much time as possible to prove
- that the statement is not reachable. It is located in 'tree-cfg.c'
- and is described by 'pass_warn_function_return'.
-
- * Leave static single assignment form
-
- This pass rewrites the function such that it is in normal form. At
- the same time, we eliminate as many single-use temporaries as
- possible, so the intermediate language is no longer GIMPLE, but
- GENERIC. The pass is located in 'tree-outof-ssa.c' and is
- described by 'pass_del_ssa'.
-
- * Merge PHI nodes that feed into one another
-
- This is part of the CFG cleanup passes. It attempts to join PHI
- nodes from a forwarder CFG block into another block with PHI nodes.
- The pass is located in 'tree-cfgcleanup.c' and is described by
- 'pass_merge_phi'.
-
- * Return value optimization
-
- If a function always returns the same local variable, and that
- local variable is an aggregate type, then the variable is replaced
- with the return value for the function (i.e., the function's
- DECL_RESULT). This is equivalent to the C++ named return value
- optimization applied to GIMPLE. The pass is located in
- 'tree-nrv.c' and is described by 'pass_nrv'.
-
- * Return slot optimization
-
- If a function returns a memory object and is called as 'var =
- foo()', this pass tries to change the call so that the address of
- 'var' is sent to the caller to avoid an extra memory copy. This
- pass is located in 'tree-nrv.c' and is described by
- 'pass_return_slot'.
-
- * Optimize calls to '__builtin_object_size'
-
- This is a propagation pass similar to CCP that tries to remove
- calls to '__builtin_object_size' when the size of the object can be
- computed at compile-time. This pass is located in
- 'tree-object-size.c' and is described by 'pass_object_sizes'.
-
- * Loop invariant motion
-
- This pass removes expensive loop-invariant computations out of
- loops. The pass is located in 'tree-ssa-loop.c' and described by
- 'pass_lim'.
-
- * Loop nest optimizations
-
- This is a family of loop transformations that works on loop nests.
- It includes loop interchange, scaling, skewing and reversal and
- they are all geared to the optimization of data locality in array
- traversals and the removal of dependencies that hamper
- optimizations such as loop parallelization and vectorization. The
- pass is located in 'tree-loop-linear.c' and described by
- 'pass_linear_transform'.
-
- * Removal of empty loops
-
- This pass removes loops with no code in them. The pass is located
- in 'tree-ssa-loop-ivcanon.c' and described by 'pass_empty_loop'.
-
- * Unrolling of small loops
-
- This pass completely unrolls loops with few iterations. The pass
- is located in 'tree-ssa-loop-ivcanon.c' and described by
- 'pass_complete_unroll'.
-
- * Predictive commoning
-
- This pass makes the code reuse the computations from the previous
- iterations of the loops, especially loads and stores to memory. It
- does so by storing the values of these computations to a bank of
- temporary variables that are rotated at the end of loop. To avoid
- the need for this rotation, the loop is then unrolled and the
- copies of the loop body are rewritten to use the appropriate
- version of the temporary variable. This pass is located in
- 'tree-predcom.c' and described by 'pass_predcom'.
-
- * Array prefetching
-
- This pass issues prefetch instructions for array references inside
- loops. The pass is located in 'tree-ssa-loop-prefetch.c' and
- described by 'pass_loop_prefetch'.
-
- * Reassociation
-
- This pass rewrites arithmetic expressions to enable optimizations
- that operate on them, like redundancy elimination and
- vectorization. The pass is located in 'tree-ssa-reassoc.c' and
- described by 'pass_reassoc'.
-
- * Optimization of 'stdarg' functions
-
- This pass tries to avoid the saving of register arguments into the
- stack on entry to 'stdarg' functions. If the function doesn't use
- any 'va_start' macros, no registers need to be saved. If
- 'va_start' macros are used, the 'va_list' variables don't escape
- the function, it is only necessary to save registers that will be
- used in 'va_arg' macros. For instance, if 'va_arg' is only used
- with integral types in the function, floating point registers don't
- need to be saved. This pass is located in 'tree-stdarg.c' and
- described by 'pass_stdarg'.
-
-
-File: gccint.info, Node: RTL passes, Next: Optimization info, Prev: Tree SSA passes, Up: Passes
-
-9.6 RTL passes
-==============
-
-The following briefly describes the RTL generation and optimization
-passes that are run after the Tree optimization passes.
-
- * RTL generation
-
- The source files for RTL generation include 'stmt.c', 'calls.c',
- 'expr.c', 'explow.c', 'expmed.c', 'function.c', 'optabs.c' and
- 'emit-rtl.c'. Also, the file 'insn-emit.c', generated from the
- machine description by the program 'genemit', is used in this pass.
- The header file 'expr.h' is used for communication within this
- pass.
-
- The header files 'insn-flags.h' and 'insn-codes.h', generated from
- the machine description by the programs 'genflags' and 'gencodes',
- tell this pass which standard names are available for use and which
- patterns correspond to them.
-
- * Generation of exception landing pads
-
- This pass generates the glue that handles communication between the
- exception handling library routines and the exception handlers
- within the function. Entry points in the function that are invoked
- by the exception handling library are called "landing pads". The
- code for this pass is located in 'except.c'.
-
- * Control flow graph cleanup
-
- This pass removes unreachable code, simplifies jumps to next, jumps
- to jump, jumps across jumps, etc. The pass is run multiple times.
- For historical reasons, it is occasionally referred to as the "jump
- optimization pass". The bulk of the code for this pass is in
- 'cfgcleanup.c', and there are support routines in 'cfgrtl.c' and
- 'jump.c'.
-
- * Forward propagation of single-def values
-
- This pass attempts to remove redundant computation by substituting
- variables that come from a single definition, and seeing if the
- result can be simplified. It performs copy propagation and
- addressing mode selection. The pass is run twice, with values
- being propagated into loops only on the second run. The code is
- located in 'fwprop.c'.
-
- * Common subexpression elimination
-
- This pass removes redundant computation within basic blocks, and
- optimizes addressing modes based on cost. The pass is run twice.
- The code for this pass is located in 'cse.c'.
-
- * Global common subexpression elimination
-
- This pass performs two different types of GCSE depending on whether
- you are optimizing for size or not (LCM based GCSE tends to
- increase code size for a gain in speed, while Morel-Renvoise based
- GCSE does not). When optimizing for size, GCSE is done using
- Morel-Renvoise Partial Redundancy Elimination, with the exception
- that it does not try to move invariants out of loops--that is left
- to the loop optimization pass. If MR PRE GCSE is done, code
- hoisting (aka unification) is also done, as well as load motion.
- If you are optimizing for speed, LCM (lazy code motion) based GCSE
- is done. LCM is based on the work of Knoop, Ruthing, and Steffen.
- LCM based GCSE also does loop invariant code motion. We also
- perform load and store motion when optimizing for speed.
- Regardless of which type of GCSE is used, the GCSE pass also
- performs global constant and copy propagation. The source file for
- this pass is 'gcse.c', and the LCM routines are in 'lcm.c'.
-
- * Loop optimization
-
- This pass performs several loop related optimizations. The source
- files 'cfgloopanal.c' and 'cfgloopmanip.c' contain generic loop
- analysis and manipulation code. Initialization and finalization of
- loop structures is handled by 'loop-init.c'. A loop invariant
- motion pass is implemented in 'loop-invariant.c'. Basic block
- level optimizations--unrolling, peeling and unswitching loops-- are
- implemented in 'loop-unswitch.c' and 'loop-unroll.c'. Replacing of
- the exit condition of loops by special machine-dependent
- instructions is handled by 'loop-doloop.c'.
-
- * Jump bypassing
-
- This pass is an aggressive form of GCSE that transforms the control
- flow graph of a function by propagating constants into conditional
- branch instructions. The source file for this pass is 'gcse.c'.
-
- * If conversion
-
- This pass attempts to replace conditional branches and surrounding
- assignments with arithmetic, boolean value producing comparison
- instructions, and conditional move instructions. In the very last
- invocation after reload/LRA, it will generate predicated
- instructions when supported by the target. The code is located in
- 'ifcvt.c'.
-
- * Web construction
-
- This pass splits independent uses of each pseudo-register. This
- can improve effect of the other transformation, such as CSE or
- register allocation. The code for this pass is located in 'web.c'.
-
- * Instruction combination
-
- This pass attempts to combine groups of two or three instructions
- that are related by data flow into single instructions. It
- combines the RTL expressions for the instructions by substitution,
- simplifies the result using algebra, and then attempts to match the
- result against the machine description. The code is located in
- 'combine.c'.
-
- * Mode switching optimization
-
- This pass looks for instructions that require the processor to be
- in a specific "mode" and minimizes the number of mode changes
- required to satisfy all users. What these modes are, and what they
- apply to are completely target-specific. The code for this pass is
- located in 'mode-switching.c'.
-
- * Modulo scheduling
-
- This pass looks at innermost loops and reorders their instructions
- by overlapping different iterations. Modulo scheduling is
- performed immediately before instruction scheduling. The code for
- this pass is located in 'modulo-sched.c'.
-
- * Instruction scheduling
-
- This pass looks for instructions whose output will not be available
- by the time that it is used in subsequent instructions. Memory
- loads and floating point instructions often have this behavior on
- RISC machines. It re-orders instructions within a basic block to
- try to separate the definition and use of items that otherwise
- would cause pipeline stalls. This pass is performed twice, before
- and after register allocation. The code for this pass is located
- in 'haifa-sched.c', 'sched-deps.c', 'sched-ebb.c', 'sched-rgn.c'
- and 'sched-vis.c'.
-
- * Register allocation
-
- These passes make sure that all occurrences of pseudo registers are
- eliminated, either by allocating them to a hard register, replacing
- them by an equivalent expression (e.g. a constant) or by placing
- them on the stack. This is done in several subpasses:
-
- * The integrated register allocator (IRA). It is called
- integrated because coalescing, register live range splitting,
- and hard register preferencing are done on-the-fly during
- coloring. It also has better integration with the reload/LRA
- pass. Pseudo-registers spilled by the allocator or the
- reload/LRA have still a chance to get hard-registers if the
- reload/LRA evicts some pseudo-registers from hard-registers.
- The allocator helps to choose better pseudos for spilling
- based on their live ranges and to coalesce stack slots
- allocated for the spilled pseudo-registers. IRA is a regional
- register allocator which is transformed into Chaitin-Briggs
- allocator if there is one region. By default, IRA chooses
- regions using register pressure but the user can force it to
- use one region or regions corresponding to all loops.
-
- Source files of the allocator are 'ira.c', 'ira-build.c',
- 'ira-costs.c', 'ira-conflicts.c', 'ira-color.c', 'ira-emit.c',
- 'ira-lives', plus header files 'ira.h' and 'ira-int.h' used
- for the communication between the allocator and the rest of
- the compiler and between the IRA files.
-
- * Reloading. This pass renumbers pseudo registers with the
- hardware registers numbers they were allocated. Pseudo
- registers that did not get hard registers are replaced with
- stack slots. Then it finds instructions that are invalid
- because a value has failed to end up in a register, or has
- ended up in a register of the wrong kind. It fixes up these
- instructions by reloading the problematical values temporarily
- into registers. Additional instructions are generated to do
- the copying.
-
- The reload pass also optionally eliminates the frame pointer
- and inserts instructions to save and restore call-clobbered
- registers around calls.
-
- Source files are 'reload.c' and 'reload1.c', plus the header
- 'reload.h' used for communication between them.
-
- * This pass is a modern replacement of the reload pass. Source
- files are 'lra.c', 'lra-assign.c', 'lra-coalesce.c',
- 'lra-constraints.c', 'lra-eliminations.c', 'lra-equivs.c',
- 'lra-lives.c', 'lra-saves.c', 'lra-spills.c', the header
- 'lra-int.h' used for communication between them, and the
- header 'lra.h' used for communication between LRA and the rest
- of compiler.
-
- Unlike the reload pass, intermediate LRA decisions are
- reflected in RTL as much as possible. This reduces the number
- of target-dependent macros and hooks, leaving instruction
- constraints as the primary source of control.
-
- LRA is run on targets for which TARGET_LRA_P returns true.
-
- * Basic block reordering
-
- This pass implements profile guided code positioning. If profile
- information is not available, various types of static analysis are
- performed to make the predictions normally coming from the profile
- feedback (IE execution frequency, branch probability, etc). It is
- implemented in the file 'bb-reorder.c', and the various prediction
- routines are in 'predict.c'.
-
- * Variable tracking
-
- This pass computes where the variables are stored at each position
- in code and generates notes describing the variable locations to
- RTL code. The location lists are then generated according to these
- notes to debug information if the debugging information format
- supports location lists. The code is located in 'var-tracking.c'.
-
- * Delayed branch scheduling
-
- This optional pass attempts to find instructions that can go into
- the delay slots of other instructions, usually jumps and calls.
- The code for this pass is located in 'reorg.c'.
-
- * Branch shortening
-
- On many RISC machines, branch instructions have a limited range.
- Thus, longer sequences of instructions must be used for long
- branches. In this pass, the compiler figures out what how far each
- instruction will be from each other instruction, and therefore
- whether the usual instructions, or the longer sequences, must be
- used for each branch. The code for this pass is located in
- 'final.c'.
-
- * Register-to-stack conversion
-
- Conversion from usage of some hard registers to usage of a register
- stack may be done at this point. Currently, this is supported only
- for the floating-point registers of the Intel 80387 coprocessor.
- The code for this pass is located in 'reg-stack.c'.
-
- * Final
-
- This pass outputs the assembler code for the function. The source
- files are 'final.c' plus 'insn-output.c'; the latter is generated
- automatically from the machine description by the tool 'genoutput'.
- The header file 'conditions.h' is used for communication between
- these files.
-
- * Debugging information output
-
- This is run after final because it must output the stack slot
- offsets for pseudo registers that did not get hard registers.
- Source files are 'dbxout.c' for DBX symbol table format, 'sdbout.c'
- for SDB symbol table format, 'dwarfout.c' for DWARF symbol table
- format, files 'dwarf2out.c' and 'dwarf2asm.c' for DWARF2 symbol
- table format, and 'vmsdbgout.c' for VMS debug symbol table format.
-
-
-File: gccint.info, Node: Optimization info, Prev: RTL passes, Up: Passes
-
-9.7 Optimization info
-=====================
-
-This section is describes dump infrastructure which is common to both
-pass dumps as well as optimization dumps. The goal for this
-infrastructure is to provide both gcc developers and users detailed
-information about various compiler transformations and optimizations.
-
-* Menu:
-
-* Dump setup:: Setup of optimization dumps.
-* Optimization groups:: Groups made up of optimization passes.
-* Dump files and streams:: Dump output file names and streams.
-* Dump output verbosity:: How much information to dump.
-* Dump types:: Various types of dump functions.
-* Dump examples:: Sample usage.
-
-
-File: gccint.info, Node: Dump setup, Next: Optimization groups, Up: Optimization info
-
-9.7.1 Dump setup
-----------------
-
-A dump_manager class is defined in 'dumpfile.h'. Various passes
-register dumping pass-specific information via 'dump_register' in
-'passes.c'. During the registration, an optimization pass can select
-its optimization group (*note Optimization groups::). After that
-optimization information corresponding to the entire group (presumably
-from multiple passes) can be output via command-line switches. Note
-that if a pass does not fit into any of the pre-defined groups, it can
-select 'OPTGROUP_NONE'.
-
- Note that in general, a pass need not know its dump output file name,
-whether certain flags are enabled, etc. However, for legacy reasons,
-passes could also call 'dump_begin' which returns a stream in case the
-particular pass has optimization dumps enabled. A pass could call
-'dump_end' when the dump has ended. These methods should go away once
-all the passes are converted to use the new dump infrastructure.
-
- The recommended way to setup the dump output is via 'dump_start' and
-'dump_end'.
-
-
-File: gccint.info, Node: Optimization groups, Next: Dump files and streams, Prev: Dump setup, Up: Optimization info
-
-9.7.2 Optimization groups
--------------------------
-
-The optimization passes are grouped into several categories. Currently
-defined categories in 'dumpfile.h' are
-
-'OPTGROUP_IPA'
- IPA optimization passes. Enabled by '-ipa'
-
-'OPTGROUP_LOOP'
- Loop optimization passes. Enabled by '-loop'.
-
-'OPTGROUP_INLINE'
- Inlining passes. Enabled by '-inline'.
-
-'OPTGROUP_VEC'
- Vectorization passes. Enabled by '-vec'.
-
-'OPTGROUP_OTHER'
- All other optimization passes which do not fall into one of the
- above.
-
-'OPTGROUP_ALL'
- All optimization passes. Enabled by '-all'.
-
- By using groups a user could selectively enable optimization
-information only for a group of passes. By default, the optimization
-information for all the passes is dumped.
-
-
-File: gccint.info, Node: Dump files and streams, Next: Dump output verbosity, Prev: Optimization groups, Up: Optimization info
-
-9.7.3 Dump files and streams
-----------------------------
-
-There are two separate output streams available for outputting
-optimization information from passes. Note that both these streams
-accept 'stderr' and 'stdout' as valid streams and thus it is possible to
-dump output to standard output or error. This is specially handy for
-outputting all available information in a single file by redirecting
-'stderr'.
-
-'pstream'
- This stream is for pass-specific dump output. For example,
- '-fdump-tree-vect=foo.v' dumps tree vectorization pass output into
- the given file name 'foo.v'. If the file name is not provided, the
- default file name is based on the source file and pass number.
- Note that one could also use special file names 'stdout' and
- 'stderr' for dumping to standard output and standard error
- respectively.
-
-'alt_stream'
- This steam is used for printing optimization specific output in
- response to the '-fopt-info'. Again a file name can be given. If
- the file name is not given, it defaults to 'stderr'.
-
-
-File: gccint.info, Node: Dump output verbosity, Next: Dump types, Prev: Dump files and streams, Up: Optimization info
-
-9.7.4 Dump output verbosity
----------------------------
-
-The dump verbosity has the following options
-
-'optimized'
- Print information when an optimization is successfully applied. It
- is up to a pass to decide which information is relevant. For
- example, the vectorizer passes print the source location of loops
- which got successfully vectorized.
-
-'missed'
- Print information about missed optimizations. Individual passes
- control which information to include in the output. For example,
-
- gcc -O2 -ftree-vectorize -fopt-info-vec-missed
-
- will print information about missed optimization opportunities from
- vectorization passes on stderr.
-
-'note'
- Print verbose information about optimizations, such as certain
- transformations, more detailed messages about decisions etc.
-
-'all'
- Print detailed optimization information. This includes OPTIMIZED,
- MISSED, and NOTE.
-
-
-File: gccint.info, Node: Dump types, Next: Dump examples, Prev: Dump output verbosity, Up: Optimization info
-
-9.7.5 Dump types
-----------------
-
-'dump_printf'
-
- This is a generic method for doing formatted output. It takes an
- additional argument 'dump_kind' which signifies the type of dump.
- This method outputs information only when the dumps are enabled for
- this particular 'dump_kind'. Note that the caller doesn't need to
- know if the particular dump is enabled or not, or even the file
- name. The caller only needs to decide which dump output
- information is relevant, and under what conditions. This
- determines the associated flags.
-
- Consider the following example from 'loop-unroll.c' where an
- informative message about a loop (along with its location) is
- printed when any of the following flags is enabled
-
- - optimization messages
- - RTL dumps
- - detailed dumps
-
- int report_flags = MSG_OPTIMIZED_LOCATIONS | TDF_RTL | TDF_DETAILS;
- dump_printf_loc (report_flags, locus,
- "loop turned into non-loop; it never loops.\n");
-
-'dump_basic_block'
- Output basic block.
-'dump_generic_expr'
- Output generic expression.
-'dump_gimple_stmt'
- Output gimple statement.
-
- Note that the above methods also have variants prefixed with
- '_loc', such as 'dump_printf_loc', which are similar except they
- also output the source location information.
-
-
-File: gccint.info, Node: Dump examples, Prev: Dump types, Up: Optimization info
-
-9.7.6 Dump examples
--------------------
-
- gcc -O3 -fopt-info-missed=missed.all
-
- outputs missed optimization report from all the passes into
-'missed.all'.
-
- As another example,
- gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
-
- will output information about missed optimizations as well as optimized
-locations from all the inlining passes into 'inline.txt'.
-
- If the FILENAME is provided, then the dumps from all the applicable
-optimizations are concatenated into the 'filename'. Otherwise the dump
-is output onto 'stderr'. If OPTIONS is omitted, it defaults to
-'all-all', which means dump all available optimization info from all the
-passes. In the following example, all optimization info is output on to
-'stderr'.
-
- gcc -O3 -fopt-info
-
- Note that '-fopt-info-vec-missed' behaves the same as
-'-fopt-info-missed-vec'.
-
- As another example, consider
-
- gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
-
- Here the two output file names 'vec.miss' and 'loop.opt' are in
-conflict since only one output file is allowed. In this case, only the
-first option takes effect and the subsequent options are ignored. Thus
-only the 'vec.miss' is produced which containts dumps from the
-vectorizer about missed opportunities.
-
-
-File: gccint.info, Node: GENERIC, Next: GIMPLE, Prev: Passes, Up: Top
-
-10 GENERIC
-**********
-
-The purpose of GENERIC is simply to provide a language-independent way
-of representing an entire function in trees. To this end, it was
-necessary to add a few new tree codes to the back end, but almost
-everything was already there. If you can express it with the codes in
-'gcc/tree.def', it's GENERIC.
-
- Early on, there was a great deal of debate about how to think about
-statements in a tree IL. In GENERIC, a statement is defined as any
-expression whose value, if any, is ignored. A statement will always
-have 'TREE_SIDE_EFFECTS' set (or it will be discarded), but a
-non-statement expression may also have side effects. A 'CALL_EXPR', for
-instance.
-
- It would be possible for some local optimizations to work on the
-GENERIC form of a function; indeed, the adapted tree inliner works fine
-on GENERIC, but the current compiler performs inlining after lowering to
-GIMPLE (a restricted form described in the next section). Indeed,
-currently the frontends perform this lowering before handing off to
-'tree_rest_of_compilation', but this seems inelegant.
-
-* Menu:
-
-* Deficiencies:: Topics net yet covered in this document.
-* Tree overview:: All about 'tree's.
-* Types:: Fundamental and aggregate types.
-* Declarations:: Type declarations and variables.
-* Attributes:: Declaration and type attributes.
-* Expressions: Expression trees. Operating on data.
-* Statements:: Control flow and related trees.
-* Functions:: Function bodies, linkage, and other aspects.
-* Language-dependent trees:: Topics and trees specific to language front ends.
-* C and C++ Trees:: Trees specific to C and C++.
-* Java Trees:: Trees specific to Java.
-
-
-File: gccint.info, Node: Deficiencies, Next: Tree overview, Up: GENERIC
-
-10.1 Deficiencies
-=================
-
-There are many places in which this document is incomplet and incorrekt.
-It is, as of yet, only _preliminary_ documentation.
-
-
-File: gccint.info, Node: Tree overview, Next: Types, Prev: Deficiencies, Up: GENERIC
-
-10.2 Overview
-=============
-
-The central data structure used by the internal representation is the
-'tree'. These nodes, while all of the C type 'tree', are of many
-varieties. A 'tree' is a pointer type, but the object to which it
-points may be of a variety of types. From this point forward, we will
-refer to trees in ordinary type, rather than in 'this font', except when
-talking about the actual C type 'tree'.
-
- You can tell what kind of node a particular tree is by using the
-'TREE_CODE' macro. Many, many macros take trees as input and return
-trees as output. However, most macros require a certain kind of tree
-node as input. In other words, there is a type-system for trees, but it
-is not reflected in the C type-system.
-
- For safety, it is useful to configure GCC with '--enable-checking'.
-Although this results in a significant performance penalty (since all
-tree types are checked at run-time), and is therefore inappropriate in a
-release version, it is extremely helpful during the development process.
-
- Many macros behave as predicates. Many, although not all, of these
-predicates end in '_P'. Do not rely on the result type of these macros
-being of any particular type. You may, however, rely on the fact that
-the type can be compared to '0', so that statements like
- if (TEST_P (t) && !TEST_P (y))
- x = 1;
-and
- int i = (TEST_P (t) != 0);
-are legal. Macros that return 'int' values now may be changed to return
-'tree' values, or other pointers in the future. Even those that
-continue to return 'int' may return multiple nonzero codes where
-previously they returned only zero and one. Therefore, you should not
-write code like
- if (TEST_P (t) == 1)
-as this code is not guaranteed to work correctly in the future.
-
- You should not take the address of values returned by the macros or
-functions described here. In particular, no guarantee is given that the
-values are lvalues.
-
- In general, the names of macros are all in uppercase, while the names
-of functions are entirely in lowercase. There are rare exceptions to
-this rule. You should assume that any macro or function whose name is
-made up entirely of uppercase letters may evaluate its arguments more
-than once. You may assume that a macro or function whose name is made
-up entirely of lowercase letters will evaluate its arguments only once.
-
- The 'error_mark_node' is a special tree. Its tree code is
-'ERROR_MARK', but since there is only ever one node with that code, the
-usual practice is to compare the tree against 'error_mark_node'. (This
-test is just a test for pointer equality.) If an error has occurred
-during front-end processing the flag 'errorcount' will be set. If the
-front end has encountered code it cannot handle, it will issue a message
-to the user and set 'sorrycount'. When these flags are set, any macro
-or function which normally returns a tree of a particular kind may
-instead return the 'error_mark_node'. Thus, if you intend to do any
-processing of erroneous code, you must be prepared to deal with the
-'error_mark_node'.
-
- Occasionally, a particular tree slot (like an operand to an expression,
-or a particular field in a declaration) will be referred to as "reserved
-for the back end". These slots are used to store RTL when the tree is
-converted to RTL for use by the GCC back end. However, if that process
-is not taking place (e.g., if the front end is being hooked up to an
-intelligent editor), then those slots may be used by the back end
-presently in use.
-
- If you encounter situations that do not match this documentation, such
-as tree nodes of types not mentioned here, or macros documented to
-return entities of a particular kind that instead return entities of
-some different kind, you have found a bug, either in the front end or in
-the documentation. Please report these bugs as you would any other bug.
-
-* Menu:
-
-* Macros and Functions::Macros and functions that can be used with all trees.
-* Identifiers:: The names of things.
-* Containers:: Lists and vectors.
-
-
-File: gccint.info, Node: Macros and Functions, Next: Identifiers, Up: Tree overview
-
-10.2.1 Trees
-------------
-
-All GENERIC trees have two fields in common. First, 'TREE_CHAIN' is a
-pointer that can be used as a singly-linked list to other trees. The
-other is 'TREE_TYPE'. Many trees store the type of an expression or
-declaration in this field.
-
- These are some other functions for handling trees:
-
-'tree_size'
- Return the number of bytes a tree takes.
-
-'build0'
-'build1'
-'build2'
-'build3'
-'build4'
-'build5'
-'build6'
-
- These functions build a tree and supply values to put in each
- parameter. The basic signature is 'code, type, [operands]'.
- 'code' is the 'TREE_CODE', and 'type' is a tree representing the
- 'TREE_TYPE'. These are followed by the operands, each of which is
- also a tree.
-
-
-File: gccint.info, Node: Identifiers, Next: Containers, Prev: Macros and Functions, Up: Tree overview
-
-10.2.2 Identifiers
-------------------
-
-An 'IDENTIFIER_NODE' represents a slightly more general concept than the
-standard C or C++ concept of identifier. In particular, an
-'IDENTIFIER_NODE' may contain a '$', or other extraordinary characters.
-
- There are never two distinct 'IDENTIFIER_NODE's representing the same
-identifier. Therefore, you may use pointer equality to compare
-'IDENTIFIER_NODE's, rather than using a routine like 'strcmp'. Use
-'get_identifier' to obtain the unique 'IDENTIFIER_NODE' for a supplied
-string.
-
- You can use the following macros to access identifiers:
-'IDENTIFIER_POINTER'
- The string represented by the identifier, represented as a 'char*'.
- This string is always 'NUL'-terminated, and contains no embedded
- 'NUL' characters.
-
-'IDENTIFIER_LENGTH'
- The length of the string returned by 'IDENTIFIER_POINTER', not
- including the trailing 'NUL'. This value of 'IDENTIFIER_LENGTH
- (x)' is always the same as 'strlen (IDENTIFIER_POINTER (x))'.
-
-'IDENTIFIER_OPNAME_P'
- This predicate holds if the identifier represents the name of an
- overloaded operator. In this case, you should not depend on the
- contents of either the 'IDENTIFIER_POINTER' or the
- 'IDENTIFIER_LENGTH'.
-
-'IDENTIFIER_TYPENAME_P'
- This predicate holds if the identifier represents the name of a
- user-defined conversion operator. In this case, the 'TREE_TYPE' of
- the 'IDENTIFIER_NODE' holds the type to which the conversion
- operator converts.
-
-
-File: gccint.info, Node: Containers, Prev: Identifiers, Up: Tree overview
-
-10.2.3 Containers
------------------
-
-Two common container data structures can be represented directly with
-tree nodes. A 'TREE_LIST' is a singly linked list containing two trees
-per node. These are the 'TREE_PURPOSE' and 'TREE_VALUE' of each node.
-(Often, the 'TREE_PURPOSE' contains some kind of tag, or additional
-information, while the 'TREE_VALUE' contains the majority of the
-payload. In other cases, the 'TREE_PURPOSE' is simply 'NULL_TREE',
-while in still others both the 'TREE_PURPOSE' and 'TREE_VALUE' are of
-equal stature.) Given one 'TREE_LIST' node, the next node is found by
-following the 'TREE_CHAIN'. If the 'TREE_CHAIN' is 'NULL_TREE', then
-you have reached the end of the list.
-
- A 'TREE_VEC' is a simple vector. The 'TREE_VEC_LENGTH' is an integer
-(not a tree) giving the number of nodes in the vector. The nodes
-themselves are accessed using the 'TREE_VEC_ELT' macro, which takes two
-arguments. The first is the 'TREE_VEC' in question; the second is an
-integer indicating which element in the vector is desired. The elements
-are indexed from zero.
-
-
-File: gccint.info, Node: Types, Next: Declarations, Prev: Tree overview, Up: GENERIC
-
-10.3 Types
-==========
-
-All types have corresponding tree nodes. However, you should not assume
-that there is exactly one tree node corresponding to each type. There
-are often multiple nodes corresponding to the same type.
-
- For the most part, different kinds of types have different tree codes.
-(For example, pointer types use a 'POINTER_TYPE' code while arrays use
-an 'ARRAY_TYPE' code.) However, pointers to member functions use the
-'RECORD_TYPE' code. Therefore, when writing a 'switch' statement that
-depends on the code associated with a particular type, you should take
-care to handle pointers to member functions under the 'RECORD_TYPE' case
-label.
-
- The following functions and macros deal with cv-qualification of types:
-'TYPE_MAIN_VARIANT'
- This macro returns the unqualified version of a type. It may be
- applied to an unqualified type, but it is not always the identity
- function in that case.
-
- A few other macros and functions are usable with all types:
-'TYPE_SIZE'
- The number of bits required to represent the type, represented as
- an 'INTEGER_CST'. For an incomplete type, 'TYPE_SIZE' will be
- 'NULL_TREE'.
-
-'TYPE_ALIGN'
- The alignment of the type, in bits, represented as an 'int'.
-
-'TYPE_NAME'
- This macro returns a declaration (in the form of a 'TYPE_DECL') for
- the type. (Note this macro does _not_ return an 'IDENTIFIER_NODE',
- as you might expect, given its name!) You can look at the
- 'DECL_NAME' of the 'TYPE_DECL' to obtain the actual name of the
- type. The 'TYPE_NAME' will be 'NULL_TREE' for a type that is not a
- built-in type, the result of a typedef, or a named class type.
-
-'TYPE_CANONICAL'
- This macro returns the "canonical" type for the given type node.
- Canonical types are used to improve performance in the C++ and
- Objective-C++ front ends by allowing efficient comparison between
- two type nodes in 'same_type_p': if the 'TYPE_CANONICAL' values of
- the types are equal, the types are equivalent; otherwise, the types
- are not equivalent. The notion of equivalence for canonical types
- is the same as the notion of type equivalence in the language
- itself. For instance,
-
- When 'TYPE_CANONICAL' is 'NULL_TREE', there is no canonical type
- for the given type node. In this case, comparison between this
- type and any other type requires the compiler to perform a deep,
- "structural" comparison to see if the two type nodes have the same
- form and properties.
-
- The canonical type for a node is always the most fundamental type
- in the equivalence class of types. For instance, 'int' is its own
- canonical type. A typedef 'I' of 'int' will have 'int' as its
- canonical type. Similarly, 'I*' and a typedef 'IP' (defined to
- 'I*') will has 'int*' as their canonical type. When building a new
- type node, be sure to set 'TYPE_CANONICAL' to the appropriate
- canonical type. If the new type is a compound type (built from
- other types), and any of those other types require structural
- equality, use 'SET_TYPE_STRUCTURAL_EQUALITY' to ensure that the new
- type also requires structural equality. Finally, if for some
- reason you cannot guarantee that 'TYPE_CANONICAL' will point to the
- canonical type, use 'SET_TYPE_STRUCTURAL_EQUALITY' to make sure
- that the new type-and any type constructed based on it-requires
- structural equality. If you suspect that the canonical type system
- is miscomparing types, pass '--param verify-canonical-types=1' to
- the compiler or configure with '--enable-checking' to force the
- compiler to verify its canonical-type comparisons against the
- structural comparisons; the compiler will then print any warnings
- if the canonical types miscompare.
-
-'TYPE_STRUCTURAL_EQUALITY_P'
- This predicate holds when the node requires structural equality
- checks, e.g., when 'TYPE_CANONICAL' is 'NULL_TREE'.
-
-'SET_TYPE_STRUCTURAL_EQUALITY'
- This macro states that the type node it is given requires
- structural equality checks, e.g., it sets 'TYPE_CANONICAL' to
- 'NULL_TREE'.
-
-'same_type_p'
- This predicate takes two types as input, and holds if they are the
- same type. For example, if one type is a 'typedef' for the other,
- or both are 'typedef's for the same type. This predicate also
- holds if the two trees given as input are simply copies of one
- another; i.e., there is no difference between them at the source
- level, but, for whatever reason, a duplicate has been made in the
- representation. You should never use '==' (pointer equality) to
- compare types; always use 'same_type_p' instead.
-
- Detailed below are the various kinds of types, and the macros that can
-be used to access them. Although other kinds of types are used
-elsewhere in G++, the types described here are the only ones that you
-will encounter while examining the intermediate representation.
-
-'VOID_TYPE'
- Used to represent the 'void' type.
-
-'INTEGER_TYPE'
- Used to represent the various integral types, including 'char',
- 'short', 'int', 'long', and 'long long'. This code is not used for
- enumeration types, nor for the 'bool' type. The 'TYPE_PRECISION'
- is the number of bits used in the representation, represented as an
- 'unsigned int'. (Note that in the general case this is not the
- same value as 'TYPE_SIZE'; suppose that there were a 24-bit integer
- type, but that alignment requirements for the ABI required 32-bit
- alignment. Then, 'TYPE_SIZE' would be an 'INTEGER_CST' for 32,
- while 'TYPE_PRECISION' would be 24.) The integer type is unsigned
- if 'TYPE_UNSIGNED' holds; otherwise, it is signed.
-
- The 'TYPE_MIN_VALUE' is an 'INTEGER_CST' for the smallest integer
- that may be represented by this type. Similarly, the
- 'TYPE_MAX_VALUE' is an 'INTEGER_CST' for the largest integer that
- may be represented by this type.
-
-'REAL_TYPE'
- Used to represent the 'float', 'double', and 'long double' types.
- The number of bits in the floating-point representation is given by
- 'TYPE_PRECISION', as in the 'INTEGER_TYPE' case.
-
-'FIXED_POINT_TYPE'
- Used to represent the 'short _Fract', '_Fract', 'long _Fract',
- 'long long _Fract', 'short _Accum', '_Accum', 'long _Accum', and
- 'long long _Accum' types. The number of bits in the fixed-point
- representation is given by 'TYPE_PRECISION', as in the
- 'INTEGER_TYPE' case. There may be padding bits, fractional bits
- and integral bits. The number of fractional bits is given by
- 'TYPE_FBIT', and the number of integral bits is given by
- 'TYPE_IBIT'. The fixed-point type is unsigned if 'TYPE_UNSIGNED'
- holds; otherwise, it is signed. The fixed-point type is saturating
- if 'TYPE_SATURATING' holds; otherwise, it is not saturating.
-
-'COMPLEX_TYPE'
- Used to represent GCC built-in '__complex__' data types. The
- 'TREE_TYPE' is the type of the real and imaginary parts.
-
-'ENUMERAL_TYPE'
- Used to represent an enumeration type. The 'TYPE_PRECISION' gives
- (as an 'int'), the number of bits used to represent the type. If
- there are no negative enumeration constants, 'TYPE_UNSIGNED' will
- hold. The minimum and maximum enumeration constants may be
- obtained with 'TYPE_MIN_VALUE' and 'TYPE_MAX_VALUE', respectively;
- each of these macros returns an 'INTEGER_CST'.
-
- The actual enumeration constants themselves may be obtained by
- looking at the 'TYPE_VALUES'. This macro will return a
- 'TREE_LIST', containing the constants. The 'TREE_PURPOSE' of each
- node will be an 'IDENTIFIER_NODE' giving the name of the constant;
- the 'TREE_VALUE' will be an 'INTEGER_CST' giving the value assigned
- to that constant. These constants will appear in the order in
- which they were declared. The 'TREE_TYPE' of each of these
- constants will be the type of enumeration type itself.
-
-'BOOLEAN_TYPE'
- Used to represent the 'bool' type.
-
-'POINTER_TYPE'
- Used to represent pointer types, and pointer to data member types.
- The 'TREE_TYPE' gives the type to which this type points.
-
-'REFERENCE_TYPE'
- Used to represent reference types. The 'TREE_TYPE' gives the type
- to which this type refers.
-
-'FUNCTION_TYPE'
- Used to represent the type of non-member functions and of static
- member functions. The 'TREE_TYPE' gives the return type of the
- function. The 'TYPE_ARG_TYPES' are a 'TREE_LIST' of the argument
- types. The 'TREE_VALUE' of each node in this list is the type of
- the corresponding argument; the 'TREE_PURPOSE' is an expression for
- the default argument value, if any. If the last node in the list
- is 'void_list_node' (a 'TREE_LIST' node whose 'TREE_VALUE' is the
- 'void_type_node'), then functions of this type do not take variable
- arguments. Otherwise, they do take a variable number of arguments.
-
- Note that in C (but not in C++) a function declared like 'void f()'
- is an unprototyped function taking a variable number of arguments;
- the 'TYPE_ARG_TYPES' of such a function will be 'NULL'.
-
-'METHOD_TYPE'
- Used to represent the type of a non-static member function. Like a
- 'FUNCTION_TYPE', the return type is given by the 'TREE_TYPE'. The
- type of '*this', i.e., the class of which functions of this type
- are a member, is given by the 'TYPE_METHOD_BASETYPE'. The
- 'TYPE_ARG_TYPES' is the parameter list, as for a 'FUNCTION_TYPE',
- and includes the 'this' argument.
-
-'ARRAY_TYPE'
- Used to represent array types. The 'TREE_TYPE' gives the type of
- the elements in the array. If the array-bound is present in the
- type, the 'TYPE_DOMAIN' is an 'INTEGER_TYPE' whose 'TYPE_MIN_VALUE'
- and 'TYPE_MAX_VALUE' will be the lower and upper bounds of the
- array, respectively. The 'TYPE_MIN_VALUE' will always be an
- 'INTEGER_CST' for zero, while the 'TYPE_MAX_VALUE' will be one less
- than the number of elements in the array, i.e., the highest value
- which may be used to index an element in the array.
-
-'RECORD_TYPE'
- Used to represent 'struct' and 'class' types, as well as pointers
- to member functions and similar constructs in other languages.
- 'TYPE_FIELDS' contains the items contained in this type, each of
- which can be a 'FIELD_DECL', 'VAR_DECL', 'CONST_DECL', or
- 'TYPE_DECL'. You may not make any assumptions about the ordering
- of the fields in the type or whether one or more of them overlap.
-
-'UNION_TYPE'
- Used to represent 'union' types. Similar to 'RECORD_TYPE' except
- that all 'FIELD_DECL' nodes in 'TYPE_FIELD' start at bit position
- zero.
-
-'QUAL_UNION_TYPE'
- Used to represent part of a variant record in Ada. Similar to
- 'UNION_TYPE' except that each 'FIELD_DECL' has a 'DECL_QUALIFIER'
- field, which contains a boolean expression that indicates whether
- the field is present in the object. The type will only have one
- field, so each field's 'DECL_QUALIFIER' is only evaluated if none
- of the expressions in the previous fields in 'TYPE_FIELDS' are
- nonzero. Normally these expressions will reference a field in the
- outer object using a 'PLACEHOLDER_EXPR'.
-
-'LANG_TYPE'
- This node is used to represent a language-specific type. The front
- end must handle it.
-
-'OFFSET_TYPE'
- This node is used to represent a pointer-to-data member. For a
- data member 'X::m' the 'TYPE_OFFSET_BASETYPE' is 'X' and the
- 'TREE_TYPE' is the type of 'm'.
-
- There are variables whose values represent some of the basic types.
-These include:
-'void_type_node'
- A node for 'void'.
-
-'integer_type_node'
- A node for 'int'.
-
-'unsigned_type_node.'
- A node for 'unsigned int'.
-
-'char_type_node.'
- A node for 'char'.
-It may sometimes be useful to compare one of these variables with a type
-in hand, using 'same_type_p'.
-
-
-File: gccint.info, Node: Declarations, Next: Attributes, Prev: Types, Up: GENERIC
-
-10.4 Declarations
-=================
-
-This section covers the various kinds of declarations that appear in the
-internal representation, except for declarations of functions
-(represented by 'FUNCTION_DECL' nodes), which are described in *note
-Functions::.
-
-* Menu:
-
-* Working with declarations:: Macros and functions that work on
-declarations.
-* Internal structure:: How declaration nodes are represented.
-
-
-File: gccint.info, Node: Working with declarations, Next: Internal structure, Up: Declarations
-
-10.4.1 Working with declarations
---------------------------------
-
-Some macros can be used with any kind of declaration. These include:
-'DECL_NAME'
- This macro returns an 'IDENTIFIER_NODE' giving the name of the
- entity.
-
-'TREE_TYPE'
- This macro returns the type of the entity declared.
-
-'EXPR_FILENAME'
- This macro returns the name of the file in which the entity was
- declared, as a 'char*'. For an entity declared implicitly by the
- compiler (like '__builtin_memcpy'), this will be the string
- '"<internal>"'.
-
-'EXPR_LINENO'
- This macro returns the line number at which the entity was
- declared, as an 'int'.
-
-'DECL_ARTIFICIAL'
- This predicate holds if the declaration was implicitly generated by
- the compiler. For example, this predicate will hold of an
- implicitly declared member function, or of the 'TYPE_DECL'
- implicitly generated for a class type. Recall that in C++ code
- like:
- struct S {};
- is roughly equivalent to C code like:
- struct S {};
- typedef struct S S;
- The implicitly generated 'typedef' declaration is represented by a
- 'TYPE_DECL' for which 'DECL_ARTIFICIAL' holds.
-
- The various kinds of declarations include:
-'LABEL_DECL'
- These nodes are used to represent labels in function bodies. For
- more information, see *note Functions::. These nodes only appear
- in block scopes.
-
-'CONST_DECL'
- These nodes are used to represent enumeration constants. The value
- of the constant is given by 'DECL_INITIAL' which will be an
- 'INTEGER_CST' with the same type as the 'TREE_TYPE' of the
- 'CONST_DECL', i.e., an 'ENUMERAL_TYPE'.
-
-'RESULT_DECL'
- These nodes represent the value returned by a function. When a
- value is assigned to a 'RESULT_DECL', that indicates that the value
- should be returned, via bitwise copy, by the function. You can use
- 'DECL_SIZE' and 'DECL_ALIGN' on a 'RESULT_DECL', just as with a
- 'VAR_DECL'.
-
-'TYPE_DECL'
- These nodes represent 'typedef' declarations. The 'TREE_TYPE' is
- the type declared to have the name given by 'DECL_NAME'. In some
- cases, there is no associated name.
-
-'VAR_DECL'
- These nodes represent variables with namespace or block scope, as
- well as static data members. The 'DECL_SIZE' and 'DECL_ALIGN' are
- analogous to 'TYPE_SIZE' and 'TYPE_ALIGN'. For a declaration, you
- should always use the 'DECL_SIZE' and 'DECL_ALIGN' rather than the
- 'TYPE_SIZE' and 'TYPE_ALIGN' given by the 'TREE_TYPE', since
- special attributes may have been applied to the variable to give it
- a particular size and alignment. You may use the predicates
- 'DECL_THIS_STATIC' or 'DECL_THIS_EXTERN' to test whether the
- storage class specifiers 'static' or 'extern' were used to declare
- a variable.
-
- If this variable is initialized (but does not require a
- constructor), the 'DECL_INITIAL' will be an expression for the
- initializer. The initializer should be evaluated, and a bitwise
- copy into the variable performed. If the 'DECL_INITIAL' is the
- 'error_mark_node', there is an initializer, but it is given by an
- explicit statement later in the code; no bitwise copy is required.
-
- GCC provides an extension that allows either automatic variables,
- or global variables, to be placed in particular registers. This
- extension is being used for a particular 'VAR_DECL' if
- 'DECL_REGISTER' holds for the 'VAR_DECL', and if
- 'DECL_ASSEMBLER_NAME' is not equal to 'DECL_NAME'. In that case,
- 'DECL_ASSEMBLER_NAME' is the name of the register into which the
- variable will be placed.
-
-'PARM_DECL'
- Used to represent a parameter to a function. Treat these nodes
- similarly to 'VAR_DECL' nodes. These nodes only appear in the
- 'DECL_ARGUMENTS' for a 'FUNCTION_DECL'.
-
- The 'DECL_ARG_TYPE' for a 'PARM_DECL' is the type that will
- actually be used when a value is passed to this function. It may
- be a wider type than the 'TREE_TYPE' of the parameter; for example,
- the ordinary type might be 'short' while the 'DECL_ARG_TYPE' is
- 'int'.
-
-'DEBUG_EXPR_DECL'
- Used to represent an anonymous debug-information temporary created
- to hold an expression as it is optimized away, so that its value
- can be referenced in debug bind statements.
-
-'FIELD_DECL'
- These nodes represent non-static data members. The 'DECL_SIZE' and
- 'DECL_ALIGN' behave as for 'VAR_DECL' nodes. The position of the
- field within the parent record is specified by a combination of
- three attributes. 'DECL_FIELD_OFFSET' is the position, counting in
- bytes, of the 'DECL_OFFSET_ALIGN'-bit sized word containing the bit
- of the field closest to the beginning of the structure.
- 'DECL_FIELD_BIT_OFFSET' is the bit offset of the first bit of the
- field within this word; this may be nonzero even for fields that
- are not bit-fields, since 'DECL_OFFSET_ALIGN' may be greater than
- the natural alignment of the field's type.
-
- If 'DECL_C_BIT_FIELD' holds, this field is a bit-field. In a
- bit-field, 'DECL_BIT_FIELD_TYPE' also contains the type that was
- originally specified for it, while DECL_TYPE may be a modified type
- with lesser precision, according to the size of the bit field.
-
-'NAMESPACE_DECL'
- Namespaces provide a name hierarchy for other declarations. They
- appear in the 'DECL_CONTEXT' of other '_DECL' nodes.
-
-
-File: gccint.info, Node: Internal structure, Prev: Working with declarations, Up: Declarations
-
-10.4.2 Internal structure
--------------------------
-
-'DECL' nodes are represented internally as a hierarchy of structures.
-
-* Menu:
-
-* Current structure hierarchy:: The current DECL node structure
-hierarchy.
-* Adding new DECL node types:: How to add a new DECL node to a
-frontend.
-
-
-File: gccint.info, Node: Current structure hierarchy, Next: Adding new DECL node types, Up: Internal structure
-
-10.4.2.1 Current structure hierarchy
-....................................
-
-'struct tree_decl_minimal'
- This is the minimal structure to inherit from in order for common
- 'DECL' macros to work. The fields it contains are a unique ID,
- source location, context, and name.
-
-'struct tree_decl_common'
- This structure inherits from 'struct tree_decl_minimal'. It
- contains fields that most 'DECL' nodes need, such as a field to
- store alignment, machine mode, size, and attributes.
-
-'struct tree_field_decl'
- This structure inherits from 'struct tree_decl_common'. It is used
- to represent 'FIELD_DECL'.
-
-'struct tree_label_decl'
- This structure inherits from 'struct tree_decl_common'. It is used
- to represent 'LABEL_DECL'.
-
-'struct tree_translation_unit_decl'
- This structure inherits from 'struct tree_decl_common'. It is used
- to represent 'TRANSLATION_UNIT_DECL'.
-
-'struct tree_decl_with_rtl'
- This structure inherits from 'struct tree_decl_common'. It
- contains a field to store the low-level RTL associated with a
- 'DECL' node.
-
-'struct tree_result_decl'
- This structure inherits from 'struct tree_decl_with_rtl'. It is
- used to represent 'RESULT_DECL'.
-
-'struct tree_const_decl'
- This structure inherits from 'struct tree_decl_with_rtl'. It is
- used to represent 'CONST_DECL'.
-
-'struct tree_parm_decl'
- This structure inherits from 'struct tree_decl_with_rtl'. It is
- used to represent 'PARM_DECL'.
-
-'struct tree_decl_with_vis'
- This structure inherits from 'struct tree_decl_with_rtl'. It
- contains fields necessary to store visibility information, as well
- as a section name and assembler name.
-
-'struct tree_var_decl'
- This structure inherits from 'struct tree_decl_with_vis'. It is
- used to represent 'VAR_DECL'.
-
-'struct tree_function_decl'
- This structure inherits from 'struct tree_decl_with_vis'. It is
- used to represent 'FUNCTION_DECL'.
-
-
-File: gccint.info, Node: Adding new DECL node types, Prev: Current structure hierarchy, Up: Internal structure
-
-10.4.2.2 Adding new DECL node types
-...................................
-
-Adding a new 'DECL' tree consists of the following steps
-
-Add a new tree code for the 'DECL' node
- For language specific 'DECL' nodes, there is a '.def' file in each
- frontend directory where the tree code should be added. For 'DECL'
- nodes that are part of the middle-end, the code should be added to
- 'tree.def'.
-
-Create a new structure type for the 'DECL' node
- These structures should inherit from one of the existing structures
- in the language hierarchy by using that structure as the first
- member.
-
- struct tree_foo_decl
- {
- struct tree_decl_with_vis common;
- }
-
- Would create a structure name 'tree_foo_decl' that inherits from
- 'struct tree_decl_with_vis'.
-
- For language specific 'DECL' nodes, this new structure type should
- go in the appropriate '.h' file. For 'DECL' nodes that are part of
- the middle-end, the structure type should go in 'tree.h'.
-
-Add a member to the tree structure enumerator for the node
- For garbage collection and dynamic checking purposes, each 'DECL'
- node structure type is required to have a unique enumerator value
- specified with it. For language specific 'DECL' nodes, this new
- enumerator value should go in the appropriate '.def' file. For
- 'DECL' nodes that are part of the middle-end, the enumerator values
- are specified in 'treestruct.def'.
-
-Update 'union tree_node'
- In order to make your new structure type usable, it must be added
- to 'union tree_node'. For language specific 'DECL' nodes, a new
- entry should be added to the appropriate '.h' file of the form
- struct tree_foo_decl GTY ((tag ("TS_VAR_DECL"))) foo_decl;
- For 'DECL' nodes that are part of the middle-end, the additional
- member goes directly into 'union tree_node' in 'tree.h'.
-
-Update dynamic checking info
- In order to be able to check whether accessing a named portion of
- 'union tree_node' is legal, and whether a certain 'DECL' node
- contains one of the enumerated 'DECL' node structures in the
- hierarchy, a simple lookup table is used. This lookup table needs
- to be kept up to date with the tree structure hierarchy, or else
- checking and containment macros will fail inappropriately.
-
- For language specific 'DECL' nodes, their is an 'init_ts' function
- in an appropriate '.c' file, which initializes the lookup table.
- Code setting up the table for new 'DECL' nodes should be added
- there. For each 'DECL' tree code and enumerator value representing
- a member of the inheritance hierarchy, the table should contain 1
- if that tree code inherits (directly or indirectly) from that
- member. Thus, a 'FOO_DECL' node derived from 'struct
- decl_with_rtl', and enumerator value 'TS_FOO_DECL', would be set up
- as follows
- tree_contains_struct[FOO_DECL][TS_FOO_DECL] = 1;
- tree_contains_struct[FOO_DECL][TS_DECL_WRTL] = 1;
- tree_contains_struct[FOO_DECL][TS_DECL_COMMON] = 1;
- tree_contains_struct[FOO_DECL][TS_DECL_MINIMAL] = 1;
-
- For 'DECL' nodes that are part of the middle-end, the setup code
- goes into 'tree.c'.
-
-Add macros to access any new fields and flags
-
- Each added field or flag should have a macro that is used to access
- it, that performs appropriate checking to ensure only the right
- type of 'DECL' nodes access the field.
-
- These macros generally take the following form
- #define FOO_DECL_FIELDNAME(NODE) FOO_DECL_CHECK(NODE)->foo_decl.fieldname
- However, if the structure is simply a base class for further
- structures, something like the following should be used
- #define BASE_STRUCT_CHECK(T) CONTAINS_STRUCT_CHECK(T, TS_BASE_STRUCT)
- #define BASE_STRUCT_FIELDNAME(NODE) \
- (BASE_STRUCT_CHECK(NODE)->base_struct.fieldname
-
- Reading them from the generated 'all-tree.def' file (which in turn
- includes all the 'tree.def' files), 'gencheck.c' is used during
- GCC's build to generate the '*_CHECK' macros for all tree codes.
-
-
-File: gccint.info, Node: Attributes, Next: Expression trees, Prev: Declarations, Up: GENERIC
-
-10.5 Attributes in trees
-========================
-
-Attributes, as specified using the '__attribute__' keyword, are
-represented internally as a 'TREE_LIST'. The 'TREE_PURPOSE' is the name
-of the attribute, as an 'IDENTIFIER_NODE'. The 'TREE_VALUE' is a
-'TREE_LIST' of the arguments of the attribute, if any, or 'NULL_TREE' if
-there are no arguments; the arguments are stored as the 'TREE_VALUE' of
-successive entries in the list, and may be identifiers or expressions.
-The 'TREE_CHAIN' of the attribute is the next attribute in a list of
-attributes applying to the same declaration or type, or 'NULL_TREE' if
-there are no further attributes in the list.
-
- Attributes may be attached to declarations and to types; these
-attributes may be accessed with the following macros. All attributes
-are stored in this way, and many also cause other changes to the
-declaration or type or to other internal compiler data structures.
-
- -- Tree Macro: tree DECL_ATTRIBUTES (tree DECL)
- This macro returns the attributes on the declaration DECL.
-
- -- Tree Macro: tree TYPE_ATTRIBUTES (tree TYPE)
- This macro returns the attributes on the type TYPE.
-
-
-File: gccint.info, Node: Expression trees, Next: Statements, Prev: Attributes, Up: GENERIC
-
-10.6 Expressions
-================
-
-The internal representation for expressions is for the most part quite
-straightforward. However, there are a few facts that one must bear in
-mind. In particular, the expression "tree" is actually a directed
-acyclic graph. (For example there may be many references to the integer
-constant zero throughout the source program; many of these will be
-represented by the same expression node.) You should not rely on
-certain kinds of node being shared, nor should you rely on certain kinds
-of nodes being unshared.
-
- The following macros can be used with all expression nodes:
-
-'TREE_TYPE'
- Returns the type of the expression. This value may not be
- precisely the same type that would be given the expression in the
- original program.
-
- In what follows, some nodes that one might expect to always have type
-'bool' are documented to have either integral or boolean type. At some
-point in the future, the C front end may also make use of this same
-intermediate representation, and at this point these nodes will
-certainly have integral type. The previous sentence is not meant to
-imply that the C++ front end does not or will not give these nodes
-integral type.
-
- Below, we list the various kinds of expression nodes. Except where
-noted otherwise, the operands to an expression are accessed using the
-'TREE_OPERAND' macro. For example, to access the first operand to a
-binary plus expression 'expr', use:
-
- TREE_OPERAND (expr, 0)
-
- As this example indicates, the operands are zero-indexed.
-
-* Menu:
-
-* Constants: Constant expressions.
-* Storage References::
-* Unary and Binary Expressions::
-* Vectors::
-
-
-File: gccint.info, Node: Constant expressions, Next: Storage References, Up: Expression trees
-
-10.6.1 Constant expressions
----------------------------
-
-The table below begins with constants, moves on to unary expressions,
-then proceeds to binary expressions, and concludes with various other
-kinds of expressions:
-
-'INTEGER_CST'
- These nodes represent integer constants. Note that the type of
- these constants is obtained with 'TREE_TYPE'; they are not always
- of type 'int'. In particular, 'char' constants are represented
- with 'INTEGER_CST' nodes. The value of the integer constant 'e' is
- given by
- ((TREE_INT_CST_HIGH (e) << HOST_BITS_PER_WIDE_INT)
- + TREE_INST_CST_LOW (e))
- HOST_BITS_PER_WIDE_INT is at least thirty-two on all platforms.
- Both 'TREE_INT_CST_HIGH' and 'TREE_INT_CST_LOW' return a
- 'HOST_WIDE_INT'. The value of an 'INTEGER_CST' is interpreted as a
- signed or unsigned quantity depending on the type of the constant.
- In general, the expression given above will overflow, so it should
- not be used to calculate the value of the constant.
-
- The variable 'integer_zero_node' is an integer constant with value
- zero. Similarly, 'integer_one_node' is an integer constant with
- value one. The 'size_zero_node' and 'size_one_node' variables are
- analogous, but have type 'size_t' rather than 'int'.
-
- The function 'tree_int_cst_lt' is a predicate which holds if its
- first argument is less than its second. Both constants are assumed
- to have the same signedness (i.e., either both should be signed or
- both should be unsigned.) The full width of the constant is used
- when doing the comparison; the usual rules about promotions and
- conversions are ignored. Similarly, 'tree_int_cst_equal' holds if
- the two constants are equal. The 'tree_int_cst_sgn' function
- returns the sign of a constant. The value is '1', '0', or '-1'
- according on whether the constant is greater than, equal to, or
- less than zero. Again, the signedness of the constant's type is
- taken into account; an unsigned constant is never less than zero,
- no matter what its bit-pattern.
-
-'REAL_CST'
-
- FIXME: Talk about how to obtain representations of this constant,
- do comparisons, and so forth.
-
-'FIXED_CST'
-
- These nodes represent fixed-point constants. The type of these
- constants is obtained with 'TREE_TYPE'. 'TREE_FIXED_CST_PTR'
- points to a 'struct fixed_value'; 'TREE_FIXED_CST' returns the
- structure itself. 'struct fixed_value' contains 'data' with the
- size of two 'HOST_BITS_PER_WIDE_INT' and 'mode' as the associated
- fixed-point machine mode for 'data'.
-
-'COMPLEX_CST'
- These nodes are used to represent complex number constants, that is
- a '__complex__' whose parts are constant nodes. The
- 'TREE_REALPART' and 'TREE_IMAGPART' return the real and the
- imaginary parts respectively.
-
-'VECTOR_CST'
- These nodes are used to represent vector constants, whose parts are
- constant nodes. Each individual constant node is either an integer
- or a double constant node. The first operand is a 'TREE_LIST' of
- the constant nodes and is accessed through 'TREE_VECTOR_CST_ELTS'.
-
-'STRING_CST'
- These nodes represent string-constants. The 'TREE_STRING_LENGTH'
- returns the length of the string, as an 'int'. The
- 'TREE_STRING_POINTER' is a 'char*' containing the string itself.
- The string may not be 'NUL'-terminated, and it may contain embedded
- 'NUL' characters. Therefore, the 'TREE_STRING_LENGTH' includes the
- trailing 'NUL' if it is present.
-
- For wide string constants, the 'TREE_STRING_LENGTH' is the number
- of bytes in the string, and the 'TREE_STRING_POINTER' points to an
- array of the bytes of the string, as represented on the target
- system (that is, as integers in the target endianness). Wide and
- non-wide string constants are distinguished only by the 'TREE_TYPE'
- of the 'STRING_CST'.
-
- FIXME: The formats of string constants are not well-defined when
- the target system bytes are not the same width as host system
- bytes.
-
-
-File: gccint.info, Node: Storage References, Next: Unary and Binary Expressions, Prev: Constant expressions, Up: Expression trees
-
-10.6.2 References to storage
-----------------------------
-
-'ARRAY_REF'
- These nodes represent array accesses. The first operand is the
- array; the second is the index. To calculate the address of the
- memory accessed, you must scale the index by the size of the type
- of the array elements. The type of these expressions must be the
- type of a component of the array. The third and fourth operands
- are used after gimplification to represent the lower bound and
- component size but should not be used directly; call
- 'array_ref_low_bound' and 'array_ref_element_size' instead.
-
-'ARRAY_RANGE_REF'
- These nodes represent access to a range (or "slice") of an array.
- The operands are the same as that for 'ARRAY_REF' and have the same
- meanings. The type of these expressions must be an array whose
- component type is the same as that of the first operand. The range
- of that array type determines the amount of data these expressions
- access.
-
-'TARGET_MEM_REF'
- These nodes represent memory accesses whose address directly map to
- an addressing mode of the target architecture. The first argument
- is 'TMR_SYMBOL' and must be a 'VAR_DECL' of an object with a fixed
- address. The second argument is 'TMR_BASE' and the third one is
- 'TMR_INDEX'. The fourth argument is 'TMR_STEP' and must be an
- 'INTEGER_CST'. The fifth argument is 'TMR_OFFSET' and must be an
- 'INTEGER_CST'. Any of the arguments may be NULL if the appropriate
- component does not appear in the address. Address of the
- 'TARGET_MEM_REF' is determined in the following way.
-
- &TMR_SYMBOL + TMR_BASE + TMR_INDEX * TMR_STEP + TMR_OFFSET
-
- The sixth argument is the reference to the original memory access,
- which is preserved for the purposes of the RTL alias analysis. The
- seventh argument is a tag representing the results of tree level
- alias analysis.
-
-'ADDR_EXPR'
- These nodes are used to represent the address of an object. (These
- expressions will always have pointer or reference type.) The
- operand may be another expression, or it may be a declaration.
-
- As an extension, GCC allows users to take the address of a label.
- In this case, the operand of the 'ADDR_EXPR' will be a
- 'LABEL_DECL'. The type of such an expression is 'void*'.
-
- If the object addressed is not an lvalue, a temporary is created,
- and the address of the temporary is used.
-
-'INDIRECT_REF'
- These nodes are used to represent the object pointed to by a
- pointer. The operand is the pointer being dereferenced; it will
- always have pointer or reference type.
-
-'MEM_REF'
- These nodes are used to represent the object pointed to by a
- pointer offset by a constant. The first operand is the pointer
- being dereferenced; it will always have pointer or reference type.
- The second operand is a pointer constant. Its type is specifying
- the type to be used for type-based alias analysis.
-
-'COMPONENT_REF'
- These nodes represent non-static data member accesses. The first
- operand is the object (rather than a pointer to it); the second
- operand is the 'FIELD_DECL' for the data member. The third operand
- represents the byte offset of the field, but should not be used
- directly; call 'component_ref_field_offset' instead.
-
-
-File: gccint.info, Node: Unary and Binary Expressions, Next: Vectors, Prev: Storage References, Up: Expression trees
-
-10.6.3 Unary and Binary Expressions
------------------------------------
-
-'NEGATE_EXPR'
- These nodes represent unary negation of the single operand, for
- both integer and floating-point types. The type of negation can be
- determined by looking at the type of the expression.
-
- The behavior of this operation on signed arithmetic overflow is
- controlled by the 'flag_wrapv' and 'flag_trapv' variables.
-
-'ABS_EXPR'
- These nodes represent the absolute value of the single operand, for
- both integer and floating-point types. This is typically used to
- implement the 'abs', 'labs' and 'llabs' builtins for integer types,
- and the 'fabs', 'fabsf' and 'fabsl' builtins for floating point
- types. The type of abs operation can be determined by looking at
- the type of the expression.
-
- This node is not used for complex types. To represent the modulus
- or complex abs of a complex value, use the 'BUILT_IN_CABS',
- 'BUILT_IN_CABSF' or 'BUILT_IN_CABSL' builtins, as used to implement
- the C99 'cabs', 'cabsf' and 'cabsl' built-in functions.
-
-'BIT_NOT_EXPR'
- These nodes represent bitwise complement, and will always have
- integral type. The only operand is the value to be complemented.
-
-'TRUTH_NOT_EXPR'
- These nodes represent logical negation, and will always have
- integral (or boolean) type. The operand is the value being
- negated. The type of the operand and that of the result are always
- of 'BOOLEAN_TYPE' or 'INTEGER_TYPE'.
-
-'PREDECREMENT_EXPR'
-'PREINCREMENT_EXPR'
-'POSTDECREMENT_EXPR'
-'POSTINCREMENT_EXPR'
- These nodes represent increment and decrement expressions. The
- value of the single operand is computed, and the operand
- incremented or decremented. In the case of 'PREDECREMENT_EXPR' and
- 'PREINCREMENT_EXPR', the value of the expression is the value
- resulting after the increment or decrement; in the case of
- 'POSTDECREMENT_EXPR' and 'POSTINCREMENT_EXPR' is the value before
- the increment or decrement occurs. The type of the operand, like
- that of the result, will be either integral, boolean, or
- floating-point.
-
-'FIX_TRUNC_EXPR'
- These nodes represent conversion of a floating-point value to an
- integer. The single operand will have a floating-point type, while
- the complete expression will have an integral (or boolean) type.
- The operand is rounded towards zero.
-
-'FLOAT_EXPR'
- These nodes represent conversion of an integral (or boolean) value
- to a floating-point value. The single operand will have integral
- type, while the complete expression will have a floating-point
- type.
-
- FIXME: How is the operand supposed to be rounded? Is this
- dependent on '-mieee'?
-
-'COMPLEX_EXPR'
- These nodes are used to represent complex numbers constructed from
- two expressions of the same (integer or real) type. The first
- operand is the real part and the second operand is the imaginary
- part.
-
-'CONJ_EXPR'
- These nodes represent the conjugate of their operand.
-
-'REALPART_EXPR'
-'IMAGPART_EXPR'
- These nodes represent respectively the real and the imaginary parts
- of complex numbers (their sole argument).
-
-'NON_LVALUE_EXPR'
- These nodes indicate that their one and only operand is not an
- lvalue. A back end can treat these identically to the single
- operand.
-
-'NOP_EXPR'
- These nodes are used to represent conversions that do not require
- any code-generation. For example, conversion of a 'char*' to an
- 'int*' does not require any code be generated; such a conversion is
- represented by a 'NOP_EXPR'. The single operand is the expression
- to be converted. The conversion from a pointer to a reference is
- also represented with a 'NOP_EXPR'.
-
-'CONVERT_EXPR'
- These nodes are similar to 'NOP_EXPR's, but are used in those
- situations where code may need to be generated. For example, if an
- 'int*' is converted to an 'int' code may need to be generated on
- some platforms. These nodes are never used for C++-specific
- conversions, like conversions between pointers to different classes
- in an inheritance hierarchy. Any adjustments that need to be made
- in such cases are always indicated explicitly. Similarly, a
- user-defined conversion is never represented by a 'CONVERT_EXPR';
- instead, the function calls are made explicit.
-
-'FIXED_CONVERT_EXPR'
- These nodes are used to represent conversions that involve
- fixed-point values. For example, from a fixed-point value to
- another fixed-point value, from an integer to a fixed-point value,
- from a fixed-point value to an integer, from a floating-point value
- to a fixed-point value, or from a fixed-point value to a
- floating-point value.
-
-'LSHIFT_EXPR'
-'RSHIFT_EXPR'
- These nodes represent left and right shifts, respectively. The
- first operand is the value to shift; it will always be of integral
- type. The second operand is an expression for the number of bits
- by which to shift. Right shift should be treated as arithmetic,
- i.e., the high-order bits should be zero-filled when the expression
- has unsigned type and filled with the sign bit when the expression
- has signed type. Note that the result is undefined if the second
- operand is larger than or equal to the first operand's type size.
- Unlike most nodes, these can have a vector as first operand and a
- scalar as second operand.
-
-'BIT_IOR_EXPR'
-'BIT_XOR_EXPR'
-'BIT_AND_EXPR'
- These nodes represent bitwise inclusive or, bitwise exclusive or,
- and bitwise and, respectively. Both operands will always have
- integral type.
-
-'TRUTH_ANDIF_EXPR'
-'TRUTH_ORIF_EXPR'
- These nodes represent logical "and" and logical "or", respectively.
- These operators are not strict; i.e., the second operand is
- evaluated only if the value of the expression is not determined by
- evaluation of the first operand. The type of the operands and that
- of the result are always of 'BOOLEAN_TYPE' or 'INTEGER_TYPE'.
-
-'TRUTH_AND_EXPR'
-'TRUTH_OR_EXPR'
-'TRUTH_XOR_EXPR'
- These nodes represent logical and, logical or, and logical
- exclusive or. They are strict; both arguments are always
- evaluated. There are no corresponding operators in C or C++, but
- the front end will sometimes generate these expressions anyhow, if
- it can tell that strictness does not matter. The type of the
- operands and that of the result are always of 'BOOLEAN_TYPE' or
- 'INTEGER_TYPE'.
-
-'POINTER_PLUS_EXPR'
- This node represents pointer arithmetic. The first operand is
- always a pointer/reference type. The second operand is always an
- unsigned integer type compatible with sizetype. This is the only
- binary arithmetic operand that can operate on pointer types.
-
-'PLUS_EXPR'
-'MINUS_EXPR'
-'MULT_EXPR'
- These nodes represent various binary arithmetic operations.
- Respectively, these operations are addition, subtraction (of the
- second operand from the first) and multiplication. Their operands
- may have either integral or floating type, but there will never be
- case in which one operand is of floating type and the other is of
- integral type.
-
- The behavior of these operations on signed arithmetic overflow is
- controlled by the 'flag_wrapv' and 'flag_trapv' variables.
-
-'MULT_HIGHPART_EXPR'
- This node represents the "high-part" of a widening multiplication.
- For an integral type with B bits of precision, the result is the
- most significant B bits of the full 2B product.
-
-'RDIV_EXPR'
- This node represents a floating point division operation.
-
-'TRUNC_DIV_EXPR'
-'FLOOR_DIV_EXPR'
-'CEIL_DIV_EXPR'
-'ROUND_DIV_EXPR'
- These nodes represent integer division operations that return an
- integer result. 'TRUNC_DIV_EXPR' rounds towards zero,
- 'FLOOR_DIV_EXPR' rounds towards negative infinity, 'CEIL_DIV_EXPR'
- rounds towards positive infinity and 'ROUND_DIV_EXPR' rounds to the
- closest integer. Integer division in C and C++ is truncating, i.e.
- 'TRUNC_DIV_EXPR'.
-
- The behavior of these operations on signed arithmetic overflow,
- when dividing the minimum signed integer by minus one, is
- controlled by the 'flag_wrapv' and 'flag_trapv' variables.
-
-'TRUNC_MOD_EXPR'
-'FLOOR_MOD_EXPR'
-'CEIL_MOD_EXPR'
-'ROUND_MOD_EXPR'
- These nodes represent the integer remainder or modulus operation.
- The integer modulus of two operands 'a' and 'b' is defined as 'a -
- (a/b)*b' where the division calculated using the corresponding
- division operator. Hence for 'TRUNC_MOD_EXPR' this definition
- assumes division using truncation towards zero, i.e.
- 'TRUNC_DIV_EXPR'. Integer remainder in C and C++ uses truncating
- division, i.e. 'TRUNC_MOD_EXPR'.
-
-'EXACT_DIV_EXPR'
- The 'EXACT_DIV_EXPR' code is used to represent integer divisions
- where the numerator is known to be an exact multiple of the
- denominator. This allows the backend to choose between the faster
- of 'TRUNC_DIV_EXPR', 'CEIL_DIV_EXPR' and 'FLOOR_DIV_EXPR' for the
- current target.
-
-'LT_EXPR'
-'LE_EXPR'
-'GT_EXPR'
-'GE_EXPR'
-'EQ_EXPR'
-'NE_EXPR'
- These nodes represent the less than, less than or equal to, greater
- than, greater than or equal to, equal, and not equal comparison
- operators. The first and second operands will either be both of
- integral type, both of floating type or both of vector type. The
- result type of these expressions will always be of integral,
- boolean or signed integral vector type. These operations return
- the result type's zero value for false, the result type's one value
- for true, and a vector whose elements are zero (false) or minus one
- (true) for vectors.
-
- For floating point comparisons, if we honor IEEE NaNs and either
- operand is NaN, then 'NE_EXPR' always returns true and the
- remaining operators always return false. On some targets,
- comparisons against an IEEE NaN, other than equality and
- inequality, may generate a floating point exception.
-
-'ORDERED_EXPR'
-'UNORDERED_EXPR'
- These nodes represent non-trapping ordered and unordered comparison
- operators. These operations take two floating point operands and
- determine whether they are ordered or unordered relative to each
- other. If either operand is an IEEE NaN, their comparison is
- defined to be unordered, otherwise the comparison is defined to be
- ordered. The result type of these expressions will always be of
- integral or boolean type. These operations return the result
- type's zero value for false, and the result type's one value for
- true.
-
-'UNLT_EXPR'
-'UNLE_EXPR'
-'UNGT_EXPR'
-'UNGE_EXPR'
-'UNEQ_EXPR'
-'LTGT_EXPR'
- These nodes represent the unordered comparison operators. These
- operations take two floating point operands and determine whether
- the operands are unordered or are less than, less than or equal to,
- greater than, greater than or equal to, or equal respectively. For
- example, 'UNLT_EXPR' returns true if either operand is an IEEE NaN
- or the first operand is less than the second. With the possible
- exception of 'LTGT_EXPR', all of these operations are guaranteed
- not to generate a floating point exception. The result type of
- these expressions will always be of integral or boolean type.
- These operations return the result type's zero value for false, and
- the result type's one value for true.
-
-'MODIFY_EXPR'
- These nodes represent assignment. The left-hand side is the first
- operand; the right-hand side is the second operand. The left-hand
- side will be a 'VAR_DECL', 'INDIRECT_REF', 'COMPONENT_REF', or
- other lvalue.
-
- These nodes are used to represent not only assignment with '=' but
- also compound assignments (like '+='), by reduction to '='
- assignment. In other words, the representation for 'i += 3' looks
- just like that for 'i = i + 3'.
-
-'INIT_EXPR'
- These nodes are just like 'MODIFY_EXPR', but are used only when a
- variable is initialized, rather than assigned to subsequently.
- This means that we can assume that the target of the initialization
- is not used in computing its own value; any reference to the lhs in
- computing the rhs is undefined.
-
-'COMPOUND_EXPR'
- These nodes represent comma-expressions. The first operand is an
- expression whose value is computed and thrown away prior to the
- evaluation of the second operand. The value of the entire
- expression is the value of the second operand.
-
-'COND_EXPR'
- These nodes represent '?:' expressions. The first operand is of
- boolean or integral type. If it evaluates to a nonzero value, the
- second operand should be evaluated, and returned as the value of
- the expression. Otherwise, the third operand is evaluated, and
- returned as the value of the expression.
-
- The second operand must have the same type as the entire
- expression, unless it unconditionally throws an exception or calls
- a noreturn function, in which case it should have void type. The
- same constraints apply to the third operand. This allows array
- bounds checks to be represented conveniently as '(i >= 0 && i < 10)
- ? i : abort()'.
-
- As a GNU extension, the C language front-ends allow the second
- operand of the '?:' operator may be omitted in the source. For
- example, 'x ? : 3' is equivalent to 'x ? x : 3', assuming that 'x'
- is an expression without side-effects. In the tree representation,
- however, the second operand is always present, possibly protected
- by 'SAVE_EXPR' if the first argument does cause side-effects.
-
-'CALL_EXPR'
- These nodes are used to represent calls to functions, including
- non-static member functions. 'CALL_EXPR's are implemented as
- expression nodes with a variable number of operands. Rather than
- using 'TREE_OPERAND' to extract them, it is preferable to use the
- specialized accessor macros and functions that operate specifically
- on 'CALL_EXPR' nodes.
-
- 'CALL_EXPR_FN' returns a pointer to the function to call; it is
- always an expression whose type is a 'POINTER_TYPE'.
-
- The number of arguments to the call is returned by
- 'call_expr_nargs', while the arguments themselves can be accessed
- with the 'CALL_EXPR_ARG' macro. The arguments are zero-indexed and
- numbered left-to-right. You can iterate over the arguments using
- 'FOR_EACH_CALL_EXPR_ARG', as in:
-
- tree call, arg;
- call_expr_arg_iterator iter;
- FOR_EACH_CALL_EXPR_ARG (arg, iter, call)
- /* arg is bound to successive arguments of call. */
- ...;
-
- For non-static member functions, there will be an operand
- corresponding to the 'this' pointer. There will always be
- expressions corresponding to all of the arguments, even if the
- function is declared with default arguments and some arguments are
- not explicitly provided at the call sites.
-
- 'CALL_EXPR's also have a 'CALL_EXPR_STATIC_CHAIN' operand that is
- used to implement nested functions. This operand is otherwise
- null.
-
-'CLEANUP_POINT_EXPR'
- These nodes represent full-expressions. The single operand is an
- expression to evaluate. Any destructor calls engendered by the
- creation of temporaries during the evaluation of that expression
- should be performed immediately after the expression is evaluated.
-
-'CONSTRUCTOR'
- These nodes represent the brace-enclosed initializers for a
- structure or an array. They contain a sequence of component values
- made out of a vector of constructor_elt, which is a ('INDEX',
- 'VALUE') pair.
-
- If the 'TREE_TYPE' of the 'CONSTRUCTOR' is a 'RECORD_TYPE',
- 'UNION_TYPE' or 'QUAL_UNION_TYPE' then the 'INDEX' of each node in
- the sequence will be a 'FIELD_DECL' and the 'VALUE' will be the
- expression used to initialize that field.
-
- If the 'TREE_TYPE' of the 'CONSTRUCTOR' is an 'ARRAY_TYPE', then
- the 'INDEX' of each node in the sequence will be an 'INTEGER_CST'
- or a 'RANGE_EXPR' of two 'INTEGER_CST's. A single 'INTEGER_CST'
- indicates which element of the array is being assigned to. A
- 'RANGE_EXPR' indicates an inclusive range of elements to
- initialize. In both cases the 'VALUE' is the corresponding
- initializer. It is re-evaluated for each element of a
- 'RANGE_EXPR'. If the 'INDEX' is 'NULL_TREE', then the initializer
- is for the next available array element.
-
- In the front end, you should not depend on the fields appearing in
- any particular order. However, in the middle end, fields must
- appear in declaration order. You should not assume that all fields
- will be represented. Unrepresented fields will be cleared
- (zeroed), unless the CONSTRUCTOR_NO_CLEARING flag is set, in which
- case their value becomes undefined.
-
-'COMPOUND_LITERAL_EXPR'
- These nodes represent ISO C99 compound literals. The
- 'COMPOUND_LITERAL_EXPR_DECL_EXPR' is a 'DECL_EXPR' containing an
- anonymous 'VAR_DECL' for the unnamed object represented by the
- compound literal; the 'DECL_INITIAL' of that 'VAR_DECL' is a
- 'CONSTRUCTOR' representing the brace-enclosed list of initializers
- in the compound literal. That anonymous 'VAR_DECL' can also be
- accessed directly by the 'COMPOUND_LITERAL_EXPR_DECL' macro.
-
-'SAVE_EXPR'
-
- A 'SAVE_EXPR' represents an expression (possibly involving
- side-effects) that is used more than once. The side-effects should
- occur only the first time the expression is evaluated. Subsequent
- uses should just reuse the computed value. The first operand to
- the 'SAVE_EXPR' is the expression to evaluate. The side-effects
- should be executed where the 'SAVE_EXPR' is first encountered in a
- depth-first preorder traversal of the expression tree.
-
-'TARGET_EXPR'
- A 'TARGET_EXPR' represents a temporary object. The first operand
- is a 'VAR_DECL' for the temporary variable. The second operand is
- the initializer for the temporary. The initializer is evaluated
- and, if non-void, copied (bitwise) into the temporary. If the
- initializer is void, that means that it will perform the
- initialization itself.
-
- Often, a 'TARGET_EXPR' occurs on the right-hand side of an
- assignment, or as the second operand to a comma-expression which is
- itself the right-hand side of an assignment, etc. In this case, we
- say that the 'TARGET_EXPR' is "normal"; otherwise, we say it is
- "orphaned". For a normal 'TARGET_EXPR' the temporary variable
- should be treated as an alias for the left-hand side of the
- assignment, rather than as a new temporary variable.
-
- The third operand to the 'TARGET_EXPR', if present, is a
- cleanup-expression (i.e., destructor call) for the temporary. If
- this expression is orphaned, then this expression must be executed
- when the statement containing this expression is complete. These
- cleanups must always be executed in the order opposite to that in
- which they were encountered. Note that if a temporary is created
- on one branch of a conditional operator (i.e., in the second or
- third operand to a 'COND_EXPR'), the cleanup must be run only if
- that branch is actually executed.
-
-'VA_ARG_EXPR'
- This node is used to implement support for the C/C++ variable
- argument-list mechanism. It represents expressions like 'va_arg
- (ap, type)'. Its 'TREE_TYPE' yields the tree representation for
- 'type' and its sole argument yields the representation for 'ap'.
-
-'ANNOTATE_EXPR'
- This node is used to attach markers to an expression. The first
- operand is the annotated expression, the second is an 'INTEGER_CST'
- with a value from 'enum annot_expr_kind'.
-
-
-File: gccint.info, Node: Vectors, Prev: Unary and Binary Expressions, Up: Expression trees
-
-10.6.4 Vectors
---------------
-
-'VEC_LSHIFT_EXPR'
-'VEC_RSHIFT_EXPR'
- These nodes represent whole vector left and right shifts,
- respectively. The first operand is the vector to shift; it will
- always be of vector type. The second operand is an expression for
- the number of bits by which to shift. Note that the result is
- undefined if the second operand is larger than or equal to the
- first operand's type size.
-
-'VEC_WIDEN_MULT_HI_EXPR'
-'VEC_WIDEN_MULT_LO_EXPR'
- These nodes represent widening vector multiplication of the high
- and low parts of the two input vectors, respectively. Their
- operands are vectors that contain the same number of elements ('N')
- of the same integral type. The result is a vector that contains
- half as many elements, of an integral type whose size is twice as
- wide. In the case of 'VEC_WIDEN_MULT_HI_EXPR' the high 'N/2'
- elements of the two vector are multiplied to produce the vector of
- 'N/2' products. In the case of 'VEC_WIDEN_MULT_LO_EXPR' the low
- 'N/2' elements of the two vector are multiplied to produce the
- vector of 'N/2' products.
-
-'VEC_UNPACK_HI_EXPR'
-'VEC_UNPACK_LO_EXPR'
- These nodes represent unpacking of the high and low parts of the
- input vector, respectively. The single operand is a vector that
- contains 'N' elements of the same integral or floating point type.
- The result is a vector that contains half as many elements, of an
- integral or floating point type whose size is twice as wide. In
- the case of 'VEC_UNPACK_HI_EXPR' the high 'N/2' elements of the
- vector are extracted and widened (promoted). In the case of
- 'VEC_UNPACK_LO_EXPR' the low 'N/2' elements of the vector are
- extracted and widened (promoted).
-
-'VEC_UNPACK_FLOAT_HI_EXPR'
-'VEC_UNPACK_FLOAT_LO_EXPR'
- These nodes represent unpacking of the high and low parts of the
- input vector, where the values are converted from fixed point to
- floating point. The single operand is a vector that contains 'N'
- elements of the same integral type. The result is a vector that
- contains half as many elements of a floating point type whose size
- is twice as wide. In the case of 'VEC_UNPACK_HI_EXPR' the high
- 'N/2' elements of the vector are extracted, converted and widened.
- In the case of 'VEC_UNPACK_LO_EXPR' the low 'N/2' elements of the
- vector are extracted, converted and widened.
-
-'VEC_PACK_TRUNC_EXPR'
- This node represents packing of truncated elements of the two input
- vectors into the output vector. Input operands are vectors that
- contain the same number of elements of the same integral or
- floating point type. The result is a vector that contains twice as
- many elements of an integral or floating point type whose size is
- half as wide. The elements of the two vectors are demoted and
- merged (concatenated) to form the output vector.
-
-'VEC_PACK_SAT_EXPR'
- This node represents packing of elements of the two input vectors
- into the output vector using saturation. Input operands are
- vectors that contain the same number of elements of the same
- integral type. The result is a vector that contains twice as many
- elements of an integral type whose size is half as wide. The
- elements of the two vectors are demoted and merged (concatenated)
- to form the output vector.
-
-'VEC_PACK_FIX_TRUNC_EXPR'
- This node represents packing of elements of the two input vectors
- into the output vector, where the values are converted from
- floating point to fixed point. Input operands are vectors that
- contain the same number of elements of a floating point type. The
- result is a vector that contains twice as many elements of an
- integral type whose size is half as wide. The elements of the two
- vectors are merged (concatenated) to form the output vector.
-
-'VEC_COND_EXPR'
- These nodes represent '?:' expressions. The three operands must be
- vectors of the same size and number of elements. The second and
- third operands must have the same type as the entire expression.
- The first operand is of signed integral vector type. If an element
- of the first operand evaluates to a zero value, the corresponding
- element of the result is taken from the third operand. If it
- evaluates to a minus one value, it is taken from the second
- operand. It should never evaluate to any other value currently,
- but optimizations should not rely on that property. In contrast
- with a 'COND_EXPR', all operands are always evaluated.
-
-
-File: gccint.info, Node: Statements, Next: Functions, Prev: Expression trees, Up: GENERIC
-
-10.7 Statements
-===============
-
-Most statements in GIMPLE are assignment statements, represented by
-'GIMPLE_ASSIGN'. No other C expressions can appear at statement level;
-a reference to a volatile object is converted into a 'GIMPLE_ASSIGN'.
-
- There are also several varieties of complex statements.
-
-* Menu:
-
-* Basic Statements::
-* Blocks::
-* Statement Sequences::
-* Empty Statements::
-* Jumps::
-* Cleanups::
-* OpenMP::
-
-
-File: gccint.info, Node: Basic Statements, Next: Blocks, Up: Statements
-
-10.7.1 Basic Statements
------------------------
-
-'ASM_EXPR'
-
- Used to represent an inline assembly statement. For an inline
- assembly statement like:
- asm ("mov x, y");
- The 'ASM_STRING' macro will return a 'STRING_CST' node for '"mov x,
- y"'. If the original statement made use of the extended-assembly
- syntax, then 'ASM_OUTPUTS', 'ASM_INPUTS', and 'ASM_CLOBBERS' will
- be the outputs, inputs, and clobbers for the statement, represented
- as 'STRING_CST' nodes. The extended-assembly syntax looks like:
- asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));
- The first string is the 'ASM_STRING', containing the instruction
- template. The next two strings are the output and inputs,
- respectively; this statement has no clobbers. As this example
- indicates, "plain" assembly statements are merely a special case of
- extended assembly statements; they have no cv-qualifiers, outputs,
- inputs, or clobbers. All of the strings will be 'NUL'-terminated,
- and will contain no embedded 'NUL'-characters.
-
- If the assembly statement is declared 'volatile', or if the
- statement was not an extended assembly statement, and is therefore
- implicitly volatile, then the predicate 'ASM_VOLATILE_P' will hold
- of the 'ASM_EXPR'.
-
-'DECL_EXPR'
-
- Used to represent a local declaration. The 'DECL_EXPR_DECL' macro
- can be used to obtain the entity declared. This declaration may be
- a 'LABEL_DECL', indicating that the label declared is a local
- label. (As an extension, GCC allows the declaration of labels with
- scope.) In C, this declaration may be a 'FUNCTION_DECL',
- indicating the use of the GCC nested function extension. For more
- information, *note Functions::.
-
-'LABEL_EXPR'
-
- Used to represent a label. The 'LABEL_DECL' declared by this
- statement can be obtained with the 'LABEL_EXPR_LABEL' macro. The
- 'IDENTIFIER_NODE' giving the name of the label can be obtained from
- the 'LABEL_DECL' with 'DECL_NAME'.
-
-'GOTO_EXPR'
-
- Used to represent a 'goto' statement. The 'GOTO_DESTINATION' will
- usually be a 'LABEL_DECL'. However, if the "computed goto"
- extension has been used, the 'GOTO_DESTINATION' will be an
- arbitrary expression indicating the destination. This expression
- will always have pointer type.
-
-'RETURN_EXPR'
-
- Used to represent a 'return' statement. Operand 0 represents the
- value to return. It should either be the 'RESULT_DECL' for the
- containing function, or a 'MODIFY_EXPR' or 'INIT_EXPR' setting the
- function's 'RESULT_DECL'. It will be 'NULL_TREE' if the statement
- was just
- return;
-
-'LOOP_EXPR'
- These nodes represent "infinite" loops. The 'LOOP_EXPR_BODY'
- represents the body of the loop. It should be executed forever,
- unless an 'EXIT_EXPR' is encountered.
-
-'EXIT_EXPR'
- These nodes represent conditional exits from the nearest enclosing
- 'LOOP_EXPR'. The single operand is the condition; if it is
- nonzero, then the loop should be exited. An 'EXIT_EXPR' will only
- appear within a 'LOOP_EXPR'.
-
-'SWITCH_STMT'
-
- Used to represent a 'switch' statement. The 'SWITCH_STMT_COND' is
- the expression on which the switch is occurring. See the
- documentation for an 'IF_STMT' for more information on the
- representation used for the condition. The 'SWITCH_STMT_BODY' is
- the body of the switch statement. The 'SWITCH_STMT_TYPE' is the
- original type of switch expression as given in the source, before
- any compiler conversions.
-
-'CASE_LABEL_EXPR'
-
- Use to represent a 'case' label, range of 'case' labels, or a
- 'default' label. If 'CASE_LOW' is 'NULL_TREE', then this is a
- 'default' label. Otherwise, if 'CASE_HIGH' is 'NULL_TREE', then
- this is an ordinary 'case' label. In this case, 'CASE_LOW' is an
- expression giving the value of the label. Both 'CASE_LOW' and
- 'CASE_HIGH' are 'INTEGER_CST' nodes. These values will have the
- same type as the condition expression in the switch statement.
-
- Otherwise, if both 'CASE_LOW' and 'CASE_HIGH' are defined, the
- statement is a range of case labels. Such statements originate
- with the extension that allows users to write things of the form:
- case 2 ... 5:
- The first value will be 'CASE_LOW', while the second will be
- 'CASE_HIGH'.
-
-
-File: gccint.info, Node: Blocks, Next: Statement Sequences, Prev: Basic Statements, Up: Statements
-
-10.7.2 Blocks
--------------
-
-Block scopes and the variables they declare in GENERIC are expressed
-using the 'BIND_EXPR' code, which in previous versions of GCC was
-primarily used for the C statement-expression extension.
-
- Variables in a block are collected into 'BIND_EXPR_VARS' in declaration
-order through their 'TREE_CHAIN' field. Any runtime initialization is
-moved out of 'DECL_INITIAL' and into a statement in the controlled
-block. When gimplifying from C or C++, this initialization replaces the
-'DECL_STMT'. These variables will never require cleanups. The scope of
-these variables is just the body
-
- Variable-length arrays (VLAs) complicate this process, as their size
-often refers to variables initialized earlier in the block. To handle
-this, we currently split the block at that point, and move the VLA into
-a new, inner 'BIND_EXPR'. This strategy may change in the future.
-
- A C++ program will usually contain more 'BIND_EXPR's than there are
-syntactic blocks in the source code, since several C++ constructs have
-implicit scopes associated with them. On the other hand, although the
-C++ front end uses pseudo-scopes to handle cleanups for objects with
-destructors, these don't translate into the GIMPLE form; multiple
-declarations at the same level use the same 'BIND_EXPR'.
-
-
-File: gccint.info, Node: Statement Sequences, Next: Empty Statements, Prev: Blocks, Up: Statements
-
-10.7.3 Statement Sequences
---------------------------
-
-Multiple statements at the same nesting level are collected into a
-'STATEMENT_LIST'. Statement lists are modified and traversed using the
-interface in 'tree-iterator.h'.
-
-
-File: gccint.info, Node: Empty Statements, Next: Jumps, Prev: Statement Sequences, Up: Statements
-
-10.7.4 Empty Statements
------------------------
-
-Whenever possible, statements with no effect are discarded. But if they
-are nested within another construct which cannot be discarded for some
-reason, they are instead replaced with an empty statement, generated by
-'build_empty_stmt'. Initially, all empty statements were shared, after
-the pattern of the Java front end, but this caused a lot of trouble in
-practice.
-
- An empty statement is represented as '(void)0'.
-
-
-File: gccint.info, Node: Jumps, Next: Cleanups, Prev: Empty Statements, Up: Statements
-
-10.7.5 Jumps
-------------
-
-Other jumps are expressed by either 'GOTO_EXPR' or 'RETURN_EXPR'.
-
- The operand of a 'GOTO_EXPR' must be either a label or a variable
-containing the address to jump to.
-
- The operand of a 'RETURN_EXPR' is either 'NULL_TREE', 'RESULT_DECL', or
-a 'MODIFY_EXPR' which sets the return value. It would be nice to move
-the 'MODIFY_EXPR' into a separate statement, but the special return
-semantics in 'expand_return' make that difficult. It may still happen
-in the future, perhaps by moving most of that logic into
-'expand_assignment'.
-
-
-File: gccint.info, Node: Cleanups, Next: OpenMP, Prev: Jumps, Up: Statements
-
-10.7.6 Cleanups
----------------
-
-Destructors for local C++ objects and similar dynamic cleanups are
-represented in GIMPLE by a 'TRY_FINALLY_EXPR'. 'TRY_FINALLY_EXPR' has
-two operands, both of which are a sequence of statements to execute.
-The first sequence is executed. When it completes the second sequence
-is executed.
-
- The first sequence may complete in the following ways:
-
- 1. Execute the last statement in the sequence and fall off the end.
-
- 2. Execute a goto statement ('GOTO_EXPR') to an ordinary label outside
- the sequence.
-
- 3. Execute a return statement ('RETURN_EXPR').
-
- 4. Throw an exception. This is currently not explicitly represented
- in GIMPLE.
-
- The second sequence is not executed if the first sequence completes by
-calling 'setjmp' or 'exit' or any other function that does not return.
-The second sequence is also not executed if the first sequence completes
-via a non-local goto or a computed goto (in general the compiler does
-not know whether such a goto statement exits the first sequence or not,
-so we assume that it doesn't).
-
- After the second sequence is executed, if it completes normally by
-falling off the end, execution continues wherever the first sequence
-would have continued, by falling off the end, or doing a goto, etc.
-
- 'TRY_FINALLY_EXPR' complicates the flow graph, since the cleanup needs
-to appear on every edge out of the controlled block; this reduces the
-freedom to move code across these edges. Therefore, the EH lowering
-pass which runs before most of the optimization passes eliminates these
-expressions by explicitly adding the cleanup to each edge. Rethrowing
-the exception is represented using 'RESX_EXPR'.
-
-
-File: gccint.info, Node: OpenMP, Prev: Cleanups, Up: Statements
-
-10.7.7 OpenMP
--------------
-
-All the statements starting with 'OMP_' represent directives and clauses
-used by the OpenMP API <http://www.openmp.org/>.
-
-'OMP_PARALLEL'
-
- Represents '#pragma omp parallel [clause1 ... clauseN]'. It has
- four operands:
-
- Operand 'OMP_PARALLEL_BODY' is valid while in GENERIC and High
- GIMPLE forms. It contains the body of code to be executed by all
- the threads. During GIMPLE lowering, this operand becomes 'NULL'
- and the body is emitted linearly after 'OMP_PARALLEL'.
-
- Operand 'OMP_PARALLEL_CLAUSES' is the list of clauses associated
- with the directive.
-
- Operand 'OMP_PARALLEL_FN' is created by 'pass_lower_omp', it
- contains the 'FUNCTION_DECL' for the function that will contain the
- body of the parallel region.
-
- Operand 'OMP_PARALLEL_DATA_ARG' is also created by
- 'pass_lower_omp'. If there are shared variables to be communicated
- to the children threads, this operand will contain the 'VAR_DECL'
- that contains all the shared values and variables.
-
-'OMP_FOR'
-
- Represents '#pragma omp for [clause1 ... clauseN]'. It has 5
- operands:
-
- Operand 'OMP_FOR_BODY' contains the loop body.
-
- Operand 'OMP_FOR_CLAUSES' is the list of clauses associated with
- the directive.
-
- Operand 'OMP_FOR_INIT' is the loop initialization code of the form
- 'VAR = N1'.
-
- Operand 'OMP_FOR_COND' is the loop conditional expression of the
- form 'VAR {<,>,<=,>=} N2'.
-
- Operand 'OMP_FOR_INCR' is the loop index increment of the form 'VAR
- {+=,-=} INCR'.
-
- Operand 'OMP_FOR_PRE_BODY' contains side-effect code from operands
- 'OMP_FOR_INIT', 'OMP_FOR_COND' and 'OMP_FOR_INC'. These
- side-effects are part of the 'OMP_FOR' block but must be evaluated
- before the start of loop body.
-
- The loop index variable 'VAR' must be a signed integer variable,
- which is implicitly private to each thread. Bounds 'N1' and 'N2'
- and the increment expression 'INCR' are required to be loop
- invariant integer expressions that are evaluated without any
- synchronization. The evaluation order, frequency of evaluation and
- side-effects are unspecified by the standard.
-
-'OMP_SECTIONS'
-
- Represents '#pragma omp sections [clause1 ... clauseN]'.
-
- Operand 'OMP_SECTIONS_BODY' contains the sections body, which in
- turn contains a set of 'OMP_SECTION' nodes for each of the
- concurrent sections delimited by '#pragma omp section'.
-
- Operand 'OMP_SECTIONS_CLAUSES' is the list of clauses associated
- with the directive.
-
-'OMP_SECTION'
-
- Section delimiter for 'OMP_SECTIONS'.
-
-'OMP_SINGLE'
-
- Represents '#pragma omp single'.
-
- Operand 'OMP_SINGLE_BODY' contains the body of code to be executed
- by a single thread.
-
- Operand 'OMP_SINGLE_CLAUSES' is the list of clauses associated with
- the directive.
-
-'OMP_MASTER'
-
- Represents '#pragma omp master'.
-
- Operand 'OMP_MASTER_BODY' contains the body of code to be executed
- by the master thread.
-
-'OMP_ORDERED'
-
- Represents '#pragma omp ordered'.
-
- Operand 'OMP_ORDERED_BODY' contains the body of code to be executed
- in the sequential order dictated by the loop index variable.
-
-'OMP_CRITICAL'
-
- Represents '#pragma omp critical [name]'.
-
- Operand 'OMP_CRITICAL_BODY' is the critical section.
-
- Operand 'OMP_CRITICAL_NAME' is an optional identifier to label the
- critical section.
-
-'OMP_RETURN'
-
- This does not represent any OpenMP directive, it is an artificial
- marker to indicate the end of the body of an OpenMP. It is used by
- the flow graph ('tree-cfg.c') and OpenMP region building code
- ('omp-low.c').
-
-'OMP_CONTINUE'
-
- Similarly, this instruction does not represent an OpenMP directive,
- it is used by 'OMP_FOR' and 'OMP_SECTIONS' to mark the place where
- the code needs to loop to the next iteration (in the case of
- 'OMP_FOR') or the next section (in the case of 'OMP_SECTIONS').
-
- In some cases, 'OMP_CONTINUE' is placed right before 'OMP_RETURN'.
- But if there are cleanups that need to occur right after the
- looping body, it will be emitted between 'OMP_CONTINUE' and
- 'OMP_RETURN'.
-
-'OMP_ATOMIC'
-
- Represents '#pragma omp atomic'.
-
- Operand 0 is the address at which the atomic operation is to be
- performed.
-
- Operand 1 is the expression to evaluate. The gimplifier tries
- three alternative code generation strategies. Whenever possible,
- an atomic update built-in is used. If that fails, a
- compare-and-swap loop is attempted. If that also fails, a regular
- critical section around the expression is used.
-
-'OMP_CLAUSE'
-
- Represents clauses associated with one of the 'OMP_' directives.
- Clauses are represented by separate subcodes defined in 'tree.h'.
- Clauses codes can be one of: 'OMP_CLAUSE_PRIVATE',
- 'OMP_CLAUSE_SHARED', 'OMP_CLAUSE_FIRSTPRIVATE',
- 'OMP_CLAUSE_LASTPRIVATE', 'OMP_CLAUSE_COPYIN',
- 'OMP_CLAUSE_COPYPRIVATE', 'OMP_CLAUSE_IF',
- 'OMP_CLAUSE_NUM_THREADS', 'OMP_CLAUSE_SCHEDULE',
- 'OMP_CLAUSE_NOWAIT', 'OMP_CLAUSE_ORDERED', 'OMP_CLAUSE_DEFAULT',
- 'OMP_CLAUSE_REDUCTION', 'OMP_CLAUSE_COLLAPSE', 'OMP_CLAUSE_UNTIED',
- 'OMP_CLAUSE_FINAL', and 'OMP_CLAUSE_MERGEABLE'. Each code
- represents the corresponding OpenMP clause.
-
- Clauses associated with the same directive are chained together via
- 'OMP_CLAUSE_CHAIN'. Those clauses that accept a list of variables
- are restricted to exactly one, accessed with 'OMP_CLAUSE_VAR'.
- Therefore, multiple variables under the same clause 'C' need to be
- represented as multiple 'C' clauses chained together. This
- facilitates adding new clauses during compilation.
-
-
-File: gccint.info, Node: Functions, Next: Language-dependent trees, Prev: Statements, Up: GENERIC
-
-10.8 Functions
-==============
-
-A function is represented by a 'FUNCTION_DECL' node. It stores the
-basic pieces of the function such as body, parameters, and return type
-as well as information on the surrounding context, visibility, and
-linkage.
-
-* Menu:
-
-* Function Basics:: Function names, body, and parameters.
-* Function Properties:: Context, linkage, etc.
-
-
-File: gccint.info, Node: Function Basics, Next: Function Properties, Up: Functions
-
-10.8.1 Function Basics
-----------------------
-
-A function has four core parts: the name, the parameters, the result,
-and the body. The following macros and functions access these parts of
-a 'FUNCTION_DECL' as well as other basic features:
-'DECL_NAME'
- This macro returns the unqualified name of the function, as an
- 'IDENTIFIER_NODE'. For an instantiation of a function template,
- the 'DECL_NAME' is the unqualified name of the template, not
- something like 'f<int>'. The value of 'DECL_NAME' is undefined
- when used on a constructor, destructor, overloaded operator, or
- type-conversion operator, or any function that is implicitly
- generated by the compiler. See below for macros that can be used
- to distinguish these cases.
-
-'DECL_ASSEMBLER_NAME'
- This macro returns the mangled name of the function, also an
- 'IDENTIFIER_NODE'. This name does not contain leading underscores
- on systems that prefix all identifiers with underscores. The
- mangled name is computed in the same way on all platforms; if
- special processing is required to deal with the object file format
- used on a particular platform, it is the responsibility of the back
- end to perform those modifications. (Of course, the back end
- should not modify 'DECL_ASSEMBLER_NAME' itself.)
-
- Using 'DECL_ASSEMBLER_NAME' will cause additional memory to be
- allocated (for the mangled name of the entity) so it should be used
- only when emitting assembly code. It should not be used within the
- optimizers to determine whether or not two declarations are the
- same, even though some of the existing optimizers do use it in that
- way. These uses will be removed over time.
-
-'DECL_ARGUMENTS'
- This macro returns the 'PARM_DECL' for the first argument to the
- function. Subsequent 'PARM_DECL' nodes can be obtained by
- following the 'TREE_CHAIN' links.
-
-'DECL_RESULT'
- This macro returns the 'RESULT_DECL' for the function.
-
-'DECL_SAVED_TREE'
- This macro returns the complete body of the function.
-
-'TREE_TYPE'
- This macro returns the 'FUNCTION_TYPE' or 'METHOD_TYPE' for the
- function.
-
-'DECL_INITIAL'
- A function that has a definition in the current translation unit
- will have a non-'NULL' 'DECL_INITIAL'. However, back ends should
- not make use of the particular value given by 'DECL_INITIAL'.
-
- It should contain a tree of 'BLOCK' nodes that mirrors the scopes
- that variables are bound in the function. Each block contains a
- list of decls declared in a basic block, a pointer to a chain of
- blocks at the next lower scope level, then a pointer to the next
- block at the same level and a backpointer to the parent 'BLOCK' or
- 'FUNCTION_DECL'. So given a function as follows:
-
- void foo()
- {
- int a;
- {
- int b;
- }
- int c;
- }
-
- you would get the following:
-
- tree foo = FUNCTION_DECL;
- tree decl_a = VAR_DECL;
- tree decl_b = VAR_DECL;
- tree decl_c = VAR_DECL;
- tree block_a = BLOCK;
- tree block_b = BLOCK;
- tree block_c = BLOCK;
- BLOCK_VARS(block_a) = decl_a;
- BLOCK_SUBBLOCKS(block_a) = block_b;
- BLOCK_CHAIN(block_a) = block_c;
- BLOCK_SUPERCONTEXT(block_a) = foo;
- BLOCK_VARS(block_b) = decl_b;
- BLOCK_SUPERCONTEXT(block_b) = block_a;
- BLOCK_VARS(block_c) = decl_c;
- BLOCK_SUPERCONTEXT(block_c) = foo;
- DECL_INITIAL(foo) = block_a;
-
-
-File: gccint.info, Node: Function Properties, Prev: Function Basics, Up: Functions
-
-10.8.2 Function Properties
---------------------------
-
-To determine the scope of a function, you can use the 'DECL_CONTEXT'
-macro. This macro will return the class (either a 'RECORD_TYPE' or a
-'UNION_TYPE') or namespace (a 'NAMESPACE_DECL') of which the function is
-a member. For a virtual function, this macro returns the class in which
-the function was actually defined, not the base class in which the
-virtual declaration occurred.
-
- In C, the 'DECL_CONTEXT' for a function maybe another function. This
-representation indicates that the GNU nested function extension is in
-use. For details on the semantics of nested functions, see the GCC
-Manual. The nested function can refer to local variables in its
-containing function. Such references are not explicitly marked in the
-tree structure; back ends must look at the 'DECL_CONTEXT' for the
-referenced 'VAR_DECL'. If the 'DECL_CONTEXT' for the referenced
-'VAR_DECL' is not the same as the function currently being processed,
-and neither 'DECL_EXTERNAL' nor 'TREE_STATIC' hold, then the reference
-is to a local variable in a containing function, and the back end must
-take appropriate action.
-
-'DECL_EXTERNAL'
- This predicate holds if the function is undefined.
-
-'TREE_PUBLIC'
- This predicate holds if the function has external linkage.
-
-'TREE_STATIC'
- This predicate holds if the function has been defined.
-
-'TREE_THIS_VOLATILE'
- This predicate holds if the function does not return normally.
-
-'TREE_READONLY'
- This predicate holds if the function can only read its arguments.
-
-'DECL_PURE_P'
- This predicate holds if the function can only read its arguments,
- but may also read global memory.
-
-'DECL_VIRTUAL_P'
- This predicate holds if the function is virtual.
-
-'DECL_ARTIFICIAL'
- This macro holds if the function was implicitly generated by the
- compiler, rather than explicitly declared. In addition to
- implicitly generated class member functions, this macro holds for
- the special functions created to implement static initialization
- and destruction, to compute run-time type information, and so
- forth.
-
-'DECL_FUNCTION_SPECIFIC_TARGET'
- This macro returns a tree node that holds the target options that
- are to be used to compile this particular function or 'NULL_TREE'
- if the function is to be compiled with the target options specified
- on the command line.
-
-'DECL_FUNCTION_SPECIFIC_OPTIMIZATION'
- This macro returns a tree node that holds the optimization options
- that are to be used to compile this particular function or
- 'NULL_TREE' if the function is to be compiled with the optimization
- options specified on the command line.
-
-
-File: gccint.info, Node: Language-dependent trees, Next: C and C++ Trees, Prev: Functions, Up: GENERIC
-
-10.9 Language-dependent trees
-=============================
-
-Front ends may wish to keep some state associated with various GENERIC
-trees while parsing. To support this, trees provide a set of flags that
-may be used by the front end. They are accessed using
-'TREE_LANG_FLAG_n' where 'n' is currently 0 through 6.
-
- If necessary, a front end can use some language-dependent tree codes in
-its GENERIC representation, so long as it provides a hook for converting
-them to GIMPLE and doesn't expect them to work with any (hypothetical)
-optimizers that run before the conversion to GIMPLE. The intermediate
-representation used while parsing C and C++ looks very little like
-GENERIC, but the C and C++ gimplifier hooks are perfectly happy to take
-it as input and spit out GIMPLE.
-
-
-File: gccint.info, Node: C and C++ Trees, Next: Java Trees, Prev: Language-dependent trees, Up: GENERIC
-
-10.10 C and C++ Trees
-=====================
-
-This section documents the internal representation used by GCC to
-represent C and C++ source programs. When presented with a C or C++
-source program, GCC parses the program, performs semantic analysis
-(including the generation of error messages), and then produces the
-internal representation described here. This representation contains a
-complete representation for the entire translation unit provided as
-input to the front end. This representation is then typically processed
-by a code-generator in order to produce machine code, but could also be
-used in the creation of source browsers, intelligent editors, automatic
-documentation generators, interpreters, and any other programs needing
-the ability to process C or C++ code.
-
- This section explains the internal representation. In particular, it
-documents the internal representation for C and C++ source constructs,
-and the macros, functions, and variables that can be used to access
-these constructs. The C++ representation is largely a superset of the
-representation used in the C front end. There is only one construct
-used in C that does not appear in the C++ front end and that is the GNU
-"nested function" extension. Many of the macros documented here do not
-apply in C because the corresponding language constructs do not appear
-in C.
-
- The C and C++ front ends generate a mix of GENERIC trees and ones
-specific to C and C++. These language-specific trees are higher-level
-constructs than the ones in GENERIC to make the parser's job easier.
-This section describes those trees that aren't part of GENERIC as well
-as aspects of GENERIC trees that are treated in a language-specific
-manner.
-
- If you are developing a "back end", be it is a code-generator or some
-other tool, that uses this representation, you may occasionally find
-that you need to ask questions not easily answered by the functions and
-macros available here. If that situation occurs, it is quite likely
-that GCC already supports the functionality you desire, but that the
-interface is simply not documented here. In that case, you should ask
-the GCC maintainers (via mail to <gcc@gcc.gnu.org>) about documenting
-the functionality you require. Similarly, if you find yourself writing
-functions that do not deal directly with your back end, but instead
-might be useful to other people using the GCC front end, you should
-submit your patches for inclusion in GCC.
-
-* Menu:
-
-* Types for C++:: Fundamental and aggregate types.
-* Namespaces:: Namespaces.
-* Classes:: Classes.
-* Functions for C++:: Overloading and accessors for C++.
-* Statements for C++:: Statements specific to C and C++.
-* C++ Expressions:: From 'typeid' to 'throw'.
-
-
-File: gccint.info, Node: Types for C++, Next: Namespaces, Up: C and C++ Trees
-
-10.10.1 Types for C++
----------------------
-
-In C++, an array type is not qualified; rather the type of the array
-elements is qualified. This situation is reflected in the intermediate
-representation. The macros described here will always examine the
-qualification of the underlying element type when applied to an array
-type. (If the element type is itself an array, then the recursion
-continues until a non-array type is found, and the qualification of this
-type is examined.) So, for example, 'CP_TYPE_CONST_P' will hold of the
-type 'const int ()[7]', denoting an array of seven 'int's.
-
- The following functions and macros deal with cv-qualification of types:
-'cp_type_quals'
- This function returns the set of type qualifiers applied to this
- type. This value is 'TYPE_UNQUALIFIED' if no qualifiers have been
- applied. The 'TYPE_QUAL_CONST' bit is set if the type is
- 'const'-qualified. The 'TYPE_QUAL_VOLATILE' bit is set if the type
- is 'volatile'-qualified. The 'TYPE_QUAL_RESTRICT' bit is set if
- the type is 'restrict'-qualified.
-
-'CP_TYPE_CONST_P'
- This macro holds if the type is 'const'-qualified.
-
-'CP_TYPE_VOLATILE_P'
- This macro holds if the type is 'volatile'-qualified.
-
-'CP_TYPE_RESTRICT_P'
- This macro holds if the type is 'restrict'-qualified.
-
-'CP_TYPE_CONST_NON_VOLATILE_P'
- This predicate holds for a type that is 'const'-qualified, but
- _not_ 'volatile'-qualified; other cv-qualifiers are ignored as
- well: only the 'const'-ness is tested.
-
- A few other macros and functions are usable with all types:
-'TYPE_SIZE'
- The number of bits required to represent the type, represented as
- an 'INTEGER_CST'. For an incomplete type, 'TYPE_SIZE' will be
- 'NULL_TREE'.
-
-'TYPE_ALIGN'
- The alignment of the type, in bits, represented as an 'int'.
-
-'TYPE_NAME'
- This macro returns a declaration (in the form of a 'TYPE_DECL') for
- the type. (Note this macro does _not_ return an 'IDENTIFIER_NODE',
- as you might expect, given its name!) You can look at the
- 'DECL_NAME' of the 'TYPE_DECL' to obtain the actual name of the
- type. The 'TYPE_NAME' will be 'NULL_TREE' for a type that is not a
- built-in type, the result of a typedef, or a named class type.
-
-'CP_INTEGRAL_TYPE'
- This predicate holds if the type is an integral type. Notice that
- in C++, enumerations are _not_ integral types.
-
-'ARITHMETIC_TYPE_P'
- This predicate holds if the type is an integral type (in the C++
- sense) or a floating point type.
-
-'CLASS_TYPE_P'
- This predicate holds for a class-type.
-
-'TYPE_BUILT_IN'
- This predicate holds for a built-in type.
-
-'TYPE_PTRDATAMEM_P'
- This predicate holds if the type is a pointer to data member.
-
-'TYPE_PTR_P'
- This predicate holds if the type is a pointer type, and the pointee
- is not a data member.
-
-'TYPE_PTRFN_P'
- This predicate holds for a pointer to function type.
-
-'TYPE_PTROB_P'
- This predicate holds for a pointer to object type. Note however
- that it does not hold for the generic pointer to object type 'void
- *'. You may use 'TYPE_PTROBV_P' to test for a pointer to object
- type as well as 'void *'.
-
- The table below describes types specific to C and C++ as well as
-language-dependent info about GENERIC types.
-
-'POINTER_TYPE'
- Used to represent pointer types, and pointer to data member types.
- If 'TREE_TYPE' is a pointer to data member type, then
- 'TYPE_PTRDATAMEM_P' will hold. For a pointer to data member type
- of the form 'T X::*', 'TYPE_PTRMEM_CLASS_TYPE' will be the type
- 'X', while 'TYPE_PTRMEM_POINTED_TO_TYPE' will be the type 'T'.
-
-'RECORD_TYPE'
- Used to represent 'struct' and 'class' types in C and C++. If
- 'TYPE_PTRMEMFUNC_P' holds, then this type is a pointer-to-member
- type. In that case, the 'TYPE_PTRMEMFUNC_FN_TYPE' is a
- 'POINTER_TYPE' pointing to a 'METHOD_TYPE'. The 'METHOD_TYPE' is
- the type of a function pointed to by the pointer-to-member
- function. If 'TYPE_PTRMEMFUNC_P' does not hold, this type is a
- class type. For more information, *note Classes::.
-
-'UNKNOWN_TYPE'
- This node is used to represent a type the knowledge of which is
- insufficient for a sound processing.
-
-'TYPENAME_TYPE'
- Used to represent a construct of the form 'typename T::A'. The
- 'TYPE_CONTEXT' is 'T'; the 'TYPE_NAME' is an 'IDENTIFIER_NODE' for
- 'A'. If the type is specified via a template-id, then
- 'TYPENAME_TYPE_FULLNAME' yields a 'TEMPLATE_ID_EXPR'. The
- 'TREE_TYPE' is non-'NULL' if the node is implicitly generated in
- support for the implicit typename extension; in which case the
- 'TREE_TYPE' is a type node for the base-class.
-
-'TYPEOF_TYPE'
- Used to represent the '__typeof__' extension. The 'TYPE_FIELDS' is
- the expression the type of which is being represented.
-
-
-File: gccint.info, Node: Namespaces, Next: Classes, Prev: Types for C++, Up: C and C++ Trees
-
-10.10.2 Namespaces
-------------------
-
-The root of the entire intermediate representation is the variable
-'global_namespace'. This is the namespace specified with '::' in C++
-source code. All other namespaces, types, variables, functions, and so
-forth can be found starting with this namespace.
-
- However, except for the fact that it is distinguished as the root of
-the representation, the global namespace is no different from any other
-namespace. Thus, in what follows, we describe namespaces generally,
-rather than the global namespace in particular.
-
- A namespace is represented by a 'NAMESPACE_DECL' node.
-
- The following macros and functions can be used on a 'NAMESPACE_DECL':
-
-'DECL_NAME'
- This macro is used to obtain the 'IDENTIFIER_NODE' corresponding to
- the unqualified name of the name of the namespace (*note
- Identifiers::). The name of the global namespace is '::', even
- though in C++ the global namespace is unnamed. However, you should
- use comparison with 'global_namespace', rather than 'DECL_NAME' to
- determine whether or not a namespace is the global one. An unnamed
- namespace will have a 'DECL_NAME' equal to
- 'anonymous_namespace_name'. Within a single translation unit, all
- unnamed namespaces will have the same name.
-
-'DECL_CONTEXT'
- This macro returns the enclosing namespace. The 'DECL_CONTEXT' for
- the 'global_namespace' is 'NULL_TREE'.
-
-'DECL_NAMESPACE_ALIAS'
- If this declaration is for a namespace alias, then
- 'DECL_NAMESPACE_ALIAS' is the namespace for which this one is an
- alias.
-
- Do not attempt to use 'cp_namespace_decls' for a namespace which is
- an alias. Instead, follow 'DECL_NAMESPACE_ALIAS' links until you
- reach an ordinary, non-alias, namespace, and call
- 'cp_namespace_decls' there.
-
-'DECL_NAMESPACE_STD_P'
- This predicate holds if the namespace is the special '::std'
- namespace.
-
-'cp_namespace_decls'
- This function will return the declarations contained in the
- namespace, including types, overloaded functions, other namespaces,
- and so forth. If there are no declarations, this function will
- return 'NULL_TREE'. The declarations are connected through their
- 'TREE_CHAIN' fields.
-
- Although most entries on this list will be declarations,
- 'TREE_LIST' nodes may also appear. In this case, the 'TREE_VALUE'
- will be an 'OVERLOAD'. The value of the 'TREE_PURPOSE' is
- unspecified; back ends should ignore this value. As with the other
- kinds of declarations returned by 'cp_namespace_decls', the
- 'TREE_CHAIN' will point to the next declaration in this list.
-
- For more information on the kinds of declarations that can occur on
- this list, *Note Declarations::. Some declarations will not appear
- on this list. In particular, no 'FIELD_DECL', 'LABEL_DECL', or
- 'PARM_DECL' nodes will appear here.
-
- This function cannot be used with namespaces that have
- 'DECL_NAMESPACE_ALIAS' set.
-
-
-File: gccint.info, Node: Classes, Next: Functions for C++, Prev: Namespaces, Up: C and C++ Trees
-
-10.10.3 Classes
----------------
-
-Besides namespaces, the other high-level scoping construct in C++ is the
-class. (Throughout this manual the term "class" is used to mean the
-types referred to in the ANSI/ISO C++ Standard as classes; these include
-types defined with the 'class', 'struct', and 'union' keywords.)
-
- A class type is represented by either a 'RECORD_TYPE' or a
-'UNION_TYPE'. A class declared with the 'union' tag is represented by a
-'UNION_TYPE', while classes declared with either the 'struct' or the
-'class' tag are represented by 'RECORD_TYPE's. You can use the
-'CLASSTYPE_DECLARED_CLASS' macro to discern whether or not a particular
-type is a 'class' as opposed to a 'struct'. This macro will be true
-only for classes declared with the 'class' tag.
-
- Almost all non-function members are available on the 'TYPE_FIELDS'
-list. Given one member, the next can be found by following the
-'TREE_CHAIN'. You should not depend in any way on the order in which
-fields appear on this list. All nodes on this list will be 'DECL'
-nodes. A 'FIELD_DECL' is used to represent a non-static data member, a
-'VAR_DECL' is used to represent a static data member, and a 'TYPE_DECL'
-is used to represent a type. Note that the 'CONST_DECL' for an
-enumeration constant will appear on this list, if the enumeration type
-was declared in the class. (Of course, the 'TYPE_DECL' for the
-enumeration type will appear here as well.) There are no entries for
-base classes on this list. In particular, there is no 'FIELD_DECL' for
-the "base-class portion" of an object.
-
- The 'TYPE_VFIELD' is a compiler-generated field used to point to
-virtual function tables. It may or may not appear on the 'TYPE_FIELDS'
-list. However, back ends should handle the 'TYPE_VFIELD' just like all
-the entries on the 'TYPE_FIELDS' list.
-
- The function members are available on the 'TYPE_METHODS' list. Again,
-subsequent members are found by following the 'TREE_CHAIN' field. If a
-function is overloaded, each of the overloaded functions appears; no
-'OVERLOAD' nodes appear on the 'TYPE_METHODS' list. Implicitly declared
-functions (including default constructors, copy constructors, assignment
-operators, and destructors) will appear on this list as well.
-
- Every class has an associated "binfo", which can be obtained with
-'TYPE_BINFO'. Binfos are used to represent base-classes. The binfo
-given by 'TYPE_BINFO' is the degenerate case, whereby every class is
-considered to be its own base-class. The base binfos for a particular
-binfo are held in a vector, whose length is obtained with
-'BINFO_N_BASE_BINFOS'. The base binfos themselves are obtained with
-'BINFO_BASE_BINFO' and 'BINFO_BASE_ITERATE'. To add a new binfo, use
-'BINFO_BASE_APPEND'. The vector of base binfos can be obtained with
-'BINFO_BASE_BINFOS', but normally you do not need to use that. The
-class type associated with a binfo is given by 'BINFO_TYPE'. It is not
-always the case that 'BINFO_TYPE (TYPE_BINFO (x))', because of typedefs
-and qualified types. Neither is it the case that 'TYPE_BINFO
-(BINFO_TYPE (y))' is the same binfo as 'y'. The reason is that if 'y'
-is a binfo representing a base-class 'B' of a derived class 'D', then
-'BINFO_TYPE (y)' will be 'B', and 'TYPE_BINFO (BINFO_TYPE (y))' will be
-'B' as its own base-class, rather than as a base-class of 'D'.
-
- The access to a base type can be found with 'BINFO_BASE_ACCESS'. This
-will produce 'access_public_node', 'access_private_node' or
-'access_protected_node'. If bases are always public,
-'BINFO_BASE_ACCESSES' may be 'NULL'.
-
- 'BINFO_VIRTUAL_P' is used to specify whether the binfo is inherited
-virtually or not. The other flags, 'BINFO_MARKED_P' and 'BINFO_FLAG_1'
-to 'BINFO_FLAG_6' can be used for language specific use.
-
- The following macros can be used on a tree node representing a
-class-type.
-
-'LOCAL_CLASS_P'
- This predicate holds if the class is local class _i.e._ declared
- inside a function body.
-
-'TYPE_POLYMORPHIC_P'
- This predicate holds if the class has at least one virtual function
- (declared or inherited).
-
-'TYPE_HAS_DEFAULT_CONSTRUCTOR'
- This predicate holds whenever its argument represents a class-type
- with default constructor.
-
-'CLASSTYPE_HAS_MUTABLE'
-'TYPE_HAS_MUTABLE_P'
- These predicates hold for a class-type having a mutable data
- member.
-
-'CLASSTYPE_NON_POD_P'
- This predicate holds only for class-types that are not PODs.
-
-'TYPE_HAS_NEW_OPERATOR'
- This predicate holds for a class-type that defines 'operator new'.
-
-'TYPE_HAS_ARRAY_NEW_OPERATOR'
- This predicate holds for a class-type for which 'operator new[]' is
- defined.
-
-'TYPE_OVERLOADS_CALL_EXPR'
- This predicate holds for class-type for which the function call
- 'operator()' is overloaded.
-
-'TYPE_OVERLOADS_ARRAY_REF'
- This predicate holds for a class-type that overloads 'operator[]'
-
-'TYPE_OVERLOADS_ARROW'
- This predicate holds for a class-type for which 'operator->' is
- overloaded.
-
-
-File: gccint.info, Node: Functions for C++, Next: Statements for C++, Prev: Classes, Up: C and C++ Trees
-
-10.10.4 Functions for C++
--------------------------
-
-A function is represented by a 'FUNCTION_DECL' node. A set of
-overloaded functions is sometimes represented by an 'OVERLOAD' node.
-
- An 'OVERLOAD' node is not a declaration, so none of the 'DECL_' macros
-should be used on an 'OVERLOAD'. An 'OVERLOAD' node is similar to a
-'TREE_LIST'. Use 'OVL_CURRENT' to get the function associated with an
-'OVERLOAD' node; use 'OVL_NEXT' to get the next 'OVERLOAD' node in the
-list of overloaded functions. The macros 'OVL_CURRENT' and 'OVL_NEXT'
-are actually polymorphic; you can use them to work with 'FUNCTION_DECL'
-nodes as well as with overloads. In the case of a 'FUNCTION_DECL',
-'OVL_CURRENT' will always return the function itself, and 'OVL_NEXT'
-will always be 'NULL_TREE'.
-
- To determine the scope of a function, you can use the 'DECL_CONTEXT'
-macro. This macro will return the class (either a 'RECORD_TYPE' or a
-'UNION_TYPE') or namespace (a 'NAMESPACE_DECL') of which the function is
-a member. For a virtual function, this macro returns the class in which
-the function was actually defined, not the base class in which the
-virtual declaration occurred.
-
- If a friend function is defined in a class scope, the
-'DECL_FRIEND_CONTEXT' macro can be used to determine the class in which
-it was defined. For example, in
- class C { friend void f() {} };
-the 'DECL_CONTEXT' for 'f' will be the 'global_namespace', but the
-'DECL_FRIEND_CONTEXT' will be the 'RECORD_TYPE' for 'C'.
-
- The following macros and functions can be used on a 'FUNCTION_DECL':
-'DECL_MAIN_P'
- This predicate holds for a function that is the program entry point
- '::code'.
-
-'DECL_LOCAL_FUNCTION_P'
- This predicate holds if the function was declared at block scope,
- even though it has a global scope.
-
-'DECL_ANTICIPATED'
- This predicate holds if the function is a built-in function but its
- prototype is not yet explicitly declared.
-
-'DECL_EXTERN_C_FUNCTION_P'
- This predicate holds if the function is declared as an ''extern
- "C"'' function.
-
-'DECL_LINKONCE_P'
- This macro holds if multiple copies of this function may be emitted
- in various translation units. It is the responsibility of the
- linker to merge the various copies. Template instantiations are
- the most common example of functions for which 'DECL_LINKONCE_P'
- holds; G++ instantiates needed templates in all translation units
- which require them, and then relies on the linker to remove
- duplicate instantiations.
-
- FIXME: This macro is not yet implemented.
-
-'DECL_FUNCTION_MEMBER_P'
- This macro holds if the function is a member of a class, rather
- than a member of a namespace.
-
-'DECL_STATIC_FUNCTION_P'
- This predicate holds if the function a static member function.
-
-'DECL_NONSTATIC_MEMBER_FUNCTION_P'
- This macro holds for a non-static member function.
-
-'DECL_CONST_MEMFUNC_P'
- This predicate holds for a 'const'-member function.
-
-'DECL_VOLATILE_MEMFUNC_P'
- This predicate holds for a 'volatile'-member function.
-
-'DECL_CONSTRUCTOR_P'
- This macro holds if the function is a constructor.
-
-'DECL_NONCONVERTING_P'
- This predicate holds if the constructor is a non-converting
- constructor.
-
-'DECL_COMPLETE_CONSTRUCTOR_P'
- This predicate holds for a function which is a constructor for an
- object of a complete type.
-
-'DECL_BASE_CONSTRUCTOR_P'
- This predicate holds for a function which is a constructor for a
- base class sub-object.
-
-'DECL_COPY_CONSTRUCTOR_P'
- This predicate holds for a function which is a copy-constructor.
-
-'DECL_DESTRUCTOR_P'
- This macro holds if the function is a destructor.
-
-'DECL_COMPLETE_DESTRUCTOR_P'
- This predicate holds if the function is the destructor for an
- object a complete type.
-
-'DECL_OVERLOADED_OPERATOR_P'
- This macro holds if the function is an overloaded operator.
-
-'DECL_CONV_FN_P'
- This macro holds if the function is a type-conversion operator.
-
-'DECL_GLOBAL_CTOR_P'
- This predicate holds if the function is a file-scope initialization
- function.
-
-'DECL_GLOBAL_DTOR_P'
- This predicate holds if the function is a file-scope finalization
- function.
-
-'DECL_THUNK_P'
- This predicate holds if the function is a thunk.
-
- These functions represent stub code that adjusts the 'this' pointer
- and then jumps to another function. When the jumped-to function
- returns, control is transferred directly to the caller, without
- returning to the thunk. The first parameter to the thunk is always
- the 'this' pointer; the thunk should add 'THUNK_DELTA' to this
- value. (The 'THUNK_DELTA' is an 'int', not an 'INTEGER_CST'.)
-
- Then, if 'THUNK_VCALL_OFFSET' (an 'INTEGER_CST') is nonzero the
- adjusted 'this' pointer must be adjusted again. The complete
- calculation is given by the following pseudo-code:
-
- this += THUNK_DELTA
- if (THUNK_VCALL_OFFSET)
- this += (*((ptrdiff_t **) this))[THUNK_VCALL_OFFSET]
-
- Finally, the thunk should jump to the location given by
- 'DECL_INITIAL'; this will always be an expression for the address
- of a function.
-
-'DECL_NON_THUNK_FUNCTION_P'
- This predicate holds if the function is _not_ a thunk function.
-
-'GLOBAL_INIT_PRIORITY'
- If either 'DECL_GLOBAL_CTOR_P' or 'DECL_GLOBAL_DTOR_P' holds, then
- this gives the initialization priority for the function. The
- linker will arrange that all functions for which
- 'DECL_GLOBAL_CTOR_P' holds are run in increasing order of priority
- before 'main' is called. When the program exits, all functions for
- which 'DECL_GLOBAL_DTOR_P' holds are run in the reverse order.
-
-'TYPE_RAISES_EXCEPTIONS'
- This macro returns the list of exceptions that a (member-)function
- can raise. The returned list, if non 'NULL', is comprised of nodes
- whose 'TREE_VALUE' represents a type.
-
-'TYPE_NOTHROW_P'
- This predicate holds when the exception-specification of its
- arguments is of the form ''()''.
-
-'DECL_ARRAY_DELETE_OPERATOR_P'
- This predicate holds if the function an overloaded 'operator
- delete[]'.
-
-
-File: gccint.info, Node: Statements for C++, Next: C++ Expressions, Prev: Functions for C++, Up: C and C++ Trees
-
-10.10.5 Statements for C++
---------------------------
-
-A function that has a definition in the current translation unit will
-have a non-'NULL' 'DECL_INITIAL'. However, back ends should not make
-use of the particular value given by 'DECL_INITIAL'.
-
- The 'DECL_SAVED_TREE' macro will give the complete body of the
-function.
-
-10.10.5.1 Statements
-....................
-
-There are tree nodes corresponding to all of the source-level statement
-constructs, used within the C and C++ frontends. These are enumerated
-here, together with a list of the various macros that can be used to
-obtain information about them. There are a few macros that can be used
-with all statements:
-
-'STMT_IS_FULL_EXPR_P'
- In C++, statements normally constitute "full expressions";
- temporaries created during a statement are destroyed when the
- statement is complete. However, G++ sometimes represents
- expressions by statements; these statements will not have
- 'STMT_IS_FULL_EXPR_P' set. Temporaries created during such
- statements should be destroyed when the innermost enclosing
- statement with 'STMT_IS_FULL_EXPR_P' set is exited.
-
- Here is the list of the various statement nodes, and the macros used to
-access them. This documentation describes the use of these nodes in
-non-template functions (including instantiations of template functions).
-In template functions, the same nodes are used, but sometimes in
-slightly different ways.
-
- Many of the statements have substatements. For example, a 'while' loop
-will have a body, which is itself a statement. If the substatement is
-'NULL_TREE', it is considered equivalent to a statement consisting of a
-single ';', i.e., an expression statement in which the expression has
-been omitted. A substatement may in fact be a list of statements,
-connected via their 'TREE_CHAIN's. So, you should always process the
-statement tree by looping over substatements, like this:
- void process_stmt (stmt)
- tree stmt;
- {
- while (stmt)
- {
- switch (TREE_CODE (stmt))
- {
- case IF_STMT:
- process_stmt (THEN_CLAUSE (stmt));
- /* More processing here. */
- break;
-
- ...
- }
-
- stmt = TREE_CHAIN (stmt);
- }
- }
- In other words, while the 'then' clause of an 'if' statement in C++ can
-be only one statement (although that one statement may be a compound
-statement), the intermediate representation will sometimes use several
-statements chained together.
-
-'BREAK_STMT'
-
- Used to represent a 'break' statement. There are no additional
- fields.
-
-'CILK_SPAWN_STMT'
-
- Used to represent a spawning function in the Cilk Plus language
- extension. This tree has one field that holds the name of the
- spawning function. '_Cilk_spawn' can be written in C in the
- following way:
-
- _Cilk_spawn <function_name> (<parameters>);
-
- Detailed description for usage and functionality of '_Cilk_spawn'
- can be found at http://www.cilkplus.org
-
-'CILK_SYNC_STMT'
-
- This statement is part of the Cilk Plus language extension. It
- indicates that the current function cannot continue in parallel
- with its spawned children. There are no additional fields.
- '_Cilk_sync' can be written in C in the following way:
-
- _Cilk_sync;
-
-'CLEANUP_STMT'
-
- Used to represent an action that should take place upon exit from
- the enclosing scope. Typically, these actions are calls to
- destructors for local objects, but back ends cannot rely on this
- fact. If these nodes are in fact representing such destructors,
- 'CLEANUP_DECL' will be the 'VAR_DECL' destroyed. Otherwise,
- 'CLEANUP_DECL' will be 'NULL_TREE'. In any case, the
- 'CLEANUP_EXPR' is the expression to execute. The cleanups executed
- on exit from a scope should be run in the reverse order of the
- order in which the associated 'CLEANUP_STMT's were encountered.
-
-'CONTINUE_STMT'
-
- Used to represent a 'continue' statement. There are no additional
- fields.
-
-'CTOR_STMT'
-
- Used to mark the beginning (if 'CTOR_BEGIN_P' holds) or end (if
- 'CTOR_END_P' holds of the main body of a constructor. See also
- 'SUBOBJECT' for more information on how to use these nodes.
-
-'DO_STMT'
-
- Used to represent a 'do' loop. The body of the loop is given by
- 'DO_BODY' while the termination condition for the loop is given by
- 'DO_COND'. The condition for a 'do'-statement is always an
- expression.
-
-'EMPTY_CLASS_EXPR'
-
- Used to represent a temporary object of a class with no data whose
- address is never taken. (All such objects are interchangeable.)
- The 'TREE_TYPE' represents the type of the object.
-
-'EXPR_STMT'
-
- Used to represent an expression statement. Use 'EXPR_STMT_EXPR' to
- obtain the expression.
-
-'FOR_STMT'
-
- Used to represent a 'for' statement. The 'FOR_INIT_STMT' is the
- initialization statement for the loop. The 'FOR_COND' is the
- termination condition. The 'FOR_EXPR' is the expression executed
- right before the 'FOR_COND' on each loop iteration; often, this
- expression increments a counter. The body of the loop is given by
- 'FOR_BODY'. Note that 'FOR_INIT_STMT' and 'FOR_BODY' return
- statements, while 'FOR_COND' and 'FOR_EXPR' return expressions.
-
-'HANDLER'
-
- Used to represent a C++ 'catch' block. The 'HANDLER_TYPE' is the
- type of exception that will be caught by this handler; it is equal
- (by pointer equality) to 'NULL' if this handler is for all types.
- 'HANDLER_PARMS' is the 'DECL_STMT' for the catch parameter, and
- 'HANDLER_BODY' is the code for the block itself.
-
-'IF_STMT'
-
- Used to represent an 'if' statement. The 'IF_COND' is the
- expression.
-
- If the condition is a 'TREE_LIST', then the 'TREE_PURPOSE' is a
- statement (usually a 'DECL_STMT'). Each time the condition is
- evaluated, the statement should be executed. Then, the
- 'TREE_VALUE' should be used as the conditional expression itself.
- This representation is used to handle C++ code like this:
-
- C++ distinguishes between this and 'COND_EXPR' for handling
- templates.
-
- if (int i = 7) ...
-
- where there is a new local variable (or variables) declared within
- the condition.
-
- The 'THEN_CLAUSE' represents the statement given by the 'then'
- condition, while the 'ELSE_CLAUSE' represents the statement given
- by the 'else' condition.
-
-'SUBOBJECT'
-
- In a constructor, these nodes are used to mark the point at which a
- subobject of 'this' is fully constructed. If, after this point, an
- exception is thrown before a 'CTOR_STMT' with 'CTOR_END_P' set is
- encountered, the 'SUBOBJECT_CLEANUP' must be executed. The
- cleanups must be executed in the reverse order in which they
- appear.
-
-'SWITCH_STMT'
-
- Used to represent a 'switch' statement. The 'SWITCH_STMT_COND' is
- the expression on which the switch is occurring. See the
- documentation for an 'IF_STMT' for more information on the
- representation used for the condition. The 'SWITCH_STMT_BODY' is
- the body of the switch statement. The 'SWITCH_STMT_TYPE' is the
- original type of switch expression as given in the source, before
- any compiler conversions.
-
-'TRY_BLOCK'
- Used to represent a 'try' block. The body of the try block is
- given by 'TRY_STMTS'. Each of the catch blocks is a 'HANDLER'
- node. The first handler is given by 'TRY_HANDLERS'. Subsequent
- handlers are obtained by following the 'TREE_CHAIN' link from one
- handler to the next. The body of the handler is given by
- 'HANDLER_BODY'.
-
- If 'CLEANUP_P' holds of the 'TRY_BLOCK', then the 'TRY_HANDLERS'
- will not be a 'HANDLER' node. Instead, it will be an expression
- that should be executed if an exception is thrown in the try block.
- It must rethrow the exception after executing that code. And, if
- an exception is thrown while the expression is executing,
- 'terminate' must be called.
-
-'USING_STMT'
- Used to represent a 'using' directive. The namespace is given by
- 'USING_STMT_NAMESPACE', which will be a NAMESPACE_DECL. This node
- is needed inside template functions, to implement using directives
- during instantiation.
-
-'WHILE_STMT'
-
- Used to represent a 'while' loop. The 'WHILE_COND' is the
- termination condition for the loop. See the documentation for an
- 'IF_STMT' for more information on the representation used for the
- condition.
-
- The 'WHILE_BODY' is the body of the loop.
-
-
-File: gccint.info, Node: C++ Expressions, Prev: Statements for C++, Up: C and C++ Trees
-
-10.10.6 C++ Expressions
------------------------
-
-This section describes expressions specific to the C and C++ front ends.
-
-'TYPEID_EXPR'
-
- Used to represent a 'typeid' expression.
-
-'NEW_EXPR'
-'VEC_NEW_EXPR'
-
- Used to represent a call to 'new' and 'new[]' respectively.
-
-'DELETE_EXPR'
-'VEC_DELETE_EXPR'
-
- Used to represent a call to 'delete' and 'delete[]' respectively.
-
-'MEMBER_REF'
-
- Represents a reference to a member of a class.
-
-'THROW_EXPR'
-
- Represents an instance of 'throw' in the program. Operand 0, which
- is the expression to throw, may be 'NULL_TREE'.
-
-'AGGR_INIT_EXPR'
- An 'AGGR_INIT_EXPR' represents the initialization as the return
- value of a function call, or as the result of a constructor. An
- 'AGGR_INIT_EXPR' will only appear as a full-expression, or as the
- second operand of a 'TARGET_EXPR'. 'AGGR_INIT_EXPR's have a
- representation similar to that of 'CALL_EXPR's. You can use the
- 'AGGR_INIT_EXPR_FN' and 'AGGR_INIT_EXPR_ARG' macros to access the
- function to call and the arguments to pass.
-
- If 'AGGR_INIT_VIA_CTOR_P' holds of the 'AGGR_INIT_EXPR', then the
- initialization is via a constructor call. The address of the
- 'AGGR_INIT_EXPR_SLOT' operand, which is always a 'VAR_DECL', is
- taken, and this value replaces the first argument in the argument
- list.
-
- In either case, the expression is void.
-
-
-File: gccint.info, Node: Java Trees, Prev: C and C++ Trees, Up: GENERIC
-
-10.11 Java Trees
-================
-
-
-File: gccint.info, Node: GIMPLE, Next: Tree SSA, Prev: GENERIC, Up: Top
-
-11 GIMPLE
-*********
-
-GIMPLE is a three-address representation derived from GENERIC by
-breaking down GENERIC expressions into tuples of no more than 3 operands
-(with some exceptions like function calls). GIMPLE was heavily
-influenced by the SIMPLE IL used by the McCAT compiler project at McGill
-University, though we have made some different choices. For one thing,
-SIMPLE doesn't support 'goto'.
-
- Temporaries are introduced to hold intermediate values needed to
-compute complex expressions. Additionally, all the control structures
-used in GENERIC are lowered into conditional jumps, lexical scopes are
-removed and exception regions are converted into an on the side
-exception region tree.
-
- The compiler pass which converts GENERIC into GIMPLE is referred to as
-the 'gimplifier'. The gimplifier works recursively, generating GIMPLE
-tuples out of the original GENERIC expressions.
-
- One of the early implementation strategies used for the GIMPLE
-representation was to use the same internal data structures used by
-front ends to represent parse trees. This simplified implementation
-because we could leverage existing functionality and interfaces.
-However, GIMPLE is a much more restrictive representation than abstract
-syntax trees (AST), therefore it does not require the full structural
-complexity provided by the main tree data structure.
-
- The GENERIC representation of a function is stored in the
-'DECL_SAVED_TREE' field of the associated 'FUNCTION_DECL' tree node. It
-is converted to GIMPLE by a call to 'gimplify_function_tree'.
-
- If a front end wants to include language-specific tree codes in the
-tree representation which it provides to the back end, it must provide a
-definition of 'LANG_HOOKS_GIMPLIFY_EXPR' which knows how to convert the
-front end trees to GIMPLE. Usually such a hook will involve much of the
-same code for expanding front end trees to RTL. This function can
-return fully lowered GIMPLE, or it can return GENERIC trees and let the
-main gimplifier lower them the rest of the way; this is often simpler.
-GIMPLE that is not fully lowered is known as "High GIMPLE" and consists
-of the IL before the pass 'pass_lower_cf'. High GIMPLE contains some
-container statements like lexical scopes (represented by 'GIMPLE_BIND')
-and nested expressions (e.g., 'GIMPLE_TRY'), while "Low GIMPLE" exposes
-all of the implicit jumps for control and exception expressions directly
-in the IL and EH region trees.
-
- The C and C++ front ends currently convert directly from front end
-trees to GIMPLE, and hand that off to the back end rather than first
-converting to GENERIC. Their gimplifier hooks know about all the
-'_STMT' nodes and how to convert them to GENERIC forms. There was some
-work done on a genericization pass which would run first, but the
-existence of 'STMT_EXPR' meant that in order to convert all of the C
-statements into GENERIC equivalents would involve walking the entire
-tree anyway, so it was simpler to lower all the way. This might change
-in the future if someone writes an optimization pass which would work
-better with higher-level trees, but currently the optimizers all expect
-GIMPLE.
-
- You can request to dump a C-like representation of the GIMPLE form with
-the flag '-fdump-tree-gimple'.
-
-* Menu:
-
-* Tuple representation::
-* GIMPLE instruction set::
-* GIMPLE Exception Handling::
-* Temporaries::
-* Operands::
-* Manipulating GIMPLE statements::
-* Tuple specific accessors::
-* GIMPLE sequences::
-* Sequence iterators::
-* Adding a new GIMPLE statement code::
-* Statement and operand traversals::
-
-
-File: gccint.info, Node: Tuple representation, Next: GIMPLE instruction set, Up: GIMPLE
-
-11.1 Tuple representation
-=========================
-
-GIMPLE instructions are tuples of variable size divided in two groups: a
-header describing the instruction and its locations, and a variable
-length body with all the operands. Tuples are organized into a
-hierarchy with 3 main classes of tuples.
-
-11.1.1 'gimple_statement_base' (gsbase)
----------------------------------------
-
-This is the root of the hierarchy, it holds basic information needed by
-most GIMPLE statements. There are some fields that may not be relevant
-to every GIMPLE statement, but those were moved into the base structure
-to take advantage of holes left by other fields (thus making the
-structure more compact). The structure takes 4 words (32 bytes) on 64
-bit hosts:
-
-Field Size (bits)
-'code' 8
-'subcode' 16
-'no_warning' 1
-'visited' 1
-'nontemporal_move' 1
-'plf' 2
-'modified' 1
-'has_volatile_ops' 1
-'references_memory_p' 1
-'uid' 32
-'location' 32
-'num_ops' 32
-'bb' 64
-'block' 63
-Total size 32 bytes
-
- * 'code' Main identifier for a GIMPLE instruction.
-
- * 'subcode' Used to distinguish different variants of the same basic
- instruction or provide flags applicable to a given code. The
- 'subcode' flags field has different uses depending on the code of
- the instruction, but mostly it distinguishes instructions of the
- same family. The most prominent use of this field is in
- assignments, where subcode indicates the operation done on the RHS
- of the assignment. For example, a = b + c is encoded as
- 'GIMPLE_ASSIGN <PLUS_EXPR, a, b, c>'.
-
- * 'no_warning' Bitflag to indicate whether a warning has already been
- issued on this statement.
-
- * 'visited' General purpose "visited" marker. Set and cleared by
- each pass when needed.
-
- * 'nontemporal_move' Bitflag used in assignments that represent
- non-temporal moves. Although this bitflag is only used in
- assignments, it was moved into the base to take advantage of the
- bit holes left by the previous fields.
-
- * 'plf' Pass Local Flags. This 2-bit mask can be used as general
- purpose markers by any pass. Passes are responsible for clearing
- and setting these two flags accordingly.
-
- * 'modified' Bitflag to indicate whether the statement has been
- modified. Used mainly by the operand scanner to determine when to
- re-scan a statement for operands.
-
- * 'has_volatile_ops' Bitflag to indicate whether this statement
- contains operands that have been marked volatile.
-
- * 'references_memory_p' Bitflag to indicate whether this statement
- contains memory references (i.e., its operands are either global
- variables, or pointer dereferences or anything that must reside in
- memory).
-
- * 'uid' This is an unsigned integer used by passes that want to
- assign IDs to every statement. These IDs must be assigned and used
- by each pass.
-
- * 'location' This is a 'location_t' identifier to specify source code
- location for this statement. It is inherited from the front end.
-
- * 'num_ops' Number of operands that this statement has. This
- specifies the size of the operand vector embedded in the tuple.
- Only used in some tuples, but it is declared in the base tuple to
- take advantage of the 32-bit hole left by the previous fields.
-
- * 'bb' Basic block holding the instruction.
-
- * 'block' Lexical block holding this statement. Also used for debug
- information generation.
-
-11.1.2 'gimple_statement_with_ops'
-----------------------------------
-
-This tuple is actually split in two: 'gimple_statement_with_ops_base'
-and 'gimple_statement_with_ops'. This is needed to accommodate the way
-the operand vector is allocated. The operand vector is defined to be an
-array of 1 element. So, to allocate a dynamic number of operands, the
-memory allocator ('gimple_alloc') simply allocates enough memory to hold
-the structure itself plus 'N - 1' operands which run "off the end" of
-the structure. For example, to allocate space for a tuple with 3
-operands, 'gimple_alloc' reserves 'sizeof (struct
-gimple_statement_with_ops) + 2 * sizeof (tree)' bytes.
-
- On the other hand, several fields in this tuple need to be shared with
-the 'gimple_statement_with_memory_ops' tuple. So, these common fields
-are placed in 'gimple_statement_with_ops_base' which is then inherited
-from the other two tuples.
-
-'gsbase' 256
-'def_ops' 64
-'use_ops' 64
-'op' 'num_ops' * 64
-Total 48 + 8 * 'num_ops' bytes
-size
-
- * 'gsbase' Inherited from 'struct gimple_statement_base'.
-
- * 'def_ops' Array of pointers into the operand array indicating all
- the slots that contain a variable written-to by the statement.
- This array is also used for immediate use chaining. Note that it
- would be possible to not rely on this array, but the changes
- required to implement this are pretty invasive.
-
- * 'use_ops' Similar to 'def_ops' but for variables read by the
- statement.
-
- * 'op' Array of trees with 'num_ops' slots.
-
-11.1.3 'gimple_statement_with_memory_ops'
------------------------------------------
-
-This tuple is essentially identical to 'gimple_statement_with_ops',
-except that it contains 4 additional fields to hold vectors related
-memory stores and loads. Similar to the previous case, the structure is
-split in two to accommodate for the operand vector
-('gimple_statement_with_memory_ops_base' and
-'gimple_statement_with_memory_ops').
-
-Field Size (bits)
-'gsbase' 256
-'def_ops' 64
-'use_ops' 64
-'vdef_ops' 64
-'vuse_ops' 64
-'stores' 64
-'loads' 64
-'op' 'num_ops' * 64
-Total size 80 + 8 * 'num_ops' bytes
-
- * 'vdef_ops' Similar to 'def_ops' but for 'VDEF' operators. There is
- one entry per memory symbol written by this statement. This is
- used to maintain the memory SSA use-def and def-def chains.
-
- * 'vuse_ops' Similar to 'use_ops' but for 'VUSE' operators. There is
- one entry per memory symbol loaded by this statement. This is used
- to maintain the memory SSA use-def chains.
-
- * 'stores' Bitset with all the UIDs for the symbols written-to by the
- statement. This is different than 'vdef_ops' in that all the
- affected symbols are mentioned in this set. If memory partitioning
- is enabled, the 'vdef_ops' vector will refer to memory partitions.
- Furthermore, no SSA information is stored in this set.
-
- * 'loads' Similar to 'stores', but for memory loads. (Note that
- there is some amount of redundancy here, it should be possible to
- reduce memory utilization further by removing these sets).
-
- All the other tuples are defined in terms of these three basic ones.
-Each tuple will add some fields. The main gimple type is defined to be
-the union of all these structures ('GTY' markers elided for clarity):
-
- union gimple_statement_d
- {
- struct gimple_statement_base gsbase;
- struct gimple_statement_with_ops gsops;
- struct gimple_statement_with_memory_ops gsmem;
- struct gimple_statement_omp omp;
- struct gimple_statement_bind gimple_bind;
- struct gimple_statement_catch gimple_catch;
- struct gimple_statement_eh_filter gimple_eh_filter;
- struct gimple_statement_phi gimple_phi;
- struct gimple_statement_resx gimple_resx;
- struct gimple_statement_try gimple_try;
- struct gimple_statement_wce gimple_wce;
- struct gimple_statement_asm gimple_asm;
- struct gimple_statement_omp_critical gimple_omp_critical;
- struct gimple_statement_omp_for gimple_omp_for;
- struct gimple_statement_omp_parallel gimple_omp_parallel;
- struct gimple_statement_omp_task gimple_omp_task;
- struct gimple_statement_omp_sections gimple_omp_sections;
- struct gimple_statement_omp_single gimple_omp_single;
- struct gimple_statement_omp_continue gimple_omp_continue;
- struct gimple_statement_omp_atomic_load gimple_omp_atomic_load;
- struct gimple_statement_omp_atomic_store gimple_omp_atomic_store;
- };
-
-
-File: gccint.info, Node: GIMPLE instruction set, Next: GIMPLE Exception Handling, Prev: Tuple representation, Up: GIMPLE
-
-11.2 GIMPLE instruction set
-===========================
-
-The following table briefly describes the GIMPLE instruction set.
-
-Instruction High GIMPLE Low GIMPLE
-'GIMPLE_ASM' x x
-'GIMPLE_ASSIGN' x x
-'GIMPLE_BIND' x
-'GIMPLE_CALL' x x
-'GIMPLE_CATCH' x
-'GIMPLE_COND' x x
-'GIMPLE_DEBUG' x x
-'GIMPLE_EH_FILTER' x
-'GIMPLE_GOTO' x x
-'GIMPLE_LABEL' x x
-'GIMPLE_NOP' x x
-'GIMPLE_OMP_ATOMIC_LOAD' x x
-'GIMPLE_OMP_ATOMIC_STORE' x x
-'GIMPLE_OMP_CONTINUE' x x
-'GIMPLE_OMP_CRITICAL' x x
-'GIMPLE_OMP_FOR' x x
-'GIMPLE_OMP_MASTER' x x
-'GIMPLE_OMP_ORDERED' x x
-'GIMPLE_OMP_PARALLEL' x x
-'GIMPLE_OMP_RETURN' x x
-'GIMPLE_OMP_SECTION' x x
-'GIMPLE_OMP_SECTIONS' x x
-'GIMPLE_OMP_SECTIONS_SWITCH' x x
-'GIMPLE_OMP_SINGLE' x x
-'GIMPLE_PHI' x
-'GIMPLE_RESX' x
-'GIMPLE_RETURN' x x
-'GIMPLE_SWITCH' x x
-'GIMPLE_TRY' x
-
-
-File: gccint.info, Node: GIMPLE Exception Handling, Next: Temporaries, Prev: GIMPLE instruction set, Up: GIMPLE
-
-11.3 Exception Handling
-=======================
-
-Other exception handling constructs are represented using
-'GIMPLE_TRY_CATCH'. 'GIMPLE_TRY_CATCH' has two operands. The first
-operand is a sequence of statements to execute. If executing these
-statements does not throw an exception, then the second operand is
-ignored. Otherwise, if an exception is thrown, then the second operand
-of the 'GIMPLE_TRY_CATCH' is checked. The second operand may have the
-following forms:
-
- 1. A sequence of statements to execute. When an exception occurs,
- these statements are executed, and then the exception is rethrown.
-
- 2. A sequence of 'GIMPLE_CATCH' statements. Each 'GIMPLE_CATCH' has a
- list of applicable exception types and handler code. If the thrown
- exception matches one of the caught types, the associated handler
- code is executed. If the handler code falls off the bottom,
- execution continues after the original 'GIMPLE_TRY_CATCH'.
-
- 3. A 'GIMPLE_EH_FILTER' statement. This has a list of permitted
- exception types, and code to handle a match failure. If the thrown
- exception does not match one of the allowed types, the associated
- match failure code is executed. If the thrown exception does
- match, it continues unwinding the stack looking for the next
- handler.
-
- Currently throwing an exception is not directly represented in GIMPLE,
-since it is implemented by calling a function. At some point in the
-future we will want to add some way to express that the call will throw
-an exception of a known type.
-
- Just before running the optimizers, the compiler lowers the high-level
-EH constructs above into a set of 'goto's, magic labels, and EH regions.
-Continuing to unwind at the end of a cleanup is represented with a
-'GIMPLE_RESX'.
-
-
-File: gccint.info, Node: Temporaries, Next: Operands, Prev: GIMPLE Exception Handling, Up: GIMPLE
-
-11.4 Temporaries
-================
-
-When gimplification encounters a subexpression that is too complex, it
-creates a new temporary variable to hold the value of the subexpression,
-and adds a new statement to initialize it before the current statement.
-These special temporaries are known as 'expression temporaries', and are
-allocated using 'get_formal_tmp_var'. The compiler tries to always
-evaluate identical expressions into the same temporary, to simplify
-elimination of redundant calculations.
-
- We can only use expression temporaries when we know that it will not be
-reevaluated before its value is used, and that it will not be otherwise
-modified(1). Other temporaries can be allocated using
-'get_initialized_tmp_var' or 'create_tmp_var'.
-
- Currently, an expression like 'a = b + 5' is not reduced any further.
-We tried converting it to something like
- T1 = b + 5;
- a = T1;
- but this bloated the representation for minimal benefit. However, a
-variable which must live in memory cannot appear in an expression; its
-value is explicitly loaded into a temporary first. Similarly, storing
-the value of an expression to a memory variable goes through a
-temporary.
-
- ---------- Footnotes ----------
-
- (1) These restrictions are derived from those in Morgan 4.8.
-
-
-File: gccint.info, Node: Operands, Next: Manipulating GIMPLE statements, Prev: Temporaries, Up: GIMPLE
-
-11.5 Operands
-=============
-
-In general, expressions in GIMPLE consist of an operation and the
-appropriate number of simple operands; these operands must either be a
-GIMPLE rvalue ('is_gimple_val'), i.e. a constant or a register variable.
-More complex operands are factored out into temporaries, so that
- a = b + c + d
- becomes
- T1 = b + c;
- a = T1 + d;
-
- The same rule holds for arguments to a 'GIMPLE_CALL'.
-
- The target of an assignment is usually a variable, but can also be a
-'MEM_REF' or a compound lvalue as described below.
-
-* Menu:
-
-* Compound Expressions::
-* Compound Lvalues::
-* Conditional Expressions::
-* Logical Operators::
-
-
-File: gccint.info, Node: Compound Expressions, Next: Compound Lvalues, Up: Operands
-
-11.5.1 Compound Expressions
----------------------------
-
-The left-hand side of a C comma expression is simply moved into a
-separate statement.
-
-
-File: gccint.info, Node: Compound Lvalues, Next: Conditional Expressions, Prev: Compound Expressions, Up: Operands
-
-11.5.2 Compound Lvalues
------------------------
-
-Currently compound lvalues involving array and structure field
-references are not broken down; an expression like 'a.b[2] = 42' is not
-reduced any further (though complex array subscripts are). This
-restriction is a workaround for limitations in later optimizers; if we
-were to convert this to
-
- T1 = &a.b;
- T1[2] = 42;
-
- alias analysis would not remember that the reference to 'T1[2]' came by
-way of 'a.b', so it would think that the assignment could alias another
-member of 'a'; this broke 'struct-alias-1.c'. Future optimizer
-improvements may make this limitation unnecessary.
-
-
-File: gccint.info, Node: Conditional Expressions, Next: Logical Operators, Prev: Compound Lvalues, Up: Operands
-
-11.5.3 Conditional Expressions
-------------------------------
-
-A C '?:' expression is converted into an 'if' statement with each branch
-assigning to the same temporary. So,
-
- a = b ? c : d;
- becomes
- if (b == 1)
- T1 = c;
- else
- T1 = d;
- a = T1;
-
- The GIMPLE level if-conversion pass re-introduces '?:' expression, if
-appropriate. It is used to vectorize loops with conditions using vector
-conditional operations.
-
- Note that in GIMPLE, 'if' statements are represented using
-'GIMPLE_COND', as described below.
-
-
-File: gccint.info, Node: Logical Operators, Prev: Conditional Expressions, Up: Operands
-
-11.5.4 Logical Operators
-------------------------
-
-Except when they appear in the condition operand of a 'GIMPLE_COND',
-logical 'and' and 'or' operators are simplified as follows: 'a = b && c'
-becomes
-
- T1 = (bool)b;
- if (T1 == true)
- T1 = (bool)c;
- a = T1;
-
- Note that 'T1' in this example cannot be an expression temporary,
-because it has two different assignments.
-
-11.5.5 Manipulating operands
-----------------------------
-
-All gimple operands are of type 'tree'. But only certain types of trees
-are allowed to be used as operand tuples. Basic validation is
-controlled by the function 'get_gimple_rhs_class', which given a tree
-code, returns an 'enum' with the following values of type 'enum
-gimple_rhs_class'
-
- * 'GIMPLE_INVALID_RHS' The tree cannot be used as a GIMPLE operand.
-
- * 'GIMPLE_TERNARY_RHS' The tree is a valid GIMPLE ternary operation.
-
- * 'GIMPLE_BINARY_RHS' The tree is a valid GIMPLE binary operation.
-
- * 'GIMPLE_UNARY_RHS' The tree is a valid GIMPLE unary operation.
-
- * 'GIMPLE_SINGLE_RHS' The tree is a single object, that cannot be
- split into simpler operands (for instance, 'SSA_NAME', 'VAR_DECL',
- 'COMPONENT_REF', etc).
-
- This operand class also acts as an escape hatch for tree nodes that
- may be flattened out into the operand vector, but would need more
- than two slots on the RHS. For instance, a 'COND_EXPR' expression
- of the form '(a op b) ? x : y' could be flattened out on the
- operand vector using 4 slots, but it would also require additional
- processing to distinguish 'c = a op b' from 'c = a op b ? x : y'.
- Something similar occurs with 'ASSERT_EXPR'. In time, these
- special case tree expressions should be flattened into the operand
- vector.
-
- For tree nodes in the categories 'GIMPLE_TERNARY_RHS',
-'GIMPLE_BINARY_RHS' and 'GIMPLE_UNARY_RHS', they cannot be stored inside
-tuples directly. They first need to be flattened and separated into
-individual components. For instance, given the GENERIC expression
-
- a = b + c
-
- its tree representation is:
-
- MODIFY_EXPR <VAR_DECL <a>, PLUS_EXPR <VAR_DECL <b>, VAR_DECL <c>>>
-
- In this case, the GIMPLE form for this statement is logically identical
-to its GENERIC form but in GIMPLE, the 'PLUS_EXPR' on the RHS of the
-assignment is not represented as a tree, instead the two operands are
-taken out of the 'PLUS_EXPR' sub-tree and flattened into the GIMPLE
-tuple as follows:
-
- GIMPLE_ASSIGN <PLUS_EXPR, VAR_DECL <a>, VAR_DECL <b>, VAR_DECL <c>>
-
-11.5.6 Operand vector allocation
---------------------------------
-
-The operand vector is stored at the bottom of the three tuple structures
-that accept operands. This means, that depending on the code of a given
-statement, its operand vector will be at different offsets from the base
-of the structure. To access tuple operands use the following accessors
-
- -- GIMPLE function: unsigned gimple_num_ops (gimple g)
- Returns the number of operands in statement G.
-
- -- GIMPLE function: tree gimple_op (gimple g, unsigned i)
- Returns operand 'I' from statement 'G'.
-
- -- GIMPLE function: tree * gimple_ops (gimple g)
- Returns a pointer into the operand vector for statement 'G'. This
- is computed using an internal table called 'gimple_ops_offset_'[].
- This table is indexed by the gimple code of 'G'.
-
- When the compiler is built, this table is filled-in using the sizes
- of the structures used by each statement code defined in
- gimple.def. Since the operand vector is at the bottom of the
- structure, for a gimple code 'C' the offset is computed as sizeof
- (struct-of 'C') - sizeof (tree).
-
- This mechanism adds one memory indirection to every access when
- using 'gimple_op'(), if this becomes a bottleneck, a pass can
- choose to memoize the result from 'gimple_ops'() and use that to
- access the operands.
-
-11.5.7 Operand validation
--------------------------
-
-When adding a new operand to a gimple statement, the operand will be
-validated according to what each tuple accepts in its operand vector.
-These predicates are called by the 'gimple_NAME_set_...()'. Each tuple
-will use one of the following predicates (Note, this list is not
-exhaustive):
-
- -- GIMPLE function: bool is_gimple_val (tree t)
- Returns true if t is a "GIMPLE value", which are all the
- non-addressable stack variables (variables for which
- 'is_gimple_reg' returns true) and constants (expressions for which
- 'is_gimple_min_invariant' returns true).
-
- -- GIMPLE function: bool is_gimple_addressable (tree t)
- Returns true if t is a symbol or memory reference whose address can
- be taken.
-
- -- GIMPLE function: bool is_gimple_asm_val (tree t)
- Similar to 'is_gimple_val' but it also accepts hard registers.
-
- -- GIMPLE function: bool is_gimple_call_addr (tree t)
- Return true if t is a valid expression to use as the function
- called by a 'GIMPLE_CALL'.
-
- -- GIMPLE function: bool is_gimple_mem_ref_addr (tree t)
- Return true if t is a valid expression to use as first operand of a
- 'MEM_REF' expression.
-
- -- GIMPLE function: bool is_gimple_constant (tree t)
- Return true if t is a valid gimple constant.
-
- -- GIMPLE function: bool is_gimple_min_invariant (tree t)
- Return true if t is a valid minimal invariant. This is different
- from constants, in that the specific value of t may not be known at
- compile time, but it is known that it doesn't change (e.g., the
- address of a function local variable).
-
- -- GIMPLE function: bool is_gimple_ip_invariant (tree t)
- Return true if t is an interprocedural invariant. This means that
- t is a valid invariant in all functions (e.g. it can be an address
- of a global variable but not of a local one).
-
- -- GIMPLE function: bool is_gimple_ip_invariant_address (tree t)
- Return true if t is an 'ADDR_EXPR' that does not change once the
- program is running (and which is valid in all functions).
-
-11.5.8 Statement validation
----------------------------
-
- -- GIMPLE function: bool is_gimple_assign (gimple g)
- Return true if the code of g is 'GIMPLE_ASSIGN'.
-
- -- GIMPLE function: bool is_gimple_call (gimple g)
- Return true if the code of g is 'GIMPLE_CALL'.
-
- -- GIMPLE function: bool is_gimple_debug (gimple g)
- Return true if the code of g is 'GIMPLE_DEBUG'.
-
- -- GIMPLE function: bool gimple_assign_cast_p (gimple g)
- Return true if g is a 'GIMPLE_ASSIGN' that performs a type cast
- operation.
-
- -- GIMPLE function: bool gimple_debug_bind_p (gimple g)
- Return true if g is a 'GIMPLE_DEBUG' that binds the value of an
- expression to a variable.
-
- -- GIMPLE function: bool is_gimple_omp (gimple g)
- Return true if g is any of the OpenMP codes.
-
-
-File: gccint.info, Node: Manipulating GIMPLE statements, Next: Tuple specific accessors, Prev: Operands, Up: GIMPLE
-
-11.6 Manipulating GIMPLE statements
-===================================
-
-This section documents all the functions available to handle each of the
-GIMPLE instructions.
-
-11.6.1 Common accessors
------------------------
-
-The following are common accessors for gimple statements.
-
- -- GIMPLE function: enum gimple_code gimple_code (gimple g)
- Return the code for statement 'G'.
-
- -- GIMPLE function: basic_block gimple_bb (gimple g)
- Return the basic block to which statement 'G' belongs to.
-
- -- GIMPLE function: tree gimple_block (gimple g)
- Return the lexical scope block holding statement 'G'.
-
- -- GIMPLE function: tree gimple_expr_type (gimple stmt)
- Return the type of the main expression computed by 'STMT'. Return
- 'void_type_node' if 'STMT' computes nothing. This will only return
- something meaningful for 'GIMPLE_ASSIGN', 'GIMPLE_COND' and
- 'GIMPLE_CALL'. For all other tuple codes, it will return
- 'void_type_node'.
-
- -- GIMPLE function: enum tree_code gimple_expr_code (gimple stmt)
- Return the tree code for the expression computed by 'STMT'. This
- is only meaningful for 'GIMPLE_CALL', 'GIMPLE_ASSIGN' and
- 'GIMPLE_COND'. If 'STMT' is 'GIMPLE_CALL', it will return
- 'CALL_EXPR'. For 'GIMPLE_COND', it returns the code of the
- comparison predicate. For 'GIMPLE_ASSIGN' it returns the code of
- the operation performed by the 'RHS' of the assignment.
-
- -- GIMPLE function: void gimple_set_block (gimple g, tree block)
- Set the lexical scope block of 'G' to 'BLOCK'.
-
- -- GIMPLE function: location_t gimple_locus (gimple g)
- Return locus information for statement 'G'.
-
- -- GIMPLE function: void gimple_set_locus (gimple g, location_t locus)
- Set locus information for statement 'G'.
-
- -- GIMPLE function: bool gimple_locus_empty_p (gimple g)
- Return true if 'G' does not have locus information.
-
- -- GIMPLE function: bool gimple_no_warning_p (gimple stmt)
- Return true if no warnings should be emitted for statement 'STMT'.
-
- -- GIMPLE function: void gimple_set_visited (gimple stmt, bool
- visited_p)
- Set the visited status on statement 'STMT' to 'VISITED_P'.
-
- -- GIMPLE function: bool gimple_visited_p (gimple stmt)
- Return the visited status on statement 'STMT'.
-
- -- GIMPLE function: void gimple_set_plf (gimple stmt, enum plf_mask
- plf, bool val_p)
- Set pass local flag 'PLF' on statement 'STMT' to 'VAL_P'.
-
- -- GIMPLE function: unsigned int gimple_plf (gimple stmt, enum plf_mask
- plf)
- Return the value of pass local flag 'PLF' on statement 'STMT'.
-
- -- GIMPLE function: bool gimple_has_ops (gimple g)
- Return true if statement 'G' has register or memory operands.
-
- -- GIMPLE function: bool gimple_has_mem_ops (gimple g)
- Return true if statement 'G' has memory operands.
-
- -- GIMPLE function: unsigned gimple_num_ops (gimple g)
- Return the number of operands for statement 'G'.
-
- -- GIMPLE function: tree * gimple_ops (gimple g)
- Return the array of operands for statement 'G'.
-
- -- GIMPLE function: tree gimple_op (gimple g, unsigned i)
- Return operand 'I' for statement 'G'.
-
- -- GIMPLE function: tree * gimple_op_ptr (gimple g, unsigned i)
- Return a pointer to operand 'I' for statement 'G'.
-
- -- GIMPLE function: void gimple_set_op (gimple g, unsigned i, tree op)
- Set operand 'I' of statement 'G' to 'OP'.
-
- -- GIMPLE function: bitmap gimple_addresses_taken (gimple stmt)
- Return the set of symbols that have had their address taken by
- 'STMT'.
-
- -- GIMPLE function: struct def_optype_d * gimple_def_ops (gimple g)
- Return the set of 'DEF' operands for statement 'G'.
-
- -- GIMPLE function: void gimple_set_def_ops (gimple g, struct
- def_optype_d *def)
- Set 'DEF' to be the set of 'DEF' operands for statement 'G'.
-
- -- GIMPLE function: struct use_optype_d * gimple_use_ops (gimple g)
- Return the set of 'USE' operands for statement 'G'.
-
- -- GIMPLE function: void gimple_set_use_ops (gimple g, struct
- use_optype_d *use)
- Set 'USE' to be the set of 'USE' operands for statement 'G'.
-
- -- GIMPLE function: struct voptype_d * gimple_vuse_ops (gimple g)
- Return the set of 'VUSE' operands for statement 'G'.
-
- -- GIMPLE function: void gimple_set_vuse_ops (gimple g, struct
- voptype_d *ops)
- Set 'OPS' to be the set of 'VUSE' operands for statement 'G'.
-
- -- GIMPLE function: struct voptype_d * gimple_vdef_ops (gimple g)
- Return the set of 'VDEF' operands for statement 'G'.
-
- -- GIMPLE function: void gimple_set_vdef_ops (gimple g, struct
- voptype_d *ops)
- Set 'OPS' to be the set of 'VDEF' operands for statement 'G'.
-
- -- GIMPLE function: bitmap gimple_loaded_syms (gimple g)
- Return the set of symbols loaded by statement 'G'. Each element of
- the set is the 'DECL_UID' of the corresponding symbol.
-
- -- GIMPLE function: bitmap gimple_stored_syms (gimple g)
- Return the set of symbols stored by statement 'G'. Each element of
- the set is the 'DECL_UID' of the corresponding symbol.
-
- -- GIMPLE function: bool gimple_modified_p (gimple g)
- Return true if statement 'G' has operands and the modified field
- has been set.
-
- -- GIMPLE function: bool gimple_has_volatile_ops (gimple stmt)
- Return true if statement 'STMT' contains volatile operands.
-
- -- GIMPLE function: void gimple_set_has_volatile_ops (gimple stmt, bool
- volatilep)
- Return true if statement 'STMT' contains volatile operands.
-
- -- GIMPLE function: void update_stmt (gimple s)
- Mark statement 'S' as modified, and update it.
-
- -- GIMPLE function: void update_stmt_if_modified (gimple s)
- Update statement 'S' if it has been marked modified.
-
- -- GIMPLE function: gimple gimple_copy (gimple stmt)
- Return a deep copy of statement 'STMT'.
-
-
-File: gccint.info, Node: Tuple specific accessors, Next: GIMPLE sequences, Prev: Manipulating GIMPLE statements, Up: GIMPLE
-
-11.7 Tuple specific accessors
-=============================
-
-* Menu:
-
-* 'GIMPLE_ASM'::
-* 'GIMPLE_ASSIGN'::
-* 'GIMPLE_BIND'::
-* 'GIMPLE_CALL'::
-* 'GIMPLE_CATCH'::
-* 'GIMPLE_COND'::
-* 'GIMPLE_DEBUG'::
-* 'GIMPLE_EH_FILTER'::
-* 'GIMPLE_LABEL'::
-* 'GIMPLE_NOP'::
-* 'GIMPLE_OMP_ATOMIC_LOAD'::
-* 'GIMPLE_OMP_ATOMIC_STORE'::
-* 'GIMPLE_OMP_CONTINUE'::
-* 'GIMPLE_OMP_CRITICAL'::
-* 'GIMPLE_OMP_FOR'::
-* 'GIMPLE_OMP_MASTER'::
-* 'GIMPLE_OMP_ORDERED'::
-* 'GIMPLE_OMP_PARALLEL'::
-* 'GIMPLE_OMP_RETURN'::
-* 'GIMPLE_OMP_SECTION'::
-* 'GIMPLE_OMP_SECTIONS'::
-* 'GIMPLE_OMP_SINGLE'::
-* 'GIMPLE_PHI'::
-* 'GIMPLE_RESX'::
-* 'GIMPLE_RETURN'::
-* 'GIMPLE_SWITCH'::
-* 'GIMPLE_TRY'::
-* 'GIMPLE_WITH_CLEANUP_EXPR'::
-
-
-File: gccint.info, Node: 'GIMPLE_ASM', Next: 'GIMPLE_ASSIGN', Up: Tuple specific accessors
-
-11.7.1 'GIMPLE_ASM'
--------------------
-
- -- GIMPLE function: gimple gimple_build_asm (const char *string,
- ninputs, noutputs, nclobbers, ...)
- Build a 'GIMPLE_ASM' statement. This statement is used for
- building in-line assembly constructs. 'STRING' is the assembly
- code. 'NINPUT' is the number of register inputs. 'NOUTPUT' is the
- number of register outputs. 'NCLOBBERS' is the number of clobbered
- registers. The rest of the arguments trees for each input, output,
- and clobbered registers.
-
- -- GIMPLE function: gimple gimple_build_asm_vec (const char *,
- VEC(tree,gc) *, VEC(tree,gc) *, VEC(tree,gc) *)
- Identical to gimple_build_asm, but the arguments are passed in
- VECs.
-
- -- GIMPLE function: unsigned gimple_asm_ninputs (gimple g)
- Return the number of input operands for 'GIMPLE_ASM' 'G'.
-
- -- GIMPLE function: unsigned gimple_asm_noutputs (gimple g)
- Return the number of output operands for 'GIMPLE_ASM' 'G'.
-
- -- GIMPLE function: unsigned gimple_asm_nclobbers (gimple g)
- Return the number of clobber operands for 'GIMPLE_ASM' 'G'.
-
- -- GIMPLE function: tree gimple_asm_input_op (gimple g, unsigned index)
- Return input operand 'INDEX' of 'GIMPLE_ASM' 'G'.
-
- -- GIMPLE function: void gimple_asm_set_input_op (gimple g, unsigned
- index, tree in_op)
- Set 'IN_OP' to be input operand 'INDEX' in 'GIMPLE_ASM' 'G'.
-
- -- GIMPLE function: tree gimple_asm_output_op (gimple g, unsigned
- index)
- Return output operand 'INDEX' of 'GIMPLE_ASM' 'G'.
-
- -- GIMPLE function: void gimple_asm_set_output_op (gimple g, unsigned
- index, tree out_op)
- Set 'OUT_OP' to be output operand 'INDEX' in 'GIMPLE_ASM' 'G'.
-
- -- GIMPLE function: tree gimple_asm_clobber_op (gimple g, unsigned
- index)
- Return clobber operand 'INDEX' of 'GIMPLE_ASM' 'G'.
-
- -- GIMPLE function: void gimple_asm_set_clobber_op (gimple g, unsigned
- index, tree clobber_op)
- Set 'CLOBBER_OP' to be clobber operand 'INDEX' in 'GIMPLE_ASM' 'G'.
-
- -- GIMPLE function: const char * gimple_asm_string (gimple g)
- Return the string representing the assembly instruction in
- 'GIMPLE_ASM' 'G'.
-
- -- GIMPLE function: bool gimple_asm_volatile_p (gimple g)
- Return true if 'G' is an asm statement marked volatile.
-
- -- GIMPLE function: void gimple_asm_set_volatile (gimple g)
- Mark asm statement 'G' as volatile.
-
-
-File: gccint.info, Node: 'GIMPLE_ASSIGN', Next: 'GIMPLE_BIND', Prev: 'GIMPLE_ASM', Up: Tuple specific accessors
-
-11.7.2 'GIMPLE_ASSIGN'
-----------------------
-
- -- GIMPLE function: gimple gimple_build_assign (tree lhs, tree rhs)
- Build a 'GIMPLE_ASSIGN' statement. The left-hand side is an lvalue
- passed in lhs. The right-hand side can be either a unary or binary
- tree expression. The expression tree rhs will be flattened and its
- operands assigned to the corresponding operand slots in the new
- statement. This function is useful when you already have a tree
- expression that you want to convert into a tuple. However, try to
- avoid building expression trees for the sole purpose of calling
- this function. If you already have the operands in separate trees,
- it is better to use 'gimple_build_assign_with_ops'.
-
- -- GIMPLE function: gimple gimplify_assign (tree dst, tree src,
- gimple_seq *seq_p)
- Build a new 'GIMPLE_ASSIGN' tuple and append it to the end of
- '*SEQ_P'.
-
- 'DST'/'SRC' are the destination and source respectively. You can pass
-ungimplified trees in 'DST' or 'SRC', in which case they will be
-converted to a gimple operand if necessary.
-
- This function returns the newly created 'GIMPLE_ASSIGN' tuple.
-
- -- GIMPLE function: gimple gimple_build_assign_with_ops (enum tree_code
- subcode, tree lhs, tree op1, tree op2)
- This function is similar to 'gimple_build_assign', but is used to
- build a 'GIMPLE_ASSIGN' statement when the operands of the
- right-hand side of the assignment are already split into different
- operands.
-
- The left-hand side is an lvalue passed in lhs. Subcode is the
- 'tree_code' for the right-hand side of the assignment. Op1 and op2
- are the operands. If op2 is null, subcode must be a 'tree_code'
- for a unary expression.
-
- -- GIMPLE function: enum tree_code gimple_assign_rhs_code (gimple g)
- Return the code of the expression computed on the 'RHS' of
- assignment statement 'G'.
-
- -- GIMPLE function: enum gimple_rhs_class gimple_assign_rhs_class
- (gimple g)
- Return the gimple rhs class of the code for the expression computed
- on the rhs of assignment statement 'G'. This will never return
- 'GIMPLE_INVALID_RHS'.
-
- -- GIMPLE function: tree gimple_assign_lhs (gimple g)
- Return the 'LHS' of assignment statement 'G'.
-
- -- GIMPLE function: tree * gimple_assign_lhs_ptr (gimple g)
- Return a pointer to the 'LHS' of assignment statement 'G'.
-
- -- GIMPLE function: tree gimple_assign_rhs1 (gimple g)
- Return the first operand on the 'RHS' of assignment statement 'G'.
-
- -- GIMPLE function: tree * gimple_assign_rhs1_ptr (gimple g)
- Return the address of the first operand on the 'RHS' of assignment
- statement 'G'.
-
- -- GIMPLE function: tree gimple_assign_rhs2 (gimple g)
- Return the second operand on the 'RHS' of assignment statement 'G'.
-
- -- GIMPLE function: tree * gimple_assign_rhs2_ptr (gimple g)
- Return the address of the second operand on the 'RHS' of assignment
- statement 'G'.
-
- -- GIMPLE function: tree gimple_assign_rhs3 (gimple g)
- Return the third operand on the 'RHS' of assignment statement 'G'.
-
- -- GIMPLE function: tree * gimple_assign_rhs3_ptr (gimple g)
- Return the address of the third operand on the 'RHS' of assignment
- statement 'G'.
-
- -- GIMPLE function: void gimple_assign_set_lhs (gimple g, tree lhs)
- Set 'LHS' to be the 'LHS' operand of assignment statement 'G'.
-
- -- GIMPLE function: void gimple_assign_set_rhs1 (gimple g, tree rhs)
- Set 'RHS' to be the first operand on the 'RHS' of assignment
- statement 'G'.
-
- -- GIMPLE function: void gimple_assign_set_rhs2 (gimple g, tree rhs)
- Set 'RHS' to be the second operand on the 'RHS' of assignment
- statement 'G'.
-
- -- GIMPLE function: void gimple_assign_set_rhs3 (gimple g, tree rhs)
- Set 'RHS' to be the third operand on the 'RHS' of assignment
- statement 'G'.
-
- -- GIMPLE function: bool gimple_assign_cast_p (gimple s)
- Return true if 'S' is a type-cast assignment.
-
-
-File: gccint.info, Node: 'GIMPLE_BIND', Next: 'GIMPLE_CALL', Prev: 'GIMPLE_ASSIGN', Up: Tuple specific accessors
-
-11.7.3 'GIMPLE_BIND'
---------------------
-
- -- GIMPLE function: gimple gimple_build_bind (tree vars, gimple_seq
- body)
- Build a 'GIMPLE_BIND' statement with a list of variables in 'VARS'
- and a body of statements in sequence 'BODY'.
-
- -- GIMPLE function: tree gimple_bind_vars (gimple g)
- Return the variables declared in the 'GIMPLE_BIND' statement 'G'.
-
- -- GIMPLE function: void gimple_bind_set_vars (gimple g, tree vars)
- Set 'VARS' to be the set of variables declared in the 'GIMPLE_BIND'
- statement 'G'.
-
- -- GIMPLE function: void gimple_bind_append_vars (gimple g, tree vars)
- Append 'VARS' to the set of variables declared in the 'GIMPLE_BIND'
- statement 'G'.
-
- -- GIMPLE function: gimple_seq gimple_bind_body (gimple g)
- Return the GIMPLE sequence contained in the 'GIMPLE_BIND' statement
- 'G'.
-
- -- GIMPLE function: void gimple_bind_set_body (gimple g, gimple_seq
- seq)
- Set 'SEQ' to be sequence contained in the 'GIMPLE_BIND' statement
- 'G'.
-
- -- GIMPLE function: void gimple_bind_add_stmt (gimple gs, gimple stmt)
- Append a statement to the end of a 'GIMPLE_BIND''s body.
-
- -- GIMPLE function: void gimple_bind_add_seq (gimple gs, gimple_seq
- seq)
- Append a sequence of statements to the end of a 'GIMPLE_BIND''s
- body.
-
- -- GIMPLE function: tree gimple_bind_block (gimple g)
- Return the 'TREE_BLOCK' node associated with 'GIMPLE_BIND'
- statement 'G'. This is analogous to the 'BIND_EXPR_BLOCK' field in
- trees.
-
- -- GIMPLE function: void gimple_bind_set_block (gimple g, tree block)
- Set 'BLOCK' to be the 'TREE_BLOCK' node associated with
- 'GIMPLE_BIND' statement 'G'.
-
-
-File: gccint.info, Node: 'GIMPLE_CALL', Next: 'GIMPLE_CATCH', Prev: 'GIMPLE_BIND', Up: Tuple specific accessors
-
-11.7.4 'GIMPLE_CALL'
---------------------
-
- -- GIMPLE function: gimple gimple_build_call (tree fn, unsigned nargs,
- ...)
- Build a 'GIMPLE_CALL' statement to function 'FN'. The argument
- 'FN' must be either a 'FUNCTION_DECL' or a gimple call address as
- determined by 'is_gimple_call_addr'. 'NARGS' are the number of
- arguments. The rest of the arguments follow the argument 'NARGS',
- and must be trees that are valid as rvalues in gimple (i.e., each
- operand is validated with 'is_gimple_operand').
-
- -- GIMPLE function: gimple gimple_build_call_from_tree (tree call_expr)
- Build a 'GIMPLE_CALL' from a 'CALL_EXPR' node. The arguments and
- the function are taken from the expression directly. This routine
- assumes that 'call_expr' is already in GIMPLE form. That is, its
- operands are GIMPLE values and the function call needs no further
- simplification. All the call flags in 'call_expr' are copied over
- to the new 'GIMPLE_CALL'.
-
- -- GIMPLE function: gimple gimple_build_call_vec (tree fn, 'VEC'(tree,
- heap) *args)
- Identical to 'gimple_build_call' but the arguments are stored in a
- 'VEC'().
-
- -- GIMPLE function: tree gimple_call_lhs (gimple g)
- Return the 'LHS' of call statement 'G'.
-
- -- GIMPLE function: tree * gimple_call_lhs_ptr (gimple g)
- Return a pointer to the 'LHS' of call statement 'G'.
-
- -- GIMPLE function: void gimple_call_set_lhs (gimple g, tree lhs)
- Set 'LHS' to be the 'LHS' operand of call statement 'G'.
-
- -- GIMPLE function: tree gimple_call_fn (gimple g)
- Return the tree node representing the function called by call
- statement 'G'.
-
- -- GIMPLE function: void gimple_call_set_fn (gimple g, tree fn)
- Set 'FN' to be the function called by call statement 'G'. This has
- to be a gimple value specifying the address of the called function.
-
- -- GIMPLE function: tree gimple_call_fndecl (gimple g)
- If a given 'GIMPLE_CALL''s callee is a 'FUNCTION_DECL', return it.
- Otherwise return 'NULL'. This function is analogous to
- 'get_callee_fndecl' in 'GENERIC'.
-
- -- GIMPLE function: tree gimple_call_set_fndecl (gimple g, tree fndecl)
- Set the called function to 'FNDECL'.
-
- -- GIMPLE function: tree gimple_call_return_type (gimple g)
- Return the type returned by call statement 'G'.
-
- -- GIMPLE function: tree gimple_call_chain (gimple g)
- Return the static chain for call statement 'G'.
-
- -- GIMPLE function: void gimple_call_set_chain (gimple g, tree chain)
- Set 'CHAIN' to be the static chain for call statement 'G'.
-
- -- GIMPLE function: unsigned gimple_call_num_args (gimple g)
- Return the number of arguments used by call statement 'G'.
-
- -- GIMPLE function: tree gimple_call_arg (gimple g, unsigned index)
- Return the argument at position 'INDEX' for call statement 'G'.
- The first argument is 0.
-
- -- GIMPLE function: tree * gimple_call_arg_ptr (gimple g, unsigned
- index)
- Return a pointer to the argument at position 'INDEX' for call
- statement 'G'.
-
- -- GIMPLE function: void gimple_call_set_arg (gimple g, unsigned index,
- tree arg)
- Set 'ARG' to be the argument at position 'INDEX' for call statement
- 'G'.
-
- -- GIMPLE function: void gimple_call_set_tail (gimple s)
- Mark call statement 'S' as being a tail call (i.e., a call just
- before the exit of a function). These calls are candidate for tail
- call optimization.
-
- -- GIMPLE function: bool gimple_call_tail_p (gimple s)
- Return true if 'GIMPLE_CALL' 'S' is marked as a tail call.
-
- -- GIMPLE function: void gimple_call_mark_uninlinable (gimple s)
- Mark 'GIMPLE_CALL' 'S' as being uninlinable.
-
- -- GIMPLE function: bool gimple_call_cannot_inline_p (gimple s)
- Return true if 'GIMPLE_CALL' 'S' cannot be inlined.
-
- -- GIMPLE function: bool gimple_call_noreturn_p (gimple s)
- Return true if 'S' is a noreturn call.
-
- -- GIMPLE function: gimple gimple_call_copy_skip_args (gimple stmt,
- bitmap args_to_skip)
- Build a 'GIMPLE_CALL' identical to 'STMT' but skipping the
- arguments in the positions marked by the set 'ARGS_TO_SKIP'.
-
-
-File: gccint.info, Node: 'GIMPLE_CATCH', Next: 'GIMPLE_COND', Prev: 'GIMPLE_CALL', Up: Tuple specific accessors
-
-11.7.5 'GIMPLE_CATCH'
----------------------
-
- -- GIMPLE function: gimple gimple_build_catch (tree types, gimple_seq
- handler)
- Build a 'GIMPLE_CATCH' statement. 'TYPES' are the tree types this
- catch handles. 'HANDLER' is a sequence of statements with the code
- for the handler.
-
- -- GIMPLE function: tree gimple_catch_types (gimple g)
- Return the types handled by 'GIMPLE_CATCH' statement 'G'.
-
- -- GIMPLE function: tree * gimple_catch_types_ptr (gimple g)
- Return a pointer to the types handled by 'GIMPLE_CATCH' statement
- 'G'.
-
- -- GIMPLE function: gimple_seq gimple_catch_handler (gimple g)
- Return the GIMPLE sequence representing the body of the handler of
- 'GIMPLE_CATCH' statement 'G'.
-
- -- GIMPLE function: void gimple_catch_set_types (gimple g, tree t)
- Set 'T' to be the set of types handled by 'GIMPLE_CATCH' 'G'.
-
- -- GIMPLE function: void gimple_catch_set_handler (gimple g, gimple_seq
- handler)
- Set 'HANDLER' to be the body of 'GIMPLE_CATCH' 'G'.
-
-
-File: gccint.info, Node: 'GIMPLE_COND', Next: 'GIMPLE_DEBUG', Prev: 'GIMPLE_CATCH', Up: Tuple specific accessors
-
-11.7.6 'GIMPLE_COND'
---------------------
-
- -- GIMPLE function: gimple gimple_build_cond (enum tree_code pred_code,
- tree lhs, tree rhs, tree t_label, tree f_label)
- Build a 'GIMPLE_COND' statement. 'A' 'GIMPLE_COND' statement
- compares 'LHS' and 'RHS' and if the condition in 'PRED_CODE' is
- true, jump to the label in 't_label', otherwise jump to the label
- in 'f_label'. 'PRED_CODE' are relational operator tree codes like
- 'EQ_EXPR', 'LT_EXPR', 'LE_EXPR', 'NE_EXPR', etc.
-
- -- GIMPLE function: gimple gimple_build_cond_from_tree (tree cond, tree
- t_label, tree f_label)
- Build a 'GIMPLE_COND' statement from the conditional expression
- tree 'COND'. 'T_LABEL' and 'F_LABEL' are as in
- 'gimple_build_cond'.
-
- -- GIMPLE function: enum tree_code gimple_cond_code (gimple g)
- Return the code of the predicate computed by conditional statement
- 'G'.
-
- -- GIMPLE function: void gimple_cond_set_code (gimple g, enum tree_code
- code)
- Set 'CODE' to be the predicate code for the conditional statement
- 'G'.
-
- -- GIMPLE function: tree gimple_cond_lhs (gimple g)
- Return the 'LHS' of the predicate computed by conditional statement
- 'G'.
-
- -- GIMPLE function: void gimple_cond_set_lhs (gimple g, tree lhs)
- Set 'LHS' to be the 'LHS' operand of the predicate computed by
- conditional statement 'G'.
-
- -- GIMPLE function: tree gimple_cond_rhs (gimple g)
- Return the 'RHS' operand of the predicate computed by conditional
- 'G'.
-
- -- GIMPLE function: void gimple_cond_set_rhs (gimple g, tree rhs)
- Set 'RHS' to be the 'RHS' operand of the predicate computed by
- conditional statement 'G'.
-
- -- GIMPLE function: tree gimple_cond_true_label (gimple g)
- Return the label used by conditional statement 'G' when its
- predicate evaluates to true.
-
- -- GIMPLE function: void gimple_cond_set_true_label (gimple g, tree
- label)
- Set 'LABEL' to be the label used by conditional statement 'G' when
- its predicate evaluates to true.
-
- -- GIMPLE function: void gimple_cond_set_false_label (gimple g, tree
- label)
- Set 'LABEL' to be the label used by conditional statement 'G' when
- its predicate evaluates to false.
-
- -- GIMPLE function: tree gimple_cond_false_label (gimple g)
- Return the label used by conditional statement 'G' when its
- predicate evaluates to false.
-
- -- GIMPLE function: void gimple_cond_make_false (gimple g)
- Set the conditional 'COND_STMT' to be of the form 'if (1 == 0)'.
-
- -- GIMPLE function: void gimple_cond_make_true (gimple g)
- Set the conditional 'COND_STMT' to be of the form 'if (1 == 1)'.
-
-
-File: gccint.info, Node: 'GIMPLE_DEBUG', Next: 'GIMPLE_EH_FILTER', Prev: 'GIMPLE_COND', Up: Tuple specific accessors
-
-11.7.7 'GIMPLE_DEBUG'
----------------------
-
- -- GIMPLE function: gimple gimple_build_debug_bind (tree var, tree
- value, gimple stmt)
- Build a 'GIMPLE_DEBUG' statement with 'GIMPLE_DEBUG_BIND' of
- 'subcode'. The effect of this statement is to tell debug
- information generation machinery that the value of user variable
- 'var' is given by 'value' at that point, and to remain with that
- value until 'var' runs out of scope, a dynamically-subsequent debug
- bind statement overrides the binding, or conflicting values reach a
- control flow merge point. Even if components of the 'value'
- expression change afterwards, the variable is supposed to retain
- the same value, though not necessarily the same location.
-
- It is expected that 'var' be most often a tree for automatic user
- variables ('VAR_DECL' or 'PARM_DECL') that satisfy the requirements
- for gimple registers, but it may also be a tree for a scalarized
- component of a user variable ('ARRAY_REF', 'COMPONENT_REF'), or a
- debug temporary ('DEBUG_EXPR_DECL').
-
- As for 'value', it can be an arbitrary tree expression, but it is
- recommended that it be in a suitable form for a gimple assignment
- 'RHS'. It is not expected that user variables that could appear as
- 'var' ever appear in 'value', because in the latter we'd have their
- 'SSA_NAME's instead, but even if they were not in SSA form, user
- variables appearing in 'value' are to be regarded as part of the
- executable code space, whereas those in 'var' are to be regarded as
- part of the source code space. There is no way to refer to the
- value bound to a user variable within a 'value' expression.
-
- If 'value' is 'GIMPLE_DEBUG_BIND_NOVALUE', debug information
- generation machinery is informed that the variable 'var' is
- unbound, i.e., that its value is indeterminate, which sometimes
- means it is really unavailable, and other times that the compiler
- could not keep track of it.
-
- Block and location information for the newly-created stmt are taken
- from 'stmt', if given.
-
- -- GIMPLE function: tree gimple_debug_bind_get_var (gimple stmt)
- Return the user variable VAR that is bound at 'stmt'.
-
- -- GIMPLE function: tree gimple_debug_bind_get_value (gimple stmt)
- Return the value expression that is bound to a user variable at
- 'stmt'.
-
- -- GIMPLE function: tree * gimple_debug_bind_get_value_ptr (gimple
- stmt)
- Return a pointer to the value expression that is bound to a user
- variable at 'stmt'.
-
- -- GIMPLE function: void gimple_debug_bind_set_var (gimple stmt, tree
- var)
- Modify the user variable bound at 'stmt' to VAR.
-
- -- GIMPLE function: void gimple_debug_bind_set_value (gimple stmt, tree
- var)
- Modify the value bound to the user variable bound at 'stmt' to
- VALUE.
-
- -- GIMPLE function: void gimple_debug_bind_reset_value (gimple stmt)
- Modify the value bound to the user variable bound at 'stmt' so that
- the variable becomes unbound.
-
- -- GIMPLE function: bool gimple_debug_bind_has_value_p (gimple stmt)
- Return 'TRUE' if 'stmt' binds a user variable to a value, and
- 'FALSE' if it unbinds the variable.
-
-
-File: gccint.info, Node: 'GIMPLE_EH_FILTER', Next: 'GIMPLE_LABEL', Prev: 'GIMPLE_DEBUG', Up: Tuple specific accessors
-
-11.7.8 'GIMPLE_EH_FILTER'
--------------------------
-
- -- GIMPLE function: gimple gimple_build_eh_filter (tree types,
- gimple_seq failure)
- Build a 'GIMPLE_EH_FILTER' statement. 'TYPES' are the filter's
- types. 'FAILURE' is a sequence with the filter's failure action.
-
- -- GIMPLE function: tree gimple_eh_filter_types (gimple g)
- Return the types handled by 'GIMPLE_EH_FILTER' statement 'G'.
-
- -- GIMPLE function: tree * gimple_eh_filter_types_ptr (gimple g)
- Return a pointer to the types handled by 'GIMPLE_EH_FILTER'
- statement 'G'.
-
- -- GIMPLE function: gimple_seq gimple_eh_filter_failure (gimple g)
- Return the sequence of statement to execute when 'GIMPLE_EH_FILTER'
- statement fails.
-
- -- GIMPLE function: void gimple_eh_filter_set_types (gimple g, tree
- types)
- Set 'TYPES' to be the set of types handled by 'GIMPLE_EH_FILTER'
- 'G'.
-
- -- GIMPLE function: void gimple_eh_filter_set_failure (gimple g,
- gimple_seq failure)
- Set 'FAILURE' to be the sequence of statements to execute on
- failure for 'GIMPLE_EH_FILTER' 'G'.
-
- -- GIMPLE function: bool gimple_eh_filter_must_not_throw (gimple g)
- Return the 'EH_FILTER_MUST_NOT_THROW' flag.
-
- -- GIMPLE function: void gimple_eh_filter_set_must_not_throw (gimple g,
- bool mntp)
- Set the 'EH_FILTER_MUST_NOT_THROW' flag.
-
-
-File: gccint.info, Node: 'GIMPLE_LABEL', Next: 'GIMPLE_NOP', Prev: 'GIMPLE_EH_FILTER', Up: Tuple specific accessors
-
-11.7.9 'GIMPLE_LABEL'
----------------------
-
- -- GIMPLE function: gimple gimple_build_label (tree label)
- Build a 'GIMPLE_LABEL' statement with corresponding to the tree
- label, 'LABEL'.
-
- -- GIMPLE function: tree gimple_label_label (gimple g)
- Return the 'LABEL_DECL' node used by 'GIMPLE_LABEL' statement 'G'.
-
- -- GIMPLE function: void gimple_label_set_label (gimple g, tree label)
- Set 'LABEL' to be the 'LABEL_DECL' node used by 'GIMPLE_LABEL'
- statement 'G'.
-
- -- GIMPLE function: gimple gimple_build_goto (tree dest)
- Build a 'GIMPLE_GOTO' statement to label 'DEST'.
-
- -- GIMPLE function: tree gimple_goto_dest (gimple g)
- Return the destination of the unconditional jump 'G'.
-
- -- GIMPLE function: void gimple_goto_set_dest (gimple g, tree dest)
- Set 'DEST' to be the destination of the unconditional jump 'G'.
-
-
-File: gccint.info, Node: 'GIMPLE_NOP', Next: 'GIMPLE_OMP_ATOMIC_LOAD', Prev: 'GIMPLE_LABEL', Up: Tuple specific accessors
-
-11.7.10 'GIMPLE_NOP'
---------------------
-
- -- GIMPLE function: gimple gimple_build_nop (void)
- Build a 'GIMPLE_NOP' statement.
-
- -- GIMPLE function: bool gimple_nop_p (gimple g)
- Returns 'TRUE' if statement 'G' is a 'GIMPLE_NOP'.
-
-
-File: gccint.info, Node: 'GIMPLE_OMP_ATOMIC_LOAD', Next: 'GIMPLE_OMP_ATOMIC_STORE', Prev: 'GIMPLE_NOP', Up: Tuple specific accessors
-
-11.7.11 'GIMPLE_OMP_ATOMIC_LOAD'
---------------------------------
-
- -- GIMPLE function: gimple gimple_build_omp_atomic_load (tree lhs, tree
- rhs)
- Build a 'GIMPLE_OMP_ATOMIC_LOAD' statement. 'LHS' is the left-hand
- side of the assignment. 'RHS' is the right-hand side of the
- assignment.
-
- -- GIMPLE function: void gimple_omp_atomic_load_set_lhs (gimple g, tree
- lhs)
- Set the 'LHS' of an atomic load.
-
- -- GIMPLE function: tree gimple_omp_atomic_load_lhs (gimple g)
- Get the 'LHS' of an atomic load.
-
- -- GIMPLE function: void gimple_omp_atomic_load_set_rhs (gimple g, tree
- rhs)
- Set the 'RHS' of an atomic set.
-
- -- GIMPLE function: tree gimple_omp_atomic_load_rhs (gimple g)
- Get the 'RHS' of an atomic set.
-
-
-File: gccint.info, Node: 'GIMPLE_OMP_ATOMIC_STORE', Next: 'GIMPLE_OMP_CONTINUE', Prev: 'GIMPLE_OMP_ATOMIC_LOAD', Up: Tuple specific accessors
-
-11.7.12 'GIMPLE_OMP_ATOMIC_STORE'
----------------------------------
-
- -- GIMPLE function: gimple gimple_build_omp_atomic_store (tree val)
- Build a 'GIMPLE_OMP_ATOMIC_STORE' statement. 'VAL' is the value to
- be stored.
-
- -- GIMPLE function: void gimple_omp_atomic_store_set_val (gimple g,
- tree val)
- Set the value being stored in an atomic store.
-
- -- GIMPLE function: tree gimple_omp_atomic_store_val (gimple g)
- Return the value being stored in an atomic store.
-
-
-File: gccint.info, Node: 'GIMPLE_OMP_CONTINUE', Next: 'GIMPLE_OMP_CRITICAL', Prev: 'GIMPLE_OMP_ATOMIC_STORE', Up: Tuple specific accessors
-
-11.7.13 'GIMPLE_OMP_CONTINUE'
------------------------------
-
- -- GIMPLE function: gimple gimple_build_omp_continue (tree control_def,
- tree control_use)
- Build a 'GIMPLE_OMP_CONTINUE' statement. 'CONTROL_DEF' is the
- definition of the control variable. 'CONTROL_USE' is the use of
- the control variable.
-
- -- GIMPLE function: tree gimple_omp_continue_control_def (gimple s)
- Return the definition of the control variable on a
- 'GIMPLE_OMP_CONTINUE' in 'S'.
-
- -- GIMPLE function: tree gimple_omp_continue_control_def_ptr (gimple s)
- Same as above, but return the pointer.
-
- -- GIMPLE function: tree gimple_omp_continue_set_control_def (gimple s)
- Set the control variable definition for a 'GIMPLE_OMP_CONTINUE'
- statement in 'S'.
-
- -- GIMPLE function: tree gimple_omp_continue_control_use (gimple s)
- Return the use of the control variable on a 'GIMPLE_OMP_CONTINUE'
- in 'S'.
-
- -- GIMPLE function: tree gimple_omp_continue_control_use_ptr (gimple s)
- Same as above, but return the pointer.
-
- -- GIMPLE function: tree gimple_omp_continue_set_control_use (gimple s)
- Set the control variable use for a 'GIMPLE_OMP_CONTINUE' statement
- in 'S'.
-
-
-File: gccint.info, Node: 'GIMPLE_OMP_CRITICAL', Next: 'GIMPLE_OMP_FOR', Prev: 'GIMPLE_OMP_CONTINUE', Up: Tuple specific accessors
-
-11.7.14 'GIMPLE_OMP_CRITICAL'
------------------------------
-
- -- GIMPLE function: gimple gimple_build_omp_critical (gimple_seq body,
- tree name)
- Build a 'GIMPLE_OMP_CRITICAL' statement. 'BODY' is the sequence of
- statements for which only one thread can execute. 'NAME' is an
- optional identifier for this critical block.
-
- -- GIMPLE function: tree gimple_omp_critical_name (gimple g)
- Return the name associated with 'OMP_CRITICAL' statement 'G'.
-
- -- GIMPLE function: tree * gimple_omp_critical_name_ptr (gimple g)
- Return a pointer to the name associated with 'OMP' critical
- statement 'G'.
-
- -- GIMPLE function: void gimple_omp_critical_set_name (gimple g, tree
- name)
- Set 'NAME' to be the name associated with 'OMP' critical statement
- 'G'.
-
-
-File: gccint.info, Node: 'GIMPLE_OMP_FOR', Next: 'GIMPLE_OMP_MASTER', Prev: 'GIMPLE_OMP_CRITICAL', Up: Tuple specific accessors
-
-11.7.15 'GIMPLE_OMP_FOR'
-------------------------
-
- -- GIMPLE function: gimple gimple_build_omp_for (gimple_seq body, tree
- clauses, tree index, tree initial, tree final, tree incr,
- gimple_seq pre_body, enum tree_code omp_for_cond)
- Build a 'GIMPLE_OMP_FOR' statement. 'BODY' is sequence of
- statements inside the for loop. 'CLAUSES', are any of the 'OMP'
- loop construct's clauses: private, firstprivate, lastprivate,
- reductions, ordered, schedule, and nowait. 'PRE_BODY' is the
- sequence of statements that are loop invariant. 'INDEX' is the
- index variable. 'INITIAL' is the initial value of 'INDEX'.
- 'FINAL' is final value of 'INDEX'. OMP_FOR_COND is the predicate
- used to compare 'INDEX' and 'FINAL'. 'INCR' is the increment
- expression.
-
- -- GIMPLE function: tree gimple_omp_for_clauses (gimple g)
- Return the clauses associated with 'OMP_FOR' 'G'.
-
- -- GIMPLE function: tree * gimple_omp_for_clauses_ptr (gimple g)
- Return a pointer to the 'OMP_FOR' 'G'.
-
- -- GIMPLE function: void gimple_omp_for_set_clauses (gimple g, tree
- clauses)
- Set 'CLAUSES' to be the list of clauses associated with 'OMP_FOR'
- 'G'.
-
- -- GIMPLE function: tree gimple_omp_for_index (gimple g)
- Return the index variable for 'OMP_FOR' 'G'.
-
- -- GIMPLE function: tree * gimple_omp_for_index_ptr (gimple g)
- Return a pointer to the index variable for 'OMP_FOR' 'G'.
-
- -- GIMPLE function: void gimple_omp_for_set_index (gimple g, tree
- index)
- Set 'INDEX' to be the index variable for 'OMP_FOR' 'G'.
-
- -- GIMPLE function: tree gimple_omp_for_initial (gimple g)
- Return the initial value for 'OMP_FOR' 'G'.
-
- -- GIMPLE function: tree * gimple_omp_for_initial_ptr (gimple g)
- Return a pointer to the initial value for 'OMP_FOR' 'G'.
-
- -- GIMPLE function: void gimple_omp_for_set_initial (gimple g, tree
- initial)
- Set 'INITIAL' to be the initial value for 'OMP_FOR' 'G'.
-
- -- GIMPLE function: tree gimple_omp_for_final (gimple g)
- Return the final value for 'OMP_FOR' 'G'.
-
- -- GIMPLE function: tree * gimple_omp_for_final_ptr (gimple g)
- turn a pointer to the final value for 'OMP_FOR' 'G'.
-
- -- GIMPLE function: void gimple_omp_for_set_final (gimple g, tree
- final)
- Set 'FINAL' to be the final value for 'OMP_FOR' 'G'.
-
- -- GIMPLE function: tree gimple_omp_for_incr (gimple g)
- Return the increment value for 'OMP_FOR' 'G'.
-
- -- GIMPLE function: tree * gimple_omp_for_incr_ptr (gimple g)
- Return a pointer to the increment value for 'OMP_FOR' 'G'.
-
- -- GIMPLE function: void gimple_omp_for_set_incr (gimple g, tree incr)
- Set 'INCR' to be the increment value for 'OMP_FOR' 'G'.
-
- -- GIMPLE function: gimple_seq gimple_omp_for_pre_body (gimple g)
- Return the sequence of statements to execute before the 'OMP_FOR'
- statement 'G' starts.
-
- -- GIMPLE function: void gimple_omp_for_set_pre_body (gimple g,
- gimple_seq pre_body)
- Set 'PRE_BODY' to be the sequence of statements to execute before
- the 'OMP_FOR' statement 'G' starts.
-
- -- GIMPLE function: void gimple_omp_for_set_cond (gimple g, enum
- tree_code cond)
- Set 'COND' to be the condition code for 'OMP_FOR' 'G'.
-
- -- GIMPLE function: enum tree_code gimple_omp_for_cond (gimple g)
- Return the condition code associated with 'OMP_FOR' 'G'.
-
-
-File: gccint.info, Node: 'GIMPLE_OMP_MASTER', Next: 'GIMPLE_OMP_ORDERED', Prev: 'GIMPLE_OMP_FOR', Up: Tuple specific accessors
-
-11.7.16 'GIMPLE_OMP_MASTER'
----------------------------
-
- -- GIMPLE function: gimple gimple_build_omp_master (gimple_seq body)
- Build a 'GIMPLE_OMP_MASTER' statement. 'BODY' is the sequence of
- statements to be executed by just the master.
-
-
-File: gccint.info, Node: 'GIMPLE_OMP_ORDERED', Next: 'GIMPLE_OMP_PARALLEL', Prev: 'GIMPLE_OMP_MASTER', Up: Tuple specific accessors
-
-11.7.17 'GIMPLE_OMP_ORDERED'
-----------------------------
-
- -- GIMPLE function: gimple gimple_build_omp_ordered (gimple_seq body)
- Build a 'GIMPLE_OMP_ORDERED' statement.
-
- 'BODY' is the sequence of statements inside a loop that will executed
-in sequence.
-
-
-File: gccint.info, Node: 'GIMPLE_OMP_PARALLEL', Next: 'GIMPLE_OMP_RETURN', Prev: 'GIMPLE_OMP_ORDERED', Up: Tuple specific accessors
-
-11.7.18 'GIMPLE_OMP_PARALLEL'
------------------------------
-
- -- GIMPLE function: gimple gimple_build_omp_parallel (gimple_seq body,
- tree clauses, tree child_fn, tree data_arg)
- Build a 'GIMPLE_OMP_PARALLEL' statement.
-
- 'BODY' is sequence of statements which are executed in parallel.
-'CLAUSES', are the 'OMP' parallel construct's clauses. 'CHILD_FN' is
-the function created for the parallel threads to execute. 'DATA_ARG'
-are the shared data argument(s).
-
- -- GIMPLE function: bool gimple_omp_parallel_combined_p (gimple g)
- Return true if 'OMP' parallel statement 'G' has the
- 'GF_OMP_PARALLEL_COMBINED' flag set.
-
- -- GIMPLE function: void gimple_omp_parallel_set_combined_p (gimple g)
- Set the 'GF_OMP_PARALLEL_COMBINED' field in 'OMP' parallel
- statement 'G'.
-
- -- GIMPLE function: gimple_seq gimple_omp_body (gimple g)
- Return the body for the 'OMP' statement 'G'.
-
- -- GIMPLE function: void gimple_omp_set_body (gimple g, gimple_seq
- body)
- Set 'BODY' to be the body for the 'OMP' statement 'G'.
-
- -- GIMPLE function: tree gimple_omp_parallel_clauses (gimple g)
- Return the clauses associated with 'OMP_PARALLEL' 'G'.
-
- -- GIMPLE function: tree * gimple_omp_parallel_clauses_ptr (gimple g)
- Return a pointer to the clauses associated with 'OMP_PARALLEL' 'G'.
-
- -- GIMPLE function: void gimple_omp_parallel_set_clauses (gimple g,
- tree clauses)
- Set 'CLAUSES' to be the list of clauses associated with
- 'OMP_PARALLEL' 'G'.
-
- -- GIMPLE function: tree gimple_omp_parallel_child_fn (gimple g)
- Return the child function used to hold the body of 'OMP_PARALLEL'
- 'G'.
-
- -- GIMPLE function: tree * gimple_omp_parallel_child_fn_ptr (gimple g)
- Return a pointer to the child function used to hold the body of
- 'OMP_PARALLEL' 'G'.
-
- -- GIMPLE function: void gimple_omp_parallel_set_child_fn (gimple g,
- tree child_fn)
- Set 'CHILD_FN' to be the child function for 'OMP_PARALLEL' 'G'.
-
- -- GIMPLE function: tree gimple_omp_parallel_data_arg (gimple g)
- Return the artificial argument used to send variables and values
- from the parent to the children threads in 'OMP_PARALLEL' 'G'.
-
- -- GIMPLE function: tree * gimple_omp_parallel_data_arg_ptr (gimple g)
- Return a pointer to the data argument for 'OMP_PARALLEL' 'G'.
-
- -- GIMPLE function: void gimple_omp_parallel_set_data_arg (gimple g,
- tree data_arg)
- Set 'DATA_ARG' to be the data argument for 'OMP_PARALLEL' 'G'.
-
-
-File: gccint.info, Node: 'GIMPLE_OMP_RETURN', Next: 'GIMPLE_OMP_SECTION', Prev: 'GIMPLE_OMP_PARALLEL', Up: Tuple specific accessors
-
-11.7.19 'GIMPLE_OMP_RETURN'
----------------------------
-
- -- GIMPLE function: gimple gimple_build_omp_return (bool wait_p)
- Build a 'GIMPLE_OMP_RETURN' statement. 'WAIT_P' is true if this is
- a non-waiting return.
-
- -- GIMPLE function: void gimple_omp_return_set_nowait (gimple s)
- Set the nowait flag on 'GIMPLE_OMP_RETURN' statement 'S'.
-
- -- GIMPLE function: bool gimple_omp_return_nowait_p (gimple g)
- Return true if 'OMP' return statement 'G' has the
- 'GF_OMP_RETURN_NOWAIT' flag set.
-
-
-File: gccint.info, Node: 'GIMPLE_OMP_SECTION', Next: 'GIMPLE_OMP_SECTIONS', Prev: 'GIMPLE_OMP_RETURN', Up: Tuple specific accessors
-
-11.7.20 'GIMPLE_OMP_SECTION'
-----------------------------
-
- -- GIMPLE function: gimple gimple_build_omp_section (gimple_seq body)
- Build a 'GIMPLE_OMP_SECTION' statement for a sections statement.
-
- 'BODY' is the sequence of statements in the section.
-
- -- GIMPLE function: bool gimple_omp_section_last_p (gimple g)
- Return true if 'OMP' section statement 'G' has the
- 'GF_OMP_SECTION_LAST' flag set.
-
- -- GIMPLE function: void gimple_omp_section_set_last (gimple g)
- Set the 'GF_OMP_SECTION_LAST' flag on 'G'.
-
-
-File: gccint.info, Node: 'GIMPLE_OMP_SECTIONS', Next: 'GIMPLE_OMP_SINGLE', Prev: 'GIMPLE_OMP_SECTION', Up: Tuple specific accessors
-
-11.7.21 'GIMPLE_OMP_SECTIONS'
------------------------------
-
- -- GIMPLE function: gimple gimple_build_omp_sections (gimple_seq body,
- tree clauses)
- Build a 'GIMPLE_OMP_SECTIONS' statement. 'BODY' is a sequence of
- section statements. 'CLAUSES' are any of the 'OMP' sections
- construct's clauses: private, firstprivate, lastprivate, reduction,
- and nowait.
-
- -- GIMPLE function: gimple gimple_build_omp_sections_switch (void)
- Build a 'GIMPLE_OMP_SECTIONS_SWITCH' statement.
-
- -- GIMPLE function: tree gimple_omp_sections_control (gimple g)
- Return the control variable associated with the
- 'GIMPLE_OMP_SECTIONS' in 'G'.
-
- -- GIMPLE function: tree * gimple_omp_sections_control_ptr (gimple g)
- Return a pointer to the clauses associated with the
- 'GIMPLE_OMP_SECTIONS' in 'G'.
-
- -- GIMPLE function: void gimple_omp_sections_set_control (gimple g,
- tree control)
- Set 'CONTROL' to be the set of clauses associated with the
- 'GIMPLE_OMP_SECTIONS' in 'G'.
-
- -- GIMPLE function: tree gimple_omp_sections_clauses (gimple g)
- Return the clauses associated with 'OMP_SECTIONS' 'G'.
-
- -- GIMPLE function: tree * gimple_omp_sections_clauses_ptr (gimple g)
- Return a pointer to the clauses associated with 'OMP_SECTIONS' 'G'.
-
- -- GIMPLE function: void gimple_omp_sections_set_clauses (gimple g,
- tree clauses)
- Set 'CLAUSES' to be the set of clauses associated with
- 'OMP_SECTIONS' 'G'.
-
-
-File: gccint.info, Node: 'GIMPLE_OMP_SINGLE', Next: 'GIMPLE_PHI', Prev: 'GIMPLE_OMP_SECTIONS', Up: Tuple specific accessors
-
-11.7.22 'GIMPLE_OMP_SINGLE'
----------------------------
-
- -- GIMPLE function: gimple gimple_build_omp_single (gimple_seq body,
- tree clauses)
- Build a 'GIMPLE_OMP_SINGLE' statement. 'BODY' is the sequence of
- statements that will be executed once. 'CLAUSES' are any of the
- 'OMP' single construct's clauses: private, firstprivate,
- copyprivate, nowait.
-
- -- GIMPLE function: tree gimple_omp_single_clauses (gimple g)
- Return the clauses associated with 'OMP_SINGLE' 'G'.
-
- -- GIMPLE function: tree * gimple_omp_single_clauses_ptr (gimple g)
- Return a pointer to the clauses associated with 'OMP_SINGLE' 'G'.
-
- -- GIMPLE function: void gimple_omp_single_set_clauses (gimple g, tree
- clauses)
- Set 'CLAUSES' to be the clauses associated with 'OMP_SINGLE' 'G'.
-
-
-File: gccint.info, Node: 'GIMPLE_PHI', Next: 'GIMPLE_RESX', Prev: 'GIMPLE_OMP_SINGLE', Up: Tuple specific accessors
-
-11.7.23 'GIMPLE_PHI'
---------------------
-
- -- GIMPLE function: unsigned gimple_phi_capacity (gimple g)
- Return the maximum number of arguments supported by 'GIMPLE_PHI'
- 'G'.
-
- -- GIMPLE function: unsigned gimple_phi_num_args (gimple g)
- Return the number of arguments in 'GIMPLE_PHI' 'G'. This must
- always be exactly the number of incoming edges for the basic block
- holding 'G'.
-
- -- GIMPLE function: tree gimple_phi_result (gimple g)
- Return the 'SSA' name created by 'GIMPLE_PHI' 'G'.
-
- -- GIMPLE function: tree * gimple_phi_result_ptr (gimple g)
- Return a pointer to the 'SSA' name created by 'GIMPLE_PHI' 'G'.
-
- -- GIMPLE function: void gimple_phi_set_result (gimple g, tree result)
- Set 'RESULT' to be the 'SSA' name created by 'GIMPLE_PHI' 'G'.
-
- -- GIMPLE function: struct phi_arg_d * gimple_phi_arg (gimple g, index)
- Return the 'PHI' argument corresponding to incoming edge 'INDEX'
- for 'GIMPLE_PHI' 'G'.
-
- -- GIMPLE function: void gimple_phi_set_arg (gimple g, index, struct
- phi_arg_d * phiarg)
- Set 'PHIARG' to be the argument corresponding to incoming edge
- 'INDEX' for 'GIMPLE_PHI' 'G'.
-
-
-File: gccint.info, Node: 'GIMPLE_RESX', Next: 'GIMPLE_RETURN', Prev: 'GIMPLE_PHI', Up: Tuple specific accessors
-
-11.7.24 'GIMPLE_RESX'
----------------------
-
- -- GIMPLE function: gimple gimple_build_resx (int region)
- Build a 'GIMPLE_RESX' statement which is a statement. This
- statement is a placeholder for _Unwind_Resume before we know if a
- function call or a branch is needed. 'REGION' is the exception
- region from which control is flowing.
-
- -- GIMPLE function: int gimple_resx_region (gimple g)
- Return the region number for 'GIMPLE_RESX' 'G'.
-
- -- GIMPLE function: void gimple_resx_set_region (gimple g, int region)
- Set 'REGION' to be the region number for 'GIMPLE_RESX' 'G'.
-
-
-File: gccint.info, Node: 'GIMPLE_RETURN', Next: 'GIMPLE_SWITCH', Prev: 'GIMPLE_RESX', Up: Tuple specific accessors
-
-11.7.25 'GIMPLE_RETURN'
------------------------
-
- -- GIMPLE function: gimple gimple_build_return (tree retval)
- Build a 'GIMPLE_RETURN' statement whose return value is retval.
-
- -- GIMPLE function: tree gimple_return_retval (gimple g)
- Return the return value for 'GIMPLE_RETURN' 'G'.
-
- -- GIMPLE function: void gimple_return_set_retval (gimple g, tree
- retval)
- Set 'RETVAL' to be the return value for 'GIMPLE_RETURN' 'G'.
-
-
-File: gccint.info, Node: 'GIMPLE_SWITCH', Next: 'GIMPLE_TRY', Prev: 'GIMPLE_RETURN', Up: Tuple specific accessors
-
-11.7.26 'GIMPLE_SWITCH'
------------------------
-
- -- GIMPLE function: gimple gimple_build_switch (tree index, tree
- default_label, 'VEC'(tree,heap) *args)
- Build a 'GIMPLE_SWITCH' statement. 'INDEX' is the index variable
- to switch on, and 'DEFAULT_LABEL' represents the default label.
- 'ARGS' is a vector of 'CASE_LABEL_EXPR' trees that contain the
- non-default case labels. Each label is a tree of code
- 'CASE_LABEL_EXPR'.
-
- -- GIMPLE function: unsigned gimple_switch_num_labels (gimple g)
- Return the number of labels associated with the switch statement
- 'G'.
-
- -- GIMPLE function: void gimple_switch_set_num_labels (gimple g,
- unsigned nlabels)
- Set 'NLABELS' to be the number of labels for the switch statement
- 'G'.
-
- -- GIMPLE function: tree gimple_switch_index (gimple g)
- Return the index variable used by the switch statement 'G'.
-
- -- GIMPLE function: void gimple_switch_set_index (gimple g, tree index)
- Set 'INDEX' to be the index variable for switch statement 'G'.
-
- -- GIMPLE function: tree gimple_switch_label (gimple g, unsigned index)
- Return the label numbered 'INDEX'. The default label is 0,
- followed by any labels in a switch statement.
-
- -- GIMPLE function: void gimple_switch_set_label (gimple g, unsigned
- index, tree label)
- Set the label number 'INDEX' to 'LABEL'. 0 is always the default
- label.
-
- -- GIMPLE function: tree gimple_switch_default_label (gimple g)
- Return the default label for a switch statement.
-
- -- GIMPLE function: void gimple_switch_set_default_label (gimple g,
- tree label)
- Set the default label for a switch statement.
-
-
-File: gccint.info, Node: 'GIMPLE_TRY', Next: 'GIMPLE_WITH_CLEANUP_EXPR', Prev: 'GIMPLE_SWITCH', Up: Tuple specific accessors
-
-11.7.27 'GIMPLE_TRY'
---------------------
-
- -- GIMPLE function: gimple gimple_build_try (gimple_seq eval,
- gimple_seq cleanup, unsigned int kind)
- Build a 'GIMPLE_TRY' statement. 'EVAL' is a sequence with the
- expression to evaluate. 'CLEANUP' is a sequence of statements to
- run at clean-up time. 'KIND' is the enumeration value
- 'GIMPLE_TRY_CATCH' if this statement denotes a try/catch construct
- or 'GIMPLE_TRY_FINALLY' if this statement denotes a try/finally
- construct.
-
- -- GIMPLE function: enum gimple_try_flags gimple_try_kind (gimple g)
- Return the kind of try block represented by 'GIMPLE_TRY' 'G'. This
- is either 'GIMPLE_TRY_CATCH' or 'GIMPLE_TRY_FINALLY'.
-
- -- GIMPLE function: bool gimple_try_catch_is_cleanup (gimple g)
- Return the 'GIMPLE_TRY_CATCH_IS_CLEANUP' flag.
-
- -- GIMPLE function: gimple_seq gimple_try_eval (gimple g)
- Return the sequence of statements used as the body for 'GIMPLE_TRY'
- 'G'.
-
- -- GIMPLE function: gimple_seq gimple_try_cleanup (gimple g)
- Return the sequence of statements used as the cleanup body for
- 'GIMPLE_TRY' 'G'.
-
- -- GIMPLE function: void gimple_try_set_catch_is_cleanup (gimple g,
- bool catch_is_cleanup)
- Set the 'GIMPLE_TRY_CATCH_IS_CLEANUP' flag.
-
- -- GIMPLE function: void gimple_try_set_eval (gimple g, gimple_seq
- eval)
- Set 'EVAL' to be the sequence of statements to use as the body for
- 'GIMPLE_TRY' 'G'.
-
- -- GIMPLE function: void gimple_try_set_cleanup (gimple g, gimple_seq
- cleanup)
- Set 'CLEANUP' to be the sequence of statements to use as the
- cleanup body for 'GIMPLE_TRY' 'G'.
-
-
-File: gccint.info, Node: 'GIMPLE_WITH_CLEANUP_EXPR', Prev: 'GIMPLE_TRY', Up: Tuple specific accessors
-
-11.7.28 'GIMPLE_WITH_CLEANUP_EXPR'
-----------------------------------
-
- -- GIMPLE function: gimple gimple_build_wce (gimple_seq cleanup)
- Build a 'GIMPLE_WITH_CLEANUP_EXPR' statement. 'CLEANUP' is the
- clean-up expression.
-
- -- GIMPLE function: gimple_seq gimple_wce_cleanup (gimple g)
- Return the cleanup sequence for cleanup statement 'G'.
-
- -- GIMPLE function: void gimple_wce_set_cleanup (gimple g, gimple_seq
- cleanup)
- Set 'CLEANUP' to be the cleanup sequence for 'G'.
-
- -- GIMPLE function: bool gimple_wce_cleanup_eh_only (gimple g)
- Return the 'CLEANUP_EH_ONLY' flag for a 'WCE' tuple.
-
- -- GIMPLE function: void gimple_wce_set_cleanup_eh_only (gimple g, bool
- eh_only_p)
- Set the 'CLEANUP_EH_ONLY' flag for a 'WCE' tuple.
-
-
-File: gccint.info, Node: GIMPLE sequences, Next: Sequence iterators, Prev: Tuple specific accessors, Up: GIMPLE
-
-11.8 GIMPLE sequences
-=====================
-
-GIMPLE sequences are the tuple equivalent of 'STATEMENT_LIST''s used in
-'GENERIC'. They are used to chain statements together, and when used in
-conjunction with sequence iterators, provide a framework for iterating
-through statements.
-
- GIMPLE sequences are of type struct 'gimple_sequence', but are more
-commonly passed by reference to functions dealing with sequences. The
-type for a sequence pointer is 'gimple_seq' which is the same as struct
-'gimple_sequence' *. When declaring a local sequence, you can define a
-local variable of type struct 'gimple_sequence'. When declaring a
-sequence allocated on the garbage collected heap, use the function
-'gimple_seq_alloc' documented below.
-
- There are convenience functions for iterating through sequences in the
-section entitled Sequence Iterators.
-
- Below is a list of functions to manipulate and query sequences.
-
- -- GIMPLE function: void gimple_seq_add_stmt (gimple_seq *seq, gimple
- g)
- Link a gimple statement to the end of the sequence *'SEQ' if 'G' is
- not 'NULL'. If *'SEQ' is 'NULL', allocate a sequence before
- linking.
-
- -- GIMPLE function: void gimple_seq_add_seq (gimple_seq *dest,
- gimple_seq src)
- Append sequence 'SRC' to the end of sequence *'DEST' if 'SRC' is
- not 'NULL'. If *'DEST' is 'NULL', allocate a new sequence before
- appending.
-
- -- GIMPLE function: gimple_seq gimple_seq_deep_copy (gimple_seq src)
- Perform a deep copy of sequence 'SRC' and return the result.
-
- -- GIMPLE function: gimple_seq gimple_seq_reverse (gimple_seq seq)
- Reverse the order of the statements in the sequence 'SEQ'. Return
- 'SEQ'.
-
- -- GIMPLE function: gimple gimple_seq_first (gimple_seq s)
- Return the first statement in sequence 'S'.
-
- -- GIMPLE function: gimple gimple_seq_last (gimple_seq s)
- Return the last statement in sequence 'S'.
-
- -- GIMPLE function: void gimple_seq_set_last (gimple_seq s, gimple
- last)
- Set the last statement in sequence 'S' to the statement in 'LAST'.
-
- -- GIMPLE function: void gimple_seq_set_first (gimple_seq s, gimple
- first)
- Set the first statement in sequence 'S' to the statement in
- 'FIRST'.
-
- -- GIMPLE function: void gimple_seq_init (gimple_seq s)
- Initialize sequence 'S' to an empty sequence.
-
- -- GIMPLE function: gimple_seq gimple_seq_alloc (void)
- Allocate a new sequence in the garbage collected store and return
- it.
-
- -- GIMPLE function: void gimple_seq_copy (gimple_seq dest, gimple_seq
- src)
- Copy the sequence 'SRC' into the sequence 'DEST'.
-
- -- GIMPLE function: bool gimple_seq_empty_p (gimple_seq s)
- Return true if the sequence 'S' is empty.
-
- -- GIMPLE function: gimple_seq bb_seq (basic_block bb)
- Returns the sequence of statements in 'BB'.
-
- -- GIMPLE function: void set_bb_seq (basic_block bb, gimple_seq seq)
- Sets the sequence of statements in 'BB' to 'SEQ'.
-
- -- GIMPLE function: bool gimple_seq_singleton_p (gimple_seq seq)
- Determine whether 'SEQ' contains exactly one statement.
-
-
-File: gccint.info, Node: Sequence iterators, Next: Adding a new GIMPLE statement code, Prev: GIMPLE sequences, Up: GIMPLE
-
-11.9 Sequence iterators
-=======================
-
-Sequence iterators are convenience constructs for iterating through
-statements in a sequence. Given a sequence 'SEQ', here is a typical use
-of gimple sequence iterators:
-
- gimple_stmt_iterator gsi;
-
- for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gimple g = gsi_stmt (gsi);
- /* Do something with gimple statement G. */
- }
-
- Backward iterations are possible:
-
- for (gsi = gsi_last (seq); !gsi_end_p (gsi); gsi_prev (&gsi))
-
- Forward and backward iterations on basic blocks are possible with
-'gsi_start_bb' and 'gsi_last_bb'.
-
- In the documentation below we sometimes refer to enum
-'gsi_iterator_update'. The valid options for this enumeration are:
-
- * 'GSI_NEW_STMT' Only valid when a single statement is added. Move
- the iterator to it.
-
- * 'GSI_SAME_STMT' Leave the iterator at the same statement.
-
- * 'GSI_CONTINUE_LINKING' Move iterator to whatever position is
- suitable for linking other statements in the same direction.
-
- Below is a list of the functions used to manipulate and use statement
-iterators.
-
- -- GIMPLE function: gimple_stmt_iterator gsi_start (gimple_seq seq)
- Return a new iterator pointing to the sequence 'SEQ''s first
- statement. If 'SEQ' is empty, the iterator's basic block is
- 'NULL'. Use 'gsi_start_bb' instead when the iterator needs to
- always have the correct basic block set.
-
- -- GIMPLE function: gimple_stmt_iterator gsi_start_bb (basic_block bb)
- Return a new iterator pointing to the first statement in basic
- block 'BB'.
-
- -- GIMPLE function: gimple_stmt_iterator gsi_last (gimple_seq seq)
- Return a new iterator initially pointing to the last statement of
- sequence 'SEQ'. If 'SEQ' is empty, the iterator's basic block is
- 'NULL'. Use 'gsi_last_bb' instead when the iterator needs to
- always have the correct basic block set.
-
- -- GIMPLE function: gimple_stmt_iterator gsi_last_bb (basic_block bb)
- Return a new iterator pointing to the last statement in basic block
- 'BB'.
-
- -- GIMPLE function: bool gsi_end_p (gimple_stmt_iterator i)
- Return 'TRUE' if at the end of 'I'.
-
- -- GIMPLE function: bool gsi_one_before_end_p (gimple_stmt_iterator i)
- Return 'TRUE' if we're one statement before the end of 'I'.
-
- -- GIMPLE function: void gsi_next (gimple_stmt_iterator *i)
- Advance the iterator to the next gimple statement.
-
- -- GIMPLE function: void gsi_prev (gimple_stmt_iterator *i)
- Advance the iterator to the previous gimple statement.
-
- -- GIMPLE function: gimple gsi_stmt (gimple_stmt_iterator i)
- Return the current stmt.
-
- -- GIMPLE function: gimple_stmt_iterator gsi_after_labels (basic_block
- bb)
- Return a block statement iterator that points to the first
- non-label statement in block 'BB'.
-
- -- GIMPLE function: gimple * gsi_stmt_ptr (gimple_stmt_iterator *i)
- Return a pointer to the current stmt.
-
- -- GIMPLE function: basic_block gsi_bb (gimple_stmt_iterator i)
- Return the basic block associated with this iterator.
-
- -- GIMPLE function: gimple_seq gsi_seq (gimple_stmt_iterator i)
- Return the sequence associated with this iterator.
-
- -- GIMPLE function: void gsi_remove (gimple_stmt_iterator *i, bool
- remove_eh_info)
- Remove the current stmt from the sequence. The iterator is updated
- to point to the next statement. When 'REMOVE_EH_INFO' is true we
- remove the statement pointed to by iterator 'I' from the 'EH'
- tables. Otherwise we do not modify the 'EH' tables. Generally,
- 'REMOVE_EH_INFO' should be true when the statement is going to be
- removed from the 'IL' and not reinserted elsewhere.
-
- -- GIMPLE function: void gsi_link_seq_before (gimple_stmt_iterator *i,
- gimple_seq seq, enum gsi_iterator_update mode)
- Links the sequence of statements 'SEQ' before the statement pointed
- by iterator 'I'. 'MODE' indicates what to do with the iterator
- after insertion (see 'enum gsi_iterator_update' above).
-
- -- GIMPLE function: void gsi_link_before (gimple_stmt_iterator *i,
- gimple g, enum gsi_iterator_update mode)
- Links statement 'G' before the statement pointed-to by iterator
- 'I'. Updates iterator 'I' according to 'MODE'.
-
- -- GIMPLE function: void gsi_link_seq_after (gimple_stmt_iterator *i,
- gimple_seq seq, enum gsi_iterator_update mode)
- Links sequence 'SEQ' after the statement pointed-to by iterator
- 'I'. 'MODE' is as in 'gsi_insert_after'.
-
- -- GIMPLE function: void gsi_link_after (gimple_stmt_iterator *i,
- gimple g, enum gsi_iterator_update mode)
- Links statement 'G' after the statement pointed-to by iterator 'I'.
- 'MODE' is as in 'gsi_insert_after'.
-
- -- GIMPLE function: gimple_seq gsi_split_seq_after
- (gimple_stmt_iterator i)
- Move all statements in the sequence after 'I' to a new sequence.
- Return this new sequence.
-
- -- GIMPLE function: gimple_seq gsi_split_seq_before
- (gimple_stmt_iterator *i)
- Move all statements in the sequence before 'I' to a new sequence.
- Return this new sequence.
-
- -- GIMPLE function: void gsi_replace (gimple_stmt_iterator *i, gimple
- stmt, bool update_eh_info)
- Replace the statement pointed-to by 'I' to 'STMT'. If
- 'UPDATE_EH_INFO' is true, the exception handling information of the
- original statement is moved to the new statement.
-
- -- GIMPLE function: void gsi_insert_before (gimple_stmt_iterator *i,
- gimple stmt, enum gsi_iterator_update mode)
- Insert statement 'STMT' before the statement pointed-to by iterator
- 'I', update 'STMT''s basic block and scan it for new operands.
- 'MODE' specifies how to update iterator 'I' after insertion (see
- enum 'gsi_iterator_update').
-
- -- GIMPLE function: void gsi_insert_seq_before (gimple_stmt_iterator
- *i, gimple_seq seq, enum gsi_iterator_update mode)
- Like 'gsi_insert_before', but for all the statements in 'SEQ'.
-
- -- GIMPLE function: void gsi_insert_after (gimple_stmt_iterator *i,
- gimple stmt, enum gsi_iterator_update mode)
- Insert statement 'STMT' after the statement pointed-to by iterator
- 'I', update 'STMT''s basic block and scan it for new operands.
- 'MODE' specifies how to update iterator 'I' after insertion (see
- enum 'gsi_iterator_update').
-
- -- GIMPLE function: void gsi_insert_seq_after (gimple_stmt_iterator *i,
- gimple_seq seq, enum gsi_iterator_update mode)
- Like 'gsi_insert_after', but for all the statements in 'SEQ'.
-
- -- GIMPLE function: gimple_stmt_iterator gsi_for_stmt (gimple stmt)
- Finds iterator for 'STMT'.
-
- -- GIMPLE function: void gsi_move_after (gimple_stmt_iterator *from,
- gimple_stmt_iterator *to)
- Move the statement at 'FROM' so it comes right after the statement
- at 'TO'.
-
- -- GIMPLE function: void gsi_move_before (gimple_stmt_iterator *from,
- gimple_stmt_iterator *to)
- Move the statement at 'FROM' so it comes right before the statement
- at 'TO'.
-
- -- GIMPLE function: void gsi_move_to_bb_end (gimple_stmt_iterator
- *from, basic_block bb)
- Move the statement at 'FROM' to the end of basic block 'BB'.
-
- -- GIMPLE function: void gsi_insert_on_edge (edge e, gimple stmt)
- Add 'STMT' to the pending list of edge 'E'. No actual insertion is
- made until a call to 'gsi_commit_edge_inserts'() is made.
-
- -- GIMPLE function: void gsi_insert_seq_on_edge (edge e, gimple_seq
- seq)
- Add the sequence of statements in 'SEQ' to the pending list of edge
- 'E'. No actual insertion is made until a call to
- 'gsi_commit_edge_inserts'() is made.
-
- -- GIMPLE function: basic_block gsi_insert_on_edge_immediate (edge e,
- gimple stmt)
- Similar to 'gsi_insert_on_edge'+'gsi_commit_edge_inserts'. If a
- new block has to be created, it is returned.
-
- -- GIMPLE function: void gsi_commit_one_edge_insert (edge e,
- basic_block *new_bb)
- Commit insertions pending at edge 'E'. If a new block is created,
- set 'NEW_BB' to this block, otherwise set it to 'NULL'.
-
- -- GIMPLE function: void gsi_commit_edge_inserts (void)
- This routine will commit all pending edge insertions, creating any
- new basic blocks which are necessary.
-
-
-File: gccint.info, Node: Adding a new GIMPLE statement code, Next: Statement and operand traversals, Prev: Sequence iterators, Up: GIMPLE
-
-11.10 Adding a new GIMPLE statement code
-========================================
-
-The first step in adding a new GIMPLE statement code, is modifying the
-file 'gimple.def', which contains all the GIMPLE codes. Then you must
-add a corresponding structure, and an entry in 'union
-gimple_statement_d', both of which are located in 'gimple.h'. This in
-turn, will require you to add a corresponding 'GTY' tag in
-'gsstruct.def', and code to handle this tag in 'gss_for_code' which is
-located in 'gimple.c'.
-
- In order for the garbage collector to know the size of the structure
-you created in 'gimple.h', you need to add a case to handle your new
-GIMPLE statement in 'gimple_size' which is located in 'gimple.c'.
-
- You will probably want to create a function to build the new gimple
-statement in 'gimple.c'. The function should be called
-'gimple_build_NEW-TUPLE-NAME', and should return the new tuple of type
-gimple.
-
- If your new statement requires accessors for any members or operands it
-may have, put simple inline accessors in 'gimple.h' and any non-trivial
-accessors in 'gimple.c' with a corresponding prototype in 'gimple.h'.
-
-
-File: gccint.info, Node: Statement and operand traversals, Prev: Adding a new GIMPLE statement code, Up: GIMPLE
-
-11.11 Statement and operand traversals
-======================================
-
-There are two functions available for walking statements and sequences:
-'walk_gimple_stmt' and 'walk_gimple_seq', accordingly, and a third
-function for walking the operands in a statement: 'walk_gimple_op'.
-
- -- GIMPLE function: tree walk_gimple_stmt (gimple_stmt_iterator *gsi,
- walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct
- walk_stmt_info *wi)
- This function is used to walk the current statement in 'GSI',
- optionally using traversal state stored in 'WI'. If 'WI' is
- 'NULL', no state is kept during the traversal.
-
- The callback 'CALLBACK_STMT' is called. If 'CALLBACK_STMT' returns
- true, it means that the callback function has handled all the
- operands of the statement and it is not necessary to walk its
- operands.
-
- If 'CALLBACK_STMT' is 'NULL' or it returns false, 'CALLBACK_OP' is
- called on each operand of the statement via 'walk_gimple_op'. If
- 'walk_gimple_op' returns non-'NULL' for any operand, the remaining
- operands are not scanned.
-
- The return value is that returned by the last call to
- 'walk_gimple_op', or 'NULL_TREE' if no 'CALLBACK_OP' is specified.
-
- -- GIMPLE function: tree walk_gimple_op (gimple stmt, walk_tree_fn
- callback_op, struct walk_stmt_info *wi)
- Use this function to walk the operands of statement 'STMT'. Every
- operand is walked via 'walk_tree' with optional state information
- in 'WI'.
-
- 'CALLBACK_OP' is called on each operand of 'STMT' via 'walk_tree'.
- Additional parameters to 'walk_tree' must be stored in 'WI'. For
- each operand 'OP', 'walk_tree' is called as:
-
- walk_tree (&OP, CALLBACK_OP, WI, PSET)
-
- If 'CALLBACK_OP' returns non-'NULL' for an operand, the remaining
- operands are not scanned. The return value is that returned by the
- last call to 'walk_tree', or 'NULL_TREE' if no 'CALLBACK_OP' is
- specified.
-
- -- GIMPLE function: tree walk_gimple_seq (gimple_seq seq, walk_stmt_fn
- callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info
- *wi)
- This function walks all the statements in the sequence 'SEQ'
- calling 'walk_gimple_stmt' on each one. 'WI' is as in
- 'walk_gimple_stmt'. If 'walk_gimple_stmt' returns non-'NULL', the
- walk is stopped and the value returned. Otherwise, all the
- statements are walked and 'NULL_TREE' returned.
-
-
-File: gccint.info, Node: Tree SSA, Next: RTL, Prev: GIMPLE, Up: Top
-
-12 Analysis and Optimization of GIMPLE tuples
-*********************************************
-
-GCC uses three main intermediate languages to represent the program
-during compilation: GENERIC, GIMPLE and RTL. GENERIC is a
-language-independent representation generated by each front end. It is
-used to serve as an interface between the parser and optimizer. GENERIC
-is a common representation that is able to represent programs written in
-all the languages supported by GCC.
-
- GIMPLE and RTL are used to optimize the program. GIMPLE is used for
-target and language independent optimizations (e.g., inlining, constant
-propagation, tail call elimination, redundancy elimination, etc). Much
-like GENERIC, GIMPLE is a language independent, tree based
-representation. However, it differs from GENERIC in that the GIMPLE
-grammar is more restrictive: expressions contain no more than 3 operands
-(except function calls), it has no control flow structures and
-expressions with side-effects are only allowed on the right hand side of
-assignments. See the chapter describing GENERIC and GIMPLE for more
-details.
-
- This chapter describes the data structures and functions used in the
-GIMPLE optimizers (also known as "tree optimizers" or "middle end"). In
-particular, it focuses on all the macros, data structures, functions and
-programming constructs needed to implement optimization passes for
-GIMPLE.
-
-* Menu:
-
-* Annotations:: Attributes for variables.
-* SSA Operands:: SSA names referenced by GIMPLE statements.
-* SSA:: Static Single Assignment representation.
-* Alias analysis:: Representing aliased loads and stores.
-* Memory model:: Memory model used by the middle-end.
-
-
-File: gccint.info, Node: Annotations, Next: SSA Operands, Up: Tree SSA
-
-12.1 Annotations
-================
-
-The optimizers need to associate attributes with variables during the
-optimization process. For instance, we need to know whether a variable
-has aliases. All these attributes are stored in data structures called
-annotations which are then linked to the field 'ann' in 'struct
-tree_common'.
-
-
-File: gccint.info, Node: SSA Operands, Next: SSA, Prev: Annotations, Up: Tree SSA
-
-12.2 SSA Operands
-=================
-
-Almost every GIMPLE statement will contain a reference to a variable or
-memory location. Since statements come in different shapes and sizes,
-their operands are going to be located at various spots inside the
-statement's tree. To facilitate access to the statement's operands,
-they are organized into lists associated inside each statement's
-annotation. Each element in an operand list is a pointer to a
-'VAR_DECL', 'PARM_DECL' or 'SSA_NAME' tree node. This provides a very
-convenient way of examining and replacing operands.
-
- Data flow analysis and optimization is done on all tree nodes
-representing variables. Any node for which 'SSA_VAR_P' returns nonzero
-is considered when scanning statement operands. However, not all
-'SSA_VAR_P' variables are processed in the same way. For the purposes
-of optimization, we need to distinguish between references to local
-scalar variables and references to globals, statics, structures, arrays,
-aliased variables, etc. The reason is simple, the compiler can gather
-complete data flow information for a local scalar. On the other hand, a
-global variable may be modified by a function call, it may not be
-possible to keep track of all the elements of an array or the fields of
-a structure, etc.
-
- The operand scanner gathers two kinds of operands: "real" and
-"virtual". An operand for which 'is_gimple_reg' returns true is
-considered real, otherwise it is a virtual operand. We also distinguish
-between uses and definitions. An operand is used if its value is loaded
-by the statement (e.g., the operand at the RHS of an assignment). If
-the statement assigns a new value to the operand, the operand is
-considered a definition (e.g., the operand at the LHS of an assignment).
-
- Virtual and real operands also have very different data flow
-properties. Real operands are unambiguous references to the full object
-that they represent. For instance, given
-
- {
- int a, b;
- a = b
- }
-
- Since 'a' and 'b' are non-aliased locals, the statement 'a = b' will
-have one real definition and one real use because variable 'a' is
-completely modified with the contents of variable 'b'. Real definition
-are also known as "killing definitions". Similarly, the use of 'b'
-reads all its bits.
-
- In contrast, virtual operands are used with variables that can have a
-partial or ambiguous reference. This includes structures, arrays,
-globals, and aliased variables. In these cases, we have two types of
-definitions. For globals, structures, and arrays, we can determine from
-a statement whether a variable of these types has a killing definition.
-If the variable does, then the statement is marked as having a "must
-definition" of that variable. However, if a statement is only defining
-a part of the variable (i.e. a field in a structure), or if we know that
-a statement might define the variable but we cannot say for sure, then
-we mark that statement as having a "may definition". For instance,
-given
-
- {
- int a, b, *p;
-
- if (...)
- p = &a;
- else
- p = &b;
- *p = 5;
- return *p;
- }
-
- The assignment '*p = 5' may be a definition of 'a' or 'b'. If we
-cannot determine statically where 'p' is pointing to at the time of the
-store operation, we create virtual definitions to mark that statement as
-a potential definition site for 'a' and 'b'. Memory loads are similarly
-marked with virtual use operands. Virtual operands are shown in tree
-dumps right before the statement that contains them. To request a tree
-dump with virtual operands, use the '-vops' option to '-fdump-tree':
-
- {
- int a, b, *p;
-
- if (...)
- p = &a;
- else
- p = &b;
- # a = VDEF <a>
- # b = VDEF <b>
- *p = 5;
-
- # VUSE <a>
- # VUSE <b>
- return *p;
- }
-
- Notice that 'VDEF' operands have two copies of the referenced variable.
-This indicates that this is not a killing definition of that variable.
-In this case we refer to it as a "may definition" or "aliased store".
-The presence of the second copy of the variable in the 'VDEF' operand
-will become important when the function is converted into SSA form.
-This will be used to link all the non-killing definitions to prevent
-optimizations from making incorrect assumptions about them.
-
- Operands are updated as soon as the statement is finished via a call to
-'update_stmt'. If statement elements are changed via 'SET_USE' or
-'SET_DEF', then no further action is required (i.e., those macros take
-care of updating the statement). If changes are made by manipulating
-the statement's tree directly, then a call must be made to 'update_stmt'
-when complete. Calling one of the 'bsi_insert' routines or
-'bsi_replace' performs an implicit call to 'update_stmt'.
-
-12.2.1 Operand Iterators And Access Routines
---------------------------------------------
-
-Operands are collected by 'tree-ssa-operands.c'. They are stored inside
-each statement's annotation and can be accessed through either the
-operand iterators or an access routine.
-
- The following access routines are available for examining operands:
-
- 1. 'SINGLE_SSA_{USE,DEF,TREE}_OPERAND': These accessors will return
- NULL unless there is exactly one operand matching the specified
- flags. If there is exactly one operand, the operand is returned as
- either a 'tree', 'def_operand_p', or 'use_operand_p'.
-
- tree t = SINGLE_SSA_TREE_OPERAND (stmt, flags);
- use_operand_p u = SINGLE_SSA_USE_OPERAND (stmt, SSA_ALL_VIRTUAL_USES);
- def_operand_p d = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_ALL_DEFS);
-
- 2. 'ZERO_SSA_OPERANDS': This macro returns true if there are no
- operands matching the specified flags.
-
- if (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
- return;
-
- 3. 'NUM_SSA_OPERANDS': This macro Returns the number of operands
- matching 'flags'. This actually executes a loop to perform the
- count, so only use this if it is really needed.
-
- int count = NUM_SSA_OPERANDS (stmt, flags)
-
- If you wish to iterate over some or all operands, use the
-'FOR_EACH_SSA_{USE,DEF,TREE}_OPERAND' iterator. For example, to print
-all the operands for a statement:
-
- void
- print_ops (tree stmt)
- {
- ssa_op_iter;
- tree var;
-
- FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_OPERANDS)
- print_generic_expr (stderr, var, TDF_SLIM);
- }
-
- How to choose the appropriate iterator:
-
- 1. Determine whether you are need to see the operand pointers, or just
- the trees, and choose the appropriate macro:
-
- Need Macro:
- ---- -------
- use_operand_p FOR_EACH_SSA_USE_OPERAND
- def_operand_p FOR_EACH_SSA_DEF_OPERAND
- tree FOR_EACH_SSA_TREE_OPERAND
-
- 2. You need to declare a variable of the type you are interested in,
- and an ssa_op_iter structure which serves as the loop controlling
- variable.
-
- 3. Determine which operands you wish to use, and specify the flags of
- those you are interested in. They are documented in
- 'tree-ssa-operands.h':
-
- #define SSA_OP_USE 0x01 /* Real USE operands. */
- #define SSA_OP_DEF 0x02 /* Real DEF operands. */
- #define SSA_OP_VUSE 0x04 /* VUSE operands. */
- #define SSA_OP_VDEF 0x08 /* VDEF operands. */
-
- /* These are commonly grouped operand flags. */
- #define SSA_OP_VIRTUAL_USES (SSA_OP_VUSE)
- #define SSA_OP_VIRTUAL_DEFS (SSA_OP_VDEF)
- #define SSA_OP_ALL_VIRTUALS (SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_DEFS)
- #define SSA_OP_ALL_USES (SSA_OP_VIRTUAL_USES | SSA_OP_USE)
- #define SSA_OP_ALL_DEFS (SSA_OP_VIRTUAL_DEFS | SSA_OP_DEF)
- #define SSA_OP_ALL_OPERANDS (SSA_OP_ALL_USES | SSA_OP_ALL_DEFS)
-
- So if you want to look at the use pointers for all the 'USE' and 'VUSE'
-operands, you would do something like:
-
- use_operand_p use_p;
- ssa_op_iter iter;
-
- FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, (SSA_OP_USE | SSA_OP_VUSE))
- {
- process_use_ptr (use_p);
- }
-
- The 'TREE' macro is basically the same as the 'USE' and 'DEF' macros,
-only with the use or def dereferenced via 'USE_FROM_PTR (use_p)' and
-'DEF_FROM_PTR (def_p)'. Since we aren't using operand pointers, use and
-defs flags can be mixed.
-
- tree var;
- ssa_op_iter iter;
-
- FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_VUSE)
- {
- print_generic_expr (stderr, var, TDF_SLIM);
- }
-
- 'VDEF's are broken into two flags, one for the 'DEF' portion
-('SSA_OP_VDEF') and one for the USE portion ('SSA_OP_VUSE').
-
- There are many examples in the code, in addition to the documentation
-in 'tree-ssa-operands.h' and 'ssa-iterators.h'.
-
- There are also a couple of variants on the stmt iterators regarding PHI
-nodes.
-
- 'FOR_EACH_PHI_ARG' Works exactly like 'FOR_EACH_SSA_USE_OPERAND',
-except it works over 'PHI' arguments instead of statement operands.
-
- /* Look at every virtual PHI use. */
- FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_VIRTUAL_USES)
- {
- my_code;
- }
-
- /* Look at every real PHI use. */
- FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_USES)
- my_code;
-
- /* Look at every PHI use. */
- FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_ALL_USES)
- my_code;
-
- 'FOR_EACH_PHI_OR_STMT_{USE,DEF}' works exactly like
-'FOR_EACH_SSA_{USE,DEF}_OPERAND', except it will function on either a
-statement or a 'PHI' node. These should be used when it is appropriate
-but they are not quite as efficient as the individual 'FOR_EACH_PHI' and
-'FOR_EACH_SSA' routines.
-
- FOR_EACH_PHI_OR_STMT_USE (use_operand_p, stmt, iter, flags)
- {
- my_code;
- }
-
- FOR_EACH_PHI_OR_STMT_DEF (def_operand_p, phi, iter, flags)
- {
- my_code;
- }
-
-12.2.2 Immediate Uses
----------------------
-
-Immediate use information is now always available. Using the immediate
-use iterators, you may examine every use of any 'SSA_NAME'. For
-instance, to change each use of 'ssa_var' to 'ssa_var2' and call
-fold_stmt on each stmt after that is done:
-
- use_operand_p imm_use_p;
- imm_use_iterator iterator;
- tree ssa_var, stmt;
-
-
- FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var)
- {
- FOR_EACH_IMM_USE_ON_STMT (imm_use_p, iterator)
- SET_USE (imm_use_p, ssa_var_2);
- fold_stmt (stmt);
- }
-
- There are 2 iterators which can be used. 'FOR_EACH_IMM_USE_FAST' is
-used when the immediate uses are not changed, i.e., you are looking at
-the uses, but not setting them.
-
- If they do get changed, then care must be taken that things are not
-changed under the iterators, so use the 'FOR_EACH_IMM_USE_STMT' and
-'FOR_EACH_IMM_USE_ON_STMT' iterators. They attempt to preserve the
-sanity of the use list by moving all the uses for a statement into a
-controlled position, and then iterating over those uses. Then the
-optimization can manipulate the stmt when all the uses have been
-processed. This is a little slower than the FAST version since it adds
-a placeholder element and must sort through the list a bit for each
-statement. This placeholder element must be also be removed if the loop
-is terminated early. The macro 'BREAK_FROM_IMM_USE_SAFE' is provided to
-do this :
-
- FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var)
- {
- if (stmt == last_stmt)
- BREAK_FROM_SAFE_IMM_USE (iter);
-
- FOR_EACH_IMM_USE_ON_STMT (imm_use_p, iterator)
- SET_USE (imm_use_p, ssa_var_2);
- fold_stmt (stmt);
- }
-
- There are checks in 'verify_ssa' which verify that the immediate use
-list is up to date, as well as checking that an optimization didn't
-break from the loop without using this macro. It is safe to simply
-'break'; from a 'FOR_EACH_IMM_USE_FAST' traverse.
-
- Some useful functions and macros:
- 1. 'has_zero_uses (ssa_var)' : Returns true if there are no uses of
- 'ssa_var'.
- 2. 'has_single_use (ssa_var)' : Returns true if there is only a single
- use of 'ssa_var'.
- 3. 'single_imm_use (ssa_var, use_operand_p *ptr, tree *stmt)' :
- Returns true if there is only a single use of 'ssa_var', and also
- returns the use pointer and statement it occurs in, in the second
- and third parameters.
- 4. 'num_imm_uses (ssa_var)' : Returns the number of immediate uses of
- 'ssa_var'. It is better not to use this if possible since it
- simply utilizes a loop to count the uses.
- 5. 'PHI_ARG_INDEX_FROM_USE (use_p)' : Given a use within a 'PHI' node,
- return the index number for the use. An assert is triggered if the
- use isn't located in a 'PHI' node.
- 6. 'USE_STMT (use_p)' : Return the statement a use occurs in.
-
- Note that uses are not put into an immediate use list until their
-statement is actually inserted into the instruction stream via a 'bsi_*'
-routine.
-
- It is also still possible to utilize lazy updating of statements, but
-this should be used only when absolutely required. Both alias analysis
-and the dominator optimizations currently do this.
-
- When lazy updating is being used, the immediate use information is out
-of date and cannot be used reliably. Lazy updating is achieved by
-simply marking statements modified via calls to 'mark_stmt_modified'
-instead of 'update_stmt'. When lazy updating is no longer required, all
-the modified statements must have 'update_stmt' called in order to bring
-them up to date. This must be done before the optimization is finished,
-or 'verify_ssa' will trigger an abort.
-
- This is done with a simple loop over the instruction stream:
- block_stmt_iterator bsi;
- basic_block bb;
- FOR_EACH_BB (bb)
- {
- for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
- update_stmt_if_modified (bsi_stmt (bsi));
- }
-
-
-File: gccint.info, Node: SSA, Next: Alias analysis, Prev: SSA Operands, Up: Tree SSA
-
-12.3 Static Single Assignment
-=============================
-
-Most of the tree optimizers rely on the data flow information provided
-by the Static Single Assignment (SSA) form. We implement the SSA form
-as described in 'R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K.
-Zadeck. Efficiently Computing Static Single Assignment Form and the
-Control Dependence Graph. ACM Transactions on Programming Languages and
-Systems, 13(4):451-490, October 1991'.
-
- The SSA form is based on the premise that program variables are
-assigned in exactly one location in the program. Multiple assignments
-to the same variable create new versions of that variable. Naturally,
-actual programs are seldom in SSA form initially because variables tend
-to be assigned multiple times. The compiler modifies the program
-representation so that every time a variable is assigned in the code, a
-new version of the variable is created. Different versions of the same
-variable are distinguished by subscripting the variable name with its
-version number. Variables used in the right-hand side of expressions
-are renamed so that their version number matches that of the most recent
-assignment.
-
- We represent variable versions using 'SSA_NAME' nodes. The renaming
-process in 'tree-ssa.c' wraps every real and virtual operand with an
-'SSA_NAME' node which contains the version number and the statement that
-created the 'SSA_NAME'. Only definitions and virtual definitions may
-create new 'SSA_NAME' nodes.
-
- Sometimes, flow of control makes it impossible to determine the most
-recent version of a variable. In these cases, the compiler inserts an
-artificial definition for that variable called "PHI function" or "PHI
-node". This new definition merges all the incoming versions of the
-variable to create a new name for it. For instance,
-
- if (...)
- a_1 = 5;
- else if (...)
- a_2 = 2;
- else
- a_3 = 13;
-
- # a_4 = PHI <a_1, a_2, a_3>
- return a_4;
-
- Since it is not possible to determine which of the three branches will
-be taken at runtime, we don't know which of 'a_1', 'a_2' or 'a_3' to use
-at the return statement. So, the SSA renamer creates a new version
-'a_4' which is assigned the result of "merging" 'a_1', 'a_2' and 'a_3'.
-Hence, PHI nodes mean "one of these operands. I don't know which".
-
- The following functions can be used to examine PHI nodes
-
- -- Function: gimple_phi_result (PHI)
- Returns the 'SSA_NAME' created by PHI node PHI (i.e., PHI's LHS).
-
- -- Function: gimple_phi_num_args (PHI)
- Returns the number of arguments in PHI. This number is exactly the
- number of incoming edges to the basic block holding PHI.
-
- -- Function: gimple_phi_arg (PHI, I)
- Returns Ith argument of PHI.
-
- -- Function: gimple_phi_arg_edge (PHI, I)
- Returns the incoming edge for the Ith argument of PHI.
-
- -- Function: gimple_phi_arg_def (PHI, I)
- Returns the 'SSA_NAME' for the Ith argument of PHI.
-
-12.3.1 Preserving the SSA form
-------------------------------
-
-Some optimization passes make changes to the function that invalidate
-the SSA property. This can happen when a pass has added new symbols or
-changed the program so that variables that were previously aliased
-aren't anymore. Whenever something like this happens, the affected
-symbols must be renamed into SSA form again. Transformations that emit
-new code or replicate existing statements will also need to update the
-SSA form.
-
- Since GCC implements two different SSA forms for register and virtual
-variables, keeping the SSA form up to date depends on whether you are
-updating register or virtual names. In both cases, the general idea
-behind incremental SSA updates is similar: when new SSA names are
-created, they typically are meant to replace other existing names in the
-program.
-
- For instance, given the following code:
-
- 1 L0:
- 2 x_1 = PHI (0, x_5)
- 3 if (x_1 < 10)
- 4 if (x_1 > 7)
- 5 y_2 = 0
- 6 else
- 7 y_3 = x_1 + x_7
- 8 endif
- 9 x_5 = x_1 + 1
- 10 goto L0;
- 11 endif
-
- Suppose that we insert new names 'x_10' and 'x_11' (lines '4' and '8').
-
- 1 L0:
- 2 x_1 = PHI (0, x_5)
- 3 if (x_1 < 10)
- 4 x_10 = ...
- 5 if (x_1 > 7)
- 6 y_2 = 0
- 7 else
- 8 x_11 = ...
- 9 y_3 = x_1 + x_7
- 10 endif
- 11 x_5 = x_1 + 1
- 12 goto L0;
- 13 endif
-
- We want to replace all the uses of 'x_1' with the new definitions of
-'x_10' and 'x_11'. Note that the only uses that should be replaced are
-those at lines '5', '9' and '11'. Also, the use of 'x_7' at line '9'
-should _not_ be replaced (this is why we cannot just mark symbol 'x' for
-renaming).
-
- Additionally, we may need to insert a PHI node at line '11' because
-that is a merge point for 'x_10' and 'x_11'. So the use of 'x_1' at
-line '11' will be replaced with the new PHI node. The insertion of PHI
-nodes is optional. They are not strictly necessary to preserve the SSA
-form, and depending on what the caller inserted, they may not even be
-useful for the optimizers.
-
- Updating the SSA form is a two step process. First, the pass has to
-identify which names need to be updated and/or which symbols need to be
-renamed into SSA form for the first time. When new names are introduced
-to replace existing names in the program, the mapping between the old
-and the new names are registered by calling 'register_new_name_mapping'
-(note that if your pass creates new code by duplicating basic blocks,
-the call to 'tree_duplicate_bb' will set up the necessary mappings
-automatically).
-
- After the replacement mappings have been registered and new symbols
-marked for renaming, a call to 'update_ssa' makes the registered
-changes. This can be done with an explicit call or by creating 'TODO'
-flags in the 'tree_opt_pass' structure for your pass. There are several
-'TODO' flags that control the behavior of 'update_ssa':
-
- * 'TODO_update_ssa'. Update the SSA form inserting PHI nodes for
- newly exposed symbols and virtual names marked for updating. When
- updating real names, only insert PHI nodes for a real name 'O_j' in
- blocks reached by all the new and old definitions for 'O_j'. If
- the iterated dominance frontier for 'O_j' is not pruned, we may end
- up inserting PHI nodes in blocks that have one or more edges with
- no incoming definition for 'O_j'. This would lead to uninitialized
- warnings for 'O_j''s symbol.
-
- * 'TODO_update_ssa_no_phi'. Update the SSA form without inserting
- any new PHI nodes at all. This is used by passes that have either
- inserted all the PHI nodes themselves or passes that need only to
- patch use-def and def-def chains for virtuals (e.g., DCE).
-
- * 'TODO_update_ssa_full_phi'. Insert PHI nodes everywhere they are
- needed. No pruning of the IDF is done. This is used by passes
- that need the PHI nodes for 'O_j' even if it means that some
- arguments will come from the default definition of 'O_j''s symbol
- (e.g., 'pass_linear_transform').
-
- WARNING: If you need to use this flag, chances are that your pass
- may be doing something wrong. Inserting PHI nodes for an old name
- where not all edges carry a new replacement may lead to silent
- codegen errors or spurious uninitialized warnings.
-
- * 'TODO_update_ssa_only_virtuals'. Passes that update the SSA form
- on their own may want to delegate the updating of virtual names to
- the generic updater. Since FUD chains are easier to maintain, this
- simplifies the work they need to do. NOTE: If this flag is used,
- any OLD->NEW mappings for real names are explicitly destroyed and
- only the symbols marked for renaming are processed.
-
-12.3.2 Preserving the virtual SSA form
---------------------------------------
-
-The virtual SSA form is harder to preserve than the non-virtual SSA form
-mainly because the set of virtual operands for a statement may change at
-what some would consider unexpected times. In general, statement
-modifications should be bracketed between calls to 'push_stmt_changes'
-and 'pop_stmt_changes'. For example,
-
- munge_stmt (tree stmt)
- {
- push_stmt_changes (&stmt);
- ... rewrite STMT ...
- pop_stmt_changes (&stmt);
- }
-
- The call to 'push_stmt_changes' saves the current state of the
-statement operands and the call to 'pop_stmt_changes' compares the saved
-state with the current one and does the appropriate symbol marking for
-the SSA renamer.
-
- It is possible to modify several statements at a time, provided that
-'push_stmt_changes' and 'pop_stmt_changes' are called in LIFO order, as
-when processing a stack of statements.
-
- Additionally, if the pass discovers that it did not need to make
-changes to the statement after calling 'push_stmt_changes', it can
-simply discard the topmost change buffer by calling
-'discard_stmt_changes'. This will avoid the expensive operand re-scan
-operation and the buffer comparison that determines if symbols need to
-be marked for renaming.
-
-12.3.3 Examining 'SSA_NAME' nodes
----------------------------------
-
-The following macros can be used to examine 'SSA_NAME' nodes
-
- -- Macro: SSA_NAME_DEF_STMT (VAR)
- Returns the statement S that creates the 'SSA_NAME' VAR. If S is
- an empty statement (i.e., 'IS_EMPTY_STMT (S)' returns 'true'), it
- means that the first reference to this variable is a USE or a VUSE.
-
- -- Macro: SSA_NAME_VERSION (VAR)
- Returns the version number of the 'SSA_NAME' object VAR.
-
-12.3.4 Walking the dominator tree
----------------------------------
-
- -- Tree SSA function: void walk_dominator_tree (WALK_DATA, BB)
-
- This function walks the dominator tree for the current CFG calling
- a set of callback functions defined in STRUCT DOM_WALK_DATA in
- 'domwalk.h'. The call back functions you need to define give you
- hooks to execute custom code at various points during traversal:
-
- 1. Once to initialize any local data needed while processing BB
- and its children. This local data is pushed into an internal
- stack which is automatically pushed and popped as the walker
- traverses the dominator tree.
-
- 2. Once before traversing all the statements in the BB.
-
- 3. Once for every statement inside BB.
-
- 4. Once after traversing all the statements and before recursing
- into BB's dominator children.
-
- 5. It then recurses into all the dominator children of BB.
-
- 6. After recursing into all the dominator children of BB it can,
- optionally, traverse every statement in BB again (i.e.,
- repeating steps 2 and 3).
-
- 7. Once after walking the statements in BB and BB's dominator
- children. At this stage, the block local data stack is
- popped.
-
-
-File: gccint.info, Node: Alias analysis, Next: Memory model, Prev: SSA, Up: Tree SSA
-
-12.4 Alias analysis
-===================
-
-Alias analysis in GIMPLE SSA form consists of two pieces. First the
-virtual SSA web ties conflicting memory accesses and provides a SSA
-use-def chain and SSA immediate-use chains for walking possibly
-dependent memory accesses. Second an alias-oracle can be queried to
-disambiguate explicit and implicit memory references.
-
- 1. Memory SSA form.
-
- All statements that may use memory have exactly one accompanied use
- of a virtual SSA name that represents the state of memory at the
- given point in the IL.
-
- All statements that may define memory have exactly one accompanied
- definition of a virtual SSA name using the previous state of memory
- and defining the new state of memory after the given point in the
- IL.
-
- int i;
- int foo (void)
- {
- # .MEM_3 = VDEF <.MEM_2(D)>
- i = 1;
- # VUSE <.MEM_3>
- return i;
- }
-
- The virtual SSA names in this case are '.MEM_2(D)' and '.MEM_3'.
- The store to the global variable 'i' defines '.MEM_3' invalidating
- '.MEM_2(D)'. The load from 'i' uses that new state '.MEM_3'.
-
- The virtual SSA web serves as constraints to SSA optimizers
- preventing illegitimate code-motion and optimization. It also
- provides a way to walk related memory statements.
-
- 2. Points-to and escape analysis.
-
- Points-to analysis builds a set of constraints from the GIMPLE SSA
- IL representing all pointer operations and facts we do or do not
- know about pointers. Solving this set of constraints yields a
- conservatively correct solution for each pointer variable in the
- program (though we are only interested in SSA name pointers) as to
- what it may possibly point to.
-
- This points-to solution for a given SSA name pointer is stored in
- the 'pt_solution' sub-structure of the 'SSA_NAME_PTR_INFO' record.
- The following accessor functions are available:
-
- * 'pt_solution_includes'
- * 'pt_solutions_intersect'
-
- Points-to analysis also computes the solution for two special set
- of pointers, 'ESCAPED' and 'CALLUSED'. Those represent all memory
- that has escaped the scope of analysis or that is used by pure or
- nested const calls.
-
- 3. Type-based alias analysis
-
- Type-based alias analysis is frontend dependent though generic
- support is provided by the middle-end in 'alias.c'. TBAA code is
- used by both tree optimizers and RTL optimizers.
-
- Every language that wishes to perform language-specific alias
- analysis should define a function that computes, given a 'tree'
- node, an alias set for the node. Nodes in different alias sets are
- not allowed to alias. For an example, see the C front-end function
- 'c_get_alias_set'.
-
- 4. Tree alias-oracle
-
- The tree alias-oracle provides means to disambiguate two memory
- references and memory references against statements. The following
- queries are available:
-
- * 'refs_may_alias_p'
- * 'ref_maybe_used_by_stmt_p'
- * 'stmt_may_clobber_ref_p'
-
- In addition to those two kind of statement walkers are available
- walking statements related to a reference ref.
- 'walk_non_aliased_vuses' walks over dominating memory defining
- statements and calls back if the statement does not clobber ref
- providing the non-aliased VUSE. The walk stops at the first
- clobbering statement or if asked to. 'walk_aliased_vdefs' walks
- over dominating memory defining statements and calls back on each
- statement clobbering ref providing its aliasing VDEF. The walk
- stops if asked to.
-
-
-File: gccint.info, Node: Memory model, Prev: Alias analysis, Up: Tree SSA
-
-12.5 Memory model
-=================
-
-The memory model used by the middle-end models that of the C/C++
-languages. The middle-end has the notion of an effective type of a
-memory region which is used for type-based alias analysis.
-
- The following is a refinement of ISO C99 6.5/6, clarifying the block
-copy case to follow common sense and extending the concept of a dynamic
-effective type to objects with a declared type as required for C++.
-
- The effective type of an object for an access to its stored value is
- the declared type of the object or the effective type determined by
- a previous store to it. If a value is stored into an object through
- an lvalue having a type that is not a character type, then the
- type of the lvalue becomes the effective type of the object for that
- access and for subsequent accesses that do not modify the stored value.
- If a value is copied into an object using memcpy or memmove,
- or is copied as an array of character type, then the effective type
- of the modified object for that access and for subsequent accesses that
- do not modify the value is undetermined. For all other accesses to an
- object, the effective type of the object is simply the type of the
- lvalue used for the access.
-
-
-File: gccint.info, Node: RTL, Next: Control Flow, Prev: Tree SSA, Up: Top
-
-13 RTL Representation
-*********************
-
-The last part of the compiler work is done on a low-level intermediate
-representation called Register Transfer Language. In this language, the
-instructions to be output are described, pretty much one by one, in an
-algebraic form that describes what the instruction does.
-
- RTL is inspired by Lisp lists. It has both an internal form, made up
-of structures that point at other structures, and a textual form that is
-used in the machine description and in printed debugging dumps. The
-textual form uses nested parentheses to indicate the pointers in the
-internal form.
-
-* Menu:
-
-* RTL Objects:: Expressions vs vectors vs strings vs integers.
-* RTL Classes:: Categories of RTL expression objects, and their structure.
-* Accessors:: Macros to access expression operands or vector elts.
-* Special Accessors:: Macros to access specific annotations on RTL.
-* Flags:: Other flags in an RTL expression.
-* Machine Modes:: Describing the size and format of a datum.
-* Constants:: Expressions with constant values.
-* Regs and Memory:: Expressions representing register contents or memory.
-* Arithmetic:: Expressions representing arithmetic on other expressions.
-* Comparisons:: Expressions representing comparison of expressions.
-* Bit-Fields:: Expressions representing bit-fields in memory or reg.
-* Vector Operations:: Expressions involving vector datatypes.
-* Conversions:: Extending, truncating, floating or fixing.
-* RTL Declarations:: Declaring volatility, constancy, etc.
-* Side Effects:: Expressions for storing in registers, etc.
-* Incdec:: Embedded side-effects for autoincrement addressing.
-* Assembler:: Representing 'asm' with operands.
-* Debug Information:: Expressions representing debugging information.
-* Insns:: Expression types for entire insns.
-* Calls:: RTL representation of function call insns.
-* Sharing:: Some expressions are unique; others *must* be copied.
-* Reading RTL:: Reading textual RTL from a file.
-
-
-File: gccint.info, Node: RTL Objects, Next: RTL Classes, Up: RTL
-
-13.1 RTL Object Types
-=====================
-
-RTL uses five kinds of objects: expressions, integers, wide integers,
-strings and vectors. Expressions are the most important ones. An RTL
-expression ("RTX", for short) is a C structure, but it is usually
-referred to with a pointer; a type that is given the typedef name 'rtx'.
-
- An integer is simply an 'int'; their written form uses decimal digits.
-A wide integer is an integral object whose type is 'HOST_WIDE_INT';
-their written form uses decimal digits.
-
- A string is a sequence of characters. In core it is represented as a
-'char *' in usual C fashion, and it is written in C syntax as well.
-However, strings in RTL may never be null. If you write an empty string
-in a machine description, it is represented in core as a null pointer
-rather than as a pointer to a null character. In certain contexts,
-these null pointers instead of strings are valid. Within RTL code,
-strings are most commonly found inside 'symbol_ref' expressions, but
-they appear in other contexts in the RTL expressions that make up
-machine descriptions.
-
- In a machine description, strings are normally written with double
-quotes, as you would in C. However, strings in machine descriptions may
-extend over many lines, which is invalid C, and adjacent string
-constants are not concatenated as they are in C. Any string constant
-may be surrounded with a single set of parentheses. Sometimes this
-makes the machine description easier to read.
-
- There is also a special syntax for strings, which can be useful when C
-code is embedded in a machine description. Wherever a string can
-appear, it is also valid to write a C-style brace block. The entire
-brace block, including the outermost pair of braces, is considered to be
-the string constant. Double quote characters inside the braces are not
-special. Therefore, if you write string constants in the C code, you
-need not escape each quote character with a backslash.
-
- A vector contains an arbitrary number of pointers to expressions. The
-number of elements in the vector is explicitly present in the vector.
-The written form of a vector consists of square brackets ('[...]')
-surrounding the elements, in sequence and with whitespace separating
-them. Vectors of length zero are not created; null pointers are used
-instead.
-
- Expressions are classified by "expression codes" (also called RTX
-codes). The expression code is a name defined in 'rtl.def', which is
-also (in uppercase) a C enumeration constant. The possible expression
-codes and their meanings are machine-independent. The code of an RTX
-can be extracted with the macro 'GET_CODE (X)' and altered with
-'PUT_CODE (X, NEWCODE)'.
-
- The expression code determines how many operands the expression
-contains, and what kinds of objects they are. In RTL, unlike Lisp, you
-cannot tell by looking at an operand what kind of object it is.
-Instead, you must know from its context--from the expression code of the
-containing expression. For example, in an expression of code 'subreg',
-the first operand is to be regarded as an expression and the second
-operand as an integer. In an expression of code 'plus', there are two
-operands, both of which are to be regarded as expressions. In a
-'symbol_ref' expression, there is one operand, which is to be regarded
-as a string.
-
- Expressions are written as parentheses containing the name of the
-expression type, its flags and machine mode if any, and then the
-operands of the expression (separated by spaces).
-
- Expression code names in the 'md' file are written in lowercase, but
-when they appear in C code they are written in uppercase. In this
-manual, they are shown as follows: 'const_int'.
-
- In a few contexts a null pointer is valid where an expression is
-normally wanted. The written form of this is '(nil)'.
-
-
-File: gccint.info, Node: RTL Classes, Next: Accessors, Prev: RTL Objects, Up: RTL
-
-13.2 RTL Classes and Formats
-============================
-
-The various expression codes are divided into several "classes", which
-are represented by single characters. You can determine the class of an
-RTX code with the macro 'GET_RTX_CLASS (CODE)'. Currently, 'rtl.def'
-defines these classes:
-
-'RTX_OBJ'
- An RTX code that represents an actual object, such as a register
- ('REG') or a memory location ('MEM', 'SYMBOL_REF'). 'LO_SUM') is
- also included; instead, 'SUBREG' and 'STRICT_LOW_PART' are not in
- this class, but in class 'x'.
-
-'RTX_CONST_OBJ'
- An RTX code that represents a constant object. 'HIGH' is also
- included in this class.
-
-'RTX_COMPARE'
- An RTX code for a non-symmetric comparison, such as 'GEU' or 'LT'.
-
-'RTX_COMM_COMPARE'
- An RTX code for a symmetric (commutative) comparison, such as 'EQ'
- or 'ORDERED'.
-
-'RTX_UNARY'
- An RTX code for a unary arithmetic operation, such as 'NEG', 'NOT',
- or 'ABS'. This category also includes value extension (sign or
- zero) and conversions between integer and floating point.
-
-'RTX_COMM_ARITH'
- An RTX code for a commutative binary operation, such as 'PLUS' or
- 'AND'. 'NE' and 'EQ' are comparisons, so they have class '<'.
-
-'RTX_BIN_ARITH'
- An RTX code for a non-commutative binary operation, such as
- 'MINUS', 'DIV', or 'ASHIFTRT'.
-
-'RTX_BITFIELD_OPS'
- An RTX code for a bit-field operation. Currently only
- 'ZERO_EXTRACT' and 'SIGN_EXTRACT'. These have three inputs and are
- lvalues (so they can be used for insertion as well). *Note
- Bit-Fields::.
-
-'RTX_TERNARY'
- An RTX code for other three input operations. Currently only
- 'IF_THEN_ELSE', 'VEC_MERGE', 'SIGN_EXTRACT', 'ZERO_EXTRACT', and
- 'FMA'.
-
-'RTX_INSN'
- An RTX code for an entire instruction: 'INSN', 'JUMP_INSN', and
- 'CALL_INSN'. *Note Insns::.
-
-'RTX_MATCH'
- An RTX code for something that matches in insns, such as
- 'MATCH_DUP'. These only occur in machine descriptions.
-
-'RTX_AUTOINC'
- An RTX code for an auto-increment addressing mode, such as
- 'POST_INC'.
-
-'RTX_EXTRA'
- All other RTX codes. This category includes the remaining codes
- used only in machine descriptions ('DEFINE_*', etc.). It also
- includes all the codes describing side effects ('SET', 'USE',
- 'CLOBBER', etc.) and the non-insns that may appear on an insn
- chain, such as 'NOTE', 'BARRIER', and 'CODE_LABEL'. 'SUBREG' is
- also part of this class.
-
- For each expression code, 'rtl.def' specifies the number of contained
-objects and their kinds using a sequence of characters called the
-"format" of the expression code. For example, the format of 'subreg' is
-'ei'.
-
- These are the most commonly used format characters:
-
-'e'
- An expression (actually a pointer to an expression).
-
-'i'
- An integer.
-
-'w'
- A wide integer.
-
-'s'
- A string.
-
-'E'
- A vector of expressions.
-
- A few other format characters are used occasionally:
-
-'u'
- 'u' is equivalent to 'e' except that it is printed differently in
- debugging dumps. It is used for pointers to insns.
-
-'n'
- 'n' is equivalent to 'i' except that it is printed differently in
- debugging dumps. It is used for the line number or code number of
- a 'note' insn.
-
-'S'
- 'S' indicates a string which is optional. In the RTL objects in
- core, 'S' is equivalent to 's', but when the object is read, from
- an 'md' file, the string value of this operand may be omitted. An
- omitted string is taken to be the null string.
-
-'V'
- 'V' indicates a vector which is optional. In the RTL objects in
- core, 'V' is equivalent to 'E', but when the object is read from an
- 'md' file, the vector value of this operand may be omitted. An
- omitted vector is effectively the same as a vector of no elements.
-
-'B'
- 'B' indicates a pointer to basic block structure.
-
-'0'
- '0' means a slot whose contents do not fit any normal category.
- '0' slots are not printed at all in dumps, and are often used in
- special ways by small parts of the compiler.
-
- There are macros to get the number of operands and the format of an
-expression code:
-
-'GET_RTX_LENGTH (CODE)'
- Number of operands of an RTX of code CODE.
-
-'GET_RTX_FORMAT (CODE)'
- The format of an RTX of code CODE, as a C string.
-
- Some classes of RTX codes always have the same format. For example, it
-is safe to assume that all comparison operations have format 'ee'.
-
-'1'
- All codes of this class have format 'e'.
-
-'<'
-'c'
-'2'
- All codes of these classes have format 'ee'.
-
-'b'
-'3'
- All codes of these classes have format 'eee'.
-
-'i'
- All codes of this class have formats that begin with 'iuueiee'.
- *Note Insns::. Note that not all RTL objects linked onto an insn
- chain are of class 'i'.
-
-'o'
-'m'
-'x'
- You can make no assumptions about the format of these codes.
-
-
-File: gccint.info, Node: Accessors, Next: Special Accessors, Prev: RTL Classes, Up: RTL
-
-13.3 Access to Operands
-=======================
-
-Operands of expressions are accessed using the macros 'XEXP', 'XINT',
-'XWINT' and 'XSTR'. Each of these macros takes two arguments: an
-expression-pointer (RTX) and an operand number (counting from zero).
-Thus,
-
- XEXP (X, 2)
-
-accesses operand 2 of expression X, as an expression.
-
- XINT (X, 2)
-
-accesses the same operand as an integer. 'XSTR', used in the same
-fashion, would access it as a string.
-
- Any operand can be accessed as an integer, as an expression or as a
-string. You must choose the correct method of access for the kind of
-value actually stored in the operand. You would do this based on the
-expression code of the containing expression. That is also how you
-would know how many operands there are.
-
- For example, if X is a 'subreg' expression, you know that it has two
-operands which can be correctly accessed as 'XEXP (X, 0)' and 'XINT (X,
-1)'. If you did 'XINT (X, 0)', you would get the address of the
-expression operand but cast as an integer; that might occasionally be
-useful, but it would be cleaner to write '(int) XEXP (X, 0)'. 'XEXP (X,
-1)' would also compile without error, and would return the second,
-integer operand cast as an expression pointer, which would probably
-result in a crash when accessed. Nothing stops you from writing 'XEXP
-(X, 28)' either, but this will access memory past the end of the
-expression with unpredictable results.
-
- Access to operands which are vectors is more complicated. You can use
-the macro 'XVEC' to get the vector-pointer itself, or the macros
-'XVECEXP' and 'XVECLEN' to access the elements and length of a vector.
-
-'XVEC (EXP, IDX)'
- Access the vector-pointer which is operand number IDX in EXP.
-
-'XVECLEN (EXP, IDX)'
- Access the length (number of elements) in the vector which is in
- operand number IDX in EXP. This value is an 'int'.
-
-'XVECEXP (EXP, IDX, ELTNUM)'
- Access element number ELTNUM in the vector which is in operand
- number IDX in EXP. This value is an RTX.
-
- It is up to you to make sure that ELTNUM is not negative and is
- less than 'XVECLEN (EXP, IDX)'.
-
- All the macros defined in this section expand into lvalues and
-therefore can be used to assign the operands, lengths and vector
-elements as well as to access them.
-
-
-File: gccint.info, Node: Special Accessors, Next: Flags, Prev: Accessors, Up: RTL
-
-13.4 Access to Special Operands
-===============================
-
-Some RTL nodes have special annotations associated with them.
-
-'MEM'
- 'MEM_ALIAS_SET (X)'
- If 0, X is not in any alias set, and may alias anything.
- Otherwise, X can only alias 'MEM's in a conflicting alias set.
- This value is set in a language-dependent manner in the
- front-end, and should not be altered in the back-end. In some
- front-ends, these numbers may correspond in some way to types,
- or other language-level entities, but they need not, and the
- back-end makes no such assumptions. These set numbers are
- tested with 'alias_sets_conflict_p'.
-
- 'MEM_EXPR (X)'
- If this register is known to hold the value of some user-level
- declaration, this is that tree node. It may also be a
- 'COMPONENT_REF', in which case this is some field reference,
- and 'TREE_OPERAND (X, 0)' contains the declaration, or another
- 'COMPONENT_REF', or null if there is no compile-time object
- associated with the reference.
-
- 'MEM_OFFSET_KNOWN_P (X)'
- True if the offset of the memory reference from 'MEM_EXPR' is
- known. 'MEM_OFFSET (X)' provides the offset if so.
-
- 'MEM_OFFSET (X)'
- The offset from the start of 'MEM_EXPR'. The value is only
- valid if 'MEM_OFFSET_KNOWN_P (X)' is true.
-
- 'MEM_SIZE_KNOWN_P (X)'
- True if the size of the memory reference is known. 'MEM_SIZE
- (X)' provides its size if so.
-
- 'MEM_SIZE (X)'
- The size in bytes of the memory reference. This is mostly
- relevant for 'BLKmode' references as otherwise the size is
- implied by the mode. The value is only valid if
- 'MEM_SIZE_KNOWN_P (X)' is true.
-
- 'MEM_ALIGN (X)'
- The known alignment in bits of the memory reference.
-
- 'MEM_ADDR_SPACE (X)'
- The address space of the memory reference. This will commonly
- be zero for the generic address space.
-
-'REG'
- 'ORIGINAL_REGNO (X)'
- This field holds the number the register "originally" had; for
- a pseudo register turned into a hard reg this will hold the
- old pseudo register number.
-
- 'REG_EXPR (X)'
- If this register is known to hold the value of some user-level
- declaration, this is that tree node.
-
- 'REG_OFFSET (X)'
- If this register is known to hold the value of some user-level
- declaration, this is the offset into that logical storage.
-
-'SYMBOL_REF'
- 'SYMBOL_REF_DECL (X)'
- If the 'symbol_ref' X was created for a 'VAR_DECL' or a
- 'FUNCTION_DECL', that tree is recorded here. If this value is
- null, then X was created by back end code generation routines,
- and there is no associated front end symbol table entry.
-
- 'SYMBOL_REF_DECL' may also point to a tree of class ''c'',
- that is, some sort of constant. In this case, the
- 'symbol_ref' is an entry in the per-file constant pool; again,
- there is no associated front end symbol table entry.
-
- 'SYMBOL_REF_CONSTANT (X)'
- If 'CONSTANT_POOL_ADDRESS_P (X)' is true, this is the constant
- pool entry for X. It is null otherwise.
-
- 'SYMBOL_REF_DATA (X)'
- A field of opaque type used to store 'SYMBOL_REF_DECL' or
- 'SYMBOL_REF_CONSTANT'.
-
- 'SYMBOL_REF_FLAGS (X)'
- In a 'symbol_ref', this is used to communicate various
- predicates about the symbol. Some of these are common enough
- to be computed by common code, some are specific to the
- target. The common bits are:
-
- 'SYMBOL_FLAG_FUNCTION'
- Set if the symbol refers to a function.
-
- 'SYMBOL_FLAG_LOCAL'
- Set if the symbol is local to this "module". See
- 'TARGET_BINDS_LOCAL_P'.
-
- 'SYMBOL_FLAG_EXTERNAL'
- Set if this symbol is not defined in this translation
- unit. Note that this is not the inverse of
- 'SYMBOL_FLAG_LOCAL'.
-
- 'SYMBOL_FLAG_SMALL'
- Set if the symbol is located in the small data section.
- See 'TARGET_IN_SMALL_DATA_P'.
-
- 'SYMBOL_REF_TLS_MODEL (X)'
- This is a multi-bit field accessor that returns the
- 'tls_model' to be used for a thread-local storage symbol.
- It returns zero for non-thread-local symbols.
-
- 'SYMBOL_FLAG_HAS_BLOCK_INFO'
- Set if the symbol has 'SYMBOL_REF_BLOCK' and
- 'SYMBOL_REF_BLOCK_OFFSET' fields.
-
- 'SYMBOL_FLAG_ANCHOR'
- Set if the symbol is used as a section anchor. "Section
- anchors" are symbols that have a known position within an
- 'object_block' and that can be used to access nearby
- members of that block. They are used to implement
- '-fsection-anchors'.
-
- If this flag is set, then 'SYMBOL_FLAG_HAS_BLOCK_INFO'
- will be too.
-
- Bits beginning with 'SYMBOL_FLAG_MACH_DEP' are available for
- the target's use.
-
-'SYMBOL_REF_BLOCK (X)'
- If 'SYMBOL_REF_HAS_BLOCK_INFO_P (X)', this is the 'object_block'
- structure to which the symbol belongs, or 'NULL' if it has not been
- assigned a block.
-
-'SYMBOL_REF_BLOCK_OFFSET (X)'
- If 'SYMBOL_REF_HAS_BLOCK_INFO_P (X)', this is the offset of X from
- the first object in 'SYMBOL_REF_BLOCK (X)'. The value is negative
- if X has not yet been assigned to a block, or it has not been given
- an offset within that block.
-
-
-File: gccint.info, Node: Flags, Next: Machine Modes, Prev: Special Accessors, Up: RTL
-
-13.5 Flags in an RTL Expression
-===============================
-
-RTL expressions contain several flags (one-bit bit-fields) that are used
-in certain types of expression. Most often they are accessed with the
-following macros, which expand into lvalues.
-
-'CONSTANT_POOL_ADDRESS_P (X)'
- Nonzero in a 'symbol_ref' if it refers to part of the current
- function's constant pool. For most targets these addresses are in
- a '.rodata' section entirely separate from the function, but for
- some targets the addresses are close to the beginning of the
- function. In either case GCC assumes these addresses can be
- addressed directly, perhaps with the help of base registers.
- Stored in the 'unchanging' field and printed as '/u'.
-
-'RTL_CONST_CALL_P (X)'
- In a 'call_insn' indicates that the insn represents a call to a
- const function. Stored in the 'unchanging' field and printed as
- '/u'.
-
-'RTL_PURE_CALL_P (X)'
- In a 'call_insn' indicates that the insn represents a call to a
- pure function. Stored in the 'return_val' field and printed as
- '/i'.
-
-'RTL_CONST_OR_PURE_CALL_P (X)'
- In a 'call_insn', true if 'RTL_CONST_CALL_P' or 'RTL_PURE_CALL_P'
- is true.
-
-'RTL_LOOPING_CONST_OR_PURE_CALL_P (X)'
- In a 'call_insn' indicates that the insn represents a possibly
- infinite looping call to a const or pure function. Stored in the
- 'call' field and printed as '/c'. Only true if one of
- 'RTL_CONST_CALL_P' or 'RTL_PURE_CALL_P' is true.
-
-'INSN_ANNULLED_BRANCH_P (X)'
- In a 'jump_insn', 'call_insn', or 'insn' indicates that the branch
- is an annulling one. See the discussion under 'sequence' below.
- Stored in the 'unchanging' field and printed as '/u'.
-
-'INSN_DELETED_P (X)'
- In an 'insn', 'call_insn', 'jump_insn', 'code_label',
- 'jump_table_data', 'barrier', or 'note', nonzero if the insn has
- been deleted. Stored in the 'volatil' field and printed as '/v'.
-
-'INSN_FROM_TARGET_P (X)'
- In an 'insn' or 'jump_insn' or 'call_insn' in a delay slot of a
- branch, indicates that the insn is from the target of the branch.
- If the branch insn has 'INSN_ANNULLED_BRANCH_P' set, this insn will
- only be executed if the branch is taken. For annulled branches
- with 'INSN_FROM_TARGET_P' clear, the insn will be executed only if
- the branch is not taken. When 'INSN_ANNULLED_BRANCH_P' is not set,
- this insn will always be executed. Stored in the 'in_struct' field
- and printed as '/s'.
-
-'LABEL_PRESERVE_P (X)'
- In a 'code_label' or 'note', indicates that the label is referenced
- by code or data not visible to the RTL of a given function. Labels
- referenced by a non-local goto will have this bit set. Stored in
- the 'in_struct' field and printed as '/s'.
-
-'LABEL_REF_NONLOCAL_P (X)'
- In 'label_ref' and 'reg_label' expressions, nonzero if this is a
- reference to a non-local label. Stored in the 'volatil' field and
- printed as '/v'.
-
-'MEM_KEEP_ALIAS_SET_P (X)'
- In 'mem' expressions, 1 if we should keep the alias set for this
- mem unchanged when we access a component. Set to 1, for example,
- when we are already in a non-addressable component of an aggregate.
- Stored in the 'jump' field and printed as '/j'.
-
-'MEM_VOLATILE_P (X)'
- In 'mem', 'asm_operands', and 'asm_input' expressions, nonzero for
- volatile memory references. Stored in the 'volatil' field and
- printed as '/v'.
-
-'MEM_NOTRAP_P (X)'
- In 'mem', nonzero for memory references that will not trap. Stored
- in the 'call' field and printed as '/c'.
-
-'MEM_POINTER (X)'
- Nonzero in a 'mem' if the memory reference holds a pointer. Stored
- in the 'frame_related' field and printed as '/f'.
-
-'REG_FUNCTION_VALUE_P (X)'
- Nonzero in a 'reg' if it is the place in which this function's
- value is going to be returned. (This happens only in a hard
- register.) Stored in the 'return_val' field and printed as '/i'.
-
-'REG_POINTER (X)'
- Nonzero in a 'reg' if the register holds a pointer. Stored in the
- 'frame_related' field and printed as '/f'.
-
-'REG_USERVAR_P (X)'
- In a 'reg', nonzero if it corresponds to a variable present in the
- user's source code. Zero for temporaries generated internally by
- the compiler. Stored in the 'volatil' field and printed as '/v'.
-
- The same hard register may be used also for collecting the values
- of functions called by this one, but 'REG_FUNCTION_VALUE_P' is zero
- in this kind of use.
-
-'RTX_FRAME_RELATED_P (X)'
- Nonzero in an 'insn', 'call_insn', 'jump_insn', 'barrier', or 'set'
- which is part of a function prologue and sets the stack pointer,
- sets the frame pointer, or saves a register. This flag should also
- be set on an instruction that sets up a temporary register to use
- in place of the frame pointer. Stored in the 'frame_related' field
- and printed as '/f'.
-
- In particular, on RISC targets where there are limits on the sizes
- of immediate constants, it is sometimes impossible to reach the
- register save area directly from the stack pointer. In that case,
- a temporary register is used that is near enough to the register
- save area, and the Canonical Frame Address, i.e., DWARF2's logical
- frame pointer, register must (temporarily) be changed to be this
- temporary register. So, the instruction that sets this temporary
- register must be marked as 'RTX_FRAME_RELATED_P'.
-
- If the marked instruction is overly complex (defined in terms of
- what 'dwarf2out_frame_debug_expr' can handle), you will also have
- to create a 'REG_FRAME_RELATED_EXPR' note and attach it to the
- instruction. This note should contain a simple expression of the
- computation performed by this instruction, i.e., one that
- 'dwarf2out_frame_debug_expr' can handle.
-
- This flag is required for exception handling support on targets
- with RTL prologues.
-
-'MEM_READONLY_P (X)'
- Nonzero in a 'mem', if the memory is statically allocated and
- read-only.
-
- Read-only in this context means never modified during the lifetime
- of the program, not necessarily in ROM or in write-disabled pages.
- A common example of the later is a shared library's global offset
- table. This table is initialized by the runtime loader, so the
- memory is technically writable, but after control is transferred
- from the runtime loader to the application, this memory will never
- be subsequently modified.
-
- Stored in the 'unchanging' field and printed as '/u'.
-
-'SCHED_GROUP_P (X)'
- During instruction scheduling, in an 'insn', 'call_insn',
- 'jump_insn' or 'jump_table_data', indicates that the previous insn
- must be scheduled together with this insn. This is used to ensure
- that certain groups of instructions will not be split up by the
- instruction scheduling pass, for example, 'use' insns before a
- 'call_insn' may not be separated from the 'call_insn'. Stored in
- the 'in_struct' field and printed as '/s'.
-
-'SET_IS_RETURN_P (X)'
- For a 'set', nonzero if it is for a return. Stored in the 'jump'
- field and printed as '/j'.
-
-'SIBLING_CALL_P (X)'
- For a 'call_insn', nonzero if the insn is a sibling call. Stored
- in the 'jump' field and printed as '/j'.
-
-'STRING_POOL_ADDRESS_P (X)'
- For a 'symbol_ref' expression, nonzero if it addresses this
- function's string constant pool. Stored in the 'frame_related'
- field and printed as '/f'.
-
-'SUBREG_PROMOTED_UNSIGNED_P (X)'
- Returns a value greater then zero for a 'subreg' that has
- 'SUBREG_PROMOTED_VAR_P' nonzero if the object being referenced is
- kept zero-extended, zero if it is kept sign-extended, and less then
- zero if it is extended some other way via the 'ptr_extend'
- instruction. Stored in the 'unchanging' field and 'volatil' field,
- printed as '/u' and '/v'. This macro may only be used to get the
- value it may not be used to change the value. Use
- 'SUBREG_PROMOTED_UNSIGNED_SET' to change the value.
-
-'SUBREG_PROMOTED_UNSIGNED_SET (X)'
- Set the 'unchanging' and 'volatil' fields in a 'subreg' to reflect
- zero, sign, or other extension. If 'volatil' is zero, then
- 'unchanging' as nonzero means zero extension and as zero means sign
- extension. If 'volatil' is nonzero then some other type of
- extension was done via the 'ptr_extend' instruction.
-
-'SUBREG_PROMOTED_VAR_P (X)'
- Nonzero in a 'subreg' if it was made when accessing an object that
- was promoted to a wider mode in accord with the 'PROMOTED_MODE'
- machine description macro (*note Storage Layout::). In this case,
- the mode of the 'subreg' is the declared mode of the object and the
- mode of 'SUBREG_REG' is the mode of the register that holds the
- object. Promoted variables are always either sign- or
- zero-extended to the wider mode on every assignment. Stored in the
- 'in_struct' field and printed as '/s'.
-
-'SYMBOL_REF_USED (X)'
- In a 'symbol_ref', indicates that X has been used. This is
- normally only used to ensure that X is only declared external once.
- Stored in the 'used' field.
-
-'SYMBOL_REF_WEAK (X)'
- In a 'symbol_ref', indicates that X has been declared weak. Stored
- in the 'return_val' field and printed as '/i'.
-
-'SYMBOL_REF_FLAG (X)'
- In a 'symbol_ref', this is used as a flag for machine-specific
- purposes. Stored in the 'volatil' field and printed as '/v'.
-
- Most uses of 'SYMBOL_REF_FLAG' are historic and may be subsumed by
- 'SYMBOL_REF_FLAGS'. Certainly use of 'SYMBOL_REF_FLAGS' is
- mandatory if the target requires more than one bit of storage.
-
-'PREFETCH_SCHEDULE_BARRIER_P (X)'
- In a 'prefetch', indicates that the prefetch is a scheduling
- barrier. No other INSNs will be moved over it. Stored in the
- 'volatil' field and printed as '/v'.
-
- These are the fields to which the above macros refer:
-
-'call'
- In a 'mem', 1 means that the memory reference will not trap.
-
- In a 'call', 1 means that this pure or const call may possibly
- infinite loop.
-
- In an RTL dump, this flag is represented as '/c'.
-
-'frame_related'
- In an 'insn' or 'set' expression, 1 means that it is part of a
- function prologue and sets the stack pointer, sets the frame
- pointer, saves a register, or sets up a temporary register to use
- in place of the frame pointer.
-
- In 'reg' expressions, 1 means that the register holds a pointer.
-
- In 'mem' expressions, 1 means that the memory reference holds a
- pointer.
-
- In 'symbol_ref' expressions, 1 means that the reference addresses
- this function's string constant pool.
-
- In an RTL dump, this flag is represented as '/f'.
-
-'in_struct'
- In 'reg' expressions, it is 1 if the register has its entire life
- contained within the test expression of some loop.
-
- In 'subreg' expressions, 1 means that the 'subreg' is accessing an
- object that has had its mode promoted from a wider mode.
-
- In 'label_ref' expressions, 1 means that the referenced label is
- outside the innermost loop containing the insn in which the
- 'label_ref' was found.
-
- In 'code_label' expressions, it is 1 if the label may never be
- deleted. This is used for labels which are the target of non-local
- gotos. Such a label that would have been deleted is replaced with
- a 'note' of type 'NOTE_INSN_DELETED_LABEL'.
-
- In an 'insn' during dead-code elimination, 1 means that the insn is
- dead code.
-
- In an 'insn' or 'jump_insn' during reorg for an insn in the delay
- slot of a branch, 1 means that this insn is from the target of the
- branch.
-
- In an 'insn' during instruction scheduling, 1 means that this insn
- must be scheduled as part of a group together with the previous
- insn.
-
- In an RTL dump, this flag is represented as '/s'.
-
-'return_val'
- In 'reg' expressions, 1 means the register contains the value to be
- returned by the current function. On machines that pass parameters
- in registers, the same register number may be used for parameters
- as well, but this flag is not set on such uses.
-
- In 'symbol_ref' expressions, 1 means the referenced symbol is weak.
-
- In 'call' expressions, 1 means the call is pure.
-
- In an RTL dump, this flag is represented as '/i'.
-
-'jump'
- In a 'mem' expression, 1 means we should keep the alias set for
- this mem unchanged when we access a component.
-
- In a 'set', 1 means it is for a return.
-
- In a 'call_insn', 1 means it is a sibling call.
-
- In an RTL dump, this flag is represented as '/j'.
-
-'unchanging'
- In 'reg' and 'mem' expressions, 1 means that the value of the
- expression never changes.
-
- In 'subreg' expressions, it is 1 if the 'subreg' references an
- unsigned object whose mode has been promoted to a wider mode.
-
- In an 'insn' or 'jump_insn' in the delay slot of a branch
- instruction, 1 means an annulling branch should be used.
-
- In a 'symbol_ref' expression, 1 means that this symbol addresses
- something in the per-function constant pool.
-
- In a 'call_insn' 1 means that this instruction is a call to a const
- function.
-
- In an RTL dump, this flag is represented as '/u'.
-
-'used'
- This flag is used directly (without an access macro) at the end of
- RTL generation for a function, to count the number of times an
- expression appears in insns. Expressions that appear more than
- once are copied, according to the rules for shared structure (*note
- Sharing::).
-
- For a 'reg', it is used directly (without an access macro) by the
- leaf register renumbering code to ensure that each register is only
- renumbered once.
-
- In a 'symbol_ref', it indicates that an external declaration for
- the symbol has already been written.
-
-'volatil'
- In a 'mem', 'asm_operands', or 'asm_input' expression, it is 1 if
- the memory reference is volatile. Volatile memory references may
- not be deleted, reordered or combined.
-
- In a 'symbol_ref' expression, it is used for machine-specific
- purposes.
-
- In a 'reg' expression, it is 1 if the value is a user-level
- variable. 0 indicates an internal compiler temporary.
-
- In an 'insn', 1 means the insn has been deleted.
-
- In 'label_ref' and 'reg_label' expressions, 1 means a reference to
- a non-local label.
-
- In 'prefetch' expressions, 1 means that the containing insn is a
- scheduling barrier.
-
- In an RTL dump, this flag is represented as '/v'.
-
-
-File: gccint.info, Node: Machine Modes, Next: Constants, Prev: Flags, Up: RTL
-
-13.6 Machine Modes
-==================
-
-A machine mode describes a size of data object and the representation
-used for it. In the C code, machine modes are represented by an
-enumeration type, 'enum machine_mode', defined in 'machmode.def'. Each
-RTL expression has room for a machine mode and so do certain kinds of
-tree expressions (declarations and types, to be precise).
-
- In debugging dumps and machine descriptions, the machine mode of an RTL
-expression is written after the expression code with a colon to separate
-them. The letters 'mode' which appear at the end of each machine mode
-name are omitted. For example, '(reg:SI 38)' is a 'reg' expression with
-machine mode 'SImode'. If the mode is 'VOIDmode', it is not written at
-all.
-
- Here is a table of machine modes. The term "byte" below refers to an
-object of 'BITS_PER_UNIT' bits (*note Storage Layout::).
-
-'BImode'
- "Bit" mode represents a single bit, for predicate registers.
-
-'QImode'
- "Quarter-Integer" mode represents a single byte treated as an
- integer.
-
-'HImode'
- "Half-Integer" mode represents a two-byte integer.
-
-'PSImode'
- "Partial Single Integer" mode represents an integer which occupies
- four bytes but which doesn't really use all four. On some
- machines, this is the right mode to use for pointers.
-
-'SImode'
- "Single Integer" mode represents a four-byte integer.
-
-'PDImode'
- "Partial Double Integer" mode represents an integer which occupies
- eight bytes but which doesn't really use all eight. On some
- machines, this is the right mode to use for certain pointers.
-
-'DImode'
- "Double Integer" mode represents an eight-byte integer.
-
-'TImode'
- "Tetra Integer" (?) mode represents a sixteen-byte integer.
-
-'OImode'
- "Octa Integer" (?) mode represents a thirty-two-byte integer.
-
-'XImode'
- "Hexadeca Integer" (?) mode represents a sixty-four-byte integer.
-
-'QFmode'
- "Quarter-Floating" mode represents a quarter-precision (single
- byte) floating point number.
-
-'HFmode'
- "Half-Floating" mode represents a half-precision (two byte)
- floating point number.
-
-'TQFmode'
- "Three-Quarter-Floating" (?) mode represents a
- three-quarter-precision (three byte) floating point number.
-
-'SFmode'
- "Single Floating" mode represents a four byte floating point
- number. In the common case, of a processor with IEEE arithmetic
- and 8-bit bytes, this is a single-precision IEEE floating point
- number; it can also be used for double-precision (on processors
- with 16-bit bytes) and single-precision VAX and IBM types.
-
-'DFmode'
- "Double Floating" mode represents an eight byte floating point
- number. In the common case, of a processor with IEEE arithmetic
- and 8-bit bytes, this is a double-precision IEEE floating point
- number.
-
-'XFmode'
- "Extended Floating" mode represents an IEEE extended floating point
- number. This mode only has 80 meaningful bits (ten bytes). Some
- processors require such numbers to be padded to twelve bytes,
- others to sixteen; this mode is used for either.
-
-'SDmode'
- "Single Decimal Floating" mode represents a four byte decimal
- floating point number (as distinct from conventional binary
- floating point).
-
-'DDmode'
- "Double Decimal Floating" mode represents an eight byte decimal
- floating point number.
-
-'TDmode'
- "Tetra Decimal Floating" mode represents a sixteen byte decimal
- floating point number all 128 of whose bits are meaningful.
-
-'TFmode'
- "Tetra Floating" mode represents a sixteen byte floating point
- number all 128 of whose bits are meaningful. One common use is the
- IEEE quad-precision format.
-
-'QQmode'
- "Quarter-Fractional" mode represents a single byte treated as a
- signed fractional number. The default format is "s.7".
-
-'HQmode'
- "Half-Fractional" mode represents a two-byte signed fractional
- number. The default format is "s.15".
-
-'SQmode'
- "Single Fractional" mode represents a four-byte signed fractional
- number. The default format is "s.31".
-
-'DQmode'
- "Double Fractional" mode represents an eight-byte signed fractional
- number. The default format is "s.63".
-
-'TQmode'
- "Tetra Fractional" mode represents a sixteen-byte signed fractional
- number. The default format is "s.127".
-
-'UQQmode'
- "Unsigned Quarter-Fractional" mode represents a single byte treated
- as an unsigned fractional number. The default format is ".8".
-
-'UHQmode'
- "Unsigned Half-Fractional" mode represents a two-byte unsigned
- fractional number. The default format is ".16".
-
-'USQmode'
- "Unsigned Single Fractional" mode represents a four-byte unsigned
- fractional number. The default format is ".32".
-
-'UDQmode'
- "Unsigned Double Fractional" mode represents an eight-byte unsigned
- fractional number. The default format is ".64".
-
-'UTQmode'
- "Unsigned Tetra Fractional" mode represents a sixteen-byte unsigned
- fractional number. The default format is ".128".
-
-'HAmode'
- "Half-Accumulator" mode represents a two-byte signed accumulator.
- The default format is "s8.7".
-
-'SAmode'
- "Single Accumulator" mode represents a four-byte signed
- accumulator. The default format is "s16.15".
-
-'DAmode'
- "Double Accumulator" mode represents an eight-byte signed
- accumulator. The default format is "s32.31".
-
-'TAmode'
- "Tetra Accumulator" mode represents a sixteen-byte signed
- accumulator. The default format is "s64.63".
-
-'UHAmode'
- "Unsigned Half-Accumulator" mode represents a two-byte unsigned
- accumulator. The default format is "8.8".
-
-'USAmode'
- "Unsigned Single Accumulator" mode represents a four-byte unsigned
- accumulator. The default format is "16.16".
-
-'UDAmode'
- "Unsigned Double Accumulator" mode represents an eight-byte
- unsigned accumulator. The default format is "32.32".
-
-'UTAmode'
- "Unsigned Tetra Accumulator" mode represents a sixteen-byte
- unsigned accumulator. The default format is "64.64".
-
-'CCmode'
- "Condition Code" mode represents the value of a condition code,
- which is a machine-specific set of bits used to represent the
- result of a comparison operation. Other machine-specific modes may
- also be used for the condition code. These modes are not used on
- machines that use 'cc0' (*note Condition Code::).
-
-'BLKmode'
- "Block" mode represents values that are aggregates to which none of
- the other modes apply. In RTL, only memory references can have
- this mode, and only if they appear in string-move or vector
- instructions. On machines which have no such instructions,
- 'BLKmode' will not appear in RTL.
-
-'VOIDmode'
- Void mode means the absence of a mode or an unspecified mode. For
- example, RTL expressions of code 'const_int' have mode 'VOIDmode'
- because they can be taken to have whatever mode the context
- requires. In debugging dumps of RTL, 'VOIDmode' is expressed by
- the absence of any mode.
-
-'QCmode, HCmode, SCmode, DCmode, XCmode, TCmode'
- These modes stand for a complex number represented as a pair of
- floating point values. The floating point values are in 'QFmode',
- 'HFmode', 'SFmode', 'DFmode', 'XFmode', and 'TFmode', respectively.
-
-'CQImode, CHImode, CSImode, CDImode, CTImode, COImode'
- These modes stand for a complex number represented as a pair of
- integer values. The integer values are in 'QImode', 'HImode',
- 'SImode', 'DImode', 'TImode', and 'OImode', respectively.
-
- The machine description defines 'Pmode' as a C macro which expands into
-the machine mode used for addresses. Normally this is the mode whose
-size is 'BITS_PER_WORD', 'SImode' on 32-bit machines.
-
- The only modes which a machine description must support are 'QImode',
-and the modes corresponding to 'BITS_PER_WORD', 'FLOAT_TYPE_SIZE' and
-'DOUBLE_TYPE_SIZE'. The compiler will attempt to use 'DImode' for
-8-byte structures and unions, but this can be prevented by overriding
-the definition of 'MAX_FIXED_MODE_SIZE'. Alternatively, you can have
-the compiler use 'TImode' for 16-byte structures and unions. Likewise,
-you can arrange for the C type 'short int' to avoid using 'HImode'.
-
- Very few explicit references to machine modes remain in the compiler
-and these few references will soon be removed. Instead, the machine
-modes are divided into mode classes. These are represented by the
-enumeration type 'enum mode_class' defined in 'machmode.h'. The
-possible mode classes are:
-
-'MODE_INT'
- Integer modes. By default these are 'BImode', 'QImode', 'HImode',
- 'SImode', 'DImode', 'TImode', and 'OImode'.
-
-'MODE_PARTIAL_INT'
- The "partial integer" modes, 'PQImode', 'PHImode', 'PSImode' and
- 'PDImode'.
-
-'MODE_FLOAT'
- Floating point modes. By default these are 'QFmode', 'HFmode',
- 'TQFmode', 'SFmode', 'DFmode', 'XFmode' and 'TFmode'.
-
-'MODE_DECIMAL_FLOAT'
- Decimal floating point modes. By default these are 'SDmode',
- 'DDmode' and 'TDmode'.
-
-'MODE_FRACT'
- Signed fractional modes. By default these are 'QQmode', 'HQmode',
- 'SQmode', 'DQmode' and 'TQmode'.
-
-'MODE_UFRACT'
- Unsigned fractional modes. By default these are 'UQQmode',
- 'UHQmode', 'USQmode', 'UDQmode' and 'UTQmode'.
-
-'MODE_ACCUM'
- Signed accumulator modes. By default these are 'HAmode', 'SAmode',
- 'DAmode' and 'TAmode'.
-
-'MODE_UACCUM'
- Unsigned accumulator modes. By default these are 'UHAmode',
- 'USAmode', 'UDAmode' and 'UTAmode'.
-
-'MODE_COMPLEX_INT'
- Complex integer modes. (These are not currently implemented).
-
-'MODE_COMPLEX_FLOAT'
- Complex floating point modes. By default these are 'QCmode',
- 'HCmode', 'SCmode', 'DCmode', 'XCmode', and 'TCmode'.
-
-'MODE_FUNCTION'
- Algol or Pascal function variables including a static chain.
- (These are not currently implemented).
-
-'MODE_CC'
- Modes representing condition code values. These are 'CCmode' plus
- any 'CC_MODE' modes listed in the 'MACHINE-modes.def'. *Note Jump
- Patterns::, also see *note Condition Code::.
-
-'MODE_RANDOM'
- This is a catchall mode class for modes which don't fit into the
- above classes. Currently 'VOIDmode' and 'BLKmode' are in
- 'MODE_RANDOM'.
-
- Here are some C macros that relate to machine modes:
-
-'GET_MODE (X)'
- Returns the machine mode of the RTX X.
-
-'PUT_MODE (X, NEWMODE)'
- Alters the machine mode of the RTX X to be NEWMODE.
-
-'NUM_MACHINE_MODES'
- Stands for the number of machine modes available on the target
- machine. This is one greater than the largest numeric value of any
- machine mode.
-
-'GET_MODE_NAME (M)'
- Returns the name of mode M as a string.
-
-'GET_MODE_CLASS (M)'
- Returns the mode class of mode M.
-
-'GET_MODE_WIDER_MODE (M)'
- Returns the next wider natural mode. For example, the expression
- 'GET_MODE_WIDER_MODE (QImode)' returns 'HImode'.
-
-'GET_MODE_SIZE (M)'
- Returns the size in bytes of a datum of mode M.
-
-'GET_MODE_BITSIZE (M)'
- Returns the size in bits of a datum of mode M.
-
-'GET_MODE_IBIT (M)'
- Returns the number of integral bits of a datum of fixed-point mode
- M.
-
-'GET_MODE_FBIT (M)'
- Returns the number of fractional bits of a datum of fixed-point
- mode M.
-
-'GET_MODE_MASK (M)'
- Returns a bitmask containing 1 for all bits in a word that fit
- within mode M. This macro can only be used for modes whose bitsize
- is less than or equal to 'HOST_BITS_PER_INT'.
-
-'GET_MODE_ALIGNMENT (M)'
- Return the required alignment, in bits, for an object of mode M.
-
-'GET_MODE_UNIT_SIZE (M)'
- Returns the size in bytes of the subunits of a datum of mode M.
- This is the same as 'GET_MODE_SIZE' except in the case of complex
- modes. For them, the unit size is the size of the real or
- imaginary part.
-
-'GET_MODE_NUNITS (M)'
- Returns the number of units contained in a mode, i.e.,
- 'GET_MODE_SIZE' divided by 'GET_MODE_UNIT_SIZE'.
-
-'GET_CLASS_NARROWEST_MODE (C)'
- Returns the narrowest mode in mode class C.
-
- The following 3 variables are defined on every target. They can be
-used to allocate buffers that are guaranteed to be large enough to hold
-any value that can be represented on the target. The first two can be
-overridden by defining them in the target's mode.def file, however, the
-value must be a constant that can determined very early in the
-compilation process. The third symbol cannot be overridden.
-
-'BITS_PER_UNIT'
- The number of bits in an addressable storage unit (byte). If you
- do not define this, the default is 8.
-
-'MAX_BITSIZE_MODE_ANY_INT'
- The maximum bitsize of any mode that is used in integer math. This
- should be overridden by the target if it uses large integers as
- containers for larger vectors but otherwise never uses the contents
- to compute integer values.
-
-'MAX_BITSIZE_MODE_ANY_MODE'
- The bitsize of the largest mode on the target.
-
- The global variables 'byte_mode' and 'word_mode' contain modes whose
-classes are 'MODE_INT' and whose bitsizes are either 'BITS_PER_UNIT' or
-'BITS_PER_WORD', respectively. On 32-bit machines, these are 'QImode'
-and 'SImode', respectively.
-
-
-File: gccint.info, Node: Constants, Next: Regs and Memory, Prev: Machine Modes, Up: RTL
-
-13.7 Constant Expression Types
-==============================
-
-The simplest RTL expressions are those that represent constant values.
-
-'(const_int I)'
- This type of expression represents the integer value I. I is
- customarily accessed with the macro 'INTVAL' as in 'INTVAL (EXP)',
- which is equivalent to 'XWINT (EXP, 0)'.
-
- Constants generated for modes with fewer bits than in
- 'HOST_WIDE_INT' must be sign extended to full width (e.g., with
- 'gen_int_mode'). For constants for modes with more bits than in
- 'HOST_WIDE_INT' the implied high order bits of that constant are
- copies of the top bit. Note however that values are neither
- inherently signed nor inherently unsigned; where necessary,
- signedness is determined by the rtl operation instead.
-
- There is only one expression object for the integer value zero; it
- is the value of the variable 'const0_rtx'. Likewise, the only
- expression for integer value one is found in 'const1_rtx', the only
- expression for integer value two is found in 'const2_rtx', and the
- only expression for integer value negative one is found in
- 'constm1_rtx'. Any attempt to create an expression of code
- 'const_int' and value zero, one, two or negative one will return
- 'const0_rtx', 'const1_rtx', 'const2_rtx' or 'constm1_rtx' as
- appropriate.
-
- Similarly, there is only one object for the integer whose value is
- 'STORE_FLAG_VALUE'. It is found in 'const_true_rtx'. If
- 'STORE_FLAG_VALUE' is one, 'const_true_rtx' and 'const1_rtx' will
- point to the same object. If 'STORE_FLAG_VALUE' is -1,
- 'const_true_rtx' and 'constm1_rtx' will point to the same object.
-
-'(const_double:M I0 I1 ...)'
- Represents either a floating-point constant of mode M or an integer
- constant too large to fit into 'HOST_BITS_PER_WIDE_INT' bits but
- small enough to fit within twice that number of bits (GCC does not
- provide a mechanism to represent even larger constants). In the
- latter case, M will be 'VOIDmode'. For integral values constants
- for modes with more bits than twice the number in 'HOST_WIDE_INT'
- the implied high order bits of that constant are copies of the top
- bit of 'CONST_DOUBLE_HIGH'. Note however that integral values are
- neither inherently signed nor inherently unsigned; where necessary,
- signedness is determined by the rtl operation instead.
-
- If M is 'VOIDmode', the bits of the value are stored in I0 and I1.
- I0 is customarily accessed with the macro 'CONST_DOUBLE_LOW' and I1
- with 'CONST_DOUBLE_HIGH'.
-
- If the constant is floating point (regardless of its precision),
- then the number of integers used to store the value depends on the
- size of 'REAL_VALUE_TYPE' (*note Floating Point::). The integers
- represent a floating point number, but not precisely in the target
- machine's or host machine's floating point format. To convert them
- to the precise bit pattern used by the target machine, use the
- macro 'REAL_VALUE_TO_TARGET_DOUBLE' and friends (*note Data
- Output::).
-
-'(const_fixed:M ...)'
- Represents a fixed-point constant of mode M. The operand is a data
- structure of type 'struct fixed_value' and is accessed with the
- macro 'CONST_FIXED_VALUE'. The high part of data is accessed with
- 'CONST_FIXED_VALUE_HIGH'; the low part is accessed with
- 'CONST_FIXED_VALUE_LOW'.
-
-'(const_vector:M [X0 X1 ...])'
- Represents a vector constant. The square brackets stand for the
- vector containing the constant elements. X0, X1 and so on are the
- 'const_int', 'const_double' or 'const_fixed' elements.
-
- The number of units in a 'const_vector' is obtained with the macro
- 'CONST_VECTOR_NUNITS' as in 'CONST_VECTOR_NUNITS (V)'.
-
- Individual elements in a vector constant are accessed with the
- macro 'CONST_VECTOR_ELT' as in 'CONST_VECTOR_ELT (V, N)' where V is
- the vector constant and N is the element desired.
-
-'(const_string STR)'
- Represents a constant string with value STR. Currently this is
- used only for insn attributes (*note Insn Attributes::) since
- constant strings in C are placed in memory.
-
-'(symbol_ref:MODE SYMBOL)'
- Represents the value of an assembler label for data. SYMBOL is a
- string that describes the name of the assembler label. If it
- starts with a '*', the label is the rest of SYMBOL not including
- the '*'. Otherwise, the label is SYMBOL, usually prefixed with
- '_'.
-
- The 'symbol_ref' contains a mode, which is usually 'Pmode'.
- Usually that is the only mode for which a symbol is directly valid.
-
-'(label_ref:MODE LABEL)'
- Represents the value of an assembler label for code. It contains
- one operand, an expression, which must be a 'code_label' or a
- 'note' of type 'NOTE_INSN_DELETED_LABEL' that appears in the
- instruction sequence to identify the place where the label should
- go.
-
- The reason for using a distinct expression type for code label
- references is so that jump optimization can distinguish them.
-
- The 'label_ref' contains a mode, which is usually 'Pmode'. Usually
- that is the only mode for which a label is directly valid.
-
-'(const:M EXP)'
- Represents a constant that is the result of an assembly-time
- arithmetic computation. The operand, EXP, is an expression that
- contains only constants ('const_int', 'symbol_ref' and 'label_ref'
- expressions) combined with 'plus' and 'minus'. However, not all
- combinations are valid, since the assembler cannot do arbitrary
- arithmetic on relocatable symbols.
-
- M should be 'Pmode'.
-
-'(high:M EXP)'
- Represents the high-order bits of EXP, usually a 'symbol_ref'. The
- number of bits is machine-dependent and is normally the number of
- bits specified in an instruction that initializes the high order
- bits of a register. It is used with 'lo_sum' to represent the
- typical two-instruction sequence used in RISC machines to reference
- a global memory location.
-
- M should be 'Pmode'.
-
- The macro 'CONST0_RTX (MODE)' refers to an expression with value 0 in
-mode MODE. If mode MODE is of mode class 'MODE_INT', it returns
-'const0_rtx'. If mode MODE is of mode class 'MODE_FLOAT', it returns a
-'CONST_DOUBLE' expression in mode MODE. Otherwise, it returns a
-'CONST_VECTOR' expression in mode MODE. Similarly, the macro
-'CONST1_RTX (MODE)' refers to an expression with value 1 in mode MODE
-and similarly for 'CONST2_RTX'. The 'CONST1_RTX' and 'CONST2_RTX'
-macros are undefined for vector modes.
-
-
-File: gccint.info, Node: Regs and Memory, Next: Arithmetic, Prev: Constants, Up: RTL
-
-13.8 Registers and Memory
-=========================
-
-Here are the RTL expression types for describing access to machine
-registers and to main memory.
-
-'(reg:M N)'
- For small values of the integer N (those that are less than
- 'FIRST_PSEUDO_REGISTER'), this stands for a reference to machine
- register number N: a "hard register". For larger values of N, it
- stands for a temporary value or "pseudo register". The compiler's
- strategy is to generate code assuming an unlimited number of such
- pseudo registers, and later convert them into hard registers or
- into memory references.
-
- M is the machine mode of the reference. It is necessary because
- machines can generally refer to each register in more than one
- mode. For example, a register may contain a full word but there
- may be instructions to refer to it as a half word or as a single
- byte, as well as instructions to refer to it as a floating point
- number of various precisions.
-
- Even for a register that the machine can access in only one mode,
- the mode must always be specified.
-
- The symbol 'FIRST_PSEUDO_REGISTER' is defined by the machine
- description, since the number of hard registers on the machine is
- an invariant characteristic of the machine. Note, however, that
- not all of the machine registers must be general registers. All
- the machine registers that can be used for storage of data are
- given hard register numbers, even those that can be used only in
- certain instructions or can hold only certain types of data.
-
- A hard register may be accessed in various modes throughout one
- function, but each pseudo register is given a natural mode and is
- accessed only in that mode. When it is necessary to describe an
- access to a pseudo register using a nonnatural mode, a 'subreg'
- expression is used.
-
- A 'reg' expression with a machine mode that specifies more than one
- word of data may actually stand for several consecutive registers.
- If in addition the register number specifies a hardware register,
- then it actually represents several consecutive hardware registers
- starting with the specified one.
-
- Each pseudo register number used in a function's RTL code is
- represented by a unique 'reg' expression.
-
- Some pseudo register numbers, those within the range of
- 'FIRST_VIRTUAL_REGISTER' to 'LAST_VIRTUAL_REGISTER' only appear
- during the RTL generation phase and are eliminated before the
- optimization phases. These represent locations in the stack frame
- that cannot be determined until RTL generation for the function has
- been completed. The following virtual register numbers are
- defined:
-
- 'VIRTUAL_INCOMING_ARGS_REGNUM'
- This points to the first word of the incoming arguments passed
- on the stack. Normally these arguments are placed there by
- the caller, but the callee may have pushed some arguments that
- were previously passed in registers.
-
- When RTL generation is complete, this virtual register is
- replaced by the sum of the register given by
- 'ARG_POINTER_REGNUM' and the value of 'FIRST_PARM_OFFSET'.
-
- 'VIRTUAL_STACK_VARS_REGNUM'
- If 'FRAME_GROWS_DOWNWARD' is defined to a nonzero value, this
- points to immediately above the first variable on the stack.
- Otherwise, it points to the first variable on the stack.
-
- 'VIRTUAL_STACK_VARS_REGNUM' is replaced with the sum of the
- register given by 'FRAME_POINTER_REGNUM' and the value
- 'STARTING_FRAME_OFFSET'.
-
- 'VIRTUAL_STACK_DYNAMIC_REGNUM'
- This points to the location of dynamically allocated memory on
- the stack immediately after the stack pointer has been
- adjusted by the amount of memory desired.
-
- This virtual register is replaced by the sum of the register
- given by 'STACK_POINTER_REGNUM' and the value
- 'STACK_DYNAMIC_OFFSET'.
-
- 'VIRTUAL_OUTGOING_ARGS_REGNUM'
- This points to the location in the stack at which outgoing
- arguments should be written when the stack is pre-pushed
- (arguments pushed using push insns should always use
- 'STACK_POINTER_REGNUM').
-
- This virtual register is replaced by the sum of the register
- given by 'STACK_POINTER_REGNUM' and the value
- 'STACK_POINTER_OFFSET'.
-
-'(subreg:M1 REG:M2 BYTENUM)'
-
- 'subreg' expressions are used to refer to a register in a machine
- mode other than its natural one, or to refer to one register of a
- multi-part 'reg' that actually refers to several registers.
-
- Each pseudo register has a natural mode. If it is necessary to
- operate on it in a different mode, the register must be enclosed in
- a 'subreg'.
-
- There are currently three supported types for the first operand of
- a 'subreg':
- * pseudo registers This is the most common case. Most 'subreg's
- have pseudo 'reg's as their first operand.
-
- * mem 'subreg's of 'mem' were common in earlier versions of GCC
- and are still supported. During the reload pass these are
- replaced by plain 'mem's. On machines that do not do
- instruction scheduling, use of 'subreg's of 'mem' are still
- used, but this is no longer recommended. Such 'subreg's are
- considered to be 'register_operand's rather than
- 'memory_operand's before and during reload. Because of this,
- the scheduling passes cannot properly schedule instructions
- with 'subreg's of 'mem', so for machines that do scheduling,
- 'subreg's of 'mem' should never be used. To support this, the
- combine and recog passes have explicit code to inhibit the
- creation of 'subreg's of 'mem' when 'INSN_SCHEDULING' is
- defined.
-
- The use of 'subreg's of 'mem' after the reload pass is an area
- that is not well understood and should be avoided. There is
- still some code in the compiler to support this, but this code
- has possibly rotted. This use of 'subreg's is discouraged and
- will most likely not be supported in the future.
-
- * hard registers It is seldom necessary to wrap hard registers
- in 'subreg's; such registers would normally reduce to a single
- 'reg' rtx. This use of 'subreg's is discouraged and may not
- be supported in the future.
-
- 'subreg's of 'subreg's are not supported. Using
- 'simplify_gen_subreg' is the recommended way to avoid this problem.
-
- 'subreg's come in two distinct flavors, each having its own usage
- and rules:
-
- Paradoxical subregs
- When M1 is strictly wider than M2, the 'subreg' expression is
- called "paradoxical". The canonical test for this class of
- 'subreg' is:
-
- GET_MODE_SIZE (M1) > GET_MODE_SIZE (M2)
-
- Paradoxical 'subreg's can be used as both lvalues and rvalues.
- When used as an lvalue, the low-order bits of the source value
- are stored in REG and the high-order bits are discarded. When
- used as an rvalue, the low-order bits of the 'subreg' are
- taken from REG while the high-order bits may or may not be
- defined.
-
- The high-order bits of rvalues are in the following
- circumstances:
-
- * 'subreg's of 'mem' When M2 is smaller than a word, the
- macro 'LOAD_EXTEND_OP', can control how the high-order
- bits are defined.
-
- * 'subreg' of 'reg's The upper bits are defined when
- 'SUBREG_PROMOTED_VAR_P' is true.
- 'SUBREG_PROMOTED_UNSIGNED_P' describes what the upper
- bits hold. Such subregs usually represent local
- variables, register variables and parameter pseudo
- variables that have been promoted to a wider mode.
-
- BYTENUM is always zero for a paradoxical 'subreg', even on
- big-endian targets.
-
- For example, the paradoxical 'subreg':
-
- (set (subreg:SI (reg:HI X) 0) Y)
-
- stores the lower 2 bytes of Y in X and discards the upper 2
- bytes. A subsequent:
-
- (set Z (subreg:SI (reg:HI X) 0))
-
- would set the lower two bytes of Z to Y and set the upper two
- bytes to an unknown value assuming 'SUBREG_PROMOTED_VAR_P' is
- false.
-
- Normal subregs
- When M1 is at least as narrow as M2 the 'subreg' expression is
- called "normal".
-
- Normal 'subreg's restrict consideration to certain bits of
- REG. There are two cases. If M1 is smaller than a word, the
- 'subreg' refers to the least-significant part (or "lowpart")
- of one word of REG. If M1 is word-sized or greater, the
- 'subreg' refers to one or more complete words.
-
- When used as an lvalue, 'subreg' is a word-based accessor.
- Storing to a 'subreg' modifies all the words of REG that
- overlap the 'subreg', but it leaves the other words of REG
- alone.
-
- When storing to a normal 'subreg' that is smaller than a word,
- the other bits of the referenced word are usually left in an
- undefined state. This laxity makes it easier to generate
- efficient code for such instructions. To represent an
- instruction that preserves all the bits outside of those in
- the 'subreg', use 'strict_low_part' or 'zero_extract' around
- the 'subreg'.
-
- BYTENUM must identify the offset of the first byte of the
- 'subreg' from the start of REG, assuming that REG is laid out
- in memory order. The memory order of bytes is defined by two
- target macros, 'WORDS_BIG_ENDIAN' and 'BYTES_BIG_ENDIAN':
-
- * 'WORDS_BIG_ENDIAN', if set to 1, says that byte number
- zero is part of the most significant word; otherwise, it
- is part of the least significant word.
-
- * 'BYTES_BIG_ENDIAN', if set to 1, says that byte number
- zero is the most significant byte within a word;
- otherwise, it is the least significant byte within a
- word.
-
- On a few targets, 'FLOAT_WORDS_BIG_ENDIAN' disagrees with
- 'WORDS_BIG_ENDIAN'. However, most parts of the compiler treat
- floating point values as if they had the same endianness as
- integer values. This works because they handle them solely as
- a collection of integer values, with no particular numerical
- value. Only real.c and the runtime libraries care about
- 'FLOAT_WORDS_BIG_ENDIAN'.
-
- Thus,
-
- (subreg:HI (reg:SI X) 2)
-
- on a 'BYTES_BIG_ENDIAN', 'UNITS_PER_WORD == 4' target is the
- same as
-
- (subreg:HI (reg:SI X) 0)
-
- on a little-endian, 'UNITS_PER_WORD == 4' target. Both
- 'subreg's access the lower two bytes of register X.
-
- A 'MODE_PARTIAL_INT' mode behaves as if it were as wide as the
- corresponding 'MODE_INT' mode, except that it has an unknown number
- of undefined bits. For example:
-
- (subreg:PSI (reg:SI 0) 0)
-
- accesses the whole of '(reg:SI 0)', but the exact relationship
- between the 'PSImode' value and the 'SImode' value is not defined.
- If we assume 'UNITS_PER_WORD <= 4', then the following two
- 'subreg's:
-
- (subreg:PSI (reg:DI 0) 0)
- (subreg:PSI (reg:DI 0) 4)
-
- represent independent 4-byte accesses to the two halves of '(reg:DI
- 0)'. Both 'subreg's have an unknown number of undefined bits.
-
- If 'UNITS_PER_WORD <= 2' then these two 'subreg's:
-
- (subreg:HI (reg:PSI 0) 0)
- (subreg:HI (reg:PSI 0) 2)
-
- represent independent 2-byte accesses that together span the whole
- of '(reg:PSI 0)'. Storing to the first 'subreg' does not affect
- the value of the second, and vice versa. '(reg:PSI 0)' has an
- unknown number of undefined bits, so the assignment:
-
- (set (subreg:HI (reg:PSI 0) 0) (reg:HI 4))
-
- does not guarantee that '(subreg:HI (reg:PSI 0) 0)' has the value
- '(reg:HI 4)'.
-
- The rules above apply to both pseudo REGs and hard REGs. If the
- semantics are not correct for particular combinations of M1, M2 and
- hard REG, the target-specific code must ensure that those
- combinations are never used. For example:
-
- CANNOT_CHANGE_MODE_CLASS (M2, M1, CLASS)
-
- must be true for every class CLASS that includes REG.
-
- The first operand of a 'subreg' expression is customarily accessed
- with the 'SUBREG_REG' macro and the second operand is customarily
- accessed with the 'SUBREG_BYTE' macro.
-
- It has been several years since a platform in which
- 'BYTES_BIG_ENDIAN' not equal to 'WORDS_BIG_ENDIAN' has been tested.
- Anyone wishing to support such a platform in the future may be
- confronted with code rot.
-
-'(scratch:M)'
- This represents a scratch register that will be required for the
- execution of a single instruction and not used subsequently. It is
- converted into a 'reg' by either the local register allocator or
- the reload pass.
-
- 'scratch' is usually present inside a 'clobber' operation (*note
- Side Effects::).
-
-'(cc0)'
- This refers to the machine's condition code register. It has no
- operands and may not have a machine mode. There are two ways to
- use it:
-
- * To stand for a complete set of condition code flags. This is
- best on most machines, where each comparison sets the entire
- series of flags.
-
- With this technique, '(cc0)' may be validly used in only two
- contexts: as the destination of an assignment (in test and
- compare instructions) and in comparison operators comparing
- against zero ('const_int' with value zero; that is to say,
- 'const0_rtx').
-
- * To stand for a single flag that is the result of a single
- condition. This is useful on machines that have only a single
- flag bit, and in which comparison instructions must specify
- the condition to test.
-
- With this technique, '(cc0)' may be validly used in only two
- contexts: as the destination of an assignment (in test and
- compare instructions) where the source is a comparison
- operator, and as the first operand of 'if_then_else' (in a
- conditional branch).
-
- There is only one expression object of code 'cc0'; it is the value
- of the variable 'cc0_rtx'. Any attempt to create an expression of
- code 'cc0' will return 'cc0_rtx'.
-
- Instructions can set the condition code implicitly. On many
- machines, nearly all instructions set the condition code based on
- the value that they compute or store. It is not necessary to
- record these actions explicitly in the RTL because the machine
- description includes a prescription for recognizing the
- instructions that do so (by means of the macro 'NOTICE_UPDATE_CC').
- *Note Condition Code::. Only instructions whose sole purpose is to
- set the condition code, and instructions that use the condition
- code, need mention '(cc0)'.
-
- On some machines, the condition code register is given a register
- number and a 'reg' is used instead of '(cc0)'. This is usually the
- preferable approach if only a small subset of instructions modify
- the condition code. Other machines store condition codes in
- general registers; in such cases a pseudo register should be used.
-
- Some machines, such as the SPARC and RS/6000, have two sets of
- arithmetic instructions, one that sets and one that does not set
- the condition code. This is best handled by normally generating
- the instruction that does not set the condition code, and making a
- pattern that both performs the arithmetic and sets the condition
- code register (which would not be '(cc0)' in this case). For
- examples, search for 'addcc' and 'andcc' in 'sparc.md'.
-
-'(pc)'
- This represents the machine's program counter. It has no operands
- and may not have a machine mode. '(pc)' may be validly used only
- in certain specific contexts in jump instructions.
-
- There is only one expression object of code 'pc'; it is the value
- of the variable 'pc_rtx'. Any attempt to create an expression of
- code 'pc' will return 'pc_rtx'.
-
- All instructions that do not jump alter the program counter
- implicitly by incrementing it, but there is no need to mention this
- in the RTL.
-
-'(mem:M ADDR ALIAS)'
- This RTX represents a reference to main memory at an address
- represented by the expression ADDR. M specifies how large a unit
- of memory is accessed. ALIAS specifies an alias set for the
- reference. In general two items are in different alias sets if
- they cannot reference the same memory address.
-
- The construct '(mem:BLK (scratch))' is considered to alias all
- other memories. Thus it may be used as a memory barrier in
- epilogue stack deallocation patterns.
-
-'(concatM RTX RTX)'
- This RTX represents the concatenation of two other RTXs. This is
- used for complex values. It should only appear in the RTL attached
- to declarations and during RTL generation. It should not appear in
- the ordinary insn chain.
-
-'(concatnM [RTX ...])'
- This RTX represents the concatenation of all the RTX to make a
- single value. Like 'concat', this should only appear in
- declarations, and not in the insn chain.
-
-
-File: gccint.info, Node: Arithmetic, Next: Comparisons, Prev: Regs and Memory, Up: RTL
-
-13.9 RTL Expressions for Arithmetic
-===================================
-
-Unless otherwise specified, all the operands of arithmetic expressions
-must be valid for mode M. An operand is valid for mode M if it has mode
-M, or if it is a 'const_int' or 'const_double' and M is a mode of class
-'MODE_INT'.
-
- For commutative binary operations, constants should be placed in the
-second operand.
-
-'(plus:M X Y)'
-'(ss_plus:M X Y)'
-'(us_plus:M X Y)'
-
- These three expressions all represent the sum of the values
- represented by X and Y carried out in machine mode M. They differ
- in their behavior on overflow of integer modes. 'plus' wraps round
- modulo the width of M; 'ss_plus' saturates at the maximum signed
- value representable in M; 'us_plus' saturates at the maximum
- unsigned value.
-
-'(lo_sum:M X Y)'
-
- This expression represents the sum of X and the low-order bits of
- Y. It is used with 'high' (*note Constants::) to represent the
- typical two-instruction sequence used in RISC machines to reference
- a global memory location.
-
- The number of low order bits is machine-dependent but is normally
- the number of bits in a 'Pmode' item minus the number of bits set
- by 'high'.
-
- M should be 'Pmode'.
-
-'(minus:M X Y)'
-'(ss_minus:M X Y)'
-'(us_minus:M X Y)'
-
- These three expressions represent the result of subtracting Y from
- X, carried out in mode M. Behavior on overflow is the same as for
- the three variants of 'plus' (see above).
-
-'(compare:M X Y)'
- Represents the result of subtracting Y from X for purposes of
- comparison. The result is computed without overflow, as if with
- infinite precision.
-
- Of course, machines can't really subtract with infinite precision.
- However, they can pretend to do so when only the sign of the result
- will be used, which is the case when the result is stored in the
- condition code. And that is the _only_ way this kind of expression
- may validly be used: as a value to be stored in the condition
- codes, either '(cc0)' or a register. *Note Comparisons::.
-
- The mode M is not related to the modes of X and Y, but instead is
- the mode of the condition code value. If '(cc0)' is used, it is
- 'VOIDmode'. Otherwise it is some mode in class 'MODE_CC', often
- 'CCmode'. *Note Condition Code::. If M is 'VOIDmode' or 'CCmode',
- the operation returns sufficient information (in an unspecified
- format) so that any comparison operator can be applied to the
- result of the 'COMPARE' operation. For other modes in class
- 'MODE_CC', the operation only returns a subset of this information.
-
- Normally, X and Y must have the same mode. Otherwise, 'compare' is
- valid only if the mode of X is in class 'MODE_INT' and Y is a
- 'const_int' or 'const_double' with mode 'VOIDmode'. The mode of X
- determines what mode the comparison is to be done in; thus it must
- not be 'VOIDmode'.
-
- If one of the operands is a constant, it should be placed in the
- second operand and the comparison code adjusted as appropriate.
-
- A 'compare' specifying two 'VOIDmode' constants is not valid since
- there is no way to know in what mode the comparison is to be
- performed; the comparison must either be folded during the
- compilation or the first operand must be loaded into a register
- while its mode is still known.
-
-'(neg:M X)'
-'(ss_neg:M X)'
-'(us_neg:M X)'
- These two expressions represent the negation (subtraction from
- zero) of the value represented by X, carried out in mode M. They
- differ in the behavior on overflow of integer modes. In the case
- of 'neg', the negation of the operand may be a number not
- representable in mode M, in which case it is truncated to M.
- 'ss_neg' and 'us_neg' ensure that an out-of-bounds result saturates
- to the maximum or minimum signed or unsigned value.
-
-'(mult:M X Y)'
-'(ss_mult:M X Y)'
-'(us_mult:M X Y)'
- Represents the signed product of the values represented by X and Y
- carried out in machine mode M. 'ss_mult' and 'us_mult' ensure that
- an out-of-bounds result saturates to the maximum or minimum signed
- or unsigned value.
-
- Some machines support a multiplication that generates a product
- wider than the operands. Write the pattern for this as
-
- (mult:M (sign_extend:M X) (sign_extend:M Y))
-
- where M is wider than the modes of X and Y, which need not be the
- same.
-
- For unsigned widening multiplication, use the same idiom, but with
- 'zero_extend' instead of 'sign_extend'.
-
-'(fma:M X Y Z)'
- Represents the 'fma', 'fmaf', and 'fmal' builtin functions that do
- a combined multiply of X and Y and then adding toZ without doing an
- intermediate rounding step.
-
-'(div:M X Y)'
-'(ss_div:M X Y)'
- Represents the quotient in signed division of X by Y, carried out
- in machine mode M. If M is a floating point mode, it represents
- the exact quotient; otherwise, the integerized quotient. 'ss_div'
- ensures that an out-of-bounds result saturates to the maximum or
- minimum signed value.
-
- Some machines have division instructions in which the operands and
- quotient widths are not all the same; you should represent such
- instructions using 'truncate' and 'sign_extend' as in,
-
- (truncate:M1 (div:M2 X (sign_extend:M2 Y)))
-
-'(udiv:M X Y)'
-'(us_div:M X Y)'
- Like 'div' but represents unsigned division. 'us_div' ensures that
- an out-of-bounds result saturates to the maximum or minimum
- unsigned value.
-
-'(mod:M X Y)'
-'(umod:M X Y)'
- Like 'div' and 'udiv' but represent the remainder instead of the
- quotient.
-
-'(smin:M X Y)'
-'(smax:M X Y)'
- Represents the smaller (for 'smin') or larger (for 'smax') of X and
- Y, interpreted as signed values in mode M. When used with floating
- point, if both operands are zeros, or if either operand is 'NaN',
- then it is unspecified which of the two operands is returned as the
- result.
-
-'(umin:M X Y)'
-'(umax:M X Y)'
- Like 'smin' and 'smax', but the values are interpreted as unsigned
- integers.
-
-'(not:M X)'
- Represents the bitwise complement of the value represented by X,
- carried out in mode M, which must be a fixed-point machine mode.
-
-'(and:M X Y)'
- Represents the bitwise logical-and of the values represented by X
- and Y, carried out in machine mode M, which must be a fixed-point
- machine mode.
-
-'(ior:M X Y)'
- Represents the bitwise inclusive-or of the values represented by X
- and Y, carried out in machine mode M, which must be a fixed-point
- mode.
-
-'(xor:M X Y)'
- Represents the bitwise exclusive-or of the values represented by X
- and Y, carried out in machine mode M, which must be a fixed-point
- mode.
-
-'(ashift:M X C)'
-'(ss_ashift:M X C)'
-'(us_ashift:M X C)'
- These three expressions represent the result of arithmetically
- shifting X left by C places. They differ in their behavior on
- overflow of integer modes. An 'ashift' operation is a plain shift
- with no special behavior in case of a change in the sign bit;
- 'ss_ashift' and 'us_ashift' saturates to the minimum or maximum
- representable value if any of the bits shifted out differs from the
- final sign bit.
-
- X have mode M, a fixed-point machine mode. C be a fixed-point mode
- or be a constant with mode 'VOIDmode'; which mode is determined by
- the mode called for in the machine description entry for the
- left-shift instruction. For example, on the VAX, the mode of C is
- 'QImode' regardless of M.
-
-'(lshiftrt:M X C)'
-'(ashiftrt:M X C)'
- Like 'ashift' but for right shift. Unlike the case for left shift,
- these two operations are distinct.
-
-'(rotate:M X C)'
-'(rotatert:M X C)'
- Similar but represent left and right rotate. If C is a constant,
- use 'rotate'.
-
-'(abs:M X)'
-'(ss_abs:M X)'
- Represents the absolute value of X, computed in mode M. 'ss_abs'
- ensures that an out-of-bounds result saturates to the maximum
- signed value.
-
-'(sqrt:M X)'
- Represents the square root of X, computed in mode M. Most often M
- will be a floating point mode.
-
-'(ffs:M X)'
- Represents one plus the index of the least significant 1-bit in X,
- represented as an integer of mode M. (The value is zero if X is
- zero.) The mode of X must be M or 'VOIDmode'.
-
-'(clrsb:M X)'
- Represents the number of redundant leading sign bits in X,
- represented as an integer of mode M, starting at the most
- significant bit position. This is one less than the number of
- leading sign bits (either 0 or 1), with no special cases. The mode
- of X must be M or 'VOIDmode'.
-
-'(clz:M X)'
- Represents the number of leading 0-bits in X, represented as an
- integer of mode M, starting at the most significant bit position.
- If X is zero, the value is determined by
- 'CLZ_DEFINED_VALUE_AT_ZERO' (*note Misc::). Note that this is one
- of the few expressions that is not invariant under widening. The
- mode of X must be M or 'VOIDmode'.
-
-'(ctz:M X)'
- Represents the number of trailing 0-bits in X, represented as an
- integer of mode M, starting at the least significant bit position.
- If X is zero, the value is determined by
- 'CTZ_DEFINED_VALUE_AT_ZERO' (*note Misc::). Except for this case,
- 'ctz(x)' is equivalent to 'ffs(X) - 1'. The mode of X must be M or
- 'VOIDmode'.
-
-'(popcount:M X)'
- Represents the number of 1-bits in X, represented as an integer of
- mode M. The mode of X must be M or 'VOIDmode'.
-
-'(parity:M X)'
- Represents the number of 1-bits modulo 2 in X, represented as an
- integer of mode M. The mode of X must be M or 'VOIDmode'.
-
-'(bswap:M X)'
- Represents the value X with the order of bytes reversed, carried
- out in mode M, which must be a fixed-point machine mode. The mode
- of X must be M or 'VOIDmode'.
-
-
-File: gccint.info, Node: Comparisons, Next: Bit-Fields, Prev: Arithmetic, Up: RTL
-
-13.10 Comparison Operations
-===========================
-
-Comparison operators test a relation on two operands and are considered
-to represent a machine-dependent nonzero value described by, but not
-necessarily equal to, 'STORE_FLAG_VALUE' (*note Misc::) if the relation
-holds, or zero if it does not, for comparison operators whose results
-have a 'MODE_INT' mode, 'FLOAT_STORE_FLAG_VALUE' (*note Misc::) if the
-relation holds, or zero if it does not, for comparison operators that
-return floating-point values, and a vector of either
-'VECTOR_STORE_FLAG_VALUE' (*note Misc::) if the relation holds, or of
-zeros if it does not, for comparison operators that return vector
-results. The mode of the comparison operation is independent of the
-mode of the data being compared. If the comparison operation is being
-tested (e.g., the first operand of an 'if_then_else'), the mode must be
-'VOIDmode'.
-
- There are two ways that comparison operations may be used. The
-comparison operators may be used to compare the condition codes '(cc0)'
-against zero, as in '(eq (cc0) (const_int 0))'. Such a construct
-actually refers to the result of the preceding instruction in which the
-condition codes were set. The instruction setting the condition code
-must be adjacent to the instruction using the condition code; only
-'note' insns may separate them.
-
- Alternatively, a comparison operation may directly compare two data
-objects. The mode of the comparison is determined by the operands; they
-must both be valid for a common machine mode. A comparison with both
-operands constant would be invalid as the machine mode could not be
-deduced from it, but such a comparison should never exist in RTL due to
-constant folding.
-
- In the example above, if '(cc0)' were last set to '(compare X Y)', the
-comparison operation is identical to '(eq X Y)'. Usually only one style
-of comparisons is supported on a particular machine, but the combine
-pass will try to merge the operations to produce the 'eq' shown in case
-it exists in the context of the particular insn involved.
-
- Inequality comparisons come in two flavors, signed and unsigned. Thus,
-there are distinct expression codes 'gt' and 'gtu' for signed and
-unsigned greater-than. These can produce different results for the same
-pair of integer values: for example, 1 is signed greater-than -1 but not
-unsigned greater-than, because -1 when regarded as unsigned is actually
-'0xffffffff' which is greater than 1.
-
- The signed comparisons are also used for floating point values.
-Floating point comparisons are distinguished by the machine modes of the
-operands.
-
-'(eq:M X Y)'
- 'STORE_FLAG_VALUE' if the values represented by X and Y are equal,
- otherwise 0.
-
-'(ne:M X Y)'
- 'STORE_FLAG_VALUE' if the values represented by X and Y are not
- equal, otherwise 0.
-
-'(gt:M X Y)'
- 'STORE_FLAG_VALUE' if the X is greater than Y. If they are
- fixed-point, the comparison is done in a signed sense.
-
-'(gtu:M X Y)'
- Like 'gt' but does unsigned comparison, on fixed-point numbers
- only.
-
-'(lt:M X Y)'
-'(ltu:M X Y)'
- Like 'gt' and 'gtu' but test for "less than".
-
-'(ge:M X Y)'
-'(geu:M X Y)'
- Like 'gt' and 'gtu' but test for "greater than or equal".
-
-'(le:M X Y)'
-'(leu:M X Y)'
- Like 'gt' and 'gtu' but test for "less than or equal".
-
-'(if_then_else COND THEN ELSE)'
- This is not a comparison operation but is listed here because it is
- always used in conjunction with a comparison operation. To be
- precise, COND is a comparison expression. This expression
- represents a choice, according to COND, between the value
- represented by THEN and the one represented by ELSE.
-
- On most machines, 'if_then_else' expressions are valid only to
- express conditional jumps.
-
-'(cond [TEST1 VALUE1 TEST2 VALUE2 ...] DEFAULT)'
- Similar to 'if_then_else', but more general. Each of TEST1, TEST2,
- ... is performed in turn. The result of this expression is the
- VALUE corresponding to the first nonzero test, or DEFAULT if none
- of the tests are nonzero expressions.
-
- This is currently not valid for instruction patterns and is
- supported only for insn attributes. *Note Insn Attributes::.
-
-
-File: gccint.info, Node: Bit-Fields, Next: Vector Operations, Prev: Comparisons, Up: RTL
-
-13.11 Bit-Fields
-================
-
-Special expression codes exist to represent bit-field instructions.
-
-'(sign_extract:M LOC SIZE POS)'
- This represents a reference to a sign-extended bit-field contained
- or starting in LOC (a memory or register reference). The bit-field
- is SIZE bits wide and starts at bit POS. The compilation option
- 'BITS_BIG_ENDIAN' says which end of the memory unit POS counts
- from.
-
- If LOC is in memory, its mode must be a single-byte integer mode.
- If LOC is in a register, the mode to use is specified by the
- operand of the 'insv' or 'extv' pattern (*note Standard Names::)
- and is usually a full-word integer mode, which is the default if
- none is specified.
-
- The mode of POS is machine-specific and is also specified in the
- 'insv' or 'extv' pattern.
-
- The mode M is the same as the mode that would be used for LOC if it
- were a register.
-
- A 'sign_extract' can not appear as an lvalue, or part thereof, in
- RTL.
-
-'(zero_extract:M LOC SIZE POS)'
- Like 'sign_extract' but refers to an unsigned or zero-extended
- bit-field. The same sequence of bits are extracted, but they are
- filled to an entire word with zeros instead of by sign-extension.
-
- Unlike 'sign_extract', this type of expressions can be lvalues in
- RTL; they may appear on the left side of an assignment, indicating
- insertion of a value into the specified bit-field.
-
-
-File: gccint.info, Node: Vector Operations, Next: Conversions, Prev: Bit-Fields, Up: RTL
-
-13.12 Vector Operations
-=======================
-
-All normal RTL expressions can be used with vector modes; they are
-interpreted as operating on each part of the vector independently.
-Additionally, there are a few new expressions to describe specific
-vector operations.
-
-'(vec_merge:M VEC1 VEC2 ITEMS)'
- This describes a merge operation between two vectors. The result
- is a vector of mode M; its elements are selected from either VEC1
- or VEC2. Which elements are selected is described by ITEMS, which
- is a bit mask represented by a 'const_int'; a zero bit indicates
- the corresponding element in the result vector is taken from VEC2
- while a set bit indicates it is taken from VEC1.
-
-'(vec_select:M VEC1 SELECTION)'
- This describes an operation that selects parts of a vector. VEC1
- is the source vector, and SELECTION is a 'parallel' that contains a
- 'const_int' for each of the subparts of the result vector, giving
- the number of the source subpart that should be stored into it.
- The result mode M is either the submode for a single element of
- VEC1 (if only one subpart is selected), or another vector mode with
- that element submode (if multiple subparts are selected).
-
-'(vec_concat:M X1 X2)'
- Describes a vector concat operation. The result is a concatenation
- of the vectors or scalars X1 and X2; its length is the sum of the
- lengths of the two inputs.
-
-'(vec_duplicate:M X)'
- This operation converts a scalar into a vector or a small vector
- into a larger one by duplicating the input values. The output
- vector mode must have the same submodes as the input vector mode or
- the scalar modes, and the number of output parts must be an integer
- multiple of the number of input parts.
-
-
-File: gccint.info, Node: Conversions, Next: RTL Declarations, Prev: Vector Operations, Up: RTL
-
-13.13 Conversions
-=================
-
-All conversions between machine modes must be represented by explicit
-conversion operations. For example, an expression which is the sum of a
-byte and a full word cannot be written as '(plus:SI (reg:QI 34) (reg:SI
-80))' because the 'plus' operation requires two operands of the same
-machine mode. Therefore, the byte-sized operand is enclosed in a
-conversion operation, as in
-
- (plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80))
-
- The conversion operation is not a mere placeholder, because there may
-be more than one way of converting from a given starting mode to the
-desired final mode. The conversion operation code says how to do it.
-
- For all conversion operations, X must not be 'VOIDmode' because the
-mode in which to do the conversion would not be known. The conversion
-must either be done at compile-time or X must be placed into a register.
-
-'(sign_extend:M X)'
- Represents the result of sign-extending the value X to machine mode
- M. M must be a fixed-point mode and X a fixed-point value of a
- mode narrower than M.
-
-'(zero_extend:M X)'
- Represents the result of zero-extending the value X to machine mode
- M. M must be a fixed-point mode and X a fixed-point value of a
- mode narrower than M.
-
-'(float_extend:M X)'
- Represents the result of extending the value X to machine mode M.
- M must be a floating point mode and X a floating point value of a
- mode narrower than M.
-
-'(truncate:M X)'
- Represents the result of truncating the value X to machine mode M.
- M must be a fixed-point mode and X a fixed-point value of a mode
- wider than M.
-
-'(ss_truncate:M X)'
- Represents the result of truncating the value X to machine mode M,
- using signed saturation in the case of overflow. Both M and the
- mode of X must be fixed-point modes.
-
-'(us_truncate:M X)'
- Represents the result of truncating the value X to machine mode M,
- using unsigned saturation in the case of overflow. Both M and the
- mode of X must be fixed-point modes.
-
-'(float_truncate:M X)'
- Represents the result of truncating the value X to machine mode M.
- M must be a floating point mode and X a floating point value of a
- mode wider than M.
-
-'(float:M X)'
- Represents the result of converting fixed point value X, regarded
- as signed, to floating point mode M.
-
-'(unsigned_float:M X)'
- Represents the result of converting fixed point value X, regarded
- as unsigned, to floating point mode M.
-
-'(fix:M X)'
- When M is a floating-point mode, represents the result of
- converting floating point value X (valid for mode M) to an integer,
- still represented in floating point mode M, by rounding towards
- zero.
-
- When M is a fixed-point mode, represents the result of converting
- floating point value X to mode M, regarded as signed. How rounding
- is done is not specified, so this operation may be used validly in
- compiling C code only for integer-valued operands.
-
-'(unsigned_fix:M X)'
- Represents the result of converting floating point value X to fixed
- point mode M, regarded as unsigned. How rounding is done is not
- specified.
-
-'(fract_convert:M X)'
- Represents the result of converting fixed-point value X to
- fixed-point mode M, signed integer value X to fixed-point mode M,
- floating-point value X to fixed-point mode M, fixed-point value X
- to integer mode M regarded as signed, or fixed-point value X to
- floating-point mode M. When overflows or underflows happen, the
- results are undefined.
-
-'(sat_fract:M X)'
- Represents the result of converting fixed-point value X to
- fixed-point mode M, signed integer value X to fixed-point mode M,
- or floating-point value X to fixed-point mode M. When overflows or
- underflows happen, the results are saturated to the maximum or the
- minimum.
-
-'(unsigned_fract_convert:M X)'
- Represents the result of converting fixed-point value X to integer
- mode M regarded as unsigned, or unsigned integer value X to
- fixed-point mode M. When overflows or underflows happen, the
- results are undefined.
-
-'(unsigned_sat_fract:M X)'
- Represents the result of converting unsigned integer value X to
- fixed-point mode M. When overflows or underflows happen, the
- results are saturated to the maximum or the minimum.
-
-
-File: gccint.info, Node: RTL Declarations, Next: Side Effects, Prev: Conversions, Up: RTL
-
-13.14 Declarations
-==================
-
-Declaration expression codes do not represent arithmetic operations but
-rather state assertions about their operands.
-
-'(strict_low_part (subreg:M (reg:N R) 0))'
- This expression code is used in only one context: as the
- destination operand of a 'set' expression. In addition, the
- operand of this expression must be a non-paradoxical 'subreg'
- expression.
-
- The presence of 'strict_low_part' says that the part of the
- register which is meaningful in mode N, but is not part of mode M,
- is not to be altered. Normally, an assignment to such a subreg is
- allowed to have undefined effects on the rest of the register when
- M is less than a word.
-
-
-File: gccint.info, Node: Side Effects, Next: Incdec, Prev: RTL Declarations, Up: RTL
-
-13.15 Side Effect Expressions
-=============================
-
-The expression codes described so far represent values, not actions.
-But machine instructions never produce values; they are meaningful only
-for their side effects on the state of the machine. Special expression
-codes are used to represent side effects.
-
- The body of an instruction is always one of these side effect codes;
-the codes described above, which represent values, appear only as the
-operands of these.
-
-'(set LVAL X)'
- Represents the action of storing the value of X into the place
- represented by LVAL. LVAL must be an expression representing a
- place that can be stored in: 'reg' (or 'subreg', 'strict_low_part'
- or 'zero_extract'), 'mem', 'pc', 'parallel', or 'cc0'.
-
- If LVAL is a 'reg', 'subreg' or 'mem', it has a machine mode; then
- X must be valid for that mode.
-
- If LVAL is a 'reg' whose machine mode is less than the full width
- of the register, then it means that the part of the register
- specified by the machine mode is given the specified value and the
- rest of the register receives an undefined value. Likewise, if
- LVAL is a 'subreg' whose machine mode is narrower than the mode of
- the register, the rest of the register can be changed in an
- undefined way.
-
- If LVAL is a 'strict_low_part' of a subreg, then the part of the
- register specified by the machine mode of the 'subreg' is given the
- value X and the rest of the register is not changed.
-
- If LVAL is a 'zero_extract', then the referenced part of the
- bit-field (a memory or register reference) specified by the
- 'zero_extract' is given the value X and the rest of the bit-field
- is not changed. Note that 'sign_extract' can not appear in LVAL.
-
- If LVAL is '(cc0)', it has no machine mode, and X may be either a
- 'compare' expression or a value that may have any mode. The latter
- case represents a "test" instruction. The expression '(set (cc0)
- (reg:M N))' is equivalent to '(set (cc0) (compare (reg:M N)
- (const_int 0)))'. Use the former expression to save space during
- the compilation.
-
- If LVAL is a 'parallel', it is used to represent the case of a
- function returning a structure in multiple registers. Each element
- of the 'parallel' is an 'expr_list' whose first operand is a 'reg'
- and whose second operand is a 'const_int' representing the offset
- (in bytes) into the structure at which the data in that register
- corresponds. The first element may be null to indicate that the
- structure is also passed partly in memory.
-
- If LVAL is '(pc)', we have a jump instruction, and the
- possibilities for X are very limited. It may be a 'label_ref'
- expression (unconditional jump). It may be an 'if_then_else'
- (conditional jump), in which case either the second or the third
- operand must be '(pc)' (for the case which does not jump) and the
- other of the two must be a 'label_ref' (for the case which does
- jump). X may also be a 'mem' or '(plus:SI (pc) Y)', where Y may be
- a 'reg' or a 'mem'; these unusual patterns are used to represent
- jumps through branch tables.
-
- If LVAL is neither '(cc0)' nor '(pc)', the mode of LVAL must not be
- 'VOIDmode' and the mode of X must be valid for the mode of LVAL.
-
- LVAL is customarily accessed with the 'SET_DEST' macro and X with
- the 'SET_SRC' macro.
-
-'(return)'
- As the sole expression in a pattern, represents a return from the
- current function, on machines where this can be done with one
- instruction, such as VAXen. On machines where a multi-instruction
- "epilogue" must be executed in order to return from the function,
- returning is done by jumping to a label which precedes the
- epilogue, and the 'return' expression code is never used.
-
- Inside an 'if_then_else' expression, represents the value to be
- placed in 'pc' to return to the caller.
-
- Note that an insn pattern of '(return)' is logically equivalent to
- '(set (pc) (return))', but the latter form is never used.
-
-'(simple_return)'
- Like '(return)', but truly represents only a function return, while
- '(return)' may represent an insn that also performs other functions
- of the function epilogue. Like '(return)', this may also occur in
- conditional jumps.
-
-'(call FUNCTION NARGS)'
- Represents a function call. FUNCTION is a 'mem' expression whose
- address is the address of the function to be called. NARGS is an
- expression which can be used for two purposes: on some machines it
- represents the number of bytes of stack argument; on others, it
- represents the number of argument registers.
-
- Each machine has a standard machine mode which FUNCTION must have.
- The machine description defines macro 'FUNCTION_MODE' to expand
- into the requisite mode name. The purpose of this mode is to
- specify what kind of addressing is allowed, on machines where the
- allowed kinds of addressing depend on the machine mode being
- addressed.
-
-'(clobber X)'
- Represents the storing or possible storing of an unpredictable,
- undescribed value into X, which must be a 'reg', 'scratch',
- 'parallel' or 'mem' expression.
-
- One place this is used is in string instructions that store
- standard values into particular hard registers. It may not be
- worth the trouble to describe the values that are stored, but it is
- essential to inform the compiler that the registers will be
- altered, lest it attempt to keep data in them across the string
- instruction.
-
- If X is '(mem:BLK (const_int 0))' or '(mem:BLK (scratch))', it
- means that all memory locations must be presumed clobbered. If X
- is a 'parallel', it has the same meaning as a 'parallel' in a 'set'
- expression.
-
- Note that the machine description classifies certain hard registers
- as "call-clobbered". All function call instructions are assumed by
- default to clobber these registers, so there is no need to use
- 'clobber' expressions to indicate this fact. Also, each function
- call is assumed to have the potential to alter any memory location,
- unless the function is declared 'const'.
-
- If the last group of expressions in a 'parallel' are each a
- 'clobber' expression whose arguments are 'reg' or 'match_scratch'
- (*note RTL Template::) expressions, the combiner phase can add the
- appropriate 'clobber' expressions to an insn it has constructed
- when doing so will cause a pattern to be matched.
-
- This feature can be used, for example, on a machine that whose
- multiply and add instructions don't use an MQ register but which
- has an add-accumulate instruction that does clobber the MQ
- register. Similarly, a combined instruction might require a
- temporary register while the constituent instructions might not.
-
- When a 'clobber' expression for a register appears inside a
- 'parallel' with other side effects, the register allocator
- guarantees that the register is unoccupied both before and after
- that insn if it is a hard register clobber. For pseudo-register
- clobber, the register allocator and the reload pass do not assign
- the same hard register to the clobber and the input operands if
- there is an insn alternative containing the '&' constraint (*note
- Modifiers::) for the clobber and the hard register is in register
- classes of the clobber in the alternative. You can clobber either
- a specific hard register, a pseudo register, or a 'scratch'
- expression; in the latter two cases, GCC will allocate a hard
- register that is available there for use as a temporary.
-
- For instructions that require a temporary register, you should use
- 'scratch' instead of a pseudo-register because this will allow the
- combiner phase to add the 'clobber' when required. You do this by
- coding ('clobber' ('match_scratch' ...)). If you do clobber a
- pseudo register, use one which appears nowhere else--generate a new
- one each time. Otherwise, you may confuse CSE.
-
- There is one other known use for clobbering a pseudo register in a
- 'parallel': when one of the input operands of the insn is also
- clobbered by the insn. In this case, using the same pseudo
- register in the clobber and elsewhere in the insn produces the
- expected results.
-
-'(use X)'
- Represents the use of the value of X. It indicates that the value
- in X at this point in the program is needed, even though it may not
- be apparent why this is so. Therefore, the compiler will not
- attempt to delete previous instructions whose only effect is to
- store a value in X. X must be a 'reg' expression.
-
- In some situations, it may be tempting to add a 'use' of a register
- in a 'parallel' to describe a situation where the value of a
- special register will modify the behavior of the instruction. A
- hypothetical example might be a pattern for an addition that can
- either wrap around or use saturating addition depending on the
- value of a special control register:
-
- (parallel [(set (reg:SI 2) (unspec:SI [(reg:SI 3)
- (reg:SI 4)] 0))
- (use (reg:SI 1))])
-
- This will not work, several of the optimizers only look at
- expressions locally; it is very likely that if you have multiple
- insns with identical inputs to the 'unspec', they will be optimized
- away even if register 1 changes in between.
-
- This means that 'use' can _only_ be used to describe that the
- register is live. You should think twice before adding 'use'
- statements, more often you will want to use 'unspec' instead. The
- 'use' RTX is most commonly useful to describe that a fixed register
- is implicitly used in an insn. It is also safe to use in patterns
- where the compiler knows for other reasons that the result of the
- whole pattern is variable, such as 'movmemM' or 'call' patterns.
-
- During the reload phase, an insn that has a 'use' as pattern can
- carry a reg_equal note. These 'use' insns will be deleted before
- the reload phase exits.
-
- During the delayed branch scheduling phase, X may be an insn. This
- indicates that X previously was located at this place in the code
- and its data dependencies need to be taken into account. These
- 'use' insns will be deleted before the delayed branch scheduling
- phase exits.
-
-'(parallel [X0 X1 ...])'
- Represents several side effects performed in parallel. The square
- brackets stand for a vector; the operand of 'parallel' is a vector
- of expressions. X0, X1 and so on are individual side effect
- expressions--expressions of code 'set', 'call', 'return',
- 'simple_return', 'clobber' or 'use'.
-
- "In parallel" means that first all the values used in the
- individual side-effects are computed, and second all the actual
- side-effects are performed. For example,
-
- (parallel [(set (reg:SI 1) (mem:SI (reg:SI 1)))
- (set (mem:SI (reg:SI 1)) (reg:SI 1))])
-
- says unambiguously that the values of hard register 1 and the
- memory location addressed by it are interchanged. In both places
- where '(reg:SI 1)' appears as a memory address it refers to the
- value in register 1 _before_ the execution of the insn.
-
- It follows that it is _incorrect_ to use 'parallel' and expect the
- result of one 'set' to be available for the next one. For example,
- people sometimes attempt to represent a jump-if-zero instruction
- this way:
-
- (parallel [(set (cc0) (reg:SI 34))
- (set (pc) (if_then_else
- (eq (cc0) (const_int 0))
- (label_ref ...)
- (pc)))])
-
- But this is incorrect, because it says that the jump condition
- depends on the condition code value _before_ this instruction, not
- on the new value that is set by this instruction.
-
- Peephole optimization, which takes place together with final
- assembly code output, can produce insns whose patterns consist of a
- 'parallel' whose elements are the operands needed to output the
- resulting assembler code--often 'reg', 'mem' or constant
- expressions. This would not be well-formed RTL at any other stage
- in compilation, but it is OK then because no further optimization
- remains to be done. However, the definition of the macro
- 'NOTICE_UPDATE_CC', if any, must deal with such insns if you define
- any peephole optimizations.
-
-'(cond_exec [COND EXPR])'
- Represents a conditionally executed expression. The EXPR is
- executed only if the COND is nonzero. The COND expression must not
- have side-effects, but the EXPR may very well have side-effects.
-
-'(sequence [INSNS ...])'
- Represents a sequence of insns. If a 'sequence' appears in the
- chain of insns, then each of the INSNS that appears in the sequence
- must be suitable for appearing in the chain of insns, i.e. must
- satisfy the 'INSN_P' predicate.
-
- After delay-slot scheduling is completed, an insn and all the insns
- that reside in its delay slots are grouped together into a
- 'sequence'. The insn requiring the delay slot is the first insn in
- the vector; subsequent insns are to be placed in the delay slot.
-
- 'INSN_ANNULLED_BRANCH_P' is set on an insn in a delay slot to
- indicate that a branch insn should be used that will conditionally
- annul the effect of the insns in the delay slots. In such a case,
- 'INSN_FROM_TARGET_P' indicates that the insn is from the target of
- the branch and should be executed only if the branch is taken;
- otherwise the insn should be executed only if the branch is not
- taken. *Note Delay Slots::.
-
- Some back ends also use 'sequence' objects for purposes other than
- delay-slot groups. This is not supported in the common parts of
- the compiler, which treat such sequences as delay-slot groups.
-
- DWARF2 Call Frame Address (CFA) adjustments are sometimes also
- expressed using 'sequence' objects as the value of a
- 'RTX_FRAME_RELATED_P' note. This only happens if the CFA
- adjustments cannot be easily derived from the pattern of the
- instruction to which the note is attached. In such cases, the
- value of the note is used instead of best-guesing the semantics of
- the instruction. The back end can attach notes containing a
- 'sequence' of 'set' patterns that express the effect of the parent
- instruction.
-
- These expression codes appear in place of a side effect, as the body of
-an insn, though strictly speaking they do not always describe side
-effects as such:
-
-'(asm_input S)'
- Represents literal assembler code as described by the string S.
-
-'(unspec [OPERANDS ...] INDEX)'
-'(unspec_volatile [OPERANDS ...] INDEX)'
- Represents a machine-specific operation on OPERANDS. INDEX selects
- between multiple machine-specific operations. 'unspec_volatile' is
- used for volatile operations and operations that may trap; 'unspec'
- is used for other operations.
-
- These codes may appear inside a 'pattern' of an insn, inside a
- 'parallel', or inside an expression.
-
-'(addr_vec:M [LR0 LR1 ...])'
- Represents a table of jump addresses. The vector elements LR0,
- etc., are 'label_ref' expressions. The mode M specifies how much
- space is given to each address; normally M would be 'Pmode'.
-
-'(addr_diff_vec:M BASE [LR0 LR1 ...] MIN MAX FLAGS)'
- Represents a table of jump addresses expressed as offsets from
- BASE. The vector elements LR0, etc., are 'label_ref' expressions
- and so is BASE. The mode M specifies how much space is given to
- each address-difference. MIN and MAX are set up by branch
- shortening and hold a label with a minimum and a maximum address,
- respectively. FLAGS indicates the relative position of BASE, MIN
- and MAX to the containing insn and of MIN and MAX to BASE. See
- rtl.def for details.
-
-'(prefetch:M ADDR RW LOCALITY)'
- Represents prefetch of memory at address ADDR. Operand RW is 1 if
- the prefetch is for data to be written, 0 otherwise; targets that
- do not support write prefetches should treat this as a normal
- prefetch. Operand LOCALITY specifies the amount of temporal
- locality; 0 if there is none or 1, 2, or 3 for increasing levels of
- temporal locality; targets that do not support locality hints
- should ignore this.
-
- This insn is used to minimize cache-miss latency by moving data
- into a cache before it is accessed. It should use only
- non-faulting data prefetch instructions.
-
-
-File: gccint.info, Node: Incdec, Next: Assembler, Prev: Side Effects, Up: RTL
-
-13.16 Embedded Side-Effects on Addresses
-========================================
-
-Six special side-effect expression codes appear as memory addresses.
-
-'(pre_dec:M X)'
- Represents the side effect of decrementing X by a standard amount
- and represents also the value that X has after being decremented.
- X must be a 'reg' or 'mem', but most machines allow only a 'reg'.
- M must be the machine mode for pointers on the machine in use. The
- amount X is decremented by is the length in bytes of the machine
- mode of the containing memory reference of which this expression
- serves as the address. Here is an example of its use:
-
- (mem:DF (pre_dec:SI (reg:SI 39)))
-
- This says to decrement pseudo register 39 by the length of a
- 'DFmode' value and use the result to address a 'DFmode' value.
-
-'(pre_inc:M X)'
- Similar, but specifies incrementing X instead of decrementing it.
-
-'(post_dec:M X)'
- Represents the same side effect as 'pre_dec' but a different value.
- The value represented here is the value X has before being
- decremented.
-
-'(post_inc:M X)'
- Similar, but specifies incrementing X instead of decrementing it.
-
-'(post_modify:M X Y)'
-
- Represents the side effect of setting X to Y and represents X
- before X is modified. X must be a 'reg' or 'mem', but most
- machines allow only a 'reg'. M must be the machine mode for
- pointers on the machine in use.
-
- The expression Y must be one of three forms: '(plus:M X Z)',
- '(minus:M X Z)', or '(plus:M X I)', where Z is an index register
- and I is a constant.
-
- Here is an example of its use:
-
- (mem:SF (post_modify:SI (reg:SI 42) (plus (reg:SI 42)
- (reg:SI 48))))
-
- This says to modify pseudo register 42 by adding the contents of
- pseudo register 48 to it, after the use of what ever 42 points to.
-
-'(pre_modify:M X EXPR)'
- Similar except side effects happen before the use.
-
- These embedded side effect expressions must be used with care.
-Instruction patterns may not use them. Until the 'flow' pass of the
-compiler, they may occur only to represent pushes onto the stack. The
-'flow' pass finds cases where registers are incremented or decremented
-in one instruction and used as an address shortly before or after; these
-cases are then transformed to use pre- or post-increment or -decrement.
-
- If a register used as the operand of these expressions is used in
-another address in an insn, the original value of the register is used.
-Uses of the register outside of an address are not permitted within the
-same insn as a use in an embedded side effect expression because such
-insns behave differently on different machines and hence must be treated
-as ambiguous and disallowed.
-
- An instruction that can be represented with an embedded side effect
-could also be represented using 'parallel' containing an additional
-'set' to describe how the address register is altered. This is not done
-because machines that allow these operations at all typically allow them
-wherever a memory address is called for. Describing them as additional
-parallel stores would require doubling the number of entries in the
-machine description.
-
-
-File: gccint.info, Node: Assembler, Next: Debug Information, Prev: Incdec, Up: RTL
-
-13.17 Assembler Instructions as Expressions
-===========================================
-
-The RTX code 'asm_operands' represents a value produced by a
-user-specified assembler instruction. It is used to represent an 'asm'
-statement with arguments. An 'asm' statement with a single output
-operand, like this:
-
- asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (*z));
-
-is represented using a single 'asm_operands' RTX which represents the
-value that is stored in 'outputvar':
-
- (set RTX-FOR-OUTPUTVAR
- (asm_operands "foo %1,%2,%0" "a" 0
- [RTX-FOR-ADDITION-RESULT RTX-FOR-*Z]
- [(asm_input:M1 "g")
- (asm_input:M2 "di")]))
-
-Here the operands of the 'asm_operands' RTX are the assembler template
-string, the output-operand's constraint, the index-number of the output
-operand among the output operands specified, a vector of input operand
-RTX's, and a vector of input-operand modes and constraints. The mode M1
-is the mode of the sum 'x+y'; M2 is that of '*z'.
-
- When an 'asm' statement has multiple output values, its insn has
-several such 'set' RTX's inside of a 'parallel'. Each 'set' contains an
-'asm_operands'; all of these share the same assembler template and
-vectors, but each contains the constraint for the respective output
-operand. They are also distinguished by the output-operand index
-number, which is 0, 1, ... for successive output operands.
-
-
-File: gccint.info, Node: Debug Information, Next: Insns, Prev: Assembler, Up: RTL
-
-13.18 Variable Location Debug Information in RTL
-================================================
-
-Variable tracking relies on 'MEM_EXPR' and 'REG_EXPR' annotations to
-determine what user variables memory and register references refer to.
-
- Variable tracking at assignments uses these notes only when they refer
-to variables that live at fixed locations (e.g., addressable variables,
-global non-automatic variables). For variables whose location may vary,
-it relies on the following types of notes.
-
-'(var_location:MODE VAR EXP STAT)'
- Binds variable 'var', a tree, to value EXP, an RTL expression. It
- appears only in 'NOTE_INSN_VAR_LOCATION' and 'DEBUG_INSN's, with
- slightly different meanings. MODE, if present, represents the mode
- of EXP, which is useful if it is a modeless expression. STAT is
- only meaningful in notes, indicating whether the variable is known
- to be initialized or uninitialized.
-
-'(debug_expr:MODE DECL)'
- Stands for the value bound to the 'DEBUG_EXPR_DECL' DECL, that
- points back to it, within value expressions in 'VAR_LOCATION'
- nodes.
-
-
-File: gccint.info, Node: Insns, Next: Calls, Prev: Debug Information, Up: RTL
-
-13.19 Insns
-===========
-
-The RTL representation of the code for a function is a doubly-linked
-chain of objects called "insns". Insns are expressions with special
-codes that are used for no other purpose. Some insns are actual
-instructions; others represent dispatch tables for 'switch' statements;
-others represent labels to jump to or various sorts of declarative
-information.
-
- In addition to its own specific data, each insn must have a unique
-id-number that distinguishes it from all other insns in the current
-function (after delayed branch scheduling, copies of an insn with the
-same id-number may be present in multiple places in a function, but
-these copies will always be identical and will only appear inside a
-'sequence'), and chain pointers to the preceding and following insns.
-These three fields occupy the same position in every insn, independent
-of the expression code of the insn. They could be accessed with 'XEXP'
-and 'XINT', but instead three special macros are always used:
-
-'INSN_UID (I)'
- Accesses the unique id of insn I.
-
-'PREV_INSN (I)'
- Accesses the chain pointer to the insn preceding I. If I is the
- first insn, this is a null pointer.
-
-'NEXT_INSN (I)'
- Accesses the chain pointer to the insn following I. If I is the
- last insn, this is a null pointer.
-
- The first insn in the chain is obtained by calling 'get_insns'; the
-last insn is the result of calling 'get_last_insn'. Within the chain
-delimited by these insns, the 'NEXT_INSN' and 'PREV_INSN' pointers must
-always correspond: if INSN is not the first insn,
-
- NEXT_INSN (PREV_INSN (INSN)) == INSN
-
-is always true and if INSN is not the last insn,
-
- PREV_INSN (NEXT_INSN (INSN)) == INSN
-
-is always true.
-
- After delay slot scheduling, some of the insns in the chain might be
-'sequence' expressions, which contain a vector of insns. The value of
-'NEXT_INSN' in all but the last of these insns is the next insn in the
-vector; the value of 'NEXT_INSN' of the last insn in the vector is the
-same as the value of 'NEXT_INSN' for the 'sequence' in which it is
-contained. Similar rules apply for 'PREV_INSN'.
-
- This means that the above invariants are not necessarily true for insns
-inside 'sequence' expressions. Specifically, if INSN is the first insn
-in a 'sequence', 'NEXT_INSN (PREV_INSN (INSN))' is the insn containing
-the 'sequence' expression, as is the value of 'PREV_INSN (NEXT_INSN
-(INSN))' if INSN is the last insn in the 'sequence' expression. You can
-use these expressions to find the containing 'sequence' expression.
-
- Every insn has one of the following expression codes:
-
-'insn'
- The expression code 'insn' is used for instructions that do not
- jump and do not do function calls. 'sequence' expressions are
- always contained in insns with code 'insn' even if one of those
- insns should jump or do function calls.
-
- Insns with code 'insn' have four additional fields beyond the three
- mandatory ones listed above. These four are described in a table
- below.
-
-'jump_insn'
- The expression code 'jump_insn' is used for instructions that may
- jump (or, more generally, may contain 'label_ref' expressions to
- which 'pc' can be set in that instruction). If there is an
- instruction to return from the current function, it is recorded as
- a 'jump_insn'.
-
- 'jump_insn' insns have the same extra fields as 'insn' insns,
- accessed in the same way and in addition contain a field
- 'JUMP_LABEL' which is defined once jump optimization has completed.
-
- For simple conditional and unconditional jumps, this field contains
- the 'code_label' to which this insn will (possibly conditionally)
- branch. In a more complex jump, 'JUMP_LABEL' records one of the
- labels that the insn refers to; other jump target labels are
- recorded as 'REG_LABEL_TARGET' notes. The exception is 'addr_vec'
- and 'addr_diff_vec', where 'JUMP_LABEL' is 'NULL_RTX' and the only
- way to find the labels is to scan the entire body of the insn.
-
- Return insns count as jumps, but since they do not refer to any
- labels, their 'JUMP_LABEL' is 'NULL_RTX'.
-
-'call_insn'
- The expression code 'call_insn' is used for instructions that may
- do function calls. It is important to distinguish these
- instructions because they imply that certain registers and memory
- locations may be altered unpredictably.
-
- 'call_insn' insns have the same extra fields as 'insn' insns,
- accessed in the same way and in addition contain a field
- 'CALL_INSN_FUNCTION_USAGE', which contains a list (chain of
- 'expr_list' expressions) containing 'use', 'clobber' and sometimes
- 'set' expressions that denote hard registers and 'mem's used or
- clobbered by the called function.
-
- A 'mem' generally points to a stack slot in which arguments passed
- to the libcall by reference (*note TARGET_PASS_BY_REFERENCE:
- Register Arguments.) are stored. If the argument is caller-copied
- (*note TARGET_CALLEE_COPIES: Register Arguments.), the stack slot
- will be mentioned in 'clobber' and 'use' entries; if it's
- callee-copied, only a 'use' will appear, and the 'mem' may point to
- addresses that are not stack slots.
-
- Registers occurring inside a 'clobber' in this list augment
- registers specified in 'CALL_USED_REGISTERS' (*note Register
- Basics::).
-
- If the list contains a 'set' involving two registers, it indicates
- that the function returns one of its arguments. Such a 'set' may
- look like a no-op if the same register holds the argument and the
- return value.
-
-'code_label'
- A 'code_label' insn represents a label that a jump insn can jump
- to. It contains two special fields of data in addition to the
- three standard ones. 'CODE_LABEL_NUMBER' is used to hold the
- "label number", a number that identifies this label uniquely among
- all the labels in the compilation (not just in the current
- function). Ultimately, the label is represented in the assembler
- output as an assembler label, usually of the form 'LN' where N is
- the label number.
-
- When a 'code_label' appears in an RTL expression, it normally
- appears within a 'label_ref' which represents the address of the
- label, as a number.
-
- Besides as a 'code_label', a label can also be represented as a
- 'note' of type 'NOTE_INSN_DELETED_LABEL'.
-
- The field 'LABEL_NUSES' is only defined once the jump optimization
- phase is completed. It contains the number of times this label is
- referenced in the current function.
-
- The field 'LABEL_KIND' differentiates four different types of
- labels: 'LABEL_NORMAL', 'LABEL_STATIC_ENTRY', 'LABEL_GLOBAL_ENTRY',
- and 'LABEL_WEAK_ENTRY'. The only labels that do not have type
- 'LABEL_NORMAL' are "alternate entry points" to the current
- function. These may be static (visible only in the containing
- translation unit), global (exposed to all translation units), or
- weak (global, but can be overridden by another symbol with the same
- name).
-
- Much of the compiler treats all four kinds of label identically.
- Some of it needs to know whether or not a label is an alternate
- entry point; for this purpose, the macro 'LABEL_ALT_ENTRY_P' is
- provided. It is equivalent to testing whether 'LABEL_KIND (label)
- == LABEL_NORMAL'. The only place that cares about the distinction
- between static, global, and weak alternate entry points, besides
- the front-end code that creates them, is the function
- 'output_alternate_entry_point', in 'final.c'.
-
- To set the kind of a label, use the 'SET_LABEL_KIND' macro.
-
-'jump_table_data'
- A 'jump_table_data' insn is a placeholder for the jump-table data
- of a 'casesi' or 'tablejump' insn. They are placed after a
- 'tablejump_p' insn. A 'jump_table_data' insn is not part o a basic
- blockm but it is associated with the basic block that ends with the
- 'tablejump_p' insn. The 'PATTERN' of a 'jump_table_data' is always
- either an 'addr_vec' or an 'addr_diff_vec', and a 'jump_table_data'
- insn is always preceded by a 'code_label'. The 'tablejump_p' insn
- refers to that 'code_label' via its 'JUMP_LABEL'.
-
-'barrier'
- Barriers are placed in the instruction stream when control cannot
- flow past them. They are placed after unconditional jump
- instructions to indicate that the jumps are unconditional and after
- calls to 'volatile' functions, which do not return (e.g., 'exit').
- They contain no information beyond the three standard fields.
-
-'note'
- 'note' insns are used to represent additional debugging and
- declarative information. They contain two nonstandard fields, an
- integer which is accessed with the macro 'NOTE_LINE_NUMBER' and a
- string accessed with 'NOTE_SOURCE_FILE'.
-
- If 'NOTE_LINE_NUMBER' is positive, the note represents the position
- of a source line and 'NOTE_SOURCE_FILE' is the source file name
- that the line came from. These notes control generation of line
- number data in the assembler output.
-
- Otherwise, 'NOTE_LINE_NUMBER' is not really a line number but a
- code with one of the following values (and 'NOTE_SOURCE_FILE' must
- contain a null pointer):
-
- 'NOTE_INSN_DELETED'
- Such a note is completely ignorable. Some passes of the
- compiler delete insns by altering them into notes of this
- kind.
-
- 'NOTE_INSN_DELETED_LABEL'
- This marks what used to be a 'code_label', but was not used
- for other purposes than taking its address and was transformed
- to mark that no code jumps to it.
-
- 'NOTE_INSN_BLOCK_BEG'
- 'NOTE_INSN_BLOCK_END'
- These types of notes indicate the position of the beginning
- and end of a level of scoping of variable names. They control
- the output of debugging information.
-
- 'NOTE_INSN_EH_REGION_BEG'
- 'NOTE_INSN_EH_REGION_END'
- These types of notes indicate the position of the beginning
- and end of a level of scoping for exception handling.
- 'NOTE_EH_HANDLER' identifies which region is associated with
- these notes.
-
- 'NOTE_INSN_FUNCTION_BEG'
- Appears at the start of the function body, after the function
- prologue.
-
- 'NOTE_INSN_VAR_LOCATION'
- This note is used to generate variable location debugging
- information. It indicates that the user variable in its
- 'VAR_LOCATION' operand is at the location given in the RTL
- expression, or holds a value that can be computed by
- evaluating the RTL expression from that static point in the
- program up to the next such note for the same user variable.
-
- These codes are printed symbolically when they appear in debugging
- dumps.
-
-'debug_insn'
- The expression code 'debug_insn' is used for pseudo-instructions
- that hold debugging information for variable tracking at
- assignments (see '-fvar-tracking-assignments' option). They are
- the RTL representation of 'GIMPLE_DEBUG' statements (*note
- 'GIMPLE_DEBUG'::), with a 'VAR_LOCATION' operand that binds a user
- variable tree to an RTL representation of the 'value' in the
- corresponding statement. A 'DEBUG_EXPR' in it stands for the value
- bound to the corresponding 'DEBUG_EXPR_DECL'.
-
- Throughout optimization passes, binding information is kept in
- pseudo-instruction form, so that, unlike notes, it gets the same
- treatment and adjustments that regular instructions would. It is
- the variable tracking pass that turns these pseudo-instructions
- into var location notes, analyzing control flow, value equivalences
- and changes to registers and memory referenced in value
- expressions, propagating the values of debug temporaries and
- determining expressions that can be used to compute the value of
- each user variable at as many points (ranges, actually) in the
- program as possible.
-
- Unlike 'NOTE_INSN_VAR_LOCATION', the value expression in an
- 'INSN_VAR_LOCATION' denotes a value at that specific point in the
- program, rather than an expression that can be evaluated at any
- later point before an overriding 'VAR_LOCATION' is encountered.
- E.g., if a user variable is bound to a 'REG' and then a subsequent
- insn modifies the 'REG', the note location would keep mapping the
- user variable to the register across the insn, whereas the insn
- location would keep the variable bound to the value, so that the
- variable tracking pass would emit another location note for the
- variable at the point in which the register is modified.
-
- The machine mode of an insn is normally 'VOIDmode', but some phases use
-the mode for various purposes.
-
- The common subexpression elimination pass sets the mode of an insn to
-'QImode' when it is the first insn in a block that has already been
-processed.
-
- The second Haifa scheduling pass, for targets that can multiple issue,
-sets the mode of an insn to 'TImode' when it is believed that the
-instruction begins an issue group. That is, when the instruction cannot
-issue simultaneously with the previous. This may be relied on by later
-passes, in particular machine-dependent reorg.
-
- Here is a table of the extra fields of 'insn', 'jump_insn' and
-'call_insn' insns:
-
-'PATTERN (I)'
- An expression for the side effect performed by this insn. This
- must be one of the following codes: 'set', 'call', 'use',
- 'clobber', 'return', 'simple_return', 'asm_input', 'asm_output',
- 'addr_vec', 'addr_diff_vec', 'trap_if', 'unspec',
- 'unspec_volatile', 'parallel', 'cond_exec', or 'sequence'. If it
- is a 'parallel', each element of the 'parallel' must be one these
- codes, except that 'parallel' expressions cannot be nested and
- 'addr_vec' and 'addr_diff_vec' are not permitted inside a
- 'parallel' expression.
-
-'INSN_CODE (I)'
- An integer that says which pattern in the machine description
- matches this insn, or -1 if the matching has not yet been
- attempted.
-
- Such matching is never attempted and this field remains -1 on an
- insn whose pattern consists of a single 'use', 'clobber',
- 'asm_input', 'addr_vec' or 'addr_diff_vec' expression.
-
- Matching is also never attempted on insns that result from an 'asm'
- statement. These contain at least one 'asm_operands' expression.
- The function 'asm_noperands' returns a non-negative value for such
- insns.
-
- In the debugging output, this field is printed as a number followed
- by a symbolic representation that locates the pattern in the 'md'
- file as some small positive or negative offset from a named
- pattern.
-
-'LOG_LINKS (I)'
- A list (chain of 'insn_list' expressions) giving information about
- dependencies between instructions within a basic block. Neither a
- jump nor a label may come between the related insns. These are
- only used by the schedulers and by combine. This is a deprecated
- data structure. Def-use and use-def chains are now preferred.
-
-'REG_NOTES (I)'
- A list (chain of 'expr_list', 'insn_list' and 'int_list'
- expressions) giving miscellaneous information about the insn. It
- is often information pertaining to the registers used in this insn.
-
- The 'LOG_LINKS' field of an insn is a chain of 'insn_list' expressions.
-Each of these has two operands: the first is an insn, and the second is
-another 'insn_list' expression (the next one in the chain). The last
-'insn_list' in the chain has a null pointer as second operand. The
-significant thing about the chain is which insns appear in it (as first
-operands of 'insn_list' expressions). Their order is not significant.
-
- This list is originally set up by the flow analysis pass; it is a null
-pointer until then. Flow only adds links for those data dependencies
-which can be used for instruction combination. For each insn, the flow
-analysis pass adds a link to insns which store into registers values
-that are used for the first time in this insn.
-
- The 'REG_NOTES' field of an insn is a chain similar to the 'LOG_LINKS'
-field but it includes 'expr_list' and 'int_list' expressions in addition
-to 'insn_list' expressions. There are several kinds of register notes,
-which are distinguished by the machine mode, which in a register note is
-really understood as being an 'enum reg_note'. The first operand OP of
-the note is data whose meaning depends on the kind of note.
-
- The macro 'REG_NOTE_KIND (X)' returns the kind of register note. Its
-counterpart, the macro 'PUT_REG_NOTE_KIND (X, NEWKIND)' sets the
-register note type of X to be NEWKIND.
-
- Register notes are of three classes: They may say something about an
-input to an insn, they may say something about an output of an insn, or
-they may create a linkage between two insns. There are also a set of
-values that are only used in 'LOG_LINKS'.
-
- These register notes annotate inputs to an insn:
-
-'REG_DEAD'
- The value in OP dies in this insn; that is to say, altering the
- value immediately after this insn would not affect the future
- behavior of the program.
-
- It does not follow that the register OP has no useful value after
- this insn since OP is not necessarily modified by this insn.
- Rather, no subsequent instruction uses the contents of OP.
-
-'REG_UNUSED'
- The register OP being set by this insn will not be used in a
- subsequent insn. This differs from a 'REG_DEAD' note, which
- indicates that the value in an input will not be used subsequently.
- These two notes are independent; both may be present for the same
- register.
-
-'REG_INC'
- The register OP is incremented (or decremented; at this level there
- is no distinction) by an embedded side effect inside this insn.
- This means it appears in a 'post_inc', 'pre_inc', 'post_dec' or
- 'pre_dec' expression.
-
-'REG_NONNEG'
- The register OP is known to have a nonnegative value when this insn
- is reached. This is used so that decrement and branch until zero
- instructions, such as the m68k dbra, can be matched.
-
- The 'REG_NONNEG' note is added to insns only if the machine
- description has a 'decrement_and_branch_until_zero' pattern.
-
-'REG_LABEL_OPERAND'
- This insn uses OP, a 'code_label' or a 'note' of type
- 'NOTE_INSN_DELETED_LABEL', but is not a 'jump_insn', or it is a
- 'jump_insn' that refers to the operand as an ordinary operand. The
- label may still eventually be a jump target, but if so in an
- indirect jump in a subsequent insn. The presence of this note
- allows jump optimization to be aware that OP is, in fact, being
- used, and flow optimization to build an accurate flow graph.
-
-'REG_LABEL_TARGET'
- This insn is a 'jump_insn' but not an 'addr_vec' or
- 'addr_diff_vec'. It uses OP, a 'code_label' as a direct or
- indirect jump target. Its purpose is similar to that of
- 'REG_LABEL_OPERAND'. This note is only present if the insn has
- multiple targets; the last label in the insn (in the highest
- numbered insn-field) goes into the 'JUMP_LABEL' field and does not
- have a 'REG_LABEL_TARGET' note. *Note JUMP_LABEL: Insns.
-
-'REG_CROSSING_JUMP'
- This insn is a branching instruction (either an unconditional jump
- or an indirect jump) which crosses between hot and cold sections,
- which could potentially be very far apart in the executable. The
- presence of this note indicates to other optimizations that this
- branching instruction should not be "collapsed" into a simpler
- branching construct. It is used when the optimization to partition
- basic blocks into hot and cold sections is turned on.
-
-'REG_SETJMP'
- Appears attached to each 'CALL_INSN' to 'setjmp' or a related
- function.
-
- The following notes describe attributes of outputs of an insn:
-
-'REG_EQUIV'
-'REG_EQUAL'
- This note is only valid on an insn that sets only one register and
- indicates that that register will be equal to OP at run time; the
- scope of this equivalence differs between the two types of notes.
- The value which the insn explicitly copies into the register may
- look different from OP, but they will be equal at run time. If the
- output of the single 'set' is a 'strict_low_part' expression, the
- note refers to the register that is contained in 'SUBREG_REG' of
- the 'subreg' expression.
-
- For 'REG_EQUIV', the register is equivalent to OP throughout the
- entire function, and could validly be replaced in all its
- occurrences by OP. ("Validly" here refers to the data flow of the
- program; simple replacement may make some insns invalid.) For
- example, when a constant is loaded into a register that is never
- assigned any other value, this kind of note is used.
-
- When a parameter is copied into a pseudo-register at entry to a
- function, a note of this kind records that the register is
- equivalent to the stack slot where the parameter was passed.
- Although in this case the register may be set by other insns, it is
- still valid to replace the register by the stack slot throughout
- the function.
-
- A 'REG_EQUIV' note is also used on an instruction which copies a
- register parameter into a pseudo-register at entry to a function,
- if there is a stack slot where that parameter could be stored.
- Although other insns may set the pseudo-register, it is valid for
- the compiler to replace the pseudo-register by stack slot
- throughout the function, provided the compiler ensures that the
- stack slot is properly initialized by making the replacement in the
- initial copy instruction as well. This is used on machines for
- which the calling convention allocates stack space for register
- parameters. See 'REG_PARM_STACK_SPACE' in *note Stack Arguments::.
-
- In the case of 'REG_EQUAL', the register that is set by this insn
- will be equal to OP at run time at the end of this insn but not
- necessarily elsewhere in the function. In this case, OP is
- typically an arithmetic expression. For example, when a sequence
- of insns such as a library call is used to perform an arithmetic
- operation, this kind of note is attached to the insn that produces
- or copies the final value.
-
- These two notes are used in different ways by the compiler passes.
- 'REG_EQUAL' is used by passes prior to register allocation (such as
- common subexpression elimination and loop optimization) to tell
- them how to think of that value. 'REG_EQUIV' notes are used by
- register allocation to indicate that there is an available
- substitute expression (either a constant or a 'mem' expression for
- the location of a parameter on the stack) that may be used in place
- of a register if insufficient registers are available.
-
- Except for stack homes for parameters, which are indicated by a
- 'REG_EQUIV' note and are not useful to the early optimization
- passes and pseudo registers that are equivalent to a memory
- location throughout their entire life, which is not detected until
- later in the compilation, all equivalences are initially indicated
- by an attached 'REG_EQUAL' note. In the early stages of register
- allocation, a 'REG_EQUAL' note is changed into a 'REG_EQUIV' note
- if OP is a constant and the insn represents the only set of its
- destination register.
-
- Thus, compiler passes prior to register allocation need only check
- for 'REG_EQUAL' notes and passes subsequent to register allocation
- need only check for 'REG_EQUIV' notes.
-
- These notes describe linkages between insns. They occur in pairs: one
-insn has one of a pair of notes that points to a second insn, which has
-the inverse note pointing back to the first insn.
-
-'REG_CC_SETTER'
-'REG_CC_USER'
- On machines that use 'cc0', the insns which set and use 'cc0' set
- and use 'cc0' are adjacent. However, when branch delay slot
- filling is done, this may no longer be true. In this case a
- 'REG_CC_USER' note will be placed on the insn setting 'cc0' to
- point to the insn using 'cc0' and a 'REG_CC_SETTER' note will be
- placed on the insn using 'cc0' to point to the insn setting 'cc0'.
-
- These values are only used in the 'LOG_LINKS' field, and indicate the
-type of dependency that each link represents. Links which indicate a
-data dependence (a read after write dependence) do not use any code,
-they simply have mode 'VOIDmode', and are printed without any
-descriptive text.
-
-'REG_DEP_TRUE'
- This indicates a true dependence (a read after write dependence).
-
-'REG_DEP_OUTPUT'
- This indicates an output dependence (a write after write
- dependence).
-
-'REG_DEP_ANTI'
- This indicates an anti dependence (a write after read dependence).
-
- These notes describe information gathered from gcov profile data. They
-are stored in the 'REG_NOTES' field of an insn.
-
-'REG_BR_PROB'
- This is used to specify the ratio of branches to non-branches of a
- branch insn according to the profile data. The note is represented
- as an 'int_list' expression whose integer value is between 0 and
- REG_BR_PROB_BASE. Larger values indicate a higher probability that
- the branch will be taken.
-
-'REG_BR_PRED'
- These notes are found in JUMP insns after delayed branch scheduling
- has taken place. They indicate both the direction and the
- likelihood of the JUMP. The format is a bitmask of ATTR_FLAG_*
- values.
-
-'REG_FRAME_RELATED_EXPR'
- This is used on an RTX_FRAME_RELATED_P insn wherein the attached
- expression is used in place of the actual insn pattern. This is
- done in cases where the pattern is either complex or misleading.
-
- For convenience, the machine mode in an 'insn_list' or 'expr_list' is
-printed using these symbolic codes in debugging dumps.
-
- The only difference between the expression codes 'insn_list' and
-'expr_list' is that the first operand of an 'insn_list' is assumed to be
-an insn and is printed in debugging dumps as the insn's unique id; the
-first operand of an 'expr_list' is printed in the ordinary way as an
-expression.
-
-
-File: gccint.info, Node: Calls, Next: Sharing, Prev: Insns, Up: RTL
-
-13.20 RTL Representation of Function-Call Insns
-===============================================
-
-Insns that call subroutines have the RTL expression code 'call_insn'.
-These insns must satisfy special rules, and their bodies must use a
-special RTL expression code, 'call'.
-
- A 'call' expression has two operands, as follows:
-
- (call (mem:FM ADDR) NBYTES)
-
-Here NBYTES is an operand that represents the number of bytes of
-argument data being passed to the subroutine, FM is a machine mode
-(which must equal as the definition of the 'FUNCTION_MODE' macro in the
-machine description) and ADDR represents the address of the subroutine.
-
- For a subroutine that returns no value, the 'call' expression as shown
-above is the entire body of the insn, except that the insn might also
-contain 'use' or 'clobber' expressions.
-
- For a subroutine that returns a value whose mode is not 'BLKmode', the
-value is returned in a hard register. If this register's number is R,
-then the body of the call insn looks like this:
-
- (set (reg:M R)
- (call (mem:FM ADDR) NBYTES))
-
-This RTL expression makes it clear (to the optimizer passes) that the
-appropriate register receives a useful value in this insn.
-
- When a subroutine returns a 'BLKmode' value, it is handled by passing
-to the subroutine the address of a place to store the value. So the
-call insn itself does not "return" any value, and it has the same RTL
-form as a call that returns nothing.
-
- On some machines, the call instruction itself clobbers some register,
-for example to contain the return address. 'call_insn' insns on these
-machines should have a body which is a 'parallel' that contains both the
-'call' expression and 'clobber' expressions that indicate which
-registers are destroyed. Similarly, if the call instruction requires
-some register other than the stack pointer that is not explicitly
-mentioned in its RTL, a 'use' subexpression should mention that
-register.
-
- Functions that are called are assumed to modify all registers listed in
-the configuration macro 'CALL_USED_REGISTERS' (*note Register Basics::)
-and, with the exception of 'const' functions and library calls, to
-modify all of memory.
-
- Insns containing just 'use' expressions directly precede the
-'call_insn' insn to indicate which registers contain inputs to the
-function. Similarly, if registers other than those in
-'CALL_USED_REGISTERS' are clobbered by the called function, insns
-containing a single 'clobber' follow immediately after the call to
-indicate which registers.
-
-
-File: gccint.info, Node: Sharing, Next: Reading RTL, Prev: Calls, Up: RTL
-
-13.21 Structure Sharing Assumptions
-===================================
-
-The compiler assumes that certain kinds of RTL expressions are unique;
-there do not exist two distinct objects representing the same value. In
-other cases, it makes an opposite assumption: that no RTL expression
-object of a certain kind appears in more than one place in the
-containing structure.
-
- These assumptions refer to a single function; except for the RTL
-objects that describe global variables and external functions, and a few
-standard objects such as small integer constants, no RTL objects are
-common to two functions.
-
- * Each pseudo-register has only a single 'reg' object to represent
- it, and therefore only a single machine mode.
-
- * For any symbolic label, there is only one 'symbol_ref' object
- referring to it.
-
- * All 'const_int' expressions with equal values are shared.
-
- * There is only one 'pc' expression.
-
- * There is only one 'cc0' expression.
-
- * There is only one 'const_double' expression with value 0 for each
- floating point mode. Likewise for values 1 and 2.
-
- * There is only one 'const_vector' expression with value 0 for each
- vector mode, be it an integer or a double constant vector.
-
- * No 'label_ref' or 'scratch' appears in more than one place in the
- RTL structure; in other words, it is safe to do a tree-walk of all
- the insns in the function and assume that each time a 'label_ref'
- or 'scratch' is seen it is distinct from all others that are seen.
-
- * Only one 'mem' object is normally created for each static variable
- or stack slot, so these objects are frequently shared in all the
- places they appear. However, separate but equal objects for these
- variables are occasionally made.
-
- * When a single 'asm' statement has multiple output operands, a
- distinct 'asm_operands' expression is made for each output operand.
- However, these all share the vector which contains the sequence of
- input operands. This sharing is used later on to test whether two
- 'asm_operands' expressions come from the same statement, so all
- optimizations must carefully preserve the sharing if they copy the
- vector at all.
-
- * No RTL object appears in more than one place in the RTL structure
- except as described above. Many passes of the compiler rely on
- this by assuming that they can modify RTL objects in place without
- unwanted side-effects on other insns.
-
- * During initial RTL generation, shared structure is freely
- introduced. After all the RTL for a function has been generated,
- all shared structure is copied by 'unshare_all_rtl' in
- 'emit-rtl.c', after which the above rules are guaranteed to be
- followed.
-
- * During the combiner pass, shared structure within an insn can exist
- temporarily. However, the shared structure is copied before the
- combiner is finished with the insn. This is done by calling
- 'copy_rtx_if_shared', which is a subroutine of 'unshare_all_rtl'.
-
-
-File: gccint.info, Node: Reading RTL, Prev: Sharing, Up: RTL
-
-13.22 Reading RTL
-=================
-
-To read an RTL object from a file, call 'read_rtx'. It takes one
-argument, a stdio stream, and returns a single RTL object. This routine
-is defined in 'read-rtl.c'. It is not available in the compiler itself,
-only the various programs that generate the compiler back end from the
-machine description.
-
- People frequently have the idea of using RTL stored as text in a file
-as an interface between a language front end and the bulk of GCC. This
-idea is not feasible.
-
- GCC was designed to use RTL internally only. Correct RTL for a given
-program is very dependent on the particular target machine. And the RTL
-does not contain all the information about the program.
-
- The proper way to interface GCC to a new language front end is with the
-"tree" data structure, described in the files 'tree.h' and 'tree.def'.
-The documentation for this structure (*note GENERIC::) is incomplete.
-
-
-File: gccint.info, Node: Control Flow, Next: Loop Analysis and Representation, Prev: RTL, Up: Top
-
-14 Control Flow Graph
-*********************
-
-A control flow graph (CFG) is a data structure built on top of the
-intermediate code representation (the RTL or 'GIMPLE' instruction
-stream) abstracting the control flow behavior of a function that is
-being compiled. The CFG is a directed graph where the vertices
-represent basic blocks and edges represent possible transfer of control
-flow from one basic block to another. The data structures used to
-represent the control flow graph are defined in 'basic-block.h'.
-
- In GCC, the representation of control flow is maintained throughout the
-compilation process, from constructing the CFG early in 'pass_build_cfg'
-to 'pass_free_cfg' (see 'passes.def'). The CFG takes various different
-modes and may undergo extensive manipulations, but the graph is always
-valid between its construction and its release. This way, transfer of
-information such as data flow, a measured profile, or the loop tree, can
-be propagated through the passes pipeline, and even from 'GIMPLE' to
-'RTL'.
-
- Often the CFG may be better viewed as integral part of instruction
-chain, than structure built on the top of it. Updating the compiler's
-intermediate representation for instructions can not be easily done
-without proper maintenance of the CFG simultaneously.
-
-* Menu:
-
-* Basic Blocks:: The definition and representation of basic blocks.
-* Edges:: Types of edges and their representation.
-* Profile information:: Representation of frequencies and probabilities.
-* Maintaining the CFG:: Keeping the control flow graph and up to date.
-* Liveness information:: Using and maintaining liveness information.
-
-
-File: gccint.info, Node: Basic Blocks, Next: Edges, Up: Control Flow
-
-14.1 Basic Blocks
-=================
-
-A basic block is a straight-line sequence of code with only one entry
-point and only one exit. In GCC, basic blocks are represented using the
-'basic_block' data type.
-
- Special basic blocks represent possible entry and exit points of a
-function. These blocks are called 'ENTRY_BLOCK_PTR' and
-'EXIT_BLOCK_PTR'. These blocks do not contain any code.
-
- The 'BASIC_BLOCK' array contains all basic blocks in an unspecified
-order. Each 'basic_block' structure has a field that holds a unique
-integer identifier 'index' that is the index of the block in the
-'BASIC_BLOCK' array. The total number of basic blocks in the function
-is 'n_basic_blocks'. Both the basic block indices and the total number
-of basic blocks may vary during the compilation process, as passes
-reorder, create, duplicate, and destroy basic blocks. The index for any
-block should never be greater than 'last_basic_block'. The indices 0
-and 1 are special codes reserved for 'ENTRY_BLOCK' and 'EXIT_BLOCK', the
-indices of 'ENTRY_BLOCK_PTR' and 'EXIT_BLOCK_PTR'.
-
- Two pointer members of the 'basic_block' structure are the pointers
-'next_bb' and 'prev_bb'. These are used to keep doubly linked chain of
-basic blocks in the same order as the underlying instruction stream.
-The chain of basic blocks is updated transparently by the provided API
-for manipulating the CFG. The macro 'FOR_EACH_BB' can be used to visit
-all the basic blocks in lexicographical order, except 'ENTRY_BLOCK' and
-'EXIT_BLOCK'. The macro 'FOR_ALL_BB' also visits all basic blocks in
-lexicographical order, including 'ENTRY_BLOCK' and 'EXIT_BLOCK'.
-
- The functions 'post_order_compute' and 'inverted_post_order_compute'
-can be used to compute topological orders of the CFG. The orders are
-stored as vectors of basic block indices. The 'BASIC_BLOCK' array can
-be used to iterate each basic block by index. Dominator traversals are
-also possible using 'walk_dominator_tree'. Given two basic blocks A and
-B, block A dominates block B if A is _always_ executed before B.
-
- Each 'basic_block' also contains pointers to the first instruction (the
-"head") and the last instruction (the "tail") or "end" of the
-instruction stream contained in a basic block. In fact, since the
-'basic_block' data type is used to represent blocks in both major
-intermediate representations of GCC ('GIMPLE' and RTL), there are
-pointers to the head and end of a basic block for both representations,
-stored in intermediate representation specific data in the 'il' field of
-'struct basic_block_def'.
-
- For RTL, these pointers are 'BB_HEAD' and 'BB_END'.
-
- In the RTL representation of a function, the instruction stream
-contains not only the "real" instructions, but also "notes" or "insn
-notes" (to distinguish them from "reg notes"). Any function that moves
-or duplicates the basic blocks needs to take care of updating of these
-notes. Many of these notes expect that the instruction stream consists
-of linear regions, so updating can sometimes be tedious. All types of
-insn notes are defined in 'insn-notes.def'.
-
- In the RTL function representation, the instructions contained in a
-basic block always follow a 'NOTE_INSN_BASIC_BLOCK', but zero or more
-'CODE_LABEL' nodes can precede the block note. A basic block ends with
-a control flow instruction or with the last instruction before the next
-'CODE_LABEL' or 'NOTE_INSN_BASIC_BLOCK'. By definition, a 'CODE_LABEL'
-cannot appear in the middle of the instruction stream of a basic block.
-
- In addition to notes, the jump table vectors are also represented as
-"pseudo-instructions" inside the insn stream. These vectors never
-appear in the basic block and should always be placed just after the
-table jump instructions referencing them. After removing the table-jump
-it is often difficult to eliminate the code computing the address and
-referencing the vector, so cleaning up these vectors is postponed until
-after liveness analysis. Thus the jump table vectors may appear in the
-insn stream unreferenced and without any purpose. Before any edge is
-made "fall-thru", the existence of such construct in the way needs to be
-checked by calling 'can_fallthru' function.
-
- For the 'GIMPLE' representation, the PHI nodes and statements contained
-in a basic block are in a 'gimple_seq' pointed to by the basic block
-intermediate language specific pointers. Abstract containers and
-iterators are used to access the PHI nodes and statements in a basic
-blocks. These iterators are called "GIMPLE statement iterators" (GSIs).
-Grep for '^gsi' in the various 'gimple-*' and 'tree-*' files. The
-following snippet will pretty-print all PHI nodes the statements of the
-current function in the GIMPLE representation.
-
- basic_block bb;
-
- FOR_EACH_BB (bb)
- {
- gimple_stmt_iterator si;
-
- for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
- {
- gimple phi = gsi_stmt (si);
- print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
- }
- for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
- {
- gimple stmt = gsi_stmt (si);
- print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
- }
- }
-
-
-File: gccint.info, Node: Edges, Next: Profile information, Prev: Basic Blocks, Up: Control Flow
-
-14.2 Edges
-==========
-
-Edges represent possible control flow transfers from the end of some
-basic block A to the head of another basic block B. We say that A is a
-predecessor of B, and B is a successor of A. Edges are represented in
-GCC with the 'edge' data type. Each 'edge' acts as a link between two
-basic blocks: The 'src' member of an edge points to the predecessor
-basic block of the 'dest' basic block. The members 'preds' and 'succs'
-of the 'basic_block' data type point to type-safe vectors of edges to
-the predecessors and successors of the block.
-
- When walking the edges in an edge vector, "edge iterators" should be
-used. Edge iterators are constructed using the 'edge_iterator' data
-structure and several methods are available to operate on them:
-
-'ei_start'
- This function initializes an 'edge_iterator' that points to the
- first edge in a vector of edges.
-
-'ei_last'
- This function initializes an 'edge_iterator' that points to the
- last edge in a vector of edges.
-
-'ei_end_p'
- This predicate is 'true' if an 'edge_iterator' represents the last
- edge in an edge vector.
-
-'ei_one_before_end_p'
- This predicate is 'true' if an 'edge_iterator' represents the
- second last edge in an edge vector.
-
-'ei_next'
- This function takes a pointer to an 'edge_iterator' and makes it
- point to the next edge in the sequence.
-
-'ei_prev'
- This function takes a pointer to an 'edge_iterator' and makes it
- point to the previous edge in the sequence.
-
-'ei_edge'
- This function returns the 'edge' currently pointed to by an
- 'edge_iterator'.
-
-'ei_safe_safe'
- This function returns the 'edge' currently pointed to by an
- 'edge_iterator', but returns 'NULL' if the iterator is pointing at
- the end of the sequence. This function has been provided for
- existing code makes the assumption that a 'NULL' edge indicates the
- end of the sequence.
-
- The convenience macro 'FOR_EACH_EDGE' can be used to visit all of the
-edges in a sequence of predecessor or successor edges. It must not be
-used when an element might be removed during the traversal, otherwise
-elements will be missed. Here is an example of how to use the macro:
-
- edge e;
- edge_iterator ei;
-
- FOR_EACH_EDGE (e, ei, bb->succs)
- {
- if (e->flags & EDGE_FALLTHRU)
- break;
- }
-
- There are various reasons why control flow may transfer from one block
-to another. One possibility is that some instruction, for example a
-'CODE_LABEL', in a linearized instruction stream just always starts a
-new basic block. In this case a "fall-thru" edge links the basic block
-to the first following basic block. But there are several other reasons
-why edges may be created. The 'flags' field of the 'edge' data type is
-used to store information about the type of edge we are dealing with.
-Each edge is of one of the following types:
-
-_jump_
- No type flags are set for edges corresponding to jump instructions.
- These edges are used for unconditional or conditional jumps and in
- RTL also for table jumps. They are the easiest to manipulate as
- they may be freely redirected when the flow graph is not in SSA
- form.
-
-_fall-thru_
- Fall-thru edges are present in case where the basic block may
- continue execution to the following one without branching. These
- edges have the 'EDGE_FALLTHRU' flag set. Unlike other types of
- edges, these edges must come into the basic block immediately
- following in the instruction stream. The function
- 'force_nonfallthru' is available to insert an unconditional jump in
- the case that redirection is needed. Note that this may require
- creation of a new basic block.
-
-_exception handling_
- Exception handling edges represent possible control transfers from
- a trapping instruction to an exception handler. The definition of
- "trapping" varies. In C++, only function calls can throw, but for
- Java and Ada, exceptions like division by zero or segmentation
- fault are defined and thus each instruction possibly throwing this
- kind of exception needs to be handled as control flow instruction.
- Exception edges have the 'EDGE_ABNORMAL' and 'EDGE_EH' flags set.
-
- When updating the instruction stream it is easy to change possibly
- trapping instruction to non-trapping, by simply removing the
- exception edge. The opposite conversion is difficult, but should
- not happen anyway. The edges can be eliminated via
- 'purge_dead_edges' call.
-
- In the RTL representation, the destination of an exception edge is
- specified by 'REG_EH_REGION' note attached to the insn. In case of
- a trapping call the 'EDGE_ABNORMAL_CALL' flag is set too. In the
- 'GIMPLE' representation, this extra flag is not set.
-
- In the RTL representation, the predicate 'may_trap_p' may be used
- to check whether instruction still may trap or not. For the tree
- representation, the 'tree_could_trap_p' predicate is available, but
- this predicate only checks for possible memory traps, as in
- dereferencing an invalid pointer location.
-
-_sibling calls_
- Sibling calls or tail calls terminate the function in a
- non-standard way and thus an edge to the exit must be present.
- 'EDGE_SIBCALL' and 'EDGE_ABNORMAL' are set in such case. These
- edges only exist in the RTL representation.
-
-_computed jumps_
- Computed jumps contain edges to all labels in the function
- referenced from the code. All those edges have 'EDGE_ABNORMAL'
- flag set. The edges used to represent computed jumps often cause
- compile time performance problems, since functions consisting of
- many taken labels and many computed jumps may have _very_ dense
- flow graphs, so these edges need to be handled with special care.
- During the earlier stages of the compilation process, GCC tries to
- avoid such dense flow graphs by factoring computed jumps. For
- example, given the following series of jumps,
-
- goto *x;
- [ ... ]
-
- goto *x;
- [ ... ]
-
- goto *x;
- [ ... ]
-
- factoring the computed jumps results in the following code sequence
- which has a much simpler flow graph:
-
- goto y;
- [ ... ]
-
- goto y;
- [ ... ]
-
- goto y;
- [ ... ]
-
- y:
- goto *x;
-
- However, the classic problem with this transformation is that it
- has a runtime cost in there resulting code: An extra jump.
- Therefore, the computed jumps are un-factored in the later passes
- of the compiler (in the pass called
- 'pass_duplicate_computed_gotos'). Be aware of that when you work
- on passes in that area. There have been numerous examples already
- where the compile time for code with unfactored computed jumps
- caused some serious headaches.
-
-_nonlocal goto handlers_
- GCC allows nested functions to return into caller using a 'goto' to
- a label passed to as an argument to the callee. The labels passed
- to nested functions contain special code to cleanup after function
- call. Such sections of code are referred to as "nonlocal goto
- receivers". If a function contains such nonlocal goto receivers,
- an edge from the call to the label is created with the
- 'EDGE_ABNORMAL' and 'EDGE_ABNORMAL_CALL' flags set.
-
-_function entry points_
- By definition, execution of function starts at basic block 0, so
- there is always an edge from the 'ENTRY_BLOCK_PTR' to basic block
- 0. There is no 'GIMPLE' representation for alternate entry points
- at this moment. In RTL, alternate entry points are specified by
- 'CODE_LABEL' with 'LABEL_ALTERNATE_NAME' defined. This feature is
- currently used for multiple entry point prologues and is limited to
- post-reload passes only. This can be used by back-ends to emit
- alternate prologues for functions called from different contexts.
- In future full support for multiple entry functions defined by
- Fortran 90 needs to be implemented.
-
-_function exits_
- In the pre-reload representation a function terminates after the
- last instruction in the insn chain and no explicit return
- instructions are used. This corresponds to the fall-thru edge into
- exit block. After reload, optimal RTL epilogues are used that use
- explicit (conditional) return instructions that are represented by
- edges with no flags set.
-
-
-File: gccint.info, Node: Profile information, Next: Maintaining the CFG, Prev: Edges, Up: Control Flow
-
-14.3 Profile information
-========================
-
-In many cases a compiler must make a choice whether to trade speed in
-one part of code for speed in another, or to trade code size for code
-speed. In such cases it is useful to know information about how often
-some given block will be executed. That is the purpose for maintaining
-profile within the flow graph. GCC can handle profile information
-obtained through "profile feedback", but it can also estimate branch
-probabilities based on statics and heuristics.
-
- The feedback based profile is produced by compiling the program with
-instrumentation, executing it on a train run and reading the numbers of
-executions of basic blocks and edges back to the compiler while
-re-compiling the program to produce the final executable. This method
-provides very accurate information about where a program spends most of
-its time on the train run. Whether it matches the average run of course
-depends on the choice of train data set, but several studies have shown
-that the behavior of a program usually changes just marginally over
-different data sets.
-
- When profile feedback is not available, the compiler may be asked to
-attempt to predict the behavior of each branch in the program using a
-set of heuristics (see 'predict.def' for details) and compute estimated
-frequencies of each basic block by propagating the probabilities over
-the graph.
-
- Each 'basic_block' contains two integer fields to represent profile
-information: 'frequency' and 'count'. The 'frequency' is an estimation
-how often is basic block executed within a function. It is represented
-as an integer scaled in the range from 0 to 'BB_FREQ_BASE'. The most
-frequently executed basic block in function is initially set to
-'BB_FREQ_BASE' and the rest of frequencies are scaled accordingly.
-During optimization, the frequency of the most frequent basic block can
-both decrease (for instance by loop unrolling) or grow (for instance by
-cross-jumping optimization), so scaling sometimes has to be performed
-multiple times.
-
- The 'count' contains hard-counted numbers of execution measured during
-training runs and is nonzero only when profile feedback is available.
-This value is represented as the host's widest integer (typically a 64
-bit integer) of the special type 'gcov_type'.
-
- Most optimization passes can use only the frequency information of a
-basic block, but a few passes may want to know hard execution counts.
-The frequencies should always match the counts after scaling, however
-during updating of the profile information numerical error may
-accumulate into quite large errors.
-
- Each edge also contains a branch probability field: an integer in the
-range from 0 to 'REG_BR_PROB_BASE'. It represents probability of
-passing control from the end of the 'src' basic block to the 'dest'
-basic block, i.e. the probability that control will flow along this
-edge. The 'EDGE_FREQUENCY' macro is available to compute how frequently
-a given edge is taken. There is a 'count' field for each edge as well,
-representing same information as for a basic block.
-
- The basic block frequencies are not represented in the instruction
-stream, but in the RTL representation the edge frequencies are
-represented for conditional jumps (via the 'REG_BR_PROB' macro) since
-they are used when instructions are output to the assembly file and the
-flow graph is no longer maintained.
-
- The probability that control flow arrives via a given edge to its
-destination basic block is called "reverse probability" and is not
-directly represented, but it may be easily computed from frequencies of
-basic blocks.
-
- Updating profile information is a delicate task that can unfortunately
-not be easily integrated with the CFG manipulation API. Many of the
-functions and hooks to modify the CFG, such as
-'redirect_edge_and_branch', do not have enough information to easily
-update the profile, so updating it is in the majority of cases left up
-to the caller. It is difficult to uncover bugs in the profile updating
-code, because they manifest themselves only by producing worse code, and
-checking profile consistency is not possible because of numeric error
-accumulation. Hence special attention needs to be given to this issue
-in each pass that modifies the CFG.
-
- It is important to point out that 'REG_BR_PROB_BASE' and 'BB_FREQ_BASE'
-are both set low enough to be possible to compute second power of any
-frequency or probability in the flow graph, it is not possible to even
-square the 'count' field, as modern CPUs are fast enough to execute
-$2^32$ operations quickly.
-
-
-File: gccint.info, Node: Maintaining the CFG, Next: Liveness information, Prev: Profile information, Up: Control Flow
-
-14.4 Maintaining the CFG
-========================
-
-An important task of each compiler pass is to keep both the control flow
-graph and all profile information up-to-date. Reconstruction of the
-control flow graph after each pass is not an option, since it may be
-very expensive and lost profile information cannot be reconstructed at
-all.
-
- GCC has two major intermediate representations, and both use the
-'basic_block' and 'edge' data types to represent control flow. Both
-representations share as much of the CFG maintenance code as possible.
-For each representation, a set of "hooks" is defined so that each
-representation can provide its own implementation of CFG manipulation
-routines when necessary. These hooks are defined in 'cfghooks.h'.
-There are hooks for almost all common CFG manipulations, including block
-splitting and merging, edge redirection and creating and deleting basic
-blocks. These hooks should provide everything you need to maintain and
-manipulate the CFG in both the RTL and 'GIMPLE' representation.
-
- At the moment, the basic block boundaries are maintained transparently
-when modifying instructions, so there rarely is a need to move them
-manually (such as in case someone wants to output instruction outside
-basic block explicitly).
-
- In the RTL representation, each instruction has a 'BLOCK_FOR_INSN'
-value that represents pointer to the basic block that contains the
-instruction. In the 'GIMPLE' representation, the function 'gimple_bb'
-returns a pointer to the basic block containing the queried statement.
-
- When changes need to be applied to a function in its 'GIMPLE'
-representation, "GIMPLE statement iterators" should be used. These
-iterators provide an integrated abstraction of the flow graph and the
-instruction stream. Block statement iterators are constructed using the
-'gimple_stmt_iterator' data structure and several modifier are
-available, including the following:
-
-'gsi_start'
- This function initializes a 'gimple_stmt_iterator' that points to
- the first non-empty statement in a basic block.
-
-'gsi_last'
- This function initializes a 'gimple_stmt_iterator' that points to
- the last statement in a basic block.
-
-'gsi_end_p'
- This predicate is 'true' if a 'gimple_stmt_iterator' represents the
- end of a basic block.
-
-'gsi_next'
- This function takes a 'gimple_stmt_iterator' and makes it point to
- its successor.
-
-'gsi_prev'
- This function takes a 'gimple_stmt_iterator' and makes it point to
- its predecessor.
-
-'gsi_insert_after'
- This function inserts a statement after the 'gimple_stmt_iterator'
- passed in. The final parameter determines whether the statement
- iterator is updated to point to the newly inserted statement, or
- left pointing to the original statement.
-
-'gsi_insert_before'
- This function inserts a statement before the 'gimple_stmt_iterator'
- passed in. The final parameter determines whether the statement
- iterator is updated to point to the newly inserted statement, or
- left pointing to the original statement.
-
-'gsi_remove'
- This function removes the 'gimple_stmt_iterator' passed in and
- rechains the remaining statements in a basic block, if any.
-
- In the RTL representation, the macros 'BB_HEAD' and 'BB_END' may be
-used to get the head and end 'rtx' of a basic block. No abstract
-iterators are defined for traversing the insn chain, but you can just
-use 'NEXT_INSN' and 'PREV_INSN' instead. *Note Insns::.
-
- Usually a code manipulating pass simplifies the instruction stream and
-the flow of control, possibly eliminating some edges. This may for
-example happen when a conditional jump is replaced with an unconditional
-jump, but also when simplifying possibly trapping instruction to
-non-trapping while compiling Java. Updating of edges is not transparent
-and each optimization pass is required to do so manually. However only
-few cases occur in practice. The pass may call 'purge_dead_edges' on a
-given basic block to remove superfluous edges, if any.
-
- Another common scenario is redirection of branch instructions, but this
-is best modeled as redirection of edges in the control flow graph and
-thus use of 'redirect_edge_and_branch' is preferred over more low level
-functions, such as 'redirect_jump' that operate on RTL chain only. The
-CFG hooks defined in 'cfghooks.h' should provide the complete API
-required for manipulating and maintaining the CFG.
-
- It is also possible that a pass has to insert control flow instruction
-into the middle of a basic block, thus creating an entry point in the
-middle of the basic block, which is impossible by definition: The block
-must be split to make sure it only has one entry point, i.e. the head of
-the basic block. The CFG hook 'split_block' may be used when an
-instruction in the middle of a basic block has to become the target of a
-jump or branch instruction.
-
- For a global optimizer, a common operation is to split edges in the
-flow graph and insert instructions on them. In the RTL representation,
-this can be easily done using the 'insert_insn_on_edge' function that
-emits an instruction "on the edge", caching it for a later
-'commit_edge_insertions' call that will take care of moving the inserted
-instructions off the edge into the instruction stream contained in a
-basic block. This includes the creation of new basic blocks where
-needed. In the 'GIMPLE' representation, the equivalent functions are
-'gsi_insert_on_edge' which inserts a block statement iterator on an
-edge, and 'gsi_commit_edge_inserts' which flushes the instruction to
-actual instruction stream.
-
- While debugging the optimization pass, the 'verify_flow_info' function
-may be useful to find bugs in the control flow graph updating code.
-
-
-File: gccint.info, Node: Liveness information, Prev: Maintaining the CFG, Up: Control Flow
-
-14.5 Liveness information
-=========================
-
-Liveness information is useful to determine whether some register is
-"live" at given point of program, i.e. that it contains a value that may
-be used at a later point in the program. This information is used, for
-instance, during register allocation, as the pseudo registers only need
-to be assigned to a unique hard register or to a stack slot if they are
-live. The hard registers and stack slots may be freely reused for other
-values when a register is dead.
-
- Liveness information is available in the back end starting with
-'pass_df_initialize' and ending with 'pass_df_finish'. Three flavors of
-live analysis are available: With 'LR', it is possible to determine at
-any point 'P' in the function if the register may be used on some path
-from 'P' to the end of the function. With 'UR', it is possible to
-determine if there is a path from the beginning of the function to 'P'
-that defines the variable. 'LIVE' is the intersection of the 'LR' and
-'UR' and a variable is live at 'P' if there is both an assignment that
-reaches it from the beginning of the function and a use that can be
-reached on some path from 'P' to the end of the function.
-
- In general 'LIVE' is the most useful of the three. The macros
-'DF_[LR,UR,LIVE]_[IN,OUT]' can be used to access this information. The
-macros take a basic block number and return a bitmap that is indexed by
-the register number. This information is only guaranteed to be up to
-date after calls are made to 'df_analyze'. See the file 'df-core.c' for
-details on using the dataflow.
-
- The liveness information is stored partly in the RTL instruction stream
-and partly in the flow graph. Local information is stored in the
-instruction stream: Each instruction may contain 'REG_DEAD' notes
-representing that the value of a given register is no longer needed, or
-'REG_UNUSED' notes representing that the value computed by the
-instruction is never used. The second is useful for instructions
-computing multiple values at once.
-
-
-File: gccint.info, Node: Loop Analysis and Representation, Next: Machine Desc, Prev: Control Flow, Up: Top
-
-15 Analysis and Representation of Loops
-***************************************
-
-GCC provides extensive infrastructure for work with natural loops, i.e.,
-strongly connected components of CFG with only one entry block. This
-chapter describes representation of loops in GCC, both on GIMPLE and in
-RTL, as well as the interfaces to loop-related analyses (induction
-variable analysis and number of iterations analysis).
-
-* Menu:
-
-* Loop representation:: Representation and analysis of loops.
-* Loop querying:: Getting information about loops.
-* Loop manipulation:: Loop manipulation functions.
-* LCSSA:: Loop-closed SSA form.
-* Scalar evolutions:: Induction variables on GIMPLE.
-* loop-iv:: Induction variables on RTL.
-* Number of iterations:: Number of iterations analysis.
-* Dependency analysis:: Data dependency analysis.
-* Omega:: A solver for linear programming problems.
-
-
-File: gccint.info, Node: Loop representation, Next: Loop querying, Up: Loop Analysis and Representation
-
-15.1 Loop representation
-========================
-
-This chapter describes the representation of loops in GCC, and functions
-that can be used to build, modify and analyze this representation. Most
-of the interfaces and data structures are declared in 'cfgloop.h'. Loop
-structures are analyzed and this information disposed or updated at the
-discretion of individual passes. Still most of the generic CFG
-manipulation routines are aware of loop structures and try to keep them
-up-to-date. By this means an increasing part of the compilation
-pipeline is setup to maintain loop structure across passes to allow
-attaching meta information to individual loops for consumption by later
-passes.
-
- In general, a natural loop has one entry block (header) and possibly
-several back edges (latches) leading to the header from the inside of
-the loop. Loops with several latches may appear if several loops share
-a single header, or if there is a branching in the middle of the loop.
-The representation of loops in GCC however allows only loops with a
-single latch. During loop analysis, headers of such loops are split and
-forwarder blocks are created in order to disambiguate their structures.
-Heuristic based on profile information and structure of the induction
-variables in the loops is used to determine whether the latches
-correspond to sub-loops or to control flow in a single loop. This means
-that the analysis sometimes changes the CFG, and if you run it in the
-middle of an optimization pass, you must be able to deal with the new
-blocks. You may avoid CFG changes by passing
-'LOOPS_MAY_HAVE_MULTIPLE_LATCHES' flag to the loop discovery, note
-however that most other loop manipulation functions will not work
-correctly for loops with multiple latch edges (the functions that only
-query membership of blocks to loops and subloop relationships, or
-enumerate and test loop exits, can be expected to work).
-
- Body of the loop is the set of blocks that are dominated by its header,
-and reachable from its latch against the direction of edges in CFG. The
-loops are organized in a containment hierarchy (tree) such that all the
-loops immediately contained inside loop L are the children of L in the
-tree. This tree is represented by the 'struct loops' structure. The
-root of this tree is a fake loop that contains all blocks in the
-function. Each of the loops is represented in a 'struct loop'
-structure. Each loop is assigned an index ('num' field of the 'struct
-loop' structure), and the pointer to the loop is stored in the
-corresponding field of the 'larray' vector in the loops structure. The
-indices do not have to be continuous, there may be empty ('NULL')
-entries in the 'larray' created by deleting loops. Also, there is no
-guarantee on the relative order of a loop and its subloops in the
-numbering. The index of a loop never changes.
-
- The entries of the 'larray' field should not be accessed directly. The
-function 'get_loop' returns the loop description for a loop with the
-given index. 'number_of_loops' function returns number of loops in the
-function. To traverse all loops, use 'FOR_EACH_LOOP' macro. The
-'flags' argument of the macro is used to determine the direction of
-traversal and the set of loops visited. Each loop is guaranteed to be
-visited exactly once, regardless of the changes to the loop tree, and
-the loops may be removed during the traversal. The newly created loops
-are never traversed, if they need to be visited, this must be done
-separately after their creation. The 'FOR_EACH_LOOP' macro allocates
-temporary variables. If the 'FOR_EACH_LOOP' loop were ended using break
-or goto, they would not be released; 'FOR_EACH_LOOP_BREAK' macro must be
-used instead.
-
- Each basic block contains the reference to the innermost loop it
-belongs to ('loop_father'). For this reason, it is only possible to
-have one 'struct loops' structure initialized at the same time for each
-CFG. The global variable 'current_loops' contains the 'struct loops'
-structure. Many of the loop manipulation functions assume that
-dominance information is up-to-date.
-
- The loops are analyzed through 'loop_optimizer_init' function. The
-argument of this function is a set of flags represented in an integer
-bitmask. These flags specify what other properties of the loop
-structures should be calculated/enforced and preserved later:
-
- * 'LOOPS_MAY_HAVE_MULTIPLE_LATCHES': If this flag is set, no changes
- to CFG will be performed in the loop analysis, in particular, loops
- with multiple latch edges will not be disambiguated. If a loop has
- multiple latches, its latch block is set to NULL. Most of the loop
- manipulation functions will not work for loops in this shape. No
- other flags that require CFG changes can be passed to
- loop_optimizer_init.
- * 'LOOPS_HAVE_PREHEADERS': Forwarder blocks are created in such a way
- that each loop has only one entry edge, and additionally, the
- source block of this entry edge has only one successor. This
- creates a natural place where the code can be moved out of the
- loop, and ensures that the entry edge of the loop leads from its
- immediate super-loop.
- * 'LOOPS_HAVE_SIMPLE_LATCHES': Forwarder blocks are created to force
- the latch block of each loop to have only one successor. This
- ensures that the latch of the loop does not belong to any of its
- sub-loops, and makes manipulation with the loops significantly
- easier. Most of the loop manipulation functions assume that the
- loops are in this shape. Note that with this flag, the "normal"
- loop without any control flow inside and with one exit consists of
- two basic blocks.
- * 'LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS': Basic blocks and edges in
- the strongly connected components that are not natural loops (have
- more than one entry block) are marked with 'BB_IRREDUCIBLE_LOOP'
- and 'EDGE_IRREDUCIBLE_LOOP' flags. The flag is not set for blocks
- and edges that belong to natural loops that are in such an
- irreducible region (but it is set for the entry and exit edges of
- such a loop, if they lead to/from this region).
- * 'LOOPS_HAVE_RECORDED_EXITS': The lists of exits are recorded and
- updated for each loop. This makes some functions (e.g.,
- 'get_loop_exit_edges') more efficient. Some functions (e.g.,
- 'single_exit') can be used only if the lists of exits are recorded.
-
- These properties may also be computed/enforced later, using functions
-'create_preheaders', 'force_single_succ_latches',
-'mark_irreducible_loops' and 'record_loop_exits'. The properties can be
-queried using 'loops_state_satisfies_p'.
-
- The memory occupied by the loops structures should be freed with
-'loop_optimizer_finalize' function. When loop structures are setup to
-be preserved across passes this function reduces the information to be
-kept up-to-date to a minimum (only 'LOOPS_MAY_HAVE_MULTIPLE_LATCHES'
-set).
-
- The CFG manipulation functions in general do not update loop
-structures. Specialized versions that additionally do so are provided
-for the most common tasks. On GIMPLE, 'cleanup_tree_cfg_loop' function
-can be used to cleanup CFG while updating the loops structures if
-'current_loops' is set.
-
- At the moment loop structure is preserved from the start of GIMPLE loop
-optimizations until the end of RTL loop optimizations. During this time
-a loop can be tracked by its 'struct loop' and number.
-
-
-File: gccint.info, Node: Loop querying, Next: Loop manipulation, Prev: Loop representation, Up: Loop Analysis and Representation
-
-15.2 Loop querying
-==================
-
-The functions to query the information about loops are declared in
-'cfgloop.h'. Some of the information can be taken directly from the
-structures. 'loop_father' field of each basic block contains the
-innermost loop to that the block belongs. The most useful fields of
-loop structure (that are kept up-to-date at all times) are:
-
- * 'header', 'latch': Header and latch basic blocks of the loop.
- * 'num_nodes': Number of basic blocks in the loop (including the
- basic blocks of the sub-loops).
- * 'depth': The depth of the loop in the loops tree, i.e., the number
- of super-loops of the loop.
- * 'outer', 'inner', 'next': The super-loop, the first sub-loop, and
- the sibling of the loop in the loops tree.
-
- There are other fields in the loop structures, many of them used only
-by some of the passes, or not updated during CFG changes; in general,
-they should not be accessed directly.
-
- The most important functions to query loop structures are:
-
- * 'flow_loops_dump': Dumps the information about loops to a file.
- * 'verify_loop_structure': Checks consistency of the loop structures.
- * 'loop_latch_edge': Returns the latch edge of a loop.
- * 'loop_preheader_edge': If loops have preheaders, returns the
- preheader edge of a loop.
- * 'flow_loop_nested_p': Tests whether loop is a sub-loop of another
- loop.
- * 'flow_bb_inside_loop_p': Tests whether a basic block belongs to a
- loop (including its sub-loops).
- * 'find_common_loop': Finds the common super-loop of two loops.
- * 'superloop_at_depth': Returns the super-loop of a loop with the
- given depth.
- * 'tree_num_loop_insns', 'num_loop_insns': Estimates the number of
- insns in the loop, on GIMPLE and on RTL.
- * 'loop_exit_edge_p': Tests whether edge is an exit from a loop.
- * 'mark_loop_exit_edges': Marks all exit edges of all loops with
- 'EDGE_LOOP_EXIT' flag.
- * 'get_loop_body', 'get_loop_body_in_dom_order',
- 'get_loop_body_in_bfs_order': Enumerates the basic blocks in the
- loop in depth-first search order in reversed CFG, ordered by
- dominance relation, and breath-first search order, respectively.
- * 'single_exit': Returns the single exit edge of the loop, or 'NULL'
- if the loop has more than one exit. You can only use this function
- if LOOPS_HAVE_MARKED_SINGLE_EXITS property is used.
- * 'get_loop_exit_edges': Enumerates the exit edges of a loop.
- * 'just_once_each_iteration_p': Returns true if the basic block is
- executed exactly once during each iteration of a loop (that is, it
- does not belong to a sub-loop, and it dominates the latch of the
- loop).
-
-
-File: gccint.info, Node: Loop manipulation, Next: LCSSA, Prev: Loop querying, Up: Loop Analysis and Representation
-
-15.3 Loop manipulation
-======================
-
-The loops tree can be manipulated using the following functions:
-
- * 'flow_loop_tree_node_add': Adds a node to the tree.
- * 'flow_loop_tree_node_remove': Removes a node from the tree.
- * 'add_bb_to_loop': Adds a basic block to a loop.
- * 'remove_bb_from_loops': Removes a basic block from loops.
-
- Most low-level CFG functions update loops automatically. The following
-functions handle some more complicated cases of CFG manipulations:
-
- * 'remove_path': Removes an edge and all blocks it dominates.
- * 'split_loop_exit_edge': Splits exit edge of the loop, ensuring that
- PHI node arguments remain in the loop (this ensures that
- loop-closed SSA form is preserved). Only useful on GIMPLE.
-
- Finally, there are some higher-level loop transformations implemented.
-While some of them are written so that they should work on non-innermost
-loops, they are mostly untested in that case, and at the moment, they
-are only reliable for the innermost loops:
-
- * 'create_iv': Creates a new induction variable. Only works on
- GIMPLE. 'standard_iv_increment_position' can be used to find a
- suitable place for the iv increment.
- * 'duplicate_loop_to_header_edge',
- 'tree_duplicate_loop_to_header_edge': These functions (on RTL and
- on GIMPLE) duplicate the body of the loop prescribed number of
- times on one of the edges entering loop header, thus performing
- either loop unrolling or loop peeling. 'can_duplicate_loop_p'
- ('can_unroll_loop_p' on GIMPLE) must be true for the duplicated
- loop.
- * 'loop_version', 'tree_ssa_loop_version': These function create a
- copy of a loop, and a branch before them that selects one of them
- depending on the prescribed condition. This is useful for
- optimizations that need to verify some assumptions in runtime (one
- of the copies of the loop is usually left unchanged, while the
- other one is transformed in some way).
- * 'tree_unroll_loop': Unrolls the loop, including peeling the extra
- iterations to make the number of iterations divisible by unroll
- factor, updating the exit condition, and removing the exits that
- now cannot be taken. Works only on GIMPLE.
-
-
-File: gccint.info, Node: LCSSA, Next: Scalar evolutions, Prev: Loop manipulation, Up: Loop Analysis and Representation
-
-15.4 Loop-closed SSA form
-=========================
-
-Throughout the loop optimizations on tree level, one extra condition is
-enforced on the SSA form: No SSA name is used outside of the loop in
-that it is defined. The SSA form satisfying this condition is called
-"loop-closed SSA form" - LCSSA. To enforce LCSSA, PHI nodes must be
-created at the exits of the loops for the SSA names that are used
-outside of them. Only the real operands (not virtual SSA names) are
-held in LCSSA, in order to save memory.
-
- There are various benefits of LCSSA:
-
- * Many optimizations (value range analysis, final value replacement)
- are interested in the values that are defined in the loop and used
- outside of it, i.e., exactly those for that we create new PHI
- nodes.
- * In induction variable analysis, it is not necessary to specify the
- loop in that the analysis should be performed - the scalar
- evolution analysis always returns the results with respect to the
- loop in that the SSA name is defined.
- * It makes updating of SSA form during loop transformations simpler.
- Without LCSSA, operations like loop unrolling may force creation of
- PHI nodes arbitrarily far from the loop, while in LCSSA, the SSA
- form can be updated locally. However, since we only keep real
- operands in LCSSA, we cannot use this advantage (we could have
- local updating of real operands, but it is not much more efficient
- than to use generic SSA form updating for it as well; the amount of
- changes to SSA is the same).
-
- However, it also means LCSSA must be updated. This is usually
-straightforward, unless you create a new value in loop and use it
-outside, or unless you manipulate loop exit edges (functions are
-provided to make these manipulations simple).
-'rewrite_into_loop_closed_ssa' is used to rewrite SSA form to LCSSA, and
-'verify_loop_closed_ssa' to check that the invariant of LCSSA is
-preserved.
-
-
-File: gccint.info, Node: Scalar evolutions, Next: loop-iv, Prev: LCSSA, Up: Loop Analysis and Representation
-
-15.5 Scalar evolutions
-======================
-
-Scalar evolutions (SCEV) are used to represent results of induction
-variable analysis on GIMPLE. They enable us to represent variables with
-complicated behavior in a simple and consistent way (we only use it to
-express values of polynomial induction variables, but it is possible to
-extend it). The interfaces to SCEV analysis are declared in
-'tree-scalar-evolution.h'. To use scalar evolutions analysis,
-'scev_initialize' must be used. To stop using SCEV, 'scev_finalize'
-should be used. SCEV analysis caches results in order to save time and
-memory. This cache however is made invalid by most of the loop
-transformations, including removal of code. If such a transformation is
-performed, 'scev_reset' must be called to clean the caches.
-
- Given an SSA name, its behavior in loops can be analyzed using the
-'analyze_scalar_evolution' function. The returned SCEV however does not
-have to be fully analyzed and it may contain references to other SSA
-names defined in the loop. To resolve these (potentially recursive)
-references, 'instantiate_parameters' or 'resolve_mixers' functions must
-be used. 'instantiate_parameters' is useful when you use the results of
-SCEV only for some analysis, and when you work with whole nest of loops
-at once. It will try replacing all SSA names by their SCEV in all
-loops, including the super-loops of the current loop, thus providing a
-complete information about the behavior of the variable in the loop
-nest. 'resolve_mixers' is useful if you work with only one loop at a
-time, and if you possibly need to create code based on the value of the
-induction variable. It will only resolve the SSA names defined in the
-current loop, leaving the SSA names defined outside unchanged, even if
-their evolution in the outer loops is known.
-
- The SCEV is a normal tree expression, except for the fact that it may
-contain several special tree nodes. One of them is 'SCEV_NOT_KNOWN',
-used for SSA names whose value cannot be expressed. The other one is
-'POLYNOMIAL_CHREC'. Polynomial chrec has three arguments - base, step
-and loop (both base and step may contain further polynomial chrecs).
-Type of the expression and of base and step must be the same. A
-variable has evolution 'POLYNOMIAL_CHREC(base, step, loop)' if it is (in
-the specified loop) equivalent to 'x_1' in the following example
-
- while (...)
- {
- x_1 = phi (base, x_2);
- x_2 = x_1 + step;
- }
-
- Note that this includes the language restrictions on the operations.
-For example, if we compile C code and 'x' has signed type, then the
-overflow in addition would cause undefined behavior, and we may assume
-that this does not happen. Hence, the value with this SCEV cannot
-overflow (which restricts the number of iterations of such a loop).
-
- In many cases, one wants to restrict the attention just to affine
-induction variables. In this case, the extra expressive power of SCEV
-is not useful, and may complicate the optimizations. In this case,
-'simple_iv' function may be used to analyze a value - the result is a
-loop-invariant base and step.
-
-
-File: gccint.info, Node: loop-iv, Next: Number of iterations, Prev: Scalar evolutions, Up: Loop Analysis and Representation
-
-15.6 IV analysis on RTL
-=======================
-
-The induction variable on RTL is simple and only allows analysis of
-affine induction variables, and only in one loop at once. The interface
-is declared in 'cfgloop.h'. Before analyzing induction variables in a
-loop L, 'iv_analysis_loop_init' function must be called on L. After the
-analysis (possibly calling 'iv_analysis_loop_init' for several loops) is
-finished, 'iv_analysis_done' should be called. The following functions
-can be used to access the results of the analysis:
-
- * 'iv_analyze': Analyzes a single register used in the given insn.
- If no use of the register in this insn is found, the following
- insns are scanned, so that this function can be called on the insn
- returned by get_condition.
- * 'iv_analyze_result': Analyzes result of the assignment in the given
- insn.
- * 'iv_analyze_expr': Analyzes a more complicated expression. All its
- operands are analyzed by 'iv_analyze', and hence they must be used
- in the specified insn or one of the following insns.
-
- The description of the induction variable is provided in 'struct
-rtx_iv'. In order to handle subregs, the representation is a bit
-complicated; if the value of the 'extend' field is not 'UNKNOWN', the
-value of the induction variable in the i-th iteration is
-
- delta + mult * extend_{extend_mode} (subreg_{mode} (base + i * step)),
-
- with the following exception: if 'first_special' is true, then the
-value in the first iteration (when 'i' is zero) is 'delta + mult *
-base'. However, if 'extend' is equal to 'UNKNOWN', then 'first_special'
-must be false, 'delta' 0, 'mult' 1 and the value in the i-th iteration
-is
-
- subreg_{mode} (base + i * step)
-
- The function 'get_iv_value' can be used to perform these calculations.
-
-
-File: gccint.info, Node: Number of iterations, Next: Dependency analysis, Prev: loop-iv, Up: Loop Analysis and Representation
-
-15.7 Number of iterations analysis
-==================================
-
-Both on GIMPLE and on RTL, there are functions available to determine
-the number of iterations of a loop, with a similar interface. The
-number of iterations of a loop in GCC is defined as the number of
-executions of the loop latch. In many cases, it is not possible to
-determine the number of iterations unconditionally - the determined
-number is correct only if some assumptions are satisfied. The analysis
-tries to verify these conditions using the information contained in the
-program; if it fails, the conditions are returned together with the
-result. The following information and conditions are provided by the
-analysis:
-
- * 'assumptions': If this condition is false, the rest of the
- information is invalid.
- * 'noloop_assumptions' on RTL, 'may_be_zero' on GIMPLE: If this
- condition is true, the loop exits in the first iteration.
- * 'infinite': If this condition is true, the loop is infinite. This
- condition is only available on RTL. On GIMPLE, conditions for
- finiteness of the loop are included in 'assumptions'.
- * 'niter_expr' on RTL, 'niter' on GIMPLE: The expression that gives
- number of iterations. The number of iterations is defined as the
- number of executions of the loop latch.
-
- Both on GIMPLE and on RTL, it necessary for the induction variable
-analysis framework to be initialized (SCEV on GIMPLE, loop-iv on RTL).
-On GIMPLE, the results are stored to 'struct tree_niter_desc' structure.
-Number of iterations before the loop is exited through a given exit can
-be determined using 'number_of_iterations_exit' function. On RTL, the
-results are returned in 'struct niter_desc' structure. The
-corresponding function is named 'check_simple_exit'. There are also
-functions that pass through all the exits of a loop and try to find one
-with easy to determine number of iterations - 'find_loop_niter' on
-GIMPLE and 'find_simple_exit' on RTL. Finally, there are functions that
-provide the same information, but additionally cache it, so that
-repeated calls to number of iterations are not so costly -
-'number_of_latch_executions' on GIMPLE and 'get_simple_loop_desc' on
-RTL.
-
- Note that some of these functions may behave slightly differently than
-others - some of them return only the expression for the number of
-iterations, and fail if there are some assumptions. The function
-'number_of_latch_executions' works only for single-exit loops. The
-function 'number_of_cond_exit_executions' can be used to determine
-number of executions of the exit condition of a single-exit loop (i.e.,
-the 'number_of_latch_executions' increased by one).
-
-
-File: gccint.info, Node: Dependency analysis, Next: Omega, Prev: Number of iterations, Up: Loop Analysis and Representation
-
-15.8 Data Dependency Analysis
-=============================
-
-The code for the data dependence analysis can be found in
-'tree-data-ref.c' and its interface and data structures are described in
-'tree-data-ref.h'. The function that computes the data dependences for
-all the array and pointer references for a given loop is
-'compute_data_dependences_for_loop'. This function is currently used by
-the linear loop transform and the vectorization passes. Before calling
-this function, one has to allocate two vectors: a first vector will
-contain the set of data references that are contained in the analyzed
-loop body, and the second vector will contain the dependence relations
-between the data references. Thus if the vector of data references is
-of size 'n', the vector containing the dependence relations will contain
-'n*n' elements. However if the analyzed loop contains side effects,
-such as calls that potentially can interfere with the data references in
-the current analyzed loop, the analysis stops while scanning the loop
-body for data references, and inserts a single 'chrec_dont_know' in the
-dependence relation array.
-
- The data references are discovered in a particular order during the
-scanning of the loop body: the loop body is analyzed in execution order,
-and the data references of each statement are pushed at the end of the
-data reference array. Two data references syntactically occur in the
-program in the same order as in the array of data references. This
-syntactic order is important in some classical data dependence tests,
-and mapping this order to the elements of this array avoids costly
-queries to the loop body representation.
-
- Three types of data references are currently handled: ARRAY_REF,
-INDIRECT_REF and COMPONENT_REF. The data structure for the data
-reference is 'data_reference', where 'data_reference_p' is a name of a
-pointer to the data reference structure. The structure contains the
-following elements:
-
- * 'base_object_info': Provides information about the base object of
- the data reference and its access functions. These access
- functions represent the evolution of the data reference in the loop
- relative to its base, in keeping with the classical meaning of the
- data reference access function for the support of arrays. For
- example, for a reference 'a.b[i][j]', the base object is 'a.b' and
- the access functions, one for each array subscript, are: '{i_init,
- + i_step}_1, {j_init, +, j_step}_2'.
-
- * 'first_location_in_loop': Provides information about the first
- location accessed by the data reference in the loop and about the
- access function used to represent evolution relative to this
- location. This data is used to support pointers, and is not used
- for arrays (for which we have base objects). Pointer accesses are
- represented as a one-dimensional access that starts from the first
- location accessed in the loop. For example:
-
- for1 i
- for2 j
- *((int *)p + i + j) = a[i][j];
-
- The access function of the pointer access is '{0, + 4B}_for2'
- relative to 'p + i'. The access functions of the array are
- '{i_init, + i_step}_for1' and '{j_init, +, j_step}_for2' relative
- to 'a'.
-
- Usually, the object the pointer refers to is either unknown, or we
- can't prove that the access is confined to the boundaries of a
- certain object.
-
- Two data references can be compared only if at least one of these
- two representations has all its fields filled for both data
- references.
-
- The current strategy for data dependence tests is as follows: If
- both 'a' and 'b' are represented as arrays, compare 'a.base_object'
- and 'b.base_object'; if they are equal, apply dependence tests (use
- access functions based on base_objects). Else if both 'a' and 'b'
- are represented as pointers, compare 'a.first_location' and
- 'b.first_location'; if they are equal, apply dependence tests (use
- access functions based on first location). However, if 'a' and 'b'
- are represented differently, only try to prove that the bases are
- definitely different.
-
- * Aliasing information.
- * Alignment information.
-
- The structure describing the relation between two data references is
-'data_dependence_relation' and the shorter name for a pointer to such a
-structure is 'ddr_p'. This structure contains:
-
- * a pointer to each data reference,
- * a tree node 'are_dependent' that is set to 'chrec_known' if the
- analysis has proved that there is no dependence between these two
- data references, 'chrec_dont_know' if the analysis was not able to
- determine any useful result and potentially there could exist a
- dependence between these data references, and 'are_dependent' is
- set to 'NULL_TREE' if there exist a dependence relation between the
- data references, and the description of this dependence relation is
- given in the 'subscripts', 'dir_vects', and 'dist_vects' arrays,
- * a boolean that determines whether the dependence relation can be
- represented by a classical distance vector,
- * an array 'subscripts' that contains a description of each subscript
- of the data references. Given two array accesses a subscript is
- the tuple composed of the access functions for a given dimension.
- For example, given 'A[f1][f2][f3]' and 'B[g1][g2][g3]', there are
- three subscripts: '(f1, g1), (f2, g2), (f3, g3)'.
- * two arrays 'dir_vects' and 'dist_vects' that contain classical
- representations of the data dependences under the form of direction
- and distance dependence vectors,
- * an array of loops 'loop_nest' that contains the loops to which the
- distance and direction vectors refer to.
-
- Several functions for pretty printing the information extracted by the
-data dependence analysis are available: 'dump_ddrs' prints with a
-maximum verbosity the details of a data dependence relations array,
-'dump_dist_dir_vectors' prints only the classical distance and direction
-vectors for a data dependence relations array, and
-'dump_data_references' prints the details of the data references
-contained in a data reference array.
-
-
-File: gccint.info, Node: Omega, Prev: Dependency analysis, Up: Loop Analysis and Representation
-
-15.9 Omega a solver for linear programming problems
-===================================================
-
-The data dependence analysis contains several solvers triggered
-sequentially from the less complex ones to the more sophisticated. For
-ensuring the consistency of the results of these solvers, a data
-dependence check pass has been implemented based on two different
-solvers. The second method that has been integrated to GCC is based on
-the Omega dependence solver, written in the 1990's by William Pugh and
-David Wonnacott. Data dependence tests can be formulated using a subset
-of the Presburger arithmetics that can be translated to linear
-constraint systems. These linear constraint systems can then be solved
-using the Omega solver.
-
- The Omega solver is using Fourier-Motzkin's algorithm for variable
-elimination: a linear constraint system containing 'n' variables is
-reduced to a linear constraint system with 'n-1' variables. The Omega
-solver can also be used for solving other problems that can be expressed
-under the form of a system of linear equalities and inequalities. The
-Omega solver is known to have an exponential worst case, also known
-under the name of "omega nightmare" in the literature, but in practice,
-the omega test is known to be efficient for the common data dependence
-tests.
-
- The interface used by the Omega solver for describing the linear
-programming problems is described in 'omega.h', and the solver is
-'omega_solve_problem'.
-
-
-File: gccint.info, Node: Machine Desc, Next: Target Macros, Prev: Loop Analysis and Representation, Up: Top
-
-16 Machine Descriptions
-***********************
-
-A machine description has two parts: a file of instruction patterns
-('.md' file) and a C header file of macro definitions.
-
- The '.md' file for a target machine contains a pattern for each
-instruction that the target machine supports (or at least each
-instruction that is worth telling the compiler about). It may also
-contain comments. A semicolon causes the rest of the line to be a
-comment, unless the semicolon is inside a quoted string.
-
- See the next chapter for information on the C header file.
-
-* Menu:
-
-* Overview:: How the machine description is used.
-* Patterns:: How to write instruction patterns.
-* Example:: An explained example of a 'define_insn' pattern.
-* RTL Template:: The RTL template defines what insns match a pattern.
-* Output Template:: The output template says how to make assembler code
- from such an insn.
-* Output Statement:: For more generality, write C code to output
- the assembler code.
-* Predicates:: Controlling what kinds of operands can be used
- for an insn.
-* Constraints:: Fine-tuning operand selection.
-* Standard Names:: Names mark patterns to use for code generation.
-* Pattern Ordering:: When the order of patterns makes a difference.
-* Dependent Patterns:: Having one pattern may make you need another.
-* Jump Patterns:: Special considerations for patterns for jump insns.
-* Looping Patterns:: How to define patterns for special looping insns.
-* Insn Canonicalizations::Canonicalization of Instructions
-* Expander Definitions::Generating a sequence of several RTL insns
- for a standard operation.
-* Insn Splitting:: Splitting Instructions into Multiple Instructions.
-* Including Patterns:: Including Patterns in Machine Descriptions.
-* Peephole Definitions::Defining machine-specific peephole optimizations.
-* Insn Attributes:: Specifying the value of attributes for generated insns.
-* Conditional Execution::Generating 'define_insn' patterns for
- predication.
-* Define Subst:: Generating 'define_insn' and 'define_expand'
- patterns from other patterns.
-* Constant Definitions::Defining symbolic constants that can be used in the
- md file.
-* Iterators:: Using iterators to generate patterns from a template.
-
-
-File: gccint.info, Node: Overview, Next: Patterns, Up: Machine Desc
-
-16.1 Overview of How the Machine Description is Used
-====================================================
-
-There are three main conversions that happen in the compiler:
-
- 1. The front end reads the source code and builds a parse tree.
-
- 2. The parse tree is used to generate an RTL insn list based on named
- instruction patterns.
-
- 3. The insn list is matched against the RTL templates to produce
- assembler code.
-
- For the generate pass, only the names of the insns matter, from either
-a named 'define_insn' or a 'define_expand'. The compiler will choose
-the pattern with the right name and apply the operands according to the
-documentation later in this chapter, without regard for the RTL template
-or operand constraints. Note that the names the compiler looks for are
-hard-coded in the compiler--it will ignore unnamed patterns and patterns
-with names it doesn't know about, but if you don't provide a named
-pattern it needs, it will abort.
-
- If a 'define_insn' is used, the template given is inserted into the
-insn list. If a 'define_expand' is used, one of three things happens,
-based on the condition logic. The condition logic may manually create
-new insns for the insn list, say via 'emit_insn()', and invoke 'DONE'.
-For certain named patterns, it may invoke 'FAIL' to tell the compiler to
-use an alternate way of performing that task. If it invokes neither
-'DONE' nor 'FAIL', the template given in the pattern is inserted, as if
-the 'define_expand' were a 'define_insn'.
-
- Once the insn list is generated, various optimization passes convert,
-replace, and rearrange the insns in the insn list. This is where the
-'define_split' and 'define_peephole' patterns get used, for example.
-
- Finally, the insn list's RTL is matched up with the RTL templates in
-the 'define_insn' patterns, and those patterns are used to emit the
-final assembly code. For this purpose, each named 'define_insn' acts
-like it's unnamed, since the names are ignored.
-
-
-File: gccint.info, Node: Patterns, Next: Example, Prev: Overview, Up: Machine Desc
-
-16.2 Everything about Instruction Patterns
-==========================================
-
-Each instruction pattern contains an incomplete RTL expression, with
-pieces to be filled in later, operand constraints that restrict how the
-pieces can be filled in, and an output pattern or C code to generate the
-assembler output, all wrapped up in a 'define_insn' expression.
-
- A 'define_insn' is an RTL expression containing four or five operands:
-
- 1. An optional name. The presence of a name indicate that this
- instruction pattern can perform a certain standard job for the
- RTL-generation pass of the compiler. This pass knows certain names
- and will use the instruction patterns with those names, if the
- names are defined in the machine description.
-
- The absence of a name is indicated by writing an empty string where
- the name should go. Nameless instruction patterns are never used
- for generating RTL code, but they may permit several simpler insns
- to be combined later on.
-
- Names that are not thus known and used in RTL-generation have no
- effect; they are equivalent to no name at all.
-
- For the purpose of debugging the compiler, you may also specify a
- name beginning with the '*' character. Such a name is used only
- for identifying the instruction in RTL dumps; it is entirely
- equivalent to having a nameless pattern for all other purposes.
-
- 2. The "RTL template" (*note RTL Template::) is a vector of incomplete
- RTL expressions which show what the instruction should look like.
- It is incomplete because it may contain 'match_operand',
- 'match_operator', and 'match_dup' expressions that stand for
- operands of the instruction.
-
- If the vector has only one element, that element is the template
- for the instruction pattern. If the vector has multiple elements,
- then the instruction pattern is a 'parallel' expression containing
- the elements described.
-
- 3. A condition. This is a string which contains a C expression that
- is the final test to decide whether an insn body matches this
- pattern.
-
- For a named pattern, the condition (if present) may not depend on
- the data in the insn being matched, but only the
- target-machine-type flags. The compiler needs to test these
- conditions during initialization in order to learn exactly which
- named instructions are available in a particular run.
-
- For nameless patterns, the condition is applied only when matching
- an individual insn, and only after the insn has matched the
- pattern's recognition template. The insn's operands may be found
- in the vector 'operands'. For an insn where the condition has once
- matched, it can't be used to control register allocation, for
- example by excluding certain hard registers or hard register
- combinations.
-
- 4. The "output template": a string that says how to output matching
- insns as assembler code. '%' in this string specifies where to
- substitute the value of an operand. *Note Output Template::.
-
- When simple substitution isn't general enough, you can specify a
- piece of C code to compute the output. *Note Output Statement::.
-
- 5. Optionally, a vector containing the values of attributes for insns
- matching this pattern. *Note Insn Attributes::.
-
-
-File: gccint.info, Node: Example, Next: RTL Template, Prev: Patterns, Up: Machine Desc
-
-16.3 Example of 'define_insn'
-=============================
-
-Here is an actual example of an instruction pattern, for the
-68000/68020.
-
- (define_insn "tstsi"
- [(set (cc0)
- (match_operand:SI 0 "general_operand" "rm"))]
- ""
- "*
- {
- if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
- return \"tstl %0\";
- return \"cmpl #0,%0\";
- }")
-
-This can also be written using braced strings:
-
- (define_insn "tstsi"
- [(set (cc0)
- (match_operand:SI 0 "general_operand" "rm"))]
- ""
- {
- if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
- return "tstl %0";
- return "cmpl #0,%0";
- })
-
- This is an instruction that sets the condition codes based on the value
-of a general operand. It has no condition, so any insn whose RTL
-description has the form shown may be handled according to this pattern.
-The name 'tstsi' means "test a 'SImode' value" and tells the RTL
-generation pass that, when it is necessary to test such a value, an insn
-to do so can be constructed using this pattern.
-
- The output control string is a piece of C code which chooses which
-output template to return based on the kind of operand and the specific
-type of CPU for which code is being generated.
-
- '"rm"' is an operand constraint. Its meaning is explained below.
-
-
-File: gccint.info, Node: RTL Template, Next: Output Template, Prev: Example, Up: Machine Desc
-
-16.4 RTL Template
-=================
-
-The RTL template is used to define which insns match the particular
-pattern and how to find their operands. For named patterns, the RTL
-template also says how to construct an insn from specified operands.
-
- Construction involves substituting specified operands into a copy of
-the template. Matching involves determining the values that serve as
-the operands in the insn being matched. Both of these activities are
-controlled by special expression types that direct matching and
-substitution of the operands.
-
-'(match_operand:M N PREDICATE CONSTRAINT)'
- This expression is a placeholder for operand number N of the insn.
- When constructing an insn, operand number N will be substituted at
- this point. When matching an insn, whatever appears at this
- position in the insn will be taken as operand number N; but it must
- satisfy PREDICATE or this instruction pattern will not match at
- all.
-
- Operand numbers must be chosen consecutively counting from zero in
- each instruction pattern. There may be only one 'match_operand'
- expression in the pattern for each operand number. Usually
- operands are numbered in the order of appearance in 'match_operand'
- expressions. In the case of a 'define_expand', any operand numbers
- used only in 'match_dup' expressions have higher values than all
- other operand numbers.
-
- PREDICATE is a string that is the name of a function that accepts
- two arguments, an expression and a machine mode. *Note
- Predicates::. During matching, the function will be called with
- the putative operand as the expression and M as the mode argument
- (if M is not specified, 'VOIDmode' will be used, which normally
- causes PREDICATE to accept any mode). If it returns zero, this
- instruction pattern fails to match. PREDICATE may be an empty
- string; then it means no test is to be done on the operand, so
- anything which occurs in this position is valid.
-
- Most of the time, PREDICATE will reject modes other than M--but not
- always. For example, the predicate 'address_operand' uses M as the
- mode of memory ref that the address should be valid for. Many
- predicates accept 'const_int' nodes even though their mode is
- 'VOIDmode'.
-
- CONSTRAINT controls reloading and the choice of the best register
- class to use for a value, as explained later (*note Constraints::).
- If the constraint would be an empty string, it can be omitted.
-
- People are often unclear on the difference between the constraint
- and the predicate. The predicate helps decide whether a given insn
- matches the pattern. The constraint plays no role in this
- decision; instead, it controls various decisions in the case of an
- insn which does match.
-
-'(match_scratch:M N CONSTRAINT)'
- This expression is also a placeholder for operand number N and
- indicates that operand must be a 'scratch' or 'reg' expression.
-
- When matching patterns, this is equivalent to
-
- (match_operand:M N "scratch_operand" PRED)
-
- but, when generating RTL, it produces a ('scratch':M) expression.
-
- If the last few expressions in a 'parallel' are 'clobber'
- expressions whose operands are either a hard register or
- 'match_scratch', the combiner can add or delete them when
- necessary. *Note Side Effects::.
-
-'(match_dup N)'
- This expression is also a placeholder for operand number N. It is
- used when the operand needs to appear more than once in the insn.
-
- In construction, 'match_dup' acts just like 'match_operand': the
- operand is substituted into the insn being constructed. But in
- matching, 'match_dup' behaves differently. It assumes that operand
- number N has already been determined by a 'match_operand' appearing
- earlier in the recognition template, and it matches only an
- identical-looking expression.
-
- Note that 'match_dup' should not be used to tell the compiler that
- a particular register is being used for two operands (example:
- 'add' that adds one register to another; the second register is
- both an input operand and the output operand). Use a matching
- constraint (*note Simple Constraints::) for those. 'match_dup' is
- for the cases where one operand is used in two places in the
- template, such as an instruction that computes both a quotient and
- a remainder, where the opcode takes two input operands but the RTL
- template has to refer to each of those twice; once for the quotient
- pattern and once for the remainder pattern.
-
-'(match_operator:M N PREDICATE [OPERANDS...])'
- This pattern is a kind of placeholder for a variable RTL expression
- code.
-
- When constructing an insn, it stands for an RTL expression whose
- expression code is taken from that of operand N, and whose operands
- are constructed from the patterns OPERANDS.
-
- When matching an expression, it matches an expression if the
- function PREDICATE returns nonzero on that expression _and_ the
- patterns OPERANDS match the operands of the expression.
-
- Suppose that the function 'commutative_operator' is defined as
- follows, to match any expression whose operator is one of the
- commutative arithmetic operators of RTL and whose mode is MODE:
-
- int
- commutative_integer_operator (x, mode)
- rtx x;
- enum machine_mode mode;
- {
- enum rtx_code code = GET_CODE (x);
- if (GET_MODE (x) != mode)
- return 0;
- return (GET_RTX_CLASS (code) == RTX_COMM_ARITH
- || code == EQ || code == NE);
- }
-
- Then the following pattern will match any RTL expression consisting
- of a commutative operator applied to two general operands:
-
- (match_operator:SI 3 "commutative_operator"
- [(match_operand:SI 1 "general_operand" "g")
- (match_operand:SI 2 "general_operand" "g")])
-
- Here the vector '[OPERANDS...]' contains two patterns because the
- expressions to be matched all contain two operands.
-
- When this pattern does match, the two operands of the commutative
- operator are recorded as operands 1 and 2 of the insn. (This is
- done by the two instances of 'match_operand'.) Operand 3 of the
- insn will be the entire commutative expression: use 'GET_CODE
- (operands[3])' to see which commutative operator was used.
-
- The machine mode M of 'match_operator' works like that of
- 'match_operand': it is passed as the second argument to the
- predicate function, and that function is solely responsible for
- deciding whether the expression to be matched "has" that mode.
-
- When constructing an insn, argument 3 of the gen-function will
- specify the operation (i.e. the expression code) for the expression
- to be made. It should be an RTL expression, whose expression code
- is copied into a new expression whose operands are arguments 1 and
- 2 of the gen-function. The subexpressions of argument 3 are not
- used; only its expression code matters.
-
- When 'match_operator' is used in a pattern for matching an insn, it
- usually best if the operand number of the 'match_operator' is
- higher than that of the actual operands of the insn. This improves
- register allocation because the register allocator often looks at
- operands 1 and 2 of insns to see if it can do register tying.
-
- There is no way to specify constraints in 'match_operator'. The
- operand of the insn which corresponds to the 'match_operator' never
- has any constraints because it is never reloaded as a whole.
- However, if parts of its OPERANDS are matched by 'match_operand'
- patterns, those parts may have constraints of their own.
-
-'(match_op_dup:M N[OPERANDS...])'
- Like 'match_dup', except that it applies to operators instead of
- operands. When constructing an insn, operand number N will be
- substituted at this point. But in matching, 'match_op_dup' behaves
- differently. It assumes that operand number N has already been
- determined by a 'match_operator' appearing earlier in the
- recognition template, and it matches only an identical-looking
- expression.
-
-'(match_parallel N PREDICATE [SUBPAT...])'
- This pattern is a placeholder for an insn that consists of a
- 'parallel' expression with a variable number of elements. This
- expression should only appear at the top level of an insn pattern.
-
- When constructing an insn, operand number N will be substituted at
- this point. When matching an insn, it matches if the body of the
- insn is a 'parallel' expression with at least as many elements as
- the vector of SUBPAT expressions in the 'match_parallel', if each
- SUBPAT matches the corresponding element of the 'parallel', _and_
- the function PREDICATE returns nonzero on the 'parallel' that is
- the body of the insn. It is the responsibility of the predicate to
- validate elements of the 'parallel' beyond those listed in the
- 'match_parallel'.
-
- A typical use of 'match_parallel' is to match load and store
- multiple expressions, which can contain a variable number of
- elements in a 'parallel'. For example,
-
- (define_insn ""
- [(match_parallel 0 "load_multiple_operation"
- [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
- (match_operand:SI 2 "memory_operand" "m"))
- (use (reg:SI 179))
- (clobber (reg:SI 179))])]
- ""
- "loadm 0,0,%1,%2")
-
- This example comes from 'a29k.md'. The function
- 'load_multiple_operation' is defined in 'a29k.c' and checks that
- subsequent elements in the 'parallel' are the same as the 'set' in
- the pattern, except that they are referencing subsequent registers
- and memory locations.
-
- An insn that matches this pattern might look like:
-
- (parallel
- [(set (reg:SI 20) (mem:SI (reg:SI 100)))
- (use (reg:SI 179))
- (clobber (reg:SI 179))
- (set (reg:SI 21)
- (mem:SI (plus:SI (reg:SI 100)
- (const_int 4))))
- (set (reg:SI 22)
- (mem:SI (plus:SI (reg:SI 100)
- (const_int 8))))])
-
-'(match_par_dup N [SUBPAT...])'
- Like 'match_op_dup', but for 'match_parallel' instead of
- 'match_operator'.
-
-
-File: gccint.info, Node: Output Template, Next: Output Statement, Prev: RTL Template, Up: Machine Desc
-
-16.5 Output Templates and Operand Substitution
-==============================================
-
-The "output template" is a string which specifies how to output the
-assembler code for an instruction pattern. Most of the template is a
-fixed string which is output literally. The character '%' is used to
-specify where to substitute an operand; it can also be used to identify
-places where different variants of the assembler require different
-syntax.
-
- In the simplest case, a '%' followed by a digit N says to output
-operand N at that point in the string.
-
- '%' followed by a letter and a digit says to output an operand in an
-alternate fashion. Four letters have standard, built-in meanings
-described below. The machine description macro 'PRINT_OPERAND' can
-define additional letters with nonstandard meanings.
-
- '%cDIGIT' can be used to substitute an operand that is a constant value
-without the syntax that normally indicates an immediate operand.
-
- '%nDIGIT' is like '%cDIGIT' except that the value of the constant is
-negated before printing.
-
- '%aDIGIT' can be used to substitute an operand as if it were a memory
-reference, with the actual operand treated as the address. This may be
-useful when outputting a "load address" instruction, because often the
-assembler syntax for such an instruction requires you to write the
-operand as if it were a memory reference.
-
- '%lDIGIT' is used to substitute a 'label_ref' into a jump instruction.
-
- '%=' outputs a number which is unique to each instruction in the entire
-compilation. This is useful for making local labels to be referred to
-more than once in a single template that generates multiple assembler
-instructions.
-
- '%' followed by a punctuation character specifies a substitution that
-does not use an operand. Only one case is standard: '%%' outputs a '%'
-into the assembler code. Other nonstandard cases can be defined in the
-'PRINT_OPERAND' macro. You must also define which punctuation
-characters are valid with the 'PRINT_OPERAND_PUNCT_VALID_P' macro.
-
- The template may generate multiple assembler instructions. Write the
-text for the instructions, with '\;' between them.
-
- When the RTL contains two operands which are required by constraint to
-match each other, the output template must refer only to the
-lower-numbered operand. Matching operands are not always identical, and
-the rest of the compiler arranges to put the proper RTL expression for
-printing into the lower-numbered operand.
-
- One use of nonstandard letters or punctuation following '%' is to
-distinguish between different assembler languages for the same machine;
-for example, Motorola syntax versus MIT syntax for the 68000. Motorola
-syntax requires periods in most opcode names, while MIT syntax does not.
-For example, the opcode 'movel' in MIT syntax is 'move.l' in Motorola
-syntax. The same file of patterns is used for both kinds of output
-syntax, but the character sequence '%.' is used in each place where
-Motorola syntax wants a period. The 'PRINT_OPERAND' macro for Motorola
-syntax defines the sequence to output a period; the macro for MIT syntax
-defines it to do nothing.
-
- As a special case, a template consisting of the single character '#'
-instructs the compiler to first split the insn, and then output the
-resulting instructions separately. This helps eliminate redundancy in
-the output templates. If you have a 'define_insn' that needs to emit
-multiple assembler instructions, and there is a matching 'define_split'
-already defined, then you can simply use '#' as the output template
-instead of writing an output template that emits the multiple assembler
-instructions.
-
- If the macro 'ASSEMBLER_DIALECT' is defined, you can use construct of
-the form '{option0|option1|option2}' in the templates. These describe
-multiple variants of assembler language syntax. *Note Instruction
-Output::.
-
-
-File: gccint.info, Node: Output Statement, Next: Predicates, Prev: Output Template, Up: Machine Desc
-
-16.6 C Statements for Assembler Output
-======================================
-
-Often a single fixed template string cannot produce correct and
-efficient assembler code for all the cases that are recognized by a
-single instruction pattern. For example, the opcodes may depend on the
-kinds of operands; or some unfortunate combinations of operands may
-require extra machine instructions.
-
- If the output control string starts with a '@', then it is actually a
-series of templates, each on a separate line. (Blank lines and leading
-spaces and tabs are ignored.) The templates correspond to the pattern's
-constraint alternatives (*note Multi-Alternative::). For example, if a
-target machine has a two-address add instruction 'addr' to add into a
-register and another 'addm' to add a register to memory, you might write
-this pattern:
-
- (define_insn "addsi3"
- [(set (match_operand:SI 0 "general_operand" "=r,m")
- (plus:SI (match_operand:SI 1 "general_operand" "0,0")
- (match_operand:SI 2 "general_operand" "g,r")))]
- ""
- "@
- addr %2,%0
- addm %2,%0")
-
- If the output control string starts with a '*', then it is not an
-output template but rather a piece of C program that should compute a
-template. It should execute a 'return' statement to return the
-template-string you want. Most such templates use C string literals,
-which require doublequote characters to delimit them. To include these
-doublequote characters in the string, prefix each one with '\'.
-
- If the output control string is written as a brace block instead of a
-double-quoted string, it is automatically assumed to be C code. In that
-case, it is not necessary to put in a leading asterisk, or to escape the
-doublequotes surrounding C string literals.
-
- The operands may be found in the array 'operands', whose C data type is
-'rtx []'.
-
- It is very common to select different ways of generating assembler code
-based on whether an immediate operand is within a certain range. Be
-careful when doing this, because the result of 'INTVAL' is an integer on
-the host machine. If the host machine has more bits in an 'int' than
-the target machine has in the mode in which the constant will be used,
-then some of the bits you get from 'INTVAL' will be superfluous. For
-proper results, you must carefully disregard the values of those bits.
-
- It is possible to output an assembler instruction and then go on to
-output or compute more of them, using the subroutine 'output_asm_insn'.
-This receives two arguments: a template-string and a vector of operands.
-The vector may be 'operands', or it may be another array of 'rtx' that
-you declare locally and initialize yourself.
-
- When an insn pattern has multiple alternatives in its constraints,
-often the appearance of the assembler code is determined mostly by which
-alternative was matched. When this is so, the C code can test the
-variable 'which_alternative', which is the ordinal number of the
-alternative that was actually satisfied (0 for the first, 1 for the
-second alternative, etc.).
-
- For example, suppose there are two opcodes for storing zero, 'clrreg'
-for registers and 'clrmem' for memory locations. Here is how a pattern
-could use 'which_alternative' to choose between them:
-
- (define_insn ""
- [(set (match_operand:SI 0 "general_operand" "=r,m")
- (const_int 0))]
- ""
- {
- return (which_alternative == 0
- ? "clrreg %0" : "clrmem %0");
- })
-
- The example above, where the assembler code to generate was _solely_
-determined by the alternative, could also have been specified as
-follows, having the output control string start with a '@':
-
- (define_insn ""
- [(set (match_operand:SI 0 "general_operand" "=r,m")
- (const_int 0))]
- ""
- "@
- clrreg %0
- clrmem %0")
-
- If you just need a little bit of C code in one (or a few) alternatives,
-you can use '*' inside of a '@' multi-alternative template:
-
- (define_insn ""
- [(set (match_operand:SI 0 "general_operand" "=r,<,m")
- (const_int 0))]
- ""
- "@
- clrreg %0
- * return stack_mem_p (operands[0]) ? \"push 0\" : \"clrmem %0\";
- clrmem %0")
-
-
-File: gccint.info, Node: Predicates, Next: Constraints, Prev: Output Statement, Up: Machine Desc
-
-16.7 Predicates
-===============
-
-A predicate determines whether a 'match_operand' or 'match_operator'
-expression matches, and therefore whether the surrounding instruction
-pattern will be used for that combination of operands. GCC has a number
-of machine-independent predicates, and you can define machine-specific
-predicates as needed. By convention, predicates used with
-'match_operand' have names that end in '_operand', and those used with
-'match_operator' have names that end in '_operator'.
-
- All predicates are Boolean functions (in the mathematical sense) of two
-arguments: the RTL expression that is being considered at that position
-in the instruction pattern, and the machine mode that the
-'match_operand' or 'match_operator' specifies. In this section, the
-first argument is called OP and the second argument MODE. Predicates
-can be called from C as ordinary two-argument functions; this can be
-useful in output templates or other machine-specific code.
-
- Operand predicates can allow operands that are not actually acceptable
-to the hardware, as long as the constraints give reload the ability to
-fix them up (*note Constraints::). However, GCC will usually generate
-better code if the predicates specify the requirements of the machine
-instructions as closely as possible. Reload cannot fix up operands that
-must be constants ("immediate operands"); you must use a predicate that
-allows only constants, or else enforce the requirement in the extra
-condition.
-
- Most predicates handle their MODE argument in a uniform manner. If
-MODE is 'VOIDmode' (unspecified), then OP can have any mode. If MODE is
-anything else, then OP must have the same mode, unless OP is a
-'CONST_INT' or integer 'CONST_DOUBLE'. These RTL expressions always
-have 'VOIDmode', so it would be counterproductive to check that their
-mode matches. Instead, predicates that accept 'CONST_INT' and/or
-integer 'CONST_DOUBLE' check that the value stored in the constant will
-fit in the requested mode.
-
- Predicates with this behavior are called "normal". 'genrecog' can
-optimize the instruction recognizer based on knowledge of how normal
-predicates treat modes. It can also diagnose certain kinds of common
-errors in the use of normal predicates; for instance, it is almost
-always an error to use a normal predicate without specifying a mode.
-
- Predicates that do something different with their MODE argument are
-called "special". The generic predicates 'address_operand' and
-'pmode_register_operand' are special predicates. 'genrecog' does not do
-any optimizations or diagnosis when special predicates are used.
-
-* Menu:
-
-* Machine-Independent Predicates:: Predicates available to all back ends.
-* Defining Predicates:: How to write machine-specific predicate
- functions.
-
-
-File: gccint.info, Node: Machine-Independent Predicates, Next: Defining Predicates, Up: Predicates
-
-16.7.1 Machine-Independent Predicates
--------------------------------------
-
-These are the generic predicates available to all back ends. They are
-defined in 'recog.c'. The first category of predicates allow only
-constant, or "immediate", operands.
-
- -- Function: immediate_operand
- This predicate allows any sort of constant that fits in MODE. It
- is an appropriate choice for instructions that take operands that
- must be constant.
-
- -- Function: const_int_operand
- This predicate allows any 'CONST_INT' expression that fits in MODE.
- It is an appropriate choice for an immediate operand that does not
- allow a symbol or label.
-
- -- Function: const_double_operand
- This predicate accepts any 'CONST_DOUBLE' expression that has
- exactly MODE. If MODE is 'VOIDmode', it will also accept
- 'CONST_INT'. It is intended for immediate floating point
- constants.
-
-The second category of predicates allow only some kind of machine
-register.
-
- -- Function: register_operand
- This predicate allows any 'REG' or 'SUBREG' expression that is
- valid for MODE. It is often suitable for arithmetic instruction
- operands on a RISC machine.
-
- -- Function: pmode_register_operand
- This is a slight variant on 'register_operand' which works around a
- limitation in the machine-description reader.
-
- (match_operand N "pmode_register_operand" CONSTRAINT)
-
- means exactly what
-
- (match_operand:P N "register_operand" CONSTRAINT)
-
- would mean, if the machine-description reader accepted ':P' mode
- suffixes. Unfortunately, it cannot, because 'Pmode' is an alias
- for some other mode, and might vary with machine-specific options.
- *Note Misc::.
-
- -- Function: scratch_operand
- This predicate allows hard registers and 'SCRATCH' expressions, but
- not pseudo-registers. It is used internally by 'match_scratch'; it
- should not be used directly.
-
-The third category of predicates allow only some kind of memory
-reference.
-
- -- Function: memory_operand
- This predicate allows any valid reference to a quantity of mode
- MODE in memory, as determined by the weak form of
- 'GO_IF_LEGITIMATE_ADDRESS' (*note Addressing Modes::).
-
- -- Function: address_operand
- This predicate is a little unusual; it allows any operand that is a
- valid expression for the _address_ of a quantity of mode MODE,
- again determined by the weak form of 'GO_IF_LEGITIMATE_ADDRESS'.
- To first order, if '(mem:MODE (EXP))' is acceptable to
- 'memory_operand', then EXP is acceptable to 'address_operand'.
- Note that EXP does not necessarily have the mode MODE.
-
- -- Function: indirect_operand
- This is a stricter form of 'memory_operand' which allows only
- memory references with a 'general_operand' as the address
- expression. New uses of this predicate are discouraged, because
- 'general_operand' is very permissive, so it's hard to tell what an
- 'indirect_operand' does or does not allow. If a target has
- different requirements for memory operands for different
- instructions, it is better to define target-specific predicates
- which enforce the hardware's requirements explicitly.
-
- -- Function: push_operand
- This predicate allows a memory reference suitable for pushing a
- value onto the stack. This will be a 'MEM' which refers to
- 'stack_pointer_rtx', with a side-effect in its address expression
- (*note Incdec::); which one is determined by the 'STACK_PUSH_CODE'
- macro (*note Frame Layout::).
-
- -- Function: pop_operand
- This predicate allows a memory reference suitable for popping a
- value off the stack. Again, this will be a 'MEM' referring to
- 'stack_pointer_rtx', with a side-effect in its address expression.
- However, this time 'STACK_POP_CODE' is expected.
-
-The fourth category of predicates allow some combination of the above
-operands.
-
- -- Function: nonmemory_operand
- This predicate allows any immediate or register operand valid for
- MODE.
-
- -- Function: nonimmediate_operand
- This predicate allows any register or memory operand valid for
- MODE.
-
- -- Function: general_operand
- This predicate allows any immediate, register, or memory operand
- valid for MODE.
-
-Finally, there are two generic operator predicates.
-
- -- Function: comparison_operator
- This predicate matches any expression which performs an arithmetic
- comparison in MODE; that is, 'COMPARISON_P' is true for the
- expression code.
-
- -- Function: ordered_comparison_operator
- This predicate matches any expression which performs an arithmetic
- comparison in MODE and whose expression code is valid for integer
- modes; that is, the expression code will be one of 'eq', 'ne',
- 'lt', 'ltu', 'le', 'leu', 'gt', 'gtu', 'ge', 'geu'.
-
-
-File: gccint.info, Node: Defining Predicates, Prev: Machine-Independent Predicates, Up: Predicates
-
-16.7.2 Defining Machine-Specific Predicates
--------------------------------------------
-
-Many machines have requirements for their operands that cannot be
-expressed precisely using the generic predicates. You can define
-additional predicates using 'define_predicate' and
-'define_special_predicate' expressions. These expressions have three
-operands:
-
- * The name of the predicate, as it will be referred to in
- 'match_operand' or 'match_operator' expressions.
-
- * An RTL expression which evaluates to true if the predicate allows
- the operand OP, false if it does not. This expression can only use
- the following RTL codes:
-
- 'MATCH_OPERAND'
- When written inside a predicate expression, a 'MATCH_OPERAND'
- expression evaluates to true if the predicate it names would
- allow OP. The operand number and constraint are ignored. Due
- to limitations in 'genrecog', you can only refer to generic
- predicates and predicates that have already been defined.
-
- 'MATCH_CODE'
- This expression evaluates to true if OP or a specified
- subexpression of OP has one of a given list of RTX codes.
-
- The first operand of this expression is a string constant
- containing a comma-separated list of RTX code names (in lower
- case). These are the codes for which the 'MATCH_CODE' will be
- true.
-
- The second operand is a string constant which indicates what
- subexpression of OP to examine. If it is absent or the empty
- string, OP itself is examined. Otherwise, the string constant
- must be a sequence of digits and/or lowercase letters. Each
- character indicates a subexpression to extract from the
- current expression; for the first character this is OP, for
- the second and subsequent characters it is the result of the
- previous character. A digit N extracts 'XEXP (E, N)'; a
- letter L extracts 'XVECEXP (E, 0, N)' where N is the
- alphabetic ordinal of L (0 for 'a', 1 for 'b', and so on).
- The 'MATCH_CODE' then examines the RTX code of the
- subexpression extracted by the complete string. It is not
- possible to extract components of an 'rtvec' that is not at
- position 0 within its RTX object.
-
- 'MATCH_TEST'
- This expression has one operand, a string constant containing
- a C expression. The predicate's arguments, OP and MODE, are
- available with those names in the C expression. The
- 'MATCH_TEST' evaluates to true if the C expression evaluates
- to a nonzero value. 'MATCH_TEST' expressions must not have
- side effects.
-
- 'AND'
- 'IOR'
- 'NOT'
- 'IF_THEN_ELSE'
- The basic 'MATCH_' expressions can be combined using these
- logical operators, which have the semantics of the C operators
- '&&', '||', '!', and '? :' respectively. As in Common Lisp,
- you may give an 'AND' or 'IOR' expression an arbitrary number
- of arguments; this has exactly the same effect as writing a
- chain of two-argument 'AND' or 'IOR' expressions.
-
- * An optional block of C code, which should execute 'return true' if
- the predicate is found to match and 'return false' if it does not.
- It must not have any side effects. The predicate arguments, OP and
- MODE, are available with those names.
-
- If a code block is present in a predicate definition, then the RTL
- expression must evaluate to true _and_ the code block must execute
- 'return true' for the predicate to allow the operand. The RTL
- expression is evaluated first; do not re-check anything in the code
- block that was checked in the RTL expression.
-
- The program 'genrecog' scans 'define_predicate' and
-'define_special_predicate' expressions to determine which RTX codes are
-possibly allowed. You should always make this explicit in the RTL
-predicate expression, using 'MATCH_OPERAND' and 'MATCH_CODE'.
-
- Here is an example of a simple predicate definition, from the IA64
-machine description:
-
- ;; True if OP is a 'SYMBOL_REF' which refers to the sdata section.
- (define_predicate "small_addr_symbolic_operand"
- (and (match_code "symbol_ref")
- (match_test "SYMBOL_REF_SMALL_ADDR_P (op)")))
-
-And here is another, showing the use of the C block.
-
- ;; True if OP is a register operand that is (or could be) a GR reg.
- (define_predicate "gr_register_operand"
- (match_operand 0 "register_operand")
- {
- unsigned int regno;
- if (GET_CODE (op) == SUBREG)
- op = SUBREG_REG (op);
-
- regno = REGNO (op);
- return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno));
- })
-
- Predicates written with 'define_predicate' automatically include a test
-that MODE is 'VOIDmode', or OP has the same mode as MODE, or OP is a
-'CONST_INT' or 'CONST_DOUBLE'. They do _not_ check specifically for
-integer 'CONST_DOUBLE', nor do they test that the value of either kind
-of constant fits in the requested mode. This is because target-specific
-predicates that take constants usually have to do more stringent value
-checks anyway. If you need the exact same treatment of 'CONST_INT' or
-'CONST_DOUBLE' that the generic predicates provide, use a
-'MATCH_OPERAND' subexpression to call 'const_int_operand',
-'const_double_operand', or 'immediate_operand'.
-
- Predicates written with 'define_special_predicate' do not get any
-automatic mode checks, and are treated as having special mode handling
-by 'genrecog'.
-
- The program 'genpreds' is responsible for generating code to test
-predicates. It also writes a header file containing function
-declarations for all machine-specific predicates. It is not necessary
-to declare these predicates in 'CPU-protos.h'.
-
-
-File: gccint.info, Node: Constraints, Next: Standard Names, Prev: Predicates, Up: Machine Desc
-
-16.8 Operand Constraints
-========================
-
-Each 'match_operand' in an instruction pattern can specify constraints
-for the operands allowed. The constraints allow you to fine-tune
-matching within the set of operands allowed by the predicate.
-
- Constraints can say whether an operand may be in a register, and which
-kinds of register; whether the operand can be a memory reference, and
-which kinds of address; whether the operand may be an immediate
-constant, and which possible values it may have. Constraints can also
-require two operands to match. Side-effects aren't allowed in operands
-of inline 'asm', unless '<' or '>' constraints are used, because there
-is no guarantee that the side-effects will happen exactly once in an
-instruction that can update the addressing register.
-
-* Menu:
-
-* Simple Constraints:: Basic use of constraints.
-* Multi-Alternative:: When an insn has two alternative constraint-patterns.
-* Class Preferences:: Constraints guide which hard register to put things in.
-* Modifiers:: More precise control over effects of constraints.
-* Machine Constraints:: Existing constraints for some particular machines.
-* Disable Insn Alternatives:: Disable insn alternatives using the 'enabled' attribute.
-* Define Constraints:: How to define machine-specific constraints.
-* C Constraint Interface:: How to test constraints from C code.
-
-
-File: gccint.info, Node: Simple Constraints, Next: Multi-Alternative, Up: Constraints
-
-16.8.1 Simple Constraints
--------------------------
-
-The simplest kind of constraint is a string full of letters, each of
-which describes one kind of operand that is permitted. Here are the
-letters that are allowed:
-
-whitespace
- Whitespace characters are ignored and can be inserted at any
- position except the first. This enables each alternative for
- different operands to be visually aligned in the machine
- description even if they have different number of constraints and
- modifiers.
-
-'m'
- A memory operand is allowed, with any kind of address that the
- machine supports in general. Note that the letter used for the
- general memory constraint can be re-defined by a back end using the
- 'TARGET_MEM_CONSTRAINT' macro.
-
-'o'
- A memory operand is allowed, but only if the address is
- "offsettable". This means that adding a small integer (actually,
- the width in bytes of the operand, as determined by its machine
- mode) may be added to the address and the result is also a valid
- memory address.
-
- For example, an address which is constant is offsettable; so is an
- address that is the sum of a register and a constant (as long as a
- slightly larger constant is also within the range of
- address-offsets supported by the machine); but an autoincrement or
- autodecrement address is not offsettable. More complicated
- indirect/indexed addresses may or may not be offsettable depending
- on the other addressing modes that the machine supports.
-
- Note that in an output operand which can be matched by another
- operand, the constraint letter 'o' is valid only when accompanied
- by both '<' (if the target machine has predecrement addressing) and
- '>' (if the target machine has preincrement addressing).
-
-'V'
- A memory operand that is not offsettable. In other words, anything
- that would fit the 'm' constraint but not the 'o' constraint.
-
-'<'
- A memory operand with autodecrement addressing (either predecrement
- or postdecrement) is allowed. In inline 'asm' this constraint is
- only allowed if the operand is used exactly once in an instruction
- that can handle the side-effects. Not using an operand with '<' in
- constraint string in the inline 'asm' pattern at all or using it in
- multiple instructions isn't valid, because the side-effects
- wouldn't be performed or would be performed more than once.
- Furthermore, on some targets the operand with '<' in constraint
- string must be accompanied by special instruction suffixes like
- '%U0' instruction suffix on PowerPC or '%P0' on IA-64.
-
-'>'
- A memory operand with autoincrement addressing (either preincrement
- or postincrement) is allowed. In inline 'asm' the same
- restrictions as for '<' apply.
-
-'r'
- A register operand is allowed provided that it is in a general
- register.
-
-'i'
- An immediate integer operand (one with constant value) is allowed.
- This includes symbolic constants whose values will be known only at
- assembly time or later.
-
-'n'
- An immediate integer operand with a known numeric value is allowed.
- Many systems cannot support assembly-time constants for operands
- less than a word wide. Constraints for these operands should use
- 'n' rather than 'i'.
-
-'I', 'J', 'K', ... 'P'
- Other letters in the range 'I' through 'P' may be defined in a
- machine-dependent fashion to permit immediate integer operands with
- explicit integer values in specified ranges. For example, on the
- 68000, 'I' is defined to stand for the range of values 1 to 8.
- This is the range permitted as a shift count in the shift
- instructions.
-
-'E'
- An immediate floating operand (expression code 'const_double') is
- allowed, but only if the target floating point format is the same
- as that of the host machine (on which the compiler is running).
-
-'F'
- An immediate floating operand (expression code 'const_double' or
- 'const_vector') is allowed.
-
-'G', 'H'
- 'G' and 'H' may be defined in a machine-dependent fashion to permit
- immediate floating operands in particular ranges of values.
-
-'s'
- An immediate integer operand whose value is not an explicit integer
- is allowed.
-
- This might appear strange; if an insn allows a constant operand
- with a value not known at compile time, it certainly must allow any
- known value. So why use 's' instead of 'i'? Sometimes it allows
- better code to be generated.
-
- For example, on the 68000 in a fullword instruction it is possible
- to use an immediate operand; but if the immediate value is between
- -128 and 127, better code results from loading the value into a
- register and using the register. This is because the load into the
- register can be done with a 'moveq' instruction. We arrange for
- this to happen by defining the letter 'K' to mean "any integer
- outside the range -128 to 127", and then specifying 'Ks' in the
- operand constraints.
-
-'g'
- Any register, memory or immediate integer operand is allowed,
- except for registers that are not general registers.
-
-'X'
- Any operand whatsoever is allowed, even if it does not satisfy
- 'general_operand'. This is normally used in the constraint of a
- 'match_scratch' when certain alternatives will not actually require
- a scratch register.
-
-'0', '1', '2', ... '9'
- An operand that matches the specified operand number is allowed.
- If a digit is used together with letters within the same
- alternative, the digit should come last.
-
- This number is allowed to be more than a single digit. If multiple
- digits are encountered consecutively, they are interpreted as a
- single decimal integer. There is scant chance for ambiguity, since
- to-date it has never been desirable that '10' be interpreted as
- matching either operand 1 _or_ operand 0. Should this be desired,
- one can use multiple alternatives instead.
-
- This is called a "matching constraint" and what it really means is
- that the assembler has only a single operand that fills two roles
- considered separate in the RTL insn. For example, an add insn has
- two input operands and one output operand in the RTL, but on most
- CISC machines an add instruction really has only two operands, one
- of them an input-output operand:
-
- addl #35,r12
-
- Matching constraints are used in these circumstances. More
- precisely, the two operands that match must include one input-only
- operand and one output-only operand. Moreover, the digit must be a
- smaller number than the number of the operand that uses it in the
- constraint.
-
- For operands to match in a particular case usually means that they
- are identical-looking RTL expressions. But in a few special cases
- specific kinds of dissimilarity are allowed. For example, '*x' as
- an input operand will match '*x++' as an output operand. For
- proper results in such cases, the output template should always use
- the output-operand's number when printing the operand.
-
-'p'
- An operand that is a valid memory address is allowed. This is for
- "load address" and "push address" instructions.
-
- 'p' in the constraint must be accompanied by 'address_operand' as
- the predicate in the 'match_operand'. This predicate interprets
- the mode specified in the 'match_operand' as the mode of the memory
- reference for which the address would be valid.
-
-OTHER-LETTERS
- Other letters can be defined in machine-dependent fashion to stand
- for particular classes of registers or other arbitrary operand
- types. 'd', 'a' and 'f' are defined on the 68000/68020 to stand
- for data, address and floating point registers.
-
- In order to have valid assembler code, each operand must satisfy its
-constraint. But a failure to do so does not prevent the pattern from
-applying to an insn. Instead, it directs the compiler to modify the
-code so that the constraint will be satisfied. Usually this is done by
-copying an operand into a register.
-
- Contrast, therefore, the two instruction patterns that follow:
-
- (define_insn ""
- [(set (match_operand:SI 0 "general_operand" "=r")
- (plus:SI (match_dup 0)
- (match_operand:SI 1 "general_operand" "r")))]
- ""
- "...")
-
-which has two operands, one of which must appear in two places, and
-
- (define_insn ""
- [(set (match_operand:SI 0 "general_operand" "=r")
- (plus:SI (match_operand:SI 1 "general_operand" "0")
- (match_operand:SI 2 "general_operand" "r")))]
- ""
- "...")
-
-which has three operands, two of which are required by a constraint to
-be identical. If we are considering an insn of the form
-
- (insn N PREV NEXT
- (set (reg:SI 3)
- (plus:SI (reg:SI 6) (reg:SI 109)))
- ...)
-
-the first pattern would not apply at all, because this insn does not
-contain two identical subexpressions in the right place. The pattern
-would say, "That does not look like an add instruction; try other
-patterns". The second pattern would say, "Yes, that's an add
-instruction, but there is something wrong with it". It would direct the
-reload pass of the compiler to generate additional insns to make the
-constraint true. The results might look like this:
-
- (insn N2 PREV N
- (set (reg:SI 3) (reg:SI 6))
- ...)
-
- (insn N N2 NEXT
- (set (reg:SI 3)
- (plus:SI (reg:SI 3) (reg:SI 109)))
- ...)
-
- It is up to you to make sure that each operand, in each pattern, has
-constraints that can handle any RTL expression that could be present for
-that operand. (When multiple alternatives are in use, each pattern
-must, for each possible combination of operand expressions, have at
-least one alternative which can handle that combination of operands.)
-The constraints don't need to _allow_ any possible operand--when this is
-the case, they do not constrain--but they must at least point the way to
-reloading any possible operand so that it will fit.
-
- * If the constraint accepts whatever operands the predicate permits,
- there is no problem: reloading is never necessary for this operand.
-
- For example, an operand whose constraints permit everything except
- registers is safe provided its predicate rejects registers.
-
- An operand whose predicate accepts only constant values is safe
- provided its constraints include the letter 'i'. If any possible
- constant value is accepted, then nothing less than 'i' will do; if
- the predicate is more selective, then the constraints may also be
- more selective.
-
- * Any operand expression can be reloaded by copying it into a
- register. So if an operand's constraints allow some kind of
- register, it is certain to be safe. It need not permit all classes
- of registers; the compiler knows how to copy a register into
- another register of the proper class in order to make an
- instruction valid.
-
- * A nonoffsettable memory reference can be reloaded by copying the
- address into a register. So if the constraint uses the letter 'o',
- all memory references are taken care of.
-
- * A constant operand can be reloaded by allocating space in memory to
- hold it as preinitialized data. Then the memory reference can be
- used in place of the constant. So if the constraint uses the
- letters 'o' or 'm', constant operands are not a problem.
-
- * If the constraint permits a constant and a pseudo register used in
- an insn was not allocated to a hard register and is equivalent to a
- constant, the register will be replaced with the constant. If the
- predicate does not permit a constant and the insn is re-recognized
- for some reason, the compiler will crash. Thus the predicate must
- always recognize any objects allowed by the constraint.
-
- If the operand's predicate can recognize registers, but the constraint
-does not permit them, it can make the compiler crash. When this operand
-happens to be a register, the reload pass will be stymied, because it
-does not know how to copy a register temporarily into memory.
-
- If the predicate accepts a unary operator, the constraint applies to
-the operand. For example, the MIPS processor at ISA level 3 supports an
-instruction which adds two registers in 'SImode' to produce a 'DImode'
-result, but only if the registers are correctly sign extended. This
-predicate for the input operands accepts a 'sign_extend' of an 'SImode'
-register. Write the constraint to indicate the type of register that is
-required for the operand of the 'sign_extend'.
-
-
-File: gccint.info, Node: Multi-Alternative, Next: Class Preferences, Prev: Simple Constraints, Up: Constraints
-
-16.8.2 Multiple Alternative Constraints
----------------------------------------
-
-Sometimes a single instruction has multiple alternative sets of possible
-operands. For example, on the 68000, a logical-or instruction can
-combine register or an immediate value into memory, or it can combine
-any kind of operand into a register; but it cannot combine one memory
-location into another.
-
- These constraints are represented as multiple alternatives. An
-alternative can be described by a series of letters for each operand.
-The overall constraint for an operand is made from the letters for this
-operand from the first alternative, a comma, the letters for this
-operand from the second alternative, a comma, and so on until the last
-alternative. Here is how it is done for fullword logical-or on the
-68000:
-
- (define_insn "iorsi3"
- [(set (match_operand:SI 0 "general_operand" "=m,d")
- (ior:SI (match_operand:SI 1 "general_operand" "%0,0")
- (match_operand:SI 2 "general_operand" "dKs,dmKs")))]
- ...)
-
- The first alternative has 'm' (memory) for operand 0, '0' for operand 1
-(meaning it must match operand 0), and 'dKs' for operand 2. The second
-alternative has 'd' (data register) for operand 0, '0' for operand 1,
-and 'dmKs' for operand 2. The '=' and '%' in the constraints apply to
-all the alternatives; their meaning is explained in the next section
-(*note Class Preferences::).
-
- If all the operands fit any one alternative, the instruction is valid.
-Otherwise, for each alternative, the compiler counts how many
-instructions must be added to copy the operands so that that alternative
-applies. The alternative requiring the least copying is chosen. If two
-alternatives need the same amount of copying, the one that comes first
-is chosen. These choices can be altered with the '?' and '!'
-characters:
-
-'?'
- Disparage slightly the alternative that the '?' appears in, as a
- choice when no alternative applies exactly. The compiler regards
- this alternative as one unit more costly for each '?' that appears
- in it.
-
-'!'
- Disparage severely the alternative that the '!' appears in. This
- alternative can still be used if it fits without reloading, but if
- reloading is needed, some other alternative will be used.
-
- When an insn pattern has multiple alternatives in its constraints,
-often the appearance of the assembler code is determined mostly by which
-alternative was matched. When this is so, the C code for writing the
-assembler code can use the variable 'which_alternative', which is the
-ordinal number of the alternative that was actually satisfied (0 for the
-first, 1 for the second alternative, etc.). *Note Output Statement::.
-
-
-File: gccint.info, Node: Class Preferences, Next: Modifiers, Prev: Multi-Alternative, Up: Constraints
-
-16.8.3 Register Class Preferences
----------------------------------
-
-The operand constraints have another function: they enable the compiler
-to decide which kind of hardware register a pseudo register is best
-allocated to. The compiler examines the constraints that apply to the
-insns that use the pseudo register, looking for the machine-dependent
-letters such as 'd' and 'a' that specify classes of registers. The
-pseudo register is put in whichever class gets the most "votes". The
-constraint letters 'g' and 'r' also vote: they vote in favor of a
-general register. The machine description says which registers are
-considered general.
-
- Of course, on some machines all registers are equivalent, and no
-register classes are defined. Then none of this complexity is relevant.
-
-
-File: gccint.info, Node: Modifiers, Next: Machine Constraints, Prev: Class Preferences, Up: Constraints
-
-16.8.4 Constraint Modifier Characters
--------------------------------------
-
-Here are constraint modifier characters.
-
-'='
- Means that this operand is write-only for this instruction: the
- previous value is discarded and replaced by output data.
-
-'+'
- Means that this operand is both read and written by the
- instruction.
-
- When the compiler fixes up the operands to satisfy the constraints,
- it needs to know which operands are inputs to the instruction and
- which are outputs from it. '=' identifies an output; '+'
- identifies an operand that is both input and output; all other
- operands are assumed to be input only.
-
- If you specify '=' or '+' in a constraint, you put it in the first
- character of the constraint string.
-
-'&'
- Means (in a particular alternative) that this operand is an
- "earlyclobber" operand, which is modified before the instruction is
- finished using the input operands. Therefore, this operand may not
- lie in a register that is used as an input operand or as part of
- any memory address.
-
- '&' applies only to the alternative in which it is written. In
- constraints with multiple alternatives, sometimes one alternative
- requires '&' while others do not. See, for example, the 'movdf'
- insn of the 68000.
-
- An input operand can be tied to an earlyclobber operand if its only
- use as an input occurs before the early result is written. Adding
- alternatives of this form often allows GCC to produce better code
- when only some of the inputs can be affected by the earlyclobber.
- See, for example, the 'mulsi3' insn of the ARM.
-
- '&' does not obviate the need to write '='.
-
-'%'
- Declares the instruction to be commutative for this operand and the
- following operand. This means that the compiler may interchange
- the two operands if that is the cheapest way to make all operands
- fit the constraints. This is often used in patterns for addition
- instructions that really have only two operands: the result must go
- in one of the arguments. Here for example, is how the 68000
- halfword-add instruction is defined:
-
- (define_insn "addhi3"
- [(set (match_operand:HI 0 "general_operand" "=m,r")
- (plus:HI (match_operand:HI 1 "general_operand" "%0,0")
- (match_operand:HI 2 "general_operand" "di,g")))]
- ...)
- GCC can only handle one commutative pair in an asm; if you use
- more, the compiler may fail. Note that you need not use the
- modifier if the two alternatives are strictly identical; this would
- only waste time in the reload pass. The modifier is not
- operational after register allocation, so the result of
- 'define_peephole2' and 'define_split's performed after reload
- cannot rely on '%' to make the intended insn match.
-
-'#'
- Says that all following characters, up to the next comma, are to be
- ignored as a constraint. They are significant only for choosing
- register preferences.
-
-'*'
- Says that the following character should be ignored when choosing
- register preferences. '*' has no effect on the meaning of the
- constraint as a constraint, and no effect on reloading. For LRA
- '*' additionally disparages slightly the alternative if the
- following character matches the operand.
-
- Here is an example: the 68000 has an instruction to sign-extend a
- halfword in a data register, and can also sign-extend a value by
- copying it into an address register. While either kind of register
- is acceptable, the constraints on an address-register destination
- are less strict, so it is best if register allocation makes an
- address register its goal. Therefore, '*' is used so that the 'd'
- constraint letter (for data register) is ignored when computing
- register preferences.
-
- (define_insn "extendhisi2"
- [(set (match_operand:SI 0 "general_operand" "=*d,a")
- (sign_extend:SI
- (match_operand:HI 1 "general_operand" "0,g")))]
- ...)
-
-
-File: gccint.info, Node: Machine Constraints, Next: Disable Insn Alternatives, Prev: Modifiers, Up: Constraints
-
-16.8.5 Constraints for Particular Machines
-------------------------------------------
-
-Whenever possible, you should use the general-purpose constraint letters
-in 'asm' arguments, since they will convey meaning more readily to
-people reading your code. Failing that, use the constraint letters that
-usually have very similar meanings across architectures. The most
-commonly used constraints are 'm' and 'r' (for memory and
-general-purpose registers respectively; *note Simple Constraints::), and
-'I', usually the letter indicating the most common immediate-constant
-format.
-
- Each architecture defines additional constraints. These constraints
-are used by the compiler itself for instruction generation, as well as
-for 'asm' statements; therefore, some of the constraints are not
-particularly useful for 'asm'. Here is a summary of some of the
-machine-dependent constraints available on some particular machines; it
-includes both constraints that are useful for 'asm' and constraints that
-aren't. The compiler source file mentioned in the table heading for
-each architecture is the definitive reference for the meanings of that
-architecture's constraints.
-
-_AArch64 family--'config/aarch64/constraints.md'_
- 'k'
- The stack pointer register ('SP')
-
- 'w'
- Floating point or SIMD vector register
-
- 'I'
- Integer constant that is valid as an immediate operand in an
- 'ADD' instruction
-
- 'J'
- Integer constant that is valid as an immediate operand in a
- 'SUB' instruction (once negated)
-
- 'K'
- Integer constant that can be used with a 32-bit logical
- instruction
-
- 'L'
- Integer constant that can be used with a 64-bit logical
- instruction
-
- 'M'
- Integer constant that is valid as an immediate operand in a
- 32-bit 'MOV' pseudo instruction. The 'MOV' may be assembled
- to one of several different machine instructions depending on
- the value
-
- 'N'
- Integer constant that is valid as an immediate operand in a
- 64-bit 'MOV' pseudo instruction
-
- 'S'
- An absolute symbolic address or a label reference
-
- 'Y'
- Floating point constant zero
-
- 'Z'
- Integer constant zero
-
- 'Ush'
- The high part (bits 12 and upwards) of the pc-relative address
- of a symbol within 4GB of the instruction
-
- 'Q'
- A memory address which uses a single base register with no
- offset
-
- 'Ump'
- A memory address suitable for a load/store pair instruction in
- SI, DI, SF and DF modes
-
-_ARC --'config/arc/constraints.md'_
- 'q'
- Registers usable in ARCompact 16-bit instructions: 'r0'-'r3',
- 'r12'-'r15'. This constraint can only match when the '-mq'
- option is in effect.
-
- 'e'
- Registers usable as base-regs of memory addresses in ARCompact
- 16-bit memory instructions: 'r0'-'r3', 'r12'-'r15', 'sp'.
- This constraint can only match when the '-mq' option is in
- effect.
- 'D'
- ARC FPX (dpfp) 64-bit registers. 'D0', 'D1'.
-
- 'I'
- A signed 12-bit integer constant.
-
- 'Cal'
- constant for arithmetic/logical operations. This might be any
- constant that can be put into a long immediate by the assmbler
- or linker without involving a PIC relocation.
-
- 'K'
- A 3-bit unsigned integer constant.
-
- 'L'
- A 6-bit unsigned integer constant.
-
- 'CnL'
- One's complement of a 6-bit unsigned integer constant.
-
- 'CmL'
- Two's complement of a 6-bit unsigned integer constant.
-
- 'M'
- A 5-bit unsigned integer constant.
-
- 'O'
- A 7-bit unsigned integer constant.
-
- 'P'
- A 8-bit unsigned integer constant.
-
- 'H'
- Any const_double value.
-
-_ARM family--'config/arm/constraints.md'_
- 'w'
- VFP floating-point register
-
- 'G'
- The floating-point constant 0.0
-
- 'I'
- Integer that is valid as an immediate operand in a data
- processing instruction. That is, an integer in the range 0 to
- 255 rotated by a multiple of 2
-
- 'J'
- Integer in the range -4095 to 4095
-
- 'K'
- Integer that satisfies constraint 'I' when inverted (ones
- complement)
-
- 'L'
- Integer that satisfies constraint 'I' when negated (twos
- complement)
-
- 'M'
- Integer in the range 0 to 32
-
- 'Q'
- A memory reference where the exact address is in a single
- register (''m'' is preferable for 'asm' statements)
-
- 'R'
- An item in the constant pool
-
- 'S'
- A symbol in the text segment of the current file
-
- 'Uv'
- A memory reference suitable for VFP load/store insns
- (reg+constant offset)
-
- 'Uy'
- A memory reference suitable for iWMMXt load/store
- instructions.
-
- 'Uq'
- A memory reference suitable for the ARMv4 ldrsb instruction.
-
-_AVR family--'config/avr/constraints.md'_
- 'l'
- Registers from r0 to r15
-
- 'a'
- Registers from r16 to r23
-
- 'd'
- Registers from r16 to r31
-
- 'w'
- Registers from r24 to r31. These registers can be used in
- 'adiw' command
-
- 'e'
- Pointer register (r26-r31)
-
- 'b'
- Base pointer register (r28-r31)
-
- 'q'
- Stack pointer register (SPH:SPL)
-
- 't'
- Temporary register r0
-
- 'x'
- Register pair X (r27:r26)
-
- 'y'
- Register pair Y (r29:r28)
-
- 'z'
- Register pair Z (r31:r30)
-
- 'I'
- Constant greater than -1, less than 64
-
- 'J'
- Constant greater than -64, less than 1
-
- 'K'
- Constant integer 2
-
- 'L'
- Constant integer 0
-
- 'M'
- Constant that fits in 8 bits
-
- 'N'
- Constant integer -1
-
- 'O'
- Constant integer 8, 16, or 24
-
- 'P'
- Constant integer 1
-
- 'G'
- A floating point constant 0.0
-
- 'Q'
- A memory address based on Y or Z pointer with displacement.
-
-_Epiphany--'config/epiphany/constraints.md'_
- 'U16'
- An unsigned 16-bit constant.
-
- 'K'
- An unsigned 5-bit constant.
-
- 'L'
- A signed 11-bit constant.
-
- 'Cm1'
- A signed 11-bit constant added to -1. Can only match when the
- '-m1reg-REG' option is active.
-
- 'Cl1'
- Left-shift of -1, i.e., a bit mask with a block of leading
- ones, the rest being a block of trailing zeroes. Can only
- match when the '-m1reg-REG' option is active.
-
- 'Cr1'
- Right-shift of -1, i.e., a bit mask with a trailing block of
- ones, the rest being zeroes. Or to put it another way, one
- less than a power of two. Can only match when the
- '-m1reg-REG' option is active.
-
- 'Cal'
- Constant for arithmetic/logical operations. This is like 'i',
- except that for position independent code, no symbols /
- expressions needing relocations are allowed.
-
- 'Csy'
- Symbolic constant for call/jump instruction.
-
- 'Rcs'
- The register class usable in short insns. This is a register
- class constraint, and can thus drive register allocation.
- This constraint won't match unless '-mprefer-short-insn-regs'
- is in effect.
-
- 'Rsc'
- The the register class of registers that can be used to hold a
- sibcall call address. I.e., a caller-saved register.
-
- 'Rct'
- Core control register class.
-
- 'Rgs'
- The register group usable in short insns. This constraint
- does not use a register class, so that it only passively
- matches suitable registers, and doesn't drive register
- allocation.
-
- 'Car'
- Constant suitable for the addsi3_r pattern. This is a valid
- offset For byte, halfword, or word addressing.
-
- 'Rra'
- Matches the return address if it can be replaced with the link
- register.
-
- 'Rcc'
- Matches the integer condition code register.
-
- 'Sra'
- Matches the return address if it is in a stack slot.
-
- 'Cfm'
- Matches control register values to switch fp mode, which are
- encapsulated in 'UNSPEC_FP_MODE'.
-
-_CR16 Architecture--'config/cr16/cr16.h'_
-
- 'b'
- Registers from r0 to r14 (registers without stack pointer)
-
- 't'
- Register from r0 to r11 (all 16-bit registers)
-
- 'p'
- Register from r12 to r15 (all 32-bit registers)
-
- 'I'
- Signed constant that fits in 4 bits
-
- 'J'
- Signed constant that fits in 5 bits
-
- 'K'
- Signed constant that fits in 6 bits
-
- 'L'
- Unsigned constant that fits in 4 bits
-
- 'M'
- Signed constant that fits in 32 bits
-
- 'N'
- Check for 64 bits wide constants for add/sub instructions
-
- 'G'
- Floating point constant that is legal for store immediate
-
-_Hewlett-Packard PA-RISC--'config/pa/pa.h'_
- 'a'
- General register 1
-
- 'f'
- Floating point register
-
- 'q'
- Shift amount register
-
- 'x'
- Floating point register (deprecated)
-
- 'y'
- Upper floating point register (32-bit), floating point
- register (64-bit)
-
- 'Z'
- Any register
-
- 'I'
- Signed 11-bit integer constant
-
- 'J'
- Signed 14-bit integer constant
-
- 'K'
- Integer constant that can be deposited with a 'zdepi'
- instruction
-
- 'L'
- Signed 5-bit integer constant
-
- 'M'
- Integer constant 0
-
- 'N'
- Integer constant that can be loaded with a 'ldil' instruction
-
- 'O'
- Integer constant whose value plus one is a power of 2
-
- 'P'
- Integer constant that can be used for 'and' operations in
- 'depi' and 'extru' instructions
-
- 'S'
- Integer constant 31
-
- 'U'
- Integer constant 63
-
- 'G'
- Floating-point constant 0.0
-
- 'A'
- A 'lo_sum' data-linkage-table memory operand
-
- 'Q'
- A memory operand that can be used as the destination operand
- of an integer store instruction
-
- 'R'
- A scaled or unscaled indexed memory operand
-
- 'T'
- A memory operand for floating-point loads and stores
-
- 'W'
- A register indirect memory operand
-
-_picoChip family--'picochip.h'_
- 'k'
- Stack register.
-
- 'f'
- Pointer register. A register which can be used to access
- memory without supplying an offset. Any other register can be
- used to access memory, but will need a constant offset. In
- the case of the offset being zero, it is more efficient to use
- a pointer register, since this reduces code size.
-
- 't'
- A twin register. A register which may be paired with an
- adjacent register to create a 32-bit register.
-
- 'a'
- Any absolute memory address (e.g., symbolic constant, symbolic
- constant + offset).
-
- 'I'
- 4-bit signed integer.
-
- 'J'
- 4-bit unsigned integer.
-
- 'K'
- 8-bit signed integer.
-
- 'M'
- Any constant whose absolute value is no greater than 4-bits.
-
- 'N'
- 10-bit signed integer
-
- 'O'
- 16-bit signed integer.
-
-_PowerPC and IBM RS6000--'config/rs6000/constraints.md'_
- 'b'
- Address base register
-
- 'd'
- Floating point register (containing 64-bit value)
-
- 'f'
- Floating point register (containing 32-bit value)
-
- 'v'
- Altivec vector register
-
- 'wa'
- Any VSX register if the -mvsx option was used or NO_REGS.
-
- 'wd'
- VSX vector register to hold vector double data or NO_REGS.
-
- 'wf'
- VSX vector register to hold vector float data or NO_REGS.
-
- 'wg'
- If '-mmfpgpr' was used, a floating point register or NO_REGS.
-
- 'wl'
- Floating point register if the LFIWAX instruction is enabled
- or NO_REGS.
-
- 'wm'
- VSX register if direct move instructions are enabled, or
- NO_REGS.
-
- 'wn'
- No register (NO_REGS).
-
- 'wr'
- General purpose register if 64-bit instructions are enabled or
- NO_REGS.
-
- 'ws'
- VSX vector register to hold scalar double values or NO_REGS.
-
- 'wt'
- VSX vector register to hold 128 bit integer or NO_REGS.
-
- 'wu'
- Altivec register to use for float/32-bit int loads/stores or
- NO_REGS.
-
- 'wv'
- Altivec register to use for double loads/stores or NO_REGS.
-
- 'ww'
- FP or VSX register to perform float operations under '-mvsx'
- or NO_REGS.
-
- 'wx'
- Floating point register if the STFIWX instruction is enabled
- or NO_REGS.
-
- 'wy'
- VSX vector register to hold scalar float values or NO_REGS.
-
- 'wz'
- Floating point register if the LFIWZX instruction is enabled
- or NO_REGS.
-
- 'wD'
- Int constant that is the element number of the 64-bit scalar
- in a vector.
-
- 'wQ'
- A memory address that will work with the 'lq' and 'stq'
- instructions.
-
- 'h'
- 'MQ', 'CTR', or 'LINK' register
-
- 'q'
- 'MQ' register
-
- 'c'
- 'CTR' register
-
- 'l'
- 'LINK' register
-
- 'x'
- 'CR' register (condition register) number 0
-
- 'y'
- 'CR' register (condition register)
-
- 'z'
- 'XER[CA]' carry bit (part of the XER register)
-
- 'I'
- Signed 16-bit constant
-
- 'J'
- Unsigned 16-bit constant shifted left 16 bits (use 'L' instead
- for 'SImode' constants)
-
- 'K'
- Unsigned 16-bit constant
-
- 'L'
- Signed 16-bit constant shifted left 16 bits
-
- 'M'
- Constant larger than 31
-
- 'N'
- Exact power of 2
-
- 'O'
- Zero
-
- 'P'
- Constant whose negation is a signed 16-bit constant
-
- 'G'
- Floating point constant that can be loaded into a register
- with one instruction per word
-
- 'H'
- Integer/Floating point constant that can be loaded into a
- register using three instructions
-
- 'm'
- Memory operand. Normally, 'm' does not allow addresses that
- update the base register. If '<' or '>' constraint is also
- used, they are allowed and therefore on PowerPC targets in
- that case it is only safe to use 'm<>' in an 'asm' statement
- if that 'asm' statement accesses the operand exactly once.
- The 'asm' statement must also use '%U<OPNO>' as a placeholder
- for the "update" flag in the corresponding load or store
- instruction. For example:
-
- asm ("st%U0 %1,%0" : "=m<>" (mem) : "r" (val));
-
- is correct but:
-
- asm ("st %1,%0" : "=m<>" (mem) : "r" (val));
-
- is not.
-
- 'es'
- A "stable" memory operand; that is, one which does not include
- any automodification of the base register. This used to be
- useful when 'm' allowed automodification of the base register,
- but as those are now only allowed when '<' or '>' is used,
- 'es' is basically the same as 'm' without '<' and '>'.
-
- 'Q'
- Memory operand that is an offset from a register (it is
- usually better to use 'm' or 'es' in 'asm' statements)
-
- 'Z'
- Memory operand that is an indexed or indirect from a register
- (it is usually better to use 'm' or 'es' in 'asm' statements)
-
- 'R'
- AIX TOC entry
-
- 'a'
- Address operand that is an indexed or indirect from a register
- ('p' is preferable for 'asm' statements)
-
- 'S'
- Constant suitable as a 64-bit mask operand
-
- 'T'
- Constant suitable as a 32-bit mask operand
-
- 'U'
- System V Release 4 small data area reference
-
- 't'
- AND masks that can be performed by two rldic{l, r}
- instructions
-
- 'W'
- Vector constant that does not require memory
-
- 'j'
- Vector constant that is all zeros.
-
-_Intel 386--'config/i386/constraints.md'_
- 'R'
- Legacy register--the eight integer registers available on all
- i386 processors ('a', 'b', 'c', 'd', 'si', 'di', 'bp', 'sp').
-
- 'q'
- Any register accessible as 'Rl'. In 32-bit mode, 'a', 'b',
- 'c', and 'd'; in 64-bit mode, any integer register.
-
- 'Q'
- Any register accessible as 'Rh': 'a', 'b', 'c', and 'd'.
-
- 'l'
- Any register that can be used as the index in a base+index
- memory access: that is, any general register except the stack
- pointer.
-
- 'a'
- The 'a' register.
-
- 'b'
- The 'b' register.
-
- 'c'
- The 'c' register.
-
- 'd'
- The 'd' register.
-
- 'S'
- The 'si' register.
-
- 'D'
- The 'di' register.
-
- 'A'
- The 'a' and 'd' registers. This class is used for
- instructions that return double word results in the 'ax:dx'
- register pair. Single word values will be allocated either in
- 'ax' or 'dx'. For example on i386 the following implements
- 'rdtsc':
-
- unsigned long long rdtsc (void)
- {
- unsigned long long tick;
- __asm__ __volatile__("rdtsc":"=A"(tick));
- return tick;
- }
-
- This is not correct on x86_64 as it would allocate tick in
- either 'ax' or 'dx'. You have to use the following variant
- instead:
-
- unsigned long long rdtsc (void)
- {
- unsigned int tickl, tickh;
- __asm__ __volatile__("rdtsc":"=a"(tickl),"=d"(tickh));
- return ((unsigned long long)tickh << 32)|tickl;
- }
-
- 'f'
- Any 80387 floating-point (stack) register.
-
- 't'
- Top of 80387 floating-point stack ('%st(0)').
-
- 'u'
- Second from top of 80387 floating-point stack ('%st(1)').
-
- 'y'
- Any MMX register.
-
- 'x'
- Any SSE register.
-
- 'Yz'
- First SSE register ('%xmm0').
-
- 'Y2'
- Any SSE register, when SSE2 is enabled.
-
- 'Yi'
- Any SSE register, when SSE2 and inter-unit moves are enabled.
-
- 'Ym'
- Any MMX register, when inter-unit moves are enabled.
-
- 'I'
- Integer constant in the range 0 ... 31, for 32-bit shifts.
-
- 'J'
- Integer constant in the range 0 ... 63, for 64-bit shifts.
-
- 'K'
- Signed 8-bit integer constant.
-
- 'L'
- '0xFF' or '0xFFFF', for andsi as a zero-extending move.
-
- 'M'
- 0, 1, 2, or 3 (shifts for the 'lea' instruction).
-
- 'N'
- Unsigned 8-bit integer constant (for 'in' and 'out'
- instructions).
-
- 'O'
- Integer constant in the range 0 ... 127, for 128-bit shifts.
-
- 'G'
- Standard 80387 floating point constant.
-
- 'C'
- Standard SSE floating point constant.
-
- 'e'
- 32-bit signed integer constant, or a symbolic reference known
- to fit that range (for immediate operands in sign-extending
- x86-64 instructions).
-
- 'Z'
- 32-bit unsigned integer constant, or a symbolic reference
- known to fit that range (for immediate operands in
- zero-extending x86-64 instructions).
-
-_Intel IA-64--'config/ia64/ia64.h'_
- 'a'
- General register 'r0' to 'r3' for 'addl' instruction
-
- 'b'
- Branch register
-
- 'c'
- Predicate register ('c' as in "conditional")
-
- 'd'
- Application register residing in M-unit
-
- 'e'
- Application register residing in I-unit
-
- 'f'
- Floating-point register
-
- 'm'
- Memory operand. If used together with '<' or '>', the operand
- can have postincrement and postdecrement which require
- printing with '%Pn' on IA-64.
-
- 'G'
- Floating-point constant 0.0 or 1.0
-
- 'I'
- 14-bit signed integer constant
-
- 'J'
- 22-bit signed integer constant
-
- 'K'
- 8-bit signed integer constant for logical instructions
-
- 'L'
- 8-bit adjusted signed integer constant for compare pseudo-ops
-
- 'M'
- 6-bit unsigned integer constant for shift counts
-
- 'N'
- 9-bit signed integer constant for load and store
- postincrements
-
- 'O'
- The constant zero
-
- 'P'
- 0 or -1 for 'dep' instruction
-
- 'Q'
- Non-volatile memory for floating-point loads and stores
-
- 'R'
- Integer constant in the range 1 to 4 for 'shladd' instruction
-
- 'S'
- Memory operand except postincrement and postdecrement. This
- is now roughly the same as 'm' when not used together with '<'
- or '>'.
-
-_FRV--'config/frv/frv.h'_
- 'a'
- Register in the class 'ACC_REGS' ('acc0' to 'acc7').
-
- 'b'
- Register in the class 'EVEN_ACC_REGS' ('acc0' to 'acc7').
-
- 'c'
- Register in the class 'CC_REGS' ('fcc0' to 'fcc3' and 'icc0'
- to 'icc3').
-
- 'd'
- Register in the class 'GPR_REGS' ('gr0' to 'gr63').
-
- 'e'
- Register in the class 'EVEN_REGS' ('gr0' to 'gr63'). Odd
- registers are excluded not in the class but through the use of
- a machine mode larger than 4 bytes.
-
- 'f'
- Register in the class 'FPR_REGS' ('fr0' to 'fr63').
-
- 'h'
- Register in the class 'FEVEN_REGS' ('fr0' to 'fr63'). Odd
- registers are excluded not in the class but through the use of
- a machine mode larger than 4 bytes.
-
- 'l'
- Register in the class 'LR_REG' (the 'lr' register).
-
- 'q'
- Register in the class 'QUAD_REGS' ('gr2' to 'gr63'). Register
- numbers not divisible by 4 are excluded not in the class but
- through the use of a machine mode larger than 8 bytes.
-
- 't'
- Register in the class 'ICC_REGS' ('icc0' to 'icc3').
-
- 'u'
- Register in the class 'FCC_REGS' ('fcc0' to 'fcc3').
-
- 'v'
- Register in the class 'ICR_REGS' ('cc4' to 'cc7').
-
- 'w'
- Register in the class 'FCR_REGS' ('cc0' to 'cc3').
-
- 'x'
- Register in the class 'QUAD_FPR_REGS' ('fr0' to 'fr63').
- Register numbers not divisible by 4 are excluded not in the
- class but through the use of a machine mode larger than 8
- bytes.
-
- 'z'
- Register in the class 'SPR_REGS' ('lcr' and 'lr').
-
- 'A'
- Register in the class 'QUAD_ACC_REGS' ('acc0' to 'acc7').
-
- 'B'
- Register in the class 'ACCG_REGS' ('accg0' to 'accg7').
-
- 'C'
- Register in the class 'CR_REGS' ('cc0' to 'cc7').
-
- 'G'
- Floating point constant zero
-
- 'I'
- 6-bit signed integer constant
-
- 'J'
- 10-bit signed integer constant
-
- 'L'
- 16-bit signed integer constant
-
- 'M'
- 16-bit unsigned integer constant
-
- 'N'
- 12-bit signed integer constant that is negative--i.e. in the
- range of -2048 to -1
-
- 'O'
- Constant zero
-
- 'P'
- 12-bit signed integer constant that is greater than zero--i.e.
- in the range of 1 to 2047.
-
-_Blackfin family--'config/bfin/constraints.md'_
- 'a'
- P register
-
- 'd'
- D register
-
- 'z'
- A call clobbered P register.
-
- 'qN'
- A single register. If N is in the range 0 to 7, the
- corresponding D register. If it is 'A', then the register P0.
-
- 'D'
- Even-numbered D register
-
- 'W'
- Odd-numbered D register
-
- 'e'
- Accumulator register.
-
- 'A'
- Even-numbered accumulator register.
-
- 'B'
- Odd-numbered accumulator register.
-
- 'b'
- I register
-
- 'v'
- B register
-
- 'f'
- M register
-
- 'c'
- Registers used for circular buffering, i.e. I, B, or L
- registers.
-
- 'C'
- The CC register.
-
- 't'
- LT0 or LT1.
-
- 'k'
- LC0 or LC1.
-
- 'u'
- LB0 or LB1.
-
- 'x'
- Any D, P, B, M, I or L register.
-
- 'y'
- Additional registers typically used only in prologues and
- epilogues: RETS, RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and
- USP.
-
- 'w'
- Any register except accumulators or CC.
-
- 'Ksh'
- Signed 16 bit integer (in the range -32768 to 32767)
-
- 'Kuh'
- Unsigned 16 bit integer (in the range 0 to 65535)
-
- 'Ks7'
- Signed 7 bit integer (in the range -64 to 63)
-
- 'Ku7'
- Unsigned 7 bit integer (in the range 0 to 127)
-
- 'Ku5'
- Unsigned 5 bit integer (in the range 0 to 31)
-
- 'Ks4'
- Signed 4 bit integer (in the range -8 to 7)
-
- 'Ks3'
- Signed 3 bit integer (in the range -3 to 4)
-
- 'Ku3'
- Unsigned 3 bit integer (in the range 0 to 7)
-
- 'PN'
- Constant N, where N is a single-digit constant in the range 0
- to 4.
-
- 'PA'
- An integer equal to one of the MACFLAG_XXX constants that is
- suitable for use with either accumulator.
-
- 'PB'
- An integer equal to one of the MACFLAG_XXX constants that is
- suitable for use only with accumulator A1.
-
- 'M1'
- Constant 255.
-
- 'M2'
- Constant 65535.
-
- 'J'
- An integer constant with exactly a single bit set.
-
- 'L'
- An integer constant with all bits set except exactly one.
-
- 'H'
-
- 'Q'
- Any SYMBOL_REF.
-
-_M32C--'config/m32c/m32c.c'_
- 'Rsp'
- 'Rfb'
- 'Rsb'
- '$sp', '$fb', '$sb'.
-
- 'Rcr'
- Any control register, when they're 16 bits wide (nothing if
- control registers are 24 bits wide)
-
- 'Rcl'
- Any control register, when they're 24 bits wide.
-
- 'R0w'
- 'R1w'
- 'R2w'
- 'R3w'
- $r0, $r1, $r2, $r3.
-
- 'R02'
- $r0 or $r2, or $r2r0 for 32 bit values.
-
- 'R13'
- $r1 or $r3, or $r3r1 for 32 bit values.
-
- 'Rdi'
- A register that can hold a 64 bit value.
-
- 'Rhl'
- $r0 or $r1 (registers with addressable high/low bytes)
-
- 'R23'
- $r2 or $r3
-
- 'Raa'
- Address registers
-
- 'Raw'
- Address registers when they're 16 bits wide.
-
- 'Ral'
- Address registers when they're 24 bits wide.
-
- 'Rqi'
- Registers that can hold QI values.
-
- 'Rad'
- Registers that can be used with displacements ($a0, $a1, $sb).
-
- 'Rsi'
- Registers that can hold 32 bit values.
-
- 'Rhi'
- Registers that can hold 16 bit values.
-
- 'Rhc'
- Registers chat can hold 16 bit values, including all control
- registers.
-
- 'Rra'
- $r0 through R1, plus $a0 and $a1.
-
- 'Rfl'
- The flags register.
-
- 'Rmm'
- The memory-based pseudo-registers $mem0 through $mem15.
-
- 'Rpi'
- Registers that can hold pointers (16 bit registers for r8c,
- m16c; 24 bit registers for m32cm, m32c).
-
- 'Rpa'
- Matches multiple registers in a PARALLEL to form a larger
- register. Used to match function return values.
-
- 'Is3'
- -8 ... 7
-
- 'IS1'
- -128 ... 127
-
- 'IS2'
- -32768 ... 32767
-
- 'IU2'
- 0 ... 65535
-
- 'In4'
- -8 ... -1 or 1 ... 8
-
- 'In5'
- -16 ... -1 or 1 ... 16
-
- 'In6'
- -32 ... -1 or 1 ... 32
-
- 'IM2'
- -65536 ... -1
-
- 'Ilb'
- An 8 bit value with exactly one bit set.
-
- 'Ilw'
- A 16 bit value with exactly one bit set.
-
- 'Sd'
- The common src/dest memory addressing modes.
-
- 'Sa'
- Memory addressed using $a0 or $a1.
-
- 'Si'
- Memory addressed with immediate addresses.
-
- 'Ss'
- Memory addressed using the stack pointer ($sp).
-
- 'Sf'
- Memory addressed using the frame base register ($fb).
-
- 'Ss'
- Memory addressed using the small base register ($sb).
-
- 'S1'
- $r1h
-
-_MeP--'config/mep/constraints.md'_
-
- 'a'
- The $sp register.
-
- 'b'
- The $tp register.
-
- 'c'
- Any control register.
-
- 'd'
- Either the $hi or the $lo register.
-
- 'em'
- Coprocessor registers that can be directly loaded ($c0-$c15).
-
- 'ex'
- Coprocessor registers that can be moved to each other.
-
- 'er'
- Coprocessor registers that can be moved to core registers.
-
- 'h'
- The $hi register.
-
- 'j'
- The $rpc register.
-
- 'l'
- The $lo register.
-
- 't'
- Registers which can be used in $tp-relative addressing.
-
- 'v'
- The $gp register.
-
- 'x'
- The coprocessor registers.
-
- 'y'
- The coprocessor control registers.
-
- 'z'
- The $0 register.
-
- 'A'
- User-defined register set A.
-
- 'B'
- User-defined register set B.
-
- 'C'
- User-defined register set C.
-
- 'D'
- User-defined register set D.
-
- 'I'
- Offsets for $gp-rel addressing.
-
- 'J'
- Constants that can be used directly with boolean insns.
-
- 'K'
- Constants that can be moved directly to registers.
-
- 'L'
- Small constants that can be added to registers.
-
- 'M'
- Long shift counts.
-
- 'N'
- Small constants that can be compared to registers.
-
- 'O'
- Constants that can be loaded into the top half of registers.
-
- 'S'
- Signed 8-bit immediates.
-
- 'T'
- Symbols encoded for $tp-rel or $gp-rel addressing.
-
- 'U'
- Non-constant addresses for loading/saving coprocessor
- registers.
-
- 'W'
- The top half of a symbol's value.
-
- 'Y'
- A register indirect address without offset.
-
- 'Z'
- Symbolic references to the control bus.
-
-_MicroBlaze--'config/microblaze/constraints.md'_
- 'd'
- A general register ('r0' to 'r31').
-
- 'z'
- A status register ('rmsr', '$fcc1' to '$fcc7').
-
-_MIPS--'config/mips/constraints.md'_
- 'd'
- An address register. This is equivalent to 'r' unless
- generating MIPS16 code.
-
- 'f'
- A floating-point register (if available).
-
- 'h'
- Formerly the 'hi' register. This constraint is no longer
- supported.
-
- 'l'
- The 'lo' register. Use this register to store values that are
- no bigger than a word.
-
- 'x'
- The concatenated 'hi' and 'lo' registers. Use this register
- to store doubleword values.
-
- 'c'
- A register suitable for use in an indirect jump. This will
- always be '$25' for '-mabicalls'.
-
- 'v'
- Register '$3'. Do not use this constraint in new code; it is
- retained only for compatibility with glibc.
-
- 'y'
- Equivalent to 'r'; retained for backwards compatibility.
-
- 'z'
- A floating-point condition code register.
-
- 'I'
- A signed 16-bit constant (for arithmetic instructions).
-
- 'J'
- Integer zero.
-
- 'K'
- An unsigned 16-bit constant (for logic instructions).
-
- 'L'
- A signed 32-bit constant in which the lower 16 bits are zero.
- Such constants can be loaded using 'lui'.
-
- 'M'
- A constant that cannot be loaded using 'lui', 'addiu' or
- 'ori'.
-
- 'N'
- A constant in the range -65535 to -1 (inclusive).
-
- 'O'
- A signed 15-bit constant.
-
- 'P'
- A constant in the range 1 to 65535 (inclusive).
-
- 'G'
- Floating-point zero.
-
- 'R'
- An address that can be used in a non-macro load or store.
-
- 'ZC'
- When compiling microMIPS code, this constraint matches a
- memory operand whose address is formed from a base register
- and a 12-bit offset. These operands can be used for microMIPS
- instructions such as 'll' and 'sc'. When not compiling for
- microMIPS code, 'ZC' is equivalent to 'R'.
-
- 'ZD'
- When compiling microMIPS code, this constraint matches an
- address operand that is formed from a base register and a
- 12-bit offset. These operands can be used for microMIPS
- instructions such as 'prefetch'. When not compiling for
- microMIPS code, 'ZD' is equivalent to 'p'.
-
-_Motorola 680x0--'config/m68k/constraints.md'_
- 'a'
- Address register
-
- 'd'
- Data register
-
- 'f'
- 68881 floating-point register, if available
-
- 'I'
- Integer in the range 1 to 8
-
- 'J'
- 16-bit signed number
-
- 'K'
- Signed number whose magnitude is greater than 0x80
-
- 'L'
- Integer in the range -8 to -1
-
- 'M'
- Signed number whose magnitude is greater than 0x100
-
- 'N'
- Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate
-
- 'O'
- 16 (for rotate using swap)
-
- 'P'
- Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate
-
- 'R'
- Numbers that mov3q can handle
-
- 'G'
- Floating point constant that is not a 68881 constant
-
- 'S'
- Operands that satisfy 'm' when -mpcrel is in effect
-
- 'T'
- Operands that satisfy 's' when -mpcrel is not in effect
-
- 'Q'
- Address register indirect addressing mode
-
- 'U'
- Register offset addressing
-
- 'W'
- const_call_operand
-
- 'Cs'
- symbol_ref or const
-
- 'Ci'
- const_int
-
- 'C0'
- const_int 0
-
- 'Cj'
- Range of signed numbers that don't fit in 16 bits
-
- 'Cmvq'
- Integers valid for mvq
-
- 'Capsw'
- Integers valid for a moveq followed by a swap
-
- 'Cmvz'
- Integers valid for mvz
-
- 'Cmvs'
- Integers valid for mvs
-
- 'Ap'
- push_operand
-
- 'Ac'
- Non-register operands allowed in clr
-
-_Moxie--'config/moxie/constraints.md'_
- 'A'
- An absolute address
-
- 'B'
- An offset address
-
- 'W'
- A register indirect memory operand
-
- 'I'
- A constant in the range of 0 to 255.
-
- 'N'
- A constant in the range of 0 to -255.
-
-_MSP430-'config/msp430/constraints.md'_
-
- 'R12'
- Register R12.
-
- 'R13'
- Register R13.
-
- 'K'
- Integer constant 1.
-
- 'L'
- Integer constant -1^20..1^19.
-
- 'M'
- Integer constant 1-4.
-
- 'Ya'
- Memory references which do not require an extended MOVX
- instruction.
-
- 'Yl'
- Memory reference, labels only.
-
- 'Ys'
- Memory reference, stack only.
-
-_NDS32--'config/nds32/constraints.md'_
- 'w'
- LOW register class $r0 to $r7 constraint for V3/V3M ISA.
- 'l'
- LOW register class $r0 to $r7.
- 'd'
- MIDDLE register class $r0 to $r11, $r16 to $r19.
- 'h'
- HIGH register class $r12 to $r14, $r20 to $r31.
- 't'
- Temporary assist register $ta (i.e. $r15).
- 'k'
- Stack register $sp.
- 'Iu03'
- Unsigned immediate 3-bit value.
- 'In03'
- Negative immediate 3-bit value in the range of -7-0.
- 'Iu04'
- Unsigned immediate 4-bit value.
- 'Is05'
- Signed immediate 5-bit value.
- 'Iu05'
- Unsigned immediate 5-bit value.
- 'In05'
- Negative immediate 5-bit value in the range of -31-0.
- 'Ip05'
- Unsigned immediate 5-bit value for movpi45 instruction with
- range 16-47.
- 'Iu06'
- Unsigned immediate 6-bit value constraint for addri36.sp
- instruction.
- 'Iu08'
- Unsigned immediate 8-bit value.
- 'Iu09'
- Unsigned immediate 9-bit value.
- 'Is10'
- Signed immediate 10-bit value.
- 'Is11'
- Signed immediate 11-bit value.
- 'Is15'
- Signed immediate 15-bit value.
- 'Iu15'
- Unsigned immediate 15-bit value.
- 'Ic15'
- A constant which is not in the range of imm15u but ok for bclr
- instruction.
- 'Ie15'
- A constant which is not in the range of imm15u but ok for bset
- instruction.
- 'It15'
- A constant which is not in the range of imm15u but ok for btgl
- instruction.
- 'Ii15'
- A constant whose compliment value is in the range of imm15u
- and ok for bitci instruction.
- 'Is16'
- Signed immediate 16-bit value.
- 'Is17'
- Signed immediate 17-bit value.
- 'Is19'
- Signed immediate 19-bit value.
- 'Is20'
- Signed immediate 20-bit value.
- 'Ihig'
- The immediate value that can be simply set high 20-bit.
- 'Izeb'
- The immediate value 0xff.
- 'Izeh'
- The immediate value 0xffff.
- 'Ixls'
- The immediate value 0x01.
- 'Ix11'
- The immediate value 0x7ff.
- 'Ibms'
- The immediate value with power of 2.
- 'Ifex'
- The immediate value with power of 2 minus 1.
- 'U33'
- Memory constraint for 333 format.
- 'U45'
- Memory constraint for 45 format.
- 'U37'
- Memory constraint for 37 format.
-
-_Nios II family--'config/nios2/constraints.md'_
-
- 'I'
- Integer that is valid as an immediate operand in an
- instruction taking a signed 16-bit number. Range -32768 to
- 32767.
-
- 'J'
- Integer that is valid as an immediate operand in an
- instruction taking an unsigned 16-bit number. Range 0 to
- 65535.
-
- 'K'
- Integer that is valid as an immediate operand in an
- instruction taking only the upper 16-bits of a 32-bit number.
- Range 32-bit numbers with the lower 16-bits being 0.
-
- 'L'
- Integer that is valid as an immediate operand for a shift
- instruction. Range 0 to 31.
-
- 'M'
- Integer that is valid as an immediate operand for only the
- value 0. Can be used in conjunction with the format modifier
- 'z' to use 'r0' instead of '0' in the assembly output.
-
- 'N'
- Integer that is valid as an immediate operand for a custom
- instruction opcode. Range 0 to 255.
-
- 'S'
- Matches immediates which are addresses in the small data
- section and therefore can be added to 'gp' as a 16-bit
- immediate to re-create their 32-bit value.
-
- 'T'
- A 'const' wrapped 'UNSPEC' expression, representing a
- supported PIC or TLS relocation.
-
-_PDP-11--'config/pdp11/constraints.md'_
- 'a'
- Floating point registers AC0 through AC3. These can be loaded
- from/to memory with a single instruction.
-
- 'd'
- Odd numbered general registers (R1, R3, R5). These are used
- for 16-bit multiply operations.
-
- 'f'
- Any of the floating point registers (AC0 through AC5).
-
- 'G'
- Floating point constant 0.
-
- 'I'
- An integer constant that fits in 16 bits.
-
- 'J'
- An integer constant whose low order 16 bits are zero.
-
- 'K'
- An integer constant that does not meet the constraints for
- codes 'I' or 'J'.
-
- 'L'
- The integer constant 1.
-
- 'M'
- The integer constant -1.
-
- 'N'
- The integer constant 0.
-
- 'O'
- Integer constants -4 through -1 and 1 through 4; shifts by
- these amounts are handled as multiple single-bit shifts rather
- than a single variable-length shift.
-
- 'Q'
- A memory reference which requires an additional word (address
- or offset) after the opcode.
-
- 'R'
- A memory reference that is encoded within the opcode.
-
-_RL78--'config/rl78/constraints.md'_
-
- 'Int3'
- An integer constant in the range 1 ... 7.
- 'Int8'
- An integer constant in the range 0 ... 255.
- 'J'
- An integer constant in the range -255 ... 0
- 'K'
- The integer constant 1.
- 'L'
- The integer constant -1.
- 'M'
- The integer constant 0.
- 'N'
- The integer constant 2.
- 'O'
- The integer constant -2.
- 'P'
- An integer constant in the range 1 ... 15.
- 'Qbi'
- The built-in compare types-eq, ne, gtu, ltu, geu, and leu.
- 'Qsc'
- The synthetic compare types-gt, lt, ge, and le.
- 'Wab'
- A memory reference with an absolute address.
- 'Wbc'
- A memory reference using 'BC' as a base register, with an
- optional offset.
- 'Wca'
- A memory reference using 'AX', 'BC', 'DE', or 'HL' for the
- address, for calls.
- 'Wcv'
- A memory reference using any 16-bit register pair for the
- address, for calls.
- 'Wd2'
- A memory reference using 'DE' as a base register, with an
- optional offset.
- 'Wde'
- A memory reference using 'DE' as a base register, without any
- offset.
- 'Wfr'
- Any memory reference to an address in the far address space.
- 'Wh1'
- A memory reference using 'HL' as a base register, with an
- optional one-byte offset.
- 'Whb'
- A memory reference using 'HL' as a base register, with 'B' or
- 'C' as the index register.
- 'Whl'
- A memory reference using 'HL' as a base register, without any
- offset.
- 'Ws1'
- A memory reference using 'SP' as a base register, with an
- optional one-byte offset.
- 'Y'
- Any memory reference to an address in the near address space.
- 'A'
- The 'AX' register.
- 'B'
- The 'BC' register.
- 'D'
- The 'DE' register.
- 'R'
- 'A' through 'L' registers.
- 'S'
- The 'SP' register.
- 'T'
- The 'HL' register.
- 'Z08W'
- The 16-bit 'R8' register.
- 'Z10W'
- The 16-bit 'R10' register.
- 'Zint'
- The registers reserved for interrupts ('R24' to 'R31').
- 'a'
- The 'A' register.
- 'b'
- The 'B' register.
- 'c'
- The 'C' register.
- 'd'
- The 'D' register.
- 'e'
- The 'E' register.
- 'h'
- The 'H' register.
- 'l'
- The 'L' register.
- 'v'
- The virtual registers.
- 'w'
- The 'PSW' register.
- 'x'
- The 'X' register.
-
-_RX--'config/rx/constraints.md'_
- 'Q'
- An address which does not involve register indirect addressing
- or pre/post increment/decrement addressing.
-
- 'Symbol'
- A symbol reference.
-
- 'Int08'
- A constant in the range -256 to 255, inclusive.
-
- 'Sint08'
- A constant in the range -128 to 127, inclusive.
-
- 'Sint16'
- A constant in the range -32768 to 32767, inclusive.
-
- 'Sint24'
- A constant in the range -8388608 to 8388607, inclusive.
-
- 'Uint04'
- A constant in the range 0 to 15, inclusive.
-
-_SPARC--'config/sparc/sparc.h'_
- 'f'
- Floating-point register on the SPARC-V8 architecture and lower
- floating-point register on the SPARC-V9 architecture.
-
- 'e'
- Floating-point register. It is equivalent to 'f' on the
- SPARC-V8 architecture and contains both lower and upper
- floating-point registers on the SPARC-V9 architecture.
-
- 'c'
- Floating-point condition code register.
-
- 'd'
- Lower floating-point register. It is only valid on the
- SPARC-V9 architecture when the Visual Instruction Set is
- available.
-
- 'b'
- Floating-point register. It is only valid on the SPARC-V9
- architecture when the Visual Instruction Set is available.
-
- 'h'
- 64-bit global or out register for the SPARC-V8+ architecture.
-
- 'C'
- The constant all-ones, for floating-point.
-
- 'A'
- Signed 5-bit constant
-
- 'D'
- A vector constant
-
- 'I'
- Signed 13-bit constant
-
- 'J'
- Zero
-
- 'K'
- 32-bit constant with the low 12 bits clear (a constant that
- can be loaded with the 'sethi' instruction)
-
- 'L'
- A constant in the range supported by 'movcc' instructions
- (11-bit signed immediate)
-
- 'M'
- A constant in the range supported by 'movrcc' instructions
- (10-bit signed immediate)
-
- 'N'
- Same as 'K', except that it verifies that bits that are not in
- the lower 32-bit range are all zero. Must be used instead of
- 'K' for modes wider than 'SImode'
-
- 'O'
- The constant 4096
-
- 'G'
- Floating-point zero
-
- 'H'
- Signed 13-bit constant, sign-extended to 32 or 64 bits
-
- 'P'
- The constant -1
-
- 'Q'
- Floating-point constant whose integral representation can be
- moved into an integer register using a single sethi
- instruction
-
- 'R'
- Floating-point constant whose integral representation can be
- moved into an integer register using a single mov instruction
-
- 'S'
- Floating-point constant whose integral representation can be
- moved into an integer register using a high/lo_sum instruction
- sequence
-
- 'T'
- Memory address aligned to an 8-byte boundary
-
- 'U'
- Even register
-
- 'W'
- Memory address for 'e' constraint registers
-
- 'w'
- Memory address with only a base register
-
- 'Y'
- Vector zero
-
-_SPU--'config/spu/spu.h'_
- 'a'
- An immediate which can be loaded with the il/ila/ilh/ilhu
- instructions. const_int is treated as a 64 bit value.
-
- 'c'
- An immediate for and/xor/or instructions. const_int is
- treated as a 64 bit value.
-
- 'd'
- An immediate for the 'iohl' instruction. const_int is treated
- as a 64 bit value.
-
- 'f'
- An immediate which can be loaded with 'fsmbi'.
-
- 'A'
- An immediate which can be loaded with the il/ila/ilh/ilhu
- instructions. const_int is treated as a 32 bit value.
-
- 'B'
- An immediate for most arithmetic instructions. const_int is
- treated as a 32 bit value.
-
- 'C'
- An immediate for and/xor/or instructions. const_int is
- treated as a 32 bit value.
-
- 'D'
- An immediate for the 'iohl' instruction. const_int is treated
- as a 32 bit value.
-
- 'I'
- A constant in the range [-64, 63] for shift/rotate
- instructions.
-
- 'J'
- An unsigned 7-bit constant for conversion/nop/channel
- instructions.
-
- 'K'
- A signed 10-bit constant for most arithmetic instructions.
-
- 'M'
- A signed 16 bit immediate for 'stop'.
-
- 'N'
- An unsigned 16-bit constant for 'iohl' and 'fsmbi'.
-
- 'O'
- An unsigned 7-bit constant whose 3 least significant bits are
- 0.
-
- 'P'
- An unsigned 3-bit constant for 16-byte rotates and shifts
-
- 'R'
- Call operand, reg, for indirect calls
-
- 'S'
- Call operand, symbol, for relative calls.
-
- 'T'
- Call operand, const_int, for absolute calls.
-
- 'U'
- An immediate which can be loaded with the il/ila/ilh/ilhu
- instructions. const_int is sign extended to 128 bit.
-
- 'W'
- An immediate for shift and rotate instructions. const_int is
- treated as a 32 bit value.
-
- 'Y'
- An immediate for and/xor/or instructions. const_int is sign
- extended as a 128 bit.
-
- 'Z'
- An immediate for the 'iohl' instruction. const_int is sign
- extended to 128 bit.
-
-_S/390 and zSeries--'config/s390/s390.h'_
- 'a'
- Address register (general purpose register except r0)
-
- 'c'
- Condition code register
-
- 'd'
- Data register (arbitrary general purpose register)
-
- 'f'
- Floating-point register
-
- 'I'
- Unsigned 8-bit constant (0-255)
-
- 'J'
- Unsigned 12-bit constant (0-4095)
-
- 'K'
- Signed 16-bit constant (-32768-32767)
-
- 'L'
- Value appropriate as displacement.
- '(0..4095)'
- for short displacement
- '(-524288..524287)'
- for long displacement
-
- 'M'
- Constant integer with a value of 0x7fffffff.
-
- 'N'
- Multiple letter constraint followed by 4 parameter letters.
- '0..9:'
- number of the part counting from most to least
- significant
- 'H,Q:'
- mode of the part
- 'D,S,H:'
- mode of the containing operand
- '0,F:'
- value of the other parts (F--all bits set)
- The constraint matches if the specified part of a constant has
- a value different from its other parts.
-
- 'Q'
- Memory reference without index register and with short
- displacement.
-
- 'R'
- Memory reference with index register and short displacement.
-
- 'S'
- Memory reference without index register but with long
- displacement.
-
- 'T'
- Memory reference with index register and long displacement.
-
- 'U'
- Pointer with short displacement.
-
- 'W'
- Pointer with long displacement.
-
- 'Y'
- Shift count operand.
-
-_Score family--'config/score/score.h'_
- 'd'
- Registers from r0 to r32.
-
- 'e'
- Registers from r0 to r16.
-
- 't'
- r8--r11 or r22--r27 registers.
-
- 'h'
- hi register.
-
- 'l'
- lo register.
-
- 'x'
- hi + lo register.
-
- 'q'
- cnt register.
-
- 'y'
- lcb register.
-
- 'z'
- scb register.
-
- 'a'
- cnt + lcb + scb register.
-
- 'c'
- cr0--cr15 register.
-
- 'b'
- cp1 registers.
-
- 'f'
- cp2 registers.
-
- 'i'
- cp3 registers.
-
- 'j'
- cp1 + cp2 + cp3 registers.
-
- 'I'
- High 16-bit constant (32-bit constant with 16 LSBs zero).
-
- 'J'
- Unsigned 5 bit integer (in the range 0 to 31).
-
- 'K'
- Unsigned 16 bit integer (in the range 0 to 65535).
-
- 'L'
- Signed 16 bit integer (in the range -32768 to 32767).
-
- 'M'
- Unsigned 14 bit integer (in the range 0 to 16383).
-
- 'N'
- Signed 14 bit integer (in the range -8192 to 8191).
-
- 'Z'
- Any SYMBOL_REF.
-
-_Xstormy16--'config/stormy16/stormy16.h'_
- 'a'
- Register r0.
-
- 'b'
- Register r1.
-
- 'c'
- Register r2.
-
- 'd'
- Register r8.
-
- 'e'
- Registers r0 through r7.
-
- 't'
- Registers r0 and r1.
-
- 'y'
- The carry register.
-
- 'z'
- Registers r8 and r9.
-
- 'I'
- A constant between 0 and 3 inclusive.
-
- 'J'
- A constant that has exactly one bit set.
-
- 'K'
- A constant that has exactly one bit clear.
-
- 'L'
- A constant between 0 and 255 inclusive.
-
- 'M'
- A constant between -255 and 0 inclusive.
-
- 'N'
- A constant between -3 and 0 inclusive.
-
- 'O'
- A constant between 1 and 4 inclusive.
-
- 'P'
- A constant between -4 and -1 inclusive.
-
- 'Q'
- A memory reference that is a stack push.
-
- 'R'
- A memory reference that is a stack pop.
-
- 'S'
- A memory reference that refers to a constant address of known
- value.
-
- 'T'
- The register indicated by Rx (not implemented yet).
-
- 'U'
- A constant that is not between 2 and 15 inclusive.
-
- 'Z'
- The constant 0.
-
-_TI C6X family--'config/c6x/constraints.md'_
- 'a'
- Register file A (A0-A31).
-
- 'b'
- Register file B (B0-B31).
-
- 'A'
- Predicate registers in register file A (A0-A2 on C64X and
- higher, A1 and A2 otherwise).
-
- 'B'
- Predicate registers in register file B (B0-B2).
-
- 'C'
- A call-used register in register file B (B0-B9, B16-B31).
-
- 'Da'
- Register file A, excluding predicate registers (A3-A31, plus
- A0 if not C64X or higher).
-
- 'Db'
- Register file B, excluding predicate registers (B3-B31).
-
- 'Iu4'
- Integer constant in the range 0 ... 15.
-
- 'Iu5'
- Integer constant in the range 0 ... 31.
-
- 'In5'
- Integer constant in the range -31 ... 0.
-
- 'Is5'
- Integer constant in the range -16 ... 15.
-
- 'I5x'
- Integer constant that can be the operand of an ADDA or a SUBA
- insn.
-
- 'IuB'
- Integer constant in the range 0 ... 65535.
-
- 'IsB'
- Integer constant in the range -32768 ... 32767.
-
- 'IsC'
- Integer constant in the range -2^{20} ... 2^{20} - 1.
-
- 'Jc'
- Integer constant that is a valid mask for the clr instruction.
-
- 'Js'
- Integer constant that is a valid mask for the set instruction.
-
- 'Q'
- Memory location with A base register.
-
- 'R'
- Memory location with B base register.
-
- 'S0'
- On C64x+ targets, a GP-relative small data reference.
-
- 'S1'
- Any kind of 'SYMBOL_REF', for use in a call address.
-
- 'Si'
- Any kind of immediate operand, unless it matches the S0
- constraint.
-
- 'T'
- Memory location with B base register, but not using a long
- offset.
-
- 'W'
- A memory operand with an address that can't be used in an
- unaligned access.
-
- 'Z'
- Register B14 (aka DP).
-
-_TILE-Gx--'config/tilegx/constraints.md'_
- 'R00'
- 'R01'
- 'R02'
- 'R03'
- 'R04'
- 'R05'
- 'R06'
- 'R07'
- 'R08'
- 'R09'
- 'R10'
- Each of these represents a register constraint for an
- individual register, from r0 to r10.
-
- 'I'
- Signed 8-bit integer constant.
-
- 'J'
- Signed 16-bit integer constant.
-
- 'K'
- Unsigned 16-bit integer constant.
-
- 'L'
- Integer constant that fits in one signed byte when incremented
- by one (-129 ... 126).
-
- 'm'
- Memory operand. If used together with '<' or '>', the operand
- can have postincrement which requires printing with '%In' and
- '%in' on TILE-Gx. For example:
-
- asm ("st_add %I0,%1,%i0" : "=m<>" (*mem) : "r" (val));
-
- 'M'
- A bit mask suitable for the BFINS instruction.
-
- 'N'
- Integer constant that is a byte tiled out eight times.
-
- 'O'
- The integer zero constant.
-
- 'P'
- Integer constant that is a sign-extended byte tiled out as
- four shorts.
-
- 'Q'
- Integer constant that fits in one signed byte when incremented
- (-129 ... 126), but excluding -1.
-
- 'S'
- Integer constant that has all 1 bits consecutive and starting
- at bit 0.
-
- 'T'
- A 16-bit fragment of a got, tls, or pc-relative reference.
-
- 'U'
- Memory operand except postincrement. This is roughly the same
- as 'm' when not used together with '<' or '>'.
-
- 'W'
- An 8-element vector constant with identical elements.
-
- 'Y'
- A 4-element vector constant with identical elements.
-
- 'Z0'
- The integer constant 0xffffffff.
-
- 'Z1'
- The integer constant 0xffffffff00000000.
-
-_TILEPro--'config/tilepro/constraints.md'_
- 'R00'
- 'R01'
- 'R02'
- 'R03'
- 'R04'
- 'R05'
- 'R06'
- 'R07'
- 'R08'
- 'R09'
- 'R10'
- Each of these represents a register constraint for an
- individual register, from r0 to r10.
-
- 'I'
- Signed 8-bit integer constant.
-
- 'J'
- Signed 16-bit integer constant.
-
- 'K'
- Nonzero integer constant with low 16 bits zero.
-
- 'L'
- Integer constant that fits in one signed byte when incremented
- by one (-129 ... 126).
-
- 'm'
- Memory operand. If used together with '<' or '>', the operand
- can have postincrement which requires printing with '%In' and
- '%in' on TILEPro. For example:
-
- asm ("swadd %I0,%1,%i0" : "=m<>" (mem) : "r" (val));
-
- 'M'
- A bit mask suitable for the MM instruction.
-
- 'N'
- Integer constant that is a byte tiled out four times.
-
- 'O'
- The integer zero constant.
-
- 'P'
- Integer constant that is a sign-extended byte tiled out as two
- shorts.
-
- 'Q'
- Integer constant that fits in one signed byte when incremented
- (-129 ... 126), but excluding -1.
-
- 'T'
- A symbolic operand, or a 16-bit fragment of a got, tls, or
- pc-relative reference.
-
- 'U'
- Memory operand except postincrement. This is roughly the same
- as 'm' when not used together with '<' or '>'.
-
- 'W'
- A 4-element vector constant with identical elements.
-
- 'Y'
- A 2-element vector constant with identical elements.
-
-_Xtensa--'config/xtensa/constraints.md'_
- 'a'
- General-purpose 32-bit register
-
- 'b'
- One-bit boolean register
-
- 'A'
- MAC16 40-bit accumulator register
-
- 'I'
- Signed 12-bit integer constant, for use in MOVI instructions
-
- 'J'
- Signed 8-bit integer constant, for use in ADDI instructions
-
- 'K'
- Integer constant valid for BccI instructions
-
- 'L'
- Unsigned constant valid for BccUI instructions
-
-
-File: gccint.info, Node: Disable Insn Alternatives, Next: Define Constraints, Prev: Machine Constraints, Up: Constraints
-
-16.8.6 Disable insn alternatives using the 'enabled' attribute
---------------------------------------------------------------
-
-The 'enabled' insn attribute may be used to disable certain insn
-alternatives for machine-specific reasons. This is useful when adding
-new instructions to an existing pattern which are only available for
-certain cpu architecture levels as specified with the '-march=' option.
-
- If an insn alternative is disabled, then it will never be used. The
-compiler treats the constraints for the disabled alternative as
-unsatisfiable.
-
- In order to make use of the 'enabled' attribute a back end has to add
-in the machine description files:
-
- 1. A definition of the 'enabled' insn attribute. The attribute is
- defined as usual using the 'define_attr' command. This definition
- should be based on other insn attributes and/or target flags. The
- 'enabled' attribute is a numeric attribute and should evaluate to
- '(const_int 1)' for an enabled alternative and to '(const_int 0)'
- otherwise.
- 2. A definition of another insn attribute used to describe for what
- reason an insn alternative might be available or not. E.g.
- 'cpu_facility' as in the example below.
- 3. An assignment for the second attribute to each insn definition
- combining instructions which are not all available under the same
- circumstances. (Note: It obviously only makes sense for
- definitions with more than one alternative. Otherwise the insn
- pattern should be disabled or enabled using the insn condition.)
-
- E.g. the following two patterns could easily be merged using the
-'enabled' attribute:
-
-
- (define_insn "*movdi_old"
- [(set (match_operand:DI 0 "register_operand" "=d")
- (match_operand:DI 1 "register_operand" " d"))]
- "!TARGET_NEW"
- "lgr %0,%1")
-
- (define_insn "*movdi_new"
- [(set (match_operand:DI 0 "register_operand" "=d,f,d")
- (match_operand:DI 1 "register_operand" " d,d,f"))]
- "TARGET_NEW"
- "@
- lgr %0,%1
- ldgr %0,%1
- lgdr %0,%1")
-
- to:
-
-
- (define_insn "*movdi_combined"
- [(set (match_operand:DI 0 "register_operand" "=d,f,d")
- (match_operand:DI 1 "register_operand" " d,d,f"))]
- ""
- "@
- lgr %0,%1
- ldgr %0,%1
- lgdr %0,%1"
- [(set_attr "cpu_facility" "*,new,new")])
-
- with the 'enabled' attribute defined like this:
-
-
- (define_attr "cpu_facility" "standard,new" (const_string "standard"))
-
- (define_attr "enabled" ""
- (cond [(eq_attr "cpu_facility" "standard") (const_int 1)
- (and (eq_attr "cpu_facility" "new")
- (ne (symbol_ref "TARGET_NEW") (const_int 0)))
- (const_int 1)]
- (const_int 0)))
-
-
-File: gccint.info, Node: Define Constraints, Next: C Constraint Interface, Prev: Disable Insn Alternatives, Up: Constraints
-
-16.8.7 Defining Machine-Specific Constraints
---------------------------------------------
-
-Machine-specific constraints fall into two categories: register and
-non-register constraints. Within the latter category, constraints which
-allow subsets of all possible memory or address operands should be
-specially marked, to give 'reload' more information.
-
- Machine-specific constraints can be given names of arbitrary length,
-but they must be entirely composed of letters, digits, underscores
-('_'), and angle brackets ('< >'). Like C identifiers, they must begin
-with a letter or underscore.
-
- In order to avoid ambiguity in operand constraint strings, no
-constraint can have a name that begins with any other constraint's name.
-For example, if 'x' is defined as a constraint name, 'xy' may not be,
-and vice versa. As a consequence of this rule, no constraint may begin
-with one of the generic constraint letters: 'E F V X g i m n o p r s'.
-
- Register constraints correspond directly to register classes. *Note
-Register Classes::. There is thus not much flexibility in their
-definitions.
-
- -- MD Expression: define_register_constraint name regclass docstring
- All three arguments are string constants. NAME is the name of the
- constraint, as it will appear in 'match_operand' expressions. If
- NAME is a multi-letter constraint its length shall be the same for
- all constraints starting with the same letter. REGCLASS can be
- either the name of the corresponding register class (*note Register
- Classes::), or a C expression which evaluates to the appropriate
- register class. If it is an expression, it must have no side
- effects, and it cannot look at the operand. The usual use of
- expressions is to map some register constraints to 'NO_REGS' when
- the register class is not available on a given subarchitecture.
-
- DOCSTRING is a sentence documenting the meaning of the constraint.
- Docstrings are explained further below.
-
- Non-register constraints are more like predicates: the constraint
-definition gives a Boolean expression which indicates whether the
-constraint matches.
-
- -- MD Expression: define_constraint name docstring exp
- The NAME and DOCSTRING arguments are the same as for
- 'define_register_constraint', but note that the docstring comes
- immediately after the name for these expressions. EXP is an RTL
- expression, obeying the same rules as the RTL expressions in
- predicate definitions. *Note Defining Predicates::, for details.
- If it evaluates true, the constraint matches; if it evaluates
- false, it doesn't. Constraint expressions should indicate which
- RTL codes they might match, just like predicate expressions.
-
- 'match_test' C expressions have access to the following variables:
-
- OP
- The RTL object defining the operand.
- MODE
- The machine mode of OP.
- IVAL
- 'INTVAL (OP)', if OP is a 'const_int'.
- HVAL
- 'CONST_DOUBLE_HIGH (OP)', if OP is an integer 'const_double'.
- LVAL
- 'CONST_DOUBLE_LOW (OP)', if OP is an integer 'const_double'.
- RVAL
- 'CONST_DOUBLE_REAL_VALUE (OP)', if OP is a floating-point
- 'const_double'.
-
- The *VAL variables should only be used once another piece of the
- expression has verified that OP is the appropriate kind of RTL
- object.
-
- Most non-register constraints should be defined with
-'define_constraint'. The remaining two definition expressions are only
-appropriate for constraints that should be handled specially by 'reload'
-if they fail to match.
-
- -- MD Expression: define_memory_constraint name docstring exp
- Use this expression for constraints that match a subset of all
- memory operands: that is, 'reload' can make them match by
- converting the operand to the form '(mem (reg X))', where X is a
- base register (from the register class specified by
- 'BASE_REG_CLASS', *note Register Classes::).
-
- For example, on the S/390, some instructions do not accept
- arbitrary memory references, but only those that do not make use of
- an index register. The constraint letter 'Q' is defined to
- represent a memory address of this type. If 'Q' is defined with
- 'define_memory_constraint', a 'Q' constraint can handle any memory
- operand, because 'reload' knows it can simply copy the memory
- address into a base register if required. This is analogous to the
- way an 'o' constraint can handle any memory operand.
-
- The syntax and semantics are otherwise identical to
- 'define_constraint'.
-
- -- MD Expression: define_address_constraint name docstring exp
- Use this expression for constraints that match a subset of all
- address operands: that is, 'reload' can make the constraint match
- by converting the operand to the form '(reg X)', again with X a
- base register.
-
- Constraints defined with 'define_address_constraint' can only be
- used with the 'address_operand' predicate, or machine-specific
- predicates that work the same way. They are treated analogously to
- the generic 'p' constraint.
-
- The syntax and semantics are otherwise identical to
- 'define_constraint'.
-
- For historical reasons, names beginning with the letters 'G H' are
-reserved for constraints that match only 'const_double's, and names
-beginning with the letters 'I J K L M N O P' are reserved for
-constraints that match only 'const_int's. This may change in the
-future. For the time being, constraints with these names must be
-written in a stylized form, so that 'genpreds' can tell you did it
-correctly:
-
- (define_constraint "[GHIJKLMNOP]..."
- "DOC..."
- (and (match_code "const_int") ; 'const_double' for G/H
- CONDITION...)) ; usually a 'match_test'
-
- It is fine to use names beginning with other letters for constraints
-that match 'const_double's or 'const_int's.
-
- Each docstring in a constraint definition should be one or more
-complete sentences, marked up in Texinfo format. _They are currently
-unused._ In the future they will be copied into the GCC manual, in
-*note Machine Constraints::, replacing the hand-maintained tables
-currently found in that section. Also, in the future the compiler may
-use this to give more helpful diagnostics when poor choice of 'asm'
-constraints causes a reload failure.
-
- If you put the pseudo-Texinfo directive '@internal' at the beginning of
-a docstring, then (in the future) it will appear only in the internals
-manual's version of the machine-specific constraint tables. Use this
-for constraints that should not appear in 'asm' statements.
-
-
-File: gccint.info, Node: C Constraint Interface, Prev: Define Constraints, Up: Constraints
-
-16.8.8 Testing constraints from C
----------------------------------
-
-It is occasionally useful to test a constraint from C code rather than
-implicitly via the constraint string in a 'match_operand'. The
-generated file 'tm_p.h' declares a few interfaces for working with
-machine-specific constraints. None of these interfaces work with the
-generic constraints described in *note Simple Constraints::. This may
-change in the future.
-
- *Warning:* 'tm_p.h' may declare other functions that operate on
-constraints, besides the ones documented here. Do not use those
-functions from machine-dependent code. They exist to implement the old
-constraint interface that machine-independent components of the compiler
-still expect. They will change or disappear in the future.
-
- Some valid constraint names are not valid C identifiers, so there is a
-mangling scheme for referring to them from C. Constraint names that do
-not contain angle brackets or underscores are left unchanged.
-Underscores are doubled, each '<' is replaced with '_l', and each '>'
-with '_g'. Here are some examples:
-
- *Original* *Mangled*
- x x
- P42x P42x
- P4_x P4__x
- P4>x P4_gx
- P4>> P4_g_g
- P4_g> P4__g_g
-
- Throughout this section, the variable C is either a constraint in the
-abstract sense, or a constant from 'enum constraint_num'; the variable M
-is a mangled constraint name (usually as part of a larger identifier).
-
- -- Enum: constraint_num
- For each machine-specific constraint, there is a corresponding
- enumeration constant: 'CONSTRAINT_' plus the mangled name of the
- constraint. Functions that take an 'enum constraint_num' as an
- argument expect one of these constants.
-
- Machine-independent constraints do not have associated constants.
- This may change in the future.
-
- -- Function: inline bool satisfies_constraint_ M (rtx EXP)
- For each machine-specific, non-register constraint M, there is one
- of these functions; it returns 'true' if EXP satisfies the
- constraint. These functions are only visible if 'rtl.h' was
- included before 'tm_p.h'.
-
- -- Function: bool constraint_satisfied_p (rtx EXP, enum constraint_num
- C)
- Like the 'satisfies_constraint_M' functions, but the constraint to
- test is given as an argument, C. If C specifies a register
- constraint, this function will always return 'false'.
-
- -- Function: enum reg_class regclass_for_constraint (enum
- constraint_num C)
- Returns the register class associated with C. If C is not a
- register constraint, or those registers are not available for the
- currently selected subtarget, returns 'NO_REGS'.
-
- Here is an example use of 'satisfies_constraint_M'. In peephole
-optimizations (*note Peephole Definitions::), operand constraint strings
-are ignored, so if there are relevant constraints, they must be tested
-in the C condition. In the example, the optimization is applied if
-operand 2 does _not_ satisfy the 'K' constraint. (This is a simplified
-version of a peephole definition from the i386 machine description.)
-
- (define_peephole2
- [(match_scratch:SI 3 "r")
- (set (match_operand:SI 0 "register_operand" "")
- (mult:SI (match_operand:SI 1 "memory_operand" "")
- (match_operand:SI 2 "immediate_operand" "")))]
-
- "!satisfies_constraint_K (operands[2])"
-
- [(set (match_dup 3) (match_dup 1))
- (set (match_dup 0) (mult:SI (match_dup 3) (match_dup 2)))]
-
- "")
-
-
-File: gccint.info, Node: Standard Names, Next: Pattern Ordering, Prev: Constraints, Up: Machine Desc
-
-16.9 Standard Pattern Names For Generation
-==========================================
-
-Here is a table of the instruction names that are meaningful in the RTL
-generation pass of the compiler. Giving one of these names to an
-instruction pattern tells the RTL generation pass that it can use the
-pattern to accomplish a certain task.
-
-'movM'
- Here M stands for a two-letter machine mode name, in lowercase.
- This instruction pattern moves data with that machine mode from
- operand 1 to operand 0. For example, 'movsi' moves full-word data.
-
- If operand 0 is a 'subreg' with mode M of a register whose own mode
- is wider than M, the effect of this instruction is to store the
- specified value in the part of the register that corresponds to
- mode M. Bits outside of M, but which are within the same target
- word as the 'subreg' are undefined. Bits which are outside the
- target word are left unchanged.
-
- This class of patterns is special in several ways. First of all,
- each of these names up to and including full word size _must_ be
- defined, because there is no other way to copy a datum from one
- place to another. If there are patterns accepting operands in
- larger modes, 'movM' must be defined for integer modes of those
- sizes.
-
- Second, these patterns are not used solely in the RTL generation
- pass. Even the reload pass can generate move insns to copy values
- from stack slots into temporary registers. When it does so, one of
- the operands is a hard register and the other is an operand that
- can need to be reloaded into a register.
-
- Therefore, when given such a pair of operands, the pattern must
- generate RTL which needs no reloading and needs no temporary
- registers--no registers other than the operands. For example, if
- you support the pattern with a 'define_expand', then in such a case
- the 'define_expand' mustn't call 'force_reg' or any other such
- function which might generate new pseudo registers.
-
- This requirement exists even for subword modes on a RISC machine
- where fetching those modes from memory normally requires several
- insns and some temporary registers.
-
- During reload a memory reference with an invalid address may be
- passed as an operand. Such an address will be replaced with a
- valid address later in the reload pass. In this case, nothing may
- be done with the address except to use it as it stands. If it is
- copied, it will not be replaced with a valid address. No attempt
- should be made to make such an address into a valid address and no
- routine (such as 'change_address') that will do so may be called.
- Note that 'general_operand' will fail when applied to such an
- address.
-
- The global variable 'reload_in_progress' (which must be explicitly
- declared if required) can be used to determine whether such special
- handling is required.
-
- The variety of operands that have reloads depends on the rest of
- the machine description, but typically on a RISC machine these can
- only be pseudo registers that did not get hard registers, while on
- other machines explicit memory references will get optional
- reloads.
-
- If a scratch register is required to move an object to or from
- memory, it can be allocated using 'gen_reg_rtx' prior to life
- analysis.
-
- If there are cases which need scratch registers during or after
- reload, you must provide an appropriate secondary_reload target
- hook.
-
- The macro 'can_create_pseudo_p' can be used to determine if it is
- unsafe to create new pseudo registers. If this variable is
- nonzero, then it is unsafe to call 'gen_reg_rtx' to allocate a new
- pseudo.
-
- The constraints on a 'movM' must permit moving any hard register to
- any other hard register provided that 'HARD_REGNO_MODE_OK' permits
- mode M in both registers and 'TARGET_REGISTER_MOVE_COST' applied to
- their classes returns a value of 2.
-
- It is obligatory to support floating point 'movM' instructions into
- and out of any registers that can hold fixed point values, because
- unions and structures (which have modes 'SImode' or 'DImode') can
- be in those registers and they may have floating point members.
-
- There may also be a need to support fixed point 'movM' instructions
- in and out of floating point registers. Unfortunately, I have
- forgotten why this was so, and I don't know whether it is still
- true. If 'HARD_REGNO_MODE_OK' rejects fixed point values in
- floating point registers, then the constraints of the fixed point
- 'movM' instructions must be designed to avoid ever trying to reload
- into a floating point register.
-
-'reload_inM'
-'reload_outM'
- These named patterns have been obsoleted by the target hook
- 'secondary_reload'.
-
- Like 'movM', but used when a scratch register is required to move
- between operand 0 and operand 1. Operand 2 describes the scratch
- register. See the discussion of the 'SECONDARY_RELOAD_CLASS' macro
- in *note Register Classes::.
-
- There are special restrictions on the form of the 'match_operand's
- used in these patterns. First, only the predicate for the reload
- operand is examined, i.e., 'reload_in' examines operand 1, but not
- the predicates for operand 0 or 2. Second, there may be only one
- alternative in the constraints. Third, only a single register
- class letter may be used for the constraint; subsequent constraint
- letters are ignored. As a special exception, an empty constraint
- string matches the 'ALL_REGS' register class. This may relieve
- ports of the burden of defining an 'ALL_REGS' constraint letter
- just for these patterns.
-
-'movstrictM'
- Like 'movM' except that if operand 0 is a 'subreg' with mode M of a
- register whose natural mode is wider, the 'movstrictM' instruction
- is guaranteed not to alter any of the register except the part
- which belongs to mode M.
-
-'movmisalignM'
- This variant of a move pattern is designed to load or store a value
- from a memory address that is not naturally aligned for its mode.
- For a store, the memory will be in operand 0; for a load, the
- memory will be in operand 1. The other operand is guaranteed not
- to be a memory, so that it's easy to tell whether this is a load or
- store.
-
- This pattern is used by the autovectorizer, and when expanding a
- 'MISALIGNED_INDIRECT_REF' expression.
-
-'load_multiple'
- Load several consecutive memory locations into consecutive
- registers. Operand 0 is the first of the consecutive registers,
- operand 1 is the first memory location, and operand 2 is a
- constant: the number of consecutive registers.
-
- Define this only if the target machine really has such an
- instruction; do not define this if the most efficient way of
- loading consecutive registers from memory is to do them one at a
- time.
-
- On some machines, there are restrictions as to which consecutive
- registers can be stored into memory, such as particular starting or
- ending register numbers or only a range of valid counts. For those
- machines, use a 'define_expand' (*note Expander Definitions::) and
- make the pattern fail if the restrictions are not met.
-
- Write the generated insn as a 'parallel' with elements being a
- 'set' of one register from the appropriate memory location (you may
- also need 'use' or 'clobber' elements). Use a 'match_parallel'
- (*note RTL Template::) to recognize the insn. See 'rs6000.md' for
- examples of the use of this insn pattern.
-
-'store_multiple'
- Similar to 'load_multiple', but store several consecutive registers
- into consecutive memory locations. Operand 0 is the first of the
- consecutive memory locations, operand 1 is the first register, and
- operand 2 is a constant: the number of consecutive registers.
-
-'vec_load_lanesMN'
- Perform an interleaved load of several vectors from memory operand
- 1 into register operand 0. Both operands have mode M. The
- register operand is viewed as holding consecutive vectors of mode
- N, while the memory operand is a flat array that contains the same
- number of elements. The operation is equivalent to:
-
- int c = GET_MODE_SIZE (M) / GET_MODE_SIZE (N);
- for (j = 0; j < GET_MODE_NUNITS (N); j++)
- for (i = 0; i < c; i++)
- operand0[i][j] = operand1[j * c + i];
-
- For example, 'vec_load_lanestiv4hi' loads 8 16-bit values from
- memory into a register of mode 'TI'. The register contains two
- consecutive vectors of mode 'V4HI'.
-
- This pattern can only be used if:
- TARGET_ARRAY_MODE_SUPPORTED_P (N, C)
- is true. GCC assumes that, if a target supports this kind of
- instruction for some mode N, it also supports unaligned loads for
- vectors of mode N.
-
-'vec_store_lanesMN'
- Equivalent to 'vec_load_lanesMN', with the memory and register
- operands reversed. That is, the instruction is equivalent to:
-
- int c = GET_MODE_SIZE (M) / GET_MODE_SIZE (N);
- for (j = 0; j < GET_MODE_NUNITS (N); j++)
- for (i = 0; i < c; i++)
- operand0[j * c + i] = operand1[i][j];
-
- for a memory operand 0 and register operand 1.
-
-'vec_setM'
- Set given field in the vector value. Operand 0 is the vector to
- modify, operand 1 is new value of field and operand 2 specify the
- field index.
-
-'vec_extractM'
- Extract given field from the vector value. Operand 1 is the
- vector, operand 2 specify field index and operand 0 place to store
- value into.
-
-'vec_initM'
- Initialize the vector to given values. Operand 0 is the vector to
- initialize and operand 1 is parallel containing values for
- individual fields.
-
-'vcondMN'
- Output a conditional vector move. Operand 0 is the destination to
- receive a combination of operand 1 and operand 2, which are of mode
- M, dependent on the outcome of the predicate in operand 3 which is
- a vector comparison with operands of mode N in operands 4 and 5.
- The modes M and N should have the same size. Operand 0 will be set
- to the value OP1 & MSK | OP2 & ~MSK where MSK is computed by
- element-wise evaluation of the vector comparison with a truth value
- of all-ones and a false value of all-zeros.
-
-'vec_permM'
- Output a (variable) vector permutation. Operand 0 is the
- destination to receive elements from operand 1 and operand 2, which
- are of mode M. Operand 3 is the "selector". It is an integral
- mode vector of the same width and number of elements as mode M.
-
- The input elements are numbered from 0 in operand 1 through 2*N-1
- in operand 2. The elements of the selector must be computed modulo
- 2*N. Note that if 'rtx_equal_p(operand1, operand2)', this can be
- implemented with just operand 1 and selector elements modulo N.
-
- In order to make things easy for a number of targets, if there is
- no 'vec_perm' pattern for mode M, but there is for mode Q where Q
- is a vector of 'QImode' of the same width as M, the middle-end will
- lower the mode M 'VEC_PERM_EXPR' to mode Q.
-
-'vec_perm_constM'
- Like 'vec_perm' except that the permutation is a compile-time
- constant. That is, operand 3, the "selector", is a 'CONST_VECTOR'.
-
- Some targets cannot perform a permutation with a variable selector,
- but can efficiently perform a constant permutation. Further, the
- target hook 'vec_perm_ok' is queried to determine if the specific
- constant permutation is available efficiently; the named pattern is
- never expanded without 'vec_perm_ok' returning true.
-
- There is no need for a target to supply both 'vec_permM' and
- 'vec_perm_constM' if the former can trivially implement the
- operation with, say, the vector constant loaded into a register.
-
-'pushM1'
- Output a push instruction. Operand 0 is value to push. Used only
- when 'PUSH_ROUNDING' is defined. For historical reason, this
- pattern may be missing and in such case an 'mov' expander is used
- instead, with a 'MEM' expression forming the push operation. The
- 'mov' expander method is deprecated.
-
-'addM3'
- Add operand 2 and operand 1, storing the result in operand 0. All
- operands must have mode M. This can be used even on two-address
- machines, by means of constraints requiring operands 1 and 0 to be
- the same location.
-
-'addptrM3'
- Like 'addM3' but is guaranteed to only be used for address
- calculations. The expanded code is not allowed to clobber the
- condition code. It only needs to be defined if 'addM3' sets the
- condition code. If adds used for address calculations and normal
- adds are not compatible it is required to expand a distinct pattern
- (e.g. using an unspec). The pattern is used by LRA to emit
- address calculations. 'addM3' is used if 'addptrM3' is not
- defined.
-
-'ssaddM3', 'usaddM3'
-'subM3', 'sssubM3', 'ussubM3'
-'mulM3', 'ssmulM3', 'usmulM3'
-'divM3', 'ssdivM3'
-'udivM3', 'usdivM3'
-'modM3', 'umodM3'
-'uminM3', 'umaxM3'
-'andM3', 'iorM3', 'xorM3'
- Similar, for other arithmetic operations.
-
-'fmaM4'
- Multiply operand 2 and operand 1, then add operand 3, storing the
- result in operand 0 without doing an intermediate rounding step.
- All operands must have mode M. This pattern is used to implement
- the 'fma', 'fmaf', and 'fmal' builtin functions from the ISO C99
- standard.
-
-'fmsM4'
- Like 'fmaM4', except operand 3 subtracted from the product instead
- of added to the product. This is represented in the rtl as
-
- (fma:M OP1 OP2 (neg:M OP3))
-
-'fnmaM4'
- Like 'fmaM4' except that the intermediate product is negated before
- being added to operand 3. This is represented in the rtl as
-
- (fma:M (neg:M OP1) OP2 OP3)
-
-'fnmsM4'
- Like 'fmsM4' except that the intermediate product is negated before
- subtracting operand 3. This is represented in the rtl as
-
- (fma:M (neg:M OP1) OP2 (neg:M OP3))
-
-'sminM3', 'smaxM3'
- Signed minimum and maximum operations. When used with floating
- point, if both operands are zeros, or if either operand is 'NaN',
- then it is unspecified which of the two operands is returned as the
- result.
-
-'reduc_smin_M', 'reduc_smax_M'
- Find the signed minimum/maximum of the elements of a vector. The
- vector is operand 1, and the scalar result is stored in the least
- significant bits of operand 0 (also a vector). The output and
- input vector should have the same modes.
-
-'reduc_umin_M', 'reduc_umax_M'
- Find the unsigned minimum/maximum of the elements of a vector. The
- vector is operand 1, and the scalar result is stored in the least
- significant bits of operand 0 (also a vector). The output and
- input vector should have the same modes.
-
-'reduc_splus_M'
- Compute the sum of the signed elements of a vector. The vector is
- operand 1, and the scalar result is stored in the least significant
- bits of operand 0 (also a vector). The output and input vector
- should have the same modes.
-
-'reduc_uplus_M'
- Compute the sum of the unsigned elements of a vector. The vector
- is operand 1, and the scalar result is stored in the least
- significant bits of operand 0 (also a vector). The output and
- input vector should have the same modes.
-
-'sdot_prodM'
-'udot_prodM'
- Compute the sum of the products of two signed/unsigned elements.
- Operand 1 and operand 2 are of the same mode. Their product, which
- is of a wider mode, is computed and added to operand 3. Operand 3
- is of a mode equal or wider than the mode of the product. The
- result is placed in operand 0, which is of the same mode as operand
- 3.
-
-'ssum_widenM3'
-'usum_widenM3'
- Operands 0 and 2 are of the same mode, which is wider than the mode
- of operand 1. Add operand 1 to operand 2 and place the widened
- result in operand 0. (This is used express accumulation of
- elements into an accumulator of a wider mode.)
-
-'vec_shl_M', 'vec_shr_M'
- Whole vector left/right shift in bits. Operand 1 is a vector to be
- shifted. Operand 2 is an integer shift amount in bits. Operand 0
- is where the resulting shifted vector is stored. The output and
- input vectors should have the same modes.
-
-'vec_pack_trunc_M'
- Narrow (demote) and merge the elements of two vectors. Operands 1
- and 2 are vectors of the same mode having N integral or floating
- point elements of size S. Operand 0 is the resulting vector in
- which 2*N elements of size N/2 are concatenated after narrowing
- them down using truncation.
-
-'vec_pack_ssat_M', 'vec_pack_usat_M'
- Narrow (demote) and merge the elements of two vectors. Operands 1
- and 2 are vectors of the same mode having N integral elements of
- size S. Operand 0 is the resulting vector in which the elements of
- the two input vectors are concatenated after narrowing them down
- using signed/unsigned saturating arithmetic.
-
-'vec_pack_sfix_trunc_M', 'vec_pack_ufix_trunc_M'
- Narrow, convert to signed/unsigned integral type and merge the
- elements of two vectors. Operands 1 and 2 are vectors of the same
- mode having N floating point elements of size S. Operand 0 is the
- resulting vector in which 2*N elements of size N/2 are
- concatenated.
-
-'vec_unpacks_hi_M', 'vec_unpacks_lo_M'
- Extract and widen (promote) the high/low part of a vector of signed
- integral or floating point elements. The input vector (operand 1)
- has N elements of size S. Widen (promote) the high/low elements of
- the vector using signed or floating point extension and place the
- resulting N/2 values of size 2*S in the output vector (operand 0).
-
-'vec_unpacku_hi_M', 'vec_unpacku_lo_M'
- Extract and widen (promote) the high/low part of a vector of
- unsigned integral elements. The input vector (operand 1) has N
- elements of size S. Widen (promote) the high/low elements of the
- vector using zero extension and place the resulting N/2 values of
- size 2*S in the output vector (operand 0).
-
-'vec_unpacks_float_hi_M', 'vec_unpacks_float_lo_M'
-'vec_unpacku_float_hi_M', 'vec_unpacku_float_lo_M'
- Extract, convert to floating point type and widen the high/low part
- of a vector of signed/unsigned integral elements. The input vector
- (operand 1) has N elements of size S. Convert the high/low
- elements of the vector using floating point conversion and place
- the resulting N/2 values of size 2*S in the output vector (operand
- 0).
-
-'vec_widen_umult_hi_M', 'vec_widen_umult_lo_M'
-'vec_widen_smult_hi_M', 'vec_widen_smult_lo_M'
-'vec_widen_umult_even_M', 'vec_widen_umult_odd_M'
-'vec_widen_smult_even_M', 'vec_widen_smult_odd_M'
- Signed/Unsigned widening multiplication. The two inputs (operands
- 1 and 2) are vectors with N signed/unsigned elements of size S.
- Multiply the high/low or even/odd elements of the two vectors, and
- put the N/2 products of size 2*S in the output vector (operand 0).
- A target shouldn't implement even/odd pattern pair if it is less
- efficient than lo/hi one.
-
-'vec_widen_ushiftl_hi_M', 'vec_widen_ushiftl_lo_M'
-'vec_widen_sshiftl_hi_M', 'vec_widen_sshiftl_lo_M'
- Signed/Unsigned widening shift left. The first input (operand 1)
- is a vector with N signed/unsigned elements of size S. Operand 2
- is a constant. Shift the high/low elements of operand 1, and put
- the N/2 results of size 2*S in the output vector (operand 0).
-
-'mulhisi3'
- Multiply operands 1 and 2, which have mode 'HImode', and store a
- 'SImode' product in operand 0.
-
-'mulqihi3', 'mulsidi3'
- Similar widening-multiplication instructions of other widths.
-
-'umulqihi3', 'umulhisi3', 'umulsidi3'
- Similar widening-multiplication instructions that do unsigned
- multiplication.
-
-'usmulqihi3', 'usmulhisi3', 'usmulsidi3'
- Similar widening-multiplication instructions that interpret the
- first operand as unsigned and the second operand as signed, then do
- a signed multiplication.
-
-'smulM3_highpart'
- Perform a signed multiplication of operands 1 and 2, which have
- mode M, and store the most significant half of the product in
- operand 0. The least significant half of the product is discarded.
-
-'umulM3_highpart'
- Similar, but the multiplication is unsigned.
-
-'maddMN4'
- Multiply operands 1 and 2, sign-extend them to mode N, add operand
- 3, and store the result in operand 0. Operands 1 and 2 have mode M
- and operands 0 and 3 have mode N. Both modes must be integer or
- fixed-point modes and N must be twice the size of M.
-
- In other words, 'maddMN4' is like 'mulMN3' except that it also adds
- operand 3.
-
- These instructions are not allowed to 'FAIL'.
-
-'umaddMN4'
- Like 'maddMN4', but zero-extend the multiplication operands instead
- of sign-extending them.
-
-'ssmaddMN4'
- Like 'maddMN4', but all involved operations must be
- signed-saturating.
-
-'usmaddMN4'
- Like 'umaddMN4', but all involved operations must be
- unsigned-saturating.
-
-'msubMN4'
- Multiply operands 1 and 2, sign-extend them to mode N, subtract the
- result from operand 3, and store the result in operand 0. Operands
- 1 and 2 have mode M and operands 0 and 3 have mode N. Both modes
- must be integer or fixed-point modes and N must be twice the size
- of M.
-
- In other words, 'msubMN4' is like 'mulMN3' except that it also
- subtracts the result from operand 3.
-
- These instructions are not allowed to 'FAIL'.
-
-'umsubMN4'
- Like 'msubMN4', but zero-extend the multiplication operands instead
- of sign-extending them.
-
-'ssmsubMN4'
- Like 'msubMN4', but all involved operations must be
- signed-saturating.
-
-'usmsubMN4'
- Like 'umsubMN4', but all involved operations must be
- unsigned-saturating.
-
-'divmodM4'
- Signed division that produces both a quotient and a remainder.
- Operand 1 is divided by operand 2 to produce a quotient stored in
- operand 0 and a remainder stored in operand 3.
-
- For machines with an instruction that produces both a quotient and
- a remainder, provide a pattern for 'divmodM4' but do not provide
- patterns for 'divM3' and 'modM3'. This allows optimization in the
- relatively common case when both the quotient and remainder are
- computed.
-
- If an instruction that just produces a quotient or just a remainder
- exists and is more efficient than the instruction that produces
- both, write the output routine of 'divmodM4' to call
- 'find_reg_note' and look for a 'REG_UNUSED' note on the quotient or
- remainder and generate the appropriate instruction.
-
-'udivmodM4'
- Similar, but does unsigned division.
-
-'ashlM3', 'ssashlM3', 'usashlM3'
- Arithmetic-shift operand 1 left by a number of bits specified by
- operand 2, and store the result in operand 0. Here M is the mode
- of operand 0 and operand 1; operand 2's mode is specified by the
- instruction pattern, and the compiler will convert the operand to
- that mode before generating the instruction. The meaning of
- out-of-range shift counts can optionally be specified by
- 'TARGET_SHIFT_TRUNCATION_MASK'. *Note
- TARGET_SHIFT_TRUNCATION_MASK::. Operand 2 is always a scalar type.
-
-'ashrM3', 'lshrM3', 'rotlM3', 'rotrM3'
- Other shift and rotate instructions, analogous to the 'ashlM3'
- instructions. Operand 2 is always a scalar type.
-
-'vashlM3', 'vashrM3', 'vlshrM3', 'vrotlM3', 'vrotrM3'
- Vector shift and rotate instructions that take vectors as operand 2
- instead of a scalar type.
-
-'bswapM2'
- Reverse the order of bytes of operand 1 and store the result in
- operand 0.
-
-'negM2', 'ssnegM2', 'usnegM2'
- Negate operand 1 and store the result in operand 0.
-
-'absM2'
- Store the absolute value of operand 1 into operand 0.
-
-'sqrtM2'
- Store the square root of operand 1 into operand 0.
-
- The 'sqrt' built-in function of C always uses the mode which
- corresponds to the C data type 'double' and the 'sqrtf' built-in
- function uses the mode which corresponds to the C data type
- 'float'.
-
-'fmodM3'
- Store the remainder of dividing operand 1 by operand 2 into operand
- 0, rounded towards zero to an integer.
-
- The 'fmod' built-in function of C always uses the mode which
- corresponds to the C data type 'double' and the 'fmodf' built-in
- function uses the mode which corresponds to the C data type
- 'float'.
-
-'remainderM3'
- Store the remainder of dividing operand 1 by operand 2 into operand
- 0, rounded to the nearest integer.
-
- The 'remainder' built-in function of C always uses the mode which
- corresponds to the C data type 'double' and the 'remainderf'
- built-in function uses the mode which corresponds to the C data
- type 'float'.
-
-'cosM2'
- Store the cosine of operand 1 into operand 0.
-
- The 'cos' built-in function of C always uses the mode which
- corresponds to the C data type 'double' and the 'cosf' built-in
- function uses the mode which corresponds to the C data type
- 'float'.
-
-'sinM2'
- Store the sine of operand 1 into operand 0.
-
- The 'sin' built-in function of C always uses the mode which
- corresponds to the C data type 'double' and the 'sinf' built-in
- function uses the mode which corresponds to the C data type
- 'float'.
-
-'sincosM3'
- Store the cosine of operand 2 into operand 0 and the sine of
- operand 2 into operand 1.
-
- The 'sin' and 'cos' built-in functions of C always use the mode
- which corresponds to the C data type 'double' and the 'sinf' and
- 'cosf' built-in function use the mode which corresponds to the C
- data type 'float'. Targets that can calculate the sine and cosine
- simultaneously can implement this pattern as opposed to
- implementing individual 'sinM2' and 'cosM2' patterns. The 'sin'
- and 'cos' built-in functions will then be expanded to the
- 'sincosM3' pattern, with one of the output values left unused.
-
-'expM2'
- Store the exponential of operand 1 into operand 0.
-
- The 'exp' built-in function of C always uses the mode which
- corresponds to the C data type 'double' and the 'expf' built-in
- function uses the mode which corresponds to the C data type
- 'float'.
-
-'logM2'
- Store the natural logarithm of operand 1 into operand 0.
-
- The 'log' built-in function of C always uses the mode which
- corresponds to the C data type 'double' and the 'logf' built-in
- function uses the mode which corresponds to the C data type
- 'float'.
-
-'powM3'
- Store the value of operand 1 raised to the exponent operand 2 into
- operand 0.
-
- The 'pow' built-in function of C always uses the mode which
- corresponds to the C data type 'double' and the 'powf' built-in
- function uses the mode which corresponds to the C data type
- 'float'.
-
-'atan2M3'
- Store the arc tangent (inverse tangent) of operand 1 divided by
- operand 2 into operand 0, using the signs of both arguments to
- determine the quadrant of the result.
-
- The 'atan2' built-in function of C always uses the mode which
- corresponds to the C data type 'double' and the 'atan2f' built-in
- function uses the mode which corresponds to the C data type
- 'float'.
-
-'floorM2'
- Store the largest integral value not greater than argument.
-
- The 'floor' built-in function of C always uses the mode which
- corresponds to the C data type 'double' and the 'floorf' built-in
- function uses the mode which corresponds to the C data type
- 'float'.
-
-'btruncM2'
- Store the argument rounded to integer towards zero.
-
- The 'trunc' built-in function of C always uses the mode which
- corresponds to the C data type 'double' and the 'truncf' built-in
- function uses the mode which corresponds to the C data type
- 'float'.
-
-'roundM2'
- Store the argument rounded to integer away from zero.
-
- The 'round' built-in function of C always uses the mode which
- corresponds to the C data type 'double' and the 'roundf' built-in
- function uses the mode which corresponds to the C data type
- 'float'.
-
-'ceilM2'
- Store the argument rounded to integer away from zero.
-
- The 'ceil' built-in function of C always uses the mode which
- corresponds to the C data type 'double' and the 'ceilf' built-in
- function uses the mode which corresponds to the C data type
- 'float'.
-
-'nearbyintM2'
- Store the argument rounded according to the default rounding mode
-
- The 'nearbyint' built-in function of C always uses the mode which
- corresponds to the C data type 'double' and the 'nearbyintf'
- built-in function uses the mode which corresponds to the C data
- type 'float'.
-
-'rintM2'
- Store the argument rounded according to the default rounding mode
- and raise the inexact exception when the result differs in value
- from the argument
-
- The 'rint' built-in function of C always uses the mode which
- corresponds to the C data type 'double' and the 'rintf' built-in
- function uses the mode which corresponds to the C data type
- 'float'.
-
-'lrintMN2'
- Convert operand 1 (valid for floating point mode M) to fixed point
- mode N as a signed number according to the current rounding mode
- and store in operand 0 (which has mode N).
-
-'lroundMN2'
- Convert operand 1 (valid for floating point mode M) to fixed point
- mode N as a signed number rounding to nearest and away from zero
- and store in operand 0 (which has mode N).
-
-'lfloorMN2'
- Convert operand 1 (valid for floating point mode M) to fixed point
- mode N as a signed number rounding down and store in operand 0
- (which has mode N).
-
-'lceilMN2'
- Convert operand 1 (valid for floating point mode M) to fixed point
- mode N as a signed number rounding up and store in operand 0 (which
- has mode N).
-
-'copysignM3'
- Store a value with the magnitude of operand 1 and the sign of
- operand 2 into operand 0.
-
- The 'copysign' built-in function of C always uses the mode which
- corresponds to the C data type 'double' and the 'copysignf'
- built-in function uses the mode which corresponds to the C data
- type 'float'.
-
-'ffsM2'
- Store into operand 0 one plus the index of the least significant
- 1-bit of operand 1. If operand 1 is zero, store zero. M is the
- mode of operand 0; operand 1's mode is specified by the instruction
- pattern, and the compiler will convert the operand to that mode
- before generating the instruction.
-
- The 'ffs' built-in function of C always uses the mode which
- corresponds to the C data type 'int'.
-
-'clzM2'
- Store into operand 0 the number of leading 0-bits in X, starting at
- the most significant bit position. If X is 0, the
- 'CLZ_DEFINED_VALUE_AT_ZERO' (*note Misc::) macro defines if the
- result is undefined or has a useful value. M is the mode of
- operand 0; operand 1's mode is specified by the instruction
- pattern, and the compiler will convert the operand to that mode
- before generating the instruction.
-
-'ctzM2'
- Store into operand 0 the number of trailing 0-bits in X, starting
- at the least significant bit position. If X is 0, the
- 'CTZ_DEFINED_VALUE_AT_ZERO' (*note Misc::) macro defines if the
- result is undefined or has a useful value. M is the mode of
- operand 0; operand 1's mode is specified by the instruction
- pattern, and the compiler will convert the operand to that mode
- before generating the instruction.
-
-'popcountM2'
- Store into operand 0 the number of 1-bits in X. M is the mode of
- operand 0; operand 1's mode is specified by the instruction
- pattern, and the compiler will convert the operand to that mode
- before generating the instruction.
-
-'parityM2'
- Store into operand 0 the parity of X, i.e. the number of 1-bits in
- X modulo 2. M is the mode of operand 0; operand 1's mode is
- specified by the instruction pattern, and the compiler will convert
- the operand to that mode before generating the instruction.
-
-'one_cmplM2'
- Store the bitwise-complement of operand 1 into operand 0.
-
-'movmemM'
- Block move instruction. The destination and source blocks of
- memory are the first two operands, and both are 'mem:BLK's with an
- address in mode 'Pmode'.
-
- The number of bytes to move is the third operand, in mode M.
- Usually, you specify 'Pmode' for M. However, if you can generate
- better code knowing the range of valid lengths is smaller than
- those representable in a full Pmode pointer, you should provide a
- pattern with a mode corresponding to the range of values you can
- handle efficiently (e.g., 'QImode' for values in the range 0-127;
- note we avoid numbers that appear negative) and also a pattern with
- 'Pmode'.
-
- The fourth operand is the known shared alignment of the source and
- destination, in the form of a 'const_int' rtx. Thus, if the
- compiler knows that both source and destination are word-aligned,
- it may provide the value 4 for this operand.
-
- Optional operands 5 and 6 specify expected alignment and size of
- block respectively. The expected alignment differs from alignment
- in operand 4 in a way that the blocks are not required to be
- aligned according to it in all cases. This expected alignment is
- also in bytes, just like operand 4. Expected size, when unknown,
- is set to '(const_int -1)'.
-
- Descriptions of multiple 'movmemM' patterns can only be beneficial
- if the patterns for smaller modes have fewer restrictions on their
- first, second and fourth operands. Note that the mode M in
- 'movmemM' does not impose any restriction on the mode of
- individually moved data units in the block.
-
- These patterns need not give special consideration to the
- possibility that the source and destination strings might overlap.
-
-'movstr'
- String copy instruction, with 'stpcpy' semantics. Operand 0 is an
- output operand in mode 'Pmode'. The addresses of the destination
- and source strings are operands 1 and 2, and both are 'mem:BLK's
- with addresses in mode 'Pmode'. The execution of the expansion of
- this pattern should store in operand 0 the address in which the
- 'NUL' terminator was stored in the destination string.
-
- This patern has also several optional operands that are same as in
- 'setmem'.
-
-'setmemM'
- Block set instruction. The destination string is the first
- operand, given as a 'mem:BLK' whose address is in mode 'Pmode'.
- The number of bytes to set is the second operand, in mode M. The
- value to initialize the memory with is the third operand. Targets
- that only support the clearing of memory should reject any value
- that is not the constant 0. See 'movmemM' for a discussion of the
- choice of mode.
-
- The fourth operand is the known alignment of the destination, in
- the form of a 'const_int' rtx. Thus, if the compiler knows that
- the destination is word-aligned, it may provide the value 4 for
- this operand.
-
- Optional operands 5 and 6 specify expected alignment and size of
- block respectively. The expected alignment differs from alignment
- in operand 4 in a way that the blocks are not required to be
- aligned according to it in all cases. This expected alignment is
- also in bytes, just like operand 4. Expected size, when unknown,
- is set to '(const_int -1)'. Operand 7 is the minimal size of the
- block and operand 8 is the maximal size of the block (NULL if it
- can not be represented as CONST_INT). Operand 9 is the probable
- maximal size (i.e. we can not rely on it for correctness, but it
- can be used for choosing proper code sequence for a given size).
-
- The use for multiple 'setmemM' is as for 'movmemM'.
-
-'cmpstrnM'
- String compare instruction, with five operands. Operand 0 is the
- output; it has mode M. The remaining four operands are like the
- operands of 'movmemM'. The two memory blocks specified are
- compared byte by byte in lexicographic order starting at the
- beginning of each string. The instruction is not allowed to
- prefetch more than one byte at a time since either string may end
- in the first byte and reading past that may access an invalid page
- or segment and cause a fault. The comparison terminates early if
- the fetched bytes are different or if they are equal to zero. The
- effect of the instruction is to store a value in operand 0 whose
- sign indicates the result of the comparison.
-
-'cmpstrM'
- String compare instruction, without known maximum length. Operand
- 0 is the output; it has mode M. The second and third operand are
- the blocks of memory to be compared; both are 'mem:BLK' with an
- address in mode 'Pmode'.
-
- The fourth operand is the known shared alignment of the source and
- destination, in the form of a 'const_int' rtx. Thus, if the
- compiler knows that both source and destination are word-aligned,
- it may provide the value 4 for this operand.
-
- The two memory blocks specified are compared byte by byte in
- lexicographic order starting at the beginning of each string. The
- instruction is not allowed to prefetch more than one byte at a time
- since either string may end in the first byte and reading past that
- may access an invalid page or segment and cause a fault. The
- comparison will terminate when the fetched bytes are different or
- if they are equal to zero. The effect of the instruction is to
- store a value in operand 0 whose sign indicates the result of the
- comparison.
-
-'cmpmemM'
- Block compare instruction, with five operands like the operands of
- 'cmpstrM'. The two memory blocks specified are compared byte by
- byte in lexicographic order starting at the beginning of each
- block. Unlike 'cmpstrM' the instruction can prefetch any bytes in
- the two memory blocks. Also unlike 'cmpstrM' the comparison will
- not stop if both bytes are zero. The effect of the instruction is
- to store a value in operand 0 whose sign indicates the result of
- the comparison.
-
-'strlenM'
- Compute the length of a string, with three operands. Operand 0 is
- the result (of mode M), operand 1 is a 'mem' referring to the first
- character of the string, operand 2 is the character to search for
- (normally zero), and operand 3 is a constant describing the known
- alignment of the beginning of the string.
-
-'floatMN2'
- Convert signed integer operand 1 (valid for fixed point mode M) to
- floating point mode N and store in operand 0 (which has mode N).
-
-'floatunsMN2'
- Convert unsigned integer operand 1 (valid for fixed point mode M)
- to floating point mode N and store in operand 0 (which has mode N).
-
-'fixMN2'
- Convert operand 1 (valid for floating point mode M) to fixed point
- mode N as a signed number and store in operand 0 (which has mode
- N). This instruction's result is defined only when the value of
- operand 1 is an integer.
-
- If the machine description defines this pattern, it also needs to
- define the 'ftrunc' pattern.
-
-'fixunsMN2'
- Convert operand 1 (valid for floating point mode M) to fixed point
- mode N as an unsigned number and store in operand 0 (which has mode
- N). This instruction's result is defined only when the value of
- operand 1 is an integer.
-
-'ftruncM2'
- Convert operand 1 (valid for floating point mode M) to an integer
- value, still represented in floating point mode M, and store it in
- operand 0 (valid for floating point mode M).
-
-'fix_truncMN2'
- Like 'fixMN2' but works for any floating point value of mode M by
- converting the value to an integer.
-
-'fixuns_truncMN2'
- Like 'fixunsMN2' but works for any floating point value of mode M
- by converting the value to an integer.
-
-'truncMN2'
- Truncate operand 1 (valid for mode M) to mode N and store in
- operand 0 (which has mode N). Both modes must be fixed point or
- both floating point.
-
-'extendMN2'
- Sign-extend operand 1 (valid for mode M) to mode N and store in
- operand 0 (which has mode N). Both modes must be fixed point or
- both floating point.
-
-'zero_extendMN2'
- Zero-extend operand 1 (valid for mode M) to mode N and store in
- operand 0 (which has mode N). Both modes must be fixed point.
-
-'fractMN2'
- Convert operand 1 of mode M to mode N and store in operand 0 (which
- has mode N). Mode M and mode N could be fixed-point to
- fixed-point, signed integer to fixed-point, fixed-point to signed
- integer, floating-point to fixed-point, or fixed-point to
- floating-point. When overflows or underflows happen, the results
- are undefined.
-
-'satfractMN2'
- Convert operand 1 of mode M to mode N and store in operand 0 (which
- has mode N). Mode M and mode N could be fixed-point to
- fixed-point, signed integer to fixed-point, or floating-point to
- fixed-point. When overflows or underflows happen, the instruction
- saturates the results to the maximum or the minimum.
-
-'fractunsMN2'
- Convert operand 1 of mode M to mode N and store in operand 0 (which
- has mode N). Mode M and mode N could be unsigned integer to
- fixed-point, or fixed-point to unsigned integer. When overflows or
- underflows happen, the results are undefined.
-
-'satfractunsMN2'
- Convert unsigned integer operand 1 of mode M to fixed-point mode N
- and store in operand 0 (which has mode N). When overflows or
- underflows happen, the instruction saturates the results to the
- maximum or the minimum.
-
-'extvM'
- Extract a bit-field from register operand 1, sign-extend it, and
- store it in operand 0. Operand 2 specifies the width of the field
- in bits and operand 3 the starting bit, which counts from the most
- significant bit if 'BITS_BIG_ENDIAN' is true and from the least
- significant bit otherwise.
-
- Operands 0 and 1 both have mode M. Operands 2 and 3 have a
- target-specific mode.
-
-'extvmisalignM'
- Extract a bit-field from memory operand 1, sign extend it, and
- store it in operand 0. Operand 2 specifies the width in bits and
- operand 3 the starting bit. The starting bit is always somewhere
- in the first byte of operand 1; it counts from the most significant
- bit if 'BITS_BIG_ENDIAN' is true and from the least significant bit
- otherwise.
-
- Operand 0 has mode M while operand 1 has 'BLK' mode. Operands 2
- and 3 have a target-specific mode.
-
- The instruction must not read beyond the last byte of the
- bit-field.
-
-'extzvM'
- Like 'extvM' except that the bit-field value is zero-extended.
-
-'extzvmisalignM'
- Like 'extvmisalignM' except that the bit-field value is
- zero-extended.
-
-'insvM'
- Insert operand 3 into a bit-field of register operand 0. Operand 1
- specifies the width of the field in bits and operand 2 the starting
- bit, which counts from the most significant bit if
- 'BITS_BIG_ENDIAN' is true and from the least significant bit
- otherwise.
-
- Operands 0 and 3 both have mode M. Operands 1 and 2 have a
- target-specific mode.
-
-'insvmisalignM'
- Insert operand 3 into a bit-field of memory operand 0. Operand 1
- specifies the width of the field in bits and operand 2 the starting
- bit. The starting bit is always somewhere in the first byte of
- operand 0; it counts from the most significant bit if
- 'BITS_BIG_ENDIAN' is true and from the least significant bit
- otherwise.
-
- Operand 3 has mode M while operand 0 has 'BLK' mode. Operands 1
- and 2 have a target-specific mode.
-
- The instruction must not read or write beyond the last byte of the
- bit-field.
-
-'extv'
- Extract a bit-field from operand 1 (a register or memory operand),
- where operand 2 specifies the width in bits and operand 3 the
- starting bit, and store it in operand 0. Operand 0 must have mode
- 'word_mode'. Operand 1 may have mode 'byte_mode' or 'word_mode';
- often 'word_mode' is allowed only for registers. Operands 2 and 3
- must be valid for 'word_mode'.
-
- The RTL generation pass generates this instruction only with
- constants for operands 2 and 3 and the constant is never zero for
- operand 2.
-
- The bit-field value is sign-extended to a full word integer before
- it is stored in operand 0.
-
- This pattern is deprecated; please use 'extvM' and 'extvmisalignM'
- instead.
-
-'extzv'
- Like 'extv' except that the bit-field value is zero-extended.
-
- This pattern is deprecated; please use 'extzvM' and
- 'extzvmisalignM' instead.
-
-'insv'
- Store operand 3 (which must be valid for 'word_mode') into a
- bit-field in operand 0, where operand 1 specifies the width in bits
- and operand 2 the starting bit. Operand 0 may have mode
- 'byte_mode' or 'word_mode'; often 'word_mode' is allowed only for
- registers. Operands 1 and 2 must be valid for 'word_mode'.
-
- The RTL generation pass generates this instruction only with
- constants for operands 1 and 2 and the constant is never zero for
- operand 1.
-
- This pattern is deprecated; please use 'insvM' and 'insvmisalignM'
- instead.
-
-'movMODEcc'
- Conditionally move operand 2 or operand 3 into operand 0 according
- to the comparison in operand 1. If the comparison is true, operand
- 2 is moved into operand 0, otherwise operand 3 is moved.
-
- The mode of the operands being compared need not be the same as the
- operands being moved. Some machines, sparc64 for example, have
- instructions that conditionally move an integer value based on the
- floating point condition codes and vice versa.
-
- If the machine does not have conditional move instructions, do not
- define these patterns.
-
-'addMODEcc'
- Similar to 'movMODEcc' but for conditional addition. Conditionally
- move operand 2 or (operands 2 + operand 3) into operand 0 according
- to the comparison in operand 1. If the comparison is false,
- operand 2 is moved into operand 0, otherwise (operand 2 + operand
- 3) is moved.
-
-'cstoreMODE4'
- Store zero or nonzero in operand 0 according to whether a
- comparison is true. Operand 1 is a comparison operator. Operand 2
- and operand 3 are the first and second operand of the comparison,
- respectively. You specify the mode that operand 0 must have when
- you write the 'match_operand' expression. The compiler
- automatically sees which mode you have used and supplies an operand
- of that mode.
-
- The value stored for a true condition must have 1 as its low bit,
- or else must be negative. Otherwise the instruction is not
- suitable and you should omit it from the machine description. You
- describe to the compiler exactly which value is stored by defining
- the macro 'STORE_FLAG_VALUE' (*note Misc::). If a description
- cannot be found that can be used for all the possible comparison
- operators, you should pick one and use a 'define_expand' to map all
- results onto the one you chose.
-
- These operations may 'FAIL', but should do so only in relatively
- uncommon cases; if they would 'FAIL' for common cases involving
- integer comparisons, it is best to restrict the predicates to not
- allow these operands. Likewise if a given comparison operator will
- always fail, independent of the operands (for floating-point modes,
- the 'ordered_comparison_operator' predicate is often useful in this
- case).
-
- If this pattern is omitted, the compiler will generate a
- conditional branch--for example, it may copy a constant one to the
- target and branching around an assignment of zero to the target--or
- a libcall. If the predicate for operand 1 only rejects some
- operators, it will also try reordering the operands and/or
- inverting the result value (e.g. by an exclusive OR). These
- possibilities could be cheaper or equivalent to the instructions
- used for the 'cstoreMODE4' pattern followed by those required to
- convert a positive result from 'STORE_FLAG_VALUE' to 1; in this
- case, you can and should make operand 1's predicate reject some
- operators in the 'cstoreMODE4' pattern, or remove the pattern
- altogether from the machine description.
-
-'cbranchMODE4'
- Conditional branch instruction combined with a compare instruction.
- Operand 0 is a comparison operator. Operand 1 and operand 2 are
- the first and second operands of the comparison, respectively.
- Operand 3 is a 'label_ref' that refers to the label to jump to.
-
-'jump'
- A jump inside a function; an unconditional branch. Operand 0 is
- the 'label_ref' of the label to jump to. This pattern name is
- mandatory on all machines.
-
-'call'
- Subroutine call instruction returning no value. Operand 0 is the
- function to call; operand 1 is the number of bytes of arguments
- pushed as a 'const_int'; operand 2 is the number of registers used
- as operands.
-
- On most machines, operand 2 is not actually stored into the RTL
- pattern. It is supplied for the sake of some RISC machines which
- need to put this information into the assembler code; they can put
- it in the RTL instead of operand 1.
-
- Operand 0 should be a 'mem' RTX whose address is the address of the
- function. Note, however, that this address can be a 'symbol_ref'
- expression even if it would not be a legitimate memory address on
- the target machine. If it is also not a valid argument for a call
- instruction, the pattern for this operation should be a
- 'define_expand' (*note Expander Definitions::) that places the
- address into a register and uses that register in the call
- instruction.
-
-'call_value'
- Subroutine call instruction returning a value. Operand 0 is the
- hard register in which the value is returned. There are three more
- operands, the same as the three operands of the 'call' instruction
- (but with numbers increased by one).
-
- Subroutines that return 'BLKmode' objects use the 'call' insn.
-
-'call_pop', 'call_value_pop'
- Similar to 'call' and 'call_value', except used if defined and if
- 'RETURN_POPS_ARGS' is nonzero. They should emit a 'parallel' that
- contains both the function call and a 'set' to indicate the
- adjustment made to the frame pointer.
-
- For machines where 'RETURN_POPS_ARGS' can be nonzero, the use of
- these patterns increases the number of functions for which the
- frame pointer can be eliminated, if desired.
-
-'untyped_call'
- Subroutine call instruction returning a value of any type. Operand
- 0 is the function to call; operand 1 is a memory location where the
- result of calling the function is to be stored; operand 2 is a
- 'parallel' expression where each element is a 'set' expression that
- indicates the saving of a function return value into the result
- block.
-
- This instruction pattern should be defined to support
- '__builtin_apply' on machines where special instructions are needed
- to call a subroutine with arbitrary arguments or to save the value
- returned. This instruction pattern is required on machines that
- have multiple registers that can hold a return value (i.e.
- 'FUNCTION_VALUE_REGNO_P' is true for more than one register).
-
-'return'
- Subroutine return instruction. This instruction pattern name
- should be defined only if a single instruction can do all the work
- of returning from a function.
-
- Like the 'movM' patterns, this pattern is also used after the RTL
- generation phase. In this case it is to support machines where
- multiple instructions are usually needed to return from a function,
- but some class of functions only requires one instruction to
- implement a return. Normally, the applicable functions are those
- which do not need to save any registers or allocate stack space.
-
- It is valid for this pattern to expand to an instruction using
- 'simple_return' if no epilogue is required.
-
-'simple_return'
- Subroutine return instruction. This instruction pattern name
- should be defined only if a single instruction can do all the work
- of returning from a function on a path where no epilogue is
- required. This pattern is very similar to the 'return' instruction
- pattern, but it is emitted only by the shrink-wrapping optimization
- on paths where the function prologue has not been executed, and a
- function return should occur without any of the effects of the
- epilogue. Additional uses may be introduced on paths where both
- the prologue and the epilogue have executed.
-
- For such machines, the condition specified in this pattern should
- only be true when 'reload_completed' is nonzero and the function's
- epilogue would only be a single instruction. For machines with
- register windows, the routine 'leaf_function_p' may be used to
- determine if a register window push is required.
-
- Machines that have conditional return instructions should define
- patterns such as
-
- (define_insn ""
- [(set (pc)
- (if_then_else (match_operator
- 0 "comparison_operator"
- [(cc0) (const_int 0)])
- (return)
- (pc)))]
- "CONDITION"
- "...")
-
- where CONDITION would normally be the same condition specified on
- the named 'return' pattern.
-
-'untyped_return'
- Untyped subroutine return instruction. This instruction pattern
- should be defined to support '__builtin_return' on machines where
- special instructions are needed to return a value of any type.
-
- Operand 0 is a memory location where the result of calling a
- function with '__builtin_apply' is stored; operand 1 is a
- 'parallel' expression where each element is a 'set' expression that
- indicates the restoring of a function return value from the result
- block.
-
-'nop'
- No-op instruction. This instruction pattern name should always be
- defined to output a no-op in assembler code. '(const_int 0)' will
- do as an RTL pattern.
-
-'indirect_jump'
- An instruction to jump to an address which is operand zero. This
- pattern name is mandatory on all machines.
-
-'casesi'
- Instruction to jump through a dispatch table, including bounds
- checking. This instruction takes five operands:
-
- 1. The index to dispatch on, which has mode 'SImode'.
-
- 2. The lower bound for indices in the table, an integer constant.
-
- 3. The total range of indices in the table--the largest index
- minus the smallest one (both inclusive).
-
- 4. A label that precedes the table itself.
-
- 5. A label to jump to if the index has a value outside the
- bounds.
-
- The table is an 'addr_vec' or 'addr_diff_vec' inside of a
- 'jump_table_data'. The number of elements in the table is one plus
- the difference between the upper bound and the lower bound.
-
-'tablejump'
- Instruction to jump to a variable address. This is a low-level
- capability which can be used to implement a dispatch table when
- there is no 'casesi' pattern.
-
- This pattern requires two operands: the address or offset, and a
- label which should immediately precede the jump table. If the
- macro 'CASE_VECTOR_PC_RELATIVE' evaluates to a nonzero value then
- the first operand is an offset which counts from the address of the
- table; otherwise, it is an absolute address to jump to. In either
- case, the first operand has mode 'Pmode'.
-
- The 'tablejump' insn is always the last insn before the jump table
- it uses. Its assembler code normally has no need to use the second
- operand, but you should incorporate it in the RTL pattern so that
- the jump optimizer will not delete the table as unreachable code.
-
-'decrement_and_branch_until_zero'
- Conditional branch instruction that decrements a register and jumps
- if the register is nonzero. Operand 0 is the register to decrement
- and test; operand 1 is the label to jump to if the register is
- nonzero. *Note Looping Patterns::.
-
- This optional instruction pattern is only used by the combiner,
- typically for loops reversed by the loop optimizer when strength
- reduction is enabled.
-
-'doloop_end'
- Conditional branch instruction that decrements a register and jumps
- if the register is nonzero. Operand 0 is the register to decrement
- and test; operand 1 is the label to jump to if the register is
- nonzero. *Note Looping Patterns::.
-
- This optional instruction pattern should be defined for machines
- with low-overhead looping instructions as the loop optimizer will
- try to modify suitable loops to utilize it. The target hook
- 'TARGET_CAN_USE_DOLOOP_P' controls the conditions under which
- low-overhead loops can be used.
-
-'doloop_begin'
- Companion instruction to 'doloop_end' required for machines that
- need to perform some initialization, such as loading a special
- counter register. Operand 1 is the associated 'doloop_end' pattern
- and operand 0 is the register that it decrements.
-
- If initialization insns do not always need to be emitted, use a
- 'define_expand' (*note Expander Definitions::) and make it fail.
-
-'canonicalize_funcptr_for_compare'
- Canonicalize the function pointer in operand 1 and store the result
- into operand 0.
-
- Operand 0 is always a 'reg' and has mode 'Pmode'; operand 1 may be
- a 'reg', 'mem', 'symbol_ref', 'const_int', etc and also has mode
- 'Pmode'.
-
- Canonicalization of a function pointer usually involves computing
- the address of the function which would be called if the function
- pointer were used in an indirect call.
-
- Only define this pattern if function pointers on the target machine
- can have different values but still call the same function when
- used in an indirect call.
-
-'save_stack_block'
-'save_stack_function'
-'save_stack_nonlocal'
-'restore_stack_block'
-'restore_stack_function'
-'restore_stack_nonlocal'
- Most machines save and restore the stack pointer by copying it to
- or from an object of mode 'Pmode'. Do not define these patterns on
- such machines.
-
- Some machines require special handling for stack pointer saves and
- restores. On those machines, define the patterns corresponding to
- the non-standard cases by using a 'define_expand' (*note Expander
- Definitions::) that produces the required insns. The three types
- of saves and restores are:
-
- 1. 'save_stack_block' saves the stack pointer at the start of a
- block that allocates a variable-sized object, and
- 'restore_stack_block' restores the stack pointer when the
- block is exited.
-
- 2. 'save_stack_function' and 'restore_stack_function' do a
- similar job for the outermost block of a function and are used
- when the function allocates variable-sized objects or calls
- 'alloca'. Only the epilogue uses the restored stack pointer,
- allowing a simpler save or restore sequence on some machines.
-
- 3. 'save_stack_nonlocal' is used in functions that contain labels
- branched to by nested functions. It saves the stack pointer
- in such a way that the inner function can use
- 'restore_stack_nonlocal' to restore the stack pointer. The
- compiler generates code to restore the frame and argument
- pointer registers, but some machines require saving and
- restoring additional data such as register window information
- or stack backchains. Place insns in these patterns to save
- and restore any such required data.
-
- When saving the stack pointer, operand 0 is the save area and
- operand 1 is the stack pointer. The mode used to allocate the save
- area defaults to 'Pmode' but you can override that choice by
- defining the 'STACK_SAVEAREA_MODE' macro (*note Storage Layout::).
- You must specify an integral mode, or 'VOIDmode' if no save area is
- needed for a particular type of save (either because no save is
- needed or because a machine-specific save area can be used).
- Operand 0 is the stack pointer and operand 1 is the save area for
- restore operations. If 'save_stack_block' is defined, operand 0
- must not be 'VOIDmode' since these saves can be arbitrarily nested.
-
- A save area is a 'mem' that is at a constant offset from
- 'virtual_stack_vars_rtx' when the stack pointer is saved for use by
- nonlocal gotos and a 'reg' in the other two cases.
-
-'allocate_stack'
- Subtract (or add if 'STACK_GROWS_DOWNWARD' is undefined) operand 1
- from the stack pointer to create space for dynamically allocated
- data.
-
- Store the resultant pointer to this space into operand 0. If you
- are allocating space from the main stack, do this by emitting a
- move insn to copy 'virtual_stack_dynamic_rtx' to operand 0. If you
- are allocating the space elsewhere, generate code to copy the
- location of the space to operand 0. In the latter case, you must
- ensure this space gets freed when the corresponding space on the
- main stack is free.
-
- Do not define this pattern if all that must be done is the
- subtraction. Some machines require other operations such as stack
- probes or maintaining the back chain. Define this pattern to emit
- those operations in addition to updating the stack pointer.
-
-'check_stack'
- If stack checking (*note Stack Checking::) cannot be done on your
- system by probing the stack, define this pattern to perform the
- needed check and signal an error if the stack has overflowed. The
- single operand is the address in the stack farthest from the
- current stack pointer that you need to validate. Normally, on
- platforms where this pattern is needed, you would obtain the stack
- limit from a global or thread-specific variable or register.
-
-'probe_stack_address'
- If stack checking (*note Stack Checking::) can be done on your
- system by probing the stack but without the need to actually access
- it, define this pattern and signal an error if the stack has
- overflowed. The single operand is the memory address in the stack
- that needs to be probed.
-
-'probe_stack'
- If stack checking (*note Stack Checking::) can be done on your
- system by probing the stack but doing it with a "store zero"
- instruction is not valid or optimal, define this pattern to do the
- probing differently and signal an error if the stack has
- overflowed. The single operand is the memory reference in the
- stack that needs to be probed.
-
-'nonlocal_goto'
- Emit code to generate a non-local goto, e.g., a jump from one
- function to a label in an outer function. This pattern has four
- arguments, each representing a value to be used in the jump. The
- first argument is to be loaded into the frame pointer, the second
- is the address to branch to (code to dispatch to the actual label),
- the third is the address of a location where the stack is saved,
- and the last is the address of the label, to be placed in the
- location for the incoming static chain.
-
- On most machines you need not define this pattern, since GCC will
- already generate the correct code, which is to load the frame
- pointer and static chain, restore the stack (using the
- 'restore_stack_nonlocal' pattern, if defined), and jump indirectly
- to the dispatcher. You need only define this pattern if this code
- will not work on your machine.
-
-'nonlocal_goto_receiver'
- This pattern, if defined, contains code needed at the target of a
- nonlocal goto after the code already generated by GCC. You will
- not normally need to define this pattern. A typical reason why you
- might need this pattern is if some value, such as a pointer to a
- global table, must be restored when the frame pointer is restored.
- Note that a nonlocal goto only occurs within a unit-of-translation,
- so a global table pointer that is shared by all functions of a
- given module need not be restored. There are no arguments.
-
-'exception_receiver'
- This pattern, if defined, contains code needed at the site of an
- exception handler that isn't needed at the site of a nonlocal goto.
- You will not normally need to define this pattern. A typical
- reason why you might need this pattern is if some value, such as a
- pointer to a global table, must be restored after control flow is
- branched to the handler of an exception. There are no arguments.
-
-'builtin_setjmp_setup'
- This pattern, if defined, contains additional code needed to
- initialize the 'jmp_buf'. You will not normally need to define
- this pattern. A typical reason why you might need this pattern is
- if some value, such as a pointer to a global table, must be
- restored. Though it is preferred that the pointer value be
- recalculated if possible (given the address of a label for
- instance). The single argument is a pointer to the 'jmp_buf'.
- Note that the buffer is five words long and that the first three
- are normally used by the generic mechanism.
-
-'builtin_setjmp_receiver'
- This pattern, if defined, contains code needed at the site of a
- built-in setjmp that isn't needed at the site of a nonlocal goto.
- You will not normally need to define this pattern. A typical
- reason why you might need this pattern is if some value, such as a
- pointer to a global table, must be restored. It takes one
- argument, which is the label to which builtin_longjmp transferred
- control; this pattern may be emitted at a small offset from that
- label.
-
-'builtin_longjmp'
- This pattern, if defined, performs the entire action of the
- longjmp. You will not normally need to define this pattern unless
- you also define 'builtin_setjmp_setup'. The single argument is a
- pointer to the 'jmp_buf'.
-
-'eh_return'
- This pattern, if defined, affects the way '__builtin_eh_return',
- and thence the call frame exception handling library routines, are
- built. It is intended to handle non-trivial actions needed along
- the abnormal return path.
-
- The address of the exception handler to which the function should
- return is passed as operand to this pattern. It will normally need
- to copied by the pattern to some special register or memory
- location. If the pattern needs to determine the location of the
- target call frame in order to do so, it may use
- 'EH_RETURN_STACKADJ_RTX', if defined; it will have already been
- assigned.
-
- If this pattern is not defined, the default action will be to
- simply copy the return address to 'EH_RETURN_HANDLER_RTX'. Either
- that macro or this pattern needs to be defined if call frame
- exception handling is to be used.
-
-'prologue'
- This pattern, if defined, emits RTL for entry to a function. The
- function entry is responsible for setting up the stack frame,
- initializing the frame pointer register, saving callee saved
- registers, etc.
-
- Using a prologue pattern is generally preferred over defining
- 'TARGET_ASM_FUNCTION_PROLOGUE' to emit assembly code for the
- prologue.
-
- The 'prologue' pattern is particularly useful for targets which
- perform instruction scheduling.
-
-'window_save'
- This pattern, if defined, emits RTL for a register window save. It
- should be defined if the target machine has register windows but
- the window events are decoupled from calls to subroutines. The
- canonical example is the SPARC architecture.
-
-'epilogue'
- This pattern emits RTL for exit from a function. The function exit
- is responsible for deallocating the stack frame, restoring callee
- saved registers and emitting the return instruction.
-
- Using an epilogue pattern is generally preferred over defining
- 'TARGET_ASM_FUNCTION_EPILOGUE' to emit assembly code for the
- epilogue.
-
- The 'epilogue' pattern is particularly useful for targets which
- perform instruction scheduling or which have delay slots for their
- return instruction.
-
-'sibcall_epilogue'
- This pattern, if defined, emits RTL for exit from a function
- without the final branch back to the calling function. This
- pattern will be emitted before any sibling call (aka tail call)
- sites.
-
- The 'sibcall_epilogue' pattern must not clobber any arguments used
- for parameter passing or any stack slots for arguments passed to
- the current function.
-
-'trap'
- This pattern, if defined, signals an error, typically by causing
- some kind of signal to be raised. Among other places, it is used
- by the Java front end to signal 'invalid array index' exceptions.
-
-'ctrapMM4'
- Conditional trap instruction. Operand 0 is a piece of RTL which
- performs a comparison, and operands 1 and 2 are the arms of the
- comparison. Operand 3 is the trap code, an integer.
-
- A typical 'ctrap' pattern looks like
-
- (define_insn "ctrapsi4"
- [(trap_if (match_operator 0 "trap_operator"
- [(match_operand 1 "register_operand")
- (match_operand 2 "immediate_operand")])
- (match_operand 3 "const_int_operand" "i"))]
- ""
- "...")
-
-'prefetch'
-
- This pattern, if defined, emits code for a non-faulting data
- prefetch instruction. Operand 0 is the address of the memory to
- prefetch. Operand 1 is a constant 1 if the prefetch is preparing
- for a write to the memory address, or a constant 0 otherwise.
- Operand 2 is the expected degree of temporal locality of the data
- and is a value between 0 and 3, inclusive; 0 means that the data
- has no temporal locality, so it need not be left in the cache after
- the access; 3 means that the data has a high degree of temporal
- locality and should be left in all levels of cache possible; 1 and
- 2 mean, respectively, a low or moderate degree of temporal
- locality.
-
- Targets that do not support write prefetches or locality hints can
- ignore the values of operands 1 and 2.
-
-'blockage'
-
- This pattern defines a pseudo insn that prevents the instruction
- scheduler and other passes from moving instructions and using
- register equivalences across the boundary defined by the blockage
- insn. This needs to be an UNSPEC_VOLATILE pattern or a volatile
- ASM.
-
-'memory_barrier'
-
- If the target memory model is not fully synchronous, then this
- pattern should be defined to an instruction that orders both loads
- and stores before the instruction with respect to loads and stores
- after the instruction. This pattern has no operands.
-
-'sync_compare_and_swapMODE'
-
- This pattern, if defined, emits code for an atomic compare-and-swap
- operation. Operand 1 is the memory on which the atomic operation
- is performed. Operand 2 is the "old" value to be compared against
- the current contents of the memory location. Operand 3 is the
- "new" value to store in the memory if the compare succeeds.
- Operand 0 is the result of the operation; it should contain the
- contents of the memory before the operation. If the compare
- succeeds, this should obviously be a copy of operand 2.
-
- This pattern must show that both operand 0 and operand 1 are
- modified.
-
- This pattern must issue any memory barrier instructions such that
- all memory operations before the atomic operation occur before the
- atomic operation and all memory operations after the atomic
- operation occur after the atomic operation.
-
- For targets where the success or failure of the compare-and-swap
- operation is available via the status flags, it is possible to
- avoid a separate compare operation and issue the subsequent branch
- or store-flag operation immediately after the compare-and-swap. To
- this end, GCC will look for a 'MODE_CC' set in the output of
- 'sync_compare_and_swapMODE'; if the machine description includes
- such a set, the target should also define special 'cbranchcc4'
- and/or 'cstorecc4' instructions. GCC will then be able to take the
- destination of the 'MODE_CC' set and pass it to the 'cbranchcc4' or
- 'cstorecc4' pattern as the first operand of the comparison (the
- second will be '(const_int 0)').
-
- For targets where the operating system may provide support for this
- operation via library calls, the 'sync_compare_and_swap_optab' may
- be initialized to a function with the same interface as the
- '__sync_val_compare_and_swap_N' built-in. If the entire set of
- __SYNC builtins are supported via library calls, the target can
- initialize all of the optabs at once with 'init_sync_libfuncs'.
- For the purposes of C++11 'std::atomic::is_lock_free', it is
- assumed that these library calls do _not_ use any kind of
- interruptable locking.
-
-'sync_addMODE', 'sync_subMODE'
-'sync_iorMODE', 'sync_andMODE'
-'sync_xorMODE', 'sync_nandMODE'
-
- These patterns emit code for an atomic operation on memory.
- Operand 0 is the memory on which the atomic operation is performed.
- Operand 1 is the second operand to the binary operator.
-
- This pattern must issue any memory barrier instructions such that
- all memory operations before the atomic operation occur before the
- atomic operation and all memory operations after the atomic
- operation occur after the atomic operation.
-
- If these patterns are not defined, the operation will be
- constructed from a compare-and-swap operation, if defined.
-
-'sync_old_addMODE', 'sync_old_subMODE'
-'sync_old_iorMODE', 'sync_old_andMODE'
-'sync_old_xorMODE', 'sync_old_nandMODE'
-
- These patterns emit code for an atomic operation on memory, and
- return the value that the memory contained before the operation.
- Operand 0 is the result value, operand 1 is the memory on which the
- atomic operation is performed, and operand 2 is the second operand
- to the binary operator.
-
- This pattern must issue any memory barrier instructions such that
- all memory operations before the atomic operation occur before the
- atomic operation and all memory operations after the atomic
- operation occur after the atomic operation.
-
- If these patterns are not defined, the operation will be
- constructed from a compare-and-swap operation, if defined.
-
-'sync_new_addMODE', 'sync_new_subMODE'
-'sync_new_iorMODE', 'sync_new_andMODE'
-'sync_new_xorMODE', 'sync_new_nandMODE'
-
- These patterns are like their 'sync_old_OP' counterparts, except
- that they return the value that exists in the memory location after
- the operation, rather than before the operation.
-
-'sync_lock_test_and_setMODE'
-
- This pattern takes two forms, based on the capabilities of the
- target. In either case, operand 0 is the result of the operand,
- operand 1 is the memory on which the atomic operation is performed,
- and operand 2 is the value to set in the lock.
-
- In the ideal case, this operation is an atomic exchange operation,
- in which the previous value in memory operand is copied into the
- result operand, and the value operand is stored in the memory
- operand.
-
- For less capable targets, any value operand that is not the
- constant 1 should be rejected with 'FAIL'. In this case the target
- may use an atomic test-and-set bit operation. The result operand
- should contain 1 if the bit was previously set and 0 if the bit was
- previously clear. The true contents of the memory operand are
- implementation defined.
-
- This pattern must issue any memory barrier instructions such that
- the pattern as a whole acts as an acquire barrier, that is all
- memory operations after the pattern do not occur until the lock is
- acquired.
-
- If this pattern is not defined, the operation will be constructed
- from a compare-and-swap operation, if defined.
-
-'sync_lock_releaseMODE'
-
- This pattern, if defined, releases a lock set by
- 'sync_lock_test_and_setMODE'. Operand 0 is the memory that
- contains the lock; operand 1 is the value to store in the lock.
-
- If the target doesn't implement full semantics for
- 'sync_lock_test_and_setMODE', any value operand which is not the
- constant 0 should be rejected with 'FAIL', and the true contents of
- the memory operand are implementation defined.
-
- This pattern must issue any memory barrier instructions such that
- the pattern as a whole acts as a release barrier, that is the lock
- is released only after all previous memory operations have
- completed.
-
- If this pattern is not defined, then a 'memory_barrier' pattern
- will be emitted, followed by a store of the value to the memory
- operand.
-
-'atomic_compare_and_swapMODE'
- This pattern, if defined, emits code for an atomic compare-and-swap
- operation with memory model semantics. Operand 2 is the memory on
- which the atomic operation is performed. Operand 0 is an output
- operand which is set to true or false based on whether the
- operation succeeded. Operand 1 is an output operand which is set
- to the contents of the memory before the operation was attempted.
- Operand 3 is the value that is expected to be in memory. Operand 4
- is the value to put in memory if the expected value is found there.
- Operand 5 is set to 1 if this compare and swap is to be treated as
- a weak operation. Operand 6 is the memory model to be used if the
- operation is a success. Operand 7 is the memory model to be used
- if the operation fails.
-
- If memory referred to in operand 2 contains the value in operand 3,
- then operand 4 is stored in memory pointed to by operand 2 and
- fencing based on the memory model in operand 6 is issued.
-
- If memory referred to in operand 2 does not contain the value in
- operand 3, then fencing based on the memory model in operand 7 is
- issued.
-
- If a target does not support weak compare-and-swap operations, or
- the port elects not to implement weak operations, the argument in
- operand 5 can be ignored. Note a strong implementation must be
- provided.
-
- If this pattern is not provided, the '__atomic_compare_exchange'
- built-in functions will utilize the legacy 'sync_compare_and_swap'
- pattern with an '__ATOMIC_SEQ_CST' memory model.
-
-'atomic_loadMODE'
- This pattern implements an atomic load operation with memory model
- semantics. Operand 1 is the memory address being loaded from.
- Operand 0 is the result of the load. Operand 2 is the memory model
- to be used for the load operation.
-
- If not present, the '__atomic_load' built-in function will either
- resort to a normal load with memory barriers, or a compare-and-swap
- operation if a normal load would not be atomic.
-
-'atomic_storeMODE'
- This pattern implements an atomic store operation with memory model
- semantics. Operand 0 is the memory address being stored to.
- Operand 1 is the value to be written. Operand 2 is the memory
- model to be used for the operation.
-
- If not present, the '__atomic_store' built-in function will attempt
- to perform a normal store and surround it with any required memory
- fences. If the store would not be atomic, then an
- '__atomic_exchange' is attempted with the result being ignored.
-
-'atomic_exchangeMODE'
- This pattern implements an atomic exchange operation with memory
- model semantics. Operand 1 is the memory location the operation is
- performed on. Operand 0 is an output operand which is set to the
- original value contained in the memory pointed to by operand 1.
- Operand 2 is the value to be stored. Operand 3 is the memory model
- to be used.
-
- If this pattern is not present, the built-in function
- '__atomic_exchange' will attempt to preform the operation with a
- compare and swap loop.
-
-'atomic_addMODE', 'atomic_subMODE'
-'atomic_orMODE', 'atomic_andMODE'
-'atomic_xorMODE', 'atomic_nandMODE'
-
- These patterns emit code for an atomic operation on memory with
- memory model semantics. Operand 0 is the memory on which the
- atomic operation is performed. Operand 1 is the second operand to
- the binary operator. Operand 2 is the memory model to be used by
- the operation.
-
- If these patterns are not defined, attempts will be made to use
- legacy 'sync' patterns, or equivalent patterns which return a
- result. If none of these are available a compare-and-swap loop
- will be used.
-
-'atomic_fetch_addMODE', 'atomic_fetch_subMODE'
-'atomic_fetch_orMODE', 'atomic_fetch_andMODE'
-'atomic_fetch_xorMODE', 'atomic_fetch_nandMODE'
-
- These patterns emit code for an atomic operation on memory with
- memory model semantics, and return the original value. Operand 0
- is an output operand which contains the value of the memory
- location before the operation was performed. Operand 1 is the
- memory on which the atomic operation is performed. Operand 2 is
- the second operand to the binary operator. Operand 3 is the memory
- model to be used by the operation.
-
- If these patterns are not defined, attempts will be made to use
- legacy 'sync' patterns. If none of these are available a
- compare-and-swap loop will be used.
-
-'atomic_add_fetchMODE', 'atomic_sub_fetchMODE'
-'atomic_or_fetchMODE', 'atomic_and_fetchMODE'
-'atomic_xor_fetchMODE', 'atomic_nand_fetchMODE'
-
- These patterns emit code for an atomic operation on memory with
- memory model semantics and return the result after the operation is
- performed. Operand 0 is an output operand which contains the value
- after the operation. Operand 1 is the memory on which the atomic
- operation is performed. Operand 2 is the second operand to the
- binary operator. Operand 3 is the memory model to be used by the
- operation.
-
- If these patterns are not defined, attempts will be made to use
- legacy 'sync' patterns, or equivalent patterns which return the
- result before the operation followed by the arithmetic operation
- required to produce the result. If none of these are available a
- compare-and-swap loop will be used.
-
-'atomic_test_and_set'
-
- This pattern emits code for '__builtin_atomic_test_and_set'.
- Operand 0 is an output operand which is set to true if the previous
- previous contents of the byte was "set", and false otherwise.
- Operand 1 is the 'QImode' memory to be modified. Operand 2 is the
- memory model to be used.
-
- The specific value that defines "set" is implementation defined,
- and is normally based on what is performed by the native atomic
- test and set instruction.
-
-'mem_thread_fenceMODE'
- This pattern emits code required to implement a thread fence with
- memory model semantics. Operand 0 is the memory model to be used.
-
- If this pattern is not specified, all memory models except
- '__ATOMIC_RELAXED' will result in issuing a 'sync_synchronize'
- barrier pattern.
-
-'mem_signal_fenceMODE'
- This pattern emits code required to implement a signal fence with
- memory model semantics. Operand 0 is the memory model to be used.
-
- This pattern should impact the compiler optimizers the same way
- that mem_signal_fence does, but it does not need to issue any
- barrier instructions.
-
- If this pattern is not specified, all memory models except
- '__ATOMIC_RELAXED' will result in issuing a 'sync_synchronize'
- barrier pattern.
-
-'get_thread_pointerMODE'
-'set_thread_pointerMODE'
- These patterns emit code that reads/sets the TLS thread pointer.
- Currently, these are only needed if the target needs to support the
- '__builtin_thread_pointer' and '__builtin_set_thread_pointer'
- builtins.
-
- The get/set patterns have a single output/input operand
- respectively, with MODE intended to be 'Pmode'.
-
-'stack_protect_set'
-
- This pattern, if defined, moves a 'ptr_mode' value from the memory
- in operand 1 to the memory in operand 0 without leaving the value
- in a register afterward. This is to avoid leaking the value some
- place that an attacker might use to rewrite the stack guard slot
- after having clobbered it.
-
- If this pattern is not defined, then a plain move pattern is
- generated.
-
-'stack_protect_test'
-
- This pattern, if defined, compares a 'ptr_mode' value from the
- memory in operand 1 with the memory in operand 0 without leaving
- the value in a register afterward and branches to operand 2 if the
- values were equal.
-
- If this pattern is not defined, then a plain compare pattern and
- conditional branch pattern is used.
-
-'clear_cache'
-
- This pattern, if defined, flushes the instruction cache for a
- region of memory. The region is bounded to by the Pmode pointers
- in operand 0 inclusive and operand 1 exclusive.
-
- If this pattern is not defined, a call to the library function
- '__clear_cache' is used.
-
-
-File: gccint.info, Node: Pattern Ordering, Next: Dependent Patterns, Prev: Standard Names, Up: Machine Desc
-
-16.10 When the Order of Patterns Matters
-========================================
-
-Sometimes an insn can match more than one instruction pattern. Then the
-pattern that appears first in the machine description is the one used.
-Therefore, more specific patterns (patterns that will match fewer
-things) and faster instructions (those that will produce better code
-when they do match) should usually go first in the description.
-
- In some cases the effect of ordering the patterns can be used to hide a
-pattern when it is not valid. For example, the 68000 has an instruction
-for converting a fullword to floating point and another for converting a
-byte to floating point. An instruction converting an integer to
-floating point could match either one. We put the pattern to convert
-the fullword first to make sure that one will be used rather than the
-other. (Otherwise a large integer might be generated as a single-byte
-immediate quantity, which would not work.) Instead of using this
-pattern ordering it would be possible to make the pattern for
-convert-a-byte smart enough to deal properly with any constant value.
-
-
-File: gccint.info, Node: Dependent Patterns, Next: Jump Patterns, Prev: Pattern Ordering, Up: Machine Desc
-
-16.11 Interdependence of Patterns
-=================================
-
-In some cases machines support instructions identical except for the
-machine mode of one or more operands. For example, there may be
-"sign-extend halfword" and "sign-extend byte" instructions whose
-patterns are
-
- (set (match_operand:SI 0 ...)
- (extend:SI (match_operand:HI 1 ...)))
-
- (set (match_operand:SI 0 ...)
- (extend:SI (match_operand:QI 1 ...)))
-
-Constant integers do not specify a machine mode, so an instruction to
-extend a constant value could match either pattern. The pattern it
-actually will match is the one that appears first in the file. For
-correct results, this must be the one for the widest possible mode
-('HImode', here). If the pattern matches the 'QImode' instruction, the
-results will be incorrect if the constant value does not actually fit
-that mode.
-
- Such instructions to extend constants are rarely generated because they
-are optimized away, but they do occasionally happen in nonoptimized
-compilations.
-
- If a constraint in a pattern allows a constant, the reload pass may
-replace a register with a constant permitted by the constraint in some
-cases. Similarly for memory references. Because of this substitution,
-you should not provide separate patterns for increment and decrement
-instructions. Instead, they should be generated from the same pattern
-that supports register-register add insns by examining the operands and
-generating the appropriate machine instruction.
-
-
-File: gccint.info, Node: Jump Patterns, Next: Looping Patterns, Prev: Dependent Patterns, Up: Machine Desc
-
-16.12 Defining Jump Instruction Patterns
-========================================
-
-GCC does not assume anything about how the machine realizes jumps. The
-machine description should define a single pattern, usually a
-'define_expand', which expands to all the required insns.
-
- Usually, this would be a comparison insn to set the condition code and
-a separate branch insn testing the condition code and branching or not
-according to its value. For many machines, however, separating compares
-and branches is limiting, which is why the more flexible approach with
-one 'define_expand' is used in GCC. The machine description becomes
-clearer for architectures that have compare-and-branch instructions but
-no condition code. It also works better when different sets of
-comparison operators are supported by different kinds of conditional
-branches (e.g. integer vs. floating-point), or by conditional branches
-with respect to conditional stores.
-
- Two separate insns are always used if the machine description
-represents a condition code register using the legacy RTL expression
-'(cc0)', and on most machines that use a separate condition code
-register (*note Condition Code::). For machines that use '(cc0)', in
-fact, the set and use of the condition code must be separate and
-adjacent(1), thus allowing flags in 'cc_status' to be used (*note
-Condition Code::) and so that the comparison and branch insns could be
-located from each other by using the functions 'prev_cc0_setter' and
-'next_cc0_user'.
-
- Even in this case having a single entry point for conditional branches
-is advantageous, because it handles equally well the case where a single
-comparison instruction records the results of both signed and unsigned
-comparison of the given operands (with the branch insns coming in
-distinct signed and unsigned flavors) as in the x86 or SPARC, and the
-case where there are distinct signed and unsigned compare instructions
-and only one set of conditional branch instructions as in the PowerPC.
-
- ---------- Footnotes ----------
-
- (1) 'note' insns can separate them, though.
-
-
-File: gccint.info, Node: Looping Patterns, Next: Insn Canonicalizations, Prev: Jump Patterns, Up: Machine Desc
-
-16.13 Defining Looping Instruction Patterns
-===========================================
-
-Some machines have special jump instructions that can be utilized to
-make loops more efficient. A common example is the 68000 'dbra'
-instruction which performs a decrement of a register and a branch if the
-result was greater than zero. Other machines, in particular digital
-signal processors (DSPs), have special block repeat instructions to
-provide low-overhead loop support. For example, the TI TMS320C3x/C4x
-DSPs have a block repeat instruction that loads special registers to
-mark the top and end of a loop and to count the number of loop
-iterations. This avoids the need for fetching and executing a
-'dbra'-like instruction and avoids pipeline stalls associated with the
-jump.
-
- GCC has three special named patterns to support low overhead looping.
-They are 'decrement_and_branch_until_zero', 'doloop_begin', and
-'doloop_end'. The first pattern, 'decrement_and_branch_until_zero', is
-not emitted during RTL generation but may be emitted during the
-instruction combination phase. This requires the assistance of the loop
-optimizer, using information collected during strength reduction, to
-reverse a loop to count down to zero. Some targets also require the
-loop optimizer to add a 'REG_NONNEG' note to indicate that the iteration
-count is always positive. This is needed if the target performs a
-signed loop termination test. For example, the 68000 uses a pattern
-similar to the following for its 'dbra' instruction:
-
- (define_insn "decrement_and_branch_until_zero"
- [(set (pc)
- (if_then_else
- (ge (plus:SI (match_operand:SI 0 "general_operand" "+d*am")
- (const_int -1))
- (const_int 0))
- (label_ref (match_operand 1 "" ""))
- (pc)))
- (set (match_dup 0)
- (plus:SI (match_dup 0)
- (const_int -1)))]
- "find_reg_note (insn, REG_NONNEG, 0)"
- "...")
-
- Note that since the insn is both a jump insn and has an output, it must
-deal with its own reloads, hence the 'm' constraints. Also note that
-since this insn is generated by the instruction combination phase
-combining two sequential insns together into an implicit parallel insn,
-the iteration counter needs to be biased by the same amount as the
-decrement operation, in this case -1. Note that the following similar
-pattern will not be matched by the combiner.
-
- (define_insn "decrement_and_branch_until_zero"
- [(set (pc)
- (if_then_else
- (ge (match_operand:SI 0 "general_operand" "+d*am")
- (const_int 1))
- (label_ref (match_operand 1 "" ""))
- (pc)))
- (set (match_dup 0)
- (plus:SI (match_dup 0)
- (const_int -1)))]
- "find_reg_note (insn, REG_NONNEG, 0)"
- "...")
-
- The other two special looping patterns, 'doloop_begin' and
-'doloop_end', are emitted by the loop optimizer for certain well-behaved
-loops with a finite number of loop iterations using information
-collected during strength reduction.
-
- The 'doloop_end' pattern describes the actual looping instruction (or
-the implicit looping operation) and the 'doloop_begin' pattern is an
-optional companion pattern that can be used for initialization needed
-for some low-overhead looping instructions.
-
- Note that some machines require the actual looping instruction to be
-emitted at the top of the loop (e.g., the TMS320C3x/C4x DSPs). Emitting
-the true RTL for a looping instruction at the top of the loop can cause
-problems with flow analysis. So instead, a dummy 'doloop' insn is
-emitted at the end of the loop. The machine dependent reorg pass checks
-for the presence of this 'doloop' insn and then searches back to the top
-of the loop, where it inserts the true looping insn (provided there are
-no instructions in the loop which would cause problems). Any additional
-labels can be emitted at this point. In addition, if the desired
-special iteration counter register was not allocated, this machine
-dependent reorg pass could emit a traditional compare and jump
-instruction pair.
-
- The essential difference between the 'decrement_and_branch_until_zero'
-and the 'doloop_end' patterns is that the loop optimizer allocates an
-additional pseudo register for the latter as an iteration counter. This
-pseudo register cannot be used within the loop (i.e., general induction
-variables cannot be derived from it), however, in many cases the loop
-induction variable may become redundant and removed by the flow pass.
-
-
-File: gccint.info, Node: Insn Canonicalizations, Next: Expander Definitions, Prev: Looping Patterns, Up: Machine Desc
-
-16.14 Canonicalization of Instructions
-======================================
-
-There are often cases where multiple RTL expressions could represent an
-operation performed by a single machine instruction. This situation is
-most commonly encountered with logical, branch, and multiply-accumulate
-instructions. In such cases, the compiler attempts to convert these
-multiple RTL expressions into a single canonical form to reduce the
-number of insn patterns required.
-
- In addition to algebraic simplifications, following canonicalizations
-are performed:
-
- * For commutative and comparison operators, a constant is always made
- the second operand. If a machine only supports a constant as the
- second operand, only patterns that match a constant in the second
- operand need be supplied.
-
- * For associative operators, a sequence of operators will always
- chain to the left; for instance, only the left operand of an
- integer 'plus' can itself be a 'plus'. 'and', 'ior', 'xor',
- 'plus', 'mult', 'smin', 'smax', 'umin', and 'umax' are associative
- when applied to integers, and sometimes to floating-point.
-
- * For these operators, if only one operand is a 'neg', 'not', 'mult',
- 'plus', or 'minus' expression, it will be the first operand.
-
- * In combinations of 'neg', 'mult', 'plus', and 'minus', the 'neg'
- operations (if any) will be moved inside the operations as far as
- possible. For instance, '(neg (mult A B))' is canonicalized as
- '(mult (neg A) B)', but '(plus (mult (neg B) C) A)' is
- canonicalized as '(minus A (mult B C))'.
-
- * For the 'compare' operator, a constant is always the second operand
- if the first argument is a condition code register or '(cc0)'.
-
- * An operand of 'neg', 'not', 'mult', 'plus', or 'minus' is made the
- first operand under the same conditions as above.
-
- * '(ltu (plus A B) B)' is converted to '(ltu (plus A B) A)'.
- Likewise with 'geu' instead of 'ltu'.
-
- * '(minus X (const_int N))' is converted to '(plus X (const_int
- -N))'.
-
- * Within address computations (i.e., inside 'mem'), a left shift is
- converted into the appropriate multiplication by a power of two.
-
- * De Morgan's Law is used to move bitwise negation inside a bitwise
- logical-and or logical-or operation. If this results in only one
- operand being a 'not' expression, it will be the first one.
-
- A machine that has an instruction that performs a bitwise
- logical-and of one operand with the bitwise negation of the other
- should specify the pattern for that instruction as
-
- (define_insn ""
- [(set (match_operand:M 0 ...)
- (and:M (not:M (match_operand:M 1 ...))
- (match_operand:M 2 ...)))]
- "..."
- "...")
-
- Similarly, a pattern for a "NAND" instruction should be written
-
- (define_insn ""
- [(set (match_operand:M 0 ...)
- (ior:M (not:M (match_operand:M 1 ...))
- (not:M (match_operand:M 2 ...))))]
- "..."
- "...")
-
- In both cases, it is not necessary to include patterns for the many
- logically equivalent RTL expressions.
-
- * The only possible RTL expressions involving both bitwise
- exclusive-or and bitwise negation are '(xor:M X Y)' and '(not:M
- (xor:M X Y))'.
-
- * The sum of three items, one of which is a constant, will only
- appear in the form
-
- (plus:M (plus:M X Y) CONSTANT)
-
- * Equality comparisons of a group of bits (usually a single bit) with
- zero will be written using 'zero_extract' rather than the
- equivalent 'and' or 'sign_extract' operations.
-
- * '(sign_extend:M1 (mult:M2 (sign_extend:M2 X) (sign_extend:M2 Y)))'
- is converted to '(mult:M1 (sign_extend:M1 X) (sign_extend:M1 Y))',
- and likewise for 'zero_extend'.
-
- * '(sign_extend:M1 (mult:M2 (ashiftrt:M2 X S) (sign_extend:M2 Y)))'
- is converted to '(mult:M1 (sign_extend:M1 (ashiftrt:M2 X S))
- (sign_extend:M1 Y))', and likewise for patterns using 'zero_extend'
- and 'lshiftrt'. If the second operand of 'mult' is also a shift,
- then that is extended also. This transformation is only applied
- when it can be proven that the original operation had sufficient
- precision to prevent overflow.
-
- Further canonicalization rules are defined in the function
-'commutative_operand_precedence' in 'gcc/rtlanal.c'.
-
-
-File: gccint.info, Node: Expander Definitions, Next: Insn Splitting, Prev: Insn Canonicalizations, Up: Machine Desc
-
-16.15 Defining RTL Sequences for Code Generation
-================================================
-
-On some target machines, some standard pattern names for RTL generation
-cannot be handled with single insn, but a sequence of RTL insns can
-represent them. For these target machines, you can write a
-'define_expand' to specify how to generate the sequence of RTL.
-
- A 'define_expand' is an RTL expression that looks almost like a
-'define_insn'; but, unlike the latter, a 'define_expand' is used only
-for RTL generation and it can produce more than one RTL insn.
-
- A 'define_expand' RTX has four operands:
-
- * The name. Each 'define_expand' must have a name, since the only
- use for it is to refer to it by name.
-
- * The RTL template. This is a vector of RTL expressions representing
- a sequence of separate instructions. Unlike 'define_insn', there
- is no implicit surrounding 'PARALLEL'.
-
- * The condition, a string containing a C expression. This expression
- is used to express how the availability of this pattern depends on
- subclasses of target machine, selected by command-line options when
- GCC is run. This is just like the condition of a 'define_insn'
- that has a standard name. Therefore, the condition (if present)
- may not depend on the data in the insn being matched, but only the
- target-machine-type flags. The compiler needs to test these
- conditions during initialization in order to learn exactly which
- named instructions are available in a particular run.
-
- * The preparation statements, a string containing zero or more C
- statements which are to be executed before RTL code is generated
- from the RTL template.
-
- Usually these statements prepare temporary registers for use as
- internal operands in the RTL template, but they can also generate
- RTL insns directly by calling routines such as 'emit_insn', etc.
- Any such insns precede the ones that come from the RTL template.
-
- * Optionally, a vector containing the values of attributes. *Note
- Insn Attributes::.
-
- Every RTL insn emitted by a 'define_expand' must match some
-'define_insn' in the machine description. Otherwise, the compiler will
-crash when trying to generate code for the insn or trying to optimize
-it.
-
- The RTL template, in addition to controlling generation of RTL insns,
-also describes the operands that need to be specified when this pattern
-is used. In particular, it gives a predicate for each operand.
-
- A true operand, which needs to be specified in order to generate RTL
-from the pattern, should be described with a 'match_operand' in its
-first occurrence in the RTL template. This enters information on the
-operand's predicate into the tables that record such things. GCC uses
-the information to preload the operand into a register if that is
-required for valid RTL code. If the operand is referred to more than
-once, subsequent references should use 'match_dup'.
-
- The RTL template may also refer to internal "operands" which are
-temporary registers or labels used only within the sequence made by the
-'define_expand'. Internal operands are substituted into the RTL
-template with 'match_dup', never with 'match_operand'. The values of
-the internal operands are not passed in as arguments by the compiler
-when it requests use of this pattern. Instead, they are computed within
-the pattern, in the preparation statements. These statements compute
-the values and store them into the appropriate elements of 'operands' so
-that 'match_dup' can find them.
-
- There are two special macros defined for use in the preparation
-statements: 'DONE' and 'FAIL'. Use them with a following semicolon, as
-a statement.
-
-'DONE'
- Use the 'DONE' macro to end RTL generation for the pattern. The
- only RTL insns resulting from the pattern on this occasion will be
- those already emitted by explicit calls to 'emit_insn' within the
- preparation statements; the RTL template will not be generated.
-
-'FAIL'
- Make the pattern fail on this occasion. When a pattern fails, it
- means that the pattern was not truly available. The calling
- routines in the compiler will try other strategies for code
- generation using other patterns.
-
- Failure is currently supported only for binary (addition,
- multiplication, shifting, etc.) and bit-field ('extv', 'extzv',
- and 'insv') operations.
-
- If the preparation falls through (invokes neither 'DONE' nor 'FAIL'),
-then the 'define_expand' acts like a 'define_insn' in that the RTL
-template is used to generate the insn.
-
- The RTL template is not used for matching, only for generating the
-initial insn list. If the preparation statement always invokes 'DONE'
-or 'FAIL', the RTL template may be reduced to a simple list of operands,
-such as this example:
-
- (define_expand "addsi3"
- [(match_operand:SI 0 "register_operand" "")
- (match_operand:SI 1 "register_operand" "")
- (match_operand:SI 2 "register_operand" "")]
- ""
- "
- {
- handle_add (operands[0], operands[1], operands[2]);
- DONE;
- }")
-
- Here is an example, the definition of left-shift for the SPUR chip:
-
- (define_expand "ashlsi3"
- [(set (match_operand:SI 0 "register_operand" "")
- (ashift:SI
- (match_operand:SI 1 "register_operand" "")
- (match_operand:SI 2 "nonmemory_operand" "")))]
- ""
- "
-
- {
- if (GET_CODE (operands[2]) != CONST_INT
- || (unsigned) INTVAL (operands[2]) > 3)
- FAIL;
- }")
-
-This example uses 'define_expand' so that it can generate an RTL insn
-for shifting when the shift-count is in the supported range of 0 to 3
-but fail in other cases where machine insns aren't available. When it
-fails, the compiler tries another strategy using different patterns
-(such as, a library call).
-
- If the compiler were able to handle nontrivial condition-strings in
-patterns with names, then it would be possible to use a 'define_insn' in
-that case. Here is another case (zero-extension on the 68000) which
-makes more use of the power of 'define_expand':
-
- (define_expand "zero_extendhisi2"
- [(set (match_operand:SI 0 "general_operand" "")
- (const_int 0))
- (set (strict_low_part
- (subreg:HI
- (match_dup 0)
- 0))
- (match_operand:HI 1 "general_operand" ""))]
- ""
- "operands[1] = make_safe_from (operands[1], operands[0]);")
-
-Here two RTL insns are generated, one to clear the entire output operand
-and the other to copy the input operand into its low half. This
-sequence is incorrect if the input operand refers to [the old value of]
-the output operand, so the preparation statement makes sure this isn't
-so. The function 'make_safe_from' copies the 'operands[1]' into a
-temporary register if it refers to 'operands[0]'. It does this by
-emitting another RTL insn.
-
- Finally, a third example shows the use of an internal operand.
-Zero-extension on the SPUR chip is done by 'and'-ing the result against
-a halfword mask. But this mask cannot be represented by a 'const_int'
-because the constant value is too large to be legitimate on this
-machine. So it must be copied into a register with 'force_reg' and then
-the register used in the 'and'.
-
- (define_expand "zero_extendhisi2"
- [(set (match_operand:SI 0 "register_operand" "")
- (and:SI (subreg:SI
- (match_operand:HI 1 "register_operand" "")
- 0)
- (match_dup 2)))]
- ""
- "operands[2]
- = force_reg (SImode, GEN_INT (65535)); ")
-
- _Note:_ If the 'define_expand' is used to serve a standard binary or
-unary arithmetic operation or a bit-field operation, then the last insn
-it generates must not be a 'code_label', 'barrier' or 'note'. It must
-be an 'insn', 'jump_insn' or 'call_insn'. If you don't need a real insn
-at the end, emit an insn to copy the result of the operation into
-itself. Such an insn will generate no code, but it can avoid problems
-in the compiler.
-
-
-File: gccint.info, Node: Insn Splitting, Next: Including Patterns, Prev: Expander Definitions, Up: Machine Desc
-
-16.16 Defining How to Split Instructions
-========================================
-
-There are two cases where you should specify how to split a pattern into
-multiple insns. On machines that have instructions requiring delay
-slots (*note Delay Slots::) or that have instructions whose output is
-not available for multiple cycles (*note Processor pipeline
-description::), the compiler phases that optimize these cases need to be
-able to move insns into one-instruction delay slots. However, some
-insns may generate more than one machine instruction. These insns
-cannot be placed into a delay slot.
-
- Often you can rewrite the single insn as a list of individual insns,
-each corresponding to one machine instruction. The disadvantage of
-doing so is that it will cause the compilation to be slower and require
-more space. If the resulting insns are too complex, it may also
-suppress some optimizations. The compiler splits the insn if there is a
-reason to believe that it might improve instruction or delay slot
-scheduling.
-
- The insn combiner phase also splits putative insns. If three insns are
-merged into one insn with a complex expression that cannot be matched by
-some 'define_insn' pattern, the combiner phase attempts to split the
-complex pattern into two insns that are recognized. Usually it can
-break the complex pattern into two patterns by splitting out some
-subexpression. However, in some other cases, such as performing an
-addition of a large constant in two insns on a RISC machine, the way to
-split the addition into two insns is machine-dependent.
-
- The 'define_split' definition tells the compiler how to split a complex
-insn into several simpler insns. It looks like this:
-
- (define_split
- [INSN-PATTERN]
- "CONDITION"
- [NEW-INSN-PATTERN-1
- NEW-INSN-PATTERN-2
- ...]
- "PREPARATION-STATEMENTS")
-
- INSN-PATTERN is a pattern that needs to be split and CONDITION is the
-final condition to be tested, as in a 'define_insn'. When an insn
-matching INSN-PATTERN and satisfying CONDITION is found, it is replaced
-in the insn list with the insns given by NEW-INSN-PATTERN-1,
-NEW-INSN-PATTERN-2, etc.
-
- The PREPARATION-STATEMENTS are similar to those statements that are
-specified for 'define_expand' (*note Expander Definitions::) and are
-executed before the new RTL is generated to prepare for the generated
-code or emit some insns whose pattern is not fixed. Unlike those in
-'define_expand', however, these statements must not generate any new
-pseudo-registers. Once reload has completed, they also must not
-allocate any space in the stack frame.
-
- Patterns are matched against INSN-PATTERN in two different
-circumstances. If an insn needs to be split for delay slot scheduling
-or insn scheduling, the insn is already known to be valid, which means
-that it must have been matched by some 'define_insn' and, if
-'reload_completed' is nonzero, is known to satisfy the constraints of
-that 'define_insn'. In that case, the new insn patterns must also be
-insns that are matched by some 'define_insn' and, if 'reload_completed'
-is nonzero, must also satisfy the constraints of those definitions.
-
- As an example of this usage of 'define_split', consider the following
-example from 'a29k.md', which splits a 'sign_extend' from 'HImode' to
-'SImode' into a pair of shift insns:
-
- (define_split
- [(set (match_operand:SI 0 "gen_reg_operand" "")
- (sign_extend:SI (match_operand:HI 1 "gen_reg_operand" "")))]
- ""
- [(set (match_dup 0)
- (ashift:SI (match_dup 1)
- (const_int 16)))
- (set (match_dup 0)
- (ashiftrt:SI (match_dup 0)
- (const_int 16)))]
- "
- { operands[1] = gen_lowpart (SImode, operands[1]); }")
-
- When the combiner phase tries to split an insn pattern, it is always
-the case that the pattern is _not_ matched by any 'define_insn'. The
-combiner pass first tries to split a single 'set' expression and then
-the same 'set' expression inside a 'parallel', but followed by a
-'clobber' of a pseudo-reg to use as a scratch register. In these cases,
-the combiner expects exactly two new insn patterns to be generated. It
-will verify that these patterns match some 'define_insn' definitions, so
-you need not do this test in the 'define_split' (of course, there is no
-point in writing a 'define_split' that will never produce insns that
-match).
-
- Here is an example of this use of 'define_split', taken from
-'rs6000.md':
-
- (define_split
- [(set (match_operand:SI 0 "gen_reg_operand" "")
- (plus:SI (match_operand:SI 1 "gen_reg_operand" "")
- (match_operand:SI 2 "non_add_cint_operand" "")))]
- ""
- [(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))
- (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]
- "
- {
- int low = INTVAL (operands[2]) & 0xffff;
- int high = (unsigned) INTVAL (operands[2]) >> 16;
-
- if (low & 0x8000)
- high++, low |= 0xffff0000;
-
- operands[3] = GEN_INT (high << 16);
- operands[4] = GEN_INT (low);
- }")
-
- Here the predicate 'non_add_cint_operand' matches any 'const_int' that
-is _not_ a valid operand of a single add insn. The add with the smaller
-displacement is written so that it can be substituted into the address
-of a subsequent operation.
-
- An example that uses a scratch register, from the same file, generates
-an equality comparison of a register and a large constant:
-
- (define_split
- [(set (match_operand:CC 0 "cc_reg_operand" "")
- (compare:CC (match_operand:SI 1 "gen_reg_operand" "")
- (match_operand:SI 2 "non_short_cint_operand" "")))
- (clobber (match_operand:SI 3 "gen_reg_operand" ""))]
- "find_single_use (operands[0], insn, 0)
- && (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ
- || GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)"
- [(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4)))
- (set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))]
- "
- {
- /* Get the constant we are comparing against, C, and see what it
- looks like sign-extended to 16 bits. Then see what constant
- could be XOR'ed with C to get the sign-extended value. */
-
- int c = INTVAL (operands[2]);
- int sextc = (c << 16) >> 16;
- int xorv = c ^ sextc;
-
- operands[4] = GEN_INT (xorv);
- operands[5] = GEN_INT (sextc);
- }")
-
- To avoid confusion, don't write a single 'define_split' that accepts
-some insns that match some 'define_insn' as well as some insns that
-don't. Instead, write two separate 'define_split' definitions, one for
-the insns that are valid and one for the insns that are not valid.
-
- The splitter is allowed to split jump instructions into sequence of
-jumps or create new jumps in while splitting non-jump instructions. As
-the central flowgraph and branch prediction information needs to be
-updated, several restriction apply.
-
- Splitting of jump instruction into sequence that over by another jump
-instruction is always valid, as compiler expect identical behavior of
-new jump. When new sequence contains multiple jump instructions or new
-labels, more assistance is needed. Splitter is required to create only
-unconditional jumps, or simple conditional jump instructions.
-Additionally it must attach a 'REG_BR_PROB' note to each conditional
-jump. A global variable 'split_branch_probability' holds the
-probability of the original branch in case it was a simple conditional
-jump, -1 otherwise. To simplify recomputing of edge frequencies, the
-new sequence is required to have only forward jumps to the newly created
-labels.
-
- For the common case where the pattern of a define_split exactly matches
-the pattern of a define_insn, use 'define_insn_and_split'. It looks
-like this:
-
- (define_insn_and_split
- [INSN-PATTERN]
- "CONDITION"
- "OUTPUT-TEMPLATE"
- "SPLIT-CONDITION"
- [NEW-INSN-PATTERN-1
- NEW-INSN-PATTERN-2
- ...]
- "PREPARATION-STATEMENTS"
- [INSN-ATTRIBUTES])
-
- INSN-PATTERN, CONDITION, OUTPUT-TEMPLATE, and INSN-ATTRIBUTES are used
-as in 'define_insn'. The NEW-INSN-PATTERN vector and the
-PREPARATION-STATEMENTS are used as in a 'define_split'. The
-SPLIT-CONDITION is also used as in 'define_split', with the additional
-behavior that if the condition starts with '&&', the condition used for
-the split will be the constructed as a logical "and" of the split
-condition with the insn condition. For example, from i386.md:
-
- (define_insn_and_split "zero_extendhisi2_and"
- [(set (match_operand:SI 0 "register_operand" "=r")
- (zero_extend:SI (match_operand:HI 1 "register_operand" "0")))
- (clobber (reg:CC 17))]
- "TARGET_ZERO_EXTEND_WITH_AND && !optimize_size"
- "#"
- "&& reload_completed"
- [(parallel [(set (match_dup 0)
- (and:SI (match_dup 0) (const_int 65535)))
- (clobber (reg:CC 17))])]
- ""
- [(set_attr "type" "alu1")])
-
- In this case, the actual split condition will be
-'TARGET_ZERO_EXTEND_WITH_AND && !optimize_size && reload_completed'.
-
- The 'define_insn_and_split' construction provides exactly the same
-functionality as two separate 'define_insn' and 'define_split' patterns.
-It exists for compactness, and as a maintenance tool to prevent having
-to ensure the two patterns' templates match.
-
-
-File: gccint.info, Node: Including Patterns, Next: Peephole Definitions, Prev: Insn Splitting, Up: Machine Desc
-
-16.17 Including Patterns in Machine Descriptions.
-=================================================
-
-The 'include' pattern tells the compiler tools where to look for
-patterns that are in files other than in the file '.md'. This is used
-only at build time and there is no preprocessing allowed.
-
- It looks like:
-
-
- (include
- PATHNAME)
-
- For example:
-
-
- (include "filestuff")
-
- Where PATHNAME is a string that specifies the location of the file,
-specifies the include file to be in 'gcc/config/target/filestuff'. The
-directory 'gcc/config/target' is regarded as the default directory.
-
- Machine descriptions may be split up into smaller more manageable
-subsections and placed into subdirectories.
-
- By specifying:
-
-
- (include "BOGUS/filestuff")
-
- the include file is specified to be in
-'gcc/config/TARGET/BOGUS/filestuff'.
-
- Specifying an absolute path for the include file such as;
-
- (include "/u2/BOGUS/filestuff")
-
- is permitted but is not encouraged.
-
-16.17.1 RTL Generation Tool Options for Directory Search
---------------------------------------------------------
-
-The '-IDIR' option specifies directories to search for machine
-descriptions. For example:
-
-
- genrecog -I/p1/abc/proc1 -I/p2/abcd/pro2 target.md
-
- Add the directory DIR to the head of the list of directories to be
-searched for header files. This can be used to override a system
-machine definition file, substituting your own version, since these
-directories are searched before the default machine description file
-directories. If you use more than one '-I' option, the directories are
-scanned in left-to-right order; the standard default directory come
-after.
-
-
-File: gccint.info, Node: Peephole Definitions, Next: Insn Attributes, Prev: Including Patterns, Up: Machine Desc
-
-16.18 Machine-Specific Peephole Optimizers
-==========================================
-
-In addition to instruction patterns the 'md' file may contain
-definitions of machine-specific peephole optimizations.
-
- The combiner does not notice certain peephole optimizations when the
-data flow in the program does not suggest that it should try them. For
-example, sometimes two consecutive insns related in purpose can be
-combined even though the second one does not appear to use a register
-computed in the first one. A machine-specific peephole optimizer can
-detect such opportunities.
-
- There are two forms of peephole definitions that may be used. The
-original 'define_peephole' is run at assembly output time to match insns
-and substitute assembly text. Use of 'define_peephole' is deprecated.
-
- A newer 'define_peephole2' matches insns and substitutes new insns.
-The 'peephole2' pass is run after register allocation but before
-scheduling, which may result in much better code for targets that do
-scheduling.
-
-* Menu:
-
-* define_peephole:: RTL to Text Peephole Optimizers
-* define_peephole2:: RTL to RTL Peephole Optimizers
-
-
-File: gccint.info, Node: define_peephole, Next: define_peephole2, Up: Peephole Definitions
-
-16.18.1 RTL to Text Peephole Optimizers
----------------------------------------
-
-A definition looks like this:
-
- (define_peephole
- [INSN-PATTERN-1
- INSN-PATTERN-2
- ...]
- "CONDITION"
- "TEMPLATE"
- "OPTIONAL-INSN-ATTRIBUTES")
-
-The last string operand may be omitted if you are not using any
-machine-specific information in this machine description. If present,
-it must obey the same rules as in a 'define_insn'.
-
- In this skeleton, INSN-PATTERN-1 and so on are patterns to match
-consecutive insns. The optimization applies to a sequence of insns when
-INSN-PATTERN-1 matches the first one, INSN-PATTERN-2 matches the next,
-and so on.
-
- Each of the insns matched by a peephole must also match a
-'define_insn'. Peepholes are checked only at the last stage just before
-code generation, and only optionally. Therefore, any insn which would
-match a peephole but no 'define_insn' will cause a crash in code
-generation in an unoptimized compilation, or at various optimization
-stages.
-
- The operands of the insns are matched with 'match_operands',
-'match_operator', and 'match_dup', as usual. What is not usual is that
-the operand numbers apply to all the insn patterns in the definition.
-So, you can check for identical operands in two insns by using
-'match_operand' in one insn and 'match_dup' in the other.
-
- The operand constraints used in 'match_operand' patterns do not have
-any direct effect on the applicability of the peephole, but they will be
-validated afterward, so make sure your constraints are general enough to
-apply whenever the peephole matches. If the peephole matches but the
-constraints are not satisfied, the compiler will crash.
-
- It is safe to omit constraints in all the operands of the peephole; or
-you can write constraints which serve as a double-check on the criteria
-previously tested.
-
- Once a sequence of insns matches the patterns, the CONDITION is
-checked. This is a C expression which makes the final decision whether
-to perform the optimization (we do so if the expression is nonzero). If
-CONDITION is omitted (in other words, the string is empty) then the
-optimization is applied to every sequence of insns that matches the
-patterns.
-
- The defined peephole optimizations are applied after register
-allocation is complete. Therefore, the peephole definition can check
-which operands have ended up in which kinds of registers, just by
-looking at the operands.
-
- The way to refer to the operands in CONDITION is to write 'operands[I]'
-for operand number I (as matched by '(match_operand I ...)'). Use the
-variable 'insn' to refer to the last of the insns being matched; use
-'prev_active_insn' to find the preceding insns.
-
- When optimizing computations with intermediate results, you can use
-CONDITION to match only when the intermediate results are not used
-elsewhere. Use the C expression 'dead_or_set_p (INSN, OP)', where INSN
-is the insn in which you expect the value to be used for the last time
-(from the value of 'insn', together with use of 'prev_nonnote_insn'),
-and OP is the intermediate value (from 'operands[I]').
-
- Applying the optimization means replacing the sequence of insns with
-one new insn. The TEMPLATE controls ultimate output of assembler code
-for this combined insn. It works exactly like the template of a
-'define_insn'. Operand numbers in this template are the same ones used
-in matching the original sequence of insns.
-
- The result of a defined peephole optimizer does not need to match any
-of the insn patterns in the machine description; it does not even have
-an opportunity to match them. The peephole optimizer definition itself
-serves as the insn pattern to control how the insn is output.
-
- Defined peephole optimizers are run as assembler code is being output,
-so the insns they produce are never combined or rearranged in any way.
-
- Here is an example, taken from the 68000 machine description:
-
- (define_peephole
- [(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))
- (set (match_operand:DF 0 "register_operand" "=f")
- (match_operand:DF 1 "register_operand" "ad"))]
- "FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"
- {
- rtx xoperands[2];
- xoperands[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
- #ifdef MOTOROLA
- output_asm_insn ("move.l %1,(sp)", xoperands);
- output_asm_insn ("move.l %1,-(sp)", operands);
- return "fmove.d (sp)+,%0";
- #else
- output_asm_insn ("movel %1,sp@", xoperands);
- output_asm_insn ("movel %1,sp@-", operands);
- return "fmoved sp@+,%0";
- #endif
- })
-
- The effect of this optimization is to change
-
- jbsr _foobar
- addql #4,sp
- movel d1,sp@-
- movel d0,sp@-
- fmoved sp@+,fp0
-
-into
-
- jbsr _foobar
- movel d1,sp@
- movel d0,sp@-
- fmoved sp@+,fp0
-
- INSN-PATTERN-1 and so on look _almost_ like the second operand of
-'define_insn'. There is one important difference: the second operand of
-'define_insn' consists of one or more RTX's enclosed in square brackets.
-Usually, there is only one: then the same action can be written as an
-element of a 'define_peephole'. But when there are multiple actions in
-a 'define_insn', they are implicitly enclosed in a 'parallel'. Then you
-must explicitly write the 'parallel', and the square brackets within it,
-in the 'define_peephole'. Thus, if an insn pattern looks like this,
-
- (define_insn "divmodsi4"
- [(set (match_operand:SI 0 "general_operand" "=d")
- (div:SI (match_operand:SI 1 "general_operand" "0")
- (match_operand:SI 2 "general_operand" "dmsK")))
- (set (match_operand:SI 3 "general_operand" "=d")
- (mod:SI (match_dup 1) (match_dup 2)))]
- "TARGET_68020"
- "divsl%.l %2,%3:%0")
-
-then the way to mention this insn in a peephole is as follows:
-
- (define_peephole
- [...
- (parallel
- [(set (match_operand:SI 0 "general_operand" "=d")
- (div:SI (match_operand:SI 1 "general_operand" "0")
- (match_operand:SI 2 "general_operand" "dmsK")))
- (set (match_operand:SI 3 "general_operand" "=d")
- (mod:SI (match_dup 1) (match_dup 2)))])
- ...]
- ...)
-
-
-File: gccint.info, Node: define_peephole2, Prev: define_peephole, Up: Peephole Definitions
-
-16.18.2 RTL to RTL Peephole Optimizers
---------------------------------------
-
-The 'define_peephole2' definition tells the compiler how to substitute
-one sequence of instructions for another sequence, what additional
-scratch registers may be needed and what their lifetimes must be.
-
- (define_peephole2
- [INSN-PATTERN-1
- INSN-PATTERN-2
- ...]
- "CONDITION"
- [NEW-INSN-PATTERN-1
- NEW-INSN-PATTERN-2
- ...]
- "PREPARATION-STATEMENTS")
-
- The definition is almost identical to 'define_split' (*note Insn
-Splitting::) except that the pattern to match is not a single
-instruction, but a sequence of instructions.
-
- It is possible to request additional scratch registers for use in the
-output template. If appropriate registers are not free, the pattern
-will simply not match.
-
- Scratch registers are requested with a 'match_scratch' pattern at the
-top level of the input pattern. The allocated register (initially) will
-be dead at the point requested within the original sequence. If the
-scratch is used at more than a single point, a 'match_dup' pattern at
-the top level of the input pattern marks the last position in the input
-sequence at which the register must be available.
-
- Here is an example from the IA-32 machine description:
-
- (define_peephole2
- [(match_scratch:SI 2 "r")
- (parallel [(set (match_operand:SI 0 "register_operand" "")
- (match_operator:SI 3 "arith_or_logical_operator"
- [(match_dup 0)
- (match_operand:SI 1 "memory_operand" "")]))
- (clobber (reg:CC 17))])]
- "! optimize_size && ! TARGET_READ_MODIFY"
- [(set (match_dup 2) (match_dup 1))
- (parallel [(set (match_dup 0)
- (match_op_dup 3 [(match_dup 0) (match_dup 2)]))
- (clobber (reg:CC 17))])]
- "")
-
-This pattern tries to split a load from its use in the hopes that we'll
-be able to schedule around the memory load latency. It allocates a
-single 'SImode' register of class 'GENERAL_REGS' ('"r"') that needs to
-be live only at the point just before the arithmetic.
-
- A real example requiring extended scratch lifetimes is harder to come
-by, so here's a silly made-up example:
-
- (define_peephole2
- [(match_scratch:SI 4 "r")
- (set (match_operand:SI 0 "" "") (match_operand:SI 1 "" ""))
- (set (match_operand:SI 2 "" "") (match_dup 1))
- (match_dup 4)
- (set (match_operand:SI 3 "" "") (match_dup 1))]
- "/* determine 1 does not overlap 0 and 2 */"
- [(set (match_dup 4) (match_dup 1))
- (set (match_dup 0) (match_dup 4))
- (set (match_dup 2) (match_dup 4))
- (set (match_dup 3) (match_dup 4))]
- "")
-
-If we had not added the '(match_dup 4)' in the middle of the input
-sequence, it might have been the case that the register we chose at the
-beginning of the sequence is killed by the first or second 'set'.
-
-
-File: gccint.info, Node: Insn Attributes, Next: Conditional Execution, Prev: Peephole Definitions, Up: Machine Desc
-
-16.19 Instruction Attributes
-============================
-
-In addition to describing the instruction supported by the target
-machine, the 'md' file also defines a group of "attributes" and a set of
-values for each. Every generated insn is assigned a value for each
-attribute. One possible attribute would be the effect that the insn has
-on the machine's condition code. This attribute can then be used by
-'NOTICE_UPDATE_CC' to track the condition codes.
-
-* Menu:
-
-* Defining Attributes:: Specifying attributes and their values.
-* Expressions:: Valid expressions for attribute values.
-* Tagging Insns:: Assigning attribute values to insns.
-* Attr Example:: An example of assigning attributes.
-* Insn Lengths:: Computing the length of insns.
-* Constant Attributes:: Defining attributes that are constant.
-* Mnemonic Attribute:: Obtain the instruction mnemonic as attribute value.
-* Delay Slots:: Defining delay slots required for a machine.
-* Processor pipeline description:: Specifying information for insn scheduling.
-
-
-File: gccint.info, Node: Defining Attributes, Next: Expressions, Up: Insn Attributes
-
-16.19.1 Defining Attributes and their Values
---------------------------------------------
-
-The 'define_attr' expression is used to define each attribute required
-by the target machine. It looks like:
-
- (define_attr NAME LIST-OF-VALUES DEFAULT)
-
- NAME is a string specifying the name of the attribute being defined.
-Some attributes are used in a special way by the rest of the compiler.
-The 'enabled' attribute can be used to conditionally enable or disable
-insn alternatives (*note Disable Insn Alternatives::). The 'predicable'
-attribute, together with a suitable 'define_cond_exec' (*note
-Conditional Execution::), can be used to automatically generate
-conditional variants of instruction patterns. The 'mnemonic' attribute
-can be used to check for the instruction mnemonic (*note Mnemonic
-Attribute::). The compiler internally uses the names 'ce_enabled' and
-'nonce_enabled', so they should not be used elsewhere as alternative
-names.
-
- LIST-OF-VALUES is either a string that specifies a comma-separated list
-of values that can be assigned to the attribute, or a null string to
-indicate that the attribute takes numeric values.
-
- DEFAULT is an attribute expression that gives the value of this
-attribute for insns that match patterns whose definition does not
-include an explicit value for this attribute. *Note Attr Example::, for
-more information on the handling of defaults. *Note Constant
-Attributes::, for information on attributes that do not depend on any
-particular insn.
-
- For each defined attribute, a number of definitions are written to the
-'insn-attr.h' file. For cases where an explicit set of values is
-specified for an attribute, the following are defined:
-
- * A '#define' is written for the symbol 'HAVE_ATTR_NAME'.
-
- * An enumerated class is defined for 'attr_NAME' with elements of the
- form 'UPPER-NAME_UPPER-VALUE' where the attribute name and value
- are first converted to uppercase.
-
- * A function 'get_attr_NAME' is defined that is passed an insn and
- returns the attribute value for that insn.
-
- For example, if the following is present in the 'md' file:
-
- (define_attr "type" "branch,fp,load,store,arith" ...)
-
-the following lines will be written to the file 'insn-attr.h'.
-
- #define HAVE_ATTR_type 1
- enum attr_type {TYPE_BRANCH, TYPE_FP, TYPE_LOAD,
- TYPE_STORE, TYPE_ARITH};
- extern enum attr_type get_attr_type ();
-
- If the attribute takes numeric values, no 'enum' type will be defined
-and the function to obtain the attribute's value will return 'int'.
-
- There are attributes which are tied to a specific meaning. These
-attributes are not free to use for other purposes:
-
-'length'
- The 'length' attribute is used to calculate the length of emitted
- code chunks. This is especially important when verifying branch
- distances. *Note Insn Lengths::.
-
-'enabled'
- The 'enabled' attribute can be defined to prevent certain
- alternatives of an insn definition from being used during code
- generation. *Note Disable Insn Alternatives::.
-
-'mnemonic'
- The 'mnemonic' attribute can be defined to implement instruction
- specific checks in e.g. the pipeline description. *Note Mnemonic
- Attribute::.
-
- For each of these special attributes, the corresponding
-'HAVE_ATTR_NAME' '#define' is also written when the attribute is not
-defined; in that case, it is defined as '0'.
-
- Another way of defining an attribute is to use:
-
- (define_enum_attr "ATTR" "ENUM" DEFAULT)
-
- This works in just the same way as 'define_attr', except that the list
-of values is taken from a separate enumeration called ENUM (*note
-define_enum::). This form allows you to use the same list of values for
-several attributes without having to repeat the list each time. For
-example:
-
- (define_enum "processor" [
- model_a
- model_b
- ...
- ])
- (define_enum_attr "arch" "processor"
- (const (symbol_ref "target_arch")))
- (define_enum_attr "tune" "processor"
- (const (symbol_ref "target_tune")))
-
- defines the same attributes as:
-
- (define_attr "arch" "model_a,model_b,..."
- (const (symbol_ref "target_arch")))
- (define_attr "tune" "model_a,model_b,..."
- (const (symbol_ref "target_tune")))
-
- but without duplicating the processor list. The second example defines
-two separate C enums ('attr_arch' and 'attr_tune') whereas the first
-defines a single C enum ('processor').
-
-
-File: gccint.info, Node: Expressions, Next: Tagging Insns, Prev: Defining Attributes, Up: Insn Attributes
-
-16.19.2 Attribute Expressions
------------------------------
-
-RTL expressions used to define attributes use the codes described above
-plus a few specific to attribute definitions, to be discussed below.
-Attribute value expressions must have one of the following forms:
-
-'(const_int I)'
- The integer I specifies the value of a numeric attribute. I must
- be non-negative.
-
- The value of a numeric attribute can be specified either with a
- 'const_int', or as an integer represented as a string in
- 'const_string', 'eq_attr' (see below), 'attr', 'symbol_ref', simple
- arithmetic expressions, and 'set_attr' overrides on specific
- instructions (*note Tagging Insns::).
-
-'(const_string VALUE)'
- The string VALUE specifies a constant attribute value. If VALUE is
- specified as '"*"', it means that the default value of the
- attribute is to be used for the insn containing this expression.
- '"*"' obviously cannot be used in the DEFAULT expression of a
- 'define_attr'.
-
- If the attribute whose value is being specified is numeric, VALUE
- must be a string containing a non-negative integer (normally
- 'const_int' would be used in this case). Otherwise, it must
- contain one of the valid values for the attribute.
-
-'(if_then_else TEST TRUE-VALUE FALSE-VALUE)'
- TEST specifies an attribute test, whose format is defined below.
- The value of this expression is TRUE-VALUE if TEST is true,
- otherwise it is FALSE-VALUE.
-
-'(cond [TEST1 VALUE1 ...] DEFAULT)'
- The first operand of this expression is a vector containing an even
- number of expressions and consisting of pairs of TEST and VALUE
- expressions. The value of the 'cond' expression is that of the
- VALUE corresponding to the first true TEST expression. If none of
- the TEST expressions are true, the value of the 'cond' expression
- is that of the DEFAULT expression.
-
- TEST expressions can have one of the following forms:
-
-'(const_int I)'
- This test is true if I is nonzero and false otherwise.
-
-'(not TEST)'
-'(ior TEST1 TEST2)'
-'(and TEST1 TEST2)'
- These tests are true if the indicated logical function is true.
-
-'(match_operand:M N PRED CONSTRAINTS)'
- This test is true if operand N of the insn whose attribute value is
- being determined has mode M (this part of the test is ignored if M
- is 'VOIDmode') and the function specified by the string PRED
- returns a nonzero value when passed operand N and mode M (this part
- of the test is ignored if PRED is the null string).
-
- The CONSTRAINTS operand is ignored and should be the null string.
-
-'(match_test C-EXPR)'
- The test is true if C expression C-EXPR is true. In non-constant
- attributes, C-EXPR has access to the following variables:
-
- INSN
- The rtl instruction under test.
- WHICH_ALTERNATIVE
- The 'define_insn' alternative that INSN matches. *Note Output
- Statement::.
- OPERANDS
- An array of INSN's rtl operands.
-
- C-EXPR behaves like the condition in a C 'if' statement, so there
- is no need to explicitly convert the expression into a boolean 0 or
- 1 value. For example, the following two tests are equivalent:
-
- (match_test "x & 2")
- (match_test "(x & 2) != 0")
-
-'(le ARITH1 ARITH2)'
-'(leu ARITH1 ARITH2)'
-'(lt ARITH1 ARITH2)'
-'(ltu ARITH1 ARITH2)'
-'(gt ARITH1 ARITH2)'
-'(gtu ARITH1 ARITH2)'
-'(ge ARITH1 ARITH2)'
-'(geu ARITH1 ARITH2)'
-'(ne ARITH1 ARITH2)'
-'(eq ARITH1 ARITH2)'
- These tests are true if the indicated comparison of the two
- arithmetic expressions is true. Arithmetic expressions are formed
- with 'plus', 'minus', 'mult', 'div', 'mod', 'abs', 'neg', 'and',
- 'ior', 'xor', 'not', 'ashift', 'lshiftrt', and 'ashiftrt'
- expressions.
-
- 'const_int' and 'symbol_ref' are always valid terms (*note Insn
- Lengths::,for additional forms). 'symbol_ref' is a string denoting
- a C expression that yields an 'int' when evaluated by the
- 'get_attr_...' routine. It should normally be a global variable.
-
-'(eq_attr NAME VALUE)'
- NAME is a string specifying the name of an attribute.
-
- VALUE is a string that is either a valid value for attribute NAME,
- a comma-separated list of values, or '!' followed by a value or
- list. If VALUE does not begin with a '!', this test is true if the
- value of the NAME attribute of the current insn is in the list
- specified by VALUE. If VALUE begins with a '!', this test is true
- if the attribute's value is _not_ in the specified list.
-
- For example,
-
- (eq_attr "type" "load,store")
-
- is equivalent to
-
- (ior (eq_attr "type" "load") (eq_attr "type" "store"))
-
- If NAME specifies an attribute of 'alternative', it refers to the
- value of the compiler variable 'which_alternative' (*note Output
- Statement::) and the values must be small integers. For example,
-
- (eq_attr "alternative" "2,3")
-
- is equivalent to
-
- (ior (eq (symbol_ref "which_alternative") (const_int 2))
- (eq (symbol_ref "which_alternative") (const_int 3)))
-
- Note that, for most attributes, an 'eq_attr' test is simplified in
- cases where the value of the attribute being tested is known for
- all insns matching a particular pattern. This is by far the most
- common case.
-
-'(attr_flag NAME)'
- The value of an 'attr_flag' expression is true if the flag
- specified by NAME is true for the 'insn' currently being scheduled.
-
- NAME is a string specifying one of a fixed set of flags to test.
- Test the flags 'forward' and 'backward' to determine the direction
- of a conditional branch.
-
- This example describes a conditional branch delay slot which can be
- nullified for forward branches that are taken (annul-true) or for
- backward branches which are not taken (annul-false).
-
- (define_delay (eq_attr "type" "cbranch")
- [(eq_attr "in_branch_delay" "true")
- (and (eq_attr "in_branch_delay" "true")
- (attr_flag "forward"))
- (and (eq_attr "in_branch_delay" "true")
- (attr_flag "backward"))])
-
- The 'forward' and 'backward' flags are false if the current 'insn'
- being scheduled is not a conditional branch.
-
- 'attr_flag' is only used during delay slot scheduling and has no
- meaning to other passes of the compiler.
-
-'(attr NAME)'
- The value of another attribute is returned. This is most useful
- for numeric attributes, as 'eq_attr' and 'attr_flag' produce more
- efficient code for non-numeric attributes.
-
-
-File: gccint.info, Node: Tagging Insns, Next: Attr Example, Prev: Expressions, Up: Insn Attributes
-
-16.19.3 Assigning Attribute Values to Insns
--------------------------------------------
-
-The value assigned to an attribute of an insn is primarily determined by
-which pattern is matched by that insn (or which 'define_peephole'
-generated it). Every 'define_insn' and 'define_peephole' can have an
-optional last argument to specify the values of attributes for matching
-insns. The value of any attribute not specified in a particular insn is
-set to the default value for that attribute, as specified in its
-'define_attr'. Extensive use of default values for attributes permits
-the specification of the values for only one or two attributes in the
-definition of most insn patterns, as seen in the example in the next
-section.
-
- The optional last argument of 'define_insn' and 'define_peephole' is a
-vector of expressions, each of which defines the value for a single
-attribute. The most general way of assigning an attribute's value is to
-use a 'set' expression whose first operand is an 'attr' expression
-giving the name of the attribute being set. The second operand of the
-'set' is an attribute expression (*note Expressions::) giving the value
-of the attribute.
-
- When the attribute value depends on the 'alternative' attribute (i.e.,
-which is the applicable alternative in the constraint of the insn), the
-'set_attr_alternative' expression can be used. It allows the
-specification of a vector of attribute expressions, one for each
-alternative.
-
- When the generality of arbitrary attribute expressions is not required,
-the simpler 'set_attr' expression can be used, which allows specifying a
-string giving either a single attribute value or a list of attribute
-values, one for each alternative.
-
- The form of each of the above specifications is shown below. In each
-case, NAME is a string specifying the attribute to be set.
-
-'(set_attr NAME VALUE-STRING)'
- VALUE-STRING is either a string giving the desired attribute value,
- or a string containing a comma-separated list giving the values for
- succeeding alternatives. The number of elements must match the
- number of alternatives in the constraint of the insn pattern.
-
- Note that it may be useful to specify '*' for some alternative, in
- which case the attribute will assume its default value for insns
- matching that alternative.
-
-'(set_attr_alternative NAME [VALUE1 VALUE2 ...])'
- Depending on the alternative of the insn, the value will be one of
- the specified values. This is a shorthand for using a 'cond' with
- tests on the 'alternative' attribute.
-
-'(set (attr NAME) VALUE)'
- The first operand of this 'set' must be the special RTL expression
- 'attr', whose sole operand is a string giving the name of the
- attribute being set. VALUE is the value of the attribute.
-
- The following shows three different ways of representing the same
-attribute value specification:
-
- (set_attr "type" "load,store,arith")
-
- (set_attr_alternative "type"
- [(const_string "load") (const_string "store")
- (const_string "arith")])
-
- (set (attr "type")
- (cond [(eq_attr "alternative" "1") (const_string "load")
- (eq_attr "alternative" "2") (const_string "store")]
- (const_string "arith")))
-
- The 'define_asm_attributes' expression provides a mechanism to specify
-the attributes assigned to insns produced from an 'asm' statement. It
-has the form:
-
- (define_asm_attributes [ATTR-SETS])
-
-where ATTR-SETS is specified the same as for both the 'define_insn' and
-the 'define_peephole' expressions.
-
- These values will typically be the "worst case" attribute values. For
-example, they might indicate that the condition code will be clobbered.
-
- A specification for a 'length' attribute is handled specially. The way
-to compute the length of an 'asm' insn is to multiply the length
-specified in the expression 'define_asm_attributes' by the number of
-machine instructions specified in the 'asm' statement, determined by
-counting the number of semicolons and newlines in the string.
-Therefore, the value of the 'length' attribute specified in a
-'define_asm_attributes' should be the maximum possible length of a
-single machine instruction.
-
-
-File: gccint.info, Node: Attr Example, Next: Insn Lengths, Prev: Tagging Insns, Up: Insn Attributes
-
-16.19.4 Example of Attribute Specifications
--------------------------------------------
-
-The judicious use of defaulting is important in the efficient use of
-insn attributes. Typically, insns are divided into "types" and an
-attribute, customarily called 'type', is used to represent this value.
-This attribute is normally used only to define the default value for
-other attributes. An example will clarify this usage.
-
- Assume we have a RISC machine with a condition code and in which only
-full-word operations are performed in registers. Let us assume that we
-can divide all insns into loads, stores, (integer) arithmetic
-operations, floating point operations, and branches.
-
- Here we will concern ourselves with determining the effect of an insn
-on the condition code and will limit ourselves to the following possible
-effects: The condition code can be set unpredictably (clobbered), not be
-changed, be set to agree with the results of the operation, or only
-changed if the item previously set into the condition code has been
-modified.
-
- Here is part of a sample 'md' file for such a machine:
-
- (define_attr "type" "load,store,arith,fp,branch" (const_string "arith"))
-
- (define_attr "cc" "clobber,unchanged,set,change0"
- (cond [(eq_attr "type" "load")
- (const_string "change0")
- (eq_attr "type" "store,branch")
- (const_string "unchanged")
- (eq_attr "type" "arith")
- (if_then_else (match_operand:SI 0 "" "")
- (const_string "set")
- (const_string "clobber"))]
- (const_string "clobber")))
-
- (define_insn ""
- [(set (match_operand:SI 0 "general_operand" "=r,r,m")
- (match_operand:SI 1 "general_operand" "r,m,r"))]
- ""
- "@
- move %0,%1
- load %0,%1
- store %0,%1"
- [(set_attr "type" "arith,load,store")])
-
- Note that we assume in the above example that arithmetic operations
-performed on quantities smaller than a machine word clobber the
-condition code since they will set the condition code to a value
-corresponding to the full-word result.
-
-
-File: gccint.info, Node: Insn Lengths, Next: Constant Attributes, Prev: Attr Example, Up: Insn Attributes
-
-16.19.5 Computing the Length of an Insn
----------------------------------------
-
-For many machines, multiple types of branch instructions are provided,
-each for different length branch displacements. In most cases, the
-assembler will choose the correct instruction to use. However, when the
-assembler cannot do so, GCC can when a special attribute, the 'length'
-attribute, is defined. This attribute must be defined to have numeric
-values by specifying a null string in its 'define_attr'.
-
- In the case of the 'length' attribute, two additional forms of
-arithmetic terms are allowed in test expressions:
-
-'(match_dup N)'
- This refers to the address of operand N of the current insn, which
- must be a 'label_ref'.
-
-'(pc)'
- This refers to the address of the _current_ insn. It might have
- been more consistent with other usage to make this the address of
- the _next_ insn but this would be confusing because the length of
- the current insn is to be computed.
-
- For normal insns, the length will be determined by value of the
-'length' attribute. In the case of 'addr_vec' and 'addr_diff_vec' insn
-patterns, the length is computed as the number of vectors multiplied by
-the size of each vector.
-
- Lengths are measured in addressable storage units (bytes).
-
- The following macros can be used to refine the length computation:
-
-'ADJUST_INSN_LENGTH (INSN, LENGTH)'
- If defined, modifies the length assigned to instruction INSN as a
- function of the context in which it is used. LENGTH is an lvalue
- that contains the initially computed length of the insn and should
- be updated with the correct length of the insn.
-
- This macro will normally not be required. A case in which it is
- required is the ROMP. On this machine, the size of an 'addr_vec'
- insn must be increased by two to compensate for the fact that
- alignment may be required.
-
- The routine that returns 'get_attr_length' (the value of the 'length'
-attribute) can be used by the output routine to determine the form of
-the branch instruction to be written, as the example below illustrates.
-
- As an example of the specification of variable-length branches,
-consider the IBM 360. If we adopt the convention that a register will
-be set to the starting address of a function, we can jump to labels
-within 4k of the start using a four-byte instruction. Otherwise, we
-need a six-byte sequence to load the address from memory and then branch
-to it.
-
- On such a machine, a pattern for a branch instruction might be
-specified as follows:
-
- (define_insn "jump"
- [(set (pc)
- (label_ref (match_operand 0 "" "")))]
- ""
- {
- return (get_attr_length (insn) == 4
- ? "b %l0" : "l r15,=a(%l0); br r15");
- }
- [(set (attr "length")
- (if_then_else (lt (match_dup 0) (const_int 4096))
- (const_int 4)
- (const_int 6)))])
-
-
-File: gccint.info, Node: Constant Attributes, Next: Mnemonic Attribute, Prev: Insn Lengths, Up: Insn Attributes
-
-16.19.6 Constant Attributes
----------------------------
-
-A special form of 'define_attr', where the expression for the default
-value is a 'const' expression, indicates an attribute that is constant
-for a given run of the compiler. Constant attributes may be used to
-specify which variety of processor is used. For example,
-
- (define_attr "cpu" "m88100,m88110,m88000"
- (const
- (cond [(symbol_ref "TARGET_88100") (const_string "m88100")
- (symbol_ref "TARGET_88110") (const_string "m88110")]
- (const_string "m88000"))))
-
- (define_attr "memory" "fast,slow"
- (const
- (if_then_else (symbol_ref "TARGET_FAST_MEM")
- (const_string "fast")
- (const_string "slow"))))
-
- The routine generated for constant attributes has no parameters as it
-does not depend on any particular insn. RTL expressions used to define
-the value of a constant attribute may use the 'symbol_ref' form, but may
-not use either the 'match_operand' form or 'eq_attr' forms involving
-insn attributes.
-
-
-File: gccint.info, Node: Mnemonic Attribute, Next: Delay Slots, Prev: Constant Attributes, Up: Insn Attributes
-
-16.19.7 Mnemonic Attribute
---------------------------
-
-The 'mnemonic' attribute is a string type attribute holding the
-instruction mnemonic for an insn alternative. The attribute values will
-automatically be generated by the machine description parser if there is
-an attribute definition in the md file:
-
- (define_attr "mnemonic" "unknown" (const_string "unknown"))
-
- The default value can be freely chosen as long as it does not collide
-with any of the instruction mnemonics. This value will be used whenever
-the machine description parser is not able to determine the mnemonic
-string. This might be the case for output templates containing more
-than a single instruction as in '"mvcle\t%0,%1,0\;jo\t.-4"'.
-
- The 'mnemonic' attribute set is not generated automatically if the
-instruction string is generated via C code.
-
- An existing 'mnemonic' attribute set in an insn definition will not be
-overriden by the md file parser. That way it is possible to manually
-set the instruction mnemonics for the cases where the md file parser
-fails to determine it automatically.
-
- The 'mnemonic' attribute is useful for dealing with instruction
-specific properties in the pipeline description without defining
-additional insn attributes.
-
- (define_attr "ooo_expanded" ""
- (cond [(eq_attr "mnemonic" "dlr,dsgr,d,dsgf,stam,dsgfr,dlgr")
- (const_int 1)]
- (const_int 0)))
-
-
-File: gccint.info, Node: Delay Slots, Next: Processor pipeline description, Prev: Mnemonic Attribute, Up: Insn Attributes
-
-16.19.8 Delay Slot Scheduling
------------------------------
-
-The insn attribute mechanism can be used to specify the requirements for
-delay slots, if any, on a target machine. An instruction is said to
-require a "delay slot" if some instructions that are physically after
-the instruction are executed as if they were located before it. Classic
-examples are branch and call instructions, which often execute the
-following instruction before the branch or call is performed.
-
- On some machines, conditional branch instructions can optionally
-"annul" instructions in the delay slot. This means that the instruction
-will not be executed for certain branch outcomes. Both instructions
-that annul if the branch is true and instructions that annul if the
-branch is false are supported.
-
- Delay slot scheduling differs from instruction scheduling in that
-determining whether an instruction needs a delay slot is dependent only
-on the type of instruction being generated, not on data flow between the
-instructions. See the next section for a discussion of data-dependent
-instruction scheduling.
-
- The requirement of an insn needing one or more delay slots is indicated
-via the 'define_delay' expression. It has the following form:
-
- (define_delay TEST
- [DELAY-1 ANNUL-TRUE-1 ANNUL-FALSE-1
- DELAY-2 ANNUL-TRUE-2 ANNUL-FALSE-2
- ...])
-
- TEST is an attribute test that indicates whether this 'define_delay'
-applies to a particular insn. If so, the number of required delay slots
-is determined by the length of the vector specified as the second
-argument. An insn placed in delay slot N must satisfy attribute test
-DELAY-N. ANNUL-TRUE-N is an attribute test that specifies which insns
-may be annulled if the branch is true. Similarly, ANNUL-FALSE-N
-specifies which insns in the delay slot may be annulled if the branch is
-false. If annulling is not supported for that delay slot, '(nil)'
-should be coded.
-
- For example, in the common case where branch and call insns require a
-single delay slot, which may contain any insn other than a branch or
-call, the following would be placed in the 'md' file:
-
- (define_delay (eq_attr "type" "branch,call")
- [(eq_attr "type" "!branch,call") (nil) (nil)])
-
- Multiple 'define_delay' expressions may be specified. In this case,
-each such expression specifies different delay slot requirements and
-there must be no insn for which tests in two 'define_delay' expressions
-are both true.
-
- For example, if we have a machine that requires one delay slot for
-branches but two for calls, no delay slot can contain a branch or call
-insn, and any valid insn in the delay slot for the branch can be
-annulled if the branch is true, we might represent this as follows:
-
- (define_delay (eq_attr "type" "branch")
- [(eq_attr "type" "!branch,call")
- (eq_attr "type" "!branch,call")
- (nil)])
-
- (define_delay (eq_attr "type" "call")
- [(eq_attr "type" "!branch,call") (nil) (nil)
- (eq_attr "type" "!branch,call") (nil) (nil)])
-
-
-File: gccint.info, Node: Processor pipeline description, Prev: Delay Slots, Up: Insn Attributes
-
-16.19.9 Specifying processor pipeline description
--------------------------------------------------
-
-To achieve better performance, most modern processors (super-pipelined,
-superscalar RISC, and VLIW processors) have many "functional units" on
-which several instructions can be executed simultaneously. An
-instruction starts execution if its issue conditions are satisfied. If
-not, the instruction is stalled until its conditions are satisfied.
-Such "interlock (pipeline) delay" causes interruption of the fetching of
-successor instructions (or demands nop instructions, e.g. for some MIPS
-processors).
-
- There are two major kinds of interlock delays in modern processors.
-The first one is a data dependence delay determining "instruction
-latency time". The instruction execution is not started until all
-source data have been evaluated by prior instructions (there are more
-complex cases when the instruction execution starts even when the data
-are not available but will be ready in given time after the instruction
-execution start). Taking the data dependence delays into account is
-simple. The data dependence (true, output, and anti-dependence) delay
-between two instructions is given by a constant. In most cases this
-approach is adequate. The second kind of interlock delays is a
-reservation delay. The reservation delay means that two instructions
-under execution will be in need of shared processors resources, i.e.
-buses, internal registers, and/or functional units, which are reserved
-for some time. Taking this kind of delay into account is complex
-especially for modern RISC processors.
-
- The task of exploiting more processor parallelism is solved by an
-instruction scheduler. For a better solution to this problem, the
-instruction scheduler has to have an adequate description of the
-processor parallelism (or "pipeline description"). GCC machine
-descriptions describe processor parallelism and functional unit
-reservations for groups of instructions with the aid of "regular
-expressions".
-
- The GCC instruction scheduler uses a "pipeline hazard recognizer" to
-figure out the possibility of the instruction issue by the processor on
-a given simulated processor cycle. The pipeline hazard recognizer is
-automatically generated from the processor pipeline description. The
-pipeline hazard recognizer generated from the machine description is
-based on a deterministic finite state automaton (DFA): the instruction
-issue is possible if there is a transition from one automaton state to
-another one. This algorithm is very fast, and furthermore, its speed is
-not dependent on processor complexity(1).
-
- The rest of this section describes the directives that constitute an
-automaton-based processor pipeline description. The order of these
-constructions within the machine description file is not important.
-
- The following optional construction describes names of automata
-generated and used for the pipeline hazards recognition. Sometimes the
-generated finite state automaton used by the pipeline hazard recognizer
-is large. If we use more than one automaton and bind functional units
-to the automata, the total size of the automata is usually less than the
-size of the single automaton. If there is no one such construction,
-only one finite state automaton is generated.
-
- (define_automaton AUTOMATA-NAMES)
-
- AUTOMATA-NAMES is a string giving names of the automata. The names are
-separated by commas. All the automata should have unique names. The
-automaton name is used in the constructions 'define_cpu_unit' and
-'define_query_cpu_unit'.
-
- Each processor functional unit used in the description of instruction
-reservations should be described by the following construction.
-
- (define_cpu_unit UNIT-NAMES [AUTOMATON-NAME])
-
- UNIT-NAMES is a string giving the names of the functional units
-separated by commas. Don't use name 'nothing', it is reserved for other
-goals.
-
- AUTOMATON-NAME is a string giving the name of the automaton with which
-the unit is bound. The automaton should be described in construction
-'define_automaton'. You should give "automaton-name", if there is a
-defined automaton.
-
- The assignment of units to automata are constrained by the uses of the
-units in insn reservations. The most important constraint is: if a unit
-reservation is present on a particular cycle of an alternative for an
-insn reservation, then some unit from the same automaton must be present
-on the same cycle for the other alternatives of the insn reservation.
-The rest of the constraints are mentioned in the description of the
-subsequent constructions.
-
- The following construction describes CPU functional units analogously
-to 'define_cpu_unit'. The reservation of such units can be queried for
-an automaton state. The instruction scheduler never queries reservation
-of functional units for given automaton state. So as a rule, you don't
-need this construction. This construction could be used for future code
-generation goals (e.g. to generate VLIW insn templates).
-
- (define_query_cpu_unit UNIT-NAMES [AUTOMATON-NAME])
-
- UNIT-NAMES is a string giving names of the functional units separated
-by commas.
-
- AUTOMATON-NAME is a string giving the name of the automaton with which
-the unit is bound.
-
- The following construction is the major one to describe pipeline
-characteristics of an instruction.
-
- (define_insn_reservation INSN-NAME DEFAULT_LATENCY
- CONDITION REGEXP)
-
- DEFAULT_LATENCY is a number giving latency time of the instruction.
-There is an important difference between the old description and the
-automaton based pipeline description. The latency time is used for all
-dependencies when we use the old description. In the automaton based
-pipeline description, the given latency time is only used for true
-dependencies. The cost of anti-dependencies is always zero and the cost
-of output dependencies is the difference between latency times of the
-producing and consuming insns (if the difference is negative, the cost
-is considered to be zero). You can always change the default costs for
-any description by using the target hook 'TARGET_SCHED_ADJUST_COST'
-(*note Scheduling::).
-
- INSN-NAME is a string giving the internal name of the insn. The
-internal names are used in constructions 'define_bypass' and in the
-automaton description file generated for debugging. The internal name
-has nothing in common with the names in 'define_insn'. It is a good
-practice to use insn classes described in the processor manual.
-
- CONDITION defines what RTL insns are described by this construction.
-You should remember that you will be in trouble if CONDITION for two or
-more different 'define_insn_reservation' constructions is TRUE for an
-insn. In this case what reservation will be used for the insn is not
-defined. Such cases are not checked during generation of the pipeline
-hazards recognizer because in general recognizing that two conditions
-may have the same value is quite difficult (especially if the conditions
-contain 'symbol_ref'). It is also not checked during the pipeline
-hazard recognizer work because it would slow down the recognizer
-considerably.
-
- REGEXP is a string describing the reservation of the cpu's functional
-units by the instruction. The reservations are described by a regular
-expression according to the following syntax:
-
- regexp = regexp "," oneof
- | oneof
-
- oneof = oneof "|" allof
- | allof
-
- allof = allof "+" repeat
- | repeat
-
- repeat = element "*" number
- | element
-
- element = cpu_function_unit_name
- | reservation_name
- | result_name
- | "nothing"
- | "(" regexp ")"
-
- * ',' is used for describing the start of the next cycle in the
- reservation.
-
- * '|' is used for describing a reservation described by the first
- regular expression *or* a reservation described by the second
- regular expression *or* etc.
-
- * '+' is used for describing a reservation described by the first
- regular expression *and* a reservation described by the second
- regular expression *and* etc.
-
- * '*' is used for convenience and simply means a sequence in which
- the regular expression are repeated NUMBER times with cycle
- advancing (see ',').
-
- * 'cpu_function_unit_name' denotes reservation of the named
- functional unit.
-
- * 'reservation_name' -- see description of construction
- 'define_reservation'.
-
- * 'nothing' denotes no unit reservations.
-
- Sometimes unit reservations for different insns contain common parts.
-In such case, you can simplify the pipeline description by describing
-the common part by the following construction
-
- (define_reservation RESERVATION-NAME REGEXP)
-
- RESERVATION-NAME is a string giving name of REGEXP. Functional unit
-names and reservation names are in the same name space. So the
-reservation names should be different from the functional unit names and
-can not be the reserved name 'nothing'.
-
- The following construction is used to describe exceptions in the
-latency time for given instruction pair. This is so called bypasses.
-
- (define_bypass NUMBER OUT_INSN_NAMES IN_INSN_NAMES
- [GUARD])
-
- NUMBER defines when the result generated by the instructions given in
-string OUT_INSN_NAMES will be ready for the instructions given in string
-IN_INSN_NAMES. Each of these strings is a comma-separated list of
-filename-style globs and they refer to the names of
-'define_insn_reservation's. For example:
- (define_bypass 1 "cpu1_load_*, cpu1_store_*" "cpu1_load_*")
- defines a bypass between instructions that start with 'cpu1_load_' or
-'cpu1_store_' and those that start with 'cpu1_load_'.
-
- GUARD is an optional string giving the name of a C function which
-defines an additional guard for the bypass. The function will get the
-two insns as parameters. If the function returns zero the bypass will
-be ignored for this case. The additional guard is necessary to
-recognize complicated bypasses, e.g. when the consumer is only an
-address of insn 'store' (not a stored value).
-
- If there are more one bypass with the same output and input insns, the
-chosen bypass is the first bypass with a guard in description whose
-guard function returns nonzero. If there is no such bypass, then bypass
-without the guard function is chosen.
-
- The following five constructions are usually used to describe VLIW
-processors, or more precisely, to describe a placement of small
-instructions into VLIW instruction slots. They can be used for RISC
-processors, too.
-
- (exclusion_set UNIT-NAMES UNIT-NAMES)
- (presence_set UNIT-NAMES PATTERNS)
- (final_presence_set UNIT-NAMES PATTERNS)
- (absence_set UNIT-NAMES PATTERNS)
- (final_absence_set UNIT-NAMES PATTERNS)
-
- UNIT-NAMES is a string giving names of functional units separated by
-commas.
-
- PATTERNS is a string giving patterns of functional units separated by
-comma. Currently pattern is one unit or units separated by
-white-spaces.
-
- The first construction ('exclusion_set') means that each functional
-unit in the first string can not be reserved simultaneously with a unit
-whose name is in the second string and vice versa. For example, the
-construction is useful for describing processors (e.g. some SPARC
-processors) with a fully pipelined floating point functional unit which
-can execute simultaneously only single floating point insns or only
-double floating point insns.
-
- The second construction ('presence_set') means that each functional
-unit in the first string can not be reserved unless at least one of
-pattern of units whose names are in the second string is reserved. This
-is an asymmetric relation. For example, it is useful for description
-that VLIW 'slot1' is reserved after 'slot0' reservation. We could
-describe it by the following construction
-
- (presence_set "slot1" "slot0")
-
- Or 'slot1' is reserved only after 'slot0' and unit 'b0' reservation.
-In this case we could write
-
- (presence_set "slot1" "slot0 b0")
-
- The third construction ('final_presence_set') is analogous to
-'presence_set'. The difference between them is when checking is done.
-When an instruction is issued in given automaton state reflecting all
-current and planned unit reservations, the automaton state is changed.
-The first state is a source state, the second one is a result state.
-Checking for 'presence_set' is done on the source state reservation,
-checking for 'final_presence_set' is done on the result reservation.
-This construction is useful to describe a reservation which is actually
-two subsequent reservations. For example, if we use
-
- (presence_set "slot1" "slot0")
-
- the following insn will be never issued (because 'slot1' requires
-'slot0' which is absent in the source state).
-
- (define_reservation "insn_and_nop" "slot0 + slot1")
-
- but it can be issued if we use analogous 'final_presence_set'.
-
- The forth construction ('absence_set') means that each functional unit
-in the first string can be reserved only if each pattern of units whose
-names are in the second string is not reserved. This is an asymmetric
-relation (actually 'exclusion_set' is analogous to this one but it is
-symmetric). For example it might be useful in a VLIW description to say
-that 'slot0' cannot be reserved after either 'slot1' or 'slot2' have
-been reserved. This can be described as:
-
- (absence_set "slot0" "slot1, slot2")
-
- Or 'slot2' can not be reserved if 'slot0' and unit 'b0' are reserved or
-'slot1' and unit 'b1' are reserved. In this case we could write
-
- (absence_set "slot2" "slot0 b0, slot1 b1")
-
- All functional units mentioned in a set should belong to the same
-automaton.
-
- The last construction ('final_absence_set') is analogous to
-'absence_set' but checking is done on the result (state) reservation.
-See comments for 'final_presence_set'.
-
- You can control the generator of the pipeline hazard recognizer with
-the following construction.
-
- (automata_option OPTIONS)
-
- OPTIONS is a string giving options which affect the generated code.
-Currently there are the following options:
-
- * "no-minimization" makes no minimization of the automaton. This is
- only worth to do when we are debugging the description and need to
- look more accurately at reservations of states.
-
- * "time" means printing time statistics about the generation of
- automata.
-
- * "stats" means printing statistics about the generated automata such
- as the number of DFA states, NDFA states and arcs.
-
- * "v" means a generation of the file describing the result automata.
- The file has suffix '.dfa' and can be used for the description
- verification and debugging.
-
- * "w" means a generation of warning instead of error for non-critical
- errors.
-
- * "no-comb-vect" prevents the automaton generator from generating two
- data structures and comparing them for space efficiency. Using a
- comb vector to represent transitions may be better, but it can be
- very expensive to construct. This option is useful if the build
- process spends an unacceptably long time in genautomata.
-
- * "ndfa" makes nondeterministic finite state automata. This affects
- the treatment of operator '|' in the regular expressions. The
- usual treatment of the operator is to try the first alternative
- and, if the reservation is not possible, the second alternative.
- The nondeterministic treatment means trying all alternatives, some
- of them may be rejected by reservations in the subsequent insns.
-
- * "collapse-ndfa" modifies the behaviour of the generator when
- producing an automaton. An additional state transition to collapse
- a nondeterministic NDFA state to a deterministic DFA state is
- generated. It can be triggered by passing 'const0_rtx' to
- state_transition. In such an automaton, cycle advance transitions
- are available only for these collapsed states. This option is
- useful for ports that want to use the 'ndfa' option, but also want
- to use 'define_query_cpu_unit' to assign units to insns issued in a
- cycle.
-
- * "progress" means output of a progress bar showing how many states
- were generated so far for automaton being processed. This is
- useful during debugging a DFA description. If you see too many
- generated states, you could interrupt the generator of the pipeline
- hazard recognizer and try to figure out a reason for generation of
- the huge automaton.
-
- As an example, consider a superscalar RISC machine which can issue
-three insns (two integer insns and one floating point insn) on the cycle
-but can finish only two insns. To describe this, we define the
-following functional units.
-
- (define_cpu_unit "i0_pipeline, i1_pipeline, f_pipeline")
- (define_cpu_unit "port0, port1")
-
- All simple integer insns can be executed in any integer pipeline and
-their result is ready in two cycles. The simple integer insns are
-issued into the first pipeline unless it is reserved, otherwise they are
-issued into the second pipeline. Integer division and multiplication
-insns can be executed only in the second integer pipeline and their
-results are ready correspondingly in 8 and 4 cycles. The integer
-division is not pipelined, i.e. the subsequent integer division insn can
-not be issued until the current division insn finished. Floating point
-insns are fully pipelined and their results are ready in 3 cycles.
-Where the result of a floating point insn is used by an integer insn, an
-additional delay of one cycle is incurred. To describe all of this we
-could specify
-
- (define_cpu_unit "div")
-
- (define_insn_reservation "simple" 2 (eq_attr "type" "int")
- "(i0_pipeline | i1_pipeline), (port0 | port1)")
-
- (define_insn_reservation "mult" 4 (eq_attr "type" "mult")
- "i1_pipeline, nothing*2, (port0 | port1)")
-
- (define_insn_reservation "div" 8 (eq_attr "type" "div")
- "i1_pipeline, div*7, div + (port0 | port1)")
-
- (define_insn_reservation "float" 3 (eq_attr "type" "float")
- "f_pipeline, nothing, (port0 | port1))
-
- (define_bypass 4 "float" "simple,mult,div")
-
- To simplify the description we could describe the following reservation
-
- (define_reservation "finish" "port0|port1")
-
- and use it in all 'define_insn_reservation' as in the following
-construction
-
- (define_insn_reservation "simple" 2 (eq_attr "type" "int")
- "(i0_pipeline | i1_pipeline), finish")
-
- ---------- Footnotes ----------
-
- (1) However, the size of the automaton depends on processor
-complexity. To limit this effect, machine descriptions can split
-orthogonal parts of the machine description among several automata: but
-then, since each of these must be stepped independently, this does cause
-a small decrease in the algorithm's performance.
-
-
-File: gccint.info, Node: Conditional Execution, Next: Define Subst, Prev: Insn Attributes, Up: Machine Desc
-
-16.20 Conditional Execution
-===========================
-
-A number of architectures provide for some form of conditional
-execution, or predication. The hallmark of this feature is the ability
-to nullify most of the instructions in the instruction set. When the
-instruction set is large and not entirely symmetric, it can be quite
-tedious to describe these forms directly in the '.md' file. An
-alternative is the 'define_cond_exec' template.
-
- (define_cond_exec
- [PREDICATE-PATTERN]
- "CONDITION"
- "OUTPUT-TEMPLATE"
- "OPTIONAL-INSN-ATTRIBUES")
-
- PREDICATE-PATTERN is the condition that must be true for the insn to be
-executed at runtime and should match a relational operator. One can use
-'match_operator' to match several relational operators at once. Any
-'match_operand' operands must have no more than one alternative.
-
- CONDITION is a C expression that must be true for the generated pattern
-to match.
-
- OUTPUT-TEMPLATE is a string similar to the 'define_insn' output
-template (*note Output Template::), except that the '*' and '@' special
-cases do not apply. This is only useful if the assembly text for the
-predicate is a simple prefix to the main insn. In order to handle the
-general case, there is a global variable 'current_insn_predicate' that
-will contain the entire predicate if the current insn is predicated, and
-will otherwise be 'NULL'.
-
- OPTIONAL-INSN-ATTRIBUTES is an optional vector of attributes that gets
-appended to the insn attributes of the produced cond_exec rtx. It can
-be used to add some distinguishing attribute to cond_exec rtxs produced
-that way. An example usage would be to use this attribute in
-conjunction with attributes on the main pattern to disable particular
-alternatives under certain conditions.
-
- When 'define_cond_exec' is used, an implicit reference to the
-'predicable' instruction attribute is made. *Note Insn Attributes::.
-This attribute must be a boolean (i.e. have exactly two elements in its
-LIST-OF-VALUES), with the possible values being 'no' and 'yes'. The
-default and all uses in the insns must be a simple constant, not a
-complex expressions. It may, however, depend on the alternative, by
-using a comma-separated list of values. If that is the case, the port
-should also define an 'enabled' attribute (*note Disable Insn
-Alternatives::), which should also allow only 'no' and 'yes' as its
-values.
-
- For each 'define_insn' for which the 'predicable' attribute is true, a
-new 'define_insn' pattern will be generated that matches a predicated
-version of the instruction. For example,
-
- (define_insn "addsi"
- [(set (match_operand:SI 0 "register_operand" "r")
- (plus:SI (match_operand:SI 1 "register_operand" "r")
- (match_operand:SI 2 "register_operand" "r")))]
- "TEST1"
- "add %2,%1,%0")
-
- (define_cond_exec
- [(ne (match_operand:CC 0 "register_operand" "c")
- (const_int 0))]
- "TEST2"
- "(%0)")
-
-generates a new pattern
-
- (define_insn ""
- [(cond_exec
- (ne (match_operand:CC 3 "register_operand" "c") (const_int 0))
- (set (match_operand:SI 0 "register_operand" "r")
- (plus:SI (match_operand:SI 1 "register_operand" "r")
- (match_operand:SI 2 "register_operand" "r"))))]
- "(TEST2) && (TEST1)"
- "(%3) add %2,%1,%0")
-
-
-File: gccint.info, Node: Define Subst, Next: Constant Definitions, Prev: Conditional Execution, Up: Machine Desc
-
-16.21 RTL Templates Transformations
-===================================
-
-For some hardware architectures there are common cases when the RTL
-templates for the instructions can be derived from the other RTL
-templates using simple transformations. E.g., 'i386.md' contains an RTL
-template for the ordinary 'sub' instruction-- '*subsi_1', and for the
-'sub' instruction with subsequent zero-extension--'*subsi_1_zext'. Such
-cases can be easily implemented by a single meta-template capable of
-generating a modified case based on the initial one:
-
- (define_subst "NAME"
- [INPUT-TEMPLATE]
- "CONDITION"
- [OUTPUT-TEMPLATE])
- INPUT-TEMPLATE is a pattern describing the source RTL template, which
-will be transformed.
-
- CONDITION is a C expression that is conjunct with the condition from
-the input-template to generate a condition to be used in the
-output-template.
-
- OUTPUT-TEMPLATE is a pattern that will be used in the resulting
-template.
-
- 'define_subst' mechanism is tightly coupled with the notion of the
-subst attribute (*note Subst Iterators::). The use of 'define_subst' is
-triggered by a reference to a subst attribute in the transforming RTL
-template. This reference initiates duplication of the source RTL
-template and substitution of the attributes with their values. The
-source RTL template is left unchanged, while the copy is transformed by
-'define_subst'. This transformation can fail in the case when the
-source RTL template is not matched against the input-template of the
-'define_subst'. In such case the copy is deleted.
-
- 'define_subst' can be used only in 'define_insn' and 'define_expand',
-it cannot be used in other expressions (e.g. in
-'define_insn_and_split').
-
-* Menu:
-
-* Define Subst Example:: Example of 'define_subst' work.
-* Define Subst Pattern Matching:: Process of template comparison.
-* Define Subst Output Template:: Generation of output template.
-
-
-File: gccint.info, Node: Define Subst Example, Next: Define Subst Pattern Matching, Up: Define Subst
-
-16.21.1 'define_subst' Example
-------------------------------
-
-To illustrate how 'define_subst' works, let us examine a simple template
-transformation.
-
- Suppose there are two kinds of instructions: one that touches flags and
-the other that does not. The instructions of the second type could be
-generated with the following 'define_subst':
-
- (define_subst "add_clobber_subst"
- [(set (match_operand:SI 0 "" "")
- (match_operand:SI 1 "" ""))]
- ""
- [(set (match_dup 0)
- (match_dup 1))
- (clobber (reg:CC FLAGS_REG))]
-
- This 'define_subst' can be applied to any RTL pattern containing 'set'
-of mode SI and generates a copy with clobber when it is applied.
-
- Assume there is an RTL template for a 'max' instruction to be used in
-'define_subst' mentioned above:
-
- (define_insn "maxsi"
- [(set (match_operand:SI 0 "register_operand" "=r")
- (max:SI
- (match_operand:SI 1 "register_operand" "r")
- (match_operand:SI 2 "register_operand" "r")))]
- ""
- "max\t{%2, %1, %0|%0, %1, %2}"
- [...])
-
- To mark the RTL template for 'define_subst' application,
-subst-attributes are used. They should be declared in advance:
-
- (define_subst_attr "add_clobber_name" "add_clobber_subst" "_noclobber" "_clobber")
-
- Here 'add_clobber_name' is the attribute name, 'add_clobber_subst' is
-the name of the corresponding 'define_subst', the third argument
-('_noclobber') is the attribute value that would be substituted into the
-unchanged version of the source RTL template, and the last argument
-('_clobber') is the value that would be substituted into the second,
-transformed, version of the RTL template.
-
- Once the subst-attribute has been defined, it should be used in RTL
-templates which need to be processed by the 'define_subst'. So, the
-original RTL template should be changed:
-
- (define_insn "maxsi<add_clobber_name>"
- [(set (match_operand:SI 0 "register_operand" "=r")
- (max:SI
- (match_operand:SI 1 "register_operand" "r")
- (match_operand:SI 2 "register_operand" "r")))]
- ""
- "max\t{%2, %1, %0|%0, %1, %2}"
- [...])
-
- The result of the 'define_subst' usage would look like the following:
-
- (define_insn "maxsi_noclobber"
- [(set (match_operand:SI 0 "register_operand" "=r")
- (max:SI
- (match_operand:SI 1 "register_operand" "r")
- (match_operand:SI 2 "register_operand" "r")))]
- ""
- "max\t{%2, %1, %0|%0, %1, %2}"
- [...])
- (define_insn "maxsi_clobber"
- [(set (match_operand:SI 0 "register_operand" "=r")
- (max:SI
- (match_operand:SI 1 "register_operand" "r")
- (match_operand:SI 2 "register_operand" "r")))
- (clobber (reg:CC FLAGS_REG))]
- ""
- "max\t{%2, %1, %0|%0, %1, %2}"
- [...])
-
-
-File: gccint.info, Node: Define Subst Pattern Matching, Next: Define Subst Output Template, Prev: Define Subst Example, Up: Define Subst
-
-16.21.2 Pattern Matching in 'define_subst'
-------------------------------------------
-
-All expressions, allowed in 'define_insn' or 'define_expand', are
-allowed in the input-template of 'define_subst', except 'match_par_dup',
-'match_scratch', 'match_parallel'. The meanings of expressions in the
-input-template were changed:
-
- 'match_operand' matches any expression (possibly, a subtree in
-RTL-template), if modes of the 'match_operand' and this expression are
-the same, or mode of the 'match_operand' is 'VOIDmode', or this
-expression is 'match_dup', 'match_op_dup'. If the expression is
-'match_operand' too, and predicate of 'match_operand' from the input
-pattern is not empty, then the predicates are compared. That can be
-used for more accurate filtering of accepted RTL-templates.
-
- 'match_operator' matches common operators (like 'plus', 'minus'),
-'unspec', 'unspec_volatile' operators and 'match_operator's from the
-original pattern if the modes match and 'match_operator' from the input
-pattern has the same number of operands as the operator from the
-original pattern.
-
-
-File: gccint.info, Node: Define Subst Output Template, Prev: Define Subst Pattern Matching, Up: Define Subst
-
-16.21.3 Generation of output template in 'define_subst'
--------------------------------------------------------
-
-If all necessary checks for 'define_subst' application pass, a new
-RTL-pattern, based on the output-template, is created to replace the old
-template. Like in input-patterns, meanings of some RTL expressions are
-changed when they are used in output-patterns of a 'define_subst'.
-Thus, 'match_dup' is used for copying the whole expression from the
-original pattern, which matched corresponding 'match_operand' from the
-input pattern.
-
- 'match_dup N' is used in the output template to be replaced with the
-expression from the original pattern, which matched 'match_operand N'
-from the input pattern. As a consequence, 'match_dup' cannot be used to
-point to 'match_operand's from the output pattern, it should always
-refer to a 'match_operand' from the input pattern.
-
- In the output template one can refer to the expressions from the
-original pattern and create new ones. For instance, some operands could
-be added by means of standard 'match_operand'.
-
- After replacing 'match_dup' with some RTL-subtree from the original
-pattern, it could happen that several 'match_operand's in the output
-pattern have the same indexes. It is unknown, how many and what indexes
-would be used in the expression which would replace 'match_dup', so such
-conflicts in indexes are inevitable. To overcome this issue,
-'match_operands' and 'match_operators', which were introduced into the
-output pattern, are renumerated when all 'match_dup's are replaced.
-
- Number of alternatives in 'match_operand's introduced into the output
-template 'M' could differ from the number of alternatives in the
-original pattern 'N', so in the resultant pattern there would be 'N*M'
-alternatives. Thus, constraints from the original pattern would be
-duplicated 'N' times, constraints from the output pattern would be
-duplicated 'M' times, producing all possible combinations.
-
-
-File: gccint.info, Node: Constant Definitions, Next: Iterators, Prev: Define Subst, Up: Machine Desc
-
-16.22 Constant Definitions
-==========================
-
-Using literal constants inside instruction patterns reduces legibility
-and can be a maintenance problem.
-
- To overcome this problem, you may use the 'define_constants'
-expression. It contains a vector of name-value pairs. From that point
-on, wherever any of the names appears in the MD file, it is as if the
-corresponding value had been written instead. You may use
-'define_constants' multiple times; each appearance adds more constants
-to the table. It is an error to redefine a constant with a different
-value.
-
- To come back to the a29k load multiple example, instead of
-
- (define_insn ""
- [(match_parallel 0 "load_multiple_operation"
- [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
- (match_operand:SI 2 "memory_operand" "m"))
- (use (reg:SI 179))
- (clobber (reg:SI 179))])]
- ""
- "loadm 0,0,%1,%2")
-
- You could write:
-
- (define_constants [
- (R_BP 177)
- (R_FC 178)
- (R_CR 179)
- (R_Q 180)
- ])
-
- (define_insn ""
- [(match_parallel 0 "load_multiple_operation"
- [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
- (match_operand:SI 2 "memory_operand" "m"))
- (use (reg:SI R_CR))
- (clobber (reg:SI R_CR))])]
- ""
- "loadm 0,0,%1,%2")
-
- The constants that are defined with a define_constant are also output
-in the insn-codes.h header file as #defines.
-
- You can also use the machine description file to define enumerations.
-Like the constants defined by 'define_constant', these enumerations are
-visible to both the machine description file and the main C code.
-
- The syntax is as follows:
-
- (define_c_enum "NAME" [
- VALUE0
- VALUE1
- ...
- VALUEN
- ])
-
- This definition causes the equivalent of the following C code to appear
-in 'insn-constants.h':
-
- enum NAME {
- VALUE0 = 0,
- VALUE1 = 1,
- ...
- VALUEN = N
- };
- #define NUM_CNAME_VALUES (N + 1)
-
- where CNAME is the capitalized form of NAME. It also makes each VALUEI
-available in the machine description file, just as if it had been
-declared with:
-
- (define_constants [(VALUEI I)])
-
- Each VALUEI is usually an upper-case identifier and usually begins with
-CNAME.
-
- You can split the enumeration definition into as many statements as you
-like. The above example is directly equivalent to:
-
- (define_c_enum "NAME" [VALUE0])
- (define_c_enum "NAME" [VALUE1])
- ...
- (define_c_enum "NAME" [VALUEN])
-
- Splitting the enumeration helps to improve the modularity of each
-individual '.md' file. For example, if a port defines its
-synchronization instructions in a separate 'sync.md' file, it is
-convenient to define all synchronization-specific enumeration values in
-'sync.md' rather than in the main '.md' file.
-
- Some enumeration names have special significance to GCC:
-
-'unspecv'
- If an enumeration called 'unspecv' is defined, GCC will use it when
- printing out 'unspec_volatile' expressions. For example:
-
- (define_c_enum "unspecv" [
- UNSPECV_BLOCKAGE
- ])
-
- causes GCC to print '(unspec_volatile ... 0)' as:
-
- (unspec_volatile ... UNSPECV_BLOCKAGE)
-
-'unspec'
- If an enumeration called 'unspec' is defined, GCC will use it when
- printing out 'unspec' expressions. GCC will also use it when
- printing out 'unspec_volatile' expressions unless an 'unspecv'
- enumeration is also defined. You can therefore decide whether to
- keep separate enumerations for volatile and non-volatile
- expressions or whether to use the same enumeration for both.
-
- Another way of defining an enumeration is to use 'define_enum':
-
- (define_enum "NAME" [
- VALUE0
- VALUE1
- ...
- VALUEN
- ])
-
- This directive implies:
-
- (define_c_enum "NAME" [
- CNAME_CVALUE0
- CNAME_CVALUE1
- ...
- CNAME_CVALUEN
- ])
-
- where CVALUEI is the capitalized form of VALUEI. However, unlike
-'define_c_enum', the enumerations defined by 'define_enum' can be used
-in attribute specifications (*note define_enum_attr::).
-
-
-File: gccint.info, Node: Iterators, Prev: Constant Definitions, Up: Machine Desc
-
-16.23 Iterators
-===============
-
-Ports often need to define similar patterns for more than one machine
-mode or for more than one rtx code. GCC provides some simple iterator
-facilities to make this process easier.
-
-* Menu:
-
-* Mode Iterators:: Generating variations of patterns for different modes.
-* Code Iterators:: Doing the same for codes.
-* Int Iterators:: Doing the same for integers.
-* Subst Iterators:: Generating variations of patterns for define_subst.
-
-
-File: gccint.info, Node: Mode Iterators, Next: Code Iterators, Up: Iterators
-
-16.23.1 Mode Iterators
-----------------------
-
-Ports often need to define similar patterns for two or more different
-modes. For example:
-
- * If a processor has hardware support for both single and double
- floating-point arithmetic, the 'SFmode' patterns tend to be very
- similar to the 'DFmode' ones.
-
- * If a port uses 'SImode' pointers in one configuration and 'DImode'
- pointers in another, it will usually have very similar 'SImode' and
- 'DImode' patterns for manipulating pointers.
-
- Mode iterators allow several patterns to be instantiated from one '.md'
-file template. They can be used with any type of rtx-based construct,
-such as a 'define_insn', 'define_split', or 'define_peephole2'.
-
-* Menu:
-
-* Defining Mode Iterators:: Defining a new mode iterator.
-* Substitutions:: Combining mode iterators with substitutions
-* Examples:: Examples
-
-
-File: gccint.info, Node: Defining Mode Iterators, Next: Substitutions, Up: Mode Iterators
-
-16.23.1.1 Defining Mode Iterators
-.................................
-
-The syntax for defining a mode iterator is:
-
- (define_mode_iterator NAME [(MODE1 "COND1") ... (MODEN "CONDN")])
-
- This allows subsequent '.md' file constructs to use the mode suffix
-':NAME'. Every construct that does so will be expanded N times, once
-with every use of ':NAME' replaced by ':MODE1', once with every use
-replaced by ':MODE2', and so on. In the expansion for a particular
-MODEI, every C condition will also require that CONDI be true.
-
- For example:
-
- (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
-
- defines a new mode suffix ':P'. Every construct that uses ':P' will be
-expanded twice, once with every ':P' replaced by ':SI' and once with
-every ':P' replaced by ':DI'. The ':SI' version will only apply if
-'Pmode == SImode' and the ':DI' version will only apply if 'Pmode ==
-DImode'.
-
- As with other '.md' conditions, an empty string is treated as "always
-true". '(MODE "")' can also be abbreviated to 'MODE'. For example:
-
- (define_mode_iterator GPR [SI (DI "TARGET_64BIT")])
-
- means that the ':DI' expansion only applies if 'TARGET_64BIT' but that
-the ':SI' expansion has no such constraint.
-
- Iterators are applied in the order they are defined. This can be
-significant if two iterators are used in a construct that requires
-substitutions. *Note Substitutions::.
-
-
-File: gccint.info, Node: Substitutions, Next: Examples, Prev: Defining Mode Iterators, Up: Mode Iterators
-
-16.23.1.2 Substitution in Mode Iterators
-........................................
-
-If an '.md' file construct uses mode iterators, each version of the
-construct will often need slightly different strings or modes. For
-example:
-
- * When a 'define_expand' defines several 'addM3' patterns (*note
- Standard Names::), each expander will need to use the appropriate
- mode name for M.
-
- * When a 'define_insn' defines several instruction patterns, each
- instruction will often use a different assembler mnemonic.
-
- * When a 'define_insn' requires operands with different modes, using
- an iterator for one of the operand modes usually requires a
- specific mode for the other operand(s).
-
- GCC supports such variations through a system of "mode attributes".
-There are two standard attributes: 'mode', which is the name of the mode
-in lower case, and 'MODE', which is the same thing in upper case. You
-can define other attributes using:
-
- (define_mode_attr NAME [(MODE1 "VALUE1") ... (MODEN "VALUEN")])
-
- where NAME is the name of the attribute and VALUEI is the value
-associated with MODEI.
-
- When GCC replaces some :ITERATOR with :MODE, it will scan each string
-and mode in the pattern for sequences of the form '<ITERATOR:ATTR>',
-where ATTR is the name of a mode attribute. If the attribute is defined
-for MODE, the whole '<...>' sequence will be replaced by the appropriate
-attribute value.
-
- For example, suppose an '.md' file has:
-
- (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
- (define_mode_attr load [(SI "lw") (DI "ld")])
-
- If one of the patterns that uses ':P' contains the string
-'"<P:load>\t%0,%1"', the 'SI' version of that pattern will use
-'"lw\t%0,%1"' and the 'DI' version will use '"ld\t%0,%1"'.
-
- Here is an example of using an attribute for a mode:
-
- (define_mode_iterator LONG [SI DI])
- (define_mode_attr SHORT [(SI "HI") (DI "SI")])
- (define_insn ...
- (sign_extend:LONG (match_operand:<LONG:SHORT> ...)) ...)
-
- The 'ITERATOR:' prefix may be omitted, in which case the substitution
-will be attempted for every iterator expansion.
-
-
-File: gccint.info, Node: Examples, Prev: Substitutions, Up: Mode Iterators
-
-16.23.1.3 Mode Iterator Examples
-................................
-
-Here is an example from the MIPS port. It defines the following modes
-and attributes (among others):
-
- (define_mode_iterator GPR [SI (DI "TARGET_64BIT")])
- (define_mode_attr d [(SI "") (DI "d")])
-
- and uses the following template to define both 'subsi3' and 'subdi3':
-
- (define_insn "sub<mode>3"
- [(set (match_operand:GPR 0 "register_operand" "=d")
- (minus:GPR (match_operand:GPR 1 "register_operand" "d")
- (match_operand:GPR 2 "register_operand" "d")))]
- ""
- "<d>subu\t%0,%1,%2"
- [(set_attr "type" "arith")
- (set_attr "mode" "<MODE>")])
-
- This is exactly equivalent to:
-
- (define_insn "subsi3"
- [(set (match_operand:SI 0 "register_operand" "=d")
- (minus:SI (match_operand:SI 1 "register_operand" "d")
- (match_operand:SI 2 "register_operand" "d")))]
- ""
- "subu\t%0,%1,%2"
- [(set_attr "type" "arith")
- (set_attr "mode" "SI")])
-
- (define_insn "subdi3"
- [(set (match_operand:DI 0 "register_operand" "=d")
- (minus:DI (match_operand:DI 1 "register_operand" "d")
- (match_operand:DI 2 "register_operand" "d")))]
- ""
- "dsubu\t%0,%1,%2"
- [(set_attr "type" "arith")
- (set_attr "mode" "DI")])
-
-
-File: gccint.info, Node: Code Iterators, Next: Int Iterators, Prev: Mode Iterators, Up: Iterators
-
-16.23.2 Code Iterators
-----------------------
-
-Code iterators operate in a similar way to mode iterators. *Note Mode
-Iterators::.
-
- The construct:
-
- (define_code_iterator NAME [(CODE1 "COND1") ... (CODEN "CONDN")])
-
- defines a pseudo rtx code NAME that can be instantiated as CODEI if
-condition CONDI is true. Each CODEI must have the same rtx format.
-*Note RTL Classes::.
-
- As with mode iterators, each pattern that uses NAME will be expanded N
-times, once with all uses of NAME replaced by CODE1, once with all uses
-replaced by CODE2, and so on. *Note Defining Mode Iterators::.
-
- It is possible to define attributes for codes as well as for modes.
-There are two standard code attributes: 'code', the name of the code in
-lower case, and 'CODE', the name of the code in upper case. Other
-attributes are defined using:
-
- (define_code_attr NAME [(CODE1 "VALUE1") ... (CODEN "VALUEN")])
-
- Here's an example of code iterators in action, taken from the MIPS
-port:
-
- (define_code_iterator any_cond [unordered ordered unlt unge uneq ltgt unle ungt
- eq ne gt ge lt le gtu geu ltu leu])
-
- (define_expand "b<code>"
- [(set (pc)
- (if_then_else (any_cond:CC (cc0)
- (const_int 0))
- (label_ref (match_operand 0 ""))
- (pc)))]
- ""
- {
- gen_conditional_branch (operands, <CODE>);
- DONE;
- })
-
- This is equivalent to:
-
- (define_expand "bunordered"
- [(set (pc)
- (if_then_else (unordered:CC (cc0)
- (const_int 0))
- (label_ref (match_operand 0 ""))
- (pc)))]
- ""
- {
- gen_conditional_branch (operands, UNORDERED);
- DONE;
- })
-
- (define_expand "bordered"
- [(set (pc)
- (if_then_else (ordered:CC (cc0)
- (const_int 0))
- (label_ref (match_operand 0 ""))
- (pc)))]
- ""
- {
- gen_conditional_branch (operands, ORDERED);
- DONE;
- })
-
- ...
-
-
-File: gccint.info, Node: Int Iterators, Next: Subst Iterators, Prev: Code Iterators, Up: Iterators
-
-16.23.3 Int Iterators
----------------------
-
-Int iterators operate in a similar way to code iterators. *Note Code
-Iterators::.
-
- The construct:
-
- (define_int_iterator NAME [(INT1 "COND1") ... (INTN "CONDN")])
-
- defines a pseudo integer constant NAME that can be instantiated as INTI
-if condition CONDI is true. Each INT must have the same rtx format.
-*Note RTL Classes::. Int iterators can appear in only those rtx fields
-that have 'i' as the specifier. This means that each INT has to be a
-constant defined using define_constant or define_c_enum.
-
- As with mode and code iterators, each pattern that uses NAME will be
-expanded N times, once with all uses of NAME replaced by INT1, once with
-all uses replaced by INT2, and so on. *Note Defining Mode Iterators::.
-
- It is possible to define attributes for ints as well as for codes and
-modes. Attributes are defined using:
-
- (define_int_attr NAME [(INT1 "VALUE1") ... (INTN "VALUEN")])
-
- Here's an example of int iterators in action, taken from the ARM port:
-
- (define_int_iterator QABSNEG [UNSPEC_VQABS UNSPEC_VQNEG])
-
- (define_int_attr absneg [(UNSPEC_VQABS "abs") (UNSPEC_VQNEG "neg")])
-
- (define_insn "neon_vq<absneg><mode>"
- [(set (match_operand:VDQIW 0 "s_register_operand" "=w")
- (unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w")
- (match_operand:SI 2 "immediate_operand" "i")]
- QABSNEG))]
- "TARGET_NEON"
- "vq<absneg>.<V_s_elem>\t%<V_reg>0, %<V_reg>1"
- [(set_attr "type" "neon_vqneg_vqabs")]
- )
-
- This is equivalent to:
-
- (define_insn "neon_vqabs<mode>"
- [(set (match_operand:VDQIW 0 "s_register_operand" "=w")
- (unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w")
- (match_operand:SI 2 "immediate_operand" "i")]
- UNSPEC_VQABS))]
- "TARGET_NEON"
- "vqabs.<V_s_elem>\t%<V_reg>0, %<V_reg>1"
- [(set_attr "type" "neon_vqneg_vqabs")]
- )
-
- (define_insn "neon_vqneg<mode>"
- [(set (match_operand:VDQIW 0 "s_register_operand" "=w")
- (unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w")
- (match_operand:SI 2 "immediate_operand" "i")]
- UNSPEC_VQNEG))]
- "TARGET_NEON"
- "vqneg.<V_s_elem>\t%<V_reg>0, %<V_reg>1"
- [(set_attr "type" "neon_vqneg_vqabs")]
- )
-
-
-File: gccint.info, Node: Subst Iterators, Prev: Int Iterators, Up: Iterators
-
-16.23.4 Subst Iterators
------------------------
-
-Subst iterators are special type of iterators with the following
-restrictions: they could not be declared explicitly, they always have
-only two values, and they do not have explicit dedicated name.
-Subst-iterators are triggered only when corresponding subst-attribute is
-used in RTL-pattern.
-
- Subst iterators transform templates in the following way: the templates
-are duplicated, the subst-attributes in these templates are replaced
-with the corresponding values, and a new attribute is implicitly added
-to the given 'define_insn'/'define_expand'. The name of the added
-attribute matches the name of 'define_subst'. Such attributes are
-declared implicitly, and it is not allowed to have a 'define_attr' named
-as a 'define_subst'.
-
- Each subst iterator is linked to a 'define_subst'. It is declared
-implicitly by the first appearance of the corresponding
-'define_subst_attr', and it is not allowed to define it explicitly.
-
- Declarations of subst-attributes have the following syntax:
-
- (define_subst_attr "NAME"
- "SUBST-NAME"
- "NO-SUBST-VALUE"
- "SUBST-APPLIED-VALUE")
-
- NAME is a string with which the given subst-attribute could be referred
-to.
-
- SUBST-NAME shows which 'define_subst' should be applied to an
-RTL-template if the given subst-attribute is present in the
-RTL-template.
-
- NO-SUBST-VALUE is a value with which subst-attribute would be replaced
-in the first copy of the original RTL-template.
-
- SUBST-APPLIED-VALUE is a value with which subst-attribute would be
-replaced in the second copy of the original RTL-template.
-
-
-File: gccint.info, Node: Target Macros, Next: Host Config, Prev: Machine Desc, Up: Top
-
-17 Target Description Macros and Functions
-******************************************
-
-In addition to the file 'MACHINE.md', a machine description includes a C
-header file conventionally given the name 'MACHINE.h' and a C source
-file named 'MACHINE.c'. The header file defines numerous macros that
-convey the information about the target machine that does not fit into
-the scheme of the '.md' file. The file 'tm.h' should be a link to
-'MACHINE.h'. The header file 'config.h' includes 'tm.h' and most
-compiler source files include 'config.h'. The source file defines a
-variable 'targetm', which is a structure containing pointers to
-functions and data relating to the target machine. 'MACHINE.c' should
-also contain their definitions, if they are not defined elsewhere in
-GCC, and other functions called through the macros defined in the '.h'
-file.
-
-* Menu:
-
-* Target Structure:: The 'targetm' variable.
-* Driver:: Controlling how the driver runs the compilation passes.
-* Run-time Target:: Defining '-m' options like '-m68000' and '-m68020'.
-* Per-Function Data:: Defining data structures for per-function information.
-* Storage Layout:: Defining sizes and alignments of data.
-* Type Layout:: Defining sizes and properties of basic user data types.
-* Registers:: Naming and describing the hardware registers.
-* Register Classes:: Defining the classes of hardware registers.
-* Old Constraints:: The old way to define machine-specific constraints.
-* Stack and Calling:: Defining which way the stack grows and by how much.
-* Varargs:: Defining the varargs macros.
-* Trampolines:: Code set up at run time to enter a nested function.
-* Library Calls:: Controlling how library routines are implicitly called.
-* Addressing Modes:: Defining addressing modes valid for memory operands.
-* Anchored Addresses:: Defining how '-fsection-anchors' should work.
-* Condition Code:: Defining how insns update the condition code.
-* Costs:: Defining relative costs of different operations.
-* Scheduling:: Adjusting the behavior of the instruction scheduler.
-* Sections:: Dividing storage into text, data, and other sections.
-* PIC:: Macros for position independent code.
-* Assembler Format:: Defining how to write insns and pseudo-ops to output.
-* Debugging Info:: Defining the format of debugging output.
-* Floating Point:: Handling floating point for cross-compilers.
-* Mode Switching:: Insertion of mode-switching instructions.
-* Target Attributes:: Defining target-specific uses of '__attribute__'.
-* Emulated TLS:: Emulated TLS support.
-* MIPS Coprocessors:: MIPS coprocessor support and how to customize it.
-* PCH Target:: Validity checking for precompiled headers.
-* C++ ABI:: Controlling C++ ABI changes.
-* Named Address Spaces:: Adding support for named address spaces
-* Misc:: Everything else.
-
-
-File: gccint.info, Node: Target Structure, Next: Driver, Up: Target Macros
-
-17.1 The Global 'targetm' Variable
-==================================
-
- -- Variable: struct gcc_target targetm
- The target '.c' file must define the global 'targetm' variable
- which contains pointers to functions and data relating to the
- target machine. The variable is declared in 'target.h';
- 'target-def.h' defines the macro 'TARGET_INITIALIZER' which is used
- to initialize the variable, and macros for the default initializers
- for elements of the structure. The '.c' file should override those
- macros for which the default definition is inappropriate. For
- example:
- #include "target.h"
- #include "target-def.h"
-
- /* Initialize the GCC target structure. */
-
- #undef TARGET_COMP_TYPE_ATTRIBUTES
- #define TARGET_COMP_TYPE_ATTRIBUTES MACHINE_comp_type_attributes
-
- struct gcc_target targetm = TARGET_INITIALIZER;
-
- Where a macro should be defined in the '.c' file in this manner to form
-part of the 'targetm' structure, it is documented below as a "Target
-Hook" with a prototype. Many macros will change in future from being
-defined in the '.h' file to being part of the 'targetm' structure.
-
- Similarly, there is a 'targetcm' variable for hooks that are specific
-to front ends for C-family languages, documented as "C Target Hook".
-This is declared in 'c-family/c-target.h', the initializer
-'TARGETCM_INITIALIZER' in 'c-family/c-target-def.h'. If targets
-initialize 'targetcm' themselves, they should set
-'target_has_targetcm=yes' in 'config.gcc'; otherwise a default
-definition is used.
-
- Similarly, there is a 'targetm_common' variable for hooks that are
-shared between the compiler driver and the compilers proper, documented
-as "Common Target Hook". This is declared in 'common/common-target.h',
-the initializer 'TARGETM_COMMON_INITIALIZER' in
-'common/common-target-def.h'. If targets initialize 'targetm_common'
-themselves, they should set 'target_has_targetm_common=yes' in
-'config.gcc'; otherwise a default definition is used.
-
-
-File: gccint.info, Node: Driver, Next: Run-time Target, Prev: Target Structure, Up: Target Macros
-
-17.2 Controlling the Compilation Driver, 'gcc'
-==============================================
-
-You can control the compilation driver.
-
- -- Macro: DRIVER_SELF_SPECS
- A list of specs for the driver itself. It should be a suitable
- initializer for an array of strings, with no surrounding braces.
-
- The driver applies these specs to its own command line between
- loading default 'specs' files (but not command-line specified ones)
- and choosing the multilib directory or running any subcommands. It
- applies them in the order given, so each spec can depend on the
- options added by earlier ones. It is also possible to remove
- options using '%<OPTION' in the usual way.
-
- This macro can be useful when a port has several interdependent
- target options. It provides a way of standardizing the command
- line so that the other specs are easier to write.
-
- Do not define this macro if it does not need to do anything.
-
- -- Macro: OPTION_DEFAULT_SPECS
- A list of specs used to support configure-time default options
- (i.e. '--with' options) in the driver. It should be a suitable
- initializer for an array of structures, each containing two
- strings, without the outermost pair of surrounding braces.
-
- The first item in the pair is the name of the default. This must
- match the code in 'config.gcc' for the target. The second item is
- a spec to apply if a default with this name was specified. The
- string '%(VALUE)' in the spec will be replaced by the value of the
- default everywhere it occurs.
-
- The driver will apply these specs to its own command line between
- loading default 'specs' files and processing 'DRIVER_SELF_SPECS',
- using the same mechanism as 'DRIVER_SELF_SPECS'.
-
- Do not define this macro if it does not need to do anything.
-
- -- Macro: CPP_SPEC
- A C string constant that tells the GCC driver program options to
- pass to CPP. It can also specify how to translate options you give
- to GCC into options for GCC to pass to the CPP.
-
- Do not define this macro if it does not need to do anything.
-
- -- Macro: CPLUSPLUS_CPP_SPEC
- This macro is just like 'CPP_SPEC', but is used for C++, rather
- than C. If you do not define this macro, then the value of
- 'CPP_SPEC' (if any) will be used instead.
-
- -- Macro: CC1_SPEC
- A C string constant that tells the GCC driver program options to
- pass to 'cc1', 'cc1plus', 'f771', and the other language front
- ends. It can also specify how to translate options you give to GCC
- into options for GCC to pass to front ends.
-
- Do not define this macro if it does not need to do anything.
-
- -- Macro: CC1PLUS_SPEC
- A C string constant that tells the GCC driver program options to
- pass to 'cc1plus'. It can also specify how to translate options
- you give to GCC into options for GCC to pass to the 'cc1plus'.
-
- Do not define this macro if it does not need to do anything. Note
- that everything defined in CC1_SPEC is already passed to 'cc1plus'
- so there is no need to duplicate the contents of CC1_SPEC in
- CC1PLUS_SPEC.
-
- -- Macro: ASM_SPEC
- A C string constant that tells the GCC driver program options to
- pass to the assembler. It can also specify how to translate
- options you give to GCC into options for GCC to pass to the
- assembler. See the file 'sun3.h' for an example of this.
-
- Do not define this macro if it does not need to do anything.
-
- -- Macro: ASM_FINAL_SPEC
- A C string constant that tells the GCC driver program how to run
- any programs which cleanup after the normal assembler. Normally,
- this is not needed. See the file 'mips.h' for an example of this.
-
- Do not define this macro if it does not need to do anything.
-
- -- Macro: AS_NEEDS_DASH_FOR_PIPED_INPUT
- Define this macro, with no value, if the driver should give the
- assembler an argument consisting of a single dash, '-', to instruct
- it to read from its standard input (which will be a pipe connected
- to the output of the compiler proper). This argument is given
- after any '-o' option specifying the name of the output file.
-
- If you do not define this macro, the assembler is assumed to read
- its standard input if given no non-option arguments. If your
- assembler cannot read standard input at all, use a '%{pipe:%e}'
- construct; see 'mips.h' for instance.
-
- -- Macro: LINK_SPEC
- A C string constant that tells the GCC driver program options to
- pass to the linker. It can also specify how to translate options
- you give to GCC into options for GCC to pass to the linker.
-
- Do not define this macro if it does not need to do anything.
-
- -- Macro: LIB_SPEC
- Another C string constant used much like 'LINK_SPEC'. The
- difference between the two is that 'LIB_SPEC' is used at the end of
- the command given to the linker.
-
- If this macro is not defined, a default is provided that loads the
- standard C library from the usual place. See 'gcc.c'.
-
- -- Macro: LIBGCC_SPEC
- Another C string constant that tells the GCC driver program how and
- when to place a reference to 'libgcc.a' into the linker command
- line. This constant is placed both before and after the value of
- 'LIB_SPEC'.
-
- If this macro is not defined, the GCC driver provides a default
- that passes the string '-lgcc' to the linker.
-
- -- Macro: REAL_LIBGCC_SPEC
- By default, if 'ENABLE_SHARED_LIBGCC' is defined, the 'LIBGCC_SPEC'
- is not directly used by the driver program but is instead modified
- to refer to different versions of 'libgcc.a' depending on the
- values of the command line flags '-static', '-shared',
- '-static-libgcc', and '-shared-libgcc'. On targets where these
- modifications are inappropriate, define 'REAL_LIBGCC_SPEC' instead.
- 'REAL_LIBGCC_SPEC' tells the driver how to place a reference to
- 'libgcc' on the link command line, but, unlike 'LIBGCC_SPEC', it is
- used unmodified.
-
- -- Macro: USE_LD_AS_NEEDED
- A macro that controls the modifications to 'LIBGCC_SPEC' mentioned
- in 'REAL_LIBGCC_SPEC'. If nonzero, a spec will be generated that
- uses '--as-needed' or equivalent options and the shared 'libgcc' in
- place of the static exception handler library, when linking without
- any of '-static', '-static-libgcc', or '-shared-libgcc'.
-
- -- Macro: LINK_EH_SPEC
- If defined, this C string constant is added to 'LINK_SPEC'. When
- 'USE_LD_AS_NEEDED' is zero or undefined, it also affects the
- modifications to 'LIBGCC_SPEC' mentioned in 'REAL_LIBGCC_SPEC'.
-
- -- Macro: STARTFILE_SPEC
- Another C string constant used much like 'LINK_SPEC'. The
- difference between the two is that 'STARTFILE_SPEC' is used at the
- very beginning of the command given to the linker.
-
- If this macro is not defined, a default is provided that loads the
- standard C startup file from the usual place. See 'gcc.c'.
-
- -- Macro: ENDFILE_SPEC
- Another C string constant used much like 'LINK_SPEC'. The
- difference between the two is that 'ENDFILE_SPEC' is used at the
- very end of the command given to the linker.
-
- Do not define this macro if it does not need to do anything.
-
- -- Macro: THREAD_MODEL_SPEC
- GCC '-v' will print the thread model GCC was configured to use.
- However, this doesn't work on platforms that are multilibbed on
- thread models, such as AIX 4.3. On such platforms, define
- 'THREAD_MODEL_SPEC' such that it evaluates to a string without
- blanks that names one of the recognized thread models. '%*', the
- default value of this macro, will expand to the value of
- 'thread_file' set in 'config.gcc'.
-
- -- Macro: SYSROOT_SUFFIX_SPEC
- Define this macro to add a suffix to the target sysroot when GCC is
- configured with a sysroot. This will cause GCC to search for
- usr/lib, et al, within sysroot+suffix.
-
- -- Macro: SYSROOT_HEADERS_SUFFIX_SPEC
- Define this macro to add a headers_suffix to the target sysroot
- when GCC is configured with a sysroot. This will cause GCC to pass
- the updated sysroot+headers_suffix to CPP, causing it to search for
- usr/include, et al, within sysroot+headers_suffix.
-
- -- Macro: EXTRA_SPECS
- Define this macro to provide additional specifications to put in
- the 'specs' file that can be used in various specifications like
- 'CC1_SPEC'.
-
- The definition should be an initializer for an array of structures,
- containing a string constant, that defines the specification name,
- and a string constant that provides the specification.
-
- Do not define this macro if it does not need to do anything.
-
- 'EXTRA_SPECS' is useful when an architecture contains several
- related targets, which have various '..._SPECS' which are similar
- to each other, and the maintainer would like one central place to
- keep these definitions.
-
- For example, the PowerPC System V.4 targets use 'EXTRA_SPECS' to
- define either '_CALL_SYSV' when the System V calling sequence is
- used or '_CALL_AIX' when the older AIX-based calling sequence is
- used.
-
- The 'config/rs6000/rs6000.h' target file defines:
-
- #define EXTRA_SPECS \
- { "cpp_sysv_default", CPP_SYSV_DEFAULT },
-
- #define CPP_SYS_DEFAULT ""
-
- The 'config/rs6000/sysv.h' target file defines:
- #undef CPP_SPEC
- #define CPP_SPEC \
- "%{posix: -D_POSIX_SOURCE } \
- %{mcall-sysv: -D_CALL_SYSV } \
- %{!mcall-sysv: %(cpp_sysv_default) } \
- %{msoft-float: -D_SOFT_FLOAT} %{mcpu=403: -D_SOFT_FLOAT}"
-
- #undef CPP_SYSV_DEFAULT
- #define CPP_SYSV_DEFAULT "-D_CALL_SYSV"
-
- while the 'config/rs6000/eabiaix.h' target file defines
- 'CPP_SYSV_DEFAULT' as:
-
- #undef CPP_SYSV_DEFAULT
- #define CPP_SYSV_DEFAULT "-D_CALL_AIX"
-
- -- Macro: LINK_LIBGCC_SPECIAL_1
- Define this macro if the driver program should find the library
- 'libgcc.a'. If you do not define this macro, the driver program
- will pass the argument '-lgcc' to tell the linker to do the search.
-
- -- Macro: LINK_GCC_C_SEQUENCE_SPEC
- The sequence in which libgcc and libc are specified to the linker.
- By default this is '%G %L %G'.
-
- -- Macro: LINK_COMMAND_SPEC
- A C string constant giving the complete command line need to
- execute the linker. When you do this, you will need to update your
- port each time a change is made to the link command line within
- 'gcc.c'. Therefore, define this macro only if you need to
- completely redefine the command line for invoking the linker and
- there is no other way to accomplish the effect you need.
- Overriding this macro may be avoidable by overriding
- 'LINK_GCC_C_SEQUENCE_SPEC' instead.
-
- -- Common Target Hook: bool TARGET_ALWAYS_STRIP_DOTDOT
- True if '..' components should always be removed from directory
- names computed relative to GCC's internal directories, false
- (default) if such components should be preserved and directory
- names containing them passed to other tools such as the linker.
-
- -- Macro: MULTILIB_DEFAULTS
- Define this macro as a C expression for the initializer of an array
- of string to tell the driver program which options are defaults for
- this target and thus do not need to be handled specially when using
- 'MULTILIB_OPTIONS'.
-
- Do not define this macro if 'MULTILIB_OPTIONS' is not defined in
- the target makefile fragment or if none of the options listed in
- 'MULTILIB_OPTIONS' are set by default. *Note Target Fragment::.
-
- -- Macro: RELATIVE_PREFIX_NOT_LINKDIR
- Define this macro to tell 'gcc' that it should only translate a
- '-B' prefix into a '-L' linker option if the prefix indicates an
- absolute file name.
-
- -- Macro: MD_EXEC_PREFIX
- If defined, this macro is an additional prefix to try after
- 'STANDARD_EXEC_PREFIX'. 'MD_EXEC_PREFIX' is not searched when the
- compiler is built as a cross compiler. If you define
- 'MD_EXEC_PREFIX', then be sure to add it to the list of directories
- used to find the assembler in 'configure.in'.
-
- -- Macro: STANDARD_STARTFILE_PREFIX
- Define this macro as a C string constant if you wish to override
- the standard choice of 'libdir' as the default prefix to try when
- searching for startup files such as 'crt0.o'.
- 'STANDARD_STARTFILE_PREFIX' is not searched when the compiler is
- built as a cross compiler.
-
- -- Macro: STANDARD_STARTFILE_PREFIX_1
- Define this macro as a C string constant if you wish to override
- the standard choice of '/lib' as a prefix to try after the default
- prefix when searching for startup files such as 'crt0.o'.
- 'STANDARD_STARTFILE_PREFIX_1' is not searched when the compiler is
- built as a cross compiler.
-
- -- Macro: STANDARD_STARTFILE_PREFIX_2
- Define this macro as a C string constant if you wish to override
- the standard choice of '/lib' as yet another prefix to try after
- the default prefix when searching for startup files such as
- 'crt0.o'. 'STANDARD_STARTFILE_PREFIX_2' is not searched when the
- compiler is built as a cross compiler.
-
- -- Macro: MD_STARTFILE_PREFIX
- If defined, this macro supplies an additional prefix to try after
- the standard prefixes. 'MD_EXEC_PREFIX' is not searched when the
- compiler is built as a cross compiler.
-
- -- Macro: MD_STARTFILE_PREFIX_1
- If defined, this macro supplies yet another prefix to try after the
- standard prefixes. It is not searched when the compiler is built
- as a cross compiler.
-
- -- Macro: INIT_ENVIRONMENT
- Define this macro as a C string constant if you wish to set
- environment variables for programs called by the driver, such as
- the assembler and loader. The driver passes the value of this
- macro to 'putenv' to initialize the necessary environment
- variables.
-
- -- Macro: LOCAL_INCLUDE_DIR
- Define this macro as a C string constant if you wish to override
- the standard choice of '/usr/local/include' as the default prefix
- to try when searching for local header files. 'LOCAL_INCLUDE_DIR'
- comes before 'NATIVE_SYSTEM_HEADER_DIR' (set in 'config.gcc',
- normally '/usr/include') in the search order.
-
- Cross compilers do not search either '/usr/local/include' or its
- replacement.
-
- -- Macro: NATIVE_SYSTEM_HEADER_COMPONENT
- The "component" corresponding to 'NATIVE_SYSTEM_HEADER_DIR'. See
- 'INCLUDE_DEFAULTS', below, for the description of components. If
- you do not define this macro, no component is used.
-
- -- Macro: INCLUDE_DEFAULTS
- Define this macro if you wish to override the entire default search
- path for include files. For a native compiler, the default search
- path usually consists of 'GCC_INCLUDE_DIR', 'LOCAL_INCLUDE_DIR',
- 'GPLUSPLUS_INCLUDE_DIR', and 'NATIVE_SYSTEM_HEADER_DIR'. In
- addition, 'GPLUSPLUS_INCLUDE_DIR' and 'GCC_INCLUDE_DIR' are defined
- automatically by 'Makefile', and specify private search areas for
- GCC. The directory 'GPLUSPLUS_INCLUDE_DIR' is used only for C++
- programs.
-
- The definition should be an initializer for an array of structures.
- Each array element should have four elements: the directory name (a
- string constant), the component name (also a string constant), a
- flag for C++-only directories, and a flag showing that the includes
- in the directory don't need to be wrapped in 'extern 'C'' when
- compiling C++. Mark the end of the array with a null element.
-
- The component name denotes what GNU package the include file is
- part of, if any, in all uppercase letters. For example, it might
- be 'GCC' or 'BINUTILS'. If the package is part of a
- vendor-supplied operating system, code the component name as '0'.
-
- For example, here is the definition used for VAX/VMS:
-
- #define INCLUDE_DEFAULTS \
- { \
- { "GNU_GXX_INCLUDE:", "G++", 1, 1}, \
- { "GNU_CC_INCLUDE:", "GCC", 0, 0}, \
- { "SYS$SYSROOT:[SYSLIB.]", 0, 0, 0}, \
- { ".", 0, 0, 0}, \
- { 0, 0, 0, 0} \
- }
-
- Here is the order of prefixes tried for exec files:
-
- 1. Any prefixes specified by the user with '-B'.
-
- 2. The environment variable 'GCC_EXEC_PREFIX' or, if 'GCC_EXEC_PREFIX'
- is not set and the compiler has not been installed in the
- configure-time PREFIX, the location in which the compiler has
- actually been installed.
-
- 3. The directories specified by the environment variable
- 'COMPILER_PATH'.
-
- 4. The macro 'STANDARD_EXEC_PREFIX', if the compiler has been
- installed in the configured-time PREFIX.
-
- 5. The location '/usr/libexec/gcc/', but only if this is a native
- compiler.
-
- 6. The location '/usr/lib/gcc/', but only if this is a native
- compiler.
-
- 7. The macro 'MD_EXEC_PREFIX', if defined, but only if this is a
- native compiler.
-
- Here is the order of prefixes tried for startfiles:
-
- 1. Any prefixes specified by the user with '-B'.
-
- 2. The environment variable 'GCC_EXEC_PREFIX' or its automatically
- determined value based on the installed toolchain location.
-
- 3. The directories specified by the environment variable
- 'LIBRARY_PATH' (or port-specific name; native only, cross compilers
- do not use this).
-
- 4. The macro 'STANDARD_EXEC_PREFIX', but only if the toolchain is
- installed in the configured PREFIX or this is a native compiler.
-
- 5. The location '/usr/lib/gcc/', but only if this is a native
- compiler.
-
- 6. The macro 'MD_EXEC_PREFIX', if defined, but only if this is a
- native compiler.
-
- 7. The macro 'MD_STARTFILE_PREFIX', if defined, but only if this is a
- native compiler, or we have a target system root.
-
- 8. The macro 'MD_STARTFILE_PREFIX_1', if defined, but only if this is
- a native compiler, or we have a target system root.
-
- 9. The macro 'STANDARD_STARTFILE_PREFIX', with any sysroot
- modifications. If this path is relative it will be prefixed by
- 'GCC_EXEC_PREFIX' and the machine suffix or 'STANDARD_EXEC_PREFIX'
- and the machine suffix.
-
- 10. The macro 'STANDARD_STARTFILE_PREFIX_1', but only if this is a
- native compiler, or we have a target system root. The default for
- this macro is '/lib/'.
-
- 11. The macro 'STANDARD_STARTFILE_PREFIX_2', but only if this is a
- native compiler, or we have a target system root. The default for
- this macro is '/usr/lib/'.
-
-
-File: gccint.info, Node: Run-time Target, Next: Per-Function Data, Prev: Driver, Up: Target Macros
-
-17.3 Run-time Target Specification
-==================================
-
-Here are run-time target specifications.
-
- -- Macro: TARGET_CPU_CPP_BUILTINS ()
- This function-like macro expands to a block of code that defines
- built-in preprocessor macros and assertions for the target CPU,
- using the functions 'builtin_define', 'builtin_define_std' and
- 'builtin_assert'. When the front end calls this macro it provides
- a trailing semicolon, and since it has finished command line option
- processing your code can use those results freely.
-
- 'builtin_assert' takes a string in the form you pass to the
- command-line option '-A', such as 'cpu=mips', and creates the
- assertion. 'builtin_define' takes a string in the form accepted by
- option '-D' and unconditionally defines the macro.
-
- 'builtin_define_std' takes a string representing the name of an
- object-like macro. If it doesn't lie in the user's namespace,
- 'builtin_define_std' defines it unconditionally. Otherwise, it
- defines a version with two leading underscores, and another version
- with two leading and trailing underscores, and defines the original
- only if an ISO standard was not requested on the command line. For
- example, passing 'unix' defines '__unix', '__unix__' and possibly
- 'unix'; passing '_mips' defines '__mips', '__mips__' and possibly
- '_mips', and passing '_ABI64' defines only '_ABI64'.
-
- You can also test for the C dialect being compiled. The variable
- 'c_language' is set to one of 'clk_c', 'clk_cplusplus' or
- 'clk_objective_c'. Note that if we are preprocessing assembler,
- this variable will be 'clk_c' but the function-like macro
- 'preprocessing_asm_p()' will return true, so you might want to
- check for that first. If you need to check for strict ANSI, the
- variable 'flag_iso' can be used. The function-like macro
- 'preprocessing_trad_p()' can be used to check for traditional
- preprocessing.
-
- -- Macro: TARGET_OS_CPP_BUILTINS ()
- Similarly to 'TARGET_CPU_CPP_BUILTINS' but this macro is optional
- and is used for the target operating system instead.
-
- -- Macro: TARGET_OBJFMT_CPP_BUILTINS ()
- Similarly to 'TARGET_CPU_CPP_BUILTINS' but this macro is optional
- and is used for the target object format. 'elfos.h' uses this
- macro to define '__ELF__', so you probably do not need to define it
- yourself.
-
- -- Variable: extern int target_flags
- This variable is declared in 'options.h', which is included before
- any target-specific headers.
-
- -- Common Target Hook: int TARGET_DEFAULT_TARGET_FLAGS
- This variable specifies the initial value of 'target_flags'. Its
- default setting is 0.
-
- -- Common Target Hook: bool TARGET_HANDLE_OPTION (struct gcc_options
- *OPTS, struct gcc_options *OPTS_SET, const struct
- cl_decoded_option *DECODED, location_t LOC)
- This hook is called whenever the user specifies one of the
- target-specific options described by the '.opt' definition files
- (*note Options::). It has the opportunity to do some
- option-specific processing and should return true if the option is
- valid. The default definition does nothing but return true.
-
- DECODED specifies the option and its arguments. OPTS and OPTS_SET
- are the 'gcc_options' structures to be used for storing option
- state, and LOC is the location at which the option was passed
- ('UNKNOWN_LOCATION' except for options passed via attributes).
-
- -- C Target Hook: bool TARGET_HANDLE_C_OPTION (size_t CODE, const char
- *ARG, int VALUE)
- This target hook is called whenever the user specifies one of the
- target-specific C language family options described by the '.opt'
- definition files(*note Options::). It has the opportunity to do
- some option-specific processing and should return true if the
- option is valid. The arguments are like for
- 'TARGET_HANDLE_OPTION'. The default definition does nothing but
- return false.
-
- In general, you should use 'TARGET_HANDLE_OPTION' to handle
- options. However, if processing an option requires routines that
- are only available in the C (and related language) front ends, then
- you should use 'TARGET_HANDLE_C_OPTION' instead.
-
- -- C Target Hook: tree TARGET_OBJC_CONSTRUCT_STRING_OBJECT (tree
- STRING)
- Targets may provide a string object type that can be used within
- and between C, C++ and their respective Objective-C dialects. A
- string object might, for example, embed encoding and length
- information. These objects are considered opaque to the compiler
- and handled as references. An ideal implementation makes the
- composition of the string object match that of the Objective-C
- 'NSString' ('NXString' for GNUStep), allowing efficient
- interworking between C-only and Objective-C code. If a target
- implements string objects then this hook should return a reference
- to such an object constructed from the normal 'C' string
- representation provided in STRING. At present, the hook is used by
- Objective-C only, to obtain a common-format string object when the
- target provides one.
-
- -- C Target Hook: void TARGET_OBJC_DECLARE_UNRESOLVED_CLASS_REFERENCE
- (const char *CLASSNAME)
- Declare that Objective C class CLASSNAME is referenced by the
- current TU.
-
- -- C Target Hook: void TARGET_OBJC_DECLARE_CLASS_DEFINITION (const char
- *CLASSNAME)
- Declare that Objective C class CLASSNAME is defined by the current
- TU.
-
- -- C Target Hook: bool TARGET_STRING_OBJECT_REF_TYPE_P (const_tree
- STRINGREF)
- If a target implements string objects then this hook should return
- 'true' if STRINGREF is a valid reference to such an object.
-
- -- C Target Hook: void TARGET_CHECK_STRING_OBJECT_FORMAT_ARG (tree
- FORMAT_ARG, tree ARGS_LIST)
- If a target implements string objects then this hook should should
- provide a facility to check the function arguments in ARGS_LIST
- against the format specifiers in FORMAT_ARG where the type of
- FORMAT_ARG is one recognized as a valid string reference type.
-
- -- Target Hook: void TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE (void)
- This target function is similar to the hook
- 'TARGET_OPTION_OVERRIDE' but is called when the optimize level is
- changed via an attribute or pragma or when it is reset at the end
- of the code affected by the attribute or pragma. It is not called
- at the beginning of compilation when 'TARGET_OPTION_OVERRIDE' is
- called so if you want to perform these actions then, you should
- have 'TARGET_OPTION_OVERRIDE' call
- 'TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE'.
-
- -- Macro: C_COMMON_OVERRIDE_OPTIONS
- This is similar to the 'TARGET_OPTION_OVERRIDE' hook but is only
- used in the C language frontends (C, Objective-C, C++,
- Objective-C++) and so can be used to alter option flag variables
- which only exist in those frontends.
-
- -- Common Target Hook: const struct default_options *
- TARGET_OPTION_OPTIMIZATION_TABLE
- Some machines may desire to change what optimizations are performed
- for various optimization levels. This variable, if defined,
- describes options to enable at particular sets of optimization
- levels. These options are processed once just after the
- optimization level is determined and before the remainder of the
- command options have been parsed, so may be overridden by other
- options passed explicitly.
-
- This processing is run once at program startup and when the
- optimization options are changed via '#pragma GCC optimize' or by
- using the 'optimize' attribute.
-
- -- Common Target Hook: void TARGET_OPTION_INIT_STRUCT (struct
- gcc_options *OPTS)
- Set target-dependent initial values of fields in OPTS.
-
- -- Common Target Hook: void TARGET_OPTION_DEFAULT_PARAMS (void)
- Set target-dependent default values for '--param' settings, using
- calls to 'set_default_param_value'.
-
- -- Macro: SWITCHABLE_TARGET
- Some targets need to switch between substantially different
- subtargets during compilation. For example, the MIPS target has
- one subtarget for the traditional MIPS architecture and another for
- MIPS16. Source code can switch between these two subarchitectures
- using the 'mips16' and 'nomips16' attributes.
-
- Such subtargets can differ in things like the set of available
- registers, the set of available instructions, the costs of various
- operations, and so on. GCC caches a lot of this type of
- information in global variables, and recomputing them for each
- subtarget takes a significant amount of time. The compiler
- therefore provides a facility for maintaining several versions of
- the global variables and quickly switching between them; see
- 'target-globals.h' for details.
-
- Define this macro to 1 if your target needs this facility. The
- default is 0.
-
- -- Target Hook: bool TARGET_FLOAT_EXCEPTIONS_ROUNDING_SUPPORTED_P
- (void)
- Returns true if the target supports IEEE 754 floating-point
- exceptions and rounding modes, false otherwise. This is intended
- to relate to the 'float' and 'double' types, but not necessarily
- 'long double'. By default, returns true if the 'adddf3'
- instruction pattern is available and false otherwise, on the
- assumption that hardware floating point supports exceptions and
- rounding modes but software floating point does not.
-
-
-File: gccint.info, Node: Per-Function Data, Next: Storage Layout, Prev: Run-time Target, Up: Target Macros
-
-17.4 Defining data structures for per-function information.
-===========================================================
-
-If the target needs to store information on a per-function basis, GCC
-provides a macro and a couple of variables to allow this. Note, just
-using statics to store the information is a bad idea, since GCC supports
-nested functions, so you can be halfway through encoding one function
-when another one comes along.
-
- GCC defines a data structure called 'struct function' which contains
-all of the data specific to an individual function. This structure
-contains a field called 'machine' whose type is 'struct machine_function
-*', which can be used by targets to point to their own specific data.
-
- If a target needs per-function specific data it should define the type
-'struct machine_function' and also the macro 'INIT_EXPANDERS'. This
-macro should be used to initialize the function pointer
-'init_machine_status'. This pointer is explained below.
-
- One typical use of per-function, target specific data is to create an
-RTX to hold the register containing the function's return address. This
-RTX can then be used to implement the '__builtin_return_address'
-function, for level 0.
-
- Note--earlier implementations of GCC used a single data area to hold
-all of the per-function information. Thus when processing of a nested
-function began the old per-function data had to be pushed onto a stack,
-and when the processing was finished, it had to be popped off the stack.
-GCC used to provide function pointers called 'save_machine_status' and
-'restore_machine_status' to handle the saving and restoring of the
-target specific information. Since the single data area approach is no
-longer used, these pointers are no longer supported.
-
- -- Macro: INIT_EXPANDERS
- Macro called to initialize any target specific information. This
- macro is called once per function, before generation of any RTL has
- begun. The intention of this macro is to allow the initialization
- of the function pointer 'init_machine_status'.
-
- -- Variable: void (*)(struct function *) init_machine_status
- If this function pointer is non-'NULL' it will be called once per
- function, before function compilation starts, in order to allow the
- target to perform any target specific initialization of the 'struct
- function' structure. It is intended that this would be used to
- initialize the 'machine' of that structure.
-
- 'struct machine_function' structures are expected to be freed by
- GC. Generally, any memory that they reference must be allocated by
- using GC allocation, including the structure itself.
-
-
-File: gccint.info, Node: Storage Layout, Next: Type Layout, Prev: Per-Function Data, Up: Target Macros
-
-17.5 Storage Layout
-===================
-
-Note that the definitions of the macros in this table which are sizes or
-alignments measured in bits do not need to be constant. They can be C
-expressions that refer to static variables, such as the 'target_flags'.
-*Note Run-time Target::.
-
- -- Macro: BITS_BIG_ENDIAN
- Define this macro to have the value 1 if the most significant bit
- in a byte has the lowest number; otherwise define it to have the
- value zero. This means that bit-field instructions count from the
- most significant bit. If the machine has no bit-field
- instructions, then this must still be defined, but it doesn't
- matter which value it is defined to. This macro need not be a
- constant.
-
- This macro does not affect the way structure fields are packed into
- bytes or words; that is controlled by 'BYTES_BIG_ENDIAN'.
-
- -- Macro: BYTES_BIG_ENDIAN
- Define this macro to have the value 1 if the most significant byte
- in a word has the lowest number. This macro need not be a
- constant.
-
- -- Macro: WORDS_BIG_ENDIAN
- Define this macro to have the value 1 if, in a multiword object,
- the most significant word has the lowest number. This applies to
- both memory locations and registers; see 'REG_WORDS_BIG_ENDIAN' if
- the order of words in memory is not the same as the order in
- registers. This macro need not be a constant.
-
- -- Macro: REG_WORDS_BIG_ENDIAN
- On some machines, the order of words in a multiword object differs
- between registers in memory. In such a situation, define this
- macro to describe the order of words in a register. The macro
- 'WORDS_BIG_ENDIAN' controls the order of words in memory.
-
- -- Macro: FLOAT_WORDS_BIG_ENDIAN
- Define this macro to have the value 1 if 'DFmode', 'XFmode' or
- 'TFmode' floating point numbers are stored in memory with the word
- containing the sign bit at the lowest address; otherwise define it
- to have the value 0. This macro need not be a constant.
-
- You need not define this macro if the ordering is the same as for
- multi-word integers.
-
- -- Macro: BITS_PER_WORD
- Number of bits in a word. If you do not define this macro, the
- default is 'BITS_PER_UNIT * UNITS_PER_WORD'.
-
- -- Macro: MAX_BITS_PER_WORD
- Maximum number of bits in a word. If this is undefined, the
- default is 'BITS_PER_WORD'. Otherwise, it is the constant value
- that is the largest value that 'BITS_PER_WORD' can have at
- run-time.
-
- -- Macro: UNITS_PER_WORD
- Number of storage units in a word; normally the size of a
- general-purpose register, a power of two from 1 or 8.
-
- -- Macro: MIN_UNITS_PER_WORD
- Minimum number of units in a word. If this is undefined, the
- default is 'UNITS_PER_WORD'. Otherwise, it is the constant value
- that is the smallest value that 'UNITS_PER_WORD' can have at
- run-time.
-
- -- Macro: POINTER_SIZE
- Width of a pointer, in bits. You must specify a value no wider
- than the width of 'Pmode'. If it is not equal to the width of
- 'Pmode', you must define 'POINTERS_EXTEND_UNSIGNED'. If you do not
- specify a value the default is 'BITS_PER_WORD'.
-
- -- Macro: POINTERS_EXTEND_UNSIGNED
- A C expression that determines how pointers should be extended from
- 'ptr_mode' to either 'Pmode' or 'word_mode'. It is greater than
- zero if pointers should be zero-extended, zero if they should be
- sign-extended, and negative if some other sort of conversion is
- needed. In the last case, the extension is done by the target's
- 'ptr_extend' instruction.
-
- You need not define this macro if the 'ptr_mode', 'Pmode' and
- 'word_mode' are all the same width.
-
- -- Macro: PROMOTE_MODE (M, UNSIGNEDP, TYPE)
- A macro to update M and UNSIGNEDP when an object whose type is TYPE
- and which has the specified mode and signedness is to be stored in
- a register. This macro is only called when TYPE is a scalar type.
-
- On most RISC machines, which only have operations that operate on a
- full register, define this macro to set M to 'word_mode' if M is an
- integer mode narrower than 'BITS_PER_WORD'. In most cases, only
- integer modes should be widened because wider-precision
- floating-point operations are usually more expensive than their
- narrower counterparts.
-
- For most machines, the macro definition does not change UNSIGNEDP.
- However, some machines, have instructions that preferentially
- handle either signed or unsigned quantities of certain modes. For
- example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
- instructions sign-extend the result to 64 bits. On such machines,
- set UNSIGNEDP according to which kind of extension is more
- efficient.
-
- Do not define this macro if it would never modify M.
-
- -- Target Hook: enum machine_mode TARGET_PROMOTE_FUNCTION_MODE
- (const_tree TYPE, enum machine_mode MODE, int *PUNSIGNEDP,
- const_tree FUNTYPE, int FOR_RETURN)
- Like 'PROMOTE_MODE', but it is applied to outgoing function
- arguments or function return values. The target hook should return
- the new mode and possibly change '*PUNSIGNEDP' if the promotion
- should change signedness. This function is called only for scalar
- _or pointer_ types.
-
- FOR_RETURN allows to distinguish the promotion of arguments and
- return values. If it is '1', a return value is being promoted and
- 'TARGET_FUNCTION_VALUE' must perform the same promotions done here.
- If it is '2', the returned mode should be that of the register in
- which an incoming parameter is copied, or the outgoing result is
- computed; then the hook should return the same mode as
- 'promote_mode', though the signedness may be different.
-
- TYPE can be NULL when promoting function arguments of libcalls.
-
- The default is to not promote arguments and return values. You can
- also define the hook to
- 'default_promote_function_mode_always_promote' if you would like to
- apply the same rules given by 'PROMOTE_MODE'.
-
- -- Macro: PARM_BOUNDARY
- Normal alignment required for function parameters on the stack, in
- bits. All stack parameters receive at least this much alignment
- regardless of data type. On most machines, this is the same as the
- size of an integer.
-
- -- Macro: STACK_BOUNDARY
- Define this macro to the minimum alignment enforced by hardware for
- the stack pointer on this machine. The definition is a C
- expression for the desired alignment (measured in bits). This
- value is used as a default if 'PREFERRED_STACK_BOUNDARY' is not
- defined. On most machines, this should be the same as
- 'PARM_BOUNDARY'.
-
- -- Macro: PREFERRED_STACK_BOUNDARY
- Define this macro if you wish to preserve a certain alignment for
- the stack pointer, greater than what the hardware enforces. The
- definition is a C expression for the desired alignment (measured in
- bits). This macro must evaluate to a value equal to or larger than
- 'STACK_BOUNDARY'.
-
- -- Macro: INCOMING_STACK_BOUNDARY
- Define this macro if the incoming stack boundary may be different
- from 'PREFERRED_STACK_BOUNDARY'. This macro must evaluate to a
- value equal to or larger than 'STACK_BOUNDARY'.
-
- -- Macro: FUNCTION_BOUNDARY
- Alignment required for a function entry point, in bits.
-
- -- Macro: BIGGEST_ALIGNMENT
- Biggest alignment that any data type can require on this machine,
- in bits. Note that this is not the biggest alignment that is
- supported, just the biggest alignment that, when violated, may
- cause a fault.
-
- -- Macro: MALLOC_ABI_ALIGNMENT
- Alignment, in bits, a C conformant malloc implementation has to
- provide. If not defined, the default value is 'BITS_PER_WORD'.
-
- -- Macro: ATTRIBUTE_ALIGNED_VALUE
- Alignment used by the '__attribute__ ((aligned))' construct. If
- not defined, the default value is 'BIGGEST_ALIGNMENT'.
-
- -- Macro: MINIMUM_ATOMIC_ALIGNMENT
- If defined, the smallest alignment, in bits, that can be given to
- an object that can be referenced in one operation, without
- disturbing any nearby object. Normally, this is 'BITS_PER_UNIT',
- but may be larger on machines that don't have byte or half-word
- store operations.
-
- -- Macro: BIGGEST_FIELD_ALIGNMENT
- Biggest alignment that any structure or union field can require on
- this machine, in bits. If defined, this overrides
- 'BIGGEST_ALIGNMENT' for structure and union fields only, unless the
- field alignment has been set by the '__attribute__ ((aligned (N)))'
- construct.
-
- -- Macro: ADJUST_FIELD_ALIGN (FIELD, COMPUTED)
- An expression for the alignment of a structure field FIELD if the
- alignment computed in the usual way (including applying of
- 'BIGGEST_ALIGNMENT' and 'BIGGEST_FIELD_ALIGNMENT' to the alignment)
- is COMPUTED. It overrides alignment only if the field alignment
- has not been set by the '__attribute__ ((aligned (N)))' construct.
-
- -- Macro: MAX_STACK_ALIGNMENT
- Biggest stack alignment guaranteed by the backend. Use this macro
- to specify the maximum alignment of a variable on stack.
-
- If not defined, the default value is 'STACK_BOUNDARY'.
-
- -- Macro: MAX_OFILE_ALIGNMENT
- Biggest alignment supported by the object file format of this
- machine. Use this macro to limit the alignment which can be
- specified using the '__attribute__ ((aligned (N)))' construct. If
- not defined, the default value is 'BIGGEST_ALIGNMENT'.
-
- On systems that use ELF, the default (in 'config/elfos.h') is the
- largest supported 32-bit ELF section alignment representable on a
- 32-bit host e.g. '(((unsigned HOST_WIDEST_INT) 1 << 28) * 8)'. On
- 32-bit ELF the largest supported section alignment in bits is
- '(0x80000000 * 8)', but this is not representable on 32-bit hosts.
-
- -- Macro: DATA_ALIGNMENT (TYPE, BASIC-ALIGN)
- If defined, a C expression to compute the alignment for a variable
- in the static store. TYPE is the data type, and BASIC-ALIGN is the
- alignment that the object would ordinarily have. The value of this
- macro is used instead of that alignment to align the object.
-
- If this macro is not defined, then BASIC-ALIGN is used.
-
- One use of this macro is to increase alignment of medium-size data
- to make it all fit in fewer cache lines. Another is to cause
- character arrays to be word-aligned so that 'strcpy' calls that
- copy constants to character arrays can be done inline.
-
- -- Macro: DATA_ABI_ALIGNMENT (TYPE, BASIC-ALIGN)
- Similar to 'DATA_ALIGNMENT', but for the cases where the ABI
- mandates some alignment increase, instead of optimization only
- purposes. E.g. AMD x86-64 psABI says that variables with array
- type larger than 15 bytes must be aligned to 16 byte boundaries.
-
- If this macro is not defined, then BASIC-ALIGN is used.
-
- -- Macro: CONSTANT_ALIGNMENT (CONSTANT, BASIC-ALIGN)
- If defined, a C expression to compute the alignment given to a
- constant that is being placed in memory. CONSTANT is the constant
- and BASIC-ALIGN is the alignment that the object would ordinarily
- have. The value of this macro is used instead of that alignment to
- align the object.
-
- If this macro is not defined, then BASIC-ALIGN is used.
-
- The typical use of this macro is to increase alignment for string
- constants to be word aligned so that 'strcpy' calls that copy
- constants can be done inline.
-
- -- Macro: LOCAL_ALIGNMENT (TYPE, BASIC-ALIGN)
- If defined, a C expression to compute the alignment for a variable
- in the local store. TYPE is the data type, and BASIC-ALIGN is the
- alignment that the object would ordinarily have. The value of this
- macro is used instead of that alignment to align the object.
-
- If this macro is not defined, then BASIC-ALIGN is used.
-
- One use of this macro is to increase alignment of medium-size data
- to make it all fit in fewer cache lines.
-
- If the value of this macro has a type, it should be an unsigned
- type.
-
- -- Target Hook: HOST_WIDE_INT TARGET_VECTOR_ALIGNMENT (const_tree TYPE)
- This hook can be used to define the alignment for a vector of type
- TYPE, in order to comply with a platform ABI. The default is to
- require natural alignment for vector types. The alignment returned
- by this hook must be a power-of-two multiple of the default
- alignment of the vector element type.
-
- -- Macro: STACK_SLOT_ALIGNMENT (TYPE, MODE, BASIC-ALIGN)
- If defined, a C expression to compute the alignment for stack slot.
- TYPE is the data type, MODE is the widest mode available, and
- BASIC-ALIGN is the alignment that the slot would ordinarily have.
- The value of this macro is used instead of that alignment to align
- the slot.
-
- If this macro is not defined, then BASIC-ALIGN is used when TYPE is
- 'NULL'. Otherwise, 'LOCAL_ALIGNMENT' will be used.
-
- This macro is to set alignment of stack slot to the maximum
- alignment of all possible modes which the slot may have.
-
- If the value of this macro has a type, it should be an unsigned
- type.
-
- -- Macro: LOCAL_DECL_ALIGNMENT (DECL)
- If defined, a C expression to compute the alignment for a local
- variable DECL.
-
- If this macro is not defined, then 'LOCAL_ALIGNMENT (TREE_TYPE
- (DECL), DECL_ALIGN (DECL))' is used.
-
- One use of this macro is to increase alignment of medium-size data
- to make it all fit in fewer cache lines.
-
- If the value of this macro has a type, it should be an unsigned
- type.
-
- -- Macro: MINIMUM_ALIGNMENT (EXP, MODE, ALIGN)
- If defined, a C expression to compute the minimum required
- alignment for dynamic stack realignment purposes for EXP (a type or
- decl), MODE, assuming normal alignment ALIGN.
-
- If this macro is not defined, then ALIGN will be used.
-
- -- Macro: EMPTY_FIELD_BOUNDARY
- Alignment in bits to be given to a structure bit-field that follows
- an empty field such as 'int : 0;'.
-
- If 'PCC_BITFIELD_TYPE_MATTERS' is true, it overrides this macro.
-
- -- Macro: STRUCTURE_SIZE_BOUNDARY
- Number of bits which any structure or union's size must be a
- multiple of. Each structure or union's size is rounded up to a
- multiple of this.
-
- If you do not define this macro, the default is the same as
- 'BITS_PER_UNIT'.
-
- -- Macro: STRICT_ALIGNMENT
- Define this macro to be the value 1 if instructions will fail to
- work if given data not on the nominal alignment. If instructions
- will merely go slower in that case, define this macro as 0.
-
- -- Macro: PCC_BITFIELD_TYPE_MATTERS
- Define this if you wish to imitate the way many other C compilers
- handle alignment of bit-fields and the structures that contain
- them.
-
- The behavior is that the type written for a named bit-field ('int',
- 'short', or other integer type) imposes an alignment for the entire
- structure, as if the structure really did contain an ordinary field
- of that type. In addition, the bit-field is placed within the
- structure so that it would fit within such a field, not crossing a
- boundary for it.
-
- Thus, on most machines, a named bit-field whose type is written as
- 'int' would not cross a four-byte boundary, and would force
- four-byte alignment for the whole structure. (The alignment used
- may not be four bytes; it is controlled by the other alignment
- parameters.)
-
- An unnamed bit-field will not affect the alignment of the
- containing structure.
-
- If the macro is defined, its definition should be a C expression; a
- nonzero value for the expression enables this behavior.
-
- Note that if this macro is not defined, or its value is zero, some
- bit-fields may cross more than one alignment boundary. The
- compiler can support such references if there are 'insv', 'extv',
- and 'extzv' insns that can directly reference memory.
-
- The other known way of making bit-fields work is to define
- 'STRUCTURE_SIZE_BOUNDARY' as large as 'BIGGEST_ALIGNMENT'. Then
- every structure can be accessed with fullwords.
-
- Unless the machine has bit-field instructions or you define
- 'STRUCTURE_SIZE_BOUNDARY' that way, you must define
- 'PCC_BITFIELD_TYPE_MATTERS' to have a nonzero value.
-
- If your aim is to make GCC use the same conventions for laying out
- bit-fields as are used by another compiler, here is how to
- investigate what the other compiler does. Compile and run this
- program:
-
- struct foo1
- {
- char x;
- char :0;
- char y;
- };
-
- struct foo2
- {
- char x;
- int :0;
- char y;
- };
-
- main ()
- {
- printf ("Size of foo1 is %d\n",
- sizeof (struct foo1));
- printf ("Size of foo2 is %d\n",
- sizeof (struct foo2));
- exit (0);
- }
-
- If this prints 2 and 5, then the compiler's behavior is what you
- would get from 'PCC_BITFIELD_TYPE_MATTERS'.
-
- -- Macro: BITFIELD_NBYTES_LIMITED
- Like 'PCC_BITFIELD_TYPE_MATTERS' except that its effect is limited
- to aligning a bit-field within the structure.
-
- -- Target Hook: bool TARGET_ALIGN_ANON_BITFIELD (void)
- When 'PCC_BITFIELD_TYPE_MATTERS' is true this hook will determine
- whether unnamed bitfields affect the alignment of the containing
- structure. The hook should return true if the structure should
- inherit the alignment requirements of an unnamed bitfield's type.
-
- -- Target Hook: bool TARGET_NARROW_VOLATILE_BITFIELD (void)
- This target hook should return 'true' if accesses to volatile
- bitfields should use the narrowest mode possible. It should return
- 'false' if these accesses should use the bitfield container type.
-
- The default is 'false'.
-
- -- Target Hook: bool TARGET_MEMBER_TYPE_FORCES_BLK (const_tree FIELD,
- enum machine_mode MODE)
- Return true if a structure, union or array containing FIELD should
- be accessed using 'BLKMODE'.
-
- If FIELD is the only field in the structure, MODE is its mode,
- otherwise MODE is VOIDmode. MODE is provided in the case where
- structures of one field would require the structure's mode to
- retain the field's mode.
-
- Normally, this is not needed.
-
- -- Macro: ROUND_TYPE_ALIGN (TYPE, COMPUTED, SPECIFIED)
- Define this macro as an expression for the alignment of a type
- (given by TYPE as a tree node) if the alignment computed in the
- usual way is COMPUTED and the alignment explicitly specified was
- SPECIFIED.
-
- The default is to use SPECIFIED if it is larger; otherwise, use the
- smaller of COMPUTED and 'BIGGEST_ALIGNMENT'
-
- -- Macro: MAX_FIXED_MODE_SIZE
- An integer expression for the size in bits of the largest integer
- machine mode that should actually be used. All integer machine
- modes of this size or smaller can be used for structures and unions
- with the appropriate sizes. If this macro is undefined,
- 'GET_MODE_BITSIZE (DImode)' is assumed.
-
- -- Macro: STACK_SAVEAREA_MODE (SAVE_LEVEL)
- If defined, an expression of type 'enum machine_mode' that
- specifies the mode of the save area operand of a 'save_stack_LEVEL'
- named pattern (*note Standard Names::). SAVE_LEVEL is one of
- 'SAVE_BLOCK', 'SAVE_FUNCTION', or 'SAVE_NONLOCAL' and selects which
- of the three named patterns is having its mode specified.
-
- You need not define this macro if it always returns 'Pmode'. You
- would most commonly define this macro if the 'save_stack_LEVEL'
- patterns need to support both a 32- and a 64-bit mode.
-
- -- Macro: STACK_SIZE_MODE
- If defined, an expression of type 'enum machine_mode' that
- specifies the mode of the size increment operand of an
- 'allocate_stack' named pattern (*note Standard Names::).
-
- You need not define this macro if it always returns 'word_mode'.
- You would most commonly define this macro if the 'allocate_stack'
- pattern needs to support both a 32- and a 64-bit mode.
-
- -- Target Hook: enum machine_mode TARGET_LIBGCC_CMP_RETURN_MODE (void)
- This target hook should return the mode to be used for the return
- value of compare instructions expanded to libgcc calls. If not
- defined 'word_mode' is returned which is the right choice for a
- majority of targets.
-
- -- Target Hook: enum machine_mode TARGET_LIBGCC_SHIFT_COUNT_MODE (void)
- This target hook should return the mode to be used for the shift
- count operand of shift instructions expanded to libgcc calls. If
- not defined 'word_mode' is returned which is the right choice for a
- majority of targets.
-
- -- Target Hook: enum machine_mode TARGET_UNWIND_WORD_MODE (void)
- Return machine mode to be used for '_Unwind_Word' type. The
- default is to use 'word_mode'.
-
- -- Macro: ROUND_TOWARDS_ZERO
- If defined, this macro should be true if the prevailing rounding
- mode is towards zero.
-
- Defining this macro only affects the way 'libgcc.a' emulates
- floating-point arithmetic.
-
- Not defining this macro is equivalent to returning zero.
-
- -- Macro: LARGEST_EXPONENT_IS_NORMAL (SIZE)
- This macro should return true if floats with SIZE bits do not have
- a NaN or infinity representation, but use the largest exponent for
- normal numbers instead.
-
- Defining this macro only affects the way 'libgcc.a' emulates
- floating-point arithmetic.
-
- The default definition of this macro returns false for all sizes.
-
- -- Target Hook: bool TARGET_MS_BITFIELD_LAYOUT_P (const_tree
- RECORD_TYPE)
- This target hook returns 'true' if bit-fields in the given
- RECORD_TYPE are to be laid out following the rules of Microsoft
- Visual C/C++, namely: (i) a bit-field won't share the same storage
- unit with the previous bit-field if their underlying types have
- different sizes, and the bit-field will be aligned to the highest
- alignment of the underlying types of itself and of the previous
- bit-field; (ii) a zero-sized bit-field will affect the alignment of
- the whole enclosing structure, even if it is unnamed; except that
- (iii) a zero-sized bit-field will be disregarded unless it follows
- another bit-field of nonzero size. If this hook returns 'true',
- other macros that control bit-field layout are ignored.
-
- When a bit-field is inserted into a packed record, the whole size
- of the underlying type is used by one or more same-size adjacent
- bit-fields (that is, if its long:3, 32 bits is used in the record,
- and any additional adjacent long bit-fields are packed into the
- same chunk of 32 bits. However, if the size changes, a new field
- of that size is allocated). In an unpacked record, this is the
- same as using alignment, but not equivalent when packing.
-
- If both MS bit-fields and '__attribute__((packed))' are used, the
- latter will take precedence. If '__attribute__((packed))' is used
- on a single field when MS bit-fields are in use, it will take
- precedence for that field, but the alignment of the rest of the
- structure may affect its placement.
-
- -- Target Hook: bool TARGET_DECIMAL_FLOAT_SUPPORTED_P (void)
- Returns true if the target supports decimal floating point.
-
- -- Target Hook: bool TARGET_FIXED_POINT_SUPPORTED_P (void)
- Returns true if the target supports fixed-point arithmetic.
-
- -- Target Hook: void TARGET_EXPAND_TO_RTL_HOOK (void)
- This hook is called just before expansion into rtl, allowing the
- target to perform additional initializations or analysis before the
- expansion. For example, the rs6000 port uses it to allocate a
- scratch stack slot for use in copying SDmode values between memory
- and floating point registers whenever the function being expanded
- has any SDmode usage.
-
- -- Target Hook: void TARGET_INSTANTIATE_DECLS (void)
- This hook allows the backend to perform additional instantiations
- on rtl that are not actually in any insns yet, but will be later.
-
- -- Target Hook: const char * TARGET_MANGLE_TYPE (const_tree TYPE)
- If your target defines any fundamental types, or any types your
- target uses should be mangled differently from the default, define
- this hook to return the appropriate encoding for these types as
- part of a C++ mangled name. The TYPE argument is the tree
- structure representing the type to be mangled. The hook may be
- applied to trees which are not target-specific fundamental types;
- it should return 'NULL' for all such types, as well as arguments it
- does not recognize. If the return value is not 'NULL', it must
- point to a statically-allocated string constant.
-
- Target-specific fundamental types might be new fundamental types or
- qualified versions of ordinary fundamental types. Encode new
- fundamental types as 'u N NAME', where NAME is the name used for
- the type in source code, and N is the length of NAME in decimal.
- Encode qualified versions of ordinary types as 'U N NAME CODE',
- where NAME is the name used for the type qualifier in source code,
- N is the length of NAME as above, and CODE is the code used to
- represent the unqualified version of this type. (See
- 'write_builtin_type' in 'cp/mangle.c' for the list of codes.) In
- both cases the spaces are for clarity; do not include any spaces in
- your string.
-
- This hook is applied to types prior to typedef resolution. If the
- mangled name for a particular type depends only on that type's main
- variant, you can perform typedef resolution yourself using
- 'TYPE_MAIN_VARIANT' before mangling.
-
- The default version of this hook always returns 'NULL', which is
- appropriate for a target that does not define any new fundamental
- types.
-
-
-File: gccint.info, Node: Type Layout, Next: Registers, Prev: Storage Layout, Up: Target Macros
-
-17.6 Layout of Source Language Data Types
-=========================================
-
-These macros define the sizes and other characteristics of the standard
-basic data types used in programs being compiled. Unlike the macros in
-the previous section, these apply to specific features of C and related
-languages, rather than to fundamental aspects of storage layout.
-
- -- Macro: INT_TYPE_SIZE
- A C expression for the size in bits of the type 'int' on the target
- machine. If you don't define this, the default is one word.
-
- -- Macro: SHORT_TYPE_SIZE
- A C expression for the size in bits of the type 'short' on the
- target machine. If you don't define this, the default is half a
- word. (If this would be less than one storage unit, it is rounded
- up to one unit.)
-
- -- Macro: LONG_TYPE_SIZE
- A C expression for the size in bits of the type 'long' on the
- target machine. If you don't define this, the default is one word.
-
- -- Macro: ADA_LONG_TYPE_SIZE
- On some machines, the size used for the Ada equivalent of the type
- 'long' by a native Ada compiler differs from that used by C. In
- that situation, define this macro to be a C expression to be used
- for the size of that type. If you don't define this, the default
- is the value of 'LONG_TYPE_SIZE'.
-
- -- Macro: LONG_LONG_TYPE_SIZE
- A C expression for the size in bits of the type 'long long' on the
- target machine. If you don't define this, the default is two
- words. If you want to support GNU Ada on your machine, the value
- of this macro must be at least 64.
-
- -- Macro: CHAR_TYPE_SIZE
- A C expression for the size in bits of the type 'char' on the
- target machine. If you don't define this, the default is
- 'BITS_PER_UNIT'.
-
- -- Macro: BOOL_TYPE_SIZE
- A C expression for the size in bits of the C++ type 'bool' and C99
- type '_Bool' on the target machine. If you don't define this, and
- you probably shouldn't, the default is 'CHAR_TYPE_SIZE'.
-
- -- Macro: FLOAT_TYPE_SIZE
- A C expression for the size in bits of the type 'float' on the
- target machine. If you don't define this, the default is one word.
-
- -- Macro: DOUBLE_TYPE_SIZE
- A C expression for the size in bits of the type 'double' on the
- target machine. If you don't define this, the default is two
- words.
-
- -- Macro: LONG_DOUBLE_TYPE_SIZE
- A C expression for the size in bits of the type 'long double' on
- the target machine. If you don't define this, the default is two
- words.
-
- -- Macro: SHORT_FRACT_TYPE_SIZE
- A C expression for the size in bits of the type 'short _Fract' on
- the target machine. If you don't define this, the default is
- 'BITS_PER_UNIT'.
-
- -- Macro: FRACT_TYPE_SIZE
- A C expression for the size in bits of the type '_Fract' on the
- target machine. If you don't define this, the default is
- 'BITS_PER_UNIT * 2'.
-
- -- Macro: LONG_FRACT_TYPE_SIZE
- A C expression for the size in bits of the type 'long _Fract' on
- the target machine. If you don't define this, the default is
- 'BITS_PER_UNIT * 4'.
-
- -- Macro: LONG_LONG_FRACT_TYPE_SIZE
- A C expression for the size in bits of the type 'long long _Fract'
- on the target machine. If you don't define this, the default is
- 'BITS_PER_UNIT * 8'.
-
- -- Macro: SHORT_ACCUM_TYPE_SIZE
- A C expression for the size in bits of the type 'short _Accum' on
- the target machine. If you don't define this, the default is
- 'BITS_PER_UNIT * 2'.
-
- -- Macro: ACCUM_TYPE_SIZE
- A C expression for the size in bits of the type '_Accum' on the
- target machine. If you don't define this, the default is
- 'BITS_PER_UNIT * 4'.
-
- -- Macro: LONG_ACCUM_TYPE_SIZE
- A C expression for the size in bits of the type 'long _Accum' on
- the target machine. If you don't define this, the default is
- 'BITS_PER_UNIT * 8'.
-
- -- Macro: LONG_LONG_ACCUM_TYPE_SIZE
- A C expression for the size in bits of the type 'long long _Accum'
- on the target machine. If you don't define this, the default is
- 'BITS_PER_UNIT * 16'.
-
- -- Macro: LIBGCC2_LONG_DOUBLE_TYPE_SIZE
- Define this macro if 'LONG_DOUBLE_TYPE_SIZE' is not constant or if
- you want routines in 'libgcc2.a' for a size other than
- 'LONG_DOUBLE_TYPE_SIZE'. If you don't define this, the default is
- 'LONG_DOUBLE_TYPE_SIZE'.
-
- -- Macro: LIBGCC2_HAS_DF_MODE
- Define this macro if neither 'DOUBLE_TYPE_SIZE' nor
- 'LIBGCC2_LONG_DOUBLE_TYPE_SIZE' is 'DFmode' but you want 'DFmode'
- routines in 'libgcc2.a' anyway. If you don't define this and
- either 'DOUBLE_TYPE_SIZE' or 'LIBGCC2_LONG_DOUBLE_TYPE_SIZE' is 64
- then the default is 1, otherwise it is 0.
-
- -- Macro: LIBGCC2_HAS_XF_MODE
- Define this macro if 'LIBGCC2_LONG_DOUBLE_TYPE_SIZE' is not
- 'XFmode' but you want 'XFmode' routines in 'libgcc2.a' anyway. If
- you don't define this and 'LIBGCC2_LONG_DOUBLE_TYPE_SIZE' is 80
- then the default is 1, otherwise it is 0.
-
- -- Macro: LIBGCC2_HAS_TF_MODE
- Define this macro if 'LIBGCC2_LONG_DOUBLE_TYPE_SIZE' is not
- 'TFmode' but you want 'TFmode' routines in 'libgcc2.a' anyway. If
- you don't define this and 'LIBGCC2_LONG_DOUBLE_TYPE_SIZE' is 128
- then the default is 1, otherwise it is 0.
-
- -- Macro: LIBGCC2_GNU_PREFIX
- This macro corresponds to the 'TARGET_LIBFUNC_GNU_PREFIX' target
- hook and should be defined if that hook is overriden to be true.
- It causes function names in libgcc to be changed to use a '__gnu_'
- prefix for their name rather than the default '__'. A port which
- uses this macro should also arrange to use 't-gnu-prefix' in the
- libgcc 'config.host'.
-
- -- Macro: SF_SIZE
- -- Macro: DF_SIZE
- -- Macro: XF_SIZE
- -- Macro: TF_SIZE
- Define these macros to be the size in bits of the mantissa of
- 'SFmode', 'DFmode', 'XFmode' and 'TFmode' values, if the defaults
- in 'libgcc2.h' are inappropriate. By default, 'FLT_MANT_DIG' is
- used for 'SF_SIZE', 'LDBL_MANT_DIG' for 'XF_SIZE' and 'TF_SIZE',
- and 'DBL_MANT_DIG' or 'LDBL_MANT_DIG' for 'DF_SIZE' according to
- whether 'DOUBLE_TYPE_SIZE' or 'LIBGCC2_LONG_DOUBLE_TYPE_SIZE' is
- 64.
-
- -- Macro: TARGET_FLT_EVAL_METHOD
- A C expression for the value for 'FLT_EVAL_METHOD' in 'float.h',
- assuming, if applicable, that the floating-point control word is in
- its default state. If you do not define this macro the value of
- 'FLT_EVAL_METHOD' will be zero.
-
- -- Macro: WIDEST_HARDWARE_FP_SIZE
- A C expression for the size in bits of the widest floating-point
- format supported by the hardware. If you define this macro, you
- must specify a value less than or equal to the value of
- 'LONG_DOUBLE_TYPE_SIZE'. If you do not define this macro, the
- value of 'LONG_DOUBLE_TYPE_SIZE' is the default.
-
- -- Macro: DEFAULT_SIGNED_CHAR
- An expression whose value is 1 or 0, according to whether the type
- 'char' should be signed or unsigned by default. The user can
- always override this default with the options '-fsigned-char' and
- '-funsigned-char'.
-
- -- Target Hook: bool TARGET_DEFAULT_SHORT_ENUMS (void)
- This target hook should return true if the compiler should give an
- 'enum' type only as many bytes as it takes to represent the range
- of possible values of that type. It should return false if all
- 'enum' types should be allocated like 'int'.
-
- The default is to return false.
-
- -- Macro: SIZE_TYPE
- A C expression for a string describing the name of the data type to
- use for size values. The typedef name 'size_t' is defined using
- the contents of the string.
-
- The string can contain more than one keyword. If so, separate them
- with spaces, and write first any length keyword, then 'unsigned' if
- appropriate, and finally 'int'. The string must exactly match one
- of the data type names defined in the function
- 'c_common_nodes_and_builtins' in the file 'c-family/c-common.c'.
- You may not omit 'int' or change the order--that would cause the
- compiler to crash on startup.
-
- If you don't define this macro, the default is '"long unsigned
- int"'.
-
- -- Macro: SIZETYPE
- GCC defines internal types ('sizetype', 'ssizetype', 'bitsizetype'
- and 'sbitsizetype') for expressions dealing with size. This macro
- is a C expression for a string describing the name of the data type
- from which the precision of 'sizetype' is extracted.
-
- The string has the same restrictions as 'SIZE_TYPE' string.
-
- If you don't define this macro, the default is 'SIZE_TYPE'.
-
- -- Macro: PTRDIFF_TYPE
- A C expression for a string describing the name of the data type to
- use for the result of subtracting two pointers. The typedef name
- 'ptrdiff_t' is defined using the contents of the string. See
- 'SIZE_TYPE' above for more information.
-
- If you don't define this macro, the default is '"long int"'.
-
- -- Macro: WCHAR_TYPE
- A C expression for a string describing the name of the data type to
- use for wide characters. The typedef name 'wchar_t' is defined
- using the contents of the string. See 'SIZE_TYPE' above for more
- information.
-
- If you don't define this macro, the default is '"int"'.
-
- -- Macro: WCHAR_TYPE_SIZE
- A C expression for the size in bits of the data type for wide
- characters. This is used in 'cpp', which cannot make use of
- 'WCHAR_TYPE'.
-
- -- Macro: WINT_TYPE
- A C expression for a string describing the name of the data type to
- use for wide characters passed to 'printf' and returned from
- 'getwc'. The typedef name 'wint_t' is defined using the contents
- of the string. See 'SIZE_TYPE' above for more information.
-
- If you don't define this macro, the default is '"unsigned int"'.
-
- -- Macro: INTMAX_TYPE
- A C expression for a string describing the name of the data type
- that can represent any value of any standard or extended signed
- integer type. The typedef name 'intmax_t' is defined using the
- contents of the string. See 'SIZE_TYPE' above for more
- information.
-
- If you don't define this macro, the default is the first of
- '"int"', '"long int"', or '"long long int"' that has as much
- precision as 'long long int'.
-
- -- Macro: UINTMAX_TYPE
- A C expression for a string describing the name of the data type
- that can represent any value of any standard or extended unsigned
- integer type. The typedef name 'uintmax_t' is defined using the
- contents of the string. See 'SIZE_TYPE' above for more
- information.
-
- If you don't define this macro, the default is the first of
- '"unsigned int"', '"long unsigned int"', or '"long long unsigned
- int"' that has as much precision as 'long long unsigned int'.
-
- -- Macro: SIG_ATOMIC_TYPE
- -- Macro: INT8_TYPE
- -- Macro: INT16_TYPE
- -- Macro: INT32_TYPE
- -- Macro: INT64_TYPE
- -- Macro: UINT8_TYPE
- -- Macro: UINT16_TYPE
- -- Macro: UINT32_TYPE
- -- Macro: UINT64_TYPE
- -- Macro: INT_LEAST8_TYPE
- -- Macro: INT_LEAST16_TYPE
- -- Macro: INT_LEAST32_TYPE
- -- Macro: INT_LEAST64_TYPE
- -- Macro: UINT_LEAST8_TYPE
- -- Macro: UINT_LEAST16_TYPE
- -- Macro: UINT_LEAST32_TYPE
- -- Macro: UINT_LEAST64_TYPE
- -- Macro: INT_FAST8_TYPE
- -- Macro: INT_FAST16_TYPE
- -- Macro: INT_FAST32_TYPE
- -- Macro: INT_FAST64_TYPE
- -- Macro: UINT_FAST8_TYPE
- -- Macro: UINT_FAST16_TYPE
- -- Macro: UINT_FAST32_TYPE
- -- Macro: UINT_FAST64_TYPE
- -- Macro: INTPTR_TYPE
- -- Macro: UINTPTR_TYPE
- C expressions for the standard types 'sig_atomic_t', 'int8_t',
- 'int16_t', 'int32_t', 'int64_t', 'uint8_t', 'uint16_t', 'uint32_t',
- 'uint64_t', 'int_least8_t', 'int_least16_t', 'int_least32_t',
- 'int_least64_t', 'uint_least8_t', 'uint_least16_t',
- 'uint_least32_t', 'uint_least64_t', 'int_fast8_t', 'int_fast16_t',
- 'int_fast32_t', 'int_fast64_t', 'uint_fast8_t', 'uint_fast16_t',
- 'uint_fast32_t', 'uint_fast64_t', 'intptr_t', and 'uintptr_t'. See
- 'SIZE_TYPE' above for more information.
-
- If any of these macros evaluates to a null pointer, the
- corresponding type is not supported; if GCC is configured to
- provide '<stdint.h>' in such a case, the header provided may not
- conform to C99, depending on the type in question. The defaults
- for all of these macros are null pointers.
-
- -- Macro: TARGET_PTRMEMFUNC_VBIT_LOCATION
- The C++ compiler represents a pointer-to-member-function with a
- struct that looks like:
-
- struct {
- union {
- void (*fn)();
- ptrdiff_t vtable_index;
- };
- ptrdiff_t delta;
- };
-
- The C++ compiler must use one bit to indicate whether the function
- that will be called through a pointer-to-member-function is
- virtual. Normally, we assume that the low-order bit of a function
- pointer must always be zero. Then, by ensuring that the
- vtable_index is odd, we can distinguish which variant of the union
- is in use. But, on some platforms function pointers can be odd,
- and so this doesn't work. In that case, we use the low-order bit
- of the 'delta' field, and shift the remainder of the 'delta' field
- to the left.
-
- GCC will automatically make the right selection about where to
- store this bit using the 'FUNCTION_BOUNDARY' setting for your
- platform. However, some platforms such as ARM/Thumb have
- 'FUNCTION_BOUNDARY' set such that functions always start at even
- addresses, but the lowest bit of pointers to functions indicate
- whether the function at that address is in ARM or Thumb mode. If
- this is the case of your architecture, you should define this macro
- to 'ptrmemfunc_vbit_in_delta'.
-
- In general, you should not have to define this macro. On
- architectures in which function addresses are always even,
- according to 'FUNCTION_BOUNDARY', GCC will automatically define
- this macro to 'ptrmemfunc_vbit_in_pfn'.
-
- -- Macro: TARGET_VTABLE_USES_DESCRIPTORS
- Normally, the C++ compiler uses function pointers in vtables. This
- macro allows the target to change to use "function descriptors"
- instead. Function descriptors are found on targets for whom a
- function pointer is actually a small data structure. Normally the
- data structure consists of the actual code address plus a data
- pointer to which the function's data is relative.
-
- If vtables are used, the value of this macro should be the number
- of words that the function descriptor occupies.
-
- -- Macro: TARGET_VTABLE_ENTRY_ALIGN
- By default, the vtable entries are void pointers, the so the
- alignment is the same as pointer alignment. The value of this
- macro specifies the alignment of the vtable entry in bits. It
- should be defined only when special alignment is necessary. */
-
- -- Macro: TARGET_VTABLE_DATA_ENTRY_DISTANCE
- There are a few non-descriptor entries in the vtable at offsets
- below zero. If these entries must be padded (say, to preserve the
- alignment specified by 'TARGET_VTABLE_ENTRY_ALIGN'), set this to
- the number of words in each data entry.
-
-
-File: gccint.info, Node: Registers, Next: Register Classes, Prev: Type Layout, Up: Target Macros
-
-17.7 Register Usage
-===================
-
-This section explains how to describe what registers the target machine
-has, and how (in general) they can be used.
-
- The description of which registers a specific instruction can use is
-done with register classes; see *note Register Classes::. For
-information on using registers to access a stack frame, see *note Frame
-Registers::. For passing values in registers, see *note Register
-Arguments::. For returning values in registers, see *note Scalar
-Return::.
-
-* Menu:
-
-* Register Basics:: Number and kinds of registers.
-* Allocation Order:: Order in which registers are allocated.
-* Values in Registers:: What kinds of values each reg can hold.
-* Leaf Functions:: Renumbering registers for leaf functions.
-* Stack Registers:: Handling a register stack such as 80387.
-
-
-File: gccint.info, Node: Register Basics, Next: Allocation Order, Up: Registers
-
-17.7.1 Basic Characteristics of Registers
------------------------------------------
-
-Registers have various characteristics.
-
- -- Macro: FIRST_PSEUDO_REGISTER
- Number of hardware registers known to the compiler. They receive
- numbers 0 through 'FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo
- register's number really is assigned the number
- 'FIRST_PSEUDO_REGISTER'.
-
- -- Macro: FIXED_REGISTERS
- An initializer that says which registers are used for fixed
- purposes all throughout the compiled code and are therefore not
- available for general allocation. These would include the stack
- pointer, the frame pointer (except on machines where that can be
- used as a general register when no frame pointer is needed), the
- program counter on machines where that is considered one of the
- addressable registers, and any other numbered register with a
- standard use.
-
- This information is expressed as a sequence of numbers, separated
- by commas and surrounded by braces. The Nth number is 1 if
- register N is fixed, 0 otherwise.
-
- The table initialized from this macro, and the table initialized by
- the following one, may be overridden at run time either
- automatically, by the actions of the macro
- 'CONDITIONAL_REGISTER_USAGE', or by the user with the command
- options '-ffixed-REG', '-fcall-used-REG' and '-fcall-saved-REG'.
-
- -- Macro: CALL_USED_REGISTERS
- Like 'FIXED_REGISTERS' but has 1 for each register that is
- clobbered (in general) by function calls as well as for fixed
- registers. This macro therefore identifies the registers that are
- not available for general allocation of values that must live
- across function calls.
-
- If a register has 0 in 'CALL_USED_REGISTERS', the compiler
- automatically saves it on function entry and restores it on
- function exit, if the register is used within the function.
-
- -- Macro: CALL_REALLY_USED_REGISTERS
- Like 'CALL_USED_REGISTERS' except this macro doesn't require that
- the entire set of 'FIXED_REGISTERS' be included.
- ('CALL_USED_REGISTERS' must be a superset of 'FIXED_REGISTERS').
- This macro is optional. If not specified, it defaults to the value
- of 'CALL_USED_REGISTERS'.
-
- -- Macro: HARD_REGNO_CALL_PART_CLOBBERED (REGNO, MODE)
- A C expression that is nonzero if it is not permissible to store a
- value of mode MODE in hard register number REGNO across a call
- without some part of it being clobbered. For most machines this
- macro need not be defined. It is only required for machines that
- do not preserve the entire contents of a register across a call.
-
- -- Target Hook: void TARGET_CONDITIONAL_REGISTER_USAGE (void)
- This hook may conditionally modify five variables 'fixed_regs',
- 'call_used_regs', 'global_regs', 'reg_names', and
- 'reg_class_contents', to take into account any dependence of these
- register sets on target flags. The first three of these are of
- type 'char []' (interpreted as Boolean vectors). 'global_regs' is
- a 'const char *[]', and 'reg_class_contents' is a 'HARD_REG_SET'.
- Before the macro is called, 'fixed_regs', 'call_used_regs',
- 'reg_class_contents', and 'reg_names' have been initialized from
- 'FIXED_REGISTERS', 'CALL_USED_REGISTERS', 'REG_CLASS_CONTENTS', and
- 'REGISTER_NAMES', respectively. 'global_regs' has been cleared,
- and any '-ffixed-REG', '-fcall-used-REG' and '-fcall-saved-REG'
- command options have been applied.
-
- If the usage of an entire class of registers depends on the target
- flags, you may indicate this to GCC by using this macro to modify
- 'fixed_regs' and 'call_used_regs' to 1 for each of the registers in
- the classes which should not be used by GCC. Also define the macro
- 'REG_CLASS_FROM_LETTER' / 'REG_CLASS_FROM_CONSTRAINT' to return
- 'NO_REGS' if it is called with a letter for a class that shouldn't
- be used.
-
- (However, if this class is not included in 'GENERAL_REGS' and all
- of the insn patterns whose constraints permit this class are
- controlled by target switches, then GCC will automatically avoid
- using these registers when the target switches are opposed to
- them.)
-
- -- Macro: INCOMING_REGNO (OUT)
- Define this macro if the target machine has register windows. This
- C expression returns the register number as seen by the called
- function corresponding to the register number OUT as seen by the
- calling function. Return OUT if register number OUT is not an
- outbound register.
-
- -- Macro: OUTGOING_REGNO (IN)
- Define this macro if the target machine has register windows. This
- C expression returns the register number as seen by the calling
- function corresponding to the register number IN as seen by the
- called function. Return IN if register number IN is not an inbound
- register.
-
- -- Macro: LOCAL_REGNO (REGNO)
- Define this macro if the target machine has register windows. This
- C expression returns true if the register is call-saved but is in
- the register window. Unlike most call-saved registers, such
- registers need not be explicitly restored on function exit or
- during non-local gotos.
-
- -- Macro: PC_REGNUM
- If the program counter has a register number, define this as that
- register number. Otherwise, do not define it.
-
-
-File: gccint.info, Node: Allocation Order, Next: Values in Registers, Prev: Register Basics, Up: Registers
-
-17.7.2 Order of Allocation of Registers
----------------------------------------
-
-Registers are allocated in order.
-
- -- Macro: REG_ALLOC_ORDER
- If defined, an initializer for a vector of integers, containing the
- numbers of hard registers in the order in which GCC should prefer
- to use them (from most preferred to least).
-
- If this macro is not defined, registers are used lowest numbered
- first (all else being equal).
-
- One use of this macro is on machines where the highest numbered
- registers must always be saved and the save-multiple-registers
- instruction supports only sequences of consecutive registers. On
- such machines, define 'REG_ALLOC_ORDER' to be an initializer that
- lists the highest numbered allocable register first.
-
- -- Macro: ADJUST_REG_ALLOC_ORDER
- A C statement (sans semicolon) to choose the order in which to
- allocate hard registers for pseudo-registers local to a basic
- block.
-
- Store the desired register order in the array 'reg_alloc_order'.
- Element 0 should be the register to allocate first; element 1, the
- next register; and so on.
-
- The macro body should not assume anything about the contents of
- 'reg_alloc_order' before execution of the macro.
-
- On most machines, it is not necessary to define this macro.
-
- -- Macro: HONOR_REG_ALLOC_ORDER
- Normally, IRA tries to estimate the costs for saving a register in
- the prologue and restoring it in the epilogue. This discourages it
- from using call-saved registers. If a machine wants to ensure that
- IRA allocates registers in the order given by REG_ALLOC_ORDER even
- if some call-saved registers appear earlier than call-used ones,
- this macro should be defined.
-
- -- Macro: IRA_HARD_REGNO_ADD_COST_MULTIPLIER (REGNO)
- In some case register allocation order is not enough for the
- Integrated Register Allocator (IRA) to generate a good code. If
- this macro is defined, it should return a floating point value
- based on REGNO. The cost of using REGNO for a pseudo will be
- increased by approximately the pseudo's usage frequency times the
- value returned by this macro. Not defining this macro is
- equivalent to having it always return '0.0'.
-
- On most machines, it is not necessary to define this macro.
-
-
-File: gccint.info, Node: Values in Registers, Next: Leaf Functions, Prev: Allocation Order, Up: Registers
-
-17.7.3 How Values Fit in Registers
-----------------------------------
-
-This section discusses the macros that describe which kinds of values
-(specifically, which machine modes) each register can hold, and how many
-consecutive registers are needed for a given mode.
-
- -- Macro: HARD_REGNO_NREGS (REGNO, MODE)
- A C expression for the number of consecutive hard registers,
- starting at register number REGNO, required to hold a value of mode
- MODE. This macro must never return zero, even if a register cannot
- hold the requested mode - indicate that with HARD_REGNO_MODE_OK
- and/or CANNOT_CHANGE_MODE_CLASS instead.
-
- On a machine where all registers are exactly one word, a suitable
- definition of this macro is
-
- #define HARD_REGNO_NREGS(REGNO, MODE) \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
- / UNITS_PER_WORD)
-
- -- Macro: HARD_REGNO_NREGS_HAS_PADDING (REGNO, MODE)
- A C expression that is nonzero if a value of mode MODE, stored in
- memory, ends with padding that causes it to take up more space than
- in registers starting at register number REGNO (as determined by
- multiplying GCC's notion of the size of the register when
- containing this mode by the number of registers returned by
- 'HARD_REGNO_NREGS'). By default this is zero.
-
- For example, if a floating-point value is stored in three 32-bit
- registers but takes up 128 bits in memory, then this would be
- nonzero.
-
- This macros only needs to be defined if there are cases where
- 'subreg_get_info' would otherwise wrongly determine that a 'subreg'
- can be represented by an offset to the register number, when in
- fact such a 'subreg' would contain some of the padding not stored
- in registers and so not be representable.
-
- -- Macro: HARD_REGNO_NREGS_WITH_PADDING (REGNO, MODE)
- For values of REGNO and MODE for which
- 'HARD_REGNO_NREGS_HAS_PADDING' returns nonzero, a C expression
- returning the greater number of registers required to hold the
- value including any padding. In the example above, the value would
- be four.
-
- -- Macro: REGMODE_NATURAL_SIZE (MODE)
- Define this macro if the natural size of registers that hold values
- of mode MODE is not the word size. It is a C expression that
- should give the natural size in bytes for the specified mode. It
- is used by the register allocator to try to optimize its results.
- This happens for example on SPARC 64-bit where the natural size of
- floating-point registers is still 32-bit.
-
- -- Macro: HARD_REGNO_MODE_OK (REGNO, MODE)
- A C expression that is nonzero if it is permissible to store a
- value of mode MODE in hard register number REGNO (or in several
- registers starting with that one). For a machine where all
- registers are equivalent, a suitable definition is
-
- #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
-
- You need not include code to check for the numbers of fixed
- registers, because the allocation mechanism considers them to be
- always occupied.
-
- On some machines, double-precision values must be kept in even/odd
- register pairs. You can implement that by defining this macro to
- reject odd register numbers for such modes.
-
- The minimum requirement for a mode to be OK in a register is that
- the 'movMODE' instruction pattern support moves between the
- register and other hard register in the same class and that moving
- a value into the register and back out not alter it.
-
- Since the same instruction used to move 'word_mode' will work for
- all narrower integer modes, it is not necessary on any machine for
- 'HARD_REGNO_MODE_OK' to distinguish between these modes, provided
- you define patterns 'movhi', etc., to take advantage of this. This
- is useful because of the interaction between 'HARD_REGNO_MODE_OK'
- and 'MODES_TIEABLE_P'; it is very desirable for all integer modes
- to be tieable.
-
- Many machines have special registers for floating point arithmetic.
- Often people assume that floating point machine modes are allowed
- only in floating point registers. This is not true. Any registers
- that can hold integers can safely _hold_ a floating point machine
- mode, whether or not floating arithmetic can be done on it in those
- registers. Integer move instructions can be used to move the
- values.
-
- On some machines, though, the converse is true: fixed-point machine
- modes may not go in floating registers. This is true if the
- floating registers normalize any value stored in them, because
- storing a non-floating value there would garble it. In this case,
- 'HARD_REGNO_MODE_OK' should reject fixed-point machine modes in
- floating registers. But if the floating registers do not
- automatically normalize, if you can store any bit pattern in one
- and retrieve it unchanged without a trap, then any machine mode may
- go in a floating register, so you can define this macro to say so.
-
- The primary significance of special floating registers is rather
- that they are the registers acceptable in floating point arithmetic
- instructions. However, this is of no concern to
- 'HARD_REGNO_MODE_OK'. You handle it by writing the proper
- constraints for those instructions.
-
- On some machines, the floating registers are especially slow to
- access, so that it is better to store a value in a stack frame than
- in such a register if floating point arithmetic is not being done.
- As long as the floating registers are not in class 'GENERAL_REGS',
- they will not be used unless some pattern's constraint asks for
- one.
-
- -- Macro: HARD_REGNO_RENAME_OK (FROM, TO)
- A C expression that is nonzero if it is OK to rename a hard
- register FROM to another hard register TO.
-
- One common use of this macro is to prevent renaming of a register
- to another register that is not saved by a prologue in an interrupt
- handler.
-
- The default is always nonzero.
-
- -- Macro: MODES_TIEABLE_P (MODE1, MODE2)
- A C expression that is nonzero if a value of mode MODE1 is
- accessible in mode MODE2 without copying.
-
- If 'HARD_REGNO_MODE_OK (R, MODE1)' and 'HARD_REGNO_MODE_OK (R,
- MODE2)' are always the same for any R, then 'MODES_TIEABLE_P
- (MODE1, MODE2)' should be nonzero. If they differ for any R, you
- should define this macro to return zero unless some other mechanism
- ensures the accessibility of the value in a narrower mode.
-
- You should define this macro to return nonzero in as many cases as
- possible since doing so will allow GCC to perform better register
- allocation.
-
- -- Target Hook: bool TARGET_HARD_REGNO_SCRATCH_OK (unsigned int REGNO)
- This target hook should return 'true' if it is OK to use a hard
- register REGNO as scratch reg in peephole2.
-
- One common use of this macro is to prevent using of a register that
- is not saved by a prologue in an interrupt handler.
-
- The default version of this hook always returns 'true'.
-
- -- Macro: AVOID_CCMODE_COPIES
- Define this macro if the compiler should avoid copies to/from
- 'CCmode' registers. You should only define this macro if support
- for copying to/from 'CCmode' is incomplete.
-
-
-File: gccint.info, Node: Leaf Functions, Next: Stack Registers, Prev: Values in Registers, Up: Registers
-
-17.7.4 Handling Leaf Functions
-------------------------------
-
-On some machines, a leaf function (i.e., one which makes no calls) can
-run more efficiently if it does not make its own register window. Often
-this means it is required to receive its arguments in the registers
-where they are passed by the caller, instead of the registers where they
-would normally arrive.
-
- The special treatment for leaf functions generally applies only when
-other conditions are met; for example, often they may use only those
-registers for its own variables and temporaries. We use the term "leaf
-function" to mean a function that is suitable for this special handling,
-so that functions with no calls are not necessarily "leaf functions".
-
- GCC assigns register numbers before it knows whether the function is
-suitable for leaf function treatment. So it needs to renumber the
-registers in order to output a leaf function. The following macros
-accomplish this.
-
- -- Macro: LEAF_REGISTERS
- Name of a char vector, indexed by hard register number, which
- contains 1 for a register that is allowable in a candidate for leaf
- function treatment.
-
- If leaf function treatment involves renumbering the registers, then
- the registers marked here should be the ones before
- renumbering--those that GCC would ordinarily allocate. The
- registers which will actually be used in the assembler code, after
- renumbering, should not be marked with 1 in this vector.
-
- Define this macro only if the target machine offers a way to
- optimize the treatment of leaf functions.
-
- -- Macro: LEAF_REG_REMAP (REGNO)
- A C expression whose value is the register number to which REGNO
- should be renumbered, when a function is treated as a leaf
- function.
-
- If REGNO is a register number which should not appear in a leaf
- function before renumbering, then the expression should yield -1,
- which will cause the compiler to abort.
-
- Define this macro only if the target machine offers a way to
- optimize the treatment of leaf functions, and registers need to be
- renumbered to do this.
-
- 'TARGET_ASM_FUNCTION_PROLOGUE' and 'TARGET_ASM_FUNCTION_EPILOGUE' must
-usually treat leaf functions specially. They can test the C variable
-'current_function_is_leaf' which is nonzero for leaf functions.
-'current_function_is_leaf' is set prior to local register allocation and
-is valid for the remaining compiler passes. They can also test the C
-variable 'current_function_uses_only_leaf_regs' which is nonzero for
-leaf functions which only use leaf registers.
-'current_function_uses_only_leaf_regs' is valid after all passes that
-modify the instructions have been run and is only useful if
-'LEAF_REGISTERS' is defined.
-
-
-File: gccint.info, Node: Stack Registers, Prev: Leaf Functions, Up: Registers
-
-17.7.5 Registers That Form a Stack
-----------------------------------
-
-There are special features to handle computers where some of the
-"registers" form a stack. Stack registers are normally written by
-pushing onto the stack, and are numbered relative to the top of the
-stack.
-
- Currently, GCC can only handle one group of stack-like registers, and
-they must be consecutively numbered. Furthermore, the existing support
-for stack-like registers is specific to the 80387 floating point
-coprocessor. If you have a new architecture that uses stack-like
-registers, you will need to do substantial work on 'reg-stack.c' and
-write your machine description to cooperate with it, as well as defining
-these macros.
-
- -- Macro: STACK_REGS
- Define this if the machine has any stack-like registers.
-
- -- Macro: STACK_REG_COVER_CLASS
- This is a cover class containing the stack registers. Define this
- if the machine has any stack-like registers.
-
- -- Macro: FIRST_STACK_REG
- The number of the first stack-like register. This one is the top
- of the stack.
-
- -- Macro: LAST_STACK_REG
- The number of the last stack-like register. This one is the bottom
- of the stack.
-
-
-File: gccint.info, Node: Register Classes, Next: Old Constraints, Prev: Registers, Up: Target Macros
-
-17.8 Register Classes
-=====================
-
-On many machines, the numbered registers are not all equivalent. For
-example, certain registers may not be allowed for indexed addressing;
-certain registers may not be allowed in some instructions. These
-machine restrictions are described to the compiler using "register
-classes".
-
- You define a number of register classes, giving each one a name and
-saying which of the registers belong to it. Then you can specify
-register classes that are allowed as operands to particular instruction
-patterns.
-
- In general, each register will belong to several classes. In fact, one
-class must be named 'ALL_REGS' and contain all the registers. Another
-class must be named 'NO_REGS' and contain no registers. Often the union
-of two classes will be another class; however, this is not required.
-
- One of the classes must be named 'GENERAL_REGS'. There is nothing
-terribly special about the name, but the operand constraint letters 'r'
-and 'g' specify this class. If 'GENERAL_REGS' is the same as
-'ALL_REGS', just define it as a macro which expands to 'ALL_REGS'.
-
- Order the classes so that if class X is contained in class Y then X has
-a lower class number than Y.
-
- The way classes other than 'GENERAL_REGS' are specified in operand
-constraints is through machine-dependent operand constraint letters.
-You can define such letters to correspond to various classes, then use
-them in operand constraints.
-
- You must define the narrowest register classes for allocatable
-registers, so that each class either has no subclasses, or that for some
-mode, the move cost between registers within the class is cheaper than
-moving a register in the class to or from memory (*note Costs::).
-
- You should define a class for the union of two classes whenever some
-instruction allows both classes. For example, if an instruction allows
-either a floating point (coprocessor) register or a general register for
-a certain operand, you should define a class 'FLOAT_OR_GENERAL_REGS'
-which includes both of them. Otherwise you will get suboptimal code, or
-even internal compiler errors when reload cannot find a register in the
-class computed via 'reg_class_subunion'.
-
- You must also specify certain redundant information about the register
-classes: for each class, which classes contain it and which ones are
-contained in it; for each pair of classes, the largest class contained
-in their union.
-
- When a value occupying several consecutive registers is expected in a
-certain class, all the registers used must belong to that class.
-Therefore, register classes cannot be used to enforce a requirement for
-a register pair to start with an even-numbered register. The way to
-specify this requirement is with 'HARD_REGNO_MODE_OK'.
-
- Register classes used for input-operands of bitwise-and or shift
-instructions have a special requirement: each such class must have, for
-each fixed-point machine mode, a subclass whose registers can transfer
-that mode to or from memory. For example, on some machines, the
-operations for single-byte values ('QImode') are limited to certain
-registers. When this is so, each register class that is used in a
-bitwise-and or shift instruction must have a subclass consisting of
-registers from which single-byte values can be loaded or stored. This
-is so that 'PREFERRED_RELOAD_CLASS' can always have a possible value to
-return.
-
- -- Data type: enum reg_class
- An enumerated type that must be defined with all the register class
- names as enumerated values. 'NO_REGS' must be first. 'ALL_REGS'
- must be the last register class, followed by one more enumerated
- value, 'LIM_REG_CLASSES', which is not a register class but rather
- tells how many classes there are.
-
- Each register class has a number, which is the value of casting the
- class name to type 'int'. The number serves as an index in many of
- the tables described below.
-
- -- Macro: N_REG_CLASSES
- The number of distinct register classes, defined as follows:
-
- #define N_REG_CLASSES (int) LIM_REG_CLASSES
-
- -- Macro: REG_CLASS_NAMES
- An initializer containing the names of the register classes as C
- string constants. These names are used in writing some of the
- debugging dumps.
-
- -- Macro: REG_CLASS_CONTENTS
- An initializer containing the contents of the register classes, as
- integers which are bit masks. The Nth integer specifies the
- contents of class N. The way the integer MASK is interpreted is
- that register R is in the class if 'MASK & (1 << R)' is 1.
-
- When the machine has more than 32 registers, an integer does not
- suffice. Then the integers are replaced by sub-initializers,
- braced groupings containing several integers. Each sub-initializer
- must be suitable as an initializer for the type 'HARD_REG_SET'
- which is defined in 'hard-reg-set.h'. In this situation, the first
- integer in each sub-initializer corresponds to registers 0 through
- 31, the second integer to registers 32 through 63, and so on.
-
- -- Macro: REGNO_REG_CLASS (REGNO)
- A C expression whose value is a register class containing hard
- register REGNO. In general there is more than one such class;
- choose a class which is "minimal", meaning that no smaller class
- also contains the register.
-
- -- Macro: BASE_REG_CLASS
- A macro whose definition is the name of the class to which a valid
- base register must belong. A base register is one used in an
- address which is the register value plus a displacement.
-
- -- Macro: MODE_BASE_REG_CLASS (MODE)
- This is a variation of the 'BASE_REG_CLASS' macro which allows the
- selection of a base register in a mode dependent manner. If MODE
- is VOIDmode then it should return the same value as
- 'BASE_REG_CLASS'.
-
- -- Macro: MODE_BASE_REG_REG_CLASS (MODE)
- A C expression whose value is the register class to which a valid
- base register must belong in order to be used in a base plus index
- register address. You should define this macro if base plus index
- addresses have different requirements than other base register
- uses.
-
- -- Macro: MODE_CODE_BASE_REG_CLASS (MODE, ADDRESS_SPACE, OUTER_CODE,
- INDEX_CODE)
- A C expression whose value is the register class to which a valid
- base register for a memory reference in mode MODE to address space
- ADDRESS_SPACE must belong. OUTER_CODE and INDEX_CODE define the
- context in which the base register occurs. OUTER_CODE is the code
- of the immediately enclosing expression ('MEM' for the top level of
- an address, 'ADDRESS' for something that occurs in an
- 'address_operand'). INDEX_CODE is the code of the corresponding
- index expression if OUTER_CODE is 'PLUS'; 'SCRATCH' otherwise.
-
- -- Macro: INDEX_REG_CLASS
- A macro whose definition is the name of the class to which a valid
- index register must belong. An index register is one used in an
- address where its value is either multiplied by a scale factor or
- added to another register (as well as added to a displacement).
-
- -- Macro: REGNO_OK_FOR_BASE_P (NUM)
- A C expression which is nonzero if register number NUM is suitable
- for use as a base register in operand addresses.
-
- -- Macro: REGNO_MODE_OK_FOR_BASE_P (NUM, MODE)
- A C expression that is just like 'REGNO_OK_FOR_BASE_P', except that
- that expression may examine the mode of the memory reference in
- MODE. You should define this macro if the mode of the memory
- reference affects whether a register may be used as a base
- register. If you define this macro, the compiler will use it
- instead of 'REGNO_OK_FOR_BASE_P'. The mode may be 'VOIDmode' for
- addresses that appear outside a 'MEM', i.e., as an
- 'address_operand'.
-
- -- Macro: REGNO_MODE_OK_FOR_REG_BASE_P (NUM, MODE)
- A C expression which is nonzero if register number NUM is suitable
- for use as a base register in base plus index operand addresses,
- accessing memory in mode MODE. It may be either a suitable hard
- register or a pseudo register that has been allocated such a hard
- register. You should define this macro if base plus index
- addresses have different requirements than other base register
- uses.
-
- Use of this macro is deprecated; please use the more general
- 'REGNO_MODE_CODE_OK_FOR_BASE_P'.
-
- -- Macro: REGNO_MODE_CODE_OK_FOR_BASE_P (NUM, MODE, ADDRESS_SPACE,
- OUTER_CODE, INDEX_CODE)
- A C expression which is nonzero if register number NUM is suitable
- for use as a base register in operand addresses, accessing memory
- in mode MODE in address space ADDRESS_SPACE. This is similar to
- 'REGNO_MODE_OK_FOR_BASE_P', except that that expression may examine
- the context in which the register appears in the memory reference.
- OUTER_CODE is the code of the immediately enclosing expression
- ('MEM' if at the top level of the address, 'ADDRESS' for something
- that occurs in an 'address_operand'). INDEX_CODE is the code of
- the corresponding index expression if OUTER_CODE is 'PLUS';
- 'SCRATCH' otherwise. The mode may be 'VOIDmode' for addresses that
- appear outside a 'MEM', i.e., as an 'address_operand'.
-
- -- Macro: REGNO_OK_FOR_INDEX_P (NUM)
- A C expression which is nonzero if register number NUM is suitable
- for use as an index register in operand addresses. It may be
- either a suitable hard register or a pseudo register that has been
- allocated such a hard register.
-
- The difference between an index register and a base register is
- that the index register may be scaled. If an address involves the
- sum of two registers, neither one of them scaled, then either one
- may be labeled the "base" and the other the "index"; but whichever
- labeling is used must fit the machine's constraints of which
- registers may serve in each capacity. The compiler will try both
- labelings, looking for one that is valid, and will reload one or
- both registers only if neither labeling works.
-
- -- Target Hook: reg_class_t TARGET_PREFERRED_RENAME_CLASS (reg_class_t
- RCLASS)
- A target hook that places additional preference on the register
- class to use when it is necessary to rename a register in class
- RCLASS to another class, or perhaps NO_REGS, if no preferred
- register class is found or hook 'preferred_rename_class' is not
- implemented. Sometimes returning a more restrictive class makes
- better code. For example, on ARM, thumb-2 instructions using
- 'LO_REGS' may be smaller than instructions using 'GENERIC_REGS'.
- By returning 'LO_REGS' from 'preferred_rename_class', code size can
- be reduced.
-
- -- Target Hook: reg_class_t TARGET_PREFERRED_RELOAD_CLASS (rtx X,
- reg_class_t RCLASS)
- A target hook that places additional restrictions on the register
- class to use when it is necessary to copy value X into a register
- in class RCLASS. The value is a register class; perhaps RCLASS, or
- perhaps another, smaller class.
-
- The default version of this hook always returns value of 'rclass'
- argument.
-
- Sometimes returning a more restrictive class makes better code.
- For example, on the 68000, when X is an integer constant that is in
- range for a 'moveq' instruction, the value of this macro is always
- 'DATA_REGS' as long as RCLASS includes the data registers.
- Requiring a data register guarantees that a 'moveq' will be used.
-
- One case where 'TARGET_PREFERRED_RELOAD_CLASS' must not return
- RCLASS is if X is a legitimate constant which cannot be loaded into
- some register class. By returning 'NO_REGS' you can force X into a
- memory location. For example, rs6000 can load immediate values
- into general-purpose registers, but does not have an instruction
- for loading an immediate value into a floating-point register, so
- 'TARGET_PREFERRED_RELOAD_CLASS' returns 'NO_REGS' when X is a
- floating-point constant. If the constant can't be loaded into any
- kind of register, code generation will be better if
- 'TARGET_LEGITIMATE_CONSTANT_P' makes the constant illegitimate
- instead of using 'TARGET_PREFERRED_RELOAD_CLASS'.
-
- If an insn has pseudos in it after register allocation, reload will
- go through the alternatives and call repeatedly
- 'TARGET_PREFERRED_RELOAD_CLASS' to find the best one. Returning
- 'NO_REGS', in this case, makes reload add a '!' in front of the
- constraint: the x86 back-end uses this feature to discourage usage
- of 387 registers when math is done in the SSE registers (and vice
- versa).
-
- -- Macro: PREFERRED_RELOAD_CLASS (X, CLASS)
- A C expression that places additional restrictions on the register
- class to use when it is necessary to copy value X into a register
- in class CLASS. The value is a register class; perhaps CLASS, or
- perhaps another, smaller class. On many machines, the following
- definition is safe:
-
- #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
-
- Sometimes returning a more restrictive class makes better code.
- For example, on the 68000, when X is an integer constant that is in
- range for a 'moveq' instruction, the value of this macro is always
- 'DATA_REGS' as long as CLASS includes the data registers.
- Requiring a data register guarantees that a 'moveq' will be used.
-
- One case where 'PREFERRED_RELOAD_CLASS' must not return CLASS is if
- X is a legitimate constant which cannot be loaded into some
- register class. By returning 'NO_REGS' you can force X into a
- memory location. For example, rs6000 can load immediate values
- into general-purpose registers, but does not have an instruction
- for loading an immediate value into a floating-point register, so
- 'PREFERRED_RELOAD_CLASS' returns 'NO_REGS' when X is a
- floating-point constant. If the constant can't be loaded into any
- kind of register, code generation will be better if
- 'TARGET_LEGITIMATE_CONSTANT_P' makes the constant illegitimate
- instead of using 'TARGET_PREFERRED_RELOAD_CLASS'.
-
- If an insn has pseudos in it after register allocation, reload will
- go through the alternatives and call repeatedly
- 'PREFERRED_RELOAD_CLASS' to find the best one. Returning
- 'NO_REGS', in this case, makes reload add a '!' in front of the
- constraint: the x86 back-end uses this feature to discourage usage
- of 387 registers when math is done in the SSE registers (and vice
- versa).
-
- -- Target Hook: reg_class_t TARGET_PREFERRED_OUTPUT_RELOAD_CLASS (rtx
- X, reg_class_t RCLASS)
- Like 'TARGET_PREFERRED_RELOAD_CLASS', but for output reloads
- instead of input reloads.
-
- The default version of this hook always returns value of 'rclass'
- argument.
-
- You can also use 'TARGET_PREFERRED_OUTPUT_RELOAD_CLASS' to
- discourage reload from using some alternatives, like
- 'TARGET_PREFERRED_RELOAD_CLASS'.
-
- -- Macro: LIMIT_RELOAD_CLASS (MODE, CLASS)
- A C expression that places additional restrictions on the register
- class to use when it is necessary to be able to hold a value of
- mode MODE in a reload register for which class CLASS would
- ordinarily be used.
-
- Unlike 'PREFERRED_RELOAD_CLASS', this macro should be used when
- there are certain modes that simply can't go in certain reload
- classes.
-
- The value is a register class; perhaps CLASS, or perhaps another,
- smaller class.
-
- Don't define this macro unless the target machine has limitations
- which require the macro to do something nontrivial.
-
- -- Target Hook: reg_class_t TARGET_SECONDARY_RELOAD (bool IN_P, rtx X,
- reg_class_t RELOAD_CLASS, enum machine_mode RELOAD_MODE,
- secondary_reload_info *SRI)
- Many machines have some registers that cannot be copied directly to
- or from memory or even from other types of registers. An example
- is the 'MQ' register, which on most machines, can only be copied to
- or from general registers, but not memory. Below, we shall be
- using the term 'intermediate register' when a move operation cannot
- be performed directly, but has to be done by copying the source
- into the intermediate register first, and then copying the
- intermediate register to the destination. An intermediate register
- always has the same mode as source and destination. Since it holds
- the actual value being copied, reload might apply optimizations to
- re-use an intermediate register and eliding the copy from the
- source when it can determine that the intermediate register still
- holds the required value.
-
- Another kind of secondary reload is required on some machines which
- allow copying all registers to and from memory, but require a
- scratch register for stores to some memory locations (e.g., those
- with symbolic address on the RT, and those with certain symbolic
- address on the SPARC when compiling PIC). Scratch registers need
- not have the same mode as the value being copied, and usually hold
- a different value than that being copied. Special patterns in the
- md file are needed to describe how the copy is performed with the
- help of the scratch register; these patterns also describe the
- number, register class(es) and mode(s) of the scratch register(s).
-
- In some cases, both an intermediate and a scratch register are
- required.
-
- For input reloads, this target hook is called with nonzero IN_P,
- and X is an rtx that needs to be copied to a register of class
- RELOAD_CLASS in RELOAD_MODE. For output reloads, this target hook
- is called with zero IN_P, and a register of class RELOAD_CLASS
- needs to be copied to rtx X in RELOAD_MODE.
-
- If copying a register of RELOAD_CLASS from/to X requires an
- intermediate register, the hook 'secondary_reload' should return
- the register class required for this intermediate register. If no
- intermediate register is required, it should return NO_REGS. If
- more than one intermediate register is required, describe the one
- that is closest in the copy chain to the reload register.
-
- If scratch registers are needed, you also have to describe how to
- perform the copy from/to the reload register to/from this closest
- intermediate register. Or if no intermediate register is required,
- but still a scratch register is needed, describe the copy from/to
- the reload register to/from the reload operand X.
-
- You do this by setting 'sri->icode' to the instruction code of a
- pattern in the md file which performs the move. Operands 0 and 1
- are the output and input of this copy, respectively. Operands from
- operand 2 onward are for scratch operands. These scratch operands
- must have a mode, and a single-register-class output constraint.
-
- When an intermediate register is used, the 'secondary_reload' hook
- will be called again to determine how to copy the intermediate
- register to/from the reload operand X, so your hook must also have
- code to handle the register class of the intermediate operand.
-
- X might be a pseudo-register or a 'subreg' of a pseudo-register,
- which could either be in a hard register or in memory. Use
- 'true_regnum' to find out; it will return -1 if the pseudo is in
- memory and the hard register number if it is in a register.
-
- Scratch operands in memory (constraint '"=m"' / '"=&m"') are
- currently not supported. For the time being, you will have to
- continue to use 'SECONDARY_MEMORY_NEEDED' for that purpose.
-
- 'copy_cost' also uses this target hook to find out how values are
- copied. If you want it to include some extra cost for the need to
- allocate (a) scratch register(s), set 'sri->extra_cost' to the
- additional cost. Or if two dependent moves are supposed to have a
- lower cost than the sum of the individual moves due to expected
- fortuitous scheduling and/or special forwarding logic, you can set
- 'sri->extra_cost' to a negative amount.
-
- -- Macro: SECONDARY_RELOAD_CLASS (CLASS, MODE, X)
- -- Macro: SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)
- -- Macro: SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X)
- These macros are obsolete, new ports should use the target hook
- 'TARGET_SECONDARY_RELOAD' instead.
-
- These are obsolete macros, replaced by the
- 'TARGET_SECONDARY_RELOAD' target hook. Older ports still define
- these macros to indicate to the reload phase that it may need to
- allocate at least one register for a reload in addition to the
- register to contain the data. Specifically, if copying X to a
- register CLASS in MODE requires an intermediate register, you were
- supposed to define 'SECONDARY_INPUT_RELOAD_CLASS' to return the
- largest register class all of whose registers can be used as
- intermediate registers or scratch registers.
-
- If copying a register CLASS in MODE to X requires an intermediate
- or scratch register, 'SECONDARY_OUTPUT_RELOAD_CLASS' was supposed
- to be defined be defined to return the largest register class
- required. If the requirements for input and output reloads were
- the same, the macro 'SECONDARY_RELOAD_CLASS' should have been used
- instead of defining both macros identically.
-
- The values returned by these macros are often 'GENERAL_REGS'.
- Return 'NO_REGS' if no spare register is needed; i.e., if X can be
- directly copied to or from a register of CLASS in MODE without
- requiring a scratch register. Do not define this macro if it would
- always return 'NO_REGS'.
-
- If a scratch register is required (either with or without an
- intermediate register), you were supposed to define patterns for
- 'reload_inM' or 'reload_outM', as required (*note Standard Names::.
- These patterns, which were normally implemented with a
- 'define_expand', should be similar to the 'movM' patterns, except
- that operand 2 is the scratch register.
-
- These patterns need constraints for the reload register and scratch
- register that contain a single register class. If the original
- reload register (whose class is CLASS) can meet the constraint
- given in the pattern, the value returned by these macros is used
- for the class of the scratch register. Otherwise, two additional
- reload registers are required. Their classes are obtained from the
- constraints in the insn pattern.
-
- X might be a pseudo-register or a 'subreg' of a pseudo-register,
- which could either be in a hard register or in memory. Use
- 'true_regnum' to find out; it will return -1 if the pseudo is in
- memory and the hard register number if it is in a register.
-
- These macros should not be used in the case where a particular
- class of registers can only be copied to memory and not to another
- class of registers. In that case, secondary reload registers are
- not needed and would not be helpful. Instead, a stack location
- must be used to perform the copy and the 'movM' pattern should use
- memory as an intermediate storage. This case often occurs between
- floating-point and general registers.
-
- -- Macro: SECONDARY_MEMORY_NEEDED (CLASS1, CLASS2, M)
- Certain machines have the property that some registers cannot be
- copied to some other registers without using memory. Define this
- macro on those machines to be a C expression that is nonzero if
- objects of mode M in registers of CLASS1 can only be copied to
- registers of class CLASS2 by storing a register of CLASS1 into
- memory and loading that memory location into a register of CLASS2.
-
- Do not define this macro if its value would always be zero.
-
- -- Macro: SECONDARY_MEMORY_NEEDED_RTX (MODE)
- Normally when 'SECONDARY_MEMORY_NEEDED' is defined, the compiler
- allocates a stack slot for a memory location needed for register
- copies. If this macro is defined, the compiler instead uses the
- memory location defined by this macro.
-
- Do not define this macro if you do not define
- 'SECONDARY_MEMORY_NEEDED'.
-
- -- Macro: SECONDARY_MEMORY_NEEDED_MODE (MODE)
- When the compiler needs a secondary memory location to copy between
- two registers of mode MODE, it normally allocates sufficient memory
- to hold a quantity of 'BITS_PER_WORD' bits and performs the store
- and load operations in a mode that many bits wide and whose class
- is the same as that of MODE.
-
- This is right thing to do on most machines because it ensures that
- all bits of the register are copied and prevents accesses to the
- registers in a narrower mode, which some machines prohibit for
- floating-point registers.
-
- However, this default behavior is not correct on some machines,
- such as the DEC Alpha, that store short integers in floating-point
- registers differently than in integer registers. On those
- machines, the default widening will not work correctly and you must
- define this macro to suppress that widening in some cases. See the
- file 'alpha.h' for details.
-
- Do not define this macro if you do not define
- 'SECONDARY_MEMORY_NEEDED' or if widening MODE to a mode that is
- 'BITS_PER_WORD' bits wide is correct for your machine.
-
- -- Target Hook: bool TARGET_CLASS_LIKELY_SPILLED_P (reg_class_t RCLASS)
- A target hook which returns 'true' if pseudos that have been
- assigned to registers of class RCLASS would likely be spilled
- because registers of RCLASS are needed for spill registers.
-
- The default version of this target hook returns 'true' if RCLASS
- has exactly one register and 'false' otherwise. On most machines,
- this default should be used. For generally register-starved
- machines, such as i386, or machines with right register
- constraints, such as SH, this hook can be used to avoid excessive
- spilling.
-
- This hook is also used by some of the global intra-procedural code
- transformations to throtle code motion, to avoid increasing
- register pressure.
-
- -- Target Hook: unsigned char TARGET_CLASS_MAX_NREGS (reg_class_t
- RCLASS, enum machine_mode MODE)
- A target hook returns the maximum number of consecutive registers
- of class RCLASS needed to hold a value of mode MODE.
-
- This is closely related to the macro 'HARD_REGNO_NREGS'. In fact,
- the value returned by 'TARGET_CLASS_MAX_NREGS (RCLASS, MODE)'
- target hook should be the maximum value of 'HARD_REGNO_NREGS
- (REGNO, MODE)' for all REGNO values in the class RCLASS.
-
- This target hook helps control the handling of multiple-word values
- in the reload pass.
-
- The default version of this target hook returns the size of MODE in
- words.
-
- -- Macro: CLASS_MAX_NREGS (CLASS, MODE)
- A C expression for the maximum number of consecutive registers of
- class CLASS needed to hold a value of mode MODE.
-
- This is closely related to the macro 'HARD_REGNO_NREGS'. In fact,
- the value of the macro 'CLASS_MAX_NREGS (CLASS, MODE)' should be
- the maximum value of 'HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO
- values in the class CLASS.
-
- This macro helps control the handling of multiple-word values in
- the reload pass.
-
- -- Macro: CANNOT_CHANGE_MODE_CLASS (FROM, TO, CLASS)
- If defined, a C expression that returns nonzero for a CLASS for
- which a change from mode FROM to mode TO is invalid.
-
- For the example, loading 32-bit integer or floating-point objects
- into floating-point registers on the Alpha extends them to 64 bits.
- Therefore loading a 64-bit object and then storing it as a 32-bit
- object does not store the low-order 32 bits, as would be the case
- for a normal register. Therefore, 'alpha.h' defines
- 'CANNOT_CHANGE_MODE_CLASS' as below:
-
- #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
- (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
- ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
-
- -- Target Hook: bool TARGET_LRA_P (void)
- A target hook which returns true if we use LRA instead of reload
- pass. It means that LRA was ported to the target. The default
- version of this target hook returns always false.
-
- -- Target Hook: int TARGET_REGISTER_PRIORITY (int)
- A target hook which returns the register priority number to which
- the register HARD_REGNO belongs to. The bigger the number, the
- more preferable the hard register usage (when all other conditions
- are the same). This hook can be used to prefer some hard register
- over others in LRA. For example, some x86-64 register usage needs
- additional prefix which makes instructions longer. The hook can
- return lower priority number for such registers make them less
- favorable and as result making the generated code smaller. The
- default version of this target hook returns always zero.
-
- -- Target Hook: bool TARGET_REGISTER_USAGE_LEVELING_P (void)
- A target hook which returns true if we need register usage
- leveling. That means if a few hard registers are equally good for
- the assignment, we choose the least used hard register. The
- register usage leveling may be profitable for some targets. Don't
- use the usage leveling for targets with conditional execution or
- targets with big register files as it hurts if-conversion and
- cross-jumping optimizations. The default version of this target
- hook returns always false.
-
- -- Target Hook: bool TARGET_DIFFERENT_ADDR_DISPLACEMENT_P (void)
- A target hook which returns true if an address with the same
- structure can have different maximal legitimate displacement. For
- example, the displacement can depend on memory mode or on operand
- combinations in the insn. The default version of this target hook
- returns always false.
-
- -- Target Hook: reg_class_t TARGET_SPILL_CLASS (reg_class_t, enum
- MACHINE_MODE)
- This hook defines a class of registers which could be used for
- spilling pseudos of the given mode and class, or 'NO_REGS' if only
- memory should be used. Not defining this hook is equivalent to
- returning 'NO_REGS' for all inputs.
-
- -- Target Hook: enum machine_mode TARGET_CSTORE_MODE (enum insn_code
- ICODE)
- This hook defines the machine mode to use for the boolean result of
- conditional store patterns. The ICODE argument is the instruction
- code for the cstore being performed. Not definiting this hook is
- the same as accepting the mode encoded into operand 0 of the cstore
- expander patterns.
-
-
-File: gccint.info, Node: Old Constraints, Next: Stack and Calling, Prev: Register Classes, Up: Target Macros
-
-17.9 Obsolete Macros for Defining Constraints
-=============================================
-
-Machine-specific constraints can be defined with these macros instead of
-the machine description constructs described in *note Define
-Constraints::. This mechanism is obsolete. New ports should not use
-it; old ports should convert to the new mechanism.
-
- -- Macro: CONSTRAINT_LEN (CHAR, STR)
- For the constraint at the start of STR, which starts with the
- letter C, return the length. This allows you to have register
- class / constant / extra constraints that are longer than a single
- letter; you don't need to define this macro if you can do with
- single-letter constraints only. The definition of this macro
- should use DEFAULT_CONSTRAINT_LEN for all the characters that you
- don't want to handle specially. There are some sanity checks in
- genoutput.c that check the constraint lengths for the md file, so
- you can also use this macro to help you while you are transitioning
- from a byzantine single-letter-constraint scheme: when you return a
- negative length for a constraint you want to re-use, genoutput will
- complain about every instance where it is used in the md file.
-
- -- Macro: REG_CLASS_FROM_LETTER (CHAR)
- A C expression which defines the machine-dependent operand
- constraint letters for register classes. If CHAR is such a letter,
- the value should be the register class corresponding to it.
- Otherwise, the value should be 'NO_REGS'. The register letter 'r',
- corresponding to class 'GENERAL_REGS', will not be passed to this
- macro; you do not need to handle it.
-
- -- Macro: REG_CLASS_FROM_CONSTRAINT (CHAR, STR)
- Like 'REG_CLASS_FROM_LETTER', but you also get the constraint
- string passed in STR, so that you can use suffixes to distinguish
- between different variants.
-
- -- Macro: CONST_OK_FOR_LETTER_P (VALUE, C)
- A C expression that defines the machine-dependent operand
- constraint letters ('I', 'J', 'K', ... 'P') that specify particular
- ranges of integer values. If C is one of those letters, the
- expression should check that VALUE, an integer, is in the
- appropriate range and return 1 if so, 0 otherwise. If C is not one
- of those letters, the value should be 0 regardless of VALUE.
-
- -- Macro: CONST_OK_FOR_CONSTRAINT_P (VALUE, C, STR)
- Like 'CONST_OK_FOR_LETTER_P', but you also get the constraint
- string passed in STR, so that you can use suffixes to distinguish
- between different variants.
-
- -- Macro: CONST_DOUBLE_OK_FOR_LETTER_P (VALUE, C)
- A C expression that defines the machine-dependent operand
- constraint letters that specify particular ranges of 'const_double'
- values ('G' or 'H').
-
- If C is one of those letters, the expression should check that
- VALUE, an RTX of code 'const_double', is in the appropriate range
- and return 1 if so, 0 otherwise. If C is not one of those letters,
- the value should be 0 regardless of VALUE.
-
- 'const_double' is used for all floating-point constants and for
- 'DImode' fixed-point constants. A given letter can accept either
- or both kinds of values. It can use 'GET_MODE' to distinguish
- between these kinds.
-
- -- Macro: CONST_DOUBLE_OK_FOR_CONSTRAINT_P (VALUE, C, STR)
- Like 'CONST_DOUBLE_OK_FOR_LETTER_P', but you also get the
- constraint string passed in STR, so that you can use suffixes to
- distinguish between different variants.
-
- -- Macro: EXTRA_CONSTRAINT (VALUE, C)
- A C expression that defines the optional machine-dependent
- constraint letters that can be used to segregate specific types of
- operands, usually memory references, for the target machine. Any
- letter that is not elsewhere defined and not matched by
- 'REG_CLASS_FROM_LETTER' / 'REG_CLASS_FROM_CONSTRAINT' may be used.
- Normally this macro will not be defined.
-
- If it is required for a particular target machine, it should return
- 1 if VALUE corresponds to the operand type represented by the
- constraint letter C. If C is not defined as an extra constraint,
- the value returned should be 0 regardless of VALUE.
-
- For example, on the ROMP, load instructions cannot have their
- output in r0 if the memory reference contains a symbolic address.
- Constraint letter 'Q' is defined as representing a memory address
- that does _not_ contain a symbolic address. An alternative is
- specified with a 'Q' constraint on the input and 'r' on the output.
- The next alternative specifies 'm' on the input and a register
- class that does not include r0 on the output.
-
- -- Macro: EXTRA_CONSTRAINT_STR (VALUE, C, STR)
- Like 'EXTRA_CONSTRAINT', but you also get the constraint string
- passed in STR, so that you can use suffixes to distinguish between
- different variants.
-
- -- Macro: EXTRA_MEMORY_CONSTRAINT (C, STR)
- A C expression that defines the optional machine-dependent
- constraint letters, amongst those accepted by 'EXTRA_CONSTRAINT',
- that should be treated like memory constraints by the reload pass.
-
- It should return 1 if the operand type represented by the
- constraint at the start of STR, the first letter of which is the
- letter C, comprises a subset of all memory references including all
- those whose address is simply a base register. This allows the
- reload pass to reload an operand, if it does not directly
- correspond to the operand type of C, by copying its address into a
- base register.
-
- For example, on the S/390, some instructions do not accept
- arbitrary memory references, but only those that do not make use of
- an index register. The constraint letter 'Q' is defined via
- 'EXTRA_CONSTRAINT' as representing a memory address of this type.
- If the letter 'Q' is marked as 'EXTRA_MEMORY_CONSTRAINT', a 'Q'
- constraint can handle any memory operand, because the reload pass
- knows it can be reloaded by copying the memory address into a base
- register if required. This is analogous to the way an 'o'
- constraint can handle any memory operand.
-
- -- Macro: EXTRA_ADDRESS_CONSTRAINT (C, STR)
- A C expression that defines the optional machine-dependent
- constraint letters, amongst those accepted by 'EXTRA_CONSTRAINT' /
- 'EXTRA_CONSTRAINT_STR', that should be treated like address
- constraints by the reload pass.
-
- It should return 1 if the operand type represented by the
- constraint at the start of STR, which starts with the letter C,
- comprises a subset of all memory addresses including all those that
- consist of just a base register. This allows the reload pass to
- reload an operand, if it does not directly correspond to the
- operand type of STR, by copying it into a base register.
-
- Any constraint marked as 'EXTRA_ADDRESS_CONSTRAINT' can only be
- used with the 'address_operand' predicate. It is treated
- analogously to the 'p' constraint.
-
-
-File: gccint.info, Node: Stack and Calling, Next: Varargs, Prev: Old Constraints, Up: Target Macros
-
-17.10 Stack Layout and Calling Conventions
-==========================================
-
-This describes the stack layout and calling conventions.
-
-* Menu:
-
-* Frame Layout::
-* Exception Handling::
-* Stack Checking::
-* Frame Registers::
-* Elimination::
-* Stack Arguments::
-* Register Arguments::
-* Scalar Return::
-* Aggregate Return::
-* Caller Saves::
-* Function Entry::
-* Profiling::
-* Tail Calls::
-* Stack Smashing Protection::
-
-
-File: gccint.info, Node: Frame Layout, Next: Exception Handling, Up: Stack and Calling
-
-17.10.1 Basic Stack Layout
---------------------------
-
-Here is the basic stack layout.
-
- -- Macro: STACK_GROWS_DOWNWARD
- Define this macro if pushing a word onto the stack moves the stack
- pointer to a smaller address.
-
- When we say, "define this macro if ...", it means that the compiler
- checks this macro only with '#ifdef' so the precise definition used
- does not matter.
-
- -- Macro: STACK_PUSH_CODE
- This macro defines the operation used when something is pushed on
- the stack. In RTL, a push operation will be '(set (mem
- (STACK_PUSH_CODE (reg sp))) ...)'
-
- The choices are 'PRE_DEC', 'POST_DEC', 'PRE_INC', and 'POST_INC'.
- Which of these is correct depends on the stack direction and on
- whether the stack pointer points to the last item on the stack or
- whether it points to the space for the next item on the stack.
-
- The default is 'PRE_DEC' when 'STACK_GROWS_DOWNWARD' is defined,
- which is almost always right, and 'PRE_INC' otherwise, which is
- often wrong.
-
- -- Macro: FRAME_GROWS_DOWNWARD
- Define this macro to nonzero value if the addresses of local
- variable slots are at negative offsets from the frame pointer.
-
- -- Macro: ARGS_GROW_DOWNWARD
- Define this macro if successive arguments to a function occupy
- decreasing addresses on the stack.
-
- -- Macro: STARTING_FRAME_OFFSET
- Offset from the frame pointer to the first local variable slot to
- be allocated.
-
- If 'FRAME_GROWS_DOWNWARD', find the next slot's offset by
- subtracting the first slot's length from 'STARTING_FRAME_OFFSET'.
- Otherwise, it is found by adding the length of the first slot to
- the value 'STARTING_FRAME_OFFSET'.
-
- -- Macro: STACK_ALIGNMENT_NEEDED
- Define to zero to disable final alignment of the stack during
- reload. The nonzero default for this macro is suitable for most
- ports.
-
- On ports where 'STARTING_FRAME_OFFSET' is nonzero or where there is
- a register save block following the local block that doesn't
- require alignment to 'STACK_BOUNDARY', it may be beneficial to
- disable stack alignment and do it in the backend.
-
- -- Macro: STACK_POINTER_OFFSET
- Offset from the stack pointer register to the first location at
- which outgoing arguments are placed. If not specified, the default
- value of zero is used. This is the proper value for most machines.
-
- If 'ARGS_GROW_DOWNWARD', this is the offset to the location above
- the first location at which outgoing arguments are placed.
-
- -- Macro: FIRST_PARM_OFFSET (FUNDECL)
- Offset from the argument pointer register to the first argument's
- address. On some machines it may depend on the data type of the
- function.
-
- If 'ARGS_GROW_DOWNWARD', this is the offset to the location above
- the first argument's address.
-
- -- Macro: STACK_DYNAMIC_OFFSET (FUNDECL)
- Offset from the stack pointer register to an item dynamically
- allocated on the stack, e.g., by 'alloca'.
-
- The default value for this macro is 'STACK_POINTER_OFFSET' plus the
- length of the outgoing arguments. The default is correct for most
- machines. See 'function.c' for details.
-
- -- Macro: INITIAL_FRAME_ADDRESS_RTX
- A C expression whose value is RTL representing the address of the
- initial stack frame. This address is passed to 'RETURN_ADDR_RTX'
- and 'DYNAMIC_CHAIN_ADDRESS'. If you don't define this macro, a
- reasonable default value will be used. Define this macro in order
- to make frame pointer elimination work in the presence of
- '__builtin_frame_address (count)' and '__builtin_return_address
- (count)' for 'count' not equal to zero.
-
- -- Macro: DYNAMIC_CHAIN_ADDRESS (FRAMEADDR)
- A C expression whose value is RTL representing the address in a
- stack frame where the pointer to the caller's frame is stored.
- Assume that FRAMEADDR is an RTL expression for the address of the
- stack frame itself.
-
- If you don't define this macro, the default is to return the value
- of FRAMEADDR--that is, the stack frame address is also the address
- of the stack word that points to the previous frame.
-
- -- Macro: SETUP_FRAME_ADDRESSES
- If defined, a C expression that produces the machine-specific code
- to setup the stack so that arbitrary frames can be accessed. For
- example, on the SPARC, we must flush all of the register windows to
- the stack before we can access arbitrary stack frames. You will
- seldom need to define this macro.
-
- -- Target Hook: rtx TARGET_BUILTIN_SETJMP_FRAME_VALUE (void)
- This target hook should return an rtx that is used to store the
- address of the current frame into the built in 'setjmp' buffer.
- The default value, 'virtual_stack_vars_rtx', is correct for most
- machines. One reason you may need to define this target hook is if
- 'hard_frame_pointer_rtx' is the appropriate value on your machine.
-
- -- Macro: FRAME_ADDR_RTX (FRAMEADDR)
- A C expression whose value is RTL representing the value of the
- frame address for the current frame. FRAMEADDR is the frame
- pointer of the current frame. This is used for
- __builtin_frame_address. You need only define this macro if the
- frame address is not the same as the frame pointer. Most machines
- do not need to define it.
-
- -- Macro: RETURN_ADDR_RTX (COUNT, FRAMEADDR)
- A C expression whose value is RTL representing the value of the
- return address for the frame COUNT steps up from the current frame,
- after the prologue. FRAMEADDR is the frame pointer of the COUNT
- frame, or the frame pointer of the COUNT - 1 frame if
- 'RETURN_ADDR_IN_PREVIOUS_FRAME' is defined.
-
- The value of the expression must always be the correct address when
- COUNT is zero, but may be 'NULL_RTX' if there is no way to
- determine the return address of other frames.
-
- -- Macro: RETURN_ADDR_IN_PREVIOUS_FRAME
- Define this if the return address of a particular stack frame is
- accessed from the frame pointer of the previous stack frame.
-
- -- Macro: INCOMING_RETURN_ADDR_RTX
- A C expression whose value is RTL representing the location of the
- incoming return address at the beginning of any function, before
- the prologue. This RTL is either a 'REG', indicating that the
- return value is saved in 'REG', or a 'MEM' representing a location
- in the stack.
-
- You only need to define this macro if you want to support call
- frame debugging information like that provided by DWARF 2.
-
- If this RTL is a 'REG', you should also define
- 'DWARF_FRAME_RETURN_COLUMN' to 'DWARF_FRAME_REGNUM (REGNO)'.
-
- -- Macro: DWARF_ALT_FRAME_RETURN_COLUMN
- A C expression whose value is an integer giving a DWARF 2 column
- number that may be used as an alternative return column. The
- column must not correspond to any gcc hard register (that is, it
- must not be in the range of 'DWARF_FRAME_REGNUM').
-
- This macro can be useful if 'DWARF_FRAME_RETURN_COLUMN' is set to a
- general register, but an alternative column needs to be used for
- signal frames. Some targets have also used different frame return
- columns over time.
-
- -- Macro: DWARF_ZERO_REG
- A C expression whose value is an integer giving a DWARF 2 register
- number that is considered to always have the value zero. This
- should only be defined if the target has an architected zero
- register, and someone decided it was a good idea to use that
- register number to terminate the stack backtrace. New ports should
- avoid this.
-
- -- Target Hook: void TARGET_DWARF_HANDLE_FRAME_UNSPEC (const char
- *LABEL, rtx PATTERN, int INDEX)
- This target hook allows the backend to emit frame-related insns
- that contain UNSPECs or UNSPEC_VOLATILEs. The DWARF 2 call frame
- debugging info engine will invoke it on insns of the form
- (set (reg) (unspec [...] UNSPEC_INDEX))
- and
- (set (reg) (unspec_volatile [...] UNSPECV_INDEX)).
- to let the backend emit the call frame instructions. LABEL is the
- CFI label attached to the insn, PATTERN is the pattern of the insn
- and INDEX is 'UNSPEC_INDEX' or 'UNSPECV_INDEX'.
-
- -- Macro: INCOMING_FRAME_SP_OFFSET
- A C expression whose value is an integer giving the offset, in
- bytes, from the value of the stack pointer register to the top of
- the stack frame at the beginning of any function, before the
- prologue. The top of the frame is defined to be the value of the
- stack pointer in the previous frame, just before the call
- instruction.
-
- You only need to define this macro if you want to support call
- frame debugging information like that provided by DWARF 2.
-
- -- Macro: ARG_POINTER_CFA_OFFSET (FUNDECL)
- A C expression whose value is an integer giving the offset, in
- bytes, from the argument pointer to the canonical frame address
- (cfa). The final value should coincide with that calculated by
- 'INCOMING_FRAME_SP_OFFSET'. Which is unfortunately not usable
- during virtual register instantiation.
-
- The default value for this macro is 'FIRST_PARM_OFFSET (fundecl) +
- crtl->args.pretend_args_size', which is correct for most machines;
- in general, the arguments are found immediately before the stack
- frame. Note that this is not the case on some targets that save
- registers into the caller's frame, such as SPARC and rs6000, and so
- such targets need to define this macro.
-
- You only need to define this macro if the default is incorrect, and
- you want to support call frame debugging information like that
- provided by DWARF 2.
-
- -- Macro: FRAME_POINTER_CFA_OFFSET (FUNDECL)
- If defined, a C expression whose value is an integer giving the
- offset in bytes from the frame pointer to the canonical frame
- address (cfa). The final value should coincide with that
- calculated by 'INCOMING_FRAME_SP_OFFSET'.
-
- Normally the CFA is calculated as an offset from the argument
- pointer, via 'ARG_POINTER_CFA_OFFSET', but if the argument pointer
- is variable due to the ABI, this may not be possible. If this
- macro is defined, it implies that the virtual register
- instantiation should be based on the frame pointer instead of the
- argument pointer. Only one of 'FRAME_POINTER_CFA_OFFSET' and
- 'ARG_POINTER_CFA_OFFSET' should be defined.
-
- -- Macro: CFA_FRAME_BASE_OFFSET (FUNDECL)
- If defined, a C expression whose value is an integer giving the
- offset in bytes from the canonical frame address (cfa) to the frame
- base used in DWARF 2 debug information. The default is zero. A
- different value may reduce the size of debug information on some
- ports.
-
-
-File: gccint.info, Node: Exception Handling, Next: Stack Checking, Prev: Frame Layout, Up: Stack and Calling
-
-17.10.2 Exception Handling Support
-----------------------------------
-
- -- Macro: EH_RETURN_DATA_REGNO (N)
- A C expression whose value is the Nth register number used for data
- by exception handlers, or 'INVALID_REGNUM' if fewer than N
- registers are usable.
-
- The exception handling library routines communicate with the
- exception handlers via a set of agreed upon registers. Ideally
- these registers should be call-clobbered; it is possible to use
- call-saved registers, but may negatively impact code size. The
- target must support at least 2 data registers, but should define 4
- if there are enough free registers.
-
- You must define this macro if you want to support call frame
- exception handling like that provided by DWARF 2.
-
- -- Macro: EH_RETURN_STACKADJ_RTX
- A C expression whose value is RTL representing a location in which
- to store a stack adjustment to be applied before function return.
- This is used to unwind the stack to an exception handler's call
- frame. It will be assigned zero on code paths that return
- normally.
-
- Typically this is a call-clobbered hard register that is otherwise
- untouched by the epilogue, but could also be a stack slot.
-
- Do not define this macro if the stack pointer is saved and restored
- by the regular prolog and epilog code in the call frame itself; in
- this case, the exception handling library routines will update the
- stack location to be restored in place. Otherwise, you must define
- this macro if you want to support call frame exception handling
- like that provided by DWARF 2.
-
- -- Macro: EH_RETURN_HANDLER_RTX
- A C expression whose value is RTL representing a location in which
- to store the address of an exception handler to which we should
- return. It will not be assigned on code paths that return
- normally.
-
- Typically this is the location in the call frame at which the
- normal return address is stored. For targets that return by
- popping an address off the stack, this might be a memory address
- just below the _target_ call frame rather than inside the current
- call frame. If defined, 'EH_RETURN_STACKADJ_RTX' will have already
- been assigned, so it may be used to calculate the location of the
- target call frame.
-
- Some targets have more complex requirements than storing to an
- address calculable during initial code generation. In that case
- the 'eh_return' instruction pattern should be used instead.
-
- If you want to support call frame exception handling, you must
- define either this macro or the 'eh_return' instruction pattern.
-
- -- Macro: RETURN_ADDR_OFFSET
- If defined, an integer-valued C expression for which rtl will be
- generated to add it to the exception handler address before it is
- searched in the exception handling tables, and to subtract it again
- from the address before using it to return to the exception
- handler.
-
- -- Macro: ASM_PREFERRED_EH_DATA_FORMAT (CODE, GLOBAL)
- This macro chooses the encoding of pointers embedded in the
- exception handling sections. If at all possible, this should be
- defined such that the exception handling section will not require
- dynamic relocations, and so may be read-only.
-
- CODE is 0 for data, 1 for code labels, 2 for function pointers.
- GLOBAL is true if the symbol may be affected by dynamic
- relocations. The macro should return a combination of the
- 'DW_EH_PE_*' defines as found in 'dwarf2.h'.
-
- If this macro is not defined, pointers will not be encoded but
- represented directly.
-
- -- Macro: ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX (FILE, ENCODING, SIZE,
- ADDR, DONE)
- This macro allows the target to emit whatever special magic is
- required to represent the encoding chosen by
- 'ASM_PREFERRED_EH_DATA_FORMAT'. Generic code takes care of
- pc-relative and indirect encodings; this must be defined if the
- target uses text-relative or data-relative encodings.
-
- This is a C statement that branches to DONE if the format was
- handled. ENCODING is the format chosen, SIZE is the number of
- bytes that the format occupies, ADDR is the 'SYMBOL_REF' to be
- emitted.
-
- -- Macro: MD_FALLBACK_FRAME_STATE_FOR (CONTEXT, FS)
- This macro allows the target to add CPU and operating system
- specific code to the call-frame unwinder for use when there is no
- unwind data available. The most common reason to implement this
- macro is to unwind through signal frames.
-
- This macro is called from 'uw_frame_state_for' in 'unwind-dw2.c',
- 'unwind-dw2-xtensa.c' and 'unwind-ia64.c'. CONTEXT is an
- '_Unwind_Context'; FS is an '_Unwind_FrameState'. Examine
- 'context->ra' for the address of the code being executed and
- 'context->cfa' for the stack pointer value. If the frame can be
- decoded, the register save addresses should be updated in FS and
- the macro should evaluate to '_URC_NO_REASON'. If the frame cannot
- be decoded, the macro should evaluate to '_URC_END_OF_STACK'.
-
- For proper signal handling in Java this macro is accompanied by
- 'MAKE_THROW_FRAME', defined in 'libjava/include/*-signal.h'
- headers.
-
- -- Macro: MD_HANDLE_UNWABI (CONTEXT, FS)
- This macro allows the target to add operating system specific code
- to the call-frame unwinder to handle the IA-64 '.unwabi' unwinding
- directive, usually used for signal or interrupt frames.
-
- This macro is called from 'uw_update_context' in libgcc's
- 'unwind-ia64.c'. CONTEXT is an '_Unwind_Context'; FS is an
- '_Unwind_FrameState'. Examine 'fs->unwabi' for the abi and context
- in the '.unwabi' directive. If the '.unwabi' directive can be
- handled, the register save addresses should be updated in FS.
-
- -- Macro: TARGET_USES_WEAK_UNWIND_INFO
- A C expression that evaluates to true if the target requires unwind
- info to be given comdat linkage. Define it to be '1' if comdat
- linkage is necessary. The default is '0'.
-
-
-File: gccint.info, Node: Stack Checking, Next: Frame Registers, Prev: Exception Handling, Up: Stack and Calling
-
-17.10.3 Specifying How Stack Checking is Done
----------------------------------------------
-
-GCC will check that stack references are within the boundaries of the
-stack, if the option '-fstack-check' is specified, in one of three ways:
-
- 1. If the value of the 'STACK_CHECK_BUILTIN' macro is nonzero, GCC
- will assume that you have arranged for full stack checking to be
- done at appropriate places in the configuration files. GCC will
- not do other special processing.
-
- 2. If 'STACK_CHECK_BUILTIN' is zero and the value of the
- 'STACK_CHECK_STATIC_BUILTIN' macro is nonzero, GCC will assume that
- you have arranged for static stack checking (checking of the static
- stack frame of functions) to be done at appropriate places in the
- configuration files. GCC will only emit code to do dynamic stack
- checking (checking on dynamic stack allocations) using the third
- approach below.
-
- 3. If neither of the above are true, GCC will generate code to
- periodically "probe" the stack pointer using the values of the
- macros defined below.
-
- If neither STACK_CHECK_BUILTIN nor STACK_CHECK_STATIC_BUILTIN is
-defined, GCC will change its allocation strategy for large objects if
-the option '-fstack-check' is specified: they will always be allocated
-dynamically if their size exceeds 'STACK_CHECK_MAX_VAR_SIZE' bytes.
-
- -- Macro: STACK_CHECK_BUILTIN
- A nonzero value if stack checking is done by the configuration
- files in a machine-dependent manner. You should define this macro
- if stack checking is required by the ABI of your machine or if you
- would like to do stack checking in some more efficient way than the
- generic approach. The default value of this macro is zero.
-
- -- Macro: STACK_CHECK_STATIC_BUILTIN
- A nonzero value if static stack checking is done by the
- configuration files in a machine-dependent manner. You should
- define this macro if you would like to do static stack checking in
- some more efficient way than the generic approach. The default
- value of this macro is zero.
-
- -- Macro: STACK_CHECK_PROBE_INTERVAL_EXP
- An integer specifying the interval at which GCC must generate stack
- probe instructions, defined as 2 raised to this integer. You will
- normally define this macro so that the interval be no larger than
- the size of the "guard pages" at the end of a stack area. The
- default value of 12 (4096-byte interval) is suitable for most
- systems.
-
- -- Macro: STACK_CHECK_MOVING_SP
- An integer which is nonzero if GCC should move the stack pointer
- page by page when doing probes. This can be necessary on systems
- where the stack pointer contains the bottom address of the memory
- area accessible to the executing thread at any point in time. In
- this situation an alternate signal stack is required in order to be
- able to recover from a stack overflow. The default value of this
- macro is zero.
-
- -- Macro: STACK_CHECK_PROTECT
- The number of bytes of stack needed to recover from a stack
- overflow, for languages where such a recovery is supported. The
- default value of 75 words with the 'setjmp'/'longjmp'-based
- exception handling mechanism and 8192 bytes with other exception
- handling mechanisms should be adequate for most machines.
-
- The following macros are relevant only if neither STACK_CHECK_BUILTIN
-nor STACK_CHECK_STATIC_BUILTIN is defined; you can omit them altogether
-in the opposite case.
-
- -- Macro: STACK_CHECK_MAX_FRAME_SIZE
- The maximum size of a stack frame, in bytes. GCC will generate
- probe instructions in non-leaf functions to ensure at least this
- many bytes of stack are available. If a stack frame is larger than
- this size, stack checking will not be reliable and GCC will issue a
- warning. The default is chosen so that GCC only generates one
- instruction on most systems. You should normally not change the
- default value of this macro.
-
- -- Macro: STACK_CHECK_FIXED_FRAME_SIZE
- GCC uses this value to generate the above warning message. It
- represents the amount of fixed frame used by a function, not
- including space for any callee-saved registers, temporaries and
- user variables. You need only specify an upper bound for this
- amount and will normally use the default of four words.
-
- -- Macro: STACK_CHECK_MAX_VAR_SIZE
- The maximum size, in bytes, of an object that GCC will place in the
- fixed area of the stack frame when the user specifies
- '-fstack-check'. GCC computed the default from the values of the
- above macros and you will normally not need to override that
- default.
-
-
-File: gccint.info, Node: Frame Registers, Next: Elimination, Prev: Stack Checking, Up: Stack and Calling
-
-17.10.4 Registers That Address the Stack Frame
-----------------------------------------------
-
-This discusses registers that address the stack frame.
-
- -- Macro: STACK_POINTER_REGNUM
- The register number of the stack pointer register, which must also
- be a fixed register according to 'FIXED_REGISTERS'. On most
- machines, the hardware determines which register this is.
-
- -- Macro: FRAME_POINTER_REGNUM
- The register number of the frame pointer register, which is used to
- access automatic variables in the stack frame. On some machines,
- the hardware determines which register this is. On other machines,
- you can choose any register you wish for this purpose.
-
- -- Macro: HARD_FRAME_POINTER_REGNUM
- On some machines the offset between the frame pointer and starting
- offset of the automatic variables is not known until after register
- allocation has been done (for example, because the saved registers
- are between these two locations). On those machines, define
- 'FRAME_POINTER_REGNUM' the number of a special, fixed register to
- be used internally until the offset is known, and define
- 'HARD_FRAME_POINTER_REGNUM' to be the actual hard register number
- used for the frame pointer.
-
- You should define this macro only in the very rare circumstances
- when it is not possible to calculate the offset between the frame
- pointer and the automatic variables until after register allocation
- has been completed. When this macro is defined, you must also
- indicate in your definition of 'ELIMINABLE_REGS' how to eliminate
- 'FRAME_POINTER_REGNUM' into either 'HARD_FRAME_POINTER_REGNUM' or
- 'STACK_POINTER_REGNUM'.
-
- Do not define this macro if it would be the same as
- 'FRAME_POINTER_REGNUM'.
-
- -- Macro: ARG_POINTER_REGNUM
- The register number of the arg pointer register, which is used to
- access the function's argument list. On some machines, this is the
- same as the frame pointer register. On some machines, the hardware
- determines which register this is. On other machines, you can
- choose any register you wish for this purpose. If this is not the
- same register as the frame pointer register, then you must mark it
- as a fixed register according to 'FIXED_REGISTERS', or arrange to
- be able to eliminate it (*note Elimination::).
-
- -- Macro: HARD_FRAME_POINTER_IS_FRAME_POINTER
- Define this to a preprocessor constant that is nonzero if
- 'hard_frame_pointer_rtx' and 'frame_pointer_rtx' should be the
- same. The default definition is '(HARD_FRAME_POINTER_REGNUM ==
- FRAME_POINTER_REGNUM)'; you only need to define this macro if that
- definition is not suitable for use in preprocessor conditionals.
-
- -- Macro: HARD_FRAME_POINTER_IS_ARG_POINTER
- Define this to a preprocessor constant that is nonzero if
- 'hard_frame_pointer_rtx' and 'arg_pointer_rtx' should be the same.
- The default definition is '(HARD_FRAME_POINTER_REGNUM ==
- ARG_POINTER_REGNUM)'; you only need to define this macro if that
- definition is not suitable for use in preprocessor conditionals.
-
- -- Macro: RETURN_ADDRESS_POINTER_REGNUM
- The register number of the return address pointer register, which
- is used to access the current function's return address from the
- stack. On some machines, the return address is not at a fixed
- offset from the frame pointer or stack pointer or argument pointer.
- This register can be defined to point to the return address on the
- stack, and then be converted by 'ELIMINABLE_REGS' into either the
- frame pointer or stack pointer.
-
- Do not define this macro unless there is no other way to get the
- return address from the stack.
-
- -- Macro: STATIC_CHAIN_REGNUM
- -- Macro: STATIC_CHAIN_INCOMING_REGNUM
- Register numbers used for passing a function's static chain
- pointer. If register windows are used, the register number as seen
- by the called function is 'STATIC_CHAIN_INCOMING_REGNUM', while the
- register number as seen by the calling function is
- 'STATIC_CHAIN_REGNUM'. If these registers are the same,
- 'STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
-
- The static chain register need not be a fixed register.
-
- If the static chain is passed in memory, these macros should not be
- defined; instead, the 'TARGET_STATIC_CHAIN' hook should be used.
-
- -- Target Hook: rtx TARGET_STATIC_CHAIN (const_tree FNDECL, bool
- INCOMING_P)
- This hook replaces the use of 'STATIC_CHAIN_REGNUM' et al for
- targets that may use different static chain locations for different
- nested functions. This may be required if the target has function
- attributes that affect the calling conventions of the function and
- those calling conventions use different static chain locations.
-
- The default version of this hook uses 'STATIC_CHAIN_REGNUM' et al.
-
- If the static chain is passed in memory, this hook should be used
- to provide rtx giving 'mem' expressions that denote where they are
- stored. Often the 'mem' expression as seen by the caller will be
- at an offset from the stack pointer and the 'mem' expression as
- seen by the callee will be at an offset from the frame pointer.
- The variables 'stack_pointer_rtx', 'frame_pointer_rtx', and
- 'arg_pointer_rtx' will have been initialized and should be used to
- refer to those items.
-
- -- Macro: DWARF_FRAME_REGISTERS
- This macro specifies the maximum number of hard registers that can
- be saved in a call frame. This is used to size data structures
- used in DWARF2 exception handling.
-
- Prior to GCC 3.0, this macro was needed in order to establish a
- stable exception handling ABI in the face of adding new hard
- registers for ISA extensions. In GCC 3.0 and later, the EH ABI is
- insulated from changes in the number of hard registers.
- Nevertheless, this macro can still be used to reduce the runtime
- memory requirements of the exception handling routines, which can
- be substantial if the ISA contains a lot of registers that are not
- call-saved.
-
- If this macro is not defined, it defaults to
- 'FIRST_PSEUDO_REGISTER'.
-
- -- Macro: PRE_GCC3_DWARF_FRAME_REGISTERS
-
- This macro is similar to 'DWARF_FRAME_REGISTERS', but is provided
- for backward compatibility in pre GCC 3.0 compiled code.
-
- If this macro is not defined, it defaults to
- 'DWARF_FRAME_REGISTERS'.
-
- -- Macro: DWARF_REG_TO_UNWIND_COLUMN (REGNO)
-
- Define this macro if the target's representation for dwarf
- registers is different than the internal representation for unwind
- column. Given a dwarf register, this macro should return the
- internal unwind column number to use instead.
-
- See the PowerPC's SPE target for an example.
-
- -- Macro: DWARF_FRAME_REGNUM (REGNO)
-
- Define this macro if the target's representation for dwarf
- registers used in .eh_frame or .debug_frame is different from that
- used in other debug info sections. Given a GCC hard register
- number, this macro should return the .eh_frame register number.
- The default is 'DBX_REGISTER_NUMBER (REGNO)'.
-
- -- Macro: DWARF2_FRAME_REG_OUT (REGNO, FOR_EH)
-
- Define this macro to map register numbers held in the call frame
- info that GCC has collected using 'DWARF_FRAME_REGNUM' to those
- that should be output in .debug_frame ('FOR_EH' is zero) and
- .eh_frame ('FOR_EH' is nonzero). The default is to return 'REGNO'.
-
- -- Macro: REG_VALUE_IN_UNWIND_CONTEXT
-
- Define this macro if the target stores register values as
- '_Unwind_Word' type in unwind context. It should be defined if
- target register size is larger than the size of 'void *'. The
- default is to store register values as 'void *' type.
-
- -- Macro: ASSUME_EXTENDED_UNWIND_CONTEXT
-
- Define this macro to be 1 if the target always uses extended unwind
- context with version, args_size and by_value fields. If it is
- undefined, it will be defined to 1 when
- 'REG_VALUE_IN_UNWIND_CONTEXT' is defined and 0 otherwise.
-
-
-File: gccint.info, Node: Elimination, Next: Stack Arguments, Prev: Frame Registers, Up: Stack and Calling
-
-17.10.5 Eliminating Frame Pointer and Arg Pointer
--------------------------------------------------
-
-This is about eliminating the frame pointer and arg pointer.
-
- -- Target Hook: bool TARGET_FRAME_POINTER_REQUIRED (void)
- This target hook should return 'true' if a function must have and
- use a frame pointer. This target hook is called in the reload
- pass. If its return value is 'true' the function will have a frame
- pointer.
-
- This target hook can in principle examine the current function and
- decide according to the facts, but on most machines the constant
- 'false' or the constant 'true' suffices. Use 'false' when the
- machine allows code to be generated with no frame pointer, and
- doing so saves some time or space. Use 'true' when there is no
- possible advantage to avoiding a frame pointer.
-
- In certain cases, the compiler does not know how to produce valid
- code without a frame pointer. The compiler recognizes those cases
- and automatically gives the function a frame pointer regardless of
- what 'TARGET_FRAME_POINTER_REQUIRED' returns. You don't need to
- worry about them.
-
- In a function that does not require a frame pointer, the frame
- pointer register can be allocated for ordinary usage, unless you
- mark it as a fixed register. See 'FIXED_REGISTERS' for more
- information.
-
- Default return value is 'false'.
-
- -- Macro: INITIAL_FRAME_POINTER_OFFSET (DEPTH-VAR)
- A C statement to store in the variable DEPTH-VAR the difference
- between the frame pointer and the stack pointer values immediately
- after the function prologue. The value would be computed from
- information such as the result of 'get_frame_size ()' and the
- tables of registers 'regs_ever_live' and 'call_used_regs'.
-
- If 'ELIMINABLE_REGS' is defined, this macro will be not be used and
- need not be defined. Otherwise, it must be defined even if
- 'TARGET_FRAME_POINTER_REQUIRED' always returns true; in that case,
- you may set DEPTH-VAR to anything.
-
- -- Macro: ELIMINABLE_REGS
- If defined, this macro specifies a table of register pairs used to
- eliminate unneeded registers that point into the stack frame. If
- it is not defined, the only elimination attempted by the compiler
- is to replace references to the frame pointer with references to
- the stack pointer.
-
- The definition of this macro is a list of structure
- initializations, each of which specifies an original and
- replacement register.
-
- On some machines, the position of the argument pointer is not known
- until the compilation is completed. In such a case, a separate
- hard register must be used for the argument pointer. This register
- can be eliminated by replacing it with either the frame pointer or
- the argument pointer, depending on whether or not the frame pointer
- has been eliminated.
-
- In this case, you might specify:
- #define ELIMINABLE_REGS \
- {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
- {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
-
- Note that the elimination of the argument pointer with the stack
- pointer is specified first since that is the preferred elimination.
-
- -- Target Hook: bool TARGET_CAN_ELIMINATE (const int FROM_REG, const
- int TO_REG)
- This target hook should returns 'true' if the compiler is allowed
- to try to replace register number FROM_REG with register number
- TO_REG. This target hook need only be defined if 'ELIMINABLE_REGS'
- is defined, and will usually be 'true', since most of the cases
- preventing register elimination are things that the compiler
- already knows about.
-
- Default return value is 'true'.
-
- -- Macro: INITIAL_ELIMINATION_OFFSET (FROM-REG, TO-REG, OFFSET-VAR)
- This macro is similar to 'INITIAL_FRAME_POINTER_OFFSET'. It
- specifies the initial difference between the specified pair of
- registers. This macro must be defined if 'ELIMINABLE_REGS' is
- defined.
-
-
-File: gccint.info, Node: Stack Arguments, Next: Register Arguments, Prev: Elimination, Up: Stack and Calling
-
-17.10.6 Passing Function Arguments on the Stack
------------------------------------------------
-
-The macros in this section control how arguments are passed on the
-stack. See the following section for other macros that control passing
-certain arguments in registers.
-
- -- Target Hook: bool TARGET_PROMOTE_PROTOTYPES (const_tree FNTYPE)
- This target hook returns 'true' if an argument declared in a
- prototype as an integral type smaller than 'int' should actually be
- passed as an 'int'. In addition to avoiding errors in certain
- cases of mismatch, it also makes for better code on certain
- machines. The default is to not promote prototypes.
-
- -- Macro: PUSH_ARGS
- A C expression. If nonzero, push insns will be used to pass
- outgoing arguments. If the target machine does not have a push
- instruction, set it to zero. That directs GCC to use an alternate
- strategy: to allocate the entire argument block and then store the
- arguments into it. When 'PUSH_ARGS' is nonzero, 'PUSH_ROUNDING'
- must be defined too.
-
- -- Macro: PUSH_ARGS_REVERSED
- A C expression. If nonzero, function arguments will be evaluated
- from last to first, rather than from first to last. If this macro
- is not defined, it defaults to 'PUSH_ARGS' on targets where the
- stack and args grow in opposite directions, and 0 otherwise.
-
- -- Macro: PUSH_ROUNDING (NPUSHED)
- A C expression that is the number of bytes actually pushed onto the
- stack when an instruction attempts to push NPUSHED bytes.
-
- On some machines, the definition
-
- #define PUSH_ROUNDING(BYTES) (BYTES)
-
- will suffice. But on other machines, instructions that appear to
- push one byte actually push two bytes in an attempt to maintain
- alignment. Then the definition should be
-
- #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
-
- If the value of this macro has a type, it should be an unsigned
- type.
-
- -- Macro: ACCUMULATE_OUTGOING_ARGS
- A C expression. If nonzero, the maximum amount of space required
- for outgoing arguments will be computed and placed into
- 'crtl->outgoing_args_size'. No space will be pushed onto the stack
- for each call; instead, the function prologue should increase the
- stack frame size by this amount.
-
- Setting both 'PUSH_ARGS' and 'ACCUMULATE_OUTGOING_ARGS' is not
- proper.
-
- -- Macro: REG_PARM_STACK_SPACE (FNDECL)
- Define this macro if functions should assume that stack space has
- been allocated for arguments even when their values are passed in
- registers.
-
- The value of this macro is the size, in bytes, of the area reserved
- for arguments passed in registers for the function represented by
- FNDECL, which can be zero if GCC is calling a library function.
- The argument FNDECL can be the FUNCTION_DECL, or the type itself of
- the function.
-
- This space can be allocated by the caller, or be a part of the
- machine-dependent stack frame: 'OUTGOING_REG_PARM_STACK_SPACE' says
- which.
-
- -- Macro: OUTGOING_REG_PARM_STACK_SPACE (FNTYPE)
- Define this to a nonzero value if it is the responsibility of the
- caller to allocate the area reserved for arguments passed in
- registers when calling a function of FNTYPE. FNTYPE may be NULL if
- the function called is a library function.
-
- If 'ACCUMULATE_OUTGOING_ARGS' is defined, this macro controls
- whether the space for these arguments counts in the value of
- 'crtl->outgoing_args_size'.
-
- -- Macro: STACK_PARMS_IN_REG_PARM_AREA
- Define this macro if 'REG_PARM_STACK_SPACE' is defined, but the
- stack parameters don't skip the area specified by it.
-
- Normally, when a parameter is not passed in registers, it is placed
- on the stack beyond the 'REG_PARM_STACK_SPACE' area. Defining this
- macro suppresses this behavior and causes the parameter to be
- passed on the stack in its natural location.
-
- -- Target Hook: int TARGET_RETURN_POPS_ARGS (tree FUNDECL, tree
- FUNTYPE, int SIZE)
- This target hook returns the number of bytes of its own arguments
- that a function pops on returning, or 0 if the function pops no
- arguments and the caller must therefore pop them all after the
- function returns.
-
- FUNDECL is a C variable whose value is a tree node that describes
- the function in question. Normally it is a node of type
- 'FUNCTION_DECL' that describes the declaration of the function.
- From this you can obtain the 'DECL_ATTRIBUTES' of the function.
-
- FUNTYPE is a C variable whose value is a tree node that describes
- the function in question. Normally it is a node of type
- 'FUNCTION_TYPE' that describes the data type of the function. From
- this it is possible to obtain the data types of the value and
- arguments (if known).
-
- When a call to a library function is being considered, FUNDECL will
- contain an identifier node for the library function. Thus, if you
- need to distinguish among various library functions, you can do so
- by their names. Note that "library function" in this context means
- a function used to perform arithmetic, whose name is known
- specially in the compiler and was not mentioned in the C code being
- compiled.
-
- SIZE is the number of bytes of arguments passed on the stack. If a
- variable number of bytes is passed, it is zero, and argument
- popping will always be the responsibility of the calling function.
-
- On the VAX, all functions always pop their arguments, so the
- definition of this macro is SIZE. On the 68000, using the standard
- calling convention, no functions pop their arguments, so the value
- of the macro is always 0 in this case. But an alternative calling
- convention is available in which functions that take a fixed number
- of arguments pop them but other functions (such as 'printf') pop
- nothing (the caller pops all). When this convention is in use,
- FUNTYPE is examined to determine whether a function takes a fixed
- number of arguments.
-
- -- Macro: CALL_POPS_ARGS (CUM)
- A C expression that should indicate the number of bytes a call
- sequence pops off the stack. It is added to the value of
- 'RETURN_POPS_ARGS' when compiling a function call.
-
- CUM is the variable in which all arguments to the called function
- have been accumulated.
-
- On certain architectures, such as the SH5, a call trampoline is
- used that pops certain registers off the stack, depending on the
- arguments that have been passed to the function. Since this is a
- property of the call site, not of the called function,
- 'RETURN_POPS_ARGS' is not appropriate.
-
-
-File: gccint.info, Node: Register Arguments, Next: Scalar Return, Prev: Stack Arguments, Up: Stack and Calling
-
-17.10.7 Passing Arguments in Registers
---------------------------------------
-
-This section describes the macros which let you control how various
-types of arguments are passed in registers or how they are arranged in
-the stack.
-
- -- Target Hook: rtx TARGET_FUNCTION_ARG (cumulative_args_t CA, enum
- machine_mode MODE, const_tree TYPE, bool NAMED)
- Return an RTX indicating whether a function argument is passed in a
- register and if so, which register.
-
- The arguments are CA, which summarizes all the previous arguments;
- MODE, the machine mode of the argument; TYPE, the data type of the
- argument as a tree node or 0 if that is not known (which happens
- for C support library functions); and NAMED, which is 'true' for an
- ordinary argument and 'false' for nameless arguments that
- correspond to '...' in the called function's prototype. TYPE can
- be an incomplete type if a syntax error has previously occurred.
-
- The return value is usually either a 'reg' RTX for the hard
- register in which to pass the argument, or zero to pass the
- argument on the stack.
-
- The value of the expression can also be a 'parallel' RTX. This is
- used when an argument is passed in multiple locations. The mode of
- the 'parallel' should be the mode of the entire argument. The
- 'parallel' holds any number of 'expr_list' pairs; each one
- describes where part of the argument is passed. In each
- 'expr_list' the first operand must be a 'reg' RTX for the hard
- register in which to pass this part of the argument, and the mode
- of the register RTX indicates how large this part of the argument
- is. The second operand of the 'expr_list' is a 'const_int' which
- gives the offset in bytes into the entire argument of where this
- part starts. As a special exception the first 'expr_list' in the
- 'parallel' RTX may have a first operand of zero. This indicates
- that the entire argument is also stored on the stack.
-
- The last time this hook is called, it is called with 'MODE ==
- VOIDmode', and its result is passed to the 'call' or 'call_value'
- pattern as operands 2 and 3 respectively.
-
- The usual way to make the ISO library 'stdarg.h' work on a machine
- where some arguments are usually passed in registers, is to cause
- nameless arguments to be passed on the stack instead. This is done
- by making 'TARGET_FUNCTION_ARG' return 0 whenever NAMED is 'false'.
-
- You may use the hook 'targetm.calls.must_pass_in_stack' in the
- definition of this macro to determine if this argument is of a type
- that must be passed in the stack. If 'REG_PARM_STACK_SPACE' is not
- defined and 'TARGET_FUNCTION_ARG' returns nonzero for such an
- argument, the compiler will abort. If 'REG_PARM_STACK_SPACE' is
- defined, the argument will be computed in the stack and then loaded
- into a register.
-
- -- Target Hook: bool TARGET_MUST_PASS_IN_STACK (enum machine_mode MODE,
- const_tree TYPE)
- This target hook should return 'true' if we should not pass TYPE
- solely in registers. The file 'expr.h' defines a definition that
- is usually appropriate, refer to 'expr.h' for additional
- documentation.
-
- -- Target Hook: rtx TARGET_FUNCTION_INCOMING_ARG (cumulative_args_t CA,
- enum machine_mode MODE, const_tree TYPE, bool NAMED)
- Define this hook if the target machine has "register windows", so
- that the register in which a function sees an arguments is not
- necessarily the same as the one in which the caller passed the
- argument.
-
- For such machines, 'TARGET_FUNCTION_ARG' computes the register in
- which the caller passes the value, and
- 'TARGET_FUNCTION_INCOMING_ARG' should be defined in a similar
- fashion to tell the function being called where the arguments will
- arrive.
-
- If 'TARGET_FUNCTION_INCOMING_ARG' is not defined,
- 'TARGET_FUNCTION_ARG' serves both purposes.
-
- -- Target Hook: int TARGET_ARG_PARTIAL_BYTES (cumulative_args_t CUM,
- enum machine_mode MODE, tree TYPE, bool NAMED)
- This target hook returns the number of bytes at the beginning of an
- argument that must be put in registers. The value must be zero for
- arguments that are passed entirely in registers or that are
- entirely pushed on the stack.
-
- On some machines, certain arguments must be passed partially in
- registers and partially in memory. On these machines, typically
- the first few words of arguments are passed in registers, and the
- rest on the stack. If a multi-word argument (a 'double' or a
- structure) crosses that boundary, its first few words must be
- passed in registers and the rest must be pushed. This macro tells
- the compiler when this occurs, and how many bytes should go in
- registers.
-
- 'TARGET_FUNCTION_ARG' for these arguments should return the first
- register to be used by the caller for this argument; likewise
- 'TARGET_FUNCTION_INCOMING_ARG', for the called function.
-
- -- Target Hook: bool TARGET_PASS_BY_REFERENCE (cumulative_args_t CUM,
- enum machine_mode MODE, const_tree TYPE, bool NAMED)
- This target hook should return 'true' if an argument at the
- position indicated by CUM should be passed by reference. This
- predicate is queried after target independent reasons for being
- passed by reference, such as 'TREE_ADDRESSABLE (type)'.
-
- If the hook returns true, a copy of that argument is made in memory
- and a pointer to the argument is passed instead of the argument
- itself. The pointer is passed in whatever way is appropriate for
- passing a pointer to that type.
-
- -- Target Hook: bool TARGET_CALLEE_COPIES (cumulative_args_t CUM, enum
- machine_mode MODE, const_tree TYPE, bool NAMED)
- The function argument described by the parameters to this hook is
- known to be passed by reference. The hook should return true if
- the function argument should be copied by the callee instead of
- copied by the caller.
-
- For any argument for which the hook returns true, if it can be
- determined that the argument is not modified, then a copy need not
- be generated.
-
- The default version of this hook always returns false.
-
- -- Macro: CUMULATIVE_ARGS
- A C type for declaring a variable that is used as the first
- argument of 'TARGET_FUNCTION_ARG' and other related values. For
- some target machines, the type 'int' suffices and can hold the
- number of bytes of argument so far.
-
- There is no need to record in 'CUMULATIVE_ARGS' anything about the
- arguments that have been passed on the stack. The compiler has
- other variables to keep track of that. For target machines on
- which all arguments are passed on the stack, there is no need to
- store anything in 'CUMULATIVE_ARGS'; however, the data structure
- must exist and should not be empty, so use 'int'.
-
- -- Macro: OVERRIDE_ABI_FORMAT (FNDECL)
- If defined, this macro is called before generating any code for a
- function, but after the CFUN descriptor for the function has been
- created. The back end may use this macro to update CFUN to reflect
- an ABI other than that which would normally be used by default. If
- the compiler is generating code for a compiler-generated function,
- FNDECL may be 'NULL'.
-
- -- Macro: INIT_CUMULATIVE_ARGS (CUM, FNTYPE, LIBNAME, FNDECL,
- N_NAMED_ARGS)
- A C statement (sans semicolon) for initializing the variable CUM
- for the state at the beginning of the argument list. The variable
- has type 'CUMULATIVE_ARGS'. The value of FNTYPE is the tree node
- for the data type of the function which will receive the args, or 0
- if the args are to a compiler support library function. For direct
- calls that are not libcalls, FNDECL contain the declaration node of
- the function. FNDECL is also set when 'INIT_CUMULATIVE_ARGS' is
- used to find arguments for the function being compiled.
- N_NAMED_ARGS is set to the number of named arguments, including a
- structure return address if it is passed as a parameter, when
- making a call. When processing incoming arguments, N_NAMED_ARGS is
- set to -1.
-
- When processing a call to a compiler support library function,
- LIBNAME identifies which one. It is a 'symbol_ref' rtx which
- contains the name of the function, as a string. LIBNAME is 0 when
- an ordinary C function call is being processed. Thus, each time
- this macro is called, either LIBNAME or FNTYPE is nonzero, but
- never both of them at once.
-
- -- Macro: INIT_CUMULATIVE_LIBCALL_ARGS (CUM, MODE, LIBNAME)
- Like 'INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls, it
- gets a 'MODE' argument instead of FNTYPE, that would be 'NULL'.
- INDIRECT would always be zero, too. If this macro is not defined,
- 'INIT_CUMULATIVE_ARGS (cum, NULL_RTX, libname, 0)' is used instead.
-
- -- Macro: INIT_CUMULATIVE_INCOMING_ARGS (CUM, FNTYPE, LIBNAME)
- Like 'INIT_CUMULATIVE_ARGS' but overrides it for the purposes of
- finding the arguments for the function being compiled. If this
- macro is undefined, 'INIT_CUMULATIVE_ARGS' is used instead.
-
- The value passed for LIBNAME is always 0, since library routines
- with special calling conventions are never compiled with GCC. The
- argument LIBNAME exists for symmetry with 'INIT_CUMULATIVE_ARGS'.
-
- -- Target Hook: void TARGET_FUNCTION_ARG_ADVANCE (cumulative_args_t CA,
- enum machine_mode MODE, const_tree TYPE, bool NAMED)
- This hook updates the summarizer variable pointed to by CA to
- advance past an argument in the argument list. The values MODE,
- TYPE and NAMED describe that argument. Once this is done, the
- variable CUM is suitable for analyzing the _following_ argument
- with 'TARGET_FUNCTION_ARG', etc.
-
- This hook need not do anything if the argument in question was
- passed on the stack. The compiler knows how to track the amount of
- stack space used for arguments without any special help.
-
- -- Macro: FUNCTION_ARG_OFFSET (MODE, TYPE)
- If defined, a C expression that is the number of bytes to add to
- the offset of the argument passed in memory. This is needed for
- the SPU, which passes 'char' and 'short' arguments in the preferred
- slot that is in the middle of the quad word instead of starting at
- the top.
-
- -- Macro: FUNCTION_ARG_PADDING (MODE, TYPE)
- If defined, a C expression which determines whether, and in which
- direction, to pad out an argument with extra space. The value
- should be of type 'enum direction': either 'upward' to pad above
- the argument, 'downward' to pad below, or 'none' to inhibit
- padding.
-
- The _amount_ of padding is not controlled by this macro, but by the
- target hook 'TARGET_FUNCTION_ARG_ROUND_BOUNDARY'. It is always
- just enough to reach the next multiple of that boundary.
-
- This macro has a default definition which is right for most
- systems. For little-endian machines, the default is to pad upward.
- For big-endian machines, the default is to pad downward for an
- argument of constant size shorter than an 'int', and upward
- otherwise.
-
- -- Macro: PAD_VARARGS_DOWN
- If defined, a C expression which determines whether the default
- implementation of va_arg will attempt to pad down before reading
- the next argument, if that argument is smaller than its aligned
- space as controlled by 'PARM_BOUNDARY'. If this macro is not
- defined, all such arguments are padded down if 'BYTES_BIG_ENDIAN'
- is true.
-
- -- Macro: BLOCK_REG_PADDING (MODE, TYPE, FIRST)
- Specify padding for the last element of a block move between
- registers and memory. FIRST is nonzero if this is the only
- element. Defining this macro allows better control of register
- function parameters on big-endian machines, without using
- 'PARALLEL' rtl. In particular, 'MUST_PASS_IN_STACK' need not test
- padding and mode of types in registers, as there is no longer a
- "wrong" part of a register; For example, a three byte aggregate may
- be passed in the high part of a register if so required.
-
- -- Target Hook: unsigned int TARGET_FUNCTION_ARG_BOUNDARY (enum
- machine_mode MODE, const_tree TYPE)
- This hook returns the alignment boundary, in bits, of an argument
- with the specified mode and type. The default hook returns
- 'PARM_BOUNDARY' for all arguments.
-
- -- Target Hook: unsigned int TARGET_FUNCTION_ARG_ROUND_BOUNDARY (enum
- machine_mode MODE, const_tree TYPE)
- Normally, the size of an argument is rounded up to 'PARM_BOUNDARY',
- which is the default value for this hook. You can define this hook
- to return a different value if an argument size must be rounded to
- a larger value.
-
- -- Macro: FUNCTION_ARG_REGNO_P (REGNO)
- A C expression that is nonzero if REGNO is the number of a hard
- register in which function arguments are sometimes passed. This
- does _not_ include implicit arguments such as the static chain and
- the structure-value address. On many machines, no registers can be
- used for this purpose since all function arguments are pushed on
- the stack.
-
- -- Target Hook: bool TARGET_SPLIT_COMPLEX_ARG (const_tree TYPE)
- This hook should return true if parameter of type TYPE are passed
- as two scalar parameters. By default, GCC will attempt to pack
- complex arguments into the target's word size. Some ABIs require
- complex arguments to be split and treated as their individual
- components. For example, on AIX64, complex floats should be passed
- in a pair of floating point registers, even though a complex float
- would fit in one 64-bit floating point register.
-
- The default value of this hook is 'NULL', which is treated as
- always false.
-
- -- Target Hook: tree TARGET_BUILD_BUILTIN_VA_LIST (void)
- This hook returns a type node for 'va_list' for the target. The
- default version of the hook returns 'void*'.
-
- -- Target Hook: int TARGET_ENUM_VA_LIST_P (int IDX, const char **PNAME,
- tree *PTREE)
- This target hook is used in function 'c_common_nodes_and_builtins'
- to iterate through the target specific builtin types for va_list.
- The variable IDX is used as iterator. PNAME has to be a pointer to
- a 'const char *' and PTREE a pointer to a 'tree' typed variable.
- The arguments PNAME and PTREE are used to store the result of this
- macro and are set to the name of the va_list builtin type and its
- internal type. If the return value of this macro is zero, then
- there is no more element. Otherwise the IDX should be increased
- for the next call of this macro to iterate through all types.
-
- -- Target Hook: tree TARGET_FN_ABI_VA_LIST (tree FNDECL)
- This hook returns the va_list type of the calling convention
- specified by FNDECL. The default version of this hook returns
- 'va_list_type_node'.
-
- -- Target Hook: tree TARGET_CANONICAL_VA_LIST_TYPE (tree TYPE)
- This hook returns the va_list type of the calling convention
- specified by the type of TYPE. If TYPE is not a valid va_list
- type, it returns 'NULL_TREE'.
-
- -- Target Hook: tree TARGET_GIMPLIFY_VA_ARG_EXPR (tree VALIST, tree
- TYPE, gimple_seq *PRE_P, gimple_seq *POST_P)
- This hook performs target-specific gimplification of 'VA_ARG_EXPR'.
- The first two parameters correspond to the arguments to 'va_arg';
- the latter two are as in 'gimplify.c:gimplify_expr'.
-
- -- Target Hook: bool TARGET_VALID_POINTER_MODE (enum machine_mode MODE)
- Define this to return nonzero if the port can handle pointers with
- machine mode MODE. The default version of this hook returns true
- for both 'ptr_mode' and 'Pmode'.
-
- -- Target Hook: bool TARGET_REF_MAY_ALIAS_ERRNO (struct ao_ref *REF)
- Define this to return nonzero if the memory reference REF may alias
- with the system C library errno location. The default version of
- this hook assumes the system C library errno location is either a
- declaration of type int or accessed by dereferencing a pointer to
- int.
-
- -- Target Hook: bool TARGET_SCALAR_MODE_SUPPORTED_P (enum machine_mode
- MODE)
- Define this to return nonzero if the port is prepared to handle
- insns involving scalar mode MODE. For a scalar mode to be
- considered supported, all the basic arithmetic and comparisons must
- work.
-
- The default version of this hook returns true for any mode required
- to handle the basic C types (as defined by the port). Included
- here are the double-word arithmetic supported by the code in
- 'optabs.c'.
-
- -- Target Hook: bool TARGET_VECTOR_MODE_SUPPORTED_P (enum machine_mode
- MODE)
- Define this to return nonzero if the port is prepared to handle
- insns involving vector mode MODE. At the very least, it must have
- move patterns for this mode.
-
- -- Target Hook: bool TARGET_ARRAY_MODE_SUPPORTED_P (enum machine_mode
- MODE, unsigned HOST_WIDE_INT NELEMS)
- Return true if GCC should try to use a scalar mode to store an
- array of NELEMS elements, given that each element has mode MODE.
- Returning true here overrides the usual 'MAX_FIXED_MODE' limit and
- allows GCC to use any defined integer mode.
-
- One use of this hook is to support vector load and store operations
- that operate on several homogeneous vectors. For example, ARM NEON
- has operations like:
-
- int8x8x3_t vld3_s8 (const int8_t *)
-
- where the return type is defined as:
-
- typedef struct int8x8x3_t
- {
- int8x8_t val[3];
- } int8x8x3_t;
-
- If this hook allows 'val' to have a scalar mode, then 'int8x8x3_t'
- can have the same mode. GCC can then store 'int8x8x3_t's in
- registers rather than forcing them onto the stack.
-
- -- Target Hook: bool TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P (enum
- machine_mode MODE)
- Define this to return nonzero for machine modes for which the port
- has small register classes. If this target hook returns nonzero
- for a given MODE, the compiler will try to minimize the lifetime of
- registers in MODE. The hook may be called with 'VOIDmode' as
- argument. In this case, the hook is expected to return nonzero if
- it returns nonzero for any mode.
-
- On some machines, it is risky to let hard registers live across
- arbitrary insns. Typically, these machines have instructions that
- require values to be in specific registers (like an accumulator),
- and reload will fail if the required hard register is used for
- another purpose across such an insn.
-
- Passes before reload do not know which hard registers will be used
- in an instruction, but the machine modes of the registers set or
- used in the instruction are already known. And for some machines,
- register classes are small for, say, integer registers but not for
- floating point registers. For example, the AMD x86-64 architecture
- requires specific registers for the legacy x86 integer
- instructions, but there are many SSE registers for floating point
- operations. On such targets, a good strategy may be to return
- nonzero from this hook for 'INTEGRAL_MODE_P' machine modes but zero
- for the SSE register classes.
-
- The default version of this hook returns false for any mode. It is
- always safe to redefine this hook to return with a nonzero value.
- But if you unnecessarily define it, you will reduce the amount of
- optimizations that can be performed in some cases. If you do not
- define this hook to return a nonzero value when it is required, the
- compiler will run out of spill registers and print a fatal error
- message.
-
- -- Target Hook: unsigned int TARGET_FLAGS_REGNUM
- If the target has a dedicated flags register, and it needs to use
- the post-reload comparison elimination pass, then this value should
- be set appropriately.
-
-
-File: gccint.info, Node: Scalar Return, Next: Aggregate Return, Prev: Register Arguments, Up: Stack and Calling
-
-17.10.8 How Scalar Function Values Are Returned
------------------------------------------------
-
-This section discusses the macros that control returning scalars as
-values--values that can fit in registers.
-
- -- Target Hook: rtx TARGET_FUNCTION_VALUE (const_tree RET_TYPE,
- const_tree FN_DECL_OR_TYPE, bool OUTGOING)
-
- Define this to return an RTX representing the place where a
- function returns or receives a value of data type RET_TYPE, a tree
- node representing a data type. FN_DECL_OR_TYPE is a tree node
- representing 'FUNCTION_DECL' or 'FUNCTION_TYPE' of a function being
- called. If OUTGOING is false, the hook should compute the register
- in which the caller will see the return value. Otherwise, the hook
- should return an RTX representing the place where a function
- returns a value.
-
- On many machines, only 'TYPE_MODE (RET_TYPE)' is relevant.
- (Actually, on most machines, scalar values are returned in the same
- place regardless of mode.) The value of the expression is usually
- a 'reg' RTX for the hard register where the return value is stored.
- The value can also be a 'parallel' RTX, if the return value is in
- multiple places. See 'TARGET_FUNCTION_ARG' for an explanation of
- the 'parallel' form. Note that the callee will populate every
- location specified in the 'parallel', but if the first element of
- the 'parallel' contains the whole return value, callers will use
- that element as the canonical location and ignore the others. The
- m68k port uses this type of 'parallel' to return pointers in both
- '%a0' (the canonical location) and '%d0'.
-
- If 'TARGET_PROMOTE_FUNCTION_RETURN' returns true, you must apply
- the same promotion rules specified in 'PROMOTE_MODE' if VALTYPE is
- a scalar type.
-
- If the precise function being called is known, FUNC is a tree node
- ('FUNCTION_DECL') for it; otherwise, FUNC is a null pointer. This
- makes it possible to use a different value-returning convention for
- specific functions when all their calls are known.
-
- Some target machines have "register windows" so that the register
- in which a function returns its value is not the same as the one in
- which the caller sees the value. For such machines, you should
- return different RTX depending on OUTGOING.
-
- 'TARGET_FUNCTION_VALUE' is not used for return values with
- aggregate data types, because these are returned in another way.
- See 'TARGET_STRUCT_VALUE_RTX' and related macros, below.
-
- -- Macro: FUNCTION_VALUE (VALTYPE, FUNC)
- This macro has been deprecated. Use 'TARGET_FUNCTION_VALUE' for a
- new target instead.
-
- -- Macro: LIBCALL_VALUE (MODE)
- A C expression to create an RTX representing the place where a
- library function returns a value of mode MODE.
-
- Note that "library function" in this context means a compiler
- support routine, used to perform arithmetic, whose name is known
- specially by the compiler and was not mentioned in the C code being
- compiled.
-
- -- Target Hook: rtx TARGET_LIBCALL_VALUE (enum machine_mode MODE,
- const_rtx FUN)
- Define this hook if the back-end needs to know the name of the
- libcall function in order to determine where the result should be
- returned.
-
- The mode of the result is given by MODE and the name of the called
- library function is given by FUN. The hook should return an RTX
- representing the place where the library function result will be
- returned.
-
- If this hook is not defined, then LIBCALL_VALUE will be used.
-
- -- Macro: FUNCTION_VALUE_REGNO_P (REGNO)
- A C expression that is nonzero if REGNO is the number of a hard
- register in which the values of called function may come back.
-
- A register whose use for returning values is limited to serving as
- the second of a pair (for a value of type 'double', say) need not
- be recognized by this macro. So for most machines, this definition
- suffices:
-
- #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
-
- If the machine has register windows, so that the caller and the
- called function use different registers for the return value, this
- macro should recognize only the caller's register numbers.
-
- This macro has been deprecated. Use
- 'TARGET_FUNCTION_VALUE_REGNO_P' for a new target instead.
-
- -- Target Hook: bool TARGET_FUNCTION_VALUE_REGNO_P (const unsigned int
- REGNO)
- A target hook that return 'true' if REGNO is the number of a hard
- register in which the values of called function may come back.
-
- A register whose use for returning values is limited to serving as
- the second of a pair (for a value of type 'double', say) need not
- be recognized by this target hook.
-
- If the machine has register windows, so that the caller and the
- called function use different registers for the return value, this
- target hook should recognize only the caller's register numbers.
-
- If this hook is not defined, then FUNCTION_VALUE_REGNO_P will be
- used.
-
- -- Macro: APPLY_RESULT_SIZE
- Define this macro if 'untyped_call' and 'untyped_return' need more
- space than is implied by 'FUNCTION_VALUE_REGNO_P' for saving and
- restoring an arbitrary return value.
-
- -- Target Hook: bool TARGET_RETURN_IN_MSB (const_tree TYPE)
- This hook should return true if values of type TYPE are returned at
- the most significant end of a register (in other words, if they are
- padded at the least significant end). You can assume that TYPE is
- returned in a register; the caller is required to check this.
-
- Note that the register provided by 'TARGET_FUNCTION_VALUE' must be
- able to hold the complete return value. For example, if a 1-, 2-
- or 3-byte structure is returned at the most significant end of a
- 4-byte register, 'TARGET_FUNCTION_VALUE' should provide an 'SImode'
- rtx.
-
-
-File: gccint.info, Node: Aggregate Return, Next: Caller Saves, Prev: Scalar Return, Up: Stack and Calling
-
-17.10.9 How Large Values Are Returned
--------------------------------------
-
-When a function value's mode is 'BLKmode' (and in some other cases), the
-value is not returned according to 'TARGET_FUNCTION_VALUE' (*note Scalar
-Return::). Instead, the caller passes the address of a block of memory
-in which the value should be stored. This address is called the
-"structure value address".
-
- This section describes how to control returning structure values in
-memory.
-
- -- Target Hook: bool TARGET_RETURN_IN_MEMORY (const_tree TYPE,
- const_tree FNTYPE)
- This target hook should return a nonzero value to say to return the
- function value in memory, just as large structures are always
- returned. Here TYPE will be the data type of the value, and FNTYPE
- will be the type of the function doing the returning, or 'NULL' for
- libcalls.
-
- Note that values of mode 'BLKmode' must be explicitly handled by
- this function. Also, the option '-fpcc-struct-return' takes effect
- regardless of this macro. On most systems, it is possible to leave
- the hook undefined; this causes a default definition to be used,
- whose value is the constant 1 for 'BLKmode' values, and 0
- otherwise.
-
- Do not use this hook to indicate that structures and unions should
- always be returned in memory. You should instead use
- 'DEFAULT_PCC_STRUCT_RETURN' to indicate this.
-
- -- Macro: DEFAULT_PCC_STRUCT_RETURN
- Define this macro to be 1 if all structure and union return values
- must be in memory. Since this results in slower code, this should
- be defined only if needed for compatibility with other compilers or
- with an ABI. If you define this macro to be 0, then the
- conventions used for structure and union return values are decided
- by the 'TARGET_RETURN_IN_MEMORY' target hook.
-
- If not defined, this defaults to the value 1.
-
- -- Target Hook: rtx TARGET_STRUCT_VALUE_RTX (tree FNDECL, int INCOMING)
- This target hook should return the location of the structure value
- address (normally a 'mem' or 'reg'), or 0 if the address is passed
- as an "invisible" first argument. Note that FNDECL may be 'NULL',
- for libcalls. You do not need to define this target hook if the
- address is always passed as an "invisible" first argument.
-
- On some architectures the place where the structure value address
- is found by the called function is not the same place that the
- caller put it. This can be due to register windows, or it could be
- because the function prologue moves it to a different place.
- INCOMING is '1' or '2' when the location is needed in the context
- of the called function, and '0' in the context of the caller.
-
- If INCOMING is nonzero and the address is to be found on the stack,
- return a 'mem' which refers to the frame pointer. If INCOMING is
- '2', the result is being used to fetch the structure value address
- at the beginning of a function. If you need to emit adjusting
- code, you should do it at this point.
-
- -- Macro: PCC_STATIC_STRUCT_RETURN
- Define this macro if the usual system convention on the target
- machine for returning structures and unions is for the called
- function to return the address of a static variable containing the
- value.
-
- Do not define this if the usual system convention is for the caller
- to pass an address to the subroutine.
-
- This macro has effect in '-fpcc-struct-return' mode, but it does
- nothing when you use '-freg-struct-return' mode.
-
- -- Target Hook: enum machine_mode TARGET_GET_RAW_RESULT_MODE (int
- REGNO)
- This target hook returns the mode to be used when accessing raw
- return registers in '__builtin_return'. Define this macro if the
- value in REG_RAW_MODE is not correct.
-
- -- Target Hook: enum machine_mode TARGET_GET_RAW_ARG_MODE (int REGNO)
- This target hook returns the mode to be used when accessing raw
- argument registers in '__builtin_apply_args'. Define this macro if
- the value in REG_RAW_MODE is not correct.
-
-
-File: gccint.info, Node: Caller Saves, Next: Function Entry, Prev: Aggregate Return, Up: Stack and Calling
-
-17.10.10 Caller-Saves Register Allocation
------------------------------------------
-
-If you enable it, GCC can save registers around function calls. This
-makes it possible to use call-clobbered registers to hold variables that
-must live across calls.
-
- -- Macro: CALLER_SAVE_PROFITABLE (REFS, CALLS)
- A C expression to determine whether it is worthwhile to consider
- placing a pseudo-register in a call-clobbered hard register and
- saving and restoring it around each function call. The expression
- should be 1 when this is worth doing, and 0 otherwise.
-
- If you don't define this macro, a default is used which is good on
- most machines: '4 * CALLS < REFS'.
-
- -- Macro: HARD_REGNO_CALLER_SAVE_MODE (REGNO, NREGS)
- A C expression specifying which mode is required for saving NREGS
- of a pseudo-register in call-clobbered hard register REGNO. If
- REGNO is unsuitable for caller save, 'VOIDmode' should be returned.
- For most machines this macro need not be defined since GCC will
- select the smallest suitable mode.
-
-
-File: gccint.info, Node: Function Entry, Next: Profiling, Prev: Caller Saves, Up: Stack and Calling
-
-17.10.11 Function Entry and Exit
---------------------------------
-
-This section describes the macros that output function entry
-("prologue") and exit ("epilogue") code.
-
- -- Target Hook: void TARGET_ASM_FUNCTION_PROLOGUE (FILE *FILE,
- HOST_WIDE_INT SIZE)
- If defined, a function that outputs the assembler code for entry to
- a function. The prologue is responsible for setting up the stack
- frame, initializing the frame pointer register, saving registers
- that must be saved, and allocating SIZE additional bytes of storage
- for the local variables. SIZE is an integer. FILE is a stdio
- stream to which the assembler code should be output.
-
- The label for the beginning of the function need not be output by
- this macro. That has already been done when the macro is run.
-
- To determine which registers to save, the macro can refer to the
- array 'regs_ever_live': element R is nonzero if hard register R is
- used anywhere within the function. This implies the function
- prologue should save register R, provided it is not one of the
- call-used registers. ('TARGET_ASM_FUNCTION_EPILOGUE' must likewise
- use 'regs_ever_live'.)
-
- On machines that have "register windows", the function entry code
- does not save on the stack the registers that are in the windows,
- even if they are supposed to be preserved by function calls;
- instead it takes appropriate steps to "push" the register stack, if
- any non-call-used registers are used in the function.
-
- On machines where functions may or may not have frame-pointers, the
- function entry code must vary accordingly; it must set up the frame
- pointer if one is wanted, and not otherwise. To determine whether
- a frame pointer is in wanted, the macro can refer to the variable
- 'frame_pointer_needed'. The variable's value will be 1 at run time
- in a function that needs a frame pointer. *Note Elimination::.
-
- The function entry code is responsible for allocating any stack
- space required for the function. This stack space consists of the
- regions listed below. In most cases, these regions are allocated
- in the order listed, with the last listed region closest to the top
- of the stack (the lowest address if 'STACK_GROWS_DOWNWARD' is
- defined, and the highest address if it is not defined). You can
- use a different order for a machine if doing so is more convenient
- or required for compatibility reasons. Except in cases where
- required by standard or by a debugger, there is no reason why the
- stack layout used by GCC need agree with that used by other
- compilers for a machine.
-
- -- Target Hook: void TARGET_ASM_FUNCTION_END_PROLOGUE (FILE *FILE)
- If defined, a function that outputs assembler code at the end of a
- prologue. This should be used when the function prologue is being
- emitted as RTL, and you have some extra assembler that needs to be
- emitted. *Note prologue instruction pattern::.
-
- -- Target Hook: void TARGET_ASM_FUNCTION_BEGIN_EPILOGUE (FILE *FILE)
- If defined, a function that outputs assembler code at the start of
- an epilogue. This should be used when the function epilogue is
- being emitted as RTL, and you have some extra assembler that needs
- to be emitted. *Note epilogue instruction pattern::.
-
- -- Target Hook: void TARGET_ASM_FUNCTION_EPILOGUE (FILE *FILE,
- HOST_WIDE_INT SIZE)
- If defined, a function that outputs the assembler code for exit
- from a function. The epilogue is responsible for restoring the
- saved registers and stack pointer to their values when the function
- was called, and returning control to the caller. This macro takes
- the same arguments as the macro 'TARGET_ASM_FUNCTION_PROLOGUE', and
- the registers to restore are determined from 'regs_ever_live' and
- 'CALL_USED_REGISTERS' in the same way.
-
- On some machines, there is a single instruction that does all the
- work of returning from the function. On these machines, give that
- instruction the name 'return' and do not define the macro
- 'TARGET_ASM_FUNCTION_EPILOGUE' at all.
-
- Do not define a pattern named 'return' if you want the
- 'TARGET_ASM_FUNCTION_EPILOGUE' to be used. If you want the target
- switches to control whether return instructions or epilogues are
- used, define a 'return' pattern with a validity condition that
- tests the target switches appropriately. If the 'return' pattern's
- validity condition is false, epilogues will be used.
-
- On machines where functions may or may not have frame-pointers, the
- function exit code must vary accordingly. Sometimes the code for
- these two cases is completely different. To determine whether a
- frame pointer is wanted, the macro can refer to the variable
- 'frame_pointer_needed'. The variable's value will be 1 when
- compiling a function that needs a frame pointer.
-
- Normally, 'TARGET_ASM_FUNCTION_PROLOGUE' and
- 'TARGET_ASM_FUNCTION_EPILOGUE' must treat leaf functions specially.
- The C variable 'current_function_is_leaf' is nonzero for such a
- function. *Note Leaf Functions::.
-
- On some machines, some functions pop their arguments on exit while
- others leave that for the caller to do. For example, the 68020
- when given '-mrtd' pops arguments in functions that take a fixed
- number of arguments.
-
- Your definition of the macro 'RETURN_POPS_ARGS' decides which
- functions pop their own arguments. 'TARGET_ASM_FUNCTION_EPILOGUE'
- needs to know what was decided. The number of bytes of the current
- function's arguments that this function should pop is available in
- 'crtl->args.pops_args'. *Note Scalar Return::.
-
- * A region of 'crtl->args.pretend_args_size' bytes of uninitialized
- space just underneath the first argument arriving on the stack.
- (This may not be at the very start of the allocated stack region if
- the calling sequence has pushed anything else since pushing the
- stack arguments. But usually, on such machines, nothing else has
- been pushed yet, because the function prologue itself does all the
- pushing.) This region is used on machines where an argument may be
- passed partly in registers and partly in memory, and, in some cases
- to support the features in '<stdarg.h>'.
-
- * An area of memory used to save certain registers used by the
- function. The size of this area, which may also include space for
- such things as the return address and pointers to previous stack
- frames, is machine-specific and usually depends on which registers
- have been used in the function. Machines with register windows
- often do not require a save area.
-
- * A region of at least SIZE bytes, possibly rounded up to an
- allocation boundary, to contain the local variables of the
- function. On some machines, this region and the save area may
- occur in the opposite order, with the save area closer to the top
- of the stack.
-
- * Optionally, when 'ACCUMULATE_OUTGOING_ARGS' is defined, a region of
- 'crtl->outgoing_args_size' bytes to be used for outgoing argument
- lists of the function. *Note Stack Arguments::.
-
- -- Macro: EXIT_IGNORE_STACK
- Define this macro as a C expression that is nonzero if the return
- instruction or the function epilogue ignores the value of the stack
- pointer; in other words, if it is safe to delete an instruction to
- adjust the stack pointer before a return from the function. The
- default is 0.
-
- Note that this macro's value is relevant only for functions for
- which frame pointers are maintained. It is never safe to delete a
- final stack adjustment in a function that has no frame pointer, and
- the compiler knows this regardless of 'EXIT_IGNORE_STACK'.
-
- -- Macro: EPILOGUE_USES (REGNO)
- Define this macro as a C expression that is nonzero for registers
- that are used by the epilogue or the 'return' pattern. The stack
- and frame pointer registers are already assumed to be used as
- needed.
-
- -- Macro: EH_USES (REGNO)
- Define this macro as a C expression that is nonzero for registers
- that are used by the exception handling mechanism, and so should be
- considered live on entry to an exception edge.
-
- -- Target Hook: void TARGET_ASM_OUTPUT_MI_THUNK (FILE *FILE, tree
- THUNK_FNDECL, HOST_WIDE_INT DELTA, HOST_WIDE_INT VCALL_OFFSET,
- tree FUNCTION)
- A function that outputs the assembler code for a thunk function,
- used to implement C++ virtual function calls with multiple
- inheritance. The thunk acts as a wrapper around a virtual
- function, adjusting the implicit object parameter before handing
- control off to the real function.
-
- First, emit code to add the integer DELTA to the location that
- contains the incoming first argument. Assume that this argument
- contains a pointer, and is the one used to pass the 'this' pointer
- in C++. This is the incoming argument _before_ the function
- prologue, e.g. '%o0' on a sparc. The addition must preserve the
- values of all other incoming arguments.
-
- Then, if VCALL_OFFSET is nonzero, an additional adjustment should
- be made after adding 'delta'. In particular, if P is the adjusted
- pointer, the following adjustment should be made:
-
- p += (*((ptrdiff_t **)p))[vcall_offset/sizeof(ptrdiff_t)]
-
- After the additions, emit code to jump to FUNCTION, which is a
- 'FUNCTION_DECL'. This is a direct pure jump, not a call, and does
- not touch the return address. Hence returning from FUNCTION will
- return to whoever called the current 'thunk'.
-
- The effect must be as if FUNCTION had been called directly with the
- adjusted first argument. This macro is responsible for emitting
- all of the code for a thunk function;
- 'TARGET_ASM_FUNCTION_PROLOGUE' and 'TARGET_ASM_FUNCTION_EPILOGUE'
- are not invoked.
-
- The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already
- been extracted from it.) It might possibly be useful on some
- targets, but probably not.
-
- If you do not define this macro, the target-independent code in the
- C++ front end will generate a less efficient heavyweight thunk that
- calls FUNCTION instead of jumping to it. The generic approach does
- not support varargs.
-
- -- Target Hook: bool TARGET_ASM_CAN_OUTPUT_MI_THUNK (const_tree
- THUNK_FNDECL, HOST_WIDE_INT DELTA, HOST_WIDE_INT VCALL_OFFSET,
- const_tree FUNCTION)
- A function that returns true if TARGET_ASM_OUTPUT_MI_THUNK would be
- able to output the assembler code for the thunk function specified
- by the arguments it is passed, and false otherwise. In the latter
- case, the generic approach will be used by the C++ front end, with
- the limitations previously exposed.
-
-
-File: gccint.info, Node: Profiling, Next: Tail Calls, Prev: Function Entry, Up: Stack and Calling
-
-17.10.12 Generating Code for Profiling
---------------------------------------
-
-These macros will help you generate code for profiling.
-
- -- Macro: FUNCTION_PROFILER (FILE, LABELNO)
- A C statement or compound statement to output to FILE some
- assembler code to call the profiling subroutine 'mcount'.
-
- The details of how 'mcount' expects to be called are determined by
- your operating system environment, not by GCC. To figure them out,
- compile a small program for profiling using the system's installed
- C compiler and look at the assembler code that results.
-
- Older implementations of 'mcount' expect the address of a counter
- variable to be loaded into some register. The name of this
- variable is 'LP' followed by the number LABELNO, so you would
- generate the name using 'LP%d' in a 'fprintf'.
-
- -- Macro: PROFILE_HOOK
- A C statement or compound statement to output to FILE some assembly
- code to call the profiling subroutine 'mcount' even the target does
- not support profiling.
-
- -- Macro: NO_PROFILE_COUNTERS
- Define this macro to be an expression with a nonzero value if the
- 'mcount' subroutine on your system does not need a counter variable
- allocated for each function. This is true for almost all modern
- implementations. If you define this macro, you must not use the
- LABELNO argument to 'FUNCTION_PROFILER'.
-
- -- Macro: PROFILE_BEFORE_PROLOGUE
- Define this macro if the code for function profiling should come
- before the function prologue. Normally, the profiling code comes
- after.
-
-
-File: gccint.info, Node: Tail Calls, Next: Stack Smashing Protection, Prev: Profiling, Up: Stack and Calling
-
-17.10.13 Permitting tail calls
-------------------------------
-
- -- Target Hook: bool TARGET_FUNCTION_OK_FOR_SIBCALL (tree DECL, tree
- EXP)
- True if it is OK to do sibling call optimization for the specified
- call expression EXP. DECL will be the called function, or 'NULL'
- if this is an indirect call.
-
- It is not uncommon for limitations of calling conventions to
- prevent tail calls to functions outside the current unit of
- translation, or during PIC compilation. The hook is used to
- enforce these restrictions, as the 'sibcall' md pattern can not
- fail, or fall over to a "normal" call. The criteria for successful
- sibling call optimization may vary greatly between different
- architectures.
-
- -- Target Hook: void TARGET_EXTRA_LIVE_ON_ENTRY (bitmap REGS)
- Add any hard registers to REGS that are live on entry to the
- function. This hook only needs to be defined to provide registers
- that cannot be found by examination of FUNCTION_ARG_REGNO_P, the
- callee saved registers, STATIC_CHAIN_INCOMING_REGNUM,
- STATIC_CHAIN_REGNUM, TARGET_STRUCT_VALUE_RTX, FRAME_POINTER_REGNUM,
- EH_USES, FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM, and the
- PIC_OFFSET_TABLE_REGNUM.
-
- -- Target Hook: void TARGET_SET_UP_BY_PROLOGUE (struct
- hard_reg_set_container *)
- This hook should add additional registers that are computed by the
- prologue to the hard regset for shrink-wrapping optimization
- purposes.
-
- -- Target Hook: bool TARGET_WARN_FUNC_RETURN (tree)
- True if a function's return statements should be checked for
- matching the function's return type. This includes checking for
- falling off the end of a non-void function. Return false if no
- such check should be made.
-
-
-File: gccint.info, Node: Stack Smashing Protection, Prev: Tail Calls, Up: Stack and Calling
-
-17.10.14 Stack smashing protection
-----------------------------------
-
- -- Target Hook: tree TARGET_STACK_PROTECT_GUARD (void)
- This hook returns a 'DECL' node for the external variable to use
- for the stack protection guard. This variable is initialized by
- the runtime to some random value and is used to initialize the
- guard value that is placed at the top of the local stack frame.
- The type of this variable must be 'ptr_type_node'.
-
- The default version of this hook creates a variable called
- '__stack_chk_guard', which is normally defined in 'libgcc2.c'.
-
- -- Target Hook: tree TARGET_STACK_PROTECT_FAIL (void)
- This hook returns a 'CALL_EXPR' that alerts the runtime that the
- stack protect guard variable has been modified. This expression
- should involve a call to a 'noreturn' function.
-
- The default version of this hook invokes a function called
- '__stack_chk_fail', taking no arguments. This function is normally
- defined in 'libgcc2.c'.
-
- -- Common Target Hook: bool TARGET_SUPPORTS_SPLIT_STACK (bool REPORT,
- struct gcc_options *OPTS)
- Whether this target supports splitting the stack when the options
- described in OPTS have been passed. This is called after options
- have been parsed, so the target may reject splitting the stack in
- some configurations. The default version of this hook returns
- false. If REPORT is true, this function may issue a warning or
- error; if REPORT is false, it must simply return a value
-
-
-File: gccint.info, Node: Varargs, Next: Trampolines, Prev: Stack and Calling, Up: Target Macros
-
-17.11 Implementing the Varargs Macros
-=====================================
-
-GCC comes with an implementation of '<varargs.h>' and '<stdarg.h>' that
-work without change on machines that pass arguments on the stack. Other
-machines require their own implementations of varargs, and the two
-machine independent header files must have conditionals to include it.
-
- ISO '<stdarg.h>' differs from traditional '<varargs.h>' mainly in the
-calling convention for 'va_start'. The traditional implementation takes
-just one argument, which is the variable in which to store the argument
-pointer. The ISO implementation of 'va_start' takes an additional
-second argument. The user is supposed to write the last named argument
-of the function here.
-
- However, 'va_start' should not use this argument. The way to find the
-end of the named arguments is with the built-in functions described
-below.
-
- -- Macro: __builtin_saveregs ()
- Use this built-in function to save the argument registers in memory
- so that the varargs mechanism can access them. Both ISO and
- traditional versions of 'va_start' must use '__builtin_saveregs',
- unless you use 'TARGET_SETUP_INCOMING_VARARGS' (see below) instead.
-
- On some machines, '__builtin_saveregs' is open-coded under the
- control of the target hook 'TARGET_EXPAND_BUILTIN_SAVEREGS'. On
- other machines, it calls a routine written in assembler language,
- found in 'libgcc2.c'.
-
- Code generated for the call to '__builtin_saveregs' appears at the
- beginning of the function, as opposed to where the call to
- '__builtin_saveregs' is written, regardless of what the code is.
- This is because the registers must be saved before the function
- starts to use them for its own purposes.
-
- -- Macro: __builtin_next_arg (LASTARG)
- This builtin returns the address of the first anonymous stack
- argument, as type 'void *'. If 'ARGS_GROW_DOWNWARD', it returns
- the address of the location above the first anonymous stack
- argument. Use it in 'va_start' to initialize the pointer for
- fetching arguments from the stack. Also use it in 'va_start' to
- verify that the second parameter LASTARG is the last named argument
- of the current function.
-
- -- Macro: __builtin_classify_type (OBJECT)
- Since each machine has its own conventions for which data types are
- passed in which kind of register, your implementation of 'va_arg'
- has to embody these conventions. The easiest way to categorize the
- specified data type is to use '__builtin_classify_type' together
- with 'sizeof' and '__alignof__'.
-
- '__builtin_classify_type' ignores the value of OBJECT, considering
- only its data type. It returns an integer describing what kind of
- type that is--integer, floating, pointer, structure, and so on.
-
- The file 'typeclass.h' defines an enumeration that you can use to
- interpret the values of '__builtin_classify_type'.
-
- These machine description macros help implement varargs:
-
- -- Target Hook: rtx TARGET_EXPAND_BUILTIN_SAVEREGS (void)
- If defined, this hook produces the machine-specific code for a call
- to '__builtin_saveregs'. This code will be moved to the very
- beginning of the function, before any parameter access are made.
- The return value of this function should be an RTX that contains
- the value to use as the return of '__builtin_saveregs'.
-
- -- Target Hook: void TARGET_SETUP_INCOMING_VARARGS (cumulative_args_t
- ARGS_SO_FAR, enum machine_mode MODE, tree TYPE, int
- *PRETEND_ARGS_SIZE, int SECOND_TIME)
- This target hook offers an alternative to using
- '__builtin_saveregs' and defining the hook
- 'TARGET_EXPAND_BUILTIN_SAVEREGS'. Use it to store the anonymous
- register arguments into the stack so that all the arguments appear
- to have been passed consecutively on the stack. Once this is done,
- you can use the standard implementation of varargs that works for
- machines that pass all their arguments on the stack.
-
- The argument ARGS_SO_FAR points to the 'CUMULATIVE_ARGS' data
- structure, containing the values that are obtained after processing
- the named arguments. The arguments MODE and TYPE describe the last
- named argument--its machine mode and its data type as a tree node.
-
- The target hook should do two things: first, push onto the stack
- all the argument registers _not_ used for the named arguments, and
- second, store the size of the data thus pushed into the
- 'int'-valued variable pointed to by PRETEND_ARGS_SIZE. The value
- that you store here will serve as additional offset for setting up
- the stack frame.
-
- Because you must generate code to push the anonymous arguments at
- compile time without knowing their data types,
- 'TARGET_SETUP_INCOMING_VARARGS' is only useful on machines that
- have just a single category of argument register and use it
- uniformly for all data types.
-
- If the argument SECOND_TIME is nonzero, it means that the arguments
- of the function are being analyzed for the second time. This
- happens for an inline function, which is not actually compiled
- until the end of the source file. The hook
- 'TARGET_SETUP_INCOMING_VARARGS' should not generate any
- instructions in this case.
-
- -- Target Hook: bool TARGET_STRICT_ARGUMENT_NAMING (cumulative_args_t
- CA)
- Define this hook to return 'true' if the location where a function
- argument is passed depends on whether or not it is a named
- argument.
-
- This hook controls how the NAMED argument to 'TARGET_FUNCTION_ARG'
- is set for varargs and stdarg functions. If this hook returns
- 'true', the NAMED argument is always true for named arguments, and
- false for unnamed arguments. If it returns 'false', but
- 'TARGET_PRETEND_OUTGOING_VARARGS_NAMED' returns 'true', then all
- arguments are treated as named. Otherwise, all named arguments
- except the last are treated as named.
-
- You need not define this hook if it always returns 'false'.
-
- -- Target Hook: bool TARGET_PRETEND_OUTGOING_VARARGS_NAMED
- (cumulative_args_t CA)
- If you need to conditionally change ABIs so that one works with
- 'TARGET_SETUP_INCOMING_VARARGS', but the other works like neither
- 'TARGET_SETUP_INCOMING_VARARGS' nor 'TARGET_STRICT_ARGUMENT_NAMING'
- was defined, then define this hook to return 'true' if
- 'TARGET_SETUP_INCOMING_VARARGS' is used, 'false' otherwise.
- Otherwise, you should not define this hook.
-
-
-File: gccint.info, Node: Trampolines, Next: Library Calls, Prev: Varargs, Up: Target Macros
-
-17.12 Trampolines for Nested Functions
-======================================
-
-A "trampoline" is a small piece of code that is created at run time when
-the address of a nested function is taken. It normally resides on the
-stack, in the stack frame of the containing function. These macros tell
-GCC how to generate code to allocate and initialize a trampoline.
-
- The instructions in the trampoline must do two things: load a constant
-address into the static chain register, and jump to the real address of
-the nested function. On CISC machines such as the m68k, this requires
-two instructions, a move immediate and a jump. Then the two addresses
-exist in the trampoline as word-long immediate operands. On RISC
-machines, it is often necessary to load each address into a register in
-two parts. Then pieces of each address form separate immediate
-operands.
-
- The code generated to initialize the trampoline must store the variable
-parts--the static chain value and the function address--into the
-immediate operands of the instructions. On a CISC machine, this is
-simply a matter of copying each address to a memory reference at the
-proper offset from the start of the trampoline. On a RISC machine, it
-may be necessary to take out pieces of the address and store them
-separately.
-
- -- Target Hook: void TARGET_ASM_TRAMPOLINE_TEMPLATE (FILE *F)
- This hook is called by 'assemble_trampoline_template' to output, on
- the stream F, assembler code for a block of data that contains the
- constant parts of a trampoline. This code should not include a
- label--the label is taken care of automatically.
-
- If you do not define this hook, it means no template is needed for
- the target. Do not define this hook on systems where the block
- move code to copy the trampoline into place would be larger than
- the code to generate it on the spot.
-
- -- Macro: TRAMPOLINE_SECTION
- Return the section into which the trampoline template is to be
- placed (*note Sections::). The default value is
- 'readonly_data_section'.
-
- -- Macro: TRAMPOLINE_SIZE
- A C expression for the size in bytes of the trampoline, as an
- integer.
-
- -- Macro: TRAMPOLINE_ALIGNMENT
- Alignment required for trampolines, in bits.
-
- If you don't define this macro, the value of 'FUNCTION_ALIGNMENT'
- is used for aligning trampolines.
-
- -- Target Hook: void TARGET_TRAMPOLINE_INIT (rtx M_TRAMP, tree FNDECL,
- rtx STATIC_CHAIN)
- This hook is called to initialize a trampoline. M_TRAMP is an RTX
- for the memory block for the trampoline; FNDECL is the
- 'FUNCTION_DECL' for the nested function; STATIC_CHAIN is an RTX for
- the static chain value that should be passed to the function when
- it is called.
-
- If the target defines 'TARGET_ASM_TRAMPOLINE_TEMPLATE', then the
- first thing this hook should do is emit a block move into M_TRAMP
- from the memory block returned by 'assemble_trampoline_template'.
- Note that the block move need only cover the constant parts of the
- trampoline. If the target isolates the variable parts of the
- trampoline to the end, not all 'TRAMPOLINE_SIZE' bytes need be
- copied.
-
- If the target requires any other actions, such as flushing caches
- or enabling stack execution, these actions should be performed
- after initializing the trampoline proper.
-
- -- Target Hook: rtx TARGET_TRAMPOLINE_ADJUST_ADDRESS (rtx ADDR)
- This hook should perform any machine-specific adjustment in the
- address of the trampoline. Its argument contains the address of
- the memory block that was passed to 'TARGET_TRAMPOLINE_INIT'. In
- case the address to be used for a function call should be different
- from the address at which the template was stored, the different
- address should be returned; otherwise ADDR should be returned
- unchanged. If this hook is not defined, ADDR will be used for
- function calls.
-
- Implementing trampolines is difficult on many machines because they
-have separate instruction and data caches. Writing into a stack
-location fails to clear the memory in the instruction cache, so when the
-program jumps to that location, it executes the old contents.
-
- Here are two possible solutions. One is to clear the relevant parts of
-the instruction cache whenever a trampoline is set up. The other is to
-make all trampolines identical, by having them jump to a standard
-subroutine. The former technique makes trampoline execution faster; the
-latter makes initialization faster.
-
- To clear the instruction cache when a trampoline is initialized, define
-the following macro.
-
- -- Macro: CLEAR_INSN_CACHE (BEG, END)
- If defined, expands to a C expression clearing the _instruction
- cache_ in the specified interval. The definition of this macro
- would typically be a series of 'asm' statements. Both BEG and END
- are both pointer expressions.
-
- To use a standard subroutine, define the following macro. In addition,
-you must make sure that the instructions in a trampoline fill an entire
-cache line with identical instructions, or else ensure that the
-beginning of the trampoline code is always aligned at the same point in
-its cache line. Look in 'm68k.h' as a guide.
-
- -- Macro: TRANSFER_FROM_TRAMPOLINE
- Define this macro if trampolines need a special subroutine to do
- their work. The macro should expand to a series of 'asm'
- statements which will be compiled with GCC. They go in a library
- function named '__transfer_from_trampoline'.
-
- If you need to avoid executing the ordinary prologue code of a
- compiled C function when you jump to the subroutine, you can do so
- by placing a special label of your own in the assembler code. Use
- one 'asm' statement to generate an assembler label, and another to
- make the label global. Then trampolines can use that label to jump
- directly to your special assembler code.
-
-
-File: gccint.info, Node: Library Calls, Next: Addressing Modes, Prev: Trampolines, Up: Target Macros
-
-17.13 Implicit Calls to Library Routines
-========================================
-
-Here is an explanation of implicit calls to library routines.
-
- -- Macro: DECLARE_LIBRARY_RENAMES
- This macro, if defined, should expand to a piece of C code that
- will get expanded when compiling functions for libgcc.a. It can be
- used to provide alternate names for GCC's internal library
- functions if there are ABI-mandated names that the compiler should
- provide.
-
- -- Target Hook: void TARGET_INIT_LIBFUNCS (void)
- This hook should declare additional library routines or rename
- existing ones, using the functions 'set_optab_libfunc' and
- 'init_one_libfunc' defined in 'optabs.c'. 'init_optabs' calls this
- macro after initializing all the normal library routines.
-
- The default is to do nothing. Most ports don't need to define this
- hook.
-
- -- Target Hook: bool TARGET_LIBFUNC_GNU_PREFIX
- If false (the default), internal library routines start with two
- underscores. If set to true, these routines start with '__gnu_'
- instead. E.g., '__muldi3' changes to '__gnu_muldi3'. This
- currently only affects functions defined in 'libgcc2.c'. If this
- is set to true, the 'tm.h' file must also '#define
- LIBGCC2_GNU_PREFIX'.
-
- -- Macro: FLOAT_LIB_COMPARE_RETURNS_BOOL (MODE, COMPARISON)
- This macro should return 'true' if the library routine that
- implements the floating point comparison operator COMPARISON in
- mode MODE will return a boolean, and FALSE if it will return a
- tristate.
-
- GCC's own floating point libraries return tristates from the
- comparison operators, so the default returns false always. Most
- ports don't need to define this macro.
-
- -- Macro: TARGET_LIB_INT_CMP_BIASED
- This macro should evaluate to 'true' if the integer comparison
- functions (like '__cmpdi2') return 0 to indicate that the first
- operand is smaller than the second, 1 to indicate that they are
- equal, and 2 to indicate that the first operand is greater than the
- second. If this macro evaluates to 'false' the comparison
- functions return -1, 0, and 1 instead of 0, 1, and 2. If the
- target uses the routines in 'libgcc.a', you do not need to define
- this macro.
-
- -- Macro: TARGET_HAS_NO_HW_DIVIDE
- This macro should be defined if the target has no hardware divide
- instructions. If this macro is defined, GCC will use an algorithm
- which make use of simple logical and arithmetic operations for
- 64-bit division. If the macro is not defined, GCC will use an
- algorithm which make use of a 64-bit by 32-bit divide primitive.
-
- -- Macro: TARGET_EDOM
- The value of 'EDOM' on the target machine, as a C integer constant
- expression. If you don't define this macro, GCC does not attempt
- to deposit the value of 'EDOM' into 'errno' directly. Look in
- '/usr/include/errno.h' to find the value of 'EDOM' on your system.
-
- If you do not define 'TARGET_EDOM', then compiled code reports
- domain errors by calling the library function and letting it report
- the error. If mathematical functions on your system use 'matherr'
- when there is an error, then you should leave 'TARGET_EDOM'
- undefined so that 'matherr' is used normally.
-
- -- Macro: GEN_ERRNO_RTX
- Define this macro as a C expression to create an rtl expression
- that refers to the global "variable" 'errno'. (On certain systems,
- 'errno' may not actually be a variable.) If you don't define this
- macro, a reasonable default is used.
-
- -- Target Hook: bool TARGET_LIBC_HAS_FUNCTION (enum function_class
- FN_CLASS)
- This hook determines whether a function from a class of functions
- FN_CLASS is present at the runtime.
-
- -- Macro: NEXT_OBJC_RUNTIME
- Set this macro to 1 to use the "NeXT" Objective-C message sending
- conventions by default. This calling convention involves passing
- the object, the selector and the method arguments all at once to
- the method-lookup library function. This is the usual setting when
- targeting Darwin/Mac OS X systems, which have the NeXT runtime
- installed.
-
- If the macro is set to 0, the "GNU" Objective-C message sending
- convention will be used by default. This convention passes just
- the object and the selector to the method-lookup function, which
- returns a pointer to the method.
-
- In either case, it remains possible to select code-generation for
- the alternate scheme, by means of compiler command line switches.
-
-
-File: gccint.info, Node: Addressing Modes, Next: Anchored Addresses, Prev: Library Calls, Up: Target Macros
-
-17.14 Addressing Modes
-======================
-
-This is about addressing modes.
-
- -- Macro: HAVE_PRE_INCREMENT
- -- Macro: HAVE_PRE_DECREMENT
- -- Macro: HAVE_POST_INCREMENT
- -- Macro: HAVE_POST_DECREMENT
- A C expression that is nonzero if the machine supports
- pre-increment, pre-decrement, post-increment, or post-decrement
- addressing respectively.
-
- -- Macro: HAVE_PRE_MODIFY_DISP
- -- Macro: HAVE_POST_MODIFY_DISP
- A C expression that is nonzero if the machine supports pre- or
- post-address side-effect generation involving constants other than
- the size of the memory operand.
-
- -- Macro: HAVE_PRE_MODIFY_REG
- -- Macro: HAVE_POST_MODIFY_REG
- A C expression that is nonzero if the machine supports pre- or
- post-address side-effect generation involving a register
- displacement.
-
- -- Macro: CONSTANT_ADDRESS_P (X)
- A C expression that is 1 if the RTX X is a constant which is a
- valid address. On most machines the default definition of
- '(CONSTANT_P (X) && GET_CODE (X) != CONST_DOUBLE)' is acceptable,
- but a few machines are more restrictive as to which constant
- addresses are supported.
-
- -- Macro: CONSTANT_P (X)
- 'CONSTANT_P', which is defined by target-independent code, accepts
- integer-values expressions whose values are not explicitly known,
- such as 'symbol_ref', 'label_ref', and 'high' expressions and
- 'const' arithmetic expressions, in addition to 'const_int' and
- 'const_double' expressions.
-
- -- Macro: MAX_REGS_PER_ADDRESS
- A number, the maximum number of registers that can appear in a
- valid memory address. Note that it is up to you to specify a value
- equal to the maximum number that 'TARGET_LEGITIMATE_ADDRESS_P'
- would ever accept.
-
- -- Target Hook: bool TARGET_LEGITIMATE_ADDRESS_P (enum machine_mode
- MODE, rtx X, bool STRICT)
- A function that returns whether X (an RTX) is a legitimate memory
- address on the target machine for a memory operand of mode MODE.
-
- Legitimate addresses are defined in two variants: a strict variant
- and a non-strict one. The STRICT parameter chooses which variant
- is desired by the caller.
-
- The strict variant is used in the reload pass. It must be defined
- so that any pseudo-register that has not been allocated a hard
- register is considered a memory reference. This is because in
- contexts where some kind of register is required, a pseudo-register
- with no hard register must be rejected. For non-hard registers,
- the strict variant should look up the 'reg_renumber' array; it
- should then proceed using the hard register number in the array, or
- treat the pseudo as a memory reference if the array holds '-1'.
-
- The non-strict variant is used in other passes. It must be defined
- to accept all pseudo-registers in every context where some kind of
- register is required.
-
- Normally, constant addresses which are the sum of a 'symbol_ref'
- and an integer are stored inside a 'const' RTX to mark them as
- constant. Therefore, there is no need to recognize such sums
- specifically as legitimate addresses. Normally you would simply
- recognize any 'const' as legitimate.
-
- Usually 'PRINT_OPERAND_ADDRESS' is not prepared to handle constant
- sums that are not marked with 'const'. It assumes that a naked
- 'plus' indicates indexing. If so, then you _must_ reject such
- naked constant sums as illegitimate addresses, so that none of them
- will be given to 'PRINT_OPERAND_ADDRESS'.
-
- On some machines, whether a symbolic address is legitimate depends
- on the section that the address refers to. On these machines,
- define the target hook 'TARGET_ENCODE_SECTION_INFO' to store the
- information into the 'symbol_ref', and then check for it here.
- When you see a 'const', you will have to look inside it to find the
- 'symbol_ref' in order to determine the section. *Note Assembler
- Format::.
-
- Some ports are still using a deprecated legacy substitute for this
- hook, the 'GO_IF_LEGITIMATE_ADDRESS' macro. This macro has this
- syntax:
-
- #define GO_IF_LEGITIMATE_ADDRESS (MODE, X, LABEL)
-
- and should 'goto LABEL' if the address X is a valid address on the
- target machine for a memory operand of mode MODE.
-
- Compiler source files that want to use the strict variant of this
- macro define the macro 'REG_OK_STRICT'. You should use an '#ifdef
- REG_OK_STRICT' conditional to define the strict variant in that
- case and the non-strict variant otherwise.
-
- Using the hook is usually simpler because it limits the number of
- files that are recompiled when changes are made.
-
- -- Macro: TARGET_MEM_CONSTRAINT
- A single character to be used instead of the default ''m''
- character for general memory addresses. This defines the
- constraint letter which matches the memory addresses accepted by
- 'TARGET_LEGITIMATE_ADDRESS_P'. Define this macro if you want to
- support new address formats in your back end without changing the
- semantics of the ''m'' constraint. This is necessary in order to
- preserve functionality of inline assembly constructs using the
- ''m'' constraint.
-
- -- Macro: FIND_BASE_TERM (X)
- A C expression to determine the base term of address X, or to
- provide a simplified version of X from which 'alias.c' can easily
- find the base term. This macro is used in only two places:
- 'find_base_value' and 'find_base_term' in 'alias.c'.
-
- It is always safe for this macro to not be defined. It exists so
- that alias analysis can understand machine-dependent addresses.
-
- The typical use of this macro is to handle addresses containing a
- label_ref or symbol_ref within an UNSPEC.
-
- -- Target Hook: rtx TARGET_LEGITIMIZE_ADDRESS (rtx X, rtx OLDX, enum
- machine_mode MODE)
- This hook is given an invalid memory address X for an operand of
- mode MODE and should try to return a valid memory address.
-
- X will always be the result of a call to 'break_out_memory_refs',
- and OLDX will be the operand that was given to that function to
- produce X.
-
- The code of the hook should not alter the substructure of X. If it
- transforms X into a more legitimate form, it should return the new
- X.
-
- It is not necessary for this hook to come up with a legitimate
- address, with the exception of native TLS addresses (*note Emulated
- TLS::). The compiler has standard ways of doing so in all cases.
- In fact, if the target supports only emulated TLS, it is safe to
- omit this hook or make it return X if it cannot find a valid way to
- legitimize the address. But often a machine-dependent strategy can
- generate better code.
-
- -- Macro: LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS,
- WIN)
- A C compound statement that attempts to replace X, which is an
- address that needs reloading, with a valid memory address for an
- operand of mode MODE. WIN will be a C statement label elsewhere in
- the code. It is not necessary to define this macro, but it might
- be useful for performance reasons.
-
- For example, on the i386, it is sometimes possible to use a single
- reload register instead of two by reloading a sum of two pseudo
- registers into a register. On the other hand, for number of RISC
- processors offsets are limited so that often an intermediate
- address needs to be generated in order to address a stack slot. By
- defining 'LEGITIMIZE_RELOAD_ADDRESS' appropriately, the
- intermediate addresses generated for adjacent some stack slots can
- be made identical, and thus be shared.
-
- _Note_: This macro should be used with caution. It is necessary to
- know something of how reload works in order to effectively use
- this, and it is quite easy to produce macros that build in too much
- knowledge of reload internals.
-
- _Note_: This macro must be able to reload an address created by a
- previous invocation of this macro. If it fails to handle such
- addresses then the compiler may generate incorrect code or abort.
-
- The macro definition should use 'push_reload' to indicate parts
- that need reloading; OPNUM, TYPE and IND_LEVELS are usually
- suitable to be passed unaltered to 'push_reload'.
-
- The code generated by this macro must not alter the substructure of
- X. If it transforms X into a more legitimate form, it should
- assign X (which will always be a C variable) a new value. This
- also applies to parts that you change indirectly by calling
- 'push_reload'.
-
- The macro definition may use 'strict_memory_address_p' to test if
- the address has become legitimate.
-
- If you want to change only a part of X, one standard way of doing
- this is to use 'copy_rtx'. Note, however, that it unshares only a
- single level of rtl. Thus, if the part to be changed is not at the
- top level, you'll need to replace first the top level. It is not
- necessary for this macro to come up with a legitimate address; but
- often a machine-dependent strategy can generate better code.
-
- -- Target Hook: bool TARGET_MODE_DEPENDENT_ADDRESS_P (const_rtx ADDR,
- addr_space_t ADDRSPACE)
- This hook returns 'true' if memory address ADDR in address space
- ADDRSPACE can have different meanings depending on the machine mode
- of the memory reference it is used for or if the address is valid
- for some modes but not others.
-
- Autoincrement and autodecrement addresses typically have
- mode-dependent effects because the amount of the increment or
- decrement is the size of the operand being addressed. Some
- machines have other mode-dependent addresses. Many RISC machines
- have no mode-dependent addresses.
-
- You may assume that ADDR is a valid address for the machine.
-
- The default version of this hook returns 'false'.
-
- -- Target Hook: bool TARGET_LEGITIMATE_CONSTANT_P (enum machine_mode
- MODE, rtx X)
- This hook returns true if X is a legitimate constant for a
- MODE-mode immediate operand on the target machine. You can assume
- that X satisfies 'CONSTANT_P', so you need not check this.
-
- The default definition returns true.
-
- -- Target Hook: rtx TARGET_DELEGITIMIZE_ADDRESS (rtx X)
- This hook is used to undo the possibly obfuscating effects of the
- 'LEGITIMIZE_ADDRESS' and 'LEGITIMIZE_RELOAD_ADDRESS' target macros.
- Some backend implementations of these macros wrap symbol references
- inside an 'UNSPEC' rtx to represent PIC or similar addressing
- modes. This target hook allows GCC's optimizers to understand the
- semantics of these opaque 'UNSPEC's by converting them back into
- their original form.
-
- -- Target Hook: bool TARGET_CONST_NOT_OK_FOR_DEBUG_P (rtx X)
- This hook should return true if X should not be emitted into debug
- sections.
-
- -- Target Hook: bool TARGET_CANNOT_FORCE_CONST_MEM (enum machine_mode
- MODE, rtx X)
- This hook should return true if X is of a form that cannot (or
- should not) be spilled to the constant pool. MODE is the mode of
- X.
-
- The default version of this hook returns false.
-
- The primary reason to define this hook is to prevent reload from
- deciding that a non-legitimate constant would be better reloaded
- from the constant pool instead of spilling and reloading a register
- holding the constant. This restriction is often true of addresses
- of TLS symbols for various targets.
-
- -- Target Hook: bool TARGET_USE_BLOCKS_FOR_CONSTANT_P (enum
- machine_mode MODE, const_rtx X)
- This hook should return true if pool entries for constant X can be
- placed in an 'object_block' structure. MODE is the mode of X.
-
- The default version returns false for all constants.
-
- -- Target Hook: bool TARGET_USE_BLOCKS_FOR_DECL_P (const_tree DECL)
- This hook should return true if pool entries for DECL should be
- placed in an 'object_block' structure.
-
- The default version returns true for all decls.
-
- -- Target Hook: tree TARGET_BUILTIN_RECIPROCAL (unsigned FN, bool
- MD_FN, bool SQRT)
- This hook should return the DECL of a function that implements
- reciprocal of the builtin function with builtin function code FN,
- or 'NULL_TREE' if such a function is not available. MD_FN is true
- when FN is a code of a machine-dependent builtin function. When
- SQRT is true, additional optimizations that apply only to the
- reciprocal of a square root function are performed, and only
- reciprocals of 'sqrt' function are valid.
-
- -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD (void)
- This hook should return the DECL of a function F that given an
- address ADDR as an argument returns a mask M that can be used to
- extract from two vectors the relevant data that resides in ADDR in
- case ADDR is not properly aligned.
-
- The autovectorizer, when vectorizing a load operation from an
- address ADDR that may be unaligned, will generate two vector loads
- from the two aligned addresses around ADDR. It then generates a
- 'REALIGN_LOAD' operation to extract the relevant data from the two
- loaded vectors. The first two arguments to 'REALIGN_LOAD', V1 and
- V2, are the two vectors, each of size VS, and the third argument,
- OFF, defines how the data will be extracted from these two vectors:
- if OFF is 0, then the returned vector is V2; otherwise, the
- returned vector is composed from the last VS-OFF elements of V1
- concatenated to the first OFF elements of V2.
-
- If this hook is defined, the autovectorizer will generate a call to
- F (using the DECL tree that this hook returns) and will use the
- return value of F as the argument OFF to 'REALIGN_LOAD'.
- Therefore, the mask M returned by F should comply with the
- semantics expected by 'REALIGN_LOAD' described above. If this hook
- is not defined, then ADDR will be used as the argument OFF to
- 'REALIGN_LOAD', in which case the low log2(VS) - 1 bits of ADDR
- will be considered.
-
- -- Target Hook: int TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST (enum
- vect_cost_for_stmt TYPE_OF_COST, tree VECTYPE, int MISALIGN)
- Returns cost of different scalar or vector statements for
- vectorization cost model. For vector memory operations the cost
- may depend on type (VECTYPE) and misalignment value (MISALIGN).
-
- -- Target Hook: bool TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE
- (const_tree TYPE, bool IS_PACKED)
- Return true if vector alignment is reachable (by peeling N
- iterations) for the given type.
-
- -- Target Hook: bool TARGET_VECTORIZE_VEC_PERM_CONST_OK (enum
- MACHINE_MODE, const unsigned char *SEL)
- Return true if a vector created for 'vec_perm_const' is valid.
-
- -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_CONVERSION (unsigned
- CODE, tree DEST_TYPE, tree SRC_TYPE)
- This hook should return the DECL of a function that implements
- conversion of the input vector of type SRC_TYPE to type DEST_TYPE.
- The value of CODE is one of the enumerators in 'enum tree_code' and
- specifies how the conversion is to be applied (truncation,
- rounding, etc.).
-
- If this hook is defined, the autovectorizer will use the
- 'TARGET_VECTORIZE_BUILTIN_CONVERSION' target hook when vectorizing
- conversion. Otherwise, it will return 'NULL_TREE'.
-
- -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION (tree
- FNDECL, tree VEC_TYPE_OUT, tree VEC_TYPE_IN)
- This hook should return the decl of a function that implements the
- vectorized variant of the builtin function with builtin function
- code CODE or 'NULL_TREE' if such a function is not available. The
- value of FNDECL is the builtin function declaration. The return
- type of the vectorized function shall be of vector type
- VEC_TYPE_OUT and the argument types should be VEC_TYPE_IN.
-
- -- Target Hook: bool TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT (enum
- machine_mode MODE, const_tree TYPE, int MISALIGNMENT, bool
- IS_PACKED)
- This hook should return true if the target supports misaligned
- vector store/load of a specific factor denoted in the MISALIGNMENT
- parameter. The vector store/load should be of machine mode MODE
- and the elements in the vectors should be of type TYPE. IS_PACKED
- parameter is true if the memory access is defined in a packed
- struct.
-
- -- Target Hook: enum machine_mode TARGET_VECTORIZE_PREFERRED_SIMD_MODE
- (enum machine_mode MODE)
- This hook should return the preferred mode for vectorizing scalar
- mode MODE. The default is equal to 'word_mode', because the
- vectorizer can do some transformations even in absence of
- specialized SIMD hardware.
-
- -- Target Hook: unsigned int
- TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES (void)
- This hook should return a mask of sizes that should be iterated
- over after trying to autovectorize using the vector size derived
- from the mode returned by 'TARGET_VECTORIZE_PREFERRED_SIMD_MODE'.
- The default is zero which means to not iterate over other vector
- sizes.
-
- -- Target Hook: void * TARGET_VECTORIZE_INIT_COST (struct loop
- *LOOP_INFO)
- This hook should initialize target-specific data structures in
- preparation for modeling the costs of vectorizing a loop or basic
- block. The default allocates three unsigned integers for
- accumulating costs for the prologue, body, and epilogue of the loop
- or basic block. If LOOP_INFO is non-NULL, it identifies the loop
- being vectorized; otherwise a single block is being vectorized.
-
- -- Target Hook: unsigned TARGET_VECTORIZE_ADD_STMT_COST (void *DATA,
- int COUNT, enum vect_cost_for_stmt KIND, struct _stmt_vec_info
- *STMT_INFO, int MISALIGN, enum vect_cost_model_location WHERE)
- This hook should update the target-specific DATA in response to
- adding COUNT copies of the given KIND of statement to a loop or
- basic block. The default adds the builtin vectorizer cost for the
- copies of the statement to the accumulator specified by WHERE, (the
- prologue, body, or epilogue) and returns the amount added. The
- return value should be viewed as a tentative cost that may later be
- revised.
-
- -- Target Hook: void TARGET_VECTORIZE_FINISH_COST (void *DATA, unsigned
- *PROLOGUE_COST, unsigned *BODY_COST, unsigned *EPILOGUE_COST)
- This hook should complete calculations of the cost of vectorizing a
- loop or basic block based on DATA, and return the prologue, body,
- and epilogue costs as unsigned integers. The default returns the
- value of the three accumulators.
-
- -- Target Hook: void TARGET_VECTORIZE_DESTROY_COST_DATA (void *DATA)
- This hook should release DATA and any related data structures
- allocated by TARGET_VECTORIZE_INIT_COST. The default releases the
- accumulator.
-
- -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_TM_LOAD (tree)
- This hook should return the built-in decl needed to load a vector
- of the given type within a transaction.
-
- -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_TM_STORE (tree)
- This hook should return the built-in decl needed to store a vector
- of the given type within a transaction.
-
- -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_GATHER (const_tree
- MEM_VECTYPE, const_tree INDEX_TYPE, int SCALE)
- Target builtin that implements vector gather operation.
- MEM_VECTYPE is the vector type of the load and INDEX_TYPE is scalar
- type of the index, scaled by SCALE. The default is 'NULL_TREE'
- which means to not vectorize gather loads.
-
- -- Target Hook: int TARGET_SIMD_CLONE_COMPUTE_VECSIZE_AND_SIMDLEN
- (struct cgraph_node *, struct cgraph_simd_clone *, TREE, INT)
- This hook should set VECSIZE_MANGLE, VECSIZE_INT, VECSIZE_FLOAT
- fields in SIMD_CLONE structure pointed by CLONE_INFO argument and
- also SIMDLEN field if it was previously 0. The hook should return
- 0 if SIMD clones shouldn't be emitted, or number of VECSIZE_MANGLE
- variants that should be emitted.
-
- -- Target Hook: void TARGET_SIMD_CLONE_ADJUST (struct cgraph_node *)
- This hook should add implicit 'attribute(target("..."))' attribute
- to SIMD clone NODE if needed.
-
- -- Target Hook: int TARGET_SIMD_CLONE_USABLE (struct cgraph_node *)
- This hook should return -1 if SIMD clone NODE shouldn't be used in
- vectorized loops in current function, or non-negative number if it
- is usable. In that case, the smaller the number is, the more
- desirable it is to use it.
-
-
-File: gccint.info, Node: Anchored Addresses, Next: Condition Code, Prev: Addressing Modes, Up: Target Macros
-
-17.15 Anchored Addresses
-========================
-
-GCC usually addresses every static object as a separate entity. For
-example, if we have:
-
- static int a, b, c;
- int foo (void) { return a + b + c; }
-
- the code for 'foo' will usually calculate three separate symbolic
-addresses: those of 'a', 'b' and 'c'. On some targets, it would be
-better to calculate just one symbolic address and access the three
-variables relative to it. The equivalent pseudocode would be something
-like:
-
- int foo (void)
- {
- register int *xr = &x;
- return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
- }
-
- (which isn't valid C). We refer to shared addresses like 'x' as
-"section anchors". Their use is controlled by '-fsection-anchors'.
-
- The hooks below describe the target properties that GCC needs to know
-in order to make effective use of section anchors. It won't use section
-anchors at all unless either 'TARGET_MIN_ANCHOR_OFFSET' or
-'TARGET_MAX_ANCHOR_OFFSET' is set to a nonzero value.
-
- -- Target Hook: HOST_WIDE_INT TARGET_MIN_ANCHOR_OFFSET
- The minimum offset that should be applied to a section anchor. On
- most targets, it should be the smallest offset that can be applied
- to a base register while still giving a legitimate address for
- every mode. The default value is 0.
-
- -- Target Hook: HOST_WIDE_INT TARGET_MAX_ANCHOR_OFFSET
- Like 'TARGET_MIN_ANCHOR_OFFSET', but the maximum (inclusive) offset
- that should be applied to section anchors. The default value is 0.
-
- -- Target Hook: void TARGET_ASM_OUTPUT_ANCHOR (rtx X)
- Write the assembly code to define section anchor X, which is a
- 'SYMBOL_REF' for which 'SYMBOL_REF_ANCHOR_P (X)' is true. The hook
- is called with the assembly output position set to the beginning of
- 'SYMBOL_REF_BLOCK (X)'.
-
- If 'ASM_OUTPUT_DEF' is available, the hook's default definition
- uses it to define the symbol as '. + SYMBOL_REF_BLOCK_OFFSET (X)'.
- If 'ASM_OUTPUT_DEF' is not available, the hook's default definition
- is 'NULL', which disables the use of section anchors altogether.
-
- -- Target Hook: bool TARGET_USE_ANCHORS_FOR_SYMBOL_P (const_rtx X)
- Return true if GCC should attempt to use anchors to access
- 'SYMBOL_REF' X. You can assume 'SYMBOL_REF_HAS_BLOCK_INFO_P (X)'
- and '!SYMBOL_REF_ANCHOR_P (X)'.
-
- The default version is correct for most targets, but you might need
- to intercept this hook to handle things like target-specific
- attributes or target-specific sections.
-
-
-File: gccint.info, Node: Condition Code, Next: Costs, Prev: Anchored Addresses, Up: Target Macros
-
-17.16 Condition Code Status
-===========================
-
-The macros in this section can be split in two families, according to
-the two ways of representing condition codes in GCC.
-
- The first representation is the so called '(cc0)' representation (*note
-Jump Patterns::), where all instructions can have an implicit clobber of
-the condition codes. The second is the condition code register
-representation, which provides better schedulability for architectures
-that do have a condition code register, but on which most instructions
-do not affect it. The latter category includes most RISC machines.
-
- The implicit clobbering poses a strong restriction on the placement of
-the definition and use of the condition code. In the past the
-definition and use were always adjacent. However, recent changes to
-support trapping arithmatic may result in the definition and user being
-in different blocks. Thus, there may be a 'NOTE_INSN_BASIC_BLOCK'
-between them. Additionally, the definition may be the source of
-exception handling edges.
-
- These restrictions can prevent important optimizations on some
-machines. For example, on the IBM RS/6000, there is a delay for taken
-branches unless the condition code register is set three instructions
-earlier than the conditional branch. The instruction scheduler cannot
-perform this optimization if it is not permitted to separate the
-definition and use of the condition code register.
-
- For this reason, it is possible and suggested to use a register to
-represent the condition code for new ports. If there is a specific
-condition code register in the machine, use a hard register. If the
-condition code or comparison result can be placed in any general
-register, or if there are multiple condition registers, use a pseudo
-register. Registers used to store the condition code value will usually
-have a mode that is in class 'MODE_CC'.
-
- Alternatively, you can use 'BImode' if the comparison operator is
-specified already in the compare instruction. In this case, you are not
-interested in most macros in this section.
-
-* Menu:
-
-* CC0 Condition Codes:: Old style representation of condition codes.
-* MODE_CC Condition Codes:: Modern representation of condition codes.
-
-
-File: gccint.info, Node: CC0 Condition Codes, Next: MODE_CC Condition Codes, Up: Condition Code
-
-17.16.1 Representation of condition codes using '(cc0)'
--------------------------------------------------------
-
-The file 'conditions.h' defines a variable 'cc_status' to describe how
-the condition code was computed (in case the interpretation of the
-condition code depends on the instruction that it was set by). This
-variable contains the RTL expressions on which the condition code is
-currently based, and several standard flags.
-
- Sometimes additional machine-specific flags must be defined in the
-machine description header file. It can also add additional
-machine-specific information by defining 'CC_STATUS_MDEP'.
-
- -- Macro: CC_STATUS_MDEP
- C code for a data type which is used for declaring the 'mdep'
- component of 'cc_status'. It defaults to 'int'.
-
- This macro is not used on machines that do not use 'cc0'.
-
- -- Macro: CC_STATUS_MDEP_INIT
- A C expression to initialize the 'mdep' field to "empty". The
- default definition does nothing, since most machines don't use the
- field anyway. If you want to use the field, you should probably
- define this macro to initialize it.
-
- This macro is not used on machines that do not use 'cc0'.
-
- -- Macro: NOTICE_UPDATE_CC (EXP, INSN)
- A C compound statement to set the components of 'cc_status'
- appropriately for an insn INSN whose body is EXP. It is this
- macro's responsibility to recognize insns that set the condition
- code as a byproduct of other activity as well as those that
- explicitly set '(cc0)'.
-
- This macro is not used on machines that do not use 'cc0'.
-
- If there are insns that do not set the condition code but do alter
- other machine registers, this macro must check to see whether they
- invalidate the expressions that the condition code is recorded as
- reflecting. For example, on the 68000, insns that store in address
- registers do not set the condition code, which means that usually
- 'NOTICE_UPDATE_CC' can leave 'cc_status' unaltered for such insns.
- But suppose that the previous insn set the condition code based on
- location 'a4@(102)' and the current insn stores a new value in
- 'a4'. Although the condition code is not changed by this, it will
- no longer be true that it reflects the contents of 'a4@(102)'.
- Therefore, 'NOTICE_UPDATE_CC' must alter 'cc_status' in this case
- to say that nothing is known about the condition code value.
-
- The definition of 'NOTICE_UPDATE_CC' must be prepared to deal with
- the results of peephole optimization: insns whose patterns are
- 'parallel' RTXs containing various 'reg', 'mem' or constants which
- are just the operands. The RTL structure of these insns is not
- sufficient to indicate what the insns actually do. What
- 'NOTICE_UPDATE_CC' should do when it sees one is just to run
- 'CC_STATUS_INIT'.
-
- A possible definition of 'NOTICE_UPDATE_CC' is to call a function
- that looks at an attribute (*note Insn Attributes::) named, for
- example, 'cc'. This avoids having detailed information about
- patterns in two places, the 'md' file and in 'NOTICE_UPDATE_CC'.
-
-
-File: gccint.info, Node: MODE_CC Condition Codes, Prev: CC0 Condition Codes, Up: Condition Code
-
-17.16.2 Representation of condition codes using registers
----------------------------------------------------------
-
- -- Macro: SELECT_CC_MODE (OP, X, Y)
- On many machines, the condition code may be produced by other
- instructions than compares, for example the branch can use directly
- the condition code set by a subtract instruction. However, on some
- machines when the condition code is set this way some bits (such as
- the overflow bit) are not set in the same way as a test
- instruction, so that a different branch instruction must be used
- for some conditional branches. When this happens, use the machine
- mode of the condition code register to record different formats of
- the condition code register. Modes can also be used to record
- which compare instruction (e.g. a signed or an unsigned
- comparison) produced the condition codes.
-
- If other modes than 'CCmode' are required, add them to
- 'MACHINE-modes.def' and define 'SELECT_CC_MODE' to choose a mode
- given an operand of a compare. This is needed because the modes
- have to be chosen not only during RTL generation but also, for
- example, by instruction combination. The result of
- 'SELECT_CC_MODE' should be consistent with the mode used in the
- patterns; for example to support the case of the add on the SPARC
- discussed above, we have the pattern
-
- (define_insn ""
- [(set (reg:CC_NOOV 0)
- (compare:CC_NOOV
- (plus:SI (match_operand:SI 0 "register_operand" "%r")
- (match_operand:SI 1 "arith_operand" "rI"))
- (const_int 0)))]
- ""
- "...")
-
- together with a 'SELECT_CC_MODE' that returns 'CC_NOOVmode' for
- comparisons whose argument is a 'plus':
-
- #define SELECT_CC_MODE(OP,X,Y) \
- (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
- ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
- : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
- || GET_CODE (X) == NEG) \
- ? CC_NOOVmode : CCmode))
-
- Another reason to use modes is to retain information on which
- operands were used by the comparison; see 'REVERSIBLE_CC_MODE'
- later in this section.
-
- You should define this macro if and only if you define extra CC
- modes in 'MACHINE-modes.def'.
-
- -- Target Hook: void TARGET_CANONICALIZE_COMPARISON (int *CODE, rtx
- *OP0, rtx *OP1, bool OP0_PRESERVE_VALUE)
- On some machines not all possible comparisons are defined, but you
- can convert an invalid comparison into a valid one. For example,
- the Alpha does not have a 'GT' comparison, but you can use an 'LT'
- comparison instead and swap the order of the operands.
-
- On such machines, implement this hook to do any required
- conversions. CODE is the initial comparison code and OP0 and OP1
- are the left and right operands of the comparison, respectively.
- If OP0_PRESERVE_VALUE is 'true' the implementation is not allowed
- to change the value of OP0 since the value might be used in RTXs
- which aren't comparisons. E.g. the implementation is not allowed
- to swap operands in that case.
-
- GCC will not assume that the comparison resulting from this macro
- is valid but will see if the resulting insn matches a pattern in
- the 'md' file.
-
- You need not to implement this hook if it would never change the
- comparison code or operands.
-
- -- Macro: REVERSIBLE_CC_MODE (MODE)
- A C expression whose value is one if it is always safe to reverse a
- comparison whose mode is MODE. If 'SELECT_CC_MODE' can ever return
- MODE for a floating-point inequality comparison, then
- 'REVERSIBLE_CC_MODE (MODE)' must be zero.
-
- You need not define this macro if it would always returns zero or
- if the floating-point format is anything other than
- 'IEEE_FLOAT_FORMAT'. For example, here is the definition used on
- the SPARC, where floating-point inequality comparisons are always
- given 'CCFPEmode':
-
- #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)
-
- -- Macro: REVERSE_CONDITION (CODE, MODE)
- A C expression whose value is reversed condition code of the CODE
- for comparison done in CC_MODE MODE. The macro is used only in
- case 'REVERSIBLE_CC_MODE (MODE)' is nonzero. Define this macro in
- case machine has some non-standard way how to reverse certain
- conditionals. For instance in case all floating point conditions
- are non-trapping, compiler may freely convert unordered compares to
- ordered one. Then definition may look like:
-
- #define REVERSE_CONDITION(CODE, MODE) \
- ((MODE) != CCFPmode ? reverse_condition (CODE) \
- : reverse_condition_maybe_unordered (CODE))
-
- -- Target Hook: bool TARGET_FIXED_CONDITION_CODE_REGS (unsigned int
- *P1, unsigned int *P2)
- On targets which do not use '(cc0)', and which use a hard register
- rather than a pseudo-register to hold condition codes, the regular
- CSE passes are often not able to identify cases in which the hard
- register is set to a common value. Use this hook to enable a small
- pass which optimizes such cases. This hook should return true to
- enable this pass, and it should set the integers to which its
- arguments point to the hard register numbers used for condition
- codes. When there is only one such register, as is true on most
- systems, the integer pointed to by P2 should be set to
- 'INVALID_REGNUM'.
-
- The default version of this hook returns false.
-
- -- Target Hook: enum machine_mode TARGET_CC_MODES_COMPATIBLE (enum
- machine_mode M1, enum machine_mode M2)
- On targets which use multiple condition code modes in class
- 'MODE_CC', it is sometimes the case that a comparison can be
- validly done in more than one mode. On such a system, define this
- target hook to take two mode arguments and to return a mode in
- which both comparisons may be validly done. If there is no such
- mode, return 'VOIDmode'.
-
- The default version of this hook checks whether the modes are the
- same. If they are, it returns that mode. If they are different,
- it returns 'VOIDmode'.
-
-
-File: gccint.info, Node: Costs, Next: Scheduling, Prev: Condition Code, Up: Target Macros
-
-17.17 Describing Relative Costs of Operations
-=============================================
-
-These macros let you describe the relative speed of various operations
-on the target machine.
-
- -- Macro: REGISTER_MOVE_COST (MODE, FROM, TO)
- A C expression for the cost of moving data of mode MODE from a
- register in class FROM to one in class TO. The classes are
- expressed using the enumeration values such as 'GENERAL_REGS'. A
- value of 2 is the default; other values are interpreted relative to
- that.
-
- It is not required that the cost always equal 2 when FROM is the
- same as TO; on some machines it is expensive to move between
- registers if they are not general registers.
-
- If reload sees an insn consisting of a single 'set' between two
- hard registers, and if 'REGISTER_MOVE_COST' applied to their
- classes returns a value of 2, reload does not check to ensure that
- the constraints of the insn are met. Setting a cost of other than
- 2 will allow reload to verify that the constraints are met. You
- should do this if the 'movM' pattern's constraints do not allow
- such copying.
-
- These macros are obsolete, new ports should use the target hook
- 'TARGET_REGISTER_MOVE_COST' instead.
-
- -- Target Hook: int TARGET_REGISTER_MOVE_COST (enum machine_mode MODE,
- reg_class_t FROM, reg_class_t TO)
- This target hook should return the cost of moving data of mode MODE
- from a register in class FROM to one in class TO. The classes are
- expressed using the enumeration values such as 'GENERAL_REGS'. A
- value of 2 is the default; other values are interpreted relative to
- that.
-
- It is not required that the cost always equal 2 when FROM is the
- same as TO; on some machines it is expensive to move between
- registers if they are not general registers.
-
- If reload sees an insn consisting of a single 'set' between two
- hard registers, and if 'TARGET_REGISTER_MOVE_COST' applied to their
- classes returns a value of 2, reload does not check to ensure that
- the constraints of the insn are met. Setting a cost of other than
- 2 will allow reload to verify that the constraints are met. You
- should do this if the 'movM' pattern's constraints do not allow
- such copying.
-
- The default version of this function returns 2.
-
- -- Macro: MEMORY_MOVE_COST (MODE, CLASS, IN)
- A C expression for the cost of moving data of mode MODE between a
- register of class CLASS and memory; IN is zero if the value is to
- be written to memory, nonzero if it is to be read in. This cost is
- relative to those in 'REGISTER_MOVE_COST'. If moving between
- registers and memory is more expensive than between two registers,
- you should define this macro to express the relative cost.
-
- If you do not define this macro, GCC uses a default cost of 4 plus
- the cost of copying via a secondary reload register, if one is
- needed. If your machine requires a secondary reload register to
- copy between memory and a register of CLASS but the reload
- mechanism is more complex than copying via an intermediate, define
- this macro to reflect the actual cost of the move.
-
- GCC defines the function 'memory_move_secondary_cost' if secondary
- reloads are needed. It computes the costs due to copying via a
- secondary register. If your machine copies from memory using a
- secondary register in the conventional way but the default base
- value of 4 is not correct for your machine, define this macro to
- add some other value to the result of that function. The arguments
- to that function are the same as to this macro.
-
- These macros are obsolete, new ports should use the target hook
- 'TARGET_MEMORY_MOVE_COST' instead.
-
- -- Target Hook: int TARGET_MEMORY_MOVE_COST (enum machine_mode MODE,
- reg_class_t RCLASS, bool IN)
- This target hook should return the cost of moving data of mode MODE
- between a register of class RCLASS and memory; IN is 'false' if the
- value is to be written to memory, 'true' if it is to be read in.
- This cost is relative to those in 'TARGET_REGISTER_MOVE_COST'. If
- moving between registers and memory is more expensive than between
- two registers, you should add this target hook to express the
- relative cost.
-
- If you do not add this target hook, GCC uses a default cost of 4
- plus the cost of copying via a secondary reload register, if one is
- needed. If your machine requires a secondary reload register to
- copy between memory and a register of RCLASS but the reload
- mechanism is more complex than copying via an intermediate, use
- this target hook to reflect the actual cost of the move.
-
- GCC defines the function 'memory_move_secondary_cost' if secondary
- reloads are needed. It computes the costs due to copying via a
- secondary register. If your machine copies from memory using a
- secondary register in the conventional way but the default base
- value of 4 is not correct for your machine, use this target hook to
- add some other value to the result of that function. The arguments
- to that function are the same as to this target hook.
-
- -- Macro: BRANCH_COST (SPEED_P, PREDICTABLE_P)
- A C expression for the cost of a branch instruction. A value of 1
- is the default; other values are interpreted relative to that.
- Parameter SPEED_P is true when the branch in question should be
- optimized for speed. When it is false, 'BRANCH_COST' should return
- a value optimal for code size rather than performance.
- PREDICTABLE_P is true for well-predicted branches. On many
- architectures the 'BRANCH_COST' can be reduced then.
-
- Here are additional macros which do not specify precise relative costs,
-but only that certain actions are more expensive than GCC would
-ordinarily expect.
-
- -- Macro: SLOW_BYTE_ACCESS
- Define this macro as a C expression which is nonzero if accessing
- less than a word of memory (i.e. a 'char' or a 'short') is no
- faster than accessing a word of memory, i.e., if such access
- require more than one instruction or if there is no difference in
- cost between byte and (aligned) word loads.
-
- When this macro is not defined, the compiler will access a field by
- finding the smallest containing object; when it is defined, a
- fullword load will be used if alignment permits. Unless bytes
- accesses are faster than word accesses, using word accesses is
- preferable since it may eliminate subsequent memory access if
- subsequent accesses occur to other fields in the same word of the
- structure, but to different bytes.
-
- -- Macro: SLOW_UNALIGNED_ACCESS (MODE, ALIGNMENT)
- Define this macro to be the value 1 if memory accesses described by
- the MODE and ALIGNMENT parameters have a cost many times greater
- than aligned accesses, for example if they are emulated in a trap
- handler.
-
- When this macro is nonzero, the compiler will act as if
- 'STRICT_ALIGNMENT' were nonzero when generating code for block
- moves. This can cause significantly more instructions to be
- produced. Therefore, do not set this macro nonzero if unaligned
- accesses only add a cycle or two to the time for a memory access.
-
- If the value of this macro is always zero, it need not be defined.
- If this macro is defined, it should produce a nonzero value when
- 'STRICT_ALIGNMENT' is nonzero.
-
- -- Macro: MOVE_RATIO (SPEED)
- The threshold of number of scalar memory-to-memory move insns,
- _below_ which a sequence of insns should be generated instead of a
- string move insn or a library call. Increasing the value will
- always make code faster, but eventually incurs high cost in
- increased code size.
-
- Note that on machines where the corresponding move insn is a
- 'define_expand' that emits a sequence of insns, this macro counts
- the number of such sequences.
-
- The parameter SPEED is true if the code is currently being
- optimized for speed rather than size.
-
- If you don't define this, a reasonable default is used.
-
- -- Macro: MOVE_BY_PIECES_P (SIZE, ALIGNMENT)
- A C expression used to determine whether 'move_by_pieces' will be
- used to copy a chunk of memory, or whether some other block move
- mechanism will be used. Defaults to 1 if 'move_by_pieces_ninsns'
- returns less than 'MOVE_RATIO'.
-
- -- Macro: MOVE_MAX_PIECES
- A C expression used by 'move_by_pieces' to determine the largest
- unit a load or store used to copy memory is. Defaults to
- 'MOVE_MAX'.
-
- -- Macro: CLEAR_RATIO (SPEED)
- The threshold of number of scalar move insns, _below_ which a
- sequence of insns should be generated to clear memory instead of a
- string clear insn or a library call. Increasing the value will
- always make code faster, but eventually incurs high cost in
- increased code size.
-
- The parameter SPEED is true if the code is currently being
- optimized for speed rather than size.
-
- If you don't define this, a reasonable default is used.
-
- -- Macro: CLEAR_BY_PIECES_P (SIZE, ALIGNMENT)
- A C expression used to determine whether 'clear_by_pieces' will be
- used to clear a chunk of memory, or whether some other block clear
- mechanism will be used. Defaults to 1 if 'move_by_pieces_ninsns'
- returns less than 'CLEAR_RATIO'.
-
- -- Macro: SET_RATIO (SPEED)
- The threshold of number of scalar move insns, _below_ which a
- sequence of insns should be generated to set memory to a constant
- value, instead of a block set insn or a library call. Increasing
- the value will always make code faster, but eventually incurs high
- cost in increased code size.
-
- The parameter SPEED is true if the code is currently being
- optimized for speed rather than size.
-
- If you don't define this, it defaults to the value of 'MOVE_RATIO'.
-
- -- Macro: SET_BY_PIECES_P (SIZE, ALIGNMENT)
- A C expression used to determine whether 'store_by_pieces' will be
- used to set a chunk of memory to a constant value, or whether some
- other mechanism will be used. Used by '__builtin_memset' when
- storing values other than constant zero. Defaults to 1 if
- 'move_by_pieces_ninsns' returns less than 'SET_RATIO'.
-
- -- Macro: STORE_BY_PIECES_P (SIZE, ALIGNMENT)
- A C expression used to determine whether 'store_by_pieces' will be
- used to set a chunk of memory to a constant string value, or
- whether some other mechanism will be used. Used by
- '__builtin_strcpy' when called with a constant source string.
- Defaults to 1 if 'move_by_pieces_ninsns' returns less than
- 'MOVE_RATIO'.
-
- -- Macro: USE_LOAD_POST_INCREMENT (MODE)
- A C expression used to determine whether a load postincrement is a
- good thing to use for a given mode. Defaults to the value of
- 'HAVE_POST_INCREMENT'.
-
- -- Macro: USE_LOAD_POST_DECREMENT (MODE)
- A C expression used to determine whether a load postdecrement is a
- good thing to use for a given mode. Defaults to the value of
- 'HAVE_POST_DECREMENT'.
-
- -- Macro: USE_LOAD_PRE_INCREMENT (MODE)
- A C expression used to determine whether a load preincrement is a
- good thing to use for a given mode. Defaults to the value of
- 'HAVE_PRE_INCREMENT'.
-
- -- Macro: USE_LOAD_PRE_DECREMENT (MODE)
- A C expression used to determine whether a load predecrement is a
- good thing to use for a given mode. Defaults to the value of
- 'HAVE_PRE_DECREMENT'.
-
- -- Macro: USE_STORE_POST_INCREMENT (MODE)
- A C expression used to determine whether a store postincrement is a
- good thing to use for a given mode. Defaults to the value of
- 'HAVE_POST_INCREMENT'.
-
- -- Macro: USE_STORE_POST_DECREMENT (MODE)
- A C expression used to determine whether a store postdecrement is a
- good thing to use for a given mode. Defaults to the value of
- 'HAVE_POST_DECREMENT'.
-
- -- Macro: USE_STORE_PRE_INCREMENT (MODE)
- This macro is used to determine whether a store preincrement is a
- good thing to use for a given mode. Defaults to the value of
- 'HAVE_PRE_INCREMENT'.
-
- -- Macro: USE_STORE_PRE_DECREMENT (MODE)
- This macro is used to determine whether a store predecrement is a
- good thing to use for a given mode. Defaults to the value of
- 'HAVE_PRE_DECREMENT'.
-
- -- Macro: NO_FUNCTION_CSE
- Define this macro if it is as good or better to call a constant
- function address than to call an address kept in a register.
-
- -- Macro: LOGICAL_OP_NON_SHORT_CIRCUIT
- Define this macro if a non-short-circuit operation produced by
- 'fold_range_test ()' is optimal. This macro defaults to true if
- 'BRANCH_COST' is greater than or equal to the value 2.
-
- -- Target Hook: bool TARGET_RTX_COSTS (rtx X, int CODE, int OUTER_CODE,
- int OPNO, int *TOTAL, bool SPEED)
- This target hook describes the relative costs of RTL expressions.
-
- The cost may depend on the precise form of the expression, which is
- available for examination in X, and the fact that X appears as
- operand OPNO of an expression with rtx code OUTER_CODE. That is,
- the hook can assume that there is some rtx Y such that 'GET_CODE
- (Y) == OUTER_CODE' and such that either (a) 'XEXP (Y, OPNO) == X'
- or (b) 'XVEC (Y, OPNO)' contains X.
-
- CODE is X's expression code--redundant, since it can be obtained
- with 'GET_CODE (X)'.
-
- In implementing this hook, you can use the construct 'COSTS_N_INSNS
- (N)' to specify a cost equal to N fast instructions.
-
- On entry to the hook, '*TOTAL' contains a default estimate for the
- cost of the expression. The hook should modify this value as
- necessary. Traditionally, the default costs are 'COSTS_N_INSNS
- (5)' for multiplications, 'COSTS_N_INSNS (7)' for division and
- modulus operations, and 'COSTS_N_INSNS (1)' for all other
- operations.
-
- When optimizing for code size, i.e. when 'speed' is false, this
- target hook should be used to estimate the relative size cost of an
- expression, again relative to 'COSTS_N_INSNS'.
-
- The hook returns true when all subexpressions of X have been
- processed, and false when 'rtx_cost' should recurse.
-
- -- Target Hook: int TARGET_ADDRESS_COST (rtx ADDRESS, enum machine_mode
- MODE, addr_space_t AS, bool SPEED)
- This hook computes the cost of an addressing mode that contains
- ADDRESS. If not defined, the cost is computed from the ADDRESS
- expression and the 'TARGET_RTX_COST' hook.
-
- For most CISC machines, the default cost is a good approximation of
- the true cost of the addressing mode. However, on RISC machines,
- all instructions normally have the same length and execution time.
- Hence all addresses will have equal costs.
-
- In cases where more than one form of an address is known, the form
- with the lowest cost will be used. If multiple forms have the
- same, lowest, cost, the one that is the most complex will be used.
-
- For example, suppose an address that is equal to the sum of a
- register and a constant is used twice in the same basic block.
- When this macro is not defined, the address will be computed in a
- register and memory references will be indirect through that
- register. On machines where the cost of the addressing mode
- containing the sum is no higher than that of a simple indirect
- reference, this will produce an additional instruction and possibly
- require an additional register. Proper specification of this macro
- eliminates this overhead for such machines.
-
- This hook is never called with an invalid address.
-
- On machines where an address involving more than one register is as
- cheap as an address computation involving only one register,
- defining 'TARGET_ADDRESS_COST' to reflect this can cause two
- registers to be live over a region of code where only one would
- have been if 'TARGET_ADDRESS_COST' were not defined in that manner.
- This effect should be considered in the definition of this macro.
- Equivalent costs should probably only be given to addresses with
- different numbers of registers on machines with lots of registers.
-
-
-File: gccint.info, Node: Scheduling, Next: Sections, Prev: Costs, Up: Target Macros
-
-17.18 Adjusting the Instruction Scheduler
-=========================================
-
-The instruction scheduler may need a fair amount of machine-specific
-adjustment in order to produce good code. GCC provides several target
-hooks for this purpose. It is usually enough to define just a few of
-them: try the first ones in this list first.
-
- -- Target Hook: int TARGET_SCHED_ISSUE_RATE (void)
- This hook returns the maximum number of instructions that can ever
- issue at the same time on the target machine. The default is one.
- Although the insn scheduler can define itself the possibility of
- issue an insn on the same cycle, the value can serve as an
- additional constraint to issue insns on the same simulated
- processor cycle (see hooks 'TARGET_SCHED_REORDER' and
- 'TARGET_SCHED_REORDER2'). This value must be constant over the
- entire compilation. If you need it to vary depending on what the
- instructions are, you must use 'TARGET_SCHED_VARIABLE_ISSUE'.
-
- -- Target Hook: int TARGET_SCHED_VARIABLE_ISSUE (FILE *FILE, int
- VERBOSE, rtx INSN, int MORE)
- This hook is executed by the scheduler after it has scheduled an
- insn from the ready list. It should return the number of insns
- which can still be issued in the current cycle. The default is
- 'MORE - 1' for insns other than 'CLOBBER' and 'USE', which normally
- are not counted against the issue rate. You should define this
- hook if some insns take more machine resources than others, so that
- fewer insns can follow them in the same cycle. FILE is either a
- null pointer, or a stdio stream to write any debug output to.
- VERBOSE is the verbose level provided by '-fsched-verbose-N'. INSN
- is the instruction that was scheduled.
-
- -- Target Hook: int TARGET_SCHED_ADJUST_COST (rtx INSN, rtx LINK, rtx
- DEP_INSN, int COST)
- This function corrects the value of COST based on the relationship
- between INSN and DEP_INSN through the dependence LINK. It should
- return the new value. The default is to make no adjustment to
- COST. This can be used for example to specify to the scheduler
- using the traditional pipeline description that an output- or
- anti-dependence does not incur the same cost as a data-dependence.
- If the scheduler using the automaton based pipeline description,
- the cost of anti-dependence is zero and the cost of
- output-dependence is maximum of one and the difference of latency
- times of the first and the second insns. If these values are not
- acceptable, you could use the hook to modify them too. See also
- *note Processor pipeline description::.
-
- -- Target Hook: int TARGET_SCHED_ADJUST_PRIORITY (rtx INSN, int
- PRIORITY)
- This hook adjusts the integer scheduling priority PRIORITY of INSN.
- It should return the new priority. Increase the priority to
- execute INSN earlier, reduce the priority to execute INSN later.
- Do not define this hook if you do not need to adjust the scheduling
- priorities of insns.
-
- -- Target Hook: int TARGET_SCHED_REORDER (FILE *FILE, int VERBOSE, rtx
- *READY, int *N_READYP, int CLOCK)
- This hook is executed by the scheduler after it has scheduled the
- ready list, to allow the machine description to reorder it (for
- example to combine two small instructions together on 'VLIW'
- machines). FILE is either a null pointer, or a stdio stream to
- write any debug output to. VERBOSE is the verbose level provided
- by '-fsched-verbose-N'. READY is a pointer to the ready list of
- instructions that are ready to be scheduled. N_READYP is a pointer
- to the number of elements in the ready list. The scheduler reads
- the ready list in reverse order, starting with READY[*N_READYP - 1]
- and going to READY[0]. CLOCK is the timer tick of the scheduler.
- You may modify the ready list and the number of ready insns. The
- return value is the number of insns that can issue this cycle;
- normally this is just 'issue_rate'. See also
- 'TARGET_SCHED_REORDER2'.
-
- -- Target Hook: int TARGET_SCHED_REORDER2 (FILE *FILE, int VERBOSE, rtx
- *READY, int *N_READYP, int CLOCK)
- Like 'TARGET_SCHED_REORDER', but called at a different time. That
- function is called whenever the scheduler starts a new cycle. This
- one is called once per iteration over a cycle, immediately after
- 'TARGET_SCHED_VARIABLE_ISSUE'; it can reorder the ready list and
- return the number of insns to be scheduled in the same cycle.
- Defining this hook can be useful if there are frequent situations
- where scheduling one insn causes other insns to become ready in the
- same cycle. These other insns can then be taken into account
- properly.
-
- -- Target Hook: bool TARGET_SCHED_MACRO_FUSION_P (void)
- This hook is used to check whether target platform supports macro
- fusion.
-
- -- Target Hook: bool TARGET_SCHED_MACRO_FUSION_PAIR_P (rtx CONDGEN, rtx
- CONDJMP)
- This hook is used to check whether two insns could be macro fused
- for target microarchitecture. If this hook returns true for the
- given insn pair (CONDGEN and CONDJMP), scheduler will put them into
- a sched group, and they will not be scheduled apart.
-
- -- Target Hook: void TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK (rtx
- HEAD, rtx TAIL)
- This hook is called after evaluation forward dependencies of insns
- in chain given by two parameter values (HEAD and TAIL
- correspondingly) but before insns scheduling of the insn chain.
- For example, it can be used for better insn classification if it
- requires analysis of dependencies. This hook can use backward and
- forward dependencies of the insn scheduler because they are already
- calculated.
-
- -- Target Hook: void TARGET_SCHED_INIT (FILE *FILE, int VERBOSE, int
- MAX_READY)
- This hook is executed by the scheduler at the beginning of each
- block of instructions that are to be scheduled. FILE is either a
- null pointer, or a stdio stream to write any debug output to.
- VERBOSE is the verbose level provided by '-fsched-verbose-N'.
- MAX_READY is the maximum number of insns in the current scheduling
- region that can be live at the same time. This can be used to
- allocate scratch space if it is needed, e.g. by
- 'TARGET_SCHED_REORDER'.
-
- -- Target Hook: void TARGET_SCHED_FINISH (FILE *FILE, int VERBOSE)
- This hook is executed by the scheduler at the end of each block of
- instructions that are to be scheduled. It can be used to perform
- cleanup of any actions done by the other scheduling hooks. FILE is
- either a null pointer, or a stdio stream to write any debug output
- to. VERBOSE is the verbose level provided by '-fsched-verbose-N'.
-
- -- Target Hook: void TARGET_SCHED_INIT_GLOBAL (FILE *FILE, int VERBOSE,
- int OLD_MAX_UID)
- This hook is executed by the scheduler after function level
- initializations. FILE is either a null pointer, or a stdio stream
- to write any debug output to. VERBOSE is the verbose level
- provided by '-fsched-verbose-N'. OLD_MAX_UID is the maximum insn
- uid when scheduling begins.
-
- -- Target Hook: void TARGET_SCHED_FINISH_GLOBAL (FILE *FILE, int
- VERBOSE)
- This is the cleanup hook corresponding to
- 'TARGET_SCHED_INIT_GLOBAL'. FILE is either a null pointer, or a
- stdio stream to write any debug output to. VERBOSE is the verbose
- level provided by '-fsched-verbose-N'.
-
- -- Target Hook: rtx TARGET_SCHED_DFA_PRE_CYCLE_INSN (void)
- The hook returns an RTL insn. The automaton state used in the
- pipeline hazard recognizer is changed as if the insn were scheduled
- when the new simulated processor cycle starts. Usage of the hook
- may simplify the automaton pipeline description for some VLIW
- processors. If the hook is defined, it is used only for the
- automaton based pipeline description. The default is not to change
- the state when the new simulated processor cycle starts.
-
- -- Target Hook: void TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN (void)
- The hook can be used to initialize data used by the previous hook.
-
- -- Target Hook: rtx TARGET_SCHED_DFA_POST_CYCLE_INSN (void)
- The hook is analogous to 'TARGET_SCHED_DFA_PRE_CYCLE_INSN' but used
- to changed the state as if the insn were scheduled when the new
- simulated processor cycle finishes.
-
- -- Target Hook: void TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN (void)
- The hook is analogous to 'TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN' but
- used to initialize data used by the previous hook.
-
- -- Target Hook: void TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE (void)
- The hook to notify target that the current simulated cycle is about
- to finish. The hook is analogous to
- 'TARGET_SCHED_DFA_PRE_CYCLE_INSN' but used to change the state in
- more complicated situations - e.g., when advancing state on a
- single insn is not enough.
-
- -- Target Hook: void TARGET_SCHED_DFA_POST_ADVANCE_CYCLE (void)
- The hook to notify target that new simulated cycle has just
- started. The hook is analogous to
- 'TARGET_SCHED_DFA_POST_CYCLE_INSN' but used to change the state in
- more complicated situations - e.g., when advancing state on a
- single insn is not enough.
-
- -- Target Hook: int TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
- (void)
- This hook controls better choosing an insn from the ready insn
- queue for the DFA-based insn scheduler. Usually the scheduler
- chooses the first insn from the queue. If the hook returns a
- positive value, an additional scheduler code tries all permutations
- of 'TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD ()' subsequent
- ready insns to choose an insn whose issue will result in maximal
- number of issued insns on the same cycle. For the VLIW processor,
- the code could actually solve the problem of packing simple insns
- into the VLIW insn. Of course, if the rules of VLIW packing are
- described in the automaton.
-
- This code also could be used for superscalar RISC processors. Let
- us consider a superscalar RISC processor with 3 pipelines. Some
- insns can be executed in pipelines A or B, some insns can be
- executed only in pipelines B or C, and one insn can be executed in
- pipeline B. The processor may issue the 1st insn into A and the
- 2nd one into B. In this case, the 3rd insn will wait for freeing B
- until the next cycle. If the scheduler issues the 3rd insn the
- first, the processor could issue all 3 insns per cycle.
-
- Actually this code demonstrates advantages of the automaton based
- pipeline hazard recognizer. We try quickly and easy many insn
- schedules to choose the best one.
-
- The default is no multipass scheduling.
-
- -- Target Hook: int
- TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD (rtx
- INSN)
-
- This hook controls what insns from the ready insn queue will be
- considered for the multipass insn scheduling. If the hook returns
- zero for INSN, the insn will be not chosen to be issued.
-
- The default is that any ready insns can be chosen to be issued.
-
- -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BEGIN (void
- *DATA, char *READY_TRY, int N_READY, bool FIRST_CYCLE_INSN_P)
- This hook prepares the target backend for a new round of multipass
- scheduling.
-
- -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_ISSUE (void
- *DATA, char *READY_TRY, int N_READY, rtx INSN, const void
- *PREV_DATA)
- This hook is called when multipass scheduling evaluates instruction
- INSN.
-
- -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BACKTRACK
- (const void *DATA, char *READY_TRY, int N_READY)
- This is called when multipass scheduling backtracks from evaluation
- of an instruction.
-
- -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_END (const void
- *DATA)
- This hook notifies the target about the result of the concluded
- current round of multipass scheduling.
-
- -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_INIT (void
- *DATA)
- This hook initializes target-specific data used in multipass
- scheduling.
-
- -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_FINI (void
- *DATA)
- This hook finalizes target-specific data used in multipass
- scheduling.
-
- -- Target Hook: int TARGET_SCHED_DFA_NEW_CYCLE (FILE *DUMP, int
- VERBOSE, rtx INSN, int LAST_CLOCK, int CLOCK, int *SORT_P)
- This hook is called by the insn scheduler before issuing INSN on
- cycle CLOCK. If the hook returns nonzero, INSN is not issued on
- this processor cycle. Instead, the processor cycle is advanced.
- If *SORT_P is zero, the insn ready queue is not sorted on the new
- cycle start as usually. DUMP and VERBOSE specify the file and
- verbosity level to use for debugging output. LAST_CLOCK and CLOCK
- are, respectively, the processor cycle on which the previous insn
- has been issued, and the current processor cycle.
-
- -- Target Hook: bool TARGET_SCHED_IS_COSTLY_DEPENDENCE (struct _dep
- *_DEP, int COST, int DISTANCE)
- This hook is used to define which dependences are considered costly
- by the target, so costly that it is not advisable to schedule the
- insns that are involved in the dependence too close to one another.
- The parameters to this hook are as follows: The first parameter
- _DEP is the dependence being evaluated. The second parameter COST
- is the cost of the dependence as estimated by the scheduler, and
- the third parameter DISTANCE is the distance in cycles between the
- two insns. The hook returns 'true' if considering the distance
- between the two insns the dependence between them is considered
- costly by the target, and 'false' otherwise.
-
- Defining this hook can be useful in multiple-issue out-of-order
- machines, where (a) it's practically hopeless to predict the actual
- data/resource delays, however: (b) there's a better chance to
- predict the actual grouping that will be formed, and (c) correctly
- emulating the grouping can be very important. In such targets one
- may want to allow issuing dependent insns closer to one
- another--i.e., closer than the dependence distance; however, not in
- cases of "costly dependences", which this hooks allows to define.
-
- -- Target Hook: void TARGET_SCHED_H_I_D_EXTENDED (void)
- This hook is called by the insn scheduler after emitting a new
- instruction to the instruction stream. The hook notifies a target
- backend to extend its per instruction data structures.
-
- -- Target Hook: void * TARGET_SCHED_ALLOC_SCHED_CONTEXT (void)
- Return a pointer to a store large enough to hold target scheduling
- context.
-
- -- Target Hook: void TARGET_SCHED_INIT_SCHED_CONTEXT (void *TC, bool
- CLEAN_P)
- Initialize store pointed to by TC to hold target scheduling
- context. It CLEAN_P is true then initialize TC as if scheduler is
- at the beginning of the block. Otherwise, copy the current context
- into TC.
-
- -- Target Hook: void TARGET_SCHED_SET_SCHED_CONTEXT (void *TC)
- Copy target scheduling context pointed to by TC to the current
- context.
-
- -- Target Hook: void TARGET_SCHED_CLEAR_SCHED_CONTEXT (void *TC)
- Deallocate internal data in target scheduling context pointed to by
- TC.
-
- -- Target Hook: void TARGET_SCHED_FREE_SCHED_CONTEXT (void *TC)
- Deallocate a store for target scheduling context pointed to by TC.
-
- -- Target Hook: int TARGET_SCHED_SPECULATE_INSN (rtx INSN, unsigned int
- DEP_STATUS, rtx *NEW_PAT)
- This hook is called by the insn scheduler when INSN has only
- speculative dependencies and therefore can be scheduled
- speculatively. The hook is used to check if the pattern of INSN
- has a speculative version and, in case of successful check, to
- generate that speculative pattern. The hook should return 1, if
- the instruction has a speculative form, or -1, if it doesn't.
- REQUEST describes the type of requested speculation. If the return
- value equals 1 then NEW_PAT is assigned the generated speculative
- pattern.
-
- -- Target Hook: bool TARGET_SCHED_NEEDS_BLOCK_P (unsigned int
- DEP_STATUS)
- This hook is called by the insn scheduler during generation of
- recovery code for INSN. It should return 'true', if the
- corresponding check instruction should branch to recovery code, or
- 'false' otherwise.
-
- -- Target Hook: rtx TARGET_SCHED_GEN_SPEC_CHECK (rtx INSN, rtx LABEL,
- unsigned int DS)
- This hook is called by the insn scheduler to generate a pattern for
- recovery check instruction. If MUTATE_P is zero, then INSN is a
- speculative instruction for which the check should be generated.
- LABEL is either a label of a basic block, where recovery code
- should be emitted, or a null pointer, when requested check doesn't
- branch to recovery code (a simple check). If MUTATE_P is nonzero,
- then a pattern for a branchy check corresponding to a simple check
- denoted by INSN should be generated. In this case LABEL can't be
- null.
-
- -- Target Hook: bool
- TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC
- (const_rtx INSN)
- This hook is used as a workaround for
- 'TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD' not being
- called on the first instruction of the ready list. The hook is
- used to discard speculative instructions that stand first in the
- ready list from being scheduled on the current cycle. If the hook
- returns 'false', INSN will not be chosen to be issued. For
- non-speculative instructions, the hook should always return 'true'.
- For example, in the ia64 backend the hook is used to cancel data
- speculative insns when the ALAT table is nearly full.
-
- -- Target Hook: void TARGET_SCHED_SET_SCHED_FLAGS (struct spec_info_def
- *SPEC_INFO)
- This hook is used by the insn scheduler to find out what features
- should be enabled/used. The structure *SPEC_INFO should be filled
- in by the target. The structure describes speculation types that
- can be used in the scheduler.
-
- -- Target Hook: int TARGET_SCHED_SMS_RES_MII (struct ddg *G)
- This hook is called by the swing modulo scheduler to calculate a
- resource-based lower bound which is based on the resources
- available in the machine and the resources required by each
- instruction. The target backend can use G to calculate such bound.
- A very simple lower bound will be used in case this hook is not
- implemented: the total number of instructions divided by the issue
- rate.
-
- -- Target Hook: bool TARGET_SCHED_DISPATCH (rtx INSN, int X)
- This hook is called by Haifa Scheduler. It returns true if
- dispatch scheduling is supported in hardware and the condition
- specified in the parameter is true.
-
- -- Target Hook: void TARGET_SCHED_DISPATCH_DO (rtx INSN, int X)
- This hook is called by Haifa Scheduler. It performs the operation
- specified in its second parameter.
-
- -- Target Hook: bool TARGET_SCHED_EXPOSED_PIPELINE
- True if the processor has an exposed pipeline, which means that not
- just the order of instructions is important for correctness when
- scheduling, but also the latencies of operations.
-
- -- Target Hook: int TARGET_SCHED_REASSOCIATION_WIDTH (unsigned int OPC,
- enum machine_mode MODE)
- This hook is called by tree reassociator to determine a level of
- parallelism required in output calculations chain.
-
-
-File: gccint.info, Node: Sections, Next: PIC, Prev: Scheduling, Up: Target Macros
-
-17.19 Dividing the Output into Sections (Texts, Data, ...)
-==========================================================
-
-An object file is divided into sections containing different types of
-data. In the most common case, there are three sections: the "text
-section", which holds instructions and read-only data; the "data
-section", which holds initialized writable data; and the "bss section",
-which holds uninitialized data. Some systems have other kinds of
-sections.
-
- 'varasm.c' provides several well-known sections, such as
-'text_section', 'data_section' and 'bss_section'. The normal way of
-controlling a 'FOO_section' variable is to define the associated
-'FOO_SECTION_ASM_OP' macro, as described below. The macros are only
-read once, when 'varasm.c' initializes itself, so their values must be
-run-time constants. They may however depend on command-line flags.
-
- _Note:_ Some run-time files, such 'crtstuff.c', also make use of the
-'FOO_SECTION_ASM_OP' macros, and expect them to be string literals.
-
- Some assemblers require a different string to be written every time a
-section is selected. If your assembler falls into this category, you
-should define the 'TARGET_ASM_INIT_SECTIONS' hook and use
-'get_unnamed_section' to set up the sections.
-
- You must always create a 'text_section', either by defining
-'TEXT_SECTION_ASM_OP' or by initializing 'text_section' in
-'TARGET_ASM_INIT_SECTIONS'. The same is true of 'data_section' and
-'DATA_SECTION_ASM_OP'. If you do not create a distinct
-'readonly_data_section', the default is to reuse 'text_section'.
-
- All the other 'varasm.c' sections are optional, and are null if the
-target does not provide them.
-
- -- Macro: TEXT_SECTION_ASM_OP
- A C expression whose value is a string, including spacing,
- containing the assembler operation that should precede instructions
- and read-only data. Normally '"\t.text"' is right.
-
- -- Macro: HOT_TEXT_SECTION_NAME
- If defined, a C string constant for the name of the section
- containing most frequently executed functions of the program. If
- not defined, GCC will provide a default definition if the target
- supports named sections.
-
- -- Macro: UNLIKELY_EXECUTED_TEXT_SECTION_NAME
- If defined, a C string constant for the name of the section
- containing unlikely executed functions in the program.
-
- -- Macro: DATA_SECTION_ASM_OP
- A C expression whose value is a string, including spacing,
- containing the assembler operation to identify the following data
- as writable initialized data. Normally '"\t.data"' is right.
-
- -- Macro: SDATA_SECTION_ASM_OP
- If defined, a C expression whose value is a string, including
- spacing, containing the assembler operation to identify the
- following data as initialized, writable small data.
-
- -- Macro: READONLY_DATA_SECTION_ASM_OP
- A C expression whose value is a string, including spacing,
- containing the assembler operation to identify the following data
- as read-only initialized data.
-
- -- Macro: BSS_SECTION_ASM_OP
- If defined, a C expression whose value is a string, including
- spacing, containing the assembler operation to identify the
- following data as uninitialized global data. If not defined, and
- 'ASM_OUTPUT_ALIGNED_BSS' not defined, uninitialized global data
- will be output in the data section if '-fno-common' is passed,
- otherwise 'ASM_OUTPUT_COMMON' will be used.
-
- -- Macro: SBSS_SECTION_ASM_OP
- If defined, a C expression whose value is a string, including
- spacing, containing the assembler operation to identify the
- following data as uninitialized, writable small data.
-
- -- Macro: TLS_COMMON_ASM_OP
- If defined, a C expression whose value is a string containing the
- assembler operation to identify the following data as thread-local
- common data. The default is '".tls_common"'.
-
- -- Macro: TLS_SECTION_ASM_FLAG
- If defined, a C expression whose value is a character constant
- containing the flag used to mark a section as a TLS section. The
- default is ''T''.
-
- -- Macro: INIT_SECTION_ASM_OP
- If defined, a C expression whose value is a string, including
- spacing, containing the assembler operation to identify the
- following data as initialization code. If not defined, GCC will
- assume such a section does not exist. This section has no
- corresponding 'init_section' variable; it is used entirely in
- runtime code.
-
- -- Macro: FINI_SECTION_ASM_OP
- If defined, a C expression whose value is a string, including
- spacing, containing the assembler operation to identify the
- following data as finalization code. If not defined, GCC will
- assume such a section does not exist. This section has no
- corresponding 'fini_section' variable; it is used entirely in
- runtime code.
-
- -- Macro: INIT_ARRAY_SECTION_ASM_OP
- If defined, a C expression whose value is a string, including
- spacing, containing the assembler operation to identify the
- following data as part of the '.init_array' (or equivalent)
- section. If not defined, GCC will assume such a section does not
- exist. Do not define both this macro and 'INIT_SECTION_ASM_OP'.
-
- -- Macro: FINI_ARRAY_SECTION_ASM_OP
- If defined, a C expression whose value is a string, including
- spacing, containing the assembler operation to identify the
- following data as part of the '.fini_array' (or equivalent)
- section. If not defined, GCC will assume such a section does not
- exist. Do not define both this macro and 'FINI_SECTION_ASM_OP'.
-
- -- Macro: CRT_CALL_STATIC_FUNCTION (SECTION_OP, FUNCTION)
- If defined, an ASM statement that switches to a different section
- via SECTION_OP, calls FUNCTION, and switches back to the text
- section. This is used in 'crtstuff.c' if 'INIT_SECTION_ASM_OP' or
- 'FINI_SECTION_ASM_OP' to calls to initialization and finalization
- functions from the init and fini sections. By default, this macro
- uses a simple function call. Some ports need hand-crafted assembly
- code to avoid dependencies on registers initialized in the function
- prologue or to ensure that constant pools don't end up too far way
- in the text section.
-
- -- Macro: TARGET_LIBGCC_SDATA_SECTION
- If defined, a string which names the section into which small
- variables defined in crtstuff and libgcc should go. This is useful
- when the target has options for optimizing access to small data,
- and you want the crtstuff and libgcc routines to be conservative in
- what they expect of your application yet liberal in what your
- application expects. For example, for targets with a '.sdata'
- section (like MIPS), you could compile crtstuff with '-G 0' so that
- it doesn't require small data support from your application, but
- use this macro to put small data into '.sdata' so that your
- application can access these variables whether it uses small data
- or not.
-
- -- Macro: FORCE_CODE_SECTION_ALIGN
- If defined, an ASM statement that aligns a code section to some
- arbitrary boundary. This is used to force all fragments of the
- '.init' and '.fini' sections to have to same alignment and thus
- prevent the linker from having to add any padding.
-
- -- Macro: JUMP_TABLES_IN_TEXT_SECTION
- Define this macro to be an expression with a nonzero value if jump
- tables (for 'tablejump' insns) should be output in the text
- section, along with the assembler instructions. Otherwise, the
- readonly data section is used.
-
- This macro is irrelevant if there is no separate readonly data
- section.
-
- -- Target Hook: void TARGET_ASM_INIT_SECTIONS (void)
- Define this hook if you need to do something special to set up the
- 'varasm.c' sections, or if your target has some special sections of
- its own that you need to create.
-
- GCC calls this hook after processing the command line, but before
- writing any assembly code, and before calling any of the
- section-returning hooks described below.
-
- -- Target Hook: int TARGET_ASM_RELOC_RW_MASK (void)
- Return a mask describing how relocations should be treated when
- selecting sections. Bit 1 should be set if global relocations
- should be placed in a read-write section; bit 0 should be set if
- local relocations should be placed in a read-write section.
-
- The default version of this function returns 3 when '-fpic' is in
- effect, and 0 otherwise. The hook is typically redefined when the
- target cannot support (some kinds of) dynamic relocations in
- read-only sections even in executables.
-
- -- Target Hook: section * TARGET_ASM_SELECT_SECTION (tree EXP, int
- RELOC, unsigned HOST_WIDE_INT ALIGN)
- Return the section into which EXP should be placed. You can assume
- that EXP is either a 'VAR_DECL' node or a constant of some sort.
- RELOC indicates whether the initial value of EXP requires link-time
- relocations. Bit 0 is set when variable contains local relocations
- only, while bit 1 is set for global relocations. ALIGN is the
- constant alignment in bits.
-
- The default version of this function takes care of putting
- read-only variables in 'readonly_data_section'.
-
- See also USE_SELECT_SECTION_FOR_FUNCTIONS.
-
- -- Macro: USE_SELECT_SECTION_FOR_FUNCTIONS
- Define this macro if you wish TARGET_ASM_SELECT_SECTION to be
- called for 'FUNCTION_DECL's as well as for variables and constants.
-
- In the case of a 'FUNCTION_DECL', RELOC will be zero if the
- function has been determined to be likely to be called, and nonzero
- if it is unlikely to be called.
-
- -- Target Hook: void TARGET_ASM_UNIQUE_SECTION (tree DECL, int RELOC)
- Build up a unique section name, expressed as a 'STRING_CST' node,
- and assign it to 'DECL_SECTION_NAME (DECL)'. As with
- 'TARGET_ASM_SELECT_SECTION', RELOC indicates whether the initial
- value of EXP requires link-time relocations.
-
- The default version of this function appends the symbol name to the
- ELF section name that would normally be used for the symbol. For
- example, the function 'foo' would be placed in '.text.foo'.
- Whatever the actual target object format, this is often good
- enough.
-
- -- Target Hook: section * TARGET_ASM_FUNCTION_RODATA_SECTION (tree
- DECL)
- Return the readonly data section associated with 'DECL_SECTION_NAME
- (DECL)'. The default version of this function selects
- '.gnu.linkonce.r.name' if the function's section is
- '.gnu.linkonce.t.name', '.rodata.name' if function is in
- '.text.name', and the normal readonly-data section otherwise.
-
- -- Target Hook: const char * TARGET_ASM_MERGEABLE_RODATA_PREFIX
- Usually, the compiler uses the prefix '".rodata"' to construct
- section names for mergeable constant data. Define this macro to
- override the string if a different section name should be used.
-
- -- Target Hook: section * TARGET_ASM_TM_CLONE_TABLE_SECTION (void)
- Return the section that should be used for transactional memory
- clone tables.
-
- -- Target Hook: section * TARGET_ASM_SELECT_RTX_SECTION (enum
- machine_mode MODE, rtx X, unsigned HOST_WIDE_INT ALIGN)
- Return the section into which a constant X, of mode MODE, should be
- placed. You can assume that X is some kind of constant in RTL.
- The argument MODE is redundant except in the case of a 'const_int'
- rtx. ALIGN is the constant alignment in bits.
-
- The default version of this function takes care of putting symbolic
- constants in 'flag_pic' mode in 'data_section' and everything else
- in 'readonly_data_section'.
-
- -- Target Hook: tree TARGET_MANGLE_DECL_ASSEMBLER_NAME (tree DECL, tree
- ID)
- Define this hook if you need to postprocess the assembler name
- generated by target-independent code. The ID provided to this hook
- will be the computed name (e.g., the macro 'DECL_NAME' of the DECL
- in C, or the mangled name of the DECL in C++). The return value of
- the hook is an 'IDENTIFIER_NODE' for the appropriate mangled name
- on your target system. The default implementation of this hook
- just returns the ID provided.
-
- -- Target Hook: void TARGET_ENCODE_SECTION_INFO (tree DECL, rtx RTL,
- int NEW_DECL_P)
- Define this hook if references to a symbol or a constant must be
- treated differently depending on something about the variable or
- function named by the symbol (such as what section it is in).
-
- The hook is executed immediately after rtl has been created for
- DECL, which may be a variable or function declaration or an entry
- in the constant pool. In either case, RTL is the rtl in question.
- Do _not_ use 'DECL_RTL (DECL)' in this hook; that field may not
- have been initialized yet.
-
- In the case of a constant, it is safe to assume that the rtl is a
- 'mem' whose address is a 'symbol_ref'. Most decls will also have
- this form, but that is not guaranteed. Global register variables,
- for instance, will have a 'reg' for their rtl. (Normally the right
- thing to do with such unusual rtl is leave it alone.)
-
- The NEW_DECL_P argument will be true if this is the first time that
- 'TARGET_ENCODE_SECTION_INFO' has been invoked on this decl. It
- will be false for subsequent invocations, which will happen for
- duplicate declarations. Whether or not anything must be done for
- the duplicate declaration depends on whether the hook examines
- 'DECL_ATTRIBUTES'. NEW_DECL_P is always true when the hook is
- called for a constant.
-
- The usual thing for this hook to do is to record flags in the
- 'symbol_ref', using 'SYMBOL_REF_FLAG' or 'SYMBOL_REF_FLAGS'.
- Historically, the name string was modified if it was necessary to
- encode more than one bit of information, but this practice is now
- discouraged; use 'SYMBOL_REF_FLAGS'.
-
- The default definition of this hook, 'default_encode_section_info'
- in 'varasm.c', sets a number of commonly-useful bits in
- 'SYMBOL_REF_FLAGS'. Check whether the default does what you need
- before overriding it.
-
- -- Target Hook: const char * TARGET_STRIP_NAME_ENCODING (const char
- *NAME)
- Decode NAME and return the real name part, sans the characters that
- 'TARGET_ENCODE_SECTION_INFO' may have added.
-
- -- Target Hook: bool TARGET_IN_SMALL_DATA_P (const_tree EXP)
- Returns true if EXP should be placed into a "small data" section.
- The default version of this hook always returns false.
-
- -- Target Hook: bool TARGET_HAVE_SRODATA_SECTION
- Contains the value true if the target places read-only "small data"
- into a separate section. The default value is false.
-
- -- Target Hook: bool TARGET_PROFILE_BEFORE_PROLOGUE (void)
- It returns true if target wants profile code emitted before
- prologue.
-
- The default version of this hook use the target macro
- 'PROFILE_BEFORE_PROLOGUE'.
-
- -- Target Hook: bool TARGET_BINDS_LOCAL_P (const_tree EXP)
- Returns true if EXP names an object for which name resolution rules
- must resolve to the current "module" (dynamic shared library or
- executable image).
-
- The default version of this hook implements the name resolution
- rules for ELF, which has a looser model of global name binding than
- other currently supported object file formats.
-
- -- Target Hook: bool TARGET_HAVE_TLS
- Contains the value true if the target supports thread-local
- storage. The default value is false.
-
-
-File: gccint.info, Node: PIC, Next: Assembler Format, Prev: Sections, Up: Target Macros
-
-17.20 Position Independent Code
-===============================
-
-This section describes macros that help implement generation of position
-independent code. Simply defining these macros is not enough to
-generate valid PIC; you must also add support to the hook
-'TARGET_LEGITIMATE_ADDRESS_P' and to the macro 'PRINT_OPERAND_ADDRESS',
-as well as 'LEGITIMIZE_ADDRESS'. You must modify the definition of
-'movsi' to do something appropriate when the source operand contains a
-symbolic address. You may also need to alter the handling of switch
-statements so that they use relative addresses.
-
- -- Macro: PIC_OFFSET_TABLE_REGNUM
- The register number of the register used to address a table of
- static data addresses in memory. In some cases this register is
- defined by a processor's "application binary interface" (ABI).
- When this macro is defined, RTL is generated for this register
- once, as with the stack pointer and frame pointer registers. If
- this macro is not defined, it is up to the machine-dependent files
- to allocate such a register (if necessary). Note that this
- register must be fixed when in use (e.g. when 'flag_pic' is true).
-
- -- Macro: PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
- A C expression that is nonzero if the register defined by
- 'PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. If not defined,
- the default is zero. Do not define this macro if
- 'PIC_OFFSET_TABLE_REGNUM' is not defined.
-
- -- Macro: LEGITIMATE_PIC_OPERAND_P (X)
- A C expression that is nonzero if X is a legitimate immediate
- operand on the target machine when generating position independent
- code. You can assume that X satisfies 'CONSTANT_P', so you need
- not check this. You can also assume FLAG_PIC is true, so you need
- not check it either. You need not define this macro if all
- constants (including 'SYMBOL_REF') can be immediate operands when
- generating position independent code.
-
-
-File: gccint.info, Node: Assembler Format, Next: Debugging Info, Prev: PIC, Up: Target Macros
-
-17.21 Defining the Output Assembler Language
-============================================
-
-This section describes macros whose principal purpose is to describe how
-to write instructions in assembler language--rather than what the
-instructions do.
-
-* Menu:
-
-* File Framework:: Structural information for the assembler file.
-* Data Output:: Output of constants (numbers, strings, addresses).
-* Uninitialized Data:: Output of uninitialized variables.
-* Label Output:: Output and generation of labels.
-* Initialization:: General principles of initialization
- and termination routines.
-* Macros for Initialization::
- Specific macros that control the handling of
- initialization and termination routines.
-* Instruction Output:: Output of actual instructions.
-* Dispatch Tables:: Output of jump tables.
-* Exception Region Output:: Output of exception region code.
-* Alignment Output:: Pseudo ops for alignment and skipping data.
-
-
-File: gccint.info, Node: File Framework, Next: Data Output, Up: Assembler Format
-
-17.21.1 The Overall Framework of an Assembler File
---------------------------------------------------
-
-This describes the overall framework of an assembly file.
-
- -- Target Hook: void TARGET_ASM_FILE_START (void)
- Output to 'asm_out_file' any text which the assembler expects to
- find at the beginning of a file. The default behavior is
- controlled by two flags, documented below. Unless your target's
- assembler is quite unusual, if you override the default, you should
- call 'default_file_start' at some point in your target hook. This
- lets other target files rely on these variables.
-
- -- Target Hook: bool TARGET_ASM_FILE_START_APP_OFF
- If this flag is true, the text of the macro 'ASM_APP_OFF' will be
- printed as the very first line in the assembly file, unless
- '-fverbose-asm' is in effect. (If that macro has been defined to
- the empty string, this variable has no effect.) With the normal
- definition of 'ASM_APP_OFF', the effect is to notify the GNU
- assembler that it need not bother stripping comments or extra
- whitespace from its input. This allows it to work a bit faster.
-
- The default is false. You should not set it to true unless you
- have verified that your port does not generate any extra whitespace
- or comments that will cause GAS to issue errors in NO_APP mode.
-
- -- Target Hook: bool TARGET_ASM_FILE_START_FILE_DIRECTIVE
- If this flag is true, 'output_file_directive' will be called for
- the primary source file, immediately after printing 'ASM_APP_OFF'
- (if that is enabled). Most ELF assemblers expect this to be done.
- The default is false.
-
- -- Target Hook: void TARGET_ASM_FILE_END (void)
- Output to 'asm_out_file' any text which the assembler expects to
- find at the end of a file. The default is to output nothing.
-
- -- Function: void file_end_indicate_exec_stack ()
- Some systems use a common convention, the '.note.GNU-stack' special
- section, to indicate whether or not an object file relies on the
- stack being executable. If your system uses this convention, you
- should define 'TARGET_ASM_FILE_END' to this function. If you need
- to do other things in that hook, have your hook function call this
- function.
-
- -- Target Hook: void TARGET_ASM_LTO_START (void)
- Output to 'asm_out_file' any text which the assembler expects to
- find at the start of an LTO section. The default is to output
- nothing.
-
- -- Target Hook: void TARGET_ASM_LTO_END (void)
- Output to 'asm_out_file' any text which the assembler expects to
- find at the end of an LTO section. The default is to output
- nothing.
-
- -- Target Hook: void TARGET_ASM_CODE_END (void)
- Output to 'asm_out_file' any text which is needed before emitting
- unwind info and debug info at the end of a file. Some targets emit
- here PIC setup thunks that cannot be emitted at the end of file,
- because they couldn't have unwind info then. The default is to
- output nothing.
-
- -- Macro: ASM_COMMENT_START
- A C string constant describing how to begin a comment in the target
- assembler language. The compiler assumes that the comment will end
- at the end of the line.
-
- -- Macro: ASM_APP_ON
- A C string constant for text to be output before each 'asm'
- statement or group of consecutive ones. Normally this is '"#APP"',
- which is a comment that has no effect on most assemblers but tells
- the GNU assembler that it must check the lines that follow for all
- valid assembler constructs.
-
- -- Macro: ASM_APP_OFF
- A C string constant for text to be output after each 'asm'
- statement or group of consecutive ones. Normally this is
- '"#NO_APP"', which tells the GNU assembler to resume making the
- time-saving assumptions that are valid for ordinary compiler
- output.
-
- -- Macro: ASM_OUTPUT_SOURCE_FILENAME (STREAM, NAME)
- A C statement to output COFF information or DWARF debugging
- information which indicates that filename NAME is the current
- source file to the stdio stream STREAM.
-
- This macro need not be defined if the standard form of output for
- the file format in use is appropriate.
-
- -- Target Hook: void TARGET_ASM_OUTPUT_SOURCE_FILENAME (FILE *FILE,
- const char *NAME)
- Output COFF information or DWARF debugging information which
- indicates that filename NAME is the current source file to the
- stdio stream FILE.
-
- This target hook need not be defined if the standard form of output
- for the file format in use is appropriate.
-
- -- Target Hook: void TARGET_ASM_OUTPUT_IDENT (const char *NAME)
- Output a string based on NAME, suitable for the '#ident' directive,
- or the equivalent directive or pragma in non-C-family languages.
- If this hook is not defined, nothing is output for the '#ident'
- directive.
-
- -- Macro: OUTPUT_QUOTED_STRING (STREAM, STRING)
- A C statement to output the string STRING to the stdio stream
- STREAM. If you do not call the function 'output_quoted_string' in
- your config files, GCC will only call it to output filenames to the
- assembler source. So you can use it to canonicalize the format of
- the filename using this macro.
-
- -- Target Hook: void TARGET_ASM_NAMED_SECTION (const char *NAME,
- unsigned int FLAGS, tree DECL)
- Output assembly directives to switch to section NAME. The section
- should have attributes as specified by FLAGS, which is a bit mask
- of the 'SECTION_*' flags defined in 'output.h'. If DECL is
- non-NULL, it is the 'VAR_DECL' or 'FUNCTION_DECL' with which this
- section is associated.
-
- -- Target Hook: section * TARGET_ASM_FUNCTION_SECTION (tree DECL, enum
- node_frequency FREQ, bool STARTUP, bool EXIT)
- Return preferred text (sub)section for function DECL. Main purpose
- of this function is to separate cold, normal and hot functions.
- STARTUP is true when function is known to be used only at startup
- (from static constructors or it is 'main()'). EXIT is true when
- function is known to be used only at exit (from static
- destructors). Return NULL if function should go to default text
- section.
-
- -- Target Hook: void TARGET_ASM_FUNCTION_SWITCHED_TEXT_SECTIONS (FILE
- *FILE, tree DECL, bool NEW_IS_COLD)
- Used by the target to emit any assembler directives or additional
- labels needed when a function is partitioned between different
- sections. Output should be written to FILE. The function decl is
- available as DECL and the new section is 'cold' if NEW_IS_COLD is
- 'true'.
-
- -- Common Target Hook: bool TARGET_HAVE_NAMED_SECTIONS
- This flag is true if the target supports
- 'TARGET_ASM_NAMED_SECTION'. It must not be modified by
- command-line option processing.
-
- -- Target Hook: bool TARGET_HAVE_SWITCHABLE_BSS_SECTIONS
- This flag is true if we can create zeroed data by switching to a
- BSS section and then using 'ASM_OUTPUT_SKIP' to allocate the space.
- This is true on most ELF targets.
-
- -- Target Hook: unsigned int TARGET_SECTION_TYPE_FLAGS (tree DECL,
- const char *NAME, int RELOC)
- Choose a set of section attributes for use by
- 'TARGET_ASM_NAMED_SECTION' based on a variable or function decl, a
- section name, and whether or not the declaration's initializer may
- contain runtime relocations. DECL may be null, in which case
- read-write data should be assumed.
-
- The default version of this function handles choosing code vs data,
- read-only vs read-write data, and 'flag_pic'. You should only need
- to override this if your target has special flags that might be set
- via '__attribute__'.
-
- -- Target Hook: int TARGET_ASM_RECORD_GCC_SWITCHES (print_switch_type
- TYPE, const char *TEXT)
- Provides the target with the ability to record the gcc command line
- switches that have been passed to the compiler, and options that
- are enabled. The TYPE argument specifies what is being recorded.
- It can take the following values:
-
- 'SWITCH_TYPE_PASSED'
- TEXT is a command line switch that has been set by the user.
-
- 'SWITCH_TYPE_ENABLED'
- TEXT is an option which has been enabled. This might be as a
- direct result of a command line switch, or because it is
- enabled by default or because it has been enabled as a side
- effect of a different command line switch. For example, the
- '-O2' switch enables various different individual optimization
- passes.
-
- 'SWITCH_TYPE_DESCRIPTIVE'
- TEXT is either NULL or some descriptive text which should be
- ignored. If TEXT is NULL then it is being used to warn the
- target hook that either recording is starting or ending. The
- first time TYPE is SWITCH_TYPE_DESCRIPTIVE and TEXT is NULL,
- the warning is for start up and the second time the warning is
- for wind down. This feature is to allow the target hook to
- make any necessary preparations before it starts to record
- switches and to perform any necessary tidying up after it has
- finished recording switches.
-
- 'SWITCH_TYPE_LINE_START'
- This option can be ignored by this target hook.
-
- 'SWITCH_TYPE_LINE_END'
- This option can be ignored by this target hook.
-
- The hook's return value must be zero. Other return values may be
- supported in the future.
-
- By default this hook is set to NULL, but an example implementation
- is provided for ELF based targets. Called ELF_RECORD_GCC_SWITCHES,
- it records the switches as ASCII text inside a new, string
- mergeable section in the assembler output file. The name of the
- new section is provided by the
- 'TARGET_ASM_RECORD_GCC_SWITCHES_SECTION' target hook.
-
- -- Target Hook: const char * TARGET_ASM_RECORD_GCC_SWITCHES_SECTION
- This is the name of the section that will be created by the example
- ELF implementation of the 'TARGET_ASM_RECORD_GCC_SWITCHES' target
- hook.
-
-
-File: gccint.info, Node: Data Output, Next: Uninitialized Data, Prev: File Framework, Up: Assembler Format
-
-17.21.2 Output of Data
-----------------------
-
- -- Target Hook: const char * TARGET_ASM_BYTE_OP
- -- Target Hook: const char * TARGET_ASM_ALIGNED_HI_OP
- -- Target Hook: const char * TARGET_ASM_ALIGNED_SI_OP
- -- Target Hook: const char * TARGET_ASM_ALIGNED_DI_OP
- -- Target Hook: const char * TARGET_ASM_ALIGNED_TI_OP
- -- Target Hook: const char * TARGET_ASM_UNALIGNED_HI_OP
- -- Target Hook: const char * TARGET_ASM_UNALIGNED_SI_OP
- -- Target Hook: const char * TARGET_ASM_UNALIGNED_DI_OP
- -- Target Hook: const char * TARGET_ASM_UNALIGNED_TI_OP
- These hooks specify assembly directives for creating certain kinds
- of integer object. The 'TARGET_ASM_BYTE_OP' directive creates a
- byte-sized object, the 'TARGET_ASM_ALIGNED_HI_OP' one creates an
- aligned two-byte object, and so on. Any of the hooks may be
- 'NULL', indicating that no suitable directive is available.
-
- The compiler will print these strings at the start of a new line,
- followed immediately by the object's initial value. In most cases,
- the string should contain a tab, a pseudo-op, and then another tab.
-
- -- Target Hook: bool TARGET_ASM_INTEGER (rtx X, unsigned int SIZE, int
- ALIGNED_P)
- The 'assemble_integer' function uses this hook to output an integer
- object. X is the object's value, SIZE is its size in bytes and
- ALIGNED_P indicates whether it is aligned. The function should
- return 'true' if it was able to output the object. If it returns
- false, 'assemble_integer' will try to split the object into smaller
- parts.
-
- The default implementation of this hook will use the
- 'TARGET_ASM_BYTE_OP' family of strings, returning 'false' when the
- relevant string is 'NULL'.
-
- -- Target Hook: bool TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA (FILE *FILE,
- rtx X)
- A target hook to recognize RTX patterns that 'output_addr_const'
- can't deal with, and output assembly code to FILE corresponding to
- the pattern X. This may be used to allow machine-dependent
- 'UNSPEC's to appear within constants.
-
- If target hook fails to recognize a pattern, it must return
- 'false', so that a standard error message is printed. If it prints
- an error message itself, by calling, for example,
- 'output_operand_lossage', it may just return 'true'.
-
- -- Macro: ASM_OUTPUT_ASCII (STREAM, PTR, LEN)
- A C statement to output to the stdio stream STREAM an assembler
- instruction to assemble a string constant containing the LEN bytes
- at PTR. PTR will be a C expression of type 'char *' and LEN a C
- expression of type 'int'.
-
- If the assembler has a '.ascii' pseudo-op as found in the Berkeley
- Unix assembler, do not define the macro 'ASM_OUTPUT_ASCII'.
-
- -- Macro: ASM_OUTPUT_FDESC (STREAM, DECL, N)
- A C statement to output word N of a function descriptor for DECL.
- This must be defined if 'TARGET_VTABLE_USES_DESCRIPTORS' is
- defined, and is otherwise unused.
-
- -- Macro: CONSTANT_POOL_BEFORE_FUNCTION
- You may define this macro as a C expression. You should define the
- expression to have a nonzero value if GCC should output the
- constant pool for a function before the code for the function, or a
- zero value if GCC should output the constant pool after the
- function. If you do not define this macro, the usual case, GCC
- will output the constant pool before the function.
-
- -- Macro: ASM_OUTPUT_POOL_PROLOGUE (FILE, FUNNAME, FUNDECL, SIZE)
- A C statement to output assembler commands to define the start of
- the constant pool for a function. FUNNAME is a string giving the
- name of the function. Should the return type of the function be
- required, it can be obtained via FUNDECL. SIZE is the size, in
- bytes, of the constant pool that will be written immediately after
- this call.
-
- If no constant-pool prefix is required, the usual case, this macro
- need not be defined.
-
- -- Macro: ASM_OUTPUT_SPECIAL_POOL_ENTRY (FILE, X, MODE, ALIGN, LABELNO,
- JUMPTO)
- A C statement (with or without semicolon) to output a constant in
- the constant pool, if it needs special treatment. (This macro need
- not do anything for RTL expressions that can be output normally.)
-
- The argument FILE is the standard I/O stream to output the
- assembler code on. X is the RTL expression for the constant to
- output, and MODE is the machine mode (in case X is a 'const_int').
- ALIGN is the required alignment for the value X; you should output
- an assembler directive to force this much alignment.
-
- The argument LABELNO is a number to use in an internal label for
- the address of this pool entry. The definition of this macro is
- responsible for outputting the label definition at the proper
- place. Here is how to do this:
-
- (*targetm.asm_out.internal_label) (FILE, "LC", LABELNO);
-
- When you output a pool entry specially, you should end with a
- 'goto' to the label JUMPTO. This will prevent the same pool entry
- from being output a second time in the usual manner.
-
- You need not define this macro if it would do nothing.
-
- -- Macro: ASM_OUTPUT_POOL_EPILOGUE (FILE FUNNAME FUNDECL SIZE)
- A C statement to output assembler commands to at the end of the
- constant pool for a function. FUNNAME is a string giving the name
- of the function. Should the return type of the function be
- required, you can obtain it via FUNDECL. SIZE is the size, in
- bytes, of the constant pool that GCC wrote immediately before this
- call.
-
- If no constant-pool epilogue is required, the usual case, you need
- not define this macro.
-
- -- Macro: IS_ASM_LOGICAL_LINE_SEPARATOR (C, STR)
- Define this macro as a C expression which is nonzero if C is used
- as a logical line separator by the assembler. STR points to the
- position in the string where C was found; this can be used if a
- line separator uses multiple characters.
-
- If you do not define this macro, the default is that only the
- character ';' is treated as a logical line separator.
-
- -- Target Hook: const char * TARGET_ASM_OPEN_PAREN
- -- Target Hook: const char * TARGET_ASM_CLOSE_PAREN
- These target hooks are C string constants, describing the syntax in
- the assembler for grouping arithmetic expressions. If not
- overridden, they default to normal parentheses, which is correct
- for most assemblers.
-
- These macros are provided by 'real.h' for writing the definitions of
-'ASM_OUTPUT_DOUBLE' and the like:
-
- -- Macro: REAL_VALUE_TO_TARGET_SINGLE (X, L)
- -- Macro: REAL_VALUE_TO_TARGET_DOUBLE (X, L)
- -- Macro: REAL_VALUE_TO_TARGET_LONG_DOUBLE (X, L)
- -- Macro: REAL_VALUE_TO_TARGET_DECIMAL32 (X, L)
- -- Macro: REAL_VALUE_TO_TARGET_DECIMAL64 (X, L)
- -- Macro: REAL_VALUE_TO_TARGET_DECIMAL128 (X, L)
- These translate X, of type 'REAL_VALUE_TYPE', to the target's
- floating point representation, and store its bit pattern in the
- variable L. For 'REAL_VALUE_TO_TARGET_SINGLE' and
- 'REAL_VALUE_TO_TARGET_DECIMAL32', this variable should be a simple
- 'long int'. For the others, it should be an array of 'long int'.
- The number of elements in this array is determined by the size of
- the desired target floating point data type: 32 bits of it go in
- each 'long int' array element. Each array element holds 32 bits of
- the result, even if 'long int' is wider than 32 bits on the host
- machine.
-
- The array element values are designed so that you can print them
- out using 'fprintf' in the order they should appear in the target
- machine's memory.
-
-
-File: gccint.info, Node: Uninitialized Data, Next: Label Output, Prev: Data Output, Up: Assembler Format
-
-17.21.3 Output of Uninitialized Variables
------------------------------------------
-
-Each of the macros in this section is used to do the whole job of
-outputting a single uninitialized variable.
-
- -- Macro: ASM_OUTPUT_COMMON (STREAM, NAME, SIZE, ROUNDED)
- A C statement (sans semicolon) to output to the stdio stream STREAM
- the assembler definition of a common-label named NAME whose size is
- SIZE bytes. The variable ROUNDED is the size rounded up to
- whatever alignment the caller wants. It is possible that SIZE may
- be zero, for instance if a struct with no other member than a
- zero-length array is defined. In this case, the backend must
- output a symbol definition that allocates at least one byte, both
- so that the address of the resulting object does not compare equal
- to any other, and because some object formats cannot even express
- the concept of a zero-sized common symbol, as that is how they
- represent an ordinary undefined external.
-
- Use the expression 'assemble_name (STREAM, NAME)' to output the
- name itself; before and after that, output the additional assembler
- syntax for defining the name, and a newline.
-
- This macro controls how the assembler definitions of uninitialized
- common global variables are output.
-
- -- Macro: ASM_OUTPUT_ALIGNED_COMMON (STREAM, NAME, SIZE, ALIGNMENT)
- Like 'ASM_OUTPUT_COMMON' except takes the required alignment as a
- separate, explicit argument. If you define this macro, it is used
- in place of 'ASM_OUTPUT_COMMON', and gives you more flexibility in
- handling the required alignment of the variable. The alignment is
- specified as the number of bits.
-
- -- Macro: ASM_OUTPUT_ALIGNED_DECL_COMMON (STREAM, DECL, NAME, SIZE,
- ALIGNMENT)
- Like 'ASM_OUTPUT_ALIGNED_COMMON' except that DECL of the variable
- to be output, if there is one, or 'NULL_TREE' if there is no
- corresponding variable. If you define this macro, GCC will use it
- in place of both 'ASM_OUTPUT_COMMON' and
- 'ASM_OUTPUT_ALIGNED_COMMON'. Define this macro when you need to
- see the variable's decl in order to chose what to output.
-
- -- Macro: ASM_OUTPUT_ALIGNED_BSS (STREAM, DECL, NAME, SIZE, ALIGNMENT)
- A C statement (sans semicolon) to output to the stdio stream STREAM
- the assembler definition of uninitialized global DECL named NAME
- whose size is SIZE bytes. The variable ALIGNMENT is the alignment
- specified as the number of bits.
-
- Try to use function 'asm_output_aligned_bss' defined in file
- 'varasm.c' when defining this macro. If unable, use the expression
- 'assemble_name (STREAM, NAME)' to output the name itself; before
- and after that, output the additional assembler syntax for defining
- the name, and a newline.
-
- There are two ways of handling global BSS. One is to define this
- macro. The other is to have 'TARGET_ASM_SELECT_SECTION' return a
- switchable BSS section (*note
- TARGET_HAVE_SWITCHABLE_BSS_SECTIONS::). You do not need to do
- both.
-
- Some languages do not have 'common' data, and require a non-common
- form of global BSS in order to handle uninitialized globals
- efficiently. C++ is one example of this. However, if the target
- does not support global BSS, the front end may choose to make
- globals common in order to save space in the object file.
-
- -- Macro: ASM_OUTPUT_LOCAL (STREAM, NAME, SIZE, ROUNDED)
- A C statement (sans semicolon) to output to the stdio stream STREAM
- the assembler definition of a local-common-label named NAME whose
- size is SIZE bytes. The variable ROUNDED is the size rounded up to
- whatever alignment the caller wants.
-
- Use the expression 'assemble_name (STREAM, NAME)' to output the
- name itself; before and after that, output the additional assembler
- syntax for defining the name, and a newline.
-
- This macro controls how the assembler definitions of uninitialized
- static variables are output.
-
- -- Macro: ASM_OUTPUT_ALIGNED_LOCAL (STREAM, NAME, SIZE, ALIGNMENT)
- Like 'ASM_OUTPUT_LOCAL' except takes the required alignment as a
- separate, explicit argument. If you define this macro, it is used
- in place of 'ASM_OUTPUT_LOCAL', and gives you more flexibility in
- handling the required alignment of the variable. The alignment is
- specified as the number of bits.
-
- -- Macro: ASM_OUTPUT_ALIGNED_DECL_LOCAL (STREAM, DECL, NAME, SIZE,
- ALIGNMENT)
- Like 'ASM_OUTPUT_ALIGNED_DECL' except that DECL of the variable to
- be output, if there is one, or 'NULL_TREE' if there is no
- corresponding variable. If you define this macro, GCC will use it
- in place of both 'ASM_OUTPUT_DECL' and 'ASM_OUTPUT_ALIGNED_DECL'.
- Define this macro when you need to see the variable's decl in order
- to chose what to output.
-
-
-File: gccint.info, Node: Label Output, Next: Initialization, Prev: Uninitialized Data, Up: Assembler Format
-
-17.21.4 Output and Generation of Labels
----------------------------------------
-
-This is about outputting labels.
-
- -- Macro: ASM_OUTPUT_LABEL (STREAM, NAME)
- A C statement (sans semicolon) to output to the stdio stream STREAM
- the assembler definition of a label named NAME. Use the expression
- 'assemble_name (STREAM, NAME)' to output the name itself; before
- and after that, output the additional assembler syntax for defining
- the name, and a newline. A default definition of this macro is
- provided which is correct for most systems.
-
- -- Macro: ASM_OUTPUT_FUNCTION_LABEL (STREAM, NAME, DECL)
- A C statement (sans semicolon) to output to the stdio stream STREAM
- the assembler definition of a label named NAME of a function. Use
- the expression 'assemble_name (STREAM, NAME)' to output the name
- itself; before and after that, output the additional assembler
- syntax for defining the name, and a newline. A default definition
- of this macro is provided which is correct for most systems.
-
- If this macro is not defined, then the function name is defined in
- the usual manner as a label (by means of 'ASM_OUTPUT_LABEL').
-
- -- Macro: ASM_OUTPUT_INTERNAL_LABEL (STREAM, NAME)
- Identical to 'ASM_OUTPUT_LABEL', except that NAME is known to refer
- to a compiler-generated label. The default definition uses
- 'assemble_name_raw', which is like 'assemble_name' except that it
- is more efficient.
-
- -- Macro: SIZE_ASM_OP
- A C string containing the appropriate assembler directive to
- specify the size of a symbol, without any arguments. On systems
- that use ELF, the default (in 'config/elfos.h') is '"\t.size\t"';
- on other systems, the default is not to define this macro.
-
- Define this macro only if it is correct to use the default
- definitions of 'ASM_OUTPUT_SIZE_DIRECTIVE' and
- 'ASM_OUTPUT_MEASURED_SIZE' for your system. If you need your own
- custom definitions of those macros, or if you do not need explicit
- symbol sizes at all, do not define this macro.
-
- -- Macro: ASM_OUTPUT_SIZE_DIRECTIVE (STREAM, NAME, SIZE)
- A C statement (sans semicolon) to output to the stdio stream STREAM
- a directive telling the assembler that the size of the symbol NAME
- is SIZE. SIZE is a 'HOST_WIDE_INT'. If you define 'SIZE_ASM_OP',
- a default definition of this macro is provided.
-
- -- Macro: ASM_OUTPUT_MEASURED_SIZE (STREAM, NAME)
- A C statement (sans semicolon) to output to the stdio stream STREAM
- a directive telling the assembler to calculate the size of the
- symbol NAME by subtracting its address from the current address.
-
- If you define 'SIZE_ASM_OP', a default definition of this macro is
- provided. The default assumes that the assembler recognizes a
- special '.' symbol as referring to the current address, and can
- calculate the difference between this and another symbol. If your
- assembler does not recognize '.' or cannot do calculations with it,
- you will need to redefine 'ASM_OUTPUT_MEASURED_SIZE' to use some
- other technique.
-
- -- Macro: NO_DOLLAR_IN_LABEL
- Define this macro if the assembler does not accept the character
- '$' in label names. By default constructors and destructors in G++
- have '$' in the identifiers. If this macro is defined, '.' is used
- instead.
-
- -- Macro: NO_DOT_IN_LABEL
- Define this macro if the assembler does not accept the character
- '.' in label names. By default constructors and destructors in G++
- have names that use '.'. If this macro is defined, these names are
- rewritten to avoid '.'.
-
- -- Macro: TYPE_ASM_OP
- A C string containing the appropriate assembler directive to
- specify the type of a symbol, without any arguments. On systems
- that use ELF, the default (in 'config/elfos.h') is '"\t.type\t"';
- on other systems, the default is not to define this macro.
-
- Define this macro only if it is correct to use the default
- definition of 'ASM_OUTPUT_TYPE_DIRECTIVE' for your system. If you
- need your own custom definition of this macro, or if you do not
- need explicit symbol types at all, do not define this macro.
-
- -- Macro: TYPE_OPERAND_FMT
- A C string which specifies (using 'printf' syntax) the format of
- the second operand to 'TYPE_ASM_OP'. On systems that use ELF, the
- default (in 'config/elfos.h') is '"@%s"'; on other systems, the
- default is not to define this macro.
-
- Define this macro only if it is correct to use the default
- definition of 'ASM_OUTPUT_TYPE_DIRECTIVE' for your system. If you
- need your own custom definition of this macro, or if you do not
- need explicit symbol types at all, do not define this macro.
-
- -- Macro: ASM_OUTPUT_TYPE_DIRECTIVE (STREAM, TYPE)
- A C statement (sans semicolon) to output to the stdio stream STREAM
- a directive telling the assembler that the type of the symbol NAME
- is TYPE. TYPE is a C string; currently, that string is always
- either '"function"' or '"object"', but you should not count on
- this.
-
- If you define 'TYPE_ASM_OP' and 'TYPE_OPERAND_FMT', a default
- definition of this macro is provided.
-
- -- Macro: ASM_DECLARE_FUNCTION_NAME (STREAM, NAME, DECL)
- A C statement (sans semicolon) to output to the stdio stream STREAM
- any text necessary for declaring the name NAME of a function which
- is being defined. This macro is responsible for outputting the
- label definition (perhaps using 'ASM_OUTPUT_FUNCTION_LABEL'). The
- argument DECL is the 'FUNCTION_DECL' tree node representing the
- function.
-
- If this macro is not defined, then the function name is defined in
- the usual manner as a label (by means of
- 'ASM_OUTPUT_FUNCTION_LABEL').
-
- You may wish to use 'ASM_OUTPUT_TYPE_DIRECTIVE' in the definition
- of this macro.
-
- -- Macro: ASM_DECLARE_FUNCTION_SIZE (STREAM, NAME, DECL)
- A C statement (sans semicolon) to output to the stdio stream STREAM
- any text necessary for declaring the size of a function which is
- being defined. The argument NAME is the name of the function. The
- argument DECL is the 'FUNCTION_DECL' tree node representing the
- function.
-
- If this macro is not defined, then the function size is not
- defined.
-
- You may wish to use 'ASM_OUTPUT_MEASURED_SIZE' in the definition of
- this macro.
-
- -- Macro: ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL)
- A C statement (sans semicolon) to output to the stdio stream STREAM
- any text necessary for declaring the name NAME of an initialized
- variable which is being defined. This macro must output the label
- definition (perhaps using 'ASM_OUTPUT_LABEL'). The argument DECL
- is the 'VAR_DECL' tree node representing the variable.
-
- If this macro is not defined, then the variable name is defined in
- the usual manner as a label (by means of 'ASM_OUTPUT_LABEL').
-
- You may wish to use 'ASM_OUTPUT_TYPE_DIRECTIVE' and/or
- 'ASM_OUTPUT_SIZE_DIRECTIVE' in the definition of this macro.
-
- -- Target Hook: void TARGET_ASM_DECLARE_CONSTANT_NAME (FILE *FILE,
- const char *NAME, const_tree EXPR, HOST_WIDE_INT SIZE)
- A target hook to output to the stdio stream FILE any text necessary
- for declaring the name NAME of a constant which is being defined.
- This target hook is responsible for outputting the label definition
- (perhaps using 'assemble_label'). The argument EXP is the value of
- the constant, and SIZE is the size of the constant in bytes. The
- NAME will be an internal label.
-
- The default version of this target hook, define the NAME in the
- usual manner as a label (by means of 'assemble_label').
-
- You may wish to use 'ASM_OUTPUT_TYPE_DIRECTIVE' in this target
- hook.
-
- -- Macro: ASM_DECLARE_REGISTER_GLOBAL (STREAM, DECL, REGNO, NAME)
- A C statement (sans semicolon) to output to the stdio stream STREAM
- any text necessary for claiming a register REGNO for a global
- variable DECL with name NAME.
-
- If you don't define this macro, that is equivalent to defining it
- to do nothing.
-
- -- Macro: ASM_FINISH_DECLARE_OBJECT (STREAM, DECL, TOPLEVEL, ATEND)
- A C statement (sans semicolon) to finish up declaring a variable
- name once the compiler has processed its initializer fully and thus
- has had a chance to determine the size of an array when controlled
- by an initializer. This is used on systems where it's necessary to
- declare something about the size of the object.
-
- If you don't define this macro, that is equivalent to defining it
- to do nothing.
-
- You may wish to use 'ASM_OUTPUT_SIZE_DIRECTIVE' and/or
- 'ASM_OUTPUT_MEASURED_SIZE' in the definition of this macro.
-
- -- Target Hook: void TARGET_ASM_GLOBALIZE_LABEL (FILE *STREAM, const
- char *NAME)
- This target hook is a function to output to the stdio stream STREAM
- some commands that will make the label NAME global; that is,
- available for reference from other files.
-
- The default implementation relies on a proper definition of
- 'GLOBAL_ASM_OP'.
-
- -- Target Hook: void TARGET_ASM_GLOBALIZE_DECL_NAME (FILE *STREAM, tree
- DECL)
- This target hook is a function to output to the stdio stream STREAM
- some commands that will make the name associated with DECL global;
- that is, available for reference from other files.
-
- The default implementation uses the TARGET_ASM_GLOBALIZE_LABEL
- target hook.
-
- -- Macro: ASM_WEAKEN_LABEL (STREAM, NAME)
- A C statement (sans semicolon) to output to the stdio stream STREAM
- some commands that will make the label NAME weak; that is,
- available for reference from other files but only used if no other
- definition is available. Use the expression 'assemble_name
- (STREAM, NAME)' to output the name itself; before and after that,
- output the additional assembler syntax for making that name weak,
- and a newline.
-
- If you don't define this macro or 'ASM_WEAKEN_DECL', GCC will not
- support weak symbols and you should not define the 'SUPPORTS_WEAK'
- macro.
-
- -- Macro: ASM_WEAKEN_DECL (STREAM, DECL, NAME, VALUE)
- Combines (and replaces) the function of 'ASM_WEAKEN_LABEL' and
- 'ASM_OUTPUT_WEAK_ALIAS', allowing access to the associated function
- or variable decl. If VALUE is not 'NULL', this C statement should
- output to the stdio stream STREAM assembler code which defines
- (equates) the weak symbol NAME to have the value VALUE. If VALUE
- is 'NULL', it should output commands to make NAME weak.
-
- -- Macro: ASM_OUTPUT_WEAKREF (STREAM, DECL, NAME, VALUE)
- Outputs a directive that enables NAME to be used to refer to symbol
- VALUE with weak-symbol semantics. 'decl' is the declaration of
- 'name'.
-
- -- Macro: SUPPORTS_WEAK
- A preprocessor constant expression which evaluates to true if the
- target supports weak symbols.
-
- If you don't define this macro, 'defaults.h' provides a default
- definition. If either 'ASM_WEAKEN_LABEL' or 'ASM_WEAKEN_DECL' is
- defined, the default definition is '1'; otherwise, it is '0'.
-
- -- Macro: TARGET_SUPPORTS_WEAK
- A C expression which evaluates to true if the target supports weak
- symbols.
-
- If you don't define this macro, 'defaults.h' provides a default
- definition. The default definition is '(SUPPORTS_WEAK)'. Define
- this macro if you want to control weak symbol support with a
- compiler flag such as '-melf'.
-
- -- Macro: MAKE_DECL_ONE_ONLY (DECL)
- A C statement (sans semicolon) to mark DECL to be emitted as a
- public symbol such that extra copies in multiple translation units
- will be discarded by the linker. Define this macro if your object
- file format provides support for this concept, such as the 'COMDAT'
- section flags in the Microsoft Windows PE/COFF format, and this
- support requires changes to DECL, such as putting it in a separate
- section.
-
- -- Macro: SUPPORTS_ONE_ONLY
- A C expression which evaluates to true if the target supports
- one-only semantics.
-
- If you don't define this macro, 'varasm.c' provides a default
- definition. If 'MAKE_DECL_ONE_ONLY' is defined, the default
- definition is '1'; otherwise, it is '0'. Define this macro if you
- want to control one-only symbol support with a compiler flag, or if
- setting the 'DECL_ONE_ONLY' flag is enough to mark a declaration to
- be emitted as one-only.
-
- -- Target Hook: void TARGET_ASM_ASSEMBLE_VISIBILITY (tree DECL, int
- VISIBILITY)
- This target hook is a function to output to ASM_OUT_FILE some
- commands that will make the symbol(s) associated with DECL have
- hidden, protected or internal visibility as specified by
- VISIBILITY.
-
- -- Macro: TARGET_WEAK_NOT_IN_ARCHIVE_TOC
- A C expression that evaluates to true if the target's linker
- expects that weak symbols do not appear in a static archive's table
- of contents. The default is '0'.
-
- Leaving weak symbols out of an archive's table of contents means
- that, if a symbol will only have a definition in one translation
- unit and will have undefined references from other translation
- units, that symbol should not be weak. Defining this macro to be
- nonzero will thus have the effect that certain symbols that would
- normally be weak (explicit template instantiations, and vtables for
- polymorphic classes with noninline key methods) will instead be
- nonweak.
-
- The C++ ABI requires this macro to be zero. Define this macro for
- targets where full C++ ABI compliance is impossible and where
- linker restrictions require weak symbols to be left out of a static
- archive's table of contents.
-
- -- Macro: ASM_OUTPUT_EXTERNAL (STREAM, DECL, NAME)
- A C statement (sans semicolon) to output to the stdio stream STREAM
- any text necessary for declaring the name of an external symbol
- named NAME which is referenced in this compilation but not defined.
- The value of DECL is the tree node for the declaration.
-
- This macro need not be defined if it does not need to output
- anything. The GNU assembler and most Unix assemblers don't require
- anything.
-
- -- Target Hook: void TARGET_ASM_EXTERNAL_LIBCALL (rtx SYMREF)
- This target hook is a function to output to ASM_OUT_FILE an
- assembler pseudo-op to declare a library function name external.
- The name of the library function is given by SYMREF, which is a
- 'symbol_ref'.
-
- -- Target Hook: void TARGET_ASM_MARK_DECL_PRESERVED (const char
- *SYMBOL)
- This target hook is a function to output to ASM_OUT_FILE an
- assembler directive to annotate SYMBOL as used. The Darwin target
- uses the .no_dead_code_strip directive.
-
- -- Macro: ASM_OUTPUT_LABELREF (STREAM, NAME)
- A C statement (sans semicolon) to output to the stdio stream STREAM
- a reference in assembler syntax to a label named NAME. This should
- add '_' to the front of the name, if that is customary on your
- operating system, as it is in most Berkeley Unix systems. This
- macro is used in 'assemble_name'.
-
- -- Target Hook: tree TARGET_MANGLE_ASSEMBLER_NAME (const char *NAME)
- Given a symbol NAME, perform same mangling as 'varasm.c''s
- 'assemble_name', but in memory rather than to a file stream,
- returning result as an 'IDENTIFIER_NODE'. Required for correct LTO
- symtabs. The default implementation calls the
- 'TARGET_STRIP_NAME_ENCODING' hook and then prepends the
- 'USER_LABEL_PREFIX', if any.
-
- -- Macro: ASM_OUTPUT_SYMBOL_REF (STREAM, SYM)
- A C statement (sans semicolon) to output a reference to
- 'SYMBOL_REF' SYM. If not defined, 'assemble_name' will be used to
- output the name of the symbol. This macro may be used to modify
- the way a symbol is referenced depending on information encoded by
- 'TARGET_ENCODE_SECTION_INFO'.
-
- -- Macro: ASM_OUTPUT_LABEL_REF (STREAM, BUF)
- A C statement (sans semicolon) to output a reference to BUF, the
- result of 'ASM_GENERATE_INTERNAL_LABEL'. If not defined,
- 'assemble_name' will be used to output the name of the symbol.
- This macro is not used by 'output_asm_label', or the '%l' specifier
- that calls it; the intention is that this macro should be set when
- it is necessary to output a label differently when its address is
- being taken.
-
- -- Target Hook: void TARGET_ASM_INTERNAL_LABEL (FILE *STREAM, const
- char *PREFIX, unsigned long LABELNO)
- A function to output to the stdio stream STREAM a label whose name
- is made from the string PREFIX and the number LABELNO.
-
- It is absolutely essential that these labels be distinct from the
- labels used for user-level functions and variables. Otherwise,
- certain programs will have name conflicts with internal labels.
-
- It is desirable to exclude internal labels from the symbol table of
- the object file. Most assemblers have a naming convention for
- labels that should be excluded; on many systems, the letter 'L' at
- the beginning of a label has this effect. You should find out what
- convention your system uses, and follow it.
-
- The default version of this function utilizes
- 'ASM_GENERATE_INTERNAL_LABEL'.
-
- -- Macro: ASM_OUTPUT_DEBUG_LABEL (STREAM, PREFIX, NUM)
- A C statement to output to the stdio stream STREAM a debug info
- label whose name is made from the string PREFIX and the number NUM.
- This is useful for VLIW targets, where debug info labels may need
- to be treated differently than branch target labels. On some
- systems, branch target labels must be at the beginning of
- instruction bundles, but debug info labels can occur in the middle
- of instruction bundles.
-
- If this macro is not defined, then
- '(*targetm.asm_out.internal_label)' will be used.
-
- -- Macro: ASM_GENERATE_INTERNAL_LABEL (STRING, PREFIX, NUM)
- A C statement to store into the string STRING a label whose name is
- made from the string PREFIX and the number NUM.
-
- This string, when output subsequently by 'assemble_name', should
- produce the output that '(*targetm.asm_out.internal_label)' would
- produce with the same PREFIX and NUM.
-
- If the string begins with '*', then 'assemble_name' will output the
- rest of the string unchanged. It is often convenient for
- 'ASM_GENERATE_INTERNAL_LABEL' to use '*' in this way. If the
- string doesn't start with '*', then 'ASM_OUTPUT_LABELREF' gets to
- output the string, and may change it. (Of course,
- 'ASM_OUTPUT_LABELREF' is also part of your machine description, so
- you should know what it does on your machine.)
-
- -- Macro: ASM_FORMAT_PRIVATE_NAME (OUTVAR, NAME, NUMBER)
- A C expression to assign to OUTVAR (which is a variable of type
- 'char *') a newly allocated string made from the string NAME and
- the number NUMBER, with some suitable punctuation added. Use
- 'alloca' to get space for the string.
-
- The string will be used as an argument to 'ASM_OUTPUT_LABELREF' to
- produce an assembler label for an internal static variable whose
- name is NAME. Therefore, the string must be such as to result in
- valid assembler code. The argument NUMBER is different each time
- this macro is executed; it prevents conflicts between
- similarly-named internal static variables in different scopes.
-
- Ideally this string should not be a valid C identifier, to prevent
- any conflict with the user's own symbols. Most assemblers allow
- periods or percent signs in assembler symbols; putting at least one
- of these between the name and the number will suffice.
-
- If this macro is not defined, a default definition will be provided
- which is correct for most systems.
-
- -- Macro: ASM_OUTPUT_DEF (STREAM, NAME, VALUE)
- A C statement to output to the stdio stream STREAM assembler code
- which defines (equates) the symbol NAME to have the value VALUE.
-
- If 'SET_ASM_OP' is defined, a default definition is provided which
- is correct for most systems.
-
- -- Macro: ASM_OUTPUT_DEF_FROM_DECLS (STREAM, DECL_OF_NAME,
- DECL_OF_VALUE)
- A C statement to output to the stdio stream STREAM assembler code
- which defines (equates) the symbol whose tree node is DECL_OF_NAME
- to have the value of the tree node DECL_OF_VALUE. This macro will
- be used in preference to 'ASM_OUTPUT_DEF' if it is defined and if
- the tree nodes are available.
-
- If 'SET_ASM_OP' is defined, a default definition is provided which
- is correct for most systems.
-
- -- Macro: TARGET_DEFERRED_OUTPUT_DEFS (DECL_OF_NAME, DECL_OF_VALUE)
- A C statement that evaluates to true if the assembler code which
- defines (equates) the symbol whose tree node is DECL_OF_NAME to
- have the value of the tree node DECL_OF_VALUE should be emitted
- near the end of the current compilation unit. The default is to
- not defer output of defines. This macro affects defines output by
- 'ASM_OUTPUT_DEF' and 'ASM_OUTPUT_DEF_FROM_DECLS'.
-
- -- Macro: ASM_OUTPUT_WEAK_ALIAS (STREAM, NAME, VALUE)
- A C statement to output to the stdio stream STREAM assembler code
- which defines (equates) the weak symbol NAME to have the value
- VALUE. If VALUE is 'NULL', it defines NAME as an undefined weak
- symbol.
-
- Define this macro if the target only supports weak aliases; define
- 'ASM_OUTPUT_DEF' instead if possible.
-
- -- Macro: OBJC_GEN_METHOD_LABEL (BUF, IS_INST, CLASS_NAME, CAT_NAME,
- SEL_NAME)
- Define this macro to override the default assembler names used for
- Objective-C methods.
-
- The default name is a unique method number followed by the name of
- the class (e.g. '_1_Foo'). For methods in categories, the name of
- the category is also included in the assembler name (e.g.
- '_1_Foo_Bar').
-
- These names are safe on most systems, but make debugging difficult
- since the method's selector is not present in the name. Therefore,
- particular systems define other ways of computing names.
-
- BUF is an expression of type 'char *' which gives you a buffer in
- which to store the name; its length is as long as CLASS_NAME,
- CAT_NAME and SEL_NAME put together, plus 50 characters extra.
-
- The argument IS_INST specifies whether the method is an instance
- method or a class method; CLASS_NAME is the name of the class;
- CAT_NAME is the name of the category (or 'NULL' if the method is
- not in a category); and SEL_NAME is the name of the selector.
-
- On systems where the assembler can handle quoted names, you can use
- this macro to provide more human-readable names.
-
-
-File: gccint.info, Node: Initialization, Next: Macros for Initialization, Prev: Label Output, Up: Assembler Format
-
-17.21.5 How Initialization Functions Are Handled
-------------------------------------------------
-
-The compiled code for certain languages includes "constructors" (also
-called "initialization routines")--functions to initialize data in the
-program when the program is started. These functions need to be called
-before the program is "started"--that is to say, before 'main' is
-called.
-
- Compiling some languages generates "destructors" (also called
-"termination routines") that should be called when the program
-terminates.
-
- To make the initialization and termination functions work, the compiler
-must output something in the assembler code to cause those functions to
-be called at the appropriate time. When you port the compiler to a new
-system, you need to specify how to do this.
-
- There are two major ways that GCC currently supports the execution of
-initialization and termination functions. Each way has two variants.
-Much of the structure is common to all four variations.
-
- The linker must build two lists of these functions--a list of
-initialization functions, called '__CTOR_LIST__', and a list of
-termination functions, called '__DTOR_LIST__'.
-
- Each list always begins with an ignored function pointer (which may
-hold 0, -1, or a count of the function pointers after it, depending on
-the environment). This is followed by a series of zero or more function
-pointers to constructors (or destructors), followed by a function
-pointer containing zero.
-
- Depending on the operating system and its executable file format,
-either 'crtstuff.c' or 'libgcc2.c' traverses these lists at startup time
-and exit time. Constructors are called in reverse order of the list;
-destructors in forward order.
-
- The best way to handle static constructors works only for object file
-formats which provide arbitrarily-named sections. A section is set
-aside for a list of constructors, and another for a list of destructors.
-Traditionally these are called '.ctors' and '.dtors'. Each object file
-that defines an initialization function also puts a word in the
-constructor section to point to that function. The linker accumulates
-all these words into one contiguous '.ctors' section. Termination
-functions are handled similarly.
-
- This method will be chosen as the default by 'target-def.h' if
-'TARGET_ASM_NAMED_SECTION' is defined. A target that does not support
-arbitrary sections, but does support special designated constructor and
-destructor sections may define 'CTORS_SECTION_ASM_OP' and
-'DTORS_SECTION_ASM_OP' to achieve the same effect.
-
- When arbitrary sections are available, there are two variants,
-depending upon how the code in 'crtstuff.c' is called. On systems that
-support a ".init" section which is executed at program startup, parts of
-'crtstuff.c' are compiled into that section. The program is linked by
-the 'gcc' driver like this:
-
- ld -o OUTPUT_FILE crti.o crtbegin.o ... -lgcc crtend.o crtn.o
-
- The prologue of a function ('__init') appears in the '.init' section of
-'crti.o'; the epilogue appears in 'crtn.o'. Likewise for the function
-'__fini' in the ".fini" section. Normally these files are provided by
-the operating system or by the GNU C library, but are provided by GCC
-for a few targets.
-
- The objects 'crtbegin.o' and 'crtend.o' are (for most targets) compiled
-from 'crtstuff.c'. They contain, among other things, code fragments
-within the '.init' and '.fini' sections that branch to routines in the
-'.text' section. The linker will pull all parts of a section together,
-which results in a complete '__init' function that invokes the routines
-we need at startup.
-
- To use this variant, you must define the 'INIT_SECTION_ASM_OP' macro
-properly.
-
- If no init section is available, when GCC compiles any function called
-'main' (or more accurately, any function designated as a program entry
-point by the language front end calling 'expand_main_function'), it
-inserts a procedure call to '__main' as the first executable code after
-the function prologue. The '__main' function is defined in 'libgcc2.c'
-and runs the global constructors.
-
- In file formats that don't support arbitrary sections, there are again
-two variants. In the simplest variant, the GNU linker (GNU 'ld') and an
-'a.out' format must be used. In this case, 'TARGET_ASM_CONSTRUCTOR' is
-defined to produce a '.stabs' entry of type 'N_SETT', referencing the
-name '__CTOR_LIST__', and with the address of the void function
-containing the initialization code as its value. The GNU linker
-recognizes this as a request to add the value to a "set"; the values are
-accumulated, and are eventually placed in the executable as a vector in
-the format described above, with a leading (ignored) count and a
-trailing zero element. 'TARGET_ASM_DESTRUCTOR' is handled similarly.
-Since no init section is available, the absence of 'INIT_SECTION_ASM_OP'
-causes the compilation of 'main' to call '__main' as above, starting the
-initialization process.
-
- The last variant uses neither arbitrary sections nor the GNU linker.
-This is preferable when you want to do dynamic linking and when using
-file formats which the GNU linker does not support, such as 'ECOFF'. In
-this case, 'TARGET_HAVE_CTORS_DTORS' is false, initialization and
-termination functions are recognized simply by their names. This
-requires an extra program in the linkage step, called 'collect2'. This
-program pretends to be the linker, for use with GCC; it does its job by
-running the ordinary linker, but also arranges to include the vectors of
-initialization and termination functions. These functions are called
-via '__main' as described above. In order to use this method,
-'use_collect2' must be defined in the target in 'config.gcc'.
-
- The following section describes the specific macros that control and
-customize the handling of initialization and termination functions.
-
-
-File: gccint.info, Node: Macros for Initialization, Next: Instruction Output, Prev: Initialization, Up: Assembler Format
-
-17.21.6 Macros Controlling Initialization Routines
---------------------------------------------------
-
-Here are the macros that control how the compiler handles initialization
-and termination functions:
-
- -- Macro: INIT_SECTION_ASM_OP
- If defined, a C string constant, including spacing, for the
- assembler operation to identify the following data as
- initialization code. If not defined, GCC will assume such a
- section does not exist. When you are using special sections for
- initialization and termination functions, this macro also controls
- how 'crtstuff.c' and 'libgcc2.c' arrange to run the initialization
- functions.
-
- -- Macro: HAS_INIT_SECTION
- If defined, 'main' will not call '__main' as described above. This
- macro should be defined for systems that control start-up code on a
- symbol-by-symbol basis, such as OSF/1, and should not be defined
- explicitly for systems that support 'INIT_SECTION_ASM_OP'.
-
- -- Macro: LD_INIT_SWITCH
- If defined, a C string constant for a switch that tells the linker
- that the following symbol is an initialization routine.
-
- -- Macro: LD_FINI_SWITCH
- If defined, a C string constant for a switch that tells the linker
- that the following symbol is a finalization routine.
-
- -- Macro: COLLECT_SHARED_INIT_FUNC (STREAM, FUNC)
- If defined, a C statement that will write a function that can be
- automatically called when a shared library is loaded. The function
- should call FUNC, which takes no arguments. If not defined, and
- the object format requires an explicit initialization function,
- then a function called '_GLOBAL__DI' will be generated.
-
- This function and the following one are used by collect2 when
- linking a shared library that needs constructors or destructors, or
- has DWARF2 exception tables embedded in the code.
-
- -- Macro: COLLECT_SHARED_FINI_FUNC (STREAM, FUNC)
- If defined, a C statement that will write a function that can be
- automatically called when a shared library is unloaded. The
- function should call FUNC, which takes no arguments. If not
- defined, and the object format requires an explicit finalization
- function, then a function called '_GLOBAL__DD' will be generated.
-
- -- Macro: INVOKE__main
- If defined, 'main' will call '__main' despite the presence of
- 'INIT_SECTION_ASM_OP'. This macro should be defined for systems
- where the init section is not actually run automatically, but is
- still useful for collecting the lists of constructors and
- destructors.
-
- -- Macro: SUPPORTS_INIT_PRIORITY
- If nonzero, the C++ 'init_priority' attribute is supported and the
- compiler should emit instructions to control the order of
- initialization of objects. If zero, the compiler will issue an
- error message upon encountering an 'init_priority' attribute.
-
- -- Target Hook: bool TARGET_HAVE_CTORS_DTORS
- This value is true if the target supports some "native" method of
- collecting constructors and destructors to be run at startup and
- exit. It is false if we must use 'collect2'.
-
- -- Target Hook: void TARGET_ASM_CONSTRUCTOR (rtx SYMBOL, int PRIORITY)
- If defined, a function that outputs assembler code to arrange to
- call the function referenced by SYMBOL at initialization time.
-
- Assume that SYMBOL is a 'SYMBOL_REF' for a function taking no
- arguments and with no return value. If the target supports
- initialization priorities, PRIORITY is a value between 0 and
- 'MAX_INIT_PRIORITY'; otherwise it must be 'DEFAULT_INIT_PRIORITY'.
-
- If this macro is not defined by the target, a suitable default will
- be chosen if (1) the target supports arbitrary section names, (2)
- the target defines 'CTORS_SECTION_ASM_OP', or (3) 'USE_COLLECT2' is
- not defined.
-
- -- Target Hook: void TARGET_ASM_DESTRUCTOR (rtx SYMBOL, int PRIORITY)
- This is like 'TARGET_ASM_CONSTRUCTOR' but used for termination
- functions rather than initialization functions.
-
- If 'TARGET_HAVE_CTORS_DTORS' is true, the initialization routine
-generated for the generated object file will have static linkage.
-
- If your system uses 'collect2' as the means of processing constructors,
-then that program normally uses 'nm' to scan an object file for
-constructor functions to be called.
-
- On certain kinds of systems, you can define this macro to make
-'collect2' work faster (and, in some cases, make it work at all):
-
- -- Macro: OBJECT_FORMAT_COFF
- Define this macro if the system uses COFF (Common Object File
- Format) object files, so that 'collect2' can assume this format and
- scan object files directly for dynamic constructor/destructor
- functions.
-
- This macro is effective only in a native compiler; 'collect2' as
- part of a cross compiler always uses 'nm' for the target machine.
-
- -- Macro: REAL_NM_FILE_NAME
- Define this macro as a C string constant containing the file name
- to use to execute 'nm'. The default is to search the path normally
- for 'nm'.
-
- -- Macro: NM_FLAGS
- 'collect2' calls 'nm' to scan object files for static constructors
- and destructors and LTO info. By default, '-n' is passed. Define
- 'NM_FLAGS' to a C string constant if other options are needed to
- get the same output format as GNU 'nm -n' produces.
-
- If your system supports shared libraries and has a program to list the
-dynamic dependencies of a given library or executable, you can define
-these macros to enable support for running initialization and
-termination functions in shared libraries:
-
- -- Macro: LDD_SUFFIX
- Define this macro to a C string constant containing the name of the
- program which lists dynamic dependencies, like 'ldd' under SunOS 4.
-
- -- Macro: PARSE_LDD_OUTPUT (PTR)
- Define this macro to be C code that extracts filenames from the
- output of the program denoted by 'LDD_SUFFIX'. PTR is a variable
- of type 'char *' that points to the beginning of a line of output
- from 'LDD_SUFFIX'. If the line lists a dynamic dependency, the
- code must advance PTR to the beginning of the filename on that
- line. Otherwise, it must set PTR to 'NULL'.
-
- -- Macro: SHLIB_SUFFIX
- Define this macro to a C string constant containing the default
- shared library extension of the target (e.g., '".so"'). 'collect2'
- strips version information after this suffix when generating global
- constructor and destructor names. This define is only needed on
- targets that use 'collect2' to process constructors and
- destructors.
-
-
-File: gccint.info, Node: Instruction Output, Next: Dispatch Tables, Prev: Macros for Initialization, Up: Assembler Format
-
-17.21.7 Output of Assembler Instructions
-----------------------------------------
-
-This describes assembler instruction output.
-
- -- Macro: REGISTER_NAMES
- A C initializer containing the assembler's names for the machine
- registers, each one as a C string constant. This is what
- translates register numbers in the compiler into assembler
- language.
-
- -- Macro: ADDITIONAL_REGISTER_NAMES
- If defined, a C initializer for an array of structures containing a
- name and a register number. This macro defines additional names
- for hard registers, thus allowing the 'asm' option in declarations
- to refer to registers using alternate names.
-
- -- Macro: OVERLAPPING_REGISTER_NAMES
- If defined, a C initializer for an array of structures containing a
- name, a register number and a count of the number of consecutive
- machine registers the name overlaps. This macro defines additional
- names for hard registers, thus allowing the 'asm' option in
- declarations to refer to registers using alternate names. Unlike
- 'ADDITIONAL_REGISTER_NAMES', this macro should be used when the
- register name implies multiple underlying registers.
-
- This macro should be used when it is important that a clobber in an
- 'asm' statement clobbers all the underlying values implied by the
- register name. For example, on ARM, clobbering the
- double-precision VFP register "d0" implies clobbering both
- single-precision registers "s0" and "s1".
-
- -- Macro: ASM_OUTPUT_OPCODE (STREAM, PTR)
- Define this macro if you are using an unusual assembler that
- requires different names for the machine instructions.
-
- The definition is a C statement or statements which output an
- assembler instruction opcode to the stdio stream STREAM. The
- macro-operand PTR is a variable of type 'char *' which points to
- the opcode name in its "internal" form--the form that is written in
- the machine description. The definition should output the opcode
- name to STREAM, performing any translation you desire, and
- increment the variable PTR to point at the end of the opcode so
- that it will not be output twice.
-
- In fact, your macro definition may process less than the entire
- opcode name, or more than the opcode name; but if you want to
- process text that includes '%'-sequences to substitute operands,
- you must take care of the substitution yourself. Just be sure to
- increment PTR over whatever text should not be output normally.
-
- If you need to look at the operand values, they can be found as the
- elements of 'recog_data.operand'.
-
- If the macro definition does nothing, the instruction is output in
- the usual way.
-
- -- Macro: FINAL_PRESCAN_INSN (INSN, OPVEC, NOPERANDS)
- If defined, a C statement to be executed just prior to the output
- of assembler code for INSN, to modify the extracted operands so
- they will be output differently.
-
- Here the argument OPVEC is the vector containing the operands
- extracted from INSN, and NOPERANDS is the number of elements of the
- vector which contain meaningful data for this insn. The contents
- of this vector are what will be used to convert the insn template
- into assembler code, so you can change the assembler output by
- changing the contents of the vector.
-
- This macro is useful when various assembler syntaxes share a single
- file of instruction patterns; by defining this macro differently,
- you can cause a large class of instructions to be output
- differently (such as with rearranged operands). Naturally,
- variations in assembler syntax affecting individual insn patterns
- ought to be handled by writing conditional output routines in those
- patterns.
-
- If this macro is not defined, it is equivalent to a null statement.
-
- -- Target Hook: void TARGET_ASM_FINAL_POSTSCAN_INSN (FILE *FILE, rtx
- INSN, rtx *OPVEC, int NOPERANDS)
- If defined, this target hook is a function which is executed just
- after the output of assembler code for INSN, to change the mode of
- the assembler if necessary.
-
- Here the argument OPVEC is the vector containing the operands
- extracted from INSN, and NOPERANDS is the number of elements of the
- vector which contain meaningful data for this insn. The contents
- of this vector are what was used to convert the insn template into
- assembler code, so you can change the assembler mode by checking
- the contents of the vector.
-
- -- Macro: PRINT_OPERAND (STREAM, X, CODE)
- A C compound statement to output to stdio stream STREAM the
- assembler syntax for an instruction operand X. X is an RTL
- expression.
-
- CODE is a value that can be used to specify one of several ways of
- printing the operand. It is used when identical operands must be
- printed differently depending on the context. CODE comes from the
- '%' specification that was used to request printing of the operand.
- If the specification was just '%DIGIT' then CODE is 0; if the
- specification was '%LTR DIGIT' then CODE is the ASCII code for LTR.
-
- If X is a register, this macro should print the register's name.
- The names can be found in an array 'reg_names' whose type is 'char
- *[]'. 'reg_names' is initialized from 'REGISTER_NAMES'.
-
- When the machine description has a specification '%PUNCT' (a '%'
- followed by a punctuation character), this macro is called with a
- null pointer for X and the punctuation character for CODE.
-
- -- Macro: PRINT_OPERAND_PUNCT_VALID_P (CODE)
- A C expression which evaluates to true if CODE is a valid
- punctuation character for use in the 'PRINT_OPERAND' macro. If
- 'PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
- punctuation characters (except for the standard one, '%') are used
- in this way.
-
- -- Macro: PRINT_OPERAND_ADDRESS (STREAM, X)
- A C compound statement to output to stdio stream STREAM the
- assembler syntax for an instruction operand that is a memory
- reference whose address is X. X is an RTL expression.
-
- On some machines, the syntax for a symbolic address depends on the
- section that the address refers to. On these machines, define the
- hook 'TARGET_ENCODE_SECTION_INFO' to store the information into the
- 'symbol_ref', and then check for it here. *Note Assembler
- Format::.
-
- -- Macro: DBR_OUTPUT_SEQEND (FILE)
- A C statement, to be executed after all slot-filler instructions
- have been output. If necessary, call 'dbr_sequence_length' to
- determine the number of slots filled in a sequence (zero if not
- currently outputting a sequence), to decide how many no-ops to
- output, or whatever.
-
- Don't define this macro if it has nothing to do, but it is helpful
- in reading assembly output if the extent of the delay sequence is
- made explicit (e.g. with white space).
-
- Note that output routines for instructions with delay slots must be
-prepared to deal with not being output as part of a sequence (i.e. when
-the scheduling pass is not run, or when no slot fillers could be found.)
-The variable 'final_sequence' is null when not processing a sequence,
-otherwise it contains the 'sequence' rtx being output.
-
- -- Macro: REGISTER_PREFIX
- -- Macro: LOCAL_LABEL_PREFIX
- -- Macro: USER_LABEL_PREFIX
- -- Macro: IMMEDIATE_PREFIX
- If defined, C string expressions to be used for the '%R', '%L',
- '%U', and '%I' options of 'asm_fprintf' (see 'final.c'). These are
- useful when a single 'md' file must support multiple assembler
- formats. In that case, the various 'tm.h' files can define these
- macros differently.
-
- -- Macro: ASM_FPRINTF_EXTENSIONS (FILE, ARGPTR, FORMAT)
- If defined this macro should expand to a series of 'case'
- statements which will be parsed inside the 'switch' statement of
- the 'asm_fprintf' function. This allows targets to define extra
- printf formats which may useful when generating their assembler
- statements. Note that uppercase letters are reserved for future
- generic extensions to asm_fprintf, and so are not available to
- target specific code. The output file is given by the parameter
- FILE. The varargs input pointer is ARGPTR and the rest of the
- format string, starting the character after the one that is being
- switched upon, is pointed to by FORMAT.
-
- -- Macro: ASSEMBLER_DIALECT
- If your target supports multiple dialects of assembler language
- (such as different opcodes), define this macro as a C expression
- that gives the numeric index of the assembler language dialect to
- use, with zero as the first variant.
-
- If this macro is defined, you may use constructs of the form
- '{option0|option1|option2...}'
- in the output templates of patterns (*note Output Template::) or in
- the first argument of 'asm_fprintf'. This construct outputs
- 'option0', 'option1', 'option2', etc., if the value of
- 'ASSEMBLER_DIALECT' is zero, one, two, etc. Any special characters
- within these strings retain their usual meaning. If there are
- fewer alternatives within the braces than the value of
- 'ASSEMBLER_DIALECT', the construct outputs nothing. If it's needed
- to print curly braces or '|' character in assembler output
- directly, '%{', '%}' and '%|' can be used.
-
- If you do not define this macro, the characters '{', '|' and '}' do
- not have any special meaning when used in templates or operands to
- 'asm_fprintf'.
-
- Define the macros 'REGISTER_PREFIX', 'LOCAL_LABEL_PREFIX',
- 'USER_LABEL_PREFIX' and 'IMMEDIATE_PREFIX' if you can express the
- variations in assembler language syntax with that mechanism.
- Define 'ASSEMBLER_DIALECT' and use the '{option0|option1}' syntax
- if the syntax variant are larger and involve such things as
- different opcodes or operand order.
-
- -- Macro: ASM_OUTPUT_REG_PUSH (STREAM, REGNO)
- A C expression to output to STREAM some assembler code which will
- push hard register number REGNO onto the stack. The code need not
- be optimal, since this macro is used only when profiling.
-
- -- Macro: ASM_OUTPUT_REG_POP (STREAM, REGNO)
- A C expression to output to STREAM some assembler code which will
- pop hard register number REGNO off of the stack. The code need not
- be optimal, since this macro is used only when profiling.
-
-
-File: gccint.info, Node: Dispatch Tables, Next: Exception Region Output, Prev: Instruction Output, Up: Assembler Format
-
-17.21.8 Output of Dispatch Tables
----------------------------------
-
-This concerns dispatch tables.
-
- -- Macro: ASM_OUTPUT_ADDR_DIFF_ELT (STREAM, BODY, VALUE, REL)
- A C statement to output to the stdio stream STREAM an assembler
- pseudo-instruction to generate a difference between two labels.
- VALUE and REL are the numbers of two internal labels. The
- definitions of these labels are output using
- '(*targetm.asm_out.internal_label)', and they must be printed in
- the same way here. For example,
-
- fprintf (STREAM, "\t.word L%d-L%d\n",
- VALUE, REL)
-
- You must provide this macro on machines where the addresses in a
- dispatch table are relative to the table's own address. If
- defined, GCC will also use this macro on all machines when
- producing PIC. BODY is the body of the 'ADDR_DIFF_VEC'; it is
- provided so that the mode and flags can be read.
-
- -- Macro: ASM_OUTPUT_ADDR_VEC_ELT (STREAM, VALUE)
- This macro should be provided on machines where the addresses in a
- dispatch table are absolute.
-
- The definition should be a C statement to output to the stdio
- stream STREAM an assembler pseudo-instruction to generate a
- reference to a label. VALUE is the number of an internal label
- whose definition is output using
- '(*targetm.asm_out.internal_label)'. For example,
-
- fprintf (STREAM, "\t.word L%d\n", VALUE)
-
- -- Macro: ASM_OUTPUT_CASE_LABEL (STREAM, PREFIX, NUM, TABLE)
- Define this if the label before a jump-table needs to be output
- specially. The first three arguments are the same as for
- '(*targetm.asm_out.internal_label)'; the fourth argument is the
- jump-table which follows (a 'jump_table_data' containing an
- 'addr_vec' or 'addr_diff_vec').
-
- This feature is used on system V to output a 'swbeg' statement for
- the table.
-
- If this macro is not defined, these labels are output with
- '(*targetm.asm_out.internal_label)'.
-
- -- Macro: ASM_OUTPUT_CASE_END (STREAM, NUM, TABLE)
- Define this if something special must be output at the end of a
- jump-table. The definition should be a C statement to be executed
- after the assembler code for the table is written. It should write
- the appropriate code to stdio stream STREAM. The argument TABLE is
- the jump-table insn, and NUM is the label-number of the preceding
- label.
-
- If this macro is not defined, nothing special is output at the end
- of the jump-table.
-
- -- Target Hook: void TARGET_ASM_EMIT_UNWIND_LABEL (FILE *STREAM, tree
- DECL, int FOR_EH, int EMPTY)
- This target hook emits a label at the beginning of each FDE. It
- should be defined on targets where FDEs need special labels, and it
- should write the appropriate label, for the FDE associated with the
- function declaration DECL, to the stdio stream STREAM. The third
- argument, FOR_EH, is a boolean: true if this is for an exception
- table. The fourth argument, EMPTY, is a boolean: true if this is a
- placeholder label for an omitted FDE.
-
- The default is that FDEs are not given nonlocal labels.
-
- -- Target Hook: void TARGET_ASM_EMIT_EXCEPT_TABLE_LABEL (FILE *STREAM)
- This target hook emits a label at the beginning of the exception
- table. It should be defined on targets where it is desirable for
- the table to be broken up according to function.
-
- The default is that no label is emitted.
-
- -- Target Hook: void TARGET_ASM_EMIT_EXCEPT_PERSONALITY (rtx
- PERSONALITY)
- If the target implements 'TARGET_ASM_UNWIND_EMIT', this hook may be
- used to emit a directive to install a personality hook into the
- unwind info. This hook should not be used if dwarf2 unwind info is
- used.
-
- -- Target Hook: void TARGET_ASM_UNWIND_EMIT (FILE *STREAM, rtx INSN)
- This target hook emits assembly directives required to unwind the
- given instruction. This is only used when
- 'TARGET_EXCEPT_UNWIND_INFO' returns 'UI_TARGET'.
-
- -- Target Hook: bool TARGET_ASM_UNWIND_EMIT_BEFORE_INSN
- True if the 'TARGET_ASM_UNWIND_EMIT' hook should be called before
- the assembly for INSN has been emitted, false if the hook should be
- called afterward.
-
-
-File: gccint.info, Node: Exception Region Output, Next: Alignment Output, Prev: Dispatch Tables, Up: Assembler Format
-
-17.21.9 Assembler Commands for Exception Regions
-------------------------------------------------
-
-This describes commands marking the start and the end of an exception
-region.
-
- -- Macro: EH_FRAME_SECTION_NAME
- If defined, a C string constant for the name of the section
- containing exception handling frame unwind information. If not
- defined, GCC will provide a default definition if the target
- supports named sections. 'crtstuff.c' uses this macro to switch to
- the appropriate section.
-
- You should define this symbol if your target supports DWARF 2 frame
- unwind information and the default definition does not work.
-
- -- Macro: EH_FRAME_IN_DATA_SECTION
- If defined, DWARF 2 frame unwind information will be placed in the
- data section even though the target supports named sections. This
- might be necessary, for instance, if the system linker does garbage
- collection and sections cannot be marked as not to be collected.
-
- Do not define this macro unless 'TARGET_ASM_NAMED_SECTION' is also
- defined.
-
- -- Macro: EH_TABLES_CAN_BE_READ_ONLY
- Define this macro to 1 if your target is such that no frame unwind
- information encoding used with non-PIC code will ever require a
- runtime relocation, but the linker may not support merging
- read-only and read-write sections into a single read-write section.
-
- -- Macro: MASK_RETURN_ADDR
- An rtx used to mask the return address found via 'RETURN_ADDR_RTX',
- so that it does not contain any extraneous set bits in it.
-
- -- Macro: DWARF2_UNWIND_INFO
- Define this macro to 0 if your target supports DWARF 2 frame unwind
- information, but it does not yet work with exception handling.
- Otherwise, if your target supports this information (if it defines
- 'INCOMING_RETURN_ADDR_RTX' and 'OBJECT_FORMAT_ELF'), GCC will
- provide a default definition of 1.
-
- -- Common Target Hook: enum unwind_info_type TARGET_EXCEPT_UNWIND_INFO
- (struct gcc_options *OPTS)
- This hook defines the mechanism that will be used for exception
- handling by the target. If the target has ABI specified unwind
- tables, the hook should return 'UI_TARGET'. If the target is to
- use the 'setjmp'/'longjmp'-based exception handling scheme, the
- hook should return 'UI_SJLJ'. If the target supports DWARF 2 frame
- unwind information, the hook should return 'UI_DWARF2'.
-
- A target may, if exceptions are disabled, choose to return
- 'UI_NONE'. This may end up simplifying other parts of
- target-specific code. The default implementation of this hook
- never returns 'UI_NONE'.
-
- Note that the value returned by this hook should be constant. It
- should not depend on anything except the command-line switches
- described by OPTS. In particular, the setting 'UI_SJLJ' must be
- fixed at compiler start-up as C pre-processor macros and builtin
- functions related to exception handling are set up depending on
- this setting.
-
- The default implementation of the hook first honors the
- '--enable-sjlj-exceptions' configure option, then
- 'DWARF2_UNWIND_INFO', and finally defaults to 'UI_SJLJ'. If
- 'DWARF2_UNWIND_INFO' depends on command-line options, the target
- must define this hook so that OPTS is used correctly.
-
- -- Common Target Hook: bool TARGET_UNWIND_TABLES_DEFAULT
- This variable should be set to 'true' if the target ABI requires
- unwinding tables even when exceptions are not used. It must not be
- modified by command-line option processing.
-
- -- Macro: DONT_USE_BUILTIN_SETJMP
- Define this macro to 1 if the 'setjmp'/'longjmp'-based scheme
- should use the 'setjmp'/'longjmp' functions from the C library
- instead of the '__builtin_setjmp'/'__builtin_longjmp' machinery.
-
- -- Macro: JMP_BUF_SIZE
- This macro has no effect unless 'DONT_USE_BUILTIN_SETJMP' is also
- defined. Define this macro if the default size of 'jmp_buf' buffer
- for the 'setjmp'/'longjmp'-based exception handling mechanism is
- not large enough, or if it is much too large. The default size is
- 'FIRST_PSEUDO_REGISTER * sizeof(void *)'.
-
- -- Macro: DWARF_CIE_DATA_ALIGNMENT
- This macro need only be defined if the target might save registers
- in the function prologue at an offset to the stack pointer that is
- not aligned to 'UNITS_PER_WORD'. The definition should be the
- negative minimum alignment if 'STACK_GROWS_DOWNWARD' is defined,
- and the positive minimum alignment otherwise. *Note SDB and
- DWARF::. Only applicable if the target supports DWARF 2 frame
- unwind information.
-
- -- Target Hook: bool TARGET_TERMINATE_DW2_EH_FRAME_INFO
- Contains the value true if the target should add a zero word onto
- the end of a Dwarf-2 frame info section when used for exception
- handling. Default value is false if 'EH_FRAME_SECTION_NAME' is
- defined, and true otherwise.
-
- -- Target Hook: rtx TARGET_DWARF_REGISTER_SPAN (rtx REG)
- Given a register, this hook should return a parallel of registers
- to represent where to find the register pieces. Define this hook
- if the register and its mode are represented in Dwarf in
- non-contiguous locations, or if the register should be represented
- in more than one register in Dwarf. Otherwise, this hook should
- return 'NULL_RTX'. If not defined, the default is to return
- 'NULL_RTX'.
-
- -- Target Hook: void TARGET_INIT_DWARF_REG_SIZES_EXTRA (tree ADDRESS)
- If some registers are represented in Dwarf-2 unwind information in
- multiple pieces, define this hook to fill in information about the
- sizes of those pieces in the table used by the unwinder at runtime.
- It will be called by 'expand_builtin_init_dwarf_reg_sizes' after
- filling in a single size corresponding to each hard register;
- ADDRESS is the address of the table.
-
- -- Target Hook: bool TARGET_ASM_TTYPE (rtx SYM)
- This hook is used to output a reference from a frame unwinding
- table to the type_info object identified by SYM. It should return
- 'true' if the reference was output. Returning 'false' will cause
- the reference to be output using the normal Dwarf2 routines.
-
- -- Target Hook: bool TARGET_ARM_EABI_UNWINDER
- This flag should be set to 'true' on targets that use an ARM EABI
- based unwinding library, and 'false' on other targets. This
- effects the format of unwinding tables, and how the unwinder in
- entered after running a cleanup. The default is 'false'.
-
-
-File: gccint.info, Node: Alignment Output, Prev: Exception Region Output, Up: Assembler Format
-
-17.21.10 Assembler Commands for Alignment
------------------------------------------
-
-This describes commands for alignment.
-
- -- Macro: JUMP_ALIGN (LABEL)
- The alignment (log base 2) to put in front of LABEL, which is a
- common destination of jumps and has no fallthru incoming edge.
-
- This macro need not be defined if you don't want any special
- alignment to be done at such a time. Most machine descriptions do
- not currently define the macro.
-
- Unless it's necessary to inspect the LABEL parameter, it is better
- to set the variable ALIGN_JUMPS in the target's
- 'TARGET_OPTION_OVERRIDE'. Otherwise, you should try to honor the
- user's selection in ALIGN_JUMPS in a 'JUMP_ALIGN' implementation.
-
- -- Target Hook: int TARGET_ASM_JUMP_ALIGN_MAX_SKIP (rtx LABEL)
- The maximum number of bytes to skip before LABEL when applying
- 'JUMP_ALIGN'. This works only if 'ASM_OUTPUT_MAX_SKIP_ALIGN' is
- defined.
-
- -- Macro: LABEL_ALIGN_AFTER_BARRIER (LABEL)
- The alignment (log base 2) to put in front of LABEL, which follows
- a 'BARRIER'.
-
- This macro need not be defined if you don't want any special
- alignment to be done at such a time. Most machine descriptions do
- not currently define the macro.
-
- -- Target Hook: int TARGET_ASM_LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP (rtx
- LABEL)
- The maximum number of bytes to skip before LABEL when applying
- 'LABEL_ALIGN_AFTER_BARRIER'. This works only if
- 'ASM_OUTPUT_MAX_SKIP_ALIGN' is defined.
-
- -- Macro: LOOP_ALIGN (LABEL)
- The alignment (log base 2) to put in front of LABEL that heads a
- frequently executed basic block (usually the header of a loop).
-
- This macro need not be defined if you don't want any special
- alignment to be done at such a time. Most machine descriptions do
- not currently define the macro.
-
- Unless it's necessary to inspect the LABEL parameter, it is better
- to set the variable 'align_loops' in the target's
- 'TARGET_OPTION_OVERRIDE'. Otherwise, you should try to honor the
- user's selection in 'align_loops' in a 'LOOP_ALIGN' implementation.
-
- -- Target Hook: int TARGET_ASM_LOOP_ALIGN_MAX_SKIP (rtx LABEL)
- The maximum number of bytes to skip when applying 'LOOP_ALIGN' to
- LABEL. This works only if 'ASM_OUTPUT_MAX_SKIP_ALIGN' is defined.
-
- -- Macro: LABEL_ALIGN (LABEL)
- The alignment (log base 2) to put in front of LABEL. If
- 'LABEL_ALIGN_AFTER_BARRIER' / 'LOOP_ALIGN' specify a different
- alignment, the maximum of the specified values is used.
-
- Unless it's necessary to inspect the LABEL parameter, it is better
- to set the variable 'align_labels' in the target's
- 'TARGET_OPTION_OVERRIDE'. Otherwise, you should try to honor the
- user's selection in 'align_labels' in a 'LABEL_ALIGN'
- implementation.
-
- -- Target Hook: int TARGET_ASM_LABEL_ALIGN_MAX_SKIP (rtx LABEL)
- The maximum number of bytes to skip when applying 'LABEL_ALIGN' to
- LABEL. This works only if 'ASM_OUTPUT_MAX_SKIP_ALIGN' is defined.
-
- -- Macro: ASM_OUTPUT_SKIP (STREAM, NBYTES)
- A C statement to output to the stdio stream STREAM an assembler
- instruction to advance the location counter by NBYTES bytes. Those
- bytes should be zero when loaded. NBYTES will be a C expression of
- type 'unsigned HOST_WIDE_INT'.
-
- -- Macro: ASM_NO_SKIP_IN_TEXT
- Define this macro if 'ASM_OUTPUT_SKIP' should not be used in the
- text section because it fails to put zeros in the bytes that are
- skipped. This is true on many Unix systems, where the pseudo-op to
- skip bytes produces no-op instructions rather than zeros when used
- in the text section.
-
- -- Macro: ASM_OUTPUT_ALIGN (STREAM, POWER)
- A C statement to output to the stdio stream STREAM an assembler
- command to advance the location counter to a multiple of 2 to the
- POWER bytes. POWER will be a C expression of type 'int'.
-
- -- Macro: ASM_OUTPUT_ALIGN_WITH_NOP (STREAM, POWER)
- Like 'ASM_OUTPUT_ALIGN', except that the "nop" instruction is used
- for padding, if necessary.
-
- -- Macro: ASM_OUTPUT_MAX_SKIP_ALIGN (STREAM, POWER, MAX_SKIP)
- A C statement to output to the stdio stream STREAM an assembler
- command to advance the location counter to a multiple of 2 to the
- POWER bytes, but only if MAX_SKIP or fewer bytes are needed to
- satisfy the alignment request. POWER and MAX_SKIP will be a C
- expression of type 'int'.
-
-
-File: gccint.info, Node: Debugging Info, Next: Floating Point, Prev: Assembler Format, Up: Target Macros
-
-17.22 Controlling Debugging Information Format
-==============================================
-
-This describes how to specify debugging information.
-
-* Menu:
-
-* All Debuggers:: Macros that affect all debugging formats uniformly.
-* DBX Options:: Macros enabling specific options in DBX format.
-* DBX Hooks:: Hook macros for varying DBX format.
-* File Names and DBX:: Macros controlling output of file names in DBX format.
-* SDB and DWARF:: Macros for SDB (COFF) and DWARF formats.
-* VMS Debug:: Macros for VMS debug format.
-
-
-File: gccint.info, Node: All Debuggers, Next: DBX Options, Up: Debugging Info
-
-17.22.1 Macros Affecting All Debugging Formats
-----------------------------------------------
-
-These macros affect all debugging formats.
-
- -- Macro: DBX_REGISTER_NUMBER (REGNO)
- A C expression that returns the DBX register number for the
- compiler register number REGNO. In the default macro provided, the
- value of this expression will be REGNO itself. But sometimes there
- are some registers that the compiler knows about and DBX does not,
- or vice versa. In such cases, some register may need to have one
- number in the compiler and another for DBX.
-
- If two registers have consecutive numbers inside GCC, and they can
- be used as a pair to hold a multiword value, then they _must_ have
- consecutive numbers after renumbering with 'DBX_REGISTER_NUMBER'.
- Otherwise, debuggers will be unable to access such a pair, because
- they expect register pairs to be consecutive in their own numbering
- scheme.
-
- If you find yourself defining 'DBX_REGISTER_NUMBER' in way that
- does not preserve register pairs, then what you must do instead is
- redefine the actual register numbering scheme.
-
- -- Macro: DEBUGGER_AUTO_OFFSET (X)
- A C expression that returns the integer offset value for an
- automatic variable having address X (an RTL expression). The
- default computation assumes that X is based on the frame-pointer
- and gives the offset from the frame-pointer. This is required for
- targets that produce debugging output for DBX or COFF-style
- debugging output for SDB and allow the frame-pointer to be
- eliminated when the '-g' options is used.
-
- -- Macro: DEBUGGER_ARG_OFFSET (OFFSET, X)
- A C expression that returns the integer offset value for an
- argument having address X (an RTL expression). The nominal offset
- is OFFSET.
-
- -- Macro: PREFERRED_DEBUGGING_TYPE
- A C expression that returns the type of debugging output GCC should
- produce when the user specifies just '-g'. Define this if you have
- arranged for GCC to support more than one format of debugging
- output. Currently, the allowable values are 'DBX_DEBUG',
- 'SDB_DEBUG', 'DWARF_DEBUG', 'DWARF2_DEBUG', 'XCOFF_DEBUG',
- 'VMS_DEBUG', and 'VMS_AND_DWARF2_DEBUG'.
-
- When the user specifies '-ggdb', GCC normally also uses the value
- of this macro to select the debugging output format, but with two
- exceptions. If 'DWARF2_DEBUGGING_INFO' is defined, GCC uses the
- value 'DWARF2_DEBUG'. Otherwise, if 'DBX_DEBUGGING_INFO' is
- defined, GCC uses 'DBX_DEBUG'.
-
- The value of this macro only affects the default debugging output;
- the user can always get a specific type of output by using
- '-gstabs', '-gcoff', '-gdwarf-2', '-gxcoff', or '-gvms'.
-
-
-File: gccint.info, Node: DBX Options, Next: DBX Hooks, Prev: All Debuggers, Up: Debugging Info
-
-17.22.2 Specific Options for DBX Output
----------------------------------------
-
-These are specific options for DBX output.
-
- -- Macro: DBX_DEBUGGING_INFO
- Define this macro if GCC should produce debugging output for DBX in
- response to the '-g' option.
-
- -- Macro: XCOFF_DEBUGGING_INFO
- Define this macro if GCC should produce XCOFF format debugging
- output in response to the '-g' option. This is a variant of DBX
- format.
-
- -- Macro: DEFAULT_GDB_EXTENSIONS
- Define this macro to control whether GCC should by default generate
- GDB's extended version of DBX debugging information (assuming
- DBX-format debugging information is enabled at all). If you don't
- define the macro, the default is 1: always generate the extended
- information if there is any occasion to.
-
- -- Macro: DEBUG_SYMS_TEXT
- Define this macro if all '.stabs' commands should be output while
- in the text section.
-
- -- Macro: ASM_STABS_OP
- A C string constant, including spacing, naming the assembler pseudo
- op to use instead of '"\t.stabs\t"' to define an ordinary debugging
- symbol. If you don't define this macro, '"\t.stabs\t"' is used.
- This macro applies only to DBX debugging information format.
-
- -- Macro: ASM_STABD_OP
- A C string constant, including spacing, naming the assembler pseudo
- op to use instead of '"\t.stabd\t"' to define a debugging symbol
- whose value is the current location. If you don't define this
- macro, '"\t.stabd\t"' is used. This macro applies only to DBX
- debugging information format.
-
- -- Macro: ASM_STABN_OP
- A C string constant, including spacing, naming the assembler pseudo
- op to use instead of '"\t.stabn\t"' to define a debugging symbol
- with no name. If you don't define this macro, '"\t.stabn\t"' is
- used. This macro applies only to DBX debugging information format.
-
- -- Macro: DBX_NO_XREFS
- Define this macro if DBX on your system does not support the
- construct 'xsTAGNAME'. On some systems, this construct is used to
- describe a forward reference to a structure named TAGNAME. On
- other systems, this construct is not supported at all.
-
- -- Macro: DBX_CONTIN_LENGTH
- A symbol name in DBX-format debugging information is normally
- continued (split into two separate '.stabs' directives) when it
- exceeds a certain length (by default, 80 characters). On some
- operating systems, DBX requires this splitting; on others,
- splitting must not be done. You can inhibit splitting by defining
- this macro with the value zero. You can override the default
- splitting-length by defining this macro as an expression for the
- length you desire.
-
- -- Macro: DBX_CONTIN_CHAR
- Normally continuation is indicated by adding a '\' character to the
- end of a '.stabs' string when a continuation follows. To use a
- different character instead, define this macro as a character
- constant for the character you want to use. Do not define this
- macro if backslash is correct for your system.
-
- -- Macro: DBX_STATIC_STAB_DATA_SECTION
- Define this macro if it is necessary to go to the data section
- before outputting the '.stabs' pseudo-op for a non-global static
- variable.
-
- -- Macro: DBX_TYPE_DECL_STABS_CODE
- The value to use in the "code" field of the '.stabs' directive for
- a typedef. The default is 'N_LSYM'.
-
- -- Macro: DBX_STATIC_CONST_VAR_CODE
- The value to use in the "code" field of the '.stabs' directive for
- a static variable located in the text section. DBX format does not
- provide any "right" way to do this. The default is 'N_FUN'.
-
- -- Macro: DBX_REGPARM_STABS_CODE
- The value to use in the "code" field of the '.stabs' directive for
- a parameter passed in registers. DBX format does not provide any
- "right" way to do this. The default is 'N_RSYM'.
-
- -- Macro: DBX_REGPARM_STABS_LETTER
- The letter to use in DBX symbol data to identify a symbol as a
- parameter passed in registers. DBX format does not customarily
- provide any way to do this. The default is ''P''.
-
- -- Macro: DBX_FUNCTION_FIRST
- Define this macro if the DBX information for a function and its
- arguments should precede the assembler code for the function.
- Normally, in DBX format, the debugging information entirely follows
- the assembler code.
-
- -- Macro: DBX_BLOCKS_FUNCTION_RELATIVE
- Define this macro, with value 1, if the value of a symbol
- describing the scope of a block ('N_LBRAC' or 'N_RBRAC') should be
- relative to the start of the enclosing function. Normally, GCC
- uses an absolute address.
-
- -- Macro: DBX_LINES_FUNCTION_RELATIVE
- Define this macro, with value 1, if the value of a symbol
- indicating the current line number ('N_SLINE') should be relative
- to the start of the enclosing function. Normally, GCC uses an
- absolute address.
-
- -- Macro: DBX_USE_BINCL
- Define this macro if GCC should generate 'N_BINCL' and 'N_EINCL'
- stabs for included header files, as on Sun systems. This macro
- also directs GCC to output a type number as a pair of a file number
- and a type number within the file. Normally, GCC does not generate
- 'N_BINCL' or 'N_EINCL' stabs, and it outputs a single number for a
- type number.
-
-
-File: gccint.info, Node: DBX Hooks, Next: File Names and DBX, Prev: DBX Options, Up: Debugging Info
-
-17.22.3 Open-Ended Hooks for DBX Format
----------------------------------------
-
-These are hooks for DBX format.
-
- -- Macro: DBX_OUTPUT_SOURCE_LINE (STREAM, LINE, COUNTER)
- A C statement to output DBX debugging information before code for
- line number LINE of the current source file to the stdio stream
- STREAM. COUNTER is the number of time the macro was invoked,
- including the current invocation; it is intended to generate unique
- labels in the assembly output.
-
- This macro should not be defined if the default output is correct,
- or if it can be made correct by defining
- 'DBX_LINES_FUNCTION_RELATIVE'.
-
- -- Macro: NO_DBX_FUNCTION_END
- Some stabs encapsulation formats (in particular ECOFF), cannot
- handle the '.stabs "",N_FUN,,0,0,Lscope-function-1' gdb dbx
- extension construct. On those machines, define this macro to turn
- this feature off without disturbing the rest of the gdb extensions.
-
- -- Macro: NO_DBX_BNSYM_ENSYM
- Some assemblers cannot handle the '.stabd BNSYM/ENSYM,0,0' gdb dbx
- extension construct. On those machines, define this macro to turn
- this feature off without disturbing the rest of the gdb extensions.
-
-
-File: gccint.info, Node: File Names and DBX, Next: SDB and DWARF, Prev: DBX Hooks, Up: Debugging Info
-
-17.22.4 File Names in DBX Format
---------------------------------
-
-This describes file names in DBX format.
-
- -- Macro: DBX_OUTPUT_MAIN_SOURCE_FILENAME (STREAM, NAME)
- A C statement to output DBX debugging information to the stdio
- stream STREAM, which indicates that file NAME is the main source
- file--the file specified as the input file for compilation. This
- macro is called only once, at the beginning of compilation.
-
- This macro need not be defined if the standard form of output for
- DBX debugging information is appropriate.
-
- It may be necessary to refer to a label equal to the beginning of
- the text section. You can use 'assemble_name (stream,
- ltext_label_name)' to do so. If you do this, you must also set the
- variable USED_LTEXT_LABEL_NAME to 'true'.
-
- -- Macro: NO_DBX_MAIN_SOURCE_DIRECTORY
- Define this macro, with value 1, if GCC should not emit an
- indication of the current directory for compilation and current
- source language at the beginning of the file.
-
- -- Macro: NO_DBX_GCC_MARKER
- Define this macro, with value 1, if GCC should not emit an
- indication that this object file was compiled by GCC. The default
- is to emit an 'N_OPT' stab at the beginning of every source file,
- with 'gcc2_compiled.' for the string and value 0.
-
- -- Macro: DBX_OUTPUT_MAIN_SOURCE_FILE_END (STREAM, NAME)
- A C statement to output DBX debugging information at the end of
- compilation of the main source file NAME. Output should be written
- to the stdio stream STREAM.
-
- If you don't define this macro, nothing special is output at the
- end of compilation, which is correct for most machines.
-
- -- Macro: DBX_OUTPUT_NULL_N_SO_AT_MAIN_SOURCE_FILE_END
- Define this macro _instead of_ defining
- 'DBX_OUTPUT_MAIN_SOURCE_FILE_END', if what needs to be output at
- the end of compilation is an 'N_SO' stab with an empty string,
- whose value is the highest absolute text address in the file.
-
-
-File: gccint.info, Node: SDB and DWARF, Next: VMS Debug, Prev: File Names and DBX, Up: Debugging Info
-
-17.22.5 Macros for SDB and DWARF Output
----------------------------------------
-
-Here are macros for SDB and DWARF output.
-
- -- Macro: SDB_DEBUGGING_INFO
- Define this macro if GCC should produce COFF-style debugging output
- for SDB in response to the '-g' option.
-
- -- Macro: DWARF2_DEBUGGING_INFO
- Define this macro if GCC should produce dwarf version 2 format
- debugging output in response to the '-g' option.
-
- -- Target Hook: int TARGET_DWARF_CALLING_CONVENTION (const_tree
- FUNCTION)
- Define this to enable the dwarf attribute
- 'DW_AT_calling_convention' to be emitted for each function.
- Instead of an integer return the enum value for the 'DW_CC_'
- tag.
-
- To support optional call frame debugging information, you must also
- define 'INCOMING_RETURN_ADDR_RTX' and either set
- 'RTX_FRAME_RELATED_P' on the prologue insns if you use RTL for the
- prologue, or call 'dwarf2out_def_cfa' and 'dwarf2out_reg_save' as
- appropriate from 'TARGET_ASM_FUNCTION_PROLOGUE' if you don't.
-
- -- Macro: DWARF2_FRAME_INFO
- Define this macro to a nonzero value if GCC should always output
- Dwarf 2 frame information. If 'TARGET_EXCEPT_UNWIND_INFO' (*note
- Exception Region Output::) returns 'UI_DWARF2', and exceptions are
- enabled, GCC will output this information not matter how you define
- 'DWARF2_FRAME_INFO'.
-
- -- Target Hook: enum unwind_info_type TARGET_DEBUG_UNWIND_INFO (void)
- This hook defines the mechanism that will be used for describing
- frame unwind information to the debugger. Normally the hook will
- return 'UI_DWARF2' if DWARF 2 debug information is enabled, and
- return 'UI_NONE' otherwise.
-
- A target may return 'UI_DWARF2' even when DWARF 2 debug information
- is disabled in order to always output DWARF 2 frame information.
-
- A target may return 'UI_TARGET' if it has ABI specified unwind
- tables. This will suppress generation of the normal debug frame
- unwind information.
-
- -- Macro: DWARF2_ASM_LINE_DEBUG_INFO
- Define this macro to be a nonzero value if the assembler can
- generate Dwarf 2 line debug info sections. This will result in
- much more compact line number tables, and hence is desirable if it
- works.
-
- -- Target Hook: bool TARGET_WANT_DEBUG_PUB_SECTIONS
- True if the '.debug_pubtypes' and '.debug_pubnames' sections should
- be emitted. These sections are not used on most platforms, and in
- particular GDB does not use them.
-
- -- Target Hook: bool TARGET_FORCE_AT_COMP_DIR
- True if the 'DW_AT_comp_dir' attribute should be emitted for each
- compilation unit. This attribute is required for the darwin linker
- to emit debug information.
-
- -- Target Hook: bool TARGET_DELAY_SCHED2
- True if sched2 is not to be run at its normal place. This usually
- means it will be run as part of machine-specific reorg.
-
- -- Target Hook: bool TARGET_DELAY_VARTRACK
- True if vartrack is not to be run at its normal place. This
- usually means it will be run as part of machine-specific reorg.
-
- -- Macro: ASM_OUTPUT_DWARF_DELTA (STREAM, SIZE, LABEL1, LABEL2)
- A C statement to issue assembly directives that create a difference
- LAB1 minus LAB2, using an integer of the given SIZE.
-
- -- Macro: ASM_OUTPUT_DWARF_VMS_DELTA (STREAM, SIZE, LABEL1, LABEL2)
- A C statement to issue assembly directives that create a difference
- between the two given labels in system defined units, e.g.
- instruction slots on IA64 VMS, using an integer of the given size.
-
- -- Macro: ASM_OUTPUT_DWARF_OFFSET (STREAM, SIZE, LABEL, SECTION)
- A C statement to issue assembly directives that create a
- section-relative reference to the given LABEL, using an integer of
- the given SIZE. The label is known to be defined in the given
- SECTION.
-
- -- Macro: ASM_OUTPUT_DWARF_PCREL (STREAM, SIZE, LABEL)
- A C statement to issue assembly directives that create a
- self-relative reference to the given LABEL, using an integer of the
- given SIZE.
-
- -- Macro: ASM_OUTPUT_DWARF_TABLE_REF (LABEL)
- A C statement to issue assembly directives that create a reference
- to the DWARF table identifier LABEL from the current section. This
- is used on some systems to avoid garbage collecting a DWARF table
- which is referenced by a function.
-
- -- Target Hook: void TARGET_ASM_OUTPUT_DWARF_DTPREL (FILE *FILE, int
- SIZE, rtx X)
- If defined, this target hook is a function which outputs a
- DTP-relative reference to the given TLS symbol of the specified
- size.
-
- -- Macro: PUT_SDB_ ...
- Define these macros to override the assembler syntax for the
- special SDB assembler directives. See 'sdbout.c' for a list of
- these macros and their arguments. If the standard syntax is used,
- you need not define them yourself.
-
- -- Macro: SDB_DELIM
- Some assemblers do not support a semicolon as a delimiter, even
- between SDB assembler directives. In that case, define this macro
- to be the delimiter to use (usually '\n'). It is not necessary to
- define a new set of 'PUT_SDB_OP' macros if this is the only change
- required.
-
- -- Macro: SDB_ALLOW_UNKNOWN_REFERENCES
- Define this macro to allow references to unknown structure, union,
- or enumeration tags to be emitted. Standard COFF does not allow
- handling of unknown references, MIPS ECOFF has support for it.
-
- -- Macro: SDB_ALLOW_FORWARD_REFERENCES
- Define this macro to allow references to structure, union, or
- enumeration tags that have not yet been seen to be handled. Some
- assemblers choke if forward tags are used, while some require it.
-
- -- Macro: SDB_OUTPUT_SOURCE_LINE (STREAM, LINE)
- A C statement to output SDB debugging information before code for
- line number LINE of the current source file to the stdio stream
- STREAM. The default is to emit an '.ln' directive.
-
-
-File: gccint.info, Node: VMS Debug, Prev: SDB and DWARF, Up: Debugging Info
-
-17.22.6 Macros for VMS Debug Format
------------------------------------
-
-Here are macros for VMS debug format.
-
- -- Macro: VMS_DEBUGGING_INFO
- Define this macro if GCC should produce debugging output for VMS in
- response to the '-g' option. The default behavior for VMS is to
- generate minimal debug info for a traceback in the absence of '-g'
- unless explicitly overridden with '-g0'. This behavior is
- controlled by 'TARGET_OPTION_OPTIMIZATION' and
- 'TARGET_OPTION_OVERRIDE'.
-
-
-File: gccint.info, Node: Floating Point, Next: Mode Switching, Prev: Debugging Info, Up: Target Macros
-
-17.23 Cross Compilation and Floating Point
-==========================================
-
-While all modern machines use twos-complement representation for
-integers, there are a variety of representations for floating point
-numbers. This means that in a cross-compiler the representation of
-floating point numbers in the compiled program may be different from
-that used in the machine doing the compilation.
-
- Because different representation systems may offer different amounts of
-range and precision, all floating point constants must be represented in
-the target machine's format. Therefore, the cross compiler cannot
-safely use the host machine's floating point arithmetic; it must emulate
-the target's arithmetic. To ensure consistency, GCC always uses
-emulation to work with floating point values, even when the host and
-target floating point formats are identical.
-
- The following macros are provided by 'real.h' for the compiler to use.
-All parts of the compiler which generate or optimize floating-point
-calculations must use these macros. They may evaluate their operands
-more than once, so operands must not have side effects.
-
- -- Macro: REAL_VALUE_TYPE
- The C data type to be used to hold a floating point value in the
- target machine's format. Typically this is a 'struct' containing
- an array of 'HOST_WIDE_INT', but all code should treat it as an
- opaque quantity.
-
- -- Macro: int REAL_VALUES_EQUAL (REAL_VALUE_TYPE X, REAL_VALUE_TYPE Y)
- Compares for equality the two values, X and Y. If the target
- floating point format supports negative zeroes and/or NaNs,
- 'REAL_VALUES_EQUAL (-0.0, 0.0)' is true, and 'REAL_VALUES_EQUAL
- (NaN, NaN)' is false.
-
- -- Macro: int REAL_VALUES_LESS (REAL_VALUE_TYPE X, REAL_VALUE_TYPE Y)
- Tests whether X is less than Y.
-
- -- Macro: HOST_WIDE_INT REAL_VALUE_FIX (REAL_VALUE_TYPE X)
- Truncates X to a signed integer, rounding toward zero.
-
- -- Macro: unsigned HOST_WIDE_INT REAL_VALUE_UNSIGNED_FIX
- (REAL_VALUE_TYPE X)
- Truncates X to an unsigned integer, rounding toward zero. If X is
- negative, returns zero.
-
- -- Macro: REAL_VALUE_TYPE REAL_VALUE_ATOF (const char *STRING, enum
- machine_mode MODE)
- Converts STRING into a floating point number in the target
- machine's representation for mode MODE. This routine can handle
- both decimal and hexadecimal floating point constants, using the
- syntax defined by the C language for both.
-
- -- Macro: int REAL_VALUE_NEGATIVE (REAL_VALUE_TYPE X)
- Returns 1 if X is negative (including negative zero), 0 otherwise.
-
- -- Macro: int REAL_VALUE_ISINF (REAL_VALUE_TYPE X)
- Determines whether X represents infinity (positive or negative).
-
- -- Macro: int REAL_VALUE_ISNAN (REAL_VALUE_TYPE X)
- Determines whether X represents a "NaN" (not-a-number).
-
- -- Macro: void REAL_ARITHMETIC (REAL_VALUE_TYPE OUTPUT, enum tree_code
- CODE, REAL_VALUE_TYPE X, REAL_VALUE_TYPE Y)
- Calculates an arithmetic operation on the two floating point values
- X and Y, storing the result in OUTPUT (which must be a variable).
-
- The operation to be performed is specified by CODE. Only the
- following codes are supported: 'PLUS_EXPR', 'MINUS_EXPR',
- 'MULT_EXPR', 'RDIV_EXPR', 'MAX_EXPR', 'MIN_EXPR'.
-
- If 'REAL_ARITHMETIC' is asked to evaluate division by zero and the
- target's floating point format cannot represent infinity, it will
- call 'abort'. Callers should check for this situation first, using
- 'MODE_HAS_INFINITIES'. *Note Storage Layout::.
-
- -- Macro: REAL_VALUE_TYPE REAL_VALUE_NEGATE (REAL_VALUE_TYPE X)
- Returns the negative of the floating point value X.
-
- -- Macro: REAL_VALUE_TYPE REAL_VALUE_ABS (REAL_VALUE_TYPE X)
- Returns the absolute value of X.
-
- -- Macro: void REAL_VALUE_TO_INT (HOST_WIDE_INT LOW, HOST_WIDE_INT
- HIGH, REAL_VALUE_TYPE X)
- Converts a floating point value X into a double-precision integer
- which is then stored into LOW and HIGH. If the value is not
- integral, it is truncated.
-
- -- Macro: void REAL_VALUE_FROM_INT (REAL_VALUE_TYPE X, HOST_WIDE_INT
- LOW, HOST_WIDE_INT HIGH, enum machine_mode MODE)
- Converts a double-precision integer found in LOW and HIGH, into a
- floating point value which is then stored into X. The value is
- truncated to fit in mode MODE.
-
-
-File: gccint.info, Node: Mode Switching, Next: Target Attributes, Prev: Floating Point, Up: Target Macros
-
-17.24 Mode Switching Instructions
-=================================
-
-The following macros control mode switching optimizations:
-
- -- Macro: OPTIMIZE_MODE_SWITCHING (ENTITY)
- Define this macro if the port needs extra instructions inserted for
- mode switching in an optimizing compilation.
-
- For an example, the SH4 can perform both single and double
- precision floating point operations, but to perform a single
- precision operation, the FPSCR PR bit has to be cleared, while for
- a double precision operation, this bit has to be set. Changing the
- PR bit requires a general purpose register as a scratch register,
- hence these FPSCR sets have to be inserted before reload, i.e. you
- can't put this into instruction emitting or
- 'TARGET_MACHINE_DEPENDENT_REORG'.
-
- You can have multiple entities that are mode-switched, and select
- at run time which entities actually need it.
- 'OPTIMIZE_MODE_SWITCHING' should return nonzero for any ENTITY that
- needs mode-switching. If you define this macro, you also have to
- define 'NUM_MODES_FOR_MODE_SWITCHING', 'MODE_NEEDED',
- 'MODE_PRIORITY_TO_MODE' and 'EMIT_MODE_SET'. 'MODE_AFTER',
- 'MODE_ENTRY', and 'MODE_EXIT' are optional.
-
- -- Macro: NUM_MODES_FOR_MODE_SWITCHING
- If you define 'OPTIMIZE_MODE_SWITCHING', you have to define this as
- initializer for an array of integers. Each initializer element N
- refers to an entity that needs mode switching, and specifies the
- number of different modes that might need to be set for this
- entity. The position of the initializer in the
- initializer--starting counting at zero--determines the integer that
- is used to refer to the mode-switched entity in question. In
- macros that take mode arguments / yield a mode result, modes are
- represented as numbers 0 ... N - 1. N is used to specify that no
- mode switch is needed / supplied.
-
- -- Macro: MODE_NEEDED (ENTITY, INSN)
- ENTITY is an integer specifying a mode-switched entity. If
- 'OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
- return an integer value not larger than the corresponding element
- in 'NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
- must be switched into prior to the execution of INSN.
-
- -- Macro: MODE_AFTER (ENTITY, MODE, INSN)
- ENTITY is an integer specifying a mode-switched entity. If this
- macro is defined, it is evaluated for every INSN during mode
- switching. It determines the mode that an insn results in (if
- different from the incoming mode).
-
- -- Macro: MODE_ENTRY (ENTITY)
- If this macro is defined, it is evaluated for every ENTITY that
- needs mode switching. It should evaluate to an integer, which is a
- mode that ENTITY is assumed to be switched to at function entry.
- If 'MODE_ENTRY' is defined then 'MODE_EXIT' must be defined.
-
- -- Macro: MODE_EXIT (ENTITY)
- If this macro is defined, it is evaluated for every ENTITY that
- needs mode switching. It should evaluate to an integer, which is a
- mode that ENTITY is assumed to be switched to at function exit. If
- 'MODE_EXIT' is defined then 'MODE_ENTRY' must be defined.
-
- -- Macro: MODE_PRIORITY_TO_MODE (ENTITY, N)
- This macro specifies the order in which modes for ENTITY are
- processed. 0 is the highest priority,
- 'NUM_MODES_FOR_MODE_SWITCHING[ENTITY] - 1' the lowest. The value
- of the macro should be an integer designating a mode for ENTITY.
- For any fixed ENTITY, 'mode_priority_to_mode' (ENTITY, N) shall be
- a bijection in 0 ... 'num_modes_for_mode_switching[ENTITY] - 1'.
-
- -- Macro: EMIT_MODE_SET (ENTITY, MODE, HARD_REGS_LIVE)
- Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE is
- the set of hard registers live at the point where the insn(s) are
- to be inserted.
-
-
-File: gccint.info, Node: Target Attributes, Next: Emulated TLS, Prev: Mode Switching, Up: Target Macros
-
-17.25 Defining target-specific uses of '__attribute__'
-======================================================
-
-Target-specific attributes may be defined for functions, data and types.
-These are described using the following target hooks; they also need to
-be documented in 'extend.texi'.
-
- -- Target Hook: const struct attribute_spec * TARGET_ATTRIBUTE_TABLE
- If defined, this target hook points to an array of 'struct
- attribute_spec' (defined in 'tree.h') specifying the machine
- specific attributes for this target and some of the restrictions on
- the entities to which these attributes are applied and the
- arguments they take.
-
- -- Target Hook: bool TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P (const_tree
- NAME)
- If defined, this target hook is a function which returns true if
- the machine-specific attribute named NAME expects an identifier
- given as its first argument to be passed on as a plain identifier,
- not subjected to name lookup. If this is not defined, the default
- is false for all machine-specific attributes.
-
- -- Target Hook: int TARGET_COMP_TYPE_ATTRIBUTES (const_tree TYPE1,
- const_tree TYPE2)
- If defined, this target hook is a function which returns zero if
- the attributes on TYPE1 and TYPE2 are incompatible, one if they are
- compatible, and two if they are nearly compatible (which causes a
- warning to be generated). If this is not defined, machine-specific
- attributes are supposed always to be compatible.
-
- -- Target Hook: void TARGET_SET_DEFAULT_TYPE_ATTRIBUTES (tree TYPE)
- If defined, this target hook is a function which assigns default
- attributes to the newly defined TYPE.
-
- -- Target Hook: tree TARGET_MERGE_TYPE_ATTRIBUTES (tree TYPE1, tree
- TYPE2)
- Define this target hook if the merging of type attributes needs
- special handling. If defined, the result is a list of the combined
- 'TYPE_ATTRIBUTES' of TYPE1 and TYPE2. It is assumed that
- 'comptypes' has already been called and returned 1. This function
- may call 'merge_attributes' to handle machine-independent merging.
-
- -- Target Hook: tree TARGET_MERGE_DECL_ATTRIBUTES (tree OLDDECL, tree
- NEWDECL)
- Define this target hook if the merging of decl attributes needs
- special handling. If defined, the result is a list of the combined
- 'DECL_ATTRIBUTES' of OLDDECL and NEWDECL. NEWDECL is a duplicate
- declaration of OLDDECL. Examples of when this is needed are when
- one attribute overrides another, or when an attribute is nullified
- by a subsequent definition. This function may call
- 'merge_attributes' to handle machine-independent merging.
-
- If the only target-specific handling you require is 'dllimport' for
- Microsoft Windows targets, you should define the macro
- 'TARGET_DLLIMPORT_DECL_ATTRIBUTES' to '1'. The compiler will then
- define a function called 'merge_dllimport_decl_attributes' which
- can then be defined as the expansion of
- 'TARGET_MERGE_DECL_ATTRIBUTES'. You can also add
- 'handle_dll_attribute' in the attribute table for your port to
- perform initial processing of the 'dllimport' and 'dllexport'
- attributes. This is done in 'i386/cygwin.h' and 'i386/i386.c', for
- example.
-
- -- Target Hook: bool TARGET_VALID_DLLIMPORT_ATTRIBUTE_P (const_tree
- DECL)
- DECL is a variable or function with '__attribute__((dllimport))'
- specified. Use this hook if the target needs to add extra
- validation checks to 'handle_dll_attribute'.
-
- -- Macro: TARGET_DECLSPEC
- Define this macro to a nonzero value if you want to treat
- '__declspec(X)' as equivalent to '__attribute((X))'. By default,
- this behavior is enabled only for targets that define
- 'TARGET_DLLIMPORT_DECL_ATTRIBUTES'. The current implementation of
- '__declspec' is via a built-in macro, but you should not rely on
- this implementation detail.
-
- -- Target Hook: void TARGET_INSERT_ATTRIBUTES (tree NODE, tree
- *ATTR_PTR)
- Define this target hook if you want to be able to add attributes to
- a decl when it is being created. This is normally useful for back
- ends which wish to implement a pragma by using the attributes which
- correspond to the pragma's effect. The NODE argument is the decl
- which is being created. The ATTR_PTR argument is a pointer to the
- attribute list for this decl. The list itself should not be
- modified, since it may be shared with other decls, but attributes
- may be chained on the head of the list and '*ATTR_PTR' modified to
- point to the new attributes, or a copy of the list may be made if
- further changes are needed.
-
- -- Target Hook: bool TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P (const_tree
- FNDECL)
- This target hook returns 'true' if it is OK to inline FNDECL into
- the current function, despite its having target-specific
- attributes, 'false' otherwise. By default, if a function has a
- target specific attribute attached to it, it will not be inlined.
-
- -- Target Hook: bool TARGET_OPTION_VALID_ATTRIBUTE_P (tree FNDECL, tree
- NAME, tree ARGS, int FLAGS)
- This hook is called to parse 'attribute(target("..."))', which
- allows setting target-specific options on individual functions.
- These function-specific options may differ from the options
- specified on the command line. The hook should return 'true' if
- the options are valid.
-
- The hook should set the 'DECL_FUNCTION_SPECIFIC_TARGET' field in
- the function declaration to hold a pointer to a target-specific
- 'struct cl_target_option' structure.
-
- -- Target Hook: void TARGET_OPTION_SAVE (struct cl_target_option *PTR,
- struct gcc_options *OPTS)
- This hook is called to save any additional target-specific
- information in the 'struct cl_target_option' structure for
- function-specific options from the 'struct gcc_options' structure.
- *Note Option file format::.
-
- -- Target Hook: void TARGET_OPTION_RESTORE (struct gcc_options *OPTS,
- struct cl_target_option *PTR)
- This hook is called to restore any additional target-specific
- information in the 'struct cl_target_option' structure for
- function-specific options to the 'struct gcc_options' structure.
-
- -- Target Hook: void TARGET_OPTION_PRINT (FILE *FILE, int INDENT,
- struct cl_target_option *PTR)
- This hook is called to print any additional target-specific
- information in the 'struct cl_target_option' structure for
- function-specific options.
-
- -- Target Hook: bool TARGET_OPTION_PRAGMA_PARSE (tree ARGS, tree
- POP_TARGET)
- This target hook parses the options for '#pragma GCC target', which
- sets the target-specific options for functions that occur later in
- the input stream. The options accepted should be the same as those
- handled by the 'TARGET_OPTION_VALID_ATTRIBUTE_P' hook.
-
- -- Target Hook: void TARGET_OPTION_OVERRIDE (void)
- Sometimes certain combinations of command options do not make sense
- on a particular target machine. You can override the hook
- 'TARGET_OPTION_OVERRIDE' to take account of this. This hooks is
- called once just after all the command options have been parsed.
-
- Don't use this hook to turn on various extra optimizations for
- '-O'. That is what 'TARGET_OPTION_OPTIMIZATION' is for.
-
- If you need to do something whenever the optimization level is
- changed via the optimize attribute or pragma, see
- 'TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE'
-
- -- Target Hook: bool TARGET_OPTION_FUNCTION_VERSIONS (tree DECL1, tree
- DECL2)
- This target hook returns 'true' if DECL1 and DECL2 are versions of
- the same function. DECL1 and DECL2 are function versions if and
- only if they have the same function signature and different target
- specific attributes, that is, they are compiled for different
- target machines.
-
- -- Target Hook: bool TARGET_CAN_INLINE_P (tree CALLER, tree CALLEE)
- This target hook returns 'false' if the CALLER function cannot
- inline CALLEE, based on target specific information. By default,
- inlining is not allowed if the callee function has function
- specific target options and the caller does not use the same
- options.
-
-
-File: gccint.info, Node: Emulated TLS, Next: MIPS Coprocessors, Prev: Target Attributes, Up: Target Macros
-
-17.26 Emulating TLS
-===================
-
-For targets whose psABI does not provide Thread Local Storage via
-specific relocations and instruction sequences, an emulation layer is
-used. A set of target hooks allows this emulation layer to be
-configured for the requirements of a particular target. For instance
-the psABI may in fact specify TLS support in terms of an emulation
-layer.
-
- The emulation layer works by creating a control object for every TLS
-object. To access the TLS object, a lookup function is provided which,
-when given the address of the control object, will return the address of
-the current thread's instance of the TLS object.
-
- -- Target Hook: const char * TARGET_EMUTLS_GET_ADDRESS
- Contains the name of the helper function that uses a TLS control
- object to locate a TLS instance. The default causes libgcc's
- emulated TLS helper function to be used.
-
- -- Target Hook: const char * TARGET_EMUTLS_REGISTER_COMMON
- Contains the name of the helper function that should be used at
- program startup to register TLS objects that are implicitly
- initialized to zero. If this is 'NULL', all TLS objects will have
- explicit initializers. The default causes libgcc's emulated TLS
- registration function to be used.
-
- -- Target Hook: const char * TARGET_EMUTLS_VAR_SECTION
- Contains the name of the section in which TLS control variables
- should be placed. The default of 'NULL' allows these to be placed
- in any section.
-
- -- Target Hook: const char * TARGET_EMUTLS_TMPL_SECTION
- Contains the name of the section in which TLS initializers should
- be placed. The default of 'NULL' allows these to be placed in any
- section.
-
- -- Target Hook: const char * TARGET_EMUTLS_VAR_PREFIX
- Contains the prefix to be prepended to TLS control variable names.
- The default of 'NULL' uses a target-specific prefix.
-
- -- Target Hook: const char * TARGET_EMUTLS_TMPL_PREFIX
- Contains the prefix to be prepended to TLS initializer objects.
- The default of 'NULL' uses a target-specific prefix.
-
- -- Target Hook: tree TARGET_EMUTLS_VAR_FIELDS (tree TYPE, tree *NAME)
- Specifies a function that generates the FIELD_DECLs for a TLS
- control object type. TYPE is the RECORD_TYPE the fields are for
- and NAME should be filled with the structure tag, if the default of
- '__emutls_object' is unsuitable. The default creates a type
- suitable for libgcc's emulated TLS function.
-
- -- Target Hook: tree TARGET_EMUTLS_VAR_INIT (tree VAR, tree DECL, tree
- TMPL_ADDR)
- Specifies a function that generates the CONSTRUCTOR to initialize a
- TLS control object. VAR is the TLS control object, DECL is the TLS
- object and TMPL_ADDR is the address of the initializer. The
- default initializes libgcc's emulated TLS control object.
-
- -- Target Hook: bool TARGET_EMUTLS_VAR_ALIGN_FIXED
- Specifies whether the alignment of TLS control variable objects is
- fixed and should not be increased as some backends may do to
- optimize single objects. The default is false.
-
- -- Target Hook: bool TARGET_EMUTLS_DEBUG_FORM_TLS_ADDRESS
- Specifies whether a DWARF 'DW_OP_form_tls_address' location
- descriptor may be used to describe emulated TLS control objects.
-
-
-File: gccint.info, Node: MIPS Coprocessors, Next: PCH Target, Prev: Emulated TLS, Up: Target Macros
-
-17.27 Defining coprocessor specifics for MIPS targets.
-======================================================
-
-The MIPS specification allows MIPS implementations to have as many as 4
-coprocessors, each with as many as 32 private registers. GCC supports
-accessing these registers and transferring values between the registers
-and memory using asm-ized variables. For example:
-
- register unsigned int cp0count asm ("c0r1");
- unsigned int d;
-
- d = cp0count + 3;
-
- ("c0r1" is the default name of register 1 in coprocessor 0; alternate
-names may be added as described below, or the default names may be
-overridden entirely in 'SUBTARGET_CONDITIONAL_REGISTER_USAGE'.)
-
- Coprocessor registers are assumed to be epilogue-used; sets to them
-will be preserved even if it does not appear that the register is used
-again later in the function.
-
- Another note: according to the MIPS spec, coprocessor 1 (if present) is
-the FPU. One accesses COP1 registers through standard mips
-floating-point support; they are not included in this mechanism.
-
- There is one macro used in defining the MIPS coprocessor interface
-which you may want to override in subtargets; it is described below.
-
-
-File: gccint.info, Node: PCH Target, Next: C++ ABI, Prev: MIPS Coprocessors, Up: Target Macros
-
-17.28 Parameters for Precompiled Header Validity Checking
-=========================================================
-
- -- Target Hook: void * TARGET_GET_PCH_VALIDITY (size_t *SZ)
- This hook returns a pointer to the data needed by
- 'TARGET_PCH_VALID_P' and sets '*SZ' to the size of the data in
- bytes.
-
- -- Target Hook: const char * TARGET_PCH_VALID_P (const void *DATA,
- size_t SZ)
- This hook checks whether the options used to create a PCH file are
- compatible with the current settings. It returns 'NULL' if so and
- a suitable error message if not. Error messages will be presented
- to the user and must be localized using '_(MSG)'.
-
- DATA is the data that was returned by 'TARGET_GET_PCH_VALIDITY'
- when the PCH file was created and SZ is the size of that data in
- bytes. It's safe to assume that the data was created by the same
- version of the compiler, so no format checking is needed.
-
- The default definition of 'default_pch_valid_p' should be suitable
- for most targets.
-
- -- Target Hook: const char * TARGET_CHECK_PCH_TARGET_FLAGS (int
- PCH_FLAGS)
- If this hook is nonnull, the default implementation of
- 'TARGET_PCH_VALID_P' will use it to check for compatible values of
- 'target_flags'. PCH_FLAGS specifies the value that 'target_flags'
- had when the PCH file was created. The return value is the same as
- for 'TARGET_PCH_VALID_P'.
-
- -- Target Hook: void TARGET_PREPARE_PCH_SAVE (void)
- Called before writing out a PCH file. If the target has some
- garbage-collected data that needs to be in a particular state on
- PCH loads, it can use this hook to enforce that state. Very few
- targets need to do anything here.
-
-
-File: gccint.info, Node: C++ ABI, Next: Named Address Spaces, Prev: PCH Target, Up: Target Macros
-
-17.29 C++ ABI parameters
-========================
-
- -- Target Hook: tree TARGET_CXX_GUARD_TYPE (void)
- Define this hook to override the integer type used for guard
- variables. These are used to implement one-time construction of
- static objects. The default is long_long_integer_type_node.
-
- -- Target Hook: bool TARGET_CXX_GUARD_MASK_BIT (void)
- This hook determines how guard variables are used. It should
- return 'false' (the default) if the first byte should be used. A
- return value of 'true' indicates that only the least significant
- bit should be used.
-
- -- Target Hook: tree TARGET_CXX_GET_COOKIE_SIZE (tree TYPE)
- This hook returns the size of the cookie to use when allocating an
- array whose elements have the indicated TYPE. Assumes that it is
- already known that a cookie is needed. The default is 'max(sizeof
- (size_t), alignof(type))', as defined in section 2.7 of the
- IA64/Generic C++ ABI.
-
- -- Target Hook: bool TARGET_CXX_COOKIE_HAS_SIZE (void)
- This hook should return 'true' if the element size should be stored
- in array cookies. The default is to return 'false'.
-
- -- Target Hook: int TARGET_CXX_IMPORT_EXPORT_CLASS (tree TYPE, int
- IMPORT_EXPORT)
- If defined by a backend this hook allows the decision made to
- export class TYPE to be overruled. Upon entry IMPORT_EXPORT will
- contain 1 if the class is going to be exported, -1 if it is going
- to be imported and 0 otherwise. This function should return the
- modified value and perform any other actions necessary to support
- the backend's targeted operating system.
-
- -- Target Hook: bool TARGET_CXX_CDTOR_RETURNS_THIS (void)
- This hook should return 'true' if constructors and destructors
- return the address of the object created/destroyed. The default is
- to return 'false'.
-
- -- Target Hook: bool TARGET_CXX_KEY_METHOD_MAY_BE_INLINE (void)
- This hook returns true if the key method for a class (i.e., the
- method which, if defined in the current translation unit, causes
- the virtual table to be emitted) may be an inline function. Under
- the standard Itanium C++ ABI the key method may be an inline
- function so long as the function is not declared inline in the
- class definition. Under some variants of the ABI, an inline
- function can never be the key method. The default is to return
- 'true'.
-
- -- Target Hook: void TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY (tree
- DECL)
- DECL is a virtual table, virtual table table, typeinfo object, or
- other similar implicit class data object that will be emitted with
- external linkage in this translation unit. No ELF visibility has
- been explicitly specified. If the target needs to specify a
- visibility other than that of the containing class, use this hook
- to set 'DECL_VISIBILITY' and 'DECL_VISIBILITY_SPECIFIED'.
-
- -- Target Hook: bool TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT (void)
- This hook returns true (the default) if virtual tables and other
- similar implicit class data objects are always COMDAT if they have
- external linkage. If this hook returns false, then class data for
- classes whose virtual table will be emitted in only one translation
- unit will not be COMDAT.
-
- -- Target Hook: bool TARGET_CXX_LIBRARY_RTTI_COMDAT (void)
- This hook returns true (the default) if the RTTI information for
- the basic types which is defined in the C++ runtime should always
- be COMDAT, false if it should not be COMDAT.
-
- -- Target Hook: bool TARGET_CXX_USE_AEABI_ATEXIT (void)
- This hook returns true if '__aeabi_atexit' (as defined by the ARM
- EABI) should be used to register static destructors when
- '-fuse-cxa-atexit' is in effect. The default is to return false to
- use '__cxa_atexit'.
-
- -- Target Hook: bool TARGET_CXX_USE_ATEXIT_FOR_CXA_ATEXIT (void)
- This hook returns true if the target 'atexit' function can be used
- in the same manner as '__cxa_atexit' to register C++ static
- destructors. This requires that 'atexit'-registered functions in
- shared libraries are run in the correct order when the libraries
- are unloaded. The default is to return false.
-
- -- Target Hook: void TARGET_CXX_ADJUST_CLASS_AT_DEFINITION (tree TYPE)
- TYPE is a C++ class (i.e., RECORD_TYPE or UNION_TYPE) that has just
- been defined. Use this hook to make adjustments to the class (eg,
- tweak visibility or perform any other required target
- modifications).
-
- -- Target Hook: tree TARGET_CXX_DECL_MANGLING_CONTEXT (const_tree DECL)
- Return target-specific mangling context of DECL or 'NULL_TREE'.
-
-
-File: gccint.info, Node: Named Address Spaces, Next: Misc, Prev: C++ ABI, Up: Target Macros
-
-17.30 Adding support for named address spaces
-=============================================
-
-The draft technical report of the ISO/IEC JTC1 S22 WG14 N1275 standards
-committee, 'Programming Languages - C - Extensions to support embedded
-processors', specifies a syntax for embedded processors to specify
-alternate address spaces. You can configure a GCC port to support
-section 5.1 of the draft report to add support for address spaces other
-than the default address space. These address spaces are new keywords
-that are similar to the 'volatile' and 'const' type attributes.
-
- Pointers to named address spaces can have a different size than
-pointers to the generic address space.
-
- For example, the SPU port uses the '__ea' address space to refer to
-memory in the host processor, rather than memory local to the SPU
-processor. Access to memory in the '__ea' address space involves
-issuing DMA operations to move data between the host processor and the
-local processor memory address space. Pointers in the '__ea' address
-space are either 32 bits or 64 bits based on the '-mea32' or '-mea64'
-switches (native SPU pointers are always 32 bits).
-
- Internally, address spaces are represented as a small integer in the
-range 0 to 15 with address space 0 being reserved for the generic
-address space.
-
- To register a named address space qualifier keyword with the C front
-end, the target may call the 'c_register_addr_space' routine. For
-example, the SPU port uses the following to declare '__ea' as the
-keyword for named address space #1:
- #define ADDR_SPACE_EA 1
- c_register_addr_space ("__ea", ADDR_SPACE_EA);
-
- -- Target Hook: enum machine_mode TARGET_ADDR_SPACE_POINTER_MODE
- (addr_space_t ADDRESS_SPACE)
- Define this to return the machine mode to use for pointers to
- ADDRESS_SPACE if the target supports named address spaces. The
- default version of this hook returns 'ptr_mode' for the generic
- address space only.
-
- -- Target Hook: enum machine_mode TARGET_ADDR_SPACE_ADDRESS_MODE
- (addr_space_t ADDRESS_SPACE)
- Define this to return the machine mode to use for addresses in
- ADDRESS_SPACE if the target supports named address spaces. The
- default version of this hook returns 'Pmode' for the generic
- address space only.
-
- -- Target Hook: bool TARGET_ADDR_SPACE_VALID_POINTER_MODE (enum
- machine_mode MODE, addr_space_t AS)
- Define this to return nonzero if the port can handle pointers with
- machine mode MODE to address space AS. This target hook is the
- same as the 'TARGET_VALID_POINTER_MODE' target hook, except that it
- includes explicit named address space support. The default version
- of this hook returns true for the modes returned by either the
- 'TARGET_ADDR_SPACE_POINTER_MODE' or
- 'TARGET_ADDR_SPACE_ADDRESS_MODE' target hooks for the given address
- space.
-
- -- Target Hook: bool TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P (enum
- machine_mode MODE, rtx EXP, bool STRICT, addr_space_t AS)
- Define this to return true if EXP is a valid address for mode MODE
- in the named address space AS. The STRICT parameter says whether
- strict addressing is in effect after reload has finished. This
- target hook is the same as the 'TARGET_LEGITIMATE_ADDRESS_P' target
- hook, except that it includes explicit named address space support.
-
- -- Target Hook: rtx TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS (rtx X, rtx
- OLDX, enum machine_mode MODE, addr_space_t AS)
- Define this to modify an invalid address X to be a valid address
- with mode MODE in the named address space AS. This target hook is
- the same as the 'TARGET_LEGITIMIZE_ADDRESS' target hook, except
- that it includes explicit named address space support.
-
- -- Target Hook: bool TARGET_ADDR_SPACE_SUBSET_P (addr_space_t SUBSET,
- addr_space_t SUPERSET)
- Define this to return whether the SUBSET named address space is
- contained within the SUPERSET named address space. Pointers to a
- named address space that is a subset of another named address space
- will be converted automatically without a cast if used together in
- arithmetic operations. Pointers to a superset address space can be
- converted to pointers to a subset address space via explicit casts.
-
- -- Target Hook: rtx TARGET_ADDR_SPACE_CONVERT (rtx OP, tree FROM_TYPE,
- tree TO_TYPE)
- Define this to convert the pointer expression represented by the
- RTL OP with type FROM_TYPE that points to a named address space to
- a new pointer expression with type TO_TYPE that points to a
- different named address space. When this hook it called, it is
- guaranteed that one of the two address spaces is a subset of the
- other, as determined by the 'TARGET_ADDR_SPACE_SUBSET_P' target
- hook.
-
-
-File: gccint.info, Node: Misc, Prev: Named Address Spaces, Up: Target Macros
-
-17.31 Miscellaneous Parameters
-==============================
-
-Here are several miscellaneous parameters.
-
- -- Macro: HAS_LONG_COND_BRANCH
- Define this boolean macro to indicate whether or not your
- architecture has conditional branches that can span all of memory.
- It is used in conjunction with an optimization that partitions hot
- and cold basic blocks into separate sections of the executable. If
- this macro is set to false, gcc will convert any conditional
- branches that attempt to cross between sections into unconditional
- branches or indirect jumps.
-
- -- Macro: HAS_LONG_UNCOND_BRANCH
- Define this boolean macro to indicate whether or not your
- architecture has unconditional branches that can span all of
- memory. It is used in conjunction with an optimization that
- partitions hot and cold basic blocks into separate sections of the
- executable. If this macro is set to false, gcc will convert any
- unconditional branches that attempt to cross between sections into
- indirect jumps.
-
- -- Macro: CASE_VECTOR_MODE
- An alias for a machine mode name. This is the machine mode that
- elements of a jump-table should have.
-
- -- Macro: CASE_VECTOR_SHORTEN_MODE (MIN_OFFSET, MAX_OFFSET, BODY)
- Optional: return the preferred mode for an 'addr_diff_vec' when the
- minimum and maximum offset are known. If you define this, it
- enables extra code in branch shortening to deal with
- 'addr_diff_vec'. To make this work, you also have to define
- 'INSN_ALIGN' and make the alignment for 'addr_diff_vec' explicit.
- The BODY argument is provided so that the offset_unsigned and scale
- flags can be updated.
-
- -- Macro: CASE_VECTOR_PC_RELATIVE
- Define this macro to be a C expression to indicate when jump-tables
- should contain relative addresses. You need not define this macro
- if jump-tables never contain relative addresses, or jump-tables
- should contain relative addresses only when '-fPIC' or '-fPIC' is
- in effect.
-
- -- Target Hook: unsigned int TARGET_CASE_VALUES_THRESHOLD (void)
- This function return the smallest number of different values for
- which it is best to use a jump-table instead of a tree of
- conditional branches. The default is four for machines with a
- 'casesi' instruction and five otherwise. This is best for most
- machines.
-
- -- Macro: WORD_REGISTER_OPERATIONS
- Define this macro if operations between registers with integral
- mode smaller than a word are always performed on the entire
- register. Most RISC machines have this property and most CISC
- machines do not.
-
- -- Macro: LOAD_EXTEND_OP (MEM_MODE)
- Define this macro to be a C expression indicating when insns that
- read memory in MEM_MODE, an integral mode narrower than a word, set
- the bits outside of MEM_MODE to be either the sign-extension or the
- zero-extension of the data read. Return 'SIGN_EXTEND' for values
- of MEM_MODE for which the insn sign-extends, 'ZERO_EXTEND' for
- which it zero-extends, and 'UNKNOWN' for other modes.
-
- This macro is not called with MEM_MODE non-integral or with a width
- greater than or equal to 'BITS_PER_WORD', so you may return any
- value in this case. Do not define this macro if it would always
- return 'UNKNOWN'. On machines where this macro is defined, you
- will normally define it as the constant 'SIGN_EXTEND' or
- 'ZERO_EXTEND'.
-
- You may return a non-'UNKNOWN' value even if for some hard
- registers the sign extension is not performed, if for the
- 'REGNO_REG_CLASS' of these hard registers
- 'CANNOT_CHANGE_MODE_CLASS' returns nonzero when the FROM mode is
- MEM_MODE and the TO mode is any integral mode larger than this but
- not larger than 'word_mode'.
-
- You must return 'UNKNOWN' if for some hard registers that allow
- this mode, 'CANNOT_CHANGE_MODE_CLASS' says that they cannot change
- to 'word_mode', but that they can change to another integral mode
- that is larger then MEM_MODE but still smaller than 'word_mode'.
-
- -- Macro: SHORT_IMMEDIATES_SIGN_EXTEND
- Define this macro if loading short immediate values into registers
- sign extends.
-
- -- Target Hook: unsigned int TARGET_MIN_DIVISIONS_FOR_RECIP_MUL (enum
- machine_mode MODE)
- When '-ffast-math' is in effect, GCC tries to optimize divisions by
- the same divisor, by turning them into multiplications by the
- reciprocal. This target hook specifies the minimum number of
- divisions that should be there for GCC to perform the optimization
- for a variable of mode MODE. The default implementation returns 3
- if the machine has an instruction for the division, and 2 if it
- does not.
-
- -- Macro: MOVE_MAX
- The maximum number of bytes that a single instruction can move
- quickly between memory and registers or between two memory
- locations.
-
- -- Macro: MAX_MOVE_MAX
- The maximum number of bytes that a single instruction can move
- quickly between memory and registers or between two memory
- locations. If this is undefined, the default is 'MOVE_MAX'.
- Otherwise, it is the constant value that is the largest value that
- 'MOVE_MAX' can have at run-time.
-
- -- Macro: SHIFT_COUNT_TRUNCATED
- A C expression that is nonzero if on this machine the number of
- bits actually used for the count of a shift operation is equal to
- the number of bits needed to represent the size of the object being
- shifted. When this macro is nonzero, the compiler will assume that
- it is safe to omit a sign-extend, zero-extend, and certain bitwise
- 'and' instructions that truncates the count of a shift operation.
- On machines that have instructions that act on bit-fields at
- variable positions, which may include 'bit test' instructions, a
- nonzero 'SHIFT_COUNT_TRUNCATED' also enables deletion of
- truncations of the values that serve as arguments to bit-field
- instructions.
-
- If both types of instructions truncate the count (for shifts) and
- position (for bit-field operations), or if no variable-position
- bit-field instructions exist, you should define this macro.
-
- However, on some machines, such as the 80386 and the 680x0,
- truncation only applies to shift operations and not the (real or
- pretended) bit-field operations. Define 'SHIFT_COUNT_TRUNCATED' to
- be zero on such machines. Instead, add patterns to the 'md' file
- that include the implied truncation of the shift instructions.
-
- You need not define this macro if it would always have the value of
- zero.
-
- -- Target Hook: unsigned HOST_WIDE_INT TARGET_SHIFT_TRUNCATION_MASK
- (enum machine_mode MODE)
- This function describes how the standard shift patterns for MODE
- deal with shifts by negative amounts or by more than the width of
- the mode. *Note shift patterns::.
-
- On many machines, the shift patterns will apply a mask M to the
- shift count, meaning that a fixed-width shift of X by Y is
- equivalent to an arbitrary-width shift of X by Y & M. If this is
- true for mode MODE, the function should return M, otherwise it
- should return 0. A return value of 0 indicates that no particular
- behavior is guaranteed.
-
- Note that, unlike 'SHIFT_COUNT_TRUNCATED', this function does _not_
- apply to general shift rtxes; it applies only to instructions that
- are generated by the named shift patterns.
-
- The default implementation of this function returns
- 'GET_MODE_BITSIZE (MODE) - 1' if 'SHIFT_COUNT_TRUNCATED' and 0
- otherwise. This definition is always safe, but if
- 'SHIFT_COUNT_TRUNCATED' is false, and some shift patterns
- nevertheless truncate the shift count, you may get better code by
- overriding it.
-
- -- Macro: TRULY_NOOP_TRUNCATION (OUTPREC, INPREC)
- A C expression which is nonzero if on this machine it is safe to
- "convert" an integer of INPREC bits to one of OUTPREC bits (where
- OUTPREC is smaller than INPREC) by merely operating on it as if it
- had only OUTPREC bits.
-
- On many machines, this expression can be 1.
-
- When 'TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for
- modes for which 'MODES_TIEABLE_P' is 0, suboptimal code can result.
- If this is the case, making 'TRULY_NOOP_TRUNCATION' return 0 in
- such cases may improve things.
-
- -- Target Hook: int TARGET_MODE_REP_EXTENDED (enum machine_mode MODE,
- enum machine_mode REP_MODE)
- The representation of an integral mode can be such that the values
- are always extended to a wider integral mode. Return 'SIGN_EXTEND'
- if values of MODE are represented in sign-extended form to
- REP_MODE. Return 'UNKNOWN' otherwise. (Currently, none of the
- targets use zero-extended representation this way so unlike
- 'LOAD_EXTEND_OP', 'TARGET_MODE_REP_EXTENDED' is expected to return
- either 'SIGN_EXTEND' or 'UNKNOWN'. Also no target extends MODE to
- REP_MODE so that REP_MODE is not the next widest integral mode and
- currently we take advantage of this fact.)
-
- Similarly to 'LOAD_EXTEND_OP' you may return a non-'UNKNOWN' value
- even if the extension is not performed on certain hard registers as
- long as for the 'REGNO_REG_CLASS' of these hard registers
- 'CANNOT_CHANGE_MODE_CLASS' returns nonzero.
-
- Note that 'TARGET_MODE_REP_EXTENDED' and 'LOAD_EXTEND_OP' describe
- two related properties. If you define 'TARGET_MODE_REP_EXTENDED
- (mode, word_mode)' you probably also want to define 'LOAD_EXTEND_OP
- (mode)' to return the same type of extension.
-
- In order to enforce the representation of 'mode',
- 'TRULY_NOOP_TRUNCATION' should return false when truncating to
- 'mode'.
-
- -- Macro: STORE_FLAG_VALUE
- A C expression describing the value returned by a comparison
- operator with an integral mode and stored by a store-flag
- instruction ('cstoreMODE4') when the condition is true. This
- description must apply to _all_ the 'cstoreMODE4' patterns and all
- the comparison operators whose results have a 'MODE_INT' mode.
-
- A value of 1 or -1 means that the instruction implementing the
- comparison operator returns exactly 1 or -1 when the comparison is
- true and 0 when the comparison is false. Otherwise, the value
- indicates which bits of the result are guaranteed to be 1 when the
- comparison is true. This value is interpreted in the mode of the
- comparison operation, which is given by the mode of the first
- operand in the 'cstoreMODE4' pattern. Either the low bit or the
- sign bit of 'STORE_FLAG_VALUE' be on. Presently, only those bits
- are used by the compiler.
-
- If 'STORE_FLAG_VALUE' is neither 1 or -1, the compiler will
- generate code that depends only on the specified bits. It can also
- replace comparison operators with equivalent operations if they
- cause the required bits to be set, even if the remaining bits are
- undefined. For example, on a machine whose comparison operators
- return an 'SImode' value and where 'STORE_FLAG_VALUE' is defined as
- '0x80000000', saying that just the sign bit is relevant, the
- expression
-
- (ne:SI (and:SI X (const_int POWER-OF-2)) (const_int 0))
-
- can be converted to
-
- (ashift:SI X (const_int N))
-
- where N is the appropriate shift count to move the bit being tested
- into the sign bit.
-
- There is no way to describe a machine that always sets the
- low-order bit for a true value, but does not guarantee the value of
- any other bits, but we do not know of any machine that has such an
- instruction. If you are trying to port GCC to such a machine,
- include an instruction to perform a logical-and of the result with
- 1 in the pattern for the comparison operators and let us know at
- <gcc@gcc.gnu.org>.
-
- Often, a machine will have multiple instructions that obtain a
- value from a comparison (or the condition codes). Here are rules
- to guide the choice of value for 'STORE_FLAG_VALUE', and hence the
- instructions to be used:
-
- * Use the shortest sequence that yields a valid definition for
- 'STORE_FLAG_VALUE'. It is more efficient for the compiler to
- "normalize" the value (convert it to, e.g., 1 or 0) than for
- the comparison operators to do so because there may be
- opportunities to combine the normalization with other
- operations.
-
- * For equal-length sequences, use a value of 1 or -1, with -1
- being slightly preferred on machines with expensive jumps and
- 1 preferred on other machines.
-
- * As a second choice, choose a value of '0x80000001' if
- instructions exist that set both the sign and low-order bits
- but do not define the others.
-
- * Otherwise, use a value of '0x80000000'.
-
- Many machines can produce both the value chosen for
- 'STORE_FLAG_VALUE' and its negation in the same number of
- instructions. On those machines, you should also define a pattern
- for those cases, e.g., one matching
-
- (set A (neg:M (ne:M B C)))
-
- Some machines can also perform 'and' or 'plus' operations on
- condition code values with less instructions than the corresponding
- 'cstoreMODE4' insn followed by 'and' or 'plus'. On those machines,
- define the appropriate patterns. Use the names 'incscc' and
- 'decscc', respectively, for the patterns which perform 'plus' or
- 'minus' operations on condition code values. See 'rs6000.md' for
- some examples. The GNU Superoptimizer can be used to find such
- instruction sequences on other machines.
-
- If this macro is not defined, the default value, 1, is used. You
- need not define 'STORE_FLAG_VALUE' if the machine has no store-flag
- instructions, or if the value generated by these instructions is 1.
-
- -- Macro: FLOAT_STORE_FLAG_VALUE (MODE)
- A C expression that gives a nonzero 'REAL_VALUE_TYPE' value that is
- returned when comparison operators with floating-point results are
- true. Define this macro on machines that have comparison
- operations that return floating-point values. If there are no such
- operations, do not define this macro.
-
- -- Macro: VECTOR_STORE_FLAG_VALUE (MODE)
- A C expression that gives a rtx representing the nonzero true
- element for vector comparisons. The returned rtx should be valid
- for the inner mode of MODE which is guaranteed to be a vector mode.
- Define this macro on machines that have vector comparison
- operations that return a vector result. If there are no such
- operations, do not define this macro. Typically, this macro is
- defined as 'const1_rtx' or 'constm1_rtx'. This macro may return
- 'NULL_RTX' to prevent the compiler optimizing such vector
- comparison operations for the given mode.
-
- -- Macro: CLZ_DEFINED_VALUE_AT_ZERO (MODE, VALUE)
- -- Macro: CTZ_DEFINED_VALUE_AT_ZERO (MODE, VALUE)
- A C expression that indicates whether the architecture defines a
- value for 'clz' or 'ctz' with a zero operand. A result of '0'
- indicates the value is undefined. If the value is defined for only
- the RTL expression, the macro should evaluate to '1'; if the value
- applies also to the corresponding optab entry (which is normally
- the case if it expands directly into the corresponding RTL), then
- the macro should evaluate to '2'. In the cases where the value is
- defined, VALUE should be set to this value.
-
- If this macro is not defined, the value of 'clz' or 'ctz' at zero
- is assumed to be undefined.
-
- This macro must be defined if the target's expansion for 'ffs'
- relies on a particular value to get correct results. Otherwise it
- is not necessary, though it may be used to optimize some corner
- cases, and to provide a default expansion for the 'ffs' optab.
-
- Note that regardless of this macro the "definedness" of 'clz' and
- 'ctz' at zero do _not_ extend to the builtin functions visible to
- the user. Thus one may be free to adjust the value at will to
- match the target expansion of these operations without fear of
- breaking the API.
-
- -- Macro: Pmode
- An alias for the machine mode for pointers. On most machines,
- define this to be the integer mode corresponding to the width of a
- hardware pointer; 'SImode' on 32-bit machine or 'DImode' on 64-bit
- machines. On some machines you must define this to be one of the
- partial integer modes, such as 'PSImode'.
-
- The width of 'Pmode' must be at least as large as the value of
- 'POINTER_SIZE'. If it is not equal, you must define the macro
- 'POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to
- 'Pmode'.
-
- -- Macro: FUNCTION_MODE
- An alias for the machine mode used for memory references to
- functions being called, in 'call' RTL expressions. On most CISC
- machines, where an instruction can begin at any byte address, this
- should be 'QImode'. On most RISC machines, where all instructions
- have fixed size and alignment, this should be a mode with the same
- size and alignment as the machine instruction words - typically
- 'SImode' or 'HImode'.
-
- -- Macro: STDC_0_IN_SYSTEM_HEADERS
- In normal operation, the preprocessor expands '__STDC__' to the
- constant 1, to signify that GCC conforms to ISO Standard C. On
- some hosts, like Solaris, the system compiler uses a different
- convention, where '__STDC__' is normally 0, but is 1 if the user
- specifies strict conformance to the C Standard.
-
- Defining 'STDC_0_IN_SYSTEM_HEADERS' makes GNU CPP follows the host
- convention when processing system header files, but when processing
- user files '__STDC__' will always expand to 1.
-
- -- C Target Hook: const char * TARGET_C_PREINCLUDE (void)
- Define this hook to return the name of a header file to be included
- at the start of all compilations, as if it had been included with
- '#include <FILE>'. If this hook returns 'NULL', or is not defined,
- or the header is not found, or if the user specifies
- '-ffreestanding' or '-nostdinc', no header is included.
-
- This hook can be used together with a header provided by the system
- C library to implement ISO C requirements for certain macros to be
- predefined that describe properties of the whole implementation
- rather than just the compiler.
-
- -- C Target Hook: bool TARGET_CXX_IMPLICIT_EXTERN_C (const char*)
- Define this hook to add target-specific C++ implicit extern C
- functions. If this function returns true for the name of a
- file-scope function, that function implicitly gets extern "C"
- linkage rather than whatever language linkage the declaration would
- normally have. An example of such function is WinMain on Win32
- targets.
-
- -- Macro: NO_IMPLICIT_EXTERN_C
- Define this macro if the system header files support C++ as well as
- C. This macro inhibits the usual method of using system header
- files in C++, which is to pretend that the file's contents are
- enclosed in 'extern "C" {...}'.
-
- -- Macro: REGISTER_TARGET_PRAGMAS ()
- Define this macro if you want to implement any target-specific
- pragmas. If defined, it is a C expression which makes a series of
- calls to 'c_register_pragma' or 'c_register_pragma_with_expansion'
- for each pragma. The macro may also do any setup required for the
- pragmas.
-
- The primary reason to define this macro is to provide compatibility
- with other compilers for the same target. In general, we
- discourage definition of target-specific pragmas for GCC.
-
- If the pragma can be implemented by attributes then you should
- consider defining the target hook 'TARGET_INSERT_ATTRIBUTES' as
- well.
-
- Preprocessor macros that appear on pragma lines are not expanded.
- All '#pragma' directives that do not match any registered pragma
- are silently ignored, unless the user specifies
- '-Wunknown-pragmas'.
-
- -- Function: void c_register_pragma (const char *SPACE, const char
- *NAME, void (*CALLBACK) (struct cpp_reader *))
- -- Function: void c_register_pragma_with_expansion (const char *SPACE,
- const char *NAME, void (*CALLBACK) (struct cpp_reader *))
-
- Each call to 'c_register_pragma' or
- 'c_register_pragma_with_expansion' establishes one pragma. The
- CALLBACK routine will be called when the preprocessor encounters a
- pragma of the form
-
- #pragma [SPACE] NAME ...
-
- SPACE is the case-sensitive namespace of the pragma, or 'NULL' to
- put the pragma in the global namespace. The callback routine
- receives PFILE as its first argument, which can be passed on to
- cpplib's functions if necessary. You can lex tokens after the NAME
- by calling 'pragma_lex'. Tokens that are not read by the callback
- will be silently ignored. The end of the line is indicated by a
- token of type 'CPP_EOF'. Macro expansion occurs on the arguments
- of pragmas registered with 'c_register_pragma_with_expansion' but
- not on the arguments of pragmas registered with
- 'c_register_pragma'.
-
- Note that the use of 'pragma_lex' is specific to the C and C++
- compilers. It will not work in the Java or Fortran compilers, or
- any other language compilers for that matter. Thus if 'pragma_lex'
- is going to be called from target-specific code, it must only be
- done so when building the C and C++ compilers. This can be done by
- defining the variables 'c_target_objs' and 'cxx_target_objs' in the
- target entry in the 'config.gcc' file. These variables should name
- the target-specific, language-specific object file which contains
- the code that uses 'pragma_lex'. Note it will also be necessary to
- add a rule to the makefile fragment pointed to by 'tmake_file' that
- shows how to build this object file.
-
- -- Macro: HANDLE_PRAGMA_PACK_WITH_EXPANSION
- Define this macro if macros should be expanded in the arguments of
- '#pragma pack'.
-
- -- Macro: TARGET_DEFAULT_PACK_STRUCT
- If your target requires a structure packing default other than 0
- (meaning the machine default), define this macro to the necessary
- value (in bytes). This must be a value that would also be valid to
- use with '#pragma pack()' (that is, a small power of two).
-
- -- Macro: DOLLARS_IN_IDENTIFIERS
- Define this macro to control use of the character '$' in identifier
- names for the C family of languages. 0 means '$' is not allowed by
- default; 1 means it is allowed. 1 is the default; there is no need
- to define this macro in that case.
-
- -- Macro: INSN_SETS_ARE_DELAYED (INSN)
- Define this macro as a C expression that is nonzero if it is safe
- for the delay slot scheduler to place instructions in the delay
- slot of INSN, even if they appear to use a resource set or
- clobbered in INSN. INSN is always a 'jump_insn' or an 'insn'; GCC
- knows that every 'call_insn' has this behavior. On machines where
- some 'insn' or 'jump_insn' is really a function call and hence has
- this behavior, you should define this macro.
-
- You need not define this macro if it would always return zero.
-
- -- Macro: INSN_REFERENCES_ARE_DELAYED (INSN)
- Define this macro as a C expression that is nonzero if it is safe
- for the delay slot scheduler to place instructions in the delay
- slot of INSN, even if they appear to set or clobber a resource
- referenced in INSN. INSN is always a 'jump_insn' or an 'insn'. On
- machines where some 'insn' or 'jump_insn' is really a function call
- and its operands are registers whose use is actually in the
- subroutine it calls, you should define this macro. Doing so allows
- the delay slot scheduler to move instructions which copy arguments
- into the argument registers into the delay slot of INSN.
-
- You need not define this macro if it would always return zero.
-
- -- Macro: MULTIPLE_SYMBOL_SPACES
- Define this macro as a C expression that is nonzero if, in some
- cases, global symbols from one translation unit may not be bound to
- undefined symbols in another translation unit without user
- intervention. For instance, under Microsoft Windows symbols must
- be explicitly imported from shared libraries (DLLs).
-
- You need not define this macro if it would always evaluate to zero.
-
- -- Target Hook: tree TARGET_MD_ASM_CLOBBERS (tree OUTPUTS, tree INPUTS,
- tree CLOBBERS)
- This target hook should add to CLOBBERS 'STRING_CST' trees for any
- hard regs the port wishes to automatically clobber for an asm. It
- should return the result of the last 'tree_cons' used to add a
- clobber. The OUTPUTS, INPUTS and CLOBBER lists are the
- corresponding parameters to the asm and may be inspected to avoid
- clobbering a register that is an input or output of the asm. You
- can use 'tree_overlaps_hard_reg_set', declared in 'tree.h', to test
- for overlap with regards to asm-declared registers.
-
- -- Macro: MATH_LIBRARY
- Define this macro as a C string constant for the linker argument to
- link in the system math library, minus the initial '"-l"', or '""'
- if the target does not have a separate math library.
-
- You need only define this macro if the default of '"m"' is wrong.
-
- -- Macro: LIBRARY_PATH_ENV
- Define this macro as a C string constant for the environment
- variable that specifies where the linker should look for libraries.
-
- You need only define this macro if the default of '"LIBRARY_PATH"'
- is wrong.
-
- -- Macro: TARGET_POSIX_IO
- Define this macro if the target supports the following POSIX file
- functions, access, mkdir and file locking with fcntl / F_SETLKW.
- Defining 'TARGET_POSIX_IO' will enable the test coverage code to
- use file locking when exiting a program, which avoids race
- conditions if the program has forked. It will also create
- directories at run-time for cross-profiling.
-
- -- Macro: MAX_CONDITIONAL_EXECUTE
-
- A C expression for the maximum number of instructions to execute
- via conditional execution instructions instead of a branch. A
- value of 'BRANCH_COST'+1 is the default if the machine does not use
- cc0, and 1 if it does use cc0.
-
- -- Macro: IFCVT_MODIFY_TESTS (CE_INFO, TRUE_EXPR, FALSE_EXPR)
- Used if the target needs to perform machine-dependent modifications
- on the conditionals used for turning basic blocks into
- conditionally executed code. CE_INFO points to a data structure,
- 'struct ce_if_block', which contains information about the
- currently processed blocks. TRUE_EXPR and FALSE_EXPR are the tests
- that are used for converting the then-block and the else-block,
- respectively. Set either TRUE_EXPR or FALSE_EXPR to a null pointer
- if the tests cannot be converted.
-
- -- Macro: IFCVT_MODIFY_MULTIPLE_TESTS (CE_INFO, BB, TRUE_EXPR,
- FALSE_EXPR)
- Like 'IFCVT_MODIFY_TESTS', but used when converting more
- complicated if-statements into conditions combined by 'and' and
- 'or' operations. BB contains the basic block that contains the
- test that is currently being processed and about to be turned into
- a condition.
-
- -- Macro: IFCVT_MODIFY_INSN (CE_INFO, PATTERN, INSN)
- A C expression to modify the PATTERN of an INSN that is to be
- converted to conditional execution format. CE_INFO points to a
- data structure, 'struct ce_if_block', which contains information
- about the currently processed blocks.
-
- -- Macro: IFCVT_MODIFY_FINAL (CE_INFO)
- A C expression to perform any final machine dependent modifications
- in converting code to conditional execution. The involved basic
- blocks can be found in the 'struct ce_if_block' structure that is
- pointed to by CE_INFO.
-
- -- Macro: IFCVT_MODIFY_CANCEL (CE_INFO)
- A C expression to cancel any machine dependent modifications in
- converting code to conditional execution. The involved basic
- blocks can be found in the 'struct ce_if_block' structure that is
- pointed to by CE_INFO.
-
- -- Macro: IFCVT_MACHDEP_INIT (CE_INFO)
- A C expression to initialize any machine specific data for
- if-conversion of the if-block in the 'struct ce_if_block' structure
- that is pointed to by CE_INFO.
-
- -- Target Hook: void TARGET_MACHINE_DEPENDENT_REORG (void)
- If non-null, this hook performs a target-specific pass over the
- instruction stream. The compiler will run it at all optimization
- levels, just before the point at which it normally does
- delayed-branch scheduling.
-
- The exact purpose of the hook varies from target to target. Some
- use it to do transformations that are necessary for correctness,
- such as laying out in-function constant pools or avoiding hardware
- hazards. Others use it as an opportunity to do some
- machine-dependent optimizations.
-
- You need not implement the hook if it has nothing to do. The
- default definition is null.
-
- -- Target Hook: void TARGET_INIT_BUILTINS (void)
- Define this hook if you have any machine-specific built-in
- functions that need to be defined. It should be a function that
- performs the necessary setup.
-
- Machine specific built-in functions can be useful to expand special
- machine instructions that would otherwise not normally be generated
- because they have no equivalent in the source language (for
- example, SIMD vector instructions or prefetch instructions).
-
- To create a built-in function, call the function
- 'lang_hooks.builtin_function' which is defined by the language
- front end. You can use any type nodes set up by
- 'build_common_tree_nodes'; only language front ends that use those
- two functions will call 'TARGET_INIT_BUILTINS'.
-
- -- Target Hook: tree TARGET_BUILTIN_DECL (unsigned CODE, bool
- INITIALIZE_P)
- Define this hook if you have any machine-specific built-in
- functions that need to be defined. It should be a function that
- returns the builtin function declaration for the builtin function
- code CODE. If there is no such builtin and it cannot be
- initialized at this time if INITIALIZE_P is true the function
- should return 'NULL_TREE'. If CODE is out of range the function
- should return 'error_mark_node'.
-
- -- Target Hook: rtx TARGET_EXPAND_BUILTIN (tree EXP, rtx TARGET, rtx
- SUBTARGET, enum machine_mode MODE, int IGNORE)
-
- Expand a call to a machine specific built-in function that was set
- up by 'TARGET_INIT_BUILTINS'. EXP is the expression for the
- function call; the result should go to TARGET if that is
- convenient, and have mode MODE if that is convenient. SUBTARGET
- may be used as the target for computing one of EXP's operands.
- IGNORE is nonzero if the value is to be ignored. This function
- should return the result of the call to the built-in function.
-
- -- Target Hook: tree TARGET_RESOLVE_OVERLOADED_BUILTIN (unsigned int
- LOC, tree FNDECL, void *ARGLIST)
- Select a replacement for a machine specific built-in function that
- was set up by 'TARGET_INIT_BUILTINS'. This is done _before_
- regular type checking, and so allows the target to implement a
- crude form of function overloading. FNDECL is the declaration of
- the built-in function. ARGLIST is the list of arguments passed to
- the built-in function. The result is a complete expression that
- implements the operation, usually another 'CALL_EXPR'. ARGLIST
- really has type 'VEC(tree,gc)*'
-
- -- Target Hook: tree TARGET_FOLD_BUILTIN (tree FNDECL, int N_ARGS, tree
- *ARGP, bool IGNORE)
- Fold a call to a machine specific built-in function that was set up
- by 'TARGET_INIT_BUILTINS'. FNDECL is the declaration of the
- built-in function. N_ARGS is the number of arguments passed to the
- function; the arguments themselves are pointed to by ARGP. The
- result is another tree, valid for both GIMPLE and GENERIC,
- containing a simplified expression for the call's result. If
- IGNORE is true the value will be ignored.
-
- -- Target Hook: bool TARGET_GIMPLE_FOLD_BUILTIN (gimple_stmt_iterator
- *GSI)
- Fold a call to a machine specific built-in function that was set up
- by 'TARGET_INIT_BUILTINS'. GSI points to the gimple statement
- holding the function call. Returns true if any change was made to
- the GIMPLE stream.
-
- -- Target Hook: int TARGET_COMPARE_VERSION_PRIORITY (tree DECL1, tree
- DECL2)
- This hook is used to compare the target attributes in two functions
- to determine which function's features get higher priority. This
- is used during function multi-versioning to figure out the order in
- which two versions must be dispatched. A function version with a
- higher priority is checked for dispatching earlier. DECL1 and
- DECL2 are the two function decls that will be compared.
-
- -- Target Hook: tree TARGET_GET_FUNCTION_VERSIONS_DISPATCHER (void
- *DECL)
- This hook is used to get the dispatcher function for a set of
- function versions. The dispatcher function is called to invoke the
- right function version at run-time. DECL is one version from a set
- of semantically identical versions.
-
- -- Target Hook: tree TARGET_GENERATE_VERSION_DISPATCHER_BODY (void
- *ARG)
- This hook is used to generate the dispatcher logic to invoke the
- right function version at run-time for a given set of function
- versions. ARG points to the callgraph node of the dispatcher
- function whose body must be generated.
-
- -- Target Hook: bool TARGET_CAN_USE_DOLOOP_P (double_int ITERATIONS,
- double_int ITERATIONS_MAX, unsigned int LOOP_DEPTH, bool
- ENTERED_AT_TOP)
- Return true if it is possible to use low-overhead loops
- ('doloop_end' and 'doloop_begin') for a particular loop.
- ITERATIONS gives the exact number of iterations, or 0 if not known.
- ITERATIONS_MAX gives the maximum number of iterations, or 0 if not
- known. LOOP_DEPTH is the nesting depth of the loop, with 1 for
- innermost loops, 2 for loops that contain innermost loops, and so
- on. ENTERED_AT_TOP is true if the loop is only entered from the
- top.
-
- This hook is only used if 'doloop_end' is available. The default
- implementation returns true. You can use
- 'can_use_doloop_if_innermost' if the loop must be the innermost,
- and if there are no other restrictions.
-
- -- Target Hook: const char * TARGET_INVALID_WITHIN_DOLOOP (const_rtx
- INSN)
-
- Take an instruction in INSN and return NULL if it is valid within a
- low-overhead loop, otherwise return a string explaining why doloop
- could not be applied.
-
- Many targets use special registers for low-overhead looping. For
- any instruction that clobbers these this function should return a
- string indicating the reason why the doloop could not be applied.
- By default, the RTL loop optimizer does not use a present doloop
- pattern for loops containing function calls or branch on table
- instructions.
-
- -- Target Hook: bool TARGET_LEGITIMATE_COMBINED_INSN (rtx INSN)
- Take an instruction in INSN and return 'false' if the instruction
- is not appropriate as a combination of two or more instructions.
- The default is to accept all instructions.
-
- -- Macro: MD_CAN_REDIRECT_BRANCH (BRANCH1, BRANCH2)
-
- Take a branch insn in BRANCH1 and another in BRANCH2. Return true
- if redirecting BRANCH1 to the destination of BRANCH2 is possible.
-
- On some targets, branches may have a limited range. Optimizing the
- filling of delay slots can result in branches being redirected, and
- this may in turn cause a branch offset to overflow.
-
- -- Target Hook: bool TARGET_CAN_FOLLOW_JUMP (const_rtx FOLLOWER,
- const_rtx FOLLOWEE)
- FOLLOWER and FOLLOWEE are JUMP_INSN instructions; return true if
- FOLLOWER may be modified to follow FOLLOWEE; false, if it can't.
- For example, on some targets, certain kinds of branches can't be
- made to follow through a hot/cold partitioning.
-
- -- Target Hook: bool TARGET_COMMUTATIVE_P (const_rtx X, int OUTER_CODE)
- This target hook returns 'true' if X is considered to be
- commutative. Usually, this is just COMMUTATIVE_P (X), but the HP
- PA doesn't consider PLUS to be commutative inside a MEM.
- OUTER_CODE is the rtx code of the enclosing rtl, if known,
- otherwise it is UNKNOWN.
-
- -- Target Hook: rtx TARGET_ALLOCATE_INITIAL_VALUE (rtx HARD_REG)
-
- When the initial value of a hard register has been copied in a
- pseudo register, it is often not necessary to actually allocate
- another register to this pseudo register, because the original hard
- register or a stack slot it has been saved into can be used.
- 'TARGET_ALLOCATE_INITIAL_VALUE' is called at the start of register
- allocation once for each hard register that had its initial value
- copied by using 'get_func_hard_reg_initial_val' or
- 'get_hard_reg_initial_val'. Possible values are 'NULL_RTX', if you
- don't want to do any special allocation, a 'REG' rtx--that would
- typically be the hard register itself, if it is known not to be
- clobbered--or a 'MEM'. If you are returning a 'MEM', this is only
- a hint for the allocator; it might decide to use another register
- anyways. You may use 'current_function_is_leaf' or 'REG_N_SETS' in
- the hook to determine if the hard register in question will not be
- clobbered. The default value of this hook is 'NULL', which
- disables any special allocation.
-
- -- Target Hook: int TARGET_UNSPEC_MAY_TRAP_P (const_rtx X, unsigned
- FLAGS)
- This target hook returns nonzero if X, an 'unspec' or
- 'unspec_volatile' operation, might cause a trap. Targets can use
- this hook to enhance precision of analysis for 'unspec' and
- 'unspec_volatile' operations. You may call 'may_trap_p_1' to
- analyze inner elements of X in which case FLAGS should be passed
- along.
-
- -- Target Hook: void TARGET_SET_CURRENT_FUNCTION (tree DECL)
- The compiler invokes this hook whenever it changes its current
- function context ('cfun'). You can define this function if the
- back end needs to perform any initialization or reset actions on a
- per-function basis. For example, it may be used to implement
- function attributes that affect register usage or code generation
- patterns. The argument DECL is the declaration for the new
- function context, and may be null to indicate that the compiler has
- left a function context and is returning to processing at the top
- level. The default hook function does nothing.
-
- GCC sets 'cfun' to a dummy function context during initialization
- of some parts of the back end. The hook function is not invoked in
- this situation; you need not worry about the hook being invoked
- recursively, or when the back end is in a partially-initialized
- state. 'cfun' might be 'NULL' to indicate processing at top level,
- outside of any function scope.
-
- -- Macro: TARGET_OBJECT_SUFFIX
- Define this macro to be a C string representing the suffix for
- object files on your target machine. If you do not define this
- macro, GCC will use '.o' as the suffix for object files.
-
- -- Macro: TARGET_EXECUTABLE_SUFFIX
- Define this macro to be a C string representing the suffix to be
- automatically added to executable files on your target machine. If
- you do not define this macro, GCC will use the null string as the
- suffix for executable files.
-
- -- Macro: COLLECT_EXPORT_LIST
- If defined, 'collect2' will scan the individual object files
- specified on its command line and create an export list for the
- linker. Define this macro for systems like AIX, where the linker
- discards object files that are not referenced from 'main' and uses
- export lists.
-
- -- Macro: MODIFY_JNI_METHOD_CALL (MDECL)
- Define this macro to a C expression representing a variant of the
- method call MDECL, if Java Native Interface (JNI) methods must be
- invoked differently from other methods on your target. For
- example, on 32-bit Microsoft Windows, JNI methods must be invoked
- using the 'stdcall' calling convention and this macro is then
- defined as this expression:
-
- build_type_attribute_variant (MDECL,
- build_tree_list
- (get_identifier ("stdcall"),
- NULL))
-
- -- Target Hook: bool TARGET_CANNOT_MODIFY_JUMPS_P (void)
- This target hook returns 'true' past the point in which new jump
- instructions could be created. On machines that require a register
- for every jump such as the SHmedia ISA of SH5, this point would
- typically be reload, so this target hook should be defined to a
- function such as:
-
- static bool
- cannot_modify_jumps_past_reload_p ()
- {
- return (reload_completed || reload_in_progress);
- }
-
- -- Target Hook: reg_class_t TARGET_BRANCH_TARGET_REGISTER_CLASS (void)
- This target hook returns a register class for which branch target
- register optimizations should be applied. All registers in this
- class should be usable interchangeably. After reload, registers in
- this class will be re-allocated and loads will be hoisted out of
- loops and be subjected to inter-block scheduling.
-
- -- Target Hook: bool TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED (bool
- AFTER_PROLOGUE_EPILOGUE_GEN)
- Branch target register optimization will by default exclude
- callee-saved registers that are not already live during the current
- function; if this target hook returns true, they will be included.
- The target code must than make sure that all target registers in
- the class returned by 'TARGET_BRANCH_TARGET_REGISTER_CLASS' that
- might need saving are saved. AFTER_PROLOGUE_EPILOGUE_GEN indicates
- if prologues and epilogues have already been generated. Note, even
- if you only return true when AFTER_PROLOGUE_EPILOGUE_GEN is false,
- you still are likely to have to make special provisions in
- 'INITIAL_ELIMINATION_OFFSET' to reserve space for caller-saved
- target registers.
-
- -- Target Hook: bool TARGET_HAVE_CONDITIONAL_EXECUTION (void)
- This target hook returns true if the target supports conditional
- execution. This target hook is required only when the target has
- several different modes and they have different conditional
- execution capability, such as ARM.
-
- -- Target Hook: unsigned TARGET_LOOP_UNROLL_ADJUST (unsigned NUNROLL,
- struct loop *LOOP)
- This target hook returns a new value for the number of times LOOP
- should be unrolled. The parameter NUNROLL is the number of times
- the loop is to be unrolled. The parameter LOOP is a pointer to the
- loop, which is going to be checked for unrolling. This target hook
- is required only when the target has special constraints like
- maximum number of memory accesses.
-
- -- Macro: POWI_MAX_MULTS
- If defined, this macro is interpreted as a signed integer C
- expression that specifies the maximum number of floating point
- multiplications that should be emitted when expanding
- exponentiation by an integer constant inline. When this value is
- defined, exponentiation requiring more than this number of
- multiplications is implemented by calling the system library's
- 'pow', 'powf' or 'powl' routines. The default value places no
- upper bound on the multiplication count.
-
- -- Macro: void TARGET_EXTRA_INCLUDES (const char *SYSROOT, const char
- *IPREFIX, int STDINC)
- This target hook should register any extra include files for the
- target. The parameter STDINC indicates if normal include files are
- present. The parameter SYSROOT is the system root directory. The
- parameter IPREFIX is the prefix for the gcc directory.
-
- -- Macro: void TARGET_EXTRA_PRE_INCLUDES (const char *SYSROOT, const
- char *IPREFIX, int STDINC)
- This target hook should register any extra include files for the
- target before any standard headers. The parameter STDINC indicates
- if normal include files are present. The parameter SYSROOT is the
- system root directory. The parameter IPREFIX is the prefix for the
- gcc directory.
-
- -- Macro: void TARGET_OPTF (char *PATH)
- This target hook should register special include paths for the
- target. The parameter PATH is the include to register. On Darwin
- systems, this is used for Framework includes, which have semantics
- that are different from '-I'.
-
- -- Macro: bool TARGET_USE_LOCAL_THUNK_ALIAS_P (tree FNDECL)
- This target macro returns 'true' if it is safe to use a local alias
- for a virtual function FNDECL when constructing thunks, 'false'
- otherwise. By default, the macro returns 'true' for all functions,
- if a target supports aliases (i.e. defines 'ASM_OUTPUT_DEF'),
- 'false' otherwise,
-
- -- Macro: TARGET_FORMAT_TYPES
- If defined, this macro is the name of a global variable containing
- target-specific format checking information for the '-Wformat'
- option. The default is to have no target-specific format checks.
-
- -- Macro: TARGET_N_FORMAT_TYPES
- If defined, this macro is the number of entries in
- 'TARGET_FORMAT_TYPES'.
-
- -- Macro: TARGET_OVERRIDES_FORMAT_ATTRIBUTES
- If defined, this macro is the name of a global variable containing
- target-specific format overrides for the '-Wformat' option. The
- default is to have no target-specific format overrides. If
- defined, 'TARGET_FORMAT_TYPES' must be defined, too.
-
- -- Macro: TARGET_OVERRIDES_FORMAT_ATTRIBUTES_COUNT
- If defined, this macro specifies the number of entries in
- 'TARGET_OVERRIDES_FORMAT_ATTRIBUTES'.
-
- -- Macro: TARGET_OVERRIDES_FORMAT_INIT
- If defined, this macro specifies the optional initialization
- routine for target specific customizations of the system printf and
- scanf formatter settings.
-
- -- Target Hook: bool TARGET_RELAXED_ORDERING
- If set to 'true', means that the target's memory model does not
- guarantee that loads which do not depend on one another will access
- main memory in the order of the instruction stream; if ordering is
- important, an explicit memory barrier must be used. This is true
- of many recent processors which implement a policy of "relaxed,"
- "weak," or "release" memory consistency, such as Alpha, PowerPC,
- and ia64. The default is 'false'.
-
- -- Target Hook: const char * TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN
- (const_tree TYPELIST, const_tree FUNCDECL, const_tree VAL)
- If defined, this macro returns the diagnostic message when it is
- illegal to pass argument VAL to function FUNCDECL with prototype
- TYPELIST.
-
- -- Target Hook: const char * TARGET_INVALID_CONVERSION (const_tree
- FROMTYPE, const_tree TOTYPE)
- If defined, this macro returns the diagnostic message when it is
- invalid to convert from FROMTYPE to TOTYPE, or 'NULL' if validity
- should be determined by the front end.
-
- -- Target Hook: const char * TARGET_INVALID_UNARY_OP (int OP,
- const_tree TYPE)
- If defined, this macro returns the diagnostic message when it is
- invalid to apply operation OP (where unary plus is denoted by
- 'CONVERT_EXPR') to an operand of type TYPE, or 'NULL' if validity
- should be determined by the front end.
-
- -- Target Hook: const char * TARGET_INVALID_BINARY_OP (int OP,
- const_tree TYPE1, const_tree TYPE2)
- If defined, this macro returns the diagnostic message when it is
- invalid to apply operation OP to operands of types TYPE1 and TYPE2,
- or 'NULL' if validity should be determined by the front end.
-
- -- Target Hook: const char * TARGET_INVALID_PARAMETER_TYPE (const_tree
- TYPE)
- If defined, this macro returns the diagnostic message when it is
- invalid for functions to include parameters of type TYPE, or 'NULL'
- if validity should be determined by the front end. This is
- currently used only by the C and C++ front ends.
-
- -- Target Hook: const char * TARGET_INVALID_RETURN_TYPE (const_tree
- TYPE)
- If defined, this macro returns the diagnostic message when it is
- invalid for functions to have return type TYPE, or 'NULL' if
- validity should be determined by the front end. This is currently
- used only by the C and C++ front ends.
-
- -- Target Hook: tree TARGET_PROMOTED_TYPE (const_tree TYPE)
- If defined, this target hook returns the type to which values of
- TYPE should be promoted when they appear in expressions, analogous
- to the integer promotions, or 'NULL_TREE' to use the front end's
- normal promotion rules. This hook is useful when there are
- target-specific types with special promotion rules. This is
- currently used only by the C and C++ front ends.
-
- -- Target Hook: tree TARGET_CONVERT_TO_TYPE (tree TYPE, tree EXPR)
- If defined, this hook returns the result of converting EXPR to
- TYPE. It should return the converted expression, or 'NULL_TREE' to
- apply the front end's normal conversion rules. This hook is useful
- when there are target-specific types with special conversion rules.
- This is currently used only by the C and C++ front ends.
-
- -- Macro: TARGET_USE_JCR_SECTION
- This macro determines whether to use the JCR section to register
- Java classes. By default, TARGET_USE_JCR_SECTION is defined to 1
- if both SUPPORTS_WEAK and TARGET_HAVE_NAMED_SECTIONS are true, else
- 0.
-
- -- Macro: OBJC_JBLEN
- This macro determines the size of the objective C jump buffer for
- the NeXT runtime. By default, OBJC_JBLEN is defined to an
- innocuous value.
-
- -- Macro: LIBGCC2_UNWIND_ATTRIBUTE
- Define this macro if any target-specific attributes need to be
- attached to the functions in 'libgcc' that provide low-level
- support for call stack unwinding. It is used in declarations in
- 'unwind-generic.h' and the associated definitions of those
- functions.
-
- -- Target Hook: void TARGET_UPDATE_STACK_BOUNDARY (void)
- Define this macro to update the current function stack boundary if
- necessary.
-
- -- Target Hook: rtx TARGET_GET_DRAP_RTX (void)
- This hook should return an rtx for Dynamic Realign Argument Pointer
- (DRAP) if a different argument pointer register is needed to access
- the function's argument list due to stack realignment. Return
- 'NULL' if no DRAP is needed.
-
- -- Target Hook: bool TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS (void)
- When optimization is disabled, this hook indicates whether or not
- arguments should be allocated to stack slots. Normally, GCC
- allocates stacks slots for arguments when not optimizing in order
- to make debugging easier. However, when a function is declared
- with '__attribute__((naked))', there is no stack frame, and the
- compiler cannot safely move arguments from the registers in which
- they are passed to the stack. Therefore, this hook should return
- true in general, but false for naked functions. The default
- implementation always returns true.
-
- -- Target Hook: unsigned HOST_WIDE_INT TARGET_CONST_ANCHOR
- On some architectures it can take multiple instructions to
- synthesize a constant. If there is another constant already in a
- register that is close enough in value then it is preferable that
- the new constant is computed from this register using immediate
- addition or subtraction. We accomplish this through CSE. Besides
- the value of the constant we also add a lower and an upper constant
- anchor to the available expressions. These are then queried when
- encountering new constants. The anchors are computed by rounding
- the constant up and down to a multiple of the value of
- 'TARGET_CONST_ANCHOR'. 'TARGET_CONST_ANCHOR' should be the maximum
- positive value accepted by immediate-add plus one. We currently
- assume that the value of 'TARGET_CONST_ANCHOR' is a power of 2.
- For example, on MIPS, where add-immediate takes a 16-bit signed
- value, 'TARGET_CONST_ANCHOR' is set to '0x8000'. The default value
- is zero, which disables this optimization.
-
- -- Target Hook: unsigned HOST_WIDE_INT TARGET_ASAN_SHADOW_OFFSET (void)
- Return the offset bitwise ored into shifted address to get
- corresponding Address Sanitizer shadow memory address. NULL if
- Address Sanitizer is not supported by the target.
-
- -- Target Hook: unsigned HOST_WIDE_INT TARGET_MEMMODEL_CHECK (unsigned
- HOST_WIDE_INT VAL)
- Validate target specific memory model mask bits. When NULL no
- target specific memory model bits are allowed.
-
- -- Target Hook: unsigned char TARGET_ATOMIC_TEST_AND_SET_TRUEVAL
- This value should be set if the result written by
- 'atomic_test_and_set' is not exactly 1, i.e. the 'bool' 'true'.
-
- -- Target Hook: bool TARGET_HAS_IFUNC_P (void)
- It returns true if the target supports GNU indirect functions. The
- support includes the assembler, linker and dynamic linker. The
- default value of this hook is based on target's libc.
-
- -- Target Hook: unsigned int TARGET_ATOMIC_ALIGN_FOR_MODE (enum
- machine_mode MODE)
- If defined, this function returns an appropriate alignment in bits
- for an atomic object of machine_mode MODE. If 0 is returned then
- the default alignment for the specified mode is used.
-
- -- Target Hook: void TARGET_ATOMIC_ASSIGN_EXPAND_FENV (tree *HOLD, tree
- *CLEAR, tree *UPDATE)
- ISO C11 requires atomic compound assignments that may raise
- floating-point exceptions to raise exceptions corresponding to the
- arithmetic operation whose result was successfully stored in a
- compare-and-exchange sequence. This requires code equivalent to
- calls to 'feholdexcept', 'feclearexcept' and 'feupdateenv' to be
- generated at appropriate points in the compare-and-exchange
- sequence. This hook should set '*HOLD' to an expression equivalent
- to the call to 'feholdexcept', '*CLEAR' to an expression equivalent
- to the call to 'feclearexcept' and '*UPDATE' to an expression
- equivalent to the call to 'feupdateenv'. The three expressions are
- 'NULL_TREE' on entry to the hook and may be left as 'NULL_TREE' if
- no code is required in a particular place. The default
- implementation leaves all three expressions as 'NULL_TREE'. The
- '__atomic_feraiseexcept' function from 'libatomic' may be of use as
- part of the code generated in '*UPDATE'.
-
-
-File: gccint.info, Node: Host Config, Next: Fragments, Prev: Target Macros, Up: Top
-
-18 Host Configuration
-*********************
-
-Most details about the machine and system on which the compiler is
-actually running are detected by the 'configure' script. Some things
-are impossible for 'configure' to detect; these are described in two
-ways, either by macros defined in a file named 'xm-MACHINE.h' or by hook
-functions in the file specified by the OUT_HOST_HOOK_OBJ variable in
-'config.gcc'. (The intention is that very few hosts will need a header
-file but nearly every fully supported host will need to override some
-hooks.)
-
- If you need to define only a few macros, and they have simple
-definitions, consider using the 'xm_defines' variable in your
-'config.gcc' entry instead of creating a host configuration header.
-*Note System Config::.
-
-* Menu:
-
-* Host Common:: Things every host probably needs implemented.
-* Filesystem:: Your host can't have the letter 'a' in filenames?
-* Host Misc:: Rare configuration options for hosts.
-
-
-File: gccint.info, Node: Host Common, Next: Filesystem, Up: Host Config
-
-18.1 Host Common
-================
-
-Some things are just not portable, even between similar operating
-systems, and are too difficult for autoconf to detect. They get
-implemented using hook functions in the file specified by the
-HOST_HOOK_OBJ variable in 'config.gcc'.
-
- -- Host Hook: void HOST_HOOKS_EXTRA_SIGNALS (void)
- This host hook is used to set up handling for extra signals. The
- most common thing to do in this hook is to detect stack overflow.
-
- -- Host Hook: void * HOST_HOOKS_GT_PCH_GET_ADDRESS (size_t SIZE, int
- FD)
- This host hook returns the address of some space that is likely to
- be free in some subsequent invocation of the compiler. We intend
- to load the PCH data at this address such that the data need not be
- relocated. The area should be able to hold SIZE bytes. If the
- host uses 'mmap', FD is an open file descriptor that can be used
- for probing.
-
- -- Host Hook: int HOST_HOOKS_GT_PCH_USE_ADDRESS (void * ADDRESS, size_t
- SIZE, int FD, size_t OFFSET)
- This host hook is called when a PCH file is about to be loaded. We
- want to load SIZE bytes from FD at OFFSET into memory at ADDRESS.
- The given address will be the result of a previous invocation of
- 'HOST_HOOKS_GT_PCH_GET_ADDRESS'. Return -1 if we couldn't allocate
- SIZE bytes at ADDRESS. Return 0 if the memory is allocated but the
- data is not loaded. Return 1 if the hook has performed everything.
-
- If the implementation uses reserved address space, free any
- reserved space beyond SIZE, regardless of the return value. If no
- PCH will be loaded, this hook may be called with SIZE zero, in
- which case all reserved address space should be freed.
-
- Do not try to handle values of ADDRESS that could not have been
- returned by this executable; just return -1. Such values usually
- indicate an out-of-date PCH file (built by some other GCC
- executable), and such a PCH file won't work.
-
- -- Host Hook: size_t HOST_HOOKS_GT_PCH_ALLOC_GRANULARITY (void);
- This host hook returns the alignment required for allocating
- virtual memory. Usually this is the same as getpagesize, but on
- some hosts the alignment for reserving memory differs from the
- pagesize for committing memory.
-
-
-File: gccint.info, Node: Filesystem, Next: Host Misc, Prev: Host Common, Up: Host Config
-
-18.2 Host Filesystem
-====================
-
-GCC needs to know a number of things about the semantics of the host
-machine's filesystem. Filesystems with Unix and MS-DOS semantics are
-automatically detected. For other systems, you can define the following
-macros in 'xm-MACHINE.h'.
-
-'HAVE_DOS_BASED_FILE_SYSTEM'
- This macro is automatically defined by 'system.h' if the host file
- system obeys the semantics defined by MS-DOS instead of Unix. DOS
- file systems are case insensitive, file specifications may begin
- with a drive letter, and both forward slash and backslash ('/' and
- '\') are directory separators.
-
-'DIR_SEPARATOR'
-'DIR_SEPARATOR_2'
- If defined, these macros expand to character constants specifying
- separators for directory names within a file specification.
- 'system.h' will automatically give them appropriate values on Unix
- and MS-DOS file systems. If your file system is neither of these,
- define one or both appropriately in 'xm-MACHINE.h'.
-
- However, operating systems like VMS, where constructing a pathname
- is more complicated than just stringing together directory names
- separated by a special character, should not define either of these
- macros.
-
-'PATH_SEPARATOR'
- If defined, this macro should expand to a character constant
- specifying the separator for elements of search paths. The default
- value is a colon (':'). DOS-based systems usually, but not always,
- use semicolon (';').
-
-'VMS'
- Define this macro if the host system is VMS.
-
-'HOST_OBJECT_SUFFIX'
- Define this macro to be a C string representing the suffix for
- object files on your host machine. If you do not define this
- macro, GCC will use '.o' as the suffix for object files.
-
-'HOST_EXECUTABLE_SUFFIX'
- Define this macro to be a C string representing the suffix for
- executable files on your host machine. If you do not define this
- macro, GCC will use the null string as the suffix for executable
- files.
-
-'HOST_BIT_BUCKET'
- A pathname defined by the host operating system, which can be
- opened as a file and written to, but all the information written is
- discarded. This is commonly known as a "bit bucket" or "null
- device". If you do not define this macro, GCC will use '/dev/null'
- as the bit bucket. If the host does not support a bit bucket,
- define this macro to an invalid filename.
-
-'UPDATE_PATH_HOST_CANONICALIZE (PATH)'
- If defined, a C statement (sans semicolon) that performs
- host-dependent canonicalization when a path used in a compilation
- driver or preprocessor is canonicalized. PATH is a malloc-ed path
- to be canonicalized. If the C statement does canonicalize PATH
- into a different buffer, the old path should be freed and the new
- buffer should have been allocated with malloc.
-
-'DUMPFILE_FORMAT'
- Define this macro to be a C string representing the format to use
- for constructing the index part of debugging dump file names. The
- resultant string must fit in fifteen bytes. The full filename will
- be the concatenation of: the prefix of the assembler file name, the
- string resulting from applying this format to an index number, and
- a string unique to each dump file kind, e.g. 'rtl'.
-
- If you do not define this macro, GCC will use '.%02d.'. You should
- define this macro if using the default will create an invalid file
- name.
-
-'DELETE_IF_ORDINARY'
- Define this macro to be a C statement (sans semicolon) that
- performs host-dependent removal of ordinary temp files in the
- compilation driver.
-
- If you do not define this macro, GCC will use the default version.
- You should define this macro if the default version does not
- reliably remove the temp file as, for example, on VMS which allows
- multiple versions of a file.
-
-'HOST_LACKS_INODE_NUMBERS'
- Define this macro if the host filesystem does not report meaningful
- inode numbers in struct stat.
-
-
-File: gccint.info, Node: Host Misc, Prev: Filesystem, Up: Host Config
-
-18.3 Host Misc
-==============
-
-'FATAL_EXIT_CODE'
- A C expression for the status code to be returned when the compiler
- exits after serious errors. The default is the system-provided
- macro 'EXIT_FAILURE', or '1' if the system doesn't define that
- macro. Define this macro only if these defaults are incorrect.
-
-'SUCCESS_EXIT_CODE'
- A C expression for the status code to be returned when the compiler
- exits without serious errors. (Warnings are not serious errors.)
- The default is the system-provided macro 'EXIT_SUCCESS', or '0' if
- the system doesn't define that macro. Define this macro only if
- these defaults are incorrect.
-
-'USE_C_ALLOCA'
- Define this macro if GCC should use the C implementation of
- 'alloca' provided by 'libiberty.a'. This only affects how some
- parts of the compiler itself allocate memory. It does not change
- code generation.
-
- When GCC is built with a compiler other than itself, the C 'alloca'
- is always used. This is because most other implementations have
- serious bugs. You should define this macro only on a system where
- no stack-based 'alloca' can possibly work. For instance, if a
- system has a small limit on the size of the stack, GCC's builtin
- 'alloca' will not work reliably.
-
-'COLLECT2_HOST_INITIALIZATION'
- If defined, a C statement (sans semicolon) that performs
- host-dependent initialization when 'collect2' is being initialized.
-
-'GCC_DRIVER_HOST_INITIALIZATION'
- If defined, a C statement (sans semicolon) that performs
- host-dependent initialization when a compilation driver is being
- initialized.
-
-'HOST_LONG_LONG_FORMAT'
- If defined, the string used to indicate an argument of type 'long
- long' to functions like 'printf'. The default value is '"ll"'.
-
-'HOST_LONG_FORMAT'
- If defined, the string used to indicate an argument of type 'long'
- to functions like 'printf'. The default value is '"l"'.
-
-'HOST_PTR_PRINTF'
- If defined, the string used to indicate an argument of type 'void
- *' to functions like 'printf'. The default value is '"%p"'.
-
- In addition, if 'configure' generates an incorrect definition of any of
-the macros in 'auto-host.h', you can override that definition in a host
-configuration header. If you need to do this, first see if it is
-possible to fix 'configure'.
-
-
-File: gccint.info, Node: Fragments, Next: Collect2, Prev: Host Config, Up: Top
-
-19 Makefile Fragments
-*********************
-
-When you configure GCC using the 'configure' script, it will construct
-the file 'Makefile' from the template file 'Makefile.in'. When it does
-this, it can incorporate makefile fragments from the 'config' directory.
-These are used to set Makefile parameters that are not amenable to being
-calculated by autoconf. The list of fragments to incorporate is set by
-'config.gcc' (and occasionally 'config.build' and 'config.host'); *Note
-System Config::.
-
- Fragments are named either 't-TARGET' or 'x-HOST', depending on whether
-they are relevant to configuring GCC to produce code for a particular
-target, or to configuring GCC to run on a particular host. Here TARGET
-and HOST are mnemonics which usually have some relationship to the
-canonical system name, but no formal connection.
-
- If these files do not exist, it means nothing needs to be added for a
-given target or host. Most targets need a few 't-TARGET' fragments, but
-needing 'x-HOST' fragments is rare.
-
-* Menu:
-
-* Target Fragment:: Writing 't-TARGET' files.
-* Host Fragment:: Writing 'x-HOST' files.
-
-
-File: gccint.info, Node: Target Fragment, Next: Host Fragment, Up: Fragments
-
-19.1 Target Makefile Fragments
-==============================
-
-Target makefile fragments can set these Makefile variables.
-
-'LIBGCC2_CFLAGS'
- Compiler flags to use when compiling 'libgcc2.c'.
-
-'LIB2FUNCS_EXTRA'
- A list of source file names to be compiled or assembled and
- inserted into 'libgcc.a'.
-
-'CRTSTUFF_T_CFLAGS'
- Special flags used when compiling 'crtstuff.c'. *Note
- Initialization::.
-
-'CRTSTUFF_T_CFLAGS_S'
- Special flags used when compiling 'crtstuff.c' for shared linking.
- Used if you use 'crtbeginS.o' and 'crtendS.o' in 'EXTRA-PARTS'.
- *Note Initialization::.
-
-'MULTILIB_OPTIONS'
- For some targets, invoking GCC in different ways produces objects
- that can not be linked together. For example, for some targets GCC
- produces both big and little endian code. For these targets, you
- must arrange for multiple versions of 'libgcc.a' to be compiled,
- one for each set of incompatible options. When GCC invokes the
- linker, it arranges to link in the right version of 'libgcc.a',
- based on the command line options used.
-
- The 'MULTILIB_OPTIONS' macro lists the set of options for which
- special versions of 'libgcc.a' must be built. Write options that
- are mutually incompatible side by side, separated by a slash.
- Write options that may be used together separated by a space. The
- build procedure will build all combinations of compatible options.
-
- For example, if you set 'MULTILIB_OPTIONS' to 'm68000/m68020
- msoft-float', 'Makefile' will build special versions of 'libgcc.a'
- using the following sets of options: '-m68000', '-m68020',
- '-msoft-float', '-m68000 -msoft-float', and '-m68020 -msoft-float'.
-
-'MULTILIB_DIRNAMES'
- If 'MULTILIB_OPTIONS' is used, this variable specifies the
- directory names that should be used to hold the various libraries.
- Write one element in 'MULTILIB_DIRNAMES' for each element in
- 'MULTILIB_OPTIONS'. If 'MULTILIB_DIRNAMES' is not used, the
- default value will be 'MULTILIB_OPTIONS', with all slashes treated
- as spaces.
-
- 'MULTILIB_DIRNAMES' describes the multilib directories using GCC
- conventions and is applied to directories that are part of the GCC
- installation. When multilib-enabled, the compiler will add a
- subdirectory of the form PREFIX/MULTILIB before each directory in
- the search path for libraries and crt files.
-
- For example, if 'MULTILIB_OPTIONS' is set to 'm68000/m68020
- msoft-float', then the default value of 'MULTILIB_DIRNAMES' is
- 'm68000 m68020 msoft-float'. You may specify a different value if
- you desire a different set of directory names.
-
-'MULTILIB_MATCHES'
- Sometimes the same option may be written in two different ways. If
- an option is listed in 'MULTILIB_OPTIONS', GCC needs to know about
- any synonyms. In that case, set 'MULTILIB_MATCHES' to a list of
- items of the form 'option=option' to describe all relevant
- synonyms. For example, 'm68000=mc68000 m68020=mc68020'.
-
-'MULTILIB_EXCEPTIONS'
- Sometimes when there are multiple sets of 'MULTILIB_OPTIONS' being
- specified, there are combinations that should not be built. In
- that case, set 'MULTILIB_EXCEPTIONS' to be all of the switch
- exceptions in shell case syntax that should not be built.
-
- For example the ARM processor cannot execute both hardware floating
- point instructions and the reduced size THUMB instructions at the
- same time, so there is no need to build libraries with both of
- these options enabled. Therefore 'MULTILIB_EXCEPTIONS' is set to:
- *mthumb/*mhard-float*
-
-'MULTILIB_REQUIRED'
- Sometimes when there are only a few combinations are required, it
- would be a big effort to come up with a 'MULTILIB_EXCEPTIONS' list
- to cover all undesired ones. In such a case, just listing all the
- required combinations in 'MULTILIB_REQUIRED' would be more
- straightforward.
-
- The way to specify the entries in 'MULTILIB_REQUIRED' is same with
- the way used for 'MULTILIB_EXCEPTIONS', only this time what are
- required will be specified. Suppose there are multiple sets of
- 'MULTILIB_OPTIONS' and only two combinations are required, one for
- ARMv7-M and one for ARMv7-R with hard floating-point ABI and FPU,
- the 'MULTILIB_REQUIRED' can be set to:
- MULTILIB_REQUIRED = mthumb/march=armv7-m
- MULTILIB_REQUIRED += march=armv7-r/mfloat-abi=hard/mfpu=vfpv3-d16
-
- The 'MULTILIB_REQUIRED' can be used together with
- 'MULTILIB_EXCEPTIONS'. The option combinations generated from
- 'MULTILIB_OPTIONS' will be filtered by 'MULTILIB_EXCEPTIONS' and
- then by 'MULTILIB_REQUIRED'.
-
-'MULTILIB_REUSE'
- Sometimes it is desirable to reuse one existing multilib for
- different sets of options. Such kind of reuse can minimize the
- number of multilib variants. And for some targets it is better to
- reuse an existing multilib than to fall back to default multilib
- when there is no corresponding multilib. This can be done by
- adding reuse rules to 'MULTILIB_REUSE'.
-
- A reuse rule is comprised of two parts connected by equality sign.
- The left part is option set used to build multilib and the right
- part is option set that will reuse this multilib. The order of
- options in the left part matters and should be same with those
- specified in 'MULTILIB_REQUIRED' or aligned with order in
- 'MULTILIB_OPTIONS'. There is no such limitation for options in
- right part as we don't build multilib from them. But the equality
- sign in both parts should be replaced with period.
-
- The 'MULTILIB_REUSE' is different from 'MULTILIB_MATCHES' in that
- it sets up relations between two option sets rather than two
- options. Here is an example to demo how we reuse libraries built
- in Thumb mode for applications built in ARM mode:
- MULTILIB_REUSE = mthumb/march.armv7-r=marm/march.armv7-r
-
- Before the advent of 'MULTILIB_REUSE', GCC select multilib by
- comparing command line options with options used to build multilib.
- The 'MULTILIB_REUSE' is complementary to that way. Only when the
- original comparison matches nothing it will work to see if it is OK
- to reuse some existing multilib.
-
-'MULTILIB_EXTRA_OPTS'
- Sometimes it is desirable that when building multiple versions of
- 'libgcc.a' certain options should always be passed on to the
- compiler. In that case, set 'MULTILIB_EXTRA_OPTS' to be the list
- of options to be used for all builds. If you set this, you should
- probably set 'CRTSTUFF_T_CFLAGS' to a dash followed by it.
-
-'MULTILIB_OSDIRNAMES'
- If 'MULTILIB_OPTIONS' is used, this variable specifies a list of
- subdirectory names, that are used to modify the search path
- depending on the chosen multilib. Unlike 'MULTILIB_DIRNAMES',
- 'MULTILIB_OSDIRNAMES' describes the multilib directories using
- operating systems conventions, and is applied to the directories
- such as 'lib' or those in the 'LIBRARY_PATH' environment variable.
- The format is either the same as of 'MULTILIB_DIRNAMES', or a set
- of mappings. When it is the same as 'MULTILIB_DIRNAMES', it
- describes the multilib directories using operating system
- conventions, rather than GCC conventions. When it is a set of
- mappings of the form GCCDIR=OSDIR, the left side gives the GCC
- convention and the right gives the equivalent OS defined location.
- If the OSDIR part begins with a '!', GCC will not search in the
- non-multilib directory and use exclusively the multilib directory.
- Otherwise, the compiler will examine the search path for libraries
- and crt files twice; the first time it will add MULTILIB to each
- directory in the search path, the second it will not.
-
- For configurations that support both multilib and multiarch,
- 'MULTILIB_OSDIRNAMES' also encodes the multiarch name, thus
- subsuming 'MULTIARCH_DIRNAME'. The multiarch name is appended to
- each directory name, separated by a colon (e.g.
- '../lib32:i386-linux-gnu').
-
- Each multiarch subdirectory will be searched before the
- corresponding OS multilib directory, for example
- '/lib/i386-linux-gnu' before '/lib/../lib32'. The multiarch name
- will also be used to modify the system header search path, as
- explained for 'MULTIARCH_DIRNAME'.
-
-'MULTIARCH_DIRNAME'
- This variable specifies the multiarch name for configurations that
- are multiarch-enabled but not multilibbed configurations.
-
- The multiarch name is used to augment the search path for
- libraries, crt files and system header files with additional
- locations. The compiler will add a multiarch subdirectory of the
- form PREFIX/MULTIARCH before each directory in the library and crt
- search path. It will also add two directories
- 'LOCAL_INCLUDE_DIR'/MULTIARCH and
- 'NATIVE_SYSTEM_HEADER_DIR'/MULTIARCH) to the system header search
- path, respectively before 'LOCAL_INCLUDE_DIR' and
- 'NATIVE_SYSTEM_HEADER_DIR'.
-
- 'MULTIARCH_DIRNAME' is not used for configurations that support
- both multilib and multiarch. In that case, multiarch names are
- encoded in 'MULTILIB_OSDIRNAMES' instead.
-
- More documentation about multiarch can be found at
- <http://wiki.debian.org/Multiarch>.
-
-'SPECS'
- Unfortunately, setting 'MULTILIB_EXTRA_OPTS' is not enough, since
- it does not affect the build of target libraries, at least not the
- build of the default multilib. One possible work-around is to use
- 'DRIVER_SELF_SPECS' to bring options from the 'specs' file as if
- they had been passed in the compiler driver command line. However,
- you don't want to be adding these options after the toolchain is
- installed, so you can instead tweak the 'specs' file that will be
- used during the toolchain build, while you still install the
- original, built-in 'specs'. The trick is to set 'SPECS' to some
- other filename (say 'specs.install'), that will then be created out
- of the built-in specs, and introduce a 'Makefile' rule to generate
- the 'specs' file that's going to be used at build time out of your
- 'specs.install'.
-
-'T_CFLAGS'
- These are extra flags to pass to the C compiler. They are used
- both when building GCC, and when compiling things with the
- just-built GCC. This variable is deprecated and should not be
- used.
-
-
-File: gccint.info, Node: Host Fragment, Prev: Target Fragment, Up: Fragments
-
-19.2 Host Makefile Fragments
-============================
-
-The use of 'x-HOST' fragments is discouraged. You should only use it
-for makefile dependencies.
-
-
-File: gccint.info, Node: Collect2, Next: Header Dirs, Prev: Fragments, Up: Top
-
-20 'collect2'
-*************
-
-GCC uses a utility called 'collect2' on nearly all systems to arrange to
-call various initialization functions at start time.
-
- The program 'collect2' works by linking the program once and looking
-through the linker output file for symbols with particular names
-indicating they are constructor functions. If it finds any, it creates
-a new temporary '.c' file containing a table of them, compiles it, and
-links the program a second time including that file.
-
- The actual calls to the constructors are carried out by a subroutine
-called '__main', which is called (automatically) at the beginning of the
-body of 'main' (provided 'main' was compiled with GNU CC). Calling
-'__main' is necessary, even when compiling C code, to allow linking C
-and C++ object code together. (If you use '-nostdlib', you get an
-unresolved reference to '__main', since it's defined in the standard GCC
-library. Include '-lgcc' at the end of your compiler command line to
-resolve this reference.)
-
- The program 'collect2' is installed as 'ld' in the directory where the
-passes of the compiler are installed. When 'collect2' needs to find the
-_real_ 'ld', it tries the following file names:
-
- * a hard coded linker file name, if GCC was configured with the
- '--with-ld' option.
-
- * 'real-ld' in the directories listed in the compiler's search
- directories.
-
- * 'real-ld' in the directories listed in the environment variable
- 'PATH'.
-
- * The file specified in the 'REAL_LD_FILE_NAME' configuration macro,
- if specified.
-
- * 'ld' in the compiler's search directories, except that 'collect2'
- will not execute itself recursively.
-
- * 'ld' in 'PATH'.
-
- "The compiler's search directories" means all the directories where
-'gcc' searches for passes of the compiler. This includes directories
-that you specify with '-B'.
-
- Cross-compilers search a little differently:
-
- * 'real-ld' in the compiler's search directories.
-
- * 'TARGET-real-ld' in 'PATH'.
-
- * The file specified in the 'REAL_LD_FILE_NAME' configuration macro,
- if specified.
-
- * 'ld' in the compiler's search directories.
-
- * 'TARGET-ld' in 'PATH'.
-
- 'collect2' explicitly avoids running 'ld' using the file name under
-which 'collect2' itself was invoked. In fact, it remembers up a list of
-such names--in case one copy of 'collect2' finds another copy (or
-version) of 'collect2' installed as 'ld' in a second place in the search
-path.
-
- 'collect2' searches for the utilities 'nm' and 'strip' using the same
-algorithm as above for 'ld'.
-
-
-File: gccint.info, Node: Header Dirs, Next: Type Information, Prev: Collect2, Up: Top
-
-21 Standard Header File Directories
-***********************************
-
-'GCC_INCLUDE_DIR' means the same thing for native and cross. It is
-where GCC stores its private include files, and also where GCC stores
-the fixed include files. A cross compiled GCC runs 'fixincludes' on the
-header files in '$(tooldir)/include'. (If the cross compilation header
-files need to be fixed, they must be installed before GCC is built. If
-the cross compilation header files are already suitable for GCC, nothing
-special need be done).
-
- 'GPLUSPLUS_INCLUDE_DIR' means the same thing for native and cross. It
-is where 'g++' looks first for header files. The C++ library installs
-only target independent header files in that directory.
-
- 'LOCAL_INCLUDE_DIR' is used only by native compilers. GCC doesn't
-install anything there. It is normally '/usr/local/include'. This is
-where local additions to a packaged system should place header files.
-
- 'CROSS_INCLUDE_DIR' is used only by cross compilers. GCC doesn't
-install anything there.
-
- 'TOOL_INCLUDE_DIR' is used for both native and cross compilers. It is
-the place for other packages to install header files that GCC will use.
-For a cross-compiler, this is the equivalent of '/usr/include'. When
-you build a cross-compiler, 'fixincludes' processes any header files in
-this directory.
-
-
-File: gccint.info, Node: Type Information, Next: Plugins, Prev: Header Dirs, Up: Top
-
-22 Memory Management and Type Information
-*****************************************
-
-GCC uses some fairly sophisticated memory management techniques, which
-involve determining information about GCC's data structures from GCC's
-source code and using this information to perform garbage collection and
-implement precompiled headers.
-
- A full C++ parser would be too complicated for this task, so a limited
-subset of C++ is interpreted and special markers are used to determine
-what parts of the source to look at. All 'struct', 'union' and
-'template' structure declarations that define data structures that are
-allocated under control of the garbage collector must be marked. All
-global variables that hold pointers to garbage-collected memory must
-also be marked. Finally, all global variables that need to be saved and
-restored by a precompiled header must be marked. (The precompiled
-header mechanism can only save static variables if they're scalar.
-Complex data structures must be allocated in garbage-collected memory to
-be saved in a precompiled header.)
-
- The full format of a marker is
- GTY (([OPTION] [(PARAM)], [OPTION] [(PARAM)] ...))
-but in most cases no options are needed. The outer double parentheses
-are still necessary, though: 'GTY(())'. Markers can appear:
-
- * In a structure definition, before the open brace;
- * In a global variable declaration, after the keyword 'static' or
- 'extern'; and
- * In a structure field definition, before the name of the field.
-
- Here are some examples of marking simple data structures and globals.
-
- struct GTY(()) TAG
- {
- FIELDS...
- };
-
- typedef struct GTY(()) TAG
- {
- FIELDS...
- } *TYPENAME;
-
- static GTY(()) struct TAG *LIST; /* points to GC memory */
- static GTY(()) int COUNTER; /* save counter in a PCH */
-
- The parser understands simple typedefs such as 'typedef struct TAG
-*NAME;' and 'typedef int NAME;'. These don't need to be marked.
-
- Since 'gengtype''s understanding of C++ is limited, there are several
-constructs and declarations that are not supported inside
-classes/structures marked for automatic GC code generation. The
-following C++ constructs produce a 'gengtype' error on
-structures/classes marked for automatic GC code generation:
-
- * Type definitions inside classes/structures are not supported.
- * Enumerations inside classes/structures are not supported.
-
- If you have a class or structure using any of the above constructs, you
-need to mark that class as 'GTY ((user))' and provide your own marking
-routines (see section *note User GC:: for details).
-
- It is always valid to include function definitions inside classes.
-Those are always ignored by 'gengtype', as it only cares about data
-members.
-
-* Menu:
-
-* GTY Options:: What goes inside a 'GTY(())'.
-* Inheritance and GTY:: Adding GTY to a class hierarchy.
-* User GC:: Adding user-provided GC marking routines.
-* GGC Roots:: Making global variables GGC roots.
-* Files:: How the generated files work.
-* Invoking the garbage collector:: How to invoke the garbage collector.
-* Troubleshooting:: When something does not work as expected.
-
-
-File: gccint.info, Node: GTY Options, Next: Inheritance and GTY, Up: Type Information
-
-22.1 The Inside of a 'GTY(())'
-==============================
-
-Sometimes the C code is not enough to fully describe the type structure.
-Extra information can be provided with 'GTY' options and additional
-markers. Some options take a parameter, which may be either a string or
-a type name, depending on the parameter. If an option takes no
-parameter, it is acceptable either to omit the parameter entirely, or to
-provide an empty string as a parameter. For example, 'GTY ((skip))' and
-'GTY ((skip ("")))' are equivalent.
-
- When the parameter is a string, often it is a fragment of C code. Four
-special escapes may be used in these strings, to refer to pieces of the
-data structure being marked:
-
-'%h'
- The current structure.
-'%1'
- The structure that immediately contains the current structure.
-'%0'
- The outermost structure that contains the current structure.
-'%a'
- A partial expression of the form '[i1][i2]...' that indexes the
- array item currently being marked.
-
- For instance, suppose that you have a structure of the form
- struct A {
- ...
- };
- struct B {
- struct A foo[12];
- };
-and 'b' is a variable of type 'struct B'. When marking 'b.foo[11]',
-'%h' would expand to 'b.foo[11]', '%0' and '%1' would both expand to
-'b', and '%a' would expand to '[11]'.
-
- As in ordinary C, adjacent strings will be concatenated; this is
-helpful when you have a complicated expression.
- GTY ((chain_next ("TREE_CODE (&%h.generic) == INTEGER_TYPE"
- " ? TYPE_NEXT_VARIANT (&%h.generic)"
- " : TREE_CHAIN (&%h.generic)")))
-
- The available options are:
-
-'length ("EXPRESSION")'
-
- There are two places the type machinery will need to be explicitly
- told the length of an array of non-atomic objects. The first case
- is when a structure ends in a variable-length array, like this:
- struct GTY(()) rtvec_def {
- int num_elem; /* number of elements */
- rtx GTY ((length ("%h.num_elem"))) elem[1];
- };
-
- In this case, the 'length' option is used to override the specified
- array length (which should usually be '1'). The parameter of the
- option is a fragment of C code that calculates the length.
-
- The second case is when a structure or a global variable contains a
- pointer to an array, like this:
- struct gimple_omp_for_iter * GTY((length ("%h.collapse"))) iter;
- In this case, 'iter' has been allocated by writing something like
- x->iter = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
- and the 'collapse' provides the length of the field.
-
- This second use of 'length' also works on global variables, like:
- static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
-
- Note that the 'length' option is only meant for use with arrays of
- non-atomic objects, that is, objects that contain pointers pointing
- to other GTY-managed objects. For other GC-allocated arrays and
- strings you should use 'atomic'.
-
-'skip'
-
- If 'skip' is applied to a field, the type machinery will ignore it.
- This is somewhat dangerous; the only safe use is in a union when
- one field really isn't ever used.
-
-'desc ("EXPRESSION")'
-'tag ("CONSTANT")'
-'default'
-
- The type machinery needs to be told which field of a 'union' is
- currently active. This is done by giving each field a constant
- 'tag' value, and then specifying a discriminator using 'desc'. The
- value of the expression given by 'desc' is compared against each
- 'tag' value, each of which should be different. If no 'tag' is
- matched, the field marked with 'default' is used if there is one,
- otherwise no field in the union will be marked.
-
- In the 'desc' option, the "current structure" is the union that it
- discriminates. Use '%1' to mean the structure containing it.
- There are no escapes available to the 'tag' option, since it is a
- constant.
-
- For example,
- struct GTY(()) tree_binding
- {
- struct tree_common common;
- union tree_binding_u {
- tree GTY ((tag ("0"))) scope;
- struct cp_binding_level * GTY ((tag ("1"))) level;
- } GTY ((desc ("BINDING_HAS_LEVEL_P ((tree)&%0)"))) xscope;
- tree value;
- };
-
- In this example, the value of BINDING_HAS_LEVEL_P when applied to a
- 'struct tree_binding *' is presumed to be 0 or 1. If 1, the type
- mechanism will treat the field 'level' as being present and if 0,
- will treat the field 'scope' as being present.
-
- The 'desc' and 'tag' options can also be used for inheritance to
- denote which subclass an instance is. See *note Inheritance and
- GTY:: for more information.
-
-'param_is (TYPE)'
-'use_param'
-
- Sometimes it's convenient to define some data structure to work on
- generic pointers (that is, 'PTR') and then use it with a specific
- type. 'param_is' specifies the real type pointed to, and
- 'use_param' says where in the generic data structure that type
- should be put.
-
- For instance, to have a 'htab_t' that points to trees, one would
- write the definition of 'htab_t' like this:
- typedef struct GTY(()) {
- ...
- void ** GTY ((use_param, ...)) entries;
- ...
- } htab_t;
- and then declare variables like this:
- static htab_t GTY ((param_is (union tree_node))) ict;
-
-'paramN_is (TYPE)'
-'use_paramN'
-
- In more complicated cases, the data structure might need to work on
- several different types, which might not necessarily all be
- pointers. For this, 'param1_is' through 'param9_is' may be used to
- specify the real type of a field identified by 'use_param1' through
- 'use_param9'.
-
-'use_params'
-
- When a structure contains another structure that is parameterized,
- there's no need to do anything special, the inner structure
- inherits the parameters of the outer one. When a structure
- contains a pointer to a parameterized structure, the type machinery
- won't automatically detect this (it could, it just doesn't yet), so
- it's necessary to tell it that the pointed-to structure should use
- the same parameters as the outer structure. This is done by
- marking the pointer with the 'use_params' option.
-
-'deletable'
-
- 'deletable', when applied to a global variable, indicates that when
- garbage collection runs, there's no need to mark anything pointed
- to by this variable, it can just be set to 'NULL' instead. This is
- used to keep a list of free structures around for re-use.
-
-'if_marked ("EXPRESSION")'
-
- Suppose you want some kinds of object to be unique, and so you put
- them in a hash table. If garbage collection marks the hash table,
- these objects will never be freed, even if the last other reference
- to them goes away. GGC has special handling to deal with this: if
- you use the 'if_marked' option on a global hash table, GGC will
- call the routine whose name is the parameter to the option on each
- hash table entry. If the routine returns nonzero, the hash table
- entry will be marked as usual. If the routine returns zero, the
- hash table entry will be deleted.
-
- The routine 'ggc_marked_p' can be used to determine if an element
- has been marked already; in fact, the usual case is to use
- 'if_marked ("ggc_marked_p")'.
-
-'mark_hook ("HOOK-ROUTINE-NAME")'
-
- If provided for a structure or union type, the given
- HOOK-ROUTINE-NAME (between double-quotes) is the name of a routine
- called when the garbage collector has just marked the data as
- reachable. This routine should not change the data, or call any
- ggc routine. Its only argument is a pointer to the just marked
- (const) structure or union.
-
-'maybe_undef'
-
- When applied to a field, 'maybe_undef' indicates that it's OK if
- the structure that this fields points to is never defined, so long
- as this field is always 'NULL'. This is used to avoid requiring
- backends to define certain optional structures. It doesn't work
- with language frontends.
-
-'nested_ptr (TYPE, "TO EXPRESSION", "FROM EXPRESSION")'
-
- The type machinery expects all pointers to point to the start of an
- object. Sometimes for abstraction purposes it's convenient to have
- a pointer which points inside an object. So long as it's possible
- to convert the original object to and from the pointer, such
- pointers can still be used. TYPE is the type of the original
- object, the TO EXPRESSION returns the pointer given the original
- object, and the FROM EXPRESSION returns the original object given
- the pointer. The pointer will be available using the '%h' escape.
-
-'chain_next ("EXPRESSION")'
-'chain_prev ("EXPRESSION")'
-'chain_circular ("EXPRESSION")'
-
- It's helpful for the type machinery to know if objects are often
- chained together in long lists; this lets it generate code that
- uses less stack space by iterating along the list instead of
- recursing down it. 'chain_next' is an expression for the next item
- in the list, 'chain_prev' is an expression for the previous item.
- For singly linked lists, use only 'chain_next'; for doubly linked
- lists, use both. The machinery requires that taking the next item
- of the previous item gives the original item. 'chain_circular' is
- similar to 'chain_next', but can be used for circular single linked
- lists.
-
-'reorder ("FUNCTION NAME")'
-
- Some data structures depend on the relative ordering of pointers.
- If the precompiled header machinery needs to change that ordering,
- it will call the function referenced by the 'reorder' option,
- before changing the pointers in the object that's pointed to by the
- field the option applies to. The function must take four
- arguments, with the signature
- 'void *, void *, gt_pointer_operator, void *'. The first parameter
- is a pointer to the structure that contains the object being
- updated, or the object itself if there is no containing structure.
- The second parameter is a cookie that should be ignored. The third
- parameter is a routine that, given a pointer, will update it to its
- correct new value. The fourth parameter is a cookie that must be
- passed to the second parameter.
-
- PCH cannot handle data structures that depend on the absolute
- values of pointers. 'reorder' functions can be expensive. When
- possible, it is better to depend on properties of the data, like an
- ID number or the hash of a string instead.
-
-'variable_size'
-
- The type machinery expects the types to be of constant size. When
- this is not true, for example, with structs that have array fields
- or unions, the type machinery cannot tell how many bytes need to be
- allocated at each allocation. The 'variable_size' is used to mark
- such types. The type machinery then provides allocators that take
- a parameter indicating an exact size of object being allocated.
- Note that the size must be provided in bytes whereas the 'length'
- option works with array lengths in number of elements.
-
- For example,
- struct GTY((variable_size)) sorted_fields_type {
- int len;
- tree GTY((length ("%h.len"))) elts[1];
- };
-
- Then the objects of 'struct sorted_fields_type' are allocated in GC
- memory as follows:
- field_vec = ggc_alloc_sorted_fields_type (size);
-
- If FIELD_VEC->ELTS stores N elements, then SIZE could be calculated
- as follows:
- size_t size = sizeof (struct sorted_fields_type) + n * sizeof (tree);
-
-'atomic'
-
- The 'atomic' option can only be used with pointers. It informs the
- GC machinery that the memory that the pointer points to does not
- contain any pointers, and hence it should be treated by the GC and
- PCH machinery as an "atomic" block of memory that does not need to
- be examined when scanning memory for pointers. In particular, the
- machinery will not scan that memory for pointers to mark them as
- reachable (when marking pointers for GC) or to relocate them (when
- writing a PCH file).
-
- The 'atomic' option differs from the 'skip' option. 'atomic' keeps
- the memory under Garbage Collection, but makes the GC ignore the
- contents of the memory. 'skip' is more drastic in that it causes
- the pointer and the memory to be completely ignored by the Garbage
- Collector. So, memory marked as 'atomic' is automatically freed
- when no longer reachable, while memory marked as 'skip' is not.
-
- The 'atomic' option must be used with great care, because all sorts
- of problem can occur if used incorrectly, that is, if the memory
- the pointer points to does actually contain a pointer.
-
- Here is an example of how to use it:
- struct GTY(()) my_struct {
- int number_of_elements;
- unsigned int * GTY ((atomic)) elements;
- };
- In this case, 'elements' is a pointer under GC, and the memory it
- points to needs to be allocated using the Garbage Collector, and
- will be freed automatically by the Garbage Collector when it is no
- longer referenced. But the memory that the pointer points to is an
- array of 'unsigned int' elements, and the GC must not try to scan
- it to find pointers to mark or relocate, which is why it is marked
- with the 'atomic' option.
-
- Note that, currently, global variables can not be marked with
- 'atomic'; only fields of a struct can. This is a known limitation.
- It would be useful to be able to mark global pointers with 'atomic'
- to make the PCH machinery aware of them so that they are saved and
- restored correctly to PCH files.
-
-'special ("NAME")'
-
- The 'special' option is used to mark types that have to be dealt
- with by special case machinery. The parameter is the name of the
- special case. See 'gengtype.c' for further details. Avoid adding
- new special cases unless there is no other alternative.
-
-'user'
-
- The 'user' option indicates that the code to mark structure fields
- is completely handled by user-provided routines. See section *note
- User GC:: for details on what functions need to be provided.
-
-
-File: gccint.info, Node: Inheritance and GTY, Next: User GC, Prev: GTY Options, Up: Type Information
-
-22.2 Support for inheritance
-============================
-
-gengtype has some support for simple class hierarchies. You can use
-this to have gengtype autogenerate marking routines, provided:
-
- * There must be a concrete base class, with a discriminator
- expression that can be used to identify which subclass an instance
- is.
- * Only single inheritance is used.
- * None of the classes within the hierarchy are templates.
-
- If your class hierarchy does not fit in this pattern, you must use
-*note User GC:: instead.
-
- The base class and its discriminator must be identified using the
-"desc" option. Each concrete subclass must use the "tag" option to
-identify which value of the discriminator it corresponds to.
-
- Every class in the hierarchy must have a 'GTY(())' marker, as gengtype
-will only attempt to parse classes that have such a marker (1).
-
- class GTY((desc("%h.kind"), tag("0"))) example_base
- {
- public:
- int kind;
- tree a;
- };
-
- class GTY((tag("1")) some_subclass : public example_base
- {
- public:
- tree b;
- };
-
- class GTY((tag("2")) some_other_subclass : public example_base
- {
- public:
- tree c;
- };
-
- The generated marking routines for the above will contain a "switch" on
-"kind", visiting all appropriate fields. For example, if kind is 2, it
-will cast to "some_other_subclass" and visit fields a, b, and c.
-
- ---------- Footnotes ----------
-
- (1) Classes lacking such a marker will not be identified as being
-part of the hierarchy, and so the marking routines will not handle them,
-leading to a assertion failure within the marking routines due to an
-unknown tag value (assuming that assertions are enabled).
-
-
-File: gccint.info, Node: User GC, Next: GGC Roots, Prev: Inheritance and GTY, Up: Type Information
-
-22.3 Support for user-provided GC marking routines
-==================================================
-
-The garbage collector supports types for which no automatic marking code
-is generated. For these types, the user is required to provide three
-functions: one to act as a marker for garbage collection, and two
-functions to act as marker and pointer walker for pre-compiled headers.
-
- Given a structure 'struct GTY((user)) my_struct', the following
-functions should be defined to mark 'my_struct':
-
- void gt_ggc_mx (my_struct *p)
- {
- /* This marks field 'fld'. */
- gt_ggc_mx (p->fld);
- }
-
- void gt_pch_nx (my_struct *p)
- {
- /* This marks field 'fld'. */
- gt_pch_nx (tp->fld);
- }
-
- void gt_pch_nx (my_struct *p, gt_pointer_operator op, void *cookie)
- {
- /* For every field 'fld', call the given pointer operator. */
- op (&(tp->fld), cookie);
- }
-
- In general, each marker 'M' should call 'M' for every pointer field in
-the structure. Fields that are not allocated in GC or are not pointers
-must be ignored.
-
- For embedded lists (e.g., structures with a 'next' or 'prev' pointer),
-the marker must follow the chain and mark every element in it.
-
- Note that the rules for the pointer walker 'gt_pch_nx (my_struct *,
-gt_pointer_operator, void *)' are slightly different. In this case, the
-operation 'op' must be applied to the _address_ of every pointer field.
-
-22.3.1 User-provided marking routines for template types
---------------------------------------------------------
-
-When a template type 'TP' is marked with 'GTY', all instances of that
-type are considered user-provided types. This means that the individual
-instances of 'TP' do not need to be marked with 'GTY'. The user needs
-to provide template functions to mark all the fields of the type.
-
- The following code snippets represent all the functions that need to be
-provided. Note that type 'TP' may reference to more than one type. In
-these snippets, there is only one type 'T', but there could be more.
-
- template<typename T>
- void gt_ggc_mx (TP<T> *tp)
- {
- extern void gt_ggc_mx (T&);
-
- /* This marks field 'fld' of type 'T'. */
- gt_ggc_mx (tp->fld);
- }
-
- template<typename T>
- void gt_pch_nx (TP<T> *tp)
- {
- extern void gt_pch_nx (T&);
-
- /* This marks field 'fld' of type 'T'. */
- gt_pch_nx (tp->fld);
- }
-
- template<typename T>
- void gt_pch_nx (TP<T *> *tp, gt_pointer_operator op, void *cookie)
- {
- /* For every field 'fld' of 'tp' with type 'T *', call the given
- pointer operator. */
- op (&(tp->fld), cookie);
- }
-
- template<typename T>
- void gt_pch_nx (TP<T> *tp, gt_pointer_operator, void *cookie)
- {
- extern void gt_pch_nx (T *, gt_pointer_operator, void *);
-
- /* For every field 'fld' of 'tp' with type 'T', call the pointer
- walker for all the fields of T. */
- gt_pch_nx (&(tp->fld), op, cookie);
- }
-
- Support for user-defined types is currently limited. The following
-restrictions apply:
-
- 1. Type 'TP' and all the argument types 'T' must be marked with 'GTY'.
-
- 2. Type 'TP' can only have type names in its argument list.
-
- 3. The pointer walker functions are different for 'TP<T>' and 'TP<T
- *>'. In the case of 'TP<T>', references to 'T' must be handled by
- calling 'gt_pch_nx' (which will, in turn, walk all the pointers
- inside fields of 'T'). In the case of 'TP<T *>', references to 'T
- *' must be handled by calling the 'op' function on the address of
- the pointer (see the code snippets above).
-
-
-File: gccint.info, Node: GGC Roots, Next: Files, Prev: User GC, Up: Type Information
-
-22.4 Marking Roots for the Garbage Collector
-============================================
-
-In addition to keeping track of types, the type machinery also locates
-the global variables ("roots") that the garbage collector starts at.
-Roots must be declared using one of the following syntaxes:
-
- * 'extern GTY(([OPTIONS])) TYPE NAME;'
- * 'static GTY(([OPTIONS])) TYPE NAME;'
-The syntax
- * 'GTY(([OPTIONS])) TYPE NAME;'
-is _not_ accepted. There should be an 'extern' declaration of such a
-variable in a header somewhere--mark that, not the definition. Or, if
-the variable is only used in one file, make it 'static'.
-
-
-File: gccint.info, Node: Files, Next: Invoking the garbage collector, Prev: GGC Roots, Up: Type Information
-
-22.5 Source Files Containing Type Information
-=============================================
-
-Whenever you add 'GTY' markers to a source file that previously had
-none, or create a new source file containing 'GTY' markers, there are
-three things you need to do:
-
- 1. You need to add the file to the list of source files the type
- machinery scans. There are four cases:
-
- a. For a back-end file, this is usually done automatically; if
- not, you should add it to 'target_gtfiles' in the appropriate
- port's entries in 'config.gcc'.
-
- b. For files shared by all front ends, add the filename to the
- 'GTFILES' variable in 'Makefile.in'.
-
- c. For files that are part of one front end, add the filename to
- the 'gtfiles' variable defined in the appropriate
- 'config-lang.in'. Headers should appear before non-headers in
- this list.
-
- d. For files that are part of some but not all front ends, add
- the filename to the 'gtfiles' variable of _all_ the front ends
- that use it.
-
- 2. If the file was a header file, you'll need to check that it's
- included in the right place to be visible to the generated files.
- For a back-end header file, this should be done automatically. For
- a front-end header file, it needs to be included by the same file
- that includes 'gtype-LANG.h'. For other header files, it needs to
- be included in 'gtype-desc.c', which is a generated file, so add it
- to 'ifiles' in 'open_base_file' in 'gengtype.c'.
-
- For source files that aren't header files, the machinery will
- generate a header file that should be included in the source file
- you just changed. The file will be called 'gt-PATH.h' where PATH
- is the pathname relative to the 'gcc' directory with slashes
- replaced by -, so for example the header file to be included in
- 'cp/parser.c' is called 'gt-cp-parser.c'. The generated header
- file should be included after everything else in the source file.
- Don't forget to mention this file as a dependency in the
- 'Makefile'!
-
- For language frontends, there is another file that needs to be included
-somewhere. It will be called 'gtype-LANG.h', where LANG is the name of
-the subdirectory the language is contained in.
-
- Plugins can add additional root tables. Run the 'gengtype' utility in
-plugin mode as 'gengtype -P pluginout.h SOURCE-DIR FILE-LIST PLUGIN*.C'
-with your plugin files PLUGIN*.C using 'GTY' to generate the PLUGINOUT.H
-file. The GCC build tree is needed to be present in that mode.
-
-
-File: gccint.info, Node: Invoking the garbage collector, Next: Troubleshooting, Prev: Files, Up: Type Information
-
-22.6 How to invoke the garbage collector
-========================================
-
-The GCC garbage collector GGC is only invoked explicitly. In contrast
-with many other garbage collectors, it is not implicitly invoked by
-allocation routines when a lot of memory has been consumed. So the only
-way to have GGC reclaim storage is to call the 'ggc_collect' function
-explicitly. This call is an expensive operation, as it may have to scan
-the entire heap. Beware that local variables (on the GCC call stack)
-are not followed by such an invocation (as many other garbage collectors
-do): you should reference all your data from static or external 'GTY'-ed
-variables, and it is advised to call 'ggc_collect' with a shallow call
-stack. The GGC is an exact mark and sweep garbage collector (so it does
-not scan the call stack for pointers). In practice GCC passes don't
-often call 'ggc_collect' themselves, because it is called by the pass
-manager between passes.
-
- At the time of the 'ggc_collect' call all pointers in the GC-marked
-structures must be valid or 'NULL'. In practice this means that there
-should not be uninitialized pointer fields in the structures even if
-your code never reads or writes those fields at a particular instance.
-One way to ensure this is to use cleared versions of allocators unless
-all the fields are initialized manually immediately after allocation.
-
-
-File: gccint.info, Node: Troubleshooting, Prev: Invoking the garbage collector, Up: Type Information
-
-22.7 Troubleshooting the garbage collector
-==========================================
-
-With the current garbage collector implementation, most issues should
-show up as GCC compilation errors. Some of the most commonly
-encountered issues are described below.
-
- * Gengtype does not produce allocators for a 'GTY'-marked type.
- Gengtype checks if there is at least one possible path from GC
- roots to at least one instance of each type before outputting
- allocators. If there is no such path, the 'GTY' markers will be
- ignored and no allocators will be output. Solve this by making
- sure that there exists at least one such path. If creating it is
- unfeasible or raises a "code smell", consider if you really must
- use GC for allocating such type.
-
- * Link-time errors about undefined 'gt_ggc_r_foo_bar' and
- similarly-named symbols. Check if your 'foo_bar' source file has
- '#include "gt-foo_bar.h"' as its very last line.
-
-
-File: gccint.info, Node: Plugins, Next: LTO, Prev: Type Information, Up: Top
-
-23 Plugins
-**********
-
-GCC plugin is a loadable module that provides extra features to the
-compiler, which they can further pass around as a shareable module.
-
- GCC plugins provide developers with a rich subset of the GCC API to
-allow them to extend GCC as they see fit. Whether it is writing an
-additional optimization pass, transforming code, or analyzing
-information, plugins can be quite useful.
-
-* Menu:
-
-* Plugins loading:: How can we load plugins.
-* Plugin API:: The APIs for plugins.
-* Plugins pass:: How a plugin interact with the pass manager.
-* Plugins GC:: How a plugin Interact with GCC Garbage Collector.
-* Plugins description:: Giving information about a plugin itself.
-* Plugins attr:: Registering custom attributes or pragmas.
-* Plugins recording:: Recording information about pass execution.
-* Plugins gate:: Controlling which passes are being run.
-* Plugins tracking:: Keeping track of available passes.
-* Plugins building:: How can we build a plugin.
-
-
-File: gccint.info, Node: Plugins loading, Next: Plugin API, Up: Plugins
-
-23.1 Loading Plugins
-====================
-
-Plugins are supported on platforms that support '-ldl -rdynamic'. They
-are loaded by the compiler using 'dlopen' and invoked at pre-determined
-locations in the compilation process.
-
- Plugins are loaded with
-
- '-fplugin=/path/to/NAME.so' '-fplugin-arg-NAME-KEY1[=VALUE1]'
-
- The plugin arguments are parsed by GCC and passed to respective plugins
-as key-value pairs. Multiple plugins can be invoked by specifying
-multiple '-fplugin' arguments.
-
- A plugin can be simply given by its short name (no dots or slashes).
-When simply passing '-fplugin=NAME', the plugin is loaded from the
-'plugin' directory, so '-fplugin=NAME' is the same as '-fplugin=`gcc
--print-file-name=plugin`/NAME.so', using backquote shell syntax to query
-the 'plugin' directory.
-
-
-File: gccint.info, Node: Plugin API, Next: Plugins pass, Prev: Plugins loading, Up: Plugins
-
-23.2 Plugin API
-===============
-
-Plugins are activated by the compiler at specific events as defined in
-'gcc-plugin.h'. For each event of interest, the plugin should call
-'register_callback' specifying the name of the event and address of the
-callback function that will handle that event.
-
- The header 'gcc-plugin.h' must be the first gcc header to be included.
-
-23.2.1 Plugin license check
----------------------------
-
-Every plugin should define the global symbol 'plugin_is_GPL_compatible'
-to assert that it has been licensed under a GPL-compatible license. If
-this symbol does not exist, the compiler will emit a fatal error and
-exit with the error message:
-
- fatal error: plugin NAME is not licensed under a GPL-compatible license
- NAME: undefined symbol: plugin_is_GPL_compatible
- compilation terminated
-
- The declared type of the symbol should be int, to match a forward
-declaration in 'gcc-plugin.h' that suppresses C++ mangling. It does not
-need to be in any allocated section, though. The compiler merely
-asserts that the symbol exists in the global scope. Something like this
-is enough:
-
- int plugin_is_GPL_compatible;
-
-23.2.2 Plugin initialization
-----------------------------
-
-Every plugin should export a function called 'plugin_init' that is
-called right after the plugin is loaded. This function is responsible
-for registering all the callbacks required by the plugin and do any
-other required initialization.
-
- This function is called from 'compile_file' right before invoking the
-parser. The arguments to 'plugin_init' are:
-
- * 'plugin_info': Plugin invocation information.
- * 'version': GCC version.
-
- The 'plugin_info' struct is defined as follows:
-
- struct plugin_name_args
- {
- char *base_name; /* Short name of the plugin
- (filename without .so suffix). */
- const char *full_name; /* Path to the plugin as specified with
- -fplugin=. */
- int argc; /* Number of arguments specified with
- -fplugin-arg-.... */
- struct plugin_argument *argv; /* Array of ARGC key-value pairs. */
- const char *version; /* Version string provided by plugin. */
- const char *help; /* Help string provided by plugin. */
- }
-
- If initialization fails, 'plugin_init' must return a non-zero value.
-Otherwise, it should return 0.
-
- The version of the GCC compiler loading the plugin is described by the
-following structure:
-
- struct plugin_gcc_version
- {
- const char *basever;
- const char *datestamp;
- const char *devphase;
- const char *revision;
- const char *configuration_arguments;
- };
-
- The function 'plugin_default_version_check' takes two pointers to such
-structure and compare them field by field. It can be used by the
-plugin's 'plugin_init' function.
-
- The version of GCC used to compile the plugin can be found in the
-symbol 'gcc_version' defined in the header 'plugin-version.h'. The
-recommended version check to perform looks like
-
- #include "plugin-version.h"
- ...
-
- int
- plugin_init (struct plugin_name_args *plugin_info,
- struct plugin_gcc_version *version)
- {
- if (!plugin_default_version_check (version, &gcc_version))
- return 1;
-
- }
-
- but you can also check the individual fields if you want a less strict
-check.
-
-23.2.3 Plugin callbacks
------------------------
-
-Callback functions have the following prototype:
-
- /* The prototype for a plugin callback function.
- gcc_data - event-specific data provided by GCC
- user_data - plugin-specific data provided by the plug-in. */
- typedef void (*plugin_callback_func)(void *gcc_data, void *user_data);
-
- Callbacks can be invoked at the following pre-determined events:
-
- enum plugin_event
- {
- PLUGIN_PASS_MANAGER_SETUP, /* To hook into pass manager. */
- PLUGIN_FINISH_TYPE, /* After finishing parsing a type. */
- PLUGIN_FINISH_DECL, /* After finishing parsing a declaration. */
- PLUGIN_FINISH_UNIT, /* Useful for summary processing. */
- PLUGIN_PRE_GENERICIZE, /* Allows to see low level AST in C and C++ frontends. */
- PLUGIN_FINISH, /* Called before GCC exits. */
- PLUGIN_INFO, /* Information about the plugin. */
- PLUGIN_GGC_START, /* Called at start of GCC Garbage Collection. */
- PLUGIN_GGC_MARKING, /* Extend the GGC marking. */
- PLUGIN_GGC_END, /* Called at end of GGC. */
- PLUGIN_REGISTER_GGC_ROOTS, /* Register an extra GGC root table. */
- PLUGIN_REGISTER_GGC_CACHES, /* Register an extra GGC cache table. */
- PLUGIN_ATTRIBUTES, /* Called during attribute registration */
- PLUGIN_START_UNIT, /* Called before processing a translation unit. */
- PLUGIN_PRAGMAS, /* Called during pragma registration. */
- /* Called before first pass from all_passes. */
- PLUGIN_ALL_PASSES_START,
- /* Called after last pass from all_passes. */
- PLUGIN_ALL_PASSES_END,
- /* Called before first ipa pass. */
- PLUGIN_ALL_IPA_PASSES_START,
- /* Called after last ipa pass. */
- PLUGIN_ALL_IPA_PASSES_END,
- /* Allows to override pass gate decision for current_pass. */
- PLUGIN_OVERRIDE_GATE,
- /* Called before executing a pass. */
- PLUGIN_PASS_EXECUTION,
- /* Called before executing subpasses of a GIMPLE_PASS in
- execute_ipa_pass_list. */
- PLUGIN_EARLY_GIMPLE_PASSES_START,
- /* Called after executing subpasses of a GIMPLE_PASS in
- execute_ipa_pass_list. */
- PLUGIN_EARLY_GIMPLE_PASSES_END,
- /* Called when a pass is first instantiated. */
- PLUGIN_NEW_PASS,
- /* Called when a file is #include-d or given via the #line directive.
- This could happen many times. The event data is the included file path,
- as a const char* pointer. */
- PLUGIN_INCLUDE_FILE,
-
- PLUGIN_EVENT_FIRST_DYNAMIC /* Dummy event used for indexing callback
- array. */
- };
-
- In addition, plugins can also look up the enumerator of a named event,
-and / or generate new events dynamically, by calling the function
-'get_named_event_id'.
-
- To register a callback, the plugin calls 'register_callback' with the
-arguments:
-
- * 'char *name': Plugin name.
- * 'int event': The event code.
- * 'plugin_callback_func callback': The function that handles 'event'.
- * 'void *user_data': Pointer to plugin-specific data.
-
- For the PLUGIN_PASS_MANAGER_SETUP, PLUGIN_INFO,
-PLUGIN_REGISTER_GGC_ROOTS and PLUGIN_REGISTER_GGC_CACHES pseudo-events
-the 'callback' should be null, and the 'user_data' is specific.
-
- When the PLUGIN_PRAGMAS event is triggered (with a null pointer as data
-from GCC), plugins may register their own pragmas. Notice that pragmas
-are not available from 'lto1', so plugins used with '-flto' option to
-GCC during link-time optimization cannot use pragmas and do not even see
-functions like 'c_register_pragma' or 'pragma_lex'.
-
- The PLUGIN_INCLUDE_FILE event, with a 'const char*' file path as GCC
-data, is triggered for processing of '#include' or '#line' directives.
-
- The PLUGIN_FINISH event is the last time that plugins can call GCC
-functions, notably emit diagnostics with 'warning', 'error' etc.
-
-
-File: gccint.info, Node: Plugins pass, Next: Plugins GC, Prev: Plugin API, Up: Plugins
-
-23.3 Interacting with the pass manager
-======================================
-
-There needs to be a way to add/reorder/remove passes dynamically. This
-is useful for both analysis plugins (plugging in after a certain pass
-such as CFG or an IPA pass) and optimization plugins.
-
- Basic support for inserting new passes or replacing existing passes is
-provided. A plugin registers a new pass with GCC by calling
-'register_callback' with the 'PLUGIN_PASS_MANAGER_SETUP' event and a
-pointer to a 'struct register_pass_info' object defined as follows
-
- enum pass_positioning_ops
- {
- PASS_POS_INSERT_AFTER, // Insert after the reference pass.
- PASS_POS_INSERT_BEFORE, // Insert before the reference pass.
- PASS_POS_REPLACE // Replace the reference pass.
- };
-
- struct register_pass_info
- {
- struct opt_pass *pass; /* New pass provided by the plugin. */
- const char *reference_pass_name; /* Name of the reference pass for hooking
- up the new pass. */
- int ref_pass_instance_number; /* Insert the pass at the specified
- instance number of the reference pass. */
- /* Do it for every instance if it is 0. */
- enum pass_positioning_ops pos_op; /* how to insert the new pass. */
- };
-
-
- /* Sample plugin code that registers a new pass. */
- int
- plugin_init (struct plugin_name_args *plugin_info,
- struct plugin_gcc_version *version)
- {
- struct register_pass_info pass_info;
-
- ...
-
- /* Code to fill in the pass_info object with new pass information. */
-
- ...
-
- /* Register the new pass. */
- register_callback (plugin_info->base_name, PLUGIN_PASS_MANAGER_SETUP, NULL, &pass_info);
-
- ...
- }
-
-
-File: gccint.info, Node: Plugins GC, Next: Plugins description, Prev: Plugins pass, Up: Plugins
-
-23.4 Interacting with the GCC Garbage Collector
-===============================================
-
-Some plugins may want to be informed when GGC (the GCC Garbage
-Collector) is running. They can register callbacks for the
-'PLUGIN_GGC_START' and 'PLUGIN_GGC_END' events (for which the callback
-is called with a null 'gcc_data') to be notified of the start or end of
-the GCC garbage collection.
-
- Some plugins may need to have GGC mark additional data. This can be
-done by registering a callback (called with a null 'gcc_data') for the
-'PLUGIN_GGC_MARKING' event. Such callbacks can call the 'ggc_set_mark'
-routine, preferably through the 'ggc_mark' macro (and conversely, these
-routines should usually not be used in plugins outside of the
-'PLUGIN_GGC_MARKING' event).
-
- Some plugins may need to add extra GGC root tables, e.g. to handle
-their own 'GTY'-ed data. This can be done with the
-'PLUGIN_REGISTER_GGC_ROOTS' pseudo-event with a null callback and the
-extra root table (of type 'struct ggc_root_tab*') as 'user_data'.
-Plugins that want to use the 'if_marked' hash table option can add the
-extra GGC cache tables generated by 'gengtype' using the
-'PLUGIN_REGISTER_GGC_CACHES' pseudo-event with a null callback and the
-extra cache table (of type 'struct ggc_cache_tab*') as 'user_data'.
-Running the 'gengtype -p SOURCE-DIR FILE-LIST PLUGIN*.C ...' utility
-generates these extra root tables.
-
- You should understand the details of memory management inside GCC
-before using 'PLUGIN_GGC_MARKING', 'PLUGIN_REGISTER_GGC_ROOTS' or
-'PLUGIN_REGISTER_GGC_CACHES'.
-
-
-File: gccint.info, Node: Plugins description, Next: Plugins attr, Prev: Plugins GC, Up: Plugins
-
-23.5 Giving information about a plugin
-======================================
-
-A plugin should give some information to the user about itself. This
-uses the following structure:
-
- struct plugin_info
- {
- const char *version;
- const char *help;
- };
-
- Such a structure is passed as the 'user_data' by the plugin's init
-routine using 'register_callback' with the 'PLUGIN_INFO' pseudo-event
-and a null callback.
-
-
-File: gccint.info, Node: Plugins attr, Next: Plugins recording, Prev: Plugins description, Up: Plugins
-
-23.6 Registering custom attributes or pragmas
-=============================================
-
-For analysis (or other) purposes it is useful to be able to add custom
-attributes or pragmas.
-
- The 'PLUGIN_ATTRIBUTES' callback is called during attribute
-registration. Use the 'register_attribute' function to register custom
-attributes.
-
- /* Attribute handler callback */
- static tree
- handle_user_attribute (tree *node, tree name, tree args,
- int flags, bool *no_add_attrs)
- {
- return NULL_TREE;
- }
-
- /* Attribute definition */
- static struct attribute_spec user_attr =
- { "user", 1, 1, false, false, false, handle_user_attribute, false };
-
- /* Plugin callback called during attribute registration.
- Registered with register_callback (plugin_name, PLUGIN_ATTRIBUTES, register_attributes, NULL)
- */
- static void
- register_attributes (void *event_data, void *data)
- {
- warning (0, G_("Callback to register attributes"));
- register_attribute (&user_attr);
- }
-
- The PLUGIN_PRAGMAS callback is called once during pragmas registration.
-Use the 'c_register_pragma', 'c_register_pragma_with_data',
-'c_register_pragma_with_expansion',
-'c_register_pragma_with_expansion_and_data' functions to register custom
-pragmas and their handlers (which often want to call 'pragma_lex') from
-'c-family/c-pragma.h'.
-
- /* Plugin callback called during pragmas registration. Registered with
- register_callback (plugin_name, PLUGIN_PRAGMAS,
- register_my_pragma, NULL);
- */
- static void
- register_my_pragma (void *event_data, void *data)
- {
- warning (0, G_("Callback to register pragmas"));
- c_register_pragma ("GCCPLUGIN", "sayhello", handle_pragma_sayhello);
- }
-
- It is suggested to pass '"GCCPLUGIN"' (or a short name identifying your
-plugin) as the "space" argument of your pragma.
-
- Pragmas registered with 'c_register_pragma_with_expansion' or
-'c_register_pragma_with_expansion_and_data' support preprocessor
-expansions. For example:
-
- #define NUMBER 10
- #pragma GCCPLUGIN foothreshold (NUMBER)
-
-
-File: gccint.info, Node: Plugins recording, Next: Plugins gate, Prev: Plugins attr, Up: Plugins
-
-23.7 Recording information about pass execution
-===============================================
-
-The event PLUGIN_PASS_EXECUTION passes the pointer to the executed pass
-(the same as current_pass) as 'gcc_data' to the callback. You can also
-inspect cfun to find out about which function this pass is executed for.
-Note that this event will only be invoked if the gate check (if
-applicable, modified by PLUGIN_OVERRIDE_GATE) succeeds. You can use
-other hooks, like 'PLUGIN_ALL_PASSES_START', 'PLUGIN_ALL_PASSES_END',
-'PLUGIN_ALL_IPA_PASSES_START', 'PLUGIN_ALL_IPA_PASSES_END',
-'PLUGIN_EARLY_GIMPLE_PASSES_START', and/or
-'PLUGIN_EARLY_GIMPLE_PASSES_END' to manipulate global state in your
-plugin(s) in order to get context for the pass execution.
-
-
-File: gccint.info, Node: Plugins gate, Next: Plugins tracking, Prev: Plugins recording, Up: Plugins
-
-23.8 Controlling which passes are being run
-===========================================
-
-After the original gate function for a pass is called, its result - the
-gate status - is stored as an integer. Then the event
-'PLUGIN_OVERRIDE_GATE' is invoked, with a pointer to the gate status in
-the 'gcc_data' parameter to the callback function. A nonzero value of
-the gate status means that the pass is to be executed. You can both
-read and write the gate status via the passed pointer.
-
-
-File: gccint.info, Node: Plugins tracking, Next: Plugins building, Prev: Plugins gate, Up: Plugins
-
-23.9 Keeping track of available passes
-======================================
-
-When your plugin is loaded, you can inspect the various pass lists to
-determine what passes are available. However, other plugins might add
-new passes. Also, future changes to GCC might cause generic passes to
-be added after plugin loading. When a pass is first added to one of the
-pass lists, the event 'PLUGIN_NEW_PASS' is invoked, with the callback
-parameter 'gcc_data' pointing to the new pass.
-
-
-File: gccint.info, Node: Plugins building, Prev: Plugins tracking, Up: Plugins
-
-23.10 Building GCC plugins
-==========================
-
-If plugins are enabled, GCC installs the headers needed to build a
-plugin (somewhere in the installation tree, e.g. under '/usr/local').
-In particular a 'plugin/include' directory is installed, containing all
-the header files needed to build plugins.
-
- On most systems, you can query this 'plugin' directory by invoking 'gcc
--print-file-name=plugin' (replace if needed 'gcc' with the appropriate
-program path).
-
- Inside plugins, this 'plugin' directory name can be queried by calling
-'default_plugin_dir_name ()'.
-
- Plugins may know, when they are compiled, the GCC version for which
-'plugin-version.h' is provided. The constant macros
-'GCCPLUGIN_VERSION_MAJOR', 'GCCPLUGIN_VERSION_MINOR',
-'GCCPLUGIN_VERSION_PATCHLEVEL', 'GCCPLUGIN_VERSION' are integer numbers,
-so a plugin could ensure it is built for GCC 4.7 with
- #if GCCPLUGIN_VERSION != 4007
- #error this GCC plugin is for GCC 4.7
- #endif
-
- The following GNU Makefile excerpt shows how to build a simple plugin:
-
- HOST_GCC=g++
- TARGET_GCC=gcc
- PLUGIN_SOURCE_FILES= plugin1.c plugin2.cc
- GCCPLUGINS_DIR:= $(shell $(TARGET_GCC) -print-file-name=plugin)
- CXXFLAGS+= -I$(GCCPLUGINS_DIR)/include -fPIC -fno-rtti -O2
-
- plugin.so: $(PLUGIN_SOURCE_FILES)
- $(HOST_GCC) -shared $(CXXFLAGS) $^ -o $@
-
- A single source file plugin may be built with 'g++ -I`gcc
--print-file-name=plugin`/include -fPIC -shared -fno-rtti -O2 plugin.c -o
-plugin.so', using backquote shell syntax to query the 'plugin'
-directory.
-
- When a plugin needs to use 'gengtype', be sure that both 'gengtype' and
-'gtype.state' have the same version as the GCC for which the plugin is
-built.
-
-
-File: gccint.info, Node: LTO, Next: Funding, Prev: Plugins, Up: Top
-
-24 Link Time Optimization
-*************************
-
-Link Time Optimization (LTO) gives GCC the capability of dumping its
-internal representation (GIMPLE) to disk, so that all the different
-compilation units that make up a single executable can be optimized as a
-single module. This expands the scope of inter-procedural optimizations
-to encompass the whole program (or, rather, everything that is visible
-at link time).
-
-* Menu:
-
-* LTO Overview:: Overview of LTO.
-* LTO object file layout:: LTO file sections in ELF.
-* IPA:: Using summary information in IPA passes.
-* WHOPR:: Whole program assumptions,
- linker plugin and symbol visibilities.
-* Internal flags:: Internal flags controlling 'lto1'.
-
-
-File: gccint.info, Node: LTO Overview, Next: LTO object file layout, Up: LTO
-
-24.1 Design Overview
-====================
-
-Link time optimization is implemented as a GCC front end for a bytecode
-representation of GIMPLE that is emitted in special sections of '.o'
-files. Currently, LTO support is enabled in most ELF-based systems, as
-well as darwin, cygwin and mingw systems.
-
- Since GIMPLE bytecode is saved alongside final object code, object
-files generated with LTO support are larger than regular object files.
-This "fat" object format makes it easy to integrate LTO into existing
-build systems, as one can, for instance, produce archives of the files.
-Additionally, one might be able to ship one set of fat objects which
-could be used both for development and the production of optimized
-builds. A, perhaps surprising, side effect of this feature is that any
-mistake in the toolchain that leads to LTO information not being used
-(e.g. an older 'libtool' calling 'ld' directly). This is both an
-advantage, as the system is more robust, and a disadvantage, as the user
-is not informed that the optimization has been disabled.
-
- The current implementation only produces "fat" objects, effectively
-doubling compilation time and increasing file sizes up to 5x the
-original size. This hides the problem that some tools, such as 'ar' and
-'nm', need to understand symbol tables of LTO sections. These tools
-were extended to use the plugin infrastructure, and with these problems
-solved, GCC will also support "slim" objects consisting of the
-intermediate code alone.
-
- At the highest level, LTO splits the compiler in two. The first half
-(the "writer") produces a streaming representation of all the internal
-data structures needed to optimize and generate code. This includes
-declarations, types, the callgraph and the GIMPLE representation of
-function bodies.
-
- When '-flto' is given during compilation of a source file, the pass
-manager executes all the passes in 'all_lto_gen_passes'. Currently,
-this phase is composed of two IPA passes:
-
- * 'pass_ipa_lto_gimple_out' This pass executes the function
- 'lto_output' in 'lto-streamer-out.c', which traverses the call
- graph encoding every reachable declaration, type and function.
- This generates a memory representation of all the file sections
- described below.
-
- * 'pass_ipa_lto_finish_out' This pass executes the function
- 'produce_asm_for_decls' in 'lto-streamer-out.c', which takes the
- memory image built in the previous pass and encodes it in the
- corresponding ELF file sections.
-
- The second half of LTO support is the "reader". This is implemented as
-the GCC front end 'lto1' in 'lto/lto.c'. When 'collect2' detects a link
-set of '.o'/'.a' files with LTO information and the '-flto' is enabled,
-it invokes 'lto1' which reads the set of files and aggregates them into
-a single translation unit for optimization. The main entry point for
-the reader is 'lto/lto.c':'lto_main'.
-
-24.1.1 LTO modes of operation
------------------------------
-
-One of the main goals of the GCC link-time infrastructure was to allow
-effective compilation of large programs. For this reason GCC implements
-two link-time compilation modes.
-
- 1. _LTO mode_, in which the whole program is read into the compiler at
- link-time and optimized in a similar way as if it were a single
- source-level compilation unit.
-
- 2. _WHOPR or partitioned mode_, designed to utilize multiple CPUs
- and/or a distributed compilation environment to quickly link large
- applications. WHOPR stands for WHOle Program optimizeR (not to be
- confused with the semantics of '-fwhole-program'). It partitions
- the aggregated callgraph from many different '.o' files and
- distributes the compilation of the sub-graphs to different CPUs.
-
- Note that distributed compilation is not implemented yet, but since
- the parallelism is facilitated via generating a 'Makefile', it
- would be easy to implement.
-
- WHOPR splits LTO into three main stages:
- 1. Local generation (LGEN) This stage executes in parallel. Every
- file in the program is compiled into the intermediate language and
- packaged together with the local call-graph and summary
- information. This stage is the same for both the LTO and WHOPR
- compilation mode.
-
- 2. Whole Program Analysis (WPA) WPA is performed sequentially. The
- global call-graph is generated, and a global analysis procedure
- makes transformation decisions. The global call-graph is
- partitioned to facilitate parallel optimization during phase 3.
- The results of the WPA stage are stored into new object files which
- contain the partitions of program expressed in the intermediate
- language and the optimization decisions.
-
- 3. Local transformations (LTRANS) This stage executes in parallel.
- All the decisions made during phase 2 are implemented locally in
- each partitioned object file, and the final object code is
- generated. Optimizations which cannot be decided efficiently
- during the phase 2 may be performed on the local call-graph
- partitions.
-
- WHOPR can be seen as an extension of the usual LTO mode of compilation.
-In LTO, WPA and LTRANS are executed within a single execution of the
-compiler, after the whole program has been read into memory.
-
- When compiling in WHOPR mode, the callgraph is partitioned during the
-WPA stage. The whole program is split into a given number of partitions
-of roughly the same size. The compiler tries to minimize the number of
-references which cross partition boundaries. The main advantage of
-WHOPR is to allow the parallel execution of LTRANS stages, which are the
-most time-consuming part of the compilation process. Additionally, it
-avoids the need to load the whole program into memory.
-
-
-File: gccint.info, Node: LTO object file layout, Next: IPA, Prev: LTO Overview, Up: LTO
-
-24.2 LTO file sections
-======================
-
-LTO information is stored in several ELF sections inside object files.
-Data structures and enum codes for sections are defined in
-'lto-streamer.h'.
-
- These sections are emitted from 'lto-streamer-out.c' and mapped in all
-at once from 'lto/lto.c':'lto_file_read'. The individual functions
-dealing with the reading/writing of each section are described below.
-
- * Command line options ('.gnu.lto_.opts')
-
- This section contains the command line options used to generate the
- object files. This is used at link time to determine the
- optimization level and other settings when they are not explicitly
- specified at the linker command line.
-
- Currently, GCC does not support combining LTO object files compiled
- with different set of the command line options into a single
- binary. At link time, the options given on the command line and
- the options saved on all the files in a link-time set are applied
- globally. No attempt is made at validating the combination of
- flags (other than the usual validation done by option processing).
- This is implemented in 'lto/lto.c':'lto_read_all_file_options'.
-
- * Symbol table ('.gnu.lto_.symtab')
-
- This table replaces the ELF symbol table for functions and
- variables represented in the LTO IL. Symbols used and exported by
- the optimized assembly code of "fat" objects might not match the
- ones used and exported by the intermediate code. This table is
- necessary because the intermediate code is less optimized and thus
- requires a separate symbol table.
-
- Additionally, the binary code in the "fat" object will lack a call
- to a function, since the call was optimized out at compilation time
- after the intermediate language was streamed out. In some special
- cases, the same optimization may not happen during link-time
- optimization. This would lead to an undefined symbol if only one
- symbol table was used.
-
- The symbol table is emitted in
- 'lto-streamer-out.c':'produce_symtab'.
-
- * Global declarations and types ('.gnu.lto_.decls')
-
- This section contains an intermediate language dump of all
- declarations and types required to represent the callgraph, static
- variables and top-level debug info.
-
- The contents of this section are emitted in
- 'lto-streamer-out.c':'produce_asm_for_decls'. Types and symbols
- are emitted in a topological order that preserves the sharing of
- pointers when the file is read back in
- ('lto.c':'read_cgraph_and_symbols').
-
- * The callgraph ('.gnu.lto_.cgraph')
-
- This section contains the basic data structure used by the GCC
- inter-procedural optimization infrastructure. This section stores
- an annotated multi-graph which represents the functions and call
- sites as well as the variables, aliases and top-level 'asm'
- statements.
-
- This section is emitted in 'lto-streamer-out.c':'output_cgraph' and
- read in 'lto-cgraph.c':'input_cgraph'.
-
- * IPA references ('.gnu.lto_.refs')
-
- This section contains references between function and static
- variables. It is emitted by 'lto-cgraph.c':'output_refs' and read
- by 'lto-cgraph.c':'input_refs'.
-
- * Function bodies ('.gnu.lto_.function_body.<name>')
-
- This section contains function bodies in the intermediate language
- representation. Every function body is in a separate section to
- allow copying of the section independently to different object
- files or reading the function on demand.
-
- Functions are emitted in 'lto-streamer-out.c':'output_function' and
- read in 'lto-streamer-in.c':'input_function'.
-
- * Static variable initializers ('.gnu.lto_.vars')
-
- This section contains all the symbols in the global variable pool.
- It is emitted by 'lto-cgraph.c':'output_varpool' and read in
- 'lto-cgraph.c':'input_cgraph'.
-
- * Summaries and optimization summaries used by IPA passes
- ('.gnu.lto_.<xxx>', where '<xxx>' is one of 'jmpfuncs', 'pureconst'
- or 'reference')
-
- These sections are used by IPA passes that need to emit summary
- information during LTO generation to be read and aggregated at link
- time. Each pass is responsible for implementing two pass manager
- hooks: one for writing the summary and another for reading it in.
- The format of these sections is entirely up to each individual
- pass. The only requirement is that the writer and reader hooks
- agree on the format.
-
-
-File: gccint.info, Node: IPA, Next: WHOPR, Prev: LTO object file layout, Up: LTO
-
-24.3 Using summary information in IPA passes
-============================================
-
-Programs are represented internally as a _callgraph_ (a multi-graph
-where nodes are functions and edges are call sites) and a _varpool_ (a
-list of static and external variables in the program).
-
- The inter-procedural optimization is organized as a sequence of
-individual passes, which operate on the callgraph and the varpool. To
-make the implementation of WHOPR possible, every inter-procedural
-optimization pass is split into several stages that are executed at
-different times during WHOPR compilation:
-
- * LGEN time
- 1. _Generate summary_ ('generate_summary' in 'struct
- ipa_opt_pass_d'). This stage analyzes every function body and
- variable initializer is examined and stores relevant
- information into a pass-specific data structure.
-
- 2. _Write summary_ ('write_summary' in 'struct ipa_opt_pass_d').
- This stage writes all the pass-specific information generated
- by 'generate_summary'. Summaries go into their own
- 'LTO_section_*' sections that have to be declared in
- 'lto-streamer.h':'enum lto_section_type'. A new section is
- created by calling 'create_output_block' and data can be
- written using the 'lto_output_*' routines.
-
- * WPA time
- 1. _Read summary_ ('read_summary' in 'struct ipa_opt_pass_d').
- This stage reads all the pass-specific information in exactly
- the same order that it was written by 'write_summary'.
-
- 2. _Execute_ ('execute' in 'struct opt_pass'). This performs
- inter-procedural propagation. This must be done without
- actual access to the individual function bodies or variable
- initializers. Typically, this results in a transitive closure
- operation over the summary information of all the nodes in the
- callgraph.
-
- 3. _Write optimization summary_ ('write_optimization_summary' in
- 'struct ipa_opt_pass_d'). This writes the result of the
- inter-procedural propagation into the object file. This can
- use the same data structures and helper routines used in
- 'write_summary'.
-
- * LTRANS time
- 1. _Read optimization summary_ ('read_optimization_summary' in
- 'struct ipa_opt_pass_d'). The counterpart to
- 'write_optimization_summary'. This reads the interprocedural
- optimization decisions in exactly the same format emitted by
- 'write_optimization_summary'.
-
- 2. _Transform_ ('function_transform' and 'variable_transform' in
- 'struct ipa_opt_pass_d'). The actual function bodies and
- variable initializers are updated based on the information
- passed down from the _Execute_ stage.
-
- The implementation of the inter-procedural passes are shared between
-LTO, WHOPR and classic non-LTO compilation.
-
- * During the traditional file-by-file mode every pass executes its
- own _Generate summary_, _Execute_, and _Transform_ stages within
- the single execution context of the compiler.
-
- * In LTO compilation mode, every pass uses _Generate summary_ and
- _Write summary_ stages at compilation time, while the _Read
- summary_, _Execute_, and _Transform_ stages are executed at link
- time.
-
- * In WHOPR mode all stages are used.
-
- To simplify development, the GCC pass manager differentiates between
-normal inter-procedural passes and small inter-procedural passes. A
-_small inter-procedural pass_ ('SIMPLE_IPA_PASS') is a pass that does
-everything at once and thus it can not be executed during WPA in WHOPR
-mode. It defines only the _Execute_ stage and during this stage it
-accesses and modifies the function bodies. Such passes are useful for
-optimization at LGEN or LTRANS time and are used, for example, to
-implement early optimization before writing object files. The simple
-inter-procedural passes can also be used for easier prototyping and
-development of a new inter-procedural pass.
-
-24.3.1 Virtual clones
----------------------
-
-One of the main challenges of introducing the WHOPR compilation mode was
-addressing the interactions between optimization passes. In LTO
-compilation mode, the passes are executed in a sequence, each of which
-consists of analysis (or _Generate summary_), propagation (or _Execute_)
-and _Transform_ stages. Once the work of one pass is finished, the next
-pass sees the updated program representation and can execute. This
-makes the individual passes dependent on each other.
-
- In WHOPR mode all passes first execute their _Generate summary_ stage.
-Then summary writing marks the end of the LGEN stage. At WPA time, the
-summaries are read back into memory and all passes run the _Execute_
-stage. Optimization summaries are streamed and sent to LTRANS, where
-all the passes execute the _Transform_ stage.
-
- Most optimization passes split naturally into analysis, propagation and
-transformation stages. But some do not. The main problem arises when
-one pass performs changes and the following pass gets confused by seeing
-different callgraphs between the _Transform_ stage and the _Generate
-summary_ or _Execute_ stage. This means that the passes are required to
-communicate their decisions with each other.
-
- To facilitate this communication, the GCC callgraph infrastructure
-implements _virtual clones_, a method of representing the changes
-performed by the optimization passes in the callgraph without needing to
-update function bodies.
-
- A _virtual clone_ in the callgraph is a function that has no associated
-body, just a description of how to create its body based on a different
-function (which itself may be a virtual clone).
-
- The description of function modifications includes adjustments to the
-function's signature (which allows, for example, removing or adding
-function arguments), substitutions to perform on the function body, and,
-for inlined functions, a pointer to the function that it will be inlined
-into.
-
- It is also possible to redirect any edge of the callgraph from a
-function to its virtual clone. This implies updating of the call site
-to adjust for the new function signature.
-
- Most of the transformations performed by inter-procedural optimizations
-can be represented via virtual clones. For instance, a constant
-propagation pass can produce a virtual clone of the function which
-replaces one of its arguments by a constant. The inliner can represent
-its decisions by producing a clone of a function whose body will be
-later integrated into a given function.
-
- Using _virtual clones_, the program can be easily updated during the
-_Execute_ stage, solving most of pass interactions problems that would
-otherwise occur during _Transform_.
-
- Virtual clones are later materialized in the LTRANS stage and turned
-into real functions. Passes executed after the virtual clone were
-introduced also perform their _Transform_ stage on new functions, so for
-a pass there is no significant difference between operating on a real
-function or a virtual clone introduced before its _Execute_ stage.
-
- Optimization passes then work on virtual clones introduced before their
-_Execute_ stage as if they were real functions. The only difference is
-that clones are not visible during the _Generate Summary_ stage.
-
- To keep function summaries updated, the callgraph interface allows an
-optimizer to register a callback that is called every time a new clone
-is introduced as well as when the actual function or variable is
-generated or when a function or variable is removed. These hooks are
-registered in the _Generate summary_ stage and allow the pass to keep
-its information intact until the _Execute_ stage. The same hooks can
-also be registered during the _Execute_ stage to keep the optimization
-summaries updated for the _Transform_ stage.
-
-24.3.2 IPA references
----------------------
-
-GCC represents IPA references in the callgraph. For a function or
-variable 'A', the _IPA reference_ is a list of all locations where the
-address of 'A' is taken and, when 'A' is a variable, a list of all
-direct stores and reads to/from 'A'. References represent an oriented
-multi-graph on the union of nodes of the callgraph and the varpool. See
-'ipa-reference.c':'ipa_reference_write_optimization_summary' and
-'ipa-reference.c':'ipa_reference_read_optimization_summary' for details.
-
-24.3.3 Jump functions
----------------------
-
-Suppose that an optimization pass sees a function 'A' and it knows the
-values of (some of) its arguments. The _jump function_ describes the
-value of a parameter of a given function call in function 'A' based on
-this knowledge.
-
- Jump functions are used by several optimizations, such as the
-inter-procedural constant propagation pass and the devirtualization
-pass. The inliner also uses jump functions to perform inlining of
-callbacks.
-
-
-File: gccint.info, Node: WHOPR, Next: Internal flags, Prev: IPA, Up: LTO
-
-24.4 Whole program assumptions, linker plugin and symbol visibilities
-=====================================================================
-
-Link-time optimization gives relatively minor benefits when used alone.
-The problem is that propagation of inter-procedural information does not
-work well across functions and variables that are called or referenced
-by other compilation units (such as from a dynamically linked library).
-We say that such functions and variables are _externally visible_.
-
- To make the situation even more difficult, many applications organize
-themselves as a set of shared libraries, and the default ELF visibility
-rules allow one to overwrite any externally visible symbol with a
-different symbol at runtime. This basically disables any optimizations
-across such functions and variables, because the compiler cannot be sure
-that the function body it is seeing is the same function body that will
-be used at runtime. Any function or variable not declared 'static' in
-the sources degrades the quality of inter-procedural optimization.
-
- To avoid this problem the compiler must assume that it sees the whole
-program when doing link-time optimization. Strictly speaking, the whole
-program is rarely visible even at link-time. Standard system libraries
-are usually linked dynamically or not provided with the link-time
-information. In GCC, the whole program option ('-fwhole-program')
-asserts that every function and variable defined in the current
-compilation unit is static, except for function 'main' (note: at link
-time, the current unit is the union of all objects compiled with LTO).
-Since some functions and variables need to be referenced externally, for
-example by another DSO or from an assembler file, GCC also provides the
-function and variable attribute 'externally_visible' which can be used
-to disable the effect of '-fwhole-program' on a specific symbol.
-
- The whole program mode assumptions are slightly more complex in C++,
-where inline functions in headers are put into _COMDAT_ sections.
-COMDAT function and variables can be defined by multiple object files
-and their bodies are unified at link-time and dynamic link-time. COMDAT
-functions are changed to local only when their address is not taken and
-thus un-sharing them with a library is not harmful. COMDAT variables
-always remain externally visible, however for readonly variables it is
-assumed that their initializers cannot be overwritten by a different
-value.
-
- GCC provides the function and variable attribute 'visibility' that can
-be used to specify the visibility of externally visible symbols (or
-alternatively an '-fdefault-visibility' command line option). ELF
-defines the 'default', 'protected', 'hidden' and 'internal'
-visibilities.
-
- The most commonly used is visibility is 'hidden'. It specifies that
-the symbol cannot be referenced from outside of the current shared
-library. Unfortunately, this information cannot be used directly by the
-link-time optimization in the compiler since the whole shared library
-also might contain non-LTO objects and those are not visible to the
-compiler.
-
- GCC solves this problem using linker plugins. A _linker plugin_ is an
-interface to the linker that allows an external program to claim the
-ownership of a given object file. The linker then performs the linking
-procedure by querying the plugin about the symbol table of the claimed
-objects and once the linking decisions are complete, the plugin is
-allowed to provide the final object file before the actual linking is
-made. The linker plugin obtains the symbol resolution information which
-specifies which symbols provided by the claimed objects are bound from
-the rest of a binary being linked.
-
- Currently, the linker plugin works only in combination with the Gold
-linker, but a GNU ld implementation is under development.
-
- GCC is designed to be independent of the rest of the toolchain and aims
-to support linkers without plugin support. For this reason it does not
-use the linker plugin by default. Instead, the object files are
-examined by 'collect2' before being passed to the linker and objects
-found to have LTO sections are passed to 'lto1' first. This mode does
-not work for library archives. The decision on what object files from
-the archive are needed depends on the actual linking and thus GCC would
-have to implement the linker itself. The resolution information is
-missing too and thus GCC needs to make an educated guess based on
-'-fwhole-program'. Without the linker plugin GCC also assumes that
-symbols are declared 'hidden' and not referred by non-LTO code by
-default.
-
-
-File: gccint.info, Node: Internal flags, Prev: WHOPR, Up: LTO
-
-24.5 Internal flags controlling 'lto1'
-======================================
-
-The following flags are passed into 'lto1' and are not meant to be used
-directly from the command line.
-
- * -fwpa This option runs the serial part of the link-time optimizer
- performing the inter-procedural propagation (WPA mode). The
- compiler reads in summary information from all inputs and performs
- an analysis based on summary information only. It generates object
- files for subsequent runs of the link-time optimizer where
- individual object files are optimized using both summary
- information from the WPA mode and the actual function bodies. It
- then drives the LTRANS phase.
-
- * -fltrans This option runs the link-time optimizer in the
- local-transformation (LTRANS) mode, which reads in output from a
- previous run of the LTO in WPA mode. In the LTRANS mode, LTO
- optimizes an object and produces the final assembly.
-
- * -fltrans-output-list=FILE This option specifies a file to which the
- names of LTRANS output files are written. This option is only
- meaningful in conjunction with '-fwpa'.
-
- * -fresolution=FILE This option specifies the linker resolution file.
- This option is only meaningful in conjunction with '-fwpa' and as
- option to pass through to the LTO linker plugin.
-
-
-File: gccint.info, Node: Funding, Next: GNU Project, Prev: LTO, Up: Top
-
-Funding Free Software
-*********************
-
-If you want to have more free software a few years from now, it makes
-sense for you to help encourage people to contribute funds for its
-development. The most effective approach known is to encourage
-commercial redistributors to donate.
-
- Users of free software systems can boost the pace of development by
-encouraging for-a-fee distributors to donate part of their selling price
-to free software developers--the Free Software Foundation, and others.
-
- The way to convince distributors to do this is to demand it and expect
-it from them. So when you compare distributors, judge them partly by
-how much they give to free software development. Show distributors they
-must compete to be the one who gives the most.
-
- To make this approach work, you must insist on numbers that you can
-compare, such as, "We will donate ten dollars to the Frobnitz project
-for each disk sold." Don't be satisfied with a vague promise, such as
-"A portion of the profits are donated," since it doesn't give a basis
-for comparison.
-
- Even a precise fraction "of the profits from this disk" is not very
-meaningful, since creative accounting and unrelated business decisions
-can greatly alter what fraction of the sales price counts as profit. If
-the price you pay is $50, ten percent of the profit is probably less
-than a dollar; it might be a few cents, or nothing at all.
-
- Some redistributors do development work themselves. This is useful
-too; but to keep everyone honest, you need to inquire how much they do,
-and what kind. Some kinds of development make much more long-term
-difference than others. For example, maintaining a separate version of
-a program contributes very little; maintaining the standard version of a
-program for the whole community contributes much. Easy new ports
-contribute little, since someone else would surely do them; difficult
-ports such as adding a new CPU to the GNU Compiler Collection contribute
-more; major new features or packages contribute the most.
-
- By establishing the idea that supporting further development is "the
-proper thing to do" when distributing free software for a fee, we can
-assure a steady flow of resources into making more free software.
-
- Copyright (C) 1994 Free Software Foundation, Inc.
- Verbatim copying and redistribution of this section is permitted
- without royalty; alteration is not permitted.
-
-
-File: gccint.info, Node: GNU Project, Next: Copying, Prev: Funding, Up: Top
-
-The GNU Project and GNU/Linux
-*****************************
-
-The GNU Project was launched in 1984 to develop a complete Unix-like
-operating system which is free software: the GNU system. (GNU is a
-recursive acronym for "GNU's Not Unix"; it is pronounced "guh-NEW".)
-Variants of the GNU operating system, which use the kernel Linux, are
-now widely used; though these systems are often referred to as "Linux",
-they are more accurately called GNU/Linux systems.
-
- For more information, see:
- <http://www.gnu.org/>
- <http://www.gnu.org/gnu/linux-and-gnu.html>
-
-
-File: gccint.info, Node: Copying, Next: GNU Free Documentation License, Prev: GNU Project, Up: Top
-
-GNU General Public License
-**************************
-
- Version 3, 29 June 2007
-
- Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
-
- Everyone is permitted to copy and distribute verbatim copies of this
- license document, but changing it is not allowed.
-
-Preamble
-========
-
-The GNU General Public License is a free, copyleft license for software
-and other kinds of works.
-
- The licenses for most software and other practical works are designed
-to take away your freedom to share and change the works. By contrast,
-the GNU General Public License is intended to guarantee your freedom to
-share and change all versions of a program-to make sure it remains free
-software for all its users. We, the Free Software Foundation, use the
-GNU General Public License for most of our software; it applies also to
-any other work released this way by its authors. You can apply it to
-your programs, too.
-
- When we speak of free software, we are referring to freedom, not price.
-Our General Public Licenses are designed to make sure that you have the
-freedom to distribute copies of free software (and charge for them if
-you wish), that you receive source code or can get it if you want it,
-that you can change the software or use pieces of it in new free
-programs, and that you know you can do these things.
-
- To protect your rights, we need to prevent others from denying you
-these rights or asking you to surrender the rights. Therefore, you have
-certain responsibilities if you distribute copies of the software, or if
-you modify it: responsibilities to respect the freedom of others.
-
- For example, if you distribute copies of such a program, whether gratis
-or for a fee, you must pass on to the recipients the same freedoms that
-you received. You must make sure that they, too, receive or can get the
-source code. And you must show them these terms so they know their
-rights.
-
- Developers that use the GNU GPL protect your rights with two steps: (1)
-assert copyright on the software, and (2) offer you this License giving
-you legal permission to copy, distribute and/or modify it.
-
- For the developers' and authors' protection, the GPL clearly explains
-that there is no warranty for this free software. For both users' and
-authors' sake, the GPL requires that modified versions be marked as
-changed, so that their problems will not be attributed erroneously to
-authors of previous versions.
-
- Some devices are designed to deny users access to install or run
-modified versions of the software inside them, although the manufacturer
-can do so. This is fundamentally incompatible with the aim of
-protecting users' freedom to change the software. The systematic
-pattern of such abuse occurs in the area of products for individuals to
-use, which is precisely where it is most unacceptable. Therefore, we
-have designed this version of the GPL to prohibit the practice for those
-products. If such problems arise substantially in other domains, we
-stand ready to extend this provision to those domains in future versions
-of the GPL, as needed to protect the freedom of users.
-
- Finally, every program is threatened constantly by software patents.
-States should not allow patents to restrict development and use of
-software on general-purpose computers, but in those that do, we wish to
-avoid the special danger that patents applied to a free program could
-make it effectively proprietary. To prevent this, the GPL assures that
-patents cannot be used to render the program non-free.
-
- The precise terms and conditions for copying, distribution and
-modification follow.
-
-TERMS AND CONDITIONS
-====================
-
- 0. Definitions.
-
- "This License" refers to version 3 of the GNU General Public
- License.
-
- "Copyright" also means copyright-like laws that apply to other
- kinds of works, such as semiconductor masks.
-
- "The Program" refers to any copyrightable work licensed under this
- License. Each licensee is addressed as "you". "Licensees" and
- "recipients" may be individuals or organizations.
-
- To "modify" a work means to copy from or adapt all or part of the
- work in a fashion requiring copyright permission, other than the
- making of an exact copy. The resulting work is called a "modified
- version" of the earlier work or a work "based on" the earlier work.
-
- A "covered work" means either the unmodified Program or a work
- based on the Program.
-
- To "propagate" a work means to do anything with it that, without
- permission, would make you directly or secondarily liable for
- infringement under applicable copyright law, except executing it on
- a computer or modifying a private copy. Propagation includes
- copying, distribution (with or without modification), making
- available to the public, and in some countries other activities as
- well.
-
- To "convey" a work means any kind of propagation that enables other
- parties to make or receive copies. Mere interaction with a user
- through a computer network, with no transfer of a copy, is not
- conveying.
-
- An interactive user interface displays "Appropriate Legal Notices"
- to the extent that it includes a convenient and prominently visible
- feature that (1) displays an appropriate copyright notice, and (2)
- tells the user that there is no warranty for the work (except to
- the extent that warranties are provided), that licensees may convey
- the work under this License, and how to view a copy of this
- License. If the interface presents a list of user commands or
- options, such as a menu, a prominent item in the list meets this
- criterion.
-
- 1. Source Code.
-
- The "source code" for a work means the preferred form of the work
- for making modifications to it. "Object code" means any non-source
- form of a work.
-
- A "Standard Interface" means an interface that either is an
- official standard defined by a recognized standards body, or, in
- the case of interfaces specified for a particular programming
- language, one that is widely used among developers working in that
- language.
-
- The "System Libraries" of an executable work include anything,
- other than the work as a whole, that (a) is included in the normal
- form of packaging a Major Component, but which is not part of that
- Major Component, and (b) serves only to enable use of the work with
- that Major Component, or to implement a Standard Interface for
- which an implementation is available to the public in source code
- form. A "Major Component", in this context, means a major
- essential component (kernel, window system, and so on) of the
- specific operating system (if any) on which the executable work
- runs, or a compiler used to produce the work, or an object code
- interpreter used to run it.
-
- The "Corresponding Source" for a work in object code form means all
- the source code needed to generate, install, and (for an executable
- work) run the object code and to modify the work, including scripts
- to control those activities. However, it does not include the
- work's System Libraries, or general-purpose tools or generally
- available free programs which are used unmodified in performing
- those activities but which are not part of the work. For example,
- Corresponding Source includes interface definition files associated
- with source files for the work, and the source code for shared
- libraries and dynamically linked subprograms that the work is
- specifically designed to require, such as by intimate data
- communication or control flow between those subprograms and other
- parts of the work.
-
- The Corresponding Source need not include anything that users can
- regenerate automatically from other parts of the Corresponding
- Source.
-
- The Corresponding Source for a work in source code form is that
- same work.
-
- 2. Basic Permissions.
-
- All rights granted under this License are granted for the term of
- copyright on the Program, and are irrevocable provided the stated
- conditions are met. This License explicitly affirms your unlimited
- permission to run the unmodified Program. The output from running
- a covered work is covered by this License only if the output, given
- its content, constitutes a covered work. This License acknowledges
- your rights of fair use or other equivalent, as provided by
- copyright law.
-
- You may make, run and propagate covered works that you do not
- convey, without conditions so long as your license otherwise
- remains in force. You may convey covered works to others for the
- sole purpose of having them make modifications exclusively for you,
- or provide you with facilities for running those works, provided
- that you comply with the terms of this License in conveying all
- material for which you do not control copyright. Those thus making
- or running the covered works for you must do so exclusively on your
- behalf, under your direction and control, on terms that prohibit
- them from making any copies of your copyrighted material outside
- their relationship with you.
-
- Conveying under any other circumstances is permitted solely under
- the conditions stated below. Sublicensing is not allowed; section
- 10 makes it unnecessary.
-
- 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
-
- No covered work shall be deemed part of an effective technological
- measure under any applicable law fulfilling obligations under
- article 11 of the WIPO copyright treaty adopted on 20 December
- 1996, or similar laws prohibiting or restricting circumvention of
- such measures.
-
- When you convey a covered work, you waive any legal power to forbid
- circumvention of technological measures to the extent such
- circumvention is effected by exercising rights under this License
- with respect to the covered work, and you disclaim any intention to
- limit operation or modification of the work as a means of
- enforcing, against the work's users, your or third parties' legal
- rights to forbid circumvention of technological measures.
-
- 4. Conveying Verbatim Copies.
-
- You may convey verbatim copies of the Program's source code as you
- receive it, in any medium, provided that you conspicuously and
- appropriately publish on each copy an appropriate copyright notice;
- keep intact all notices stating that this License and any
- non-permissive terms added in accord with section 7 apply to the
- code; keep intact all notices of the absence of any warranty; and
- give all recipients a copy of this License along with the Program.
-
- You may charge any price or no price for each copy that you convey,
- and you may offer support or warranty protection for a fee.
-
- 5. Conveying Modified Source Versions.
-
- You may convey a work based on the Program, or the modifications to
- produce it from the Program, in the form of source code under the
- terms of section 4, provided that you also meet all of these
- conditions:
-
- a. The work must carry prominent notices stating that you
- modified it, and giving a relevant date.
-
- b. The work must carry prominent notices stating that it is
- released under this License and any conditions added under
- section 7. This requirement modifies the requirement in
- section 4 to "keep intact all notices".
-
- c. You must license the entire work, as a whole, under this
- License to anyone who comes into possession of a copy. This
- License will therefore apply, along with any applicable
- section 7 additional terms, to the whole of the work, and all
- its parts, regardless of how they are packaged. This License
- gives no permission to license the work in any other way, but
- it does not invalidate such permission if you have separately
- received it.
-
- d. If the work has interactive user interfaces, each must display
- Appropriate Legal Notices; however, if the Program has
- interactive interfaces that do not display Appropriate Legal
- Notices, your work need not make them do so.
-
- A compilation of a covered work with other separate and independent
- works, which are not by their nature extensions of the covered
- work, and which are not combined with it such as to form a larger
- program, in or on a volume of a storage or distribution medium, is
- called an "aggregate" if the compilation and its resulting
- copyright are not used to limit the access or legal rights of the
- compilation's users beyond what the individual works permit.
- Inclusion of a covered work in an aggregate does not cause this
- License to apply to the other parts of the aggregate.
-
- 6. Conveying Non-Source Forms.
-
- You may convey a covered work in object code form under the terms
- of sections 4 and 5, provided that you also convey the
- machine-readable Corresponding Source under the terms of this
- License, in one of these ways:
-
- a. Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by the
- Corresponding Source fixed on a durable physical medium
- customarily used for software interchange.
-
- b. Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by a
- written offer, valid for at least three years and valid for as
- long as you offer spare parts or customer support for that
- product model, to give anyone who possesses the object code
- either (1) a copy of the Corresponding Source for all the
- software in the product that is covered by this License, on a
- durable physical medium customarily used for software
- interchange, for a price no more than your reasonable cost of
- physically performing this conveying of source, or (2) access
- to copy the Corresponding Source from a network server at no
- charge.
-
- c. Convey individual copies of the object code with a copy of the
- written offer to provide the Corresponding Source. This
- alternative is allowed only occasionally and noncommercially,
- and only if you received the object code with such an offer,
- in accord with subsection 6b.
-
- d. Convey the object code by offering access from a designated
- place (gratis or for a charge), and offer equivalent access to
- the Corresponding Source in the same way through the same
- place at no further charge. You need not require recipients
- to copy the Corresponding Source along with the object code.
- If the place to copy the object code is a network server, the
- Corresponding Source may be on a different server (operated by
- you or a third party) that supports equivalent copying
- facilities, provided you maintain clear directions next to the
- object code saying where to find the Corresponding Source.
- Regardless of what server hosts the Corresponding Source, you
- remain obligated to ensure that it is available for as long as
- needed to satisfy these requirements.
-
- e. Convey the object code using peer-to-peer transmission,
- provided you inform other peers where the object code and
- Corresponding Source of the work are being offered to the
- general public at no charge under subsection 6d.
-
- A separable portion of the object code, whose source code is
- excluded from the Corresponding Source as a System Library, need
- not be included in conveying the object code work.
-
- A "User Product" is either (1) a "consumer product", which means
- any tangible personal property which is normally used for personal,
- family, or household purposes, or (2) anything designed or sold for
- incorporation into a dwelling. In determining whether a product is
- a consumer product, doubtful cases shall be resolved in favor of
- coverage. For a particular product received by a particular user,
- "normally used" refers to a typical or common use of that class of
- product, regardless of the status of the particular user or of the
- way in which the particular user actually uses, or expects or is
- expected to use, the product. A product is a consumer product
- regardless of whether the product has substantial commercial,
- industrial or non-consumer uses, unless such uses represent the
- only significant mode of use of the product.
-
- "Installation Information" for a User Product means any methods,
- procedures, authorization keys, or other information required to
- install and execute modified versions of a covered work in that
- User Product from a modified version of its Corresponding Source.
- The information must suffice to ensure that the continued
- functioning of the modified object code is in no case prevented or
- interfered with solely because modification has been made.
-
- If you convey an object code work under this section in, or with,
- or specifically for use in, a User Product, and the conveying
- occurs as part of a transaction in which the right of possession
- and use of the User Product is transferred to the recipient in
- perpetuity or for a fixed term (regardless of how the transaction
- is characterized), the Corresponding Source conveyed under this
- section must be accompanied by the Installation Information. But
- this requirement does not apply if neither you nor any third party
- retains the ability to install modified object code on the User
- Product (for example, the work has been installed in ROM).
-
- The requirement to provide Installation Information does not
- include a requirement to continue to provide support service,
- warranty, or updates for a work that has been modified or installed
- by the recipient, or for the User Product in which it has been
- modified or installed. Access to a network may be denied when the
- modification itself materially and adversely affects the operation
- of the network or violates the rules and protocols for
- communication across the network.
-
- Corresponding Source conveyed, and Installation Information
- provided, in accord with this section must be in a format that is
- publicly documented (and with an implementation available to the
- public in source code form), and must require no special password
- or key for unpacking, reading or copying.
-
- 7. Additional Terms.
-
- "Additional permissions" are terms that supplement the terms of
- this License by making exceptions from one or more of its
- conditions. Additional permissions that are applicable to the
- entire Program shall be treated as though they were included in
- this License, to the extent that they are valid under applicable
- law. If additional permissions apply only to part of the Program,
- that part may be used separately under those permissions, but the
- entire Program remains governed by this License without regard to
- the additional permissions.
-
- When you convey a copy of a covered work, you may at your option
- remove any additional permissions from that copy, or from any part
- of it. (Additional permissions may be written to require their own
- removal in certain cases when you modify the work.) You may place
- additional permissions on material, added by you to a covered work,
- for which you have or can give appropriate copyright permission.
-
- Notwithstanding any other provision of this License, for material
- you add to a covered work, you may (if authorized by the copyright
- holders of that material) supplement the terms of this License with
- terms:
-
- a. Disclaiming warranty or limiting liability differently from
- the terms of sections 15 and 16 of this License; or
-
- b. Requiring preservation of specified reasonable legal notices
- or author attributions in that material or in the Appropriate
- Legal Notices displayed by works containing it; or
-
- c. Prohibiting misrepresentation of the origin of that material,
- or requiring that modified versions of such material be marked
- in reasonable ways as different from the original version; or
-
- d. Limiting the use for publicity purposes of names of licensors
- or authors of the material; or
-
- e. Declining to grant rights under trademark law for use of some
- trade names, trademarks, or service marks; or
-
- f. Requiring indemnification of licensors and authors of that
- material by anyone who conveys the material (or modified
- versions of it) with contractual assumptions of liability to
- the recipient, for any liability that these contractual
- assumptions directly impose on those licensors and authors.
-
- All other non-permissive additional terms are considered "further
- restrictions" within the meaning of section 10. If the Program as
- you received it, or any part of it, contains a notice stating that
- it is governed by this License along with a term that is a further
- restriction, you may remove that term. If a license document
- contains a further restriction but permits relicensing or conveying
- under this License, you may add to a covered work material governed
- by the terms of that license document, provided that the further
- restriction does not survive such relicensing or conveying.
-
- If you add terms to a covered work in accord with this section, you
- must place, in the relevant source files, a statement of the
- additional terms that apply to those files, or a notice indicating
- where to find the applicable terms.
-
- Additional terms, permissive or non-permissive, may be stated in
- the form of a separately written license, or stated as exceptions;
- the above requirements apply either way.
-
- 8. Termination.
-
- You may not propagate or modify a covered work except as expressly
- provided under this License. Any attempt otherwise to propagate or
- modify it is void, and will automatically terminate your rights
- under this License (including any patent licenses granted under the
- third paragraph of section 11).
-
- However, if you cease all violation of this License, then your
- license from a particular copyright holder is reinstated (a)
- provisionally, unless and until the copyright holder explicitly and
- finally terminates your license, and (b) permanently, if the
- copyright holder fails to notify you of the violation by some
- reasonable means prior to 60 days after the cessation.
-
- Moreover, your license from a particular copyright holder is
- reinstated permanently if the copyright holder notifies you of the
- violation by some reasonable means, this is the first time you have
- received notice of violation of this License (for any work) from
- that copyright holder, and you cure the violation prior to 30 days
- after your receipt of the notice.
-
- Termination of your rights under this section does not terminate
- the licenses of parties who have received copies or rights from you
- under this License. If your rights have been terminated and not
- permanently reinstated, you do not qualify to receive new licenses
- for the same material under section 10.
-
- 9. Acceptance Not Required for Having Copies.
-
- You are not required to accept this License in order to receive or
- run a copy of the Program. Ancillary propagation of a covered work
- occurring solely as a consequence of using peer-to-peer
- transmission to receive a copy likewise does not require
- acceptance. However, nothing other than this License grants you
- permission to propagate or modify any covered work. These actions
- infringe copyright if you do not accept this License. Therefore,
- by modifying or propagating a covered work, you indicate your
- acceptance of this License to do so.
-
- 10. Automatic Licensing of Downstream Recipients.
-
- Each time you convey a covered work, the recipient automatically
- receives a license from the original licensors, to run, modify and
- propagate that work, subject to this License. You are not
- responsible for enforcing compliance by third parties with this
- License.
-
- An "entity transaction" is a transaction transferring control of an
- organization, or substantially all assets of one, or subdividing an
- organization, or merging organizations. If propagation of a
- covered work results from an entity transaction, each party to that
- transaction who receives a copy of the work also receives whatever
- licenses to the work the party's predecessor in interest had or
- could give under the previous paragraph, plus a right to possession
- of the Corresponding Source of the work from the predecessor in
- interest, if the predecessor has it or can get it with reasonable
- efforts.
-
- You may not impose any further restrictions on the exercise of the
- rights granted or affirmed under this License. For example, you
- may not impose a license fee, royalty, or other charge for exercise
- of rights granted under this License, and you may not initiate
- litigation (including a cross-claim or counterclaim in a lawsuit)
- alleging that any patent claim is infringed by making, using,
- selling, offering for sale, or importing the Program or any portion
- of it.
-
- 11. Patents.
-
- A "contributor" is a copyright holder who authorizes use under this
- License of the Program or a work on which the Program is based.
- The work thus licensed is called the contributor's "contributor
- version".
-
- A contributor's "essential patent claims" are all patent claims
- owned or controlled by the contributor, whether already acquired or
- hereafter acquired, that would be infringed by some manner,
- permitted by this License, of making, using, or selling its
- contributor version, but do not include claims that would be
- infringed only as a consequence of further modification of the
- contributor version. For purposes of this definition, "control"
- includes the right to grant patent sublicenses in a manner
- consistent with the requirements of this License.
-
- Each contributor grants you a non-exclusive, worldwide,
- royalty-free patent license under the contributor's essential
- patent claims, to make, use, sell, offer for sale, import and
- otherwise run, modify and propagate the contents of its contributor
- version.
-
- In the following three paragraphs, a "patent license" is any
- express agreement or commitment, however denominated, not to
- enforce a patent (such as an express permission to practice a
- patent or covenant not to sue for patent infringement). To "grant"
- such a patent license to a party means to make such an agreement or
- commitment not to enforce a patent against the party.
-
- If you convey a covered work, knowingly relying on a patent
- license, and the Corresponding Source of the work is not available
- for anyone to copy, free of charge and under the terms of this
- License, through a publicly available network server or other
- readily accessible means, then you must either (1) cause the
- Corresponding Source to be so available, or (2) arrange to deprive
- yourself of the benefit of the patent license for this particular
- work, or (3) arrange, in a manner consistent with the requirements
- of this License, to extend the patent license to downstream
- recipients. "Knowingly relying" means you have actual knowledge
- that, but for the patent license, your conveying the covered work
- in a country, or your recipient's use of the covered work in a
- country, would infringe one or more identifiable patents in that
- country that you have reason to believe are valid.
-
- If, pursuant to or in connection with a single transaction or
- arrangement, you convey, or propagate by procuring conveyance of, a
- covered work, and grant a patent license to some of the parties
- receiving the covered work authorizing them to use, propagate,
- modify or convey a specific copy of the covered work, then the
- patent license you grant is automatically extended to all
- recipients of the covered work and works based on it.
-
- A patent license is "discriminatory" if it does not include within
- the scope of its coverage, prohibits the exercise of, or is
- conditioned on the non-exercise of one or more of the rights that
- are specifically granted under this License. You may not convey a
- covered work if you are a party to an arrangement with a third
- party that is in the business of distributing software, under which
- you make payment to the third party based on the extent of your
- activity of conveying the work, and under which the third party
- grants, to any of the parties who would receive the covered work
- from you, a discriminatory patent license (a) in connection with
- copies of the covered work conveyed by you (or copies made from
- those copies), or (b) primarily for and in connection with specific
- products or compilations that contain the covered work, unless you
- entered into that arrangement, or that patent license was granted,
- prior to 28 March 2007.
-
- Nothing in this License shall be construed as excluding or limiting
- any implied license or other defenses to infringement that may
- otherwise be available to you under applicable patent law.
-
- 12. No Surrender of Others' Freedom.
-
- If conditions are imposed on you (whether by court order, agreement
- or otherwise) that contradict the conditions of this License, they
- do not excuse you from the conditions of this License. If you
- cannot convey a covered work so as to satisfy simultaneously your
- obligations under this License and any other pertinent obligations,
- then as a consequence you may not convey it at all. For example,
- if you agree to terms that obligate you to collect a royalty for
- further conveying from those to whom you convey the Program, the
- only way you could satisfy both those terms and this License would
- be to refrain entirely from conveying the Program.
-
- 13. Use with the GNU Affero General Public License.
-
- Notwithstanding any other provision of this License, you have
- permission to link or combine any covered work with a work licensed
- under version 3 of the GNU Affero General Public License into a
- single combined work, and to convey the resulting work. The terms
- of this License will continue to apply to the part which is the
- covered work, but the special requirements of the GNU Affero
- General Public License, section 13, concerning interaction through
- a network will apply to the combination as such.
-
- 14. Revised Versions of this License.
-
- The Free Software Foundation may publish revised and/or new
- versions of the GNU General Public License from time to time. Such
- new versions will be similar in spirit to the present version, but
- may differ in detail to address new problems or concerns.
-
- Each version is given a distinguishing version number. If the
- Program specifies that a certain numbered version of the GNU
- General Public License "or any later version" applies to it, you
- have the option of following the terms and conditions either of
- that numbered version or of any later version published by the Free
- Software Foundation. If the Program does not specify a version
- number of the GNU General Public License, you may choose any
- version ever published by the Free Software Foundation.
-
- If the Program specifies that a proxy can decide which future
- versions of the GNU General Public License can be used, that
- proxy's public statement of acceptance of a version permanently
- authorizes you to choose that version for the Program.
-
- Later license versions may give you additional or different
- permissions. However, no additional obligations are imposed on any
- author or copyright holder as a result of your choosing to follow a
- later version.
-
- 15. Disclaimer of Warranty.
-
- THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
- APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
- COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"
- WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
- INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
- MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
- RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
- SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
- NECESSARY SERVICING, REPAIR OR CORRECTION.
-
- 16. Limitation of Liability.
-
- IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
- WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
- AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
- DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
- CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
- THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
- BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
- PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
- PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
- THE POSSIBILITY OF SUCH DAMAGES.
-
- 17. Interpretation of Sections 15 and 16.
-
- If the disclaimer of warranty and limitation of liability provided
- above cannot be given local legal effect according to their terms,
- reviewing courts shall apply local law that most closely
- approximates an absolute waiver of all civil liability in
- connection with the Program, unless a warranty or assumption of
- liability accompanies a copy of the Program in return for a fee.
-
-END OF TERMS AND CONDITIONS
-===========================
-
-How to Apply These Terms to Your New Programs
-=============================================
-
-If you develop a new program, and you want it to be of the greatest
-possible use to the public, the best way to achieve this is to make it
-free software which everyone can redistribute and change under these
-terms.
-
- To do so, attach the following notices to the program. It is safest to
-attach them to the start of each source file to most effectively state
-the exclusion of warranty; and each file should have at least the
-"copyright" line and a pointer to where the full notice is found.
-
- ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES.
- Copyright (C) YEAR NAME OF AUTHOR
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or (at
- your option) any later version.
-
- This program is distributed in the hope that it will be useful, but
- WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
-
- Also add information on how to contact you by electronic and paper
-mail.
-
- If the program does terminal interaction, make it output a short notice
-like this when it starts in an interactive mode:
-
- PROGRAM Copyright (C) YEAR NAME OF AUTHOR
- This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'.
- This is free software, and you are welcome to redistribute it
- under certain conditions; type 'show c' for details.
-
- The hypothetical commands 'show w' and 'show c' should show the
-appropriate parts of the General Public License. Of course, your
-program's commands might be different; for a GUI interface, you would
-use an "about box".
-
- You should also get your employer (if you work as a programmer) or
-school, if any, to sign a "copyright disclaimer" for the program, if
-necessary. For more information on this, and how to apply and follow
-the GNU GPL, see <http://www.gnu.org/licenses/>.
-
- The GNU General Public License does not permit incorporating your
-program into proprietary programs. If your program is a subroutine
-library, you may consider it more useful to permit linking proprietary
-applications with the library. If this is what you want to do, use the
-GNU Lesser General Public License instead of this License. But first,
-please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.
-
-
-File: gccint.info, Node: GNU Free Documentation License, Next: Contributors, Prev: Copying, Up: Top
-
-GNU Free Documentation License
-******************************
-
- Version 1.3, 3 November 2008
-
- Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
- <http://fsf.org/>
-
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
- 0. PREAMBLE
-
- The purpose of this License is to make a manual, textbook, or other
- functional and useful document "free" in the sense of freedom: to
- assure everyone the effective freedom to copy and redistribute it,
- with or without modifying it, either commercially or
- noncommercially. Secondarily, this License preserves for the
- author and publisher a way to get credit for their work, while not
- being considered responsible for modifications made by others.
-
- This License is a kind of "copyleft", which means that derivative
- works of the document must themselves be free in the same sense.
- It complements the GNU General Public License, which is a copyleft
- license designed for free software.
-
- We have designed this License in order to use it for manuals for
- free software, because free software needs free documentation: a
- free program should come with manuals providing the same freedoms
- that the software does. But this License is not limited to
- software manuals; it can be used for any textual work, regardless
- of subject matter or whether it is published as a printed book. We
- recommend this License principally for works whose purpose is
- instruction or reference.
-
- 1. APPLICABILITY AND DEFINITIONS
-
- This License applies to any manual or other work, in any medium,
- that contains a notice placed by the copyright holder saying it can
- be distributed under the terms of this License. Such a notice
- grants a world-wide, royalty-free license, unlimited in duration,
- to use that work under the conditions stated herein. The
- "Document", below, refers to any such manual or work. Any member
- of the public is a licensee, and is addressed as "you". You accept
- the license if you copy, modify or distribute the work in a way
- requiring permission under copyright law.
-
- A "Modified Version" of the Document means any work containing the
- Document or a portion of it, either copied verbatim, or with
- modifications and/or translated into another language.
-
- A "Secondary Section" is a named appendix or a front-matter section
- of the Document that deals exclusively with the relationship of the
- publishers or authors of the Document to the Document's overall
- subject (or to related matters) and contains nothing that could
- fall directly within that overall subject. (Thus, if the Document
- is in part a textbook of mathematics, a Secondary Section may not
- explain any mathematics.) The relationship could be a matter of
- historical connection with the subject or with related matters, or
- of legal, commercial, philosophical, ethical or political position
- regarding them.
-
- The "Invariant Sections" are certain Secondary Sections whose
- titles are designated, as being those of Invariant Sections, in the
- notice that says that the Document is released under this License.
- If a section does not fit the above definition of Secondary then it
- is not allowed to be designated as Invariant. The Document may
- contain zero Invariant Sections. If the Document does not identify
- any Invariant Sections then there are none.
-
- The "Cover Texts" are certain short passages of text that are
- listed, as Front-Cover Texts or Back-Cover Texts, in the notice
- that says that the Document is released under this License. A
- Front-Cover Text may be at most 5 words, and a Back-Cover Text may
- be at most 25 words.
-
- A "Transparent" copy of the Document means a machine-readable copy,
- represented in a format whose specification is available to the
- general public, that is suitable for revising the document
- straightforwardly with generic text editors or (for images composed
- of pixels) generic paint programs or (for drawings) some widely
- available drawing editor, and that is suitable for input to text
- formatters or for automatic translation to a variety of formats
- suitable for input to text formatters. A copy made in an otherwise
- Transparent file format whose markup, or absence of markup, has
- been arranged to thwart or discourage subsequent modification by
- readers is not Transparent. An image format is not Transparent if
- used for any substantial amount of text. A copy that is not
- "Transparent" is called "Opaque".
-
- Examples of suitable formats for Transparent copies include plain
- ASCII without markup, Texinfo input format, LaTeX input format,
- SGML or XML using a publicly available DTD, and standard-conforming
- simple HTML, PostScript or PDF designed for human modification.
- Examples of transparent image formats include PNG, XCF and JPG.
- Opaque formats include proprietary formats that can be read and
- edited only by proprietary word processors, SGML or XML for which
- the DTD and/or processing tools are not generally available, and
- the machine-generated HTML, PostScript or PDF produced by some word
- processors for output purposes only.
-
- The "Title Page" means, for a printed book, the title page itself,
- plus such following pages as are needed to hold, legibly, the
- material this License requires to appear in the title page. For
- works in formats which do not have any title page as such, "Title
- Page" means the text near the most prominent appearance of the
- work's title, preceding the beginning of the body of the text.
-
- The "publisher" means any person or entity that distributes copies
- of the Document to the public.
-
- A section "Entitled XYZ" means a named subunit of the Document
- whose title either is precisely XYZ or contains XYZ in parentheses
- following text that translates XYZ in another language. (Here XYZ
- stands for a specific section name mentioned below, such as
- "Acknowledgements", "Dedications", "Endorsements", or "History".)
- To "Preserve the Title" of such a section when you modify the
- Document means that it remains a section "Entitled XYZ" according
- to this definition.
-
- The Document may include Warranty Disclaimers next to the notice
- which states that this License applies to the Document. These
- Warranty Disclaimers are considered to be included by reference in
- this License, but only as regards disclaiming warranties: any other
- implication that these Warranty Disclaimers may have is void and
- has no effect on the meaning of this License.
-
- 2. VERBATIM COPYING
-
- You may copy and distribute the Document in any medium, either
- commercially or noncommercially, provided that this License, the
- copyright notices, and the license notice saying this License
- applies to the Document are reproduced in all copies, and that you
- add no other conditions whatsoever to those of this License. You
- may not use technical measures to obstruct or control the reading
- or further copying of the copies you make or distribute. However,
- you may accept compensation in exchange for copies. If you
- distribute a large enough number of copies you must also follow the
- conditions in section 3.
-
- You may also lend copies, under the same conditions stated above,
- and you may publicly display copies.
-
- 3. COPYING IN QUANTITY
-
- If you publish printed copies (or copies in media that commonly
- have printed covers) of the Document, numbering more than 100, and
- the Document's license notice requires Cover Texts, you must
- enclose the copies in covers that carry, clearly and legibly, all
- these Cover Texts: Front-Cover Texts on the front cover, and
- Back-Cover Texts on the back cover. Both covers must also clearly
- and legibly identify you as the publisher of these copies. The
- front cover must present the full title with all words of the title
- equally prominent and visible. You may add other material on the
- covers in addition. Copying with changes limited to the covers, as
- long as they preserve the title of the Document and satisfy these
- conditions, can be treated as verbatim copying in other respects.
-
- If the required texts for either cover are too voluminous to fit
- legibly, you should put the first ones listed (as many as fit
- reasonably) on the actual cover, and continue the rest onto
- adjacent pages.
-
- If you publish or distribute Opaque copies of the Document
- numbering more than 100, you must either include a machine-readable
- Transparent copy along with each Opaque copy, or state in or with
- each Opaque copy a computer-network location from which the general
- network-using public has access to download using public-standard
- network protocols a complete Transparent copy of the Document, free
- of added material. If you use the latter option, you must take
- reasonably prudent steps, when you begin distribution of Opaque
- copies in quantity, to ensure that this Transparent copy will
- remain thus accessible at the stated location until at least one
- year after the last time you distribute an Opaque copy (directly or
- through your agents or retailers) of that edition to the public.
-
- It is requested, but not required, that you contact the authors of
- the Document well before redistributing any large number of copies,
- to give them a chance to provide you with an updated version of the
- Document.
-
- 4. MODIFICATIONS
-
- You may copy and distribute a Modified Version of the Document
- under the conditions of sections 2 and 3 above, provided that you
- release the Modified Version under precisely this License, with the
- Modified Version filling the role of the Document, thus licensing
- distribution and modification of the Modified Version to whoever
- possesses a copy of it. In addition, you must do these things in
- the Modified Version:
-
- A. Use in the Title Page (and on the covers, if any) a title
- distinct from that of the Document, and from those of previous
- versions (which should, if there were any, be listed in the
- History section of the Document). You may use the same title
- as a previous version if the original publisher of that
- version gives permission.
-
- B. List on the Title Page, as authors, one or more persons or
- entities responsible for authorship of the modifications in
- the Modified Version, together with at least five of the
- principal authors of the Document (all of its principal
- authors, if it has fewer than five), unless they release you
- from this requirement.
-
- C. State on the Title page the name of the publisher of the
- Modified Version, as the publisher.
-
- D. Preserve all the copyright notices of the Document.
-
- E. Add an appropriate copyright notice for your modifications
- adjacent to the other copyright notices.
-
- F. Include, immediately after the copyright notices, a license
- notice giving the public permission to use the Modified
- Version under the terms of this License, in the form shown in
- the Addendum below.
-
- G. Preserve in that license notice the full lists of Invariant
- Sections and required Cover Texts given in the Document's
- license notice.
-
- H. Include an unaltered copy of this License.
-
- I. Preserve the section Entitled "History", Preserve its Title,
- and add to it an item stating at least the title, year, new
- authors, and publisher of the Modified Version as given on the
- Title Page. If there is no section Entitled "History" in the
- Document, create one stating the title, year, authors, and
- publisher of the Document as given on its Title Page, then add
- an item describing the Modified Version as stated in the
- previous sentence.
-
- J. Preserve the network location, if any, given in the Document
- for public access to a Transparent copy of the Document, and
- likewise the network locations given in the Document for
- previous versions it was based on. These may be placed in the
- "History" section. You may omit a network location for a work
- that was published at least four years before the Document
- itself, or if the original publisher of the version it refers
- to gives permission.
-
- K. For any section Entitled "Acknowledgements" or "Dedications",
- Preserve the Title of the section, and preserve in the section
- all the substance and tone of each of the contributor
- acknowledgements and/or dedications given therein.
-
- L. Preserve all the Invariant Sections of the Document, unaltered
- in their text and in their titles. Section numbers or the
- equivalent are not considered part of the section titles.
-
- M. Delete any section Entitled "Endorsements". Such a section
- may not be included in the Modified Version.
-
- N. Do not retitle any existing section to be Entitled
- "Endorsements" or to conflict in title with any Invariant
- Section.
-
- O. Preserve any Warranty Disclaimers.
-
- If the Modified Version includes new front-matter sections or
- appendices that qualify as Secondary Sections and contain no
- material copied from the Document, you may at your option designate
- some or all of these sections as invariant. To do this, add their
- titles to the list of Invariant Sections in the Modified Version's
- license notice. These titles must be distinct from any other
- section titles.
-
- You may add a section Entitled "Endorsements", provided it contains
- nothing but endorsements of your Modified Version by various
- parties--for example, statements of peer review or that the text
- has been approved by an organization as the authoritative
- definition of a standard.
-
- You may add a passage of up to five words as a Front-Cover Text,
- and a passage of up to 25 words as a Back-Cover Text, to the end of
- the list of Cover Texts in the Modified Version. Only one passage
- of Front-Cover Text and one of Back-Cover Text may be added by (or
- through arrangements made by) any one entity. If the Document
- already includes a cover text for the same cover, previously added
- by you or by arrangement made by the same entity you are acting on
- behalf of, you may not add another; but you may replace the old
- one, on explicit permission from the previous publisher that added
- the old one.
-
- The author(s) and publisher(s) of the Document do not by this
- License give permission to use their names for publicity for or to
- assert or imply endorsement of any Modified Version.
-
- 5. COMBINING DOCUMENTS
-
- You may combine the Document with other documents released under
- this License, under the terms defined in section 4 above for
- modified versions, provided that you include in the combination all
- of the Invariant Sections of all of the original documents,
- unmodified, and list them all as Invariant Sections of your
- combined work in its license notice, and that you preserve all
- their Warranty Disclaimers.
-
- The combined work need only contain one copy of this License, and
- multiple identical Invariant Sections may be replaced with a single
- copy. If there are multiple Invariant Sections with the same name
- but different contents, make the title of each such section unique
- by adding at the end of it, in parentheses, the name of the
- original author or publisher of that section if known, or else a
- unique number. Make the same adjustment to the section titles in
- the list of Invariant Sections in the license notice of the
- combined work.
-
- In the combination, you must combine any sections Entitled
- "History" in the various original documents, forming one section
- Entitled "History"; likewise combine any sections Entitled
- "Acknowledgements", and any sections Entitled "Dedications". You
- must delete all sections Entitled "Endorsements."
-
- 6. COLLECTIONS OF DOCUMENTS
-
- You may make a collection consisting of the Document and other
- documents released under this License, and replace the individual
- copies of this License in the various documents with a single copy
- that is included in the collection, provided that you follow the
- rules of this License for verbatim copying of each of the documents
- in all other respects.
-
- You may extract a single document from such a collection, and
- distribute it individually under this License, provided you insert
- a copy of this License into the extracted document, and follow this
- License in all other respects regarding verbatim copying of that
- document.
-
- 7. AGGREGATION WITH INDEPENDENT WORKS
-
- A compilation of the Document or its derivatives with other
- separate and independent documents or works, in or on a volume of a
- storage or distribution medium, is called an "aggregate" if the
- copyright resulting from the compilation is not used to limit the
- legal rights of the compilation's users beyond what the individual
- works permit. When the Document is included in an aggregate, this
- License does not apply to the other works in the aggregate which
- are not themselves derivative works of the Document.
-
- If the Cover Text requirement of section 3 is applicable to these
- copies of the Document, then if the Document is less than one half
- of the entire aggregate, the Document's Cover Texts may be placed
- on covers that bracket the Document within the aggregate, or the
- electronic equivalent of covers if the Document is in electronic
- form. Otherwise they must appear on printed covers that bracket
- the whole aggregate.
-
- 8. TRANSLATION
-
- Translation is considered a kind of modification, so you may
- distribute translations of the Document under the terms of section
- 4. Replacing Invariant Sections with translations requires special
- permission from their copyright holders, but you may include
- translations of some or all Invariant Sections in addition to the
- original versions of these Invariant Sections. You may include a
- translation of this License, and all the license notices in the
- Document, and any Warranty Disclaimers, provided that you also
- include the original English version of this License and the
- original versions of those notices and disclaimers. In case of a
- disagreement between the translation and the original version of
- this License or a notice or disclaimer, the original version will
- prevail.
-
- If a section in the Document is Entitled "Acknowledgements",
- "Dedications", or "History", the requirement (section 4) to
- Preserve its Title (section 1) will typically require changing the
- actual title.
-
- 9. TERMINATION
-
- You may not copy, modify, sublicense, or distribute the Document
- except as expressly provided under this License. Any attempt
- otherwise to copy, modify, sublicense, or distribute it is void,
- and will automatically terminate your rights under this License.
-
- However, if you cease all violation of this License, then your
- license from a particular copyright holder is reinstated (a)
- provisionally, unless and until the copyright holder explicitly and
- finally terminates your license, and (b) permanently, if the
- copyright holder fails to notify you of the violation by some
- reasonable means prior to 60 days after the cessation.
-
- Moreover, your license from a particular copyright holder is
- reinstated permanently if the copyright holder notifies you of the
- violation by some reasonable means, this is the first time you have
- received notice of violation of this License (for any work) from
- that copyright holder, and you cure the violation prior to 30 days
- after your receipt of the notice.
-
- Termination of your rights under this section does not terminate
- the licenses of parties who have received copies or rights from you
- under this License. If your rights have been terminated and not
- permanently reinstated, receipt of a copy of some or all of the
- same material does not give you any rights to use it.
-
- 10. FUTURE REVISIONS OF THIS LICENSE
-
- The Free Software Foundation may publish new, revised versions of
- the GNU Free Documentation License from time to time. Such new
- versions will be similar in spirit to the present version, but may
- differ in detail to address new problems or concerns. See
- <http://www.gnu.org/copyleft/>.
-
- Each version of the License is given a distinguishing version
- number. If the Document specifies that a particular numbered
- version of this License "or any later version" applies to it, you
- have the option of following the terms and conditions either of
- that specified version or of any later version that has been
- published (not as a draft) by the Free Software Foundation. If the
- Document does not specify a version number of this License, you may
- choose any version ever published (not as a draft) by the Free
- Software Foundation. If the Document specifies that a proxy can
- decide which future versions of this License can be used, that
- proxy's public statement of acceptance of a version permanently
- authorizes you to choose that version for the Document.
-
- 11. RELICENSING
-
- "Massive Multiauthor Collaboration Site" (or "MMC Site") means any
- World Wide Web server that publishes copyrightable works and also
- provides prominent facilities for anybody to edit those works. A
- public wiki that anybody can edit is an example of such a server.
- A "Massive Multiauthor Collaboration" (or "MMC") contained in the
- site means any set of copyrightable works thus published on the MMC
- site.
-
- "CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
- license published by Creative Commons Corporation, a not-for-profit
- corporation with a principal place of business in San Francisco,
- California, as well as future copyleft versions of that license
- published by that same organization.
-
- "Incorporate" means to publish or republish a Document, in whole or
- in part, as part of another Document.
-
- An MMC is "eligible for relicensing" if it is licensed under this
- License, and if all works that were first published under this
- License somewhere other than this MMC, and subsequently
- incorporated in whole or in part into the MMC, (1) had no cover
- texts or invariant sections, and (2) were thus incorporated prior
- to November 1, 2008.
-
- The operator of an MMC Site may republish an MMC contained in the
- site under CC-BY-SA on the same site at any time before August 1,
- 2009, provided the MMC is eligible for relicensing.
-
-ADDENDUM: How to use this License for your documents
-====================================================
-
-To use this License in a document you have written, include a copy of
-the License in the document and put the following copyright and license
-notices just after the title page:
-
- Copyright (C) YEAR YOUR NAME.
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3
- or any later version published by the Free Software Foundation;
- with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
- Texts. A copy of the license is included in the section entitled ``GNU
- Free Documentation License''.
-
- If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
-replace the "with...Texts." line with this:
-
- with the Invariant Sections being LIST THEIR TITLES, with
- the Front-Cover Texts being LIST, and with the Back-Cover Texts
- being LIST.
-
- If you have Invariant Sections without Cover Texts, or some other
-combination of the three, merge those two alternatives to suit the
-situation.
-
- If your document contains nontrivial examples of program code, we
-recommend releasing these examples in parallel under your choice of free
-software license, such as the GNU General Public License, to permit
-their use in free software.
-
-
-File: gccint.info, Node: Contributors, Next: Option Index, Prev: GNU Free Documentation License, Up: Top
-
-Contributors to GCC
-*******************
-
-The GCC project would like to thank its many contributors. Without them
-the project would not have been nearly as successful as it has been.
-Any omissions in this list are accidental. Feel free to contact
-<law@redhat.com> or <gerald@pfeifer.com> if you have been left out or
-some of your contributions are not listed. Please keep this list in
-alphabetical order.
-
- * Analog Devices helped implement the support for complex data types
- and iterators.
-
- * John David Anglin for threading-related fixes and improvements to
- libstdc++-v3, and the HP-UX port.
-
- * James van Artsdalen wrote the code that makes efficient use of the
- Intel 80387 register stack.
-
- * Abramo and Roberto Bagnara for the SysV68 Motorola 3300 Delta
- Series port.
-
- * Alasdair Baird for various bug fixes.
-
- * Giovanni Bajo for analyzing lots of complicated C++ problem
- reports.
-
- * Peter Barada for his work to improve code generation for new
- ColdFire cores.
-
- * Gerald Baumgartner added the signature extension to the C++ front
- end.
-
- * Godmar Back for his Java improvements and encouragement.
-
- * Scott Bambrough for help porting the Java compiler.
-
- * Wolfgang Bangerth for processing tons of bug reports.
-
- * Jon Beniston for his Microsoft Windows port of Java and port to
- Lattice Mico32.
-
- * Daniel Berlin for better DWARF2 support, faster/better
- optimizations, improved alias analysis, plus migrating GCC to
- Bugzilla.
-
- * Geoff Berry for his Java object serialization work and various
- patches.
-
- * David Binderman tests weekly snapshots of GCC trunk against Fedora
- Rawhide for several architectures.
-
- * Uros Bizjak for the implementation of x87 math built-in functions
- and for various middle end and i386 back end improvements and bug
- fixes.
-
- * Eric Blake for helping to make GCJ and libgcj conform to the
- specifications.
-
- * Janne Blomqvist for contributions to GNU Fortran.
-
- * Segher Boessenkool for various fixes.
-
- * Hans-J. Boehm for his garbage collector, IA-64 libffi port, and
- other Java work.
-
- * Neil Booth for work on cpplib, lang hooks, debug hooks and other
- miscellaneous clean-ups.
-
- * Steven Bosscher for integrating the GNU Fortran front end into GCC
- and for contributing to the tree-ssa branch.
-
- * Eric Botcazou for fixing middle- and backend bugs left and right.
-
- * Per Bothner for his direction via the steering committee and
- various improvements to the infrastructure for supporting new
- languages. Chill front end implementation. Initial
- implementations of cpplib, fix-header, config.guess, libio, and
- past C++ library (libg++) maintainer. Dreaming up, designing and
- implementing much of GCJ.
-
- * Devon Bowen helped port GCC to the Tahoe.
-
- * Don Bowman for mips-vxworks contributions.
-
- * Dave Brolley for work on cpplib and Chill.
-
- * Paul Brook for work on the ARM architecture and maintaining GNU
- Fortran.
-
- * Robert Brown implemented the support for Encore 32000 systems.
-
- * Christian Bruel for improvements to local store elimination.
-
- * Herman A.J. ten Brugge for various fixes.
-
- * Joerg Brunsmann for Java compiler hacking and help with the GCJ
- FAQ.
-
- * Joe Buck for his direction via the steering committee.
-
- * Craig Burley for leadership of the G77 Fortran effort.
-
- * Stephan Buys for contributing Doxygen notes for libstdc++.
-
- * Paolo Carlini for libstdc++ work: lots of efficiency improvements
- to the C++ strings, streambufs and formatted I/O, hard detective
- work on the frustrating localization issues, and keeping up with
- the problem reports.
-
- * John Carr for his alias work, SPARC hacking, infrastructure
- improvements, previous contributions to the steering committee,
- loop optimizations, etc.
-
- * Stephane Carrez for 68HC11 and 68HC12 ports.
-
- * Steve Chamberlain for support for the Renesas SH and H8 processors
- and the PicoJava processor, and for GCJ config fixes.
-
- * Glenn Chambers for help with the GCJ FAQ.
-
- * John-Marc Chandonia for various libgcj patches.
-
- * Denis Chertykov for contributing and maintaining the AVR port, the
- first GCC port for an 8-bit architecture.
-
- * Scott Christley for his Objective-C contributions.
-
- * Eric Christopher for his Java porting help and clean-ups.
-
- * Branko Cibej for more warning contributions.
-
- * The GNU Classpath project for all of their merged runtime code.
-
- * Nick Clifton for arm, mcore, fr30, v850, m32r, msp430 rx work,
- '--help', and other random hacking.
-
- * Michael Cook for libstdc++ cleanup patches to reduce warnings.
-
- * R. Kelley Cook for making GCC buildable from a read-only directory
- as well as other miscellaneous build process and documentation
- clean-ups.
-
- * Ralf Corsepius for SH testing and minor bug fixing.
-
- * Stan Cox for care and feeding of the x86 port and lots of behind
- the scenes hacking.
-
- * Alex Crain provided changes for the 3b1.
-
- * Ian Dall for major improvements to the NS32k port.
-
- * Paul Dale for his work to add uClinux platform support to the m68k
- backend.
-
- * Dario Dariol contributed the four varieties of sample programs that
- print a copy of their source.
-
- * Russell Davidson for fstream and stringstream fixes in libstdc++.
-
- * Bud Davis for work on the G77 and GNU Fortran compilers.
-
- * Mo DeJong for GCJ and libgcj bug fixes.
-
- * DJ Delorie for the DJGPP port, build and libiberty maintenance,
- various bug fixes, and the M32C, MeP, MSP430, and RL78 ports.
-
- * Arnaud Desitter for helping to debug GNU Fortran.
-
- * Gabriel Dos Reis for contributions to G++, contributions and
- maintenance of GCC diagnostics infrastructure, libstdc++-v3,
- including 'valarray<>', 'complex<>', maintaining the numerics
- library (including that pesky '<limits>' :-) and keeping up-to-date
- anything to do with numbers.
-
- * Ulrich Drepper for his work on glibc, testing of GCC using glibc,
- ISO C99 support, CFG dumping support, etc., plus support of the C++
- runtime libraries including for all kinds of C interface issues,
- contributing and maintaining 'complex<>', sanity checking and
- disbursement, configuration architecture, libio maintenance, and
- early math work.
-
- * Franc,ois Dumont for his work on libstdc++-v3, especially
- maintaining and improving 'debug-mode' and associative and
- unordered containers.
-
- * Zdenek Dvorak for a new loop unroller and various fixes.
-
- * Michael Eager for his work on the Xilinx MicroBlaze port.
-
- * Richard Earnshaw for his ongoing work with the ARM.
-
- * David Edelsohn for his direction via the steering committee,
- ongoing work with the RS6000/PowerPC port, help cleaning up Haifa
- loop changes, doing the entire AIX port of libstdc++ with his bare
- hands, and for ensuring GCC properly keeps working on AIX.
-
- * Kevin Ediger for the floating point formatting of num_put::do_put
- in libstdc++.
-
- * Phil Edwards for libstdc++ work including configuration hackery,
- documentation maintainer, chief breaker of the web pages, the
- occasional iostream bug fix, and work on shared library symbol
- versioning.
-
- * Paul Eggert for random hacking all over GCC.
-
- * Mark Elbrecht for various DJGPP improvements, and for libstdc++
- configuration support for locales and fstream-related fixes.
-
- * Vadim Egorov for libstdc++ fixes in strings, streambufs, and
- iostreams.
-
- * Christian Ehrhardt for dealing with bug reports.
-
- * Ben Elliston for his work to move the Objective-C runtime into its
- own subdirectory and for his work on autoconf.
-
- * Revital Eres for work on the PowerPC 750CL port.
-
- * Marc Espie for OpenBSD support.
-
- * Doug Evans for much of the global optimization framework, arc,
- m32r, and SPARC work.
-
- * Christopher Faylor for his work on the Cygwin port and for caring
- and feeding the gcc.gnu.org box and saving its users tons of spam.
-
- * Fred Fish for BeOS support and Ada fixes.
-
- * Ivan Fontes Garcia for the Portuguese translation of the GCJ FAQ.
-
- * Peter Gerwinski for various bug fixes and the Pascal front end.
-
- * Kaveh R. Ghazi for his direction via the steering committee,
- amazing work to make '-W -Wall -W* -Werror' useful, and testing GCC
- on a plethora of platforms. Kaveh extends his gratitude to the
- CAIP Center at Rutgers University for providing him with computing
- resources to work on Free Software from the late 1980s to 2010.
-
- * John Gilmore for a donation to the FSF earmarked improving GNU
- Java.
-
- * Judy Goldberg for c++ contributions.
-
- * Torbjorn Granlund for various fixes and the c-torture testsuite,
- multiply- and divide-by-constant optimization, improved long long
- support, improved leaf function register allocation, and his
- direction via the steering committee.
-
- * Anthony Green for his '-Os' contributions, the moxie port, and Java
- front end work.
-
- * Stu Grossman for gdb hacking, allowing GCJ developers to debug Java
- code.
-
- * Michael K. Gschwind contributed the port to the PDP-11.
-
- * Richard Biener for his ongoing middle-end contributions and bug
- fixes and for release management.
-
- * Ron Guilmette implemented the 'protoize' and 'unprotoize' tools,
- the support for Dwarf symbolic debugging information, and much of
- the support for System V Release 4. He has also worked heavily on
- the Intel 386 and 860 support.
-
- * Sumanth Gundapaneni for contributing the CR16 port.
-
- * Mostafa Hagog for Swing Modulo Scheduling (SMS) and post reload
- GCSE.
-
- * Bruno Haible for improvements in the runtime overhead for EH, new
- warnings and assorted bug fixes.
-
- * Andrew Haley for his amazing Java compiler and library efforts.
-
- * Chris Hanson assisted in making GCC work on HP-UX for the 9000
- series 300.
-
- * Michael Hayes for various thankless work he's done trying to get
- the c30/c40 ports functional. Lots of loop and unroll improvements
- and fixes.
-
- * Dara Hazeghi for wading through myriads of target-specific bug
- reports.
-
- * Kate Hedstrom for staking the G77 folks with an initial testsuite.
-
- * Richard Henderson for his ongoing SPARC, alpha, ia32, and ia64
- work, loop opts, and generally fixing lots of old problems we've
- ignored for years, flow rewrite and lots of further stuff,
- including reviewing tons of patches.
-
- * Aldy Hernandez for working on the PowerPC port, SIMD support, and
- various fixes.
-
- * Nobuyuki Hikichi of Software Research Associates, Tokyo,
- contributed the support for the Sony NEWS machine.
-
- * Kazu Hirata for caring and feeding the Renesas H8/300 port and
- various fixes.
-
- * Katherine Holcomb for work on GNU Fortran.
-
- * Manfred Hollstein for his ongoing work to keep the m88k alive, lots
- of testing and bug fixing, particularly of GCC configury code.
-
- * Steve Holmgren for MachTen patches.
-
- * Mat Hostetter for work on the TILE-Gx and TILEPro ports.
-
- * Jan Hubicka for his x86 port improvements.
-
- * Falk Hueffner for working on C and optimization bug reports.
-
- * Bernardo Innocenti for his m68k work, including merging of ColdFire
- improvements and uClinux support.
-
- * Christian Iseli for various bug fixes.
-
- * Kamil Iskra for general m68k hacking.
-
- * Lee Iverson for random fixes and MIPS testing.
-
- * Andreas Jaeger for testing and benchmarking of GCC and various bug
- fixes.
-
- * Jakub Jelinek for his SPARC work and sibling call optimizations as
- well as lots of bug fixes and test cases, and for improving the
- Java build system.
-
- * Janis Johnson for ia64 testing and fixes, her quality improvement
- sidetracks, and web page maintenance.
-
- * Kean Johnston for SCO OpenServer support and various fixes.
-
- * Tim Josling for the sample language treelang based originally on
- Richard Kenner's "toy" language.
-
- * Nicolai Josuttis for additional libstdc++ documentation.
-
- * Klaus Kaempf for his ongoing work to make alpha-vms a viable
- target.
-
- * Steven G. Kargl for work on GNU Fortran.
-
- * David Kashtan of SRI adapted GCC to VMS.
-
- * Ryszard Kabatek for many, many libstdc++ bug fixes and
- optimizations of strings, especially member functions, and for
- auto_ptr fixes.
-
- * Geoffrey Keating for his ongoing work to make the PPC work for
- GNU/Linux and his automatic regression tester.
-
- * Brendan Kehoe for his ongoing work with G++ and for a lot of early
- work in just about every part of libstdc++.
-
- * Oliver M. Kellogg of Deutsche Aerospace contributed the port to the
- MIL-STD-1750A.
-
- * Richard Kenner of the New York University Ultracomputer Research
- Laboratory wrote the machine descriptions for the AMD 29000, the
- DEC Alpha, the IBM RT PC, and the IBM RS/6000 as well as the
- support for instruction attributes. He also made changes to better
- support RISC processors including changes to common subexpression
- elimination, strength reduction, function calling sequence
- handling, and condition code support, in addition to generalizing
- the code for frame pointer elimination and delay slot scheduling.
- Richard Kenner was also the head maintainer of GCC for several
- years.
-
- * Mumit Khan for various contributions to the Cygwin and Mingw32
- ports and maintaining binary releases for Microsoft Windows hosts,
- and for massive libstdc++ porting work to Cygwin/Mingw32.
-
- * Robin Kirkham for cpu32 support.
-
- * Mark Klein for PA improvements.
-
- * Thomas Koenig for various bug fixes.
-
- * Bruce Korb for the new and improved fixincludes code.
-
- * Benjamin Kosnik for his G++ work and for leading the libstdc++-v3
- effort.
-
- * Charles LaBrec contributed the support for the Integrated Solutions
- 68020 system.
-
- * Asher Langton and Mike Kumbera for contributing Cray pointer
- support to GNU Fortran, and for other GNU Fortran improvements.
-
- * Jeff Law for his direction via the steering committee, coordinating
- the entire egcs project and GCC 2.95, rolling out snapshots and
- releases, handling merges from GCC2, reviewing tons of patches that
- might have fallen through the cracks else, and random but extensive
- hacking.
-
- * Walter Lee for work on the TILE-Gx and TILEPro ports.
-
- * Marc Lehmann for his direction via the steering committee and
- helping with analysis and improvements of x86 performance.
-
- * Victor Leikehman for work on GNU Fortran.
-
- * Ted Lemon wrote parts of the RTL reader and printer.
-
- * Kriang Lerdsuwanakij for C++ improvements including template as
- template parameter support, and many C++ fixes.
-
- * Warren Levy for tremendous work on libgcj (Java Runtime Library)
- and random work on the Java front end.
-
- * Alain Lichnewsky ported GCC to the MIPS CPU.
-
- * Oskar Liljeblad for hacking on AWT and his many Java bug reports
- and patches.
-
- * Robert Lipe for OpenServer support, new testsuites, testing, etc.
-
- * Chen Liqin for various S+core related fixes/improvement, and for
- maintaining the S+core port.
-
- * Weiwen Liu for testing and various bug fixes.
-
- * Manuel Lo'pez-Iba'n~ez for improving '-Wconversion' and many other
- diagnostics fixes and improvements.
-
- * Dave Love for his ongoing work with the Fortran front end and
- runtime libraries.
-
- * Martin von Lo"wis for internal consistency checking infrastructure,
- various C++ improvements including namespace support, and tons of
- assistance with libstdc++/compiler merges.
-
- * H.J. Lu for his previous contributions to the steering committee,
- many x86 bug reports, prototype patches, and keeping the GNU/Linux
- ports working.
-
- * Greg McGary for random fixes and (someday) bounded pointers.
-
- * Andrew MacLeod for his ongoing work in building a real EH system,
- various code generation improvements, work on the global optimizer,
- etc.
-
- * Vladimir Makarov for hacking some ugly i960 problems, PowerPC
- hacking improvements to compile-time performance, overall knowledge
- and direction in the area of instruction scheduling, and design and
- implementation of the automaton based instruction scheduler.
-
- * Bob Manson for his behind the scenes work on dejagnu.
-
- * Philip Martin for lots of libstdc++ string and vector iterator
- fixes and improvements, and string clean up and testsuites.
-
- * All of the Mauve project contributors, for Java test code.
-
- * Bryce McKinlay for numerous GCJ and libgcj fixes and improvements.
-
- * Adam Megacz for his work on the Microsoft Windows port of GCJ.
-
- * Michael Meissner for LRS framework, ia32, m32r, v850, m88k, MIPS,
- powerpc, haifa, ECOFF debug support, and other assorted hacking.
-
- * Jason Merrill for his direction via the steering committee and
- leading the G++ effort.
-
- * Martin Michlmayr for testing GCC on several architectures using the
- entire Debian archive.
-
- * David Miller for his direction via the steering committee, lots of
- SPARC work, improvements in jump.c and interfacing with the Linux
- kernel developers.
-
- * Gary Miller ported GCC to Charles River Data Systems machines.
-
- * Alfred Minarik for libstdc++ string and ios bug fixes, and turning
- the entire libstdc++ testsuite namespace-compatible.
-
- * Mark Mitchell for his direction via the steering committee,
- mountains of C++ work, load/store hoisting out of loops, alias
- analysis improvements, ISO C 'restrict' support, and serving as
- release manager from 2000 to 2011.
-
- * Alan Modra for various GNU/Linux bits and testing.
-
- * Toon Moene for his direction via the steering committee, Fortran
- maintenance, and his ongoing work to make us make Fortran run fast.
-
- * Jason Molenda for major help in the care and feeding of all the
- services on the gcc.gnu.org (formerly egcs.cygnus.com)
- machine--mail, web services, ftp services, etc etc. Doing all this
- work on scrap paper and the backs of envelopes would have been...
- difficult.
-
- * Catherine Moore for fixing various ugly problems we have sent her
- way, including the haifa bug which was killing the Alpha & PowerPC
- Linux kernels.
-
- * Mike Moreton for his various Java patches.
-
- * David Mosberger-Tang for various Alpha improvements, and for the
- initial IA-64 port.
-
- * Stephen Moshier contributed the floating point emulator that
- assists in cross-compilation and permits support for floating point
- numbers wider than 64 bits and for ISO C99 support.
-
- * Bill Moyer for his behind the scenes work on various issues.
-
- * Philippe De Muyter for his work on the m68k port.
-
- * Joseph S. Myers for his work on the PDP-11 port, format checking
- and ISO C99 support, and continuous emphasis on (and contributions
- to) documentation.
-
- * Nathan Myers for his work on libstdc++-v3: architecture and
- authorship through the first three snapshots, including
- implementation of locale infrastructure, string, shadow C headers,
- and the initial project documentation (DESIGN, CHECKLIST, and so
- forth). Later, more work on MT-safe string and shadow headers.
-
- * Felix Natter for documentation on porting libstdc++.
-
- * Nathanael Nerode for cleaning up the configuration/build process.
-
- * NeXT, Inc. donated the front end that supports the Objective-C
- language.
-
- * Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to the
- search engine setup, various documentation fixes and other small
- fixes.
-
- * Geoff Noer for his work on getting cygwin native builds working.
-
- * Diego Novillo for his work on Tree SSA, OpenMP, SPEC performance
- tracking web pages, GIMPLE tuples, and assorted fixes.
-
- * David O'Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64,
- FreeBSD/ARM, FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and related
- infrastructure improvements.
-
- * Alexandre Oliva for various build infrastructure improvements,
- scripts and amazing testing work, including keeping libtool issues
- sane and happy.
-
- * Stefan Olsson for work on mt_alloc.
-
- * Melissa O'Neill for various NeXT fixes.
-
- * Rainer Orth for random MIPS work, including improvements to GCC's
- o32 ABI support, improvements to dejagnu's MIPS support, Java
- configuration clean-ups and porting work, and maintaining the IRIX,
- Solaris 2, and Tru64 UNIX ports.
-
- * Hartmut Penner for work on the s390 port.
-
- * Paul Petersen wrote the machine description for the Alliant FX/8.
-
- * Alexandre Petit-Bianco for implementing much of the Java compiler
- and continued Java maintainership.
-
- * Matthias Pfaller for major improvements to the NS32k port.
-
- * Gerald Pfeifer for his direction via the steering committee,
- pointing out lots of problems we need to solve, maintenance of the
- web pages, and taking care of documentation maintenance in general.
-
- * Andrew Pinski for processing bug reports by the dozen.
-
- * Ovidiu Predescu for his work on the Objective-C front end and
- runtime libraries.
-
- * Jerry Quinn for major performance improvements in C++ formatted
- I/O.
-
- * Ken Raeburn for various improvements to checker, MIPS ports and
- various cleanups in the compiler.
-
- * Rolf W. Rasmussen for hacking on AWT.
-
- * David Reese of Sun Microsystems contributed to the Solaris on
- PowerPC port.
-
- * Volker Reichelt for keeping up with the problem reports.
-
- * Joern Rennecke for maintaining the sh port, loop, regmove & reload
- hacking and developing and maintaining the Epiphany port.
-
- * Loren J. Rittle for improvements to libstdc++-v3 including the
- FreeBSD port, threading fixes, thread-related configury changes,
- critical threading documentation, and solutions to really tricky
- I/O problems, as well as keeping GCC properly working on FreeBSD
- and continuous testing.
-
- * Craig Rodrigues for processing tons of bug reports.
-
- * Ola Ro"nnerup for work on mt_alloc.
-
- * Gavin Romig-Koch for lots of behind the scenes MIPS work.
-
- * David Ronis inspired and encouraged Craig to rewrite the G77
- documentation in texinfo format by contributing a first pass at a
- translation of the old 'g77-0.5.16/f/DOC' file.
-
- * Ken Rose for fixes to GCC's delay slot filling code.
-
- * Paul Rubin wrote most of the preprocessor.
-
- * Pe'tur Runo'lfsson for major performance improvements in C++
- formatted I/O and large file support in C++ filebuf.
-
- * Chip Salzenberg for libstdc++ patches and improvements to locales,
- traits, Makefiles, libio, libtool hackery, and "long long" support.
-
- * Juha Sarlin for improvements to the H8 code generator.
-
- * Greg Satz assisted in making GCC work on HP-UX for the 9000 series
- 300.
-
- * Roger Sayle for improvements to constant folding and GCC's RTL
- optimizers as well as for fixing numerous bugs.
-
- * Bradley Schatz for his work on the GCJ FAQ.
-
- * Peter Schauer wrote the code to allow debugging to work on the
- Alpha.
-
- * William Schelter did most of the work on the Intel 80386 support.
-
- * Tobias Schlu"ter for work on GNU Fortran.
-
- * Bernd Schmidt for various code generation improvements and major
- work in the reload pass, serving as release manager for GCC 2.95.3,
- and work on the Blackfin and C6X ports.
-
- * Peter Schmid for constant testing of libstdc++--especially
- application testing, going above and beyond what was requested for
- the release criteria--and libstdc++ header file tweaks.
-
- * Jason Schroeder for jcf-dump patches.
-
- * Andreas Schwab for his work on the m68k port.
-
- * Lars Segerlund for work on GNU Fortran.
-
- * Dodji Seketeli for numerous C++ bug fixes and debug info
- improvements.
-
- * Tim Shen for major work on '<regex>'.
-
- * Joel Sherrill for his direction via the steering committee, RTEMS
- contributions and RTEMS testing.
-
- * Nathan Sidwell for many C++ fixes/improvements.
-
- * Jeffrey Siegal for helping RMS with the original design of GCC,
- some code which handles the parse tree and RTL data structures,
- constant folding and help with the original VAX & m68k ports.
-
- * Kenny Simpson for prompting libstdc++ fixes due to defect reports
- from the LWG (thereby keeping GCC in line with updates from the
- ISO).
-
- * Franz Sirl for his ongoing work with making the PPC port stable for
- GNU/Linux.
-
- * Andrey Slepuhin for assorted AIX hacking.
-
- * Trevor Smigiel for contributing the SPU port.
-
- * Christopher Smith did the port for Convex machines.
-
- * Danny Smith for his major efforts on the Mingw (and Cygwin) ports.
-
- * Randy Smith finished the Sun FPA support.
-
- * Ed Smith-Rowland for his continuous work on libstdc++-v3, special
- functions, '<random>', and various improvements to C++11 features.
-
- * Scott Snyder for queue, iterator, istream, and string fixes and
- libstdc++ testsuite entries. Also for providing the patch to G77
- to add rudimentary support for 'INTEGER*1', 'INTEGER*2', and
- 'LOGICAL*1'.
-
- * Zdenek Sojka for running automated regression testing of GCC and
- reporting numerous bugs.
-
- * Jayant Sonar for contributing the CR16 port.
-
- * Brad Spencer for contributions to the GLIBCPP_FORCE_NEW technique.
-
- * Richard Stallman, for writing the original GCC and launching the
- GNU project.
-
- * Jan Stein of the Chalmers Computer Society provided support for
- Genix, as well as part of the 32000 machine description.
-
- * Nigel Stephens for various mips16 related fixes/improvements.
-
- * Jonathan Stone wrote the machine description for the Pyramid
- computer.
-
- * Graham Stott for various infrastructure improvements.
-
- * John Stracke for his Java HTTP protocol fixes.
-
- * Mike Stump for his Elxsi port, G++ contributions over the years and
- more recently his vxworks contributions
-
- * Jeff Sturm for Java porting help, bug fixes, and encouragement.
-
- * Shigeya Suzuki for this fixes for the bsdi platforms.
-
- * Ian Lance Taylor for the Go frontend, the initial mips16 and mips64
- support, general configury hacking, fixincludes, etc.
-
- * Holger Teutsch provided the support for the Clipper CPU.
-
- * Gary Thomas for his ongoing work to make the PPC work for
- GNU/Linux.
-
- * Philipp Thomas for random bug fixes throughout the compiler
-
- * Jason Thorpe for thread support in libstdc++ on NetBSD.
-
- * Kresten Krab Thorup wrote the run time support for the Objective-C
- language and the fantastic Java bytecode interpreter.
-
- * Michael Tiemann for random bug fixes, the first instruction
- scheduler, initial C++ support, function integration, NS32k, SPARC
- and M88k machine description work, delay slot scheduling.
-
- * Andreas Tobler for his work porting libgcj to Darwin.
-
- * Teemu Torma for thread safe exception handling support.
-
- * Leonard Tower wrote parts of the parser, RTL generator, and RTL
- definitions, and of the VAX machine description.
-
- * Daniel Towner and Hariharan Sandanagobalane contributed and
- maintain the picoChip port.
-
- * Tom Tromey for internationalization support and for his many Java
- contributions and libgcj maintainership.
-
- * Lassi Tuura for improvements to config.guess to determine HP
- processor types.
-
- * Petter Urkedal for libstdc++ CXXFLAGS, math, and algorithms fixes.
-
- * Andy Vaught for the design and initial implementation of the GNU
- Fortran front end.
-
- * Brent Verner for work with the libstdc++ cshadow files and their
- associated configure steps.
-
- * Todd Vierling for contributions for NetBSD ports.
-
- * Jonathan Wakely for contributing libstdc++ Doxygen notes and XHTML
- guidance.
-
- * Dean Wakerley for converting the install documentation from HTML to
- texinfo in time for GCC 3.0.
-
- * Krister Walfridsson for random bug fixes.
-
- * Feng Wang for contributions to GNU Fortran.
-
- * Stephen M. Webb for time and effort on making libstdc++ shadow
- files work with the tricky Solaris 8+ headers, and for pushing the
- build-time header tree. Also, for starting and driving the
- '<regex>' effort.
-
- * John Wehle for various improvements for the x86 code generator,
- related infrastructure improvements to help x86 code generation,
- value range propagation and other work, WE32k port.
-
- * Ulrich Weigand for work on the s390 port.
-
- * Zack Weinberg for major work on cpplib and various other bug fixes.
-
- * Matt Welsh for help with Linux Threads support in GCJ.
-
- * Urban Widmark for help fixing java.io.
-
- * Mark Wielaard for new Java library code and his work integrating
- with Classpath.
-
- * Dale Wiles helped port GCC to the Tahoe.
-
- * Bob Wilson from Tensilica, Inc. for the Xtensa port.
-
- * Jim Wilson for his direction via the steering committee, tackling
- hard problems in various places that nobody else wanted to work on,
- strength reduction and other loop optimizations.
-
- * Paul Woegerer and Tal Agmon for the CRX port.
-
- * Carlo Wood for various fixes.
-
- * Tom Wood for work on the m88k port.
-
- * Chung-Ju Wu for his work on the Andes NDS32 port.
-
- * Canqun Yang for work on GNU Fortran.
-
- * Masanobu Yuhara of Fujitsu Laboratories implemented the machine
- description for the Tron architecture (specifically, the Gmicro).
-
- * Kevin Zachmann helped port GCC to the Tahoe.
-
- * Ayal Zaks for Swing Modulo Scheduling (SMS).
-
- * Xiaoqiang Zhang for work on GNU Fortran.
-
- * Gilles Zunino for help porting Java to Irix.
-
- The following people are recognized for their contributions to GNAT,
-the Ada front end of GCC:
- * Bernard Banner
-
- * Romain Berrendonner
-
- * Geert Bosch
-
- * Emmanuel Briot
-
- * Joel Brobecker
-
- * Ben Brosgol
-
- * Vincent Celier
-
- * Arnaud Charlet
-
- * Chien Chieng
-
- * Cyrille Comar
-
- * Cyrille Crozes
-
- * Robert Dewar
-
- * Gary Dismukes
-
- * Robert Duff
-
- * Ed Falis
-
- * Ramon Fernandez
-
- * Sam Figueroa
-
- * Vasiliy Fofanov
-
- * Michael Friess
-
- * Franco Gasperoni
-
- * Ted Giering
-
- * Matthew Gingell
-
- * Laurent Guerby
-
- * Jerome Guitton
-
- * Olivier Hainque
-
- * Jerome Hugues
-
- * Hristian Kirtchev
-
- * Jerome Lambourg
-
- * Bruno Leclerc
-
- * Albert Lee
-
- * Sean McNeil
-
- * Javier Miranda
-
- * Laurent Nana
-
- * Pascal Obry
-
- * Dong-Ik Oh
-
- * Laurent Pautet
-
- * Brett Porter
-
- * Thomas Quinot
-
- * Nicolas Roche
-
- * Pat Rogers
-
- * Jose Ruiz
-
- * Douglas Rupp
-
- * Sergey Rybin
-
- * Gail Schenker
-
- * Ed Schonberg
-
- * Nicolas Setton
-
- * Samuel Tardieu
-
- The following people are recognized for their contributions of new
-features, bug reports, testing and integration of classpath/libgcj for
-GCC version 4.1:
- * Lillian Angel for 'JTree' implementation and lots Free Swing
- additions and bug fixes.
-
- * Wolfgang Baer for 'GapContent' bug fixes.
-
- * Anthony Balkissoon for 'JList', Free Swing 1.5 updates and mouse
- event fixes, lots of Free Swing work including 'JTable' editing.
-
- * Stuart Ballard for RMI constant fixes.
-
- * Goffredo Baroncelli for 'HTTPURLConnection' fixes.
-
- * Gary Benson for 'MessageFormat' fixes.
-
- * Daniel Bonniot for 'Serialization' fixes.
-
- * Chris Burdess for lots of gnu.xml and http protocol fixes, 'StAX'
- and 'DOM xml:id' support.
-
- * Ka-Hing Cheung for 'TreePath' and 'TreeSelection' fixes.
-
- * Archie Cobbs for build fixes, VM interface updates,
- 'URLClassLoader' updates.
-
- * Kelley Cook for build fixes.
-
- * Martin Cordova for Suggestions for better 'SocketTimeoutException'.
-
- * David Daney for 'BitSet' bug fixes, 'HttpURLConnection' rewrite and
- improvements.
-
- * Thomas Fitzsimmons for lots of upgrades to the gtk+ AWT and Cairo
- 2D support. Lots of imageio framework additions, lots of AWT and
- Free Swing bug fixes.
-
- * Jeroen Frijters for 'ClassLoader' and nio cleanups, serialization
- fixes, better 'Proxy' support, bug fixes and IKVM integration.
-
- * Santiago Gala for 'AccessControlContext' fixes.
-
- * Nicolas Geoffray for 'VMClassLoader' and 'AccessController'
- improvements.
-
- * David Gilbert for 'basic' and 'metal' icon and plaf support and
- lots of documenting, Lots of Free Swing and metal theme additions.
- 'MetalIconFactory' implementation.
-
- * Anthony Green for 'MIDI' framework, 'ALSA' and 'DSSI' providers.
-
- * Andrew Haley for 'Serialization' and 'URLClassLoader' fixes, gcj
- build speedups.
-
- * Kim Ho for 'JFileChooser' implementation.
-
- * Andrew John Hughes for 'Locale' and net fixes, URI RFC2986 updates,
- 'Serialization' fixes, 'Properties' XML support and generic branch
- work, VMIntegration guide update.
-
- * Bastiaan Huisman for 'TimeZone' bug fixing.
-
- * Andreas Jaeger for mprec updates.
-
- * Paul Jenner for better '-Werror' support.
-
- * Ito Kazumitsu for 'NetworkInterface' implementation and updates.
-
- * Roman Kennke for 'BoxLayout', 'GrayFilter' and 'SplitPane', plus
- bug fixes all over. Lots of Free Swing work including styled text.
-
- * Simon Kitching for 'String' cleanups and optimization suggestions.
-
- * Michael Koch for configuration fixes, 'Locale' updates, bug and
- build fixes.
-
- * Guilhem Lavaux for configuration, thread and channel fixes and
- Kaffe integration. JCL native 'Pointer' updates. Logger bug
- fixes.
-
- * David Lichteblau for JCL support library global/local reference
- cleanups.
-
- * Aaron Luchko for JDWP updates and documentation fixes.
-
- * Ziga Mahkovec for 'Graphics2D' upgraded to Cairo 0.5 and new regex
- features.
-
- * Sven de Marothy for BMP imageio support, CSS and 'TextLayout'
- fixes. 'GtkImage' rewrite, 2D, awt, free swing and date/time fixes
- and implementing the Qt4 peers.
-
- * Casey Marshall for crypto algorithm fixes, 'FileChannel' lock,
- 'SystemLogger' and 'FileHandler' rotate implementations, NIO
- 'FileChannel.map' support, security and policy updates.
-
- * Bryce McKinlay for RMI work.
-
- * Audrius Meskauskas for lots of Free Corba, RMI and HTML work plus
- testing and documenting.
-
- * Kalle Olavi Niemitalo for build fixes.
-
- * Rainer Orth for build fixes.
-
- * Andrew Overholt for 'File' locking fixes.
-
- * Ingo Proetel for 'Image', 'Logger' and 'URLClassLoader' updates.
-
- * Olga Rodimina for 'MenuSelectionManager' implementation.
-
- * Jan Roehrich for 'BasicTreeUI' and 'JTree' fixes.
-
- * Julian Scheid for documentation updates and gjdoc support.
-
- * Christian Schlichtherle for zip fixes and cleanups.
-
- * Robert Schuster for documentation updates and beans fixes,
- 'TreeNode' enumerations and 'ActionCommand' and various fixes, XML
- and URL, AWT and Free Swing bug fixes.
-
- * Keith Seitz for lots of JDWP work.
-
- * Christian Thalinger for 64-bit cleanups, Configuration and VM
- interface fixes and 'CACAO' integration, 'fdlibm' updates.
-
- * Gael Thomas for 'VMClassLoader' boot packages support suggestions.
-
- * Andreas Tobler for Darwin and Solaris testing and fixing, 'Qt4'
- support for Darwin/OS X, 'Graphics2D' support, 'gtk+' updates.
-
- * Dalibor Topic for better 'DEBUG' support, build cleanups and Kaffe
- integration. 'Qt4' build infrastructure, 'SHA1PRNG' and
- 'GdkPixbugDecoder' updates.
-
- * Tom Tromey for Eclipse integration, generics work, lots of bug
- fixes and gcj integration including coordinating The Big Merge.
-
- * Mark Wielaard for bug fixes, packaging and release management,
- 'Clipboard' implementation, system call interrupts and network
- timeouts and 'GdkPixpufDecoder' fixes.
-
- In addition to the above, all of which also contributed time and energy
-in testing GCC, we would like to thank the following for their
-contributions to testing:
-
- * Michael Abd-El-Malek
-
- * Thomas Arend
-
- * Bonzo Armstrong
-
- * Steven Ashe
-
- * Chris Baldwin
-
- * David Billinghurst
-
- * Jim Blandy
-
- * Stephane Bortzmeyer
-
- * Horst von Brand
-
- * Frank Braun
-
- * Rodney Brown
-
- * Sidney Cadot
-
- * Bradford Castalia
-
- * Robert Clark
-
- * Jonathan Corbet
-
- * Ralph Doncaster
-
- * Richard Emberson
-
- * Levente Farkas
-
- * Graham Fawcett
-
- * Mark Fernyhough
-
- * Robert A. French
-
- * Jo"rgen Freyh
-
- * Mark K. Gardner
-
- * Charles-Antoine Gauthier
-
- * Yung Shing Gene
-
- * David Gilbert
-
- * Simon Gornall
-
- * Fred Gray
-
- * John Griffin
-
- * Patrik Hagglund
-
- * Phil Hargett
-
- * Amancio Hasty
-
- * Takafumi Hayashi
-
- * Bryan W. Headley
-
- * Kevin B. Hendricks
-
- * Joep Jansen
-
- * Christian Joensson
-
- * Michel Kern
-
- * David Kidd
-
- * Tobias Kuipers
-
- * Anand Krishnaswamy
-
- * A. O. V. Le Blanc
-
- * llewelly
-
- * Damon Love
-
- * Brad Lucier
-
- * Matthias Klose
-
- * Martin Knoblauch
-
- * Rick Lutowski
-
- * Jesse Macnish
-
- * Stefan Morrell
-
- * Anon A. Mous
-
- * Matthias Mueller
-
- * Pekka Nikander
-
- * Rick Niles
-
- * Jon Olson
-
- * Magnus Persson
-
- * Chris Pollard
-
- * Richard Polton
-
- * Derk Reefman
-
- * David Rees
-
- * Paul Reilly
-
- * Tom Reilly
-
- * Torsten Rueger
-
- * Danny Sadinoff
-
- * Marc Schifer
-
- * Erik Schnetter
-
- * Wayne K. Schroll
-
- * David Schuler
-
- * Vin Shelton
-
- * Tim Souder
-
- * Adam Sulmicki
-
- * Bill Thorson
-
- * George Talbot
-
- * Pedro A. M. Vazquez
-
- * Gregory Warnes
-
- * Ian Watson
-
- * David E. Young
-
- * And many others
-
- And finally we'd like to thank everyone who uses the compiler, provides
-feedback and generally reminds us why we're doing this work in the first
-place.
-
-
-File: gccint.info, Node: Option Index, Next: Concept Index, Prev: Contributors, Up: Top
-
-Option Index
-************
-
-GCC's command line options are indexed here without any initial '-' or
-'--'. Where an option has both positive and negative forms (such as
-'-fOPTION' and '-fno-OPTION'), relevant entries in the manual are
-indexed under the most appropriate form; it may sometimes be useful to
-look up both forms.
-
-
-* Menu:
-
-* fltrans: Internal flags. (line 18)
-* fltrans-output-list: Internal flags. (line 23)
-* fresolution: Internal flags. (line 27)
-* fwpa: Internal flags. (line 9)
-* msoft-float: Soft float library routines.
- (line 6)
-
-
-File: gccint.info, Node: Concept Index, Prev: Option Index, Up: Top
-
-Concept Index
-*************
-
-
-* Menu:
-
-* '!' in constraint: Multi-Alternative. (line 47)
-* '#' in constraint: Modifiers. (line 67)
-* '#' in template: Output Template. (line 66)
-* #pragma: Misc. (line 387)
-* '%' in constraint: Modifiers. (line 45)
-* % in GTY option: GTY Options. (line 18)
-* '%' in template: Output Template. (line 6)
-* '&' in constraint: Modifiers. (line 25)
-* (nil): RTL Objects. (line 73)
-* '*' in constraint: Modifiers. (line 72)
-* '*' in template: Output Statement. (line 29)
-* '+' in constraint: Modifiers. (line 12)
-* '-fsection-anchors': Special Accessors. (line 117)
-* '-fsection-anchors' <1>: Anchored Addresses. (line 6)
-* '/c' in RTL dump: Flags. (line 221)
-* '/f' in RTL dump: Flags. (line 229)
-* '/i' in RTL dump: Flags. (line 274)
-* '/j' in RTL dump: Flags. (line 286)
-* '/s' in RTL dump: Flags. (line 245)
-* '/u' in RTL dump: Flags. (line 296)
-* '/v' in RTL dump: Flags. (line 328)
-* '0' in constraint: Simple Constraints. (line 128)
-* '<' in constraint: Simple Constraints. (line 47)
-* '=' in constraint: Modifiers. (line 8)
-* '>' in constraint: Simple Constraints. (line 59)
-* '?' in constraint: Multi-Alternative. (line 41)
-* \: Output Template. (line 46)
-* __absvdi2: Integer library routines.
- (line 106)
-* __absvsi2: Integer library routines.
- (line 105)
-* __addda3: Fixed-point fractional library routines.
- (line 44)
-* __adddf3: Soft float library routines.
- (line 22)
-* __adddq3: Fixed-point fractional library routines.
- (line 31)
-* __addha3: Fixed-point fractional library routines.
- (line 41)
-* __addhq3: Fixed-point fractional library routines.
- (line 29)
-* __addqq3: Fixed-point fractional library routines.
- (line 27)
-* __addsa3: Fixed-point fractional library routines.
- (line 43)
-* __addsf3: Soft float library routines.
- (line 21)
-* __addsq3: Fixed-point fractional library routines.
- (line 30)
-* __addta3: Fixed-point fractional library routines.
- (line 45)
-* __addtf3: Soft float library routines.
- (line 23)
-* __adduda3: Fixed-point fractional library routines.
- (line 51)
-* __addudq3: Fixed-point fractional library routines.
- (line 39)
-* __adduha3: Fixed-point fractional library routines.
- (line 47)
-* __adduhq3: Fixed-point fractional library routines.
- (line 35)
-* __adduqq3: Fixed-point fractional library routines.
- (line 33)
-* __addusa3: Fixed-point fractional library routines.
- (line 49)
-* __addusq3: Fixed-point fractional library routines.
- (line 37)
-* __adduta3: Fixed-point fractional library routines.
- (line 53)
-* __addvdi3: Integer library routines.
- (line 110)
-* __addvsi3: Integer library routines.
- (line 109)
-* __addxf3: Soft float library routines.
- (line 25)
-* __ashlda3: Fixed-point fractional library routines.
- (line 350)
-* __ashldi3: Integer library routines.
- (line 13)
-* __ashldq3: Fixed-point fractional library routines.
- (line 338)
-* __ashlha3: Fixed-point fractional library routines.
- (line 348)
-* __ashlhq3: Fixed-point fractional library routines.
- (line 336)
-* __ashlqq3: Fixed-point fractional library routines.
- (line 335)
-* __ashlsa3: Fixed-point fractional library routines.
- (line 349)
-* __ashlsi3: Integer library routines.
- (line 12)
-* __ashlsq3: Fixed-point fractional library routines.
- (line 337)
-* __ashlta3: Fixed-point fractional library routines.
- (line 351)
-* __ashlti3: Integer library routines.
- (line 14)
-* __ashluda3: Fixed-point fractional library routines.
- (line 357)
-* __ashludq3: Fixed-point fractional library routines.
- (line 346)
-* __ashluha3: Fixed-point fractional library routines.
- (line 353)
-* __ashluhq3: Fixed-point fractional library routines.
- (line 342)
-* __ashluqq3: Fixed-point fractional library routines.
- (line 340)
-* __ashlusa3: Fixed-point fractional library routines.
- (line 355)
-* __ashlusq3: Fixed-point fractional library routines.
- (line 344)
-* __ashluta3: Fixed-point fractional library routines.
- (line 359)
-* __ashrda3: Fixed-point fractional library routines.
- (line 370)
-* __ashrdi3: Integer library routines.
- (line 18)
-* __ashrdq3: Fixed-point fractional library routines.
- (line 366)
-* __ashrha3: Fixed-point fractional library routines.
- (line 368)
-* __ashrhq3: Fixed-point fractional library routines.
- (line 364)
-* __ashrqq3: Fixed-point fractional library routines.
- (line 363)
-* __ashrsa3: Fixed-point fractional library routines.
- (line 369)
-* __ashrsi3: Integer library routines.
- (line 17)
-* __ashrsq3: Fixed-point fractional library routines.
- (line 365)
-* __ashrta3: Fixed-point fractional library routines.
- (line 371)
-* __ashrti3: Integer library routines.
- (line 19)
-* __bid_adddd3: Decimal float library routines.
- (line 23)
-* __bid_addsd3: Decimal float library routines.
- (line 19)
-* __bid_addtd3: Decimal float library routines.
- (line 27)
-* __bid_divdd3: Decimal float library routines.
- (line 66)
-* __bid_divsd3: Decimal float library routines.
- (line 62)
-* __bid_divtd3: Decimal float library routines.
- (line 70)
-* __bid_eqdd2: Decimal float library routines.
- (line 258)
-* __bid_eqsd2: Decimal float library routines.
- (line 256)
-* __bid_eqtd2: Decimal float library routines.
- (line 260)
-* __bid_extendddtd2: Decimal float library routines.
- (line 91)
-* __bid_extendddtf: Decimal float library routines.
- (line 139)
-* __bid_extendddxf: Decimal float library routines.
- (line 133)
-* __bid_extenddfdd: Decimal float library routines.
- (line 146)
-* __bid_extenddftd: Decimal float library routines.
- (line 106)
-* __bid_extendsddd2: Decimal float library routines.
- (line 87)
-* __bid_extendsddf: Decimal float library routines.
- (line 127)
-* __bid_extendsdtd2: Decimal float library routines.
- (line 89)
-* __bid_extendsdtf: Decimal float library routines.
- (line 137)
-* __bid_extendsdxf: Decimal float library routines.
- (line 131)
-* __bid_extendsfdd: Decimal float library routines.
- (line 102)
-* __bid_extendsfsd: Decimal float library routines.
- (line 144)
-* __bid_extendsftd: Decimal float library routines.
- (line 104)
-* __bid_extendtftd: Decimal float library routines.
- (line 148)
-* __bid_extendxftd: Decimal float library routines.
- (line 108)
-* __bid_fixdddi: Decimal float library routines.
- (line 169)
-* __bid_fixddsi: Decimal float library routines.
- (line 161)
-* __bid_fixsddi: Decimal float library routines.
- (line 167)
-* __bid_fixsdsi: Decimal float library routines.
- (line 159)
-* __bid_fixtddi: Decimal float library routines.
- (line 171)
-* __bid_fixtdsi: Decimal float library routines.
- (line 163)
-* __bid_fixunsdddi: Decimal float library routines.
- (line 186)
-* __bid_fixunsddsi: Decimal float library routines.
- (line 177)
-* __bid_fixunssddi: Decimal float library routines.
- (line 184)
-* __bid_fixunssdsi: Decimal float library routines.
- (line 175)
-* __bid_fixunstddi: Decimal float library routines.
- (line 188)
-* __bid_fixunstdsi: Decimal float library routines.
- (line 179)
-* __bid_floatdidd: Decimal float library routines.
- (line 204)
-* __bid_floatdisd: Decimal float library routines.
- (line 202)
-* __bid_floatditd: Decimal float library routines.
- (line 206)
-* __bid_floatsidd: Decimal float library routines.
- (line 195)
-* __bid_floatsisd: Decimal float library routines.
- (line 193)
-* __bid_floatsitd: Decimal float library routines.
- (line 197)
-* __bid_floatunsdidd: Decimal float library routines.
- (line 222)
-* __bid_floatunsdisd: Decimal float library routines.
- (line 220)
-* __bid_floatunsditd: Decimal float library routines.
- (line 224)
-* __bid_floatunssidd: Decimal float library routines.
- (line 213)
-* __bid_floatunssisd: Decimal float library routines.
- (line 211)
-* __bid_floatunssitd: Decimal float library routines.
- (line 215)
-* __bid_gedd2: Decimal float library routines.
- (line 276)
-* __bid_gesd2: Decimal float library routines.
- (line 274)
-* __bid_getd2: Decimal float library routines.
- (line 278)
-* __bid_gtdd2: Decimal float library routines.
- (line 303)
-* __bid_gtsd2: Decimal float library routines.
- (line 301)
-* __bid_gttd2: Decimal float library routines.
- (line 305)
-* __bid_ledd2: Decimal float library routines.
- (line 294)
-* __bid_lesd2: Decimal float library routines.
- (line 292)
-* __bid_letd2: Decimal float library routines.
- (line 296)
-* __bid_ltdd2: Decimal float library routines.
- (line 285)
-* __bid_ltsd2: Decimal float library routines.
- (line 283)
-* __bid_lttd2: Decimal float library routines.
- (line 287)
-* __bid_muldd3: Decimal float library routines.
- (line 52)
-* __bid_mulsd3: Decimal float library routines.
- (line 48)
-* __bid_multd3: Decimal float library routines.
- (line 56)
-* __bid_nedd2: Decimal float library routines.
- (line 267)
-* __bid_negdd2: Decimal float library routines.
- (line 77)
-* __bid_negsd2: Decimal float library routines.
- (line 75)
-* __bid_negtd2: Decimal float library routines.
- (line 79)
-* __bid_nesd2: Decimal float library routines.
- (line 265)
-* __bid_netd2: Decimal float library routines.
- (line 269)
-* __bid_subdd3: Decimal float library routines.
- (line 37)
-* __bid_subsd3: Decimal float library routines.
- (line 33)
-* __bid_subtd3: Decimal float library routines.
- (line 41)
-* __bid_truncdddf: Decimal float library routines.
- (line 152)
-* __bid_truncddsd2: Decimal float library routines.
- (line 93)
-* __bid_truncddsf: Decimal float library routines.
- (line 123)
-* __bid_truncdfsd: Decimal float library routines.
- (line 110)
-* __bid_truncsdsf: Decimal float library routines.
- (line 150)
-* __bid_trunctddd2: Decimal float library routines.
- (line 97)
-* __bid_trunctddf: Decimal float library routines.
- (line 129)
-* __bid_trunctdsd2: Decimal float library routines.
- (line 95)
-* __bid_trunctdsf: Decimal float library routines.
- (line 125)
-* __bid_trunctdtf: Decimal float library routines.
- (line 154)
-* __bid_trunctdxf: Decimal float library routines.
- (line 135)
-* __bid_trunctfdd: Decimal float library routines.
- (line 118)
-* __bid_trunctfsd: Decimal float library routines.
- (line 114)
-* __bid_truncxfdd: Decimal float library routines.
- (line 116)
-* __bid_truncxfsd: Decimal float library routines.
- (line 112)
-* __bid_unorddd2: Decimal float library routines.
- (line 234)
-* __bid_unordsd2: Decimal float library routines.
- (line 232)
-* __bid_unordtd2: Decimal float library routines.
- (line 236)
-* __bswapdi2: Integer library routines.
- (line 161)
-* __bswapsi2: Integer library routines.
- (line 160)
-* __builtin_classify_type: Varargs. (line 48)
-* __builtin_next_arg: Varargs. (line 39)
-* __builtin_saveregs: Varargs. (line 22)
-* __clear_cache: Miscellaneous routines.
- (line 9)
-* __clzdi2: Integer library routines.
- (line 130)
-* __clzsi2: Integer library routines.
- (line 129)
-* __clzti2: Integer library routines.
- (line 131)
-* __cmpda2: Fixed-point fractional library routines.
- (line 450)
-* __cmpdf2: Soft float library routines.
- (line 163)
-* __cmpdi2: Integer library routines.
- (line 86)
-* __cmpdq2: Fixed-point fractional library routines.
- (line 439)
-* __cmpha2: Fixed-point fractional library routines.
- (line 448)
-* __cmphq2: Fixed-point fractional library routines.
- (line 437)
-* __cmpqq2: Fixed-point fractional library routines.
- (line 436)
-* __cmpsa2: Fixed-point fractional library routines.
- (line 449)
-* __cmpsf2: Soft float library routines.
- (line 162)
-* __cmpsq2: Fixed-point fractional library routines.
- (line 438)
-* __cmpta2: Fixed-point fractional library routines.
- (line 451)
-* __cmptf2: Soft float library routines.
- (line 164)
-* __cmpti2: Integer library routines.
- (line 87)
-* __cmpuda2: Fixed-point fractional library routines.
- (line 456)
-* __cmpudq2: Fixed-point fractional library routines.
- (line 446)
-* __cmpuha2: Fixed-point fractional library routines.
- (line 453)
-* __cmpuhq2: Fixed-point fractional library routines.
- (line 443)
-* __cmpuqq2: Fixed-point fractional library routines.
- (line 441)
-* __cmpusa2: Fixed-point fractional library routines.
- (line 455)
-* __cmpusq2: Fixed-point fractional library routines.
- (line 444)
-* __cmputa2: Fixed-point fractional library routines.
- (line 458)
-* __CTOR_LIST__: Initialization. (line 25)
-* __ctzdi2: Integer library routines.
- (line 137)
-* __ctzsi2: Integer library routines.
- (line 136)
-* __ctzti2: Integer library routines.
- (line 138)
-* __divda3: Fixed-point fractional library routines.
- (line 226)
-* __divdc3: Soft float library routines.
- (line 250)
-* __divdf3: Soft float library routines.
- (line 47)
-* __divdi3: Integer library routines.
- (line 24)
-* __divdq3: Fixed-point fractional library routines.
- (line 221)
-* __divha3: Fixed-point fractional library routines.
- (line 223)
-* __divhq3: Fixed-point fractional library routines.
- (line 219)
-* __divqq3: Fixed-point fractional library routines.
- (line 217)
-* __divsa3: Fixed-point fractional library routines.
- (line 225)
-* __divsc3: Soft float library routines.
- (line 248)
-* __divsf3: Soft float library routines.
- (line 46)
-* __divsi3: Integer library routines.
- (line 23)
-* __divsq3: Fixed-point fractional library routines.
- (line 220)
-* __divta3: Fixed-point fractional library routines.
- (line 227)
-* __divtc3: Soft float library routines.
- (line 252)
-* __divtf3: Soft float library routines.
- (line 48)
-* __divti3: Integer library routines.
- (line 25)
-* __divxc3: Soft float library routines.
- (line 254)
-* __divxf3: Soft float library routines.
- (line 50)
-* __dpd_adddd3: Decimal float library routines.
- (line 21)
-* __dpd_addsd3: Decimal float library routines.
- (line 17)
-* __dpd_addtd3: Decimal float library routines.
- (line 25)
-* __dpd_divdd3: Decimal float library routines.
- (line 64)
-* __dpd_divsd3: Decimal float library routines.
- (line 60)
-* __dpd_divtd3: Decimal float library routines.
- (line 68)
-* __dpd_eqdd2: Decimal float library routines.
- (line 257)
-* __dpd_eqsd2: Decimal float library routines.
- (line 255)
-* __dpd_eqtd2: Decimal float library routines.
- (line 259)
-* __dpd_extendddtd2: Decimal float library routines.
- (line 90)
-* __dpd_extendddtf: Decimal float library routines.
- (line 138)
-* __dpd_extendddxf: Decimal float library routines.
- (line 132)
-* __dpd_extenddfdd: Decimal float library routines.
- (line 145)
-* __dpd_extenddftd: Decimal float library routines.
- (line 105)
-* __dpd_extendsddd2: Decimal float library routines.
- (line 86)
-* __dpd_extendsddf: Decimal float library routines.
- (line 126)
-* __dpd_extendsdtd2: Decimal float library routines.
- (line 88)
-* __dpd_extendsdtf: Decimal float library routines.
- (line 136)
-* __dpd_extendsdxf: Decimal float library routines.
- (line 130)
-* __dpd_extendsfdd: Decimal float library routines.
- (line 101)
-* __dpd_extendsfsd: Decimal float library routines.
- (line 143)
-* __dpd_extendsftd: Decimal float library routines.
- (line 103)
-* __dpd_extendtftd: Decimal float library routines.
- (line 147)
-* __dpd_extendxftd: Decimal float library routines.
- (line 107)
-* __dpd_fixdddi: Decimal float library routines.
- (line 168)
-* __dpd_fixddsi: Decimal float library routines.
- (line 160)
-* __dpd_fixsddi: Decimal float library routines.
- (line 166)
-* __dpd_fixsdsi: Decimal float library routines.
- (line 158)
-* __dpd_fixtddi: Decimal float library routines.
- (line 170)
-* __dpd_fixtdsi: Decimal float library routines.
- (line 162)
-* __dpd_fixunsdddi: Decimal float library routines.
- (line 185)
-* __dpd_fixunsddsi: Decimal float library routines.
- (line 176)
-* __dpd_fixunssddi: Decimal float library routines.
- (line 183)
-* __dpd_fixunssdsi: Decimal float library routines.
- (line 174)
-* __dpd_fixunstddi: Decimal float library routines.
- (line 187)
-* __dpd_fixunstdsi: Decimal float library routines.
- (line 178)
-* __dpd_floatdidd: Decimal float library routines.
- (line 203)
-* __dpd_floatdisd: Decimal float library routines.
- (line 201)
-* __dpd_floatditd: Decimal float library routines.
- (line 205)
-* __dpd_floatsidd: Decimal float library routines.
- (line 194)
-* __dpd_floatsisd: Decimal float library routines.
- (line 192)
-* __dpd_floatsitd: Decimal float library routines.
- (line 196)
-* __dpd_floatunsdidd: Decimal float library routines.
- (line 221)
-* __dpd_floatunsdisd: Decimal float library routines.
- (line 219)
-* __dpd_floatunsditd: Decimal float library routines.
- (line 223)
-* __dpd_floatunssidd: Decimal float library routines.
- (line 212)
-* __dpd_floatunssisd: Decimal float library routines.
- (line 210)
-* __dpd_floatunssitd: Decimal float library routines.
- (line 214)
-* __dpd_gedd2: Decimal float library routines.
- (line 275)
-* __dpd_gesd2: Decimal float library routines.
- (line 273)
-* __dpd_getd2: Decimal float library routines.
- (line 277)
-* __dpd_gtdd2: Decimal float library routines.
- (line 302)
-* __dpd_gtsd2: Decimal float library routines.
- (line 300)
-* __dpd_gttd2: Decimal float library routines.
- (line 304)
-* __dpd_ledd2: Decimal float library routines.
- (line 293)
-* __dpd_lesd2: Decimal float library routines.
- (line 291)
-* __dpd_letd2: Decimal float library routines.
- (line 295)
-* __dpd_ltdd2: Decimal float library routines.
- (line 284)
-* __dpd_ltsd2: Decimal float library routines.
- (line 282)
-* __dpd_lttd2: Decimal float library routines.
- (line 286)
-* __dpd_muldd3: Decimal float library routines.
- (line 50)
-* __dpd_mulsd3: Decimal float library routines.
- (line 46)
-* __dpd_multd3: Decimal float library routines.
- (line 54)
-* __dpd_nedd2: Decimal float library routines.
- (line 266)
-* __dpd_negdd2: Decimal float library routines.
- (line 76)
-* __dpd_negsd2: Decimal float library routines.
- (line 74)
-* __dpd_negtd2: Decimal float library routines.
- (line 78)
-* __dpd_nesd2: Decimal float library routines.
- (line 264)
-* __dpd_netd2: Decimal float library routines.
- (line 268)
-* __dpd_subdd3: Decimal float library routines.
- (line 35)
-* __dpd_subsd3: Decimal float library routines.
- (line 31)
-* __dpd_subtd3: Decimal float library routines.
- (line 39)
-* __dpd_truncdddf: Decimal float library routines.
- (line 151)
-* __dpd_truncddsd2: Decimal float library routines.
- (line 92)
-* __dpd_truncddsf: Decimal float library routines.
- (line 122)
-* __dpd_truncdfsd: Decimal float library routines.
- (line 109)
-* __dpd_truncsdsf: Decimal float library routines.
- (line 149)
-* __dpd_trunctddd2: Decimal float library routines.
- (line 96)
-* __dpd_trunctddf: Decimal float library routines.
- (line 128)
-* __dpd_trunctdsd2: Decimal float library routines.
- (line 94)
-* __dpd_trunctdsf: Decimal float library routines.
- (line 124)
-* __dpd_trunctdtf: Decimal float library routines.
- (line 153)
-* __dpd_trunctdxf: Decimal float library routines.
- (line 134)
-* __dpd_trunctfdd: Decimal float library routines.
- (line 117)
-* __dpd_trunctfsd: Decimal float library routines.
- (line 113)
-* __dpd_truncxfdd: Decimal float library routines.
- (line 115)
-* __dpd_truncxfsd: Decimal float library routines.
- (line 111)
-* __dpd_unorddd2: Decimal float library routines.
- (line 233)
-* __dpd_unordsd2: Decimal float library routines.
- (line 231)
-* __dpd_unordtd2: Decimal float library routines.
- (line 235)
-* __DTOR_LIST__: Initialization. (line 25)
-* __eqdf2: Soft float library routines.
- (line 193)
-* __eqsf2: Soft float library routines.
- (line 192)
-* __eqtf2: Soft float library routines.
- (line 194)
-* __extenddftf2: Soft float library routines.
- (line 67)
-* __extenddfxf2: Soft float library routines.
- (line 68)
-* __extendsfdf2: Soft float library routines.
- (line 64)
-* __extendsftf2: Soft float library routines.
- (line 65)
-* __extendsfxf2: Soft float library routines.
- (line 66)
-* __ffsdi2: Integer library routines.
- (line 143)
-* __ffsti2: Integer library routines.
- (line 144)
-* __fixdfdi: Soft float library routines.
- (line 87)
-* __fixdfsi: Soft float library routines.
- (line 80)
-* __fixdfti: Soft float library routines.
- (line 93)
-* __fixsfdi: Soft float library routines.
- (line 86)
-* __fixsfsi: Soft float library routines.
- (line 79)
-* __fixsfti: Soft float library routines.
- (line 92)
-* __fixtfdi: Soft float library routines.
- (line 88)
-* __fixtfsi: Soft float library routines.
- (line 81)
-* __fixtfti: Soft float library routines.
- (line 94)
-* __fixunsdfdi: Soft float library routines.
- (line 107)
-* __fixunsdfsi: Soft float library routines.
- (line 100)
-* __fixunsdfti: Soft float library routines.
- (line 114)
-* __fixunssfdi: Soft float library routines.
- (line 106)
-* __fixunssfsi: Soft float library routines.
- (line 99)
-* __fixunssfti: Soft float library routines.
- (line 113)
-* __fixunstfdi: Soft float library routines.
- (line 108)
-* __fixunstfsi: Soft float library routines.
- (line 101)
-* __fixunstfti: Soft float library routines.
- (line 115)
-* __fixunsxfdi: Soft float library routines.
- (line 109)
-* __fixunsxfsi: Soft float library routines.
- (line 102)
-* __fixunsxfti: Soft float library routines.
- (line 116)
-* __fixxfdi: Soft float library routines.
- (line 89)
-* __fixxfsi: Soft float library routines.
- (line 82)
-* __fixxfti: Soft float library routines.
- (line 95)
-* __floatdidf: Soft float library routines.
- (line 127)
-* __floatdisf: Soft float library routines.
- (line 126)
-* __floatditf: Soft float library routines.
- (line 128)
-* __floatdixf: Soft float library routines.
- (line 129)
-* __floatsidf: Soft float library routines.
- (line 121)
-* __floatsisf: Soft float library routines.
- (line 120)
-* __floatsitf: Soft float library routines.
- (line 122)
-* __floatsixf: Soft float library routines.
- (line 123)
-* __floattidf: Soft float library routines.
- (line 133)
-* __floattisf: Soft float library routines.
- (line 132)
-* __floattitf: Soft float library routines.
- (line 134)
-* __floattixf: Soft float library routines.
- (line 135)
-* __floatundidf: Soft float library routines.
- (line 145)
-* __floatundisf: Soft float library routines.
- (line 144)
-* __floatunditf: Soft float library routines.
- (line 146)
-* __floatundixf: Soft float library routines.
- (line 147)
-* __floatunsidf: Soft float library routines.
- (line 139)
-* __floatunsisf: Soft float library routines.
- (line 138)
-* __floatunsitf: Soft float library routines.
- (line 140)
-* __floatunsixf: Soft float library routines.
- (line 141)
-* __floatuntidf: Soft float library routines.
- (line 151)
-* __floatuntisf: Soft float library routines.
- (line 150)
-* __floatuntitf: Soft float library routines.
- (line 152)
-* __floatuntixf: Soft float library routines.
- (line 153)
-* __fractdadf: Fixed-point fractional library routines.
- (line 635)
-* __fractdadi: Fixed-point fractional library routines.
- (line 632)
-* __fractdadq: Fixed-point fractional library routines.
- (line 615)
-* __fractdaha2: Fixed-point fractional library routines.
- (line 616)
-* __fractdahi: Fixed-point fractional library routines.
- (line 630)
-* __fractdahq: Fixed-point fractional library routines.
- (line 613)
-* __fractdaqi: Fixed-point fractional library routines.
- (line 629)
-* __fractdaqq: Fixed-point fractional library routines.
- (line 612)
-* __fractdasa2: Fixed-point fractional library routines.
- (line 617)
-* __fractdasf: Fixed-point fractional library routines.
- (line 634)
-* __fractdasi: Fixed-point fractional library routines.
- (line 631)
-* __fractdasq: Fixed-point fractional library routines.
- (line 614)
-* __fractdata2: Fixed-point fractional library routines.
- (line 618)
-* __fractdati: Fixed-point fractional library routines.
- (line 633)
-* __fractdauda: Fixed-point fractional library routines.
- (line 626)
-* __fractdaudq: Fixed-point fractional library routines.
- (line 622)
-* __fractdauha: Fixed-point fractional library routines.
- (line 624)
-* __fractdauhq: Fixed-point fractional library routines.
- (line 620)
-* __fractdauqq: Fixed-point fractional library routines.
- (line 619)
-* __fractdausa: Fixed-point fractional library routines.
- (line 625)
-* __fractdausq: Fixed-point fractional library routines.
- (line 621)
-* __fractdauta: Fixed-point fractional library routines.
- (line 627)
-* __fractdfda: Fixed-point fractional library routines.
- (line 1024)
-* __fractdfdq: Fixed-point fractional library routines.
- (line 1021)
-* __fractdfha: Fixed-point fractional library routines.
- (line 1022)
-* __fractdfhq: Fixed-point fractional library routines.
- (line 1019)
-* __fractdfqq: Fixed-point fractional library routines.
- (line 1018)
-* __fractdfsa: Fixed-point fractional library routines.
- (line 1023)
-* __fractdfsq: Fixed-point fractional library routines.
- (line 1020)
-* __fractdfta: Fixed-point fractional library routines.
- (line 1025)
-* __fractdfuda: Fixed-point fractional library routines.
- (line 1032)
-* __fractdfudq: Fixed-point fractional library routines.
- (line 1029)
-* __fractdfuha: Fixed-point fractional library routines.
- (line 1030)
-* __fractdfuhq: Fixed-point fractional library routines.
- (line 1027)
-* __fractdfuqq: Fixed-point fractional library routines.
- (line 1026)
-* __fractdfusa: Fixed-point fractional library routines.
- (line 1031)
-* __fractdfusq: Fixed-point fractional library routines.
- (line 1028)
-* __fractdfuta: Fixed-point fractional library routines.
- (line 1033)
-* __fractdida: Fixed-point fractional library routines.
- (line 974)
-* __fractdidq: Fixed-point fractional library routines.
- (line 971)
-* __fractdiha: Fixed-point fractional library routines.
- (line 972)
-* __fractdihq: Fixed-point fractional library routines.
- (line 969)
-* __fractdiqq: Fixed-point fractional library routines.
- (line 968)
-* __fractdisa: Fixed-point fractional library routines.
- (line 973)
-* __fractdisq: Fixed-point fractional library routines.
- (line 970)
-* __fractdita: Fixed-point fractional library routines.
- (line 975)
-* __fractdiuda: Fixed-point fractional library routines.
- (line 982)
-* __fractdiudq: Fixed-point fractional library routines.
- (line 979)
-* __fractdiuha: Fixed-point fractional library routines.
- (line 980)
-* __fractdiuhq: Fixed-point fractional library routines.
- (line 977)
-* __fractdiuqq: Fixed-point fractional library routines.
- (line 976)
-* __fractdiusa: Fixed-point fractional library routines.
- (line 981)
-* __fractdiusq: Fixed-point fractional library routines.
- (line 978)
-* __fractdiuta: Fixed-point fractional library routines.
- (line 983)
-* __fractdqda: Fixed-point fractional library routines.
- (line 543)
-* __fractdqdf: Fixed-point fractional library routines.
- (line 565)
-* __fractdqdi: Fixed-point fractional library routines.
- (line 562)
-* __fractdqha: Fixed-point fractional library routines.
- (line 541)
-* __fractdqhi: Fixed-point fractional library routines.
- (line 560)
-* __fractdqhq2: Fixed-point fractional library routines.
- (line 539)
-* __fractdqqi: Fixed-point fractional library routines.
- (line 559)
-* __fractdqqq2: Fixed-point fractional library routines.
- (line 538)
-* __fractdqsa: Fixed-point fractional library routines.
- (line 542)
-* __fractdqsf: Fixed-point fractional library routines.
- (line 564)
-* __fractdqsi: Fixed-point fractional library routines.
- (line 561)
-* __fractdqsq2: Fixed-point fractional library routines.
- (line 540)
-* __fractdqta: Fixed-point fractional library routines.
- (line 544)
-* __fractdqti: Fixed-point fractional library routines.
- (line 563)
-* __fractdquda: Fixed-point fractional library routines.
- (line 555)
-* __fractdqudq: Fixed-point fractional library routines.
- (line 550)
-* __fractdquha: Fixed-point fractional library routines.
- (line 552)
-* __fractdquhq: Fixed-point fractional library routines.
- (line 547)
-* __fractdquqq: Fixed-point fractional library routines.
- (line 545)
-* __fractdqusa: Fixed-point fractional library routines.
- (line 554)
-* __fractdqusq: Fixed-point fractional library routines.
- (line 548)
-* __fractdquta: Fixed-point fractional library routines.
- (line 557)
-* __fracthada2: Fixed-point fractional library routines.
- (line 571)
-* __fracthadf: Fixed-point fractional library routines.
- (line 589)
-* __fracthadi: Fixed-point fractional library routines.
- (line 586)
-* __fracthadq: Fixed-point fractional library routines.
- (line 569)
-* __fracthahi: Fixed-point fractional library routines.
- (line 584)
-* __fracthahq: Fixed-point fractional library routines.
- (line 567)
-* __fracthaqi: Fixed-point fractional library routines.
- (line 583)
-* __fracthaqq: Fixed-point fractional library routines.
- (line 566)
-* __fracthasa2: Fixed-point fractional library routines.
- (line 570)
-* __fracthasf: Fixed-point fractional library routines.
- (line 588)
-* __fracthasi: Fixed-point fractional library routines.
- (line 585)
-* __fracthasq: Fixed-point fractional library routines.
- (line 568)
-* __fracthata2: Fixed-point fractional library routines.
- (line 572)
-* __fracthati: Fixed-point fractional library routines.
- (line 587)
-* __fracthauda: Fixed-point fractional library routines.
- (line 580)
-* __fracthaudq: Fixed-point fractional library routines.
- (line 576)
-* __fracthauha: Fixed-point fractional library routines.
- (line 578)
-* __fracthauhq: Fixed-point fractional library routines.
- (line 574)
-* __fracthauqq: Fixed-point fractional library routines.
- (line 573)
-* __fracthausa: Fixed-point fractional library routines.
- (line 579)
-* __fracthausq: Fixed-point fractional library routines.
- (line 575)
-* __fracthauta: Fixed-point fractional library routines.
- (line 581)
-* __fracthida: Fixed-point fractional library routines.
- (line 942)
-* __fracthidq: Fixed-point fractional library routines.
- (line 939)
-* __fracthiha: Fixed-point fractional library routines.
- (line 940)
-* __fracthihq: Fixed-point fractional library routines.
- (line 937)
-* __fracthiqq: Fixed-point fractional library routines.
- (line 936)
-* __fracthisa: Fixed-point fractional library routines.
- (line 941)
-* __fracthisq: Fixed-point fractional library routines.
- (line 938)
-* __fracthita: Fixed-point fractional library routines.
- (line 943)
-* __fracthiuda: Fixed-point fractional library routines.
- (line 950)
-* __fracthiudq: Fixed-point fractional library routines.
- (line 947)
-* __fracthiuha: Fixed-point fractional library routines.
- (line 948)
-* __fracthiuhq: Fixed-point fractional library routines.
- (line 945)
-* __fracthiuqq: Fixed-point fractional library routines.
- (line 944)
-* __fracthiusa: Fixed-point fractional library routines.
- (line 949)
-* __fracthiusq: Fixed-point fractional library routines.
- (line 946)
-* __fracthiuta: Fixed-point fractional library routines.
- (line 951)
-* __fracthqda: Fixed-point fractional library routines.
- (line 497)
-* __fracthqdf: Fixed-point fractional library routines.
- (line 513)
-* __fracthqdi: Fixed-point fractional library routines.
- (line 510)
-* __fracthqdq2: Fixed-point fractional library routines.
- (line 494)
-* __fracthqha: Fixed-point fractional library routines.
- (line 495)
-* __fracthqhi: Fixed-point fractional library routines.
- (line 508)
-* __fracthqqi: Fixed-point fractional library routines.
- (line 507)
-* __fracthqqq2: Fixed-point fractional library routines.
- (line 492)
-* __fracthqsa: Fixed-point fractional library routines.
- (line 496)
-* __fracthqsf: Fixed-point fractional library routines.
- (line 512)
-* __fracthqsi: Fixed-point fractional library routines.
- (line 509)
-* __fracthqsq2: Fixed-point fractional library routines.
- (line 493)
-* __fracthqta: Fixed-point fractional library routines.
- (line 498)
-* __fracthqti: Fixed-point fractional library routines.
- (line 511)
-* __fracthquda: Fixed-point fractional library routines.
- (line 505)
-* __fracthqudq: Fixed-point fractional library routines.
- (line 502)
-* __fracthquha: Fixed-point fractional library routines.
- (line 503)
-* __fracthquhq: Fixed-point fractional library routines.
- (line 500)
-* __fracthquqq: Fixed-point fractional library routines.
- (line 499)
-* __fracthqusa: Fixed-point fractional library routines.
- (line 504)
-* __fracthqusq: Fixed-point fractional library routines.
- (line 501)
-* __fracthquta: Fixed-point fractional library routines.
- (line 506)
-* __fractqida: Fixed-point fractional library routines.
- (line 924)
-* __fractqidq: Fixed-point fractional library routines.
- (line 921)
-* __fractqiha: Fixed-point fractional library routines.
- (line 922)
-* __fractqihq: Fixed-point fractional library routines.
- (line 919)
-* __fractqiqq: Fixed-point fractional library routines.
- (line 918)
-* __fractqisa: Fixed-point fractional library routines.
- (line 923)
-* __fractqisq: Fixed-point fractional library routines.
- (line 920)
-* __fractqita: Fixed-point fractional library routines.
- (line 925)
-* __fractqiuda: Fixed-point fractional library routines.
- (line 933)
-* __fractqiudq: Fixed-point fractional library routines.
- (line 929)
-* __fractqiuha: Fixed-point fractional library routines.
- (line 931)
-* __fractqiuhq: Fixed-point fractional library routines.
- (line 927)
-* __fractqiuqq: Fixed-point fractional library routines.
- (line 926)
-* __fractqiusa: Fixed-point fractional library routines.
- (line 932)
-* __fractqiusq: Fixed-point fractional library routines.
- (line 928)
-* __fractqiuta: Fixed-point fractional library routines.
- (line 934)
-* __fractqqda: Fixed-point fractional library routines.
- (line 473)
-* __fractqqdf: Fixed-point fractional library routines.
- (line 491)
-* __fractqqdi: Fixed-point fractional library routines.
- (line 488)
-* __fractqqdq2: Fixed-point fractional library routines.
- (line 470)
-* __fractqqha: Fixed-point fractional library routines.
- (line 471)
-* __fractqqhi: Fixed-point fractional library routines.
- (line 486)
-* __fractqqhq2: Fixed-point fractional library routines.
- (line 468)
-* __fractqqqi: Fixed-point fractional library routines.
- (line 485)
-* __fractqqsa: Fixed-point fractional library routines.
- (line 472)
-* __fractqqsf: Fixed-point fractional library routines.
- (line 490)
-* __fractqqsi: Fixed-point fractional library routines.
- (line 487)
-* __fractqqsq2: Fixed-point fractional library routines.
- (line 469)
-* __fractqqta: Fixed-point fractional library routines.
- (line 474)
-* __fractqqti: Fixed-point fractional library routines.
- (line 489)
-* __fractqquda: Fixed-point fractional library routines.
- (line 482)
-* __fractqqudq: Fixed-point fractional library routines.
- (line 478)
-* __fractqquha: Fixed-point fractional library routines.
- (line 480)
-* __fractqquhq: Fixed-point fractional library routines.
- (line 476)
-* __fractqquqq: Fixed-point fractional library routines.
- (line 475)
-* __fractqqusa: Fixed-point fractional library routines.
- (line 481)
-* __fractqqusq: Fixed-point fractional library routines.
- (line 477)
-* __fractqquta: Fixed-point fractional library routines.
- (line 483)
-* __fractsada2: Fixed-point fractional library routines.
- (line 595)
-* __fractsadf: Fixed-point fractional library routines.
- (line 611)
-* __fractsadi: Fixed-point fractional library routines.
- (line 608)
-* __fractsadq: Fixed-point fractional library routines.
- (line 593)
-* __fractsaha2: Fixed-point fractional library routines.
- (line 594)
-* __fractsahi: Fixed-point fractional library routines.
- (line 606)
-* __fractsahq: Fixed-point fractional library routines.
- (line 591)
-* __fractsaqi: Fixed-point fractional library routines.
- (line 605)
-* __fractsaqq: Fixed-point fractional library routines.
- (line 590)
-* __fractsasf: Fixed-point fractional library routines.
- (line 610)
-* __fractsasi: Fixed-point fractional library routines.
- (line 607)
-* __fractsasq: Fixed-point fractional library routines.
- (line 592)
-* __fractsata2: Fixed-point fractional library routines.
- (line 596)
-* __fractsati: Fixed-point fractional library routines.
- (line 609)
-* __fractsauda: Fixed-point fractional library routines.
- (line 603)
-* __fractsaudq: Fixed-point fractional library routines.
- (line 600)
-* __fractsauha: Fixed-point fractional library routines.
- (line 601)
-* __fractsauhq: Fixed-point fractional library routines.
- (line 598)
-* __fractsauqq: Fixed-point fractional library routines.
- (line 597)
-* __fractsausa: Fixed-point fractional library routines.
- (line 602)
-* __fractsausq: Fixed-point fractional library routines.
- (line 599)
-* __fractsauta: Fixed-point fractional library routines.
- (line 604)
-* __fractsfda: Fixed-point fractional library routines.
- (line 1008)
-* __fractsfdq: Fixed-point fractional library routines.
- (line 1005)
-* __fractsfha: Fixed-point fractional library routines.
- (line 1006)
-* __fractsfhq: Fixed-point fractional library routines.
- (line 1003)
-* __fractsfqq: Fixed-point fractional library routines.
- (line 1002)
-* __fractsfsa: Fixed-point fractional library routines.
- (line 1007)
-* __fractsfsq: Fixed-point fractional library routines.
- (line 1004)
-* __fractsfta: Fixed-point fractional library routines.
- (line 1009)
-* __fractsfuda: Fixed-point fractional library routines.
- (line 1016)
-* __fractsfudq: Fixed-point fractional library routines.
- (line 1013)
-* __fractsfuha: Fixed-point fractional library routines.
- (line 1014)
-* __fractsfuhq: Fixed-point fractional library routines.
- (line 1011)
-* __fractsfuqq: Fixed-point fractional library routines.
- (line 1010)
-* __fractsfusa: Fixed-point fractional library routines.
- (line 1015)
-* __fractsfusq: Fixed-point fractional library routines.
- (line 1012)
-* __fractsfuta: Fixed-point fractional library routines.
- (line 1017)
-* __fractsida: Fixed-point fractional library routines.
- (line 958)
-* __fractsidq: Fixed-point fractional library routines.
- (line 955)
-* __fractsiha: Fixed-point fractional library routines.
- (line 956)
-* __fractsihq: Fixed-point fractional library routines.
- (line 953)
-* __fractsiqq: Fixed-point fractional library routines.
- (line 952)
-* __fractsisa: Fixed-point fractional library routines.
- (line 957)
-* __fractsisq: Fixed-point fractional library routines.
- (line 954)
-* __fractsita: Fixed-point fractional library routines.
- (line 959)
-* __fractsiuda: Fixed-point fractional library routines.
- (line 966)
-* __fractsiudq: Fixed-point fractional library routines.
- (line 963)
-* __fractsiuha: Fixed-point fractional library routines.
- (line 964)
-* __fractsiuhq: Fixed-point fractional library routines.
- (line 961)
-* __fractsiuqq: Fixed-point fractional library routines.
- (line 960)
-* __fractsiusa: Fixed-point fractional library routines.
- (line 965)
-* __fractsiusq: Fixed-point fractional library routines.
- (line 962)
-* __fractsiuta: Fixed-point fractional library routines.
- (line 967)
-* __fractsqda: Fixed-point fractional library routines.
- (line 519)
-* __fractsqdf: Fixed-point fractional library routines.
- (line 537)
-* __fractsqdi: Fixed-point fractional library routines.
- (line 534)
-* __fractsqdq2: Fixed-point fractional library routines.
- (line 516)
-* __fractsqha: Fixed-point fractional library routines.
- (line 517)
-* __fractsqhi: Fixed-point fractional library routines.
- (line 532)
-* __fractsqhq2: Fixed-point fractional library routines.
- (line 515)
-* __fractsqqi: Fixed-point fractional library routines.
- (line 531)
-* __fractsqqq2: Fixed-point fractional library routines.
- (line 514)
-* __fractsqsa: Fixed-point fractional library routines.
- (line 518)
-* __fractsqsf: Fixed-point fractional library routines.
- (line 536)
-* __fractsqsi: Fixed-point fractional library routines.
- (line 533)
-* __fractsqta: Fixed-point fractional library routines.
- (line 520)
-* __fractsqti: Fixed-point fractional library routines.
- (line 535)
-* __fractsquda: Fixed-point fractional library routines.
- (line 528)
-* __fractsqudq: Fixed-point fractional library routines.
- (line 524)
-* __fractsquha: Fixed-point fractional library routines.
- (line 526)
-* __fractsquhq: Fixed-point fractional library routines.
- (line 522)
-* __fractsquqq: Fixed-point fractional library routines.
- (line 521)
-* __fractsqusa: Fixed-point fractional library routines.
- (line 527)
-* __fractsqusq: Fixed-point fractional library routines.
- (line 523)
-* __fractsquta: Fixed-point fractional library routines.
- (line 529)
-* __fracttada2: Fixed-point fractional library routines.
- (line 642)
-* __fracttadf: Fixed-point fractional library routines.
- (line 663)
-* __fracttadi: Fixed-point fractional library routines.
- (line 660)
-* __fracttadq: Fixed-point fractional library routines.
- (line 639)
-* __fracttaha2: Fixed-point fractional library routines.
- (line 640)
-* __fracttahi: Fixed-point fractional library routines.
- (line 658)
-* __fracttahq: Fixed-point fractional library routines.
- (line 637)
-* __fracttaqi: Fixed-point fractional library routines.
- (line 657)
-* __fracttaqq: Fixed-point fractional library routines.
- (line 636)
-* __fracttasa2: Fixed-point fractional library routines.
- (line 641)
-* __fracttasf: Fixed-point fractional library routines.
- (line 662)
-* __fracttasi: Fixed-point fractional library routines.
- (line 659)
-* __fracttasq: Fixed-point fractional library routines.
- (line 638)
-* __fracttati: Fixed-point fractional library routines.
- (line 661)
-* __fracttauda: Fixed-point fractional library routines.
- (line 653)
-* __fracttaudq: Fixed-point fractional library routines.
- (line 648)
-* __fracttauha: Fixed-point fractional library routines.
- (line 650)
-* __fracttauhq: Fixed-point fractional library routines.
- (line 645)
-* __fracttauqq: Fixed-point fractional library routines.
- (line 643)
-* __fracttausa: Fixed-point fractional library routines.
- (line 652)
-* __fracttausq: Fixed-point fractional library routines.
- (line 646)
-* __fracttauta: Fixed-point fractional library routines.
- (line 655)
-* __fracttida: Fixed-point fractional library routines.
- (line 990)
-* __fracttidq: Fixed-point fractional library routines.
- (line 987)
-* __fracttiha: Fixed-point fractional library routines.
- (line 988)
-* __fracttihq: Fixed-point fractional library routines.
- (line 985)
-* __fracttiqq: Fixed-point fractional library routines.
- (line 984)
-* __fracttisa: Fixed-point fractional library routines.
- (line 989)
-* __fracttisq: Fixed-point fractional library routines.
- (line 986)
-* __fracttita: Fixed-point fractional library routines.
- (line 991)
-* __fracttiuda: Fixed-point fractional library routines.
- (line 999)
-* __fracttiudq: Fixed-point fractional library routines.
- (line 995)
-* __fracttiuha: Fixed-point fractional library routines.
- (line 997)
-* __fracttiuhq: Fixed-point fractional library routines.
- (line 993)
-* __fracttiuqq: Fixed-point fractional library routines.
- (line 992)
-* __fracttiusa: Fixed-point fractional library routines.
- (line 998)
-* __fracttiusq: Fixed-point fractional library routines.
- (line 994)
-* __fracttiuta: Fixed-point fractional library routines.
- (line 1000)
-* __fractudada: Fixed-point fractional library routines.
- (line 857)
-* __fractudadf: Fixed-point fractional library routines.
- (line 880)
-* __fractudadi: Fixed-point fractional library routines.
- (line 877)
-* __fractudadq: Fixed-point fractional library routines.
- (line 853)
-* __fractudaha: Fixed-point fractional library routines.
- (line 855)
-* __fractudahi: Fixed-point fractional library routines.
- (line 875)
-* __fractudahq: Fixed-point fractional library routines.
- (line 851)
-* __fractudaqi: Fixed-point fractional library routines.
- (line 874)
-* __fractudaqq: Fixed-point fractional library routines.
- (line 850)
-* __fractudasa: Fixed-point fractional library routines.
- (line 856)
-* __fractudasf: Fixed-point fractional library routines.
- (line 879)
-* __fractudasi: Fixed-point fractional library routines.
- (line 876)
-* __fractudasq: Fixed-point fractional library routines.
- (line 852)
-* __fractudata: Fixed-point fractional library routines.
- (line 858)
-* __fractudati: Fixed-point fractional library routines.
- (line 878)
-* __fractudaudq: Fixed-point fractional library routines.
- (line 866)
-* __fractudauha2: Fixed-point fractional library routines.
- (line 868)
-* __fractudauhq: Fixed-point fractional library routines.
- (line 862)
-* __fractudauqq: Fixed-point fractional library routines.
- (line 860)
-* __fractudausa2: Fixed-point fractional library routines.
- (line 870)
-* __fractudausq: Fixed-point fractional library routines.
- (line 864)
-* __fractudauta2: Fixed-point fractional library routines.
- (line 872)
-* __fractudqda: Fixed-point fractional library routines.
- (line 764)
-* __fractudqdf: Fixed-point fractional library routines.
- (line 790)
-* __fractudqdi: Fixed-point fractional library routines.
- (line 786)
-* __fractudqdq: Fixed-point fractional library routines.
- (line 759)
-* __fractudqha: Fixed-point fractional library routines.
- (line 761)
-* __fractudqhi: Fixed-point fractional library routines.
- (line 784)
-* __fractudqhq: Fixed-point fractional library routines.
- (line 756)
-* __fractudqqi: Fixed-point fractional library routines.
- (line 782)
-* __fractudqqq: Fixed-point fractional library routines.
- (line 754)
-* __fractudqsa: Fixed-point fractional library routines.
- (line 763)
-* __fractudqsf: Fixed-point fractional library routines.
- (line 789)
-* __fractudqsi: Fixed-point fractional library routines.
- (line 785)
-* __fractudqsq: Fixed-point fractional library routines.
- (line 757)
-* __fractudqta: Fixed-point fractional library routines.
- (line 766)
-* __fractudqti: Fixed-point fractional library routines.
- (line 787)
-* __fractudquda: Fixed-point fractional library routines.
- (line 778)
-* __fractudquha: Fixed-point fractional library routines.
- (line 774)
-* __fractudquhq2: Fixed-point fractional library routines.
- (line 770)
-* __fractudquqq2: Fixed-point fractional library routines.
- (line 768)
-* __fractudqusa: Fixed-point fractional library routines.
- (line 776)
-* __fractudqusq2: Fixed-point fractional library routines.
- (line 772)
-* __fractudquta: Fixed-point fractional library routines.
- (line 780)
-* __fractuhada: Fixed-point fractional library routines.
- (line 798)
-* __fractuhadf: Fixed-point fractional library routines.
- (line 821)
-* __fractuhadi: Fixed-point fractional library routines.
- (line 818)
-* __fractuhadq: Fixed-point fractional library routines.
- (line 794)
-* __fractuhaha: Fixed-point fractional library routines.
- (line 796)
-* __fractuhahi: Fixed-point fractional library routines.
- (line 816)
-* __fractuhahq: Fixed-point fractional library routines.
- (line 792)
-* __fractuhaqi: Fixed-point fractional library routines.
- (line 815)
-* __fractuhaqq: Fixed-point fractional library routines.
- (line 791)
-* __fractuhasa: Fixed-point fractional library routines.
- (line 797)
-* __fractuhasf: Fixed-point fractional library routines.
- (line 820)
-* __fractuhasi: Fixed-point fractional library routines.
- (line 817)
-* __fractuhasq: Fixed-point fractional library routines.
- (line 793)
-* __fractuhata: Fixed-point fractional library routines.
- (line 799)
-* __fractuhati: Fixed-point fractional library routines.
- (line 819)
-* __fractuhauda2: Fixed-point fractional library routines.
- (line 811)
-* __fractuhaudq: Fixed-point fractional library routines.
- (line 807)
-* __fractuhauhq: Fixed-point fractional library routines.
- (line 803)
-* __fractuhauqq: Fixed-point fractional library routines.
- (line 801)
-* __fractuhausa2: Fixed-point fractional library routines.
- (line 809)
-* __fractuhausq: Fixed-point fractional library routines.
- (line 805)
-* __fractuhauta2: Fixed-point fractional library routines.
- (line 813)
-* __fractuhqda: Fixed-point fractional library routines.
- (line 701)
-* __fractuhqdf: Fixed-point fractional library routines.
- (line 722)
-* __fractuhqdi: Fixed-point fractional library routines.
- (line 719)
-* __fractuhqdq: Fixed-point fractional library routines.
- (line 698)
-* __fractuhqha: Fixed-point fractional library routines.
- (line 699)
-* __fractuhqhi: Fixed-point fractional library routines.
- (line 717)
-* __fractuhqhq: Fixed-point fractional library routines.
- (line 696)
-* __fractuhqqi: Fixed-point fractional library routines.
- (line 716)
-* __fractuhqqq: Fixed-point fractional library routines.
- (line 695)
-* __fractuhqsa: Fixed-point fractional library routines.
- (line 700)
-* __fractuhqsf: Fixed-point fractional library routines.
- (line 721)
-* __fractuhqsi: Fixed-point fractional library routines.
- (line 718)
-* __fractuhqsq: Fixed-point fractional library routines.
- (line 697)
-* __fractuhqta: Fixed-point fractional library routines.
- (line 702)
-* __fractuhqti: Fixed-point fractional library routines.
- (line 720)
-* __fractuhquda: Fixed-point fractional library routines.
- (line 712)
-* __fractuhqudq2: Fixed-point fractional library routines.
- (line 707)
-* __fractuhquha: Fixed-point fractional library routines.
- (line 709)
-* __fractuhquqq2: Fixed-point fractional library routines.
- (line 703)
-* __fractuhqusa: Fixed-point fractional library routines.
- (line 711)
-* __fractuhqusq2: Fixed-point fractional library routines.
- (line 705)
-* __fractuhquta: Fixed-point fractional library routines.
- (line 714)
-* __fractunsdadi: Fixed-point fractional library routines.
- (line 1554)
-* __fractunsdahi: Fixed-point fractional library routines.
- (line 1552)
-* __fractunsdaqi: Fixed-point fractional library routines.
- (line 1551)
-* __fractunsdasi: Fixed-point fractional library routines.
- (line 1553)
-* __fractunsdati: Fixed-point fractional library routines.
- (line 1555)
-* __fractunsdida: Fixed-point fractional library routines.
- (line 1706)
-* __fractunsdidq: Fixed-point fractional library routines.
- (line 1703)
-* __fractunsdiha: Fixed-point fractional library routines.
- (line 1704)
-* __fractunsdihq: Fixed-point fractional library routines.
- (line 1701)
-* __fractunsdiqq: Fixed-point fractional library routines.
- (line 1700)
-* __fractunsdisa: Fixed-point fractional library routines.
- (line 1705)
-* __fractunsdisq: Fixed-point fractional library routines.
- (line 1702)
-* __fractunsdita: Fixed-point fractional library routines.
- (line 1707)
-* __fractunsdiuda: Fixed-point fractional library routines.
- (line 1718)
-* __fractunsdiudq: Fixed-point fractional library routines.
- (line 1713)
-* __fractunsdiuha: Fixed-point fractional library routines.
- (line 1715)
-* __fractunsdiuhq: Fixed-point fractional library routines.
- (line 1710)
-* __fractunsdiuqq: Fixed-point fractional library routines.
- (line 1708)
-* __fractunsdiusa: Fixed-point fractional library routines.
- (line 1717)
-* __fractunsdiusq: Fixed-point fractional library routines.
- (line 1711)
-* __fractunsdiuta: Fixed-point fractional library routines.
- (line 1720)
-* __fractunsdqdi: Fixed-point fractional library routines.
- (line 1538)
-* __fractunsdqhi: Fixed-point fractional library routines.
- (line 1536)
-* __fractunsdqqi: Fixed-point fractional library routines.
- (line 1535)
-* __fractunsdqsi: Fixed-point fractional library routines.
- (line 1537)
-* __fractunsdqti: Fixed-point fractional library routines.
- (line 1539)
-* __fractunshadi: Fixed-point fractional library routines.
- (line 1544)
-* __fractunshahi: Fixed-point fractional library routines.
- (line 1542)
-* __fractunshaqi: Fixed-point fractional library routines.
- (line 1541)
-* __fractunshasi: Fixed-point fractional library routines.
- (line 1543)
-* __fractunshati: Fixed-point fractional library routines.
- (line 1545)
-* __fractunshida: Fixed-point fractional library routines.
- (line 1662)
-* __fractunshidq: Fixed-point fractional library routines.
- (line 1659)
-* __fractunshiha: Fixed-point fractional library routines.
- (line 1660)
-* __fractunshihq: Fixed-point fractional library routines.
- (line 1657)
-* __fractunshiqq: Fixed-point fractional library routines.
- (line 1656)
-* __fractunshisa: Fixed-point fractional library routines.
- (line 1661)
-* __fractunshisq: Fixed-point fractional library routines.
- (line 1658)
-* __fractunshita: Fixed-point fractional library routines.
- (line 1663)
-* __fractunshiuda: Fixed-point fractional library routines.
- (line 1674)
-* __fractunshiudq: Fixed-point fractional library routines.
- (line 1669)
-* __fractunshiuha: Fixed-point fractional library routines.
- (line 1671)
-* __fractunshiuhq: Fixed-point fractional library routines.
- (line 1666)
-* __fractunshiuqq: Fixed-point fractional library routines.
- (line 1664)
-* __fractunshiusa: Fixed-point fractional library routines.
- (line 1673)
-* __fractunshiusq: Fixed-point fractional library routines.
- (line 1667)
-* __fractunshiuta: Fixed-point fractional library routines.
- (line 1676)
-* __fractunshqdi: Fixed-point fractional library routines.
- (line 1528)
-* __fractunshqhi: Fixed-point fractional library routines.
- (line 1526)
-* __fractunshqqi: Fixed-point fractional library routines.
- (line 1525)
-* __fractunshqsi: Fixed-point fractional library routines.
- (line 1527)
-* __fractunshqti: Fixed-point fractional library routines.
- (line 1529)
-* __fractunsqida: Fixed-point fractional library routines.
- (line 1640)
-* __fractunsqidq: Fixed-point fractional library routines.
- (line 1637)
-* __fractunsqiha: Fixed-point fractional library routines.
- (line 1638)
-* __fractunsqihq: Fixed-point fractional library routines.
- (line 1635)
-* __fractunsqiqq: Fixed-point fractional library routines.
- (line 1634)
-* __fractunsqisa: Fixed-point fractional library routines.
- (line 1639)
-* __fractunsqisq: Fixed-point fractional library routines.
- (line 1636)
-* __fractunsqita: Fixed-point fractional library routines.
- (line 1641)
-* __fractunsqiuda: Fixed-point fractional library routines.
- (line 1652)
-* __fractunsqiudq: Fixed-point fractional library routines.
- (line 1647)
-* __fractunsqiuha: Fixed-point fractional library routines.
- (line 1649)
-* __fractunsqiuhq: Fixed-point fractional library routines.
- (line 1644)
-* __fractunsqiuqq: Fixed-point fractional library routines.
- (line 1642)
-* __fractunsqiusa: Fixed-point fractional library routines.
- (line 1651)
-* __fractunsqiusq: Fixed-point fractional library routines.
- (line 1645)
-* __fractunsqiuta: Fixed-point fractional library routines.
- (line 1654)
-* __fractunsqqdi: Fixed-point fractional library routines.
- (line 1523)
-* __fractunsqqhi: Fixed-point fractional library routines.
- (line 1521)
-* __fractunsqqqi: Fixed-point fractional library routines.
- (line 1520)
-* __fractunsqqsi: Fixed-point fractional library routines.
- (line 1522)
-* __fractunsqqti: Fixed-point fractional library routines.
- (line 1524)
-* __fractunssadi: Fixed-point fractional library routines.
- (line 1549)
-* __fractunssahi: Fixed-point fractional library routines.
- (line 1547)
-* __fractunssaqi: Fixed-point fractional library routines.
- (line 1546)
-* __fractunssasi: Fixed-point fractional library routines.
- (line 1548)
-* __fractunssati: Fixed-point fractional library routines.
- (line 1550)
-* __fractunssida: Fixed-point fractional library routines.
- (line 1684)
-* __fractunssidq: Fixed-point fractional library routines.
- (line 1681)
-* __fractunssiha: Fixed-point fractional library routines.
- (line 1682)
-* __fractunssihq: Fixed-point fractional library routines.
- (line 1679)
-* __fractunssiqq: Fixed-point fractional library routines.
- (line 1678)
-* __fractunssisa: Fixed-point fractional library routines.
- (line 1683)
-* __fractunssisq: Fixed-point fractional library routines.
- (line 1680)
-* __fractunssita: Fixed-point fractional library routines.
- (line 1685)
-* __fractunssiuda: Fixed-point fractional library routines.
- (line 1696)
-* __fractunssiudq: Fixed-point fractional library routines.
- (line 1691)
-* __fractunssiuha: Fixed-point fractional library routines.
- (line 1693)
-* __fractunssiuhq: Fixed-point fractional library routines.
- (line 1688)
-* __fractunssiuqq: Fixed-point fractional library routines.
- (line 1686)
-* __fractunssiusa: Fixed-point fractional library routines.
- (line 1695)
-* __fractunssiusq: Fixed-point fractional library routines.
- (line 1689)
-* __fractunssiuta: Fixed-point fractional library routines.
- (line 1698)
-* __fractunssqdi: Fixed-point fractional library routines.
- (line 1533)
-* __fractunssqhi: Fixed-point fractional library routines.
- (line 1531)
-* __fractunssqqi: Fixed-point fractional library routines.
- (line 1530)
-* __fractunssqsi: Fixed-point fractional library routines.
- (line 1532)
-* __fractunssqti: Fixed-point fractional library routines.
- (line 1534)
-* __fractunstadi: Fixed-point fractional library routines.
- (line 1559)
-* __fractunstahi: Fixed-point fractional library routines.
- (line 1557)
-* __fractunstaqi: Fixed-point fractional library routines.
- (line 1556)
-* __fractunstasi: Fixed-point fractional library routines.
- (line 1558)
-* __fractunstati: Fixed-point fractional library routines.
- (line 1560)
-* __fractunstida: Fixed-point fractional library routines.
- (line 1729)
-* __fractunstidq: Fixed-point fractional library routines.
- (line 1725)
-* __fractunstiha: Fixed-point fractional library routines.
- (line 1727)
-* __fractunstihq: Fixed-point fractional library routines.
- (line 1723)
-* __fractunstiqq: Fixed-point fractional library routines.
- (line 1722)
-* __fractunstisa: Fixed-point fractional library routines.
- (line 1728)
-* __fractunstisq: Fixed-point fractional library routines.
- (line 1724)
-* __fractunstita: Fixed-point fractional library routines.
- (line 1730)
-* __fractunstiuda: Fixed-point fractional library routines.
- (line 1744)
-* __fractunstiudq: Fixed-point fractional library routines.
- (line 1738)
-* __fractunstiuha: Fixed-point fractional library routines.
- (line 1740)
-* __fractunstiuhq: Fixed-point fractional library routines.
- (line 1734)
-* __fractunstiuqq: Fixed-point fractional library routines.
- (line 1732)
-* __fractunstiusa: Fixed-point fractional library routines.
- (line 1742)
-* __fractunstiusq: Fixed-point fractional library routines.
- (line 1736)
-* __fractunstiuta: Fixed-point fractional library routines.
- (line 1746)
-* __fractunsudadi: Fixed-point fractional library routines.
- (line 1620)
-* __fractunsudahi: Fixed-point fractional library routines.
- (line 1616)
-* __fractunsudaqi: Fixed-point fractional library routines.
- (line 1614)
-* __fractunsudasi: Fixed-point fractional library routines.
- (line 1618)
-* __fractunsudati: Fixed-point fractional library routines.
- (line 1622)
-* __fractunsudqdi: Fixed-point fractional library routines.
- (line 1594)
-* __fractunsudqhi: Fixed-point fractional library routines.
- (line 1590)
-* __fractunsudqqi: Fixed-point fractional library routines.
- (line 1588)
-* __fractunsudqsi: Fixed-point fractional library routines.
- (line 1592)
-* __fractunsudqti: Fixed-point fractional library routines.
- (line 1596)
-* __fractunsuhadi: Fixed-point fractional library routines.
- (line 1604)
-* __fractunsuhahi: Fixed-point fractional library routines.
- (line 1600)
-* __fractunsuhaqi: Fixed-point fractional library routines.
- (line 1598)
-* __fractunsuhasi: Fixed-point fractional library routines.
- (line 1602)
-* __fractunsuhati: Fixed-point fractional library routines.
- (line 1606)
-* __fractunsuhqdi: Fixed-point fractional library routines.
- (line 1575)
-* __fractunsuhqhi: Fixed-point fractional library routines.
- (line 1573)
-* __fractunsuhqqi: Fixed-point fractional library routines.
- (line 1572)
-* __fractunsuhqsi: Fixed-point fractional library routines.
- (line 1574)
-* __fractunsuhqti: Fixed-point fractional library routines.
- (line 1576)
-* __fractunsuqqdi: Fixed-point fractional library routines.
- (line 1568)
-* __fractunsuqqhi: Fixed-point fractional library routines.
- (line 1564)
-* __fractunsuqqqi: Fixed-point fractional library routines.
- (line 1562)
-* __fractunsuqqsi: Fixed-point fractional library routines.
- (line 1566)
-* __fractunsuqqti: Fixed-point fractional library routines.
- (line 1570)
-* __fractunsusadi: Fixed-point fractional library routines.
- (line 1611)
-* __fractunsusahi: Fixed-point fractional library routines.
- (line 1609)
-* __fractunsusaqi: Fixed-point fractional library routines.
- (line 1608)
-* __fractunsusasi: Fixed-point fractional library routines.
- (line 1610)
-* __fractunsusati: Fixed-point fractional library routines.
- (line 1612)
-* __fractunsusqdi: Fixed-point fractional library routines.
- (line 1584)
-* __fractunsusqhi: Fixed-point fractional library routines.
- (line 1580)
-* __fractunsusqqi: Fixed-point fractional library routines.
- (line 1578)
-* __fractunsusqsi: Fixed-point fractional library routines.
- (line 1582)
-* __fractunsusqti: Fixed-point fractional library routines.
- (line 1586)
-* __fractunsutadi: Fixed-point fractional library routines.
- (line 1630)
-* __fractunsutahi: Fixed-point fractional library routines.
- (line 1626)
-* __fractunsutaqi: Fixed-point fractional library routines.
- (line 1624)
-* __fractunsutasi: Fixed-point fractional library routines.
- (line 1628)
-* __fractunsutati: Fixed-point fractional library routines.
- (line 1632)
-* __fractuqqda: Fixed-point fractional library routines.
- (line 671)
-* __fractuqqdf: Fixed-point fractional library routines.
- (line 694)
-* __fractuqqdi: Fixed-point fractional library routines.
- (line 691)
-* __fractuqqdq: Fixed-point fractional library routines.
- (line 667)
-* __fractuqqha: Fixed-point fractional library routines.
- (line 669)
-* __fractuqqhi: Fixed-point fractional library routines.
- (line 689)
-* __fractuqqhq: Fixed-point fractional library routines.
- (line 665)
-* __fractuqqqi: Fixed-point fractional library routines.
- (line 688)
-* __fractuqqqq: Fixed-point fractional library routines.
- (line 664)
-* __fractuqqsa: Fixed-point fractional library routines.
- (line 670)
-* __fractuqqsf: Fixed-point fractional library routines.
- (line 693)
-* __fractuqqsi: Fixed-point fractional library routines.
- (line 690)
-* __fractuqqsq: Fixed-point fractional library routines.
- (line 666)
-* __fractuqqta: Fixed-point fractional library routines.
- (line 672)
-* __fractuqqti: Fixed-point fractional library routines.
- (line 692)
-* __fractuqquda: Fixed-point fractional library routines.
- (line 684)
-* __fractuqqudq2: Fixed-point fractional library routines.
- (line 678)
-* __fractuqquha: Fixed-point fractional library routines.
- (line 680)
-* __fractuqquhq2: Fixed-point fractional library routines.
- (line 674)
-* __fractuqqusa: Fixed-point fractional library routines.
- (line 682)
-* __fractuqqusq2: Fixed-point fractional library routines.
- (line 676)
-* __fractuqquta: Fixed-point fractional library routines.
- (line 686)
-* __fractusada: Fixed-point fractional library routines.
- (line 828)
-* __fractusadf: Fixed-point fractional library routines.
- (line 849)
-* __fractusadi: Fixed-point fractional library routines.
- (line 846)
-* __fractusadq: Fixed-point fractional library routines.
- (line 825)
-* __fractusaha: Fixed-point fractional library routines.
- (line 826)
-* __fractusahi: Fixed-point fractional library routines.
- (line 844)
-* __fractusahq: Fixed-point fractional library routines.
- (line 823)
-* __fractusaqi: Fixed-point fractional library routines.
- (line 843)
-* __fractusaqq: Fixed-point fractional library routines.
- (line 822)
-* __fractusasa: Fixed-point fractional library routines.
- (line 827)
-* __fractusasf: Fixed-point fractional library routines.
- (line 848)
-* __fractusasi: Fixed-point fractional library routines.
- (line 845)
-* __fractusasq: Fixed-point fractional library routines.
- (line 824)
-* __fractusata: Fixed-point fractional library routines.
- (line 829)
-* __fractusati: Fixed-point fractional library routines.
- (line 847)
-* __fractusauda2: Fixed-point fractional library routines.
- (line 839)
-* __fractusaudq: Fixed-point fractional library routines.
- (line 835)
-* __fractusauha2: Fixed-point fractional library routines.
- (line 837)
-* __fractusauhq: Fixed-point fractional library routines.
- (line 832)
-* __fractusauqq: Fixed-point fractional library routines.
- (line 830)
-* __fractusausq: Fixed-point fractional library routines.
- (line 833)
-* __fractusauta2: Fixed-point fractional library routines.
- (line 841)
-* __fractusqda: Fixed-point fractional library routines.
- (line 730)
-* __fractusqdf: Fixed-point fractional library routines.
- (line 753)
-* __fractusqdi: Fixed-point fractional library routines.
- (line 750)
-* __fractusqdq: Fixed-point fractional library routines.
- (line 726)
-* __fractusqha: Fixed-point fractional library routines.
- (line 728)
-* __fractusqhi: Fixed-point fractional library routines.
- (line 748)
-* __fractusqhq: Fixed-point fractional library routines.
- (line 724)
-* __fractusqqi: Fixed-point fractional library routines.
- (line 747)
-* __fractusqqq: Fixed-point fractional library routines.
- (line 723)
-* __fractusqsa: Fixed-point fractional library routines.
- (line 729)
-* __fractusqsf: Fixed-point fractional library routines.
- (line 752)
-* __fractusqsi: Fixed-point fractional library routines.
- (line 749)
-* __fractusqsq: Fixed-point fractional library routines.
- (line 725)
-* __fractusqta: Fixed-point fractional library routines.
- (line 731)
-* __fractusqti: Fixed-point fractional library routines.
- (line 751)
-* __fractusquda: Fixed-point fractional library routines.
- (line 743)
-* __fractusqudq2: Fixed-point fractional library routines.
- (line 737)
-* __fractusquha: Fixed-point fractional library routines.
- (line 739)
-* __fractusquhq2: Fixed-point fractional library routines.
- (line 735)
-* __fractusquqq2: Fixed-point fractional library routines.
- (line 733)
-* __fractusqusa: Fixed-point fractional library routines.
- (line 741)
-* __fractusquta: Fixed-point fractional library routines.
- (line 745)
-* __fractutada: Fixed-point fractional library routines.
- (line 891)
-* __fractutadf: Fixed-point fractional library routines.
- (line 917)
-* __fractutadi: Fixed-point fractional library routines.
- (line 913)
-* __fractutadq: Fixed-point fractional library routines.
- (line 886)
-* __fractutaha: Fixed-point fractional library routines.
- (line 888)
-* __fractutahi: Fixed-point fractional library routines.
- (line 911)
-* __fractutahq: Fixed-point fractional library routines.
- (line 883)
-* __fractutaqi: Fixed-point fractional library routines.
- (line 909)
-* __fractutaqq: Fixed-point fractional library routines.
- (line 881)
-* __fractutasa: Fixed-point fractional library routines.
- (line 890)
-* __fractutasf: Fixed-point fractional library routines.
- (line 916)
-* __fractutasi: Fixed-point fractional library routines.
- (line 912)
-* __fractutasq: Fixed-point fractional library routines.
- (line 884)
-* __fractutata: Fixed-point fractional library routines.
- (line 893)
-* __fractutati: Fixed-point fractional library routines.
- (line 914)
-* __fractutauda2: Fixed-point fractional library routines.
- (line 907)
-* __fractutaudq: Fixed-point fractional library routines.
- (line 901)
-* __fractutauha2: Fixed-point fractional library routines.
- (line 903)
-* __fractutauhq: Fixed-point fractional library routines.
- (line 897)
-* __fractutauqq: Fixed-point fractional library routines.
- (line 895)
-* __fractutausa2: Fixed-point fractional library routines.
- (line 905)
-* __fractutausq: Fixed-point fractional library routines.
- (line 899)
-* __gedf2: Soft float library routines.
- (line 205)
-* __gesf2: Soft float library routines.
- (line 204)
-* __getf2: Soft float library routines.
- (line 206)
-* __gtdf2: Soft float library routines.
- (line 223)
-* __gtsf2: Soft float library routines.
- (line 222)
-* __gttf2: Soft float library routines.
- (line 224)
-* __ledf2: Soft float library routines.
- (line 217)
-* __lesf2: Soft float library routines.
- (line 216)
-* __letf2: Soft float library routines.
- (line 218)
-* __lshrdi3: Integer library routines.
- (line 30)
-* __lshrsi3: Integer library routines.
- (line 29)
-* __lshrti3: Integer library routines.
- (line 31)
-* __lshruda3: Fixed-point fractional library routines.
- (line 388)
-* __lshrudq3: Fixed-point fractional library routines.
- (line 382)
-* __lshruha3: Fixed-point fractional library routines.
- (line 384)
-* __lshruhq3: Fixed-point fractional library routines.
- (line 378)
-* __lshruqq3: Fixed-point fractional library routines.
- (line 376)
-* __lshrusa3: Fixed-point fractional library routines.
- (line 386)
-* __lshrusq3: Fixed-point fractional library routines.
- (line 380)
-* __lshruta3: Fixed-point fractional library routines.
- (line 390)
-* __ltdf2: Soft float library routines.
- (line 211)
-* __ltsf2: Soft float library routines.
- (line 210)
-* __lttf2: Soft float library routines.
- (line 212)
-* __main: Collect2. (line 15)
-* __moddi3: Integer library routines.
- (line 36)
-* __modsi3: Integer library routines.
- (line 35)
-* __modti3: Integer library routines.
- (line 37)
-* __morestack_current_segment: Miscellaneous routines.
- (line 45)
-* __morestack_initial_sp: Miscellaneous routines.
- (line 46)
-* __morestack_segments: Miscellaneous routines.
- (line 44)
-* __mulda3: Fixed-point fractional library routines.
- (line 170)
-* __muldc3: Soft float library routines.
- (line 239)
-* __muldf3: Soft float library routines.
- (line 39)
-* __muldi3: Integer library routines.
- (line 42)
-* __muldq3: Fixed-point fractional library routines.
- (line 157)
-* __mulha3: Fixed-point fractional library routines.
- (line 167)
-* __mulhq3: Fixed-point fractional library routines.
- (line 155)
-* __mulqq3: Fixed-point fractional library routines.
- (line 153)
-* __mulsa3: Fixed-point fractional library routines.
- (line 169)
-* __mulsc3: Soft float library routines.
- (line 237)
-* __mulsf3: Soft float library routines.
- (line 38)
-* __mulsi3: Integer library routines.
- (line 41)
-* __mulsq3: Fixed-point fractional library routines.
- (line 156)
-* __multa3: Fixed-point fractional library routines.
- (line 171)
-* __multc3: Soft float library routines.
- (line 241)
-* __multf3: Soft float library routines.
- (line 40)
-* __multi3: Integer library routines.
- (line 43)
-* __muluda3: Fixed-point fractional library routines.
- (line 177)
-* __muludq3: Fixed-point fractional library routines.
- (line 165)
-* __muluha3: Fixed-point fractional library routines.
- (line 173)
-* __muluhq3: Fixed-point fractional library routines.
- (line 161)
-* __muluqq3: Fixed-point fractional library routines.
- (line 159)
-* __mulusa3: Fixed-point fractional library routines.
- (line 175)
-* __mulusq3: Fixed-point fractional library routines.
- (line 163)
-* __muluta3: Fixed-point fractional library routines.
- (line 179)
-* __mulvdi3: Integer library routines.
- (line 114)
-* __mulvsi3: Integer library routines.
- (line 113)
-* __mulxc3: Soft float library routines.
- (line 243)
-* __mulxf3: Soft float library routines.
- (line 42)
-* __nedf2: Soft float library routines.
- (line 199)
-* __negda2: Fixed-point fractional library routines.
- (line 298)
-* __negdf2: Soft float library routines.
- (line 55)
-* __negdi2: Integer library routines.
- (line 46)
-* __negdq2: Fixed-point fractional library routines.
- (line 288)
-* __negha2: Fixed-point fractional library routines.
- (line 296)
-* __neghq2: Fixed-point fractional library routines.
- (line 286)
-* __negqq2: Fixed-point fractional library routines.
- (line 285)
-* __negsa2: Fixed-point fractional library routines.
- (line 297)
-* __negsf2: Soft float library routines.
- (line 54)
-* __negsq2: Fixed-point fractional library routines.
- (line 287)
-* __negta2: Fixed-point fractional library routines.
- (line 299)
-* __negtf2: Soft float library routines.
- (line 56)
-* __negti2: Integer library routines.
- (line 47)
-* __neguda2: Fixed-point fractional library routines.
- (line 303)
-* __negudq2: Fixed-point fractional library routines.
- (line 294)
-* __neguha2: Fixed-point fractional library routines.
- (line 300)
-* __neguhq2: Fixed-point fractional library routines.
- (line 291)
-* __neguqq2: Fixed-point fractional library routines.
- (line 289)
-* __negusa2: Fixed-point fractional library routines.
- (line 302)
-* __negusq2: Fixed-point fractional library routines.
- (line 292)
-* __neguta2: Fixed-point fractional library routines.
- (line 305)
-* __negvdi2: Integer library routines.
- (line 118)
-* __negvsi2: Integer library routines.
- (line 117)
-* __negxf2: Soft float library routines.
- (line 57)
-* __nesf2: Soft float library routines.
- (line 198)
-* __netf2: Soft float library routines.
- (line 200)
-* __paritydi2: Integer library routines.
- (line 150)
-* __paritysi2: Integer library routines.
- (line 149)
-* __parityti2: Integer library routines.
- (line 151)
-* __popcountdi2: Integer library routines.
- (line 156)
-* __popcountsi2: Integer library routines.
- (line 155)
-* __popcountti2: Integer library routines.
- (line 157)
-* __powidf2: Soft float library routines.
- (line 232)
-* __powisf2: Soft float library routines.
- (line 231)
-* __powitf2: Soft float library routines.
- (line 233)
-* __powixf2: Soft float library routines.
- (line 234)
-* __satfractdadq: Fixed-point fractional library routines.
- (line 1152)
-* __satfractdaha2: Fixed-point fractional library routines.
- (line 1153)
-* __satfractdahq: Fixed-point fractional library routines.
- (line 1150)
-* __satfractdaqq: Fixed-point fractional library routines.
- (line 1149)
-* __satfractdasa2: Fixed-point fractional library routines.
- (line 1154)
-* __satfractdasq: Fixed-point fractional library routines.
- (line 1151)
-* __satfractdata2: Fixed-point fractional library routines.
- (line 1155)
-* __satfractdauda: Fixed-point fractional library routines.
- (line 1165)
-* __satfractdaudq: Fixed-point fractional library routines.
- (line 1160)
-* __satfractdauha: Fixed-point fractional library routines.
- (line 1162)
-* __satfractdauhq: Fixed-point fractional library routines.
- (line 1158)
-* __satfractdauqq: Fixed-point fractional library routines.
- (line 1156)
-* __satfractdausa: Fixed-point fractional library routines.
- (line 1164)
-* __satfractdausq: Fixed-point fractional library routines.
- (line 1159)
-* __satfractdauta: Fixed-point fractional library routines.
- (line 1166)
-* __satfractdfda: Fixed-point fractional library routines.
- (line 1505)
-* __satfractdfdq: Fixed-point fractional library routines.
- (line 1502)
-* __satfractdfha: Fixed-point fractional library routines.
- (line 1503)
-* __satfractdfhq: Fixed-point fractional library routines.
- (line 1500)
-* __satfractdfqq: Fixed-point fractional library routines.
- (line 1499)
-* __satfractdfsa: Fixed-point fractional library routines.
- (line 1504)
-* __satfractdfsq: Fixed-point fractional library routines.
- (line 1501)
-* __satfractdfta: Fixed-point fractional library routines.
- (line 1506)
-* __satfractdfuda: Fixed-point fractional library routines.
- (line 1514)
-* __satfractdfudq: Fixed-point fractional library routines.
- (line 1510)
-* __satfractdfuha: Fixed-point fractional library routines.
- (line 1512)
-* __satfractdfuhq: Fixed-point fractional library routines.
- (line 1508)
-* __satfractdfuqq: Fixed-point fractional library routines.
- (line 1507)
-* __satfractdfusa: Fixed-point fractional library routines.
- (line 1513)
-* __satfractdfusq: Fixed-point fractional library routines.
- (line 1509)
-* __satfractdfuta: Fixed-point fractional library routines.
- (line 1515)
-* __satfractdida: Fixed-point fractional library routines.
- (line 1455)
-* __satfractdidq: Fixed-point fractional library routines.
- (line 1452)
-* __satfractdiha: Fixed-point fractional library routines.
- (line 1453)
-* __satfractdihq: Fixed-point fractional library routines.
- (line 1450)
-* __satfractdiqq: Fixed-point fractional library routines.
- (line 1449)
-* __satfractdisa: Fixed-point fractional library routines.
- (line 1454)
-* __satfractdisq: Fixed-point fractional library routines.
- (line 1451)
-* __satfractdita: Fixed-point fractional library routines.
- (line 1456)
-* __satfractdiuda: Fixed-point fractional library routines.
- (line 1463)
-* __satfractdiudq: Fixed-point fractional library routines.
- (line 1460)
-* __satfractdiuha: Fixed-point fractional library routines.
- (line 1461)
-* __satfractdiuhq: Fixed-point fractional library routines.
- (line 1458)
-* __satfractdiuqq: Fixed-point fractional library routines.
- (line 1457)
-* __satfractdiusa: Fixed-point fractional library routines.
- (line 1462)
-* __satfractdiusq: Fixed-point fractional library routines.
- (line 1459)
-* __satfractdiuta: Fixed-point fractional library routines.
- (line 1464)
-* __satfractdqda: Fixed-point fractional library routines.
- (line 1097)
-* __satfractdqha: Fixed-point fractional library routines.
- (line 1095)
-* __satfractdqhq2: Fixed-point fractional library routines.
- (line 1093)
-* __satfractdqqq2: Fixed-point fractional library routines.
- (line 1092)
-* __satfractdqsa: Fixed-point fractional library routines.
- (line 1096)
-* __satfractdqsq2: Fixed-point fractional library routines.
- (line 1094)
-* __satfractdqta: Fixed-point fractional library routines.
- (line 1098)
-* __satfractdquda: Fixed-point fractional library routines.
- (line 1109)
-* __satfractdqudq: Fixed-point fractional library routines.
- (line 1104)
-* __satfractdquha: Fixed-point fractional library routines.
- (line 1106)
-* __satfractdquhq: Fixed-point fractional library routines.
- (line 1101)
-* __satfractdquqq: Fixed-point fractional library routines.
- (line 1099)
-* __satfractdqusa: Fixed-point fractional library routines.
- (line 1108)
-* __satfractdqusq: Fixed-point fractional library routines.
- (line 1102)
-* __satfractdquta: Fixed-point fractional library routines.
- (line 1111)
-* __satfracthada2: Fixed-point fractional library routines.
- (line 1118)
-* __satfracthadq: Fixed-point fractional library routines.
- (line 1116)
-* __satfracthahq: Fixed-point fractional library routines.
- (line 1114)
-* __satfracthaqq: Fixed-point fractional library routines.
- (line 1113)
-* __satfracthasa2: Fixed-point fractional library routines.
- (line 1117)
-* __satfracthasq: Fixed-point fractional library routines.
- (line 1115)
-* __satfracthata2: Fixed-point fractional library routines.
- (line 1119)
-* __satfracthauda: Fixed-point fractional library routines.
- (line 1130)
-* __satfracthaudq: Fixed-point fractional library routines.
- (line 1125)
-* __satfracthauha: Fixed-point fractional library routines.
- (line 1127)
-* __satfracthauhq: Fixed-point fractional library routines.
- (line 1122)
-* __satfracthauqq: Fixed-point fractional library routines.
- (line 1120)
-* __satfracthausa: Fixed-point fractional library routines.
- (line 1129)
-* __satfracthausq: Fixed-point fractional library routines.
- (line 1123)
-* __satfracthauta: Fixed-point fractional library routines.
- (line 1132)
-* __satfracthida: Fixed-point fractional library routines.
- (line 1423)
-* __satfracthidq: Fixed-point fractional library routines.
- (line 1420)
-* __satfracthiha: Fixed-point fractional library routines.
- (line 1421)
-* __satfracthihq: Fixed-point fractional library routines.
- (line 1418)
-* __satfracthiqq: Fixed-point fractional library routines.
- (line 1417)
-* __satfracthisa: Fixed-point fractional library routines.
- (line 1422)
-* __satfracthisq: Fixed-point fractional library routines.
- (line 1419)
-* __satfracthita: Fixed-point fractional library routines.
- (line 1424)
-* __satfracthiuda: Fixed-point fractional library routines.
- (line 1431)
-* __satfracthiudq: Fixed-point fractional library routines.
- (line 1428)
-* __satfracthiuha: Fixed-point fractional library routines.
- (line 1429)
-* __satfracthiuhq: Fixed-point fractional library routines.
- (line 1426)
-* __satfracthiuqq: Fixed-point fractional library routines.
- (line 1425)
-* __satfracthiusa: Fixed-point fractional library routines.
- (line 1430)
-* __satfracthiusq: Fixed-point fractional library routines.
- (line 1427)
-* __satfracthiuta: Fixed-point fractional library routines.
- (line 1432)
-* __satfracthqda: Fixed-point fractional library routines.
- (line 1063)
-* __satfracthqdq2: Fixed-point fractional library routines.
- (line 1060)
-* __satfracthqha: Fixed-point fractional library routines.
- (line 1061)
-* __satfracthqqq2: Fixed-point fractional library routines.
- (line 1058)
-* __satfracthqsa: Fixed-point fractional library routines.
- (line 1062)
-* __satfracthqsq2: Fixed-point fractional library routines.
- (line 1059)
-* __satfracthqta: Fixed-point fractional library routines.
- (line 1064)
-* __satfracthquda: Fixed-point fractional library routines.
- (line 1071)
-* __satfracthqudq: Fixed-point fractional library routines.
- (line 1068)
-* __satfracthquha: Fixed-point fractional library routines.
- (line 1069)
-* __satfracthquhq: Fixed-point fractional library routines.
- (line 1066)
-* __satfracthquqq: Fixed-point fractional library routines.
- (line 1065)
-* __satfracthqusa: Fixed-point fractional library routines.
- (line 1070)
-* __satfracthqusq: Fixed-point fractional library routines.
- (line 1067)
-* __satfracthquta: Fixed-point fractional library routines.
- (line 1072)
-* __satfractqida: Fixed-point fractional library routines.
- (line 1401)
-* __satfractqidq: Fixed-point fractional library routines.
- (line 1398)
-* __satfractqiha: Fixed-point fractional library routines.
- (line 1399)
-* __satfractqihq: Fixed-point fractional library routines.
- (line 1396)
-* __satfractqiqq: Fixed-point fractional library routines.
- (line 1395)
-* __satfractqisa: Fixed-point fractional library routines.
- (line 1400)
-* __satfractqisq: Fixed-point fractional library routines.
- (line 1397)
-* __satfractqita: Fixed-point fractional library routines.
- (line 1402)
-* __satfractqiuda: Fixed-point fractional library routines.
- (line 1413)
-* __satfractqiudq: Fixed-point fractional library routines.
- (line 1408)
-* __satfractqiuha: Fixed-point fractional library routines.
- (line 1410)
-* __satfractqiuhq: Fixed-point fractional library routines.
- (line 1405)
-* __satfractqiuqq: Fixed-point fractional library routines.
- (line 1403)
-* __satfractqiusa: Fixed-point fractional library routines.
- (line 1412)
-* __satfractqiusq: Fixed-point fractional library routines.
- (line 1406)
-* __satfractqiuta: Fixed-point fractional library routines.
- (line 1415)
-* __satfractqqda: Fixed-point fractional library routines.
- (line 1042)
-* __satfractqqdq2: Fixed-point fractional library routines.
- (line 1039)
-* __satfractqqha: Fixed-point fractional library routines.
- (line 1040)
-* __satfractqqhq2: Fixed-point fractional library routines.
- (line 1037)
-* __satfractqqsa: Fixed-point fractional library routines.
- (line 1041)
-* __satfractqqsq2: Fixed-point fractional library routines.
- (line 1038)
-* __satfractqqta: Fixed-point fractional library routines.
- (line 1043)
-* __satfractqquda: Fixed-point fractional library routines.
- (line 1054)
-* __satfractqqudq: Fixed-point fractional library routines.
- (line 1049)
-* __satfractqquha: Fixed-point fractional library routines.
- (line 1051)
-* __satfractqquhq: Fixed-point fractional library routines.
- (line 1046)
-* __satfractqquqq: Fixed-point fractional library routines.
- (line 1044)
-* __satfractqqusa: Fixed-point fractional library routines.
- (line 1053)
-* __satfractqqusq: Fixed-point fractional library routines.
- (line 1047)
-* __satfractqquta: Fixed-point fractional library routines.
- (line 1056)
-* __satfractsada2: Fixed-point fractional library routines.
- (line 1139)
-* __satfractsadq: Fixed-point fractional library routines.
- (line 1137)
-* __satfractsaha2: Fixed-point fractional library routines.
- (line 1138)
-* __satfractsahq: Fixed-point fractional library routines.
- (line 1135)
-* __satfractsaqq: Fixed-point fractional library routines.
- (line 1134)
-* __satfractsasq: Fixed-point fractional library routines.
- (line 1136)
-* __satfractsata2: Fixed-point fractional library routines.
- (line 1140)
-* __satfractsauda: Fixed-point fractional library routines.
- (line 1147)
-* __satfractsaudq: Fixed-point fractional library routines.
- (line 1144)
-* __satfractsauha: Fixed-point fractional library routines.
- (line 1145)
-* __satfractsauhq: Fixed-point fractional library routines.
- (line 1142)
-* __satfractsauqq: Fixed-point fractional library routines.
- (line 1141)
-* __satfractsausa: Fixed-point fractional library routines.
- (line 1146)
-* __satfractsausq: Fixed-point fractional library routines.
- (line 1143)
-* __satfractsauta: Fixed-point fractional library routines.
- (line 1148)
-* __satfractsfda: Fixed-point fractional library routines.
- (line 1489)
-* __satfractsfdq: Fixed-point fractional library routines.
- (line 1486)
-* __satfractsfha: Fixed-point fractional library routines.
- (line 1487)
-* __satfractsfhq: Fixed-point fractional library routines.
- (line 1484)
-* __satfractsfqq: Fixed-point fractional library routines.
- (line 1483)
-* __satfractsfsa: Fixed-point fractional library routines.
- (line 1488)
-* __satfractsfsq: Fixed-point fractional library routines.
- (line 1485)
-* __satfractsfta: Fixed-point fractional library routines.
- (line 1490)
-* __satfractsfuda: Fixed-point fractional library routines.
- (line 1497)
-* __satfractsfudq: Fixed-point fractional library routines.
- (line 1494)
-* __satfractsfuha: Fixed-point fractional library routines.
- (line 1495)
-* __satfractsfuhq: Fixed-point fractional library routines.
- (line 1492)
-* __satfractsfuqq: Fixed-point fractional library routines.
- (line 1491)
-* __satfractsfusa: Fixed-point fractional library routines.
- (line 1496)
-* __satfractsfusq: Fixed-point fractional library routines.
- (line 1493)
-* __satfractsfuta: Fixed-point fractional library routines.
- (line 1498)
-* __satfractsida: Fixed-point fractional library routines.
- (line 1439)
-* __satfractsidq: Fixed-point fractional library routines.
- (line 1436)
-* __satfractsiha: Fixed-point fractional library routines.
- (line 1437)
-* __satfractsihq: Fixed-point fractional library routines.
- (line 1434)
-* __satfractsiqq: Fixed-point fractional library routines.
- (line 1433)
-* __satfractsisa: Fixed-point fractional library routines.
- (line 1438)
-* __satfractsisq: Fixed-point fractional library routines.
- (line 1435)
-* __satfractsita: Fixed-point fractional library routines.
- (line 1440)
-* __satfractsiuda: Fixed-point fractional library routines.
- (line 1447)
-* __satfractsiudq: Fixed-point fractional library routines.
- (line 1444)
-* __satfractsiuha: Fixed-point fractional library routines.
- (line 1445)
-* __satfractsiuhq: Fixed-point fractional library routines.
- (line 1442)
-* __satfractsiuqq: Fixed-point fractional library routines.
- (line 1441)
-* __satfractsiusa: Fixed-point fractional library routines.
- (line 1446)
-* __satfractsiusq: Fixed-point fractional library routines.
- (line 1443)
-* __satfractsiuta: Fixed-point fractional library routines.
- (line 1448)
-* __satfractsqda: Fixed-point fractional library routines.
- (line 1078)
-* __satfractsqdq2: Fixed-point fractional library routines.
- (line 1075)
-* __satfractsqha: Fixed-point fractional library routines.
- (line 1076)
-* __satfractsqhq2: Fixed-point fractional library routines.
- (line 1074)
-* __satfractsqqq2: Fixed-point fractional library routines.
- (line 1073)
-* __satfractsqsa: Fixed-point fractional library routines.
- (line 1077)
-* __satfractsqta: Fixed-point fractional library routines.
- (line 1079)
-* __satfractsquda: Fixed-point fractional library routines.
- (line 1089)
-* __satfractsqudq: Fixed-point fractional library routines.
- (line 1084)
-* __satfractsquha: Fixed-point fractional library routines.
- (line 1086)
-* __satfractsquhq: Fixed-point fractional library routines.
- (line 1082)
-* __satfractsquqq: Fixed-point fractional library routines.
- (line 1080)
-* __satfractsqusa: Fixed-point fractional library routines.
- (line 1088)
-* __satfractsqusq: Fixed-point fractional library routines.
- (line 1083)
-* __satfractsquta: Fixed-point fractional library routines.
- (line 1090)
-* __satfracttada2: Fixed-point fractional library routines.
- (line 1174)
-* __satfracttadq: Fixed-point fractional library routines.
- (line 1171)
-* __satfracttaha2: Fixed-point fractional library routines.
- (line 1172)
-* __satfracttahq: Fixed-point fractional library routines.
- (line 1169)
-* __satfracttaqq: Fixed-point fractional library routines.
- (line 1168)
-* __satfracttasa2: Fixed-point fractional library routines.
- (line 1173)
-* __satfracttasq: Fixed-point fractional library routines.
- (line 1170)
-* __satfracttauda: Fixed-point fractional library routines.
- (line 1185)
-* __satfracttaudq: Fixed-point fractional library routines.
- (line 1180)
-* __satfracttauha: Fixed-point fractional library routines.
- (line 1182)
-* __satfracttauhq: Fixed-point fractional library routines.
- (line 1177)
-* __satfracttauqq: Fixed-point fractional library routines.
- (line 1175)
-* __satfracttausa: Fixed-point fractional library routines.
- (line 1184)
-* __satfracttausq: Fixed-point fractional library routines.
- (line 1178)
-* __satfracttauta: Fixed-point fractional library routines.
- (line 1187)
-* __satfracttida: Fixed-point fractional library routines.
- (line 1471)
-* __satfracttidq: Fixed-point fractional library routines.
- (line 1468)
-* __satfracttiha: Fixed-point fractional library routines.
- (line 1469)
-* __satfracttihq: Fixed-point fractional library routines.
- (line 1466)
-* __satfracttiqq: Fixed-point fractional library routines.
- (line 1465)
-* __satfracttisa: Fixed-point fractional library routines.
- (line 1470)
-* __satfracttisq: Fixed-point fractional library routines.
- (line 1467)
-* __satfracttita: Fixed-point fractional library routines.
- (line 1472)
-* __satfracttiuda: Fixed-point fractional library routines.
- (line 1480)
-* __satfracttiudq: Fixed-point fractional library routines.
- (line 1476)
-* __satfracttiuha: Fixed-point fractional library routines.
- (line 1478)
-* __satfracttiuhq: Fixed-point fractional library routines.
- (line 1474)
-* __satfracttiuqq: Fixed-point fractional library routines.
- (line 1473)
-* __satfracttiusa: Fixed-point fractional library routines.
- (line 1479)
-* __satfracttiusq: Fixed-point fractional library routines.
- (line 1475)
-* __satfracttiuta: Fixed-point fractional library routines.
- (line 1481)
-* __satfractudada: Fixed-point fractional library routines.
- (line 1350)
-* __satfractudadq: Fixed-point fractional library routines.
- (line 1345)
-* __satfractudaha: Fixed-point fractional library routines.
- (line 1347)
-* __satfractudahq: Fixed-point fractional library routines.
- (line 1343)
-* __satfractudaqq: Fixed-point fractional library routines.
- (line 1341)
-* __satfractudasa: Fixed-point fractional library routines.
- (line 1349)
-* __satfractudasq: Fixed-point fractional library routines.
- (line 1344)
-* __satfractudata: Fixed-point fractional library routines.
- (line 1351)
-* __satfractudaudq: Fixed-point fractional library routines.
- (line 1359)
-* __satfractudauha2: Fixed-point fractional library routines.
- (line 1361)
-* __satfractudauhq: Fixed-point fractional library routines.
- (line 1355)
-* __satfractudauqq: Fixed-point fractional library routines.
- (line 1353)
-* __satfractudausa2: Fixed-point fractional library routines.
- (line 1363)
-* __satfractudausq: Fixed-point fractional library routines.
- (line 1357)
-* __satfractudauta2: Fixed-point fractional library routines.
- (line 1365)
-* __satfractudqda: Fixed-point fractional library routines.
- (line 1274)
-* __satfractudqdq: Fixed-point fractional library routines.
- (line 1269)
-* __satfractudqha: Fixed-point fractional library routines.
- (line 1271)
-* __satfractudqhq: Fixed-point fractional library routines.
- (line 1266)
-* __satfractudqqq: Fixed-point fractional library routines.
- (line 1264)
-* __satfractudqsa: Fixed-point fractional library routines.
- (line 1273)
-* __satfractudqsq: Fixed-point fractional library routines.
- (line 1267)
-* __satfractudqta: Fixed-point fractional library routines.
- (line 1276)
-* __satfractudquda: Fixed-point fractional library routines.
- (line 1288)
-* __satfractudquha: Fixed-point fractional library routines.
- (line 1284)
-* __satfractudquhq2: Fixed-point fractional library routines.
- (line 1280)
-* __satfractudquqq2: Fixed-point fractional library routines.
- (line 1278)
-* __satfractudqusa: Fixed-point fractional library routines.
- (line 1286)
-* __satfractudqusq2: Fixed-point fractional library routines.
- (line 1282)
-* __satfractudquta: Fixed-point fractional library routines.
- (line 1290)
-* __satfractuhada: Fixed-point fractional library routines.
- (line 1302)
-* __satfractuhadq: Fixed-point fractional library routines.
- (line 1297)
-* __satfractuhaha: Fixed-point fractional library routines.
- (line 1299)
-* __satfractuhahq: Fixed-point fractional library routines.
- (line 1294)
-* __satfractuhaqq: Fixed-point fractional library routines.
- (line 1292)
-* __satfractuhasa: Fixed-point fractional library routines.
- (line 1301)
-* __satfractuhasq: Fixed-point fractional library routines.
- (line 1295)
-* __satfractuhata: Fixed-point fractional library routines.
- (line 1304)
-* __satfractuhauda2: Fixed-point fractional library routines.
- (line 1316)
-* __satfractuhaudq: Fixed-point fractional library routines.
- (line 1312)
-* __satfractuhauhq: Fixed-point fractional library routines.
- (line 1308)
-* __satfractuhauqq: Fixed-point fractional library routines.
- (line 1306)
-* __satfractuhausa2: Fixed-point fractional library routines.
- (line 1314)
-* __satfractuhausq: Fixed-point fractional library routines.
- (line 1310)
-* __satfractuhauta2: Fixed-point fractional library routines.
- (line 1318)
-* __satfractuhqda: Fixed-point fractional library routines.
- (line 1223)
-* __satfractuhqdq: Fixed-point fractional library routines.
- (line 1220)
-* __satfractuhqha: Fixed-point fractional library routines.
- (line 1221)
-* __satfractuhqhq: Fixed-point fractional library routines.
- (line 1218)
-* __satfractuhqqq: Fixed-point fractional library routines.
- (line 1217)
-* __satfractuhqsa: Fixed-point fractional library routines.
- (line 1222)
-* __satfractuhqsq: Fixed-point fractional library routines.
- (line 1219)
-* __satfractuhqta: Fixed-point fractional library routines.
- (line 1224)
-* __satfractuhquda: Fixed-point fractional library routines.
- (line 1234)
-* __satfractuhqudq2: Fixed-point fractional library routines.
- (line 1229)
-* __satfractuhquha: Fixed-point fractional library routines.
- (line 1231)
-* __satfractuhquqq2: Fixed-point fractional library routines.
- (line 1225)
-* __satfractuhqusa: Fixed-point fractional library routines.
- (line 1233)
-* __satfractuhqusq2: Fixed-point fractional library routines.
- (line 1227)
-* __satfractuhquta: Fixed-point fractional library routines.
- (line 1236)
-* __satfractunsdida: Fixed-point fractional library routines.
- (line 1833)
-* __satfractunsdidq: Fixed-point fractional library routines.
- (line 1829)
-* __satfractunsdiha: Fixed-point fractional library routines.
- (line 1831)
-* __satfractunsdihq: Fixed-point fractional library routines.
- (line 1827)
-* __satfractunsdiqq: Fixed-point fractional library routines.
- (line 1826)
-* __satfractunsdisa: Fixed-point fractional library routines.
- (line 1832)
-* __satfractunsdisq: Fixed-point fractional library routines.
- (line 1828)
-* __satfractunsdita: Fixed-point fractional library routines.
- (line 1834)
-* __satfractunsdiuda: Fixed-point fractional library routines.
- (line 1848)
-* __satfractunsdiudq: Fixed-point fractional library routines.
- (line 1842)
-* __satfractunsdiuha: Fixed-point fractional library routines.
- (line 1844)
-* __satfractunsdiuhq: Fixed-point fractional library routines.
- (line 1838)
-* __satfractunsdiuqq: Fixed-point fractional library routines.
- (line 1836)
-* __satfractunsdiusa: Fixed-point fractional library routines.
- (line 1846)
-* __satfractunsdiusq: Fixed-point fractional library routines.
- (line 1840)
-* __satfractunsdiuta: Fixed-point fractional library routines.
- (line 1850)
-* __satfractunshida: Fixed-point fractional library routines.
- (line 1785)
-* __satfractunshidq: Fixed-point fractional library routines.
- (line 1781)
-* __satfractunshiha: Fixed-point fractional library routines.
- (line 1783)
-* __satfractunshihq: Fixed-point fractional library routines.
- (line 1779)
-* __satfractunshiqq: Fixed-point fractional library routines.
- (line 1778)
-* __satfractunshisa: Fixed-point fractional library routines.
- (line 1784)
-* __satfractunshisq: Fixed-point fractional library routines.
- (line 1780)
-* __satfractunshita: Fixed-point fractional library routines.
- (line 1786)
-* __satfractunshiuda: Fixed-point fractional library routines.
- (line 1800)
-* __satfractunshiudq: Fixed-point fractional library routines.
- (line 1794)
-* __satfractunshiuha: Fixed-point fractional library routines.
- (line 1796)
-* __satfractunshiuhq: Fixed-point fractional library routines.
- (line 1790)
-* __satfractunshiuqq: Fixed-point fractional library routines.
- (line 1788)
-* __satfractunshiusa: Fixed-point fractional library routines.
- (line 1798)
-* __satfractunshiusq: Fixed-point fractional library routines.
- (line 1792)
-* __satfractunshiuta: Fixed-point fractional library routines.
- (line 1802)
-* __satfractunsqida: Fixed-point fractional library routines.
- (line 1759)
-* __satfractunsqidq: Fixed-point fractional library routines.
- (line 1755)
-* __satfractunsqiha: Fixed-point fractional library routines.
- (line 1757)
-* __satfractunsqihq: Fixed-point fractional library routines.
- (line 1753)
-* __satfractunsqiqq: Fixed-point fractional library routines.
- (line 1752)
-* __satfractunsqisa: Fixed-point fractional library routines.
- (line 1758)
-* __satfractunsqisq: Fixed-point fractional library routines.
- (line 1754)
-* __satfractunsqita: Fixed-point fractional library routines.
- (line 1760)
-* __satfractunsqiuda: Fixed-point fractional library routines.
- (line 1774)
-* __satfractunsqiudq: Fixed-point fractional library routines.
- (line 1768)
-* __satfractunsqiuha: Fixed-point fractional library routines.
- (line 1770)
-* __satfractunsqiuhq: Fixed-point fractional library routines.
- (line 1764)
-* __satfractunsqiuqq: Fixed-point fractional library routines.
- (line 1762)
-* __satfractunsqiusa: Fixed-point fractional library routines.
- (line 1772)
-* __satfractunsqiusq: Fixed-point fractional library routines.
- (line 1766)
-* __satfractunsqiuta: Fixed-point fractional library routines.
- (line 1776)
-* __satfractunssida: Fixed-point fractional library routines.
- (line 1810)
-* __satfractunssidq: Fixed-point fractional library routines.
- (line 1807)
-* __satfractunssiha: Fixed-point fractional library routines.
- (line 1808)
-* __satfractunssihq: Fixed-point fractional library routines.
- (line 1805)
-* __satfractunssiqq: Fixed-point fractional library routines.
- (line 1804)
-* __satfractunssisa: Fixed-point fractional library routines.
- (line 1809)
-* __satfractunssisq: Fixed-point fractional library routines.
- (line 1806)
-* __satfractunssita: Fixed-point fractional library routines.
- (line 1811)
-* __satfractunssiuda: Fixed-point fractional library routines.
- (line 1822)
-* __satfractunssiudq: Fixed-point fractional library routines.
- (line 1817)
-* __satfractunssiuha: Fixed-point fractional library routines.
- (line 1819)
-* __satfractunssiuhq: Fixed-point fractional library routines.
- (line 1814)
-* __satfractunssiuqq: Fixed-point fractional library routines.
- (line 1812)
-* __satfractunssiusa: Fixed-point fractional library routines.
- (line 1821)
-* __satfractunssiusq: Fixed-point fractional library routines.
- (line 1815)
-* __satfractunssiuta: Fixed-point fractional library routines.
- (line 1824)
-* __satfractunstida: Fixed-point fractional library routines.
- (line 1862)
-* __satfractunstidq: Fixed-point fractional library routines.
- (line 1857)
-* __satfractunstiha: Fixed-point fractional library routines.
- (line 1859)
-* __satfractunstihq: Fixed-point fractional library routines.
- (line 1854)
-* __satfractunstiqq: Fixed-point fractional library routines.
- (line 1852)
-* __satfractunstisa: Fixed-point fractional library routines.
- (line 1861)
-* __satfractunstisq: Fixed-point fractional library routines.
- (line 1855)
-* __satfractunstita: Fixed-point fractional library routines.
- (line 1864)
-* __satfractunstiuda: Fixed-point fractional library routines.
- (line 1878)
-* __satfractunstiudq: Fixed-point fractional library routines.
- (line 1872)
-* __satfractunstiuha: Fixed-point fractional library routines.
- (line 1874)
-* __satfractunstiuhq: Fixed-point fractional library routines.
- (line 1868)
-* __satfractunstiuqq: Fixed-point fractional library routines.
- (line 1866)
-* __satfractunstiusa: Fixed-point fractional library routines.
- (line 1876)
-* __satfractunstiusq: Fixed-point fractional library routines.
- (line 1870)
-* __satfractunstiuta: Fixed-point fractional library routines.
- (line 1880)
-* __satfractuqqda: Fixed-point fractional library routines.
- (line 1199)
-* __satfractuqqdq: Fixed-point fractional library routines.
- (line 1194)
-* __satfractuqqha: Fixed-point fractional library routines.
- (line 1196)
-* __satfractuqqhq: Fixed-point fractional library routines.
- (line 1191)
-* __satfractuqqqq: Fixed-point fractional library routines.
- (line 1189)
-* __satfractuqqsa: Fixed-point fractional library routines.
- (line 1198)
-* __satfractuqqsq: Fixed-point fractional library routines.
- (line 1192)
-* __satfractuqqta: Fixed-point fractional library routines.
- (line 1201)
-* __satfractuqquda: Fixed-point fractional library routines.
- (line 1213)
-* __satfractuqqudq2: Fixed-point fractional library routines.
- (line 1207)
-* __satfractuqquha: Fixed-point fractional library routines.
- (line 1209)
-* __satfractuqquhq2: Fixed-point fractional library routines.
- (line 1203)
-* __satfractuqqusa: Fixed-point fractional library routines.
- (line 1211)
-* __satfractuqqusq2: Fixed-point fractional library routines.
- (line 1205)
-* __satfractuqquta: Fixed-point fractional library routines.
- (line 1215)
-* __satfractusada: Fixed-point fractional library routines.
- (line 1326)
-* __satfractusadq: Fixed-point fractional library routines.
- (line 1323)
-* __satfractusaha: Fixed-point fractional library routines.
- (line 1324)
-* __satfractusahq: Fixed-point fractional library routines.
- (line 1321)
-* __satfractusaqq: Fixed-point fractional library routines.
- (line 1320)
-* __satfractusasa: Fixed-point fractional library routines.
- (line 1325)
-* __satfractusasq: Fixed-point fractional library routines.
- (line 1322)
-* __satfractusata: Fixed-point fractional library routines.
- (line 1327)
-* __satfractusauda2: Fixed-point fractional library routines.
- (line 1337)
-* __satfractusaudq: Fixed-point fractional library routines.
- (line 1333)
-* __satfractusauha2: Fixed-point fractional library routines.
- (line 1335)
-* __satfractusauhq: Fixed-point fractional library routines.
- (line 1330)
-* __satfractusauqq: Fixed-point fractional library routines.
- (line 1328)
-* __satfractusausq: Fixed-point fractional library routines.
- (line 1331)
-* __satfractusauta2: Fixed-point fractional library routines.
- (line 1339)
-* __satfractusqda: Fixed-point fractional library routines.
- (line 1247)
-* __satfractusqdq: Fixed-point fractional library routines.
- (line 1242)
-* __satfractusqha: Fixed-point fractional library routines.
- (line 1244)
-* __satfractusqhq: Fixed-point fractional library routines.
- (line 1240)
-* __satfractusqqq: Fixed-point fractional library routines.
- (line 1238)
-* __satfractusqsa: Fixed-point fractional library routines.
- (line 1246)
-* __satfractusqsq: Fixed-point fractional library routines.
- (line 1241)
-* __satfractusqta: Fixed-point fractional library routines.
- (line 1248)
-* __satfractusquda: Fixed-point fractional library routines.
- (line 1260)
-* __satfractusqudq2: Fixed-point fractional library routines.
- (line 1254)
-* __satfractusquha: Fixed-point fractional library routines.
- (line 1256)
-* __satfractusquhq2: Fixed-point fractional library routines.
- (line 1252)
-* __satfractusquqq2: Fixed-point fractional library routines.
- (line 1250)
-* __satfractusqusa: Fixed-point fractional library routines.
- (line 1258)
-* __satfractusquta: Fixed-point fractional library routines.
- (line 1262)
-* __satfractutada: Fixed-point fractional library routines.
- (line 1377)
-* __satfractutadq: Fixed-point fractional library routines.
- (line 1372)
-* __satfractutaha: Fixed-point fractional library routines.
- (line 1374)
-* __satfractutahq: Fixed-point fractional library routines.
- (line 1369)
-* __satfractutaqq: Fixed-point fractional library routines.
- (line 1367)
-* __satfractutasa: Fixed-point fractional library routines.
- (line 1376)
-* __satfractutasq: Fixed-point fractional library routines.
- (line 1370)
-* __satfractutata: Fixed-point fractional library routines.
- (line 1379)
-* __satfractutauda2: Fixed-point fractional library routines.
- (line 1393)
-* __satfractutaudq: Fixed-point fractional library routines.
- (line 1387)
-* __satfractutauha2: Fixed-point fractional library routines.
- (line 1389)
-* __satfractutauhq: Fixed-point fractional library routines.
- (line 1383)
-* __satfractutauqq: Fixed-point fractional library routines.
- (line 1381)
-* __satfractutausa2: Fixed-point fractional library routines.
- (line 1391)
-* __satfractutausq: Fixed-point fractional library routines.
- (line 1385)
-* __splitstack_find: Miscellaneous routines.
- (line 15)
-* __ssaddda3: Fixed-point fractional library routines.
- (line 66)
-* __ssadddq3: Fixed-point fractional library routines.
- (line 61)
-* __ssaddha3: Fixed-point fractional library routines.
- (line 63)
-* __ssaddhq3: Fixed-point fractional library routines.
- (line 59)
-* __ssaddqq3: Fixed-point fractional library routines.
- (line 57)
-* __ssaddsa3: Fixed-point fractional library routines.
- (line 65)
-* __ssaddsq3: Fixed-point fractional library routines.
- (line 60)
-* __ssaddta3: Fixed-point fractional library routines.
- (line 67)
-* __ssashlda3: Fixed-point fractional library routines.
- (line 401)
-* __ssashldq3: Fixed-point fractional library routines.
- (line 397)
-* __ssashlha3: Fixed-point fractional library routines.
- (line 399)
-* __ssashlhq3: Fixed-point fractional library routines.
- (line 395)
-* __ssashlsa3: Fixed-point fractional library routines.
- (line 400)
-* __ssashlsq3: Fixed-point fractional library routines.
- (line 396)
-* __ssashlta3: Fixed-point fractional library routines.
- (line 402)
-* __ssdivda3: Fixed-point fractional library routines.
- (line 260)
-* __ssdivdq3: Fixed-point fractional library routines.
- (line 255)
-* __ssdivha3: Fixed-point fractional library routines.
- (line 257)
-* __ssdivhq3: Fixed-point fractional library routines.
- (line 253)
-* __ssdivqq3: Fixed-point fractional library routines.
- (line 251)
-* __ssdivsa3: Fixed-point fractional library routines.
- (line 259)
-* __ssdivsq3: Fixed-point fractional library routines.
- (line 254)
-* __ssdivta3: Fixed-point fractional library routines.
- (line 261)
-* __ssmulda3: Fixed-point fractional library routines.
- (line 192)
-* __ssmuldq3: Fixed-point fractional library routines.
- (line 187)
-* __ssmulha3: Fixed-point fractional library routines.
- (line 189)
-* __ssmulhq3: Fixed-point fractional library routines.
- (line 185)
-* __ssmulqq3: Fixed-point fractional library routines.
- (line 183)
-* __ssmulsa3: Fixed-point fractional library routines.
- (line 191)
-* __ssmulsq3: Fixed-point fractional library routines.
- (line 186)
-* __ssmulta3: Fixed-point fractional library routines.
- (line 193)
-* __ssnegda2: Fixed-point fractional library routines.
- (line 315)
-* __ssnegdq2: Fixed-point fractional library routines.
- (line 312)
-* __ssnegha2: Fixed-point fractional library routines.
- (line 313)
-* __ssneghq2: Fixed-point fractional library routines.
- (line 310)
-* __ssnegqq2: Fixed-point fractional library routines.
- (line 309)
-* __ssnegsa2: Fixed-point fractional library routines.
- (line 314)
-* __ssnegsq2: Fixed-point fractional library routines.
- (line 311)
-* __ssnegta2: Fixed-point fractional library routines.
- (line 316)
-* __sssubda3: Fixed-point fractional library routines.
- (line 128)
-* __sssubdq3: Fixed-point fractional library routines.
- (line 123)
-* __sssubha3: Fixed-point fractional library routines.
- (line 125)
-* __sssubhq3: Fixed-point fractional library routines.
- (line 121)
-* __sssubqq3: Fixed-point fractional library routines.
- (line 119)
-* __sssubsa3: Fixed-point fractional library routines.
- (line 127)
-* __sssubsq3: Fixed-point fractional library routines.
- (line 122)
-* __sssubta3: Fixed-point fractional library routines.
- (line 129)
-* __subda3: Fixed-point fractional library routines.
- (line 106)
-* __subdf3: Soft float library routines.
- (line 30)
-* __subdq3: Fixed-point fractional library routines.
- (line 93)
-* __subha3: Fixed-point fractional library routines.
- (line 103)
-* __subhq3: Fixed-point fractional library routines.
- (line 91)
-* __subqq3: Fixed-point fractional library routines.
- (line 89)
-* __subsa3: Fixed-point fractional library routines.
- (line 105)
-* __subsf3: Soft float library routines.
- (line 29)
-* __subsq3: Fixed-point fractional library routines.
- (line 92)
-* __subta3: Fixed-point fractional library routines.
- (line 107)
-* __subtf3: Soft float library routines.
- (line 31)
-* __subuda3: Fixed-point fractional library routines.
- (line 113)
-* __subudq3: Fixed-point fractional library routines.
- (line 101)
-* __subuha3: Fixed-point fractional library routines.
- (line 109)
-* __subuhq3: Fixed-point fractional library routines.
- (line 97)
-* __subuqq3: Fixed-point fractional library routines.
- (line 95)
-* __subusa3: Fixed-point fractional library routines.
- (line 111)
-* __subusq3: Fixed-point fractional library routines.
- (line 99)
-* __subuta3: Fixed-point fractional library routines.
- (line 115)
-* __subvdi3: Integer library routines.
- (line 122)
-* __subvsi3: Integer library routines.
- (line 121)
-* __subxf3: Soft float library routines.
- (line 33)
-* __truncdfsf2: Soft float library routines.
- (line 75)
-* __trunctfdf2: Soft float library routines.
- (line 72)
-* __trunctfsf2: Soft float library routines.
- (line 74)
-* __truncxfdf2: Soft float library routines.
- (line 71)
-* __truncxfsf2: Soft float library routines.
- (line 73)
-* __ucmpdi2: Integer library routines.
- (line 92)
-* __ucmpti2: Integer library routines.
- (line 93)
-* __udivdi3: Integer library routines.
- (line 52)
-* __udivmoddi4: Integer library routines.
- (line 59)
-* __udivmodti4: Integer library routines.
- (line 61)
-* __udivsi3: Integer library routines.
- (line 50)
-* __udivti3: Integer library routines.
- (line 54)
-* __udivuda3: Fixed-point fractional library routines.
- (line 244)
-* __udivudq3: Fixed-point fractional library routines.
- (line 238)
-* __udivuha3: Fixed-point fractional library routines.
- (line 240)
-* __udivuhq3: Fixed-point fractional library routines.
- (line 234)
-* __udivuqq3: Fixed-point fractional library routines.
- (line 232)
-* __udivusa3: Fixed-point fractional library routines.
- (line 242)
-* __udivusq3: Fixed-point fractional library routines.
- (line 236)
-* __udivuta3: Fixed-point fractional library routines.
- (line 246)
-* __umoddi3: Integer library routines.
- (line 69)
-* __umodsi3: Integer library routines.
- (line 67)
-* __umodti3: Integer library routines.
- (line 71)
-* __unorddf2: Soft float library routines.
- (line 172)
-* __unordsf2: Soft float library routines.
- (line 171)
-* __unordtf2: Soft float library routines.
- (line 173)
-* __usadduda3: Fixed-point fractional library routines.
- (line 83)
-* __usaddudq3: Fixed-point fractional library routines.
- (line 77)
-* __usadduha3: Fixed-point fractional library routines.
- (line 79)
-* __usadduhq3: Fixed-point fractional library routines.
- (line 73)
-* __usadduqq3: Fixed-point fractional library routines.
- (line 71)
-* __usaddusa3: Fixed-point fractional library routines.
- (line 81)
-* __usaddusq3: Fixed-point fractional library routines.
- (line 75)
-* __usadduta3: Fixed-point fractional library routines.
- (line 85)
-* __usashluda3: Fixed-point fractional library routines.
- (line 419)
-* __usashludq3: Fixed-point fractional library routines.
- (line 413)
-* __usashluha3: Fixed-point fractional library routines.
- (line 415)
-* __usashluhq3: Fixed-point fractional library routines.
- (line 409)
-* __usashluqq3: Fixed-point fractional library routines.
- (line 407)
-* __usashlusa3: Fixed-point fractional library routines.
- (line 417)
-* __usashlusq3: Fixed-point fractional library routines.
- (line 411)
-* __usashluta3: Fixed-point fractional library routines.
- (line 421)
-* __usdivuda3: Fixed-point fractional library routines.
- (line 278)
-* __usdivudq3: Fixed-point fractional library routines.
- (line 272)
-* __usdivuha3: Fixed-point fractional library routines.
- (line 274)
-* __usdivuhq3: Fixed-point fractional library routines.
- (line 268)
-* __usdivuqq3: Fixed-point fractional library routines.
- (line 266)
-* __usdivusa3: Fixed-point fractional library routines.
- (line 276)
-* __usdivusq3: Fixed-point fractional library routines.
- (line 270)
-* __usdivuta3: Fixed-point fractional library routines.
- (line 280)
-* __usmuluda3: Fixed-point fractional library routines.
- (line 210)
-* __usmuludq3: Fixed-point fractional library routines.
- (line 204)
-* __usmuluha3: Fixed-point fractional library routines.
- (line 206)
-* __usmuluhq3: Fixed-point fractional library routines.
- (line 200)
-* __usmuluqq3: Fixed-point fractional library routines.
- (line 198)
-* __usmulusa3: Fixed-point fractional library routines.
- (line 208)
-* __usmulusq3: Fixed-point fractional library routines.
- (line 202)
-* __usmuluta3: Fixed-point fractional library routines.
- (line 212)
-* __usneguda2: Fixed-point fractional library routines.
- (line 329)
-* __usnegudq2: Fixed-point fractional library routines.
- (line 324)
-* __usneguha2: Fixed-point fractional library routines.
- (line 326)
-* __usneguhq2: Fixed-point fractional library routines.
- (line 321)
-* __usneguqq2: Fixed-point fractional library routines.
- (line 319)
-* __usnegusa2: Fixed-point fractional library routines.
- (line 328)
-* __usnegusq2: Fixed-point fractional library routines.
- (line 322)
-* __usneguta2: Fixed-point fractional library routines.
- (line 331)
-* __ussubuda3: Fixed-point fractional library routines.
- (line 146)
-* __ussubudq3: Fixed-point fractional library routines.
- (line 140)
-* __ussubuha3: Fixed-point fractional library routines.
- (line 142)
-* __ussubuhq3: Fixed-point fractional library routines.
- (line 136)
-* __ussubuqq3: Fixed-point fractional library routines.
- (line 134)
-* __ussubusa3: Fixed-point fractional library routines.
- (line 144)
-* __ussubusq3: Fixed-point fractional library routines.
- (line 138)
-* __ussubuta3: Fixed-point fractional library routines.
- (line 148)
-* abort: Portability. (line 20)
-* abs: Arithmetic. (line 201)
-* 'abs' and attributes: Expressions. (line 83)
-* absence_set: Processor pipeline description.
- (line 223)
-* 'absM2' instruction pattern: Standard Names. (line 541)
-* absolute value: Arithmetic. (line 201)
-* ABS_EXPR: Unary and Binary Expressions.
- (line 6)
-* access to operands: Accessors. (line 6)
-* access to special operands: Special Accessors. (line 6)
-* accessors: Accessors. (line 6)
-* ACCUMULATE_OUTGOING_ARGS: Stack Arguments. (line 48)
-* 'ACCUMULATE_OUTGOING_ARGS' and stack frames: Function Entry.
- (line 133)
-* ACCUM_TYPE_SIZE: Type Layout. (line 87)
-* ADA_LONG_TYPE_SIZE: Type Layout. (line 25)
-* Adding a new GIMPLE statement code: Adding a new GIMPLE statement code.
- (line 6)
-* ADDITIONAL_REGISTER_NAMES: Instruction Output. (line 14)
-* 'addM3' instruction pattern: Standard Names. (line 260)
-* 'addMODEcc' instruction pattern: Standard Names. (line 1063)
-* 'addptrM3' instruction pattern: Standard Names. (line 266)
-* address constraints: Simple Constraints. (line 162)
-* addressing modes: Addressing Modes. (line 6)
-* address_operand: Machine-Independent Predicates.
- (line 62)
-* address_operand <1>: Simple Constraints. (line 166)
-* addr_diff_vec: Side Effects. (line 313)
-* 'addr_diff_vec', length of: Insn Lengths. (line 26)
-* ADDR_EXPR: Storage References. (line 6)
-* addr_vec: Side Effects. (line 308)
-* 'addr_vec', length of: Insn Lengths. (line 26)
-* ADJUST_FIELD_ALIGN: Storage Layout. (line 190)
-* ADJUST_INSN_LENGTH: Insn Lengths. (line 35)
-* ADJUST_REG_ALLOC_ORDER: Allocation Order. (line 22)
-* aggregates as return values: Aggregate Return. (line 6)
-* alias: Alias analysis. (line 6)
-* 'allocate_stack' instruction pattern: Standard Names. (line 1377)
-* ALL_REGS: Register Classes. (line 17)
-* alternate entry points: Insns. (line 146)
-* anchored addresses: Anchored Addresses. (line 6)
-* and: Arithmetic. (line 159)
-* 'and' and attributes: Expressions. (line 50)
-* 'and', canonicalization of: Insn Canonicalizations.
- (line 51)
-* 'andM3' instruction pattern: Standard Names. (line 276)
-* ANNOTATE_EXPR: Unary and Binary Expressions.
- (line 6)
-* annotations: Annotations. (line 6)
-* APPLY_RESULT_SIZE: Scalar Return. (line 112)
-* ARGS_GROW_DOWNWARD: Frame Layout. (line 34)
-* argument passing: Interface. (line 36)
-* arguments in registers: Register Arguments. (line 6)
-* arguments on stack: Stack Arguments. (line 6)
-* ARG_POINTER_CFA_OFFSET: Frame Layout. (line 192)
-* ARG_POINTER_REGNUM: Frame Registers. (line 40)
-* 'ARG_POINTER_REGNUM' and virtual registers: Regs and Memory.
- (line 65)
-* arg_pointer_rtx: Frame Registers. (line 104)
-* arithmetic library: Soft float library routines.
- (line 6)
-* arithmetic shift: Arithmetic. (line 174)
-* arithmetic shift with signed saturation: Arithmetic. (line 174)
-* arithmetic shift with unsigned saturation: Arithmetic. (line 174)
-* arithmetic, in RTL: Arithmetic. (line 6)
-* ARITHMETIC_TYPE_P: Types for C++. (line 59)
-* array: Types. (line 6)
-* ARRAY_RANGE_REF: Storage References. (line 6)
-* ARRAY_REF: Storage References. (line 6)
-* ARRAY_TYPE: Types. (line 6)
-* ashift: Arithmetic. (line 174)
-* 'ashift' and attributes: Expressions. (line 83)
-* ashiftrt: Arithmetic. (line 191)
-* 'ashiftrt' and attributes: Expressions. (line 83)
-* 'ashlM3' instruction pattern: Standard Names. (line 516)
-* 'ashrM3' instruction pattern: Standard Names. (line 526)
-* ASM_APP_OFF: File Framework. (line 76)
-* ASM_APP_ON: File Framework. (line 69)
-* ASM_COMMENT_START: File Framework. (line 64)
-* ASM_DECLARE_FUNCTION_NAME: Label Output. (line 108)
-* ASM_DECLARE_FUNCTION_SIZE: Label Output. (line 123)
-* ASM_DECLARE_OBJECT_NAME: Label Output. (line 136)
-* ASM_DECLARE_REGISTER_GLOBAL: Label Output. (line 164)
-* ASM_FINAL_SPEC: Driver. (line 81)
-* ASM_FINISH_DECLARE_OBJECT: Label Output. (line 172)
-* ASM_FORMAT_PRIVATE_NAME: Label Output. (line 391)
-* asm_fprintf: Instruction Output. (line 150)
-* ASM_FPRINTF_EXTENSIONS: Instruction Output. (line 160)
-* ASM_GENERATE_INTERNAL_LABEL: Label Output. (line 375)
-* asm_input: Side Effects. (line 295)
-* 'asm_input' and '/v': Flags. (line 76)
-* ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX: Exception Handling. (line 80)
-* asm_noperands: Insns. (line 304)
-* ASM_NO_SKIP_IN_TEXT: Alignment Output. (line 78)
-* 'asm_operands' and '/v': Flags. (line 76)
-* 'asm_operands', RTL sharing: Sharing. (line 45)
-* 'asm_operands', usage: Assembler. (line 6)
-* ASM_OUTPUT_ADDR_DIFF_ELT: Dispatch Tables. (line 8)
-* ASM_OUTPUT_ADDR_VEC_ELT: Dispatch Tables. (line 25)
-* ASM_OUTPUT_ALIGN: Alignment Output. (line 85)
-* ASM_OUTPUT_ALIGNED_BSS: Uninitialized Data. (line 45)
-* ASM_OUTPUT_ALIGNED_COMMON: Uninitialized Data. (line 29)
-* ASM_OUTPUT_ALIGNED_DECL_COMMON: Uninitialized Data. (line 36)
-* ASM_OUTPUT_ALIGNED_DECL_LOCAL: Uninitialized Data. (line 89)
-* ASM_OUTPUT_ALIGNED_LOCAL: Uninitialized Data. (line 82)
-* ASM_OUTPUT_ALIGN_WITH_NOP: Alignment Output. (line 90)
-* ASM_OUTPUT_ASCII: Data Output. (line 50)
-* ASM_OUTPUT_CASE_END: Dispatch Tables. (line 50)
-* ASM_OUTPUT_CASE_LABEL: Dispatch Tables. (line 37)
-* ASM_OUTPUT_COMMON: Uninitialized Data. (line 9)
-* ASM_OUTPUT_DEBUG_LABEL: Label Output. (line 363)
-* ASM_OUTPUT_DEF: Label Output. (line 412)
-* ASM_OUTPUT_DEF_FROM_DECLS: Label Output. (line 419)
-* ASM_OUTPUT_DWARF_DELTA: SDB and DWARF. (line 73)
-* ASM_OUTPUT_DWARF_OFFSET: SDB and DWARF. (line 82)
-* ASM_OUTPUT_DWARF_PCREL: SDB and DWARF. (line 88)
-* ASM_OUTPUT_DWARF_TABLE_REF: SDB and DWARF. (line 93)
-* ASM_OUTPUT_DWARF_VMS_DELTA: SDB and DWARF. (line 77)
-* ASM_OUTPUT_EXTERNAL: Label Output. (line 292)
-* ASM_OUTPUT_FDESC: Data Output. (line 59)
-* ASM_OUTPUT_FUNCTION_LABEL: Label Output. (line 16)
-* ASM_OUTPUT_INTERNAL_LABEL: Label Output. (line 27)
-* ASM_OUTPUT_LABEL: Label Output. (line 8)
-* ASM_OUTPUT_LABELREF: Label Output. (line 314)
-* ASM_OUTPUT_LABEL_REF: Label Output. (line 336)
-* ASM_OUTPUT_LOCAL: Uninitialized Data. (line 69)
-* ASM_OUTPUT_MAX_SKIP_ALIGN: Alignment Output. (line 94)
-* ASM_OUTPUT_MEASURED_SIZE: Label Output. (line 51)
-* ASM_OUTPUT_OPCODE: Instruction Output. (line 35)
-* ASM_OUTPUT_POOL_EPILOGUE: Data Output. (line 108)
-* ASM_OUTPUT_POOL_PROLOGUE: Data Output. (line 72)
-* ASM_OUTPUT_REG_POP: Instruction Output. (line 206)
-* ASM_OUTPUT_REG_PUSH: Instruction Output. (line 201)
-* ASM_OUTPUT_SIZE_DIRECTIVE: Label Output. (line 45)
-* ASM_OUTPUT_SKIP: Alignment Output. (line 72)
-* ASM_OUTPUT_SOURCE_FILENAME: File Framework. (line 83)
-* ASM_OUTPUT_SPECIAL_POOL_ENTRY: Data Output. (line 83)
-* ASM_OUTPUT_SYMBOL_REF: Label Output. (line 329)
-* ASM_OUTPUT_TYPE_DIRECTIVE: Label Output. (line 98)
-* ASM_OUTPUT_WEAKREF: Label Output. (line 224)
-* ASM_OUTPUT_WEAK_ALIAS: Label Output. (line 438)
-* ASM_PREFERRED_EH_DATA_FORMAT: Exception Handling. (line 66)
-* ASM_SPEC: Driver. (line 73)
-* ASM_STABD_OP: DBX Options. (line 34)
-* ASM_STABN_OP: DBX Options. (line 41)
-* ASM_STABS_OP: DBX Options. (line 28)
-* ASM_WEAKEN_DECL: Label Output. (line 216)
-* ASM_WEAKEN_LABEL: Label Output. (line 203)
-* assembler format: File Framework. (line 6)
-* assembler instructions in RTL: Assembler. (line 6)
-* ASSEMBLER_DIALECT: Instruction Output. (line 172)
-* assemble_name: Label Output. (line 8)
-* assemble_name_raw: Label Output. (line 27)
-* assigning attribute values to insns: Tagging Insns. (line 6)
-* ASSUME_EXTENDED_UNWIND_CONTEXT: Frame Registers. (line 165)
-* asterisk in template: Output Statement. (line 29)
-* AS_NEEDS_DASH_FOR_PIPED_INPUT: Driver. (line 88)
-* 'atan2M3' instruction pattern: Standard Names. (line 624)
-* atomic: GTY Options. (line 270)
-* 'atomic_addMODE' instruction pattern: Standard Names. (line 1788)
-* 'atomic_add_fetchMODE' instruction pattern: Standard Names.
- (line 1819)
-* 'atomic_andMODE' instruction pattern: Standard Names. (line 1788)
-* 'atomic_and_fetchMODE' instruction pattern: Standard Names.
- (line 1819)
-* 'atomic_compare_and_swapMODE' instruction pattern: Standard Names.
- (line 1724)
-* 'atomic_exchangeMODE' instruction pattern: Standard Names. (line 1776)
-* 'atomic_fetch_addMODE' instruction pattern: Standard Names.
- (line 1803)
-* 'atomic_fetch_andMODE' instruction pattern: Standard Names.
- (line 1803)
-* 'atomic_fetch_nandMODE' instruction pattern: Standard Names.
- (line 1803)
-* 'atomic_fetch_orMODE' instruction pattern: Standard Names. (line 1803)
-* 'atomic_fetch_subMODE' instruction pattern: Standard Names.
- (line 1803)
-* 'atomic_fetch_xorMODE' instruction pattern: Standard Names.
- (line 1803)
-* 'atomic_loadMODE' instruction pattern: Standard Names. (line 1755)
-* 'atomic_nandMODE' instruction pattern: Standard Names. (line 1788)
-* 'atomic_nand_fetchMODE' instruction pattern: Standard Names.
- (line 1819)
-* 'atomic_orMODE' instruction pattern: Standard Names. (line 1788)
-* 'atomic_or_fetchMODE' instruction pattern: Standard Names. (line 1819)
-* 'atomic_storeMODE' instruction pattern: Standard Names. (line 1765)
-* 'atomic_subMODE' instruction pattern: Standard Names. (line 1788)
-* 'atomic_sub_fetchMODE' instruction pattern: Standard Names.
- (line 1819)
-* 'atomic_test_and_set' instruction pattern: Standard Names. (line 1837)
-* 'atomic_xorMODE' instruction pattern: Standard Names. (line 1788)
-* 'atomic_xor_fetchMODE' instruction pattern: Standard Names.
- (line 1819)
-* attr: Expressions. (line 163)
-* attr <1>: Tagging Insns. (line 54)
-* attribute expressions: Expressions. (line 6)
-* attribute specifications: Attr Example. (line 6)
-* attribute specifications example: Attr Example. (line 6)
-* attributes: Attributes. (line 6)
-* attributes, defining: Defining Attributes.
- (line 6)
-* attributes, target-specific: Target Attributes. (line 6)
-* ATTRIBUTE_ALIGNED_VALUE: Storage Layout. (line 172)
-* attr_flag: Expressions. (line 138)
-* autoincrement addressing, availability: Portability. (line 20)
-* autoincrement/decrement addressing: Simple Constraints. (line 30)
-* automata_option: Processor pipeline description.
- (line 304)
-* automaton based pipeline description: Processor pipeline description.
- (line 6)
-* automaton based pipeline description <1>: Processor pipeline description.
- (line 49)
-* automaton based scheduler: Processor pipeline description.
- (line 6)
-* AVOID_CCMODE_COPIES: Values in Registers.
- (line 150)
-* backslash: Output Template. (line 46)
-* barrier: Insns. (line 176)
-* 'barrier' and '/f': Flags. (line 107)
-* 'barrier' and '/v': Flags. (line 44)
-* BASE_REG_CLASS: Register Classes. (line 111)
-* basic block: Basic Blocks. (line 6)
-* Basic Statements: Basic Statements. (line 6)
-* basic-block.h: Control Flow. (line 6)
-* basic_block: Basic Blocks. (line 6)
-* BASIC_BLOCK: Basic Blocks. (line 14)
-* BB_HEAD, BB_END: Maintaining the CFG.
- (line 76)
-* bb_seq: GIMPLE sequences. (line 72)
-* BIGGEST_ALIGNMENT: Storage Layout. (line 162)
-* BIGGEST_FIELD_ALIGNMENT: Storage Layout. (line 183)
-* BImode: Machine Modes. (line 22)
-* BIND_EXPR: Unary and Binary Expressions.
- (line 6)
-* BINFO_TYPE: Classes. (line 6)
-* bit-fields: Bit-Fields. (line 6)
-* BITFIELD_NBYTES_LIMITED: Storage Layout. (line 393)
-* BITS_BIG_ENDIAN: Storage Layout. (line 11)
-* 'BITS_BIG_ENDIAN', effect on 'sign_extract': Bit-Fields. (line 8)
-* BITS_PER_UNIT: Machine Modes. (line 345)
-* BITS_PER_WORD: Storage Layout. (line 50)
-* bitwise complement: Arithmetic. (line 155)
-* bitwise exclusive-or: Arithmetic. (line 169)
-* bitwise inclusive-or: Arithmetic. (line 164)
-* bitwise logical-and: Arithmetic. (line 159)
-* BIT_AND_EXPR: Unary and Binary Expressions.
- (line 6)
-* BIT_IOR_EXPR: Unary and Binary Expressions.
- (line 6)
-* BIT_NOT_EXPR: Unary and Binary Expressions.
- (line 6)
-* BIT_XOR_EXPR: Unary and Binary Expressions.
- (line 6)
-* BLKmode: Machine Modes. (line 185)
-* 'BLKmode', and function return values: Calls. (line 23)
-* 'blockage' instruction pattern: Standard Names. (line 1579)
-* Blocks: Blocks. (line 6)
-* BLOCK_FOR_INSN, gimple_bb: Maintaining the CFG.
- (line 28)
-* BLOCK_REG_PADDING: Register Arguments. (line 228)
-* bool: Misc. (line 891)
-* BOOLEAN_TYPE: Types. (line 6)
-* BOOL_TYPE_SIZE: Type Layout. (line 43)
-* branch prediction: Profile information.
- (line 24)
-* BRANCH_COST: Costs. (line 104)
-* break_out_memory_refs: Addressing Modes. (line 134)
-* BREAK_STMT: Statements for C++. (line 6)
-* BSS_SECTION_ASM_OP: Sections. (line 67)
-* bswap: Arithmetic. (line 247)
-* 'bswapM2' instruction pattern: Standard Names. (line 534)
-* 'btruncM2' instruction pattern: Standard Names. (line 642)
-* build0: Macros and Functions.
- (line 16)
-* build1: Macros and Functions.
- (line 17)
-* build2: Macros and Functions.
- (line 18)
-* build3: Macros and Functions.
- (line 19)
-* build4: Macros and Functions.
- (line 20)
-* build5: Macros and Functions.
- (line 21)
-* build6: Macros and Functions.
- (line 22)
-* 'builtin_longjmp' instruction pattern: Standard Names. (line 1475)
-* 'builtin_setjmp_receiver' instruction pattern: Standard Names.
- (line 1465)
-* 'builtin_setjmp_setup' instruction pattern: Standard Names.
- (line 1454)
-* BYTES_BIG_ENDIAN: Storage Layout. (line 23)
-* 'BYTES_BIG_ENDIAN', effect on 'subreg': Regs and Memory. (line 219)
-* byte_mode: Machine Modes. (line 358)
-* C statements for assembler output: Output Statement. (line 6)
-* call: Flags. (line 221)
-* call <1>: Side Effects. (line 92)
-* 'call' instruction pattern: Standard Names. (line 1120)
-* 'call' usage: Calls. (line 10)
-* 'call', in 'call_insn': Flags. (line 33)
-* 'call', in 'mem': Flags. (line 81)
-* call-clobbered register: Register Basics. (line 35)
-* call-clobbered register <1>: Register Basics. (line 46)
-* call-clobbered register <2>: Register Basics. (line 53)
-* call-saved register: Register Basics. (line 35)
-* call-saved register <1>: Register Basics. (line 46)
-* call-saved register <2>: Register Basics. (line 53)
-* call-used register: Register Basics. (line 35)
-* call-used register <1>: Register Basics. (line 46)
-* call-used register <2>: Register Basics. (line 53)
-* CALLER_SAVE_PROFITABLE: Caller Saves. (line 10)
-* calling conventions: Stack and Calling. (line 6)
-* calling functions in RTL: Calls. (line 6)
-* CALL_EXPR: Unary and Binary Expressions.
- (line 6)
-* call_insn: Insns. (line 95)
-* 'call_insn' and '/c': Flags. (line 33)
-* 'call_insn' and '/f': Flags. (line 107)
-* 'call_insn' and '/i': Flags. (line 24)
-* 'call_insn' and '/j': Flags. (line 161)
-* 'call_insn' and '/s': Flags. (line 49)
-* 'call_insn' and '/s' <1>: Flags. (line 148)
-* 'call_insn' and '/u': Flags. (line 19)
-* 'call_insn' and '/u' <1>: Flags. (line 39)
-* 'call_insn' and '/u' or '/i': Flags. (line 29)
-* 'call_insn' and '/v': Flags. (line 44)
-* CALL_INSN_FUNCTION_USAGE: Insns. (line 101)
-* 'call_pop' instruction pattern: Standard Names. (line 1148)
-* CALL_POPS_ARGS: Stack Arguments. (line 132)
-* CALL_REALLY_USED_REGISTERS: Register Basics. (line 45)
-* CALL_USED_REGISTERS: Register Basics. (line 34)
-* call_used_regs: Register Basics. (line 59)
-* 'call_value' instruction pattern: Standard Names. (line 1140)
-* 'call_value_pop' instruction pattern: Standard Names. (line 1148)
-* canadian: Configure Terms. (line 6)
-* CANNOT_CHANGE_MODE_CLASS: Register Classes. (line 533)
-* 'CANNOT_CHANGE_MODE_CLASS' and subreg semantics: Regs and Memory.
- (line 276)
-* canonicalization of instructions: Insn Canonicalizations.
- (line 6)
-* 'canonicalize_funcptr_for_compare' instruction pattern: Standard Names.
- (line 1309)
-* can_create_pseudo_p: Standard Names. (line 75)
-* can_fallthru: Basic Blocks. (line 67)
-* 'casesi' instruction pattern: Standard Names. (line 1241)
-* CASE_VECTOR_MODE: Misc. (line 26)
-* CASE_VECTOR_PC_RELATIVE: Misc. (line 39)
-* CASE_VECTOR_SHORTEN_MODE: Misc. (line 30)
-* 'cbranchMODE4' instruction pattern: Standard Names. (line 1109)
-* cc0: Regs and Memory. (line 303)
-* cc0 <1>: CC0 Condition Codes.
- (line 6)
-* 'cc0', RTL sharing: Sharing. (line 27)
-* cc0_rtx: Regs and Memory. (line 329)
-* CC1PLUS_SPEC: Driver. (line 63)
-* CC1_SPEC: Driver. (line 55)
-* CCmode: Machine Modes. (line 178)
-* CCmode <1>: MODE_CC Condition Codes.
- (line 6)
-* cc_status: CC0 Condition Codes.
- (line 6)
-* CC_STATUS_MDEP: CC0 Condition Codes.
- (line 16)
-* CC_STATUS_MDEP_INIT: CC0 Condition Codes.
- (line 22)
-* CDImode: Machine Modes. (line 204)
-* 'ceilM2' instruction pattern: Standard Names. (line 658)
-* CEIL_DIV_EXPR: Unary and Binary Expressions.
- (line 6)
-* CEIL_MOD_EXPR: Unary and Binary Expressions.
- (line 6)
-* CFA_FRAME_BASE_OFFSET: Frame Layout. (line 224)
-* CFG verification: Maintaining the CFG.
- (line 117)
-* CFG, Control Flow Graph: Control Flow. (line 6)
-* cfghooks.h: Maintaining the CFG.
- (line 6)
-* cgraph_finalize_function: Parsing pass. (line 51)
-* chain_circular: GTY Options. (line 209)
-* chain_next: GTY Options. (line 209)
-* chain_prev: GTY Options. (line 209)
-* change_address: Standard Names. (line 47)
-* CHAR_TYPE_SIZE: Type Layout. (line 38)
-* 'check_stack' instruction pattern: Standard Names. (line 1395)
-* CHImode: Machine Modes. (line 204)
-* CILK_PLUS: Cilk Plus Transformation.
- (line 6)
-* class definitions, register: Register Classes. (line 6)
-* class preference constraints: Class Preferences. (line 6)
-* class, scope: Classes. (line 6)
-* classes of RTX codes: RTL Classes. (line 6)
-* CLASSTYPE_DECLARED_CLASS: Classes. (line 6)
-* CLASSTYPE_HAS_MUTABLE: Classes. (line 85)
-* CLASSTYPE_NON_POD_P: Classes. (line 90)
-* CLASS_MAX_NREGS: Register Classes. (line 521)
-* CLASS_TYPE_P: Types for C++. (line 63)
-* Cleanups: Cleanups. (line 6)
-* CLEANUP_DECL: Statements for C++. (line 6)
-* CLEANUP_EXPR: Statements for C++. (line 6)
-* CLEANUP_POINT_EXPR: Unary and Binary Expressions.
- (line 6)
-* CLEANUP_STMT: Statements for C++. (line 6)
-* CLEAR_BY_PIECES_P: Costs. (line 187)
-* 'clear_cache' instruction pattern: Standard Names. (line 1900)
-* CLEAR_INSN_CACHE: Trampolines. (line 98)
-* CLEAR_RATIO: Costs. (line 175)
-* clobber: Side Effects. (line 106)
-* clrsb: Arithmetic. (line 216)
-* clz: Arithmetic. (line 223)
-* 'clzM2' instruction pattern: Standard Names. (line 723)
-* CLZ_DEFINED_VALUE_AT_ZERO: Misc. (line 304)
-* 'cmpmemM' instruction pattern: Standard Names. (line 863)
-* 'cmpstrM' instruction pattern: Standard Names. (line 842)
-* 'cmpstrnM' instruction pattern: Standard Names. (line 829)
-* code generation RTL sequences: Expander Definitions.
- (line 6)
-* code iterators in '.md' files: Code Iterators. (line 6)
-* codes, RTL expression: RTL Objects. (line 47)
-* code_label: Insns. (line 125)
-* CODE_LABEL: Basic Blocks. (line 50)
-* 'code_label' and '/i': Flags. (line 59)
-* 'code_label' and '/v': Flags. (line 44)
-* CODE_LABEL_NUMBER: Insns. (line 125)
-* COImode: Machine Modes. (line 204)
-* COLLECT2_HOST_INITIALIZATION: Host Misc. (line 32)
-* COLLECT_EXPORT_LIST: Misc. (line 791)
-* COLLECT_SHARED_FINI_FUNC: Macros for Initialization.
- (line 43)
-* COLLECT_SHARED_INIT_FUNC: Macros for Initialization.
- (line 32)
-* commit_edge_insertions: Maintaining the CFG.
- (line 105)
-* compare: Arithmetic. (line 46)
-* 'compare', canonicalization of: Insn Canonicalizations.
- (line 36)
-* comparison_operator: Machine-Independent Predicates.
- (line 110)
-* compiler passes and files: Passes. (line 6)
-* complement, bitwise: Arithmetic. (line 155)
-* COMPLEX_CST: Constant expressions.
- (line 6)
-* COMPLEX_EXPR: Unary and Binary Expressions.
- (line 6)
-* COMPLEX_TYPE: Types. (line 6)
-* COMPONENT_REF: Storage References. (line 6)
-* Compound Expressions: Compound Expressions.
- (line 6)
-* Compound Lvalues: Compound Lvalues. (line 6)
-* COMPOUND_EXPR: Unary and Binary Expressions.
- (line 6)
-* COMPOUND_LITERAL_EXPR: Unary and Binary Expressions.
- (line 6)
-* COMPOUND_LITERAL_EXPR_DECL: Unary and Binary Expressions.
- (line 377)
-* COMPOUND_LITERAL_EXPR_DECL_EXPR: Unary and Binary Expressions.
- (line 377)
-* computed jump: Edges. (line 127)
-* computing the length of an insn: Insn Lengths. (line 6)
-* concat: Regs and Memory. (line 381)
-* concatn: Regs and Memory. (line 387)
-* cond: Comparisons. (line 90)
-* 'cond' and attributes: Expressions. (line 37)
-* condition code register: Regs and Memory. (line 303)
-* condition code status: Condition Code. (line 6)
-* condition codes: Comparisons. (line 20)
-* conditional execution: Conditional Execution.
- (line 6)
-* Conditional Expressions: Conditional Expressions.
- (line 6)
-* conditions, in patterns: Patterns. (line 43)
-* cond_exec: Side Effects. (line 253)
-* COND_EXPR: Unary and Binary Expressions.
- (line 6)
-* configuration file: Filesystem. (line 6)
-* configuration file <1>: Host Misc. (line 6)
-* configure terms: Configure Terms. (line 6)
-* CONJ_EXPR: Unary and Binary Expressions.
- (line 6)
-* const: Constants. (line 109)
-* const0_rtx: Constants. (line 21)
-* CONST0_RTX: Constants. (line 129)
-* const1_rtx: Constants. (line 21)
-* CONST1_RTX: Constants. (line 129)
-* const2_rtx: Constants. (line 21)
-* CONST2_RTX: Constants. (line 129)
-* constant attributes: Constant Attributes.
- (line 6)
-* constant definitions: Constant Definitions.
- (line 6)
-* constants in constraints: Simple Constraints. (line 68)
-* CONSTANT_ADDRESS_P: Addressing Modes. (line 28)
-* CONSTANT_ALIGNMENT: Storage Layout. (line 236)
-* CONSTANT_P: Addressing Modes. (line 35)
-* CONSTANT_POOL_ADDRESS_P: Flags. (line 10)
-* CONSTANT_POOL_BEFORE_FUNCTION: Data Output. (line 64)
-* constm1_rtx: Constants. (line 21)
-* constraint modifier characters: Modifiers. (line 6)
-* constraint, matching: Simple Constraints. (line 140)
-* constraints: Constraints. (line 6)
-* constraints, defining: Define Constraints. (line 6)
-* constraints, defining, obsolete method: Old Constraints. (line 6)
-* constraints, machine specific: Machine Constraints.
- (line 6)
-* constraints, testing: C Constraint Interface.
- (line 6)
-* CONSTRAINT_LEN: Old Constraints. (line 11)
-* constraint_num: C Constraint Interface.
- (line 37)
-* constraint_satisfied_p: C Constraint Interface.
- (line 52)
-* CONSTRUCTOR: Unary and Binary Expressions.
- (line 6)
-* constructors, automatic calls: Collect2. (line 15)
-* constructors, output of: Initialization. (line 6)
-* CONST_DECL: Declarations. (line 6)
-* const_double: Constants. (line 37)
-* 'const_double', RTL sharing: Sharing. (line 29)
-* CONST_DOUBLE_LOW: Constants. (line 49)
-* CONST_DOUBLE_OK_FOR_CONSTRAINT_P: Old Constraints. (line 66)
-* CONST_DOUBLE_OK_FOR_LETTER_P: Old Constraints. (line 51)
-* const_double_operand: Machine-Independent Predicates.
- (line 20)
-* const_fixed: Constants. (line 62)
-* const_int: Constants. (line 8)
-* 'const_int' and attribute tests: Expressions. (line 47)
-* 'const_int' and attributes: Expressions. (line 10)
-* 'const_int', RTL sharing: Sharing. (line 23)
-* const_int_operand: Machine-Independent Predicates.
- (line 15)
-* CONST_OK_FOR_CONSTRAINT_P: Old Constraints. (line 46)
-* CONST_OK_FOR_LETTER_P: Old Constraints. (line 38)
-* const_string: Constants. (line 81)
-* 'const_string' and attributes: Expressions. (line 20)
-* const_true_rtx: Constants. (line 31)
-* const_vector: Constants. (line 69)
-* 'const_vector', RTL sharing: Sharing. (line 32)
-* container: Containers. (line 6)
-* CONTINUE_STMT: Statements for C++. (line 6)
-* contributors: Contributors. (line 6)
-* controlling register usage: Register Basics. (line 73)
-* controlling the compilation driver: Driver. (line 6)
-* conventions, run-time: Interface. (line 6)
-* conversions: Conversions. (line 6)
-* CONVERT_EXPR: Unary and Binary Expressions.
- (line 6)
-* 'copysignM3' instruction pattern: Standard Names. (line 704)
-* copy_rtx: Addressing Modes. (line 189)
-* copy_rtx_if_shared: Sharing. (line 64)
-* 'cosM2' instruction pattern: Standard Names. (line 570)
-* costs of instructions: Costs. (line 6)
-* CPLUSPLUS_CPP_SPEC: Driver. (line 50)
-* CPP_SPEC: Driver. (line 43)
-* CP_INTEGRAL_TYPE: Types for C++. (line 55)
-* cp_namespace_decls: Namespaces. (line 49)
-* CP_TYPE_CONST_NON_VOLATILE_P: Types for C++. (line 33)
-* CP_TYPE_CONST_P: Types for C++. (line 24)
-* cp_type_quals: Types for C++. (line 6)
-* cp_type_quals <1>: Types for C++. (line 16)
-* CP_TYPE_RESTRICT_P: Types for C++. (line 30)
-* CP_TYPE_VOLATILE_P: Types for C++. (line 27)
-* CQImode: Machine Modes. (line 204)
-* cross compilation and floating point: Floating Point. (line 6)
-* crtl->args.pops_args: Function Entry. (line 104)
-* crtl->args.pretend_args_size: Function Entry. (line 110)
-* crtl->outgoing_args_size: Stack Arguments. (line 48)
-* CRTSTUFF_T_CFLAGS: Target Fragment. (line 15)
-* CRTSTUFF_T_CFLAGS_S: Target Fragment. (line 19)
-* CRT_CALL_STATIC_FUNCTION: Sections. (line 120)
-* CSImode: Machine Modes. (line 204)
-* 'cstoreMODE4' instruction pattern: Standard Names. (line 1070)
-* CTImode: Machine Modes. (line 204)
-* 'ctrapMM4' instruction pattern: Standard Names. (line 1547)
-* ctz: Arithmetic. (line 231)
-* 'ctzM2' instruction pattern: Standard Names. (line 732)
-* CTZ_DEFINED_VALUE_AT_ZERO: Misc. (line 305)
-* CUMULATIVE_ARGS: Register Arguments. (line 126)
-* current_function_is_leaf: Leaf Functions. (line 50)
-* current_function_uses_only_leaf_regs: Leaf Functions. (line 50)
-* current_insn_predicate: Conditional Execution.
- (line 27)
-* C_COMMON_OVERRIDE_OPTIONS: Run-time Target. (line 136)
-* c_register_pragma: Misc. (line 407)
-* c_register_pragma_with_expansion: Misc. (line 409)
-* DAmode: Machine Modes. (line 154)
-* data bypass: Processor pipeline description.
- (line 105)
-* data bypass <1>: Processor pipeline description.
- (line 196)
-* data dependence delays: Processor pipeline description.
- (line 6)
-* Data Dependency Analysis: Dependency analysis.
- (line 6)
-* data structures: Per-Function Data. (line 6)
-* DATA_ABI_ALIGNMENT: Storage Layout. (line 228)
-* DATA_ALIGNMENT: Storage Layout. (line 215)
-* DATA_SECTION_ASM_OP: Sections. (line 52)
-* DBR_OUTPUT_SEQEND: Instruction Output. (line 133)
-* dbr_sequence_length: Instruction Output. (line 133)
-* DBX_BLOCKS_FUNCTION_RELATIVE: DBX Options. (line 100)
-* DBX_CONTIN_CHAR: DBX Options. (line 63)
-* DBX_CONTIN_LENGTH: DBX Options. (line 53)
-* DBX_DEBUGGING_INFO: DBX Options. (line 8)
-* DBX_FUNCTION_FIRST: DBX Options. (line 94)
-* DBX_LINES_FUNCTION_RELATIVE: DBX Options. (line 106)
-* DBX_NO_XREFS: DBX Options. (line 47)
-* DBX_OUTPUT_MAIN_SOURCE_FILENAME: File Names and DBX. (line 8)
-* DBX_OUTPUT_MAIN_SOURCE_FILE_END: File Names and DBX. (line 33)
-* DBX_OUTPUT_NULL_N_SO_AT_MAIN_SOURCE_FILE_END: File Names and DBX.
- (line 41)
-* DBX_OUTPUT_SOURCE_LINE: DBX Hooks. (line 8)
-* DBX_REGISTER_NUMBER: All Debuggers. (line 8)
-* DBX_REGPARM_STABS_CODE: DBX Options. (line 84)
-* DBX_REGPARM_STABS_LETTER: DBX Options. (line 89)
-* DBX_STATIC_CONST_VAR_CODE: DBX Options. (line 79)
-* DBX_STATIC_STAB_DATA_SECTION: DBX Options. (line 70)
-* DBX_TYPE_DECL_STABS_CODE: DBX Options. (line 75)
-* DBX_USE_BINCL: DBX Options. (line 112)
-* DCmode: Machine Modes. (line 199)
-* DDmode: Machine Modes. (line 93)
-* De Morgan's law: Insn Canonicalizations.
- (line 51)
-* dead_or_set_p: define_peephole. (line 65)
-* DEBUGGER_ARG_OFFSET: All Debuggers. (line 36)
-* DEBUGGER_AUTO_OFFSET: All Debuggers. (line 27)
-* debug_expr: Debug Information. (line 22)
-* DEBUG_EXPR_DECL: Declarations. (line 6)
-* debug_insn: Insns. (line 236)
-* DEBUG_SYMS_TEXT: DBX Options. (line 24)
-* decimal float library: Decimal float library routines.
- (line 6)
-* declaration: Declarations. (line 6)
-* declarations, RTL: RTL Declarations. (line 6)
-* DECLARE_LIBRARY_RENAMES: Library Calls. (line 8)
-* DECL_ALIGN: Declarations. (line 6)
-* DECL_ANTICIPATED: Functions for C++. (line 42)
-* DECL_ARGUMENTS: Function Basics. (line 36)
-* DECL_ARRAY_DELETE_OPERATOR_P: Functions for C++. (line 158)
-* DECL_ARTIFICIAL: Working with declarations.
- (line 24)
-* DECL_ARTIFICIAL <1>: Function Basics. (line 6)
-* DECL_ARTIFICIAL <2>: Function Properties.
- (line 47)
-* DECL_ASSEMBLER_NAME: Function Basics. (line 6)
-* DECL_ASSEMBLER_NAME <1>: Function Basics. (line 19)
-* DECL_ATTRIBUTES: Attributes. (line 21)
-* DECL_BASE_CONSTRUCTOR_P: Functions for C++. (line 88)
-* DECL_COMPLETE_CONSTRUCTOR_P: Functions for C++. (line 84)
-* DECL_COMPLETE_DESTRUCTOR_P: Functions for C++. (line 98)
-* DECL_CONSTRUCTOR_P: Functions for C++. (line 77)
-* DECL_CONST_MEMFUNC_P: Functions for C++. (line 71)
-* DECL_CONTEXT: Namespaces. (line 31)
-* DECL_CONV_FN_P: Functions for C++. (line 105)
-* DECL_COPY_CONSTRUCTOR_P: Functions for C++. (line 92)
-* DECL_DESTRUCTOR_P: Functions for C++. (line 95)
-* DECL_EXTERNAL: Declarations. (line 6)
-* DECL_EXTERNAL <1>: Function Properties.
- (line 25)
-* DECL_EXTERN_C_FUNCTION_P: Functions for C++. (line 46)
-* DECL_FUNCTION_MEMBER_P: Functions for C++. (line 61)
-* DECL_FUNCTION_SPECIFIC_OPTIMIZATION: Function Basics. (line 6)
-* DECL_FUNCTION_SPECIFIC_OPTIMIZATION <1>: Function Properties.
- (line 61)
-* DECL_FUNCTION_SPECIFIC_TARGET: Function Basics. (line 6)
-* DECL_FUNCTION_SPECIFIC_TARGET <1>: Function Properties.
- (line 55)
-* DECL_GLOBAL_CTOR_P: Functions for C++. (line 108)
-* DECL_GLOBAL_DTOR_P: Functions for C++. (line 112)
-* DECL_INITIAL: Declarations. (line 6)
-* DECL_INITIAL <1>: Function Basics. (line 51)
-* DECL_LINKONCE_P: Functions for C++. (line 50)
-* DECL_LOCAL_FUNCTION_P: Functions for C++. (line 38)
-* DECL_MAIN_P: Functions for C++. (line 34)
-* DECL_NAME: Working with declarations.
- (line 7)
-* DECL_NAME <1>: Function Basics. (line 6)
-* DECL_NAME <2>: Function Basics. (line 9)
-* DECL_NAME <3>: Namespaces. (line 20)
-* DECL_NAMESPACE_ALIAS: Namespaces. (line 35)
-* DECL_NAMESPACE_STD_P: Namespaces. (line 45)
-* DECL_NONCONVERTING_P: Functions for C++. (line 80)
-* DECL_NONSTATIC_MEMBER_FUNCTION_P: Functions for C++. (line 68)
-* DECL_NON_THUNK_FUNCTION_P: Functions for C++. (line 138)
-* DECL_OVERLOADED_OPERATOR_P: Functions for C++. (line 102)
-* DECL_PURE_P: Function Properties.
- (line 40)
-* DECL_RESULT: Function Basics. (line 41)
-* DECL_SAVED_TREE: Function Basics. (line 44)
-* DECL_SIZE: Declarations. (line 6)
-* DECL_STATIC_FUNCTION_P: Functions for C++. (line 65)
-* DECL_STMT: Statements for C++. (line 6)
-* DECL_STMT_DECL: Statements for C++. (line 6)
-* DECL_THUNK_P: Functions for C++. (line 116)
-* DECL_VIRTUAL_P: Function Properties.
- (line 44)
-* DECL_VOLATILE_MEMFUNC_P: Functions for C++. (line 74)
-* 'decrement_and_branch_until_zero' instruction pattern: Standard Names.
- (line 1278)
-* default: GTY Options. (line 82)
-* default_file_start: File Framework. (line 8)
-* DEFAULT_GDB_EXTENSIONS: DBX Options. (line 17)
-* DEFAULT_PCC_STRUCT_RETURN: Aggregate Return. (line 34)
-* DEFAULT_SIGNED_CHAR: Type Layout. (line 160)
-* define_address_constraint: Define Constraints. (line 99)
-* define_asm_attributes: Tagging Insns. (line 73)
-* define_attr: Defining Attributes.
- (line 6)
-* define_automaton: Processor pipeline description.
- (line 53)
-* define_bypass: Processor pipeline description.
- (line 196)
-* define_code_attr: Code Iterators. (line 6)
-* define_code_iterator: Code Iterators. (line 6)
-* define_cond_exec: Conditional Execution.
- (line 13)
-* define_constants: Constant Definitions.
- (line 6)
-* define_constraint: Define Constraints. (line 45)
-* define_cpu_unit: Processor pipeline description.
- (line 68)
-* define_c_enum: Constant Definitions.
- (line 49)
-* define_delay: Delay Slots. (line 25)
-* define_enum: Constant Definitions.
- (line 118)
-* define_enum_attr: Defining Attributes.
- (line 83)
-* define_enum_attr <1>: Constant Definitions.
- (line 136)
-* define_expand: Expander Definitions.
- (line 11)
-* define_insn: Patterns. (line 6)
-* 'define_insn' example: Example. (line 6)
-* define_insn_and_split: Insn Splitting. (line 170)
-* define_insn_reservation: Processor pipeline description.
- (line 105)
-* define_int_attr: Int Iterators. (line 6)
-* define_int_iterator: Int Iterators. (line 6)
-* define_memory_constraint: Define Constraints. (line 80)
-* define_mode_attr: Substitutions. (line 6)
-* define_mode_iterator: Defining Mode Iterators.
- (line 6)
-* define_peephole: define_peephole. (line 6)
-* define_peephole2: define_peephole2. (line 6)
-* define_predicate: Defining Predicates.
- (line 6)
-* define_query_cpu_unit: Processor pipeline description.
- (line 90)
-* define_register_constraint: Define Constraints. (line 26)
-* define_reservation: Processor pipeline description.
- (line 185)
-* define_special_predicate: Defining Predicates.
- (line 6)
-* define_split: Insn Splitting. (line 32)
-* define_subst: Define Subst. (line 6)
-* define_subst <1>: Define Subst Example.
- (line 6)
-* define_subst <2>: Define Subst Pattern Matching.
- (line 6)
-* define_subst <3>: Define Subst Output Template.
- (line 6)
-* define_subst <4>: Define Subst. (line 14)
-* define_subst <5>: Subst Iterators. (line 6)
-* define_subst_attr: Subst Iterators. (line 6)
-* define_subst_attr <1>: Subst Iterators. (line 26)
-* defining attributes and their values: Defining Attributes.
- (line 6)
-* defining constraints: Define Constraints. (line 6)
-* defining constraints, obsolete method: Old Constraints. (line 6)
-* defining jump instruction patterns: Jump Patterns. (line 6)
-* defining looping instruction patterns: Looping Patterns. (line 6)
-* defining peephole optimizers: Peephole Definitions.
- (line 6)
-* defining predicates: Defining Predicates.
- (line 6)
-* defining RTL sequences for code generation: Expander Definitions.
- (line 6)
-* delay slots, defining: Delay Slots. (line 6)
-* deletable: GTY Options. (line 158)
-* DELETE_IF_ORDINARY: Filesystem. (line 79)
-* Dependent Patterns: Dependent Patterns. (line 6)
-* desc: GTY Options. (line 82)
-* destructors, output of: Initialization. (line 6)
-* deterministic finite state automaton: Processor pipeline description.
- (line 6)
-* deterministic finite state automaton <1>: Processor pipeline description.
- (line 304)
-* DFmode: Machine Modes. (line 76)
-* DF_SIZE: Type Layout. (line 136)
-* digits in constraint: Simple Constraints. (line 128)
-* DImode: Machine Modes. (line 45)
-* directory options .md: Including Patterns. (line 45)
-* DIR_SEPARATOR: Filesystem. (line 18)
-* DIR_SEPARATOR_2: Filesystem. (line 19)
-* disabling certain registers: Register Basics. (line 73)
-* dispatch table: Dispatch Tables. (line 8)
-* div: Arithmetic. (line 117)
-* 'div' and attributes: Expressions. (line 83)
-* division: Arithmetic. (line 117)
-* division <1>: Arithmetic. (line 131)
-* division <2>: Arithmetic. (line 137)
-* 'divM3' instruction pattern: Standard Names. (line 276)
-* 'divmodM4' instruction pattern: Standard Names. (line 496)
-* DOLLARS_IN_IDENTIFIERS: Misc. (line 452)
-* 'doloop_begin' instruction pattern: Standard Names. (line 1300)
-* 'doloop_end' instruction pattern: Standard Names. (line 1288)
-* DONE: Expander Definitions.
- (line 77)
-* DONT_USE_BUILTIN_SETJMP: Exception Region Output.
- (line 77)
-* DOUBLE_TYPE_SIZE: Type Layout. (line 52)
-* DO_BODY: Statements for C++. (line 6)
-* DO_COND: Statements for C++. (line 6)
-* DO_STMT: Statements for C++. (line 6)
-* DQmode: Machine Modes. (line 118)
-* driver: Driver. (line 6)
-* DRIVER_SELF_SPECS: Driver. (line 8)
-* dump examples: Dump examples. (line 6)
-* dump setup: Dump setup. (line 6)
-* dump types: Dump types. (line 6)
-* dump verbosity: Dump output verbosity.
- (line 6)
-* DUMPFILE_FORMAT: Filesystem. (line 67)
-* dump_basic_block: Dump types. (line 29)
-* dump_generic_expr: Dump types. (line 31)
-* dump_gimple_stmt: Dump types. (line 33)
-* dump_printf: Dump types. (line 6)
-* DWARF2_ASM_LINE_DEBUG_INFO: SDB and DWARF. (line 49)
-* DWARF2_DEBUGGING_INFO: SDB and DWARF. (line 12)
-* DWARF2_FRAME_INFO: SDB and DWARF. (line 29)
-* DWARF2_FRAME_REG_OUT: Frame Registers. (line 151)
-* DWARF2_UNWIND_INFO: Exception Region Output.
- (line 38)
-* DWARF_ALT_FRAME_RETURN_COLUMN: Frame Layout. (line 150)
-* DWARF_CIE_DATA_ALIGNMENT: Exception Region Output.
- (line 89)
-* DWARF_FRAME_REGISTERS: Frame Registers. (line 109)
-* DWARF_FRAME_REGNUM: Frame Registers. (line 143)
-* DWARF_REG_TO_UNWIND_COLUMN: Frame Registers. (line 134)
-* DWARF_ZERO_REG: Frame Layout. (line 161)
-* DYNAMIC_CHAIN_ADDRESS: Frame Layout. (line 90)
-* 'E' in constraint: Simple Constraints. (line 87)
-* earlyclobber operand: Modifiers. (line 25)
-* edge: Edges. (line 6)
-* edge in the flow graph: Edges. (line 6)
-* edge iterators: Edges. (line 15)
-* edge splitting: Maintaining the CFG.
- (line 105)
-* EDGE_ABNORMAL: Edges. (line 127)
-* EDGE_ABNORMAL, EDGE_ABNORMAL_CALL: Edges. (line 171)
-* EDGE_ABNORMAL, EDGE_EH: Edges. (line 95)
-* EDGE_ABNORMAL, EDGE_SIBCALL: Edges. (line 121)
-* EDGE_FALLTHRU, force_nonfallthru: Edges. (line 85)
-* 'EDOM', implicit usage: Library Calls. (line 59)
-* EH_FRAME_IN_DATA_SECTION: Exception Region Output.
- (line 19)
-* EH_FRAME_SECTION_NAME: Exception Region Output.
- (line 9)
-* 'eh_return' instruction pattern: Standard Names. (line 1481)
-* EH_RETURN_DATA_REGNO: Exception Handling. (line 6)
-* EH_RETURN_HANDLER_RTX: Exception Handling. (line 38)
-* EH_RETURN_STACKADJ_RTX: Exception Handling. (line 21)
-* EH_TABLES_CAN_BE_READ_ONLY: Exception Region Output.
- (line 28)
-* EH_USES: Function Entry. (line 155)
-* ei_edge: Edges. (line 43)
-* ei_end_p: Edges. (line 27)
-* ei_last: Edges. (line 23)
-* ei_next: Edges. (line 35)
-* ei_one_before_end_p: Edges. (line 31)
-* ei_prev: Edges. (line 39)
-* ei_safe_safe: Edges. (line 47)
-* ei_start: Edges. (line 19)
-* ELIMINABLE_REGS: Elimination. (line 46)
-* ELSE_CLAUSE: Statements for C++. (line 6)
-* Embedded C: Fixed-point fractional library routines.
- (line 6)
-* EMIT_MODE_SET: Mode Switching. (line 74)
-* Empty Statements: Empty Statements. (line 6)
-* EMPTY_CLASS_EXPR: Statements for C++. (line 6)
-* EMPTY_FIELD_BOUNDARY: Storage Layout. (line 306)
-* Emulated TLS: Emulated TLS. (line 6)
-* enabled: Disable Insn Alternatives.
- (line 6)
-* ENDFILE_SPEC: Driver. (line 155)
-* endianness: Portability. (line 20)
-* ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR: Basic Blocks. (line 10)
-* enum machine_mode: Machine Modes. (line 6)
-* enum reg_class: Register Classes. (line 70)
-* ENUMERAL_TYPE: Types. (line 6)
-* enumerations: Constant Definitions.
- (line 49)
-* epilogue: Function Entry. (line 6)
-* 'epilogue' instruction pattern: Standard Names. (line 1519)
-* EPILOGUE_USES: Function Entry. (line 149)
-* eq: Comparisons. (line 52)
-* 'eq' and attributes: Expressions. (line 83)
-* equal: Comparisons. (line 52)
-* eq_attr: Expressions. (line 104)
-* EQ_EXPR: Unary and Binary Expressions.
- (line 6)
-* 'errno', implicit usage: Library Calls. (line 71)
-* EXACT_DIV_EXPR: Unary and Binary Expressions.
- (line 6)
-* examining SSA_NAMEs: SSA. (line 214)
-* exception handling: Edges. (line 95)
-* exception handling <1>: Exception Handling. (line 6)
-* 'exception_receiver' instruction pattern: Standard Names. (line 1446)
-* exclamation point: Multi-Alternative. (line 47)
-* exclusion_set: Processor pipeline description.
- (line 223)
-* exclusive-or, bitwise: Arithmetic. (line 169)
-* EXIT_EXPR: Unary and Binary Expressions.
- (line 6)
-* EXIT_IGNORE_STACK: Function Entry. (line 137)
-* expander definitions: Expander Definitions.
- (line 6)
-* 'expM2' instruction pattern: Standard Names. (line 599)
-* expression: Expression trees. (line 6)
-* expression codes: RTL Objects. (line 47)
-* EXPR_FILENAME: Working with declarations.
- (line 14)
-* EXPR_LINENO: Working with declarations.
- (line 20)
-* expr_list: Insns. (line 540)
-* EXPR_STMT: Statements for C++. (line 6)
-* EXPR_STMT_EXPR: Statements for C++. (line 6)
-* 'extendMN2' instruction pattern: Standard Names. (line 921)
-* extensible constraints: Simple Constraints. (line 171)
-* EXTRA_ADDRESS_CONSTRAINT: Old Constraints. (line 120)
-* EXTRA_CONSTRAINT: Old Constraints. (line 71)
-* EXTRA_CONSTRAINT_STR: Old Constraints. (line 92)
-* EXTRA_MEMORY_CONSTRAINT: Old Constraints. (line 97)
-* EXTRA_SPECS: Driver. (line 182)
-* 'extv' instruction pattern: Standard Names. (line 1012)
-* 'extvM' instruction pattern: Standard Names. (line 957)
-* 'extvmisalignM' instruction pattern: Standard Names. (line 967)
-* 'extzv' instruction pattern: Standard Names. (line 1030)
-* 'extzvM' instruction pattern: Standard Names. (line 981)
-* 'extzvmisalignM' instruction pattern: Standard Names. (line 984)
-* 'F' in constraint: Simple Constraints. (line 92)
-* FAIL: Expander Definitions.
- (line 83)
-* fall-thru: Edges. (line 68)
-* FATAL_EXIT_CODE: Host Misc. (line 6)
-* FDL, GNU Free Documentation License: GNU Free Documentation License.
- (line 6)
-* features, optional, in system conventions: Run-time Target.
- (line 59)
-* ffs: Arithmetic. (line 211)
-* 'ffsM2' instruction pattern: Standard Names. (line 713)
-* FIELD_DECL: Declarations. (line 6)
-* files and passes of the compiler: Passes. (line 6)
-* files, generated: Files. (line 6)
-* file_end_indicate_exec_stack: File Framework. (line 39)
-* final_absence_set: Processor pipeline description.
- (line 223)
-* FINAL_PRESCAN_INSN: Instruction Output. (line 60)
-* final_presence_set: Processor pipeline description.
- (line 223)
-* final_sequence: Instruction Output. (line 144)
-* FIND_BASE_TERM: Addressing Modes. (line 117)
-* finite state automaton minimization: Processor pipeline description.
- (line 304)
-* FINI_ARRAY_SECTION_ASM_OP: Sections. (line 113)
-* FINI_SECTION_ASM_OP: Sections. (line 98)
-* FIRST_PARM_OFFSET: Frame Layout. (line 65)
-* 'FIRST_PARM_OFFSET' and virtual registers: Regs and Memory.
- (line 65)
-* FIRST_PSEUDO_REGISTER: Register Basics. (line 8)
-* FIRST_STACK_REG: Stack Registers. (line 26)
-* FIRST_VIRTUAL_REGISTER: Regs and Memory. (line 51)
-* fix: Conversions. (line 66)
-* fixed register: Register Basics. (line 15)
-* fixed-point fractional library: Fixed-point fractional library routines.
- (line 6)
-* FIXED_CONVERT_EXPR: Unary and Binary Expressions.
- (line 6)
-* FIXED_CST: Constant expressions.
- (line 6)
-* FIXED_POINT_TYPE: Types. (line 6)
-* FIXED_REGISTERS: Register Basics. (line 14)
-* fixed_regs: Register Basics. (line 59)
-* 'fixMN2' instruction pattern: Standard Names. (line 888)
-* 'fixunsMN2' instruction pattern: Standard Names. (line 897)
-* 'fixuns_truncMN2' instruction pattern: Standard Names. (line 912)
-* 'fix_truncMN2' instruction pattern: Standard Names. (line 908)
-* FIX_TRUNC_EXPR: Unary and Binary Expressions.
- (line 6)
-* flags in RTL expression: Flags. (line 6)
-* float: Conversions. (line 58)
-* floating point and cross compilation: Floating Point. (line 6)
-* 'floatMN2' instruction pattern: Standard Names. (line 880)
-* 'floatunsMN2' instruction pattern: Standard Names. (line 884)
-* FLOAT_EXPR: Unary and Binary Expressions.
- (line 6)
-* float_extend: Conversions. (line 33)
-* FLOAT_LIB_COMPARE_RETURNS_BOOL: Library Calls. (line 32)
-* FLOAT_STORE_FLAG_VALUE: Misc. (line 286)
-* float_truncate: Conversions. (line 53)
-* FLOAT_TYPE_SIZE: Type Layout. (line 48)
-* FLOAT_WORDS_BIG_ENDIAN: Storage Layout. (line 41)
-* 'FLOAT_WORDS_BIG_ENDIAN', (lack of) effect on 'subreg': Regs and Memory.
- (line 224)
-* 'floorM2' instruction pattern: Standard Names. (line 634)
-* FLOOR_DIV_EXPR: Unary and Binary Expressions.
- (line 6)
-* FLOOR_MOD_EXPR: Unary and Binary Expressions.
- (line 6)
-* flow-insensitive alias analysis: Alias analysis. (line 6)
-* flow-sensitive alias analysis: Alias analysis. (line 6)
-* fma: Arithmetic. (line 112)
-* 'fmaM4' instruction pattern: Standard Names. (line 286)
-* 'fmodM3' instruction pattern: Standard Names. (line 552)
-* 'fmsM4' instruction pattern: Standard Names. (line 293)
-* 'fnmaM4' instruction pattern: Standard Names. (line 299)
-* 'fnmsM4' instruction pattern: Standard Names. (line 305)
-* FORCE_CODE_SECTION_ALIGN: Sections. (line 144)
-* force_reg: Standard Names. (line 36)
-* FOR_BODY: Statements for C++. (line 6)
-* FOR_COND: Statements for C++. (line 6)
-* FOR_EXPR: Statements for C++. (line 6)
-* FOR_INIT_STMT: Statements for C++. (line 6)
-* FOR_STMT: Statements for C++. (line 6)
-* fractional types: Fixed-point fractional library routines.
- (line 6)
-* 'fractMN2' instruction pattern: Standard Names. (line 930)
-* 'fractunsMN2' instruction pattern: Standard Names. (line 945)
-* fract_convert: Conversions. (line 82)
-* FRACT_TYPE_SIZE: Type Layout. (line 67)
-* frame layout: Frame Layout. (line 6)
-* FRAME_ADDR_RTX: Frame Layout. (line 114)
-* FRAME_GROWS_DOWNWARD: Frame Layout. (line 30)
-* 'FRAME_GROWS_DOWNWARD' and virtual registers: Regs and Memory.
- (line 69)
-* FRAME_POINTER_CFA_OFFSET: Frame Layout. (line 210)
-* frame_pointer_needed: Function Entry. (line 34)
-* FRAME_POINTER_REGNUM: Frame Registers. (line 13)
-* 'FRAME_POINTER_REGNUM' and virtual registers: Regs and Memory.
- (line 74)
-* frame_pointer_rtx: Frame Registers. (line 104)
-* frame_related: Flags. (line 229)
-* 'frame_related', in 'insn', 'call_insn', 'jump_insn', 'barrier', and 'set': Flags.
- (line 107)
-* 'frame_related', in 'mem': Flags. (line 85)
-* 'frame_related', in 'reg': Flags. (line 94)
-* 'frame_related', in 'symbol_ref': Flags. (line 165)
-* frequency, count, BB_FREQ_BASE: Profile information.
- (line 30)
-* 'ftruncM2' instruction pattern: Standard Names. (line 903)
-* function: Functions. (line 6)
-* function <1>: Functions for C++. (line 6)
-* function call conventions: Interface. (line 6)
-* function entry and exit: Function Entry. (line 6)
-* function entry point, alternate function entry point: Edges.
- (line 180)
-* function properties: Function Properties.
- (line 6)
-* function-call insns: Calls. (line 6)
-* functions, leaf: Leaf Functions. (line 6)
-* FUNCTION_ARG_OFFSET: Register Arguments. (line 196)
-* FUNCTION_ARG_PADDING: Register Arguments. (line 203)
-* FUNCTION_ARG_REGNO_P: Register Arguments. (line 251)
-* FUNCTION_BOUNDARY: Storage Layout. (line 159)
-* FUNCTION_DECL: Functions. (line 6)
-* FUNCTION_DECL <1>: Functions for C++. (line 6)
-* FUNCTION_MODE: Misc. (line 341)
-* FUNCTION_PROFILER: Profiling. (line 8)
-* FUNCTION_TYPE: Types. (line 6)
-* FUNCTION_VALUE: Scalar Return. (line 52)
-* FUNCTION_VALUE_REGNO_P: Scalar Return. (line 78)
-* fundamental type: Types. (line 6)
-* 'G' in constraint: Simple Constraints. (line 96)
-* 'g' in constraint: Simple Constraints. (line 118)
-* garbage collector, invocation: Invoking the garbage collector.
- (line 6)
-* garbage collector, troubleshooting: Troubleshooting. (line 6)
-* GCC and portability: Portability. (line 6)
-* GCC_DRIVER_HOST_INITIALIZATION: Host Misc. (line 36)
-* gcov_type: Profile information.
- (line 41)
-* ge: Comparisons. (line 72)
-* 'ge' and attributes: Expressions. (line 83)
-* gencodes: RTL passes. (line 18)
-* general_operand: Machine-Independent Predicates.
- (line 104)
-* GENERAL_REGS: Register Classes. (line 22)
-* generated files: Files. (line 6)
-* generating assembler output: Output Statement. (line 6)
-* generating insns: RTL Template. (line 6)
-* GENERIC: Parsing pass. (line 6)
-* GENERIC <1>: GENERIC. (line 6)
-* generic predicates: Machine-Independent Predicates.
- (line 6)
-* genflags: RTL passes. (line 18)
-* GEN_ERRNO_RTX: Library Calls. (line 71)
-* get_attr: Expressions. (line 99)
-* get_attr_length: Insn Lengths. (line 46)
-* GET_CLASS_NARROWEST_MODE: Machine Modes. (line 335)
-* GET_CODE: RTL Objects. (line 47)
-* get_frame_size: Elimination. (line 34)
-* get_insns: Insns. (line 34)
-* get_last_insn: Insns. (line 34)
-* GET_MODE: Machine Modes. (line 282)
-* GET_MODE_ALIGNMENT: Machine Modes. (line 322)
-* GET_MODE_BITSIZE: Machine Modes. (line 306)
-* GET_MODE_CLASS: Machine Modes. (line 296)
-* GET_MODE_FBIT: Machine Modes. (line 313)
-* GET_MODE_IBIT: Machine Modes. (line 309)
-* GET_MODE_MASK: Machine Modes. (line 317)
-* GET_MODE_NAME: Machine Modes. (line 293)
-* GET_MODE_NUNITS: Machine Modes. (line 331)
-* GET_MODE_SIZE: Machine Modes. (line 303)
-* GET_MODE_UNIT_SIZE: Machine Modes. (line 325)
-* GET_MODE_WIDER_MODE: Machine Modes. (line 299)
-* GET_RTX_CLASS: RTL Classes. (line 6)
-* GET_RTX_FORMAT: RTL Classes. (line 131)
-* GET_RTX_LENGTH: RTL Classes. (line 128)
-* 'get_thread_pointerMODE' instruction pattern: Standard Names.
- (line 1869)
-* geu: Comparisons. (line 72)
-* 'geu' and attributes: Expressions. (line 83)
-* GE_EXPR: Unary and Binary Expressions.
- (line 6)
-* GGC: Type Information. (line 6)
-* ggc_collect: Invoking the garbage collector.
- (line 6)
-* GIMPLE: Parsing pass. (line 13)
-* GIMPLE <1>: Gimplification pass.
- (line 6)
-* GIMPLE <2>: GIMPLE. (line 6)
-* GIMPLE Exception Handling: GIMPLE Exception Handling.
- (line 6)
-* GIMPLE instruction set: GIMPLE instruction set.
- (line 6)
-* GIMPLE sequences: GIMPLE sequences. (line 6)
-* GIMPLE statement iterators: Basic Blocks. (line 78)
-* GIMPLE statement iterators <1>: Maintaining the CFG.
- (line 33)
-* gimple_addresses_taken: Manipulating GIMPLE statements.
- (line 89)
-* 'GIMPLE_ASM': 'GIMPLE_ASM'. (line 6)
-* gimple_asm_clobber_op: 'GIMPLE_ASM'. (line 44)
-* gimple_asm_input_op: 'GIMPLE_ASM'. (line 29)
-* gimple_asm_nclobbers: 'GIMPLE_ASM'. (line 26)
-* gimple_asm_ninputs: 'GIMPLE_ASM'. (line 20)
-* gimple_asm_noutputs: 'GIMPLE_ASM'. (line 23)
-* gimple_asm_output_op: 'GIMPLE_ASM'. (line 36)
-* gimple_asm_set_clobber_op: 'GIMPLE_ASM'. (line 48)
-* gimple_asm_set_input_op: 'GIMPLE_ASM'. (line 32)
-* gimple_asm_set_output_op: 'GIMPLE_ASM'. (line 40)
-* gimple_asm_set_volatile: 'GIMPLE_ASM'. (line 59)
-* gimple_asm_string: 'GIMPLE_ASM'. (line 52)
-* gimple_asm_volatile_p: 'GIMPLE_ASM'. (line 56)
-* 'GIMPLE_ASSIGN': 'GIMPLE_ASSIGN'. (line 6)
-* gimple_assign_cast_p: Logical Operators. (line 158)
-* gimple_assign_cast_p <1>: 'GIMPLE_ASSIGN'. (line 92)
-* gimple_assign_lhs: 'GIMPLE_ASSIGN'. (line 50)
-* gimple_assign_lhs_ptr: 'GIMPLE_ASSIGN'. (line 53)
-* gimple_assign_rhs1: 'GIMPLE_ASSIGN'. (line 56)
-* gimple_assign_rhs1_ptr: 'GIMPLE_ASSIGN'. (line 59)
-* gimple_assign_rhs2: 'GIMPLE_ASSIGN'. (line 63)
-* gimple_assign_rhs2_ptr: 'GIMPLE_ASSIGN'. (line 66)
-* gimple_assign_rhs3: 'GIMPLE_ASSIGN'. (line 70)
-* gimple_assign_rhs3_ptr: 'GIMPLE_ASSIGN'. (line 73)
-* gimple_assign_rhs_class: 'GIMPLE_ASSIGN'. (line 44)
-* gimple_assign_rhs_code: 'GIMPLE_ASSIGN'. (line 40)
-* gimple_assign_set_lhs: 'GIMPLE_ASSIGN'. (line 77)
-* gimple_assign_set_rhs1: 'GIMPLE_ASSIGN'. (line 80)
-* gimple_assign_set_rhs2: 'GIMPLE_ASSIGN'. (line 84)
-* gimple_assign_set_rhs3: 'GIMPLE_ASSIGN'. (line 88)
-* gimple_bb: Manipulating GIMPLE statements.
- (line 17)
-* 'GIMPLE_BIND': 'GIMPLE_BIND'. (line 6)
-* gimple_bind_add_seq: 'GIMPLE_BIND'. (line 34)
-* gimple_bind_add_stmt: 'GIMPLE_BIND'. (line 31)
-* gimple_bind_append_vars: 'GIMPLE_BIND'. (line 18)
-* gimple_bind_block: 'GIMPLE_BIND'. (line 39)
-* gimple_bind_body: 'GIMPLE_BIND'. (line 22)
-* gimple_bind_set_block: 'GIMPLE_BIND'. (line 44)
-* gimple_bind_set_body: 'GIMPLE_BIND'. (line 26)
-* gimple_bind_set_vars: 'GIMPLE_BIND'. (line 14)
-* gimple_bind_vars: 'GIMPLE_BIND'. (line 11)
-* gimple_block: Manipulating GIMPLE statements.
- (line 20)
-* gimple_build_asm: 'GIMPLE_ASM'. (line 6)
-* gimple_build_asm_vec: 'GIMPLE_ASM'. (line 15)
-* gimple_build_assign: 'GIMPLE_ASSIGN'. (line 6)
-* gimple_build_assign_with_ops: 'GIMPLE_ASSIGN'. (line 28)
-* gimple_build_bind: 'GIMPLE_BIND'. (line 6)
-* gimple_build_call: 'GIMPLE_CALL'. (line 6)
-* gimple_build_call_from_tree: 'GIMPLE_CALL'. (line 15)
-* gimple_build_call_vec: 'GIMPLE_CALL'. (line 23)
-* gimple_build_catch: 'GIMPLE_CATCH'. (line 6)
-* gimple_build_cond: 'GIMPLE_COND'. (line 6)
-* gimple_build_cond_from_tree: 'GIMPLE_COND'. (line 14)
-* gimple_build_debug_bind: 'GIMPLE_DEBUG'. (line 6)
-* gimple_build_eh_filter: 'GIMPLE_EH_FILTER'. (line 6)
-* gimple_build_goto: 'GIMPLE_LABEL'. (line 17)
-* gimple_build_label: 'GIMPLE_LABEL'. (line 6)
-* gimple_build_nop: 'GIMPLE_NOP'. (line 6)
-* gimple_build_omp_atomic_load: 'GIMPLE_OMP_ATOMIC_LOAD'.
- (line 6)
-* gimple_build_omp_atomic_store: 'GIMPLE_OMP_ATOMIC_STORE'.
- (line 6)
-* gimple_build_omp_continue: 'GIMPLE_OMP_CONTINUE'.
- (line 6)
-* gimple_build_omp_critical: 'GIMPLE_OMP_CRITICAL'.
- (line 6)
-* gimple_build_omp_for: 'GIMPLE_OMP_FOR'. (line 6)
-* gimple_build_omp_master: 'GIMPLE_OMP_MASTER'.
- (line 6)
-* gimple_build_omp_ordered: 'GIMPLE_OMP_ORDERED'.
- (line 6)
-* gimple_build_omp_parallel: 'GIMPLE_OMP_PARALLEL'.
- (line 6)
-* gimple_build_omp_return: 'GIMPLE_OMP_RETURN'.
- (line 6)
-* gimple_build_omp_section: 'GIMPLE_OMP_SECTION'.
- (line 6)
-* gimple_build_omp_sections: 'GIMPLE_OMP_SECTIONS'.
- (line 6)
-* gimple_build_omp_sections_switch: 'GIMPLE_OMP_SECTIONS'.
- (line 13)
-* gimple_build_omp_single: 'GIMPLE_OMP_SINGLE'.
- (line 6)
-* gimple_build_resx: 'GIMPLE_RESX'. (line 6)
-* gimple_build_return: 'GIMPLE_RETURN'. (line 6)
-* gimple_build_switch: 'GIMPLE_SWITCH'. (line 6)
-* gimple_build_try: 'GIMPLE_TRY'. (line 6)
-* gimple_build_wce: 'GIMPLE_WITH_CLEANUP_EXPR'.
- (line 6)
-* 'GIMPLE_CALL': 'GIMPLE_CALL'. (line 6)
-* gimple_call_arg: 'GIMPLE_CALL'. (line 65)
-* gimple_call_arg_ptr: 'GIMPLE_CALL'. (line 69)
-* gimple_call_cannot_inline_p: 'GIMPLE_CALL'. (line 90)
-* gimple_call_chain: 'GIMPLE_CALL'. (line 56)
-* gimple_call_copy_skip_args: 'GIMPLE_CALL'. (line 96)
-* gimple_call_fn: 'GIMPLE_CALL'. (line 37)
-* gimple_call_fndecl: 'GIMPLE_CALL'. (line 45)
-* gimple_call_lhs: 'GIMPLE_CALL'. (line 28)
-* gimple_call_lhs_ptr: 'GIMPLE_CALL'. (line 31)
-* gimple_call_mark_uninlinable: 'GIMPLE_CALL'. (line 87)
-* gimple_call_noreturn_p: 'GIMPLE_CALL'. (line 93)
-* gimple_call_num_args: 'GIMPLE_CALL'. (line 62)
-* gimple_call_return_type: 'GIMPLE_CALL'. (line 53)
-* gimple_call_set_arg: 'GIMPLE_CALL'. (line 74)
-* gimple_call_set_chain: 'GIMPLE_CALL'. (line 59)
-* gimple_call_set_fn: 'GIMPLE_CALL'. (line 41)
-* gimple_call_set_fndecl: 'GIMPLE_CALL'. (line 50)
-* gimple_call_set_lhs: 'GIMPLE_CALL'. (line 34)
-* gimple_call_set_tail: 'GIMPLE_CALL'. (line 79)
-* gimple_call_tail_p: 'GIMPLE_CALL'. (line 84)
-* 'GIMPLE_CATCH': 'GIMPLE_CATCH'. (line 6)
-* gimple_catch_handler: 'GIMPLE_CATCH'. (line 19)
-* gimple_catch_set_handler: 'GIMPLE_CATCH'. (line 26)
-* gimple_catch_set_types: 'GIMPLE_CATCH'. (line 23)
-* gimple_catch_types: 'GIMPLE_CATCH'. (line 12)
-* gimple_catch_types_ptr: 'GIMPLE_CATCH'. (line 15)
-* gimple_code: Manipulating GIMPLE statements.
- (line 14)
-* 'GIMPLE_COND': 'GIMPLE_COND'. (line 6)
-* gimple_cond_code: 'GIMPLE_COND'. (line 20)
-* gimple_cond_false_label: 'GIMPLE_COND'. (line 59)
-* gimple_cond_lhs: 'GIMPLE_COND'. (line 29)
-* gimple_cond_make_false: 'GIMPLE_COND'. (line 63)
-* gimple_cond_make_true: 'GIMPLE_COND'. (line 66)
-* gimple_cond_rhs: 'GIMPLE_COND'. (line 37)
-* gimple_cond_set_code: 'GIMPLE_COND'. (line 24)
-* gimple_cond_set_false_label: 'GIMPLE_COND'. (line 54)
-* gimple_cond_set_lhs: 'GIMPLE_COND'. (line 33)
-* gimple_cond_set_rhs: 'GIMPLE_COND'. (line 41)
-* gimple_cond_set_true_label: 'GIMPLE_COND'. (line 49)
-* gimple_cond_true_label: 'GIMPLE_COND'. (line 45)
-* gimple_copy: Manipulating GIMPLE statements.
- (line 146)
-* 'GIMPLE_DEBUG': 'GIMPLE_DEBUG'. (line 6)
-* 'GIMPLE_DEBUG_BIND': 'GIMPLE_DEBUG'. (line 6)
-* gimple_debug_bind_get_value: 'GIMPLE_DEBUG'. (line 46)
-* gimple_debug_bind_get_value_ptr: 'GIMPLE_DEBUG'. (line 50)
-* gimple_debug_bind_get_var: 'GIMPLE_DEBUG'. (line 43)
-* gimple_debug_bind_has_value_p: 'GIMPLE_DEBUG'. (line 68)
-* gimple_debug_bind_p: Logical Operators. (line 162)
-* gimple_debug_bind_reset_value: 'GIMPLE_DEBUG'. (line 64)
-* gimple_debug_bind_set_value: 'GIMPLE_DEBUG'. (line 59)
-* gimple_debug_bind_set_var: 'GIMPLE_DEBUG'. (line 55)
-* gimple_def_ops: Manipulating GIMPLE statements.
- (line 93)
-* 'GIMPLE_EH_FILTER': 'GIMPLE_EH_FILTER'. (line 6)
-* gimple_eh_filter_failure: 'GIMPLE_EH_FILTER'. (line 18)
-* gimple_eh_filter_must_not_throw: 'GIMPLE_EH_FILTER'. (line 32)
-* gimple_eh_filter_set_failure: 'GIMPLE_EH_FILTER'. (line 27)
-* gimple_eh_filter_set_must_not_throw: 'GIMPLE_EH_FILTER'. (line 35)
-* gimple_eh_filter_set_types: 'GIMPLE_EH_FILTER'. (line 22)
-* gimple_eh_filter_types: 'GIMPLE_EH_FILTER'. (line 11)
-* gimple_eh_filter_types_ptr: 'GIMPLE_EH_FILTER'. (line 14)
-* gimple_expr_code: Manipulating GIMPLE statements.
- (line 30)
-* gimple_expr_type: Manipulating GIMPLE statements.
- (line 23)
-* gimple_goto_dest: 'GIMPLE_LABEL'. (line 20)
-* gimple_goto_set_dest: 'GIMPLE_LABEL'. (line 23)
-* gimple_has_mem_ops: Manipulating GIMPLE statements.
- (line 71)
-* gimple_has_ops: Manipulating GIMPLE statements.
- (line 68)
-* gimple_has_volatile_ops: Manipulating GIMPLE statements.
- (line 133)
-* 'GIMPLE_LABEL': 'GIMPLE_LABEL'. (line 6)
-* gimple_label_label: 'GIMPLE_LABEL'. (line 10)
-* gimple_label_set_label: 'GIMPLE_LABEL'. (line 13)
-* gimple_loaded_syms: Manipulating GIMPLE statements.
- (line 121)
-* gimple_locus: Manipulating GIMPLE statements.
- (line 41)
-* gimple_locus_empty_p: Manipulating GIMPLE statements.
- (line 47)
-* gimple_modified_p: Manipulating GIMPLE statements.
- (line 129)
-* 'GIMPLE_NOP': 'GIMPLE_NOP'. (line 6)
-* gimple_nop_p: 'GIMPLE_NOP'. (line 9)
-* gimple_no_warning_p: Manipulating GIMPLE statements.
- (line 50)
-* gimple_num_ops: Logical Operators. (line 76)
-* gimple_num_ops <1>: Manipulating GIMPLE statements.
- (line 74)
-* 'GIMPLE_OMP_ATOMIC_LOAD': 'GIMPLE_OMP_ATOMIC_LOAD'.
- (line 6)
-* gimple_omp_atomic_load_lhs: 'GIMPLE_OMP_ATOMIC_LOAD'.
- (line 16)
-* gimple_omp_atomic_load_rhs: 'GIMPLE_OMP_ATOMIC_LOAD'.
- (line 23)
-* gimple_omp_atomic_load_set_lhs: 'GIMPLE_OMP_ATOMIC_LOAD'.
- (line 12)
-* gimple_omp_atomic_load_set_rhs: 'GIMPLE_OMP_ATOMIC_LOAD'.
- (line 19)
-* 'GIMPLE_OMP_ATOMIC_STORE': 'GIMPLE_OMP_ATOMIC_STORE'.
- (line 6)
-* gimple_omp_atomic_store_set_val: 'GIMPLE_OMP_ATOMIC_STORE'.
- (line 10)
-* gimple_omp_atomic_store_val: 'GIMPLE_OMP_ATOMIC_STORE'.
- (line 14)
-* gimple_omp_body: 'GIMPLE_OMP_PARALLEL'.
- (line 23)
-* 'GIMPLE_OMP_CONTINUE': 'GIMPLE_OMP_CONTINUE'.
- (line 6)
-* gimple_omp_continue_control_def: 'GIMPLE_OMP_CONTINUE'.
- (line 12)
-* gimple_omp_continue_control_def_ptr: 'GIMPLE_OMP_CONTINUE'.
- (line 16)
-* gimple_omp_continue_control_use: 'GIMPLE_OMP_CONTINUE'.
- (line 23)
-* gimple_omp_continue_control_use_ptr: 'GIMPLE_OMP_CONTINUE'.
- (line 27)
-* gimple_omp_continue_set_control_def: 'GIMPLE_OMP_CONTINUE'.
- (line 19)
-* gimple_omp_continue_set_control_use: 'GIMPLE_OMP_CONTINUE'.
- (line 30)
-* 'GIMPLE_OMP_CRITICAL': 'GIMPLE_OMP_CRITICAL'.
- (line 6)
-* gimple_omp_critical_name: 'GIMPLE_OMP_CRITICAL'.
- (line 12)
-* gimple_omp_critical_name_ptr: 'GIMPLE_OMP_CRITICAL'.
- (line 15)
-* gimple_omp_critical_set_name: 'GIMPLE_OMP_CRITICAL'.
- (line 19)
-* 'GIMPLE_OMP_FOR': 'GIMPLE_OMP_FOR'. (line 6)
-* gimple_omp_for_clauses: 'GIMPLE_OMP_FOR'. (line 19)
-* gimple_omp_for_clauses_ptr: 'GIMPLE_OMP_FOR'. (line 22)
-* gimple_omp_for_cond: 'GIMPLE_OMP_FOR'. (line 82)
-* gimple_omp_for_final: 'GIMPLE_OMP_FOR'. (line 50)
-* gimple_omp_for_final_ptr: 'GIMPLE_OMP_FOR'. (line 53)
-* gimple_omp_for_incr: 'GIMPLE_OMP_FOR'. (line 60)
-* gimple_omp_for_incr_ptr: 'GIMPLE_OMP_FOR'. (line 63)
-* gimple_omp_for_index: 'GIMPLE_OMP_FOR'. (line 30)
-* gimple_omp_for_index_ptr: 'GIMPLE_OMP_FOR'. (line 33)
-* gimple_omp_for_initial: 'GIMPLE_OMP_FOR'. (line 40)
-* gimple_omp_for_initial_ptr: 'GIMPLE_OMP_FOR'. (line 43)
-* gimple_omp_for_pre_body: 'GIMPLE_OMP_FOR'. (line 69)
-* gimple_omp_for_set_clauses: 'GIMPLE_OMP_FOR'. (line 25)
-* gimple_omp_for_set_cond: 'GIMPLE_OMP_FOR'. (line 78)
-* gimple_omp_for_set_final: 'GIMPLE_OMP_FOR'. (line 56)
-* gimple_omp_for_set_incr: 'GIMPLE_OMP_FOR'. (line 66)
-* gimple_omp_for_set_index: 'GIMPLE_OMP_FOR'. (line 36)
-* gimple_omp_for_set_initial: 'GIMPLE_OMP_FOR'. (line 46)
-* gimple_omp_for_set_pre_body: 'GIMPLE_OMP_FOR'. (line 73)
-* 'GIMPLE_OMP_MASTER': 'GIMPLE_OMP_MASTER'.
- (line 6)
-* 'GIMPLE_OMP_ORDERED': 'GIMPLE_OMP_ORDERED'.
- (line 6)
-* 'GIMPLE_OMP_PARALLEL': 'GIMPLE_OMP_PARALLEL'.
- (line 6)
-* gimple_omp_parallel_child_fn: 'GIMPLE_OMP_PARALLEL'.
- (line 41)
-* gimple_omp_parallel_child_fn_ptr: 'GIMPLE_OMP_PARALLEL'.
- (line 45)
-* gimple_omp_parallel_clauses: 'GIMPLE_OMP_PARALLEL'.
- (line 30)
-* gimple_omp_parallel_clauses_ptr: 'GIMPLE_OMP_PARALLEL'.
- (line 33)
-* gimple_omp_parallel_combined_p: 'GIMPLE_OMP_PARALLEL'.
- (line 15)
-* gimple_omp_parallel_data_arg: 'GIMPLE_OMP_PARALLEL'.
- (line 53)
-* gimple_omp_parallel_data_arg_ptr: 'GIMPLE_OMP_PARALLEL'.
- (line 57)
-* gimple_omp_parallel_set_child_fn: 'GIMPLE_OMP_PARALLEL'.
- (line 49)
-* gimple_omp_parallel_set_clauses: 'GIMPLE_OMP_PARALLEL'.
- (line 36)
-* gimple_omp_parallel_set_combined_p: 'GIMPLE_OMP_PARALLEL'.
- (line 19)
-* gimple_omp_parallel_set_data_arg: 'GIMPLE_OMP_PARALLEL'.
- (line 60)
-* 'GIMPLE_OMP_RETURN': 'GIMPLE_OMP_RETURN'.
- (line 6)
-* gimple_omp_return_nowait_p: 'GIMPLE_OMP_RETURN'.
- (line 13)
-* gimple_omp_return_set_nowait: 'GIMPLE_OMP_RETURN'.
- (line 10)
-* 'GIMPLE_OMP_SECTION': 'GIMPLE_OMP_SECTION'.
- (line 6)
-* 'GIMPLE_OMP_SECTIONS': 'GIMPLE_OMP_SECTIONS'.
- (line 6)
-* gimple_omp_sections_clauses: 'GIMPLE_OMP_SECTIONS'.
- (line 29)
-* gimple_omp_sections_clauses_ptr: 'GIMPLE_OMP_SECTIONS'.
- (line 32)
-* gimple_omp_sections_control: 'GIMPLE_OMP_SECTIONS'.
- (line 16)
-* gimple_omp_sections_control_ptr: 'GIMPLE_OMP_SECTIONS'.
- (line 20)
-* gimple_omp_sections_set_clauses: 'GIMPLE_OMP_SECTIONS'.
- (line 35)
-* gimple_omp_sections_set_control: 'GIMPLE_OMP_SECTIONS'.
- (line 24)
-* gimple_omp_section_last_p: 'GIMPLE_OMP_SECTION'.
- (line 11)
-* gimple_omp_section_set_last: 'GIMPLE_OMP_SECTION'.
- (line 15)
-* gimple_omp_set_body: 'GIMPLE_OMP_PARALLEL'.
- (line 26)
-* 'GIMPLE_OMP_SINGLE': 'GIMPLE_OMP_SINGLE'.
- (line 6)
-* gimple_omp_single_clauses: 'GIMPLE_OMP_SINGLE'.
- (line 13)
-* gimple_omp_single_clauses_ptr: 'GIMPLE_OMP_SINGLE'.
- (line 16)
-* gimple_omp_single_set_clauses: 'GIMPLE_OMP_SINGLE'.
- (line 19)
-* gimple_op: Logical Operators. (line 79)
-* gimple_op <1>: Manipulating GIMPLE statements.
- (line 80)
-* gimple_ops: Logical Operators. (line 82)
-* gimple_ops <1>: Manipulating GIMPLE statements.
- (line 77)
-* gimple_op_ptr: Manipulating GIMPLE statements.
- (line 83)
-* 'GIMPLE_PHI': 'GIMPLE_PHI'. (line 6)
-* gimple_phi_arg: 'GIMPLE_PHI'. (line 24)
-* gimple_phi_arg <1>: SSA. (line 62)
-* gimple_phi_arg_def: SSA. (line 68)
-* gimple_phi_arg_edge: SSA. (line 65)
-* gimple_phi_capacity: 'GIMPLE_PHI'. (line 6)
-* gimple_phi_num_args: 'GIMPLE_PHI'. (line 10)
-* gimple_phi_num_args <1>: SSA. (line 58)
-* gimple_phi_result: 'GIMPLE_PHI'. (line 15)
-* gimple_phi_result <1>: SSA. (line 55)
-* gimple_phi_result_ptr: 'GIMPLE_PHI'. (line 18)
-* gimple_phi_set_arg: 'GIMPLE_PHI'. (line 28)
-* gimple_phi_set_result: 'GIMPLE_PHI'. (line 21)
-* gimple_plf: Manipulating GIMPLE statements.
- (line 64)
-* 'GIMPLE_RESX': 'GIMPLE_RESX'. (line 6)
-* gimple_resx_region: 'GIMPLE_RESX'. (line 12)
-* gimple_resx_set_region: 'GIMPLE_RESX'. (line 15)
-* 'GIMPLE_RETURN': 'GIMPLE_RETURN'. (line 6)
-* gimple_return_retval: 'GIMPLE_RETURN'. (line 9)
-* gimple_return_set_retval: 'GIMPLE_RETURN'. (line 12)
-* gimple_seq_add_seq: GIMPLE sequences. (line 30)
-* gimple_seq_add_stmt: GIMPLE sequences. (line 24)
-* gimple_seq_alloc: GIMPLE sequences. (line 61)
-* gimple_seq_copy: GIMPLE sequences. (line 65)
-* gimple_seq_deep_copy: GIMPLE sequences. (line 36)
-* gimple_seq_empty_p: GIMPLE sequences. (line 69)
-* gimple_seq_first: GIMPLE sequences. (line 43)
-* gimple_seq_init: GIMPLE sequences. (line 58)
-* gimple_seq_last: GIMPLE sequences. (line 46)
-* gimple_seq_reverse: GIMPLE sequences. (line 39)
-* gimple_seq_set_first: GIMPLE sequences. (line 53)
-* gimple_seq_set_last: GIMPLE sequences. (line 49)
-* gimple_seq_singleton_p: GIMPLE sequences. (line 78)
-* gimple_set_block: Manipulating GIMPLE statements.
- (line 38)
-* gimple_set_def_ops: Manipulating GIMPLE statements.
- (line 96)
-* gimple_set_has_volatile_ops: Manipulating GIMPLE statements.
- (line 136)
-* gimple_set_locus: Manipulating GIMPLE statements.
- (line 44)
-* gimple_set_op: Manipulating GIMPLE statements.
- (line 86)
-* gimple_set_plf: Manipulating GIMPLE statements.
- (line 60)
-* gimple_set_use_ops: Manipulating GIMPLE statements.
- (line 103)
-* gimple_set_vdef_ops: Manipulating GIMPLE statements.
- (line 117)
-* gimple_set_visited: Manipulating GIMPLE statements.
- (line 53)
-* gimple_set_vuse_ops: Manipulating GIMPLE statements.
- (line 110)
-* gimple_statement_base: Tuple representation.
- (line 14)
-* gimple_statement_with_ops: Tuple representation.
- (line 96)
-* gimple_stored_syms: Manipulating GIMPLE statements.
- (line 125)
-* 'GIMPLE_SWITCH': 'GIMPLE_SWITCH'. (line 6)
-* gimple_switch_default_label: 'GIMPLE_SWITCH'. (line 38)
-* gimple_switch_index: 'GIMPLE_SWITCH'. (line 23)
-* gimple_switch_label: 'GIMPLE_SWITCH'. (line 29)
-* gimple_switch_num_labels: 'GIMPLE_SWITCH'. (line 14)
-* gimple_switch_set_default_label: 'GIMPLE_SWITCH'. (line 41)
-* gimple_switch_set_index: 'GIMPLE_SWITCH'. (line 26)
-* gimple_switch_set_label: 'GIMPLE_SWITCH'. (line 33)
-* gimple_switch_set_num_labels: 'GIMPLE_SWITCH'. (line 18)
-* 'GIMPLE_TRY': 'GIMPLE_TRY'. (line 6)
-* gimple_try_catch_is_cleanup: 'GIMPLE_TRY'. (line 19)
-* gimple_try_cleanup: 'GIMPLE_TRY'. (line 26)
-* gimple_try_eval: 'GIMPLE_TRY'. (line 22)
-* gimple_try_kind: 'GIMPLE_TRY'. (line 15)
-* gimple_try_set_catch_is_cleanup: 'GIMPLE_TRY'. (line 30)
-* gimple_try_set_cleanup: 'GIMPLE_TRY'. (line 39)
-* gimple_try_set_eval: 'GIMPLE_TRY'. (line 34)
-* gimple_use_ops: Manipulating GIMPLE statements.
- (line 100)
-* gimple_vdef_ops: Manipulating GIMPLE statements.
- (line 114)
-* gimple_visited_p: Manipulating GIMPLE statements.
- (line 57)
-* gimple_vuse_ops: Manipulating GIMPLE statements.
- (line 107)
-* gimple_wce_cleanup: 'GIMPLE_WITH_CLEANUP_EXPR'.
- (line 10)
-* gimple_wce_cleanup_eh_only: 'GIMPLE_WITH_CLEANUP_EXPR'.
- (line 17)
-* gimple_wce_set_cleanup: 'GIMPLE_WITH_CLEANUP_EXPR'.
- (line 13)
-* gimple_wce_set_cleanup_eh_only: 'GIMPLE_WITH_CLEANUP_EXPR'.
- (line 20)
-* 'GIMPLE_WITH_CLEANUP_EXPR': 'GIMPLE_WITH_CLEANUP_EXPR'.
- (line 6)
-* gimplification: Parsing pass. (line 13)
-* gimplification <1>: Gimplification pass.
- (line 6)
-* gimplifier: Parsing pass. (line 13)
-* gimplify_assign: 'GIMPLE_ASSIGN'. (line 17)
-* gimplify_expr: Gimplification pass.
- (line 18)
-* gimplify_function_tree: Gimplification pass.
- (line 18)
-* GLOBAL_INIT_PRIORITY: Functions for C++. (line 141)
-* global_regs: Register Basics. (line 59)
-* 'GO_IF_LEGITIMATE_ADDRESS': Addressing Modes. (line 90)
-* greater than: Comparisons. (line 60)
-* greater than <1>: Comparisons. (line 64)
-* greater than <2>: Comparisons. (line 72)
-* gsi_after_labels: Sequence iterators. (line 74)
-* gsi_bb: Sequence iterators. (line 82)
-* gsi_commit_edge_inserts: Sequence iterators. (line 193)
-* gsi_commit_edge_inserts <1>: Maintaining the CFG.
- (line 105)
-* gsi_commit_one_edge_insert: Sequence iterators. (line 188)
-* gsi_end_p: Sequence iterators. (line 59)
-* gsi_end_p <1>: Maintaining the CFG.
- (line 48)
-* gsi_for_stmt: Sequence iterators. (line 156)
-* gsi_insert_after: Sequence iterators. (line 145)
-* gsi_insert_after <1>: Maintaining the CFG.
- (line 60)
-* gsi_insert_before: Sequence iterators. (line 134)
-* gsi_insert_before <1>: Maintaining the CFG.
- (line 66)
-* gsi_insert_on_edge: Sequence iterators. (line 173)
-* gsi_insert_on_edge <1>: Maintaining the CFG.
- (line 105)
-* gsi_insert_on_edge_immediate: Sequence iterators. (line 183)
-* gsi_insert_seq_after: Sequence iterators. (line 152)
-* gsi_insert_seq_before: Sequence iterators. (line 141)
-* gsi_insert_seq_on_edge: Sequence iterators. (line 177)
-* gsi_last: Sequence iterators. (line 49)
-* gsi_last <1>: Maintaining the CFG.
- (line 44)
-* gsi_last_bb: Sequence iterators. (line 55)
-* gsi_link_after: Sequence iterators. (line 113)
-* gsi_link_before: Sequence iterators. (line 103)
-* gsi_link_seq_after: Sequence iterators. (line 108)
-* gsi_link_seq_before: Sequence iterators. (line 97)
-* gsi_move_after: Sequence iterators. (line 159)
-* gsi_move_before: Sequence iterators. (line 164)
-* gsi_move_to_bb_end: Sequence iterators. (line 169)
-* gsi_next: Sequence iterators. (line 65)
-* gsi_next <1>: Maintaining the CFG.
- (line 52)
-* gsi_one_before_end_p: Sequence iterators. (line 62)
-* gsi_prev: Sequence iterators. (line 68)
-* gsi_prev <1>: Maintaining the CFG.
- (line 56)
-* gsi_remove: Sequence iterators. (line 88)
-* gsi_remove <1>: Maintaining the CFG.
- (line 72)
-* gsi_replace: Sequence iterators. (line 128)
-* gsi_seq: Sequence iterators. (line 85)
-* gsi_split_seq_after: Sequence iterators. (line 118)
-* gsi_split_seq_before: Sequence iterators. (line 123)
-* gsi_start: Sequence iterators. (line 39)
-* gsi_start <1>: Maintaining the CFG.
- (line 40)
-* gsi_start_bb: Sequence iterators. (line 45)
-* gsi_stmt: Sequence iterators. (line 71)
-* gsi_stmt_ptr: Sequence iterators. (line 79)
-* gt: Comparisons. (line 60)
-* 'gt' and attributes: Expressions. (line 83)
-* gtu: Comparisons. (line 64)
-* 'gtu' and attributes: Expressions. (line 83)
-* GTY: Type Information. (line 6)
-* GT_EXPR: Unary and Binary Expressions.
- (line 6)
-* 'H' in constraint: Simple Constraints. (line 96)
-* HAmode: Machine Modes. (line 146)
-* HANDLER: Statements for C++. (line 6)
-* HANDLER_BODY: Statements for C++. (line 6)
-* HANDLER_PARMS: Statements for C++. (line 6)
-* HANDLE_PRAGMA_PACK_WITH_EXPANSION: Misc. (line 442)
-* hard registers: Regs and Memory. (line 9)
-* HARD_FRAME_POINTER_IS_ARG_POINTER: Frame Registers. (line 57)
-* HARD_FRAME_POINTER_IS_FRAME_POINTER: Frame Registers. (line 50)
-* HARD_FRAME_POINTER_REGNUM: Frame Registers. (line 19)
-* HARD_REGNO_CALLER_SAVE_MODE: Caller Saves. (line 19)
-* HARD_REGNO_CALL_PART_CLOBBERED: Register Basics. (line 52)
-* HARD_REGNO_MODE_OK: Values in Registers.
- (line 57)
-* HARD_REGNO_NREGS: Values in Registers.
- (line 10)
-* HARD_REGNO_NREGS_HAS_PADDING: Values in Registers.
- (line 24)
-* HARD_REGNO_NREGS_WITH_PADDING: Values in Registers.
- (line 42)
-* HARD_REGNO_RENAME_OK: Values in Registers.
- (line 117)
-* HAS_INIT_SECTION: Macros for Initialization.
- (line 18)
-* HAS_LONG_COND_BRANCH: Misc. (line 8)
-* HAS_LONG_UNCOND_BRANCH: Misc. (line 17)
-* HAVE_DOS_BASED_FILE_SYSTEM: Filesystem. (line 11)
-* HAVE_POST_DECREMENT: Addressing Modes. (line 11)
-* HAVE_POST_INCREMENT: Addressing Modes. (line 10)
-* HAVE_POST_MODIFY_DISP: Addressing Modes. (line 17)
-* HAVE_POST_MODIFY_REG: Addressing Modes. (line 23)
-* HAVE_PRE_DECREMENT: Addressing Modes. (line 9)
-* HAVE_PRE_INCREMENT: Addressing Modes. (line 8)
-* HAVE_PRE_MODIFY_DISP: Addressing Modes. (line 16)
-* HAVE_PRE_MODIFY_REG: Addressing Modes. (line 22)
-* HCmode: Machine Modes. (line 199)
-* HFmode: Machine Modes. (line 61)
-* high: Constants. (line 119)
-* HImode: Machine Modes. (line 29)
-* 'HImode', in 'insn': Insns. (line 268)
-* HONOR_REG_ALLOC_ORDER: Allocation Order. (line 36)
-* host configuration: Host Config. (line 6)
-* host functions: Host Common. (line 6)
-* host hooks: Host Common. (line 6)
-* host makefile fragment: Host Fragment. (line 6)
-* HOST_BIT_BUCKET: Filesystem. (line 51)
-* HOST_EXECUTABLE_SUFFIX: Filesystem. (line 45)
-* HOST_HOOKS_EXTRA_SIGNALS: Host Common. (line 11)
-* HOST_HOOKS_GT_PCH_ALLOC_GRANULARITY: Host Common. (line 43)
-* HOST_HOOKS_GT_PCH_GET_ADDRESS: Host Common. (line 15)
-* HOST_HOOKS_GT_PCH_USE_ADDRESS: Host Common. (line 24)
-* HOST_LACKS_INODE_NUMBERS: Filesystem. (line 89)
-* HOST_LONG_FORMAT: Host Misc. (line 45)
-* HOST_LONG_LONG_FORMAT: Host Misc. (line 41)
-* HOST_OBJECT_SUFFIX: Filesystem. (line 40)
-* HOST_PTR_PRINTF: Host Misc. (line 49)
-* HOT_TEXT_SECTION_NAME: Sections. (line 42)
-* HQmode: Machine Modes. (line 110)
-* 'i' in constraint: Simple Constraints. (line 68)
-* 'I' in constraint: Simple Constraints. (line 79)
-* identifier: Identifiers. (line 6)
-* IDENTIFIER_LENGTH: Identifiers. (line 22)
-* IDENTIFIER_NODE: Identifiers. (line 6)
-* IDENTIFIER_OPNAME_P: Identifiers. (line 27)
-* IDENTIFIER_POINTER: Identifiers. (line 17)
-* IDENTIFIER_TYPENAME_P: Identifiers. (line 33)
-* IEEE 754-2008: Decimal float library routines.
- (line 6)
-* IFCVT_MACHDEP_INIT: Misc. (line 567)
-* IFCVT_MODIFY_CANCEL: Misc. (line 561)
-* IFCVT_MODIFY_FINAL: Misc. (line 555)
-* IFCVT_MODIFY_INSN: Misc. (line 549)
-* IFCVT_MODIFY_MULTIPLE_TESTS: Misc. (line 541)
-* IFCVT_MODIFY_TESTS: Misc. (line 531)
-* IF_COND: Statements for C++. (line 6)
-* if_marked: GTY Options. (line 165)
-* IF_STMT: Statements for C++. (line 6)
-* if_then_else: Comparisons. (line 80)
-* 'if_then_else' and attributes: Expressions. (line 32)
-* 'if_then_else' usage: Side Effects. (line 56)
-* IMAGPART_EXPR: Unary and Binary Expressions.
- (line 6)
-* Immediate Uses: SSA Operands. (line 258)
-* immediate_operand: Machine-Independent Predicates.
- (line 10)
-* IMMEDIATE_PREFIX: Instruction Output. (line 153)
-* include: Including Patterns. (line 6)
-* INCLUDE_DEFAULTS: Driver. (line 327)
-* inclusive-or, bitwise: Arithmetic. (line 164)
-* INCOMING_FRAME_SP_OFFSET: Frame Layout. (line 181)
-* INCOMING_REGNO: Register Basics. (line 87)
-* INCOMING_RETURN_ADDR_RTX: Frame Layout. (line 137)
-* INCOMING_STACK_BOUNDARY: Storage Layout. (line 154)
-* INDEX_REG_CLASS: Register Classes. (line 140)
-* 'indirect_jump' instruction pattern: Standard Names. (line 1237)
-* indirect_operand: Machine-Independent Predicates.
- (line 70)
-* INDIRECT_REF: Storage References. (line 6)
-* initialization routines: Initialization. (line 6)
-* INITIAL_ELIMINATION_OFFSET: Elimination. (line 84)
-* INITIAL_FRAME_ADDRESS_RTX: Frame Layout. (line 81)
-* INITIAL_FRAME_POINTER_OFFSET: Elimination. (line 34)
-* INIT_ARRAY_SECTION_ASM_OP: Sections. (line 106)
-* INIT_CUMULATIVE_ARGS: Register Arguments. (line 147)
-* INIT_CUMULATIVE_INCOMING_ARGS: Register Arguments. (line 175)
-* INIT_CUMULATIVE_LIBCALL_ARGS: Register Arguments. (line 169)
-* INIT_ENVIRONMENT: Driver. (line 305)
-* INIT_EXPANDERS: Per-Function Data. (line 36)
-* INIT_EXPR: Unary and Binary Expressions.
- (line 6)
-* init_machine_status: Per-Function Data. (line 42)
-* init_one_libfunc: Library Calls. (line 15)
-* INIT_SECTION_ASM_OP: Sections. (line 90)
-* INIT_SECTION_ASM_OP <1>: Macros for Initialization.
- (line 9)
-* inlining: Target Attributes. (line 95)
-* insert_insn_on_edge: Maintaining the CFG.
- (line 105)
-* insn: Insns. (line 63)
-* 'insn' and '/f': Flags. (line 107)
-* 'insn' and '/j': Flags. (line 157)
-* 'insn' and '/s': Flags. (line 49)
-* 'insn' and '/s' <1>: Flags. (line 148)
-* 'insn' and '/u': Flags. (line 39)
-* 'insn' and '/v': Flags. (line 44)
-* insn attributes: Insn Attributes. (line 6)
-* insn canonicalization: Insn Canonicalizations.
- (line 6)
-* insn includes: Including Patterns. (line 6)
-* insn lengths, computing: Insn Lengths. (line 6)
-* insn notes, notes: Basic Blocks. (line 52)
-* insn splitting: Insn Splitting. (line 6)
-* insn-attr.h: Defining Attributes.
- (line 34)
-* insns: Insns. (line 6)
-* insns, generating: RTL Template. (line 6)
-* insns, recognizing: RTL Template. (line 6)
-* INSN_ANNULLED_BRANCH_P: Flags. (line 39)
-* INSN_CODE: Insns. (line 295)
-* INSN_DELETED_P: Flags. (line 44)
-* INSN_FROM_TARGET_P: Flags. (line 49)
-* insn_list: Insns. (line 540)
-* INSN_REFERENCES_ARE_DELAYED: Misc. (line 469)
-* INSN_SETS_ARE_DELAYED: Misc. (line 458)
-* INSN_UID: Insns. (line 23)
-* INSN_VAR_LOCATION: Insns. (line 236)
-* instruction attributes: Insn Attributes. (line 6)
-* instruction latency time: Processor pipeline description.
- (line 6)
-* instruction latency time <1>: Processor pipeline description.
- (line 105)
-* instruction latency time <2>: Processor pipeline description.
- (line 196)
-* instruction patterns: Patterns. (line 6)
-* instruction splitting: Insn Splitting. (line 6)
-* 'insv' instruction pattern: Standard Names. (line 1036)
-* 'insvM' instruction pattern: Standard Names. (line 988)
-* 'insvmisalignM' instruction pattern: Standard Names. (line 998)
-* int iterators in '.md' files: Int Iterators. (line 6)
-* INT16_TYPE: Type Layout. (line 253)
-* INT32_TYPE: Type Layout. (line 254)
-* INT64_TYPE: Type Layout. (line 255)
-* INT8_TYPE: Type Layout. (line 252)
-* INTEGER_CST: Constant expressions.
- (line 6)
-* INTEGER_TYPE: Types. (line 6)
-* Interdependence of Patterns: Dependent Patterns. (line 6)
-* interfacing to GCC output: Interface. (line 6)
-* interlock delays: Processor pipeline description.
- (line 6)
-* intermediate representation lowering: Parsing pass. (line 13)
-* INTMAX_TYPE: Type Layout. (line 229)
-* INTPTR_TYPE: Type Layout. (line 276)
-* introduction: Top. (line 6)
-* INT_FAST16_TYPE: Type Layout. (line 269)
-* INT_FAST32_TYPE: Type Layout. (line 270)
-* INT_FAST64_TYPE: Type Layout. (line 271)
-* INT_FAST8_TYPE: Type Layout. (line 268)
-* INT_LEAST16_TYPE: Type Layout. (line 261)
-* INT_LEAST32_TYPE: Type Layout. (line 262)
-* INT_LEAST64_TYPE: Type Layout. (line 263)
-* INT_LEAST8_TYPE: Type Layout. (line 260)
-* INT_TYPE_SIZE: Type Layout. (line 11)
-* INVOKE__main: Macros for Initialization.
- (line 50)
-* in_struct: Flags. (line 245)
-* 'in_struct', in 'code_label' and 'note': Flags. (line 59)
-* 'in_struct', in 'insn' and 'jump_insn' and 'call_insn': Flags.
- (line 49)
-* 'in_struct', in 'insn', 'call_insn', 'jump_insn' and 'jump_table_data': Flags.
- (line 148)
-* 'in_struct', in 'subreg': Flags. (line 187)
-* ior: Arithmetic. (line 164)
-* 'ior' and attributes: Expressions. (line 50)
-* 'ior', canonicalization of: Insn Canonicalizations.
- (line 51)
-* 'iorM3' instruction pattern: Standard Names. (line 276)
-* IRA_HARD_REGNO_ADD_COST_MULTIPLIER: Allocation Order. (line 44)
-* IS_ASM_LOGICAL_LINE_SEPARATOR: Data Output. (line 119)
-* is_gimple_addressable: Logical Operators. (line 113)
-* is_gimple_asm_val: Logical Operators. (line 117)
-* is_gimple_assign: Logical Operators. (line 149)
-* is_gimple_call: Logical Operators. (line 152)
-* is_gimple_call_addr: Logical Operators. (line 120)
-* is_gimple_constant: Logical Operators. (line 128)
-* is_gimple_debug: Logical Operators. (line 155)
-* is_gimple_ip_invariant: Logical Operators. (line 137)
-* is_gimple_ip_invariant_address: Logical Operators. (line 142)
-* is_gimple_mem_ref_addr: Logical Operators. (line 124)
-* is_gimple_min_invariant: Logical Operators. (line 131)
-* is_gimple_omp: Logical Operators. (line 166)
-* is_gimple_val: Logical Operators. (line 107)
-* iterators in '.md' files: Iterators. (line 6)
-* IV analysis on GIMPLE: Scalar evolutions. (line 6)
-* IV analysis on RTL: loop-iv. (line 6)
-* JMP_BUF_SIZE: Exception Region Output.
- (line 82)
-* jump: Flags. (line 286)
-* 'jump' instruction pattern: Standard Names. (line 1115)
-* jump instruction patterns: Jump Patterns. (line 6)
-* jump instructions and 'set': Side Effects. (line 56)
-* 'jump', in 'call_insn': Flags. (line 161)
-* 'jump', in 'insn': Flags. (line 157)
-* 'jump', in 'mem': Flags. (line 70)
-* Jumps: Jumps. (line 6)
-* JUMP_ALIGN: Alignment Output. (line 8)
-* jump_insn: Insns. (line 73)
-* 'jump_insn' and '/f': Flags. (line 107)
-* 'jump_insn' and '/s': Flags. (line 49)
-* 'jump_insn' and '/s' <1>: Flags. (line 148)
-* 'jump_insn' and '/u': Flags. (line 39)
-* 'jump_insn' and '/v': Flags. (line 44)
-* JUMP_LABEL: Insns. (line 80)
-* JUMP_TABLES_IN_TEXT_SECTION: Sections. (line 150)
-* jump_table_data: Insns. (line 166)
-* 'jump_table_data' and '/s': Flags. (line 148)
-* 'jump_table_data' and '/v': Flags. (line 44)
-* LABEL_ALIGN: Alignment Output. (line 57)
-* LABEL_ALIGN_AFTER_BARRIER: Alignment Output. (line 26)
-* LABEL_ALTERNATE_NAME: Edges. (line 180)
-* LABEL_ALT_ENTRY_P: Insns. (line 146)
-* LABEL_DECL: Declarations. (line 6)
-* LABEL_KIND: Insns. (line 146)
-* LABEL_NUSES: Insns. (line 142)
-* LABEL_PRESERVE_P: Flags. (line 59)
-* label_ref: Constants. (line 96)
-* 'label_ref' and '/v': Flags. (line 65)
-* 'label_ref', RTL sharing: Sharing. (line 35)
-* LABEL_REF_NONLOCAL_P: Flags. (line 65)
-* language-dependent trees: Language-dependent trees.
- (line 6)
-* language-independent intermediate representation: Parsing pass.
- (line 13)
-* lang_hooks.gimplify_expr: Gimplification pass.
- (line 18)
-* lang_hooks.parse_file: Parsing pass. (line 6)
-* large return values: Aggregate Return. (line 6)
-* LARGEST_EXPONENT_IS_NORMAL: Storage Layout. (line 483)
-* LAST_STACK_REG: Stack Registers. (line 30)
-* LAST_VIRTUAL_REGISTER: Regs and Memory. (line 51)
-* 'lceilMN2': Standard Names. (line 699)
-* LCSSA: LCSSA. (line 6)
-* LDD_SUFFIX: Macros for Initialization.
- (line 121)
-* LD_FINI_SWITCH: Macros for Initialization.
- (line 28)
-* LD_INIT_SWITCH: Macros for Initialization.
- (line 24)
-* le: Comparisons. (line 76)
-* 'le' and attributes: Expressions. (line 83)
-* leaf functions: Leaf Functions. (line 6)
-* leaf_function_p: Standard Names. (line 1199)
-* LEAF_REGISTERS: Leaf Functions. (line 23)
-* LEAF_REG_REMAP: Leaf Functions. (line 37)
-* left rotate: Arithmetic. (line 196)
-* left shift: Arithmetic. (line 174)
-* LEGITIMATE_PIC_OPERAND_P: PIC. (line 31)
-* LEGITIMIZE_RELOAD_ADDRESS: Addressing Modes. (line 150)
-* length: GTY Options. (line 47)
-* less than: Comparisons. (line 68)
-* less than or equal: Comparisons. (line 76)
-* leu: Comparisons. (line 76)
-* 'leu' and attributes: Expressions. (line 83)
-* LE_EXPR: Unary and Binary Expressions.
- (line 6)
-* 'lfloorMN2': Standard Names. (line 694)
-* LIB2FUNCS_EXTRA: Target Fragment. (line 11)
-* LIBCALL_VALUE: Scalar Return. (line 56)
-* 'libgcc.a': Library Calls. (line 6)
-* LIBGCC2_CFLAGS: Target Fragment. (line 8)
-* LIBGCC2_GNU_PREFIX: Type Layout. (line 127)
-* LIBGCC2_HAS_DF_MODE: Type Layout. (line 108)
-* LIBGCC2_HAS_TF_MODE: Type Layout. (line 121)
-* LIBGCC2_HAS_XF_MODE: Type Layout. (line 115)
-* LIBGCC2_LONG_DOUBLE_TYPE_SIZE: Type Layout. (line 102)
-* LIBGCC2_UNWIND_ATTRIBUTE: Misc. (line 996)
-* LIBGCC_SPEC: Driver. (line 115)
-* library subroutine names: Library Calls. (line 6)
-* LIBRARY_PATH_ENV: Misc. (line 509)
-* LIB_SPEC: Driver. (line 107)
-* LIMIT_RELOAD_CLASS: Register Classes. (line 296)
-* LINK_COMMAND_SPEC: Driver. (line 236)
-* LINK_EH_SPEC: Driver. (line 142)
-* LINK_GCC_C_SEQUENCE_SPEC: Driver. (line 232)
-* LINK_LIBGCC_SPECIAL_1: Driver. (line 227)
-* LINK_SPEC: Driver. (line 100)
-* list: Containers. (line 6)
-* Liveness representation: Liveness information.
- (line 6)
-* load address instruction: Simple Constraints. (line 162)
-* LOAD_EXTEND_OP: Misc. (line 59)
-* 'load_multiple' instruction pattern: Standard Names. (line 136)
-* Local Register Allocator (LRA): RTL passes. (line 187)
-* LOCAL_ALIGNMENT: Storage Layout. (line 249)
-* LOCAL_CLASS_P: Classes. (line 73)
-* LOCAL_DECL_ALIGNMENT: Storage Layout. (line 286)
-* LOCAL_INCLUDE_DIR: Driver. (line 312)
-* LOCAL_LABEL_PREFIX: Instruction Output. (line 151)
-* LOCAL_REGNO: Register Basics. (line 101)
-* Logical Operators: Logical Operators. (line 6)
-* logical-and, bitwise: Arithmetic. (line 159)
-* LOGICAL_OP_NON_SHORT_CIRCUIT: Costs. (line 264)
-* 'logM2' instruction pattern: Standard Names. (line 607)
-* LOG_LINKS: Insns. (line 314)
-* 'longjmp' and automatic variables: Interface. (line 52)
-* LONG_ACCUM_TYPE_SIZE: Type Layout. (line 92)
-* LONG_DOUBLE_TYPE_SIZE: Type Layout. (line 57)
-* LONG_FRACT_TYPE_SIZE: Type Layout. (line 72)
-* LONG_LONG_ACCUM_TYPE_SIZE: Type Layout. (line 97)
-* LONG_LONG_FRACT_TYPE_SIZE: Type Layout. (line 77)
-* LONG_LONG_TYPE_SIZE: Type Layout. (line 32)
-* LONG_TYPE_SIZE: Type Layout. (line 21)
-* Loop analysis: Loop representation.
- (line 6)
-* Loop manipulation: Loop manipulation. (line 6)
-* Loop querying: Loop querying. (line 6)
-* Loop representation: Loop representation.
- (line 6)
-* Loop-closed SSA form: LCSSA. (line 6)
-* looping instruction patterns: Looping Patterns. (line 6)
-* LOOP_ALIGN: Alignment Output. (line 40)
-* LOOP_EXPR: Unary and Binary Expressions.
- (line 6)
-* lowering, language-dependent intermediate representation: Parsing pass.
- (line 13)
-* lo_sum: Arithmetic. (line 25)
-* 'lrintMN2': Standard Names. (line 684)
-* 'lroundMN2': Standard Names. (line 689)
-* lshiftrt: Arithmetic. (line 191)
-* 'lshiftrt' and attributes: Expressions. (line 83)
-* LSHIFT_EXPR: Unary and Binary Expressions.
- (line 6)
-* 'lshrM3' instruction pattern: Standard Names. (line 526)
-* lt: Comparisons. (line 68)
-* 'lt' and attributes: Expressions. (line 83)
-* LTGT_EXPR: Unary and Binary Expressions.
- (line 6)
-* lto: LTO. (line 6)
-* ltrans: LTO. (line 6)
-* ltu: Comparisons. (line 68)
-* LT_EXPR: Unary and Binary Expressions.
- (line 6)
-* 'm' in constraint: Simple Constraints. (line 17)
-* machine attributes: Target Attributes. (line 6)
-* machine description macros: Target Macros. (line 6)
-* machine descriptions: Machine Desc. (line 6)
-* machine mode conversions: Conversions. (line 6)
-* machine modes: Machine Modes. (line 6)
-* machine specific constraints: Machine Constraints.
- (line 6)
-* machine-independent predicates: Machine-Independent Predicates.
- (line 6)
-* macros, target description: Target Macros. (line 6)
-* 'maddMN4' instruction pattern: Standard Names. (line 449)
-* makefile fragment: Fragments. (line 6)
-* makefile targets: Makefile. (line 6)
-* MAKE_DECL_ONE_ONLY: Label Output. (line 246)
-* make_safe_from: Expander Definitions.
- (line 151)
-* MALLOC_ABI_ALIGNMENT: Storage Layout. (line 168)
-* Manipulating GIMPLE statements: Manipulating GIMPLE statements.
- (line 6)
-* marking roots: GGC Roots. (line 6)
-* mark_hook: GTY Options. (line 181)
-* MASK_RETURN_ADDR: Exception Region Output.
- (line 34)
-* matching constraint: Simple Constraints. (line 140)
-* matching operands: Output Template. (line 49)
-* match_dup: RTL Template. (line 73)
-* match_dup <1>: define_peephole2. (line 28)
-* 'match_dup' and attributes: Insn Lengths. (line 16)
-* match_operand: RTL Template. (line 16)
-* 'match_operand' and attributes: Expressions. (line 55)
-* match_operator: RTL Template. (line 95)
-* match_op_dup: RTL Template. (line 163)
-* match_parallel: RTL Template. (line 172)
-* match_par_dup: RTL Template. (line 219)
-* match_scratch: RTL Template. (line 58)
-* match_scratch <1>: define_peephole2. (line 28)
-* 'match_test' and attributes: Expressions. (line 64)
-* math library: Soft float library routines.
- (line 6)
-* math, in RTL: Arithmetic. (line 6)
-* matherr: Library Calls. (line 59)
-* MATH_LIBRARY: Misc. (line 502)
-* 'maxM3' instruction pattern: Standard Names. (line 311)
-* MAX_BITSIZE_MODE_ANY_INT: Machine Modes. (line 349)
-* MAX_BITSIZE_MODE_ANY_MODE: Machine Modes. (line 355)
-* MAX_BITS_PER_WORD: Storage Layout. (line 54)
-* MAX_CONDITIONAL_EXECUTE: Misc. (line 524)
-* MAX_FIXED_MODE_SIZE: Storage Layout. (line 431)
-* MAX_MOVE_MAX: Misc. (line 105)
-* MAX_OFILE_ALIGNMENT: Storage Layout. (line 203)
-* MAX_REGS_PER_ADDRESS: Addressing Modes. (line 42)
-* MAX_STACK_ALIGNMENT: Storage Layout. (line 197)
-* maybe_undef: GTY Options. (line 190)
-* may_trap_p, tree_could_trap_p: Edges. (line 114)
-* mcount: Profiling. (line 12)
-* MD_CAN_REDIRECT_BRANCH: Misc. (line 711)
-* MD_EXEC_PREFIX: Driver. (line 267)
-* MD_FALLBACK_FRAME_STATE_FOR: Exception Handling. (line 93)
-* MD_HANDLE_UNWABI: Exception Handling. (line 112)
-* MD_STARTFILE_PREFIX: Driver. (line 295)
-* MD_STARTFILE_PREFIX_1: Driver. (line 300)
-* mem: Regs and Memory. (line 370)
-* 'mem' and '/c': Flags. (line 81)
-* 'mem' and '/f': Flags. (line 85)
-* 'mem' and '/j': Flags. (line 70)
-* 'mem' and '/u': Flags. (line 134)
-* 'mem' and '/v': Flags. (line 76)
-* 'mem', RTL sharing: Sharing. (line 40)
-* memory model: Memory model. (line 6)
-* memory reference, nonoffsettable: Simple Constraints. (line 254)
-* memory references in constraints: Simple Constraints. (line 17)
-* 'memory_barrier' instruction pattern: Standard Names. (line 1587)
-* MEMORY_MOVE_COST: Costs. (line 53)
-* memory_operand: Machine-Independent Predicates.
- (line 57)
-* MEM_ADDR_SPACE: Special Accessors. (line 48)
-* MEM_ALIAS_SET: Special Accessors. (line 9)
-* MEM_ALIGN: Special Accessors. (line 45)
-* MEM_EXPR: Special Accessors. (line 19)
-* MEM_KEEP_ALIAS_SET_P: Flags. (line 70)
-* MEM_NOTRAP_P: Flags. (line 81)
-* MEM_OFFSET: Special Accessors. (line 31)
-* MEM_OFFSET_KNOWN_P: Special Accessors. (line 27)
-* MEM_POINTER: Flags. (line 85)
-* MEM_READONLY_P: Flags. (line 134)
-* MEM_REF: Storage References. (line 6)
-* 'mem_signal_fenceMODE' instruction pattern: Standard Names.
- (line 1857)
-* MEM_SIZE: Special Accessors. (line 39)
-* MEM_SIZE_KNOWN_P: Special Accessors. (line 35)
-* 'mem_thread_fenceMODE' instruction pattern: Standard Names.
- (line 1849)
-* MEM_VOLATILE_P: Flags. (line 76)
-* METHOD_TYPE: Types. (line 6)
-* MINIMUM_ALIGNMENT: Storage Layout. (line 299)
-* MINIMUM_ATOMIC_ALIGNMENT: Storage Layout. (line 176)
-* 'minM3' instruction pattern: Standard Names. (line 311)
-* minus: Arithmetic. (line 38)
-* 'minus' and attributes: Expressions. (line 83)
-* 'minus', canonicalization of: Insn Canonicalizations.
- (line 27)
-* MINUS_EXPR: Unary and Binary Expressions.
- (line 6)
-* MIN_UNITS_PER_WORD: Storage Layout. (line 64)
-* MIPS coprocessor-definition macros: MIPS Coprocessors. (line 6)
-* mnemonic attribute: Mnemonic Attribute. (line 6)
-* mod: Arithmetic. (line 137)
-* 'mod' and attributes: Expressions. (line 83)
-* mode classes: Machine Modes. (line 221)
-* mode iterators in '.md' files: Mode Iterators. (line 6)
-* mode switching: Mode Switching. (line 6)
-* MODES_TIEABLE_P: Values in Registers.
- (line 127)
-* MODE_ACCUM: Machine Modes. (line 251)
-* MODE_AFTER: Mode Switching. (line 48)
-* MODE_BASE_REG_CLASS: Register Classes. (line 116)
-* MODE_BASE_REG_REG_CLASS: Register Classes. (line 122)
-* MODE_CC: Machine Modes. (line 270)
-* MODE_CC <1>: MODE_CC Condition Codes.
- (line 6)
-* MODE_CODE_BASE_REG_CLASS: Register Classes. (line 129)
-* MODE_COMPLEX_FLOAT: Machine Modes. (line 262)
-* MODE_COMPLEX_INT: Machine Modes. (line 259)
-* MODE_DECIMAL_FLOAT: Machine Modes. (line 239)
-* MODE_ENTRY: Mode Switching. (line 54)
-* MODE_EXIT: Mode Switching. (line 60)
-* MODE_FLOAT: Machine Modes. (line 235)
-* MODE_FRACT: Machine Modes. (line 243)
-* MODE_FUNCTION: Machine Modes. (line 266)
-* MODE_INT: Machine Modes. (line 227)
-* MODE_NEEDED: Mode Switching. (line 41)
-* MODE_PARTIAL_INT: Machine Modes. (line 231)
-* MODE_PRIORITY_TO_MODE: Mode Switching. (line 66)
-* MODE_RANDOM: Machine Modes. (line 275)
-* MODE_UACCUM: Machine Modes. (line 255)
-* MODE_UFRACT: Machine Modes. (line 247)
-* modifiers in constraints: Modifiers. (line 6)
-* MODIFY_EXPR: Unary and Binary Expressions.
- (line 6)
-* MODIFY_JNI_METHOD_CALL: Misc. (line 798)
-* 'modM3' instruction pattern: Standard Names. (line 276)
-* modulo scheduling: RTL passes. (line 123)
-* MOVE_BY_PIECES_P: Costs. (line 164)
-* MOVE_MAX: Misc. (line 100)
-* MOVE_MAX_PIECES: Costs. (line 170)
-* MOVE_RATIO: Costs. (line 148)
-* 'movM' instruction pattern: Standard Names. (line 11)
-* 'movmemM' instruction pattern: Standard Names. (line 756)
-* 'movmisalignM' instruction pattern: Standard Names. (line 125)
-* 'movMODEcc' instruction pattern: Standard Names. (line 1050)
-* 'movstr' instruction pattern: Standard Names. (line 791)
-* 'movstrictM' instruction pattern: Standard Names. (line 119)
-* 'msubMN4' instruction pattern: Standard Names. (line 472)
-* 'mulhisi3' instruction pattern: Standard Names. (line 425)
-* 'mulM3' instruction pattern: Standard Names. (line 276)
-* 'mulqihi3' instruction pattern: Standard Names. (line 429)
-* 'mulsidi3' instruction pattern: Standard Names. (line 429)
-* mult: Arithmetic. (line 93)
-* 'mult' and attributes: Expressions. (line 83)
-* 'mult', canonicalization of: Insn Canonicalizations.
- (line 27)
-* 'mult', canonicalization of <1>: Insn Canonicalizations.
- (line 91)
-* MULTIARCH_DIRNAME: Target Fragment. (line 170)
-* MULTILIB_DEFAULTS: Driver. (line 252)
-* MULTILIB_DIRNAMES: Target Fragment. (line 44)
-* MULTILIB_EXCEPTIONS: Target Fragment. (line 70)
-* MULTILIB_EXTRA_OPTS: Target Fragment. (line 132)
-* MULTILIB_MATCHES: Target Fragment. (line 63)
-* MULTILIB_OPTIONS: Target Fragment. (line 24)
-* MULTILIB_OSDIRNAMES: Target Fragment. (line 139)
-* MULTILIB_REQUIRED: Target Fragment. (line 82)
-* MULTILIB_REUSE: Target Fragment. (line 103)
-* multiple alternative constraints: Multi-Alternative. (line 6)
-* MULTIPLE_SYMBOL_SPACES: Misc. (line 482)
-* multiplication: Arithmetic. (line 93)
-* multiplication with signed saturation: Arithmetic. (line 93)
-* multiplication with unsigned saturation: Arithmetic. (line 93)
-* MULT_EXPR: Unary and Binary Expressions.
- (line 6)
-* MULT_HIGHPART_EXPR: Unary and Binary Expressions.
- (line 6)
-* 'n' in constraint: Simple Constraints. (line 73)
-* name: Identifiers. (line 6)
-* named address spaces: Named Address Spaces.
- (line 6)
-* named patterns and conditions: Patterns. (line 47)
-* names, pattern: Standard Names. (line 6)
-* namespace, scope: Namespaces. (line 6)
-* NAMESPACE_DECL: Declarations. (line 6)
-* NAMESPACE_DECL <1>: Namespaces. (line 6)
-* NATIVE_SYSTEM_HEADER_COMPONENT: Driver. (line 322)
-* ne: Comparisons. (line 56)
-* 'ne' and attributes: Expressions. (line 83)
-* 'nearbyintM2' instruction pattern: Standard Names. (line 666)
-* neg: Arithmetic. (line 82)
-* 'neg' and attributes: Expressions. (line 83)
-* 'neg', canonicalization of: Insn Canonicalizations.
- (line 27)
-* NEGATE_EXPR: Unary and Binary Expressions.
- (line 6)
-* negation: Arithmetic. (line 82)
-* negation with signed saturation: Arithmetic. (line 82)
-* negation with unsigned saturation: Arithmetic. (line 82)
-* 'negM2' instruction pattern: Standard Names. (line 538)
-* nested functions, trampolines for: Trampolines. (line 6)
-* nested_ptr: GTY Options. (line 198)
-* next_bb, prev_bb, FOR_EACH_BB, FOR_ALL_BB: Basic Blocks. (line 25)
-* NEXT_INSN: Insns. (line 30)
-* NEXT_OBJC_RUNTIME: Library Calls. (line 82)
-* NE_EXPR: Unary and Binary Expressions.
- (line 6)
-* nil: RTL Objects. (line 73)
-* NM_FLAGS: Macros for Initialization.
- (line 110)
-* nondeterministic finite state automaton: Processor pipeline description.
- (line 304)
-* nonimmediate_operand: Machine-Independent Predicates.
- (line 100)
-* nonlocal goto handler: Edges. (line 171)
-* 'nonlocal_goto' instruction pattern: Standard Names. (line 1419)
-* 'nonlocal_goto_receiver' instruction pattern: Standard Names.
- (line 1436)
-* nonmemory_operand: Machine-Independent Predicates.
- (line 96)
-* nonoffsettable memory reference: Simple Constraints. (line 254)
-* NON_LVALUE_EXPR: Unary and Binary Expressions.
- (line 6)
-* 'nop' instruction pattern: Standard Names. (line 1232)
-* NOP_EXPR: Unary and Binary Expressions.
- (line 6)
-* normal predicates: Predicates. (line 31)
-* not: Arithmetic. (line 155)
-* 'not' and attributes: Expressions. (line 50)
-* not equal: Comparisons. (line 56)
-* 'not', canonicalization of: Insn Canonicalizations.
- (line 27)
-* note: Insns. (line 183)
-* 'note' and '/i': Flags. (line 59)
-* 'note' and '/v': Flags. (line 44)
-* NOTE_INSN_BASIC_BLOCK: Basic Blocks. (line 50)
-* NOTE_INSN_BASIC_BLOCK <1>: Basic Blocks. (line 52)
-* NOTE_INSN_BLOCK_BEG: Insns. (line 208)
-* NOTE_INSN_BLOCK_END: Insns. (line 208)
-* NOTE_INSN_DELETED: Insns. (line 198)
-* NOTE_INSN_DELETED_LABEL: Insns. (line 203)
-* NOTE_INSN_EH_REGION_BEG: Insns. (line 214)
-* NOTE_INSN_EH_REGION_END: Insns. (line 214)
-* NOTE_INSN_FUNCTION_BEG: Insns. (line 221)
-* NOTE_INSN_VAR_LOCATION: Insns. (line 225)
-* NOTE_LINE_NUMBER: Insns. (line 183)
-* NOTE_SOURCE_FILE: Insns. (line 183)
-* NOTE_VAR_LOCATION: Insns. (line 225)
-* NOTICE_UPDATE_CC: CC0 Condition Codes.
- (line 30)
-* NO_DBX_BNSYM_ENSYM: DBX Hooks. (line 25)
-* NO_DBX_FUNCTION_END: DBX Hooks. (line 19)
-* NO_DBX_GCC_MARKER: File Names and DBX. (line 27)
-* NO_DBX_MAIN_SOURCE_DIRECTORY: File Names and DBX. (line 22)
-* NO_DOLLAR_IN_LABEL: Label Output. (line 64)
-* NO_DOT_IN_LABEL: Label Output. (line 70)
-* NO_FUNCTION_CSE: Costs. (line 260)
-* NO_IMPLICIT_EXTERN_C: Misc. (line 381)
-* NO_PROFILE_COUNTERS: Profiling. (line 27)
-* NO_REGS: Register Classes. (line 17)
-* Number of iterations analysis: Number of iterations.
- (line 6)
-* NUM_MACHINE_MODES: Machine Modes. (line 288)
-* NUM_MODES_FOR_MODE_SWITCHING: Mode Switching. (line 29)
-* N_REG_CLASSES: Register Classes. (line 81)
-* 'o' in constraint: Simple Constraints. (line 23)
-* OBJC_GEN_METHOD_LABEL: Label Output. (line 447)
-* OBJC_JBLEN: Misc. (line 991)
-* OBJECT_FORMAT_COFF: Macros for Initialization.
- (line 96)
-* offsettable address: Simple Constraints. (line 23)
-* OFFSET_TYPE: Types. (line 6)
-* OImode: Machine Modes. (line 51)
-* Omega a solver for linear programming problems: Omega. (line 6)
-* OMP_ATOMIC: OpenMP. (line 6)
-* OMP_CLAUSE: OpenMP. (line 6)
-* OMP_CONTINUE: OpenMP. (line 6)
-* OMP_CRITICAL: OpenMP. (line 6)
-* OMP_FOR: OpenMP. (line 6)
-* OMP_MASTER: OpenMP. (line 6)
-* OMP_ORDERED: OpenMP. (line 6)
-* OMP_PARALLEL: OpenMP. (line 6)
-* OMP_RETURN: OpenMP. (line 6)
-* OMP_SECTION: OpenMP. (line 6)
-* OMP_SECTIONS: OpenMP. (line 6)
-* OMP_SINGLE: OpenMP. (line 6)
-* 'one_cmplM2' instruction pattern: Standard Names. (line 753)
-* operand access: Accessors. (line 6)
-* Operand Access Routines: SSA Operands. (line 116)
-* operand constraints: Constraints. (line 6)
-* Operand Iterators: SSA Operands. (line 116)
-* operand predicates: Predicates. (line 6)
-* operand substitution: Output Template. (line 6)
-* Operands: Operands. (line 6)
-* operands: SSA Operands. (line 6)
-* operands <1>: Patterns. (line 53)
-* operator predicates: Predicates. (line 6)
-* 'optc-gen.awk': Options. (line 6)
-* OPTGROUP_ALL: Optimization groups.
- (line 25)
-* OPTGROUP_INLINE: Optimization groups.
- (line 15)
-* OPTGROUP_IPA: Optimization groups.
- (line 9)
-* OPTGROUP_LOOP: Optimization groups.
- (line 12)
-* OPTGROUP_OTHER: Optimization groups.
- (line 21)
-* OPTGROUP_VEC: Optimization groups.
- (line 18)
-* optimization dumps: Optimization info. (line 6)
-* optimization groups: Optimization groups.
- (line 6)
-* optimization info file names: Dump files and streams.
- (line 6)
-* Optimization infrastructure for GIMPLE: Tree SSA. (line 6)
-* OPTIMIZE_MODE_SWITCHING: Mode Switching. (line 8)
-* option specification files: Options. (line 6)
-* optional hardware or system features: Run-time Target. (line 59)
-* options, directory search: Including Patterns. (line 45)
-* OPTION_DEFAULT_SPECS: Driver. (line 25)
-* order of register allocation: Allocation Order. (line 6)
-* ordered_comparison_operator: Machine-Independent Predicates.
- (line 115)
-* ORDERED_EXPR: Unary and Binary Expressions.
- (line 6)
-* Ordering of Patterns: Pattern Ordering. (line 6)
-* ORIGINAL_REGNO: Special Accessors. (line 53)
-* other register constraints: Simple Constraints. (line 171)
-* outgoing_args_size: Stack Arguments. (line 48)
-* OUTGOING_REGNO: Register Basics. (line 94)
-* OUTGOING_REG_PARM_STACK_SPACE: Stack Arguments. (line 73)
-* output of assembler code: File Framework. (line 6)
-* output statements: Output Statement. (line 6)
-* output templates: Output Template. (line 6)
-* output_asm_insn: Output Statement. (line 52)
-* OUTPUT_QUOTED_STRING: File Framework. (line 106)
-* OVERLAPPING_REGISTER_NAMES: Instruction Output. (line 20)
-* OVERLOAD: Functions for C++. (line 6)
-* OVERRIDE_ABI_FORMAT: Register Arguments. (line 139)
-* OVL_CURRENT: Functions for C++. (line 6)
-* OVL_NEXT: Functions for C++. (line 6)
-* 'p' in constraint: Simple Constraints. (line 162)
-* PAD_VARARGS_DOWN: Register Arguments. (line 220)
-* parallel: Side Effects. (line 209)
-* parameters, c++ abi: C++ ABI. (line 6)
-* parameters, miscellaneous: Misc. (line 6)
-* parameters, precompiled headers: PCH Target. (line 6)
-* paramN_is: GTY Options. (line 138)
-* param_is: GTY Options. (line 119)
-* parity: Arithmetic. (line 243)
-* 'parityM2' instruction pattern: Standard Names. (line 747)
-* PARM_BOUNDARY: Storage Layout. (line 133)
-* PARM_DECL: Declarations. (line 6)
-* PARSE_LDD_OUTPUT: Macros for Initialization.
- (line 125)
-* pass dumps: Passes. (line 6)
-* passes and files of the compiler: Passes. (line 6)
-* passing arguments: Interface. (line 36)
-* pass_duplicate_computed_gotos: Edges. (line 161)
-* PATH_SEPARATOR: Filesystem. (line 31)
-* PATTERN: Insns. (line 284)
-* pattern conditions: Patterns. (line 43)
-* pattern names: Standard Names. (line 6)
-* Pattern Ordering: Pattern Ordering. (line 6)
-* patterns: Patterns. (line 6)
-* pc: Regs and Memory. (line 357)
-* 'pc' and attributes: Insn Lengths. (line 20)
-* 'pc', RTL sharing: Sharing. (line 25)
-* PCC_BITFIELD_TYPE_MATTERS: Storage Layout. (line 325)
-* PCC_STATIC_STRUCT_RETURN: Aggregate Return. (line 64)
-* PC_REGNUM: Register Basics. (line 108)
-* pc_rtx: Regs and Memory. (line 362)
-* PDImode: Machine Modes. (line 40)
-* peephole optimization, RTL representation: Side Effects. (line 243)
-* peephole optimizer definitions: Peephole Definitions.
- (line 6)
-* per-function data: Per-Function Data. (line 6)
-* percent sign: Output Template. (line 6)
-* PHI nodes: SSA. (line 31)
-* PIC: PIC. (line 6)
-* PIC_OFFSET_TABLE_REGNUM: PIC. (line 15)
-* PIC_OFFSET_TABLE_REG_CALL_CLOBBERED: PIC. (line 25)
-* pipeline hazard recognizer: Processor pipeline description.
- (line 6)
-* pipeline hazard recognizer <1>: Processor pipeline description.
- (line 53)
-* Plugins: Plugins. (line 6)
-* plus: Arithmetic. (line 14)
-* 'plus' and attributes: Expressions. (line 83)
-* 'plus', canonicalization of: Insn Canonicalizations.
- (line 27)
-* PLUS_EXPR: Unary and Binary Expressions.
- (line 6)
-* Pmode: Misc. (line 329)
-* pmode_register_operand: Machine-Independent Predicates.
- (line 34)
-* pointer: Types. (line 6)
-* POINTERS_EXTEND_UNSIGNED: Storage Layout. (line 76)
-* POINTER_PLUS_EXPR: Unary and Binary Expressions.
- (line 6)
-* POINTER_SIZE: Storage Layout. (line 70)
-* POINTER_TYPE: Types. (line 6)
-* popcount: Arithmetic. (line 239)
-* 'popcountM2' instruction pattern: Standard Names. (line 741)
-* pops_args: Function Entry. (line 104)
-* pop_operand: Machine-Independent Predicates.
- (line 87)
-* portability: Portability. (line 6)
-* position independent code: PIC. (line 6)
-* POSTDECREMENT_EXPR: Unary and Binary Expressions.
- (line 6)
-* POSTINCREMENT_EXPR: Unary and Binary Expressions.
- (line 6)
-* post_dec: Incdec. (line 25)
-* post_inc: Incdec. (line 30)
-* post_modify: Incdec. (line 33)
-* post_order_compute, inverted_post_order_compute, walk_dominator_tree: Basic Blocks.
- (line 34)
-* POWI_MAX_MULTS: Misc. (line 860)
-* 'powM3' instruction pattern: Standard Names. (line 615)
-* pragma: Misc. (line 387)
-* PREDECREMENT_EXPR: Unary and Binary Expressions.
- (line 6)
-* predefined macros: Run-time Target. (line 6)
-* predicates: Predicates. (line 6)
-* predicates and machine modes: Predicates. (line 31)
-* predication: Conditional Execution.
- (line 6)
-* predict.def: Profile information.
- (line 24)
-* PREFERRED_DEBUGGING_TYPE: All Debuggers. (line 41)
-* PREFERRED_RELOAD_CLASS: Register Classes. (line 249)
-* PREFERRED_STACK_BOUNDARY: Storage Layout. (line 147)
-* prefetch: Side Effects. (line 323)
-* 'prefetch' and '/v': Flags. (line 214)
-* 'prefetch' instruction pattern: Standard Names. (line 1562)
-* PREFETCH_SCHEDULE_BARRIER_P: Flags. (line 214)
-* PREINCREMENT_EXPR: Unary and Binary Expressions.
- (line 6)
-* presence_set: Processor pipeline description.
- (line 223)
-* preserving SSA form: SSA. (line 74)
-* preserving virtual SSA form: SSA. (line 182)
-* pretend_args_size: Function Entry. (line 110)
-* prev_active_insn: define_peephole. (line 60)
-* PREV_INSN: Insns. (line 26)
-* pre_dec: Incdec. (line 8)
-* PRE_GCC3_DWARF_FRAME_REGISTERS: Frame Registers. (line 126)
-* pre_inc: Incdec. (line 22)
-* pre_modify: Incdec. (line 52)
-* PRINT_OPERAND: Instruction Output. (line 95)
-* PRINT_OPERAND_ADDRESS: Instruction Output. (line 122)
-* PRINT_OPERAND_PUNCT_VALID_P: Instruction Output. (line 115)
-* 'probe_stack' instruction pattern: Standard Names. (line 1411)
-* 'probe_stack_address' instruction pattern: Standard Names. (line 1404)
-* processor functional units: Processor pipeline description.
- (line 6)
-* processor functional units <1>: Processor pipeline description.
- (line 68)
-* processor pipeline description: Processor pipeline description.
- (line 6)
-* product: Arithmetic. (line 93)
-* profile feedback: Profile information.
- (line 14)
-* profile representation: Profile information.
- (line 6)
-* PROFILE_BEFORE_PROLOGUE: Profiling. (line 34)
-* PROFILE_HOOK: Profiling. (line 22)
-* profiling, code generation: Profiling. (line 6)
-* program counter: Regs and Memory. (line 358)
-* prologue: Function Entry. (line 6)
-* 'prologue' instruction pattern: Standard Names. (line 1500)
-* PROMOTE_MODE: Storage Layout. (line 87)
-* pseudo registers: Regs and Memory. (line 9)
-* PSImode: Machine Modes. (line 32)
-* PTRDIFF_TYPE: Type Layout. (line 200)
-* purge_dead_edges: Edges. (line 103)
-* purge_dead_edges <1>: Maintaining the CFG.
- (line 81)
-* push address instruction: Simple Constraints. (line 162)
-* 'pushM1' instruction pattern: Standard Names. (line 253)
-* PUSH_ARGS: Stack Arguments. (line 17)
-* PUSH_ARGS_REVERSED: Stack Arguments. (line 25)
-* push_operand: Machine-Independent Predicates.
- (line 80)
-* push_reload: Addressing Modes. (line 176)
-* PUSH_ROUNDING: Stack Arguments. (line 31)
-* PUT_CODE: RTL Objects. (line 47)
-* PUT_MODE: Machine Modes. (line 285)
-* PUT_REG_NOTE_KIND: Insns. (line 346)
-* PUT_SDB_: SDB and DWARF. (line 105)
-* QCmode: Machine Modes. (line 199)
-* QFmode: Machine Modes. (line 57)
-* QImode: Machine Modes. (line 25)
-* 'QImode', in 'insn': Insns. (line 268)
-* QQmode: Machine Modes. (line 106)
-* qualified type: Types. (line 6)
-* qualified type <1>: Types for C++. (line 6)
-* querying function unit reservations: Processor pipeline description.
- (line 90)
-* question mark: Multi-Alternative. (line 41)
-* quotient: Arithmetic. (line 117)
-* 'r' in constraint: Simple Constraints. (line 64)
-* RDIV_EXPR: Unary and Binary Expressions.
- (line 6)
-* READONLY_DATA_SECTION_ASM_OP: Sections. (line 62)
-* real operands: SSA Operands. (line 6)
-* REALPART_EXPR: Unary and Binary Expressions.
- (line 6)
-* REAL_ARITHMETIC: Floating Point. (line 64)
-* REAL_CST: Constant expressions.
- (line 6)
-* REAL_LIBGCC_SPEC: Driver. (line 124)
-* REAL_NM_FILE_NAME: Macros for Initialization.
- (line 105)
-* REAL_TYPE: Types. (line 6)
-* REAL_VALUES_EQUAL: Floating Point. (line 31)
-* REAL_VALUES_LESS: Floating Point. (line 37)
-* REAL_VALUE_ABS: Floating Point. (line 81)
-* REAL_VALUE_ATOF: Floating Point. (line 48)
-* REAL_VALUE_FIX: Floating Point. (line 40)
-* REAL_VALUE_FROM_INT: Floating Point. (line 90)
-* REAL_VALUE_ISINF: Floating Point. (line 58)
-* REAL_VALUE_ISNAN: Floating Point. (line 61)
-* REAL_VALUE_NEGATE: Floating Point. (line 78)
-* REAL_VALUE_NEGATIVE: Floating Point. (line 55)
-* REAL_VALUE_TO_INT: Floating Point. (line 84)
-* REAL_VALUE_TO_TARGET_DECIMAL128: Data Output. (line 143)
-* REAL_VALUE_TO_TARGET_DECIMAL32: Data Output. (line 141)
-* REAL_VALUE_TO_TARGET_DECIMAL64: Data Output. (line 142)
-* REAL_VALUE_TO_TARGET_DOUBLE: Data Output. (line 139)
-* REAL_VALUE_TO_TARGET_LONG_DOUBLE: Data Output. (line 140)
-* REAL_VALUE_TO_TARGET_SINGLE: Data Output. (line 138)
-* REAL_VALUE_TYPE: Floating Point. (line 25)
-* REAL_VALUE_UNSIGNED_FIX: Floating Point. (line 43)
-* recognizing insns: RTL Template. (line 6)
-* recog_data.operand: Instruction Output. (line 54)
-* RECORD_TYPE: Types. (line 6)
-* RECORD_TYPE <1>: Classes. (line 6)
-* redirect_edge_and_branch: Profile information.
- (line 71)
-* redirect_edge_and_branch, redirect_jump: Maintaining the CFG.
- (line 90)
-* 'reduc_smax_M' instruction pattern: Standard Names. (line 317)
-* 'reduc_smin_M' instruction pattern: Standard Names. (line 317)
-* 'reduc_splus_M' instruction pattern: Standard Names. (line 329)
-* 'reduc_umax_M' instruction pattern: Standard Names. (line 323)
-* 'reduc_umin_M' instruction pattern: Standard Names. (line 323)
-* 'reduc_uplus_M' instruction pattern: Standard Names. (line 335)
-* reference: Types. (line 6)
-* REFERENCE_TYPE: Types. (line 6)
-* reg: Regs and Memory. (line 9)
-* 'reg' and '/f': Flags. (line 94)
-* 'reg' and '/i': Flags. (line 89)
-* 'reg' and '/v': Flags. (line 98)
-* 'reg', RTL sharing: Sharing. (line 17)
-* regclass_for_constraint: C Constraint Interface.
- (line 58)
-* register allocation order: Allocation Order. (line 6)
-* register class definitions: Register Classes. (line 6)
-* register class preference constraints: Class Preferences. (line 6)
-* register pairs: Values in Registers.
- (line 69)
-* Register Transfer Language (RTL): RTL. (line 6)
-* register usage: Registers. (line 6)
-* registers arguments: Register Arguments. (line 6)
-* registers in constraints: Simple Constraints. (line 64)
-* REGISTER_MOVE_COST: Costs. (line 9)
-* REGISTER_NAMES: Instruction Output. (line 8)
-* register_operand: Machine-Independent Predicates.
- (line 29)
-* REGISTER_PREFIX: Instruction Output. (line 150)
-* REGISTER_TARGET_PRAGMAS: Misc. (line 387)
-* REGMODE_NATURAL_SIZE: Values in Registers.
- (line 49)
-* REGNO_MODE_CODE_OK_FOR_BASE_P: Register Classes. (line 172)
-* REGNO_MODE_OK_FOR_BASE_P: Register Classes. (line 150)
-* REGNO_MODE_OK_FOR_REG_BASE_P: Register Classes. (line 160)
-* REGNO_OK_FOR_BASE_P: Register Classes. (line 146)
-* REGNO_OK_FOR_INDEX_P: Register Classes. (line 186)
-* REGNO_REG_CLASS: Register Classes. (line 105)
-* regs_ever_live: Function Entry. (line 21)
-* regular expressions: Processor pipeline description.
- (line 6)
-* regular expressions <1>: Processor pipeline description.
- (line 105)
-* REG_ALLOC_ORDER: Allocation Order. (line 8)
-* REG_BR_PRED: Insns. (line 526)
-* REG_BR_PROB: Insns. (line 519)
-* REG_BR_PROB_BASE, BB_FREQ_BASE, count: Profile information.
- (line 82)
-* REG_BR_PROB_BASE, EDGE_FREQUENCY: Profile information.
- (line 52)
-* REG_CC_SETTER: Insns. (line 491)
-* REG_CC_USER: Insns. (line 491)
-* reg_class_contents: Register Basics. (line 59)
-* REG_CLASS_CONTENTS: Register Classes. (line 91)
-* REG_CLASS_FROM_CONSTRAINT: Old Constraints. (line 33)
-* REG_CLASS_FROM_LETTER: Old Constraints. (line 25)
-* REG_CLASS_NAMES: Register Classes. (line 86)
-* REG_CROSSING_JUMP: Insns. (line 405)
-* REG_DEAD: Insns. (line 357)
-* REG_DEAD, REG_UNUSED: Liveness information.
- (line 32)
-* REG_DEP_ANTI: Insns. (line 513)
-* REG_DEP_OUTPUT: Insns. (line 509)
-* REG_DEP_TRUE: Insns. (line 506)
-* REG_EH_REGION, EDGE_ABNORMAL_CALL: Edges. (line 109)
-* REG_EQUAL: Insns. (line 420)
-* REG_EQUIV: Insns. (line 420)
-* REG_EXPR: Special Accessors. (line 58)
-* REG_FRAME_RELATED_EXPR: Insns. (line 532)
-* REG_FUNCTION_VALUE_P: Flags. (line 89)
-* REG_INC: Insns. (line 373)
-* 'reg_label' and '/v': Flags. (line 65)
-* REG_LABEL_OPERAND: Insns. (line 387)
-* REG_LABEL_TARGET: Insns. (line 396)
-* reg_names: Register Basics. (line 59)
-* reg_names <1>: Instruction Output. (line 107)
-* REG_NONNEG: Insns. (line 379)
-* REG_NOTES: Insns. (line 321)
-* REG_NOTE_KIND: Insns. (line 346)
-* REG_OFFSET: Special Accessors. (line 62)
-* REG_OK_STRICT: Addressing Modes. (line 99)
-* REG_PARM_STACK_SPACE: Stack Arguments. (line 58)
-* 'REG_PARM_STACK_SPACE', and 'TARGET_FUNCTION_ARG': Register Arguments.
- (line 50)
-* REG_POINTER: Flags. (line 94)
-* REG_SETJMP: Insns. (line 414)
-* REG_UNUSED: Insns. (line 366)
-* REG_USERVAR_P: Flags. (line 98)
-* REG_VALUE_IN_UNWIND_CONTEXT: Frame Registers. (line 158)
-* REG_WORDS_BIG_ENDIAN: Storage Layout. (line 35)
-* relative costs: Costs. (line 6)
-* RELATIVE_PREFIX_NOT_LINKDIR: Driver. (line 262)
-* reloading: RTL passes. (line 170)
-* reload_completed: Standard Names. (line 1199)
-* 'reload_in' instruction pattern: Standard Names. (line 98)
-* reload_in_progress: Standard Names. (line 57)
-* 'reload_out' instruction pattern: Standard Names. (line 98)
-* remainder: Arithmetic. (line 137)
-* 'remainderM3' instruction pattern: Standard Names. (line 561)
-* reorder: GTY Options. (line 224)
-* representation of RTL: RTL. (line 6)
-* reservation delays: Processor pipeline description.
- (line 6)
-* 'restore_stack_block' instruction pattern: Standard Names. (line 1325)
-* 'restore_stack_function' instruction pattern: Standard Names.
- (line 1325)
-* 'restore_stack_nonlocal' instruction pattern: Standard Names.
- (line 1325)
-* rest_of_decl_compilation: Parsing pass. (line 51)
-* rest_of_type_compilation: Parsing pass. (line 51)
-* RESULT_DECL: Declarations. (line 6)
-* return: Side Effects. (line 72)
-* 'return' instruction pattern: Standard Names. (line 1173)
-* return values in registers: Scalar Return. (line 6)
-* returning aggregate values: Aggregate Return. (line 6)
-* returning structures and unions: Interface. (line 10)
-* RETURN_ADDRESS_POINTER_REGNUM: Frame Registers. (line 64)
-* RETURN_ADDR_IN_PREVIOUS_FRAME: Frame Layout. (line 133)
-* RETURN_ADDR_OFFSET: Exception Handling. (line 59)
-* RETURN_ADDR_RTX: Frame Layout. (line 122)
-* RETURN_EXPR: Statements for C++. (line 6)
-* RETURN_STMT: Statements for C++. (line 6)
-* return_val: Flags. (line 274)
-* 'return_val', in 'call_insn': Flags. (line 24)
-* 'return_val', in 'reg': Flags. (line 89)
-* 'return_val', in 'symbol_ref': Flags. (line 202)
-* reverse probability: Profile information.
- (line 66)
-* REVERSE_CONDITION: MODE_CC Condition Codes.
- (line 90)
-* REVERSIBLE_CC_MODE: MODE_CC Condition Codes.
- (line 76)
-* right rotate: Arithmetic. (line 196)
-* right shift: Arithmetic. (line 191)
-* 'rintM2' instruction pattern: Standard Names. (line 674)
-* RISC: Processor pipeline description.
- (line 6)
-* RISC <1>: Processor pipeline description.
- (line 223)
-* roots, marking: GGC Roots. (line 6)
-* rotate: Arithmetic. (line 196)
-* rotate <1>: Arithmetic. (line 196)
-* rotatert: Arithmetic. (line 196)
-* 'rotlM3' instruction pattern: Standard Names. (line 526)
-* 'rotrM3' instruction pattern: Standard Names. (line 526)
-* 'roundM2' instruction pattern: Standard Names. (line 650)
-* ROUND_DIV_EXPR: Unary and Binary Expressions.
- (line 6)
-* ROUND_MOD_EXPR: Unary and Binary Expressions.
- (line 6)
-* ROUND_TOWARDS_ZERO: Storage Layout. (line 474)
-* ROUND_TYPE_ALIGN: Storage Layout. (line 422)
-* RSHIFT_EXPR: Unary and Binary Expressions.
- (line 6)
-* RTL addition: Arithmetic. (line 14)
-* RTL addition with signed saturation: Arithmetic. (line 14)
-* RTL addition with unsigned saturation: Arithmetic. (line 14)
-* RTL classes: RTL Classes. (line 6)
-* RTL comparison: Arithmetic. (line 46)
-* RTL comparison operations: Comparisons. (line 6)
-* RTL constant expression types: Constants. (line 6)
-* RTL constants: Constants. (line 6)
-* RTL declarations: RTL Declarations. (line 6)
-* RTL difference: Arithmetic. (line 38)
-* RTL expression: RTL Objects. (line 6)
-* RTL expressions for arithmetic: Arithmetic. (line 6)
-* RTL format: RTL Classes. (line 72)
-* RTL format characters: RTL Classes. (line 77)
-* RTL function-call insns: Calls. (line 6)
-* RTL insn template: RTL Template. (line 6)
-* RTL integers: RTL Objects. (line 6)
-* RTL memory expressions: Regs and Memory. (line 6)
-* RTL object types: RTL Objects. (line 6)
-* RTL postdecrement: Incdec. (line 6)
-* RTL postincrement: Incdec. (line 6)
-* RTL predecrement: Incdec. (line 6)
-* RTL preincrement: Incdec. (line 6)
-* RTL register expressions: Regs and Memory. (line 6)
-* RTL representation: RTL. (line 6)
-* RTL side effect expressions: Side Effects. (line 6)
-* RTL strings: RTL Objects. (line 6)
-* RTL structure sharing assumptions: Sharing. (line 6)
-* RTL subtraction: Arithmetic. (line 38)
-* RTL subtraction with signed saturation: Arithmetic. (line 38)
-* RTL subtraction with unsigned saturation: Arithmetic. (line 38)
-* RTL sum: Arithmetic. (line 14)
-* RTL vectors: RTL Objects. (line 6)
-* RTL_CONST_CALL_P: Flags. (line 19)
-* RTL_CONST_OR_PURE_CALL_P: Flags. (line 29)
-* RTL_LOOPING_CONST_OR_PURE_CALL_P: Flags. (line 33)
-* RTL_PURE_CALL_P: Flags. (line 24)
-* RTX (See RTL): RTL Objects. (line 6)
-* RTX codes, classes of: RTL Classes. (line 6)
-* RTX_FRAME_RELATED_P: Flags. (line 107)
-* run-time conventions: Interface. (line 6)
-* run-time target specification: Run-time Target. (line 6)
-* 's' in constraint: Simple Constraints. (line 100)
-* same_type_p: Types. (line 86)
-* SAmode: Machine Modes. (line 150)
-* 'satfractMN2' instruction pattern: Standard Names. (line 938)
-* 'satfractunsMN2' instruction pattern: Standard Names. (line 951)
-* satisfies_constraint_: C Constraint Interface.
- (line 46)
-* sat_fract: Conversions. (line 90)
-* SAVE_EXPR: Unary and Binary Expressions.
- (line 6)
-* 'save_stack_block' instruction pattern: Standard Names. (line 1325)
-* 'save_stack_function' instruction pattern: Standard Names. (line 1325)
-* 'save_stack_nonlocal' instruction pattern: Standard Names. (line 1325)
-* SBSS_SECTION_ASM_OP: Sections. (line 75)
-* Scalar evolutions: Scalar evolutions. (line 6)
-* scalars, returned as values: Scalar Return. (line 6)
-* SCHED_GROUP_P: Flags. (line 148)
-* SCmode: Machine Modes. (line 199)
-* scratch: Regs and Memory. (line 294)
-* scratch operands: Regs and Memory. (line 294)
-* 'scratch', RTL sharing: Sharing. (line 35)
-* scratch_operand: Machine-Independent Predicates.
- (line 49)
-* SDATA_SECTION_ASM_OP: Sections. (line 57)
-* SDB_ALLOW_FORWARD_REFERENCES: SDB and DWARF. (line 123)
-* SDB_ALLOW_UNKNOWN_REFERENCES: SDB and DWARF. (line 118)
-* SDB_DEBUGGING_INFO: SDB and DWARF. (line 8)
-* SDB_DELIM: SDB and DWARF. (line 111)
-* SDB_OUTPUT_SOURCE_LINE: SDB and DWARF. (line 128)
-* SDmode: Machine Modes. (line 88)
-* 'sdot_prodM' instruction pattern: Standard Names. (line 341)
-* search options: Including Patterns. (line 45)
-* SECONDARY_INPUT_RELOAD_CLASS: Register Classes. (line 391)
-* SECONDARY_MEMORY_NEEDED: Register Classes. (line 447)
-* SECONDARY_MEMORY_NEEDED_MODE: Register Classes. (line 466)
-* SECONDARY_MEMORY_NEEDED_RTX: Register Classes. (line 457)
-* SECONDARY_OUTPUT_RELOAD_CLASS: Register Classes. (line 392)
-* SECONDARY_RELOAD_CLASS: Register Classes. (line 390)
-* SELECT_CC_MODE: MODE_CC Condition Codes.
- (line 6)
-* sequence: Side Effects. (line 258)
-* Sequence iterators: Sequence iterators. (line 6)
-* set: Side Effects. (line 15)
-* 'set' and '/f': Flags. (line 107)
-* 'setmemM' instruction pattern: Standard Names. (line 802)
-* SETUP_FRAME_ADDRESSES: Frame Layout. (line 100)
-* SET_ASM_OP: Label Output. (line 416)
-* SET_ASM_OP <1>: Label Output. (line 427)
-* set_attr: Tagging Insns. (line 31)
-* set_attr_alternative: Tagging Insns. (line 49)
-* set_bb_seq: GIMPLE sequences. (line 75)
-* SET_BY_PIECES_P: Costs. (line 205)
-* SET_DEST: Side Effects. (line 69)
-* SET_IS_RETURN_P: Flags. (line 157)
-* SET_LABEL_KIND: Insns. (line 146)
-* set_optab_libfunc: Library Calls. (line 15)
-* SET_RATIO: Costs. (line 193)
-* SET_SRC: Side Effects. (line 69)
-* 'set_thread_pointerMODE' instruction pattern: Standard Names.
- (line 1869)
-* SET_TYPE_STRUCTURAL_EQUALITY: Types. (line 6)
-* SET_TYPE_STRUCTURAL_EQUALITY <1>: Types. (line 81)
-* SFmode: Machine Modes. (line 69)
-* SF_SIZE: Type Layout. (line 135)
-* sharing of RTL components: Sharing. (line 6)
-* shift: Arithmetic. (line 174)
-* SHIFT_COUNT_TRUNCATED: Misc. (line 112)
-* SHLIB_SUFFIX: Macros for Initialization.
- (line 133)
-* SHORT_ACCUM_TYPE_SIZE: Type Layout. (line 82)
-* SHORT_FRACT_TYPE_SIZE: Type Layout. (line 62)
-* SHORT_IMMEDIATES_SIGN_EXTEND: Misc. (line 86)
-* SHORT_TYPE_SIZE: Type Layout. (line 15)
-* 'sibcall_epilogue' instruction pattern: Standard Names. (line 1532)
-* sibling call: Edges. (line 121)
-* SIBLING_CALL_P: Flags. (line 161)
-* signed division: Arithmetic. (line 117)
-* signed division with signed saturation: Arithmetic. (line 117)
-* signed maximum: Arithmetic. (line 142)
-* signed minimum: Arithmetic. (line 142)
-* sign_extend: Conversions. (line 23)
-* sign_extract: Bit-Fields. (line 8)
-* 'sign_extract', canonicalization of: Insn Canonicalizations.
- (line 87)
-* SIG_ATOMIC_TYPE: Type Layout. (line 251)
-* SImode: Machine Modes. (line 37)
-* simple constraints: Simple Constraints. (line 6)
-* simple_return: Side Effects. (line 86)
-* 'simple_return' instruction pattern: Standard Names. (line 1188)
-* 'sincosM3' instruction pattern: Standard Names. (line 586)
-* 'sinM2' instruction pattern: Standard Names. (line 578)
-* SIZETYPE: Type Layout. (line 190)
-* SIZE_ASM_OP: Label Output. (line 33)
-* SIZE_TYPE: Type Layout. (line 174)
-* skip: GTY Options. (line 76)
-* SLOW_BYTE_ACCESS: Costs. (line 117)
-* SLOW_UNALIGNED_ACCESS: Costs. (line 132)
-* smax: Arithmetic. (line 142)
-* smin: Arithmetic. (line 142)
-* sms, swing, software pipelining: RTL passes. (line 123)
-* 'smulM3_highpart' instruction pattern: Standard Names. (line 441)
-* soft float library: Soft float library routines.
- (line 6)
-* special: GTY Options. (line 311)
-* special predicates: Predicates. (line 31)
-* SPECS: Target Fragment. (line 191)
-* speed of instructions: Costs. (line 6)
-* splitting instructions: Insn Splitting. (line 6)
-* split_block: Maintaining the CFG.
- (line 97)
-* SQmode: Machine Modes. (line 114)
-* sqrt: Arithmetic. (line 207)
-* 'sqrtM2' instruction pattern: Standard Names. (line 544)
-* square root: Arithmetic. (line 207)
-* SSA: SSA. (line 6)
-* 'ssaddM3' instruction pattern: Standard Names. (line 276)
-* 'ssashlM3' instruction pattern: Standard Names. (line 516)
-* SSA_NAME_DEF_STMT: SSA. (line 216)
-* SSA_NAME_VERSION: SSA. (line 221)
-* 'ssdivM3' instruction pattern: Standard Names. (line 276)
-* 'ssmaddMN4' instruction pattern: Standard Names. (line 464)
-* 'ssmsubMN4' instruction pattern: Standard Names. (line 488)
-* 'ssmulM3' instruction pattern: Standard Names. (line 276)
-* 'ssnegM2' instruction pattern: Standard Names. (line 538)
-* 'sssubM3' instruction pattern: Standard Names. (line 276)
-* 'ssum_widenM3' instruction pattern: Standard Names. (line 350)
-* ss_abs: Arithmetic. (line 201)
-* ss_ashift: Arithmetic. (line 174)
-* ss_div: Arithmetic. (line 117)
-* ss_minus: Arithmetic. (line 38)
-* ss_mult: Arithmetic. (line 93)
-* ss_neg: Arithmetic. (line 82)
-* ss_plus: Arithmetic. (line 14)
-* ss_truncate: Conversions. (line 43)
-* stack arguments: Stack Arguments. (line 6)
-* stack frame layout: Frame Layout. (line 6)
-* stack smashing protection: Stack Smashing Protection.
- (line 6)
-* STACK_ALIGNMENT_NEEDED: Frame Layout. (line 47)
-* STACK_BOUNDARY: Storage Layout. (line 139)
-* STACK_CHECK_BUILTIN: Stack Checking. (line 31)
-* STACK_CHECK_FIXED_FRAME_SIZE: Stack Checking. (line 82)
-* STACK_CHECK_MAX_FRAME_SIZE: Stack Checking. (line 73)
-* STACK_CHECK_MAX_VAR_SIZE: Stack Checking. (line 89)
-* STACK_CHECK_MOVING_SP: Stack Checking. (line 53)
-* STACK_CHECK_PROBE_INTERVAL_EXP: Stack Checking. (line 45)
-* STACK_CHECK_PROTECT: Stack Checking. (line 62)
-* STACK_CHECK_STATIC_BUILTIN: Stack Checking. (line 38)
-* STACK_DYNAMIC_OFFSET: Frame Layout. (line 73)
-* 'STACK_DYNAMIC_OFFSET' and virtual registers: Regs and Memory.
- (line 83)
-* STACK_GROWS_DOWNWARD: Frame Layout. (line 8)
-* STACK_PARMS_IN_REG_PARM_AREA: Stack Arguments. (line 83)
-* STACK_POINTER_OFFSET: Frame Layout. (line 57)
-* 'STACK_POINTER_OFFSET' and virtual registers: Regs and Memory.
- (line 93)
-* STACK_POINTER_REGNUM: Frame Registers. (line 8)
-* 'STACK_POINTER_REGNUM' and virtual registers: Regs and Memory.
- (line 83)
-* stack_pointer_rtx: Frame Registers. (line 104)
-* 'stack_protect_set' instruction pattern: Standard Names. (line 1879)
-* 'stack_protect_test' instruction pattern: Standard Names. (line 1890)
-* STACK_PUSH_CODE: Frame Layout. (line 16)
-* STACK_REGS: Stack Registers. (line 19)
-* STACK_REG_COVER_CLASS: Stack Registers. (line 22)
-* STACK_SAVEAREA_MODE: Storage Layout. (line 438)
-* STACK_SIZE_MODE: Storage Layout. (line 449)
-* STACK_SLOT_ALIGNMENT: Storage Layout. (line 270)
-* standard pattern names: Standard Names. (line 6)
-* STANDARD_STARTFILE_PREFIX: Driver. (line 274)
-* STANDARD_STARTFILE_PREFIX_1: Driver. (line 281)
-* STANDARD_STARTFILE_PREFIX_2: Driver. (line 288)
-* STARTFILE_SPEC: Driver. (line 147)
-* STARTING_FRAME_OFFSET: Frame Layout. (line 38)
-* 'STARTING_FRAME_OFFSET' and virtual registers: Regs and Memory.
- (line 74)
-* Statement and operand traversals: Statement and operand traversals.
- (line 6)
-* Statement Sequences: Statement Sequences.
- (line 6)
-* Statements: Statements. (line 6)
-* statements: Function Properties.
- (line 6)
-* statements <1>: Statements for C++. (line 6)
-* Static profile estimation: Profile information.
- (line 24)
-* static single assignment: SSA. (line 6)
-* STATIC_CHAIN_INCOMING_REGNUM: Frame Registers. (line 77)
-* STATIC_CHAIN_REGNUM: Frame Registers. (line 76)
-* 'stdarg.h' and register arguments: Register Arguments. (line 45)
-* STDC_0_IN_SYSTEM_HEADERS: Misc. (line 350)
-* STMT_EXPR: Unary and Binary Expressions.
- (line 6)
-* STMT_IS_FULL_EXPR_P: Statements for C++. (line 22)
-* storage layout: Storage Layout. (line 6)
-* STORE_BY_PIECES_P: Costs. (line 212)
-* STORE_FLAG_VALUE: Misc. (line 201)
-* 'store_multiple' instruction pattern: Standard Names. (line 159)
-* strcpy: Storage Layout. (line 223)
-* STRICT_ALIGNMENT: Storage Layout. (line 320)
-* strict_low_part: RTL Declarations. (line 9)
-* strict_memory_address_p: Addressing Modes. (line 186)
-* STRING_CST: Constant expressions.
- (line 6)
-* STRING_POOL_ADDRESS_P: Flags. (line 165)
-* 'strlenM' instruction pattern: Standard Names. (line 873)
-* structure value address: Aggregate Return. (line 6)
-* structures, returning: Interface. (line 10)
-* STRUCTURE_SIZE_BOUNDARY: Storage Layout. (line 312)
-* 'subM3' instruction pattern: Standard Names. (line 276)
-* SUBOBJECT: Statements for C++. (line 6)
-* SUBOBJECT_CLEANUP: Statements for C++. (line 6)
-* subreg: Regs and Memory. (line 97)
-* 'subreg' and '/s': Flags. (line 187)
-* 'subreg' and '/u': Flags. (line 180)
-* 'subreg' and '/u' and '/v': Flags. (line 170)
-* 'subreg', in 'strict_low_part': RTL Declarations. (line 9)
-* SUBREG_BYTE: Regs and Memory. (line 285)
-* SUBREG_PROMOTED_UNSIGNED_P: Flags. (line 170)
-* SUBREG_PROMOTED_UNSIGNED_SET: Flags. (line 180)
-* SUBREG_PROMOTED_VAR_P: Flags. (line 187)
-* SUBREG_REG: Regs and Memory. (line 285)
-* subst iterators in '.md' files: Subst Iterators. (line 6)
-* SUCCESS_EXIT_CODE: Host Misc. (line 12)
-* SUPPORTS_INIT_PRIORITY: Macros for Initialization.
- (line 57)
-* SUPPORTS_ONE_ONLY: Label Output. (line 255)
-* SUPPORTS_WEAK: Label Output. (line 229)
-* SWITCHABLE_TARGET: Run-time Target. (line 164)
-* SWITCH_BODY: Statements for C++. (line 6)
-* SWITCH_COND: Statements for C++. (line 6)
-* SWITCH_STMT: Statements for C++. (line 6)
-* symbolic label: Sharing. (line 20)
-* SYMBOL_FLAG_ANCHOR: Special Accessors. (line 117)
-* SYMBOL_FLAG_EXTERNAL: Special Accessors. (line 99)
-* SYMBOL_FLAG_FUNCTION: Special Accessors. (line 92)
-* SYMBOL_FLAG_HAS_BLOCK_INFO: Special Accessors. (line 113)
-* SYMBOL_FLAG_LOCAL: Special Accessors. (line 95)
-* SYMBOL_FLAG_SMALL: Special Accessors. (line 104)
-* SYMBOL_FLAG_TLS_SHIFT: Special Accessors. (line 108)
-* symbol_ref: Constants. (line 86)
-* 'symbol_ref' and '/f': Flags. (line 165)
-* 'symbol_ref' and '/i': Flags. (line 202)
-* 'symbol_ref' and '/u': Flags. (line 10)
-* 'symbol_ref' and '/v': Flags. (line 206)
-* 'symbol_ref', RTL sharing: Sharing. (line 20)
-* SYMBOL_REF_ANCHOR_P: Special Accessors. (line 117)
-* SYMBOL_REF_BLOCK: Special Accessors. (line 130)
-* SYMBOL_REF_BLOCK_OFFSET: Special Accessors. (line 135)
-* SYMBOL_REF_CONSTANT: Special Accessors. (line 78)
-* SYMBOL_REF_DATA: Special Accessors. (line 82)
-* SYMBOL_REF_DECL: Special Accessors. (line 67)
-* SYMBOL_REF_EXTERNAL_P: Special Accessors. (line 99)
-* SYMBOL_REF_FLAG: Flags. (line 206)
-* 'SYMBOL_REF_FLAG', in 'TARGET_ENCODE_SECTION_INFO': Sections.
- (line 277)
-* SYMBOL_REF_FLAGS: Special Accessors. (line 86)
-* SYMBOL_REF_FUNCTION_P: Special Accessors. (line 92)
-* SYMBOL_REF_HAS_BLOCK_INFO_P: Special Accessors. (line 113)
-* SYMBOL_REF_LOCAL_P: Special Accessors. (line 95)
-* SYMBOL_REF_SMALL_P: Special Accessors. (line 104)
-* SYMBOL_REF_TLS_MODEL: Special Accessors. (line 108)
-* SYMBOL_REF_USED: Flags. (line 197)
-* SYMBOL_REF_WEAK: Flags. (line 202)
-* 'sync_addMODE' instruction pattern: Standard Names. (line 1635)
-* 'sync_andMODE' instruction pattern: Standard Names. (line 1635)
-* 'sync_compare_and_swapMODE' instruction pattern: Standard Names.
- (line 1594)
-* 'sync_iorMODE' instruction pattern: Standard Names. (line 1635)
-* 'sync_lock_releaseMODE' instruction pattern: Standard Names.
- (line 1704)
-* 'sync_lock_test_and_setMODE' instruction pattern: Standard Names.
- (line 1677)
-* 'sync_nandMODE' instruction pattern: Standard Names. (line 1635)
-* 'sync_new_addMODE' instruction pattern: Standard Names. (line 1669)
-* 'sync_new_andMODE' instruction pattern: Standard Names. (line 1669)
-* 'sync_new_iorMODE' instruction pattern: Standard Names. (line 1669)
-* 'sync_new_nandMODE' instruction pattern: Standard Names. (line 1669)
-* 'sync_new_subMODE' instruction pattern: Standard Names. (line 1669)
-* 'sync_new_xorMODE' instruction pattern: Standard Names. (line 1669)
-* 'sync_old_addMODE' instruction pattern: Standard Names. (line 1651)
-* 'sync_old_andMODE' instruction pattern: Standard Names. (line 1651)
-* 'sync_old_iorMODE' instruction pattern: Standard Names. (line 1651)
-* 'sync_old_nandMODE' instruction pattern: Standard Names. (line 1651)
-* 'sync_old_subMODE' instruction pattern: Standard Names. (line 1651)
-* 'sync_old_xorMODE' instruction pattern: Standard Names. (line 1651)
-* 'sync_subMODE' instruction pattern: Standard Names. (line 1635)
-* 'sync_xorMODE' instruction pattern: Standard Names. (line 1635)
-* SYSROOT_HEADERS_SUFFIX_SPEC: Driver. (line 176)
-* SYSROOT_SUFFIX_SPEC: Driver. (line 171)
-* 't-TARGET': Target Fragment. (line 6)
-* table jump: Basic Blocks. (line 67)
-* 'tablejump' instruction pattern: Standard Names. (line 1261)
-* tag: GTY Options. (line 82)
-* tagging insns: Tagging Insns. (line 6)
-* tail calls: Tail Calls. (line 6)
-* TAmode: Machine Modes. (line 158)
-* target attributes: Target Attributes. (line 6)
-* target description macros: Target Macros. (line 6)
-* target functions: Target Structure. (line 6)
-* target hooks: Target Structure. (line 6)
-* target makefile fragment: Target Fragment. (line 6)
-* target specifications: Run-time Target. (line 6)
-* targetm: Target Structure. (line 6)
-* targets, makefile: Makefile. (line 6)
-* TARGET_ADDRESS_COST: Costs. (line 300)
-* TARGET_ADDR_SPACE_ADDRESS_MODE: Named Address Spaces.
- (line 43)
-* TARGET_ADDR_SPACE_CONVERT: Named Address Spaces.
- (line 85)
-* TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P: Named Address Spaces.
- (line 61)
-* TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS: Named Address Spaces.
- (line 69)
-* TARGET_ADDR_SPACE_POINTER_MODE: Named Address Spaces.
- (line 36)
-* TARGET_ADDR_SPACE_SUBSET_P: Named Address Spaces.
- (line 76)
-* TARGET_ADDR_SPACE_VALID_POINTER_MODE: Named Address Spaces.
- (line 50)
-* TARGET_ALIGN_ANON_BITFIELD: Storage Layout. (line 397)
-* TARGET_ALLOCATE_INITIAL_VALUE: Misc. (line 734)
-* TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS: Misc. (line 1013)
-* TARGET_ALWAYS_STRIP_DOTDOT: Driver. (line 246)
-* TARGET_ARG_PARTIAL_BYTES: Register Arguments. (line 81)
-* TARGET_ARM_EABI_UNWINDER: Exception Region Output.
- (line 127)
-* TARGET_ARRAY_MODE_SUPPORTED_P: Register Arguments. (line 333)
-* TARGET_ASAN_SHADOW_OFFSET: Misc. (line 1041)
-* TARGET_ASM_ALIGNED_DI_OP: Data Output. (line 9)
-* TARGET_ASM_ALIGNED_HI_OP: Data Output. (line 7)
-* TARGET_ASM_ALIGNED_SI_OP: Data Output. (line 8)
-* TARGET_ASM_ALIGNED_TI_OP: Data Output. (line 10)
-* TARGET_ASM_ASSEMBLE_VISIBILITY: Label Output. (line 266)
-* TARGET_ASM_BYTE_OP: Data Output. (line 6)
-* TARGET_ASM_CAN_OUTPUT_MI_THUNK: Function Entry. (line 202)
-* TARGET_ASM_CLOSE_PAREN: Data Output. (line 129)
-* TARGET_ASM_CODE_END: File Framework. (line 57)
-* TARGET_ASM_CONSTRUCTOR: Macros for Initialization.
- (line 68)
-* TARGET_ASM_DECLARE_CONSTANT_NAME: Label Output. (line 149)
-* TARGET_ASM_DESTRUCTOR: Macros for Initialization.
- (line 82)
-* TARGET_ASM_EMIT_EXCEPT_PERSONALITY: Dispatch Tables. (line 80)
-* TARGET_ASM_EMIT_EXCEPT_TABLE_LABEL: Dispatch Tables. (line 73)
-* TARGET_ASM_EMIT_UNWIND_LABEL: Dispatch Tables. (line 61)
-* TARGET_ASM_EXTERNAL_LIBCALL: Label Output. (line 302)
-* TARGET_ASM_FILE_END: File Framework. (line 35)
-* TARGET_ASM_FILE_START: File Framework. (line 8)
-* TARGET_ASM_FILE_START_APP_OFF: File Framework. (line 16)
-* TARGET_ASM_FILE_START_FILE_DIRECTIVE: File Framework. (line 29)
-* TARGET_ASM_FINAL_POSTSCAN_INSN: Instruction Output. (line 82)
-* TARGET_ASM_FUNCTION_BEGIN_EPILOGUE: Function Entry. (line 59)
-* TARGET_ASM_FUNCTION_END_PROLOGUE: Function Entry. (line 53)
-* TARGET_ASM_FUNCTION_EPILOGUE: Function Entry. (line 65)
-* TARGET_ASM_FUNCTION_PROLOGUE: Function Entry. (line 9)
-* TARGET_ASM_FUNCTION_RODATA_SECTION: Sections. (line 213)
-* TARGET_ASM_FUNCTION_SECTION: File Framework. (line 121)
-* TARGET_ASM_FUNCTION_SWITCHED_TEXT_SECTIONS: File Framework.
- (line 131)
-* TARGET_ASM_GLOBALIZE_DECL_NAME: Label Output. (line 194)
-* TARGET_ASM_GLOBALIZE_LABEL: Label Output. (line 185)
-* TARGET_ASM_INIT_SECTIONS: Sections. (line 159)
-* TARGET_ASM_INTEGER: Data Output. (line 25)
-* TARGET_ASM_INTERNAL_LABEL: Label Output. (line 345)
-* TARGET_ASM_JUMP_ALIGN_MAX_SKIP: Alignment Output. (line 21)
-* TARGET_ASM_LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP: Alignment Output.
- (line 34)
-* TARGET_ASM_LABEL_ALIGN_MAX_SKIP: Alignment Output. (line 68)
-* TARGET_ASM_LOOP_ALIGN_MAX_SKIP: Alignment Output. (line 53)
-* TARGET_ASM_LTO_END: File Framework. (line 52)
-* TARGET_ASM_LTO_START: File Framework. (line 47)
-* TARGET_ASM_MARK_DECL_PRESERVED: Label Output. (line 308)
-* TARGET_ASM_MERGEABLE_RODATA_PREFIX: Sections. (line 221)
-* TARGET_ASM_NAMED_SECTION: File Framework. (line 113)
-* TARGET_ASM_OPEN_PAREN: Data Output. (line 128)
-* TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA: Data Output. (line 38)
-* TARGET_ASM_OUTPUT_ANCHOR: Anchored Addresses. (line 42)
-* TARGET_ASM_OUTPUT_DWARF_DTPREL: SDB and DWARF. (line 99)
-* TARGET_ASM_OUTPUT_IDENT: File Framework. (line 100)
-* TARGET_ASM_OUTPUT_MI_THUNK: Function Entry. (line 160)
-* TARGET_ASM_OUTPUT_SOURCE_FILENAME: File Framework. (line 91)
-* TARGET_ASM_RECORD_GCC_SWITCHES: File Framework. (line 162)
-* TARGET_ASM_RECORD_GCC_SWITCHES_SECTION: File Framework. (line 207)
-* TARGET_ASM_RELOC_RW_MASK: Sections. (line 168)
-* TARGET_ASM_SELECT_RTX_SECTION: Sections. (line 230)
-* TARGET_ASM_SELECT_SECTION: Sections. (line 179)
-* TARGET_ASM_TM_CLONE_TABLE_SECTION: Sections. (line 226)
-* TARGET_ASM_TRAMPOLINE_TEMPLATE: Trampolines. (line 28)
-* TARGET_ASM_TTYPE: Exception Region Output.
- (line 121)
-* TARGET_ASM_UNALIGNED_DI_OP: Data Output. (line 13)
-* TARGET_ASM_UNALIGNED_HI_OP: Data Output. (line 11)
-* TARGET_ASM_UNALIGNED_SI_OP: Data Output. (line 12)
-* TARGET_ASM_UNALIGNED_TI_OP: Data Output. (line 14)
-* TARGET_ASM_UNIQUE_SECTION: Sections. (line 201)
-* TARGET_ASM_UNWIND_EMIT: Dispatch Tables. (line 87)
-* TARGET_ASM_UNWIND_EMIT_BEFORE_INSN: Dispatch Tables. (line 92)
-* TARGET_ATOMIC_ALIGN_FOR_MODE: Misc. (line 1060)
-* TARGET_ATOMIC_ASSIGN_EXPAND_FENV: Misc. (line 1066)
-* TARGET_ATOMIC_TEST_AND_SET_TRUEVAL: Misc. (line 1051)
-* TARGET_ATTRIBUTE_TABLE: Target Attributes. (line 10)
-* TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P: Target Attributes. (line 17)
-* TARGET_BINDS_LOCAL_P: Sections. (line 308)
-* TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED: Misc. (line 831)
-* TARGET_BRANCH_TARGET_REGISTER_CLASS: Misc. (line 824)
-* TARGET_BUILD_BUILTIN_VA_LIST: Register Arguments. (line 271)
-* TARGET_BUILTIN_DECL: Misc. (line 603)
-* TARGET_BUILTIN_RECIPROCAL: Addressing Modes. (line 261)
-* TARGET_BUILTIN_SETJMP_FRAME_VALUE: Frame Layout. (line 107)
-* TARGET_CALLEE_COPIES: Register Arguments. (line 113)
-* TARGET_CANNOT_FORCE_CONST_MEM: Addressing Modes. (line 234)
-* TARGET_CANNOT_MODIFY_JUMPS_P: Misc. (line 811)
-* TARGET_CANONICALIZE_COMPARISON: MODE_CC Condition Codes.
- (line 54)
-* TARGET_CANONICAL_VA_LIST_TYPE: Register Arguments. (line 292)
-* TARGET_CAN_ELIMINATE: Elimination. (line 73)
-* TARGET_CAN_FOLLOW_JUMP: Misc. (line 720)
-* TARGET_CAN_INLINE_P: Target Attributes. (line 159)
-* TARGET_CAN_USE_DOLOOP_P: Misc. (line 675)
-* TARGET_CASE_VALUES_THRESHOLD: Misc. (line 46)
-* TARGET_CC_MODES_COMPATIBLE: MODE_CC Condition Codes.
- (line 118)
-* TARGET_CHECK_PCH_TARGET_FLAGS: PCH Target. (line 26)
-* TARGET_CHECK_STRING_OBJECT_FORMAT_ARG: Run-time Target. (line 119)
-* TARGET_CLASS_LIKELY_SPILLED_P: Register Classes. (line 489)
-* TARGET_CLASS_MAX_NREGS: Register Classes. (line 505)
-* TARGET_COMMUTATIVE_P: Misc. (line 727)
-* TARGET_COMPARE_VERSION_PRIORITY: Misc. (line 652)
-* TARGET_COMP_TYPE_ATTRIBUTES: Target Attributes. (line 25)
-* TARGET_CONDITIONAL_REGISTER_USAGE: Register Basics. (line 59)
-* TARGET_CONST_ANCHOR: Misc. (line 1024)
-* TARGET_CONST_NOT_OK_FOR_DEBUG_P: Addressing Modes. (line 230)
-* TARGET_CONVERT_TO_TYPE: Misc. (line 978)
-* TARGET_CPU_CPP_BUILTINS: Run-time Target. (line 8)
-* TARGET_CSTORE_MODE: Register Classes. (line 588)
-* TARGET_CXX_ADJUST_CLASS_AT_DEFINITION: C++ ABI. (line 86)
-* TARGET_CXX_CDTOR_RETURNS_THIS: C++ ABI. (line 37)
-* TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT: C++ ABI. (line 61)
-* TARGET_CXX_COOKIE_HAS_SIZE: C++ ABI. (line 24)
-* TARGET_CXX_DECL_MANGLING_CONTEXT: C++ ABI. (line 92)
-* TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY: C++ ABI. (line 52)
-* TARGET_CXX_GET_COOKIE_SIZE: C++ ABI. (line 17)
-* TARGET_CXX_GUARD_MASK_BIT: C++ ABI. (line 11)
-* TARGET_CXX_GUARD_TYPE: C++ ABI. (line 6)
-* TARGET_CXX_IMPLICIT_EXTERN_C: Misc. (line 373)
-* TARGET_CXX_IMPORT_EXPORT_CLASS: C++ ABI. (line 28)
-* TARGET_CXX_KEY_METHOD_MAY_BE_INLINE: C++ ABI. (line 42)
-* TARGET_CXX_LIBRARY_RTTI_COMDAT: C++ ABI. (line 68)
-* TARGET_CXX_USE_AEABI_ATEXIT: C++ ABI. (line 73)
-* TARGET_CXX_USE_ATEXIT_FOR_CXA_ATEXIT: C++ ABI. (line 79)
-* TARGET_C_PREINCLUDE: Misc. (line 361)
-* TARGET_DEBUG_UNWIND_INFO: SDB and DWARF. (line 36)
-* TARGET_DECIMAL_FLOAT_SUPPORTED_P: Storage Layout. (line 521)
-* TARGET_DECLSPEC: Target Attributes. (line 72)
-* TARGET_DEFAULT_PACK_STRUCT: Misc. (line 446)
-* TARGET_DEFAULT_SHORT_ENUMS: Type Layout. (line 166)
-* TARGET_DEFAULT_TARGET_FLAGS: Run-time Target. (line 55)
-* TARGET_DEFERRED_OUTPUT_DEFS: Label Output. (line 430)
-* TARGET_DELAY_SCHED2: SDB and DWARF. (line 65)
-* TARGET_DELAY_VARTRACK: SDB and DWARF. (line 69)
-* TARGET_DELEGITIMIZE_ADDRESS: Addressing Modes. (line 221)
-* TARGET_DIFFERENT_ADDR_DISPLACEMENT_P: Register Classes. (line 574)
-* TARGET_DLLIMPORT_DECL_ATTRIBUTES: Target Attributes. (line 55)
-* TARGET_DWARF_CALLING_CONVENTION: SDB and DWARF. (line 16)
-* TARGET_DWARF_HANDLE_FRAME_UNSPEC: Frame Layout. (line 169)
-* TARGET_DWARF_REGISTER_SPAN: Exception Region Output.
- (line 104)
-* TARGET_EDOM: Library Calls. (line 59)
-* TARGET_EMUTLS_DEBUG_FORM_TLS_ADDRESS: Emulated TLS. (line 67)
-* TARGET_EMUTLS_GET_ADDRESS: Emulated TLS. (line 18)
-* TARGET_EMUTLS_REGISTER_COMMON: Emulated TLS. (line 23)
-* TARGET_EMUTLS_TMPL_PREFIX: Emulated TLS. (line 44)
-* TARGET_EMUTLS_TMPL_SECTION: Emulated TLS. (line 35)
-* TARGET_EMUTLS_VAR_ALIGN_FIXED: Emulated TLS. (line 62)
-* TARGET_EMUTLS_VAR_FIELDS: Emulated TLS. (line 48)
-* TARGET_EMUTLS_VAR_INIT: Emulated TLS. (line 55)
-* TARGET_EMUTLS_VAR_PREFIX: Emulated TLS. (line 40)
-* TARGET_EMUTLS_VAR_SECTION: Emulated TLS. (line 30)
-* TARGET_ENCODE_SECTION_INFO: Sections. (line 251)
-* 'TARGET_ENCODE_SECTION_INFO' and address validation: Addressing Modes.
- (line 82)
-* 'TARGET_ENCODE_SECTION_INFO' usage: Instruction Output. (line 127)
-* TARGET_ENUM_VA_LIST_P: Register Arguments. (line 275)
-* TARGET_EXCEPT_UNWIND_INFO: Exception Region Output.
- (line 45)
-* TARGET_EXECUTABLE_SUFFIX: Misc. (line 785)
-* TARGET_EXPAND_BUILTIN: Misc. (line 613)
-* TARGET_EXPAND_BUILTIN_SAVEREGS: Varargs. (line 64)
-* TARGET_EXPAND_TO_RTL_HOOK: Storage Layout. (line 527)
-* TARGET_EXPR: Unary and Binary Expressions.
- (line 6)
-* TARGET_EXTRA_INCLUDES: Misc. (line 870)
-* TARGET_EXTRA_LIVE_ON_ENTRY: Tail Calls. (line 20)
-* TARGET_EXTRA_PRE_INCLUDES: Misc. (line 877)
-* TARGET_FIXED_CONDITION_CODE_REGS: MODE_CC Condition Codes.
- (line 103)
-* TARGET_FIXED_POINT_SUPPORTED_P: Storage Layout. (line 524)
-* target_flags: Run-time Target. (line 51)
-* TARGET_FLAGS_REGNUM: Register Arguments. (line 391)
-* TARGET_FLOAT_EXCEPTIONS_ROUNDING_SUPPORTED_P: Run-time Target.
- (line 183)
-* TARGET_FLT_EVAL_METHOD: Type Layout. (line 147)
-* TARGET_FN_ABI_VA_LIST: Register Arguments. (line 287)
-* TARGET_FOLD_BUILTIN: Misc. (line 635)
-* TARGET_FORCE_AT_COMP_DIR: SDB and DWARF. (line 60)
-* TARGET_FORMAT_TYPES: Misc. (line 898)
-* TARGET_FRAME_POINTER_REQUIRED: Elimination. (line 8)
-* TARGET_FUNCTION_ARG: Register Arguments. (line 10)
-* TARGET_FUNCTION_ARG_ADVANCE: Register Arguments. (line 184)
-* TARGET_FUNCTION_ARG_BOUNDARY: Register Arguments. (line 238)
-* TARGET_FUNCTION_ARG_ROUND_BOUNDARY: Register Arguments. (line 244)
-* TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P: Target Attributes. (line 93)
-* TARGET_FUNCTION_INCOMING_ARG: Register Arguments. (line 65)
-* TARGET_FUNCTION_OK_FOR_SIBCALL: Tail Calls. (line 6)
-* TARGET_FUNCTION_VALUE: Scalar Return. (line 9)
-* TARGET_FUNCTION_VALUE_REGNO_P: Scalar Return. (line 96)
-* TARGET_GENERATE_VERSION_DISPATCHER_BODY: Misc. (line 668)
-* TARGET_GET_DRAP_RTX: Misc. (line 1007)
-* TARGET_GET_FUNCTION_VERSIONS_DISPATCHER: Misc. (line 661)
-* TARGET_GET_PCH_VALIDITY: PCH Target. (line 6)
-* TARGET_GET_RAW_ARG_MODE: Aggregate Return. (line 82)
-* TARGET_GET_RAW_RESULT_MODE: Aggregate Return. (line 76)
-* TARGET_GIMPLE_FOLD_BUILTIN: Misc. (line 645)
-* TARGET_GIMPLIFY_VA_ARG_EXPR: Register Arguments. (line 297)
-* TARGET_HANDLE_C_OPTION: Run-time Target. (line 73)
-* TARGET_HANDLE_OPTION: Run-time Target. (line 59)
-* TARGET_HARD_REGNO_SCRATCH_OK: Values in Registers.
- (line 141)
-* TARGET_HAS_IFUNC_P: Misc. (line 1055)
-* TARGET_HAS_NO_HW_DIVIDE: Library Calls. (line 52)
-* TARGET_HAVE_CONDITIONAL_EXECUTION: Misc. (line 845)
-* TARGET_HAVE_CTORS_DTORS: Macros for Initialization.
- (line 63)
-* TARGET_HAVE_NAMED_SECTIONS: File Framework. (line 139)
-* TARGET_HAVE_SRODATA_SECTION: Sections. (line 297)
-* TARGET_HAVE_SWITCHABLE_BSS_SECTIONS: File Framework. (line 144)
-* TARGET_HAVE_TLS: Sections. (line 317)
-* TARGET_INIT_BUILTINS: Misc. (line 587)
-* TARGET_INIT_DWARF_REG_SIZES_EXTRA: Exception Region Output.
- (line 113)
-* TARGET_INIT_LIBFUNCS: Library Calls. (line 15)
-* TARGET_INSERT_ATTRIBUTES: Target Attributes. (line 80)
-* TARGET_INSTANTIATE_DECLS: Storage Layout. (line 535)
-* TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN: Misc. (line 931)
-* TARGET_INVALID_BINARY_OP: Misc. (line 950)
-* TARGET_INVALID_CONVERSION: Misc. (line 937)
-* TARGET_INVALID_PARAMETER_TYPE: Misc. (line 956)
-* TARGET_INVALID_RETURN_TYPE: Misc. (line 963)
-* TARGET_INVALID_UNARY_OP: Misc. (line 943)
-* TARGET_INVALID_WITHIN_DOLOOP: Misc. (line 692)
-* TARGET_IN_SMALL_DATA_P: Sections. (line 293)
-* TARGET_LEGITIMATE_ADDRESS_P: Addressing Modes. (line 48)
-* TARGET_LEGITIMATE_COMBINED_INSN: Misc. (line 706)
-* TARGET_LEGITIMATE_CONSTANT_P: Addressing Modes. (line 213)
-* TARGET_LEGITIMIZE_ADDRESS: Addressing Modes. (line 129)
-* TARGET_LIBCALL_VALUE: Scalar Return. (line 65)
-* TARGET_LIBC_HAS_FUNCTION: Library Calls. (line 77)
-* TARGET_LIBFUNC_GNU_PREFIX: Library Calls. (line 24)
-* TARGET_LIBGCC_CMP_RETURN_MODE: Storage Layout. (line 458)
-* TARGET_LIBGCC_SDATA_SECTION: Sections. (line 131)
-* TARGET_LIBGCC_SHIFT_COUNT_MODE: Storage Layout. (line 464)
-* TARGET_LIB_INT_CMP_BIASED: Library Calls. (line 42)
-* TARGET_LOOP_UNROLL_ADJUST: Misc. (line 851)
-* TARGET_LRA_P: Register Classes. (line 548)
-* TARGET_MACHINE_DEPENDENT_REORG: Misc. (line 572)
-* TARGET_MANGLE_ASSEMBLER_NAME: Label Output. (line 321)
-* TARGET_MANGLE_DECL_ASSEMBLER_NAME: Sections. (line 241)
-* TARGET_MANGLE_TYPE: Storage Layout. (line 539)
-* TARGET_MAX_ANCHOR_OFFSET: Anchored Addresses. (line 38)
-* TARGET_MD_ASM_CLOBBERS: Misc. (line 491)
-* TARGET_MEMBER_TYPE_FORCES_BLK: Storage Layout. (line 410)
-* TARGET_MEMMODEL_CHECK: Misc. (line 1046)
-* TARGET_MEMORY_MOVE_COST: Costs. (line 79)
-* TARGET_MEM_CONSTRAINT: Addressing Modes. (line 107)
-* TARGET_MEM_REF: Storage References. (line 6)
-* TARGET_MERGE_DECL_ATTRIBUTES: Target Attributes. (line 45)
-* TARGET_MERGE_TYPE_ATTRIBUTES: Target Attributes. (line 37)
-* TARGET_MIN_ANCHOR_OFFSET: Anchored Addresses. (line 32)
-* TARGET_MIN_DIVISIONS_FOR_RECIP_MUL: Misc. (line 90)
-* TARGET_MODE_DEPENDENT_ADDRESS_P: Addressing Modes. (line 196)
-* TARGET_MODE_REP_EXTENDED: Misc. (line 175)
-* TARGET_MS_BITFIELD_LAYOUT_P: Storage Layout. (line 493)
-* TARGET_MUST_PASS_IN_STACK: Register Arguments. (line 58)
-* 'TARGET_MUST_PASS_IN_STACK', and 'TARGET_FUNCTION_ARG': Register Arguments.
- (line 50)
-* TARGET_NARROW_VOLATILE_BITFIELD: Storage Layout. (line 403)
-* TARGET_N_FORMAT_TYPES: Misc. (line 903)
-* TARGET_OBJC_CONSTRUCT_STRING_OBJECT: Run-time Target. (line 88)
-* TARGET_OBJC_DECLARE_CLASS_DEFINITION: Run-time Target. (line 109)
-* TARGET_OBJC_DECLARE_UNRESOLVED_CLASS_REFERENCE: Run-time Target.
- (line 104)
-* TARGET_OBJECT_SUFFIX: Misc. (line 780)
-* TARGET_OBJFMT_CPP_BUILTINS: Run-time Target. (line 45)
-* TARGET_OPTF: Misc. (line 885)
-* TARGET_OPTION_DEFAULT_PARAMS: Run-time Target. (line 160)
-* TARGET_OPTION_FUNCTION_VERSIONS: Target Attributes. (line 151)
-* TARGET_OPTION_INIT_STRUCT: Run-time Target. (line 156)
-* TARGET_OPTION_OPTIMIZATION_TABLE: Run-time Target. (line 142)
-* TARGET_OPTION_OVERRIDE: Target Attributes. (line 138)
-* TARGET_OPTION_PRAGMA_PARSE: Target Attributes. (line 131)
-* TARGET_OPTION_PRINT: Target Attributes. (line 125)
-* TARGET_OPTION_RESTORE: Target Attributes. (line 119)
-* TARGET_OPTION_SAVE: Target Attributes. (line 112)
-* TARGET_OPTION_VALID_ATTRIBUTE_P: Target Attributes. (line 100)
-* TARGET_OS_CPP_BUILTINS: Run-time Target. (line 41)
-* TARGET_OVERRIDES_FORMAT_ATTRIBUTES: Misc. (line 907)
-* TARGET_OVERRIDES_FORMAT_ATTRIBUTES_COUNT: Misc. (line 913)
-* TARGET_OVERRIDES_FORMAT_INIT: Misc. (line 917)
-* TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE: Run-time Target. (line 126)
-* TARGET_PASS_BY_REFERENCE: Register Arguments. (line 101)
-* TARGET_PCH_VALID_P: PCH Target. (line 11)
-* TARGET_POSIX_IO: Misc. (line 516)
-* TARGET_PREFERRED_OUTPUT_RELOAD_CLASS: Register Classes. (line 284)
-* TARGET_PREFERRED_RELOAD_CLASS: Register Classes. (line 213)
-* TARGET_PREFERRED_RENAME_CLASS: Register Classes. (line 201)
-* TARGET_PREPARE_PCH_SAVE: PCH Target. (line 34)
-* TARGET_PRETEND_OUTGOING_VARARGS_NAMED: Varargs. (line 123)
-* TARGET_PROFILE_BEFORE_PROLOGUE: Sections. (line 301)
-* TARGET_PROMOTED_TYPE: Misc. (line 970)
-* TARGET_PROMOTE_FUNCTION_MODE: Storage Layout. (line 109)
-* TARGET_PROMOTE_PROTOTYPES: Stack Arguments. (line 10)
-* TARGET_PTRMEMFUNC_VBIT_LOCATION: Type Layout. (line 293)
-* TARGET_REF_MAY_ALIAS_ERRNO: Register Arguments. (line 308)
-* TARGET_REGISTER_MOVE_COST: Costs. (line 31)
-* TARGET_REGISTER_PRIORITY: Register Classes. (line 553)
-* TARGET_REGISTER_USAGE_LEVELING_P: Register Classes. (line 564)
-* TARGET_RELAXED_ORDERING: Misc. (line 922)
-* TARGET_RESOLVE_OVERLOADED_BUILTIN: Misc. (line 624)
-* TARGET_RETURN_IN_MEMORY: Aggregate Return. (line 15)
-* TARGET_RETURN_IN_MSB: Scalar Return. (line 117)
-* TARGET_RETURN_POPS_ARGS: Stack Arguments. (line 92)
-* TARGET_RTX_COSTS: Costs. (line 269)
-* TARGET_SCALAR_MODE_SUPPORTED_P: Register Arguments. (line 315)
-* TARGET_SCHED_ADJUST_COST: Scheduling. (line 35)
-* TARGET_SCHED_ADJUST_PRIORITY: Scheduling. (line 50)
-* TARGET_SCHED_ALLOC_SCHED_CONTEXT: Scheduling. (line 283)
-* TARGET_SCHED_CLEAR_SCHED_CONTEXT: Scheduling. (line 298)
-* TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK: Scheduling. (line 98)
-* TARGET_SCHED_DFA_NEW_CYCLE: Scheduling. (line 245)
-* TARGET_SCHED_DFA_POST_ADVANCE_CYCLE: Scheduling. (line 169)
-* TARGET_SCHED_DFA_POST_CYCLE_INSN: Scheduling. (line 153)
-* TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE: Scheduling. (line 162)
-* TARGET_SCHED_DFA_PRE_CYCLE_INSN: Scheduling. (line 141)
-* TARGET_SCHED_DISPATCH: Scheduling. (line 365)
-* TARGET_SCHED_DISPATCH_DO: Scheduling. (line 370)
-* TARGET_SCHED_EXPOSED_PIPELINE: Scheduling. (line 374)
-* TARGET_SCHED_FINISH: Scheduling. (line 119)
-* TARGET_SCHED_FINISH_GLOBAL: Scheduling. (line 134)
-* TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BACKTRACK: Scheduling. (line 225)
-* TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BEGIN: Scheduling. (line 214)
-* TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD: Scheduling.
- (line 176)
-* TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD: Scheduling.
- (line 204)
-* TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC: Scheduling.
- (line 336)
-* TARGET_SCHED_FIRST_CYCLE_MULTIPASS_END: Scheduling. (line 230)
-* TARGET_SCHED_FIRST_CYCLE_MULTIPASS_FINI: Scheduling. (line 240)
-* TARGET_SCHED_FIRST_CYCLE_MULTIPASS_INIT: Scheduling. (line 235)
-* TARGET_SCHED_FIRST_CYCLE_MULTIPASS_ISSUE: Scheduling. (line 219)
-* TARGET_SCHED_FREE_SCHED_CONTEXT: Scheduling. (line 302)
-* TARGET_SCHED_GEN_SPEC_CHECK: Scheduling. (line 324)
-* TARGET_SCHED_H_I_D_EXTENDED: Scheduling. (line 278)
-* TARGET_SCHED_INIT: Scheduling. (line 108)
-* TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN: Scheduling. (line 158)
-* TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN: Scheduling. (line 150)
-* TARGET_SCHED_INIT_GLOBAL: Scheduling. (line 126)
-* TARGET_SCHED_INIT_SCHED_CONTEXT: Scheduling. (line 287)
-* TARGET_SCHED_ISSUE_RATE: Scheduling. (line 11)
-* TARGET_SCHED_IS_COSTLY_DEPENDENCE: Scheduling. (line 256)
-* TARGET_SCHED_MACRO_FUSION_P: Scheduling. (line 87)
-* TARGET_SCHED_MACRO_FUSION_PAIR_P: Scheduling. (line 91)
-* TARGET_SCHED_NEEDS_BLOCK_P: Scheduling. (line 317)
-* TARGET_SCHED_REASSOCIATION_WIDTH: Scheduling. (line 379)
-* TARGET_SCHED_REORDER: Scheduling. (line 58)
-* TARGET_SCHED_REORDER2: Scheduling. (line 75)
-* TARGET_SCHED_SET_SCHED_CONTEXT: Scheduling. (line 294)
-* TARGET_SCHED_SET_SCHED_FLAGS: Scheduling. (line 349)
-* TARGET_SCHED_SMS_RES_MII: Scheduling. (line 356)
-* TARGET_SCHED_SPECULATE_INSN: Scheduling. (line 305)
-* TARGET_SCHED_VARIABLE_ISSUE: Scheduling. (line 22)
-* TARGET_SECONDARY_RELOAD: Register Classes. (line 312)
-* TARGET_SECTION_TYPE_FLAGS: File Framework. (line 149)
-* TARGET_SETUP_INCOMING_VARARGS: Varargs. (line 71)
-* TARGET_SET_CURRENT_FUNCTION: Misc. (line 762)
-* TARGET_SET_DEFAULT_TYPE_ATTRIBUTES: Target Attributes. (line 33)
-* TARGET_SET_UP_BY_PROLOGUE: Tail Calls. (line 29)
-* TARGET_SHIFT_TRUNCATION_MASK: Misc. (line 138)
-* TARGET_SIMD_CLONE_ADJUST: Addressing Modes. (line 413)
-* TARGET_SIMD_CLONE_COMPUTE_VECSIZE_AND_SIMDLEN: Addressing Modes.
- (line 405)
-* TARGET_SIMD_CLONE_USABLE: Addressing Modes. (line 417)
-* TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P: Register Arguments.
- (line 357)
-* TARGET_SPILL_CLASS: Register Classes. (line 581)
-* TARGET_SPLIT_COMPLEX_ARG: Register Arguments. (line 259)
-* TARGET_STACK_PROTECT_FAIL: Stack Smashing Protection.
- (line 16)
-* TARGET_STACK_PROTECT_GUARD: Stack Smashing Protection.
- (line 6)
-* TARGET_STATIC_CHAIN: Frame Registers. (line 90)
-* TARGET_STRICT_ARGUMENT_NAMING: Varargs. (line 107)
-* TARGET_STRING_OBJECT_REF_TYPE_P: Run-time Target. (line 114)
-* TARGET_STRIP_NAME_ENCODING: Sections. (line 288)
-* TARGET_STRUCT_VALUE_RTX: Aggregate Return. (line 44)
-* TARGET_SUPPORTS_SPLIT_STACK: Stack Smashing Protection.
- (line 25)
-* TARGET_SUPPORTS_WEAK: Label Output. (line 237)
-* TARGET_TERMINATE_DW2_EH_FRAME_INFO: Exception Region Output.
- (line 98)
-* TARGET_TRAMPOLINE_ADJUST_ADDRESS: Trampolines. (line 74)
-* TARGET_TRAMPOLINE_INIT: Trampolines. (line 54)
-* TARGET_UNSPEC_MAY_TRAP_P: Misc. (line 753)
-* TARGET_UNWIND_TABLES_DEFAULT: Exception Region Output.
- (line 72)
-* TARGET_UNWIND_WORD_MODE: Storage Layout. (line 470)
-* TARGET_UPDATE_STACK_BOUNDARY: Misc. (line 1003)
-* TARGET_USES_WEAK_UNWIND_INFO: Exception Handling. (line 123)
-* TARGET_USE_ANCHORS_FOR_SYMBOL_P: Anchored Addresses. (line 53)
-* TARGET_USE_BLOCKS_FOR_CONSTANT_P: Addressing Modes. (line 248)
-* TARGET_USE_BLOCKS_FOR_DECL_P: Addressing Modes. (line 255)
-* TARGET_USE_JCR_SECTION: Misc. (line 985)
-* TARGET_VALID_DLLIMPORT_ATTRIBUTE_P: Target Attributes. (line 66)
-* TARGET_VALID_POINTER_MODE: Register Arguments. (line 303)
-* TARGET_VECTORIZE_ADD_STMT_COST: Addressing Modes. (line 367)
-* TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES: Addressing Modes.
- (line 350)
-* TARGET_VECTORIZE_BUILTIN_CONVERSION: Addressing Modes. (line 312)
-* TARGET_VECTORIZE_BUILTIN_GATHER: Addressing Modes. (line 398)
-* TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD: Addressing Modes. (line 271)
-* TARGET_VECTORIZE_BUILTIN_TM_LOAD: Addressing Modes. (line 390)
-* TARGET_VECTORIZE_BUILTIN_TM_STORE: Addressing Modes. (line 394)
-* TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST: Addressing Modes.
- (line 297)
-* TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION: Addressing Modes.
- (line 324)
-* TARGET_VECTORIZE_DESTROY_COST_DATA: Addressing Modes. (line 385)
-* TARGET_VECTORIZE_FINISH_COST: Addressing Modes. (line 378)
-* TARGET_VECTORIZE_INIT_COST: Addressing Modes. (line 358)
-* TARGET_VECTORIZE_PREFERRED_SIMD_MODE: Addressing Modes. (line 343)
-* TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT: Addressing Modes.
- (line 333)
-* TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE: Addressing Modes.
- (line 303)
-* TARGET_VECTORIZE_VEC_PERM_CONST_OK: Addressing Modes. (line 308)
-* TARGET_VECTOR_ALIGNMENT: Storage Layout. (line 263)
-* TARGET_VECTOR_MODE_SUPPORTED_P: Register Arguments. (line 327)
-* TARGET_VTABLE_DATA_ENTRY_DISTANCE: Type Layout. (line 346)
-* TARGET_VTABLE_ENTRY_ALIGN: Type Layout. (line 340)
-* TARGET_VTABLE_USES_DESCRIPTORS: Type Layout. (line 329)
-* TARGET_WANT_DEBUG_PUB_SECTIONS: SDB and DWARF. (line 55)
-* TARGET_WARN_FUNC_RETURN: Tail Calls. (line 35)
-* TARGET_WEAK_NOT_IN_ARCHIVE_TOC: Label Output. (line 273)
-* TCmode: Machine Modes. (line 199)
-* TDmode: Machine Modes. (line 97)
-* TEMPLATE_DECL: Declarations. (line 6)
-* Temporaries: Temporaries. (line 6)
-* termination routines: Initialization. (line 6)
-* testing constraints: C Constraint Interface.
- (line 6)
-* TEXT_SECTION_ASM_OP: Sections. (line 37)
-* TFmode: Machine Modes. (line 101)
-* TF_SIZE: Type Layout. (line 138)
-* THEN_CLAUSE: Statements for C++. (line 6)
-* THREAD_MODEL_SPEC: Driver. (line 162)
-* THROW_EXPR: Unary and Binary Expressions.
- (line 6)
-* THUNK_DECL: Declarations. (line 6)
-* THUNK_DELTA: Declarations. (line 6)
-* TImode: Machine Modes. (line 48)
-* 'TImode', in 'insn': Insns. (line 268)
-* TLS_COMMON_ASM_OP: Sections. (line 80)
-* TLS_SECTION_ASM_FLAG: Sections. (line 85)
-* 'tm.h' macros: Target Macros. (line 6)
-* TQFmode: Machine Modes. (line 65)
-* TQmode: Machine Modes. (line 122)
-* trampolines for nested functions: Trampolines. (line 6)
-* TRAMPOLINE_ALIGNMENT: Trampolines. (line 48)
-* TRAMPOLINE_SECTION: Trampolines. (line 39)
-* TRAMPOLINE_SIZE: Trampolines. (line 44)
-* TRANSFER_FROM_TRAMPOLINE: Trampolines. (line 110)
-* 'trap' instruction pattern: Standard Names. (line 1542)
-* tree: Tree overview. (line 6)
-* tree <1>: Macros and Functions.
- (line 6)
-* Tree SSA: Tree SSA. (line 6)
-* TREE_CHAIN: Macros and Functions.
- (line 6)
-* TREE_CODE: Tree overview. (line 6)
-* tree_int_cst_equal: Constant expressions.
- (line 6)
-* TREE_INT_CST_HIGH: Constant expressions.
- (line 6)
-* TREE_INT_CST_LOW: Constant expressions.
- (line 6)
-* tree_int_cst_lt: Constant expressions.
- (line 6)
-* TREE_LIST: Containers. (line 6)
-* TREE_OPERAND: Expression trees. (line 6)
-* TREE_PUBLIC: Function Basics. (line 6)
-* TREE_PUBLIC <1>: Function Properties.
- (line 28)
-* TREE_PURPOSE: Containers. (line 6)
-* TREE_READONLY: Function Properties.
- (line 37)
-* tree_size: Macros and Functions.
- (line 13)
-* TREE_STATIC: Function Properties.
- (line 31)
-* TREE_STRING_LENGTH: Constant expressions.
- (line 6)
-* TREE_STRING_POINTER: Constant expressions.
- (line 6)
-* TREE_THIS_VOLATILE: Function Properties.
- (line 34)
-* TREE_TYPE: Macros and Functions.
- (line 6)
-* TREE_TYPE <1>: Types. (line 6)
-* TREE_TYPE <2>: Working with declarations.
- (line 11)
-* TREE_TYPE <3>: Expression trees. (line 6)
-* TREE_TYPE <4>: Expression trees. (line 17)
-* TREE_TYPE <5>: Function Basics. (line 47)
-* TREE_TYPE <6>: Types for C++. (line 6)
-* TREE_VALUE: Containers. (line 6)
-* TREE_VEC: Containers. (line 6)
-* TREE_VEC_ELT: Containers. (line 6)
-* TREE_VEC_LENGTH: Containers. (line 6)
-* TRULY_NOOP_TRUNCATION: Misc. (line 162)
-* truncate: Conversions. (line 38)
-* 'truncMN2' instruction pattern: Standard Names. (line 916)
-* TRUNC_DIV_EXPR: Unary and Binary Expressions.
- (line 6)
-* TRUNC_MOD_EXPR: Unary and Binary Expressions.
- (line 6)
-* TRUTH_ANDIF_EXPR: Unary and Binary Expressions.
- (line 6)
-* TRUTH_AND_EXPR: Unary and Binary Expressions.
- (line 6)
-* TRUTH_NOT_EXPR: Unary and Binary Expressions.
- (line 6)
-* TRUTH_ORIF_EXPR: Unary and Binary Expressions.
- (line 6)
-* TRUTH_OR_EXPR: Unary and Binary Expressions.
- (line 6)
-* TRUTH_XOR_EXPR: Unary and Binary Expressions.
- (line 6)
-* TRY_BLOCK: Statements for C++. (line 6)
-* TRY_HANDLERS: Statements for C++. (line 6)
-* TRY_STMTS: Statements for C++. (line 6)
-* Tuple specific accessors: Tuple specific accessors.
- (line 6)
-* tuples: Tuple representation.
- (line 6)
-* type: Types. (line 6)
-* type declaration: Declarations. (line 6)
-* TYPENAME_TYPE: Types for C++. (line 6)
-* TYPENAME_TYPE_FULLNAME: Types. (line 6)
-* TYPENAME_TYPE_FULLNAME <1>: Types for C++. (line 6)
-* TYPEOF_TYPE: Types for C++. (line 6)
-* TYPE_ALIGN: Types. (line 6)
-* TYPE_ALIGN <1>: Types. (line 30)
-* TYPE_ALIGN <2>: Types for C++. (line 6)
-* TYPE_ALIGN <3>: Types for C++. (line 44)
-* TYPE_ARG_TYPES: Types. (line 6)
-* TYPE_ARG_TYPES <1>: Types for C++. (line 6)
-* TYPE_ASM_OP: Label Output. (line 76)
-* TYPE_ATTRIBUTES: Attributes. (line 24)
-* TYPE_BINFO: Classes. (line 6)
-* TYPE_BUILT_IN: Types for C++. (line 66)
-* TYPE_CANONICAL: Types. (line 6)
-* TYPE_CANONICAL <1>: Types. (line 41)
-* TYPE_CONTEXT: Types. (line 6)
-* TYPE_CONTEXT <1>: Types for C++. (line 6)
-* TYPE_DECL: Declarations. (line 6)
-* TYPE_FIELDS: Types. (line 6)
-* TYPE_FIELDS <1>: Types for C++. (line 6)
-* TYPE_FIELDS <2>: Classes. (line 6)
-* TYPE_HAS_ARRAY_NEW_OPERATOR: Classes. (line 96)
-* TYPE_HAS_DEFAULT_CONSTRUCTOR: Classes. (line 81)
-* TYPE_HAS_MUTABLE_P: Classes. (line 86)
-* TYPE_HAS_NEW_OPERATOR: Classes. (line 93)
-* TYPE_MAIN_VARIANT: Types. (line 6)
-* TYPE_MAIN_VARIANT <1>: Types. (line 19)
-* TYPE_MAIN_VARIANT <2>: Types for C++. (line 6)
-* TYPE_MAX_VALUE: Types. (line 6)
-* TYPE_METHODS: Classes. (line 6)
-* TYPE_METHOD_BASETYPE: Types. (line 6)
-* TYPE_METHOD_BASETYPE <1>: Types for C++. (line 6)
-* TYPE_MIN_VALUE: Types. (line 6)
-* TYPE_NAME: Types. (line 6)
-* TYPE_NAME <1>: Types. (line 33)
-* TYPE_NAME <2>: Types for C++. (line 6)
-* TYPE_NAME <3>: Types for C++. (line 47)
-* TYPE_NOTHROW_P: Functions for C++. (line 154)
-* TYPE_OFFSET_BASETYPE: Types. (line 6)
-* TYPE_OFFSET_BASETYPE <1>: Types for C++. (line 6)
-* TYPE_OPERAND_FMT: Label Output. (line 87)
-* TYPE_OVERLOADS_ARRAY_REF: Classes. (line 104)
-* TYPE_OVERLOADS_ARROW: Classes. (line 107)
-* TYPE_OVERLOADS_CALL_EXPR: Classes. (line 100)
-* TYPE_POLYMORPHIC_P: Classes. (line 77)
-* TYPE_PRECISION: Types. (line 6)
-* TYPE_PRECISION <1>: Types for C++. (line 6)
-* TYPE_PTRDATAMEM_P: Types for C++. (line 6)
-* TYPE_PTRDATAMEM_P <1>: Types for C++. (line 69)
-* TYPE_PTRFN_P: Types for C++. (line 76)
-* TYPE_PTROBV_P: Types for C++. (line 6)
-* TYPE_PTROB_P: Types for C++. (line 79)
-* TYPE_PTR_P: Types for C++. (line 72)
-* TYPE_QUAL_CONST: Types. (line 6)
-* TYPE_QUAL_CONST <1>: Types for C++. (line 6)
-* TYPE_QUAL_RESTRICT: Types. (line 6)
-* TYPE_QUAL_RESTRICT <1>: Types for C++. (line 6)
-* TYPE_QUAL_VOLATILE: Types. (line 6)
-* TYPE_QUAL_VOLATILE <1>: Types for C++. (line 6)
-* TYPE_RAISES_EXCEPTIONS: Functions for C++. (line 149)
-* TYPE_SIZE: Types. (line 6)
-* TYPE_SIZE <1>: Types. (line 25)
-* TYPE_SIZE <2>: Types for C++. (line 6)
-* TYPE_SIZE <3>: Types for C++. (line 39)
-* TYPE_STRUCTURAL_EQUALITY_P: Types. (line 6)
-* TYPE_STRUCTURAL_EQUALITY_P <1>: Types. (line 77)
-* TYPE_UNQUALIFIED: Types. (line 6)
-* TYPE_UNQUALIFIED <1>: Types for C++. (line 6)
-* TYPE_VFIELD: Classes. (line 6)
-* UDAmode: Machine Modes. (line 170)
-* udiv: Arithmetic. (line 131)
-* 'udivM3' instruction pattern: Standard Names. (line 276)
-* 'udivmodM4' instruction pattern: Standard Names. (line 513)
-* 'udot_prodM' instruction pattern: Standard Names. (line 342)
-* UDQmode: Machine Modes. (line 138)
-* UHAmode: Machine Modes. (line 162)
-* UHQmode: Machine Modes. (line 130)
-* UINT16_TYPE: Type Layout. (line 257)
-* UINT32_TYPE: Type Layout. (line 258)
-* UINT64_TYPE: Type Layout. (line 259)
-* UINT8_TYPE: Type Layout. (line 256)
-* UINTMAX_TYPE: Type Layout. (line 240)
-* UINTPTR_TYPE: Type Layout. (line 277)
-* UINT_FAST16_TYPE: Type Layout. (line 273)
-* UINT_FAST32_TYPE: Type Layout. (line 274)
-* UINT_FAST64_TYPE: Type Layout. (line 275)
-* UINT_FAST8_TYPE: Type Layout. (line 272)
-* UINT_LEAST16_TYPE: Type Layout. (line 265)
-* UINT_LEAST32_TYPE: Type Layout. (line 266)
-* UINT_LEAST64_TYPE: Type Layout. (line 267)
-* UINT_LEAST8_TYPE: Type Layout. (line 264)
-* 'umaddMN4' instruction pattern: Standard Names. (line 460)
-* umax: Arithmetic. (line 150)
-* 'umaxM3' instruction pattern: Standard Names. (line 276)
-* umin: Arithmetic. (line 150)
-* 'uminM3' instruction pattern: Standard Names. (line 276)
-* umod: Arithmetic. (line 137)
-* 'umodM3' instruction pattern: Standard Names. (line 276)
-* 'umsubMN4' instruction pattern: Standard Names. (line 484)
-* 'umulhisi3' instruction pattern: Standard Names. (line 432)
-* 'umulM3_highpart' instruction pattern: Standard Names. (line 446)
-* 'umulqihi3' instruction pattern: Standard Names. (line 432)
-* 'umulsidi3' instruction pattern: Standard Names. (line 432)
-* unchanging: Flags. (line 296)
-* 'unchanging', in 'call_insn': Flags. (line 19)
-* 'unchanging', in 'jump_insn', 'call_insn' and 'insn': Flags.
- (line 39)
-* 'unchanging', in 'mem': Flags. (line 134)
-* 'unchanging', in 'subreg': Flags. (line 170)
-* 'unchanging', in 'subreg' <1>: Flags. (line 180)
-* 'unchanging', in 'symbol_ref': Flags. (line 10)
-* UNEQ_EXPR: Unary and Binary Expressions.
- (line 6)
-* UNGE_EXPR: Unary and Binary Expressions.
- (line 6)
-* UNGT_EXPR: Unary and Binary Expressions.
- (line 6)
-* unions, returning: Interface. (line 10)
-* UNION_TYPE: Types. (line 6)
-* UNION_TYPE <1>: Classes. (line 6)
-* UNITS_PER_WORD: Storage Layout. (line 60)
-* UNKNOWN_TYPE: Types. (line 6)
-* UNKNOWN_TYPE <1>: Types for C++. (line 6)
-* UNLE_EXPR: Unary and Binary Expressions.
- (line 6)
-* UNLIKELY_EXECUTED_TEXT_SECTION_NAME: Sections. (line 48)
-* UNLT_EXPR: Unary and Binary Expressions.
- (line 6)
-* UNORDERED_EXPR: Unary and Binary Expressions.
- (line 6)
-* unshare_all_rtl: Sharing. (line 58)
-* unsigned division: Arithmetic. (line 131)
-* unsigned division with unsigned saturation: Arithmetic. (line 131)
-* unsigned greater than: Comparisons. (line 64)
-* unsigned greater than <1>: Comparisons. (line 72)
-* unsigned less than: Comparisons. (line 68)
-* unsigned less than <1>: Comparisons. (line 76)
-* unsigned minimum and maximum: Arithmetic. (line 150)
-* unsigned_fix: Conversions. (line 77)
-* unsigned_float: Conversions. (line 62)
-* unsigned_fract_convert: Conversions. (line 97)
-* unsigned_sat_fract: Conversions. (line 103)
-* unspec: Side Effects. (line 298)
-* unspec <1>: Constant Definitions.
- (line 111)
-* unspec_volatile: Side Effects. (line 298)
-* unspec_volatile <1>: Constant Definitions.
- (line 99)
-* 'untyped_call' instruction pattern: Standard Names. (line 1158)
-* 'untyped_return' instruction pattern: Standard Names. (line 1221)
-* UPDATE_PATH_HOST_CANONICALIZE (PATH): Filesystem. (line 59)
-* update_ssa: SSA. (line 74)
-* update_stmt: Manipulating GIMPLE statements.
- (line 140)
-* update_stmt <1>: SSA Operands. (line 6)
-* update_stmt_if_modified: Manipulating GIMPLE statements.
- (line 143)
-* UQQmode: Machine Modes. (line 126)
-* 'usaddM3' instruction pattern: Standard Names. (line 276)
-* USAmode: Machine Modes. (line 166)
-* 'usashlM3' instruction pattern: Standard Names. (line 516)
-* 'usdivM3' instruction pattern: Standard Names. (line 276)
-* use: Side Effects. (line 168)
-* used: Flags. (line 314)
-* 'used', in 'symbol_ref': Flags. (line 197)
-* user: GTY Options. (line 318)
-* user gc: User GC. (line 6)
-* USER_LABEL_PREFIX: Instruction Output. (line 152)
-* USE_C_ALLOCA: Host Misc. (line 19)
-* USE_LD_AS_NEEDED: Driver. (line 135)
-* USE_LOAD_POST_DECREMENT: Costs. (line 225)
-* USE_LOAD_POST_INCREMENT: Costs. (line 220)
-* USE_LOAD_PRE_DECREMENT: Costs. (line 235)
-* USE_LOAD_PRE_INCREMENT: Costs. (line 230)
-* use_param: GTY Options. (line 119)
-* use_paramN: GTY Options. (line 138)
-* use_params: GTY Options. (line 147)
-* USE_SELECT_SECTION_FOR_FUNCTIONS: Sections. (line 193)
-* USE_STORE_POST_DECREMENT: Costs. (line 245)
-* USE_STORE_POST_INCREMENT: Costs. (line 240)
-* USE_STORE_PRE_DECREMENT: Costs. (line 255)
-* USE_STORE_PRE_INCREMENT: Costs. (line 250)
-* USING_STMT: Statements for C++. (line 6)
-* 'usmaddMN4' instruction pattern: Standard Names. (line 468)
-* 'usmsubMN4' instruction pattern: Standard Names. (line 492)
-* 'usmulhisi3' instruction pattern: Standard Names. (line 436)
-* 'usmulM3' instruction pattern: Standard Names. (line 276)
-* 'usmulqihi3' instruction pattern: Standard Names. (line 436)
-* 'usmulsidi3' instruction pattern: Standard Names. (line 436)
-* 'usnegM2' instruction pattern: Standard Names. (line 538)
-* USQmode: Machine Modes. (line 134)
-* 'ussubM3' instruction pattern: Standard Names. (line 276)
-* 'usum_widenM3' instruction pattern: Standard Names. (line 351)
-* us_ashift: Arithmetic. (line 174)
-* us_minus: Arithmetic. (line 38)
-* us_mult: Arithmetic. (line 93)
-* us_neg: Arithmetic. (line 82)
-* us_plus: Arithmetic. (line 14)
-* us_truncate: Conversions. (line 48)
-* UTAmode: Machine Modes. (line 174)
-* UTQmode: Machine Modes. (line 142)
-* 'V' in constraint: Simple Constraints. (line 43)
-* values, returned by functions: Scalar Return. (line 6)
-* varargs implementation: Varargs. (line 6)
-* variable: Declarations. (line 6)
-* Variable Location Debug Information in RTL: Debug Information.
- (line 6)
-* variable_size: GTY Options. (line 245)
-* VAR_DECL: Declarations. (line 6)
-* var_location: Debug Information. (line 14)
-* 'vashlM3' instruction pattern: Standard Names. (line 530)
-* 'vashrM3' instruction pattern: Standard Names. (line 530)
-* VA_ARG_EXPR: Unary and Binary Expressions.
- (line 6)
-* 'vcondMN' instruction pattern: Standard Names. (line 213)
-* vector: Containers. (line 6)
-* vector operations: Vector Operations. (line 6)
-* VECTOR_CST: Constant expressions.
- (line 6)
-* VECTOR_STORE_FLAG_VALUE: Misc. (line 293)
-* vec_concat: Vector Operations. (line 28)
-* vec_duplicate: Vector Operations. (line 33)
-* 'vec_extractM' instruction pattern: Standard Names. (line 203)
-* 'vec_initM' instruction pattern: Standard Names. (line 208)
-* 'vec_load_lanesMN' instruction pattern: Standard Names. (line 165)
-* VEC_LSHIFT_EXPR: Vectors. (line 6)
-* vec_merge: Vector Operations. (line 11)
-* VEC_PACK_FIX_TRUNC_EXPR: Vectors. (line 6)
-* VEC_PACK_SAT_EXPR: Vectors. (line 6)
-* 'vec_pack_sfix_trunc_M' instruction pattern: Standard Names.
- (line 377)
-* 'vec_pack_ssat_M' instruction pattern: Standard Names. (line 370)
-* VEC_PACK_TRUNC_EXPR: Vectors. (line 6)
-* 'vec_pack_trunc_M' instruction pattern: Standard Names. (line 363)
-* 'vec_pack_ufix_trunc_M' instruction pattern: Standard Names.
- (line 377)
-* 'vec_pack_usat_M' instruction pattern: Standard Names. (line 370)
-* 'vec_permM' instruction pattern: Standard Names. (line 223)
-* 'vec_perm_constM' instruction pattern: Standard Names. (line 239)
-* VEC_RSHIFT_EXPR: Vectors. (line 6)
-* vec_select: Vector Operations. (line 19)
-* 'vec_setM' instruction pattern: Standard Names. (line 198)
-* 'vec_shl_M' instruction pattern: Standard Names. (line 357)
-* 'vec_shr_M' instruction pattern: Standard Names. (line 357)
-* 'vec_store_lanesMN' instruction pattern: Standard Names. (line 187)
-* 'vec_unpacks_float_hi_M' instruction pattern: Standard Names.
- (line 398)
-* 'vec_unpacks_float_lo_M' instruction pattern: Standard Names.
- (line 398)
-* 'vec_unpacks_hi_M' instruction pattern: Standard Names. (line 384)
-* 'vec_unpacks_lo_M' instruction pattern: Standard Names. (line 384)
-* 'vec_unpacku_float_hi_M' instruction pattern: Standard Names.
- (line 398)
-* 'vec_unpacku_float_lo_M' instruction pattern: Standard Names.
- (line 398)
-* 'vec_unpacku_hi_M' instruction pattern: Standard Names. (line 391)
-* 'vec_unpacku_lo_M' instruction pattern: Standard Names. (line 391)
-* VEC_UNPACK_FLOAT_HI_EXPR: Vectors. (line 6)
-* VEC_UNPACK_FLOAT_LO_EXPR: Vectors. (line 6)
-* VEC_UNPACK_HI_EXPR: Vectors. (line 6)
-* VEC_UNPACK_LO_EXPR: Vectors. (line 6)
-* VEC_WIDEN_MULT_HI_EXPR: Vectors. (line 6)
-* VEC_WIDEN_MULT_LO_EXPR: Vectors. (line 6)
-* 'vec_widen_smult_even_M' instruction pattern: Standard Names.
- (line 407)
-* 'vec_widen_smult_hi_M' instruction pattern: Standard Names.
- (line 407)
-* 'vec_widen_smult_lo_M' instruction pattern: Standard Names.
- (line 407)
-* 'vec_widen_smult_odd_M' instruction pattern: Standard Names.
- (line 407)
-* 'vec_widen_sshiftl_hi_M' instruction pattern: Standard Names.
- (line 418)
-* 'vec_widen_sshiftl_lo_M' instruction pattern: Standard Names.
- (line 418)
-* 'vec_widen_umult_even_M' instruction pattern: Standard Names.
- (line 407)
-* 'vec_widen_umult_hi_M' instruction pattern: Standard Names.
- (line 407)
-* 'vec_widen_umult_lo_M' instruction pattern: Standard Names.
- (line 407)
-* 'vec_widen_umult_odd_M' instruction pattern: Standard Names.
- (line 407)
-* 'vec_widen_ushiftl_hi_M' instruction pattern: Standard Names.
- (line 418)
-* 'vec_widen_ushiftl_lo_M' instruction pattern: Standard Names.
- (line 418)
-* verify_flow_info: Maintaining the CFG.
- (line 117)
-* virtual operands: SSA Operands. (line 6)
-* VIRTUAL_INCOMING_ARGS_REGNUM: Regs and Memory. (line 59)
-* VIRTUAL_OUTGOING_ARGS_REGNUM: Regs and Memory. (line 87)
-* VIRTUAL_STACK_DYNAMIC_REGNUM: Regs and Memory. (line 78)
-* VIRTUAL_STACK_VARS_REGNUM: Regs and Memory. (line 69)
-* VLIW: Processor pipeline description.
- (line 6)
-* VLIW <1>: Processor pipeline description.
- (line 223)
-* 'vlshrM3' instruction pattern: Standard Names. (line 530)
-* VMS: Filesystem. (line 37)
-* VMS_DEBUGGING_INFO: VMS Debug. (line 8)
-* VOIDmode: Machine Modes. (line 192)
-* VOID_TYPE: Types. (line 6)
-* volatil: Flags. (line 328)
-* 'volatil', in 'insn', 'call_insn', 'jump_insn', 'code_label', 'jump_table_data', 'barrier', and 'note': Flags.
- (line 44)
-* 'volatil', in 'label_ref' and 'reg_label': Flags. (line 65)
-* 'volatil', in 'mem', 'asm_operands', and 'asm_input': Flags.
- (line 76)
-* 'volatil', in 'reg': Flags. (line 98)
-* 'volatil', in 'subreg': Flags. (line 170)
-* 'volatil', in 'subreg' <1>: Flags. (line 180)
-* 'volatil', in 'symbol_ref': Flags. (line 206)
-* volatile memory references: Flags. (line 329)
-* 'volatile', in 'prefetch': Flags. (line 214)
-* voting between constraint alternatives: Class Preferences. (line 6)
-* 'vrotlM3' instruction pattern: Standard Names. (line 530)
-* 'vrotrM3' instruction pattern: Standard Names. (line 530)
-* walk_dominator_tree: SSA. (line 227)
-* walk_gimple_op: Statement and operand traversals.
- (line 30)
-* walk_gimple_seq: Statement and operand traversals.
- (line 47)
-* walk_gimple_stmt: Statement and operand traversals.
- (line 10)
-* WCHAR_TYPE: Type Layout. (line 208)
-* WCHAR_TYPE_SIZE: Type Layout. (line 216)
-* which_alternative: Output Statement. (line 58)
-* WHILE_BODY: Statements for C++. (line 6)
-* WHILE_COND: Statements for C++. (line 6)
-* WHILE_STMT: Statements for C++. (line 6)
-* whopr: LTO. (line 6)
-* WIDEST_HARDWARE_FP_SIZE: Type Layout. (line 153)
-* 'window_save' instruction pattern: Standard Names. (line 1513)
-* WINT_TYPE: Type Layout. (line 221)
-* WORDS_BIG_ENDIAN: Storage Layout. (line 28)
-* 'WORDS_BIG_ENDIAN', effect on 'subreg': Regs and Memory. (line 215)
-* word_mode: Machine Modes. (line 358)
-* WORD_REGISTER_OPERATIONS: Misc. (line 53)
-* wpa: LTO. (line 6)
-* 'X' in constraint: Simple Constraints. (line 122)
-* 'x-HOST': Host Fragment. (line 6)
-* XCmode: Machine Modes. (line 199)
-* XCOFF_DEBUGGING_INFO: DBX Options. (line 12)
-* XEXP: Accessors. (line 6)
-* XFmode: Machine Modes. (line 82)
-* XF_SIZE: Type Layout. (line 137)
-* XImode: Machine Modes. (line 54)
-* XINT: Accessors. (line 6)
-* 'xm-MACHINE.h': Filesystem. (line 6)
-* 'xm-MACHINE.h' <1>: Host Misc. (line 6)
-* xor: Arithmetic. (line 169)
-* 'xor', canonicalization of: Insn Canonicalizations.
- (line 78)
-* 'xorM3' instruction pattern: Standard Names. (line 276)
-* XSTR: Accessors. (line 6)
-* XVEC: Accessors. (line 41)
-* XVECEXP: Accessors. (line 48)
-* XVECLEN: Accessors. (line 44)
-* XWINT: Accessors. (line 6)
-* zero_extend: Conversions. (line 28)
-* 'zero_extendMN2' instruction pattern: Standard Names. (line 926)
-* zero_extract: Bit-Fields. (line 30)
-* 'zero_extract', canonicalization of: Insn Canonicalizations.
- (line 87)
-
-
-
-Tag Table:
-Node: Top1789
-Node: Contributing4877
-Node: Portability5606
-Node: Interface7394
-Node: Libgcc10435
-Node: Integer library routines12262
-Node: Soft float library routines19104
-Node: Decimal float library routines31042
-Node: Fixed-point fractional library routines46800
-Node: Exception handling routines147196
-Node: Miscellaneous routines148303
-Node: Languages150423
-Node: Source Tree151970
-Node: Configure Terms152552
-Node: Top Level155508
-Node: gcc Directory158970
-Node: Subdirectories159922
-Node: Configuration162090
-Node: Config Fragments162810
-Node: System Config164035
-Node: Configuration Files164971
-Node: Build167788
-Node: Makefile168200
-Ref: Makefile-Footnote-1175004
-Ref: Makefile-Footnote-2175151
-Node: Library Files175225
-Node: Headers175787
-Node: Documentation177870
-Node: Texinfo Manuals178729
-Node: Man Page Generation181058
-Node: Miscellaneous Docs182971
-Node: Front End184358
-Node: Front End Directory188032
-Node: Front End Config189348
-Node: Front End Makefile192164
-Node: Back End195932
-Node: Testsuites199713
-Node: Test Idioms200644
-Node: Test Directives204042
-Node: Directives204569
-Node: Selectors214866
-Node: Effective-Target Keywords216222
-Ref: arm_neon_ok223910
-Ref: arm_neonv2_ok224068
-Ref: arm_neon_fp16_ok224240
-Ref: arm_vfp3_ok224680
-Node: Add Options234179
-Node: Require Support235496
-Node: Final Actions238003
-Node: Ada Tests243168
-Node: C Tests244499
-Node: libgcj Tests248894
-Node: LTO Testing250021
-Node: gcov Testing251669
-Node: profopt Testing254659
-Node: compat Testing256374
-Node: Torture Tests260614
-Node: Options262229
-Node: Option file format262670
-Node: Option properties269659
-Node: Passes282686
-Node: Parsing pass283576
-Node: Cilk Plus Transformation287109
-Node: Gimplification pass290491
-Node: Pass manager292336
-Node: Tree SSA passes294182
-Node: RTL passes315249
-Node: Optimization info327613
-Node: Dump setup328432
-Node: Optimization groups329561
-Node: Dump files and streams330450
-Node: Dump output verbosity331648
-Node: Dump types332704
-Node: Dump examples334194
-Node: GENERIC335540
-Node: Deficiencies337416
-Node: Tree overview337657
-Node: Macros and Functions341781
-Node: Identifiers342606
-Node: Containers344215
-Node: Types345372
-Node: Declarations357446
-Node: Working with declarations357941
-Node: Internal structure363545
-Node: Current structure hierarchy363929
-Node: Adding new DECL node types366022
-Node: Attributes370306
-Node: Expression trees371550
-Node: Constant expressions373304
-Node: Storage References377517
-Node: Unary and Binary Expressions381036
-Node: Vectors401184
-Node: Statements405916
-Node: Basic Statements406436
-Node: Blocks410943
-Node: Statement Sequences412347
-Node: Empty Statements412680
-Node: Jumps413254
-Node: Cleanups413907
-Node: OpenMP415674
-Node: Functions421518
-Node: Function Basics421989
-Node: Function Properties425673
-Node: Language-dependent trees428454
-Node: C and C++ Trees429341
-Node: Types for C++432245
-Node: Namespaces437215
-Node: Classes440321
-Node: Functions for C++445398
-Node: Statements for C++451649
-Node: C++ Expressions460422
-Node: Java Trees461927
-Node: GIMPLE462040
-Node: Tuple representation465664
-Node: GIMPLE instruction set473968
-Node: GIMPLE Exception Handling475584
-Node: Temporaries477496
-Ref: Temporaries-Footnote-1478814
-Node: Operands478879
-Node: Compound Expressions479640
-Node: Compound Lvalues479874
-Node: Conditional Expressions480636
-Node: Logical Operators481295
-Node: Manipulating GIMPLE statements488153
-Node: Tuple specific accessors494089
-Node: 'GIMPLE_ASM'494908
-Node: 'GIMPLE_ASSIGN'497425
-Node: 'GIMPLE_BIND'501531
-Node: 'GIMPLE_CALL'503339
-Node: 'GIMPLE_CATCH'507610
-Node: 'GIMPLE_COND'508754
-Node: 'GIMPLE_DEBUG'511542
-Node: 'GIMPLE_EH_FILTER'514920
-Node: 'GIMPLE_LABEL'516408
-Node: 'GIMPLE_NOP'517383
-Node: 'GIMPLE_OMP_ATOMIC_LOAD'517752
-Node: 'GIMPLE_OMP_ATOMIC_STORE'518662
-Node: 'GIMPLE_OMP_CONTINUE'519302
-Node: 'GIMPLE_OMP_CRITICAL'520652
-Node: 'GIMPLE_OMP_FOR'521590
-Node: 'GIMPLE_OMP_MASTER'525105
-Node: 'GIMPLE_OMP_ORDERED'525489
-Node: 'GIMPLE_OMP_PARALLEL'525889
-Node: 'GIMPLE_OMP_RETURN'528522
-Node: 'GIMPLE_OMP_SECTION'529173
-Node: 'GIMPLE_OMP_SECTIONS'529839
-Node: 'GIMPLE_OMP_SINGLE'531446
-Node: 'GIMPLE_PHI'532384
-Node: 'GIMPLE_RESX'533671
-Node: 'GIMPLE_RETURN'534390
-Node: 'GIMPLE_SWITCH'534958
-Node: 'GIMPLE_TRY'536760
-Node: 'GIMPLE_WITH_CLEANUP_EXPR'538551
-Node: GIMPLE sequences539434
-Node: Sequence iterators542640
-Node: Adding a new GIMPLE statement code551095
-Node: Statement and operand traversals552371
-Node: Tree SSA554963
-Node: Annotations556751
-Node: SSA Operands557156
-Node: SSA571230
-Node: Alias analysis582262
-Node: Memory model586036
-Node: RTL587395
-Node: RTL Objects589583
-Node: RTL Classes593457
-Node: Accessors598454
-Node: Special Accessors600848
-Node: Flags606635
-Node: Machine Modes621399
-Node: Constants634687
-Node: Regs and Memory641415
-Node: Arithmetic659303
-Node: Comparisons669385
-Node: Bit-Fields673677
-Node: Vector Operations675229
-Node: Conversions677110
-Node: RTL Declarations681608
-Node: Side Effects682429
-Node: Incdec699439
-Node: Assembler702775
-Node: Debug Information704320
-Node: Insns705517
-Node: Calls731938
-Node: Sharing734531
-Node: Reading RTL737642
-Node: Control Flow738633
-Node: Basic Blocks740402
-Node: Edges745691
-Node: Profile information754320
-Node: Maintaining the CFG759004
-Node: Liveness information764865
-Node: Loop Analysis and Representation766991
-Node: Loop representation768101
-Node: Loop querying775664
-Node: Loop manipulation778480
-Node: LCSSA780841
-Node: Scalar evolutions782910
-Node: loop-iv786154
-Node: Number of iterations788076
-Node: Dependency analysis790882
-Node: Omega797246
-Node: Machine Desc798822
-Node: Overview801385
-Node: Patterns803425
-Node: Example806863
-Node: RTL Template808297
-Node: Output Template818952
-Node: Output Statement822915
-Node: Predicates827254
-Node: Machine-Independent Predicates830172
-Node: Defining Predicates835116
-Node: Constraints841079
-Node: Simple Constraints842561
-Node: Multi-Alternative855401
-Node: Class Preferences858242
-Node: Modifiers859134
-Node: Machine Constraints863380
-Node: Disable Insn Alternatives921548
-Node: Define Constraints924449
-Node: C Constraint Interface931234
-Node: Standard Names934886
-Ref: shift patterns958034
-Ref: prologue instruction pattern1002791
-Ref: window_save instruction pattern1003284
-Ref: epilogue instruction pattern1003561
-Node: Pattern Ordering1021147
-Node: Dependent Patterns1022383
-Node: Jump Patterns1024003
-Ref: Jump Patterns-Footnote-11026150
-Node: Looping Patterns1026198
-Node: Insn Canonicalizations1030927
-Node: Expander Definitions1035512
-Node: Insn Splitting1043726
-Node: Including Patterns1053327
-Node: Peephole Definitions1055108
-Node: define_peephole1056361
-Node: define_peephole21062691
-Node: Insn Attributes1065757
-Node: Defining Attributes1066939
-Ref: define_enum_attr1070432
-Node: Expressions1071468
-Node: Tagging Insns1078218
-Node: Attr Example1082571
-Node: Insn Lengths1084944
-Node: Constant Attributes1088003
-Node: Mnemonic Attribute1089179
-Node: Delay Slots1090698
-Node: Processor pipeline description1093921
-Ref: Processor pipeline description-Footnote-11112739
-Node: Conditional Execution1113063
-Node: Define Subst1116546
-Node: Define Subst Example1118582
-Node: Define Subst Pattern Matching1121576
-Node: Define Subst Output Template1122802
-Node: Constant Definitions1124872
-Ref: define_enum1128654
-Node: Iterators1129142
-Node: Mode Iterators1129720
-Node: Defining Mode Iterators1130698
-Node: Substitutions1132192
-Node: Examples1134434
-Node: Code Iterators1135882
-Node: Int Iterators1138161
-Node: Subst Iterators1140605
-Node: Target Macros1142297
-Node: Target Structure1145385
-Node: Driver1147501
-Node: Run-time Target1166313
-Node: Per-Function Data1176024
-Node: Storage Layout1178788
-Node: Type Layout1205040
-Node: Registers1220363
-Node: Register Basics1221337
-Node: Allocation Order1226845
-Node: Values in Registers1229291
-Node: Leaf Functions1236769
-Node: Stack Registers1239628
-Node: Register Classes1240900
-Node: Old Constraints1271844
-Node: Stack and Calling1278984
-Node: Frame Layout1279518
-Node: Exception Handling1290394
-Node: Stack Checking1296606
-Node: Frame Registers1301420
-Node: Elimination1309679
-Node: Stack Arguments1313909
-Node: Register Arguments1320772
-Node: Scalar Return1341073
-Node: Aggregate Return1347160
-Node: Caller Saves1351371
-Node: Function Entry1352548
-Node: Profiling1363642
-Node: Tail Calls1365341
-Node: Stack Smashing Protection1367244
-Node: Varargs1368872
-Node: Trampolines1375559
-Node: Library Calls1381602
-Node: Addressing Modes1386286
-Node: Anchored Addresses1407254
-Node: Condition Code1409897
-Node: CC0 Condition Codes1412224
-Node: MODE_CC Condition Codes1415470
-Node: Costs1421922
-Node: Scheduling1438384
-Node: Sections1458342
-Node: PIC1474040
-Node: Assembler Format1476099
-Node: File Framework1477237
-Ref: TARGET_HAVE_SWITCHABLE_BSS_SECTIONS1484169
-Node: Data Output1487439
-Node: Uninitialized Data1495208
-Node: Label Output1500219
-Node: Initialization1523175
-Node: Macros for Initialization1529136
-Node: Instruction Output1535855
-Node: Dispatch Tables1546478
-Node: Exception Region Output1550862
-Node: Alignment Output1557540
-Node: Debugging Info1562119
-Node: All Debuggers1562789
-Node: DBX Options1565644
-Node: DBX Hooks1571082
-Node: File Names and DBX1572391
-Node: SDB and DWARF1574503
-Node: VMS Debug1580575
-Node: Floating Point1581162
-Node: Mode Switching1585638
-Node: Target Attributes1589634
-Node: Emulated TLS1598092
-Node: MIPS Coprocessors1601482
-Node: PCH Target1602779
-Node: C++ ABI1604621
-Node: Named Address Spaces1609415
-Node: Misc1614349
-Ref: TARGET_SHIFT_TRUNCATION_MASK1621091
-Node: Host Config1669593
-Node: Host Common1670661
-Node: Filesystem1673035
-Node: Host Misc1677150
-Node: Fragments1679599
-Node: Target Fragment1680794
-Node: Host Fragment1691422
-Node: Collect21691662
-Node: Header Dirs1694298
-Node: Type Information1695721
-Node: GTY Options1698997
-Node: Inheritance and GTY1713517
-Ref: Inheritance and GTY-Footnote-11715080
-Node: User GC1715350
-Node: GGC Roots1719089
-Node: Files1719802
-Node: Invoking the garbage collector1722509
-Node: Troubleshooting1724014
-Node: Plugins1725089
-Node: Plugins loading1726207
-Node: Plugin API1727077
-Node: Plugins pass1734740
-Node: Plugins GC1736711
-Node: Plugins description1738376
-Node: Plugins attr1738912
-Node: Plugins recording1741185
-Node: Plugins gate1742035
-Node: Plugins tracking1742626
-Node: Plugins building1743214
-Node: LTO1745004
-Node: LTO Overview1745865
-Node: LTO object file layout1751697
-Node: IPA1756327
-Node: WHOPR1765292
-Node: Internal flags1769981
-Node: Funding1771392
-Node: GNU Project1773876
-Node: Copying1774525
-Node: GNU Free Documentation License1812036
-Node: Contributors1837156
-Node: Option Index1875028
-Node: Concept Index1875905
-
-End Tag Table
diff --git a/gcc-4.9/gcc/doc/gcj-dbtool.1 b/gcc-4.9/gcc/doc/gcj-dbtool.1
deleted file mode 100644
index ab96d585d..000000000
--- a/gcc-4.9/gcc/doc/gcj-dbtool.1
+++ /dev/null
@@ -1,247 +0,0 @@
-.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28)
-.\"
-.\" Standard preamble:
-.\" ========================================================================
-.de Sp \" Vertical space (when we can't use .PP)
-.if t .sp .5v
-.if n .sp
-..
-.de Vb \" Begin verbatim text
-.ft CW
-.nf
-.ne \\$1
-..
-.de Ve \" End verbatim text
-.ft R
-.fi
-..
-.\" Set up some character translations and predefined strings. \*(-- will
-.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
-.\" double quote, and \*(R" will give a right double quote. \*(C+ will
-.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
-.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
-.\" nothing in troff, for use with C<>.
-.tr \(*W-
-.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
-.ie n \{\
-. ds -- \(*W-
-. ds PI pi
-. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
-. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
-. ds L" ""
-. ds R" ""
-. ds C` ""
-. ds C' ""
-'br\}
-.el\{\
-. ds -- \|\(em\|
-. ds PI \(*p
-. ds L" ``
-. ds R" ''
-. ds C`
-. ds C'
-'br\}
-.\"
-.\" Escape single quotes in literal strings from groff's Unicode transform.
-.ie \n(.g .ds Aq \(aq
-.el .ds Aq '
-.\"
-.\" If the F register is turned on, we'll generate index entries on stderr for
-.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
-.\" entries marked with X<> in POD. Of course, you'll have to process the
-.\" output yourself in some meaningful fashion.
-.\"
-.\" Avoid warning from groff about undefined register 'F'.
-.de IX
-..
-.nr rF 0
-.if \n(.g .if rF .nr rF 1
-.if (\n(rF:(\n(.g==0)) \{
-. if \nF \{
-. de IX
-. tm Index:\\$1\t\\n%\t"\\$2"
-..
-. if !\nF==2 \{
-. nr % 0
-. nr F 2
-. \}
-. \}
-.\}
-.rr rF
-.\"
-.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
-.\" Fear. Run. Save yourself. No user-serviceable parts.
-. \" fudge factors for nroff and troff
-.if n \{\
-. ds #H 0
-. ds #V .8m
-. ds #F .3m
-. ds #[ \f1
-. ds #] \fP
-.\}
-.if t \{\
-. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
-. ds #V .6m
-. ds #F 0
-. ds #[ \&
-. ds #] \&
-.\}
-. \" simple accents for nroff and troff
-.if n \{\
-. ds ' \&
-. ds ` \&
-. ds ^ \&
-. ds , \&
-. ds ~ ~
-. ds /
-.\}
-.if t \{\
-. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
-. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
-. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
-. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
-. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
-. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
-.\}
-. \" troff and (daisy-wheel) nroff accents
-.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
-.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
-.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
-.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
-.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
-.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
-.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
-.ds ae a\h'-(\w'a'u*4/10)'e
-.ds Ae A\h'-(\w'A'u*4/10)'E
-. \" corrections for vroff
-.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
-.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
-. \" for low resolution devices (crt and lpr)
-.if \n(.H>23 .if \n(.V>19 \
-\{\
-. ds : e
-. ds 8 ss
-. ds o a
-. ds d- d\h'-1'\(ga
-. ds D- D\h'-1'\(hy
-. ds th \o'bp'
-. ds Th \o'LP'
-. ds ae ae
-. ds Ae AE
-.\}
-.rm #[ #] #H #V #F C
-.\" ========================================================================
-.\"
-.IX Title "GCJ-DBTOOL 1"
-.TH GCJ-DBTOOL 1 "2014-04-22" "gcc-4.9.0" "GNU"
-.\" For nroff, turn off justification. Always turn off hyphenation; it makes
-.\" way too many mistakes in technical documents.
-.if n .ad l
-.nh
-.SH "NAME"
-gcj\-dbtool \- Manipulate class file mapping databases for libgcj
-.SH "SYNOPSIS"
-.IX Header "SYNOPSIS"
-gcj-dbtool \fB\s-1OPTION\s0\fR \fI\s-1DBFILE\s0\fR [\fB\s-1MORE\s0\fR] ...
-.PP
-gcj-dbtool [\fB\-0\fR] [\fB\-\fR] [\fB\-n\fR] [\fB\-a\fR] [\fB\-f\fR]
- [\fB\-t\fR] [\fB\-l\fR] [\fB\-p\fR [\fI\s-1LIBDIR\s0\fR]]
- [\fB\-v\fR] [\fB\-m\fR] [\fB\-\-version\fR] [\fB\-\-help\fR]
-.SH "DESCRIPTION"
-.IX Header "DESCRIPTION"
-\&\f(CW\*(C`gcj\-dbtool\*(C'\fR is a tool for creating and manipulating class file
-mapping databases. \f(CW\*(C`libgcj\*(C'\fR can use these databases to find a
-shared library corresponding to the bytecode representation of a
-class. This functionality is useful for ahead-of-time compilation of
-a program that has no knowledge of \f(CW\*(C`gcj\*(C'\fR.
-.PP
-\&\f(CW\*(C`gcj\-dbtool\*(C'\fR works best if all the jar files added to it are
-compiled using \f(CW\*(C`\-findirect\-dispatch\*(C'\fR.
-.PP
-Note that \f(CW\*(C`gcj\-dbtool\*(C'\fR is currently available as \*(L"preview
-technology\*(R". We believe it is a reasonable way to allow
-application-transparent ahead-of-time compilation, but this is an
-unexplored area. We welcome your comments.
-.SH "OPTIONS"
-.IX Header "OPTIONS"
-.IP "\fB\-n\fR \fI\s-1DBFILE\s0\fR \fB[\fR\fI\s-1SIZE\s0\fR\fB]\fR" 4
-.IX Item "-n DBFILE [SIZE]"
-This creates a new database. Currently, databases cannot be resized;
-you can choose a larger initial size if desired. The default size is
-32,749.
-.IP "\fB\-a\fR \fI\s-1DBFILE\s0\fR\fB \fR\fI\s-1JARFILE\s0\fR\fB \fR\fI\s-1LIB\s0\fR" 4
-.IX Item "-a DBFILE JARFILE LIB"
-.PD 0
-.IP "\fB\-f\fR \fI\s-1DBFILE\s0\fR\fB \fR\fI\s-1JARFILE\s0\fR\fB \fR\fI\s-1LIB\s0\fR" 4
-.IX Item "-f DBFILE JARFILE LIB"
-.PD
-This adds a jar file to the database. For each class file in the jar,
-a cryptographic signature of the bytecode representation of the class
-is recorded in the database. At runtime, a class is looked up by its
-signature and the compiled form of the class is looked for in the
-corresponding shared library. The \fB\-a\fR option will verify
-that \fI\s-1LIB\s0\fR exists before adding it to the database; \fB\-f\fR
-skips this check.
-.IP "\fB[\fR\fB\-\fR\fB][\fR\fB\-0\fR\fB] \-m\fR \fI\s-1DBFILE\s0\fR\fB \fR\fI\s-1DBFILE\s0\fR\fB,[\fR\fI\s-1DBFILE\s0\fR\fB]\fR" 4
-.IX Item "[-][-0] -m DBFILE DBFILE,[DBFILE]"
-Merge a number of databases. The output database overwrites any
-existing database. To add databases into an existing database,
-include the destination in the list of sources.
-.Sp
-If \fB\-\fR or \fB\-0\fR are used, the list of files to read is
-taken from standard input instead of the command line. For
-\&\fB\-0\fR, Input filenames are terminated by a null character
-instead of by whitespace. Useful when arguments might contain white
-space. The \s-1GNU\s0 find \-print0 option produces input suitable for this
-mode.
-.IP "\fB\-t\fR \fI\s-1DBFILE\s0\fR" 4
-.IX Item "-t DBFILE"
-Test a database.
-.IP "\fB\-l\fR \fI\s-1DBFILE\s0\fR" 4
-.IX Item "-l DBFILE"
-List the contents of a database.
-.IP "\fB\-p\fR" 4
-.IX Item "-p"
-Print the name of the default database. If there is no default
-database, this prints a blank line. If \fI\s-1LIBDIR\s0\fR is specified, use
-it instead of the default library directory component of the database
-name.
-.IP "\fB\-\-help\fR" 4
-.IX Item "--help"
-Print a help message, then exit.
-.IP "\fB\-\-version\fR" 4
-.IX Item "--version"
-.PD 0
-.IP "\fB\-v\fR" 4
-.IX Item "-v"
-.PD
-Print version information, then exit.
-.SH "SEE ALSO"
-.IX Header "SEE ALSO"
-\&\fIgcc\fR\|(1), \fIgcj\fR\|(1), \fIgcjh\fR\|(1), \fIjcf\-dump\fR\|(1), \fIgfdl\fR\|(7),
-and the Info entries for \fIgcj\fR and \fIgcc\fR.
-.SH "COPYRIGHT"
-.IX Header "COPYRIGHT"
-Copyright (c) 2001\-2014 Free Software Foundation, Inc.
-.PP
-Permission is granted to copy, distribute and/or modify this document
-under the terms of the \s-1GNU\s0 Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with no
-Invariant Sections, the Front-Cover Texts being (a) (see below), and
-with the Back-Cover Texts being (b) (see below).
-A copy of the license is included in the
-man page \fIgfdl\fR\|(7).
-.PP
-(a) The \s-1FSF\s0's Front-Cover Text is:
-.PP
-.Vb 1
-\& A GNU Manual
-.Ve
-.PP
-(b) The \s-1FSF\s0's Back-Cover Text is:
-.PP
-.Vb 3
-\& You have freedom to copy and modify this GNU Manual, like GNU
-\& software. Copies published by the Free Software Foundation raise
-\& funds for GNU development.
-.Ve
diff --git a/gcc-4.9/gcc/doc/gcj.1 b/gcc-4.9/gcc/doc/gcj.1
deleted file mode 100644
index 7aedab72f..000000000
--- a/gcc-4.9/gcc/doc/gcj.1
+++ /dev/null
@@ -1,593 +0,0 @@
-.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28)
-.\"
-.\" Standard preamble:
-.\" ========================================================================
-.de Sp \" Vertical space (when we can't use .PP)
-.if t .sp .5v
-.if n .sp
-..
-.de Vb \" Begin verbatim text
-.ft CW
-.nf
-.ne \\$1
-..
-.de Ve \" End verbatim text
-.ft R
-.fi
-..
-.\" Set up some character translations and predefined strings. \*(-- will
-.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
-.\" double quote, and \*(R" will give a right double quote. \*(C+ will
-.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
-.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
-.\" nothing in troff, for use with C<>.
-.tr \(*W-
-.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
-.ie n \{\
-. ds -- \(*W-
-. ds PI pi
-. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
-. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
-. ds L" ""
-. ds R" ""
-. ds C` ""
-. ds C' ""
-'br\}
-.el\{\
-. ds -- \|\(em\|
-. ds PI \(*p
-. ds L" ``
-. ds R" ''
-. ds C`
-. ds C'
-'br\}
-.\"
-.\" Escape single quotes in literal strings from groff's Unicode transform.
-.ie \n(.g .ds Aq \(aq
-.el .ds Aq '
-.\"
-.\" If the F register is turned on, we'll generate index entries on stderr for
-.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
-.\" entries marked with X<> in POD. Of course, you'll have to process the
-.\" output yourself in some meaningful fashion.
-.\"
-.\" Avoid warning from groff about undefined register 'F'.
-.de IX
-..
-.nr rF 0
-.if \n(.g .if rF .nr rF 1
-.if (\n(rF:(\n(.g==0)) \{
-. if \nF \{
-. de IX
-. tm Index:\\$1\t\\n%\t"\\$2"
-..
-. if !\nF==2 \{
-. nr % 0
-. nr F 2
-. \}
-. \}
-.\}
-.rr rF
-.\"
-.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
-.\" Fear. Run. Save yourself. No user-serviceable parts.
-. \" fudge factors for nroff and troff
-.if n \{\
-. ds #H 0
-. ds #V .8m
-. ds #F .3m
-. ds #[ \f1
-. ds #] \fP
-.\}
-.if t \{\
-. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
-. ds #V .6m
-. ds #F 0
-. ds #[ \&
-. ds #] \&
-.\}
-. \" simple accents for nroff and troff
-.if n \{\
-. ds ' \&
-. ds ` \&
-. ds ^ \&
-. ds , \&
-. ds ~ ~
-. ds /
-.\}
-.if t \{\
-. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
-. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
-. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
-. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
-. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
-. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
-.\}
-. \" troff and (daisy-wheel) nroff accents
-.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
-.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
-.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
-.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
-.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
-.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
-.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
-.ds ae a\h'-(\w'a'u*4/10)'e
-.ds Ae A\h'-(\w'A'u*4/10)'E
-. \" corrections for vroff
-.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
-.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
-. \" for low resolution devices (crt and lpr)
-.if \n(.H>23 .if \n(.V>19 \
-\{\
-. ds : e
-. ds 8 ss
-. ds o a
-. ds d- d\h'-1'\(ga
-. ds D- D\h'-1'\(hy
-. ds th \o'bp'
-. ds Th \o'LP'
-. ds ae ae
-. ds Ae AE
-.\}
-.rm #[ #] #H #V #F C
-.\" ========================================================================
-.\"
-.IX Title "GCJ 1"
-.TH GCJ 1 "2014-04-22" "gcc-4.9.0" "GNU"
-.\" For nroff, turn off justification. Always turn off hyphenation; it makes
-.\" way too many mistakes in technical documents.
-.if n .ad l
-.nh
-.SH "NAME"
-gcj \- Ahead\-of\-time compiler for the Java language
-.SH "SYNOPSIS"
-.IX Header "SYNOPSIS"
-gcj [\fB\-I\fR\fIdir\fR...] [\fB\-d\fR \fIdir\fR...]
- [\fB\-\-CLASSPATH\fR=\fIpath\fR] [\fB\-\-classpath\fR=\fIpath\fR]
- [\fB\-f\fR\fIoption\fR...] [\fB\-\-encoding\fR=\fIname\fR]
- [\fB\-\-main\fR=\fIclassname\fR] [\fB\-D\fR\fIname\fR[=\fIvalue\fR]...]
- [\fB\-C\fR] [\fB\-\-resource\fR \fIresource-name\fR] [\fB\-d\fR \fIdirectory\fR]
- [\fB\-W\fR\fIwarn\fR...]
- \fIsourcefile\fR...
-.SH "DESCRIPTION"
-.IX Header "DESCRIPTION"
-As \fBgcj\fR is just another front end to \fBgcc\fR, it supports many
-of the same options as gcc. This manual only documents the
-options specific to \fBgcj\fR.
-.SH "OPTIONS"
-.IX Header "OPTIONS"
-.SS "Input and output files"
-.IX Subsection "Input and output files"
-A \fBgcj\fR command is like a \fBgcc\fR command, in that it
-consists of a number of options and file names. The following kinds
-of input file names are supported:
-.IP "\fIfile\fR\fB.java\fR" 4
-.IX Item "file.java"
-Java source files.
-.IP "\fIfile\fR\fB.class\fR" 4
-.IX Item "file.class"
-Java bytecode files.
-.IP "\fIfile\fR\fB.zip\fR" 4
-.IX Item "file.zip"
-.PD 0
-.IP "\fIfile\fR\fB.jar\fR" 4
-.IX Item "file.jar"
-.PD
-An archive containing one or more \f(CW\*(C`.class\*(C'\fR files, all of
-which are compiled. The archive may be compressed. Files in
-an archive which don't end with \fB.class\fR are treated as
-resource files; they are compiled into the resulting object file
-as \fBcore:\fR URLs.
-.IP "\fB@\fR\fIfile\fR" 4
-.IX Item "@file"
-A file containing a whitespace-separated list of input file names.
-(Currently, these must all be \f(CW\*(C`.java\*(C'\fR source files, but that
-may change.)
-Each named file is compiled, just as if it had been on the command line.
-.IP "\fIlibrary\fR\fB.a\fR" 4
-.IX Item "library.a"
-.PD 0
-.IP "\fIlibrary\fR\fB.so\fR" 4
-.IX Item "library.so"
-.IP "\fB\-l\fR\fIlibname\fR" 4
-.IX Item "-llibname"
-.PD
-Libraries to use when linking. See the \fBgcc\fR manual.
-.PP
-You can specify more than one input file on the \fBgcj\fR command line,
-in which case they will all be compiled. If you specify a
-\&\f(CW\*(C`\-o \f(CIFILENAME\f(CW\*(C'\fR
-option, all the input files will be compiled together, producing a
-single output file, named \fI\s-1FILENAME\s0\fR.
-This is allowed even when using \f(CW\*(C`\-S\*(C'\fR or \f(CW\*(C`\-c\*(C'\fR,
-but not when using \f(CW\*(C`\-C\*(C'\fR or \f(CW\*(C`\-\-resource\*(C'\fR.
-(This is an extension beyond the what plain \fBgcc\fR allows.)
-(If more than one input file is specified, all must currently
-be \f(CW\*(C`.java\*(C'\fR files, though we hope to fix this.)
-.SS "Input Options"
-.IX Subsection "Input Options"
-\&\fBgcj\fR has options to control where it looks to find files it needs.
-For instance, \fBgcj\fR might need to load a class that is referenced
-by the file it has been asked to compile. Like other compilers for the
-Java language, \fBgcj\fR has a notion of a \fIclass path\fR. There are
-several options and environment variables which can be used to
-manipulate the class path. When \fBgcj\fR looks for a given class, it
-searches the class path looking for matching \fI.class\fR or
-\&\fI.java\fR file. \fBgcj\fR comes with a built-in class path which
-points at the installed \fIlibgcj.jar\fR, a file which contains all the
-standard classes.
-.PP
-In the text below, a directory or path component can refer either to an
-actual directory on the filesystem, or to a \fI.zip\fR or \fI.jar\fR
-file, which \fBgcj\fR will search as if it is a directory.
-.IP "\fB\-I\fR\fIdir\fR" 4
-.IX Item "-Idir"
-All directories specified by \f(CW\*(C`\-I\*(C'\fR are kept in order and prepended
-to the class path constructed from all the other options. Unless
-compatibility with tools like \f(CW\*(C`javac\*(C'\fR is important, we recommend
-always using \f(CW\*(C`\-I\*(C'\fR instead of the other options for manipulating the
-class path.
-.IP "\fB\-\-classpath=\fR\fIpath\fR" 4
-.IX Item "--classpath=path"
-This sets the class path to \fIpath\fR, a colon-separated list of paths
-(on Windows-based systems, a semicolon-separate list of paths).
-This does not override the builtin (\*(L"boot\*(R") search path.
-.IP "\fB\-\-CLASSPATH=\fR\fIpath\fR" 4
-.IX Item "--CLASSPATH=path"
-Deprecated synonym for \f(CW\*(C`\-\-classpath\*(C'\fR.
-.IP "\fB\-\-bootclasspath=\fR\fIpath\fR" 4
-.IX Item "--bootclasspath=path"
-Where to find the standard builtin classes, such as \f(CW\*(C`java.lang.String\*(C'\fR.
-.IP "\fB\-\-extdirs=\fR\fIpath\fR" 4
-.IX Item "--extdirs=path"
-For each directory in the \fIpath\fR, place the contents of that
-directory at the end of the class path.
-.IP "\fB\s-1CLASSPATH\s0\fR" 4
-.IX Item "CLASSPATH"
-This is an environment variable which holds a list of paths.
-.PP
-The final class path is constructed like so:
-.IP "\(bu" 4
-First come all directories specified via \f(CW\*(C`\-I\*(C'\fR.
-.IP "\(bu" 4
-If \fB\-\-classpath\fR is specified, its value is appended.
-Otherwise, if the \f(CW\*(C`CLASSPATH\*(C'\fR environment variable is specified,
-then its value is appended.
-Otherwise, the current directory (\f(CW"."\fR) is appended.
-.IP "\(bu" 4
-If \f(CW\*(C`\-\-bootclasspath\*(C'\fR was specified, append its value.
-Otherwise, append the built-in system directory, \fIlibgcj.jar\fR.
-.IP "\(bu" 4
-Finally, if \f(CW\*(C`\-\-extdirs\*(C'\fR was specified, append the contents of the
-specified directories at the end of the class path. Otherwise, append
-the contents of the built-in extdirs at \f(CW\*(C`$(prefix)/share/java/ext\*(C'\fR.
-.PP
-The classfile built by \fBgcj\fR for the class \f(CW\*(C`java.lang.Object\*(C'\fR
-(and placed in \f(CW\*(C`libgcj.jar\*(C'\fR) contains a special zero length
-attribute \f(CW\*(C`gnu.gcj.gcj\-compiled\*(C'\fR. The compiler looks for this
-attribute when loading \f(CW\*(C`java.lang.Object\*(C'\fR and will report an error
-if it isn't found, unless it compiles to bytecode (the option
-\&\f(CW\*(C`\-fforce\-classes\-archive\-check\*(C'\fR can be used to override this
-behavior in this particular case.)
-.IP "\fB\-fforce\-classes\-archive\-check\fR" 4
-.IX Item "-fforce-classes-archive-check"
-This forces the compiler to always check for the special zero length
-attribute \f(CW\*(C`gnu.gcj.gcj\-compiled\*(C'\fR in \f(CW\*(C`java.lang.Object\*(C'\fR and
-issue an error if it isn't found.
-.IP "\fB\-fsource=\fR\fI\s-1VERSION\s0\fR" 4
-.IX Item "-fsource=VERSION"
-This option is used to choose the source version accepted by
-\&\fBgcj\fR. The default is \fB1.5\fR.
-.SS "Encodings"
-.IX Subsection "Encodings"
-The Java programming language uses Unicode throughout. In an effort to
-integrate well with other locales, \fBgcj\fR allows \fI.java\fR files
-to be written using almost any encoding. \fBgcj\fR knows how to
-convert these encodings into its internal encoding at compile time.
-.PP
-You can use the \f(CW\*(C`\-\-encoding=\f(CINAME\f(CW\*(C'\fR option to specify an
-encoding (of a particular character set) to use for source files. If
-this is not specified, the default encoding comes from your current
-locale. If your host system has insufficient locale support, then
-\&\fBgcj\fR assumes the default encoding to be the \fB\s-1UTF\-8\s0\fR encoding
-of Unicode.
-.PP
-To implement \f(CW\*(C`\-\-encoding\*(C'\fR, \fBgcj\fR simply uses the host
-platform's \f(CW\*(C`iconv\*(C'\fR conversion routine. This means that in practice
-\&\fBgcj\fR is limited by the capabilities of the host platform.
-.PP
-The names allowed for the argument \f(CW\*(C`\-\-encoding\*(C'\fR vary from platform
-to platform (since they are not standardized anywhere). However,
-\&\fBgcj\fR implements the encoding named \fB\s-1UTF\-8\s0\fR internally, so if
-you choose to use this for your source files you can be assured that it
-will work on every host.
-.SS "Warnings"
-.IX Subsection "Warnings"
-\&\fBgcj\fR implements several warnings. As with other generic
-\&\fBgcc\fR warnings, if an option of the form \f(CW\*(C`\-Wfoo\*(C'\fR enables a
-warning, then \f(CW\*(C`\-Wno\-foo\*(C'\fR will disable it. Here we've chosen to
-document the form of the warning which will have an effect \*(-- the
-default being the opposite of what is listed.
-.IP "\fB\-Wredundant\-modifiers\fR" 4
-.IX Item "-Wredundant-modifiers"
-With this flag, \fBgcj\fR will warn about redundant modifiers. For
-instance, it will warn if an interface method is declared \f(CW\*(C`public\*(C'\fR.
-.IP "\fB\-Wextraneous\-semicolon\fR" 4
-.IX Item "-Wextraneous-semicolon"
-This causes \fBgcj\fR to warn about empty statements. Empty statements
-have been deprecated.
-.IP "\fB\-Wno\-out\-of\-date\fR" 4
-.IX Item "-Wno-out-of-date"
-This option will cause \fBgcj\fR not to warn when a source file is
-newer than its matching class file. By default \fBgcj\fR will warn
-about this.
-.IP "\fB\-Wno\-deprecated\fR" 4
-.IX Item "-Wno-deprecated"
-Warn if a deprecated class, method, or field is referred to.
-.IP "\fB\-Wunused\fR" 4
-.IX Item "-Wunused"
-This is the same as \fBgcc\fR's \f(CW\*(C`\-Wunused\*(C'\fR.
-.IP "\fB\-Wall\fR" 4
-.IX Item "-Wall"
-This is the same as \f(CW\*(C`\-Wredundant\-modifiers \-Wextraneous\-semicolon
-\&\-Wunused\*(C'\fR.
-.SS "Linking"
-.IX Subsection "Linking"
-To turn a Java application into an executable program,
-you need to link it with the needed libraries, just as for C or \*(C+.
-The linker by default looks for a global function named \f(CW\*(C`main\*(C'\fR.
-Since Java does not have global functions, and a
-collection of Java classes may have more than one class with a
-\&\f(CW\*(C`main\*(C'\fR method, you need to let the linker know which of those
-\&\f(CW\*(C`main\*(C'\fR methods it should invoke when starting the application.
-You can do that in any of these ways:
-.IP "\(bu" 4
-Specify the class containing the desired \f(CW\*(C`main\*(C'\fR method
-when you link the application, using the \f(CW\*(C`\-\-main\*(C'\fR flag,
-described below.
-.IP "\(bu" 4
-Link the Java package(s) into a shared library (dll) rather than an
-executable. Then invoke the application using the \f(CW\*(C`gij\*(C'\fR program,
-making sure that \f(CW\*(C`gij\*(C'\fR can find the libraries it needs.
-.IP "\(bu" 4
-Link the Java packages(s) with the flag \f(CW\*(C`\-lgij\*(C'\fR, which links
-in the \f(CW\*(C`main\*(C'\fR routine from the \f(CW\*(C`gij\*(C'\fR command.
-This allows you to select the class whose \f(CW\*(C`main\*(C'\fR method you
-want to run when you run the application. You can also use
-other \f(CW\*(C`gij\*(C'\fR flags, such as \f(CW\*(C`\-D\*(C'\fR flags to set properties.
-Using the \f(CW\*(C`\-lgij\*(C'\fR library (rather than the \f(CW\*(C`gij\*(C'\fR program
-of the previous mechanism) has some advantages: it is compatible with
-static linking, and does not require configuring or installing libraries.
-.PP
-These \f(CW\*(C`gij\*(C'\fR options relate to linking an executable:
-.IP "\fB\-\-main=\fR\fI\s-1CLASSNAME\s0\fR" 4
-.IX Item "--main=CLASSNAME"
-This option is used when linking to specify the name of the class whose
-\&\f(CW\*(C`main\*(C'\fR method should be invoked when the resulting executable is
-run.
-.IP "\fB\-D\fR\fIname\fR\fB[=\fR\fIvalue\fR\fB]\fR" 4
-.IX Item "-Dname[=value]"
-This option can only be used with \f(CW\*(C`\-\-main\*(C'\fR. It defines a system
-property named \fIname\fR with value \fIvalue\fR. If \fIvalue\fR is not
-specified then it defaults to the empty string. These system properties
-are initialized at the program's startup and can be retrieved at runtime
-using the \f(CW\*(C`java.lang.System.getProperty\*(C'\fR method.
-.IP "\fB\-lgij\fR" 4
-.IX Item "-lgij"
-Create an application whose command-line processing is that
-of the \f(CW\*(C`gij\*(C'\fR command.
-.Sp
-This option is an alternative to using \f(CW\*(C`\-\-main\*(C'\fR; you cannot use both.
-.IP "\fB\-static\-libgcj\fR" 4
-.IX Item "-static-libgcj"
-This option causes linking to be done against a static version of the
-libgcj runtime library. This option is only available if
-corresponding linker support exists.
-.Sp
-\&\fBCaution:\fR Static linking of libgcj may cause essential parts
-of libgcj to be omitted. Some parts of libgcj use reflection to load
-classes at runtime. Since the linker does not see these references at
-link time, it can omit the referred to classes. The result is usually
-(but not always) a \f(CW\*(C`ClassNotFoundException\*(C'\fR being thrown at
-runtime. Caution must be used when using this option. For more
-details see:
-<\fBhttp://gcc.gnu.org/wiki/Statically%20linking%20libgcj\fR>
-.SS "Code Generation"
-.IX Subsection "Code Generation"
-In addition to the many \fBgcc\fR options controlling code generation,
-\&\fBgcj\fR has several options specific to itself.
-.IP "\fB\-C\fR" 4
-.IX Item "-C"
-This option is used to tell \fBgcj\fR to generate bytecode
-(\fI.class\fR files) rather than object code.
-.IP "\fB\-\-resource\fR \fIresource-name\fR" 4
-.IX Item "--resource resource-name"
-This option is used to tell \fBgcj\fR to compile the contents of a
-given file to object code so it may be accessed at runtime with the core
-protocol handler as \fBcore:/\fR\fIresource-name\fR. Note that
-\&\fIresource-name\fR is the name of the resource as found at runtime; for
-instance, it could be used in a call to \f(CW\*(C`ResourceBundle.getBundle\*(C'\fR.
-The actual file name to be compiled this way must be specified
-separately.
-.IP "\fB\-ftarget=\fR\fI\s-1VERSION\s0\fR" 4
-.IX Item "-ftarget=VERSION"
-This can be used with \fB\-C\fR to choose the version of bytecode
-emitted by \fBgcj\fR. The default is \fB1.5\fR. When not
-generating bytecode, this option has no effect.
-.IP "\fB\-d\fR \fIdirectory\fR" 4
-.IX Item "-d directory"
-When used with \f(CW\*(C`\-C\*(C'\fR, this causes all generated \fI.class\fR files
-to be put in the appropriate subdirectory of \fIdirectory\fR. By
-default they will be put in subdirectories of the current working
-directory.
-.IP "\fB\-fno\-bounds\-check\fR" 4
-.IX Item "-fno-bounds-check"
-By default, \fBgcj\fR generates code which checks the bounds of all
-array indexing operations. With this option, these checks are omitted, which
-can improve performance for code that uses arrays extensively. Note that this
-can result in unpredictable behavior if the code in question actually does
-violate array bounds constraints. It is safe to use this option if you are
-sure that your code will never throw an \f(CW\*(C`ArrayIndexOutOfBoundsException\*(C'\fR.
-.IP "\fB\-fno\-store\-check\fR" 4
-.IX Item "-fno-store-check"
-Don't generate array store checks. When storing objects into arrays, a runtime
-check is normally generated in order to ensure that the object is assignment
-compatible with the component type of the array (which may not be known
-at compile-time). With this option, these checks are omitted. This can
-improve performance for code which stores objects into arrays frequently.
-It is safe to use this option if you are sure your code will never throw an
-\&\f(CW\*(C`ArrayStoreException\*(C'\fR.
-.IP "\fB\-fjni\fR" 4
-.IX Item "-fjni"
-With \fBgcj\fR there are two options for writing native methods: \s-1CNI\s0
-and \s-1JNI. \s0 By default \fBgcj\fR assumes you are using \s-1CNI. \s0 If you are
-compiling a class with native methods, and these methods are implemented
-using \s-1JNI,\s0 then you must use \f(CW\*(C`\-fjni\*(C'\fR. This option causes
-\&\fBgcj\fR to generate stubs which will invoke the underlying \s-1JNI\s0
-methods.
-.IP "\fB\-fno\-assert\fR" 4
-.IX Item "-fno-assert"
-Don't recognize the \f(CW\*(C`assert\*(C'\fR keyword. This is for compatibility
-with older versions of the language specification.
-.IP "\fB\-fno\-optimize\-static\-class\-initialization\fR" 4
-.IX Item "-fno-optimize-static-class-initialization"
-When the optimization level is greater or equal to \f(CW\*(C`\-O2\*(C'\fR,
-\&\fBgcj\fR will try to optimize the way calls into the runtime are made
-to initialize static classes upon their first use (this optimization
-isn't carried out if \f(CW\*(C`\-C\*(C'\fR was specified.) When compiling to native
-code, \f(CW\*(C`\-fno\-optimize\-static\-class\-initialization\*(C'\fR will turn this
-optimization off, regardless of the optimization level in use.
-.IP "\fB\-\-disable\-assertions[=\fR\fIclass-or-package\fR\fB]\fR" 4
-.IX Item "--disable-assertions[=class-or-package]"
-Don't include code for checking assertions in the compiled code.
-If \f(CW\*(C`=\f(CIclass\-or\-package\f(CW\*(C'\fR is missing disables assertion code
-generation for all classes, unless overridden by a more
-specific \f(CW\*(C`\-\-enable\-assertions\*(C'\fR flag.
-If \fIclass-or-package\fR is a class name, only disables generating
-assertion checks within the named class or its inner classes.
-If \fIclass-or-package\fR is a package name, disables generating
-assertion checks within the named package or a subpackage.
-.Sp
-By default, assertions are enabled when generating class files
-or when not optimizing, and disabled when generating optimized binaries.
-.IP "\fB\-\-enable\-assertions[=\fR\fIclass-or-package\fR\fB]\fR" 4
-.IX Item "--enable-assertions[=class-or-package]"
-Generates code to check assertions. The option is perhaps misnamed,
-as you still need to turn on assertion checking at run-time,
-and we don't support any easy way to do that.
-So this flag isn't very useful yet, except to partially override
-\&\f(CW\*(C`\-\-disable\-assertions\*(C'\fR.
-.IP "\fB\-findirect\-dispatch\fR" 4
-.IX Item "-findirect-dispatch"
-\&\fBgcj\fR has a special binary compatibility \s-1ABI,\s0 which is enabled
-by the \f(CW\*(C`\-findirect\-dispatch\*(C'\fR option. In this mode, the code
-generated by \fBgcj\fR honors the binary compatibility guarantees
-in the Java Language Specification, and the resulting object files do
-not need to be directly linked against their dependencies. Instead,
-all dependencies are looked up at runtime. This allows free mixing of
-interpreted and compiled code.
-.Sp
-Note that, at present, \f(CW\*(C`\-findirect\-dispatch\*(C'\fR can only be used
-when compiling \fI.class\fR files. It will not work when compiling
-from source. \s-1CNI\s0 also does not yet work with the binary compatibility
-\&\s-1ABI. \s0 These restrictions will be lifted in some future release.
-.Sp
-However, if you compile \s-1CNI\s0 code with the standard \s-1ABI,\s0 you can call
-it from code built with the binary compatibility \s-1ABI.\s0
-.IP "\fB\-fbootstrap\-classes\fR" 4
-.IX Item "-fbootstrap-classes"
-This option can be use to tell \f(CW\*(C`libgcj\*(C'\fR that the compiled classes
-should be loaded by the bootstrap loader, not the system class loader.
-By default, if you compile a class and link it into an executable, it
-will be treated as if it was loaded using the system class loader.
-This is convenient, as it means that things like
-\&\f(CW\*(C`Class.forName()\*(C'\fR will search \fB\s-1CLASSPATH\s0\fR to find the
-desired class.
-.IP "\fB\-freduced\-reflection\fR" 4
-.IX Item "-freduced-reflection"
-This option causes the code generated by \fBgcj\fR to contain a
-reduced amount of the class meta-data used to support runtime
-reflection. The cost of this savings is the loss of
-the ability to use certain reflection capabilities of the standard
-Java runtime environment. When set all meta-data except for that
-which is needed to obtain correct runtime semantics is eliminated.
-.Sp
-For code that does not use reflection (i.e. serialization, \s-1RMI, CORBA\s0
-or call methods in the \f(CW\*(C`java.lang.reflect\*(C'\fR package),
-\&\f(CW\*(C`\-freduced\-reflection\*(C'\fR will result in proper operation with a
-savings in executable code size.
-.Sp
-\&\s-1JNI \s0(\f(CW\*(C`\-fjni\*(C'\fR) and the binary compatibility \s-1ABI
-\&\s0(\f(CW\*(C`\-findirect\-dispatch\*(C'\fR) do not work properly without full
-reflection meta-data. Because of this, it is an error to use these options
-with \f(CW\*(C`\-freduced\-reflection\*(C'\fR.
-.Sp
-\&\fBCaution:\fR If there is no reflection meta-data, code that uses
-a \f(CW\*(C`SecurityManager\*(C'\fR may not work properly. Also calling
-\&\f(CW\*(C`Class.forName()\*(C'\fR may fail if the calling method has no
-reflection meta-data.
-.SS "Configure-time Options"
-.IX Subsection "Configure-time Options"
-Some \fBgcj\fR code generations options affect the resulting \s-1ABI,\s0 and
-so can only be meaningfully given when \f(CW\*(C`libgcj\*(C'\fR, the runtime
-package, is configured. \f(CW\*(C`libgcj\*(C'\fR puts the appropriate options from
-this group into a \fBspec\fR file which is read by \fBgcj\fR. These
-options are listed here for completeness; if you are using \f(CW\*(C`libgcj\*(C'\fR
-then you won't want to touch these options.
-.IP "\fB\-fuse\-boehm\-gc\fR" 4
-.IX Item "-fuse-boehm-gc"
-This enables the use of the Boehm \s-1GC\s0 bitmap marking code. In particular
-this causes \fBgcj\fR to put an object marking descriptor into each
-vtable.
-.IP "\fB\-fhash\-synchronization\fR" 4
-.IX Item "-fhash-synchronization"
-By default, synchronization data (the data used for \f(CW\*(C`synchronize\*(C'\fR,
-\&\f(CW\*(C`wait\*(C'\fR, and \f(CW\*(C`notify\*(C'\fR) is pointed to by a word in each object.
-With this option \fBgcj\fR assumes that this information is stored in a
-hash table and not in the object itself.
-.IP "\fB\-fuse\-divide\-subroutine\fR" 4
-.IX Item "-fuse-divide-subroutine"
-On some systems, a library routine is called to perform integer
-division. This is required to get exception handling correct when
-dividing by zero.
-.IP "\fB\-fcheck\-references\fR" 4
-.IX Item "-fcheck-references"
-On some systems it's necessary to insert inline checks whenever
-accessing an object via a reference. On other systems you won't need
-this because null pointer accesses are caught automatically by the
-processor.
-.IP "\fB\-fuse\-atomic\-builtins\fR" 4
-.IX Item "-fuse-atomic-builtins"
-On some systems, \s-1GCC\s0 can generate code for built-in atomic operations.
-Use this option to force gcj to use these builtins when compiling Java
-code. Where this capability is present it should be automatically
-detected, so you won't usually need to use this option.
-.SH "SEE ALSO"
-.IX Header "SEE ALSO"
-\&\fIgcc\fR\|(1), \fIgcjh\fR\|(1), \fIgjnih\fR\|(1), \fIgij\fR\|(1), \fIjcf\-dump\fR\|(1), \fIgfdl\fR\|(7),
-and the Info entries for \fIgcj\fR and \fIgcc\fR.
-.SH "COPYRIGHT"
-.IX Header "COPYRIGHT"
-Copyright (c) 2001\-2014 Free Software Foundation, Inc.
-.PP
-Permission is granted to copy, distribute and/or modify this document
-under the terms of the \s-1GNU\s0 Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with no
-Invariant Sections, the Front-Cover Texts being (a) (see below), and
-with the Back-Cover Texts being (b) (see below).
-A copy of the license is included in the
-man page \fIgfdl\fR\|(7).
-.PP
-(a) The \s-1FSF\s0's Front-Cover Text is:
-.PP
-.Vb 1
-\& A GNU Manual
-.Ve
-.PP
-(b) The \s-1FSF\s0's Back-Cover Text is:
-.PP
-.Vb 3
-\& You have freedom to copy and modify this GNU Manual, like GNU
-\& software. Copies published by the Free Software Foundation raise
-\& funds for GNU development.
-.Ve
diff --git a/gcc-4.9/gcc/doc/gcj.info b/gcc-4.9/gcc/doc/gcj.info
deleted file mode 100644
index cd5c9b161..000000000
--- a/gcc-4.9/gcc/doc/gcj.info
+++ /dev/null
@@ -1,3653 +0,0 @@
-This is gcj.info, produced by makeinfo version 5.1 from gcj.texi.
-
-Copyright (C) 2001-2014 Free Software Foundation, Inc.
-
- Permission is granted to copy, distribute and/or modify this document
-under the terms of the GNU Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with no
-Invariant Sections, the Front-Cover Texts being (a) (see below), and
-with the Back-Cover Texts being (b) (see below). A copy of the license
-is included in the section entitled "GNU Free Documentation License".
-
- (a) The FSF's Front-Cover Text is:
-
- A GNU Manual
-
- (b) The FSF's Back-Cover Text is:
-
- You have freedom to copy and modify this GNU Manual, like GNU
-software. Copies published by the Free Software Foundation raise funds
-for GNU development.
-INFO-DIR-SECTION Software development
-START-INFO-DIR-ENTRY
-* Gcj: (gcj). Ahead-of-time compiler for the Java language
-END-INFO-DIR-ENTRY
-
-INFO-DIR-SECTION Individual utilities
-START-INFO-DIR-ENTRY
-* jcf-dump: (gcj)Invoking jcf-dump.
- Print information about Java class files
-* gij: (gcj)Invoking gij. GNU interpreter for Java bytecode
-* gcj-dbtool: (gcj)Invoking gcj-dbtool.
- Tool for manipulating class file databases.
-* jv-convert: (gcj)Invoking jv-convert.
- Convert file from one encoding to another
-* grmic: (gcj)Invoking grmic.
- Generate stubs for Remote Method Invocation.
-* gc-analyze: (gcj)Invoking gc-analyze.
- Analyze Garbage Collector (GC) memory dumps.
-* aot-compile: (gcj)Invoking aot-compile.
- Compile bytecode to native and generate databases.
-* rebuild-gcj-db: (gcj)Invoking rebuild-gcj-db.
- Merge the per-solib databases made by aot-compile
- into one system-wide database.
-END-INFO-DIR-ENTRY
-
-
- Copyright (C) 2001-2014 Free Software Foundation, Inc.
-
- Permission is granted to copy, distribute and/or modify this document
-under the terms of the GNU Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with no
-Invariant Sections, the Front-Cover Texts being (a) (see below), and
-with the Back-Cover Texts being (b) (see below). A copy of the license
-is included in the section entitled "GNU Free Documentation License".
-
- (a) The FSF's Front-Cover Text is:
-
- A GNU Manual
-
- (b) The FSF's Back-Cover Text is:
-
- You have freedom to copy and modify this GNU Manual, like GNU
-software. Copies published by the Free Software Foundation raise funds
-for GNU development.
-
-
-File: gcj.info, Node: Top, Next: Copying, Up: (dir)
-
-Introduction
-************
-
-This manual describes how to use 'gcj', the GNU compiler for the Java
-programming language. 'gcj' can generate both '.class' files and object
-files, and it can read both Java source code and '.class' files.
-
-* Menu:
-
-* Copying:: The GNU General Public License
-* GNU Free Documentation License::
- How you can share and copy this manual
-* Invoking gcj:: Compiler options supported by 'gcj'
-* Compatibility:: Compatibility between gcj and other tools for Java
-* Invoking jcf-dump:: Print information about class files
-* Invoking gij:: Interpreting Java bytecodes
-* Invoking gcj-dbtool:: Tool for manipulating class file databases.
-* Invoking jv-convert:: Converting from one encoding to another
-* Invoking grmic:: Generate stubs for Remote Method Invocation.
-* Invoking gc-analyze:: Analyze Garbage Collector (GC) memory dumps.
-* Invoking aot-compile:: Compile bytecode to native and generate databases.
-* Invoking rebuild-gcj-db:: Merge the per-solib databases made by aot-compile
- into one system-wide database.
-* About CNI:: Description of the Compiled Native Interface
-* System properties:: Modifying runtime behavior of the libgcj library
-* Resources:: Where to look for more information
-* Index:: Index.
-
-
-File: gcj.info, Node: Copying, Next: GNU Free Documentation License, Prev: Top, Up: Top
-
-GNU General Public License
-**************************
-
- Version 3, 29 June 2007
-
- Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
-
- Everyone is permitted to copy and distribute verbatim copies of this
- license document, but changing it is not allowed.
-
-Preamble
-========
-
-The GNU General Public License is a free, copyleft license for software
-and other kinds of works.
-
- The licenses for most software and other practical works are designed
-to take away your freedom to share and change the works. By contrast,
-the GNU General Public License is intended to guarantee your freedom to
-share and change all versions of a program-to make sure it remains free
-software for all its users. We, the Free Software Foundation, use the
-GNU General Public License for most of our software; it applies also to
-any other work released this way by its authors. You can apply it to
-your programs, too.
-
- When we speak of free software, we are referring to freedom, not
-price. Our General Public Licenses are designed to make sure that you
-have the freedom to distribute copies of free software (and charge for
-them if you wish), that you receive source code or can get it if you
-want it, that you can change the software or use pieces of it in new
-free programs, and that you know you can do these things.
-
- To protect your rights, we need to prevent others from denying you
-these rights or asking you to surrender the rights. Therefore, you have
-certain responsibilities if you distribute copies of the software, or if
-you modify it: responsibilities to respect the freedom of others.
-
- For example, if you distribute copies of such a program, whether
-gratis or for a fee, you must pass on to the recipients the same
-freedoms that you received. You must make sure that they, too, receive
-or can get the source code. And you must show them these terms so they
-know their rights.
-
- Developers that use the GNU GPL protect your rights with two steps:
-(1) assert copyright on the software, and (2) offer you this License
-giving you legal permission to copy, distribute and/or modify it.
-
- For the developers' and authors' protection, the GPL clearly explains
-that there is no warranty for this free software. For both users' and
-authors' sake, the GPL requires that modified versions be marked as
-changed, so that their problems will not be attributed erroneously to
-authors of previous versions.
-
- Some devices are designed to deny users access to install or run
-modified versions of the software inside them, although the manufacturer
-can do so. This is fundamentally incompatible with the aim of
-protecting users' freedom to change the software. The systematic
-pattern of such abuse occurs in the area of products for individuals to
-use, which is precisely where it is most unacceptable. Therefore, we
-have designed this version of the GPL to prohibit the practice for those
-products. If such problems arise substantially in other domains, we
-stand ready to extend this provision to those domains in future versions
-of the GPL, as needed to protect the freedom of users.
-
- Finally, every program is threatened constantly by software patents.
-States should not allow patents to restrict development and use of
-software on general-purpose computers, but in those that do, we wish to
-avoid the special danger that patents applied to a free program could
-make it effectively proprietary. To prevent this, the GPL assures that
-patents cannot be used to render the program non-free.
-
- The precise terms and conditions for copying, distribution and
-modification follow.
-
-TERMS AND CONDITIONS
-====================
-
- 0. Definitions.
-
- "This License" refers to version 3 of the GNU General Public
- License.
-
- "Copyright" also means copyright-like laws that apply to other
- kinds of works, such as semiconductor masks.
-
- "The Program" refers to any copyrightable work licensed under this
- License. Each licensee is addressed as "you". "Licensees" and
- "recipients" may be individuals or organizations.
-
- To "modify" a work means to copy from or adapt all or part of the
- work in a fashion requiring copyright permission, other than the
- making of an exact copy. The resulting work is called a "modified
- version" of the earlier work or a work "based on" the earlier work.
-
- A "covered work" means either the unmodified Program or a work
- based on the Program.
-
- To "propagate" a work means to do anything with it that, without
- permission, would make you directly or secondarily liable for
- infringement under applicable copyright law, except executing it on
- a computer or modifying a private copy. Propagation includes
- copying, distribution (with or without modification), making
- available to the public, and in some countries other activities as
- well.
-
- To "convey" a work means any kind of propagation that enables other
- parties to make or receive copies. Mere interaction with a user
- through a computer network, with no transfer of a copy, is not
- conveying.
-
- An interactive user interface displays "Appropriate Legal Notices"
- to the extent that it includes a convenient and prominently visible
- feature that (1) displays an appropriate copyright notice, and (2)
- tells the user that there is no warranty for the work (except to
- the extent that warranties are provided), that licensees may convey
- the work under this License, and how to view a copy of this
- License. If the interface presents a list of user commands or
- options, such as a menu, a prominent item in the list meets this
- criterion.
-
- 1. Source Code.
-
- The "source code" for a work means the preferred form of the work
- for making modifications to it. "Object code" means any non-source
- form of a work.
-
- A "Standard Interface" means an interface that either is an
- official standard defined by a recognized standards body, or, in
- the case of interfaces specified for a particular programming
- language, one that is widely used among developers working in that
- language.
-
- The "System Libraries" of an executable work include anything,
- other than the work as a whole, that (a) is included in the normal
- form of packaging a Major Component, but which is not part of that
- Major Component, and (b) serves only to enable use of the work with
- that Major Component, or to implement a Standard Interface for
- which an implementation is available to the public in source code
- form. A "Major Component", in this context, means a major
- essential component (kernel, window system, and so on) of the
- specific operating system (if any) on which the executable work
- runs, or a compiler used to produce the work, or an object code
- interpreter used to run it.
-
- The "Corresponding Source" for a work in object code form means all
- the source code needed to generate, install, and (for an executable
- work) run the object code and to modify the work, including scripts
- to control those activities. However, it does not include the
- work's System Libraries, or general-purpose tools or generally
- available free programs which are used unmodified in performing
- those activities but which are not part of the work. For example,
- Corresponding Source includes interface definition files associated
- with source files for the work, and the source code for shared
- libraries and dynamically linked subprograms that the work is
- specifically designed to require, such as by intimate data
- communication or control flow between those subprograms and other
- parts of the work.
-
- The Corresponding Source need not include anything that users can
- regenerate automatically from other parts of the Corresponding
- Source.
-
- The Corresponding Source for a work in source code form is that
- same work.
-
- 2. Basic Permissions.
-
- All rights granted under this License are granted for the term of
- copyright on the Program, and are irrevocable provided the stated
- conditions are met. This License explicitly affirms your unlimited
- permission to run the unmodified Program. The output from running
- a covered work is covered by this License only if the output, given
- its content, constitutes a covered work. This License acknowledges
- your rights of fair use or other equivalent, as provided by
- copyright law.
-
- You may make, run and propagate covered works that you do not
- convey, without conditions so long as your license otherwise
- remains in force. You may convey covered works to others for the
- sole purpose of having them make modifications exclusively for you,
- or provide you with facilities for running those works, provided
- that you comply with the terms of this License in conveying all
- material for which you do not control copyright. Those thus making
- or running the covered works for you must do so exclusively on your
- behalf, under your direction and control, on terms that prohibit
- them from making any copies of your copyrighted material outside
- their relationship with you.
-
- Conveying under any other circumstances is permitted solely under
- the conditions stated below. Sublicensing is not allowed; section
- 10 makes it unnecessary.
-
- 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
-
- No covered work shall be deemed part of an effective technological
- measure under any applicable law fulfilling obligations under
- article 11 of the WIPO copyright treaty adopted on 20 December
- 1996, or similar laws prohibiting or restricting circumvention of
- such measures.
-
- When you convey a covered work, you waive any legal power to forbid
- circumvention of technological measures to the extent such
- circumvention is effected by exercising rights under this License
- with respect to the covered work, and you disclaim any intention to
- limit operation or modification of the work as a means of
- enforcing, against the work's users, your or third parties' legal
- rights to forbid circumvention of technological measures.
-
- 4. Conveying Verbatim Copies.
-
- You may convey verbatim copies of the Program's source code as you
- receive it, in any medium, provided that you conspicuously and
- appropriately publish on each copy an appropriate copyright notice;
- keep intact all notices stating that this License and any
- non-permissive terms added in accord with section 7 apply to the
- code; keep intact all notices of the absence of any warranty; and
- give all recipients a copy of this License along with the Program.
-
- You may charge any price or no price for each copy that you convey,
- and you may offer support or warranty protection for a fee.
-
- 5. Conveying Modified Source Versions.
-
- You may convey a work based on the Program, or the modifications to
- produce it from the Program, in the form of source code under the
- terms of section 4, provided that you also meet all of these
- conditions:
-
- a. The work must carry prominent notices stating that you
- modified it, and giving a relevant date.
-
- b. The work must carry prominent notices stating that it is
- released under this License and any conditions added under
- section 7. This requirement modifies the requirement in
- section 4 to "keep intact all notices".
-
- c. You must license the entire work, as a whole, under this
- License to anyone who comes into possession of a copy. This
- License will therefore apply, along with any applicable
- section 7 additional terms, to the whole of the work, and all
- its parts, regardless of how they are packaged. This License
- gives no permission to license the work in any other way, but
- it does not invalidate such permission if you have separately
- received it.
-
- d. If the work has interactive user interfaces, each must display
- Appropriate Legal Notices; however, if the Program has
- interactive interfaces that do not display Appropriate Legal
- Notices, your work need not make them do so.
-
- A compilation of a covered work with other separate and independent
- works, which are not by their nature extensions of the covered
- work, and which are not combined with it such as to form a larger
- program, in or on a volume of a storage or distribution medium, is
- called an "aggregate" if the compilation and its resulting
- copyright are not used to limit the access or legal rights of the
- compilation's users beyond what the individual works permit.
- Inclusion of a covered work in an aggregate does not cause this
- License to apply to the other parts of the aggregate.
-
- 6. Conveying Non-Source Forms.
-
- You may convey a covered work in object code form under the terms
- of sections 4 and 5, provided that you also convey the
- machine-readable Corresponding Source under the terms of this
- License, in one of these ways:
-
- a. Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by the
- Corresponding Source fixed on a durable physical medium
- customarily used for software interchange.
-
- b. Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by a
- written offer, valid for at least three years and valid for as
- long as you offer spare parts or customer support for that
- product model, to give anyone who possesses the object code
- either (1) a copy of the Corresponding Source for all the
- software in the product that is covered by this License, on a
- durable physical medium customarily used for software
- interchange, for a price no more than your reasonable cost of
- physically performing this conveying of source, or (2) access
- to copy the Corresponding Source from a network server at no
- charge.
-
- c. Convey individual copies of the object code with a copy of the
- written offer to provide the Corresponding Source. This
- alternative is allowed only occasionally and noncommercially,
- and only if you received the object code with such an offer,
- in accord with subsection 6b.
-
- d. Convey the object code by offering access from a designated
- place (gratis or for a charge), and offer equivalent access to
- the Corresponding Source in the same way through the same
- place at no further charge. You need not require recipients
- to copy the Corresponding Source along with the object code.
- If the place to copy the object code is a network server, the
- Corresponding Source may be on a different server (operated by
- you or a third party) that supports equivalent copying
- facilities, provided you maintain clear directions next to the
- object code saying where to find the Corresponding Source.
- Regardless of what server hosts the Corresponding Source, you
- remain obligated to ensure that it is available for as long as
- needed to satisfy these requirements.
-
- e. Convey the object code using peer-to-peer transmission,
- provided you inform other peers where the object code and
- Corresponding Source of the work are being offered to the
- general public at no charge under subsection 6d.
-
- A separable portion of the object code, whose source code is
- excluded from the Corresponding Source as a System Library, need
- not be included in conveying the object code work.
-
- A "User Product" is either (1) a "consumer product", which means
- any tangible personal property which is normally used for personal,
- family, or household purposes, or (2) anything designed or sold for
- incorporation into a dwelling. In determining whether a product is
- a consumer product, doubtful cases shall be resolved in favor of
- coverage. For a particular product received by a particular user,
- "normally used" refers to a typical or common use of that class of
- product, regardless of the status of the particular user or of the
- way in which the particular user actually uses, or expects or is
- expected to use, the product. A product is a consumer product
- regardless of whether the product has substantial commercial,
- industrial or non-consumer uses, unless such uses represent the
- only significant mode of use of the product.
-
- "Installation Information" for a User Product means any methods,
- procedures, authorization keys, or other information required to
- install and execute modified versions of a covered work in that
- User Product from a modified version of its Corresponding Source.
- The information must suffice to ensure that the continued
- functioning of the modified object code is in no case prevented or
- interfered with solely because modification has been made.
-
- If you convey an object code work under this section in, or with,
- or specifically for use in, a User Product, and the conveying
- occurs as part of a transaction in which the right of possession
- and use of the User Product is transferred to the recipient in
- perpetuity or for a fixed term (regardless of how the transaction
- is characterized), the Corresponding Source conveyed under this
- section must be accompanied by the Installation Information. But
- this requirement does not apply if neither you nor any third party
- retains the ability to install modified object code on the User
- Product (for example, the work has been installed in ROM).
-
- The requirement to provide Installation Information does not
- include a requirement to continue to provide support service,
- warranty, or updates for a work that has been modified or installed
- by the recipient, or for the User Product in which it has been
- modified or installed. Access to a network may be denied when the
- modification itself materially and adversely affects the operation
- of the network or violates the rules and protocols for
- communication across the network.
-
- Corresponding Source conveyed, and Installation Information
- provided, in accord with this section must be in a format that is
- publicly documented (and with an implementation available to the
- public in source code form), and must require no special password
- or key for unpacking, reading or copying.
-
- 7. Additional Terms.
-
- "Additional permissions" are terms that supplement the terms of
- this License by making exceptions from one or more of its
- conditions. Additional permissions that are applicable to the
- entire Program shall be treated as though they were included in
- this License, to the extent that they are valid under applicable
- law. If additional permissions apply only to part of the Program,
- that part may be used separately under those permissions, but the
- entire Program remains governed by this License without regard to
- the additional permissions.
-
- When you convey a copy of a covered work, you may at your option
- remove any additional permissions from that copy, or from any part
- of it. (Additional permissions may be written to require their own
- removal in certain cases when you modify the work.) You may place
- additional permissions on material, added by you to a covered work,
- for which you have or can give appropriate copyright permission.
-
- Notwithstanding any other provision of this License, for material
- you add to a covered work, you may (if authorized by the copyright
- holders of that material) supplement the terms of this License with
- terms:
-
- a. Disclaiming warranty or limiting liability differently from
- the terms of sections 15 and 16 of this License; or
-
- b. Requiring preservation of specified reasonable legal notices
- or author attributions in that material or in the Appropriate
- Legal Notices displayed by works containing it; or
-
- c. Prohibiting misrepresentation of the origin of that material,
- or requiring that modified versions of such material be marked
- in reasonable ways as different from the original version; or
-
- d. Limiting the use for publicity purposes of names of licensors
- or authors of the material; or
-
- e. Declining to grant rights under trademark law for use of some
- trade names, trademarks, or service marks; or
-
- f. Requiring indemnification of licensors and authors of that
- material by anyone who conveys the material (or modified
- versions of it) with contractual assumptions of liability to
- the recipient, for any liability that these contractual
- assumptions directly impose on those licensors and authors.
-
- All other non-permissive additional terms are considered "further
- restrictions" within the meaning of section 10. If the Program as
- you received it, or any part of it, contains a notice stating that
- it is governed by this License along with a term that is a further
- restriction, you may remove that term. If a license document
- contains a further restriction but permits relicensing or conveying
- under this License, you may add to a covered work material governed
- by the terms of that license document, provided that the further
- restriction does not survive such relicensing or conveying.
-
- If you add terms to a covered work in accord with this section, you
- must place, in the relevant source files, a statement of the
- additional terms that apply to those files, or a notice indicating
- where to find the applicable terms.
-
- Additional terms, permissive or non-permissive, may be stated in
- the form of a separately written license, or stated as exceptions;
- the above requirements apply either way.
-
- 8. Termination.
-
- You may not propagate or modify a covered work except as expressly
- provided under this License. Any attempt otherwise to propagate or
- modify it is void, and will automatically terminate your rights
- under this License (including any patent licenses granted under the
- third paragraph of section 11).
-
- However, if you cease all violation of this License, then your
- license from a particular copyright holder is reinstated (a)
- provisionally, unless and until the copyright holder explicitly and
- finally terminates your license, and (b) permanently, if the
- copyright holder fails to notify you of the violation by some
- reasonable means prior to 60 days after the cessation.
-
- Moreover, your license from a particular copyright holder is
- reinstated permanently if the copyright holder notifies you of the
- violation by some reasonable means, this is the first time you have
- received notice of violation of this License (for any work) from
- that copyright holder, and you cure the violation prior to 30 days
- after your receipt of the notice.
-
- Termination of your rights under this section does not terminate
- the licenses of parties who have received copies or rights from you
- under this License. If your rights have been terminated and not
- permanently reinstated, you do not qualify to receive new licenses
- for the same material under section 10.
-
- 9. Acceptance Not Required for Having Copies.
-
- You are not required to accept this License in order to receive or
- run a copy of the Program. Ancillary propagation of a covered work
- occurring solely as a consequence of using peer-to-peer
- transmission to receive a copy likewise does not require
- acceptance. However, nothing other than this License grants you
- permission to propagate or modify any covered work. These actions
- infringe copyright if you do not accept this License. Therefore,
- by modifying or propagating a covered work, you indicate your
- acceptance of this License to do so.
-
- 10. Automatic Licensing of Downstream Recipients.
-
- Each time you convey a covered work, the recipient automatically
- receives a license from the original licensors, to run, modify and
- propagate that work, subject to this License. You are not
- responsible for enforcing compliance by third parties with this
- License.
-
- An "entity transaction" is a transaction transferring control of an
- organization, or substantially all assets of one, or subdividing an
- organization, or merging organizations. If propagation of a
- covered work results from an entity transaction, each party to that
- transaction who receives a copy of the work also receives whatever
- licenses to the work the party's predecessor in interest had or
- could give under the previous paragraph, plus a right to possession
- of the Corresponding Source of the work from the predecessor in
- interest, if the predecessor has it or can get it with reasonable
- efforts.
-
- You may not impose any further restrictions on the exercise of the
- rights granted or affirmed under this License. For example, you
- may not impose a license fee, royalty, or other charge for exercise
- of rights granted under this License, and you may not initiate
- litigation (including a cross-claim or counterclaim in a lawsuit)
- alleging that any patent claim is infringed by making, using,
- selling, offering for sale, or importing the Program or any portion
- of it.
-
- 11. Patents.
-
- A "contributor" is a copyright holder who authorizes use under this
- License of the Program or a work on which the Program is based.
- The work thus licensed is called the contributor's "contributor
- version".
-
- A contributor's "essential patent claims" are all patent claims
- owned or controlled by the contributor, whether already acquired or
- hereafter acquired, that would be infringed by some manner,
- permitted by this License, of making, using, or selling its
- contributor version, but do not include claims that would be
- infringed only as a consequence of further modification of the
- contributor version. For purposes of this definition, "control"
- includes the right to grant patent sublicenses in a manner
- consistent with the requirements of this License.
-
- Each contributor grants you a non-exclusive, worldwide,
- royalty-free patent license under the contributor's essential
- patent claims, to make, use, sell, offer for sale, import and
- otherwise run, modify and propagate the contents of its contributor
- version.
-
- In the following three paragraphs, a "patent license" is any
- express agreement or commitment, however denominated, not to
- enforce a patent (such as an express permission to practice a
- patent or covenant not to sue for patent infringement). To "grant"
- such a patent license to a party means to make such an agreement or
- commitment not to enforce a patent against the party.
-
- If you convey a covered work, knowingly relying on a patent
- license, and the Corresponding Source of the work is not available
- for anyone to copy, free of charge and under the terms of this
- License, through a publicly available network server or other
- readily accessible means, then you must either (1) cause the
- Corresponding Source to be so available, or (2) arrange to deprive
- yourself of the benefit of the patent license for this particular
- work, or (3) arrange, in a manner consistent with the requirements
- of this License, to extend the patent license to downstream
- recipients. "Knowingly relying" means you have actual knowledge
- that, but for the patent license, your conveying the covered work
- in a country, or your recipient's use of the covered work in a
- country, would infringe one or more identifiable patents in that
- country that you have reason to believe are valid.
-
- If, pursuant to or in connection with a single transaction or
- arrangement, you convey, or propagate by procuring conveyance of, a
- covered work, and grant a patent license to some of the parties
- receiving the covered work authorizing them to use, propagate,
- modify or convey a specific copy of the covered work, then the
- patent license you grant is automatically extended to all
- recipients of the covered work and works based on it.
-
- A patent license is "discriminatory" if it does not include within
- the scope of its coverage, prohibits the exercise of, or is
- conditioned on the non-exercise of one or more of the rights that
- are specifically granted under this License. You may not convey a
- covered work if you are a party to an arrangement with a third
- party that is in the business of distributing software, under which
- you make payment to the third party based on the extent of your
- activity of conveying the work, and under which the third party
- grants, to any of the parties who would receive the covered work
- from you, a discriminatory patent license (a) in connection with
- copies of the covered work conveyed by you (or copies made from
- those copies), or (b) primarily for and in connection with specific
- products or compilations that contain the covered work, unless you
- entered into that arrangement, or that patent license was granted,
- prior to 28 March 2007.
-
- Nothing in this License shall be construed as excluding or limiting
- any implied license or other defenses to infringement that may
- otherwise be available to you under applicable patent law.
-
- 12. No Surrender of Others' Freedom.
-
- If conditions are imposed on you (whether by court order, agreement
- or otherwise) that contradict the conditions of this License, they
- do not excuse you from the conditions of this License. If you
- cannot convey a covered work so as to satisfy simultaneously your
- obligations under this License and any other pertinent obligations,
- then as a consequence you may not convey it at all. For example,
- if you agree to terms that obligate you to collect a royalty for
- further conveying from those to whom you convey the Program, the
- only way you could satisfy both those terms and this License would
- be to refrain entirely from conveying the Program.
-
- 13. Use with the GNU Affero General Public License.
-
- Notwithstanding any other provision of this License, you have
- permission to link or combine any covered work with a work licensed
- under version 3 of the GNU Affero General Public License into a
- single combined work, and to convey the resulting work. The terms
- of this License will continue to apply to the part which is the
- covered work, but the special requirements of the GNU Affero
- General Public License, section 13, concerning interaction through
- a network will apply to the combination as such.
-
- 14. Revised Versions of this License.
-
- The Free Software Foundation may publish revised and/or new
- versions of the GNU General Public License from time to time. Such
- new versions will be similar in spirit to the present version, but
- may differ in detail to address new problems or concerns.
-
- Each version is given a distinguishing version number. If the
- Program specifies that a certain numbered version of the GNU
- General Public License "or any later version" applies to it, you
- have the option of following the terms and conditions either of
- that numbered version or of any later version published by the Free
- Software Foundation. If the Program does not specify a version
- number of the GNU General Public License, you may choose any
- version ever published by the Free Software Foundation.
-
- If the Program specifies that a proxy can decide which future
- versions of the GNU General Public License can be used, that
- proxy's public statement of acceptance of a version permanently
- authorizes you to choose that version for the Program.
-
- Later license versions may give you additional or different
- permissions. However, no additional obligations are imposed on any
- author or copyright holder as a result of your choosing to follow a
- later version.
-
- 15. Disclaimer of Warranty.
-
- THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
- APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
- COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"
- WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
- INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
- MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
- RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
- SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
- NECESSARY SERVICING, REPAIR OR CORRECTION.
-
- 16. Limitation of Liability.
-
- IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
- WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
- AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
- DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
- CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
- THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
- BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
- PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
- PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
- THE POSSIBILITY OF SUCH DAMAGES.
-
- 17. Interpretation of Sections 15 and 16.
-
- If the disclaimer of warranty and limitation of liability provided
- above cannot be given local legal effect according to their terms,
- reviewing courts shall apply local law that most closely
- approximates an absolute waiver of all civil liability in
- connection with the Program, unless a warranty or assumption of
- liability accompanies a copy of the Program in return for a fee.
-
-END OF TERMS AND CONDITIONS
-===========================
-
-How to Apply These Terms to Your New Programs
-=============================================
-
-If you develop a new program, and you want it to be of the greatest
-possible use to the public, the best way to achieve this is to make it
-free software which everyone can redistribute and change under these
-terms.
-
- To do so, attach the following notices to the program. It is safest
-to attach them to the start of each source file to most effectively
-state the exclusion of warranty; and each file should have at least the
-"copyright" line and a pointer to where the full notice is found.
-
- ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES.
- Copyright (C) YEAR NAME OF AUTHOR
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or (at
- your option) any later version.
-
- This program is distributed in the hope that it will be useful, but
- WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
-
- Also add information on how to contact you by electronic and paper
-mail.
-
- If the program does terminal interaction, make it output a short
-notice like this when it starts in an interactive mode:
-
- PROGRAM Copyright (C) YEAR NAME OF AUTHOR
- This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'.
- This is free software, and you are welcome to redistribute it
- under certain conditions; type 'show c' for details.
-
- The hypothetical commands 'show w' and 'show c' should show the
-appropriate parts of the General Public License. Of course, your
-program's commands might be different; for a GUI interface, you would
-use an "about box".
-
- You should also get your employer (if you work as a programmer) or
-school, if any, to sign a "copyright disclaimer" for the program, if
-necessary. For more information on this, and how to apply and follow
-the GNU GPL, see <http://www.gnu.org/licenses/>.
-
- The GNU General Public License does not permit incorporating your
-program into proprietary programs. If your program is a subroutine
-library, you may consider it more useful to permit linking proprietary
-applications with the library. If this is what you want to do, use the
-GNU Lesser General Public License instead of this License. But first,
-please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.
-
-
-File: gcj.info, Node: GNU Free Documentation License, Next: Invoking gcj, Prev: Copying, Up: Top
-
-GNU Free Documentation License
-******************************
-
- Version 1.3, 3 November 2008
-
- Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
- <http://fsf.org/>
-
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
- 0. PREAMBLE
-
- The purpose of this License is to make a manual, textbook, or other
- functional and useful document "free" in the sense of freedom: to
- assure everyone the effective freedom to copy and redistribute it,
- with or without modifying it, either commercially or
- noncommercially. Secondarily, this License preserves for the
- author and publisher a way to get credit for their work, while not
- being considered responsible for modifications made by others.
-
- This License is a kind of "copyleft", which means that derivative
- works of the document must themselves be free in the same sense.
- It complements the GNU General Public License, which is a copyleft
- license designed for free software.
-
- We have designed this License in order to use it for manuals for
- free software, because free software needs free documentation: a
- free program should come with manuals providing the same freedoms
- that the software does. But this License is not limited to
- software manuals; it can be used for any textual work, regardless
- of subject matter or whether it is published as a printed book. We
- recommend this License principally for works whose purpose is
- instruction or reference.
-
- 1. APPLICABILITY AND DEFINITIONS
-
- This License applies to any manual or other work, in any medium,
- that contains a notice placed by the copyright holder saying it can
- be distributed under the terms of this License. Such a notice
- grants a world-wide, royalty-free license, unlimited in duration,
- to use that work under the conditions stated herein. The
- "Document", below, refers to any such manual or work. Any member
- of the public is a licensee, and is addressed as "you". You accept
- the license if you copy, modify or distribute the work in a way
- requiring permission under copyright law.
-
- A "Modified Version" of the Document means any work containing the
- Document or a portion of it, either copied verbatim, or with
- modifications and/or translated into another language.
-
- A "Secondary Section" is a named appendix or a front-matter section
- of the Document that deals exclusively with the relationship of the
- publishers or authors of the Document to the Document's overall
- subject (or to related matters) and contains nothing that could
- fall directly within that overall subject. (Thus, if the Document
- is in part a textbook of mathematics, a Secondary Section may not
- explain any mathematics.) The relationship could be a matter of
- historical connection with the subject or with related matters, or
- of legal, commercial, philosophical, ethical or political position
- regarding them.
-
- The "Invariant Sections" are certain Secondary Sections whose
- titles are designated, as being those of Invariant Sections, in the
- notice that says that the Document is released under this License.
- If a section does not fit the above definition of Secondary then it
- is not allowed to be designated as Invariant. The Document may
- contain zero Invariant Sections. If the Document does not identify
- any Invariant Sections then there are none.
-
- The "Cover Texts" are certain short passages of text that are
- listed, as Front-Cover Texts or Back-Cover Texts, in the notice
- that says that the Document is released under this License. A
- Front-Cover Text may be at most 5 words, and a Back-Cover Text may
- be at most 25 words.
-
- A "Transparent" copy of the Document means a machine-readable copy,
- represented in a format whose specification is available to the
- general public, that is suitable for revising the document
- straightforwardly with generic text editors or (for images composed
- of pixels) generic paint programs or (for drawings) some widely
- available drawing editor, and that is suitable for input to text
- formatters or for automatic translation to a variety of formats
- suitable for input to text formatters. A copy made in an otherwise
- Transparent file format whose markup, or absence of markup, has
- been arranged to thwart or discourage subsequent modification by
- readers is not Transparent. An image format is not Transparent if
- used for any substantial amount of text. A copy that is not
- "Transparent" is called "Opaque".
-
- Examples of suitable formats for Transparent copies include plain
- ASCII without markup, Texinfo input format, LaTeX input format,
- SGML or XML using a publicly available DTD, and standard-conforming
- simple HTML, PostScript or PDF designed for human modification.
- Examples of transparent image formats include PNG, XCF and JPG.
- Opaque formats include proprietary formats that can be read and
- edited only by proprietary word processors, SGML or XML for which
- the DTD and/or processing tools are not generally available, and
- the machine-generated HTML, PostScript or PDF produced by some word
- processors for output purposes only.
-
- The "Title Page" means, for a printed book, the title page itself,
- plus such following pages as are needed to hold, legibly, the
- material this License requires to appear in the title page. For
- works in formats which do not have any title page as such, "Title
- Page" means the text near the most prominent appearance of the
- work's title, preceding the beginning of the body of the text.
-
- The "publisher" means any person or entity that distributes copies
- of the Document to the public.
-
- A section "Entitled XYZ" means a named subunit of the Document
- whose title either is precisely XYZ or contains XYZ in parentheses
- following text that translates XYZ in another language. (Here XYZ
- stands for a specific section name mentioned below, such as
- "Acknowledgements", "Dedications", "Endorsements", or "History".)
- To "Preserve the Title" of such a section when you modify the
- Document means that it remains a section "Entitled XYZ" according
- to this definition.
-
- The Document may include Warranty Disclaimers next to the notice
- which states that this License applies to the Document. These
- Warranty Disclaimers are considered to be included by reference in
- this License, but only as regards disclaiming warranties: any other
- implication that these Warranty Disclaimers may have is void and
- has no effect on the meaning of this License.
-
- 2. VERBATIM COPYING
-
- You may copy and distribute the Document in any medium, either
- commercially or noncommercially, provided that this License, the
- copyright notices, and the license notice saying this License
- applies to the Document are reproduced in all copies, and that you
- add no other conditions whatsoever to those of this License. You
- may not use technical measures to obstruct or control the reading
- or further copying of the copies you make or distribute. However,
- you may accept compensation in exchange for copies. If you
- distribute a large enough number of copies you must also follow the
- conditions in section 3.
-
- You may also lend copies, under the same conditions stated above,
- and you may publicly display copies.
-
- 3. COPYING IN QUANTITY
-
- If you publish printed copies (or copies in media that commonly
- have printed covers) of the Document, numbering more than 100, and
- the Document's license notice requires Cover Texts, you must
- enclose the copies in covers that carry, clearly and legibly, all
- these Cover Texts: Front-Cover Texts on the front cover, and
- Back-Cover Texts on the back cover. Both covers must also clearly
- and legibly identify you as the publisher of these copies. The
- front cover must present the full title with all words of the title
- equally prominent and visible. You may add other material on the
- covers in addition. Copying with changes limited to the covers, as
- long as they preserve the title of the Document and satisfy these
- conditions, can be treated as verbatim copying in other respects.
-
- If the required texts for either cover are too voluminous to fit
- legibly, you should put the first ones listed (as many as fit
- reasonably) on the actual cover, and continue the rest onto
- adjacent pages.
-
- If you publish or distribute Opaque copies of the Document
- numbering more than 100, you must either include a machine-readable
- Transparent copy along with each Opaque copy, or state in or with
- each Opaque copy a computer-network location from which the general
- network-using public has access to download using public-standard
- network protocols a complete Transparent copy of the Document, free
- of added material. If you use the latter option, you must take
- reasonably prudent steps, when you begin distribution of Opaque
- copies in quantity, to ensure that this Transparent copy will
- remain thus accessible at the stated location until at least one
- year after the last time you distribute an Opaque copy (directly or
- through your agents or retailers) of that edition to the public.
-
- It is requested, but not required, that you contact the authors of
- the Document well before redistributing any large number of copies,
- to give them a chance to provide you with an updated version of the
- Document.
-
- 4. MODIFICATIONS
-
- You may copy and distribute a Modified Version of the Document
- under the conditions of sections 2 and 3 above, provided that you
- release the Modified Version under precisely this License, with the
- Modified Version filling the role of the Document, thus licensing
- distribution and modification of the Modified Version to whoever
- possesses a copy of it. In addition, you must do these things in
- the Modified Version:
-
- A. Use in the Title Page (and on the covers, if any) a title
- distinct from that of the Document, and from those of previous
- versions (which should, if there were any, be listed in the
- History section of the Document). You may use the same title
- as a previous version if the original publisher of that
- version gives permission.
-
- B. List on the Title Page, as authors, one or more persons or
- entities responsible for authorship of the modifications in
- the Modified Version, together with at least five of the
- principal authors of the Document (all of its principal
- authors, if it has fewer than five), unless they release you
- from this requirement.
-
- C. State on the Title page the name of the publisher of the
- Modified Version, as the publisher.
-
- D. Preserve all the copyright notices of the Document.
-
- E. Add an appropriate copyright notice for your modifications
- adjacent to the other copyright notices.
-
- F. Include, immediately after the copyright notices, a license
- notice giving the public permission to use the Modified
- Version under the terms of this License, in the form shown in
- the Addendum below.
-
- G. Preserve in that license notice the full lists of Invariant
- Sections and required Cover Texts given in the Document's
- license notice.
-
- H. Include an unaltered copy of this License.
-
- I. Preserve the section Entitled "History", Preserve its Title,
- and add to it an item stating at least the title, year, new
- authors, and publisher of the Modified Version as given on the
- Title Page. If there is no section Entitled "History" in the
- Document, create one stating the title, year, authors, and
- publisher of the Document as given on its Title Page, then add
- an item describing the Modified Version as stated in the
- previous sentence.
-
- J. Preserve the network location, if any, given in the Document
- for public access to a Transparent copy of the Document, and
- likewise the network locations given in the Document for
- previous versions it was based on. These may be placed in the
- "History" section. You may omit a network location for a work
- that was published at least four years before the Document
- itself, or if the original publisher of the version it refers
- to gives permission.
-
- K. For any section Entitled "Acknowledgements" or "Dedications",
- Preserve the Title of the section, and preserve in the section
- all the substance and tone of each of the contributor
- acknowledgements and/or dedications given therein.
-
- L. Preserve all the Invariant Sections of the Document, unaltered
- in their text and in their titles. Section numbers or the
- equivalent are not considered part of the section titles.
-
- M. Delete any section Entitled "Endorsements". Such a section
- may not be included in the Modified Version.
-
- N. Do not retitle any existing section to be Entitled
- "Endorsements" or to conflict in title with any Invariant
- Section.
-
- O. Preserve any Warranty Disclaimers.
-
- If the Modified Version includes new front-matter sections or
- appendices that qualify as Secondary Sections and contain no
- material copied from the Document, you may at your option designate
- some or all of these sections as invariant. To do this, add their
- titles to the list of Invariant Sections in the Modified Version's
- license notice. These titles must be distinct from any other
- section titles.
-
- You may add a section Entitled "Endorsements", provided it contains
- nothing but endorsements of your Modified Version by various
- parties--for example, statements of peer review or that the text
- has been approved by an organization as the authoritative
- definition of a standard.
-
- You may add a passage of up to five words as a Front-Cover Text,
- and a passage of up to 25 words as a Back-Cover Text, to the end of
- the list of Cover Texts in the Modified Version. Only one passage
- of Front-Cover Text and one of Back-Cover Text may be added by (or
- through arrangements made by) any one entity. If the Document
- already includes a cover text for the same cover, previously added
- by you or by arrangement made by the same entity you are acting on
- behalf of, you may not add another; but you may replace the old
- one, on explicit permission from the previous publisher that added
- the old one.
-
- The author(s) and publisher(s) of the Document do not by this
- License give permission to use their names for publicity for or to
- assert or imply endorsement of any Modified Version.
-
- 5. COMBINING DOCUMENTS
-
- You may combine the Document with other documents released under
- this License, under the terms defined in section 4 above for
- modified versions, provided that you include in the combination all
- of the Invariant Sections of all of the original documents,
- unmodified, and list them all as Invariant Sections of your
- combined work in its license notice, and that you preserve all
- their Warranty Disclaimers.
-
- The combined work need only contain one copy of this License, and
- multiple identical Invariant Sections may be replaced with a single
- copy. If there are multiple Invariant Sections with the same name
- but different contents, make the title of each such section unique
- by adding at the end of it, in parentheses, the name of the
- original author or publisher of that section if known, or else a
- unique number. Make the same adjustment to the section titles in
- the list of Invariant Sections in the license notice of the
- combined work.
-
- In the combination, you must combine any sections Entitled
- "History" in the various original documents, forming one section
- Entitled "History"; likewise combine any sections Entitled
- "Acknowledgements", and any sections Entitled "Dedications". You
- must delete all sections Entitled "Endorsements."
-
- 6. COLLECTIONS OF DOCUMENTS
-
- You may make a collection consisting of the Document and other
- documents released under this License, and replace the individual
- copies of this License in the various documents with a single copy
- that is included in the collection, provided that you follow the
- rules of this License for verbatim copying of each of the documents
- in all other respects.
-
- You may extract a single document from such a collection, and
- distribute it individually under this License, provided you insert
- a copy of this License into the extracted document, and follow this
- License in all other respects regarding verbatim copying of that
- document.
-
- 7. AGGREGATION WITH INDEPENDENT WORKS
-
- A compilation of the Document or its derivatives with other
- separate and independent documents or works, in or on a volume of a
- storage or distribution medium, is called an "aggregate" if the
- copyright resulting from the compilation is not used to limit the
- legal rights of the compilation's users beyond what the individual
- works permit. When the Document is included in an aggregate, this
- License does not apply to the other works in the aggregate which
- are not themselves derivative works of the Document.
-
- If the Cover Text requirement of section 3 is applicable to these
- copies of the Document, then if the Document is less than one half
- of the entire aggregate, the Document's Cover Texts may be placed
- on covers that bracket the Document within the aggregate, or the
- electronic equivalent of covers if the Document is in electronic
- form. Otherwise they must appear on printed covers that bracket
- the whole aggregate.
-
- 8. TRANSLATION
-
- Translation is considered a kind of modification, so you may
- distribute translations of the Document under the terms of section
- 4. Replacing Invariant Sections with translations requires special
- permission from their copyright holders, but you may include
- translations of some or all Invariant Sections in addition to the
- original versions of these Invariant Sections. You may include a
- translation of this License, and all the license notices in the
- Document, and any Warranty Disclaimers, provided that you also
- include the original English version of this License and the
- original versions of those notices and disclaimers. In case of a
- disagreement between the translation and the original version of
- this License or a notice or disclaimer, the original version will
- prevail.
-
- If a section in the Document is Entitled "Acknowledgements",
- "Dedications", or "History", the requirement (section 4) to
- Preserve its Title (section 1) will typically require changing the
- actual title.
-
- 9. TERMINATION
-
- You may not copy, modify, sublicense, or distribute the Document
- except as expressly provided under this License. Any attempt
- otherwise to copy, modify, sublicense, or distribute it is void,
- and will automatically terminate your rights under this License.
-
- However, if you cease all violation of this License, then your
- license from a particular copyright holder is reinstated (a)
- provisionally, unless and until the copyright holder explicitly and
- finally terminates your license, and (b) permanently, if the
- copyright holder fails to notify you of the violation by some
- reasonable means prior to 60 days after the cessation.
-
- Moreover, your license from a particular copyright holder is
- reinstated permanently if the copyright holder notifies you of the
- violation by some reasonable means, this is the first time you have
- received notice of violation of this License (for any work) from
- that copyright holder, and you cure the violation prior to 30 days
- after your receipt of the notice.
-
- Termination of your rights under this section does not terminate
- the licenses of parties who have received copies or rights from you
- under this License. If your rights have been terminated and not
- permanently reinstated, receipt of a copy of some or all of the
- same material does not give you any rights to use it.
-
- 10. FUTURE REVISIONS OF THIS LICENSE
-
- The Free Software Foundation may publish new, revised versions of
- the GNU Free Documentation License from time to time. Such new
- versions will be similar in spirit to the present version, but may
- differ in detail to address new problems or concerns. See
- <http://www.gnu.org/copyleft/>.
-
- Each version of the License is given a distinguishing version
- number. If the Document specifies that a particular numbered
- version of this License "or any later version" applies to it, you
- have the option of following the terms and conditions either of
- that specified version or of any later version that has been
- published (not as a draft) by the Free Software Foundation. If the
- Document does not specify a version number of this License, you may
- choose any version ever published (not as a draft) by the Free
- Software Foundation. If the Document specifies that a proxy can
- decide which future versions of this License can be used, that
- proxy's public statement of acceptance of a version permanently
- authorizes you to choose that version for the Document.
-
- 11. RELICENSING
-
- "Massive Multiauthor Collaboration Site" (or "MMC Site") means any
- World Wide Web server that publishes copyrightable works and also
- provides prominent facilities for anybody to edit those works. A
- public wiki that anybody can edit is an example of such a server.
- A "Massive Multiauthor Collaboration" (or "MMC") contained in the
- site means any set of copyrightable works thus published on the MMC
- site.
-
- "CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
- license published by Creative Commons Corporation, a not-for-profit
- corporation with a principal place of business in San Francisco,
- California, as well as future copyleft versions of that license
- published by that same organization.
-
- "Incorporate" means to publish or republish a Document, in whole or
- in part, as part of another Document.
-
- An MMC is "eligible for relicensing" if it is licensed under this
- License, and if all works that were first published under this
- License somewhere other than this MMC, and subsequently
- incorporated in whole or in part into the MMC, (1) had no cover
- texts or invariant sections, and (2) were thus incorporated prior
- to November 1, 2008.
-
- The operator of an MMC Site may republish an MMC contained in the
- site under CC-BY-SA on the same site at any time before August 1,
- 2009, provided the MMC is eligible for relicensing.
-
-ADDENDUM: How to use this License for your documents
-====================================================
-
-To use this License in a document you have written, include a copy of
-the License in the document and put the following copyright and license
-notices just after the title page:
-
- Copyright (C) YEAR YOUR NAME.
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3
- or any later version published by the Free Software Foundation;
- with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
- Texts. A copy of the license is included in the section entitled ``GNU
- Free Documentation License''.
-
- If you have Invariant Sections, Front-Cover Texts and Back-Cover
-Texts, replace the "with...Texts." line with this:
-
- with the Invariant Sections being LIST THEIR TITLES, with
- the Front-Cover Texts being LIST, and with the Back-Cover Texts
- being LIST.
-
- If you have Invariant Sections without Cover Texts, or some other
-combination of the three, merge those two alternatives to suit the
-situation.
-
- If your document contains nontrivial examples of program code, we
-recommend releasing these examples in parallel under your choice of free
-software license, such as the GNU General Public License, to permit
-their use in free software.
-
-
-File: gcj.info, Node: Invoking gcj, Next: Compatibility, Prev: GNU Free Documentation License, Up: Top
-
-1 Invoking gcj
-**************
-
-As 'gcj' is just another front end to 'gcc', it supports many of the
-same options as gcc. *Note Option Summary: (gcc)Option Summary. This
-manual only documents the options specific to 'gcj'.
-
-* Menu:
-
-* Input and output files::
-* Input Options:: How gcj finds files
-* Encodings:: Options controlling source file encoding
-* Warnings:: Options controlling warnings specific to gcj
-* Linking:: Options for making an executable
-* Code Generation:: Options controlling the output of gcj
-* Configure-time Options:: Options you won't use
-
-
-File: gcj.info, Node: Input and output files, Next: Input Options, Up: Invoking gcj
-
-1.1 Input and output files
-==========================
-
-A 'gcj' command is like a 'gcc' command, in that it consists of a number
-of options and file names. The following kinds of input file names are
-supported:
-
-'FILE.java'
- Java source files.
-'FILE.class'
- Java bytecode files.
-'FILE.zip'
-'FILE.jar'
- An archive containing one or more '.class' files, all of which are
- compiled. The archive may be compressed. Files in an archive
- which don't end with '.class' are treated as resource files; they
- are compiled into the resulting object file as 'core:' URLs.
-'@FILE'
- A file containing a whitespace-separated list of input file names.
- (Currently, these must all be '.java' source files, but that may
- change.) Each named file is compiled, just as if it had been on
- the command line.
-'LIBRARY.a'
-'LIBRARY.so'
-'-lLIBNAME'
- Libraries to use when linking. See the 'gcc' manual.
-
- You can specify more than one input file on the 'gcj' command line,
-in which case they will all be compiled. If you specify a '-o FILENAME'
-option, all the input files will be compiled together, producing a
-single output file, named FILENAME. This is allowed even when using
-'-S' or '-c', but not when using '-C' or '--resource'. (This is an
-extension beyond the what plain 'gcc' allows.) (If more than one input
-file is specified, all must currently be '.java' files, though we hope
-to fix this.)
-
-
-File: gcj.info, Node: Input Options, Next: Encodings, Prev: Input and output files, Up: Invoking gcj
-
-1.2 Input Options
-=================
-
-'gcj' has options to control where it looks to find files it needs. For
-instance, 'gcj' might need to load a class that is referenced by the
-file it has been asked to compile. Like other compilers for the Java
-language, 'gcj' has a notion of a "class path". There are several
-options and environment variables which can be used to manipulate the
-class path. When 'gcj' looks for a given class, it searches the class
-path looking for matching '.class' or '.java' file. 'gcj' comes with a
-built-in class path which points at the installed 'libgcj.jar', a file
-which contains all the standard classes.
-
- In the text below, a directory or path component can refer either to
-an actual directory on the filesystem, or to a '.zip' or '.jar' file,
-which 'gcj' will search as if it is a directory.
-
-'-IDIR'
- All directories specified by '-I' are kept in order and prepended
- to the class path constructed from all the other options. Unless
- compatibility with tools like 'javac' is important, we recommend
- always using '-I' instead of the other options for manipulating the
- class path.
-
-'--classpath=PATH'
- This sets the class path to PATH, a colon-separated list of paths
- (on Windows-based systems, a semicolon-separate list of paths).
- This does not override the builtin ("boot") search path.
-
-'--CLASSPATH=PATH'
- Deprecated synonym for '--classpath'.
-
-'--bootclasspath=PATH'
- Where to find the standard builtin classes, such as
- 'java.lang.String'.
-
-'--extdirs=PATH'
- For each directory in the PATH, place the contents of that
- directory at the end of the class path.
-
-'CLASSPATH'
- This is an environment variable which holds a list of paths.
-
- The final class path is constructed like so:
-
- * First come all directories specified via '-I'.
-
- * If '--classpath' is specified, its value is appended. Otherwise,
- if the 'CLASSPATH' environment variable is specified, then its
- value is appended. Otherwise, the current directory ('"."') is
- appended.
-
- * If '--bootclasspath' was specified, append its value. Otherwise,
- append the built-in system directory, 'libgcj.jar'.
-
- * Finally, if '--extdirs' was specified, append the contents of the
- specified directories at the end of the class path. Otherwise,
- append the contents of the built-in extdirs at
- '$(prefix)/share/java/ext'.
-
- The classfile built by 'gcj' for the class 'java.lang.Object' (and
-placed in 'libgcj.jar') contains a special zero length attribute
-'gnu.gcj.gcj-compiled'. The compiler looks for this attribute when
-loading 'java.lang.Object' and will report an error if it isn't found,
-unless it compiles to bytecode (the option
-'-fforce-classes-archive-check' can be used to override this behavior in
-this particular case.)
-
-'-fforce-classes-archive-check'
- This forces the compiler to always check for the special zero
- length attribute 'gnu.gcj.gcj-compiled' in 'java.lang.Object' and
- issue an error if it isn't found.
-
-'-fsource=VERSION'
- This option is used to choose the source version accepted by 'gcj'.
- The default is '1.5'.
-
-
-File: gcj.info, Node: Encodings, Next: Warnings, Prev: Input Options, Up: Invoking gcj
-
-1.3 Encodings
-=============
-
-The Java programming language uses Unicode throughout. In an effort to
-integrate well with other locales, 'gcj' allows '.java' files to be
-written using almost any encoding. 'gcj' knows how to convert these
-encodings into its internal encoding at compile time.
-
- You can use the '--encoding=NAME' option to specify an encoding (of a
-particular character set) to use for source files. If this is not
-specified, the default encoding comes from your current locale. If your
-host system has insufficient locale support, then 'gcj' assumes the
-default encoding to be the 'UTF-8' encoding of Unicode.
-
- To implement '--encoding', 'gcj' simply uses the host platform's
-'iconv' conversion routine. This means that in practice 'gcj' is
-limited by the capabilities of the host platform.
-
- The names allowed for the argument '--encoding' vary from platform to
-platform (since they are not standardized anywhere). However, 'gcj'
-implements the encoding named 'UTF-8' internally, so if you choose to
-use this for your source files you can be assured that it will work on
-every host.
-
-
-File: gcj.info, Node: Warnings, Next: Linking, Prev: Encodings, Up: Invoking gcj
-
-1.4 Warnings
-============
-
-'gcj' implements several warnings. As with other generic 'gcc'
-warnings, if an option of the form '-Wfoo' enables a warning, then
-'-Wno-foo' will disable it. Here we've chosen to document the form of
-the warning which will have an effect - the default being the opposite
-of what is listed.
-
-'-Wredundant-modifiers'
- With this flag, 'gcj' will warn about redundant modifiers. For
- instance, it will warn if an interface method is declared 'public'.
-
-'-Wextraneous-semicolon'
- This causes 'gcj' to warn about empty statements. Empty statements
- have been deprecated.
-
-'-Wno-out-of-date'
- This option will cause 'gcj' not to warn when a source file is
- newer than its matching class file. By default 'gcj' will warn
- about this.
-
-'-Wno-deprecated'
- Warn if a deprecated class, method, or field is referred to.
-
-'-Wunused'
- This is the same as 'gcc''s '-Wunused'.
-
-'-Wall'
- This is the same as '-Wredundant-modifiers -Wextraneous-semicolon
- -Wunused'.
-
-
-File: gcj.info, Node: Linking, Next: Code Generation, Prev: Warnings, Up: Invoking gcj
-
-1.5 Linking
-===========
-
-To turn a Java application into an executable program, you need to link
-it with the needed libraries, just as for C or C++. The linker by
-default looks for a global function named 'main'. Since Java does not
-have global functions, and a collection of Java classes may have more
-than one class with a 'main' method, you need to let the linker know
-which of those 'main' methods it should invoke when starting the
-application. You can do that in any of these ways:
-
- * Specify the class containing the desired 'main' method when you
- link the application, using the '--main' flag, described below.
- * Link the Java package(s) into a shared library (dll) rather than an
- executable. Then invoke the application using the 'gij' program,
- making sure that 'gij' can find the libraries it needs.
- * Link the Java packages(s) with the flag '-lgij', which links in the
- 'main' routine from the 'gij' command. This allows you to select
- the class whose 'main' method you want to run when you run the
- application. You can also use other 'gij' flags, such as '-D'
- flags to set properties. Using the '-lgij' library (rather than
- the 'gij' program of the previous mechanism) has some advantages:
- it is compatible with static linking, and does not require
- configuring or installing libraries.
-
- These 'gij' options relate to linking an executable:
-
-'--main=CLASSNAME'
- This option is used when linking to specify the name of the class
- whose 'main' method should be invoked when the resulting executable
- is run.
-
-'-DNAME[=VALUE]'
- This option can only be used with '--main'. It defines a system
- property named NAME with value VALUE. If VALUE is not specified
- then it defaults to the empty string. These system properties are
- initialized at the program's startup and can be retrieved at
- runtime using the 'java.lang.System.getProperty' method.
-
-'-lgij'
- Create an application whose command-line processing is that of the
- 'gij' command.
-
- This option is an alternative to using '--main'; you cannot use
- both.
-
-'-static-libgcj'
- This option causes linking to be done against a static version of
- the libgcj runtime library. This option is only available if
- corresponding linker support exists.
-
- *Caution:* Static linking of libgcj may cause essential parts of
- libgcj to be omitted. Some parts of libgcj use reflection to load
- classes at runtime. Since the linker does not see these references
- at link time, it can omit the referred to classes. The result is
- usually (but not always) a 'ClassNotFoundException' being thrown at
- runtime. Caution must be used when using this option. For more
- details see: <http://gcc.gnu.org/wiki/Statically%20linking%20libgcj>
-
-
-File: gcj.info, Node: Code Generation, Next: Configure-time Options, Prev: Linking, Up: Invoking gcj
-
-1.6 Code Generation
-===================
-
-In addition to the many 'gcc' options controlling code generation, 'gcj'
-has several options specific to itself.
-
-'-C'
- This option is used to tell 'gcj' to generate bytecode ('.class'
- files) rather than object code.
-
-'--resource RESOURCE-NAME'
- This option is used to tell 'gcj' to compile the contents of a
- given file to object code so it may be accessed at runtime with the
- core protocol handler as 'core:/RESOURCE-NAME'. Note that
- RESOURCE-NAME is the name of the resource as found at runtime; for
- instance, it could be used in a call to 'ResourceBundle.getBundle'.
- The actual file name to be compiled this way must be specified
- separately.
-
-'-ftarget=VERSION'
- This can be used with '-C' to choose the version of bytecode
- emitted by 'gcj'. The default is '1.5'. When not generating
- bytecode, this option has no effect.
-
-'-d DIRECTORY'
- When used with '-C', this causes all generated '.class' files to be
- put in the appropriate subdirectory of DIRECTORY. By default they
- will be put in subdirectories of the current working directory.
-
-'-fno-bounds-check'
- By default, 'gcj' generates code which checks the bounds of all
- array indexing operations. With this option, these checks are
- omitted, which can improve performance for code that uses arrays
- extensively. Note that this can result in unpredictable behavior
- if the code in question actually does violate array bounds
- constraints. It is safe to use this option if you are sure that
- your code will never throw an 'ArrayIndexOutOfBoundsException'.
-
-'-fno-store-check'
- Don't generate array store checks. When storing objects into
- arrays, a runtime check is normally generated in order to ensure
- that the object is assignment compatible with the component type of
- the array (which may not be known at compile-time). With this
- option, these checks are omitted. This can improve performance for
- code which stores objects into arrays frequently. It is safe to
- use this option if you are sure your code will never throw an
- 'ArrayStoreException'.
-
-'-fjni'
- With 'gcj' there are two options for writing native methods: CNI
- and JNI. By default 'gcj' assumes you are using CNI. If you are
- compiling a class with native methods, and these methods are
- implemented using JNI, then you must use '-fjni'. This option
- causes 'gcj' to generate stubs which will invoke the underlying JNI
- methods.
-
-'-fno-assert'
- Don't recognize the 'assert' keyword. This is for compatibility
- with older versions of the language specification.
-
-'-fno-optimize-static-class-initialization'
- When the optimization level is greater or equal to '-O2', 'gcj'
- will try to optimize the way calls into the runtime are made to
- initialize static classes upon their first use (this optimization
- isn't carried out if '-C' was specified.) When compiling to native
- code, '-fno-optimize-static-class-initialization' will turn this
- optimization off, regardless of the optimization level in use.
-
-'--disable-assertions[=CLASS-OR-PACKAGE]'
- Don't include code for checking assertions in the compiled code.
- If '=CLASS-OR-PACKAGE' is missing disables assertion code
- generation for all classes, unless overridden by a more specific
- '--enable-assertions' flag. If CLASS-OR-PACKAGE is a class name,
- only disables generating assertion checks within the named class or
- its inner classes. If CLASS-OR-PACKAGE is a package name, disables
- generating assertion checks within the named package or a
- subpackage.
-
- By default, assertions are enabled when generating class files or
- when not optimizing, and disabled when generating optimized
- binaries.
-
-'--enable-assertions[=CLASS-OR-PACKAGE]'
- Generates code to check assertions. The option is perhaps
- misnamed, as you still need to turn on assertion checking at
- run-time, and we don't support any easy way to do that. So this
- flag isn't very useful yet, except to partially override
- '--disable-assertions'.
-
-'-findirect-dispatch'
- 'gcj' has a special binary compatibility ABI, which is enabled by
- the '-findirect-dispatch' option. In this mode, the code generated
- by 'gcj' honors the binary compatibility guarantees in the Java
- Language Specification, and the resulting object files do not need
- to be directly linked against their dependencies. Instead, all
- dependencies are looked up at runtime. This allows free mixing of
- interpreted and compiled code.
-
- Note that, at present, '-findirect-dispatch' can only be used when
- compiling '.class' files. It will not work when compiling from
- source. CNI also does not yet work with the binary compatibility
- ABI. These restrictions will be lifted in some future release.
-
- However, if you compile CNI code with the standard ABI, you can
- call it from code built with the binary compatibility ABI.
-
-'-fbootstrap-classes'
- This option can be use to tell 'libgcj' that the compiled classes
- should be loaded by the bootstrap loader, not the system class
- loader. By default, if you compile a class and link it into an
- executable, it will be treated as if it was loaded using the system
- class loader. This is convenient, as it means that things like
- 'Class.forName()' will search 'CLASSPATH' to find the desired
- class.
-
-'-freduced-reflection'
- This option causes the code generated by 'gcj' to contain a reduced
- amount of the class meta-data used to support runtime reflection.
- The cost of this savings is the loss of the ability to use certain
- reflection capabilities of the standard Java runtime environment.
- When set all meta-data except for that which is needed to obtain
- correct runtime semantics is eliminated.
-
- For code that does not use reflection (i.e. serialization, RMI,
- CORBA or call methods in the 'java.lang.reflect' package),
- '-freduced-reflection' will result in proper operation with a
- savings in executable code size.
-
- JNI ('-fjni') and the binary compatibility ABI
- ('-findirect-dispatch') do not work properly without full
- reflection meta-data. Because of this, it is an error to use these
- options with '-freduced-reflection'.
-
- *Caution:* If there is no reflection meta-data, code that uses a
- 'SecurityManager' may not work properly. Also calling
- 'Class.forName()' may fail if the calling method has no reflection
- meta-data.
-
-
-File: gcj.info, Node: Configure-time Options, Prev: Code Generation, Up: Invoking gcj
-
-1.7 Configure-time Options
-==========================
-
-Some 'gcj' code generations options affect the resulting ABI, and so can
-only be meaningfully given when 'libgcj', the runtime package, is
-configured. 'libgcj' puts the appropriate options from this group into
-a 'spec' file which is read by 'gcj'. These options are listed here for
-completeness; if you are using 'libgcj' then you won't want to touch
-these options.
-
-'-fuse-boehm-gc'
- This enables the use of the Boehm GC bitmap marking code. In
- particular this causes 'gcj' to put an object marking descriptor
- into each vtable.
-
-'-fhash-synchronization'
- By default, synchronization data (the data used for 'synchronize',
- 'wait', and 'notify') is pointed to by a word in each object. With
- this option 'gcj' assumes that this information is stored in a hash
- table and not in the object itself.
-
-'-fuse-divide-subroutine'
- On some systems, a library routine is called to perform integer
- division. This is required to get exception handling correct when
- dividing by zero.
-
-'-fcheck-references'
- On some systems it's necessary to insert inline checks whenever
- accessing an object via a reference. On other systems you won't
- need this because null pointer accesses are caught automatically by
- the processor.
-
-'-fuse-atomic-builtins'
- On some systems, GCC can generate code for built-in atomic
- operations. Use this option to force gcj to use these builtins
- when compiling Java code. Where this capability is present it
- should be automatically detected, so you won't usually need to use
- this option.
-
-
-File: gcj.info, Node: Compatibility, Next: Invoking jcf-dump, Prev: Invoking gcj, Up: Top
-
-2 Compatibility with the Java Platform
-**************************************
-
-As we believe it is important that the Java platform not be fragmented,
-'gcj' and 'libgcj' try to conform to the relevant Java specifications.
-However, limited manpower and incomplete and unclear documentation work
-against us. So, there are caveats to using 'gcj'.
-
-* Menu:
-
-* Limitations::
-* Extensions::
-
-
-File: gcj.info, Node: Limitations, Next: Extensions, Up: Compatibility
-
-2.1 Standard features not yet supported
-=======================================
-
-This list of compatibility issues is by no means complete.
-
- * 'gcj' implements the JDK 1.2 language. It supports inner classes
- and the new 1.4 'assert' keyword. It does not yet support the Java
- 2 'strictfp' keyword (it recognizes the keyword but ignores it).
-
- * 'libgcj' is largely compatible with the JDK 1.2 libraries.
- However, 'libgcj' is missing many packages, most notably
- 'java.awt'. There are also individual missing classes and methods.
- We currently do not have a list showing differences between
- 'libgcj' and the Java 2 platform.
-
- * Sometimes the 'libgcj' implementation of a method or class differs
- from the JDK implementation. This is not always a bug. Still, if
- it affects you, it probably makes sense to report it so that we can
- discuss the appropriate response.
-
- * 'gcj' does not currently allow for piecemeal replacement of
- components within 'libgcj'. Unfortunately, programmers often want
- to use newer versions of certain packages, such as those provided
- by the Apache Software Foundation's Jakarta project. This has
- forced us to place the 'org.w3c.dom' and 'org.xml.sax' packages
- into their own libraries, separate from 'libgcj'. If you intend to
- use these classes, you must link them explicitly with
- '-l-org-w3c-dom' and '-l-org-xml-sax'. Future versions of 'gcj'
- may not have this restriction.
-
-
-File: gcj.info, Node: Extensions, Prev: Limitations, Up: Compatibility
-
-2.2 Extra features unique to gcj
-================================
-
-The main feature of 'gcj' is that it can compile programs written in the
-Java programming language to native code. Most extensions that have
-been added are to facilitate this functionality.
-
- * 'gcj' makes it easy and efficient to mix code written in Java and
- C++. *Note About CNI::, for more info on how to use this in your
- programs.
-
- * When you compile your classes into a shared library using
- '-findirect-dispatch' then add them to the system-wide classmap.db
- file using 'gcj-dbtool', they will be automatically loaded by the
- 'libgcj' system classloader. This is the new, preferred
- classname-to-library resolution mechanism. *Note Invoking
- gcj-dbtool::, for more information on using the classmap database.
-
- * The old classname-to-library lookup mechanism is still supported
- through the 'gnu.gcj.runtime.VMClassLoader.library_control'
- property, but it is deprecated and will likely be removed in some
- future release. When trying to load a class 'gnu.pkg.SomeClass'
- the system classloader will first try to load the shared library
- 'lib-gnu-pkg-SomeClass.so', if that fails to load the class then it
- will try to load 'lib-gnu-pkg.so' and finally when the class is
- still not loaded it will try to load 'lib-gnu.so'. Note that all
- '.'s will be transformed into '-'s and that searching for inner
- classes starts with their outermost outer class. If the class
- cannot be found this way the system classloader tries to use the
- 'libgcj' bytecode interpreter to load the class from the standard
- classpath. This process can be controlled to some degree via the
- 'gnu.gcj.runtime.VMClassLoader.library_control' property; *Note
- libgcj Runtime Properties::.
-
- * 'libgcj' includes a special 'gcjlib' URL type. A URL of this form
- is like a 'jar' URL, and looks like
- 'gcjlib:/path/to/shared/library.so!/path/to/resource'. An access
- to one of these URLs causes the shared library to be 'dlopen()'d,
- and then the resource is looked for in that library. These URLs
- are most useful when used in conjunction with
- 'java.net.URLClassLoader'. Note that, due to implementation
- limitations, currently any such URL can be accessed by only one
- class loader, and libraries are never unloaded. This means some
- care must be exercised to make sure that a 'gcjlib' URL is not
- accessed by more than one class loader at once. In a future
- release this limitation will be lifted, and such libraries will be
- mapped privately.
-
- * A program compiled by 'gcj' will examine the 'GCJ_PROPERTIES'
- environment variable and change its behavior in some ways. In
- particular 'GCJ_PROPERTIES' holds a list of assignments to global
- properties, such as would be set with the '-D' option to 'java'.
- For instance, 'java.compiler=gcj' is a valid (but currently
- meaningless) setting.
-
-
-File: gcj.info, Node: Invoking jcf-dump, Next: Invoking gij, Prev: Compatibility, Up: Top
-
-3 Invoking jcf-dump
-*******************
-
-This is a class file examiner, similar to 'javap'. It will print
-information about a number of classes, which are specified by class name
-or file name.
-
-'-c'
- Disassemble method bodies. By default method bodies are not
- printed.
-
-'--print-constants'
- Print the constant pool. When printing a reference to a constant
- also print its index in the constant pool.
-
-'--javap'
- Generate output in 'javap' format. The implementation of this
- feature is very incomplete.
-
-'--classpath=PATH'
-'--CLASSPATH=PATH'
-'-IDIRECTORY'
-'-o FILE'
- These options as the same as the corresponding 'gcj' options.
-
-'--help'
- Print help, then exit.
-
-'--version'
- Print version number, then exit.
-
-'-v, --verbose'
- Print extra information while running. Implies
- '--print-constants'.
-
-
-File: gcj.info, Node: Invoking gij, Next: Invoking gcj-dbtool, Prev: Invoking jcf-dump, Up: Top
-
-4 Invoking gij
-**************
-
-'gij' is a Java bytecode interpreter included with 'libgcj'. 'gij' is
-not available on every platform; porting it requires a small amount of
-assembly programming which has not been done for all the targets
-supported by 'gcj'.
-
- The primary argument to 'gij' is the name of a class or, with '-jar',
-a jar file. Options before this argument are interpreted by 'gij';
-remaining options are passed to the interpreted program.
-
- If a class name is specified and this class does not have a 'main'
-method with the appropriate signature (a 'static void' method with a
-'String[]' as its sole argument), then 'gij' will print an error and
-exit.
-
- If a jar file is specified then 'gij' will use information in it to
-determine which class' 'main' method will be invoked.
-
- 'gij' will invoke the 'main' method with all the remaining
-command-line options.
-
- Note that 'gij' is not limited to interpreting code. Because
-'libgcj' includes a class loader which can dynamically load shared
-objects, it is possible to give 'gij' the name of a class which has been
-compiled and put into a shared library on the class path.
-
-'-cp PATH'
-'-classpath PATH'
- Set the initial class path. The class path is used for finding
- class and resource files. If specified, this option overrides the
- 'CLASSPATH' environment variable. Note that this option is ignored
- if '-jar' is used.
-
-'-DNAME[=VALUE]'
- This defines a system property named NAME with value VALUE. If
- VALUE is not specified then it defaults to the empty string. These
- system properties are initialized at the program's startup and can
- be retrieved at runtime using the 'java.lang.System.getProperty'
- method.
-
-'-ms=NUMBER'
- Equivalent to '-Xms'.
-
-'-mx=NUMBER'
- Equivalent to '-Xmx'.
-
-'-noverify'
- Do not verify compliance of bytecode with the VM specification. In
- addition, this option disables type verification which is otherwise
- performed on BC-ABI compiled code.
-
-'-X'
-'-XARGUMENT'
- Supplying '-X' by itself will cause 'gij' to list all the supported
- '-X' options. Currently these options are supported:
-
- '-XmsSIZE'
- Set the initial heap size.
-
- '-XmxSIZE'
- Set the maximum heap size.
-
- '-XssSIZE'
- Set the thread stack size.
-
- Unrecognized '-X' options are ignored, for compatibility with other
- runtimes.
-
-'-jar'
- This indicates that the name passed to 'gij' should be interpreted
- as the name of a jar file, not a class.
-
-'--help'
-'-?'
- Print help, then exit.
-
-'--showversion'
- Print version number and continue.
-
-'--fullversion'
- Print detailed version information, then exit.
-
-'--version'
- Print version number, then exit.
-
-'-verbose'
-'-verbose:class'
- Each time a class is initialized, print a short message on standard
- error.
-
- 'gij' also recognizes and ignores the following options, for
-compatibility with existing application launch scripts: '-client',
-'-server', '-hotspot', '-jrockit', '-agentlib', '-agentpath', '-debug',
-'-d32', '-d64', '-javaagent', '-noclassgc', '-verify', and
-'-verifyremote'.
-
-
-File: gcj.info, Node: Invoking gcj-dbtool, Next: Invoking jv-convert, Prev: Invoking gij, Up: Top
-
-5 Invoking gcj-dbtool.
-**********************
-
-'gcj-dbtool' is a tool for creating and manipulating class file mapping
-databases. 'libgcj' can use these databases to find a shared library
-corresponding to the bytecode representation of a class. This
-functionality is useful for ahead-of-time compilation of a program that
-has no knowledge of 'gcj'.
-
- 'gcj-dbtool' works best if all the jar files added to it are compiled
-using '-findirect-dispatch'.
-
- Note that 'gcj-dbtool' is currently available as "preview
-technology". We believe it is a reasonable way to allow
-application-transparent ahead-of-time compilation, but this is an
-unexplored area. We welcome your comments.
-
-'-n DBFILE [SIZE]'
- This creates a new database. Currently, databases cannot be
- resized; you can choose a larger initial size if desired. The
- default size is 32,749.
-
-'-a DBFILE JARFILE LIB'
-'-f DBFILE JARFILE LIB'
- This adds a jar file to the database. For each class file in the
- jar, a cryptographic signature of the bytecode representation of
- the class is recorded in the database. At runtime, a class is
- looked up by its signature and the compiled form of the class is
- looked for in the corresponding shared library. The '-a' option
- will verify that LIB exists before adding it to the database; '-f'
- skips this check.
-
-'[-][-0] -m DBFILE DBFILE,[DBFILE]'
- Merge a number of databases. The output database overwrites any
- existing database. To add databases into an existing database,
- include the destination in the list of sources.
-
- If '-' or '-0' are used, the list of files to read is taken from
- standard input instead of the command line. For '-0', Input
- filenames are terminated by a null character instead of by
- whitespace. Useful when arguments might contain white space. The
- GNU find -print0 option produces input suitable for this mode.
-
-'-t DBFILE'
- Test a database.
-
-'-l DBFILE'
- List the contents of a database.
-
-'-p'
- Print the name of the default database. If there is no default
- database, this prints a blank line. If LIBDIR is specified, use it
- instead of the default library directory component of the database
- name.
-
-'--help'
- Print a help message, then exit.
-
-'--version'
-'-v'
- Print version information, then exit.
-
-
-File: gcj.info, Node: Invoking jv-convert, Next: Invoking grmic, Prev: Invoking gcj-dbtool, Up: Top
-
-6 Invoking jv-convert
-*********************
-
-'jv-convert' ['OPTION'] ... [INPUTFILE [OUTPUTFILE]]
-
- 'jv-convert' is a utility included with 'libgcj' which converts a
-file from one encoding to another. It is similar to the Unix 'iconv'
-utility.
-
- The encodings supported by 'jv-convert' are platform-dependent.
-Currently there is no way to get a list of all supported encodings.
-
-'--encoding NAME'
-'--from NAME'
- Use NAME as the input encoding. The default is the current
- locale's encoding.
-
-'--to NAME'
- Use NAME as the output encoding. The default is the 'JavaSrc'
- encoding; this is ASCII with '\u' escapes for non-ASCII characters.
-
-'-i FILE'
- Read from FILE. The default is to read from standard input.
-
-'-o FILE'
- Write to FILE. The default is to write to standard output.
-
-'--reverse'
- Swap the input and output encodings.
-
-'--help'
- Print a help message, then exit.
-
-'--version'
- Print version information, then exit.
-
-
-File: gcj.info, Node: Invoking grmic, Next: Invoking gc-analyze, Prev: Invoking jv-convert, Up: Top
-
-7 Invoking grmic
-****************
-
-'grmic' ['OPTION'] ... CLASS ...
-
- 'grmic' is a utility included with 'libgcj' which generates stubs for
-remote objects.
-
- Note that this program isn't yet fully compatible with the JDK
-'grmic'. Some options, such as '-classpath', are recognized but
-currently ignored. We have left these options undocumented for now.
-
- Long options can also be given with a GNU-style leading '--'. For
-instance, '--help' is accepted.
-
-'-keep'
-'-keepgenerated'
- By default, 'grmic' deletes intermediate files. Either of these
- options causes it not to delete such files.
-
-'-v1.1'
- Cause 'grmic' to create stubs and skeletons for the 1.1 protocol
- version.
-
-'-vcompat'
- Cause 'grmic' to create stubs and skeletons compatible with both
- the 1.1 and 1.2 protocol versions. This is the default.
-
-'-v1.2'
- Cause 'grmic' to create stubs and skeletons for the 1.2 protocol
- version.
-
-'-nocompile'
- Don't compile the generated files.
-
-'-verbose'
- Print information about what 'grmic' is doing.
-
-'-d DIRECTORY'
- Put output files in DIRECTORY. By default the files are put in the
- current working directory.
-
-'-help'
- Print a help message, then exit.
-
-'-version'
- Print version information, then exit.
-
-
-File: gcj.info, Node: Invoking gc-analyze, Next: Invoking aot-compile, Prev: Invoking grmic, Up: Top
-
-8 Invoking gc-analyze
-*********************
-
-'gc-analyze' ['OPTION'] ... [FILE]
-
- 'gc-analyze' prints an analysis of a GC memory dump to standard out.
-
- The memory dumps may be created by calling
-'gnu.gcj.util.GCInfo.enumerate(String namePrefix)' from java code. A
-memory dump will be created on an out of memory condition if
-'gnu.gcj.util.GCInfo.setOOMDump(String namePrefix)' is called before the
-out of memory occurs.
-
- Running this program will create two files: 'TestDump001' and
-'TestDump001.bytes'.
-
- import gnu.gcj.util.*;
- import java.util.*;
-
- public class GCDumpTest
- {
- static public void main(String args[])
- {
- ArrayList<String> l = new ArrayList<String>(1000);
-
- for (int i = 1; i < 1500; i++) {
- l.add("This is string #" + i);
- }
- GCInfo.enumerate("TestDump");
- }
- }
-
- The memory dump may then be displayed by running:
-
- gc-analyze -v TestDump001
-
-'--verbose'
-'-v'
- Verbose output.
-
-'-p TOOL-PREFIX'
- Prefix added to the names of the 'nm' and 'readelf' commands.
-
-'-d DIRECTORY'
- Directory that contains the executable and shared libraries used
- when the dump was generated.
-
-'--help'
- Print a help message, then exit.
-
-'--version'
- Print version information, then exit.
-
-
-File: gcj.info, Node: Invoking aot-compile, Next: Invoking rebuild-gcj-db, Prev: Invoking gc-analyze, Up: Top
-
-9 Invoking aot-compile
-**********************
-
-'aot-compile' is a script that searches a directory for Java bytecode
-(as class files, or in jars) and uses 'gcj' to compile it to native code
-and generate the databases from it.
-
-'-M, --make=PATH'
- Specify the path to the 'make' executable to use.
-
-'-C, --gcj=PATH'
- Specify the path to the 'gcj' executable to use.
-
-'-D, --dbtool=PATH'
- Specify the path to the 'gcj-dbtool' executable to use.
-
-'-m, --makeflags=FLAGS'
- Specify flags to pass to 'make' during the build.
-
-'-c, --gcjflags=FLAGS'
- Specify flags to pass to 'gcj' during compilation, in addition to
- '-fPIC -findirect-dispatch -fjni'.
-
-'-l, --ldflags=FLAGS'
- Specify flags to pass to 'gcj' during linking, in addition to
- '-Wl,-Bsymbolic'.
-
-'-e, --exclude=PATH'
- Do not compile PATH.
-
-
-File: gcj.info, Node: Invoking rebuild-gcj-db, Next: About CNI, Prev: Invoking aot-compile, Up: Top
-
-10 Invoking rebuild-gcj-db
-**************************
-
-'rebuild-gcj-db' is a script that merges the per-solib databases made by
-'aot-compile' into one system-wide database so 'gij' can find the
-solibs.
-
-
-File: gcj.info, Node: About CNI, Next: System properties, Prev: Invoking rebuild-gcj-db, Up: Top
-
-11 About CNI
-************
-
-This documents CNI, the Compiled Native Interface, which is is a
-convenient way to write Java native methods using C++. This is a more
-efficient, more convenient, but less portable alternative to the
-standard JNI (Java Native Interface).
-
-* Menu:
-
-* Basic concepts:: Introduction to using CNI.
-* Packages:: How packages are mapped to C++.
-* Primitive types:: Handling primitive Java types in C++.
-* Reference types:: Handling Java reference types in C++.
-* Interfaces:: How Java interfaces map to C++.
-* Objects and Classes:: C++ and Java classes.
-* Class Initialization:: How objects are initialized.
-* Object allocation:: How to create Java objects in C++.
-* Memory allocation:: How to allocate and free memory.
-* Arrays:: Dealing with Java arrays in C++.
-* Methods:: Java methods in C++.
-* Strings:: Information about Java Strings.
-* Mixing with C++:: How CNI can interoperate with C++.
-* Exception Handling:: How exceptions are handled.
-* Synchronization:: Synchronizing between Java and C++.
-* Invocation:: Starting the Java runtime from C++.
-* Reflection:: Using reflection from C++.
-
-
-File: gcj.info, Node: Basic concepts, Next: Packages, Up: About CNI
-
-11.1 Basic concepts
-===================
-
-In terms of languages features, Java is mostly a subset of C++. Java
-has a few important extensions, plus a powerful standard class library,
-but on the whole that does not change the basic similarity. Java is a
-hybrid object-oriented language, with a few native types, in addition to
-class types. It is class-based, where a class may have static as well
-as per-object fields, and static as well as instance methods.
-Non-static methods may be virtual, and may be overloaded. Overloading
-is resolved at compile time by matching the actual argument types
-against the parameter types. Virtual methods are implemented using
-indirect calls through a dispatch table (virtual function table).
-Objects are allocated on the heap, and initialized using a constructor
-method. Classes are organized in a package hierarchy.
-
- All of the listed attributes are also true of C++, though C++ has
-extra features (for example in C++ objects may be allocated not just on
-the heap, but also statically or in a local stack frame). Because 'gcj'
-uses the same compiler technology as G++ (the GNU C++ compiler), it is
-possible to make the intersection of the two languages use the same ABI
-(object representation and calling conventions). The key idea in CNI is
-that Java objects are C++ objects, and all Java classes are C++ classes
-(but not the other way around). So the most important task in
-integrating Java and C++ is to remove gratuitous incompatibilities.
-
- You write CNI code as a regular C++ source file. (You do have to use
-a Java/CNI-aware C++ compiler, specifically a recent version of G++.)
-
-A CNI C++ source file must have:
-
- #include <gcj/cni.h>
-
-and then must include one header file for each Java class it uses, e.g.:
-
- #include <java/lang/Character.h>
- #include <java/util/Date.h>
- #include <java/lang/IndexOutOfBoundsException.h>
-
-These header files are automatically generated by 'gcjh'.
-
- CNI provides some functions and macros to make using Java objects and
-primitive types from C++ easier. In general, these CNI functions and
-macros start with the 'Jv' prefix, for example the function
-'JvNewObjectArray'. This convention is used to avoid conflicts with
-other libraries. Internal functions in CNI start with the prefix
-'_Jv_'. You should not call these; if you find a need to, let us know
-and we will try to come up with an alternate solution.
-
-11.1.1 Limitations
-------------------
-
-Whilst a Java class is just a C++ class that doesn't mean that you are
-freed from the shackles of Java, a CNI C++ class must adhere to the
-rules of the Java programming language.
-
- For example: it is not possible to declare a method in a CNI class
-that will take a C string ('char*') as an argument, or to declare a
-member variable of some non-Java datatype.
-
-
-File: gcj.info, Node: Packages, Next: Primitive types, Prev: Basic concepts, Up: About CNI
-
-11.2 Packages
-=============
-
-The only global names in Java are class names, and packages. A
-"package" can contain zero or more classes, and also zero or more
-sub-packages. Every class belongs to either an unnamed package or a
-package that has a hierarchical and globally unique name.
-
- A Java package is mapped to a C++ "namespace". The Java class
-'java.lang.String' is in the package 'java.lang', which is a sub-package
-of 'java'. The C++ equivalent is the class 'java::lang::String', which
-is in the namespace 'java::lang' which is in the namespace 'java'.
-
-Here is how you could express this:
-
- (// Declare the class(es), possibly in a header file:
- namespace java {
- namespace lang {
- class Object;
- class String;
- ...
- }
- }
-
- class java::lang::String : public java::lang::Object
- {
- ...
- };
-
-The 'gcjh' tool automatically generates the necessary namespace
-declarations.
-
-11.2.1 Leaving out package names
---------------------------------
-
-Always using the fully-qualified name of a java class can be tiresomely
-verbose. Using the full qualified name also ties the code to a single
-package making code changes necessary should the class move from one
-package to another. The Java 'package' declaration specifies that the
-following class declarations are in the named package, without having to
-explicitly name the full package qualifiers. The 'package' declaration
-can be followed by zero or more 'import' declarations, which allows
-either a single class or all the classes in a package to be named by a
-simple identifier. C++ provides something similar with the 'using'
-declaration and directive.
-
-In Java:
-
- import PACKAGE-NAME.CLASS-NAME;
-
-allows the program text to refer to CLASS-NAME as a shorthand for the
-fully qualified name: 'PACKAGE-NAME.CLASS-NAME'.
-
-To achieve the same effect C++, you have to do this:
-
- using PACKAGE-NAME::CLASS-NAME;
-
-Java can also cause imports on demand, like this:
-
- import PACKAGE-NAME.*;
-
-Doing this allows any class from the package PACKAGE-NAME to be referred
-to only by its class-name within the program text.
-
-The same effect can be achieved in C++ like this:
-
- using namespace PACKAGE-NAME;
-
-
-File: gcj.info, Node: Primitive types, Next: Reference types, Prev: Packages, Up: About CNI
-
-11.3 Primitive types
-====================
-
-Java provides 8 "primitives" types which represent integers, floats,
-characters and booleans (and also the void type). C++ has its own very
-similar concrete types. Such types in C++ however are not always
-implemented in the same way (an int might be 16, 32 or 64 bits for
-example) so CNI provides a special C++ type for each primitive Java
-type:
-
-*Java type* *C/C++ typename* *Description*
-'char' 'jchar' 16 bit Unicode character
-'boolean' 'jboolean' logical (true or false) values
-'byte' 'jbyte' 8-bit signed integer
-'short' 'jshort' 16 bit signed integer
-'int' 'jint' 32 bit signed integer
-'long' 'jlong' 64 bit signed integer
-'float' 'jfloat' 32 bit IEEE floating point number
-'double' 'jdouble' 64 bit IEEE floating point number
-'void' 'void' no value
-
- When referring to a Java type You should always use these C++
-typenames (e.g.: 'jint') to avoid disappointment.
-
-11.3.1 Reference types associated with primitive types
-------------------------------------------------------
-
-In Java each primitive type has an associated reference type, e.g.:
-'boolean' has an associated 'java.lang.Boolean.TYPE' class. In order to
-make working with such classes easier GCJ provides the macro
-'JvPrimClass':
-
- -- macro: JvPrimClass type
- Return a pointer to the 'Class' object corresponding to the type
- supplied.
-
- JvPrimClass(void) => java.lang.Void.TYPE
-
-
-File: gcj.info, Node: Reference types, Next: Interfaces, Prev: Primitive types, Up: About CNI
-
-11.4 Reference types
-====================
-
-A Java reference type is treated as a class in C++. Classes and
-interfaces are handled this way. A Java reference is translated to a
-C++ pointer, so for instance a Java 'java.lang.String' becomes, in C++,
-'java::lang::String *'.
-
- CNI provides a few built-in typedefs for the most common classes:
-*Java type* *C++ typename* *Description*
-'java.lang.Object' 'jobject' Object type
-'java.lang.String' 'jstring' String type
-'java.lang.Class' 'jclass' Class type
-
- Every Java class or interface has a corresponding 'Class' instance.
-These can be accessed in CNI via the static 'class$' field of a class.
-The 'class$' field is of type 'Class' (and not 'Class *'), so you will
-typically take the address of it.
-
- Here is how you can refer to the class of 'String', which in Java
-would be written 'String.class':
-
- using namespace java::lang;
- doSomething (&String::class$);
-
-
-File: gcj.info, Node: Interfaces, Next: Objects and Classes, Prev: Reference types, Up: About CNI
-
-11.5 Interfaces
-===============
-
-A Java class can "implement" zero or more "interfaces", in addition to
-inheriting from a single base class.
-
- CNI allows CNI code to implement methods of interfaces. You can also
-call methods through interface references, with some limitations.
-
- CNI doesn't understand interface inheritance at all yet. So, you can
-only call an interface method when the declared type of the field being
-called matches the interface which declares that method. The workaround
-is to cast the interface reference to the right superinterface.
-
- For example if you have:
-
- interface A
- {
- void a();
- }
-
- interface B extends A
- {
- void b();
- }
-
- and declare a variable of type 'B' in C++, you can't call 'a()'
-unless you cast it to an 'A' first.
-
-
-File: gcj.info, Node: Objects and Classes, Next: Class Initialization, Prev: Interfaces, Up: About CNI
-
-11.6 Objects and Classes
-========================
-
-11.6.1 Classes
---------------
-
-All Java classes are derived from 'java.lang.Object'. C++ does not have
-a unique root class, but we use the C++ class 'java::lang::Object' as
-the C++ version of the 'java.lang.Object' Java class. All other Java
-classes are mapped into corresponding C++ classes derived from
-'java::lang::Object'.
-
- Interface inheritance (the 'implements' keyword) is currently not
-reflected in the C++ mapping.
-
-11.6.2 Object fields
---------------------
-
-Each object contains an object header, followed by the instance fields
-of the class, in order. The object header consists of a single pointer
-to a dispatch or virtual function table. (There may be extra fields _in
-front of_ the object, for example for memory management, but this is
-invisible to the application, and the reference to the object points to
-the dispatch table pointer.)
-
- The fields are laid out in the same order, alignment, and size as in
-C++. Specifically, 8-bit and 16-bit native types ('byte', 'short',
-'char', and 'boolean') are _not_ widened to 32 bits. Note that the Java
-VM does extend 8-bit and 16-bit types to 32 bits when on the VM stack or
-temporary registers.
-
- If you include the 'gcjh'-generated header for a class, you can
-access fields of Java classes in the _natural_ way. For example, given
-the following Java class:
-
- public class Int
- {
- public int i;
- public Int (int i) { this.i = i; }
- public static Int zero = new Int(0);
- }
-
- you can write:
-
- #include <gcj/cni.h>;
- #include <Int>;
-
- Int*
- mult (Int *p, jint k)
- {
- if (k == 0)
- return Int::zero; // Static member access.
- return new Int(p->i * k);
- }
-
-11.6.3 Access specifiers
-------------------------
-
-CNI does not strictly enforce the Java access specifiers, because Java
-permissions cannot be directly mapped into C++ permission. Private Java
-fields and methods are mapped to private C++ fields and methods, but
-other fields and methods are mapped to public fields and methods.
-
-
-File: gcj.info, Node: Class Initialization, Next: Object allocation, Prev: Objects and Classes, Up: About CNI
-
-11.7 Class Initialization
-=========================
-
-Java requires that each class be automatically initialized at the time
-of the first active use. Initializing a class involves initializing the
-static fields, running code in class initializer methods, and
-initializing base classes. There may also be some implementation
-specific actions, such as allocating 'String' objects corresponding to
-string literals in the code.
-
- The GCJ compiler inserts calls to 'JvInitClass' at appropriate places
-to ensure that a class is initialized when required. The C++ compiler
-does not insert these calls automatically--it is the programmer's
-responsibility to make sure classes are initialized. However, this is
-fairly painless because of the conventions assumed by the Java system.
-
- First, 'libgcj' will make sure a class is initialized before an
-instance of that object is created. This is one of the responsibilities
-of the 'new' operation. This is taken care of both in Java code, and in
-C++ code. When G++ sees a 'new' of a Java class, it will call a routine
-in 'libgcj' to allocate the object, and that routine will take care of
-initializing the class. Note however that this does not happen for Java
-arrays; you must allocate those using the appropriate CNI function. It
-follows that you can access an instance field, or call an instance
-(non-static) method and be safe in the knowledge that the class and all
-of its base classes have been initialized.
-
- Invoking a static method is also safe. This is because the Java
-compiler adds code to the start of a static method to make sure the
-class is initialized. However, the C++ compiler does not add this extra
-code. Hence, if you write a native static method using CNI, you are
-responsible for calling 'JvInitClass' before doing anything else in the
-method (unless you are sure it is safe to leave it out).
-
- Accessing a static field also requires the class of the field to be
-initialized. The Java compiler will generate code to call 'JvInitClass'
-before getting or setting the field. However, the C++ compiler will not
-generate this extra code, so it is your responsibility to make sure the
-class is initialized before you access a static field from C++.
-
-
-File: gcj.info, Node: Object allocation, Next: Memory allocation, Prev: Class Initialization, Up: About CNI
-
-11.8 Object allocation
-======================
-
-New Java objects are allocated using a "class instance creation
-expression", e.g.:
-
- new TYPE ( ... )
-
- The same syntax is used in C++. The main difference is that C++
-objects have to be explicitly deleted; in Java they are automatically
-deleted by the garbage collector. Using CNI, you can allocate a new
-Java object using standard C++ syntax and the C++ compiler will allocate
-memory from the garbage collector. If you have overloaded constructors,
-the compiler will choose the correct one using standard C++ overload
-resolution rules.
-
-For example:
-
- java::util::Hashtable *ht = new java::util::Hashtable(120);
-
-
-File: gcj.info, Node: Memory allocation, Next: Arrays, Prev: Object allocation, Up: About CNI
-
-11.9 Memory allocation
-======================
-
-When allocating memory in CNI methods it is best to handle out-of-memory
-conditions by throwing a Java exception. These functions are provided
-for that purpose:
-
- -- Function: void* JvMalloc (jsize SIZE)
- Calls malloc. Throws 'java.lang.OutOfMemoryError' if allocation
- fails.
-
- -- Function: void* JvRealloc (void* PTR, jsize SIZE)
- Calls realloc. Throws 'java.lang.OutOfMemoryError' if reallocation
- fails.
-
- -- Function: void JvFree (void* PTR)
- Calls free.
-
-
-File: gcj.info, Node: Arrays, Next: Methods, Prev: Memory allocation, Up: About CNI
-
-11.10 Arrays
-============
-
-While in many ways Java is similar to C and C++, it is quite different
-in its treatment of arrays. C arrays are based on the idea of pointer
-arithmetic, which would be incompatible with Java's security
-requirements. Java arrays are true objects (array types inherit from
-'java.lang.Object'). An array-valued variable is one that contains a
-reference (pointer) to an array object.
-
- Referencing a Java array in C++ code is done using the 'JArray'
-template, which as defined as follows:
-
- class __JArray : public java::lang::Object
- {
- public:
- int length;
- };
-
- template<class T>
- class JArray : public __JArray
- {
- T data[0];
- public:
- T& operator[](jint i) { return data[i]; }
- };
-
- There are a number of 'typedef's which correspond to 'typedef's from
-the JNI. Each is the type of an array holding objects of the relevant
-type:
-
- typedef __JArray *jarray;
- typedef JArray<jobject> *jobjectArray;
- typedef JArray<jboolean> *jbooleanArray;
- typedef JArray<jbyte> *jbyteArray;
- typedef JArray<jchar> *jcharArray;
- typedef JArray<jshort> *jshortArray;
- typedef JArray<jint> *jintArray;
- typedef JArray<jlong> *jlongArray;
- typedef JArray<jfloat> *jfloatArray;
- typedef JArray<jdouble> *jdoubleArray;
-
- -- Method on template<class T>: T* elements (JArray<T> ARRAY)
- This template function can be used to get a pointer to the elements
- of the 'array'. For instance, you can fetch a pointer to the
- integers that make up an 'int[]' like so:
-
- extern jintArray foo;
- jint *intp = elements (foo);
-
- The name of this function may change in the future.
-
- -- Function: jobjectArray JvNewObjectArray (jsize LENGTH, jclass KLASS,
- jobject INIT)
- This creates a new array whose elements have reference type.
- 'klass' is the type of elements of the array and 'init' is the
- initial value put into every slot in the array.
-
- using namespace java::lang;
- JArray<String *> *array
- = (JArray<String *> *) JvNewObjectArray(length, &String::class$, NULL);
-
-11.10.1 Creating arrays
------------------------
-
-For each primitive type there is a function which can be used to create
-a new array of that type. The name of the function is of the form:
-
- JvNewTYPEArray
-
-For example:
-
- JvNewBooleanArray
-
-can be used to create an array of Java primitive boolean types.
-
-The following function definition is the template for all such
-functions:
-
- -- Function: jbooleanArray JvNewBooleanArray (jint LENGTH)
- Creates an array LENGTH indices long.
-
- -- Function: jsize JvGetArrayLength (jarray ARRAY)
- Returns the length of the ARRAY.
-
-
-File: gcj.info, Node: Methods, Next: Strings, Prev: Arrays, Up: About CNI
-
-11.11 Methods
-=============
-
-Java methods are mapped directly into C++ methods. The header files
-generated by 'gcjh' include the appropriate method definitions.
-Basically, the generated methods have the same names and _corresponding_
-types as the Java methods, and are called in the natural manner.
-
-11.11.1 Overloading
--------------------
-
-Both Java and C++ provide method overloading, where multiple methods in
-a class have the same name, and the correct one is chosen (at compile
-time) depending on the argument types. The rules for choosing the
-correct method are (as expected) more complicated in C++ than in Java,
-but given a set of overloaded methods generated by 'gcjh' the C++
-compiler will choose the expected one.
-
- Common assemblers and linkers are not aware of C++ overloading, so
-the standard implementation strategy is to encode the parameter types of
-a method into its assembly-level name. This encoding is called
-"mangling", and the encoded name is the "mangled name". The same
-mechanism is used to implement Java overloading. For C++/Java
-interoperability, it is important that both the Java and C++ compilers
-use the _same_ encoding scheme.
-
-11.11.2 Static methods
-----------------------
-
-Static Java methods are invoked in CNI using the standard C++ syntax,
-using the '::' operator rather than the '.' operator.
-
-For example:
-
- jint i = java::lang::Math::round((jfloat) 2.3);
-
-C++ method definition syntax is used to define a static native method.
-For example:
-
- #include <java/lang/Integer>
- java::lang::Integer*
- java::lang::Integer::getInteger(jstring str)
- {
- ...
- }
-
-11.11.3 Object Constructors
----------------------------
-
-Constructors are called implicitly as part of object allocation using
-the 'new' operator.
-
-For example:
-
- java::lang::Integer *x = new java::lang::Integer(234);
-
- Java does not allow a constructor to be a native method. This
-limitation can be coded round however because a constructor can _call_ a
-native method.
-
-11.11.4 Instance methods
-------------------------
-
-Calling a Java instance method from a C++ CNI method is done using the
-standard C++ syntax, e.g.:
-
- // First create the Java object.
- java::lang::Integer *x = new java::lang::Integer(234);
- // Now call a method.
- jint prim_value = x->intValue();
- if (x->longValue == 0)
- ...
-
-Defining a Java native instance method is also done the natural way:
-
- #include <java/lang/Integer.h>
-
- jdouble
- java::lang:Integer::doubleValue()
- {
- return (jdouble) value;
- }
-
-11.11.5 Interface methods
--------------------------
-
-In Java you can call a method using an interface reference. This is
-supported, but not completely. *Note Interfaces::.
-
-
-File: gcj.info, Node: Strings, Next: Mixing with C++, Prev: Methods, Up: About CNI
-
-11.12 Strings
-=============
-
-CNI provides a number of utility functions for working with Java Java
-'String' objects. The names and interfaces are analogous to those of
-JNI.
-
- -- Function: jstring JvNewString (const jchar* CHARS, jsize LEN)
- Returns a Java 'String' object with characters from the array of
- Unicode characters CHARS up to the index LEN in that array.
-
- -- Function: jstring JvNewStringLatin1 (const char* BYTES, jsize LEN)
- Returns a Java 'String' made up of LEN bytes from BYTES.
-
- -- Function: jstring JvNewStringLatin1 (const char* BYTES)
- As above but the length of the 'String' is 'strlen(BYTES)'.
-
- -- Function: jstring JvNewStringUTF (const char* BYTES)
- Returns a 'String' which is made up of the UTF encoded characters
- present in the C string BYTES.
-
- -- Function: jchar* JvGetStringChars (jstring STR)
- Returns a pointer to an array of characters making up the 'String'
- STR.
-
- -- Function: int JvGetStringUTFLength (jstring STR)
- Returns the number of bytes required to encode the contents of the
- 'String' STR in UTF-8.
-
- -- Function: jsize JvGetStringUTFRegion (jstring STR, jsize START,
- jsize LEN, char* BUF)
- Puts the UTF-8 encoding of a region of the 'String' STR into the
- buffer 'buf'. The region to fetch is marked by START and LEN.
-
- Note that BUF is a buffer, not a C string. It is _not_ null
- terminated.
-
-
-File: gcj.info, Node: Mixing with C++, Next: Exception Handling, Prev: Strings, Up: About CNI
-
-11.13 Interoperating with C/C++
-===============================
-
-Because CNI is designed to represent Java classes and methods it cannot
-be mixed readily with C/C++ types.
-
- One important restriction is that Java classes cannot have non-Java
-type instance or static variables and cannot have methods which take
-non-Java types as arguments or return non-Java types.
-
-None of the following is possible with CNI:
-
-
- class ::MyClass : public java::lang::Object
- {
- char* variable; // char* is not a valid Java type.
- }
-
-
- uint
- ::SomeClass::someMethod (char *arg)
- {
- .
- .
- .
- } // 'uint' is not a valid Java type, neither is 'char*'
-
-Of course, it is ok to use C/C++ types within the scope of a method:
-
- jint
- ::SomeClass::otherMethod (jstring str)
- {
- char *arg = ...
- .
- .
- .
- }
-
-11.13.1 RawData
----------------
-
-The above restriction can be problematic, so CNI includes the
-'gnu.gcj.RawData' class. The 'RawData' class is a "non-scanned
-reference" type. In other words variables declared of type 'RawData'
-can contain any data and are not checked by the compiler or memory
-manager in any way.
-
- This means that you can put C/C++ data structures (including classes)
-in your CNI classes, as long as you use the appropriate cast.
-
-Here are some examples:
-
-
- class ::MyClass : public java::lang::Object
- {
- gnu.gcj.RawData string;
-
- MyClass ();
- gnu.gcj.RawData getText ();
- void printText ();
- }
-
- ::MyClass::MyClass ()
- {
- char* text = ...
- string = text;
- }
-
- gnu.gcj.RawData
- ::MyClass::getText ()
- {
- return string;
- }
-
- void
- ::MyClass::printText ()
- {
- printf("%s\n", (char*) string);
- }
-
-11.13.2 RawDataManaged
-----------------------
-
-'gnu.gcj.RawDataManaged' is another type used to indicate special data
-used by native code. Unlike the 'RawData' type, fields declared as
-'RawDataManaged' will be "marked" by the memory manager and considered
-for garbage collection.
-
- Native data which is allocated using CNI's 'JvAllocBytes()' function
-and stored in a 'RawDataManaged' will be automatically freed when the
-Java object it is associated with becomes unreachable.
-
-11.13.3 Native memory allocation
---------------------------------
-
- -- Function: void* JvAllocBytes (jsize SIZE)
- Allocates SIZE bytes from the heap. The memory returned is zeroed.
- This memory is not scanned for pointers by the garbage collector,
- but will be freed if no references to it are discovered.
-
- This function can be useful if you need to associate some native
- data with a Java object. Using a CNI's special 'RawDataManaged'
- type, native data allocated with 'JvAllocBytes' will be
- automatically freed when the Java object itself becomes
- unreachable.
-
-11.13.4 Posix signals
----------------------
-
-On Posix based systems the 'libgcj' library uses several signals
-internally. CNI code should not attempt to use the same signals as
-doing so may cause 'libgcj' and/or the CNI code to fail.
-
- SIGSEGV is used on many systems to generate 'NullPointerExceptions'.
-SIGCHLD is used internally by 'Runtime.exec()'. Several other signals
-(that vary from platform to platform) can be used by the memory manager
-and by 'Thread.interrupt()'.
-
-
-File: gcj.info, Node: Exception Handling, Next: Synchronization, Prev: Mixing with C++, Up: About CNI
-
-11.14 Exception Handling
-========================
-
-While C++ and Java share a common exception handling framework, things
-are not yet perfectly integrated. The main issue is that the run-time
-type information facilities of the two languages are not integrated.
-
- Still, things work fairly well. You can throw a Java exception from
-C++ using the ordinary 'throw' construct, and this exception can be
-caught by Java code. Similarly, you can catch an exception thrown from
-Java using the C++ 'catch' construct.
-
-Here is an example:
-
- if (i >= count)
- throw new java::lang::IndexOutOfBoundsException();
-
- Normally, G++ will automatically detect when you are writing C++ code
-that uses Java exceptions, and handle them appropriately. However, if
-C++ code only needs to execute destructors when Java exceptions are
-thrown through it, GCC will guess incorrectly. Sample problematic code:
-
- struct S { ~S(); };
-
- extern void bar(); // Is implemented in Java and may throw exceptions.
-
- void foo()
- {
- S s;
- bar();
- }
-
- The usual effect of an incorrect guess is a link failure, complaining
-of a missing routine called '__gxx_personality_v0'.
-
- You can inform the compiler that Java exceptions are to be used in a
-translation unit, irrespective of what it might think, by writing
-'#pragma GCC java_exceptions' at the head of the file. This '#pragma'
-must appear before any functions that throw or catch exceptions, or run
-destructors when exceptions are thrown through them.
-
-
-File: gcj.info, Node: Synchronization, Next: Invocation, Prev: Exception Handling, Up: About CNI
-
-11.15 Synchronization
-=====================
-
-Each Java object has an implicit monitor. The Java VM uses the
-instruction 'monitorenter' to acquire and lock a monitor, and
-'monitorexit' to release it.
-
- The corresponding CNI macros are 'JvMonitorEnter' and 'JvMonitorExit'
-(JNI has similar methods 'MonitorEnter' and 'MonitorExit').
-
- The Java source language does not provide direct access to these
-primitives. Instead, there is a 'synchronized' statement that does an
-implicit 'monitorenter' before entry to the block, and does a
-'monitorexit' on exit from the block. Note that the lock has to be
-released even when the block is abnormally terminated by an exception,
-which means there is an implicit 'try finally' surrounding
-synchronization locks.
-
- From C++, it makes sense to use a destructor to release a lock. CNI
-defines the following utility class:
-
- class JvSynchronize() {
- jobject obj;
- JvSynchronize(jobject o) { obj = o; JvMonitorEnter(o); }
- ~JvSynchronize() { JvMonitorExit(obj); }
- };
-
- So this Java code:
-
- synchronized (OBJ)
- {
- CODE
- }
-
-might become this C++ code:
-
- {
- JvSynchronize dummy (OBJ);
- CODE;
- }
-
- Java also has methods with the 'synchronized' attribute. This is
-equivalent to wrapping the entire method body in a 'synchronized'
-statement. (Alternatively, an implementation could require the caller
-to do the synchronization. This is not practical for a compiler,
-because each virtual method call would have to test at run-time if
-synchronization is needed.) Since in 'gcj' the 'synchronized' attribute
-is handled by the method implementation, it is up to the programmer of a
-synchronized native method to handle the synchronization (in the C++
-implementation of the method). In other words, you need to manually add
-'JvSynchronize' in a 'native synchronized' method.
-
-
-File: gcj.info, Node: Invocation, Next: Reflection, Prev: Synchronization, Up: About CNI
-
-11.16 Invocation
-================
-
-CNI permits C++ applications to make calls into Java classes, in
-addition to allowing Java code to call into C++. Several functions,
-known as the "invocation API", are provided to support this.
-
- -- Function: jint JvCreateJavaVM (JvVMInitArgs* VM_ARGS)
-
- Initializes the Java runtime. This function performs essential
- initialization of the threads interface, garbage collector,
- exception handling and other key aspects of the runtime. It must
- be called once by an application with a non-Java 'main()' function,
- before any other Java or CNI calls are made. It is safe, but not
- recommended, to call 'JvCreateJavaVM()' more than once provided it
- is only called from a single thread. The VMARGS parameter can be
- used to specify initialization parameters for the Java runtime. It
- may be 'NULL'.
-
- JvVMInitArgs represents a list of virtual machine initialization
- arguments. 'JvCreateJavaVM()' ignores the version field.
-
- typedef struct JvVMOption
- {
- // a VM initialization option
- char* optionString;
- // extra information associated with this option
- void* extraInfo;
- } JvVMOption;
-
- typedef struct JvVMInitArgs
- {
- // for compatibility with JavaVMInitArgs
- jint version;
-
- // number of VM initialization options
- jint nOptions;
-
- // an array of VM initialization options
- JvVMOption* options;
-
- // true if the option parser should ignore unrecognized options
- jboolean ignoreUnrecognized;
- } JvVMInitArgs;
-
- 'JvCreateJavaVM()' returns '0' upon success, or '-1' if the runtime
- is already initialized.
-
- _Note:_ In GCJ 3.1, the 'vm_args' parameter is ignored. It is
- recognized and used as of release 4.0.
-
- -- Function: java::lang::Thread* JvAttachCurrentThread (jstring NAME,
- java::lang::ThreadGroup* GROUP)
- Registers an existing thread with the Java runtime. This must be
- called once from each thread, before that thread makes any other
- Java or CNI calls. It must be called after 'JvCreateJavaVM'. NAME
- specifies a name for the thread. It may be 'NULL', in which case a
- name will be generated. GROUP is the ThreadGroup in which this
- thread will be a member. If it is 'NULL', the thread will be a
- member of the main thread group. The return value is the Java
- 'Thread' object that represents the thread. It is safe to call
- 'JvAttachCurrentThread()' more than once from the same thread. If
- the thread is already attached, the call is ignored and the current
- thread object is returned.
-
- -- Function: jint JvDetachCurrentThread ()
- Unregisters a thread from the Java runtime. This should be called
- by threads that were attached using 'JvAttachCurrentThread()',
- after they have finished making calls to Java code. This ensures
- that any resources associated with the thread become eligible for
- garbage collection. This function returns '0' upon success, or
- '-1' if the current thread is not attached.
-
-11.16.1 Handling uncaught exceptions
-------------------------------------
-
-If an exception is thrown from Java code called using the invocation
-API, and no handler for the exception can be found, the runtime will
-abort the application. In order to make the application more robust, it
-is recommended that code which uses the invocation API be wrapped by a
-top-level try/catch block that catches all Java exceptions.
-
-11.16.2 Example
----------------
-
-The following code demonstrates the use of the invocation API. In this
-example, the C++ application initializes the Java runtime and attaches
-itself. The 'java.lang.System' class is initialized in order to access
-its 'out' field, and a Java string is printed. Finally, the thread is
-detached from the runtime once it has finished making Java calls.
-Everything is wrapped with a try/catch block to provide a default
-handler for any uncaught exceptions.
-
- The example can be compiled with 'c++ -c test.cc; gcj test.o'.
-
- // test.cc
- #include <gcj/cni.h>
- #include <java/lang/System.h>
- #include <java/io/PrintStream.h>
- #include <java/lang/Throwable.h>
-
- int main(int argc, char *argv[])
- {
- using namespace java::lang;
-
- try
- {
- JvCreateJavaVM(NULL);
- JvAttachCurrentThread(NULL, NULL);
-
- String *message = JvNewStringLatin1("Hello from C++");
- JvInitClass(&System::class$);
- System::out->println(message);
-
- JvDetachCurrentThread();
- }
- catch (Throwable *t)
- {
- System::err->println(JvNewStringLatin1("Unhandled Java exception:"));
- t->printStackTrace();
- }
- }
-
-
-File: gcj.info, Node: Reflection, Prev: Invocation, Up: About CNI
-
-11.17 Reflection
-================
-
-Reflection is possible with CNI code, it functions similarly to how it
-functions with JNI.
-
- The types 'jfieldID' and 'jmethodID' are as in JNI.
-
-The functions:
-
- * 'JvFromReflectedField',
- * 'JvFromReflectedMethod',
- * 'JvToReflectedField'
- * 'JvToFromReflectedMethod'
-
-will be added shortly, as will other functions corresponding to JNI.
-
-
-File: gcj.info, Node: System properties, Next: Resources, Prev: About CNI, Up: Top
-
-12 System properties
-********************
-
-The runtime behavior of the 'libgcj' library can be modified by setting
-certain system properties. These properties can be compiled into the
-program using the '-DNAME[=VALUE]' option to 'gcj' or by setting them
-explicitly in the program by calling the
-'java.lang.System.setProperty()' method. Some system properties are
-only used for informational purposes (like giving a version number or a
-user name). A program can inspect the current value of a property by
-calling the 'java.lang.System.getProperty()' method.
-
-* Menu:
-
-* Standard Properties:: Standard properties supported by 'libgcj'
-* GNU Classpath Properties:: Properties found in Classpath based libraries
-* libgcj Runtime Properties:: Properties specific to 'libgcj'
-
-
-File: gcj.info, Node: Standard Properties, Next: GNU Classpath Properties, Up: System properties
-
-12.1 Standard Properties
-========================
-
-The following properties are normally found in all implementations of
-the core libraries for the Java language.
-
-'java.version'
- The 'libgcj' version number.
-
-'java.vendor'
- Set to 'The Free Software Foundation, Inc.'
-
-'java.vendor.url'
- Set to <http://gcc.gnu.org/java/>.
-
-'java.home'
- The directory where 'gcj' was installed. Taken from the '--prefix'
- option given to 'configure'.
-
-'java.class.version'
- The class format version number supported by the libgcj byte code
- interpreter. (Currently '46.0')
-
-'java.vm.specification.version'
- The Virtual Machine Specification version implemented by 'libgcj'.
- (Currently '1.0')
-
-'java.vm.specification.vendor'
- The name of the Virtual Machine specification designer.
-
-'java.vm.specification.name'
- The name of the Virtual Machine specification (Set to 'Java Virtual
- Machine Specification').
-
-'java.vm.version'
- The 'gcj' version number.
-
-'java.vm.vendor'
- Set to 'The Free Software Foundation, Inc.'
-
-'java.vm.name'
- Set to 'GNU libgcj'.
-
-'java.specification.version'
- The Runtime Environment specification version implemented by
- 'libgcj'. (Currently set to '1.3')
-
-'java.specification.vendor'
- The Runtime Environment specification designer.
-
-'java.specification.name'
- The name of the Runtime Environment specification (Set to 'Java
- Platform API Specification').
-
-'java.class.path'
- The paths (jar files, zip files and directories) used for finding
- class files.
-
-'java.library.path'
- Directory path used for finding native libraries.
-
-'java.io.tmpdir'
- The directory used to put temporary files in.
-
-'java.compiler'
- Name of the Just In Time compiler to use by the byte code
- interpreter. Currently not used in 'libgcj'.
-
-'java.ext.dirs'
- Directories containing jar files with extra libraries. Will be
- used when resolving classes.
-
-'java.protocol.handler.pkgs'
- A '|' separated list of package names that is used to find classes
- that implement handlers for 'java.net.URL'.
-
-'java.rmi.server.codebase'
- A list of URLs that is used by the 'java.rmi.server.RMIClassLoader'
- to load classes from.
-
-'jdbc.drivers'
- A list of class names that will be loaded by the
- 'java.sql.DriverManager' when it starts up.
-
-'file.separator'
- The separator used in when directories are included in a filename
- (normally '/' or '\' ).
-
-'file.encoding'
- The default character encoding used when converting platform native
- files to Unicode (usually set to '8859_1').
-
-'path.separator'
- The standard separator used when a string contains multiple paths
- (normally ':' or ';'), the string is usually not a valid character
- to use in normal directory names.)
-
-'line.separator'
- The default line separator used on the platform (normally '\n',
- '\r' or a combination of those two characters).
-
-'policy.provider'
- The class name used for the default policy provider returned by
- 'java.security.Policy.getPolicy'.
-
-'user.name'
- The name of the user running the program. Can be the full name,
- the login name or empty if unknown.
-
-'user.home'
- The default directory to put user specific files in.
-
-'user.dir'
- The current working directory from which the program was started.
-
-'user.language'
- The default language as used by the 'java.util.Locale' class.
-
-'user.region'
- The default region as used by the 'java.util.Local' class.
-
-'user.variant'
- The default variant of the language and region local used.
-
-'user.timezone'
- The default timezone as used by the 'java.util.TimeZone' class.
-
-'os.name'
- The operating system/kernel name that the program runs on.
-
-'os.arch'
- The hardware that we are running on.
-
-'os.version'
- The version number of the operating system/kernel.
-
-'awt.appletWarning'
- The string to display when an untrusted applet is displayed.
- Returned by 'java.awt.Window.getWarningString()' when the window is
- "insecure".
-
-'awt.toolkit'
- The class name used for initializing the default
- 'java.awt.Toolkit'. Defaults to 'gnu.awt.gtk.GtkToolkit'.
-
-'http.proxyHost'
- Name of proxy host for http connections.
-
-'http.proxyPort'
- Port number to use when a proxy host is in use.
-
-
-File: gcj.info, Node: GNU Classpath Properties, Next: libgcj Runtime Properties, Prev: Standard Properties, Up: System properties
-
-12.2 GNU Classpath Properties
-=============================
-
-'libgcj' is based on the GNU Classpath (Essential Libraries for Java) a
-GNU project to create free core class libraries for use with virtual
-machines and compilers for the Java language. The following properties
-are common to libraries based on GNU Classpath.
-
-'gcj.dumpobject'
- Enables printing serialization debugging by the
- 'java.io.ObjectInput' and 'java.io.ObjectOutput' classes when set
- to something else then the empty string. Only used when running a
- debug build of the library.
-
-'gnu.classpath.vm.shortname'
- This is a succinct name of the virtual machine. For 'libgcj', this
- will always be 'libgcj'.
-
-'gnu.classpath.home.url'
- A base URL used for finding system property files (e.g.,
- 'classpath.security'). By default this is a 'file:' URL pointing
- to the 'lib' directory under 'java.home'.
-
-
-File: gcj.info, Node: libgcj Runtime Properties, Prev: GNU Classpath Properties, Up: System properties
-
-12.3 libgcj Runtime Properties
-==============================
-
-The following properties are specific to the 'libgcj' runtime and will
-normally not be found in other core libraries for the java language.
-
-'java.fullversion'
- The combination of 'java.vm.name' and 'java.vm.version'.
-
-'java.vm.info'
- Same as 'java.fullversion'.
-
-'impl.prefix'
- Used by the 'java.net.DatagramSocket' class when set to something
- else then the empty string. When set all newly created
- 'DatagramSocket's will try to load a class
- 'java.net.[impl.prefix]DatagramSocketImpl' instead of the normal
- 'java.net.PlainDatagramSocketImpl'.
-
-'gnu.gcj.progname'
- The class or binary name that was used to invoke the program. This
- will be the name of the "main" class in the case where the 'gij'
- front end is used, or the program binary name in the case where an
- application is compiled to a native binary.
-
-'gnu.gcj.user.realname'
- The real name of the user, as taken from the password file. This
- may not always hold only the user's name (as some sites put extra
- information in this field). Also, this property is not available
- on all platforms.
-
-'gnu.gcj.runtime.NameFinder.use_addr2line'
- Whether an external process, 'addr2line', should be used to
- determine line number information when tracing the stack. Setting
- this to 'false' may suppress line numbers when printing stack
- traces and when using the java.util.logging infrastructure.
- However, performance may improve significantly for applications
- that print stack traces or make logging calls frequently.
-
-'gnu.gcj.runtime.NameFinder.show_raw'
- Whether the address of a stack frame should be printed when the
- line number is unavailable. Setting this to 'true' will cause the
- name of the object and the offset within that object to be printed
- when no line number is available. This allows for off-line
- decoding of stack traces if necessary debug information is
- available. The default is 'false', no raw addresses are printed.
-
-'gnu.gcj.runtime.NameFinder.remove_unknown'
- Whether stack frames for non-java code should be included in a
- stack trace. The default value is 'true', stack frames for
- non-java code are suppressed. Setting this to 'false' will cause
- any non-java stack frames to be printed in addition to frames for
- the java code.
-
-'gnu.gcj.runtime.VMClassLoader.library_control'
- This controls how shared libraries are automatically loaded by the
- built-in class loader. If this property is set to 'full', a full
- search is done for each requested class. If this property is set
- to 'cache', then any failed lookups are cached and not tried again.
- If this property is set to 'never' (the default), then lookups are
- never done. For more information, *Note Extensions::.
-
-'gnu.gcj.runtime.endorsed.dirs'
- This is like the standard 'java.endorsed.dirs', property, but
- specifies some extra directories which are searched after the
- standard endorsed directories. This is primarily useful for
- telling 'libgcj' about additional libraries which are ordinarily
- incorporated into the JDK, and which should be loaded by the
- bootstrap class loader, but which are not yet part of 'libgcj'
- itself for some reason.
-
-'gnu.gcj.jit.compiler'
- This is the full path to 'gcj' executable which should be used to
- compile classes just-in-time when 'ClassLoader.defineClass' is
- called. If not set, 'gcj' will not be invoked by the runtime; this
- can also be controlled via 'Compiler.disable'.
-
-'gnu.gcj.jit.options'
- This is a space-separated string of options which should be passed
- to 'gcj' when in JIT mode. If not set, a sensible default is
- chosen.
-
-'gnu.gcj.jit.cachedir'
- This is the directory where cached shared library files are stored.
- If not set, JIT compilation is disabled. This should never be set
- to a directory that is writable by any other user.
-
-'gnu.gcj.precompiled.db.path'
- This is a sequence of file names, each referring to a file created
- by 'gcj-dbtool'. These files will be used by 'libgcj' to find
- shared libraries corresponding to classes that are loaded from
- bytecode. 'libgcj' often has a built-in default database; it can
- be queried using 'gcj-dbtool -p'.
-
-
-File: gcj.info, Node: Resources, Next: Index, Prev: System properties, Up: Top
-
-13 Resources
-************
-
-While writing 'gcj' and 'libgcj' we have, of course, relied heavily on
-documentation from Sun Microsystems. In particular we have used The
-Java Language Specification (both first and second editions), the Java
-Class Libraries (volumes one and two), and the Java Virtual Machine
-Specification. In addition we've used Sun's online documentation.
-
- The current 'gcj' home page is <http://gcc.gnu.org/java/>.
-
- For more information on GCC, see <http://gcc.gnu.org/>.
-
- Some 'libgcj' testing is done using the Mauve test suite. This is a
-free software Java class library test suite which is being written
-because the JCK is not free. See <http://www.sourceware.org/mauve/> for
-more information.
-
-
-File: gcj.info, Node: Index, Prev: Resources, Up: Top
-
-Index
-*****
-
-
-* Menu:
-
-* class path: Input Options. (line 6)
-* class$: Reference types. (line 20)
-* elements on template<class T>: Arrays. (line 45)
-* FDL, GNU Free Documentation License: GNU Free Documentation License.
- (line 6)
-* GCJ_PROPERTIES: Extensions. (line 56)
-* GCJ_PROPERTIES <1>: Extensions. (line 56)
-* jclass: Reference types. (line 16)
-* jobject: Reference types. (line 16)
-* jstring: Reference types. (line 16)
-* JvAllocBytes: Mixing with C++. (line 98)
-* JvAttachCurrentThread: Invocation. (line 54)
-* JvCreateJavaVM: Invocation. (line 10)
-* JvDetachCurrentThread: Invocation. (line 68)
-* JvFree: Memory allocation. (line 18)
-* JvGetArrayLength: Arrays. (line 85)
-* JvGetStringChars: Strings. (line 24)
-* JvGetStringUTFLength: Strings. (line 28)
-* JvGetStringUTFRegion: Strings. (line 32)
-* JvMalloc: Memory allocation. (line 10)
-* JvNewBooleanArray: Arrays. (line 82)
-* JvNewObjectArray: Arrays. (line 55)
-* JvNewString: Strings. (line 10)
-* JvNewStringLatin1: Strings. (line 14)
-* JvNewStringLatin1 <1>: Strings. (line 17)
-* JvNewStringUTF: Strings. (line 20)
-* JvPrimClass: Primitive types. (line 35)
-* JvRealloc: Memory allocation. (line 14)
-
-
-
-Tag Table:
-Node: Top2678
-Node: Copying4097
-Node: GNU Free Documentation License41628
-Node: Invoking gcj66751
-Node: Input and output files67514
-Node: Input Options69036
-Node: Encodings72311
-Node: Warnings73517
-Node: Linking74630
-Node: Code Generation77563
-Node: Configure-time Options84339
-Node: Compatibility86079
-Node: Limitations86598
-Node: Extensions88176
-Node: Invoking jcf-dump91267
-Node: Invoking gij92212
-Node: Invoking gcj-dbtool95468
-Node: Invoking jv-convert97929
-Node: Invoking grmic99008
-Node: Invoking gc-analyze100394
-Node: Invoking aot-compile101835
-Node: Invoking rebuild-gcj-db102783
-Node: About CNI103093
-Node: Basic concepts104552
-Node: Packages107448
-Node: Primitive types109776
-Node: Reference types111453
-Node: Interfaces112537
-Node: Objects and Classes113448
-Node: Class Initialization115643
-Node: Object allocation117986
-Node: Memory allocation118776
-Node: Arrays119408
-Node: Methods122218
-Node: Strings125039
-Node: Mixing with C++126543
-Node: Exception Handling130016
-Node: Synchronization131651
-Node: Invocation133640
-Node: Reflection138592
-Node: System properties139050
-Node: Standard Properties139927
-Node: GNU Classpath Properties144358
-Node: libgcj Runtime Properties145404
-Node: Resources149907
-Node: Index150721
-
-End Tag Table
diff --git a/gcc-4.9/gcc/doc/gcov-tool.texi b/gcc-4.9/gcc/doc/gcov-tool.texi
new file mode 100644
index 000000000..ff8b9e22f
--- /dev/null
+++ b/gcc-4.9/gcc/doc/gcov-tool.texi
@@ -0,0 +1,189 @@
+@c Copyright (C) 2014 Free Software Foundation, Inc.
+@c This is part of the GCC manual.
+@c For copying conditions, see the file gcc.texi.
+
+@ignore
+@c man begin COPYRIGHT
+Copyright @copyright{} 2014 Free Software Foundation, Inc.
+
+Permission is granted to copy, distribute and/or modify this document
+under the terms of the GNU Free Documentation License, Version 1.3 or
+any later version published by the Free Software Foundation; with the
+Invariant Sections being ``GNU General Public License'' and ``Funding
+Free Software'', the Front-Cover texts being (a) (see below), and with
+the Back-Cover Texts being (b) (see below). A copy of the license is
+included in the gfdl(7) man page.
+
+(a) The FSF's Front-Cover Text is:
+
+ A GNU Manual
+
+(b) The FSF's Back-Cover Text is:
+
+ You have freedom to copy and modify this GNU Manual, like GNU
+ software. Copies published by the Free Software Foundation raise
+ funds for GNU development.
+@c man end
+@c Set file name and title for the man page.
+@setfilename gcov-tool
+@settitle offline gcda profile processing tool
+@end ignore
+
+@node Gcov-tool
+@chapter @command{gcov-tool}---an Offline Gcda Profile Processing Tool
+
+@command{gcov-tool} is a tool you can use in conjunction with GCC to
+manipulate or process gcda profile files offline.
+
+@menu
+* Gcov-tool Intro:: Introduction to gcov-tool.
+* Invoking Gcov-tool:: How to use gcov-tool.
+@end menu
+
+@node Gcov-tool Intro
+@section Introduction to @command{gcov-tool}
+@c man begin DESCRIPTION
+
+@command{gcov-tool} is an offline tool to process gcc's gcda profile files.
+
+Current gcov-tool supports the following functionalities:
+
+@itemize @bullet
+@item
+merge two sets of profiles with weights.
+
+@item
+read one set of profile and rewrite profile contents. One can scale or
+normalize the count values.
+@end itemize
+
+Examples of the use cases for this tool are:
+@itemize @bullet
+@item
+Collect the profiles for different set of inputs, and use this tool to merge
+them. One can specify the weight to factor in the relative importance of
+each input.
+
+@item
+Rewrite the profile after removing a subset of the gcda files, while maintaining
+the consistency of the summary and the histogram.
+
+@item
+It can also be used to debug or libgcov code as the tools shares the majority
+code as the runtime library.
+@end itemize
+
+Note that for the merging operation, this profile generated offline may
+contain slight different values from the online merged profile. Here are
+a list of typical differences:
+
+@itemize @bullet
+@item
+histogram difference: This offline tool recomputes the histogram after merging
+the counters. The resulting histogram, therefore, is precise. The online
+merging does not have this capability -- the histogram is merged from two
+histograms and the result is an approximation.
+
+@item
+summary checksum difference: Summary checksum uses a CRC32 operation. The value
+depends on the link list order of gcov-info objects. This order is different in
+gcov-tool from that in the online merge. It's expected to have different
+summary checksums. It does not really matter as the compiler does not use this
+checksum anywhere.
+
+@item
+value profile counter values difference: Some counter values for value profile
+are runtime dependent, like heap addresses. It's normal to see some difference
+in these kind of counters.
+@end itemize
+
+@c man end
+
+@node Invoking Gcov-tool
+@section Invoking @command{gcov-tool}
+
+@smallexample
+gcov-tool @r{[}@var{global-options}@r{]} SUB_COMMAND
+@r{[}@var{sub_command-options}@r{]} @var{profile_dir}
+@end smallexample
+
+@command{gcov-tool} accepts the following options:
+
+@ignore
+@c man begin SYNOPSIS
+gcov-tool [@option{-v}|@option{--version}] [@option{-h}|@option{--help}]
+
+gcov-tool merge [merge-options] @var{directory1} @var{directory2}
+ [@option{-v}|@option{--verbose}]
+ [@option{-o}|@option{ --output} @var{directory}]
+ [@option{-w}|@option{--weight} @var{w1,w2}]
+
+gcov-tool rewrite [rewrite-options] @var{directory}
+ [@option{-v}|@option{--verbose}]
+ [@option{-o}|@option{--output} @var{directory}]
+ [@option{-s}|@option{--scale} @var{float_or_simple-frac_value}]
+ [@option{-n}|@option{--normalize} @var{long_long_value}]
+@c man end
+@c man begin SEEALSO
+gpl(7), gfdl(7), fsf-funding(7), gcc(1), gcov(1) and the Info entry for
+@file{gcc}.
+@c man end
+@end ignore
+
+@c man begin OPTIONS
+@table @gcctabopt
+@item -h
+@itemx --help
+Display help about using @command{gcov-tool} (on the standard output), and
+exit without doing any further processing.
+
+@item -v
+@itemx --version
+Display the @command{gcov-tool} version number (on the standard output),
+and exit without doing any further processing.
+
+@item merge
+Merge two profile directories.
+
+@table @gcctabopt
+@item -v
+@itemx --verbose
+Set the verbose mode.
+
+@item -o @var{directory}
+@itemx --output @var{directory}
+Set the output profile directory. Default output directory name is
+@var{merged_profile}.
+
+@item -w @var{w1},@var{w2}
+@itemx --weight @var{w1},@var{w2}
+Set the merge weights of the @var{directory1} and @var{directory2},
+respectively. The default weights are 1 for both.
+@end table
+
+@item rewrite
+Read the specified profile directory and rewrite to a new directory.
+
+@table @gcctabopt
+@item -v
+@itemx --verbose
+Set the verbose mode.
+
+@item -o @var{directory}
+@itemx --output @var{directory}
+Set the output profile directory. Default output name is @var{rewrite_profile}.
+
+@item -s @var{float_or_simple-frac_value}
+@itemx --scale @var{float_or_simple-frac_value}
+Scale the profile counters. The specified value can be in floating point value,
+or simple fraction value form, such 1, 2, 2/3, and 5/3.
+
+@item -n @var{long_long_value}
+@itemx --normalize <long_long_value>
+Normalize the profile. The specified value is the max counter value
+in the new profile.
+
+@end table
+@end table
+
+@c man end
diff --git a/gcc-4.9/gcc/doc/gcov.1 b/gcc-4.9/gcc/doc/gcov.1
deleted file mode 100644
index 8de32cb85..000000000
--- a/gcc-4.9/gcc/doc/gcov.1
+++ /dev/null
@@ -1,733 +0,0 @@
-.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28)
-.\"
-.\" Standard preamble:
-.\" ========================================================================
-.de Sp \" Vertical space (when we can't use .PP)
-.if t .sp .5v
-.if n .sp
-..
-.de Vb \" Begin verbatim text
-.ft CW
-.nf
-.ne \\$1
-..
-.de Ve \" End verbatim text
-.ft R
-.fi
-..
-.\" Set up some character translations and predefined strings. \*(-- will
-.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
-.\" double quote, and \*(R" will give a right double quote. \*(C+ will
-.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
-.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
-.\" nothing in troff, for use with C<>.
-.tr \(*W-
-.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
-.ie n \{\
-. ds -- \(*W-
-. ds PI pi
-. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
-. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
-. ds L" ""
-. ds R" ""
-. ds C` ""
-. ds C' ""
-'br\}
-.el\{\
-. ds -- \|\(em\|
-. ds PI \(*p
-. ds L" ``
-. ds R" ''
-. ds C`
-. ds C'
-'br\}
-.\"
-.\" Escape single quotes in literal strings from groff's Unicode transform.
-.ie \n(.g .ds Aq \(aq
-.el .ds Aq '
-.\"
-.\" If the F register is turned on, we'll generate index entries on stderr for
-.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
-.\" entries marked with X<> in POD. Of course, you'll have to process the
-.\" output yourself in some meaningful fashion.
-.\"
-.\" Avoid warning from groff about undefined register 'F'.
-.de IX
-..
-.nr rF 0
-.if \n(.g .if rF .nr rF 1
-.if (\n(rF:(\n(.g==0)) \{
-. if \nF \{
-. de IX
-. tm Index:\\$1\t\\n%\t"\\$2"
-..
-. if !\nF==2 \{
-. nr % 0
-. nr F 2
-. \}
-. \}
-.\}
-.rr rF
-.\"
-.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
-.\" Fear. Run. Save yourself. No user-serviceable parts.
-. \" fudge factors for nroff and troff
-.if n \{\
-. ds #H 0
-. ds #V .8m
-. ds #F .3m
-. ds #[ \f1
-. ds #] \fP
-.\}
-.if t \{\
-. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
-. ds #V .6m
-. ds #F 0
-. ds #[ \&
-. ds #] \&
-.\}
-. \" simple accents for nroff and troff
-.if n \{\
-. ds ' \&
-. ds ` \&
-. ds ^ \&
-. ds , \&
-. ds ~ ~
-. ds /
-.\}
-.if t \{\
-. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
-. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
-. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
-. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
-. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
-. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
-.\}
-. \" troff and (daisy-wheel) nroff accents
-.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
-.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
-.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
-.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
-.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
-.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
-.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
-.ds ae a\h'-(\w'a'u*4/10)'e
-.ds Ae A\h'-(\w'A'u*4/10)'E
-. \" corrections for vroff
-.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
-.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
-. \" for low resolution devices (crt and lpr)
-.if \n(.H>23 .if \n(.V>19 \
-\{\
-. ds : e
-. ds 8 ss
-. ds o a
-. ds d- d\h'-1'\(ga
-. ds D- D\h'-1'\(hy
-. ds th \o'bp'
-. ds Th \o'LP'
-. ds ae ae
-. ds Ae AE
-.\}
-.rm #[ #] #H #V #F C
-.\" ========================================================================
-.\"
-.IX Title "GCOV 1"
-.TH GCOV 1 "2014-04-22" "gcc-4.9.0" "GNU"
-.\" For nroff, turn off justification. Always turn off hyphenation; it makes
-.\" way too many mistakes in technical documents.
-.if n .ad l
-.nh
-.SH "NAME"
-gcov \- coverage testing tool
-.SH "SYNOPSIS"
-.IX Header "SYNOPSIS"
-gcov [\fB\-v\fR|\fB\-\-version\fR] [\fB\-h\fR|\fB\-\-help\fR]
- [\fB\-a\fR|\fB\-\-all\-blocks\fR]
- [\fB\-b\fR|\fB\-\-branch\-probabilities\fR]
- [\fB\-c\fR|\fB\-\-branch\-counts\fR]
- [\fB\-d\fR|\fB\-\-display\-progress\fR]
- [\fB\-f\fR|\fB\-\-function\-summaries\fR]
- [\fB\-i\fR|\fB\-\-intermediate\-format\fR]
- [\fB\-l\fR|\fB\-\-long\-file\-names\fR]
- [\fB\-m\fR|\fB\-\-demangled\-names\fR]
- [\fB\-n\fR|\fB\-\-no\-output\fR]
- [\fB\-o\fR|\fB\-\-object\-directory\fR \fIdirectory|file\fR]
- [\fB\-p\fR|\fB\-\-preserve\-paths\fR]
- [\fB\-r\fR|\fB\-\-relative\-only\fR]
- [\fB\-s\fR|\fB\-\-source\-prefix\fR \fIdirectory\fR]
- [\fB\-u\fR|\fB\-\-unconditional\-branches\fR]
- \fIfiles\fR
-.SH "DESCRIPTION"
-.IX Header "DESCRIPTION"
-\&\fBgcov\fR is a test coverage program. Use it in concert with \s-1GCC\s0
-to analyze your programs to help create more efficient, faster running
-code and to discover untested parts of your program. You can use
-\&\fBgcov\fR as a profiling tool to help discover where your
-optimization efforts will best affect your code. You can also use
-\&\fBgcov\fR along with the other profiling tool, \fBgprof\fR, to
-assess which parts of your code use the greatest amount of computing
-time.
-.PP
-Profiling tools help you analyze your code's performance. Using a
-profiler such as \fBgcov\fR or \fBgprof\fR, you can find out some
-basic performance statistics, such as:
-.IP "\(bu" 4
-how often each line of code executes
-.IP "\(bu" 4
-what lines of code are actually executed
-.IP "\(bu" 4
-how much computing time each section of code uses
-.PP
-Once you know these things about how your code works when compiled, you
-can look at each module to see which modules should be optimized.
-\&\fBgcov\fR helps you determine where to work on optimization.
-.PP
-Software developers also use coverage testing in concert with
-testsuites, to make sure software is actually good enough for a release.
-Testsuites can verify that a program works as expected; a coverage
-program tests to see how much of the program is exercised by the
-testsuite. Developers can then determine what kinds of test cases need
-to be added to the testsuites to create both better testing and a better
-final product.
-.PP
-You should compile your code without optimization if you plan to use
-\&\fBgcov\fR because the optimization, by combining some lines of code
-into one function, may not give you as much information as you need to
-look for `hot spots' where the code is using a great deal of computer
-time. Likewise, because \fBgcov\fR accumulates statistics by line (at
-the lowest resolution), it works best with a programming style that
-places only one statement on each line. If you use complicated macros
-that expand to loops or to other control structures, the statistics are
-less helpful\-\-\-they only report on the line where the macro call
-appears. If your complex macros behave like functions, you can replace
-them with inline functions to solve this problem.
-.PP
-\&\fBgcov\fR creates a logfile called \fI\fIsourcefile\fI.gcov\fR which
-indicates how many times each line of a source file \fI\fIsourcefile\fI.c\fR
-has executed. You can use these logfiles along with \fBgprof\fR to aid
-in fine-tuning the performance of your programs. \fBgprof\fR gives
-timing information you can use along with the information you get from
-\&\fBgcov\fR.
-.PP
-\&\fBgcov\fR works only on code compiled with \s-1GCC. \s0 It is not
-compatible with any other profiling or test coverage mechanism.
-.SH "OPTIONS"
-.IX Header "OPTIONS"
-.IP "\fB\-h\fR" 4
-.IX Item "-h"
-.PD 0
-.IP "\fB\-\-help\fR" 4
-.IX Item "--help"
-.PD
-Display help about using \fBgcov\fR (on the standard output), and
-exit without doing any further processing.
-.IP "\fB\-v\fR" 4
-.IX Item "-v"
-.PD 0
-.IP "\fB\-\-version\fR" 4
-.IX Item "--version"
-.PD
-Display the \fBgcov\fR version number (on the standard output),
-and exit without doing any further processing.
-.IP "\fB\-a\fR" 4
-.IX Item "-a"
-.PD 0
-.IP "\fB\-\-all\-blocks\fR" 4
-.IX Item "--all-blocks"
-.PD
-Write individual execution counts for every basic block. Normally gcov
-outputs execution counts only for the main blocks of a line. With this
-option you can determine if blocks within a single line are not being
-executed.
-.IP "\fB\-b\fR" 4
-.IX Item "-b"
-.PD 0
-.IP "\fB\-\-branch\-probabilities\fR" 4
-.IX Item "--branch-probabilities"
-.PD
-Write branch frequencies to the output file, and write branch summary
-info to the standard output. This option allows you to see how often
-each branch in your program was taken. Unconditional branches will not
-be shown, unless the \fB\-u\fR option is given.
-.IP "\fB\-c\fR" 4
-.IX Item "-c"
-.PD 0
-.IP "\fB\-\-branch\-counts\fR" 4
-.IX Item "--branch-counts"
-.PD
-Write branch frequencies as the number of branches taken, rather than
-the percentage of branches taken.
-.IP "\fB\-n\fR" 4
-.IX Item "-n"
-.PD 0
-.IP "\fB\-\-no\-output\fR" 4
-.IX Item "--no-output"
-.PD
-Do not create the \fBgcov\fR output file.
-.IP "\fB\-l\fR" 4
-.IX Item "-l"
-.PD 0
-.IP "\fB\-\-long\-file\-names\fR" 4
-.IX Item "--long-file-names"
-.PD
-Create long file names for included source files. For example, if the
-header file \fIx.h\fR contains code, and was included in the file
-\&\fIa.c\fR, then running \fBgcov\fR on the file \fIa.c\fR will
-produce an output file called \fIa.c##x.h.gcov\fR instead of
-\&\fIx.h.gcov\fR. This can be useful if \fIx.h\fR is included in
-multiple source files and you want to see the individual
-contributions. If you use the \fB\-p\fR option, both the including
-and included file names will be complete path names.
-.IP "\fB\-p\fR" 4
-.IX Item "-p"
-.PD 0
-.IP "\fB\-\-preserve\-paths\fR" 4
-.IX Item "--preserve-paths"
-.PD
-Preserve complete path information in the names of generated
-\&\fI.gcov\fR files. Without this option, just the filename component is
-used. With this option, all directories are used, with \fB/\fR characters
-translated to \fB#\fR characters, \fI.\fR directory components
-removed and unremoveable \fI..\fR
-components renamed to \fB^\fR. This is useful if sourcefiles are in several
-different directories.
-.IP "\fB\-r\fR" 4
-.IX Item "-r"
-.PD 0
-.IP "\fB\-\-relative\-only\fR" 4
-.IX Item "--relative-only"
-.PD
-Only output information about source files with a relative pathname
-(after source prefix elision). Absolute paths are usually system
-header files and coverage of any inline functions therein is normally
-uninteresting.
-.IP "\fB\-f\fR" 4
-.IX Item "-f"
-.PD 0
-.IP "\fB\-\-function\-summaries\fR" 4
-.IX Item "--function-summaries"
-.PD
-Output summaries for each function in addition to the file level summary.
-.IP "\fB\-o\fR \fIdirectory|file\fR" 4
-.IX Item "-o directory|file"
-.PD 0
-.IP "\fB\-\-object\-directory\fR \fIdirectory\fR" 4
-.IX Item "--object-directory directory"
-.IP "\fB\-\-object\-file\fR \fIfile\fR" 4
-.IX Item "--object-file file"
-.PD
-Specify either the directory containing the gcov data files, or the
-object path name. The \fI.gcno\fR, and
-\&\fI.gcda\fR data files are searched for using this option. If a directory
-is specified, the data files are in that directory and named after the
-input file name, without its extension. If a file is specified here,
-the data files are named after that file, without its extension.
-.IP "\fB\-s\fR \fIdirectory\fR" 4
-.IX Item "-s directory"
-.PD 0
-.IP "\fB\-\-source\-prefix\fR \fIdirectory\fR" 4
-.IX Item "--source-prefix directory"
-.PD
-A prefix for source file names to remove when generating the output
-coverage files. This option is useful when building in a separate
-directory, and the pathname to the source directory is not wanted when
-determining the output file names. Note that this prefix detection is
-applied before determining whether the source file is absolute.
-.IP "\fB\-u\fR" 4
-.IX Item "-u"
-.PD 0
-.IP "\fB\-\-unconditional\-branches\fR" 4
-.IX Item "--unconditional-branches"
-.PD
-When branch probabilities are given, include those of unconditional branches.
-Unconditional branches are normally not interesting.
-.IP "\fB\-d\fR" 4
-.IX Item "-d"
-.PD 0
-.IP "\fB\-\-display\-progress\fR" 4
-.IX Item "--display-progress"
-.PD
-Display the progress on the standard output.
-.IP "\fB\-i\fR" 4
-.IX Item "-i"
-.PD 0
-.IP "\fB\-\-intermediate\-format\fR" 4
-.IX Item "--intermediate-format"
-.PD
-Output gcov file in an easy-to-parse intermediate text format that can
-be used by \fBlcov\fR or other tools. The output is a single
-\&\fI.gcov\fR file per \fI.gcda\fR file. No source code is required.
-.Sp
-The format of the intermediate \fI.gcov\fR file is plain text with
-one entry per line
-.Sp
-.Vb 4
-\& file:<source_file_name>
-\& function:<line_number>,<execution_count>,<function_name>
-\& lcount:<line number>,<execution_count>
-\& branch:<line_number>,<branch_coverage_type>
-\&
-\& Where the <branch_coverage_type> is
-\& notexec (Branch not executed)
-\& taken (Branch executed and taken)
-\& nottaken (Branch executed, but not taken)
-\&
-\& There can be multiple <file> entries in an intermediate gcov
-\& file. All entries following a <file> pertain to that source file
-\& until the next <file> entry.
-.Ve
-.Sp
-Here is a sample when \fB\-i\fR is used in conjunction with \fB\-b\fR option:
-.Sp
-.Vb 9
-\& file:array.cc
-\& function:11,1,_Z3sumRKSt6vectorIPiSaIS0_EE
-\& function:22,1,main
-\& lcount:11,1
-\& lcount:12,1
-\& lcount:14,1
-\& branch:14,taken
-\& lcount:26,1
-\& branch:28,nottaken
-.Ve
-.IP "\fB\-m\fR" 4
-.IX Item "-m"
-.PD 0
-.IP "\fB\-\-demangled\-names\fR" 4
-.IX Item "--demangled-names"
-.PD
-Display demangled function names in output. The default is to show
-mangled function names.
-.PP
-\&\fBgcov\fR should be run with the current directory the same as that
-when you invoked the compiler. Otherwise it will not be able to locate
-the source files. \fBgcov\fR produces files called
-\&\fI\fImangledname\fI.gcov\fR in the current directory. These contain
-the coverage information of the source file they correspond to.
-One \fI.gcov\fR file is produced for each source (or header) file
-containing code,
-which was compiled to produce the data files. The \fImangledname\fR part
-of the output file name is usually simply the source file name, but can
-be something more complicated if the \fB\-l\fR or \fB\-p\fR options are
-given. Refer to those options for details.
-.PP
-If you invoke \fBgcov\fR with multiple input files, the
-contributions from each input file are summed. Typically you would
-invoke it with the same list of files as the final link of your executable.
-.PP
-The \fI.gcov\fR files contain the \fB:\fR separated fields along with
-program source code. The format is
-.PP
-.Vb 1
-\& <execution_count>:<line_number>:<source line text>
-.Ve
-.PP
-Additional block information may succeed each line, when requested by
-command line option. The \fIexecution_count\fR is \fB\-\fR for lines
-containing no code. Unexecuted lines are marked \fB#####\fR or
-\&\fB====\fR, depending on whether they are reachable by
-non-exceptional paths or only exceptional paths such as \*(C+ exception
-handlers, respectively.
-.PP
-Some lines of information at the start have \fIline_number\fR of zero.
-These preamble lines are of the form
-.PP
-.Vb 1
-\& \-:0:<tag>:<value>
-.Ve
-.PP
-The ordering and number of these preamble lines will be augmented as
-\&\fBgcov\fR development progresses \-\-\- do not rely on them remaining
-unchanged. Use \fItag\fR to locate a particular preamble line.
-.PP
-The additional block information is of the form
-.PP
-.Vb 1
-\& <tag> <information>
-.Ve
-.PP
-The \fIinformation\fR is human readable, but designed to be simple
-enough for machine parsing too.
-.PP
-When printing percentages, 0% and 100% are only printed when the values
-are \fIexactly\fR 0% and 100% respectively. Other values which would
-conventionally be rounded to 0% or 100% are instead printed as the
-nearest non-boundary value.
-.PP
-When using \fBgcov\fR, you must first compile your program with two
-special \s-1GCC\s0 options: \fB\-fprofile\-arcs \-ftest\-coverage\fR.
-This tells the compiler to generate additional information needed by
-gcov (basically a flow graph of the program) and also includes
-additional code in the object files for generating the extra profiling
-information needed by gcov. These additional files are placed in the
-directory where the object file is located.
-.PP
-Running the program will cause profile output to be generated. For each
-source file compiled with \fB\-fprofile\-arcs\fR, an accompanying
-\&\fI.gcda\fR file will be placed in the object file directory.
-.PP
-Running \fBgcov\fR with your program's source file names as arguments
-will now produce a listing of the code along with frequency of execution
-for each line. For example, if your program is called \fItmp.c\fR, this
-is what you see when you use the basic \fBgcov\fR facility:
-.PP
-.Vb 5
-\& $ gcc \-fprofile\-arcs \-ftest\-coverage tmp.c
-\& $ a.out
-\& $ gcov tmp.c
-\& 90.00% of 10 source lines executed in file tmp.c
-\& Creating tmp.c.gcov.
-.Ve
-.PP
-The file \fItmp.c.gcov\fR contains output from \fBgcov\fR.
-Here is a sample:
-.PP
-.Vb 10
-\& \-: 0:Source:tmp.c
-\& \-: 0:Graph:tmp.gcno
-\& \-: 0:Data:tmp.gcda
-\& \-: 0:Runs:1
-\& \-: 0:Programs:1
-\& \-: 1:#include <stdio.h>
-\& \-: 2:
-\& \-: 3:int main (void)
-\& 1: 4:{
-\& 1: 5: int i, total;
-\& \-: 6:
-\& 1: 7: total = 0;
-\& \-: 8:
-\& 11: 9: for (i = 0; i < 10; i++)
-\& 10: 10: total += i;
-\& \-: 11:
-\& 1: 12: if (total != 45)
-\& #####: 13: printf ("Failure\en");
-\& \-: 14: else
-\& 1: 15: printf ("Success\en");
-\& 1: 16: return 0;
-\& \-: 17:}
-.Ve
-.PP
-When you use the \fB\-a\fR option, you will get individual block
-counts, and the output looks like this:
-.PP
-.Vb 10
-\& \-: 0:Source:tmp.c
-\& \-: 0:Graph:tmp.gcno
-\& \-: 0:Data:tmp.gcda
-\& \-: 0:Runs:1
-\& \-: 0:Programs:1
-\& \-: 1:#include <stdio.h>
-\& \-: 2:
-\& \-: 3:int main (void)
-\& 1: 4:{
-\& 1: 4\-block 0
-\& 1: 5: int i, total;
-\& \-: 6:
-\& 1: 7: total = 0;
-\& \-: 8:
-\& 11: 9: for (i = 0; i < 10; i++)
-\& 11: 9\-block 0
-\& 10: 10: total += i;
-\& 10: 10\-block 0
-\& \-: 11:
-\& 1: 12: if (total != 45)
-\& 1: 12\-block 0
-\& #####: 13: printf ("Failure\en");
-\& $$$$$: 13\-block 0
-\& \-: 14: else
-\& 1: 15: printf ("Success\en");
-\& 1: 15\-block 0
-\& 1: 16: return 0;
-\& 1: 16\-block 0
-\& \-: 17:}
-.Ve
-.PP
-In this mode, each basic block is only shown on one line \*(-- the last
-line of the block. A multi-line block will only contribute to the
-execution count of that last line, and other lines will not be shown
-to contain code, unless previous blocks end on those lines.
-The total execution count of a line is shown and subsequent lines show
-the execution counts for individual blocks that end on that line. After each
-block, the branch and call counts of the block will be shown, if the
-\&\fB\-b\fR option is given.
-.PP
-Because of the way \s-1GCC\s0 instruments calls, a call count can be shown
-after a line with no individual blocks.
-As you can see, line 13 contains a basic block that was not executed.
-.PP
-When you use the \fB\-b\fR option, your output looks like this:
-.PP
-.Vb 6
-\& $ gcov \-b tmp.c
-\& 90.00% of 10 source lines executed in file tmp.c
-\& 80.00% of 5 branches executed in file tmp.c
-\& 80.00% of 5 branches taken at least once in file tmp.c
-\& 50.00% of 2 calls executed in file tmp.c
-\& Creating tmp.c.gcov.
-.Ve
-.PP
-Here is a sample of a resulting \fItmp.c.gcov\fR file:
-.PP
-.Vb 10
-\& \-: 0:Source:tmp.c
-\& \-: 0:Graph:tmp.gcno
-\& \-: 0:Data:tmp.gcda
-\& \-: 0:Runs:1
-\& \-: 0:Programs:1
-\& \-: 1:#include <stdio.h>
-\& \-: 2:
-\& \-: 3:int main (void)
-\& function main called 1 returned 1 blocks executed 75%
-\& 1: 4:{
-\& 1: 5: int i, total;
-\& \-: 6:
-\& 1: 7: total = 0;
-\& \-: 8:
-\& 11: 9: for (i = 0; i < 10; i++)
-\& branch 0 taken 91% (fallthrough)
-\& branch 1 taken 9%
-\& 10: 10: total += i;
-\& \-: 11:
-\& 1: 12: if (total != 45)
-\& branch 0 taken 0% (fallthrough)
-\& branch 1 taken 100%
-\& #####: 13: printf ("Failure\en");
-\& call 0 never executed
-\& \-: 14: else
-\& 1: 15: printf ("Success\en");
-\& call 0 called 1 returned 100%
-\& 1: 16: return 0;
-\& \-: 17:}
-.Ve
-.PP
-For each function, a line is printed showing how many times the function
-is called, how many times it returns and what percentage of the
-function's blocks were executed.
-.PP
-For each basic block, a line is printed after the last line of the basic
-block describing the branch or call that ends the basic block. There can
-be multiple branches and calls listed for a single source line if there
-are multiple basic blocks that end on that line. In this case, the
-branches and calls are each given a number. There is no simple way to map
-these branches and calls back to source constructs. In general, though,
-the lowest numbered branch or call will correspond to the leftmost construct
-on the source line.
-.PP
-For a branch, if it was executed at least once, then a percentage
-indicating the number of times the branch was taken divided by the
-number of times the branch was executed will be printed. Otherwise, the
-message \*(L"never executed\*(R" is printed.
-.PP
-For a call, if it was executed at least once, then a percentage
-indicating the number of times the call returned divided by the number
-of times the call was executed will be printed. This will usually be
-100%, but may be less for functions that call \f(CW\*(C`exit\*(C'\fR or \f(CW\*(C`longjmp\*(C'\fR,
-and thus may not return every time they are called.
-.PP
-The execution counts are cumulative. If the example program were
-executed again without removing the \fI.gcda\fR file, the count for the
-number of times each line in the source was executed would be added to
-the results of the previous run(s). This is potentially useful in
-several ways. For example, it could be used to accumulate data over a
-number of program runs as part of a test verification suite, or to
-provide more accurate long-term information over a large number of
-program runs.
-.PP
-The data in the \fI.gcda\fR files is saved immediately before the program
-exits. For each source file compiled with \fB\-fprofile\-arcs\fR, the
-profiling code first attempts to read in an existing \fI.gcda\fR file; if
-the file doesn't match the executable (differing number of basic block
-counts) it will ignore the contents of the file. It then adds in the
-new execution counts and finally writes the data to the file.
-.SS "Using \fBgcov\fP with \s-1GCC\s0 Optimization"
-.IX Subsection "Using gcov with GCC Optimization"
-If you plan to use \fBgcov\fR to help optimize your code, you must
-first compile your program with two special \s-1GCC\s0 options:
-\&\fB\-fprofile\-arcs \-ftest\-coverage\fR. Aside from that, you can use any
-other \s-1GCC\s0 options; but if you want to prove that every single line
-in your program was executed, you should not compile with optimization
-at the same time. On some machines the optimizer can eliminate some
-simple code lines by combining them with other lines. For example, code
-like this:
-.PP
-.Vb 4
-\& if (a != b)
-\& c = 1;
-\& else
-\& c = 0;
-.Ve
-.PP
-can be compiled into one instruction on some machines. In this case,
-there is no way for \fBgcov\fR to calculate separate execution counts
-for each line because there isn't separate code for each line. Hence
-the \fBgcov\fR output looks like this if you compiled the program with
-optimization:
-.PP
-.Vb 4
-\& 100: 12:if (a != b)
-\& 100: 13: c = 1;
-\& 100: 14:else
-\& 100: 15: c = 0;
-.Ve
-.PP
-The output shows that this block of code, combined by optimization,
-executed 100 times. In one sense this result is correct, because there
-was only one instruction representing all four of these lines. However,
-the output does not indicate how many times the result was 0 and how
-many times the result was 1.
-.PP
-Inlineable functions can create unexpected line counts. Line counts are
-shown for the source code of the inlineable function, but what is shown
-depends on where the function is inlined, or if it is not inlined at all.
-.PP
-If the function is not inlined, the compiler must emit an out of line
-copy of the function, in any object file that needs it. If
-\&\fIfileA.o\fR and \fIfileB.o\fR both contain out of line bodies of a
-particular inlineable function, they will also both contain coverage
-counts for that function. When \fIfileA.o\fR and \fIfileB.o\fR are
-linked together, the linker will, on many systems, select one of those
-out of line bodies for all calls to that function, and remove or ignore
-the other. Unfortunately, it will not remove the coverage counters for
-the unused function body. Hence when instrumented, all but one use of
-that function will show zero counts.
-.PP
-If the function is inlined in several places, the block structure in
-each location might not be the same. For instance, a condition might
-now be calculable at compile time in some instances. Because the
-coverage of all the uses of the inline function will be shown for the
-same source lines, the line counts themselves might seem inconsistent.
-.PP
-Long-running applications can use the \f(CW\*(C`_gcov_reset\*(C'\fR and \f(CW\*(C`_gcov_dump\*(C'\fR
-facilities to restrict profile collection to the program region of
-interest. Calling \f(CW\*(C`_gcov_reset(void)\*(C'\fR will clear all profile counters
-to zero, and calling \f(CW\*(C`_gcov_dump(void)\*(C'\fR will cause the profile information
-collected at that point to be dumped to \fI.gcda\fR output files.
-.SH "SEE ALSO"
-.IX Header "SEE ALSO"
-\&\fIgpl\fR\|(7), \fIgfdl\fR\|(7), \fIfsf\-funding\fR\|(7), \fIgcc\fR\|(1) and the Info entry for \fIgcc\fR.
-.SH "COPYRIGHT"
-.IX Header "COPYRIGHT"
-Copyright (c) 1996\-2014 Free Software Foundation, Inc.
-.PP
-Permission is granted to copy, distribute and/or modify this document
-under the terms of the \s-1GNU\s0 Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with the
-Invariant Sections being \*(L"\s-1GNU\s0 General Public License\*(R" and \*(L"Funding
-Free Software\*(R", the Front-Cover texts being (a) (see below), and with
-the Back-Cover Texts being (b) (see below). A copy of the license is
-included in the \fIgfdl\fR\|(7) man page.
-.PP
-(a) The \s-1FSF\s0's Front-Cover Text is:
-.PP
-.Vb 1
-\& A GNU Manual
-.Ve
-.PP
-(b) The \s-1FSF\s0's Back-Cover Text is:
-.PP
-.Vb 3
-\& You have freedom to copy and modify this GNU Manual, like GNU
-\& software. Copies published by the Free Software Foundation raise
-\& funds for GNU development.
-.Ve
diff --git a/gcc-4.9/gcc/doc/generic.texi b/gcc-4.9/gcc/doc/generic.texi
index 5b3b528e5..7b1d07797 100644
--- a/gcc-4.9/gcc/doc/generic.texi
+++ b/gcc-4.9/gcc/doc/generic.texi
@@ -1715,6 +1715,7 @@ a value from @code{enum annot_expr_kind}.
@tindex VEC_PACK_TRUNC_EXPR
@tindex VEC_PACK_SAT_EXPR
@tindex VEC_PACK_FIX_TRUNC_EXPR
+@tindex SAD_EXPR
@table @code
@item VEC_LSHIFT_EXPR
@@ -1795,6 +1796,15 @@ value, it is taken from the second operand. It should never evaluate to
any other value currently, but optimizations should not rely on that
property. In contrast with a @code{COND_EXPR}, all operands are always
evaluated.
+
+@item SAD_EXPR
+This node represents the Sum of Absolute Differences operation. The three
+operands must be vectors of integral types. The first and second operand
+must have the same type. The size of the vector element of the third
+operand must be at lease twice of the size of the vector element of the
+first and second one. The SAD is calculated between the first and second
+operands, added to the third operand, and returned.
+
@end table
diff --git a/gcc-4.9/gcc/doc/gfdl.7 b/gcc-4.9/gcc/doc/gfdl.7
deleted file mode 100644
index 9788f7023..000000000
--- a/gcc-4.9/gcc/doc/gfdl.7
+++ /dev/null
@@ -1 +0,0 @@
-timestamp
diff --git a/gcc-4.9/gcc/doc/gfortran.1 b/gcc-4.9/gcc/doc/gfortran.1
deleted file mode 100644
index 285fdafd7..000000000
--- a/gcc-4.9/gcc/doc/gfortran.1
+++ /dev/null
@@ -1,1411 +0,0 @@
-.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28)
-.\"
-.\" Standard preamble:
-.\" ========================================================================
-.de Sp \" Vertical space (when we can't use .PP)
-.if t .sp .5v
-.if n .sp
-..
-.de Vb \" Begin verbatim text
-.ft CW
-.nf
-.ne \\$1
-..
-.de Ve \" End verbatim text
-.ft R
-.fi
-..
-.\" Set up some character translations and predefined strings. \*(-- will
-.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
-.\" double quote, and \*(R" will give a right double quote. \*(C+ will
-.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
-.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
-.\" nothing in troff, for use with C<>.
-.tr \(*W-
-.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
-.ie n \{\
-. ds -- \(*W-
-. ds PI pi
-. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
-. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
-. ds L" ""
-. ds R" ""
-. ds C` ""
-. ds C' ""
-'br\}
-.el\{\
-. ds -- \|\(em\|
-. ds PI \(*p
-. ds L" ``
-. ds R" ''
-. ds C`
-. ds C'
-'br\}
-.\"
-.\" Escape single quotes in literal strings from groff's Unicode transform.
-.ie \n(.g .ds Aq \(aq
-.el .ds Aq '
-.\"
-.\" If the F register is turned on, we'll generate index entries on stderr for
-.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
-.\" entries marked with X<> in POD. Of course, you'll have to process the
-.\" output yourself in some meaningful fashion.
-.\"
-.\" Avoid warning from groff about undefined register 'F'.
-.de IX
-..
-.nr rF 0
-.if \n(.g .if rF .nr rF 1
-.if (\n(rF:(\n(.g==0)) \{
-. if \nF \{
-. de IX
-. tm Index:\\$1\t\\n%\t"\\$2"
-..
-. if !\nF==2 \{
-. nr % 0
-. nr F 2
-. \}
-. \}
-.\}
-.rr rF
-.\"
-.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
-.\" Fear. Run. Save yourself. No user-serviceable parts.
-. \" fudge factors for nroff and troff
-.if n \{\
-. ds #H 0
-. ds #V .8m
-. ds #F .3m
-. ds #[ \f1
-. ds #] \fP
-.\}
-.if t \{\
-. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
-. ds #V .6m
-. ds #F 0
-. ds #[ \&
-. ds #] \&
-.\}
-. \" simple accents for nroff and troff
-.if n \{\
-. ds ' \&
-. ds ` \&
-. ds ^ \&
-. ds , \&
-. ds ~ ~
-. ds /
-.\}
-.if t \{\
-. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
-. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
-. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
-. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
-. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
-. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
-.\}
-. \" troff and (daisy-wheel) nroff accents
-.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
-.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
-.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
-.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
-.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
-.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
-.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
-.ds ae a\h'-(\w'a'u*4/10)'e
-.ds Ae A\h'-(\w'A'u*4/10)'E
-. \" corrections for vroff
-.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
-.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
-. \" for low resolution devices (crt and lpr)
-.if \n(.H>23 .if \n(.V>19 \
-\{\
-. ds : e
-. ds 8 ss
-. ds o a
-. ds d- d\h'-1'\(ga
-. ds D- D\h'-1'\(hy
-. ds th \o'bp'
-. ds Th \o'LP'
-. ds ae ae
-. ds Ae AE
-.\}
-.rm #[ #] #H #V #F C
-.\" ========================================================================
-.\"
-.IX Title "GFORTRAN 1"
-.TH GFORTRAN 1 "2014-04-22" "gcc-4.9.0" "GNU"
-.\" For nroff, turn off justification. Always turn off hyphenation; it makes
-.\" way too many mistakes in technical documents.
-.if n .ad l
-.nh
-.SH "NAME"
-gfortran \- GNU Fortran compiler
-.SH "SYNOPSIS"
-.IX Header "SYNOPSIS"
-gfortran [\fB\-c\fR|\fB\-S\fR|\fB\-E\fR]
- [\fB\-g\fR] [\fB\-pg\fR] [\fB\-O\fR\fIlevel\fR]
- [\fB\-W\fR\fIwarn\fR...] [\fB\-pedantic\fR]
- [\fB\-I\fR\fIdir\fR...] [\fB\-L\fR\fIdir\fR...]
- [\fB\-D\fR\fImacro\fR[=\fIdefn\fR]...] [\fB\-U\fR\fImacro\fR]
- [\fB\-f\fR\fIoption\fR...]
- [\fB\-m\fR\fImachine-option\fR...]
- [\fB\-o\fR \fIoutfile\fR] \fIinfile\fR...
-.PP
-Only the most useful options are listed here; see below for the
-remainder.
-.SH "DESCRIPTION"
-.IX Header "DESCRIPTION"
-The \fBgfortran\fR command supports all the options supported by the
-\&\fBgcc\fR command. Only options specific to \s-1GNU\s0 Fortran are documented
-here.
-.PP
-All \s-1GCC\s0 and \s-1GNU\s0 Fortran options
-are accepted both by \fBgfortran\fR and by \fBgcc\fR
-(as well as any other drivers built at the same time,
-such as \fBg++\fR),
-since adding \s-1GNU\s0 Fortran to the \s-1GCC\s0 distribution
-enables acceptance of \s-1GNU\s0 Fortran options
-by all of the relevant drivers.
-.PP
-In some cases, options have positive and negative forms;
-the negative form of \fB\-ffoo\fR would be \fB\-fno\-foo\fR.
-This manual documents only one of these two forms, whichever
-one is not the default.
-.SH "OPTIONS"
-.IX Header "OPTIONS"
-Here is a summary of all the options specific to \s-1GNU\s0 Fortran, grouped
-by type. Explanations are in the following sections.
-.IP "\fIFortran Language Options\fR" 4
-.IX Item "Fortran Language Options"
-\&\fB\-fall\-intrinsics \-fbackslash \-fcray\-pointer \-fd\-lines\-as\-code
-\&\-fd\-lines\-as\-comments \-fdefault\-double\-8 \-fdefault\-integer\-8
-\&\-fdefault\-real\-8 \-fdollar\-ok \-ffixed\-line\-length\-\fR\fIn\fR
-\&\fB\-ffixed\-line\-length\-none \-ffree\-form \-ffree\-line\-length\-\fR\fIn\fR
-\&\fB\-ffree\-line\-length\-none \-fimplicit\-none \-finteger\-4\-integer\-8
-\&\-fmax\-identifier\-length \-fmodule\-private \-fno\-fixed\-form \-fno\-range\-check
-\&\-fopenmp \-freal\-4\-real\-10 \-freal\-4\-real\-16 \-freal\-4\-real\-8
-\&\-freal\-8\-real\-10 \-freal\-8\-real\-16 \-freal\-8\-real\-4 \-std=\fR\fIstd\fR\fB \fR
-.IP "\fIPreprocessing Options\fR" 4
-.IX Item "Preprocessing Options"
-\&\fB\-A\-\fR\fIquestion\fR[\fB=\fR\fIanswer\fR]
-\&\fB\-A\fR\fIquestion\fR\fB=\fR\fIanswer\fR \fB\-C \-CC \-D\fR\fImacro\fR[\fB=\fR\fIdefn\fR]
-\&\fB\-H \-P
-\&\-U\fR\fImacro\fR \fB\-cpp \-dD \-dI \-dM \-dN \-dU \-fworking\-directory
-\&\-imultilib\fR \fIdir\fR
-\&\fB\-iprefix\fR \fIfile\fR \fB\-iquote \-isysroot\fR \fIdir\fR \fB\-isystem\fR \fIdir\fR \fB\-nocpp
-\&\-nostdinc
-\&\-undef\fR
-.IP "\fIError and Warning Options\fR" 4
-.IX Item "Error and Warning Options"
-\&\fB\-Waliasing \-Wall \-Wampersand \-Warray\-bounds
-\&\-Wc\-binding\-type \-Wcharacter\-truncation
-\&\-Wconversion \-Wfunction\-elimination \-Wimplicit\-interface
-\&\-Wimplicit\-procedure \-Wintrinsic\-shadow \-Wintrinsics\-std
-\&\-Wline\-truncation \-Wno\-align\-commons \-Wno\-tabs \-Wreal\-q\-constant
-\&\-Wsurprising \-Wunderflow \-Wunused\-parameter \-Wrealloc\-lhs \-Wrealloc\-lhs\-all
-\&\-Wtarget\-lifetime \-fmax\-errors=\fR\fIn\fR \fB\-fsyntax\-only \-pedantic \-pedantic\-errors\fR
-.IP "\fIDebugging Options\fR" 4
-.IX Item "Debugging Options"
-\&\fB\-fbacktrace \-fdump\-fortran\-optimized \-fdump\-fortran\-original
-\&\-fdump\-parse\-tree \-ffpe\-trap=\fR\fIlist\fR \fB\-ffpe\-summary=\fR\fIlist\fR\fB \fR
-.IP "\fIDirectory Options\fR" 4
-.IX Item "Directory Options"
-\&\fB\-I\fR\fIdir\fR \fB\-J\fR\fIdir\fR \fB\-fintrinsic\-modules\-path\fR \fIdir\fR
-.IP "\fILink Options\fR" 4
-.IX Item "Link Options"
-\&\fB\-static\-libgfortran\fR
-.IP "\fIRuntime Options\fR" 4
-.IX Item "Runtime Options"
-\&\fB\-fconvert=\fR\fIconversion\fR \fB\-fmax\-subrecord\-length=\fR\fIlength\fR
-\&\fB\-frecord\-marker=\fR\fIlength\fR \fB\-fsign\-zero\fR
-.IP "\fICode Generation Options\fR" 4
-.IX Item "Code Generation Options"
-\&\fB\-faggressive\-function\-elimination \-fblas\-matmul\-limit=\fR\fIn\fR
-\&\fB\-fbounds\-check \-fcheck\-array\-temporaries
-\&\-fcheck=\fR\fI<all|array\-temps|bounds|do|mem|pointer|recursion>\fR
-\&\fB\-fcoarray=\fR\fI<none|single|lib>\fR \fB\-fexternal\-blas \-ff2c
-\&\-ffrontend\-optimize
-\&\-finit\-character=\fR\fIn\fR \fB\-finit\-integer=\fR\fIn\fR \fB\-finit\-local\-zero
-\&\-finit\-logical=\fR\fI<true|false>\fR
-\&\fB\-finit\-real=\fR\fI<zero|inf|\-inf|nan|snan>\fR
-\&\fB\-fmax\-array\-constructor=\fR\fIn\fR \fB\-fmax\-stack\-var\-size=\fR\fIn\fR
-\&\fB\-fno\-align\-commons
-\&\-fno\-automatic \-fno\-protect\-parens \-fno\-underscoring
-\&\-fsecond\-underscore \-fpack\-derived \-frealloc\-lhs \-frecursive
-\&\-frepack\-arrays \-fshort\-enums \-fstack\-arrays\fR
-.SS "Options controlling Fortran dialect"
-.IX Subsection "Options controlling Fortran dialect"
-The following options control the details of the Fortran dialect
-accepted by the compiler:
-.IP "\fB\-ffree\-form\fR" 4
-.IX Item "-ffree-form"
-.PD 0
-.IP "\fB\-ffixed\-form\fR" 4
-.IX Item "-ffixed-form"
-.PD
-Specify the layout used by the source file. The free form layout
-was introduced in Fortran 90. Fixed form was traditionally used in
-older Fortran programs. When neither option is specified, the source
-form is determined by the file extension.
-.IP "\fB\-fall\-intrinsics\fR" 4
-.IX Item "-fall-intrinsics"
-This option causes all intrinsic procedures (including the GNU-specific
-extensions) to be accepted. This can be useful with \fB\-std=f95\fR to
-force standard-compliance but get access to the full range of intrinsics
-available with \fBgfortran\fR. As a consequence, \fB\-Wintrinsics\-std\fR
-will be ignored and no user-defined procedure with the same name as any
-intrinsic will be called except when it is explicitly declared \f(CW\*(C`EXTERNAL\*(C'\fR.
-.IP "\fB\-fd\-lines\-as\-code\fR" 4
-.IX Item "-fd-lines-as-code"
-.PD 0
-.IP "\fB\-fd\-lines\-as\-comments\fR" 4
-.IX Item "-fd-lines-as-comments"
-.PD
-Enable special treatment for lines beginning with \f(CW\*(C`d\*(C'\fR or \f(CW\*(C`D\*(C'\fR
-in fixed form sources. If the \fB\-fd\-lines\-as\-code\fR option is
-given they are treated as if the first column contained a blank. If the
-\&\fB\-fd\-lines\-as\-comments\fR option is given, they are treated as
-comment lines.
-.IP "\fB\-fdollar\-ok\fR" 4
-.IX Item "-fdollar-ok"
-Allow \fB$\fR as a valid non-first character in a symbol name. Symbols
-that start with \fB$\fR are rejected since it is unclear which rules to
-apply to implicit typing as different vendors implement different rules.
-Using \fB$\fR in \f(CW\*(C`IMPLICIT\*(C'\fR statements is also rejected.
-.IP "\fB\-fbackslash\fR" 4
-.IX Item "-fbackslash"
-Change the interpretation of backslashes in string literals from a single
-backslash character to \*(L"C\-style\*(R" escape characters. The following
-combinations are expanded \f(CW\*(C`\ea\*(C'\fR, \f(CW\*(C`\eb\*(C'\fR, \f(CW\*(C`\ef\*(C'\fR, \f(CW\*(C`\en\*(C'\fR,
-\&\f(CW\*(C`\er\*(C'\fR, \f(CW\*(C`\et\*(C'\fR, \f(CW\*(C`\ev\*(C'\fR, \f(CW\*(C`\e\e\*(C'\fR, and \f(CW\*(C`\e0\*(C'\fR to the \s-1ASCII\s0
-characters alert, backspace, form feed, newline, carriage return,
-horizontal tab, vertical tab, backslash, and \s-1NUL,\s0 respectively.
-Additionally, \f(CW\*(C`\ex\*(C'\fR\fInn\fR, \f(CW\*(C`\eu\*(C'\fR\fInnnn\fR and
-\&\f(CW\*(C`\eU\*(C'\fR\fInnnnnnnn\fR (where each \fIn\fR is a hexadecimal digit) are
-translated into the Unicode characters corresponding to the specified code
-points. All other combinations of a character preceded by \e are
-unexpanded.
-.IP "\fB\-fmodule\-private\fR" 4
-.IX Item "-fmodule-private"
-Set the default accessibility of module entities to \f(CW\*(C`PRIVATE\*(C'\fR.
-Use-associated entities will not be accessible unless they are explicitly
-declared as \f(CW\*(C`PUBLIC\*(C'\fR.
-.IP "\fB\-ffixed\-line\-length\-\fR\fIn\fR" 4
-.IX Item "-ffixed-line-length-n"
-Set column after which characters are ignored in typical fixed-form
-lines in the source file, and through which spaces are assumed (as
-if padded to that length) after the ends of short fixed-form lines.
-.Sp
-Popular values for \fIn\fR include 72 (the
-standard and the default), 80 (card image), and 132 (corresponding
-to \*(L"extended-source\*(R" options in some popular compilers).
-\&\fIn\fR may also be \fBnone\fR, meaning that the entire line is meaningful
-and that continued character constants never have implicit spaces appended
-to them to fill out the line.
-\&\fB\-ffixed\-line\-length\-0\fR means the same thing as
-\&\fB\-ffixed\-line\-length\-none\fR.
-.IP "\fB\-ffree\-line\-length\-\fR\fIn\fR" 4
-.IX Item "-ffree-line-length-n"
-Set column after which characters are ignored in typical free-form
-lines in the source file. The default value is 132.
-\&\fIn\fR may be \fBnone\fR, meaning that the entire line is meaningful.
-\&\fB\-ffree\-line\-length\-0\fR means the same thing as
-\&\fB\-ffree\-line\-length\-none\fR.
-.IP "\fB\-fmax\-identifier\-length=\fR\fIn\fR" 4
-.IX Item "-fmax-identifier-length=n"
-Specify the maximum allowed identifier length. Typical values are
-31 (Fortran 95) and 63 (Fortran 2003 and Fortran 2008).
-.IP "\fB\-fimplicit\-none\fR" 4
-.IX Item "-fimplicit-none"
-Specify that no implicit typing is allowed, unless overridden by explicit
-\&\f(CW\*(C`IMPLICIT\*(C'\fR statements. This is the equivalent of adding
-\&\f(CW\*(C`implicit none\*(C'\fR to the start of every procedure.
-.IP "\fB\-fcray\-pointer\fR" 4
-.IX Item "-fcray-pointer"
-Enable the Cray pointer extension, which provides C\-like pointer
-functionality.
-.IP "\fB\-fopenmp\fR" 4
-.IX Item "-fopenmp"
-Enable the OpenMP extensions. This includes OpenMP \f(CW\*(C`!$omp\*(C'\fR directives
-in free form
-and \f(CW\*(C`c$omp\*(C'\fR, \f(CW*$omp\fR and \f(CW\*(C`!$omp\*(C'\fR directives in fixed form,
-\&\f(CW\*(C`!$\*(C'\fR conditional compilation sentinels in free form
-and \f(CW\*(C`c$\*(C'\fR, \f(CW\*(C`*$\*(C'\fR and \f(CW\*(C`!$\*(C'\fR sentinels in fixed form,
-and when linking arranges for the OpenMP runtime library to be linked
-in. The option \fB\-fopenmp\fR implies \fB\-frecursive\fR.
-.IP "\fB\-fno\-range\-check\fR" 4
-.IX Item "-fno-range-check"
-Disable range checking on results of simplification of constant
-expressions during compilation. For example, \s-1GNU\s0 Fortran will give
-an error at compile time when simplifying \f(CW\*(C`a = 1. / 0\*(C'\fR.
-With this option, no error will be given and \f(CW\*(C`a\*(C'\fR will be assigned
-the value \f(CW\*(C`+Infinity\*(C'\fR. If an expression evaluates to a value
-outside of the relevant range of [\f(CW\*(C`\-HUGE()\*(C'\fR:\f(CW\*(C`HUGE()\*(C'\fR],
-then the expression will be replaced by \f(CW\*(C`\-Inf\*(C'\fR or \f(CW\*(C`+Inf\*(C'\fR
-as appropriate.
-Similarly, \f(CW\*(C`DATA i/Z\*(AqFFFFFFFF\*(Aq/\*(C'\fR will result in an integer overflow
-on most systems, but with \fB\-fno\-range\-check\fR the value will
-\&\*(L"wrap around\*(R" and \f(CW\*(C`i\*(C'\fR will be initialized to \-1 instead.
-.IP "\fB\-fdefault\-integer\-8\fR" 4
-.IX Item "-fdefault-integer-8"
-Set the default integer and logical types to an 8 byte wide type. This option
-also affects the kind of integer constants like \f(CW42\fR. Unlike
-\&\fB\-finteger\-4\-integer\-8\fR, it does not promote variables with explicit
-kind declaration.
-.IP "\fB\-fdefault\-real\-8\fR" 4
-.IX Item "-fdefault-real-8"
-Set the default real type to an 8 byte wide type. This option also affects
-the kind of non-double real constants like \f(CW1.0\fR, and does promote
-the default width of \f(CW\*(C`DOUBLE PRECISION\*(C'\fR to 16 bytes if possible, unless
-\&\f(CW\*(C`\-fdefault\-double\-8\*(C'\fR is given, too. Unlike \fB\-freal\-4\-real\-8\fR,
-it does not promote variables with explicit kind declaration.
-.IP "\fB\-fdefault\-double\-8\fR" 4
-.IX Item "-fdefault-double-8"
-Set the \f(CW\*(C`DOUBLE PRECISION\*(C'\fR type to an 8 byte wide type. Do nothing if this
-is already the default. If \fB\-fdefault\-real\-8\fR is given,
-\&\f(CW\*(C`DOUBLE PRECISION\*(C'\fR would instead be promoted to 16 bytes if possible, and
-\&\fB\-fdefault\-double\-8\fR can be used to prevent this. The kind of real
-constants like \f(CW\*(C`1.d0\*(C'\fR will not be changed by \fB\-fdefault\-real\-8\fR
-though, so also \fB\-fdefault\-double\-8\fR does not affect it.
-.IP "\fB\-finteger\-4\-integer\-8\fR" 4
-.IX Item "-finteger-4-integer-8"
-Promote all \f(CW\*(C`INTEGER(KIND=4)\*(C'\fR entities to an \f(CW\*(C`INTEGER(KIND=8)\*(C'\fR
-entities. If \f(CW\*(C`KIND=8\*(C'\fR is unavailable, then an error will be issued.
-This option should be used with care and may not be suitable for your codes.
-Areas of possible concern include calls to external procedures,
-alignment in \f(CW\*(C`EQUIVALENCE\*(C'\fR and/or \f(CW\*(C`COMMON\*(C'\fR, generic interfaces,
-\&\s-1BOZ\s0 literal constant conversion, and I/O. Inspection of the intermediate
-representation of the translated Fortran code, produced by
-\&\fB\-fdump\-tree\-original\fR, is suggested.
-.IP "\fB\-freal\-4\-real\-8\fR" 4
-.IX Item "-freal-4-real-8"
-.PD 0
-.IP "\fB\-freal\-4\-real\-10\fR" 4
-.IX Item "-freal-4-real-10"
-.IP "\fB\-freal\-4\-real\-16\fR" 4
-.IX Item "-freal-4-real-16"
-.IP "\fB\-freal\-8\-real\-4\fR" 4
-.IX Item "-freal-8-real-4"
-.IP "\fB\-freal\-8\-real\-10\fR" 4
-.IX Item "-freal-8-real-10"
-.IP "\fB\-freal\-8\-real\-16\fR" 4
-.IX Item "-freal-8-real-16"
-.PD
-Promote all \f(CW\*(C`REAL(KIND=M)\*(C'\fR entities to \f(CW\*(C`REAL(KIND=N)\*(C'\fR entities.
-If \f(CW\*(C`REAL(KIND=N)\*(C'\fR is unavailable, then an error will be issued.
-All other real kind types are unaffected by this option.
-These options should be used with care and may not be suitable for your
-codes. Areas of possible concern include calls to external procedures,
-alignment in \f(CW\*(C`EQUIVALENCE\*(C'\fR and/or \f(CW\*(C`COMMON\*(C'\fR, generic interfaces,
-\&\s-1BOZ\s0 literal constant conversion, and I/O. Inspection of the intermediate
-representation of the translated Fortran code, produced by
-\&\fB\-fdump\-tree\-original\fR, is suggested.
-.IP "\fB\-std=\fR\fIstd\fR" 4
-.IX Item "-std=std"
-Specify the standard to which the program is expected to conform, which
-may be one of \fBf95\fR, \fBf2003\fR, \fBf2008\fR, \fBgnu\fR, or
-\&\fBlegacy\fR. The default value for \fIstd\fR is \fBgnu\fR, which
-specifies a superset of the Fortran 95 standard that includes all of the
-extensions supported by \s-1GNU\s0 Fortran, although warnings will be given for
-obsolete extensions not recommended for use in new code. The
-\&\fBlegacy\fR value is equivalent but without the warnings for obsolete
-extensions, and may be useful for old non-standard programs. The
-\&\fBf95\fR, \fBf2003\fR and \fBf2008\fR values specify strict
-conformance to the Fortran 95, Fortran 2003 and Fortran 2008 standards,
-respectively; errors are given for all extensions beyond the relevant
-language standard, and warnings are given for the Fortran 77 features
-that are permitted but obsolescent in later standards. \fB\-std=f2008ts\fR
-allows the Fortran 2008 standard including the additions of the
-Technical Specification (\s-1TS\s0) 29113 on Further Interoperability of Fortran
-with C.
-.SS "Enable and customize preprocessing"
-.IX Subsection "Enable and customize preprocessing"
-Preprocessor related options. See section
-\&\fBPreprocessing and conditional compilation\fR for more detailed
-information on preprocessing in \fBgfortran\fR.
-.IP "\fB\-cpp\fR" 4
-.IX Item "-cpp"
-.PD 0
-.IP "\fB\-nocpp\fR" 4
-.IX Item "-nocpp"
-.PD
-Enable preprocessing. The preprocessor is automatically invoked if
-the file extension is \fI.fpp\fR, \fI.FPP\fR, \fI.F\fR, \fI.FOR\fR,
-\&\fI.FTN\fR, \fI.F90\fR, \fI.F95\fR, \fI.F03\fR or \fI.F08\fR. Use
-this option to manually enable preprocessing of any kind of Fortran file.
-.Sp
-To disable preprocessing of files with any of the above listed extensions,
-use the negative form: \fB\-nocpp\fR.
-.Sp
-The preprocessor is run in traditional mode. Any restrictions of the
-file-format, especially the limits on line length, apply for
-preprocessed output as well, so it might be advisable to use the
-\&\fB\-ffree\-line\-length\-none\fR or \fB\-ffixed\-line\-length\-none\fR
-options.
-.IP "\fB\-dM\fR" 4
-.IX Item "-dM"
-Instead of the normal output, generate a list of \f(CW\*(Aq#define\*(Aq\fR
-directives for all the macros defined during the execution of the
-preprocessor, including predefined macros. This gives you a way
-of finding out what is predefined in your version of the preprocessor.
-Assuming you have no file \fIfoo.f90\fR, the command
-.Sp
-.Vb 1
-\& touch foo.f90; gfortran \-cpp \-E \-dM foo.f90
-.Ve
-.Sp
-will show all the predefined macros.
-.IP "\fB\-dD\fR" 4
-.IX Item "-dD"
-Like \fB\-dM\fR except in two respects: it does not include the
-predefined macros, and it outputs both the \f(CW\*(C`#define\*(C'\fR directives
-and the result of preprocessing. Both kinds of output go to the
-standard output file.
-.IP "\fB\-dN\fR" 4
-.IX Item "-dN"
-Like \fB\-dD\fR, but emit only the macro names, not their expansions.
-.IP "\fB\-dU\fR" 4
-.IX Item "-dU"
-Like \fBdD\fR except that only macros that are expanded, or whose
-definedness is tested in preprocessor directives, are output; the
-output is delayed until the use or test of the macro; and \f(CW\*(Aq#undef\*(Aq\fR
-directives are also output for macros tested but undefined at the time.
-.IP "\fB\-dI\fR" 4
-.IX Item "-dI"
-Output \f(CW\*(Aq#include\*(Aq\fR directives in addition to the result
-of preprocessing.
-.IP "\fB\-fworking\-directory\fR" 4
-.IX Item "-fworking-directory"
-Enable generation of linemarkers in the preprocessor output that will
-let the compiler know the current working directory at the time of
-preprocessing. When this option is enabled, the preprocessor will emit,
-after the initial linemarker, a second linemarker with the current
-working directory followed by two slashes. \s-1GCC\s0 will use this directory,
-when it is present in the preprocessed input, as the directory emitted
-as the current working directory in some debugging information formats.
-This option is implicitly enabled if debugging information is enabled,
-but this can be inhibited with the negated form
-\&\fB\-fno\-working\-directory\fR. If the \fB\-P\fR flag is present
-in the command line, this option has no effect, since no \f(CW\*(C`#line\*(C'\fR
-directives are emitted whatsoever.
-.IP "\fB\-idirafter\fR \fIdir\fR" 4
-.IX Item "-idirafter dir"
-Search \fIdir\fR for include files, but do it after all directories
-specified with \fB\-I\fR and the standard system directories have
-been exhausted. \fIdir\fR is treated as a system include directory.
-If dir begins with \f(CW\*(C`=\*(C'\fR, then the \f(CW\*(C`=\*(C'\fR will be replaced by
-the sysroot prefix; see \fB\-\-sysroot\fR and \fB\-isysroot\fR.
-.IP "\fB\-imultilib\fR \fIdir\fR" 4
-.IX Item "-imultilib dir"
-Use \fIdir\fR as a subdirectory of the directory containing target-specific
-\&\*(C+ headers.
-.IP "\fB\-iprefix\fR \fIprefix\fR" 4
-.IX Item "-iprefix prefix"
-Specify \fIprefix\fR as the prefix for subsequent \fB\-iwithprefix\fR
-options. If the \fIprefix\fR represents a directory, you should include
-the final \f(CW\*(Aq/\*(Aq\fR.
-.IP "\fB\-isysroot\fR \fIdir\fR" 4
-.IX Item "-isysroot dir"
-This option is like the \fB\-\-sysroot\fR option, but applies only to
-header files. See the \fB\-\-sysroot\fR option for more information.
-.IP "\fB\-iquote\fR \fIdir\fR" 4
-.IX Item "-iquote dir"
-Search \fIdir\fR only for header files requested with \f(CW\*(C`#include "file"\*(C'\fR;
-they are not searched for \f(CW\*(C`#include <file>\*(C'\fR, before all directories
-specified by \fB\-I\fR and before the standard system directories. If
-\&\fIdir\fR begins with \f(CW\*(C`=\*(C'\fR, then the \f(CW\*(C`=\*(C'\fR will be replaced by the
-sysroot prefix; see \fB\-\-sysroot\fR and \fB\-isysroot\fR.
-.IP "\fB\-isystem\fR \fIdir\fR" 4
-.IX Item "-isystem dir"
-Search \fIdir\fR for header files, after all directories specified by
-\&\fB\-I\fR but before the standard system directories. Mark it as a
-system directory, so that it gets the same special treatment as is
-applied to the standard system directories. If \fIdir\fR begins with
-\&\f(CW\*(C`=\*(C'\fR, then the \f(CW\*(C`=\*(C'\fR will be replaced by the sysroot prefix;
-see \fB\-\-sysroot\fR and \fB\-isysroot\fR.
-.IP "\fB\-nostdinc\fR" 4
-.IX Item "-nostdinc"
-Do not search the standard system directories for header files. Only
-the directories you have specified with \fB\-I\fR options (and the
-directory of the current file, if appropriate) are searched.
-.IP "\fB\-undef\fR" 4
-.IX Item "-undef"
-Do not predefine any system-specific or GCC-specific macros.
-The standard predefined macros remain defined.
-.IP "\fB\-A\fR\fIpredicate\fR\fB=\fR\fIanswer\fR" 4
-.IX Item "-Apredicate=answer"
-Make an assertion with the predicate \fIpredicate\fR and answer \fIanswer\fR.
-This form is preferred to the older form \-A predicate(answer), which is still
-supported, because it does not use shell special characters.
-.IP "\fB\-A\-\fR\fIpredicate\fR\fB=\fR\fIanswer\fR" 4
-.IX Item "-A-predicate=answer"
-Cancel an assertion with the predicate \fIpredicate\fR and answer \fIanswer\fR.
-.IP "\fB\-C\fR" 4
-.IX Item "-C"
-Do not discard comments. All comments are passed through to the output
-file, except for comments in processed directives, which are deleted
-along with the directive.
-.Sp
-You should be prepared for side effects when using \fB\-C\fR; it causes
-the preprocessor to treat comments as tokens in their own right. For example,
-comments appearing at the start of what would be a directive line have the
-effect of turning that line into an ordinary source line, since the first
-token on the line is no longer a \f(CW\*(Aq#\*(Aq\fR.
-.Sp
-Warning: this currently handles C\-Style comments only. The preprocessor
-does not yet recognize Fortran-style comments.
-.IP "\fB\-CC\fR" 4
-.IX Item "-CC"
-Do not discard comments, including during macro expansion. This is like
-\&\fB\-C\fR, except that comments contained within macros are also passed
-through to the output file where the macro is expanded.
-.Sp
-In addition to the side-effects of the \fB\-C\fR option, the \fB\-CC\fR
-option causes all \*(C+\-style comments inside a macro to be converted to C\-style
-comments. This is to prevent later use of that macro from inadvertently
-commenting out the remainder of the source line. The \fB\-CC\fR option
-is generally used to support lint comments.
-.Sp
-Warning: this currently handles C\- and \*(C+\-Style comments only. The
-preprocessor does not yet recognize Fortran-style comments.
-.IP "\fB\-D\fR\fIname\fR" 4
-.IX Item "-Dname"
-Predefine name as a macro, with definition \f(CW1\fR.
-.IP "\fB\-D\fR\fIname\fR\fB=\fR\fIdefinition\fR" 4
-.IX Item "-Dname=definition"
-The contents of \fIdefinition\fR are tokenized and processed as if they
-appeared during translation phase three in a \f(CW\*(Aq#define\*(Aq\fR directive.
-In particular, the definition will be truncated by embedded newline
-characters.
-.Sp
-If you are invoking the preprocessor from a shell or shell-like program
-you may need to use the shell's quoting syntax to protect characters such
-as spaces that have a meaning in the shell syntax.
-.Sp
-If you wish to define a function-like macro on the command line, write
-its argument list with surrounding parentheses before the equals sign
-(if any). Parentheses are meaningful to most shells, so you will need
-to quote the option. With sh and csh, \f(CW\*(C`\-D\*(Aqname(args...)=definition\*(Aq\*(C'\fR
-works.
-.Sp
-\&\fB\-D\fR and \fB\-U\fR options are processed in the order they are
-given on the command line. All \-imacros file and \-include file options
-are processed after all \-D and \-U options.
-.IP "\fB\-H\fR" 4
-.IX Item "-H"
-Print the name of each header file used, in addition to other normal
-activities. Each name is indented to show how deep in the \f(CW\*(Aq#include\*(Aq\fR
-stack it is.
-.IP "\fB\-P\fR" 4
-.IX Item "-P"
-Inhibit generation of linemarkers in the output from the preprocessor.
-This might be useful when running the preprocessor on something that
-is not C code, and will be sent to a program which might be confused
-by the linemarkers.
-.IP "\fB\-U\fR\fIname\fR" 4
-.IX Item "-Uname"
-Cancel any previous definition of \fIname\fR, either built in or provided
-with a \fB\-D\fR option.
-.SS "Options to request or suppress errors and warnings"
-.IX Subsection "Options to request or suppress errors and warnings"
-Errors are diagnostic messages that report that the \s-1GNU\s0 Fortran compiler
-cannot compile the relevant piece of source code. The compiler will
-continue to process the program in an attempt to report further errors
-to aid in debugging, but will not produce any compiled output.
-.PP
-Warnings are diagnostic messages that report constructions which
-are not inherently erroneous but which are risky or suggest there is
-likely to be a bug in the program. Unless \fB\-Werror\fR is specified,
-they do not prevent compilation of the program.
-.PP
-You can request many specific warnings with options beginning \fB\-W\fR,
-for example \fB\-Wimplicit\fR to request warnings on implicit
-declarations. Each of these specific warning options also has a
-negative form beginning \fB\-Wno\-\fR to turn off warnings;
-for example, \fB\-Wno\-implicit\fR. This manual lists only one of the
-two forms, whichever is not the default.
-.PP
-These options control the amount and kinds of errors and warnings produced
-by \s-1GNU\s0 Fortran:
-.IP "\fB\-fmax\-errors=\fR\fIn\fR" 4
-.IX Item "-fmax-errors=n"
-Limits the maximum number of error messages to \fIn\fR, at which point
-\&\s-1GNU\s0 Fortran bails out rather than attempting to continue processing the
-source code. If \fIn\fR is 0, there is no limit on the number of error
-messages produced.
-.IP "\fB\-fsyntax\-only\fR" 4
-.IX Item "-fsyntax-only"
-Check the code for syntax errors, but do not actually compile it. This
-will generate module files for each module present in the code, but no
-other output file.
-.IP "\fB\-pedantic\fR" 4
-.IX Item "-pedantic"
-Issue warnings for uses of extensions to Fortran 95.
-\&\fB\-pedantic\fR also applies to C\-language constructs where they
-occur in \s-1GNU\s0 Fortran source files, such as use of \fB\ee\fR in a
-character constant within a directive like \f(CW\*(C`#include\*(C'\fR.
-.Sp
-Valid Fortran 95 programs should compile properly with or without
-this option.
-However, without this option, certain \s-1GNU\s0 extensions and traditional
-Fortran features are supported as well.
-With this option, many of them are rejected.
-.Sp
-Some users try to use \fB\-pedantic\fR to check programs for conformance.
-They soon find that it does not do quite what they want\-\-\-it finds some
-nonstandard practices, but not all.
-However, improvements to \s-1GNU\s0 Fortran in this area are welcome.
-.Sp
-This should be used in conjunction with \fB\-std=f95\fR,
-\&\fB\-std=f2003\fR or \fB\-std=f2008\fR.
-.IP "\fB\-pedantic\-errors\fR" 4
-.IX Item "-pedantic-errors"
-Like \fB\-pedantic\fR, except that errors are produced rather than
-warnings.
-.IP "\fB\-Wall\fR" 4
-.IX Item "-Wall"
-Enables commonly used warning options pertaining to usage that
-we recommend avoiding and that we believe are easy to avoid.
-This currently includes \fB\-Waliasing\fR, \fB\-Wampersand\fR,
-\&\fB\-Wconversion\fR, \fB\-Wsurprising\fR, \fB\-Wc\-binding\-type\fR,
-\&\fB\-Wintrinsics\-std\fR, \fB\-Wno\-tabs\fR, \fB\-Wintrinsic\-shadow\fR,
-\&\fB\-Wline\-truncation\fR, \fB\-Wtarget\-lifetime\fR,
-\&\fB\-Wreal\-q\-constant\fR and \fB\-Wunused\fR.
-.IP "\fB\-Waliasing\fR" 4
-.IX Item "-Waliasing"
-Warn about possible aliasing of dummy arguments. Specifically, it warns
-if the same actual argument is associated with a dummy argument with
-\&\f(CW\*(C`INTENT(IN)\*(C'\fR and a dummy argument with \f(CW\*(C`INTENT(OUT)\*(C'\fR in a call
-with an explicit interface.
-.Sp
-The following example will trigger the warning.
-.Sp
-.Vb 7
-\& interface
-\& subroutine bar(a,b)
-\& integer, intent(in) :: a
-\& integer, intent(out) :: b
-\& end subroutine
-\& end interface
-\& integer :: a
-\&
-\& call bar(a,a)
-.Ve
-.IP "\fB\-Wampersand\fR" 4
-.IX Item "-Wampersand"
-Warn about missing ampersand in continued character constants. The warning is
-given with \fB\-Wampersand\fR, \fB\-pedantic\fR, \fB\-std=f95\fR,
-\&\fB\-std=f2003\fR and \fB\-std=f2008\fR. Note: With no ampersand
-given in a continued character constant, \s-1GNU\s0 Fortran assumes continuation
-at the first non-comment, non-whitespace character after the ampersand
-that initiated the continuation.
-.IP "\fB\-Warray\-temporaries\fR" 4
-.IX Item "-Warray-temporaries"
-Warn about array temporaries generated by the compiler. The information
-generated by this warning is sometimes useful in optimization, in order to
-avoid such temporaries.
-.IP "\fB\-Wc\-binding\-type\fR" 4
-.IX Item "-Wc-binding-type"
-Warn if the a variable might not be C interoperable. In particular, warn if
-the variable has been declared using an intrinsic type with default kind
-instead of using a kind parameter defined for C interoperability in the
-intrinsic \f(CW\*(C`ISO_C_Binding\*(C'\fR module. This option is implied by
-\&\fB\-Wall\fR.
-.IP "\fB\-Wcharacter\-truncation\fR" 4
-.IX Item "-Wcharacter-truncation"
-Warn when a character assignment will truncate the assigned string.
-.IP "\fB\-Wline\-truncation\fR" 4
-.IX Item "-Wline-truncation"
-Warn when a source code line will be truncated. This option is
-implied by \fB\-Wall\fR.
-.IP "\fB\-Wconversion\fR" 4
-.IX Item "-Wconversion"
-Warn about implicit conversions that are likely to change the value of
-the expression after conversion. Implied by \fB\-Wall\fR.
-.IP "\fB\-Wconversion\-extra\fR" 4
-.IX Item "-Wconversion-extra"
-Warn about implicit conversions between different types and kinds.
-.IP "\fB\-Wextra\fR" 4
-.IX Item "-Wextra"
-Enables some warning options for usages of language features which
-may be problematic. This currently includes \fB\-Wcompare\-reals\fR
-and \fB\-Wunused\-parameter\fR.
-.IP "\fB\-Wimplicit\-interface\fR" 4
-.IX Item "-Wimplicit-interface"
-Warn if a procedure is called without an explicit interface.
-Note this only checks that an explicit interface is present. It does not
-check that the declared interfaces are consistent across program units.
-.IP "\fB\-Wimplicit\-procedure\fR" 4
-.IX Item "-Wimplicit-procedure"
-Warn if a procedure is called that has neither an explicit interface
-nor has been declared as \f(CW\*(C`EXTERNAL\*(C'\fR.
-.IP "\fB\-Wintrinsics\-std\fR" 4
-.IX Item "-Wintrinsics-std"
-Warn if \fBgfortran\fR finds a procedure named like an intrinsic not
-available in the currently selected standard (with \fB\-std\fR) and treats
-it as \f(CW\*(C`EXTERNAL\*(C'\fR procedure because of this. \fB\-fall\-intrinsics\fR can
-be used to never trigger this behavior and always link to the intrinsic
-regardless of the selected standard.
-.IP "\fB\-Wreal\-q\-constant\fR" 4
-.IX Item "-Wreal-q-constant"
-Produce a warning if a real-literal-constant contains a \f(CW\*(C`q\*(C'\fR
-exponent-letter.
-.IP "\fB\-Wsurprising\fR" 4
-.IX Item "-Wsurprising"
-Produce a warning when \*(L"suspicious\*(R" code constructs are encountered.
-While technically legal these usually indicate that an error has been made.
-.Sp
-This currently produces a warning under the following circumstances:
-.RS 4
-.IP "\(bu" 4
-An \s-1INTEGER SELECT\s0 construct has a \s-1CASE\s0 that can never be matched as its
-lower value is greater than its upper value.
-.IP "\(bu" 4
-A \s-1LOGICAL SELECT\s0 construct has three \s-1CASE\s0 statements.
-.IP "\(bu" 4
-A \s-1TRANSFER\s0 specifies a source that is shorter than the destination.
-.IP "\(bu" 4
-The type of a function result is declared more than once with the same type. If
-\&\fB\-pedantic\fR or standard-conforming mode is enabled, this is an error.
-.IP "\(bu" 4
-A \f(CW\*(C`CHARACTER\*(C'\fR variable is declared with negative length.
-.RE
-.RS 4
-.RE
-.IP "\fB\-Wtabs\fR" 4
-.IX Item "-Wtabs"
-By default, tabs are accepted as whitespace, but tabs are not members
-of the Fortran Character Set. For continuation lines, a tab followed
-by a digit between 1 and 9 is supported. \fB\-Wno\-tabs\fR will cause
-a warning to be issued if a tab is encountered. Note, \fB\-Wno\-tabs\fR
-is active for \fB\-pedantic\fR, \fB\-std=f95\fR, \fB\-std=f2003\fR,
-\&\fB\-std=f2008\fR and \fB\-Wall\fR.
-.IP "\fB\-Wunderflow\fR" 4
-.IX Item "-Wunderflow"
-Produce a warning when numerical constant expressions are
-encountered, which yield an \s-1UNDERFLOW\s0 during compilation.
-.IP "\fB\-Wintrinsic\-shadow\fR" 4
-.IX Item "-Wintrinsic-shadow"
-Warn if a user-defined procedure or module procedure has the same name as an
-intrinsic; in this case, an explicit interface or \f(CW\*(C`EXTERNAL\*(C'\fR or
-\&\f(CW\*(C`INTRINSIC\*(C'\fR declaration might be needed to get calls later resolved to
-the desired intrinsic/procedure. This option is implied by \fB\-Wall\fR.
-.IP "\fB\-Wunused\-dummy\-argument\fR" 4
-.IX Item "-Wunused-dummy-argument"
-Warn about unused dummy arguments. This option is implied by \fB\-Wall\fR.
-.IP "\fB\-Wunused\-parameter\fR" 4
-.IX Item "-Wunused-parameter"
-Contrary to \fBgcc\fR's meaning of \fB\-Wunused\-parameter\fR,
-\&\fBgfortran\fR's implementation of this option does not warn
-about unused dummy arguments (see \fB\-Wunused\-dummy\-argument\fR),
-but about unused \f(CW\*(C`PARAMETER\*(C'\fR values. \fB\-Wunused\-parameter\fR
-is not included in \fB\-Wall\fR but is implied by \fB\-Wall \-Wextra\fR.
-.IP "\fB\-Walign\-commons\fR" 4
-.IX Item "-Walign-commons"
-By default, \fBgfortran\fR warns about any occasion of variables being
-padded for proper alignment inside a \f(CW\*(C`COMMON\*(C'\fR block. This warning can be turned
-off via \fB\-Wno\-align\-commons\fR. See also \fB\-falign\-commons\fR.
-.IP "\fB\-Wfunction\-elimination\fR" 4
-.IX Item "-Wfunction-elimination"
-Warn if any calls to functions are eliminated by the optimizations
-enabled by the \fB\-ffrontend\-optimize\fR option.
-.IP "\fB\-Wrealloc\-lhs\fR" 4
-.IX Item "-Wrealloc-lhs"
-Warn when the compiler might insert code to for allocation or reallocation of
-an allocatable array variable of intrinsic type in intrinsic assignments. In
-hot loops, the Fortran 2003 reallocation feature may reduce the performance.
-If the array is already allocated with the correct shape, consider using a
-whole-array array-spec (e.g. \f(CW\*(C`(:,:,:)\*(C'\fR) for the variable on the left-hand
-side to prevent the reallocation check. Note that in some cases the warning
-is shown, even if the compiler will optimize reallocation checks away. For
-instance, when the right-hand side contains the same variable multiplied by
-a scalar. See also \fB\-frealloc\-lhs\fR.
-.IP "\fB\-Wrealloc\-lhs\-all\fR" 4
-.IX Item "-Wrealloc-lhs-all"
-Warn when the compiler inserts code to for allocation or reallocation of an
-allocatable variable; this includes scalars and derived types.
-.IP "\fB\-Wcompare\-reals\fR" 4
-.IX Item "-Wcompare-reals"
-Warn when comparing real or complex types for equality or inequality.
-This option is implied by \fB\-Wextra\fR.
-.IP "\fB\-Wtarget\-lifetime\fR" 4
-.IX Item "-Wtarget-lifetime"
-Warn if the pointer in a pointer assignment might be longer than the its
-target. This option is implied by \fB\-Wall\fR.
-.IP "\fB\-Wzerotrip\fR" 4
-.IX Item "-Wzerotrip"
-Warn if a \f(CW\*(C`DO\*(C'\fR loop is known to execute zero times at compile
-time. This option is implied by \fB\-Wall\fR.
-.IP "\fB\-Werror\fR" 4
-.IX Item "-Werror"
-Turns all warnings into errors.
-.PP
-Some of these have no effect when compiling programs written in Fortran.
-.SS "Options for debugging your program or \s-1GNU\s0 Fortran"
-.IX Subsection "Options for debugging your program or GNU Fortran"
-\&\s-1GNU\s0 Fortran has various special options that are used for debugging
-either your program or the \s-1GNU\s0 Fortran compiler.
-.IP "\fB\-fdump\-fortran\-original\fR" 4
-.IX Item "-fdump-fortran-original"
-Output the internal parse tree after translating the source program
-into internal representation. Only really useful for debugging the
-\&\s-1GNU\s0 Fortran compiler itself.
-.IP "\fB\-fdump\-fortran\-optimized\fR" 4
-.IX Item "-fdump-fortran-optimized"
-Output the parse tree after front-end optimization. Only really
-useful for debugging the \s-1GNU\s0 Fortran compiler itself.
-.IP "\fB\-fdump\-parse\-tree\fR" 4
-.IX Item "-fdump-parse-tree"
-Output the internal parse tree after translating the source program
-into internal representation. Only really useful for debugging the
-\&\s-1GNU\s0 Fortran compiler itself. This option is deprecated; use
-\&\f(CW\*(C`\-fdump\-fortran\-original\*(C'\fR instead.
-.IP "\fB\-ffpe\-trap=\fR\fIlist\fR" 4
-.IX Item "-ffpe-trap=list"
-Specify a list of floating point exception traps to enable. On most
-systems, if a floating point exception occurs and the trap for that
-exception is enabled, a \s-1SIGFPE\s0 signal will be sent and the program
-being aborted, producing a core file useful for debugging. \fIlist\fR
-is a (possibly empty) comma-separated list of the following
-exceptions: \fBinvalid\fR (invalid floating point operation, such as
-\&\f(CW\*(C`SQRT(\-1.0)\*(C'\fR), \fBzero\fR (division by zero), \fBoverflow\fR
-(overflow in a floating point operation), \fBunderflow\fR (underflow
-in a floating point operation), \fBinexact\fR (loss of precision
-during operation), and \fBdenormal\fR (operation performed on a
-denormal value). The first five exceptions correspond to the five
-\&\s-1IEEE 754\s0 exceptions, whereas the last one (\fBdenormal\fR) is not
-part of the \s-1IEEE 754\s0 standard but is available on some common
-architectures such as x86.
-.Sp
-The first three exceptions (\fBinvalid\fR, \fBzero\fR, and
-\&\fBoverflow\fR) often indicate serious errors, and unless the program
-has provisions for dealing with these exceptions, enabling traps for
-these three exceptions is probably a good idea.
-.Sp
-Many, if not most, floating point operations incur loss of precision
-due to rounding, and hence the \f(CW\*(C`ffpe\-trap=inexact\*(C'\fR is likely to
-be uninteresting in practice.
-.Sp
-By default no exception traps are enabled.
-.IP "\fB\-ffpe\-summary=\fR\fIlist\fR" 4
-.IX Item "-ffpe-summary=list"
-Specify a list of floating-point exceptions, whose flag status is printed
-to \f(CW\*(C`ERROR_UNIT\*(C'\fR when invoking \f(CW\*(C`STOP\*(C'\fR and \f(CW\*(C`ERROR STOP\*(C'\fR.
-\&\fIlist\fR can be either \fBnone\fR, \fBall\fR or a comma-separated list
-of the following exceptions: \fBinvalid\fR, \fBzero\fR, \fBoverflow\fR,
-\&\fBunderflow\fR, \fBinexact\fR and \fBdenormal\fR. (See
-\&\fB\-ffpe\-trap\fR for a description of the exceptions.)
-.Sp
-By default, a summary for all exceptions but \fBinexact\fR is shown.
-.IP "\fB\-fno\-backtrace\fR" 4
-.IX Item "-fno-backtrace"
-When a serious runtime error is encountered or a deadly signal is
-emitted (segmentation fault, illegal instruction, bus error,
-floating-point exception, and the other \s-1POSIX\s0 signals that have the
-action \fBcore\fR), the Fortran runtime library tries to output a
-backtrace of the error. \f(CW\*(C`\-fno\-backtrace\*(C'\fR disables the backtrace
-generation. This option only has influence for compilation of the
-Fortran main program.
-.SS "Options for directory search"
-.IX Subsection "Options for directory search"
-These options affect how \s-1GNU\s0 Fortran searches
-for files specified by the \f(CW\*(C`INCLUDE\*(C'\fR directive and where it searches
-for previously compiled modules.
-.PP
-It also affects the search paths used by \fBcpp\fR when used to preprocess
-Fortran source.
-.IP "\fB\-I\fR\fIdir\fR" 4
-.IX Item "-Idir"
-These affect interpretation of the \f(CW\*(C`INCLUDE\*(C'\fR directive
-(as well as of the \f(CW\*(C`#include\*(C'\fR directive of the \fBcpp\fR
-preprocessor).
-.Sp
-Also note that the general behavior of \fB\-I\fR and
-\&\f(CW\*(C`INCLUDE\*(C'\fR is pretty much the same as of \fB\-I\fR with
-\&\f(CW\*(C`#include\*(C'\fR in the \fBcpp\fR preprocessor, with regard to
-looking for \fIheader.gcc\fR files and other such things.
-.Sp
-This path is also used to search for \fI.mod\fR files when previously
-compiled modules are required by a \f(CW\*(C`USE\*(C'\fR statement.
-.IP "\fB\-J\fR\fIdir\fR" 4
-.IX Item "-Jdir"
-This option specifies where to put \fI.mod\fR files for compiled modules.
-It is also added to the list of directories to searched by an \f(CW\*(C`USE\*(C'\fR
-statement.
-.Sp
-The default is the current directory.
-.IP "\fB\-fintrinsic\-modules\-path\fR \fIdir\fR" 4
-.IX Item "-fintrinsic-modules-path dir"
-This option specifies the location of pre-compiled intrinsic modules, if
-they are not in the default location expected by the compiler.
-.SS "Influencing the linking step"
-.IX Subsection "Influencing the linking step"
-These options come into play when the compiler links object files into an
-executable output file. They are meaningless if the compiler is not doing
-a link step.
-.IP "\fB\-static\-libgfortran\fR" 4
-.IX Item "-static-libgfortran"
-On systems that provide \fIlibgfortran\fR as a shared and a static
-library, this option forces the use of the static version. If no
-shared version of \fIlibgfortran\fR was built when the compiler was
-configured, this option has no effect.
-.SS "Influencing runtime behavior"
-.IX Subsection "Influencing runtime behavior"
-These options affect the runtime behavior of programs compiled with \s-1GNU\s0 Fortran.
-.IP "\fB\-fconvert=\fR\fIconversion\fR" 4
-.IX Item "-fconvert=conversion"
-Specify the representation of data for unformatted files. Valid
-values for conversion are: \fBnative\fR, the default; \fBswap\fR,
-swap between big\- and little-endian; \fBbig-endian\fR, use big-endian
-representation for unformatted files; \fBlittle-endian\fR, use little-endian
-representation for unformatted files.
-.Sp
-\&\fIThis option has an effect only when used in the main program.
-The \f(CI\*(C`CONVERT\*(C'\fI specifier and the \s-1GFORTRAN_CONVERT_UNIT\s0 environment
-variable override the default specified by \f(BI\-fconvert\fI.\fR
-.IP "\fB\-frecord\-marker=\fR\fIlength\fR" 4
-.IX Item "-frecord-marker=length"
-Specify the length of record markers for unformatted files.
-Valid values for \fIlength\fR are 4 and 8. Default is 4.
-\&\fIThis is different from previous versions of\fR \fBgfortran\fR,
-which specified a default record marker length of 8 on most
-systems. If you want to read or write files compatible
-with earlier versions of \fBgfortran\fR, use \fB\-frecord\-marker=8\fR.
-.IP "\fB\-fmax\-subrecord\-length=\fR\fIlength\fR" 4
-.IX Item "-fmax-subrecord-length=length"
-Specify the maximum length for a subrecord. The maximum permitted
-value for length is 2147483639, which is also the default. Only
-really useful for use by the gfortran testsuite.
-.IP "\fB\-fsign\-zero\fR" 4
-.IX Item "-fsign-zero"
-When enabled, floating point numbers of value zero with the sign bit set
-are written as negative number in formatted output and treated as
-negative in the \f(CW\*(C`SIGN\*(C'\fR intrinsic. \fB\-fno\-sign\-zero\fR does not
-print the negative sign of zero values (or values rounded to zero for I/O)
-and regards zero as positive number in the \f(CW\*(C`SIGN\*(C'\fR intrinsic for
-compatibility with Fortran 77. The default is \fB\-fsign\-zero\fR.
-.SS "Options for code generation conventions"
-.IX Subsection "Options for code generation conventions"
-These machine-independent options control the interface conventions
-used in code generation.
-.PP
-Most of them have both positive and negative forms; the negative form
-of \fB\-ffoo\fR would be \fB\-fno\-foo\fR. In the table below, only
-one of the forms is listed\-\-\-the one which is not the default. You
-can figure out the other form by either removing \fBno\-\fR or adding
-it.
-.IP "\fB\-fno\-automatic\fR" 4
-.IX Item "-fno-automatic"
-Treat each program unit (except those marked as \s-1RECURSIVE\s0) as if the
-\&\f(CW\*(C`SAVE\*(C'\fR statement were specified for every local variable and array
-referenced in it. Does not affect common blocks. (Some Fortran compilers
-provide this option under the name \fB\-static\fR or \fB\-save\fR.)
-The default, which is \fB\-fautomatic\fR, uses the stack for local
-variables smaller than the value given by \fB\-fmax\-stack\-var\-size\fR.
-Use the option \fB\-frecursive\fR to use no static memory.
-.IP "\fB\-ff2c\fR" 4
-.IX Item "-ff2c"
-Generate code designed to be compatible with code generated
-by \fBg77\fR and \fBf2c\fR.
-.Sp
-The calling conventions used by \fBg77\fR (originally implemented
-in \fBf2c\fR) require functions that return type
-default \f(CW\*(C`REAL\*(C'\fR to actually return the C type \f(CW\*(C`double\*(C'\fR, and
-functions that return type \f(CW\*(C`COMPLEX\*(C'\fR to return the values via an
-extra argument in the calling sequence that points to where to
-store the return value. Under the default \s-1GNU\s0 calling conventions, such
-functions simply return their results as they would in \s-1GNU\s0
-C\-\-\-default \f(CW\*(C`REAL\*(C'\fR functions return the C type \f(CW\*(C`float\*(C'\fR, and
-\&\f(CW\*(C`COMPLEX\*(C'\fR functions return the \s-1GNU C\s0 type \f(CW\*(C`complex\*(C'\fR.
-Additionally, this option implies the \fB\-fsecond\-underscore\fR
-option, unless \fB\-fno\-second\-underscore\fR is explicitly requested.
-.Sp
-This does not affect the generation of code that interfaces with
-the \fBlibgfortran\fR library.
-.Sp
-\&\fICaution:\fR It is not a good idea to mix Fortran code compiled with
-\&\fB\-ff2c\fR with code compiled with the default \fB\-fno\-f2c\fR
-calling conventions as, calling \f(CW\*(C`COMPLEX\*(C'\fR or default \f(CW\*(C`REAL\*(C'\fR
-functions between program parts which were compiled with different
-calling conventions will break at execution time.
-.Sp
-\&\fICaution:\fR This will break code which passes intrinsic functions
-of type default \f(CW\*(C`REAL\*(C'\fR or \f(CW\*(C`COMPLEX\*(C'\fR as actual arguments, as
-the library implementations use the \fB\-fno\-f2c\fR calling conventions.
-.IP "\fB\-fno\-underscoring\fR" 4
-.IX Item "-fno-underscoring"
-Do not transform names of entities specified in the Fortran
-source file by appending underscores to them.
-.Sp
-With \fB\-funderscoring\fR in effect, \s-1GNU\s0 Fortran appends one
-underscore to external names with no underscores. This is done to ensure
-compatibility with code produced by many \s-1UNIX\s0 Fortran compilers.
-.Sp
-\&\fICaution\fR: The default behavior of \s-1GNU\s0 Fortran is
-incompatible with \fBf2c\fR and \fBg77\fR, please use the
-\&\fB\-ff2c\fR option if you want object files compiled with
-\&\s-1GNU\s0 Fortran to be compatible with object code created with these
-tools.
-.Sp
-Use of \fB\-fno\-underscoring\fR is not recommended unless you are
-experimenting with issues such as integration of \s-1GNU\s0 Fortran into
-existing system environments (vis\-a\*`\-vis existing libraries, tools,
-and so on).
-.Sp
-For example, with \fB\-funderscoring\fR, and assuming other defaults like
-\&\fB\-fcase\-lower\fR and that \f(CW\*(C`j()\*(C'\fR and \f(CW\*(C`max_count()\*(C'\fR are
-external functions while \f(CW\*(C`my_var\*(C'\fR and \f(CW\*(C`lvar\*(C'\fR are local variables,
-a statement like
-.Sp
-.Vb 1
-\& I = J() + MAX_COUNT (MY_VAR, LVAR)
-.Ve
-.Sp
-is implemented as something akin to:
-.Sp
-.Vb 1
-\& i = j_() + max_count_\|_(&my_var_\|_, &lvar);
-.Ve
-.Sp
-With \fB\-fno\-underscoring\fR, the same statement is implemented as:
-.Sp
-.Vb 1
-\& i = j() + max_count(&my_var, &lvar);
-.Ve
-.Sp
-Use of \fB\-fno\-underscoring\fR allows direct specification of
-user-defined names while debugging and when interfacing \s-1GNU\s0 Fortran
-code with other languages.
-.Sp
-Note that just because the names match does \fInot\fR mean that the
-interface implemented by \s-1GNU\s0 Fortran for an external name matches the
-interface implemented by some other language for that same name.
-That is, getting code produced by \s-1GNU\s0 Fortran to link to code produced
-by some other compiler using this or any other method can be only a
-small part of the overall solution\-\-\-getting the code generated by
-both compilers to agree on issues other than naming can require
-significant effort, and, unlike naming disagreements, linkers normally
-cannot detect disagreements in these other areas.
-.Sp
-Also, note that with \fB\-fno\-underscoring\fR, the lack of appended
-underscores introduces the very real possibility that a user-defined
-external name will conflict with a name in a system library, which
-could make finding unresolved-reference bugs quite difficult in some
-cases\-\-\-they might occur at program run time, and show up only as
-buggy behavior at run time.
-.Sp
-In future versions of \s-1GNU\s0 Fortran we hope to improve naming and linking
-issues so that debugging always involves using the names as they appear
-in the source, even if the names as seen by the linker are mangled to
-prevent accidental linking between procedures with incompatible
-interfaces.
-.IP "\fB\-fsecond\-underscore\fR" 4
-.IX Item "-fsecond-underscore"
-By default, \s-1GNU\s0 Fortran appends an underscore to external
-names. If this option is used \s-1GNU\s0 Fortran appends two
-underscores to names with underscores and one underscore to external names
-with no underscores. \s-1GNU\s0 Fortran also appends two underscores to
-internal names with underscores to avoid naming collisions with external
-names.
-.Sp
-This option has no effect if \fB\-fno\-underscoring\fR is
-in effect. It is implied by the \fB\-ff2c\fR option.
-.Sp
-Otherwise, with this option, an external name such as \f(CW\*(C`MAX_COUNT\*(C'\fR
-is implemented as a reference to the link-time external symbol
-\&\f(CW\*(C`max_count_\|_\*(C'\fR, instead of \f(CW\*(C`max_count_\*(C'\fR. This is required
-for compatibility with \fBg77\fR and \fBf2c\fR, and is implied
-by use of the \fB\-ff2c\fR option.
-.IP "\fB\-fcoarray=\fR\fI<keyword>\fR" 4
-.IX Item "-fcoarray=<keyword>"
-.RS 4
-.PD 0
-.IP "\fBnone\fR" 4
-.IX Item "none"
-.PD
-Disable coarray support; using coarray declarations and image-control
-statements will produce a compile-time error. (Default)
-.IP "\fBsingle\fR" 4
-.IX Item "single"
-Single-image mode, i.e. \f(CW\*(C`num_images()\*(C'\fR is always one.
-.IP "\fBlib\fR" 4
-.IX Item "lib"
-Library-based coarray parallelization; a suitable \s-1GNU\s0 Fortran coarray
-library needs to be linked.
-.RE
-.RS 4
-.RE
-.IP "\fB\-fcheck=\fR\fI<keyword>\fR" 4
-.IX Item "-fcheck=<keyword>"
-Enable the generation of run-time checks; the argument shall be
-a comma-delimited list of the following keywords.
-.RS 4
-.IP "\fBall\fR" 4
-.IX Item "all"
-Enable all run-time test of \fB\-fcheck\fR.
-.IP "\fBarray-temps\fR" 4
-.IX Item "array-temps"
-Warns at run time when for passing an actual argument a temporary array
-had to be generated. The information generated by this warning is
-sometimes useful in optimization, in order to avoid such temporaries.
-.Sp
-Note: The warning is only printed once per location.
-.IP "\fBbounds\fR" 4
-.IX Item "bounds"
-Enable generation of run-time checks for array subscripts
-and against the declared minimum and maximum values. It also
-checks array indices for assumed and deferred
-shape arrays against the actual allocated bounds and ensures that all string
-lengths are equal for character array constructors without an explicit
-typespec.
-.Sp
-Some checks require that \fB\-fcheck=bounds\fR is set for
-the compilation of the main program.
-.Sp
-Note: In the future this may also include other forms of checking, e.g.,
-checking substring references.
-.IP "\fBdo\fR" 4
-.IX Item "do"
-Enable generation of run-time checks for invalid modification of loop
-iteration variables.
-.IP "\fBmem\fR" 4
-.IX Item "mem"
-Enable generation of run-time checks for memory allocation.
-Note: This option does not affect explicit allocations using the
-\&\f(CW\*(C`ALLOCATE\*(C'\fR statement, which will be always checked.
-.IP "\fBpointer\fR" 4
-.IX Item "pointer"
-Enable generation of run-time checks for pointers and allocatables.
-.IP "\fBrecursion\fR" 4
-.IX Item "recursion"
-Enable generation of run-time checks for recursively called subroutines and
-functions which are not marked as recursive. See also \fB\-frecursive\fR.
-Note: This check does not work for OpenMP programs and is disabled if used
-together with \fB\-frecursive\fR and \fB\-fopenmp\fR.
-.RE
-.RS 4
-.RE
-.IP "\fB\-fbounds\-check\fR" 4
-.IX Item "-fbounds-check"
-Deprecated alias for \fB\-fcheck=bounds\fR.
-.IP "\fB\-fcheck\-array\-temporaries\fR" 4
-.IX Item "-fcheck-array-temporaries"
-Deprecated alias for \fB\-fcheck=array\-temps\fR.
-.IP "\fB\-fmax\-array\-constructor=\fR\fIn\fR" 4
-.IX Item "-fmax-array-constructor=n"
-This option can be used to increase the upper limit permitted in
-array constructors. The code below requires this option to expand
-the array at compile time.
-.Sp
-.Vb 7
-\& program test
-\& implicit none
-\& integer j
-\& integer, parameter :: n = 100000
-\& integer, parameter :: i(n) = (/ (2*j, j = 1, n) /)
-\& print \*(Aq(10(I0,1X))\*(Aq, i
-\& end program test
-.Ve
-.Sp
-\&\fICaution: This option can lead to long compile times and excessively
-large object files.\fR
-.Sp
-The default value for \fIn\fR is 65535.
-.IP "\fB\-fmax\-stack\-var\-size=\fR\fIn\fR" 4
-.IX Item "-fmax-stack-var-size=n"
-This option specifies the size in bytes of the largest array that will be put
-on the stack; if the size is exceeded static memory is used (except in
-procedures marked as \s-1RECURSIVE\s0). Use the option \fB\-frecursive\fR to
-allow for recursive procedures which do not have a \s-1RECURSIVE\s0 attribute or
-for parallel programs. Use \fB\-fno\-automatic\fR to never use the stack.
-.Sp
-This option currently only affects local arrays declared with constant
-bounds, and may not apply to all character variables.
-Future versions of \s-1GNU\s0 Fortran may improve this behavior.
-.Sp
-The default value for \fIn\fR is 32768.
-.IP "\fB\-fstack\-arrays\fR" 4
-.IX Item "-fstack-arrays"
-Adding this option will make the Fortran compiler put all local arrays,
-even those of unknown size onto stack memory. If your program uses very
-large local arrays it is possible that you will have to extend your runtime
-limits for stack memory on some operating systems. This flag is enabled
-by default at optimization level \fB\-Ofast\fR.
-.IP "\fB\-fpack\-derived\fR" 4
-.IX Item "-fpack-derived"
-This option tells \s-1GNU\s0 Fortran to pack derived type members as closely as
-possible. Code compiled with this option is likely to be incompatible
-with code compiled without this option, and may execute slower.
-.IP "\fB\-frepack\-arrays\fR" 4
-.IX Item "-frepack-arrays"
-In some circumstances \s-1GNU\s0 Fortran may pass assumed shape array
-sections via a descriptor describing a noncontiguous area of memory.
-This option adds code to the function prologue to repack the data into
-a contiguous block at runtime.
-.Sp
-This should result in faster accesses to the array. However it can introduce
-significant overhead to the function call, especially when the passed data
-is noncontiguous.
-.IP "\fB\-fshort\-enums\fR" 4
-.IX Item "-fshort-enums"
-This option is provided for interoperability with C code that was
-compiled with the \fB\-fshort\-enums\fR option. It will make
-\&\s-1GNU\s0 Fortran choose the smallest \f(CW\*(C`INTEGER\*(C'\fR kind a given
-enumerator set will fit in, and give all its enumerators this kind.
-.IP "\fB\-fexternal\-blas\fR" 4
-.IX Item "-fexternal-blas"
-This option will make \fBgfortran\fR generate calls to \s-1BLAS\s0 functions
-for some matrix operations like \f(CW\*(C`MATMUL\*(C'\fR, instead of using our own
-algorithms, if the size of the matrices involved is larger than a given
-limit (see \fB\-fblas\-matmul\-limit\fR). This may be profitable if an
-optimized vendor \s-1BLAS\s0 library is available. The \s-1BLAS\s0 library will have
-to be specified at link time.
-.IP "\fB\-fblas\-matmul\-limit=\fR\fIn\fR" 4
-.IX Item "-fblas-matmul-limit=n"
-Only significant when \fB\-fexternal\-blas\fR is in effect.
-Matrix multiplication of matrices with size larger than (or equal to) \fIn\fR
-will be performed by calls to \s-1BLAS\s0 functions, while others will be
-handled by \fBgfortran\fR internal algorithms. If the matrices
-involved are not square, the size comparison is performed using the
-geometric mean of the dimensions of the argument and result matrices.
-.Sp
-The default value for \fIn\fR is 30.
-.IP "\fB\-frecursive\fR" 4
-.IX Item "-frecursive"
-Allow indirect recursion by forcing all local arrays to be allocated
-on the stack. This flag cannot be used together with
-\&\fB\-fmax\-stack\-var\-size=\fR or \fB\-fno\-automatic\fR.
-.IP "\fB\-finit\-local\-zero\fR" 4
-.IX Item "-finit-local-zero"
-.PD 0
-.IP "\fB\-finit\-integer=\fR\fIn\fR" 4
-.IX Item "-finit-integer=n"
-.IP "\fB\-finit\-real=\fR\fI<zero|inf|\-inf|nan|snan>\fR" 4
-.IX Item "-finit-real=<zero|inf|-inf|nan|snan>"
-.IP "\fB\-finit\-logical=\fR\fI<true|false>\fR" 4
-.IX Item "-finit-logical=<true|false>"
-.IP "\fB\-finit\-character=\fR\fIn\fR" 4
-.IX Item "-finit-character=n"
-.PD
-The \fB\-finit\-local\-zero\fR option instructs the compiler to
-initialize local \f(CW\*(C`INTEGER\*(C'\fR, \f(CW\*(C`REAL\*(C'\fR, and \f(CW\*(C`COMPLEX\*(C'\fR
-variables to zero, \f(CW\*(C`LOGICAL\*(C'\fR variables to false, and
-\&\f(CW\*(C`CHARACTER\*(C'\fR variables to a string of null bytes. Finer-grained
-initialization options are provided by the
-\&\fB\-finit\-integer=\fR\fIn\fR,
-\&\fB\-finit\-real=\fR\fI<zero|inf|\-inf|nan|snan>\fR (which also initializes
-the real and imaginary parts of local \f(CW\*(C`COMPLEX\*(C'\fR variables),
-\&\fB\-finit\-logical=\fR\fI<true|false>\fR, and
-\&\fB\-finit\-character=\fR\fIn\fR (where \fIn\fR is an \s-1ASCII\s0 character
-value) options. These options do not initialize
-.RS 4
-.IP "\(bu" 4
-allocatable arrays
-.IP "\(bu" 4
-components of derived type variables
-.IP "\(bu" 4
-variables that appear in an \f(CW\*(C`EQUIVALENCE\*(C'\fR statement.
-.RE
-.RS 4
-.Sp
-(These limitations may be removed in future releases).
-.Sp
-Note that the \fB\-finit\-real=nan\fR option initializes \f(CW\*(C`REAL\*(C'\fR
-and \f(CW\*(C`COMPLEX\*(C'\fR variables with a quiet NaN. For a signalling NaN
-use \fB\-finit\-real=snan\fR; note, however, that compile-time
-optimizations may convert them into quiet NaN and that trapping
-needs to be enabled (e.g. via \fB\-ffpe\-trap\fR).
-.Sp
-Finally, note that enabling any of the \fB\-finit\-*\fR options will
-silence warnings that would have been emitted by \fB\-Wuninitialized\fR
-for the affected local variables.
-.RE
-.IP "\fB\-falign\-commons\fR" 4
-.IX Item "-falign-commons"
-By default, \fBgfortran\fR enforces proper alignment of all variables in a
-\&\f(CW\*(C`COMMON\*(C'\fR block by padding them as needed. On certain platforms this is mandatory,
-on others it increases performance. If a \f(CW\*(C`COMMON\*(C'\fR block is not declared with
-consistent data types everywhere, this padding can cause trouble, and
-\&\fB\-fno\-align\-commons\fR can be used to disable automatic alignment. The
-same form of this option should be used for all files that share a \f(CW\*(C`COMMON\*(C'\fR block.
-To avoid potential alignment issues in \f(CW\*(C`COMMON\*(C'\fR blocks, it is recommended to order
-objects from largest to smallest.
-.IP "\fB\-fno\-protect\-parens\fR" 4
-.IX Item "-fno-protect-parens"
-By default the parentheses in expression are honored for all optimization
-levels such that the compiler does not do any re-association. Using
-\&\fB\-fno\-protect\-parens\fR allows the compiler to reorder \f(CW\*(C`REAL\*(C'\fR and
-\&\f(CW\*(C`COMPLEX\*(C'\fR expressions to produce faster code. Note that for the re-association
-optimization \fB\-fno\-signed\-zeros\fR and \fB\-fno\-trapping\-math\fR
-need to be in effect. The parentheses protection is enabled by default, unless
-\&\fB\-Ofast\fR is given.
-.IP "\fB\-frealloc\-lhs\fR" 4
-.IX Item "-frealloc-lhs"
-An allocatable left-hand side of an intrinsic assignment is automatically
-(re)allocated if it is either unallocated or has a different shape. The
-option is enabled by default except when \fB\-std=f95\fR is given. See
-also \fB\-Wrealloc\-lhs\fR.
-.IP "\fB\-faggressive\-function\-elimination\fR" 4
-.IX Item "-faggressive-function-elimination"
-Functions with identical argument lists are eliminated within
-statements, regardless of whether these functions are marked
-\&\f(CW\*(C`PURE\*(C'\fR or not. For example, in
-.Sp
-.Vb 1
-\& a = f(b,c) + f(b,c)
-.Ve
-.Sp
-there will only be a single call to \f(CW\*(C`f\*(C'\fR. This option only works
-if \fB\-ffrontend\-optimize\fR is in effect.
-.IP "\fB\-ffrontend\-optimize\fR" 4
-.IX Item "-ffrontend-optimize"
-This option performs front-end optimization, based on manipulating
-parts the Fortran parse tree. Enabled by default by any \fB\-O\fR
-option. Optimizations enabled by this option include elimination of
-identical function calls within expressions, removing unnecessary
-calls to \f(CW\*(C`TRIM\*(C'\fR in comparisons and assignments and replacing
-\&\f(CWTRIM(a)\fR with \f(CW\*(C`a(1:LEN_TRIM(a))\*(C'\fR.
-It can be deselected by specifying \fB\-fno\-frontend\-optimize\fR.
-.SH "ENVIRONMENT"
-.IX Header "ENVIRONMENT"
-The \fBgfortran\fR compiler currently does not make use of any environment
-variables to control its operation above and beyond those
-that affect the operation of \fBgcc\fR.
-.SH "BUGS"
-.IX Header "BUGS"
-For instructions on reporting bugs, see
-<\fBhttp://gcc.gnu.org/bugs.html\fR>.
-.SH "SEE ALSO"
-.IX Header "SEE ALSO"
-\&\fIgpl\fR\|(7), \fIgfdl\fR\|(7), \fIfsf\-funding\fR\|(7),
-\&\fIcpp\fR\|(1), \fIgcov\fR\|(1), \fIgcc\fR\|(1), \fIas\fR\|(1), \fIld\fR\|(1), \fIgdb\fR\|(1), \fIadb\fR\|(1), \fIdbx\fR\|(1), \fIsdb\fR\|(1)
-and the Info entries for \fIgcc\fR, \fIcpp\fR, \fIgfortran\fR, \fIas\fR,
-\&\fIld\fR, \fIbinutils\fR and \fIgdb\fR.
-.SH "AUTHOR"
-.IX Header "AUTHOR"
-See the Info entry for \fBgfortran\fR for contributors to \s-1GCC\s0 and
-\&\s-1GNU\s0 Fortran.
-.SH "COPYRIGHT"
-.IX Header "COPYRIGHT"
-Copyright (c) 2004\-2014 Free Software Foundation, Inc.
-.PP
-Permission is granted to copy, distribute and/or modify this document
-under the terms of the \s-1GNU\s0 Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with the
-Invariant Sections being \*(L"Funding Free Software\*(R", the Front-Cover
-Texts being (a) (see below), and with the Back-Cover Texts being (b)
-(see below). A copy of the license is included in the \fIgfdl\fR\|(7) man page.
-.PP
-(a) The \s-1FSF\s0's Front-Cover Text is:
-.PP
-.Vb 1
-\& A GNU Manual
-.Ve
-.PP
-(b) The \s-1FSF\s0's Back-Cover Text is:
-.PP
-.Vb 3
-\& You have freedom to copy and modify this GNU Manual, like GNU
-\& software. Copies published by the Free Software Foundation raise
-\& funds for GNU development.
-.Ve
diff --git a/gcc-4.9/gcc/doc/gij.1 b/gcc-4.9/gcc/doc/gij.1
deleted file mode 100644
index 78c1f4c59..000000000
--- a/gcc-4.9/gcc/doc/gij.1
+++ /dev/null
@@ -1,295 +0,0 @@
-.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28)
-.\"
-.\" Standard preamble:
-.\" ========================================================================
-.de Sp \" Vertical space (when we can't use .PP)
-.if t .sp .5v
-.if n .sp
-..
-.de Vb \" Begin verbatim text
-.ft CW
-.nf
-.ne \\$1
-..
-.de Ve \" End verbatim text
-.ft R
-.fi
-..
-.\" Set up some character translations and predefined strings. \*(-- will
-.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
-.\" double quote, and \*(R" will give a right double quote. \*(C+ will
-.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
-.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
-.\" nothing in troff, for use with C<>.
-.tr \(*W-
-.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
-.ie n \{\
-. ds -- \(*W-
-. ds PI pi
-. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
-. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
-. ds L" ""
-. ds R" ""
-. ds C` ""
-. ds C' ""
-'br\}
-.el\{\
-. ds -- \|\(em\|
-. ds PI \(*p
-. ds L" ``
-. ds R" ''
-. ds C`
-. ds C'
-'br\}
-.\"
-.\" Escape single quotes in literal strings from groff's Unicode transform.
-.ie \n(.g .ds Aq \(aq
-.el .ds Aq '
-.\"
-.\" If the F register is turned on, we'll generate index entries on stderr for
-.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
-.\" entries marked with X<> in POD. Of course, you'll have to process the
-.\" output yourself in some meaningful fashion.
-.\"
-.\" Avoid warning from groff about undefined register 'F'.
-.de IX
-..
-.nr rF 0
-.if \n(.g .if rF .nr rF 1
-.if (\n(rF:(\n(.g==0)) \{
-. if \nF \{
-. de IX
-. tm Index:\\$1\t\\n%\t"\\$2"
-..
-. if !\nF==2 \{
-. nr % 0
-. nr F 2
-. \}
-. \}
-.\}
-.rr rF
-.\"
-.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
-.\" Fear. Run. Save yourself. No user-serviceable parts.
-. \" fudge factors for nroff and troff
-.if n \{\
-. ds #H 0
-. ds #V .8m
-. ds #F .3m
-. ds #[ \f1
-. ds #] \fP
-.\}
-.if t \{\
-. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
-. ds #V .6m
-. ds #F 0
-. ds #[ \&
-. ds #] \&
-.\}
-. \" simple accents for nroff and troff
-.if n \{\
-. ds ' \&
-. ds ` \&
-. ds ^ \&
-. ds , \&
-. ds ~ ~
-. ds /
-.\}
-.if t \{\
-. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
-. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
-. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
-. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
-. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
-. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
-.\}
-. \" troff and (daisy-wheel) nroff accents
-.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
-.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
-.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
-.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
-.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
-.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
-.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
-.ds ae a\h'-(\w'a'u*4/10)'e
-.ds Ae A\h'-(\w'A'u*4/10)'E
-. \" corrections for vroff
-.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
-.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
-. \" for low resolution devices (crt and lpr)
-.if \n(.H>23 .if \n(.V>19 \
-\{\
-. ds : e
-. ds 8 ss
-. ds o a
-. ds d- d\h'-1'\(ga
-. ds D- D\h'-1'\(hy
-. ds th \o'bp'
-. ds Th \o'LP'
-. ds ae ae
-. ds Ae AE
-.\}
-.rm #[ #] #H #V #F C
-.\" ========================================================================
-.\"
-.IX Title "GIJ 1"
-.TH GIJ 1 "2014-04-22" "gcc-4.9.0" "GNU"
-.\" For nroff, turn off justification. Always turn off hyphenation; it makes
-.\" way too many mistakes in technical documents.
-.if n .ad l
-.nh
-.SH "NAME"
-gij \- GNU interpreter for Java bytecode
-.SH "SYNOPSIS"
-.IX Header "SYNOPSIS"
-gij [\fB\s-1OPTION\s0\fR] ... \fI\s-1JARFILE\s0\fR [\fI\s-1ARGS\s0\fR...]
-.PP
-gij [\fB\-jar\fR] [\fB\s-1OPTION\s0\fR] ... \fI\s-1CLASS\s0\fR [\fI\s-1ARGS\s0\fR...]
- [\fB\-cp\fR \fIpath\fR] [\fB\-classpath\fR \fIpath\fR]
- [\fB\-D\fR\fIname\fR[=\fIvalue\fR]...]
- [\fB\-ms=\fR\fInumber\fR] [\fB\-mx=\fR\fInumber\fR]
- [\fB\-X\fR\fIargument\fR] [\fB\-verbose\fR] [\fB\-verbose:class\fR]
- [\fB\-\-showversion\fR] [\fB\-\-version\fR] [\fB\-\-help\fR][\fB\-?\fR]
-.SH "DESCRIPTION"
-.IX Header "DESCRIPTION"
-\&\f(CW\*(C`gij\*(C'\fR is a Java bytecode interpreter included with \f(CW\*(C`libgcj\*(C'\fR.
-\&\f(CW\*(C`gij\*(C'\fR is not available on every platform; porting it requires a
-small amount of assembly programming which has not been done for all the
-targets supported by \fBgcj\fR.
-.PP
-The primary argument to \f(CW\*(C`gij\*(C'\fR is the name of a class or, with
-\&\f(CW\*(C`\-jar\*(C'\fR, a jar file. Options before this argument are interpreted
-by \f(CW\*(C`gij\*(C'\fR; remaining options are passed to the interpreted program.
-.PP
-If a class name is specified and this class does not have a \f(CW\*(C`main\*(C'\fR
-method with the appropriate signature (a \f(CW\*(C`static void\*(C'\fR method with
-a \f(CW\*(C`String[]\*(C'\fR as its sole argument), then \f(CW\*(C`gij\*(C'\fR will print an
-error and exit.
-.PP
-If a jar file is specified then \f(CW\*(C`gij\*(C'\fR will use information in it to
-determine which class' \f(CW\*(C`main\*(C'\fR method will be invoked.
-.PP
-\&\f(CW\*(C`gij\*(C'\fR will invoke the \f(CW\*(C`main\*(C'\fR method with all the remaining
-command-line options.
-.PP
-Note that \f(CW\*(C`gij\*(C'\fR is not limited to interpreting code. Because
-\&\f(CW\*(C`libgcj\*(C'\fR includes a class loader which can dynamically load shared
-objects, it is possible to give \f(CW\*(C`gij\*(C'\fR the name of a class which has
-been compiled and put into a shared library on the class path.
-.SH "OPTIONS"
-.IX Header "OPTIONS"
-.IP "\fB\-cp\fR \fIpath\fR" 4
-.IX Item "-cp path"
-.PD 0
-.IP "\fB\-classpath\fR \fIpath\fR" 4
-.IX Item "-classpath path"
-.PD
-Set the initial class path. The class path is used for finding
-class and resource files. If specified, this option overrides the
-\&\f(CW\*(C`CLASSPATH\*(C'\fR environment variable. Note that this option is
-ignored if \f(CW\*(C`\-jar\*(C'\fR is used.
-.IP "\fB\-D\fR\fIname\fR\fB[=\fR\fIvalue\fR\fB]\fR" 4
-.IX Item "-Dname[=value]"
-This defines a system property named \fIname\fR with value \fIvalue\fR.
-If \fIvalue\fR is not specified then it defaults to the empty string.
-These system properties are initialized at the program's startup and can
-be retrieved at runtime using the \f(CW\*(C`java.lang.System.getProperty\*(C'\fR
-method.
-.IP "\fB\-ms=\fR\fInumber\fR" 4
-.IX Item "-ms=number"
-Equivalent to \f(CW\*(C`\-Xms\*(C'\fR.
-.IP "\fB\-mx=\fR\fInumber\fR" 4
-.IX Item "-mx=number"
-Equivalent to \f(CW\*(C`\-Xmx\*(C'\fR.
-.IP "\fB\-noverify\fR" 4
-.IX Item "-noverify"
-Do not verify compliance of bytecode with the \s-1VM\s0 specification. In addition,
-this option disables type verification which is otherwise performed on BC-ABI
-compiled code.
-.IP "\fB\-X\fR" 4
-.IX Item "-X"
-.PD 0
-.IP "\fB\-X\fR\fIargument\fR" 4
-.IX Item "-Xargument"
-.PD
-Supplying \f(CW\*(C`\-X\*(C'\fR by itself will cause \f(CW\*(C`gij\*(C'\fR to list all the
-supported \f(CW\*(C`\-X\*(C'\fR options. Currently these options are supported:
-.RS 4
-.IP "\fB\-Xms\fR\fIsize\fR" 4
-.IX Item "-Xmssize"
-Set the initial heap size.
-.IP "\fB\-Xmx\fR\fIsize\fR" 4
-.IX Item "-Xmxsize"
-Set the maximum heap size.
-.IP "\fB\-Xss\fR\fIsize\fR" 4
-.IX Item "-Xsssize"
-Set the thread stack size.
-.RE
-.RS 4
-.Sp
-Unrecognized \f(CW\*(C`\-X\*(C'\fR options are ignored, for compatibility with
-other runtimes.
-.RE
-.IP "\fB\-jar\fR" 4
-.IX Item "-jar"
-This indicates that the name passed to \f(CW\*(C`gij\*(C'\fR should be interpreted
-as the name of a jar file, not a class.
-.IP "\fB\-\-help\fR" 4
-.IX Item "--help"
-.PD 0
-.IP "\fB\-?\fR" 4
-.IX Item "-?"
-.PD
-Print help, then exit.
-.IP "\fB\-\-showversion\fR" 4
-.IX Item "--showversion"
-Print version number and continue.
-.IP "\fB\-\-fullversion\fR" 4
-.IX Item "--fullversion"
-Print detailed version information, then exit.
-.IP "\fB\-\-version\fR" 4
-.IX Item "--version"
-Print version number, then exit.
-.IP "\fB\-verbose\fR" 4
-.IX Item "-verbose"
-.PD 0
-.IP "\fB\-verbose:class\fR" 4
-.IX Item "-verbose:class"
-.PD
-Each time a class is initialized, print a short message on standard error.
-.PP
-\&\f(CW\*(C`gij\*(C'\fR also recognizes and ignores the following options, for
-compatibility with existing application launch scripts:
-\&\f(CW\*(C`\-client\*(C'\fR, \f(CW\*(C`\-server\*(C'\fR, \f(CW\*(C`\-hotspot\*(C'\fR, \f(CW\*(C`\-jrockit\*(C'\fR,
-\&\f(CW\*(C`\-agentlib\*(C'\fR, \f(CW\*(C`\-agentpath\*(C'\fR, \f(CW\*(C`\-debug\*(C'\fR, \f(CW\*(C`\-d32\*(C'\fR,
-\&\f(CW\*(C`\-d64\*(C'\fR, \f(CW\*(C`\-javaagent\*(C'\fR, \f(CW\*(C`\-noclassgc\*(C'\fR, \f(CW\*(C`\-verify\*(C'\fR,
-and \f(CW\*(C`\-verifyremote\*(C'\fR.
-.SH "SEE ALSO"
-.IX Header "SEE ALSO"
-\&\fIgcc\fR\|(1), \fIgcj\fR\|(1), \fIgcjh\fR\|(1), \fIjcf\-dump\fR\|(1), \fIgfdl\fR\|(7),
-and the Info entries for \fIgcj\fR and \fIgcc\fR.
-.SH "COPYRIGHT"
-.IX Header "COPYRIGHT"
-Copyright (c) 2001\-2014 Free Software Foundation, Inc.
-.PP
-Permission is granted to copy, distribute and/or modify this document
-under the terms of the \s-1GNU\s0 Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with no
-Invariant Sections, the Front-Cover Texts being (a) (see below), and
-with the Back-Cover Texts being (b) (see below).
-A copy of the license is included in the
-man page \fIgfdl\fR\|(7).
-.PP
-(a) The \s-1FSF\s0's Front-Cover Text is:
-.PP
-.Vb 1
-\& A GNU Manual
-.Ve
-.PP
-(b) The \s-1FSF\s0's Back-Cover Text is:
-.PP
-.Vb 3
-\& You have freedom to copy and modify this GNU Manual, like GNU
-\& software. Copies published by the Free Software Foundation raise
-\& funds for GNU development.
-.Ve
diff --git a/gcc-4.9/gcc/doc/gpl.7 b/gcc-4.9/gcc/doc/gpl.7
deleted file mode 100644
index 82bee2334..000000000
--- a/gcc-4.9/gcc/doc/gpl.7
+++ /dev/null
@@ -1,850 +0,0 @@
-.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28)
-.\"
-.\" Standard preamble:
-.\" ========================================================================
-.de Sp \" Vertical space (when we can't use .PP)
-.if t .sp .5v
-.if n .sp
-..
-.de Vb \" Begin verbatim text
-.ft CW
-.nf
-.ne \\$1
-..
-.de Ve \" End verbatim text
-.ft R
-.fi
-..
-.\" Set up some character translations and predefined strings. \*(-- will
-.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
-.\" double quote, and \*(R" will give a right double quote. \*(C+ will
-.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
-.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
-.\" nothing in troff, for use with C<>.
-.tr \(*W-
-.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
-.ie n \{\
-. ds -- \(*W-
-. ds PI pi
-. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
-. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
-. ds L" ""
-. ds R" ""
-. ds C` ""
-. ds C' ""
-'br\}
-.el\{\
-. ds -- \|\(em\|
-. ds PI \(*p
-. ds L" ``
-. ds R" ''
-. ds C`
-. ds C'
-'br\}
-.\"
-.\" Escape single quotes in literal strings from groff's Unicode transform.
-.ie \n(.g .ds Aq \(aq
-.el .ds Aq '
-.\"
-.\" If the F register is turned on, we'll generate index entries on stderr for
-.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
-.\" entries marked with X<> in POD. Of course, you'll have to process the
-.\" output yourself in some meaningful fashion.
-.\"
-.\" Avoid warning from groff about undefined register 'F'.
-.de IX
-..
-.nr rF 0
-.if \n(.g .if rF .nr rF 1
-.if (\n(rF:(\n(.g==0)) \{
-. if \nF \{
-. de IX
-. tm Index:\\$1\t\\n%\t"\\$2"
-..
-. if !\nF==2 \{
-. nr % 0
-. nr F 2
-. \}
-. \}
-.\}
-.rr rF
-.\"
-.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
-.\" Fear. Run. Save yourself. No user-serviceable parts.
-. \" fudge factors for nroff and troff
-.if n \{\
-. ds #H 0
-. ds #V .8m
-. ds #F .3m
-. ds #[ \f1
-. ds #] \fP
-.\}
-.if t \{\
-. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
-. ds #V .6m
-. ds #F 0
-. ds #[ \&
-. ds #] \&
-.\}
-. \" simple accents for nroff and troff
-.if n \{\
-. ds ' \&
-. ds ` \&
-. ds ^ \&
-. ds , \&
-. ds ~ ~
-. ds /
-.\}
-.if t \{\
-. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
-. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
-. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
-. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
-. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
-. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
-.\}
-. \" troff and (daisy-wheel) nroff accents
-.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
-.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
-.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
-.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
-.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
-.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
-.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
-.ds ae a\h'-(\w'a'u*4/10)'e
-.ds Ae A\h'-(\w'A'u*4/10)'E
-. \" corrections for vroff
-.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
-.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
-. \" for low resolution devices (crt and lpr)
-.if \n(.H>23 .if \n(.V>19 \
-\{\
-. ds : e
-. ds 8 ss
-. ds o a
-. ds d- d\h'-1'\(ga
-. ds D- D\h'-1'\(hy
-. ds th \o'bp'
-. ds Th \o'LP'
-. ds ae ae
-. ds Ae AE
-.\}
-.rm #[ #] #H #V #F C
-.\" ========================================================================
-.\"
-.IX Title "GPL 7"
-.TH GPL 7 "2014-04-22" "gcc-4.9.0" "GNU"
-.\" For nroff, turn off justification. Always turn off hyphenation; it makes
-.\" way too many mistakes in technical documents.
-.if n .ad l
-.nh
-.SH "NAME"
-gpl \- GNU General Public License
-.SH "DESCRIPTION"
-.IX Header "DESCRIPTION"
-.SS "\s-1GNU\s0 General Public License"
-.IX Subsection "GNU General Public License"
-.SS "Version 3, 29 June 2007"
-.IX Subsection "Version 3, 29 June 2007"
-.Vb 1
-\& Copyright (c) 2007 Free Software Foundation, Inc. <http://fsf.org/>
-\&
-\& Everyone is permitted to copy and distribute verbatim copies of this
-\& license document, but changing it is not allowed.
-.Ve
-.SS "Preamble"
-.IX Subsection "Preamble"
-The \s-1GNU\s0 General Public License is a free, copyleft license for
-software and other kinds of works.
-.PP
-The licenses for most software and other practical works are designed
-to take away your freedom to share and change the works. By contrast,
-the \s-1GNU\s0 General Public License is intended to guarantee your freedom
-to share and change all versions of a program\*(--to make sure it remains
-free software for all its users. We, the Free Software Foundation,
-use the \s-1GNU\s0 General Public License for most of our software; it
-applies also to any other work released this way by its authors. You
-can apply it to your programs, too.
-.PP
-When we speak of free software, we are referring to freedom, not
-price. Our General Public Licenses are designed to make sure that you
-have the freedom to distribute copies of free software (and charge for
-them if you wish), that you receive source code or can get it if you
-want it, that you can change the software or use pieces of it in new
-free programs, and that you know you can do these things.
-.PP
-To protect your rights, we need to prevent others from denying you
-these rights or asking you to surrender the rights. Therefore, you
-have certain responsibilities if you distribute copies of the
-software, or if you modify it: responsibilities to respect the freedom
-of others.
-.PP
-For example, if you distribute copies of such a program, whether
-gratis or for a fee, you must pass on to the recipients the same
-freedoms that you received. You must make sure that they, too,
-receive or can get the source code. And you must show them these
-terms so they know their rights.
-.PP
-Developers that use the \s-1GNU GPL\s0 protect your rights with two steps:
-(1) assert copyright on the software, and (2) offer you this License
-giving you legal permission to copy, distribute and/or modify it.
-.PP
-For the developers' and authors' protection, the \s-1GPL\s0 clearly explains
-that there is no warranty for this free software. For both users' and
-authors' sake, the \s-1GPL\s0 requires that modified versions be marked as
-changed, so that their problems will not be attributed erroneously to
-authors of previous versions.
-.PP
-Some devices are designed to deny users access to install or run
-modified versions of the software inside them, although the
-manufacturer can do so. This is fundamentally incompatible with the
-aim of protecting users' freedom to change the software. The
-systematic pattern of such abuse occurs in the area of products for
-individuals to use, which is precisely where it is most unacceptable.
-Therefore, we have designed this version of the \s-1GPL\s0 to prohibit the
-practice for those products. If such problems arise substantially in
-other domains, we stand ready to extend this provision to those
-domains in future versions of the \s-1GPL,\s0 as needed to protect the
-freedom of users.
-.PP
-Finally, every program is threatened constantly by software patents.
-States should not allow patents to restrict development and use of
-software on general-purpose computers, but in those that do, we wish
-to avoid the special danger that patents applied to a free program
-could make it effectively proprietary. To prevent this, the \s-1GPL\s0
-assures that patents cannot be used to render the program non-free.
-.PP
-The precise terms and conditions for copying, distribution and
-modification follow.
-.SS "\s-1TERMS AND CONDITIONS\s0"
-.IX Subsection "TERMS AND CONDITIONS"
-.IP "0. Definitions." 4
-.IX Item "0. Definitions."
-\&\*(L"This License\*(R" refers to version 3 of the \s-1GNU\s0 General Public License.
-.Sp
-\&\*(L"Copyright\*(R" also means copyright-like laws that apply to other kinds
-of works, such as semiconductor masks.
-.Sp
-\&\*(L"The Program\*(R" refers to any copyrightable work licensed under this
-License. Each licensee is addressed as \*(L"you\*(R". \*(L"Licensees\*(R" and
-\&\*(L"recipients\*(R" may be individuals or organizations.
-.Sp
-To \*(L"modify\*(R" a work means to copy from or adapt all or part of the work
-in a fashion requiring copyright permission, other than the making of
-an exact copy. The resulting work is called a \*(L"modified version\*(R" of
-the earlier work or a work \*(L"based on\*(R" the earlier work.
-.Sp
-A \*(L"covered work\*(R" means either the unmodified Program or a work based
-on the Program.
-.Sp
-To \*(L"propagate\*(R" a work means to do anything with it that, without
-permission, would make you directly or secondarily liable for
-infringement under applicable copyright law, except executing it on a
-computer or modifying a private copy. Propagation includes copying,
-distribution (with or without modification), making available to the
-public, and in some countries other activities as well.
-.Sp
-To \*(L"convey\*(R" a work means any kind of propagation that enables other
-parties to make or receive copies. Mere interaction with a user
-through a computer network, with no transfer of a copy, is not
-conveying.
-.Sp
-An interactive user interface displays \*(L"Appropriate Legal Notices\*(R" to
-the extent that it includes a convenient and prominently visible
-feature that (1) displays an appropriate copyright notice, and (2)
-tells the user that there is no warranty for the work (except to the
-extent that warranties are provided), that licensees may convey the
-work under this License, and how to view a copy of this License. If
-the interface presents a list of user commands or options, such as a
-menu, a prominent item in the list meets this criterion.
-.IP "1. Source Code." 4
-.IX Item "1. Source Code."
-The \*(L"source code\*(R" for a work means the preferred form of the work for
-making modifications to it. \*(L"Object code\*(R" means any non-source form
-of a work.
-.Sp
-A \*(L"Standard Interface\*(R" means an interface that either is an official
-standard defined by a recognized standards body, or, in the case of
-interfaces specified for a particular programming language, one that
-is widely used among developers working in that language.
-.Sp
-The \*(L"System Libraries\*(R" of an executable work include anything, other
-than the work as a whole, that (a) is included in the normal form of
-packaging a Major Component, but which is not part of that Major
-Component, and (b) serves only to enable use of the work with that
-Major Component, or to implement a Standard Interface for which an
-implementation is available to the public in source code form. A
-\&\*(L"Major Component\*(R", in this context, means a major essential component
-(kernel, window system, and so on) of the specific operating system
-(if any) on which the executable work runs, or a compiler used to
-produce the work, or an object code interpreter used to run it.
-.Sp
-The \*(L"Corresponding Source\*(R" for a work in object code form means all
-the source code needed to generate, install, and (for an executable
-work) run the object code and to modify the work, including scripts to
-control those activities. However, it does not include the work's
-System Libraries, or general-purpose tools or generally available free
-programs which are used unmodified in performing those activities but
-which are not part of the work. For example, Corresponding Source
-includes interface definition files associated with source files for
-the work, and the source code for shared libraries and dynamically
-linked subprograms that the work is specifically designed to require,
-such as by intimate data communication or control flow between those
-subprograms and other parts of the work.
-.Sp
-The Corresponding Source need not include anything that users can
-regenerate automatically from other parts of the Corresponding Source.
-.Sp
-The Corresponding Source for a work in source code form is that same
-work.
-.IP "2. Basic Permissions." 4
-.IX Item "2. Basic Permissions."
-All rights granted under this License are granted for the term of
-copyright on the Program, and are irrevocable provided the stated
-conditions are met. This License explicitly affirms your unlimited
-permission to run the unmodified Program. The output from running a
-covered work is covered by this License only if the output, given its
-content, constitutes a covered work. This License acknowledges your
-rights of fair use or other equivalent, as provided by copyright law.
-.Sp
-You may make, run and propagate covered works that you do not convey,
-without conditions so long as your license otherwise remains in force.
-You may convey covered works to others for the sole purpose of having
-them make modifications exclusively for you, or provide you with
-facilities for running those works, provided that you comply with the
-terms of this License in conveying all material for which you do not
-control copyright. Those thus making or running the covered works for
-you must do so exclusively on your behalf, under your direction and
-control, on terms that prohibit them from making any copies of your
-copyrighted material outside their relationship with you.
-.Sp
-Conveying under any other circumstances is permitted solely under the
-conditions stated below. Sublicensing is not allowed; section 10
-makes it unnecessary.
-.IP "3. Protecting Users' Legal Rights From Anti-Circumvention Law." 4
-.IX Item "3. Protecting Users' Legal Rights From Anti-Circumvention Law."
-No covered work shall be deemed part of an effective technological
-measure under any applicable law fulfilling obligations under article
-11 of the \s-1WIPO\s0 copyright treaty adopted on 20 December 1996, or
-similar laws prohibiting or restricting circumvention of such
-measures.
-.Sp
-When you convey a covered work, you waive any legal power to forbid
-circumvention of technological measures to the extent such
-circumvention is effected by exercising rights under this License with
-respect to the covered work, and you disclaim any intention to limit
-operation or modification of the work as a means of enforcing, against
-the work's users, your or third parties' legal rights to forbid
-circumvention of technological measures.
-.IP "4. Conveying Verbatim Copies." 4
-.IX Item "4. Conveying Verbatim Copies."
-You may convey verbatim copies of the Program's source code as you
-receive it, in any medium, provided that you conspicuously and
-appropriately publish on each copy an appropriate copyright notice;
-keep intact all notices stating that this License and any
-non-permissive terms added in accord with section 7 apply to the code;
-keep intact all notices of the absence of any warranty; and give all
-recipients a copy of this License along with the Program.
-.Sp
-You may charge any price or no price for each copy that you convey,
-and you may offer support or warranty protection for a fee.
-.IP "5. Conveying Modified Source Versions." 4
-.IX Item "5. Conveying Modified Source Versions."
-You may convey a work based on the Program, or the modifications to
-produce it from the Program, in the form of source code under the
-terms of section 4, provided that you also meet all of these
-conditions:
-.RS 4
-.IP "a." 4
-.IX Item "a."
-The work must carry prominent notices stating that you modified it,
-and giving a relevant date.
-.IP "b." 4
-.IX Item "b."
-The work must carry prominent notices stating that it is released
-under this License and any conditions added under section 7. This
-requirement modifies the requirement in section 4 to \*(L"keep intact all
-notices\*(R".
-.IP "c." 4
-.IX Item "c."
-You must license the entire work, as a whole, under this License to
-anyone who comes into possession of a copy. This License will
-therefore apply, along with any applicable section 7 additional terms,
-to the whole of the work, and all its parts, regardless of how they
-are packaged. This License gives no permission to license the work in
-any other way, but it does not invalidate such permission if you have
-separately received it.
-.IP "d." 4
-.IX Item "d."
-If the work has interactive user interfaces, each must display
-Appropriate Legal Notices; however, if the Program has interactive
-interfaces that do not display Appropriate Legal Notices, your work
-need not make them do so.
-.RE
-.RS 4
-.Sp
-A compilation of a covered work with other separate and independent
-works, which are not by their nature extensions of the covered work,
-and which are not combined with it such as to form a larger program,
-in or on a volume of a storage or distribution medium, is called an
-\&\*(L"aggregate\*(R" if the compilation and its resulting copyright are not
-used to limit the access or legal rights of the compilation's users
-beyond what the individual works permit. Inclusion of a covered work
-in an aggregate does not cause this License to apply to the other
-parts of the aggregate.
-.RE
-.IP "6. Conveying Non-Source Forms." 4
-.IX Item "6. Conveying Non-Source Forms."
-You may convey a covered work in object code form under the terms of
-sections 4 and 5, provided that you also convey the machine-readable
-Corresponding Source under the terms of this License, in one of these
-ways:
-.RS 4
-.IP "a." 4
-.IX Item "a."
-Convey the object code in, or embodied in, a physical product
-(including a physical distribution medium), accompanied by the
-Corresponding Source fixed on a durable physical medium customarily
-used for software interchange.
-.IP "b." 4
-.IX Item "b."
-Convey the object code in, or embodied in, a physical product
-(including a physical distribution medium), accompanied by a written
-offer, valid for at least three years and valid for as long as you
-offer spare parts or customer support for that product model, to give
-anyone who possesses the object code either (1) a copy of the
-Corresponding Source for all the software in the product that is
-covered by this License, on a durable physical medium customarily used
-for software interchange, for a price no more than your reasonable
-cost of physically performing this conveying of source, or (2) access
-to copy the Corresponding Source from a network server at no charge.
-.IP "c." 4
-.IX Item "c."
-Convey individual copies of the object code with a copy of the written
-offer to provide the Corresponding Source. This alternative is
-allowed only occasionally and noncommercially, and only if you
-received the object code with such an offer, in accord with subsection
-6b.
-.IP "d." 4
-.IX Item "d."
-Convey the object code by offering access from a designated place
-(gratis or for a charge), and offer equivalent access to the
-Corresponding Source in the same way through the same place at no
-further charge. You need not require recipients to copy the
-Corresponding Source along with the object code. If the place to copy
-the object code is a network server, the Corresponding Source may be
-on a different server (operated by you or a third party) that supports
-equivalent copying facilities, provided you maintain clear directions
-next to the object code saying where to find the Corresponding Source.
-Regardless of what server hosts the Corresponding Source, you remain
-obligated to ensure that it is available for as long as needed to
-satisfy these requirements.
-.IP "e." 4
-.IX Item "e."
-Convey the object code using peer-to-peer transmission, provided you
-inform other peers where the object code and Corresponding Source of
-the work are being offered to the general public at no charge under
-subsection 6d.
-.RE
-.RS 4
-.Sp
-A separable portion of the object code, whose source code is excluded
-from the Corresponding Source as a System Library, need not be
-included in conveying the object code work.
-.Sp
-A \*(L"User Product\*(R" is either (1) a \*(L"consumer product\*(R", which means any
-tangible personal property which is normally used for personal,
-family, or household purposes, or (2) anything designed or sold for
-incorporation into a dwelling. In determining whether a product is a
-consumer product, doubtful cases shall be resolved in favor of
-coverage. For a particular product received by a particular user,
-\&\*(L"normally used\*(R" refers to a typical or common use of that class of
-product, regardless of the status of the particular user or of the way
-in which the particular user actually uses, or expects or is expected
-to use, the product. A product is a consumer product regardless of
-whether the product has substantial commercial, industrial or
-non-consumer uses, unless such uses represent the only significant
-mode of use of the product.
-.Sp
-\&\*(L"Installation Information\*(R" for a User Product means any methods,
-procedures, authorization keys, or other information required to
-install and execute modified versions of a covered work in that User
-Product from a modified version of its Corresponding Source. The
-information must suffice to ensure that the continued functioning of
-the modified object code is in no case prevented or interfered with
-solely because modification has been made.
-.Sp
-If you convey an object code work under this section in, or with, or
-specifically for use in, a User Product, and the conveying occurs as
-part of a transaction in which the right of possession and use of the
-User Product is transferred to the recipient in perpetuity or for a
-fixed term (regardless of how the transaction is characterized), the
-Corresponding Source conveyed under this section must be accompanied
-by the Installation Information. But this requirement does not apply
-if neither you nor any third party retains the ability to install
-modified object code on the User Product (for example, the work has
-been installed in \s-1ROM\s0).
-.Sp
-The requirement to provide Installation Information does not include a
-requirement to continue to provide support service, warranty, or
-updates for a work that has been modified or installed by the
-recipient, or for the User Product in which it has been modified or
-installed. Access to a network may be denied when the modification
-itself materially and adversely affects the operation of the network
-or violates the rules and protocols for communication across the
-network.
-.Sp
-Corresponding Source conveyed, and Installation Information provided,
-in accord with this section must be in a format that is publicly
-documented (and with an implementation available to the public in
-source code form), and must require no special password or key for
-unpacking, reading or copying.
-.RE
-.IP "7. Additional Terms." 4
-.IX Item "7. Additional Terms."
-\&\*(L"Additional permissions\*(R" are terms that supplement the terms of this
-License by making exceptions from one or more of its conditions.
-Additional permissions that are applicable to the entire Program shall
-be treated as though they were included in this License, to the extent
-that they are valid under applicable law. If additional permissions
-apply only to part of the Program, that part may be used separately
-under those permissions, but the entire Program remains governed by
-this License without regard to the additional permissions.
-.Sp
-When you convey a copy of a covered work, you may at your option
-remove any additional permissions from that copy, or from any part of
-it. (Additional permissions may be written to require their own
-removal in certain cases when you modify the work.) You may place
-additional permissions on material, added by you to a covered work,
-for which you have or can give appropriate copyright permission.
-.Sp
-Notwithstanding any other provision of this License, for material you
-add to a covered work, you may (if authorized by the copyright holders
-of that material) supplement the terms of this License with terms:
-.RS 4
-.IP "a." 4
-.IX Item "a."
-Disclaiming warranty or limiting liability differently from the terms
-of sections 15 and 16 of this License; or
-.IP "b." 4
-.IX Item "b."
-Requiring preservation of specified reasonable legal notices or author
-attributions in that material or in the Appropriate Legal Notices
-displayed by works containing it; or
-.IP "c." 4
-.IX Item "c."
-Prohibiting misrepresentation of the origin of that material, or
-requiring that modified versions of such material be marked in
-reasonable ways as different from the original version; or
-.IP "d." 4
-.IX Item "d."
-Limiting the use for publicity purposes of names of licensors or
-authors of the material; or
-.IP "e." 4
-.IX Item "e."
-Declining to grant rights under trademark law for use of some trade
-names, trademarks, or service marks; or
-.IP "f." 4
-.IX Item "f."
-Requiring indemnification of licensors and authors of that material by
-anyone who conveys the material (or modified versions of it) with
-contractual assumptions of liability to the recipient, for any
-liability that these contractual assumptions directly impose on those
-licensors and authors.
-.RE
-.RS 4
-.Sp
-All other non-permissive additional terms are considered \*(L"further
-restrictions\*(R" within the meaning of section 10. If the Program as you
-received it, or any part of it, contains a notice stating that it is
-governed by this License along with a term that is a further
-restriction, you may remove that term. If a license document contains
-a further restriction but permits relicensing or conveying under this
-License, you may add to a covered work material governed by the terms
-of that license document, provided that the further restriction does
-not survive such relicensing or conveying.
-.Sp
-If you add terms to a covered work in accord with this section, you
-must place, in the relevant source files, a statement of the
-additional terms that apply to those files, or a notice indicating
-where to find the applicable terms.
-.Sp
-Additional terms, permissive or non-permissive, may be stated in the
-form of a separately written license, or stated as exceptions; the
-above requirements apply either way.
-.RE
-.IP "8. Termination." 4
-.IX Item "8. Termination."
-You may not propagate or modify a covered work except as expressly
-provided under this License. Any attempt otherwise to propagate or
-modify it is void, and will automatically terminate your rights under
-this License (including any patent licenses granted under the third
-paragraph of section 11).
-.Sp
-However, if you cease all violation of this License, then your license
-from a particular copyright holder is reinstated (a) provisionally,
-unless and until the copyright holder explicitly and finally
-terminates your license, and (b) permanently, if the copyright holder
-fails to notify you of the violation by some reasonable means prior to
-60 days after the cessation.
-.Sp
-Moreover, your license from a particular copyright holder is
-reinstated permanently if the copyright holder notifies you of the
-violation by some reasonable means, this is the first time you have
-received notice of violation of this License (for any work) from that
-copyright holder, and you cure the violation prior to 30 days after
-your receipt of the notice.
-.Sp
-Termination of your rights under this section does not terminate the
-licenses of parties who have received copies or rights from you under
-this License. If your rights have been terminated and not permanently
-reinstated, you do not qualify to receive new licenses for the same
-material under section 10.
-.IP "9. Acceptance Not Required for Having Copies." 4
-.IX Item "9. Acceptance Not Required for Having Copies."
-You are not required to accept this License in order to receive or run
-a copy of the Program. Ancillary propagation of a covered work
-occurring solely as a consequence of using peer-to-peer transmission
-to receive a copy likewise does not require acceptance. However,
-nothing other than this License grants you permission to propagate or
-modify any covered work. These actions infringe copyright if you do
-not accept this License. Therefore, by modifying or propagating a
-covered work, you indicate your acceptance of this License to do so.
-.IP "10. Automatic Licensing of Downstream Recipients." 4
-.IX Item "10. Automatic Licensing of Downstream Recipients."
-Each time you convey a covered work, the recipient automatically
-receives a license from the original licensors, to run, modify and
-propagate that work, subject to this License. You are not responsible
-for enforcing compliance by third parties with this License.
-.Sp
-An \*(L"entity transaction\*(R" is a transaction transferring control of an
-organization, or substantially all assets of one, or subdividing an
-organization, or merging organizations. If propagation of a covered
-work results from an entity transaction, each party to that
-transaction who receives a copy of the work also receives whatever
-licenses to the work the party's predecessor in interest had or could
-give under the previous paragraph, plus a right to possession of the
-Corresponding Source of the work from the predecessor in interest, if
-the predecessor has it or can get it with reasonable efforts.
-.Sp
-You may not impose any further restrictions on the exercise of the
-rights granted or affirmed under this License. For example, you may
-not impose a license fee, royalty, or other charge for exercise of
-rights granted under this License, and you may not initiate litigation
-(including a cross-claim or counterclaim in a lawsuit) alleging that
-any patent claim is infringed by making, using, selling, offering for
-sale, or importing the Program or any portion of it.
-.IP "11. Patents." 4
-.IX Item "11. Patents."
-A \*(L"contributor\*(R" is a copyright holder who authorizes use under this
-License of the Program or a work on which the Program is based. The
-work thus licensed is called the contributor's \*(L"contributor version\*(R".
-.Sp
-A contributor's \*(L"essential patent claims\*(R" are all patent claims owned
-or controlled by the contributor, whether already acquired or
-hereafter acquired, that would be infringed by some manner, permitted
-by this License, of making, using, or selling its contributor version,
-but do not include claims that would be infringed only as a
-consequence of further modification of the contributor version. For
-purposes of this definition, \*(L"control\*(R" includes the right to grant
-patent sublicenses in a manner consistent with the requirements of
-this License.
-.Sp
-Each contributor grants you a non-exclusive, worldwide, royalty-free
-patent license under the contributor's essential patent claims, to
-make, use, sell, offer for sale, import and otherwise run, modify and
-propagate the contents of its contributor version.
-.Sp
-In the following three paragraphs, a \*(L"patent license\*(R" is any express
-agreement or commitment, however denominated, not to enforce a patent
-(such as an express permission to practice a patent or covenant not to
-sue for patent infringement). To \*(L"grant\*(R" such a patent license to a
-party means to make such an agreement or commitment not to enforce a
-patent against the party.
-.Sp
-If you convey a covered work, knowingly relying on a patent license,
-and the Corresponding Source of the work is not available for anyone
-to copy, free of charge and under the terms of this License, through a
-publicly available network server or other readily accessible means,
-then you must either (1) cause the Corresponding Source to be so
-available, or (2) arrange to deprive yourself of the benefit of the
-patent license for this particular work, or (3) arrange, in a manner
-consistent with the requirements of this License, to extend the patent
-license to downstream recipients. \*(L"Knowingly relying\*(R" means you have
-actual knowledge that, but for the patent license, your conveying the
-covered work in a country, or your recipient's use of the covered work
-in a country, would infringe one or more identifiable patents in that
-country that you have reason to believe are valid.
-.Sp
-If, pursuant to or in connection with a single transaction or
-arrangement, you convey, or propagate by procuring conveyance of, a
-covered work, and grant a patent license to some of the parties
-receiving the covered work authorizing them to use, propagate, modify
-or convey a specific copy of the covered work, then the patent license
-you grant is automatically extended to all recipients of the covered
-work and works based on it.
-.Sp
-A patent license is \*(L"discriminatory\*(R" if it does not include within the
-scope of its coverage, prohibits the exercise of, or is conditioned on
-the non-exercise of one or more of the rights that are specifically
-granted under this License. You may not convey a covered work if you
-are a party to an arrangement with a third party that is in the
-business of distributing software, under which you make payment to the
-third party based on the extent of your activity of conveying the
-work, and under which the third party grants, to any of the parties
-who would receive the covered work from you, a discriminatory patent
-license (a) in connection with copies of the covered work conveyed by
-you (or copies made from those copies), or (b) primarily for and in
-connection with specific products or compilations that contain the
-covered work, unless you entered into that arrangement, or that patent
-license was granted, prior to 28 March 2007.
-.Sp
-Nothing in this License shall be construed as excluding or limiting
-any implied license or other defenses to infringement that may
-otherwise be available to you under applicable patent law.
-.IP "12. No Surrender of Others' Freedom." 4
-.IX Item "12. No Surrender of Others' Freedom."
-If conditions are imposed on you (whether by court order, agreement or
-otherwise) that contradict the conditions of this License, they do not
-excuse you from the conditions of this License. If you cannot convey
-a covered work so as to satisfy simultaneously your obligations under
-this License and any other pertinent obligations, then as a
-consequence you may not convey it at all. For example, if you agree
-to terms that obligate you to collect a royalty for further conveying
-from those to whom you convey the Program, the only way you could
-satisfy both those terms and this License would be to refrain entirely
-from conveying the Program.
-.IP "13. Use with the \s-1GNU\s0 Affero General Public License." 4
-.IX Item "13. Use with the GNU Affero General Public License."
-Notwithstanding any other provision of this License, you have
-permission to link or combine any covered work with a work licensed
-under version 3 of the \s-1GNU\s0 Affero General Public License into a single
-combined work, and to convey the resulting work. The terms of this
-License will continue to apply to the part which is the covered work,
-but the special requirements of the \s-1GNU\s0 Affero General Public License,
-section 13, concerning interaction through a network will apply to the
-combination as such.
-.IP "14. Revised Versions of this License." 4
-.IX Item "14. Revised Versions of this License."
-The Free Software Foundation may publish revised and/or new versions
-of the \s-1GNU\s0 General Public License from time to time. Such new
-versions will be similar in spirit to the present version, but may
-differ in detail to address new problems or concerns.
-.Sp
-Each version is given a distinguishing version number. If the Program
-specifies that a certain numbered version of the \s-1GNU\s0 General Public
-License \*(L"or any later version\*(R" applies to it, you have the option of
-following the terms and conditions either of that numbered version or
-of any later version published by the Free Software Foundation. If
-the Program does not specify a version number of the \s-1GNU\s0 General
-Public License, you may choose any version ever published by the Free
-Software Foundation.
-.Sp
-If the Program specifies that a proxy can decide which future versions
-of the \s-1GNU\s0 General Public License can be used, that proxy's public
-statement of acceptance of a version permanently authorizes you to
-choose that version for the Program.
-.Sp
-Later license versions may give you additional or different
-permissions. However, no additional obligations are imposed on any
-author or copyright holder as a result of your choosing to follow a
-later version.
-.IP "15. Disclaimer of Warranty." 4
-.IX Item "15. Disclaimer of Warranty."
-\&\s-1THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
-APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
-HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM \*(L"AS IS\*(R" WITHOUT
-WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
-LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
-PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
-DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
-CORRECTION.\s0
-.IP "16. Limitation of Liability." 4
-.IX Item "16. Limitation of Liability."
-\&\s-1IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
-WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
-CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
-INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
-ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM \s0(\s-1INCLUDING BUT
-NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
-LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
-TO OPERATE WITH ANY OTHER PROGRAMS\s0), \s-1EVEN IF SUCH HOLDER OR OTHER
-PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.\s0
-.IP "17. Interpretation of Sections 15 and 16." 4
-.IX Item "17. Interpretation of Sections 15 and 16."
-If the disclaimer of warranty and limitation of liability provided
-above cannot be given local legal effect according to their terms,
-reviewing courts shall apply local law that most closely approximates
-an absolute waiver of all civil liability in connection with the
-Program, unless a warranty or assumption of liability accompanies a
-copy of the Program in return for a fee.
-.SS "\s-1END OF TERMS AND CONDITIONS\s0"
-.IX Subsection "END OF TERMS AND CONDITIONS"
-.SS "How to Apply These Terms to Your New Programs"
-.IX Subsection "How to Apply These Terms to Your New Programs"
-If you develop a new program, and you want it to be of the greatest
-possible use to the public, the best way to achieve this is to make it
-free software which everyone can redistribute and change under these
-terms.
-.PP
-To do so, attach the following notices to the program. It is safest
-to attach them to the start of each source file to most effectively
-state the exclusion of warranty; and each file should have at least
-the \*(L"copyright\*(R" line and a pointer to where the full notice is found.
-.PP
-.Vb 2
-\& <one line to give the program\*(Aqs name and a brief idea of what it does.>
-\& Copyright (C) <year> <name of author>
-\&
-\& This program is free software: you can redistribute it and/or modify
-\& it under the terms of the GNU General Public License as published by
-\& the Free Software Foundation, either version 3 of the License, or (at
-\& your option) any later version.
-\&
-\& This program is distributed in the hope that it will be useful, but
-\& WITHOUT ANY WARRANTY; without even the implied warranty of
-\& MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-\& General Public License for more details.
-\&
-\& You should have received a copy of the GNU General Public License
-\& along with this program. If not, see <http://www.gnu.org/licenses/>.
-.Ve
-.PP
-Also add information on how to contact you by electronic and paper mail.
-.PP
-If the program does terminal interaction, make it output a short
-notice like this when it starts in an interactive mode:
-.PP
-.Vb 4
-\& <program> Copyright (C) <year> <name of author>
-\& This program comes with ABSOLUTELY NO WARRANTY; for details type "show w".
-\& This is free software, and you are welcome to redistribute it
-\& under certain conditions; type "show c" for details.
-.Ve
-.PP
-The hypothetical commands \fBshow w\fR and \fBshow c\fR should show
-the appropriate parts of the General Public License. Of course, your
-program's commands might be different; for a \s-1GUI\s0 interface, you would
-use an \*(L"about box\*(R".
-.PP
-You should also get your employer (if you work as a programmer) or school,
-if any, to sign a \*(L"copyright disclaimer\*(R" for the program, if necessary.
-For more information on this, and how to apply and follow the \s-1GNU GPL,\s0 see
-<\fBhttp://www.gnu.org/licenses/\fR>.
-.PP
-The \s-1GNU\s0 General Public License does not permit incorporating your
-program into proprietary programs. If your program is a subroutine
-library, you may consider it more useful to permit linking proprietary
-applications with the library. If this is what you want to do, use
-the \s-1GNU\s0 Lesser General Public License instead of this License. But
-first, please read <\fBhttp://www.gnu.org/philosophy/why\-not\-lgpl.html\fR>.
-.SH "SEE ALSO"
-.IX Header "SEE ALSO"
-\&\fIgfdl\fR\|(7), \fIfsf\-funding\fR\|(7).
-.SH "COPYRIGHT"
-.IX Header "COPYRIGHT"
-Copyright (c) 2007 Free Software Foundation, Inc.
-.PP
-Everyone is permitted to copy and distribute verbatim copies of this
-license document, but changing it is not allowed.
diff --git a/gcc-4.9/gcc/doc/grmic.1 b/gcc-4.9/gcc/doc/grmic.1
deleted file mode 100644
index 4706a5c09..000000000
--- a/gcc-4.9/gcc/doc/grmic.1
+++ /dev/null
@@ -1,222 +0,0 @@
-.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28)
-.\"
-.\" Standard preamble:
-.\" ========================================================================
-.de Sp \" Vertical space (when we can't use .PP)
-.if t .sp .5v
-.if n .sp
-..
-.de Vb \" Begin verbatim text
-.ft CW
-.nf
-.ne \\$1
-..
-.de Ve \" End verbatim text
-.ft R
-.fi
-..
-.\" Set up some character translations and predefined strings. \*(-- will
-.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
-.\" double quote, and \*(R" will give a right double quote. \*(C+ will
-.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
-.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
-.\" nothing in troff, for use with C<>.
-.tr \(*W-
-.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
-.ie n \{\
-. ds -- \(*W-
-. ds PI pi
-. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
-. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
-. ds L" ""
-. ds R" ""
-. ds C` ""
-. ds C' ""
-'br\}
-.el\{\
-. ds -- \|\(em\|
-. ds PI \(*p
-. ds L" ``
-. ds R" ''
-. ds C`
-. ds C'
-'br\}
-.\"
-.\" Escape single quotes in literal strings from groff's Unicode transform.
-.ie \n(.g .ds Aq \(aq
-.el .ds Aq '
-.\"
-.\" If the F register is turned on, we'll generate index entries on stderr for
-.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
-.\" entries marked with X<> in POD. Of course, you'll have to process the
-.\" output yourself in some meaningful fashion.
-.\"
-.\" Avoid warning from groff about undefined register 'F'.
-.de IX
-..
-.nr rF 0
-.if \n(.g .if rF .nr rF 1
-.if (\n(rF:(\n(.g==0)) \{
-. if \nF \{
-. de IX
-. tm Index:\\$1\t\\n%\t"\\$2"
-..
-. if !\nF==2 \{
-. nr % 0
-. nr F 2
-. \}
-. \}
-.\}
-.rr rF
-.\"
-.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
-.\" Fear. Run. Save yourself. No user-serviceable parts.
-. \" fudge factors for nroff and troff
-.if n \{\
-. ds #H 0
-. ds #V .8m
-. ds #F .3m
-. ds #[ \f1
-. ds #] \fP
-.\}
-.if t \{\
-. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
-. ds #V .6m
-. ds #F 0
-. ds #[ \&
-. ds #] \&
-.\}
-. \" simple accents for nroff and troff
-.if n \{\
-. ds ' \&
-. ds ` \&
-. ds ^ \&
-. ds , \&
-. ds ~ ~
-. ds /
-.\}
-.if t \{\
-. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
-. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
-. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
-. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
-. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
-. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
-.\}
-. \" troff and (daisy-wheel) nroff accents
-.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
-.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
-.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
-.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
-.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
-.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
-.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
-.ds ae a\h'-(\w'a'u*4/10)'e
-.ds Ae A\h'-(\w'A'u*4/10)'E
-. \" corrections for vroff
-.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
-.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
-. \" for low resolution devices (crt and lpr)
-.if \n(.H>23 .if \n(.V>19 \
-\{\
-. ds : e
-. ds 8 ss
-. ds o a
-. ds d- d\h'-1'\(ga
-. ds D- D\h'-1'\(hy
-. ds th \o'bp'
-. ds Th \o'LP'
-. ds ae ae
-. ds Ae AE
-.\}
-.rm #[ #] #H #V #F C
-.\" ========================================================================
-.\"
-.IX Title "GRMIC 1"
-.TH GRMIC 1 "2014-04-22" "gcc-4.9.0" "GNU"
-.\" For nroff, turn off justification. Always turn off hyphenation; it makes
-.\" way too many mistakes in technical documents.
-.if n .ad l
-.nh
-.SH "NAME"
-grmic \- Generate stubs for Remote Method Invocation
-.SH "SYNOPSIS"
-.IX Header "SYNOPSIS"
-\&\fBgrmic\fR [\fB\s-1OPTION\s0\fR] ... \fIclass\fR ...
-.SH "DESCRIPTION"
-.IX Header "DESCRIPTION"
-\&\fBgrmic\fR is a utility included with \f(CW\*(C`libgcj\*(C'\fR which generates
-stubs for remote objects.
-.PP
-Note that this program isn't yet fully compatible with the \s-1JDK
-\&\s0\fBgrmic\fR. Some options, such as \fB\-classpath\fR, are
-recognized but currently ignored. We have left these options
-undocumented for now.
-.PP
-Long options can also be given with a GNU-style leading \fB\-\-\fR. For
-instance, \fB\-\-help\fR is accepted.
-.SH "OPTIONS"
-.IX Header "OPTIONS"
-.IP "\fB\-keep\fR" 4
-.IX Item "-keep"
-.PD 0
-.IP "\fB\-keepgenerated\fR" 4
-.IX Item "-keepgenerated"
-.PD
-By default, \fBgrmic\fR deletes intermediate files. Either of these
-options causes it not to delete such files.
-.IP "\fB\-v1.1\fR" 4
-.IX Item "-v1.1"
-Cause \fBgrmic\fR to create stubs and skeletons for the 1.1
-protocol version.
-.IP "\fB\-vcompat\fR" 4
-.IX Item "-vcompat"
-Cause \fBgrmic\fR to create stubs and skeletons compatible with both
-the 1.1 and 1.2 protocol versions. This is the default.
-.IP "\fB\-v1.2\fR" 4
-.IX Item "-v1.2"
-Cause \fBgrmic\fR to create stubs and skeletons for the 1.2
-protocol version.
-.IP "\fB\-nocompile\fR" 4
-.IX Item "-nocompile"
-Don't compile the generated files.
-.IP "\fB\-verbose\fR" 4
-.IX Item "-verbose"
-Print information about what \fBgrmic\fR is doing.
-.IP "\fB\-d\fR \fIdirectory\fR" 4
-.IX Item "-d directory"
-Put output files in \fIdirectory\fR. By default the files are put in
-the current working directory.
-.IP "\fB\-help\fR" 4
-.IX Item "-help"
-Print a help message, then exit.
-.IP "\fB\-version\fR" 4
-.IX Item "-version"
-Print version information, then exit.
-.SH "SEE ALSO"
-.IX Header "SEE ALSO"
-.SH "COPYRIGHT"
-.IX Header "COPYRIGHT"
-Copyright (c) 2001\-2014 Free Software Foundation, Inc.
-.PP
-Permission is granted to copy, distribute and/or modify this document
-under the terms of the \s-1GNU\s0 Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with no
-Invariant Sections, the Front-Cover Texts being (a) (see below), and
-with the Back-Cover Texts being (b) (see below).
-A copy of the license is included in the
-man page \fIgfdl\fR\|(7).
-.PP
-(a) The \s-1FSF\s0's Front-Cover Text is:
-.PP
-.Vb 1
-\& A GNU Manual
-.Ve
-.PP
-(b) The \s-1FSF\s0's Back-Cover Text is:
-.PP
-.Vb 3
-\& You have freedom to copy and modify this GNU Manual, like GNU
-\& software. Copies published by the Free Software Foundation raise
-\& funds for GNU development.
-.Ve
diff --git a/gcc-4.9/gcc/doc/install.texi b/gcc-4.9/gcc/doc/install.texi
index 6b45e9d0d..80cb0a90c 100644
--- a/gcc-4.9/gcc/doc/install.texi
+++ b/gcc-4.9/gcc/doc/install.texi
@@ -921,6 +921,18 @@ ideas of what it is for. People use it as if it specified where to
install part of GCC@. Perhaps they make this assumption because
installing GCC creates the directory.
+@item --with-runtime-root-prefix=@var{dirname}
+Specifies that @var{dirname} is to be used as a prefix before paths
+to files used at runtime, such as the path to the dynamic linker.
+For instance, if the dynamic linker is normally @file{/lib/ld.so} and
+this option is given as:
+@smallexample
+--with-runtime-root-prefix=/other
+@end smallexample
+then the compiler will cause compiled executables to use
+@file{/other/lib/ld.so} as their dynamic linker at runtime. This option
+is currently only supported by some targets, notably Linux.
+
@item --with-native-system-header-dir=@var{dirname}
Specifies that @var{dirname} is the directory that contains native system
header files, rather than @file{/usr/include}. This option is most useful
@@ -1787,6 +1799,20 @@ This linker should have plugin support such as gold starting with
version 2.20 or GNU ld starting with version 2.21.
See @option{-fuse-linker-plugin} for details.
+@item --enable-canonical-prefixes
+@itemx --disable-canonical-prefixes
+Enable prefix canonicalization for GCC files that the GCC driver locates
+relative to its own path. Canonicalized prefixes have any @code{/x/../}
+elements removed and symbolic links expanded. This is enabled by default,
+and may be disabled using @option{--disable-canonical-prefixes}.
+See @option{-canonical-prefixes} or @option{-no-canonical-prefixes} for
+more details, including how to override this configuration option when
+compiling.
+
+@item --with-warn-frame-larger-than-extra-text=@var{text}
+Append @samp{@var{text}} to frame size warnings generated by
+the @option{-Wframe-larger-than} warning flag.
+
@item --enable-canonical-system-headers
@itemx --disable-canonical-system-headers
Enable system header path canonicalization for @file{libcpp}. This can
@@ -3008,12 +3034,6 @@ OpenServer/Unixware}.
Solaris 2 (SPARC, Intel):
@itemize
@item
-@uref{http://www.sunfreeware.com/,,Sunfreeware}
-
-@item
-@uref{http://www.blastwave.org/,,Blastwave}
-
-@item
@uref{http://www.opencsw.org/,,OpenCSW}
@item
@@ -3764,9 +3784,9 @@ removed and the system libunwind library will always be used.
@end html
@anchor{aarch64-x-x}
@heading aarch64*-*-*
-Pre 2.24 binutils does not have support for selecting -mabi and does not
-support ILP32. If GCC 4.9 or later is built with pre 2.24, GCC will not
-support option -mabi=ilp32.
+Binutils pre 2.24 does not have support for selecting @option{-mabi} and
+does not support ILP32. If it is used to build GCC 4.9 or later, GCC will
+not support option @option{-mabi=ilp32}.
@html
<hr />
diff --git a/gcc-4.9/gcc/doc/invoke.texi b/gcc-4.9/gcc/doc/invoke.texi
index a74c6c54e..d4ced8484 100644
--- a/gcc-4.9/gcc/doc/invoke.texi
+++ b/gcc-4.9/gcc/doc/invoke.texi
@@ -244,7 +244,7 @@ Objective-C and Objective-C++ Dialects}.
-Wno-deprecated -Wno-deprecated-declarations -Wdisabled-optimization @gol
-Wno-div-by-zero -Wdouble-promotion -Wempty-body -Wenum-compare @gol
-Wno-endif-labels -Werror -Werror=* @gol
--Wfatal-errors -Wfloat-equal -Wformat -Wformat=2 @gol
+-Wfatal-errors -Wfloat-equal -Wforce-warnings -Wformat -Wformat=2 @gol
-Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral @gol
-Wformat-security -Wformat-y2k @gol
-Wframe-larger-than=@var{len} -Wno-free-nonheap-object -Wjump-misses-init @gol
@@ -260,8 +260,9 @@ Objective-C and Objective-C++ Dialects}.
-Woverlength-strings -Wpacked -Wpacked-bitfield-compat -Wpadded @gol
-Wparentheses -Wpedantic-ms-format -Wno-pedantic-ms-format @gol
-Wpointer-arith -Wno-pointer-to-int-cast @gol
--Wredundant-decls -Wno-return-local-addr @gol
--Wreturn-type -Wsequence-point -Wshadow @gol
+-Wredundant-decls -Wno-return-local-addr -Wipa-opt-mismatch @gol
+-Wreturn-type -Wself-assign -Wself-assign-non-pod -Wsequence-point -Wshadow @gol
+-Wshadow-compatible-local -Wshadow-local @gol
-Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
-Wsizeof-pointer-memaccess @gol
-Wstack-protector -Wstack-usage=@var{len} -Wstrict-aliasing @gol
@@ -330,16 +331,19 @@ Objective-C and Objective-C++ Dialects}.
-fenable-@var{kind}-@var{pass} @gol
-fenable-@var{kind}-@var{pass}=@var{range-list} @gol
-fdebug-types-section -fmem-report-wpa @gol
+-fenable-@var{kind}-@var{pass} @gol
+-fenable-@var{kind}-@var{pass}=@var{range-list} @gol
+-fdebug-types-section @gol
-fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs @gol
+-fprofile-strip=@var{suffix} -frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
-fopt-info @gol
-fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
--frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
-fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
-fstack-usage -ftest-coverage -ftime-report -fvar-tracking @gol
-fvar-tracking-assignments -fvar-tracking-assignments-toggle @gol
-g -g@var{level} -gtoggle -gcoff -gdwarf-@var{version} @gol
-ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
--gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
+-gmlt -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
-gvms -gxcoff -gxcoff+ @gol
-fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
-fdebug-prefix-map=@var{old}=@var{new} @gol
@@ -359,7 +363,8 @@ Objective-C and Objective-C++ Dialects}.
-fassociative-math -fauto-inc-dec -fbranch-probabilities @gol
-fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
-fbtr-bb-exclusive -fcaller-saves @gol
--fcheck-data-deps -fcombine-stack-adjustments -fconserve-stack @gol
+-fcheck-branch-annotation -fcheck-data-deps -fclone-hot-version-paths @gol
+-fcombine-stack-adjustments -fconserve-stack @gol
-fcompare-elim -fcprop-registers -fcrossjumping @gol
-fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
-fcx-limited-range @gol
@@ -393,12 +398,16 @@ Objective-C and Objective-C++ Dialects}.
-fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
-fprefetch-loop-arrays -fprofile-report @gol
-fprofile-correction -fprofile-dir=@var{path} -fprofile-generate @gol
--fprofile-generate=@var{path} @gol
+-fprofile-generate=@var{path} -fprofile-generate-sampling @gol
-fprofile-use -fprofile-use=@var{path} -fprofile-values -fprofile-reorder-functions @gol
-freciprocal-math -free -frename-registers -freorder-blocks @gol
+-frecord-gcc-switches-in-elf@gol
-freorder-blocks-and-partition -freorder-functions @gol
-frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
--frounding-math -fsched2-use-superblocks -fsched-pressure @gol
+-fripa -fripa-disallow-asm-modules -fripa-disallow-opt-mismatch @gol
+-fripa-inc-path-sub=@var{path_mapping} -fripa-no-promote-always-inline-func @gol
+-fripa-verbose -frounding-math @gol
+-fsched2-use-superblocks -fsched-pressure @gol
-fsched-spec-load -fsched-spec-load-dangerous @gol
-fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
-fsched-group-heuristic -fsched-critical-path-heuristic @gol
@@ -658,6 +667,7 @@ Objective-C and Objective-C++ Dialects}.
-mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
-mfpmath=@var{unit} @gol
-masm=@var{dialect} -mno-fancy-math-387 @gol
+-mcopyrelocs @gol
-mno-fp-ret-in-387 -msoft-float @gol
-mno-wide-multiply -mrtd -malign-double @gol
-mpreferred-stack-boundary=@var{num} @gol
@@ -981,7 +991,7 @@ See RS/6000 and PowerPC Options.
-mpretend-cmove -mtas}
@emph{Solaris 2 Options}
-@gccoptlist{-mimpure-text -mno-impure-text @gol
+@gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
-pthreads -pthread}
@emph{SPARC Options}
@@ -1473,11 +1483,20 @@ gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
diff /tmp/O2-opts /tmp/O3-opts | grep enabled
@end smallexample
+@item -canonical-prefixes
+@opindex canonical-prefixes
+Always expand any symbolic links, resolve references to @samp{/../}
+or @samp{/./}, and make the path absolute when generating a relative
+prefix.
+
@item -no-canonical-prefixes
@opindex no-canonical-prefixes
-Do not expand any symbolic links, resolve references to @samp{/../}
+Never expand any symbolic links, resolve references to @samp{/../}
or @samp{/./}, or make the path absolute when generating a relative
-prefix.
+prefix. If neither @option{-canonical-prefixes} nor
+@option{-nocanonical-prefixes} is given, GCC tries to set an appropriate
+default by looking for a target-specific subdirectory alongside the
+directory containing the compiler driver.
@item --version
@opindex version
@@ -3237,6 +3256,11 @@ This option causes the compiler to abort compilation on the first error
occurred rather than trying to keep going and printing further error
messages.
+@item -Wforce-warnings
+@opindex Wforce-warnings
+This option causes the compiler to ignore @option{-Werror} and
+@option{-Werror=} and suppress promotion of warnings to errors.
+
@end table
You can request many specific warnings with options beginning with
@@ -3335,6 +3359,7 @@ Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
-Wpointer-sign @gol
-Wreorder @gol
-Wreturn-type @gol
+-Wripa-opt-mismatch @gol
-Wsequence-point @gol
-Wsign-compare @r{(only in C++)} @gol
-Wstrict-aliasing @gol
@@ -3573,7 +3598,7 @@ If @option{-Wformat} is specified, also warn about @code{strftime}
formats that may yield only a two-digit year.
@end table
-@item -Wnonnull
+@item -Wnonnull @r{(C and Objective-C only)}
@opindex Wnonnull
@opindex Wno-nonnull
Warn about passing a null pointer for arguments marked as
@@ -3771,6 +3796,61 @@ definitions, may be found on the GCC readings page, at
This warning is enabled by @option{-Wall} for C and C++.
+@item -Wself-assign
+@opindex Wself-assign
+@opindex Wno-self-assign
+Warn about self-assignment and self-initialization. This warning is intended
+for detecting accidental self-assignment due to typos, and therefore does
+not warn on a statement that is semantically a self-assignment after
+constant folding. Here is an example of what will trigger a self-assign
+warning and what will not:
+
+@smallexample
+@group
+void func()
+@{
+ int i = 2;
+ int x = x; /* warn */
+ float f = 5.0;
+ double a[3];
+
+ i = i + 0; /* not warn */
+ f = f / 1; /* not warn */
+ a[1] = a[1]; /* warn */
+ i += 0; /* not warn */
+@}
+@end group
+@end smallexample
+
+In C++ it will not warn on self-assignment of non-POD variables unless
+@option{-Wself-assign-non-pod} is also enabled.
+
+@item -Wself-assign-non-pod
+@opindex Wself-assign-non-pod
+@opindex Wno-self-assign-non-pod
+Warn about self-assignment of non-POD variables. This is a C++-specific
+warning and only effective when @option{-Wself-assign} is enabled.
+
+There are cases where self-assignment might be intentional. For example,
+a C++ programmer might write code to test whether an overloaded
+@code{operator=} works when the same object is assigned to itself.
+One way to work around the self-assign warning in such cases when this flag
+is enabled is using the functional form @code{object.operator=(object)}
+instead of the assignment form @code{object = object}, as shown in the
+following example.
+
+@smallexample
+@group
+void test_func()
+@{
+ MyType t;
+
+ t.operator=(t); // not warn
+ t = t; // warn
+@}
+@end group
+@end smallexample
+
@item -Wno-return-local-addr
@opindex Wno-return-local-addr
@opindex Wreturn-local-addr
@@ -3793,6 +3873,16 @@ exceptions are @samp{main} and functions defined in system headers.
This warning is enabled by @option{-Wall}.
+@item -Wripa-opt-mismatch
+@opindex Wripa-opt-mismatch
+@opindex Wno-ripa-opt-mismatch
+When doing an FDO build with @option{-fprofile-use} and @option{-fripa},
+warn if importing an axuiliary module that was built with a different
+GCC command line during the profile-generate phase than the primary
+module.
+
+This warning is enabled by @option{-Wall}.
+
@item -Wswitch
@opindex Wswitch
@opindex Wno-switch
@@ -3905,6 +3995,10 @@ This warning is enabled by @option{-Wall}.
To suppress this warning use the @samp{unused} attribute
(@pxref{Variable Attributes}).
+Note that a classic way to avoid @option{-Wunused-variable} warning is
+using @code{x = x}, but that does not work with @option{-Wself-assign}.
+Use @code{(void) x} or @code{static_cast<void>(x)} instead.
+
@item -Wunused-value
@opindex Wunused-value
@opindex Wno-unused-value
@@ -4351,6 +4445,43 @@ parameter, type, or class member (in C++), or whenever a built-in function
is shadowed. Note that in C++, the compiler warns if a local variable
shadows an explicit typedef, but not if it shadows a struct/class/enum.
+@item -Wshadow-local
+@opindex Wshadow-local
+@opindex Wno-shadow-local
+Warn when a local variable shadows another local variable or parameter.
+
+@item -Wshadow-compatible-local
+@opindex Wshadow-compatible-local
+@opindex Wno-shadow-compatible-local
+Warn when a local variable shadows another local variable or parameter
+whose type is compatible with that of the shadowing variable. In C++,
+type compatibility here means the type of the shadowing variable can be
+converted to that of the shadowed variable. The creation of this flag
+(in addition to @option{-Wshadow-local}) is based on the idea that when
+a local variable shadows another one of incompatible type, it is most
+likely intentional, not a bug or typo, as shown in the following example:
+
+@smallexample
+@group
+for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
+@{
+ for (int i = 0; i < N; ++i)
+ @{
+ ...
+ @}
+ ...
+@}
+@end group
+@end smallexample
+
+Since the two variable @code{i} in the example above have incompatible types,
+enabling only @option{-Wshadow-compatible-local} will not emit a warning.
+Because their types are incompatible, if a programmer accidentally uses one
+in place of the other, type checking will catch that and emit an error or
+warning. So not warning (about shadowing) in this case will not lead to
+undetected bugs. Use of this flag instead of @option{-Wshadow-local} can
+possibly reduce the number of warnings triggered by intentional shadowing.
+
@item -Wlarger-than=@var{len}
@opindex Wlarger-than=@var{len}
@opindex Wlarger-than-@var{len}
@@ -4955,6 +5086,12 @@ Suppress warnings from casts to pointer type of an integer of a
different size. In C++, casting to a pointer type of smaller size is
an error. @option{Wint-to-pointer-cast} is enabled by default.
+@item max-lipo-mem
+When importing auxiliary modules during profile-use, check current
+memory consumption after parsing each auxiliary module. If it exceeds
+this limit (specified in kb), don't import any more auxiliary modules.
+Specifying a value of 0 means don't enforce this limit. This parameter
+is only useful when using @option{-fprofile-use} and @option{-fripa}.
@item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
@opindex Wno-pointer-to-int-cast
@@ -6236,7 +6373,7 @@ passes).
@item missed
Enable showing missed optimization information (only available in certain
passes).
-@item notes
+@item note
Enable other detailed optimization information (only available in
certain passes).
@item =@var{filename}
@@ -7395,7 +7532,8 @@ Attempt to remove redundant extension instructions. This is especially
helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
registers after writing to their lower 32-bit half.
-Enabled for AArch64 and x86 at levels @option{-O2}, @option{-O3}.
+Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
+@option{-O3}, @option{-Os}.
@item -flive-range-shrinkage
@opindex flive-range-shrinkage
@@ -8297,6 +8435,10 @@ Also profile feedback must be available to make this option effective. See
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
+@item -freorder-functions=@var{alg}
+@opindex freorder-functions
+This invokes a linker plugin that globally reorders functions in the final binary according to the algorithm specified. Currently, only one type of reordering is supported, @code{callgraph}. This algorithm places functions that are connected by hot callgraph edges closer. This option also enables @option{-ffunction-sections}. Also, profile feedback must be available to makes this option effective. This option emits callgraph edge profile information in special sections named .gnu.callgraph.text. The params variable "gnu-cgraph-section-edge-threshold" can be used to only list edges above a certain threshold.
+
@item -fstrict-aliasing
@opindex fstrict-aliasing
Allow the compiler to assume the strictest aliasing rules applicable to
@@ -8801,6 +8943,24 @@ and occasionally eliminate the copy.
Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
+@item -fauto-profile
+@itemx -fauto-profile=@var{path}
+@opindex fauto-profile
+Enable auto-profile feedback directed optimizations, and optimizations
+generally profitable only with profile feedback available.
+
+The following options are enabled: @code{-fbranch-probabilities},
+@code{-funroll-loops}, @code{-fpeel-loops}.
+
+If @var{path} is specified, GCC will look at the @var{path} to find
+the profile feedback data files. Otherwise, GCC will find fbdata.afdo
+in the current directory.
+
+@item -fcheck-branch-annotation
+@opindex -fcheck-branch-annotation
+Compare branch prediction result and autofdo profile information, store the
+result in a section in the generated elf file.
+
@item -fprofile-correction
@opindex fprofile-correction
Profiles collected using an instrumented binary for multi-threaded programs may
@@ -8833,6 +8993,20 @@ The following options are enabled: @code{-fprofile-arcs}, @code{-fprofile-values
If @var{path} is specified, GCC looks at the @var{path} to find
the profile feedback data files. See @option{-fprofile-dir}.
+@item -fprofile-generate-sampling
+@opindex -fprofile-generate-sampling
+
+Enable sampling for instrumented binaries. Instead of recording every event,
+record only every N-th event, where N (the sampling period) can be set either
+at compile time using
+@option{--param profile-generate-sampling-period=@var{value}}, or at
+execution start time through environment variable @samp{GCOV_SAMPLING_PERIOD}.
+
+At this time sampling applies only to branch counters. A sampling period of 100
+decreases instrumentated binary slowdown from up to 20x for heavily threaded
+applications down to around 2x. @option{-fprofile-correction} is always
+needed with sampling.
+
@item -fprofile-use
@itemx -fprofile-use=@var{path}
@opindex fprofile-use
@@ -8850,6 +9024,59 @@ code.
If @var{path} is specified, GCC looks at the @var{path} to find
the profile feedback data files. See @option{-fprofile-dir}.
+
+@item -fprofile-strip=@var{base_suffix}
+@opindex fprofile-strip
+
+The option causes the compiler to strip @var{base_suffix} from the
+base file name and use that to find the gcda file.
+
+@item -fripa
+@opindex fripa
+Perform dynamic inter-procedural analysis. This is used in conjunction with
+the @option{-fprofile-generate} and @option{-fprofile-use} options.
+During the @option{-fprofile-generate} phase, this flag turns on some additional
+instrumentation code that enables dynamic call-graph analysis.
+During the @option{-fprofile-use} phase, this flag enables cross-module
+optimizations such as inlining.
+
+@item -fripa-disallow-asm-modules
+@opindex fripa-disallow-asm-modules
+During profile-gen, if this flag is enabled, and the module has asm statements,
+arrange so that a bit recording this information will be set in the profile
+feedback data file.
+During profile-use, if this flag is enabled, and the same bit in auxiliary
+module's profile feedback data is set, don't import this auxiliary module.
+If this is the primary module, don't export it.
+
+@item -fripa-disallow-opt-mismatch
+@opindex fripa-disallow-opt-mismatch
+Don't import an auxiliary module, if the GCC command line options used for this
+auxiliary module during the profile-generate stage were different from those used
+for the primary module. Note that any mismatches in warning-related options are
+ignored for this comparison.
+
+@item -fripa-inc-path-sub=@var{path_mapping}
+@opindex fripa-inc-path-sub
+This option allows LIPO profile data associated with one compiler to be usable
+by another compiler at different installation path. A user can use this option
+to specify an include search path mapping so that the compiler can convert include
+search paths stored in gcda files into exisiting paths. The mapping is specified
+as a comma separated sub path pairs in the form: OLD_SUBPATH:NEW_SUBPATH.
+
+@item -fripa-no-promote-always-inline-func
+@opindex fripa-no-promote-always-inline-func
+Do not promote static functions with always inline attribute in LIPO compilation.
+
+@item -fripa-verbose
+@opindex fripa-verbose
+Enable printing of verbose information about dynamic inter-procedural optimizations.
+This is used in conjunction with the @option{-fripa}.
+
+@item -frecord-gcc-switches-in-elf
+@opindex frecord-gcc-switches-in-elf
+Record the command line options in the .gnu.switches.text elf section for sample
+based LIPO to do module grouping.
@end table
The following options control compiler behavior regarding floating-point
@@ -9079,6 +9306,12 @@ whether the result of a complex multiplication or division is @code{NaN
The default is @option{-fno-cx-fortran-rules}.
+@item min-mcf-cancel-iters
+The minimum number of iterations of negative cycle cancellation during
+MCF profile correction before early termination. This parameter is
+only useful when using @option{-fprofile-correction}.
+
+
@end table
The following options control optimizations that may improve
@@ -9171,6 +9404,14 @@ the loop is entered. This usually makes programs run more slowly.
@option{-funroll-all-loops} implies the same options as
@option{-funroll-loops}.
+@item -funroll-codesize-limit
+@opindex funroll-codesize-limit
+Limit loop unrolling of non-const non-FP loops in a profile feedback compilation
+under estimates of a large code footprint. Enabled by default with
+@option{-fprofile-use}. Code size and execution weight thresholds are controlled
+by the @option{unrollpeel-codesize-threshold} and
+@option{unrollpeel-hotness-threshold} parameters.
+
@item -fpeel-loops
@opindex fpeel-loops
Peels loops for which there is enough information that they do not
@@ -9179,6 +9420,14 @@ roll much (from profile feedback). It also turns on complete loop peeling
Enabled with @option{-fprofile-use}.
+@item -fpeel-codesize-limit
+@opindex fpeel-codesize-limit
+Limit loop peeling of non-const non-FP loops in a profile feedback compilation
+under estimates of a large code footprint. Enabled by default with
+@option{-fprofile-use}. Code size and execution weight thresholds are controlled
+by the @option{unrollpeel-codesize-threshold} and
+@option{unrollpeel-hotness-threshold} parameters.
+
@item -fmove-loop-invariants
@opindex fmove-loop-invariants
Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
@@ -9548,12 +9797,27 @@ The maximum number of iterations of a loop to be suitable for complete peeling.
@item max-completely-peel-loop-nest-depth
The maximum depth of a loop nest suitable for complete peeling.
+@item unrollpeel-codesize-threshold
+Maximum profile-based code size footprint estimate for loop unrolling and
+peeling.
+
+@item unrollpeel-hotness-threshold
+Maximum ratio of total execution count to loop entry block count under which
+most profile-based code size estimates will be ignored for loop unrolling and
+peeling.
+
@item max-unswitch-insns
The maximum number of insns of an unswitched loop.
@item max-unswitch-level
The maximum number of branches unswitched in a single loop.
+@item min-iter-unroll-with-branches
+Minimum iteration count to ignore branch effects when unrolling.
+
+@item unroll-outer-loop-branch-budget
+Maximum number of branches allowed in hot outer loop region after unroll.
+
@item lim-expensive
The minimum cost of an expensive expression in the loop invariant motion.
@@ -10010,6 +10274,28 @@ parameter in order to propagate them and perform devirtualization.
@option{ipa-cp-value-list-size} is the maximum number of values and types it
stores per one formal parameter of a function.
+@item ipa-cp-eval-threshold
+IPA-CP calculates its own score of cloning profitability heuristics
+and performs those cloning opportunities with scores that exceed
+@option{ipa-cp-eval-threshold}.
+
+@item ipa-max-agg-items
+IPA-CP is also capable to propagate a number of scalar values passed
+in an aggregate. @option{ipa-max-agg-items} controls the maximum
+number of such values per one parameter.
+
+@item ipa-cp-loop-hint-bonus
+When IPA-CP determines that a cloning candidate would make the number
+of iterations of a loop known, it adds a bonus of
+@option{ipa-cp-loop-hint-bonus} bonus to the profitability score of
+the candidate.
+
+@item ipa-cp-array-index-hint-bonus
+When IPA-CP determines that a cloning candidate would make the index of
+an array access known, it adds a bonus of
+@option{ipa-cp-array-index-hint-bonus} bonus to the profitability
+score of the candidate.
+
@item lto-partitions
Specify desired number of partitions produced during WHOPR compilation.
The number of partitions should exceed the number of CPUs used for compilation.
@@ -10082,6 +10368,14 @@ The default choice depends on the target.
Set the maximum number of existing candidates that will be considered when
seeking a basis for a new straight-line strength reduction candidate.
+@item coverage-callback
+Set to 1 to instrument a callback function together with
+arc counter update. The name of the callback function
+is "__coverage_callback".
+
+@item coverage-exec_once
+Set to 1 to update each arc counter only once.
+
@item asan-globals
Enable buffer overflow detection for global objects. This kind
of protection is enabled by default if you are using
@@ -10194,6 +10488,9 @@ recognize.
If you want to pass an option that takes an argument, you must use
@option{-Xassembler} twice, once for the option and once for the argument.
+@item profile-generate-sampling-rate
+Set the sampling rate with @option{-fprofile-generate-sampling}.
+
@end table
@node Link Options
@@ -10457,6 +10754,11 @@ systems using the GNU linker. On some targets, such as bare-board
targets without an operating system, the @option{-T} option may be required
when linking to avoid references to undefined symbols.
+@item -Xclang-only @var{option}
+@opindex Xclang-only
+Ignore @var{option}. This is used by some custom drivers to pass options
+to Clang but not GCC.
+
@item -Xlinker @var{option}
@opindex Xlinker
Pass @var{option} as an option to the linker. You can use this to
@@ -11188,6 +11490,12 @@ given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
be as many clauses as you need. This may be combined with @code{.},
@code{,}, @code{!}, @code{|}, and @code{*} as needed.
+@item max-lipo-mem
+When importing auxiliary modules during profile-use, check current
+memory consumption after parsing each auxiliary module. If it exceeds
+this limit (specified in kb), don't import any more auxiliary modules.
+Specifying a value of 0 means don't enforce this limit. This parameter
+is only useful when using @option{-fprofile-use} and @option{-fripa}.
@end table
@@ -14990,6 +15298,15 @@ Control whether or not the compiler uses IEEE floating-point
comparisons. These correctly handle the case where the result of a
comparison is unordered.
+@item -mcopyrelocs
+@itemx -mno-copyrelocs
+@opindex mcopyrelocs
+@opindex mno-copyrelocs
+With @option{-fpie} and @option{fPIE}, copy relocations support allows the
+compiler to assume that all symbol references are local. This allows the
+compiler to skip the GOT for global accesses and this applies only to the
+x86-64 architecture.
+
@item -msoft-float
@opindex msoft-float
Generate output containing library calls for floating point.
@@ -20853,6 +21170,13 @@ patterns. This can result in faster code on the SH4 processor.
These @samp{-m} options are supported on Solaris 2:
@table @gcctabopt
+@item -mclear-hwcap
+@opindex mclear-hwcap
+@option{-mclear-hwcap} tells the compiler to remove the hardware
+capabilities generated by the Solaris assembler. This is only necessary
+when object files use ISA extensions not supported by the current
+machine, but check at runtime whether or not to use them.
+
@item -mimpure-text
@opindex mimpure-text
@option{-mimpure-text}, used in addition to @option{-shared}, tells
diff --git a/gcc-4.9/gcc/doc/jcf-dump.1 b/gcc-4.9/gcc/doc/jcf-dump.1
deleted file mode 100644
index eded14430..000000000
--- a/gcc-4.9/gcc/doc/jcf-dump.1
+++ /dev/null
@@ -1,217 +0,0 @@
-.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28)
-.\"
-.\" Standard preamble:
-.\" ========================================================================
-.de Sp \" Vertical space (when we can't use .PP)
-.if t .sp .5v
-.if n .sp
-..
-.de Vb \" Begin verbatim text
-.ft CW
-.nf
-.ne \\$1
-..
-.de Ve \" End verbatim text
-.ft R
-.fi
-..
-.\" Set up some character translations and predefined strings. \*(-- will
-.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
-.\" double quote, and \*(R" will give a right double quote. \*(C+ will
-.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
-.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
-.\" nothing in troff, for use with C<>.
-.tr \(*W-
-.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
-.ie n \{\
-. ds -- \(*W-
-. ds PI pi
-. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
-. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
-. ds L" ""
-. ds R" ""
-. ds C` ""
-. ds C' ""
-'br\}
-.el\{\
-. ds -- \|\(em\|
-. ds PI \(*p
-. ds L" ``
-. ds R" ''
-. ds C`
-. ds C'
-'br\}
-.\"
-.\" Escape single quotes in literal strings from groff's Unicode transform.
-.ie \n(.g .ds Aq \(aq
-.el .ds Aq '
-.\"
-.\" If the F register is turned on, we'll generate index entries on stderr for
-.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
-.\" entries marked with X<> in POD. Of course, you'll have to process the
-.\" output yourself in some meaningful fashion.
-.\"
-.\" Avoid warning from groff about undefined register 'F'.
-.de IX
-..
-.nr rF 0
-.if \n(.g .if rF .nr rF 1
-.if (\n(rF:(\n(.g==0)) \{
-. if \nF \{
-. de IX
-. tm Index:\\$1\t\\n%\t"\\$2"
-..
-. if !\nF==2 \{
-. nr % 0
-. nr F 2
-. \}
-. \}
-.\}
-.rr rF
-.\"
-.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
-.\" Fear. Run. Save yourself. No user-serviceable parts.
-. \" fudge factors for nroff and troff
-.if n \{\
-. ds #H 0
-. ds #V .8m
-. ds #F .3m
-. ds #[ \f1
-. ds #] \fP
-.\}
-.if t \{\
-. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
-. ds #V .6m
-. ds #F 0
-. ds #[ \&
-. ds #] \&
-.\}
-. \" simple accents for nroff and troff
-.if n \{\
-. ds ' \&
-. ds ` \&
-. ds ^ \&
-. ds , \&
-. ds ~ ~
-. ds /
-.\}
-.if t \{\
-. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
-. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
-. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
-. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
-. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
-. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
-.\}
-. \" troff and (daisy-wheel) nroff accents
-.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
-.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
-.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
-.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
-.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
-.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
-.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
-.ds ae a\h'-(\w'a'u*4/10)'e
-.ds Ae A\h'-(\w'A'u*4/10)'E
-. \" corrections for vroff
-.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
-.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
-. \" for low resolution devices (crt and lpr)
-.if \n(.H>23 .if \n(.V>19 \
-\{\
-. ds : e
-. ds 8 ss
-. ds o a
-. ds d- d\h'-1'\(ga
-. ds D- D\h'-1'\(hy
-. ds th \o'bp'
-. ds Th \o'LP'
-. ds ae ae
-. ds Ae AE
-.\}
-.rm #[ #] #H #V #F C
-.\" ========================================================================
-.\"
-.IX Title "JCF-DUMP 1"
-.TH JCF-DUMP 1 "2014-04-22" "gcc-4.9.0" "GNU"
-.\" For nroff, turn off justification. Always turn off hyphenation; it makes
-.\" way too many mistakes in technical documents.
-.if n .ad l
-.nh
-.SH "NAME"
-jcf\-dump \- print information about Java class files
-.SH "SYNOPSIS"
-.IX Header "SYNOPSIS"
-jcf-dump [\fB\-c\fR] [\fB\-\-javap\fR]
- [\fB\-\-classpath\fR=\fIpath\fR] [\fB\-\-CLASSPATH\fR=\fIpath\fR]
- [\fB\-I\fR\fIdir\fR...] [\fB\-o\fR \fIfile\fR]
- [\fB\-\-version\fR] [\fB\-\-help\fR] [\fB\-v\fR] [\fB\-\-verbose\fR]
- \fIclassname\fR...
-.SH "DESCRIPTION"
-.IX Header "DESCRIPTION"
-This is a class file examiner, similar to \f(CW\*(C`javap\*(C'\fR. It will print
-information about a number of classes, which are specified by class name
-or file name.
-.SH "OPTIONS"
-.IX Header "OPTIONS"
-.IP "\fB\-c\fR" 4
-.IX Item "-c"
-Disassemble method bodies. By default method bodies are not printed.
-.IP "\fB\-\-print\-constants\fR" 4
-.IX Item "--print-constants"
-Print the constant pool. When printing a reference to a constant
-also print its index in the constant pool.
-.IP "\fB\-\-javap\fR" 4
-.IX Item "--javap"
-Generate output in \f(CW\*(C`javap\*(C'\fR format. The implementation of this
-feature is very incomplete.
-.IP "\fB\-\-classpath=\fR\fIpath\fR" 4
-.IX Item "--classpath=path"
-.PD 0
-.IP "\fB\-\-CLASSPATH=\fR\fIpath\fR" 4
-.IX Item "--CLASSPATH=path"
-.IP "\fB\-I\fR\fIdirectory\fR" 4
-.IX Item "-Idirectory"
-.IP "\fB\-o\fR \fIfile\fR" 4
-.IX Item "-o file"
-.PD
-These options as the same as the corresponding \fBgcj\fR options.
-.IP "\fB\-\-help\fR" 4
-.IX Item "--help"
-Print help, then exit.
-.IP "\fB\-\-version\fR" 4
-.IX Item "--version"
-Print version number, then exit.
-.IP "\fB\-v, \-\-verbose\fR" 4
-.IX Item "-v, --verbose"
-Print extra information while running.
-Implies \f(CW\*(C`\-\-print\-constants\*(C'\fR.
-.SH "SEE ALSO"
-.IX Header "SEE ALSO"
-\&\fIgcc\fR\|(1), \fIgcj\fR\|(1), \fIgcjh\fR\|(1), \fIgij\fR\|(1), \fIjcf\-dump\fR\|(1), \fIgfdl\fR\|(7),
-and the Info entries for \fIgcj\fR and \fIgcc\fR.
-.SH "COPYRIGHT"
-.IX Header "COPYRIGHT"
-Copyright (c) 2001\-2014 Free Software Foundation, Inc.
-.PP
-Permission is granted to copy, distribute and/or modify this document
-under the terms of the \s-1GNU\s0 Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with no
-Invariant Sections, the Front-Cover Texts being (a) (see below), and
-with the Back-Cover Texts being (b) (see below).
-A copy of the license is included in the
-man page \fIgfdl\fR\|(7).
-.PP
-(a) The \s-1FSF\s0's Front-Cover Text is:
-.PP
-.Vb 1
-\& A GNU Manual
-.Ve
-.PP
-(b) The \s-1FSF\s0's Back-Cover Text is:
-.PP
-.Vb 3
-\& You have freedom to copy and modify this GNU Manual, like GNU
-\& software. Copies published by the Free Software Foundation raise
-\& funds for GNU development.
-.Ve
diff --git a/gcc-4.9/gcc/doc/jv-convert.1 b/gcc-4.9/gcc/doc/jv-convert.1
deleted file mode 100644
index a57cc856c..000000000
--- a/gcc-4.9/gcc/doc/jv-convert.1
+++ /dev/null
@@ -1,210 +0,0 @@
-.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28)
-.\"
-.\" Standard preamble:
-.\" ========================================================================
-.de Sp \" Vertical space (when we can't use .PP)
-.if t .sp .5v
-.if n .sp
-..
-.de Vb \" Begin verbatim text
-.ft CW
-.nf
-.ne \\$1
-..
-.de Ve \" End verbatim text
-.ft R
-.fi
-..
-.\" Set up some character translations and predefined strings. \*(-- will
-.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
-.\" double quote, and \*(R" will give a right double quote. \*(C+ will
-.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
-.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
-.\" nothing in troff, for use with C<>.
-.tr \(*W-
-.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
-.ie n \{\
-. ds -- \(*W-
-. ds PI pi
-. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
-. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
-. ds L" ""
-. ds R" ""
-. ds C` ""
-. ds C' ""
-'br\}
-.el\{\
-. ds -- \|\(em\|
-. ds PI \(*p
-. ds L" ``
-. ds R" ''
-. ds C`
-. ds C'
-'br\}
-.\"
-.\" Escape single quotes in literal strings from groff's Unicode transform.
-.ie \n(.g .ds Aq \(aq
-.el .ds Aq '
-.\"
-.\" If the F register is turned on, we'll generate index entries on stderr for
-.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
-.\" entries marked with X<> in POD. Of course, you'll have to process the
-.\" output yourself in some meaningful fashion.
-.\"
-.\" Avoid warning from groff about undefined register 'F'.
-.de IX
-..
-.nr rF 0
-.if \n(.g .if rF .nr rF 1
-.if (\n(rF:(\n(.g==0)) \{
-. if \nF \{
-. de IX
-. tm Index:\\$1\t\\n%\t"\\$2"
-..
-. if !\nF==2 \{
-. nr % 0
-. nr F 2
-. \}
-. \}
-.\}
-.rr rF
-.\"
-.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
-.\" Fear. Run. Save yourself. No user-serviceable parts.
-. \" fudge factors for nroff and troff
-.if n \{\
-. ds #H 0
-. ds #V .8m
-. ds #F .3m
-. ds #[ \f1
-. ds #] \fP
-.\}
-.if t \{\
-. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
-. ds #V .6m
-. ds #F 0
-. ds #[ \&
-. ds #] \&
-.\}
-. \" simple accents for nroff and troff
-.if n \{\
-. ds ' \&
-. ds ` \&
-. ds ^ \&
-. ds , \&
-. ds ~ ~
-. ds /
-.\}
-.if t \{\
-. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
-. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
-. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
-. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
-. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
-. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
-.\}
-. \" troff and (daisy-wheel) nroff accents
-.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
-.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
-.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
-.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
-.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
-.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
-.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
-.ds ae a\h'-(\w'a'u*4/10)'e
-.ds Ae A\h'-(\w'A'u*4/10)'E
-. \" corrections for vroff
-.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
-.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
-. \" for low resolution devices (crt and lpr)
-.if \n(.H>23 .if \n(.V>19 \
-\{\
-. ds : e
-. ds 8 ss
-. ds o a
-. ds d- d\h'-1'\(ga
-. ds D- D\h'-1'\(hy
-. ds th \o'bp'
-. ds Th \o'LP'
-. ds ae ae
-. ds Ae AE
-.\}
-.rm #[ #] #H #V #F C
-.\" ========================================================================
-.\"
-.IX Title "JV-CONVERT 1"
-.TH JV-CONVERT 1 "2014-04-22" "gcc-4.9.0" "GNU"
-.\" For nroff, turn off justification. Always turn off hyphenation; it makes
-.\" way too many mistakes in technical documents.
-.if n .ad l
-.nh
-.SH "NAME"
-jv\-convert \- Convert file from one encoding to another
-.SH "SYNOPSIS"
-.IX Header "SYNOPSIS"
-\&\fBjv-convert\fR [\fB\s-1OPTION\s0\fR] ... [\fI\s-1INPUTFILE\s0\fR [\fI\s-1OUTPUTFILE\s0\fR]]
-.SH "DESCRIPTION"
-.IX Header "DESCRIPTION"
-\&\fBjv-convert\fR is a utility included with \f(CW\*(C`libgcj\*(C'\fR which
-converts a file from one encoding to another. It is similar to the Unix
-\&\fBiconv\fR utility.
-.PP
-The encodings supported by \fBjv-convert\fR are platform-dependent.
-Currently there is no way to get a list of all supported encodings.
-.SH "OPTIONS"
-.IX Header "OPTIONS"
-.IP "\fB\-\-encoding\fR \fIname\fR" 4
-.IX Item "--encoding name"
-.PD 0
-.IP "\fB\-\-from\fR \fIname\fR" 4
-.IX Item "--from name"
-.PD
-Use \fIname\fR as the input encoding. The default is the current
-locale's encoding.
-.IP "\fB\-\-to\fR \fIname\fR" 4
-.IX Item "--to name"
-Use \fIname\fR as the output encoding. The default is the
-\&\f(CW\*(C`JavaSrc\*(C'\fR encoding; this is \s-1ASCII\s0 with \fB\eu\fR escapes for
-non-ASCII characters.
-.IP "\fB\-i\fR \fIfile\fR" 4
-.IX Item "-i file"
-Read from \fIfile\fR. The default is to read from standard input.
-.IP "\fB\-o\fR \fIfile\fR" 4
-.IX Item "-o file"
-Write to \fIfile\fR. The default is to write to standard output.
-.IP "\fB\-\-reverse\fR" 4
-.IX Item "--reverse"
-Swap the input and output encodings.
-.IP "\fB\-\-help\fR" 4
-.IX Item "--help"
-Print a help message, then exit.
-.IP "\fB\-\-version\fR" 4
-.IX Item "--version"
-Print version information, then exit.
-.SH "SEE ALSO"
-.IX Header "SEE ALSO"
-.SH "COPYRIGHT"
-.IX Header "COPYRIGHT"
-Copyright (c) 2001\-2014 Free Software Foundation, Inc.
-.PP
-Permission is granted to copy, distribute and/or modify this document
-under the terms of the \s-1GNU\s0 Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with no
-Invariant Sections, the Front-Cover Texts being (a) (see below), and
-with the Back-Cover Texts being (b) (see below).
-A copy of the license is included in the
-man page \fIgfdl\fR\|(7).
-.PP
-(a) The \s-1FSF\s0's Front-Cover Text is:
-.PP
-.Vb 1
-\& A GNU Manual
-.Ve
-.PP
-(b) The \s-1FSF\s0's Back-Cover Text is:
-.PP
-.Vb 3
-\& You have freedom to copy and modify this GNU Manual, like GNU
-\& software. Copies published by the Free Software Foundation raise
-\& funds for GNU development.
-.Ve
diff --git a/gcc-4.9/gcc/doc/md.texi b/gcc-4.9/gcc/doc/md.texi
index e2fe11b32..8e30aca94 100644
--- a/gcc-4.9/gcc/doc/md.texi
+++ b/gcc-4.9/gcc/doc/md.texi
@@ -4844,6 +4844,16 @@ wider mode, is computed and added to operand 3. Operand 3 is of a mode equal or
wider than the mode of the product. The result is placed in operand 0, which
is of the same mode as operand 3.
+@cindex @code{ssad@var{m}} instruction pattern
+@item @samp{ssad@var{m}}
+@cindex @code{usad@var{m}} instruction pattern
+@item @samp{usad@var{m}}
+Compute the sum of absolute differences of two signed/unsigned elements.
+Operand 1 and operand 2 are of the same mode. Their absolute difference, which
+is of a wider mode, is computed and added to operand 3. Operand 3 is of a mode
+equal or wider than the mode of the absolute difference. The result is placed
+in operand 0, which is of the same mode as operand 3.
+
@cindex @code{ssum_widen@var{m3}} instruction pattern
@item @samp{ssum_widen@var{m3}}
@cindex @code{usum_widen@var{m3}} instruction pattern
diff --git a/gcc-4.9/gcc/doc/options.texi b/gcc-4.9/gcc/doc/options.texi
index 938017ade..3b63aa232 100644
--- a/gcc-4.9/gcc/doc/options.texi
+++ b/gcc-4.9/gcc/doc/options.texi
@@ -479,6 +479,10 @@ record. @xref{Option file format}.
The option is omitted from the producer string written by
@option{-grecord-gcc-switches}.
+@item NoDWARFRecord
+The option is omitted from the producer string written by
+@option{-grecord-gcc-switches}.
+
@item PchIgnore
Even if this is a target option, this option will not be recorded / compared
to determine if a precompiled header file matches.
diff --git a/gcc-4.9/gcc/doc/rebuild-gcj-db.1 b/gcc-4.9/gcc/doc/rebuild-gcj-db.1
deleted file mode 100644
index c81d70948..000000000
--- a/gcc-4.9/gcc/doc/rebuild-gcj-db.1
+++ /dev/null
@@ -1,181 +0,0 @@
-.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28)
-.\"
-.\" Standard preamble:
-.\" ========================================================================
-.de Sp \" Vertical space (when we can't use .PP)
-.if t .sp .5v
-.if n .sp
-..
-.de Vb \" Begin verbatim text
-.ft CW
-.nf
-.ne \\$1
-..
-.de Ve \" End verbatim text
-.ft R
-.fi
-..
-.\" Set up some character translations and predefined strings. \*(-- will
-.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
-.\" double quote, and \*(R" will give a right double quote. \*(C+ will
-.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
-.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
-.\" nothing in troff, for use with C<>.
-.tr \(*W-
-.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
-.ie n \{\
-. ds -- \(*W-
-. ds PI pi
-. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
-. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
-. ds L" ""
-. ds R" ""
-. ds C` ""
-. ds C' ""
-'br\}
-.el\{\
-. ds -- \|\(em\|
-. ds PI \(*p
-. ds L" ``
-. ds R" ''
-. ds C`
-. ds C'
-'br\}
-.\"
-.\" Escape single quotes in literal strings from groff's Unicode transform.
-.ie \n(.g .ds Aq \(aq
-.el .ds Aq '
-.\"
-.\" If the F register is turned on, we'll generate index entries on stderr for
-.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
-.\" entries marked with X<> in POD. Of course, you'll have to process the
-.\" output yourself in some meaningful fashion.
-.\"
-.\" Avoid warning from groff about undefined register 'F'.
-.de IX
-..
-.nr rF 0
-.if \n(.g .if rF .nr rF 1
-.if (\n(rF:(\n(.g==0)) \{
-. if \nF \{
-. de IX
-. tm Index:\\$1\t\\n%\t"\\$2"
-..
-. if !\nF==2 \{
-. nr % 0
-. nr F 2
-. \}
-. \}
-.\}
-.rr rF
-.\"
-.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
-.\" Fear. Run. Save yourself. No user-serviceable parts.
-. \" fudge factors for nroff and troff
-.if n \{\
-. ds #H 0
-. ds #V .8m
-. ds #F .3m
-. ds #[ \f1
-. ds #] \fP
-.\}
-.if t \{\
-. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
-. ds #V .6m
-. ds #F 0
-. ds #[ \&
-. ds #] \&
-.\}
-. \" simple accents for nroff and troff
-.if n \{\
-. ds ' \&
-. ds ` \&
-. ds ^ \&
-. ds , \&
-. ds ~ ~
-. ds /
-.\}
-.if t \{\
-. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
-. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
-. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
-. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
-. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
-. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
-.\}
-. \" troff and (daisy-wheel) nroff accents
-.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
-.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
-.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
-.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
-.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
-.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
-.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
-.ds ae a\h'-(\w'a'u*4/10)'e
-.ds Ae A\h'-(\w'A'u*4/10)'E
-. \" corrections for vroff
-.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
-.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
-. \" for low resolution devices (crt and lpr)
-.if \n(.H>23 .if \n(.V>19 \
-\{\
-. ds : e
-. ds 8 ss
-. ds o a
-. ds d- d\h'-1'\(ga
-. ds D- D\h'-1'\(hy
-. ds th \o'bp'
-. ds Th \o'LP'
-. ds ae ae
-. ds Ae AE
-.\}
-.rm #[ #] #H #V #F C
-.\" ========================================================================
-.\"
-.IX Title "REBUILD-GCJ-DB 1"
-.TH REBUILD-GCJ-DB 1 "2014-04-22" "gcc-4.9.0" "GNU"
-.\" For nroff, turn off justification. Always turn off hyphenation; it makes
-.\" way too many mistakes in technical documents.
-.if n .ad l
-.nh
-.SH "NAME"
-rebuild\-gcj\-db \- Merge the per\-solib databases made by aot\-compile into one system\-wide database.
-.SH "SYNOPSIS"
-.IX Header "SYNOPSIS"
-rebuild-gcj-db
-.SH "DESCRIPTION"
-.IX Header "DESCRIPTION"
-\&\f(CW\*(C`rebuild\-gcj\-db\*(C'\fR is a script that merges the per-solib databases made by
-\&\f(CW\*(C`aot\-compile\*(C'\fR into one system-wide database so \f(CW\*(C`gij\*(C'\fR can find the
-solibs.
-.SH "OPTIONS"
-.IX Header "OPTIONS"
-.SH "SEE ALSO"
-.IX Header "SEE ALSO"
-\&\fIgcc\fR\|(1), \fIgcj\fR\|(1), \fIgcjh\fR\|(1), \fIjcf\-dump\fR\|(1), \fIgfdl\fR\|(7),
-and the Info entries for \fIgcj\fR and \fIgcc\fR.
-.SH "COPYRIGHT"
-.IX Header "COPYRIGHT"
-Copyright (c) 2001\-2014 Free Software Foundation, Inc.
-.PP
-Permission is granted to copy, distribute and/or modify this document
-under the terms of the \s-1GNU\s0 Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with no
-Invariant Sections, the Front-Cover Texts being (a) (see below), and
-with the Back-Cover Texts being (b) (see below).
-A copy of the license is included in the
-man page \fIgfdl\fR\|(7).
-.PP
-(a) The \s-1FSF\s0's Front-Cover Text is:
-.PP
-.Vb 1
-\& A GNU Manual
-.Ve
-.PP
-(b) The \s-1FSF\s0's Back-Cover Text is:
-.PP
-.Vb 3
-\& You have freedom to copy and modify this GNU Manual, like GNU
-\& software. Copies published by the Free Software Foundation raise
-\& funds for GNU development.
-.Ve
diff --git a/gcc-4.9/gcc/doc/sourcebuild.texi b/gcc-4.9/gcc/doc/sourcebuild.texi
index 7438980f0..39152df27 100644
--- a/gcc-4.9/gcc/doc/sourcebuild.texi
+++ b/gcc-4.9/gcc/doc/sourcebuild.texi
@@ -1295,6 +1295,9 @@ Target has 64-bit @code{double}.
@item double64plus
Target has @code{double} that is 64 bits or longer.
+@item longdouble128
+Target has 128-bit @code{long double}.
+
@item int32plus
Target has @code{int} that is at 32 bits or longer.
diff --git a/gcc-4.9/gcc/doc/tm.texi b/gcc-4.9/gcc/doc/tm.texi
index f3c0c14a9..28029a14c 100644
--- a/gcc-4.9/gcc/doc/tm.texi
+++ b/gcc-4.9/gcc/doc/tm.texi
@@ -3947,6 +3947,13 @@ which.
@c above is overfull. not sure what to do. --mew 5feb93 did
@c something, not sure if it looks good. --mew 10feb93
+@defmac INCOMING_REG_PARM_STACK_SPACE (@var{fndecl})
+Like @code{REG_PARM_STACK_SPACE}, but for incoming register arguments.
+Define this macro if space guaranteed when compiling a function body
+is different to space required when making a call, a situation that
+can arise with K&R style function definitions.
+@end defmac
+
@defmac OUTGOING_REG_PARM_STACK_SPACE (@var{fntype})
Define this to a nonzero value if it is the responsibility of the
caller to allocate the area reserved for arguments passed in registers
diff --git a/gcc-4.9/gcc/doc/tm.texi.in b/gcc-4.9/gcc/doc/tm.texi.in
index fb26c1f41..a59abba17 100644
--- a/gcc-4.9/gcc/doc/tm.texi.in
+++ b/gcc-4.9/gcc/doc/tm.texi.in
@@ -3498,6 +3498,13 @@ which.
@c above is overfull. not sure what to do. --mew 5feb93 did
@c something, not sure if it looks good. --mew 10feb93
+@defmac INCOMING_REG_PARM_STACK_SPACE (@var{fndecl})
+Like @code{REG_PARM_STACK_SPACE}, but for incoming register arguments.
+Define this macro if space guaranteed when compiling a function body
+is different to space required when making a call, a situation that
+can arise with K&R style function definitions.
+@end defmac
+
@defmac OUTGOING_REG_PARM_STACK_SPACE (@var{fntype})
Define this to a nonzero value if it is the responsibility of the
caller to allocate the area reserved for arguments passed in registers
diff --git a/gcc-4.9/gcc/double-int.c b/gcc-4.9/gcc/double-int.c
index 454655d90..f6e340beb 100644
--- a/gcc-4.9/gcc/double-int.c
+++ b/gcc-4.9/gcc/double-int.c
@@ -588,7 +588,7 @@ div_and_round_double (unsigned code, int uns,
== (unsigned HOST_WIDE_INT) htwice)
&& (labs_den <= ltwice)))
{
- if (*hquo < 0)
+ if (quo_neg)
/* quo = quo - 1; */
add_double (*lquo, *hquo,
(HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
diff --git a/gcc-4.9/gcc/dumpfile.c b/gcc-4.9/gcc/dumpfile.c
index fd630a699..8916946b0 100644
--- a/gcc-4.9/gcc/dumpfile.c
+++ b/gcc-4.9/gcc/dumpfile.c
@@ -107,6 +107,10 @@ static const struct dump_option_value_info dump_options[] =
{"nouid", TDF_NOUID},
{"enumerate_locals", TDF_ENUMERATE_LOCALS},
{"scev", TDF_SCEV},
+ {"optimized", MSG_OPTIMIZED_LOCATIONS},
+ {"missed", MSG_MISSED_OPTIMIZATION},
+ {"note", MSG_NOTE},
+ {"optall", MSG_ALL},
{"all", ~(TDF_RAW | TDF_SLIM | TDF_LINENO | TDF_TREE | TDF_RTL | TDF_IPA
| TDF_STMTADDR | TDF_GRAPH | TDF_DIAGNOSTIC | TDF_VERBOSE
| TDF_RHS_ONLY | TDF_NOUID | TDF_ENUMERATE_LOCALS | TDF_SCEV)},
@@ -266,6 +270,8 @@ dump_loc (int dump_kind, FILE *dfile, source_location loc)
{
if (dump_kind)
{
+ /* Ensure dump message starts on a new line. */
+ fprintf (dfile, "\n");
if (LOCATION_LOCUS (loc) > BUILTINS_LOCATION)
fprintf (dfile, "%s:%d:%d: note: ", LOCATION_FILE (loc),
LOCATION_LINE (loc), LOCATION_COLUMN (loc));
diff --git a/gcc-4.9/gcc/dwarf2out.c b/gcc-4.9/gcc/dwarf2out.c
index 67b37eba5..088e522c7 100644
--- a/gcc-4.9/gcc/dwarf2out.c
+++ b/gcc-4.9/gcc/dwarf2out.c
@@ -95,6 +95,7 @@ along with GCC; see the file COPYING3. If not see
#include "lra.h"
#include "dumpfile.h"
#include "opts.h"
+#include "l-ipo.h"
#include "tree-dfa.h"
#include "gdb/gdb-index.h"
@@ -961,7 +962,7 @@ dwarf2out_do_cfi_startproc (bool second)
enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
ASM_GENERATE_INTERNAL_LABEL (lab, second ? "LLSDAC" : "LLSDA",
- current_function_funcdef_no);
+ FUNC_LABEL_ID (cfun));
ref = gen_rtx_SYMBOL_REF (Pmode, lab);
SYMBOL_REF_FLAGS (ref) = SYMBOL_FLAG_LOCAL;
@@ -984,7 +985,7 @@ dwarf2out_alloc_current_fde (void)
fde = ggc_alloc_cleared_dw_fde_node ();
fde->decl = current_function_decl;
- fde->funcdef_number = current_function_funcdef_no;
+ fde->funcdef_number = FUNC_LABEL_ID (cfun);
fde->fde_index = vec_safe_length (fde_vec);
fde->all_throwers_are_sibcalls = crtl->all_throwers_are_sibcalls;
fde->uses_eh_lsda = crtl->uses_eh_lsda;
@@ -1026,9 +1027,9 @@ dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
fnsec = function_section (current_function_decl);
switch_to_section (fnsec);
ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
- current_function_funcdef_no);
+ FUNC_LABEL_ID (cfun));
ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
- current_function_funcdef_no);
+ FUNC_LABEL_ID (cfun));
dup_label = xstrdup (label);
current_function_func_begin_label = dup_label;
@@ -1087,9 +1088,9 @@ dwarf2out_vms_end_prologue (unsigned int line ATTRIBUTE_UNUSED,
/* Output a label to mark the endpoint of the code generated for this
function. */
ASM_GENERATE_INTERNAL_LABEL (label, PROLOGUE_END_LABEL,
- current_function_funcdef_no);
+ FUNC_LABEL_ID (cfun));
ASM_OUTPUT_DEBUG_LABEL (asm_out_file, PROLOGUE_END_LABEL,
- current_function_funcdef_no);
+ FUNC_LABEL_ID (cfun));
cfun->fde->dw_fde_vms_end_prologue = xstrdup (label);
}
@@ -1110,9 +1111,9 @@ dwarf2out_vms_begin_epilogue (unsigned int line ATTRIBUTE_UNUSED,
/* Output a label to mark the endpoint of the code generated for this
function. */
ASM_GENERATE_INTERNAL_LABEL (label, EPILOGUE_BEGIN_LABEL,
- current_function_funcdef_no);
+ FUNC_LABEL_ID (cfun));
ASM_OUTPUT_DEBUG_LABEL (asm_out_file, EPILOGUE_BEGIN_LABEL,
- current_function_funcdef_no);
+ FUNC_LABEL_ID (cfun));
fde->dw_fde_vms_begin_epilogue = xstrdup (label);
}
@@ -1136,7 +1137,7 @@ dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
/* Output a label to mark the endpoint of the code generated for this
function. */
ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
- current_function_funcdef_no);
+ FUNC_LABEL_ID (cfun));
ASM_OUTPUT_LABEL (asm_out_file, label);
fde = cfun->fde;
gcc_assert (fde != NULL);
@@ -2435,6 +2436,41 @@ const struct gcc_debug_hooks dwarf2_debug_hooks =
1, /* start_end_main_source_file */
TYPE_SYMTAB_IS_DIE /* tree_type_symtab_field */
};
+
+const struct gcc_debug_hooks auto_profile_debug_hooks =
+{
+ debug_nothing_charstar,
+ debug_nothing_charstar,
+ debug_nothing_void,
+ debug_nothing_int_charstar,
+ debug_nothing_int_charstar,
+ debug_nothing_int_charstar,
+ debug_nothing_int,
+ debug_nothing_int_int, /* begin_block */
+ debug_nothing_int_int, /* end_block */
+ dwarf2out_ignore_block, /* ignore_block */
+ debug_nothing_int_charstar_int_bool, /* source_line */
+ debug_nothing_int_charstar, /* begin_prologue */
+ debug_nothing_int_charstar, /* end_prologue */
+ debug_nothing_int_charstar, /* begin_epilogue */
+ debug_nothing_int_charstar, /* end_epilogue */
+ debug_nothing_tree, /* begin_function */
+ debug_nothing_int, /* end_function */
+ debug_nothing_tree, /* function_decl */
+ debug_nothing_tree, /* global_decl */
+ debug_nothing_tree_int, /* type_decl */
+ debug_nothing_tree_tree_tree_bool, /* imported_module_or_decl */
+ debug_nothing_tree, /* deferred_inline_function */
+ debug_nothing_tree, /* outlining_inline_function */
+ debug_nothing_rtx, /* label */
+ debug_nothing_int, /* handle_pch */
+ debug_nothing_rtx, /* var_location */
+ debug_nothing_void, /* switch_text_section */
+ debug_nothing_tree_tree, /* set_name */
+ 0, /* start_end_main_source_file */
+ TYPE_SYMTAB_IS_ADDRESS /* tree_type_symtab_field */
+};
+
/* NOTE: In the comments in this file, many references are made to
"Debugging Information Entries". This term is abbreviated as `DIE'
@@ -4222,13 +4258,10 @@ add_addr_table_entry (void *addr, enum ate_kind kind)
static void
remove_addr_table_entry (addr_table_entry *entry)
{
- addr_table_entry *node;
-
gcc_assert (dwarf_split_debug_info && addr_index_table);
- node = (addr_table_entry *) htab_find (addr_index_table, entry);
/* After an index is assigned, the table is frozen. */
- gcc_assert (node->refcount > 0 && node->index == NO_INDEX_ASSIGNED);
- node->refcount--;
+ gcc_assert (entry->refcount > 0 && entry->index == NO_INDEX_ASSIGNED);
+ entry->refcount--;
}
/* Given a location list, remove all addresses it refers to from the
@@ -6830,14 +6863,13 @@ should_move_die_to_comdat (dw_die_ref die)
case DW_TAG_structure_type:
case DW_TAG_enumeration_type:
case DW_TAG_union_type:
- /* Don't move declarations, inlined instances, or types nested in a
- subprogram. */
+ /* Don't move declarations, inlined instances, types nested in a
+ subprogram, or types that contain subprogram definitions. */
if (is_declaration_die (die)
|| get_AT (die, DW_AT_abstract_origin)
- || is_nested_in_subprogram (die))
+ || is_nested_in_subprogram (die)
+ || contains_subprogram_definition (die))
return 0;
- /* A type definition should never contain a subprogram definition. */
- gcc_assert (!contains_subprogram_definition (die));
return 1;
case DW_TAG_array_type:
case DW_TAG_interface_type:
@@ -6926,6 +6958,7 @@ clone_as_declaration (dw_die_ref die)
switch (a->dw_attr)
{
+ case DW_AT_abstract_origin:
case DW_AT_artificial:
case DW_AT_containing_type:
case DW_AT_external:
@@ -7158,6 +7191,12 @@ generate_skeleton_bottom_up (skeleton_chain_node *parent)
dw_die_ref clone = clone_die (c);
move_all_children (c, clone);
+ /* If the original has a DW_AT_object_pointer attribute,
+ it would now point to a child DIE just moved to the
+ cloned tree, so we need to remove that attribute from
+ the original. */
+ remove_AT (c, DW_AT_object_pointer);
+
replace_child (c, clone, prev);
generate_skeleton_ancestor_tree (parent);
add_child_die (parent->new_die, c);
@@ -7299,28 +7338,38 @@ break_out_comdat_types (dw_die_ref die)
} while (next != NULL);
}
-/* Like clone_tree, but additionally enter all the children into
- the hash table decl_table. */
+/* Like clone_tree, but copy DW_TAG_subprogram DIEs as declarations.
+ Enter all the cloned children into the hash table decl_table. */
static dw_die_ref
-clone_tree_hash (dw_die_ref die, decl_hash_type decl_table)
+clone_tree_partial (dw_die_ref die, decl_hash_type decl_table)
{
dw_die_ref c;
- dw_die_ref clone = clone_die (die);
+ dw_die_ref clone;
struct decl_table_entry *entry;
- decl_table_entry **slot = decl_table.find_slot_with_hash (die,
- htab_hash_pointer (die), INSERT);
+ decl_table_entry **slot;
+
+ if (die->die_tag == DW_TAG_subprogram)
+ clone = clone_as_declaration (die);
+ else
+ clone = clone_die (die);
+
+ slot = decl_table.find_slot_with_hash (die,
+ htab_hash_pointer (die), INSERT);
+
/* Assert that DIE isn't in the hash table yet. If it would be there
before, the ancestors would be necessarily there as well, therefore
- clone_tree_hash wouldn't be called. */
+ clone_tree_partial wouldn't be called. */
gcc_assert (*slot == HTAB_EMPTY_ENTRY);
+
entry = XCNEW (struct decl_table_entry);
entry->orig = die;
entry->copy = clone;
*slot = entry;
- FOR_EACH_CHILD (die, c,
- add_child_die (clone, clone_tree_hash (c, decl_table)));
+ if (die->die_tag != DW_TAG_subprogram)
+ FOR_EACH_CHILD (die, c,
+ add_child_die (clone, clone_tree_partial (c, decl_table)));
return clone;
}
@@ -7371,9 +7420,15 @@ copy_decls_walk (dw_die_ref unit, dw_die_ref die, decl_hash_type decl_table)
entry->copy = copy;
*slot = entry;
- FOR_EACH_CHILD (targ, c,
- add_child_die (copy,
- clone_tree_hash (c, decl_table)));
+ /* If TARG is not a declaration DIE, we need to copy its
+ children. */
+ if (!is_declaration_die (targ))
+ {
+ FOR_EACH_CHILD (
+ targ, c,
+ add_child_die (copy,
+ clone_tree_partial (c, decl_table)));
+ }
/* Make sure the cloned tree is marked as part of the
type unit. */
@@ -13804,7 +13859,7 @@ dw_loc_list (var_loc_list *loc_list, tree decl, int want_address)
else
{
ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
- current_function_funcdef_no);
+ FUNC_LABEL_ID (cfun));
endname = ggc_strdup (label_id);
}
@@ -16600,10 +16655,9 @@ add_src_coords_attributes (dw_die_ref die, tree decl)
static void
add_linkage_name (dw_die_ref die, tree decl)
{
- if (debug_info_level > DINFO_LEVEL_TERSE
+ if (debug_info_level > DINFO_LEVEL_NONE
&& (TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
&& TREE_PUBLIC (decl)
- && !DECL_ABSTRACT (decl)
&& !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl))
&& die->die_tag != DW_TAG_member)
{
@@ -16669,7 +16723,7 @@ dwarf2out_vms_debug_main_pointer (void)
die->die_tag = DW_TAG_subprogram;
add_name_attribute (die, VMS_DEBUG_MAIN_POINTER);
ASM_GENERATE_INTERNAL_LABEL (label, PROLOGUE_END_LABEL,
- current_function_funcdef_no);
+ FUNC_LABEL_ID (cfun));
add_AT_lbl_id (die, DW_AT_entry_pc, label);
/* Make it the first child of comp_unit_die (). */
@@ -18139,9 +18193,9 @@ gen_subprogram_die (tree decl, dw_die_ref context_die)
char label_id_low[MAX_ARTIFICIAL_LABEL_BYTES];
char label_id_high[MAX_ARTIFICIAL_LABEL_BYTES];
ASM_GENERATE_INTERNAL_LABEL (label_id_low, FUNC_BEGIN_LABEL,
- current_function_funcdef_no);
+ FUNC_LABEL_ID (cfun));
ASM_GENERATE_INTERNAL_LABEL (label_id_high, FUNC_END_LABEL,
- current_function_funcdef_no);
+ FUNC_LABEL_ID (cfun));
add_AT_low_high_pc (subr_die, label_id_low, label_id_high,
false);
}
@@ -18891,12 +18945,16 @@ gen_label_die (tree decl, dw_die_ref context_die)
static inline void
add_call_src_coords_attributes (tree stmt, dw_die_ref die)
{
- expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
+ location_t locus = BLOCK_SOURCE_LOCATION (stmt);
+ expanded_location s = expand_location (locus);
if (dwarf_version >= 3 || !dwarf_strict)
{
add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
add_AT_unsigned (die, DW_AT_call_line, s.line);
+ unsigned discr = get_discriminator_from_locus (locus);
+ if (discr != 0)
+ add_AT_unsigned (die, DW_AT_GNU_discriminator, discr);
}
}
@@ -20706,7 +20764,48 @@ gen_namelist_decl (tree name, dw_die_ref scope_die, tree item_decls)
void
dwarf2out_decl (tree decl)
{
- dw_die_ref context_die = comp_unit_die ();
+ dw_die_ref context_die;
+
+ /* In LIPO mode, we may output some functions whose type is defined
+ in another function that will not be output. This can result in
+ undefined location list symbols in the debug type info.
+ Here we disable the output of the type info for this case.
+ It is safe since this function and its debug info should never
+ be referenced. */
+ if (L_IPO_COMP_MODE)
+ {
+ tree decl_context, orig_decl;
+
+ decl_context = DECL_CONTEXT (decl);
+ while (decl_context &&
+ TREE_CODE (decl_context) != TRANSLATION_UNIT_DECL)
+ {
+ struct cgraph_node *node;
+
+ /* Refer to cgraph_mark_functions_to_output() in cgraphunit.c,
+ if cgraph_is_aux_decl_external() is true,
+ this function will not be output in LIPO mode. */
+ if (TREE_CODE (decl_context) == FUNCTION_DECL &&
+ TREE_PUBLIC (decl_context) &&
+ (node = cgraph_get_node (decl_context)) &&
+ cgraph_is_aux_decl_external (node))
+ return;
+
+ if (TYPE_P (decl_context))
+ {
+ decl_context = TYPE_CONTEXT (decl_context);
+ continue;
+ }
+
+ orig_decl = DECL_ORIGIN (decl_context);
+ while (orig_decl != DECL_ORIGIN (orig_decl))
+ orig_decl = DECL_ORIGIN (orig_decl);
+
+ decl_context = DECL_CONTEXT (orig_decl);
+ }
+ }
+
+ context_die = comp_unit_die ();
switch (TREE_CODE (decl))
{
@@ -21370,7 +21469,7 @@ set_cur_line_info_table (section *sec)
{
char label[MAX_ARTIFICIAL_LABEL_BYTES];
ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
- current_function_funcdef_no);
+ FUNC_LABEL_ID (cfun));
end_label = ggc_strdup (label);
}
@@ -23099,11 +23198,16 @@ resolve_addr_in_expr (dw_loc_descr_ref loc)
break;
case DW_OP_GNU_addr_index:
case DW_OP_GNU_const_index:
- if ((loc->dw_loc_opc == DW_OP_GNU_addr_index
- || (loc->dw_loc_opc == DW_OP_GNU_const_index && loc->dtprel))
- && resolve_one_addr (&loc->dw_loc_oprnd1.val_entry->addr.rtl,
- NULL))
- return false;
+ if (loc->dw_loc_opc == DW_OP_GNU_addr_index
+ || (loc->dw_loc_opc == DW_OP_GNU_const_index && loc->dtprel))
+ {
+ rtx rtl = loc->dw_loc_oprnd1.val_entry->addr.rtl;
+ if (resolve_one_addr (&rtl, NULL))
+ return false;
+ remove_addr_table_entry (loc->dw_loc_oprnd1.val_entry);
+ loc->dw_loc_oprnd1.val_entry =
+ add_addr_table_entry (rtl, ate_kind_rtx);
+ }
break;
case DW_OP_const4u:
case DW_OP_const8u:
@@ -24195,18 +24299,23 @@ dwarf2out_finish (const char *filename)
dwarf_strict ? DW_AT_macro_info : DW_AT_GNU_macros,
macinfo_section_label);
- if (dwarf_split_debug_info && addr_index_table != NULL)
+ if (dwarf_split_debug_info)
{
/* optimize_location_lists calculates the size of the lists,
so index them first, and assign indices to the entries.
Although optimize_location_lists will remove entries from
the table, it only does so for duplicates, and therefore
only reduces ref_counts to 1. */
- unsigned int index = 0;
index_location_lists (comp_unit_die ());
- htab_traverse_noresize (addr_index_table,
- index_addr_table_entry, &index);
+
+ if (addr_index_table != NULL)
+ {
+ unsigned int index = 0;
+ htab_traverse_noresize (addr_index_table,
+ index_addr_table_entry, &index);
+ }
}
+
if (have_location_lists)
optimize_location_lists (comp_unit_die ());
diff --git a/gcc-4.9/gcc/dwarf2out.h b/gcc-4.9/gcc/dwarf2out.h
index 696fef938..26cb91bc8 100644
--- a/gcc-4.9/gcc/dwarf2out.h
+++ b/gcc-4.9/gcc/dwarf2out.h
@@ -83,8 +83,8 @@ struct GTY(()) dw_fde_node {
int dw_fde_switch_cfi_index; /* Last CFI before switching sections. */
HOST_WIDE_INT stack_realignment;
- unsigned funcdef_number;
- unsigned fde_index;
+ unsigned long funcdef_number;
+ unsigned long fde_index;
/* Dynamic realign argument pointer register. */
unsigned int drap_reg;
diff --git a/gcc-4.9/gcc/except.c b/gcc-4.9/gcc/except.c
index 908954cbb..d67b4e427 100644
--- a/gcc-4.9/gcc/except.c
+++ b/gcc-4.9/gcc/except.c
@@ -1191,7 +1191,7 @@ sjlj_emit_function_enter (rtx dispatch_label)
char buf[20];
rtx sym;
- ASM_GENERATE_INTERNAL_LABEL (buf, "LLSDA", current_function_funcdef_no);
+ ASM_GENERATE_INTERNAL_LABEL (buf, "LLSDA", FUNC_LABEL_ID (cfun));
sym = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
SYMBOL_REF_FLAGS (sym) = SYMBOL_FLAG_LOCAL;
emit_move_insn (mem, sym);
@@ -2953,7 +2953,7 @@ output_one_function_exception_table (int section)
#ifdef HAVE_AS_LEB128
ASM_GENERATE_INTERNAL_LABEL (ttype_label,
section ? "LLSDATTC" : "LLSDATT",
- current_function_funcdef_no);
+ FUNC_LABEL_ID (cfun));
#endif
tt_format_size = size_of_encoded_value (tt_format);
@@ -2961,7 +2961,7 @@ output_one_function_exception_table (int section)
}
targetm.asm_out.internal_label (asm_out_file, section ? "LLSDAC" : "LLSDA",
- current_function_funcdef_no);
+ FUNC_LABEL_ID (cfun));
/* The LSDA header. */
@@ -2994,7 +2994,7 @@ output_one_function_exception_table (int section)
char ttype_after_disp_label[32];
ASM_GENERATE_INTERNAL_LABEL (ttype_after_disp_label,
section ? "LLSDATTDC" : "LLSDATTD",
- current_function_funcdef_no);
+ FUNC_LABEL_ID (cfun));
dw2_asm_output_delta_uleb128 (ttype_label, ttype_after_disp_label,
"@TType base offset");
ASM_OUTPUT_LABEL (asm_out_file, ttype_after_disp_label);
@@ -3041,10 +3041,10 @@ output_one_function_exception_table (int section)
#ifdef HAVE_AS_LEB128
ASM_GENERATE_INTERNAL_LABEL (cs_after_size_label,
section ? "LLSDACSBC" : "LLSDACSB",
- current_function_funcdef_no);
+ FUNC_LABEL_ID (cfun));
ASM_GENERATE_INTERNAL_LABEL (cs_end_label,
section ? "LLSDACSEC" : "LLSDACSE",
- current_function_funcdef_no);
+ FUNC_LABEL_ID (cfun));
dw2_asm_output_delta_uleb128 (cs_end_label, cs_after_size_label,
"Call-site table length");
ASM_OUTPUT_LABEL (asm_out_file, cs_after_size_label);
diff --git a/gcc-4.9/gcc/expmed.c b/gcc-4.9/gcc/expmed.c
index 7c1c979f7..6e9975df3 100644
--- a/gcc-4.9/gcc/expmed.c
+++ b/gcc-4.9/gcc/expmed.c
@@ -2141,9 +2141,12 @@ expand_shift_1 (enum tree_code code, enum machine_mode mode, rtx shifted,
optab lrotate_optab = rotl_optab;
optab rrotate_optab = rotr_optab;
enum machine_mode op1_mode;
+ enum machine_mode scalar_mode = mode;
int attempt;
bool speed = optimize_insn_for_speed_p ();
+ if (VECTOR_MODE_P (mode))
+ scalar_mode = GET_MODE_INNER (mode);
op1 = amount;
op1_mode = GET_MODE (op1);
@@ -2166,9 +2169,9 @@ expand_shift_1 (enum tree_code code, enum machine_mode mode, rtx shifted,
{
if (CONST_INT_P (op1)
&& ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
- (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
+ (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (scalar_mode)))
op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
- % GET_MODE_BITSIZE (mode));
+ % GET_MODE_BITSIZE (scalar_mode));
else if (GET_CODE (op1) == SUBREG
&& subreg_lowpart_p (op1)
&& SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
@@ -2182,10 +2185,10 @@ expand_shift_1 (enum tree_code code, enum machine_mode mode, rtx shifted,
amount instead. */
if (rotate
&& CONST_INT_P (op1)
- && IN_RANGE (INTVAL (op1), GET_MODE_BITSIZE (mode) / 2 + left,
- GET_MODE_BITSIZE (mode) - 1))
+ && IN_RANGE (INTVAL (op1), GET_MODE_BITSIZE (scalar_mode) / 2 + left,
+ GET_MODE_BITSIZE (scalar_mode) - 1))
{
- op1 = GEN_INT (GET_MODE_BITSIZE (mode) - INTVAL (op1));
+ op1 = GEN_INT (GET_MODE_BITSIZE (scalar_mode) - INTVAL (op1));
left = !left;
code = left ? LROTATE_EXPR : RROTATE_EXPR;
}
@@ -2198,7 +2201,7 @@ expand_shift_1 (enum tree_code code, enum machine_mode mode, rtx shifted,
if (code == LSHIFT_EXPR
&& CONST_INT_P (op1)
&& INTVAL (op1) > 0
- && INTVAL (op1) < GET_MODE_PRECISION (mode)
+ && INTVAL (op1) < GET_MODE_PRECISION (scalar_mode)
&& INTVAL (op1) < MAX_BITS_PER_WORD
&& (shift_cost (speed, mode, INTVAL (op1))
> INTVAL (op1) * add_cost (speed, mode))
@@ -2253,14 +2256,14 @@ expand_shift_1 (enum tree_code code, enum machine_mode mode, rtx shifted,
if (op1 == const0_rtx)
return shifted;
else if (CONST_INT_P (op1))
- other_amount = GEN_INT (GET_MODE_BITSIZE (mode)
+ other_amount = GEN_INT (GET_MODE_BITSIZE (scalar_mode)
- INTVAL (op1));
else
{
other_amount
= simplify_gen_unary (NEG, GET_MODE (op1),
op1, GET_MODE (op1));
- HOST_WIDE_INT mask = GET_MODE_PRECISION (mode) - 1;
+ HOST_WIDE_INT mask = GET_MODE_PRECISION (scalar_mode) - 1;
other_amount
= simplify_gen_binary (AND, GET_MODE (op1), other_amount,
gen_int_mode (mask, GET_MODE (op1)));
diff --git a/gcc-4.9/gcc/expr.c b/gcc-4.9/gcc/expr.c
index 72e440119..94e90172e 100644
--- a/gcc-4.9/gcc/expr.c
+++ b/gcc-4.9/gcc/expr.c
@@ -9132,6 +9132,20 @@ expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
return target;
}
+ case SAD_EXPR:
+ {
+ tree oprnd0 = treeop0;
+ tree oprnd1 = treeop1;
+ tree oprnd2 = treeop2;
+ rtx op2;
+
+ expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
+ op2 = expand_normal (oprnd2);
+ target = expand_widen_pattern_expr (ops, op0, op1, op2,
+ target, unsignedp);
+ return target;
+ }
+
case REALIGN_LOAD_EXPR:
{
tree oprnd0 = treeop0;
diff --git a/gcc-4.9/gcc/final.c b/gcc-4.9/gcc/final.c
index 83abee208..9af0b2bec 100644
--- a/gcc-4.9/gcc/final.c
+++ b/gcc-4.9/gcc/final.c
@@ -125,9 +125,6 @@ static int last_linenum;
/* Last discriminator written to assembly. */
static int last_discriminator;
-/* Discriminator of current block. */
-static int discriminator;
-
/* Highest line number in current block. */
static int high_block_linenum;
@@ -137,9 +134,10 @@ static int high_function_linenum;
/* Filename of last NOTE. */
static const char *last_filename;
-/* Override filename and line number. */
+/* Override filename, line number, and discriminator. */
static const char *override_filename;
static int override_linenum;
+static int override_discriminator;
/* Whether to force emission of a line note before the next insn. */
static bool force_source_line = false;
@@ -204,6 +202,9 @@ bool final_insns_dump_p;
/* True if profile_function should be called, but hasn't been called yet. */
static bool need_profile_function;
+/* True if the function has a split cold section. */
+static bool has_cold_section_p;
+
static int asm_insn_count (rtx);
static void profile_function (FILE *);
static void profile_after_prologue (FILE *);
@@ -1735,7 +1736,7 @@ final_start_function (rtx first, FILE *file,
last_filename = LOCATION_FILE (prologue_location);
last_linenum = LOCATION_LINE (prologue_location);
- last_discriminator = discriminator = 0;
+ last_discriminator = 0;
high_block_linenum = high_function_linenum = last_linenum;
@@ -1807,9 +1808,13 @@ final_start_function (rtx first, FILE *file,
if (warn_frame_larger_than
&& get_frame_size () > frame_larger_than_size)
{
- /* Issue a warning */
+ /* Issue a warning. (WARN_FRAME_LARGER_THAN_EXTRA_TEXT is
+ provided by configuration. The way extra text is added
+ here may prevent localization from working properly.
+ It's totally broken.) */
warning (OPT_Wframe_larger_than_,
- "the frame size of %wd bytes is larger than %wd bytes",
+ "the frame size of %wd bytes is larger than %wd bytes"
+ WARN_FRAME_LARGER_THAN_EXTRA_TEXT,
get_frame_size (), frame_larger_than_size);
}
@@ -1852,7 +1857,7 @@ profile_function (FILE *file ATTRIBUTE_UNUSED)
int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
switch_to_section (data_section);
ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
- targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
+ targetm.asm_out.internal_label (file, "LP", FUNC_LABEL_ID (cfun));
assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
}
@@ -1865,7 +1870,7 @@ profile_function (FILE *file ATTRIBUTE_UNUSED)
ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
#endif
- FUNCTION_PROFILER (file, current_function_funcdef_no);
+ FUNCTION_PROFILER (file, FUNC_LABEL_ID (cfun));
#ifdef ASM_OUTPUT_REG_PUSH
if (chain && REG_P (chain))
@@ -2174,6 +2179,7 @@ final_scan_insn (rtx insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
ASM_OUTPUT_LABEL (asm_out_file,
IDENTIFIER_POINTER (cold_function_name));
}
+ has_cold_section_p = true;
break;
case NOTE_INSN_BASIC_BLOCK:
@@ -2186,8 +2192,6 @@ final_scan_insn (rtx insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
if (targetm.asm_out.unwind_emit)
targetm.asm_out.unwind_emit (asm_out_file, insn);
- discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
-
break;
case NOTE_INSN_EH_REGION_BEG:
@@ -2280,6 +2284,8 @@ final_scan_insn (rtx insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
{
override_filename = LOCATION_FILE (*locus_ptr);
override_linenum = LOCATION_LINE (*locus_ptr);
+ override_discriminator =
+ get_discriminator_from_locus (*locus_ptr);
}
}
break;
@@ -2313,11 +2319,14 @@ final_scan_insn (rtx insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
{
override_filename = LOCATION_FILE (*locus_ptr);
override_linenum = LOCATION_LINE (*locus_ptr);
+ override_discriminator =
+ get_discriminator_from_locus (*locus_ptr);
}
else
{
override_filename = NULL;
override_linenum = 0;
+ override_discriminator = 0;
}
}
break;
@@ -3000,6 +3009,17 @@ final_scan_insn (rtx insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
}
return NEXT_INSN (insn);
}
+
+/* Return discriminator of the statement that produced this insn. */
+int
+insn_discriminator (const_rtx insn)
+{
+ location_t loc = INSN_LOCATION (insn);
+ if (!loc)
+ return 0;
+ return get_discriminator_from_locus (loc);
+}
+
/* Return whether a source line note needs to be emitted before INSN.
Sets IS_STMT to TRUE if the line should be marked as a possible
@@ -3010,16 +3030,19 @@ notice_source_line (rtx insn, bool *is_stmt)
{
const char *filename;
int linenum;
+ int discriminator;
if (override_filename)
{
filename = override_filename;
linenum = override_linenum;
+ discriminator = override_discriminator;
}
else
{
filename = insn_file (insn);
linenum = insn_line (insn);
+ discriminator = insn_discriminator (insn);
}
if (filename == NULL)
@@ -4405,13 +4428,55 @@ leaf_renumber_regs_insn (rtx in_rtx)
}
}
#endif
-
+
+/* List the call graph profiled edges whise value is greater than
+ PARAM_NOTE_CGRAPH_SECTION_EDGE_THRESHOLD in the
+ "gnu.callgraph.text" section. */
+static void
+dump_cgraph_profiles (void)
+{
+ struct cgraph_node *node = cgraph_get_node (current_function_decl);
+ struct cgraph_edge *e;
+ struct cgraph_node *callee;
+
+ for (e = node->callees; e != NULL; e = e->next_callee)
+ {
+ if (e->count <= PARAM_VALUE (PARAM_GNU_CGRAPH_SECTION_EDGE_THRESHOLD))
+ continue;
+ callee = e->callee;
+ fprintf (asm_out_file, "\t.string \"%s\"\n",
+ IDENTIFIER_POINTER (decl_assembler_name (callee->decl)));
+ fprintf (asm_out_file, "\t.string \"" HOST_WIDEST_INT_PRINT_DEC "\"\n",
+ e->count);
+ }
+}
+
+/* Iterate through the basic blocks in DECL and get the max count.
+ If COLD is true, find the max count of the cold part of the split. */
+static gcov_type
+get_max_count (tree decl, bool cold)
+{
+ basic_block bb;
+ gcov_type max_count = cold ? 0 :(cgraph_get_node (decl))->count;
+
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ if (cold && BB_PARTITION (bb) != BB_COLD_PARTITION)
+ continue;
+ if (bb->count > max_count)
+ max_count = bb->count;
+ }
+ return max_count;
+}
+
/* Turn the RTL into assembly. */
static unsigned int
rest_of_handle_final (void)
{
rtx x;
const char *fnname;
+ char *profile_fnname;
+ unsigned int flags;
/* Get the function's name, as described by its RTL. This may be
different from the DECL_NAME name used in the source file. */
@@ -4422,6 +4487,8 @@ rest_of_handle_final (void)
gcc_assert (GET_CODE (x) == SYMBOL_REF);
fnname = XSTR (x, 0);
+ has_cold_section_p = false;
+
assemble_start_function (current_function_decl, fnname);
final_start_function (get_insns (), asm_out_file, optimize);
final (get_insns (), asm_out_file, optimize);
@@ -4471,6 +4538,36 @@ rest_of_handle_final (void)
targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
decl_fini_priority_lookup
(current_function_decl));
+
+ /* With -fcallgraph-profiles-sections and -freorder-functions=,
+ add ".gnu.callgraph.text" section for storing profiling information. */
+ if ((flag_reorder_functions > 1)
+ && flag_profile_use
+ && cgraph_get_node (current_function_decl) != NULL
+ && ((cgraph_get_node (current_function_decl))->callees != NULL
+ || (cgraph_get_node (current_function_decl))->count > 0))
+ {
+ flags = SECTION_DEBUG | SECTION_EXCLUDE;
+ asprintf (&profile_fnname, ".gnu.callgraph.text.%s", fnname);
+ switch_to_section (get_section (profile_fnname, flags, NULL));
+ fprintf (asm_out_file, "\t.string \"Function %s\"\n", fnname);
+ fprintf (asm_out_file, "\t.string \"Weight "
+ HOST_WIDEST_INT_PRINT_DEC
+ " "
+ HOST_WIDEST_INT_PRINT_DEC
+ "\"\n",
+ (cgraph_get_node (current_function_decl))->count,
+ get_max_count (current_function_decl, false));
+ /* If this function is split into a cold section, record that weight
+ here. */
+ if (has_cold_section_p)
+ fprintf (asm_out_file, "\t.string \"ColdWeight "
+ HOST_WIDEST_INT_PRINT_DEC
+ "\"\n",
+ get_max_count (current_function_decl, true));
+ dump_cgraph_profiles ();
+ free (profile_fnname);
+ }
return 0;
}
diff --git a/gcc-4.9/gcc/fold-const.c b/gcc-4.9/gcc/fold-const.c
index 5c2bf256c..11f3d0c1e 100644
--- a/gcc-4.9/gcc/fold-const.c
+++ b/gcc-4.9/gcc/fold-const.c
@@ -2477,11 +2477,27 @@ combine_comparisons (location_t loc,
If OEP_PURE_SAME is set, then pure functions with identical arguments
are considered the same. It is used when the caller has other ways
- to ensure that global memory is unchanged in between. */
+ to ensure that global memory is unchanged in between.
+
+ If OEP_ALLOW_NULL is set, this routine will not crash on NULL operands,
+ and two NULL operands are considered equal. This flag is usually set
+ in the context of frontend when ARG0 and/or ARG1 may be NULL mostly due
+ to recursion on partially built expressions (e.g. a CAST_EXPR on a NULL
+ tree.) In this case, we certainly don't want the compiler to crash and
+ it's OK to consider two NULL operands equal. On the other hand, when
+ called in the context of code generation and optimization, if NULL
+ operands are not expected, silently ignoring them could be dangerous
+ and might cause problems downstream that are hard to find/debug. In that
+ case, the flag should probably not be set. */
int
operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
{
+ /* If either is NULL, they must be both NULL to be equal. We only do this
+ check when OEP_ALLOW_NULL is set. */
+ if ((flags & OEP_ALLOW_NULL) && (!arg0 || !arg1))
+ return arg0 == arg1;
+
/* If either is ERROR_MARK, they aren't equal. */
if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
|| TREE_TYPE (arg0) == error_mark_node
@@ -2491,7 +2507,13 @@ operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
/* Similar, if either does not have a type (like a released SSA name),
they aren't equal. */
if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
- return 0;
+ {
+ /* If the caller chooses to allow the comparison of operands without
+ types, we will continue the comparison only when both of them don't
+ have a type. */
+ if (!(flags & OEP_ALLOW_NO_TYPE) || TREE_TYPE (arg0) || TREE_TYPE (arg1))
+ return 0;
+ }
/* Check equality of integer constants before bailing out due to
precision differences. */
@@ -2503,14 +2525,17 @@ operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
because they may change the signedness of the arguments. As pointers
strictly don't have a signedness, require either two pointers or
two non-pointers as well. */
- if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
- || POINTER_TYPE_P (TREE_TYPE (arg0)) != POINTER_TYPE_P (TREE_TYPE (arg1)))
+ if (TREE_TYPE (arg0)
+ && (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
+ || POINTER_TYPE_P (TREE_TYPE (arg0))
+ != POINTER_TYPE_P (TREE_TYPE (arg1))))
return 0;
/* We cannot consider pointers to different address space equal. */
- if (POINTER_TYPE_P (TREE_TYPE (arg0)) && POINTER_TYPE_P (TREE_TYPE (arg1))
- && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
- != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
+ if (TREE_TYPE (arg0)
+ && (POINTER_TYPE_P (TREE_TYPE (arg0)) && POINTER_TYPE_P (TREE_TYPE (arg1))
+ && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
+ != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1))))))
return 0;
/* If both types don't have the same precision, then it is not safe
@@ -2583,7 +2608,8 @@ operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
return 1;
- if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0))))
+ if (TREE_TYPE (arg0)
+ && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0))))
{
/* If we do not distinguish between signed and unsigned zero,
consider them equal. */
@@ -2650,8 +2676,9 @@ operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
{
CASE_CONVERT:
case FIX_TRUNC_EXPR:
- if (TYPE_UNSIGNED (TREE_TYPE (arg0))
- != TYPE_UNSIGNED (TREE_TYPE (arg1)))
+ if (TREE_TYPE (arg0)
+ && (TYPE_UNSIGNED (TREE_TYPE (arg0))
+ != TYPE_UNSIGNED (TREE_TYPE (arg1))))
return 0;
break;
default:
@@ -2707,11 +2734,14 @@ operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
We can have incomplete types for array references of
variable-sized arrays from the Fortran frontend
though. Also verify the types are compatible. */
- return ((TYPE_SIZE (TREE_TYPE (arg0)) == TYPE_SIZE (TREE_TYPE (arg1))
- || (TYPE_SIZE (TREE_TYPE (arg0))
- && TYPE_SIZE (TREE_TYPE (arg1))
- && operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
- TYPE_SIZE (TREE_TYPE (arg1)), flags)))
+ return (TREE_TYPE (arg0)
+ && (TYPE_SIZE (TREE_TYPE (arg0))
+ == TYPE_SIZE (TREE_TYPE (arg1))
+ || (TYPE_SIZE (TREE_TYPE (arg0))
+ && TYPE_SIZE (TREE_TYPE (arg1))
+ && operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
+ TYPE_SIZE (TREE_TYPE (arg1)),
+ flags)))
&& types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1))
&& alias_ptr_types_compatible_p
(TREE_TYPE (TREE_OPERAND (arg0, 1)),
@@ -7837,8 +7867,8 @@ static bool vec_cst_ctor_to_array (tree, tree *);
OP0. Return the folded expression if folding is successful.
Otherwise, return NULL_TREE. */
-tree
-fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
+static tree
+fold_unary_loc_1 (location_t loc, enum tree_code code, tree type, tree op0)
{
tree tem;
tree arg0;
@@ -8559,6 +8589,49 @@ fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
} /* switch (code) */
}
+/* Given an expression tree EXP, set the EXPR_FOLDED flag, and if it is
+ a nop, recursively set the EXPR_FOLDED flag of its operand. */
+
+static void
+set_expr_folded_flag (tree exp)
+{
+ /* FIXME -- can not set the flag on SSA_NAME, the flag overlaps
+ with the version member. */
+ if (TREE_CODE (exp) == SSA_NAME)
+ return;
+
+ EXPR_FOLDED (exp) = 1;
+
+ /* If EXP is a nop (i.e. NON_LVALUE_EXPRs and NOP_EXPRs), we need to
+ recursively set the EXPR_FOLDED flag of its operand because the
+ expression will be stripped later. */
+ while ((CONVERT_EXPR_P (exp)
+ || TREE_CODE (exp) == NON_LVALUE_EXPR)
+ && TREE_OPERAND (exp, 0) != error_mark_node)
+ {
+ exp = TREE_OPERAND (exp, 0);
+ /* FIXME -- can not set the flag on SSA_NAME, the flag overlaps
+ with the version member. */
+ if (TREE_CODE (exp) != SSA_NAME)
+ EXPR_FOLDED (exp) = 1;
+ }
+}
+
+/* Fold a unary expression of code CODE and type TYPE with operand
+ OP0. Return the folded expression if folding is successful.
+ Otherwise, return NULL_TREE.
+ This is a wrapper around fold_unary_1 function (which does the
+ actual folding). Set the EXPR_FOLDED flag of the folded expression
+ if folding is successful. */
+
+tree
+fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
+{
+ tree tem = fold_unary_loc_1 (loc, code, type, op0);
+ if (tem)
+ set_expr_folded_flag (tem);
+ return tem;
+}
/* If the operation was a conversion do _not_ mark a resulting constant
with TREE_OVERFLOW if the original constant was not. These conversions
@@ -9308,7 +9381,7 @@ fold_comparison (location_t loc, enum tree_code code, tree type,
/* Transform comparisons of the form X +- C1 CMP Y +- C2 to
X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
the resulting offset is smaller in absolute value than the
- original one. */
+ original one and has the same sign. */
if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
&& (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
&& (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
@@ -9327,32 +9400,35 @@ fold_comparison (location_t loc, enum tree_code code, tree type,
"a comparison");
/* Put the constant on the side where it doesn't overflow and is
- of lower absolute value than before. */
+ of lower absolute value and of same sign than before. */
cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
? MINUS_EXPR : PLUS_EXPR,
const2, const1);
if (!TREE_OVERFLOW (cst)
- && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2))
+ && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
+ && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
{
fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
return fold_build2_loc (loc, code, type,
- variable1,
- fold_build2_loc (loc,
- TREE_CODE (arg1), TREE_TYPE (arg1),
- variable2, cst));
+ variable1,
+ fold_build2_loc (loc, TREE_CODE (arg1),
+ TREE_TYPE (arg1),
+ variable2, cst));
}
cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
? MINUS_EXPR : PLUS_EXPR,
const1, const2);
if (!TREE_OVERFLOW (cst)
- && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1))
+ && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
+ && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
{
fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
return fold_build2_loc (loc, code, type,
- fold_build2_loc (loc, TREE_CODE (arg0), TREE_TYPE (arg0),
- variable1, cst),
- variable2);
+ fold_build2_loc (loc, TREE_CODE (arg0),
+ TREE_TYPE (arg0),
+ variable1, cst),
+ variable2);
}
}
@@ -10098,8 +10174,8 @@ tree_expr_nonzero_p (tree t)
Return the folded expression if folding is successful. Otherwise,
return NULL_TREE. */
-tree
-fold_binary_loc (location_t loc,
+static tree
+fold_binary_loc_1 (location_t loc,
enum tree_code code, tree type, tree op0, tree op1)
{
enum tree_code_class kind = TREE_CODE_CLASS (code);
@@ -11426,7 +11502,6 @@ fold_binary_loc (location_t loc,
{
double_int c1, c2, c3, msk;
int width = TYPE_PRECISION (type), w;
- bool try_simplify = true;
c1 = tree_to_double_int (TREE_OPERAND (arg0, 1));
c2 = tree_to_double_int (arg1);
@@ -11463,20 +11538,7 @@ fold_binary_loc (location_t loc,
}
}
- /* If X is a tree of the form (Y * K1) & K2, this might conflict
- with that optimization from the BIT_AND_EXPR optimizations.
- This could end up in an infinite recursion. */
- if (TREE_CODE (TREE_OPERAND (arg0, 0)) == MULT_EXPR
- && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
- == INTEGER_CST)
- {
- tree t = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
- double_int masked = mask_with_tz (type, c3, tree_to_double_int (t));
-
- try_simplify = (masked != c1);
- }
-
- if (try_simplify && c3 != c1)
+ if (c3 != c1)
return fold_build2_loc (loc, BIT_IOR_EXPR, type,
fold_build2_loc (loc, BIT_AND_EXPR, type,
TREE_OPERAND (arg0, 0),
@@ -11866,16 +11928,25 @@ fold_binary_loc (location_t loc,
&& TREE_CODE (arg0) == MULT_EXPR
&& TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
{
+ double_int darg1 = tree_to_double_int (arg1);
double_int masked
- = mask_with_tz (type, tree_to_double_int (arg1),
+ = mask_with_tz (type, darg1,
tree_to_double_int (TREE_OPERAND (arg0, 1)));
if (masked.is_zero ())
return omit_two_operands_loc (loc, type, build_zero_cst (type),
arg0, arg1);
- else if (masked != tree_to_double_int (arg1))
- return fold_build2_loc (loc, code, type, op0,
- double_int_to_tree (type, masked));
+ else if (masked != darg1)
+ {
+ /* Avoid the transform if arg1 is a mask of some
+ mode which allows further optimizations. */
+ int pop = darg1.popcount ();
+ if (!(pop >= BITS_PER_UNIT
+ && exact_log2 (pop) != -1
+ && double_int::mask (pop) == darg1))
+ return fold_build2_loc (loc, code, type, op0,
+ double_int_to_tree (type, masked));
+ }
}
/* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
@@ -12088,11 +12159,17 @@ fold_binary_loc (location_t loc,
/* See if we can shorten the right shift. */
if (shiftc < prec)
shift_type = inner_type;
+ /* Otherwise X >> C1 is all zeros, so we'll optimize
+ it into (X, 0) later on by making sure zerobits
+ is all ones. */
}
}
zerobits = ~(unsigned HOST_WIDE_INT) 0;
- zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
- zerobits <<= prec - shiftc;
+ if (shiftc < prec)
+ {
+ zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
+ zerobits <<= prec - shiftc;
+ }
/* For arithmetic shift if sign bit could be set, zerobits
can contain actually sign bits, so no transformation is
possible, unless MASK masks them all away. In that
@@ -12110,7 +12187,7 @@ fold_binary_loc (location_t loc,
/* ((X << 16) & 0xff00) is (X, 0). */
if ((mask & zerobits) == mask)
return omit_one_operand_loc (loc, type,
- build_int_cst (type, 0), arg0);
+ build_int_cst (type, 0), arg0);
newmask = mask | zerobits;
if (newmask != mask && (newmask & (newmask + 1)) == 0)
@@ -14117,6 +14194,22 @@ fold_binary_loc (location_t loc,
} /* switch (code) */
}
+/* Fold a binary expression of code CODE and type TYPE with operands
+ OP0 and OP1. Return the folded expression if folding is
+ successful. Otherwise, return NULL_TREE.
+ This is a wrapper around fold_binary_1 function (which does the
+ actual folding). Set the EXPR_FOLDED flag of the folded expression
+ if folding is successful. */
+tree
+fold_binary_loc (location_t loc,
+ enum tree_code code, tree type, tree op0, tree op1)
+{
+ tree tem = fold_binary_loc_1 (loc, code, type, op0, op1);
+ if (tem)
+ set_expr_folded_flag (tem);
+ return tem;
+}
+
/* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
of GOTO_EXPR. */
@@ -14153,9 +14246,9 @@ contains_label_p (tree st)
OP0, OP1, and OP2. Return the folded expression if folding is
successful. Otherwise, return NULL_TREE. */
-tree
-fold_ternary_loc (location_t loc, enum tree_code code, tree type,
- tree op0, tree op1, tree op2)
+static tree
+fold_ternary_loc_1 (location_t loc, enum tree_code code, tree type,
+ tree op0, tree op1, tree op2)
{
tree tem;
tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
@@ -14735,6 +14828,23 @@ fold_ternary_loc (location_t loc, enum tree_code code, tree type,
} /* switch (code) */
}
+/* Fold a ternary expression of code CODE and type TYPE with operands
+ OP0, OP1, and OP2. Return the folded expression if folding is
+ successful. Otherwise, return NULL_TREE.
+ This is a wrapper around fold_ternary_1 function (which does the
+ actual folding). Set the EXPR_FOLDED flag of the folded expression
+ if folding is successful. */
+
+tree
+fold_ternary_loc (location_t loc, enum tree_code code, tree type,
+ tree op0, tree op1, tree op2)
+{
+ tree tem = fold_ternary_loc_1 (loc, code, type, op0, op1, op2);
+ if (tem)
+ set_expr_folded_flag (tem);
+ return tem;
+}
+
/* Perform constant folding and related simplification of EXPR.
The related simplifications include x*1 => x, x*0 => 0, etc.,
and application of the associative law.
diff --git a/gcc-4.9/gcc/fortran/ChangeLog b/gcc-4.9/gcc/fortran/ChangeLog
index 42f0321c5..b96c61224 100644
--- a/gcc-4.9/gcc/fortran/ChangeLog
+++ b/gcc-4.9/gcc/fortran/ChangeLog
@@ -1,3 +1,607 @@
+2014-07-07 Paul Thomas <pault@gcc.gnu.org>
+
+ PR fortran/61459
+ PR fortran/58883
+ * trans-expr.c (fcncall_realloc_result): Use the natural type
+ for the address expression of 'res_desc'.
+
+2014-07-07 Dominique d'Humieres <dominiq@lps.ens.fr>
+ Mikael Morin <mikael@gcc.gnu.org>
+
+ PR fortran/41936
+ * trans-expr.c (gfc_conv_expr_reference): Deallocate array
+ components.
+
+2014-07-02 Jakub Jelinek <jakub@redhat.com>
+ Fritz Reese <Reese-Fritz@zai.com>
+
+ * decl.c (variable_decl): Reject old style initialization
+ for derived type components.
+
+2014-06-30 Jakub Jelinek <jakub@redhat.com>
+
+ * module.c (MOD_VERSION): Revert back to 12.
+ (MOD_VERSION_OMP4): Define.
+ (module_omp4): New variable.
+ (mio_symbol): Call mio_omp_declare_simd only if module_omp4.
+ (read_module): Load omp udrs only if module_omp4.
+ (write_module): Write omp udrs only if module_omp4.
+ (find_omp_declare_simd): New function.
+ (gfc_dump_module): Compute module_omp4. Use MOD_VERSION_OMP4
+ if module_omp4.
+ (gfc_use_module): Handle MOD_VERSION_OMP4, set module_omp4.
+
+ Backported from mainline
+ 2014-06-25 Jakub Jelinek <jakub@redhat.com>
+
+ * trans.h (gfc_omp_clause_linear_ctor): New prototype.
+ * trans-openmp.c (gfc_omp_linear_clause_add_loop,
+ gfc_omp_clause_linear_ctor): New functions.
+ (gfc_trans_omp_clauses): Make sure OMP_CLAUSE_LINEAR_STEP has
+ correct type. Set OMP_CLAUSE_LINEAR_ARRAY flag if needed.
+ * f95-lang.c (LANG_HOOKS_OMP_CLAUSE_LINEAR_CTOR): Redefine.
+
+ 2014-06-24 Jakub Jelinek <jakub@redhat.com>
+
+ * dump-parse-tree.c (show_omp_namelist): Use n->udr->udr instead
+ of n->udr.
+ * f95-lang.c (gfc_init_builtin_functions): Initialize
+ BUILT_IN_ASSUME_ALIGNED.
+ * gfortran.h (gfc_omp_namelist): Change udr field type to
+ struct gfc_omp_namelist_udr.
+ (gfc_omp_namelist_udr): New type.
+ (gfc_get_omp_namelist_udr): Define.
+ (gfc_resolve_code): New prototype.
+ * match.c (gfc_free_omp_namelist): Free name->udr.
+ * module.c (intrinsics): Add INTRINSIC_USER.
+ (fix_mio_expr): Likewise.
+ (mio_expr): Handle INSTRINSIC_USER and non-resolved EXPR_FUNCTION.
+ * openmp.c (gfc_match_omp_clauses): Adjust initialization of n->udr.
+ (gfc_match_omp_declare_reduction): Treat len=: the same as len=*.
+ Set attr.flavor on omp_{out,in,priv,orig} artificial variables.
+ (struct resolve_omp_udr_callback_data): New type.
+ (resolve_omp_udr_callback, resolve_omp_udr_callback2,
+ resolve_omp_udr_clause): New functions.
+ (resolve_omp_clauses): Adjust for n->udr changes, resolve UDR clauses
+ here.
+ (omp_udr_callback): Don't check for implicitly declared functions
+ here.
+ (gfc_resolve_omp_udr): Don't call gfc_resolve. Don't check for
+ implicitly declared subroutines here.
+ * resolve.c (resolve_function): If value.function.isym is non-NULL,
+ consider it already resolved.
+ (resolve_code): Renamed to ...
+ (gfc_resolve_code): ... this. No longer static.
+ (gfc_resolve_blocks, generate_component_assignments, resolve_codes):
+ Adjust callers.
+ * trans-openmp.c (gfc_omp_privatize_by_reference): Don't privatize
+ by reference type (C_PTR) variables.
+ (gfc_omp_finish_clause): Make sure OMP_CLAUSE_SIZE is non-NULL.
+ (gfc_trans_omp_udr_expr): Remove.
+ (gfc_trans_omp_array_reduction_or_udr): Adjust for n->udr changes.
+ Don't call gfc_trans_omp_udr_expr, even for sym->attr.dimension
+ expand it as assignment or subroutine call. Don't initialize
+ value.function.isym.
+
+ 2014-06-18 Tobias Burnus <burnus@net-b.de>
+
+ * gfortran.texi (OpenMP): Update refs to OpenMP 4.0.
+ * intrinsic.texi (OpenMP Modules): Ditto.
+
+ 2014-06-18 Jakub Jelinek <jakub@redhat.com>
+
+ * cpp.c (cpp_define_builtins): Change _OPENMP macro to
+ 201307.
+ * dump-parse-tree.c (show_omp_namelist): Add list_type
+ argument. Adjust for rop being u.reduction_op now,
+ handle depend_op or map_op.
+ (show_omp_node): Adjust callers. Print some new
+ OpenMP 4.0 clauses, adjust for OMP_LIST_DEPEND_{IN,OUT}
+ becoming a single OMP_LIST_DEPEND.
+ * f95-lang.c (gfc_handle_omp_declare_target_attribute): New
+ function.
+ (gfc_attribute_table): New variable.
+ (LANG_HOOKS_OMP_FINISH_CLAUSE, LANG_HOOKS_ATTRIBUTE_TABLE): Redefine.
+ * frontend-passes.c (gfc_code_walker): Handle new OpenMP target
+ EXEC_OMP_* codes and new clauses.
+ * gfortran.h (gfc_statement): Add ST_OMP_TARGET, ST_OMP_END_TARGET,
+ ST_OMP_TARGET_DATA, ST_OMP_END_TARGET_DATA, ST_OMP_TARGET_UPDATE,
+ ST_OMP_DECLARE_TARGET, ST_OMP_TEAMS, ST_OMP_END_TEAMS,
+ ST_OMP_DISTRIBUTE, ST_OMP_END_DISTRIBUTE, ST_OMP_DISTRIBUTE_SIMD,
+ ST_OMP_END_DISTRIBUTE_SIMD, ST_OMP_DISTRIBUTE_PARALLEL_DO,
+ ST_OMP_END_DISTRIBUTE_PARALLEL_DO, ST_OMP_DISTRIBUTE_PARALLEL_DO_SIMD,
+ ST_OMP_END_DISTRIBUTE_PARALLEL_DO_SIMD, ST_OMP_TARGET_TEAMS,
+ ST_OMP_END_TARGET_TEAMS, ST_OMP_TEAMS_DISTRIBUTE,
+ ST_OMP_END_TEAMS_DISTRIBUTE, ST_OMP_TEAMS_DISTRIBUTE_SIMD,
+ ST_OMP_END_TEAMS_DISTRIBUTE_SIMD, ST_OMP_TARGET_TEAMS_DISTRIBUTE,
+ ST_OMP_END_TARGET_TEAMS_DISTRIBUTE,
+ ST_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD,
+ ST_OMP_END_TARGET_TEAMS_DISTRIBUTE_SIMD,
+ ST_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO,
+ ST_OMP_END_TEAMS_DISTRIBUTE_PARALLEL_DO,
+ ST_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO,
+ ST_OMP_END_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO,
+ ST_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD,
+ ST_OMP_END_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD,
+ ST_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD and
+ ST_OMP_END_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD.
+ (symbol_attribute): Add omp_declare_target field.
+ (gfc_omp_depend_op, gfc_omp_map_op): New enums.
+ (gfc_omp_namelist): Replace rop field with union
+ containing reduction_op, depend_op and map_op.
+ (OMP_LIST_DEPEND_IN, OMP_LIST_DEPEND_OUT): Remove.
+ (OMP_LIST_DEPEND, OMP_LIST_MAP, OMP_LIST_TO, OMP_LIST_FROM): New.
+ (gfc_omp_clauses): Add num_teams, device, thread_limit,
+ dist_sched_kind, dist_chunk_size fields.
+ (gfc_common_head): Add omp_declare_target field.
+ (gfc_exec_op): Add EXEC_OMP_TARGET, EXEC_OMP_TARGET_DATA,
+ EXEC_OMP_TEAMS, EXEC_OMP_DISTRIBUTE, EXEC_OMP_DISTRIBUTE_SIMD,
+ EXEC_OMP_DISTRIBUTE_PARALLEL_DO, EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD,
+ EXEC_OMP_TARGET_TEAMS, EXEC_OMP_TEAMS_DISTRIBUTE,
+ EXEC_OMP_TEAMS_DISTRIBUTE_SIMD, EXEC_OMP_TARGET_TEAMS_DISTRIBUTE,
+ EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD,
+ EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO,
+ EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO,
+ EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD,
+ EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD and
+ EXEC_OMP_TARGET_UPDATE.
+ (gfc_add_omp_declare_target): New prototype.
+ * match.h (gfc_match_omp_declare_target, gfc_match_omp_distribute,
+ gfc_match_omp_distribute_parallel_do,
+ gfc_match_omp_distribute_parallel_do_simd,
+ gfc_match_omp_distribute_simd, gfc_match_omp_target,
+ gfc_match_omp_target_data, gfc_match_omp_target_teams,
+ gfc_match_omp_target_teams_distribute,
+ gfc_match_omp_target_teams_distribute_parallel_do,
+ gfc_match_omp_target_teams_distribute_parallel_do_simd,
+ gfc_match_omp_target_teams_distribute_simd,
+ gfc_match_omp_target_update, gfc_match_omp_teams,
+ gfc_match_omp_teams_distribute,
+ gfc_match_omp_teams_distribute_parallel_do,
+ gfc_match_omp_teams_distribute_parallel_do_simd,
+ gfc_match_omp_teams_distribute_simd): New prototypes.
+ * module.c (ab_attribute): Add AB_OMP_DECLARE_TARGET.
+ (attr_bits): Likewise.
+ (mio_symbol_attribute): Handle omp_declare_target attribute.
+ (gfc_free_omp_clauses): Free num_teams, device, thread_limit
+ and dist_chunk_size expressions.
+ (OMP_CLAUSE_PRIVATE, OMP_CLAUSE_FIRSTPRIVATE, OMP_CLAUSE_LASTPRIVATE,
+ OMP_CLAUSE_COPYPRIVATE, OMP_CLAUSE_SHARED, OMP_CLAUSE_COPYIN,
+ OMP_CLAUSE_REDUCTION, OMP_CLAUSE_IF, OMP_CLAUSE_NUM_THREADS,
+ OMP_CLAUSE_SCHEDULE, OMP_CLAUSE_DEFAULT, OMP_CLAUSE_ORDERED,
+ OMP_CLAUSE_COLLAPSE, OMP_CLAUSE_UNTIED, OMP_CLAUSE_FINAL,
+ OMP_CLAUSE_MERGEABLE, OMP_CLAUSE_ALIGNED, OMP_CLAUSE_DEPEND,
+ OMP_CLAUSE_INBRANCH, OMP_CLAUSE_LINEAR, OMP_CLAUSE_NOTINBRANCH,
+ OMP_CLAUSE_PROC_BIND, OMP_CLAUSE_SAFELEN, OMP_CLAUSE_SIMDLEN,
+ OMP_CLAUSE_UNIFORM): Use 1U instead of 1.
+ (OMP_CLAUSE_DEVICE, OMP_CLAUSE_MAP, OMP_CLAUSE_TO, OMP_CLAUSE_FROM,
+ OMP_CLAUSE_NUM_TEAMS, OMP_CLAUSE_THREAD_LIMIT,
+ OMP_CLAUSE_DIST_SCHEDULE): Define.
+ (gfc_match_omp_clauses): Change mask parameter to unsigned int.
+ Adjust for rop becoming u.reduction_op. Disallow inbranch with
+ notinbranch. For depend clause, always create OMP_LIST_DEPEND
+ and fill in u.depend_op. Handle num_teams, device, map,
+ to, from, thread_limit and dist_schedule clauses.
+ (OMP_DECLARE_SIMD_CLAUSES): Or in OMP_CLAUSE_INBRANCH and
+ OMP_CLAUSE_NOTINBRANCH.
+ (OMP_TARGET_CLAUSES, OMP_TARGET_DATA_CLAUSES,
+ OMP_TARGET_UPDATE_CLAUSES, OMP_TEAMS_CLAUSES,
+ OMP_DISTRIBUTE_CLAUSES): Define.
+ (match_omp): New function.
+ (gfc_match_omp_do, gfc_match_omp_do_simd, gfc_match_omp_parallel,
+ gfc_match_omp_parallel_do, gfc_match_omp_parallel_do_simd,
+ gfc_match_omp_parallel_sections, gfc_match_omp_parallel_workshare,
+ gfc_match_omp_sections, gfc_match_omp_simd, gfc_match_omp_single,
+ gfc_match_omp_task): Rewritten using match_omp.
+ (gfc_match_omp_threadprivate, gfc_match_omp_declare_reduction):
+ Diagnose if the directives are followed by unexpected junk.
+ (gfc_match_omp_distribute, gfc_match_omp_distribute_parallel_do,
+ gfc_match_omp_distribute_parallel_do_simd,
+ gfc_match_omp_distrbute_simd, gfc_match_omp_declare_target,
+ gfc_match_omp_target, gfc_match_omp_target_data,
+ gfc_match_omp_target_teams, gfc_match_omp_target_teams_distribute,
+ gfc_match_omp_target_teams_distribute_parallel_do,
+ gfc_match_omp_target_teams_distribute_parallel_do_simd,
+ gfc_match_omp_target_teams_distrbute_simd, gfc_match_omp_target_update,
+ gfc_match_omp_teams, gfc_match_omp_teams_distribute,
+ gfc_match_omp_teams_distribute_parallel_do,
+ gfc_match_omp_teams_distribute_parallel_do_simd,
+ gfc_match_omp_teams_distrbute_simd): New functions.
+ * openmp.c (resolve_omp_clauses): Adjust for
+ OMP_LIST_DEPEND_{IN,OUT} being changed to OMP_LIST_DEPEND. Handle
+ OMP_LIST_MAP, OMP_LIST_FROM, OMP_LIST_TO, num_teams, device,
+ dist_chunk_size and thread_limit.
+ (gfc_resolve_omp_parallel_blocks): Only put sharing clauses into
+ ctx.sharing_clauses. Call gfc_resolve_omp_do_blocks for various
+ new EXEC_OMP_* codes.
+ (resolve_omp_do): Handle various new EXEC_OMP_* codes.
+ (gfc_resolve_omp_directive): Likewise.
+ (gfc_resolve_omp_declare_simd): Add missing space to diagnostics.
+ * parse.c (decode_omp_directive): Handle parsing of OpenMP 4.0
+ offloading related directives.
+ (case_executable): Add ST_OMP_TARGET_UPDATE.
+ (case_exec_markers): Add ST_OMP_TARGET*, ST_OMP_TEAMS*,
+ ST_OMP_DISTRIBUTE*.
+ (case_decl): Add ST_OMP_DECLARE_TARGET.
+ (gfc_ascii_statement): Handle new ST_OMP_* codes.
+ (parse_omp_do): Handle various new ST_OMP_* codes.
+ (parse_executable): Likewise.
+ * resolve.c (gfc_resolve_blocks): Handle various new EXEC_OMP_*
+ codes.
+ (resolve_code): Likewise.
+ (resolve_symbol): Change that !$OMP DECLARE TARGET variables
+ are saved.
+ * st.c (gfc_free_statement): Handle various new EXEC_OMP_* codes.
+ * symbol.c (check_conflict): Check omp_declare_target conflicts.
+ (gfc_add_omp_declare_target): New function.
+ (gfc_copy_attr): Copy omp_declare_target.
+ * trans.c (trans_code): Handle various new EXEC_OMP_* codes.
+ * trans-common.c (build_common_decl): Add "omp declare target"
+ attribute if needed.
+ * trans-decl.c (add_attributes_to_decl): Likewise.
+ * trans.h (gfc_omp_finish_clause): New prototype.
+ * trans-openmp.c (gfc_omp_finish_clause): New function.
+ (gfc_trans_omp_reduction_list): Adjust for rop being renamed
+ to u.reduction_op.
+ (gfc_trans_omp_clauses): Adjust for OMP_LIST_DEPEND_{IN,OUT}
+ change to OMP_LIST_DEPEND and fix up depend handling.
+ Handle OMP_LIST_MAP, OMP_LIST_TO, OMP_LIST_FROM, num_teams,
+ thread_limit, device, dist_chunk_size and dist_sched_kind.
+ (gfc_trans_omp_do): Handle EXEC_OMP_DISTRIBUTE.
+ (GFC_OMP_SPLIT_DISTRIBUTE, GFC_OMP_SPLIT_TEAMS,
+ GFC_OMP_SPLIT_TARGET, GFC_OMP_SPLIT_NUM, GFC_OMP_MASK_DISTRIBUTE,
+ GFC_OMP_MASK_TEAMS, GFC_OMP_MASK_TARGET, GFC_OMP_MASK_NUM): New.
+ (gfc_split_omp_clauses): Handle splitting of clauses for new
+ EXEC_OMP_* codes.
+ (gfc_trans_omp_do_simd): Add pblock argument, adjust for being
+ callable for combined constructs.
+ (gfc_trans_omp_parallel_do, gfc_trans_omp_parallel_do_simd): Likewise.
+ (gfc_trans_omp_distribute, gfc_trans_omp_teams,
+ gfc_trans_omp_target, gfc_trans_omp_target_data,
+ gfc_trans_omp_target_update): New functions.
+ (gfc_trans_omp_directive): Adjust gfc_trans_omp_* callers, handle
+ new EXEC_OMP_* codes.
+
+ 2014-06-10 Jakub Jelinek <jakub@redhat.com>
+
+ PR fortran/60928
+ * f95-lang.c (gfc_init_builtin_functions): Handle -fopenmp-simd
+ like -fopenmp.
+ * openmp.c (resolve_omp_clauses): Remove allocatable components
+ diagnostics. Add associate-name and intent(in) pointer
+ diagnostics for various clauses, diagnose procedure pointers in
+ reduction clause.
+ * parse.c (match_word_omp_simd): New function.
+ (matchs, matcho): New macros.
+ (decode_omp_directive): Change match macros to either matchs
+ or matcho. Handle -fopenmp-simd.
+ (next_free, next_fixed): Handle -fopenmp-simd like -fopenmp.
+ * scanner.c (skip_free_comments, skip_fixed_comments, include_line):
+ Likewise.
+ * trans-array.c (get_full_array_size): Rename to...
+ (gfc_full_array_size): ... this. No longer static.
+ (duplicate_allocatable): Adjust caller. Add NO_MEMCPY argument
+ and handle it.
+ (gfc_duplicate_allocatable, gfc_copy_allocatable_data): Adjust
+ duplicate_allocatable callers.
+ (gfc_duplicate_allocatable_nocopy): New function.
+ (structure_alloc_comps): Adjust g*_full_array_size and
+ duplicate_allocatable caller.
+ * trans-array.h (gfc_full_array_size,
+ gfc_duplicate_allocatable_nocopy): New prototypes.
+ * trans-common.c (create_common): Call gfc_finish_decl_attrs.
+ * trans-decl.c (gfc_finish_decl_attrs): New function.
+ (gfc_finish_var_decl, create_function_arglist,
+ gfc_get_fake_result_decl): Call it.
+ (gfc_allocate_lang_decl): If DECL_LANG_SPECIFIC is already allocated,
+ don't allocate it again.
+ (gfc_get_symbol_decl): Set GFC_DECL_ASSOCIATE_VAR_P on
+ associate-names.
+ * trans.h (gfc_finish_decl_attrs): New prototype.
+ (struct lang_decl): Add scalar_allocatable and scalar_pointer
+ bitfields.
+ (GFC_DECL_SCALAR_ALLOCATABLE, GFC_DECL_SCALAR_POINTER,
+ GFC_DECL_GET_SCALAR_ALLOCATABLE, GFC_DECL_GET_SCALAR_POINTER,
+ GFC_DECL_ASSOCIATE_VAR_P): Define.
+ (GFC_POINTER_TYPE_P): Remove.
+ * trans-openmp.c (gfc_omp_privatize_by_reference): Don't check
+ GFC_POINTER_TYPE_P, instead test GFC_DECL_GET_SCALAR_ALLOCATABLE,
+ GFC_DECL_GET_SCALAR_POINTER or GFC_DECL_CRAY_POINTEE on decl.
+ (gfc_omp_predetermined_sharing): Associate-names are predetermined.
+ (enum walk_alloc_comps): New.
+ (gfc_has_alloc_comps, gfc_omp_unshare_expr_r, gfc_omp_unshare_expr,
+ gfc_walk_alloc_comps): New functions.
+ (gfc_omp_private_outer_ref): Return true for scalar allocatables or
+ decls with allocatable components.
+ (gfc_omp_clause_default_ctor, gfc_omp_clause_copy_ctor,
+ gfc_omp_clause_assign_op, gfc_omp_clause_dtor): Fix up handling of
+ allocatables, handle also OMP_CLAUSE_REDUCTION, handle scalar
+ allocatables and decls with allocatable components.
+ (gfc_trans_omp_array_reduction_or_udr): Don't handle allocatable
+ arrays here.
+ (gfc_trans_omp_reduction_list): Call
+ gfc_trans_omp_array_reduction_or_udr even for allocatable scalars.
+ (gfc_trans_omp_do_simd): If -fno-openmp, just expand it as OMP_SIMD.
+ (gfc_trans_omp_parallel_do_simd): Likewise.
+ * trans-types.c (gfc_sym_type): Don't set GFC_POINTER_TYPE_P.
+ (gfc_get_derived_type): Call gfc_finish_decl_attrs.
+
+ 2014-06-06 Jakub Jelinek <jakub@redhat.com>
+
+ * dump-parse-tree.c (show_omp_namelist): Dump reduction
+ id in each list item.
+ (show_omp_node): Only handle OMP_LIST_REDUCTION, not
+ OMP_LIST_REDUCTION_FIRST .. OMP_LIST_REDUCTION_LAST. Don't
+ dump reduction id here.
+ * frontend-passes.c (dummy_code_callback): Renamed to...
+ (gfc_dummy_code_callback): ... this. No longer static.
+ (optimize_reduction): Use gfc_dummy_code_callback instead of
+ dummy_code_callback.
+ * gfortran.h (gfc_statement): Add ST_OMP_DECLARE_REDUCTION.
+ (symbol_attribute): Add omp_udr_artificial_var bitfield.
+ (gfc_omp_reduction_op): New enum.
+ (gfc_omp_namelist): Add rop and udr fields.
+ (OMP_LIST_PLUS, OMP_LIST_REDUCTION_FIRST, OMP_LIST_MULT,
+ OMP_LIST_SUB, OMP_LIST_AND, OMP_LIST_OR, OMP_LIST_EQV,
+ OMP_LIST_NEQV, OMP_LIST_MAX, OMP_LIST_MIN, OMP_LIST_IAND,
+ OMP_LIST_IOR, OMP_LIST_IEOR, OMP_LIST_REDUCTION_LAST): Removed.
+ (OMP_LIST_REDUCTION): New.
+ (gfc_omp_udr): New type.
+ (gfc_get_omp_udr): Define.
+ (gfc_symtree): Add n.omp_udr field.
+ (gfc_namespace): Add omp_udr_root field, add omp_udr_ns bitfield.
+ (gfc_free_omp_udr, gfc_omp_udr_find, gfc_resolve_omp_udrs,
+ gfc_dummy_code_callback): New prototypes.
+ * match.h (gfc_match_omp_declare_reduction): New prototype.
+ * module.c (MOD_VERSION): Increase to 13.
+ (omp_declare_reduction_stmt): New array.
+ (mio_omp_udr_expr, write_omp_udr, write_omp_udrs, load_omp_udrs):
+ New functions.
+ (read_module): Read OpenMP user defined reductions.
+ (write_module): Write OpenMP user defined reductions.
+ * openmp.c: Include arith.h.
+ (gfc_free_omp_udr, gfc_find_omp_udr): New functions.
+ (gfc_match_omp_clauses): Handle user defined reductions.
+ Store reduction kind into gfc_omp_namelist instead of using
+ several OMP_LIST_* entries.
+ (match_udr_expr, gfc_omp_udr_predef, gfc_omp_udr_find,
+ gfc_match_omp_declare_reduction): New functions.
+ (resolve_omp_clauses): Adjust for reduction clauses being only
+ in OMP_LIST_REDUCTION list. Diagnose missing UDRs.
+ (struct omp_udr_callback_data): New type.
+ (omp_udr_callback, gfc_resolve_omp_udr, gfc_resolve_omp_udrs): New
+ functions.
+ * parse.c (decode_omp_directive): Handle !$omp declare reduction.
+ (case_decl): Add ST_OMP_DECLARE_REDUCTION.
+ (gfc_ascii_statement): Print ST_OMP_DECLARE_REDUCTION.
+ * resolve.c (resolve_fl_variable): Allow len=: or len=* on
+ sym->attr.omp_udr_artificial_var symbols.
+ (resolve_types): Call gfc_resolve_omp_udrs.
+ * symbol.c (gfc_get_uop): If gfc_current_ns->omp_udr_ns,
+ use parent ns instead of gfc_current_ns.
+ (gfc_get_sym_tree): Don't insert symbols into
+ namespaces with omp_udr_ns set.
+ (free_omp_udr_tree): New function.
+ (gfc_free_namespace): Call it.
+ * trans-openmp.c (struct omp_udr_find_orig_data): New type.
+ (omp_udr_find_orig, gfc_trans_omp_udr_expr): New functions.
+ (gfc_trans_omp_array_reduction): Renamed to...
+ (gfc_trans_omp_array_reduction_or_udr): ... this. Remove SYM
+ argument, instead pass gfc_omp_namelist pointer N. Handle
+ user defined reductions.
+ (gfc_trans_omp_reduction_list): Remove REDUCTION_CODE argument.
+ Handle user defined reductions and reduction ops in gfc_omp_namelist.
+ (gfc_trans_omp_clauses): Adjust for just a single OMP_LIST_REDUCTION
+ list.
+ (gfc_split_omp_clauses): Likewise.
+
+ 2014-05-12 Tobias Burnus <burnus@net-b.de>
+
+ PR fortran/60127
+ * openmp.c (resolve_omp_do): Reject do concurrent loops.
+
+ 2014-05-11 Jakub Jelinek <jakub@redhat.com>
+
+ * gfortran.h (gfc_statement): Add ST_OMP_CANCEL,
+ ST_OMP_CANCELLATION_POINT, ST_OMP_TASKGROUP, ST_OMP_END_TASKGROUP,
+ ST_OMP_SIMD, ST_OMP_END_SIMD, ST_OMP_DO_SIMD, ST_OMP_END_DO_SIMD,
+ ST_OMP_PARALLEL_DO_SIMD, ST_OMP_END_PARALLEL_DO_SIMD and
+ ST_OMP_DECLARE_SIMD.
+ (gfc_omp_namelist): New typedef.
+ (gfc_get_omp_namelist): Define.
+ (OMP_LIST_UNIFORM, OMP_LIST_ALIGNED, OMP_LIST_LINEAR,
+ OMP_LIST_DEPEND_IN, OMP_LIST_DEPEND_OUT): New clause list kinds.
+ (gfc_omp_proc_bind_kind, gfc_omp_cancel_kind): New enums.
+ (gfc_omp_clauses): Change type of lists to gfc_omp_namelist *.
+ Add inbranch, notinbranch, cancel, proc_bind, safelen_expr and
+ simdlen_expr fields.
+ (gfc_omp_declare_simd): New typedef.
+ (gfc_get_omp_declare_simd): Define.
+ (gfc_namespace): Add omp_declare_simd field.
+ (gfc_exec_op): Add EXEC_OMP_CANCEL, EXEC_OMP_CANCELLATION_POINT,
+ EXEC_OMP_TASKGROUP, EXEC_OMP_SIMD, EXEC_OMP_DO_SIMD and
+ EXEC_OMP_PARALLEL_DO_SIMD.
+ (gfc_omp_atomic_op): Add GFC_OMP_ATOMIC_MASK, GFC_OMP_ATOMIC_SEQ_CST
+ and GFC_OMP_ATOMIC_SWAP.
+ (gfc_code): Change type of omp_namelist field to gfc_omp_namelist *.
+ (gfc_free_omp_namelist, gfc_free_omp_declare_simd,
+ gfc_free_omp_declare_simd_list, gfc_resolve_omp_declare_simd): New
+ prototypes.
+ * trans-stmt.h (gfc_trans_omp_declare_simd): New prototype.
+ * symbol.c (gfc_free_namespace): Call gfc_free_omp_declare_simd.
+ * openmp.c (gfc_free_omp_clauses): Free safelen_expr and
+ simdlen_expr. Use gfc_free_omp_namelist instead of
+ gfc_free_namelist.
+ (gfc_free_omp_declare_simd, gfc_free_omp_declare_simd_list): New
+ functions.
+ (gfc_match_omp_variable_list): Add end_colon, headp and
+ allow_sections arguments. Handle parsing of array sections.
+ Use *omp_namelist* instead of *namelist* data structure and
+ functions/macros. Allow termination at : character.
+ (OMP_CLAUSE_ALIGNED, OMP_CLAUSE_DEPEND, OMP_CLAUSE_INBRANCH,
+ OMP_CLAUSE_LINEAR, OMP_CLAUSE_NOTINBRANCH, OMP_CLAUSE_PROC_BIND,
+ OMP_CLAUSE_SAFELEN, OMP_CLAUSE_SIMDLEN, OMP_CLAUSE_UNIFORM): Define.
+ (gfc_match_omp_clauses): Change first and needs_space variables
+ into arguments with default values. Parse inbranch, notinbranch,
+ proc_bind, safelen, simdlen, uniform, linear, aligned and
+ depend clauses.
+ (OMP_PARALLEL_CLAUSES): Add OMP_CLAUSE_PROC_BIND.
+ (OMP_DECLARE_SIMD_CLAUSES, OMP_SIMD_CLAUSES): Define.
+ (OMP_TASK_CLAUSES): Add OMP_CLAUSE_DEPEND.
+ (gfc_match_omp_do_simd): New function.
+ (gfc_match_omp_flush): Use *omp_namelist* instead of *namelist*
+ data structure and functions/macros.
+ (gfc_match_omp_simd, gfc_match_omp_declare_simd,
+ gfc_match_omp_parallel_do_simd): New functions.
+ (gfc_match_omp_atomic): Handle seq_cst clause. Handle atomic swap.
+ (gfc_match_omp_taskgroup, gfc_match_omp_cancel_kind,
+ gfc_match_omp_cancel, gfc_match_omp_cancellation_point): New
+ functions.
+ (resolve_omp_clauses): Add where, omp_clauses and ns arguments.
+ Use *omp_namelist* instead of *namelist* data structure and
+ functions/macros. Resolve uniform, aligned, linear, depend,
+ safelen and simdlen clauses.
+ (resolve_omp_atomic): Adjust for GFC_OMP_ATOMIC_{MASK,SEQ_CST,SWAP}
+ addition, recognize atomic swap.
+ (gfc_resolve_omp_parallel_blocks): Use gfc_omp_namelist instead
+ of gfc_namelist. Handle EXEC_OMP_PARALLEL_DO_SIMD the same as
+ EXEC_OMP_PARALLEL_DO.
+ (gfc_resolve_do_iterator): Use *omp_namelist* instead of *namelist*
+ data structure and functions/macros.
+ (resolve_omp_do): Likewise. Handle EXEC_OMP_SIMD, EXEC_OMP_DO_SIMD,
+ EXEC_OMP_PARALLEL_DO_SIMD.
+ (gfc_resolve_omp_directive): Handle EXEC_OMP_SIMD, EXEC_OMP_DO_SIMD,
+ EXEC_OMP_PARALLEL_DO_SIMD and EXEC_OMP_CANCEL. Adjust
+ resolve_omp_clauses caller.
+ (gfc_resolve_omp_declare_simd): New function.
+ * parse.c (decode_omp_directive): Parse cancellation point, cancel,
+ declare simd, end do simd, end simd, end parallel do simd,
+ end taskgroup, parallel do simd, simd and taskgroup directives.
+ (case_executable): Add ST_OMP_CANCEL and ST_OMP_CANCELLATION_POINT.
+ (case_exec_markers): Add ST_OMP_TASKGROUP, case ST_OMP_SIMD,
+ ST_OMP_DO_SIMD and ST_OMP_PARALLEL_DO_SIMD.
+ (case_decl): Add ST_OMP_DECLARE_SIMD.
+ (gfc_ascii_statement): Handle ST_OMP_CANCEL,
+ ST_OMP_CANCELLATION_POINT, ST_OMP_TASKGROUP, ST_OMP_END_TASKGROUP,
+ ST_OMP_SIMD, ST_OMP_END_SIMD, ST_OMP_DO_SIMD, ST_OMP_END_DO_SIMD,
+ ST_OMP_PARALLEL_DO_SIMD, ST_OMP_END_PARALLEL_DO_SIMD and
+ ST_OMP_DECLARE_SIMD.
+ (parse_omp_do): Handle ST_OMP_SIMD, ST_OMP_DO_SIMD and
+ ST_OMP_PARALLEL_DO_SIMD.
+ (parse_omp_atomic): Adjust for GFC_OMP_ATOMIC_* additions.
+ (parse_omp_structured_block): Handle ST_OMP_TASKGROUP and
+ ST_OMP_PARALLEL_DO_SIMD.
+ (parse_executable): Handle ST_OMP_SIMD, ST_OMP_DO_SIMD,
+ ST_OMP_PARALLEL_DO_SIMD and ST_OMP_TASKGROUP.
+ * trans-decl.c (gfc_get_extern_function_decl,
+ gfc_create_function_decl): Call gfc_trans_omp_declare_simd if
+ needed.
+ * frontend-passes.c (gfc_code_walker): Handle EXEC_OMP_SIMD,
+ EXEC_OMP_DO_SIMD and EXEC_OMP_PARALLEL_DO_SIMD. Walk
+ safelen_expr and simdlen_expr. Walk expressions in gfc_omp_namelist
+ of depend, aligned and linear clauses.
+ * match.c (match_exit_cycle): Handle EXEC_OMP_SIMD, EXEC_OMP_DO_SIMD
+ and EXEC_OMP_PARALLEL_DO_SIMD.
+ (gfc_free_omp_namelist): New function.
+ * dump-parse-tree.c (show_namelist): Removed.
+ (show_omp_namelist): New function.
+ (show_omp_node): Handle OpenMP 4.0 additions.
+ (show_code_node): Handle EXEC_OMP_CANCEL, EXEC_OMP_CANCELLATION_POINT,
+ EXEC_OMP_DO_SIMD, EXEC_OMP_PARALLEL_DO_SIMD, EXEC_OMP_SIMD and
+ EXEC_OMP_TASKGROUP.
+ * match.h (gfc_match_omp_cancel, gfc_match_omp_cancellation_point,
+ gfc_match_omp_declare_simd, gfc_match_omp_do_simd,
+ gfc_match_omp_parallel_do_simd, gfc_match_omp_simd,
+ gfc_match_omp_taskgroup): New prototypes.
+ * trans-openmp.c (gfc_trans_omp_variable): Add declare_simd
+ argument, handle it. Allow current_function_decl to be NULL.
+ (gfc_trans_omp_variable_list): Add declare_simd argument, pass
+ it through to gfc_trans_omp_variable and disregard whether
+ sym is referenced if declare_simd is true. Work on gfc_omp_namelist
+ instead of gfc_namelist.
+ (gfc_trans_omp_reduction_list): Work on gfc_omp_namelist instead of
+ gfc_namelist. Adjust gfc_trans_omp_variable caller.
+ (gfc_trans_omp_clauses): Add declare_simd argument, pass it through
+ to gfc_trans_omp_variable{,_list} callers. Work on gfc_omp_namelist
+ instead of gfc_namelist. Handle inbranch, notinbranch, safelen,
+ simdlen, depend, uniform, linear, proc_bind and aligned clauses.
+ Handle cancel kind.
+ (gfc_trans_omp_atomic): Handle seq_cst clause, handle atomic swap,
+ adjust for GFC_OMP_ATOMIC_* changes.
+ (gfc_trans_omp_cancel, gfc_trans_omp_cancellation_point): New
+ functions.
+ (gfc_trans_omp_do): Add op argument, handle simd translation into
+ generic.
+ (GFC_OMP_SPLIT_SIMD, GFC_OMP_SPLIT_DO, GFC_OMP_SPLIT_PARALLEL,
+ GFC_OMP_SPLIT_NUM, GFC_OMP_MASK_SIMD, GFC_OMP_MASK_DO,
+ GFC_OMP_MASK_PARALLEL): New.
+ (gfc_split_omp_clauses, gfc_trans_omp_do_simd): New functions.
+ (gfc_trans_omp_parallel_do): Rework to use gfc_split_omp_clauses.
+ (gfc_trans_omp_parallel_do_simd, gfc_trans_omp_taskgroup): New
+ functions.
+ (gfc_trans_omp_directive): Handle EXEC_OMP_CANCEL,
+ EXEC_OMP_CANCELLATION_POINT, EXEC_OMP_DO_SIMD,
+ EXEC_OMP_PARALLEL_DO_SIMD, EXEC_OMP_SIMD and EXEC_OMP_TASKGROUP.
+ Adjust gfc_trans_omp_do caller.
+ (gfc_trans_omp_declare_simd): New function.
+ * st.c (gfc_free_statement): Handle EXEC_OMP_CANCEL,
+ EXEC_OMP_CANCELLATION_POINT, EXEC_OMP_DO_SIMD,
+ EXEC_OMP_PARALLEL_DO_SIMD, EXEC_OMP_SIMD and EXEC_OMP_TASKGROUP.
+ For EXEC_OMP_FLUSH call gfc_free_omp_namelist instead of
+ gfc_free_namelist.
+ * module.c (omp_declare_simd_clauses): New variable.
+ (mio_omp_declare_simd): New function.
+ (mio_symbol): Call it.
+ * trans.c (trans_code): Handle EXEC_OMP_CANCEL,
+ EXEC_OMP_CANCELLATION_POINT, EXEC_OMP_DO_SIMD,
+ EXEC_OMP_PARALLEL_DO_SIMD, EXEC_OMP_SIMD and EXEC_OMP_TASKGROUP.
+ * resolve.c (gfc_resolve_blocks): Handle EXEC_OMP_DO_SIMD,
+ EXEC_OMP_PARALLEL_DO_SIMD, EXEC_OMP_SIMD and EXEC_OMP_TASKGROUP.
+ (resolve_code): Handle EXEC_OMP_CANCEL,
+ EXEC_OMP_CANCELLATION_POINT, EXEC_OMP_DO_SIMD,
+ EXEC_OMP_PARALLEL_DO_SIMD, EXEC_OMP_SIMD and EXEC_OMP_TASKGROUP.
+ (resolve_types): Call gfc_resolve_omp_declare_simd.
+
+2014-06-15 Francois-Xavier Coudert <fxcoudert@gcc.gnu.org>
+
+ Backport from trunk.
+ PR fortran/45187
+ * trans-decl.c (gfc_create_module_variable): Don't create
+ Cray-pointee decls twice.
+
+2014-06-09 Paul Thomas <pault@gcc.gnu.org>
+
+ Backport from trunk.
+ PR fortran/61406
+ * trans-stmt.c (trans_associate_var): Check that array
+ constructors are constant for direct reference.
+
+2014-06-05 Richard Biener <rguenther@suse.de>
+
+ PR fortran/61418
+ * gfortranspec.c (spec_file): Remove.
+ (find_spec_file): Likewise.
+ (lang_specific_driver): Do not look for specs file in -L
+ or append -specs command line argument.
+ (lang_specific_pre_link): Always %:include libgfortran.spec.
+
+2014-05-29 Thomas Koenig <tkoenig@gcc.gnu.org>
+
+ PR fortran/60834
+ Backport from mainline
+ * frontend-passes.c (in_assoc_list): New variable.
+ (optimize_namespace): Initialize in_assoc_list
+ (combine_array_constructor): Don't try to combine
+ assoc lists.
+ (gfc_code_walker): Keep track of in_assoc_list.
+
+2014-05-26 Janne Blomqvist <jb@gcc.gnu.org>
+
+ Backport from mainline
+ PR libfortran/61310
+ * intrinsics.texi (CTIME): Remove mention of locale-dependent
+ behavior.
+
2014-04-22 Tobias Burnus <burnus@net-b.de>
Backport from mainline
diff --git a/gcc-4.9/gcc/fortran/cpp.c b/gcc-4.9/gcc/fortran/cpp.c
index 169599003..7fb8d1602 100644
--- a/gcc-4.9/gcc/fortran/cpp.c
+++ b/gcc-4.9/gcc/fortran/cpp.c
@@ -171,7 +171,7 @@ cpp_define_builtins (cpp_reader *pfile)
cpp_define (pfile, "_LANGUAGE_FORTRAN=1");
if (gfc_option.gfc_flag_openmp)
- cpp_define (pfile, "_OPENMP=201107");
+ cpp_define (pfile, "_OPENMP=201307");
/* The defines below are necessary for the TARGET_* macros.
diff --git a/gcc-4.9/gcc/fortran/decl.c b/gcc-4.9/gcc/fortran/decl.c
index 4048ac913..eebecd59f 100644
--- a/gcc-4.9/gcc/fortran/decl.c
+++ b/gcc-4.9/gcc/fortran/decl.c
@@ -1997,6 +1997,13 @@ variable_decl (int elem)
if (!gfc_notify_std (GFC_STD_GNU, "Old-style "
"initialization at %C"))
return MATCH_ERROR;
+ else if (gfc_current_state () == COMP_DERIVED)
+ {
+ gfc_error ("Invalid old style initialization for derived type "
+ "component at %C");
+ m = MATCH_ERROR;
+ goto cleanup;
+ }
return match_old_style_init (name);
}
diff --git a/gcc-4.9/gcc/fortran/dump-parse-tree.c b/gcc-4.9/gcc/fortran/dump-parse-tree.c
index b1343bc2a..19f83a9ef 100644
--- a/gcc-4.9/gcc/fortran/dump-parse-tree.c
+++ b/gcc-4.9/gcc/fortran/dump-parse-tree.c
@@ -1016,11 +1016,60 @@ show_code (int level, gfc_code *c)
}
static void
-show_namelist (gfc_namelist *n)
+show_omp_namelist (int list_type, gfc_omp_namelist *n)
{
- for (; n->next; n = n->next)
- fprintf (dumpfile, "%s,", n->sym->name);
- fprintf (dumpfile, "%s", n->sym->name);
+ for (; n; n = n->next)
+ {
+ if (list_type == OMP_LIST_REDUCTION)
+ switch (n->u.reduction_op)
+ {
+ case OMP_REDUCTION_PLUS:
+ case OMP_REDUCTION_TIMES:
+ case OMP_REDUCTION_MINUS:
+ case OMP_REDUCTION_AND:
+ case OMP_REDUCTION_OR:
+ case OMP_REDUCTION_EQV:
+ case OMP_REDUCTION_NEQV:
+ fprintf (dumpfile, "%s:",
+ gfc_op2string ((gfc_intrinsic_op) n->u.reduction_op));
+ break;
+ case OMP_REDUCTION_MAX: fputs ("max:", dumpfile); break;
+ case OMP_REDUCTION_MIN: fputs ("min:", dumpfile); break;
+ case OMP_REDUCTION_IAND: fputs ("iand:", dumpfile); break;
+ case OMP_REDUCTION_IOR: fputs ("ior:", dumpfile); break;
+ case OMP_REDUCTION_IEOR: fputs ("ieor:", dumpfile); break;
+ case OMP_REDUCTION_USER:
+ if (n->udr)
+ fprintf (dumpfile, "%s:", n->udr->udr->name);
+ break;
+ default: break;
+ }
+ else if (list_type == OMP_LIST_DEPEND)
+ switch (n->u.depend_op)
+ {
+ case OMP_DEPEND_IN: fputs ("in:", dumpfile); break;
+ case OMP_DEPEND_OUT: fputs ("out:", dumpfile); break;
+ case OMP_DEPEND_INOUT: fputs ("inout:", dumpfile); break;
+ default: break;
+ }
+ else if (list_type == OMP_LIST_MAP)
+ switch (n->u.map_op)
+ {
+ case OMP_MAP_ALLOC: fputs ("alloc:", dumpfile); break;
+ case OMP_MAP_TO: fputs ("to:", dumpfile); break;
+ case OMP_MAP_FROM: fputs ("from:", dumpfile); break;
+ case OMP_MAP_TOFROM: fputs ("tofrom:", dumpfile); break;
+ default: break;
+ }
+ fprintf (dumpfile, "%s", n->sym->name);
+ if (n->expr)
+ {
+ fputc (':', dumpfile);
+ show_expr (n->expr);
+ }
+ if (n->next)
+ fputc (',', dumpfile);
+ }
}
/* Show a single OpenMP directive node and everything underneath it
@@ -1036,18 +1085,24 @@ show_omp_node (int level, gfc_code *c)
{
case EXEC_OMP_ATOMIC: name = "ATOMIC"; break;
case EXEC_OMP_BARRIER: name = "BARRIER"; break;
+ case EXEC_OMP_CANCEL: name = "CANCEL"; break;
+ case EXEC_OMP_CANCELLATION_POINT: name = "CANCELLATION POINT"; break;
case EXEC_OMP_CRITICAL: name = "CRITICAL"; break;
case EXEC_OMP_FLUSH: name = "FLUSH"; break;
case EXEC_OMP_DO: name = "DO"; break;
+ case EXEC_OMP_DO_SIMD: name = "DO SIMD"; break;
case EXEC_OMP_MASTER: name = "MASTER"; break;
case EXEC_OMP_ORDERED: name = "ORDERED"; break;
case EXEC_OMP_PARALLEL: name = "PARALLEL"; break;
case EXEC_OMP_PARALLEL_DO: name = "PARALLEL DO"; break;
+ case EXEC_OMP_PARALLEL_DO_SIMD: name = "PARALLEL DO SIMD"; break;
case EXEC_OMP_PARALLEL_SECTIONS: name = "PARALLEL SECTIONS"; break;
case EXEC_OMP_PARALLEL_WORKSHARE: name = "PARALLEL WORKSHARE"; break;
case EXEC_OMP_SECTIONS: name = "SECTIONS"; break;
+ case EXEC_OMP_SIMD: name = "SIMD"; break;
case EXEC_OMP_SINGLE: name = "SINGLE"; break;
case EXEC_OMP_TASK: name = "TASK"; break;
+ case EXEC_OMP_TASKGROUP: name = "TASKGROUP"; break;
case EXEC_OMP_TASKWAIT: name = "TASKWAIT"; break;
case EXEC_OMP_TASKYIELD: name = "TASKYIELD"; break;
case EXEC_OMP_WORKSHARE: name = "WORKSHARE"; break;
@@ -1057,11 +1112,16 @@ show_omp_node (int level, gfc_code *c)
fprintf (dumpfile, "!$OMP %s", name);
switch (c->op)
{
+ case EXEC_OMP_CANCEL:
+ case EXEC_OMP_CANCELLATION_POINT:
case EXEC_OMP_DO:
+ case EXEC_OMP_DO_SIMD:
case EXEC_OMP_PARALLEL:
case EXEC_OMP_PARALLEL_DO:
+ case EXEC_OMP_PARALLEL_DO_SIMD:
case EXEC_OMP_PARALLEL_SECTIONS:
case EXEC_OMP_SECTIONS:
+ case EXEC_OMP_SIMD:
case EXEC_OMP_SINGLE:
case EXEC_OMP_WORKSHARE:
case EXEC_OMP_PARALLEL_WORKSHARE:
@@ -1076,7 +1136,7 @@ show_omp_node (int level, gfc_code *c)
if (c->ext.omp_namelist)
{
fputs (" (", dumpfile);
- show_namelist (c->ext.omp_namelist);
+ show_omp_namelist (OMP_LIST_NUM, c->ext.omp_namelist);
fputc (')', dumpfile);
}
return;
@@ -1091,6 +1151,23 @@ show_omp_node (int level, gfc_code *c)
{
int list_type;
+ switch (omp_clauses->cancel)
+ {
+ case OMP_CANCEL_UNKNOWN:
+ break;
+ case OMP_CANCEL_PARALLEL:
+ fputs (" PARALLEL", dumpfile);
+ break;
+ case OMP_CANCEL_SECTIONS:
+ fputs (" SECTIONS", dumpfile);
+ break;
+ case OMP_CANCEL_DO:
+ fputs (" DO", dumpfile);
+ break;
+ case OMP_CANCEL_TASKGROUP:
+ fputs (" TASKGROUP", dumpfile);
+ break;
+ }
if (omp_clauses->if_expr)
{
fputs (" IF(", dumpfile);
@@ -1156,45 +1233,83 @@ show_omp_node (int level, gfc_code *c)
if (omp_clauses->lists[list_type] != NULL
&& list_type != OMP_LIST_COPYPRIVATE)
{
- const char *type;
- if (list_type >= OMP_LIST_REDUCTION_FIRST)
+ const char *type = NULL;
+ switch (list_type)
{
- switch (list_type)
- {
- case OMP_LIST_PLUS: type = "+"; break;
- case OMP_LIST_MULT: type = "*"; break;
- case OMP_LIST_SUB: type = "-"; break;
- case OMP_LIST_AND: type = ".AND."; break;
- case OMP_LIST_OR: type = ".OR."; break;
- case OMP_LIST_EQV: type = ".EQV."; break;
- case OMP_LIST_NEQV: type = ".NEQV."; break;
- case OMP_LIST_MAX: type = "MAX"; break;
- case OMP_LIST_MIN: type = "MIN"; break;
- case OMP_LIST_IAND: type = "IAND"; break;
- case OMP_LIST_IOR: type = "IOR"; break;
- case OMP_LIST_IEOR: type = "IEOR"; break;
- default:
- gcc_unreachable ();
- }
- fprintf (dumpfile, " REDUCTION(%s:", type);
+ case OMP_LIST_PRIVATE: type = "PRIVATE"; break;
+ case OMP_LIST_FIRSTPRIVATE: type = "FIRSTPRIVATE"; break;
+ case OMP_LIST_LASTPRIVATE: type = "LASTPRIVATE"; break;
+ case OMP_LIST_SHARED: type = "SHARED"; break;
+ case OMP_LIST_COPYIN: type = "COPYIN"; break;
+ case OMP_LIST_UNIFORM: type = "UNIFORM"; break;
+ case OMP_LIST_ALIGNED: type = "ALIGNED"; break;
+ case OMP_LIST_LINEAR: type = "LINEAR"; break;
+ case OMP_LIST_REDUCTION: type = "REDUCTION"; break;
+ case OMP_LIST_DEPEND: type = "DEPEND"; break;
+ default:
+ gcc_unreachable ();
}
- else
- {
- switch (list_type)
- {
- case OMP_LIST_PRIVATE: type = "PRIVATE"; break;
- case OMP_LIST_FIRSTPRIVATE: type = "FIRSTPRIVATE"; break;
- case OMP_LIST_LASTPRIVATE: type = "LASTPRIVATE"; break;
- case OMP_LIST_SHARED: type = "SHARED"; break;
- case OMP_LIST_COPYIN: type = "COPYIN"; break;
- default:
- gcc_unreachable ();
- }
- fprintf (dumpfile, " %s(", type);
- }
- show_namelist (omp_clauses->lists[list_type]);
+ fprintf (dumpfile, " %s(", type);
+ show_omp_namelist (list_type, omp_clauses->lists[list_type]);
fputc (')', dumpfile);
}
+ if (omp_clauses->safelen_expr)
+ {
+ fputs (" SAFELEN(", dumpfile);
+ show_expr (omp_clauses->safelen_expr);
+ fputc (')', dumpfile);
+ }
+ if (omp_clauses->simdlen_expr)
+ {
+ fputs (" SIMDLEN(", dumpfile);
+ show_expr (omp_clauses->simdlen_expr);
+ fputc (')', dumpfile);
+ }
+ if (omp_clauses->inbranch)
+ fputs (" INBRANCH", dumpfile);
+ if (omp_clauses->notinbranch)
+ fputs (" NOTINBRANCH", dumpfile);
+ if (omp_clauses->proc_bind != OMP_PROC_BIND_UNKNOWN)
+ {
+ const char *type;
+ switch (omp_clauses->proc_bind)
+ {
+ case OMP_PROC_BIND_MASTER: type = "MASTER"; break;
+ case OMP_PROC_BIND_SPREAD: type = "SPREAD"; break;
+ case OMP_PROC_BIND_CLOSE: type = "CLOSE"; break;
+ default:
+ gcc_unreachable ();
+ }
+ fprintf (dumpfile, " PROC_BIND(%s)", type);
+ }
+ if (omp_clauses->num_teams)
+ {
+ fputs (" NUM_TEAMS(", dumpfile);
+ show_expr (omp_clauses->num_teams);
+ fputc (')', dumpfile);
+ }
+ if (omp_clauses->device)
+ {
+ fputs (" DEVICE(", dumpfile);
+ show_expr (omp_clauses->device);
+ fputc (')', dumpfile);
+ }
+ if (omp_clauses->thread_limit)
+ {
+ fputs (" THREAD_LIMIT(", dumpfile);
+ show_expr (omp_clauses->thread_limit);
+ fputc (')', dumpfile);
+ }
+ if (omp_clauses->dist_sched_kind != OMP_SCHED_NONE)
+ {
+ fprintf (dumpfile, " DIST_SCHEDULE (static");
+ if (omp_clauses->dist_chunk_size)
+ {
+ fputc (',', dumpfile);
+ show_expr (omp_clauses->dist_chunk_size);
+ }
+ fputc (')', dumpfile);
+ }
}
fputc ('\n', dumpfile);
if (c->op == EXEC_OMP_SECTIONS || c->op == EXEC_OMP_PARALLEL_SECTIONS)
@@ -1214,6 +1329,7 @@ show_omp_node (int level, gfc_code *c)
show_code (level + 1, c->block->next);
if (c->op == EXEC_OMP_ATOMIC)
return;
+ fputc ('\n', dumpfile);
code_indent (level, 0);
fprintf (dumpfile, "!$OMP END %s", name);
if (omp_clauses != NULL)
@@ -1221,7 +1337,8 @@ show_omp_node (int level, gfc_code *c)
if (omp_clauses->lists[OMP_LIST_COPYPRIVATE])
{
fputs (" COPYPRIVATE(", dumpfile);
- show_namelist (omp_clauses->lists[OMP_LIST_COPYPRIVATE]);
+ show_omp_namelist (OMP_LIST_COPYPRIVATE,
+ omp_clauses->lists[OMP_LIST_COPYPRIVATE]);
fputc (')', dumpfile);
}
else if (omp_clauses->nowait)
@@ -2195,19 +2312,25 @@ show_code_node (int level, gfc_code *c)
break;
case EXEC_OMP_ATOMIC:
+ case EXEC_OMP_CANCEL:
+ case EXEC_OMP_CANCELLATION_POINT:
case EXEC_OMP_BARRIER:
case EXEC_OMP_CRITICAL:
case EXEC_OMP_FLUSH:
case EXEC_OMP_DO:
+ case EXEC_OMP_DO_SIMD:
case EXEC_OMP_MASTER:
case EXEC_OMP_ORDERED:
case EXEC_OMP_PARALLEL:
case EXEC_OMP_PARALLEL_DO:
+ case EXEC_OMP_PARALLEL_DO_SIMD:
case EXEC_OMP_PARALLEL_SECTIONS:
case EXEC_OMP_PARALLEL_WORKSHARE:
case EXEC_OMP_SECTIONS:
+ case EXEC_OMP_SIMD:
case EXEC_OMP_SINGLE:
case EXEC_OMP_TASK:
+ case EXEC_OMP_TASKGROUP:
case EXEC_OMP_TASKWAIT:
case EXEC_OMP_TASKYIELD:
case EXEC_OMP_WORKSHARE:
diff --git a/gcc-4.9/gcc/fortran/f95-lang.c b/gcc-4.9/gcc/fortran/f95-lang.c
index e25e92a55..12d323661 100644
--- a/gcc-4.9/gcc/fortran/f95-lang.c
+++ b/gcc-4.9/gcc/fortran/f95-lang.c
@@ -87,6 +87,24 @@ static alias_set_type gfc_get_alias_set (tree);
static void gfc_init_ts (void);
static tree gfc_builtin_function (tree);
+/* Handle an "omp declare target" attribute; arguments as in
+ struct attribute_spec.handler. */
+static tree
+gfc_handle_omp_declare_target_attribute (tree *, tree, tree, int, bool *)
+{
+ return NULL_TREE;
+}
+
+/* Table of valid Fortran attributes. */
+static const struct attribute_spec gfc_attribute_table[] =
+{
+ /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
+ affects_type_identity } */
+ { "omp declare target", 0, 0, true, false, false,
+ gfc_handle_omp_declare_target_attribute, false },
+ { NULL, 0, 0, false, false, false, NULL, false }
+};
+
#undef LANG_HOOKS_NAME
#undef LANG_HOOKS_INIT
#undef LANG_HOOKS_FINISH
@@ -108,7 +126,9 @@ static tree gfc_builtin_function (tree);
#undef LANG_HOOKS_OMP_CLAUSE_DEFAULT_CTOR
#undef LANG_HOOKS_OMP_CLAUSE_COPY_CTOR
#undef LANG_HOOKS_OMP_CLAUSE_ASSIGN_OP
+#undef LANG_HOOKS_OMP_CLAUSE_LINEAR_CTOR
#undef LANG_HOOKS_OMP_CLAUSE_DTOR
+#undef LANG_HOOKS_OMP_FINISH_CLAUSE
#undef LANG_HOOKS_OMP_DISREGARD_VALUE_EXPR
#undef LANG_HOOKS_OMP_PRIVATE_DEBUG_CLAUSE
#undef LANG_HOOKS_OMP_PRIVATE_OUTER_REF
@@ -116,6 +136,7 @@ static tree gfc_builtin_function (tree);
#undef LANG_HOOKS_BUILTIN_FUNCTION
#undef LANG_HOOKS_BUILTIN_FUNCTION
#undef LANG_HOOKS_GET_ARRAY_DESCR_INFO
+#undef LANG_HOOKS_ATTRIBUTE_TABLE
/* Define lang hooks. */
#define LANG_HOOKS_NAME "GNU Fortran"
@@ -138,14 +159,17 @@ static tree gfc_builtin_function (tree);
#define LANG_HOOKS_OMP_CLAUSE_DEFAULT_CTOR gfc_omp_clause_default_ctor
#define LANG_HOOKS_OMP_CLAUSE_COPY_CTOR gfc_omp_clause_copy_ctor
#define LANG_HOOKS_OMP_CLAUSE_ASSIGN_OP gfc_omp_clause_assign_op
+#define LANG_HOOKS_OMP_CLAUSE_LINEAR_CTOR gfc_omp_clause_linear_ctor
#define LANG_HOOKS_OMP_CLAUSE_DTOR gfc_omp_clause_dtor
+#define LANG_HOOKS_OMP_FINISH_CLAUSE gfc_omp_finish_clause
#define LANG_HOOKS_OMP_DISREGARD_VALUE_EXPR gfc_omp_disregard_value_expr
#define LANG_HOOKS_OMP_PRIVATE_DEBUG_CLAUSE gfc_omp_private_debug_clause
#define LANG_HOOKS_OMP_PRIVATE_OUTER_REF gfc_omp_private_outer_ref
#define LANG_HOOKS_OMP_FIRSTPRIVATIZE_TYPE_SIZES \
gfc_omp_firstprivatize_type_sizes
-#define LANG_HOOKS_BUILTIN_FUNCTION gfc_builtin_function
-#define LANG_HOOKS_GET_ARRAY_DESCR_INFO gfc_get_array_descr_info
+#define LANG_HOOKS_BUILTIN_FUNCTION gfc_builtin_function
+#define LANG_HOOKS_GET_ARRAY_DESCR_INFO gfc_get_array_descr_info
+#define LANG_HOOKS_ATTRIBUTE_TABLE gfc_attribute_table
struct lang_hooks lang_hooks = LANG_HOOKS_INITIALIZER;
@@ -1038,7 +1062,9 @@ gfc_init_builtin_functions (void)
#include "../sync-builtins.def"
#undef DEF_SYNC_BUILTIN
- if (gfc_option.gfc_flag_openmp || flag_tree_parallelize_loops)
+ if (gfc_option.gfc_flag_openmp
+ || gfc_option.gfc_flag_openmp_simd
+ || flag_tree_parallelize_loops)
{
#undef DEF_GOMP_BUILTIN
#define DEF_GOMP_BUILTIN(code, name, type, attr) \
@@ -1052,6 +1078,13 @@ gfc_init_builtin_functions (void)
BUILT_IN_TRAP, NULL, ATTR_NOTHROW_LEAF_LIST);
TREE_THIS_VOLATILE (builtin_decl_explicit (BUILT_IN_TRAP)) = 1;
+ ftype = build_varargs_function_type_list (ptr_type_node, const_ptr_type_node,
+ size_type_node, NULL_TREE);
+ gfc_define_builtin ("__builtin_assume_aligned", ftype,
+ BUILT_IN_ASSUME_ALIGNED,
+ "__builtin_assume_aligned",
+ ATTR_CONST_NOTHROW_LEAF_LIST);
+
gfc_define_builtin ("__emutls_get_address",
builtin_types[BT_FN_PTR_PTR],
BUILT_IN_EMUTLS_GET_ADDRESS,
diff --git a/gcc-4.9/gcc/fortran/frontend-passes.c b/gcc-4.9/gcc/fortran/frontend-passes.c
index 6c67e6610..4646cc33f 100644
--- a/gcc-4.9/gcc/fortran/frontend-passes.c
+++ b/gcc-4.9/gcc/fortran/frontend-passes.c
@@ -88,6 +88,10 @@ static int doloop_size, doloop_level;
struct my_struct *evec;
+/* Keep track of association lists. */
+
+static bool in_assoc_list;
+
/* Entry point - run all passes for a namespace. */
void
@@ -672,10 +676,10 @@ dummy_expr_callback (gfc_expr **e ATTRIBUTE_UNUSED, int *walk_subtrees,
/* Dummy function for code callback, for use when we really
don't want to do anything. */
-static int
-dummy_code_callback (gfc_code **e ATTRIBUTE_UNUSED,
- int *walk_subtrees ATTRIBUTE_UNUSED,
- void *data ATTRIBUTE_UNUSED)
+int
+gfc_dummy_code_callback (gfc_code **e ATTRIBUTE_UNUSED,
+ int *walk_subtrees ATTRIBUTE_UNUSED,
+ void *data ATTRIBUTE_UNUSED)
{
return 0;
}
@@ -820,6 +824,7 @@ optimize_namespace (gfc_namespace *ns)
current_ns = ns;
forall_level = 0;
iterator_level = 0;
+ in_assoc_list = false;
in_omp_workshare = false;
gfc_code_walker (&ns->code, convert_do_while, dummy_expr_callback, NULL);
@@ -839,7 +844,8 @@ static void
optimize_reduction (gfc_namespace *ns)
{
current_ns = ns;
- gfc_code_walker (&ns->code, dummy_code_callback, callback_reduction, NULL);
+ gfc_code_walker (&ns->code, gfc_dummy_code_callback,
+ callback_reduction, NULL);
/* BLOCKs are handled in the expression walker below. */
for (ns = ns->contained; ns; ns = ns->sibling)
@@ -1054,6 +1060,11 @@ combine_array_constructor (gfc_expr *e)
if (e->rank != 1)
return false;
+ /* Don't try to combine association lists, this makes no sense
+ and leads to an ICE. */
+ if (in_assoc_list)
+ return false;
+
op1 = e->value.op.op1;
op2 = e->value.op.op2;
@@ -1940,8 +1951,17 @@ gfc_code_walker (gfc_code **c, walk_code_fn_t codefn, walk_expr_fn_t exprfn,
case EXEC_BLOCK:
WALK_SUBCODE (co->ext.block.ns->code);
- for (alist = co->ext.block.assoc; alist; alist = alist->next)
- WALK_SUBEXPR (alist->target);
+ if (co->ext.block.assoc)
+ {
+ bool saved_in_assoc_list = in_assoc_list;
+
+ in_assoc_list = true;
+ for (alist = co->ext.block.assoc; alist; alist = alist->next)
+ WALK_SUBEXPR (alist->target);
+
+ in_assoc_list = saved_in_assoc_list;
+ }
+
break;
case EXEC_DO:
@@ -2112,6 +2132,7 @@ gfc_code_walker (gfc_code **c, walk_code_fn_t codefn, walk_expr_fn_t exprfn,
case EXEC_OMP_PARALLEL:
case EXEC_OMP_PARALLEL_DO:
+ case EXEC_OMP_PARALLEL_DO_SIMD:
case EXEC_OMP_PARALLEL_SECTIONS:
in_omp_workshare = false;
@@ -2126,12 +2147,31 @@ gfc_code_walker (gfc_code **c, walk_code_fn_t codefn, walk_expr_fn_t exprfn,
in_omp_workshare = true;
/* Fall through */
-
+
+ case EXEC_OMP_DISTRIBUTE:
+ case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_DISTRIBUTE_SIMD:
case EXEC_OMP_DO:
+ case EXEC_OMP_DO_SIMD:
case EXEC_OMP_SECTIONS:
case EXEC_OMP_SINGLE:
case EXEC_OMP_END_SINGLE:
+ case EXEC_OMP_SIMD:
+ case EXEC_OMP_TARGET:
+ case EXEC_OMP_TARGET_DATA:
+ case EXEC_OMP_TARGET_TEAMS:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
+ case EXEC_OMP_TARGET_UPDATE:
case EXEC_OMP_TASK:
+ case EXEC_OMP_TEAMS:
+ case EXEC_OMP_TEAMS_DISTRIBUTE:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
/* Come to this label only from the
EXEC_OMP_PARALLEL_* cases above. */
@@ -2140,10 +2180,27 @@ gfc_code_walker (gfc_code **c, walk_code_fn_t codefn, walk_expr_fn_t exprfn,
if (co->ext.omp_clauses)
{
+ gfc_omp_namelist *n;
+ static int list_types[]
+ = { OMP_LIST_ALIGNED, OMP_LIST_LINEAR, OMP_LIST_DEPEND,
+ OMP_LIST_MAP, OMP_LIST_TO, OMP_LIST_FROM };
+ size_t idx;
WALK_SUBEXPR (co->ext.omp_clauses->if_expr);
WALK_SUBEXPR (co->ext.omp_clauses->final_expr);
WALK_SUBEXPR (co->ext.omp_clauses->num_threads);
WALK_SUBEXPR (co->ext.omp_clauses->chunk_size);
+ WALK_SUBEXPR (co->ext.omp_clauses->safelen_expr);
+ WALK_SUBEXPR (co->ext.omp_clauses->simdlen_expr);
+ WALK_SUBEXPR (co->ext.omp_clauses->num_teams);
+ WALK_SUBEXPR (co->ext.omp_clauses->device);
+ WALK_SUBEXPR (co->ext.omp_clauses->thread_limit);
+ WALK_SUBEXPR (co->ext.omp_clauses->dist_chunk_size);
+ for (idx = 0;
+ idx < sizeof (list_types) / sizeof (list_types[0]);
+ idx++)
+ for (n = co->ext.omp_clauses->lists[list_types[idx]];
+ n; n = n->next)
+ WALK_SUBEXPR (n->expr);
}
break;
default:
diff --git a/gcc-4.9/gcc/fortran/gfortran.h b/gcc-4.9/gcc/fortran/gfortran.h
index 14c202dd4..6b88aec38 100644
--- a/gcc-4.9/gcc/fortran/gfortran.h
+++ b/gcc-4.9/gcc/fortran/gfortran.h
@@ -211,8 +211,30 @@ typedef enum
ST_OMP_PARALLEL, ST_OMP_PARALLEL_DO, ST_OMP_PARALLEL_SECTIONS,
ST_OMP_PARALLEL_WORKSHARE, ST_OMP_SECTIONS, ST_OMP_SECTION, ST_OMP_SINGLE,
ST_OMP_THREADPRIVATE, ST_OMP_WORKSHARE, ST_OMP_TASK, ST_OMP_END_TASK,
- ST_OMP_TASKWAIT, ST_OMP_TASKYIELD, ST_PROCEDURE, ST_GENERIC, ST_CRITICAL,
- ST_END_CRITICAL, ST_GET_FCN_CHARACTERISTICS, ST_LOCK, ST_UNLOCK, ST_NONE
+ ST_OMP_TASKWAIT, ST_OMP_TASKYIELD, ST_OMP_CANCEL, ST_OMP_CANCELLATION_POINT,
+ ST_OMP_TASKGROUP, ST_OMP_END_TASKGROUP, ST_OMP_SIMD, ST_OMP_END_SIMD,
+ ST_OMP_DO_SIMD, ST_OMP_END_DO_SIMD, ST_OMP_PARALLEL_DO_SIMD,
+ ST_OMP_END_PARALLEL_DO_SIMD, ST_OMP_DECLARE_SIMD, ST_OMP_DECLARE_REDUCTION,
+ ST_OMP_TARGET, ST_OMP_END_TARGET, ST_OMP_TARGET_DATA, ST_OMP_END_TARGET_DATA,
+ ST_OMP_TARGET_UPDATE, ST_OMP_DECLARE_TARGET,
+ ST_OMP_TEAMS, ST_OMP_END_TEAMS, ST_OMP_DISTRIBUTE, ST_OMP_END_DISTRIBUTE,
+ ST_OMP_DISTRIBUTE_SIMD, ST_OMP_END_DISTRIBUTE_SIMD,
+ ST_OMP_DISTRIBUTE_PARALLEL_DO, ST_OMP_END_DISTRIBUTE_PARALLEL_DO,
+ ST_OMP_DISTRIBUTE_PARALLEL_DO_SIMD, ST_OMP_END_DISTRIBUTE_PARALLEL_DO_SIMD,
+ ST_OMP_TARGET_TEAMS, ST_OMP_END_TARGET_TEAMS, ST_OMP_TEAMS_DISTRIBUTE,
+ ST_OMP_END_TEAMS_DISTRIBUTE, ST_OMP_TEAMS_DISTRIBUTE_SIMD,
+ ST_OMP_END_TEAMS_DISTRIBUTE_SIMD, ST_OMP_TARGET_TEAMS_DISTRIBUTE,
+ ST_OMP_END_TARGET_TEAMS_DISTRIBUTE, ST_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD,
+ ST_OMP_END_TARGET_TEAMS_DISTRIBUTE_SIMD, ST_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO,
+ ST_OMP_END_TEAMS_DISTRIBUTE_PARALLEL_DO,
+ ST_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO,
+ ST_OMP_END_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO,
+ ST_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD,
+ ST_OMP_END_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD,
+ ST_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD,
+ ST_OMP_END_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD,
+ ST_PROCEDURE, ST_GENERIC, ST_CRITICAL, ST_END_CRITICAL,
+ ST_GET_FCN_CHARACTERISTICS, ST_LOCK, ST_UNLOCK, ST_NONE
}
gfc_statement;
@@ -808,6 +830,13 @@ typedef struct
variable for SELECT_TYPE or ASSOCIATE. */
unsigned select_type_temporary:1, associate_var:1;
+ /* This is omp_{out,in,priv,orig} artificial variable in
+ !$OMP DECLARE REDUCTION. */
+ unsigned omp_udr_artificial_var:1;
+
+ /* Mentioned in OMP DECLARE TARGET. */
+ unsigned omp_declare_target:1;
+
/* Attributes set by compiler extensions (!GCC$ ATTRIBUTES). */
unsigned ext_attr:EXT_ATTR_NUM;
@@ -1028,6 +1057,62 @@ gfc_namelist;
#define gfc_get_namelist() XCNEW (gfc_namelist)
+typedef enum
+{
+ OMP_REDUCTION_NONE = -1,
+ OMP_REDUCTION_PLUS = INTRINSIC_PLUS,
+ OMP_REDUCTION_MINUS = INTRINSIC_MINUS,
+ OMP_REDUCTION_TIMES = INTRINSIC_TIMES,
+ OMP_REDUCTION_AND = INTRINSIC_AND,
+ OMP_REDUCTION_OR = INTRINSIC_OR,
+ OMP_REDUCTION_EQV = INTRINSIC_EQV,
+ OMP_REDUCTION_NEQV = INTRINSIC_NEQV,
+ OMP_REDUCTION_MAX = GFC_INTRINSIC_END,
+ OMP_REDUCTION_MIN,
+ OMP_REDUCTION_IAND,
+ OMP_REDUCTION_IOR,
+ OMP_REDUCTION_IEOR,
+ OMP_REDUCTION_USER
+}
+gfc_omp_reduction_op;
+
+typedef enum
+{
+ OMP_DEPEND_IN,
+ OMP_DEPEND_OUT,
+ OMP_DEPEND_INOUT
+}
+gfc_omp_depend_op;
+
+typedef enum
+{
+ OMP_MAP_ALLOC,
+ OMP_MAP_TO,
+ OMP_MAP_FROM,
+ OMP_MAP_TOFROM
+}
+gfc_omp_map_op;
+
+/* For use in OpenMP clauses in case we need extra information
+ (aligned clause alignment, linear clause step, etc.). */
+
+typedef struct gfc_omp_namelist
+{
+ struct gfc_symbol *sym;
+ struct gfc_expr *expr;
+ union
+ {
+ gfc_omp_reduction_op reduction_op;
+ gfc_omp_depend_op depend_op;
+ gfc_omp_map_op map_op;
+ } u;
+ struct gfc_omp_namelist_udr *udr;
+ struct gfc_omp_namelist *next;
+}
+gfc_omp_namelist;
+
+#define gfc_get_omp_namelist() XCNEW (gfc_omp_namelist)
+
enum
{
OMP_LIST_PRIVATE,
@@ -1036,20 +1121,14 @@ enum
OMP_LIST_COPYPRIVATE,
OMP_LIST_SHARED,
OMP_LIST_COPYIN,
- OMP_LIST_PLUS,
- OMP_LIST_REDUCTION_FIRST = OMP_LIST_PLUS,
- OMP_LIST_MULT,
- OMP_LIST_SUB,
- OMP_LIST_AND,
- OMP_LIST_OR,
- OMP_LIST_EQV,
- OMP_LIST_NEQV,
- OMP_LIST_MAX,
- OMP_LIST_MIN,
- OMP_LIST_IAND,
- OMP_LIST_IOR,
- OMP_LIST_IEOR,
- OMP_LIST_REDUCTION_LAST = OMP_LIST_IEOR,
+ OMP_LIST_UNIFORM,
+ OMP_LIST_ALIGNED,
+ OMP_LIST_LINEAR,
+ OMP_LIST_DEPEND,
+ OMP_LIST_MAP,
+ OMP_LIST_TO,
+ OMP_LIST_FROM,
+ OMP_LIST_REDUCTION,
OMP_LIST_NUM
};
@@ -1075,23 +1154,93 @@ enum gfc_omp_default_sharing
OMP_DEFAULT_FIRSTPRIVATE
};
+enum gfc_omp_proc_bind_kind
+{
+ OMP_PROC_BIND_UNKNOWN,
+ OMP_PROC_BIND_MASTER,
+ OMP_PROC_BIND_SPREAD,
+ OMP_PROC_BIND_CLOSE
+};
+
+enum gfc_omp_cancel_kind
+{
+ OMP_CANCEL_UNKNOWN,
+ OMP_CANCEL_PARALLEL,
+ OMP_CANCEL_SECTIONS,
+ OMP_CANCEL_DO,
+ OMP_CANCEL_TASKGROUP
+};
+
typedef struct gfc_omp_clauses
{
struct gfc_expr *if_expr;
struct gfc_expr *final_expr;
struct gfc_expr *num_threads;
- gfc_namelist *lists[OMP_LIST_NUM];
+ gfc_omp_namelist *lists[OMP_LIST_NUM];
enum gfc_omp_sched_kind sched_kind;
struct gfc_expr *chunk_size;
enum gfc_omp_default_sharing default_sharing;
int collapse;
bool nowait, ordered, untied, mergeable;
+ bool inbranch, notinbranch;
+ enum gfc_omp_cancel_kind cancel;
+ enum gfc_omp_proc_bind_kind proc_bind;
+ struct gfc_expr *safelen_expr;
+ struct gfc_expr *simdlen_expr;
+ struct gfc_expr *num_teams;
+ struct gfc_expr *device;
+ struct gfc_expr *thread_limit;
+ enum gfc_omp_sched_kind dist_sched_kind;
+ struct gfc_expr *dist_chunk_size;
}
gfc_omp_clauses;
#define gfc_get_omp_clauses() XCNEW (gfc_omp_clauses)
+/* Node in the linked list used for storing !$omp declare simd constructs. */
+
+typedef struct gfc_omp_declare_simd
+{
+ struct gfc_omp_declare_simd *next;
+ locus where; /* Where the !$omp declare simd construct occurred. */
+
+ gfc_symbol *proc_name;
+
+ gfc_omp_clauses *clauses;
+}
+gfc_omp_declare_simd;
+#define gfc_get_omp_declare_simd() XCNEW (gfc_omp_declare_simd)
+
+typedef struct gfc_omp_udr
+{
+ struct gfc_omp_udr *next;
+ locus where; /* Where the !$omp declare reduction construct occurred. */
+
+ const char *name;
+ gfc_typespec ts;
+ gfc_omp_reduction_op rop;
+
+ struct gfc_symbol *omp_out;
+ struct gfc_symbol *omp_in;
+ struct gfc_namespace *combiner_ns;
+
+ struct gfc_symbol *omp_priv;
+ struct gfc_symbol *omp_orig;
+ struct gfc_namespace *initializer_ns;
+}
+gfc_omp_udr;
+#define gfc_get_omp_udr() XCNEW (gfc_omp_udr)
+
+typedef struct gfc_omp_namelist_udr
+{
+ struct gfc_omp_udr *udr;
+ struct gfc_code *combiner;
+ struct gfc_code *initializer;
+}
+gfc_omp_namelist_udr;
+#define gfc_get_omp_namelist_udr() XCNEW (gfc_omp_namelist_udr)
+
/* The gfc_st_label structure is a BBT attached to a namespace that
records the usage of statement labels within that space. */
@@ -1292,7 +1441,7 @@ struct gfc_undo_change_set
typedef struct gfc_common_head
{
locus where;
- char use_assoc, saved, threadprivate;
+ char use_assoc, saved, threadprivate, omp_declare_target;
char name[GFC_MAX_SYMBOL_LEN + 1];
struct gfc_symbol *head;
const char* binding_label;
@@ -1368,6 +1517,7 @@ typedef struct gfc_symtree
gfc_user_op *uop;
gfc_common_head *common;
gfc_typebound_proc *tb;
+ gfc_omp_udr *omp_udr;
}
n;
}
@@ -1398,6 +1548,8 @@ typedef struct gfc_namespace
gfc_symtree *uop_root;
/* Tree containing all the common blocks. */
gfc_symtree *common_root;
+ /* Tree containing all the OpenMP user defined reductions. */
+ gfc_symtree *omp_udr_root;
/* Tree containing type-bound procedures. */
gfc_symtree *tb_sym_root;
@@ -1464,6 +1616,9 @@ typedef struct gfc_namespace
/* A list of USE statements in this namespace. */
gfc_use_list *use_stmts;
+ /* Linked list of !$omp declare simd constructs. */
+ struct gfc_omp_declare_simd *omp_declare_simd;
+
/* Set to 1 if namespace is a BLOCK DATA program unit. */
unsigned is_block_data:1;
@@ -1480,6 +1635,9 @@ typedef struct gfc_namespace
/* Set to 1 if symbols in this namespace should be 'construct entities',
i.e. for BLOCK local variables. */
unsigned construct_entities:1;
+
+ /* Set to 1 for !$OMP DECLARE REDUCTION namespaces. */
+ unsigned omp_udr_ns:1;
}
gfc_namespace;
@@ -2111,16 +2269,31 @@ typedef enum
EXEC_OMP_SECTIONS, EXEC_OMP_SINGLE, EXEC_OMP_WORKSHARE,
EXEC_OMP_ATOMIC, EXEC_OMP_BARRIER, EXEC_OMP_END_NOWAIT,
EXEC_OMP_END_SINGLE, EXEC_OMP_TASK, EXEC_OMP_TASKWAIT,
- EXEC_OMP_TASKYIELD
+ EXEC_OMP_TASKYIELD, EXEC_OMP_CANCEL, EXEC_OMP_CANCELLATION_POINT,
+ EXEC_OMP_TASKGROUP, EXEC_OMP_SIMD, EXEC_OMP_DO_SIMD,
+ EXEC_OMP_PARALLEL_DO_SIMD, EXEC_OMP_TARGET, EXEC_OMP_TARGET_DATA,
+ EXEC_OMP_TEAMS, EXEC_OMP_DISTRIBUTE, EXEC_OMP_DISTRIBUTE_SIMD,
+ EXEC_OMP_DISTRIBUTE_PARALLEL_DO, EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD,
+ EXEC_OMP_TARGET_TEAMS, EXEC_OMP_TEAMS_DISTRIBUTE,
+ EXEC_OMP_TEAMS_DISTRIBUTE_SIMD, EXEC_OMP_TARGET_TEAMS_DISTRIBUTE,
+ EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD,
+ EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO,
+ EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO,
+ EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD,
+ EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD,
+ EXEC_OMP_TARGET_UPDATE
}
gfc_exec_op;
typedef enum
{
- GFC_OMP_ATOMIC_UPDATE,
- GFC_OMP_ATOMIC_READ,
- GFC_OMP_ATOMIC_WRITE,
- GFC_OMP_ATOMIC_CAPTURE
+ GFC_OMP_ATOMIC_UPDATE = 0,
+ GFC_OMP_ATOMIC_READ = 1,
+ GFC_OMP_ATOMIC_WRITE = 2,
+ GFC_OMP_ATOMIC_CAPTURE = 3,
+ GFC_OMP_ATOMIC_MASK = 3,
+ GFC_OMP_ATOMIC_SEQ_CST = 4,
+ GFC_OMP_ATOMIC_SWAP = 8
}
gfc_omp_atomic_op;
@@ -2172,7 +2345,7 @@ typedef struct gfc_code
gfc_entry_list *entry;
gfc_omp_clauses *omp_clauses;
const char *omp_name;
- gfc_namelist *omp_namelist;
+ gfc_omp_namelist *omp_namelist;
bool omp_bool;
gfc_omp_atomic_op omp_atomic;
}
@@ -2573,6 +2746,7 @@ bool gfc_add_protected (symbol_attribute *, const char *, locus *);
bool gfc_add_result (symbol_attribute *, const char *, locus *);
bool gfc_add_save (symbol_attribute *, save_state, const char *, locus *);
bool gfc_add_threadprivate (symbol_attribute *, const char *, locus *);
+bool gfc_add_omp_declare_target (symbol_attribute *, const char *, locus *);
bool gfc_add_saved_common (symbol_attribute *, locus *);
bool gfc_add_target (symbol_attribute *, locus *);
bool gfc_add_dummy (symbol_attribute *, const char *, locus *);
@@ -2728,6 +2902,7 @@ void gfc_free_iterator (gfc_iterator *, int);
void gfc_free_forall_iterator (gfc_forall_iterator *);
void gfc_free_alloc_list (gfc_alloc *);
void gfc_free_namelist (gfc_namelist *);
+void gfc_free_omp_namelist (gfc_omp_namelist *);
void gfc_free_equiv (gfc_equiv *);
void gfc_free_equiv_until (gfc_equiv *, gfc_equiv *);
void gfc_free_data (gfc_data *);
@@ -2739,10 +2914,16 @@ gfc_expr *gfc_get_parentheses (gfc_expr *);
/* openmp.c */
struct gfc_omp_saved_state { void *ptrs[2]; int ints[1]; };
void gfc_free_omp_clauses (gfc_omp_clauses *);
+void gfc_free_omp_declare_simd (gfc_omp_declare_simd *);
+void gfc_free_omp_declare_simd_list (gfc_omp_declare_simd *);
+void gfc_free_omp_udr (gfc_omp_udr *);
+gfc_omp_udr *gfc_omp_udr_find (gfc_symtree *, gfc_typespec *);
void gfc_resolve_omp_directive (gfc_code *, gfc_namespace *);
void gfc_resolve_do_iterator (gfc_code *, gfc_symbol *);
void gfc_resolve_omp_parallel_blocks (gfc_code *, gfc_namespace *);
void gfc_resolve_omp_do_blocks (gfc_code *, gfc_namespace *);
+void gfc_resolve_omp_declare_simd (gfc_namespace *);
+void gfc_resolve_omp_udrs (gfc_symtree *);
void gfc_omp_save_and_clear_state (struct gfc_omp_saved_state *);
void gfc_omp_restore_state (struct gfc_omp_saved_state *);
@@ -2833,6 +3014,7 @@ void gfc_free_association_list (gfc_association_list *);
/* resolve.c */
bool gfc_resolve_expr (gfc_expr *);
void gfc_resolve (gfc_namespace *);
+void gfc_resolve_code (gfc_code *, gfc_namespace *);
void gfc_resolve_blocks (gfc_code *, gfc_namespace *);
int gfc_impure_variable (gfc_symbol *);
int gfc_pure (gfc_symbol *);
@@ -3019,6 +3201,7 @@ void gfc_run_passes (gfc_namespace *);
typedef int (*walk_code_fn_t) (gfc_code **, int *, void *);
typedef int (*walk_expr_fn_t) (gfc_expr **, int *, void *);
+int gfc_dummy_code_callback (gfc_code **, int *, void *);
int gfc_expr_walker (gfc_expr **, walk_expr_fn_t, void *);
int gfc_code_walker (gfc_code **, walk_code_fn_t, walk_expr_fn_t, void *);
diff --git a/gcc-4.9/gcc/fortran/gfortran.info b/gcc-4.9/gcc/fortran/gfortran.info
deleted file mode 100644
index b894d0d0f..000000000
--- a/gcc-4.9/gcc/fortran/gfortran.info
+++ /dev/null
@@ -1,18449 +0,0 @@
-This is gfortran.info, produced by makeinfo version 5.1 from
-gfortran.texi.
-
-Copyright (C) 1999-2014 Free Software Foundation, Inc.
-
- Permission is granted to copy, distribute and/or modify this document
-under the terms of the GNU Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with the
-Invariant Sections being "Funding Free Software", the Front-Cover Texts
-being (a) (see below), and with the Back-Cover Texts being (b) (see
-below). A copy of the license is included in the section entitled "GNU
-Free Documentation License".
-
- (a) The FSF's Front-Cover Text is:
-
- A GNU Manual
-
- (b) The FSF's Back-Cover Text is:
-
- You have freedom to copy and modify this GNU Manual, like GNU
-software. Copies published by the Free Software Foundation raise funds
-for GNU development.
-INFO-DIR-SECTION Software development
-START-INFO-DIR-ENTRY
-* gfortran: (gfortran). The GNU Fortran Compiler.
-END-INFO-DIR-ENTRY
-
- This file documents the use and the internals of the GNU Fortran
-compiler, ('gfortran').
-
- Published by the Free Software Foundation 51 Franklin Street, Fifth
-Floor Boston, MA 02110-1301 USA
-
- Copyright (C) 1999-2014 Free Software Foundation, Inc.
-
- Permission is granted to copy, distribute and/or modify this document
-under the terms of the GNU Free Documentation License, Version 1.3 or
-any later version published by the Free Software Foundation; with the
-Invariant Sections being "Funding Free Software", the Front-Cover Texts
-being (a) (see below), and with the Back-Cover Texts being (b) (see
-below). A copy of the license is included in the section entitled "GNU
-Free Documentation License".
-
- (a) The FSF's Front-Cover Text is:
-
- A GNU Manual
-
- (b) The FSF's Back-Cover Text is:
-
- You have freedom to copy and modify this GNU Manual, like GNU
-software. Copies published by the Free Software Foundation raise funds
-for GNU development.
-
-
-File: gfortran.info, Node: Top, Next: Introduction, Up: (dir)
-
-Introduction
-************
-
-This manual documents the use of 'gfortran', the GNU Fortran compiler.
-You can find in this manual how to invoke 'gfortran', as well as its
-features and incompatibilities.
-
-* Menu:
-
-* Introduction::
-
-Part I: Invoking GNU Fortran
-* Invoking GNU Fortran:: Command options supported by 'gfortran'.
-* Runtime:: Influencing runtime behavior with environment variables.
-
-Part II: Language Reference
-* Fortran 2003 and 2008 status:: Fortran 2003 and 2008 features supported by GNU Fortran.
-* Compiler Characteristics:: User-visible implementation details.
-* Extensions:: Language extensions implemented by GNU Fortran.
-* Mixed-Language Programming:: Interoperability with C
-* Intrinsic Procedures:: Intrinsic procedures supported by GNU Fortran.
-* Intrinsic Modules:: Intrinsic modules supported by GNU Fortran.
-
-* Contributing:: How you can help.
-* Copying:: GNU General Public License says
- how you can copy and share GNU Fortran.
-* GNU Free Documentation License::
- How you can copy and share this manual.
-* Funding:: How to help assure continued work for free software.
-* Option Index:: Index of command line options
-* Keyword Index:: Index of concepts
-
-
-File: gfortran.info, Node: Introduction, Next: Invoking GNU Fortran, Prev: Top, Up: Top
-
-1 Introduction
-**************
-
-The GNU Fortran compiler front end was designed initially as a free
-replacement for, or alternative to, the Unix 'f95' command; 'gfortran'
-is the command you will use to invoke the compiler.
-
-* Menu:
-
-* About GNU Fortran:: What you should know about the GNU Fortran compiler.
-* GNU Fortran and GCC:: You can compile Fortran, C, or other programs.
-* Preprocessing and conditional compilation:: The Fortran preprocessor
-* GNU Fortran and G77:: Why we chose to start from scratch.
-* Project Status:: Status of GNU Fortran, roadmap, proposed extensions.
-* Standards:: Standards supported by GNU Fortran.
-
-
-File: gfortran.info, Node: About GNU Fortran, Next: GNU Fortran and GCC, Up: Introduction
-
-1.1 About GNU Fortran
-=====================
-
-The GNU Fortran compiler supports the Fortran 77, 90 and 95 standards
-completely, parts of the Fortran 2003 and Fortran 2008 standards, and
-several vendor extensions. The development goal is to provide the
-following features:
-
- * Read a user's program, stored in a file and containing instructions
- written in Fortran 77, Fortran 90, Fortran 95, Fortran 2003 or
- Fortran 2008. This file contains "source code".
-
- * Translate the user's program into instructions a computer can carry
- out more quickly than it takes to translate the instructions in the
- first place. The result after compilation of a program is "machine
- code", code designed to be efficiently translated and processed by
- a machine such as your computer. Humans usually are not as good
- writing machine code as they are at writing Fortran (or C++, Ada,
- or Java), because it is easy to make tiny mistakes writing machine
- code.
-
- * Provide the user with information about the reasons why the
- compiler is unable to create a binary from the source code.
- Usually this will be the case if the source code is flawed. The
- Fortran 90 standard requires that the compiler can point out
- mistakes to the user. An incorrect usage of the language causes an
- "error message".
-
- The compiler will also attempt to diagnose cases where the user's
- program contains a correct usage of the language, but instructs the
- computer to do something questionable. This kind of diagnostics
- message is called a "warning message".
-
- * Provide optional information about the translation passes from the
- source code to machine code. This can help a user of the compiler
- to find the cause of certain bugs which may not be obvious in the
- source code, but may be more easily found at a lower level compiler
- output. It also helps developers to find bugs in the compiler
- itself.
-
- * Provide information in the generated machine code that can make it
- easier to find bugs in the program (using a debugging tool, called
- a "debugger", such as the GNU Debugger 'gdb').
-
- * Locate and gather machine code already generated to perform actions
- requested by statements in the user's program. This machine code
- is organized into "modules" and is located and "linked" to the user
- program.
-
- The GNU Fortran compiler consists of several components:
-
- * A version of the 'gcc' command (which also might be installed as
- the system's 'cc' command) that also understands and accepts
- Fortran source code. The 'gcc' command is the "driver" program for
- all the languages in the GNU Compiler Collection (GCC); With 'gcc',
- you can compile the source code of any language for which a front
- end is available in GCC.
-
- * The 'gfortran' command itself, which also might be installed as the
- system's 'f95' command. 'gfortran' is just another driver program,
- but specifically for the Fortran compiler only. The difference
- with 'gcc' is that 'gfortran' will automatically link the correct
- libraries to your program.
-
- * A collection of run-time libraries. These libraries contain the
- machine code needed to support capabilities of the Fortran language
- that are not directly provided by the machine code generated by the
- 'gfortran' compilation phase, such as intrinsic functions and
- subroutines, and routines for interaction with files and the
- operating system.
-
- * The Fortran compiler itself, ('f951'). This is the GNU Fortran
- parser and code generator, linked to and interfaced with the GCC
- backend library. 'f951' "translates" the source code to assembler
- code. You would typically not use this program directly; instead,
- the 'gcc' or 'gfortran' driver programs will call it for you.
-
-
-File: gfortran.info, Node: GNU Fortran and GCC, Next: Preprocessing and conditional compilation, Prev: About GNU Fortran, Up: Introduction
-
-1.2 GNU Fortran and GCC
-=======================
-
-GNU Fortran is a part of GCC, the "GNU Compiler Collection". GCC
-consists of a collection of front ends for various languages, which
-translate the source code into a language-independent form called
-"GENERIC". This is then processed by a common middle end which provides
-optimization, and then passed to one of a collection of back ends which
-generate code for different computer architectures and operating
-systems.
-
- Functionally, this is implemented with a driver program ('gcc') which
-provides the command-line interface for the compiler. It calls the
-relevant compiler front-end program (e.g., 'f951' for Fortran) for each
-file in the source code, and then calls the assembler and linker as
-appropriate to produce the compiled output. In a copy of GCC which has
-been compiled with Fortran language support enabled, 'gcc' will
-recognize files with '.f', '.for', '.ftn', '.f90', '.f95', '.f03' and
-'.f08' extensions as Fortran source code, and compile it accordingly. A
-'gfortran' driver program is also provided, which is identical to 'gcc'
-except that it automatically links the Fortran runtime libraries into
-the compiled program.
-
- Source files with '.f', '.for', '.fpp', '.ftn', '.F', '.FOR', '.FPP',
-and '.FTN' extensions are treated as fixed form. Source files with
-'.f90', '.f95', '.f03', '.f08', '.F90', '.F95', '.F03' and '.F08'
-extensions are treated as free form. The capitalized versions of either
-form are run through preprocessing. Source files with the lower case
-'.fpp' extension are also run through preprocessing.
-
- This manual specifically documents the Fortran front end, which
-handles the programming language's syntax and semantics. The aspects of
-GCC which relate to the optimization passes and the back-end code
-generation are documented in the GCC manual; see *note Introduction:
-(gcc)Top. The two manuals together provide a complete reference for the
-GNU Fortran compiler.
-
-
-File: gfortran.info, Node: Preprocessing and conditional compilation, Next: GNU Fortran and G77, Prev: GNU Fortran and GCC, Up: Introduction
-
-1.3 Preprocessing and conditional compilation
-=============================================
-
-Many Fortran compilers including GNU Fortran allow passing the source
-code through a C preprocessor (CPP; sometimes also called the Fortran
-preprocessor, FPP) to allow for conditional compilation. In the case of
-GNU Fortran, this is the GNU C Preprocessor in the traditional mode. On
-systems with case-preserving file names, the preprocessor is
-automatically invoked if the filename extension is '.F', '.FOR', '.FTN',
-'.fpp', '.FPP', '.F90', '.F95', '.F03' or '.F08'. To manually invoke
-the preprocessor on any file, use '-cpp', to disable preprocessing on
-files where the preprocessor is run automatically, use '-nocpp'.
-
- If a preprocessed file includes another file with the Fortran
-'INCLUDE' statement, the included file is not preprocessed. To
-preprocess included files, use the equivalent preprocessor statement
-'#include'.
-
- If GNU Fortran invokes the preprocessor, '__GFORTRAN__' is defined
-and '__GNUC__', '__GNUC_MINOR__' and '__GNUC_PATCHLEVEL__' can be used
-to determine the version of the compiler. See *note Overview: (cpp)Top.
-for details.
-
- While CPP is the de-facto standard for preprocessing Fortran code,
-Part 3 of the Fortran 95 standard (ISO/IEC 1539-3:1998) defines
-Conditional Compilation, which is not widely used and not directly
-supported by the GNU Fortran compiler. You can use the program coco to
-preprocess such files (<http://www.daniellnagle.com/coco.html>).
-
-
-File: gfortran.info, Node: GNU Fortran and G77, Next: Project Status, Prev: Preprocessing and conditional compilation, Up: Introduction
-
-1.4 GNU Fortran and G77
-=======================
-
-The GNU Fortran compiler is the successor to 'g77', the Fortran 77 front
-end included in GCC prior to version 4. It is an entirely new program
-that has been designed to provide Fortran 95 support and extensibility
-for future Fortran language standards, as well as providing backwards
-compatibility for Fortran 77 and nearly all of the GNU language
-extensions supported by 'g77'.
-
-
-File: gfortran.info, Node: Project Status, Next: Standards, Prev: GNU Fortran and G77, Up: Introduction
-
-1.5 Project Status
-==================
-
- As soon as 'gfortran' can parse all of the statements correctly, it
- will be in the "larva" state. When we generate code, the "puppa"
- state. When 'gfortran' is done, we'll see if it will be a
- beautiful butterfly, or just a big bug....
-
- -Andy Vaught, April 2000
-
- The start of the GNU Fortran 95 project was announced on the GCC
-homepage in March 18, 2000 (even though Andy had already been working on
-it for a while, of course).
-
- The GNU Fortran compiler is able to compile nearly all
-standard-compliant Fortran 95, Fortran 90, and Fortran 77 programs,
-including a number of standard and non-standard extensions, and can be
-used on real-world programs. In particular, the supported extensions
-include OpenMP, Cray-style pointers, and several Fortran 2003 and
-Fortran 2008 features, including TR 15581. However, it is still under
-development and has a few remaining rough edges.
-
- At present, the GNU Fortran compiler passes the NIST Fortran 77 Test
-Suite (http://www.fortran-2000.com/ArnaudRecipes/fcvs21_f95.html), and
-produces acceptable results on the LAPACK Test Suite
-(http://www.netlib.org/lapack/faq.html#1.21). It also provides
-respectable performance on the Polyhedron Fortran compiler benchmarks
-(http://www.polyhedron.com/pb05.html) and the Livermore Fortran Kernels
-test (http://www.llnl.gov/asci_benchmarks/asci/limited/lfk/README.html).
-It has been used to compile a number of large real-world programs,
-including the HIRLAM weather-forecasting code
-(http://mysite.verizon.net/serveall/moene.pdf) and the Tonto quantum
-chemistry package (http://www.theochem.uwa.edu.au/tonto/); see
-<http://gcc.gnu.org/wiki/GfortranApps> for an extended list.
-
- Among other things, the GNU Fortran compiler is intended as a
-replacement for G77. At this point, nearly all programs that could be
-compiled with G77 can be compiled with GNU Fortran, although there are a
-few minor known regressions.
-
- The primary work remaining to be done on GNU Fortran falls into three
-categories: bug fixing (primarily regarding the treatment of invalid
-code and providing useful error messages), improving the compiler
-optimizations and the performance of compiled code, and extending the
-compiler to support future standards--in particular, Fortran 2003 and
-Fortran 2008.
-
-
-File: gfortran.info, Node: Standards, Prev: Project Status, Up: Introduction
-
-1.6 Standards
-=============
-
-* Menu:
-
-* Varying Length Character Strings::
-
-The GNU Fortran compiler implements ISO/IEC 1539:1997 (Fortran 95). As
-such, it can also compile essentially all standard-compliant Fortran 90
-and Fortran 77 programs. It also supports the ISO/IEC TR-15581
-enhancements to allocatable arrays.
-
- GNU Fortran also have a partial support for ISO/IEC 1539-1:2004
-(Fortran 2003), ISO/IEC 1539-1:2010 (Fortran 2008), the Technical
-Specification 'Further Interoperability of Fortran with C' (ISO/IEC TS
-29113:2012). Full support of those standards and future Fortran
-standards is planned. The current status of the support is can be found
-in the *note Fortran 2003 status::, *note Fortran 2008 status:: and
-*note TS 29113 status:: sections of the documentation.
-
- Additionally, the GNU Fortran compilers supports the OpenMP
-specification (version 3.1,
-<http://openmp.org/wp/openmp-specifications/>).
-
-
-File: gfortran.info, Node: Varying Length Character Strings, Up: Standards
-
-1.6.1 Varying Length Character Strings
---------------------------------------
-
-The Fortran 95 standard specifies in Part 2 (ISO/IEC 1539-2:2000)
-varying length character strings. While GNU Fortran currently does not
-support such strings directly, there exist two Fortran implementations
-for them, which work with GNU Fortran. They can be found at
-<http://www.fortran.com/iso_varying_string.f95> and at
-<ftp://ftp.nag.co.uk/sc22wg5/ISO_VARYING_STRING/>.
-
- Deferred-length character strings of Fortran 2003 supports part of
-the features of 'ISO_VARYING_STRING' and should be considered as
-replacement. (Namely, allocatable or pointers of the type
-'character(len=:)'.)
-
-
-File: gfortran.info, Node: Invoking GNU Fortran, Next: Runtime, Prev: Introduction, Up: Top
-
-2 GNU Fortran Command Options
-*****************************
-
-The 'gfortran' command supports all the options supported by the 'gcc'
-command. Only options specific to GNU Fortran are documented here.
-
- *Note GCC Command Options: (gcc)Invoking GCC, for information on the
-non-Fortran-specific aspects of the 'gcc' command (and, therefore, the
-'gfortran' command).
-
- All GCC and GNU Fortran options are accepted both by 'gfortran' and
-by 'gcc' (as well as any other drivers built at the same time, such as
-'g++'), since adding GNU Fortran to the GCC distribution enables
-acceptance of GNU Fortran options by all of the relevant drivers.
-
- In some cases, options have positive and negative forms; the negative
-form of '-ffoo' would be '-fno-foo'. This manual documents only one of
-these two forms, whichever one is not the default.
-
-* Menu:
-
-* Option Summary:: Brief list of all 'gfortran' options,
- without explanations.
-* Fortran Dialect Options:: Controlling the variant of Fortran language
- compiled.
-* Preprocessing Options:: Enable and customize preprocessing.
-* Error and Warning Options:: How picky should the compiler be?
-* Debugging Options:: Symbol tables, measurements, and debugging dumps.
-* Directory Options:: Where to find module files
-* Link Options :: Influencing the linking step
-* Runtime Options:: Influencing runtime behavior
-* Code Gen Options:: Specifying conventions for function calls, data layout
- and register usage.
-* Environment Variables:: Environment variables that affect 'gfortran'.
-
-
-File: gfortran.info, Node: Option Summary, Next: Fortran Dialect Options, Up: Invoking GNU Fortran
-
-2.1 Option summary
-==================
-
-Here is a summary of all the options specific to GNU Fortran, grouped by
-type. Explanations are in the following sections.
-
-_Fortran Language Options_
- *Note Options controlling Fortran dialect: Fortran Dialect Options.
- -fall-intrinsics -fbackslash -fcray-pointer -fd-lines-as-code
- -fd-lines-as-comments -fdefault-double-8 -fdefault-integer-8
- -fdefault-real-8 -fdollar-ok -ffixed-line-length-N
- -ffixed-line-length-none -ffree-form -ffree-line-length-N
- -ffree-line-length-none -fimplicit-none -finteger-4-integer-8
- -fmax-identifier-length -fmodule-private -fno-fixed-form -fno-range-check
- -fopenmp -freal-4-real-10 -freal-4-real-16 -freal-4-real-8
- -freal-8-real-10 -freal-8-real-16 -freal-8-real-4 -std=STD
-
-_Preprocessing Options_
- *Note Enable and customize preprocessing: Preprocessing Options.
- -A-QUESTION[=ANSWER]
- -AQUESTION=ANSWER -C -CC -DMACRO[=DEFN]
- -H -P
- -UMACRO -cpp -dD -dI -dM -dN -dU -fworking-directory
- -imultilib DIR
- -iprefix FILE -iquote -isysroot DIR -isystem DIR -nocpp
- -nostdinc
- -undef
-
-_Error and Warning Options_
- *Note Options to request or suppress errors and warnings: Error and
- Warning Options.
- -Waliasing -Wall -Wampersand -Warray-bounds
- -Wc-binding-type -Wcharacter-truncation
- -Wconversion -Wfunction-elimination -Wimplicit-interface
- -Wimplicit-procedure -Wintrinsic-shadow -Wintrinsics-std
- -Wline-truncation -Wno-align-commons -Wno-tabs -Wreal-q-constant
- -Wsurprising -Wunderflow -Wunused-parameter -Wrealloc-lhs -Wrealloc-lhs-all
- -Wtarget-lifetime -fmax-errors=N -fsyntax-only -pedantic -pedantic-errors
-
-_Debugging Options_
- *Note Options for debugging your program or GNU Fortran: Debugging
- Options.
- -fbacktrace -fdump-fortran-optimized -fdump-fortran-original
- -fdump-parse-tree -ffpe-trap=LIST -ffpe-summary=LIST
-
-_Directory Options_
- *Note Options for directory search: Directory Options.
- -IDIR -JDIR -fintrinsic-modules-path DIR
-
-_Link Options_
- *Note Options for influencing the linking step: Link Options.
- -static-libgfortran
-
-_Runtime Options_
- *Note Options for influencing runtime behavior: Runtime Options.
- -fconvert=CONVERSION -fmax-subrecord-length=LENGTH
- -frecord-marker=LENGTH -fsign-zero
-
-_Code Generation Options_
- *Note Options for code generation conventions: Code Gen Options.
- -faggressive-function-elimination -fblas-matmul-limit=N
- -fbounds-check -fcheck-array-temporaries
- -fcheck=<ALL|ARRAY-TEMPS|BOUNDS|DO|MEM|POINTER|RECURSION>
- -fcoarray=<NONE|SINGLE|LIB> -fexternal-blas -ff2c
- -ffrontend-optimize
- -finit-character=N -finit-integer=N -finit-local-zero
- -finit-logical=<TRUE|FALSE>
- -finit-real=<ZERO|INF|-INF|NAN|SNAN>
- -fmax-array-constructor=N -fmax-stack-var-size=N
- -fno-align-commons
- -fno-automatic -fno-protect-parens -fno-underscoring
- -fsecond-underscore -fpack-derived -frealloc-lhs -frecursive
- -frepack-arrays -fshort-enums -fstack-arrays
-
-
-File: gfortran.info, Node: Fortran Dialect Options, Next: Preprocessing Options, Prev: Option Summary, Up: Invoking GNU Fortran
-
-2.2 Options controlling Fortran dialect
-=======================================
-
-The following options control the details of the Fortran dialect
-accepted by the compiler:
-
-'-ffree-form'
-'-ffixed-form'
- Specify the layout used by the source file. The free form layout
- was introduced in Fortran 90. Fixed form was traditionally used in
- older Fortran programs. When neither option is specified, the
- source form is determined by the file extension.
-
-'-fall-intrinsics'
- This option causes all intrinsic procedures (including the
- GNU-specific extensions) to be accepted. This can be useful with
- '-std=f95' to force standard-compliance but get access to the full
- range of intrinsics available with 'gfortran'. As a consequence,
- '-Wintrinsics-std' will be ignored and no user-defined procedure
- with the same name as any intrinsic will be called except when it
- is explicitly declared 'EXTERNAL'.
-
-'-fd-lines-as-code'
-'-fd-lines-as-comments'
- Enable special treatment for lines beginning with 'd' or 'D' in
- fixed form sources. If the '-fd-lines-as-code' option is given
- they are treated as if the first column contained a blank. If the
- '-fd-lines-as-comments' option is given, they are treated as
- comment lines.
-
-'-fdollar-ok'
- Allow '$' as a valid non-first character in a symbol name. Symbols
- that start with '$' are rejected since it is unclear which rules to
- apply to implicit typing as different vendors implement different
- rules. Using '$' in 'IMPLICIT' statements is also rejected.
-
-'-fbackslash'
- Change the interpretation of backslashes in string literals from a
- single backslash character to "C-style" escape characters. The
- following combinations are expanded '\a', '\b', '\f', '\n', '\r',
- '\t', '\v', '\\', and '\0' to the ASCII characters alert,
- backspace, form feed, newline, carriage return, horizontal tab,
- vertical tab, backslash, and NUL, respectively. Additionally,
- '\x'NN, '\u'NNNN and '\U'NNNNNNNN (where each N is a hexadecimal
- digit) are translated into the Unicode characters corresponding to
- the specified code points. All other combinations of a character
- preceded by \ are unexpanded.
-
-'-fmodule-private'
- Set the default accessibility of module entities to 'PRIVATE'.
- Use-associated entities will not be accessible unless they are
- explicitly declared as 'PUBLIC'.
-
-'-ffixed-line-length-N'
- Set column after which characters are ignored in typical fixed-form
- lines in the source file, and through which spaces are assumed (as
- if padded to that length) after the ends of short fixed-form lines.
-
- Popular values for N include 72 (the standard and the default), 80
- (card image), and 132 (corresponding to "extended-source" options
- in some popular compilers). N may also be 'none', meaning that the
- entire line is meaningful and that continued character constants
- never have implicit spaces appended to them to fill out the line.
- '-ffixed-line-length-0' means the same thing as
- '-ffixed-line-length-none'.
-
-'-ffree-line-length-N'
- Set column after which characters are ignored in typical free-form
- lines in the source file. The default value is 132. N may be
- 'none', meaning that the entire line is meaningful.
- '-ffree-line-length-0' means the same thing as
- '-ffree-line-length-none'.
-
-'-fmax-identifier-length=N'
- Specify the maximum allowed identifier length. Typical values are
- 31 (Fortran 95) and 63 (Fortran 2003 and Fortran 2008).
-
-'-fimplicit-none'
- Specify that no implicit typing is allowed, unless overridden by
- explicit 'IMPLICIT' statements. This is the equivalent of adding
- 'implicit none' to the start of every procedure.
-
-'-fcray-pointer'
- Enable the Cray pointer extension, which provides C-like pointer
- functionality.
-
-'-fopenmp'
- Enable the OpenMP extensions. This includes OpenMP '!$omp'
- directives in free form and 'c$omp', '*$omp' and '!$omp' directives
- in fixed form, '!$' conditional compilation sentinels in free form
- and 'c$', '*$' and '!$' sentinels in fixed form, and when linking
- arranges for the OpenMP runtime library to be linked in. The
- option '-fopenmp' implies '-frecursive'.
-
-'-fno-range-check'
- Disable range checking on results of simplification of constant
- expressions during compilation. For example, GNU Fortran will give
- an error at compile time when simplifying 'a = 1. / 0'. With this
- option, no error will be given and 'a' will be assigned the value
- '+Infinity'. If an expression evaluates to a value outside of the
- relevant range of ['-HUGE()':'HUGE()'], then the expression will be
- replaced by '-Inf' or '+Inf' as appropriate. Similarly, 'DATA
- i/Z'FFFFFFFF'/' will result in an integer overflow on most systems,
- but with '-fno-range-check' the value will "wrap around" and 'i'
- will be initialized to -1 instead.
-
-'-fdefault-integer-8'
- Set the default integer and logical types to an 8 byte wide type.
- This option also affects the kind of integer constants like '42'.
- Unlike '-finteger-4-integer-8', it does not promote variables with
- explicit kind declaration.
-
-'-fdefault-real-8'
- Set the default real type to an 8 byte wide type. This option also
- affects the kind of non-double real constants like '1.0', and does
- promote the default width of 'DOUBLE PRECISION' to 16 bytes if
- possible, unless '-fdefault-double-8' is given, too. Unlike
- '-freal-4-real-8', it does not promote variables with explicit kind
- declaration.
-
-'-fdefault-double-8'
- Set the 'DOUBLE PRECISION' type to an 8 byte wide type. Do nothing
- if this is already the default. If '-fdefault-real-8' is given,
- 'DOUBLE PRECISION' would instead be promoted to 16 bytes if
- possible, and '-fdefault-double-8' can be used to prevent this.
- The kind of real constants like '1.d0' will not be changed by
- '-fdefault-real-8' though, so also '-fdefault-double-8' does not
- affect it.
-
-'-finteger-4-integer-8'
- Promote all 'INTEGER(KIND=4)' entities to an 'INTEGER(KIND=8)'
- entities. If 'KIND=8' is unavailable, then an error will be
- issued. This option should be used with care and may not be
- suitable for your codes. Areas of possible concern include calls
- to external procedures, alignment in 'EQUIVALENCE' and/or 'COMMON',
- generic interfaces, BOZ literal constant conversion, and I/O.
- Inspection of the intermediate representation of the translated
- Fortran code, produced by '-fdump-tree-original', is suggested.
-
-'-freal-4-real-8'
-'-freal-4-real-10'
-'-freal-4-real-16'
-'-freal-8-real-4'
-'-freal-8-real-10'
-'-freal-8-real-16'
- Promote all 'REAL(KIND=M)' entities to 'REAL(KIND=N)' entities. If
- 'REAL(KIND=N)' is unavailable, then an error will be issued. All
- other real kind types are unaffected by this option. These options
- should be used with care and may not be suitable for your codes.
- Areas of possible concern include calls to external procedures,
- alignment in 'EQUIVALENCE' and/or 'COMMON', generic interfaces, BOZ
- literal constant conversion, and I/O. Inspection of the
- intermediate representation of the translated Fortran code,
- produced by '-fdump-tree-original', is suggested.
-
-'-std=STD'
- Specify the standard to which the program is expected to conform,
- which may be one of 'f95', 'f2003', 'f2008', 'gnu', or 'legacy'.
- The default value for STD is 'gnu', which specifies a superset of
- the Fortran 95 standard that includes all of the extensions
- supported by GNU Fortran, although warnings will be given for
- obsolete extensions not recommended for use in new code. The
- 'legacy' value is equivalent but without the warnings for obsolete
- extensions, and may be useful for old non-standard programs. The
- 'f95', 'f2003' and 'f2008' values specify strict conformance to the
- Fortran 95, Fortran 2003 and Fortran 2008 standards, respectively;
- errors are given for all extensions beyond the relevant language
- standard, and warnings are given for the Fortran 77 features that
- are permitted but obsolescent in later standards. '-std=f2008ts'
- allows the Fortran 2008 standard including the additions of the
- Technical Specification (TS) 29113 on Further Interoperability of
- Fortran with C.
-
-
-File: gfortran.info, Node: Preprocessing Options, Next: Error and Warning Options, Prev: Fortran Dialect Options, Up: Invoking GNU Fortran
-
-2.3 Enable and customize preprocessing
-======================================
-
-Preprocessor related options. See section *note Preprocessing and
-conditional compilation:: for more detailed information on preprocessing
-in 'gfortran'.
-
-'-cpp'
-'-nocpp'
- Enable preprocessing. The preprocessor is automatically invoked if
- the file extension is '.fpp', '.FPP', '.F', '.FOR', '.FTN', '.F90',
- '.F95', '.F03' or '.F08'. Use this option to manually enable
- preprocessing of any kind of Fortran file.
-
- To disable preprocessing of files with any of the above listed
- extensions, use the negative form: '-nocpp'.
-
- The preprocessor is run in traditional mode. Any restrictions of
- the file-format, especially the limits on line length, apply for
- preprocessed output as well, so it might be advisable to use the
- '-ffree-line-length-none' or '-ffixed-line-length-none' options.
-
-'-dM'
- Instead of the normal output, generate a list of ''#define''
- directives for all the macros defined during the execution of the
- preprocessor, including predefined macros. This gives you a way of
- finding out what is predefined in your version of the preprocessor.
- Assuming you have no file 'foo.f90', the command
- touch foo.f90; gfortran -cpp -E -dM foo.f90
- will show all the predefined macros.
-
-'-dD'
- Like '-dM' except in two respects: it does not include the
- predefined macros, and it outputs both the '#define' directives and
- the result of preprocessing. Both kinds of output go to the
- standard output file.
-
-'-dN'
- Like '-dD', but emit only the macro names, not their expansions.
-
-'-dU'
- Like 'dD' except that only macros that are expanded, or whose
- definedness is tested in preprocessor directives, are output; the
- output is delayed until the use or test of the macro; and
- ''#undef'' directives are also output for macros tested but
- undefined at the time.
-
-'-dI'
- Output ''#include'' directives in addition to the result of
- preprocessing.
-
-'-fworking-directory'
- Enable generation of linemarkers in the preprocessor output that
- will let the compiler know the current working directory at the
- time of preprocessing. When this option is enabled, the
- preprocessor will emit, after the initial linemarker, a second
- linemarker with the current working directory followed by two
- slashes. GCC will use this directory, when it is present in the
- preprocessed input, as the directory emitted as the current working
- directory in some debugging information formats. This option is
- implicitly enabled if debugging information is enabled, but this
- can be inhibited with the negated form '-fno-working-directory'.
- If the '-P' flag is present in the command line, this option has no
- effect, since no '#line' directives are emitted whatsoever.
-
-'-idirafter DIR'
- Search DIR for include files, but do it after all directories
- specified with '-I' and the standard system directories have been
- exhausted. DIR is treated as a system include directory. If dir
- begins with '=', then the '=' will be replaced by the sysroot
- prefix; see '--sysroot' and '-isysroot'.
-
-'-imultilib DIR'
- Use DIR as a subdirectory of the directory containing
- target-specific C++ headers.
-
-'-iprefix PREFIX'
- Specify PREFIX as the prefix for subsequent '-iwithprefix' options.
- If the PREFIX represents a directory, you should include the final
- ''/''.
-
-'-isysroot DIR'
- This option is like the '--sysroot' option, but applies only to
- header files. See the '--sysroot' option for more information.
-
-'-iquote DIR'
- Search DIR only for header files requested with '#include "file"';
- they are not searched for '#include <file>', before all directories
- specified by '-I' and before the standard system directories. If
- DIR begins with '=', then the '=' will be replaced by the sysroot
- prefix; see '--sysroot' and '-isysroot'.
-
-'-isystem DIR'
- Search DIR for header files, after all directories specified by
- '-I' but before the standard system directories. Mark it as a
- system directory, so that it gets the same special treatment as is
- applied to the standard system directories. If DIR begins with
- '=', then the '=' will be replaced by the sysroot prefix; see
- '--sysroot' and '-isysroot'.
-
-'-nostdinc'
- Do not search the standard system directories for header files.
- Only the directories you have specified with '-I' options (and the
- directory of the current file, if appropriate) are searched.
-
-'-undef'
- Do not predefine any system-specific or GCC-specific macros. The
- standard predefined macros remain defined.
-
-'-APREDICATE=ANSWER'
- Make an assertion with the predicate PREDICATE and answer ANSWER.
- This form is preferred to the older form -A predicate(answer),
- which is still supported, because it does not use shell special
- characters.
-
-'-A-PREDICATE=ANSWER'
- Cancel an assertion with the predicate PREDICATE and answer ANSWER.
-
-'-C'
- Do not discard comments. All comments are passed through to the
- output file, except for comments in processed directives, which are
- deleted along with the directive.
-
- You should be prepared for side effects when using '-C'; it causes
- the preprocessor to treat comments as tokens in their own right.
- For example, comments appearing at the start of what would be a
- directive line have the effect of turning that line into an
- ordinary source line, since the first token on the line is no
- longer a ''#''.
-
- Warning: this currently handles C-Style comments only. The
- preprocessor does not yet recognize Fortran-style comments.
-
-'-CC'
- Do not discard comments, including during macro expansion. This is
- like '-C', except that comments contained within macros are also
- passed through to the output file where the macro is expanded.
-
- In addition to the side-effects of the '-C' option, the '-CC'
- option causes all C++-style comments inside a macro to be converted
- to C-style comments. This is to prevent later use of that macro
- from inadvertently commenting out the remainder of the source line.
- The '-CC' option is generally used to support lint comments.
-
- Warning: this currently handles C- and C++-Style comments only.
- The preprocessor does not yet recognize Fortran-style comments.
-
-'-DNAME'
- Predefine name as a macro, with definition '1'.
-
-'-DNAME=DEFINITION'
- The contents of DEFINITION are tokenized and processed as if they
- appeared during translation phase three in a ''#define'' directive.
- In particular, the definition will be truncated by embedded newline
- characters.
-
- If you are invoking the preprocessor from a shell or shell-like
- program you may need to use the shell's quoting syntax to protect
- characters such as spaces that have a meaning in the shell syntax.
-
- If you wish to define a function-like macro on the command line,
- write its argument list with surrounding parentheses before the
- equals sign (if any). Parentheses are meaningful to most shells,
- so you will need to quote the option. With sh and csh,
- '-D'name(args...)=definition'' works.
-
- '-D' and '-U' options are processed in the order they are given on
- the command line. All -imacros file and -include file options are
- processed after all -D and -U options.
-
-'-H'
- Print the name of each header file used, in addition to other
- normal activities. Each name is indented to show how deep in the
- ''#include'' stack it is.
-
-'-P'
- Inhibit generation of linemarkers in the output from the
- preprocessor. This might be useful when running the preprocessor
- on something that is not C code, and will be sent to a program
- which might be confused by the linemarkers.
-
-'-UNAME'
- Cancel any previous definition of NAME, either built in or provided
- with a '-D' option.
-
-
-File: gfortran.info, Node: Error and Warning Options, Next: Debugging Options, Prev: Preprocessing Options, Up: Invoking GNU Fortran
-
-2.4 Options to request or suppress errors and warnings
-======================================================
-
-Errors are diagnostic messages that report that the GNU Fortran compiler
-cannot compile the relevant piece of source code. The compiler will
-continue to process the program in an attempt to report further errors
-to aid in debugging, but will not produce any compiled output.
-
- Warnings are diagnostic messages that report constructions which are
-not inherently erroneous but which are risky or suggest there is likely
-to be a bug in the program. Unless '-Werror' is specified, they do not
-prevent compilation of the program.
-
- You can request many specific warnings with options beginning '-W',
-for example '-Wimplicit' to request warnings on implicit declarations.
-Each of these specific warning options also has a negative form
-beginning '-Wno-' to turn off warnings; for example, '-Wno-implicit'.
-This manual lists only one of the two forms, whichever is not the
-default.
-
- These options control the amount and kinds of errors and warnings
-produced by GNU Fortran:
-
-'-fmax-errors=N'
- Limits the maximum number of error messages to N, at which point
- GNU Fortran bails out rather than attempting to continue processing
- the source code. If N is 0, there is no limit on the number of
- error messages produced.
-
-'-fsyntax-only'
- Check the code for syntax errors, but do not actually compile it.
- This will generate module files for each module present in the
- code, but no other output file.
-
-'-pedantic'
- Issue warnings for uses of extensions to Fortran 95. '-pedantic'
- also applies to C-language constructs where they occur in GNU
- Fortran source files, such as use of '\e' in a character constant
- within a directive like '#include'.
-
- Valid Fortran 95 programs should compile properly with or without
- this option. However, without this option, certain GNU extensions
- and traditional Fortran features are supported as well. With this
- option, many of them are rejected.
-
- Some users try to use '-pedantic' to check programs for
- conformance. They soon find that it does not do quite what they
- want--it finds some nonstandard practices, but not all. However,
- improvements to GNU Fortran in this area are welcome.
-
- This should be used in conjunction with '-std=f95', '-std=f2003' or
- '-std=f2008'.
-
-'-pedantic-errors'
- Like '-pedantic', except that errors are produced rather than
- warnings.
-
-'-Wall'
- Enables commonly used warning options pertaining to usage that we
- recommend avoiding and that we believe are easy to avoid. This
- currently includes '-Waliasing', '-Wampersand', '-Wconversion',
- '-Wsurprising', '-Wc-binding-type', '-Wintrinsics-std',
- '-Wno-tabs', '-Wintrinsic-shadow', '-Wline-truncation',
- '-Wtarget-lifetime', '-Wreal-q-constant' and '-Wunused'.
-
-'-Waliasing'
- Warn about possible aliasing of dummy arguments. Specifically, it
- warns if the same actual argument is associated with a dummy
- argument with 'INTENT(IN)' and a dummy argument with 'INTENT(OUT)'
- in a call with an explicit interface.
-
- The following example will trigger the warning.
- interface
- subroutine bar(a,b)
- integer, intent(in) :: a
- integer, intent(out) :: b
- end subroutine
- end interface
- integer :: a
-
- call bar(a,a)
-
-'-Wampersand'
- Warn about missing ampersand in continued character constants. The
- warning is given with '-Wampersand', '-pedantic', '-std=f95',
- '-std=f2003' and '-std=f2008'. Note: With no ampersand given in a
- continued character constant, GNU Fortran assumes continuation at
- the first non-comment, non-whitespace character after the ampersand
- that initiated the continuation.
-
-'-Warray-temporaries'
- Warn about array temporaries generated by the compiler. The
- information generated by this warning is sometimes useful in
- optimization, in order to avoid such temporaries.
-
-'-Wc-binding-type'
- Warn if the a variable might not be C interoperable. In
- particular, warn if the variable has been declared using an
- intrinsic type with default kind instead of using a kind parameter
- defined for C interoperability in the intrinsic 'ISO_C_Binding'
- module. This option is implied by '-Wall'.
-
-'-Wcharacter-truncation'
- Warn when a character assignment will truncate the assigned string.
-
-'-Wline-truncation'
- Warn when a source code line will be truncated. This option is
- implied by '-Wall'.
-
-'-Wconversion'
- Warn about implicit conversions that are likely to change the value
- of the expression after conversion. Implied by '-Wall'.
-
-'-Wconversion-extra'
- Warn about implicit conversions between different types and kinds.
-
-'-Wextra'
- Enables some warning options for usages of language features which
- may be problematic. This currently includes '-Wcompare-reals' and
- '-Wunused-parameter'.
-
-'-Wimplicit-interface'
- Warn if a procedure is called without an explicit interface. Note
- this only checks that an explicit interface is present. It does
- not check that the declared interfaces are consistent across
- program units.
-
-'-Wimplicit-procedure'
- Warn if a procedure is called that has neither an explicit
- interface nor has been declared as 'EXTERNAL'.
-
-'-Wintrinsics-std'
- Warn if 'gfortran' finds a procedure named like an intrinsic not
- available in the currently selected standard (with '-std') and
- treats it as 'EXTERNAL' procedure because of this.
- '-fall-intrinsics' can be used to never trigger this behavior and
- always link to the intrinsic regardless of the selected standard.
-
-'-Wreal-q-constant'
- Produce a warning if a real-literal-constant contains a 'q'
- exponent-letter.
-
-'-Wsurprising'
- Produce a warning when "suspicious" code constructs are
- encountered. While technically legal these usually indicate that
- an error has been made.
-
- This currently produces a warning under the following
- circumstances:
-
- * An INTEGER SELECT construct has a CASE that can never be
- matched as its lower value is greater than its upper value.
-
- * A LOGICAL SELECT construct has three CASE statements.
-
- * A TRANSFER specifies a source that is shorter than the
- destination.
-
- * The type of a function result is declared more than once with
- the same type. If '-pedantic' or standard-conforming mode is
- enabled, this is an error.
-
- * A 'CHARACTER' variable is declared with negative length.
-
-'-Wtabs'
- By default, tabs are accepted as whitespace, but tabs are not
- members of the Fortran Character Set. For continuation lines, a
- tab followed by a digit between 1 and 9 is supported. '-Wno-tabs'
- will cause a warning to be issued if a tab is encountered. Note,
- '-Wno-tabs' is active for '-pedantic', '-std=f95', '-std=f2003',
- '-std=f2008' and '-Wall'.
-
-'-Wunderflow'
- Produce a warning when numerical constant expressions are
- encountered, which yield an UNDERFLOW during compilation.
-
-'-Wintrinsic-shadow'
- Warn if a user-defined procedure or module procedure has the same
- name as an intrinsic; in this case, an explicit interface or
- 'EXTERNAL' or 'INTRINSIC' declaration might be needed to get calls
- later resolved to the desired intrinsic/procedure. This option is
- implied by '-Wall'.
-
-'-Wunused-dummy-argument'
- Warn about unused dummy arguments. This option is implied by
- '-Wall'.
-
-'-Wunused-parameter'
- Contrary to 'gcc''s meaning of '-Wunused-parameter', 'gfortran''s
- implementation of this option does not warn about unused dummy
- arguments (see '-Wunused-dummy-argument'), but about unused
- 'PARAMETER' values. '-Wunused-parameter' is not included in
- '-Wall' but is implied by '-Wall -Wextra'.
-
-'-Walign-commons'
- By default, 'gfortran' warns about any occasion of variables being
- padded for proper alignment inside a 'COMMON' block. This warning
- can be turned off via '-Wno-align-commons'. See also
- '-falign-commons'.
-
-'-Wfunction-elimination'
- Warn if any calls to functions are eliminated by the optimizations
- enabled by the '-ffrontend-optimize' option.
-
-'-Wrealloc-lhs'
- Warn when the compiler might insert code to for allocation or
- reallocation of an allocatable array variable of intrinsic type in
- intrinsic assignments. In hot loops, the Fortran 2003 reallocation
- feature may reduce the performance. If the array is already
- allocated with the correct shape, consider using a whole-array
- array-spec (e.g. '(:,:,:)') for the variable on the left-hand side
- to prevent the reallocation check. Note that in some cases the
- warning is shown, even if the compiler will optimize reallocation
- checks away. For instance, when the right-hand side contains the
- same variable multiplied by a scalar. See also '-frealloc-lhs'.
-
-'-Wrealloc-lhs-all'
- Warn when the compiler inserts code to for allocation or
- reallocation of an allocatable variable; this includes scalars and
- derived types.
-
-'-Wcompare-reals'
- Warn when comparing real or complex types for equality or
- inequality. This option is implied by '-Wextra'.
-
-'-Wtarget-lifetime'
- Warn if the pointer in a pointer assignment might be longer than
- the its target. This option is implied by '-Wall'.
-
-'-Wzerotrip'
- Warn if a 'DO' loop is known to execute zero times at compile time.
- This option is implied by '-Wall'.
-
-'-Werror'
- Turns all warnings into errors.
-
- *Note Options to Request or Suppress Errors and Warnings:
-(gcc)Warning Options, for information on more options offered by the GBE
-shared by 'gfortran', 'gcc' and other GNU compilers.
-
- Some of these have no effect when compiling programs written in
-Fortran.
-
-
-File: gfortran.info, Node: Debugging Options, Next: Directory Options, Prev: Error and Warning Options, Up: Invoking GNU Fortran
-
-2.5 Options for debugging your program or GNU Fortran
-=====================================================
-
-GNU Fortran has various special options that are used for debugging
-either your program or the GNU Fortran compiler.
-
-'-fdump-fortran-original'
- Output the internal parse tree after translating the source program
- into internal representation. Only really useful for debugging the
- GNU Fortran compiler itself.
-
-'-fdump-fortran-optimized'
- Output the parse tree after front-end optimization. Only really
- useful for debugging the GNU Fortran compiler itself.
-
-'-fdump-parse-tree'
- Output the internal parse tree after translating the source program
- into internal representation. Only really useful for debugging the
- GNU Fortran compiler itself. This option is deprecated; use
- '-fdump-fortran-original' instead.
-
-'-ffpe-trap=LIST'
- Specify a list of floating point exception traps to enable. On
- most systems, if a floating point exception occurs and the trap for
- that exception is enabled, a SIGFPE signal will be sent and the
- program being aborted, producing a core file useful for debugging.
- LIST is a (possibly empty) comma-separated list of the following
- exceptions: 'invalid' (invalid floating point operation, such as
- 'SQRT(-1.0)'), 'zero' (division by zero), 'overflow' (overflow in a
- floating point operation), 'underflow' (underflow in a floating
- point operation), 'inexact' (loss of precision during operation),
- and 'denormal' (operation performed on a denormal value). The
- first five exceptions correspond to the five IEEE 754 exceptions,
- whereas the last one ('denormal') is not part of the IEEE 754
- standard but is available on some common architectures such as x86.
-
- The first three exceptions ('invalid', 'zero', and 'overflow')
- often indicate serious errors, and unless the program has
- provisions for dealing with these exceptions, enabling traps for
- these three exceptions is probably a good idea.
-
- Many, if not most, floating point operations incur loss of
- precision due to rounding, and hence the 'ffpe-trap=inexact' is
- likely to be uninteresting in practice.
-
- By default no exception traps are enabled.
-
-'-ffpe-summary=LIST'
- Specify a list of floating-point exceptions, whose flag status is
- printed to 'ERROR_UNIT' when invoking 'STOP' and 'ERROR STOP'.
- LIST can be either 'none', 'all' or a comma-separated list of the
- following exceptions: 'invalid', 'zero', 'overflow', 'underflow',
- 'inexact' and 'denormal'. (See '-ffpe-trap' for a description of
- the exceptions.)
-
- By default, a summary for all exceptions but 'inexact' is shown.
-
-'-fno-backtrace'
- When a serious runtime error is encountered or a deadly signal is
- emitted (segmentation fault, illegal instruction, bus error,
- floating-point exception, and the other POSIX signals that have the
- action 'core'), the Fortran runtime library tries to output a
- backtrace of the error. '-fno-backtrace' disables the backtrace
- generation. This option only has influence for compilation of the
- Fortran main program.
-
- *Note Options for Debugging Your Program or GCC: (gcc)Debugging
-Options, for more information on debugging options.
-
-
-File: gfortran.info, Node: Directory Options, Next: Link Options, Prev: Debugging Options, Up: Invoking GNU Fortran
-
-2.6 Options for directory search
-================================
-
-These options affect how GNU Fortran searches for files specified by the
-'INCLUDE' directive and where it searches for previously compiled
-modules.
-
- It also affects the search paths used by 'cpp' when used to
-preprocess Fortran source.
-
-'-IDIR'
- These affect interpretation of the 'INCLUDE' directive (as well as
- of the '#include' directive of the 'cpp' preprocessor).
-
- Also note that the general behavior of '-I' and 'INCLUDE' is pretty
- much the same as of '-I' with '#include' in the 'cpp' preprocessor,
- with regard to looking for 'header.gcc' files and other such
- things.
-
- This path is also used to search for '.mod' files when previously
- compiled modules are required by a 'USE' statement.
-
- *Note Options for Directory Search: (gcc)Directory Options, for
- information on the '-I' option.
-
-'-JDIR'
- This option specifies where to put '.mod' files for compiled
- modules. It is also added to the list of directories to searched
- by an 'USE' statement.
-
- The default is the current directory.
-
-'-fintrinsic-modules-path DIR'
- This option specifies the location of pre-compiled intrinsic
- modules, if they are not in the default location expected by the
- compiler.
-
-
-File: gfortran.info, Node: Link Options, Next: Runtime Options, Prev: Directory Options, Up: Invoking GNU Fortran
-
-2.7 Influencing the linking step
-================================
-
-These options come into play when the compiler links object files into
-an executable output file. They are meaningless if the compiler is not
-doing a link step.
-
-'-static-libgfortran'
- On systems that provide 'libgfortran' as a shared and a static
- library, this option forces the use of the static version. If no
- shared version of 'libgfortran' was built when the compiler was
- configured, this option has no effect.
-
-
-File: gfortran.info, Node: Runtime Options, Next: Code Gen Options, Prev: Link Options, Up: Invoking GNU Fortran
-
-2.8 Influencing runtime behavior
-================================
-
-These options affect the runtime behavior of programs compiled with GNU
-Fortran.
-
-'-fconvert=CONVERSION'
- Specify the representation of data for unformatted files. Valid
- values for conversion are: 'native', the default; 'swap', swap
- between big- and little-endian; 'big-endian', use big-endian
- representation for unformatted files; 'little-endian', use
- little-endian representation for unformatted files.
-
- _This option has an effect only when used in the main program. The
- 'CONVERT' specifier and the GFORTRAN_CONVERT_UNIT environment
- variable override the default specified by '-fconvert'._
-
-'-frecord-marker=LENGTH'
- Specify the length of record markers for unformatted files. Valid
- values for LENGTH are 4 and 8. Default is 4. _This is different
- from previous versions of 'gfortran'_, which specified a default
- record marker length of 8 on most systems. If you want to read or
- write files compatible with earlier versions of 'gfortran', use
- '-frecord-marker=8'.
-
-'-fmax-subrecord-length=LENGTH'
- Specify the maximum length for a subrecord. The maximum permitted
- value for length is 2147483639, which is also the default. Only
- really useful for use by the gfortran testsuite.
-
-'-fsign-zero'
- When enabled, floating point numbers of value zero with the sign
- bit set are written as negative number in formatted output and
- treated as negative in the 'SIGN' intrinsic. '-fno-sign-zero' does
- not print the negative sign of zero values (or values rounded to
- zero for I/O) and regards zero as positive number in the 'SIGN'
- intrinsic for compatibility with Fortran 77. The default is
- '-fsign-zero'.
-
-
-File: gfortran.info, Node: Code Gen Options, Next: Environment Variables, Prev: Runtime Options, Up: Invoking GNU Fortran
-
-2.9 Options for code generation conventions
-===========================================
-
-These machine-independent options control the interface conventions used
-in code generation.
-
- Most of them have both positive and negative forms; the negative form
-of '-ffoo' would be '-fno-foo'. In the table below, only one of the
-forms is listed--the one which is not the default. You can figure out
-the other form by either removing 'no-' or adding it.
-
-'-fno-automatic'
- Treat each program unit (except those marked as RECURSIVE) as if
- the 'SAVE' statement were specified for every local variable and
- array referenced in it. Does not affect common blocks. (Some
- Fortran compilers provide this option under the name '-static' or
- '-save'.) The default, which is '-fautomatic', uses the stack for
- local variables smaller than the value given by
- '-fmax-stack-var-size'. Use the option '-frecursive' to use no
- static memory.
-
-'-ff2c'
- Generate code designed to be compatible with code generated by
- 'g77' and 'f2c'.
-
- The calling conventions used by 'g77' (originally implemented in
- 'f2c') require functions that return type default 'REAL' to
- actually return the C type 'double', and functions that return type
- 'COMPLEX' to return the values via an extra argument in the calling
- sequence that points to where to store the return value. Under the
- default GNU calling conventions, such functions simply return their
- results as they would in GNU C--default 'REAL' functions return the
- C type 'float', and 'COMPLEX' functions return the GNU C type
- 'complex'. Additionally, this option implies the
- '-fsecond-underscore' option, unless '-fno-second-underscore' is
- explicitly requested.
-
- This does not affect the generation of code that interfaces with
- the 'libgfortran' library.
-
- _Caution:_ It is not a good idea to mix Fortran code compiled with
- '-ff2c' with code compiled with the default '-fno-f2c' calling
- conventions as, calling 'COMPLEX' or default 'REAL' functions
- between program parts which were compiled with different calling
- conventions will break at execution time.
-
- _Caution:_ This will break code which passes intrinsic functions of
- type default 'REAL' or 'COMPLEX' as actual arguments, as the
- library implementations use the '-fno-f2c' calling conventions.
-
-'-fno-underscoring'
- Do not transform names of entities specified in the Fortran source
- file by appending underscores to them.
-
- With '-funderscoring' in effect, GNU Fortran appends one underscore
- to external names with no underscores. This is done to ensure
- compatibility with code produced by many UNIX Fortran compilers.
-
- _Caution_: The default behavior of GNU Fortran is incompatible with
- 'f2c' and 'g77', please use the '-ff2c' option if you want object
- files compiled with GNU Fortran to be compatible with object code
- created with these tools.
-
- Use of '-fno-underscoring' is not recommended unless you are
- experimenting with issues such as integration of GNU Fortran into
- existing system environments (vis-a`-vis existing libraries, tools,
- and so on).
-
- For example, with '-funderscoring', and assuming other defaults
- like '-fcase-lower' and that 'j()' and 'max_count()' are external
- functions while 'my_var' and 'lvar' are local variables, a
- statement like
- I = J() + MAX_COUNT (MY_VAR, LVAR)
- is implemented as something akin to:
- i = j_() + max_count__(&my_var__, &lvar);
-
- With '-fno-underscoring', the same statement is implemented as:
-
- i = j() + max_count(&my_var, &lvar);
-
- Use of '-fno-underscoring' allows direct specification of
- user-defined names while debugging and when interfacing GNU Fortran
- code with other languages.
-
- Note that just because the names match does _not_ mean that the
- interface implemented by GNU Fortran for an external name matches
- the interface implemented by some other language for that same
- name. That is, getting code produced by GNU Fortran to link to
- code produced by some other compiler using this or any other method
- can be only a small part of the overall solution--getting the code
- generated by both compilers to agree on issues other than naming
- can require significant effort, and, unlike naming disagreements,
- linkers normally cannot detect disagreements in these other areas.
-
- Also, note that with '-fno-underscoring', the lack of appended
- underscores introduces the very real possibility that a
- user-defined external name will conflict with a name in a system
- library, which could make finding unresolved-reference bugs quite
- difficult in some cases--they might occur at program run time, and
- show up only as buggy behavior at run time.
-
- In future versions of GNU Fortran we hope to improve naming and
- linking issues so that debugging always involves using the names as
- they appear in the source, even if the names as seen by the linker
- are mangled to prevent accidental linking between procedures with
- incompatible interfaces.
-
-'-fsecond-underscore'
- By default, GNU Fortran appends an underscore to external names.
- If this option is used GNU Fortran appends two underscores to names
- with underscores and one underscore to external names with no
- underscores. GNU Fortran also appends two underscores to internal
- names with underscores to avoid naming collisions with external
- names.
-
- This option has no effect if '-fno-underscoring' is in effect. It
- is implied by the '-ff2c' option.
-
- Otherwise, with this option, an external name such as 'MAX_COUNT'
- is implemented as a reference to the link-time external symbol
- 'max_count__', instead of 'max_count_'. This is required for
- compatibility with 'g77' and 'f2c', and is implied by use of the
- '-ff2c' option.
-
-'-fcoarray=<KEYWORD>'
-
- 'none'
- Disable coarray support; using coarray declarations and
- image-control statements will produce a compile-time error.
- (Default)
-
- 'single'
- Single-image mode, i.e. 'num_images()' is always one.
-
- 'lib'
- Library-based coarray parallelization; a suitable GNU Fortran
- coarray library needs to be linked.
-
-'-fcheck=<KEYWORD>'
-
- Enable the generation of run-time checks; the argument shall be a
- comma-delimited list of the following keywords.
-
- 'all'
- Enable all run-time test of '-fcheck'.
-
- 'array-temps'
- Warns at run time when for passing an actual argument a
- temporary array had to be generated. The information
- generated by this warning is sometimes useful in optimization,
- in order to avoid such temporaries.
-
- Note: The warning is only printed once per location.
-
- 'bounds'
- Enable generation of run-time checks for array subscripts and
- against the declared minimum and maximum values. It also
- checks array indices for assumed and deferred shape arrays
- against the actual allocated bounds and ensures that all
- string lengths are equal for character array constructors
- without an explicit typespec.
-
- Some checks require that '-fcheck=bounds' is set for the
- compilation of the main program.
-
- Note: In the future this may also include other forms of
- checking, e.g., checking substring references.
-
- 'do'
- Enable generation of run-time checks for invalid modification
- of loop iteration variables.
-
- 'mem'
- Enable generation of run-time checks for memory allocation.
- Note: This option does not affect explicit allocations using
- the 'ALLOCATE' statement, which will be always checked.
-
- 'pointer'
- Enable generation of run-time checks for pointers and
- allocatables.
-
- 'recursion'
- Enable generation of run-time checks for recursively called
- subroutines and functions which are not marked as recursive.
- See also '-frecursive'. Note: This check does not work for
- OpenMP programs and is disabled if used together with
- '-frecursive' and '-fopenmp'.
-
-'-fbounds-check'
- Deprecated alias for '-fcheck=bounds'.
-
-'-fcheck-array-temporaries'
- Deprecated alias for '-fcheck=array-temps'.
-
-'-fmax-array-constructor=N'
- This option can be used to increase the upper limit permitted in
- array constructors. The code below requires this option to expand
- the array at compile time.
-
- program test
- implicit none
- integer j
- integer, parameter :: n = 100000
- integer, parameter :: i(n) = (/ (2*j, j = 1, n) /)
- print '(10(I0,1X))', i
- end program test
-
- _Caution: This option can lead to long compile times and
- excessively large object files._
-
- The default value for N is 65535.
-
-'-fmax-stack-var-size=N'
- This option specifies the size in bytes of the largest array that
- will be put on the stack; if the size is exceeded static memory is
- used (except in procedures marked as RECURSIVE). Use the option
- '-frecursive' to allow for recursive procedures which do not have a
- RECURSIVE attribute or for parallel programs. Use '-fno-automatic'
- to never use the stack.
-
- This option currently only affects local arrays declared with
- constant bounds, and may not apply to all character variables.
- Future versions of GNU Fortran may improve this behavior.
-
- The default value for N is 32768.
-
-'-fstack-arrays'
- Adding this option will make the Fortran compiler put all local
- arrays, even those of unknown size onto stack memory. If your
- program uses very large local arrays it is possible that you will
- have to extend your runtime limits for stack memory on some
- operating systems. This flag is enabled by default at optimization
- level '-Ofast'.
-
-'-fpack-derived'
- This option tells GNU Fortran to pack derived type members as
- closely as possible. Code compiled with this option is likely to
- be incompatible with code compiled without this option, and may
- execute slower.
-
-'-frepack-arrays'
- In some circumstances GNU Fortran may pass assumed shape array
- sections via a descriptor describing a noncontiguous area of
- memory. This option adds code to the function prologue to repack
- the data into a contiguous block at runtime.
-
- This should result in faster accesses to the array. However it can
- introduce significant overhead to the function call, especially
- when the passed data is noncontiguous.
-
-'-fshort-enums'
- This option is provided for interoperability with C code that was
- compiled with the '-fshort-enums' option. It will make GNU Fortran
- choose the smallest 'INTEGER' kind a given enumerator set will fit
- in, and give all its enumerators this kind.
-
-'-fexternal-blas'
- This option will make 'gfortran' generate calls to BLAS functions
- for some matrix operations like 'MATMUL', instead of using our own
- algorithms, if the size of the matrices involved is larger than a
- given limit (see '-fblas-matmul-limit'). This may be profitable if
- an optimized vendor BLAS library is available. The BLAS library
- will have to be specified at link time.
-
-'-fblas-matmul-limit=N'
- Only significant when '-fexternal-blas' is in effect. Matrix
- multiplication of matrices with size larger than (or equal to) N
- will be performed by calls to BLAS functions, while others will be
- handled by 'gfortran' internal algorithms. If the matrices
- involved are not square, the size comparison is performed using the
- geometric mean of the dimensions of the argument and result
- matrices.
-
- The default value for N is 30.
-
-'-frecursive'
- Allow indirect recursion by forcing all local arrays to be
- allocated on the stack. This flag cannot be used together with
- '-fmax-stack-var-size=' or '-fno-automatic'.
-
-'-finit-local-zero'
-'-finit-integer=N'
-'-finit-real=<ZERO|INF|-INF|NAN|SNAN>'
-'-finit-logical=<TRUE|FALSE>'
-'-finit-character=N'
- The '-finit-local-zero' option instructs the compiler to initialize
- local 'INTEGER', 'REAL', and 'COMPLEX' variables to zero, 'LOGICAL'
- variables to false, and 'CHARACTER' variables to a string of null
- bytes. Finer-grained initialization options are provided by the
- '-finit-integer=N', '-finit-real=<ZERO|INF|-INF|NAN|SNAN>' (which
- also initializes the real and imaginary parts of local 'COMPLEX'
- variables), '-finit-logical=<TRUE|FALSE>', and '-finit-character=N'
- (where N is an ASCII character value) options. These options do
- not initialize
- * allocatable arrays
- * components of derived type variables
- * variables that appear in an 'EQUIVALENCE' statement.
- (These limitations may be removed in future releases).
-
- Note that the '-finit-real=nan' option initializes 'REAL' and
- 'COMPLEX' variables with a quiet NaN. For a signalling NaN use
- '-finit-real=snan'; note, however, that compile-time optimizations
- may convert them into quiet NaN and that trapping needs to be
- enabled (e.g. via '-ffpe-trap').
-
- Finally, note that enabling any of the '-finit-*' options will
- silence warnings that would have been emitted by '-Wuninitialized'
- for the affected local variables.
-
-'-falign-commons'
- By default, 'gfortran' enforces proper alignment of all variables
- in a 'COMMON' block by padding them as needed. On certain
- platforms this is mandatory, on others it increases performance.
- If a 'COMMON' block is not declared with consistent data types
- everywhere, this padding can cause trouble, and
- '-fno-align-commons' can be used to disable automatic alignment.
- The same form of this option should be used for all files that
- share a 'COMMON' block. To avoid potential alignment issues in
- 'COMMON' blocks, it is recommended to order objects from largest to
- smallest.
-
-'-fno-protect-parens'
- By default the parentheses in expression are honored for all
- optimization levels such that the compiler does not do any
- re-association. Using '-fno-protect-parens' allows the compiler to
- reorder 'REAL' and 'COMPLEX' expressions to produce faster code.
- Note that for the re-association optimization '-fno-signed-zeros'
- and '-fno-trapping-math' need to be in effect. The parentheses
- protection is enabled by default, unless '-Ofast' is given.
-
-'-frealloc-lhs'
- An allocatable left-hand side of an intrinsic assignment is
- automatically (re)allocated if it is either unallocated or has a
- different shape. The option is enabled by default except when
- '-std=f95' is given. See also '-Wrealloc-lhs'.
-
-'-faggressive-function-elimination'
- Functions with identical argument lists are eliminated within
- statements, regardless of whether these functions are marked 'PURE'
- or not. For example, in
- a = f(b,c) + f(b,c)
- there will only be a single call to 'f'. This option only works if
- '-ffrontend-optimize' is in effect.
-
-'-ffrontend-optimize'
- This option performs front-end optimization, based on manipulating
- parts the Fortran parse tree. Enabled by default by any '-O'
- option. Optimizations enabled by this option include elimination
- of identical function calls within expressions, removing
- unnecessary calls to 'TRIM' in comparisons and assignments and
- replacing 'TRIM(a)' with 'a(1:LEN_TRIM(a))'. It can be deselected
- by specifying '-fno-frontend-optimize'.
-
- *Note Options for Code Generation Conventions: (gcc)Code Gen Options,
-for information on more options offered by the GBE shared by 'gfortran',
-'gcc', and other GNU compilers.
-
-
-File: gfortran.info, Node: Environment Variables, Prev: Code Gen Options, Up: Invoking GNU Fortran
-
-2.10 Environment variables affecting 'gfortran'
-===============================================
-
-The 'gfortran' compiler currently does not make use of any environment
-variables to control its operation above and beyond those that affect
-the operation of 'gcc'.
-
- *Note Environment Variables Affecting GCC: (gcc)Environment
-Variables, for information on environment variables.
-
- *Note Runtime::, for environment variables that affect the run-time
-behavior of programs compiled with GNU Fortran.
-
-
-File: gfortran.info, Node: Runtime, Next: Fortran 2003 and 2008 status, Prev: Invoking GNU Fortran, Up: Top
-
-3 Runtime: Influencing runtime behavior with environment variables
-******************************************************************
-
-The behavior of the 'gfortran' can be influenced by environment
-variables.
-
- Malformed environment variables are silently ignored.
-
-* Menu:
-
-* TMPDIR:: Directory for scratch files
-* GFORTRAN_STDIN_UNIT:: Unit number for standard input
-* GFORTRAN_STDOUT_UNIT:: Unit number for standard output
-* GFORTRAN_STDERR_UNIT:: Unit number for standard error
-* GFORTRAN_UNBUFFERED_ALL:: Do not buffer I/O for all units.
-* GFORTRAN_UNBUFFERED_PRECONNECTED:: Do not buffer I/O for preconnected units.
-* GFORTRAN_SHOW_LOCUS:: Show location for runtime errors
-* GFORTRAN_OPTIONAL_PLUS:: Print leading + where permitted
-* GFORTRAN_DEFAULT_RECL:: Default record length for new files
-* GFORTRAN_LIST_SEPARATOR:: Separator for list output
-* GFORTRAN_CONVERT_UNIT:: Set endianness for unformatted I/O
-* GFORTRAN_ERROR_BACKTRACE:: Show backtrace on run-time errors
-
-
-File: gfortran.info, Node: TMPDIR, Next: GFORTRAN_STDIN_UNIT, Up: Runtime
-
-3.1 'TMPDIR'--Directory for scratch files
-=========================================
-
-When opening a file with 'STATUS='SCRATCH'', GNU Fortran tries to create
-the file in one of the potential directories by testing each directory
-in the order below.
-
- 1. The environment variable 'TMPDIR', if it exists.
-
- 2. On the MinGW target, the directory returned by the 'GetTempPath'
- function. Alternatively, on the Cygwin target, the 'TMP' and
- 'TEMP' environment variables, if they exist, in that order.
-
- 3. The 'P_tmpdir' macro if it is defined, otherwise the directory
- '/tmp'.
-
-
-File: gfortran.info, Node: GFORTRAN_STDIN_UNIT, Next: GFORTRAN_STDOUT_UNIT, Prev: TMPDIR, Up: Runtime
-
-3.2 'GFORTRAN_STDIN_UNIT'--Unit number for standard input
-=========================================================
-
-This environment variable can be used to select the unit number
-preconnected to standard input. This must be a positive integer. The
-default value is 5.
-
-
-File: gfortran.info, Node: GFORTRAN_STDOUT_UNIT, Next: GFORTRAN_STDERR_UNIT, Prev: GFORTRAN_STDIN_UNIT, Up: Runtime
-
-3.3 'GFORTRAN_STDOUT_UNIT'--Unit number for standard output
-===========================================================
-
-This environment variable can be used to select the unit number
-preconnected to standard output. This must be a positive integer. The
-default value is 6.
-
-
-File: gfortran.info, Node: GFORTRAN_STDERR_UNIT, Next: GFORTRAN_UNBUFFERED_ALL, Prev: GFORTRAN_STDOUT_UNIT, Up: Runtime
-
-3.4 'GFORTRAN_STDERR_UNIT'--Unit number for standard error
-==========================================================
-
-This environment variable can be used to select the unit number
-preconnected to standard error. This must be a positive integer. The
-default value is 0.
-
-
-File: gfortran.info, Node: GFORTRAN_UNBUFFERED_ALL, Next: GFORTRAN_UNBUFFERED_PRECONNECTED, Prev: GFORTRAN_STDERR_UNIT, Up: Runtime
-
-3.5 'GFORTRAN_UNBUFFERED_ALL'--Do not buffer I/O on all units
-=============================================================
-
-This environment variable controls whether all I/O is unbuffered. If
-the first letter is 'y', 'Y' or '1', all I/O is unbuffered. This will
-slow down small sequential reads and writes. If the first letter is
-'n', 'N' or '0', I/O is buffered. This is the default.
-
-
-File: gfortran.info, Node: GFORTRAN_UNBUFFERED_PRECONNECTED, Next: GFORTRAN_SHOW_LOCUS, Prev: GFORTRAN_UNBUFFERED_ALL, Up: Runtime
-
-3.6 'GFORTRAN_UNBUFFERED_PRECONNECTED'--Do not buffer I/O on preconnected units
-===============================================================================
-
-The environment variable named 'GFORTRAN_UNBUFFERED_PRECONNECTED'
-controls whether I/O on a preconnected unit (i.e. STDOUT or STDERR) is
-unbuffered. If the first letter is 'y', 'Y' or '1', I/O is unbuffered.
-This will slow down small sequential reads and writes. If the first
-letter is 'n', 'N' or '0', I/O is buffered. This is the default.
-
-
-File: gfortran.info, Node: GFORTRAN_SHOW_LOCUS, Next: GFORTRAN_OPTIONAL_PLUS, Prev: GFORTRAN_UNBUFFERED_PRECONNECTED, Up: Runtime
-
-3.7 'GFORTRAN_SHOW_LOCUS'--Show location for runtime errors
-===========================================================
-
-If the first letter is 'y', 'Y' or '1', filename and line numbers for
-runtime errors are printed. If the first letter is 'n', 'N' or '0', do
-not print filename and line numbers for runtime errors. The default is
-to print the location.
-
-
-File: gfortran.info, Node: GFORTRAN_OPTIONAL_PLUS, Next: GFORTRAN_DEFAULT_RECL, Prev: GFORTRAN_SHOW_LOCUS, Up: Runtime
-
-3.8 'GFORTRAN_OPTIONAL_PLUS'--Print leading + where permitted
-=============================================================
-
-If the first letter is 'y', 'Y' or '1', a plus sign is printed where
-permitted by the Fortran standard. If the first letter is 'n', 'N' or
-'0', a plus sign is not printed in most cases. Default is not to print
-plus signs.
-
-
-File: gfortran.info, Node: GFORTRAN_DEFAULT_RECL, Next: GFORTRAN_LIST_SEPARATOR, Prev: GFORTRAN_OPTIONAL_PLUS, Up: Runtime
-
-3.9 'GFORTRAN_DEFAULT_RECL'--Default record length for new files
-================================================================
-
-This environment variable specifies the default record length, in bytes,
-for files which are opened without a 'RECL' tag in the 'OPEN' statement.
-This must be a positive integer. The default value is 1073741824 bytes
-(1 GB).
-
-
-File: gfortran.info, Node: GFORTRAN_LIST_SEPARATOR, Next: GFORTRAN_CONVERT_UNIT, Prev: GFORTRAN_DEFAULT_RECL, Up: Runtime
-
-3.10 'GFORTRAN_LIST_SEPARATOR'--Separator for list output
-=========================================================
-
-This environment variable specifies the separator when writing
-list-directed output. It may contain any number of spaces and at most
-one comma. If you specify this on the command line, be sure to quote
-spaces, as in
- $ GFORTRAN_LIST_SEPARATOR=' , ' ./a.out
- when 'a.out' is the compiled Fortran program that you want to run.
-Default is a single space.
-
-
-File: gfortran.info, Node: GFORTRAN_CONVERT_UNIT, Next: GFORTRAN_ERROR_BACKTRACE, Prev: GFORTRAN_LIST_SEPARATOR, Up: Runtime
-
-3.11 'GFORTRAN_CONVERT_UNIT'--Set endianness for unformatted I/O
-================================================================
-
-By setting the 'GFORTRAN_CONVERT_UNIT' variable, it is possible to
-change the representation of data for unformatted files. The syntax for
-the 'GFORTRAN_CONVERT_UNIT' variable is:
- GFORTRAN_CONVERT_UNIT: mode | mode ';' exception | exception ;
- mode: 'native' | 'swap' | 'big_endian' | 'little_endian' ;
- exception: mode ':' unit_list | unit_list ;
- unit_list: unit_spec | unit_list unit_spec ;
- unit_spec: INTEGER | INTEGER '-' INTEGER ;
- The variable consists of an optional default mode, followed by a list
-of optional exceptions, which are separated by semicolons from the
-preceding default and each other. Each exception consists of a format
-and a comma-separated list of units. Valid values for the modes are the
-same as for the 'CONVERT' specifier:
-
- 'NATIVE' Use the native format. This is the default.
- 'SWAP' Swap between little- and big-endian.
- 'LITTLE_ENDIAN' Use the little-endian format for unformatted files.
- 'BIG_ENDIAN' Use the big-endian format for unformatted files.
- A missing mode for an exception is taken to mean 'BIG_ENDIAN'.
-Examples of values for 'GFORTRAN_CONVERT_UNIT' are:
- ''big_endian'' Do all unformatted I/O in big_endian mode.
- ''little_endian;native:10-20,25'' Do all unformatted I/O in
- little_endian mode, except for units 10 to 20 and 25, which are in
- native format.
- ''10-20'' Units 10 to 20 are big-endian, the rest is native.
-
- Setting the environment variables should be done on the command line
-or via the 'export' command for 'sh'-compatible shells and via 'setenv'
-for 'csh'-compatible shells.
-
- Example for 'sh':
- $ gfortran foo.f90
- $ GFORTRAN_CONVERT_UNIT='big_endian;native:10-20' ./a.out
-
- Example code for 'csh':
- % gfortran foo.f90
- % setenv GFORTRAN_CONVERT_UNIT 'big_endian;native:10-20'
- % ./a.out
-
- Using anything but the native representation for unformatted data
-carries a significant speed overhead. If speed in this area matters to
-you, it is best if you use this only for data that needs to be portable.
-
- *Note CONVERT specifier::, for an alternative way to specify the data
-representation for unformatted files. *Note Runtime Options::, for
-setting a default data representation for the whole program. The
-'CONVERT' specifier overrides the '-fconvert' compile options.
-
- _Note that the values specified via the GFORTRAN_CONVERT_UNIT
-environment variable will override the CONVERT specifier in the open
-statement_. This is to give control over data formats to users who do
-not have the source code of their program available.
-
-
-File: gfortran.info, Node: GFORTRAN_ERROR_BACKTRACE, Prev: GFORTRAN_CONVERT_UNIT, Up: Runtime
-
-3.12 'GFORTRAN_ERROR_BACKTRACE'--Show backtrace on run-time errors
-==================================================================
-
-If the 'GFORTRAN_ERROR_BACKTRACE' variable is set to 'y', 'Y' or '1'
-(only the first letter is relevant) then a backtrace is printed when a
-serious run-time error occurs. To disable the backtracing, set the
-variable to 'n', 'N', '0'. Default is to print a backtrace unless the
-'-fno-backtrace' compile option was used.
-
-
-File: gfortran.info, Node: Fortran 2003 and 2008 status, Next: Compiler Characteristics, Prev: Runtime, Up: Top
-
-4 Fortran 2003 and 2008 Status
-******************************
-
-* Menu:
-
-* Fortran 2003 status::
-* Fortran 2008 status::
-* TS 29113 status::
-
-
-File: gfortran.info, Node: Fortran 2003 status, Next: Fortran 2008 status, Up: Fortran 2003 and 2008 status
-
-4.1 Fortran 2003 status
-=======================
-
-GNU Fortran supports several Fortran 2003 features; an incomplete list
-can be found below. See also the wiki page
-(http://gcc.gnu.org/wiki/Fortran2003) about Fortran 2003.
-
- * Procedure pointers including procedure-pointer components with
- 'PASS' attribute.
-
- * Procedures which are bound to a derived type (type-bound
- procedures) including 'PASS', 'PROCEDURE' and 'GENERIC', and
- operators bound to a type.
-
- * Abstract interfaces and type extension with the possibility to
- override type-bound procedures or to have deferred binding.
-
- * Polymorphic entities ("'CLASS'") for derived types and unlimited
- polymorphism ("'CLASS(*)'") - including 'SAME_TYPE_AS',
- 'EXTENDS_TYPE_OF' and 'SELECT TYPE' for scalars and arrays and
- finalization.
-
- * Generic interface names, which have the same name as derived types,
- are now supported. This allows one to write constructor functions.
- Note that Fortran does not support static constructor functions.
- For static variables, only default initialization or
- structure-constructor initialization are available.
-
- * The 'ASSOCIATE' construct.
-
- * Interoperability with C including enumerations,
-
- * In structure constructors the components with default values may be
- omitted.
-
- * Extensions to the 'ALLOCATE' statement, allowing for a
- type-specification with type parameter and for allocation and
- initialization from a 'SOURCE=' expression; 'ALLOCATE' and
- 'DEALLOCATE' optionally return an error message string via
- 'ERRMSG='.
-
- * Reallocation on assignment: If an intrinsic assignment is used, an
- allocatable variable on the left-hand side is automatically
- allocated (if unallocated) or reallocated (if the shape is
- different). Currently, scalar deferred character length left-hand
- sides are correctly handled but arrays are not yet fully
- implemented.
-
- * Deferred-length character variables and scalar deferred-length
- character components of derived types are supported. (Note that
- array-valued compoents are not yet implemented.)
-
- * Transferring of allocations via 'MOVE_ALLOC'.
-
- * The 'PRIVATE' and 'PUBLIC' attributes may be given individually to
- derived-type components.
-
- * In pointer assignments, the lower bound may be specified and the
- remapping of elements is supported.
-
- * For pointers an 'INTENT' may be specified which affect the
- association status not the value of the pointer target.
-
- * Intrinsics 'command_argument_count', 'get_command',
- 'get_command_argument', and 'get_environment_variable'.
-
- * Support for Unicode characters (ISO 10646) and UTF-8, including the
- 'SELECTED_CHAR_KIND' and 'NEW_LINE' intrinsic functions.
-
- * Support for binary, octal and hexadecimal (BOZ) constants in the
- intrinsic functions 'INT', 'REAL', 'CMPLX' and 'DBLE'.
-
- * Support for namelist variables with allocatable and pointer
- attribute and nonconstant length type parameter.
-
- * Array constructors using square brackets. That is, '[...]' rather
- than '(/.../)'. Type-specification for array constructors like '(/
- some-type :: ... /)'.
-
- * Extensions to the specification and initialization expressions,
- including the support for intrinsics with real and complex
- arguments.
-
- * Support for the asynchronous input/output syntax; however, the data
- transfer is currently always synchronously performed.
-
- * 'FLUSH' statement.
-
- * 'IOMSG=' specifier for I/O statements.
-
- * Support for the declaration of enumeration constants via the 'ENUM'
- and 'ENUMERATOR' statements. Interoperability with 'gcc' is
- guaranteed also for the case where the '-fshort-enums' command line
- option is given.
-
- * TR 15581:
- * 'ALLOCATABLE' dummy arguments.
- * 'ALLOCATABLE' function results
- * 'ALLOCATABLE' components of derived types
-
- * The 'OPEN' statement supports the 'ACCESS='STREAM'' specifier,
- allowing I/O without any record structure.
-
- * Namelist input/output for internal files.
-
- * Minor I/O features: Rounding during formatted output, using of a
- decimal comma instead of a decimal point, setting whether a plus
- sign should appear for positive numbers. On system where 'strtod'
- honours the rounding mode, the rounding mode is also supported for
- input.
-
- * The 'PROTECTED' statement and attribute.
-
- * The 'VALUE' statement and attribute.
-
- * The 'VOLATILE' statement and attribute.
-
- * The 'IMPORT' statement, allowing to import host-associated derived
- types.
-
- * The intrinsic modules 'ISO_FORTRAN_ENVIRONMENT' is supported, which
- contains parameters of the I/O units, storage sizes. Additionally,
- procedures for C interoperability are available in the
- 'ISO_C_BINDING' module.
-
- * 'USE' statement with 'INTRINSIC' and 'NON_INTRINSIC' attribute;
- supported intrinsic modules: 'ISO_FORTRAN_ENV', 'ISO_C_BINDING',
- 'OMP_LIB' and 'OMP_LIB_KINDS'.
-
- * Renaming of operators in the 'USE' statement.
-
-
-File: gfortran.info, Node: Fortran 2008 status, Next: TS 29113 status, Prev: Fortran 2003 status, Up: Fortran 2003 and 2008 status
-
-4.2 Fortran 2008 status
-=======================
-
-The latest version of the Fortran standard is ISO/IEC 1539-1:2010,
-informally known as Fortran 2008. The official version is available
-from International Organization for Standardization (ISO) or its
-national member organizations. The the final draft (FDIS) can be
-downloaded free of charge from
-<http://www.nag.co.uk/sc22wg5/links.html>. Fortran is developed by the
-Working Group 5 of Sub-Committee 22 of the Joint Technical Committee 1
-of the International Organization for Standardization and the
-International Electrotechnical Commission (IEC). This group is known as
-WG5 (http://www.nag.co.uk/sc22wg5/).
-
- The GNU Fortran compiler supports several of the new features of
-Fortran 2008; the wiki (http://gcc.gnu.org/wiki/Fortran2008Status) has
-some information about the current Fortran 2008 implementation status.
-In particular, the following is implemented.
-
- * The '-std=f2008' option and support for the file extensions '.f08'
- and '.F08'.
-
- * The 'OPEN' statement now supports the 'NEWUNIT=' option, which
- returns a unique file unit, thus preventing inadvertent use of the
- same unit in different parts of the program.
-
- * The 'g0' format descriptor and unlimited format items.
-
- * The mathematical intrinsics 'ASINH', 'ACOSH', 'ATANH', 'ERF',
- 'ERFC', 'GAMMA', 'LOG_GAMMA', 'BESSEL_J0', 'BESSEL_J1',
- 'BESSEL_JN', 'BESSEL_Y0', 'BESSEL_Y1', 'BESSEL_YN', 'HYPOT',
- 'NORM2', and 'ERFC_SCALED'.
-
- * Using complex arguments with 'TAN', 'SINH', 'COSH', 'TANH', 'ASIN',
- 'ACOS', and 'ATAN' is now possible; 'ATAN'(Y,X) is now an alias for
- 'ATAN2'(Y,X).
-
- * Support of the 'PARITY' intrinsic functions.
-
- * The following bit intrinsics: 'LEADZ' and 'TRAILZ' for counting the
- number of leading and trailing zero bits, 'POPCNT' and 'POPPAR' for
- counting the number of one bits and returning the parity; 'BGE',
- 'BGT', 'BLE', and 'BLT' for bitwise comparisons; 'DSHIFTL' and
- 'DSHIFTR' for combined left and right shifts, 'MASKL' and 'MASKR'
- for simple left and right justified masks, 'MERGE_BITS' for a
- bitwise merge using a mask, 'SHIFTA', 'SHIFTL' and 'SHIFTR' for
- shift operations, and the transformational bit intrinsics 'IALL',
- 'IANY' and 'IPARITY'.
-
- * Support of the 'EXECUTE_COMMAND_LINE' intrinsic subroutine.
-
- * Support for the 'STORAGE_SIZE' intrinsic inquiry function.
-
- * The 'INT{8,16,32}' and 'REAL{32,64,128}' kind type parameters and
- the array-valued named constants 'INTEGER_KINDS', 'LOGICAL_KINDS',
- 'REAL_KINDS' and 'CHARACTER_KINDS' of the intrinsic module
- 'ISO_FORTRAN_ENV'.
-
- * The module procedures 'C_SIZEOF' of the intrinsic module
- 'ISO_C_BINDINGS' and 'COMPILER_VERSION' and 'COMPILER_OPTIONS' of
- 'ISO_FORTRAN_ENV'.
-
- * Coarray support for serial programs with '-fcoarray=single' flag
- and experimental support for multiple images with the
- '-fcoarray=lib' flag.
-
- * The 'DO CONCURRENT' construct is supported.
-
- * The 'BLOCK' construct is supported.
-
- * The 'STOP' and the new 'ERROR STOP' statements now support all
- constant expressions. Both show the signals which were signaling
- at termination.
-
- * Support for the 'CONTIGUOUS' attribute.
-
- * Support for 'ALLOCATE' with 'MOLD'.
-
- * Support for the 'IMPURE' attribute for procedures, which allows for
- 'ELEMENTAL' procedures without the restrictions of 'PURE'.
-
- * Null pointers (including 'NULL()') and not-allocated variables can
- be used as actual argument to optional non-pointer, non-allocatable
- dummy arguments, denoting an absent argument.
-
- * Non-pointer variables with 'TARGET' attribute can be used as actual
- argument to 'POINTER' dummies with 'INTENT(IN)'.
-
- * Pointers including procedure pointers and those in a derived type
- (pointer components) can now be initialized by a target instead of
- only by 'NULL'.
-
- * The 'EXIT' statement (with construct-name) can be now be used to
- leave not only the 'DO' but also the 'ASSOCIATE', 'BLOCK', 'IF',
- 'SELECT CASE' and 'SELECT TYPE' constructs.
-
- * Internal procedures can now be used as actual argument.
-
- * Minor features: obsolesce diagnostics for 'ENTRY' with
- '-std=f2008'; a line may start with a semicolon; for internal and
- module procedures 'END' can be used instead of 'END SUBROUTINE' and
- 'END FUNCTION'; 'SELECTED_REAL_KIND' now also takes a 'RADIX'
- argument; intrinsic types are supported for
- 'TYPE'(INTRINSIC-TYPE-SPEC); multiple type-bound procedures can be
- declared in a single 'PROCEDURE' statement; implied-shape arrays
- are supported for named constants ('PARAMETER').
-
-
-File: gfortran.info, Node: TS 29113 status, Prev: Fortran 2008 status, Up: Fortran 2003 and 2008 status
-
-4.3 Technical Specification 29113 Status
-========================================
-
-GNU Fortran supports some of the new features of the Technical
-Specification (TS) 29113 on Further Interoperability of Fortran with C.
-The wiki (http://gcc.gnu.org/wiki/TS29113Status) has some information
-about the current TS 29113 implementation status. In particular, the
-following is implemented.
-
- See also *note Further Interoperability of Fortran with C::.
-
- * The '-std=f2008ts' option.
-
- * The 'OPTIONAL' attribute is allowed for dummy arguments of 'BIND(C)
- procedures.'
-
- * The 'RANK' intrinsic is supported.
-
- * GNU Fortran's implementation for variables with 'ASYNCHRONOUS'
- attribute is compatible with TS 29113.
-
- * Assumed types ('TYPE(*)'.
-
- * Assumed-rank ('DIMENSION(..)'). However, the array descriptor of
- the TS is not yet supported.
-
-
-File: gfortran.info, Node: Compiler Characteristics, Next: Extensions, Prev: Fortran 2003 and 2008 status, Up: Top
-
-5 Compiler Characteristics
-**************************
-
-This chapter describes certain characteristics of the GNU Fortran
-compiler, that are not specified by the Fortran standard, but which
-might in some way or another become visible to the programmer.
-
-* Menu:
-
-* KIND Type Parameters::
-* Internal representation of LOGICAL variables::
-* Thread-safety of the runtime library::
-* Data consistency and durability::
-
-
-File: gfortran.info, Node: KIND Type Parameters, Next: Internal representation of LOGICAL variables, Up: Compiler Characteristics
-
-5.1 KIND Type Parameters
-========================
-
-The 'KIND' type parameters supported by GNU Fortran for the primitive
-data types are:
-
-'INTEGER'
- 1, 2, 4, 8*, 16*, default: 4**
-
-'LOGICAL'
- 1, 2, 4, 8*, 16*, default: 4**
-
-'REAL'
- 4, 8, 10*, 16*, default: 4***
-
-'COMPLEX'
- 4, 8, 10*, 16*, default: 4***
-
-'DOUBLE PRECISION'
- 4, 8, 10*, 16*, default: 8***
-
-'CHARACTER'
- 1, 4, default: 1
-
-* not available on all systems
-** unless '-fdefault-integer-8' is used
-*** unless '-fdefault-real-8' is used (see *note Fortran Dialect
-Options::)
-
-The 'KIND' value matches the storage size in bytes, except for 'COMPLEX'
-where the storage size is twice as much (or both real and imaginary part
-are a real value of the given size). It is recommended to use the *note
-SELECTED_CHAR_KIND::, *note SELECTED_INT_KIND:: and *note
-SELECTED_REAL_KIND:: intrinsics or the 'INT8', 'INT16', 'INT32',
-'INT64', 'REAL32', 'REAL64', and 'REAL128' parameters of the
-'ISO_FORTRAN_ENV' module instead of the concrete values. The available
-kind parameters can be found in the constant arrays 'CHARACTER_KINDS',
-'INTEGER_KINDS', 'LOGICAL_KINDS' and 'REAL_KINDS' in the *note
-ISO_FORTRAN_ENV:: module. For C interoperability, the kind parameters
-of the *note ISO_C_BINDING:: module should be used.
-
-
-File: gfortran.info, Node: Internal representation of LOGICAL variables, Next: Thread-safety of the runtime library, Prev: KIND Type Parameters, Up: Compiler Characteristics
-
-5.2 Internal representation of LOGICAL variables
-================================================
-
-The Fortran standard does not specify how variables of 'LOGICAL' type
-are represented, beyond requiring that 'LOGICAL' variables of default
-kind have the same storage size as default 'INTEGER' and 'REAL'
-variables. The GNU Fortran internal representation is as follows.
-
- A 'LOGICAL(KIND=N)' variable is represented as an 'INTEGER(KIND=N)'
-variable, however, with only two permissible values: '1' for '.TRUE.'
-and '0' for '.FALSE.'. Any other integer value results in undefined
-behavior.
-
- See also *note Argument passing conventions:: and *note
-Interoperability with C::.
-
-
-File: gfortran.info, Node: Thread-safety of the runtime library, Next: Data consistency and durability, Prev: Internal representation of LOGICAL variables, Up: Compiler Characteristics
-
-5.3 Thread-safety of the runtime library
-========================================
-
-GNU Fortran can be used in programs with multiple threads, e.g. by using
-OpenMP, by calling OS thread handling functions via the 'ISO_C_BINDING'
-facility, or by GNU Fortran compiled library code being called from a
-multi-threaded program.
-
- The GNU Fortran runtime library, ('libgfortran'), supports being
-called concurrently from multiple threads with the following exceptions.
-
- During library initialization, the C 'getenv' function is used, which
-need not be thread-safe. Similarly, the 'getenv' function is used to
-implement the 'GET_ENVIRONMENT_VARIABLE' and 'GETENV' intrinsics. It is
-the responsibility of the user to ensure that the environment is not
-being updated concurrently when any of these actions are taking place.
-
- The 'EXECUTE_COMMAND_LINE' and 'SYSTEM' intrinsics are implemented
-with the 'system' function, which need not be thread-safe. It is the
-responsibility of the user to ensure that 'system' is not called
-concurrently.
-
- Finally, for platforms not supporting thread-safe POSIX functions,
-further functionality might not be thread-safe. For details, please
-consult the documentation for your operating system.
-
-
-File: gfortran.info, Node: Data consistency and durability, Prev: Thread-safety of the runtime library, Up: Compiler Characteristics
-
-5.4 Data consistency and durability
-===================================
-
-This section contains a brief overview of data and metadata consistency
-and durability issues when doing I/O.
-
- With respect to durability, GNU Fortran makes no effort to ensure
-that data is committed to stable storage. If this is required, the GNU
-Fortran programmer can use the intrinsic 'FNUM' to retrieve the low
-level file descriptor corresponding to an open Fortran unit. Then,
-using e.g. the 'ISO_C_BINDING' feature, one can call the underlying
-system call to flush dirty data to stable storage, such as 'fsync' on
-POSIX, '_commit' on MingW, or 'fcntl(fd, F_FULLSYNC, 0)' on Mac OS X.
-The following example shows how to call fsync:
-
- ! Declare the interface for POSIX fsync function
- interface
- function fsync (fd) bind(c,name="fsync")
- use iso_c_binding, only: c_int
- integer(c_int), value :: fd
- integer(c_int) :: fsync
- end function fsync
- end interface
-
- ! Variable declaration
- integer :: ret
-
- ! Opening unit 10
- open (10,file="foo")
-
- ! ...
- ! Perform I/O on unit 10
- ! ...
-
- ! Flush and sync
- flush(10)
- ret = fsync(fnum(10))
-
- ! Handle possible error
- if (ret /= 0) stop "Error calling FSYNC"
-
- With respect to consistency, for regular files GNU Fortran uses
-buffered I/O in order to improve performance. This buffer is flushed
-automatically when full and in some other situations, e.g. when closing
-a unit. It can also be explicitly flushed with the 'FLUSH' statement.
-Also, the buffering can be turned off with the 'GFORTRAN_UNBUFFERED_ALL'
-and 'GFORTRAN_UNBUFFERED_PRECONNECTED' environment variables. Special
-files, such as terminals and pipes, are always unbuffered. Sometimes,
-however, further things may need to be done in order to allow other
-processes to see data that GNU Fortran has written, as follows.
-
- The Windows platform supports a relaxed metadata consistency model,
-where file metadata is written to the directory lazily. This means
-that, for instance, the 'dir' command can show a stale size for a file.
-One can force a directory metadata update by closing the unit, or by
-calling '_commit' on the file descriptor. Note, though, that '_commit'
-will force all dirty data to stable storage, which is often a very slow
-operation.
-
- The Network File System (NFS) implements a relaxed consistency model
-called open-to-close consistency. Closing a file forces dirty data and
-metadata to be flushed to the server, and opening a file forces the
-client to contact the server in order to revalidate cached data.
-'fsync' will also force a flush of dirty data and metadata to the
-server. Similar to 'open' and 'close', acquiring and releasing 'fcntl'
-file locks, if the server supports them, will also force cache
-validation and flushing dirty data and metadata.
-
-
-File: gfortran.info, Node: Extensions, Next: Mixed-Language Programming, Prev: Compiler Characteristics, Up: Top
-
-6 Extensions
-************
-
-The two sections below detail the extensions to standard Fortran that
-are implemented in GNU Fortran, as well as some of the popular or
-historically important extensions that are not (or not yet) implemented.
-For the latter case, we explain the alternatives available to GNU
-Fortran users, including replacement by standard-conforming code or GNU
-extensions.
-
-* Menu:
-
-* Extensions implemented in GNU Fortran::
-* Extensions not implemented in GNU Fortran::
-
-
-File: gfortran.info, Node: Extensions implemented in GNU Fortran, Next: Extensions not implemented in GNU Fortran, Up: Extensions
-
-6.1 Extensions implemented in GNU Fortran
-=========================================
-
-GNU Fortran implements a number of extensions over standard Fortran.
-This chapter contains information on their syntax and meaning. There
-are currently two categories of GNU Fortran extensions, those that
-provide functionality beyond that provided by any standard, and those
-that are supported by GNU Fortran purely for backward compatibility with
-legacy compilers. By default, '-std=gnu' allows the compiler to accept
-both types of extensions, but to warn about the use of the latter.
-Specifying either '-std=f95', '-std=f2003' or '-std=f2008' disables both
-types of extensions, and '-std=legacy' allows both without warning.
-
-* Menu:
-
-* Old-style kind specifications::
-* Old-style variable initialization::
-* Extensions to namelist::
-* X format descriptor without count field::
-* Commas in FORMAT specifications::
-* Missing period in FORMAT specifications::
-* I/O item lists::
-* 'Q' exponent-letter::
-* BOZ literal constants::
-* Real array indices::
-* Unary operators::
-* Implicitly convert LOGICAL and INTEGER values::
-* Hollerith constants support::
-* Cray pointers::
-* CONVERT specifier::
-* OpenMP::
-* Argument list functions::
-
-
-File: gfortran.info, Node: Old-style kind specifications, Next: Old-style variable initialization, Up: Extensions implemented in GNU Fortran
-
-6.1.1 Old-style kind specifications
------------------------------------
-
-GNU Fortran allows old-style kind specifications in declarations. These
-look like:
- TYPESPEC*size x,y,z
-where 'TYPESPEC' is a basic type ('INTEGER', 'REAL', etc.), and where
-'size' is a byte count corresponding to the storage size of a valid kind
-for that type. (For 'COMPLEX' variables, 'size' is the total size of
-the real and imaginary parts.) The statement then declares 'x', 'y' and
-'z' to be of type 'TYPESPEC' with the appropriate kind. This is
-equivalent to the standard-conforming declaration
- TYPESPEC(k) x,y,z
-where 'k' is the kind parameter suitable for the intended precision. As
-kind parameters are implementation-dependent, use the 'KIND',
-'SELECTED_INT_KIND' and 'SELECTED_REAL_KIND' intrinsics to retrieve the
-correct value, for instance 'REAL*8 x' can be replaced by:
- INTEGER, PARAMETER :: dbl = KIND(1.0d0)
- REAL(KIND=dbl) :: x
-
-
-File: gfortran.info, Node: Old-style variable initialization, Next: Extensions to namelist, Prev: Old-style kind specifications, Up: Extensions implemented in GNU Fortran
-
-6.1.2 Old-style variable initialization
----------------------------------------
-
-GNU Fortran allows old-style initialization of variables of the form:
- INTEGER i/1/,j/2/
- REAL x(2,2) /3*0.,1./
- The syntax for the initializers is as for the 'DATA' statement, but
-unlike in a 'DATA' statement, an initializer only applies to the
-variable immediately preceding the initialization. In other words,
-something like 'INTEGER I,J/2,3/' is not valid. This style of
-initialization is only allowed in declarations without double colons
-('::'); the double colons were introduced in Fortran 90, which also
-introduced a standard syntax for initializing variables in type
-declarations.
-
- Examples of standard-conforming code equivalent to the above example
-are:
- ! Fortran 90
- INTEGER :: i = 1, j = 2
- REAL :: x(2,2) = RESHAPE((/0.,0.,0.,1./),SHAPE(x))
- ! Fortran 77
- INTEGER i, j
- REAL x(2,2)
- DATA i/1/, j/2/, x/3*0.,1./
-
- Note that variables which are explicitly initialized in declarations
-or in 'DATA' statements automatically acquire the 'SAVE' attribute.
-
-
-File: gfortran.info, Node: Extensions to namelist, Next: X format descriptor without count field, Prev: Old-style variable initialization, Up: Extensions implemented in GNU Fortran
-
-6.1.3 Extensions to namelist
-----------------------------
-
-GNU Fortran fully supports the Fortran 95 standard for namelist I/O
-including array qualifiers, substrings and fully qualified derived
-types. The output from a namelist write is compatible with namelist
-read. The output has all names in upper case and indentation to column
-1 after the namelist name. Two extensions are permitted:
-
- Old-style use of '$' instead of '&'
- $MYNML
- X(:)%Y(2) = 1.0 2.0 3.0
- CH(1:4) = "abcd"
- $END
-
- It should be noted that the default terminator is '/' rather than
-'&END'.
-
- Querying of the namelist when inputting from stdin. After at least
-one space, entering '?' sends to stdout the namelist name and the names
-of the variables in the namelist:
- ?
-
- &mynml
- x
- x%y
- ch
- &end
-
- Entering '=?' outputs the namelist to stdout, as if 'WRITE(*,NML =
-mynml)' had been called:
- =?
-
- &MYNML
- X(1)%Y= 0.000000 , 1.000000 , 0.000000 ,
- X(2)%Y= 0.000000 , 2.000000 , 0.000000 ,
- X(3)%Y= 0.000000 , 3.000000 , 0.000000 ,
- CH=abcd, /
-
- To aid this dialog, when input is from stdin, errors send their
-messages to stderr and execution continues, even if 'IOSTAT' is set.
-
- 'PRINT' namelist is permitted. This causes an error if '-std=f95' is
-used.
- PROGRAM test_print
- REAL, dimension (4) :: x = (/1.0, 2.0, 3.0, 4.0/)
- NAMELIST /mynml/ x
- PRINT mynml
- END PROGRAM test_print
-
- Expanded namelist reads are permitted. This causes an error if
-'-std=f95' is used. In the following example, the first element of the
-array will be given the value 0.00 and the two succeeding elements will
-be given the values 1.00 and 2.00.
- &MYNML
- X(1,1) = 0.00 , 1.00 , 2.00
- /
-
- When writing a namelist, if no 'DELIM=' is specified, by default a
-double quote is used to delimit character strings. If -std=F95, F2003,
-or F2008, etc, the delim status is set to 'none'. Defaulting to quotes
-ensures that namelists with character strings can be subsequently read
-back in accurately.
-
-
-File: gfortran.info, Node: X format descriptor without count field, Next: Commas in FORMAT specifications, Prev: Extensions to namelist, Up: Extensions implemented in GNU Fortran
-
-6.1.4 'X' format descriptor without count field
------------------------------------------------
-
-To support legacy codes, GNU Fortran permits the count field of the 'X'
-edit descriptor in 'FORMAT' statements to be omitted. When omitted, the
-count is implicitly assumed to be one.
-
- PRINT 10, 2, 3
- 10 FORMAT (I1, X, I1)
-
-
-File: gfortran.info, Node: Commas in FORMAT specifications, Next: Missing period in FORMAT specifications, Prev: X format descriptor without count field, Up: Extensions implemented in GNU Fortran
-
-6.1.5 Commas in 'FORMAT' specifications
----------------------------------------
-
-To support legacy codes, GNU Fortran allows the comma separator to be
-omitted immediately before and after character string edit descriptors
-in 'FORMAT' statements.
-
- PRINT 10, 2, 3
- 10 FORMAT ('FOO='I1' BAR='I2)
-
-
-File: gfortran.info, Node: Missing period in FORMAT specifications, Next: I/O item lists, Prev: Commas in FORMAT specifications, Up: Extensions implemented in GNU Fortran
-
-6.1.6 Missing period in 'FORMAT' specifications
------------------------------------------------
-
-To support legacy codes, GNU Fortran allows missing periods in format
-specifications if and only if '-std=legacy' is given on the command
-line. This is considered non-conforming code and is discouraged.
-
- REAL :: value
- READ(*,10) value
- 10 FORMAT ('F4')
-
-
-File: gfortran.info, Node: I/O item lists, Next: 'Q' exponent-letter, Prev: Missing period in FORMAT specifications, Up: Extensions implemented in GNU Fortran
-
-6.1.7 I/O item lists
---------------------
-
-To support legacy codes, GNU Fortran allows the input item list of the
-'READ' statement, and the output item lists of the 'WRITE' and 'PRINT'
-statements, to start with a comma.
-
-
-File: gfortran.info, Node: 'Q' exponent-letter, Next: BOZ literal constants, Prev: I/O item lists, Up: Extensions implemented in GNU Fortran
-
-6.1.8 'Q' exponent-letter
--------------------------
-
-GNU Fortran accepts real literal constants with an exponent-letter of
-'Q', for example, '1.23Q45'. The constant is interpreted as a
-'REAL(16)' entity on targets that support this type. If the target does
-not support 'REAL(16)' but has a 'REAL(10)' type, then the
-real-literal-constant will be interpreted as a 'REAL(10)' entity. In
-the absence of 'REAL(16)' and 'REAL(10)', an error will occur.
-
-
-File: gfortran.info, Node: BOZ literal constants, Next: Real array indices, Prev: 'Q' exponent-letter, Up: Extensions implemented in GNU Fortran
-
-6.1.9 BOZ literal constants
----------------------------
-
-Besides decimal constants, Fortran also supports binary ('b'), octal
-('o') and hexadecimal ('z') integer constants. The syntax is: 'prefix
-quote digits quote', were the prefix is either 'b', 'o' or 'z', quote is
-either ''' or '"' and the digits are for binary '0' or '1', for octal
-between '0' and '7', and for hexadecimal between '0' and 'F'. (Example:
-'b'01011101''.)
-
- Up to Fortran 95, BOZ literals were only allowed to initialize
-integer variables in DATA statements. Since Fortran 2003 BOZ literals
-are also allowed as argument of 'REAL', 'DBLE', 'INT' and 'CMPLX'; the
-result is the same as if the integer BOZ literal had been converted by
-'TRANSFER' to, respectively, 'real', 'double precision', 'integer' or
-'complex'. As GNU Fortran extension the intrinsic procedures 'FLOAT',
-'DFLOAT', 'COMPLEX' and 'DCMPLX' are treated alike.
-
- As an extension, GNU Fortran allows hexadecimal BOZ literal constants
-to be specified using the 'X' prefix, in addition to the standard 'Z'
-prefix. The BOZ literal can also be specified by adding a suffix to the
-string, for example, 'Z'ABC'' and ''ABC'Z' are equivalent.
-
- Furthermore, GNU Fortran allows using BOZ literal constants outside
-DATA statements and the four intrinsic functions allowed by Fortran
-2003. In DATA statements, in direct assignments, where the right-hand
-side only contains a BOZ literal constant, and for old-style
-initializers of the form 'integer i /o'0173'/', the constant is
-transferred as if 'TRANSFER' had been used; for 'COMPLEX' numbers, only
-the real part is initialized unless 'CMPLX' is used. In all other
-cases, the BOZ literal constant is converted to an 'INTEGER' value with
-the largest decimal representation. This value is then converted
-numerically to the type and kind of the variable in question. (For
-instance, 'real :: r = b'0000001' + 1' initializes 'r' with '2.0'.) As
-different compilers implement the extension differently, one should be
-careful when doing bitwise initialization of non-integer variables.
-
- Note that initializing an 'INTEGER' variable with a statement such as
-'DATA i/Z'FFFFFFFF'/' will give an integer overflow error rather than
-the desired result of -1 when 'i' is a 32-bit integer on a system that
-supports 64-bit integers. The '-fno-range-check' option can be used as
-a workaround for legacy code that initializes integers in this manner.
-
-
-File: gfortran.info, Node: Real array indices, Next: Unary operators, Prev: BOZ literal constants, Up: Extensions implemented in GNU Fortran
-
-6.1.10 Real array indices
--------------------------
-
-As an extension, GNU Fortran allows the use of 'REAL' expressions or
-variables as array indices.
-
-
-File: gfortran.info, Node: Unary operators, Next: Implicitly convert LOGICAL and INTEGER values, Prev: Real array indices, Up: Extensions implemented in GNU Fortran
-
-6.1.11 Unary operators
-----------------------
-
-As an extension, GNU Fortran allows unary plus and unary minus operators
-to appear as the second operand of binary arithmetic operators without
-the need for parenthesis.
-
- X = Y * -Z
-
-
-File: gfortran.info, Node: Implicitly convert LOGICAL and INTEGER values, Next: Hollerith constants support, Prev: Unary operators, Up: Extensions implemented in GNU Fortran
-
-6.1.12 Implicitly convert 'LOGICAL' and 'INTEGER' values
---------------------------------------------------------
-
-As an extension for backwards compatibility with other compilers, GNU
-Fortran allows the implicit conversion of 'LOGICAL' values to 'INTEGER'
-values and vice versa. When converting from a 'LOGICAL' to an
-'INTEGER', '.FALSE.' is interpreted as zero, and '.TRUE.' is interpreted
-as one. When converting from 'INTEGER' to 'LOGICAL', the value zero is
-interpreted as '.FALSE.' and any nonzero value is interpreted as
-'.TRUE.'.
-
- LOGICAL :: l
- l = 1
- INTEGER :: i
- i = .TRUE.
-
- However, there is no implicit conversion of 'INTEGER' values in
-'if'-statements, nor of 'LOGICAL' or 'INTEGER' values in I/O operations.
-
-
-File: gfortran.info, Node: Hollerith constants support, Next: Cray pointers, Prev: Implicitly convert LOGICAL and INTEGER values, Up: Extensions implemented in GNU Fortran
-
-6.1.13 Hollerith constants support
-----------------------------------
-
-GNU Fortran supports Hollerith constants in assignments, function
-arguments, and 'DATA' and 'ASSIGN' statements. A Hollerith constant is
-written as a string of characters preceded by an integer constant
-indicating the character count, and the letter 'H' or 'h', and stored in
-bytewise fashion in a numeric ('INTEGER', 'REAL', or 'complex') or
-'LOGICAL' variable. The constant will be padded or truncated to fit the
-size of the variable in which it is stored.
-
- Examples of valid uses of Hollerith constants:
- complex*16 x(2)
- data x /16Habcdefghijklmnop, 16Hqrstuvwxyz012345/
- x(1) = 16HABCDEFGHIJKLMNOP
- call foo (4h abc)
-
- Invalid Hollerith constants examples:
- integer*4 a
- a = 8H12345678 ! Valid, but the Hollerith constant will be truncated.
- a = 0H ! At least one character is needed.
-
- In general, Hollerith constants were used to provide a rudimentary
-facility for handling character strings in early Fortran compilers,
-prior to the introduction of 'CHARACTER' variables in Fortran 77; in
-those cases, the standard-compliant equivalent is to convert the program
-to use proper character strings. On occasion, there may be a case where
-the intent is specifically to initialize a numeric variable with a given
-byte sequence. In these cases, the same result can be obtained by using
-the 'TRANSFER' statement, as in this example.
- INTEGER(KIND=4) :: a
- a = TRANSFER ("abcd", a) ! equivalent to: a = 4Habcd
-
-
-File: gfortran.info, Node: Cray pointers, Next: CONVERT specifier, Prev: Hollerith constants support, Up: Extensions implemented in GNU Fortran
-
-6.1.14 Cray pointers
---------------------
-
-Cray pointers are part of a non-standard extension that provides a
-C-like pointer in Fortran. This is accomplished through a pair of
-variables: an integer "pointer" that holds a memory address, and a
-"pointee" that is used to dereference the pointer.
-
- Pointer/pointee pairs are declared in statements of the form:
- pointer ( <pointer> , <pointee> )
- or,
- pointer ( <pointer1> , <pointee1> ), ( <pointer2> , <pointee2> ), ...
- The pointer is an integer that is intended to hold a memory address.
-The pointee may be an array or scalar. A pointee can be an assumed size
-array--that is, the last dimension may be left unspecified by using a
-'*' in place of a value--but a pointee cannot be an assumed shape array.
-No space is allocated for the pointee.
-
- The pointee may have its type declared before or after the pointer
-statement, and its array specification (if any) may be declared before,
-during, or after the pointer statement. The pointer may be declared as
-an integer prior to the pointer statement. However, some machines have
-default integer sizes that are different than the size of a pointer, and
-so the following code is not portable:
- integer ipt
- pointer (ipt, iarr)
- If a pointer is declared with a kind that is too small, the compiler
-will issue a warning; the resulting binary will probably not work
-correctly, because the memory addresses stored in the pointers may be
-truncated. It is safer to omit the first line of the above example; if
-explicit declaration of ipt's type is omitted, then the compiler will
-ensure that ipt is an integer variable large enough to hold a pointer.
-
- Pointer arithmetic is valid with Cray pointers, but it is not the
-same as C pointer arithmetic. Cray pointers are just ordinary integers,
-so the user is responsible for determining how many bytes to add to a
-pointer in order to increment it. Consider the following example:
- real target(10)
- real pointee(10)
- pointer (ipt, pointee)
- ipt = loc (target)
- ipt = ipt + 1
- The last statement does not set 'ipt' to the address of 'target(1)',
-as it would in C pointer arithmetic. Adding '1' to 'ipt' just adds one
-byte to the address stored in 'ipt'.
-
- Any expression involving the pointee will be translated to use the
-value stored in the pointer as the base address.
-
- To get the address of elements, this extension provides an intrinsic
-function 'LOC()'. The 'LOC()' function is equivalent to the '&'
-operator in C, except the address is cast to an integer type:
- real ar(10)
- pointer(ipt, arpte(10))
- real arpte
- ipt = loc(ar) ! Makes arpte is an alias for ar
- arpte(1) = 1.0 ! Sets ar(1) to 1.0
- The pointer can also be set by a call to the 'MALLOC' intrinsic (see
-*note MALLOC::).
-
- Cray pointees often are used to alias an existing variable. For
-example:
- integer target(10)
- integer iarr(10)
- pointer (ipt, iarr)
- ipt = loc(target)
- As long as 'ipt' remains unchanged, 'iarr' is now an alias for
-'target'. The optimizer, however, will not detect this aliasing, so it
-is unsafe to use 'iarr' and 'target' simultaneously. Using a pointee in
-any way that violates the Fortran aliasing rules or assumptions is
-illegal. It is the user's responsibility to avoid doing this; the
-compiler works under the assumption that no such aliasing occurs.
-
- Cray pointers will work correctly when there is no aliasing (i.e.,
-when they are used to access a dynamically allocated block of memory),
-and also in any routine where a pointee is used, but any variable with
-which it shares storage is not used. Code that violates these rules may
-not run as the user intends. This is not a bug in the optimizer; any
-code that violates the aliasing rules is illegal. (Note that this is
-not unique to GNU Fortran; any Fortran compiler that supports Cray
-pointers will "incorrectly" optimize code with illegal aliasing.)
-
- There are a number of restrictions on the attributes that can be
-applied to Cray pointers and pointees. Pointees may not have the
-'ALLOCATABLE', 'INTENT', 'OPTIONAL', 'DUMMY', 'TARGET', 'INTRINSIC', or
-'POINTER' attributes. Pointers may not have the 'DIMENSION', 'POINTER',
-'TARGET', 'ALLOCATABLE', 'EXTERNAL', or 'INTRINSIC' attributes, nor may
-they be function results. Pointees may not occur in more than one
-pointer statement. A pointee cannot be a pointer. Pointees cannot
-occur in equivalence, common, or data statements.
-
- A Cray pointer may also point to a function or a subroutine. For
-example, the following excerpt is valid:
- implicit none
- external sub
- pointer (subptr,subpte)
- external subpte
- subptr = loc(sub)
- call subpte()
- [...]
- subroutine sub
- [...]
- end subroutine sub
-
- A pointer may be modified during the course of a program, and this
-will change the location to which the pointee refers. However, when
-pointees are passed as arguments, they are treated as ordinary variables
-in the invoked function. Subsequent changes to the pointer will not
-change the base address of the array that was passed.
-
-
-File: gfortran.info, Node: CONVERT specifier, Next: OpenMP, Prev: Cray pointers, Up: Extensions implemented in GNU Fortran
-
-6.1.15 'CONVERT' specifier
---------------------------
-
-GNU Fortran allows the conversion of unformatted data between little-
-and big-endian representation to facilitate moving of data between
-different systems. The conversion can be indicated with the 'CONVERT'
-specifier on the 'OPEN' statement. *Note GFORTRAN_CONVERT_UNIT::, for
-an alternative way of specifying the data format via an environment
-variable.
-
- Valid values for 'CONVERT' are:
- 'CONVERT='NATIVE'' Use the native format. This is the default.
- 'CONVERT='SWAP'' Swap between little- and big-endian.
- 'CONVERT='LITTLE_ENDIAN'' Use the little-endian representation for
- unformatted files.
- 'CONVERT='BIG_ENDIAN'' Use the big-endian representation for
- unformatted files.
-
- Using the option could look like this:
- open(file='big.dat',form='unformatted',access='sequential', &
- convert='big_endian')
-
- The value of the conversion can be queried by using
-'INQUIRE(CONVERT=ch)'. The values returned are ''BIG_ENDIAN'' and
-''LITTLE_ENDIAN''.
-
- 'CONVERT' works between big- and little-endian for 'INTEGER' values
-of all supported kinds and for 'REAL' on IEEE systems of kinds 4 and 8.
-Conversion between different "extended double" types on different
-architectures such as m68k and x86_64, which GNU Fortran supports as
-'REAL(KIND=10)' and 'REAL(KIND=16)', will probably not work.
-
- _Note that the values specified via the GFORTRAN_CONVERT_UNIT
-environment variable will override the CONVERT specifier in the open
-statement_. This is to give control over data formats to users who do
-not have the source code of their program available.
-
- Using anything but the native representation for unformatted data
-carries a significant speed overhead. If speed in this area matters to
-you, it is best if you use this only for data that needs to be portable.
-
-
-File: gfortran.info, Node: OpenMP, Next: Argument list functions, Prev: CONVERT specifier, Up: Extensions implemented in GNU Fortran
-
-6.1.16 OpenMP
--------------
-
-OpenMP (Open Multi-Processing) is an application programming interface
-(API) that supports multi-platform shared memory multiprocessing
-programming in C/C++ and Fortran on many architectures, including Unix
-and Microsoft Windows platforms. It consists of a set of compiler
-directives, library routines, and environment variables that influence
-run-time behavior.
-
- GNU Fortran strives to be compatible to the OpenMP Application
-Program Interface v3.1 (http://www.openmp.org/mp-documents/spec31.pdf).
-
- To enable the processing of the OpenMP directive '!$omp' in free-form
-source code; the 'c$omp', '*$omp' and '!$omp' directives in fixed form;
-the '!$' conditional compilation sentinels in free form; and the 'c$',
-'*$' and '!$' sentinels in fixed form, 'gfortran' needs to be invoked
-with the '-fopenmp'. This also arranges for automatic linking of the
-GNU OpenMP runtime library *note libgomp: (libgomp)Top.
-
- The OpenMP Fortran runtime library routines are provided both in a
-form of a Fortran 90 module named 'omp_lib' and in a form of a Fortran
-'include' file named 'omp_lib.h'.
-
- An example of a parallelized loop taken from Appendix A.1 of the
-OpenMP Application Program Interface v2.5:
- SUBROUTINE A1(N, A, B)
- INTEGER I, N
- REAL B(N), A(N)
- !$OMP PARALLEL DO !I is private by default
- DO I=2,N
- B(I) = (A(I) + A(I-1)) / 2.0
- ENDDO
- !$OMP END PARALLEL DO
- END SUBROUTINE A1
-
- Please note:
- * '-fopenmp' implies '-frecursive', i.e., all local arrays will be
- allocated on the stack. When porting existing code to OpenMP, this
- may lead to surprising results, especially to segmentation faults
- if the stacksize is limited.
-
- * On glibc-based systems, OpenMP enabled applications cannot be
- statically linked due to limitations of the underlying
- pthreads-implementation. It might be possible to get a working
- solution if '-Wl,--whole-archive -lpthread -Wl,--no-whole-archive'
- is added to the command line. However, this is not supported by
- 'gcc' and thus not recommended.
-
-
-File: gfortran.info, Node: Argument list functions, Prev: OpenMP, Up: Extensions implemented in GNU Fortran
-
-6.1.17 Argument list functions '%VAL', '%REF' and '%LOC'
---------------------------------------------------------
-
-GNU Fortran supports argument list functions '%VAL', '%REF' and '%LOC'
-statements, for backward compatibility with g77. It is recommended that
-these should be used only for code that is accessing facilities outside
-of GNU Fortran, such as operating system or windowing facilities. It is
-best to constrain such uses to isolated portions of a program-portions
-that deal specifically and exclusively with low-level, system-dependent
-facilities. Such portions might well provide a portable interface for
-use by the program as a whole, but are themselves not portable, and
-should be thoroughly tested each time they are rebuilt using a new
-compiler or version of a compiler.
-
- '%VAL' passes a scalar argument by value, '%REF' passes it by
-reference and '%LOC' passes its memory location. Since gfortran already
-passes scalar arguments by reference, '%REF' is in effect a do-nothing.
-'%LOC' has the same effect as a Fortran pointer.
-
- An example of passing an argument by value to a C subroutine foo.:
- C
- C prototype void foo_ (float x);
- C
- external foo
- real*4 x
- x = 3.14159
- call foo (%VAL (x))
- end
-
- For details refer to the g77 manual
-<http://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/index.html#Top>.
-
- Also, 'c_by_val.f' and its partner 'c_by_val.c' of the GNU Fortran
-testsuite are worth a look.
-
-
-File: gfortran.info, Node: Extensions not implemented in GNU Fortran, Prev: Extensions implemented in GNU Fortran, Up: Extensions
-
-6.2 Extensions not implemented in GNU Fortran
-=============================================
-
-The long history of the Fortran language, its wide use and broad
-userbase, the large number of different compiler vendors and the lack of
-some features crucial to users in the first standards have lead to the
-existence of a number of important extensions to the language. While
-some of the most useful or popular extensions are supported by the GNU
-Fortran compiler, not all existing extensions are supported. This
-section aims at listing these extensions and offering advice on how best
-make code that uses them running with the GNU Fortran compiler.
-
-* Menu:
-
-* STRUCTURE and RECORD::
-* ENCODE and DECODE statements::
-* Variable FORMAT expressions::
-* Alternate complex function syntax::
-* Volatile COMMON blocks::
-
-
-File: gfortran.info, Node: STRUCTURE and RECORD, Next: ENCODE and DECODE statements, Up: Extensions not implemented in GNU Fortran
-
-6.2.1 'STRUCTURE' and 'RECORD'
-------------------------------
-
-Record structures are a pre-Fortran-90 vendor extension to create
-user-defined aggregate data types. GNU Fortran does not support record
-structures, only Fortran 90's "derived types", which have a different
-syntax.
-
- In many cases, record structures can easily be converted to derived
-types. To convert, replace 'STRUCTURE /'STRUCTURE-NAME'/' by 'TYPE'
-TYPE-NAME. Additionally, replace 'RECORD /'STRUCTURE-NAME'/' by
-'TYPE('TYPE-NAME')'. Finally, in the component access, replace the
-period ('.') by the percent sign ('%').
-
- Here is an example of code using the non portable record structure
-syntax:
-
- ! Declaring a structure named ``item'' and containing three fields:
- ! an integer ID, an description string and a floating-point price.
- STRUCTURE /item/
- INTEGER id
- CHARACTER(LEN=200) description
- REAL price
- END STRUCTURE
-
- ! Define two variables, an single record of type ``item''
- ! named ``pear'', and an array of items named ``store_catalog''
- RECORD /item/ pear, store_catalog(100)
-
- ! We can directly access the fields of both variables
- pear.id = 92316
- pear.description = "juicy D'Anjou pear"
- pear.price = 0.15
- store_catalog(7).id = 7831
- store_catalog(7).description = "milk bottle"
- store_catalog(7).price = 1.2
-
- ! We can also manipulate the whole structure
- store_catalog(12) = pear
- print *, store_catalog(12)
-
-This code can easily be rewritten in the Fortran 90 syntax as following:
-
- ! ``STRUCTURE /name/ ... END STRUCTURE'' becomes
- ! ``TYPE name ... END TYPE''
- TYPE item
- INTEGER id
- CHARACTER(LEN=200) description
- REAL price
- END TYPE
-
- ! ``RECORD /name/ variable'' becomes ``TYPE(name) variable''
- TYPE(item) pear, store_catalog(100)
-
- ! Instead of using a dot (.) to access fields of a record, the
- ! standard syntax uses a percent sign (%)
- pear%id = 92316
- pear%description = "juicy D'Anjou pear"
- pear%price = 0.15
- store_catalog(7)%id = 7831
- store_catalog(7)%description = "milk bottle"
- store_catalog(7)%price = 1.2
-
- ! Assignments of a whole variable do not change
- store_catalog(12) = pear
- print *, store_catalog(12)
-
-
-File: gfortran.info, Node: ENCODE and DECODE statements, Next: Variable FORMAT expressions, Prev: STRUCTURE and RECORD, Up: Extensions not implemented in GNU Fortran
-
-6.2.2 'ENCODE' and 'DECODE' statements
---------------------------------------
-
-GNU Fortran does not support the 'ENCODE' and 'DECODE' statements.
-These statements are best replaced by 'READ' and 'WRITE' statements
-involving internal files ('CHARACTER' variables and arrays), which have
-been part of the Fortran standard since Fortran 77. For example,
-replace a code fragment like
-
- INTEGER*1 LINE(80)
- REAL A, B, C
- c ... Code that sets LINE
- DECODE (80, 9000, LINE) A, B, C
- 9000 FORMAT (1X, 3(F10.5))
-
-with the following:
-
- CHARACTER(LEN=80) LINE
- REAL A, B, C
- c ... Code that sets LINE
- READ (UNIT=LINE, FMT=9000) A, B, C
- 9000 FORMAT (1X, 3(F10.5))
-
- Similarly, replace a code fragment like
-
- INTEGER*1 LINE(80)
- REAL A, B, C
- c ... Code that sets A, B and C
- ENCODE (80, 9000, LINE) A, B, C
- 9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
-
-with the following:
-
- CHARACTER(LEN=80) LINE
- REAL A, B, C
- c ... Code that sets A, B and C
- WRITE (UNIT=LINE, FMT=9000) A, B, C
- 9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
-
-
-File: gfortran.info, Node: Variable FORMAT expressions, Next: Alternate complex function syntax, Prev: ENCODE and DECODE statements, Up: Extensions not implemented in GNU Fortran
-
-6.2.3 Variable 'FORMAT' expressions
------------------------------------
-
-A variable 'FORMAT' expression is format statement which includes angle
-brackets enclosing a Fortran expression: 'FORMAT(I<N>)'. GNU Fortran
-does not support this legacy extension. The effect of variable format
-expressions can be reproduced by using the more powerful (and standard)
-combination of internal output and string formats. For example, replace
-a code fragment like this:
-
- WRITE(6,20) INT1
- 20 FORMAT(I<N+1>)
-
-with the following:
-
- c Variable declaration
- CHARACTER(LEN=20) FMT
- c
- c Other code here...
- c
- WRITE(FMT,'("(I", I0, ")")') N+1
- WRITE(6,FMT) INT1
-
-or with:
-
- c Variable declaration
- CHARACTER(LEN=20) FMT
- c
- c Other code here...
- c
- WRITE(FMT,*) N+1
- WRITE(6,"(I" // ADJUSTL(FMT) // ")") INT1
-
-
-File: gfortran.info, Node: Alternate complex function syntax, Next: Volatile COMMON blocks, Prev: Variable FORMAT expressions, Up: Extensions not implemented in GNU Fortran
-
-6.2.4 Alternate complex function syntax
----------------------------------------
-
-Some Fortran compilers, including 'g77', let the user declare complex
-functions with the syntax 'COMPLEX FUNCTION name*16()', as well as
-'COMPLEX*16 FUNCTION name()'. Both are non-standard, legacy extensions.
-'gfortran' accepts the latter form, which is more common, but not the
-former.
-
-
-File: gfortran.info, Node: Volatile COMMON blocks, Prev: Alternate complex function syntax, Up: Extensions not implemented in GNU Fortran
-
-6.2.5 Volatile 'COMMON' blocks
-------------------------------
-
-Some Fortran compilers, including 'g77', let the user declare 'COMMON'
-with the 'VOLATILE' attribute. This is invalid standard Fortran syntax
-and is not supported by 'gfortran'. Note that 'gfortran' accepts
-'VOLATILE' variables in 'COMMON' blocks since revision 4.3.
-
-
-File: gfortran.info, Node: Mixed-Language Programming, Next: Intrinsic Procedures, Prev: Extensions, Up: Top
-
-7 Mixed-Language Programming
-****************************
-
-* Menu:
-
-* Interoperability with C::
-* GNU Fortran Compiler Directives::
-* Non-Fortran Main Program::
-* Naming and argument-passing conventions::
-
-This chapter is about mixed-language interoperability, but also applies
-if one links Fortran code compiled by different compilers. In most
-cases, use of the C Binding features of the Fortran 2003 standard is
-sufficient, and their use is highly recommended.
-
-
-File: gfortran.info, Node: Interoperability with C, Next: GNU Fortran Compiler Directives, Up: Mixed-Language Programming
-
-7.1 Interoperability with C
-===========================
-
-* Menu:
-
-* Intrinsic Types::
-* Derived Types and struct::
-* Interoperable Global Variables::
-* Interoperable Subroutines and Functions::
-* Working with Pointers::
-* Further Interoperability of Fortran with C::
-
-Since Fortran 2003 (ISO/IEC 1539-1:2004(E)) there is a standardized way
-to generate procedure and derived-type declarations and global variables
-which are interoperable with C (ISO/IEC 9899:1999). The 'bind(C)'
-attribute has been added to inform the compiler that a symbol shall be
-interoperable with C; also, some constraints are added. Note, however,
-that not all C features have a Fortran equivalent or vice versa. For
-instance, neither C's unsigned integers nor C's functions with variable
-number of arguments have an equivalent in Fortran.
-
- Note that array dimensions are reversely ordered in C and that arrays
-in C always start with index 0 while in Fortran they start by default
-with 1. Thus, an array declaration 'A(n,m)' in Fortran matches
-'A[m][n]' in C and accessing the element 'A(i,j)' matches 'A[j-1][i-1]'.
-The element following 'A(i,j)' (C: 'A[j-1][i-1]'; assuming i < n) in
-memory is 'A(i+1,j)' (C: 'A[j-1][i]').
-
-
-File: gfortran.info, Node: Intrinsic Types, Next: Derived Types and struct, Up: Interoperability with C
-
-7.1.1 Intrinsic Types
----------------------
-
-In order to ensure that exactly the same variable type and kind is used
-in C and Fortran, the named constants shall be used which are defined in
-the 'ISO_C_BINDING' intrinsic module. That module contains named
-constants for kind parameters and character named constants for the
-escape sequences in C. For a list of the constants, see *note
-ISO_C_BINDING::.
-
- For logical types, please note that the Fortran standard only
-guarantees interoperability between C99's '_Bool' and Fortran's
-'C_Bool'-kind logicals and C99 defines that 'true' has the value 1 and
-'false' the value 0. Using any other integer value with GNU Fortran's
-'LOGICAL' (with any kind parameter) gives an undefined result. (Passing
-other integer values than 0 and 1 to GCC's '_Bool' is also undefined,
-unless the integer is explicitly or implicitly casted to '_Bool'.)
-
-
-File: gfortran.info, Node: Derived Types and struct, Next: Interoperable Global Variables, Prev: Intrinsic Types, Up: Interoperability with C
-
-7.1.2 Derived Types and struct
-------------------------------
-
-For compatibility of derived types with 'struct', one needs to use the
-'BIND(C)' attribute in the type declaration. For instance, the
-following type declaration
-
- USE ISO_C_BINDING
- TYPE, BIND(C) :: myType
- INTEGER(C_INT) :: i1, i2
- INTEGER(C_SIGNED_CHAR) :: i3
- REAL(C_DOUBLE) :: d1
- COMPLEX(C_FLOAT_COMPLEX) :: c1
- CHARACTER(KIND=C_CHAR) :: str(5)
- END TYPE
-
- matches the following 'struct' declaration in C
-
- struct {
- int i1, i2;
- /* Note: "char" might be signed or unsigned. */
- signed char i3;
- double d1;
- float _Complex c1;
- char str[5];
- } myType;
-
- Derived types with the C binding attribute shall not have the
-'sequence' attribute, type parameters, the 'extends' attribute, nor
-type-bound procedures. Every component must be of interoperable type
-and kind and may not have the 'pointer' or 'allocatable' attribute. The
-names of the components are irrelevant for interoperability.
-
- As there exist no direct Fortran equivalents, neither unions nor
-structs with bit field or variable-length array members are
-interoperable.
-
-
-File: gfortran.info, Node: Interoperable Global Variables, Next: Interoperable Subroutines and Functions, Prev: Derived Types and struct, Up: Interoperability with C
-
-7.1.3 Interoperable Global Variables
-------------------------------------
-
-Variables can be made accessible from C using the C binding attribute,
-optionally together with specifying a binding name. Those variables
-have to be declared in the declaration part of a 'MODULE', be of
-interoperable type, and have neither the 'pointer' nor the 'allocatable'
-attribute.
-
- MODULE m
- USE myType_module
- USE ISO_C_BINDING
- integer(C_INT), bind(C, name="_MyProject_flags") :: global_flag
- type(myType), bind(C) :: tp
- END MODULE
-
- Here, '_MyProject_flags' is the case-sensitive name of the variable
-as seen from C programs while 'global_flag' is the case-insensitive name
-as seen from Fortran. If no binding name is specified, as for TP, the C
-binding name is the (lowercase) Fortran binding name. If a binding name
-is specified, only a single variable may be after the double colon.
-Note of warning: You cannot use a global variable to access ERRNO of the
-C library as the C standard allows it to be a macro. Use the 'IERRNO'
-intrinsic (GNU extension) instead.
-
-
-File: gfortran.info, Node: Interoperable Subroutines and Functions, Next: Working with Pointers, Prev: Interoperable Global Variables, Up: Interoperability with C
-
-7.1.4 Interoperable Subroutines and Functions
----------------------------------------------
-
-Subroutines and functions have to have the 'BIND(C)' attribute to be
-compatible with C. The dummy argument declaration is relatively
-straightforward. However, one needs to be careful because C uses
-call-by-value by default while Fortran behaves usually similar to
-call-by-reference. Furthermore, strings and pointers are handled
-differently. Note that in Fortran 2003 and 2008 only explicit size and
-assumed-size arrays are supported but not assumed-shape or
-deferred-shape (i.e. allocatable or pointer) arrays. However, those
-are allowed since the Technical Specification 29113, see *note Further
-Interoperability of Fortran with C::
-
- To pass a variable by value, use the 'VALUE' attribute. Thus, the
-following C prototype
-
- int func(int i, int *j)
-
- matches the Fortran declaration
-
- integer(c_int) function func(i,j)
- use iso_c_binding, only: c_int
- integer(c_int), VALUE :: i
- integer(c_int) :: j
-
- Note that pointer arguments also frequently need the 'VALUE'
-attribute, see *note Working with Pointers::.
-
- Strings are handled quite differently in C and Fortran. In C a
-string is a 'NUL'-terminated array of characters while in Fortran each
-string has a length associated with it and is thus not terminated (by
-e.g. 'NUL'). For example, if one wants to use the following C
-function,
-
- #include <stdio.h>
- void print_C(char *string) /* equivalent: char string[] */
- {
- printf("%s\n", string);
- }
-
- to print "Hello World" from Fortran, one can call it using
-
- use iso_c_binding, only: C_CHAR, C_NULL_CHAR
- interface
- subroutine print_c(string) bind(C, name="print_C")
- use iso_c_binding, only: c_char
- character(kind=c_char) :: string(*)
- end subroutine print_c
- end interface
- call print_c(C_CHAR_"Hello World"//C_NULL_CHAR)
-
- As the example shows, one needs to ensure that the string is 'NUL'
-terminated. Additionally, the dummy argument STRING of 'print_C' is a
-length-one assumed-size array; using 'character(len=*)' is not allowed.
-The example above uses 'c_char_"Hello World"' to ensure the string
-literal has the right type; typically the default character kind and
-'c_char' are the same and thus '"Hello World"' is equivalent. However,
-the standard does not guarantee this.
-
- The use of strings is now further illustrated using the C library
-function 'strncpy', whose prototype is
-
- char *strncpy(char *restrict s1, const char *restrict s2, size_t n);
-
- The function 'strncpy' copies at most N characters from string S2 to
-S1 and returns S1. In the following example, we ignore the return
-value:
-
- use iso_c_binding
- implicit none
- character(len=30) :: str,str2
- interface
- ! Ignore the return value of strncpy -> subroutine
- ! "restrict" is always assumed if we do not pass a pointer
- subroutine strncpy(dest, src, n) bind(C)
- import
- character(kind=c_char), intent(out) :: dest(*)
- character(kind=c_char), intent(in) :: src(*)
- integer(c_size_t), value, intent(in) :: n
- end subroutine strncpy
- end interface
- str = repeat('X',30) ! Initialize whole string with 'X'
- call strncpy(str, c_char_"Hello World"//C_NULL_CHAR, &
- len(c_char_"Hello World",kind=c_size_t))
- print '(a)', str ! prints: "Hello WorldXXXXXXXXXXXXXXXXXXX"
- end
-
- The intrinsic procedures are described in *note Intrinsic
-Procedures::.
-
-
-File: gfortran.info, Node: Working with Pointers, Next: Further Interoperability of Fortran with C, Prev: Interoperable Subroutines and Functions, Up: Interoperability with C
-
-7.1.5 Working with Pointers
----------------------------
-
-C pointers are represented in Fortran via the special opaque derived
-type 'type(c_ptr)' (with private components). Thus one needs to use
-intrinsic conversion procedures to convert from or to C pointers.
-
- For some applications, using an assumed type ('TYPE(*)') can be an
-alternative to a C pointer; see *note Further Interoperability of
-Fortran with C::.
-
- For example,
-
- use iso_c_binding
- type(c_ptr) :: cptr1, cptr2
- integer, target :: array(7), scalar
- integer, pointer :: pa(:), ps
- cptr1 = c_loc(array(1)) ! The programmer needs to ensure that the
- ! array is contiguous if required by the C
- ! procedure
- cptr2 = c_loc(scalar)
- call c_f_pointer(cptr2, ps)
- call c_f_pointer(cptr2, pa, shape=[7])
-
- When converting C to Fortran arrays, the one-dimensional 'SHAPE'
-argument has to be passed.
-
- If a pointer is a dummy-argument of an interoperable procedure, it
-usually has to be declared using the 'VALUE' attribute. 'void*' matches
-'TYPE(C_PTR), VALUE', while 'TYPE(C_PTR)' alone matches 'void**'.
-
- Procedure pointers are handled analogously to pointers; the C type is
-'TYPE(C_FUNPTR)' and the intrinsic conversion procedures are
-'C_F_PROCPOINTER' and 'C_FUNLOC'.
-
- Let us consider two examples of actually passing a procedure pointer
-from C to Fortran and vice versa. Note that these examples are also
-very similar to passing ordinary pointers between both languages.
-First, consider this code in C:
-
- /* Procedure implemented in Fortran. */
- void get_values (void (*)(double));
-
- /* Call-back routine we want called from Fortran. */
- void
- print_it (double x)
- {
- printf ("Number is %f.\n", x);
- }
-
- /* Call Fortran routine and pass call-back to it. */
- void
- foobar ()
- {
- get_values (&print_it);
- }
-
- A matching implementation for 'get_values' in Fortran, that correctly
-receives the procedure pointer from C and is able to call it, is given
-in the following 'MODULE':
-
- MODULE m
- IMPLICIT NONE
-
- ! Define interface of call-back routine.
- ABSTRACT INTERFACE
- SUBROUTINE callback (x)
- USE, INTRINSIC :: ISO_C_BINDING
- REAL(KIND=C_DOUBLE), INTENT(IN), VALUE :: x
- END SUBROUTINE callback
- END INTERFACE
-
- CONTAINS
-
- ! Define C-bound procedure.
- SUBROUTINE get_values (cproc) BIND(C)
- USE, INTRINSIC :: ISO_C_BINDING
- TYPE(C_FUNPTR), INTENT(IN), VALUE :: cproc
-
- PROCEDURE(callback), POINTER :: proc
-
- ! Convert C to Fortran procedure pointer.
- CALL C_F_PROCPOINTER (cproc, proc)
-
- ! Call it.
- CALL proc (1.0_C_DOUBLE)
- CALL proc (-42.0_C_DOUBLE)
- CALL proc (18.12_C_DOUBLE)
- END SUBROUTINE get_values
-
- END MODULE m
-
- Next, we want to call a C routine that expects a procedure pointer
-argument and pass it a Fortran procedure (which clearly must be
-interoperable!). Again, the C function may be:
-
- int
- call_it (int (*func)(int), int arg)
- {
- return func (arg);
- }
-
- It can be used as in the following Fortran code:
-
- MODULE m
- USE, INTRINSIC :: ISO_C_BINDING
- IMPLICIT NONE
-
- ! Define interface of C function.
- INTERFACE
- INTEGER(KIND=C_INT) FUNCTION call_it (func, arg) BIND(C)
- USE, INTRINSIC :: ISO_C_BINDING
- TYPE(C_FUNPTR), INTENT(IN), VALUE :: func
- INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
- END FUNCTION call_it
- END INTERFACE
-
- CONTAINS
-
- ! Define procedure passed to C function.
- ! It must be interoperable!
- INTEGER(KIND=C_INT) FUNCTION double_it (arg) BIND(C)
- INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
- double_it = arg + arg
- END FUNCTION double_it
-
- ! Call C function.
- SUBROUTINE foobar ()
- TYPE(C_FUNPTR) :: cproc
- INTEGER(KIND=C_INT) :: i
-
- ! Get C procedure pointer.
- cproc = C_FUNLOC (double_it)
-
- ! Use it.
- DO i = 1_C_INT, 10_C_INT
- PRINT *, call_it (cproc, i)
- END DO
- END SUBROUTINE foobar
-
- END MODULE m
-
-
-File: gfortran.info, Node: Further Interoperability of Fortran with C, Prev: Working with Pointers, Up: Interoperability with C
-
-7.1.6 Further Interoperability of Fortran with C
-------------------------------------------------
-
-The Technical Specification ISO/IEC TS 29113:2012 on further
-interoperability of Fortran with C extends the interoperability support
-of Fortran 2003 and Fortran 2008. Besides removing some restrictions
-and constraints, it adds assumed-type ('TYPE(*)') and assumed-rank
-('dimension') variables and allows for interoperability of
-assumed-shape, assumed-rank and deferred-shape arrays, including
-allocatables and pointers.
-
- Note: Currently, GNU Fortran does not support the array descriptor
-(dope vector) as specified in the Technical Specification, but uses an
-array descriptor with different fields. The Chasm Language
-Interoperability Tools, <http://chasm-interop.sourceforge.net/>, provide
-an interface to GNU Fortran's array descriptor.
-
- The Technical Specification adds the following new features, which
-are supported by GNU Fortran:
-
- * The 'ASYNCHRONOUS' attribute has been clarified and extended to
- allow its use with asynchronous communication in user-provided
- libraries such as in implementations of the Message Passing
- Interface specification.
-
- * Many constraints have been relaxed, in particular for the 'C_LOC'
- and 'C_F_POINTER' intrinsics.
-
- * The 'OPTIONAL' attribute is now allowed for dummy arguments; an
- absent argument matches a 'NULL' pointer.
-
- * Assumed types ('TYPE(*)') have been added, which may only be used
- for dummy arguments. They are unlimited polymorphic but contrary
- to 'CLASS(*)' they do not contain any type information, similar to
- C's 'void *' pointers. Expressions of any type and kind can be
- passed; thus, it can be used as replacement for 'TYPE(C_PTR)',
- avoiding the use of 'C_LOC' in the caller.
-
- Note, however, that 'TYPE(*)' only accepts scalar arguments, unless
- the 'DIMENSION' is explicitly specified. As 'DIMENSION(*)' only
- supports array (including array elements) but no scalars, it is not
- a full replacement for 'C_LOC'. On the other hand, assumed-type
- assumed-rank dummy arguments ('TYPE(*), DIMENSION(..)') allow for
- both scalars and arrays, but require special code on the callee
- side to handle the array descriptor.
-
- * Assumed-rank arrays ('DIMENSION(..)') as dummy argument allow that
- scalars and arrays of any rank can be passed as actual argument.
- As the Technical Specification does not provide for direct means to
- operate with them, they have to be used either from the C side or
- be converted using 'C_LOC' and 'C_F_POINTER' to scalars or arrays
- of a specific rank. The rank can be determined using the 'RANK'
- intrinisic.
-
- Currently unimplemented:
-
- * GNU Fortran always uses an array descriptor, which does not match
- the one of the Technical Specification. The
- 'ISO_Fortran_binding.h' header file and the C functions it
- specifies are not available.
-
- * Using assumed-shape, assumed-rank and deferred-shape arrays in
- 'BIND(C)' procedures is not fully supported. In particular, C
- interoperable strings of other length than one are not supported as
- this requires the new array descriptor.
-
-
-File: gfortran.info, Node: GNU Fortran Compiler Directives, Next: Non-Fortran Main Program, Prev: Interoperability with C, Up: Mixed-Language Programming
-
-7.2 GNU Fortran Compiler Directives
-===================================
-
-The Fortran standard describes how a conforming program shall behave;
-however, the exact implementation is not standardized. In order to
-allow the user to choose specific implementation details, compiler
-directives can be used to set attributes of variables and procedures
-which are not part of the standard. Whether a given attribute is
-supported and its exact effects depend on both the operating system and
-on the processor; see *note C Extensions: (gcc)Top. for details.
-
- For procedures and procedure pointers, the following attributes can
-be used to change the calling convention:
-
- * 'CDECL' - standard C calling convention
- * 'STDCALL' - convention where the called procedure pops the stack
- * 'FASTCALL' - part of the arguments are passed via registers instead
- using the stack
-
- Besides changing the calling convention, the attributes also
-influence the decoration of the symbol name, e.g., by a leading
-underscore or by a trailing at-sign followed by the number of bytes on
-the stack. When assigning a procedure to a procedure pointer, both
-should use the same calling convention.
-
- On some systems, procedures and global variables (module variables
-and 'COMMON' blocks) need special handling to be accessible when they
-are in a shared library. The following attributes are available:
-
- * 'DLLEXPORT' - provide a global pointer to a pointer in the DLL
- * 'DLLIMPORT' - reference the function or variable using a global
- pointer
-
- For dummy arguments, the 'NO_ARG_CHECK' attribute can be used; in
-other compilers, it is also known as 'IGNORE_TKR'. For dummy arguments
-with this attribute actual arguments of any type and kind (similar to
-'TYPE(*)'), scalars and arrays of any rank (no equivalent in Fortran
-standard) are accepted. As with 'TYPE(*)', the argument is unlimited
-polymorphic and no type information is available. Additionally, the
-argument may only be passed to dummy arguments with the 'NO_ARG_CHECK'
-attribute and as argument to the 'PRESENT' intrinsic function and to
-'C_LOC' of the 'ISO_C_BINDING' module.
-
- Variables with 'NO_ARG_CHECK' attribute shall be of assumed-type
-('TYPE(*)'; recommended) or of type 'INTEGER', 'LOGICAL', 'REAL' or
-'COMPLEX'. They shall not have the 'ALLOCATE', 'CODIMENSION',
-'INTENT(OUT)', 'POINTER' or 'VALUE' attribute; furthermore, they shall
-be either scalar or of assumed-size ('dimension(*)'). As 'TYPE(*)', the
-'NO_ARG_CHECK' attribute requires an explicit interface.
-
- * 'NO_ARG_CHECK' - disable the type, kind and rank checking
-
- The attributes are specified using the syntax
-
- '!GCC$ ATTRIBUTES' ATTRIBUTE-LIST '::' VARIABLE-LIST
-
- where in free-form source code only whitespace is allowed before
-'!GCC$' and in fixed-form source code '!GCC$', 'cGCC$' or '*GCC$' shall
-start in the first column.
-
- For procedures, the compiler directives shall be placed into the body
-of the procedure; for variables and procedure pointers, they shall be in
-the same declaration part as the variable or procedure pointer.
-
-
-File: gfortran.info, Node: Non-Fortran Main Program, Next: Naming and argument-passing conventions, Prev: GNU Fortran Compiler Directives, Up: Mixed-Language Programming
-
-7.3 Non-Fortran Main Program
-============================
-
-* Menu:
-
-* _gfortran_set_args:: Save command-line arguments
-* _gfortran_set_options:: Set library option flags
-* _gfortran_set_convert:: Set endian conversion
-* _gfortran_set_record_marker:: Set length of record markers
-* _gfortran_set_fpe:: Set when a Floating Point Exception should be raised
-* _gfortran_set_max_subrecord_length:: Set subrecord length
-
-Even if you are doing mixed-language programming, it is very likely that
-you do not need to know or use the information in this section. Since
-it is about the internal structure of GNU Fortran, it may also change in
-GCC minor releases.
-
- When you compile a 'PROGRAM' with GNU Fortran, a function with the
-name 'main' (in the symbol table of the object file) is generated, which
-initializes the libgfortran library and then calls the actual program
-which uses the name 'MAIN__', for historic reasons. If you link GNU
-Fortran compiled procedures to, e.g., a C or C++ program or to a Fortran
-program compiled by a different compiler, the libgfortran library is not
-initialized and thus a few intrinsic procedures do not work properly,
-e.g. those for obtaining the command-line arguments.
-
- Therefore, if your 'PROGRAM' is not compiled with GNU Fortran and the
-GNU Fortran compiled procedures require intrinsics relying on the
-library initialization, you need to initialize the library yourself.
-Using the default options, gfortran calls '_gfortran_set_args' and
-'_gfortran_set_options'. The initialization of the former is needed if
-the called procedures access the command line (and for backtracing); the
-latter sets some flags based on the standard chosen or to enable
-backtracing. In typical programs, it is not necessary to call any
-initialization function.
-
- If your 'PROGRAM' is compiled with GNU Fortran, you shall not call
-any of the following functions. The libgfortran initialization
-functions are shown in C syntax but using C bindings they are also
-accessible from Fortran.
-
-
-File: gfortran.info, Node: _gfortran_set_args, Next: _gfortran_set_options, Up: Non-Fortran Main Program
-
-7.3.1 '_gfortran_set_args' -- Save command-line arguments
----------------------------------------------------------
-
-_Description_:
- '_gfortran_set_args' saves the command-line arguments; this
- initialization is required if any of the command-line intrinsics is
- called. Additionally, it shall be called if backtracing is enabled
- (see '_gfortran_set_options').
-
-_Syntax_:
- 'void _gfortran_set_args (int argc, char *argv[])'
-
-_Arguments_:
- ARGC number of command line argument strings
- ARGV the command-line argument strings; argv[0] is
- the pathname of the executable itself.
-
-_Example_:
- int main (int argc, char *argv[])
- {
- /* Initialize libgfortran. */
- _gfortran_set_args (argc, argv);
- return 0;
- }
-
-
-File: gfortran.info, Node: _gfortran_set_options, Next: _gfortran_set_convert, Prev: _gfortran_set_args, Up: Non-Fortran Main Program
-
-7.3.2 '_gfortran_set_options' -- Set library option flags
----------------------------------------------------------
-
-_Description_:
- '_gfortran_set_options' sets several flags related to the Fortran
- standard to be used, whether backtracing should be enabled and
- whether range checks should be performed. The syntax allows for
- upward compatibility since the number of passed flags is specified;
- for non-passed flags, the default value is used. See also *note
- Code Gen Options::. Please note that not all flags are actually
- used.
-
-_Syntax_:
- 'void _gfortran_set_options (int num, int options[])'
-
-_Arguments_:
- NUM number of options passed
- ARGV The list of flag values
-
-_option flag list_:
- OPTION[0] Allowed standard; can give run-time errors if
- e.g. an input-output edit descriptor is invalid
- in a given standard. Possible values are
- (bitwise or-ed) 'GFC_STD_F77' (1),
- 'GFC_STD_F95_OBS' (2), 'GFC_STD_F95_DEL' (4),
- 'GFC_STD_F95' (8), 'GFC_STD_F2003' (16),
- 'GFC_STD_GNU' (32), 'GFC_STD_LEGACY' (64),
- 'GFC_STD_F2008' (128), 'GFC_STD_F2008_OBS' (256)
- and GFC_STD_F2008_TS (512). Default:
- 'GFC_STD_F95_OBS | GFC_STD_F95_DEL | GFC_STD_F95
- | GFC_STD_F2003 | GFC_STD_F2008 |
- GFC_STD_F2008_TS | GFC_STD_F2008_OBS |
- GFC_STD_F77 | GFC_STD_GNU | GFC_STD_LEGACY'.
- OPTION[1] Standard-warning flag; prints a warning to
- standard error. Default: 'GFC_STD_F95_DEL |
- GFC_STD_LEGACY'.
- OPTION[2] If non zero, enable pedantic checking. Default:
- off.
- OPTION[3] Unused.
- OPTION[4] If non zero, enable backtracing on run-time
- errors. Default: off. (Default in the
- compiler: on.) Note: Installs a signal handler
- and requires command-line initialization using
- '_gfortran_set_args'.
- OPTION[5] If non zero, supports signed zeros. Default:
- enabled.
- OPTION[6] Enables run-time checking. Possible values are
- (bitwise or-ed): GFC_RTCHECK_BOUNDS (1),
- GFC_RTCHECK_ARRAY_TEMPS (2),
- GFC_RTCHECK_RECURSION (4), GFC_RTCHECK_DO (16),
- GFC_RTCHECK_POINTER (32). Default: disabled.
- OPTION[7] Unused.
- OPTION[8] Show a warning when invoking 'STOP' and 'ERROR
- STOP' if a floating-point exception occurred.
- Possible values are (bitwise or-ed)
- 'GFC_FPE_INVALID' (1), 'GFC_FPE_DENORMAL' (2),
- 'GFC_FPE_ZERO' (4), 'GFC_FPE_OVERFLOW' (8),
- 'GFC_FPE_UNDERFLOW' (16), 'GFC_FPE_INEXACT'
- (32). Default: None (0). (Default in the
- compiler: 'GFC_FPE_INVALID | GFC_FPE_DENORMAL |
- GFC_FPE_ZERO | GFC_FPE_OVERFLOW |
- GFC_FPE_UNDERFLOW'.)
-
-_Example_:
- /* Use gfortran 4.9 default options. */
- static int options[] = {68, 511, 0, 0, 1, 1, 0, 0, 31};
- _gfortran_set_options (9, &options);
-
-
-File: gfortran.info, Node: _gfortran_set_convert, Next: _gfortran_set_record_marker, Prev: _gfortran_set_options, Up: Non-Fortran Main Program
-
-7.3.3 '_gfortran_set_convert' -- Set endian conversion
-------------------------------------------------------
-
-_Description_:
- '_gfortran_set_convert' set the representation of data for
- unformatted files.
-
-_Syntax_:
- 'void _gfortran_set_convert (int conv)'
-
-_Arguments_:
- CONV Endian conversion, possible values:
- GFC_CONVERT_NATIVE (0, default),
- GFC_CONVERT_SWAP (1), GFC_CONVERT_BIG (2),
- GFC_CONVERT_LITTLE (3).
-
-_Example_:
- int main (int argc, char *argv[])
- {
- /* Initialize libgfortran. */
- _gfortran_set_args (argc, argv);
- _gfortran_set_convert (1);
- return 0;
- }
-
-
-File: gfortran.info, Node: _gfortran_set_record_marker, Next: _gfortran_set_fpe, Prev: _gfortran_set_convert, Up: Non-Fortran Main Program
-
-7.3.4 '_gfortran_set_record_marker' -- Set length of record markers
--------------------------------------------------------------------
-
-_Description_:
- '_gfortran_set_record_marker' sets the length of record markers for
- unformatted files.
-
-_Syntax_:
- 'void _gfortran_set_record_marker (int val)'
-
-_Arguments_:
- VAL Length of the record marker; valid values are 4
- and 8. Default is 4.
-
-_Example_:
- int main (int argc, char *argv[])
- {
- /* Initialize libgfortran. */
- _gfortran_set_args (argc, argv);
- _gfortran_set_record_marker (8);
- return 0;
- }
-
-
-File: gfortran.info, Node: _gfortran_set_fpe, Next: _gfortran_set_max_subrecord_length, Prev: _gfortran_set_record_marker, Up: Non-Fortran Main Program
-
-7.3.5 '_gfortran_set_fpe' -- Enable floating point exception traps
-------------------------------------------------------------------
-
-_Description_:
- '_gfortran_set_fpe' enables floating point exception traps for the
- specified exceptions. On most systems, this will result in a
- SIGFPE signal being sent and the program being aborted.
-
-_Syntax_:
- 'void _gfortran_set_fpe (int val)'
-
-_Arguments_:
- OPTION[0] IEEE exceptions. Possible values are (bitwise
- or-ed) zero (0, default) no trapping,
- 'GFC_FPE_INVALID' (1), 'GFC_FPE_DENORMAL' (2),
- 'GFC_FPE_ZERO' (4), 'GFC_FPE_OVERFLOW' (8),
- 'GFC_FPE_UNDERFLOW' (16), and 'GFC_FPE_INEXACT'
- (32).
-
-_Example_:
- int main (int argc, char *argv[])
- {
- /* Initialize libgfortran. */
- _gfortran_set_args (argc, argv);
- /* FPE for invalid operations such as SQRT(-1.0). */
- _gfortran_set_fpe (1);
- return 0;
- }
-
-
-File: gfortran.info, Node: _gfortran_set_max_subrecord_length, Prev: _gfortran_set_fpe, Up: Non-Fortran Main Program
-
-7.3.6 '_gfortran_set_max_subrecord_length' -- Set subrecord length
-------------------------------------------------------------------
-
-_Description_:
- '_gfortran_set_max_subrecord_length' set the maximum length for a
- subrecord. This option only makes sense for testing and debugging
- of unformatted I/O.
-
-_Syntax_:
- 'void _gfortran_set_max_subrecord_length (int val)'
-
-_Arguments_:
- VAL the maximum length for a subrecord; the maximum
- permitted value is 2147483639, which is also the
- default.
-
-_Example_:
- int main (int argc, char *argv[])
- {
- /* Initialize libgfortran. */
- _gfortran_set_args (argc, argv);
- _gfortran_set_max_subrecord_length (8);
- return 0;
- }
-
-
-File: gfortran.info, Node: Naming and argument-passing conventions, Prev: Non-Fortran Main Program, Up: Mixed-Language Programming
-
-7.4 Naming and argument-passing conventions
-===========================================
-
-This section gives an overview about the naming convention of procedures
-and global variables and about the argument passing conventions used by
-GNU Fortran. If a C binding has been specified, the naming convention
-and some of the argument-passing conventions change. If possible,
-mixed-language and mixed-compiler projects should use the better defined
-C binding for interoperability. See *note Interoperability with C::.
-
-* Menu:
-
-* Naming conventions::
-* Argument passing conventions::
-
-
-File: gfortran.info, Node: Naming conventions, Next: Argument passing conventions, Up: Naming and argument-passing conventions
-
-7.4.1 Naming conventions
-------------------------
-
-According the Fortran standard, valid Fortran names consist of a letter
-between 'A' to 'Z', 'a' to 'z', digits '0', '1' to '9' and underscores
-('_') with the restriction that names may only start with a letter. As
-vendor extension, the dollar sign ('$') is additionally permitted with
-the option '-fdollar-ok', but not as first character and only if the
-target system supports it.
-
- By default, the procedure name is the lower-cased Fortran name with
-an appended underscore ('_'); using '-fno-underscoring' no underscore is
-appended while '-fsecond-underscore' appends two underscores. Depending
-on the target system and the calling convention, the procedure might be
-additionally dressed; for instance, on 32bit Windows with 'stdcall', an
-at-sign '@' followed by an integer number is appended. For the changing
-the calling convention, see *note GNU Fortran Compiler Directives::.
-
- For common blocks, the same convention is used, i.e. by default an
-underscore is appended to the lower-cased Fortran name. Blank commons
-have the name '__BLNK__'.
-
- For procedures and variables declared in the specification space of a
-module, the name is formed by '__', followed by the lower-cased module
-name, '_MOD_', and the lower-cased Fortran name. Note that no
-underscore is appended.
-
-
-File: gfortran.info, Node: Argument passing conventions, Prev: Naming conventions, Up: Naming and argument-passing conventions
-
-7.4.2 Argument passing conventions
-----------------------------------
-
-Subroutines do not return a value (matching C99's 'void') while
-functions either return a value as specified in the platform ABI or the
-result variable is passed as hidden argument to the function and no
-result is returned. A hidden result variable is used when the result
-variable is an array or of type 'CHARACTER'.
-
- Arguments are passed according to the platform ABI. In particular,
-complex arguments might not be compatible to a struct with two real
-components for the real and imaginary part. The argument passing
-matches the one of C99's '_Complex'. Functions with scalar complex
-result variables return their value and do not use a by-reference
-argument. Note that with the '-ff2c' option, the argument passing is
-modified and no longer completely matches the platform ABI. Some other
-Fortran compilers use 'f2c' semantic by default; this might cause
-problems with interoperablility.
-
- GNU Fortran passes most arguments by reference, i.e. by passing a
-pointer to the data. Note that the compiler might use a temporary
-variable into which the actual argument has been copied, if required
-semantically (copy-in/copy-out).
-
- For arguments with 'ALLOCATABLE' and 'POINTER' attribute (including
-procedure pointers), a pointer to the pointer is passed such that the
-pointer address can be modified in the procedure.
-
- For dummy arguments with the 'VALUE' attribute: Scalar arguments of
-the type 'INTEGER', 'LOGICAL', 'REAL' and 'COMPLEX' are passed by value
-according to the platform ABI. (As vendor extension and not recommended,
-using '%VAL()' in the call to a procedure has the same effect.) For
-'TYPE(C_PTR)' and procedure pointers, the pointer itself is passed such
-that it can be modified without affecting the caller.
-
- For Boolean ('LOGICAL') arguments, please note that GCC expects only
-the integer value 0 and 1. If a GNU Fortran 'LOGICAL' variable contains
-another integer value, the result is undefined. As some other Fortran
-compilers use -1 for '.TRUE.', extra care has to be taken - such as
-passing the value as 'INTEGER'. (The same value restriction also
-applies to other front ends of GCC, e.g. to GCC's C99 compiler for
-'_Bool' or GCC's Ada compiler for 'Boolean'.)
-
- For arguments of 'CHARACTER' type, the character length is passed as
-hidden argument. For deferred-length strings, the value is passed by
-reference, otherwise by value. The character length has the type
-'INTEGER(kind=4)'. Note with C binding, 'CHARACTER(len=1)' result
-variables are returned according to the platform ABI and no hidden
-length argument is used for dummy arguments; with 'VALUE', those
-variables are passed by value.
-
- For 'OPTIONAL' dummy arguments, an absent argument is denoted by a
-NULL pointer, except for scalar dummy arguments of type 'INTEGER',
-'LOGICAL', 'REAL' and 'COMPLEX' which have the 'VALUE' attribute. For
-those, a hidden Boolean argument ('logical(kind=C_bool),value') is used
-to indicate whether the argument is present.
-
- Arguments which are assumed-shape, assumed-rank or deferred-rank
-arrays or, with '-fcoarray=lib', allocatable scalar coarrays use an
-array descriptor. All other arrays pass the address of the first
-element of the array. With '-fcoarray=lib', the token and the offset
-belonging to nonallocatable coarrays dummy arguments are passed as
-hidden argument along the character length hidden arguments. The token
-is an oparque pointer identifying the coarray and the offset is a
-passed-by-value integer of kind 'C_PTRDIFF_T', denoting the byte offset
-between the base address of the coarray and the passed scalar or first
-element of the passed array.
-
- The arguments are passed in the following order
- * Result variable, when the function result is passed by reference
- * Character length of the function result, if it is a of type
- 'CHARACTER' and no C binding is used
- * The arguments in the order in which they appear in the Fortran
- declaration
- * The the present status for optional arguments with value attribute,
- which are internally passed by value
- * The character length and/or coarray token and offset for the first
- argument which is a 'CHARACTER' or a nonallocatable coarray dummy
- argument, followed by the hidden arguments of the next dummy
- argument of such a type
-
-
-File: gfortran.info, Node: Intrinsic Procedures, Next: Intrinsic Modules, Prev: Mixed-Language Programming, Up: Top
-
-8 Intrinsic Procedures
-**********************
-
-* Menu:
-
-* Introduction: Introduction to Intrinsics
-* 'ABORT': ABORT, Abort the program
-* 'ABS': ABS, Absolute value
-* 'ACCESS': ACCESS, Checks file access modes
-* 'ACHAR': ACHAR, Character in ASCII collating sequence
-* 'ACOS': ACOS, Arccosine function
-* 'ACOSH': ACOSH, Inverse hyperbolic cosine function
-* 'ADJUSTL': ADJUSTL, Left adjust a string
-* 'ADJUSTR': ADJUSTR, Right adjust a string
-* 'AIMAG': AIMAG, Imaginary part of complex number
-* 'AINT': AINT, Truncate to a whole number
-* 'ALARM': ALARM, Set an alarm clock
-* 'ALL': ALL, Determine if all values are true
-* 'ALLOCATED': ALLOCATED, Status of allocatable entity
-* 'AND': AND, Bitwise logical AND
-* 'ANINT': ANINT, Nearest whole number
-* 'ANY': ANY, Determine if any values are true
-* 'ASIN': ASIN, Arcsine function
-* 'ASINH': ASINH, Inverse hyperbolic sine function
-* 'ASSOCIATED': ASSOCIATED, Status of a pointer or pointer/target pair
-* 'ATAN': ATAN, Arctangent function
-* 'ATAN2': ATAN2, Arctangent function
-* 'ATANH': ATANH, Inverse hyperbolic tangent function
-* 'ATOMIC_DEFINE': ATOMIC_DEFINE, Setting a variable atomically
-* 'ATOMIC_REF': ATOMIC_REF, Obtaining the value of a variable atomically
-* 'BACKTRACE': BACKTRACE, Show a backtrace
-* 'BESSEL_J0': BESSEL_J0, Bessel function of the first kind of order 0
-* 'BESSEL_J1': BESSEL_J1, Bessel function of the first kind of order 1
-* 'BESSEL_JN': BESSEL_JN, Bessel function of the first kind
-* 'BESSEL_Y0': BESSEL_Y0, Bessel function of the second kind of order 0
-* 'BESSEL_Y1': BESSEL_Y1, Bessel function of the second kind of order 1
-* 'BESSEL_YN': BESSEL_YN, Bessel function of the second kind
-* 'BGE': BGE, Bitwise greater than or equal to
-* 'BGT': BGT, Bitwise greater than
-* 'BIT_SIZE': BIT_SIZE, Bit size inquiry function
-* 'BLE': BLE, Bitwise less than or equal to
-* 'BLT': BLT, Bitwise less than
-* 'BTEST': BTEST, Bit test function
-* 'C_ASSOCIATED': C_ASSOCIATED, Status of a C pointer
-* 'C_F_POINTER': C_F_POINTER, Convert C into Fortran pointer
-* 'C_F_PROCPOINTER': C_F_PROCPOINTER, Convert C into Fortran procedure pointer
-* 'C_FUNLOC': C_FUNLOC, Obtain the C address of a procedure
-* 'C_LOC': C_LOC, Obtain the C address of an object
-* 'C_SIZEOF': C_SIZEOF, Size in bytes of an expression
-* 'CEILING': CEILING, Integer ceiling function
-* 'CHAR': CHAR, Integer-to-character conversion function
-* 'CHDIR': CHDIR, Change working directory
-* 'CHMOD': CHMOD, Change access permissions of files
-* 'CMPLX': CMPLX, Complex conversion function
-* 'COMMAND_ARGUMENT_COUNT': COMMAND_ARGUMENT_COUNT, Get number of command line arguments
-* 'COMPILER_OPTIONS': COMPILER_OPTIONS, Options passed to the compiler
-* 'COMPILER_VERSION': COMPILER_VERSION, Compiler version string
-* 'COMPLEX': COMPLEX, Complex conversion function
-* 'CONJG': CONJG, Complex conjugate function
-* 'COS': COS, Cosine function
-* 'COSH': COSH, Hyperbolic cosine function
-* 'COUNT': COUNT, Count occurrences of TRUE in an array
-* 'CPU_TIME': CPU_TIME, CPU time subroutine
-* 'CSHIFT': CSHIFT, Circular shift elements of an array
-* 'CTIME': CTIME, Subroutine (or function) to convert a time into a string
-* 'DATE_AND_TIME': DATE_AND_TIME, Date and time subroutine
-* 'DBLE': DBLE, Double precision conversion function
-* 'DCMPLX': DCMPLX, Double complex conversion function
-* 'DIGITS': DIGITS, Significant digits function
-* 'DIM': DIM, Positive difference
-* 'DOT_PRODUCT': DOT_PRODUCT, Dot product function
-* 'DPROD': DPROD, Double product function
-* 'DREAL': DREAL, Double real part function
-* 'DSHIFTL': DSHIFTL, Combined left shift
-* 'DSHIFTR': DSHIFTR, Combined right shift
-* 'DTIME': DTIME, Execution time subroutine (or function)
-* 'EOSHIFT': EOSHIFT, End-off shift elements of an array
-* 'EPSILON': EPSILON, Epsilon function
-* 'ERF': ERF, Error function
-* 'ERFC': ERFC, Complementary error function
-* 'ERFC_SCALED': ERFC_SCALED, Exponentially-scaled complementary error function
-* 'ETIME': ETIME, Execution time subroutine (or function)
-* 'EXECUTE_COMMAND_LINE': EXECUTE_COMMAND_LINE, Execute a shell command
-* 'EXIT': EXIT, Exit the program with status.
-* 'EXP': EXP, Exponential function
-* 'EXPONENT': EXPONENT, Exponent function
-* 'EXTENDS_TYPE_OF': EXTENDS_TYPE_OF, Query dynamic type for extension
-* 'FDATE': FDATE, Subroutine (or function) to get the current time as a string
-* 'FGET': FGET, Read a single character in stream mode from stdin
-* 'FGETC': FGETC, Read a single character in stream mode
-* 'FLOOR': FLOOR, Integer floor function
-* 'FLUSH': FLUSH, Flush I/O unit(s)
-* 'FNUM': FNUM, File number function
-* 'FPUT': FPUT, Write a single character in stream mode to stdout
-* 'FPUTC': FPUTC, Write a single character in stream mode
-* 'FRACTION': FRACTION, Fractional part of the model representation
-* 'FREE': FREE, Memory de-allocation subroutine
-* 'FSEEK': FSEEK, Low level file positioning subroutine
-* 'FSTAT': FSTAT, Get file status
-* 'FTELL': FTELL, Current stream position
-* 'GAMMA': GAMMA, Gamma function
-* 'GERROR': GERROR, Get last system error message
-* 'GETARG': GETARG, Get command line arguments
-* 'GET_COMMAND': GET_COMMAND, Get the entire command line
-* 'GET_COMMAND_ARGUMENT': GET_COMMAND_ARGUMENT, Get command line arguments
-* 'GETCWD': GETCWD, Get current working directory
-* 'GETENV': GETENV, Get an environmental variable
-* 'GET_ENVIRONMENT_VARIABLE': GET_ENVIRONMENT_VARIABLE, Get an environmental variable
-* 'GETGID': GETGID, Group ID function
-* 'GETLOG': GETLOG, Get login name
-* 'GETPID': GETPID, Process ID function
-* 'GETUID': GETUID, User ID function
-* 'GMTIME': GMTIME, Convert time to GMT info
-* 'HOSTNM': HOSTNM, Get system host name
-* 'HUGE': HUGE, Largest number of a kind
-* 'HYPOT': HYPOT, Euclidean distance function
-* 'IACHAR': IACHAR, Code in ASCII collating sequence
-* 'IALL': IALL, Bitwise AND of array elements
-* 'IAND': IAND, Bitwise logical and
-* 'IANY': IANY, Bitwise OR of array elements
-* 'IARGC': IARGC, Get the number of command line arguments
-* 'IBCLR': IBCLR, Clear bit
-* 'IBITS': IBITS, Bit extraction
-* 'IBSET': IBSET, Set bit
-* 'ICHAR': ICHAR, Character-to-integer conversion function
-* 'IDATE': IDATE, Current local time (day/month/year)
-* 'IEOR': IEOR, Bitwise logical exclusive or
-* 'IERRNO': IERRNO, Function to get the last system error number
-* 'IMAGE_INDEX': IMAGE_INDEX, Cosubscript to image index conversion
-* 'INDEX': INDEX intrinsic, Position of a substring within a string
-* 'INT': INT, Convert to integer type
-* 'INT2': INT2, Convert to 16-bit integer type
-* 'INT8': INT8, Convert to 64-bit integer type
-* 'IOR': IOR, Bitwise logical or
-* 'IPARITY': IPARITY, Bitwise XOR of array elements
-* 'IRAND': IRAND, Integer pseudo-random number
-* 'IS_IOSTAT_END': IS_IOSTAT_END, Test for end-of-file value
-* 'IS_IOSTAT_EOR': IS_IOSTAT_EOR, Test for end-of-record value
-* 'ISATTY': ISATTY, Whether a unit is a terminal device
-* 'ISHFT': ISHFT, Shift bits
-* 'ISHFTC': ISHFTC, Shift bits circularly
-* 'ISNAN': ISNAN, Tests for a NaN
-* 'ITIME': ITIME, Current local time (hour/minutes/seconds)
-* 'KILL': KILL, Send a signal to a process
-* 'KIND': KIND, Kind of an entity
-* 'LBOUND': LBOUND, Lower dimension bounds of an array
-* 'LCOBOUND': LCOBOUND, Lower codimension bounds of an array
-* 'LEADZ': LEADZ, Number of leading zero bits of an integer
-* 'LEN': LEN, Length of a character entity
-* 'LEN_TRIM': LEN_TRIM, Length of a character entity without trailing blank characters
-* 'LGE': LGE, Lexical greater than or equal
-* 'LGT': LGT, Lexical greater than
-* 'LINK': LINK, Create a hard link
-* 'LLE': LLE, Lexical less than or equal
-* 'LLT': LLT, Lexical less than
-* 'LNBLNK': LNBLNK, Index of the last non-blank character in a string
-* 'LOC': LOC, Returns the address of a variable
-* 'LOG': LOG, Logarithm function
-* 'LOG10': LOG10, Base 10 logarithm function
-* 'LOG_GAMMA': LOG_GAMMA, Logarithm of the Gamma function
-* 'LOGICAL': LOGICAL, Convert to logical type
-* 'LONG': LONG, Convert to integer type
-* 'LSHIFT': LSHIFT, Left shift bits
-* 'LSTAT': LSTAT, Get file status
-* 'LTIME': LTIME, Convert time to local time info
-* 'MALLOC': MALLOC, Dynamic memory allocation function
-* 'MASKL': MASKL, Left justified mask
-* 'MASKR': MASKR, Right justified mask
-* 'MATMUL': MATMUL, matrix multiplication
-* 'MAX': MAX, Maximum value of an argument list
-* 'MAXEXPONENT': MAXEXPONENT, Maximum exponent of a real kind
-* 'MAXLOC': MAXLOC, Location of the maximum value within an array
-* 'MAXVAL': MAXVAL, Maximum value of an array
-* 'MCLOCK': MCLOCK, Time function
-* 'MCLOCK8': MCLOCK8, Time function (64-bit)
-* 'MERGE': MERGE, Merge arrays
-* 'MERGE_BITS': MERGE_BITS, Merge of bits under mask
-* 'MIN': MIN, Minimum value of an argument list
-* 'MINEXPONENT': MINEXPONENT, Minimum exponent of a real kind
-* 'MINLOC': MINLOC, Location of the minimum value within an array
-* 'MINVAL': MINVAL, Minimum value of an array
-* 'MOD': MOD, Remainder function
-* 'MODULO': MODULO, Modulo function
-* 'MOVE_ALLOC': MOVE_ALLOC, Move allocation from one object to another
-* 'MVBITS': MVBITS, Move bits from one integer to another
-* 'NEAREST': NEAREST, Nearest representable number
-* 'NEW_LINE': NEW_LINE, New line character
-* 'NINT': NINT, Nearest whole number
-* 'NORM2': NORM2, Euclidean vector norm
-* 'NOT': NOT, Logical negation
-* 'NULL': NULL, Function that returns an disassociated pointer
-* 'NUM_IMAGES': NUM_IMAGES, Number of images
-* 'OR': OR, Bitwise logical OR
-* 'PACK': PACK, Pack an array into an array of rank one
-* 'PARITY': PARITY, Reduction with exclusive OR
-* 'PERROR': PERROR, Print system error message
-* 'POPCNT': POPCNT, Number of bits set
-* 'POPPAR': POPPAR, Parity of the number of bits set
-* 'PRECISION': PRECISION, Decimal precision of a real kind
-* 'PRESENT': PRESENT, Determine whether an optional dummy argument is specified
-* 'PRODUCT': PRODUCT, Product of array elements
-* 'RADIX': RADIX, Base of a data model
-* 'RAN': RAN, Real pseudo-random number
-* 'RAND': RAND, Real pseudo-random number
-* 'RANDOM_NUMBER': RANDOM_NUMBER, Pseudo-random number
-* 'RANDOM_SEED': RANDOM_SEED, Initialize a pseudo-random number sequence
-* 'RANGE': RANGE, Decimal exponent range
-* 'RANK' : RANK, Rank of a data object
-* 'REAL': REAL, Convert to real type
-* 'RENAME': RENAME, Rename a file
-* 'REPEAT': REPEAT, Repeated string concatenation
-* 'RESHAPE': RESHAPE, Function to reshape an array
-* 'RRSPACING': RRSPACING, Reciprocal of the relative spacing
-* 'RSHIFT': RSHIFT, Right shift bits
-* 'SAME_TYPE_AS': SAME_TYPE_AS, Query dynamic types for equality
-* 'SCALE': SCALE, Scale a real value
-* 'SCAN': SCAN, Scan a string for the presence of a set of characters
-* 'SECNDS': SECNDS, Time function
-* 'SECOND': SECOND, CPU time function
-* 'SELECTED_CHAR_KIND': SELECTED_CHAR_KIND, Choose character kind
-* 'SELECTED_INT_KIND': SELECTED_INT_KIND, Choose integer kind
-* 'SELECTED_REAL_KIND': SELECTED_REAL_KIND, Choose real kind
-* 'SET_EXPONENT': SET_EXPONENT, Set the exponent of the model
-* 'SHAPE': SHAPE, Determine the shape of an array
-* 'SHIFTA': SHIFTA, Right shift with fill
-* 'SHIFTL': SHIFTL, Left shift
-* 'SHIFTR': SHIFTR, Right shift
-* 'SIGN': SIGN, Sign copying function
-* 'SIGNAL': SIGNAL, Signal handling subroutine (or function)
-* 'SIN': SIN, Sine function
-* 'SINH': SINH, Hyperbolic sine function
-* 'SIZE': SIZE, Function to determine the size of an array
-* 'SIZEOF': SIZEOF, Determine the size in bytes of an expression
-* 'SLEEP': SLEEP, Sleep for the specified number of seconds
-* 'SPACING': SPACING, Smallest distance between two numbers of a given type
-* 'SPREAD': SPREAD, Add a dimension to an array
-* 'SQRT': SQRT, Square-root function
-* 'SRAND': SRAND, Reinitialize the random number generator
-* 'STAT': STAT, Get file status
-* 'STORAGE_SIZE': STORAGE_SIZE, Storage size in bits
-* 'SUM': SUM, Sum of array elements
-* 'SYMLNK': SYMLNK, Create a symbolic link
-* 'SYSTEM': SYSTEM, Execute a shell command
-* 'SYSTEM_CLOCK': SYSTEM_CLOCK, Time function
-* 'TAN': TAN, Tangent function
-* 'TANH': TANH, Hyperbolic tangent function
-* 'THIS_IMAGE': THIS_IMAGE, Cosubscript index of this image
-* 'TIME': TIME, Time function
-* 'TIME8': TIME8, Time function (64-bit)
-* 'TINY': TINY, Smallest positive number of a real kind
-* 'TRAILZ': TRAILZ, Number of trailing zero bits of an integer
-* 'TRANSFER': TRANSFER, Transfer bit patterns
-* 'TRANSPOSE': TRANSPOSE, Transpose an array of rank two
-* 'TRIM': TRIM, Remove trailing blank characters of a string
-* 'TTYNAM': TTYNAM, Get the name of a terminal device.
-* 'UBOUND': UBOUND, Upper dimension bounds of an array
-* 'UCOBOUND': UCOBOUND, Upper codimension bounds of an array
-* 'UMASK': UMASK, Set the file creation mask
-* 'UNLINK': UNLINK, Remove a file from the file system
-* 'UNPACK': UNPACK, Unpack an array of rank one into an array
-* 'VERIFY': VERIFY, Scan a string for the absence of a set of characters
-* 'XOR': XOR, Bitwise logical exclusive or
-
-
-File: gfortran.info, Node: Introduction to Intrinsics, Next: ABORT, Up: Intrinsic Procedures
-
-8.1 Introduction to intrinsic procedures
-========================================
-
-The intrinsic procedures provided by GNU Fortran include all of the
-intrinsic procedures required by the Fortran 95 standard, a set of
-intrinsic procedures for backwards compatibility with G77, and a
-selection of intrinsic procedures from the Fortran 2003 and Fortran 2008
-standards. Any conflict between a description here and a description in
-either the Fortran 95 standard, the Fortran 2003 standard or the Fortran
-2008 standard is unintentional, and the standard(s) should be considered
-authoritative.
-
- The enumeration of the 'KIND' type parameter is processor defined in
-the Fortran 95 standard. GNU Fortran defines the default integer type
-and default real type by 'INTEGER(KIND=4)' and 'REAL(KIND=4)',
-respectively. The standard mandates that both data types shall have
-another kind, which have more precision. On typical target
-architectures supported by 'gfortran', this kind type parameter is
-'KIND=8'. Hence, 'REAL(KIND=8)' and 'DOUBLE PRECISION' are equivalent.
-In the description of generic intrinsic procedures, the kind type
-parameter will be specified by 'KIND=*', and in the description of
-specific names for an intrinsic procedure the kind type parameter will
-be explicitly given (e.g., 'REAL(KIND=4)' or 'REAL(KIND=8)'). Finally,
-for brevity the optional 'KIND=' syntax will be omitted.
-
- Many of the intrinsic procedures take one or more optional arguments.
-This document follows the convention used in the Fortran 95 standard,
-and denotes such arguments by square brackets.
-
- GNU Fortran offers the '-std=f95' and '-std=gnu' options, which can
-be used to restrict the set of intrinsic procedures to a given standard.
-By default, 'gfortran' sets the '-std=gnu' option, and so all intrinsic
-procedures described here are accepted. There is one caveat. For a
-select group of intrinsic procedures, 'g77' implemented both a function
-and a subroutine. Both classes have been implemented in 'gfortran' for
-backwards compatibility with 'g77'. It is noted here that these
-functions and subroutines cannot be intermixed in a given subprogram.
-In the descriptions that follow, the applicable standard for each
-intrinsic procedure is noted.
-
-
-File: gfortran.info, Node: ABORT, Next: ABS, Prev: Introduction to Intrinsics, Up: Intrinsic Procedures
-
-8.2 'ABORT' -- Abort the program
-================================
-
-_Description_:
- 'ABORT' causes immediate termination of the program. On operating
- systems that support a core dump, 'ABORT' will produce a core dump.
- It will also print a backtrace, unless '-fno-backtrace' is given.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL ABORT'
-
-_Return value_:
- Does not return.
-
-_Example_:
- program test_abort
- integer :: i = 1, j = 2
- if (i /= j) call abort
- end program test_abort
-
-_See also_:
- *note EXIT::, *note KILL::, *note BACKTRACE::
-
-
-File: gfortran.info, Node: ABS, Next: ACCESS, Prev: ABORT, Up: Intrinsic Procedures
-
-8.3 'ABS' -- Absolute value
-===========================
-
-_Description_:
- 'ABS(A)' computes the absolute value of 'A'.
-
-_Standard_:
- Fortran 77 and later, has overloads that are GNU extensions
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = ABS(A)'
-
-_Arguments_:
- A The type of the argument shall be an 'INTEGER',
- 'REAL', or 'COMPLEX'.
-
-_Return value_:
- The return value is of the same type and kind as the argument
- except the return value is 'REAL' for a 'COMPLEX' argument.
-
-_Example_:
- program test_abs
- integer :: i = -1
- real :: x = -1.e0
- complex :: z = (-1.e0,0.e0)
- i = abs(i)
- x = abs(x)
- x = abs(z)
- end program test_abs
-
-_Specific names_:
- Name Argument Return type Standard
- 'ABS(A)' 'REAL(4) A' 'REAL(4)' Fortran 77 and
- later
- 'CABS(A)' 'COMPLEX(4) 'REAL(4)' Fortran 77 and
- A' later
- 'DABS(A)' 'REAL(8) A' 'REAL(8)' Fortran 77 and
- later
- 'IABS(A)' 'INTEGER(4) 'INTEGER(4)' Fortran 77 and
- A' later
- 'ZABS(A)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- A'
- 'CDABS(A)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- A'
-
-
-File: gfortran.info, Node: ACCESS, Next: ACHAR, Prev: ABS, Up: Intrinsic Procedures
-
-8.4 'ACCESS' -- Checks file access modes
-========================================
-
-_Description_:
- 'ACCESS(NAME, MODE)' checks whether the file NAME exists, is
- readable, writable or executable. Except for the executable check,
- 'ACCESS' can be replaced by Fortran 95's 'INQUIRE'.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = ACCESS(NAME, MODE)'
-
-_Arguments_:
- NAME Scalar 'CHARACTER' of default kind with the file
- name. Tailing blank are ignored unless the
- character 'achar(0)' is present, then all
- characters up to and excluding 'achar(0)' are
- used as file name.
- MODE Scalar 'CHARACTER' of default kind with the file
- access mode, may be any concatenation of '"r"'
- (readable), '"w"' (writable) and '"x"'
- (executable), or '" "' to check for existence.
-
-_Return value_:
- Returns a scalar 'INTEGER', which is '0' if the file is accessible
- in the given mode; otherwise or if an invalid argument has been
- given for 'MODE' the value '1' is returned.
-
-_Example_:
- program access_test
- implicit none
- character(len=*), parameter :: file = 'test.dat'
- character(len=*), parameter :: file2 = 'test.dat '//achar(0)
- if(access(file,' ') == 0) print *, trim(file),' is exists'
- if(access(file,'r') == 0) print *, trim(file),' is readable'
- if(access(file,'w') == 0) print *, trim(file),' is writable'
- if(access(file,'x') == 0) print *, trim(file),' is executable'
- if(access(file2,'rwx') == 0) &
- print *, trim(file2),' is readable, writable and executable'
- end program access_test
-_Specific names_:
-_See also_:
-
-
-File: gfortran.info, Node: ACHAR, Next: ACOS, Prev: ACCESS, Up: Intrinsic Procedures
-
-8.5 'ACHAR' -- Character in ASCII collating sequence
-====================================================
-
-_Description_:
- 'ACHAR(I)' returns the character located at position 'I' in the
- ASCII collating sequence.
-
-_Standard_:
- Fortran 77 and later, with KIND argument Fortran 2003 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = ACHAR(I [, KIND])'
-
-_Arguments_:
- I The type shall be 'INTEGER'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- The return value is of type 'CHARACTER' with a length of one. If
- the KIND argument is present, the return value is of the specified
- kind and of the default kind otherwise.
-
-_Example_:
- program test_achar
- character c
- c = achar(32)
- end program test_achar
-
-_Note_:
- See *note ICHAR:: for a discussion of converting between numerical
- values and formatted string representations.
-
-_See also_:
- *note CHAR::, *note IACHAR::, *note ICHAR::
-
-
-File: gfortran.info, Node: ACOS, Next: ACOSH, Prev: ACHAR, Up: Intrinsic Procedures
-
-8.6 'ACOS' -- Arccosine function
-================================
-
-_Description_:
- 'ACOS(X)' computes the arccosine of X (inverse of 'COS(X)').
-
-_Standard_:
- Fortran 77 and later, for a complex argument Fortran 2008 or later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = ACOS(X)'
-
-_Arguments_:
- X The type shall either be 'REAL' with a magnitude
- that is less than or equal to one - or the type
- shall be 'COMPLEX'.
-
-_Return value_:
- The return value is of the same type and kind as X. The real part
- of the result is in radians and lies in the range 0 \leq \Re
- \acos(x) \leq \pi.
-
-_Example_:
- program test_acos
- real(8) :: x = 0.866_8
- x = acos(x)
- end program test_acos
-
-_Specific names_:
- Name Argument Return type Standard
- 'ACOS(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DACOS(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
-
-_See also_:
- Inverse function: *note COS::
-
-
-File: gfortran.info, Node: ACOSH, Next: ADJUSTL, Prev: ACOS, Up: Intrinsic Procedures
-
-8.7 'ACOSH' -- Inverse hyperbolic cosine function
-=================================================
-
-_Description_:
- 'ACOSH(X)' computes the inverse hyperbolic cosine of X.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = ACOSH(X)'
-
-_Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
-
-_Return value_:
- The return value has the same type and kind as X. If X is complex,
- the imaginary part of the result is in radians and lies between 0
- \leq \Im \acosh(x) \leq \pi.
-
-_Example_:
- PROGRAM test_acosh
- REAL(8), DIMENSION(3) :: x = (/ 1.0, 2.0, 3.0 /)
- WRITE (*,*) ACOSH(x)
- END PROGRAM
-
-_Specific names_:
- Name Argument Return type Standard
- 'DACOSH(X)' 'REAL(8) X' 'REAL(8)' GNU extension
-
-_See also_:
- Inverse function: *note COSH::
-
-
-File: gfortran.info, Node: ADJUSTL, Next: ADJUSTR, Prev: ACOSH, Up: Intrinsic Procedures
-
-8.8 'ADJUSTL' -- Left adjust a string
-=====================================
-
-_Description_:
- 'ADJUSTL(STRING)' will left adjust a string by removing leading
- spaces. Spaces are inserted at the end of the string as needed.
-
-_Standard_:
- Fortran 90 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = ADJUSTL(STRING)'
-
-_Arguments_:
- STRING The type shall be 'CHARACTER'.
-
-_Return value_:
- The return value is of type 'CHARACTER' and of the same kind as
- STRING where leading spaces are removed and the same number of
- spaces are inserted on the end of STRING.
-
-_Example_:
- program test_adjustl
- character(len=20) :: str = ' gfortran'
- str = adjustl(str)
- print *, str
- end program test_adjustl
-
-_See also_:
- *note ADJUSTR::, *note TRIM::
-
-
-File: gfortran.info, Node: ADJUSTR, Next: AIMAG, Prev: ADJUSTL, Up: Intrinsic Procedures
-
-8.9 'ADJUSTR' -- Right adjust a string
-======================================
-
-_Description_:
- 'ADJUSTR(STRING)' will right adjust a string by removing trailing
- spaces. Spaces are inserted at the start of the string as needed.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = ADJUSTR(STRING)'
-
-_Arguments_:
- STR The type shall be 'CHARACTER'.
-
-_Return value_:
- The return value is of type 'CHARACTER' and of the same kind as
- STRING where trailing spaces are removed and the same number of
- spaces are inserted at the start of STRING.
-
-_Example_:
- program test_adjustr
- character(len=20) :: str = 'gfortran'
- str = adjustr(str)
- print *, str
- end program test_adjustr
-
-_See also_:
- *note ADJUSTL::, *note TRIM::
-
-
-File: gfortran.info, Node: AIMAG, Next: AINT, Prev: ADJUSTR, Up: Intrinsic Procedures
-
-8.10 'AIMAG' -- Imaginary part of complex number
-================================================
-
-_Description_:
- 'AIMAG(Z)' yields the imaginary part of complex argument 'Z'. The
- 'IMAG(Z)' and 'IMAGPART(Z)' intrinsic functions are provided for
- compatibility with 'g77', and their use in new code is strongly
- discouraged.
-
-_Standard_:
- Fortran 77 and later, has overloads that are GNU extensions
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = AIMAG(Z)'
-
-_Arguments_:
- Z The type of the argument shall be 'COMPLEX'.
-
-_Return value_:
- The return value is of type 'REAL' with the kind type parameter of
- the argument.
-
-_Example_:
- program test_aimag
- complex(4) z4
- complex(8) z8
- z4 = cmplx(1.e0_4, 0.e0_4)
- z8 = cmplx(0.e0_8, 1.e0_8)
- print *, aimag(z4), dimag(z8)
- end program test_aimag
-
-_Specific names_:
- Name Argument Return type Standard
- 'AIMAG(Z)' 'COMPLEX Z' 'REAL' GNU extension
- 'DIMAG(Z)' 'COMPLEX(8) 'REAL(8)' GNU extension
- Z'
- 'IMAG(Z)' 'COMPLEX Z' 'REAL' GNU extension
- 'IMAGPART(Z)' 'COMPLEX Z' 'REAL' GNU extension
-
-
-File: gfortran.info, Node: AINT, Next: ALARM, Prev: AIMAG, Up: Intrinsic Procedures
-
-8.11 'AINT' -- Truncate to a whole number
-=========================================
-
-_Description_:
- 'AINT(A [, KIND])' truncates its argument to a whole number.
-
-_Standard_:
- Fortran 77 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = AINT(A [, KIND])'
-
-_Arguments_:
- A The type of the argument shall be 'REAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- The return value is of type 'REAL' with the kind type parameter of
- the argument if the optional KIND is absent; otherwise, the kind
- type parameter will be given by KIND. If the magnitude of X is
- less than one, 'AINT(X)' returns zero. If the magnitude is equal
- to or greater than one then it returns the largest whole number
- that does not exceed its magnitude. The sign is the same as the
- sign of X.
-
-_Example_:
- program test_aint
- real(4) x4
- real(8) x8
- x4 = 1.234E0_4
- x8 = 4.321_8
- print *, aint(x4), dint(x8)
- x8 = aint(x4,8)
- end program test_aint
-
-_Specific names_:
- Name Argument Return type Standard
- 'AINT(A)' 'REAL(4) A' 'REAL(4)' Fortran 77 and
- later
- 'DINT(A)' 'REAL(8) A' 'REAL(8)' Fortran 77 and
- later
-
-
-File: gfortran.info, Node: ALARM, Next: ALL, Prev: AINT, Up: Intrinsic Procedures
-
-8.12 'ALARM' -- Execute a routine after a given delay
-=====================================================
-
-_Description_:
- 'ALARM(SECONDS, HANDLER [, STATUS])' causes external subroutine
- HANDLER to be executed after a delay of SECONDS by using 'alarm(2)'
- to set up a signal and 'signal(2)' to catch it. If STATUS is
- supplied, it will be returned with the number of seconds remaining
- until any previously scheduled alarm was due to be delivered, or
- zero if there was no previously scheduled alarm.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL ALARM(SECONDS, HANDLER [, STATUS])'
-
-_Arguments_:
- SECONDS The type of the argument shall be a scalar
- 'INTEGER'. It is 'INTENT(IN)'.
- HANDLER Signal handler ('INTEGER FUNCTION' or
- 'SUBROUTINE') or dummy/global 'INTEGER' scalar.
- The scalar values may be either 'SIG_IGN=1' to
- ignore the alarm generated or 'SIG_DFL=0' to set
- the default action. It is 'INTENT(IN)'.
- STATUS (Optional) STATUS shall be a scalar variable of
- the default 'INTEGER' kind. It is
- 'INTENT(OUT)'.
-
-_Example_:
- program test_alarm
- external handler_print
- integer i
- call alarm (3, handler_print, i)
- print *, i
- call sleep(10)
- end program test_alarm
- This will cause the external routine HANDLER_PRINT to be called
- after 3 seconds.
-
-
-File: gfortran.info, Node: ALL, Next: ALLOCATED, Prev: ALARM, Up: Intrinsic Procedures
-
-8.13 'ALL' -- All values in MASK along DIM are true
-===================================================
-
-_Description_:
- 'ALL(MASK [, DIM])' determines if all the values are true in MASK
- in the array along dimension DIM.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = ALL(MASK [, DIM])'
-
-_Arguments_:
- MASK The type of the argument shall be 'LOGICAL' and
- it shall not be scalar.
- DIM (Optional) DIM shall be a scalar integer with a
- value that lies between one and the rank of
- MASK.
-
-_Return value_:
- 'ALL(MASK)' returns a scalar value of type 'LOGICAL' where the kind
- type parameter is the same as the kind type parameter of MASK. If
- DIM is present, then 'ALL(MASK, DIM)' returns an array with the
- rank of MASK minus 1. The shape is determined from the shape of
- MASK where the DIM dimension is elided.
-
- (A)
- 'ALL(MASK)' is true if all elements of MASK are true. It also
- is true if MASK has zero size; otherwise, it is false.
- (B)
- If the rank of MASK is one, then 'ALL(MASK,DIM)' is equivalent
- to 'ALL(MASK)'. If the rank is greater than one, then
- 'ALL(MASK,DIM)' is determined by applying 'ALL' to the array
- sections.
-
-_Example_:
- program test_all
- logical l
- l = all((/.true., .true., .true./))
- print *, l
- call section
- contains
- subroutine section
- integer a(2,3), b(2,3)
- a = 1
- b = 1
- b(2,2) = 2
- print *, all(a .eq. b, 1)
- print *, all(a .eq. b, 2)
- end subroutine section
- end program test_all
-
-
-File: gfortran.info, Node: ALLOCATED, Next: AND, Prev: ALL, Up: Intrinsic Procedures
-
-8.14 'ALLOCATED' -- Status of an allocatable entity
-===================================================
-
-_Description_:
- 'ALLOCATED(ARRAY)' and 'ALLOCATED(SCALAR)' check the allocation
- status of ARRAY and SCALAR, respectively.
-
-_Standard_:
- Fortran 95 and later. Note, the 'SCALAR=' keyword and allocatable
- scalar entities are available in Fortran 2003 and later.
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = ALLOCATED(ARRAY)'
- 'RESULT = ALLOCATED(SCALAR)'
-
-_Arguments_:
- ARRAY The argument shall be an 'ALLOCATABLE' array.
- SCALAR The argument shall be an 'ALLOCATABLE' scalar.
-
-_Return value_:
- The return value is a scalar 'LOGICAL' with the default logical
- kind type parameter. If the argument is allocated, then the result
- is '.TRUE.'; otherwise, it returns '.FALSE.'
-
-_Example_:
- program test_allocated
- integer :: i = 4
- real(4), allocatable :: x(:)
- if (.not. allocated(x)) allocate(x(i))
- end program test_allocated
-
-
-File: gfortran.info, Node: AND, Next: ANINT, Prev: ALLOCATED, Up: Intrinsic Procedures
-
-8.15 'AND' -- Bitwise logical AND
-=================================
-
-_Description_:
- Bitwise logical 'AND'.
-
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. For integer arguments, programmers should consider
- the use of the *note IAND:: intrinsic defined by the Fortran
- standard.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Function
-
-_Syntax_:
- 'RESULT = AND(I, J)'
-
-_Arguments_:
- I The type shall be either a scalar 'INTEGER' type
- or a scalar 'LOGICAL' type.
- J The type shall be the same as the type of I.
-
-_Return value_:
- The return type is either a scalar 'INTEGER' or a scalar 'LOGICAL'.
- If the kind type parameters differ, then the smaller kind type is
- implicitly converted to larger kind, and the return has the larger
- kind.
-
-_Example_:
- PROGRAM test_and
- LOGICAL :: T = .TRUE., F = .FALSE.
- INTEGER :: a, b
- DATA a / Z'F' /, b / Z'3' /
-
- WRITE (*,*) AND(T, T), AND(T, F), AND(F, T), AND(F, F)
- WRITE (*,*) AND(a, b)
- END PROGRAM
-
-_See also_:
- Fortran 95 elemental function: *note IAND::
-
-
-File: gfortran.info, Node: ANINT, Next: ANY, Prev: AND, Up: Intrinsic Procedures
-
-8.16 'ANINT' -- Nearest whole number
-====================================
-
-_Description_:
- 'ANINT(A [, KIND])' rounds its argument to the nearest whole
- number.
-
-_Standard_:
- Fortran 77 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = ANINT(A [, KIND])'
-
-_Arguments_:
- A The type of the argument shall be 'REAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- The return value is of type real with the kind type parameter of
- the argument if the optional KIND is absent; otherwise, the kind
- type parameter will be given by KIND. If A is greater than zero,
- 'ANINT(A)' returns 'AINT(X+0.5)'. If A is less than or equal to
- zero then it returns 'AINT(X-0.5)'.
-
-_Example_:
- program test_anint
- real(4) x4
- real(8) x8
- x4 = 1.234E0_4
- x8 = 4.321_8
- print *, anint(x4), dnint(x8)
- x8 = anint(x4,8)
- end program test_anint
-
-_Specific names_:
- Name Argument Return type Standard
- 'AINT(A)' 'REAL(4) A' 'REAL(4)' Fortran 77 and
- later
- 'DNINT(A)' 'REAL(8) A' 'REAL(8)' Fortran 77 and
- later
-
-
-File: gfortran.info, Node: ANY, Next: ASIN, Prev: ANINT, Up: Intrinsic Procedures
-
-8.17 'ANY' -- Any value in MASK along DIM is true
-=================================================
-
-_Description_:
- 'ANY(MASK [, DIM])' determines if any of the values in the logical
- array MASK along dimension DIM are '.TRUE.'.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = ANY(MASK [, DIM])'
-
-_Arguments_:
- MASK The type of the argument shall be 'LOGICAL' and
- it shall not be scalar.
- DIM (Optional) DIM shall be a scalar integer with a
- value that lies between one and the rank of
- MASK.
-
-_Return value_:
- 'ANY(MASK)' returns a scalar value of type 'LOGICAL' where the kind
- type parameter is the same as the kind type parameter of MASK. If
- DIM is present, then 'ANY(MASK, DIM)' returns an array with the
- rank of MASK minus 1. The shape is determined from the shape of
- MASK where the DIM dimension is elided.
-
- (A)
- 'ANY(MASK)' is true if any element of MASK is true; otherwise,
- it is false. It also is false if MASK has zero size.
- (B)
- If the rank of MASK is one, then 'ANY(MASK,DIM)' is equivalent
- to 'ANY(MASK)'. If the rank is greater than one, then
- 'ANY(MASK,DIM)' is determined by applying 'ANY' to the array
- sections.
-
-_Example_:
- program test_any
- logical l
- l = any((/.true., .true., .true./))
- print *, l
- call section
- contains
- subroutine section
- integer a(2,3), b(2,3)
- a = 1
- b = 1
- b(2,2) = 2
- print *, any(a .eq. b, 1)
- print *, any(a .eq. b, 2)
- end subroutine section
- end program test_any
-
-
-File: gfortran.info, Node: ASIN, Next: ASINH, Prev: ANY, Up: Intrinsic Procedures
-
-8.18 'ASIN' -- Arcsine function
-===============================
-
-_Description_:
- 'ASIN(X)' computes the arcsine of its X (inverse of 'SIN(X)').
-
-_Standard_:
- Fortran 77 and later, for a complex argument Fortran 2008 or later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = ASIN(X)'
-
-_Arguments_:
- X The type shall be either 'REAL' and a magnitude
- that is less than or equal to one - or be
- 'COMPLEX'.
-
-_Return value_:
- The return value is of the same type and kind as X. The real part
- of the result is in radians and lies in the range -\pi/2 \leq \Re
- \asin(x) \leq \pi/2.
-
-_Example_:
- program test_asin
- real(8) :: x = 0.866_8
- x = asin(x)
- end program test_asin
-
-_Specific names_:
- Name Argument Return type Standard
- 'ASIN(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DASIN(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
-
-_See also_:
- Inverse function: *note SIN::
-
-
-File: gfortran.info, Node: ASINH, Next: ASSOCIATED, Prev: ASIN, Up: Intrinsic Procedures
-
-8.19 'ASINH' -- Inverse hyperbolic sine function
-================================================
-
-_Description_:
- 'ASINH(X)' computes the inverse hyperbolic sine of X.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = ASINH(X)'
-
-_Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
-
-_Return value_:
- The return value is of the same type and kind as X. If X is
- complex, the imaginary part of the result is in radians and lies
- between -\pi/2 \leq \Im \asinh(x) \leq \pi/2.
-
-_Example_:
- PROGRAM test_asinh
- REAL(8), DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
- WRITE (*,*) ASINH(x)
- END PROGRAM
-
-_Specific names_:
- Name Argument Return type Standard
- 'DASINH(X)' 'REAL(8) X' 'REAL(8)' GNU extension.
-
-_See also_:
- Inverse function: *note SINH::
-
-
-File: gfortran.info, Node: ASSOCIATED, Next: ATAN, Prev: ASINH, Up: Intrinsic Procedures
-
-8.20 'ASSOCIATED' -- Status of a pointer or pointer/target pair
-===============================================================
-
-_Description_:
- 'ASSOCIATED(POINTER [, TARGET])' determines the status of the
- pointer POINTER or if POINTER is associated with the target TARGET.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = ASSOCIATED(POINTER [, TARGET])'
-
-_Arguments_:
- POINTER POINTER shall have the 'POINTER' attribute and
- it can be of any type.
- TARGET (Optional) TARGET shall be a pointer or a
- target. It must have the same type, kind type
- parameter, and array rank as POINTER.
- The association status of neither POINTER nor TARGET shall be
- undefined.
-
-_Return value_:
- 'ASSOCIATED(POINTER)' returns a scalar value of type 'LOGICAL(4)'.
- There are several cases:
- (A) When the optional TARGET is not present then
- 'ASSOCIATED(POINTER)' is true if POINTER is associated with a
- target; otherwise, it returns false.
- (B) If TARGET is present and a scalar target, the result is true if
- TARGET is not a zero-sized storage sequence and the target
- associated with POINTER occupies the same storage units. If
- POINTER is disassociated, the result is false.
- (C) If TARGET is present and an array target, the result is true if
- TARGET and POINTER have the same shape, are not zero-sized
- arrays, are arrays whose elements are not zero-sized storage
- sequences, and TARGET and POINTER occupy the same storage
- units in array element order. As in case(B), the result is
- false, if POINTER is disassociated.
- (D) If TARGET is present and an scalar pointer, the result is true
- if TARGET is associated with POINTER, the target associated
- with TARGET are not zero-sized storage sequences and occupy
- the same storage units. The result is false, if either TARGET
- or POINTER is disassociated.
- (E) If TARGET is present and an array pointer, the result is true if
- target associated with POINTER and the target associated with
- TARGET have the same shape, are not zero-sized arrays, are
- arrays whose elements are not zero-sized storage sequences,
- and TARGET and POINTER occupy the same storage units in array
- element order. The result is false, if either TARGET or
- POINTER is disassociated.
-
-_Example_:
- program test_associated
- implicit none
- real, target :: tgt(2) = (/1., 2./)
- real, pointer :: ptr(:)
- ptr => tgt
- if (associated(ptr) .eqv. .false.) call abort
- if (associated(ptr,tgt) .eqv. .false.) call abort
- end program test_associated
-
-_See also_:
- *note NULL::
-
-
-File: gfortran.info, Node: ATAN, Next: ATAN2, Prev: ASSOCIATED, Up: Intrinsic Procedures
-
-8.21 'ATAN' -- Arctangent function
-==================================
-
-_Description_:
- 'ATAN(X)' computes the arctangent of X.
-
-_Standard_:
- Fortran 77 and later, for a complex argument and for two arguments
- Fortran 2008 or later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = ATAN(X)'
- 'RESULT = ATAN(Y, X)'
-
-_Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'; if Y is
- present, X shall be REAL.
- Y shall
- be of the
- same type
- and kind
- as X.
-
-_Return value_:
- The return value is of the same type and kind as X. If Y is
- present, the result is identical to 'ATAN2(Y,X)'. Otherwise, it
- the arcus tangent of X, where the real part of the result is in
- radians and lies in the range -\pi/2 \leq \Re \atan(x) \leq \pi/2.
-
-_Example_:
- program test_atan
- real(8) :: x = 2.866_8
- x = atan(x)
- end program test_atan
-
-_Specific names_:
- Name Argument Return type Standard
- 'ATAN(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DATAN(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
-
-_See also_:
- Inverse function: *note TAN::
-
-
-File: gfortran.info, Node: ATAN2, Next: ATANH, Prev: ATAN, Up: Intrinsic Procedures
-
-8.22 'ATAN2' -- Arctangent function
-===================================
-
-_Description_:
- 'ATAN2(Y, X)' computes the principal value of the argument function
- of the complex number X + i Y. This function can be used to
- transform from Cartesian into polar coordinates and allows to
- determine the angle in the correct quadrant.
-
-_Standard_:
- Fortran 77 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = ATAN2(Y, X)'
-
-_Arguments_:
- Y The type shall be 'REAL'.
- X The type and kind type parameter shall be the
- same as Y. If Y is zero, then X must be
- nonzero.
-
-_Return value_:
- The return value has the same type and kind type parameter as Y.
- It is the principal value of the complex number X + i Y. If X is
- nonzero, then it lies in the range -\pi \le \atan (x) \leq \pi.
- The sign is positive if Y is positive. If Y is zero, then the
- return value is zero if X is strictly positive, \pi if X is
- negative and Y is positive zero (or the processor does not handle
- signed zeros), and -\pi if X is negative and Y is negative zero.
- Finally, if X is zero, then the magnitude of the result is \pi/2.
-
-_Example_:
- program test_atan2
- real(4) :: x = 1.e0_4, y = 0.5e0_4
- x = atan2(y,x)
- end program test_atan2
-
-_Specific names_:
- Name Argument Return type Standard
- 'ATAN2(X, 'REAL(4) X, 'REAL(4)' Fortran 77 and
- Y)' Y' later
- 'DATAN2(X, 'REAL(8) X, 'REAL(8)' Fortran 77 and
- Y)' Y' later
-
-
-File: gfortran.info, Node: ATANH, Next: ATOMIC_DEFINE, Prev: ATAN2, Up: Intrinsic Procedures
-
-8.23 'ATANH' -- Inverse hyperbolic tangent function
-===================================================
-
-_Description_:
- 'ATANH(X)' computes the inverse hyperbolic tangent of X.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = ATANH(X)'
-
-_Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
-
-_Return value_:
- The return value has same type and kind as X. If X is complex, the
- imaginary part of the result is in radians and lies between -\pi/2
- \leq \Im \atanh(x) \leq \pi/2.
-
-_Example_:
- PROGRAM test_atanh
- REAL, DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
- WRITE (*,*) ATANH(x)
- END PROGRAM
-
-_Specific names_:
- Name Argument Return type Standard
- 'DATANH(X)' 'REAL(8) X' 'REAL(8)' GNU extension
-
-_See also_:
- Inverse function: *note TANH::
-
-
-File: gfortran.info, Node: ATOMIC_DEFINE, Next: ATOMIC_REF, Prev: ATANH, Up: Intrinsic Procedures
-
-8.24 'ATOMIC_DEFINE' -- Setting a variable atomically
-=====================================================
-
-_Description_:
- 'ATOMIC_DEFINE(ATOM, VALUE)' defines the variable ATOM with the
- value VALUE atomically.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Atomic subroutine
-
-_Syntax_:
- 'CALL ATOMIC_DEFINE(ATOM, VALUE)'
-
-_Arguments_:
- ATOM Scalar coarray or coindexed variable of either
- integer type with 'ATOMIC_INT_KIND' kind or
- logical type with 'ATOMIC_LOGICAL_KIND' kind.
- VALURE Scalar and of the same type as ATOM. If the
- kind is different, the value is converted to the
- kind of ATOM.
-
-_Example_:
- program atomic
- use iso_fortran_env
- integer(atomic_int_kind) :: atom[*]
- call atomic_define (atom[1], this_image())
- end program atomic
-
-_See also_:
- *note ATOMIC_REF::, *note ISO_FORTRAN_ENV::
-
-
-File: gfortran.info, Node: ATOMIC_REF, Next: BACKTRACE, Prev: ATOMIC_DEFINE, Up: Intrinsic Procedures
-
-8.25 'ATOMIC_REF' -- Obtaining the value of a variable atomically
-=================================================================
-
-_Description_:
- 'ATOMIC_DEFINE(ATOM, VALUE)' atomically assigns the value of the
- variable ATOM to VALUE.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Atomic subroutine
-
-_Syntax_:
- 'CALL ATOMIC_REF(VALUE, ATOM)'
-
-_Arguments_:
- VALURE Scalar and of the same type as ATOM. If the
- kind is different, the value is converted to the
- kind of ATOM.
- ATOM Scalar coarray or coindexed variable of either
- integer type with 'ATOMIC_INT_KIND' kind or
- logical type with 'ATOMIC_LOGICAL_KIND' kind.
-
-_Example_:
- program atomic
- use iso_fortran_env
- logical(atomic_logical_kind) :: atom[*]
- logical :: val
- call atomic_ref (atom, .false.)
- ! ...
- call atomic_ref (atom, val)
- if (val) then
- print *, "Obtained"
- end if
- end program atomic
-
-_See also_:
- *note ATOMIC_DEFINE::, *note ISO_FORTRAN_ENV::
-
-
-File: gfortran.info, Node: BACKTRACE, Next: BESSEL_J0, Prev: ATOMIC_REF, Up: Intrinsic Procedures
-
-8.26 'BACKTRACE' -- Show a backtrace
-====================================
-
-_Description_:
- 'BACKTRACE' shows a backtrace at an arbitrary place in user code.
- Program execution continues normally afterwards. The backtrace
- information is printed to the unit corresponding to 'ERROR_UNIT' in
- 'ISO_FORTRAN_ENV'.
-
-_Standard_:
- GNU Extension
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL BACKTRACE'
-
-_Arguments_:
- None
-
-_See also_:
- *note ABORT::
-
-
-File: gfortran.info, Node: BESSEL_J0, Next: BESSEL_J1, Prev: BACKTRACE, Up: Intrinsic Procedures
-
-8.27 'BESSEL_J0' -- Bessel function of the first kind of order 0
-================================================================
-
-_Description_:
- 'BESSEL_J0(X)' computes the Bessel function of the first kind of
- order 0 of X. This function is available under the name 'BESJ0' as
- a GNU extension.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = BESSEL_J0(X)'
-
-_Arguments_:
- X The type shall be 'REAL', and it shall be
- scalar.
-
-_Return value_:
- The return value is of type 'REAL' and lies in the range -
- 0.4027... \leq Bessel (0,x) \leq 1. It has the same kind as X.
-
-_Example_:
- program test_besj0
- real(8) :: x = 0.0_8
- x = bessel_j0(x)
- end program test_besj0
-
-_Specific names_:
- Name Argument Return type Standard
- 'DBESJ0(X)' 'REAL(8) X' 'REAL(8)' GNU extension
-
-
-File: gfortran.info, Node: BESSEL_J1, Next: BESSEL_JN, Prev: BESSEL_J0, Up: Intrinsic Procedures
-
-8.28 'BESSEL_J1' -- Bessel function of the first kind of order 1
-================================================================
-
-_Description_:
- 'BESSEL_J1(X)' computes the Bessel function of the first kind of
- order 1 of X. This function is available under the name 'BESJ1' as
- a GNU extension.
-
-_Standard_:
- Fortran 2008
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = BESSEL_J1(X)'
-
-_Arguments_:
- X The type shall be 'REAL', and it shall be
- scalar.
-
-_Return value_:
- The return value is of type 'REAL' and it lies in the range -
- 0.5818... \leq Bessel (0,x) \leq 0.5818 . It has the same kind as
- X.
-
-_Example_:
- program test_besj1
- real(8) :: x = 1.0_8
- x = bessel_j1(x)
- end program test_besj1
-
-_Specific names_:
- Name Argument Return type Standard
- 'DBESJ1(X)' 'REAL(8) X' 'REAL(8)' GNU extension
-
-
-File: gfortran.info, Node: BESSEL_JN, Next: BESSEL_Y0, Prev: BESSEL_J1, Up: Intrinsic Procedures
-
-8.29 'BESSEL_JN' -- Bessel function of the first kind
-=====================================================
-
-_Description_:
- 'BESSEL_JN(N, X)' computes the Bessel function of the first kind of
- order N of X. This function is available under the name 'BESJN' as
- a GNU extension. If N and X are arrays, their ranks and shapes
- shall conform.
-
- 'BESSEL_JN(N1, N2, X)' returns an array with the Bessel functions
- of the first kind of the orders N1 to N2.
-
-_Standard_:
- Fortran 2008 and later, negative N is allowed as GNU extension
-
-_Class_:
- Elemental function, except for the transformational function
- 'BESSEL_JN(N1, N2, X)'
-
-_Syntax_:
- 'RESULT = BESSEL_JN(N, X)'
- 'RESULT = BESSEL_JN(N1, N2, X)'
-
-_Arguments_:
- N Shall be a scalar or an array of type 'INTEGER'.
- N1 Shall be a non-negative scalar of type
- 'INTEGER'.
- N2 Shall be a non-negative scalar of type
- 'INTEGER'.
- X Shall be a scalar or an array of type 'REAL';
- for 'BESSEL_JN(N1, N2, X)' it shall be scalar.
-
-_Return value_:
- The return value is a scalar of type 'REAL'. It has the same kind
- as X.
-
-_Note_:
- The transformational function uses a recurrence algorithm which
- might, for some values of X, lead to different results than calls
- to the elemental function.
-
-_Example_:
- program test_besjn
- real(8) :: x = 1.0_8
- x = bessel_jn(5,x)
- end program test_besjn
-
-_Specific names_:
- Name Argument Return type Standard
- 'DBESJN(N, 'INTEGER N' 'REAL(8)' GNU extension
- X)'
- 'REAL(8) X'
-
-
-File: gfortran.info, Node: BESSEL_Y0, Next: BESSEL_Y1, Prev: BESSEL_JN, Up: Intrinsic Procedures
-
-8.30 'BESSEL_Y0' -- Bessel function of the second kind of order 0
-=================================================================
-
-_Description_:
- 'BESSEL_Y0(X)' computes the Bessel function of the second kind of
- order 0 of X. This function is available under the name 'BESY0' as
- a GNU extension.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = BESSEL_Y0(X)'
-
-_Arguments_:
- X The type shall be 'REAL', and it shall be
- scalar.
-
-_Return value_:
- The return value is a scalar of type 'REAL'. It has the same kind
- as X.
-
-_Example_:
- program test_besy0
- real(8) :: x = 0.0_8
- x = bessel_y0(x)
- end program test_besy0
-
-_Specific names_:
- Name Argument Return type Standard
- 'DBESY0(X)' 'REAL(8) X' 'REAL(8)' GNU extension
-
-
-File: gfortran.info, Node: BESSEL_Y1, Next: BESSEL_YN, Prev: BESSEL_Y0, Up: Intrinsic Procedures
-
-8.31 'BESSEL_Y1' -- Bessel function of the second kind of order 1
-=================================================================
-
-_Description_:
- 'BESSEL_Y1(X)' computes the Bessel function of the second kind of
- order 1 of X. This function is available under the name 'BESY1' as
- a GNU extension.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = BESSEL_Y1(X)'
-
-_Arguments_:
- X The type shall be 'REAL', and it shall be
- scalar.
-
-_Return value_:
- The return value is a scalar of type 'REAL'. It has the same kind
- as X.
-
-_Example_:
- program test_besy1
- real(8) :: x = 1.0_8
- x = bessel_y1(x)
- end program test_besy1
-
-_Specific names_:
- Name Argument Return type Standard
- 'DBESY1(X)' 'REAL(8) X' 'REAL(8)' GNU extension
-
-
-File: gfortran.info, Node: BESSEL_YN, Next: BGE, Prev: BESSEL_Y1, Up: Intrinsic Procedures
-
-8.32 'BESSEL_YN' -- Bessel function of the second kind
-======================================================
-
-_Description_:
- 'BESSEL_YN(N, X)' computes the Bessel function of the second kind
- of order N of X. This function is available under the name 'BESYN'
- as a GNU extension. If N and X are arrays, their ranks and shapes
- shall conform.
-
- 'BESSEL_YN(N1, N2, X)' returns an array with the Bessel functions
- of the first kind of the orders N1 to N2.
-
-_Standard_:
- Fortran 2008 and later, negative N is allowed as GNU extension
-
-_Class_:
- Elemental function, except for the transformational function
- 'BESSEL_YN(N1, N2, X)'
-
-_Syntax_:
- 'RESULT = BESSEL_YN(N, X)'
- 'RESULT = BESSEL_YN(N1, N2, X)'
-
-_Arguments_:
- N Shall be a scalar or an array of type 'INTEGER'
- .
- N1 Shall be a non-negative scalar of type
- 'INTEGER'.
- N2 Shall be a non-negative scalar of type
- 'INTEGER'.
- X Shall be a scalar or an array of type 'REAL';
- for 'BESSEL_YN(N1, N2, X)' it shall be scalar.
-
-_Return value_:
- The return value is a scalar of type 'REAL'. It has the same kind
- as X.
-
-_Note_:
- The transformational function uses a recurrence algorithm which
- might, for some values of X, lead to different results than calls
- to the elemental function.
-
-_Example_:
- program test_besyn
- real(8) :: x = 1.0_8
- x = bessel_yn(5,x)
- end program test_besyn
-
-_Specific names_:
- Name Argument Return type Standard
- 'DBESYN(N,X)' 'INTEGER N' 'REAL(8)' GNU extension
- 'REAL(8) X'
-
-
-File: gfortran.info, Node: BGE, Next: BGT, Prev: BESSEL_YN, Up: Intrinsic Procedures
-
-8.33 'BGE' -- Bitwise greater than or equal to
-==============================================
-
-_Description_:
- Determines whether an integral is a bitwise greater than or equal
- to another.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = BGE(I, J)'
-
-_Arguments_:
- I Shall be of 'INTEGER' type.
- J Shall be of 'INTEGER' type, and of the same kind
- as I.
-
-_Return value_:
- The return value is of type 'LOGICAL' and of the default kind.
-
-_See also_:
- *note BGT::, *note BLE::, *note BLT::
-
-
-File: gfortran.info, Node: BGT, Next: BIT_SIZE, Prev: BGE, Up: Intrinsic Procedures
-
-8.34 'BGT' -- Bitwise greater than
-==================================
-
-_Description_:
- Determines whether an integral is a bitwise greater than another.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = BGT(I, J)'
-
-_Arguments_:
- I Shall be of 'INTEGER' type.
- J Shall be of 'INTEGER' type, and of the same kind
- as I.
-
-_Return value_:
- The return value is of type 'LOGICAL' and of the default kind.
-
-_See also_:
- *note BGE::, *note BLE::, *note BLT::
-
-
-File: gfortran.info, Node: BIT_SIZE, Next: BLE, Prev: BGT, Up: Intrinsic Procedures
-
-8.35 'BIT_SIZE' -- Bit size inquiry function
-============================================
-
-_Description_:
- 'BIT_SIZE(I)' returns the number of bits (integer precision plus
- sign bit) represented by the type of I. The result of
- 'BIT_SIZE(I)' is independent of the actual value of I.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = BIT_SIZE(I)'
-
-_Arguments_:
- I The type shall be 'INTEGER'.
-
-_Return value_:
- The return value is of type 'INTEGER'
-
-_Example_:
- program test_bit_size
- integer :: i = 123
- integer :: size
- size = bit_size(i)
- print *, size
- end program test_bit_size
-
-
-File: gfortran.info, Node: BLE, Next: BLT, Prev: BIT_SIZE, Up: Intrinsic Procedures
-
-8.36 'BLE' -- Bitwise less than or equal to
-===========================================
-
-_Description_:
- Determines whether an integral is a bitwise less than or equal to
- another.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = BLE(I, J)'
-
-_Arguments_:
- I Shall be of 'INTEGER' type.
- J Shall be of 'INTEGER' type, and of the same kind
- as I.
-
-_Return value_:
- The return value is of type 'LOGICAL' and of the default kind.
-
-_See also_:
- *note BGT::, *note BGE::, *note BLT::
-
-
-File: gfortran.info, Node: BLT, Next: BTEST, Prev: BLE, Up: Intrinsic Procedures
-
-8.37 'BLT' -- Bitwise less than
-===============================
-
-_Description_:
- Determines whether an integral is a bitwise less than another.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = BLT(I, J)'
-
-_Arguments_:
- I Shall be of 'INTEGER' type.
- J Shall be of 'INTEGER' type, and of the same kind
- as I.
-
-_Return value_:
- The return value is of type 'LOGICAL' and of the default kind.
-
-_See also_:
- *note BGE::, *note BGT::, *note BLE::
-
-
-File: gfortran.info, Node: BTEST, Next: C_ASSOCIATED, Prev: BLT, Up: Intrinsic Procedures
-
-8.38 'BTEST' -- Bit test function
-=================================
-
-_Description_:
- 'BTEST(I,POS)' returns logical '.TRUE.' if the bit at POS in I is
- set. The counting of the bits starts at 0.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = BTEST(I, POS)'
-
-_Arguments_:
- I The type shall be 'INTEGER'.
- POS The type shall be 'INTEGER'.
-
-_Return value_:
- The return value is of type 'LOGICAL'
-
-_Example_:
- program test_btest
- integer :: i = 32768 + 1024 + 64
- integer :: pos
- logical :: bool
- do pos=0,16
- bool = btest(i, pos)
- print *, pos, bool
- end do
- end program test_btest
-
-
-File: gfortran.info, Node: C_ASSOCIATED, Next: C_F_POINTER, Prev: BTEST, Up: Intrinsic Procedures
-
-8.39 'C_ASSOCIATED' -- Status of a C pointer
-============================================
-
-_Description_:
- 'C_ASSOCIATED(c_prt_1[, c_ptr_2])' determines the status of the C
- pointer C_PTR_1 or if C_PTR_1 is associated with the target
- C_PTR_2.
-
-_Standard_:
- Fortran 2003 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = C_ASSOCIATED(c_prt_1[, c_ptr_2])'
-
-_Arguments_:
- C_PTR_1 Scalar of the type 'C_PTR' or 'C_FUNPTR'.
- C_PTR_2 (Optional) Scalar of the same type as C_PTR_1.
-
-_Return value_:
- The return value is of type 'LOGICAL'; it is '.false.' if either
- C_PTR_1 is a C NULL pointer or if C_PTR1 and C_PTR_2 point to
- different addresses.
-
-_Example_:
- subroutine association_test(a,b)
- use iso_c_binding, only: c_associated, c_loc, c_ptr
- implicit none
- real, pointer :: a
- type(c_ptr) :: b
- if(c_associated(b, c_loc(a))) &
- stop 'b and a do not point to same target'
- end subroutine association_test
-
-_See also_:
- *note C_LOC::, *note C_FUNLOC::
-
-
-File: gfortran.info, Node: C_F_POINTER, Next: C_F_PROCPOINTER, Prev: C_ASSOCIATED, Up: Intrinsic Procedures
-
-8.40 'C_F_POINTER' -- Convert C into Fortran pointer
-====================================================
-
-_Description_:
- 'C_F_POINTER(CPTR, FPTR[, SHAPE])' assigns the target of the C
- pointer CPTR to the Fortran pointer FPTR and specifies its shape.
-
-_Standard_:
- Fortran 2003 and later
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL C_F_POINTER(CPTR, FPTR[, SHAPE])'
-
-_Arguments_:
- CPTR scalar of the type 'C_PTR'. It is 'INTENT(IN)'.
- FPTR pointer interoperable with CPTR. It is
- 'INTENT(OUT)'.
- SHAPE (Optional) Rank-one array of type 'INTEGER' with
- 'INTENT(IN)'. It shall be present if and only
- if FPTR is an array. The size must be equal to
- the rank of FPTR.
-
-_Example_:
- program main
- use iso_c_binding
- implicit none
- interface
- subroutine my_routine(p) bind(c,name='myC_func')
- import :: c_ptr
- type(c_ptr), intent(out) :: p
- end subroutine
- end interface
- type(c_ptr) :: cptr
- real,pointer :: a(:)
- call my_routine(cptr)
- call c_f_pointer(cptr, a, [12])
- end program main
-
-_See also_:
- *note C_LOC::, *note C_F_PROCPOINTER::
-
-
-File: gfortran.info, Node: C_F_PROCPOINTER, Next: C_FUNLOC, Prev: C_F_POINTER, Up: Intrinsic Procedures
-
-8.41 'C_F_PROCPOINTER' -- Convert C into Fortran procedure pointer
-==================================================================
-
-_Description_:
- 'C_F_PROCPOINTER(CPTR, FPTR)' Assign the target of the C function
- pointer CPTR to the Fortran procedure pointer FPTR.
-
-_Standard_:
- Fortran 2003 and later
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL C_F_PROCPOINTER(cptr, fptr)'
-
-_Arguments_:
- CPTR scalar of the type 'C_FUNPTR'. It is
- 'INTENT(IN)'.
- FPTR procedure pointer interoperable with CPTR. It
- is 'INTENT(OUT)'.
-
-_Example_:
- program main
- use iso_c_binding
- implicit none
- abstract interface
- function func(a)
- import :: c_float
- real(c_float), intent(in) :: a
- real(c_float) :: func
- end function
- end interface
- interface
- function getIterFunc() bind(c,name="getIterFunc")
- import :: c_funptr
- type(c_funptr) :: getIterFunc
- end function
- end interface
- type(c_funptr) :: cfunptr
- procedure(func), pointer :: myFunc
- cfunptr = getIterFunc()
- call c_f_procpointer(cfunptr, myFunc)
- end program main
-
-_See also_:
- *note C_LOC::, *note C_F_POINTER::
-
-
-File: gfortran.info, Node: C_FUNLOC, Next: C_LOC, Prev: C_F_PROCPOINTER, Up: Intrinsic Procedures
-
-8.42 'C_FUNLOC' -- Obtain the C address of a procedure
-======================================================
-
-_Description_:
- 'C_FUNLOC(x)' determines the C address of the argument.
-
-_Standard_:
- Fortran 2003 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = C_FUNLOC(x)'
-
-_Arguments_:
- X Interoperable function or pointer to such
- function.
-
-_Return value_:
- The return value is of type 'C_FUNPTR' and contains the C address
- of the argument.
-
-_Example_:
- module x
- use iso_c_binding
- implicit none
- contains
- subroutine sub(a) bind(c)
- real(c_float) :: a
- a = sqrt(a)+5.0
- end subroutine sub
- end module x
- program main
- use iso_c_binding
- use x
- implicit none
- interface
- subroutine my_routine(p) bind(c,name='myC_func')
- import :: c_funptr
- type(c_funptr), intent(in) :: p
- end subroutine
- end interface
- call my_routine(c_funloc(sub))
- end program main
-
-_See also_:
- *note C_ASSOCIATED::, *note C_LOC::, *note C_F_POINTER::, *note
- C_F_PROCPOINTER::
-
-
-File: gfortran.info, Node: C_LOC, Next: C_SIZEOF, Prev: C_FUNLOC, Up: Intrinsic Procedures
-
-8.43 'C_LOC' -- Obtain the C address of an object
-=================================================
-
-_Description_:
- 'C_LOC(X)' determines the C address of the argument.
-
-_Standard_:
- Fortran 2003 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = C_LOC(X)'
-
-_Arguments_:
- X Shall have either the POINTER or TARGET attribute.
- It shall not be a coindexed object. It shall either
- be a variable with interoperable type and kind type
- parameters, or be a scalar, nonpolymorphic variable
- with no length type parameters.
-
-
-_Return value_:
- The return value is of type 'C_PTR' and contains the C address of
- the argument.
-
-_Example_:
- subroutine association_test(a,b)
- use iso_c_binding, only: c_associated, c_loc, c_ptr
- implicit none
- real, pointer :: a
- type(c_ptr) :: b
- if(c_associated(b, c_loc(a))) &
- stop 'b and a do not point to same target'
- end subroutine association_test
-
-_See also_:
- *note C_ASSOCIATED::, *note C_FUNLOC::, *note C_F_POINTER::, *note
- C_F_PROCPOINTER::
-
-
-File: gfortran.info, Node: C_SIZEOF, Next: CEILING, Prev: C_LOC, Up: Intrinsic Procedures
-
-8.44 'C_SIZEOF' -- Size in bytes of an expression
-=================================================
-
-_Description_:
- 'C_SIZEOF(X)' calculates the number of bytes of storage the
- expression 'X' occupies.
-
-_Standard_:
- Fortran 2008
-
-_Class_:
- Inquiry function of the module 'ISO_C_BINDING'
-
-_Syntax_:
- 'N = C_SIZEOF(X)'
-
-_Arguments_:
- X The argument shall be an interoperable data
- entity.
-
-_Return value_:
- The return value is of type integer and of the system-dependent
- kind 'C_SIZE_T' (from the 'ISO_C_BINDING' module). Its value is
- the number of bytes occupied by the argument. If the argument has
- the 'POINTER' attribute, the number of bytes of the storage area
- pointed to is returned. If the argument is of a derived type with
- 'POINTER' or 'ALLOCATABLE' components, the return value does not
- account for the sizes of the data pointed to by these components.
-
-_Example_:
- use iso_c_binding
- integer(c_int) :: i
- real(c_float) :: r, s(5)
- print *, (c_sizeof(s)/c_sizeof(r) == 5)
- end
- The example will print '.TRUE.' unless you are using a platform
- where default 'REAL' variables are unusually padded.
-
-_See also_:
- *note SIZEOF::, *note STORAGE_SIZE::
-
-
-File: gfortran.info, Node: CEILING, Next: CHAR, Prev: C_SIZEOF, Up: Intrinsic Procedures
-
-8.45 'CEILING' -- Integer ceiling function
-==========================================
-
-_Description_:
- 'CEILING(A)' returns the least integer greater than or equal to A.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = CEILING(A [, KIND])'
-
-_Arguments_:
- A The type shall be 'REAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- The return value is of type 'INTEGER(KIND)' if KIND is present and
- a default-kind 'INTEGER' otherwise.
-
-_Example_:
- program test_ceiling
- real :: x = 63.29
- real :: y = -63.59
- print *, ceiling(x) ! returns 64
- print *, ceiling(y) ! returns -63
- end program test_ceiling
-
-_See also_:
- *note FLOOR::, *note NINT::
-
-
-File: gfortran.info, Node: CHAR, Next: CHDIR, Prev: CEILING, Up: Intrinsic Procedures
-
-8.46 'CHAR' -- Character conversion function
-============================================
-
-_Description_:
- 'CHAR(I [, KIND])' returns the character represented by the integer
- I.
-
-_Standard_:
- Fortran 77 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = CHAR(I [, KIND])'
-
-_Arguments_:
- I The type shall be 'INTEGER'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- The return value is of type 'CHARACTER(1)'
-
-_Example_:
- program test_char
- integer :: i = 74
- character(1) :: c
- c = char(i)
- print *, i, c ! returns 'J'
- end program test_char
-
-_Specific names_:
- Name Argument Return type Standard
- 'CHAR(I)' 'INTEGER I' 'CHARACTER(LEN=1)'F77 and later
-
-_Note_:
- See *note ICHAR:: for a discussion of converting between numerical
- values and formatted string representations.
-
-_See also_:
- *note ACHAR::, *note IACHAR::, *note ICHAR::
-
-
-File: gfortran.info, Node: CHDIR, Next: CHMOD, Prev: CHAR, Up: Intrinsic Procedures
-
-8.47 'CHDIR' -- Change working directory
-========================================
-
-_Description_:
- Change current working directory to a specified path.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL CHDIR(NAME [, STATUS])'
- 'STATUS = CHDIR(NAME)'
-
-_Arguments_:
- NAME The type shall be 'CHARACTER' of default kind
- and shall specify a valid path within the file
- system.
- STATUS (Optional) 'INTEGER' status flag of the default
- kind. Returns 0 on success, and a system
- specific and nonzero error code otherwise.
-
-_Example_:
- PROGRAM test_chdir
- CHARACTER(len=255) :: path
- CALL getcwd(path)
- WRITE(*,*) TRIM(path)
- CALL chdir("/tmp")
- CALL getcwd(path)
- WRITE(*,*) TRIM(path)
- END PROGRAM
-
-_See also_:
- *note GETCWD::
-
-
-File: gfortran.info, Node: CHMOD, Next: CMPLX, Prev: CHDIR, Up: Intrinsic Procedures
-
-8.48 'CHMOD' -- Change access permissions of files
-==================================================
-
-_Description_:
- 'CHMOD' changes the permissions of a file.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL CHMOD(NAME, MODE[, STATUS])'
- 'STATUS = CHMOD(NAME, MODE)'
-
-_Arguments_:
-
- NAME Scalar 'CHARACTER' of default kind with the file
- name. Trailing blanks are ignored unless the
- character 'achar(0)' is present, then all
- characters up to and excluding 'achar(0)' are
- used as the file name.
-
- MODE Scalar 'CHARACTER' of default kind giving the
- file permission. MODE uses the same syntax as
- the 'chmod' utility as defined by the POSIX
- standard. The argument shall either be a string
- of a nonnegative octal number or a symbolic
- mode.
-
- STATUS (optional) scalar 'INTEGER', which is '0' on
- success and nonzero otherwise.
-
-_Return value_:
- In either syntax, STATUS is set to '0' on success and nonzero
- otherwise.
-
-_Example_:
- 'CHMOD' as subroutine
- program chmod_test
- implicit none
- integer :: status
- call chmod('test.dat','u+x',status)
- print *, 'Status: ', status
- end program chmod_test
- 'CHMOD' as function:
- program chmod_test
- implicit none
- integer :: status
- status = chmod('test.dat','u+x')
- print *, 'Status: ', status
- end program chmod_test
-
-
-File: gfortran.info, Node: CMPLX, Next: COMMAND_ARGUMENT_COUNT, Prev: CHMOD, Up: Intrinsic Procedures
-
-8.49 'CMPLX' -- Complex conversion function
-===========================================
-
-_Description_:
- 'CMPLX(X [, Y [, KIND]])' returns a complex number where X is
- converted to the real component. If Y is present it is converted
- to the imaginary component. If Y is not present then the imaginary
- component is set to 0.0. If X is complex then Y must not be
- present.
-
-_Standard_:
- Fortran 77 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = CMPLX(X [, Y [, KIND]])'
-
-_Arguments_:
- X The type may be 'INTEGER', 'REAL', or 'COMPLEX'.
- Y (Optional; only allowed if X is not 'COMPLEX'.)
- May be 'INTEGER' or 'REAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- The return value is of 'COMPLEX' type, with a kind equal to KIND if
- it is specified. If KIND is not specified, the result is of the
- default 'COMPLEX' kind, regardless of the kinds of X and Y.
-
-_Example_:
- program test_cmplx
- integer :: i = 42
- real :: x = 3.14
- complex :: z
- z = cmplx(i, x)
- print *, z, cmplx(x)
- end program test_cmplx
-
-_See also_:
- *note COMPLEX::
-
-
-File: gfortran.info, Node: COMMAND_ARGUMENT_COUNT, Next: COMPILER_OPTIONS, Prev: CMPLX, Up: Intrinsic Procedures
-
-8.50 'COMMAND_ARGUMENT_COUNT' -- Get number of command line arguments
-=====================================================================
-
-_Description_:
- 'COMMAND_ARGUMENT_COUNT' returns the number of arguments passed on
- the command line when the containing program was invoked.
-
-_Standard_:
- Fortran 2003 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = COMMAND_ARGUMENT_COUNT()'
-
-_Arguments_:
- None
-
-_Return value_:
- The return value is an 'INTEGER' of default kind.
-
-_Example_:
- program test_command_argument_count
- integer :: count
- count = command_argument_count()
- print *, count
- end program test_command_argument_count
-
-_See also_:
- *note GET_COMMAND::, *note GET_COMMAND_ARGUMENT::
-
-
-File: gfortran.info, Node: COMPILER_OPTIONS, Next: COMPILER_VERSION, Prev: COMMAND_ARGUMENT_COUNT, Up: Intrinsic Procedures
-
-8.51 'COMPILER_OPTIONS' -- Options passed to the compiler
-=========================================================
-
-_Description_:
- 'COMPILER_OPTIONS' returns a string with the options used for
- compiling.
-
-_Standard_:
- Fortran 2008
-
-_Class_:
- Inquiry function of the module 'ISO_FORTRAN_ENV'
-
-_Syntax_:
- 'STR = COMPILER_OPTIONS()'
-
-_Arguments_:
- None.
-
-_Return value_:
- The return value is a default-kind string with system-dependent
- length. It contains the compiler flags used to compile the file,
- which called the 'COMPILER_OPTIONS' intrinsic.
-
-_Example_:
- use iso_fortran_env
- print '(4a)', 'This file was compiled by ', &
- compiler_version(), ' using the options ', &
- compiler_options()
- end
-
-_See also_:
- *note COMPILER_VERSION::, *note ISO_FORTRAN_ENV::
-
-
-File: gfortran.info, Node: COMPILER_VERSION, Next: COMPLEX, Prev: COMPILER_OPTIONS, Up: Intrinsic Procedures
-
-8.52 'COMPILER_VERSION' -- Compiler version string
-==================================================
-
-_Description_:
- 'COMPILER_VERSION' returns a string with the name and the version
- of the compiler.
-
-_Standard_:
- Fortran 2008
-
-_Class_:
- Inquiry function of the module 'ISO_FORTRAN_ENV'
-
-_Syntax_:
- 'STR = COMPILER_VERSION()'
-
-_Arguments_:
- None.
-
-_Return value_:
- The return value is a default-kind string with system-dependent
- length. It contains the name of the compiler and its version
- number.
-
-_Example_:
- use iso_fortran_env
- print '(4a)', 'This file was compiled by ', &
- compiler_version(), ' using the options ', &
- compiler_options()
- end
-
-_See also_:
- *note COMPILER_OPTIONS::, *note ISO_FORTRAN_ENV::
-
-
-File: gfortran.info, Node: COMPLEX, Next: CONJG, Prev: COMPILER_VERSION, Up: Intrinsic Procedures
-
-8.53 'COMPLEX' -- Complex conversion function
-=============================================
-
-_Description_:
- 'COMPLEX(X, Y)' returns a complex number where X is converted to
- the real component and Y is converted to the imaginary component.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = COMPLEX(X, Y)'
-
-_Arguments_:
- X The type may be 'INTEGER' or 'REAL'.
- Y The type may be 'INTEGER' or 'REAL'.
-
-_Return value_:
- If X and Y are both of 'INTEGER' type, then the return value is of
- default 'COMPLEX' type.
-
- If X and Y are of 'REAL' type, or one is of 'REAL' type and one is
- of 'INTEGER' type, then the return value is of 'COMPLEX' type with
- a kind equal to that of the 'REAL' argument with the highest
- precision.
-
-_Example_:
- program test_complex
- integer :: i = 42
- real :: x = 3.14
- print *, complex(i, x)
- end program test_complex
-
-_See also_:
- *note CMPLX::
-
-
-File: gfortran.info, Node: CONJG, Next: COS, Prev: COMPLEX, Up: Intrinsic Procedures
-
-8.54 'CONJG' -- Complex conjugate function
-==========================================
-
-_Description_:
- 'CONJG(Z)' returns the conjugate of Z. If Z is '(x, y)' then the
- result is '(x, -y)'
-
-_Standard_:
- Fortran 77 and later, has overloads that are GNU extensions
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'Z = CONJG(Z)'
-
-_Arguments_:
- Z The type shall be 'COMPLEX'.
-
-_Return value_:
- The return value is of type 'COMPLEX'.
-
-_Example_:
- program test_conjg
- complex :: z = (2.0, 3.0)
- complex(8) :: dz = (2.71_8, -3.14_8)
- z= conjg(z)
- print *, z
- dz = dconjg(dz)
- print *, dz
- end program test_conjg
-
-_Specific names_:
- Name Argument Return type Standard
- 'CONJG(Z)' 'COMPLEX Z' 'COMPLEX' GNU extension
- 'DCONJG(Z)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- Z'
-
-
-File: gfortran.info, Node: COS, Next: COSH, Prev: CONJG, Up: Intrinsic Procedures
-
-8.55 'COS' -- Cosine function
-=============================
-
-_Description_:
- 'COS(X)' computes the cosine of X.
-
-_Standard_:
- Fortran 77 and later, has overloads that are GNU extensions
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = COS(X)'
-
-_Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
-
-_Return value_:
- The return value is of the same type and kind as X. The real part
- of the result is in radians. If X is of the type 'REAL', the
- return value lies in the range -1 \leq \cos (x) \leq 1.
-
-_Example_:
- program test_cos
- real :: x = 0.0
- x = cos(x)
- end program test_cos
-
-_Specific names_:
- Name Argument Return type Standard
- 'COS(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DCOS(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
- 'CCOS(X)' 'COMPLEX(4) 'COMPLEX(4)' Fortran 77 and
- X' later
- 'ZCOS(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- 'CDCOS(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
-
-_See also_:
- Inverse function: *note ACOS::
-
-
-File: gfortran.info, Node: COSH, Next: COUNT, Prev: COS, Up: Intrinsic Procedures
-
-8.56 'COSH' -- Hyperbolic cosine function
-=========================================
-
-_Description_:
- 'COSH(X)' computes the hyperbolic cosine of X.
-
-_Standard_:
- Fortran 77 and later, for a complex argument Fortran 2008 or later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'X = COSH(X)'
-
-_Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
-
-_Return value_:
- The return value has same type and kind as X. If X is complex, the
- imaginary part of the result is in radians. If X is 'REAL', the
- return value has a lower bound of one, \cosh (x) \geq 1.
-
-_Example_:
- program test_cosh
- real(8) :: x = 1.0_8
- x = cosh(x)
- end program test_cosh
-
-_Specific names_:
- Name Argument Return type Standard
- 'COSH(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DCOSH(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
-
-_See also_:
- Inverse function: *note ACOSH::
-
-
-File: gfortran.info, Node: COUNT, Next: CPU_TIME, Prev: COSH, Up: Intrinsic Procedures
-
-8.57 'COUNT' -- Count function
-==============================
-
-_Description_:
-
- Counts the number of '.TRUE.' elements in a logical MASK, or, if
- the DIM argument is supplied, counts the number of elements along
- each row of the array in the DIM direction. If the array has zero
- size, or all of the elements of MASK are '.FALSE.', then the result
- is '0'.
-
-_Standard_:
- Fortran 95 and later, with KIND argument Fortran 2003 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = COUNT(MASK [, DIM, KIND])'
-
-_Arguments_:
- MASK The type shall be 'LOGICAL'.
- DIM (Optional) The type shall be 'INTEGER'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind. If DIM is
- present, the result is an array with a rank one less than the rank
- of ARRAY, and a size corresponding to the shape of ARRAY with the
- DIM dimension removed.
-
-_Example_:
- program test_count
- integer, dimension(2,3) :: a, b
- logical, dimension(2,3) :: mask
- a = reshape( (/ 1, 2, 3, 4, 5, 6 /), (/ 2, 3 /))
- b = reshape( (/ 0, 7, 3, 4, 5, 8 /), (/ 2, 3 /))
- print '(3i3)', a(1,:)
- print '(3i3)', a(2,:)
- print *
- print '(3i3)', b(1,:)
- print '(3i3)', b(2,:)
- print *
- mask = a.ne.b
- print '(3l3)', mask(1,:)
- print '(3l3)', mask(2,:)
- print *
- print '(3i3)', count(mask)
- print *
- print '(3i3)', count(mask, 1)
- print *
- print '(3i3)', count(mask, 2)
- end program test_count
-
-
-File: gfortran.info, Node: CPU_TIME, Next: CSHIFT, Prev: COUNT, Up: Intrinsic Procedures
-
-8.58 'CPU_TIME' -- CPU elapsed time in seconds
-==============================================
-
-_Description_:
- Returns a 'REAL' value representing the elapsed CPU time in
- seconds. This is useful for testing segments of code to determine
- execution time.
-
- If a time source is available, time will be reported with
- microsecond resolution. If no time source is available, TIME is
- set to '-1.0'.
-
- Note that TIME may contain a, system dependent, arbitrary offset
- and may not start with '0.0'. For 'CPU_TIME', the absolute value
- is meaningless, only differences between subsequent calls to this
- subroutine, as shown in the example below, should be used.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL CPU_TIME(TIME)'
-
-_Arguments_:
- TIME The type shall be 'REAL' with 'INTENT(OUT)'.
-
-_Return value_:
- None
-
-_Example_:
- program test_cpu_time
- real :: start, finish
- call cpu_time(start)
- ! put code to test here
- call cpu_time(finish)
- print '("Time = ",f6.3," seconds.")',finish-start
- end program test_cpu_time
-
-_See also_:
- *note SYSTEM_CLOCK::, *note DATE_AND_TIME::
-
-
-File: gfortran.info, Node: CSHIFT, Next: CTIME, Prev: CPU_TIME, Up: Intrinsic Procedures
-
-8.59 'CSHIFT' -- Circular shift elements of an array
-====================================================
-
-_Description_:
- 'CSHIFT(ARRAY, SHIFT [, DIM])' performs a circular shift on
- elements of ARRAY along the dimension of DIM. If DIM is omitted it
- is taken to be '1'. DIM is a scalar of type 'INTEGER' in the range
- of 1 \leq DIM \leq n) where n is the rank of ARRAY. If the rank of
- ARRAY is one, then all elements of ARRAY are shifted by SHIFT
- places. If rank is greater than one, then all complete rank one
- sections of ARRAY along the given dimension are shifted. Elements
- shifted out one end of each rank one section are shifted back in
- the other end.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = CSHIFT(ARRAY, SHIFT [, DIM])'
-
-_Arguments_:
- ARRAY Shall be an array of any type.
- SHIFT The type shall be 'INTEGER'.
- DIM The type shall be 'INTEGER'.
-
-_Return value_:
- Returns an array of same type and rank as the ARRAY argument.
-
-_Example_:
- program test_cshift
- integer, dimension(3,3) :: a
- a = reshape( (/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /))
- print '(3i3)', a(1,:)
- print '(3i3)', a(2,:)
- print '(3i3)', a(3,:)
- a = cshift(a, SHIFT=(/1, 2, -1/), DIM=2)
- print *
- print '(3i3)', a(1,:)
- print '(3i3)', a(2,:)
- print '(3i3)', a(3,:)
- end program test_cshift
-
-
-File: gfortran.info, Node: CTIME, Next: DATE_AND_TIME, Prev: CSHIFT, Up: Intrinsic Procedures
-
-8.60 'CTIME' -- Convert a time into a string
-============================================
-
-_Description_:
- 'CTIME' converts a system time value, such as returned by 'TIME8',
- to a string. Unless the application has called 'setlocale', the
- output will be in the default locale, of length 24 and of the form
- 'Sat Aug 19 18:13:14 1995'. In other locales, a longer string may
- result.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL CTIME(TIME, RESULT)'.
- 'RESULT = CTIME(TIME)'.
-
-_Arguments_:
- TIME The type shall be of type 'INTEGER'.
- RESULT The type shall be of type 'CHARACTER' and of
- default kind. It is an 'INTENT(OUT)' argument.
- If the length of this variable is too short for
- the time and date string to fit completely, it
- will be blank on procedure return.
-
-_Return value_:
- The converted date and time as a string.
-
-_Example_:
- program test_ctime
- integer(8) :: i
- character(len=30) :: date
- i = time8()
-
- ! Do something, main part of the program
-
- call ctime(i,date)
- print *, 'Program was started on ', date
- end program test_ctime
-
-_See Also_:
- *note DATE_AND_TIME::, *note GMTIME::, *note LTIME::, *note TIME::,
- *note TIME8::
-
-
-File: gfortran.info, Node: DATE_AND_TIME, Next: DBLE, Prev: CTIME, Up: Intrinsic Procedures
-
-8.61 'DATE_AND_TIME' -- Date and time subroutine
-================================================
-
-_Description_:
- 'DATE_AND_TIME(DATE, TIME, ZONE, VALUES)' gets the corresponding
- date and time information from the real-time system clock. DATE is
- 'INTENT(OUT)' and has form ccyymmdd. TIME is 'INTENT(OUT)' and has
- form hhmmss.sss. ZONE is 'INTENT(OUT)' and has form (+-)hhmm,
- representing the difference with respect to Coordinated Universal
- Time (UTC). Unavailable time and date parameters return blanks.
-
- VALUES is 'INTENT(OUT)' and provides the following:
-
- 'VALUE(1)': The year
- 'VALUE(2)': The month
- 'VALUE(3)': The day of the month
- 'VALUE(4)': Time difference with UTC in
- minutes
- 'VALUE(5)': The hour of the day
- 'VALUE(6)': The minutes of the hour
- 'VALUE(7)': The seconds of the minute
- 'VALUE(8)': The milliseconds of the
- second
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES])'
-
-_Arguments_:
- DATE (Optional) The type shall be 'CHARACTER(LEN=8)'
- or larger, and of default kind.
- TIME (Optional) The type shall be 'CHARACTER(LEN=10)'
- or larger, and of default kind.
- ZONE (Optional) The type shall be 'CHARACTER(LEN=5)'
- or larger, and of default kind.
- VALUES (Optional) The type shall be 'INTEGER(8)'.
-
-_Return value_:
- None
-
-_Example_:
- program test_time_and_date
- character(8) :: date
- character(10) :: time
- character(5) :: zone
- integer,dimension(8) :: values
- ! using keyword arguments
- call date_and_time(date,time,zone,values)
- call date_and_time(DATE=date,ZONE=zone)
- call date_and_time(TIME=time)
- call date_and_time(VALUES=values)
- print '(a,2x,a,2x,a)', date, time, zone
- print '(8i5)', values
- end program test_time_and_date
-
-_See also_:
- *note CPU_TIME::, *note SYSTEM_CLOCK::
-
-
-File: gfortran.info, Node: DBLE, Next: DCMPLX, Prev: DATE_AND_TIME, Up: Intrinsic Procedures
-
-8.62 'DBLE' -- Double conversion function
-=========================================
-
-_Description_:
- 'DBLE(A)' Converts A to double precision real type.
-
-_Standard_:
- Fortran 77 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = DBLE(A)'
-
-_Arguments_:
- A The type shall be 'INTEGER', 'REAL', or
- 'COMPLEX'.
-
-_Return value_:
- The return value is of type double precision real.
-
-_Example_:
- program test_dble
- real :: x = 2.18
- integer :: i = 5
- complex :: z = (2.3,1.14)
- print *, dble(x), dble(i), dble(z)
- end program test_dble
-
-_See also_:
- *note REAL::
-
-
-File: gfortran.info, Node: DCMPLX, Next: DIGITS, Prev: DBLE, Up: Intrinsic Procedures
-
-8.63 'DCMPLX' -- Double complex conversion function
-===================================================
-
-_Description_:
- 'DCMPLX(X [,Y])' returns a double complex number where X is
- converted to the real component. If Y is present it is converted
- to the imaginary component. If Y is not present then the imaginary
- component is set to 0.0. If X is complex then Y must not be
- present.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = DCMPLX(X [, Y])'
-
-_Arguments_:
- X The type may be 'INTEGER', 'REAL', or 'COMPLEX'.
- Y (Optional if X is not 'COMPLEX'.) May be
- 'INTEGER' or 'REAL'.
-
-_Return value_:
- The return value is of type 'COMPLEX(8)'
-
-_Example_:
- program test_dcmplx
- integer :: i = 42
- real :: x = 3.14
- complex :: z
- z = cmplx(i, x)
- print *, dcmplx(i)
- print *, dcmplx(x)
- print *, dcmplx(z)
- print *, dcmplx(x,i)
- end program test_dcmplx
-
-
-File: gfortran.info, Node: DIGITS, Next: DIM, Prev: DCMPLX, Up: Intrinsic Procedures
-
-8.64 'DIGITS' -- Significant binary digits function
-===================================================
-
-_Description_:
- 'DIGITS(X)' returns the number of significant binary digits of the
- internal model representation of X. For example, on a system using
- a 32-bit floating point representation, a default real number would
- likely return 24.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = DIGITS(X)'
-
-_Arguments_:
- X The type may be 'INTEGER' or 'REAL'.
-
-_Return value_:
- The return value is of type 'INTEGER'.
-
-_Example_:
- program test_digits
- integer :: i = 12345
- real :: x = 3.143
- real(8) :: y = 2.33
- print *, digits(i)
- print *, digits(x)
- print *, digits(y)
- end program test_digits
-
-
-File: gfortran.info, Node: DIM, Next: DOT_PRODUCT, Prev: DIGITS, Up: Intrinsic Procedures
-
-8.65 'DIM' -- Positive difference
-=================================
-
-_Description_:
- 'DIM(X,Y)' returns the difference 'X-Y' if the result is positive;
- otherwise returns zero.
-
-_Standard_:
- Fortran 77 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = DIM(X, Y)'
-
-_Arguments_:
- X The type shall be 'INTEGER' or 'REAL'
- Y The type shall be the same type and kind as X.
-
-_Return value_:
- The return value is of type 'INTEGER' or 'REAL'.
-
-_Example_:
- program test_dim
- integer :: i
- real(8) :: x
- i = dim(4, 15)
- x = dim(4.345_8, 2.111_8)
- print *, i
- print *, x
- end program test_dim
-
-_Specific names_:
- Name Argument Return type Standard
- 'DIM(X,Y)' 'REAL(4) X, 'REAL(4)' Fortran 77 and
- Y' later
- 'IDIM(X,Y)' 'INTEGER(4) 'INTEGER(4)' Fortran 77 and
- X, Y' later
- 'DDIM(X,Y)' 'REAL(8) X, 'REAL(8)' Fortran 77 and
- Y' later
-
-
-File: gfortran.info, Node: DOT_PRODUCT, Next: DPROD, Prev: DIM, Up: Intrinsic Procedures
-
-8.66 'DOT_PRODUCT' -- Dot product function
-==========================================
-
-_Description_:
- 'DOT_PRODUCT(VECTOR_A, VECTOR_B)' computes the dot product
- multiplication of two vectors VECTOR_A and VECTOR_B. The two
- vectors may be either numeric or logical and must be arrays of rank
- one and of equal size. If the vectors are 'INTEGER' or 'REAL', the
- result is 'SUM(VECTOR_A*VECTOR_B)'. If the vectors are 'COMPLEX',
- the result is 'SUM(CONJG(VECTOR_A)*VECTOR_B)'. If the vectors are
- 'LOGICAL', the result is 'ANY(VECTOR_A .AND. VECTOR_B)'.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = DOT_PRODUCT(VECTOR_A, VECTOR_B)'
-
-_Arguments_:
- VECTOR_A The type shall be numeric or 'LOGICAL', rank 1.
- VECTOR_B The type shall be numeric if VECTOR_A is of
- numeric type or 'LOGICAL' if VECTOR_A is of type
- 'LOGICAL'. VECTOR_B shall be a rank-one array.
-
-_Return value_:
- If the arguments are numeric, the return value is a scalar of
- numeric type, 'INTEGER', 'REAL', or 'COMPLEX'. If the arguments
- are 'LOGICAL', the return value is '.TRUE.' or '.FALSE.'.
-
-_Example_:
- program test_dot_prod
- integer, dimension(3) :: a, b
- a = (/ 1, 2, 3 /)
- b = (/ 4, 5, 6 /)
- print '(3i3)', a
- print *
- print '(3i3)', b
- print *
- print *, dot_product(a,b)
- end program test_dot_prod
-
-
-File: gfortran.info, Node: DPROD, Next: DREAL, Prev: DOT_PRODUCT, Up: Intrinsic Procedures
-
-8.67 'DPROD' -- Double product function
-=======================================
-
-_Description_:
- 'DPROD(X,Y)' returns the product 'X*Y'.
-
-_Standard_:
- Fortran 77 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = DPROD(X, Y)'
-
-_Arguments_:
- X The type shall be 'REAL'.
- Y The type shall be 'REAL'.
-
-_Return value_:
- The return value is of type 'REAL(8)'.
-
-_Example_:
- program test_dprod
- real :: x = 5.2
- real :: y = 2.3
- real(8) :: d
- d = dprod(x,y)
- print *, d
- end program test_dprod
-
-_Specific names_:
- Name Argument Return type Standard
- 'DPROD(X,Y)' 'REAL(4) X, 'REAL(4)' Fortran 77 and
- Y' later
-
-
-File: gfortran.info, Node: DREAL, Next: DSHIFTL, Prev: DPROD, Up: Intrinsic Procedures
-
-8.68 'DREAL' -- Double real part function
-=========================================
-
-_Description_:
- 'DREAL(Z)' returns the real part of complex variable Z.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = DREAL(A)'
-
-_Arguments_:
- A The type shall be 'COMPLEX(8)'.
-
-_Return value_:
- The return value is of type 'REAL(8)'.
-
-_Example_:
- program test_dreal
- complex(8) :: z = (1.3_8,7.2_8)
- print *, dreal(z)
- end program test_dreal
-
-_See also_:
- *note AIMAG::
-
-
-File: gfortran.info, Node: DSHIFTL, Next: DSHIFTR, Prev: DREAL, Up: Intrinsic Procedures
-
-8.69 'DSHIFTL' -- Combined left shift
-=====================================
-
-_Description_:
- 'DSHIFTL(I, J, SHIFT)' combines bits of I and J. The rightmost
- SHIFT bits of the result are the leftmost SHIFT bits of J, and the
- remaining bits are the rightmost bits of I.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = DSHIFTL(I, J, SHIFT)'
-
-_Arguments_:
- I Shall be of type 'INTEGER' or a BOZ constant.
- J Shall be of type 'INTEGER' or a BOZ constant.
- If both I and J have integer type, then they
- shall have the same kind type parameter. I and
- J shall not both be BOZ constants.
- SHIFT Shall be of type 'INTEGER'. It shall be
- nonnegative. If I is not a BOZ constant, then
- SHIFT shall be less than or equal to
- 'BIT_SIZE(I)'; otherwise, SHIFT shall be less
- than or equal to 'BIT_SIZE(J)'.
-
-_Return value_:
- If either I or J is a BOZ constant, it is first converted as if by
- the intrinsic function 'INT' to an integer type with the kind type
- parameter of the other.
-
-_See also_:
- *note DSHIFTR::
-
-
-File: gfortran.info, Node: DSHIFTR, Next: DTIME, Prev: DSHIFTL, Up: Intrinsic Procedures
-
-8.70 'DSHIFTR' -- Combined right shift
-======================================
-
-_Description_:
- 'DSHIFTR(I, J, SHIFT)' combines bits of I and J. The leftmost
- SHIFT bits of the result are the rightmost SHIFT bits of I, and the
- remaining bits are the leftmost bits of J.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = DSHIFTR(I, J, SHIFT)'
-
-_Arguments_:
- I Shall be of type 'INTEGER' or a BOZ constant.
- J Shall be of type 'INTEGER' or a BOZ constant.
- If both I and J have integer type, then they
- shall have the same kind type parameter. I and
- J shall not both be BOZ constants.
- SHIFT Shall be of type 'INTEGER'. It shall be
- nonnegative. If I is not a BOZ constant, then
- SHIFT shall be less than or equal to
- 'BIT_SIZE(I)'; otherwise, SHIFT shall be less
- than or equal to 'BIT_SIZE(J)'.
-
-_Return value_:
- If either I or J is a BOZ constant, it is first converted as if by
- the intrinsic function 'INT' to an integer type with the kind type
- parameter of the other.
-
-_See also_:
- *note DSHIFTL::
-
-
-File: gfortran.info, Node: DTIME, Next: EOSHIFT, Prev: DSHIFTR, Up: Intrinsic Procedures
-
-8.71 'DTIME' -- Execution time subroutine (or function)
-=======================================================
-
-_Description_:
- 'DTIME(VALUES, TIME)' initially returns the number of seconds of
- runtime since the start of the process's execution in TIME. VALUES
- returns the user and system components of this time in 'VALUES(1)'
- and 'VALUES(2)' respectively. TIME is equal to 'VALUES(1) +
- VALUES(2)'.
-
- Subsequent invocations of 'DTIME' return values accumulated since
- the previous invocation.
-
- On some systems, the underlying timings are represented using types
- with sufficiently small limits that overflows (wrap around) are
- possible, such as 32-bit types. Therefore, the values returned by
- this intrinsic might be, or become, negative, or numerically less
- than previous values, during a single run of the compiled program.
-
- Please note, that this implementation is thread safe if used within
- OpenMP directives, i.e., its state will be consistent while called
- from multiple threads. However, if 'DTIME' is called from multiple
- threads, the result is still the time since the last invocation.
- This may not give the intended results. If possible, use
- 'CPU_TIME' instead.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
- VALUES and TIME are 'INTENT(OUT)' and provide the following:
-
- 'VALUES(1)': User time in seconds.
- 'VALUES(2)': System time in seconds.
- 'TIME': Run time since start in
- seconds.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL DTIME(VALUES, TIME)'.
- 'TIME = DTIME(VALUES)', (not recommended).
-
-_Arguments_:
- VALUES The type shall be 'REAL(4), DIMENSION(2)'.
- TIME The type shall be 'REAL(4)'.
-
-_Return value_:
- Elapsed time in seconds since the last invocation or since the
- start of program execution if not called before.
-
-_Example_:
- program test_dtime
- integer(8) :: i, j
- real, dimension(2) :: tarray
- real :: result
- call dtime(tarray, result)
- print *, result
- print *, tarray(1)
- print *, tarray(2)
- do i=1,100000000 ! Just a delay
- j = i * i - i
- end do
- call dtime(tarray, result)
- print *, result
- print *, tarray(1)
- print *, tarray(2)
- end program test_dtime
-
-_See also_:
- *note CPU_TIME::
-
-
-File: gfortran.info, Node: EOSHIFT, Next: EPSILON, Prev: DTIME, Up: Intrinsic Procedures
-
-8.72 'EOSHIFT' -- End-off shift elements of an array
-====================================================
-
-_Description_:
- 'EOSHIFT(ARRAY, SHIFT[, BOUNDARY, DIM])' performs an end-off shift
- on elements of ARRAY along the dimension of DIM. If DIM is omitted
- it is taken to be '1'. DIM is a scalar of type 'INTEGER' in the
- range of 1 \leq DIM \leq n) where n is the rank of ARRAY. If the
- rank of ARRAY is one, then all elements of ARRAY are shifted by
- SHIFT places. If rank is greater than one, then all complete rank
- one sections of ARRAY along the given dimension are shifted.
- Elements shifted out one end of each rank one section are dropped.
- If BOUNDARY is present then the corresponding value of from
- BOUNDARY is copied back in the other end. If BOUNDARY is not
- present then the following are copied in depending on the type of
- ARRAY.
-
- _Array _Boundary Value_
- Type_
- Numeric 0 of the type and kind of ARRAY.
- Logical '.FALSE.'.
- Character(LEN)LEN blanks.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = EOSHIFT(ARRAY, SHIFT [, BOUNDARY, DIM])'
-
-_Arguments_:
- ARRAY May be any type, not scalar.
- SHIFT The type shall be 'INTEGER'.
- BOUNDARY Same type as ARRAY.
- DIM The type shall be 'INTEGER'.
-
-_Return value_:
- Returns an array of same type and rank as the ARRAY argument.
-
-_Example_:
- program test_eoshift
- integer, dimension(3,3) :: a
- a = reshape( (/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /))
- print '(3i3)', a(1,:)
- print '(3i3)', a(2,:)
- print '(3i3)', a(3,:)
- a = EOSHIFT(a, SHIFT=(/1, 2, 1/), BOUNDARY=-5, DIM=2)
- print *
- print '(3i3)', a(1,:)
- print '(3i3)', a(2,:)
- print '(3i3)', a(3,:)
- end program test_eoshift
-
-
-File: gfortran.info, Node: EPSILON, Next: ERF, Prev: EOSHIFT, Up: Intrinsic Procedures
-
-8.73 'EPSILON' -- Epsilon function
-==================================
-
-_Description_:
- 'EPSILON(X)' returns the smallest number E of the same kind as X
- such that 1 + E > 1.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = EPSILON(X)'
-
-_Arguments_:
- X The type shall be 'REAL'.
-
-_Return value_:
- The return value is of same type as the argument.
-
-_Example_:
- program test_epsilon
- real :: x = 3.143
- real(8) :: y = 2.33
- print *, EPSILON(x)
- print *, EPSILON(y)
- end program test_epsilon
-
-
-File: gfortran.info, Node: ERF, Next: ERFC, Prev: EPSILON, Up: Intrinsic Procedures
-
-8.74 'ERF' -- Error function
-============================
-
-_Description_:
- 'ERF(X)' computes the error function of X.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = ERF(X)'
-
-_Arguments_:
- X The type shall be 'REAL'.
-
-_Return value_:
- The return value is of type 'REAL', of the same kind as X and lies
- in the range -1 \leq erf (x) \leq 1 .
-
-_Example_:
- program test_erf
- real(8) :: x = 0.17_8
- x = erf(x)
- end program test_erf
-
-_Specific names_:
- Name Argument Return type Standard
- 'DERF(X)' 'REAL(8) X' 'REAL(8)' GNU extension
-
-
-File: gfortran.info, Node: ERFC, Next: ERFC_SCALED, Prev: ERF, Up: Intrinsic Procedures
-
-8.75 'ERFC' -- Error function
-=============================
-
-_Description_:
- 'ERFC(X)' computes the complementary error function of X.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = ERFC(X)'
-
-_Arguments_:
- X The type shall be 'REAL'.
-
-_Return value_:
- The return value is of type 'REAL' and of the same kind as X. It
- lies in the range 0 \leq erfc (x) \leq 2 .
-
-_Example_:
- program test_erfc
- real(8) :: x = 0.17_8
- x = erfc(x)
- end program test_erfc
-
-_Specific names_:
- Name Argument Return type Standard
- 'DERFC(X)' 'REAL(8) X' 'REAL(8)' GNU extension
-
-
-File: gfortran.info, Node: ERFC_SCALED, Next: ETIME, Prev: ERFC, Up: Intrinsic Procedures
-
-8.76 'ERFC_SCALED' -- Error function
-====================================
-
-_Description_:
- 'ERFC_SCALED(X)' computes the exponentially-scaled complementary
- error function of X.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = ERFC_SCALED(X)'
-
-_Arguments_:
- X The type shall be 'REAL'.
-
-_Return value_:
- The return value is of type 'REAL' and of the same kind as X.
-
-_Example_:
- program test_erfc_scaled
- real(8) :: x = 0.17_8
- x = erfc_scaled(x)
- end program test_erfc_scaled
-
-
-File: gfortran.info, Node: ETIME, Next: EXECUTE_COMMAND_LINE, Prev: ERFC_SCALED, Up: Intrinsic Procedures
-
-8.77 'ETIME' -- Execution time subroutine (or function)
-=======================================================
-
-_Description_:
- 'ETIME(VALUES, TIME)' returns the number of seconds of runtime
- since the start of the process's execution in TIME. VALUES returns
- the user and system components of this time in 'VALUES(1)' and
- 'VALUES(2)' respectively. TIME is equal to 'VALUES(1) +
- VALUES(2)'.
-
- On some systems, the underlying timings are represented using types
- with sufficiently small limits that overflows (wrap around) are
- possible, such as 32-bit types. Therefore, the values returned by
- this intrinsic might be, or become, negative, or numerically less
- than previous values, during a single run of the compiled program.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
- VALUES and TIME are 'INTENT(OUT)' and provide the following:
-
- 'VALUES(1)': User time in seconds.
- 'VALUES(2)': System time in seconds.
- 'TIME': Run time since start in seconds.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL ETIME(VALUES, TIME)'.
- 'TIME = ETIME(VALUES)', (not recommended).
-
-_Arguments_:
- VALUES The type shall be 'REAL(4), DIMENSION(2)'.
- TIME The type shall be 'REAL(4)'.
-
-_Return value_:
- Elapsed time in seconds since the start of program execution.
-
-_Example_:
- program test_etime
- integer(8) :: i, j
- real, dimension(2) :: tarray
- real :: result
- call ETIME(tarray, result)
- print *, result
- print *, tarray(1)
- print *, tarray(2)
- do i=1,100000000 ! Just a delay
- j = i * i - i
- end do
- call ETIME(tarray, result)
- print *, result
- print *, tarray(1)
- print *, tarray(2)
- end program test_etime
-
-_See also_:
- *note CPU_TIME::
-
-
-File: gfortran.info, Node: EXECUTE_COMMAND_LINE, Next: EXIT, Prev: ETIME, Up: Intrinsic Procedures
-
-8.78 'EXECUTE_COMMAND_LINE' -- Execute a shell command
-======================================================
-
-_Description_:
- 'EXECUTE_COMMAND_LINE' runs a shell command, synchronously or
- asynchronously.
-
- The 'COMMAND' argument is passed to the shell and executed, using
- the C library's 'system' call. (The shell is 'sh' on Unix systems,
- and 'cmd.exe' on Windows.) If 'WAIT' is present and has the value
- false, the execution of the command is asynchronous if the system
- supports it; otherwise, the command is executed synchronously.
-
- The three last arguments allow the user to get status information.
- After synchronous execution, 'EXITSTAT' contains the integer exit
- code of the command, as returned by 'system'. 'CMDSTAT' is set to
- zero if the command line was executed (whatever its exit status
- was). 'CMDMSG' is assigned an error message if an error has
- occurred.
-
- Note that the 'system' function need not be thread-safe. It is the
- responsibility of the user to ensure that 'system' is not called
- concurrently.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL EXECUTE_COMMAND_LINE(COMMAND [, WAIT, EXITSTAT, CMDSTAT,
- CMDMSG ])'
-
-_Arguments_:
- COMMAND Shall be a default 'CHARACTER' scalar.
- WAIT (Optional) Shall be a default 'LOGICAL' scalar.
- EXITSTAT (Optional) Shall be an 'INTEGER' of the default
- kind.
- CMDSTAT (Optional) Shall be an 'INTEGER' of the default
- kind.
- CMDMSG (Optional) Shall be an 'CHARACTER' scalar of the
- default kind.
-
-_Example_:
- program test_exec
- integer :: i
-
- call execute_command_line ("external_prog.exe", exitstat=i)
- print *, "Exit status of external_prog.exe was ", i
-
- call execute_command_line ("reindex_files.exe", wait=.false.)
- print *, "Now reindexing files in the background"
-
- end program test_exec
-
-_Note_:
-
- Because this intrinsic is implemented in terms of the 'system'
- function call, its behavior with respect to signaling is processor
- dependent. In particular, on POSIX-compliant systems, the SIGINT
- and SIGQUIT signals will be ignored, and the SIGCHLD will be
- blocked. As such, if the parent process is terminated, the child
- process might not be terminated alongside.
-
-_See also_:
- *note SYSTEM::
-
-
-File: gfortran.info, Node: EXIT, Next: EXP, Prev: EXECUTE_COMMAND_LINE, Up: Intrinsic Procedures
-
-8.79 'EXIT' -- Exit the program with status.
-============================================
-
-_Description_:
- 'EXIT' causes immediate termination of the program with status. If
- status is omitted it returns the canonical _success_ for the
- system. All Fortran I/O units are closed.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL EXIT([STATUS])'
-
-_Arguments_:
- STATUS Shall be an 'INTEGER' of the default kind.
-
-_Return value_:
- 'STATUS' is passed to the parent process on exit.
-
-_Example_:
- program test_exit
- integer :: STATUS = 0
- print *, 'This program is going to exit.'
- call EXIT(STATUS)
- end program test_exit
-
-_See also_:
- *note ABORT::, *note KILL::
-
-
-File: gfortran.info, Node: EXP, Next: EXPONENT, Prev: EXIT, Up: Intrinsic Procedures
-
-8.80 'EXP' -- Exponential function
-==================================
-
-_Description_:
- 'EXP(X)' computes the base e exponential of X.
-
-_Standard_:
- Fortran 77 and later, has overloads that are GNU extensions
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = EXP(X)'
-
-_Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
-
-_Return value_:
- The return value has same type and kind as X.
-
-_Example_:
- program test_exp
- real :: x = 1.0
- x = exp(x)
- end program test_exp
-
-_Specific names_:
- Name Argument Return type Standard
- 'EXP(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DEXP(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
- 'CEXP(X)' 'COMPLEX(4) 'COMPLEX(4)' Fortran 77 and
- X' later
- 'ZEXP(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- 'CDEXP(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
-
-
-File: gfortran.info, Node: EXPONENT, Next: EXTENDS_TYPE_OF, Prev: EXP, Up: Intrinsic Procedures
-
-8.81 'EXPONENT' -- Exponent function
-====================================
-
-_Description_:
- 'EXPONENT(X)' returns the value of the exponent part of X. If X is
- zero the value returned is zero.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = EXPONENT(X)'
-
-_Arguments_:
- X The type shall be 'REAL'.
-
-_Return value_:
- The return value is of type default 'INTEGER'.
-
-_Example_:
- program test_exponent
- real :: x = 1.0
- integer :: i
- i = exponent(x)
- print *, i
- print *, exponent(0.0)
- end program test_exponent
-
-
-File: gfortran.info, Node: EXTENDS_TYPE_OF, Next: FDATE, Prev: EXPONENT, Up: Intrinsic Procedures
-
-8.82 'EXTENDS_TYPE_OF' -- Query dynamic type for extension
-==========================================================
-
-_Description_:
- Query dynamic type for extension.
-
-_Standard_:
- Fortran 2003 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = EXTENDS_TYPE_OF(A, MOLD)'
-
-_Arguments_:
- A Shall be an object of extensible declared type
- or unlimited polymorphic.
- MOLD Shall be an object of extensible declared type
- or unlimited polymorphic.
-
-_Return value_:
- The return value is a scalar of type default logical. It is true
- if and only if the dynamic type of A is an extension type of the
- dynamic type of MOLD.
-
-_See also_:
- *note SAME_TYPE_AS::
-
-
-File: gfortran.info, Node: FDATE, Next: FGET, Prev: EXTENDS_TYPE_OF, Up: Intrinsic Procedures
-
-8.83 'FDATE' -- Get the current time as a string
-================================================
-
-_Description_:
- 'FDATE(DATE)' returns the current date (using the same format as
- 'CTIME') in DATE. It is equivalent to 'CALL CTIME(DATE, TIME())'.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL FDATE(DATE)'.
- 'DATE = FDATE()'.
-
-_Arguments_:
- DATE The type shall be of type 'CHARACTER' of the
- default kind. It is an 'INTENT(OUT)' argument.
- If the length of this variable is too short for
- the date and time string to fit completely, it
- will be blank on procedure return.
-
-_Return value_:
- The current date and time as a string.
-
-_Example_:
- program test_fdate
- integer(8) :: i, j
- character(len=30) :: date
- call fdate(date)
- print *, 'Program started on ', date
- do i = 1, 100000000 ! Just a delay
- j = i * i - i
- end do
- call fdate(date)
- print *, 'Program ended on ', date
- end program test_fdate
-
-_See also_:
- *note DATE_AND_TIME::, *note CTIME::
-
-
-File: gfortran.info, Node: FGET, Next: FGETC, Prev: FDATE, Up: Intrinsic Procedures
-
-8.84 'FGET' -- Read a single character in stream mode from stdin
-================================================================
-
-_Description_:
- Read a single character in stream mode from stdin by bypassing
- normal formatted output. Stream I/O should not be mixed with
- normal record-oriented (formatted or unformatted) I/O on the same
- unit; the results are unpredictable.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
- Note that the 'FGET' intrinsic is provided for backwards
- compatibility with 'g77'. GNU Fortran provides the Fortran 2003
- Stream facility. Programmers should consider the use of new stream
- IO feature in new code for future portability. See also *note
- Fortran 2003 status::.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL FGET(C [, STATUS])'
- 'STATUS = FGET(C)'
-
-_Arguments_:
- C The type shall be 'CHARACTER' and of default
- kind.
- STATUS (Optional) status flag of type 'INTEGER'.
- Returns 0 on success, -1 on end-of-file, and a
- system specific positive error code otherwise.
-
-_Example_:
- PROGRAM test_fget
- INTEGER, PARAMETER :: strlen = 100
- INTEGER :: status, i = 1
- CHARACTER(len=strlen) :: str = ""
-
- WRITE (*,*) 'Enter text:'
- DO
- CALL fget(str(i:i), status)
- if (status /= 0 .OR. i > strlen) exit
- i = i + 1
- END DO
- WRITE (*,*) TRIM(str)
- END PROGRAM
-
-_See also_:
- *note FGETC::, *note FPUT::, *note FPUTC::
-
-
-File: gfortran.info, Node: FGETC, Next: FLOOR, Prev: FGET, Up: Intrinsic Procedures
-
-8.85 'FGETC' -- Read a single character in stream mode
-======================================================
-
-_Description_:
- Read a single character in stream mode by bypassing normal
- formatted output. Stream I/O should not be mixed with normal
- record-oriented (formatted or unformatted) I/O on the same unit;
- the results are unpredictable.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
- Note that the 'FGET' intrinsic is provided for backwards
- compatibility with 'g77'. GNU Fortran provides the Fortran 2003
- Stream facility. Programmers should consider the use of new stream
- IO feature in new code for future portability. See also *note
- Fortran 2003 status::.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL FGETC(UNIT, C [, STATUS])'
- 'STATUS = FGETC(UNIT, C)'
-
-_Arguments_:
- UNIT The type shall be 'INTEGER'.
- C The type shall be 'CHARACTER' and of default
- kind.
- STATUS (Optional) status flag of type 'INTEGER'.
- Returns 0 on success, -1 on end-of-file and a
- system specific positive error code otherwise.
-
-_Example_:
- PROGRAM test_fgetc
- INTEGER :: fd = 42, status
- CHARACTER :: c
-
- OPEN(UNIT=fd, FILE="/etc/passwd", ACTION="READ", STATUS = "OLD")
- DO
- CALL fgetc(fd, c, status)
- IF (status /= 0) EXIT
- call fput(c)
- END DO
- CLOSE(UNIT=fd)
- END PROGRAM
-
-_See also_:
- *note FGET::, *note FPUT::, *note FPUTC::
-
-
-File: gfortran.info, Node: FLOOR, Next: FLUSH, Prev: FGETC, Up: Intrinsic Procedures
-
-8.86 'FLOOR' -- Integer floor function
-======================================
-
-_Description_:
- 'FLOOR(A)' returns the greatest integer less than or equal to X.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = FLOOR(A [, KIND])'
-
-_Arguments_:
- A The type shall be 'REAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- The return value is of type 'INTEGER(KIND)' if KIND is present and
- of default-kind 'INTEGER' otherwise.
-
-_Example_:
- program test_floor
- real :: x = 63.29
- real :: y = -63.59
- print *, floor(x) ! returns 63
- print *, floor(y) ! returns -64
- end program test_floor
-
-_See also_:
- *note CEILING::, *note NINT::
-
-
-File: gfortran.info, Node: FLUSH, Next: FNUM, Prev: FLOOR, Up: Intrinsic Procedures
-
-8.87 'FLUSH' -- Flush I/O unit(s)
-=================================
-
-_Description_:
- Flushes Fortran unit(s) currently open for output. Without the
- optional argument, all units are flushed, otherwise just the unit
- specified.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL FLUSH(UNIT)'
-
-_Arguments_:
- UNIT (Optional) The type shall be 'INTEGER'.
-
-_Note_:
- Beginning with the Fortran 2003 standard, there is a 'FLUSH'
- statement that should be preferred over the 'FLUSH' intrinsic.
-
- The 'FLUSH' intrinsic and the Fortran 2003 'FLUSH' statement have
- identical effect: they flush the runtime library's I/O buffer so
- that the data becomes visible to other processes. This does not
- guarantee that the data is committed to disk.
-
- On POSIX systems, you can request that all data is transferred to
- the storage device by calling the 'fsync' function, with the POSIX
- file descriptor of the I/O unit as argument (retrieved with GNU
- intrinsic 'FNUM'). The following example shows how:
-
- ! Declare the interface for POSIX fsync function
- interface
- function fsync (fd) bind(c,name="fsync")
- use iso_c_binding, only: c_int
- integer(c_int), value :: fd
- integer(c_int) :: fsync
- end function fsync
- end interface
-
- ! Variable declaration
- integer :: ret
-
- ! Opening unit 10
- open (10,file="foo")
-
- ! ...
- ! Perform I/O on unit 10
- ! ...
-
- ! Flush and sync
- flush(10)
- ret = fsync(fnum(10))
-
- ! Handle possible error
- if (ret /= 0) stop "Error calling FSYNC"
-
-
-File: gfortran.info, Node: FNUM, Next: FPUT, Prev: FLUSH, Up: Intrinsic Procedures
-
-8.88 'FNUM' -- File number function
-===================================
-
-_Description_:
- 'FNUM(UNIT)' returns the POSIX file descriptor number corresponding
- to the open Fortran I/O unit 'UNIT'.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Function
-
-_Syntax_:
- 'RESULT = FNUM(UNIT)'
-
-_Arguments_:
- UNIT The type shall be 'INTEGER'.
-
-_Return value_:
- The return value is of type 'INTEGER'
-
-_Example_:
- program test_fnum
- integer :: i
- open (unit=10, status = "scratch")
- i = fnum(10)
- print *, i
- close (10)
- end program test_fnum
-
-
-File: gfortran.info, Node: FPUT, Next: FPUTC, Prev: FNUM, Up: Intrinsic Procedures
-
-8.89 'FPUT' -- Write a single character in stream mode to stdout
-================================================================
-
-_Description_:
- Write a single character in stream mode to stdout by bypassing
- normal formatted output. Stream I/O should not be mixed with
- normal record-oriented (formatted or unformatted) I/O on the same
- unit; the results are unpredictable.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
- Note that the 'FGET' intrinsic is provided for backwards
- compatibility with 'g77'. GNU Fortran provides the Fortran 2003
- Stream facility. Programmers should consider the use of new stream
- IO feature in new code for future portability. See also *note
- Fortran 2003 status::.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL FPUT(C [, STATUS])'
- 'STATUS = FPUT(C)'
-
-_Arguments_:
- C The type shall be 'CHARACTER' and of default
- kind.
- STATUS (Optional) status flag of type 'INTEGER'.
- Returns 0 on success, -1 on end-of-file and a
- system specific positive error code otherwise.
-
-_Example_:
- PROGRAM test_fput
- CHARACTER(len=10) :: str = "gfortran"
- INTEGER :: i
- DO i = 1, len_trim(str)
- CALL fput(str(i:i))
- END DO
- END PROGRAM
-
-_See also_:
- *note FPUTC::, *note FGET::, *note FGETC::
-
-
-File: gfortran.info, Node: FPUTC, Next: FRACTION, Prev: FPUT, Up: Intrinsic Procedures
-
-8.90 'FPUTC' -- Write a single character in stream mode
-=======================================================
-
-_Description_:
- Write a single character in stream mode by bypassing normal
- formatted output. Stream I/O should not be mixed with normal
- record-oriented (formatted or unformatted) I/O on the same unit;
- the results are unpredictable.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
- Note that the 'FGET' intrinsic is provided for backwards
- compatibility with 'g77'. GNU Fortran provides the Fortran 2003
- Stream facility. Programmers should consider the use of new stream
- IO feature in new code for future portability. See also *note
- Fortran 2003 status::.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL FPUTC(UNIT, C [, STATUS])'
- 'STATUS = FPUTC(UNIT, C)'
-
-_Arguments_:
- UNIT The type shall be 'INTEGER'.
- C The type shall be 'CHARACTER' and of default
- kind.
- STATUS (Optional) status flag of type 'INTEGER'.
- Returns 0 on success, -1 on end-of-file and a
- system specific positive error code otherwise.
-
-_Example_:
- PROGRAM test_fputc
- CHARACTER(len=10) :: str = "gfortran"
- INTEGER :: fd = 42, i
-
- OPEN(UNIT = fd, FILE = "out", ACTION = "WRITE", STATUS="NEW")
- DO i = 1, len_trim(str)
- CALL fputc(fd, str(i:i))
- END DO
- CLOSE(fd)
- END PROGRAM
-
-_See also_:
- *note FPUT::, *note FGET::, *note FGETC::
-
-
-File: gfortran.info, Node: FRACTION, Next: FREE, Prev: FPUTC, Up: Intrinsic Procedures
-
-8.91 'FRACTION' -- Fractional part of the model representation
-==============================================================
-
-_Description_:
- 'FRACTION(X)' returns the fractional part of the model
- representation of 'X'.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'Y = FRACTION(X)'
-
-_Arguments_:
- X The type of the argument shall be a 'REAL'.
-
-_Return value_:
- The return value is of the same type and kind as the argument. The
- fractional part of the model representation of 'X' is returned; it
- is 'X * RADIX(X)**(-EXPONENT(X))'.
-
-_Example_:
- program test_fraction
- real :: x
- x = 178.1387e-4
- print *, fraction(x), x * radix(x)**(-exponent(x))
- end program test_fraction
-
-
-File: gfortran.info, Node: FREE, Next: FSEEK, Prev: FRACTION, Up: Intrinsic Procedures
-
-8.92 'FREE' -- Frees memory
-===========================
-
-_Description_:
- Frees memory previously allocated by 'MALLOC'. The 'FREE'
- intrinsic is an extension intended to be used with Cray pointers,
- and is provided in GNU Fortran to allow user to compile legacy
- code. For new code using Fortran 95 pointers, the memory
- de-allocation intrinsic is 'DEALLOCATE'.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL FREE(PTR)'
-
-_Arguments_:
- PTR The type shall be 'INTEGER'. It represents the
- location of the memory that should be
- de-allocated.
-
-_Return value_:
- None
-
-_Example_:
- See 'MALLOC' for an example.
-
-_See also_:
- *note MALLOC::
-
-
-File: gfortran.info, Node: FSEEK, Next: FSTAT, Prev: FREE, Up: Intrinsic Procedures
-
-8.93 'FSEEK' -- Low level file positioning subroutine
-=====================================================
-
-_Description_:
- Moves UNIT to the specified OFFSET. If WHENCE is set to 0, the
- OFFSET is taken as an absolute value 'SEEK_SET', if set to 1,
- OFFSET is taken to be relative to the current position 'SEEK_CUR',
- and if set to 2 relative to the end of the file 'SEEK_END'. On
- error, STATUS is set to a nonzero value. If STATUS the seek fails
- silently.
-
- This intrinsic routine is not fully backwards compatible with
- 'g77'. In 'g77', the 'FSEEK' takes a statement label instead of a
- STATUS variable. If FSEEK is used in old code, change
- CALL FSEEK(UNIT, OFFSET, WHENCE, *label)
- to
- INTEGER :: status
- CALL FSEEK(UNIT, OFFSET, WHENCE, status)
- IF (status /= 0) GOTO label
-
- Please note that GNU Fortran provides the Fortran 2003 Stream
- facility. Programmers should consider the use of new stream IO
- feature in new code for future portability. See also *note Fortran
- 2003 status::.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL FSEEK(UNIT, OFFSET, WHENCE[, STATUS])'
-
-_Arguments_:
- UNIT Shall be a scalar of type 'INTEGER'.
- OFFSET Shall be a scalar of type 'INTEGER'.
- WHENCE Shall be a scalar of type 'INTEGER'. Its value
- shall be either 0, 1 or 2.
- STATUS (Optional) shall be a scalar of type
- 'INTEGER(4)'.
-
-_Example_:
- PROGRAM test_fseek
- INTEGER, PARAMETER :: SEEK_SET = 0, SEEK_CUR = 1, SEEK_END = 2
- INTEGER :: fd, offset, ierr
-
- ierr = 0
- offset = 5
- fd = 10
-
- OPEN(UNIT=fd, FILE="fseek.test")
- CALL FSEEK(fd, offset, SEEK_SET, ierr) ! move to OFFSET
- print *, FTELL(fd), ierr
-
- CALL FSEEK(fd, 0, SEEK_END, ierr) ! move to end
- print *, FTELL(fd), ierr
-
- CALL FSEEK(fd, 0, SEEK_SET, ierr) ! move to beginning
- print *, FTELL(fd), ierr
-
- CLOSE(UNIT=fd)
- END PROGRAM
-
-_See also_:
- *note FTELL::
-
-
-File: gfortran.info, Node: FSTAT, Next: FTELL, Prev: FSEEK, Up: Intrinsic Procedures
-
-8.94 'FSTAT' -- Get file status
-===============================
-
-_Description_:
- 'FSTAT' is identical to *note STAT::, except that information about
- an already opened file is obtained.
-
- The elements in 'VALUES' are the same as described by *note STAT::.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL FSTAT(UNIT, VALUES [, STATUS])'
- 'STATUS = FSTAT(UNIT, VALUES)'
-
-_Arguments_:
- UNIT An open I/O unit number of type 'INTEGER'.
- VALUES The type shall be 'INTEGER(4), DIMENSION(13)'.
- STATUS (Optional) status flag of type 'INTEGER(4)'.
- Returns 0 on success and a system specific error
- code otherwise.
-
-_Example_:
- See *note STAT:: for an example.
-
-_See also_:
- To stat a link: *note LSTAT::, to stat a file: *note STAT::
-
-
-File: gfortran.info, Node: FTELL, Next: GAMMA, Prev: FSTAT, Up: Intrinsic Procedures
-
-8.95 'FTELL' -- Current stream position
-=======================================
-
-_Description_:
- Retrieves the current position within an open file.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL FTELL(UNIT, OFFSET)'
- 'OFFSET = FTELL(UNIT)'
-
-_Arguments_:
- OFFSET Shall of type 'INTEGER'.
- UNIT Shall of type 'INTEGER'.
-
-_Return value_:
- In either syntax, OFFSET is set to the current offset of unit
- number UNIT, or to -1 if the unit is not currently open.
-
-_Example_:
- PROGRAM test_ftell
- INTEGER :: i
- OPEN(10, FILE="temp.dat")
- CALL ftell(10,i)
- WRITE(*,*) i
- END PROGRAM
-
-_See also_:
- *note FSEEK::
-
-
-File: gfortran.info, Node: GAMMA, Next: GERROR, Prev: FTELL, Up: Intrinsic Procedures
-
-8.96 'GAMMA' -- Gamma function
-==============================
-
-_Description_:
- 'GAMMA(X)' computes Gamma (\Gamma) of X. For positive, integer
- values of X the Gamma function simplifies to the factorial function
- \Gamma(x)=(x-1)!.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'X = GAMMA(X)'
-
-_Arguments_:
- X Shall be of type 'REAL' and neither zero nor a
- negative integer.
-
-_Return value_:
- The return value is of type 'REAL' of the same kind as X.
-
-_Example_:
- program test_gamma
- real :: x = 1.0
- x = gamma(x) ! returns 1.0
- end program test_gamma
-
-_Specific names_:
- Name Argument Return type Standard
- 'GAMMA(X)' 'REAL(4) X' 'REAL(4)' GNU Extension
- 'DGAMMA(X)' 'REAL(8) X' 'REAL(8)' GNU Extension
-
-_See also_:
- Logarithm of the Gamma function: *note LOG_GAMMA::
-
-
-File: gfortran.info, Node: GERROR, Next: GETARG, Prev: GAMMA, Up: Intrinsic Procedures
-
-8.97 'GERROR' -- Get last system error message
-==============================================
-
-_Description_:
- Returns the system error message corresponding to the last system
- error. This resembles the functionality of 'strerror(3)' in C.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL GERROR(RESULT)'
-
-_Arguments_:
- RESULT Shall of type 'CHARACTER' and of default
-
-_Example_:
- PROGRAM test_gerror
- CHARACTER(len=100) :: msg
- CALL gerror(msg)
- WRITE(*,*) msg
- END PROGRAM
-
-_See also_:
- *note IERRNO::, *note PERROR::
-
-
-File: gfortran.info, Node: GETARG, Next: GET_COMMAND, Prev: GERROR, Up: Intrinsic Procedures
-
-8.98 'GETARG' -- Get command line arguments
-===========================================
-
-_Description_:
- Retrieve the POS-th argument that was passed on the command line
- when the containing program was invoked.
-
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. In new code, programmers should consider the use
- of the *note GET_COMMAND_ARGUMENT:: intrinsic defined by the
- Fortran 2003 standard.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL GETARG(POS, VALUE)'
-
-_Arguments_:
- POS Shall be of type 'INTEGER' and not wider than
- the default integer kind; POS \geq 0
- VALUE Shall be of type 'CHARACTER' and of default
- kind.
- VALUE Shall be of type 'CHARACTER'.
-
-_Return value_:
- After 'GETARG' returns, the VALUE argument holds the POSth command
- line argument. If VALUE can not hold the argument, it is truncated
- to fit the length of VALUE. If there are less than POS arguments
- specified at the command line, VALUE will be filled with blanks.
- If POS = 0, VALUE is set to the name of the program (on systems
- that support this feature).
-
-_Example_:
- PROGRAM test_getarg
- INTEGER :: i
- CHARACTER(len=32) :: arg
-
- DO i = 1, iargc()
- CALL getarg(i, arg)
- WRITE (*,*) arg
- END DO
- END PROGRAM
-
-_See also_:
- GNU Fortran 77 compatibility function: *note IARGC::
-
- Fortran 2003 functions and subroutines: *note GET_COMMAND::, *note
- GET_COMMAND_ARGUMENT::, *note COMMAND_ARGUMENT_COUNT::
-
-
-File: gfortran.info, Node: GET_COMMAND, Next: GET_COMMAND_ARGUMENT, Prev: GETARG, Up: Intrinsic Procedures
-
-8.99 'GET_COMMAND' -- Get the entire command line
-=================================================
-
-_Description_:
- Retrieve the entire command line that was used to invoke the
- program.
-
-_Standard_:
- Fortran 2003 and later
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL GET_COMMAND([COMMAND, LENGTH, STATUS])'
-
-_Arguments_:
- COMMAND (Optional) shall be of type 'CHARACTER' and of
- default kind.
- LENGTH (Optional) Shall be of type 'INTEGER' and of
- default kind.
- STATUS (Optional) Shall be of type 'INTEGER' and of
- default kind.
-
-_Return value_:
- If COMMAND is present, stores the entire command line that was used
- to invoke the program in COMMAND. If LENGTH is present, it is
- assigned the length of the command line. If STATUS is present, it
- is assigned 0 upon success of the command, -1 if COMMAND is too
- short to store the command line, or a positive value in case of an
- error.
-
-_Example_:
- PROGRAM test_get_command
- CHARACTER(len=255) :: cmd
- CALL get_command(cmd)
- WRITE (*,*) TRIM(cmd)
- END PROGRAM
-
-_See also_:
- *note GET_COMMAND_ARGUMENT::, *note COMMAND_ARGUMENT_COUNT::
-
-
-File: gfortran.info, Node: GET_COMMAND_ARGUMENT, Next: GETCWD, Prev: GET_COMMAND, Up: Intrinsic Procedures
-
-8.100 'GET_COMMAND_ARGUMENT' -- Get command line arguments
-==========================================================
-
-_Description_:
- Retrieve the NUMBER-th argument that was passed on the command line
- when the containing program was invoked.
-
-_Standard_:
- Fortran 2003 and later
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS])'
-
-_Arguments_:
- NUMBER Shall be a scalar of type 'INTEGER' and of
- default kind, NUMBER \geq 0
- VALUE (Optional) Shall be a scalar of type 'CHARACTER'
- and of default kind.
- LENGTH (Optional) Shall be a scalar of type 'INTEGER'
- and of default kind.
- STATUS (Optional) Shall be a scalar of type 'INTEGER'
- and of default kind.
-
-_Return value_:
- After 'GET_COMMAND_ARGUMENT' returns, the VALUE argument holds the
- NUMBER-th command line argument. If VALUE can not hold the
- argument, it is truncated to fit the length of VALUE. If there are
- less than NUMBER arguments specified at the command line, VALUE
- will be filled with blanks. If NUMBER = 0, VALUE is set to the
- name of the program (on systems that support this feature). The
- LENGTH argument contains the length of the NUMBER-th command line
- argument. If the argument retrieval fails, STATUS is a positive
- number; if VALUE contains a truncated command line argument, STATUS
- is -1; and otherwise the STATUS is zero.
-
-_Example_:
- PROGRAM test_get_command_argument
- INTEGER :: i
- CHARACTER(len=32) :: arg
-
- i = 0
- DO
- CALL get_command_argument(i, arg)
- IF (LEN_TRIM(arg) == 0) EXIT
-
- WRITE (*,*) TRIM(arg)
- i = i+1
- END DO
- END PROGRAM
-
-_See also_:
- *note GET_COMMAND::, *note COMMAND_ARGUMENT_COUNT::
-
-
-File: gfortran.info, Node: GETCWD, Next: GETENV, Prev: GET_COMMAND_ARGUMENT, Up: Intrinsic Procedures
-
-8.101 'GETCWD' -- Get current working directory
-===============================================
-
-_Description_:
- Get current working directory.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL GETCWD(C [, STATUS])'
- 'STATUS = GETCWD(C)'
-
-_Arguments_:
- C The type shall be 'CHARACTER' and of default
- kind.
- STATUS (Optional) status flag. Returns 0 on success, a
- system specific and nonzero error code
- otherwise.
-
-_Example_:
- PROGRAM test_getcwd
- CHARACTER(len=255) :: cwd
- CALL getcwd(cwd)
- WRITE(*,*) TRIM(cwd)
- END PROGRAM
-
-_See also_:
- *note CHDIR::
-
-
-File: gfortran.info, Node: GETENV, Next: GET_ENVIRONMENT_VARIABLE, Prev: GETCWD, Up: Intrinsic Procedures
-
-8.102 'GETENV' -- Get an environmental variable
-===============================================
-
-_Description_:
- Get the VALUE of the environmental variable NAME.
-
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. In new code, programmers should consider the use
- of the *note GET_ENVIRONMENT_VARIABLE:: intrinsic defined by the
- Fortran 2003 standard.
-
- Note that 'GETENV' need not be thread-safe. It is the
- responsibility of the user to ensure that the environment is not
- being updated concurrently with a call to the 'GETENV' intrinsic.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL GETENV(NAME, VALUE)'
-
-_Arguments_:
- NAME Shall be of type 'CHARACTER' and of default
- kind.
- VALUE Shall be of type 'CHARACTER' and of default
- kind.
-
-_Return value_:
- Stores the value of NAME in VALUE. If VALUE is not large enough to
- hold the data, it is truncated. If NAME is not set, VALUE will be
- filled with blanks.
-
-_Example_:
- PROGRAM test_getenv
- CHARACTER(len=255) :: homedir
- CALL getenv("HOME", homedir)
- WRITE (*,*) TRIM(homedir)
- END PROGRAM
-
-_See also_:
- *note GET_ENVIRONMENT_VARIABLE::
-
-
-File: gfortran.info, Node: GET_ENVIRONMENT_VARIABLE, Next: GETGID, Prev: GETENV, Up: Intrinsic Procedures
-
-8.103 'GET_ENVIRONMENT_VARIABLE' -- Get an environmental variable
-=================================================================
-
-_Description_:
- Get the VALUE of the environmental variable NAME.
-
- Note that 'GET_ENVIRONMENT_VARIABLE' need not be thread-safe. It
- is the responsibility of the user to ensure that the environment is
- not being updated concurrently with a call to the
- 'GET_ENVIRONMENT_VARIABLE' intrinsic.
-
-_Standard_:
- Fortran 2003 and later
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL GET_ENVIRONMENT_VARIABLE(NAME[, VALUE, LENGTH, STATUS,
- TRIM_NAME)'
-
-_Arguments_:
- NAME Shall be a scalar of type 'CHARACTER' and of
- default kind.
- VALUE (Optional) Shall be a scalar of type 'CHARACTER'
- and of default kind.
- LENGTH (Optional) Shall be a scalar of type 'INTEGER'
- and of default kind.
- STATUS (Optional) Shall be a scalar of type 'INTEGER'
- and of default kind.
- TRIM_NAME (Optional) Shall be a scalar of type 'LOGICAL'
- and of default kind.
-
-_Return value_:
- Stores the value of NAME in VALUE. If VALUE is not large enough to
- hold the data, it is truncated. If NAME is not set, VALUE will be
- filled with blanks. Argument LENGTH contains the length needed for
- storing the environment variable NAME or zero if it is not present.
- STATUS is -1 if VALUE is present but too short for the environment
- variable; it is 1 if the environment variable does not exist and 2
- if the processor does not support environment variables; in all
- other cases STATUS is zero. If TRIM_NAME is present with the value
- '.FALSE.', the trailing blanks in NAME are significant; otherwise
- they are not part of the environment variable name.
-
-_Example_:
- PROGRAM test_getenv
- CHARACTER(len=255) :: homedir
- CALL get_environment_variable("HOME", homedir)
- WRITE (*,*) TRIM(homedir)
- END PROGRAM
-
-
-File: gfortran.info, Node: GETGID, Next: GETLOG, Prev: GET_ENVIRONMENT_VARIABLE, Up: Intrinsic Procedures
-
-8.104 'GETGID' -- Group ID function
-===================================
-
-_Description_:
- Returns the numerical group ID of the current process.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Function
-
-_Syntax_:
- 'RESULT = GETGID()'
-
-_Return value_:
- The return value of 'GETGID' is an 'INTEGER' of the default kind.
-
-_Example_:
- See 'GETPID' for an example.
-
-_See also_:
- *note GETPID::, *note GETUID::
-
-
-File: gfortran.info, Node: GETLOG, Next: GETPID, Prev: GETGID, Up: Intrinsic Procedures
-
-8.105 'GETLOG' -- Get login name
-================================
-
-_Description_:
- Gets the username under which the program is running.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL GETLOG(C)'
-
-_Arguments_:
- C Shall be of type 'CHARACTER' and of default
- kind.
-
-_Return value_:
- Stores the current user name in LOGIN. (On systems where POSIX
- functions 'geteuid' and 'getpwuid' are not available, and the
- 'getlogin' function is not implemented either, this will return a
- blank string.)
-
-_Example_:
- PROGRAM TEST_GETLOG
- CHARACTER(32) :: login
- CALL GETLOG(login)
- WRITE(*,*) login
- END PROGRAM
-
-_See also_:
- *note GETUID::
-
-
-File: gfortran.info, Node: GETPID, Next: GETUID, Prev: GETLOG, Up: Intrinsic Procedures
-
-8.106 'GETPID' -- Process ID function
-=====================================
-
-_Description_:
- Returns the numerical process identifier of the current process.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Function
-
-_Syntax_:
- 'RESULT = GETPID()'
-
-_Return value_:
- The return value of 'GETPID' is an 'INTEGER' of the default kind.
-
-_Example_:
- program info
- print *, "The current process ID is ", getpid()
- print *, "Your numerical user ID is ", getuid()
- print *, "Your numerical group ID is ", getgid()
- end program info
-
-_See also_:
- *note GETGID::, *note GETUID::
-
-
-File: gfortran.info, Node: GETUID, Next: GMTIME, Prev: GETPID, Up: Intrinsic Procedures
-
-8.107 'GETUID' -- User ID function
-==================================
-
-_Description_:
- Returns the numerical user ID of the current process.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Function
-
-_Syntax_:
- 'RESULT = GETUID()'
-
-_Return value_:
- The return value of 'GETUID' is an 'INTEGER' of the default kind.
-
-_Example_:
- See 'GETPID' for an example.
-
-_See also_:
- *note GETPID::, *note GETLOG::
-
-
-File: gfortran.info, Node: GMTIME, Next: HOSTNM, Prev: GETUID, Up: Intrinsic Procedures
-
-8.108 'GMTIME' -- Convert time to GMT info
-==========================================
-
-_Description_:
- Given a system time value TIME (as provided by the 'TIME8'
- intrinsic), fills VALUES with values extracted from it appropriate
- to the UTC time zone (Universal Coordinated Time, also known in
- some countries as GMT, Greenwich Mean Time), using 'gmtime(3)'.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL GMTIME(TIME, VALUES)'
-
-_Arguments_:
- TIME An 'INTEGER' scalar expression corresponding to
- a system time, with 'INTENT(IN)'.
- VALUES A default 'INTEGER' array with 9 elements, with
- 'INTENT(OUT)'.
-
-_Return value_:
- The elements of VALUES are assigned as follows:
- 1. Seconds after the minute, range 0-59 or 0-61 to allow for leap
- seconds
- 2. Minutes after the hour, range 0-59
- 3. Hours past midnight, range 0-23
- 4. Day of month, range 0-31
- 5. Number of months since January, range 0-12
- 6. Years since 1900
- 7. Number of days since Sunday, range 0-6
- 8. Days since January 1
- 9. Daylight savings indicator: positive if daylight savings is in
- effect, zero if not, and negative if the information is not
- available.
-
-_See also_:
- *note CTIME::, *note LTIME::, *note TIME::, *note TIME8::
-
-
-File: gfortran.info, Node: HOSTNM, Next: HUGE, Prev: GMTIME, Up: Intrinsic Procedures
-
-8.109 'HOSTNM' -- Get system host name
-======================================
-
-_Description_:
- Retrieves the host name of the system on which the program is
- running.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL HOSTNM(C [, STATUS])'
- 'STATUS = HOSTNM(NAME)'
-
-_Arguments_:
- C Shall of type 'CHARACTER' and of default kind.
- STATUS (Optional) status flag of type 'INTEGER'.
- Returns 0 on success, or a system specific error
- code otherwise.
-
-_Return value_:
- In either syntax, NAME is set to the current hostname if it can be
- obtained, or to a blank string otherwise.
-
-
-File: gfortran.info, Node: HUGE, Next: HYPOT, Prev: HOSTNM, Up: Intrinsic Procedures
-
-8.110 'HUGE' -- Largest number of a kind
-========================================
-
-_Description_:
- 'HUGE(X)' returns the largest number that is not an infinity in the
- model of the type of 'X'.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = HUGE(X)'
-
-_Arguments_:
- X Shall be of type 'REAL' or 'INTEGER'.
-
-_Return value_:
- The return value is of the same type and kind as X
-
-_Example_:
- program test_huge_tiny
- print *, huge(0), huge(0.0), huge(0.0d0)
- print *, tiny(0.0), tiny(0.0d0)
- end program test_huge_tiny
-
-
-File: gfortran.info, Node: HYPOT, Next: IACHAR, Prev: HUGE, Up: Intrinsic Procedures
-
-8.111 'HYPOT' -- Euclidean distance function
-============================================
-
-_Description_:
- 'HYPOT(X,Y)' is the Euclidean distance function. It is equal to
- \sqrt{X^2 + Y^2}, without undue underflow or overflow.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = HYPOT(X, Y)'
-
-_Arguments_:
- X The type shall be 'REAL'.
- Y The type and kind type parameter shall be the
- same as X.
-
-_Return value_:
- The return value has the same type and kind type parameter as X.
-
-_Example_:
- program test_hypot
- real(4) :: x = 1.e0_4, y = 0.5e0_4
- x = hypot(x,y)
- end program test_hypot
-
-
-File: gfortran.info, Node: IACHAR, Next: IALL, Prev: HYPOT, Up: Intrinsic Procedures
-
-8.112 'IACHAR' -- Code in ASCII collating sequence
-==================================================
-
-_Description_:
- 'IACHAR(C)' returns the code for the ASCII character in the first
- character position of 'C'.
-
-_Standard_:
- Fortran 95 and later, with KIND argument Fortran 2003 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = IACHAR(C [, KIND])'
-
-_Arguments_:
- C Shall be a scalar 'CHARACTER', with 'INTENT(IN)'
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
-
-_Example_:
- program test_iachar
- integer i
- i = iachar(' ')
- end program test_iachar
-
-_Note_:
- See *note ICHAR:: for a discussion of converting between numerical
- values and formatted string representations.
-
-_See also_:
- *note ACHAR::, *note CHAR::, *note ICHAR::
-
-
-File: gfortran.info, Node: IALL, Next: IAND, Prev: IACHAR, Up: Intrinsic Procedures
-
-8.113 'IALL' -- Bitwise AND of array elements
-=============================================
-
-_Description_:
- Reduces with bitwise AND the elements of ARRAY along dimension DIM
- if the corresponding element in MASK is 'TRUE'.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = IALL(ARRAY[, MASK])'
- 'RESULT = IALL(ARRAY, DIM[, MASK])'
-
-_Arguments_:
- ARRAY Shall be an array of type 'INTEGER'
- DIM (Optional) shall be a scalar of type 'INTEGER'
- with a value in the range from 1 to n, where n
- equals the rank of ARRAY.
- MASK (Optional) shall be of type 'LOGICAL' and either
- be a scalar or an array of the same shape as
- ARRAY.
-
-_Return value_:
- The result is of the same type as ARRAY.
-
- If DIM is absent, a scalar with the bitwise ALL of all elements in
- ARRAY is returned. Otherwise, an array of rank n-1, where n equals
- the rank of ARRAY, and a shape similar to that of ARRAY with
- dimension DIM dropped is returned.
-
-_Example_:
- PROGRAM test_iall
- INTEGER(1) :: a(2)
-
- a(1) = b'00100100'
- a(2) = b'01101010'
-
- ! prints 00100000
- PRINT '(b8.8)', IALL(a)
- END PROGRAM
-
-_See also_:
- *note IANY::, *note IPARITY::, *note IAND::
-
-
-File: gfortran.info, Node: IAND, Next: IANY, Prev: IALL, Up: Intrinsic Procedures
-
-8.114 'IAND' -- Bitwise logical and
-===================================
-
-_Description_:
- Bitwise logical 'AND'.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = IAND(I, J)'
-
-_Arguments_:
- I The type shall be 'INTEGER'.
- J The type shall be 'INTEGER', of the same kind as
- I. (As a GNU extension, different kinds are
- also permitted.)
-
-_Return value_:
- The return type is 'INTEGER', of the same kind as the arguments.
- (If the argument kinds differ, it is of the same kind as the larger
- argument.)
-
-_Example_:
- PROGRAM test_iand
- INTEGER :: a, b
- DATA a / Z'F' /, b / Z'3' /
- WRITE (*,*) IAND(a, b)
- END PROGRAM
-
-_See also_:
- *note IOR::, *note IEOR::, *note IBITS::, *note IBSET::, *note
- IBCLR::, *note NOT::
-
-
-File: gfortran.info, Node: IANY, Next: IARGC, Prev: IAND, Up: Intrinsic Procedures
-
-8.115 'IANY' -- Bitwise OR of array elements
-============================================
-
-_Description_:
- Reduces with bitwise OR (inclusive or) the elements of ARRAY along
- dimension DIM if the corresponding element in MASK is 'TRUE'.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = IANY(ARRAY[, MASK])'
- 'RESULT = IANY(ARRAY, DIM[, MASK])'
-
-_Arguments_:
- ARRAY Shall be an array of type 'INTEGER'
- DIM (Optional) shall be a scalar of type 'INTEGER'
- with a value in the range from 1 to n, where n
- equals the rank of ARRAY.
- MASK (Optional) shall be of type 'LOGICAL' and either
- be a scalar or an array of the same shape as
- ARRAY.
-
-_Return value_:
- The result is of the same type as ARRAY.
-
- If DIM is absent, a scalar with the bitwise OR of all elements in
- ARRAY is returned. Otherwise, an array of rank n-1, where n equals
- the rank of ARRAY, and a shape similar to that of ARRAY with
- dimension DIM dropped is returned.
-
-_Example_:
- PROGRAM test_iany
- INTEGER(1) :: a(2)
-
- a(1) = b'00100100'
- a(2) = b'01101010'
-
- ! prints 01101110
- PRINT '(b8.8)', IANY(a)
- END PROGRAM
-
-_See also_:
- *note IPARITY::, *note IALL::, *note IOR::
-
-
-File: gfortran.info, Node: IARGC, Next: IBCLR, Prev: IANY, Up: Intrinsic Procedures
-
-8.116 'IARGC' -- Get the number of command line arguments
-=========================================================
-
-_Description_:
- 'IARGC' returns the number of arguments passed on the command line
- when the containing program was invoked.
-
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. In new code, programmers should consider the use
- of the *note COMMAND_ARGUMENT_COUNT:: intrinsic defined by the
- Fortran 2003 standard.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Function
-
-_Syntax_:
- 'RESULT = IARGC()'
-
-_Arguments_:
- None.
-
-_Return value_:
- The number of command line arguments, type 'INTEGER(4)'.
-
-_Example_:
- See *note GETARG::
-
-_See also_:
- GNU Fortran 77 compatibility subroutine: *note GETARG::
-
- Fortran 2003 functions and subroutines: *note GET_COMMAND::, *note
- GET_COMMAND_ARGUMENT::, *note COMMAND_ARGUMENT_COUNT::
-
-
-File: gfortran.info, Node: IBCLR, Next: IBITS, Prev: IARGC, Up: Intrinsic Procedures
-
-8.117 'IBCLR' -- Clear bit
-==========================
-
-_Description_:
- 'IBCLR' returns the value of I with the bit at position POS set to
- zero.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = IBCLR(I, POS)'
-
-_Arguments_:
- I The type shall be 'INTEGER'.
- POS The type shall be 'INTEGER'.
-
-_Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
-
-_See also_:
- *note IBITS::, *note IBSET::, *note IAND::, *note IOR::, *note
- IEOR::, *note MVBITS::
-
-
-File: gfortran.info, Node: IBITS, Next: IBSET, Prev: IBCLR, Up: Intrinsic Procedures
-
-8.118 'IBITS' -- Bit extraction
-===============================
-
-_Description_:
- 'IBITS' extracts a field of length LEN from I, starting from bit
- position POS and extending left for LEN bits. The result is
- right-justified and the remaining bits are zeroed. The value of
- 'POS+LEN' must be less than or equal to the value 'BIT_SIZE(I)'.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = IBITS(I, POS, LEN)'
-
-_Arguments_:
- I The type shall be 'INTEGER'.
- POS The type shall be 'INTEGER'.
- LEN The type shall be 'INTEGER'.
-
-_Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
-
-_See also_:
- *note BIT_SIZE::, *note IBCLR::, *note IBSET::, *note IAND::, *note
- IOR::, *note IEOR::
-
-
-File: gfortran.info, Node: IBSET, Next: ICHAR, Prev: IBITS, Up: Intrinsic Procedures
-
-8.119 'IBSET' -- Set bit
-========================
-
-_Description_:
- 'IBSET' returns the value of I with the bit at position POS set to
- one.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = IBSET(I, POS)'
-
-_Arguments_:
- I The type shall be 'INTEGER'.
- POS The type shall be 'INTEGER'.
-
-_Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
-
-_See also_:
- *note IBCLR::, *note IBITS::, *note IAND::, *note IOR::, *note
- IEOR::, *note MVBITS::
-
-
-File: gfortran.info, Node: ICHAR, Next: IDATE, Prev: IBSET, Up: Intrinsic Procedures
-
-8.120 'ICHAR' -- Character-to-integer conversion function
-=========================================================
-
-_Description_:
- 'ICHAR(C)' returns the code for the character in the first
- character position of 'C' in the system's native character set.
- The correspondence between characters and their codes is not
- necessarily the same across different GNU Fortran implementations.
-
-_Standard_:
- Fortran 95 and later, with KIND argument Fortran 2003 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = ICHAR(C [, KIND])'
-
-_Arguments_:
- C Shall be a scalar 'CHARACTER', with 'INTENT(IN)'
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
-
-_Example_:
- program test_ichar
- integer i
- i = ichar(' ')
- end program test_ichar
-
-_Specific names_:
- Name Argument Return type Standard
- 'ICHAR(C)' 'CHARACTER 'INTEGER(4)' Fortran 77 and
- C' later
-
-_Note_:
- No intrinsic exists to convert between a numeric value and a
- formatted character string representation - for instance, given the
- 'CHARACTER' value ''154'', obtaining an 'INTEGER' or 'REAL' value
- with the value 154, or vice versa. Instead, this functionality is
- provided by internal-file I/O, as in the following example:
- program read_val
- integer value
- character(len=10) string, string2
- string = '154'
-
- ! Convert a string to a numeric value
- read (string,'(I10)') value
- print *, value
-
- ! Convert a value to a formatted string
- write (string2,'(I10)') value
- print *, string2
- end program read_val
-
-_See also_:
- *note ACHAR::, *note CHAR::, *note IACHAR::
-
-
-File: gfortran.info, Node: IDATE, Next: IEOR, Prev: ICHAR, Up: Intrinsic Procedures
-
-8.121 'IDATE' -- Get current local time subroutine (day/month/year)
-===================================================================
-
-_Description_:
- 'IDATE(VALUES)' Fills VALUES with the numerical values at the
- current local time. The day (in the range 1-31), month (in the
- range 1-12), and year appear in elements 1, 2, and 3 of VALUES,
- respectively. The year has four significant digits.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL IDATE(VALUES)'
-
-_Arguments_:
- VALUES The type shall be 'INTEGER, DIMENSION(3)' and
- the kind shall be the default integer kind.
-
-_Return value_:
- Does not return anything.
-
-_Example_:
- program test_idate
- integer, dimension(3) :: tarray
- call idate(tarray)
- print *, tarray(1)
- print *, tarray(2)
- print *, tarray(3)
- end program test_idate
-
-
-File: gfortran.info, Node: IEOR, Next: IERRNO, Prev: IDATE, Up: Intrinsic Procedures
-
-8.122 'IEOR' -- Bitwise logical exclusive or
-============================================
-
-_Description_:
- 'IEOR' returns the bitwise Boolean exclusive-OR of I and J.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = IEOR(I, J)'
-
-_Arguments_:
- I The type shall be 'INTEGER'.
- J The type shall be 'INTEGER', of the same kind as
- I. (As a GNU extension, different kinds are
- also permitted.)
-
-_Return value_:
- The return type is 'INTEGER', of the same kind as the arguments.
- (If the argument kinds differ, it is of the same kind as the larger
- argument.)
-
-_See also_:
- *note IOR::, *note IAND::, *note IBITS::, *note IBSET::, *note
- IBCLR::, *note NOT::
-
-
-File: gfortran.info, Node: IERRNO, Next: IMAGE_INDEX, Prev: IEOR, Up: Intrinsic Procedures
-
-8.123 'IERRNO' -- Get the last system error number
-==================================================
-
-_Description_:
- Returns the last system error number, as given by the C 'errno'
- variable.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Function
-
-_Syntax_:
- 'RESULT = IERRNO()'
-
-_Arguments_:
- None.
-
-_Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind.
-
-_See also_:
- *note PERROR::
-
-
-File: gfortran.info, Node: IMAGE_INDEX, Next: INDEX intrinsic, Prev: IERRNO, Up: Intrinsic Procedures
-
-8.124 'IMAGE_INDEX' -- Function that converts a cosubscript to an image index
-=============================================================================
-
-_Description_:
- Returns the image index belonging to a cosubscript.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Inquiry function.
-
-_Syntax_:
- 'RESULT = IMAGE_INDEX(COARRAY, SUB)'
-
-_Arguments_: None.
- COARRAY Coarray of any type.
- SUB default integer rank-1 array of a size equal to
- the corank of COARRAY.
-
-_Return value_:
- Scalar default integer with the value of the image index which
- corresponds to the cosubscripts. For invalid cosubscripts the
- result is zero.
-
-_Example_:
- INTEGER :: array[2,-1:4,8,*]
- ! Writes 28 (or 0 if there are fewer than 28 images)
- WRITE (*,*) IMAGE_INDEX (array, [2,0,3,1])
-
-_See also_:
- *note THIS_IMAGE::, *note NUM_IMAGES::
-
-
-File: gfortran.info, Node: INDEX intrinsic, Next: INT, Prev: IMAGE_INDEX, Up: Intrinsic Procedures
-
-8.125 'INDEX' -- Position of a substring within a string
-========================================================
-
-_Description_:
- Returns the position of the start of the first occurrence of string
- SUBSTRING as a substring in STRING, counting from one. If
- SUBSTRING is not present in STRING, zero is returned. If the BACK
- argument is present and true, the return value is the start of the
- last occurrence rather than the first.
-
-_Standard_:
- Fortran 77 and later, with KIND argument Fortran 2003 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = INDEX(STRING, SUBSTRING [, BACK [, KIND]])'
-
-_Arguments_:
- STRING Shall be a scalar 'CHARACTER', with 'INTENT(IN)'
- SUBSTRING Shall be a scalar 'CHARACTER', with 'INTENT(IN)'
- BACK (Optional) Shall be a scalar 'LOGICAL', with
- 'INTENT(IN)'
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
-
-_Specific names_:
- Name Argument Return type Standard
- 'INDEX(STRING, 'CHARACTER' 'INTEGER(4)' Fortran 77 and
- SUBSTRING)' later
-
-_See also_:
- *note SCAN::, *note VERIFY::
-
-
-File: gfortran.info, Node: INT, Next: INT2, Prev: INDEX intrinsic, Up: Intrinsic Procedures
-
-8.126 'INT' -- Convert to integer type
-======================================
-
-_Description_:
- Convert to integer type
-
-_Standard_:
- Fortran 77 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = INT(A [, KIND))'
-
-_Arguments_:
- A Shall be of type 'INTEGER', 'REAL', or
- 'COMPLEX'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- These functions return a 'INTEGER' variable or array under the
- following rules:
-
- (A)
- If A is of type 'INTEGER', 'INT(A) = A'
- (B)
- If A is of type 'REAL' and |A| < 1, 'INT(A)' equals '0'. If
- |A| \geq 1, then 'INT(A)' equals the largest integer that does
- not exceed the range of A and whose sign is the same as the
- sign of A.
- (C)
- If A is of type 'COMPLEX', rule B is applied to the real part
- of A.
-
-_Example_:
- program test_int
- integer :: i = 42
- complex :: z = (-3.7, 1.0)
- print *, int(i)
- print *, int(z), int(z,8)
- end program
-
-_Specific names_:
- Name Argument Return type Standard
- 'INT(A)' 'REAL(4) A' 'INTEGER' Fortran 77 and
- later
- 'IFIX(A)' 'REAL(4) A' 'INTEGER' Fortran 77 and
- later
- 'IDINT(A)' 'REAL(8) A' 'INTEGER' Fortran 77 and
- later
-
-
-File: gfortran.info, Node: INT2, Next: INT8, Prev: INT, Up: Intrinsic Procedures
-
-8.127 'INT2' -- Convert to 16-bit integer type
-==============================================
-
-_Description_:
- Convert to a 'KIND=2' integer type. This is equivalent to the
- standard 'INT' intrinsic with an optional argument of 'KIND=2', and
- is only included for backwards compatibility.
-
- The 'SHORT' intrinsic is equivalent to 'INT2'.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = INT2(A)'
-
-_Arguments_:
- A Shall be of type 'INTEGER', 'REAL', or
- 'COMPLEX'.
-
-_Return value_:
- The return value is a 'INTEGER(2)' variable.
-
-_See also_:
- *note INT::, *note INT8::, *note LONG::
-
-
-File: gfortran.info, Node: INT8, Next: IOR, Prev: INT2, Up: Intrinsic Procedures
-
-8.128 'INT8' -- Convert to 64-bit integer type
-==============================================
-
-_Description_:
- Convert to a 'KIND=8' integer type. This is equivalent to the
- standard 'INT' intrinsic with an optional argument of 'KIND=8', and
- is only included for backwards compatibility.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = INT8(A)'
-
-_Arguments_:
- A Shall be of type 'INTEGER', 'REAL', or
- 'COMPLEX'.
-
-_Return value_:
- The return value is a 'INTEGER(8)' variable.
-
-_See also_:
- *note INT::, *note INT2::, *note LONG::
-
-
-File: gfortran.info, Node: IOR, Next: IPARITY, Prev: INT8, Up: Intrinsic Procedures
-
-8.129 'IOR' -- Bitwise logical or
-=================================
-
-_Description_:
- 'IOR' returns the bitwise Boolean inclusive-OR of I and J.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = IOR(I, J)'
-
-_Arguments_:
- I The type shall be 'INTEGER'.
- J The type shall be 'INTEGER', of the same kind as
- I. (As a GNU extension, different kinds are
- also permitted.)
-
-_Return value_:
- The return type is 'INTEGER', of the same kind as the arguments.
- (If the argument kinds differ, it is of the same kind as the larger
- argument.)
-
-_See also_:
- *note IEOR::, *note IAND::, *note IBITS::, *note IBSET::, *note
- IBCLR::, *note NOT::
-
-
-File: gfortran.info, Node: IPARITY, Next: IRAND, Prev: IOR, Up: Intrinsic Procedures
-
-8.130 'IPARITY' -- Bitwise XOR of array elements
-================================================
-
-_Description_:
- Reduces with bitwise XOR (exclusive or) the elements of ARRAY along
- dimension DIM if the corresponding element in MASK is 'TRUE'.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = IPARITY(ARRAY[, MASK])'
- 'RESULT = IPARITY(ARRAY, DIM[, MASK])'
-
-_Arguments_:
- ARRAY Shall be an array of type 'INTEGER'
- DIM (Optional) shall be a scalar of type 'INTEGER'
- with a value in the range from 1 to n, where n
- equals the rank of ARRAY.
- MASK (Optional) shall be of type 'LOGICAL' and either
- be a scalar or an array of the same shape as
- ARRAY.
-
-_Return value_:
- The result is of the same type as ARRAY.
-
- If DIM is absent, a scalar with the bitwise XOR of all elements in
- ARRAY is returned. Otherwise, an array of rank n-1, where n equals
- the rank of ARRAY, and a shape similar to that of ARRAY with
- dimension DIM dropped is returned.
-
-_Example_:
- PROGRAM test_iparity
- INTEGER(1) :: a(2)
-
- a(1) = b'00100100'
- a(2) = b'01101010'
-
- ! prints 01001110
- PRINT '(b8.8)', IPARITY(a)
- END PROGRAM
-
-_See also_:
- *note IANY::, *note IALL::, *note IEOR::, *note PARITY::
-
-
-File: gfortran.info, Node: IRAND, Next: IS_IOSTAT_END, Prev: IPARITY, Up: Intrinsic Procedures
-
-8.131 'IRAND' -- Integer pseudo-random number
-=============================================
-
-_Description_:
- 'IRAND(FLAG)' returns a pseudo-random number from a uniform
- distribution between 0 and a system-dependent limit (which is in
- most cases 2147483647). If FLAG is 0, the next number in the
- current sequence is returned; if FLAG is 1, the generator is
- restarted by 'CALL SRAND(0)'; if FLAG has any other value, it is
- used as a new seed with 'SRAND'.
-
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. It implements a simple modulo generator as
- provided by 'g77'. For new code, one should consider the use of
- *note RANDOM_NUMBER:: as it implements a superior algorithm.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Function
-
-_Syntax_:
- 'RESULT = IRAND(I)'
-
-_Arguments_:
- I Shall be a scalar 'INTEGER' of kind 4.
-
-_Return value_:
- The return value is of 'INTEGER(kind=4)' type.
-
-_Example_:
- program test_irand
- integer,parameter :: seed = 86456
-
- call srand(seed)
- print *, irand(), irand(), irand(), irand()
- print *, irand(seed), irand(), irand(), irand()
- end program test_irand
-
-
-File: gfortran.info, Node: IS_IOSTAT_END, Next: IS_IOSTAT_EOR, Prev: IRAND, Up: Intrinsic Procedures
-
-8.132 'IS_IOSTAT_END' -- Test for end-of-file value
-===================================================
-
-_Description_:
- 'IS_IOSTAT_END' tests whether an variable has the value of the I/O
- status "end of file". The function is equivalent to comparing the
- variable with the 'IOSTAT_END' parameter of the intrinsic module
- 'ISO_FORTRAN_ENV'.
-
-_Standard_:
- Fortran 2003 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = IS_IOSTAT_END(I)'
-
-_Arguments_:
- I Shall be of the type 'INTEGER'.
-
-_Return value_:
- Returns a 'LOGICAL' of the default kind, which '.TRUE.' if I has
- the value which indicates an end of file condition for 'IOSTAT='
- specifiers, and is '.FALSE.' otherwise.
-
-_Example_:
- PROGRAM iostat
- IMPLICIT NONE
- INTEGER :: stat, i
- OPEN(88, FILE='test.dat')
- READ(88, *, IOSTAT=stat) i
- IF(IS_IOSTAT_END(stat)) STOP 'END OF FILE'
- END PROGRAM
-
-
-File: gfortran.info, Node: IS_IOSTAT_EOR, Next: ISATTY, Prev: IS_IOSTAT_END, Up: Intrinsic Procedures
-
-8.133 'IS_IOSTAT_EOR' -- Test for end-of-record value
-=====================================================
-
-_Description_:
- 'IS_IOSTAT_EOR' tests whether an variable has the value of the I/O
- status "end of record". The function is equivalent to comparing
- the variable with the 'IOSTAT_EOR' parameter of the intrinsic
- module 'ISO_FORTRAN_ENV'.
-
-_Standard_:
- Fortran 2003 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = IS_IOSTAT_EOR(I)'
-
-_Arguments_:
- I Shall be of the type 'INTEGER'.
-
-_Return value_:
- Returns a 'LOGICAL' of the default kind, which '.TRUE.' if I has
- the value which indicates an end of file condition for 'IOSTAT='
- specifiers, and is '.FALSE.' otherwise.
-
-_Example_:
- PROGRAM iostat
- IMPLICIT NONE
- INTEGER :: stat, i(50)
- OPEN(88, FILE='test.dat', FORM='UNFORMATTED')
- READ(88, IOSTAT=stat) i
- IF(IS_IOSTAT_EOR(stat)) STOP 'END OF RECORD'
- END PROGRAM
-
-
-File: gfortran.info, Node: ISATTY, Next: ISHFT, Prev: IS_IOSTAT_EOR, Up: Intrinsic Procedures
-
-8.134 'ISATTY' -- Whether a unit is a terminal device.
-======================================================
-
-_Description_:
- Determine whether a unit is connected to a terminal device.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Function
-
-_Syntax_:
- 'RESULT = ISATTY(UNIT)'
-
-_Arguments_:
- UNIT Shall be a scalar 'INTEGER'.
-
-_Return value_:
- Returns '.TRUE.' if the UNIT is connected to a terminal device,
- '.FALSE.' otherwise.
-
-_Example_:
- PROGRAM test_isatty
- INTEGER(kind=1) :: unit
- DO unit = 1, 10
- write(*,*) isatty(unit=unit)
- END DO
- END PROGRAM
-_See also_:
- *note TTYNAM::
-
-
-File: gfortran.info, Node: ISHFT, Next: ISHFTC, Prev: ISATTY, Up: Intrinsic Procedures
-
-8.135 'ISHFT' -- Shift bits
-===========================
-
-_Description_:
- 'ISHFT' returns a value corresponding to I with all of the bits
- shifted SHIFT places. A value of SHIFT greater than zero
- corresponds to a left shift, a value of zero corresponds to no
- shift, and a value less than zero corresponds to a right shift. If
- the absolute value of SHIFT is greater than 'BIT_SIZE(I)', the
- value is undefined. Bits shifted out from the left end or right
- end are lost; zeros are shifted in from the opposite end.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = ISHFT(I, SHIFT)'
-
-_Arguments_:
- I The type shall be 'INTEGER'.
- SHIFT The type shall be 'INTEGER'.
-
-_Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
-
-_See also_:
- *note ISHFTC::
-
-
-File: gfortran.info, Node: ISHFTC, Next: ISNAN, Prev: ISHFT, Up: Intrinsic Procedures
-
-8.136 'ISHFTC' -- Shift bits circularly
-=======================================
-
-_Description_:
- 'ISHFTC' returns a value corresponding to I with the rightmost SIZE
- bits shifted circularly SHIFT places; that is, bits shifted out one
- end are shifted into the opposite end. A value of SHIFT greater
- than zero corresponds to a left shift, a value of zero corresponds
- to no shift, and a value less than zero corresponds to a right
- shift. The absolute value of SHIFT must be less than SIZE. If the
- SIZE argument is omitted, it is taken to be equivalent to
- 'BIT_SIZE(I)'.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = ISHFTC(I, SHIFT [, SIZE])'
-
-_Arguments_:
- I The type shall be 'INTEGER'.
- SHIFT The type shall be 'INTEGER'.
- SIZE (Optional) The type shall be 'INTEGER'; the
- value must be greater than zero and less than or
- equal to 'BIT_SIZE(I)'.
-
-_Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
-
-_See also_:
- *note ISHFT::
-
-
-File: gfortran.info, Node: ISNAN, Next: ITIME, Prev: ISHFTC, Up: Intrinsic Procedures
-
-8.137 'ISNAN' -- Test for a NaN
-===============================
-
-_Description_:
- 'ISNAN' tests whether a floating-point value is an IEEE
- Not-a-Number (NaN).
-_Standard_:
- GNU extension
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'ISNAN(X)'
-
-_Arguments_:
- X Variable of the type 'REAL'.
-
-
-_Return value_:
- Returns a default-kind 'LOGICAL'. The returned value is 'TRUE' if
- X is a NaN and 'FALSE' otherwise.
-
-_Example_:
- program test_nan
- implicit none
- real :: x
- x = -1.0
- x = sqrt(x)
- if (isnan(x)) stop '"x" is a NaN'
- end program test_nan
-
-
-File: gfortran.info, Node: ITIME, Next: KILL, Prev: ISNAN, Up: Intrinsic Procedures
-
-8.138 'ITIME' -- Get current local time subroutine (hour/minutes/seconds)
-=========================================================================
-
-_Description_:
- 'IDATE(VALUES)' Fills VALUES with the numerical values at the
- current local time. The hour (in the range 1-24), minute (in the
- range 1-60), and seconds (in the range 1-60) appear in elements 1,
- 2, and 3 of VALUES, respectively.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL ITIME(VALUES)'
-
-_Arguments_:
- VALUES The type shall be 'INTEGER, DIMENSION(3)' and
- the kind shall be the default integer kind.
-
-_Return value_:
- Does not return anything.
-
-_Example_:
- program test_itime
- integer, dimension(3) :: tarray
- call itime(tarray)
- print *, tarray(1)
- print *, tarray(2)
- print *, tarray(3)
- end program test_itime
-
-
-File: gfortran.info, Node: KILL, Next: KIND, Prev: ITIME, Up: Intrinsic Procedures
-
-8.139 'KILL' -- Send a signal to a process
-==========================================
-
-_Description_:
-_Standard_:
- Sends the signal specified by SIGNAL to the process PID. See
- 'kill(2)'.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL KILL(C, VALUE [, STATUS])'
- 'STATUS = KILL(C, VALUE)'
-
-_Arguments_:
- C Shall be a scalar 'INTEGER', with 'INTENT(IN)'
- VALUE Shall be a scalar 'INTEGER', with 'INTENT(IN)'
- STATUS (Optional) status flag of type 'INTEGER(4)' or
- 'INTEGER(8)'. Returns 0 on success, or a
- system-specific error code otherwise.
-
-_See also_:
- *note ABORT::, *note EXIT::
-
-
-File: gfortran.info, Node: KIND, Next: LBOUND, Prev: KILL, Up: Intrinsic Procedures
-
-8.140 'KIND' -- Kind of an entity
-=================================
-
-_Description_:
- 'KIND(X)' returns the kind value of the entity X.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'K = KIND(X)'
-
-_Arguments_:
- X Shall be of type 'LOGICAL', 'INTEGER', 'REAL',
- 'COMPLEX' or 'CHARACTER'.
-
-_Return value_:
- The return value is a scalar of type 'INTEGER' and of the default
- integer kind.
-
-_Example_:
- program test_kind
- integer,parameter :: kc = kind(' ')
- integer,parameter :: kl = kind(.true.)
-
- print *, "The default character kind is ", kc
- print *, "The default logical kind is ", kl
- end program test_kind
-
-
-File: gfortran.info, Node: LBOUND, Next: LCOBOUND, Prev: KIND, Up: Intrinsic Procedures
-
-8.141 'LBOUND' -- Lower dimension bounds of an array
-====================================================
-
-_Description_:
- Returns the lower bounds of an array, or a single lower bound along
- the DIM dimension.
-_Standard_:
- Fortran 95 and later, with KIND argument Fortran 2003 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = LBOUND(ARRAY [, DIM [, KIND]])'
-
-_Arguments_:
- ARRAY Shall be an array, of any type.
- DIM (Optional) Shall be a scalar 'INTEGER'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind. If DIM is
- absent, the result is an array of the lower bounds of ARRAY. If
- DIM is present, the result is a scalar corresponding to the lower
- bound of the array along that dimension. If ARRAY is an expression
- rather than a whole array or array structure component, or if it
- has a zero extent along the relevant dimension, the lower bound is
- taken to be 1.
-
-_See also_:
- *note UBOUND::, *note LCOBOUND::
-
-
-File: gfortran.info, Node: LCOBOUND, Next: LEADZ, Prev: LBOUND, Up: Intrinsic Procedures
-
-8.142 'LCOBOUND' -- Lower codimension bounds of an array
-========================================================
-
-_Description_:
- Returns the lower bounds of a coarray, or a single lower cobound
- along the DIM codimension.
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = LCOBOUND(COARRAY [, DIM [, KIND]])'
-
-_Arguments_:
- ARRAY Shall be an coarray, of any type.
- DIM (Optional) Shall be a scalar 'INTEGER'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind. If DIM is
- absent, the result is an array of the lower cobounds of COARRAY.
- If DIM is present, the result is a scalar corresponding to the
- lower cobound of the array along that codimension.
-
-_See also_:
- *note UCOBOUND::, *note LBOUND::
-
-
-File: gfortran.info, Node: LEADZ, Next: LEN, Prev: LCOBOUND, Up: Intrinsic Procedures
-
-8.143 'LEADZ' -- Number of leading zero bits of an integer
-==========================================================
-
-_Description_:
- 'LEADZ' returns the number of leading zero bits of an integer.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = LEADZ(I)'
-
-_Arguments_:
- I Shall be of type 'INTEGER'.
-
-_Return value_:
- The type of the return value is the default 'INTEGER'. If all the
- bits of 'I' are zero, the result value is 'BIT_SIZE(I)'.
-
-_Example_:
- PROGRAM test_leadz
- WRITE (*,*) BIT_SIZE(1) ! prints 32
- WRITE (*,*) LEADZ(1) ! prints 31
- END PROGRAM
-
-_See also_:
- *note BIT_SIZE::, *note TRAILZ::, *note POPCNT::, *note POPPAR::
-
-
-File: gfortran.info, Node: LEN, Next: LEN_TRIM, Prev: LEADZ, Up: Intrinsic Procedures
-
-8.144 'LEN' -- Length of a character entity
-===========================================
-
-_Description_:
- Returns the length of a character string. If STRING is an array,
- the length of an element of STRING is returned. Note that STRING
- need not be defined when this intrinsic is invoked, since only the
- length, not the content, of STRING is needed.
-
-_Standard_:
- Fortran 77 and later, with KIND argument Fortran 2003 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'L = LEN(STRING [, KIND])'
-
-_Arguments_:
- STRING Shall be a scalar or array of type 'CHARACTER',
- with 'INTENT(IN)'
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
-
-_Specific names_:
- Name Argument Return type Standard
- 'LEN(STRING)' 'CHARACTER' 'INTEGER' Fortran 77 and
- later
-
-_See also_:
- *note LEN_TRIM::, *note ADJUSTL::, *note ADJUSTR::
-
-
-File: gfortran.info, Node: LEN_TRIM, Next: LGE, Prev: LEN, Up: Intrinsic Procedures
-
-8.145 'LEN_TRIM' -- Length of a character entity without trailing blank characters
-==================================================================================
-
-_Description_:
- Returns the length of a character string, ignoring any trailing
- blanks.
-
-_Standard_:
- Fortran 95 and later, with KIND argument Fortran 2003 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = LEN_TRIM(STRING [, KIND])'
-
-_Arguments_:
- STRING Shall be a scalar of type 'CHARACTER', with
- 'INTENT(IN)'
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
-
-_See also_:
- *note LEN::, *note ADJUSTL::, *note ADJUSTR::
-
-
-File: gfortran.info, Node: LGE, Next: LGT, Prev: LEN_TRIM, Up: Intrinsic Procedures
-
-8.146 'LGE' -- Lexical greater than or equal
-============================================
-
-_Description_:
- Determines whether one string is lexically greater than or equal to
- another string, where the two strings are interpreted as containing
- ASCII character codes. If the String A and String B are not the
- same length, the shorter is compared as if spaces were appended to
- it to form a value that has the same length as the longer.
-
- In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE',
- and 'LLT' differ from the corresponding intrinsic operators '.GE.',
- '.GT.', '.LE.', and '.LT.', in that the latter use the processor's
- character ordering (which is not ASCII on some targets), whereas
- the former always use the ASCII ordering.
-
-_Standard_:
- Fortran 77 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = LGE(STRING_A, STRING_B)'
-
-_Arguments_:
- STRING_A Shall be of default 'CHARACTER' type.
- STRING_B Shall be of default 'CHARACTER' type.
-
-_Return value_:
- Returns '.TRUE.' if 'STRING_A >= STRING_B', and '.FALSE.'
- otherwise, based on the ASCII ordering.
-
-_Specific names_:
- Name Argument Return type Standard
- 'LGE(STRING_A, 'CHARACTER' 'LOGICAL' Fortran 77 and
- STRING_B)' later
-
-_See also_:
- *note LGT::, *note LLE::, *note LLT::
-
-
-File: gfortran.info, Node: LGT, Next: LINK, Prev: LGE, Up: Intrinsic Procedures
-
-8.147 'LGT' -- Lexical greater than
-===================================
-
-_Description_:
- Determines whether one string is lexically greater than another
- string, where the two strings are interpreted as containing ASCII
- character codes. If the String A and String B are not the same
- length, the shorter is compared as if spaces were appended to it to
- form a value that has the same length as the longer.
-
- In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE',
- and 'LLT' differ from the corresponding intrinsic operators '.GE.',
- '.GT.', '.LE.', and '.LT.', in that the latter use the processor's
- character ordering (which is not ASCII on some targets), whereas
- the former always use the ASCII ordering.
-
-_Standard_:
- Fortran 77 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = LGT(STRING_A, STRING_B)'
-
-_Arguments_:
- STRING_A Shall be of default 'CHARACTER' type.
- STRING_B Shall be of default 'CHARACTER' type.
-
-_Return value_:
- Returns '.TRUE.' if 'STRING_A > STRING_B', and '.FALSE.' otherwise,
- based on the ASCII ordering.
-
-_Specific names_:
- Name Argument Return type Standard
- 'LGT(STRING_A, 'CHARACTER' 'LOGICAL' Fortran 77 and
- STRING_B)' later
-
-_See also_:
- *note LGE::, *note LLE::, *note LLT::
-
-
-File: gfortran.info, Node: LINK, Next: LLE, Prev: LGT, Up: Intrinsic Procedures
-
-8.148 'LINK' -- Create a hard link
-==================================
-
-_Description_:
- Makes a (hard) link from file PATH1 to PATH2. A null character
- ('CHAR(0)') can be used to mark the end of the names in PATH1 and
- PATH2; otherwise, trailing blanks in the file names are ignored.
- If the STATUS argument is supplied, it contains 0 on success or a
- nonzero error code upon return; see 'link(2)'.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL LINK(PATH1, PATH2 [, STATUS])'
- 'STATUS = LINK(PATH1, PATH2)'
-
-_Arguments_:
- PATH1 Shall be of default 'CHARACTER' type.
- PATH2 Shall be of default 'CHARACTER' type.
- STATUS (Optional) Shall be of default 'INTEGER' type.
-
-_See also_:
- *note SYMLNK::, *note UNLINK::
-
-
-File: gfortran.info, Node: LLE, Next: LLT, Prev: LINK, Up: Intrinsic Procedures
-
-8.149 'LLE' -- Lexical less than or equal
-=========================================
-
-_Description_:
- Determines whether one string is lexically less than or equal to
- another string, where the two strings are interpreted as containing
- ASCII character codes. If the String A and String B are not the
- same length, the shorter is compared as if spaces were appended to
- it to form a value that has the same length as the longer.
-
- In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE',
- and 'LLT' differ from the corresponding intrinsic operators '.GE.',
- '.GT.', '.LE.', and '.LT.', in that the latter use the processor's
- character ordering (which is not ASCII on some targets), whereas
- the former always use the ASCII ordering.
-
-_Standard_:
- Fortran 77 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = LLE(STRING_A, STRING_B)'
-
-_Arguments_:
- STRING_A Shall be of default 'CHARACTER' type.
- STRING_B Shall be of default 'CHARACTER' type.
-
-_Return value_:
- Returns '.TRUE.' if 'STRING_A <= STRING_B', and '.FALSE.'
- otherwise, based on the ASCII ordering.
-
-_Specific names_:
- Name Argument Return type Standard
- 'LLE(STRING_A, 'CHARACTER' 'LOGICAL' Fortran 77 and
- STRING_B)' later
-
-_See also_:
- *note LGE::, *note LGT::, *note LLT::
-
-
-File: gfortran.info, Node: LLT, Next: LNBLNK, Prev: LLE, Up: Intrinsic Procedures
-
-8.150 'LLT' -- Lexical less than
-================================
-
-_Description_:
- Determines whether one string is lexically less than another
- string, where the two strings are interpreted as containing ASCII
- character codes. If the String A and String B are not the same
- length, the shorter is compared as if spaces were appended to it to
- form a value that has the same length as the longer.
-
- In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE',
- and 'LLT' differ from the corresponding intrinsic operators '.GE.',
- '.GT.', '.LE.', and '.LT.', in that the latter use the processor's
- character ordering (which is not ASCII on some targets), whereas
- the former always use the ASCII ordering.
-
-_Standard_:
- Fortran 77 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = LLT(STRING_A, STRING_B)'
-
-_Arguments_:
- STRING_A Shall be of default 'CHARACTER' type.
- STRING_B Shall be of default 'CHARACTER' type.
-
-_Return value_:
- Returns '.TRUE.' if 'STRING_A < STRING_B', and '.FALSE.' otherwise,
- based on the ASCII ordering.
-
-_Specific names_:
- Name Argument Return type Standard
- 'LLT(STRING_A, 'CHARACTER' 'LOGICAL' Fortran 77 and
- STRING_B)' later
-
-_See also_:
- *note LGE::, *note LGT::, *note LLE::
-
-
-File: gfortran.info, Node: LNBLNK, Next: LOC, Prev: LLT, Up: Intrinsic Procedures
-
-8.151 'LNBLNK' -- Index of the last non-blank character in a string
-===================================================================
-
-_Description_:
- Returns the length of a character string, ignoring any trailing
- blanks. This is identical to the standard 'LEN_TRIM' intrinsic,
- and is only included for backwards compatibility.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = LNBLNK(STRING)'
-
-_Arguments_:
- STRING Shall be a scalar of type 'CHARACTER', with
- 'INTENT(IN)'
-
-_Return value_:
- The return value is of 'INTEGER(kind=4)' type.
-
-_See also_:
- *note INDEX intrinsic::, *note LEN_TRIM::
-
-
-File: gfortran.info, Node: LOC, Next: LOG, Prev: LNBLNK, Up: Intrinsic Procedures
-
-8.152 'LOC' -- Returns the address of a variable
-================================================
-
-_Description_:
- 'LOC(X)' returns the address of X as an integer.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = LOC(X)'
-
-_Arguments_:
- X Variable of any type.
-
-_Return value_:
- The return value is of type 'INTEGER', with a 'KIND' corresponding
- to the size (in bytes) of a memory address on the target machine.
-
-_Example_:
- program test_loc
- integer :: i
- real :: r
- i = loc(r)
- print *, i
- end program test_loc
-
-
-File: gfortran.info, Node: LOG, Next: LOG10, Prev: LOC, Up: Intrinsic Procedures
-
-8.153 'LOG' -- Natural logarithm function
-=========================================
-
-_Description_:
- 'LOG(X)' computes the natural logarithm of X, i.e. the logarithm
- to the base e.
-
-_Standard_:
- Fortran 77 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = LOG(X)'
-
-_Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
-
-_Return value_:
- The return value is of type 'REAL' or 'COMPLEX'. The kind type
- parameter is the same as X. If X is 'COMPLEX', the imaginary part
- \omega is in the range -\pi \leq \omega \leq \pi.
-
-_Example_:
- program test_log
- real(8) :: x = 2.7182818284590451_8
- complex :: z = (1.0, 2.0)
- x = log(x) ! will yield (approximately) 1
- z = log(z)
- end program test_log
-
-_Specific names_:
- Name Argument Return type Standard
- 'ALOG(X)' 'REAL(4) X' 'REAL(4)' f95, gnu
- 'DLOG(X)' 'REAL(8) X' 'REAL(8)' f95, gnu
- 'CLOG(X)' 'COMPLEX(4) 'COMPLEX(4)' f95, gnu
- X'
- 'ZLOG(X)' 'COMPLEX(8) 'COMPLEX(8)' f95, gnu
- X'
- 'CDLOG(X)' 'COMPLEX(8) 'COMPLEX(8)' f95, gnu
- X'
-
-
-File: gfortran.info, Node: LOG10, Next: LOG_GAMMA, Prev: LOG, Up: Intrinsic Procedures
-
-8.154 'LOG10' -- Base 10 logarithm function
-===========================================
-
-_Description_:
- 'LOG10(X)' computes the base 10 logarithm of X.
-
-_Standard_:
- Fortran 77 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = LOG10(X)'
-
-_Arguments_:
- X The type shall be 'REAL'.
-
-_Return value_:
- The return value is of type 'REAL' or 'COMPLEX'. The kind type
- parameter is the same as X.
-
-_Example_:
- program test_log10
- real(8) :: x = 10.0_8
- x = log10(x)
- end program test_log10
-
-_Specific names_:
- Name Argument Return type Standard
- 'ALOG10(X)' 'REAL(4) X' 'REAL(4)' Fortran 95 and
- later
- 'DLOG10(X)' 'REAL(8) X' 'REAL(8)' Fortran 95 and
- later
-
-
-File: gfortran.info, Node: LOG_GAMMA, Next: LOGICAL, Prev: LOG10, Up: Intrinsic Procedures
-
-8.155 'LOG_GAMMA' -- Logarithm of the Gamma function
-====================================================
-
-_Description_:
- 'LOG_GAMMA(X)' computes the natural logarithm of the absolute value
- of the Gamma (\Gamma) function.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'X = LOG_GAMMA(X)'
-
-_Arguments_:
- X Shall be of type 'REAL' and neither zero nor a
- negative integer.
-
-_Return value_:
- The return value is of type 'REAL' of the same kind as X.
-
-_Example_:
- program test_log_gamma
- real :: x = 1.0
- x = lgamma(x) ! returns 0.0
- end program test_log_gamma
-
-_Specific names_:
- Name Argument Return type Standard
- 'LGAMMA(X)' 'REAL(4) X' 'REAL(4)' GNU Extension
- 'ALGAMA(X)' 'REAL(4) X' 'REAL(4)' GNU Extension
- 'DLGAMA(X)' 'REAL(8) X' 'REAL(8)' GNU Extension
-
-_See also_:
- Gamma function: *note GAMMA::
-
-
-File: gfortran.info, Node: LOGICAL, Next: LONG, Prev: LOG_GAMMA, Up: Intrinsic Procedures
-
-8.156 'LOGICAL' -- Convert to logical type
-==========================================
-
-_Description_:
- Converts one kind of 'LOGICAL' variable to another.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = LOGICAL(L [, KIND])'
-
-_Arguments_:
- L The type shall be 'LOGICAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- The return value is a 'LOGICAL' value equal to L, with a kind
- corresponding to KIND, or of the default logical kind if KIND is
- not given.
-
-_See also_:
- *note INT::, *note REAL::, *note CMPLX::
-
-
-File: gfortran.info, Node: LONG, Next: LSHIFT, Prev: LOGICAL, Up: Intrinsic Procedures
-
-8.157 'LONG' -- Convert to integer type
-=======================================
-
-_Description_:
- Convert to a 'KIND=4' integer type, which is the same size as a C
- 'long' integer. This is equivalent to the standard 'INT' intrinsic
- with an optional argument of 'KIND=4', and is only included for
- backwards compatibility.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = LONG(A)'
-
-_Arguments_:
- A Shall be of type 'INTEGER', 'REAL', or
- 'COMPLEX'.
-
-_Return value_:
- The return value is a 'INTEGER(4)' variable.
-
-_See also_:
- *note INT::, *note INT2::, *note INT8::
-
-
-File: gfortran.info, Node: LSHIFT, Next: LSTAT, Prev: LONG, Up: Intrinsic Procedures
-
-8.158 'LSHIFT' -- Left shift bits
-=================================
-
-_Description_:
- 'LSHIFT' returns a value corresponding to I with all of the bits
- shifted left by SHIFT places. If the absolute value of SHIFT is
- greater than 'BIT_SIZE(I)', the value is undefined. Bits shifted
- out from the left end are lost; zeros are shifted in from the
- opposite end.
-
- This function has been superseded by the 'ISHFT' intrinsic, which
- is standard in Fortran 95 and later, and the 'SHIFTL' intrinsic,
- which is standard in Fortran 2008 and later.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = LSHIFT(I, SHIFT)'
-
-_Arguments_:
- I The type shall be 'INTEGER'.
- SHIFT The type shall be 'INTEGER'.
-
-_Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
-
-_See also_:
- *note ISHFT::, *note ISHFTC::, *note RSHIFT::, *note SHIFTA::,
- *note SHIFTL::, *note SHIFTR::
-
-
-File: gfortran.info, Node: LSTAT, Next: LTIME, Prev: LSHIFT, Up: Intrinsic Procedures
-
-8.159 'LSTAT' -- Get file status
-================================
-
-_Description_:
- 'LSTAT' is identical to *note STAT::, except that if path is a
- symbolic link, then the link itself is statted, not the file that
- it refers to.
-
- The elements in 'VALUES' are the same as described by *note STAT::.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL LSTAT(NAME, VALUES [, STATUS])'
- 'STATUS = LSTAT(NAME, VALUES)'
-
-_Arguments_:
- NAME The type shall be 'CHARACTER' of the default
- kind, a valid path within the file system.
- VALUES The type shall be 'INTEGER(4), DIMENSION(13)'.
- STATUS (Optional) status flag of type 'INTEGER(4)'.
- Returns 0 on success and a system specific error
- code otherwise.
-
-_Example_:
- See *note STAT:: for an example.
-
-_See also_:
- To stat an open file: *note FSTAT::, to stat a file: *note STAT::
-
-
-File: gfortran.info, Node: LTIME, Next: MALLOC, Prev: LSTAT, Up: Intrinsic Procedures
-
-8.160 'LTIME' -- Convert time to local time info
-================================================
-
-_Description_:
- Given a system time value TIME (as provided by the 'TIME8'
- intrinsic), fills VALUES with values extracted from it appropriate
- to the local time zone using 'localtime(3)'.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL LTIME(TIME, VALUES)'
-
-_Arguments_:
- TIME An 'INTEGER' scalar expression corresponding to
- a system time, with 'INTENT(IN)'.
- VALUES A default 'INTEGER' array with 9 elements, with
- 'INTENT(OUT)'.
-
-_Return value_:
- The elements of VALUES are assigned as follows:
- 1. Seconds after the minute, range 0-59 or 0-61 to allow for leap
- seconds
- 2. Minutes after the hour, range 0-59
- 3. Hours past midnight, range 0-23
- 4. Day of month, range 0-31
- 5. Number of months since January, range 0-12
- 6. Years since 1900
- 7. Number of days since Sunday, range 0-6
- 8. Days since January 1
- 9. Daylight savings indicator: positive if daylight savings is in
- effect, zero if not, and negative if the information is not
- available.
-
-_See also_:
- *note CTIME::, *note GMTIME::, *note TIME::, *note TIME8::
-
-
-File: gfortran.info, Node: MALLOC, Next: MASKL, Prev: LTIME, Up: Intrinsic Procedures
-
-8.161 'MALLOC' -- Allocate dynamic memory
-=========================================
-
-_Description_:
- 'MALLOC(SIZE)' allocates SIZE bytes of dynamic memory and returns
- the address of the allocated memory. The 'MALLOC' intrinsic is an
- extension intended to be used with Cray pointers, and is provided
- in GNU Fortran to allow the user to compile legacy code. For new
- code using Fortran 95 pointers, the memory allocation intrinsic is
- 'ALLOCATE'.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Function
-
-_Syntax_:
- 'PTR = MALLOC(SIZE)'
-
-_Arguments_:
- SIZE The type shall be 'INTEGER'.
-
-_Return value_:
- The return value is of type 'INTEGER(K)', with K such that
- variables of type 'INTEGER(K)' have the same size as C pointers
- ('sizeof(void *)').
-
-_Example_:
- The following example demonstrates the use of 'MALLOC' and 'FREE'
- with Cray pointers.
-
- program test_malloc
- implicit none
- integer i
- real*8 x(*), z
- pointer(ptr_x,x)
-
- ptr_x = malloc(20*8)
- do i = 1, 20
- x(i) = sqrt(1.0d0 / i)
- end do
- z = 0
- do i = 1, 20
- z = z + x(i)
- print *, z
- end do
- call free(ptr_x)
- end program test_malloc
-
-_See also_:
- *note FREE::
-
-
-File: gfortran.info, Node: MASKL, Next: MASKR, Prev: MALLOC, Up: Intrinsic Procedures
-
-8.162 'MASKL' -- Left justified mask
-====================================
-
-_Description_:
- 'MASKL(I[, KIND])' has its leftmost I bits set to 1, and the
- remaining bits set to 0.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = MASKL(I[, KIND])'
-
-_Arguments_:
- I Shall be of type 'INTEGER'.
- KIND Shall be a scalar constant expression of type
- 'INTEGER'.
-
-_Return value_:
- The return value is of type 'INTEGER'. If KIND is present, it
- specifies the kind value of the return type; otherwise, it is of
- the default integer kind.
-
-_See also_:
- *note MASKR::
-
-
-File: gfortran.info, Node: MASKR, Next: MATMUL, Prev: MASKL, Up: Intrinsic Procedures
-
-8.163 'MASKR' -- Right justified mask
-=====================================
-
-_Description_:
- 'MASKL(I[, KIND])' has its rightmost I bits set to 1, and the
- remaining bits set to 0.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = MASKR(I[, KIND])'
-
-_Arguments_:
- I Shall be of type 'INTEGER'.
- KIND Shall be a scalar constant expression of type
- 'INTEGER'.
-
-_Return value_:
- The return value is of type 'INTEGER'. If KIND is present, it
- specifies the kind value of the return type; otherwise, it is of
- the default integer kind.
-
-_See also_:
- *note MASKL::
-
-
-File: gfortran.info, Node: MATMUL, Next: MAX, Prev: MASKR, Up: Intrinsic Procedures
-
-8.164 'MATMUL' -- matrix multiplication
-=======================================
-
-_Description_:
- Performs a matrix multiplication on numeric or logical arguments.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = MATMUL(MATRIX_A, MATRIX_B)'
-
-_Arguments_:
- MATRIX_A An array of 'INTEGER', 'REAL', 'COMPLEX', or
- 'LOGICAL' type, with a rank of one or two.
- MATRIX_B An array of 'INTEGER', 'REAL', or 'COMPLEX' type
- if MATRIX_A is of a numeric type; otherwise, an
- array of 'LOGICAL' type. The rank shall be one
- or two, and the first (or only) dimension of
- MATRIX_B shall be equal to the last (or only)
- dimension of MATRIX_A.
-
-_Return value_:
- The matrix product of MATRIX_A and MATRIX_B. The type and kind of
- the result follow the usual type and kind promotion rules, as for
- the '*' or '.AND.' operators.
-
-_See also_:
-
-
-File: gfortran.info, Node: MAX, Next: MAXEXPONENT, Prev: MATMUL, Up: Intrinsic Procedures
-
-8.165 'MAX' -- Maximum value of an argument list
-================================================
-
-_Description_:
- Returns the argument with the largest (most positive) value.
-
-_Standard_:
- Fortran 77 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = MAX(A1, A2 [, A3 [, ...]])'
-
-_Arguments_:
- A1 The type shall be 'INTEGER' or 'REAL'.
- A2, A3, An expression of the same type and kind as A1.
- ... (As a GNU extension, arguments of different
- kinds are permitted.)
-
-_Return value_:
- The return value corresponds to the maximum value among the
- arguments, and has the same type and kind as the first argument.
-
-_Specific names_:
- Name Argument Return type Standard
- 'MAX0(A1)' 'INTEGER(4) 'INTEGER(4)' Fortran 77 and
- A1' later
- 'AMAX0(A1)' 'INTEGER(4) 'REAL(MAX(X))' Fortran 77 and
- A1' later
- 'MAX1(A1)' 'REAL A1' 'INT(MAX(X))' Fortran 77 and
- later
- 'AMAX1(A1)' 'REAL(4) A1' 'REAL(4)' Fortran 77 and
- later
- 'DMAX1(A1)' 'REAL(8) A1' 'REAL(8)' Fortran 77 and
- later
-
-_See also_:
- *note MAXLOC:: *note MAXVAL::, *note MIN::
-
-
-File: gfortran.info, Node: MAXEXPONENT, Next: MAXLOC, Prev: MAX, Up: Intrinsic Procedures
-
-8.166 'MAXEXPONENT' -- Maximum exponent of a real kind
-======================================================
-
-_Description_:
- 'MAXEXPONENT(X)' returns the maximum exponent in the model of the
- type of 'X'.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = MAXEXPONENT(X)'
-
-_Arguments_:
- X Shall be of type 'REAL'.
-
-_Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind.
-
-_Example_:
- program exponents
- real(kind=4) :: x
- real(kind=8) :: y
-
- print *, minexponent(x), maxexponent(x)
- print *, minexponent(y), maxexponent(y)
- end program exponents
-
-
-File: gfortran.info, Node: MAXLOC, Next: MAXVAL, Prev: MAXEXPONENT, Up: Intrinsic Procedures
-
-8.167 'MAXLOC' -- Location of the maximum value within an array
-===============================================================
-
-_Description_:
- Determines the location of the element in the array with the
- maximum value, or, if the DIM argument is supplied, determines the
- locations of the maximum element along each row of the array in the
- DIM direction. If MASK is present, only the elements for which
- MASK is '.TRUE.' are considered. If more than one element in the
- array has the maximum value, the location returned is that of the
- first such element in array element order. If the array has zero
- size, or all of the elements of MASK are '.FALSE.', then the result
- is an array of zeroes. Similarly, if DIM is supplied and all of
- the elements of MASK along a given row are zero, the result value
- for that row is zero.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = MAXLOC(ARRAY, DIM [, MASK])'
- 'RESULT = MAXLOC(ARRAY [, MASK])'
-
-_Arguments_:
- ARRAY Shall be an array of type 'INTEGER' or 'REAL'.
- DIM (Optional) Shall be a scalar of type 'INTEGER',
- with a value between one and the rank of ARRAY,
- inclusive. It may not be an optional dummy
- argument.
- MASK Shall be an array of type 'LOGICAL', and
- conformable with ARRAY.
-
-_Return value_:
- If DIM is absent, the result is a rank-one array with a length
- equal to the rank of ARRAY. If DIM is present, the result is an
- array with a rank one less than the rank of ARRAY, and a size
- corresponding to the size of ARRAY with the DIM dimension removed.
- If DIM is present and ARRAY has a rank of one, the result is a
- scalar. In all cases, the result is of default 'INTEGER' type.
-
-_See also_:
- *note MAX::, *note MAXVAL::
-
-
-File: gfortran.info, Node: MAXVAL, Next: MCLOCK, Prev: MAXLOC, Up: Intrinsic Procedures
-
-8.168 'MAXVAL' -- Maximum value of an array
-===========================================
-
-_Description_:
- Determines the maximum value of the elements in an array value, or,
- if the DIM argument is supplied, determines the maximum value along
- each row of the array in the DIM direction. If MASK is present,
- only the elements for which MASK is '.TRUE.' are considered. If
- the array has zero size, or all of the elements of MASK are
- '.FALSE.', then the result is '-HUGE(ARRAY)' if ARRAY is numeric,
- or a string of nulls if ARRAY is of character type.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = MAXVAL(ARRAY, DIM [, MASK])'
- 'RESULT = MAXVAL(ARRAY [, MASK])'
-
-_Arguments_:
- ARRAY Shall be an array of type 'INTEGER' or 'REAL'.
- DIM (Optional) Shall be a scalar of type 'INTEGER',
- with a value between one and the rank of ARRAY,
- inclusive. It may not be an optional dummy
- argument.
- MASK Shall be an array of type 'LOGICAL', and
- conformable with ARRAY.
-
-_Return value_:
- If DIM is absent, or if ARRAY has a rank of one, the result is a
- scalar. If DIM is present, the result is an array with a rank one
- less than the rank of ARRAY, and a size corresponding to the size
- of ARRAY with the DIM dimension removed. In all cases, the result
- is of the same type and kind as ARRAY.
-
-_See also_:
- *note MAX::, *note MAXLOC::
-
-
-File: gfortran.info, Node: MCLOCK, Next: MCLOCK8, Prev: MAXVAL, Up: Intrinsic Procedures
-
-8.169 'MCLOCK' -- Time function
-===============================
-
-_Description_:
- Returns the number of clock ticks since the start of the process,
- based on the function 'clock(3)' in the C standard library.
-
- This intrinsic is not fully portable, such as to systems with
- 32-bit 'INTEGER' types but supporting times wider than 32 bits.
- Therefore, the values returned by this intrinsic might be, or
- become, negative, or numerically less than previous values, during
- a single run of the compiled program.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Function
-
-_Syntax_:
- 'RESULT = MCLOCK()'
-
-_Return value_:
- The return value is a scalar of type 'INTEGER(4)', equal to the
- number of clock ticks since the start of the process, or '-1' if
- the system does not support 'clock(3)'.
-
-_See also_:
- *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::, *note
- TIME::
-
-
-File: gfortran.info, Node: MCLOCK8, Next: MERGE, Prev: MCLOCK, Up: Intrinsic Procedures
-
-8.170 'MCLOCK8' -- Time function (64-bit)
-=========================================
-
-_Description_:
- Returns the number of clock ticks since the start of the process,
- based on the function 'clock(3)' in the C standard library.
-
- _Warning:_ this intrinsic does not increase the range of the timing
- values over that returned by 'clock(3)'. On a system with a 32-bit
- 'clock(3)', 'MCLOCK8' will return a 32-bit value, even though it is
- converted to a 64-bit 'INTEGER(8)' value. That means overflows of
- the 32-bit value can still occur. Therefore, the values returned
- by this intrinsic might be or become negative or numerically less
- than previous values during a single run of the compiled program.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Function
-
-_Syntax_:
- 'RESULT = MCLOCK8()'
-
-_Return value_:
- The return value is a scalar of type 'INTEGER(8)', equal to the
- number of clock ticks since the start of the process, or '-1' if
- the system does not support 'clock(3)'.
-
-_See also_:
- *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::, *note
- TIME8::
-
-
-File: gfortran.info, Node: MERGE, Next: MERGE_BITS, Prev: MCLOCK8, Up: Intrinsic Procedures
-
-8.171 'MERGE' -- Merge variables
-================================
-
-_Description_:
- Select values from two arrays according to a logical mask. The
- result is equal to TSOURCE if MASK is '.TRUE.', or equal to FSOURCE
- if it is '.FALSE.'.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = MERGE(TSOURCE, FSOURCE, MASK)'
-
-_Arguments_:
- TSOURCE May be of any type.
- FSOURCE Shall be of the same type and type parameters as
- TSOURCE.
- MASK Shall be of type 'LOGICAL'.
-
-_Return value_:
- The result is of the same type and type parameters as TSOURCE.
-
-
-File: gfortran.info, Node: MERGE_BITS, Next: MIN, Prev: MERGE, Up: Intrinsic Procedures
-
-8.172 'MERGE_BITS' -- Merge of bits under mask
-==============================================
-
-_Description_:
- 'MERGE_BITS(I, J, MASK)' merges the bits of I and J as determined
- by the mask. The i-th bit of the result is equal to the i-th bit
- of I if the i-th bit of MASK is 1; it is equal to the i-th bit of J
- otherwise.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = MERGE_BITS(I, J, MASK)'
-
-_Arguments_:
- I Shall be of type 'INTEGER'.
- J Shall be of type 'INTEGER' and of the same kind
- as I.
- MASK Shall be of type 'INTEGER' and of the same kind
- as I.
-
-_Return value_:
- The result is of the same type and kind as I.
-
-
-File: gfortran.info, Node: MIN, Next: MINEXPONENT, Prev: MERGE_BITS, Up: Intrinsic Procedures
-
-8.173 'MIN' -- Minimum value of an argument list
-================================================
-
-_Description_:
- Returns the argument with the smallest (most negative) value.
-
-_Standard_:
- Fortran 77 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = MIN(A1, A2 [, A3, ...])'
-
-_Arguments_:
- A1 The type shall be 'INTEGER' or 'REAL'.
- A2, A3, An expression of the same type and kind as A1.
- ... (As a GNU extension, arguments of different
- kinds are permitted.)
-
-_Return value_:
- The return value corresponds to the maximum value among the
- arguments, and has the same type and kind as the first argument.
-
-_Specific names_:
- Name Argument Return type Standard
- 'MIN0(A1)' 'INTEGER(4) 'INTEGER(4)' Fortran 77 and
- A1' later
- 'AMIN0(A1)' 'INTEGER(4) 'REAL(4)' Fortran 77 and
- A1' later
- 'MIN1(A1)' 'REAL A1' 'INTEGER(4)' Fortran 77 and
- later
- 'AMIN1(A1)' 'REAL(4) A1' 'REAL(4)' Fortran 77 and
- later
- 'DMIN1(A1)' 'REAL(8) A1' 'REAL(8)' Fortran 77 and
- later
-
-_See also_:
- *note MAX::, *note MINLOC::, *note MINVAL::
-
-
-File: gfortran.info, Node: MINEXPONENT, Next: MINLOC, Prev: MIN, Up: Intrinsic Procedures
-
-8.174 'MINEXPONENT' -- Minimum exponent of a real kind
-======================================================
-
-_Description_:
- 'MINEXPONENT(X)' returns the minimum exponent in the model of the
- type of 'X'.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = MINEXPONENT(X)'
-
-_Arguments_:
- X Shall be of type 'REAL'.
-
-_Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind.
-
-_Example_:
- See 'MAXEXPONENT' for an example.
-
-
-File: gfortran.info, Node: MINLOC, Next: MINVAL, Prev: MINEXPONENT, Up: Intrinsic Procedures
-
-8.175 'MINLOC' -- Location of the minimum value within an array
-===============================================================
-
-_Description_:
- Determines the location of the element in the array with the
- minimum value, or, if the DIM argument is supplied, determines the
- locations of the minimum element along each row of the array in the
- DIM direction. If MASK is present, only the elements for which
- MASK is '.TRUE.' are considered. If more than one element in the
- array has the minimum value, the location returned is that of the
- first such element in array element order. If the array has zero
- size, or all of the elements of MASK are '.FALSE.', then the result
- is an array of zeroes. Similarly, if DIM is supplied and all of
- the elements of MASK along a given row are zero, the result value
- for that row is zero.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = MINLOC(ARRAY, DIM [, MASK])'
- 'RESULT = MINLOC(ARRAY [, MASK])'
-
-_Arguments_:
- ARRAY Shall be an array of type 'INTEGER' or 'REAL'.
- DIM (Optional) Shall be a scalar of type 'INTEGER',
- with a value between one and the rank of ARRAY,
- inclusive. It may not be an optional dummy
- argument.
- MASK Shall be an array of type 'LOGICAL', and
- conformable with ARRAY.
-
-_Return value_:
- If DIM is absent, the result is a rank-one array with a length
- equal to the rank of ARRAY. If DIM is present, the result is an
- array with a rank one less than the rank of ARRAY, and a size
- corresponding to the size of ARRAY with the DIM dimension removed.
- If DIM is present and ARRAY has a rank of one, the result is a
- scalar. In all cases, the result is of default 'INTEGER' type.
-
-_See also_:
- *note MIN::, *note MINVAL::
-
-
-File: gfortran.info, Node: MINVAL, Next: MOD, Prev: MINLOC, Up: Intrinsic Procedures
-
-8.176 'MINVAL' -- Minimum value of an array
-===========================================
-
-_Description_:
- Determines the minimum value of the elements in an array value, or,
- if the DIM argument is supplied, determines the minimum value along
- each row of the array in the DIM direction. If MASK is present,
- only the elements for which MASK is '.TRUE.' are considered. If
- the array has zero size, or all of the elements of MASK are
- '.FALSE.', then the result is 'HUGE(ARRAY)' if ARRAY is numeric, or
- a string of 'CHAR(255)' characters if ARRAY is of character type.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = MINVAL(ARRAY, DIM [, MASK])'
- 'RESULT = MINVAL(ARRAY [, MASK])'
-
-_Arguments_:
- ARRAY Shall be an array of type 'INTEGER' or 'REAL'.
- DIM (Optional) Shall be a scalar of type 'INTEGER',
- with a value between one and the rank of ARRAY,
- inclusive. It may not be an optional dummy
- argument.
- MASK Shall be an array of type 'LOGICAL', and
- conformable with ARRAY.
-
-_Return value_:
- If DIM is absent, or if ARRAY has a rank of one, the result is a
- scalar. If DIM is present, the result is an array with a rank one
- less than the rank of ARRAY, and a size corresponding to the size
- of ARRAY with the DIM dimension removed. In all cases, the result
- is of the same type and kind as ARRAY.
-
-_See also_:
- *note MIN::, *note MINLOC::
-
-
-File: gfortran.info, Node: MOD, Next: MODULO, Prev: MINVAL, Up: Intrinsic Procedures
-
-8.177 'MOD' -- Remainder function
-=================================
-
-_Description_:
- 'MOD(A,P)' computes the remainder of the division of A by P.
-
-_Standard_:
- Fortran 77 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = MOD(A, P)'
-
-_Arguments_:
- A Shall be a scalar of type 'INTEGER' or 'REAL'.
- P Shall be a scalar of the same type and kind as A
- and not equal to zero.
-
-_Return value_:
- The return value is the result of 'A - (INT(A/P) * P)'. The type
- and kind of the return value is the same as that of the arguments.
- The returned value has the same sign as A and a magnitude less than
- the magnitude of P.
-
-_Example_:
- program test_mod
- print *, mod(17,3)
- print *, mod(17.5,5.5)
- print *, mod(17.5d0,5.5)
- print *, mod(17.5,5.5d0)
-
- print *, mod(-17,3)
- print *, mod(-17.5,5.5)
- print *, mod(-17.5d0,5.5)
- print *, mod(-17.5,5.5d0)
-
- print *, mod(17,-3)
- print *, mod(17.5,-5.5)
- print *, mod(17.5d0,-5.5)
- print *, mod(17.5,-5.5d0)
- end program test_mod
-
-_Specific names_:
- Name Arguments Return type Standard
- 'MOD(A,P)' 'INTEGER 'INTEGER' Fortran 95 and
- A,P' later
- 'AMOD(A,P)' 'REAL(4) 'REAL(4)' Fortran 95 and
- A,P' later
- 'DMOD(A,P)' 'REAL(8) 'REAL(8)' Fortran 95 and
- A,P' later
-
-_See also_:
- *note MODULO::
-
-
-File: gfortran.info, Node: MODULO, Next: MOVE_ALLOC, Prev: MOD, Up: Intrinsic Procedures
-
-8.178 'MODULO' -- Modulo function
-=================================
-
-_Description_:
- 'MODULO(A,P)' computes the A modulo P.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = MODULO(A, P)'
-
-_Arguments_:
- A Shall be a scalar of type 'INTEGER' or 'REAL'.
- P Shall be a scalar of the same type and kind as
- A. It shall not be zero.
-
-_Return value_:
- The type and kind of the result are those of the arguments.
- If A and P are of type 'INTEGER':
- 'MODULO(A,P)' has the value R such that 'A=Q*P+R', where Q is
- an integer and R is between 0 (inclusive) and P (exclusive).
- If A and P are of type 'REAL':
- 'MODULO(A,P)' has the value of 'A - FLOOR (A / P) * P'.
- The returned value has the same sign as P and a magnitude less than
- the magnitude of P.
-
-_Example_:
- program test_modulo
- print *, modulo(17,3)
- print *, modulo(17.5,5.5)
-
- print *, modulo(-17,3)
- print *, modulo(-17.5,5.5)
-
- print *, modulo(17,-3)
- print *, modulo(17.5,-5.5)
- end program
-
-_See also_:
- *note MOD::
-
-
-File: gfortran.info, Node: MOVE_ALLOC, Next: MVBITS, Prev: MODULO, Up: Intrinsic Procedures
-
-8.179 'MOVE_ALLOC' -- Move allocation from one object to another
-================================================================
-
-_Description_:
- 'MOVE_ALLOC(FROM, TO)' moves the allocation from FROM to TO. FROM
- will become deallocated in the process.
-
-_Standard_:
- Fortran 2003 and later
-
-_Class_:
- Pure subroutine
-
-_Syntax_:
- 'CALL MOVE_ALLOC(FROM, TO)'
-
-_Arguments_:
- FROM 'ALLOCATABLE', 'INTENT(INOUT)', may be of any
- type and kind.
- TO 'ALLOCATABLE', 'INTENT(OUT)', shall be of the
- same type, kind and rank as FROM.
-
-_Return value_:
- None
-
-_Example_:
- program test_move_alloc
- integer, allocatable :: a(:), b(:)
-
- allocate(a(3))
- a = [ 1, 2, 3 ]
- call move_alloc(a, b)
- print *, allocated(a), allocated(b)
- print *, b
- end program test_move_alloc
-
-
-File: gfortran.info, Node: MVBITS, Next: NEAREST, Prev: MOVE_ALLOC, Up: Intrinsic Procedures
-
-8.180 'MVBITS' -- Move bits from one integer to another
-=======================================================
-
-_Description_:
- Moves LEN bits from positions FROMPOS through 'FROMPOS+LEN-1' of
- FROM to positions TOPOS through 'TOPOS+LEN-1' of TO. The portion
- of argument TO not affected by the movement of bits is unchanged.
- The values of 'FROMPOS+LEN-1' and 'TOPOS+LEN-1' must be less than
- 'BIT_SIZE(FROM)'.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental subroutine
-
-_Syntax_:
- 'CALL MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)'
-
-_Arguments_:
- FROM The type shall be 'INTEGER'.
- FROMPOS The type shall be 'INTEGER'.
- LEN The type shall be 'INTEGER'.
- TO The type shall be 'INTEGER', of the same kind as
- FROM.
- TOPOS The type shall be 'INTEGER'.
-
-_See also_:
- *note IBCLR::, *note IBSET::, *note IBITS::, *note IAND::, *note
- IOR::, *note IEOR::
-
-
-File: gfortran.info, Node: NEAREST, Next: NEW_LINE, Prev: MVBITS, Up: Intrinsic Procedures
-
-8.181 'NEAREST' -- Nearest representable number
-===============================================
-
-_Description_:
- 'NEAREST(X, S)' returns the processor-representable number nearest
- to 'X' in the direction indicated by the sign of 'S'.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = NEAREST(X, S)'
-
-_Arguments_:
- X Shall be of type 'REAL'.
- S Shall be of type 'REAL' and not equal to zero.
-
-_Return value_:
- The return value is of the same type as 'X'. If 'S' is positive,
- 'NEAREST' returns the processor-representable number greater than
- 'X' and nearest to it. If 'S' is negative, 'NEAREST' returns the
- processor-representable number smaller than 'X' and nearest to it.
-
-_Example_:
- program test_nearest
- real :: x, y
- x = nearest(42.0, 1.0)
- y = nearest(42.0, -1.0)
- write (*,"(3(G20.15))") x, y, x - y
- end program test_nearest
-
-
-File: gfortran.info, Node: NEW_LINE, Next: NINT, Prev: NEAREST, Up: Intrinsic Procedures
-
-8.182 'NEW_LINE' -- New line character
-======================================
-
-_Description_:
- 'NEW_LINE(C)' returns the new-line character.
-
-_Standard_:
- Fortran 2003 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = NEW_LINE(C)'
-
-_Arguments_:
- C The argument shall be a scalar or array of the
- type 'CHARACTER'.
-
-_Return value_:
- Returns a CHARACTER scalar of length one with the new-line
- character of the same kind as parameter C.
-
-_Example_:
- program newline
- implicit none
- write(*,'(A)') 'This is record 1.'//NEW_LINE('A')//'This is record 2.'
- end program newline
-
-
-File: gfortran.info, Node: NINT, Next: NORM2, Prev: NEW_LINE, Up: Intrinsic Procedures
-
-8.183 'NINT' -- Nearest whole number
-====================================
-
-_Description_:
- 'NINT(A)' rounds its argument to the nearest whole number.
-
-_Standard_:
- Fortran 77 and later, with KIND argument Fortran 90 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = NINT(A [, KIND])'
-
-_Arguments_:
- A The type of the argument shall be 'REAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- Returns A with the fractional portion of its magnitude eliminated
- by rounding to the nearest whole number and with its sign
- preserved, converted to an 'INTEGER' of the default kind.
-
-_Example_:
- program test_nint
- real(4) x4
- real(8) x8
- x4 = 1.234E0_4
- x8 = 4.321_8
- print *, nint(x4), idnint(x8)
- end program test_nint
-
-_Specific names_:
- Name Argument Return Type Standard
- 'NINT(A)' 'REAL(4) A' 'INTEGER' Fortran 95 and
- later
- 'IDNINT(A)' 'REAL(8) A' 'INTEGER' Fortran 95 and
- later
-
-_See also_:
- *note CEILING::, *note FLOOR::
-
-
-File: gfortran.info, Node: NORM2, Next: NOT, Prev: NINT, Up: Intrinsic Procedures
-
-8.184 'NORM2' -- Euclidean vector norms
-=======================================
-
-_Description_:
- Calculates the Euclidean vector norm (L_2 norm) of of ARRAY along
- dimension DIM.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = NORM2(ARRAY[, DIM])'
-
-_Arguments_:
- ARRAY Shall be an array of type 'REAL'
- DIM (Optional) shall be a scalar of type 'INTEGER'
- with a value in the range from 1 to n, where n
- equals the rank of ARRAY.
-
-_Return value_:
- The result is of the same type as ARRAY.
-
- If DIM is absent, a scalar with the square root of the sum of all
- elements in ARRAY squared is returned. Otherwise, an array of rank
- n-1, where n equals the rank of ARRAY, and a shape similar to that
- of ARRAY with dimension DIM dropped is returned.
-
-_Example_:
- PROGRAM test_sum
- REAL :: x(5) = [ real :: 1, 2, 3, 4, 5 ]
- print *, NORM2(x) ! = sqrt(55.) ~ 7.416
- END PROGRAM
-
-
-File: gfortran.info, Node: NOT, Next: NULL, Prev: NORM2, Up: Intrinsic Procedures
-
-8.185 'NOT' -- Logical negation
-===============================
-
-_Description_:
- 'NOT' returns the bitwise Boolean inverse of I.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = NOT(I)'
-
-_Arguments_:
- I The type shall be 'INTEGER'.
-
-_Return value_:
- The return type is 'INTEGER', of the same kind as the argument.
-
-_See also_:
- *note IAND::, *note IEOR::, *note IOR::, *note IBITS::, *note
- IBSET::, *note IBCLR::
-
-
-File: gfortran.info, Node: NULL, Next: NUM_IMAGES, Prev: NOT, Up: Intrinsic Procedures
-
-8.186 'NULL' -- Function that returns an disassociated pointer
-==============================================================
-
-_Description_:
- Returns a disassociated pointer.
-
- If MOLD is present, a disassociated pointer of the same type is
- returned, otherwise the type is determined by context.
-
- In Fortran 95, MOLD is optional. Please note that Fortran 2003
- includes cases where it is required.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'PTR => NULL([MOLD])'
-
-_Arguments_:
- MOLD (Optional) shall be a pointer of any association
- status and of any type.
-
-_Return value_:
- A disassociated pointer.
-
-_Example_:
- REAL, POINTER, DIMENSION(:) :: VEC => NULL ()
-
-_See also_:
- *note ASSOCIATED::
-
-
-File: gfortran.info, Node: NUM_IMAGES, Next: OR, Prev: NULL, Up: Intrinsic Procedures
-
-8.187 'NUM_IMAGES' -- Function that returns the number of images
-================================================================
-
-_Description_:
- Returns the number of images.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = NUM_IMAGES()'
-
-_Arguments_: None.
-
-_Return value_:
- Scalar default-kind integer.
-
-_Example_:
- INTEGER :: value[*]
- INTEGER :: i
- value = THIS_IMAGE()
- SYNC ALL
- IF (THIS_IMAGE() == 1) THEN
- DO i = 1, NUM_IMAGES()
- WRITE(*,'(2(a,i0))') 'value[', i, '] is ', value[i]
- END DO
- END IF
-
-_See also_:
- *note THIS_IMAGE::, *note IMAGE_INDEX::
-
-
-File: gfortran.info, Node: OR, Next: PACK, Prev: NUM_IMAGES, Up: Intrinsic Procedures
-
-8.188 'OR' -- Bitwise logical OR
-================================
-
-_Description_:
- Bitwise logical 'OR'.
-
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. For integer arguments, programmers should consider
- the use of the *note IOR:: intrinsic defined by the Fortran
- standard.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Function
-
-_Syntax_:
- 'RESULT = OR(I, J)'
-
-_Arguments_:
- I The type shall be either a scalar 'INTEGER' type
- or a scalar 'LOGICAL' type.
- J The type shall be the same as the type of J.
-
-_Return value_:
- The return type is either a scalar 'INTEGER' or a scalar 'LOGICAL'.
- If the kind type parameters differ, then the smaller kind type is
- implicitly converted to larger kind, and the return has the larger
- kind.
-
-_Example_:
- PROGRAM test_or
- LOGICAL :: T = .TRUE., F = .FALSE.
- INTEGER :: a, b
- DATA a / Z'F' /, b / Z'3' /
-
- WRITE (*,*) OR(T, T), OR(T, F), OR(F, T), OR(F, F)
- WRITE (*,*) OR(a, b)
- END PROGRAM
-
-_See also_:
- Fortran 95 elemental function: *note IOR::
-
-
-File: gfortran.info, Node: PACK, Next: PARITY, Prev: OR, Up: Intrinsic Procedures
-
-8.189 'PACK' -- Pack an array into an array of rank one
-=======================================================
-
-_Description_:
- Stores the elements of ARRAY in an array of rank one.
-
- The beginning of the resulting array is made up of elements whose
- MASK equals 'TRUE'. Afterwards, positions are filled with elements
- taken from VECTOR.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = PACK(ARRAY, MASK[,VECTOR])'
-
-_Arguments_:
- ARRAY Shall be an array of any type.
- MASK Shall be an array of type 'LOGICAL' and of the
- same size as ARRAY. Alternatively, it may be a
- 'LOGICAL' scalar.
- VECTOR (Optional) shall be an array of the same type as
- ARRAY and of rank one. If present, the number
- of elements in VECTOR shall be equal to or
- greater than the number of true elements in
- MASK. If MASK is scalar, the number of elements
- in VECTOR shall be equal to or greater than the
- number of elements in ARRAY.
-
-_Return value_:
- The result is an array of rank one and the same type as that of
- ARRAY. If VECTOR is present, the result size is that of VECTOR,
- the number of 'TRUE' values in MASK otherwise.
-
-_Example_:
- Gathering nonzero elements from an array:
- PROGRAM test_pack_1
- INTEGER :: m(6)
- m = (/ 1, 0, 0, 0, 5, 0 /)
- WRITE(*, FMT="(6(I0, ' '))") pack(m, m /= 0) ! "1 5"
- END PROGRAM
-
- Gathering nonzero elements from an array and appending elements
- from VECTOR:
- PROGRAM test_pack_2
- INTEGER :: m(4)
- m = (/ 1, 0, 0, 2 /)
- WRITE(*, FMT="(4(I0, ' '))") pack(m, m /= 0, (/ 0, 0, 3, 4 /)) ! "1 2 3 4"
- END PROGRAM
-
-_See also_:
- *note UNPACK::
-
-
-File: gfortran.info, Node: PARITY, Next: PERROR, Prev: PACK, Up: Intrinsic Procedures
-
-8.190 'PARITY' -- Reduction with exclusive OR
-=============================================
-
-_Description_:
- Calculates the parity, i.e. the reduction using '.XOR.', of MASK
- along dimension DIM.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = PARITY(MASK[, DIM])'
-
-_Arguments_:
- LOGICAL Shall be an array of type 'LOGICAL'
- DIM (Optional) shall be a scalar of type 'INTEGER'
- with a value in the range from 1 to n, where n
- equals the rank of MASK.
-
-_Return value_:
- The result is of the same type as MASK.
-
- If DIM is absent, a scalar with the parity of all elements in MASK
- is returned, i.e. true if an odd number of elements is '.true.'
- and false otherwise. If DIM is present, an array of rank n-1,
- where n equals the rank of ARRAY, and a shape similar to that of
- MASK with dimension DIM dropped is returned.
-
-_Example_:
- PROGRAM test_sum
- LOGICAL :: x(2) = [ .true., .false. ]
- print *, PARITY(x) ! prints "T" (true).
- END PROGRAM
-
-
-File: gfortran.info, Node: PERROR, Next: POPCNT, Prev: PARITY, Up: Intrinsic Procedures
-
-8.191 'PERROR' -- Print system error message
-============================================
-
-_Description_:
- Prints (on the C 'stderr' stream) a newline-terminated error
- message corresponding to the last system error. This is prefixed
- by STRING, a colon and a space. See 'perror(3)'.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL PERROR(STRING)'
-
-_Arguments_:
- STRING A scalar of type 'CHARACTER' and of the default
- kind.
-
-_See also_:
- *note IERRNO::
-
-
-File: gfortran.info, Node: POPCNT, Next: POPPAR, Prev: PERROR, Up: Intrinsic Procedures
-
-8.192 'POPCNT' -- Number of bits set
-====================================
-
-_Description_:
- 'POPCNT(I)' returns the number of bits set ('1' bits) in the binary
- representation of 'I'.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = POPCNT(I)'
-
-_Arguments_:
- I Shall be of type 'INTEGER'.
-
-_Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind.
-
-_See also_:
- *note POPPAR::, *note LEADZ::, *note TRAILZ::
-
-_Example_:
- program test_population
- print *, popcnt(127), poppar(127)
- print *, popcnt(huge(0_4)), poppar(huge(0_4))
- print *, popcnt(huge(0_8)), poppar(huge(0_8))
- end program test_population
-
-
-File: gfortran.info, Node: POPPAR, Next: PRECISION, Prev: POPCNT, Up: Intrinsic Procedures
-
-8.193 'POPPAR' -- Parity of the number of bits set
-==================================================
-
-_Description_:
- 'POPPAR(I)' returns parity of the integer 'I', i.e. the parity of
- the number of bits set ('1' bits) in the binary representation of
- 'I'. It is equal to 0 if 'I' has an even number of bits set, and 1
- for an odd number of '1' bits.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = POPPAR(I)'
-
-_Arguments_:
- I Shall be of type 'INTEGER'.
-
-_Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind.
-
-_See also_:
- *note POPCNT::, *note LEADZ::, *note TRAILZ::
-
-_Example_:
- program test_population
- print *, popcnt(127), poppar(127)
- print *, popcnt(huge(0_4)), poppar(huge(0_4))
- print *, popcnt(huge(0_8)), poppar(huge(0_8))
- end program test_population
-
-
-File: gfortran.info, Node: PRECISION, Next: PRESENT, Prev: POPPAR, Up: Intrinsic Procedures
-
-8.194 'PRECISION' -- Decimal precision of a real kind
-=====================================================
-
-_Description_:
- 'PRECISION(X)' returns the decimal precision in the model of the
- type of 'X'.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = PRECISION(X)'
-
-_Arguments_:
- X Shall be of type 'REAL' or 'COMPLEX'.
-
-_Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind.
-
-_See also_:
- *note SELECTED_REAL_KIND::, *note RANGE::
-
-_Example_:
- program prec_and_range
- real(kind=4) :: x(2)
- complex(kind=8) :: y
-
- print *, precision(x), range(x)
- print *, precision(y), range(y)
- end program prec_and_range
-
-
-File: gfortran.info, Node: PRESENT, Next: PRODUCT, Prev: PRECISION, Up: Intrinsic Procedures
-
-8.195 'PRESENT' -- Determine whether an optional dummy argument is specified
-============================================================================
-
-_Description_:
- Determines whether an optional dummy argument is present.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = PRESENT(A)'
-
-_Arguments_:
- A May be of any type and may be a pointer, scalar
- or array value, or a dummy procedure. It shall
- be the name of an optional dummy argument
- accessible within the current subroutine or
- function.
-
-_Return value_:
- Returns either 'TRUE' if the optional argument A is present, or
- 'FALSE' otherwise.
-
-_Example_:
- PROGRAM test_present
- WRITE(*,*) f(), f(42) ! "F T"
- CONTAINS
- LOGICAL FUNCTION f(x)
- INTEGER, INTENT(IN), OPTIONAL :: x
- f = PRESENT(x)
- END FUNCTION
- END PROGRAM
-
-
-File: gfortran.info, Node: PRODUCT, Next: RADIX, Prev: PRESENT, Up: Intrinsic Procedures
-
-8.196 'PRODUCT' -- Product of array elements
-============================================
-
-_Description_:
- Multiplies the elements of ARRAY along dimension DIM if the
- corresponding element in MASK is 'TRUE'.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = PRODUCT(ARRAY[, MASK])'
- 'RESULT = PRODUCT(ARRAY, DIM[, MASK])'
-
-_Arguments_:
- ARRAY Shall be an array of type 'INTEGER', 'REAL' or
- 'COMPLEX'.
- DIM (Optional) shall be a scalar of type 'INTEGER'
- with a value in the range from 1 to n, where n
- equals the rank of ARRAY.
- MASK (Optional) shall be of type 'LOGICAL' and either
- be a scalar or an array of the same shape as
- ARRAY.
-
-_Return value_:
- The result is of the same type as ARRAY.
-
- If DIM is absent, a scalar with the product of all elements in
- ARRAY is returned. Otherwise, an array of rank n-1, where n equals
- the rank of ARRAY, and a shape similar to that of ARRAY with
- dimension DIM dropped is returned.
-
-_Example_:
- PROGRAM test_product
- INTEGER :: x(5) = (/ 1, 2, 3, 4 ,5 /)
- print *, PRODUCT(x) ! all elements, product = 120
- print *, PRODUCT(x, MASK=MOD(x, 2)==1) ! odd elements, product = 15
- END PROGRAM
-
-_See also_:
- *note SUM::
-
-
-File: gfortran.info, Node: RADIX, Next: RAN, Prev: PRODUCT, Up: Intrinsic Procedures
-
-8.197 'RADIX' -- Base of a model number
-=======================================
-
-_Description_:
- 'RADIX(X)' returns the base of the model representing the entity X.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = RADIX(X)'
-
-_Arguments_:
- X Shall be of type 'INTEGER' or 'REAL'
-
-_Return value_:
- The return value is a scalar of type 'INTEGER' and of the default
- integer kind.
-
-_See also_:
- *note SELECTED_REAL_KIND::
-
-_Example_:
- program test_radix
- print *, "The radix for the default integer kind is", radix(0)
- print *, "The radix for the default real kind is", radix(0.0)
- end program test_radix
-
-
-File: gfortran.info, Node: RAN, Next: RAND, Prev: RADIX, Up: Intrinsic Procedures
-
-8.198 'RAN' -- Real pseudo-random number
-========================================
-
-_Description_:
- For compatibility with HP FORTRAN 77/iX, the 'RAN' intrinsic is
- provided as an alias for 'RAND'. See *note RAND:: for complete
- documentation.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Function
-
-_See also_:
- *note RAND::, *note RANDOM_NUMBER::
-
-
-File: gfortran.info, Node: RAND, Next: RANDOM_NUMBER, Prev: RAN, Up: Intrinsic Procedures
-
-8.199 'RAND' -- Real pseudo-random number
-=========================================
-
-_Description_:
- 'RAND(FLAG)' returns a pseudo-random number from a uniform
- distribution between 0 and 1. If FLAG is 0, the next number in the
- current sequence is returned; if FLAG is 1, the generator is
- restarted by 'CALL SRAND(0)'; if FLAG has any other value, it is
- used as a new seed with 'SRAND'.
-
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. It implements a simple modulo generator as
- provided by 'g77'. For new code, one should consider the use of
- *note RANDOM_NUMBER:: as it implements a superior algorithm.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Function
-
-_Syntax_:
- 'RESULT = RAND(I)'
-
-_Arguments_:
- I Shall be a scalar 'INTEGER' of kind 4.
-
-_Return value_:
- The return value is of 'REAL' type and the default kind.
-
-_Example_:
- program test_rand
- integer,parameter :: seed = 86456
-
- call srand(seed)
- print *, rand(), rand(), rand(), rand()
- print *, rand(seed), rand(), rand(), rand()
- end program test_rand
-
-_See also_:
- *note SRAND::, *note RANDOM_NUMBER::
-
-
-File: gfortran.info, Node: RANDOM_NUMBER, Next: RANDOM_SEED, Prev: RAND, Up: Intrinsic Procedures
-
-8.200 'RANDOM_NUMBER' -- Pseudo-random number
-=============================================
-
-_Description_:
- Returns a single pseudorandom number or an array of pseudorandom
- numbers from the uniform distribution over the range 0 \leq x < 1.
-
- The runtime-library implements George Marsaglia's KISS (Keep It
- Simple Stupid) random number generator (RNG). This RNG combines:
- 1. The congruential generator x(n) = 69069 \cdot x(n-1) +
- 1327217885 with a period of 2^{32},
- 2. A 3-shift shift-register generator with a period of 2^{32} -
- 1,
- 3. Two 16-bit multiply-with-carry generators with a period of
- 597273182964842497 > 2^{59}.
- The overall period exceeds 2^{123}.
-
- Please note, this RNG is thread safe if used within OpenMP
- directives, i.e., its state will be consistent while called from
- multiple threads. However, the KISS generator does not create
- random numbers in parallel from multiple sources, but in sequence
- from a single source. If an OpenMP-enabled application heavily
- relies on random numbers, one should consider employing a dedicated
- parallel random number generator instead.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'RANDOM_NUMBER(HARVEST)'
-
-_Arguments_:
- HARVEST Shall be a scalar or an array of type 'REAL'.
-
-_Example_:
- program test_random_number
- REAL :: r(5,5)
- CALL init_random_seed() ! see example of RANDOM_SEED
- CALL RANDOM_NUMBER(r)
- end program
-
-_See also_:
- *note RANDOM_SEED::
-
-
-File: gfortran.info, Node: RANDOM_SEED, Next: RANGE, Prev: RANDOM_NUMBER, Up: Intrinsic Procedures
-
-8.201 'RANDOM_SEED' -- Initialize a pseudo-random number sequence
-=================================================================
-
-_Description_:
- Restarts or queries the state of the pseudorandom number generator
- used by 'RANDOM_NUMBER'.
-
- If 'RANDOM_SEED' is called without arguments, it is initialized to
- a default state. The example below shows how to initialize the
- random seed with a varying seed in order to ensure a different
- random number sequence for each invocation of the program. Note
- that setting any of the seed values to zero should be avoided as it
- can result in poor quality random numbers being generated.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL RANDOM_SEED([SIZE, PUT, GET])'
-
-_Arguments_:
- SIZE (Optional) Shall be a scalar and of type default
- 'INTEGER', with 'INTENT(OUT)'. It specifies the
- minimum size of the arrays used with the PUT and
- GET arguments.
- PUT (Optional) Shall be an array of type default
- 'INTEGER' and rank one. It is 'INTENT(IN)' and
- the size of the array must be larger than or
- equal to the number returned by the SIZE
- argument.
- GET (Optional) Shall be an array of type default
- 'INTEGER' and rank one. It is 'INTENT(OUT)' and
- the size of the array must be larger than or
- equal to the number returned by the SIZE
- argument.
-
-_Example_:
- subroutine init_random_seed()
- use iso_fortran_env, only: int64
- implicit none
- integer, allocatable :: seed(:)
- integer :: i, n, un, istat, dt(8), pid
- integer(int64) :: t
-
- call random_seed(size = n)
- allocate(seed(n))
- ! First try if the OS provides a random number generator
- open(newunit=un, file="/dev/urandom", access="stream", &
- form="unformatted", action="read", status="old", iostat=istat)
- if (istat == 0) then
- read(un) seed
- close(un)
- else
- ! Fallback to XOR:ing the current time and pid. The PID is
- ! useful in case one launches multiple instances of the same
- ! program in parallel.
- call system_clock(t)
- if (t == 0) then
- call date_and_time(values=dt)
- t = (dt(1) - 1970) * 365_int64 * 24 * 60 * 60 * 1000 &
- + dt(2) * 31_int64 * 24 * 60 * 60 * 1000 &
- + dt(3) * 24_int64 * 60 * 60 * 1000 &
- + dt(5) * 60 * 60 * 1000 &
- + dt(6) * 60 * 1000 + dt(7) * 1000 &
- + dt(8)
- end if
- pid = getpid()
- t = ieor(t, int(pid, kind(t)))
- do i = 1, n
- seed(i) = lcg(t)
- end do
- end if
- call random_seed(put=seed)
- contains
- ! This simple PRNG might not be good enough for real work, but is
- ! sufficient for seeding a better PRNG.
- function lcg(s)
- integer :: lcg
- integer(int64) :: s
- if (s == 0) then
- s = 104729
- else
- s = mod(s, 4294967296_int64)
- end if
- s = mod(s * 279470273_int64, 4294967291_int64)
- lcg = int(mod(s, int(huge(0), int64)), kind(0))
- end function lcg
- end subroutine init_random_seed
-
-_See also_:
- *note RANDOM_NUMBER::
-
-
-File: gfortran.info, Node: RANGE, Next: RANK, Prev: RANDOM_SEED, Up: Intrinsic Procedures
-
-8.202 'RANGE' -- Decimal exponent range
-=======================================
-
-_Description_:
- 'RANGE(X)' returns the decimal exponent range in the model of the
- type of 'X'.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = RANGE(X)'
-
-_Arguments_:
- X Shall be of type 'INTEGER', 'REAL' or 'COMPLEX'.
-
-_Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind.
-
-_See also_:
- *note SELECTED_REAL_KIND::, *note PRECISION::
-
-_Example_:
- See 'PRECISION' for an example.
-
-
-File: gfortran.info, Node: RANK, Next: REAL, Prev: RANGE, Up: Intrinsic Procedures
-
-8.203 'RANK' -- Rank of a data object
-=====================================
-
-_Description_:
- 'RANK(A)' returns the rank of a scalar or array data object.
-
-_Standard_:
- Technical Specification (TS) 29113
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = RANK(A)'
-
-_Arguments_:
- A can be of any type
-
-_Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind. For arrays, their rank is returned; for scalars zero is
- returned.
-
-_Example_:
- program test_rank
- integer :: a
- real, allocatable :: b(:,:)
-
- print *, rank(a), rank(b) ! Prints: 0 2
- end program test_rank
-
-
-File: gfortran.info, Node: REAL, Next: RENAME, Prev: RANK, Up: Intrinsic Procedures
-
-8.204 'REAL' -- Convert to real type
-====================================
-
-_Description_:
- 'REAL(A [, KIND])' converts its argument A to a real type. The
- 'REALPART' function is provided for compatibility with 'g77', and
- its use is strongly discouraged.
-
-_Standard_:
- Fortran 77 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = REAL(A [, KIND])'
- 'RESULT = REALPART(Z)'
-
-_Arguments_:
- A Shall be 'INTEGER', 'REAL', or 'COMPLEX'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- These functions return a 'REAL' variable or array under the
- following rules:
-
- (A)
- 'REAL(A)' is converted to a default real type if A is an
- integer or real variable.
- (B)
- 'REAL(A)' is converted to a real type with the kind type
- parameter of A if A is a complex variable.
- (C)
- 'REAL(A, KIND)' is converted to a real type with kind type
- parameter KIND if A is a complex, integer, or real variable.
-
-_Example_:
- program test_real
- complex :: x = (1.0, 2.0)
- print *, real(x), real(x,8), realpart(x)
- end program test_real
-
-_Specific names_:
- Name Argument Return type Standard
- 'FLOAT(A)' 'INTEGER(4)' 'REAL(4)' Fortran 77 and
- later
- 'DFLOAT(A)' 'INTEGER(4)' 'REAL(8)' GNU extension
- 'SNGL(A)' 'INTEGER(8)' 'REAL(4)' Fortran 77 and
- later
-
-_See also_:
- *note DBLE::
-
-
-File: gfortran.info, Node: RENAME, Next: REPEAT, Prev: REAL, Up: Intrinsic Procedures
-
-8.205 'RENAME' -- Rename a file
-===============================
-
-_Description_:
- Renames a file from file PATH1 to PATH2. A null character
- ('CHAR(0)') can be used to mark the end of the names in PATH1 and
- PATH2; otherwise, trailing blanks in the file names are ignored.
- If the STATUS argument is supplied, it contains 0 on success or a
- nonzero error code upon return; see 'rename(2)'.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL RENAME(PATH1, PATH2 [, STATUS])'
- 'STATUS = RENAME(PATH1, PATH2)'
-
-_Arguments_:
- PATH1 Shall be of default 'CHARACTER' type.
- PATH2 Shall be of default 'CHARACTER' type.
- STATUS (Optional) Shall be of default 'INTEGER' type.
-
-_See also_:
- *note LINK::
-
-
-File: gfortran.info, Node: REPEAT, Next: RESHAPE, Prev: RENAME, Up: Intrinsic Procedures
-
-8.206 'REPEAT' -- Repeated string concatenation
-===============================================
-
-_Description_:
- Concatenates NCOPIES copies of a string.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = REPEAT(STRING, NCOPIES)'
-
-_Arguments_:
- STRING Shall be scalar and of type 'CHARACTER'.
- NCOPIES Shall be scalar and of type 'INTEGER'.
-
-_Return value_:
- A new scalar of type 'CHARACTER' built up from NCOPIES copies of
- STRING.
-
-_Example_:
- program test_repeat
- write(*,*) repeat("x", 5) ! "xxxxx"
- end program
-
-
-File: gfortran.info, Node: RESHAPE, Next: RRSPACING, Prev: REPEAT, Up: Intrinsic Procedures
-
-8.207 'RESHAPE' -- Function to reshape an array
-===============================================
-
-_Description_:
- Reshapes SOURCE to correspond to SHAPE. If necessary, the new
- array may be padded with elements from PAD or permuted as defined
- by ORDER.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = RESHAPE(SOURCE, SHAPE[, PAD, ORDER])'
-
-_Arguments_:
- SOURCE Shall be an array of any type.
- SHAPE Shall be of type 'INTEGER' and an array of rank
- one. Its values must be positive or zero.
- PAD (Optional) shall be an array of the same type as
- SOURCE.
- ORDER (Optional) shall be of type 'INTEGER' and an
- array of the same shape as SHAPE. Its values
- shall be a permutation of the numbers from 1 to
- n, where n is the size of SHAPE. If ORDER is
- absent, the natural ordering shall be assumed.
-
-_Return value_:
- The result is an array of shape SHAPE with the same type as SOURCE.
-
-_Example_:
- PROGRAM test_reshape
- INTEGER, DIMENSION(4) :: x
- WRITE(*,*) SHAPE(x) ! prints "4"
- WRITE(*,*) SHAPE(RESHAPE(x, (/2, 2/))) ! prints "2 2"
- END PROGRAM
-
-_See also_:
- *note SHAPE::
-
-
-File: gfortran.info, Node: RRSPACING, Next: RSHIFT, Prev: RESHAPE, Up: Intrinsic Procedures
-
-8.208 'RRSPACING' -- Reciprocal of the relative spacing
-=======================================================
-
-_Description_:
- 'RRSPACING(X)' returns the reciprocal of the relative spacing of
- model numbers near X.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = RRSPACING(X)'
-
-_Arguments_:
- X Shall be of type 'REAL'.
-
-_Return value_:
- The return value is of the same type and kind as X. The value
- returned is equal to 'ABS(FRACTION(X)) *
- FLOAT(RADIX(X))**DIGITS(X)'.
-
-_See also_:
- *note SPACING::
-
-
-File: gfortran.info, Node: RSHIFT, Next: SAME_TYPE_AS, Prev: RRSPACING, Up: Intrinsic Procedures
-
-8.209 'RSHIFT' -- Right shift bits
-==================================
-
-_Description_:
- 'RSHIFT' returns a value corresponding to I with all of the bits
- shifted right by SHIFT places. If the absolute value of SHIFT is
- greater than 'BIT_SIZE(I)', the value is undefined. Bits shifted
- out from the right end are lost. The fill is arithmetic: the bits
- shifted in from the left end are equal to the leftmost bit, which
- in two's complement representation is the sign bit.
-
- This function has been superseded by the 'SHIFTA' intrinsic, which
- is standard in Fortran 2008 and later.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = RSHIFT(I, SHIFT)'
-
-_Arguments_:
- I The type shall be 'INTEGER'.
- SHIFT The type shall be 'INTEGER'.
-
-_Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
-
-_See also_:
- *note ISHFT::, *note ISHFTC::, *note LSHIFT::, *note SHIFTA::,
- *note SHIFTR::, *note SHIFTL::
-
-
-File: gfortran.info, Node: SAME_TYPE_AS, Next: SCALE, Prev: RSHIFT, Up: Intrinsic Procedures
-
-8.210 'SAME_TYPE_AS' -- Query dynamic types for equality
-========================================================
-
-_Description_:
- Query dynamic types for equality.
-
-_Standard_:
- Fortran 2003 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = SAME_TYPE_AS(A, B)'
-
-_Arguments_:
- A Shall be an object of extensible declared type
- or unlimited polymorphic.
- B Shall be an object of extensible declared type
- or unlimited polymorphic.
-
-_Return value_:
- The return value is a scalar of type default logical. It is true
- if and only if the dynamic type of A is the same as the dynamic
- type of B.
-
-_See also_:
- *note EXTENDS_TYPE_OF::
-
-
-File: gfortran.info, Node: SCALE, Next: SCAN, Prev: SAME_TYPE_AS, Up: Intrinsic Procedures
-
-8.211 'SCALE' -- Scale a real value
-===================================
-
-_Description_:
- 'SCALE(X,I)' returns 'X * RADIX(X)**I'.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = SCALE(X, I)'
-
-_Arguments_:
- X The type of the argument shall be a 'REAL'.
- I The type of the argument shall be a 'INTEGER'.
-
-_Return value_:
- The return value is of the same type and kind as X. Its value is
- 'X * RADIX(X)**I'.
-
-_Example_:
- program test_scale
- real :: x = 178.1387e-4
- integer :: i = 5
- print *, scale(x,i), x*radix(x)**i
- end program test_scale
-
-
-File: gfortran.info, Node: SCAN, Next: SECNDS, Prev: SCALE, Up: Intrinsic Procedures
-
-8.212 'SCAN' -- Scan a string for the presence of a set of characters
-=====================================================================
-
-_Description_:
- Scans a STRING for any of the characters in a SET of characters.
-
- If BACK is either absent or equals 'FALSE', this function returns
- the position of the leftmost character of STRING that is in SET.
- If BACK equals 'TRUE', the rightmost position is returned. If no
- character of SET is found in STRING, the result is zero.
-
-_Standard_:
- Fortran 95 and later, with KIND argument Fortran 2003 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = SCAN(STRING, SET[, BACK [, KIND]])'
-
-_Arguments_:
- STRING Shall be of type 'CHARACTER'.
- SET Shall be of type 'CHARACTER'.
- BACK (Optional) shall be of type 'LOGICAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
-
-_Example_:
- PROGRAM test_scan
- WRITE(*,*) SCAN("FORTRAN", "AO") ! 2, found 'O'
- WRITE(*,*) SCAN("FORTRAN", "AO", .TRUE.) ! 6, found 'A'
- WRITE(*,*) SCAN("FORTRAN", "C++") ! 0, found none
- END PROGRAM
-
-_See also_:
- *note INDEX intrinsic::, *note VERIFY::
-
-
-File: gfortran.info, Node: SECNDS, Next: SECOND, Prev: SCAN, Up: Intrinsic Procedures
-
-8.213 'SECNDS' -- Time function
-===============================
-
-_Description_:
- 'SECNDS(X)' gets the time in seconds from the real-time system
- clock. X is a reference time, also in seconds. If this is zero,
- the time in seconds from midnight is returned. This function is
- non-standard and its use is discouraged.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Function
-
-_Syntax_:
- 'RESULT = SECNDS (X)'
-
-_Arguments_:
- T Shall be of type 'REAL(4)'.
- X Shall be of type 'REAL(4)'.
-
-_Return value_:
- None
-
-_Example_:
- program test_secnds
- integer :: i
- real(4) :: t1, t2
- print *, secnds (0.0) ! seconds since midnight
- t1 = secnds (0.0) ! reference time
- do i = 1, 10000000 ! do something
- end do
- t2 = secnds (t1) ! elapsed time
- print *, "Something took ", t2, " seconds."
- end program test_secnds
-
-
-File: gfortran.info, Node: SECOND, Next: SELECTED_CHAR_KIND, Prev: SECNDS, Up: Intrinsic Procedures
-
-8.214 'SECOND' -- CPU time function
-===================================
-
-_Description_:
- Returns a 'REAL(4)' value representing the elapsed CPU time in
- seconds. This provides the same functionality as the standard
- 'CPU_TIME' intrinsic, and is only included for backwards
- compatibility.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL SECOND(TIME)'
- 'TIME = SECOND()'
-
-_Arguments_:
- TIME Shall be of type 'REAL(4)'.
-
-_Return value_:
- In either syntax, TIME is set to the process's current runtime in
- seconds.
-
-_See also_:
- *note CPU_TIME::
-
-
-File: gfortran.info, Node: SELECTED_CHAR_KIND, Next: SELECTED_INT_KIND, Prev: SECOND, Up: Intrinsic Procedures
-
-8.215 'SELECTED_CHAR_KIND' -- Choose character kind
-===================================================
-
-_Description_:
-
- 'SELECTED_CHAR_KIND(NAME)' returns the kind value for the character
- set named NAME, if a character set with such a name is supported,
- or -1 otherwise. Currently, supported character sets include
- "ASCII" and "DEFAULT", which are equivalent, and "ISO_10646"
- (Universal Character Set, UCS-4) which is commonly known as
- Unicode.
-
-_Standard_:
- Fortran 2003 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = SELECTED_CHAR_KIND(NAME)'
-
-_Arguments_:
- NAME Shall be a scalar and of the default character
- type.
-
-_Example_:
- program character_kind
- use iso_fortran_env
- implicit none
- integer, parameter :: ascii = selected_char_kind ("ascii")
- integer, parameter :: ucs4 = selected_char_kind ('ISO_10646')
-
- character(kind=ascii, len=26) :: alphabet
- character(kind=ucs4, len=30) :: hello_world
-
- alphabet = ascii_"abcdefghijklmnopqrstuvwxyz"
- hello_world = ucs4_'Hello World and Ni Hao -- ' &
- // char (int (z'4F60'), ucs4) &
- // char (int (z'597D'), ucs4)
-
- write (*,*) alphabet
-
- open (output_unit, encoding='UTF-8')
- write (*,*) trim (hello_world)
- end program character_kind
-
-
-File: gfortran.info, Node: SELECTED_INT_KIND, Next: SELECTED_REAL_KIND, Prev: SELECTED_CHAR_KIND, Up: Intrinsic Procedures
-
-8.216 'SELECTED_INT_KIND' -- Choose integer kind
-================================================
-
-_Description_:
- 'SELECTED_INT_KIND(R)' return the kind value of the smallest
- integer type that can represent all values ranging from -10^R
- (exclusive) to 10^R (exclusive). If there is no integer kind that
- accommodates this range, 'SELECTED_INT_KIND' returns -1.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = SELECTED_INT_KIND(R)'
-
-_Arguments_:
- R Shall be a scalar and of type 'INTEGER'.
-
-_Example_:
- program large_integers
- integer,parameter :: k5 = selected_int_kind(5)
- integer,parameter :: k15 = selected_int_kind(15)
- integer(kind=k5) :: i5
- integer(kind=k15) :: i15
-
- print *, huge(i5), huge(i15)
-
- ! The following inequalities are always true
- print *, huge(i5) >= 10_k5**5-1
- print *, huge(i15) >= 10_k15**15-1
- end program large_integers
-
-
-File: gfortran.info, Node: SELECTED_REAL_KIND, Next: SET_EXPONENT, Prev: SELECTED_INT_KIND, Up: Intrinsic Procedures
-
-8.217 'SELECTED_REAL_KIND' -- Choose real kind
-==============================================
-
-_Description_:
- 'SELECTED_REAL_KIND(P,R)' returns the kind value of a real data
- type with decimal precision of at least 'P' digits, exponent range
- of at least 'R', and with a radix of 'RADIX'.
-
-_Standard_:
- Fortran 95 and later, with 'RADIX' Fortran 2008 or later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = SELECTED_REAL_KIND([P, R, RADIX])'
-
-_Arguments_:
- P (Optional) shall be a scalar and of type
- 'INTEGER'.
- R (Optional) shall be a scalar and of type
- 'INTEGER'.
- RADIX (Optional) shall be a scalar and of type
- 'INTEGER'.
- Before Fortran 2008, at least one of the arguments R or P shall be
- present; since Fortran 2008, they are assumed to be zero if absent.
-
-_Return value_:
-
- 'SELECTED_REAL_KIND' returns the value of the kind type parameter
- of a real data type with decimal precision of at least 'P' digits,
- a decimal exponent range of at least 'R', and with the requested
- 'RADIX'. If the 'RADIX' parameter is absent, real kinds with any
- radix can be returned. If more than one real data type meet the
- criteria, the kind of the data type with the smallest decimal
- precision is returned. If no real data type matches the criteria,
- the result is
- -1 if the processor does not support a real data type with a
- precision greater than or equal to 'P', but the 'R' and
- 'RADIX' requirements can be fulfilled
- -2 if the processor does not support a real type with an exponent
- range greater than or equal to 'R', but 'P' and 'RADIX' are
- fulfillable
- -3 if 'RADIX' but not 'P' and 'R' requirements
- are fulfillable
- -4 if 'RADIX' and either 'P' or 'R' requirements
- are fulfillable
- -5 if there is no real type with the given 'RADIX'
-
-_See also_:
- *note PRECISION::, *note RANGE::, *note RADIX::
-
-_Example_:
- program real_kinds
- integer,parameter :: p6 = selected_real_kind(6)
- integer,parameter :: p10r100 = selected_real_kind(10,100)
- integer,parameter :: r400 = selected_real_kind(r=400)
- real(kind=p6) :: x
- real(kind=p10r100) :: y
- real(kind=r400) :: z
-
- print *, precision(x), range(x)
- print *, precision(y), range(y)
- print *, precision(z), range(z)
- end program real_kinds
-
-
-File: gfortran.info, Node: SET_EXPONENT, Next: SHAPE, Prev: SELECTED_REAL_KIND, Up: Intrinsic Procedures
-
-8.218 'SET_EXPONENT' -- Set the exponent of the model
-=====================================================
-
-_Description_:
- 'SET_EXPONENT(X, I)' returns the real number whose fractional part
- is that that of X and whose exponent part is I.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = SET_EXPONENT(X, I)'
-
-_Arguments_:
- X Shall be of type 'REAL'.
- I Shall be of type 'INTEGER'.
-
-_Return value_:
- The return value is of the same type and kind as X. The real
- number whose fractional part is that that of X and whose exponent
- part if I is returned; it is 'FRACTION(X) * RADIX(X)**I'.
-
-_Example_:
- PROGRAM test_setexp
- REAL :: x = 178.1387e-4
- INTEGER :: i = 17
- PRINT *, SET_EXPONENT(x, i), FRACTION(x) * RADIX(x)**i
- END PROGRAM
-
-
-File: gfortran.info, Node: SHAPE, Next: SHIFTA, Prev: SET_EXPONENT, Up: Intrinsic Procedures
-
-8.219 'SHAPE' -- Determine the shape of an array
-================================================
-
-_Description_:
- Determines the shape of an array.
-
-_Standard_:
- Fortran 95 and later, with KIND argument Fortran 2003 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = SHAPE(SOURCE [, KIND])'
-
-_Arguments_:
- SOURCE Shall be an array or scalar of any type. If
- SOURCE is a pointer it must be associated and
- allocatable arrays must be allocated.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- An 'INTEGER' array of rank one with as many elements as SOURCE has
- dimensions. The elements of the resulting array correspond to the
- extend of SOURCE along the respective dimensions. If SOURCE is a
- scalar, the result is the rank one array of size zero. If KIND is
- absent, the return value has the default integer kind otherwise the
- specified kind.
-
-_Example_:
- PROGRAM test_shape
- INTEGER, DIMENSION(-1:1, -1:2) :: A
- WRITE(*,*) SHAPE(A) ! (/ 3, 4 /)
- WRITE(*,*) SIZE(SHAPE(42)) ! (/ /)
- END PROGRAM
-
-_See also_:
- *note RESHAPE::, *note SIZE::
-
-
-File: gfortran.info, Node: SHIFTA, Next: SHIFTL, Prev: SHAPE, Up: Intrinsic Procedures
-
-8.220 'SHIFTA' -- Right shift with fill
-=======================================
-
-_Description_:
- 'SHIFTA' returns a value corresponding to I with all of the bits
- shifted right by SHIFT places. If the absolute value of SHIFT is
- greater than 'BIT_SIZE(I)', the value is undefined. Bits shifted
- out from the right end are lost. The fill is arithmetic: the bits
- shifted in from the left end are equal to the leftmost bit, which
- in two's complement representation is the sign bit.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = SHIFTA(I, SHIFT)'
-
-_Arguments_:
- I The type shall be 'INTEGER'.
- SHIFT The type shall be 'INTEGER'.
-
-_Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
-
-_See also_:
- *note SHIFTL::, *note SHIFTR::
-
-
-File: gfortran.info, Node: SHIFTL, Next: SHIFTR, Prev: SHIFTA, Up: Intrinsic Procedures
-
-8.221 'SHIFTL' -- Left shift
-============================
-
-_Description_:
- 'SHIFTL' returns a value corresponding to I with all of the bits
- shifted left by SHIFT places. If the absolute value of SHIFT is
- greater than 'BIT_SIZE(I)', the value is undefined. Bits shifted
- out from the left end are lost, and bits shifted in from the right
- end are set to 0.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = SHIFTL(I, SHIFT)'
-
-_Arguments_:
- I The type shall be 'INTEGER'.
- SHIFT The type shall be 'INTEGER'.
-
-_Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
-
-_See also_:
- *note SHIFTA::, *note SHIFTR::
-
-
-File: gfortran.info, Node: SHIFTR, Next: SIGN, Prev: SHIFTL, Up: Intrinsic Procedures
-
-8.222 'SHIFTR' -- Right shift
-=============================
-
-_Description_:
- 'SHIFTR' returns a value corresponding to I with all of the bits
- shifted right by SHIFT places. If the absolute value of SHIFT is
- greater than 'BIT_SIZE(I)', the value is undefined. Bits shifted
- out from the right end are lost, and bits shifted in from the left
- end are set to 0.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = SHIFTR(I, SHIFT)'
-
-_Arguments_:
- I The type shall be 'INTEGER'.
- SHIFT The type shall be 'INTEGER'.
-
-_Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
-
-_See also_:
- *note SHIFTA::, *note SHIFTL::
-
-
-File: gfortran.info, Node: SIGN, Next: SIGNAL, Prev: SHIFTR, Up: Intrinsic Procedures
-
-8.223 'SIGN' -- Sign copying function
-=====================================
-
-_Description_:
- 'SIGN(A,B)' returns the value of A with the sign of B.
-
-_Standard_:
- Fortran 77 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = SIGN(A, B)'
-
-_Arguments_:
- A Shall be of type 'INTEGER' or 'REAL'
- B Shall be of the same type and kind as A
-
-_Return value_:
- The kind of the return value is that of A and B. If B\ge 0 then
- the result is 'ABS(A)', else it is '-ABS(A)'.
-
-_Example_:
- program test_sign
- print *, sign(-12,1)
- print *, sign(-12,0)
- print *, sign(-12,-1)
-
- print *, sign(-12.,1.)
- print *, sign(-12.,0.)
- print *, sign(-12.,-1.)
- end program test_sign
-
-_Specific names_:
- Name Arguments Return type Standard
- 'SIGN(A,B)' 'REAL(4) A, 'REAL(4)' f77, gnu
- B'
- 'ISIGN(A,B)' 'INTEGER(4) 'INTEGER(4)' f77, gnu
- A, B'
- 'DSIGN(A,B)' 'REAL(8) A, 'REAL(8)' f77, gnu
- B'
-
-
-File: gfortran.info, Node: SIGNAL, Next: SIN, Prev: SIGN, Up: Intrinsic Procedures
-
-8.224 'SIGNAL' -- Signal handling subroutine (or function)
-==========================================================
-
-_Description_:
- 'SIGNAL(NUMBER, HANDLER [, STATUS])' causes external subroutine
- HANDLER to be executed with a single integer argument when signal
- NUMBER occurs. If HANDLER is an integer, it can be used to turn
- off handling of signal NUMBER or revert to its default action. See
- 'signal(2)'.
-
- If 'SIGNAL' is called as a subroutine and the STATUS argument is
- supplied, it is set to the value returned by 'signal(2)'.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL SIGNAL(NUMBER, HANDLER [, STATUS])'
- 'STATUS = SIGNAL(NUMBER, HANDLER)'
-
-_Arguments_:
- NUMBER Shall be a scalar integer, with 'INTENT(IN)'
- HANDLER Signal handler ('INTEGER FUNCTION' or
- 'SUBROUTINE') or dummy/global 'INTEGER' scalar.
- 'INTEGER'. It is 'INTENT(IN)'.
- STATUS (Optional) STATUS shall be a scalar integer. It
- has 'INTENT(OUT)'.
-
-_Return value_:
- The 'SIGNAL' function returns the value returned by 'signal(2)'.
-
-_Example_:
- program test_signal
- intrinsic signal
- external handler_print
-
- call signal (12, handler_print)
- call signal (10, 1)
-
- call sleep (30)
- end program test_signal
-
-
-File: gfortran.info, Node: SIN, Next: SINH, Prev: SIGNAL, Up: Intrinsic Procedures
-
-8.225 'SIN' -- Sine function
-============================
-
-_Description_:
- 'SIN(X)' computes the sine of X.
-
-_Standard_:
- Fortran 77 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = SIN(X)'
-
-_Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
-
-_Return value_:
- The return value has same type and kind as X.
-
-_Example_:
- program test_sin
- real :: x = 0.0
- x = sin(x)
- end program test_sin
-
-_Specific names_:
- Name Argument Return type Standard
- 'SIN(X)' 'REAL(4) X' 'REAL(4)' f77, gnu
- 'DSIN(X)' 'REAL(8) X' 'REAL(8)' f95, gnu
- 'CSIN(X)' 'COMPLEX(4) 'COMPLEX(4)' f95, gnu
- X'
- 'ZSIN(X)' 'COMPLEX(8) 'COMPLEX(8)' f95, gnu
- X'
- 'CDSIN(X)' 'COMPLEX(8) 'COMPLEX(8)' f95, gnu
- X'
-
-_See also_:
- *note ASIN::
-
-
-File: gfortran.info, Node: SINH, Next: SIZE, Prev: SIN, Up: Intrinsic Procedures
-
-8.226 'SINH' -- Hyperbolic sine function
-========================================
-
-_Description_:
- 'SINH(X)' computes the hyperbolic sine of X.
-
-_Standard_:
- Fortran 95 and later, for a complex argument Fortran 2008 or later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = SINH(X)'
-
-_Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
-
-_Return value_:
- The return value has same type and kind as X.
-
-_Example_:
- program test_sinh
- real(8) :: x = - 1.0_8
- x = sinh(x)
- end program test_sinh
-
-_Specific names_:
- Name Argument Return type Standard
- 'SINH(X)' 'REAL(4) X' 'REAL(4)' Fortran 95 and
- later
- 'DSINH(X)' 'REAL(8) X' 'REAL(8)' Fortran 95 and
- later
-
-_See also_:
- *note ASINH::
-
-
-File: gfortran.info, Node: SIZE, Next: SIZEOF, Prev: SINH, Up: Intrinsic Procedures
-
-8.227 'SIZE' -- Determine the size of an array
-==============================================
-
-_Description_:
- Determine the extent of ARRAY along a specified dimension DIM, or
- the total number of elements in ARRAY if DIM is absent.
-
-_Standard_:
- Fortran 95 and later, with KIND argument Fortran 2003 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = SIZE(ARRAY[, DIM [, KIND]])'
-
-_Arguments_:
- ARRAY Shall be an array of any type. If ARRAY is a
- pointer it must be associated and allocatable
- arrays must be allocated.
- DIM (Optional) shall be a scalar of type 'INTEGER'
- and its value shall be in the range from 1 to n,
- where n equals the rank of ARRAY.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
-
-_Example_:
- PROGRAM test_size
- WRITE(*,*) SIZE((/ 1, 2 /)) ! 2
- END PROGRAM
-
-_See also_:
- *note SHAPE::, *note RESHAPE::
-
-
-File: gfortran.info, Node: SIZEOF, Next: SLEEP, Prev: SIZE, Up: Intrinsic Procedures
-
-8.228 'SIZEOF' -- Size in bytes of an expression
-================================================
-
-_Description_:
- 'SIZEOF(X)' calculates the number of bytes of storage the
- expression 'X' occupies.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'N = SIZEOF(X)'
-
-_Arguments_:
- X The argument shall be of any type, rank or
- shape.
-
-_Return value_:
- The return value is of type integer and of the system-dependent
- kind C_SIZE_T (from the ISO_C_BINDING module). Its value is the
- number of bytes occupied by the argument. If the argument has the
- 'POINTER' attribute, the number of bytes of the storage area
- pointed to is returned. If the argument is of a derived type with
- 'POINTER' or 'ALLOCATABLE' components, the return value does not
- account for the sizes of the data pointed to by these components.
- If the argument is polymorphic, the size according to the declared
- type is returned. The argument may not be a procedure or procedure
- pointer.
-
-_Example_:
- integer :: i
- real :: r, s(5)
- print *, (sizeof(s)/sizeof(r) == 5)
- end
- The example will print '.TRUE.' unless you are using a platform
- where default 'REAL' variables are unusually padded.
-
-_See also_:
- *note C_SIZEOF::, *note STORAGE_SIZE::
-
-
-File: gfortran.info, Node: SLEEP, Next: SPACING, Prev: SIZEOF, Up: Intrinsic Procedures
-
-8.229 'SLEEP' -- Sleep for the specified number of seconds
-==========================================================
-
-_Description_:
- Calling this subroutine causes the process to pause for SECONDS
- seconds.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL SLEEP(SECONDS)'
-
-_Arguments_:
- SECONDS The type shall be of default 'INTEGER'.
-
-_Example_:
- program test_sleep
- call sleep(5)
- end
-
-
-File: gfortran.info, Node: SPACING, Next: SPREAD, Prev: SLEEP, Up: Intrinsic Procedures
-
-8.230 'SPACING' -- Smallest distance between two numbers of a given type
-========================================================================
-
-_Description_:
- Determines the distance between the argument X and the nearest
- adjacent number of the same type.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = SPACING(X)'
-
-_Arguments_:
- X Shall be of type 'REAL'.
-
-_Return value_:
- The result is of the same type as the input argument X.
-
-_Example_:
- PROGRAM test_spacing
- INTEGER, PARAMETER :: SGL = SELECTED_REAL_KIND(p=6, r=37)
- INTEGER, PARAMETER :: DBL = SELECTED_REAL_KIND(p=13, r=200)
-
- WRITE(*,*) spacing(1.0_SGL) ! "1.1920929E-07" on i686
- WRITE(*,*) spacing(1.0_DBL) ! "2.220446049250313E-016" on i686
- END PROGRAM
-
-_See also_:
- *note RRSPACING::
-
-
-File: gfortran.info, Node: SPREAD, Next: SQRT, Prev: SPACING, Up: Intrinsic Procedures
-
-8.231 'SPREAD' -- Add a dimension to an array
-=============================================
-
-_Description_:
- Replicates a SOURCE array NCOPIES times along a specified dimension
- DIM.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = SPREAD(SOURCE, DIM, NCOPIES)'
-
-_Arguments_:
- SOURCE Shall be a scalar or an array of any type and a
- rank less than seven.
- DIM Shall be a scalar of type 'INTEGER' with a value
- in the range from 1 to n+1, where n equals the
- rank of SOURCE.
- NCOPIES Shall be a scalar of type 'INTEGER'.
-
-_Return value_:
- The result is an array of the same type as SOURCE and has rank n+1
- where n equals the rank of SOURCE.
-
-_Example_:
- PROGRAM test_spread
- INTEGER :: a = 1, b(2) = (/ 1, 2 /)
- WRITE(*,*) SPREAD(A, 1, 2) ! "1 1"
- WRITE(*,*) SPREAD(B, 1, 2) ! "1 1 2 2"
- END PROGRAM
-
-_See also_:
- *note UNPACK::
-
-
-File: gfortran.info, Node: SQRT, Next: SRAND, Prev: SPREAD, Up: Intrinsic Procedures
-
-8.232 'SQRT' -- Square-root function
-====================================
-
-_Description_:
- 'SQRT(X)' computes the square root of X.
-
-_Standard_:
- Fortran 77 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = SQRT(X)'
-
-_Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
-
-_Return value_:
- The return value is of type 'REAL' or 'COMPLEX'. The kind type
- parameter is the same as X.
-
-_Example_:
- program test_sqrt
- real(8) :: x = 2.0_8
- complex :: z = (1.0, 2.0)
- x = sqrt(x)
- z = sqrt(z)
- end program test_sqrt
-
-_Specific names_:
- Name Argument Return type Standard
- 'SQRT(X)' 'REAL(4) X' 'REAL(4)' Fortran 95 and
- later
- 'DSQRT(X)' 'REAL(8) X' 'REAL(8)' Fortran 95 and
- later
- 'CSQRT(X)' 'COMPLEX(4) 'COMPLEX(4)' Fortran 95 and
- X' later
- 'ZSQRT(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- 'CDSQRT(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
-
-
-File: gfortran.info, Node: SRAND, Next: STAT, Prev: SQRT, Up: Intrinsic Procedures
-
-8.233 'SRAND' -- Reinitialize the random number generator
-=========================================================
-
-_Description_:
- 'SRAND' reinitializes the pseudo-random number generator called by
- 'RAND' and 'IRAND'. The new seed used by the generator is
- specified by the required argument SEED.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL SRAND(SEED)'
-
-_Arguments_:
- SEED Shall be a scalar 'INTEGER(kind=4)'.
-
-_Return value_:
- Does not return anything.
-
-_Example_:
- See 'RAND' and 'IRAND' for examples.
-
-_Notes_:
- The Fortran 2003 standard specifies the intrinsic 'RANDOM_SEED' to
- initialize the pseudo-random numbers generator and 'RANDOM_NUMBER'
- to generate pseudo-random numbers. Please note that in GNU
- Fortran, these two sets of intrinsics ('RAND', 'IRAND' and 'SRAND'
- on the one hand, 'RANDOM_NUMBER' and 'RANDOM_SEED' on the other
- hand) access two independent pseudo-random number generators.
-
-_See also_:
- *note RAND::, *note RANDOM_SEED::, *note RANDOM_NUMBER::
-
-
-File: gfortran.info, Node: STAT, Next: STORAGE_SIZE, Prev: SRAND, Up: Intrinsic Procedures
-
-8.234 'STAT' -- Get file status
-===============================
-
-_Description_:
- This function returns information about a file. No permissions are
- required on the file itself, but execute (search) permission is
- required on all of the directories in path that lead to the file.
-
- The elements that are obtained and stored in the array 'VALUES':
- 'VALUES(1)' Device ID
- 'VALUES(2)' Inode number
- 'VALUES(3)' File mode
- 'VALUES(4)' Number of links
- 'VALUES(5)' Owner's uid
- 'VALUES(6)' Owner's gid
- 'VALUES(7)' ID of device containing directory entry for file
- (0 if not available)
- 'VALUES(8)' File size (bytes)
- 'VALUES(9)' Last access time
- 'VALUES(10)'Last modification time
- 'VALUES(11)'Last file status change time
- 'VALUES(12)'Preferred I/O block size (-1 if not available)
- 'VALUES(13)'Number of blocks allocated (-1 if not available)
-
- Not all these elements are relevant on all systems. If an element
- is not relevant, it is returned as 0.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL STAT(NAME, VALUES [, STATUS])'
- 'STATUS = STAT(NAME, VALUES)'
-
-_Arguments_:
- NAME The type shall be 'CHARACTER', of the default
- kind and a valid path within the file system.
- VALUES The type shall be 'INTEGER(4), DIMENSION(13)'.
- STATUS (Optional) status flag of type 'INTEGER(4)'.
- Returns 0 on success and a system specific error
- code otherwise.
-
-_Example_:
- PROGRAM test_stat
- INTEGER, DIMENSION(13) :: buff
- INTEGER :: status
-
- CALL STAT("/etc/passwd", buff, status)
-
- IF (status == 0) THEN
- WRITE (*, FMT="('Device ID:', T30, I19)") buff(1)
- WRITE (*, FMT="('Inode number:', T30, I19)") buff(2)
- WRITE (*, FMT="('File mode (octal):', T30, O19)") buff(3)
- WRITE (*, FMT="('Number of links:', T30, I19)") buff(4)
- WRITE (*, FMT="('Owner''s uid:', T30, I19)") buff(5)
- WRITE (*, FMT="('Owner''s gid:', T30, I19)") buff(6)
- WRITE (*, FMT="('Device where located:', T30, I19)") buff(7)
- WRITE (*, FMT="('File size:', T30, I19)") buff(8)
- WRITE (*, FMT="('Last access time:', T30, A19)") CTIME(buff(9))
- WRITE (*, FMT="('Last modification time', T30, A19)") CTIME(buff(10))
- WRITE (*, FMT="('Last status change time:', T30, A19)") CTIME(buff(11))
- WRITE (*, FMT="('Preferred block size:', T30, I19)") buff(12)
- WRITE (*, FMT="('No. of blocks allocated:', T30, I19)") buff(13)
- END IF
- END PROGRAM
-
-_See also_:
- To stat an open file: *note FSTAT::, to stat a link: *note LSTAT::
-
-
-File: gfortran.info, Node: STORAGE_SIZE, Next: SUM, Prev: STAT, Up: Intrinsic Procedures
-
-8.235 'STORAGE_SIZE' -- Storage size in bits
-============================================
-
-_Description_:
- Returns the storage size of argument A in bits.
-_Standard_:
- Fortran 2008 and later
-_Class_:
- Inquiry function
-_Syntax_:
- 'RESULT = STORAGE_SIZE(A [, KIND])'
-
-_Arguments_:
- A Shall be a scalar or array of any type.
- KIND (Optional) shall be a scalar integer constant
- expression.
-
-_Return Value_:
- The result is a scalar integer with the kind type parameter
- specified by KIND (or default integer type if KIND is missing).
- The result value is the size expressed in bits for an element of an
- array that has the dynamic type and type parameters of A.
-
-_See also_:
- *note C_SIZEOF::, *note SIZEOF::
-
-
-File: gfortran.info, Node: SUM, Next: SYMLNK, Prev: STORAGE_SIZE, Up: Intrinsic Procedures
-
-8.236 'SUM' -- Sum of array elements
-====================================
-
-_Description_:
- Adds the elements of ARRAY along dimension DIM if the corresponding
- element in MASK is 'TRUE'.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = SUM(ARRAY[, MASK])'
- 'RESULT = SUM(ARRAY, DIM[, MASK])'
-
-_Arguments_:
- ARRAY Shall be an array of type 'INTEGER', 'REAL' or
- 'COMPLEX'.
- DIM (Optional) shall be a scalar of type 'INTEGER'
- with a value in the range from 1 to n, where n
- equals the rank of ARRAY.
- MASK (Optional) shall be of type 'LOGICAL' and either
- be a scalar or an array of the same shape as
- ARRAY.
-
-_Return value_:
- The result is of the same type as ARRAY.
-
- If DIM is absent, a scalar with the sum of all elements in ARRAY is
- returned. Otherwise, an array of rank n-1, where n equals the rank
- of ARRAY, and a shape similar to that of ARRAY with dimension DIM
- dropped is returned.
-
-_Example_:
- PROGRAM test_sum
- INTEGER :: x(5) = (/ 1, 2, 3, 4 ,5 /)
- print *, SUM(x) ! all elements, sum = 15
- print *, SUM(x, MASK=MOD(x, 2)==1) ! odd elements, sum = 9
- END PROGRAM
-
-_See also_:
- *note PRODUCT::
-
-
-File: gfortran.info, Node: SYMLNK, Next: SYSTEM, Prev: SUM, Up: Intrinsic Procedures
-
-8.237 'SYMLNK' -- Create a symbolic link
-========================================
-
-_Description_:
- Makes a symbolic link from file PATH1 to PATH2. A null character
- ('CHAR(0)') can be used to mark the end of the names in PATH1 and
- PATH2; otherwise, trailing blanks in the file names are ignored.
- If the STATUS argument is supplied, it contains 0 on success or a
- nonzero error code upon return; see 'symlink(2)'. If the system
- does not supply 'symlink(2)', 'ENOSYS' is returned.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL SYMLNK(PATH1, PATH2 [, STATUS])'
- 'STATUS = SYMLNK(PATH1, PATH2)'
-
-_Arguments_:
- PATH1 Shall be of default 'CHARACTER' type.
- PATH2 Shall be of default 'CHARACTER' type.
- STATUS (Optional) Shall be of default 'INTEGER' type.
-
-_See also_:
- *note LINK::, *note UNLINK::
-
-
-File: gfortran.info, Node: SYSTEM, Next: SYSTEM_CLOCK, Prev: SYMLNK, Up: Intrinsic Procedures
-
-8.238 'SYSTEM' -- Execute a shell command
-=========================================
-
-_Description_:
- Passes the command COMMAND to a shell (see 'system(3)'). If
- argument STATUS is present, it contains the value returned by
- 'system(3)', which is presumably 0 if the shell command succeeded.
- Note that which shell is used to invoke the command is
- system-dependent and environment-dependent.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
- Note that the 'system' function need not be thread-safe. It is the
- responsibility of the user to ensure that 'system' is not called
- concurrently.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL SYSTEM(COMMAND [, STATUS])'
- 'STATUS = SYSTEM(COMMAND)'
-
-_Arguments_:
- COMMAND Shall be of default 'CHARACTER' type.
- STATUS (Optional) Shall be of default 'INTEGER' type.
-
-_See also_:
- *note EXECUTE_COMMAND_LINE::, which is part of the Fortran 2008
- standard and should considered in new code for future portability.
-
-
-File: gfortran.info, Node: SYSTEM_CLOCK, Next: TAN, Prev: SYSTEM, Up: Intrinsic Procedures
-
-8.239 'SYSTEM_CLOCK' -- Time function
-=====================================
-
-_Description_:
- Determines the COUNT of a processor clock since an unspecified time
- in the past modulo COUNT_MAX, COUNT_RATE determines the number of
- clock ticks per second. If the platform supports a monotonic
- clock, that clock is used and can, depending on the platform clock
- implementation, provide up to nanosecond resolution. If a
- monotonic clock is not available, the implementation falls back to
- a realtime clock.
-
- COUNT_RATE is system dependent and can vary depending on the kind
- of the arguments. For KIND=4 arguments, COUNT represents
- milliseconds, while for KIND=8 arguments, COUNT typically
- represents micro- or nanoseconds depending on resolution of the
- underlying platform clock. COUNT_MAX usually equals
- 'HUGE(COUNT_MAX)'. Note that the millisecond resolution of the
- KIND=4 version implies that the COUNT will wrap around in roughly
- 25 days. In order to avoid issues with the wrap around and for
- more precise timing, please use the KIND=8 version.
-
- If there is no clock, or querying the clock fails, COUNT is set to
- '-HUGE(COUNT)', and COUNT_RATE and COUNT_MAX are set to zero.
-
- When running on a platform using the GNU C library (glibc) version
- 2.16 or older, or a derivative thereof, the high resolution
- monotonic clock is available only when linking with the RT library.
- This can be done explicitly by adding the '-lrt' flag when linking
- the application, but is also done implicitly when using OpenMP.
-
- On the Windows platform, the version with KIND=4 arguments uses the
- 'GetTickCount' function, whereas the KIND=8 version uses
- 'QueryPerformanceCounter' and 'QueryPerformanceCounterFrequency'.
- For more information, and potential caveats, please see the
- platform documentation.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Subroutine
-
-_Syntax_:
- 'CALL SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX])'
-
-_Arguments_:
- COUNT (Optional) shall be a scalar of type 'INTEGER'
- with 'INTENT(OUT)'.
- COUNT_RATE (Optional) shall be a scalar of type 'INTEGER'
- with 'INTENT(OUT)'.
- COUNT_MAX (Optional) shall be a scalar of type 'INTEGER'
- with 'INTENT(OUT)'.
-
-_Example_:
- PROGRAM test_system_clock
- INTEGER :: count, count_rate, count_max
- CALL SYSTEM_CLOCK(count, count_rate, count_max)
- WRITE(*,*) count, count_rate, count_max
- END PROGRAM
-
-_See also_:
- *note DATE_AND_TIME::, *note CPU_TIME::
-
-
-File: gfortran.info, Node: TAN, Next: TANH, Prev: SYSTEM_CLOCK, Up: Intrinsic Procedures
-
-8.240 'TAN' -- Tangent function
-===============================
-
-_Description_:
- 'TAN(X)' computes the tangent of X.
-
-_Standard_:
- Fortran 77 and later, for a complex argument Fortran 2008 or later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = TAN(X)'
-
-_Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
-
-_Return value_:
- The return value has same type and kind as X.
-
-_Example_:
- program test_tan
- real(8) :: x = 0.165_8
- x = tan(x)
- end program test_tan
-
-_Specific names_:
- Name Argument Return type Standard
- 'TAN(X)' 'REAL(4) X' 'REAL(4)' Fortran 95 and
- later
- 'DTAN(X)' 'REAL(8) X' 'REAL(8)' Fortran 95 and
- later
-
-_See also_:
- *note ATAN::
-
-
-File: gfortran.info, Node: TANH, Next: THIS_IMAGE, Prev: TAN, Up: Intrinsic Procedures
-
-8.241 'TANH' -- Hyperbolic tangent function
-===========================================
-
-_Description_:
- 'TANH(X)' computes the hyperbolic tangent of X.
-
-_Standard_:
- Fortran 77 and later, for a complex argument Fortran 2008 or later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'X = TANH(X)'
-
-_Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
-
-_Return value_:
- The return value has same type and kind as X. If X is complex, the
- imaginary part of the result is in radians. If X is 'REAL', the
- return value lies in the range - 1 \leq tanh(x) \leq 1 .
-
-_Example_:
- program test_tanh
- real(8) :: x = 2.1_8
- x = tanh(x)
- end program test_tanh
-
-_Specific names_:
- Name Argument Return type Standard
- 'TANH(X)' 'REAL(4) X' 'REAL(4)' Fortran 95 and
- later
- 'DTANH(X)' 'REAL(8) X' 'REAL(8)' Fortran 95 and
- later
-
-_See also_:
- *note ATANH::
-
-
-File: gfortran.info, Node: THIS_IMAGE, Next: TIME, Prev: TANH, Up: Intrinsic Procedures
-
-8.242 'THIS_IMAGE' -- Function that returns the cosubscript index of this image
-===============================================================================
-
-_Description_:
- Returns the cosubscript for this image.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = THIS_IMAGE()'
- 'RESULT = THIS_IMAGE(COARRAY [, DIM])'
-
-_Arguments_:
- COARRAY Coarray of any type (optional; if DIM present,
- required).
- DIM default integer scalar (optional). If present,
- DIM shall be between one and the corank of
- COARRAY.
-
-_Return value_:
- Default integer. If COARRAY is not present, it is scalar and its
- value is the index of the invoking image. Otherwise, if DIM is not
- present, a rank-1 array with corank elements is returned,
- containing the cosubscripts for COARRAY specifying the invoking
- image. If DIM is present, a scalar is returned, with the value of
- the DIM element of 'THIS_IMAGE(COARRAY)'.
-
-_Example_:
- INTEGER :: value[*]
- INTEGER :: i
- value = THIS_IMAGE()
- SYNC ALL
- IF (THIS_IMAGE() == 1) THEN
- DO i = 1, NUM_IMAGES()
- WRITE(*,'(2(a,i0))') 'value[', i, '] is ', value[i]
- END DO
- END IF
-
-_See also_:
- *note NUM_IMAGES::, *note IMAGE_INDEX::
-
-
-File: gfortran.info, Node: TIME, Next: TIME8, Prev: THIS_IMAGE, Up: Intrinsic Procedures
-
-8.243 'TIME' -- Time function
-=============================
-
-_Description_:
- Returns the current time encoded as an integer (in the manner of
- the function 'time(3)' in the C standard library). This value is
- suitable for passing to 'CTIME', 'GMTIME', and 'LTIME'.
-
- This intrinsic is not fully portable, such as to systems with
- 32-bit 'INTEGER' types but supporting times wider than 32 bits.
- Therefore, the values returned by this intrinsic might be, or
- become, negative, or numerically less than previous values, during
- a single run of the compiled program.
-
- See *note TIME8::, for information on a similar intrinsic that
- might be portable to more GNU Fortran implementations, though to
- fewer Fortran compilers.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Function
-
-_Syntax_:
- 'RESULT = TIME()'
-
-_Return value_:
- The return value is a scalar of type 'INTEGER(4)'.
-
-_See also_:
- *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::, *note
- TIME8::
-
-
-File: gfortran.info, Node: TIME8, Next: TINY, Prev: TIME, Up: Intrinsic Procedures
-
-8.244 'TIME8' -- Time function (64-bit)
-=======================================
-
-_Description_:
- Returns the current time encoded as an integer (in the manner of
- the function 'time(3)' in the C standard library). This value is
- suitable for passing to 'CTIME', 'GMTIME', and 'LTIME'.
-
- _Warning:_ this intrinsic does not increase the range of the timing
- values over that returned by 'time(3)'. On a system with a 32-bit
- 'time(3)', 'TIME8' will return a 32-bit value, even though it is
- converted to a 64-bit 'INTEGER(8)' value. That means overflows of
- the 32-bit value can still occur. Therefore, the values returned
- by this intrinsic might be or become negative or numerically less
- than previous values during a single run of the compiled program.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Function
-
-_Syntax_:
- 'RESULT = TIME8()'
-
-_Return value_:
- The return value is a scalar of type 'INTEGER(8)'.
-
-_See also_:
- *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK8::,
- *note TIME::
-
-
-File: gfortran.info, Node: TINY, Next: TRAILZ, Prev: TIME8, Up: Intrinsic Procedures
-
-8.245 'TINY' -- Smallest positive number of a real kind
-=======================================================
-
-_Description_:
- 'TINY(X)' returns the smallest positive (non zero) number in the
- model of the type of 'X'.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = TINY(X)'
-
-_Arguments_:
- X Shall be of type 'REAL'.
-
-_Return value_:
- The return value is of the same type and kind as X
-
-_Example_:
- See 'HUGE' for an example.
-
-
-File: gfortran.info, Node: TRAILZ, Next: TRANSFER, Prev: TINY, Up: Intrinsic Procedures
-
-8.246 'TRAILZ' -- Number of trailing zero bits of an integer
-============================================================
-
-_Description_:
- 'TRAILZ' returns the number of trailing zero bits of an integer.
-
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = TRAILZ(I)'
-
-_Arguments_:
- I Shall be of type 'INTEGER'.
-
-_Return value_:
- The type of the return value is the default 'INTEGER'. If all the
- bits of 'I' are zero, the result value is 'BIT_SIZE(I)'.
-
-_Example_:
- PROGRAM test_trailz
- WRITE (*,*) TRAILZ(8) ! prints 3
- END PROGRAM
-
-_See also_:
- *note BIT_SIZE::, *note LEADZ::, *note POPPAR::, *note POPCNT::
-
-
-File: gfortran.info, Node: TRANSFER, Next: TRANSPOSE, Prev: TRAILZ, Up: Intrinsic Procedures
-
-8.247 'TRANSFER' -- Transfer bit patterns
-=========================================
-
-_Description_:
- Interprets the bitwise representation of SOURCE in memory as if it
- is the representation of a variable or array of the same type and
- type parameters as MOLD.
-
- This is approximately equivalent to the C concept of _casting_ one
- type to another.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = TRANSFER(SOURCE, MOLD[, SIZE])'
-
-_Arguments_:
- SOURCE Shall be a scalar or an array of any type.
- MOLD Shall be a scalar or an array of any type.
- SIZE (Optional) shall be a scalar of type 'INTEGER'.
-
-_Return value_:
- The result has the same type as MOLD, with the bit level
- representation of SOURCE. If SIZE is present, the result is a
- one-dimensional array of length SIZE. If SIZE is absent but MOLD
- is an array (of any size or shape), the result is a one-
- dimensional array of the minimum length needed to contain the
- entirety of the bitwise representation of SOURCE. If SIZE is
- absent and MOLD is a scalar, the result is a scalar.
-
- If the bitwise representation of the result is longer than that of
- SOURCE, then the leading bits of the result correspond to those of
- SOURCE and any trailing bits are filled arbitrarily.
-
- When the resulting bit representation does not correspond to a
- valid representation of a variable of the same type as MOLD, the
- results are undefined, and subsequent operations on the result
- cannot be guaranteed to produce sensible behavior. For example, it
- is possible to create 'LOGICAL' variables for which 'VAR' and
- '.NOT.VAR' both appear to be true.
-
-_Example_:
- PROGRAM test_transfer
- integer :: x = 2143289344
- print *, transfer(x, 1.0) ! prints "NaN" on i686
- END PROGRAM
-
-
-File: gfortran.info, Node: TRANSPOSE, Next: TRIM, Prev: TRANSFER, Up: Intrinsic Procedures
-
-8.248 'TRANSPOSE' -- Transpose an array of rank two
-===================================================
-
-_Description_:
- Transpose an array of rank two. Element (i, j) of the result has
- the value 'MATRIX(j, i)', for all i, j.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = TRANSPOSE(MATRIX)'
-
-_Arguments_:
- MATRIX Shall be an array of any type and have a rank of
- two.
-
-_Return value_:
- The result has the same type as MATRIX, and has shape '(/ m, n /)'
- if MATRIX has shape '(/ n, m /)'.
-
-
-File: gfortran.info, Node: TRIM, Next: TTYNAM, Prev: TRANSPOSE, Up: Intrinsic Procedures
-
-8.249 'TRIM' -- Remove trailing blank characters of a string
-============================================================
-
-_Description_:
- Removes trailing blank characters of a string.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = TRIM(STRING)'
-
-_Arguments_:
- STRING Shall be a scalar of type 'CHARACTER'.
-
-_Return value_:
- A scalar of type 'CHARACTER' which length is that of STRING less
- the number of trailing blanks.
-
-_Example_:
- PROGRAM test_trim
- CHARACTER(len=10), PARAMETER :: s = "GFORTRAN "
- WRITE(*,*) LEN(s), LEN(TRIM(s)) ! "10 8", with/without trailing blanks
- END PROGRAM
-
-_See also_:
- *note ADJUSTL::, *note ADJUSTR::
-
-
-File: gfortran.info, Node: TTYNAM, Next: UBOUND, Prev: TRIM, Up: Intrinsic Procedures
-
-8.250 'TTYNAM' -- Get the name of a terminal device.
-====================================================
-
-_Description_:
- Get the name of a terminal device. For more information, see
- 'ttyname(3)'.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL TTYNAM(UNIT, NAME)'
- 'NAME = TTYNAM(UNIT)'
-
-_Arguments_:
- UNIT Shall be a scalar 'INTEGER'.
- NAME Shall be of type 'CHARACTER'.
-
-_Example_:
- PROGRAM test_ttynam
- INTEGER :: unit
- DO unit = 1, 10
- IF (isatty(unit=unit)) write(*,*) ttynam(unit)
- END DO
- END PROGRAM
-
-_See also_:
- *note ISATTY::
-
-
-File: gfortran.info, Node: UBOUND, Next: UCOBOUND, Prev: TTYNAM, Up: Intrinsic Procedures
-
-8.251 'UBOUND' -- Upper dimension bounds of an array
-====================================================
-
-_Description_:
- Returns the upper bounds of an array, or a single upper bound along
- the DIM dimension.
-_Standard_:
- Fortran 95 and later, with KIND argument Fortran 2003 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = UBOUND(ARRAY [, DIM [, KIND]])'
-
-_Arguments_:
- ARRAY Shall be an array, of any type.
- DIM (Optional) Shall be a scalar 'INTEGER'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind. If DIM is
- absent, the result is an array of the upper bounds of ARRAY. If
- DIM is present, the result is a scalar corresponding to the upper
- bound of the array along that dimension. If ARRAY is an expression
- rather than a whole array or array structure component, or if it
- has a zero extent along the relevant dimension, the upper bound is
- taken to be the number of elements along the relevant dimension.
-
-_See also_:
- *note LBOUND::, *note LCOBOUND::
-
-
-File: gfortran.info, Node: UCOBOUND, Next: UMASK, Prev: UBOUND, Up: Intrinsic Procedures
-
-8.252 'UCOBOUND' -- Upper codimension bounds of an array
-========================================================
-
-_Description_:
- Returns the upper cobounds of a coarray, or a single upper cobound
- along the DIM codimension.
-_Standard_:
- Fortran 2008 and later
-
-_Class_:
- Inquiry function
-
-_Syntax_:
- 'RESULT = UCOBOUND(COARRAY [, DIM [, KIND]])'
-
-_Arguments_:
- ARRAY Shall be an coarray, of any type.
- DIM (Optional) Shall be a scalar 'INTEGER'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind. If DIM is
- absent, the result is an array of the lower cobounds of COARRAY.
- If DIM is present, the result is a scalar corresponding to the
- lower cobound of the array along that codimension.
-
-_See also_:
- *note LCOBOUND::, *note LBOUND::
-
-
-File: gfortran.info, Node: UMASK, Next: UNLINK, Prev: UCOBOUND, Up: Intrinsic Procedures
-
-8.253 'UMASK' -- Set the file creation mask
-===========================================
-
-_Description_:
- Sets the file creation mask to MASK. If called as a function, it
- returns the old value. If called as a subroutine and argument OLD
- if it is supplied, it is set to the old value. See 'umask(2)'.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL UMASK(MASK [, OLD])'
- 'OLD = UMASK(MASK)'
-
-_Arguments_:
- MASK Shall be a scalar of type 'INTEGER'.
- OLD (Optional) Shall be a scalar of type 'INTEGER'.
-
-
-File: gfortran.info, Node: UNLINK, Next: UNPACK, Prev: UMASK, Up: Intrinsic Procedures
-
-8.254 'UNLINK' -- Remove a file from the file system
-====================================================
-
-_Description_:
- Unlinks the file PATH. A null character ('CHAR(0)') can be used to
- mark the end of the name in PATH; otherwise, trailing blanks in the
- file name are ignored. If the STATUS argument is supplied, it
- contains 0 on success or a nonzero error code upon return; see
- 'unlink(2)'.
-
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Subroutine, function
-
-_Syntax_:
- 'CALL UNLINK(PATH [, STATUS])'
- 'STATUS = UNLINK(PATH)'
-
-_Arguments_:
- PATH Shall be of default 'CHARACTER' type.
- STATUS (Optional) Shall be of default 'INTEGER' type.
-
-_See also_:
- *note LINK::, *note SYMLNK::
-
-
-File: gfortran.info, Node: UNPACK, Next: VERIFY, Prev: UNLINK, Up: Intrinsic Procedures
-
-8.255 'UNPACK' -- Unpack an array of rank one into an array
-===========================================================
-
-_Description_:
- Store the elements of VECTOR in an array of higher rank.
-
-_Standard_:
- Fortran 95 and later
-
-_Class_:
- Transformational function
-
-_Syntax_:
- 'RESULT = UNPACK(VECTOR, MASK, FIELD)'
-
-_Arguments_:
- VECTOR Shall be an array of any type and rank one. It
- shall have at least as many elements as MASK has
- 'TRUE' values.
- MASK Shall be an array of type 'LOGICAL'.
- FIELD Shall be of the same type as VECTOR and have the
- same shape as MASK.
-
-_Return value_:
- The resulting array corresponds to FIELD with 'TRUE' elements of
- MASK replaced by values from VECTOR in array element order.
-
-_Example_:
- PROGRAM test_unpack
- integer :: vector(2) = (/1,1/)
- logical :: mask(4) = (/ .TRUE., .FALSE., .FALSE., .TRUE. /)
- integer :: field(2,2) = 0, unity(2,2)
-
- ! result: unity matrix
- unity = unpack(vector, reshape(mask, (/2,2/)), field)
- END PROGRAM
-
-_See also_:
- *note PACK::, *note SPREAD::
-
-
-File: gfortran.info, Node: VERIFY, Next: XOR, Prev: UNPACK, Up: Intrinsic Procedures
-
-8.256 'VERIFY' -- Scan a string for characters not a given set
-==============================================================
-
-_Description_:
- Verifies that all the characters in STRING belong to the set of
- characters in SET.
-
- If BACK is either absent or equals 'FALSE', this function returns
- the position of the leftmost character of STRING that is not in
- SET. If BACK equals 'TRUE', the rightmost position is returned.
- If all characters of STRING are found in SET, the result is zero.
-
-_Standard_:
- Fortran 95 and later, with KIND argument Fortran 2003 and later
-
-_Class_:
- Elemental function
-
-_Syntax_:
- 'RESULT = VERIFY(STRING, SET[, BACK [, KIND]])'
-
-_Arguments_:
- STRING Shall be of type 'CHARACTER'.
- SET Shall be of type 'CHARACTER'.
- BACK (Optional) shall be of type 'LOGICAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
-
-_Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
-
-_Example_:
- PROGRAM test_verify
- WRITE(*,*) VERIFY("FORTRAN", "AO") ! 1, found 'F'
- WRITE(*,*) VERIFY("FORTRAN", "FOO") ! 3, found 'R'
- WRITE(*,*) VERIFY("FORTRAN", "C++") ! 1, found 'F'
- WRITE(*,*) VERIFY("FORTRAN", "C++", .TRUE.) ! 7, found 'N'
- WRITE(*,*) VERIFY("FORTRAN", "FORTRAN") ! 0' found none
- END PROGRAM
-
-_See also_:
- *note SCAN::, *note INDEX intrinsic::
-
-
-File: gfortran.info, Node: XOR, Prev: VERIFY, Up: Intrinsic Procedures
-
-8.257 'XOR' -- Bitwise logical exclusive OR
-===========================================
-
-_Description_:
- Bitwise logical exclusive or.
-
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. For integer arguments, programmers should consider
- the use of the *note IEOR:: intrinsic and for logical arguments the
- '.NEQV.' operator, which are both defined by the Fortran standard.
-
-_Standard_:
- GNU extension
-
-_Class_:
- Function
-
-_Syntax_:
- 'RESULT = XOR(I, J)'
-
-_Arguments_:
- I The type shall be either a scalar 'INTEGER' type
- or a scalar 'LOGICAL' type.
- J The type shall be the same as the type of I.
-
-_Return value_:
- The return type is either a scalar 'INTEGER' or a scalar 'LOGICAL'.
- If the kind type parameters differ, then the smaller kind type is
- implicitly converted to larger kind, and the return has the larger
- kind.
-
-_Example_:
- PROGRAM test_xor
- LOGICAL :: T = .TRUE., F = .FALSE.
- INTEGER :: a, b
- DATA a / Z'F' /, b / Z'3' /
-
- WRITE (*,*) XOR(T, T), XOR(T, F), XOR(F, T), XOR(F, F)
- WRITE (*,*) XOR(a, b)
- END PROGRAM
-
-_See also_:
- Fortran 95 elemental function: *note IEOR::
-
-
-File: gfortran.info, Node: Intrinsic Modules, Next: Contributing, Prev: Intrinsic Procedures, Up: Top
-
-9 Intrinsic Modules
-*******************
-
-* Menu:
-
-* ISO_FORTRAN_ENV::
-* ISO_C_BINDING::
-* OpenMP Modules OMP_LIB and OMP_LIB_KINDS::
-
-
-File: gfortran.info, Node: ISO_FORTRAN_ENV, Next: ISO_C_BINDING, Up: Intrinsic Modules
-
-9.1 'ISO_FORTRAN_ENV'
-=====================
-
-_Standard_:
- Fortran 2003 and later, except when otherwise noted
-
- The 'ISO_FORTRAN_ENV' module provides the following scalar
-default-integer named constants:
-
-'ATOMIC_INT_KIND':
- Default-kind integer constant to be used as kind parameter when
- defining integer variables used in atomic operations. (Fortran
- 2008 or later.)
-
-'ATOMIC_LOGICAL_KIND':
- Default-kind integer constant to be used as kind parameter when
- defining logical variables used in atomic operations. (Fortran
- 2008 or later.)
-
-'CHARACTER_KINDS':
- Default-kind integer constant array of rank one containing the
- supported kind parameters of the 'CHARACTER' type. (Fortran 2008
- or later.)
-
-'CHARACTER_STORAGE_SIZE':
- Size in bits of the character storage unit.
-
-'ERROR_UNIT':
- Identifies the preconnected unit used for error reporting.
-
-'FILE_STORAGE_SIZE':
- Size in bits of the file-storage unit.
-
-'INPUT_UNIT':
- Identifies the preconnected unit identified by the asterisk ('*')
- in 'READ' statement.
-
-'INT8', 'INT16', 'INT32', 'INT64':
- Kind type parameters to specify an INTEGER type with a storage size
- of 16, 32, and 64 bits. It is negative if a target platform does
- not support the particular kind. (Fortran 2008 or later.)
-
-'INTEGER_KINDS':
- Default-kind integer constant array of rank one containing the
- supported kind parameters of the 'INTEGER' type. (Fortran 2008 or
- later.)
-
-'IOSTAT_END':
- The value assigned to the variable passed to the 'IOSTAT='
- specifier of an input/output statement if an end-of-file condition
- occurred.
-
-'IOSTAT_EOR':
- The value assigned to the variable passed to the 'IOSTAT='
- specifier of an input/output statement if an end-of-record
- condition occurred.
-
-'IOSTAT_INQUIRE_INTERNAL_UNIT':
- Scalar default-integer constant, used by 'INQUIRE' for the
- 'IOSTAT=' specifier to denote an that a unit number identifies an
- internal unit. (Fortran 2008 or later.)
-
-'NUMERIC_STORAGE_SIZE':
- The size in bits of the numeric storage unit.
-
-'LOGICAL_KINDS':
- Default-kind integer constant array of rank one containing the
- supported kind parameters of the 'LOGICAL' type. (Fortran 2008 or
- later.)
-
-'OUTPUT_UNIT':
- Identifies the preconnected unit identified by the asterisk ('*')
- in 'WRITE' statement.
-
-'REAL32', 'REAL64', 'REAL128':
- Kind type parameters to specify a REAL type with a storage size of
- 32, 64, and 128 bits. It is negative if a target platform does not
- support the particular kind. (Fortran 2008 or later.)
-
-'REAL_KINDS':
- Default-kind integer constant array of rank one containing the
- supported kind parameters of the 'REAL' type. (Fortran 2008 or
- later.)
-
-'STAT_LOCKED':
- Scalar default-integer constant used as STAT= return value by
- 'LOCK' to denote that the lock variable is locked by the executing
- image. (Fortran 2008 or later.)
-
-'STAT_LOCKED_OTHER_IMAGE':
- Scalar default-integer constant used as STAT= return value by
- 'UNLOCK' to denote that the lock variable is locked by another
- image. (Fortran 2008 or later.)
-
-'STAT_STOPPED_IMAGE':
- Positive, scalar default-integer constant used as STAT= return
- value if the argument in the statement requires synchronisation
- with an image, which has initiated the termination of the
- execution. (Fortran 2008 or later.)
-
-'STAT_UNLOCKED':
- Scalar default-integer constant used as STAT= return value by
- 'UNLOCK' to denote that the lock variable is unlocked. (Fortran
- 2008 or later.)
-
- The module provides the following derived type:
-
-'LOCK_TYPE':
- Derived type with private components to be use with the 'LOCK' and
- 'UNLOCK' statement. A variable of its type has to be always
- declared as coarray and may not appear in a variable-definition
- context. (Fortran 2008 or later.)
-
- The module also provides the following intrinsic procedures: *note
-COMPILER_OPTIONS:: and *note COMPILER_VERSION::.
-
-
-File: gfortran.info, Node: ISO_C_BINDING, Next: OpenMP Modules OMP_LIB and OMP_LIB_KINDS, Prev: ISO_FORTRAN_ENV, Up: Intrinsic Modules
-
-9.2 'ISO_C_BINDING'
-===================
-
-_Standard_:
- Fortran 2003 and later, GNU extensions
-
- The following intrinsic procedures are provided by the module; their
-definition can be found in the section Intrinsic Procedures of this
-manual.
-
-'C_ASSOCIATED'
-'C_F_POINTER'
-'C_F_PROCPOINTER'
-'C_FUNLOC'
-'C_LOC'
-'C_SIZEOF'
-
- The 'ISO_C_BINDING' module provides the following named constants of
-type default integer, which can be used as KIND type parameters.
-
- In addition to the integer named constants required by the Fortran
-2003 standard and 'C_PTRDIFF_T' of TS 29113, GNU Fortran provides as an
-extension named constants for the 128-bit integer types supported by the
-C compiler: 'C_INT128_T, C_INT_LEAST128_T, C_INT_FAST128_T'.
-Furthermore, if '__float128' is supported in C, the named constants
-'C_FLOAT128, C_FLOAT128_COMPLEX' are defined.
-
-Fortran Named constant C type Extension
-Type
-'INTEGER' 'C_INT' 'int'
-'INTEGER' 'C_SHORT' 'short int'
-'INTEGER' 'C_LONG' 'long int'
-'INTEGER' 'C_LONG_LONG' 'long long int'
-'INTEGER' 'C_SIGNED_CHAR' 'signed char'/'unsigned
- char'
-'INTEGER' 'C_SIZE_T' 'size_t'
-'INTEGER' 'C_INT8_T' 'int8_t'
-'INTEGER' 'C_INT16_T' 'int16_t'
-'INTEGER' 'C_INT32_T' 'int32_t'
-'INTEGER' 'C_INT64_T' 'int64_t'
-'INTEGER' 'C_INT128_T' 'int128_t' Ext.
-'INTEGER' 'C_INT_LEAST8_T' 'int_least8_t'
-'INTEGER' 'C_INT_LEAST16_T' 'int_least16_t'
-'INTEGER' 'C_INT_LEAST32_T' 'int_least32_t'
-'INTEGER' 'C_INT_LEAST64_T' 'int_least64_t'
-'INTEGER' 'C_INT_LEAST128_T' 'int_least128_t' Ext.
-'INTEGER' 'C_INT_FAST8_T' 'int_fast8_t'
-'INTEGER' 'C_INT_FAST16_T' 'int_fast16_t'
-'INTEGER' 'C_INT_FAST32_T' 'int_fast32_t'
-'INTEGER' 'C_INT_FAST64_T' 'int_fast64_t'
-'INTEGER' 'C_INT_FAST128_T' 'int_fast128_t' Ext.
-'INTEGER' 'C_INTMAX_T' 'intmax_t'
-'INTEGER' 'C_INTPTR_T' 'intptr_t'
-'INTEGER' 'C_PTRDIFF_T' 'intptr_t' TS 29113
-'REAL' 'C_FLOAT' 'float'
-'REAL' 'C_DOUBLE' 'double'
-'REAL' 'C_LONG_DOUBLE' 'long double'
-'REAL' 'C_FLOAT128' '__float128' Ext.
-'COMPLEX' 'C_FLOAT_COMPLEX' 'float _Complex'
-'COMPLEX' 'C_DOUBLE_COMPLEX' 'double _Complex'
-'COMPLEX' 'C_LONG_DOUBLE_COMPLEX' 'long double _Complex'
-'REAL' 'C_FLOAT128_COMPLEX' '__float128 _Complex' Ext.
-'LOGICAL' 'C_BOOL' '_Bool'
-'CHARACTER' 'C_CHAR' 'char'
-
- Additionally, the following parameters of type
-'CHARACTER(KIND=C_CHAR)' are defined.
-
-Name C definition Value
-'C_NULL_CHAR' null character ''\0''
-'C_ALERT' alert ''\a''
-'C_BACKSPACE' backspace ''\b''
-'C_FORM_FEED' form feed ''\f''
-'C_NEW_LINE' new line ''\n''
-'C_CARRIAGE_RETURN'carriage return ''\r''
-'C_HORIZONTAL_TAB'horizontal tab ''\t''
-'C_VERTICAL_TAB'vertical tab ''\v''
-
- Moreover, the following two named constants are defined:
-
-Name Type
-'C_NULL_PTR' 'C_PTR'
-'C_NULL_FUNPTR''C_FUNPTR'
-
- Both are equivalent to the value 'NULL' in C.
-
-
-File: gfortran.info, Node: OpenMP Modules OMP_LIB and OMP_LIB_KINDS, Prev: ISO_C_BINDING, Up: Intrinsic Modules
-
-9.3 OpenMP Modules 'OMP_LIB' and 'OMP_LIB_KINDS'
-================================================
-
-_Standard_:
- OpenMP Application Program Interface v4.0
-
- The OpenMP Fortran runtime library routines are provided both in a
-form of two Fortran 90 modules, named 'OMP_LIB' and 'OMP_LIB_KINDS', and
-in a form of a Fortran 'include' file named 'omp_lib.h'. The procedures
-provided by 'OMP_LIB' can be found in the *note Introduction:
-(libgomp)Top. manual, the named constants defined in the modules are
-listed below.
-
- For details refer to the actual OpenMP Application Program Interface
-v4.0 (http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf).
-
- 'OMP_LIB_KINDS' provides the following scalar default-integer named
-constants:
-
-'omp_lock_kind'
-'omp_nest_lock_kind'
-'omp_proc_bind_kind'
-'omp_sched_kind'
-
- 'OMP_LIB' provides the scalar default-integer named constant
-'openmp_version' with a value of the form YYYYMM, where 'yyyy' is the
-year and MM the month of the OpenMP version; for OpenMP v3.1 the value
-is '201107' and for OpenMP v4.0 the value is '201307'.
-
- The following scalar integer named constants of the kind
-'omp_sched_kind':
-
-'omp_sched_static'
-'omp_sched_dynamic'
-'omp_sched_guided'
-'omp_sched_auto'
-
- And the following scalar integer named constants of the kind
-'omp_proc_bind_kind':
-
-'omp_proc_bind_false'
-'omp_proc_bind_true'
-'omp_proc_bind_master'
-'omp_proc_bind_close'
-'omp_proc_bind_spread'
-
-
-File: gfortran.info, Node: Contributing, Next: Copying, Prev: Intrinsic Modules, Up: Top
-
-Contributing
-************
-
-Free software is only possible if people contribute to efforts to create
-it. We're always in need of more people helping out with ideas and
-comments, writing documentation and contributing code.
-
- If you want to contribute to GNU Fortran, have a look at the long
-lists of projects you can take on. Some of these projects are small,
-some of them are large; some are completely orthogonal to the rest of
-what is happening on GNU Fortran, but others are "mainstream" projects
-in need of enthusiastic hackers. All of these projects are important!
-We will eventually get around to the things here, but they are also
-things doable by someone who is willing and able.
-
-* Menu:
-
-* Contributors::
-* Projects::
-* Proposed Extensions::
-
-
-File: gfortran.info, Node: Contributors, Next: Projects, Up: Contributing
-
-Contributors to GNU Fortran
-===========================
-
-Most of the parser was hand-crafted by _Andy Vaught_, who is also the
-initiator of the whole project. Thanks Andy! Most of the interface
-with GCC was written by _Paul Brook_.
-
- The following individuals have contributed code and/or ideas and
-significant help to the GNU Fortran project (in alphabetical order):
-
- - Janne Blomqvist
- - Steven Bosscher
- - Paul Brook
- - Tobias Burnus
- - Franc,ois-Xavier Coudert
- - Bud Davis
- - Jerry DeLisle
- - Erik Edelmann
- - Bernhard Fischer
- - Daniel Franke
- - Richard Guenther
- - Richard Henderson
- - Katherine Holcomb
- - Jakub Jelinek
- - Niels Kristian Bech Jensen
- - Steven Johnson
- - Steven G. Kargl
- - Thomas Koenig
- - Asher Langton
- - H. J. Lu
- - Toon Moene
- - Brooks Moses
- - Andrew Pinski
- - Tim Prince
- - Christopher D. Rickett
- - Richard Sandiford
- - Tobias Schlu"ter
- - Roger Sayle
- - Paul Thomas
- - Andy Vaught
- - Feng Wang
- - Janus Weil
- - Daniel Kraft
-
- The following people have contributed bug reports, smaller or larger
-patches, and much needed feedback and encouragement for the GNU Fortran
-project:
-
- - Bill Clodius
- - Dominique d'Humie`res
- - Kate Hedstrom
- - Erik Schnetter
- - Joost VandeVondele
-
- Many other individuals have helped debug, test and improve the GNU
-Fortran compiler over the past few years, and we welcome you to do the
-same! If you already have done so, and you would like to see your name
-listed in the list above, please contact us.
-
-
-File: gfortran.info, Node: Projects, Next: Proposed Extensions, Prev: Contributors, Up: Contributing
-
-Projects
-========
-
-_Help build the test suite_
- Solicit more code for donation to the test suite: the more
- extensive the testsuite, the smaller the risk of breaking things in
- the future! We can keep code private on request.
-
-_Bug hunting/squishing_
- Find bugs and write more test cases! Test cases are especially
- very welcome, because it allows us to concentrate on fixing bugs
- instead of isolating them. Going through the bugzilla database at
- <http://gcc.gnu.org/bugzilla/> to reduce testcases posted there and
- add more information (for example, for which version does the
- testcase work, for which versions does it fail?) is also very
- helpful.
-
-
-File: gfortran.info, Node: Proposed Extensions, Prev: Projects, Up: Contributing
-
-Proposed Extensions
-===================
-
-Here's a list of proposed extensions for the GNU Fortran compiler, in no
-particular order. Most of these are necessary to be fully compatible
-with existing Fortran compilers, but they are not part of the official
-J3 Fortran 95 standard.
-
-Compiler extensions:
---------------------
-
- * User-specified alignment rules for structures.
-
- * Automatically extend single precision constants to double.
-
- * Compile code that conserves memory by dynamically allocating common
- and module storage either on stack or heap.
-
- * Compile flag to generate code for array conformance checking
- (suggest -CC).
-
- * User control of symbol names (underscores, etc).
-
- * Compile setting for maximum size of stack frame size before
- spilling parts to static or heap.
-
- * Flag to force local variables into static space.
-
- * Flag to force local variables onto stack.
-
-Environment Options
--------------------
-
- * Pluggable library modules for random numbers, linear algebra. LA
- should use BLAS calling conventions.
-
- * Environment variables controlling actions on arithmetic exceptions
- like overflow, underflow, precision loss--Generate NaN, abort,
- default. action.
-
- * Set precision for fp units that support it (i387).
-
- * Variable for setting fp rounding mode.
-
- * Variable to fill uninitialized variables with a user-defined bit
- pattern.
-
- * Environment variable controlling filename that is opened for that
- unit number.
-
- * Environment variable to clear/trash memory being freed.
-
- * Environment variable to control tracing of allocations and frees.
-
- * Environment variable to display allocated memory at normal program
- end.
-
- * Environment variable for filename for * IO-unit.
-
- * Environment variable for temporary file directory.
-
- * Environment variable forcing standard output to be line buffered
- (Unix).
-
-
-File: gfortran.info, Node: Copying, Next: GNU Free Documentation License, Prev: Contributing, Up: Top
-
-GNU General Public License
-**************************
-
- Version 3, 29 June 2007
-
- Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
-
- Everyone is permitted to copy and distribute verbatim copies of this
- license document, but changing it is not allowed.
-
-Preamble
-========
-
-The GNU General Public License is a free, copyleft license for software
-and other kinds of works.
-
- The licenses for most software and other practical works are designed
-to take away your freedom to share and change the works. By contrast,
-the GNU General Public License is intended to guarantee your freedom to
-share and change all versions of a program-to make sure it remains free
-software for all its users. We, the Free Software Foundation, use the
-GNU General Public License for most of our software; it applies also to
-any other work released this way by its authors. You can apply it to
-your programs, too.
-
- When we speak of free software, we are referring to freedom, not
-price. Our General Public Licenses are designed to make sure that you
-have the freedom to distribute copies of free software (and charge for
-them if you wish), that you receive source code or can get it if you
-want it, that you can change the software or use pieces of it in new
-free programs, and that you know you can do these things.
-
- To protect your rights, we need to prevent others from denying you
-these rights or asking you to surrender the rights. Therefore, you have
-certain responsibilities if you distribute copies of the software, or if
-you modify it: responsibilities to respect the freedom of others.
-
- For example, if you distribute copies of such a program, whether
-gratis or for a fee, you must pass on to the recipients the same
-freedoms that you received. You must make sure that they, too, receive
-or can get the source code. And you must show them these terms so they
-know their rights.
-
- Developers that use the GNU GPL protect your rights with two steps:
-(1) assert copyright on the software, and (2) offer you this License
-giving you legal permission to copy, distribute and/or modify it.
-
- For the developers' and authors' protection, the GPL clearly explains
-that there is no warranty for this free software. For both users' and
-authors' sake, the GPL requires that modified versions be marked as
-changed, so that their problems will not be attributed erroneously to
-authors of previous versions.
-
- Some devices are designed to deny users access to install or run
-modified versions of the software inside them, although the manufacturer
-can do so. This is fundamentally incompatible with the aim of
-protecting users' freedom to change the software. The systematic
-pattern of such abuse occurs in the area of products for individuals to
-use, which is precisely where it is most unacceptable. Therefore, we
-have designed this version of the GPL to prohibit the practice for those
-products. If such problems arise substantially in other domains, we
-stand ready to extend this provision to those domains in future versions
-of the GPL, as needed to protect the freedom of users.
-
- Finally, every program is threatened constantly by software patents.
-States should not allow patents to restrict development and use of
-software on general-purpose computers, but in those that do, we wish to
-avoid the special danger that patents applied to a free program could
-make it effectively proprietary. To prevent this, the GPL assures that
-patents cannot be used to render the program non-free.
-
- The precise terms and conditions for copying, distribution and
-modification follow.
-
-TERMS AND CONDITIONS
-====================
-
- 0. Definitions.
-
- "This License" refers to version 3 of the GNU General Public
- License.
-
- "Copyright" also means copyright-like laws that apply to other
- kinds of works, such as semiconductor masks.
-
- "The Program" refers to any copyrightable work licensed under this
- License. Each licensee is addressed as "you". "Licensees" and
- "recipients" may be individuals or organizations.
-
- To "modify" a work means to copy from or adapt all or part of the
- work in a fashion requiring copyright permission, other than the
- making of an exact copy. The resulting work is called a "modified
- version" of the earlier work or a work "based on" the earlier work.
-
- A "covered work" means either the unmodified Program or a work
- based on the Program.
-
- To "propagate" a work means to do anything with it that, without
- permission, would make you directly or secondarily liable for
- infringement under applicable copyright law, except executing it on
- a computer or modifying a private copy. Propagation includes
- copying, distribution (with or without modification), making
- available to the public, and in some countries other activities as
- well.
-
- To "convey" a work means any kind of propagation that enables other
- parties to make or receive copies. Mere interaction with a user
- through a computer network, with no transfer of a copy, is not
- conveying.
-
- An interactive user interface displays "Appropriate Legal Notices"
- to the extent that it includes a convenient and prominently visible
- feature that (1) displays an appropriate copyright notice, and (2)
- tells the user that there is no warranty for the work (except to
- the extent that warranties are provided), that licensees may convey
- the work under this License, and how to view a copy of this
- License. If the interface presents a list of user commands or
- options, such as a menu, a prominent item in the list meets this
- criterion.
-
- 1. Source Code.
-
- The "source code" for a work means the preferred form of the work
- for making modifications to it. "Object code" means any non-source
- form of a work.
-
- A "Standard Interface" means an interface that either is an
- official standard defined by a recognized standards body, or, in
- the case of interfaces specified for a particular programming
- language, one that is widely used among developers working in that
- language.
-
- The "System Libraries" of an executable work include anything,
- other than the work as a whole, that (a) is included in the normal
- form of packaging a Major Component, but which is not part of that
- Major Component, and (b) serves only to enable use of the work with
- that Major Component, or to implement a Standard Interface for
- which an implementation is available to the public in source code
- form. A "Major Component", in this context, means a major
- essential component (kernel, window system, and so on) of the
- specific operating system (if any) on which the executable work
- runs, or a compiler used to produce the work, or an object code
- interpreter used to run it.
-
- The "Corresponding Source" for a work in object code form means all
- the source code needed to generate, install, and (for an executable
- work) run the object code and to modify the work, including scripts
- to control those activities. However, it does not include the
- work's System Libraries, or general-purpose tools or generally
- available free programs which are used unmodified in performing
- those activities but which are not part of the work. For example,
- Corresponding Source includes interface definition files associated
- with source files for the work, and the source code for shared
- libraries and dynamically linked subprograms that the work is
- specifically designed to require, such as by intimate data
- communication or control flow between those subprograms and other
- parts of the work.
-
- The Corresponding Source need not include anything that users can
- regenerate automatically from other parts of the Corresponding
- Source.
-
- The Corresponding Source for a work in source code form is that
- same work.
-
- 2. Basic Permissions.
-
- All rights granted under this License are granted for the term of
- copyright on the Program, and are irrevocable provided the stated
- conditions are met. This License explicitly affirms your unlimited
- permission to run the unmodified Program. The output from running
- a covered work is covered by this License only if the output, given
- its content, constitutes a covered work. This License acknowledges
- your rights of fair use or other equivalent, as provided by
- copyright law.
-
- You may make, run and propagate covered works that you do not
- convey, without conditions so long as your license otherwise
- remains in force. You may convey covered works to others for the
- sole purpose of having them make modifications exclusively for you,
- or provide you with facilities for running those works, provided
- that you comply with the terms of this License in conveying all
- material for which you do not control copyright. Those thus making
- or running the covered works for you must do so exclusively on your
- behalf, under your direction and control, on terms that prohibit
- them from making any copies of your copyrighted material outside
- their relationship with you.
-
- Conveying under any other circumstances is permitted solely under
- the conditions stated below. Sublicensing is not allowed; section
- 10 makes it unnecessary.
-
- 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
-
- No covered work shall be deemed part of an effective technological
- measure under any applicable law fulfilling obligations under
- article 11 of the WIPO copyright treaty adopted on 20 December
- 1996, or similar laws prohibiting or restricting circumvention of
- such measures.
-
- When you convey a covered work, you waive any legal power to forbid
- circumvention of technological measures to the extent such
- circumvention is effected by exercising rights under this License
- with respect to the covered work, and you disclaim any intention to
- limit operation or modification of the work as a means of
- enforcing, against the work's users, your or third parties' legal
- rights to forbid circumvention of technological measures.
-
- 4. Conveying Verbatim Copies.
-
- You may convey verbatim copies of the Program's source code as you
- receive it, in any medium, provided that you conspicuously and
- appropriately publish on each copy an appropriate copyright notice;
- keep intact all notices stating that this License and any
- non-permissive terms added in accord with section 7 apply to the
- code; keep intact all notices of the absence of any warranty; and
- give all recipients a copy of this License along with the Program.
-
- You may charge any price or no price for each copy that you convey,
- and you may offer support or warranty protection for a fee.
-
- 5. Conveying Modified Source Versions.
-
- You may convey a work based on the Program, or the modifications to
- produce it from the Program, in the form of source code under the
- terms of section 4, provided that you also meet all of these
- conditions:
-
- a. The work must carry prominent notices stating that you
- modified it, and giving a relevant date.
-
- b. The work must carry prominent notices stating that it is
- released under this License and any conditions added under
- section 7. This requirement modifies the requirement in
- section 4 to "keep intact all notices".
-
- c. You must license the entire work, as a whole, under this
- License to anyone who comes into possession of a copy. This
- License will therefore apply, along with any applicable
- section 7 additional terms, to the whole of the work, and all
- its parts, regardless of how they are packaged. This License
- gives no permission to license the work in any other way, but
- it does not invalidate such permission if you have separately
- received it.
-
- d. If the work has interactive user interfaces, each must display
- Appropriate Legal Notices; however, if the Program has
- interactive interfaces that do not display Appropriate Legal
- Notices, your work need not make them do so.
-
- A compilation of a covered work with other separate and independent
- works, which are not by their nature extensions of the covered
- work, and which are not combined with it such as to form a larger
- program, in or on a volume of a storage or distribution medium, is
- called an "aggregate" if the compilation and its resulting
- copyright are not used to limit the access or legal rights of the
- compilation's users beyond what the individual works permit.
- Inclusion of a covered work in an aggregate does not cause this
- License to apply to the other parts of the aggregate.
-
- 6. Conveying Non-Source Forms.
-
- You may convey a covered work in object code form under the terms
- of sections 4 and 5, provided that you also convey the
- machine-readable Corresponding Source under the terms of this
- License, in one of these ways:
-
- a. Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by the
- Corresponding Source fixed on a durable physical medium
- customarily used for software interchange.
-
- b. Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by a
- written offer, valid for at least three years and valid for as
- long as you offer spare parts or customer support for that
- product model, to give anyone who possesses the object code
- either (1) a copy of the Corresponding Source for all the
- software in the product that is covered by this License, on a
- durable physical medium customarily used for software
- interchange, for a price no more than your reasonable cost of
- physically performing this conveying of source, or (2) access
- to copy the Corresponding Source from a network server at no
- charge.
-
- c. Convey individual copies of the object code with a copy of the
- written offer to provide the Corresponding Source. This
- alternative is allowed only occasionally and noncommercially,
- and only if you received the object code with such an offer,
- in accord with subsection 6b.
-
- d. Convey the object code by offering access from a designated
- place (gratis or for a charge), and offer equivalent access to
- the Corresponding Source in the same way through the same
- place at no further charge. You need not require recipients
- to copy the Corresponding Source along with the object code.
- If the place to copy the object code is a network server, the
- Corresponding Source may be on a different server (operated by
- you or a third party) that supports equivalent copying
- facilities, provided you maintain clear directions next to the
- object code saying where to find the Corresponding Source.
- Regardless of what server hosts the Corresponding Source, you
- remain obligated to ensure that it is available for as long as
- needed to satisfy these requirements.
-
- e. Convey the object code using peer-to-peer transmission,
- provided you inform other peers where the object code and
- Corresponding Source of the work are being offered to the
- general public at no charge under subsection 6d.
-
- A separable portion of the object code, whose source code is
- excluded from the Corresponding Source as a System Library, need
- not be included in conveying the object code work.
-
- A "User Product" is either (1) a "consumer product", which means
- any tangible personal property which is normally used for personal,
- family, or household purposes, or (2) anything designed or sold for
- incorporation into a dwelling. In determining whether a product is
- a consumer product, doubtful cases shall be resolved in favor of
- coverage. For a particular product received by a particular user,
- "normally used" refers to a typical or common use of that class of
- product, regardless of the status of the particular user or of the
- way in which the particular user actually uses, or expects or is
- expected to use, the product. A product is a consumer product
- regardless of whether the product has substantial commercial,
- industrial or non-consumer uses, unless such uses represent the
- only significant mode of use of the product.
-
- "Installation Information" for a User Product means any methods,
- procedures, authorization keys, or other information required to
- install and execute modified versions of a covered work in that
- User Product from a modified version of its Corresponding Source.
- The information must suffice to ensure that the continued
- functioning of the modified object code is in no case prevented or
- interfered with solely because modification has been made.
-
- If you convey an object code work under this section in, or with,
- or specifically for use in, a User Product, and the conveying
- occurs as part of a transaction in which the right of possession
- and use of the User Product is transferred to the recipient in
- perpetuity or for a fixed term (regardless of how the transaction
- is characterized), the Corresponding Source conveyed under this
- section must be accompanied by the Installation Information. But
- this requirement does not apply if neither you nor any third party
- retains the ability to install modified object code on the User
- Product (for example, the work has been installed in ROM).
-
- The requirement to provide Installation Information does not
- include a requirement to continue to provide support service,
- warranty, or updates for a work that has been modified or installed
- by the recipient, or for the User Product in which it has been
- modified or installed. Access to a network may be denied when the
- modification itself materially and adversely affects the operation
- of the network or violates the rules and protocols for
- communication across the network.
-
- Corresponding Source conveyed, and Installation Information
- provided, in accord with this section must be in a format that is
- publicly documented (and with an implementation available to the
- public in source code form), and must require no special password
- or key for unpacking, reading or copying.
-
- 7. Additional Terms.
-
- "Additional permissions" are terms that supplement the terms of
- this License by making exceptions from one or more of its
- conditions. Additional permissions that are applicable to the
- entire Program shall be treated as though they were included in
- this License, to the extent that they are valid under applicable
- law. If additional permissions apply only to part of the Program,
- that part may be used separately under those permissions, but the
- entire Program remains governed by this License without regard to
- the additional permissions.
-
- When you convey a copy of a covered work, you may at your option
- remove any additional permissions from that copy, or from any part
- of it. (Additional permissions may be written to require their own
- removal in certain cases when you modify the work.) You may place
- additional permissions on material, added by you to a covered work,
- for which you have or can give appropriate copyright permission.
-
- Notwithstanding any other provision of this License, for material
- you add to a covered work, you may (if authorized by the copyright
- holders of that material) supplement the terms of this License with
- terms:
-
- a. Disclaiming warranty or limiting liability differently from
- the terms of sections 15 and 16 of this License; or
-
- b. Requiring preservation of specified reasonable legal notices
- or author attributions in that material or in the Appropriate
- Legal Notices displayed by works containing it; or
-
- c. Prohibiting misrepresentation of the origin of that material,
- or requiring that modified versions of such material be marked
- in reasonable ways as different from the original version; or
-
- d. Limiting the use for publicity purposes of names of licensors
- or authors of the material; or
-
- e. Declining to grant rights under trademark law for use of some
- trade names, trademarks, or service marks; or
-
- f. Requiring indemnification of licensors and authors of that
- material by anyone who conveys the material (or modified
- versions of it) with contractual assumptions of liability to
- the recipient, for any liability that these contractual
- assumptions directly impose on those licensors and authors.
-
- All other non-permissive additional terms are considered "further
- restrictions" within the meaning of section 10. If the Program as
- you received it, or any part of it, contains a notice stating that
- it is governed by this License along with a term that is a further
- restriction, you may remove that term. If a license document
- contains a further restriction but permits relicensing or conveying
- under this License, you may add to a covered work material governed
- by the terms of that license document, provided that the further
- restriction does not survive such relicensing or conveying.
-
- If you add terms to a covered work in accord with this section, you
- must place, in the relevant source files, a statement of the
- additional terms that apply to those files, or a notice indicating
- where to find the applicable terms.
-
- Additional terms, permissive or non-permissive, may be stated in
- the form of a separately written license, or stated as exceptions;
- the above requirements apply either way.
-
- 8. Termination.
-
- You may not propagate or modify a covered work except as expressly
- provided under this License. Any attempt otherwise to propagate or
- modify it is void, and will automatically terminate your rights
- under this License (including any patent licenses granted under the
- third paragraph of section 11).
-
- However, if you cease all violation of this License, then your
- license from a particular copyright holder is reinstated (a)
- provisionally, unless and until the copyright holder explicitly and
- finally terminates your license, and (b) permanently, if the
- copyright holder fails to notify you of the violation by some
- reasonable means prior to 60 days after the cessation.
-
- Moreover, your license from a particular copyright holder is
- reinstated permanently if the copyright holder notifies you of the
- violation by some reasonable means, this is the first time you have
- received notice of violation of this License (for any work) from
- that copyright holder, and you cure the violation prior to 30 days
- after your receipt of the notice.
-
- Termination of your rights under this section does not terminate
- the licenses of parties who have received copies or rights from you
- under this License. If your rights have been terminated and not
- permanently reinstated, you do not qualify to receive new licenses
- for the same material under section 10.
-
- 9. Acceptance Not Required for Having Copies.
-
- You are not required to accept this License in order to receive or
- run a copy of the Program. Ancillary propagation of a covered work
- occurring solely as a consequence of using peer-to-peer
- transmission to receive a copy likewise does not require
- acceptance. However, nothing other than this License grants you
- permission to propagate or modify any covered work. These actions
- infringe copyright if you do not accept this License. Therefore,
- by modifying or propagating a covered work, you indicate your
- acceptance of this License to do so.
-
- 10. Automatic Licensing of Downstream Recipients.
-
- Each time you convey a covered work, the recipient automatically
- receives a license from the original licensors, to run, modify and
- propagate that work, subject to this License. You are not
- responsible for enforcing compliance by third parties with this
- License.
-
- An "entity transaction" is a transaction transferring control of an
- organization, or substantially all assets of one, or subdividing an
- organization, or merging organizations. If propagation of a
- covered work results from an entity transaction, each party to that
- transaction who receives a copy of the work also receives whatever
- licenses to the work the party's predecessor in interest had or
- could give under the previous paragraph, plus a right to possession
- of the Corresponding Source of the work from the predecessor in
- interest, if the predecessor has it or can get it with reasonable
- efforts.
-
- You may not impose any further restrictions on the exercise of the
- rights granted or affirmed under this License. For example, you
- may not impose a license fee, royalty, or other charge for exercise
- of rights granted under this License, and you may not initiate
- litigation (including a cross-claim or counterclaim in a lawsuit)
- alleging that any patent claim is infringed by making, using,
- selling, offering for sale, or importing the Program or any portion
- of it.
-
- 11. Patents.
-
- A "contributor" is a copyright holder who authorizes use under this
- License of the Program or a work on which the Program is based.
- The work thus licensed is called the contributor's "contributor
- version".
-
- A contributor's "essential patent claims" are all patent claims
- owned or controlled by the contributor, whether already acquired or
- hereafter acquired, that would be infringed by some manner,
- permitted by this License, of making, using, or selling its
- contributor version, but do not include claims that would be
- infringed only as a consequence of further modification of the
- contributor version. For purposes of this definition, "control"
- includes the right to grant patent sublicenses in a manner
- consistent with the requirements of this License.
-
- Each contributor grants you a non-exclusive, worldwide,
- royalty-free patent license under the contributor's essential
- patent claims, to make, use, sell, offer for sale, import and
- otherwise run, modify and propagate the contents of its contributor
- version.
-
- In the following three paragraphs, a "patent license" is any
- express agreement or commitment, however denominated, not to
- enforce a patent (such as an express permission to practice a
- patent or covenant not to sue for patent infringement). To "grant"
- such a patent license to a party means to make such an agreement or
- commitment not to enforce a patent against the party.
-
- If you convey a covered work, knowingly relying on a patent
- license, and the Corresponding Source of the work is not available
- for anyone to copy, free of charge and under the terms of this
- License, through a publicly available network server or other
- readily accessible means, then you must either (1) cause the
- Corresponding Source to be so available, or (2) arrange to deprive
- yourself of the benefit of the patent license for this particular
- work, or (3) arrange, in a manner consistent with the requirements
- of this License, to extend the patent license to downstream
- recipients. "Knowingly relying" means you have actual knowledge
- that, but for the patent license, your conveying the covered work
- in a country, or your recipient's use of the covered work in a
- country, would infringe one or more identifiable patents in that
- country that you have reason to believe are valid.
-
- If, pursuant to or in connection with a single transaction or
- arrangement, you convey, or propagate by procuring conveyance of, a
- covered work, and grant a patent license to some of the parties
- receiving the covered work authorizing them to use, propagate,
- modify or convey a specific copy of the covered work, then the
- patent license you grant is automatically extended to all
- recipients of the covered work and works based on it.
-
- A patent license is "discriminatory" if it does not include within
- the scope of its coverage, prohibits the exercise of, or is
- conditioned on the non-exercise of one or more of the rights that
- are specifically granted under this License. You may not convey a
- covered work if you are a party to an arrangement with a third
- party that is in the business of distributing software, under which
- you make payment to the third party based on the extent of your
- activity of conveying the work, and under which the third party
- grants, to any of the parties who would receive the covered work
- from you, a discriminatory patent license (a) in connection with
- copies of the covered work conveyed by you (or copies made from
- those copies), or (b) primarily for and in connection with specific
- products or compilations that contain the covered work, unless you
- entered into that arrangement, or that patent license was granted,
- prior to 28 March 2007.
-
- Nothing in this License shall be construed as excluding or limiting
- any implied license or other defenses to infringement that may
- otherwise be available to you under applicable patent law.
-
- 12. No Surrender of Others' Freedom.
-
- If conditions are imposed on you (whether by court order, agreement
- or otherwise) that contradict the conditions of this License, they
- do not excuse you from the conditions of this License. If you
- cannot convey a covered work so as to satisfy simultaneously your
- obligations under this License and any other pertinent obligations,
- then as a consequence you may not convey it at all. For example,
- if you agree to terms that obligate you to collect a royalty for
- further conveying from those to whom you convey the Program, the
- only way you could satisfy both those terms and this License would
- be to refrain entirely from conveying the Program.
-
- 13. Use with the GNU Affero General Public License.
-
- Notwithstanding any other provision of this License, you have
- permission to link or combine any covered work with a work licensed
- under version 3 of the GNU Affero General Public License into a
- single combined work, and to convey the resulting work. The terms
- of this License will continue to apply to the part which is the
- covered work, but the special requirements of the GNU Affero
- General Public License, section 13, concerning interaction through
- a network will apply to the combination as such.
-
- 14. Revised Versions of this License.
-
- The Free Software Foundation may publish revised and/or new
- versions of the GNU General Public License from time to time. Such
- new versions will be similar in spirit to the present version, but
- may differ in detail to address new problems or concerns.
-
- Each version is given a distinguishing version number. If the
- Program specifies that a certain numbered version of the GNU
- General Public License "or any later version" applies to it, you
- have the option of following the terms and conditions either of
- that numbered version or of any later version published by the Free
- Software Foundation. If the Program does not specify a version
- number of the GNU General Public License, you may choose any
- version ever published by the Free Software Foundation.
-
- If the Program specifies that a proxy can decide which future
- versions of the GNU General Public License can be used, that
- proxy's public statement of acceptance of a version permanently
- authorizes you to choose that version for the Program.
-
- Later license versions may give you additional or different
- permissions. However, no additional obligations are imposed on any
- author or copyright holder as a result of your choosing to follow a
- later version.
-
- 15. Disclaimer of Warranty.
-
- THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
- APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
- COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"
- WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
- INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
- MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
- RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
- SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
- NECESSARY SERVICING, REPAIR OR CORRECTION.
-
- 16. Limitation of Liability.
-
- IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
- WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
- AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
- DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
- CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
- THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
- BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
- PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
- PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
- THE POSSIBILITY OF SUCH DAMAGES.
-
- 17. Interpretation of Sections 15 and 16.
-
- If the disclaimer of warranty and limitation of liability provided
- above cannot be given local legal effect according to their terms,
- reviewing courts shall apply local law that most closely
- approximates an absolute waiver of all civil liability in
- connection with the Program, unless a warranty or assumption of
- liability accompanies a copy of the Program in return for a fee.
-
-END OF TERMS AND CONDITIONS
-===========================
-
-How to Apply These Terms to Your New Programs
-=============================================
-
-If you develop a new program, and you want it to be of the greatest
-possible use to the public, the best way to achieve this is to make it
-free software which everyone can redistribute and change under these
-terms.
-
- To do so, attach the following notices to the program. It is safest
-to attach them to the start of each source file to most effectively
-state the exclusion of warranty; and each file should have at least the
-"copyright" line and a pointer to where the full notice is found.
-
- ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES.
- Copyright (C) YEAR NAME OF AUTHOR
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or (at
- your option) any later version.
-
- This program is distributed in the hope that it will be useful, but
- WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
-
- Also add information on how to contact you by electronic and paper
-mail.
-
- If the program does terminal interaction, make it output a short
-notice like this when it starts in an interactive mode:
-
- PROGRAM Copyright (C) YEAR NAME OF AUTHOR
- This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'.
- This is free software, and you are welcome to redistribute it
- under certain conditions; type 'show c' for details.
-
- The hypothetical commands 'show w' and 'show c' should show the
-appropriate parts of the General Public License. Of course, your
-program's commands might be different; for a GUI interface, you would
-use an "about box".
-
- You should also get your employer (if you work as a programmer) or
-school, if any, to sign a "copyright disclaimer" for the program, if
-necessary. For more information on this, and how to apply and follow
-the GNU GPL, see <http://www.gnu.org/licenses/>.
-
- The GNU General Public License does not permit incorporating your
-program into proprietary programs. If your program is a subroutine
-library, you may consider it more useful to permit linking proprietary
-applications with the library. If this is what you want to do, use the
-GNU Lesser General Public License instead of this License. But first,
-please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.
-
-
-File: gfortran.info, Node: GNU Free Documentation License, Next: Funding, Prev: Copying, Up: Top
-
-GNU Free Documentation License
-******************************
-
- Version 1.3, 3 November 2008
-
- Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
- <http://fsf.org/>
-
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
- 0. PREAMBLE
-
- The purpose of this License is to make a manual, textbook, or other
- functional and useful document "free" in the sense of freedom: to
- assure everyone the effective freedom to copy and redistribute it,
- with or without modifying it, either commercially or
- noncommercially. Secondarily, this License preserves for the
- author and publisher a way to get credit for their work, while not
- being considered responsible for modifications made by others.
-
- This License is a kind of "copyleft", which means that derivative
- works of the document must themselves be free in the same sense.
- It complements the GNU General Public License, which is a copyleft
- license designed for free software.
-
- We have designed this License in order to use it for manuals for
- free software, because free software needs free documentation: a
- free program should come with manuals providing the same freedoms
- that the software does. But this License is not limited to
- software manuals; it can be used for any textual work, regardless
- of subject matter or whether it is published as a printed book. We
- recommend this License principally for works whose purpose is
- instruction or reference.
-
- 1. APPLICABILITY AND DEFINITIONS
-
- This License applies to any manual or other work, in any medium,
- that contains a notice placed by the copyright holder saying it can
- be distributed under the terms of this License. Such a notice
- grants a world-wide, royalty-free license, unlimited in duration,
- to use that work under the conditions stated herein. The
- "Document", below, refers to any such manual or work. Any member
- of the public is a licensee, and is addressed as "you". You accept
- the license if you copy, modify or distribute the work in a way
- requiring permission under copyright law.
-
- A "Modified Version" of the Document means any work containing the
- Document or a portion of it, either copied verbatim, or with
- modifications and/or translated into another language.
-
- A "Secondary Section" is a named appendix or a front-matter section
- of the Document that deals exclusively with the relationship of the
- publishers or authors of the Document to the Document's overall
- subject (or to related matters) and contains nothing that could
- fall directly within that overall subject. (Thus, if the Document
- is in part a textbook of mathematics, a Secondary Section may not
- explain any mathematics.) The relationship could be a matter of
- historical connection with the subject or with related matters, or
- of legal, commercial, philosophical, ethical or political position
- regarding them.
-
- The "Invariant Sections" are certain Secondary Sections whose
- titles are designated, as being those of Invariant Sections, in the
- notice that says that the Document is released under this License.
- If a section does not fit the above definition of Secondary then it
- is not allowed to be designated as Invariant. The Document may
- contain zero Invariant Sections. If the Document does not identify
- any Invariant Sections then there are none.
-
- The "Cover Texts" are certain short passages of text that are
- listed, as Front-Cover Texts or Back-Cover Texts, in the notice
- that says that the Document is released under this License. A
- Front-Cover Text may be at most 5 words, and a Back-Cover Text may
- be at most 25 words.
-
- A "Transparent" copy of the Document means a machine-readable copy,
- represented in a format whose specification is available to the
- general public, that is suitable for revising the document
- straightforwardly with generic text editors or (for images composed
- of pixels) generic paint programs or (for drawings) some widely
- available drawing editor, and that is suitable for input to text
- formatters or for automatic translation to a variety of formats
- suitable for input to text formatters. A copy made in an otherwise
- Transparent file format whose markup, or absence of markup, has
- been arranged to thwart or discourage subsequent modification by
- readers is not Transparent. An image format is not Transparent if
- used for any substantial amount of text. A copy that is not
- "Transparent" is called "Opaque".
-
- Examples of suitable formats for Transparent copies include plain
- ASCII without markup, Texinfo input format, LaTeX input format,
- SGML or XML using a publicly available DTD, and standard-conforming
- simple HTML, PostScript or PDF designed for human modification.
- Examples of transparent image formats include PNG, XCF and JPG.
- Opaque formats include proprietary formats that can be read and
- edited only by proprietary word processors, SGML or XML for which
- the DTD and/or processing tools are not generally available, and
- the machine-generated HTML, PostScript or PDF produced by some word
- processors for output purposes only.
-
- The "Title Page" means, for a printed book, the title page itself,
- plus such following pages as are needed to hold, legibly, the
- material this License requires to appear in the title page. For
- works in formats which do not have any title page as such, "Title
- Page" means the text near the most prominent appearance of the
- work's title, preceding the beginning of the body of the text.
-
- The "publisher" means any person or entity that distributes copies
- of the Document to the public.
-
- A section "Entitled XYZ" means a named subunit of the Document
- whose title either is precisely XYZ or contains XYZ in parentheses
- following text that translates XYZ in another language. (Here XYZ
- stands for a specific section name mentioned below, such as
- "Acknowledgements", "Dedications", "Endorsements", or "History".)
- To "Preserve the Title" of such a section when you modify the
- Document means that it remains a section "Entitled XYZ" according
- to this definition.
-
- The Document may include Warranty Disclaimers next to the notice
- which states that this License applies to the Document. These
- Warranty Disclaimers are considered to be included by reference in
- this License, but only as regards disclaiming warranties: any other
- implication that these Warranty Disclaimers may have is void and
- has no effect on the meaning of this License.
-
- 2. VERBATIM COPYING
-
- You may copy and distribute the Document in any medium, either
- commercially or noncommercially, provided that this License, the
- copyright notices, and the license notice saying this License
- applies to the Document are reproduced in all copies, and that you
- add no other conditions whatsoever to those of this License. You
- may not use technical measures to obstruct or control the reading
- or further copying of the copies you make or distribute. However,
- you may accept compensation in exchange for copies. If you
- distribute a large enough number of copies you must also follow the
- conditions in section 3.
-
- You may also lend copies, under the same conditions stated above,
- and you may publicly display copies.
-
- 3. COPYING IN QUANTITY
-
- If you publish printed copies (or copies in media that commonly
- have printed covers) of the Document, numbering more than 100, and
- the Document's license notice requires Cover Texts, you must
- enclose the copies in covers that carry, clearly and legibly, all
- these Cover Texts: Front-Cover Texts on the front cover, and
- Back-Cover Texts on the back cover. Both covers must also clearly
- and legibly identify you as the publisher of these copies. The
- front cover must present the full title with all words of the title
- equally prominent and visible. You may add other material on the
- covers in addition. Copying with changes limited to the covers, as
- long as they preserve the title of the Document and satisfy these
- conditions, can be treated as verbatim copying in other respects.
-
- If the required texts for either cover are too voluminous to fit
- legibly, you should put the first ones listed (as many as fit
- reasonably) on the actual cover, and continue the rest onto
- adjacent pages.
-
- If you publish or distribute Opaque copies of the Document
- numbering more than 100, you must either include a machine-readable
- Transparent copy along with each Opaque copy, or state in or with
- each Opaque copy a computer-network location from which the general
- network-using public has access to download using public-standard
- network protocols a complete Transparent copy of the Document, free
- of added material. If you use the latter option, you must take
- reasonably prudent steps, when you begin distribution of Opaque
- copies in quantity, to ensure that this Transparent copy will
- remain thus accessible at the stated location until at least one
- year after the last time you distribute an Opaque copy (directly or
- through your agents or retailers) of that edition to the public.
-
- It is requested, but not required, that you contact the authors of
- the Document well before redistributing any large number of copies,
- to give them a chance to provide you with an updated version of the
- Document.
-
- 4. MODIFICATIONS
-
- You may copy and distribute a Modified Version of the Document
- under the conditions of sections 2 and 3 above, provided that you
- release the Modified Version under precisely this License, with the
- Modified Version filling the role of the Document, thus licensing
- distribution and modification of the Modified Version to whoever
- possesses a copy of it. In addition, you must do these things in
- the Modified Version:
-
- A. Use in the Title Page (and on the covers, if any) a title
- distinct from that of the Document, and from those of previous
- versions (which should, if there were any, be listed in the
- History section of the Document). You may use the same title
- as a previous version if the original publisher of that
- version gives permission.
-
- B. List on the Title Page, as authors, one or more persons or
- entities responsible for authorship of the modifications in
- the Modified Version, together with at least five of the
- principal authors of the Document (all of its principal
- authors, if it has fewer than five), unless they release you
- from this requirement.
-
- C. State on the Title page the name of the publisher of the
- Modified Version, as the publisher.
-
- D. Preserve all the copyright notices of the Document.
-
- E. Add an appropriate copyright notice for your modifications
- adjacent to the other copyright notices.
-
- F. Include, immediately after the copyright notices, a license
- notice giving the public permission to use the Modified
- Version under the terms of this License, in the form shown in
- the Addendum below.
-
- G. Preserve in that license notice the full lists of Invariant
- Sections and required Cover Texts given in the Document's
- license notice.
-
- H. Include an unaltered copy of this License.
-
- I. Preserve the section Entitled "History", Preserve its Title,
- and add to it an item stating at least the title, year, new
- authors, and publisher of the Modified Version as given on the
- Title Page. If there is no section Entitled "History" in the
- Document, create one stating the title, year, authors, and
- publisher of the Document as given on its Title Page, then add
- an item describing the Modified Version as stated in the
- previous sentence.
-
- J. Preserve the network location, if any, given in the Document
- for public access to a Transparent copy of the Document, and
- likewise the network locations given in the Document for
- previous versions it was based on. These may be placed in the
- "History" section. You may omit a network location for a work
- that was published at least four years before the Document
- itself, or if the original publisher of the version it refers
- to gives permission.
-
- K. For any section Entitled "Acknowledgements" or "Dedications",
- Preserve the Title of the section, and preserve in the section
- all the substance and tone of each of the contributor
- acknowledgements and/or dedications given therein.
-
- L. Preserve all the Invariant Sections of the Document, unaltered
- in their text and in their titles. Section numbers or the
- equivalent are not considered part of the section titles.
-
- M. Delete any section Entitled "Endorsements". Such a section
- may not be included in the Modified Version.
-
- N. Do not retitle any existing section to be Entitled
- "Endorsements" or to conflict in title with any Invariant
- Section.
-
- O. Preserve any Warranty Disclaimers.
-
- If the Modified Version includes new front-matter sections or
- appendices that qualify as Secondary Sections and contain no
- material copied from the Document, you may at your option designate
- some or all of these sections as invariant. To do this, add their
- titles to the list of Invariant Sections in the Modified Version's
- license notice. These titles must be distinct from any other
- section titles.
-
- You may add a section Entitled "Endorsements", provided it contains
- nothing but endorsements of your Modified Version by various
- parties--for example, statements of peer review or that the text
- has been approved by an organization as the authoritative
- definition of a standard.
-
- You may add a passage of up to five words as a Front-Cover Text,
- and a passage of up to 25 words as a Back-Cover Text, to the end of
- the list of Cover Texts in the Modified Version. Only one passage
- of Front-Cover Text and one of Back-Cover Text may be added by (or
- through arrangements made by) any one entity. If the Document
- already includes a cover text for the same cover, previously added
- by you or by arrangement made by the same entity you are acting on
- behalf of, you may not add another; but you may replace the old
- one, on explicit permission from the previous publisher that added
- the old one.
-
- The author(s) and publisher(s) of the Document do not by this
- License give permission to use their names for publicity for or to
- assert or imply endorsement of any Modified Version.
-
- 5. COMBINING DOCUMENTS
-
- You may combine the Document with other documents released under
- this License, under the terms defined in section 4 above for
- modified versions, provided that you include in the combination all
- of the Invariant Sections of all of the original documents,
- unmodified, and list them all as Invariant Sections of your
- combined work in its license notice, and that you preserve all
- their Warranty Disclaimers.
-
- The combined work need only contain one copy of this License, and
- multiple identical Invariant Sections may be replaced with a single
- copy. If there are multiple Invariant Sections with the same name
- but different contents, make the title of each such section unique
- by adding at the end of it, in parentheses, the name of the
- original author or publisher of that section if known, or else a
- unique number. Make the same adjustment to the section titles in
- the list of Invariant Sections in the license notice of the
- combined work.
-
- In the combination, you must combine any sections Entitled
- "History" in the various original documents, forming one section
- Entitled "History"; likewise combine any sections Entitled
- "Acknowledgements", and any sections Entitled "Dedications". You
- must delete all sections Entitled "Endorsements."
-
- 6. COLLECTIONS OF DOCUMENTS
-
- You may make a collection consisting of the Document and other
- documents released under this License, and replace the individual
- copies of this License in the various documents with a single copy
- that is included in the collection, provided that you follow the
- rules of this License for verbatim copying of each of the documents
- in all other respects.
-
- You may extract a single document from such a collection, and
- distribute it individually under this License, provided you insert
- a copy of this License into the extracted document, and follow this
- License in all other respects regarding verbatim copying of that
- document.
-
- 7. AGGREGATION WITH INDEPENDENT WORKS
-
- A compilation of the Document or its derivatives with other
- separate and independent documents or works, in or on a volume of a
- storage or distribution medium, is called an "aggregate" if the
- copyright resulting from the compilation is not used to limit the
- legal rights of the compilation's users beyond what the individual
- works permit. When the Document is included in an aggregate, this
- License does not apply to the other works in the aggregate which
- are not themselves derivative works of the Document.
-
- If the Cover Text requirement of section 3 is applicable to these
- copies of the Document, then if the Document is less than one half
- of the entire aggregate, the Document's Cover Texts may be placed
- on covers that bracket the Document within the aggregate, or the
- electronic equivalent of covers if the Document is in electronic
- form. Otherwise they must appear on printed covers that bracket
- the whole aggregate.
-
- 8. TRANSLATION
-
- Translation is considered a kind of modification, so you may
- distribute translations of the Document under the terms of section
- 4. Replacing Invariant Sections with translations requires special
- permission from their copyright holders, but you may include
- translations of some or all Invariant Sections in addition to the
- original versions of these Invariant Sections. You may include a
- translation of this License, and all the license notices in the
- Document, and any Warranty Disclaimers, provided that you also
- include the original English version of this License and the
- original versions of those notices and disclaimers. In case of a
- disagreement between the translation and the original version of
- this License or a notice or disclaimer, the original version will
- prevail.
-
- If a section in the Document is Entitled "Acknowledgements",
- "Dedications", or "History", the requirement (section 4) to
- Preserve its Title (section 1) will typically require changing the
- actual title.
-
- 9. TERMINATION
-
- You may not copy, modify, sublicense, or distribute the Document
- except as expressly provided under this License. Any attempt
- otherwise to copy, modify, sublicense, or distribute it is void,
- and will automatically terminate your rights under this License.
-
- However, if you cease all violation of this License, then your
- license from a particular copyright holder is reinstated (a)
- provisionally, unless and until the copyright holder explicitly and
- finally terminates your license, and (b) permanently, if the
- copyright holder fails to notify you of the violation by some
- reasonable means prior to 60 days after the cessation.
-
- Moreover, your license from a particular copyright holder is
- reinstated permanently if the copyright holder notifies you of the
- violation by some reasonable means, this is the first time you have
- received notice of violation of this License (for any work) from
- that copyright holder, and you cure the violation prior to 30 days
- after your receipt of the notice.
-
- Termination of your rights under this section does not terminate
- the licenses of parties who have received copies or rights from you
- under this License. If your rights have been terminated and not
- permanently reinstated, receipt of a copy of some or all of the
- same material does not give you any rights to use it.
-
- 10. FUTURE REVISIONS OF THIS LICENSE
-
- The Free Software Foundation may publish new, revised versions of
- the GNU Free Documentation License from time to time. Such new
- versions will be similar in spirit to the present version, but may
- differ in detail to address new problems or concerns. See
- <http://www.gnu.org/copyleft/>.
-
- Each version of the License is given a distinguishing version
- number. If the Document specifies that a particular numbered
- version of this License "or any later version" applies to it, you
- have the option of following the terms and conditions either of
- that specified version or of any later version that has been
- published (not as a draft) by the Free Software Foundation. If the
- Document does not specify a version number of this License, you may
- choose any version ever published (not as a draft) by the Free
- Software Foundation. If the Document specifies that a proxy can
- decide which future versions of this License can be used, that
- proxy's public statement of acceptance of a version permanently
- authorizes you to choose that version for the Document.
-
- 11. RELICENSING
-
- "Massive Multiauthor Collaboration Site" (or "MMC Site") means any
- World Wide Web server that publishes copyrightable works and also
- provides prominent facilities for anybody to edit those works. A
- public wiki that anybody can edit is an example of such a server.
- A "Massive Multiauthor Collaboration" (or "MMC") contained in the
- site means any set of copyrightable works thus published on the MMC
- site.
-
- "CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
- license published by Creative Commons Corporation, a not-for-profit
- corporation with a principal place of business in San Francisco,
- California, as well as future copyleft versions of that license
- published by that same organization.
-
- "Incorporate" means to publish or republish a Document, in whole or
- in part, as part of another Document.
-
- An MMC is "eligible for relicensing" if it is licensed under this
- License, and if all works that were first published under this
- License somewhere other than this MMC, and subsequently
- incorporated in whole or in part into the MMC, (1) had no cover
- texts or invariant sections, and (2) were thus incorporated prior
- to November 1, 2008.
-
- The operator of an MMC Site may republish an MMC contained in the
- site under CC-BY-SA on the same site at any time before August 1,
- 2009, provided the MMC is eligible for relicensing.
-
-ADDENDUM: How to use this License for your documents
-====================================================
-
-To use this License in a document you have written, include a copy of
-the License in the document and put the following copyright and license
-notices just after the title page:
-
- Copyright (C) YEAR YOUR NAME.
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3
- or any later version published by the Free Software Foundation;
- with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
- Texts. A copy of the license is included in the section entitled ``GNU
- Free Documentation License''.
-
- If you have Invariant Sections, Front-Cover Texts and Back-Cover
-Texts, replace the "with...Texts." line with this:
-
- with the Invariant Sections being LIST THEIR TITLES, with
- the Front-Cover Texts being LIST, and with the Back-Cover Texts
- being LIST.
-
- If you have Invariant Sections without Cover Texts, or some other
-combination of the three, merge those two alternatives to suit the
-situation.
-
- If your document contains nontrivial examples of program code, we
-recommend releasing these examples in parallel under your choice of free
-software license, such as the GNU General Public License, to permit
-their use in free software.
-
-
-File: gfortran.info, Node: Funding, Next: Option Index, Prev: GNU Free Documentation License, Up: Top
-
-Funding Free Software
-*********************
-
-If you want to have more free software a few years from now, it makes
-sense for you to help encourage people to contribute funds for its
-development. The most effective approach known is to encourage
-commercial redistributors to donate.
-
- Users of free software systems can boost the pace of development by
-encouraging for-a-fee distributors to donate part of their selling price
-to free software developers--the Free Software Foundation, and others.
-
- The way to convince distributors to do this is to demand it and
-expect it from them. So when you compare distributors, judge them
-partly by how much they give to free software development. Show
-distributors they must compete to be the one who gives the most.
-
- To make this approach work, you must insist on numbers that you can
-compare, such as, "We will donate ten dollars to the Frobnitz project
-for each disk sold." Don't be satisfied with a vague promise, such as
-"A portion of the profits are donated," since it doesn't give a basis
-for comparison.
-
- Even a precise fraction "of the profits from this disk" is not very
-meaningful, since creative accounting and unrelated business decisions
-can greatly alter what fraction of the sales price counts as profit. If
-the price you pay is $50, ten percent of the profit is probably less
-than a dollar; it might be a few cents, or nothing at all.
-
- Some redistributors do development work themselves. This is useful
-too; but to keep everyone honest, you need to inquire how much they do,
-and what kind. Some kinds of development make much more long-term
-difference than others. For example, maintaining a separate version of
-a program contributes very little; maintaining the standard version of a
-program for the whole community contributes much. Easy new ports
-contribute little, since someone else would surely do them; difficult
-ports such as adding a new CPU to the GNU Compiler Collection contribute
-more; major new features or packages contribute the most.
-
- By establishing the idea that supporting further development is "the
-proper thing to do" when distributing free software for a fee, we can
-assure a steady flow of resources into making more free software.
-
- Copyright (C) 1994 Free Software Foundation, Inc.
- Verbatim copying and redistribution of this section is permitted
- without royalty; alteration is not permitted.
-
-
-File: gfortran.info, Node: Option Index, Next: Keyword Index, Prev: Funding, Up: Top
-
-Option Index
-************
-
-'gfortran''s command line options are indexed here without any initial
-'-' or '--'. Where an option has both positive and negative forms (such
-as -foption and -fno-option), relevant entries in the manual are indexed
-under the most appropriate form; it may sometimes be useful to look up
-both forms.
-
-
-* Menu:
-
-* 'A-PREDICATE=ANSWER': Preprocessing Options.
- (line 119)
-* 'APREDICATE=ANSWER': Preprocessing Options.
- (line 113)
-* 'backslash': Fortran Dialect Options.
- (line 40)
-* 'C': Preprocessing Options.
- (line 122)
-* 'CC': Preprocessing Options.
- (line 137)
-* 'cpp': Preprocessing Options.
- (line 12)
-* 'dD': Preprocessing Options.
- (line 35)
-* 'dI': Preprocessing Options.
- (line 51)
-* 'dM': Preprocessing Options.
- (line 26)
-* 'dN': Preprocessing Options.
- (line 41)
-* 'DNAME': Preprocessing Options.
- (line 151)
-* 'DNAME=DEFINITION': Preprocessing Options.
- (line 154)
-* 'dU': Preprocessing Options.
- (line 44)
-* 'faggressive-function-elimination': Code Gen Options. (line 340)
-* 'falign-commons': Code Gen Options. (line 313)
-* 'fall-intrinsics': Fortran Dialect Options.
- (line 17)
-* 'fblas-matmul-limit': Code Gen Options. (line 268)
-* 'fbounds-check': Code Gen Options. (line 192)
-* 'fcheck': Code Gen Options. (line 142)
-* 'fcheck-array-temporaries': Code Gen Options. (line 195)
-* 'fcoarray': Code Gen Options. (line 128)
-* 'fconvert='CONVERSION: Runtime Options. (line 10)
-* 'fcray-pointer': Fortran Dialect Options.
- (line 86)
-* 'fd-lines-as-code': Fortran Dialect Options.
- (line 27)
-* 'fd-lines-as-comments': Fortran Dialect Options.
- (line 27)
-* 'fdefault-double-8': Fortran Dialect Options.
- (line 124)
-* 'fdefault-integer-8': Fortran Dialect Options.
- (line 110)
-* 'fdefault-real-8': Fortran Dialect Options.
- (line 116)
-* 'fdollar-ok': Fortran Dialect Options.
- (line 34)
-* 'fdump-fortran-optimized': Debugging Options. (line 15)
-* 'fdump-fortran-original': Debugging Options. (line 10)
-* 'fdump-parse-tree': Debugging Options. (line 19)
-* 'fexternal-blas': Code Gen Options. (line 260)
-* ff2c: Code Gen Options. (line 25)
-* 'ffixed-line-length-'N: Fortran Dialect Options.
- (line 57)
-* 'ffpe-summary='LIST: Debugging Options. (line 51)
-* 'ffpe-trap='LIST: Debugging Options. (line 25)
-* 'ffree-form': Fortran Dialect Options.
- (line 11)
-* 'ffree-line-length-'N: Fortran Dialect Options.
- (line 70)
-* 'fimplicit-none': Fortran Dialect Options.
- (line 81)
-* 'finit-character': Code Gen Options. (line 288)
-* 'finit-integer': Code Gen Options. (line 288)
-* 'finit-local-zero': Code Gen Options. (line 288)
-* 'finit-logical': Code Gen Options. (line 288)
-* 'finit-real': Code Gen Options. (line 288)
-* 'finteger-4-integer-8': Fortran Dialect Options.
- (line 133)
-* 'fintrinsic-modules-path' DIR: Directory Options. (line 36)
-* 'fmax-array-constructor': Code Gen Options. (line 198)
-* 'fmax-errors='N: Error and Warning Options.
- (line 27)
-* 'fmax-identifier-length='N: Fortran Dialect Options.
- (line 77)
-* 'fmax-stack-var-size': Code Gen Options. (line 216)
-* 'fmax-subrecord-length='LENGTH: Runtime Options. (line 29)
-* 'fmodule-private': Fortran Dialect Options.
- (line 52)
-* 'fno-automatic': Code Gen Options. (line 15)
-* 'fno-backtrace': Debugging Options. (line 61)
-* 'fno-fixed-form': Fortran Dialect Options.
- (line 11)
-* 'fno-protect-parens': Code Gen Options. (line 325)
-* 'fno-underscoring': Code Gen Options. (line 54)
-* 'fopenmp': Fortran Dialect Options.
- (line 90)
-* 'fpack-derived': Code Gen Options. (line 238)
-* 'fpp': Preprocessing Options.
- (line 12)
-* 'frange-check': Fortran Dialect Options.
- (line 98)
-* 'freal-4-real-10': Fortran Dialect Options.
- (line 148)
-* 'freal-4-real-16': Fortran Dialect Options.
- (line 148)
-* 'freal-4-real-8': Fortran Dialect Options.
- (line 148)
-* 'freal-8-real-10': Fortran Dialect Options.
- (line 148)
-* 'freal-8-real-16': Fortran Dialect Options.
- (line 148)
-* 'freal-8-real-4': Fortran Dialect Options.
- (line 148)
-* 'frealloc-lhs': Code Gen Options. (line 334)
-* 'frecord-marker='LENGTH: Runtime Options. (line 21)
-* 'frecursive': Code Gen Options. (line 279)
-* 'frepack-arrays': Code Gen Options. (line 244)
-* 'frontend-optimize': Code Gen Options. (line 348)
-* 'fsecond-underscore': Code Gen Options. (line 111)
-* 'fshort-enums': Code Gen Options. (line 254)
-* 'fshort-enums' <1>: Fortran 2003 status. (line 93)
-* 'fsign-zero': Runtime Options. (line 34)
-* 'fstack-arrays': Code Gen Options. (line 230)
-* 'fsyntax-only': Error and Warning Options.
- (line 33)
-* 'fworking-directory': Preprocessing Options.
- (line 55)
-* 'H': Preprocessing Options.
- (line 174)
-* 'I'DIR: Directory Options. (line 14)
-* 'idirafter DIR': Preprocessing Options.
- (line 69)
-* 'imultilib DIR': Preprocessing Options.
- (line 76)
-* 'iprefix PREFIX': Preprocessing Options.
- (line 80)
-* 'iquote DIR': Preprocessing Options.
- (line 89)
-* 'isysroot DIR': Preprocessing Options.
- (line 85)
-* 'isystem DIR': Preprocessing Options.
- (line 96)
-* 'J'DIR: Directory Options. (line 29)
-* 'M'DIR: Directory Options. (line 29)
-* 'nostdinc': Preprocessing Options.
- (line 104)
-* 'P': Preprocessing Options.
- (line 179)
-* 'pedantic': Error and Warning Options.
- (line 38)
-* 'pedantic-errors': Error and Warning Options.
- (line 57)
-* 'static-libgfortran': Link Options. (line 11)
-* 'std='STD option: Fortran Dialect Options.
- (line 159)
-* 'UNAME': Preprocessing Options.
- (line 185)
-* 'undef': Preprocessing Options.
- (line 109)
-* 'Waliasing': Error and Warning Options.
- (line 69)
-* 'Walign-commons': Error and Warning Options.
- (line 198)
-* 'Wall': Error and Warning Options.
- (line 61)
-* 'Wampersand': Error and Warning Options.
- (line 86)
-* 'Warray-temporaries': Error and Warning Options.
- (line 94)
-* 'Wc-binding-type': Error and Warning Options.
- (line 99)
-* 'Wcharacter-truncation': Error and Warning Options.
- (line 106)
-* 'Wcompare-reals': Error and Warning Options.
- (line 225)
-* 'Wconversion': Error and Warning Options.
- (line 113)
-* 'Wconversion-extra': Error and Warning Options.
- (line 117)
-* 'Werror': Error and Warning Options.
- (line 237)
-* 'Wextra': Error and Warning Options.
- (line 120)
-* 'Wfunction-elimination': Error and Warning Options.
- (line 204)
-* 'Wimplicit-interface': Error and Warning Options.
- (line 125)
-* 'Wimplicit-procedure': Error and Warning Options.
- (line 131)
-* 'Wintrinsic-shadow': Error and Warning Options.
- (line 180)
-* 'Wintrinsics-std': Error and Warning Options.
- (line 135)
-* 'Wline-truncation': Error and Warning Options.
- (line 109)
-* 'Wreal-q-constant': Error and Warning Options.
- (line 142)
-* 'Wrealloc-lhs': Error and Warning Options.
- (line 208)
-* 'Wrealloc-lhs-all': Error and Warning Options.
- (line 220)
-* 'Wsurprising': Error and Warning Options.
- (line 146)
-* 'Wtabs': Error and Warning Options.
- (line 168)
-* 'Wtargt-lifetime': Error and Warning Options.
- (line 229)
-* 'Wunderflow': Error and Warning Options.
- (line 176)
-* 'Wunused-dummy-argument': Error and Warning Options.
- (line 187)
-* 'Wunused-parameter': Error and Warning Options.
- (line 191)
-* 'Wzerotrip': Error and Warning Options.
- (line 233)
-
-
-File: gfortran.info, Node: Keyword Index, Prev: Option Index, Up: Top
-
-Keyword Index
-*************
-
-
-* Menu:
-
-* '$': Fortran Dialect Options.
- (line 34)
-* '%LOC': Argument list functions.
- (line 6)
-* '%REF': Argument list functions.
- (line 6)
-* '%VAL': Argument list functions.
- (line 6)
-* '&': Error and Warning Options.
- (line 86)
-* '[...]': Fortran 2003 status. (line 78)
-* _gfortran_set_args: _gfortran_set_args. (line 6)
-* _gfortran_set_convert: _gfortran_set_convert.
- (line 6)
-* _gfortran_set_fpe: _gfortran_set_fpe. (line 6)
-* _gfortran_set_max_subrecord_length: _gfortran_set_max_subrecord_length.
- (line 6)
-* _gfortran_set_options: _gfortran_set_options.
- (line 6)
-* _gfortran_set_record_marker: _gfortran_set_record_marker.
- (line 6)
-* ABORT: ABORT. (line 6)
-* ABS: ABS. (line 6)
-* absolute value: ABS. (line 6)
-* ACCESS: ACCESS. (line 6)
-* 'ACCESS='STREAM'' I/O: Fortran 2003 status. (line 103)
-* ACHAR: ACHAR. (line 6)
-* ACOS: ACOS. (line 6)
-* ACOSH: ACOSH. (line 6)
-* adjust string: ADJUSTL. (line 6)
-* adjust string <1>: ADJUSTR. (line 6)
-* ADJUSTL: ADJUSTL. (line 6)
-* ADJUSTR: ADJUSTR. (line 6)
-* AIMAG: AIMAG. (line 6)
-* AINT: AINT. (line 6)
-* ALARM: ALARM. (line 6)
-* ALGAMA: LOG_GAMMA. (line 6)
-* aliasing: Error and Warning Options.
- (line 69)
-* alignment of 'COMMON' blocks: Error and Warning Options.
- (line 198)
-* alignment of 'COMMON' blocks <1>: Code Gen Options. (line 313)
-* ALL: ALL. (line 6)
-* all warnings: Error and Warning Options.
- (line 61)
-* 'ALLOCATABLE' components of derived types: Fortran 2003 status.
- (line 101)
-* 'ALLOCATABLE' dummy arguments: Fortran 2003 status. (line 99)
-* 'ALLOCATABLE' function results: Fortran 2003 status. (line 100)
-* ALLOCATED: ALLOCATED. (line 6)
-* allocation, moving: MOVE_ALLOC. (line 6)
-* allocation, status: ALLOCATED. (line 6)
-* ALOG: LOG. (line 6)
-* ALOG10: LOG10. (line 6)
-* AMAX0: MAX. (line 6)
-* AMAX1: MAX. (line 6)
-* AMIN0: MIN. (line 6)
-* AMIN1: MIN. (line 6)
-* AMOD: MOD. (line 6)
-* AND: AND. (line 6)
-* ANINT: ANINT. (line 6)
-* ANY: ANY. (line 6)
-* area hyperbolic cosine: ACOSH. (line 6)
-* area hyperbolic sine: ASINH. (line 6)
-* area hyperbolic tangent: ATANH. (line 6)
-* argument list functions: Argument list functions.
- (line 6)
-* arguments, to program: COMMAND_ARGUMENT_COUNT.
- (line 6)
-* arguments, to program <1>: GETARG. (line 6)
-* arguments, to program <2>: GET_COMMAND. (line 6)
-* arguments, to program <3>: GET_COMMAND_ARGUMENT.
- (line 6)
-* arguments, to program <4>: IARGC. (line 6)
-* array, add elements: SUM. (line 6)
-* array, AND: IALL. (line 6)
-* array, apply condition: ALL. (line 6)
-* array, apply condition <1>: ANY. (line 6)
-* array, bounds checking: Code Gen Options. (line 142)
-* array, change dimensions: RESHAPE. (line 6)
-* array, combine arrays: MERGE. (line 6)
-* array, condition testing: ALL. (line 6)
-* array, condition testing <1>: ANY. (line 6)
-* array, conditionally add elements: SUM. (line 6)
-* array, conditionally count elements: COUNT. (line 6)
-* array, conditionally multiply elements: PRODUCT. (line 6)
-* array, constructors: Fortran 2003 status. (line 78)
-* array, count elements: SIZE. (line 6)
-* array, duplicate dimensions: SPREAD. (line 6)
-* array, duplicate elements: SPREAD. (line 6)
-* array, element counting: COUNT. (line 6)
-* array, gather elements: PACK. (line 6)
-* array, increase dimension: SPREAD. (line 6)
-* array, increase dimension <1>: UNPACK. (line 6)
-* array, indices of type real: Real array indices. (line 6)
-* array, location of maximum element: MAXLOC. (line 6)
-* array, location of minimum element: MINLOC. (line 6)
-* array, lower bound: LBOUND. (line 6)
-* array, maximum value: MAXVAL. (line 6)
-* array, merge arrays: MERGE. (line 6)
-* array, minimum value: MINVAL. (line 6)
-* array, multiply elements: PRODUCT. (line 6)
-* array, number of elements: COUNT. (line 6)
-* array, number of elements <1>: SIZE. (line 6)
-* array, OR: IANY. (line 6)
-* array, packing: PACK. (line 6)
-* array, parity: IPARITY. (line 6)
-* array, permutation: CSHIFT. (line 6)
-* array, product: PRODUCT. (line 6)
-* array, reduce dimension: PACK. (line 6)
-* array, rotate: CSHIFT. (line 6)
-* array, scatter elements: UNPACK. (line 6)
-* array, shape: SHAPE. (line 6)
-* array, shift: EOSHIFT. (line 6)
-* array, shift circularly: CSHIFT. (line 6)
-* array, size: SIZE. (line 6)
-* array, sum: SUM. (line 6)
-* array, transmogrify: RESHAPE. (line 6)
-* array, transpose: TRANSPOSE. (line 6)
-* array, unpacking: UNPACK. (line 6)
-* array, upper bound: UBOUND. (line 6)
-* array, XOR: IPARITY. (line 6)
-* ASCII collating sequence: ACHAR. (line 6)
-* ASCII collating sequence <1>: IACHAR. (line 6)
-* ASIN: ASIN. (line 6)
-* ASINH: ASINH. (line 6)
-* ASSOCIATED: ASSOCIATED. (line 6)
-* association status: ASSOCIATED. (line 6)
-* association status, C pointer: C_ASSOCIATED. (line 6)
-* ATAN: ATAN. (line 6)
-* ATAN2: ATAN2. (line 6)
-* ATANH: ATANH. (line 6)
-* Atomic subroutine, define: ATOMIC_DEFINE. (line 6)
-* Atomic subroutine, reference: ATOMIC_REF. (line 6)
-* ATOMIC_DEFINE: ATOMIC_DEFINE. (line 6)
-* ATOMIC_REF: ATOMIC_REF. (line 6)
-* Authors: Contributors. (line 6)
-* backslash: Fortran Dialect Options.
- (line 40)
-* BACKTRACE: BACKTRACE. (line 6)
-* backtrace: Debugging Options. (line 61)
-* backtrace <1>: BACKTRACE. (line 6)
-* base 10 logarithm function: LOG10. (line 6)
-* BESJ0: BESSEL_J0. (line 6)
-* BESJ1: BESSEL_J1. (line 6)
-* BESJN: BESSEL_JN. (line 6)
-* Bessel function, first kind: BESSEL_J0. (line 6)
-* Bessel function, first kind <1>: BESSEL_J1. (line 6)
-* Bessel function, first kind <2>: BESSEL_JN. (line 6)
-* Bessel function, second kind: BESSEL_Y0. (line 6)
-* Bessel function, second kind <1>: BESSEL_Y1. (line 6)
-* Bessel function, second kind <2>: BESSEL_YN. (line 6)
-* BESSEL_J0: BESSEL_J0. (line 6)
-* BESSEL_J1: BESSEL_J1. (line 6)
-* BESSEL_JN: BESSEL_JN. (line 6)
-* BESSEL_Y0: BESSEL_Y0. (line 6)
-* BESSEL_Y1: BESSEL_Y1. (line 6)
-* BESSEL_YN: BESSEL_YN. (line 6)
-* BESY0: BESSEL_Y0. (line 6)
-* BESY1: BESSEL_Y1. (line 6)
-* BESYN: BESSEL_YN. (line 6)
-* BGE: BGE. (line 6)
-* BGT: BGT. (line 6)
-* binary representation: POPCNT. (line 6)
-* binary representation <1>: POPPAR. (line 6)
-* bits set: POPCNT. (line 6)
-* bits, AND of array elements: IALL. (line 6)
-* bits, clear: IBCLR. (line 6)
-* bits, extract: IBITS. (line 6)
-* bits, get: IBITS. (line 6)
-* bits, merge: MERGE_BITS. (line 6)
-* bits, move: MVBITS. (line 6)
-* bits, move <1>: TRANSFER. (line 6)
-* bits, negate: NOT. (line 6)
-* bits, number of: BIT_SIZE. (line 6)
-* bits, OR of array elements: IANY. (line 6)
-* bits, set: IBSET. (line 6)
-* bits, shift: ISHFT. (line 6)
-* bits, shift circular: ISHFTC. (line 6)
-* bits, shift left: LSHIFT. (line 6)
-* bits, shift left <1>: SHIFTL. (line 6)
-* bits, shift right: RSHIFT. (line 6)
-* bits, shift right <1>: SHIFTA. (line 6)
-* bits, shift right <2>: SHIFTR. (line 6)
-* bits, testing: BTEST. (line 6)
-* bits, unset: IBCLR. (line 6)
-* bits, XOR of array elements: IPARITY. (line 6)
-* bitwise comparison: BGE. (line 6)
-* bitwise comparison <1>: BGT. (line 6)
-* bitwise comparison <2>: BLE. (line 6)
-* bitwise comparison <3>: BLT. (line 6)
-* bitwise logical and: AND. (line 6)
-* bitwise logical and <1>: IAND. (line 6)
-* bitwise logical exclusive or: IEOR. (line 6)
-* bitwise logical exclusive or <1>: XOR. (line 6)
-* bitwise logical not: NOT. (line 6)
-* bitwise logical or: IOR. (line 6)
-* bitwise logical or <1>: OR. (line 6)
-* BIT_SIZE: BIT_SIZE. (line 6)
-* BLE: BLE. (line 6)
-* BLT: BLT. (line 6)
-* bounds checking: Code Gen Options. (line 142)
-* BOZ literal constants: BOZ literal constants.
- (line 6)
-* BTEST: BTEST. (line 6)
-* CABS: ABS. (line 6)
-* calling convention: Code Gen Options. (line 25)
-* CCOS: COS. (line 6)
-* CDABS: ABS. (line 6)
-* CDCOS: COS. (line 6)
-* CDEXP: EXP. (line 6)
-* CDLOG: LOG. (line 6)
-* CDSIN: SIN. (line 6)
-* CDSQRT: SQRT. (line 6)
-* CEILING: CEILING. (line 6)
-* ceiling: ANINT. (line 6)
-* ceiling <1>: CEILING. (line 6)
-* CEXP: EXP. (line 6)
-* CHAR: CHAR. (line 6)
-* character kind: SELECTED_CHAR_KIND. (line 6)
-* character set: Fortran Dialect Options.
- (line 34)
-* CHDIR: CHDIR. (line 6)
-* checking array temporaries: Code Gen Options. (line 142)
-* checking subscripts: Code Gen Options. (line 142)
-* CHMOD: CHMOD. (line 6)
-* clock ticks: MCLOCK. (line 6)
-* clock ticks <1>: MCLOCK8. (line 6)
-* clock ticks <2>: SYSTEM_CLOCK. (line 6)
-* CLOG: LOG. (line 6)
-* CMPLX: CMPLX. (line 6)
-* coarray, 'IMAGE_INDEX': IMAGE_INDEX. (line 6)
-* coarray, lower bound: LCOBOUND. (line 6)
-* coarray, 'NUM_IMAGES': NUM_IMAGES. (line 6)
-* coarray, 'THIS_IMAGE': THIS_IMAGE. (line 6)
-* coarray, upper bound: UCOBOUND. (line 6)
-* coarrays: Code Gen Options. (line 128)
-* code generation, conventions: Code Gen Options. (line 6)
-* collating sequence, ASCII: ACHAR. (line 6)
-* collating sequence, ASCII <1>: IACHAR. (line 6)
-* command line: EXECUTE_COMMAND_LINE.
- (line 6)
-* command options: Invoking GNU Fortran.
- (line 6)
-* command-line arguments: COMMAND_ARGUMENT_COUNT.
- (line 6)
-* command-line arguments <1>: GETARG. (line 6)
-* command-line arguments <2>: GET_COMMAND. (line 6)
-* command-line arguments <3>: GET_COMMAND_ARGUMENT.
- (line 6)
-* command-line arguments <4>: IARGC. (line 6)
-* command-line arguments, number of: COMMAND_ARGUMENT_COUNT.
- (line 6)
-* command-line arguments, number of <1>: IARGC. (line 6)
-* COMMAND_ARGUMENT_COUNT: COMMAND_ARGUMENT_COUNT.
- (line 6)
-* 'COMMON': Volatile COMMON blocks.
- (line 6)
-* compiler flags inquiry function: COMPILER_OPTIONS. (line 6)
-* compiler, name and version: COMPILER_VERSION. (line 6)
-* COMPILER_OPTIONS: COMPILER_OPTIONS. (line 6)
-* COMPILER_VERSION: COMPILER_VERSION. (line 6)
-* COMPLEX: COMPLEX. (line 6)
-* complex conjugate: CONJG. (line 6)
-* Complex function: Alternate complex function syntax.
- (line 6)
-* complex numbers, conversion to: CMPLX. (line 6)
-* complex numbers, conversion to <1>: COMPLEX. (line 6)
-* complex numbers, conversion to <2>: DCMPLX. (line 6)
-* complex numbers, imaginary part: AIMAG. (line 6)
-* complex numbers, real part: DREAL. (line 6)
-* complex numbers, real part <1>: REAL. (line 6)
-* Conditional compilation: Preprocessing and conditional compilation.
- (line 6)
-* CONJG: CONJG. (line 6)
-* consistency, durability: Data consistency and durability.
- (line 6)
-* Contributing: Contributing. (line 6)
-* Contributors: Contributors. (line 6)
-* conversion: Error and Warning Options.
- (line 113)
-* conversion <1>: Error and Warning Options.
- (line 117)
-* conversion, to character: CHAR. (line 6)
-* conversion, to complex: CMPLX. (line 6)
-* conversion, to complex <1>: COMPLEX. (line 6)
-* conversion, to complex <2>: DCMPLX. (line 6)
-* conversion, to integer: Implicitly convert LOGICAL and INTEGER values.
- (line 6)
-* conversion, to integer <1>: IACHAR. (line 6)
-* conversion, to integer <2>: ICHAR. (line 6)
-* conversion, to integer <3>: INT. (line 6)
-* conversion, to integer <4>: INT2. (line 6)
-* conversion, to integer <5>: INT8. (line 6)
-* conversion, to integer <6>: LONG. (line 6)
-* conversion, to logical: Implicitly convert LOGICAL and INTEGER values.
- (line 6)
-* conversion, to logical <1>: LOGICAL. (line 6)
-* conversion, to real: DBLE. (line 6)
-* conversion, to real <1>: REAL. (line 6)
-* conversion, to string: CTIME. (line 6)
-* 'CONVERT' specifier: CONVERT specifier. (line 6)
-* core, dump: ABORT. (line 6)
-* COS: COS. (line 6)
-* COSH: COSH. (line 6)
-* cosine: COS. (line 6)
-* cosine, hyperbolic: COSH. (line 6)
-* cosine, hyperbolic, inverse: ACOSH. (line 6)
-* cosine, inverse: ACOS. (line 6)
-* COUNT: COUNT. (line 6)
-* CPP: Preprocessing and conditional compilation.
- (line 6)
-* CPP <1>: Preprocessing Options.
- (line 6)
-* CPU_TIME: CPU_TIME. (line 6)
-* Credits: Contributors. (line 6)
-* CSHIFT: CSHIFT. (line 6)
-* CSIN: SIN. (line 6)
-* CSQRT: SQRT. (line 6)
-* CTIME: CTIME. (line 6)
-* current date: DATE_AND_TIME. (line 6)
-* current date <1>: FDATE. (line 6)
-* current date <2>: IDATE. (line 6)
-* current time: DATE_AND_TIME. (line 6)
-* current time <1>: FDATE. (line 6)
-* current time <2>: ITIME. (line 6)
-* current time <3>: TIME. (line 6)
-* current time <4>: TIME8. (line 6)
-* C_ASSOCIATED: C_ASSOCIATED. (line 6)
-* C_FUNLOC: C_FUNLOC. (line 6)
-* C_F_POINTER: C_F_POINTER. (line 6)
-* C_F_PROCPOINTER: C_F_PROCPOINTER. (line 6)
-* C_LOC: C_LOC. (line 6)
-* C_SIZEOF: C_SIZEOF. (line 6)
-* DABS: ABS. (line 6)
-* DACOS: ACOS. (line 6)
-* DACOSH: ACOSH. (line 6)
-* DASIN: ASIN. (line 6)
-* DASINH: ASINH. (line 6)
-* DATAN: ATAN. (line 6)
-* DATAN2: ATAN2. (line 6)
-* DATANH: ATANH. (line 6)
-* date, current: DATE_AND_TIME. (line 6)
-* date, current <1>: FDATE. (line 6)
-* date, current <2>: IDATE. (line 6)
-* DATE_AND_TIME: DATE_AND_TIME. (line 6)
-* DBESJ0: BESSEL_J0. (line 6)
-* DBESJ1: BESSEL_J1. (line 6)
-* DBESJN: BESSEL_JN. (line 6)
-* DBESY0: BESSEL_Y0. (line 6)
-* DBESY1: BESSEL_Y1. (line 6)
-* DBESYN: BESSEL_YN. (line 6)
-* DBLE: DBLE. (line 6)
-* DCMPLX: DCMPLX. (line 6)
-* DCONJG: CONJG. (line 6)
-* DCOS: COS. (line 6)
-* DCOSH: COSH. (line 6)
-* DDIM: DIM. (line 6)
-* debugging information options: Debugging Options. (line 6)
-* debugging, preprocessor: Preprocessing Options.
- (line 26)
-* debugging, preprocessor <1>: Preprocessing Options.
- (line 35)
-* debugging, preprocessor <2>: Preprocessing Options.
- (line 41)
-* debugging, preprocessor <3>: Preprocessing Options.
- (line 44)
-* debugging, preprocessor <4>: Preprocessing Options.
- (line 51)
-* 'DECODE': ENCODE and DECODE statements.
- (line 6)
-* delayed execution: ALARM. (line 6)
-* delayed execution <1>: SLEEP. (line 6)
-* DEXP: EXP. (line 6)
-* DFLOAT: REAL. (line 6)
-* DGAMMA: GAMMA. (line 6)
-* dialect options: Fortran Dialect Options.
- (line 6)
-* DIGITS: DIGITS. (line 6)
-* DIM: DIM. (line 6)
-* DIMAG: AIMAG. (line 6)
-* DINT: AINT. (line 6)
-* directive, 'INCLUDE': Directory Options. (line 6)
-* directory, options: Directory Options. (line 6)
-* directory, search paths for inclusion: Directory Options. (line 14)
-* division, modulo: MODULO. (line 6)
-* division, remainder: MOD. (line 6)
-* DLGAMA: LOG_GAMMA. (line 6)
-* DLOG: LOG. (line 6)
-* DLOG10: LOG10. (line 6)
-* DMAX1: MAX. (line 6)
-* DMIN1: MIN. (line 6)
-* DMOD: MOD. (line 6)
-* DNINT: ANINT. (line 6)
-* dot product: DOT_PRODUCT. (line 6)
-* DOT_PRODUCT: DOT_PRODUCT. (line 6)
-* DPROD: DPROD. (line 6)
-* DREAL: DREAL. (line 6)
-* DSHIFTL: DSHIFTL. (line 6)
-* DSHIFTR: DSHIFTR. (line 6)
-* DSIGN: SIGN. (line 6)
-* DSIN: SIN. (line 6)
-* DSINH: SINH. (line 6)
-* DSQRT: SQRT. (line 6)
-* DTAN: TAN. (line 6)
-* DTANH: TANH. (line 6)
-* DTIME: DTIME. (line 6)
-* dummy argument, unused: Error and Warning Options.
- (line 187)
-* elapsed time: DTIME. (line 6)
-* elapsed time <1>: SECNDS. (line 6)
-* elapsed time <2>: SECOND. (line 6)
-* Elimination of functions with identical argument lists: Code Gen Options.
- (line 340)
-* 'ENCODE': ENCODE and DECODE statements.
- (line 6)
-* 'ENUM' statement: Fortran 2003 status. (line 93)
-* 'ENUMERATOR' statement: Fortran 2003 status. (line 93)
-* environment variable: Environment Variables.
- (line 6)
-* environment variable <1>: Runtime. (line 6)
-* environment variable <2>: GETENV. (line 6)
-* environment variable <3>: GET_ENVIRONMENT_VARIABLE.
- (line 6)
-* EOSHIFT: EOSHIFT. (line 6)
-* EPSILON: EPSILON. (line 6)
-* ERF: ERF. (line 6)
-* ERFC: ERFC. (line 6)
-* ERFC_SCALED: ERFC_SCALED. (line 6)
-* error function: ERF. (line 6)
-* error function, complementary: ERFC. (line 6)
-* error function, complementary, exponentially-scaled: ERFC_SCALED.
- (line 6)
-* errors, limiting: Error and Warning Options.
- (line 27)
-* escape characters: Fortran Dialect Options.
- (line 40)
-* ETIME: ETIME. (line 6)
-* Euclidean distance: HYPOT. (line 6)
-* Euclidean vector norm: NORM2. (line 6)
-* EXECUTE_COMMAND_LINE: EXECUTE_COMMAND_LINE.
- (line 6)
-* EXIT: EXIT. (line 6)
-* EXP: EXP. (line 6)
-* EXPONENT: EXPONENT. (line 6)
-* exponential function: EXP. (line 6)
-* exponential function, inverse: LOG. (line 6)
-* exponential function, inverse <1>: LOG10. (line 6)
-* expression size: C_SIZEOF. (line 6)
-* expression size <1>: SIZEOF. (line 6)
-* EXTENDS_TYPE_OF: EXTENDS_TYPE_OF. (line 6)
-* extensions: Extensions. (line 6)
-* extensions, implemented: Extensions implemented in GNU Fortran.
- (line 6)
-* extensions, not implemented: Extensions not implemented in GNU Fortran.
- (line 6)
-* extra warnings: Error and Warning Options.
- (line 120)
-* 'f2c' calling convention: Code Gen Options. (line 25)
-* 'f2c' calling convention <1>: Code Gen Options. (line 111)
-* Factorial function: GAMMA. (line 6)
-* FDATE: FDATE. (line 6)
-* FDL, GNU Free Documentation License: GNU Free Documentation License.
- (line 6)
-* FGET: FGET. (line 6)
-* FGETC: FGETC. (line 6)
-* file format, fixed: Fortran Dialect Options.
- (line 11)
-* file format, fixed <1>: Fortran Dialect Options.
- (line 57)
-* file format, free: Fortran Dialect Options.
- (line 11)
-* file format, free <1>: Fortran Dialect Options.
- (line 70)
-* file operation, file number: FNUM. (line 6)
-* file operation, flush: FLUSH. (line 6)
-* file operation, position: FSEEK. (line 6)
-* file operation, position <1>: FTELL. (line 6)
-* file operation, read character: FGET. (line 6)
-* file operation, read character <1>: FGETC. (line 6)
-* file operation, seek: FSEEK. (line 6)
-* file operation, write character: FPUT. (line 6)
-* file operation, write character <1>: FPUTC. (line 6)
-* file system, access mode: ACCESS. (line 6)
-* file system, change access mode: CHMOD. (line 6)
-* file system, create link: LINK. (line 6)
-* file system, create link <1>: SYMLNK. (line 6)
-* file system, file creation mask: UMASK. (line 6)
-* file system, file status: FSTAT. (line 6)
-* file system, file status <1>: LSTAT. (line 6)
-* file system, file status <2>: STAT. (line 6)
-* file system, hard link: LINK. (line 6)
-* file system, remove file: UNLINK. (line 6)
-* file system, rename file: RENAME. (line 6)
-* file system, soft link: SYMLNK. (line 6)
-* flags inquiry function: COMPILER_OPTIONS. (line 6)
-* FLOAT: REAL. (line 6)
-* floating point, exponent: EXPONENT. (line 6)
-* floating point, fraction: FRACTION. (line 6)
-* floating point, nearest different: NEAREST. (line 6)
-* floating point, relative spacing: RRSPACING. (line 6)
-* floating point, relative spacing <1>: SPACING. (line 6)
-* floating point, scale: SCALE. (line 6)
-* floating point, set exponent: SET_EXPONENT. (line 6)
-* FLOOR: FLOOR. (line 6)
-* floor: AINT. (line 6)
-* floor <1>: FLOOR. (line 6)
-* FLUSH: FLUSH. (line 6)
-* 'FLUSH' statement: Fortran 2003 status. (line 89)
-* FNUM: FNUM. (line 6)
-* 'FORMAT': Variable FORMAT expressions.
- (line 6)
-* Fortran 77: GNU Fortran and G77. (line 6)
-* FPP: Preprocessing and conditional compilation.
- (line 6)
-* FPUT: FPUT. (line 6)
-* FPUTC: FPUTC. (line 6)
-* FRACTION: FRACTION. (line 6)
-* FREE: FREE. (line 6)
-* Front-end optimization: Code Gen Options. (line 348)
-* FSEEK: FSEEK. (line 6)
-* FSTAT: FSTAT. (line 6)
-* FTELL: FTELL. (line 6)
-* function elimination: Error and Warning Options.
- (line 204)
-* 'g77': GNU Fortran and G77. (line 6)
-* 'g77' calling convention: Code Gen Options. (line 25)
-* 'g77' calling convention <1>: Code Gen Options. (line 111)
-* GAMMA: GAMMA. (line 6)
-* Gamma function: GAMMA. (line 6)
-* Gamma function, logarithm of: LOG_GAMMA. (line 6)
-* GCC: GNU Fortran and GCC. (line 6)
-* GERROR: GERROR. (line 6)
-* GETARG: GETARG. (line 6)
-* GETCWD: GETCWD. (line 6)
-* GETENV: GETENV. (line 6)
-* GETGID: GETGID. (line 6)
-* GETLOG: GETLOG. (line 6)
-* GETPID: GETPID. (line 6)
-* GETUID: GETUID. (line 6)
-* GET_COMMAND: GET_COMMAND. (line 6)
-* GET_COMMAND_ARGUMENT: GET_COMMAND_ARGUMENT.
- (line 6)
-* GET_ENVIRONMENT_VARIABLE: GET_ENVIRONMENT_VARIABLE.
- (line 6)
-* GMTIME: GMTIME. (line 6)
-* GNU Compiler Collection: GNU Fortran and GCC. (line 6)
-* GNU Fortran command options: Invoking GNU Fortran.
- (line 6)
-* Hollerith constants: Hollerith constants support.
- (line 6)
-* HOSTNM: HOSTNM. (line 6)
-* HUGE: HUGE. (line 6)
-* hyperbolic cosine: COSH. (line 6)
-* hyperbolic function, cosine: COSH. (line 6)
-* hyperbolic function, cosine, inverse: ACOSH. (line 6)
-* hyperbolic function, sine: SINH. (line 6)
-* hyperbolic function, sine, inverse: ASINH. (line 6)
-* hyperbolic function, tangent: TANH. (line 6)
-* hyperbolic function, tangent, inverse: ATANH. (line 6)
-* hyperbolic sine: SINH. (line 6)
-* hyperbolic tangent: TANH. (line 6)
-* HYPOT: HYPOT. (line 6)
-* I/O item lists: I/O item lists. (line 6)
-* IABS: ABS. (line 6)
-* IACHAR: IACHAR. (line 6)
-* IALL: IALL. (line 6)
-* IAND: IAND. (line 6)
-* IANY: IANY. (line 6)
-* IARGC: IARGC. (line 6)
-* IBCLR: IBCLR. (line 6)
-* IBITS: IBITS. (line 6)
-* IBSET: IBSET. (line 6)
-* ICHAR: ICHAR. (line 6)
-* IDATE: IDATE. (line 6)
-* IDIM: DIM. (line 6)
-* IDINT: INT. (line 6)
-* IDNINT: NINT. (line 6)
-* IEEE, ISNAN: ISNAN. (line 6)
-* IEOR: IEOR. (line 6)
-* IERRNO: IERRNO. (line 6)
-* IFIX: INT. (line 6)
-* IMAG: AIMAG. (line 6)
-* images, cosubscript to image index conversion: IMAGE_INDEX. (line 6)
-* images, index of this image: THIS_IMAGE. (line 6)
-* images, number of: NUM_IMAGES. (line 6)
-* IMAGE_INDEX: IMAGE_INDEX. (line 6)
-* IMAGPART: AIMAG. (line 6)
-* 'IMPORT' statement: Fortran 2003 status. (line 120)
-* 'INCLUDE' directive: Directory Options. (line 6)
-* inclusion, directory search paths for: Directory Options. (line 14)
-* INDEX: INDEX intrinsic. (line 6)
-* INT: INT. (line 6)
-* INT2: INT2. (line 6)
-* INT8: INT8. (line 6)
-* integer kind: SELECTED_INT_KIND. (line 6)
-* Interoperability: Mixed-Language Programming.
- (line 6)
-* intrinsic: Error and Warning Options.
- (line 180)
-* intrinsic Modules: Intrinsic Modules. (line 6)
-* intrinsic procedures: Intrinsic Procedures.
- (line 6)
-* Introduction: Top. (line 6)
-* inverse hyperbolic cosine: ACOSH. (line 6)
-* inverse hyperbolic sine: ASINH. (line 6)
-* inverse hyperbolic tangent: ATANH. (line 6)
-* 'IOMSG=' specifier: Fortran 2003 status. (line 91)
-* IOR: IOR. (line 6)
-* 'IOSTAT', end of file: IS_IOSTAT_END. (line 6)
-* 'IOSTAT', end of record: IS_IOSTAT_EOR. (line 6)
-* IPARITY: IPARITY. (line 6)
-* IRAND: IRAND. (line 6)
-* ISATTY: ISATTY. (line 6)
-* ISHFT: ISHFT. (line 6)
-* ISHFTC: ISHFTC. (line 6)
-* ISIGN: SIGN. (line 6)
-* ISNAN: ISNAN. (line 6)
-* 'ISO_FORTRAN_ENV' statement: Fortran 2003 status. (line 128)
-* IS_IOSTAT_END: IS_IOSTAT_END. (line 6)
-* IS_IOSTAT_EOR: IS_IOSTAT_EOR. (line 6)
-* ITIME: ITIME. (line 6)
-* KILL: KILL. (line 6)
-* KIND: KIND. (line 6)
-* kind: KIND Type Parameters.
- (line 6)
-* kind <1>: KIND. (line 6)
-* kind, character: SELECTED_CHAR_KIND. (line 6)
-* kind, integer: SELECTED_INT_KIND. (line 6)
-* kind, old-style: Old-style kind specifications.
- (line 6)
-* kind, real: SELECTED_REAL_KIND. (line 6)
-* L2 vector norm: NORM2. (line 6)
-* language, dialect options: Fortran Dialect Options.
- (line 6)
-* LBOUND: LBOUND. (line 6)
-* LCOBOUND: LCOBOUND. (line 6)
-* LEADZ: LEADZ. (line 6)
-* left shift, combined: DSHIFTL. (line 6)
-* LEN: LEN. (line 6)
-* LEN_TRIM: LEN_TRIM. (line 6)
-* lexical comparison of strings: LGE. (line 6)
-* lexical comparison of strings <1>: LGT. (line 6)
-* lexical comparison of strings <2>: LLE. (line 6)
-* lexical comparison of strings <3>: LLT. (line 6)
-* LGAMMA: LOG_GAMMA. (line 6)
-* LGE: LGE. (line 6)
-* LGT: LGT. (line 6)
-* libf2c calling convention: Code Gen Options. (line 25)
-* libf2c calling convention <1>: Code Gen Options. (line 111)
-* libgfortran initialization, set_args: _gfortran_set_args. (line 6)
-* libgfortran initialization, set_convert: _gfortran_set_convert.
- (line 6)
-* libgfortran initialization, set_fpe: _gfortran_set_fpe. (line 6)
-* libgfortran initialization, set_max_subrecord_length: _gfortran_set_max_subrecord_length.
- (line 6)
-* libgfortran initialization, set_options: _gfortran_set_options.
- (line 6)
-* libgfortran initialization, set_record_marker: _gfortran_set_record_marker.
- (line 6)
-* limits, largest number: HUGE. (line 6)
-* limits, smallest number: TINY. (line 6)
-* LINK: LINK. (line 6)
-* linking, static: Link Options. (line 6)
-* LLE: LLE. (line 6)
-* LLT: LLT. (line 6)
-* LNBLNK: LNBLNK. (line 6)
-* LOC: LOC. (line 6)
-* location of a variable in memory: LOC. (line 6)
-* LOG: LOG. (line 6)
-* LOG10: LOG10. (line 6)
-* logarithm function: LOG. (line 6)
-* logarithm function with base 10: LOG10. (line 6)
-* logarithm function, inverse: EXP. (line 6)
-* LOGICAL: LOGICAL. (line 6)
-* logical and, bitwise: AND. (line 6)
-* logical and, bitwise <1>: IAND. (line 6)
-* logical exclusive or, bitwise: IEOR. (line 6)
-* logical exclusive or, bitwise <1>: XOR. (line 6)
-* logical not, bitwise: NOT. (line 6)
-* logical or, bitwise: IOR. (line 6)
-* logical or, bitwise <1>: OR. (line 6)
-* logical, variable representation: Internal representation of LOGICAL variables.
- (line 6)
-* login name: GETLOG. (line 6)
-* LOG_GAMMA: LOG_GAMMA. (line 6)
-* LONG: LONG. (line 6)
-* LSHIFT: LSHIFT. (line 6)
-* LSTAT: LSTAT. (line 6)
-* LTIME: LTIME. (line 6)
-* MALLOC: MALLOC. (line 6)
-* mask, left justified: MASKL. (line 6)
-* mask, right justified: MASKR. (line 6)
-* MASKL: MASKL. (line 6)
-* MASKR: MASKR. (line 6)
-* MATMUL: MATMUL. (line 6)
-* matrix multiplication: MATMUL. (line 6)
-* matrix, transpose: TRANSPOSE. (line 6)
-* MAX: MAX. (line 6)
-* MAX0: MAX. (line 6)
-* MAX1: MAX. (line 6)
-* MAXEXPONENT: MAXEXPONENT. (line 6)
-* maximum value: MAX. (line 6)
-* maximum value <1>: MAXVAL. (line 6)
-* MAXLOC: MAXLOC. (line 6)
-* MAXVAL: MAXVAL. (line 6)
-* MCLOCK: MCLOCK. (line 6)
-* MCLOCK8: MCLOCK8. (line 6)
-* memory checking: Code Gen Options. (line 142)
-* MERGE: MERGE. (line 6)
-* MERGE_BITS: MERGE_BITS. (line 6)
-* messages, error: Error and Warning Options.
- (line 6)
-* messages, warning: Error and Warning Options.
- (line 6)
-* MIN: MIN. (line 6)
-* MIN0: MIN. (line 6)
-* MIN1: MIN. (line 6)
-* MINEXPONENT: MINEXPONENT. (line 6)
-* minimum value: MIN. (line 6)
-* minimum value <1>: MINVAL. (line 6)
-* MINLOC: MINLOC. (line 6)
-* MINVAL: MINVAL. (line 6)
-* Mixed-language programming: Mixed-Language Programming.
- (line 6)
-* MOD: MOD. (line 6)
-* model representation, base: RADIX. (line 6)
-* model representation, epsilon: EPSILON. (line 6)
-* model representation, largest number: HUGE. (line 6)
-* model representation, maximum exponent: MAXEXPONENT. (line 6)
-* model representation, minimum exponent: MINEXPONENT. (line 6)
-* model representation, precision: PRECISION. (line 6)
-* model representation, radix: RADIX. (line 6)
-* model representation, range: RANGE. (line 6)
-* model representation, significant digits: DIGITS. (line 6)
-* model representation, smallest number: TINY. (line 6)
-* module entities: Fortran Dialect Options.
- (line 52)
-* module search path: Directory Options. (line 14)
-* module search path <1>: Directory Options. (line 29)
-* module search path <2>: Directory Options. (line 36)
-* MODULO: MODULO. (line 6)
-* modulo: MODULO. (line 6)
-* MOVE_ALLOC: MOVE_ALLOC. (line 6)
-* moving allocation: MOVE_ALLOC. (line 6)
-* multiply array elements: PRODUCT. (line 6)
-* MVBITS: MVBITS. (line 6)
-* Namelist: Extensions to namelist.
- (line 6)
-* natural logarithm function: LOG. (line 6)
-* NEAREST: NEAREST. (line 6)
-* newline: NEW_LINE. (line 6)
-* NEW_LINE: NEW_LINE. (line 6)
-* NINT: NINT. (line 6)
-* norm, Euclidean: NORM2. (line 6)
-* NORM2: NORM2. (line 6)
-* NOT: NOT. (line 6)
-* NULL: NULL. (line 6)
-* NUM_IMAGES: NUM_IMAGES. (line 6)
-* OpenMP: Fortran Dialect Options.
- (line 90)
-* OpenMP <1>: OpenMP. (line 6)
-* operators, unary: Unary operators. (line 6)
-* options inquiry function: COMPILER_OPTIONS. (line 6)
-* options, code generation: Code Gen Options. (line 6)
-* options, debugging: Debugging Options. (line 6)
-* options, dialect: Fortran Dialect Options.
- (line 6)
-* options, directory search: Directory Options. (line 6)
-* options, errors: Error and Warning Options.
- (line 6)
-* options, Fortran dialect: Fortran Dialect Options.
- (line 11)
-* options, 'gfortran' command: Invoking GNU Fortran.
- (line 6)
-* options, linking: Link Options. (line 6)
-* options, negative forms: Invoking GNU Fortran.
- (line 13)
-* options, preprocessor: Preprocessing Options.
- (line 6)
-* options, real kind type promotion: Fortran Dialect Options.
- (line 148)
-* options, run-time: Code Gen Options. (line 6)
-* options, runtime: Runtime Options. (line 6)
-* options, warnings: Error and Warning Options.
- (line 6)
-* OR: OR. (line 6)
-* output, newline: NEW_LINE. (line 6)
-* PACK: PACK. (line 6)
-* PARITY: PARITY. (line 6)
-* Parity: PARITY. (line 6)
-* parity: POPPAR. (line 6)
-* paths, search: Directory Options. (line 14)
-* paths, search <1>: Directory Options. (line 29)
-* paths, search <2>: Directory Options. (line 36)
-* PERROR: PERROR. (line 6)
-* pointer checking: Code Gen Options. (line 142)
-* pointer, C address of pointers: C_F_PROCPOINTER. (line 6)
-* pointer, C address of procedures: C_FUNLOC. (line 6)
-* pointer, C association status: C_ASSOCIATED. (line 6)
-* pointer, convert C to Fortran: C_F_POINTER. (line 6)
-* pointer, Cray: Cray pointers. (line 6)
-* pointer, cray: FREE. (line 6)
-* pointer, cray <1>: MALLOC. (line 6)
-* pointer, disassociated: NULL. (line 6)
-* pointer, status: ASSOCIATED. (line 6)
-* pointer, status <1>: NULL. (line 6)
-* POPCNT: POPCNT. (line 6)
-* POPPAR: POPPAR. (line 6)
-* positive difference: DIM. (line 6)
-* PRECISION: PRECISION. (line 6)
-* Preprocessing: Preprocessing and conditional compilation.
- (line 6)
-* preprocessing, assertion: Preprocessing Options.
- (line 113)
-* preprocessing, assertion <1>: Preprocessing Options.
- (line 119)
-* preprocessing, define macros: Preprocessing Options.
- (line 151)
-* preprocessing, define macros <1>: Preprocessing Options.
- (line 154)
-* preprocessing, include path: Preprocessing Options.
- (line 69)
-* preprocessing, include path <1>: Preprocessing Options.
- (line 76)
-* preprocessing, include path <2>: Preprocessing Options.
- (line 80)
-* preprocessing, include path <3>: Preprocessing Options.
- (line 85)
-* preprocessing, include path <4>: Preprocessing Options.
- (line 89)
-* preprocessing, include path <5>: Preprocessing Options.
- (line 96)
-* preprocessing, keep comments: Preprocessing Options.
- (line 122)
-* preprocessing, keep comments <1>: Preprocessing Options.
- (line 137)
-* preprocessing, no linemarkers: Preprocessing Options.
- (line 179)
-* preprocessing, undefine macros: Preprocessing Options.
- (line 185)
-* preprocessor: Preprocessing Options.
- (line 6)
-* preprocessor, debugging: Preprocessing Options.
- (line 26)
-* preprocessor, debugging <1>: Preprocessing Options.
- (line 35)
-* preprocessor, debugging <2>: Preprocessing Options.
- (line 41)
-* preprocessor, debugging <3>: Preprocessing Options.
- (line 44)
-* preprocessor, debugging <4>: Preprocessing Options.
- (line 51)
-* preprocessor, disable: Preprocessing Options.
- (line 12)
-* preprocessor, enable: Preprocessing Options.
- (line 12)
-* preprocessor, include file handling: Preprocessing and conditional compilation.
- (line 6)
-* preprocessor, working directory: Preprocessing Options.
- (line 55)
-* PRESENT: PRESENT. (line 6)
-* private: Fortran Dialect Options.
- (line 52)
-* procedure pointer, convert C to Fortran: C_LOC. (line 6)
-* process ID: GETPID. (line 6)
-* PRODUCT: PRODUCT. (line 6)
-* product, double-precision: DPROD. (line 6)
-* product, matrix: MATMUL. (line 6)
-* product, vector: DOT_PRODUCT. (line 6)
-* program termination: EXIT. (line 6)
-* program termination, with core dump: ABORT. (line 6)
-* 'PROTECTED' statement: Fortran 2003 status. (line 114)
-* 'Q' exponent-letter: 'Q' exponent-letter. (line 6)
-* RADIX: RADIX. (line 6)
-* radix, real: SELECTED_REAL_KIND. (line 6)
-* RAN: RAN. (line 6)
-* RAND: RAND. (line 6)
-* random number generation: IRAND. (line 6)
-* random number generation <1>: RAN. (line 6)
-* random number generation <2>: RAND. (line 6)
-* random number generation <3>: RANDOM_NUMBER. (line 6)
-* random number generation, seeding: RANDOM_SEED. (line 6)
-* random number generation, seeding <1>: SRAND. (line 6)
-* RANDOM_NUMBER: RANDOM_NUMBER. (line 6)
-* RANDOM_SEED: RANDOM_SEED. (line 6)
-* RANGE: RANGE. (line 6)
-* range checking: Code Gen Options. (line 142)
-* RANK: RANK. (line 6)
-* rank: RANK. (line 6)
-* re-association of parenthesized expressions: Code Gen Options.
- (line 325)
-* read character, stream mode: FGET. (line 6)
-* read character, stream mode <1>: FGETC. (line 6)
-* REAL: REAL. (line 6)
-* real kind: SELECTED_REAL_KIND. (line 6)
-* real number, exponent: EXPONENT. (line 6)
-* real number, fraction: FRACTION. (line 6)
-* real number, nearest different: NEAREST. (line 6)
-* real number, relative spacing: RRSPACING. (line 6)
-* real number, relative spacing <1>: SPACING. (line 6)
-* real number, scale: SCALE. (line 6)
-* real number, set exponent: SET_EXPONENT. (line 6)
-* Reallocate the LHS in assignments: Code Gen Options. (line 334)
-* Reallocate the LHS in assignments, notification: Error and Warning Options.
- (line 208)
-* REALPART: REAL. (line 6)
-* 'RECORD': STRUCTURE and RECORD.
- (line 6)
-* Reduction, XOR: PARITY. (line 6)
-* remainder: MOD. (line 6)
-* RENAME: RENAME. (line 6)
-* repacking arrays: Code Gen Options. (line 244)
-* REPEAT: REPEAT. (line 6)
-* RESHAPE: RESHAPE. (line 6)
-* right shift, combined: DSHIFTR. (line 6)
-* root: SQRT. (line 6)
-* rounding, ceiling: ANINT. (line 6)
-* rounding, ceiling <1>: CEILING. (line 6)
-* rounding, floor: AINT. (line 6)
-* rounding, floor <1>: FLOOR. (line 6)
-* rounding, nearest whole number: NINT. (line 6)
-* RRSPACING: RRSPACING. (line 6)
-* RSHIFT: RSHIFT. (line 6)
-* run-time checking: Code Gen Options. (line 142)
-* SAME_TYPE_AS: SAME_TYPE_AS. (line 6)
-* 'SAVE' statement: Code Gen Options. (line 15)
-* SCALE: SCALE. (line 6)
-* SCAN: SCAN. (line 6)
-* search path: Directory Options. (line 6)
-* search paths, for included files: Directory Options. (line 14)
-* SECNDS: SECNDS. (line 6)
-* SECOND: SECOND. (line 6)
-* seeding a random number generator: RANDOM_SEED. (line 6)
-* seeding a random number generator <1>: SRAND. (line 6)
-* SELECTED_CHAR_KIND: SELECTED_CHAR_KIND. (line 6)
-* SELECTED_INT_KIND: SELECTED_INT_KIND. (line 6)
-* SELECTED_REAL_KIND: SELECTED_REAL_KIND. (line 6)
-* SET_EXPONENT: SET_EXPONENT. (line 6)
-* SHAPE: SHAPE. (line 6)
-* shift, left: DSHIFTL. (line 6)
-* shift, left <1>: SHIFTL. (line 6)
-* shift, right: DSHIFTR. (line 6)
-* shift, right <1>: SHIFTR. (line 6)
-* shift, right with fill: SHIFTA. (line 6)
-* SHIFTA: SHIFTA. (line 6)
-* SHIFTL: SHIFTL. (line 6)
-* SHIFTR: SHIFTR. (line 6)
-* SHORT: INT2. (line 6)
-* SIGN: SIGN. (line 6)
-* sign copying: SIGN. (line 6)
-* SIGNAL: SIGNAL. (line 6)
-* SIN: SIN. (line 6)
-* sine: SIN. (line 6)
-* sine, hyperbolic: SINH. (line 6)
-* sine, hyperbolic, inverse: ASINH. (line 6)
-* sine, inverse: ASIN. (line 6)
-* SINH: SINH. (line 6)
-* SIZE: SIZE. (line 6)
-* size of a variable, in bits: BIT_SIZE. (line 6)
-* size of an expression: C_SIZEOF. (line 6)
-* size of an expression <1>: SIZEOF. (line 6)
-* SIZEOF: SIZEOF. (line 6)
-* SLEEP: SLEEP. (line 6)
-* SNGL: REAL. (line 6)
-* SPACING: SPACING. (line 6)
-* SPREAD: SPREAD. (line 6)
-* SQRT: SQRT. (line 6)
-* square-root: SQRT. (line 6)
-* SRAND: SRAND. (line 6)
-* Standards: Standards. (line 6)
-* STAT: STAT. (line 6)
-* statement, 'ENUM': Fortran 2003 status. (line 93)
-* statement, 'ENUMERATOR': Fortran 2003 status. (line 93)
-* statement, 'FLUSH': Fortran 2003 status. (line 89)
-* statement, 'IMPORT': Fortran 2003 status. (line 120)
-* statement, 'ISO_FORTRAN_ENV': Fortran 2003 status. (line 128)
-* statement, 'PROTECTED': Fortran 2003 status. (line 114)
-* statement, 'SAVE': Code Gen Options. (line 15)
-* statement, 'USE, INTRINSIC': Fortran 2003 status. (line 128)
-* statement, 'VALUE': Fortran 2003 status. (line 116)
-* statement, 'VOLATILE': Fortran 2003 status. (line 118)
-* storage size: STORAGE_SIZE. (line 6)
-* STORAGE_SIZE: STORAGE_SIZE. (line 6)
-* 'STREAM' I/O: Fortran 2003 status. (line 103)
-* stream mode, read character: FGET. (line 6)
-* stream mode, read character <1>: FGETC. (line 6)
-* stream mode, write character: FPUT. (line 6)
-* stream mode, write character <1>: FPUTC. (line 6)
-* string, adjust left: ADJUSTL. (line 6)
-* string, adjust right: ADJUSTR. (line 6)
-* string, comparison: LGE. (line 6)
-* string, comparison <1>: LGT. (line 6)
-* string, comparison <2>: LLE. (line 6)
-* string, comparison <3>: LLT. (line 6)
-* string, concatenate: REPEAT. (line 6)
-* string, find missing set: VERIFY. (line 6)
-* string, find non-blank character: LNBLNK. (line 6)
-* string, find subset: SCAN. (line 6)
-* string, find substring: INDEX intrinsic. (line 6)
-* string, length: LEN. (line 6)
-* string, length, without trailing whitespace: LEN_TRIM. (line 6)
-* string, remove trailing whitespace: TRIM. (line 6)
-* string, repeat: REPEAT. (line 6)
-* strings, varying length: Varying Length Character Strings.
- (line 6)
-* 'STRUCTURE': STRUCTURE and RECORD.
- (line 6)
-* structure packing: Code Gen Options. (line 238)
-* subscript checking: Code Gen Options. (line 142)
-* substring position: INDEX intrinsic. (line 6)
-* SUM: SUM. (line 6)
-* sum array elements: SUM. (line 6)
-* suppressing warnings: Error and Warning Options.
- (line 6)
-* symbol names: Fortran Dialect Options.
- (line 34)
-* symbol names, transforming: Code Gen Options. (line 54)
-* symbol names, transforming <1>: Code Gen Options. (line 111)
-* symbol names, underscores: Code Gen Options. (line 54)
-* symbol names, underscores <1>: Code Gen Options. (line 111)
-* SYMLNK: SYMLNK. (line 6)
-* syntax checking: Error and Warning Options.
- (line 33)
-* SYSTEM: SYSTEM. (line 6)
-* system, error handling: GERROR. (line 6)
-* system, error handling <1>: IERRNO. (line 6)
-* system, error handling <2>: PERROR. (line 6)
-* system, group ID: GETGID. (line 6)
-* system, host name: HOSTNM. (line 6)
-* system, login name: GETLOG. (line 6)
-* system, process ID: GETPID. (line 6)
-* system, signal handling: SIGNAL. (line 6)
-* system, system call: EXECUTE_COMMAND_LINE.
- (line 6)
-* system, system call <1>: SYSTEM. (line 6)
-* system, terminal: ISATTY. (line 6)
-* system, terminal <1>: TTYNAM. (line 6)
-* system, user ID: GETUID. (line 6)
-* system, working directory: CHDIR. (line 6)
-* system, working directory <1>: GETCWD. (line 6)
-* SYSTEM_CLOCK: SYSTEM_CLOCK. (line 6)
-* tabulators: Error and Warning Options.
- (line 168)
-* TAN: TAN. (line 6)
-* tangent: TAN. (line 6)
-* tangent, hyperbolic: TANH. (line 6)
-* tangent, hyperbolic, inverse: ATANH. (line 6)
-* tangent, inverse: ATAN. (line 6)
-* tangent, inverse <1>: ATAN2. (line 6)
-* TANH: TANH. (line 6)
-* terminate program: EXIT. (line 6)
-* terminate program, with core dump: ABORT. (line 6)
-* THIS_IMAGE: THIS_IMAGE. (line 6)
-* thread-safety, threads: Thread-safety of the runtime library.
- (line 6)
-* TIME: TIME. (line 6)
-* time, clock ticks: MCLOCK. (line 6)
-* time, clock ticks <1>: MCLOCK8. (line 6)
-* time, clock ticks <2>: SYSTEM_CLOCK. (line 6)
-* time, conversion to GMT info: GMTIME. (line 6)
-* time, conversion to local time info: LTIME. (line 6)
-* time, conversion to string: CTIME. (line 6)
-* time, current: DATE_AND_TIME. (line 6)
-* time, current <1>: FDATE. (line 6)
-* time, current <2>: ITIME. (line 6)
-* time, current <3>: TIME. (line 6)
-* time, current <4>: TIME8. (line 6)
-* time, elapsed: CPU_TIME. (line 6)
-* time, elapsed <1>: DTIME. (line 6)
-* time, elapsed <2>: ETIME. (line 6)
-* time, elapsed <3>: SECNDS. (line 6)
-* time, elapsed <4>: SECOND. (line 6)
-* TIME8: TIME8. (line 6)
-* TINY: TINY. (line 6)
-* TR 15581: Fortran 2003 status. (line 98)
-* trace: Debugging Options. (line 61)
-* TRAILZ: TRAILZ. (line 6)
-* TRANSFER: TRANSFER. (line 6)
-* transforming symbol names: Code Gen Options. (line 54)
-* transforming symbol names <1>: Code Gen Options. (line 111)
-* TRANSPOSE: TRANSPOSE. (line 6)
-* transpose: TRANSPOSE. (line 6)
-* trigonometric function, cosine: COS. (line 6)
-* trigonometric function, cosine, inverse: ACOS. (line 6)
-* trigonometric function, sine: SIN. (line 6)
-* trigonometric function, sine, inverse: ASIN. (line 6)
-* trigonometric function, tangent: TAN. (line 6)
-* trigonometric function, tangent, inverse: ATAN. (line 6)
-* trigonometric function, tangent, inverse <1>: ATAN2. (line 6)
-* TRIM: TRIM. (line 6)
-* TTYNAM: TTYNAM. (line 6)
-* type cast: TRANSFER. (line 6)
-* UBOUND: UBOUND. (line 6)
-* UCOBOUND: UCOBOUND. (line 6)
-* UMASK: UMASK. (line 6)
-* underflow: Error and Warning Options.
- (line 176)
-* underscore: Code Gen Options. (line 54)
-* underscore <1>: Code Gen Options. (line 111)
-* UNLINK: UNLINK. (line 6)
-* UNPACK: UNPACK. (line 6)
-* unused dummy argument: Error and Warning Options.
- (line 187)
-* unused parameter: Error and Warning Options.
- (line 191)
-* 'USE, INTRINSIC' statement: Fortran 2003 status. (line 128)
-* user id: GETUID. (line 6)
-* 'VALUE' statement: Fortran 2003 status. (line 116)
-* Varying length character strings: Varying Length Character Strings.
- (line 6)
-* Varying length strings: Varying Length Character Strings.
- (line 6)
-* vector product: DOT_PRODUCT. (line 6)
-* VERIFY: VERIFY. (line 6)
-* version of the compiler: COMPILER_VERSION. (line 6)
-* 'VOLATILE': Volatile COMMON blocks.
- (line 6)
-* 'VOLATILE' statement: Fortran 2003 status. (line 118)
-* warning, C binding type: Error and Warning Options.
- (line 99)
-* warnings, aliasing: Error and Warning Options.
- (line 69)
-* warnings, alignment of 'COMMON' blocks: Error and Warning Options.
- (line 198)
-* warnings, all: Error and Warning Options.
- (line 61)
-* warnings, ampersand: Error and Warning Options.
- (line 86)
-* warnings, array temporaries: Error and Warning Options.
- (line 94)
-* warnings, character truncation: Error and Warning Options.
- (line 106)
-* warnings, conversion: Error and Warning Options.
- (line 113)
-* warnings, conversion <1>: Error and Warning Options.
- (line 117)
-* warnings, extra: Error and Warning Options.
- (line 120)
-* warnings, function elimination: Error and Warning Options.
- (line 204)
-* warnings, implicit interface: Error and Warning Options.
- (line 125)
-* warnings, implicit procedure: Error and Warning Options.
- (line 131)
-* warnings, intrinsic: Error and Warning Options.
- (line 180)
-* warnings, intrinsics of other standards: Error and Warning Options.
- (line 135)
-* warnings, line truncation: Error and Warning Options.
- (line 109)
-* warnings, non-standard intrinsics: Error and Warning Options.
- (line 135)
-* warnings, 'q' exponent-letter: Error and Warning Options.
- (line 142)
-* warnings, suppressing: Error and Warning Options.
- (line 6)
-* warnings, suspicious code: Error and Warning Options.
- (line 146)
-* warnings, tabs: Error and Warning Options.
- (line 168)
-* warnings, to errors: Error and Warning Options.
- (line 237)
-* warnings, underflow: Error and Warning Options.
- (line 176)
-* warnings, unused dummy argument: Error and Warning Options.
- (line 187)
-* warnings, unused parameter: Error and Warning Options.
- (line 191)
-* write character, stream mode: FPUT. (line 6)
-* write character, stream mode <1>: FPUTC. (line 6)
-* XOR: XOR. (line 6)
-* XOR reduction: PARITY. (line 6)
-* ZABS: ABS. (line 6)
-* ZCOS: COS. (line 6)
-* zero bits: LEADZ. (line 6)
-* zero bits <1>: TRAILZ. (line 6)
-* ZEXP: EXP. (line 6)
-* ZLOG: LOG. (line 6)
-* ZSIN: SIN. (line 6)
-* ZSQRT: SQRT. (line 6)
-
-
-
-Tag Table:
-Node: Top1950
-Node: Introduction3337
-Node: About GNU Fortran4086
-Node: GNU Fortran and GCC8075
-Node: Preprocessing and conditional compilation10189
-Node: GNU Fortran and G7711834
-Node: Project Status12407
-Node: Standards14853
-Node: Varying Length Character Strings15863
-Node: Invoking GNU Fortran16615
-Node: Option Summary18338
-Node: Fortran Dialect Options21744
-Node: Preprocessing Options30410
-Node: Error and Warning Options38651
-Node: Debugging Options48848
-Node: Directory Options52316
-Node: Link Options53751
-Node: Runtime Options54377
-Node: Code Gen Options56284
-Node: Environment Variables72491
-Node: Runtime73096
-Node: TMPDIR74196
-Node: GFORTRAN_STDIN_UNIT74866
-Node: GFORTRAN_STDOUT_UNIT75248
-Node: GFORTRAN_STDERR_UNIT75649
-Node: GFORTRAN_UNBUFFERED_ALL76051
-Node: GFORTRAN_UNBUFFERED_PRECONNECTED76582
-Node: GFORTRAN_SHOW_LOCUS77226
-Node: GFORTRAN_OPTIONAL_PLUS77722
-Node: GFORTRAN_DEFAULT_RECL78198
-Node: GFORTRAN_LIST_SEPARATOR78686
-Node: GFORTRAN_CONVERT_UNIT79295
-Node: GFORTRAN_ERROR_BACKTRACE82150
-Node: Fortran 2003 and 2008 status82707
-Node: Fortran 2003 status82967
-Node: Fortran 2008 status88193
-Node: TS 29113 status93042
-Node: Compiler Characteristics94019
-Node: KIND Type Parameters94555
-Node: Internal representation of LOGICAL variables95983
-Node: Thread-safety of the runtime library96843
-Node: Data consistency and durability98270
-Node: Extensions101324
-Node: Extensions implemented in GNU Fortran101929
-Node: Old-style kind specifications103286
-Node: Old-style variable initialization104388
-Node: Extensions to namelist105700
-Node: X format descriptor without count field108003
-Node: Commas in FORMAT specifications108530
-Node: Missing period in FORMAT specifications109047
-Node: I/O item lists109609
-Node: 'Q' exponent-letter109996
-Node: BOZ literal constants110596
-Node: Real array indices113177
-Node: Unary operators113476
-Node: Implicitly convert LOGICAL and INTEGER values113890
-Node: Hollerith constants support114849
-Node: Cray pointers116621
-Node: CONVERT specifier122068
-Node: OpenMP124063
-Node: Argument list functions126314
-Node: Extensions not implemented in GNU Fortran127919
-Node: STRUCTURE and RECORD128868
-Node: ENCODE and DECODE statements131305
-Node: Variable FORMAT expressions132665
-Node: Alternate complex function syntax133770
-Node: Volatile COMMON blocks134320
-Node: Mixed-Language Programming134797
-Node: Interoperability with C135378
-Node: Intrinsic Types136712
-Node: Derived Types and struct137708
-Node: Interoperable Global Variables139066
-Node: Interoperable Subroutines and Functions140341
-Node: Working with Pointers144135
-Node: Further Interoperability of Fortran with C148611
-Node: GNU Fortran Compiler Directives151965
-Node: Non-Fortran Main Program155217
-Node: _gfortran_set_args157405
-Node: _gfortran_set_options158343
-Node: _gfortran_set_convert161743
-Node: _gfortran_set_record_marker162611
-Node: _gfortran_set_fpe163421
-Node: _gfortran_set_max_subrecord_length164619
-Node: Naming and argument-passing conventions165542
-Node: Naming conventions166261
-Node: Argument passing conventions167733
-Node: Intrinsic Procedures172227
-Node: Introduction to Intrinsics187713
-Node: ABORT190063
-Node: ABS190808
-Node: ACCESS192410
-Node: ACHAR194340
-Node: ACOS195544
-Node: ACOSH196798
-Node: ADJUSTL197793
-Node: ADJUSTR198735
-Node: AIMAG199683
-Node: AINT201055
-Node: ALARM202661
-Node: ALL204293
-Node: ALLOCATED206217
-Node: AND207356
-Node: ANINT208655
-Node: ANY210152
-Node: ASIN212078
-Node: ASINH213321
-Node: ASSOCIATED214326
-Node: ATAN217337
-Node: ATAN2218755
-Node: ATANH220547
-Node: ATOMIC_DEFINE221555
-Node: ATOMIC_REF222631
-Node: BACKTRACE223893
-Node: BESSEL_J0224473
-Node: BESSEL_J1225530
-Node: BESSEL_JN226591
-Node: BESSEL_Y0228416
-Node: BESSEL_Y1229426
-Node: BESSEL_YN230436
-Node: BGE232267
-Node: BGT232959
-Node: BIT_SIZE233609
-Node: BLE234431
-Node: BLT235113
-Node: BTEST235751
-Node: C_ASSOCIATED236636
-Node: C_F_POINTER237847
-Node: C_F_PROCPOINTER239282
-Node: C_FUNLOC240789
-Node: C_LOC242160
-Node: C_SIZEOF243439
-Node: CEILING244852
-Node: CHAR245860
-Node: CHDIR247072
-Node: CHMOD248246
-Node: CMPLX250161
-Node: COMMAND_ARGUMENT_COUNT251614
-Node: COMPILER_OPTIONS252530
-Node: COMPILER_VERSION253556
-Node: COMPLEX254520
-Node: CONJG255659
-Node: COS256715
-Node: COSH258139
-Node: COUNT259321
-Node: CPU_TIME261344
-Node: CSHIFT262701
-Node: CTIME264361
-Node: DATE_AND_TIME266007
-Node: DBLE268487
-Node: DCMPLX269282
-Node: DIGITS270464
-Node: DIM271431
-Node: DOT_PRODUCT272712
-Node: DPROD274355
-Node: DREAL275282
-Node: DSHIFTL275948
-Node: DSHIFTR277281
-Node: DTIME278615
-Node: EOSHIFT281430
-Node: EPSILON283503
-Node: ERF284230
-Node: ERFC285011
-Node: ERFC_SCALED285821
-Node: ETIME286514
-Node: EXECUTE_COMMAND_LINE288762
-Node: EXIT291349
-Node: EXP292225
-Node: EXPONENT293476
-Node: EXTENDS_TYPE_OF294238
-Node: FDATE295094
-Node: FGET296567
-Node: FGETC298392
-Node: FLOOR300198
-Node: FLUSH301185
-Node: FNUM303062
-Node: FPUT303785
-Node: FPUTC305417
-Node: FRACTION307196
-Node: FREE308098
-Node: FSEEK308939
-Node: FSTAT311243
-Node: FTELL312328
-Node: GAMMA313308
-Node: GERROR314360
-Node: GETARG315080
-Node: GET_COMMAND316851
-Node: GET_COMMAND_ARGUMENT318223
-Node: GETCWD320271
-Node: GETENV321251
-Node: GET_ENVIRONMENT_VARIABLE322683
-Node: GETGID324846
-Node: GETLOG325383
-Node: GETPID326245
-Node: GETUID326975
-Node: GMTIME327491
-Node: HOSTNM328975
-Node: HUGE329896
-Node: HYPOT330618
-Node: IACHAR331444
-Node: IALL332612
-Node: IAND334097
-Node: IANY335084
-Node: IARGC336578
-Node: IBCLR337599
-Node: IBITS338261
-Node: IBSET339179
-Node: ICHAR339836
-Node: IDATE342006
-Node: IEOR343036
-Node: IERRNO343916
-Node: IMAGE_INDEX344465
-Node: INDEX intrinsic345493
-Node: INT347019
-Node: INT2348747
-Node: INT8349515
-Node: IOR350230
-Node: IPARITY351086
-Node: IRAND352618
-Node: IS_IOSTAT_END353977
-Node: IS_IOSTAT_EOR355076
-Node: ISATTY356205
-Node: ISHFT356988
-Node: ISHFTC357971
-Node: ISNAN359192
-Node: ITIME359959
-Node: KILL360987
-Node: KIND361896
-Node: LBOUND362742
-Node: LCOBOUND364080
-Node: LEADZ365215
-Node: LEN366076
-Node: LEN_TRIM367372
-Node: LGE368360
-Node: LGT369873
-Node: LINK371351
-Node: LLE372390
-Node: LLT373890
-Node: LNBLNK375361
-Node: LOC376139
-Node: LOG376871
-Node: LOG10378219
-Node: LOG_GAMMA379209
-Node: LOGICAL380311
-Node: LONG381123
-Node: LSHIFT381881
-Node: LSTAT382967
-Node: LTIME384167
-Node: MALLOC385573
-Node: MASKL387035
-Node: MASKR387802
-Node: MATMUL388572
-Node: MAX389670
-Node: MAXEXPONENT391205
-Node: MAXLOC392022
-Node: MAXVAL394047
-Node: MCLOCK395687
-Node: MCLOCK8396710
-Node: MERGE397940
-Node: MERGE_BITS398692
-Node: MIN399557
-Node: MINEXPONENT401095
-Node: MINLOC401726
-Node: MINVAL403751
-Node: MOD405404
-Node: MODULO407173
-Node: MOVE_ALLOC408476
-Node: MVBITS409509
-Node: NEAREST410575
-Node: NEW_LINE411675
-Node: NINT412448
-Node: NORM2413869
-Node: NOT415011
-Node: NULL415595
-Node: NUM_IMAGES416503
-Node: OR417319
-Node: PACK418605
-Node: PARITY420613
-Node: PERROR421834
-Node: POPCNT422459
-Node: POPPAR423331
-Node: PRECISION424385
-Node: PRESENT425272
-Node: PRODUCT426384
-Node: RADIX427918
-Node: RAN428730
-Node: RAND429186
-Node: RANDOM_NUMBER430521
-Node: RANDOM_SEED432250
-Node: RANGE436081
-Node: RANK436762
-Node: REAL437543
-Node: RENAME439340
-Node: REPEAT440362
-Node: RESHAPE441090
-Node: RRSPACING442557
-Node: RSHIFT443250
-Node: SAME_TYPE_AS444390
-Node: SCALE445222
-Node: SCAN446003
-Node: SECNDS447561
-Node: SECOND448653
-Node: SELECTED_CHAR_KIND449529
-Node: SELECTED_INT_KIND451124
-Node: SELECTED_REAL_KIND452301
-Node: SET_EXPONENT454978
-Node: SHAPE455975
-Node: SHIFTA457399
-Node: SHIFTL458363
-Node: SHIFTR459200
-Node: SIGN460038
-Node: SIGNAL461264
-Node: SIN462770
-Node: SINH463812
-Node: SIZE464824
-Node: SIZEOF466143
-Node: SLEEP467620
-Node: SPACING468181
-Node: SPREAD469195
-Node: SQRT470346
-Node: SRAND471678
-Node: STAT472848
-Node: STORAGE_SIZE476016
-Node: SUM476895
-Node: SYMLNK478387
-Node: SYSTEM479522
-Node: SYSTEM_CLOCK480777
-Node: TAN483536
-Node: TANH484524
-Node: THIS_IMAGE485698
-Node: TIME487198
-Node: TIME8488323
-Node: TINY489476
-Node: TRAILZ490077
-Node: TRANSFER490895
-Node: TRANSPOSE492931
-Node: TRIM493621
-Node: TTYNAM494479
-Node: UBOUND495397
-Node: UCOBOUND496787
-Node: UMASK497924
-Node: UNLINK498606
-Node: UNPACK499586
-Node: VERIFY500881
-Node: XOR502610
-Node: Intrinsic Modules503983
-Node: ISO_FORTRAN_ENV504226
-Node: ISO_C_BINDING508394
-Node: OpenMP Modules OMP_LIB and OMP_LIB_KINDS512126
-Node: Contributing513671
-Node: Contributors514525
-Node: Projects516156
-Node: Proposed Extensions516962
-Node: Copying518972
-Node: GNU Free Documentation License556517
-Node: Funding581640
-Node: Option Index584166
-Node: Keyword Index599298
-
-End Tag Table
diff --git a/gcc-4.9/gcc/fortran/gfortran.texi b/gcc-4.9/gcc/fortran/gfortran.texi
index 773ec62a5..c852b3aa1 100644
--- a/gcc-4.9/gcc/fortran/gfortran.texi
+++ b/gcc-4.9/gcc/fortran/gfortran.texi
@@ -531,7 +531,7 @@ The current status of the support is can be found in the
@ref{TS 29113 status} sections of the documentation.
Additionally, the GNU Fortran compilers supports the OpenMP specification
-(version 3.1, @url{http://openmp.org/@/wp/@/openmp-specifications/}).
+(version 4.0, @url{http://openmp.org/@/wp/@/openmp-specifications/}).
@node Varying Length Character Strings
@subsection Varying Length Character Strings
@@ -1884,8 +1884,8 @@ It consists of a set of compiler directives, library routines,
and environment variables that influence run-time behavior.
GNU Fortran strives to be compatible to the
-@uref{http://www.openmp.org/mp-documents/spec31.pdf,
-OpenMP Application Program Interface v3.1}.
+@uref{http://openmp.org/wp/openmp-specifications/,
+OpenMP Application Program Interface v4.0}.
To enable the processing of the OpenMP directive @code{!$omp} in
free-form source code; the @code{c$omp}, @code{*$omp} and @code{!$omp}
diff --git a/gcc-4.9/gcc/fortran/gfortranspec.c b/gcc-4.9/gcc/fortran/gfortranspec.c
index a6296efbf..cceee6d2d 100644
--- a/gcc-4.9/gcc/fortran/gfortranspec.c
+++ b/gcc-4.9/gcc/fortran/gfortranspec.c
@@ -73,34 +73,11 @@ static void append_arg (const struct cl_decoded_option *);
static unsigned int g77_newargc;
static struct cl_decoded_option *g77_new_decoded_options;
-/* The path to the spec file. */
-static char *spec_file = NULL;
-
/* This will be NULL if we encounter a situation where we should not
link in the fortran libraries. */
static const char *library = NULL;
-/* Return full path name of spec file if it is in DIR, or NULL if
- not. */
-static char *
-find_spec_file (const char *dir)
-{
- const char dirsep_string[] = { DIR_SEPARATOR, '\0' };
- char *spec;
- struct stat sb;
-
- spec = XNEWVEC (char, strlen (dir) + sizeof (SPEC_FILE) + 4);
- strcpy (spec, dir);
- strcat (spec, dirsep_string);
- strcat (spec, SPEC_FILE);
- if (!stat (spec, &sb))
- return spec;
- free (spec);
- return NULL;
-}
-
-
/* Return whether strings S1 and S2 are both NULL or both the same
string. */
@@ -313,12 +290,6 @@ For more information about these matters, see the file named COPYING\n\n"));
cool facility for handling --help and --verbose --help. */
return;
- case OPT_L:
- if (!spec_file)
- spec_file = find_spec_file (decoded_options[i].arg);
- break;
-
-
default:
break;
}
@@ -449,12 +420,6 @@ For more information about these matters, see the file named COPYING\n\n"));
#endif
- /* Read the specs file corresponding to libgfortran.
- If we didn't find the spec file on the -L path, we load it
- via lang_specific_pre_link. */
- if (spec_file)
- append_option (OPT_specs_, spec_file, 1);
-
if (verbose && g77_new_decoded_options != g77_x_decoded_options)
{
fprintf (stderr, _("Driving:"));
@@ -473,8 +438,7 @@ For more information about these matters, see the file named COPYING\n\n"));
int
lang_specific_pre_link (void)
{
- free (spec_file);
- if (spec_file == NULL && library)
+ if (library)
do_spec ("%:include(libgfortran.spec)");
return 0;
diff --git a/gcc-4.9/gcc/fortran/intrinsic.texi b/gcc-4.9/gcc/fortran/intrinsic.texi
index 926ffe954..eb6924c81 100644
--- a/gcc-4.9/gcc/fortran/intrinsic.texi
+++ b/gcc-4.9/gcc/fortran/intrinsic.texi
@@ -3343,10 +3343,8 @@ end program test_cshift
@table @asis
@item @emph{Description}:
@code{CTIME} converts a system time value, such as returned by
-@code{TIME8}, to a string. Unless the application has called
-@code{setlocale}, the output will be in the default locale, of length
-24 and of the form @samp{Sat Aug 19 18:13:14 1995}. In other locales,
-a longer string may result.
+@code{TIME8}, to a string. The output will be of the form @samp{Sat
+Aug 19 18:13:14 1995}.
This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.
@@ -13210,8 +13208,7 @@ named constants:
@code{OMP_LIB} provides the scalar default-integer
named constant @code{openmp_version} with a value of the form
@var{yyyymm}, where @code{yyyy} is the year and @var{mm} the month
-of the OpenMP version; for OpenMP v3.1 the value is @code{201107}
-and for OpenMP v4.0 the value is @code{201307}.
+of the OpenMP version; for OpenMP v4.0 the value is @code{201307}.
The following scalar integer named constants of the
kind @code{omp_sched_kind}:
diff --git a/gcc-4.9/gcc/fortran/match.c b/gcc-4.9/gcc/fortran/match.c
index 4c4609401..b3f47a8e7 100644
--- a/gcc-4.9/gcc/fortran/match.c
+++ b/gcc-4.9/gcc/fortran/match.c
@@ -2595,7 +2595,10 @@ match_exit_cycle (gfc_statement st, gfc_exec_op op)
&& o != NULL
&& o->state == COMP_OMP_STRUCTURED_BLOCK
&& (o->head->op == EXEC_OMP_DO
- || o->head->op == EXEC_OMP_PARALLEL_DO))
+ || o->head->op == EXEC_OMP_PARALLEL_DO
+ || o->head->op == EXEC_OMP_SIMD
+ || o->head->op == EXEC_OMP_DO_SIMD
+ || o->head->op == EXEC_OMP_PARALLEL_DO_SIMD))
{
int collapse = 1;
gcc_assert (o->head->next != NULL
@@ -4564,6 +4567,30 @@ gfc_free_namelist (gfc_namelist *name)
}
+/* Free an OpenMP namelist structure. */
+
+void
+gfc_free_omp_namelist (gfc_omp_namelist *name)
+{
+ gfc_omp_namelist *n;
+
+ for (; name; name = n)
+ {
+ gfc_free_expr (name->expr);
+ if (name->udr)
+ {
+ if (name->udr->combiner)
+ gfc_free_statement (name->udr->combiner);
+ if (name->udr->initializer)
+ gfc_free_statement (name->udr->initializer);
+ free (name->udr);
+ }
+ n = name->next;
+ free (name);
+ }
+}
+
+
/* Match a NAMELIST statement. */
match
diff --git a/gcc-4.9/gcc/fortran/match.h b/gcc-4.9/gcc/fortran/match.h
index 385e84020..d07db11ef 100644
--- a/gcc-4.9/gcc/fortran/match.h
+++ b/gcc-4.9/gcc/fortran/match.h
@@ -126,20 +126,46 @@ gfc_common_head *gfc_get_common (const char *, int);
match gfc_match_omp_eos (void);
match gfc_match_omp_atomic (void);
match gfc_match_omp_barrier (void);
+match gfc_match_omp_cancel (void);
+match gfc_match_omp_cancellation_point (void);
match gfc_match_omp_critical (void);
+match gfc_match_omp_declare_reduction (void);
+match gfc_match_omp_declare_simd (void);
+match gfc_match_omp_declare_target (void);
+match gfc_match_omp_distribute (void);
+match gfc_match_omp_distribute_parallel_do (void);
+match gfc_match_omp_distribute_parallel_do_simd (void);
+match gfc_match_omp_distribute_simd (void);
match gfc_match_omp_do (void);
+match gfc_match_omp_do_simd (void);
match gfc_match_omp_flush (void);
match gfc_match_omp_master (void);
match gfc_match_omp_ordered (void);
match gfc_match_omp_parallel (void);
match gfc_match_omp_parallel_do (void);
+match gfc_match_omp_parallel_do_simd (void);
match gfc_match_omp_parallel_sections (void);
match gfc_match_omp_parallel_workshare (void);
match gfc_match_omp_sections (void);
+match gfc_match_omp_simd (void);
match gfc_match_omp_single (void);
+match gfc_match_omp_target (void);
+match gfc_match_omp_target_data (void);
+match gfc_match_omp_target_teams (void);
+match gfc_match_omp_target_teams_distribute (void);
+match gfc_match_omp_target_teams_distribute_parallel_do (void);
+match gfc_match_omp_target_teams_distribute_parallel_do_simd (void);
+match gfc_match_omp_target_teams_distribute_simd (void);
+match gfc_match_omp_target_update (void);
match gfc_match_omp_task (void);
+match gfc_match_omp_taskgroup (void);
match gfc_match_omp_taskwait (void);
match gfc_match_omp_taskyield (void);
+match gfc_match_omp_teams (void);
+match gfc_match_omp_teams_distribute (void);
+match gfc_match_omp_teams_distribute_parallel_do (void);
+match gfc_match_omp_teams_distribute_parallel_do_simd (void);
+match gfc_match_omp_teams_distribute_simd (void);
match gfc_match_omp_threadprivate (void);
match gfc_match_omp_workshare (void);
match gfc_match_omp_end_nowait (void);
diff --git a/gcc-4.9/gcc/fortran/module.c b/gcc-4.9/gcc/fortran/module.c
index 52fdebe34..2bfe17784 100644
--- a/gcc-4.9/gcc/fortran/module.c
+++ b/gcc-4.9/gcc/fortran/module.c
@@ -83,6 +83,7 @@ along with GCC; see the file COPYING3. If not see
/* Don't put any single quote (') in MOD_VERSION, if you want it to be
recognized. */
#define MOD_VERSION "12"
+#define MOD_VERSION_OMP4 "12 OpenMP 4"
/* Structure that describes a position within a module file. */
@@ -196,6 +197,7 @@ static char* module_content;
static long module_pos;
static int module_line, module_column, only_flag;
static int prev_module_line, prev_module_column;
+static bool module_omp4;
static enum
{ IO_INPUT, IO_OUTPUT }
@@ -1877,7 +1879,7 @@ typedef enum
AB_IS_BIND_C, AB_IS_C_INTEROP, AB_IS_ISO_C, AB_ABSTRACT, AB_ZERO_COMP,
AB_IS_CLASS, AB_PROCEDURE, AB_PROC_POINTER, AB_ASYNCHRONOUS, AB_CODIMENSION,
AB_COARRAY_COMP, AB_VTYPE, AB_VTAB, AB_CONTIGUOUS, AB_CLASS_POINTER,
- AB_IMPLICIT_PURE, AB_ARTIFICIAL, AB_UNLIMITED_POLY
+ AB_IMPLICIT_PURE, AB_ARTIFICIAL, AB_UNLIMITED_POLY, AB_OMP_DECLARE_TARGET
}
ab_attribute;
@@ -1932,6 +1934,7 @@ static const mstring attr_bits[] =
minit ("CLASS_POINTER", AB_CLASS_POINTER),
minit ("IMPLICIT_PURE", AB_IMPLICIT_PURE),
minit ("UNLIMITED_POLY", AB_UNLIMITED_POLY),
+ minit ("OMP_DECLARE_TARGET", AB_OMP_DECLARE_TARGET),
minit (NULL, -1)
};
@@ -2110,6 +2113,8 @@ mio_symbol_attribute (symbol_attribute *attr)
MIO_NAME (ab_attribute) (AB_VTYPE, attr_bits);
if (attr->vtab)
MIO_NAME (ab_attribute) (AB_VTAB, attr_bits);
+ if (attr->omp_declare_target)
+ MIO_NAME (ab_attribute) (AB_OMP_DECLARE_TARGET, attr_bits);
mio_rparen ();
@@ -2273,6 +2278,9 @@ mio_symbol_attribute (symbol_attribute *attr)
case AB_VTAB:
attr->vtab = 1;
break;
+ case AB_OMP_DECLARE_TARGET:
+ attr->omp_declare_target = 1;
+ break;
}
}
}
@@ -3130,6 +3138,7 @@ static const mstring intrinsics[] =
minit ("LE", INTRINSIC_LE_OS),
minit ("NOT", INTRINSIC_NOT),
minit ("PARENTHESES", INTRINSIC_PARENTHESES),
+ minit ("USER", INTRINSIC_USER),
minit (NULL, -1)
};
@@ -3166,7 +3175,8 @@ fix_mio_expr (gfc_expr *e)
&& !e->symtree->n.sym->attr.dummy)
e->symtree = ns_st;
}
- else if (e->expr_type == EXPR_FUNCTION && e->value.function.name)
+ else if (e->expr_type == EXPR_FUNCTION
+ && (e->value.function.name || e->value.function.isym))
{
gfc_symbol *sym;
@@ -3281,6 +3291,32 @@ mio_expr (gfc_expr **ep)
mio_expr (&e->value.op.op2);
break;
+ case INTRINSIC_USER:
+ /* INTRINSIC_USER should not appear in resolved expressions,
+ though for UDRs we need to stream unresolved ones. */
+ if (iomode == IO_OUTPUT)
+ write_atom (ATOM_STRING, e->value.op.uop->name);
+ else
+ {
+ char *name = read_string ();
+ const char *uop_name = find_use_name (name, true);
+ if (uop_name == NULL)
+ {
+ size_t len = strlen (name);
+ char *name2 = XCNEWVEC (char, len + 2);
+ memcpy (name2, name, len);
+ name2[len] = ' ';
+ name2[len + 1] = '\0';
+ free (name);
+ uop_name = name = name2;
+ }
+ e->value.op.uop = gfc_get_uop (uop_name);
+ free (name);
+ }
+ mio_expr (&e->value.op.op1);
+ mio_expr (&e->value.op.op2);
+ break;
+
default:
bad_module ("Bad operator");
}
@@ -3299,6 +3335,8 @@ mio_expr (gfc_expr **ep)
flag = 1;
else if (e->ref)
flag = 2;
+ else if (e->value.function.isym == NULL)
+ flag = 3;
else
flag = 0;
mio_integer (&flag);
@@ -3310,6 +3348,8 @@ mio_expr (gfc_expr **ep)
case 2:
mio_ref_list (&e->ref);
break;
+ case 3:
+ break;
default:
write_atom (ATOM_STRING, e->value.function.isym->name);
}
@@ -3317,7 +3357,10 @@ mio_expr (gfc_expr **ep)
else
{
require_atom (ATOM_STRING);
- e->value.function.name = gfc_get_string (atom_string);
+ if (atom_string[0] == '\0')
+ e->value.function.name = NULL;
+ else
+ e->value.function.name = gfc_get_string (atom_string);
free (atom_string);
mio_integer (&flag);
@@ -3329,6 +3372,8 @@ mio_expr (gfc_expr **ep)
case 2:
mio_ref_list (&e->ref);
break;
+ case 3:
+ break;
default:
require_atom (ATOM_STRING);
e->value.function.isym = gfc_find_function (atom_string);
@@ -3790,6 +3835,203 @@ mio_full_f2k_derived (gfc_symbol *sym)
mio_rparen ();
}
+static const mstring omp_declare_simd_clauses[] =
+{
+ minit ("INBRANCH", 0),
+ minit ("NOTINBRANCH", 1),
+ minit ("SIMDLEN", 2),
+ minit ("UNIFORM", 3),
+ minit ("LINEAR", 4),
+ minit ("ALIGNED", 5),
+ minit (NULL, -1)
+};
+
+/* Handle !$omp declare simd. */
+
+static void
+mio_omp_declare_simd (gfc_namespace *ns, gfc_omp_declare_simd **odsp)
+{
+ if (iomode == IO_OUTPUT)
+ {
+ if (*odsp == NULL)
+ return;
+ }
+ else if (peek_atom () != ATOM_LPAREN)
+ return;
+
+ gfc_omp_declare_simd *ods = *odsp;
+
+ mio_lparen ();
+ if (iomode == IO_OUTPUT)
+ {
+ write_atom (ATOM_NAME, "OMP_DECLARE_SIMD");
+ if (ods->clauses)
+ {
+ gfc_omp_namelist *n;
+
+ if (ods->clauses->inbranch)
+ mio_name (0, omp_declare_simd_clauses);
+ if (ods->clauses->notinbranch)
+ mio_name (1, omp_declare_simd_clauses);
+ if (ods->clauses->simdlen_expr)
+ {
+ mio_name (2, omp_declare_simd_clauses);
+ mio_expr (&ods->clauses->simdlen_expr);
+ }
+ for (n = ods->clauses->lists[OMP_LIST_UNIFORM]; n; n = n->next)
+ {
+ mio_name (3, omp_declare_simd_clauses);
+ mio_symbol_ref (&n->sym);
+ }
+ for (n = ods->clauses->lists[OMP_LIST_LINEAR]; n; n = n->next)
+ {
+ mio_name (4, omp_declare_simd_clauses);
+ mio_symbol_ref (&n->sym);
+ mio_expr (&n->expr);
+ }
+ for (n = ods->clauses->lists[OMP_LIST_ALIGNED]; n; n = n->next)
+ {
+ mio_name (5, omp_declare_simd_clauses);
+ mio_symbol_ref (&n->sym);
+ mio_expr (&n->expr);
+ }
+ }
+ }
+ else
+ {
+ gfc_omp_namelist **ptrs[3] = { NULL, NULL, NULL };
+
+ require_atom (ATOM_NAME);
+ *odsp = ods = gfc_get_omp_declare_simd ();
+ ods->where = gfc_current_locus;
+ ods->proc_name = ns->proc_name;
+ if (peek_atom () == ATOM_NAME)
+ {
+ ods->clauses = gfc_get_omp_clauses ();
+ ptrs[0] = &ods->clauses->lists[OMP_LIST_UNIFORM];
+ ptrs[1] = &ods->clauses->lists[OMP_LIST_LINEAR];
+ ptrs[2] = &ods->clauses->lists[OMP_LIST_ALIGNED];
+ }
+ while (peek_atom () == ATOM_NAME)
+ {
+ gfc_omp_namelist *n;
+ int t = mio_name (0, omp_declare_simd_clauses);
+
+ switch (t)
+ {
+ case 0: ods->clauses->inbranch = true; break;
+ case 1: ods->clauses->notinbranch = true; break;
+ case 2: mio_expr (&ods->clauses->simdlen_expr); break;
+ case 3:
+ case 4:
+ case 5:
+ *ptrs[t - 3] = n = gfc_get_omp_namelist ();
+ ptrs[t - 3] = &n->next;
+ mio_symbol_ref (&n->sym);
+ if (t != 3)
+ mio_expr (&n->expr);
+ break;
+ }
+ }
+ }
+
+ mio_omp_declare_simd (ns, &ods->next);
+
+ mio_rparen ();
+}
+
+
+static const mstring omp_declare_reduction_stmt[] =
+{
+ minit ("ASSIGN", 0),
+ minit ("CALL", 1),
+ minit (NULL, -1)
+};
+
+
+static void
+mio_omp_udr_expr (gfc_omp_udr *udr, gfc_symbol **sym1, gfc_symbol **sym2,
+ gfc_namespace *ns, bool is_initializer)
+{
+ if (iomode == IO_OUTPUT)
+ {
+ if ((*sym1)->module == NULL)
+ {
+ (*sym1)->module = module_name;
+ (*sym2)->module = module_name;
+ }
+ mio_symbol_ref (sym1);
+ mio_symbol_ref (sym2);
+ if (ns->code->op == EXEC_ASSIGN)
+ {
+ mio_name (0, omp_declare_reduction_stmt);
+ mio_expr (&ns->code->expr1);
+ mio_expr (&ns->code->expr2);
+ }
+ else
+ {
+ int flag;
+ mio_name (1, omp_declare_reduction_stmt);
+ mio_symtree_ref (&ns->code->symtree);
+ mio_actual_arglist (&ns->code->ext.actual);
+
+ flag = ns->code->resolved_isym != NULL;
+ mio_integer (&flag);
+ if (flag)
+ write_atom (ATOM_STRING, ns->code->resolved_isym->name);
+ else
+ mio_symbol_ref (&ns->code->resolved_sym);
+ }
+ }
+ else
+ {
+ pointer_info *p1 = mio_symbol_ref (sym1);
+ pointer_info *p2 = mio_symbol_ref (sym2);
+ gfc_symbol *sym;
+ gcc_assert (p1->u.rsym.ns == p2->u.rsym.ns);
+ gcc_assert (p1->u.rsym.sym == NULL);
+ /* Add hidden symbols to the symtree. */
+ pointer_info *q = get_integer (p1->u.rsym.ns);
+ q->u.pointer = (void *) ns;
+ sym = gfc_new_symbol (is_initializer ? "omp_priv" : "omp_out", ns);
+ sym->ts = udr->ts;
+ sym->module = gfc_get_string (p1->u.rsym.module);
+ associate_integer_pointer (p1, sym);
+ sym->attr.omp_udr_artificial_var = 1;
+ gcc_assert (p2->u.rsym.sym == NULL);
+ sym = gfc_new_symbol (is_initializer ? "omp_orig" : "omp_in", ns);
+ sym->ts = udr->ts;
+ sym->module = gfc_get_string (p2->u.rsym.module);
+ associate_integer_pointer (p2, sym);
+ sym->attr.omp_udr_artificial_var = 1;
+ if (mio_name (0, omp_declare_reduction_stmt) == 0)
+ {
+ ns->code = gfc_get_code (EXEC_ASSIGN);
+ mio_expr (&ns->code->expr1);
+ mio_expr (&ns->code->expr2);
+ }
+ else
+ {
+ int flag;
+ ns->code = gfc_get_code (EXEC_CALL);
+ mio_symtree_ref (&ns->code->symtree);
+ mio_actual_arglist (&ns->code->ext.actual);
+
+ mio_integer (&flag);
+ if (flag)
+ {
+ require_atom (ATOM_STRING);
+ ns->code->resolved_isym = gfc_find_subroutine (atom_string);
+ free (atom_string);
+ }
+ else
+ mio_symbol_ref (&ns->code->resolved_sym);
+ }
+ ns->code->loc = gfc_current_locus;
+ ns->omp_udr_ns = 1;
+ }
+}
+
/* Unlike most other routines, the address of the symbol node is already
fixed on input and the name/module has already been filled in.
@@ -3864,6 +4106,17 @@ mio_symbol (gfc_symbol *sym)
if (sym->attr.flavor == FL_DERIVED)
mio_integer (&(sym->hash_value));
+ if (sym->formal_ns
+ && sym->formal_ns->proc_name == sym
+ && sym->formal_ns->entries == NULL)
+ {
+ if (module_omp4)
+ mio_omp_declare_simd (sym->formal_ns,
+ &sym->formal_ns->omp_declare_simd);
+ else if (iomode == IO_OUTPUT)
+ gcc_assert (sym->formal_ns->omp_declare_simd == NULL);
+ }
+
mio_rparen ();
}
@@ -4343,6 +4596,119 @@ load_derived_extensions (void)
}
+/* This function loads OpenMP user defined reductions. */
+static void
+load_omp_udrs (void)
+{
+ mio_lparen ();
+ while (peek_atom () != ATOM_RPAREN)
+ {
+ const char *name, *newname;
+ char *altname;
+ gfc_typespec ts;
+ gfc_symtree *st;
+ gfc_omp_reduction_op rop = OMP_REDUCTION_USER;
+
+ mio_lparen ();
+ mio_pool_string (&name);
+ mio_typespec (&ts);
+ if (strncmp (name, "operator ", sizeof ("operator ") - 1) == 0)
+ {
+ const char *p = name + sizeof ("operator ") - 1;
+ if (strcmp (p, "+") == 0)
+ rop = OMP_REDUCTION_PLUS;
+ else if (strcmp (p, "*") == 0)
+ rop = OMP_REDUCTION_TIMES;
+ else if (strcmp (p, "-") == 0)
+ rop = OMP_REDUCTION_MINUS;
+ else if (strcmp (p, ".and.") == 0)
+ rop = OMP_REDUCTION_AND;
+ else if (strcmp (p, ".or.") == 0)
+ rop = OMP_REDUCTION_OR;
+ else if (strcmp (p, ".eqv.") == 0)
+ rop = OMP_REDUCTION_EQV;
+ else if (strcmp (p, ".neqv.") == 0)
+ rop = OMP_REDUCTION_NEQV;
+ }
+ altname = NULL;
+ if (rop == OMP_REDUCTION_USER && name[0] == '.')
+ {
+ size_t len = strlen (name + 1);
+ altname = XALLOCAVEC (char, len);
+ gcc_assert (name[len] == '.');
+ memcpy (altname, name + 1, len - 1);
+ altname[len - 1] = '\0';
+ }
+ newname = name;
+ if (rop == OMP_REDUCTION_USER)
+ newname = find_use_name (altname ? altname : name, !!altname);
+ else if (only_flag && find_use_operator ((gfc_intrinsic_op) rop) == NULL)
+ newname = NULL;
+ if (newname == NULL)
+ {
+ skip_list (1);
+ continue;
+ }
+ if (altname && newname != altname)
+ {
+ size_t len = strlen (newname);
+ altname = XALLOCAVEC (char, len + 3);
+ altname[0] = '.';
+ memcpy (altname + 1, newname, len);
+ altname[len + 1] = '.';
+ altname[len + 2] = '\0';
+ name = gfc_get_string (altname);
+ }
+ st = gfc_find_symtree (gfc_current_ns->omp_udr_root, name);
+ gfc_omp_udr *udr = gfc_omp_udr_find (st, &ts);
+ if (udr)
+ {
+ require_atom (ATOM_INTEGER);
+ pointer_info *p = get_integer (atom_int);
+ if (strcmp (p->u.rsym.module, udr->omp_out->module))
+ {
+ gfc_error ("Ambiguous !$OMP DECLARE REDUCTION from "
+ "module %s at %L",
+ p->u.rsym.module, &gfc_current_locus);
+ gfc_error ("Previous !$OMP DECLARE REDUCTION from module "
+ "%s at %L",
+ udr->omp_out->module, &udr->where);
+ }
+ skip_list (1);
+ continue;
+ }
+ udr = gfc_get_omp_udr ();
+ udr->name = name;
+ udr->rop = rop;
+ udr->ts = ts;
+ udr->where = gfc_current_locus;
+ udr->combiner_ns = gfc_get_namespace (gfc_current_ns, 1);
+ udr->combiner_ns->proc_name = gfc_current_ns->proc_name;
+ mio_omp_udr_expr (udr, &udr->omp_out, &udr->omp_in, udr->combiner_ns,
+ false);
+ if (peek_atom () != ATOM_RPAREN)
+ {
+ udr->initializer_ns = gfc_get_namespace (gfc_current_ns, 1);
+ udr->initializer_ns->proc_name = gfc_current_ns->proc_name;
+ mio_omp_udr_expr (udr, &udr->omp_priv, &udr->omp_orig,
+ udr->initializer_ns, true);
+ }
+ if (st)
+ {
+ udr->next = st->n.omp_udr;
+ st->n.omp_udr = udr;
+ }
+ else
+ {
+ st = gfc_new_symtree (&gfc_current_ns->omp_udr_root, name);
+ st->n.omp_udr = udr;
+ }
+ mio_rparen ();
+ }
+ mio_rparen ();
+}
+
+
/* Recursive function to traverse the pointer_info tree and load a
needed symbol. We return nonzero if we load a symbol and stop the
traversal, because the act of loading can alter the tree. */
@@ -4530,7 +4896,7 @@ check_for_ambiguous (gfc_symbol *st_sym, pointer_info *info)
static void
read_module (void)
{
- module_locus operator_interfaces, user_operators, extensions;
+ module_locus operator_interfaces, user_operators, extensions, omp_udrs;
const char *p;
char name[GFC_MAX_SYMBOL_LEN + 1];
int i;
@@ -4554,6 +4920,11 @@ read_module (void)
get_module_locus (&extensions);
skip_list ();
+ /* Skip OpenMP UDRs. */
+ get_module_locus (&omp_udrs);
+ if (module_omp4)
+ skip_list ();
+
mio_lparen ();
/* Create the fixup nodes for all the symbols. */
@@ -4819,6 +5190,13 @@ read_module (void)
load_commons ();
load_equiv ();
+ if (module_omp4)
+ {
+ /* Load OpenMP user defined reductions. */
+ set_module_locus (&omp_udrs);
+ load_omp_udrs ();
+ }
+
/* At this point, we read those symbols that are needed but haven't
been loaded yet. If one symbol requires another, the other gets
marked as NEEDED if its previous state was UNUSED. */
@@ -5197,6 +5575,80 @@ write_symbol0 (gfc_symtree *st)
}
+static void
+write_omp_udr (gfc_omp_udr *udr)
+{
+ switch (udr->rop)
+ {
+ case OMP_REDUCTION_USER:
+ /* Non-operators can't be used outside of the module. */
+ if (udr->name[0] != '.')
+ return;
+ else
+ {
+ gfc_symtree *st;
+ size_t len = strlen (udr->name + 1);
+ char *name = XALLOCAVEC (char, len);
+ memcpy (name, udr->name, len - 1);
+ name[len - 1] = '\0';
+ st = gfc_find_symtree (gfc_current_ns->uop_root, name);
+ /* If corresponding user operator is private, don't write
+ the UDR. */
+ if (st != NULL)
+ {
+ gfc_user_op *uop = st->n.uop;
+ if (!check_access (uop->access, uop->ns->default_access))
+ return;
+ }
+ }
+ break;
+ case OMP_REDUCTION_PLUS:
+ case OMP_REDUCTION_MINUS:
+ case OMP_REDUCTION_TIMES:
+ case OMP_REDUCTION_AND:
+ case OMP_REDUCTION_OR:
+ case OMP_REDUCTION_EQV:
+ case OMP_REDUCTION_NEQV:
+ /* If corresponding operator is private, don't write the UDR. */
+ if (!check_access (gfc_current_ns->operator_access[udr->rop],
+ gfc_current_ns->default_access))
+ return;
+ break;
+ default:
+ break;
+ }
+ if (udr->ts.type == BT_DERIVED || udr->ts.type == BT_CLASS)
+ {
+ /* If derived type is private, don't write the UDR. */
+ if (!gfc_check_symbol_access (udr->ts.u.derived))
+ return;
+ }
+
+ mio_lparen ();
+ mio_pool_string (&udr->name);
+ mio_typespec (&udr->ts);
+ mio_omp_udr_expr (udr, &udr->omp_out, &udr->omp_in, udr->combiner_ns, false);
+ if (udr->initializer_ns)
+ mio_omp_udr_expr (udr, &udr->omp_priv, &udr->omp_orig,
+ udr->initializer_ns, true);
+ mio_rparen ();
+}
+
+
+static void
+write_omp_udrs (gfc_symtree *st)
+{
+ if (st == NULL)
+ return;
+
+ write_omp_udrs (st->left);
+ gfc_omp_udr *udr;
+ for (udr = st->n.omp_udr; udr; udr = udr->next)
+ write_omp_udr (udr);
+ write_omp_udrs (st->right);
+}
+
+
/* Type for the temporary tree used when writing secondary symbols. */
struct sorted_pointer_info
@@ -5445,6 +5897,17 @@ write_module (void)
write_char ('\n');
write_char ('\n');
+ if (module_omp4)
+ {
+ mio_lparen ();
+ write_omp_udrs (gfc_current_ns->omp_udr_root);
+ mio_rparen ();
+ write_char ('\n');
+ write_char ('\n');
+ }
+ else
+ gcc_assert (gfc_current_ns->omp_udr_root == NULL);
+
/* Write symbol information. First we traverse all symbols in the
primary namespace, writing those that need to be written.
Sometimes writing one symbol will cause another to need to be
@@ -5513,6 +5976,21 @@ read_crc32_from_module_file (const char* filename, uLong* crc)
}
+/* Set module_omp4 if any symbol has !$OMP DECLARE SIMD directives. */
+
+static void
+find_omp_declare_simd (gfc_symtree *st)
+{
+ gfc_symbol *sym = st->n.sym;
+ if (sym->formal_ns
+ && sym->formal_ns->proc_name == sym
+ && sym->formal_ns->omp_declare_simd)
+ module_omp4 = true;
+ else if (sym->attr.omp_declare_target)
+ module_omp4 = true;
+}
+
+
/* Given module, dump it to disk. If there was an error while
processing the module, dump_flag will be set to zero and we delete
the module file, even if it was already there. */
@@ -5555,6 +6033,12 @@ gfc_dump_module (const char *name, int dump_flag)
if (gfc_cpp_makedep ())
gfc_cpp_add_target (filename);
+ module_omp4 = false;
+ if (gfc_current_ns->omp_udr_root)
+ module_omp4 = true;
+ else
+ gfc_traverse_symtree (gfc_current_ns->sym_root, find_omp_declare_simd);
+
/* Write the module to the temporary file. */
module_fp = gzopen (filename_tmp, "w");
if (module_fp == NULL)
@@ -5562,7 +6046,7 @@ gfc_dump_module (const char *name, int dump_flag)
filename_tmp, xstrerror (errno));
gzprintf (module_fp, "GFORTRAN module version '%s' created from %s\n",
- MOD_VERSION, gfc_source_file);
+ module_omp4 ? MOD_VERSION_OMP4 : MOD_VERSION, gfc_source_file);
/* Write the module itself. */
iomode = IO_OUTPUT;
@@ -6353,6 +6837,8 @@ gfc_use_module (gfc_use_list *module)
read_module_to_tmpbuf ();
gzclose (module_fp);
+ module_omp4 = false;
+
/* Skip the first line of the module, after checking that this is
a gfortran module file. */
line = 0;
@@ -6372,11 +6858,15 @@ gfc_use_module (gfc_use_list *module)
if (strcmp (atom_name, " version") != 0
|| module_char () != ' '
|| parse_atom () != ATOM_STRING
- || strcmp (atom_string, MOD_VERSION))
+ || (strcmp (atom_string, MOD_VERSION)
+ && strcmp (atom_string, MOD_VERSION_OMP4)))
gfc_fatal_error ("Cannot read module file '%s' opened at %C,"
" because it was created by a different"
" version of GNU Fortran", filename);
+ if (strcmp (atom_string, MOD_VERSION_OMP4) == 0)
+ module_omp4 = true;
+
free (atom_string);
}
diff --git a/gcc-4.9/gcc/fortran/openmp.c b/gcc-4.9/gcc/fortran/openmp.c
index dff3ab1ad..68ba70f7e 100644
--- a/gcc-4.9/gcc/fortran/openmp.c
+++ b/gcc-4.9/gcc/fortran/openmp.c
@@ -23,6 +23,7 @@ along with GCC; see the file COPYING3. If not see
#include "coretypes.h"
#include "flags.h"
#include "gfortran.h"
+#include "arith.h"
#include "match.h"
#include "parse.h"
#include "pointer-set.h"
@@ -69,19 +70,111 @@ gfc_free_omp_clauses (gfc_omp_clauses *c)
gfc_free_expr (c->final_expr);
gfc_free_expr (c->num_threads);
gfc_free_expr (c->chunk_size);
+ gfc_free_expr (c->safelen_expr);
+ gfc_free_expr (c->simdlen_expr);
+ gfc_free_expr (c->num_teams);
+ gfc_free_expr (c->device);
+ gfc_free_expr (c->thread_limit);
+ gfc_free_expr (c->dist_chunk_size);
for (i = 0; i < OMP_LIST_NUM; i++)
- gfc_free_namelist (c->lists[i]);
+ gfc_free_omp_namelist (c->lists[i]);
free (c);
}
+/* Free an !$omp declare simd construct list. */
+
+void
+gfc_free_omp_declare_simd (gfc_omp_declare_simd *ods)
+{
+ if (ods)
+ {
+ gfc_free_omp_clauses (ods->clauses);
+ free (ods);
+ }
+}
+
+void
+gfc_free_omp_declare_simd_list (gfc_omp_declare_simd *list)
+{
+ while (list)
+ {
+ gfc_omp_declare_simd *current = list;
+ list = list->next;
+ gfc_free_omp_declare_simd (current);
+ }
+}
+
+/* Free an !$omp declare reduction. */
+
+void
+gfc_free_omp_udr (gfc_omp_udr *omp_udr)
+{
+ if (omp_udr)
+ {
+ gfc_free_omp_udr (omp_udr->next);
+ gfc_free_namespace (omp_udr->combiner_ns);
+ if (omp_udr->initializer_ns)
+ gfc_free_namespace (omp_udr->initializer_ns);
+ free (omp_udr);
+ }
+}
+
+
+static gfc_omp_udr *
+gfc_find_omp_udr (gfc_namespace *ns, const char *name, gfc_typespec *ts)
+{
+ gfc_symtree *st;
+
+ if (ns == NULL)
+ ns = gfc_current_ns;
+ do
+ {
+ gfc_omp_udr *omp_udr;
+
+ st = gfc_find_symtree (ns->omp_udr_root, name);
+ if (st != NULL)
+ for (omp_udr = st->n.omp_udr; omp_udr; omp_udr = omp_udr->next)
+ if (ts == NULL)
+ return omp_udr;
+ else if (gfc_compare_types (&omp_udr->ts, ts))
+ {
+ if (ts->type == BT_CHARACTER)
+ {
+ if (omp_udr->ts.u.cl->length == NULL)
+ return omp_udr;
+ if (ts->u.cl->length == NULL)
+ continue;
+ if (gfc_compare_expr (omp_udr->ts.u.cl->length,
+ ts->u.cl->length,
+ INTRINSIC_EQ) != 0)
+ continue;
+ }
+ return omp_udr;
+ }
+
+ /* Don't escape an interface block. */
+ if (ns && !ns->has_import_set
+ && ns->proc_name && ns->proc_name->attr.if_source == IFSRC_IFBODY)
+ break;
+
+ ns = ns->parent;
+ }
+ while (ns != NULL);
+
+ return NULL;
+}
+
+
/* Match a variable/common block list and construct a namelist from it. */
static match
-gfc_match_omp_variable_list (const char *str, gfc_namelist **list,
- bool allow_common)
+gfc_match_omp_variable_list (const char *str, gfc_omp_namelist **list,
+ bool allow_common, bool *end_colon = NULL,
+ gfc_omp_namelist ***headp = NULL,
+ bool allow_sections = false)
{
- gfc_namelist *head, *tail, *p;
- locus old_loc;
+ gfc_omp_namelist *head, *tail, *p;
+ locus old_loc, cur_loc;
char n[GFC_MAX_SYMBOL_LEN+1];
gfc_symbol *sym;
match m;
@@ -97,12 +190,29 @@ gfc_match_omp_variable_list (const char *str, gfc_namelist **list,
for (;;)
{
+ cur_loc = gfc_current_locus;
m = gfc_match_symbol (&sym, 1);
switch (m)
{
case MATCH_YES:
+ gfc_expr *expr;
+ expr = NULL;
+ if (allow_sections && gfc_peek_ascii_char () == '(')
+ {
+ gfc_current_locus = cur_loc;
+ m = gfc_match_variable (&expr, 0);
+ switch (m)
+ {
+ case MATCH_ERROR:
+ goto cleanup;
+ case MATCH_NO:
+ goto syntax;
+ default:
+ break;
+ }
+ }
gfc_set_sym_referenced (sym);
- p = gfc_get_namelist ();
+ p = gfc_get_omp_namelist ();
if (head == NULL)
head = tail = p;
else
@@ -111,6 +221,7 @@ gfc_match_omp_variable_list (const char *str, gfc_namelist **list,
tail = tail->next;
}
tail->sym = sym;
+ tail->expr = expr;
goto next_item;
case MATCH_NO:
break;
@@ -136,7 +247,7 @@ gfc_match_omp_variable_list (const char *str, gfc_namelist **list,
for (sym = st->n.common->head; sym; sym = sym->common_next)
{
gfc_set_sym_referenced (sym);
- p = gfc_get_namelist ();
+ p = gfc_get_omp_namelist ();
if (head == NULL)
head = tail = p;
else
@@ -148,6 +259,11 @@ gfc_match_omp_variable_list (const char *str, gfc_namelist **list,
}
next_item:
+ if (end_colon && gfc_match_char (':') == MATCH_YES)
+ {
+ *end_colon = true;
+ break;
+ }
if (gfc_match_char (')') == MATCH_YES)
break;
if (gfc_match_char (',') != MATCH_YES)
@@ -158,43 +274,61 @@ gfc_match_omp_variable_list (const char *str, gfc_namelist **list,
list = &(*list)->next;
*list = head;
+ if (headp)
+ *headp = list;
return MATCH_YES;
syntax:
gfc_error ("Syntax error in OpenMP variable list at %C");
cleanup:
- gfc_free_namelist (head);
+ gfc_free_omp_namelist (head);
gfc_current_locus = old_loc;
return MATCH_ERROR;
}
-#define OMP_CLAUSE_PRIVATE (1 << 0)
-#define OMP_CLAUSE_FIRSTPRIVATE (1 << 1)
-#define OMP_CLAUSE_LASTPRIVATE (1 << 2)
-#define OMP_CLAUSE_COPYPRIVATE (1 << 3)
-#define OMP_CLAUSE_SHARED (1 << 4)
-#define OMP_CLAUSE_COPYIN (1 << 5)
-#define OMP_CLAUSE_REDUCTION (1 << 6)
-#define OMP_CLAUSE_IF (1 << 7)
-#define OMP_CLAUSE_NUM_THREADS (1 << 8)
-#define OMP_CLAUSE_SCHEDULE (1 << 9)
-#define OMP_CLAUSE_DEFAULT (1 << 10)
-#define OMP_CLAUSE_ORDERED (1 << 11)
-#define OMP_CLAUSE_COLLAPSE (1 << 12)
-#define OMP_CLAUSE_UNTIED (1 << 13)
-#define OMP_CLAUSE_FINAL (1 << 14)
-#define OMP_CLAUSE_MERGEABLE (1 << 15)
+#define OMP_CLAUSE_PRIVATE (1U << 0)
+#define OMP_CLAUSE_FIRSTPRIVATE (1U << 1)
+#define OMP_CLAUSE_LASTPRIVATE (1U << 2)
+#define OMP_CLAUSE_COPYPRIVATE (1U << 3)
+#define OMP_CLAUSE_SHARED (1U << 4)
+#define OMP_CLAUSE_COPYIN (1U << 5)
+#define OMP_CLAUSE_REDUCTION (1U << 6)
+#define OMP_CLAUSE_IF (1U << 7)
+#define OMP_CLAUSE_NUM_THREADS (1U << 8)
+#define OMP_CLAUSE_SCHEDULE (1U << 9)
+#define OMP_CLAUSE_DEFAULT (1U << 10)
+#define OMP_CLAUSE_ORDERED (1U << 11)
+#define OMP_CLAUSE_COLLAPSE (1U << 12)
+#define OMP_CLAUSE_UNTIED (1U << 13)
+#define OMP_CLAUSE_FINAL (1U << 14)
+#define OMP_CLAUSE_MERGEABLE (1U << 15)
+#define OMP_CLAUSE_ALIGNED (1U << 16)
+#define OMP_CLAUSE_DEPEND (1U << 17)
+#define OMP_CLAUSE_INBRANCH (1U << 18)
+#define OMP_CLAUSE_LINEAR (1U << 19)
+#define OMP_CLAUSE_NOTINBRANCH (1U << 20)
+#define OMP_CLAUSE_PROC_BIND (1U << 21)
+#define OMP_CLAUSE_SAFELEN (1U << 22)
+#define OMP_CLAUSE_SIMDLEN (1U << 23)
+#define OMP_CLAUSE_UNIFORM (1U << 24)
+#define OMP_CLAUSE_DEVICE (1U << 25)
+#define OMP_CLAUSE_MAP (1U << 26)
+#define OMP_CLAUSE_TO (1U << 27)
+#define OMP_CLAUSE_FROM (1U << 28)
+#define OMP_CLAUSE_NUM_TEAMS (1U << 29)
+#define OMP_CLAUSE_THREAD_LIMIT (1U << 30)
+#define OMP_CLAUSE_DIST_SCHEDULE (1U << 31)
/* Match OpenMP directive clauses. MASK is a bitmask of
clauses that are allowed for a particular directive. */
static match
-gfc_match_omp_clauses (gfc_omp_clauses **cp, int mask)
+gfc_match_omp_clauses (gfc_omp_clauses **cp, unsigned int mask,
+ bool first = true, bool needs_space = true)
{
gfc_omp_clauses *c = gfc_get_omp_clauses ();
locus old_loc;
- bool needs_space = true, first = true;
*cp = NULL;
while (1)
@@ -251,22 +385,30 @@ gfc_match_omp_clauses (gfc_omp_clauses **cp, int mask)
if ((mask & OMP_CLAUSE_REDUCTION)
&& gfc_match ("reduction ( ") == MATCH_YES)
{
- int reduction = OMP_LIST_NUM;
- char buffer[GFC_MAX_SYMBOL_LEN + 1];
+ gfc_omp_reduction_op rop = OMP_REDUCTION_NONE;
+ char buffer[GFC_MAX_SYMBOL_LEN + 3];
if (gfc_match_char ('+') == MATCH_YES)
- reduction = OMP_LIST_PLUS;
+ rop = OMP_REDUCTION_PLUS;
else if (gfc_match_char ('*') == MATCH_YES)
- reduction = OMP_LIST_MULT;
+ rop = OMP_REDUCTION_TIMES;
else if (gfc_match_char ('-') == MATCH_YES)
- reduction = OMP_LIST_SUB;
+ rop = OMP_REDUCTION_MINUS;
else if (gfc_match (".and.") == MATCH_YES)
- reduction = OMP_LIST_AND;
+ rop = OMP_REDUCTION_AND;
else if (gfc_match (".or.") == MATCH_YES)
- reduction = OMP_LIST_OR;
+ rop = OMP_REDUCTION_OR;
else if (gfc_match (".eqv.") == MATCH_YES)
- reduction = OMP_LIST_EQV;
+ rop = OMP_REDUCTION_EQV;
else if (gfc_match (".neqv.") == MATCH_YES)
- reduction = OMP_LIST_NEQV;
+ rop = OMP_REDUCTION_NEQV;
+ if (rop != OMP_REDUCTION_NONE)
+ snprintf (buffer, sizeof buffer,
+ "operator %s", gfc_op2string ((gfc_intrinsic_op) rop));
+ else if (gfc_match_defined_op_name (buffer + 1, 1) == MATCH_YES)
+ {
+ buffer[0] = '.';
+ strcat (buffer, ".");
+ }
else if (gfc_match_name (buffer) == MATCH_YES)
{
gfc_symbol *sym;
@@ -294,40 +436,64 @@ gfc_match_omp_clauses (gfc_omp_clauses **cp, int mask)
|| sym->attr.if_source != IFSRC_UNKNOWN
|| sym == sym->ns->proc_name)
{
- gfc_error_now ("%s is not INTRINSIC procedure name "
- "at %C", buffer);
sym = NULL;
+ n = NULL;
}
else
n = sym->name;
}
- if (strcmp (n, "max") == 0)
- reduction = OMP_LIST_MAX;
+ if (n == NULL)
+ rop = OMP_REDUCTION_NONE;
+ else if (strcmp (n, "max") == 0)
+ rop = OMP_REDUCTION_MAX;
else if (strcmp (n, "min") == 0)
- reduction = OMP_LIST_MIN;
+ rop = OMP_REDUCTION_MIN;
else if (strcmp (n, "iand") == 0)
- reduction = OMP_LIST_IAND;
+ rop = OMP_REDUCTION_IAND;
else if (strcmp (n, "ior") == 0)
- reduction = OMP_LIST_IOR;
+ rop = OMP_REDUCTION_IOR;
else if (strcmp (n, "ieor") == 0)
- reduction = OMP_LIST_IEOR;
- if (reduction != OMP_LIST_NUM
+ rop = OMP_REDUCTION_IEOR;
+ if (rop != OMP_REDUCTION_NONE
&& sym != NULL
&& ! sym->attr.intrinsic
&& ! sym->attr.use_assoc
&& ((sym->attr.flavor == FL_UNKNOWN
- && !gfc_add_flavor (&sym->attr, FL_PROCEDURE, sym->name, NULL))
+ && !gfc_add_flavor (&sym->attr, FL_PROCEDURE,
+ sym->name, NULL))
|| !gfc_add_intrinsic (&sym->attr, NULL)))
+ rop = OMP_REDUCTION_NONE;
+ }
+ gfc_omp_udr *udr = gfc_find_omp_udr (gfc_current_ns, buffer, NULL);
+ gfc_omp_namelist **head = NULL;
+ if (rop == OMP_REDUCTION_NONE && udr)
+ rop = OMP_REDUCTION_USER;
+
+ if (gfc_match_omp_variable_list (" :",
+ &c->lists[OMP_LIST_REDUCTION],
+ false, NULL, &head) == MATCH_YES)
+ {
+ gfc_omp_namelist *n;
+ if (rop == OMP_REDUCTION_NONE)
{
- gfc_free_omp_clauses (c);
- return MATCH_ERROR;
+ n = *head;
+ *head = NULL;
+ gfc_error_now ("!$OMP DECLARE REDUCTION %s not found "
+ "at %L", buffer, &old_loc);
+ gfc_free_omp_namelist (n);
}
+ else
+ for (n = *head; n; n = n->next)
+ {
+ n->u.reduction_op = rop;
+ if (udr)
+ {
+ n->udr = gfc_get_omp_namelist_udr ();
+ n->udr->udr = udr;
+ }
+ }
+ continue;
}
- if (reduction != OMP_LIST_NUM
- && gfc_match_omp_variable_list (" :", &c->lists[reduction],
- false)
- == MATCH_YES)
- continue;
else
gfc_current_locus = old_loc;
}
@@ -419,6 +585,188 @@ gfc_match_omp_clauses (gfc_omp_clauses **cp, int mask)
continue;
}
}
+ if ((mask & OMP_CLAUSE_INBRANCH) && !c->inbranch && !c->notinbranch
+ && gfc_match ("inbranch") == MATCH_YES)
+ {
+ c->inbranch = needs_space = true;
+ continue;
+ }
+ if ((mask & OMP_CLAUSE_NOTINBRANCH) && !c->notinbranch && !c->inbranch
+ && gfc_match ("notinbranch") == MATCH_YES)
+ {
+ c->notinbranch = needs_space = true;
+ continue;
+ }
+ if ((mask & OMP_CLAUSE_PROC_BIND)
+ && c->proc_bind == OMP_PROC_BIND_UNKNOWN)
+ {
+ if (gfc_match ("proc_bind ( master )") == MATCH_YES)
+ c->proc_bind = OMP_PROC_BIND_MASTER;
+ else if (gfc_match ("proc_bind ( spread )") == MATCH_YES)
+ c->proc_bind = OMP_PROC_BIND_SPREAD;
+ else if (gfc_match ("proc_bind ( close )") == MATCH_YES)
+ c->proc_bind = OMP_PROC_BIND_CLOSE;
+ if (c->proc_bind != OMP_PROC_BIND_UNKNOWN)
+ continue;
+ }
+ if ((mask & OMP_CLAUSE_SAFELEN) && c->safelen_expr == NULL
+ && gfc_match ("safelen ( %e )", &c->safelen_expr) == MATCH_YES)
+ continue;
+ if ((mask & OMP_CLAUSE_SIMDLEN) && c->simdlen_expr == NULL
+ && gfc_match ("simdlen ( %e )", &c->simdlen_expr) == MATCH_YES)
+ continue;
+ if ((mask & OMP_CLAUSE_UNIFORM)
+ && gfc_match_omp_variable_list ("uniform (",
+ &c->lists[OMP_LIST_UNIFORM], false)
+ == MATCH_YES)
+ continue;
+ bool end_colon = false;
+ gfc_omp_namelist **head = NULL;
+ old_loc = gfc_current_locus;
+ if ((mask & OMP_CLAUSE_ALIGNED)
+ && gfc_match_omp_variable_list ("aligned (",
+ &c->lists[OMP_LIST_ALIGNED], false,
+ &end_colon, &head)
+ == MATCH_YES)
+ {
+ gfc_expr *alignment = NULL;
+ gfc_omp_namelist *n;
+
+ if (end_colon
+ && gfc_match (" %e )", &alignment) != MATCH_YES)
+ {
+ gfc_free_omp_namelist (*head);
+ gfc_current_locus = old_loc;
+ *head = NULL;
+ break;
+ }
+ for (n = *head; n; n = n->next)
+ if (n->next && alignment)
+ n->expr = gfc_copy_expr (alignment);
+ else
+ n->expr = alignment;
+ continue;
+ }
+ end_colon = false;
+ head = NULL;
+ old_loc = gfc_current_locus;
+ if ((mask & OMP_CLAUSE_LINEAR)
+ && gfc_match_omp_variable_list ("linear (",
+ &c->lists[OMP_LIST_LINEAR], false,
+ &end_colon, &head)
+ == MATCH_YES)
+ {
+ gfc_expr *step = NULL;
+
+ if (end_colon
+ && gfc_match (" %e )", &step) != MATCH_YES)
+ {
+ gfc_free_omp_namelist (*head);
+ gfc_current_locus = old_loc;
+ *head = NULL;
+ break;
+ }
+ else if (!end_colon)
+ {
+ step = gfc_get_constant_expr (BT_INTEGER,
+ gfc_default_integer_kind,
+ &old_loc);
+ mpz_set_si (step->value.integer, 1);
+ }
+ (*head)->expr = step;
+ continue;
+ }
+ if ((mask & OMP_CLAUSE_DEPEND)
+ && gfc_match ("depend ( ") == MATCH_YES)
+ {
+ match m = MATCH_YES;
+ gfc_omp_depend_op depend_op = OMP_DEPEND_OUT;
+ if (gfc_match ("inout") == MATCH_YES)
+ depend_op = OMP_DEPEND_INOUT;
+ else if (gfc_match ("in") == MATCH_YES)
+ depend_op = OMP_DEPEND_IN;
+ else if (gfc_match ("out") == MATCH_YES)
+ depend_op = OMP_DEPEND_OUT;
+ else
+ m = MATCH_NO;
+ head = NULL;
+ if (m == MATCH_YES
+ && gfc_match_omp_variable_list (" : ",
+ &c->lists[OMP_LIST_DEPEND],
+ false, NULL, &head, true)
+ == MATCH_YES)
+ {
+ gfc_omp_namelist *n;
+ for (n = *head; n; n = n->next)
+ n->u.depend_op = depend_op;
+ continue;
+ }
+ else
+ gfc_current_locus = old_loc;
+ }
+ if ((mask & OMP_CLAUSE_DIST_SCHEDULE)
+ && c->dist_sched_kind == OMP_SCHED_NONE
+ && gfc_match ("dist_schedule ( static") == MATCH_YES)
+ {
+ match m = MATCH_NO;
+ c->dist_sched_kind = OMP_SCHED_STATIC;
+ m = gfc_match (" , %e )", &c->dist_chunk_size);
+ if (m != MATCH_YES)
+ m = gfc_match_char (')');
+ if (m != MATCH_YES)
+ {
+ c->dist_sched_kind = OMP_SCHED_NONE;
+ gfc_current_locus = old_loc;
+ }
+ else
+ continue;
+ }
+ if ((mask & OMP_CLAUSE_NUM_TEAMS) && c->num_teams == NULL
+ && gfc_match ("num_teams ( %e )", &c->num_teams) == MATCH_YES)
+ continue;
+ if ((mask & OMP_CLAUSE_DEVICE) && c->device == NULL
+ && gfc_match ("device ( %e )", &c->device) == MATCH_YES)
+ continue;
+ if ((mask & OMP_CLAUSE_THREAD_LIMIT) && c->thread_limit == NULL
+ && gfc_match ("thread_limit ( %e )", &c->thread_limit) == MATCH_YES)
+ continue;
+ if ((mask & OMP_CLAUSE_MAP)
+ && gfc_match ("map ( ") == MATCH_YES)
+ {
+ gfc_omp_map_op map_op = OMP_MAP_TOFROM;
+ if (gfc_match ("alloc : ") == MATCH_YES)
+ map_op = OMP_MAP_ALLOC;
+ else if (gfc_match ("tofrom : ") == MATCH_YES)
+ map_op = OMP_MAP_TOFROM;
+ else if (gfc_match ("to : ") == MATCH_YES)
+ map_op = OMP_MAP_TO;
+ else if (gfc_match ("from : ") == MATCH_YES)
+ map_op = OMP_MAP_FROM;
+ head = NULL;
+ if (gfc_match_omp_variable_list ("", &c->lists[OMP_LIST_MAP],
+ false, NULL, &head, true)
+ == MATCH_YES)
+ {
+ gfc_omp_namelist *n;
+ for (n = *head; n; n = n->next)
+ n->u.map_op = map_op;
+ continue;
+ }
+ else
+ gfc_current_locus = old_loc;
+ }
+ if ((mask & OMP_CLAUSE_TO)
+ && gfc_match_omp_variable_list ("to (",
+ &c->lists[OMP_LIST_TO], false,
+ NULL, &head, true)
+ == MATCH_YES)
+ continue;
+ if ((mask & OMP_CLAUSE_FROM)
+ && gfc_match_omp_variable_list ("from (",
+ &c->lists[OMP_LIST_FROM], false,
+ NULL, &head, true)
+ == MATCH_YES)
+ continue;
break;
}
@@ -436,7 +784,10 @@ gfc_match_omp_clauses (gfc_omp_clauses **cp, int mask)
#define OMP_PARALLEL_CLAUSES \
(OMP_CLAUSE_PRIVATE | OMP_CLAUSE_FIRSTPRIVATE | OMP_CLAUSE_SHARED \
| OMP_CLAUSE_COPYIN | OMP_CLAUSE_REDUCTION | OMP_CLAUSE_IF \
- | OMP_CLAUSE_NUM_THREADS | OMP_CLAUSE_DEFAULT)
+ | OMP_CLAUSE_NUM_THREADS | OMP_CLAUSE_DEFAULT | OMP_CLAUSE_PROC_BIND)
+#define OMP_DECLARE_SIMD_CLAUSES \
+ (OMP_CLAUSE_SIMDLEN | OMP_CLAUSE_LINEAR | OMP_CLAUSE_UNIFORM \
+ | OMP_CLAUSE_ALIGNED | OMP_CLAUSE_INBRANCH | OMP_CLAUSE_NOTINBRANCH)
#define OMP_DO_CLAUSES \
(OMP_CLAUSE_PRIVATE | OMP_CLAUSE_FIRSTPRIVATE \
| OMP_CLAUSE_LASTPRIVATE | OMP_CLAUSE_REDUCTION \
@@ -444,107 +795,633 @@ gfc_match_omp_clauses (gfc_omp_clauses **cp, int mask)
#define OMP_SECTIONS_CLAUSES \
(OMP_CLAUSE_PRIVATE | OMP_CLAUSE_FIRSTPRIVATE \
| OMP_CLAUSE_LASTPRIVATE | OMP_CLAUSE_REDUCTION)
+#define OMP_SIMD_CLAUSES \
+ (OMP_CLAUSE_PRIVATE | OMP_CLAUSE_LASTPRIVATE | OMP_CLAUSE_REDUCTION \
+ | OMP_CLAUSE_COLLAPSE | OMP_CLAUSE_SAFELEN | OMP_CLAUSE_LINEAR \
+ | OMP_CLAUSE_ALIGNED)
#define OMP_TASK_CLAUSES \
(OMP_CLAUSE_PRIVATE | OMP_CLAUSE_FIRSTPRIVATE | OMP_CLAUSE_SHARED \
| OMP_CLAUSE_IF | OMP_CLAUSE_DEFAULT | OMP_CLAUSE_UNTIED \
- | OMP_CLAUSE_FINAL | OMP_CLAUSE_MERGEABLE)
+ | OMP_CLAUSE_FINAL | OMP_CLAUSE_MERGEABLE | OMP_CLAUSE_DEPEND)
+#define OMP_TARGET_CLAUSES \
+ (OMP_CLAUSE_DEVICE | OMP_CLAUSE_MAP | OMP_CLAUSE_IF)
+#define OMP_TARGET_DATA_CLAUSES \
+ (OMP_CLAUSE_DEVICE | OMP_CLAUSE_MAP | OMP_CLAUSE_IF)
+#define OMP_TARGET_UPDATE_CLAUSES \
+ (OMP_CLAUSE_DEVICE | OMP_CLAUSE_IF | OMP_CLAUSE_TO | OMP_CLAUSE_FROM)
+#define OMP_TEAMS_CLAUSES \
+ (OMP_CLAUSE_NUM_TEAMS | OMP_CLAUSE_THREAD_LIMIT | OMP_CLAUSE_DEFAULT \
+ | OMP_CLAUSE_PRIVATE | OMP_CLAUSE_FIRSTPRIVATE | OMP_CLAUSE_SHARED \
+ | OMP_CLAUSE_REDUCTION)
+#define OMP_DISTRIBUTE_CLAUSES \
+ (OMP_CLAUSE_PRIVATE | OMP_CLAUSE_FIRSTPRIVATE | OMP_CLAUSE_COLLAPSE \
+ | OMP_CLAUSE_DIST_SCHEDULE)
-match
-gfc_match_omp_parallel (void)
-{
- gfc_omp_clauses *c;
- if (gfc_match_omp_clauses (&c, OMP_PARALLEL_CLAUSES) != MATCH_YES)
- return MATCH_ERROR;
- new_st.op = EXEC_OMP_PARALLEL;
- new_st.ext.omp_clauses = c;
- return MATCH_YES;
-}
-
-match
-gfc_match_omp_task (void)
+static match
+match_omp (gfc_exec_op op, unsigned int mask)
{
gfc_omp_clauses *c;
- if (gfc_match_omp_clauses (&c, OMP_TASK_CLAUSES) != MATCH_YES)
+ if (gfc_match_omp_clauses (&c, mask) != MATCH_YES)
return MATCH_ERROR;
- new_st.op = EXEC_OMP_TASK;
+ new_st.op = op;
new_st.ext.omp_clauses = c;
return MATCH_YES;
}
match
-gfc_match_omp_taskwait (void)
+gfc_match_omp_critical (void)
{
+ char n[GFC_MAX_SYMBOL_LEN+1];
+
+ if (gfc_match (" ( %n )", n) != MATCH_YES)
+ n[0] = '\0';
if (gfc_match_omp_eos () != MATCH_YES)
{
- gfc_error ("Unexpected junk after TASKWAIT clause at %C");
+ gfc_error ("Unexpected junk after $OMP CRITICAL statement at %C");
return MATCH_ERROR;
}
- new_st.op = EXEC_OMP_TASKWAIT;
- new_st.ext.omp_clauses = NULL;
+ new_st.op = EXEC_OMP_CRITICAL;
+ new_st.ext.omp_name = n[0] ? xstrdup (n) : NULL;
return MATCH_YES;
}
match
-gfc_match_omp_taskyield (void)
+gfc_match_omp_distribute (void)
{
- if (gfc_match_omp_eos () != MATCH_YES)
- {
- gfc_error ("Unexpected junk after TASKYIELD clause at %C");
- return MATCH_ERROR;
- }
- new_st.op = EXEC_OMP_TASKYIELD;
- new_st.ext.omp_clauses = NULL;
- return MATCH_YES;
+ return match_omp (EXEC_OMP_DISTRIBUTE, OMP_DISTRIBUTE_CLAUSES);
}
match
-gfc_match_omp_critical (void)
+gfc_match_omp_distribute_parallel_do (void)
{
- char n[GFC_MAX_SYMBOL_LEN+1];
+ return match_omp (EXEC_OMP_DISTRIBUTE_PARALLEL_DO,
+ OMP_DISTRIBUTE_CLAUSES | OMP_PARALLEL_CLAUSES
+ | OMP_DO_CLAUSES);
+}
- if (gfc_match (" ( %n )", n) != MATCH_YES)
- n[0] = '\0';
+
+match
+gfc_match_omp_distribute_parallel_do_simd (void)
+{
+ return match_omp (EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD,
+ (OMP_DISTRIBUTE_CLAUSES | OMP_PARALLEL_CLAUSES
+ | OMP_DO_CLAUSES | OMP_SIMD_CLAUSES)
+ & ~OMP_CLAUSE_ORDERED);
+}
+
+
+match
+gfc_match_omp_distribute_simd (void)
+{
+ return match_omp (EXEC_OMP_DISTRIBUTE_SIMD,
+ OMP_DISTRIBUTE_CLAUSES | OMP_SIMD_CLAUSES);
+}
+
+
+match
+gfc_match_omp_do (void)
+{
+ return match_omp (EXEC_OMP_DO, OMP_DO_CLAUSES);
+}
+
+
+match
+gfc_match_omp_do_simd (void)
+{
+ return match_omp (EXEC_OMP_DO_SIMD, ((OMP_DO_CLAUSES | OMP_SIMD_CLAUSES)
+ & ~OMP_CLAUSE_ORDERED));
+}
+
+
+match
+gfc_match_omp_flush (void)
+{
+ gfc_omp_namelist *list = NULL;
+ gfc_match_omp_variable_list (" (", &list, true);
if (gfc_match_omp_eos () != MATCH_YES)
{
- gfc_error ("Unexpected junk after $OMP CRITICAL statement at %C");
+ gfc_error ("Unexpected junk after $OMP FLUSH statement at %C");
+ gfc_free_omp_namelist (list);
return MATCH_ERROR;
}
- new_st.op = EXEC_OMP_CRITICAL;
- new_st.ext.omp_name = n[0] ? xstrdup (n) : NULL;
+ new_st.op = EXEC_OMP_FLUSH;
+ new_st.ext.omp_namelist = list;
return MATCH_YES;
}
match
-gfc_match_omp_do (void)
+gfc_match_omp_declare_simd (void)
{
+ locus where = gfc_current_locus;
+ gfc_symbol *proc_name;
gfc_omp_clauses *c;
- if (gfc_match_omp_clauses (&c, OMP_DO_CLAUSES) != MATCH_YES)
+ gfc_omp_declare_simd *ods;
+
+ if (gfc_match (" ( %s ) ", &proc_name) != MATCH_YES)
return MATCH_ERROR;
- new_st.op = EXEC_OMP_DO;
- new_st.ext.omp_clauses = c;
+
+ if (gfc_match_omp_clauses (&c, OMP_DECLARE_SIMD_CLAUSES, true,
+ false) != MATCH_YES)
+ return MATCH_ERROR;
+
+ ods = gfc_get_omp_declare_simd ();
+ ods->where = where;
+ ods->proc_name = proc_name;
+ ods->clauses = c;
+ ods->next = gfc_current_ns->omp_declare_simd;
+ gfc_current_ns->omp_declare_simd = ods;
return MATCH_YES;
}
+static bool
+match_udr_expr (gfc_symtree *omp_sym1, gfc_symtree *omp_sym2)
+{
+ match m;
+ locus old_loc = gfc_current_locus;
+ char sname[GFC_MAX_SYMBOL_LEN + 1];
+ gfc_symbol *sym;
+ gfc_namespace *ns = gfc_current_ns;
+ gfc_expr *lvalue = NULL, *rvalue = NULL;
+ gfc_symtree *st;
+ gfc_actual_arglist *arglist;
+
+ m = gfc_match (" %v =", &lvalue);
+ if (m != MATCH_YES)
+ gfc_current_locus = old_loc;
+ else
+ {
+ m = gfc_match (" %e )", &rvalue);
+ if (m == MATCH_YES)
+ {
+ ns->code = gfc_get_code (EXEC_ASSIGN);
+ ns->code->expr1 = lvalue;
+ ns->code->expr2 = rvalue;
+ ns->code->loc = old_loc;
+ return true;
+ }
+
+ gfc_current_locus = old_loc;
+ gfc_free_expr (lvalue);
+ }
+
+ m = gfc_match (" %n", sname);
+ if (m != MATCH_YES)
+ return false;
+
+ if (strcmp (sname, omp_sym1->name) == 0
+ || strcmp (sname, omp_sym2->name) == 0)
+ return false;
+
+ gfc_current_ns = ns->parent;
+ if (gfc_get_ha_sym_tree (sname, &st))
+ return false;
+
+ sym = st->n.sym;
+ if (sym->attr.flavor != FL_PROCEDURE
+ && sym->attr.flavor != FL_UNKNOWN)
+ return false;
+
+ if (!sym->attr.generic
+ && !sym->attr.subroutine
+ && !sym->attr.function)
+ {
+ if (!(sym->attr.external && !sym->attr.referenced))
+ {
+ /* ...create a symbol in this scope... */
+ if (sym->ns != gfc_current_ns
+ && gfc_get_sym_tree (sname, NULL, &st, false) == 1)
+ return false;
+
+ if (sym != st->n.sym)
+ sym = st->n.sym;
+ }
+
+ /* ...and then to try to make the symbol into a subroutine. */
+ if (!gfc_add_subroutine (&sym->attr, sym->name, NULL))
+ return false;
+ }
+
+ gfc_set_sym_referenced (sym);
+ gfc_gobble_whitespace ();
+ if (gfc_peek_ascii_char () != '(')
+ return false;
+
+ gfc_current_ns = ns;
+ m = gfc_match_actual_arglist (1, &arglist);
+ if (m != MATCH_YES)
+ return false;
+
+ if (gfc_match_char (')') != MATCH_YES)
+ return false;
+
+ ns->code = gfc_get_code (EXEC_CALL);
+ ns->code->symtree = st;
+ ns->code->ext.actual = arglist;
+ ns->code->loc = old_loc;
+ return true;
+}
+
+static bool
+gfc_omp_udr_predef (gfc_omp_reduction_op rop, const char *name,
+ gfc_typespec *ts, const char **n)
+{
+ if (!gfc_numeric_ts (ts) && ts->type != BT_LOGICAL)
+ return false;
+
+ switch (rop)
+ {
+ case OMP_REDUCTION_PLUS:
+ case OMP_REDUCTION_MINUS:
+ case OMP_REDUCTION_TIMES:
+ return ts->type != BT_LOGICAL;
+ case OMP_REDUCTION_AND:
+ case OMP_REDUCTION_OR:
+ case OMP_REDUCTION_EQV:
+ case OMP_REDUCTION_NEQV:
+ return ts->type == BT_LOGICAL;
+ case OMP_REDUCTION_USER:
+ if (name[0] != '.' && (ts->type == BT_INTEGER || ts->type == BT_REAL))
+ {
+ gfc_symbol *sym;
+
+ gfc_find_symbol (name, NULL, 1, &sym);
+ if (sym != NULL)
+ {
+ if (sym->attr.intrinsic)
+ *n = sym->name;
+ else if ((sym->attr.flavor != FL_UNKNOWN
+ && sym->attr.flavor != FL_PROCEDURE)
+ || sym->attr.external
+ || sym->attr.generic
+ || sym->attr.entry
+ || sym->attr.result
+ || sym->attr.dummy
+ || sym->attr.subroutine
+ || sym->attr.pointer
+ || sym->attr.target
+ || sym->attr.cray_pointer
+ || sym->attr.cray_pointee
+ || (sym->attr.proc != PROC_UNKNOWN
+ && sym->attr.proc != PROC_INTRINSIC)
+ || sym->attr.if_source != IFSRC_UNKNOWN
+ || sym == sym->ns->proc_name)
+ *n = NULL;
+ else
+ *n = sym->name;
+ }
+ else
+ *n = name;
+ if (*n
+ && (strcmp (*n, "max") == 0 || strcmp (*n, "min") == 0))
+ return true;
+ else if (*n
+ && ts->type == BT_INTEGER
+ && (strcmp (*n, "iand") == 0
+ || strcmp (*n, "ior") == 0
+ || strcmp (*n, "ieor") == 0))
+ return true;
+ }
+ break;
+ default:
+ break;
+ }
+ return false;
+}
+
+gfc_omp_udr *
+gfc_omp_udr_find (gfc_symtree *st, gfc_typespec *ts)
+{
+ gfc_omp_udr *omp_udr;
+
+ if (st == NULL)
+ return NULL;
+
+ for (omp_udr = st->n.omp_udr; omp_udr; omp_udr = omp_udr->next)
+ if (omp_udr->ts.type == ts->type
+ || ((omp_udr->ts.type == BT_DERIVED || omp_udr->ts.type == BT_CLASS)
+ && (ts->type == BT_DERIVED && ts->type == BT_CLASS)))
+ {
+ if (omp_udr->ts.type == BT_DERIVED || omp_udr->ts.type == BT_CLASS)
+ {
+ if (strcmp (omp_udr->ts.u.derived->name, ts->u.derived->name) == 0)
+ return omp_udr;
+ }
+ else if (omp_udr->ts.kind == ts->kind)
+ {
+ if (omp_udr->ts.type == BT_CHARACTER)
+ {
+ if (omp_udr->ts.u.cl->length == NULL
+ || ts->u.cl->length == NULL)
+ return omp_udr;
+ if (omp_udr->ts.u.cl->length->expr_type != EXPR_CONSTANT)
+ return omp_udr;
+ if (ts->u.cl->length->expr_type != EXPR_CONSTANT)
+ return omp_udr;
+ if (omp_udr->ts.u.cl->length->ts.type != BT_INTEGER)
+ return omp_udr;
+ if (ts->u.cl->length->ts.type != BT_INTEGER)
+ return omp_udr;
+ if (gfc_compare_expr (omp_udr->ts.u.cl->length,
+ ts->u.cl->length, INTRINSIC_EQ) != 0)
+ continue;
+ }
+ return omp_udr;
+ }
+ }
+ return NULL;
+}
+
match
-gfc_match_omp_flush (void)
+gfc_match_omp_declare_reduction (void)
{
- gfc_namelist *list = NULL;
- gfc_match_omp_variable_list (" (", &list, true);
+ match m;
+ gfc_intrinsic_op op;
+ char name[GFC_MAX_SYMBOL_LEN + 3];
+ auto_vec<gfc_typespec, 5> tss;
+ gfc_typespec ts;
+ unsigned int i;
+ gfc_symtree *st;
+ locus where = gfc_current_locus;
+ locus end_loc = gfc_current_locus;
+ bool end_loc_set = false;
+ gfc_omp_reduction_op rop = OMP_REDUCTION_NONE;
+
+ if (gfc_match_char ('(') != MATCH_YES)
+ return MATCH_ERROR;
+
+ m = gfc_match (" %o : ", &op);
+ if (m == MATCH_ERROR)
+ return MATCH_ERROR;
+ if (m == MATCH_YES)
+ {
+ snprintf (name, sizeof name, "operator %s", gfc_op2string (op));
+ rop = (gfc_omp_reduction_op) op;
+ }
+ else
+ {
+ m = gfc_match_defined_op_name (name + 1, 1);
+ if (m == MATCH_ERROR)
+ return MATCH_ERROR;
+ if (m == MATCH_YES)
+ {
+ name[0] = '.';
+ strcat (name, ".");
+ if (gfc_match (" : ") != MATCH_YES)
+ return MATCH_ERROR;
+ }
+ else
+ {
+ if (gfc_match (" %n : ", name) != MATCH_YES)
+ return MATCH_ERROR;
+ }
+ rop = OMP_REDUCTION_USER;
+ }
+
+ m = gfc_match_type_spec (&ts);
+ if (m != MATCH_YES)
+ return MATCH_ERROR;
+ /* Treat len=: the same as len=*. */
+ if (ts.type == BT_CHARACTER)
+ ts.deferred = false;
+ tss.safe_push (ts);
+
+ while (gfc_match_char (',') == MATCH_YES)
+ {
+ m = gfc_match_type_spec (&ts);
+ if (m != MATCH_YES)
+ return MATCH_ERROR;
+ tss.safe_push (ts);
+ }
+ if (gfc_match_char (':') != MATCH_YES)
+ return MATCH_ERROR;
+
+ st = gfc_find_symtree (gfc_current_ns->omp_udr_root, name);
+ for (i = 0; i < tss.length (); i++)
+ {
+ gfc_symtree *omp_out, *omp_in;
+ gfc_symtree *omp_priv = NULL, *omp_orig = NULL;
+ gfc_namespace *combiner_ns, *initializer_ns = NULL;
+ gfc_omp_udr *prev_udr, *omp_udr;
+ const char *predef_name = NULL;
+
+ omp_udr = gfc_get_omp_udr ();
+ omp_udr->name = gfc_get_string (name);
+ omp_udr->rop = rop;
+ omp_udr->ts = tss[i];
+ omp_udr->where = where;
+
+ gfc_current_ns = combiner_ns = gfc_get_namespace (gfc_current_ns, 1);
+ combiner_ns->proc_name = combiner_ns->parent->proc_name;
+
+ gfc_get_sym_tree ("omp_out", combiner_ns, &omp_out, false);
+ gfc_get_sym_tree ("omp_in", combiner_ns, &omp_in, false);
+ combiner_ns->omp_udr_ns = 1;
+ omp_out->n.sym->ts = tss[i];
+ omp_in->n.sym->ts = tss[i];
+ omp_out->n.sym->attr.omp_udr_artificial_var = 1;
+ omp_in->n.sym->attr.omp_udr_artificial_var = 1;
+ omp_out->n.sym->attr.flavor = FL_VARIABLE;
+ omp_in->n.sym->attr.flavor = FL_VARIABLE;
+ gfc_commit_symbols ();
+ omp_udr->combiner_ns = combiner_ns;
+ omp_udr->omp_out = omp_out->n.sym;
+ omp_udr->omp_in = omp_in->n.sym;
+
+ locus old_loc = gfc_current_locus;
+
+ if (!match_udr_expr (omp_out, omp_in))
+ {
+ syntax:
+ gfc_current_locus = old_loc;
+ gfc_current_ns = combiner_ns->parent;
+ gfc_free_omp_udr (omp_udr);
+ return MATCH_ERROR;
+ }
+
+ if (gfc_match (" initializer ( ") == MATCH_YES)
+ {
+ gfc_current_ns = combiner_ns->parent;
+ initializer_ns = gfc_get_namespace (gfc_current_ns, 1);
+ gfc_current_ns = initializer_ns;
+ initializer_ns->proc_name = initializer_ns->parent->proc_name;
+
+ gfc_get_sym_tree ("omp_priv", initializer_ns, &omp_priv, false);
+ gfc_get_sym_tree ("omp_orig", initializer_ns, &omp_orig, false);
+ initializer_ns->omp_udr_ns = 1;
+ omp_priv->n.sym->ts = tss[i];
+ omp_orig->n.sym->ts = tss[i];
+ omp_priv->n.sym->attr.omp_udr_artificial_var = 1;
+ omp_orig->n.sym->attr.omp_udr_artificial_var = 1;
+ omp_priv->n.sym->attr.flavor = FL_VARIABLE;
+ omp_orig->n.sym->attr.flavor = FL_VARIABLE;
+ gfc_commit_symbols ();
+ omp_udr->initializer_ns = initializer_ns;
+ omp_udr->omp_priv = omp_priv->n.sym;
+ omp_udr->omp_orig = omp_orig->n.sym;
+
+ if (!match_udr_expr (omp_priv, omp_orig))
+ goto syntax;
+ }
+
+ gfc_current_ns = combiner_ns->parent;
+ if (!end_loc_set)
+ {
+ end_loc_set = true;
+ end_loc = gfc_current_locus;
+ }
+ gfc_current_locus = old_loc;
+
+ prev_udr = gfc_omp_udr_find (st, &tss[i]);
+ if (gfc_omp_udr_predef (rop, name, &tss[i], &predef_name)
+ /* Don't error on !$omp declare reduction (min : integer : ...)
+ just yet, there could be integer :: min afterwards,
+ making it valid. When the UDR is resolved, we'll get
+ to it again. */
+ && (rop != OMP_REDUCTION_USER || name[0] == '.'))
+ {
+ if (predef_name)
+ gfc_error_now ("Redefinition of predefined %s "
+ "!$OMP DECLARE REDUCTION at %L",
+ predef_name, &where);
+ else
+ gfc_error_now ("Redefinition of predefined "
+ "!$OMP DECLARE REDUCTION at %L", &where);
+ }
+ else if (prev_udr)
+ {
+ gfc_error_now ("Redefinition of !$OMP DECLARE REDUCTION at %L",
+ &where);
+ gfc_error_now ("Previous !$OMP DECLARE REDUCTION at %L",
+ &prev_udr->where);
+ }
+ else if (st)
+ {
+ omp_udr->next = st->n.omp_udr;
+ st->n.omp_udr = omp_udr;
+ }
+ else
+ {
+ st = gfc_new_symtree (&gfc_current_ns->omp_udr_root, name);
+ st->n.omp_udr = omp_udr;
+ }
+ }
+
+ if (end_loc_set)
+ {
+ gfc_current_locus = end_loc;
+ if (gfc_match_omp_eos () != MATCH_YES)
+ {
+ gfc_error ("Unexpected junk after !$OMP DECLARE REDUCTION at %C");
+ gfc_current_locus = where;
+ return MATCH_ERROR;
+ }
+
+ return MATCH_YES;
+ }
+ gfc_clear_error ();
+ return MATCH_ERROR;
+}
+
+
+match
+gfc_match_omp_declare_target (void)
+{
+ locus old_loc;
+ char n[GFC_MAX_SYMBOL_LEN+1];
+ gfc_symbol *sym;
+ match m;
+ gfc_symtree *st;
+
+ old_loc = gfc_current_locus;
+
+ m = gfc_match (" (");
+
+ if (gfc_current_ns->proc_name
+ && gfc_current_ns->proc_name->attr.if_source == IFSRC_IFBODY
+ && m == MATCH_YES)
+ {
+ gfc_error ("Only the !$OMP DECLARE TARGET form without "
+ "list is allowed in interface block at %C");
+ goto cleanup;
+ }
+
+ if (m == MATCH_NO
+ && gfc_current_ns->proc_name
+ && gfc_match_omp_eos () == MATCH_YES)
+ {
+ if (!gfc_add_omp_declare_target (&gfc_current_ns->proc_name->attr,
+ gfc_current_ns->proc_name->name,
+ &old_loc))
+ goto cleanup;
+ return MATCH_YES;
+ }
+
+ if (m != MATCH_YES)
+ return m;
+
+ for (;;)
+ {
+ m = gfc_match_symbol (&sym, 0);
+ switch (m)
+ {
+ case MATCH_YES:
+ if (sym->attr.in_common)
+ gfc_error_now ("OMP DECLARE TARGET on a variable at %C is an "
+ "element of a COMMON block");
+ else if (!gfc_add_omp_declare_target (&sym->attr, sym->name,
+ &sym->declared_at))
+ goto cleanup;
+ goto next_item;
+ case MATCH_NO:
+ break;
+ case MATCH_ERROR:
+ goto cleanup;
+ }
+
+ m = gfc_match (" / %n /", n);
+ if (m == MATCH_ERROR)
+ goto cleanup;
+ if (m == MATCH_NO || n[0] == '\0')
+ goto syntax;
+
+ st = gfc_find_symtree (gfc_current_ns->common_root, n);
+ if (st == NULL)
+ {
+ gfc_error ("COMMON block /%s/ not found at %C", n);
+ goto cleanup;
+ }
+ st->n.common->omp_declare_target = 1;
+ for (sym = st->n.common->head; sym; sym = sym->common_next)
+ if (!gfc_add_omp_declare_target (&sym->attr, sym->name,
+ &sym->declared_at))
+ goto cleanup;
+
+ next_item:
+ if (gfc_match_char (')') == MATCH_YES)
+ break;
+ if (gfc_match_char (',') != MATCH_YES)
+ goto syntax;
+ }
+
if (gfc_match_omp_eos () != MATCH_YES)
{
- gfc_error ("Unexpected junk after $OMP FLUSH statement at %C");
- gfc_free_namelist (list);
- return MATCH_ERROR;
+ gfc_error ("Unexpected junk after !$OMP DECLARE TARGET at %C");
+ goto cleanup;
}
- new_st.op = EXEC_OMP_FLUSH;
- new_st.ext.omp_namelist = list;
return MATCH_YES;
+
+syntax:
+ gfc_error ("Syntax error in !$OMP DECLARE TARGET list at %C");
+
+cleanup:
+ gfc_current_locus = old_loc;
+ return MATCH_ERROR;
}
@@ -605,6 +1482,12 @@ gfc_match_omp_threadprivate (void)
goto syntax;
}
+ if (gfc_match_omp_eos () != MATCH_YES)
+ {
+ gfc_error ("Unexpected junk after OMP THREADPRIVATE at %C");
+ goto cleanup;
+ }
+
return MATCH_YES;
syntax:
@@ -617,69 +1500,213 @@ cleanup:
match
+gfc_match_omp_parallel (void)
+{
+ return match_omp (EXEC_OMP_PARALLEL, OMP_PARALLEL_CLAUSES);
+}
+
+
+match
gfc_match_omp_parallel_do (void)
{
- gfc_omp_clauses *c;
- if (gfc_match_omp_clauses (&c, OMP_PARALLEL_CLAUSES | OMP_DO_CLAUSES)
- != MATCH_YES)
- return MATCH_ERROR;
- new_st.op = EXEC_OMP_PARALLEL_DO;
- new_st.ext.omp_clauses = c;
- return MATCH_YES;
+ return match_omp (EXEC_OMP_PARALLEL_DO,
+ OMP_PARALLEL_CLAUSES | OMP_DO_CLAUSES);
+}
+
+
+match
+gfc_match_omp_parallel_do_simd (void)
+{
+ return match_omp (EXEC_OMP_PARALLEL_DO_SIMD,
+ (OMP_PARALLEL_CLAUSES | OMP_DO_CLAUSES | OMP_SIMD_CLAUSES)
+ & ~OMP_CLAUSE_ORDERED);
}
match
gfc_match_omp_parallel_sections (void)
{
- gfc_omp_clauses *c;
- if (gfc_match_omp_clauses (&c, OMP_PARALLEL_CLAUSES | OMP_SECTIONS_CLAUSES)
- != MATCH_YES)
- return MATCH_ERROR;
- new_st.op = EXEC_OMP_PARALLEL_SECTIONS;
- new_st.ext.omp_clauses = c;
- return MATCH_YES;
+ return match_omp (EXEC_OMP_PARALLEL_SECTIONS,
+ OMP_PARALLEL_CLAUSES | OMP_SECTIONS_CLAUSES);
}
match
gfc_match_omp_parallel_workshare (void)
{
- gfc_omp_clauses *c;
- if (gfc_match_omp_clauses (&c, OMP_PARALLEL_CLAUSES) != MATCH_YES)
- return MATCH_ERROR;
- new_st.op = EXEC_OMP_PARALLEL_WORKSHARE;
- new_st.ext.omp_clauses = c;
- return MATCH_YES;
+ return match_omp (EXEC_OMP_PARALLEL_WORKSHARE, OMP_PARALLEL_CLAUSES);
}
match
gfc_match_omp_sections (void)
{
- gfc_omp_clauses *c;
- if (gfc_match_omp_clauses (&c, OMP_SECTIONS_CLAUSES) != MATCH_YES)
- return MATCH_ERROR;
- new_st.op = EXEC_OMP_SECTIONS;
- new_st.ext.omp_clauses = c;
- return MATCH_YES;
+ return match_omp (EXEC_OMP_SECTIONS, OMP_SECTIONS_CLAUSES);
+}
+
+
+match
+gfc_match_omp_simd (void)
+{
+ return match_omp (EXEC_OMP_SIMD, OMP_SIMD_CLAUSES);
}
match
gfc_match_omp_single (void)
{
- gfc_omp_clauses *c;
- if (gfc_match_omp_clauses (&c, OMP_CLAUSE_PRIVATE | OMP_CLAUSE_FIRSTPRIVATE)
- != MATCH_YES)
- return MATCH_ERROR;
- new_st.op = EXEC_OMP_SINGLE;
- new_st.ext.omp_clauses = c;
+ return match_omp (EXEC_OMP_SINGLE,
+ OMP_CLAUSE_PRIVATE | OMP_CLAUSE_FIRSTPRIVATE);
+}
+
+
+match
+gfc_match_omp_task (void)
+{
+ return match_omp (EXEC_OMP_TASK, OMP_TASK_CLAUSES);
+}
+
+
+match
+gfc_match_omp_taskwait (void)
+{
+ if (gfc_match_omp_eos () != MATCH_YES)
+ {
+ gfc_error ("Unexpected junk after TASKWAIT clause at %C");
+ return MATCH_ERROR;
+ }
+ new_st.op = EXEC_OMP_TASKWAIT;
+ new_st.ext.omp_clauses = NULL;
return MATCH_YES;
}
match
+gfc_match_omp_taskyield (void)
+{
+ if (gfc_match_omp_eos () != MATCH_YES)
+ {
+ gfc_error ("Unexpected junk after TASKYIELD clause at %C");
+ return MATCH_ERROR;
+ }
+ new_st.op = EXEC_OMP_TASKYIELD;
+ new_st.ext.omp_clauses = NULL;
+ return MATCH_YES;
+}
+
+
+match
+gfc_match_omp_target (void)
+{
+ return match_omp (EXEC_OMP_TARGET, OMP_TARGET_CLAUSES);
+}
+
+
+match
+gfc_match_omp_target_data (void)
+{
+ return match_omp (EXEC_OMP_TARGET_DATA, OMP_TARGET_DATA_CLAUSES);
+}
+
+
+match
+gfc_match_omp_target_teams (void)
+{
+ return match_omp (EXEC_OMP_TARGET_TEAMS,
+ OMP_TARGET_CLAUSES | OMP_TEAMS_CLAUSES);
+}
+
+
+match
+gfc_match_omp_target_teams_distribute (void)
+{
+ return match_omp (EXEC_OMP_TARGET_TEAMS_DISTRIBUTE,
+ OMP_TARGET_CLAUSES | OMP_TEAMS_CLAUSES
+ | OMP_DISTRIBUTE_CLAUSES);
+}
+
+
+match
+gfc_match_omp_target_teams_distribute_parallel_do (void)
+{
+ return match_omp (EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO,
+ OMP_TARGET_CLAUSES | OMP_TEAMS_CLAUSES
+ | OMP_DISTRIBUTE_CLAUSES | OMP_PARALLEL_CLAUSES
+ | OMP_DO_CLAUSES);
+}
+
+
+match
+gfc_match_omp_target_teams_distribute_parallel_do_simd (void)
+{
+ return match_omp (EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD,
+ (OMP_TARGET_CLAUSES | OMP_TEAMS_CLAUSES
+ | OMP_DISTRIBUTE_CLAUSES | OMP_PARALLEL_CLAUSES
+ | OMP_DO_CLAUSES | OMP_SIMD_CLAUSES)
+ & ~OMP_CLAUSE_ORDERED);
+}
+
+
+match
+gfc_match_omp_target_teams_distribute_simd (void)
+{
+ return match_omp (EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD,
+ OMP_TARGET_CLAUSES | OMP_TEAMS_CLAUSES
+ | OMP_DISTRIBUTE_CLAUSES | OMP_SIMD_CLAUSES);
+}
+
+
+match
+gfc_match_omp_target_update (void)
+{
+ return match_omp (EXEC_OMP_TARGET_UPDATE, OMP_TARGET_UPDATE_CLAUSES);
+}
+
+
+match
+gfc_match_omp_teams (void)
+{
+ return match_omp (EXEC_OMP_TEAMS, OMP_TEAMS_CLAUSES);
+}
+
+
+match
+gfc_match_omp_teams_distribute (void)
+{
+ return match_omp (EXEC_OMP_TEAMS_DISTRIBUTE,
+ OMP_TEAMS_CLAUSES | OMP_DISTRIBUTE_CLAUSES);
+}
+
+
+match
+gfc_match_omp_teams_distribute_parallel_do (void)
+{
+ return match_omp (EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO,
+ OMP_TEAMS_CLAUSES | OMP_DISTRIBUTE_CLAUSES
+ | OMP_PARALLEL_CLAUSES | OMP_DO_CLAUSES);
+}
+
+
+match
+gfc_match_omp_teams_distribute_parallel_do_simd (void)
+{
+ return match_omp (EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD,
+ (OMP_TEAMS_CLAUSES | OMP_DISTRIBUTE_CLAUSES
+ | OMP_PARALLEL_CLAUSES | OMP_DO_CLAUSES
+ | OMP_SIMD_CLAUSES) & ~OMP_CLAUSE_ORDERED);
+}
+
+
+match
+gfc_match_omp_teams_distribute_simd (void)
+{
+ return match_omp (EXEC_OMP_TEAMS_DISTRIBUTE_SIMD,
+ OMP_TEAMS_CLAUSES | OMP_DISTRIBUTE_CLAUSES
+ | OMP_SIMD_CLAUSES);
+}
+
+
+match
gfc_match_omp_workshare (void)
{
if (gfc_match_omp_eos () != MATCH_YES)
@@ -725,20 +1752,44 @@ match
gfc_match_omp_atomic (void)
{
gfc_omp_atomic_op op = GFC_OMP_ATOMIC_UPDATE;
- if (gfc_match ("% update") == MATCH_YES)
- op = GFC_OMP_ATOMIC_UPDATE;
- else if (gfc_match ("% read") == MATCH_YES)
- op = GFC_OMP_ATOMIC_READ;
- else if (gfc_match ("% write") == MATCH_YES)
- op = GFC_OMP_ATOMIC_WRITE;
- else if (gfc_match ("% capture") == MATCH_YES)
- op = GFC_OMP_ATOMIC_CAPTURE;
+ int seq_cst = 0;
+ if (gfc_match ("% seq_cst") == MATCH_YES)
+ seq_cst = 1;
+ locus old_loc = gfc_current_locus;
+ if (seq_cst && gfc_match_char (',') == MATCH_YES)
+ seq_cst = 2;
+ if (seq_cst == 2
+ || gfc_match_space () == MATCH_YES)
+ {
+ gfc_gobble_whitespace ();
+ if (gfc_match ("update") == MATCH_YES)
+ op = GFC_OMP_ATOMIC_UPDATE;
+ else if (gfc_match ("read") == MATCH_YES)
+ op = GFC_OMP_ATOMIC_READ;
+ else if (gfc_match ("write") == MATCH_YES)
+ op = GFC_OMP_ATOMIC_WRITE;
+ else if (gfc_match ("capture") == MATCH_YES)
+ op = GFC_OMP_ATOMIC_CAPTURE;
+ else
+ {
+ if (seq_cst == 2)
+ gfc_current_locus = old_loc;
+ goto finish;
+ }
+ if (!seq_cst
+ && (gfc_match (", seq_cst") == MATCH_YES
+ || gfc_match ("% seq_cst") == MATCH_YES))
+ seq_cst = 1;
+ }
+ finish:
if (gfc_match_omp_eos () != MATCH_YES)
{
gfc_error ("Unexpected junk after $OMP ATOMIC statement at %C");
return MATCH_ERROR;
}
new_st.op = EXEC_OMP_ATOMIC;
+ if (seq_cst)
+ op = (gfc_omp_atomic_op) (op | GFC_OMP_ATOMIC_SEQ_CST);
new_st.ext.omp_atomic = op;
return MATCH_YES;
}
@@ -759,6 +1810,73 @@ gfc_match_omp_barrier (void)
match
+gfc_match_omp_taskgroup (void)
+{
+ if (gfc_match_omp_eos () != MATCH_YES)
+ {
+ gfc_error ("Unexpected junk after $OMP TASKGROUP statement at %C");
+ return MATCH_ERROR;
+ }
+ new_st.op = EXEC_OMP_TASKGROUP;
+ return MATCH_YES;
+}
+
+
+static enum gfc_omp_cancel_kind
+gfc_match_omp_cancel_kind (void)
+{
+ if (gfc_match_space () != MATCH_YES)
+ return OMP_CANCEL_UNKNOWN;
+ if (gfc_match ("parallel") == MATCH_YES)
+ return OMP_CANCEL_PARALLEL;
+ if (gfc_match ("sections") == MATCH_YES)
+ return OMP_CANCEL_SECTIONS;
+ if (gfc_match ("do") == MATCH_YES)
+ return OMP_CANCEL_DO;
+ if (gfc_match ("taskgroup") == MATCH_YES)
+ return OMP_CANCEL_TASKGROUP;
+ return OMP_CANCEL_UNKNOWN;
+}
+
+
+match
+gfc_match_omp_cancel (void)
+{
+ gfc_omp_clauses *c;
+ enum gfc_omp_cancel_kind kind = gfc_match_omp_cancel_kind ();
+ if (kind == OMP_CANCEL_UNKNOWN)
+ return MATCH_ERROR;
+ if (gfc_match_omp_clauses (&c, OMP_CLAUSE_IF, false) != MATCH_YES)
+ return MATCH_ERROR;
+ c->cancel = kind;
+ new_st.op = EXEC_OMP_CANCEL;
+ new_st.ext.omp_clauses = c;
+ return MATCH_YES;
+}
+
+
+match
+gfc_match_omp_cancellation_point (void)
+{
+ gfc_omp_clauses *c;
+ enum gfc_omp_cancel_kind kind = gfc_match_omp_cancel_kind ();
+ if (kind == OMP_CANCEL_UNKNOWN)
+ return MATCH_ERROR;
+ if (gfc_match_omp_eos () != MATCH_YES)
+ {
+ gfc_error ("Unexpected junk after $OMP CANCELLATION POINT statement "
+ "at %C");
+ return MATCH_ERROR;
+ }
+ c = gfc_get_omp_clauses ();
+ c->cancel = kind;
+ new_st.op = EXEC_OMP_CANCELLATION_POINT;
+ new_st.ext.omp_clauses = c;
+ return MATCH_YES;
+}
+
+
+match
gfc_match_omp_end_nowait (void)
{
bool nowait = false;
@@ -793,17 +1911,116 @@ gfc_match_omp_end_single (void)
}
+struct resolve_omp_udr_callback_data
+{
+ gfc_symbol *sym1, *sym2;
+};
+
+
+static int
+resolve_omp_udr_callback (gfc_expr **e, int *, void *data)
+{
+ struct resolve_omp_udr_callback_data *rcd
+ = (struct resolve_omp_udr_callback_data *) data;
+ if ((*e)->expr_type == EXPR_VARIABLE
+ && ((*e)->symtree->n.sym == rcd->sym1
+ || (*e)->symtree->n.sym == rcd->sym2))
+ {
+ gfc_ref *ref = gfc_get_ref ();
+ ref->type = REF_ARRAY;
+ ref->u.ar.where = (*e)->where;
+ ref->u.ar.as = (*e)->symtree->n.sym->as;
+ ref->u.ar.type = AR_FULL;
+ ref->u.ar.dimen = 0;
+ ref->next = (*e)->ref;
+ (*e)->ref = ref;
+ }
+ return 0;
+}
+
+
+static int
+resolve_omp_udr_callback2 (gfc_expr **e, int *, void *)
+{
+ if ((*e)->expr_type == EXPR_FUNCTION
+ && (*e)->value.function.isym == NULL)
+ {
+ gfc_symbol *sym = (*e)->symtree->n.sym;
+ if (!sym->attr.intrinsic
+ && sym->attr.if_source == IFSRC_UNKNOWN)
+ gfc_error ("Implicitly declared function %s used in "
+ "!$OMP DECLARE REDUCTION at %L ", sym->name, &(*e)->where);
+ }
+ return 0;
+}
+
+
+static gfc_code *
+resolve_omp_udr_clause (gfc_omp_namelist *n, gfc_namespace *ns,
+ gfc_symbol *sym1, gfc_symbol *sym2)
+{
+ gfc_code *copy;
+ gfc_symbol sym1_copy, sym2_copy;
+
+ if (ns->code->op == EXEC_ASSIGN)
+ {
+ copy = gfc_get_code (EXEC_ASSIGN);
+ copy->expr1 = gfc_copy_expr (ns->code->expr1);
+ copy->expr2 = gfc_copy_expr (ns->code->expr2);
+ }
+ else
+ {
+ copy = gfc_get_code (EXEC_CALL);
+ copy->symtree = ns->code->symtree;
+ copy->ext.actual = gfc_copy_actual_arglist (ns->code->ext.actual);
+ }
+ copy->loc = ns->code->loc;
+ sym1_copy = *sym1;
+ sym2_copy = *sym2;
+ *sym1 = *n->sym;
+ *sym2 = *n->sym;
+ sym1->name = sym1_copy.name;
+ sym2->name = sym2_copy.name;
+ ns->proc_name = ns->parent->proc_name;
+ if (n->sym->attr.dimension)
+ {
+ struct resolve_omp_udr_callback_data rcd;
+ rcd.sym1 = sym1;
+ rcd.sym2 = sym2;
+ gfc_code_walker (&copy, gfc_dummy_code_callback,
+ resolve_omp_udr_callback, &rcd);
+ }
+ gfc_resolve_code (copy, gfc_current_ns);
+ if (copy->op == EXEC_CALL && copy->resolved_isym == NULL)
+ {
+ gfc_symbol *sym = copy->resolved_sym;
+ if (sym
+ && !sym->attr.intrinsic
+ && sym->attr.if_source == IFSRC_UNKNOWN)
+ gfc_error ("Implicitly declared subroutine %s used in "
+ "!$OMP DECLARE REDUCTION at %L ", sym->name,
+ &copy->loc);
+ }
+ gfc_code_walker (&copy, gfc_dummy_code_callback,
+ resolve_omp_udr_callback2, NULL);
+ *sym1 = sym1_copy;
+ *sym2 = sym2_copy;
+ return copy;
+}
+
+
/* OpenMP directive resolving routines. */
static void
-resolve_omp_clauses (gfc_code *code)
+resolve_omp_clauses (gfc_code *code, locus *where,
+ gfc_omp_clauses *omp_clauses, gfc_namespace *ns)
{
- gfc_omp_clauses *omp_clauses = code->ext.omp_clauses;
- gfc_namelist *n;
+ gfc_omp_namelist *n;
int list;
static const char *clause_names[]
= { "PRIVATE", "FIRSTPRIVATE", "LASTPRIVATE", "COPYPRIVATE", "SHARED",
- "COPYIN", "REDUCTION" };
+ "COPYIN", "UNIFORM", "ALIGNED", "LINEAR", "DEPEND", "MAP",
+ "TO", "FROM", "REDUCTION" };
if (omp_clauses == NULL)
return;
@@ -847,8 +2064,15 @@ resolve_omp_clauses (gfc_code *code)
for (n = omp_clauses->lists[list]; n; n = n->next)
{
n->sym->mark = 0;
- if (n->sym->attr.flavor == FL_VARIABLE || n->sym->attr.proc_pointer)
- continue;
+ if (n->sym->attr.flavor == FL_VARIABLE
+ || n->sym->attr.proc_pointer
+ || (!code && (!n->sym->attr.dummy || n->sym->ns != ns)))
+ {
+ if (!code && (!n->sym->attr.dummy || n->sym->ns != ns))
+ gfc_error ("Variable '%s' is not a dummy argument at %L",
+ n->sym->name, where);
+ continue;
+ }
if (n->sym->attr.flavor == FL_PROCEDURE
&& n->sym->result == n->sym
&& n->sym->attr.function)
@@ -878,16 +2102,22 @@ resolve_omp_clauses (gfc_code *code)
}
}
gfc_error ("Object '%s' is not a variable at %L", n->sym->name,
- &code->loc);
+ where);
}
for (list = 0; list < OMP_LIST_NUM; list++)
- if (list != OMP_LIST_FIRSTPRIVATE && list != OMP_LIST_LASTPRIVATE)
+ if (list != OMP_LIST_FIRSTPRIVATE
+ && list != OMP_LIST_LASTPRIVATE
+ && list != OMP_LIST_ALIGNED
+ && list != OMP_LIST_DEPEND
+ && list != OMP_LIST_MAP
+ && list != OMP_LIST_FROM
+ && list != OMP_LIST_TO)
for (n = omp_clauses->lists[list]; n; n = n->next)
{
if (n->sym->mark)
gfc_error ("Symbol '%s' present on multiple clauses at %L",
- n->sym->name, &code->loc);
+ n->sym->name, where);
else
n->sym->mark = 1;
}
@@ -898,7 +2128,7 @@ resolve_omp_clauses (gfc_code *code)
if (n->sym->mark)
{
gfc_error ("Symbol '%s' present on multiple clauses at %L",
- n->sym->name, &code->loc);
+ n->sym->name, where);
n->sym->mark = 0;
}
@@ -906,7 +2136,7 @@ resolve_omp_clauses (gfc_code *code)
{
if (n->sym->mark)
gfc_error ("Symbol '%s' present on multiple clauses at %L",
- n->sym->name, &code->loc);
+ n->sym->name, where);
else
n->sym->mark = 1;
}
@@ -917,19 +2147,44 @@ resolve_omp_clauses (gfc_code *code)
{
if (n->sym->mark)
gfc_error ("Symbol '%s' present on multiple clauses at %L",
- n->sym->name, &code->loc);
+ n->sym->name, where);
+ else
+ n->sym->mark = 1;
+ }
+
+ for (n = omp_clauses->lists[OMP_LIST_ALIGNED]; n; n = n->next)
+ n->sym->mark = 0;
+
+ for (n = omp_clauses->lists[OMP_LIST_ALIGNED]; n; n = n->next)
+ {
+ if (n->sym->mark)
+ gfc_error ("Symbol '%s' present on multiple clauses at %L",
+ n->sym->name, where);
+ else
+ n->sym->mark = 1;
+ }
+
+ for (n = omp_clauses->lists[OMP_LIST_TO]; n; n = n->next)
+ n->sym->mark = 0;
+ for (n = omp_clauses->lists[OMP_LIST_FROM]; n; n = n->next)
+ if (n->expr == NULL)
+ n->sym->mark = 1;
+ for (n = omp_clauses->lists[OMP_LIST_TO]; n; n = n->next)
+ {
+ if (n->expr == NULL && n->sym->mark)
+ gfc_error ("Symbol '%s' present on both FROM and TO clauses at %L",
+ n->sym->name, where);
else
n->sym->mark = 1;
}
+
for (list = 0; list < OMP_LIST_NUM; list++)
if ((n = omp_clauses->lists[list]) != NULL)
{
const char *name;
- if (list < OMP_LIST_REDUCTION_FIRST)
+ if (list < OMP_LIST_NUM)
name = clause_names[list];
- else if (list <= OMP_LIST_REDUCTION_LAST)
- name = clause_names[OMP_LIST_REDUCTION_FIRST];
else
gcc_unreachable ();
@@ -940,10 +2195,7 @@ resolve_omp_clauses (gfc_code *code)
{
if (!n->sym->attr.threadprivate)
gfc_error ("Non-THREADPRIVATE object '%s' in COPYIN clause"
- " at %L", n->sym->name, &code->loc);
- if (n->sym->ts.type == BT_DERIVED && n->sym->ts.u.derived->attr.alloc_comp)
- gfc_error ("COPYIN clause object '%s' at %L has ALLOCATABLE components",
- n->sym->name, &code->loc);
+ " at %L", n->sym->name, where);
}
break;
case OMP_LIST_COPYPRIVATE:
@@ -951,10 +2203,10 @@ resolve_omp_clauses (gfc_code *code)
{
if (n->sym->as && n->sym->as->type == AS_ASSUMED_SIZE)
gfc_error ("Assumed size array '%s' in COPYPRIVATE clause "
- "at %L", n->sym->name, &code->loc);
- if (n->sym->ts.type == BT_DERIVED && n->sym->ts.u.derived->attr.alloc_comp)
- gfc_error ("COPYPRIVATE clause object '%s' at %L has ALLOCATABLE components",
- n->sym->name, &code->loc);
+ "at %L", n->sym->name, where);
+ if (n->sym->attr.pointer && n->sym->attr.intent == INTENT_IN)
+ gfc_error ("INTENT(IN) POINTER '%s' in COPYPRIVATE clause "
+ "at %L", n->sym->name, where);
}
break;
case OMP_LIST_SHARED:
@@ -962,96 +2214,286 @@ resolve_omp_clauses (gfc_code *code)
{
if (n->sym->attr.threadprivate)
gfc_error ("THREADPRIVATE object '%s' in SHARED clause at "
- "%L", n->sym->name, &code->loc);
+ "%L", n->sym->name, where);
if (n->sym->attr.cray_pointee)
gfc_error ("Cray pointee '%s' in SHARED clause at %L",
- n->sym->name, &code->loc);
+ n->sym->name, where);
+ if (n->sym->attr.associate_var)
+ gfc_error ("ASSOCIATE name '%s' in SHARED clause at %L",
+ n->sym->name, where);
+ }
+ break;
+ case OMP_LIST_ALIGNED:
+ for (; n != NULL; n = n->next)
+ {
+ if (!n->sym->attr.pointer
+ && !n->sym->attr.allocatable
+ && !n->sym->attr.cray_pointer
+ && (n->sym->ts.type != BT_DERIVED
+ || (n->sym->ts.u.derived->from_intmod
+ != INTMOD_ISO_C_BINDING)
+ || (n->sym->ts.u.derived->intmod_sym_id
+ != ISOCBINDING_PTR)))
+ gfc_error ("'%s' in ALIGNED clause must be POINTER, "
+ "ALLOCATABLE, Cray pointer or C_PTR at %L",
+ n->sym->name, where);
+ else if (n->expr)
+ {
+ gfc_expr *expr = n->expr;
+ int alignment = 0;
+ if (!gfc_resolve_expr (expr)
+ || expr->ts.type != BT_INTEGER
+ || expr->rank != 0
+ || gfc_extract_int (expr, &alignment)
+ || alignment <= 0)
+ gfc_error ("'%s' in ALIGNED clause at %L requires a scalar "
+ "positive constant integer alignment "
+ "expression", n->sym->name, where);
+ }
}
break;
+ case OMP_LIST_DEPEND:
+ case OMP_LIST_MAP:
+ case OMP_LIST_TO:
+ case OMP_LIST_FROM:
+ for (; n != NULL; n = n->next)
+ if (n->expr)
+ {
+ if (!gfc_resolve_expr (n->expr)
+ || n->expr->expr_type != EXPR_VARIABLE
+ || n->expr->ref == NULL
+ || n->expr->ref->next
+ || n->expr->ref->type != REF_ARRAY)
+ gfc_error ("'%s' in %s clause at %L is not a proper "
+ "array section", n->sym->name, name, where);
+ else if (n->expr->ref->u.ar.codimen)
+ gfc_error ("Coarrays not supported in %s clause at %L",
+ name, where);
+ else
+ {
+ int i;
+ gfc_array_ref *ar = &n->expr->ref->u.ar;
+ for (i = 0; i < ar->dimen; i++)
+ if (ar->stride[i])
+ {
+ gfc_error ("Stride should not be specified for "
+ "array section in %s clause at %L",
+ name, where);
+ break;
+ }
+ else if (ar->dimen_type[i] != DIMEN_ELEMENT
+ && ar->dimen_type[i] != DIMEN_RANGE)
+ {
+ gfc_error ("'%s' in %s clause at %L is not a "
+ "proper array section",
+ n->sym->name, name, where);
+ break;
+ }
+ else if (list == OMP_LIST_DEPEND
+ && ar->start[i]
+ && ar->start[i]->expr_type == EXPR_CONSTANT
+ && ar->end[i]
+ && ar->end[i]->expr_type == EXPR_CONSTANT
+ && mpz_cmp (ar->start[i]->value.integer,
+ ar->end[i]->value.integer) > 0)
+ {
+ gfc_error ("'%s' in DEPEND clause at %L is a zero "
+ "size array section", n->sym->name,
+ where);
+ break;
+ }
+ }
+ }
+ if (list != OMP_LIST_DEPEND)
+ for (n = omp_clauses->lists[list]; n != NULL; n = n->next)
+ {
+ n->sym->attr.referenced = 1;
+ if (n->sym->attr.threadprivate)
+ gfc_error ("THREADPRIVATE object '%s' in %s clause at %L",
+ n->sym->name, name, where);
+ if (n->sym->attr.cray_pointee)
+ gfc_error ("Cray pointee '%s' in %s clause at %L",
+ n->sym->name, name, where);
+ }
+ break;
default:
for (; n != NULL; n = n->next)
{
+ bool bad = false;
if (n->sym->attr.threadprivate)
gfc_error ("THREADPRIVATE object '%s' in %s clause at %L",
- n->sym->name, name, &code->loc);
+ n->sym->name, name, where);
if (n->sym->attr.cray_pointee)
gfc_error ("Cray pointee '%s' in %s clause at %L",
- n->sym->name, name, &code->loc);
+ n->sym->name, name, where);
+ if (n->sym->attr.associate_var)
+ gfc_error ("ASSOCIATE name '%s' in %s clause at %L",
+ n->sym->name, name, where);
if (list != OMP_LIST_PRIVATE)
{
- if (n->sym->attr.pointer
- && list >= OMP_LIST_REDUCTION_FIRST
- && list <= OMP_LIST_REDUCTION_LAST)
+ if (n->sym->attr.proc_pointer && list == OMP_LIST_REDUCTION)
+ gfc_error ("Procedure pointer '%s' in %s clause at %L",
+ n->sym->name, name, where);
+ if (n->sym->attr.pointer && list == OMP_LIST_REDUCTION)
gfc_error ("POINTER object '%s' in %s clause at %L",
- n->sym->name, name, &code->loc);
- /* Variables in REDUCTION-clauses must be of intrinsic type (flagged below). */
- if ((list < OMP_LIST_REDUCTION_FIRST || list > OMP_LIST_REDUCTION_LAST)
- && n->sym->ts.type == BT_DERIVED
- && n->sym->ts.u.derived->attr.alloc_comp)
- gfc_error ("%s clause object '%s' has ALLOCATABLE components at %L",
- name, n->sym->name, &code->loc);
- if (n->sym->attr.cray_pointer
- && list >= OMP_LIST_REDUCTION_FIRST
- && list <= OMP_LIST_REDUCTION_LAST)
+ n->sym->name, name, where);
+ if (n->sym->attr.cray_pointer && list == OMP_LIST_REDUCTION)
gfc_error ("Cray pointer '%s' in %s clause at %L",
- n->sym->name, name, &code->loc);
+ n->sym->name, name, where);
}
if (n->sym->as && n->sym->as->type == AS_ASSUMED_SIZE)
gfc_error ("Assumed size array '%s' in %s clause at %L",
- n->sym->name, name, &code->loc);
- if (n->sym->attr.in_namelist
- && (list < OMP_LIST_REDUCTION_FIRST
- || list > OMP_LIST_REDUCTION_LAST))
+ n->sym->name, name, where);
+ if (n->sym->attr.in_namelist && list != OMP_LIST_REDUCTION)
gfc_error ("Variable '%s' in %s clause is used in "
"NAMELIST statement at %L",
- n->sym->name, name, &code->loc);
+ n->sym->name, name, where);
+ if (n->sym->attr.pointer && n->sym->attr.intent == INTENT_IN)
+ switch (list)
+ {
+ case OMP_LIST_PRIVATE:
+ case OMP_LIST_LASTPRIVATE:
+ case OMP_LIST_LINEAR:
+ /* case OMP_LIST_REDUCTION: */
+ gfc_error ("INTENT(IN) POINTER '%s' in %s clause at %L",
+ n->sym->name, name, where);
+ break;
+ default:
+ break;
+ }
switch (list)
{
- case OMP_LIST_PLUS:
- case OMP_LIST_MULT:
- case OMP_LIST_SUB:
- if (!gfc_numeric_ts (&n->sym->ts))
- gfc_error ("%c REDUCTION variable '%s' at %L must be of numeric type, got %s",
- list == OMP_LIST_PLUS ? '+'
- : list == OMP_LIST_MULT ? '*' : '-',
- n->sym->name, &code->loc,
- gfc_typename (&n->sym->ts));
- break;
- case OMP_LIST_AND:
- case OMP_LIST_OR:
- case OMP_LIST_EQV:
- case OMP_LIST_NEQV:
- if (n->sym->ts.type != BT_LOGICAL)
- gfc_error ("%s REDUCTION variable '%s' must be LOGICAL "
- "at %L",
- list == OMP_LIST_AND ? ".AND."
- : list == OMP_LIST_OR ? ".OR."
- : list == OMP_LIST_EQV ? ".EQV." : ".NEQV.",
- n->sym->name, &code->loc);
- break;
- case OMP_LIST_MAX:
- case OMP_LIST_MIN:
- if (n->sym->ts.type != BT_INTEGER
- && n->sym->ts.type != BT_REAL)
- gfc_error ("%s REDUCTION variable '%s' must be "
- "INTEGER or REAL at %L",
- list == OMP_LIST_MAX ? "MAX" : "MIN",
- n->sym->name, &code->loc);
+ case OMP_LIST_REDUCTION:
+ switch (n->u.reduction_op)
+ {
+ case OMP_REDUCTION_PLUS:
+ case OMP_REDUCTION_TIMES:
+ case OMP_REDUCTION_MINUS:
+ if (!gfc_numeric_ts (&n->sym->ts))
+ bad = true;
+ break;
+ case OMP_REDUCTION_AND:
+ case OMP_REDUCTION_OR:
+ case OMP_REDUCTION_EQV:
+ case OMP_REDUCTION_NEQV:
+ if (n->sym->ts.type != BT_LOGICAL)
+ bad = true;
+ break;
+ case OMP_REDUCTION_MAX:
+ case OMP_REDUCTION_MIN:
+ if (n->sym->ts.type != BT_INTEGER
+ && n->sym->ts.type != BT_REAL)
+ bad = true;
+ break;
+ case OMP_REDUCTION_IAND:
+ case OMP_REDUCTION_IOR:
+ case OMP_REDUCTION_IEOR:
+ if (n->sym->ts.type != BT_INTEGER)
+ bad = true;
+ break;
+ case OMP_REDUCTION_USER:
+ bad = true;
+ break;
+ default:
+ break;
+ }
+ if (!bad)
+ n->udr = NULL;
+ else
+ {
+ const char *udr_name = NULL;
+ if (n->udr)
+ {
+ udr_name = n->udr->udr->name;
+ n->udr->udr
+ = gfc_find_omp_udr (NULL, udr_name,
+ &n->sym->ts);
+ if (n->udr->udr == NULL)
+ {
+ free (n->udr);
+ n->udr = NULL;
+ }
+ }
+ if (n->udr == NULL)
+ {
+ if (udr_name == NULL)
+ switch (n->u.reduction_op)
+ {
+ case OMP_REDUCTION_PLUS:
+ case OMP_REDUCTION_TIMES:
+ case OMP_REDUCTION_MINUS:
+ case OMP_REDUCTION_AND:
+ case OMP_REDUCTION_OR:
+ case OMP_REDUCTION_EQV:
+ case OMP_REDUCTION_NEQV:
+ udr_name = gfc_op2string ((gfc_intrinsic_op)
+ n->u.reduction_op);
+ break;
+ case OMP_REDUCTION_MAX:
+ udr_name = "max";
+ break;
+ case OMP_REDUCTION_MIN:
+ udr_name = "min";
+ break;
+ case OMP_REDUCTION_IAND:
+ udr_name = "iand";
+ break;
+ case OMP_REDUCTION_IOR:
+ udr_name = "ior";
+ break;
+ case OMP_REDUCTION_IEOR:
+ udr_name = "ieor";
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ gfc_error ("!$OMP DECLARE REDUCTION %s not found "
+ "for type %s at %L", udr_name,
+ gfc_typename (&n->sym->ts), where);
+ }
+ else
+ {
+ gfc_omp_udr *udr = n->udr->udr;
+ n->u.reduction_op = OMP_REDUCTION_USER;
+ n->udr->combiner
+ = resolve_omp_udr_clause (n, udr->combiner_ns,
+ udr->omp_out,
+ udr->omp_in);
+ if (udr->initializer_ns)
+ n->udr->initializer
+ = resolve_omp_udr_clause (n,
+ udr->initializer_ns,
+ udr->omp_priv,
+ udr->omp_orig);
+ }
+ }
break;
- case OMP_LIST_IAND:
- case OMP_LIST_IOR:
- case OMP_LIST_IEOR:
+ case OMP_LIST_LINEAR:
if (n->sym->ts.type != BT_INTEGER)
- gfc_error ("%s REDUCTION variable '%s' must be INTEGER "
- "at %L",
- list == OMP_LIST_IAND ? "IAND"
- : list == OMP_LIST_MULT ? "IOR" : "IEOR",
- n->sym->name, &code->loc);
+ gfc_error ("LINEAR variable '%s' must be INTEGER "
+ "at %L", n->sym->name, where);
+ else if (!code && !n->sym->attr.value)
+ gfc_error ("LINEAR dummy argument '%s' must have VALUE "
+ "attribute at %L", n->sym->name, where);
+ else if (n->expr)
+ {
+ gfc_expr *expr = n->expr;
+ if (!gfc_resolve_expr (expr)
+ || expr->ts.type != BT_INTEGER
+ || expr->rank != 0)
+ gfc_error ("'%s' in LINEAR clause at %L requires "
+ "a scalar integer linear-step expression",
+ n->sym->name, where);
+ else if (!code && expr->expr_type != EXPR_CONSTANT)
+ gfc_error ("'%s' in LINEAR clause at %L requires "
+ "a constant integer linear-step expression",
+ n->sym->name, where);
+ }
break;
/* Workaround for PR middle-end/26316, nothing really needs
to be done here for OMP_LIST_PRIVATE. */
case OMP_LIST_PRIVATE:
- gcc_assert (code->op != EXEC_NOP);
+ gcc_assert (code && code->op != EXEC_NOP);
default:
break;
}
@@ -1059,6 +2501,54 @@ resolve_omp_clauses (gfc_code *code)
break;
}
}
+ if (omp_clauses->safelen_expr)
+ {
+ gfc_expr *expr = omp_clauses->safelen_expr;
+ if (!gfc_resolve_expr (expr)
+ || expr->ts.type != BT_INTEGER || expr->rank != 0)
+ gfc_error ("SAFELEN clause at %L requires a scalar "
+ "INTEGER expression", &expr->where);
+ }
+ if (omp_clauses->simdlen_expr)
+ {
+ gfc_expr *expr = omp_clauses->simdlen_expr;
+ if (!gfc_resolve_expr (expr)
+ || expr->ts.type != BT_INTEGER || expr->rank != 0)
+ gfc_error ("SIMDLEN clause at %L requires a scalar "
+ "INTEGER expression", &expr->where);
+ }
+ if (omp_clauses->num_teams)
+ {
+ gfc_expr *expr = omp_clauses->num_teams;
+ if (!gfc_resolve_expr (expr)
+ || expr->ts.type != BT_INTEGER || expr->rank != 0)
+ gfc_error ("NUM_TEAMS clause at %L requires a scalar "
+ "INTEGER expression", &expr->where);
+ }
+ if (omp_clauses->device)
+ {
+ gfc_expr *expr = omp_clauses->device;
+ if (!gfc_resolve_expr (expr)
+ || expr->ts.type != BT_INTEGER || expr->rank != 0)
+ gfc_error ("DEVICE clause at %L requires a scalar "
+ "INTEGER expression", &expr->where);
+ }
+ if (omp_clauses->dist_chunk_size)
+ {
+ gfc_expr *expr = omp_clauses->dist_chunk_size;
+ if (!gfc_resolve_expr (expr)
+ || expr->ts.type != BT_INTEGER || expr->rank != 0)
+ gfc_error ("DIST_SCHEDULE clause's chunk_size at %L requires "
+ "a scalar INTEGER expression", &expr->where);
+ }
+ if (omp_clauses->thread_limit)
+ {
+ gfc_expr *expr = omp_clauses->thread_limit;
+ if (!gfc_resolve_expr (expr)
+ || expr->ts.type != BT_INTEGER || expr->rank != 0)
+ gfc_error ("THREAD_LIMIT clause at %L requires a scalar "
+ "INTEGER expression", &expr->where);
+ }
}
@@ -1142,12 +2632,13 @@ resolve_omp_atomic (gfc_code *code)
gfc_code *atomic_code = code;
gfc_symbol *var;
gfc_expr *expr2, *expr2_tmp;
+ gfc_omp_atomic_op aop
+ = (gfc_omp_atomic_op) (atomic_code->ext.omp_atomic & GFC_OMP_ATOMIC_MASK);
code = code->block->next;
gcc_assert (code->op == EXEC_ASSIGN);
- gcc_assert ((atomic_code->ext.omp_atomic != GFC_OMP_ATOMIC_CAPTURE
- && code->next == NULL)
- || (atomic_code->ext.omp_atomic == GFC_OMP_ATOMIC_CAPTURE
+ gcc_assert (((aop != GFC_OMP_ATOMIC_CAPTURE) && code->next == NULL)
+ || ((aop == GFC_OMP_ATOMIC_CAPTURE)
&& code->next != NULL
&& code->next->op == EXEC_ASSIGN
&& code->next->next == NULL));
@@ -1169,14 +2660,13 @@ resolve_omp_atomic (gfc_code *code)
expr2 = is_conversion (code->expr2, false);
if (expr2 == NULL)
{
- if (atomic_code->ext.omp_atomic == GFC_OMP_ATOMIC_READ
- || atomic_code->ext.omp_atomic == GFC_OMP_ATOMIC_WRITE)
+ if (aop == GFC_OMP_ATOMIC_READ || aop == GFC_OMP_ATOMIC_WRITE)
expr2 = is_conversion (code->expr2, true);
if (expr2 == NULL)
expr2 = code->expr2;
}
- switch (atomic_code->ext.omp_atomic)
+ switch (aop)
{
case GFC_OMP_ATOMIC_READ:
if (expr2->expr_type != EXPR_VARIABLE
@@ -1249,7 +2739,21 @@ resolve_omp_atomic (gfc_code *code)
break;
}
- if (expr2->expr_type == EXPR_OP)
+ if (var->attr.allocatable)
+ {
+ gfc_error ("!$OMP ATOMIC with ALLOCATABLE variable at %L",
+ &code->loc);
+ return;
+ }
+
+ if (aop == GFC_OMP_ATOMIC_CAPTURE
+ && code->next == NULL
+ && code->expr2->rank == 0
+ && !expr_references_sym (code->expr2, var, NULL))
+ atomic_code->ext.omp_atomic
+ = (gfc_omp_atomic_op) (atomic_code->ext.omp_atomic
+ | GFC_OMP_ATOMIC_SWAP);
+ else if (expr2->expr_type == EXPR_OP)
{
gfc_expr *v = NULL, *e, *c;
gfc_intrinsic_op op = expr2->value.op.op;
@@ -1420,11 +2924,18 @@ resolve_omp_atomic (gfc_code *code)
&& arg->expr->symtree->n.sym == var)
var_arg = arg;
else if (expr_references_sym (arg->expr, var, NULL))
- gfc_error ("!$OMP ATOMIC intrinsic arguments except one must not "
- "reference '%s' at %L", var->name, &arg->expr->where);
+ {
+ gfc_error ("!$OMP ATOMIC intrinsic arguments except one must "
+ "not reference '%s' at %L",
+ var->name, &arg->expr->where);
+ return;
+ }
if (arg->expr->rank != 0)
- gfc_error ("!$OMP ATOMIC intrinsic arguments must be scalar "
- "at %L", &arg->expr->where);
+ {
+ gfc_error ("!$OMP ATOMIC intrinsic arguments must be scalar "
+ "at %L", &arg->expr->where);
+ return;
+ }
}
if (var_arg == NULL)
@@ -1447,10 +2958,10 @@ resolve_omp_atomic (gfc_code *code)
}
}
else
- gfc_error ("!$OMP ATOMIC assignment must have an operator or intrinsic "
- "on right hand side at %L", &expr2->where);
+ gfc_error ("!$OMP ATOMIC assignment must have an operator or "
+ "intrinsic on right hand side at %L", &expr2->where);
- if (atomic_code->ext.omp_atomic == GFC_OMP_ATOMIC_CAPTURE && code->next)
+ if (aop == GFC_OMP_ATOMIC_CAPTURE && code->next)
{
code = code->next;
if (code->expr1->expr_type != EXPR_VARIABLE
@@ -1542,7 +3053,7 @@ gfc_resolve_omp_parallel_blocks (gfc_code *code, gfc_namespace *ns)
{
struct omp_context ctx;
gfc_omp_clauses *omp_clauses = code->ext.omp_clauses;
- gfc_namelist *n;
+ gfc_omp_namelist *n;
int list;
ctx.code = code;
@@ -1552,13 +3063,38 @@ gfc_resolve_omp_parallel_blocks (gfc_code *code, gfc_namespace *ns)
omp_current_ctx = &ctx;
for (list = 0; list < OMP_LIST_NUM; list++)
- for (n = omp_clauses->lists[list]; n; n = n->next)
- pointer_set_insert (ctx.sharing_clauses, n->sym);
+ switch (list)
+ {
+ case OMP_LIST_SHARED:
+ case OMP_LIST_PRIVATE:
+ case OMP_LIST_FIRSTPRIVATE:
+ case OMP_LIST_LASTPRIVATE:
+ case OMP_LIST_REDUCTION:
+ case OMP_LIST_LINEAR:
+ for (n = omp_clauses->lists[list]; n; n = n->next)
+ pointer_set_insert (ctx.sharing_clauses, n->sym);
+ break;
+ default:
+ break;
+ }
- if (code->op == EXEC_OMP_PARALLEL_DO)
- gfc_resolve_omp_do_blocks (code, ns);
- else
- gfc_resolve_blocks (code->block, ns);
+ switch (code->op)
+ {
+ case EXEC_OMP_PARALLEL_DO:
+ case EXEC_OMP_PARALLEL_DO_SIMD:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
+ case EXEC_OMP_TEAMS_DISTRIBUTE:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
+ gfc_resolve_omp_do_blocks (code, ns);
+ break;
+ default:
+ gfc_resolve_blocks (code->block, ns);
+ }
omp_current_ctx = ctx.previous;
pointer_set_destroy (ctx.sharing_clauses);
@@ -1624,9 +3160,9 @@ gfc_resolve_do_iterator (gfc_code *code, gfc_symbol *sym)
if (! pointer_set_insert (omp_current_ctx->private_iterators, sym))
{
gfc_omp_clauses *omp_clauses = omp_current_ctx->code->ext.omp_clauses;
- gfc_namelist *p;
+ gfc_omp_namelist *p;
- p = gfc_get_namelist ();
+ p = gfc_get_omp_namelist ();
p->sym = sym;
p->next = omp_clauses->lists[OMP_LIST_PRIVATE];
omp_clauses->lists[OMP_LIST_PRIVATE] = p;
@@ -1639,11 +3175,64 @@ resolve_omp_do (gfc_code *code)
{
gfc_code *do_code, *c;
int list, i, collapse;
- gfc_namelist *n;
+ gfc_omp_namelist *n;
gfc_symbol *dovar;
+ const char *name;
+ bool is_simd = false;
+
+ switch (code->op)
+ {
+ case EXEC_OMP_DISTRIBUTE: name = "!$OMP DISTRIBUTE"; break;
+ case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
+ name = "!$OMP DISTRIBUTE PARALLEL DO";
+ break;
+ case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
+ name = "!$OMP DISTRIBUTE PARALLEL DO SIMD";
+ is_simd = true;
+ break;
+ case EXEC_OMP_DISTRIBUTE_SIMD:
+ name = "!$OMP DISTRIBUTE SIMD";
+ is_simd = true;
+ break;
+ case EXEC_OMP_DO: name = "!$OMP DO"; break;
+ case EXEC_OMP_DO_SIMD: name = "!$OMP DO SIMD"; is_simd = true; break;
+ case EXEC_OMP_PARALLEL_DO: name = "!$OMP PARALLEL DO"; break;
+ case EXEC_OMP_PARALLEL_DO_SIMD:
+ name = "!$OMP PARALLEL DO SIMD";
+ is_simd = true;
+ break;
+ case EXEC_OMP_SIMD: name = "!$OMP SIMD"; is_simd = true; break;
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
+ name = "!$OMP TARGET TEAMS_DISTRIBUTE";
+ break;
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ name = "!$OMP TARGET TEAMS DISTRIBUTE PARALLEL DO";
+ break;
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ name = "!$OMP TARGET TEAMS DISTRIBUTE PARALLEL DO SIMD";
+ is_simd = true;
+ break;
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
+ name = "!$OMP TARGET TEAMS DISTRIBUTE SIMD";
+ is_simd = true;
+ break;
+ case EXEC_OMP_TEAMS_DISTRIBUTE: name = "!$OMP TEAMS_DISTRIBUTE"; break;
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ name = "!$OMP TEAMS DISTRIBUTE PARALLEL DO";
+ break;
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ name = "!$OMP TEAMS DISTRIBUTE PARALLEL DO SIMD";
+ is_simd = true;
+ break;
+ case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
+ name = "!$OMP TEAMS DISTRIBUTE SIMD";
+ is_simd = true;
+ break;
+ default: gcc_unreachable ();
+ }
if (code->ext.omp_clauses)
- resolve_omp_clauses (code);
+ resolve_omp_clauses (code, &code->loc, code->ext.omp_clauses, NULL);
do_code = code->block->next;
collapse = code->ext.omp_clauses->collapse;
@@ -1653,27 +3242,46 @@ resolve_omp_do (gfc_code *code)
{
if (do_code->op == EXEC_DO_WHILE)
{
- gfc_error ("!$OMP DO cannot be a DO WHILE or DO without loop control "
- "at %L", &do_code->loc);
+ gfc_error ("%s cannot be a DO WHILE or DO without loop control "
+ "at %L", name, &do_code->loc);
+ break;
+ }
+ if (do_code->op == EXEC_DO_CONCURRENT)
+ {
+ gfc_error ("%s cannot be a DO CONCURRENT loop at %L", name,
+ &do_code->loc);
break;
}
gcc_assert (do_code->op == EXEC_DO);
if (do_code->ext.iterator->var->ts.type != BT_INTEGER)
- gfc_error ("!$OMP DO iteration variable must be of type integer at %L",
- &do_code->loc);
+ gfc_error ("%s iteration variable must be of type integer at %L",
+ name, &do_code->loc);
dovar = do_code->ext.iterator->var->symtree->n.sym;
if (dovar->attr.threadprivate)
- gfc_error ("!$OMP DO iteration variable must not be THREADPRIVATE "
- "at %L", &do_code->loc);
+ gfc_error ("%s iteration variable must not be THREADPRIVATE "
+ "at %L", name, &do_code->loc);
if (code->ext.omp_clauses)
for (list = 0; list < OMP_LIST_NUM; list++)
- if (list != OMP_LIST_PRIVATE && list != OMP_LIST_LASTPRIVATE)
+ if (!is_simd
+ ? (list != OMP_LIST_PRIVATE && list != OMP_LIST_LASTPRIVATE)
+ : code->ext.omp_clauses->collapse > 1
+ ? (list != OMP_LIST_LASTPRIVATE)
+ : (list != OMP_LIST_LINEAR))
for (n = code->ext.omp_clauses->lists[list]; n; n = n->next)
if (dovar == n->sym)
{
- gfc_error ("!$OMP DO iteration variable present on clause "
- "other than PRIVATE or LASTPRIVATE at %L",
- &do_code->loc);
+ if (!is_simd)
+ gfc_error ("%s iteration variable present on clause "
+ "other than PRIVATE or LASTPRIVATE at %L",
+ name, &do_code->loc);
+ else if (code->ext.omp_clauses->collapse > 1)
+ gfc_error ("%s iteration variable present on clause "
+ "other than LASTPRIVATE at %L",
+ name, &do_code->loc);
+ else
+ gfc_error ("%s iteration variable present on clause "
+ "other than LINEAR at %L",
+ name, &do_code->loc);
break;
}
if (i > 1)
@@ -1689,8 +3297,8 @@ resolve_omp_do (gfc_code *code)
|| gfc_find_sym_in_expr (ivar, do_code->ext.iterator->end)
|| gfc_find_sym_in_expr (ivar, do_code->ext.iterator->step))
{
- gfc_error ("!$OMP DO collapsed loops don't form rectangular iteration space at %L",
- &do_code->loc);
+ gfc_error ("%s collapsed loops don't form rectangular "
+ "iteration space at %L", name, &do_code->loc);
break;
}
if (j < i)
@@ -1703,8 +3311,8 @@ resolve_omp_do (gfc_code *code)
for (c = do_code->next; c; c = c->next)
if (c->op != EXEC_NOP && c->op != EXEC_CONTINUE)
{
- gfc_error ("collapsed !$OMP DO loops not perfectly nested at %L",
- &c->loc);
+ gfc_error ("collapsed %s loops not perfectly nested at %L",
+ name, &c->loc);
break;
}
if (c)
@@ -1712,16 +3320,16 @@ resolve_omp_do (gfc_code *code)
do_code = do_code->block;
if (do_code->op != EXEC_DO && do_code->op != EXEC_DO_WHILE)
{
- gfc_error ("not enough DO loops for collapsed !$OMP DO at %L",
- &code->loc);
+ gfc_error ("not enough DO loops for collapsed %s at %L",
+ name, &code->loc);
break;
}
do_code = do_code->next;
if (do_code == NULL
|| (do_code->op != EXEC_DO && do_code->op != EXEC_DO_WHILE))
{
- gfc_error ("not enough DO loops for collapsed !$OMP DO at %L",
- &code->loc);
+ gfc_error ("not enough DO loops for collapsed %s at %L",
+ name, &code->loc);
break;
}
}
@@ -1739,19 +3347,48 @@ gfc_resolve_omp_directive (gfc_code *code, gfc_namespace *ns ATTRIBUTE_UNUSED)
switch (code->op)
{
+ case EXEC_OMP_DISTRIBUTE:
+ case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_DISTRIBUTE_SIMD:
case EXEC_OMP_DO:
+ case EXEC_OMP_DO_SIMD:
case EXEC_OMP_PARALLEL_DO:
+ case EXEC_OMP_PARALLEL_DO_SIMD:
+ case EXEC_OMP_SIMD:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
+ case EXEC_OMP_TEAMS_DISTRIBUTE:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
resolve_omp_do (code);
break;
- case EXEC_OMP_WORKSHARE:
+ case EXEC_OMP_CANCEL:
case EXEC_OMP_PARALLEL_WORKSHARE:
case EXEC_OMP_PARALLEL:
case EXEC_OMP_PARALLEL_SECTIONS:
case EXEC_OMP_SECTIONS:
case EXEC_OMP_SINGLE:
+ case EXEC_OMP_TARGET:
+ case EXEC_OMP_TARGET_DATA:
+ case EXEC_OMP_TARGET_TEAMS:
case EXEC_OMP_TASK:
+ case EXEC_OMP_TEAMS:
+ case EXEC_OMP_WORKSHARE:
if (code->ext.omp_clauses)
- resolve_omp_clauses (code);
+ resolve_omp_clauses (code, &code->loc, code->ext.omp_clauses, NULL);
+ break;
+ case EXEC_OMP_TARGET_UPDATE:
+ if (code->ext.omp_clauses)
+ resolve_omp_clauses (code, &code->loc, code->ext.omp_clauses, NULL);
+ if (code->ext.omp_clauses == NULL
+ || (code->ext.omp_clauses->lists[OMP_LIST_TO] == NULL
+ && code->ext.omp_clauses->lists[OMP_LIST_FROM] == NULL))
+ gfc_error ("OMP TARGET UPDATE at %L requires at least one TO or "
+ "FROM clause", &code->loc);
break;
case EXEC_OMP_ATOMIC:
resolve_omp_atomic (code);
@@ -1760,3 +3397,165 @@ gfc_resolve_omp_directive (gfc_code *code, gfc_namespace *ns ATTRIBUTE_UNUSED)
break;
}
}
+
+/* Resolve !$omp declare simd constructs in NS. */
+
+void
+gfc_resolve_omp_declare_simd (gfc_namespace *ns)
+{
+ gfc_omp_declare_simd *ods;
+
+ for (ods = ns->omp_declare_simd; ods; ods = ods->next)
+ {
+ if (ods->proc_name != ns->proc_name)
+ gfc_error ("!$OMP DECLARE SIMD should refer to containing procedure "
+ "'%s' at %L", ns->proc_name->name, &ods->where);
+ if (ods->clauses)
+ resolve_omp_clauses (NULL, &ods->where, ods->clauses, ns);
+ }
+}
+
+struct omp_udr_callback_data
+{
+ gfc_omp_udr *omp_udr;
+ bool is_initializer;
+};
+
+static int
+omp_udr_callback (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED,
+ void *data)
+{
+ struct omp_udr_callback_data *cd = (struct omp_udr_callback_data *) data;
+ if ((*e)->expr_type == EXPR_VARIABLE)
+ {
+ if (cd->is_initializer)
+ {
+ if ((*e)->symtree->n.sym != cd->omp_udr->omp_priv
+ && (*e)->symtree->n.sym != cd->omp_udr->omp_orig)
+ gfc_error ("Variable other than OMP_PRIV or OMP_ORIG used in "
+ "INITIALIZER clause of !$OMP DECLARE REDUCTION at %L",
+ &(*e)->where);
+ }
+ else
+ {
+ if ((*e)->symtree->n.sym != cd->omp_udr->omp_out
+ && (*e)->symtree->n.sym != cd->omp_udr->omp_in)
+ gfc_error ("Variable other than OMP_OUT or OMP_IN used in "
+ "combiner of !$OMP DECLARE REDUCTION at %L",
+ &(*e)->where);
+ }
+ }
+ return 0;
+}
+
+/* Resolve !$omp declare reduction constructs. */
+
+static void
+gfc_resolve_omp_udr (gfc_omp_udr *omp_udr)
+{
+ gfc_actual_arglist *a;
+ const char *predef_name = NULL;
+
+ switch (omp_udr->rop)
+ {
+ case OMP_REDUCTION_PLUS:
+ case OMP_REDUCTION_TIMES:
+ case OMP_REDUCTION_MINUS:
+ case OMP_REDUCTION_AND:
+ case OMP_REDUCTION_OR:
+ case OMP_REDUCTION_EQV:
+ case OMP_REDUCTION_NEQV:
+ case OMP_REDUCTION_MAX:
+ case OMP_REDUCTION_USER:
+ break;
+ default:
+ gfc_error ("Invalid operator for !$OMP DECLARE REDUCTION %s at %L",
+ omp_udr->name, &omp_udr->where);
+ return;
+ }
+
+ if (gfc_omp_udr_predef (omp_udr->rop, omp_udr->name,
+ &omp_udr->ts, &predef_name))
+ {
+ if (predef_name)
+ gfc_error_now ("Redefinition of predefined %s "
+ "!$OMP DECLARE REDUCTION at %L",
+ predef_name, &omp_udr->where);
+ else
+ gfc_error_now ("Redefinition of predefined "
+ "!$OMP DECLARE REDUCTION at %L", &omp_udr->where);
+ return;
+ }
+
+ if (omp_udr->ts.type == BT_CHARACTER
+ && omp_udr->ts.u.cl->length
+ && omp_udr->ts.u.cl->length->expr_type != EXPR_CONSTANT)
+ {
+ gfc_error ("CHARACTER length in !$OMP DECLARE REDUCTION %s not "
+ "constant at %L", omp_udr->name, &omp_udr->where);
+ return;
+ }
+
+ struct omp_udr_callback_data cd;
+ cd.omp_udr = omp_udr;
+ cd.is_initializer = false;
+ gfc_code_walker (&omp_udr->combiner_ns->code, gfc_dummy_code_callback,
+ omp_udr_callback, &cd);
+ if (omp_udr->combiner_ns->code->op == EXEC_CALL)
+ {
+ for (a = omp_udr->combiner_ns->code->ext.actual; a; a = a->next)
+ if (a->expr == NULL)
+ break;
+ if (a)
+ gfc_error ("Subroutine call with alternate returns in combiner "
+ "of !$OMP DECLARE REDUCTION at %L",
+ &omp_udr->combiner_ns->code->loc);
+ }
+ if (omp_udr->initializer_ns)
+ {
+ cd.is_initializer = true;
+ gfc_code_walker (&omp_udr->initializer_ns->code, gfc_dummy_code_callback,
+ omp_udr_callback, &cd);
+ if (omp_udr->initializer_ns->code->op == EXEC_CALL)
+ {
+ for (a = omp_udr->initializer_ns->code->ext.actual; a; a = a->next)
+ if (a->expr == NULL)
+ break;
+ if (a)
+ gfc_error ("Subroutine call with alternate returns in "
+ "INITIALIZER clause of !$OMP DECLARE REDUCTION "
+ "at %L", &omp_udr->initializer_ns->code->loc);
+ for (a = omp_udr->initializer_ns->code->ext.actual; a; a = a->next)
+ if (a->expr
+ && a->expr->expr_type == EXPR_VARIABLE
+ && a->expr->symtree->n.sym == omp_udr->omp_priv
+ && a->expr->ref == NULL)
+ break;
+ if (a == NULL)
+ gfc_error ("One of actual subroutine arguments in INITIALIZER "
+ "clause of !$OMP DECLARE REDUCTION must be OMP_PRIV "
+ "at %L", &omp_udr->initializer_ns->code->loc);
+ }
+ }
+ else if (omp_udr->ts.type == BT_DERIVED
+ && !gfc_has_default_initializer (omp_udr->ts.u.derived))
+ {
+ gfc_error ("Missing INITIALIZER clause for !$OMP DECLARE REDUCTION "
+ "of derived type without default initializer at %L",
+ &omp_udr->where);
+ return;
+ }
+}
+
+void
+gfc_resolve_omp_udrs (gfc_symtree *st)
+{
+ gfc_omp_udr *omp_udr;
+
+ if (st == NULL)
+ return;
+ gfc_resolve_omp_udrs (st->left);
+ gfc_resolve_omp_udrs (st->right);
+ for (omp_udr = st->n.omp_udr; omp_udr; omp_udr = omp_udr->next)
+ gfc_resolve_omp_udr (omp_udr);
+}
diff --git a/gcc-4.9/gcc/fortran/parse.c b/gcc-4.9/gcc/fortran/parse.c
index 0faf47a00..3428b331e 100644
--- a/gcc-4.9/gcc/fortran/parse.c
+++ b/gcc-4.9/gcc/fortran/parse.c
@@ -74,6 +74,34 @@ match_word (const char *str, match (*subr) (void), locus *old_locus)
}
+/* Like match_word, but if str is matched, set a flag that it
+ was matched. */
+static match
+match_word_omp_simd (const char *str, match (*subr) (void), locus *old_locus,
+ bool *simd_matched)
+{
+ match m;
+
+ if (str != NULL)
+ {
+ m = gfc_match (str);
+ if (m != MATCH_YES)
+ return m;
+ *simd_matched = true;
+ }
+
+ m = (*subr) ();
+
+ if (m != MATCH_YES)
+ {
+ gfc_current_locus = *old_locus;
+ reject_statement ();
+ }
+
+ return m;
+}
+
+
/* Load symbols from all USE statements encountered in this scoping unit. */
static void
@@ -103,7 +131,7 @@ use_modules (void)
if (match_word (keyword, subr, &old_locus) == MATCH_YES) \
return st; \
else \
- undo_new_statement (); \
+ undo_new_statement (); \
} while (0);
@@ -531,11 +559,34 @@ decode_statement (void)
return ST_NONE;
}
+/* Like match, but set a flag simd_matched if keyword matched. */
+#define matchs(keyword, subr, st) \
+ do { \
+ if (match_word_omp_simd (keyword, subr, &old_locus, \
+ &simd_matched) == MATCH_YES) \
+ return st; \
+ else \
+ undo_new_statement (); \
+ } while (0);
+
+/* Like match, but don't match anything if not -fopenmp. */
+#define matcho(keyword, subr, st) \
+ do { \
+ if (!gfc_option.gfc_flag_openmp) \
+ ; \
+ else if (match_word (keyword, subr, &old_locus) \
+ == MATCH_YES) \
+ return st; \
+ else \
+ undo_new_statement (); \
+ } while (0);
+
static gfc_statement
decode_omp_directive (void)
{
locus old_locus;
char c;
+ bool simd_matched = false;
gfc_enforce_clean_symbol_state ();
@@ -560,77 +611,167 @@ decode_omp_directive (void)
c = gfc_peek_ascii_char ();
+ /* match is for directives that should be recognized only if
+ -fopenmp, matchs for directives that should be recognized
+ if either -fopenmp or -fopenmp-simd. */
switch (c)
{
case 'a':
- match ("atomic", gfc_match_omp_atomic, ST_OMP_ATOMIC);
+ matcho ("atomic", gfc_match_omp_atomic, ST_OMP_ATOMIC);
break;
case 'b':
- match ("barrier", gfc_match_omp_barrier, ST_OMP_BARRIER);
+ matcho ("barrier", gfc_match_omp_barrier, ST_OMP_BARRIER);
break;
case 'c':
- match ("critical", gfc_match_omp_critical, ST_OMP_CRITICAL);
+ matcho ("cancellation% point", gfc_match_omp_cancellation_point,
+ ST_OMP_CANCELLATION_POINT);
+ matcho ("cancel", gfc_match_omp_cancel, ST_OMP_CANCEL);
+ matcho ("critical", gfc_match_omp_critical, ST_OMP_CRITICAL);
break;
case 'd':
- match ("do", gfc_match_omp_do, ST_OMP_DO);
+ matchs ("declare reduction", gfc_match_omp_declare_reduction,
+ ST_OMP_DECLARE_REDUCTION);
+ matchs ("declare simd", gfc_match_omp_declare_simd,
+ ST_OMP_DECLARE_SIMD);
+ matcho ("declare target", gfc_match_omp_declare_target,
+ ST_OMP_DECLARE_TARGET);
+ matchs ("distribute parallel do simd",
+ gfc_match_omp_distribute_parallel_do_simd,
+ ST_OMP_DISTRIBUTE_PARALLEL_DO_SIMD);
+ matcho ("distribute parallel do", gfc_match_omp_distribute_parallel_do,
+ ST_OMP_DISTRIBUTE_PARALLEL_DO);
+ matchs ("distribute simd", gfc_match_omp_distribute_simd,
+ ST_OMP_DISTRIBUTE_SIMD);
+ matcho ("distribute", gfc_match_omp_distribute, ST_OMP_DISTRIBUTE);
+ matchs ("do simd", gfc_match_omp_do_simd, ST_OMP_DO_SIMD);
+ matcho ("do", gfc_match_omp_do, ST_OMP_DO);
break;
case 'e':
- match ("end atomic", gfc_match_omp_eos, ST_OMP_END_ATOMIC);
- match ("end critical", gfc_match_omp_critical, ST_OMP_END_CRITICAL);
- match ("end do", gfc_match_omp_end_nowait, ST_OMP_END_DO);
- match ("end master", gfc_match_omp_eos, ST_OMP_END_MASTER);
- match ("end ordered", gfc_match_omp_eos, ST_OMP_END_ORDERED);
- match ("end parallel do", gfc_match_omp_eos, ST_OMP_END_PARALLEL_DO);
- match ("end parallel sections", gfc_match_omp_eos,
- ST_OMP_END_PARALLEL_SECTIONS);
- match ("end parallel workshare", gfc_match_omp_eos,
- ST_OMP_END_PARALLEL_WORKSHARE);
- match ("end parallel", gfc_match_omp_eos, ST_OMP_END_PARALLEL);
- match ("end sections", gfc_match_omp_end_nowait, ST_OMP_END_SECTIONS);
- match ("end single", gfc_match_omp_end_single, ST_OMP_END_SINGLE);
- match ("end task", gfc_match_omp_eos, ST_OMP_END_TASK);
- match ("end workshare", gfc_match_omp_end_nowait,
- ST_OMP_END_WORKSHARE);
+ matcho ("end atomic", gfc_match_omp_eos, ST_OMP_END_ATOMIC);
+ matcho ("end critical", gfc_match_omp_critical, ST_OMP_END_CRITICAL);
+ matchs ("end distribute parallel do simd", gfc_match_omp_eos,
+ ST_OMP_END_DISTRIBUTE_PARALLEL_DO_SIMD);
+ matcho ("end distribute parallel do", gfc_match_omp_eos,
+ ST_OMP_END_DISTRIBUTE_PARALLEL_DO);
+ matchs ("end distribute simd", gfc_match_omp_eos,
+ ST_OMP_END_DISTRIBUTE_SIMD);
+ matcho ("end distribute", gfc_match_omp_eos, ST_OMP_END_DISTRIBUTE);
+ matchs ("end do simd", gfc_match_omp_end_nowait, ST_OMP_END_DO_SIMD);
+ matcho ("end do", gfc_match_omp_end_nowait, ST_OMP_END_DO);
+ matchs ("end simd", gfc_match_omp_eos, ST_OMP_END_SIMD);
+ matcho ("end master", gfc_match_omp_eos, ST_OMP_END_MASTER);
+ matcho ("end ordered", gfc_match_omp_eos, ST_OMP_END_ORDERED);
+ matchs ("end parallel do simd", gfc_match_omp_eos,
+ ST_OMP_END_PARALLEL_DO_SIMD);
+ matcho ("end parallel do", gfc_match_omp_eos, ST_OMP_END_PARALLEL_DO);
+ matcho ("end parallel sections", gfc_match_omp_eos,
+ ST_OMP_END_PARALLEL_SECTIONS);
+ matcho ("end parallel workshare", gfc_match_omp_eos,
+ ST_OMP_END_PARALLEL_WORKSHARE);
+ matcho ("end parallel", gfc_match_omp_eos, ST_OMP_END_PARALLEL);
+ matcho ("end sections", gfc_match_omp_end_nowait, ST_OMP_END_SECTIONS);
+ matcho ("end single", gfc_match_omp_end_single, ST_OMP_END_SINGLE);
+ matcho ("end target data", gfc_match_omp_eos, ST_OMP_END_TARGET_DATA);
+ matchs ("end target teams distribute parallel do simd",
+ gfc_match_omp_eos,
+ ST_OMP_END_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD);
+ matcho ("end target teams distribute parallel do", gfc_match_omp_eos,
+ ST_OMP_END_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO);
+ matchs ("end target teams distribute simd", gfc_match_omp_eos,
+ ST_OMP_END_TARGET_TEAMS_DISTRIBUTE_SIMD);
+ matcho ("end target teams distribute", gfc_match_omp_eos,
+ ST_OMP_END_TARGET_TEAMS_DISTRIBUTE);
+ matcho ("end target teams", gfc_match_omp_eos, ST_OMP_END_TARGET_TEAMS);
+ matcho ("end target", gfc_match_omp_eos, ST_OMP_END_TARGET);
+ matcho ("end taskgroup", gfc_match_omp_eos, ST_OMP_END_TASKGROUP);
+ matcho ("end task", gfc_match_omp_eos, ST_OMP_END_TASK);
+ matchs ("end teams distribute parallel do simd", gfc_match_omp_eos,
+ ST_OMP_END_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD);
+ matcho ("end teams distribute parallel do", gfc_match_omp_eos,
+ ST_OMP_END_TEAMS_DISTRIBUTE_PARALLEL_DO);
+ matchs ("end teams distribute simd", gfc_match_omp_eos,
+ ST_OMP_END_TEAMS_DISTRIBUTE_SIMD);
+ matcho ("end teams distribute", gfc_match_omp_eos,
+ ST_OMP_END_TEAMS_DISTRIBUTE);
+ matcho ("end teams", gfc_match_omp_eos, ST_OMP_END_TEAMS);
+ matcho ("end workshare", gfc_match_omp_end_nowait,
+ ST_OMP_END_WORKSHARE);
break;
case 'f':
- match ("flush", gfc_match_omp_flush, ST_OMP_FLUSH);
+ matcho ("flush", gfc_match_omp_flush, ST_OMP_FLUSH);
break;
case 'm':
- match ("master", gfc_match_omp_master, ST_OMP_MASTER);
+ matcho ("master", gfc_match_omp_master, ST_OMP_MASTER);
break;
case 'o':
- match ("ordered", gfc_match_omp_ordered, ST_OMP_ORDERED);
+ matcho ("ordered", gfc_match_omp_ordered, ST_OMP_ORDERED);
break;
case 'p':
- match ("parallel do", gfc_match_omp_parallel_do, ST_OMP_PARALLEL_DO);
- match ("parallel sections", gfc_match_omp_parallel_sections,
- ST_OMP_PARALLEL_SECTIONS);
- match ("parallel workshare", gfc_match_omp_parallel_workshare,
- ST_OMP_PARALLEL_WORKSHARE);
- match ("parallel", gfc_match_omp_parallel, ST_OMP_PARALLEL);
+ matchs ("parallel do simd", gfc_match_omp_parallel_do_simd,
+ ST_OMP_PARALLEL_DO_SIMD);
+ matcho ("parallel do", gfc_match_omp_parallel_do, ST_OMP_PARALLEL_DO);
+ matcho ("parallel sections", gfc_match_omp_parallel_sections,
+ ST_OMP_PARALLEL_SECTIONS);
+ matcho ("parallel workshare", gfc_match_omp_parallel_workshare,
+ ST_OMP_PARALLEL_WORKSHARE);
+ matcho ("parallel", gfc_match_omp_parallel, ST_OMP_PARALLEL);
break;
case 's':
- match ("sections", gfc_match_omp_sections, ST_OMP_SECTIONS);
- match ("section", gfc_match_omp_eos, ST_OMP_SECTION);
- match ("single", gfc_match_omp_single, ST_OMP_SINGLE);
+ matcho ("sections", gfc_match_omp_sections, ST_OMP_SECTIONS);
+ matcho ("section", gfc_match_omp_eos, ST_OMP_SECTION);
+ matchs ("simd", gfc_match_omp_simd, ST_OMP_SIMD);
+ matcho ("single", gfc_match_omp_single, ST_OMP_SINGLE);
break;
case 't':
- match ("task", gfc_match_omp_task, ST_OMP_TASK);
- match ("taskwait", gfc_match_omp_taskwait, ST_OMP_TASKWAIT);
- match ("taskyield", gfc_match_omp_taskyield, ST_OMP_TASKYIELD);
- match ("threadprivate", gfc_match_omp_threadprivate,
- ST_OMP_THREADPRIVATE);
+ matcho ("target data", gfc_match_omp_target_data, ST_OMP_TARGET_DATA);
+ matchs ("target teams distribute parallel do simd",
+ gfc_match_omp_target_teams_distribute_parallel_do_simd,
+ ST_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD);
+ matcho ("target teams distribute parallel do",
+ gfc_match_omp_target_teams_distribute_parallel_do,
+ ST_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO);
+ matchs ("target teams distribute simd",
+ gfc_match_omp_target_teams_distribute_simd,
+ ST_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD);
+ matcho ("target teams distribute", gfc_match_omp_target_teams_distribute,
+ ST_OMP_TARGET_TEAMS_DISTRIBUTE);
+ matcho ("target teams", gfc_match_omp_target_teams, ST_OMP_TARGET_TEAMS);
+ matcho ("target update", gfc_match_omp_target_update,
+ ST_OMP_TARGET_UPDATE);
+ matcho ("target", gfc_match_omp_target, ST_OMP_TARGET);
+ matcho ("taskgroup", gfc_match_omp_taskgroup, ST_OMP_TASKGROUP);
+ matcho ("taskwait", gfc_match_omp_taskwait, ST_OMP_TASKWAIT);
+ matcho ("taskyield", gfc_match_omp_taskyield, ST_OMP_TASKYIELD);
+ matcho ("task", gfc_match_omp_task, ST_OMP_TASK);
+ matchs ("teams distribute parallel do simd",
+ gfc_match_omp_teams_distribute_parallel_do_simd,
+ ST_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD);
+ matcho ("teams distribute parallel do",
+ gfc_match_omp_teams_distribute_parallel_do,
+ ST_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO);
+ matchs ("teams distribute simd", gfc_match_omp_teams_distribute_simd,
+ ST_OMP_TEAMS_DISTRIBUTE_SIMD);
+ matcho ("teams distribute", gfc_match_omp_teams_distribute,
+ ST_OMP_TEAMS_DISTRIBUTE);
+ matcho ("teams", gfc_match_omp_teams, ST_OMP_TEAMS);
+ matcho ("threadprivate", gfc_match_omp_threadprivate,
+ ST_OMP_THREADPRIVATE);
break;
case 'w':
- match ("workshare", gfc_match_omp_workshare, ST_OMP_WORKSHARE);
+ matcho ("workshare", gfc_match_omp_workshare, ST_OMP_WORKSHARE);
break;
}
/* All else has failed, so give up. See if any of the matchers has
- stored an error message of some sort. */
+ stored an error message of some sort. Don't error out if
+ not -fopenmp and simd_matched is false, i.e. if a directive other
+ than one marked with match has been seen. */
- if (gfc_error_check () == 0)
- gfc_error_now ("Unclassifiable OpenMP directive at %C");
+ if (gfc_option.gfc_flag_openmp || simd_matched)
+ {
+ if (gfc_error_check () == 0)
+ gfc_error_now ("Unclassifiable OpenMP directive at %C");
+ }
reject_statement ();
@@ -753,7 +894,9 @@ next_free (void)
return decode_gcc_attribute ();
}
- else if (c == '$' && gfc_option.gfc_flag_openmp)
+ else if (c == '$'
+ && (gfc_option.gfc_flag_openmp
+ || gfc_option.gfc_flag_openmp_simd))
{
int i;
@@ -842,7 +985,9 @@ next_fixed (void)
return decode_gcc_attribute ();
}
- else if (c == '$' && gfc_option.gfc_flag_openmp)
+ else if (c == '$'
+ && (gfc_option.gfc_flag_openmp
+ || gfc_option.gfc_flag_openmp_simd))
{
for (i = 0; i < 4; i++, c = gfc_next_char_literal (NONSTRING))
gcc_assert ((char) gfc_wide_tolower (c) == "$omp"[i]);
@@ -1013,8 +1158,9 @@ next_statement (void)
case ST_ASSIGNMENT: case ST_ARITHMETIC_IF: case ST_WHERE: case ST_FORALL: \
case ST_LABEL_ASSIGNMENT: case ST_FLUSH: case ST_OMP_FLUSH: \
case ST_OMP_BARRIER: case ST_OMP_TASKWAIT: case ST_OMP_TASKYIELD: \
- case ST_ERROR_STOP: case ST_SYNC_ALL: case ST_SYNC_IMAGES: \
- case ST_SYNC_MEMORY: case ST_LOCK: case ST_UNLOCK
+ case ST_OMP_CANCEL: case ST_OMP_CANCELLATION_POINT: \
+ case ST_OMP_TARGET_UPDATE: case ST_ERROR_STOP: case ST_SYNC_ALL: \
+ case ST_SYNC_IMAGES: case ST_SYNC_MEMORY: case ST_LOCK: case ST_UNLOCK
/* Statements that mark other executable statements. */
@@ -1026,14 +1172,28 @@ next_statement (void)
case ST_OMP_CRITICAL: case ST_OMP_MASTER: case ST_OMP_SINGLE: \
case ST_OMP_DO: case ST_OMP_PARALLEL_DO: case ST_OMP_ATOMIC: \
case ST_OMP_WORKSHARE: case ST_OMP_PARALLEL_WORKSHARE: \
- case ST_OMP_TASK: case ST_CRITICAL
+ case ST_OMP_TASK: case ST_OMP_TASKGROUP: case ST_OMP_SIMD: \
+ case ST_OMP_DO_SIMD: case ST_OMP_PARALLEL_DO_SIMD: case ST_OMP_TARGET: \
+ case ST_OMP_TARGET_DATA: case ST_OMP_TARGET_TEAMS: \
+ case ST_OMP_TARGET_TEAMS_DISTRIBUTE: \
+ case ST_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD: \
+ case ST_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO: \
+ case ST_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD: \
+ case ST_OMP_TEAMS: case ST_OMP_TEAMS_DISTRIBUTE: \
+ case ST_OMP_TEAMS_DISTRIBUTE_SIMD: \
+ case ST_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO: \
+ case ST_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD: case ST_OMP_DISTRIBUTE: \
+ case ST_OMP_DISTRIBUTE_SIMD: case ST_OMP_DISTRIBUTE_PARALLEL_DO: \
+ case ST_OMP_DISTRIBUTE_PARALLEL_DO_SIMD: \
+ case ST_CRITICAL
/* Declaration statements */
#define case_decl case ST_ATTR_DECL: case ST_COMMON: case ST_DATA_DECL: \
case ST_EQUIVALENCE: case ST_NAMELIST: case ST_STATEMENT_FUNCTION: \
case ST_TYPE: case ST_INTERFACE: case ST_OMP_THREADPRIVATE: \
- case ST_PROCEDURE
+ case ST_PROCEDURE: case ST_OMP_DECLARE_SIMD: case ST_OMP_DECLARE_REDUCTION: \
+ case ST_OMP_DECLARE_TARGET
/* Block end statements. Errors associated with interchanging these
are detected in gfc_match_end(). */
@@ -1524,21 +1684,69 @@ gfc_ascii_statement (gfc_statement st)
case ST_OMP_BARRIER:
p = "!$OMP BARRIER";
break;
+ case ST_OMP_CANCEL:
+ p = "!$OMP CANCEL";
+ break;
+ case ST_OMP_CANCELLATION_POINT:
+ p = "!$OMP CANCELLATION POINT";
+ break;
case ST_OMP_CRITICAL:
p = "!$OMP CRITICAL";
break;
+ case ST_OMP_DECLARE_REDUCTION:
+ p = "!$OMP DECLARE REDUCTION";
+ break;
+ case ST_OMP_DECLARE_SIMD:
+ p = "!$OMP DECLARE SIMD";
+ break;
+ case ST_OMP_DECLARE_TARGET:
+ p = "!$OMP DECLARE TARGET";
+ break;
+ case ST_OMP_DISTRIBUTE:
+ p = "!$OMP DISTRIBUTE";
+ break;
+ case ST_OMP_DISTRIBUTE_PARALLEL_DO:
+ p = "!$OMP DISTRIBUTE PARALLEL DO";
+ break;
+ case ST_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
+ p = "!$OMP DISTRIBUTE PARALLEL DO SIMD";
+ break;
+ case ST_OMP_DISTRIBUTE_SIMD:
+ p = "!$OMP DISTRIBUTE SIMD";
+ break;
case ST_OMP_DO:
p = "!$OMP DO";
break;
+ case ST_OMP_DO_SIMD:
+ p = "!$OMP DO SIMD";
+ break;
case ST_OMP_END_ATOMIC:
p = "!$OMP END ATOMIC";
break;
case ST_OMP_END_CRITICAL:
p = "!$OMP END CRITICAL";
break;
+ case ST_OMP_END_DISTRIBUTE:
+ p = "!$OMP END DISTRIBUTE";
+ break;
+ case ST_OMP_END_DISTRIBUTE_PARALLEL_DO:
+ p = "!$OMP END DISTRIBUTE PARALLEL DO";
+ break;
+ case ST_OMP_END_DISTRIBUTE_PARALLEL_DO_SIMD:
+ p = "!$OMP END DISTRIBUTE PARALLEL DO SIMD";
+ break;
+ case ST_OMP_END_DISTRIBUTE_SIMD:
+ p = "!$OMP END DISTRIBUTE SIMD";
+ break;
case ST_OMP_END_DO:
p = "!$OMP END DO";
break;
+ case ST_OMP_END_DO_SIMD:
+ p = "!$OMP END DO SIMD";
+ break;
+ case ST_OMP_END_SIMD:
+ p = "!$OMP END SIMD";
+ break;
case ST_OMP_END_MASTER:
p = "!$OMP END MASTER";
break;
@@ -1551,6 +1759,9 @@ gfc_ascii_statement (gfc_statement st)
case ST_OMP_END_PARALLEL_DO:
p = "!$OMP END PARALLEL DO";
break;
+ case ST_OMP_END_PARALLEL_DO_SIMD:
+ p = "!$OMP END PARALLEL DO SIMD";
+ break;
case ST_OMP_END_PARALLEL_SECTIONS:
p = "!$OMP END PARALLEL SECTIONS";
break;
@@ -1566,6 +1777,45 @@ gfc_ascii_statement (gfc_statement st)
case ST_OMP_END_TASK:
p = "!$OMP END TASK";
break;
+ case ST_OMP_END_TARGET:
+ p = "!$OMP END TARGET";
+ break;
+ case ST_OMP_END_TARGET_DATA:
+ p = "!$OMP END TARGET DATA";
+ break;
+ case ST_OMP_END_TARGET_TEAMS:
+ p = "!$OMP END TARGET TEAMS";
+ break;
+ case ST_OMP_END_TARGET_TEAMS_DISTRIBUTE:
+ p = "!$OMP END TARGET TEAMS DISTRIBUTE";
+ break;
+ case ST_OMP_END_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ p = "!$OMP END TARGET TEAMS DISTRIBUTE PARALLEL DO";
+ break;
+ case ST_OMP_END_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ p = "!$OMP END TARGET TEAMS DISTRIBUTE PARALLEL DO SIMD";
+ break;
+ case ST_OMP_END_TARGET_TEAMS_DISTRIBUTE_SIMD:
+ p = "!$OMP END TARGET TEAMS DISTRIBUTE SIMD";
+ break;
+ case ST_OMP_END_TASKGROUP:
+ p = "!$OMP END TASKGROUP";
+ break;
+ case ST_OMP_END_TEAMS:
+ p = "!$OMP END TEAMS";
+ break;
+ case ST_OMP_END_TEAMS_DISTRIBUTE:
+ p = "!$OMP END TEAMS DISTRIBUTE";
+ break;
+ case ST_OMP_END_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ p = "!$OMP END TEAMS DISTRIBUTE PARALLEL DO";
+ break;
+ case ST_OMP_END_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ p = "!$OMP END TEAMS DISTRIBUTE PARALLEL DO SIMD";
+ break;
+ case ST_OMP_END_TEAMS_DISTRIBUTE_SIMD:
+ p = "!$OMP END TEAMS DISTRIBUTE SIMD";
+ break;
case ST_OMP_END_WORKSHARE:
p = "!$OMP END WORKSHARE";
break;
@@ -1584,6 +1834,9 @@ gfc_ascii_statement (gfc_statement st)
case ST_OMP_PARALLEL_DO:
p = "!$OMP PARALLEL DO";
break;
+ case ST_OMP_PARALLEL_DO_SIMD:
+ p = "!$OMP PARALLEL DO SIMD";
+ break;
case ST_OMP_PARALLEL_SECTIONS:
p = "!$OMP PARALLEL SECTIONS";
break;
@@ -1596,18 +1849,63 @@ gfc_ascii_statement (gfc_statement st)
case ST_OMP_SECTION:
p = "!$OMP SECTION";
break;
+ case ST_OMP_SIMD:
+ p = "!$OMP SIMD";
+ break;
case ST_OMP_SINGLE:
p = "!$OMP SINGLE";
break;
+ case ST_OMP_TARGET:
+ p = "!$OMP TARGET";
+ break;
+ case ST_OMP_TARGET_DATA:
+ p = "!$OMP TARGET DATA";
+ break;
+ case ST_OMP_TARGET_TEAMS:
+ p = "!$OMP TARGET TEAMS";
+ break;
+ case ST_OMP_TARGET_TEAMS_DISTRIBUTE:
+ p = "!$OMP TARGET TEAMS DISTRIBUTE";
+ break;
+ case ST_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ p = "!$OMP TARGET TEAMS DISTRIBUTE PARALLEL DO";
+ break;
+ case ST_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ p = "!$OMP TARGET TEAMS DISTRIBUTE PARALLEL DO SIMD";
+ break;
+ case ST_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
+ p = "!$OMP TARGET TEAMS DISTRIBUTE SIMD";
+ break;
+ case ST_OMP_TARGET_UPDATE:
+ p = "!$OMP TARGET UPDATE";
+ break;
case ST_OMP_TASK:
p = "!$OMP TASK";
break;
+ case ST_OMP_TASKGROUP:
+ p = "!$OMP TASKGROUP";
+ break;
case ST_OMP_TASKWAIT:
p = "!$OMP TASKWAIT";
break;
case ST_OMP_TASKYIELD:
p = "!$OMP TASKYIELD";
break;
+ case ST_OMP_TEAMS:
+ p = "!$OMP TEAMS";
+ break;
+ case ST_OMP_TEAMS_DISTRIBUTE:
+ p = "!$OMP TEAMS DISTRIBUTE";
+ break;
+ case ST_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ p = "!$OMP TEAMS DISTRIBUTE PARALLEL DO";
+ break;
+ case ST_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ p = "!$OMP TEAMS DISTRIBUTE PARALLEL DO SIMD";
+ break;
+ case ST_OMP_TEAMS_DISTRIBUTE_SIMD:
+ p = "!$OMP TEAMS DISTRIBUTE SIMD";
+ break;
case ST_OMP_THREADPRIVATE:
p = "!$OMP THREADPRIVATE";
break;
@@ -3578,7 +3876,53 @@ parse_omp_do (gfc_statement omp_st)
pop_state ();
st = next_statement ();
- if (st == (omp_st == ST_OMP_DO ? ST_OMP_END_DO : ST_OMP_END_PARALLEL_DO))
+ gfc_statement omp_end_st = ST_OMP_END_DO;
+ switch (omp_st)
+ {
+ case ST_OMP_DISTRIBUTE: omp_end_st = ST_OMP_END_DISTRIBUTE; break;
+ case ST_OMP_DISTRIBUTE_PARALLEL_DO:
+ omp_end_st = ST_OMP_END_DISTRIBUTE_PARALLEL_DO;
+ break;
+ case ST_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
+ omp_end_st = ST_OMP_END_DISTRIBUTE_PARALLEL_DO_SIMD;
+ break;
+ case ST_OMP_DISTRIBUTE_SIMD:
+ omp_end_st = ST_OMP_END_DISTRIBUTE_SIMD;
+ break;
+ case ST_OMP_DO: omp_end_st = ST_OMP_END_DO; break;
+ case ST_OMP_DO_SIMD: omp_end_st = ST_OMP_END_DO_SIMD; break;
+ case ST_OMP_PARALLEL_DO: omp_end_st = ST_OMP_END_PARALLEL_DO; break;
+ case ST_OMP_PARALLEL_DO_SIMD:
+ omp_end_st = ST_OMP_END_PARALLEL_DO_SIMD;
+ break;
+ case ST_OMP_SIMD: omp_end_st = ST_OMP_END_SIMD; break;
+ case ST_OMP_TARGET_TEAMS_DISTRIBUTE:
+ omp_end_st = ST_OMP_END_TARGET_TEAMS_DISTRIBUTE;
+ break;
+ case ST_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ omp_end_st = ST_OMP_END_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO;
+ break;
+ case ST_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ omp_end_st = ST_OMP_END_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD;
+ break;
+ case ST_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
+ omp_end_st = ST_OMP_END_TARGET_TEAMS_DISTRIBUTE_SIMD;
+ break;
+ case ST_OMP_TEAMS_DISTRIBUTE:
+ omp_end_st = ST_OMP_END_TEAMS_DISTRIBUTE;
+ break;
+ case ST_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ omp_end_st = ST_OMP_END_TEAMS_DISTRIBUTE_PARALLEL_DO;
+ break;
+ case ST_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ omp_end_st = ST_OMP_END_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD;
+ break;
+ case ST_OMP_TEAMS_DISTRIBUTE_SIMD:
+ omp_end_st = ST_OMP_END_TEAMS_DISTRIBUTE_SIMD;
+ break;
+ default: gcc_unreachable ();
+ }
+ if (st == omp_end_st)
{
if (new_st.op == EXEC_OMP_END_NOWAIT)
cp->ext.omp_clauses->nowait |= new_st.ext.omp_bool;
@@ -3610,7 +3954,8 @@ parse_omp_atomic (void)
np = new_level (cp);
np->op = cp->op;
np->block = NULL;
- count = 1 + (cp->ext.omp_atomic == GFC_OMP_ATOMIC_CAPTURE);
+ count = 1 + ((cp->ext.omp_atomic & GFC_OMP_ATOMIC_MASK)
+ == GFC_OMP_ATOMIC_CAPTURE);
while (count)
{
@@ -3636,7 +3981,8 @@ parse_omp_atomic (void)
gfc_warning_check ();
st = next_statement ();
}
- else if (cp->ext.omp_atomic == GFC_OMP_ATOMIC_CAPTURE)
+ else if ((cp->ext.omp_atomic & GFC_OMP_ATOMIC_MASK)
+ == GFC_OMP_ATOMIC_CAPTURE)
gfc_error ("Missing !$OMP END ATOMIC after !$OMP ATOMIC CAPTURE at %C");
return st;
}
@@ -3682,9 +4028,60 @@ parse_omp_structured_block (gfc_statement omp_st, bool workshare_stmts_only)
case ST_OMP_SINGLE:
omp_end_st = ST_OMP_END_SINGLE;
break;
+ case ST_OMP_TARGET:
+ omp_end_st = ST_OMP_END_TARGET;
+ break;
+ case ST_OMP_TARGET_DATA:
+ omp_end_st = ST_OMP_END_TARGET_DATA;
+ break;
+ case ST_OMP_TARGET_TEAMS:
+ omp_end_st = ST_OMP_END_TARGET_TEAMS;
+ break;
+ case ST_OMP_TARGET_TEAMS_DISTRIBUTE:
+ omp_end_st = ST_OMP_END_TARGET_TEAMS_DISTRIBUTE;
+ break;
+ case ST_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ omp_end_st = ST_OMP_END_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO;
+ break;
+ case ST_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ omp_end_st = ST_OMP_END_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD;
+ break;
+ case ST_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
+ omp_end_st = ST_OMP_END_TARGET_TEAMS_DISTRIBUTE_SIMD;
+ break;
case ST_OMP_TASK:
omp_end_st = ST_OMP_END_TASK;
break;
+ case ST_OMP_TASKGROUP:
+ omp_end_st = ST_OMP_END_TASKGROUP;
+ break;
+ case ST_OMP_TEAMS:
+ omp_end_st = ST_OMP_END_TEAMS;
+ break;
+ case ST_OMP_TEAMS_DISTRIBUTE:
+ omp_end_st = ST_OMP_END_TEAMS_DISTRIBUTE;
+ break;
+ case ST_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ omp_end_st = ST_OMP_END_TEAMS_DISTRIBUTE_PARALLEL_DO;
+ break;
+ case ST_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ omp_end_st = ST_OMP_END_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD;
+ break;
+ case ST_OMP_TEAMS_DISTRIBUTE_SIMD:
+ omp_end_st = ST_OMP_END_TEAMS_DISTRIBUTE_SIMD;
+ break;
+ case ST_OMP_DISTRIBUTE:
+ omp_end_st = ST_OMP_END_DISTRIBUTE;
+ break;
+ case ST_OMP_DISTRIBUTE_PARALLEL_DO:
+ omp_end_st = ST_OMP_END_DISTRIBUTE_PARALLEL_DO;
+ break;
+ case ST_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
+ omp_end_st = ST_OMP_END_DISTRIBUTE_PARALLEL_DO_SIMD;
+ break;
+ case ST_OMP_DISTRIBUTE_SIMD:
+ omp_end_st = ST_OMP_END_DISTRIBUTE_SIMD;
+ break;
case ST_OMP_WORKSHARE:
omp_end_st = ST_OMP_END_WORKSHARE;
break;
@@ -3744,6 +4141,7 @@ parse_omp_structured_block (gfc_statement omp_st, bool workshare_stmts_only)
break;
case ST_OMP_PARALLEL_DO:
+ case ST_OMP_PARALLEL_DO_SIMD:
st = parse_omp_do (st);
continue;
@@ -3916,7 +4314,12 @@ parse_executable (gfc_statement st)
case ST_OMP_CRITICAL:
case ST_OMP_MASTER:
case ST_OMP_SINGLE:
+ case ST_OMP_TARGET:
+ case ST_OMP_TARGET_DATA:
+ case ST_OMP_TARGET_TEAMS:
+ case ST_OMP_TEAMS:
case ST_OMP_TASK:
+ case ST_OMP_TASKGROUP:
parse_omp_structured_block (st, false);
break;
@@ -3925,8 +4328,23 @@ parse_executable (gfc_statement st)
parse_omp_structured_block (st, true);
break;
+ case ST_OMP_DISTRIBUTE:
+ case ST_OMP_DISTRIBUTE_PARALLEL_DO:
+ case ST_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case ST_OMP_DISTRIBUTE_SIMD:
case ST_OMP_DO:
+ case ST_OMP_DO_SIMD:
case ST_OMP_PARALLEL_DO:
+ case ST_OMP_PARALLEL_DO_SIMD:
+ case ST_OMP_SIMD:
+ case ST_OMP_TARGET_TEAMS_DISTRIBUTE:
+ case ST_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ case ST_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case ST_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
+ case ST_OMP_TEAMS_DISTRIBUTE:
+ case ST_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ case ST_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case ST_OMP_TEAMS_DISTRIBUTE_SIMD:
st = parse_omp_do (st);
if (st == ST_IMPLIED_ENDDO)
return st;
diff --git a/gcc-4.9/gcc/fortran/resolve.c b/gcc-4.9/gcc/fortran/resolve.c
index 38755fef6..c959f5d95 100644
--- a/gcc-4.9/gcc/fortran/resolve.c
+++ b/gcc-4.9/gcc/fortran/resolve.c
@@ -40,7 +40,7 @@ typedef enum seq_type
seq_type;
/* Stack to keep track of the nesting of blocks as we move through the
- code. See resolve_branch() and resolve_code(). */
+ code. See resolve_branch() and gfc_resolve_code(). */
typedef struct code_stack
{
@@ -2887,7 +2887,8 @@ resolve_function (gfc_expr *expr)
/* See if function is already resolved. */
- if (expr->value.function.name != NULL)
+ if (expr->value.function.name != NULL
+ || expr->value.function.isym != NULL)
{
if (expr->ts.type == BT_UNKNOWN)
expr->ts = sym->ts;
@@ -4884,7 +4885,7 @@ resolve_variable (gfc_expr *e)
if (check_assumed_size_reference (sym, e))
return false;
- /* Deal with forward references to entries during resolve_code, to
+ /* Deal with forward references to entries during gfc_resolve_code, to
satisfy, at least partially, 12.5.2.5. */
if (gfc_current_ns->entries
&& current_entry_id == sym->entry_id
@@ -8926,8 +8927,6 @@ resolve_block_construct (gfc_code* code)
/* Resolve lists of blocks found in IF, SELECT CASE, WHERE, FORALL, GOTO and
DO code nodes. */
-static void resolve_code (gfc_code *, gfc_namespace *);
-
void
gfc_resolve_blocks (gfc_code *b, gfc_namespace *ns)
{
@@ -8979,18 +8978,39 @@ gfc_resolve_blocks (gfc_code *b, gfc_namespace *ns)
case EXEC_OMP_ATOMIC:
case EXEC_OMP_CRITICAL:
+ case EXEC_OMP_DISTRIBUTE:
+ case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_DISTRIBUTE_SIMD:
case EXEC_OMP_DO:
+ case EXEC_OMP_DO_SIMD:
case EXEC_OMP_MASTER:
case EXEC_OMP_ORDERED:
case EXEC_OMP_PARALLEL:
case EXEC_OMP_PARALLEL_DO:
+ case EXEC_OMP_PARALLEL_DO_SIMD:
case EXEC_OMP_PARALLEL_SECTIONS:
case EXEC_OMP_PARALLEL_WORKSHARE:
case EXEC_OMP_SECTIONS:
+ case EXEC_OMP_SIMD:
case EXEC_OMP_SINGLE:
+ case EXEC_OMP_TARGET:
+ case EXEC_OMP_TARGET_DATA:
+ case EXEC_OMP_TARGET_TEAMS:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
+ case EXEC_OMP_TARGET_UPDATE:
case EXEC_OMP_TASK:
+ case EXEC_OMP_TASKGROUP:
case EXEC_OMP_TASKWAIT:
case EXEC_OMP_TASKYIELD:
+ case EXEC_OMP_TEAMS:
+ case EXEC_OMP_TEAMS_DISTRIBUTE:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
case EXEC_OMP_WORKSHARE:
break;
@@ -8998,7 +9018,7 @@ gfc_resolve_blocks (gfc_code *b, gfc_namespace *ns)
gfc_internal_error ("gfc_resolve_blocks(): Bad block type");
}
- resolve_code (b->next, ns);
+ gfc_resolve_code (b->next, ns);
}
}
@@ -9411,7 +9431,7 @@ nonscalar_typebound_assign (gfc_symbol *derived, int depth)
The pointer assignments are taken care of by the intrinsic
assignment of the structure itself. This function recursively adds
defined assignments where required. The recursion is accomplished
- by calling resolve_code.
+ by calling gfc_resolve_code.
When the lhs in a defined assignment has intent INOUT, we need a
temporary for the lhs. In pseudo-code:
@@ -9529,9 +9549,9 @@ generate_component_assignments (gfc_code **code, gfc_namespace *ns)
comp1, comp2, (*code)->loc);
/* Convert the assignment if there is a defined assignment for
- this type. Otherwise, using the call from resolve_code,
+ this type. Otherwise, using the call from gfc_resolve_code,
recurse into its components. */
- resolve_code (this_code, ns);
+ gfc_resolve_code (this_code, ns);
if (this_code->op == EXEC_ASSIGN_CALL)
{
@@ -9695,8 +9715,8 @@ generate_component_assignments (gfc_code **code, gfc_namespace *ns)
/* Given a block of code, recursively resolve everything pointed to by this
code block. */
-static void
-resolve_code (gfc_code *code, gfc_namespace *ns)
+void
+gfc_resolve_code (gfc_code *code, gfc_namespace *ns)
{
int omp_workshare_save;
int forall_save, do_concurrent_save;
@@ -9733,13 +9753,28 @@ resolve_code (gfc_code *code, gfc_namespace *ns)
break;
case EXEC_OMP_PARALLEL:
case EXEC_OMP_PARALLEL_DO:
+ case EXEC_OMP_PARALLEL_DO_SIMD:
case EXEC_OMP_PARALLEL_SECTIONS:
+ case EXEC_OMP_TARGET_TEAMS:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
case EXEC_OMP_TASK:
+ case EXEC_OMP_TEAMS:
+ case EXEC_OMP_TEAMS_DISTRIBUTE:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
omp_workshare_save = omp_workshare_flag;
omp_workshare_flag = 0;
gfc_resolve_omp_parallel_blocks (code, ns);
break;
+ case EXEC_OMP_DISTRIBUTE:
+ case EXEC_OMP_DISTRIBUTE_SIMD:
case EXEC_OMP_DO:
+ case EXEC_OMP_DO_SIMD:
+ case EXEC_OMP_SIMD:
gfc_resolve_omp_do_blocks (code, ns);
break;
case EXEC_SELECT_TYPE:
@@ -9960,7 +9995,8 @@ resolve_code (gfc_code *code, gfc_namespace *ns)
case EXEC_DO_WHILE:
if (code->expr1 == NULL)
- gfc_internal_error ("resolve_code(): No expression on DO WHILE");
+ gfc_internal_error ("gfc_resolve_code(): No expression on "
+ "DO WHILE");
if (t
&& (code->expr1->rank != 0
|| code->expr1->ts.type != BT_LOGICAL))
@@ -10054,24 +10090,47 @@ resolve_code (gfc_code *code, gfc_namespace *ns)
case EXEC_OMP_ATOMIC:
case EXEC_OMP_BARRIER:
+ case EXEC_OMP_CANCEL:
+ case EXEC_OMP_CANCELLATION_POINT:
case EXEC_OMP_CRITICAL:
case EXEC_OMP_FLUSH:
+ case EXEC_OMP_DISTRIBUTE:
+ case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_DISTRIBUTE_SIMD:
case EXEC_OMP_DO:
+ case EXEC_OMP_DO_SIMD:
case EXEC_OMP_MASTER:
case EXEC_OMP_ORDERED:
case EXEC_OMP_SECTIONS:
+ case EXEC_OMP_SIMD:
case EXEC_OMP_SINGLE:
+ case EXEC_OMP_TARGET:
+ case EXEC_OMP_TARGET_DATA:
+ case EXEC_OMP_TARGET_TEAMS:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
+ case EXEC_OMP_TARGET_UPDATE:
+ case EXEC_OMP_TASK:
+ case EXEC_OMP_TASKGROUP:
case EXEC_OMP_TASKWAIT:
case EXEC_OMP_TASKYIELD:
+ case EXEC_OMP_TEAMS:
+ case EXEC_OMP_TEAMS_DISTRIBUTE:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
case EXEC_OMP_WORKSHARE:
gfc_resolve_omp_directive (code, ns);
break;
case EXEC_OMP_PARALLEL:
case EXEC_OMP_PARALLEL_DO:
+ case EXEC_OMP_PARALLEL_DO_SIMD:
case EXEC_OMP_PARALLEL_SECTIONS:
case EXEC_OMP_PARALLEL_WORKSHARE:
- case EXEC_OMP_TASK:
omp_workshare_save = omp_workshare_flag;
omp_workshare_flag = 0;
gfc_resolve_omp_directive (code, ns);
@@ -10079,7 +10138,7 @@ resolve_code (gfc_code *code, gfc_namespace *ns)
break;
default:
- gfc_internal_error ("resolve_code(): Bad statement code");
+ gfc_internal_error ("gfc_resolve_code(): Bad statement code");
}
}
@@ -10779,7 +10838,10 @@ resolve_fl_variable (gfc_symbol *sym, int mp_flag)
}
/* Constraints on deferred type parameter. */
- if (sym->ts.deferred && !(sym->attr.pointer || sym->attr.allocatable))
+ if (sym->ts.deferred
+ && !(sym->attr.pointer
+ || sym->attr.allocatable
+ || sym->attr.omp_udr_artificial_var))
{
gfc_error ("Entity '%s' at %L has a deferred type parameter and "
"requires either the pointer or allocatable attribute",
@@ -10794,7 +10856,8 @@ resolve_fl_variable (gfc_symbol *sym, int mp_flag)
dummy arguments. */
e = sym->ts.u.cl->length;
if (e == NULL && !sym->attr.dummy && !sym->attr.result
- && !sym->ts.deferred && !sym->attr.select_type_temporary)
+ && !sym->ts.deferred && !sym->attr.select_type_temporary
+ && !sym->attr.omp_udr_artificial_var)
{
gfc_error ("Entity with assumed character length at %L must be a "
"dummy argument or a PARAMETER", &sym->declared_at);
@@ -13429,6 +13492,18 @@ resolve_symbol (gfc_symbol *sym)
|| sym->ns->proc_name->attr.flavor != FL_MODULE)))
gfc_error ("Threadprivate at %L isn't SAVEd", &sym->declared_at);
+ /* Check omp declare target restrictions. */
+ if (sym->attr.omp_declare_target
+ && sym->attr.flavor == FL_VARIABLE
+ && !sym->attr.save
+ && !sym->ns->save_all
+ && (!sym->attr.in_common
+ && sym->module == NULL
+ && (sym->ns->proc_name == NULL
+ || sym->ns->proc_name->attr.flavor != FL_MODULE)))
+ gfc_error ("!$OMP DECLARE TARGET variable '%s' at %L isn't SAVEd",
+ sym->name, &sym->declared_at);
+
/* If we have come this far we can apply default-initializers, as
described in 14.7.5, to those variables that have not already
been assigned one. */
@@ -14526,7 +14601,7 @@ gfc_resolve_uops (gfc_symtree *symtree)
assign types to all intermediate expressions, make sure that all
assignments are to compatible types and figure out which names
refer to which functions or subroutines. It doesn't check code
- block, which is handled by resolve_code. */
+ block, which is handled by gfc_resolve_code. */
static void
resolve_types (gfc_namespace *ns)
@@ -14607,11 +14682,15 @@ resolve_types (gfc_namespace *ns)
gfc_resolve_uops (ns->uop_root);
+ gfc_resolve_omp_declare_simd (ns);
+
+ gfc_resolve_omp_udrs (ns->omp_udr_root);
+
gfc_current_ns = old_ns;
}
-/* Call resolve_code recursively. */
+/* Call gfc_resolve_code recursively. */
static void
resolve_codes (gfc_namespace *ns)
@@ -14637,7 +14716,7 @@ resolve_codes (gfc_namespace *ns)
old_obstack = labels_obstack;
bitmap_obstack_initialize (&labels_obstack);
- resolve_code (ns->code, ns);
+ gfc_resolve_code (ns->code, ns);
bitmap_obstack_release (&labels_obstack);
labels_obstack = old_obstack;
diff --git a/gcc-4.9/gcc/fortran/scanner.c b/gcc-4.9/gcc/fortran/scanner.c
index 8f5173421..8934924d8 100644
--- a/gcc-4.9/gcc/fortran/scanner.c
+++ b/gcc-4.9/gcc/fortran/scanner.c
@@ -752,7 +752,8 @@ skip_free_comments (void)
2) handle OpenMP conditional compilation, where
!$ should be treated as 2 spaces (for initial lines
only if followed by space). */
- if (gfc_option.gfc_flag_openmp && at_bol)
+ if ((gfc_option.gfc_flag_openmp
+ || gfc_option.gfc_flag_openmp_simd) && at_bol)
{
locus old_loc = gfc_current_locus;
if (next_char () == '$')
@@ -878,7 +879,7 @@ skip_fixed_comments (void)
&& continue_line < gfc_linebuf_linenum (gfc_current_locus.lb))
continue_line = gfc_linebuf_linenum (gfc_current_locus.lb);
- if (gfc_option.gfc_flag_openmp)
+ if (gfc_option.gfc_flag_openmp || gfc_option.gfc_flag_openmp_simd)
{
if (next_char () == '$')
{
@@ -1821,7 +1822,7 @@ include_line (gfc_char_t *line)
c = line;
- if (gfc_option.gfc_flag_openmp)
+ if (gfc_option.gfc_flag_openmp || gfc_option.gfc_flag_openmp_simd)
{
if (gfc_current_form == FORM_FREE)
{
diff --git a/gcc-4.9/gcc/fortran/st.c b/gcc-4.9/gcc/fortran/st.c
index 0e1cc705e..0f18f7872 100644
--- a/gcc-4.9/gcc/fortran/st.c
+++ b/gcc-4.9/gcc/fortran/st.c
@@ -185,14 +185,36 @@ gfc_free_statement (gfc_code *p)
gfc_free_forall_iterator (p->ext.forall_iterator);
break;
+ case EXEC_OMP_CANCEL:
+ case EXEC_OMP_CANCELLATION_POINT:
+ case EXEC_OMP_DISTRIBUTE:
+ case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_DISTRIBUTE_SIMD:
case EXEC_OMP_DO:
+ case EXEC_OMP_DO_SIMD:
case EXEC_OMP_END_SINGLE:
case EXEC_OMP_PARALLEL:
case EXEC_OMP_PARALLEL_DO:
+ case EXEC_OMP_PARALLEL_DO_SIMD:
case EXEC_OMP_PARALLEL_SECTIONS:
case EXEC_OMP_SECTIONS:
+ case EXEC_OMP_SIMD:
case EXEC_OMP_SINGLE:
+ case EXEC_OMP_TARGET:
+ case EXEC_OMP_TARGET_DATA:
+ case EXEC_OMP_TARGET_TEAMS:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
+ case EXEC_OMP_TARGET_UPDATE:
case EXEC_OMP_TASK:
+ case EXEC_OMP_TEAMS:
+ case EXEC_OMP_TEAMS_DISTRIBUTE:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
case EXEC_OMP_WORKSHARE:
case EXEC_OMP_PARALLEL_WORKSHARE:
gfc_free_omp_clauses (p->ext.omp_clauses);
@@ -203,7 +225,7 @@ gfc_free_statement (gfc_code *p)
break;
case EXEC_OMP_FLUSH:
- gfc_free_namelist (p->ext.omp_namelist);
+ gfc_free_omp_namelist (p->ext.omp_namelist);
break;
case EXEC_OMP_ATOMIC:
@@ -211,6 +233,7 @@ gfc_free_statement (gfc_code *p)
case EXEC_OMP_MASTER:
case EXEC_OMP_ORDERED:
case EXEC_OMP_END_NOWAIT:
+ case EXEC_OMP_TASKGROUP:
case EXEC_OMP_TASKWAIT:
case EXEC_OMP_TASKYIELD:
break;
diff --git a/gcc-4.9/gcc/fortran/symbol.c b/gcc-4.9/gcc/fortran/symbol.c
index 19d792e08..8edd6931f 100644
--- a/gcc-4.9/gcc/fortran/symbol.c
+++ b/gcc-4.9/gcc/fortran/symbol.c
@@ -367,6 +367,7 @@ check_conflict (symbol_attribute *attr, const char *name, locus *where)
*asynchronous = "ASYNCHRONOUS", *codimension = "CODIMENSION",
*contiguous = "CONTIGUOUS", *generic = "GENERIC";
static const char *threadprivate = "THREADPRIVATE";
+ static const char *omp_declare_target = "OMP DECLARE TARGET";
const char *a1, *a2;
int standard;
@@ -453,6 +454,7 @@ check_conflict (symbol_attribute *attr, const char *name, locus *where)
conf (dummy, entry);
conf (dummy, intrinsic);
conf (dummy, threadprivate);
+ conf (dummy, omp_declare_target);
conf (pointer, target);
conf (pointer, intrinsic);
conf (pointer, elemental);
@@ -495,6 +497,7 @@ check_conflict (symbol_attribute *attr, const char *name, locus *where)
conf (in_equivalence, entry);
conf (in_equivalence, allocatable);
conf (in_equivalence, threadprivate);
+ conf (in_equivalence, omp_declare_target);
conf (dummy, result);
conf (entry, result);
@@ -543,6 +546,7 @@ check_conflict (symbol_attribute *attr, const char *name, locus *where)
conf (cray_pointee, in_common);
conf (cray_pointee, in_equivalence);
conf (cray_pointee, threadprivate);
+ conf (cray_pointee, omp_declare_target);
conf (data, dummy);
conf (data, function);
@@ -596,6 +600,8 @@ check_conflict (symbol_attribute *attr, const char *name, locus *where)
conf (proc_pointer, abstract)
+ conf (entry, omp_declare_target)
+
a1 = gfc_code2string (flavors, attr->flavor);
if (attr->in_namelist
@@ -631,6 +637,7 @@ check_conflict (symbol_attribute *attr, const char *name, locus *where)
conf2 (function);
conf2 (subroutine);
conf2 (threadprivate);
+ conf2 (omp_declare_target);
if (attr->access == ACCESS_PUBLIC || attr->access == ACCESS_PRIVATE)
{
@@ -712,6 +719,7 @@ check_conflict (symbol_attribute *attr, const char *name, locus *where)
conf2 (subroutine);
conf2 (threadprivate);
conf2 (result);
+ conf2 (omp_declare_target);
if (attr->intent != INTENT_UNKNOWN)
{
@@ -1207,6 +1215,22 @@ gfc_add_threadprivate (symbol_attribute *attr, const char *name, locus *where)
bool
+gfc_add_omp_declare_target (symbol_attribute *attr, const char *name,
+ locus *where)
+{
+
+ if (check_used (attr, name, where))
+ return false;
+
+ if (attr->omp_declare_target)
+ return true;
+
+ attr->omp_declare_target = 1;
+ return check_conflict (attr, name, where);
+}
+
+
+bool
gfc_add_target (symbol_attribute *attr, locus *where)
{
@@ -1761,6 +1785,9 @@ gfc_copy_attr (symbol_attribute *dest, symbol_attribute *src, locus *where)
if (src->threadprivate
&& !gfc_add_threadprivate (dest, NULL, where))
goto fail;
+ if (src->omp_declare_target
+ && !gfc_add_omp_declare_target (dest, NULL, where))
+ goto fail;
if (src->target && !gfc_add_target (dest, where))
goto fail;
if (src->dummy && !gfc_add_dummy (dest, NULL, where))
@@ -2450,17 +2477,20 @@ gfc_get_uop (const char *name)
{
gfc_user_op *uop;
gfc_symtree *st;
+ gfc_namespace *ns = gfc_current_ns;
- st = gfc_find_symtree (gfc_current_ns->uop_root, name);
+ if (ns->omp_udr_ns)
+ ns = ns->parent;
+ st = gfc_find_symtree (ns->uop_root, name);
if (st != NULL)
return st->n.uop;
- st = gfc_new_symtree (&gfc_current_ns->uop_root, name);
+ st = gfc_new_symtree (&ns->uop_root, name);
uop = st->n.uop = XCNEW (gfc_user_op);
uop->name = gfc_get_string (name);
uop->access = ACCESS_UNKNOWN;
- uop->ns = gfc_current_ns;
+ uop->ns = ns;
return uop;
}
@@ -2771,6 +2801,12 @@ gfc_get_sym_tree (const char *name, gfc_namespace *ns, gfc_symtree **result,
/* Try to find the symbol in ns. */
st = gfc_find_symtree (ns->sym_root, name);
+ if (st == NULL && ns->omp_udr_ns)
+ {
+ ns = ns->parent;
+ st = gfc_find_symtree (ns->sym_root, name);
+ }
+
if (st == NULL)
{
/* If not there, create a new symbol. */
@@ -3269,6 +3305,23 @@ free_common_tree (gfc_symtree * common_tree)
}
+/* Recursive function that deletes an entire tree and all the common
+ head structures it points to. */
+
+static void
+free_omp_udr_tree (gfc_symtree * omp_udr_tree)
+{
+ if (omp_udr_tree == NULL)
+ return;
+
+ free_omp_udr_tree (omp_udr_tree->left);
+ free_omp_udr_tree (omp_udr_tree->right);
+
+ gfc_free_omp_udr (omp_udr_tree->n.omp_udr);
+ free (omp_udr_tree);
+}
+
+
/* Recursive function that deletes an entire tree and all the user
operator nodes that it contains. */
@@ -3465,9 +3518,11 @@ gfc_free_namespace (gfc_namespace *ns)
free_sym_tree (ns->sym_root);
free_uop_tree (ns->uop_root);
free_common_tree (ns->common_root);
+ free_omp_udr_tree (ns->omp_udr_root);
free_tb_tree (ns->tb_sym_root);
free_tb_tree (ns->tb_uop_root);
gfc_free_finalizer_list (ns->finalizers);
+ gfc_free_omp_declare_simd_list (ns->omp_declare_simd);
gfc_free_charlen (ns->cl_list, NULL);
free_st_labels (ns->st_labels);
diff --git a/gcc-4.9/gcc/fortran/trans-array.c b/gcc-4.9/gcc/fortran/trans-array.c
index 850277747..a36db45c0 100644
--- a/gcc-4.9/gcc/fortran/trans-array.c
+++ b/gcc-4.9/gcc/fortran/trans-array.c
@@ -7389,8 +7389,8 @@ gfc_trans_dealloc_allocated (tree descriptor, bool coarray, gfc_expr *expr)
/* This helper function calculates the size in words of a full array. */
-static tree
-get_full_array_size (stmtblock_t *block, tree decl, int rank)
+tree
+gfc_full_array_size (stmtblock_t *block, tree decl, int rank)
{
tree idx;
tree nelems;
@@ -7416,7 +7416,7 @@ get_full_array_size (stmtblock_t *block, tree decl, int rank)
static tree
duplicate_allocatable (tree dest, tree src, tree type, int rank,
- bool no_malloc, tree str_sz)
+ bool no_malloc, bool no_memcpy, tree str_sz)
{
tree tmp;
tree size;
@@ -7450,9 +7450,13 @@ duplicate_allocatable (tree dest, tree src, tree type, int rank,
gfc_add_expr_to_block (&block, tmp);
}
- tmp = builtin_decl_explicit (BUILT_IN_MEMCPY);
- tmp = build_call_expr_loc (input_location, tmp, 3, dest, src,
- fold_convert (size_type_node, size));
+ if (!no_memcpy)
+ {
+ tmp = builtin_decl_explicit (BUILT_IN_MEMCPY);
+ tmp = build_call_expr_loc (input_location, tmp, 3, dest, src,
+ fold_convert (size_type_node, size));
+ gfc_add_expr_to_block (&block, tmp);
+ }
}
else
{
@@ -7461,7 +7465,7 @@ duplicate_allocatable (tree dest, tree src, tree type, int rank,
gfc_init_block (&block);
if (rank)
- nelems = get_full_array_size (&block, src, rank);
+ nelems = gfc_full_array_size (&block, src, rank);
else
nelems = gfc_index_one_node;
@@ -7481,14 +7485,17 @@ duplicate_allocatable (tree dest, tree src, tree type, int rank,
/* We know the temporary and the value will be the same length,
so can use memcpy. */
- tmp = builtin_decl_explicit (BUILT_IN_MEMCPY);
- tmp = build_call_expr_loc (input_location,
- tmp, 3, gfc_conv_descriptor_data_get (dest),
- gfc_conv_descriptor_data_get (src),
- fold_convert (size_type_node, size));
+ if (!no_memcpy)
+ {
+ tmp = builtin_decl_explicit (BUILT_IN_MEMCPY);
+ tmp = build_call_expr_loc (input_location, tmp, 3,
+ gfc_conv_descriptor_data_get (dest),
+ gfc_conv_descriptor_data_get (src),
+ fold_convert (size_type_node, size));
+ gfc_add_expr_to_block (&block, tmp);
+ }
}
- gfc_add_expr_to_block (&block, tmp);
tmp = gfc_finish_block (&block);
/* Null the destination if the source is null; otherwise do
@@ -7510,7 +7517,8 @@ duplicate_allocatable (tree dest, tree src, tree type, int rank,
tree
gfc_duplicate_allocatable (tree dest, tree src, tree type, int rank)
{
- return duplicate_allocatable (dest, src, type, rank, false, NULL_TREE);
+ return duplicate_allocatable (dest, src, type, rank, false, false,
+ NULL_TREE);
}
@@ -7519,7 +7527,16 @@ gfc_duplicate_allocatable (tree dest, tree src, tree type, int rank)
tree
gfc_copy_allocatable_data (tree dest, tree src, tree type, int rank)
{
- return duplicate_allocatable (dest, src, type, rank, true, NULL_TREE);
+ return duplicate_allocatable (dest, src, type, rank, true, false,
+ NULL_TREE);
+}
+
+/* Allocate dest to the same size as src, but don't copy anything. */
+
+tree
+gfc_duplicate_allocatable_nocopy (tree dest, tree src, tree type, int rank)
+{
+ return duplicate_allocatable (dest, src, type, rank, false, true, NULL_TREE);
}
@@ -7579,7 +7596,7 @@ structure_alloc_comps (gfc_symbol * der_type, tree decl,
/* Use the descriptor for an allocatable array. Since this
is a full array reference, we only need the descriptor
information from dimension = rank. */
- tmp = get_full_array_size (&fnblock, decl, rank);
+ tmp = gfc_full_array_size (&fnblock, decl, rank);
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, tmp,
gfc_index_one_node);
@@ -7938,7 +7955,7 @@ structure_alloc_comps (gfc_symbol * der_type, tree decl,
gfc_add_expr_to_block (&fnblock, tmp);
size = size_of_string_in_bytes (c->ts.kind, len);
tmp = duplicate_allocatable (dcmp, comp, ctype, rank,
- false, size);
+ false, false, size);
gfc_add_expr_to_block (&fnblock, tmp);
}
else if (c->attr.allocatable && !c->attr.proc_pointer
diff --git a/gcc-4.9/gcc/fortran/trans-array.h b/gcc-4.9/gcc/fortran/trans-array.h
index c4c09c1c5..e0bb82071 100644
--- a/gcc-4.9/gcc/fortran/trans-array.h
+++ b/gcc-4.9/gcc/fortran/trans-array.h
@@ -44,10 +44,14 @@ void gfc_trans_g77_array (gfc_symbol *, gfc_wrapped_block *);
/* Generate code to deallocate an array, if it is allocated. */
tree gfc_trans_dealloc_allocated (tree, bool, gfc_expr *);
+tree gfc_full_array_size (stmtblock_t *, tree, int);
+
tree gfc_duplicate_allocatable (tree dest, tree src, tree type, int rank);
tree gfc_copy_allocatable_data (tree dest, tree src, tree type, int rank);
+tree gfc_duplicate_allocatable_nocopy (tree, tree, tree, int);
+
tree gfc_nullify_alloc_comp (gfc_symbol *, tree, int);
tree gfc_deallocate_alloc_comp (gfc_symbol *, tree, int);
diff --git a/gcc-4.9/gcc/fortran/trans-common.c b/gcc-4.9/gcc/fortran/trans-common.c
index 19eaddae2..bb66abc36 100644
--- a/gcc-4.9/gcc/fortran/trans-common.c
+++ b/gcc-4.9/gcc/fortran/trans-common.c
@@ -456,6 +456,11 @@ build_common_decl (gfc_common_head *com, tree union_type, bool is_init)
if (com->threadprivate)
DECL_TLS_MODEL (decl) = decl_default_tls_model (decl);
+ if (com->omp_declare_target)
+ DECL_ATTRIBUTES (decl)
+ = tree_cons (get_identifier ("omp declare target"),
+ NULL_TREE, DECL_ATTRIBUTES (decl));
+
/* Place the back end declaration for this common block in
GLOBAL_BINDING_LEVEL. */
gfc_map_of_all_commons[identifier] = pushdecl_top_level (decl);
@@ -705,6 +710,7 @@ create_common (gfc_common_head *com, segment_info *head, bool saw_equiv)
TREE_ADDRESSABLE (var_decl) = 1;
/* Fake variables are not visible from other translation units. */
TREE_PUBLIC (var_decl) = 0;
+ gfc_finish_decl_attrs (var_decl, &s->sym->attr);
/* To preserve identifier names in COMMON, chain to procedure
scope unless at top level in a module definition. */
diff --git a/gcc-4.9/gcc/fortran/trans-decl.c b/gcc-4.9/gcc/fortran/trans-decl.c
index cf7b661d8..2b0667960 100644
--- a/gcc-4.9/gcc/fortran/trans-decl.c
+++ b/gcc-4.9/gcc/fortran/trans-decl.c
@@ -496,6 +496,29 @@ gfc_finish_decl (tree decl)
}
+/* Handle setting of GFC_DECL_SCALAR* on DECL. */
+
+void
+gfc_finish_decl_attrs (tree decl, symbol_attribute *attr)
+{
+ if (!attr->dimension && !attr->codimension)
+ {
+ /* Handle scalar allocatable variables. */
+ if (attr->allocatable)
+ {
+ gfc_allocate_lang_decl (decl);
+ GFC_DECL_SCALAR_ALLOCATABLE (decl) = 1;
+ }
+ /* Handle scalar pointer variables. */
+ if (attr->pointer)
+ {
+ gfc_allocate_lang_decl (decl);
+ GFC_DECL_SCALAR_POINTER (decl) = 1;
+ }
+ }
+}
+
+
/* Apply symbol attributes to a variable, and add it to the function scope. */
static void
@@ -607,6 +630,8 @@ gfc_finish_var_decl (tree decl, gfc_symbol * sym)
if (sym->attr.threadprivate
&& (TREE_STATIC (decl) || DECL_EXTERNAL (decl)))
DECL_TLS_MODEL (decl) = decl_default_tls_model (decl);
+
+ gfc_finish_decl_attrs (decl, &sym->attr);
}
@@ -615,8 +640,9 @@ gfc_finish_var_decl (tree decl, gfc_symbol * sym)
void
gfc_allocate_lang_decl (tree decl)
{
- DECL_LANG_SPECIFIC (decl) = ggc_alloc_cleared_lang_decl(sizeof
- (struct lang_decl));
+ if (DECL_LANG_SPECIFIC (decl) == NULL)
+ DECL_LANG_SPECIFIC (decl)
+ = ggc_alloc_cleared_lang_decl (sizeof (struct lang_decl));
}
/* Remember a symbol to generate initialization/cleanup code at function
@@ -1192,6 +1218,10 @@ add_attributes_to_decl (symbol_attribute sym_attr, tree list)
list = chainon (list, attr);
}
+ if (sym_attr.omp_declare_target)
+ list = tree_cons (get_identifier ("omp declare target"),
+ NULL_TREE, list);
+
return list;
}
@@ -1518,6 +1548,9 @@ gfc_get_symbol_decl (gfc_symbol * sym)
&& !sym->attr.select_type_temporary)
DECL_BY_REFERENCE (decl) = 1;
+ if (sym->attr.associate_var)
+ GFC_DECL_ASSOCIATE_VAR_P (decl) = 1;
+
if (sym->attr.vtab
|| (sym->name[0] == '_' && strncmp ("__def_init", sym->name, 10) == 0))
TREE_READONLY (decl) = 1;
@@ -1850,6 +1883,11 @@ module_sym:
if (DECL_CONTEXT (fndecl) == NULL_TREE)
pushdecl_top_level (fndecl);
+ if (sym->formal_ns
+ && sym->formal_ns->proc_name == sym
+ && sym->formal_ns->omp_declare_simd)
+ gfc_trans_omp_declare_simd (sym->formal_ns);
+
return fndecl;
}
@@ -2232,6 +2270,7 @@ create_function_arglist (gfc_symbol * sym)
DECL_BY_REFERENCE (parm) = 1;
gfc_finish_decl (parm);
+ gfc_finish_decl_attrs (parm, &f->sym->attr);
f->sym->backend_decl = parm;
@@ -2544,6 +2583,9 @@ gfc_create_function_decl (gfc_namespace * ns, bool global)
/* Now create the read argument list. */
create_function_arglist (ns->proc_name);
+
+ if (ns->omp_declare_simd)
+ gfc_trans_omp_declare_simd (ns);
}
/* Return the decl used to hold the function return value. If
@@ -2672,6 +2714,7 @@ gfc_get_fake_result_decl (gfc_symbol * sym, int parent_flag)
TREE_ADDRESSABLE (decl) = 1;
layout_decl (decl, 0);
+ gfc_finish_decl_attrs (decl, &sym->attr);
if (parent_flag)
gfc_add_decl_to_parent_function (decl);
@@ -4237,8 +4280,8 @@ gfc_create_module_variable (gfc_symbol * sym)
}
/* Don't generate variables from other modules. Variables from
- COMMONs will already have been generated. */
- if (sym->attr.use_assoc || sym->attr.in_common)
+ COMMONs and Cray pointees will already have been generated. */
+ if (sym->attr.use_assoc || sym->attr.in_common || sym->attr.cray_pointee)
return;
/* Equivalenced variables arrive here after creation. */
diff --git a/gcc-4.9/gcc/fortran/trans-expr.c b/gcc-4.9/gcc/fortran/trans-expr.c
index 955102b04..dbfde1bdc 100644
--- a/gcc-4.9/gcc/fortran/trans-expr.c
+++ b/gcc-4.9/gcc/fortran/trans-expr.c
@@ -6472,6 +6472,20 @@ gfc_conv_expr_reference (gfc_se * se, gfc_expr * expr)
/* Take the address of that value. */
se->expr = gfc_build_addr_expr (NULL_TREE, var);
+ if (expr->ts.type == BT_DERIVED && expr->rank
+ && !gfc_is_finalizable (expr->ts.u.derived, NULL)
+ && expr->ts.u.derived->attr.alloc_comp
+ && expr->expr_type != EXPR_VARIABLE)
+ {
+ tree tmp;
+
+ tmp = build_fold_indirect_ref_loc (input_location, se->expr);
+ tmp = gfc_deallocate_alloc_comp (expr->ts.u.derived, tmp, expr->rank);
+
+ /* The components shall be deallocated before
+ their containing entity. */
+ gfc_prepend_expr_to_block (&se->post, tmp);
+ }
}
@@ -7251,7 +7265,7 @@ fcncall_realloc_result (gfc_se *se, int rank)
res_desc = gfc_evaluate_now (desc, &se->pre);
gfc_conv_descriptor_data_set (&se->pre, res_desc, null_pointer_node);
- se->expr = gfc_build_addr_expr (TREE_TYPE (se->expr), res_desc);
+ se->expr = gfc_build_addr_expr (NULL_TREE, res_desc);
/* Free the lhs after the function call and copy the result data to
the lhs descriptor. */
diff --git a/gcc-4.9/gcc/fortran/trans-openmp.c b/gcc-4.9/gcc/fortran/trans-openmp.c
index 41020a836..da01a9034 100644
--- a/gcc-4.9/gcc/fortran/trans-openmp.c
+++ b/gcc-4.9/gcc/fortran/trans-openmp.c
@@ -53,9 +53,13 @@ gfc_omp_privatize_by_reference (const_tree decl)
if (TREE_CODE (type) == POINTER_TYPE)
{
/* Array POINTER/ALLOCATABLE have aggregate types, all user variables
- that have POINTER_TYPE type and don't have GFC_POINTER_TYPE_P
- set are supposed to be privatized by reference. */
- if (GFC_POINTER_TYPE_P (type))
+ that have POINTER_TYPE type and aren't scalar pointers, scalar
+ allocatables, Cray pointees or C pointers are supposed to be
+ privatized by reference. */
+ if (GFC_DECL_GET_SCALAR_POINTER (decl)
+ || GFC_DECL_GET_SCALAR_ALLOCATABLE (decl)
+ || GFC_DECL_CRAY_POINTEE (decl)
+ || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
return false;
if (!DECL_ARTIFICIAL (decl)
@@ -77,6 +81,19 @@ gfc_omp_privatize_by_reference (const_tree decl)
enum omp_clause_default_kind
gfc_omp_predetermined_sharing (tree decl)
{
+ /* Associate names preserve the association established during ASSOCIATE.
+ As they are implemented either as pointers to the selector or array
+ descriptor and shouldn't really change in the ASSOCIATE region,
+ this decl can be either shared or firstprivate. If it is a pointer,
+ use firstprivate, as it is cheaper that way, otherwise make it shared. */
+ if (GFC_DECL_ASSOCIATE_VAR_P (decl))
+ {
+ if (TREE_CODE (TREE_TYPE (decl)) == POINTER_TYPE)
+ return OMP_CLAUSE_DEFAULT_FIRSTPRIVATE;
+ else
+ return OMP_CLAUSE_DEFAULT_SHARED;
+ }
+
if (DECL_ARTIFICIAL (decl)
&& ! GFC_DECL_RESULT (decl)
&& ! (DECL_LANG_SPECIFIC (decl)
@@ -135,6 +152,41 @@ gfc_omp_report_decl (tree decl)
return decl;
}
+/* Return true if TYPE has any allocatable components. */
+
+static bool
+gfc_has_alloc_comps (tree type, tree decl)
+{
+ tree field, ftype;
+
+ if (POINTER_TYPE_P (type))
+ {
+ if (GFC_DECL_GET_SCALAR_ALLOCATABLE (decl))
+ type = TREE_TYPE (type);
+ else if (GFC_DECL_GET_SCALAR_POINTER (decl))
+ return false;
+ }
+
+ while (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type))
+ type = gfc_get_element_type (type);
+
+ if (TREE_CODE (type) != RECORD_TYPE)
+ return false;
+
+ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
+ {
+ ftype = TREE_TYPE (field);
+ if (GFC_DECL_GET_SCALAR_ALLOCATABLE (field))
+ return true;
+ if (GFC_DESCRIPTOR_TYPE_P (ftype)
+ && GFC_TYPE_ARRAY_AKIND (ftype) == GFC_ARRAY_ALLOCATABLE)
+ return true;
+ if (gfc_has_alloc_comps (ftype, field))
+ return true;
+ }
+ return false;
+}
+
/* Return true if DECL in private clause needs
OMP_CLAUSE_PRIVATE_OUTER_REF on the private clause. */
bool
@@ -146,68 +198,335 @@ gfc_omp_private_outer_ref (tree decl)
&& GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
return true;
+ if (GFC_DECL_GET_SCALAR_ALLOCATABLE (decl))
+ return true;
+
+ if (gfc_omp_privatize_by_reference (decl))
+ type = TREE_TYPE (type);
+
+ if (gfc_has_alloc_comps (type, decl))
+ return true;
+
return false;
}
+/* Callback for gfc_omp_unshare_expr. */
+
+static tree
+gfc_omp_unshare_expr_r (tree *tp, int *walk_subtrees, void *)
+{
+ tree t = *tp;
+ enum tree_code code = TREE_CODE (t);
+
+ /* Stop at types, decls, constants like copy_tree_r. */
+ if (TREE_CODE_CLASS (code) == tcc_type
+ || TREE_CODE_CLASS (code) == tcc_declaration
+ || TREE_CODE_CLASS (code) == tcc_constant
+ || code == BLOCK)
+ *walk_subtrees = 0;
+ else if (handled_component_p (t)
+ || TREE_CODE (t) == MEM_REF)
+ {
+ *tp = unshare_expr (t);
+ *walk_subtrees = 0;
+ }
+
+ return NULL_TREE;
+}
+
+/* Unshare in expr anything that the FE which normally doesn't
+ care much about tree sharing (because during gimplification
+ everything is unshared) could cause problems with tree sharing
+ at omp-low.c time. */
+
+static tree
+gfc_omp_unshare_expr (tree expr)
+{
+ walk_tree (&expr, gfc_omp_unshare_expr_r, NULL, NULL);
+ return expr;
+}
+
+enum walk_alloc_comps
+{
+ WALK_ALLOC_COMPS_DTOR,
+ WALK_ALLOC_COMPS_DEFAULT_CTOR,
+ WALK_ALLOC_COMPS_COPY_CTOR
+};
+
+/* Handle allocatable components in OpenMP clauses. */
+
+static tree
+gfc_walk_alloc_comps (tree decl, tree dest, tree var,
+ enum walk_alloc_comps kind)
+{
+ stmtblock_t block, tmpblock;
+ tree type = TREE_TYPE (decl), then_b, tem, field;
+ gfc_init_block (&block);
+
+ if (GFC_ARRAY_TYPE_P (type) || GFC_DESCRIPTOR_TYPE_P (type))
+ {
+ if (GFC_DESCRIPTOR_TYPE_P (type))
+ {
+ gfc_init_block (&tmpblock);
+ tem = gfc_full_array_size (&tmpblock, decl,
+ GFC_TYPE_ARRAY_RANK (type));
+ then_b = gfc_finish_block (&tmpblock);
+ gfc_add_expr_to_block (&block, gfc_omp_unshare_expr (then_b));
+ tem = gfc_omp_unshare_expr (tem);
+ tem = fold_build2_loc (input_location, MINUS_EXPR,
+ gfc_array_index_type, tem,
+ gfc_index_one_node);
+ }
+ else
+ {
+ if (!TYPE_DOMAIN (type)
+ || TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL_TREE
+ || TYPE_MIN_VALUE (TYPE_DOMAIN (type)) == error_mark_node
+ || TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == error_mark_node)
+ {
+ tem = fold_build2 (EXACT_DIV_EXPR, sizetype,
+ TYPE_SIZE_UNIT (type),
+ TYPE_SIZE_UNIT (TREE_TYPE (type)));
+ tem = size_binop (MINUS_EXPR, tem, size_one_node);
+ }
+ else
+ tem = array_type_nelts (type);
+ tem = fold_convert (gfc_array_index_type, tem);
+ }
+
+ tree nelems = gfc_evaluate_now (tem, &block);
+ tree index = gfc_create_var (gfc_array_index_type, "S");
+
+ gfc_init_block (&tmpblock);
+ tem = gfc_conv_array_data (decl);
+ tree declvar = build_fold_indirect_ref_loc (input_location, tem);
+ tree declvref = gfc_build_array_ref (declvar, index, NULL);
+ tree destvar, destvref = NULL_TREE;
+ if (dest)
+ {
+ tem = gfc_conv_array_data (dest);
+ destvar = build_fold_indirect_ref_loc (input_location, tem);
+ destvref = gfc_build_array_ref (destvar, index, NULL);
+ }
+ gfc_add_expr_to_block (&tmpblock,
+ gfc_walk_alloc_comps (declvref, destvref,
+ var, kind));
+
+ gfc_loopinfo loop;
+ gfc_init_loopinfo (&loop);
+ loop.dimen = 1;
+ loop.from[0] = gfc_index_zero_node;
+ loop.loopvar[0] = index;
+ loop.to[0] = nelems;
+ gfc_trans_scalarizing_loops (&loop, &tmpblock);
+ gfc_add_block_to_block (&block, &loop.pre);
+ return gfc_finish_block (&block);
+ }
+ else if (GFC_DECL_GET_SCALAR_ALLOCATABLE (var))
+ {
+ decl = build_fold_indirect_ref_loc (input_location, decl);
+ if (dest)
+ dest = build_fold_indirect_ref_loc (input_location, dest);
+ type = TREE_TYPE (decl);
+ }
+
+ gcc_assert (TREE_CODE (type) == RECORD_TYPE);
+ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
+ {
+ tree ftype = TREE_TYPE (field);
+ tree declf, destf = NULL_TREE;
+ bool has_alloc_comps = gfc_has_alloc_comps (ftype, field);
+ if ((!GFC_DESCRIPTOR_TYPE_P (ftype)
+ || GFC_TYPE_ARRAY_AKIND (ftype) != GFC_ARRAY_ALLOCATABLE)
+ && !GFC_DECL_GET_SCALAR_ALLOCATABLE (field)
+ && !has_alloc_comps)
+ continue;
+ declf = fold_build3_loc (input_location, COMPONENT_REF, ftype,
+ decl, field, NULL_TREE);
+ if (dest)
+ destf = fold_build3_loc (input_location, COMPONENT_REF, ftype,
+ dest, field, NULL_TREE);
+
+ tem = NULL_TREE;
+ switch (kind)
+ {
+ case WALK_ALLOC_COMPS_DTOR:
+ break;
+ case WALK_ALLOC_COMPS_DEFAULT_CTOR:
+ if (GFC_DESCRIPTOR_TYPE_P (ftype)
+ && GFC_TYPE_ARRAY_AKIND (ftype) == GFC_ARRAY_ALLOCATABLE)
+ {
+ gfc_add_modify (&block, unshare_expr (destf),
+ unshare_expr (declf));
+ tem = gfc_duplicate_allocatable_nocopy
+ (destf, declf, ftype,
+ GFC_TYPE_ARRAY_RANK (ftype));
+ }
+ else if (GFC_DECL_GET_SCALAR_ALLOCATABLE (field))
+ tem = gfc_duplicate_allocatable_nocopy (destf, declf, ftype, 0);
+ break;
+ case WALK_ALLOC_COMPS_COPY_CTOR:
+ if (GFC_DESCRIPTOR_TYPE_P (ftype)
+ && GFC_TYPE_ARRAY_AKIND (ftype) == GFC_ARRAY_ALLOCATABLE)
+ tem = gfc_duplicate_allocatable (destf, declf, ftype,
+ GFC_TYPE_ARRAY_RANK (ftype));
+ else if (GFC_DECL_GET_SCALAR_ALLOCATABLE (field))
+ tem = gfc_duplicate_allocatable (destf, declf, ftype, 0);
+ break;
+ }
+ if (tem)
+ gfc_add_expr_to_block (&block, gfc_omp_unshare_expr (tem));
+ if (has_alloc_comps)
+ {
+ gfc_init_block (&tmpblock);
+ gfc_add_expr_to_block (&tmpblock,
+ gfc_walk_alloc_comps (declf, destf,
+ field, kind));
+ then_b = gfc_finish_block (&tmpblock);
+ if (GFC_DESCRIPTOR_TYPE_P (ftype)
+ && GFC_TYPE_ARRAY_AKIND (ftype) == GFC_ARRAY_ALLOCATABLE)
+ tem = gfc_conv_descriptor_data_get (unshare_expr (declf));
+ else if (GFC_DECL_GET_SCALAR_ALLOCATABLE (field))
+ tem = unshare_expr (declf);
+ else
+ tem = NULL_TREE;
+ if (tem)
+ {
+ tem = fold_convert (pvoid_type_node, tem);
+ tem = fold_build2_loc (input_location, NE_EXPR,
+ boolean_type_node, tem,
+ null_pointer_node);
+ then_b = build3_loc (input_location, COND_EXPR, void_type_node,
+ tem, then_b,
+ build_empty_stmt (input_location));
+ }
+ gfc_add_expr_to_block (&block, then_b);
+ }
+ if (kind == WALK_ALLOC_COMPS_DTOR)
+ {
+ if (GFC_DESCRIPTOR_TYPE_P (ftype)
+ && GFC_TYPE_ARRAY_AKIND (ftype) == GFC_ARRAY_ALLOCATABLE)
+ {
+ tem = gfc_trans_dealloc_allocated (unshare_expr (declf),
+ false, NULL);
+ gfc_add_expr_to_block (&block, gfc_omp_unshare_expr (tem));
+ }
+ else if (GFC_DECL_GET_SCALAR_ALLOCATABLE (field))
+ {
+ tem = gfc_call_free (unshare_expr (declf));
+ gfc_add_expr_to_block (&block, gfc_omp_unshare_expr (tem));
+ }
+ }
+ }
+
+ return gfc_finish_block (&block);
+}
+
/* Return code to initialize DECL with its default constructor, or
NULL if there's nothing to do. */
tree
gfc_omp_clause_default_ctor (tree clause, tree decl, tree outer)
{
- tree type = TREE_TYPE (decl), rank, size, esize, ptr, cond, then_b, else_b;
+ tree type = TREE_TYPE (decl), size, ptr, cond, then_b, else_b;
stmtblock_t block, cond_block;
- if (! GFC_DESCRIPTOR_TYPE_P (type)
- || GFC_TYPE_ARRAY_AKIND (type) != GFC_ARRAY_ALLOCATABLE)
- return NULL;
+ gcc_assert (OMP_CLAUSE_CODE (clause) == OMP_CLAUSE_PRIVATE
+ || OMP_CLAUSE_CODE (clause) == OMP_CLAUSE_LASTPRIVATE
+ || OMP_CLAUSE_CODE (clause) == OMP_CLAUSE_LINEAR
+ || OMP_CLAUSE_CODE (clause) == OMP_CLAUSE_REDUCTION);
- if (OMP_CLAUSE_CODE (clause) == OMP_CLAUSE_REDUCTION)
- return NULL;
+ if ((! GFC_DESCRIPTOR_TYPE_P (type)
+ || GFC_TYPE_ARRAY_AKIND (type) != GFC_ARRAY_ALLOCATABLE)
+ && !GFC_DECL_GET_SCALAR_ALLOCATABLE (OMP_CLAUSE_DECL (clause)))
+ {
+ if (gfc_has_alloc_comps (type, OMP_CLAUSE_DECL (clause)))
+ {
+ gcc_assert (outer);
+ gfc_start_block (&block);
+ tree tem = gfc_walk_alloc_comps (outer, decl,
+ OMP_CLAUSE_DECL (clause),
+ WALK_ALLOC_COMPS_DEFAULT_CTOR);
+ gfc_add_expr_to_block (&block, tem);
+ return gfc_finish_block (&block);
+ }
+ return NULL_TREE;
+ }
- gcc_assert (outer != NULL);
- gcc_assert (OMP_CLAUSE_CODE (clause) == OMP_CLAUSE_PRIVATE
- || OMP_CLAUSE_CODE (clause) == OMP_CLAUSE_LASTPRIVATE);
+ gcc_assert (outer != NULL_TREE);
- /* Allocatable arrays in PRIVATE clauses need to be set to
+ /* Allocatable arrays and scalars in PRIVATE clauses need to be set to
"not currently allocated" allocation status if outer
array is "not currently allocated", otherwise should be allocated. */
gfc_start_block (&block);
gfc_init_block (&cond_block);
- gfc_add_modify (&cond_block, decl, outer);
- rank = gfc_rank_cst[GFC_TYPE_ARRAY_RANK (type) - 1];
- size = gfc_conv_descriptor_ubound_get (decl, rank);
- size = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
- size, gfc_conv_descriptor_lbound_get (decl, rank));
- size = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
- size, gfc_index_one_node);
- if (GFC_TYPE_ARRAY_RANK (type) > 1)
- size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
- size, gfc_conv_descriptor_stride_get (decl, rank));
- esize = fold_convert (gfc_array_index_type,
- TYPE_SIZE_UNIT (gfc_get_element_type (type)));
- size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
- size, esize);
- size = gfc_evaluate_now (fold_convert (size_type_node, size), &cond_block);
-
+ if (GFC_DESCRIPTOR_TYPE_P (type))
+ {
+ gfc_add_modify (&cond_block, decl, outer);
+ tree rank = gfc_rank_cst[GFC_TYPE_ARRAY_RANK (type) - 1];
+ size = gfc_conv_descriptor_ubound_get (decl, rank);
+ size = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
+ size,
+ gfc_conv_descriptor_lbound_get (decl, rank));
+ size = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
+ size, gfc_index_one_node);
+ if (GFC_TYPE_ARRAY_RANK (type) > 1)
+ size = fold_build2_loc (input_location, MULT_EXPR,
+ gfc_array_index_type, size,
+ gfc_conv_descriptor_stride_get (decl, rank));
+ tree esize = fold_convert (gfc_array_index_type,
+ TYPE_SIZE_UNIT (gfc_get_element_type (type)));
+ size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
+ size, esize);
+ size = unshare_expr (size);
+ size = gfc_evaluate_now (fold_convert (size_type_node, size),
+ &cond_block);
+ }
+ else
+ size = fold_convert (size_type_node, TYPE_SIZE_UNIT (TREE_TYPE (type)));
ptr = gfc_create_var (pvoid_type_node, NULL);
gfc_allocate_using_malloc (&cond_block, ptr, size, NULL_TREE);
- gfc_conv_descriptor_data_set (&cond_block, decl, ptr);
-
+ if (GFC_DESCRIPTOR_TYPE_P (type))
+ gfc_conv_descriptor_data_set (&cond_block, unshare_expr (decl), ptr);
+ else
+ gfc_add_modify (&cond_block, unshare_expr (decl),
+ fold_convert (TREE_TYPE (decl), ptr));
+ if (gfc_has_alloc_comps (type, OMP_CLAUSE_DECL (clause)))
+ {
+ tree tem = gfc_walk_alloc_comps (outer, decl,
+ OMP_CLAUSE_DECL (clause),
+ WALK_ALLOC_COMPS_DEFAULT_CTOR);
+ gfc_add_expr_to_block (&cond_block, tem);
+ }
then_b = gfc_finish_block (&cond_block);
- gfc_init_block (&cond_block);
- gfc_conv_descriptor_data_set (&cond_block, decl, null_pointer_node);
- else_b = gfc_finish_block (&cond_block);
-
- cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
- fold_convert (pvoid_type_node,
- gfc_conv_descriptor_data_get (outer)),
- null_pointer_node);
- gfc_add_expr_to_block (&block, build3_loc (input_location, COND_EXPR,
- void_type_node, cond, then_b, else_b));
+ /* Reduction clause requires allocated ALLOCATABLE. */
+ if (OMP_CLAUSE_CODE (clause) != OMP_CLAUSE_REDUCTION)
+ {
+ gfc_init_block (&cond_block);
+ if (GFC_DESCRIPTOR_TYPE_P (type))
+ gfc_conv_descriptor_data_set (&cond_block, unshare_expr (decl),
+ null_pointer_node);
+ else
+ gfc_add_modify (&cond_block, unshare_expr (decl),
+ build_zero_cst (TREE_TYPE (decl)));
+ else_b = gfc_finish_block (&cond_block);
+
+ tree tem = fold_convert (pvoid_type_node,
+ GFC_DESCRIPTOR_TYPE_P (type)
+ ? gfc_conv_descriptor_data_get (outer) : outer);
+ tem = unshare_expr (tem);
+ cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
+ tem, null_pointer_node);
+ gfc_add_expr_to_block (&block,
+ build3_loc (input_location, COND_EXPR,
+ void_type_node, cond, then_b,
+ else_b));
+ }
+ else
+ gfc_add_expr_to_block (&block, then_b);
return gfc_finish_block (&block);
}
@@ -217,15 +536,29 @@ gfc_omp_clause_default_ctor (tree clause, tree decl, tree outer)
tree
gfc_omp_clause_copy_ctor (tree clause, tree dest, tree src)
{
- tree type = TREE_TYPE (dest), ptr, size, esize, rank, call;
+ tree type = TREE_TYPE (dest), ptr, size, call;
tree cond, then_b, else_b;
stmtblock_t block, cond_block;
- if (! GFC_DESCRIPTOR_TYPE_P (type)
- || GFC_TYPE_ARRAY_AKIND (type) != GFC_ARRAY_ALLOCATABLE)
- return build2_v (MODIFY_EXPR, dest, src);
+ gcc_assert (OMP_CLAUSE_CODE (clause) == OMP_CLAUSE_FIRSTPRIVATE
+ || OMP_CLAUSE_CODE (clause) == OMP_CLAUSE_LINEAR);
- gcc_assert (OMP_CLAUSE_CODE (clause) == OMP_CLAUSE_FIRSTPRIVATE);
+ if ((! GFC_DESCRIPTOR_TYPE_P (type)
+ || GFC_TYPE_ARRAY_AKIND (type) != GFC_ARRAY_ALLOCATABLE)
+ && !GFC_DECL_GET_SCALAR_ALLOCATABLE (OMP_CLAUSE_DECL (clause)))
+ {
+ if (gfc_has_alloc_comps (type, OMP_CLAUSE_DECL (clause)))
+ {
+ gfc_start_block (&block);
+ gfc_add_modify (&block, dest, src);
+ tree tem = gfc_walk_alloc_comps (src, dest, OMP_CLAUSE_DECL (clause),
+ WALK_ALLOC_COMPS_COPY_CTOR);
+ gfc_add_expr_to_block (&block, tem);
+ return gfc_finish_block (&block);
+ }
+ else
+ return build2_v (MODIFY_EXPR, dest, src);
+ }
/* Allocatable arrays in FIRSTPRIVATE clauses need to be allocated
and copied from SRC. */
@@ -234,86 +567,389 @@ gfc_omp_clause_copy_ctor (tree clause, tree dest, tree src)
gfc_init_block (&cond_block);
gfc_add_modify (&cond_block, dest, src);
- rank = gfc_rank_cst[GFC_TYPE_ARRAY_RANK (type) - 1];
- size = gfc_conv_descriptor_ubound_get (dest, rank);
- size = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
- size, gfc_conv_descriptor_lbound_get (dest, rank));
- size = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
- size, gfc_index_one_node);
- if (GFC_TYPE_ARRAY_RANK (type) > 1)
- size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
- size, gfc_conv_descriptor_stride_get (dest, rank));
- esize = fold_convert (gfc_array_index_type,
- TYPE_SIZE_UNIT (gfc_get_element_type (type)));
- size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
- size, esize);
- size = gfc_evaluate_now (fold_convert (size_type_node, size), &cond_block);
-
+ if (GFC_DESCRIPTOR_TYPE_P (type))
+ {
+ tree rank = gfc_rank_cst[GFC_TYPE_ARRAY_RANK (type) - 1];
+ size = gfc_conv_descriptor_ubound_get (dest, rank);
+ size = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
+ size,
+ gfc_conv_descriptor_lbound_get (dest, rank));
+ size = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
+ size, gfc_index_one_node);
+ if (GFC_TYPE_ARRAY_RANK (type) > 1)
+ size = fold_build2_loc (input_location, MULT_EXPR,
+ gfc_array_index_type, size,
+ gfc_conv_descriptor_stride_get (dest, rank));
+ tree esize = fold_convert (gfc_array_index_type,
+ TYPE_SIZE_UNIT (gfc_get_element_type (type)));
+ size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
+ size, esize);
+ size = unshare_expr (size);
+ size = gfc_evaluate_now (fold_convert (size_type_node, size),
+ &cond_block);
+ }
+ else
+ size = fold_convert (size_type_node, TYPE_SIZE_UNIT (TREE_TYPE (type)));
ptr = gfc_create_var (pvoid_type_node, NULL);
gfc_allocate_using_malloc (&cond_block, ptr, size, NULL_TREE);
- gfc_conv_descriptor_data_set (&cond_block, dest, ptr);
+ if (GFC_DESCRIPTOR_TYPE_P (type))
+ gfc_conv_descriptor_data_set (&cond_block, unshare_expr (dest), ptr);
+ else
+ gfc_add_modify (&cond_block, unshare_expr (dest),
+ fold_convert (TREE_TYPE (dest), ptr));
+ tree srcptr = GFC_DESCRIPTOR_TYPE_P (type)
+ ? gfc_conv_descriptor_data_get (src) : src;
+ srcptr = unshare_expr (srcptr);
+ srcptr = fold_convert (pvoid_type_node, srcptr);
call = build_call_expr_loc (input_location,
- builtin_decl_explicit (BUILT_IN_MEMCPY),
- 3, ptr,
- fold_convert (pvoid_type_node,
- gfc_conv_descriptor_data_get (src)),
- size);
+ builtin_decl_explicit (BUILT_IN_MEMCPY), 3, ptr,
+ srcptr, size);
gfc_add_expr_to_block (&cond_block, fold_convert (void_type_node, call));
+ if (gfc_has_alloc_comps (type, OMP_CLAUSE_DECL (clause)))
+ {
+ tree tem = gfc_walk_alloc_comps (src, dest,
+ OMP_CLAUSE_DECL (clause),
+ WALK_ALLOC_COMPS_COPY_CTOR);
+ gfc_add_expr_to_block (&cond_block, tem);
+ }
then_b = gfc_finish_block (&cond_block);
gfc_init_block (&cond_block);
- gfc_conv_descriptor_data_set (&cond_block, dest, null_pointer_node);
+ if (GFC_DESCRIPTOR_TYPE_P (type))
+ gfc_conv_descriptor_data_set (&cond_block, unshare_expr (dest),
+ null_pointer_node);
+ else
+ gfc_add_modify (&cond_block, unshare_expr (dest),
+ build_zero_cst (TREE_TYPE (dest)));
else_b = gfc_finish_block (&cond_block);
cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
- fold_convert (pvoid_type_node,
- gfc_conv_descriptor_data_get (src)),
- null_pointer_node);
- gfc_add_expr_to_block (&block, build3_loc (input_location, COND_EXPR,
- void_type_node, cond, then_b, else_b));
+ unshare_expr (srcptr), null_pointer_node);
+ gfc_add_expr_to_block (&block,
+ build3_loc (input_location, COND_EXPR,
+ void_type_node, cond, then_b, else_b));
return gfc_finish_block (&block);
}
-/* Similarly, except use an assignment operator instead. */
+/* Similarly, except use an intrinsic or pointer assignment operator
+ instead. */
tree
-gfc_omp_clause_assign_op (tree clause ATTRIBUTE_UNUSED, tree dest, tree src)
+gfc_omp_clause_assign_op (tree clause, tree dest, tree src)
{
- tree type = TREE_TYPE (dest), rank, size, esize, call;
- stmtblock_t block;
+ tree type = TREE_TYPE (dest), ptr, size, call, nonalloc;
+ tree cond, then_b, else_b;
+ stmtblock_t block, cond_block, cond_block2, inner_block;
- if (! GFC_DESCRIPTOR_TYPE_P (type)
- || GFC_TYPE_ARRAY_AKIND (type) != GFC_ARRAY_ALLOCATABLE)
- return build2_v (MODIFY_EXPR, dest, src);
+ if ((! GFC_DESCRIPTOR_TYPE_P (type)
+ || GFC_TYPE_ARRAY_AKIND (type) != GFC_ARRAY_ALLOCATABLE)
+ && !GFC_DECL_GET_SCALAR_ALLOCATABLE (OMP_CLAUSE_DECL (clause)))
+ {
+ if (gfc_has_alloc_comps (type, OMP_CLAUSE_DECL (clause)))
+ {
+ gfc_start_block (&block);
+ /* First dealloc any allocatable components in DEST. */
+ tree tem = gfc_walk_alloc_comps (dest, NULL_TREE,
+ OMP_CLAUSE_DECL (clause),
+ WALK_ALLOC_COMPS_DTOR);
+ gfc_add_expr_to_block (&block, tem);
+ /* Then copy over toplevel data. */
+ gfc_add_modify (&block, dest, src);
+ /* Finally allocate any allocatable components and copy. */
+ tem = gfc_walk_alloc_comps (src, dest, OMP_CLAUSE_DECL (clause),
+ WALK_ALLOC_COMPS_COPY_CTOR);
+ gfc_add_expr_to_block (&block, tem);
+ return gfc_finish_block (&block);
+ }
+ else
+ return build2_v (MODIFY_EXPR, dest, src);
+ }
- /* Handle copying allocatable arrays. */
gfc_start_block (&block);
- rank = gfc_rank_cst[GFC_TYPE_ARRAY_RANK (type) - 1];
- size = gfc_conv_descriptor_ubound_get (dest, rank);
- size = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
- size, gfc_conv_descriptor_lbound_get (dest, rank));
- size = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
- size, gfc_index_one_node);
- if (GFC_TYPE_ARRAY_RANK (type) > 1)
- size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
- size, gfc_conv_descriptor_stride_get (dest, rank));
- esize = fold_convert (gfc_array_index_type,
- TYPE_SIZE_UNIT (gfc_get_element_type (type)));
- size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
- size, esize);
- size = gfc_evaluate_now (fold_convert (size_type_node, size), &block);
+ if (gfc_has_alloc_comps (type, OMP_CLAUSE_DECL (clause)))
+ {
+ then_b = gfc_walk_alloc_comps (dest, NULL_TREE, OMP_CLAUSE_DECL (clause),
+ WALK_ALLOC_COMPS_DTOR);
+ tree tem = fold_convert (pvoid_type_node,
+ GFC_DESCRIPTOR_TYPE_P (type)
+ ? gfc_conv_descriptor_data_get (dest) : dest);
+ tem = unshare_expr (tem);
+ cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
+ tem, null_pointer_node);
+ tem = build3_loc (input_location, COND_EXPR, void_type_node, cond,
+ then_b, build_empty_stmt (input_location));
+ gfc_add_expr_to_block (&block, tem);
+ }
+
+ gfc_init_block (&cond_block);
+
+ if (GFC_DESCRIPTOR_TYPE_P (type))
+ {
+ tree rank = gfc_rank_cst[GFC_TYPE_ARRAY_RANK (type) - 1];
+ size = gfc_conv_descriptor_ubound_get (src, rank);
+ size = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
+ size,
+ gfc_conv_descriptor_lbound_get (src, rank));
+ size = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
+ size, gfc_index_one_node);
+ if (GFC_TYPE_ARRAY_RANK (type) > 1)
+ size = fold_build2_loc (input_location, MULT_EXPR,
+ gfc_array_index_type, size,
+ gfc_conv_descriptor_stride_get (src, rank));
+ tree esize = fold_convert (gfc_array_index_type,
+ TYPE_SIZE_UNIT (gfc_get_element_type (type)));
+ size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
+ size, esize);
+ size = unshare_expr (size);
+ size = gfc_evaluate_now (fold_convert (size_type_node, size),
+ &cond_block);
+ }
+ else
+ size = fold_convert (size_type_node, TYPE_SIZE_UNIT (TREE_TYPE (type)));
+ ptr = gfc_create_var (pvoid_type_node, NULL);
+
+ tree destptr = GFC_DESCRIPTOR_TYPE_P (type)
+ ? gfc_conv_descriptor_data_get (dest) : dest;
+ destptr = unshare_expr (destptr);
+ destptr = fold_convert (pvoid_type_node, destptr);
+ gfc_add_modify (&cond_block, ptr, destptr);
+
+ nonalloc = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
+ destptr, null_pointer_node);
+ cond = nonalloc;
+ if (GFC_DESCRIPTOR_TYPE_P (type))
+ {
+ int i;
+ for (i = 0; i < GFC_TYPE_ARRAY_RANK (type); i++)
+ {
+ tree rank = gfc_rank_cst[i];
+ tree tem = gfc_conv_descriptor_ubound_get (src, rank);
+ tem = fold_build2_loc (input_location, MINUS_EXPR,
+ gfc_array_index_type, tem,
+ gfc_conv_descriptor_lbound_get (src, rank));
+ tem = fold_build2_loc (input_location, PLUS_EXPR,
+ gfc_array_index_type, tem,
+ gfc_conv_descriptor_lbound_get (dest, rank));
+ tem = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
+ tem, gfc_conv_descriptor_ubound_get (dest,
+ rank));
+ cond = fold_build2_loc (input_location, TRUTH_ORIF_EXPR,
+ boolean_type_node, cond, tem);
+ }
+ }
+
+ gfc_init_block (&cond_block2);
+
+ if (GFC_DESCRIPTOR_TYPE_P (type))
+ {
+ gfc_init_block (&inner_block);
+ gfc_allocate_using_malloc (&inner_block, ptr, size, NULL_TREE);
+ then_b = gfc_finish_block (&inner_block);
+
+ gfc_init_block (&inner_block);
+ gfc_add_modify (&inner_block, ptr,
+ gfc_call_realloc (&inner_block, ptr, size));
+ else_b = gfc_finish_block (&inner_block);
+
+ gfc_add_expr_to_block (&cond_block2,
+ build3_loc (input_location, COND_EXPR,
+ void_type_node,
+ unshare_expr (nonalloc),
+ then_b, else_b));
+ gfc_add_modify (&cond_block2, dest, src);
+ gfc_conv_descriptor_data_set (&cond_block2, unshare_expr (dest), ptr);
+ }
+ else
+ {
+ gfc_allocate_using_malloc (&cond_block2, ptr, size, NULL_TREE);
+ gfc_add_modify (&cond_block2, unshare_expr (dest),
+ fold_convert (type, ptr));
+ }
+ then_b = gfc_finish_block (&cond_block2);
+ else_b = build_empty_stmt (input_location);
+
+ gfc_add_expr_to_block (&cond_block,
+ build3_loc (input_location, COND_EXPR,
+ void_type_node, unshare_expr (cond),
+ then_b, else_b));
+
+ tree srcptr = GFC_DESCRIPTOR_TYPE_P (type)
+ ? gfc_conv_descriptor_data_get (src) : src;
+ srcptr = unshare_expr (srcptr);
+ srcptr = fold_convert (pvoid_type_node, srcptr);
call = build_call_expr_loc (input_location,
- builtin_decl_explicit (BUILT_IN_MEMCPY), 3,
- fold_convert (pvoid_type_node,
- gfc_conv_descriptor_data_get (dest)),
- fold_convert (pvoid_type_node,
- gfc_conv_descriptor_data_get (src)),
- size);
- gfc_add_expr_to_block (&block, fold_convert (void_type_node, call));
+ builtin_decl_explicit (BUILT_IN_MEMCPY), 3, ptr,
+ srcptr, size);
+ gfc_add_expr_to_block (&cond_block, fold_convert (void_type_node, call));
+ if (gfc_has_alloc_comps (type, OMP_CLAUSE_DECL (clause)))
+ {
+ tree tem = gfc_walk_alloc_comps (src, dest,
+ OMP_CLAUSE_DECL (clause),
+ WALK_ALLOC_COMPS_COPY_CTOR);
+ gfc_add_expr_to_block (&cond_block, tem);
+ }
+ then_b = gfc_finish_block (&cond_block);
+
+ if (OMP_CLAUSE_CODE (clause) == OMP_CLAUSE_COPYIN)
+ {
+ gfc_init_block (&cond_block);
+ if (GFC_DESCRIPTOR_TYPE_P (type))
+ gfc_add_expr_to_block (&cond_block,
+ gfc_trans_dealloc_allocated (unshare_expr (dest),
+ false, NULL));
+ else
+ {
+ destptr = gfc_evaluate_now (destptr, &cond_block);
+ gfc_add_expr_to_block (&cond_block, gfc_call_free (destptr));
+ gfc_add_modify (&cond_block, unshare_expr (dest),
+ build_zero_cst (TREE_TYPE (dest)));
+ }
+ else_b = gfc_finish_block (&cond_block);
+
+ cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
+ unshare_expr (srcptr), null_pointer_node);
+ gfc_add_expr_to_block (&block,
+ build3_loc (input_location, COND_EXPR,
+ void_type_node, cond,
+ then_b, else_b));
+ }
+ else
+ gfc_add_expr_to_block (&block, then_b);
+
+ return gfc_finish_block (&block);
+}
+
+static void
+gfc_omp_linear_clause_add_loop (stmtblock_t *block, tree dest, tree src,
+ tree add, tree nelems)
+{
+ stmtblock_t tmpblock;
+ tree desta, srca, index = gfc_create_var (gfc_array_index_type, "S");
+ nelems = gfc_evaluate_now (nelems, block);
+
+ gfc_init_block (&tmpblock);
+ if (TREE_CODE (TREE_TYPE (dest)) == ARRAY_TYPE)
+ {
+ desta = gfc_build_array_ref (dest, index, NULL);
+ srca = gfc_build_array_ref (src, index, NULL);
+ }
+ else
+ {
+ gcc_assert (POINTER_TYPE_P (TREE_TYPE (dest)));
+ tree idx = fold_build2 (MULT_EXPR, sizetype,
+ fold_convert (sizetype, index),
+ TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (dest))));
+ desta = build_fold_indirect_ref (fold_build2 (POINTER_PLUS_EXPR,
+ TREE_TYPE (dest), dest,
+ idx));
+ srca = build_fold_indirect_ref (fold_build2 (POINTER_PLUS_EXPR,
+ TREE_TYPE (src), src,
+ idx));
+ }
+ gfc_add_modify (&tmpblock, desta,
+ fold_build2 (PLUS_EXPR, TREE_TYPE (desta),
+ srca, add));
+
+ gfc_loopinfo loop;
+ gfc_init_loopinfo (&loop);
+ loop.dimen = 1;
+ loop.from[0] = gfc_index_zero_node;
+ loop.loopvar[0] = index;
+ loop.to[0] = nelems;
+ gfc_trans_scalarizing_loops (&loop, &tmpblock);
+ gfc_add_block_to_block (block, &loop.pre);
+}
+
+/* Build and return code for a constructor of DEST that initializes
+ it to SRC plus ADD (ADD is scalar integer). */
+
+tree
+gfc_omp_clause_linear_ctor (tree clause, tree dest, tree src, tree add)
+{
+ tree type = TREE_TYPE (dest), ptr, size, nelems = NULL_TREE;
+ stmtblock_t block;
+
+ gcc_assert (OMP_CLAUSE_CODE (clause) == OMP_CLAUSE_LINEAR);
+ gfc_start_block (&block);
+ add = gfc_evaluate_now (add, &block);
+
+ if ((! GFC_DESCRIPTOR_TYPE_P (type)
+ || GFC_TYPE_ARRAY_AKIND (type) != GFC_ARRAY_ALLOCATABLE)
+ && !GFC_DECL_GET_SCALAR_ALLOCATABLE (OMP_CLAUSE_DECL (clause)))
+ {
+ gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
+ if (!TYPE_DOMAIN (type)
+ || TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL_TREE
+ || TYPE_MIN_VALUE (TYPE_DOMAIN (type)) == error_mark_node
+ || TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == error_mark_node)
+ {
+ nelems = fold_build2 (EXACT_DIV_EXPR, sizetype,
+ TYPE_SIZE_UNIT (type),
+ TYPE_SIZE_UNIT (TREE_TYPE (type)));
+ nelems = size_binop (MINUS_EXPR, nelems, size_one_node);
+ }
+ else
+ nelems = array_type_nelts (type);
+ nelems = fold_convert (gfc_array_index_type, nelems);
+
+ gfc_omp_linear_clause_add_loop (&block, dest, src, add, nelems);
+ return gfc_finish_block (&block);
+ }
+
+ /* Allocatable arrays in LINEAR clauses need to be allocated
+ and copied from SRC. */
+ gfc_add_modify (&block, dest, src);
+ if (GFC_DESCRIPTOR_TYPE_P (type))
+ {
+ tree rank = gfc_rank_cst[GFC_TYPE_ARRAY_RANK (type) - 1];
+ size = gfc_conv_descriptor_ubound_get (dest, rank);
+ size = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
+ size,
+ gfc_conv_descriptor_lbound_get (dest, rank));
+ size = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
+ size, gfc_index_one_node);
+ if (GFC_TYPE_ARRAY_RANK (type) > 1)
+ size = fold_build2_loc (input_location, MULT_EXPR,
+ gfc_array_index_type, size,
+ gfc_conv_descriptor_stride_get (dest, rank));
+ tree esize = fold_convert (gfc_array_index_type,
+ TYPE_SIZE_UNIT (gfc_get_element_type (type)));
+ nelems = gfc_evaluate_now (unshare_expr (size), &block);
+ size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
+ nelems, unshare_expr (esize));
+ size = gfc_evaluate_now (fold_convert (size_type_node, size),
+ &block);
+ nelems = fold_build2_loc (input_location, MINUS_EXPR,
+ gfc_array_index_type, nelems,
+ gfc_index_one_node);
+ }
+ else
+ size = fold_convert (size_type_node, TYPE_SIZE_UNIT (TREE_TYPE (type)));
+ ptr = gfc_create_var (pvoid_type_node, NULL);
+ gfc_allocate_using_malloc (&block, ptr, size, NULL_TREE);
+ if (GFC_DESCRIPTOR_TYPE_P (type))
+ {
+ gfc_conv_descriptor_data_set (&block, unshare_expr (dest), ptr);
+ tree etype = gfc_get_element_type (type);
+ ptr = fold_convert (build_pointer_type (etype), ptr);
+ tree srcptr = gfc_conv_descriptor_data_get (unshare_expr (src));
+ srcptr = fold_convert (build_pointer_type (etype), srcptr);
+ gfc_omp_linear_clause_add_loop (&block, ptr, srcptr, add, nelems);
+ }
+ else
+ {
+ gfc_add_modify (&block, unshare_expr (dest),
+ fold_convert (TREE_TYPE (dest), ptr));
+ ptr = fold_convert (TREE_TYPE (dest), ptr);
+ tree dstm = build_fold_indirect_ref (ptr);
+ tree srcm = build_fold_indirect_ref (unshare_expr (src));
+ gfc_add_modify (&block, dstm,
+ fold_build2 (PLUS_EXPR, TREE_TYPE (add), srcm, add));
+ }
return gfc_finish_block (&block);
}
@@ -321,20 +957,161 @@ gfc_omp_clause_assign_op (tree clause ATTRIBUTE_UNUSED, tree dest, tree src)
to be done. */
tree
-gfc_omp_clause_dtor (tree clause ATTRIBUTE_UNUSED, tree decl)
+gfc_omp_clause_dtor (tree clause, tree decl)
{
- tree type = TREE_TYPE (decl);
+ tree type = TREE_TYPE (decl), tem;
+
+ if ((! GFC_DESCRIPTOR_TYPE_P (type)
+ || GFC_TYPE_ARRAY_AKIND (type) != GFC_ARRAY_ALLOCATABLE)
+ && !GFC_DECL_GET_SCALAR_ALLOCATABLE (OMP_CLAUSE_DECL (clause)))
+ {
+ if (gfc_has_alloc_comps (type, OMP_CLAUSE_DECL (clause)))
+ return gfc_walk_alloc_comps (decl, NULL_TREE,
+ OMP_CLAUSE_DECL (clause),
+ WALK_ALLOC_COMPS_DTOR);
+ return NULL_TREE;
+ }
- if (! GFC_DESCRIPTOR_TYPE_P (type)
- || GFC_TYPE_ARRAY_AKIND (type) != GFC_ARRAY_ALLOCATABLE)
- return NULL;
+ if (GFC_DESCRIPTOR_TYPE_P (type))
+ /* Allocatable arrays in FIRSTPRIVATE/LASTPRIVATE etc. clauses need
+ to be deallocated if they were allocated. */
+ tem = gfc_trans_dealloc_allocated (decl, false, NULL);
+ else
+ tem = gfc_call_free (decl);
+ tem = gfc_omp_unshare_expr (tem);
- if (OMP_CLAUSE_CODE (clause) == OMP_CLAUSE_REDUCTION)
- return NULL;
+ if (gfc_has_alloc_comps (type, OMP_CLAUSE_DECL (clause)))
+ {
+ stmtblock_t block;
+ tree then_b;
+
+ gfc_init_block (&block);
+ gfc_add_expr_to_block (&block,
+ gfc_walk_alloc_comps (decl, NULL_TREE,
+ OMP_CLAUSE_DECL (clause),
+ WALK_ALLOC_COMPS_DTOR));
+ gfc_add_expr_to_block (&block, tem);
+ then_b = gfc_finish_block (&block);
+
+ tem = fold_convert (pvoid_type_node,
+ GFC_DESCRIPTOR_TYPE_P (type)
+ ? gfc_conv_descriptor_data_get (decl) : decl);
+ tem = unshare_expr (tem);
+ tree cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
+ tem, null_pointer_node);
+ tem = build3_loc (input_location, COND_EXPR, void_type_node, cond,
+ then_b, build_empty_stmt (input_location));
+ }
+ return tem;
+}
- /* Allocatable arrays in FIRSTPRIVATE/LASTPRIVATE etc. clauses need
- to be deallocated if they were allocated. */
- return gfc_trans_dealloc_allocated (decl, false, NULL);
+
+void
+gfc_omp_finish_clause (tree c, gimple_seq *pre_p)
+{
+ if (OMP_CLAUSE_CODE (c) != OMP_CLAUSE_MAP)
+ return;
+
+ tree decl = OMP_CLAUSE_DECL (c);
+ tree c2 = NULL_TREE, c3 = NULL_TREE, c4 = NULL_TREE;
+ if (POINTER_TYPE_P (TREE_TYPE (decl)))
+ {
+ if (!gfc_omp_privatize_by_reference (decl)
+ && !GFC_DECL_GET_SCALAR_POINTER (decl)
+ && !GFC_DECL_GET_SCALAR_ALLOCATABLE (decl)
+ && !GFC_DECL_CRAY_POINTEE (decl)
+ && !GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
+ return;
+ c4 = build_omp_clause (OMP_CLAUSE_LOCATION (c), OMP_CLAUSE_MAP);
+ OMP_CLAUSE_MAP_KIND (c4) = OMP_CLAUSE_MAP_POINTER;
+ OMP_CLAUSE_DECL (c4) = decl;
+ OMP_CLAUSE_SIZE (c4) = size_int (0);
+ decl = build_fold_indirect_ref (decl);
+ OMP_CLAUSE_DECL (c) = decl;
+ OMP_CLAUSE_SIZE (c) = NULL_TREE;
+ }
+ if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (decl)))
+ {
+ stmtblock_t block;
+ gfc_start_block (&block);
+ tree type = TREE_TYPE (decl);
+ tree ptr = gfc_conv_descriptor_data_get (decl);
+ ptr = fold_convert (build_pointer_type (char_type_node), ptr);
+ ptr = build_fold_indirect_ref (ptr);
+ OMP_CLAUSE_DECL (c) = ptr;
+ c2 = build_omp_clause (input_location, OMP_CLAUSE_MAP);
+ OMP_CLAUSE_MAP_KIND (c2) = OMP_CLAUSE_MAP_TO_PSET;
+ OMP_CLAUSE_DECL (c2) = decl;
+ OMP_CLAUSE_SIZE (c2) = TYPE_SIZE_UNIT (type);
+ c3 = build_omp_clause (OMP_CLAUSE_LOCATION (c), OMP_CLAUSE_MAP);
+ OMP_CLAUSE_MAP_KIND (c3) = OMP_CLAUSE_MAP_POINTER;
+ OMP_CLAUSE_DECL (c3) = gfc_conv_descriptor_data_get (decl);
+ OMP_CLAUSE_SIZE (c3) = size_int (0);
+ tree size = create_tmp_var (gfc_array_index_type, NULL);
+ tree elemsz = TYPE_SIZE_UNIT (gfc_get_element_type (type));
+ elemsz = fold_convert (gfc_array_index_type, elemsz);
+ if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
+ || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
+ {
+ stmtblock_t cond_block;
+ tree tem, then_b, else_b, zero, cond;
+
+ gfc_init_block (&cond_block);
+ tem = gfc_full_array_size (&cond_block, decl,
+ GFC_TYPE_ARRAY_RANK (type));
+ gfc_add_modify (&cond_block, size, tem);
+ gfc_add_modify (&cond_block, size,
+ fold_build2 (MULT_EXPR, gfc_array_index_type,
+ size, elemsz));
+ then_b = gfc_finish_block (&cond_block);
+ gfc_init_block (&cond_block);
+ zero = build_int_cst (gfc_array_index_type, 0);
+ gfc_add_modify (&cond_block, size, zero);
+ else_b = gfc_finish_block (&cond_block);
+ tem = gfc_conv_descriptor_data_get (decl);
+ tem = fold_convert (pvoid_type_node, tem);
+ cond = fold_build2_loc (input_location, NE_EXPR,
+ boolean_type_node, tem, null_pointer_node);
+ gfc_add_expr_to_block (&block, build3_loc (input_location, COND_EXPR,
+ void_type_node, cond,
+ then_b, else_b));
+ }
+ else
+ {
+ gfc_add_modify (&block, size,
+ gfc_full_array_size (&block, decl,
+ GFC_TYPE_ARRAY_RANK (type)));
+ gfc_add_modify (&block, size,
+ fold_build2 (MULT_EXPR, gfc_array_index_type,
+ size, elemsz));
+ }
+ OMP_CLAUSE_SIZE (c) = size;
+ tree stmt = gfc_finish_block (&block);
+ gimplify_and_add (stmt, pre_p);
+ }
+ tree last = c;
+ if (OMP_CLAUSE_SIZE (c) == NULL_TREE)
+ OMP_CLAUSE_SIZE (c)
+ = DECL_P (decl) ? DECL_SIZE_UNIT (decl)
+ : TYPE_SIZE_UNIT (TREE_TYPE (decl));
+ if (c2)
+ {
+ OMP_CLAUSE_CHAIN (c2) = OMP_CLAUSE_CHAIN (last);
+ OMP_CLAUSE_CHAIN (last) = c2;
+ last = c2;
+ }
+ if (c3)
+ {
+ OMP_CLAUSE_CHAIN (c3) = OMP_CLAUSE_CHAIN (last);
+ OMP_CLAUSE_CHAIN (last) = c3;
+ last = c3;
+ }
+ if (c4)
+ {
+ OMP_CLAUSE_CHAIN (c4) = OMP_CLAUSE_CHAIN (last);
+ OMP_CLAUSE_CHAIN (last) = c4;
+ last = c4;
+ }
}
@@ -427,8 +1204,33 @@ gfc_trans_add_clause (tree node, tree tail)
}
static tree
-gfc_trans_omp_variable (gfc_symbol *sym)
+gfc_trans_omp_variable (gfc_symbol *sym, bool declare_simd)
{
+ if (declare_simd)
+ {
+ int cnt = 0;
+ gfc_symbol *proc_sym;
+ gfc_formal_arglist *f;
+
+ gcc_assert (sym->attr.dummy);
+ proc_sym = sym->ns->proc_name;
+ if (proc_sym->attr.entry_master)
+ ++cnt;
+ if (gfc_return_by_reference (proc_sym))
+ {
+ ++cnt;
+ if (proc_sym->ts.type == BT_CHARACTER)
+ ++cnt;
+ }
+ for (f = gfc_sym_get_dummy_args (proc_sym); f; f = f->next)
+ if (f->sym == sym)
+ break;
+ else if (f->sym)
+ ++cnt;
+ gcc_assert (f);
+ return build_int_cst (integer_type_node, cnt);
+ }
+
tree t = gfc_get_symbol_decl (sym);
tree parent_decl;
int parent_flag;
@@ -442,7 +1244,8 @@ gfc_trans_omp_variable (gfc_symbol *sym)
entry_master = sym->attr.result
&& sym->ns->proc_name->attr.entry_master
&& !gfc_return_by_reference (sym->ns->proc_name);
- parent_decl = DECL_CONTEXT (current_function_decl);
+ parent_decl = current_function_decl
+ ? DECL_CONTEXT (current_function_decl) : NULL_TREE;
if ((t == parent_decl && return_value)
|| (sym->ns && sym->ns->proc_name
@@ -481,13 +1284,14 @@ gfc_trans_omp_variable (gfc_symbol *sym)
}
static tree
-gfc_trans_omp_variable_list (enum omp_clause_code code, gfc_namelist *namelist,
- tree list)
+gfc_trans_omp_variable_list (enum omp_clause_code code,
+ gfc_omp_namelist *namelist, tree list,
+ bool declare_simd)
{
for (; namelist != NULL; namelist = namelist->next)
- if (namelist->sym->attr.referenced)
+ if (namelist->sym->attr.referenced || declare_simd)
{
- tree t = gfc_trans_omp_variable (namelist->sym);
+ tree t = gfc_trans_omp_variable (namelist->sym, declare_simd);
if (t != error_mark_node)
{
tree node = build_omp_clause (input_location, code);
@@ -498,18 +1302,39 @@ gfc_trans_omp_variable_list (enum omp_clause_code code, gfc_namelist *namelist,
return list;
}
+struct omp_udr_find_orig_data
+{
+ gfc_omp_udr *omp_udr;
+ bool omp_orig_seen;
+};
+
+static int
+omp_udr_find_orig (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED,
+ void *data)
+{
+ struct omp_udr_find_orig_data *cd = (struct omp_udr_find_orig_data *) data;
+ if ((*e)->expr_type == EXPR_VARIABLE
+ && (*e)->symtree->n.sym == cd->omp_udr->omp_orig)
+ cd->omp_orig_seen = true;
+
+ return 0;
+}
+
static void
-gfc_trans_omp_array_reduction (tree c, gfc_symbol *sym, locus where)
+gfc_trans_omp_array_reduction_or_udr (tree c, gfc_omp_namelist *n, locus where)
{
+ gfc_symbol *sym = n->sym;
gfc_symtree *root1 = NULL, *root2 = NULL, *root3 = NULL, *root4 = NULL;
gfc_symtree *symtree1, *symtree2, *symtree3, *symtree4 = NULL;
gfc_symbol init_val_sym, outer_sym, intrinsic_sym;
+ gfc_symbol omp_var_copy[4];
gfc_expr *e1, *e2, *e3, *e4;
gfc_ref *ref;
tree decl, backend_decl, stmt, type, outer_decl;
locus old_loc = gfc_current_locus;
const char *iname;
bool t;
+ gfc_omp_udr *udr = n->udr ? n->udr->udr : NULL;
decl = OMP_CLAUSE_DECL (c);
gfc_current_locus = where;
@@ -532,12 +1357,29 @@ gfc_trans_omp_array_reduction (tree c, gfc_symbol *sym, locus where)
init_val_sym.attr.referenced = 1;
init_val_sym.declared_at = where;
init_val_sym.attr.flavor = FL_VARIABLE;
- backend_decl = omp_reduction_init (c, gfc_sym_type (&init_val_sym));
+ if (OMP_CLAUSE_REDUCTION_CODE (c) != ERROR_MARK)
+ backend_decl = omp_reduction_init (c, gfc_sym_type (&init_val_sym));
+ else if (udr->initializer_ns)
+ backend_decl = NULL;
+ else
+ switch (sym->ts.type)
+ {
+ case BT_LOGICAL:
+ case BT_INTEGER:
+ case BT_REAL:
+ case BT_COMPLEX:
+ backend_decl = build_zero_cst (gfc_sym_type (&init_val_sym));
+ break;
+ default:
+ backend_decl = NULL_TREE;
+ break;
+ }
init_val_sym.backend_decl = backend_decl;
/* Create a fake symbol for the outer array reference. */
outer_sym = *sym;
- outer_sym.as = gfc_copy_array_spec (sym->as);
+ if (sym->as)
+ outer_sym.as = gfc_copy_array_spec (sym->as);
outer_sym.attr.dummy = 0;
outer_sym.attr.result = 0;
outer_sym.attr.flavor = FL_VARIABLE;
@@ -558,28 +1400,75 @@ gfc_trans_omp_array_reduction (tree c, gfc_symbol *sym, locus where)
symtree3->n.sym = &outer_sym;
gcc_assert (symtree3 == root3);
+ memset (omp_var_copy, 0, sizeof omp_var_copy);
+ if (udr)
+ {
+ omp_var_copy[0] = *udr->omp_out;
+ omp_var_copy[1] = *udr->omp_in;
+ *udr->omp_out = outer_sym;
+ *udr->omp_in = *sym;
+ if (udr->initializer_ns)
+ {
+ omp_var_copy[2] = *udr->omp_priv;
+ omp_var_copy[3] = *udr->omp_orig;
+ *udr->omp_priv = *sym;
+ *udr->omp_orig = outer_sym;
+ }
+ }
+
/* Create expressions. */
e1 = gfc_get_expr ();
e1->expr_type = EXPR_VARIABLE;
e1->where = where;
e1->symtree = symtree1;
e1->ts = sym->ts;
- e1->ref = ref = gfc_get_ref ();
- ref->type = REF_ARRAY;
- ref->u.ar.where = where;
- ref->u.ar.as = sym->as;
- ref->u.ar.type = AR_FULL;
- ref->u.ar.dimen = 0;
+ if (sym->attr.dimension)
+ {
+ e1->ref = ref = gfc_get_ref ();
+ ref->type = REF_ARRAY;
+ ref->u.ar.where = where;
+ ref->u.ar.as = sym->as;
+ ref->u.ar.type = AR_FULL;
+ ref->u.ar.dimen = 0;
+ }
t = gfc_resolve_expr (e1);
gcc_assert (t);
- e2 = gfc_get_expr ();
- e2->expr_type = EXPR_VARIABLE;
- e2->where = where;
- e2->symtree = symtree2;
- e2->ts = sym->ts;
- t = gfc_resolve_expr (e2);
- gcc_assert (t);
+ e2 = NULL;
+ if (backend_decl != NULL_TREE)
+ {
+ e2 = gfc_get_expr ();
+ e2->expr_type = EXPR_VARIABLE;
+ e2->where = where;
+ e2->symtree = symtree2;
+ e2->ts = sym->ts;
+ t = gfc_resolve_expr (e2);
+ gcc_assert (t);
+ }
+ else if (udr->initializer_ns == NULL)
+ {
+ gcc_assert (sym->ts.type == BT_DERIVED);
+ e2 = gfc_default_initializer (&sym->ts);
+ gcc_assert (e2);
+ t = gfc_resolve_expr (e2);
+ gcc_assert (t);
+ }
+ else if (n->udr->initializer->op == EXEC_ASSIGN)
+ {
+ e2 = gfc_copy_expr (n->udr->initializer->expr2);
+ t = gfc_resolve_expr (e2);
+ gcc_assert (t);
+ }
+ if (udr && udr->initializer_ns)
+ {
+ struct omp_udr_find_orig_data cd;
+ cd.omp_udr = udr;
+ cd.omp_orig_seen = false;
+ gfc_code_walker (&n->udr->initializer,
+ gfc_dummy_code_callback, omp_udr_find_orig, &cd);
+ if (cd.omp_orig_seen)
+ OMP_CLAUSE_REDUCTION_OMP_ORIG_REF (c) = 1;
+ }
e3 = gfc_copy_expr (e1);
e3->symtree = symtree3;
@@ -587,6 +1476,7 @@ gfc_trans_omp_array_reduction (tree c, gfc_symbol *sym, locus where)
gcc_assert (t);
iname = NULL;
+ e4 = NULL;
switch (OMP_CLAUSE_REDUCTION_CODE (c))
{
case PLUS_EXPR:
@@ -623,6 +1513,18 @@ gfc_trans_omp_array_reduction (tree c, gfc_symbol *sym, locus where)
case BIT_XOR_EXPR:
iname = "ieor";
break;
+ case ERROR_MARK:
+ if (n->udr->combiner->op == EXEC_ASSIGN)
+ {
+ gfc_free_expr (e3);
+ e3 = gfc_copy_expr (n->udr->combiner->expr1);
+ e4 = gfc_copy_expr (n->udr->combiner->expr2);
+ t = gfc_resolve_expr (e3);
+ gcc_assert (t);
+ t = gfc_resolve_expr (e4);
+ gcc_assert (t);
+ }
+ break;
default:
gcc_unreachable ();
}
@@ -646,58 +1548,27 @@ gfc_trans_omp_array_reduction (tree c, gfc_symbol *sym, locus where)
e4->expr_type = EXPR_FUNCTION;
e4->where = where;
e4->symtree = symtree4;
- e4->value.function.isym = gfc_find_function (iname);
e4->value.function.actual = gfc_get_actual_arglist ();
e4->value.function.actual->expr = e3;
e4->value.function.actual->next = gfc_get_actual_arglist ();
e4->value.function.actual->next->expr = e1;
}
- /* e1 and e3 have been stored as arguments of e4, avoid sharing. */
- e1 = gfc_copy_expr (e1);
- e3 = gfc_copy_expr (e3);
- t = gfc_resolve_expr (e4);
- gcc_assert (t);
+ if (OMP_CLAUSE_REDUCTION_CODE (c) != ERROR_MARK)
+ {
+ /* e1 and e3 have been stored as arguments of e4, avoid sharing. */
+ e1 = gfc_copy_expr (e1);
+ e3 = gfc_copy_expr (e3);
+ t = gfc_resolve_expr (e4);
+ gcc_assert (t);
+ }
/* Create the init statement list. */
pushlevel ();
- if (GFC_DESCRIPTOR_TYPE_P (type)
- && GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
- {
- /* If decl is an allocatable array, it needs to be allocated
- with the same bounds as the outer var. */
- tree rank, size, esize, ptr;
- stmtblock_t block;
-
- gfc_start_block (&block);
-
- gfc_add_modify (&block, decl, outer_sym.backend_decl);
- rank = gfc_rank_cst[GFC_TYPE_ARRAY_RANK (type) - 1];
- size = gfc_conv_descriptor_ubound_get (decl, rank);
- size = fold_build2_loc (input_location, MINUS_EXPR,
- gfc_array_index_type, size,
- gfc_conv_descriptor_lbound_get (decl, rank));
- size = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
- size, gfc_index_one_node);
- if (GFC_TYPE_ARRAY_RANK (type) > 1)
- size = fold_build2_loc (input_location, MULT_EXPR,
- gfc_array_index_type, size,
- gfc_conv_descriptor_stride_get (decl, rank));
- esize = fold_convert (gfc_array_index_type,
- TYPE_SIZE_UNIT (gfc_get_element_type (type)));
- size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
- size, esize);
- size = gfc_evaluate_now (fold_convert (size_type_node, size), &block);
-
- ptr = gfc_create_var (pvoid_type_node, NULL);
- gfc_allocate_using_malloc (&block, ptr, size, NULL_TREE);
- gfc_conv_descriptor_data_set (&block, decl, ptr);
-
- gfc_add_expr_to_block (&block, gfc_trans_assignment (e1, e2, false,
- false));
- stmt = gfc_finish_block (&block);
- }
- else
+ if (e2)
stmt = gfc_trans_assignment (e1, e2, false, false);
+ else
+ stmt = gfc_trans_call (n->udr->initializer, false,
+ NULL_TREE, NULL_TREE, false);
if (TREE_CODE (stmt) != BIND_EXPR)
stmt = build3_v (BIND_EXPR, NULL, stmt, poplevel (1, 0));
else
@@ -706,22 +1577,11 @@ gfc_trans_omp_array_reduction (tree c, gfc_symbol *sym, locus where)
/* Create the merge statement list. */
pushlevel ();
- if (GFC_DESCRIPTOR_TYPE_P (type)
- && GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
- {
- /* If decl is an allocatable array, it needs to be deallocated
- afterwards. */
- stmtblock_t block;
-
- gfc_start_block (&block);
- gfc_add_expr_to_block (&block, gfc_trans_assignment (e3, e4, false,
- true));
- gfc_add_expr_to_block (&block, gfc_trans_dealloc_allocated (decl, false,
- NULL));
- stmt = gfc_finish_block (&block);
- }
- else
+ if (e4)
stmt = gfc_trans_assignment (e3, e4, false, true);
+ else
+ stmt = gfc_trans_call (n->udr->combiner, false,
+ NULL_TREE, NULL_TREE, false);
if (TREE_CODE (stmt) != BIND_EXPR)
stmt = build3_v (BIND_EXPR, NULL, stmt, poplevel (1, 0));
else
@@ -734,32 +1594,91 @@ gfc_trans_omp_array_reduction (tree c, gfc_symbol *sym, locus where)
gfc_current_locus = old_loc;
gfc_free_expr (e1);
- gfc_free_expr (e2);
+ if (e2)
+ gfc_free_expr (e2);
gfc_free_expr (e3);
- gfc_free_expr (e4);
+ if (e4)
+ gfc_free_expr (e4);
free (symtree1);
free (symtree2);
free (symtree3);
free (symtree4);
- gfc_free_array_spec (outer_sym.as);
+ if (outer_sym.as)
+ gfc_free_array_spec (outer_sym.as);
+
+ if (udr)
+ {
+ *udr->omp_out = omp_var_copy[0];
+ *udr->omp_in = omp_var_copy[1];
+ if (udr->initializer_ns)
+ {
+ *udr->omp_priv = omp_var_copy[2];
+ *udr->omp_orig = omp_var_copy[3];
+ }
+ }
}
static tree
-gfc_trans_omp_reduction_list (gfc_namelist *namelist, tree list,
- enum tree_code reduction_code, locus where)
+gfc_trans_omp_reduction_list (gfc_omp_namelist *namelist, tree list,
+ locus where)
{
for (; namelist != NULL; namelist = namelist->next)
if (namelist->sym->attr.referenced)
{
- tree t = gfc_trans_omp_variable (namelist->sym);
+ tree t = gfc_trans_omp_variable (namelist->sym, false);
if (t != error_mark_node)
{
tree node = build_omp_clause (where.lb->location,
OMP_CLAUSE_REDUCTION);
OMP_CLAUSE_DECL (node) = t;
- OMP_CLAUSE_REDUCTION_CODE (node) = reduction_code;
- if (namelist->sym->attr.dimension)
- gfc_trans_omp_array_reduction (node, namelist->sym, where);
+ switch (namelist->u.reduction_op)
+ {
+ case OMP_REDUCTION_PLUS:
+ OMP_CLAUSE_REDUCTION_CODE (node) = PLUS_EXPR;
+ break;
+ case OMP_REDUCTION_MINUS:
+ OMP_CLAUSE_REDUCTION_CODE (node) = MINUS_EXPR;
+ break;
+ case OMP_REDUCTION_TIMES:
+ OMP_CLAUSE_REDUCTION_CODE (node) = MULT_EXPR;
+ break;
+ case OMP_REDUCTION_AND:
+ OMP_CLAUSE_REDUCTION_CODE (node) = TRUTH_ANDIF_EXPR;
+ break;
+ case OMP_REDUCTION_OR:
+ OMP_CLAUSE_REDUCTION_CODE (node) = TRUTH_ORIF_EXPR;
+ break;
+ case OMP_REDUCTION_EQV:
+ OMP_CLAUSE_REDUCTION_CODE (node) = EQ_EXPR;
+ break;
+ case OMP_REDUCTION_NEQV:
+ OMP_CLAUSE_REDUCTION_CODE (node) = NE_EXPR;
+ break;
+ case OMP_REDUCTION_MAX:
+ OMP_CLAUSE_REDUCTION_CODE (node) = MAX_EXPR;
+ break;
+ case OMP_REDUCTION_MIN:
+ OMP_CLAUSE_REDUCTION_CODE (node) = MIN_EXPR;
+ break;
+ case OMP_REDUCTION_IAND:
+ OMP_CLAUSE_REDUCTION_CODE (node) = BIT_AND_EXPR;
+ break;
+ case OMP_REDUCTION_IOR:
+ OMP_CLAUSE_REDUCTION_CODE (node) = BIT_IOR_EXPR;
+ break;
+ case OMP_REDUCTION_IEOR:
+ OMP_CLAUSE_REDUCTION_CODE (node) = BIT_XOR_EXPR;
+ break;
+ case OMP_REDUCTION_USER:
+ OMP_CLAUSE_REDUCTION_CODE (node) = ERROR_MARK;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ if (namelist->sym->attr.dimension
+ || namelist->u.reduction_op == OMP_REDUCTION_USER
+ || namelist->sym->attr.allocatable)
+ gfc_trans_omp_array_reduction_or_udr (node, namelist, where);
list = gfc_trans_add_clause (node, list);
}
}
@@ -768,7 +1687,7 @@ gfc_trans_omp_reduction_list (gfc_namelist *namelist, tree list,
static tree
gfc_trans_omp_clauses (stmtblock_t *block, gfc_omp_clauses *clauses,
- locus where)
+ locus where, bool declare_simd = false)
{
tree omp_clauses = NULL_TREE, chunk_size, c;
int list;
@@ -780,62 +1699,15 @@ gfc_trans_omp_clauses (stmtblock_t *block, gfc_omp_clauses *clauses,
for (list = 0; list < OMP_LIST_NUM; list++)
{
- gfc_namelist *n = clauses->lists[list];
+ gfc_omp_namelist *n = clauses->lists[list];
if (n == NULL)
continue;
- if (list >= OMP_LIST_REDUCTION_FIRST
- && list <= OMP_LIST_REDUCTION_LAST)
- {
- enum tree_code reduction_code;
- switch (list)
- {
- case OMP_LIST_PLUS:
- reduction_code = PLUS_EXPR;
- break;
- case OMP_LIST_MULT:
- reduction_code = MULT_EXPR;
- break;
- case OMP_LIST_SUB:
- reduction_code = MINUS_EXPR;
- break;
- case OMP_LIST_AND:
- reduction_code = TRUTH_ANDIF_EXPR;
- break;
- case OMP_LIST_OR:
- reduction_code = TRUTH_ORIF_EXPR;
- break;
- case OMP_LIST_EQV:
- reduction_code = EQ_EXPR;
- break;
- case OMP_LIST_NEQV:
- reduction_code = NE_EXPR;
- break;
- case OMP_LIST_MAX:
- reduction_code = MAX_EXPR;
- break;
- case OMP_LIST_MIN:
- reduction_code = MIN_EXPR;
- break;
- case OMP_LIST_IAND:
- reduction_code = BIT_AND_EXPR;
- break;
- case OMP_LIST_IOR:
- reduction_code = BIT_IOR_EXPR;
- break;
- case OMP_LIST_IEOR:
- reduction_code = BIT_XOR_EXPR;
- break;
- default:
- gcc_unreachable ();
- }
- omp_clauses
- = gfc_trans_omp_reduction_list (n, omp_clauses, reduction_code,
- where);
- continue;
- }
switch (list)
{
+ case OMP_LIST_REDUCTION:
+ omp_clauses = gfc_trans_omp_reduction_list (n, omp_clauses, where);
+ break;
case OMP_LIST_PRIVATE:
clause_code = OMP_CLAUSE_PRIVATE;
goto add_clause;
@@ -853,10 +1725,411 @@ gfc_trans_omp_clauses (stmtblock_t *block, gfc_omp_clauses *clauses,
goto add_clause;
case OMP_LIST_COPYPRIVATE:
clause_code = OMP_CLAUSE_COPYPRIVATE;
+ goto add_clause;
+ case OMP_LIST_UNIFORM:
+ clause_code = OMP_CLAUSE_UNIFORM;
/* FALLTHROUGH */
add_clause:
omp_clauses
- = gfc_trans_omp_variable_list (clause_code, n, omp_clauses);
+ = gfc_trans_omp_variable_list (clause_code, n, omp_clauses,
+ declare_simd);
+ break;
+ case OMP_LIST_ALIGNED:
+ for (; n != NULL; n = n->next)
+ if (n->sym->attr.referenced || declare_simd)
+ {
+ tree t = gfc_trans_omp_variable (n->sym, declare_simd);
+ if (t != error_mark_node)
+ {
+ tree node = build_omp_clause (input_location,
+ OMP_CLAUSE_ALIGNED);
+ OMP_CLAUSE_DECL (node) = t;
+ if (n->expr)
+ {
+ tree alignment_var;
+
+ if (block == NULL)
+ alignment_var = gfc_conv_constant_to_tree (n->expr);
+ else
+ {
+ gfc_init_se (&se, NULL);
+ gfc_conv_expr (&se, n->expr);
+ gfc_add_block_to_block (block, &se.pre);
+ alignment_var = gfc_evaluate_now (se.expr, block);
+ gfc_add_block_to_block (block, &se.post);
+ }
+ OMP_CLAUSE_ALIGNED_ALIGNMENT (node) = alignment_var;
+ }
+ omp_clauses = gfc_trans_add_clause (node, omp_clauses);
+ }
+ }
+ break;
+ case OMP_LIST_LINEAR:
+ {
+ gfc_expr *last_step_expr = NULL;
+ tree last_step = NULL_TREE;
+
+ for (; n != NULL; n = n->next)
+ {
+ if (n->expr)
+ {
+ last_step_expr = n->expr;
+ last_step = NULL_TREE;
+ }
+ if (n->sym->attr.referenced || declare_simd)
+ {
+ tree t = gfc_trans_omp_variable (n->sym, declare_simd);
+ if (t != error_mark_node)
+ {
+ tree node = build_omp_clause (input_location,
+ OMP_CLAUSE_LINEAR);
+ OMP_CLAUSE_DECL (node) = t;
+ if (last_step_expr && last_step == NULL_TREE)
+ {
+ if (block == NULL)
+ last_step
+ = gfc_conv_constant_to_tree (last_step_expr);
+ else
+ {
+ gfc_init_se (&se, NULL);
+ gfc_conv_expr (&se, last_step_expr);
+ gfc_add_block_to_block (block, &se.pre);
+ last_step = gfc_evaluate_now (se.expr, block);
+ gfc_add_block_to_block (block, &se.post);
+ }
+ }
+ OMP_CLAUSE_LINEAR_STEP (node)
+ = fold_convert (gfc_typenode_for_spec (&n->sym->ts),
+ last_step);
+ if (n->sym->attr.dimension || n->sym->attr.allocatable)
+ OMP_CLAUSE_LINEAR_ARRAY (node) = 1;
+ omp_clauses = gfc_trans_add_clause (node, omp_clauses);
+ }
+ }
+ }
+ }
+ break;
+ case OMP_LIST_DEPEND:
+ for (; n != NULL; n = n->next)
+ {
+ if (!n->sym->attr.referenced)
+ continue;
+
+ tree node = build_omp_clause (input_location, OMP_CLAUSE_DEPEND);
+ if (n->expr == NULL || n->expr->ref->u.ar.type == AR_FULL)
+ {
+ tree decl = gfc_get_symbol_decl (n->sym);
+ if (gfc_omp_privatize_by_reference (decl))
+ decl = build_fold_indirect_ref (decl);
+ if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (decl)))
+ {
+ decl = gfc_conv_descriptor_data_get (decl);
+ decl = fold_convert (build_pointer_type (char_type_node),
+ decl);
+ decl = build_fold_indirect_ref (decl);
+ }
+ else if (DECL_P (decl))
+ TREE_ADDRESSABLE (decl) = 1;
+ OMP_CLAUSE_DECL (node) = decl;
+ }
+ else
+ {
+ tree ptr;
+ gfc_init_se (&se, NULL);
+ if (n->expr->ref->u.ar.type == AR_ELEMENT)
+ {
+ gfc_conv_expr_reference (&se, n->expr);
+ ptr = se.expr;
+ }
+ else
+ {
+ gfc_conv_expr_descriptor (&se, n->expr);
+ ptr = gfc_conv_array_data (se.expr);
+ }
+ gfc_add_block_to_block (block, &se.pre);
+ gfc_add_block_to_block (block, &se.post);
+ ptr = fold_convert (build_pointer_type (char_type_node),
+ ptr);
+ OMP_CLAUSE_DECL (node) = build_fold_indirect_ref (ptr);
+ }
+ switch (n->u.depend_op)
+ {
+ case OMP_DEPEND_IN:
+ OMP_CLAUSE_DEPEND_KIND (node) = OMP_CLAUSE_DEPEND_IN;
+ break;
+ case OMP_DEPEND_OUT:
+ OMP_CLAUSE_DEPEND_KIND (node) = OMP_CLAUSE_DEPEND_OUT;
+ break;
+ case OMP_DEPEND_INOUT:
+ OMP_CLAUSE_DEPEND_KIND (node) = OMP_CLAUSE_DEPEND_INOUT;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ omp_clauses = gfc_trans_add_clause (node, omp_clauses);
+ }
+ break;
+ case OMP_LIST_MAP:
+ for (; n != NULL; n = n->next)
+ {
+ if (!n->sym->attr.referenced)
+ continue;
+
+ tree node = build_omp_clause (input_location, OMP_CLAUSE_MAP);
+ tree node2 = NULL_TREE;
+ tree node3 = NULL_TREE;
+ tree node4 = NULL_TREE;
+ tree decl = gfc_get_symbol_decl (n->sym);
+ if (DECL_P (decl))
+ TREE_ADDRESSABLE (decl) = 1;
+ if (n->expr == NULL || n->expr->ref->u.ar.type == AR_FULL)
+ {
+ if (POINTER_TYPE_P (TREE_TYPE (decl)))
+ {
+ node4 = build_omp_clause (input_location,
+ OMP_CLAUSE_MAP);
+ OMP_CLAUSE_MAP_KIND (node4) = OMP_CLAUSE_MAP_POINTER;
+ OMP_CLAUSE_DECL (node4) = decl;
+ OMP_CLAUSE_SIZE (node4) = size_int (0);
+ decl = build_fold_indirect_ref (decl);
+ }
+ if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (decl)))
+ {
+ tree type = TREE_TYPE (decl);
+ tree ptr = gfc_conv_descriptor_data_get (decl);
+ ptr = fold_convert (build_pointer_type (char_type_node),
+ ptr);
+ ptr = build_fold_indirect_ref (ptr);
+ OMP_CLAUSE_DECL (node) = ptr;
+ node2 = build_omp_clause (input_location,
+ OMP_CLAUSE_MAP);
+ OMP_CLAUSE_MAP_KIND (node2) = OMP_CLAUSE_MAP_TO_PSET;
+ OMP_CLAUSE_DECL (node2) = decl;
+ OMP_CLAUSE_SIZE (node2) = TYPE_SIZE_UNIT (type);
+ node3 = build_omp_clause (input_location,
+ OMP_CLAUSE_MAP);
+ OMP_CLAUSE_MAP_KIND (node3) = OMP_CLAUSE_MAP_POINTER;
+ OMP_CLAUSE_DECL (node3)
+ = gfc_conv_descriptor_data_get (decl);
+ OMP_CLAUSE_SIZE (node3) = size_int (0);
+ if (n->sym->attr.pointer)
+ {
+ stmtblock_t cond_block;
+ tree size
+ = gfc_create_var (gfc_array_index_type, NULL);
+ tree tem, then_b, else_b, zero, cond;
+
+ gfc_init_block (&cond_block);
+ tem
+ = gfc_full_array_size (&cond_block, decl,
+ GFC_TYPE_ARRAY_RANK (type));
+ gfc_add_modify (&cond_block, size, tem);
+ then_b = gfc_finish_block (&cond_block);
+ gfc_init_block (&cond_block);
+ zero = build_int_cst (gfc_array_index_type, 0);
+ gfc_add_modify (&cond_block, size, zero);
+ else_b = gfc_finish_block (&cond_block);
+ tem = gfc_conv_descriptor_data_get (decl);
+ tem = fold_convert (pvoid_type_node, tem);
+ cond = fold_build2_loc (input_location, NE_EXPR,
+ boolean_type_node,
+ tem, null_pointer_node);
+ gfc_add_expr_to_block (block,
+ build3_loc (input_location,
+ COND_EXPR,
+ void_type_node,
+ cond, then_b,
+ else_b));
+ OMP_CLAUSE_SIZE (node) = size;
+ }
+ else
+ OMP_CLAUSE_SIZE (node)
+ = gfc_full_array_size (block, decl,
+ GFC_TYPE_ARRAY_RANK (type));
+ tree elemsz
+ = TYPE_SIZE_UNIT (gfc_get_element_type (type));
+ elemsz = fold_convert (gfc_array_index_type, elemsz);
+ OMP_CLAUSE_SIZE (node)
+ = fold_build2 (MULT_EXPR, gfc_array_index_type,
+ OMP_CLAUSE_SIZE (node), elemsz);
+ }
+ else
+ OMP_CLAUSE_DECL (node) = decl;
+ }
+ else
+ {
+ tree ptr, ptr2;
+ gfc_init_se (&se, NULL);
+ if (n->expr->ref->u.ar.type == AR_ELEMENT)
+ {
+ gfc_conv_expr_reference (&se, n->expr);
+ gfc_add_block_to_block (block, &se.pre);
+ ptr = se.expr;
+ OMP_CLAUSE_SIZE (node)
+ = TYPE_SIZE_UNIT (TREE_TYPE (ptr));
+ }
+ else
+ {
+ gfc_conv_expr_descriptor (&se, n->expr);
+ ptr = gfc_conv_array_data (se.expr);
+ tree type = TREE_TYPE (se.expr);
+ gfc_add_block_to_block (block, &se.pre);
+ OMP_CLAUSE_SIZE (node)
+ = gfc_full_array_size (block, se.expr,
+ GFC_TYPE_ARRAY_RANK (type));
+ tree elemsz
+ = TYPE_SIZE_UNIT (gfc_get_element_type (type));
+ elemsz = fold_convert (gfc_array_index_type, elemsz);
+ OMP_CLAUSE_SIZE (node)
+ = fold_build2 (MULT_EXPR, gfc_array_index_type,
+ OMP_CLAUSE_SIZE (node), elemsz);
+ }
+ gfc_add_block_to_block (block, &se.post);
+ ptr = fold_convert (build_pointer_type (char_type_node),
+ ptr);
+ OMP_CLAUSE_DECL (node) = build_fold_indirect_ref (ptr);
+
+ if (POINTER_TYPE_P (TREE_TYPE (decl))
+ && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
+ {
+ node4 = build_omp_clause (input_location,
+ OMP_CLAUSE_MAP);
+ OMP_CLAUSE_MAP_KIND (node4) = OMP_CLAUSE_MAP_POINTER;
+ OMP_CLAUSE_DECL (node4) = decl;
+ OMP_CLAUSE_SIZE (node4) = size_int (0);
+ decl = build_fold_indirect_ref (decl);
+ }
+ ptr = fold_convert (sizetype, ptr);
+ if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (decl)))
+ {
+ tree type = TREE_TYPE (decl);
+ ptr2 = gfc_conv_descriptor_data_get (decl);
+ node2 = build_omp_clause (input_location,
+ OMP_CLAUSE_MAP);
+ OMP_CLAUSE_MAP_KIND (node2) = OMP_CLAUSE_MAP_TO_PSET;
+ OMP_CLAUSE_DECL (node2) = decl;
+ OMP_CLAUSE_SIZE (node2) = TYPE_SIZE_UNIT (type);
+ node3 = build_omp_clause (input_location,
+ OMP_CLAUSE_MAP);
+ OMP_CLAUSE_MAP_KIND (node3) = OMP_CLAUSE_MAP_POINTER;
+ OMP_CLAUSE_DECL (node3)
+ = gfc_conv_descriptor_data_get (decl);
+ }
+ else
+ {
+ if (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
+ ptr2 = build_fold_addr_expr (decl);
+ else
+ {
+ gcc_assert (POINTER_TYPE_P (TREE_TYPE (decl)));
+ ptr2 = decl;
+ }
+ node3 = build_omp_clause (input_location,
+ OMP_CLAUSE_MAP);
+ OMP_CLAUSE_MAP_KIND (node3) = OMP_CLAUSE_MAP_POINTER;
+ OMP_CLAUSE_DECL (node3) = decl;
+ }
+ ptr2 = fold_convert (sizetype, ptr2);
+ OMP_CLAUSE_SIZE (node3)
+ = fold_build2 (MINUS_EXPR, sizetype, ptr, ptr2);
+ }
+ switch (n->u.map_op)
+ {
+ case OMP_MAP_ALLOC:
+ OMP_CLAUSE_MAP_KIND (node) = OMP_CLAUSE_MAP_ALLOC;
+ break;
+ case OMP_MAP_TO:
+ OMP_CLAUSE_MAP_KIND (node) = OMP_CLAUSE_MAP_TO;
+ break;
+ case OMP_MAP_FROM:
+ OMP_CLAUSE_MAP_KIND (node) = OMP_CLAUSE_MAP_FROM;
+ break;
+ case OMP_MAP_TOFROM:
+ OMP_CLAUSE_MAP_KIND (node) = OMP_CLAUSE_MAP_TOFROM;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ omp_clauses = gfc_trans_add_clause (node, omp_clauses);
+ if (node2)
+ omp_clauses = gfc_trans_add_clause (node2, omp_clauses);
+ if (node3)
+ omp_clauses = gfc_trans_add_clause (node3, omp_clauses);
+ if (node4)
+ omp_clauses = gfc_trans_add_clause (node4, omp_clauses);
+ }
+ break;
+ case OMP_LIST_TO:
+ case OMP_LIST_FROM:
+ for (; n != NULL; n = n->next)
+ {
+ if (!n->sym->attr.referenced)
+ continue;
+
+ tree node = build_omp_clause (input_location,
+ list == OMP_LIST_TO
+ ? OMP_CLAUSE_TO : OMP_CLAUSE_FROM);
+ if (n->expr == NULL || n->expr->ref->u.ar.type == AR_FULL)
+ {
+ tree decl = gfc_get_symbol_decl (n->sym);
+ if (gfc_omp_privatize_by_reference (decl))
+ decl = build_fold_indirect_ref (decl);
+ if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (decl)))
+ {
+ tree type = TREE_TYPE (decl);
+ tree ptr = gfc_conv_descriptor_data_get (decl);
+ ptr = fold_convert (build_pointer_type (char_type_node),
+ ptr);
+ ptr = build_fold_indirect_ref (ptr);
+ OMP_CLAUSE_DECL (node) = ptr;
+ OMP_CLAUSE_SIZE (node)
+ = gfc_full_array_size (block, decl,
+ GFC_TYPE_ARRAY_RANK (type));
+ tree elemsz
+ = TYPE_SIZE_UNIT (gfc_get_element_type (type));
+ elemsz = fold_convert (gfc_array_index_type, elemsz);
+ OMP_CLAUSE_SIZE (node)
+ = fold_build2 (MULT_EXPR, gfc_array_index_type,
+ OMP_CLAUSE_SIZE (node), elemsz);
+ }
+ else
+ OMP_CLAUSE_DECL (node) = decl;
+ }
+ else
+ {
+ tree ptr;
+ gfc_init_se (&se, NULL);
+ if (n->expr->ref->u.ar.type == AR_ELEMENT)
+ {
+ gfc_conv_expr_reference (&se, n->expr);
+ ptr = se.expr;
+ gfc_add_block_to_block (block, &se.pre);
+ OMP_CLAUSE_SIZE (node)
+ = TYPE_SIZE_UNIT (TREE_TYPE (ptr));
+ }
+ else
+ {
+ gfc_conv_expr_descriptor (&se, n->expr);
+ ptr = gfc_conv_array_data (se.expr);
+ tree type = TREE_TYPE (se.expr);
+ gfc_add_block_to_block (block, &se.pre);
+ OMP_CLAUSE_SIZE (node)
+ = gfc_full_array_size (block, se.expr,
+ GFC_TYPE_ARRAY_RANK (type));
+ tree elemsz
+ = TYPE_SIZE_UNIT (gfc_get_element_type (type));
+ elemsz = fold_convert (gfc_array_index_type, elemsz);
+ OMP_CLAUSE_SIZE (node)
+ = fold_build2 (MULT_EXPR, gfc_array_index_type,
+ OMP_CLAUSE_SIZE (node), elemsz);
+ }
+ gfc_add_block_to_block (block, &se.post);
+ ptr = fold_convert (build_pointer_type (char_type_node),
+ ptr);
+ OMP_CLAUSE_DECL (node) = build_fold_indirect_ref (ptr);
+ }
+ omp_clauses = gfc_trans_add_clause (node, omp_clauses);
+ }
break;
default:
break;
@@ -1000,7 +2273,146 @@ gfc_trans_omp_clauses (stmtblock_t *block, gfc_omp_clauses *clauses,
omp_clauses = gfc_trans_add_clause (c, omp_clauses);
}
- return omp_clauses;
+ if (clauses->inbranch)
+ {
+ c = build_omp_clause (where.lb->location, OMP_CLAUSE_INBRANCH);
+ omp_clauses = gfc_trans_add_clause (c, omp_clauses);
+ }
+
+ if (clauses->notinbranch)
+ {
+ c = build_omp_clause (where.lb->location, OMP_CLAUSE_NOTINBRANCH);
+ omp_clauses = gfc_trans_add_clause (c, omp_clauses);
+ }
+
+ switch (clauses->cancel)
+ {
+ case OMP_CANCEL_UNKNOWN:
+ break;
+ case OMP_CANCEL_PARALLEL:
+ c = build_omp_clause (where.lb->location, OMP_CLAUSE_PARALLEL);
+ omp_clauses = gfc_trans_add_clause (c, omp_clauses);
+ break;
+ case OMP_CANCEL_SECTIONS:
+ c = build_omp_clause (where.lb->location, OMP_CLAUSE_SECTIONS);
+ omp_clauses = gfc_trans_add_clause (c, omp_clauses);
+ break;
+ case OMP_CANCEL_DO:
+ c = build_omp_clause (where.lb->location, OMP_CLAUSE_FOR);
+ omp_clauses = gfc_trans_add_clause (c, omp_clauses);
+ break;
+ case OMP_CANCEL_TASKGROUP:
+ c = build_omp_clause (where.lb->location, OMP_CLAUSE_TASKGROUP);
+ omp_clauses = gfc_trans_add_clause (c, omp_clauses);
+ break;
+ }
+
+ if (clauses->proc_bind != OMP_PROC_BIND_UNKNOWN)
+ {
+ c = build_omp_clause (where.lb->location, OMP_CLAUSE_PROC_BIND);
+ switch (clauses->proc_bind)
+ {
+ case OMP_PROC_BIND_MASTER:
+ OMP_CLAUSE_PROC_BIND_KIND (c) = OMP_CLAUSE_PROC_BIND_MASTER;
+ break;
+ case OMP_PROC_BIND_SPREAD:
+ OMP_CLAUSE_PROC_BIND_KIND (c) = OMP_CLAUSE_PROC_BIND_SPREAD;
+ break;
+ case OMP_PROC_BIND_CLOSE:
+ OMP_CLAUSE_PROC_BIND_KIND (c) = OMP_CLAUSE_PROC_BIND_CLOSE;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ omp_clauses = gfc_trans_add_clause (c, omp_clauses);
+ }
+
+ if (clauses->safelen_expr)
+ {
+ tree safelen_var;
+
+ gfc_init_se (&se, NULL);
+ gfc_conv_expr (&se, clauses->safelen_expr);
+ gfc_add_block_to_block (block, &se.pre);
+ safelen_var = gfc_evaluate_now (se.expr, block);
+ gfc_add_block_to_block (block, &se.post);
+
+ c = build_omp_clause (where.lb->location, OMP_CLAUSE_SAFELEN);
+ OMP_CLAUSE_SAFELEN_EXPR (c) = safelen_var;
+ omp_clauses = gfc_trans_add_clause (c, omp_clauses);
+ }
+
+ if (clauses->simdlen_expr)
+ {
+ c = build_omp_clause (where.lb->location, OMP_CLAUSE_SIMDLEN);
+ OMP_CLAUSE_SIMDLEN_EXPR (c)
+ = gfc_conv_constant_to_tree (clauses->simdlen_expr);
+ omp_clauses = gfc_trans_add_clause (c, omp_clauses);
+ }
+
+ if (clauses->num_teams)
+ {
+ tree num_teams;
+
+ gfc_init_se (&se, NULL);
+ gfc_conv_expr (&se, clauses->num_teams);
+ gfc_add_block_to_block (block, &se.pre);
+ num_teams = gfc_evaluate_now (se.expr, block);
+ gfc_add_block_to_block (block, &se.post);
+
+ c = build_omp_clause (where.lb->location, OMP_CLAUSE_NUM_TEAMS);
+ OMP_CLAUSE_NUM_TEAMS_EXPR (c) = num_teams;
+ omp_clauses = gfc_trans_add_clause (c, omp_clauses);
+ }
+
+ if (clauses->device)
+ {
+ tree device;
+
+ gfc_init_se (&se, NULL);
+ gfc_conv_expr (&se, clauses->device);
+ gfc_add_block_to_block (block, &se.pre);
+ device = gfc_evaluate_now (se.expr, block);
+ gfc_add_block_to_block (block, &se.post);
+
+ c = build_omp_clause (where.lb->location, OMP_CLAUSE_DEVICE);
+ OMP_CLAUSE_DEVICE_ID (c) = device;
+ omp_clauses = gfc_trans_add_clause (c, omp_clauses);
+ }
+
+ if (clauses->thread_limit)
+ {
+ tree thread_limit;
+
+ gfc_init_se (&se, NULL);
+ gfc_conv_expr (&se, clauses->thread_limit);
+ gfc_add_block_to_block (block, &se.pre);
+ thread_limit = gfc_evaluate_now (se.expr, block);
+ gfc_add_block_to_block (block, &se.post);
+
+ c = build_omp_clause (where.lb->location, OMP_CLAUSE_THREAD_LIMIT);
+ OMP_CLAUSE_THREAD_LIMIT_EXPR (c) = thread_limit;
+ omp_clauses = gfc_trans_add_clause (c, omp_clauses);
+ }
+
+ chunk_size = NULL_TREE;
+ if (clauses->dist_chunk_size)
+ {
+ gfc_init_se (&se, NULL);
+ gfc_conv_expr (&se, clauses->dist_chunk_size);
+ gfc_add_block_to_block (block, &se.pre);
+ chunk_size = gfc_evaluate_now (se.expr, block);
+ gfc_add_block_to_block (block, &se.post);
+ }
+
+ if (clauses->dist_sched_kind != OMP_SCHED_NONE)
+ {
+ c = build_omp_clause (where.lb->location, OMP_CLAUSE_DIST_SCHEDULE);
+ OMP_CLAUSE_DIST_SCHEDULE_CHUNK_EXPR (c) = chunk_size;
+ omp_clauses = gfc_trans_add_clause (c, omp_clauses);
+ }
+
+ return nreverse (omp_clauses);
}
/* Like gfc_trans_code, but force creation of a BIND_EXPR around it. */
@@ -1045,6 +2457,7 @@ gfc_trans_omp_atomic (gfc_code *code)
enum tree_code op = ERROR_MARK;
enum tree_code aop = OMP_ATOMIC;
bool var_on_left = false;
+ bool seq_cst = (atomic_code->ext.omp_atomic & GFC_OMP_ATOMIC_SEQ_CST) != 0;
code = code->block->next;
gcc_assert (code->op == EXEC_ASSIGN);
@@ -1060,7 +2473,7 @@ gfc_trans_omp_atomic (gfc_code *code)
&& expr2->value.function.isym->id == GFC_ISYM_CONVERSION)
expr2 = expr2->value.function.actual->expr;
- switch (atomic_code->ext.omp_atomic)
+ switch (atomic_code->ext.omp_atomic & GFC_OMP_ATOMIC_MASK)
{
case GFC_OMP_ATOMIC_READ:
gfc_conv_expr (&vse, code->expr1);
@@ -1072,6 +2485,7 @@ gfc_trans_omp_atomic (gfc_code *code)
lhsaddr = gfc_build_addr_expr (NULL, lse.expr);
x = build1 (OMP_ATOMIC_READ, type, lhsaddr);
+ OMP_ATOMIC_SEQ_CST (x) = seq_cst;
x = convert (TREE_TYPE (vse.expr), x);
gfc_add_modify (&block, vse.expr, x);
@@ -1107,7 +2521,9 @@ gfc_trans_omp_atomic (gfc_code *code)
type = TREE_TYPE (lse.expr);
lhsaddr = gfc_build_addr_expr (NULL, lse.expr);
- if (atomic_code->ext.omp_atomic == GFC_OMP_ATOMIC_WRITE)
+ if (((atomic_code->ext.omp_atomic & GFC_OMP_ATOMIC_MASK)
+ == GFC_OMP_ATOMIC_WRITE)
+ || (atomic_code->ext.omp_atomic & GFC_OMP_ATOMIC_SWAP))
{
gfc_conv_expr (&rse, expr2);
gfc_add_block_to_block (&block, &rse.pre);
@@ -1229,7 +2645,9 @@ gfc_trans_omp_atomic (gfc_code *code)
lhsaddr = save_expr (lhsaddr);
rhs = gfc_evaluate_now (rse.expr, &block);
- if (atomic_code->ext.omp_atomic == GFC_OMP_ATOMIC_WRITE)
+ if (((atomic_code->ext.omp_atomic & GFC_OMP_ATOMIC_MASK)
+ == GFC_OMP_ATOMIC_WRITE)
+ || (atomic_code->ext.omp_atomic & GFC_OMP_ATOMIC_SWAP))
x = rhs;
else
{
@@ -1252,6 +2670,7 @@ gfc_trans_omp_atomic (gfc_code *code)
if (aop == OMP_ATOMIC)
{
x = build2_v (OMP_ATOMIC, lhsaddr, convert (type, x));
+ OMP_ATOMIC_SEQ_CST (x) = seq_cst;
gfc_add_expr_to_block (&block, x);
}
else
@@ -1273,6 +2692,7 @@ gfc_trans_omp_atomic (gfc_code *code)
gfc_add_block_to_block (&block, &lse.pre);
}
x = build2 (aop, type, lhsaddr, convert (type, x));
+ OMP_ATOMIC_SEQ_CST (x) = seq_cst;
x = convert (TREE_TYPE (vse.expr), x);
gfc_add_modify (&block, vse.expr, x);
}
@@ -1288,6 +2708,63 @@ gfc_trans_omp_barrier (void)
}
static tree
+gfc_trans_omp_cancel (gfc_code *code)
+{
+ int mask = 0;
+ tree ifc = boolean_true_node;
+ stmtblock_t block;
+ switch (code->ext.omp_clauses->cancel)
+ {
+ case OMP_CANCEL_PARALLEL: mask = 1; break;
+ case OMP_CANCEL_DO: mask = 2; break;
+ case OMP_CANCEL_SECTIONS: mask = 4; break;
+ case OMP_CANCEL_TASKGROUP: mask = 8; break;
+ default: gcc_unreachable ();
+ }
+ gfc_start_block (&block);
+ if (code->ext.omp_clauses->if_expr)
+ {
+ gfc_se se;
+ tree if_var;
+
+ gfc_init_se (&se, NULL);
+ gfc_conv_expr (&se, code->ext.omp_clauses->if_expr);
+ gfc_add_block_to_block (&block, &se.pre);
+ if_var = gfc_evaluate_now (se.expr, &block);
+ gfc_add_block_to_block (&block, &se.post);
+ tree type = TREE_TYPE (if_var);
+ ifc = fold_build2_loc (input_location, NE_EXPR,
+ boolean_type_node, if_var,
+ build_zero_cst (type));
+ }
+ tree decl = builtin_decl_explicit (BUILT_IN_GOMP_CANCEL);
+ tree c_bool_type = TREE_TYPE (TREE_TYPE (decl));
+ ifc = fold_convert (c_bool_type, ifc);
+ gfc_add_expr_to_block (&block,
+ build_call_expr_loc (input_location, decl, 2,
+ build_int_cst (integer_type_node,
+ mask), ifc));
+ return gfc_finish_block (&block);
+}
+
+static tree
+gfc_trans_omp_cancellation_point (gfc_code *code)
+{
+ int mask = 0;
+ switch (code->ext.omp_clauses->cancel)
+ {
+ case OMP_CANCEL_PARALLEL: mask = 1; break;
+ case OMP_CANCEL_DO: mask = 2; break;
+ case OMP_CANCEL_SECTIONS: mask = 4; break;
+ case OMP_CANCEL_TASKGROUP: mask = 8; break;
+ default: gcc_unreachable ();
+ }
+ tree decl = builtin_decl_explicit (BUILT_IN_GOMP_CANCELLATION_POINT);
+ return build_call_expr_loc (input_location, decl, 1,
+ build_int_cst (integer_type_node, mask));
+}
+
+static tree
gfc_trans_omp_critical (gfc_code *code)
{
tree name = NULL_TREE, stmt;
@@ -1304,7 +2781,7 @@ typedef struct dovar_init_d {
static tree
-gfc_trans_omp_do (gfc_code *code, stmtblock_t *pblock,
+gfc_trans_omp_do (gfc_code *code, gfc_exec_op op, stmtblock_t *pblock,
gfc_omp_clauses *do_clauses, tree par_clauses)
{
gfc_se se;
@@ -1344,14 +2821,16 @@ gfc_trans_omp_do (gfc_code *code, stmtblock_t *pblock,
if (clauses)
{
- gfc_namelist *n;
- for (n = clauses->lists[OMP_LIST_LASTPRIVATE]; n != NULL;
- n = n->next)
- if (code->ext.iterator->var->symtree->n.sym == n->sym)
- break;
+ gfc_omp_namelist *n = NULL;
+ if (op != EXEC_OMP_DISTRIBUTE)
+ for (n = clauses->lists[(op == EXEC_OMP_SIMD && collapse == 1)
+ ? OMP_LIST_LINEAR : OMP_LIST_LASTPRIVATE];
+ n != NULL; n = n->next)
+ if (code->ext.iterator->var->symtree->n.sym == n->sym)
+ break;
if (n != NULL)
dovar_found = 1;
- else if (n == NULL)
+ else if (n == NULL && op != EXEC_OMP_SIMD)
for (n = clauses->lists[OMP_LIST_PRIVATE]; n != NULL; n = n->next)
if (code->ext.iterator->var->symtree->n.sym == n->sym)
break;
@@ -1393,7 +2872,8 @@ gfc_trans_omp_do (gfc_code *code, stmtblock_t *pblock,
}
else
dovar_decl
- = gfc_trans_omp_variable (code->ext.iterator->var->symtree->n.sym);
+ = gfc_trans_omp_variable (code->ext.iterator->var->symtree->n.sym,
+ false);
/* Loop body. */
if (simple)
@@ -1447,11 +2927,24 @@ gfc_trans_omp_do (gfc_code *code, stmtblock_t *pblock,
if (!dovar_found)
{
- tmp = build_omp_clause (input_location, OMP_CLAUSE_PRIVATE);
+ if (op == EXEC_OMP_SIMD)
+ {
+ if (collapse == 1)
+ {
+ tmp = build_omp_clause (input_location, OMP_CLAUSE_LINEAR);
+ OMP_CLAUSE_LINEAR_STEP (tmp) = step;
+ }
+ else
+ tmp = build_omp_clause (input_location, OMP_CLAUSE_LASTPRIVATE);
+ if (!simple)
+ dovar_found = 2;
+ }
+ else
+ tmp = build_omp_clause (input_location, OMP_CLAUSE_PRIVATE);
OMP_CLAUSE_DECL (tmp) = dovar_decl;
omp_clauses = gfc_trans_add_clause (tmp, omp_clauses);
}
- else if (dovar_found == 2)
+ if (dovar_found == 2)
{
tree c = NULL;
@@ -1475,8 +2968,14 @@ gfc_trans_omp_do (gfc_code *code, stmtblock_t *pblock,
OMP_CLAUSE_LASTPRIVATE_STMT (c) = tmp;
break;
}
+ else if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_LINEAR
+ && OMP_CLAUSE_DECL (c) == dovar_decl)
+ {
+ OMP_CLAUSE_LINEAR_STMT (c) = tmp;
+ break;
+ }
}
- if (c == NULL && par_clauses != NULL)
+ if (c == NULL && op == EXEC_OMP_DO && par_clauses != NULL)
{
for (c = par_clauses; c ; c = OMP_CLAUSE_CHAIN (c))
if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_LASTPRIVATE
@@ -1496,7 +2995,17 @@ gfc_trans_omp_do (gfc_code *code, stmtblock_t *pblock,
}
if (!simple)
{
- tmp = build_omp_clause (input_location, OMP_CLAUSE_PRIVATE);
+ if (op != EXEC_OMP_SIMD)
+ tmp = build_omp_clause (input_location, OMP_CLAUSE_PRIVATE);
+ else if (collapse == 1)
+ {
+ tmp = build_omp_clause (input_location, OMP_CLAUSE_LINEAR);
+ OMP_CLAUSE_LINEAR_STEP (tmp) = step;
+ OMP_CLAUSE_LINEAR_NO_COPYIN (tmp) = 1;
+ OMP_CLAUSE_LINEAR_NO_COPYOUT (tmp) = 1;
+ }
+ else
+ tmp = build_omp_clause (input_location, OMP_CLAUSE_LASTPRIVATE);
OMP_CLAUSE_DECL (tmp) = count;
omp_clauses = gfc_trans_add_clause (tmp, omp_clauses);
}
@@ -1538,7 +3047,13 @@ gfc_trans_omp_do (gfc_code *code, stmtblock_t *pblock,
}
/* End of loop body. */
- stmt = make_node (OMP_FOR);
+ switch (op)
+ {
+ case EXEC_OMP_SIMD: stmt = make_node (OMP_SIMD); break;
+ case EXEC_OMP_DO: stmt = make_node (OMP_FOR); break;
+ case EXEC_OMP_DISTRIBUTE: stmt = make_node (OMP_DISTRIBUTE); break;
+ default: gcc_unreachable ();
+ }
TREE_TYPE (stmt) = void_type_node;
OMP_FOR_BODY (stmt) = gfc_finish_block (&body);
@@ -1589,41 +3104,352 @@ gfc_trans_omp_parallel (gfc_code *code)
return gfc_finish_block (&block);
}
+enum
+{
+ GFC_OMP_SPLIT_SIMD,
+ GFC_OMP_SPLIT_DO,
+ GFC_OMP_SPLIT_PARALLEL,
+ GFC_OMP_SPLIT_DISTRIBUTE,
+ GFC_OMP_SPLIT_TEAMS,
+ GFC_OMP_SPLIT_TARGET,
+ GFC_OMP_SPLIT_NUM
+};
+
+enum
+{
+ GFC_OMP_MASK_SIMD = (1 << GFC_OMP_SPLIT_SIMD),
+ GFC_OMP_MASK_DO = (1 << GFC_OMP_SPLIT_DO),
+ GFC_OMP_MASK_PARALLEL = (1 << GFC_OMP_SPLIT_PARALLEL),
+ GFC_OMP_MASK_DISTRIBUTE = (1 << GFC_OMP_SPLIT_DISTRIBUTE),
+ GFC_OMP_MASK_TEAMS = (1 << GFC_OMP_SPLIT_TEAMS),
+ GFC_OMP_MASK_TARGET = (1 << GFC_OMP_SPLIT_TARGET)
+};
+
+static void
+gfc_split_omp_clauses (gfc_code *code,
+ gfc_omp_clauses clausesa[GFC_OMP_SPLIT_NUM])
+{
+ int mask = 0, innermost = 0;
+ memset (clausesa, 0, GFC_OMP_SPLIT_NUM * sizeof (gfc_omp_clauses));
+ switch (code->op)
+ {
+ case EXEC_OMP_DISTRIBUTE:
+ innermost = GFC_OMP_SPLIT_DISTRIBUTE;
+ break;
+ case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
+ mask = GFC_OMP_MASK_DISTRIBUTE | GFC_OMP_MASK_PARALLEL | GFC_OMP_MASK_DO;
+ innermost = GFC_OMP_SPLIT_DO;
+ break;
+ case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
+ mask = GFC_OMP_MASK_DISTRIBUTE | GFC_OMP_MASK_PARALLEL
+ | GFC_OMP_MASK_DO | GFC_OMP_MASK_SIMD;
+ innermost = GFC_OMP_SPLIT_SIMD;
+ break;
+ case EXEC_OMP_DISTRIBUTE_SIMD:
+ mask = GFC_OMP_MASK_DISTRIBUTE | GFC_OMP_MASK_SIMD;
+ innermost = GFC_OMP_SPLIT_SIMD;
+ break;
+ case EXEC_OMP_DO:
+ innermost = GFC_OMP_SPLIT_DO;
+ break;
+ case EXEC_OMP_DO_SIMD:
+ mask = GFC_OMP_MASK_DO | GFC_OMP_MASK_SIMD;
+ innermost = GFC_OMP_SPLIT_SIMD;
+ break;
+ case EXEC_OMP_PARALLEL:
+ innermost = GFC_OMP_SPLIT_PARALLEL;
+ break;
+ case EXEC_OMP_PARALLEL_DO:
+ mask = GFC_OMP_MASK_PARALLEL | GFC_OMP_MASK_DO;
+ innermost = GFC_OMP_SPLIT_DO;
+ break;
+ case EXEC_OMP_PARALLEL_DO_SIMD:
+ mask = GFC_OMP_MASK_PARALLEL | GFC_OMP_MASK_DO | GFC_OMP_MASK_SIMD;
+ innermost = GFC_OMP_SPLIT_SIMD;
+ break;
+ case EXEC_OMP_SIMD:
+ innermost = GFC_OMP_SPLIT_SIMD;
+ break;
+ case EXEC_OMP_TARGET:
+ innermost = GFC_OMP_SPLIT_TARGET;
+ break;
+ case EXEC_OMP_TARGET_TEAMS:
+ mask = GFC_OMP_MASK_TARGET | GFC_OMP_MASK_TEAMS;
+ innermost = GFC_OMP_SPLIT_TEAMS;
+ break;
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
+ mask = GFC_OMP_MASK_TARGET | GFC_OMP_MASK_TEAMS
+ | GFC_OMP_MASK_DISTRIBUTE;
+ innermost = GFC_OMP_SPLIT_DISTRIBUTE;
+ break;
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ mask = GFC_OMP_MASK_TARGET | GFC_OMP_MASK_TEAMS | GFC_OMP_MASK_DISTRIBUTE
+ | GFC_OMP_MASK_PARALLEL | GFC_OMP_MASK_DO;
+ innermost = GFC_OMP_SPLIT_DO;
+ break;
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ mask = GFC_OMP_MASK_TARGET | GFC_OMP_MASK_TEAMS | GFC_OMP_MASK_DISTRIBUTE
+ | GFC_OMP_MASK_PARALLEL | GFC_OMP_MASK_DO | GFC_OMP_MASK_SIMD;
+ innermost = GFC_OMP_SPLIT_SIMD;
+ break;
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
+ mask = GFC_OMP_MASK_TARGET | GFC_OMP_MASK_TEAMS
+ | GFC_OMP_MASK_DISTRIBUTE | GFC_OMP_MASK_SIMD;
+ innermost = GFC_OMP_SPLIT_SIMD;
+ break;
+ case EXEC_OMP_TEAMS:
+ innermost = GFC_OMP_SPLIT_TEAMS;
+ break;
+ case EXEC_OMP_TEAMS_DISTRIBUTE:
+ mask = GFC_OMP_MASK_TEAMS | GFC_OMP_MASK_DISTRIBUTE;
+ innermost = GFC_OMP_SPLIT_DISTRIBUTE;
+ break;
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ mask = GFC_OMP_MASK_TEAMS | GFC_OMP_MASK_DISTRIBUTE
+ | GFC_OMP_MASK_PARALLEL | GFC_OMP_MASK_DO;
+ innermost = GFC_OMP_SPLIT_DO;
+ break;
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ mask = GFC_OMP_MASK_TEAMS | GFC_OMP_MASK_DISTRIBUTE
+ | GFC_OMP_MASK_PARALLEL | GFC_OMP_MASK_DO | GFC_OMP_MASK_SIMD;
+ innermost = GFC_OMP_SPLIT_SIMD;
+ break;
+ case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
+ mask = GFC_OMP_MASK_TEAMS | GFC_OMP_MASK_DISTRIBUTE | GFC_OMP_MASK_SIMD;
+ innermost = GFC_OMP_SPLIT_SIMD;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ if (mask == 0)
+ {
+ clausesa[innermost] = *code->ext.omp_clauses;
+ return;
+ }
+ if (code->ext.omp_clauses != NULL)
+ {
+ if (mask & GFC_OMP_MASK_TARGET)
+ {
+ /* First the clauses that are unique to some constructs. */
+ clausesa[GFC_OMP_SPLIT_TARGET].lists[OMP_LIST_MAP]
+ = code->ext.omp_clauses->lists[OMP_LIST_MAP];
+ clausesa[GFC_OMP_SPLIT_TARGET].device
+ = code->ext.omp_clauses->device;
+ }
+ if (mask & GFC_OMP_MASK_TEAMS)
+ {
+ /* First the clauses that are unique to some constructs. */
+ clausesa[GFC_OMP_SPLIT_TEAMS].num_teams
+ = code->ext.omp_clauses->num_teams;
+ clausesa[GFC_OMP_SPLIT_TEAMS].thread_limit
+ = code->ext.omp_clauses->thread_limit;
+ /* Shared and default clauses are allowed on parallel and teams. */
+ clausesa[GFC_OMP_SPLIT_TEAMS].lists[OMP_LIST_SHARED]
+ = code->ext.omp_clauses->lists[OMP_LIST_SHARED];
+ clausesa[GFC_OMP_SPLIT_TEAMS].default_sharing
+ = code->ext.omp_clauses->default_sharing;
+ }
+ if (mask & GFC_OMP_MASK_DISTRIBUTE)
+ {
+ /* First the clauses that are unique to some constructs. */
+ clausesa[GFC_OMP_SPLIT_DISTRIBUTE].dist_sched_kind
+ = code->ext.omp_clauses->dist_sched_kind;
+ clausesa[GFC_OMP_SPLIT_DISTRIBUTE].dist_chunk_size
+ = code->ext.omp_clauses->dist_chunk_size;
+ /* Duplicate collapse. */
+ clausesa[GFC_OMP_SPLIT_DISTRIBUTE].collapse
+ = code->ext.omp_clauses->collapse;
+ }
+ if (mask & GFC_OMP_MASK_PARALLEL)
+ {
+ /* First the clauses that are unique to some constructs. */
+ clausesa[GFC_OMP_SPLIT_PARALLEL].lists[OMP_LIST_COPYIN]
+ = code->ext.omp_clauses->lists[OMP_LIST_COPYIN];
+ clausesa[GFC_OMP_SPLIT_PARALLEL].num_threads
+ = code->ext.omp_clauses->num_threads;
+ clausesa[GFC_OMP_SPLIT_PARALLEL].proc_bind
+ = code->ext.omp_clauses->proc_bind;
+ /* Shared and default clauses are allowed on parallel and teams. */
+ clausesa[GFC_OMP_SPLIT_PARALLEL].lists[OMP_LIST_SHARED]
+ = code->ext.omp_clauses->lists[OMP_LIST_SHARED];
+ clausesa[GFC_OMP_SPLIT_PARALLEL].default_sharing
+ = code->ext.omp_clauses->default_sharing;
+ }
+ if (mask & GFC_OMP_MASK_DO)
+ {
+ /* First the clauses that are unique to some constructs. */
+ clausesa[GFC_OMP_SPLIT_DO].ordered
+ = code->ext.omp_clauses->ordered;
+ clausesa[GFC_OMP_SPLIT_DO].sched_kind
+ = code->ext.omp_clauses->sched_kind;
+ clausesa[GFC_OMP_SPLIT_DO].chunk_size
+ = code->ext.omp_clauses->chunk_size;
+ clausesa[GFC_OMP_SPLIT_DO].nowait
+ = code->ext.omp_clauses->nowait;
+ /* Duplicate collapse. */
+ clausesa[GFC_OMP_SPLIT_DO].collapse
+ = code->ext.omp_clauses->collapse;
+ }
+ if (mask & GFC_OMP_MASK_SIMD)
+ {
+ clausesa[GFC_OMP_SPLIT_SIMD].safelen_expr
+ = code->ext.omp_clauses->safelen_expr;
+ clausesa[GFC_OMP_SPLIT_SIMD].lists[OMP_LIST_LINEAR]
+ = code->ext.omp_clauses->lists[OMP_LIST_LINEAR];
+ clausesa[GFC_OMP_SPLIT_SIMD].lists[OMP_LIST_ALIGNED]
+ = code->ext.omp_clauses->lists[OMP_LIST_ALIGNED];
+ /* Duplicate collapse. */
+ clausesa[GFC_OMP_SPLIT_SIMD].collapse
+ = code->ext.omp_clauses->collapse;
+ }
+ /* Private clause is supported on all constructs but target,
+ it is enough to put it on the innermost one. For
+ !$ omp do put it on parallel though,
+ as that's what we did for OpenMP 3.1. */
+ clausesa[innermost == GFC_OMP_SPLIT_DO
+ ? (int) GFC_OMP_SPLIT_PARALLEL
+ : innermost].lists[OMP_LIST_PRIVATE]
+ = code->ext.omp_clauses->lists[OMP_LIST_PRIVATE];
+ /* Firstprivate clause is supported on all constructs but
+ target and simd. Put it on the outermost of those and
+ duplicate on parallel. */
+ if (mask & GFC_OMP_MASK_TEAMS)
+ clausesa[GFC_OMP_SPLIT_TEAMS].lists[OMP_LIST_FIRSTPRIVATE]
+ = code->ext.omp_clauses->lists[OMP_LIST_FIRSTPRIVATE];
+ else if (mask & GFC_OMP_MASK_DISTRIBUTE)
+ clausesa[GFC_OMP_SPLIT_DISTRIBUTE].lists[OMP_LIST_FIRSTPRIVATE]
+ = code->ext.omp_clauses->lists[OMP_LIST_FIRSTPRIVATE];
+ if (mask & GFC_OMP_MASK_PARALLEL)
+ clausesa[GFC_OMP_SPLIT_PARALLEL].lists[OMP_LIST_FIRSTPRIVATE]
+ = code->ext.omp_clauses->lists[OMP_LIST_FIRSTPRIVATE];
+ else if (mask & GFC_OMP_MASK_DO)
+ clausesa[GFC_OMP_SPLIT_DO].lists[OMP_LIST_FIRSTPRIVATE]
+ = code->ext.omp_clauses->lists[OMP_LIST_FIRSTPRIVATE];
+ /* Lastprivate is allowed on do and simd. In
+ parallel do{, simd} we actually want to put it on
+ parallel rather than do. */
+ if (mask & GFC_OMP_MASK_PARALLEL)
+ clausesa[GFC_OMP_SPLIT_PARALLEL].lists[OMP_LIST_LASTPRIVATE]
+ = code->ext.omp_clauses->lists[OMP_LIST_LASTPRIVATE];
+ else if (mask & GFC_OMP_MASK_DO)
+ clausesa[GFC_OMP_SPLIT_DO].lists[OMP_LIST_LASTPRIVATE]
+ = code->ext.omp_clauses->lists[OMP_LIST_LASTPRIVATE];
+ if (mask & GFC_OMP_MASK_SIMD)
+ clausesa[GFC_OMP_SPLIT_SIMD].lists[OMP_LIST_LASTPRIVATE]
+ = code->ext.omp_clauses->lists[OMP_LIST_LASTPRIVATE];
+ /* Reduction is allowed on simd, do, parallel and teams.
+ Duplicate it on all of them, but omit on do if
+ parallel is present. */
+ if (mask & GFC_OMP_MASK_TEAMS)
+ clausesa[GFC_OMP_SPLIT_TEAMS].lists[OMP_LIST_REDUCTION]
+ = code->ext.omp_clauses->lists[OMP_LIST_REDUCTION];
+ if (mask & GFC_OMP_MASK_PARALLEL)
+ clausesa[GFC_OMP_SPLIT_PARALLEL].lists[OMP_LIST_REDUCTION]
+ = code->ext.omp_clauses->lists[OMP_LIST_REDUCTION];
+ else if (mask & GFC_OMP_MASK_DO)
+ clausesa[GFC_OMP_SPLIT_DO].lists[OMP_LIST_REDUCTION]
+ = code->ext.omp_clauses->lists[OMP_LIST_REDUCTION];
+ if (mask & GFC_OMP_MASK_SIMD)
+ clausesa[GFC_OMP_SPLIT_SIMD].lists[OMP_LIST_REDUCTION]
+ = code->ext.omp_clauses->lists[OMP_LIST_REDUCTION];
+ /* FIXME: This is currently being discussed. */
+ if (mask & GFC_OMP_MASK_PARALLEL)
+ clausesa[GFC_OMP_SPLIT_PARALLEL].if_expr
+ = code->ext.omp_clauses->if_expr;
+ else
+ clausesa[GFC_OMP_SPLIT_TARGET].if_expr
+ = code->ext.omp_clauses->if_expr;
+ }
+ if ((mask & (GFC_OMP_MASK_PARALLEL | GFC_OMP_MASK_DO))
+ == (GFC_OMP_MASK_PARALLEL | GFC_OMP_MASK_DO))
+ clausesa[GFC_OMP_SPLIT_DO].nowait = true;
+}
+
static tree
-gfc_trans_omp_parallel_do (gfc_code *code)
+gfc_trans_omp_do_simd (gfc_code *code, stmtblock_t *pblock,
+ gfc_omp_clauses *clausesa, tree omp_clauses)
{
- stmtblock_t block, *pblock = NULL;
- gfc_omp_clauses parallel_clauses, do_clauses;
- tree stmt, omp_clauses = NULL_TREE;
+ stmtblock_t block;
+ gfc_omp_clauses clausesa_buf[GFC_OMP_SPLIT_NUM];
+ tree stmt, body, omp_do_clauses = NULL_TREE;
- gfc_start_block (&block);
+ if (pblock == NULL)
+ gfc_start_block (&block);
+ else
+ gfc_init_block (&block);
- memset (&do_clauses, 0, sizeof (do_clauses));
- if (code->ext.omp_clauses != NULL)
+ if (clausesa == NULL)
+ {
+ clausesa = clausesa_buf;
+ gfc_split_omp_clauses (code, clausesa);
+ }
+ if (gfc_option.gfc_flag_openmp)
+ omp_do_clauses
+ = gfc_trans_omp_clauses (&block, &clausesa[GFC_OMP_SPLIT_DO], code->loc);
+ body = gfc_trans_omp_do (code, EXEC_OMP_SIMD, pblock ? pblock : &block,
+ &clausesa[GFC_OMP_SPLIT_SIMD], omp_clauses);
+ if (pblock == NULL)
+ {
+ if (TREE_CODE (body) != BIND_EXPR)
+ body = build3_v (BIND_EXPR, NULL, body, poplevel (1, 0));
+ else
+ poplevel (0, 0);
+ }
+ else if (TREE_CODE (body) != BIND_EXPR)
+ body = build3_v (BIND_EXPR, NULL, body, NULL_TREE);
+ if (gfc_option.gfc_flag_openmp)
{
- memcpy (&parallel_clauses, code->ext.omp_clauses,
- sizeof (parallel_clauses));
- do_clauses.sched_kind = parallel_clauses.sched_kind;
- do_clauses.chunk_size = parallel_clauses.chunk_size;
- do_clauses.ordered = parallel_clauses.ordered;
- do_clauses.collapse = parallel_clauses.collapse;
- parallel_clauses.sched_kind = OMP_SCHED_NONE;
- parallel_clauses.chunk_size = NULL;
- parallel_clauses.ordered = false;
- parallel_clauses.collapse = 0;
- omp_clauses = gfc_trans_omp_clauses (&block, &parallel_clauses,
- code->loc);
- }
- do_clauses.nowait = true;
- if (!do_clauses.ordered && do_clauses.sched_kind != OMP_SCHED_STATIC)
- pblock = &block;
+ stmt = make_node (OMP_FOR);
+ TREE_TYPE (stmt) = void_type_node;
+ OMP_FOR_BODY (stmt) = body;
+ OMP_FOR_CLAUSES (stmt) = omp_do_clauses;
+ }
else
- pushlevel ();
- stmt = gfc_trans_omp_do (code, pblock, &do_clauses, omp_clauses);
- if (TREE_CODE (stmt) != BIND_EXPR)
- stmt = build3_v (BIND_EXPR, NULL, stmt, poplevel (1, 0));
+ stmt = body;
+ gfc_add_expr_to_block (&block, stmt);
+ return gfc_finish_block (&block);
+}
+
+static tree
+gfc_trans_omp_parallel_do (gfc_code *code, stmtblock_t *pblock,
+ gfc_omp_clauses *clausesa)
+{
+ stmtblock_t block, *new_pblock = pblock;
+ gfc_omp_clauses clausesa_buf[GFC_OMP_SPLIT_NUM];
+ tree stmt, omp_clauses = NULL_TREE;
+
+ if (pblock == NULL)
+ gfc_start_block (&block);
else
- poplevel (0, 0);
+ gfc_init_block (&block);
+
+ if (clausesa == NULL)
+ {
+ clausesa = clausesa_buf;
+ gfc_split_omp_clauses (code, clausesa);
+ }
+ omp_clauses
+ = gfc_trans_omp_clauses (&block, &clausesa[GFC_OMP_SPLIT_PARALLEL],
+ code->loc);
+ if (pblock == NULL)
+ {
+ if (!clausesa[GFC_OMP_SPLIT_DO].ordered
+ && clausesa[GFC_OMP_SPLIT_DO].sched_kind != OMP_SCHED_STATIC)
+ new_pblock = &block;
+ else
+ pushlevel ();
+ }
+ stmt = gfc_trans_omp_do (code, EXEC_OMP_DO, new_pblock,
+ &clausesa[GFC_OMP_SPLIT_DO], omp_clauses);
+ if (pblock == NULL)
+ {
+ if (TREE_CODE (stmt) != BIND_EXPR)
+ stmt = build3_v (BIND_EXPR, NULL, stmt, poplevel (1, 0));
+ else
+ poplevel (0, 0);
+ }
+ else if (TREE_CODE (stmt) != BIND_EXPR)
+ stmt = build3_v (BIND_EXPR, NULL, stmt, NULL_TREE);
stmt = build2_loc (input_location, OMP_PARALLEL, void_type_node, stmt,
omp_clauses);
OMP_PARALLEL_COMBINED (stmt) = 1;
@@ -1632,6 +3458,50 @@ gfc_trans_omp_parallel_do (gfc_code *code)
}
static tree
+gfc_trans_omp_parallel_do_simd (gfc_code *code, stmtblock_t *pblock,
+ gfc_omp_clauses *clausesa)
+{
+ stmtblock_t block;
+ gfc_omp_clauses clausesa_buf[GFC_OMP_SPLIT_NUM];
+ tree stmt, omp_clauses = NULL_TREE;
+
+ if (pblock == NULL)
+ gfc_start_block (&block);
+ else
+ gfc_init_block (&block);
+
+ if (clausesa == NULL)
+ {
+ clausesa = clausesa_buf;
+ gfc_split_omp_clauses (code, clausesa);
+ }
+ if (gfc_option.gfc_flag_openmp)
+ omp_clauses
+ = gfc_trans_omp_clauses (&block, &clausesa[GFC_OMP_SPLIT_PARALLEL],
+ code->loc);
+ if (pblock == NULL)
+ pushlevel ();
+ stmt = gfc_trans_omp_do_simd (code, pblock, clausesa, omp_clauses);
+ if (pblock == NULL)
+ {
+ if (TREE_CODE (stmt) != BIND_EXPR)
+ stmt = build3_v (BIND_EXPR, NULL, stmt, poplevel (1, 0));
+ else
+ poplevel (0, 0);
+ }
+ else if (TREE_CODE (stmt) != BIND_EXPR)
+ stmt = build3_v (BIND_EXPR, NULL, stmt, NULL_TREE);
+ if (gfc_option.gfc_flag_openmp)
+ {
+ stmt = build2_loc (input_location, OMP_PARALLEL, void_type_node, stmt,
+ omp_clauses);
+ OMP_PARALLEL_COMBINED (stmt) = 1;
+ }
+ gfc_add_expr_to_block (&block, stmt);
+ return gfc_finish_block (&block);
+}
+
+static tree
gfc_trans_omp_parallel_sections (gfc_code *code)
{
stmtblock_t block;
@@ -1743,6 +3613,13 @@ gfc_trans_omp_task (gfc_code *code)
}
static tree
+gfc_trans_omp_taskgroup (gfc_code *code)
+{
+ tree stmt = gfc_trans_code (code->block->next);
+ return build1_loc (input_location, OMP_TASKGROUP, void_type_node, stmt);
+}
+
+static tree
gfc_trans_omp_taskwait (void)
{
tree decl = builtin_decl_explicit (BUILT_IN_GOMP_TASKWAIT);
@@ -1757,6 +3634,170 @@ gfc_trans_omp_taskyield (void)
}
static tree
+gfc_trans_omp_distribute (gfc_code *code, gfc_omp_clauses *clausesa)
+{
+ stmtblock_t block;
+ gfc_omp_clauses clausesa_buf[GFC_OMP_SPLIT_NUM];
+ tree stmt, omp_clauses = NULL_TREE;
+
+ gfc_start_block (&block);
+ if (clausesa == NULL)
+ {
+ clausesa = clausesa_buf;
+ gfc_split_omp_clauses (code, clausesa);
+ }
+ if (gfc_option.gfc_flag_openmp)
+ omp_clauses
+ = gfc_trans_omp_clauses (&block, &clausesa[GFC_OMP_SPLIT_DISTRIBUTE],
+ code->loc);
+ switch (code->op)
+ {
+ case EXEC_OMP_DISTRIBUTE:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
+ case EXEC_OMP_TEAMS_DISTRIBUTE:
+ /* This is handled in gfc_trans_omp_do. */
+ gcc_unreachable ();
+ break;
+ case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ stmt = gfc_trans_omp_parallel_do (code, &block, clausesa);
+ if (TREE_CODE (stmt) != BIND_EXPR)
+ stmt = build3_v (BIND_EXPR, NULL, stmt, poplevel (1, 0));
+ else
+ poplevel (0, 0);
+ break;
+ case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ stmt = gfc_trans_omp_parallel_do_simd (code, &block, clausesa);
+ if (TREE_CODE (stmt) != BIND_EXPR)
+ stmt = build3_v (BIND_EXPR, NULL, stmt, poplevel (1, 0));
+ else
+ poplevel (0, 0);
+ break;
+ case EXEC_OMP_DISTRIBUTE_SIMD:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
+ stmt = gfc_trans_omp_do (code, EXEC_OMP_SIMD, &block,
+ &clausesa[GFC_OMP_SPLIT_SIMD], NULL_TREE);
+ if (TREE_CODE (stmt) != BIND_EXPR)
+ stmt = build3_v (BIND_EXPR, NULL, stmt, poplevel (1, 0));
+ else
+ poplevel (0, 0);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ if (gfc_option.gfc_flag_openmp)
+ {
+ tree distribute = make_node (OMP_DISTRIBUTE);
+ TREE_TYPE (distribute) = void_type_node;
+ OMP_FOR_BODY (distribute) = stmt;
+ OMP_FOR_CLAUSES (distribute) = omp_clauses;
+ stmt = distribute;
+ }
+ gfc_add_expr_to_block (&block, stmt);
+ return gfc_finish_block (&block);
+}
+
+static tree
+gfc_trans_omp_teams (gfc_code *code, gfc_omp_clauses *clausesa)
+{
+ stmtblock_t block;
+ gfc_omp_clauses clausesa_buf[GFC_OMP_SPLIT_NUM];
+ tree stmt, omp_clauses = NULL_TREE;
+
+ gfc_start_block (&block);
+ if (clausesa == NULL)
+ {
+ clausesa = clausesa_buf;
+ gfc_split_omp_clauses (code, clausesa);
+ }
+ if (gfc_option.gfc_flag_openmp)
+ omp_clauses
+ = gfc_trans_omp_clauses (&block, &clausesa[GFC_OMP_SPLIT_TEAMS],
+ code->loc);
+ switch (code->op)
+ {
+ case EXEC_OMP_TARGET_TEAMS:
+ case EXEC_OMP_TEAMS:
+ stmt = gfc_trans_omp_code (code->block->next, true);
+ break;
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
+ case EXEC_OMP_TEAMS_DISTRIBUTE:
+ stmt = gfc_trans_omp_do (code, EXEC_OMP_DISTRIBUTE, NULL,
+ &clausesa[GFC_OMP_SPLIT_DISTRIBUTE],
+ NULL);
+ break;
+ default:
+ stmt = gfc_trans_omp_distribute (code, clausesa);
+ break;
+ }
+ stmt = build2_loc (input_location, OMP_TEAMS, void_type_node, stmt,
+ omp_clauses);
+ gfc_add_expr_to_block (&block, stmt);
+ return gfc_finish_block (&block);
+}
+
+static tree
+gfc_trans_omp_target (gfc_code *code)
+{
+ stmtblock_t block;
+ gfc_omp_clauses clausesa[GFC_OMP_SPLIT_NUM];
+ tree stmt, omp_clauses = NULL_TREE;
+
+ gfc_start_block (&block);
+ gfc_split_omp_clauses (code, clausesa);
+ if (gfc_option.gfc_flag_openmp)
+ omp_clauses
+ = gfc_trans_omp_clauses (&block, &clausesa[GFC_OMP_SPLIT_TARGET],
+ code->loc);
+ if (code->op == EXEC_OMP_TARGET)
+ stmt = gfc_trans_omp_code (code->block->next, true);
+ else
+ stmt = gfc_trans_omp_teams (code, clausesa);
+ if (TREE_CODE (stmt) != BIND_EXPR)
+ stmt = build3_v (BIND_EXPR, NULL, stmt, NULL_TREE);
+ if (gfc_option.gfc_flag_openmp)
+ stmt = build2_loc (input_location, OMP_TARGET, void_type_node, stmt,
+ omp_clauses);
+ gfc_add_expr_to_block (&block, stmt);
+ return gfc_finish_block (&block);
+}
+
+static tree
+gfc_trans_omp_target_data (gfc_code *code)
+{
+ stmtblock_t block;
+ tree stmt, omp_clauses;
+
+ gfc_start_block (&block);
+ omp_clauses = gfc_trans_omp_clauses (&block, code->ext.omp_clauses,
+ code->loc);
+ stmt = gfc_trans_omp_code (code->block->next, true);
+ stmt = build2_loc (input_location, OMP_TARGET_DATA, void_type_node, stmt,
+ omp_clauses);
+ gfc_add_expr_to_block (&block, stmt);
+ return gfc_finish_block (&block);
+}
+
+static tree
+gfc_trans_omp_target_update (gfc_code *code)
+{
+ stmtblock_t block;
+ tree stmt, omp_clauses;
+
+ gfc_start_block (&block);
+ omp_clauses = gfc_trans_omp_clauses (&block, code->ext.omp_clauses,
+ code->loc);
+ stmt = build1_loc (input_location, OMP_TARGET_UPDATE, void_type_node,
+ omp_clauses);
+ gfc_add_expr_to_block (&block, stmt);
+ return gfc_finish_block (&block);
+}
+
+static tree
gfc_trans_omp_workshare (gfc_code *code, gfc_omp_clauses *clauses)
{
tree res, tmp, stmt;
@@ -1923,10 +3964,23 @@ gfc_trans_omp_directive (gfc_code *code)
return gfc_trans_omp_atomic (code);
case EXEC_OMP_BARRIER:
return gfc_trans_omp_barrier ();
+ case EXEC_OMP_CANCEL:
+ return gfc_trans_omp_cancel (code);
+ case EXEC_OMP_CANCELLATION_POINT:
+ return gfc_trans_omp_cancellation_point (code);
case EXEC_OMP_CRITICAL:
return gfc_trans_omp_critical (code);
+ case EXEC_OMP_DISTRIBUTE:
case EXEC_OMP_DO:
- return gfc_trans_omp_do (code, NULL, code->ext.omp_clauses, NULL);
+ case EXEC_OMP_SIMD:
+ return gfc_trans_omp_do (code, code->op, NULL, code->ext.omp_clauses,
+ NULL);
+ case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_DISTRIBUTE_SIMD:
+ return gfc_trans_omp_distribute (code, NULL);
+ case EXEC_OMP_DO_SIMD:
+ return gfc_trans_omp_do_simd (code, NULL, NULL, NULL_TREE);
case EXEC_OMP_FLUSH:
return gfc_trans_omp_flush ();
case EXEC_OMP_MASTER:
@@ -1936,7 +3990,9 @@ gfc_trans_omp_directive (gfc_code *code)
case EXEC_OMP_PARALLEL:
return gfc_trans_omp_parallel (code);
case EXEC_OMP_PARALLEL_DO:
- return gfc_trans_omp_parallel_do (code);
+ return gfc_trans_omp_parallel_do (code, NULL, NULL);
+ case EXEC_OMP_PARALLEL_DO_SIMD:
+ return gfc_trans_omp_parallel_do_simd (code, NULL, NULL);
case EXEC_OMP_PARALLEL_SECTIONS:
return gfc_trans_omp_parallel_sections (code);
case EXEC_OMP_PARALLEL_WORKSHARE:
@@ -1945,15 +4001,53 @@ gfc_trans_omp_directive (gfc_code *code)
return gfc_trans_omp_sections (code, code->ext.omp_clauses);
case EXEC_OMP_SINGLE:
return gfc_trans_omp_single (code, code->ext.omp_clauses);
+ case EXEC_OMP_TARGET:
+ case EXEC_OMP_TARGET_TEAMS:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
+ return gfc_trans_omp_target (code);
+ case EXEC_OMP_TARGET_DATA:
+ return gfc_trans_omp_target_data (code);
+ case EXEC_OMP_TARGET_UPDATE:
+ return gfc_trans_omp_target_update (code);
case EXEC_OMP_TASK:
return gfc_trans_omp_task (code);
+ case EXEC_OMP_TASKGROUP:
+ return gfc_trans_omp_taskgroup (code);
case EXEC_OMP_TASKWAIT:
return gfc_trans_omp_taskwait ();
case EXEC_OMP_TASKYIELD:
return gfc_trans_omp_taskyield ();
+ case EXEC_OMP_TEAMS:
+ case EXEC_OMP_TEAMS_DISTRIBUTE:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
+ return gfc_trans_omp_teams (code, NULL);
case EXEC_OMP_WORKSHARE:
return gfc_trans_omp_workshare (code, code->ext.omp_clauses);
default:
gcc_unreachable ();
}
}
+
+void
+gfc_trans_omp_declare_simd (gfc_namespace *ns)
+{
+ if (ns->entries)
+ return;
+
+ gfc_omp_declare_simd *ods;
+ for (ods = ns->omp_declare_simd; ods; ods = ods->next)
+ {
+ tree c = gfc_trans_omp_clauses (NULL, ods->clauses, ods->where, true);
+ tree fndecl = ns->proc_name->backend_decl;
+ if (c != NULL_TREE)
+ c = tree_cons (NULL_TREE, c, NULL_TREE);
+ c = build_tree_list (get_identifier ("omp declare simd"), c);
+ TREE_CHAIN (c) = DECL_ATTRIBUTES (fndecl);
+ DECL_ATTRIBUTES (fndecl) = c;
+ }
+}
diff --git a/gcc-4.9/gcc/fortran/trans-stmt.c b/gcc-4.9/gcc/fortran/trans-stmt.c
index 00c99fcfb..6d2db5ef7 100644
--- a/gcc-4.9/gcc/fortran/trans-stmt.c
+++ b/gcc-4.9/gcc/fortran/trans-stmt.c
@@ -1164,13 +1164,16 @@ trans_associate_var (gfc_symbol *sym, gfc_wrapped_block *block)
{
gfc_se se;
tree desc;
+ bool cst_array_ctor;
desc = sym->backend_decl;
+ cst_array_ctor = e->expr_type == EXPR_ARRAY
+ && gfc_constant_array_constructor_p (e->value.constructor);
/* If association is to an expression, evaluate it and create temporary.
Otherwise, get descriptor of target for pointer assignment. */
gfc_init_se (&se, NULL);
- if (sym->assoc->variable || e->expr_type == EXPR_ARRAY)
+ if (sym->assoc->variable || cst_array_ctor)
{
se.direct_byref = 1;
se.use_offset = 1;
@@ -1181,7 +1184,7 @@ trans_associate_var (gfc_symbol *sym, gfc_wrapped_block *block)
/* If we didn't already do the pointer assignment, set associate-name
descriptor to the one generated for the temporary. */
- if (!sym->assoc->variable && e->expr_type != EXPR_ARRAY)
+ if (!sym->assoc->variable && !cst_array_ctor)
{
int dim;
diff --git a/gcc-4.9/gcc/fortran/trans-stmt.h b/gcc-4.9/gcc/fortran/trans-stmt.h
index 8a57be4d5..087bafea4 100644
--- a/gcc-4.9/gcc/fortran/trans-stmt.h
+++ b/gcc-4.9/gcc/fortran/trans-stmt.h
@@ -63,6 +63,7 @@ tree gfc_trans_deallocate_array (tree);
/* trans-openmp.c */
tree gfc_trans_omp_directive (gfc_code *);
+void gfc_trans_omp_declare_simd (gfc_namespace *);
/* trans-io.c */
tree gfc_trans_open (gfc_code *);
diff --git a/gcc-4.9/gcc/fortran/trans-types.c b/gcc-4.9/gcc/fortran/trans-types.c
index 59637f2d3..22f456e02 100644
--- a/gcc-4.9/gcc/fortran/trans-types.c
+++ b/gcc-4.9/gcc/fortran/trans-types.c
@@ -2162,9 +2162,6 @@ gfc_sym_type (gfc_symbol * sym)
restricted);
byref = 0;
}
-
- if (sym->attr.cray_pointee)
- GFC_POINTER_TYPE_P (type) = 1;
}
else
{
@@ -2183,8 +2180,6 @@ gfc_sym_type (gfc_symbol * sym)
if (sym->attr.allocatable || sym->attr.pointer
|| gfc_is_associate_pointer (sym))
type = gfc_build_pointer_type (sym, type);
- if (sym->attr.pointer || sym->attr.cray_pointee)
- GFC_POINTER_TYPE_P (type) = 1;
}
/* We currently pass all parameters by reference.
@@ -2554,6 +2549,8 @@ gfc_get_derived_type (gfc_symbol * derived)
else if (derived->declared_at.lb)
gfc_set_decl_location (field, &derived->declared_at);
+ gfc_finish_decl_attrs (field, &c->attr);
+
DECL_PACKED (field) |= TYPE_PACKED (typenode);
gcc_assert (field);
diff --git a/gcc-4.9/gcc/fortran/trans.c b/gcc-4.9/gcc/fortran/trans.c
index 5961c267e..7c73f5961 100644
--- a/gcc-4.9/gcc/fortran/trans.c
+++ b/gcc-4.9/gcc/fortran/trans.c
@@ -1848,20 +1848,43 @@ trans_code (gfc_code * code, tree cond)
case EXEC_OMP_ATOMIC:
case EXEC_OMP_BARRIER:
+ case EXEC_OMP_CANCEL:
+ case EXEC_OMP_CANCELLATION_POINT:
case EXEC_OMP_CRITICAL:
+ case EXEC_OMP_DISTRIBUTE:
+ case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_DISTRIBUTE_SIMD:
case EXEC_OMP_DO:
+ case EXEC_OMP_DO_SIMD:
case EXEC_OMP_FLUSH:
case EXEC_OMP_MASTER:
case EXEC_OMP_ORDERED:
case EXEC_OMP_PARALLEL:
case EXEC_OMP_PARALLEL_DO:
+ case EXEC_OMP_PARALLEL_DO_SIMD:
case EXEC_OMP_PARALLEL_SECTIONS:
case EXEC_OMP_PARALLEL_WORKSHARE:
case EXEC_OMP_SECTIONS:
+ case EXEC_OMP_SIMD:
case EXEC_OMP_SINGLE:
+ case EXEC_OMP_TARGET:
+ case EXEC_OMP_TARGET_DATA:
+ case EXEC_OMP_TARGET_TEAMS:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
+ case EXEC_OMP_TARGET_UPDATE:
case EXEC_OMP_TASK:
+ case EXEC_OMP_TASKGROUP:
case EXEC_OMP_TASKWAIT:
case EXEC_OMP_TASKYIELD:
+ case EXEC_OMP_TEAMS:
+ case EXEC_OMP_TEAMS_DISTRIBUTE:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
+ case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
case EXEC_OMP_WORKSHARE:
res = gfc_trans_omp_directive (code);
break;
diff --git a/gcc-4.9/gcc/fortran/trans.h b/gcc-4.9/gcc/fortran/trans.h
index 7809bb05b..b55460f4d 100644
--- a/gcc-4.9/gcc/fortran/trans.h
+++ b/gcc-4.9/gcc/fortran/trans.h
@@ -547,6 +547,9 @@ void gfc_set_decl_assembler_name (tree, tree);
/* Returns true if a variable of specified size should go on the stack. */
int gfc_can_put_var_on_stack (tree);
+/* Set GFC_DECL_SCALAR_* on decl from sym if needed. */
+void gfc_finish_decl_attrs (tree, symbol_attribute *);
+
/* Allocate the lang-specific part of a decl node. */
void gfc_allocate_lang_decl (tree);
@@ -666,7 +669,9 @@ tree gfc_omp_report_decl (tree);
tree gfc_omp_clause_default_ctor (tree, tree, tree);
tree gfc_omp_clause_copy_ctor (tree, tree, tree);
tree gfc_omp_clause_assign_op (tree, tree, tree);
+tree gfc_omp_clause_linear_ctor (tree, tree, tree, tree);
tree gfc_omp_clause_dtor (tree, tree);
+void gfc_omp_finish_clause (tree, gimple_seq *);
bool gfc_omp_disregard_value_expr (tree, bool);
bool gfc_omp_private_debug_clause (tree, bool);
bool gfc_omp_private_outer_ref (tree);
@@ -824,6 +829,8 @@ struct GTY((variable_size)) lang_decl {
tree span;
/* For assumed-shape coarrays. */
tree token, caf_offset;
+ unsigned int scalar_allocatable : 1;
+ unsigned int scalar_pointer : 1;
};
@@ -834,6 +841,14 @@ struct GTY((variable_size)) lang_decl {
#define GFC_DECL_CAF_OFFSET(node) DECL_LANG_SPECIFIC(node)->caf_offset
#define GFC_DECL_SAVED_DESCRIPTOR(node) \
(DECL_LANG_SPECIFIC(node)->saved_descriptor)
+#define GFC_DECL_SCALAR_ALLOCATABLE(node) \
+ (DECL_LANG_SPECIFIC (node)->scalar_allocatable)
+#define GFC_DECL_SCALAR_POINTER(node) \
+ (DECL_LANG_SPECIFIC (node)->scalar_pointer)
+#define GFC_DECL_GET_SCALAR_ALLOCATABLE(node) \
+ (DECL_LANG_SPECIFIC (node) ? GFC_DECL_SCALAR_ALLOCATABLE (node) : 0)
+#define GFC_DECL_GET_SCALAR_POINTER(node) \
+ (DECL_LANG_SPECIFIC (node) ? GFC_DECL_SCALAR_POINTER (node) : 0)
#define GFC_DECL_PACKED_ARRAY(node) DECL_LANG_FLAG_0(node)
#define GFC_DECL_PARTIAL_PACKED_ARRAY(node) DECL_LANG_FLAG_1(node)
#define GFC_DECL_ASSIGN(node) DECL_LANG_FLAG_2(node)
@@ -841,14 +856,13 @@ struct GTY((variable_size)) lang_decl {
#define GFC_DECL_CRAY_POINTEE(node) DECL_LANG_FLAG_4(node)
#define GFC_DECL_RESULT(node) DECL_LANG_FLAG_5(node)
#define GFC_DECL_SUBREF_ARRAY_P(node) DECL_LANG_FLAG_6(node)
+#define GFC_DECL_ASSOCIATE_VAR_P(node) DECL_LANG_FLAG_7(node)
#define GFC_DECL_CLASS(node) DECL_LANG_FLAG_8(node)
/* An array descriptor. */
#define GFC_DESCRIPTOR_TYPE_P(node) TYPE_LANG_FLAG_1(node)
/* An array without a descriptor. */
#define GFC_ARRAY_TYPE_P(node) TYPE_LANG_FLAG_2(node)
-/* Fortran POINTER type. */
-#define GFC_POINTER_TYPE_P(node) TYPE_LANG_FLAG_3(node)
/* Fortran CLASS type. */
#define GFC_CLASS_TYPE_P(node) TYPE_LANG_FLAG_4(node)
/* The GFC_TYPE_ARRAY_* members are present in both descriptor and
diff --git a/gcc-4.9/gcc/function.c b/gcc-4.9/gcc/function.c
index a61e4757c..e41d3d7a4 100644
--- a/gcc-4.9/gcc/function.c
+++ b/gcc-4.9/gcc/function.c
@@ -61,6 +61,7 @@ along with GCC; see the file COPYING3. If not see
#include "tree-pass.h"
#include "predict.h"
#include "df.h"
+#include "l-ipo.h"
#include "params.h"
#include "bb-reorder.h"
@@ -1347,9 +1348,13 @@ static int cfa_offset;
#define STACK_POINTER_OFFSET 0
#endif
+#if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
+#define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
+#endif
+
/* If not defined, pick an appropriate default for the offset of dynamically
allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
- REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
+ INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
#ifndef STACK_DYNAMIC_OFFSET
@@ -1361,12 +1366,12 @@ static int cfa_offset;
`crtl->outgoing_args_size'. Nevertheless, we must allow
for it when allocating stack dynamic objects. */
-#if defined(REG_PARM_STACK_SPACE)
+#ifdef INCOMING_REG_PARM_STACK_SPACE
#define STACK_DYNAMIC_OFFSET(FNDECL) \
((ACCUMULATE_OUTGOING_ARGS \
? (crtl->outgoing_args_size \
+ (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
- : REG_PARM_STACK_SPACE (FNDECL))) \
+ : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
: 0) + (STACK_POINTER_OFFSET))
#else
#define STACK_DYNAMIC_OFFSET(FNDECL) \
@@ -2221,8 +2226,9 @@ assign_parms_initialize_all (struct assign_parm_data_all *all)
#endif
all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
-#ifdef REG_PARM_STACK_SPACE
- all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
+#ifdef INCOMING_REG_PARM_STACK_SPACE
+ all->reg_parm_stack_space
+ = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
#endif
}
@@ -4465,12 +4471,29 @@ pop_cfun (void)
}
/* Return value of funcdef and increase it. */
+
int
get_next_funcdef_no (void)
{
return funcdef_no++;
}
+/* Restore funcdef_no to FN. */
+
+void
+set_funcdef_no (int fn)
+{
+ funcdef_no = fn;
+}
+
+/* Reset the funcdef number. */
+
+void
+reset_funcdef_no (void)
+{
+ funcdef_no = 0;
+}
+
/* Return value of funcdef. */
int
get_last_funcdef_no (void)
@@ -4512,6 +4535,7 @@ allocate_struct_function (tree fndecl, bool abstract_p)
DECL_STRUCT_FUNCTION (fndecl) = cfun;
cfun->decl = fndecl;
current_function_funcdef_no = get_next_funcdef_no ();
+ cfun->module_id = current_module_id;
}
invoke_set_current_function_hook (fndecl);
@@ -4536,6 +4560,7 @@ allocate_struct_function (tree fndecl, bool abstract_p)
/* ??? This could be set on a per-function basis by the front-end
but is this worth the hassle? */
cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
+ cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
}
}
diff --git a/gcc-4.9/gcc/function.h b/gcc-4.9/gcc/function.h
index 38a0fc468..23ac15027 100644
--- a/gcc-4.9/gcc/function.h
+++ b/gcc-4.9/gcc/function.h
@@ -574,6 +574,9 @@ struct GTY(()) function {
/* Last statement uid. */
int last_stmt_uid;
+ /* Function's module id. */
+ unsigned module_id;
+
/* Function sequence number for profiling, debugging, etc. */
int funcdef_no;
@@ -672,6 +675,46 @@ struct GTY(()) function {
unsigned int tail_call_marked : 1;
};
+#if 0
+#define EXTRACT_MODULE_ID_FROM_GLOBAL_ID(gid) (unsigned)(((gid) >> FUNC_ID_WIDTH) & FUNC_ID_MASK)
+#define EXTRACT_FUNC_ID_FROM_GLOBAL_ID(gid) (unsigned)((gid) & FUNC_ID_MASK)
+#define FUNC_DECL_MODULE_ID(func) EXTRACT_MODULE_ID_FROM_GLOBAL_ID ((func)->funcdef_no + 1)
+#define FUNC_DECL_FUNC_ID(func) EXTRACT_FUNC_ID_FROM_GLOBAL_ID ((func)->funcdef_no + 1)
+#define FUNC_DECL_GLOBAL_ID(func) ((func)->funcdef_no + 1)
+#define GEN_FUNC_GLOBAL_ID(m,f) ((((HOST_WIDE_INT) (m)) << FUNC_ID_WIDTH) | (f))
+#endif
+
+/* The bit width of function id in the global function id used
+ in LIPO. */
+#define FUNC_ID_WIDTH HOST_BITS_PER_WIDEST_INT / 2
+/* The mask to extract function id from the global function id. */
+#define FUNC_ID_MASK ((1ll << FUNC_ID_WIDTH) - 1)
+/* Macro to extract module id from global function id GID. */
+#define EXTRACT_MODULE_ID_FROM_GLOBAL_ID(gid) (unsigned)(((gid) >>\
+ FUNC_ID_WIDTH) & FUNC_ID_MASK)
+/* Macro to extract function id from global function id GID. */
+#define EXTRACT_FUNC_ID_FROM_GLOBAL_ID(gid) (unsigned)((gid) & FUNC_ID_MASK)
+/* Macro to generate a global function id from module id M and
+ function id F. */
+#define GEN_FUNC_GLOBAL_ID(m,f) ((((HOST_WIDEST_INT) (m)) << FUNC_ID_WIDTH)\
+ | (f))
+/* Access macro for module_id field of function FUNC. */
+#define FUNC_DECL_MODULE_ID(func) ((func)->module_id)
+/* Access macro for funcdef_no field of function FUNC. */
+#define FUNC_DECL_FUNC_ID(func) ((func)->funcdef_no + 1)
+/* Macro to compute global function id for FUNC. */
+#define FUNC_DECL_GLOBAL_ID(func) \
+ GEN_FUNC_GLOBAL_ID (FUNC_DECL_MODULE_ID (func), FUNC_DECL_FUNC_ID (func))
+#if FUNC_ID_WIDTH == 16
+/* 32 bit wide unique id used for asm label (limit: 30k modules,
+ 128k funcs per module. */
+#define FUNC_LABEL_ID(func) ((FUNC_DECL_MODULE_ID (func) << 18) +\
+ (func)->funcdef_no)
+#else
+#define FUNC_LABEL_ID(func) (((unsigned long)(FUNC_DECL_MODULE_ID (func)) << 32) +\
+ (func)->funcdef_no)
+#endif
+
/* Add the decl D to the local_decls list of FUN. */
static inline void
@@ -809,6 +852,9 @@ extern void used_types_insert (tree);
extern int get_next_funcdef_no (void);
extern int get_last_funcdef_no (void);
+extern void reset_funcdef_no (void);
+extern void set_funcdef_no (int);
+
#ifdef HAVE_simple_return
extern bool requires_stack_frame_p (rtx, HARD_REG_SET, HARD_REG_SET);
#endif
diff --git a/gcc-4.9/gcc/gcc.c b/gcc-4.9/gcc/gcc.c
index 4becac64a..efca49bfb 100644
--- a/gcc-4.9/gcc/gcc.c
+++ b/gcc-4.9/gcc/gcc.c
@@ -759,6 +759,9 @@ proper position among the other output files. */
%{!fsyntax-only:%{!c:%{!M:%{!MM:%{!E:%{!S:\
%(linker) " \
LINK_PLUGIN_SPEC \
+ "%{freorder-functions=*: \
+ -plugin %(func_reorder_linker_plugin_file) \
+ -plugin-opt=%(func_reorder_linker_plugin_opt)}" \
"%{flto|flto=*:%<fcompare-debug*} \
%{flto} %{flto=*} %l " LINK_PIE_SPEC \
"%{fuse-ld=*:-fuse-ld=%*}\
@@ -811,6 +814,8 @@ static const char *endfile_spec = ENDFILE_SPEC;
static const char *startfile_spec = STARTFILE_SPEC;
static const char *linker_name_spec = LINKER_NAME;
static const char *linker_plugin_file_spec = "";
+static const char *func_reorder_linker_plugin_file_spec = "";
+static const char *func_reorder_linker_plugin_opt = "";
static const char *lto_wrapper_spec = "";
static const char *lto_gcc_spec = "";
static const char *link_command_spec = LINK_COMMAND_SPEC;
@@ -876,7 +881,7 @@ static const char *cc1_options =
%{-help=*:--help=%*}\
%{!fsyntax-only:%{S:%W{o*}%{!o*:-o %b.s}}}\
%{fsyntax-only:-o %j} %{-param*}\
- %{coverage:-fprofile-arcs -ftest-coverage}";
+ %{coverage:-fprofile-arcs -ftest-coverage -fno-early-inlining}";
static const char *asm_options =
"%{-target-help:%:print-asm-header()} "
@@ -1309,6 +1314,10 @@ static struct spec_list static_specs[] =
INIT_STATIC_SPEC ("multilib_reuse", &multilib_reuse),
INIT_STATIC_SPEC ("linker", &linker_name_spec),
INIT_STATIC_SPEC ("linker_plugin_file", &linker_plugin_file_spec),
+ INIT_STATIC_SPEC ("func_reorder_linker_plugin_file",
+ &func_reorder_linker_plugin_file_spec),
+ INIT_STATIC_SPEC ("func_reorder_linker_plugin_opt",
+ &func_reorder_linker_plugin_opt),
INIT_STATIC_SPEC ("lto_wrapper", &lto_wrapper_spec),
INIT_STATIC_SPEC ("lto_gcc", &lto_gcc_spec),
INIT_STATIC_SPEC ("link_libgcc", &link_libgcc_spec),
@@ -3105,10 +3114,11 @@ display_help (void)
fputs (_(" -Xassembler <arg> Pass <arg> on to the assembler\n"), stdout);
fputs (_(" -Xpreprocessor <arg> Pass <arg> on to the preprocessor\n"), stdout);
fputs (_(" -Xlinker <arg> Pass <arg> on to the linker\n"), stdout);
+ fputs (_(" -Xclang-only=<arg> Ignore <arg>\n"), stdout);
fputs (_(" -save-temps Do not delete intermediate files\n"), stdout);
fputs (_(" -save-temps=<arg> Do not delete intermediate files\n"), stdout);
fputs (_("\
- -no-canonical-prefixes Do not canonicalize paths when building relative\n\
+ -[no-]canonical-prefixes Specify the path canonicalization for relative\n\
prefixes to other gcc components\n"), stdout);
fputs (_(" -pipe Use pipes rather than intermediate files\n"), stdout);
fputs (_(" -time Time the execution of each subprocess\n"), stdout);
@@ -3542,6 +3552,7 @@ driver_handle_option (struct gcc_options *opts,
decoded->orig_option_with_args_text);
break;
+ case OPT_canonical_prefixes:
case OPT_no_canonical_prefixes:
/* Already handled as a special case, so ignored here. */
do_save = false;
@@ -3726,20 +3737,25 @@ process_command (unsigned int decoded_options_count,
}
}
- /* Handle any -no-canonical-prefixes flag early, to assign the function
+ /* Handle any -[no-]canonical-prefixes flags early, to assign the function
that builds relative prefixes. This function creates default search
paths that are needed later in normal option handling. */
for (j = 1; j < decoded_options_count; j++)
{
- if (decoded_options[j].opt_index == OPT_no_canonical_prefixes)
- {
- get_relative_prefix = make_relative_prefix_ignore_links;
- break;
- }
+ if (decoded_options[j].opt_index == OPT_canonical_prefixes)
+ get_relative_prefix = make_relative_prefix;
+ else if (decoded_options[j].opt_index == OPT_no_canonical_prefixes)
+ get_relative_prefix = make_relative_prefix_ignore_links;
}
if (! get_relative_prefix)
- get_relative_prefix = make_relative_prefix;
+ {
+#ifdef ENABLE_CANONICAL_PREFIXES
+ get_relative_prefix = make_relative_prefix;
+#else
+ get_relative_prefix = make_relative_prefix_ignore_links;
+#endif
+ }
/* Set up the default search paths. If there is no GCC_EXEC_PREFIX,
see if we can create it from the pathname specified in
@@ -6310,6 +6326,51 @@ compare_files (char *cmpfile[])
return ret;
}
+/* Set func_reorder_linker_plugin_file_spec and func_reorder_linker_plugin_opt
+ here. This is the linker plugin to do global function reordering and is
+ enabled with -freorder-functions=*. */
+
+static void
+set_func_reorder_linker_plugin_spec (void)
+{
+ int i;
+ const char *plugin_opt_none = "group=none";
+ const char *plugin_opt_callgraph = "group=callgraph";
+
+ /* Find the linker plugin that does function ordering. */
+ func_reorder_linker_plugin_file_spec = find_a_file (&exec_prefixes,
+ FRPLUGINSONAME, R_OK, false);
+
+ if (!func_reorder_linker_plugin_file_spec)
+ fatal_error ("-freorder-functions=*, but "
+ FRPLUGINSONAME " file not found");
+
+ func_reorder_linker_plugin_opt = plugin_opt_none;
+
+ /* Set linker plugin options here. Option ordering is also checked here.
+ -fno-reorder-functions or -freorder-functions should disable any
+ previous -freorder-functions=*. */
+ for (i = 0; (int) i < n_switches; i++)
+ {
+ /* Check for match with "-freorder-functions=callgraph". */
+ if (func_reorder_linker_plugin_opt != plugin_opt_callgraph
+ && !strcmp (switches[i].part1, "freorder-functions=callgraph"))
+ {
+ func_reorder_linker_plugin_opt = plugin_opt_callgraph;
+ continue;
+ }
+ /* Set option to none if it matches -fno-reorder-functions
+ or -freorder-functions */
+ if (func_reorder_linker_plugin_opt != plugin_opt_none
+ && (!strcmp (switches[i].part1, "fno-reorder-functions")
+ || !strcmp (switches[i].part1, "freorder-functions")))
+ {
+ func_reorder_linker_plugin_opt = plugin_opt_none;
+ continue;
+ }
+ }
+}
+
extern int main (int, char **);
int
@@ -7116,6 +7177,8 @@ warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.\n\n"
#endif
#endif
+ const char *freorder_functions_ = "freorder-functions=";
+
/* We'll use ld if we can't find collect2. */
if (! strcmp (linker_name_spec, "collect2"))
{
@@ -7145,6 +7208,12 @@ warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.\n\n"
}
#endif
lto_gcc_spec = argv[0];
+
+ /* The function reordering linker plugin will be loaded if the option
+ -freorder-functions= is present in the command-line. */
+ if (switch_matches (freorder_functions_,
+ freorder_functions_ + strlen (freorder_functions_), 1))
+ set_func_reorder_linker_plugin_spec ();
}
/* Rebuild the COMPILER_PATH and LIBRARY_PATH environment variables
diff --git a/gcc-4.9/gcc/gcov-counter.def b/gcc-4.9/gcc/gcov-counter.def
new file mode 100644
index 000000000..e847f05d5
--- /dev/null
+++ b/gcc-4.9/gcc/gcov-counter.def
@@ -0,0 +1,60 @@
+/* Definitions for the gcov counters in the GNU compiler.
+ Copyright (C) 2001-2014 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* Before including this file, define a macro:
+
+ DEF_GCOV_COUNTER(COUNTER, NAME, FN_TYPE)
+
+ This macro will be expanded to all supported gcov counters, their
+ names, or the type of handler functions. FN_TYPE will be
+ expanded to a handler function, like in gcov_merge, it is
+ expanded to __gcov_merge ## FN_TYPE. */
+
+/* Arc transitions. */
+DEF_GCOV_COUNTER(GCOV_COUNTER_ARCS, "arcs", _add)
+
+/* Histogram of value inside an interval. */
+DEF_GCOV_COUNTER(GCOV_COUNTER_V_INTERVAL, "interval", _add)
+
+/* Histogram of exact power2 logarithm of a value. */
+DEF_GCOV_COUNTER(GCOV_COUNTER_V_POW2, "pow2", _add)
+
+/* The most common value of expression. */
+DEF_GCOV_COUNTER(GCOV_COUNTER_V_SINGLE, "single", _single)
+
+/* The most common difference between consecutive values of expression. */
+DEF_GCOV_COUNTER(GCOV_COUNTER_V_DELTA, "delta", _delta)
+
+/* The most common indirect address. */
+DEF_GCOV_COUNTER(GCOV_COUNTER_V_INDIR, "indirect_call", _single)
+
+/* Compute average value passed to the counter. */
+DEF_GCOV_COUNTER(GCOV_COUNTER_AVERAGE, "average", _add)
+
+/* IOR of the all values passed to counter. */
+DEF_GCOV_COUNTER(GCOV_COUNTER_IOR, "ior", _ior)
+
+/* Top N value tracking for indirect calls */
+DEF_GCOV_COUNTER(GCOV_COUNTER_ICALL_TOPNV, "indirect_call_topn", _icall_topn)
+
+/* Time profile collecting first run of a function */
+DEF_GCOV_COUNTER(GCOV_TIME_PROFILER, "time_profiler", _time_profile)
+
+/* Top N value tracking for indirect calls */
+DEF_GCOV_COUNTER(GCOV_COUNTER_DIRECT_CALL, "direct_call", _dc)
diff --git a/gcc-4.9/gcc/gcov-dump.c b/gcc-4.9/gcc/gcov-dump.c
index f21878dd1..7df649466 100644
--- a/gcc-4.9/gcc/gcov-dump.c
+++ b/gcc-4.9/gcc/gcov-dump.c
@@ -29,6 +29,7 @@ along with Gcov; see the file COPYING3. If not see
#include "gcov-io.c"
static void dump_gcov_file (const char *);
+static int dump_aux_modules (const char *);
static void print_prefix (const char *, unsigned, gcov_position_t);
static void print_usage (void);
static void print_version (void);
@@ -38,6 +39,7 @@ static void tag_arcs (const char *, unsigned, unsigned);
static void tag_lines (const char *, unsigned, unsigned);
static void tag_counters (const char *, unsigned, unsigned);
static void tag_summary (const char *, unsigned, unsigned);
+static void tag_module_info (const char *, unsigned, unsigned);
static void dump_working_sets (const char *filename ATTRIBUTE_UNUSED,
const struct gcov_ctr_summary *summary);
extern int main (int, char **);
@@ -51,6 +53,7 @@ typedef struct tag_format
static int flag_dump_contents = 0;
static int flag_dump_positions = 0;
+static int flag_dump_aux_modules_only = 0;
static int flag_dump_working_sets = 0;
static const struct option options[] =
@@ -74,6 +77,7 @@ static const tag_format_t tag_table[] =
{GCOV_TAG_LINES, "LINES", tag_lines},
{GCOV_TAG_OBJECT_SUMMARY, "OBJECT_SUMMARY", tag_summary},
{GCOV_TAG_PROGRAM_SUMMARY, "PROGRAM_SUMMARY", tag_summary},
+ {GCOV_TAG_MODULE_INFO, "MODULE INFO", tag_module_info},
{0, NULL, NULL}
};
@@ -97,7 +101,7 @@ main (int argc ATTRIBUTE_UNUSED, char **argv)
diagnostic_initialize (global_dc, 0);
- while ((opt = getopt_long (argc, argv, "hlpvw", options, NULL)) != -1)
+ while ((opt = getopt_long (argc, argv, "hlpvxw", options, NULL)) != -1)
{
switch (opt)
{
@@ -113,6 +117,9 @@ main (int argc ATTRIBUTE_UNUSED, char **argv)
case 'p':
flag_dump_positions = 1;
break;
+ case 'x':
+ flag_dump_aux_modules_only = 1;
+ break;
case 'w':
flag_dump_working_sets = 1;
break;
@@ -121,6 +128,13 @@ main (int argc ATTRIBUTE_UNUSED, char **argv)
}
}
+ if (flag_dump_aux_modules_only)
+ {
+ while (argv[optind])
+ if (dump_aux_modules (argv[optind++]))
+ return 1;
+ }
+ else
while (argv[optind])
dump_gcov_file (argv[optind++]);
return 0;
@@ -135,6 +149,7 @@ print_usage (void)
printf (" -v, --version Print version number\n");
printf (" -l, --long Dump record contents too\n");
printf (" -p, --positions Dump record positions\n");
+ printf (" -x Dump names of auxiliary modules only\n");
printf (" -w, --working-sets Dump working set computed from summary\n");
}
@@ -159,6 +174,52 @@ print_prefix (const char *filename, unsigned depth, gcov_position_t position)
printf ("%.*s", (int) depth, prefix);
}
+/* Dump auxiliary module information for gcda file with
+ name FILENAME. */
+
+static int
+dump_aux_modules (const char *filename)
+{
+ if (!gcov_open (filename, 1))
+ {
+ fprintf (stderr, "%s:cannot open\n", filename);
+ return 1;
+ }
+
+ /* magic */
+ gcov_read_unsigned ();
+ /* version */
+ gcov_read_unsigned ();
+ /* stamp */
+ gcov_read_unsigned ();
+
+ while (1)
+ {
+ gcov_position_t base;
+ unsigned tag, length;
+ int error;
+
+ tag = gcov_read_unsigned ();
+ if (!tag)
+ break;
+ length = gcov_read_unsigned ();
+ base = gcov_position ();
+ if (tag == GCOV_TAG_MODULE_INFO)
+ tag_module_info (filename, tag, length);
+ gcov_sync (base, length);
+ if ((error = gcov_is_error ()))
+ {
+ printf (error < 0 ? "%s:counter overflow at %lu\n" :
+ "%s:read error at %lu\n", filename,
+ (long unsigned) gcov_position ());
+ return 1;
+ }
+ }
+
+ gcov_close ();
+ return 0;
+}
+
static void
dump_gcov_file (const char *filename)
{
@@ -422,7 +483,11 @@ static void
tag_counters (const char *filename ATTRIBUTE_UNUSED,
unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
{
- static const char *const counter_names[] = GCOV_COUNTER_NAMES;
+#define DEF_GCOV_COUNTER(COUNTER, NAME, MERGE_FN) NAME,
+ static const char *const counter_names[] = {
+#include "gcov-counter.def"
+};
+#undef DEF_GCOV_COUNTER
unsigned n_counts = GCOV_TAG_COUNTER_NUM (length);
printf (" %s %u counts",
@@ -498,6 +563,41 @@ tag_summary (const char *filename ATTRIBUTE_UNUSED,
}
static void
+tag_module_info (const char *filename ATTRIBUTE_UNUSED,
+ unsigned tag ATTRIBUTE_UNUSED, unsigned length)
+{
+ struct gcov_module_info* mod_info;
+
+ mod_info = (struct gcov_module_info *)
+ alloca ((length + 2) * sizeof (gcov_unsigned_t));
+ gcov_read_module_info (mod_info, length);
+ if (flag_dump_aux_modules_only)
+ {
+ if (!mod_info->is_primary)
+ printf ("%s\n", mod_info->source_filename);
+ }
+ else
+ {
+ const char *primary_suffix =
+ mod_info->is_primary ? "primary" : "auxiliary";
+ const char *export_suffix = "";
+ const char *include_all_suffix = "";
+
+ if (mod_info->is_primary)
+ {
+ if (MODULE_EXPORTED_FLAG (mod_info))
+ export_suffix = ",exported";
+ if (MODULE_INCLUDE_ALL_AUX_FLAG (mod_info))
+ include_all_suffix =",include_all";
+ }
+
+ printf (": %s (ident=%u) [%s%s%s]", mod_info->source_filename,
+ mod_info->ident, primary_suffix, export_suffix,
+ include_all_suffix);
+ }
+}
+
+static void
dump_working_sets (const char *filename ATTRIBUTE_UNUSED,
const struct gcov_ctr_summary *summary)
{
diff --git a/gcc-4.9/gcc/gcov-io.c b/gcc-4.9/gcc/gcov-io.c
index 5ef82f683..f226cbf0e 100644
--- a/gcc-4.9/gcc/gcov-io.c
+++ b/gcc-4.9/gcc/gcov-io.c
@@ -64,15 +64,22 @@ GCOV_LINKAGE struct gcov_var
} gcov_var;
/* Save the current position in the gcov file. */
-static inline gcov_position_t
+/* We need to expose this function when compiling for gcov-tool. */
+#ifndef IN_GCOV_TOOL
+static inline
+#endif
+gcov_position_t
gcov_position (void)
{
- gcc_assert (gcov_var.mode > 0);
return gcov_var.start + gcov_var.offset;
}
/* Return nonzero if the error flag is set. */
-static inline int
+/* We need to expose this function when compiling for gcov-tool. */
+#ifndef IN_GCOV_TOOL
+static inline
+#endif
+int
gcov_is_error (void)
{
return gcov_var.file ? gcov_var.error : 1;
@@ -560,11 +567,13 @@ gcov_read_counter (void)
return value;
}
+/* We need to expose the below function when compiling for gcov-tool. */
+
+#if !IN_LIBGCOV || defined (IN_GCOV_TOOL)
/* Read string from coverage file. Returns a pointer to a static
buffer, or NULL on empty string. You must copy the string before
calling another gcov function. */
-#if !IN_LIBGCOV
GCOV_LINKAGE const char *
gcov_read_string (void)
{
@@ -641,7 +650,62 @@ gcov_read_summary (struct gcov_summary *summary)
}
}
-#if !IN_LIBGCOV
+#if (!IN_LIBGCOV && IN_GCOV != 1) || defined (IN_GCOV_TOOL)
+/* Read LEN words (unsigned type) and construct MOD_INFO. */
+
+GCOV_LINKAGE void
+gcov_read_module_info (struct gcov_module_info *mod_info,
+ gcov_unsigned_t len)
+{
+ gcov_unsigned_t src_filename_len, filename_len, i, j, num_strings;
+ mod_info->ident = gcov_read_unsigned ();
+ mod_info->is_primary = gcov_read_unsigned ();
+ mod_info->flags = gcov_read_unsigned ();
+ mod_info->lang = gcov_read_unsigned ();
+ mod_info->ggc_memory = gcov_read_unsigned ();
+ mod_info->num_quote_paths = gcov_read_unsigned ();
+ mod_info->num_bracket_paths = gcov_read_unsigned ();
+ mod_info->num_system_paths = gcov_read_unsigned ();
+ mod_info->num_cpp_defines = gcov_read_unsigned ();
+ mod_info->num_cpp_includes = gcov_read_unsigned ();
+ mod_info->num_cl_args = gcov_read_unsigned ();
+ len -= 11;
+
+ filename_len = gcov_read_unsigned ();
+ mod_info->da_filename = (char *) xmalloc (filename_len *
+ sizeof (gcov_unsigned_t));
+ for (i = 0; i < filename_len; i++)
+ ((gcov_unsigned_t *) mod_info->da_filename)[i] = gcov_read_unsigned ();
+ len -= (filename_len + 1);
+
+ src_filename_len = gcov_read_unsigned ();
+ mod_info->source_filename = (char *) xmalloc (src_filename_len *
+ sizeof (gcov_unsigned_t));
+ for (i = 0; i < src_filename_len; i++)
+ ((gcov_unsigned_t *) mod_info->source_filename)[i] = gcov_read_unsigned ();
+ len -= (src_filename_len + 1);
+
+ num_strings = mod_info->num_quote_paths + mod_info->num_bracket_paths
+ + mod_info->num_system_paths
+ + mod_info->num_cpp_defines + mod_info->num_cpp_includes
+ + mod_info->num_cl_args;
+ for (j = 0; j < num_strings; j++)
+ {
+ gcov_unsigned_t string_len = gcov_read_unsigned ();
+ mod_info->string_array[j] =
+ (char *) xmalloc (string_len * sizeof (gcov_unsigned_t));
+ for (i = 0; i < string_len; i++)
+ ((gcov_unsigned_t *) mod_info->string_array[j])[i] =
+ gcov_read_unsigned ();
+ len -= (string_len + 1);
+ }
+ gcc_assert (!len);
+}
+#endif
+
+/* We need to expose the below function when compiling for gcov-tool. */
+
+#if !IN_LIBGCOV || defined (IN_GCOV_TOOL)
/* Reset to a known position. BASE should have been obtained from
gcov_position, LENGTH should be a record length. */
@@ -673,6 +737,22 @@ gcov_seek (gcov_position_t base)
fseek (gcov_var.file, base << 2, SEEK_SET);
gcov_var.start = ftell (gcov_var.file) >> 2;
}
+
+/* Truncate the gcov file at the current position. */
+
+GCOV_LINKAGE void
+gcov_truncate (void)
+{
+ long offs;
+ int filenum;
+ gcc_assert (gcov_var.mode < 0);
+ if (gcov_var.offset)
+ gcov_write_block (gcov_var.offset);
+ offs = ftell (gcov_var.file);
+ filenum = fileno (gcov_var.file);
+ if (offs == -1 || filenum == -1 || ftruncate (filenum, offs))
+ gcov_var.error = 1;
+}
#endif
#if IN_GCOV > 0
diff --git a/gcc-4.9/gcc/gcov-io.h b/gcc-4.9/gcc/gcov-io.h
index cbf95cfc5..50ffa557a 100644
--- a/gcc-4.9/gcc/gcov-io.h
+++ b/gcc-4.9/gcc/gcov-io.h
@@ -169,6 +169,19 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
typedef unsigned gcov_unsigned_t;
typedef unsigned gcov_position_t;
+
+#if LONG_LONG_TYPE_SIZE > 32
+#define GCOV_TYPE_ATOMIC_FETCH_ADD_FN __atomic_fetch_add_8
+#define GCOV_TYPE_ATOMIC_FETCH_ADD BUILT_IN_ATOMIC_FETCH_ADD_8
+#else
+#define GCOV_TYPE_ATOMIC_FETCH_ADD_FN __atomic_fetch_add_4
+#define GCOV_TYPE_ATOMIC_FETCH_ADD BUILT_IN_ATOMIC_FETCH_ADD_4
+#endif
+#define PROFILE_GEN_EDGE_ATOMIC (flag_profile_gen_atomic == 1 || \
+ flag_profile_gen_atomic == 3)
+#define PROFILE_GEN_VALUE_ATOMIC (flag_profile_gen_atomic == 2 || \
+ flag_profile_gen_atomic == 3)
+
/* gcov_type is typedef'd elsewhere for the compiler */
#if IN_GCOV
#define GCOV_LINKAGE static
@@ -177,6 +190,13 @@ typedef unsigned HOST_WIDEST_INT gcov_type_unsigned;
#if IN_GCOV > 0
#include <sys/types.h>
#endif
+
+#define FUNC_ID_WIDTH HOST_BITS_PER_WIDE_INT/2
+#define FUNC_ID_MASK ((1L << FUNC_ID_WIDTH) - 1)
+#define EXTRACT_MODULE_ID_FROM_GLOBAL_ID(gid) (unsigned)(((gid) >> FUNC_ID_WIDTH) & FUNC_ID_MASK)
+#define EXTRACT_FUNC_ID_FROM_GLOBAL_ID(gid) (unsigned)((gid) & FUNC_ID_MASK)
+#define FUNC_GLOBAL_ID(m,f) ((((HOST_WIDE_INT) (m)) << FUNC_ID_WIDTH) | (f)
+
#else /*!IN_GCOV */
#define GCOV_TYPE_SIZE (LONG_LONG_TYPE_SIZE > 32 ? 64 : 32)
#endif
@@ -237,52 +257,37 @@ typedef unsigned HOST_WIDEST_INT gcov_type_unsigned;
#define GCOV_TAG_PROGRAM_SUMMARY ((gcov_unsigned_t)0xa3000000)
#define GCOV_TAG_SUMMARY_LENGTH(NUM) \
(1 + GCOV_COUNTERS_SUMMABLE * (10 + 3 * 2) + (NUM) * 5)
-
+#define GCOV_TAG_MODULE_INFO ((gcov_unsigned_t)0xab000000)
+#define GCOV_TAG_AFDO_FILE_NAMES ((gcov_unsigned_t)0xaa000000)
+#define GCOV_TAG_AFDO_FUNCTION ((gcov_unsigned_t)0xac000000)
+#define GCOV_TAG_AFDO_MODULE_GROUPING ((gcov_unsigned_t)0xae000000)
+#define GCOV_TAG_AFDO_WORKING_SET ((gcov_unsigned_t)0xaf000000)
/* Counters that are collected. */
-#define GCOV_COUNTER_ARCS 0 /* Arc transitions. */
-#define GCOV_COUNTERS_SUMMABLE 1 /* Counters which can be
- summaried. */
-#define GCOV_FIRST_VALUE_COUNTER 1 /* The first of counters used for value
- profiling. They must form a consecutive
- interval and their order must match
- the order of HIST_TYPEs in
- value-prof.h. */
-#define GCOV_COUNTER_V_INTERVAL 1 /* Histogram of value inside an interval. */
-#define GCOV_COUNTER_V_POW2 2 /* Histogram of exact power2 logarithm
- of a value. */
-#define GCOV_COUNTER_V_SINGLE 3 /* The most common value of expression. */
-#define GCOV_COUNTER_V_DELTA 4 /* The most common difference between
- consecutive values of expression. */
-
-#define GCOV_COUNTER_V_INDIR 5 /* The most common indirect address */
-#define GCOV_COUNTER_AVERAGE 6 /* Compute average value passed to the
- counter. */
-#define GCOV_COUNTER_IOR 7 /* IOR of the all values passed to
- counter. */
-#define GCOV_TIME_PROFILER 8 /* Time profile collecting first run of a function */
-#define GCOV_LAST_VALUE_COUNTER 8 /* The last of counters used for value
- profiling. */
-#define GCOV_COUNTERS 9
+#define DEF_GCOV_COUNTER(COUNTER, NAME, MERGE_FN) COUNTER,
+enum {
+#include "gcov-counter.def"
+GCOV_COUNTERS
+};
+#undef DEF_GCOV_COUNTER
+
+/* Counters which can be summaried. */
+#define GCOV_COUNTERS_SUMMABLE (GCOV_COUNTER_ARCS + 1)
+
+/* The first of counters used for value profiling. They must form a
+ consecutive interval and their order must match the order of
+ HIST_TYPEs in value-prof.h. */
+#define GCOV_FIRST_VALUE_COUNTER GCOV_COUNTERS_SUMMABLE
+
+/* The last of counters used for value profiling. */
+#define GCOV_LAST_VALUE_COUNTER (GCOV_COUNTERS - 2)
/* Number of counters used for value profiling. */
#define GCOV_N_VALUE_COUNTERS \
(GCOV_LAST_VALUE_COUNTER - GCOV_FIRST_VALUE_COUNTER + 1)
- /* A list of human readable names of the counters */
-#define GCOV_COUNTER_NAMES {"arcs", "interval", "pow2", "single", \
- "delta", "indirect_call", "average", "ior", "time_profiler"}
-
- /* Names of merge functions for counters. */
-#define GCOV_MERGE_FUNCTIONS {"__gcov_merge_add", \
- "__gcov_merge_add", \
- "__gcov_merge_add", \
- "__gcov_merge_single", \
- "__gcov_merge_delta", \
- "__gcov_merge_single", \
- "__gcov_merge_add", \
- "__gcov_merge_ior", \
- "__gcov_merge_time_profile" }
+#define GCOV_ICALL_TOPN_VAL 2 /* Track two hottest callees */
+#define GCOV_ICALL_TOPN_NCOUNTS 9 /* The number of counter entries per icall callsite */
/* Convert a counter index to a tag. */
#define GCOV_TAG_FOR_COUNTER(COUNT) \
@@ -360,6 +365,53 @@ struct gcov_summary
struct gcov_ctr_summary ctrs[GCOV_COUNTERS_SUMMABLE];
};
+#define GCOV_MODULE_UNKNOWN_LANG 0
+#define GCOV_MODULE_C_LANG 1
+#define GCOV_MODULE_CPP_LANG 2
+#define GCOV_MODULE_FORT_LANG 3
+
+#define GCOV_MODULE_ASM_STMTS (1 << 16)
+#define GCOV_MODULE_LANG_MASK 0xffff
+
+/* Source module info. The data structure is used in
+ both runtime and profile-use phase. Make sure to allocate
+ enough space for the variable length member. */
+struct gcov_module_info
+{
+ gcov_unsigned_t ident;
+ gcov_unsigned_t is_primary; /* this is overloaded to mean two things:
+ (1) means FDO/LIPO in instrumented binary.
+ (2) means IS_PRIMARY in persistent file or
+ memory copy used in profile-use. */
+ gcov_unsigned_t flags; /* bit 0: is_exported,
+ bit 1: need to include all the auxiliary
+ modules in use compilation. */
+ gcov_unsigned_t lang; /* lower 16 bits encode the language, and the upper
+ 16 bits enocde other attributes, such as whether
+ any assembler is present in the source, etc. */
+ gcov_unsigned_t ggc_memory; /* memory needed for parsing in kb */
+ char *da_filename;
+ char *source_filename;
+ gcov_unsigned_t num_quote_paths;
+ gcov_unsigned_t num_bracket_paths;
+ gcov_unsigned_t num_system_paths;
+ gcov_unsigned_t num_cpp_defines;
+ gcov_unsigned_t num_cpp_includes;
+ gcov_unsigned_t num_cl_args;
+ char *string_array[1];
+};
+
+extern struct gcov_module_info **module_infos;
+extern unsigned primary_module_id;
+#define SET_MODULE_INCLUDE_ALL_AUX(modu) ((modu->flags |= 0x2))
+#define MODULE_INCLUDE_ALL_AUX_FLAG(modu) ((modu->flags & 0x2))
+#define SET_MODULE_EXPORTED(modu) ((modu->flags |= 0x1))
+#define MODULE_EXPORTED_FLAG(modu) ((modu->flags & 0x1))
+#define PRIMARY_MODULE_EXPORTED \
+ (MODULE_EXPORTED_FLAG (module_infos[0]) \
+ && !((module_infos[0]->lang & GCOV_MODULE_ASM_STMTS) \
+ && flag_ripa_disallow_asm_modules))
+
#if !defined(inhibit_libc)
/* Functions for reading and writing gcov files. In libgcov you can
@@ -386,6 +438,12 @@ GCOV_LINKAGE const char *gcov_read_string (void);
GCOV_LINKAGE void gcov_sync (gcov_position_t /*base*/,
gcov_unsigned_t /*length */);
+
+#if !IN_LIBGCOV && IN_GCOV != 1
+GCOV_LINKAGE void gcov_read_module_info (struct gcov_module_info *mod_info,
+ gcov_unsigned_t len) ATTRIBUTE_HIDDEN;
+#endif
+
#if !IN_GCOV
/* Available outside gcov */
GCOV_LINKAGE void gcov_write_unsigned (gcov_unsigned_t) ATTRIBUTE_HIDDEN;
diff --git a/gcc-4.9/gcc/gcov-tool.c b/gcc-4.9/gcc/gcov-tool.c
new file mode 100644
index 000000000..f15e6f33f
--- /dev/null
+++ b/gcc-4.9/gcc/gcov-tool.c
@@ -0,0 +1,832 @@
+/* Gcc offline profile processing tool support. */
+/* Copyright (C) 2014 Free Software Foundation, Inc.
+ Contributed by Rong Xu <xur@google.com>.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "intl.h"
+#include "hashtab.h"
+#include "diagnostic.h"
+#include "version.h"
+#include "gcov-io.h"
+#include <stdlib.h>
+#include <stdio.h>
+#include <sys/stat.h>
+#include <unistd.h>
+#if !defined(_WIN32)
+#include <ftw.h>
+#endif
+#include <getopt.h>
+#include "params.h"
+#include <string.h>
+
+extern int gcov_profile_merge (struct gcov_info*, struct gcov_info*, int, int);
+extern int gcov_profile_normalize (struct gcov_info*, gcov_type);
+extern int gcov_profile_scale (struct gcov_info*, float, int, int);
+extern struct gcov_info* gcov_read_profile_dir (const char*, int);
+extern void gcov_exit (void);
+extern void set_gcov_list (struct gcov_info *);
+extern void gcov_set_verbose (void);
+extern void set_use_existing_grouping (void);
+extern void set_use_modu_list (void);
+extern void lipo_set_substitute_string (const char *);
+
+#if !defined(_WIN32)
+/* The following defines are needed by dyn-ipa.c.
+ They will also be emitted by the compiler with -fprofile-generate,
+ which means this file cannot be compiled with -fprofile-generate
+ -- otherwise we get duplicated defintions.
+ Make the defines weak to link with other objects/libraries
+ that potentially compiled with -fprofile-generate. */
+
+__attribute__ ((weak)) gcov_unsigned_t __gcov_lipo_grouping_algorithm;
+__attribute__ ((weak)) gcov_unsigned_t __gcov_lipo_merge_modu_edges;
+__attribute__ ((weak)) gcov_unsigned_t __gcov_lipo_weak_inclusion;
+__attribute__ ((weak)) gcov_unsigned_t __gcov_lipo_max_mem;
+__attribute__ ((weak)) gcov_unsigned_t __gcov_lipo_comdat_algorithm;
+__attribute__ ((weak)) gcov_unsigned_t __gcov_lipo_random_group_size;
+__attribute__ ((weak)) gcov_unsigned_t __gcov_lipo_cutoff;
+__attribute__ ((weak)) gcov_unsigned_t __gcov_lipo_random_seed;
+__attribute__ ((weak)) gcov_unsigned_t __gcov_lipo_dump_cgraph;
+__attribute__ ((weak)) gcov_unsigned_t __gcov_lipo_propagate_scale;
+#else
+gcov_unsigned_t __gcov_lipo_grouping_algorithm;
+gcov_unsigned_t __gcov_lipo_merge_modu_edges;
+gcov_unsigned_t __gcov_lipo_weak_inclusion;
+gcov_unsigned_t __gcov_lipo_max_mem;
+gcov_unsigned_t __gcov_lipo_comdat_algorithm;
+gcov_unsigned_t __gcov_lipo_random_group_size;
+gcov_unsigned_t __gcov_lipo_cutoff;
+gcov_unsigned_t __gcov_lipo_random_seed;
+gcov_unsigned_t __gcov_lipo_dump_cgraph;
+gcov_unsigned_t __gcov_lipo_propagate_scale;
+#endif
+
+/* Set to verbose output mode. */
+static bool verbose;
+
+/* Remove file NAME if it has a gcda suffix. */
+
+#if !defined(_WIN32)
+static int
+unlink_gcda_file (const char *name,
+ const struct stat *status ATTRIBUTE_UNUSED,
+ int type ATTRIBUTE_UNUSED,
+ struct FTW *ftwbuf ATTRIBUTE_UNUSED)
+{
+ int ret = 0;
+ int len = strlen (name);
+ int len1 = strlen (GCOV_DATA_SUFFIX);
+
+ if (len > len1 && !strncmp (len -len1 + name, GCOV_DATA_SUFFIX, len1))
+ ret = remove (name);
+
+ if (ret)
+ fatal_error ("error in removing %s\n", name);
+
+ return ret;
+}
+#endif
+
+/* Remove the gcda files in PATH recursively. */
+
+static int
+unlink_profile_dir (const char *path)
+{
+#if !defined(_WIN32)
+ return nftw(path, unlink_gcda_file, 64, FTW_DEPTH | FTW_PHYS);
+#else
+ return 0;
+#endif
+}
+
+
+/* Output GCOV_INFO lists PROFILE to directory OUT. Note that
+ we will remove all the gcda files in OUT. */
+
+static void
+gcov_output_files (const char *out, struct gcov_info *profile)
+{
+ char *pwd;
+ int ret;
+
+ /* Try to make directory if it doesn't already exist. */
+ if (access (out, F_OK) == -1)
+ {
+ if (mkdir (out, S_IRWXU | S_IRWXG | S_IRWXO) == -1 && errno != EEXIST)
+ fatal_error ("Cannot make directory %s", out);
+ } else
+ unlink_profile_dir (out);
+
+ /* Output new profile. */
+ pwd = getcwd (NULL, 0);
+
+ if (pwd == NULL)
+ fatal_error ("Cannot get current directory name");
+
+ ret = chdir (out);
+ if (ret)
+ fatal_error ("Cannot change directory to %s", out);
+
+ set_gcov_list (profile);
+ gcov_exit ();
+
+ ret = chdir (pwd);
+ if (ret)
+ fatal_error ("Cannot change directory to %s", pwd);
+
+ free (pwd);
+}
+
+/* Merging profile D1 and D2 with weight as W1 and W2, respectively.
+ The result profile is written to directory OUT.
+ Return 0 on success. */
+
+static int
+profile_merge (const char *d1, const char *d2, const char *out, int w1, int w2)
+{
+ struct gcov_info *d1_profile;
+ struct gcov_info *d2_profile;
+ int ret;
+
+ d1_profile = gcov_read_profile_dir (d1, 0);
+ if (!d1_profile)
+ return 1;
+
+ if (d2)
+ {
+ d2_profile = gcov_read_profile_dir (d2, 0);
+ if (!d2_profile)
+ return 1;
+
+ /* The actual merge: we overwrite to d1_profile. */
+ ret = gcov_profile_merge (d1_profile, d2_profile, w1, w2);
+
+ if (ret)
+ return ret;
+ }
+
+ gcov_output_files (out, d1_profile);
+
+ return 0;
+}
+
+/* Usage message for profile merge. */
+
+static void
+print_merge_usage_message (int error_p)
+{
+ FILE *file = error_p ? stderr : stdout;
+
+ fnotice (file, " merge [options] <dir1> <dir2> Merge coverage file contents\n");
+ fnotice (file, " -v, --verbose Verbose mode\n");
+ fnotice (file, " -o, --output <dir> Output directory\n");
+ fnotice (file, " -w, --weight <w1,w2> Set weights (float point values)\n");
+}
+
+static const struct option merge_options[] =
+{
+ { "verbose", no_argument, NULL, 'v' },
+ { "output", required_argument, NULL, 'o' },
+ { "weight", required_argument, NULL, 'w' },
+ { 0, 0, 0, 0 }
+};
+
+/* Print merge usage and exit. */
+
+static void
+merge_usage (void)
+{
+ fnotice (stderr, "Merge subcomand usage:");
+ print_merge_usage_message (true);
+ exit (FATAL_EXIT_CODE);
+}
+
+/* Driver for profile merge sub-command. */
+
+static int
+do_merge (int argc, char **argv)
+{
+ int opt;
+ int ret;
+ const char *output_dir = 0;
+ int w1 = 1, w2 = 1;
+
+ optind = 0;
+ while ((opt = getopt_long (argc, argv, "vo:w:", merge_options, NULL)) != -1)
+ {
+ switch (opt)
+ {
+ case 'v':
+ verbose = true;
+ gcov_set_verbose ();
+ break;
+ case 'o':
+ output_dir = optarg;
+ break;
+ case 'w':
+ sscanf (optarg, "%d,%d", &w1, &w2);
+ if (w1 < 0 || w2 < 0)
+ fatal_error ("weights need to be non-negative\n");
+ break;
+ default:
+ merge_usage ();
+ }
+ }
+
+ if (output_dir == NULL)
+ output_dir = "merged_profile";
+
+ if (argc - optind == 2)
+ ret = profile_merge (argv[optind], argv[optind+1], output_dir, w1, w2);
+ else
+ merge_usage ();
+
+ return ret;
+}
+
+/* If N_VAL is no-zero, normalize the profile by setting the largest counter
+ counter value to N_VAL and scale others counters proportionally.
+ Otherwise, multiply the all counters by SCALE. */
+
+static int
+profile_rewrite (const char *d1, const char *out, long long n_val,
+ float scale, int n, int d)
+{
+ struct gcov_info * d1_profile;
+
+ d1_profile = gcov_read_profile_dir (d1, 0);
+ if (!d1_profile)
+ return 1;
+
+ if (n_val)
+ gcov_profile_normalize (d1_profile, (gcov_type) n_val);
+ else
+ gcov_profile_scale (d1_profile, scale, n, d);
+
+ gcov_output_files (out, d1_profile);
+ return 0;
+}
+
+/* This is the hashtab entry to store a name and mod_id pair. */
+typedef struct {
+ const char *name;
+ unsigned id;
+} mod_name_id;
+
+/* Hash and comparison functions for strings. */
+
+static unsigned
+mod_name_id_htab_hash (const void *s_p)
+{
+ const char *s = ((const mod_name_id *) s_p)->name;
+ return (*htab_hash_string) (s);
+}
+
+static int
+mod_name_id_hash_eq (const void *s1_p, const void *s2_p)
+{
+ return strcmp (((const mod_name_id *) s1_p)->name,
+ ((const mod_name_id *) s2_p)->name) == 0;
+}
+
+static htab_t mod_name_id_hash_table;
+
+/* Look up an entry in the hash table. STRING is the module name.
+ CREATE controls to insert to htab or not.
+ If (*ID_P != 0), we write (*ID_P) to htab.
+ If (*ID_P == 0), we write module_id to (*ID_P).
+ return 1 if an entry is found and otherwise 0. */
+
+static int
+module_name_hash_lookup (const char *string, unsigned *id_p, int create)
+{
+ void **e;
+ mod_name_id t;
+
+ t.name = string;
+ e = htab_find_slot (mod_name_id_hash_table, &t,
+ create ? INSERT : NO_INSERT);
+ if (e == NULL)
+ return 0;
+ if (*e == NULL)
+ {
+ *e = XNEW (mod_name_id *);
+ (*(mod_name_id **)e)->name = xstrdup (string);
+ }
+ if (id_p)
+ {
+ if (*id_p != 0)
+ (*(mod_name_id **)e)->id = *id_p;
+ else
+ *id_p = (*(mod_name_id **)e)->id;
+ }
+ return 1;
+}
+
+#if !defined(_WIN32)
+#define STRCASESTR strcasestr
+#else
+#define STRCASESTR strstr
+#endif
+
+/* Return 1 if NAME is of a source type that LIPO targets.
+ Return 0 otherwise. */
+
+static int
+is_lipo_source_type (char *name)
+{
+ char *p;
+
+ if (STRCASESTR (name, ".c") ||
+ STRCASESTR (name, ".cc") ||
+ STRCASESTR (name, ".cpp") ||
+ STRCASESTR (name, ".c++"))
+ return 1;
+
+ /* Replace ".proto" with ".pb.cc". Since the two strings have the same
+ length, we simplfy do a strcpy. */
+ if ((p = STRCASESTR (name, ".proto")) != NULL)
+ {
+ strcpy (p, ".pb.cc");
+ return 1;
+ }
+
+ return 0;
+}
+
+/* Convert/process the names from dependence query to a
+ stardard format. Return NULL if this is not a lipo
+ target source. */
+
+static char *
+lipo_process_name_string (char *name)
+{
+ char *p;
+
+ if (name == NULL)
+ return NULL;
+ if (strlen (name) == 0)
+ return NULL;
+
+ if (!is_lipo_source_type (name))
+ return NULL;
+
+ /* Overwrite ':' with '/'. */
+ if ((p = strchr (name, ':')) != NULL)
+ *p = '/';
+
+ /* Remove "//". */
+ if (name[0] == '/' && name[1] =='/')
+ name += 2;
+
+ return name;
+}
+
+/* Store the list of source modules in INPUT_FILE to internal hashtab. */
+
+static int
+lipo_process_modu_list (const char *input_file)
+{
+ FILE *fd;
+ const int max_line_size = (1 << 12);
+ char line[max_line_size];
+ char *name;
+
+ set_use_modu_list ();
+
+ if ((fd = fopen (input_file, "r")) == NULL)
+ {
+ fnotice (stderr, "Cannot open %s\n", input_file);
+ return -1;
+ }
+
+ /* Read all the modules */
+ while (fgets (line, max_line_size, fd) != NULL)
+ {
+ name = strtok (line, " \t\n");
+ name = lipo_process_name_string (name);
+ if (name)
+ module_name_hash_lookup (name, 0, 1);
+ }
+
+ return 0;
+}
+
+#define GENFILE_PREFIX "/genfiles/"
+
+/* Return 1 if module NAME is available to be used in the target
+ profile. CREATE controls to insert to htab or not.
+ If (*ID_P != 0), we write (*ID_P) to htab.
+ If (*ID_P == 0), we write module_id to (*ID_P).
+ return 1 if an entry is found and otherwise 0. */
+
+int
+is_module_available (const char *name, unsigned *id_p, int create)
+{
+ char *buf, *p;
+ int ret;
+
+ if (mod_name_id_hash_table == NULL)
+ return 1;
+
+ buf = xstrdup (name);
+ /* Remove genfile string. */
+ if ((p = strstr (buf, GENFILE_PREFIX)) != NULL)
+ p += strlen (GENFILE_PREFIX);
+ else
+ p = buf;
+
+ ret = module_name_hash_lookup (p, id_p, create);
+ free (buf);
+ return ret;
+}
+
+/* Return module_ident for module NAME.
+ return 0 if the module NAME is not available. */
+
+int
+get_module_id_from_name (const char *name)
+{
+ unsigned mod_id = 0;
+ if (is_module_available (name, &mod_id, 0) == 1)
+ return mod_id;
+ return 0;
+}
+
+/* Usage function for profile rewrite. */
+
+static void
+print_rewrite_usage_message (int error_p)
+{
+ FILE *file = error_p ? stderr : stdout;
+
+ fnotice (file, " rewrite [options] <dir> Rewrite coverage file contents\n");
+ fnotice (file, " -v, --verbose Verbose mode\n");
+ fnotice (file, " -o, --output <dir> Output directory\n");
+ fnotice (file, " -l, --modu_list <file> Only use the modules in this file\n");
+ fnotice (file, " -r, --path_substr_replace <str> Replace string in path\n");
+ fnotice (file, " -s, --scale <float or simple-frac> Scale the profile counters\n");
+ fnotice (file, " -u, --use_imports_file <file> Use the grouping in import files.\n");
+ fnotice (file, " -n, --normalize <long long> Normalize the profile\n");
+}
+
+static const struct option rewrite_options[] =
+{
+ { "verbose", no_argument, NULL, 'v' },
+ { "output", required_argument, NULL, 'o' },
+ { "modu_list", required_argument, NULL, 'l' },
+ { "string", required_argument, NULL, 'r' },
+ { "scale", required_argument, NULL, 's' },
+ { "use_imports_file", no_argument, NULL, 'u' },
+ { "normalize", required_argument, NULL, 'n' },
+ { 0, 0, 0, 0 }
+};
+
+/* Print profile rewrite usage and exit. */
+
+static void
+rewrite_usage (void)
+{
+ fnotice (stderr, "Rewrite subcommand usage:");
+ print_rewrite_usage_message (true);
+ exit (FATAL_EXIT_CODE);
+}
+
+/* Driver for profile rewrite sub-command. */
+
+static int
+do_rewrite (int argc, char **argv)
+{
+ int opt;
+ int ret;
+ const char *output_dir = 0;
+ long long normalize_val = 0;
+ float scale = 0.0;
+ int numerator = 1;
+ int denominator = 1;
+ int do_scaling = 0;
+
+ mod_name_id_hash_table = htab_create (500, mod_name_id_htab_hash,
+ mod_name_id_hash_eq, NULL);
+
+ optind = 0;
+ while ((opt = getopt_long (argc, argv, "vo:l:r:s:un:", rewrite_options,
+ NULL)) != -1)
+ {
+ switch (opt)
+ {
+ case 'v':
+ verbose = true;
+ gcov_set_verbose ();
+ break;
+ case 'o':
+ output_dir = optarg;
+ break;
+ case 'l':
+ lipo_process_modu_list (optarg);
+ break;
+ case 'r':
+ lipo_set_substitute_string (optarg);
+ break;
+ case 'u':
+ set_use_existing_grouping ();
+ break;
+ case 'n':
+ if (!do_scaling)
+ normalize_val = atoll (optarg);
+ else
+ fnotice (stderr, "scaling cannot co-exist with normalization,"
+ " skipping\n");
+ break;
+ case 's':
+ ret = 0;
+ do_scaling = 1;
+ if (strstr (optarg, "/"))
+ {
+ ret = sscanf (optarg, "%d/%d", &numerator, &denominator);
+ if (ret == 2)
+ {
+ if (numerator < 0 || denominator <= 0)
+ {
+ fnotice (stderr, "incorrect format in scaling, using 1/1\n");
+ denominator = 1;
+ numerator = 1;
+ }
+ }
+ }
+ if (ret != 2)
+ {
+ ret = sscanf (optarg, "%f", &scale);
+ if (ret != 1)
+ fnotice (stderr, "incorrect format in scaling, using 1/1\n");
+ else
+ denominator = 0;
+ }
+
+ if (scale < 0.0)
+ fatal_error ("scale needs to be non-negative\n");
+
+ if (normalize_val != 0)
+ {
+ fnotice (stderr, "normalization cannot co-exist with scaling\n");
+ normalize_val = 0;
+ }
+ break;
+ default:
+ rewrite_usage ();
+ }
+ }
+
+ if (output_dir == NULL)
+ output_dir = "rewrite_profile";
+
+ if (argc - optind == 1)
+ {
+ if (denominator > 0)
+ ret = profile_rewrite (argv[optind], output_dir, 0, 0.0, numerator, denominator);
+ else
+ ret = profile_rewrite (argv[optind], output_dir, normalize_val, scale, 0, 0);
+ }
+ else
+ rewrite_usage ();
+
+ return ret;
+}
+
+/* Print a usage message and exit. If ERROR_P is nonzero, this is an error,
+ otherwise the output of --help. */
+
+static void
+print_usage (int error_p)
+{
+ FILE *file = error_p ? stderr : stdout;
+ int status = error_p ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE;
+
+ fnotice (file, "Usage: %s [OPTION]... SUB_COMMAND [OPTION]...\n\n", progname);
+ fnotice (file, "Offline tool to handle gcda counts\n\n");
+ fnotice (file, " -h, --help Print this help, then exit\n");
+ fnotice (file, " -v, --version Print version number, then exit\n");
+ fnotice (file, " -A, --lipo_algorithm <0|1> Choose LIPO module grouping algorithm\n");
+ fnotice (file, " -E, --lipo_merge_edge Merge module edges in LIPO module grouping\n");
+ fnotice (file, " -W, --lipo_weak_inclusion Don't force strict inclusion in grouping\n");
+ fnotice (file, " -C, --lipo_cutoff <0..100> Set LIPO module grouping cutoff\n");
+ fnotice (file, " -M, --lipo_max_memory <int> Set the max memory in LIPO module grouping\n");
+ fnotice (file, " -F, --lipo_comdat_algorithm <0|1|2|3> Set the COMDAT fixup algorithm\n");
+ fnotice (file, " -R, --lipo_random_group_size <int> Set LIPO random grouping size\n");
+ fnotice (file, " -S, --lipo_random_group_seed <int> Set LIPO random grouping seed\n");
+ fnotice (file, " -D, --lipo_dump_cgraph Dump dynamic call graph\n");
+ fnotice (file, " -P, --lipo_propagate_scale Set LIPO propagate scale to true\n");
+ fnotice (file, "\n");
+ print_merge_usage_message (error_p);
+ print_rewrite_usage_message (error_p);
+ fnotice (file, "\nFor bug reporting instructions, please see:\n%s.\n",
+ bug_report_url);
+ exit (status);
+}
+
+/* Print version information and exit. */
+
+static void
+print_version (void)
+{
+ fnotice (stdout, "%s %s%s\n", progname, pkgversion_string, version_string);
+ fnotice (stdout, "Copyright %s 2014 Free Software Foundation, Inc.\n",
+ _("(C)"));
+ fnotice (stdout,
+ _("This is free software; see the source for copying conditions.\n"
+ "There is NO warranty; not even for MERCHANTABILITY or \n"
+ "FITNESS FOR A PARTICULAR PURPOSE.\n\n"));
+ exit (SUCCESS_EXIT_CODE);
+}
+
+static const struct option options[] =
+{
+ { "help", no_argument, NULL, 'h' },
+ { "version", no_argument, NULL, 'v' },
+ { "lipo_algorithm", required_argument, NULL, 'A' },
+ { "lipo_merge_edge", no_argument, NULL, 'E' },
+ { "lipo_weak_inclusion", no_argument, NULL, 'W' },
+ { "lipo_cutoff", required_argument, NULL, 'C' },
+ { "lipo_max_memory", required_argument, NULL, 'M' },
+ { "lipo_comdat_algorithm", required_argument, NULL, 'F' },
+ { "lipo_random_group_size", required_argument, NULL, 'R' },
+ { "lipo_random_group_seed", required_argument, NULL, 'S' },
+ { "lipo_dump_cgraph", no_argument, NULL, 'D' },
+ { "lipo_propagate_scale", no_argument, NULL, 'P' },
+ { 0, 0, 0, 0 }
+};
+
+/* Process args, return index to first non-arg. */
+
+static int
+process_args (int argc, char **argv)
+{
+ int opt;
+ int ret;
+
+ while ((opt = getopt_long (argc, argv, "+hvA:EWC:M:R:S:DP", options, NULL)) != -1)
+ {
+ switch (opt)
+ {
+ case 'h':
+ print_usage (false);
+ /* Print_usage will exit. */
+ case 'v':
+ print_version ();
+ /* Print_version will exit. */
+ case 'E':
+ __gcov_lipo_merge_modu_edges = 1;
+ break;
+ case 'W':
+ __gcov_lipo_weak_inclusion = 1;
+ break;
+ case 'D':
+ __gcov_lipo_dump_cgraph = 1;
+ break;
+ case 'P':
+ __gcov_lipo_propagate_scale = 1;
+ break;
+ case 'A':
+ sscanf (optarg, "%d", &ret);
+ if (ret != 0 && ret != 1)
+ {
+ fnotice (stderr, "LIPO grouping algorithm can only be 0 or 1\n");
+ exit (-1);
+ }
+ __gcov_lipo_grouping_algorithm = ret;
+ break;
+ case 'R':
+ sscanf (optarg, "%d", &ret);
+ if (ret < 1)
+ {
+ fnotice (stderr, "LIPO random group size needs to be positive\n");
+ exit (-1);
+ }
+ __gcov_lipo_random_group_size = ret;
+ break;
+ case 'S':
+ sscanf (optarg, "%d", &ret);
+ __gcov_lipo_random_seed = ret;;
+ break;
+ case 'M':
+ sscanf (optarg, "%d", &ret);
+ if (ret < 0)
+ {
+ fnotice (stderr, "LIPO max-memory size needs to be positive\n");
+ exit (-1);
+ }
+ __gcov_lipo_max_mem = ret;
+ break;
+ case 'F':
+ sscanf (optarg, "%d", &ret);
+ if (ret < 0)
+ {
+ fnotice (stderr,
+ "LIPO COMDAT fixup algorithm needs to be positive\n");
+ exit (-1);
+ }
+ __gcov_lipo_comdat_algorithm = ret;
+ break;
+ case 'C':
+ sscanf (optarg, "%d", &ret);
+ if (ret < 0 || ret > 100)
+ {
+ fnotice (stderr, "LIPO cutoff value range is [0, 100]\n");
+ exit (-1);
+ }
+ __gcov_lipo_cutoff = ret;;
+ break;
+ default:
+ print_usage (true);
+ /* Print_usage will exit. */
+ }
+ }
+
+ return optind;
+}
+
+/* Get the default param value from params.def. */
+
+#define GET_DEFAULT_PARAM_VALUE(p) compiler_params[p].default_value
+static void
+set_lipo_default_params (void)
+{
+ __gcov_lipo_grouping_algorithm = GET_DEFAULT_PARAM_VALUE (PARAM_LIPO_GROUPING_ALGORITHM);
+ __gcov_lipo_merge_modu_edges = GET_DEFAULT_PARAM_VALUE (PARAM_LIPO_MERGE_MODU_EDGES);
+ __gcov_lipo_weak_inclusion = GET_DEFAULT_PARAM_VALUE (PARAM_LIPO_WEAK_INCLUSION);
+ __gcov_lipo_max_mem = GET_DEFAULT_PARAM_VALUE (PARAM_MAX_LIPO_MEMORY);
+ __gcov_lipo_comdat_algorithm = 0 /* GET_DEFAULT_PARAM_VALUE (PARAM_LIPO_COMDAT_ALGORITHM)*/;
+ __gcov_lipo_random_group_size = GET_DEFAULT_PARAM_VALUE (PARAM_LIPO_RANDOM_GROUP_SIZE);
+ __gcov_lipo_cutoff = GET_DEFAULT_PARAM_VALUE (PARAM_LIPO_CUTOFF);
+ __gcov_lipo_random_seed = GET_DEFAULT_PARAM_VALUE (PARAM_LIPO_RANDOM_SEED);
+ __gcov_lipo_dump_cgraph = GET_DEFAULT_PARAM_VALUE (PARAM_LIPO_DUMP_CGRAPH);
+ __gcov_lipo_propagate_scale = GET_DEFAULT_PARAM_VALUE (PARAM_LIPO_PROPAGATE_SCALE);
+}
+
+/* Main function for gcov-tool. */
+
+int
+main (int argc, char **argv)
+{
+ const char *p;
+ const char *sub_command;
+
+ p = argv[0] + strlen (argv[0]);
+ while (p != argv[0] && !IS_DIR_SEPARATOR (p[-1]))
+ --p;
+ progname = p;
+
+ xmalloc_set_program_name (progname);
+
+ /* Unlock the stdio streams. */
+ unlock_std_streams ();
+
+ gcc_init_libintl ();
+
+ diagnostic_initialize (global_dc, 0);
+
+ /* Handle response files. */
+ expandargv (&argc, &argv);
+
+ /* Register the language-independent parameters. */
+ global_init_params ();
+ finish_params ();
+ set_lipo_default_params ();
+
+ process_args (argc, argv);
+ if (optind >= argc)
+ print_usage (true);
+
+ sub_command = argv[optind];
+
+ if (!strcmp (sub_command, "merge"))
+ return do_merge (argc - optind, argv + optind);
+ else if (!strcmp (sub_command, "rewrite"))
+ return do_rewrite (argc - optind, argv + optind);
+
+ print_usage (true);
+}
diff --git a/gcc-4.9/gcc/gcov.c b/gcc-4.9/gcc/gcov.c
index b0e59e853..07c2f3706 100644
--- a/gcc-4.9/gcc/gcov.c
+++ b/gcc-4.9/gcc/gcov.c
@@ -1227,6 +1227,7 @@ read_graph_file (void)
*fns_end = fn;
fns_end = &fn->next;
current_tag = tag;
+
}
else if (fn && tag == GCOV_TAG_BLOCKS)
{
@@ -1337,6 +1338,7 @@ read_graph_file (void)
line_nos[ix++] = src_idx;
}
line_nos[ix++] = lineno;
+
}
else
{
diff --git a/gcc-4.9/gcc/gengtype-lex.c b/gcc-4.9/gcc/gengtype-lex.c
deleted file mode 100644
index 70d4eae32..000000000
--- a/gcc-4.9/gcc/gengtype-lex.c
+++ /dev/null
@@ -1,2897 +0,0 @@
-#include "bconfig.h"
-#line 2 "gengtype-lex.c"
-
-#line 4 "gengtype-lex.c"
-
-#define YY_INT_ALIGNED short int
-
-/* A lexical scanner generated by flex */
-
-#define FLEX_SCANNER
-#define YY_FLEX_MAJOR_VERSION 2
-#define YY_FLEX_MINOR_VERSION 5
-#define YY_FLEX_SUBMINOR_VERSION 37
-#if YY_FLEX_SUBMINOR_VERSION > 0
-#define FLEX_BETA
-#endif
-
-/* First, we deal with platform-specific or compiler-specific issues. */
-
-/* begin standard C headers. */
-#include <stdio.h>
-#include <string.h>
-#include <errno.h>
-#include <stdlib.h>
-
-/* end standard C headers. */
-
-/* flex integer type definitions */
-
-#ifndef FLEXINT_H
-#define FLEXINT_H
-
-/* C99 systems have <inttypes.h>. Non-C99 systems may or may not. */
-
-#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
-
-/* C99 says to define __STDC_LIMIT_MACROS before including stdint.h,
- * if you want the limit (max/min) macros for int types.
- */
-#ifndef __STDC_LIMIT_MACROS
-#define __STDC_LIMIT_MACROS 1
-#endif
-
-#include <inttypes.h>
-typedef int8_t flex_int8_t;
-typedef uint8_t flex_uint8_t;
-typedef int16_t flex_int16_t;
-typedef uint16_t flex_uint16_t;
-typedef int32_t flex_int32_t;
-typedef uint32_t flex_uint32_t;
-#else
-typedef signed char flex_int8_t;
-typedef short int flex_int16_t;
-typedef int flex_int32_t;
-typedef unsigned char flex_uint8_t;
-typedef unsigned short int flex_uint16_t;
-typedef unsigned int flex_uint32_t;
-
-/* Limits of integral types. */
-#ifndef INT8_MIN
-#define INT8_MIN (-128)
-#endif
-#ifndef INT16_MIN
-#define INT16_MIN (-32767-1)
-#endif
-#ifndef INT32_MIN
-#define INT32_MIN (-2147483647-1)
-#endif
-#ifndef INT8_MAX
-#define INT8_MAX (127)
-#endif
-#ifndef INT16_MAX
-#define INT16_MAX (32767)
-#endif
-#ifndef INT32_MAX
-#define INT32_MAX (2147483647)
-#endif
-#ifndef UINT8_MAX
-#define UINT8_MAX (255U)
-#endif
-#ifndef UINT16_MAX
-#define UINT16_MAX (65535U)
-#endif
-#ifndef UINT32_MAX
-#define UINT32_MAX (4294967295U)
-#endif
-
-#endif /* ! C99 */
-
-#endif /* ! FLEXINT_H */
-
-#ifdef __cplusplus
-
-/* The "const" storage-class-modifier is valid. */
-#define YY_USE_CONST
-
-#else /* ! __cplusplus */
-
-/* C99 requires __STDC__ to be defined as 1. */
-#if defined (__STDC__)
-
-#define YY_USE_CONST
-
-#endif /* defined (__STDC__) */
-#endif /* ! __cplusplus */
-
-#ifdef YY_USE_CONST
-#define yyconst const
-#else
-#define yyconst
-#endif
-
-/* Returned upon end-of-file. */
-#define YY_NULL 0
-
-/* Promotes a possibly negative, possibly signed char to an unsigned
- * integer for use as an array index. If the signed char is negative,
- * we want to instead treat it as an 8-bit unsigned char, hence the
- * double cast.
- */
-#define YY_SC_TO_UI(c) ((unsigned int) (unsigned char) c)
-
-/* Enter a start condition. This macro really ought to take a parameter,
- * but we do it the disgusting crufty way forced on us by the ()-less
- * definition of BEGIN.
- */
-#define BEGIN (yy_start) = 1 + 2 *
-
-/* Translate the current start state into a value that can be later handed
- * to BEGIN to return to the state. The YYSTATE alias is for lex
- * compatibility.
- */
-#define YY_START (((yy_start) - 1) / 2)
-#define YYSTATE YY_START
-
-/* Action number for EOF rule of a given start state. */
-#define YY_STATE_EOF(state) (YY_END_OF_BUFFER + state + 1)
-
-/* Special action meaning "start processing a new file". */
-#define YY_NEW_FILE yyrestart(yyin )
-
-#define YY_END_OF_BUFFER_CHAR 0
-
-/* Size of default input buffer. */
-#ifndef YY_BUF_SIZE
-#define YY_BUF_SIZE 16384
-#endif
-
-/* The state buf must be large enough to hold one state per character in the main buffer.
- */
-#define YY_STATE_BUF_SIZE ((YY_BUF_SIZE + 2) * sizeof(yy_state_type))
-
-#ifndef YY_TYPEDEF_YY_BUFFER_STATE
-#define YY_TYPEDEF_YY_BUFFER_STATE
-typedef struct yy_buffer_state *YY_BUFFER_STATE;
-#endif
-
-#ifndef YY_TYPEDEF_YY_SIZE_T
-#define YY_TYPEDEF_YY_SIZE_T
-typedef size_t yy_size_t;
-#endif
-
-extern yy_size_t yyleng;
-
-extern FILE *yyin, *yyout;
-
-#define EOB_ACT_CONTINUE_SCAN 0
-#define EOB_ACT_END_OF_FILE 1
-#define EOB_ACT_LAST_MATCH 2
-
- #define YY_LESS_LINENO(n)
-
-/* Return all but the first "n" matched characters back to the input stream. */
-#define yyless(n) \
- do \
- { \
- /* Undo effects of setting up yytext. */ \
- int yyless_macro_arg = (n); \
- YY_LESS_LINENO(yyless_macro_arg);\
- *yy_cp = (yy_hold_char); \
- YY_RESTORE_YY_MORE_OFFSET \
- (yy_c_buf_p) = yy_cp = yy_bp + yyless_macro_arg - YY_MORE_ADJ; \
- YY_DO_BEFORE_ACTION; /* set up yytext again */ \
- } \
- while ( 0 )
-
-#define unput(c) yyunput( c, (yytext_ptr) )
-
-#ifndef YY_STRUCT_YY_BUFFER_STATE
-#define YY_STRUCT_YY_BUFFER_STATE
-struct yy_buffer_state
- {
- FILE *yy_input_file;
-
- char *yy_ch_buf; /* input buffer */
- char *yy_buf_pos; /* current position in input buffer */
-
- /* Size of input buffer in bytes, not including room for EOB
- * characters.
- */
- yy_size_t yy_buf_size;
-
- /* Number of characters read into yy_ch_buf, not including EOB
- * characters.
- */
- yy_size_t yy_n_chars;
-
- /* Whether we "own" the buffer - i.e., we know we created it,
- * and can realloc() it to grow it, and should free() it to
- * delete it.
- */
- int yy_is_our_buffer;
-
- /* Whether this is an "interactive" input source; if so, and
- * if we're using stdio for input, then we want to use getc()
- * instead of fread(), to make sure we stop fetching input after
- * each newline.
- */
- int yy_is_interactive;
-
- /* Whether we're considered to be at the beginning of a line.
- * If so, '^' rules will be active on the next match, otherwise
- * not.
- */
- int yy_at_bol;
-
- int yy_bs_lineno; /**< The line count. */
- int yy_bs_column; /**< The column count. */
-
- /* Whether to try to fill the input buffer when we reach the
- * end of it.
- */
- int yy_fill_buffer;
-
- int yy_buffer_status;
-
-#define YY_BUFFER_NEW 0
-#define YY_BUFFER_NORMAL 1
- /* When an EOF's been seen but there's still some text to process
- * then we mark the buffer as YY_EOF_PENDING, to indicate that we
- * shouldn't try reading from the input source any more. We might
- * still have a bunch of tokens to match, though, because of
- * possible backing-up.
- *
- * When we actually see the EOF, we change the status to "new"
- * (via yyrestart()), so that the user can continue scanning by
- * just pointing yyin at a new input file.
- */
-#define YY_BUFFER_EOF_PENDING 2
-
- };
-#endif /* !YY_STRUCT_YY_BUFFER_STATE */
-
-/* Stack of input buffers. */
-static size_t yy_buffer_stack_top = 0; /**< index of top of stack. */
-static size_t yy_buffer_stack_max = 0; /**< capacity of stack. */
-static YY_BUFFER_STATE * yy_buffer_stack = 0; /**< Stack as an array. */
-
-/* We provide macros for accessing buffer states in case in the
- * future we want to put the buffer states in a more general
- * "scanner state".
- *
- * Returns the top of the stack, or NULL.
- */
-#define YY_CURRENT_BUFFER ( (yy_buffer_stack) \
- ? (yy_buffer_stack)[(yy_buffer_stack_top)] \
- : NULL)
-
-/* Same as previous macro, but useful when we know that the buffer stack is not
- * NULL or when we need an lvalue. For internal use only.
- */
-#define YY_CURRENT_BUFFER_LVALUE (yy_buffer_stack)[(yy_buffer_stack_top)]
-
-/* yy_hold_char holds the character lost when yytext is formed. */
-static char yy_hold_char;
-static yy_size_t yy_n_chars; /* number of characters read into yy_ch_buf */
-yy_size_t yyleng;
-
-/* Points to current character in buffer. */
-static char *yy_c_buf_p = (char *) 0;
-static int yy_init = 0; /* whether we need to initialize */
-static int yy_start = 0; /* start state number */
-
-/* Flag which is used to allow yywrap()'s to do buffer switches
- * instead of setting up a fresh yyin. A bit of a hack ...
- */
-static int yy_did_buffer_switch_on_eof;
-
-void yyrestart (FILE *input_file );
-void yy_switch_to_buffer (YY_BUFFER_STATE new_buffer );
-YY_BUFFER_STATE yy_create_buffer (FILE *file,int size );
-void yy_delete_buffer (YY_BUFFER_STATE b );
-void yy_flush_buffer (YY_BUFFER_STATE b );
-void yypush_buffer_state (YY_BUFFER_STATE new_buffer );
-void yypop_buffer_state (void );
-
-static void yyensure_buffer_stack (void );
-static void yy_load_buffer_state (void );
-static void yy_init_buffer (YY_BUFFER_STATE b,FILE *file );
-
-#define YY_FLUSH_BUFFER yy_flush_buffer(YY_CURRENT_BUFFER )
-
-YY_BUFFER_STATE yy_scan_buffer (char *base,yy_size_t size );
-YY_BUFFER_STATE yy_scan_string (yyconst char *yy_str );
-YY_BUFFER_STATE yy_scan_bytes (yyconst char *bytes,yy_size_t len );
-
-void *yyalloc (yy_size_t );
-void *yyrealloc (void *,yy_size_t );
-void yyfree (void * );
-
-#define yy_new_buffer yy_create_buffer
-
-#define yy_set_interactive(is_interactive) \
- { \
- if ( ! YY_CURRENT_BUFFER ){ \
- yyensure_buffer_stack (); \
- YY_CURRENT_BUFFER_LVALUE = \
- yy_create_buffer(yyin,YY_BUF_SIZE ); \
- } \
- YY_CURRENT_BUFFER_LVALUE->yy_is_interactive = is_interactive; \
- }
-
-#define yy_set_bol(at_bol) \
- { \
- if ( ! YY_CURRENT_BUFFER ){\
- yyensure_buffer_stack (); \
- YY_CURRENT_BUFFER_LVALUE = \
- yy_create_buffer(yyin,YY_BUF_SIZE ); \
- } \
- YY_CURRENT_BUFFER_LVALUE->yy_at_bol = at_bol; \
- }
-
-#define YY_AT_BOL() (YY_CURRENT_BUFFER_LVALUE->yy_at_bol)
-
-/* Begin user sect3 */
-
-#define yywrap() 1
-#define YY_SKIP_YYWRAP
-
-typedef unsigned char YY_CHAR;
-
-FILE *yyin = (FILE *) 0, *yyout = (FILE *) 0;
-
-typedef int yy_state_type;
-
-extern int yylineno;
-
-int yylineno = 1;
-
-extern char *yytext;
-#define yytext_ptr yytext
-
-static yy_state_type yy_get_previous_state (void );
-static yy_state_type yy_try_NUL_trans (yy_state_type current_state );
-static int yy_get_next_buffer (void );
-static void yy_fatal_error (yyconst char msg[] );
-
-/* Done after the current pattern has been matched and before the
- * corresponding action - sets up yytext.
- */
-#define YY_DO_BEFORE_ACTION \
- (yytext_ptr) = yy_bp; \
- yyleng = (size_t) (yy_cp - yy_bp); \
- (yy_hold_char) = *yy_cp; \
- *yy_cp = '\0'; \
- (yy_c_buf_p) = yy_cp;
-
-#define YY_NUM_RULES 53
-#define YY_END_OF_BUFFER 54
-/* This struct is not used in this scanner,
- but its presence is necessary. */
-struct yy_trans_info
- {
- flex_int32_t yy_verify;
- flex_int32_t yy_nxt;
- };
-static yyconst flex_int16_t yy_accept[558] =
- { 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 54, 41,
- 38, 50, 41, 50, 39, 41, 41, 39, 39, 39,
- 39, 39, 35, 9, 9, 33, 35, 14, 35, 33,
- 35, 24, 35, 35, 35, 35, 35, 35, 35, 35,
- 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
- 35, 35, 35, 13, 9, 35, 46, 44, 51, 51,
- 0, 42, 0, 0, 0, 43, 36, 43, 0, 39,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 39, 39, 39, 39, 39, 9, 0, 29, 0, 0,
- 0, 0, 7, 0, 24, 28, 28, 0, 28, 0,
-
- 0, 0, 0, 0, 0, 0, 30, 10, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 9, 0, 0, 0, 0, 47, 49, 48, 40, 0,
- 37, 0, 0, 0, 0, 0, 0, 0, 39, 39,
- 39, 39, 39, 39, 31, 32, 0, 8, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 34, 0, 0, 0, 39,
-
- 0, 0, 0, 0, 0, 0, 0, 39, 39, 39,
- 39, 39, 39, 0, 0, 0, 0, 0, 15, 15,
- 15, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 26, 26, 26, 26, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 39, 0, 0, 0, 0, 0, 0, 0, 39,
- 39, 39, 39, 39, 39, 0, 0, 0, 0, 0,
- 0, 0, 0, 20, 20, 20, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-
- 0, 0, 0, 23, 23, 23, 0, 0, 0, 0,
- 0, 0, 0, 0, 4, 4, 4, 39, 39, 39,
- 39, 3, 3, 3, 0, 0, 0, 0, 0, 18,
- 18, 18, 11, 11, 11, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 16,
- 16, 16, 0, 0, 0, 0, 0, 0, 5, 5,
- 5, 6, 6, 6, 2, 2, 2, 39, 0, 0,
- 0, 0, 0, 12, 12, 12, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-
- 0, 0, 0, 0, 0, 0, 28, 17, 17, 17,
- 0, 0, 0, 0, 0, 1, 1, 1, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 26,
- 26, 0, 0, 0, 0, 0, 0, 0, 0, 12,
- 12, 19, 19, 19, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 25, 25,
- 25, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 21, 21, 21, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 22, 22, 22, 0, 52, 0, 0, 0, 0,
-
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 28, 28, 28, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 27,
- 0, 0, 0, 0, 0, 0, 45, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0
- } ;
-
-static yyconst flex_int32_t yy_ec[256] =
- { 0,
- 1, 1, 1, 1, 1, 1, 1, 1, 2, 3,
- 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 2, 4, 5, 6, 1, 4, 7, 8, 9,
- 10, 11, 4, 4, 4, 12, 13, 14, 14, 14,
- 14, 14, 14, 14, 14, 14, 14, 15, 4, 4,
- 4, 4, 4, 1, 16, 17, 18, 19, 20, 21,
- 22, 23, 24, 25, 25, 26, 27, 28, 29, 30,
- 25, 31, 32, 33, 34, 25, 35, 25, 36, 25,
- 37, 38, 39, 1, 40, 1, 41, 42, 43, 44,
-
- 45, 46, 47, 48, 49, 50, 50, 51, 52, 53,
- 54, 55, 50, 56, 57, 58, 59, 60, 50, 61,
- 62, 63, 4, 4, 4, 64, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
-
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1
- } ;
-
-static yyconst flex_int32_t yy_meta[65] =
- { 0,
- 1, 2, 3, 1, 1, 1, 1, 1, 1, 4,
- 5, 1, 1, 6, 7, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 9, 1, 1, 10,
- 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
- 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
- 10, 10, 10, 1
- } ;
-
-static yyconst flex_int16_t yy_base[605] =
- { 0,
- 0, 64, 128, 14, 14, 15, 16, 18, 1220, 2336,
- 2336, 17, 1181, 17, 21, 38, 40, 31, 30, 32,
- 46, 39, 2336, 47, 49, 2336, 19, 2336, 1177, 1202,
- 45, 1199, 192, 256, 30, 34, 2, 64, 1173, 1208,
- 56, 65, 59, 58, 69, 71, 60, 70, 57, 177,
- 179, 180, 181, 2336, 209, 1208, 0, 2336, 1196, 1195,
- 208, 2336, 0, 1199, 1203, 2336, 2336, 1202, 103, 217,
- 1189, 239, 237, 1152, 1141, 1143, 1138, 1146, 242, 1153,
- 238, 268, 272, 274, 273, 124, 209, 2336, 1194, 1188,
- 1192, 1181, 2336, 1175, 1163, 2336, 275, 1147, 1160, 1145,
-
- 187, 192, 214, 191, 88, 1134, 2336, 2336, 194, 251,
- 262, 220, 195, 243, 270, 276, 225, 275, 271, 277,
- 282, 279, 272, 283, 278, 286, 288, 289, 294, 309,
- 343, 1170, 1169, 352, 0, 2336, 2336, 2336, 2336, 1167,
- 2336, 1167, 1127, 1109, 268, 1111, 1116, 1118, 359, 337,
- 360, 358, 374, 366, 2336, 2336, 1160, 2336, 348, 1147,
- 1159, 327, 292, 330, 420, 24, 336, 319, 329, 405,
- 407, 337, 335, 338, 342, 350, 484, 408, 409, 410,
- 343, 318, 411, 412, 414, 415, 417, 416, 413, 418,
- 431, 420, 419, 421, 1157, 2336, 546, 0, 1157, 496,
-
- 1101, 1112, 1098, 1096, 1106, 1096, 1100, 498, 500, 501,
- 499, 502, 504, 1146, 609, 478, 357, 480, 2336, 510,
- 1132, 495, 497, 422, 424, 425, 673, 427, 452, 481,
- 2336, 736, 525, 1131, 499, 434, 479, 500, 507, 504,
- 505, 501, 518, 503, 522, 509, 524, 529, 532, 795,
- 0, 560, 1088, 1088, 1094, 1099, 1097, 1087, 1086, 859,
- 570, 623, 568, 625, 923, 987, 547, 551, 549, 540,
- 599, 1051, 1115, 2336, 627, 1123, 601, 604, 0, 629,
- 1108, 1106, 621, 1081, 1086, 1088, 1079, 1077, 203, 1076,
- 607, 603, 625, 606, 612, 638, 614, 624, 629, 633,
-
- 630, 627, 1179, 2336, 688, 1099, 0, 0, 1060, 1069,
- 1053, 1065, 0, 1064, 2336, 690, 1093, 1243, 1307, 1371,
- 694, 2336, 691, 1092, 670, 666, 678, 640, 684, 2336,
- 699, 1091, 2336, 702, 1090, 1435, 1075, 1073, 1071, 1069,
- 1046, 1058, 1038, 519, 1044, 1042, 653, 1038, 623, 669,
- 701, 693, 689, 690, 695, 706, 1499, 691, 697, 2336,
- 730, 1079, 0, 0, 0, 0, 1047, 725, 2336, 731,
- 1077, 2336, 745, 1076, 2336, 748, 1072, 1563, 696, 726,
- 723, 552, 738, 2336, 756, 1071, 1059, 1066, 1064, 1049,
- 1030, 1024, 1039, 1038, 759, 1030, 1020, 1022, 1029, 1024,
-
- 735, 736, 752, 753, 741, 743, 1057, 2336, 773, 1056,
- 744, 1627, 0, 0, 809, 2336, 811, 1055, 748, 762,
- 793, 787, 754, 1029, 1045, 1027, 1025, 992, 991, 2336,
- 813, 990, 1002, 1006, 998, 788, 1691, 791, 790, 2336,
- 1042, 2336, 821, 1028, 0, 1009, 707, 800, 801, 789,
- 808, 1024, 1024, 1008, 1003, 993, 978, 820, 2336, 836,
- 1020, 824, 1755, 0, 998, 821, 823, 853, 855, 825,
- 854, 1009, 1001, 1011, 1006, 1819, 2336, 840, 1014, 0,
- 1019, 851, 815, 859, 857, 852, 828, 994, 983, 1000,
- 1002, 2336, 885, 1005, 0, 2336, 860, 873, 872, 870,
-
- 874, 998, 985, 975, 994, 0, 876, 908, 880, 988,
- 986, 977, 872, 0, 910, 938, 911, 913, 889, 988,
- 985, 981, 953, 961, 0, 913, 942, 946, 956, 961,
- 963, 957, 954, 948, 936, 946, 0, 965, 967, 2336,
- 969, 941, 935, 932, 919, 888, 2336, 917, 887, 748,
- 582, 1001, 438, 355, 1003, 73, 2336, 1883, 1893, 1903,
- 1913, 1923, 1932, 1942, 1952, 1962, 1972, 1981, 1991, 2001,
- 2011, 2021, 2031, 2041, 2050, 2059, 2069, 2078, 2088, 2098,
- 2108, 2118, 2127, 2136, 2146, 2155, 2164, 2173, 2182, 2191,
- 2201, 2209, 2219, 2229, 2239, 2249, 2259, 2269, 2278, 2288,
-
- 2297, 2307, 2316, 2325
- } ;
-
-static yyconst flex_int16_t yy_def[605] =
- { 0,
- 558, 558, 557, 3, 559, 559, 559, 559, 557, 557,
- 557, 560, 561, 562, 563, 557, 557, 563, 563, 563,
- 563, 563, 557, 557, 557, 557, 564, 557, 565, 557,
- 557, 557, 566, 566, 34, 34, 34, 34, 567, 557,
- 34, 34, 34, 34, 34, 34, 34, 34, 34, 34,
- 34, 34, 34, 557, 557, 568, 569, 557, 570, 570,
- 560, 557, 560, 557, 561, 557, 557, 571, 557, 563,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 563, 563, 563, 563, 563, 557, 564, 557, 564, 557,
- 565, 557, 557, 572, 557, 557, 557, 34, 557, 34,
-
- 34, 34, 34, 34, 34, 567, 557, 557, 34, 34,
- 34, 34, 34, 34, 34, 34, 34, 34, 34, 34,
- 34, 34, 34, 34, 34, 34, 34, 34, 34, 34,
- 557, 568, 568, 573, 574, 557, 557, 557, 557, 571,
- 557, 575, 557, 557, 557, 557, 557, 557, 563, 563,
- 563, 563, 563, 563, 557, 557, 572, 557, 557, 557,
- 576, 34, 34, 34, 566, 34, 34, 34, 34, 34,
- 34, 34, 34, 34, 34, 34, 566, 34, 34, 34,
- 34, 34, 34, 34, 34, 34, 34, 34, 34, 34,
- 34, 34, 34, 34, 573, 557, 573, 577, 575, 578,
-
- 557, 557, 557, 557, 557, 557, 557, 563, 563, 563,
- 563, 563, 563, 576, 579, 34, 34, 34, 557, 557,
- 557, 34, 34, 34, 34, 34, 566, 34, 34, 34,
- 557, 557, 232, 557, 34, 34, 34, 34, 34, 34,
- 34, 34, 34, 34, 34, 34, 34, 34, 34, 566,
- 580, 578, 557, 557, 557, 557, 557, 557, 557, 563,
- 563, 563, 563, 563, 563, 579, 34, 34, 34, 34,
- 34, 566, 566, 557, 557, 557, 34, 34, 232, 232,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 34, 34, 34, 34, 34, 34, 34, 34, 34, 34,
-
- 34, 34, 566, 557, 557, 557, 581, 582, 557, 557,
- 557, 557, 583, 557, 557, 557, 557, 563, 563, 563,
- 563, 557, 557, 557, 34, 34, 34, 34, 34, 557,
- 557, 557, 557, 557, 557, 566, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 34, 34,
- 34, 34, 34, 34, 34, 34, 566, 34, 34, 557,
- 557, 557, 584, 585, 586, 587, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 563, 34, 34,
- 34, 34, 34, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 588, 557, 557, 557, 557, 557,
-
- 34, 34, 34, 34, 34, 34, 589, 557, 557, 557,
- 34, 566, 590, 591, 557, 557, 557, 557, 34, 34,
- 34, 34, 34, 557, 557, 557, 557, 557, 557, 557,
- 232, 557, 557, 557, 557, 34, 566, 34, 34, 557,
- 592, 557, 557, 557, 593, 557, 34, 34, 34, 34,
- 34, 557, 557, 557, 557, 557, 557, 34, 557, 557,
- 557, 34, 566, 594, 557, 34, 34, 34, 34, 34,
- 34, 557, 557, 557, 557, 566, 557, 557, 557, 595,
- 557, 34, 34, 34, 34, 34, 34, 557, 557, 557,
- 557, 557, 557, 557, 596, 557, 34, 34, 34, 34,
-
- 34, 557, 557, 557, 557, 597, 34, 34, 34, 557,
- 557, 557, 557, 598, 34, 557, 557, 599, 34, 557,
- 557, 557, 557, 557, 600, 34, 557, 557, 599, 599,
- 601, 557, 557, 557, 557, 557, 602, 557, 557, 557,
- 601, 557, 557, 557, 557, 557, 557, 603, 557, 557,
- 603, 604, 557, 557, 604, 557, 0, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
-
- 557, 557, 557, 557
- } ;
-
-static yyconst flex_int16_t yy_nxt[2401] =
- { 0,
- 10, 10, 11, 10, 12, 10, 10, 13, 10, 10,
- 10, 10, 14, 10, 10, 55, 58, 58, 58, 56,
- 58, 62, 69, 88, 59, 59, 60, 67, 60, 68,
- 98, 69, 69, 69, 103, 71, 10, 10, 10, 72,
- 69, 79, 222, 73, 71, 71, 71, 69, 86, 86,
- 86, 86, 98, 71, 63, 93, 89, 94, 98, 101,
- 71, 102, 98, 10, 10, 16, 11, 10, 12, 17,
- 10, 13, 10, 10, 10, 10, 14, 10, 10, 104,
- 74, 81, 75, 80, 98, 98, 98, 98, 98, 83,
- 82, 85, 105, 98, 76, 77, 78, 98, 98, 98,
-
- 10, 10, 10, 113, 69, 395, 18, 84, 19, 109,
- 114, 119, 110, 117, 118, 111, 98, 71, 112, 167,
- 20, 21, 22, 116, 115, 86, 86, 10, 23, 24,
- 25, 26, 27, 23, 28, 29, 26, 26, 26, 30,
- 31, 32, 26, 33, 34, 35, 33, 36, 33, 37,
- 38, 33, 33, 33, 33, 33, 33, 33, 33, 33,
- 33, 33, 33, 33, 39, 40, 23, 33, 33, 41,
- 42, 43, 44, 45, 33, 33, 46, 33, 47, 33,
- 48, 49, 50, 33, 51, 52, 53, 33, 33, 33,
- 33, 54, 96, 97, 96, 96, 96, 96, 96, 96,
-
- 96, 96, 96, 96, 96, 98, 99, 98, 98, 98,
- 131, 86, 62, 88, 132, 98, 163, 120, 69, 98,
- 98, 166, 98, 98, 127, 164, 124, 125, 96, 96,
- 96, 71, 121, 129, 122, 123, 126, 130, 79, 69,
- 72, 128, 98, 79, 73, 63, 89, 168, 98, 165,
- 346, 347, 71, 98, 172, 96, 96, 97, 96, 96,
- 96, 96, 96, 96, 96, 96, 96, 96, 96, 69,
- 99, 98, 171, 69, 69, 69, 159, 178, 149, 98,
- 80, 74, 71, 75, 100, 80, 71, 71, 71, 160,
- 98, 169, 96, 96, 96, 76, 77, 78, 98, 98,
-
- 98, 173, 170, 98, 98, 98, 98, 98, 203, 217,
- 98, 98, 151, 185, 98, 180, 98, 98, 174, 96,
- 98, 154, 98, 204, 187, 150, 175, 152, 153, 176,
- 182, 179, 181, 177, 184, 183, 186, 98, 69, 190,
- 188, 189, 192, 191, 131, 86, 98, 98, 132, 159,
- 193, 71, 216, 194, 196, 98, 218, 98, 98, 69,
- 69, 69, 160, 98, 98, 98, 98, 69, 223, 177,
- 98, 98, 71, 71, 71, 69, 226, 238, 98, 268,
- 71, 209, 228, 237, 177, 98, 227, 395, 71, 230,
- 229, 197, 197, 197, 197, 197, 197, 197, 197, 197,
-
- 197, 197, 197, 197, 197, 197, 197, 197, 197, 197,
- 197, 197, 197, 197, 197, 208, 211, 210, 212, 213,
- 219, 220, 219, 219, 219, 219, 219, 219, 219, 219,
- 219, 219, 219, 98, 221, 98, 98, 98, 98, 98,
- 98, 98, 98, 98, 98, 98, 98, 98, 98, 98,
- 98, 240, 98, 98, 177, 98, 219, 219, 219, 98,
- 244, 224, 98, 225, 241, 236, 235, 249, 239, 243,
- 242, 245, 246, 248, 292, 247, 250, 556, 272, 277,
- 98, 273, 177, 219, 231, 232, 233, 231, 231, 231,
- 231, 231, 231, 231, 231, 231, 231, 69, 234, 69,
-
- 69, 69, 69, 69, 278, 69, 98, 98, 98, 98,
- 71, 159, 71, 71, 71, 71, 71, 267, 71, 269,
- 231, 231, 231, 98, 160, 98, 280, 98, 98, 98,
- 293, 98, 98, 98, 270, 98, 271, 98, 177, 557,
- 294, 263, 299, 291, 296, 264, 98, 231, 196, 262,
- 98, 295, 98, 297, 260, 261, 265, 98, 177, 301,
- 98, 69, 298, 325, 300, 327, 326, 302, 98, 69,
- 328, 69, 394, 422, 71, 98, 395, 98, 187, 98,
- 98, 303, 71, 551, 71, 197, 197, 197, 197, 197,
- 197, 197, 197, 197, 197, 197, 197, 197, 197, 197,
-
- 197, 197, 197, 197, 197, 197, 197, 197, 197, 96,
- 97, 96, 96, 96, 96, 96, 96, 96, 96, 96,
- 96, 96, 318, 99, 69, 320, 69, 98, 159, 98,
- 280, 98, 98, 329, 98, 98, 339, 71, 351, 71,
- 98, 160, 98, 557, 336, 96, 96, 96, 336, 340,
- 349, 98, 98, 98, 354, 98, 356, 98, 98, 382,
- 350, 98, 401, 353, 352, 319, 98, 177, 98, 321,
- 358, 359, 96, 274, 275, 274, 274, 274, 274, 274,
- 274, 274, 274, 274, 274, 274, 177, 276, 355, 159,
- 357, 69, 69, 379, 98, 69, 380, 98, 98, 398,
-
- 159, 381, 160, 159, 71, 71, 98, 383, 71, 274,
- 274, 274, 98, 160, 351, 399, 160, 98, 98, 98,
- 407, 98, 402, 98, 98, 98, 415, 415, 419, 98,
- 466, 159, 69, 404, 98, 98, 274, 279, 280, 378,
- 352, 403, 412, 406, 160, 71, 69, 405, 411, 69,
- 160, 98, 281, 282, 98, 421, 423, 159, 283, 71,
- 431, 431, 71, 98, 98, 420, 98, 407, 447, 98,
- 160, 98, 98, 451, 159, 554, 98, 284, 285, 286,
- 98, 98, 98, 439, 287, 438, 288, 160, 336, 436,
- 98, 336, 289, 448, 290, 304, 305, 304, 304, 304,
-
- 304, 304, 304, 304, 304, 304, 304, 304, 437, 306,
- 415, 415, 69, 449, 280, 98, 98, 98, 98, 98,
- 469, 98, 159, 467, 468, 71, 450, 557, 98, 98,
- 446, 304, 304, 304, 462, 160, 98, 159, 407, 470,
- 482, 159, 498, 98, 483, 458, 463, 471, 98, 98,
- 160, 98, 98, 98, 160, 501, 98, 486, 304, 315,
- 316, 315, 315, 315, 315, 315, 315, 315, 315, 315,
- 315, 315, 484, 317, 485, 476, 497, 487, 177, 98,
- 98, 98, 98, 98, 499, 98, 159, 98, 98, 177,
- 508, 500, 507, 509, 515, 315, 315, 315, 98, 160,
-
- 98, 98, 98, 523, 98, 553, 177, 519, 98, 516,
- 517, 524, 528, 528, 530, 530, 518, 98, 551, 529,
- 395, 177, 315, 322, 323, 322, 322, 322, 322, 322,
- 322, 322, 322, 322, 322, 322, 98, 324, 98, 527,
- 528, 98, 550, 527, 528, 177, 529, 528, 528, 526,
- 529, 549, 160, 395, 529, 548, 160, 530, 530, 322,
- 322, 322, 530, 530, 538, 539, 538, 539, 539, 539,
- 538, 539, 540, 546, 540, 545, 540, 542, 540, 542,
- 395, 544, 543, 542, 536, 535, 322, 96, 97, 96,
- 96, 96, 96, 96, 96, 96, 96, 96, 96, 96,
-
- 534, 99, 538, 539, 538, 539, 533, 532, 522, 521,
- 540, 520, 540, 513, 512, 542, 511, 542, 510, 161,
- 505, 504, 503, 96, 96, 96, 502, 496, 161, 491,
- 490, 489, 488, 481, 161, 395, 395, 475, 474, 473,
- 472, 465, 161, 214, 398, 457, 456, 395, 395, 395,
- 96, 330, 331, 330, 330, 330, 330, 330, 330, 330,
- 330, 330, 330, 330, 455, 332, 454, 453, 452, 142,
- 161, 441, 435, 434, 433, 432, 395, 429, 428, 395,
- 395, 427, 426, 425, 424, 161, 142, 330, 330, 330,
- 142, 142, 414, 161, 400, 397, 396, 393, 392, 391,
-
- 390, 389, 388, 387, 161, 161, 142, 142, 368, 367,
- 366, 365, 364, 161, 330, 333, 334, 333, 333, 333,
- 333, 333, 333, 333, 333, 333, 333, 333, 348, 335,
- 345, 344, 343, 342, 341, 338, 337, 161, 314, 313,
- 312, 311, 310, 309, 308, 161, 161, 214, 259, 258,
- 257, 333, 333, 333, 256, 255, 254, 253, 199, 196,
- 214, 161, 158, 207, 206, 205, 202, 201, 199, 141,
- 133, 133, 107, 162, 161, 98, 95, 158, 333, 360,
- 361, 360, 360, 360, 360, 360, 360, 360, 360, 360,
- 360, 360, 156, 362, 557, 155, 557, 148, 147, 146,
-
- 145, 144, 143, 142, 141, 557, 139, 138, 137, 133,
- 108, 107, 95, 92, 91, 360, 360, 360, 65, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 360, 369, 370, 369, 369, 369, 369, 369,
- 369, 369, 369, 369, 369, 369, 557, 371, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 369,
- 369, 369, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
-
- 557, 557, 557, 557, 557, 557, 369, 372, 373, 372,
- 372, 372, 372, 372, 372, 372, 372, 372, 372, 372,
- 557, 374, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 372, 372, 372, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 372, 375, 376, 375, 375, 375, 375, 375, 375, 375,
- 375, 375, 375, 375, 557, 377, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
-
- 557, 557, 557, 557, 557, 557, 557, 375, 375, 375,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 375, 384, 385, 384, 384, 384,
- 384, 384, 384, 384, 384, 384, 384, 384, 557, 386,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 384, 384, 384, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 384, 408,
-
- 409, 408, 408, 408, 408, 408, 408, 408, 408, 408,
- 408, 408, 557, 410, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 408, 408, 408, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 408, 416, 417, 416, 416, 416, 416, 416,
- 416, 416, 416, 416, 416, 416, 557, 418, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 416,
-
- 416, 416, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 416, 442, 443, 442,
- 442, 442, 442, 442, 442, 442, 442, 442, 442, 442,
- 557, 444, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 442, 442, 442, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 442, 459, 460, 459, 459, 459, 459, 459, 459, 459,
-
- 459, 459, 459, 459, 557, 461, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 459, 459, 459,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 459, 477, 478, 477, 477, 477,
- 477, 477, 477, 477, 477, 477, 477, 477, 557, 479,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 477, 477, 477, 557, 557, 557, 557, 557, 557,
-
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 477, 492,
- 493, 492, 492, 492, 492, 492, 492, 492, 492, 492,
- 492, 492, 557, 494, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 492, 492, 492, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 492, 15, 15, 15, 15, 15, 15, 15,
- 15, 15, 15, 57, 57, 57, 57, 57, 57, 57,
-
- 57, 57, 57, 61, 61, 61, 61, 61, 61, 61,
- 61, 61, 61, 64, 64, 64, 64, 64, 64, 64,
- 64, 64, 64, 66, 66, 66, 66, 66, 66, 66,
- 66, 66, 66, 70, 557, 557, 557, 70, 70, 70,
- 557, 70, 87, 87, 87, 87, 87, 87, 87, 87,
- 87, 87, 90, 90, 90, 90, 90, 90, 90, 90,
- 90, 90, 98, 98, 98, 98, 98, 98, 98, 98,
- 98, 98, 106, 106, 106, 106, 106, 106, 106, 106,
- 557, 106, 134, 557, 557, 557, 557, 557, 557, 557,
- 134, 135, 135, 557, 135, 557, 135, 135, 135, 135,
-
- 135, 136, 136, 136, 136, 136, 136, 136, 136, 136,
- 136, 140, 140, 140, 140, 140, 140, 140, 140, 140,
- 140, 157, 157, 157, 157, 157, 157, 157, 157, 157,
- 157, 195, 195, 195, 195, 195, 195, 195, 195, 195,
- 195, 198, 198, 557, 198, 557, 198, 198, 198, 198,
- 198, 200, 557, 557, 557, 557, 557, 200, 557, 200,
- 215, 557, 557, 557, 557, 557, 215, 557, 215, 251,
- 251, 557, 251, 557, 251, 251, 251, 251, 251, 252,
- 557, 557, 557, 252, 252, 252, 557, 252, 266, 266,
- 266, 266, 266, 266, 266, 266, 266, 266, 307, 307,
-
- 557, 307, 557, 307, 307, 307, 307, 307, 363, 363,
- 557, 363, 557, 363, 363, 363, 363, 363, 315, 315,
- 315, 315, 315, 557, 315, 557, 315, 322, 322, 322,
- 322, 322, 557, 322, 557, 322, 413, 413, 557, 413,
- 557, 413, 413, 413, 413, 413, 369, 369, 369, 369,
- 369, 557, 369, 557, 369, 372, 372, 372, 372, 372,
- 557, 372, 557, 372, 375, 375, 375, 375, 375, 557,
- 375, 557, 375, 430, 430, 430, 430, 430, 557, 430,
- 557, 430, 440, 440, 440, 440, 440, 557, 440, 557,
- 440, 445, 445, 557, 445, 557, 445, 445, 445, 445,
-
- 445, 416, 416, 416, 416, 416, 557, 416, 557, 416,
- 215, 557, 557, 557, 557, 557, 215, 557, 215, 464,
- 464, 557, 464, 557, 464, 464, 464, 464, 464, 480,
- 480, 557, 480, 557, 480, 480, 480, 480, 480, 495,
- 495, 557, 495, 557, 495, 495, 495, 495, 495, 506,
- 506, 557, 506, 557, 506, 506, 506, 506, 506, 514,
- 514, 557, 514, 557, 514, 514, 514, 514, 514, 525,
- 525, 557, 525, 557, 525, 525, 525, 525, 525, 531,
- 531, 557, 557, 557, 557, 531, 557, 531, 537, 537,
- 557, 537, 557, 537, 537, 537, 537, 537, 541, 541,
-
- 541, 557, 541, 541, 541, 557, 541, 547, 547, 557,
- 547, 557, 547, 547, 547, 547, 547, 552, 557, 557,
- 557, 557, 557, 552, 557, 552, 555, 555, 555, 557,
- 555, 555, 555, 557, 555, 9, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557
-
- } ;
-
-static yyconst flex_int16_t yy_chk[2401] =
- { 0,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 4, 5, 6, 7, 4,
- 8, 12, 15, 27, 5, 6, 7, 14, 8, 14,
- 37, 19, 18, 20, 37, 15, 1, 1, 1, 16,
- 22, 17, 166, 16, 19, 18, 20, 21, 24, 24,
- 25, 25, 166, 22, 12, 31, 27, 31, 35, 35,
- 21, 36, 36, 1, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 38,
- 16, 18, 16, 17, 41, 49, 44, 43, 47, 20,
- 19, 22, 38, 42, 16, 16, 16, 45, 48, 46,
-
- 2, 2, 2, 43, 69, 556, 2, 21, 2, 41,
- 44, 49, 42, 47, 48, 42, 105, 69, 42, 105,
- 2, 2, 2, 46, 45, 86, 86, 2, 3, 3,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 3, 3, 33, 33, 33, 33, 33, 33, 33, 33,
-
- 33, 33, 33, 33, 33, 50, 33, 51, 52, 53,
- 55, 55, 61, 87, 55, 101, 101, 50, 70, 104,
- 102, 104, 109, 113, 52, 102, 51, 51, 33, 33,
- 33, 70, 50, 53, 50, 50, 51, 53, 73, 81,
- 72, 52, 103, 79, 72, 61, 87, 109, 112, 103,
- 289, 289, 81, 117, 113, 33, 34, 34, 34, 34,
- 34, 34, 34, 34, 34, 34, 34, 34, 34, 82,
- 34, 114, 112, 83, 85, 84, 97, 117, 81, 110,
- 73, 72, 82, 72, 34, 79, 83, 85, 84, 97,
- 111, 110, 34, 34, 34, 72, 72, 72, 115, 119,
-
- 123, 114, 111, 118, 116, 120, 125, 122, 145, 163,
- 121, 124, 83, 123, 126, 119, 127, 128, 115, 34,
- 163, 85, 129, 145, 125, 82, 116, 83, 84, 116,
- 121, 118, 120, 116, 122, 121, 124, 130, 150, 127,
- 125, 126, 129, 128, 131, 131, 182, 168, 131, 159,
- 129, 150, 162, 130, 134, 162, 164, 169, 164, 152,
- 149, 151, 159, 173, 167, 172, 174, 154, 167, 168,
- 175, 181, 152, 149, 151, 153, 172, 182, 176, 217,
- 154, 150, 174, 181, 169, 217, 173, 554, 153, 176,
- 175, 134, 134, 134, 134, 134, 134, 134, 134, 134,
-
- 134, 134, 134, 134, 134, 134, 134, 134, 134, 134,
- 134, 134, 134, 134, 134, 149, 152, 151, 153, 154,
- 165, 165, 165, 165, 165, 165, 165, 165, 165, 165,
- 165, 165, 165, 170, 165, 171, 178, 179, 180, 183,
- 184, 189, 185, 186, 188, 187, 190, 193, 192, 194,
- 224, 184, 225, 226, 178, 228, 165, 165, 165, 191,
- 188, 170, 236, 171, 185, 180, 179, 193, 183, 187,
- 186, 189, 190, 192, 236, 191, 194, 553, 224, 228,
- 229, 225, 226, 165, 177, 177, 177, 177, 177, 177,
- 177, 177, 177, 177, 177, 177, 177, 200, 177, 208,
-
- 211, 209, 210, 212, 229, 213, 216, 237, 218, 230,
- 200, 220, 208, 211, 209, 210, 212, 216, 213, 218,
- 177, 177, 177, 222, 220, 223, 233, 235, 238, 242,
- 237, 244, 240, 241, 222, 239, 223, 246, 230, 233,
- 238, 211, 244, 235, 240, 212, 243, 177, 197, 210,
- 245, 239, 247, 241, 208, 209, 213, 248, 242, 246,
- 249, 252, 243, 267, 245, 269, 268, 247, 270, 263,
- 270, 261, 344, 382, 252, 267, 344, 269, 249, 268,
- 382, 248, 263, 551, 261, 197, 197, 197, 197, 197,
- 197, 197, 197, 197, 197, 197, 197, 197, 197, 197,
-
- 197, 197, 197, 197, 197, 197, 197, 197, 197, 215,
- 215, 215, 215, 215, 215, 215, 215, 215, 215, 215,
- 215, 215, 261, 215, 262, 263, 264, 271, 275, 277,
- 280, 292, 278, 271, 294, 291, 283, 262, 293, 264,
- 295, 275, 297, 280, 277, 215, 215, 215, 278, 283,
- 291, 349, 298, 293, 295, 302, 297, 299, 301, 328,
- 292, 300, 349, 294, 293, 262, 296, 298, 328, 264,
- 301, 302, 215, 227, 227, 227, 227, 227, 227, 227,
- 227, 227, 227, 227, 227, 227, 299, 227, 296, 305,
- 300, 316, 323, 325, 326, 321, 326, 350, 325, 347,
-
- 331, 327, 305, 334, 316, 323, 327, 329, 321, 227,
- 227, 227, 329, 331, 351, 347, 334, 353, 354, 358,
- 356, 352, 350, 355, 379, 359, 368, 368, 379, 351,
- 447, 361, 370, 353, 356, 447, 227, 232, 232, 321,
- 351, 352, 359, 355, 361, 370, 373, 354, 358, 376,
- 232, 381, 232, 232, 380, 381, 383, 385, 232, 373,
- 395, 395, 376, 401, 402, 380, 383, 404, 419, 405,
- 385, 406, 411, 423, 409, 550, 419, 232, 232, 232,
- 403, 404, 423, 406, 232, 405, 232, 409, 411, 401,
- 420, 402, 232, 420, 232, 250, 250, 250, 250, 250,
-
- 250, 250, 250, 250, 250, 250, 250, 250, 403, 250,
- 415, 415, 417, 421, 431, 422, 436, 450, 439, 438,
- 450, 421, 443, 448, 449, 417, 422, 431, 448, 449,
- 415, 250, 250, 250, 438, 443, 451, 460, 462, 451,
- 466, 478, 483, 483, 467, 436, 439, 451, 458, 466,
- 460, 467, 462, 470, 478, 487, 487, 470, 250, 260,
- 260, 260, 260, 260, 260, 260, 260, 260, 260, 260,
- 260, 260, 468, 260, 469, 458, 482, 471, 497, 482,
- 486, 468, 471, 469, 484, 485, 493, 484, 497, 485,
- 499, 486, 498, 500, 507, 260, 260, 260, 500, 493,
-
- 499, 498, 501, 513, 507, 549, 501, 509, 509, 508,
- 508, 513, 517, 517, 518, 518, 508, 519, 548, 517,
- 546, 519, 260, 265, 265, 265, 265, 265, 265, 265,
- 265, 265, 265, 265, 265, 265, 508, 265, 515, 516,
- 516, 526, 545, 527, 527, 526, 516, 528, 528, 515,
- 527, 544, 516, 543, 528, 542, 527, 529, 529, 265,
- 265, 265, 530, 530, 531, 531, 538, 538, 539, 539,
- 541, 541, 531, 536, 538, 535, 539, 531, 541, 538,
- 534, 533, 532, 541, 524, 523, 265, 266, 266, 266,
- 266, 266, 266, 266, 266, 266, 266, 266, 266, 266,
-
- 522, 266, 552, 552, 555, 555, 521, 520, 512, 511,
- 552, 510, 555, 505, 504, 552, 503, 555, 502, 494,
- 491, 490, 489, 266, 266, 266, 488, 481, 479, 475,
- 474, 473, 472, 465, 461, 457, 456, 455, 454, 453,
- 452, 446, 444, 441, 435, 434, 433, 432, 429, 428,
- 266, 272, 272, 272, 272, 272, 272, 272, 272, 272,
- 272, 272, 272, 272, 427, 272, 426, 425, 424, 418,
- 410, 407, 400, 399, 398, 397, 396, 394, 393, 392,
- 391, 390, 389, 388, 387, 386, 377, 272, 272, 272,
- 374, 371, 367, 362, 348, 346, 345, 343, 342, 341,
-
- 340, 339, 338, 337, 335, 332, 324, 317, 314, 312,
- 311, 310, 309, 306, 272, 273, 273, 273, 273, 273,
- 273, 273, 273, 273, 273, 273, 273, 273, 290, 273,
- 288, 287, 286, 285, 284, 282, 281, 276, 259, 258,
- 257, 256, 255, 254, 253, 234, 221, 214, 207, 206,
- 205, 273, 273, 273, 204, 203, 202, 201, 199, 195,
- 161, 160, 157, 148, 147, 146, 144, 143, 142, 140,
- 133, 132, 106, 100, 99, 98, 95, 94, 273, 303,
- 303, 303, 303, 303, 303, 303, 303, 303, 303, 303,
- 303, 303, 92, 303, 91, 90, 89, 80, 78, 77,
-
- 76, 75, 74, 71, 68, 65, 64, 60, 59, 56,
- 40, 39, 32, 30, 29, 303, 303, 303, 13, 9,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 303, 318, 318, 318, 318, 318, 318, 318,
- 318, 318, 318, 318, 318, 318, 0, 318, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 318,
- 318, 318, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-
- 0, 0, 0, 0, 0, 0, 318, 319, 319, 319,
- 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
- 0, 319, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 319, 319, 319, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 319, 320, 320, 320, 320, 320, 320, 320, 320, 320,
- 320, 320, 320, 320, 0, 320, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-
- 0, 0, 0, 0, 0, 0, 0, 320, 320, 320,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 320, 336, 336, 336, 336, 336,
- 336, 336, 336, 336, 336, 336, 336, 336, 0, 336,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 336, 336, 336, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 336, 357,
-
- 357, 357, 357, 357, 357, 357, 357, 357, 357, 357,
- 357, 357, 0, 357, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 357, 357, 357, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 357, 378, 378, 378, 378, 378, 378, 378,
- 378, 378, 378, 378, 378, 378, 0, 378, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 378,
-
- 378, 378, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 378, 412, 412, 412,
- 412, 412, 412, 412, 412, 412, 412, 412, 412, 412,
- 0, 412, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 412, 412, 412, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 412, 437, 437, 437, 437, 437, 437, 437, 437, 437,
-
- 437, 437, 437, 437, 0, 437, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 437, 437, 437,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 437, 463, 463, 463, 463, 463,
- 463, 463, 463, 463, 463, 463, 463, 463, 0, 463,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 463, 463, 463, 0, 0, 0, 0, 0, 0,
-
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 463, 476,
- 476, 476, 476, 476, 476, 476, 476, 476, 476, 476,
- 476, 476, 0, 476, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 476, 476, 476, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 476, 558, 558, 558, 558, 558, 558, 558,
- 558, 558, 558, 559, 559, 559, 559, 559, 559, 559,
-
- 559, 559, 559, 560, 560, 560, 560, 560, 560, 560,
- 560, 560, 560, 561, 561, 561, 561, 561, 561, 561,
- 561, 561, 561, 562, 562, 562, 562, 562, 562, 562,
- 562, 562, 562, 563, 0, 0, 0, 563, 563, 563,
- 0, 563, 564, 564, 564, 564, 564, 564, 564, 564,
- 564, 564, 565, 565, 565, 565, 565, 565, 565, 565,
- 565, 565, 566, 566, 566, 566, 566, 566, 566, 566,
- 566, 566, 567, 567, 567, 567, 567, 567, 567, 567,
- 0, 567, 568, 0, 0, 0, 0, 0, 0, 0,
- 568, 569, 569, 0, 569, 0, 569, 569, 569, 569,
-
- 569, 570, 570, 570, 570, 570, 570, 570, 570, 570,
- 570, 571, 571, 571, 571, 571, 571, 571, 571, 571,
- 571, 572, 572, 572, 572, 572, 572, 572, 572, 572,
- 572, 573, 573, 573, 573, 573, 573, 573, 573, 573,
- 573, 574, 574, 0, 574, 0, 574, 574, 574, 574,
- 574, 575, 0, 0, 0, 0, 0, 575, 0, 575,
- 576, 0, 0, 0, 0, 0, 576, 0, 576, 577,
- 577, 0, 577, 0, 577, 577, 577, 577, 577, 578,
- 0, 0, 0, 578, 578, 578, 0, 578, 579, 579,
- 579, 579, 579, 579, 579, 579, 579, 579, 580, 580,
-
- 0, 580, 0, 580, 580, 580, 580, 580, 581, 581,
- 0, 581, 0, 581, 581, 581, 581, 581, 582, 582,
- 582, 582, 582, 0, 582, 0, 582, 583, 583, 583,
- 583, 583, 0, 583, 0, 583, 584, 584, 0, 584,
- 0, 584, 584, 584, 584, 584, 585, 585, 585, 585,
- 585, 0, 585, 0, 585, 586, 586, 586, 586, 586,
- 0, 586, 0, 586, 587, 587, 587, 587, 587, 0,
- 587, 0, 587, 588, 588, 588, 588, 588, 0, 588,
- 0, 588, 589, 589, 589, 589, 589, 0, 589, 0,
- 589, 590, 590, 0, 590, 0, 590, 590, 590, 590,
-
- 590, 591, 591, 591, 591, 591, 0, 591, 0, 591,
- 592, 0, 0, 0, 0, 0, 592, 0, 592, 593,
- 593, 0, 593, 0, 593, 593, 593, 593, 593, 594,
- 594, 0, 594, 0, 594, 594, 594, 594, 594, 595,
- 595, 0, 595, 0, 595, 595, 595, 595, 595, 596,
- 596, 0, 596, 0, 596, 596, 596, 596, 596, 597,
- 597, 0, 597, 0, 597, 597, 597, 597, 597, 598,
- 598, 0, 598, 0, 598, 598, 598, 598, 598, 599,
- 599, 0, 0, 0, 0, 599, 0, 599, 600, 600,
- 0, 600, 0, 600, 600, 600, 600, 600, 601, 601,
-
- 601, 0, 601, 601, 601, 0, 601, 602, 602, 0,
- 602, 0, 602, 602, 602, 602, 602, 603, 0, 0,
- 0, 0, 0, 603, 0, 603, 604, 604, 604, 0,
- 604, 604, 604, 0, 604, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557,
- 557, 557, 557, 557, 557, 557, 557, 557, 557, 557
-
- } ;
-
-static yy_state_type yy_last_accepting_state;
-static char *yy_last_accepting_cpos;
-
-extern int yy_flex_debug;
-int yy_flex_debug = 0;
-
-/* The intent behind this definition is that it'll catch
- * any uses of REJECT which flex missed.
- */
-#define REJECT reject_used_but_not_detected
-#define yymore() yymore_used_but_not_detected
-#define YY_MORE_ADJ 0
-#define YY_RESTORE_YY_MORE_OFFSET
-char *yytext;
-#line 1 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-/* -*- indented-text -*- */
-/* Process source files and output type information.
- Copyright (C) 2002-2014 Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-#define YY_NO_INPUT 1
-#line 24 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-#ifdef GENERATOR_FILE
-#include "bconfig.h"
-#else
-#include "config.h"
-#endif
-#include "system.h"
-
-#define malloc xmalloc
-#define realloc xrealloc
-
-#include "gengtype.h"
-
-#define YY_DECL int yylex (const char **yylval)
-#define yyterminate() return EOF_TOKEN
-
-struct fileloc lexer_line;
-int lexer_toplevel_done;
-
-static void
-update_lineno (const char *l, size_t len)
-{
- while (len-- > 0)
- if (*l++ == '\n')
- lexer_line.line++;
-}
-
-/* Include '::' in identifiers to capture C++ scope qualifiers. */
-
-#line 1227 "gengtype-lex.c"
-
-#define INITIAL 0
-#define in_struct 1
-#define in_struct_comment 2
-#define in_comment 3
-
-#ifndef YY_NO_UNISTD_H
-/* Special case for "unistd.h", since it is non-ANSI. We include it way
- * down here because we want the user's section 1 to have been scanned first.
- * The user has a chance to override it with an option.
- */
-#include <unistd.h>
-#endif
-
-#ifndef YY_EXTRA_TYPE
-#define YY_EXTRA_TYPE void *
-#endif
-
-static int yy_init_globals (void );
-
-/* Accessor methods to globals.
- These are made visible to non-reentrant scanners for convenience. */
-
-int yylex_destroy (void );
-
-int yyget_debug (void );
-
-void yyset_debug (int debug_flag );
-
-YY_EXTRA_TYPE yyget_extra (void );
-
-void yyset_extra (YY_EXTRA_TYPE user_defined );
-
-FILE *yyget_in (void );
-
-void yyset_in (FILE * in_str );
-
-FILE *yyget_out (void );
-
-void yyset_out (FILE * out_str );
-
-yy_size_t yyget_leng (void );
-
-char *yyget_text (void );
-
-int yyget_lineno (void );
-
-void yyset_lineno (int line_number );
-
-/* Macros after this point can all be overridden by user definitions in
- * section 1.
- */
-
-#ifndef YY_SKIP_YYWRAP
-#ifdef __cplusplus
-extern "C" int yywrap (void );
-#else
-extern int yywrap (void );
-#endif
-#endif
-
-#ifndef yytext_ptr
-static void yy_flex_strncpy (char *,yyconst char *,int );
-#endif
-
-#ifdef YY_NEED_STRLEN
-static int yy_flex_strlen (yyconst char * );
-#endif
-
-#ifndef YY_NO_INPUT
-
-#ifdef __cplusplus
-static int yyinput (void );
-#else
-static int input (void );
-#endif
-
-#endif
-
-/* Amount of stuff to slurp up with each read. */
-#ifndef YY_READ_BUF_SIZE
-#define YY_READ_BUF_SIZE 8192
-#endif
-
-/* Copy whatever the last rule matched to the standard output. */
-#ifndef ECHO
-/* This used to be an fputs(), but since the string might contain NUL's,
- * we now use fwrite().
- */
-#define ECHO do { if (fwrite( yytext, yyleng, 1, yyout )) {} } while (0)
-#endif
-
-/* Gets input and stuffs it into "buf". number of characters read, or YY_NULL,
- * is returned in "result".
- */
-#ifndef YY_INPUT
-#define YY_INPUT(buf,result,max_size) \
- if ( YY_CURRENT_BUFFER_LVALUE->yy_is_interactive ) \
- { \
- int c = '*'; \
- size_t n; \
- for ( n = 0; n < max_size && \
- (c = getc( yyin )) != EOF && c != '\n'; ++n ) \
- buf[n] = (char) c; \
- if ( c == '\n' ) \
- buf[n++] = (char) c; \
- if ( c == EOF && ferror( yyin ) ) \
- YY_FATAL_ERROR( "input in flex scanner failed" ); \
- result = n; \
- } \
- else \
- { \
- errno=0; \
- while ( (result = fread(buf, 1, max_size, yyin))==0 && ferror(yyin)) \
- { \
- if( errno != EINTR) \
- { \
- YY_FATAL_ERROR( "input in flex scanner failed" ); \
- break; \
- } \
- errno=0; \
- clearerr(yyin); \
- } \
- }\
-\
-
-#endif
-
-/* No semi-colon after return; correct usage is to write "yyterminate();" -
- * we don't want an extra ';' after the "return" because that will cause
- * some compilers to complain about unreachable statements.
- */
-#ifndef yyterminate
-#define yyterminate() return YY_NULL
-#endif
-
-/* Number of entries by which start-condition stack grows. */
-#ifndef YY_START_STACK_INCR
-#define YY_START_STACK_INCR 25
-#endif
-
-/* Report a fatal error. */
-#ifndef YY_FATAL_ERROR
-#define YY_FATAL_ERROR(msg) yy_fatal_error( msg )
-#endif
-
-/* end tables serialization structures and prototypes */
-
-/* Default declaration of generated scanner - a define so the user can
- * easily add parameters.
- */
-#ifndef YY_DECL
-#define YY_DECL_IS_OURS 1
-
-extern int yylex (void);
-
-#define YY_DECL int yylex (void)
-#endif /* !YY_DECL */
-
-/* Code executed at the beginning of each rule, after yytext and yyleng
- * have been set up.
- */
-#ifndef YY_USER_ACTION
-#define YY_USER_ACTION
-#endif
-
-/* Code executed at the end of each rule. */
-#ifndef YY_BREAK
-#define YY_BREAK break;
-#endif
-
-#define YY_RULE_SETUP \
- if ( yyleng > 0 ) \
- YY_CURRENT_BUFFER_LVALUE->yy_at_bol = \
- (yytext[yyleng - 1] == '\n'); \
- YY_USER_ACTION
-
-/** The main scanner function which does all the work.
- */
-YY_DECL
-{
- register yy_state_type yy_current_state;
- register char *yy_cp, *yy_bp;
- register int yy_act;
-
-#line 65 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-
- /* Do this on entry to yylex(): */
- *yylval = 0;
- if (lexer_toplevel_done)
- {
- BEGIN(INITIAL);
- lexer_toplevel_done = 0;
- }
-
- /* Things we look for in skipping mode: */
-#line 1424 "gengtype-lex.c"
-
- if ( !(yy_init) )
- {
- (yy_init) = 1;
-
-#ifdef YY_USER_INIT
- YY_USER_INIT;
-#endif
-
- if ( ! (yy_start) )
- (yy_start) = 1; /* first start state */
-
- if ( ! yyin )
- yyin = stdin;
-
- if ( ! yyout )
- yyout = stdout;
-
- if ( ! YY_CURRENT_BUFFER ) {
- yyensure_buffer_stack ();
- YY_CURRENT_BUFFER_LVALUE =
- yy_create_buffer(yyin,YY_BUF_SIZE );
- }
-
- yy_load_buffer_state( );
- }
-
- while ( 1 ) /* loops until end-of-file is reached */
- {
- yy_cp = (yy_c_buf_p);
-
- /* Support of yytext. */
- *yy_cp = (yy_hold_char);
-
- /* yy_bp points to the position in yy_ch_buf of the start of
- * the current run.
- */
- yy_bp = yy_cp;
-
- yy_current_state = (yy_start);
- yy_current_state += YY_AT_BOL();
-yy_match:
- do
- {
- register YY_CHAR yy_c = yy_ec[YY_SC_TO_UI(*yy_cp)];
- if ( yy_accept[yy_current_state] )
- {
- (yy_last_accepting_state) = yy_current_state;
- (yy_last_accepting_cpos) = yy_cp;
- }
- while ( yy_chk[yy_base[yy_current_state] + yy_c] != yy_current_state )
- {
- yy_current_state = (int) yy_def[yy_current_state];
- if ( yy_current_state >= 558 )
- yy_c = yy_meta[(unsigned int) yy_c];
- }
- yy_current_state = yy_nxt[yy_base[yy_current_state] + (unsigned int) yy_c];
- ++yy_cp;
- }
- while ( yy_current_state != 557 );
- yy_cp = (yy_last_accepting_cpos);
- yy_current_state = (yy_last_accepting_state);
-
-yy_find_action:
- yy_act = yy_accept[yy_current_state];
-
- YY_DO_BEFORE_ACTION;
-
-do_action: /* This label is used only to access EOF actions. */
-
- switch ( yy_act )
- { /* beginning of action switch */
- case 0: /* must back up */
- /* undo the effects of YY_DO_BEFORE_ACTION */
- *yy_cp = (yy_hold_char);
- yy_cp = (yy_last_accepting_cpos);
- yy_current_state = (yy_last_accepting_state);
- goto yy_find_action;
-
-case 1:
-/* rule 1 can match eol */
-*yy_cp = (yy_hold_char); /* undo effects of setting up yytext */
-(yy_c_buf_p) = yy_cp -= 1;
-YY_DO_BEFORE_ACTION; /* set up yytext again */
-YY_RULE_SETUP
-#line 76 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{
- BEGIN(in_struct);
- return TYPEDEF;
-}
- YY_BREAK
-case 2:
-/* rule 2 can match eol */
-*yy_cp = (yy_hold_char); /* undo effects of setting up yytext */
-(yy_c_buf_p) = yy_cp -= 1;
-YY_DO_BEFORE_ACTION; /* set up yytext again */
-YY_RULE_SETUP
-#line 80 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{
- BEGIN(in_struct);
- return STRUCT;
-}
- YY_BREAK
-case 3:
-/* rule 3 can match eol */
-*yy_cp = (yy_hold_char); /* undo effects of setting up yytext */
-(yy_c_buf_p) = yy_cp -= 1;
-YY_DO_BEFORE_ACTION; /* set up yytext again */
-YY_RULE_SETUP
-#line 84 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{
- BEGIN(in_struct);
- return UNION;
-}
- YY_BREAK
-case 4:
-/* rule 4 can match eol */
-*yy_cp = (yy_hold_char); /* undo effects of setting up yytext */
-(yy_c_buf_p) = yy_cp -= 1;
-YY_DO_BEFORE_ACTION; /* set up yytext again */
-YY_RULE_SETUP
-#line 88 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{
- BEGIN(in_struct);
- return STRUCT;
-}
- YY_BREAK
-case 5:
-/* rule 5 can match eol */
-*yy_cp = (yy_hold_char); /* undo effects of setting up yytext */
-(yy_c_buf_p) = yy_cp -= 1;
-YY_DO_BEFORE_ACTION; /* set up yytext again */
-YY_RULE_SETUP
-#line 92 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{
- BEGIN(in_struct);
- return EXTERN;
-}
- YY_BREAK
-case 6:
-/* rule 6 can match eol */
-*yy_cp = (yy_hold_char); /* undo effects of setting up yytext */
-(yy_c_buf_p) = yy_cp -= 1;
-YY_DO_BEFORE_ACTION; /* set up yytext again */
-YY_RULE_SETUP
-#line 96 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{
- BEGIN(in_struct);
- return STATIC;
-}
- YY_BREAK
-
-/* Parsing inside a struct, union or class declaration. */
-
-case 7:
-YY_RULE_SETUP
-#line 104 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ BEGIN(in_struct_comment); }
- YY_BREAK
-case 8:
-/* rule 8 can match eol */
-YY_RULE_SETUP
-#line 105 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ lexer_line.line++; }
- YY_BREAK
-case 9:
-/* rule 9 can match eol */
-YY_RULE_SETUP
-#line 107 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ update_lineno (yytext, yyleng); }
- YY_BREAK
-case 10:
-/* rule 10 can match eol */
-YY_RULE_SETUP
-#line 108 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ lexer_line.line++; }
- YY_BREAK
-case 11:
-/* rule 11 can match eol */
-*yy_cp = (yy_hold_char); /* undo effects of setting up yytext */
-(yy_c_buf_p) = yy_cp = yy_bp + 5;
-YY_DO_BEFORE_ACTION; /* set up yytext again */
-YY_RULE_SETUP
-#line 110 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-/* don't care */
- YY_BREAK
-case 12:
-/* rule 12 can match eol */
-*yy_cp = (yy_hold_char); /* undo effects of setting up yytext */
-(yy_c_buf_p) = yy_cp -= 1;
-YY_DO_BEFORE_ACTION; /* set up yytext again */
-#line 112 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-case 13:
-/* rule 13 can match eol */
-#line 113 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-case 14:
-/* rule 14 can match eol */
-YY_RULE_SETUP
-#line 113 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{
- *yylval = XDUPVAR (const char, yytext, yyleng, yyleng + 1);
- return IGNORABLE_CXX_KEYWORD;
-}
- YY_BREAK
-case 15:
-/* rule 15 can match eol */
-*yy_cp = (yy_hold_char); /* undo effects of setting up yytext */
-(yy_c_buf_p) = yy_cp = yy_bp + 3;
-YY_DO_BEFORE_ACTION; /* set up yytext again */
-YY_RULE_SETUP
-#line 117 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ return GTY_TOKEN; }
- YY_BREAK
-case 16:
-/* rule 16 can match eol */
-*yy_cp = (yy_hold_char); /* undo effects of setting up yytext */
-(yy_c_buf_p) = yy_cp = yy_bp + 5;
-YY_DO_BEFORE_ACTION; /* set up yytext again */
-YY_RULE_SETUP
-#line 118 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ return UNION; }
- YY_BREAK
-case 17:
-/* rule 17 can match eol */
-*yy_cp = (yy_hold_char); /* undo effects of setting up yytext */
-(yy_c_buf_p) = yy_cp = yy_bp + 6;
-YY_DO_BEFORE_ACTION; /* set up yytext again */
-YY_RULE_SETUP
-#line 119 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ return STRUCT; }
- YY_BREAK
-case 18:
-/* rule 18 can match eol */
-*yy_cp = (yy_hold_char); /* undo effects of setting up yytext */
-(yy_c_buf_p) = yy_cp = yy_bp + 5;
-YY_DO_BEFORE_ACTION; /* set up yytext again */
-YY_RULE_SETUP
-#line 120 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ return STRUCT; }
- YY_BREAK
-case 19:
-/* rule 19 can match eol */
-*yy_cp = (yy_hold_char); /* undo effects of setting up yytext */
-(yy_c_buf_p) = yy_cp = yy_bp + 7;
-YY_DO_BEFORE_ACTION; /* set up yytext again */
-YY_RULE_SETUP
-#line 121 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ return TYPEDEF; }
- YY_BREAK
-case 20:
-/* rule 20 can match eol */
-*yy_cp = (yy_hold_char); /* undo effects of setting up yytext */
-(yy_c_buf_p) = yy_cp = yy_bp + 4;
-YY_DO_BEFORE_ACTION; /* set up yytext again */
-YY_RULE_SETUP
-#line 122 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ return ENUM; }
- YY_BREAK
-case 21:
-/* rule 21 can match eol */
-*yy_cp = (yy_hold_char); /* undo effects of setting up yytext */
-(yy_c_buf_p) = yy_cp = yy_bp + 9;
-YY_DO_BEFORE_ACTION; /* set up yytext again */
-YY_RULE_SETUP
-#line 123 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ return PTR_ALIAS; }
- YY_BREAK
-case 22:
-/* rule 22 can match eol */
-*yy_cp = (yy_hold_char); /* undo effects of setting up yytext */
-(yy_c_buf_p) = yy_cp = yy_bp + 10;
-YY_DO_BEFORE_ACTION; /* set up yytext again */
-YY_RULE_SETUP
-#line 124 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ return NESTED_PTR; }
- YY_BREAK
-case 23:
-/* rule 23 can match eol */
-*yy_cp = (yy_hold_char); /* undo effects of setting up yytext */
-(yy_c_buf_p) = yy_cp = yy_bp + 4;
-YY_DO_BEFORE_ACTION; /* set up yytext again */
-YY_RULE_SETUP
-#line 125 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ return USER_GTY; }
- YY_BREAK
-case 24:
-YY_RULE_SETUP
-#line 126 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ return NUM; }
- YY_BREAK
-case 25:
-/* rule 25 can match eol */
-*yy_cp = (yy_hold_char); /* undo effects of setting up yytext */
-(yy_c_buf_p) = yy_cp -= 1;
-YY_DO_BEFORE_ACTION; /* set up yytext again */
-YY_RULE_SETUP
-#line 127 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{
- *yylval = XDUPVAR (const char, yytext, yyleng, yyleng+1);
- return PARAM_IS;
-}
- YY_BREAK
-case 26:
-/* rule 26 can match eol */
-*yy_cp = (yy_hold_char); /* undo effects of setting up yytext */
-(yy_c_buf_p) = yy_cp -= 1;
-YY_DO_BEFORE_ACTION; /* set up yytext again */
-#line 133 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-case 27:
-/* rule 27 can match eol */
-YY_RULE_SETUP
-#line 133 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{
- size_t len;
-
- for (len = yyleng; ISSPACE (yytext[len-1]); len--)
- ;
-
- *yylval = XDUPVAR (const char, yytext, len, len+1);
- update_lineno (yytext, yyleng);
- return SCALAR;
-}
- YY_BREAK
-case 28:
-/* rule 28 can match eol */
-*yy_cp = (yy_hold_char); /* undo effects of setting up yytext */
-(yy_c_buf_p) = yy_cp -= 1;
-YY_DO_BEFORE_ACTION; /* set up yytext again */
-YY_RULE_SETUP
-#line 144 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{
- *yylval = XDUPVAR (const char, yytext, yyleng, yyleng+1);
- return ID;
-}
- YY_BREAK
-case 29:
-/* rule 29 can match eol */
-YY_RULE_SETUP
-#line 149 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{
- *yylval = XDUPVAR (const char, yytext+1, yyleng-2, yyleng-1);
- return STRING;
-}
- YY_BREAK
-/* This "terminal" avoids having to parse integer constant expressions. */
-case 30:
-/* rule 30 can match eol */
-YY_RULE_SETUP
-#line 154 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{
- *yylval = XDUPVAR (const char, yytext+1, yyleng-2, yyleng-1);
- return ARRAY;
-}
- YY_BREAK
-case 31:
-/* rule 31 can match eol */
-YY_RULE_SETUP
-#line 158 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{
- *yylval = XDUPVAR (const char, yytext+1, yyleng-2, yyleng);
- return CHAR;
-}
- YY_BREAK
-case 32:
-YY_RULE_SETUP
-#line 163 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ return ELLIPSIS; }
- YY_BREAK
-case 33:
-YY_RULE_SETUP
-#line 164 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ return yytext[0]; }
- YY_BREAK
-/* ignore pp-directives */
-case 34:
-/* rule 34 can match eol */
-YY_RULE_SETUP
-#line 167 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{lexer_line.line++;}
- YY_BREAK
-case 35:
-YY_RULE_SETUP
-#line 169 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{
- error_at_line (&lexer_line, "unexpected character `%s'", yytext);
-}
- YY_BREAK
-
-case 36:
-YY_RULE_SETUP
-#line 174 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ BEGIN(in_comment); }
- YY_BREAK
-case 37:
-/* rule 37 can match eol */
-YY_RULE_SETUP
-#line 175 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ lexer_line.line++; }
- YY_BREAK
-case 38:
-/* rule 38 can match eol */
-YY_RULE_SETUP
-#line 176 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ lexer_line.line++; }
- YY_BREAK
-case 39:
-#line 178 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-case 40:
-/* rule 40 can match eol */
-#line 179 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-case 41:
-/* rule 41 can match eol */
-YY_RULE_SETUP
-#line 179 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-/* do nothing */
- YY_BREAK
-case 42:
-/* rule 42 can match eol */
-YY_RULE_SETUP
-#line 180 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ update_lineno (yytext, yyleng); }
- YY_BREAK
-case 43:
-/* rule 43 can match eol */
-*yy_cp = (yy_hold_char); /* undo effects of setting up yytext */
-(yy_c_buf_p) = yy_cp = yy_bp + 1;
-YY_DO_BEFORE_ACTION; /* set up yytext again */
-YY_RULE_SETUP
-#line 181 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-/* do nothing */
- YY_BREAK
-
-case 44:
-/* rule 44 can match eol */
-YY_RULE_SETUP
-#line 184 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ lexer_line.line++; }
- YY_BREAK
-case 45:
-#line 186 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-case 46:
-YY_RULE_SETUP
-#line 186 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-/* do nothing */
- YY_BREAK
-case 47:
-/* rule 47 can match eol */
-*yy_cp = (yy_hold_char); /* undo effects of setting up yytext */
-(yy_c_buf_p) = yy_cp = yy_bp + 1;
-YY_DO_BEFORE_ACTION; /* set up yytext again */
-YY_RULE_SETUP
-#line 187 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-/* do nothing */
- YY_BREAK
-
-case 48:
-YY_RULE_SETUP
-#line 190 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ BEGIN(INITIAL); }
- YY_BREAK
-case 49:
-YY_RULE_SETUP
-#line 191 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{ BEGIN(in_struct); }
- YY_BREAK
-case 50:
-#line 194 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-case 51:
-YY_RULE_SETUP
-#line 194 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-{
- error_at_line (&lexer_line,
- "unterminated comment or string; unexpected EOF");
-}
- YY_BREAK
-case 52:
-/* rule 52 can match eol */
-YY_RULE_SETUP
-#line 199 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-/* do nothing */
- YY_BREAK
-case 53:
-YY_RULE_SETUP
-#line 201 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-YY_FATAL_ERROR( "flex scanner jammed" );
- YY_BREAK
-#line 1911 "gengtype-lex.c"
-case YY_STATE_EOF(INITIAL):
-case YY_STATE_EOF(in_struct):
-case YY_STATE_EOF(in_struct_comment):
-case YY_STATE_EOF(in_comment):
- yyterminate();
-
- case YY_END_OF_BUFFER:
- {
- /* Amount of text matched not including the EOB char. */
- int yy_amount_of_matched_text = (int) (yy_cp - (yytext_ptr)) - 1;
-
- /* Undo the effects of YY_DO_BEFORE_ACTION. */
- *yy_cp = (yy_hold_char);
- YY_RESTORE_YY_MORE_OFFSET
-
- if ( YY_CURRENT_BUFFER_LVALUE->yy_buffer_status == YY_BUFFER_NEW )
- {
- /* We're scanning a new file or input source. It's
- * possible that this happened because the user
- * just pointed yyin at a new source and called
- * yylex(). If so, then we have to assure
- * consistency between YY_CURRENT_BUFFER and our
- * globals. Here is the right place to do so, because
- * this is the first action (other than possibly a
- * back-up) that will match for the new input source.
- */
- (yy_n_chars) = YY_CURRENT_BUFFER_LVALUE->yy_n_chars;
- YY_CURRENT_BUFFER_LVALUE->yy_input_file = yyin;
- YY_CURRENT_BUFFER_LVALUE->yy_buffer_status = YY_BUFFER_NORMAL;
- }
-
- /* Note that here we test for yy_c_buf_p "<=" to the position
- * of the first EOB in the buffer, since yy_c_buf_p will
- * already have been incremented past the NUL character
- * (since all states make transitions on EOB to the
- * end-of-buffer state). Contrast this with the test
- * in input().
- */
- if ( (yy_c_buf_p) <= &YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[(yy_n_chars)] )
- { /* This was really a NUL. */
- yy_state_type yy_next_state;
-
- (yy_c_buf_p) = (yytext_ptr) + yy_amount_of_matched_text;
-
- yy_current_state = yy_get_previous_state( );
-
- /* Okay, we're now positioned to make the NUL
- * transition. We couldn't have
- * yy_get_previous_state() go ahead and do it
- * for us because it doesn't know how to deal
- * with the possibility of jamming (and we don't
- * want to build jamming into it because then it
- * will run more slowly).
- */
-
- yy_next_state = yy_try_NUL_trans( yy_current_state );
-
- yy_bp = (yytext_ptr) + YY_MORE_ADJ;
-
- if ( yy_next_state )
- {
- /* Consume the NUL. */
- yy_cp = ++(yy_c_buf_p);
- yy_current_state = yy_next_state;
- goto yy_match;
- }
-
- else
- {
- yy_cp = (yy_last_accepting_cpos);
- yy_current_state = (yy_last_accepting_state);
- goto yy_find_action;
- }
- }
-
- else switch ( yy_get_next_buffer( ) )
- {
- case EOB_ACT_END_OF_FILE:
- {
- (yy_did_buffer_switch_on_eof) = 0;
-
- if ( yywrap( ) )
- {
- /* Note: because we've taken care in
- * yy_get_next_buffer() to have set up
- * yytext, we can now set up
- * yy_c_buf_p so that if some total
- * hoser (like flex itself) wants to
- * call the scanner after we return the
- * YY_NULL, it'll still work - another
- * YY_NULL will get returned.
- */
- (yy_c_buf_p) = (yytext_ptr) + YY_MORE_ADJ;
-
- yy_act = YY_STATE_EOF(YY_START);
- goto do_action;
- }
-
- else
- {
- if ( ! (yy_did_buffer_switch_on_eof) )
- YY_NEW_FILE;
- }
- break;
- }
-
- case EOB_ACT_CONTINUE_SCAN:
- (yy_c_buf_p) =
- (yytext_ptr) + yy_amount_of_matched_text;
-
- yy_current_state = yy_get_previous_state( );
-
- yy_cp = (yy_c_buf_p);
- yy_bp = (yytext_ptr) + YY_MORE_ADJ;
- goto yy_match;
-
- case EOB_ACT_LAST_MATCH:
- (yy_c_buf_p) =
- &YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[(yy_n_chars)];
-
- yy_current_state = yy_get_previous_state( );
-
- yy_cp = (yy_c_buf_p);
- yy_bp = (yytext_ptr) + YY_MORE_ADJ;
- goto yy_find_action;
- }
- break;
- }
-
- default:
- YY_FATAL_ERROR(
- "fatal flex scanner internal error--no action found" );
- } /* end of action switch */
- } /* end of scanning one token */
-} /* end of yylex */
-
-/* yy_get_next_buffer - try to read in a new buffer
- *
- * Returns a code representing an action:
- * EOB_ACT_LAST_MATCH -
- * EOB_ACT_CONTINUE_SCAN - continue scanning from current position
- * EOB_ACT_END_OF_FILE - end of file
- */
-static int yy_get_next_buffer (void)
-{
- register char *dest = YY_CURRENT_BUFFER_LVALUE->yy_ch_buf;
- register char *source = (yytext_ptr);
- register int number_to_move, i;
- int ret_val;
-
- if ( (yy_c_buf_p) > &YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[(yy_n_chars) + 1] )
- YY_FATAL_ERROR(
- "fatal flex scanner internal error--end of buffer missed" );
-
- if ( YY_CURRENT_BUFFER_LVALUE->yy_fill_buffer == 0 )
- { /* Don't try to fill the buffer, so this is an EOF. */
- if ( (yy_c_buf_p) - (yytext_ptr) - YY_MORE_ADJ == 1 )
- {
- /* We matched a single character, the EOB, so
- * treat this as a final EOF.
- */
- return EOB_ACT_END_OF_FILE;
- }
-
- else
- {
- /* We matched some text prior to the EOB, first
- * process it.
- */
- return EOB_ACT_LAST_MATCH;
- }
- }
-
- /* Try to read more data. */
-
- /* First move last chars to start of buffer. */
- number_to_move = (int) ((yy_c_buf_p) - (yytext_ptr)) - 1;
-
- for ( i = 0; i < number_to_move; ++i )
- *(dest++) = *(source++);
-
- if ( YY_CURRENT_BUFFER_LVALUE->yy_buffer_status == YY_BUFFER_EOF_PENDING )
- /* don't do the read, it's not guaranteed to return an EOF,
- * just force an EOF
- */
- YY_CURRENT_BUFFER_LVALUE->yy_n_chars = (yy_n_chars) = 0;
-
- else
- {
- yy_size_t num_to_read =
- YY_CURRENT_BUFFER_LVALUE->yy_buf_size - number_to_move - 1;
-
- while ( num_to_read <= 0 )
- { /* Not enough room in the buffer - grow it. */
-
- /* just a shorter name for the current buffer */
- YY_BUFFER_STATE b = YY_CURRENT_BUFFER_LVALUE;
-
- int yy_c_buf_p_offset =
- (int) ((yy_c_buf_p) - b->yy_ch_buf);
-
- if ( b->yy_is_our_buffer )
- {
- yy_size_t new_size = b->yy_buf_size * 2;
-
- if ( new_size <= 0 )
- b->yy_buf_size += b->yy_buf_size / 8;
- else
- b->yy_buf_size *= 2;
-
- b->yy_ch_buf = (char *)
- /* Include room in for 2 EOB chars. */
- yyrealloc((void *) b->yy_ch_buf,b->yy_buf_size + 2 );
- }
- else
- /* Can't grow it, we don't own it. */
- b->yy_ch_buf = 0;
-
- if ( ! b->yy_ch_buf )
- YY_FATAL_ERROR(
- "fatal error - scanner input buffer overflow" );
-
- (yy_c_buf_p) = &b->yy_ch_buf[yy_c_buf_p_offset];
-
- num_to_read = YY_CURRENT_BUFFER_LVALUE->yy_buf_size -
- number_to_move - 1;
-
- }
-
- if ( num_to_read > YY_READ_BUF_SIZE )
- num_to_read = YY_READ_BUF_SIZE;
-
- /* Read in more data. */
- YY_INPUT( (&YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[number_to_move]),
- (yy_n_chars), num_to_read );
-
- YY_CURRENT_BUFFER_LVALUE->yy_n_chars = (yy_n_chars);
- }
-
- if ( (yy_n_chars) == 0 )
- {
- if ( number_to_move == YY_MORE_ADJ )
- {
- ret_val = EOB_ACT_END_OF_FILE;
- yyrestart(yyin );
- }
-
- else
- {
- ret_val = EOB_ACT_LAST_MATCH;
- YY_CURRENT_BUFFER_LVALUE->yy_buffer_status =
- YY_BUFFER_EOF_PENDING;
- }
- }
-
- else
- ret_val = EOB_ACT_CONTINUE_SCAN;
-
- if ((yy_size_t) ((yy_n_chars) + number_to_move) > YY_CURRENT_BUFFER_LVALUE->yy_buf_size) {
- /* Extend the array by 50%, plus the number we really need. */
- yy_size_t new_size = (yy_n_chars) + number_to_move + ((yy_n_chars) >> 1);
- YY_CURRENT_BUFFER_LVALUE->yy_ch_buf = (char *) yyrealloc((void *) YY_CURRENT_BUFFER_LVALUE->yy_ch_buf,new_size );
- if ( ! YY_CURRENT_BUFFER_LVALUE->yy_ch_buf )
- YY_FATAL_ERROR( "out of dynamic memory in yy_get_next_buffer()" );
- }
-
- (yy_n_chars) += number_to_move;
- YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[(yy_n_chars)] = YY_END_OF_BUFFER_CHAR;
- YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[(yy_n_chars) + 1] = YY_END_OF_BUFFER_CHAR;
-
- (yytext_ptr) = &YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[0];
-
- return ret_val;
-}
-
-/* yy_get_previous_state - get the state just before the EOB char was reached */
-
- static yy_state_type yy_get_previous_state (void)
-{
- register yy_state_type yy_current_state;
- register char *yy_cp;
-
- yy_current_state = (yy_start);
- yy_current_state += YY_AT_BOL();
-
- for ( yy_cp = (yytext_ptr) + YY_MORE_ADJ; yy_cp < (yy_c_buf_p); ++yy_cp )
- {
- register YY_CHAR yy_c = (*yy_cp ? yy_ec[YY_SC_TO_UI(*yy_cp)] : 1);
- if ( yy_accept[yy_current_state] )
- {
- (yy_last_accepting_state) = yy_current_state;
- (yy_last_accepting_cpos) = yy_cp;
- }
- while ( yy_chk[yy_base[yy_current_state] + yy_c] != yy_current_state )
- {
- yy_current_state = (int) yy_def[yy_current_state];
- if ( yy_current_state >= 558 )
- yy_c = yy_meta[(unsigned int) yy_c];
- }
- yy_current_state = yy_nxt[yy_base[yy_current_state] + (unsigned int) yy_c];
- }
-
- return yy_current_state;
-}
-
-/* yy_try_NUL_trans - try to make a transition on the NUL character
- *
- * synopsis
- * next_state = yy_try_NUL_trans( current_state );
- */
- static yy_state_type yy_try_NUL_trans (yy_state_type yy_current_state )
-{
- register int yy_is_jam;
- register char *yy_cp = (yy_c_buf_p);
-
- register YY_CHAR yy_c = 1;
- if ( yy_accept[yy_current_state] )
- {
- (yy_last_accepting_state) = yy_current_state;
- (yy_last_accepting_cpos) = yy_cp;
- }
- while ( yy_chk[yy_base[yy_current_state] + yy_c] != yy_current_state )
- {
- yy_current_state = (int) yy_def[yy_current_state];
- if ( yy_current_state >= 558 )
- yy_c = yy_meta[(unsigned int) yy_c];
- }
- yy_current_state = yy_nxt[yy_base[yy_current_state] + (unsigned int) yy_c];
- yy_is_jam = (yy_current_state == 557);
-
- return yy_is_jam ? 0 : yy_current_state;
-}
-
-#ifndef YY_NO_INPUT
-#ifdef __cplusplus
- static int yyinput (void)
-#else
- static int input (void)
-#endif
-
-{
- int c;
-
- *(yy_c_buf_p) = (yy_hold_char);
-
- if ( *(yy_c_buf_p) == YY_END_OF_BUFFER_CHAR )
- {
- /* yy_c_buf_p now points to the character we want to return.
- * If this occurs *before* the EOB characters, then it's a
- * valid NUL; if not, then we've hit the end of the buffer.
- */
- if ( (yy_c_buf_p) < &YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[(yy_n_chars)] )
- /* This was really a NUL. */
- *(yy_c_buf_p) = '\0';
-
- else
- { /* need more input */
- yy_size_t offset = (yy_c_buf_p) - (yytext_ptr);
- ++(yy_c_buf_p);
-
- switch ( yy_get_next_buffer( ) )
- {
- case EOB_ACT_LAST_MATCH:
- /* This happens because yy_g_n_b()
- * sees that we've accumulated a
- * token and flags that we need to
- * try matching the token before
- * proceeding. But for input(),
- * there's no matching to consider.
- * So convert the EOB_ACT_LAST_MATCH
- * to EOB_ACT_END_OF_FILE.
- */
-
- /* Reset buffer status. */
- yyrestart(yyin );
-
- /*FALLTHROUGH*/
-
- case EOB_ACT_END_OF_FILE:
- {
- if ( yywrap( ) )
- return EOF;
-
- if ( ! (yy_did_buffer_switch_on_eof) )
- YY_NEW_FILE;
-#ifdef __cplusplus
- return yyinput();
-#else
- return input();
-#endif
- }
-
- case EOB_ACT_CONTINUE_SCAN:
- (yy_c_buf_p) = (yytext_ptr) + offset;
- break;
- }
- }
- }
-
- c = *(unsigned char *) (yy_c_buf_p); /* cast for 8-bit char's */
- *(yy_c_buf_p) = '\0'; /* preserve yytext */
- (yy_hold_char) = *++(yy_c_buf_p);
-
- YY_CURRENT_BUFFER_LVALUE->yy_at_bol = (c == '\n');
-
- return c;
-}
-#endif /* ifndef YY_NO_INPUT */
-
-/** Immediately switch to a different input stream.
- * @param input_file A readable stream.
- *
- * @note This function does not reset the start condition to @c INITIAL .
- */
- void yyrestart (FILE * input_file )
-{
-
- if ( ! YY_CURRENT_BUFFER ){
- yyensure_buffer_stack ();
- YY_CURRENT_BUFFER_LVALUE =
- yy_create_buffer(yyin,YY_BUF_SIZE );
- }
-
- yy_init_buffer(YY_CURRENT_BUFFER,input_file );
- yy_load_buffer_state( );
-}
-
-/** Switch to a different input buffer.
- * @param new_buffer The new input buffer.
- *
- */
- void yy_switch_to_buffer (YY_BUFFER_STATE new_buffer )
-{
-
- /* TODO. We should be able to replace this entire function body
- * with
- * yypop_buffer_state();
- * yypush_buffer_state(new_buffer);
- */
- yyensure_buffer_stack ();
- if ( YY_CURRENT_BUFFER == new_buffer )
- return;
-
- if ( YY_CURRENT_BUFFER )
- {
- /* Flush out information for old buffer. */
- *(yy_c_buf_p) = (yy_hold_char);
- YY_CURRENT_BUFFER_LVALUE->yy_buf_pos = (yy_c_buf_p);
- YY_CURRENT_BUFFER_LVALUE->yy_n_chars = (yy_n_chars);
- }
-
- YY_CURRENT_BUFFER_LVALUE = new_buffer;
- yy_load_buffer_state( );
-
- /* We don't actually know whether we did this switch during
- * EOF (yywrap()) processing, but the only time this flag
- * is looked at is after yywrap() is called, so it's safe
- * to go ahead and always set it.
- */
- (yy_did_buffer_switch_on_eof) = 1;
-}
-
-static void yy_load_buffer_state (void)
-{
- (yy_n_chars) = YY_CURRENT_BUFFER_LVALUE->yy_n_chars;
- (yytext_ptr) = (yy_c_buf_p) = YY_CURRENT_BUFFER_LVALUE->yy_buf_pos;
- yyin = YY_CURRENT_BUFFER_LVALUE->yy_input_file;
- (yy_hold_char) = *(yy_c_buf_p);
-}
-
-/** Allocate and initialize an input buffer state.
- * @param file A readable stream.
- * @param size The character buffer size in bytes. When in doubt, use @c YY_BUF_SIZE.
- *
- * @return the allocated buffer state.
- */
- YY_BUFFER_STATE yy_create_buffer (FILE * file, int size )
-{
- YY_BUFFER_STATE b;
-
- b = (YY_BUFFER_STATE) yyalloc(sizeof( struct yy_buffer_state ) );
- if ( ! b )
- YY_FATAL_ERROR( "out of dynamic memory in yy_create_buffer()" );
-
- b->yy_buf_size = size;
-
- /* yy_ch_buf has to be 2 characters longer than the size given because
- * we need to put in 2 end-of-buffer characters.
- */
- b->yy_ch_buf = (char *) yyalloc(b->yy_buf_size + 2 );
- if ( ! b->yy_ch_buf )
- YY_FATAL_ERROR( "out of dynamic memory in yy_create_buffer()" );
-
- b->yy_is_our_buffer = 1;
-
- yy_init_buffer(b,file );
-
- return b;
-}
-
-/** Destroy the buffer.
- * @param b a buffer created with yy_create_buffer()
- *
- */
- void yy_delete_buffer (YY_BUFFER_STATE b )
-{
-
- if ( ! b )
- return;
-
- if ( b == YY_CURRENT_BUFFER ) /* Not sure if we should pop here. */
- YY_CURRENT_BUFFER_LVALUE = (YY_BUFFER_STATE) 0;
-
- if ( b->yy_is_our_buffer )
- yyfree((void *) b->yy_ch_buf );
-
- yyfree((void *) b );
-}
-
-/* Initializes or reinitializes a buffer.
- * This function is sometimes called more than once on the same buffer,
- * such as during a yyrestart() or at EOF.
- */
- static void yy_init_buffer (YY_BUFFER_STATE b, FILE * file )
-
-{
- int oerrno = errno;
-
- yy_flush_buffer(b );
-
- b->yy_input_file = file;
- b->yy_fill_buffer = 1;
-
- /* If b is the current buffer, then yy_init_buffer was _probably_
- * called from yyrestart() or through yy_get_next_buffer.
- * In that case, we don't want to reset the lineno or column.
- */
- if (b != YY_CURRENT_BUFFER){
- b->yy_bs_lineno = 1;
- b->yy_bs_column = 0;
- }
-
- b->yy_is_interactive = 0;
-
- errno = oerrno;
-}
-
-/** Discard all buffered characters. On the next scan, YY_INPUT will be called.
- * @param b the buffer state to be flushed, usually @c YY_CURRENT_BUFFER.
- *
- */
- void yy_flush_buffer (YY_BUFFER_STATE b )
-{
- if ( ! b )
- return;
-
- b->yy_n_chars = 0;
-
- /* We always need two end-of-buffer characters. The first causes
- * a transition to the end-of-buffer state. The second causes
- * a jam in that state.
- */
- b->yy_ch_buf[0] = YY_END_OF_BUFFER_CHAR;
- b->yy_ch_buf[1] = YY_END_OF_BUFFER_CHAR;
-
- b->yy_buf_pos = &b->yy_ch_buf[0];
-
- b->yy_at_bol = 1;
- b->yy_buffer_status = YY_BUFFER_NEW;
-
- if ( b == YY_CURRENT_BUFFER )
- yy_load_buffer_state( );
-}
-
-/** Pushes the new state onto the stack. The new state becomes
- * the current state. This function will allocate the stack
- * if necessary.
- * @param new_buffer The new state.
- *
- */
-void yypush_buffer_state (YY_BUFFER_STATE new_buffer )
-{
- if (new_buffer == NULL)
- return;
-
- yyensure_buffer_stack();
-
- /* This block is copied from yy_switch_to_buffer. */
- if ( YY_CURRENT_BUFFER )
- {
- /* Flush out information for old buffer. */
- *(yy_c_buf_p) = (yy_hold_char);
- YY_CURRENT_BUFFER_LVALUE->yy_buf_pos = (yy_c_buf_p);
- YY_CURRENT_BUFFER_LVALUE->yy_n_chars = (yy_n_chars);
- }
-
- /* Only push if top exists. Otherwise, replace top. */
- if (YY_CURRENT_BUFFER)
- (yy_buffer_stack_top)++;
- YY_CURRENT_BUFFER_LVALUE = new_buffer;
-
- /* copied from yy_switch_to_buffer. */
- yy_load_buffer_state( );
- (yy_did_buffer_switch_on_eof) = 1;
-}
-
-/** Removes and deletes the top of the stack, if present.
- * The next element becomes the new top.
- *
- */
-void yypop_buffer_state (void)
-{
- if (!YY_CURRENT_BUFFER)
- return;
-
- yy_delete_buffer(YY_CURRENT_BUFFER );
- YY_CURRENT_BUFFER_LVALUE = NULL;
- if ((yy_buffer_stack_top) > 0)
- --(yy_buffer_stack_top);
-
- if (YY_CURRENT_BUFFER) {
- yy_load_buffer_state( );
- (yy_did_buffer_switch_on_eof) = 1;
- }
-}
-
-/* Allocates the stack if it does not exist.
- * Guarantees space for at least one push.
- */
-static void yyensure_buffer_stack (void)
-{
- yy_size_t num_to_alloc;
-
- if (!(yy_buffer_stack)) {
-
- /* First allocation is just for 2 elements, since we don't know if this
- * scanner will even need a stack. We use 2 instead of 1 to avoid an
- * immediate realloc on the next call.
- */
- num_to_alloc = 1;
- (yy_buffer_stack) = (struct yy_buffer_state**)yyalloc
- (num_to_alloc * sizeof(struct yy_buffer_state*)
- );
- if ( ! (yy_buffer_stack) )
- YY_FATAL_ERROR( "out of dynamic memory in yyensure_buffer_stack()" );
-
- memset((yy_buffer_stack), 0, num_to_alloc * sizeof(struct yy_buffer_state*));
-
- (yy_buffer_stack_max) = num_to_alloc;
- (yy_buffer_stack_top) = 0;
- return;
- }
-
- if ((yy_buffer_stack_top) >= ((yy_buffer_stack_max)) - 1){
-
- /* Increase the buffer to prepare for a possible push. */
- int grow_size = 8 /* arbitrary grow size */;
-
- num_to_alloc = (yy_buffer_stack_max) + grow_size;
- (yy_buffer_stack) = (struct yy_buffer_state**)yyrealloc
- ((yy_buffer_stack),
- num_to_alloc * sizeof(struct yy_buffer_state*)
- );
- if ( ! (yy_buffer_stack) )
- YY_FATAL_ERROR( "out of dynamic memory in yyensure_buffer_stack()" );
-
- /* zero only the new slots.*/
- memset((yy_buffer_stack) + (yy_buffer_stack_max), 0, grow_size * sizeof(struct yy_buffer_state*));
- (yy_buffer_stack_max) = num_to_alloc;
- }
-}
-
-/** Setup the input buffer state to scan directly from a user-specified character buffer.
- * @param base the character buffer
- * @param size the size in bytes of the character buffer
- *
- * @return the newly allocated buffer state object.
- */
-YY_BUFFER_STATE yy_scan_buffer (char * base, yy_size_t size )
-{
- YY_BUFFER_STATE b;
-
- if ( size < 2 ||
- base[size-2] != YY_END_OF_BUFFER_CHAR ||
- base[size-1] != YY_END_OF_BUFFER_CHAR )
- /* They forgot to leave room for the EOB's. */
- return 0;
-
- b = (YY_BUFFER_STATE) yyalloc(sizeof( struct yy_buffer_state ) );
- if ( ! b )
- YY_FATAL_ERROR( "out of dynamic memory in yy_scan_buffer()" );
-
- b->yy_buf_size = size - 2; /* "- 2" to take care of EOB's */
- b->yy_buf_pos = b->yy_ch_buf = base;
- b->yy_is_our_buffer = 0;
- b->yy_input_file = 0;
- b->yy_n_chars = b->yy_buf_size;
- b->yy_is_interactive = 0;
- b->yy_at_bol = 1;
- b->yy_fill_buffer = 0;
- b->yy_buffer_status = YY_BUFFER_NEW;
-
- yy_switch_to_buffer(b );
-
- return b;
-}
-
-/** Setup the input buffer state to scan a string. The next call to yylex() will
- * scan from a @e copy of @a str.
- * @param yystr a NUL-terminated string to scan
- *
- * @return the newly allocated buffer state object.
- * @note If you want to scan bytes that may contain NUL values, then use
- * yy_scan_bytes() instead.
- */
-YY_BUFFER_STATE yy_scan_string (yyconst char * yystr )
-{
-
- return yy_scan_bytes(yystr,strlen(yystr) );
-}
-
-/** Setup the input buffer state to scan the given bytes. The next call to yylex() will
- * scan from a @e copy of @a bytes.
- * @param yybytes the byte buffer to scan
- * @param _yybytes_len the number of bytes in the buffer pointed to by @a bytes.
- *
- * @return the newly allocated buffer state object.
- */
-YY_BUFFER_STATE yy_scan_bytes (yyconst char * yybytes, yy_size_t _yybytes_len )
-{
- YY_BUFFER_STATE b;
- char *buf;
- yy_size_t n;
- yy_size_t i;
-
- /* Get memory for full buffer, including space for trailing EOB's. */
- n = _yybytes_len + 2;
- buf = (char *) yyalloc(n );
- if ( ! buf )
- YY_FATAL_ERROR( "out of dynamic memory in yy_scan_bytes()" );
-
- for ( i = 0; i < _yybytes_len; ++i )
- buf[i] = yybytes[i];
-
- buf[_yybytes_len] = buf[_yybytes_len+1] = YY_END_OF_BUFFER_CHAR;
-
- b = yy_scan_buffer(buf,n );
- if ( ! b )
- YY_FATAL_ERROR( "bad buffer in yy_scan_bytes()" );
-
- /* It's okay to grow etc. this buffer, and we should throw it
- * away when we're done.
- */
- b->yy_is_our_buffer = 1;
-
- return b;
-}
-
-#ifndef YY_EXIT_FAILURE
-#define YY_EXIT_FAILURE 2
-#endif
-
-static void yy_fatal_error (yyconst char* msg )
-{
- (void) fprintf( stderr, "%s\n", msg );
- exit( YY_EXIT_FAILURE );
-}
-
-/* Redefine yyless() so it works in section 3 code. */
-
-#undef yyless
-#define yyless(n) \
- do \
- { \
- /* Undo effects of setting up yytext. */ \
- int yyless_macro_arg = (n); \
- YY_LESS_LINENO(yyless_macro_arg);\
- yytext[yyleng] = (yy_hold_char); \
- (yy_c_buf_p) = yytext + yyless_macro_arg; \
- (yy_hold_char) = *(yy_c_buf_p); \
- *(yy_c_buf_p) = '\0'; \
- yyleng = yyless_macro_arg; \
- } \
- while ( 0 )
-
-/* Accessor methods (get/set functions) to struct members. */
-
-/** Get the current line number.
- *
- */
-int yyget_lineno (void)
-{
-
- return yylineno;
-}
-
-/** Get the input stream.
- *
- */
-FILE *yyget_in (void)
-{
- return yyin;
-}
-
-/** Get the output stream.
- *
- */
-FILE *yyget_out (void)
-{
- return yyout;
-}
-
-/** Get the length of the current token.
- *
- */
-yy_size_t yyget_leng (void)
-{
- return yyleng;
-}
-
-/** Get the current token.
- *
- */
-
-char *yyget_text (void)
-{
- return yytext;
-}
-
-/** Set the current line number.
- * @param line_number
- *
- */
-void yyset_lineno (int line_number )
-{
-
- yylineno = line_number;
-}
-
-/** Set the input stream. This does not discard the current
- * input buffer.
- * @param in_str A readable stream.
- *
- * @see yy_switch_to_buffer
- */
-void yyset_in (FILE * in_str )
-{
- yyin = in_str ;
-}
-
-void yyset_out (FILE * out_str )
-{
- yyout = out_str ;
-}
-
-int yyget_debug (void)
-{
- return yy_flex_debug;
-}
-
-void yyset_debug (int bdebug )
-{
- yy_flex_debug = bdebug ;
-}
-
-static int yy_init_globals (void)
-{
- /* Initialization is the same as for the non-reentrant scanner.
- * This function is called from yylex_destroy(), so don't allocate here.
- */
-
- (yy_buffer_stack) = 0;
- (yy_buffer_stack_top) = 0;
- (yy_buffer_stack_max) = 0;
- (yy_c_buf_p) = (char *) 0;
- (yy_init) = 0;
- (yy_start) = 0;
-
-/* Defined in main.c */
-#ifdef YY_STDINIT
- yyin = stdin;
- yyout = stdout;
-#else
- yyin = (FILE *) 0;
- yyout = (FILE *) 0;
-#endif
-
- /* For future reference: Set errno on error, since we are called by
- * yylex_init()
- */
- return 0;
-}
-
-/* yylex_destroy is for both reentrant and non-reentrant scanners. */
-int yylex_destroy (void)
-{
-
- /* Pop the buffer stack, destroying each element. */
- while(YY_CURRENT_BUFFER){
- yy_delete_buffer(YY_CURRENT_BUFFER );
- YY_CURRENT_BUFFER_LVALUE = NULL;
- yypop_buffer_state();
- }
-
- /* Destroy the stack itself. */
- yyfree((yy_buffer_stack) );
- (yy_buffer_stack) = NULL;
-
- /* Reset the globals. This is important in a non-reentrant scanner so the next time
- * yylex() is called, initialization will occur. */
- yy_init_globals( );
-
- return 0;
-}
-
-/*
- * Internal utility routines.
- */
-
-#ifndef yytext_ptr
-static void yy_flex_strncpy (char* s1, yyconst char * s2, int n )
-{
- register int i;
- for ( i = 0; i < n; ++i )
- s1[i] = s2[i];
-}
-#endif
-
-#ifdef YY_NEED_STRLEN
-static int yy_flex_strlen (yyconst char * s )
-{
- register int n;
- for ( n = 0; s[n]; ++n )
- ;
-
- return n;
-}
-#endif
-
-void *yyalloc (yy_size_t size )
-{
- return (void *) malloc( size );
-}
-
-void *yyrealloc (void * ptr, yy_size_t size )
-{
- /* The cast to (char *) in the following accommodates both
- * implementations that use char* generic pointers, and those
- * that use void* generic pointers. It works with the latter
- * because both ANSI C and C++ allow castless assignment from
- * any pointer type to void*, and deal with argument conversions
- * as though doing an assignment.
- */
- return (void *) realloc( (char *) ptr, size );
-}
-
-void yyfree (void * ptr )
-{
- free( (char *) ptr ); /* see yyrealloc() for (char *) cast */
-}
-
-#define YYTABLES_NAME "yytables"
-
-#line 201 "/d/gcc-4.9.0/gcc-4.9.0/gcc/gengtype-lex.l"
-
-
-
-void
-yybegin (const char *fname)
-{
- yyin = fopen (fname, "r");
- if (yyin == NULL)
- {
- perror (fname);
- exit (1);
- }
- lexer_line.file = input_file_by_name (fname);
- lexer_line.line = 1;
-}
-
-void
-yyend (void)
-{
- fclose (yyin);
-}
-
diff --git a/gcc-4.9/gcc/ggc-page.c b/gcc-4.9/gcc/ggc-page.c
index ccc87eaa5..a5f86a456 100644
--- a/gcc-4.9/gcc/ggc-page.c
+++ b/gcc-4.9/gcc/ggc-page.c
@@ -2496,3 +2496,18 @@ ggc_pch_read (FILE *f, void *addr)
/* Update the statistics. */
G.allocated = G.allocated_last_gc = offs - (char *)addr;
}
+
+struct alloc_zone
+{
+ int dummy;
+};
+
+struct alloc_zone rtl_zone;
+struct alloc_zone tree_zone;
+struct alloc_zone tree_id_zone;
+
+size_t
+ggc_total_allocated (void)
+{
+ return G.bytes_mapped;
+}
diff --git a/gcc-4.9/gcc/ggc.h b/gcc-4.9/gcc/ggc.h
index 55f3fe9b0..be31c736c 100644
--- a/gcc-4.9/gcc/ggc.h
+++ b/gcc-4.9/gcc/ggc.h
@@ -250,6 +250,9 @@ extern void init_ggc_heuristics (void);
ggc_alloc_rtvec_def (sizeof (struct rtvec_def) \
+ ((NELT) - 1) * sizeof (rtx)) \
+
+extern size_t ggc_total_allocated (void);
+
/* Memory statistics passing versions of some allocators. Too few of them to
make gengtype produce them, so just define the needed ones here. */
static inline struct rtx_def *
diff --git a/gcc-4.9/gcc/gimple-expr.c b/gcc-4.9/gcc/gimple-expr.c
index da663d6fb..7827b5a0d 100644
--- a/gcc-4.9/gcc/gimple-expr.c
+++ b/gcc-4.9/gcc/gimple-expr.c
@@ -37,6 +37,7 @@ along with GCC; see the file COPYING3. If not see
#include "stor-layout.h"
#include "demangle.h"
#include "gimple-ssa.h"
+#include "l-ipo.h"
/* ----- Type related ----- */
@@ -278,7 +279,9 @@ useless_type_conversion_p (tree outer_type, tree inner_type)
compared types. */
else if (AGGREGATE_TYPE_P (inner_type)
&& TREE_CODE (inner_type) == TREE_CODE (outer_type))
- return false;
+ return (L_IPO_COMP_MODE
+ && (equivalent_struct_types_for_tbaa (inner_type,
+ outer_type) == 1));
return false;
}
diff --git a/gcc-4.9/gcc/gimple-fold.c b/gcc-4.9/gcc/gimple-fold.c
index 6402cce2f..57ab8584c 100644
--- a/gcc-4.9/gcc/gimple-fold.c
+++ b/gcc-4.9/gcc/gimple-fold.c
@@ -105,7 +105,9 @@ can_refer_decl_in_current_unit_p (tree decl, tree from_decl)
external var. */
if (!from_decl
|| TREE_CODE (from_decl) != VAR_DECL
- || !DECL_EXTERNAL (from_decl)
+ || (!DECL_EXTERNAL (from_decl)
+ && (vnode = varpool_get_node (from_decl)) != NULL
+ && vnode->definition)
|| (flag_ltrans
&& symtab_get_node (from_decl)->in_other_partition))
return true;
diff --git a/gcc-4.9/gcc/gimple-low.c b/gcc-4.9/gcc/gimple-low.c
index da3fb9fb3..6d4dab96f 100644
--- a/gcc-4.9/gcc/gimple-low.c
+++ b/gcc-4.9/gcc/gimple-low.c
@@ -722,7 +722,7 @@ lower_builtin_setjmp (gimple_stmt_iterator *gsi)
these builtins are modelled as non-local label jumps to the label
that is passed to these two builtins, so pretend we have a non-local
label during GIMPLE passes too. See PR60003. */
- cfun->has_nonlocal_label = true;
+ cfun->has_nonlocal_label = 1;
/* NEXT_LABEL is the label __builtin_longjmp will jump to. Its address is
passed to both __builtin_setjmp_setup and __builtin_setjmp_receiver. */
diff --git a/gcc-4.9/gcc/gimple-pretty-print.c b/gcc-4.9/gcc/gimple-pretty-print.c
index 741cd9299..3d7fbaeeb 100644
--- a/gcc-4.9/gcc/gimple-pretty-print.c
+++ b/gcc-4.9/gcc/gimple-pretty-print.c
@@ -437,6 +437,16 @@ dump_ternary_rhs (pretty_printer *buffer, gimple gs, int spc, int flags)
dump_generic_node (buffer, gimple_assign_rhs3 (gs), spc, flags, false);
pp_greater (buffer);
break;
+
+ case SAD_EXPR:
+ pp_string (buffer, "SAD_EXPR <");
+ dump_generic_node (buffer, gimple_assign_rhs1 (gs), spc, flags, false);
+ pp_string (buffer, ", ");
+ dump_generic_node (buffer, gimple_assign_rhs2 (gs), spc, flags, false);
+ pp_string (buffer, ", ");
+ dump_generic_node (buffer, gimple_assign_rhs3 (gs), spc, flags, false);
+ pp_greater (buffer);
+ break;
case VEC_PERM_EXPR:
pp_string (buffer, "VEC_PERM_EXPR <");
@@ -2057,7 +2067,9 @@ pp_gimple_stmt_1 (pretty_printer *buffer, gimple gs, int spc, int flags)
if ((flags & TDF_LINENO) && gimple_has_location (gs))
{
- expanded_location xloc = expand_location (gimple_location (gs));
+ location_t loc = gimple_location (gs);
+ expanded_location xloc = expand_location (loc);
+ int discriminator = get_discriminator_from_locus (loc);
pp_left_bracket (buffer);
if (xloc.file)
{
@@ -2067,6 +2079,11 @@ pp_gimple_stmt_1 (pretty_printer *buffer, gimple gs, int spc, int flags)
pp_decimal_int (buffer, xloc.line);
pp_colon (buffer);
pp_decimal_int (buffer, xloc.column);
+ if (discriminator)
+ {
+ pp_string (buffer, " discrim ");
+ pp_decimal_int (buffer, discriminator);
+ }
pp_string (buffer, "] ");
}
@@ -2268,8 +2285,6 @@ dump_gimple_bb_header (FILE *outf, basic_block bb, int indent, int flags)
indent, "", get_lineno (gsi_stmt (gsi)));
break;
}
- if (bb->discriminator)
- fprintf (outf, ", discriminator %i", bb->discriminator);
fputc ('\n', outf);
}
}
diff --git a/gcc-4.9/gcc/gimple.c b/gcc-4.9/gcc/gimple.c
index 2a278e41e..d48134647 100644
--- a/gcc-4.9/gcc/gimple.c
+++ b/gcc-4.9/gcc/gimple.c
@@ -46,6 +46,7 @@ along with GCC; see the file COPYING3. If not see
#include "alias.h"
#include "demangle.h"
#include "langhooks.h"
+#include "l-ipo.h"
#include "bitmap.h"
@@ -1939,6 +1940,7 @@ get_gimple_rhs_num_ops (enum tree_code code)
|| (SYM) == WIDEN_MULT_PLUS_EXPR \
|| (SYM) == WIDEN_MULT_MINUS_EXPR \
|| (SYM) == DOT_PROD_EXPR \
+ || (SYM) == SAD_EXPR \
|| (SYM) == REALIGN_LOAD_EXPR \
|| (SYM) == VEC_COND_EXPR \
|| (SYM) == VEC_PERM_EXPR \
diff --git a/gcc-4.9/gcc/gimplify.c b/gcc-4.9/gcc/gimplify.c
index 9f4bad853..a550544a0 100644
--- a/gcc-4.9/gcc/gimplify.c
+++ b/gcc-4.9/gcc/gimplify.c
@@ -138,6 +138,7 @@ struct gimplify_omp_ctx
enum omp_clause_default_kind default_kind;
enum omp_region_type region_type;
bool combined_loop;
+ bool distribute;
};
static struct gimplify_ctx *gimplify_ctxp;
@@ -1940,15 +1941,6 @@ gimplify_compound_lval (tree *expr_p, gimple_seq *pre_p, gimple_seq *post_p,
if (TREE_OPERAND (t, 3) == NULL_TREE)
{
tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (t, 0)));
- /* FIXME google - In some edge cases, ELMT_TYPE may
- not have been laid out. This causes an ICE later
- (PR 55245). We call layout_type if ELMT_TYPE is not
- yet complete, but this is not where this bug should
- be fixed. The FE should have laid out all the types
- before gimplification. When a proper fix for PR
- 55245 is available, remove this. */
- if (!COMPLETE_TYPE_P (elmt_type))
- layout_type (elmt_type);
tree elmt_size = unshare_expr (array_ref_element_size (t));
tree factor = size_int (TYPE_ALIGN_UNIT (elmt_type));
@@ -2178,7 +2170,7 @@ maybe_with_size_expr (tree *expr_p)
Store any side-effects in PRE_P. CALL_LOCATION is the location of
the CALL_EXPR. */
-static enum gimplify_status
+enum gimplify_status
gimplify_arg (tree *arg_p, gimple_seq *pre_p, location_t call_location)
{
bool (*test) (tree);
@@ -4855,19 +4847,29 @@ gimplify_addr_expr (tree *expr_p, gimple_seq *pre_p, gimple_seq *post_p)
mark_addressable (TREE_OPERAND (expr, 0));
- /* The FEs may end up building ADDR_EXPRs early on a decl with
- an incomplete type. Re-build ADDR_EXPRs in canonical form
- here. */
- if (!types_compatible_p (TREE_TYPE (op0), TREE_TYPE (TREE_TYPE (expr))))
- *expr_p = build_fold_addr_expr (op0);
+ /* Fix to PR/41163 (r151122) broke LIPO. Calls to builtin functions
+ were 'canonicized' in profile-use pass, but not in profile-gen. */
+ if (!flag_dyn_ipa)
+ {
+ /* The FEs may end up building ADDR_EXPRs early on a decl with
+ an incomplete type. Re-build ADDR_EXPRs in canonical form
+ here. */
+ if (!types_compatible_p (TREE_TYPE (op0), TREE_TYPE (TREE_TYPE (expr))))
+ *expr_p = build_fold_addr_expr (op0);
+ }
/* Make sure TREE_CONSTANT and TREE_SIDE_EFFECTS are set properly. */
recompute_tree_invariant_for_addr_expr (*expr_p);
- /* If we re-built the ADDR_EXPR add a conversion to the original type
- if required. */
- if (!useless_type_conversion_p (TREE_TYPE (expr), TREE_TYPE (*expr_p)))
- *expr_p = fold_convert (TREE_TYPE (expr), *expr_p);
+ /* Fix to PR/41163 (r151122) broke LIPO. Calls to builtin functions
+ were 'canonicized' in profile-use pass, but not in profile-gen. */
+ if (!flag_dyn_ipa)
+ {
+ /* If we re-built the ADDR_EXPR add a conversion to the original type
+ if required. */
+ if (!useless_type_conversion_p (TREE_TYPE (expr), TREE_TYPE (*expr_p)))
+ *expr_p = fold_convert (TREE_TYPE (expr), *expr_p);
+ }
break;
}
@@ -5651,6 +5653,7 @@ omp_notice_variable (struct gimplify_omp_ctx *ctx, tree decl, bool in_code)
n = splay_tree_lookup (ctx->variables, (splay_tree_key)decl);
if (ctx->region_type == ORT_TARGET)
{
+ ret = lang_hooks.decls.omp_disregard_value_expr (decl, true);
if (n == NULL)
{
if (!lang_hooks.types.omp_mappable_type (TREE_TYPE (decl)))
@@ -5663,8 +5666,12 @@ omp_notice_variable (struct gimplify_omp_ctx *ctx, tree decl, bool in_code)
omp_add_variable (ctx, decl, GOVD_MAP | flags);
}
else
- n->value |= flags;
- ret = lang_hooks.decls.omp_disregard_value_expr (decl, true);
+ {
+ /* If nothing changed, there's nothing left to do. */
+ if ((n->value & flags) == flags)
+ return ret;
+ n->value |= flags;
+ }
goto do_outer;
}
@@ -5950,14 +5957,21 @@ gimplify_scan_omp_clauses (tree *list_p, gimple_seq *pre_p,
goto do_add;
case OMP_CLAUSE_MAP:
- if (OMP_CLAUSE_SIZE (c)
- && gimplify_expr (&OMP_CLAUSE_SIZE (c), pre_p,
- NULL, is_gimple_val, fb_rvalue) == GS_ERROR)
+ decl = OMP_CLAUSE_DECL (c);
+ if (error_operand_p (decl))
+ {
+ remove = true;
+ break;
+ }
+ if (OMP_CLAUSE_SIZE (c) == NULL_TREE)
+ OMP_CLAUSE_SIZE (c) = DECL_P (decl) ? DECL_SIZE_UNIT (decl)
+ : TYPE_SIZE_UNIT (TREE_TYPE (decl));
+ if (gimplify_expr (&OMP_CLAUSE_SIZE (c), pre_p,
+ NULL, is_gimple_val, fb_rvalue) == GS_ERROR)
{
remove = true;
break;
}
- decl = OMP_CLAUSE_DECL (c);
if (!DECL_P (decl))
{
if (gimplify_expr (&OMP_CLAUSE_DECL (c), pre_p,
@@ -5995,15 +6009,17 @@ gimplify_scan_omp_clauses (tree *list_p, gimple_seq *pre_p,
case OMP_CLAUSE_TO:
case OMP_CLAUSE_FROM:
- if (OMP_CLAUSE_SIZE (c)
- && gimplify_expr (&OMP_CLAUSE_SIZE (c), pre_p,
- NULL, is_gimple_val, fb_rvalue) == GS_ERROR)
+ decl = OMP_CLAUSE_DECL (c);
+ if (error_operand_p (decl))
{
remove = true;
break;
}
- decl = OMP_CLAUSE_DECL (c);
- if (error_operand_p (decl))
+ if (OMP_CLAUSE_SIZE (c) == NULL_TREE)
+ OMP_CLAUSE_SIZE (c) = DECL_P (decl) ? DECL_SIZE_UNIT (decl)
+ : TYPE_SIZE_UNIT (TREE_TYPE (decl));
+ if (gimplify_expr (&OMP_CLAUSE_SIZE (c), pre_p,
+ NULL, is_gimple_val, fb_rvalue) == GS_ERROR)
{
remove = true;
break;
@@ -6075,6 +6091,27 @@ gimplify_scan_omp_clauses (tree *list_p, gimple_seq *pre_p,
gimplify_omp_ctxp = outer_ctx;
}
+ else if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_LINEAR
+ && OMP_CLAUSE_LINEAR_STMT (c))
+ {
+ gimplify_omp_ctxp = ctx;
+ push_gimplify_context ();
+ if (TREE_CODE (OMP_CLAUSE_LINEAR_STMT (c)) != BIND_EXPR)
+ {
+ tree bind = build3 (BIND_EXPR, void_type_node, NULL,
+ NULL, NULL);
+ TREE_SIDE_EFFECTS (bind) = 1;
+ BIND_EXPR_BODY (bind) = OMP_CLAUSE_LINEAR_STMT (c);
+ OMP_CLAUSE_LINEAR_STMT (c) = bind;
+ }
+ gimplify_and_add (OMP_CLAUSE_LINEAR_STMT (c),
+ &OMP_CLAUSE_LINEAR_GIMPLE_SEQ (c));
+ pop_gimplify_context
+ (gimple_seq_first_stmt (OMP_CLAUSE_LINEAR_GIMPLE_SEQ (c)));
+ OMP_CLAUSE_LINEAR_STMT (c) = NULL_TREE;
+
+ gimplify_omp_ctxp = outer_ctx;
+ }
if (notice_outer)
goto do_notice;
break;
@@ -6157,6 +6194,12 @@ gimplify_scan_omp_clauses (tree *list_p, gimple_seq *pre_p,
remove = true;
break;
}
+ if (gimplify_expr (&OMP_CLAUSE_ALIGNED_ALIGNMENT (c), pre_p, NULL,
+ is_gimple_val, fb_rvalue) == GS_ERROR)
+ {
+ remove = true;
+ break;
+ }
if (!is_global_var (decl)
&& TREE_CODE (TREE_TYPE (decl)) == POINTER_TYPE)
omp_add_variable (ctx, decl, GOVD_ALIGNED);
@@ -6179,13 +6222,21 @@ gimplify_scan_omp_clauses (tree *list_p, gimple_seq *pre_p,
gimplify_omp_ctxp = ctx;
}
+struct gimplify_adjust_omp_clauses_data
+{
+ tree *list_p;
+ gimple_seq *pre_p;
+};
+
/* For all variables that were not actually used within the context,
remove PRIVATE, SHARED, and FIRSTPRIVATE clauses. */
static int
gimplify_adjust_omp_clauses_1 (splay_tree_node n, void *data)
{
- tree *list_p = (tree *) data;
+ tree *list_p = ((struct gimplify_adjust_omp_clauses_data *) data)->list_p;
+ gimple_seq *pre_p
+ = ((struct gimplify_adjust_omp_clauses_data *) data)->pre_p;
tree decl = (tree) n->key;
unsigned flags = n->value;
enum omp_clause_code code;
@@ -6278,6 +6329,8 @@ gimplify_adjust_omp_clauses_1 (splay_tree_node n, void *data)
OMP_CLAUSE_CHAIN (nc) = OMP_CLAUSE_CHAIN (clause);
OMP_CLAUSE_CHAIN (clause) = nc;
}
+ else
+ OMP_CLAUSE_SIZE (clause) = DECL_SIZE_UNIT (decl);
}
if (code == OMP_CLAUSE_FIRSTPRIVATE && (flags & GOVD_LASTPRIVATE) != 0)
{
@@ -6286,15 +6339,21 @@ gimplify_adjust_omp_clauses_1 (splay_tree_node n, void *data)
OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (nc) = 1;
OMP_CLAUSE_CHAIN (nc) = *list_p;
OMP_CLAUSE_CHAIN (clause) = nc;
- lang_hooks.decls.omp_finish_clause (nc);
+ struct gimplify_omp_ctx *ctx = gimplify_omp_ctxp;
+ gimplify_omp_ctxp = ctx->outer_context;
+ lang_hooks.decls.omp_finish_clause (nc, pre_p);
+ gimplify_omp_ctxp = ctx;
}
*list_p = clause;
- lang_hooks.decls.omp_finish_clause (clause);
+ struct gimplify_omp_ctx *ctx = gimplify_omp_ctxp;
+ gimplify_omp_ctxp = ctx->outer_context;
+ lang_hooks.decls.omp_finish_clause (clause, pre_p);
+ gimplify_omp_ctxp = ctx;
return 0;
}
static void
-gimplify_adjust_omp_clauses (tree *list_p)
+gimplify_adjust_omp_clauses (gimple_seq *pre_p, tree *list_p)
{
struct gimplify_omp_ctx *ctx = gimplify_omp_ctxp;
tree c, decl;
@@ -6338,7 +6397,11 @@ gimplify_adjust_omp_clauses (tree *list_p)
if (n == NULL
|| (n->value & GOVD_DATA_SHARE_CLASS) == 0)
{
- int flags = GOVD_FIRSTPRIVATE | GOVD_LASTPRIVATE;
+ int flags = GOVD_FIRSTPRIVATE;
+ /* #pragma omp distribute does not allow
+ lastprivate clause. */
+ if (!ctx->outer_context->distribute)
+ flags |= GOVD_LASTPRIVATE;
if (n == NULL)
omp_add_variable (ctx->outer_context, decl,
flags | GOVD_SEEN);
@@ -6436,6 +6499,8 @@ gimplify_adjust_omp_clauses (tree *list_p)
OMP_CLAUSE_CHAIN (c) = nc;
c = nc;
}
+ else if (OMP_CLAUSE_SIZE (c) == NULL_TREE)
+ OMP_CLAUSE_SIZE (c) = DECL_SIZE_UNIT (decl);
break;
case OMP_CLAUSE_TO:
@@ -6460,6 +6525,8 @@ gimplify_adjust_omp_clauses (tree *list_p)
OMP_CLAUSE_SIZE (c), true);
}
}
+ else if (OMP_CLAUSE_SIZE (c) == NULL_TREE)
+ OMP_CLAUSE_SIZE (c) = DECL_SIZE_UNIT (decl);
break;
case OMP_CLAUSE_REDUCTION:
@@ -6495,7 +6562,10 @@ gimplify_adjust_omp_clauses (tree *list_p)
}
/* Add in any implicit data sharing. */
- splay_tree_foreach (ctx->variables, gimplify_adjust_omp_clauses_1, list_p);
+ struct gimplify_adjust_omp_clauses_data data;
+ data.list_p = list_p;
+ data.pre_p = pre_p;
+ splay_tree_foreach (ctx->variables, gimplify_adjust_omp_clauses_1, &data);
gimplify_omp_ctxp = ctx->outer_context;
delete_omp_context (ctx);
@@ -6526,7 +6596,7 @@ gimplify_omp_parallel (tree *expr_p, gimple_seq *pre_p)
else
pop_gimplify_context (NULL);
- gimplify_adjust_omp_clauses (&OMP_PARALLEL_CLAUSES (expr));
+ gimplify_adjust_omp_clauses (pre_p, &OMP_PARALLEL_CLAUSES (expr));
g = gimple_build_omp_parallel (body,
OMP_PARALLEL_CLAUSES (expr),
@@ -6562,7 +6632,7 @@ gimplify_omp_task (tree *expr_p, gimple_seq *pre_p)
else
pop_gimplify_context (NULL);
- gimplify_adjust_omp_clauses (&OMP_TASK_CLAUSES (expr));
+ gimplify_adjust_omp_clauses (pre_p, &OMP_TASK_CLAUSES (expr));
g = gimple_build_omp_task (body,
OMP_TASK_CLAUSES (expr),
@@ -6619,6 +6689,8 @@ gimplify_omp_for (tree *expr_p, gimple_seq *pre_p)
|| TREE_CODE (for_stmt) == CILK_SIMD);
gimplify_scan_omp_clauses (&OMP_FOR_CLAUSES (for_stmt), pre_p,
simd ? ORT_SIMD : ORT_WORKSHARE);
+ if (TREE_CODE (for_stmt) == OMP_DISTRIBUTE)
+ gimplify_omp_ctxp->distribute = true;
/* Handle OMP_FOR_INIT. */
for_pre_body = NULL;
@@ -6702,6 +6774,31 @@ gimplify_omp_for (tree *expr_p, gimple_seq *pre_p)
bool lastprivate
= (!has_decl_expr
|| !bitmap_bit_p (has_decl_expr, DECL_UID (decl)));
+ if (lastprivate
+ && gimplify_omp_ctxp->outer_context
+ && gimplify_omp_ctxp->outer_context->region_type
+ == ORT_WORKSHARE
+ && gimplify_omp_ctxp->outer_context->combined_loop
+ && !gimplify_omp_ctxp->outer_context->distribute)
+ {
+ struct gimplify_omp_ctx *outer
+ = gimplify_omp_ctxp->outer_context;
+ n = splay_tree_lookup (outer->variables,
+ (splay_tree_key) decl);
+ if (n != NULL
+ && (n->value & GOVD_DATA_SHARE_CLASS) == GOVD_LOCAL)
+ lastprivate = false;
+ else if (omp_check_private (outer, decl, false))
+ error ("lastprivate variable %qE is private in outer "
+ "context", DECL_NAME (decl));
+ else
+ {
+ omp_add_variable (outer, decl,
+ GOVD_LASTPRIVATE | GOVD_SEEN);
+ if (outer->outer_context)
+ omp_notice_variable (outer->outer_context, decl, true);
+ }
+ }
c = build_omp_clause (input_location,
lastprivate ? OMP_CLAUSE_LASTPRIVATE
: OMP_CLAUSE_PRIVATE);
@@ -6721,10 +6818,13 @@ gimplify_omp_for (tree *expr_p, gimple_seq *pre_p)
/* If DECL is not a gimple register, create a temporary variable to act
as an iteration counter. This is valid, since DECL cannot be
- modified in the body of the loop. */
+ modified in the body of the loop. Similarly for any iteration vars
+ in simd with collapse > 1 where the iterator vars must be
+ lastprivate. */
if (orig_for_stmt != for_stmt)
var = decl;
- else if (!is_gimple_reg (decl))
+ else if (!is_gimple_reg (decl)
+ || (simd && TREE_VEC_LENGTH (OMP_FOR_INIT (for_stmt)) > 1))
{
var = create_tmp_var (TREE_TYPE (decl), get_name (decl));
TREE_OPERAND (t, 0) = var;
@@ -6777,8 +6877,8 @@ gimplify_omp_for (tree *expr_p, gimple_seq *pre_p)
case POSTINCREMENT_EXPR:
{
tree decl = TREE_OPERAND (t, 0);
- // c_omp_for_incr_canonicalize_ptr() should have been
- // called to massage things appropriately.
+ /* c_omp_for_incr_canonicalize_ptr() should have been
+ called to massage things appropriately. */
gcc_assert (!POINTER_TYPE_P (TREE_TYPE (decl)));
if (orig_for_stmt != for_stmt)
@@ -6794,6 +6894,9 @@ gimplify_omp_for (tree *expr_p, gimple_seq *pre_p)
case PREDECREMENT_EXPR:
case POSTDECREMENT_EXPR:
+ /* c_omp_for_incr_canonicalize_ptr() should have been
+ called to massage things appropriately. */
+ gcc_assert (!POINTER_TYPE_P (TREE_TYPE (decl)));
if (orig_for_stmt != for_stmt)
break;
t = build_int_cst (TREE_TYPE (decl), -1);
@@ -6834,12 +6937,16 @@ gimplify_omp_for (tree *expr_p, gimple_seq *pre_p)
ret = MIN (ret, tret);
if (c)
{
- OMP_CLAUSE_LINEAR_STEP (c) = TREE_OPERAND (t, 1);
+ tree step = TREE_OPERAND (t, 1);
+ tree stept = TREE_TYPE (decl);
+ if (POINTER_TYPE_P (stept))
+ stept = sizetype;
+ step = fold_convert (stept, step);
if (TREE_CODE (t) == MINUS_EXPR)
+ step = fold_build1 (NEGATE_EXPR, stept, step);
+ OMP_CLAUSE_LINEAR_STEP (c) = step;
+ if (step != TREE_OPERAND (t, 1))
{
- t = TREE_OPERAND (t, 1);
- OMP_CLAUSE_LINEAR_STEP (c)
- = fold_build1 (NEGATE_EXPR, TREE_TYPE (t), t);
tret = gimplify_expr (&OMP_CLAUSE_LINEAR_STEP (c),
&for_pre_body, NULL,
is_gimple_val, fb_rvalue);
@@ -6906,7 +7013,7 @@ gimplify_omp_for (tree *expr_p, gimple_seq *pre_p)
TREE_OPERAND (TREE_OPERAND (t, 1), 0) = var;
}
- gimplify_adjust_omp_clauses (&OMP_FOR_CLAUSES (orig_for_stmt));
+ gimplify_adjust_omp_clauses (pre_p, &OMP_FOR_CLAUSES (orig_for_stmt));
int kind;
switch (TREE_CODE (orig_for_stmt))
@@ -7006,7 +7113,7 @@ gimplify_omp_workshare (tree *expr_p, gimple_seq *pre_p)
}
else
gimplify_and_add (OMP_BODY (expr), &body);
- gimplify_adjust_omp_clauses (&OMP_CLAUSES (expr));
+ gimplify_adjust_omp_clauses (pre_p, &OMP_CLAUSES (expr));
switch (TREE_CODE (expr))
{
@@ -7045,7 +7152,7 @@ gimplify_omp_target_update (tree *expr_p, gimple_seq *pre_p)
gimplify_scan_omp_clauses (&OMP_TARGET_UPDATE_CLAUSES (expr), pre_p,
ORT_WORKSHARE);
- gimplify_adjust_omp_clauses (&OMP_TARGET_UPDATE_CLAUSES (expr));
+ gimplify_adjust_omp_clauses (pre_p, &OMP_TARGET_UPDATE_CLAUSES (expr));
stmt = gimple_build_omp_target (NULL, GF_OMP_TARGET_KIND_UPDATE,
OMP_TARGET_UPDATE_CLAUSES (expr));
diff --git a/gcc-4.9/gcc/gimplify.h b/gcc-4.9/gcc/gimplify.h
index 47e72130a..5085ccfe5 100644
--- a/gcc-4.9/gcc/gimplify.h
+++ b/gcc-4.9/gcc/gimplify.h
@@ -77,6 +77,7 @@ extern enum gimplify_status gimplify_expr (tree *, gimple_seq *, gimple_seq *,
extern void gimplify_type_sizes (tree, gimple_seq *);
extern void gimplify_one_sizepos (tree *, gimple_seq *);
extern gimple gimplify_body (tree, bool);
+extern enum gimplify_status gimplify_arg (tree *, gimple_seq *, location_t);
extern void gimplify_function_tree (tree);
extern enum gimplify_status gimplify_va_arg_expr (tree *, gimple_seq *,
gimple_seq *);
diff --git a/gcc-4.9/gcc/go/gofrontend/lex.cc b/gcc-4.9/gcc/go/gofrontend/lex.cc
index 161696347..3404cedb5 100644
--- a/gcc-4.9/gcc/go/gofrontend/lex.cc
+++ b/gcc-4.9/gcc/go/gofrontend/lex.cc
@@ -598,7 +598,7 @@ Lex::next_token()
}
else if (p[1] == '*')
{
- this->lineoff_ = p - this->linebuf_;
+ this->lineoff_ = p + 2 - this->linebuf_;
Location location = this->location();
if (!this->skip_c_comment())
return Token::make_invalid_token(location);
diff --git a/gcc-4.9/gcc/graphite-scop-detection.c b/gcc-4.9/gcc/graphite-scop-detection.c
index 821f0846e..635e21a85 100644
--- a/gcc-4.9/gcc/graphite-scop-detection.c
+++ b/gcc-4.9/gcc/graphite-scop-detection.c
@@ -474,8 +474,10 @@ scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
result.exits = false;
/* Mark bbs terminating a SESE region difficult, if they start
- a condition. */
- if (!single_succ_p (bb))
+ a condition or if the block it exits to cannot be split
+ with make_forwarder_block. */
+ if (!single_succ_p (bb)
+ || bb_has_abnormal_pred (single_succ (bb)))
result.difficult = true;
else
result.exit = single_succ (bb);
diff --git a/gcc-4.9/gcc/incpath.c b/gcc-4.9/gcc/incpath.c
index f495c0a7f..ddd856cb7 100644
--- a/gcc-4.9/gcc/incpath.c
+++ b/gcc-4.9/gcc/incpath.c
@@ -453,6 +453,29 @@ add_path (char *path, int chain, int cxx_aware, bool user_supplied_p)
add_cpp_dir_path (p, chain);
}
+/* Return the bracket and quote include search paths
+ in *BRACKETS and *QUOTES respectively. */
+
+void
+get_include_chains (cpp_dir **quotes, cpp_dir **brackets, cpp_dir **systems)
+{
+ *quotes = heads[QUOTE];
+ *brackets = heads[BRACKET];
+ *systems = heads[SYSTEM];
+}
+
+/* Make HEAD and TAIL pointers to include paths resynchronized
+ after appending new paths. */
+
+void
+clear_include_chains (void)
+{
+ heads[QUOTE] = tails[QUOTE] = NULL;
+ heads[BRACKET] = tails[BRACKET] = NULL;
+ heads[SYSTEM] = tails[SYSTEM] = NULL;
+ heads[AFTER] = tails[AFTER] = NULL;
+}
+
/* Exported function to handle include chain merging, duplicate
removal, and registration with cpplib. */
void
@@ -514,4 +537,3 @@ static void hook_void_charptr_charptr_int (const char *sysroot ATTRIBUTE_UNUSED,
#endif
struct target_c_incpath_s target_c_incpath = { TARGET_EXTRA_PRE_INCLUDES, TARGET_EXTRA_INCLUDES };
-
diff --git a/gcc-4.9/gcc/incpath.h b/gcc-4.9/gcc/incpath.h
index e86130fbc..adda7eaab 100644
--- a/gcc-4.9/gcc/incpath.h
+++ b/gcc-4.9/gcc/incpath.h
@@ -21,6 +21,9 @@ extern void register_include_chains (cpp_reader *, const char *,
const char *, const char *,
int, int, int);
extern void add_cpp_dir_path (struct cpp_dir *, int);
+extern void get_include_chains (cpp_dir **quotes, cpp_dir **brackets,
+ cpp_dir **systems);
+extern void clear_include_chains (void);
extern struct cpp_dir *get_added_cpp_dirs (int);
struct target_c_incpath_s {
diff --git a/gcc-4.9/gcc/input.c b/gcc-4.9/gcc/input.c
index 63cd062ec..c819303b5 100644
--- a/gcc-4.9/gcc/input.c
+++ b/gcc-4.9/gcc/input.c
@@ -109,6 +109,11 @@ location_t input_location;
struct line_maps *line_table;
+static vec<location_t> discriminator_location_locations;
+static vec<int> discriminator_location_discriminators;
+static location_t next_discriminator_location = UNKNOWN_LOCATION;
+static location_t min_discriminator_location = UNKNOWN_LOCATION;
+
static fcache *fcache_tab;
static const size_t fcache_tab_size = 16;
static const size_t fcache_buffer_size = 4 * 1024;
@@ -143,6 +148,13 @@ expand_location_1 (source_location loc,
loc = LOCATION_LOCUS (loc);
}
+ /* If LOC describes a location with a discriminator, extract the
+ discriminator and map it to the real location. */
+ if (min_discriminator_location != UNKNOWN_LOCATION
+ && loc >= min_discriminator_location
+ && loc < next_discriminator_location)
+ loc = map_discriminator_location (loc);
+
memset (&xloc, 0, sizeof (xloc));
if (loc >= RESERVED_LOCATION_COUNT)
@@ -852,3 +864,84 @@ dump_line_table_statistics (void)
STAT_LABEL (total_used_map_size));
fprintf (stderr, "\n");
}
+
+/* Associate the DISCRIMINATOR with LOCUS, and return a new locus.
+ We associate discriminators with a locus by allocating location_t
+ values beyond those assigned by libcpp. Each new value is mapped
+ directly to a real location_t value, and separately to the
+ discriminator. */
+
+location_t
+location_with_discriminator (location_t locus, int discriminator)
+{
+ tree block = LOCATION_BLOCK (locus);
+ location_t ret;
+ int i;
+ locus = map_discriminator_location (locus);
+
+ if (locus == UNKNOWN_LOCATION)
+ return block ? COMBINE_LOCATION_DATA (line_table, locus, block)
+ : locus;
+
+ if (min_discriminator_location == UNKNOWN_LOCATION)
+ {
+ min_discriminator_location = line_table->highest_location + 1;
+ next_discriminator_location = min_discriminator_location;
+ }
+
+ /* Traverse the last few discriminator_locations to see if we can reuse
+ the entry. */
+ for (i = next_discriminator_location - min_discriminator_location - 1;
+ (i >= 0 && LOCATION_LINE (discriminator_location_locations[i]) ==
+ LOCATION_LINE (locus)
+ && discriminator_location_discriminators[i] == discriminator);
+ i--)
+ if (discriminator_location_locations[i] == locus)
+ return (block
+ ? COMBINE_LOCATION_DATA (line_table, min_discriminator_location + i,
+ block)
+ : min_discriminator_location + i);
+
+ discriminator_location_locations.safe_push(locus);
+ discriminator_location_discriminators.safe_push(discriminator);
+
+ ret = (block
+ ? COMBINE_LOCATION_DATA (line_table, next_discriminator_location, block)
+ : next_discriminator_location);
+
+ next_discriminator_location++;
+ return ret;
+}
+
+/* Return TRUE if LOCUS represents a location with a discriminator. */
+
+bool
+has_discriminator (location_t locus)
+{
+ locus = LOCATION_LOCUS (locus);
+ return (min_discriminator_location != UNKNOWN_LOCATION
+ && locus >= min_discriminator_location
+ && locus < next_discriminator_location);
+}
+
+/* Return the real location_t value for LOCUS. */
+
+location_t
+map_discriminator_location (location_t locus)
+{
+ locus = LOCATION_LOCUS (locus);
+ if (! has_discriminator (locus))
+ return locus;
+ return (location_t) discriminator_location_locations[locus - min_discriminator_location];
+}
+
+/* Return the discriminator for LOCUS. */
+
+int
+get_discriminator_from_locus (location_t locus)
+{
+ locus = LOCATION_LOCUS (locus);
+ if (! has_discriminator (locus))
+ return 0;
+ return discriminator_location_discriminators[locus - min_discriminator_location];
+}
diff --git a/gcc-4.9/gcc/input.h b/gcc-4.9/gcc/input.h
index d910bb88f..29ee6943a 100644
--- a/gcc-4.9/gcc/input.h
+++ b/gcc-4.9/gcc/input.h
@@ -48,6 +48,11 @@ typedef source_location location_t;
extern location_t input_location;
+extern location_t location_with_discriminator (location_t, int);
+extern bool has_discriminator (location_t);
+extern location_t map_discriminator_location (location_t);
+extern int get_discriminator_from_locus (location_t);
+
#define LOCATION_FILE(LOC) ((expand_location (LOC)).file)
#define LOCATION_LINE(LOC) ((expand_location (LOC)).line)
#define LOCATION_COLUMN(LOC)((expand_location (LOC)).column)
@@ -59,7 +64,8 @@ extern location_t input_location;
: NULL))
#define in_system_header_at(LOC) \
- ((linemap_location_in_system_header_p (line_table, LOC)))
+ ((linemap_location_in_system_header_p (line_table, \
+ map_discriminator_location (LOC))))
void dump_line_table_statistics (void);
diff --git a/gcc-4.9/gcc/ipa-cp.c b/gcc-4.9/gcc/ipa-cp.c
index 689378a73..16c629d55 100644
--- a/gcc-4.9/gcc/ipa-cp.c
+++ b/gcc-4.9/gcc/ipa-cp.c
@@ -115,8 +115,10 @@ along with GCC; see the file COPYING3. If not see
#include "tree-pretty-print.h"
#include "tree-inline.h"
#include "params.h"
+#include "dbgcnt.h"
#include "ipa-inline.h"
#include "ipa-utils.h"
+#include "l-ipo.h"
struct ipcp_value;
@@ -433,6 +435,8 @@ determine_versionability (struct cgraph_node *node)
else if (!opt_for_fn (node->decl, optimize)
|| !opt_for_fn (node->decl, flag_ipa_cp))
reason = "non-optimized function";
+ else if (node->tm_clone)
+ reason = "transactional memory clone";
else if (lookup_attribute ("omp declare simd", DECL_ATTRIBUTES (node->decl)))
{
/* Ideally we should clone the SIMD clones themselves and create
@@ -1531,6 +1535,8 @@ ipa_get_indirect_edge_target_1 (struct cgraph_edge *ie,
TREE_CODE (t) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (t, 0)) == FUNCTION_DECL)
return TREE_OPERAND (t, 0);
+ else if (L_IPO_COMP_MODE && t && TREE_CODE (t) == FUNCTION_DECL)
+ return t;
else
return NULL_TREE;
}
@@ -1587,15 +1593,7 @@ ipa_get_indirect_edge_target_1 (struct cgraph_edge *ie,
&& DECL_FUNCTION_CODE (target) == BUILT_IN_UNREACHABLE)
|| !possible_polymorphic_call_target_p
(ie, cgraph_get_node (target)))
- {
- if (dump_file)
- fprintf (dump_file,
- "Type inconsident devirtualization: %s/%i->%s\n",
- ie->caller->name (), ie->caller->order,
- IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (target)));
- target = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
- cgraph_get_create_node (target);
- }
+ target = ipa_impossible_devirt_target (ie, target);
return target;
}
}
@@ -1629,7 +1627,7 @@ ipa_get_indirect_edge_target_1 (struct cgraph_edge *ie,
if (targets.length () == 1)
target = targets[0]->decl;
else
- target = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
+ target = ipa_impossible_devirt_target (ie, NULL_TREE);
}
else
{
@@ -1643,15 +1641,7 @@ ipa_get_indirect_edge_target_1 (struct cgraph_edge *ie,
if (target && !possible_polymorphic_call_target_p (ie,
cgraph_get_node (target)))
- {
- if (dump_file)
- fprintf (dump_file,
- "Type inconsident devirtualization: %s/%i->%s\n",
- ie->caller->name (), ie->caller->order,
- IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (target)));
- target = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
- cgraph_get_create_node (target);
- }
+ target = ipa_impossible_devirt_target (ie, target);
return target;
}
@@ -2482,7 +2472,8 @@ cgraph_edge_brings_value_p (struct cgraph_edge *cs,
struct ipcp_value_source *src)
{
struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
- struct ipa_node_params *dst_info = IPA_NODE_REF (cs->callee);
+ cgraph_node *real_dest = cgraph_function_node (cs->callee);
+ struct ipa_node_params *dst_info = IPA_NODE_REF (real_dest);
if ((dst_info->ipcp_orig_node && !dst_info->is_all_contexts_clone)
|| caller_info->node_dead)
diff --git a/gcc-4.9/gcc/ipa-devirt.c b/gcc-4.9/gcc/ipa-devirt.c
index 7f07d2f94..0671a8b78 100644
--- a/gcc-4.9/gcc/ipa-devirt.c
+++ b/gcc-4.9/gcc/ipa-devirt.c
@@ -1449,6 +1449,8 @@ possible_polymorphic_call_targets (tree otr_type,
{
if (completep)
*completep = false;
+ if (cache_token)
+ *cache_token = NULL;
if (nonconstruction_targetsp)
*nonconstruction_targetsp = 0;
return nodes;
@@ -1459,6 +1461,8 @@ possible_polymorphic_call_targets (tree otr_type,
{
if (completep)
*completep = true;
+ if (cache_token)
+ *cache_token = NULL;
if (nonconstruction_targetsp)
*nonconstruction_targetsp = 0;
return nodes;
@@ -1472,6 +1476,8 @@ possible_polymorphic_call_targets (tree otr_type,
{
if (completep)
*completep = false;
+ if (cache_token)
+ *cache_token = NULL;
if (nonconstruction_targetsp)
*nonconstruction_targetsp = 0;
return nodes;
diff --git a/gcc-4.9/gcc/ipa-inline-analysis.c b/gcc-4.9/gcc/ipa-inline-analysis.c
index 8e0f5dd89..49c905859 100644
--- a/gcc-4.9/gcc/ipa-inline-analysis.c
+++ b/gcc-4.9/gcc/ipa-inline-analysis.c
@@ -1007,7 +1007,6 @@ reset_inline_summary (struct cgraph_node *node)
info->self_size = info->self_time = 0;
info->estimated_stack_size = 0;
info->estimated_self_stack_size = 0;
- info->stack_frame_offset = 0;
info->size = 0;
info->time = 0;
info->growth = 0;
@@ -1351,10 +1350,9 @@ dump_inline_edge_summary (FILE *f, int indent, struct cgraph_node *node,
}
if (!edge->inline_failed)
{
- fprintf (f, "%*sStack frame offset %i, callee self size %i,"
+ fprintf (f, "%*sCallee self size %i,"
" callee size %i\n",
indent + 2, "",
- (int) inline_summary (callee)->stack_frame_offset,
(int) inline_summary (callee)->estimated_self_stack_size,
(int) inline_summary (callee)->estimated_stack_size);
dump_inline_edge_summary (f, indent + 2, callee, info);
@@ -2436,7 +2434,8 @@ estimate_function_body_sizes (struct cgraph_node *node, bool early)
{
gcov_type time = 0;
/* Estimate static overhead for function prologue/epilogue and alignment. */
- int size = 2;
+ int overhead = PARAM_VALUE (PARAM_INLINE_FUNCTION_OVERHEAD_SIZE);
+ int size = overhead;
/* Benefits are scaled by probability of elimination that is in range
<0,2>. */
basic_block bb;
@@ -2478,7 +2477,7 @@ estimate_function_body_sizes (struct cgraph_node *node, bool early)
account_size_time (info, 0, 0, &bb_predicate);
bb_predicate = not_inlined_predicate ();
- account_size_time (info, 2 * INLINE_SIZE_SCALE, 0, &bb_predicate);
+ account_size_time (info, overhead * INLINE_SIZE_SCALE, 0, &bb_predicate);
gcc_assert (my_function && my_function->cfg);
if (parms_info)
@@ -2850,7 +2849,6 @@ compute_inline_parameters (struct cgraph_node *node, bool early)
self_stack_size = optimize ? estimated_stack_frame_size (node) : 0;
info->estimated_self_stack_size = self_stack_size;
info->estimated_stack_size = self_stack_size;
- info->stack_frame_offset = 0;
/* Can this function be inlined at all? */
if (!optimize && !lookup_attribute ("always_inline",
@@ -2892,7 +2890,6 @@ compute_inline_parameters (struct cgraph_node *node, bool early)
/* Inlining characteristics are maintained by the cgraph_mark_inline. */
info->time = info->self_time;
info->size = info->self_size;
- info->stack_frame_offset = 0;
info->estimated_stack_size = info->estimated_self_stack_size;
#ifdef ENABLE_CHECKING
inline_update_overall_summary (node);
@@ -3317,16 +3314,12 @@ inline_update_callee_summaries (struct cgraph_node *node, int depth)
{
struct cgraph_edge *e;
struct inline_summary *callee_info = inline_summary (node);
- struct inline_summary *caller_info = inline_summary (node->callers->caller);
- HOST_WIDE_INT peak;
-
- callee_info->stack_frame_offset
- = caller_info->stack_frame_offset
- + caller_info->estimated_self_stack_size;
- peak = callee_info->stack_frame_offset
- + callee_info->estimated_self_stack_size;
- if (inline_summary (node->global.inlined_to)->estimated_stack_size < peak)
- inline_summary (node->global.inlined_to)->estimated_stack_size = peak;
+
+ /* Pessimistically assume no sharing of stack space. That is, the
+ frame size of a function is estimated as the original frame size
+ plus the sum of the frame sizes of all inlined callees. */
+ inline_summary (node->global.inlined_to)->estimated_stack_size +=
+ callee_info->estimated_self_stack_size;
ipa_propagate_frequency (node);
for (e = node->callees; e; e = e->next_callee)
{
diff --git a/gcc-4.9/gcc/ipa-inline-transform.c b/gcc-4.9/gcc/ipa-inline-transform.c
index a45aab118..aaf427d12 100644
--- a/gcc-4.9/gcc/ipa-inline-transform.c
+++ b/gcc-4.9/gcc/ipa-inline-transform.c
@@ -31,6 +31,7 @@ along with GCC; see the file COPYING3. If not see
#include "config.h"
#include "system.h"
#include "coretypes.h"
+#include "dumpfile.h"
#include "tm.h"
#include "tree.h"
#include "langhooks.h"
@@ -42,6 +43,12 @@ along with GCC; see the file COPYING3. If not see
#include "ipa-inline.h"
#include "tree-inline.h"
#include "tree-pass.h"
+#include "l-ipo.h"
+#include "params.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "gimple-expr.h"
+#include "gimple.h"
int ncalls_inlined;
int nfunctions_inlined;
@@ -179,12 +186,21 @@ clone_inlined_nodes (struct cgraph_edge *e, bool duplicate,
else
{
struct cgraph_node *n;
-
+ if (flag_auto_profile && L_IPO_COMP_MODE
+ && cgraph_pre_profiling_inlining_done)
+ {
+ struct cgraph_node *caller = e->caller;
+ if (caller->global.inlined_to)
+ caller = caller->global.inlined_to;
+ if (cgraph_lipo_get_resolved_node (caller->decl) != caller)
+ update_original = false;
+ }
if (freq_scale == -1)
freq_scale = e->frequency;
n = cgraph_clone_node (e->callee, e->callee->decl,
- e->count, freq_scale, update_original,
- vNULL, true, inlining_into, NULL);
+ MIN(e->count, e->callee->count), freq_scale,
+ update_original, vNULL, true, inlining_into,
+ NULL);
cgraph_redirect_edge_callee (e, n);
}
}
@@ -207,6 +223,134 @@ clone_inlined_nodes (struct cgraph_edge *e, bool duplicate,
}
}
+#define MAX_INT_LENGTH 16
+
+/* Return NODE's name and aux info. The output is controled by OPT_INFO
+ level. */
+
+static const char *
+cgraph_node_opt_info (struct cgraph_node *node, bool emit_mod_info)
+{
+ char *buf;
+ size_t buf_size;
+ const char *bfd_name = lang_hooks.dwarf_name (node->decl, 0);
+ const char *mod_name = 0;
+ unsigned int mod_id = 0;
+ int funcdef_no = -1;
+ const char *primary_tag = 0;
+
+ if (!bfd_name)
+ bfd_name = "unknown";
+
+ buf_size = strlen (bfd_name) + 1;
+ if (profile_info)
+ buf_size += (MAX_INT_LENGTH + 3);
+
+ if (L_IPO_COMP_MODE && emit_mod_info)
+ {
+ mod_id = cgraph_get_module_id (node->decl);
+ gcc_assert (mod_id);
+ mod_name = get_module_name (mod_id);
+ primary_tag = (mod_id == primary_module_id ? "*" :"");
+ buf_size += (4 + strlen (mod_name));
+ if (PARAM_VALUE (PARAM_INLINE_DUMP_MODULE_ID))
+ {
+ struct function *func = DECL_STRUCT_FUNCTION (node->decl);
+ if (func)
+ funcdef_no = func->funcdef_no;
+ buf_size += (2 * MAX_INT_LENGTH + 1);
+ }
+ }
+
+ buf = (char *) xmalloc (buf_size);
+
+ strcpy (buf, bfd_name);
+
+ if (L_IPO_COMP_MODE && emit_mod_info)
+ {
+ if (PARAM_VALUE (PARAM_INLINE_DUMP_MODULE_ID))
+ sprintf (buf, "%s [%d:%d %s%s]", buf, mod_id, funcdef_no,
+ primary_tag, mod_name);
+ else
+ sprintf (buf, "%s [%s%s]", buf, primary_tag, mod_name);
+ }
+
+ if (profile_info)
+ sprintf (buf, "%s ("HOST_WIDEST_INT_PRINT_DEC")", buf, node->count);
+ return buf;
+}
+
+/* Return CALLER's inlined call chain. Save the cgraph_node of the ultimate
+ function that the caller is inlined to in FINAL_CALLER. */
+
+static const char *
+cgraph_node_call_chain (struct cgraph_node *caller,
+ struct cgraph_node **final_caller)
+{
+ struct cgraph_node *node;
+ const char *via_str = " (via inline instance";
+ size_t current_string_len = strlen (via_str) + 1;
+ size_t buf_size = current_string_len;
+ char *buf = (char *) xmalloc (buf_size);
+
+ buf[0] = 0;
+ gcc_assert (caller->global.inlined_to != NULL);
+ strcat (buf, via_str);
+ for (node = caller; node->global.inlined_to != NULL;
+ node = node->callers->caller)
+ {
+ const char *name = cgraph_node_opt_info (node, false);
+ current_string_len += (strlen (name) + 1);
+ if (current_string_len >= buf_size)
+ {
+ buf_size = current_string_len * 2;
+ buf = (char *) xrealloc (buf, buf_size);
+ }
+ strcat (buf, " ");
+ strcat (buf, name);
+ }
+ strcat (buf, ")");
+ *final_caller = node;
+ return buf;
+}
+
+/* Dump the inline decision of EDGE to stderr. */
+
+static void
+dump_inline_decision (struct cgraph_edge *edge)
+{
+ location_t locus;
+ const char *inline_chain_text;
+ const char *call_count_text;
+ struct cgraph_node *final_caller = edge->caller;
+
+ if (final_caller->global.inlined_to != NULL)
+ inline_chain_text = cgraph_node_call_chain (final_caller, &final_caller);
+ else
+ inline_chain_text = "";
+
+ if (edge->count > 0)
+ {
+ const char *call_count_str = " with call count ";
+ char *buf = (char *) xmalloc (strlen (call_count_str) + MAX_INT_LENGTH);
+ sprintf (buf, "%s"HOST_WIDEST_INT_PRINT_DEC, call_count_str,
+ edge->count);
+ call_count_text = buf;
+ }
+ else
+ {
+ call_count_text = "";
+ }
+
+ locus = gimple_location (edge->call_stmt);
+ dump_printf_loc (is_in_ipa_inline ? MSG_OPTIMIZED_LOCATIONS : MSG_NOTE,
+ locus,
+ "%s inlined into %s%s%s\n",
+ cgraph_node_opt_info (edge->callee, true),
+ cgraph_node_opt_info (final_caller, true),
+ call_count_text,
+ inline_chain_text);
+}
/* Mark edge E as inlined and update callgraph accordingly. UPDATE_ORIGINAL
specify whether profile of original function should be updated. If any new
@@ -214,6 +358,7 @@ clone_inlined_nodes (struct cgraph_edge *e, bool duplicate,
it is NULL. If UPDATE_OVERALL_SUMMARY is false, do not bother to recompute overall
size of caller after inlining. Caller is required to eventually do it via
inline_update_overall_summary.
+ If callee_removed is non-NULL, set it to true if we removed callee node.
Return true iff any new callgraph edges were discovered as a
result of inlining. */
@@ -221,7 +366,8 @@ clone_inlined_nodes (struct cgraph_edge *e, bool duplicate,
bool
inline_call (struct cgraph_edge *e, bool update_original,
vec<cgraph_edge_p> *new_edges,
- int *overall_size, bool update_overall_summary)
+ int *overall_size, bool update_overall_summary,
+ bool *callee_removed)
{
int old_size = 0, new_size = 0;
struct cgraph_node *to = NULL;
@@ -229,11 +375,18 @@ inline_call (struct cgraph_edge *e, bool update_original,
struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
bool new_edges_found = false;
+ /* Skip fake edge. */
+ if (L_IPO_COMP_MODE && !e->call_stmt)
+ return false;
+
#ifdef ENABLE_CHECKING
int estimated_growth = estimate_edge_growth (e);
bool predicated = inline_edge_summary (e)->predicate != NULL;
#endif
+ if (dump_enabled_p ())
+ dump_inline_decision (e);
+
speculation_removed = false;
/* Don't inline inlined edges. */
gcc_assert (e->inline_failed);
@@ -252,6 +405,7 @@ inline_call (struct cgraph_edge *e, bool update_original,
if (e->callee != callee)
{
struct cgraph_node *alias = e->callee, *next_alias;
+
cgraph_redirect_edge_callee (e, callee);
while (alias && alias != callee)
{
@@ -260,6 +414,8 @@ inline_call (struct cgraph_edge *e, bool update_original,
{
next_alias = cgraph_alias_target (alias);
cgraph_remove_node (alias);
+ if (callee_removed)
+ *callee_removed = true;
alias = next_alias;
}
else
@@ -278,6 +434,8 @@ inline_call (struct cgraph_edge *e, bool update_original,
if (update_overall_summary)
inline_update_overall_summary (to);
new_size = inline_summary (to)->size;
+ if (to->max_bb_count < e->callee->max_bb_count)
+ to->max_bb_count = e->callee->max_bb_count;
if (callee->calls_comdat_local)
to->calls_comdat_local = true;
@@ -299,13 +457,20 @@ inline_call (struct cgraph_edge *e, bool update_original,
|| speculation_removed
/* FIXME: a hack. Edges with false predicate are accounted
wrong, we should remove them from callgraph. */
- || predicated);
+ || predicated
+ /* FIXME_LIPO -- LIPO is not yet compatible
+ with ipa devirt. */
+ || flag_dyn_ipa);
#endif
/* Account the change of overall unit size; external functions will be
removed and are thus not accounted. */
if (overall_size
- && !DECL_EXTERNAL (to->decl))
+ && !DECL_EXTERNAL (to->decl)
+ && ((L_IPO_COMP_MODE
+ && cgraph_get_module_id (to->decl)
+ == primary_module_id)
+ || !L_IPO_COMP_MODE))
*overall_size += new_size - old_size;
ncalls_inlined++;
diff --git a/gcc-4.9/gcc/ipa-inline.c b/gcc-4.9/gcc/ipa-inline.c
index 405181940..29c76b88e 100644
--- a/gcc-4.9/gcc/ipa-inline.c
+++ b/gcc-4.9/gcc/ipa-inline.c
@@ -116,10 +116,15 @@ along with GCC; see the file COPYING3. If not see
#include "gimple.h"
#include "gimple-ssa.h"
#include "ipa-prop.h"
+#include "basic-block.h"
+#include "toplev.h"
+#include "dbgcnt.h"
#include "except.h"
+#include "l-ipo.h"
#include "target.h"
#include "ipa-inline.h"
#include "ipa-utils.h"
+#include "auto-profile.h"
#include "sreal.h"
#include "cilk.h"
@@ -128,6 +133,9 @@ static int overall_size;
static gcov_type max_count;
static sreal max_count_real, max_relbenefit_real, half_int_min_real;
+/* Global variable to denote if it is in ipa-inline pass. */
+bool is_in_ipa_inline = false;
+
/* Return false when inlining edge E would lead to violating
limits on function unit growth or stack usage growth.
@@ -201,8 +209,7 @@ caller_growth_limits (struct cgraph_edge *e)
stack_size_limit += ((gcov_type)stack_size_limit
* PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100);
- inlined_stack = (outer_info->stack_frame_offset
- + outer_info->estimated_self_stack_size
+ inlined_stack = (outer_info->estimated_stack_size
+ what_info->estimated_stack_size);
/* Check new stack consumption with stack consumption at the place
stack is used. */
@@ -407,6 +414,11 @@ can_early_inline_edge_p (struct cgraph_edge *e)
e->inline_failed = CIF_BODY_NOT_AVAILABLE;
return false;
}
+
+ /* Skip fake edges */
+ if (L_IPO_COMP_MODE && !e->call_stmt)
+ return false;
+
/* In early inliner some of callees may not be in SSA form yet
(i.e. the callgraph is cyclic and we did not process
the callee by early inliner, yet). We don't have CIF code for this
@@ -430,15 +442,16 @@ static int
num_calls (struct cgraph_node *n)
{
struct cgraph_edge *e;
+ /* The following is buggy -- indirect call is not considered. */
int num = 0;
for (e = n->callees; e; e = e->next_callee)
- if (!is_inexpensive_builtin (e->callee->decl))
+ if (e->call_stmt /* Only exist in profile use pass in LIPO */
+ && !is_inexpensive_builtin (e->callee->decl))
num++;
return num;
}
-
/* Return true if we are interested in inlining small function. */
static bool
@@ -449,6 +462,8 @@ want_early_inline_function_p (struct cgraph_edge *e)
if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
;
+ else if (flag_auto_profile && afdo_callsite_hot_enough_for_early_inline (e))
+ ;
else if (!DECL_DECLARED_INLINE_P (callee->decl)
&& !flag_inline_small_functions)
{
@@ -459,12 +474,12 @@ want_early_inline_function_p (struct cgraph_edge *e)
else
{
int growth = estimate_edge_growth (e);
+ struct cgraph_node *callee = e->callee;
int n;
- if (growth <= 0)
+ if (growth <= PARAM_VALUE (PARAM_EARLY_INLINING_INSNS_ANY))
;
- else if (!cgraph_maybe_hot_edge_p (e)
- && growth > 0)
+ else if (!cgraph_maybe_hot_edge_p (e))
{
if (dump_file)
fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
@@ -486,6 +501,9 @@ want_early_inline_function_p (struct cgraph_edge *e)
growth);
want_inline = false;
}
+ else if (DECL_COMDAT (callee->decl)
+ && growth <= PARAM_VALUE (PARAM_EARLY_INLINING_INSNS_COMDAT))
+ ;
else if ((n = num_calls (callee)) != 0
&& growth * (n + 1) > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
{
@@ -556,6 +574,100 @@ big_speedup_p (struct cgraph_edge *e)
return false;
}
+/* Returns true if callee of edge E is considered useful to inline
+ even if it is cold. A callee is considered useful if there is at
+ least one argument of pointer type with IPA_JF_KNOWN_TYPE or
+ IPA_JF_UNKNOWN as the jump function. The reasoniong here is that
+ it is often beneficial to inline bar into foo in the following
+ code even if the callsite is cold:
+ void foo () {
+ A a;
+ bar (&a);
+ ...
+ }
+
+ This exposes accesses to the 'a' object. The jump function of &a
+ is either IPA_JF_KNOWN_TYPE or IPA_JF_UNKNOWN (depending on
+ intervening code). */
+
+static inline bool
+useful_cold_callee (struct cgraph_edge *e)
+{
+ gimple call = e->call_stmt;
+ int n, arg_num = gimple_call_num_args (call);
+ struct ipa_edge_args *args = IPA_EDGE_REF (e);
+
+ if (ipa_node_params_vector.exists ())
+ {
+ for (n = 0; n < arg_num; n++)
+ {
+ tree arg = gimple_call_arg (call, n);
+ if (POINTER_TYPE_P (TREE_TYPE (arg)))
+ {
+ struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, n);
+ if (jfunc->type == IPA_JF_KNOWN_TYPE
+ || jfunc->type == IPA_JF_UNKNOWN)
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+/* Returns true if hot caller heuristic should be used. */
+
+static inline bool
+enable_hot_caller_heuristic (void)
+{
+
+ gcov_working_set_t *ws = NULL;
+ int size_threshold = PARAM_VALUE (PARAM_HOT_CALLER_CODESIZE_THRESHOLD);
+ int num_counters = 0;
+ int param_inline_hot_caller = PARAM_VALUE (PARAM_INLINE_HOT_CALLER);
+
+ if (param_inline_hot_caller == 0)
+ return false;
+ else if (param_inline_hot_caller == 1)
+ return true;
+
+ ws = find_working_set(PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
+ if (!ws)
+ return false;
+ num_counters = ws->num_counters;
+ return num_counters <= size_threshold;
+
+}
+/* Returns true if an edge or its caller are hot enough to
+ be considered for inlining. */
+
+static bool
+edge_hot_enough_p (struct cgraph_edge *edge)
+{
+ static bool use_hot_caller_heuristic = enable_hot_caller_heuristic ();
+ if (cgraph_maybe_hot_edge_p (edge))
+ return true;
+
+ /* We disable hot-caller heuristic if the callee's entry count is
+ 0 because in this case we do not have enough information to
+ calculate the scaling factor. */
+ if (flag_auto_profile && edge->callee->count == 0
+ && edge->callee->max_bb_count > 0)
+ return false;
+ if (use_hot_caller_heuristic)
+ {
+ struct cgraph_node *where = edge->caller;
+ if (maybe_hot_count_p (NULL, where->max_bb_count))
+ {
+ if (PARAM_VALUE (PARAM_INLINE_USEFUL_COLD_CALLEE))
+ return useful_cold_callee (edge);
+ else
+ return true;
+ }
+ }
+
+ return false;
+}
+
/* Return true if we are interested in inlining small function.
When REPORT is true, report reason to dump file. */
@@ -646,7 +758,7 @@ want_inline_small_function_p (struct cgraph_edge *e, bool report)
}
}
/* If call is cold, do not inline when function body would grow. */
- else if (!cgraph_maybe_hot_edge_p (e)
+ else if (!edge_hot_enough_p (e)
&& (growth >= MAX_INLINE_INSNS_SINGLE
|| growth_likely_positive (callee, growth)))
{
@@ -839,6 +951,49 @@ want_inline_function_to_all_callers_p (struct cgraph_node *node, bool cold)
#define RELATIVE_TIME_BENEFIT_RANGE (INT_MAX / 64)
+/* Return true if FUNCDECL is a function with fixed
+ argument list. */
+
+static bool
+fixed_arg_function_p (tree fndecl)
+{
+ tree fntype = TREE_TYPE (fndecl);
+ return (TYPE_ARG_TYPES (fntype) == 0
+ || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
+ == void_type_node));
+}
+
+/* For profile collection with flag_dyn_ipa (LIPO), we always
+ want to inline comdat functions for the following reasons:
+ 1) Functions in comdat may be actually defined in a different
+ module (depending on how linker picks). This results in a edge
+ from one module to another module in the dynamic callgraph.
+ The edge is false and result in unnecessary module grouping.
+ 2) The profile counters in comdat functions are not 'comdated'
+ -- which means each copy of the same comdat function has its
+ own set of counters. With inlining, we are actually splitting
+ the counters and make the profile information 'context sensitive',
+ which is a good thing.
+ 3) During profile-use pass of LIPO (flag_dyn_ipa == 1),
+ the pre-tree_profile inline decisions have to be the same as the
+ profile-gen pass (otherwise coverage mismatch will occur). Due to
+ this reason, it is better for each module to 'use' the comdat copy
+ of its own. The only way to get profile data for the copy is to
+ inline the copy in profile-gen phase.
+ TODO: For indirectly called comdat functions, the above issues
+ still exist. */
+
+static bool
+better_inline_comdat_function_p (struct cgraph_node *node)
+{
+ return (profile_arc_flag && flag_dyn_ipa
+ && DECL_COMDAT (node->decl)
+ && inline_summary (node)->size
+ <= PARAM_VALUE (PARAM_MAX_INLINE_INSNS_SINGLE)
+ && fixed_arg_function_p (node->decl));
+}
+
+
/* Return relative time improvement for inlining EDGE in range
1...RELATIVE_TIME_BENEFIT_RANGE */
@@ -1050,7 +1205,12 @@ edge_badness (struct cgraph_edge *edge, bool dump)
if (cgraph_edge_recursive_p (edge))
return badness + 1;
else
- return badness;
+ {
+ if (better_inline_comdat_function_p (edge->callee))
+ return INT_MIN + 1;
+ else
+ return badness;
+ }
}
/* Recompute badness of EDGE and update its key in HEAP if needed. */
@@ -1190,7 +1350,8 @@ update_caller_keys (fibheap_t heap, struct cgraph_node *node,
|| check_inlinablity_for == edge)
{
if (can_inline_edge_p (edge, false)
- && want_inline_small_function_p (edge, false))
+ && (want_inline_small_function_p (edge, false)
+ || better_inline_comdat_function_p (node)))
update_edge_key (heap, edge);
else if (edge->aux)
{
@@ -1296,6 +1457,7 @@ recursive_inlining (struct cgraph_edge *edge,
vec<cgraph_edge_p> *new_edges)
{
int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
+ int probability = PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY);
fibheap_t heap;
struct cgraph_node *node;
struct cgraph_edge *e;
@@ -1360,6 +1522,29 @@ recursive_inlining (struct cgraph_edge *edge,
== cgraph_function_or_thunk_node (curr->callee, NULL)->decl)
depth++;
+ if (max_count)
+ {
+ if (!cgraph_maybe_hot_edge_p (curr))
+ {
+ if (dump_file)
+ fprintf (dump_file, " Not inlining cold call\n");
+
+ cgraph_redirect_edge_callee (curr, dest);
+ reset_edge_growth_cache (curr);
+ continue;
+ }
+ if (node->count == 0 || curr->count * 100 / node->count < probability)
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ " Probability of edge is too small\n");
+
+ cgraph_redirect_edge_callee (curr, dest);
+ reset_edge_growth_cache (curr);
+ continue;
+ }
+ }
+
if (!want_inline_self_recursive_call_p (curr, node, false, depth))
{
cgraph_redirect_edge_callee (curr, dest);
@@ -1367,6 +1552,9 @@ recursive_inlining (struct cgraph_edge *edge,
continue;
}
+ if (!dbg_cnt (inl))
+ continue;
+
if (dump_file)
{
fprintf (dump_file,
@@ -1563,6 +1751,8 @@ inline_small_functions (void)
struct cgraph_node **order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
struct cgraph_edge_hook_list *edge_removal_hook_holder;
+ is_in_ipa_inline = true;
+
if (flag_indirect_inlining)
new_indirect_edges.create (8);
@@ -1606,6 +1796,9 @@ inline_small_functions (void)
for (edge = node->callers; edge; edge = edge->next_caller)
if (max_count < edge->count)
max_count = edge->count;
+ for (edge = node->indirect_calls; edge; edge = edge->next_callee)
+ if (max_count < edge->count)
+ max_count = edge->count;
}
sreal_init (&max_count_real, max_count, 0);
sreal_init (&max_relbenefit_real, RELATIVE_TIME_BENEFIT_RANGE, 0);
@@ -1639,7 +1832,8 @@ inline_small_functions (void)
if (edge->inline_failed
&& !edge->aux
&& can_inline_edge_p (edge, true)
- && want_inline_small_function_p (edge, true)
+ && (want_inline_small_function_p (edge, true)
+ || better_inline_comdat_function_p (node))
&& edge->inline_failed)
{
gcc_assert (!edge->aux);
@@ -1683,6 +1877,9 @@ inline_small_functions (void)
if (!edge->inline_failed || !edge->callee->analyzed)
continue;
+ if (L_IPO_COMP_MODE && !edge->call_stmt)
+ continue;
+
/* Be sure that caches are maintained consistent.
We can not make this ENABLE_CHECKING only because it cause different
updates of the fibheap queue. */
@@ -1707,7 +1904,7 @@ inline_small_functions (void)
resolve_noninline_speculation (edge_heap, edge);
continue;
}
-
+
callee = cgraph_function_or_thunk_node (edge->callee, NULL);
growth = estimate_edge_growth (edge);
if (dump_file)
@@ -1742,12 +1939,16 @@ inline_small_functions (void)
continue;
}
- if (!want_inline_small_function_p (edge, true))
+ if (!want_inline_small_function_p (edge, true)
+ && !better_inline_comdat_function_p (edge->callee))
{
resolve_noninline_speculation (edge_heap, edge);
continue;
}
+ if (!dbg_cnt (inl))
+ continue;
+
/* Heuristics for inlining small functions work poorly for
recursive calls where we do effects similar to loop unrolling.
When inlining such edge seems profitable, leave decision on
@@ -1778,6 +1979,9 @@ inline_small_functions (void)
struct cgraph_node *outer_node = NULL;
int depth = 0;
+ if (!dbg_cnt (inl))
+ continue;
+
/* Consider the case where self recursive function A is inlined
into B. This is desired optimization in some cases, since it
leads to effect similar of loop peeling and we might completely
@@ -1830,8 +2034,9 @@ inline_small_functions (void)
if (dump_file)
{
fprintf (dump_file,
- " Inlined into %s which now has time %i and size %i,"
+ "INFO: %s Inlined into %s which now has time %i and size %i,"
"net change of %+i.\n",
+ edge->callee->name (),
edge->caller->name (),
inline_summary (edge->caller)->time,
inline_summary (edge->caller)->size,
@@ -1961,6 +2166,8 @@ static bool
inline_to_all_callers (struct cgraph_node *node, void *data)
{
int *num_calls = (int *)data;
+ bool callee_removed = false;
+
while (node->callers && !node->global.inlined_to)
{
struct cgraph_node *caller = node->callers->caller;
@@ -1977,7 +2184,7 @@ inline_to_all_callers (struct cgraph_node *node, void *data)
inline_summary (node->callers->caller)->size);
}
- inline_call (node->callers, true, NULL, NULL, true);
+ inline_call (node->callers, true, NULL, NULL, true, &callee_removed);
if (dump_file)
fprintf (dump_file,
" Inlined into %s which now has %i size\n",
@@ -1987,8 +2194,10 @@ inline_to_all_callers (struct cgraph_node *node, void *data)
{
if (dump_file)
fprintf (dump_file, "New calls found; giving up.\n");
- return true;
+ return callee_removed;
}
+ if (callee_removed)
+ return true;
}
return false;
}
@@ -2107,8 +2316,9 @@ ipa_inline (void)
int num_calls = 0;
cgraph_for_node_and_aliases (node, sum_callers,
&num_calls, true);
- cgraph_for_node_and_aliases (node, inline_to_all_callers,
- &num_calls, true);
+ while (cgraph_for_node_and_aliases (node, inline_to_all_callers,
+ &num_calls, true))
+ ;
remove_functions = true;
}
}
@@ -2209,6 +2419,7 @@ early_inline_small_functions (struct cgraph_node *node)
if (cgraph_edge_recursive_p (e))
{
+
if (dump_file)
fprintf (dump_file, " Not inlining: recursive call.\n");
continue;
@@ -2231,7 +2442,7 @@ early_inline_small_functions (struct cgraph_node *node)
/* Do inlining of small functions. Doing so early helps profiling and other
passes to be somewhat more effective and avoids some code duplication in
later real inlining pass for testcases with very many function calls. */
-static unsigned int
+unsigned int
early_inliner (void)
{
struct cgraph_node *node = cgraph_get_node (current_function_decl);
@@ -2302,6 +2513,9 @@ early_inliner (void)
for (edge = node->callees; edge; edge = edge->next_callee)
{
struct inline_edge_summary *es = inline_edge_summary (edge);
+
+ if (!edge->call_stmt)
+ continue;
es->call_stmt_size
= estimate_num_insns (edge->call_stmt, &eni_size_weights);
es->call_stmt_time
diff --git a/gcc-4.9/gcc/ipa-inline.h b/gcc-4.9/gcc/ipa-inline.h
index 8ee075f93..c45aed317 100644
--- a/gcc-4.9/gcc/ipa-inline.h
+++ b/gcc-4.9/gcc/ipa-inline.h
@@ -205,6 +205,9 @@ struct edge_growth_cache_entry
extern vec<int> node_growth_cache;
extern vec<edge_growth_cache_entry> edge_growth_cache;
+/* In ipa-inline.c */
+unsigned int early_inliner (void);
+
/* In ipa-inline-analysis.c */
void debug_inline_summary (struct cgraph_node *);
void dump_inline_summaries (FILE *f);
@@ -234,13 +237,15 @@ void compute_inline_parameters (struct cgraph_node *, bool);
bool speculation_useful_p (struct cgraph_edge *e, bool anticipate_inlining);
/* In ipa-inline-transform.c */
-bool inline_call (struct cgraph_edge *, bool, vec<cgraph_edge_p> *, int *, bool);
+bool inline_call (struct cgraph_edge *, bool, vec<cgraph_edge_p> *, int *, bool,
+ bool *callee_removed = NULL);
unsigned int inline_transform (struct cgraph_node *);
void clone_inlined_nodes (struct cgraph_edge *e, bool, bool, int *,
int freq_scale);
extern int ncalls_inlined;
extern int nfunctions_inlined;
+extern bool is_in_ipa_inline;
static inline struct inline_summary *
inline_summary (struct cgraph_node *node)
diff --git a/gcc-4.9/gcc/ipa-prop.c b/gcc-4.9/gcc/ipa-prop.c
index 9f144fa34..2ccbbdbca 100644
--- a/gcc-4.9/gcc/ipa-prop.c
+++ b/gcc-4.9/gcc/ipa-prop.c
@@ -56,6 +56,7 @@ along with GCC; see the file COPYING3. If not see
#include "data-streamer.h"
#include "tree-streamer.h"
#include "params.h"
+#include "l-ipo.h"
#include "ipa-utils.h"
#include "stringpool.h"
#include "tree-ssanames.h"
@@ -1618,7 +1619,20 @@ ipa_compute_jump_functions_for_edge (struct param_analysis_info *parms_ainfo,
tree param_type = ipa_get_callee_param_type (cs, n);
if (is_gimple_ip_invariant (arg))
- ipa_set_jf_constant (jfunc, arg, cs);
+ {
+ if (L_IPO_COMP_MODE && TREE_CODE (arg) == ADDR_EXPR
+ && TREE_CODE (TREE_OPERAND (arg, 0)) == FUNCTION_DECL)
+ {
+ tree fdecl = TREE_OPERAND (arg, 0);
+ tree real_fdecl = cgraph_lipo_get_resolved_node (fdecl)->decl;
+ if (fdecl != real_fdecl)
+ {
+ arg = unshare_expr (arg);
+ TREE_OPERAND (arg, 0) = real_fdecl;
+ }
+ }
+ ipa_set_jf_constant (jfunc, arg, cs);
+ }
else if (!is_gimple_reg_type (TREE_TYPE (arg))
&& TREE_CODE (arg) == PARM_DECL)
{
@@ -2701,6 +2715,29 @@ try_make_edge_direct_simple_call (struct cgraph_edge *ie,
return cs;
}
+/* Return the target to be used in cases of impossible devirtualization. IE
+ and target (the latter can be NULL) are dumped when dumping is enabled. */
+
+tree
+ipa_impossible_devirt_target (struct cgraph_edge *ie, tree target)
+{
+ if (dump_file)
+ {
+ if (target)
+ fprintf (dump_file,
+ "Type inconsistent devirtualization: %s/%i->%s\n",
+ ie->caller->name (), ie->caller->order,
+ IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (target)));
+ else
+ fprintf (dump_file,
+ "No devirtualization target in %s/%i\n",
+ ie->caller->name (), ie->caller->order);
+ }
+ tree new_target = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
+ cgraph_get_create_node (new_target);
+ return new_target;
+}
+
/* Try to find a destination for indirect edge IE that corresponds to a virtual
call based on a formal parameter which is described by jump function JFUNC
and if it can be determined, make it direct and return the direct edge.
@@ -2714,7 +2751,10 @@ try_make_edge_direct_virtual_call (struct cgraph_edge *ie,
{
tree binfo, target;
- if (!flag_devirtualize)
+ if (!flag_devirtualize
+ /* FIXME_LIPO -- LIPO is not yet compatible
+ with ipa devirt. */
+ || flag_dyn_ipa)
return NULL;
/* First try to do lookup via known virtual table pointer value. */
@@ -2735,15 +2775,7 @@ try_make_edge_direct_virtual_call (struct cgraph_edge *ie,
&& DECL_FUNCTION_CODE (target) == BUILT_IN_UNREACHABLE)
|| !possible_polymorphic_call_target_p
(ie, cgraph_get_node (target)))
- {
- if (dump_file)
- fprintf (dump_file,
- "Type inconsident devirtualization: %s/%i->%s\n",
- ie->caller->name (), ie->caller->order,
- IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (target)));
- target = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
- cgraph_get_create_node (target);
- }
+ target = ipa_impossible_devirt_target (ie, target);
return ipa_make_edge_direct_to_target (ie, target);
}
}
@@ -2773,10 +2805,7 @@ try_make_edge_direct_virtual_call (struct cgraph_edge *ie,
if (targets.length () == 1)
target = targets[0]->decl;
else
- {
- target = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
- cgraph_get_create_node (target);
- }
+ target = ipa_impossible_devirt_target (ie, NULL_TREE);
}
else
{
@@ -2791,10 +2820,8 @@ try_make_edge_direct_virtual_call (struct cgraph_edge *ie,
if (target)
{
-#ifdef ENABLE_CHECKING
- gcc_assert (possible_polymorphic_call_target_p
- (ie, cgraph_get_node (target)));
-#endif
+ if (!possible_polymorphic_call_target_p (ie, cgraph_get_node (target)))
+ target = ipa_impossible_devirt_target (ie, target);
return ipa_make_edge_direct_to_target (ie, target);
}
else
@@ -2877,16 +2904,20 @@ update_indirect_edges_after_inlining (struct cgraph_edge *cs,
else if (jfunc->type == IPA_JF_PASS_THROUGH
&& ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
{
- if (ici->agg_contents
- && !ipa_get_jf_pass_through_agg_preserved (jfunc))
+ if ((ici->agg_contents
+ && !ipa_get_jf_pass_through_agg_preserved (jfunc))
+ || (ici->polymorphic
+ && !ipa_get_jf_pass_through_type_preserved (jfunc)))
ici->param_index = -1;
else
ici->param_index = ipa_get_jf_pass_through_formal_id (jfunc);
}
else if (jfunc->type == IPA_JF_ANCESTOR)
{
- if (ici->agg_contents
- && !ipa_get_jf_ancestor_agg_preserved (jfunc))
+ if ((ici->agg_contents
+ && !ipa_get_jf_ancestor_agg_preserved (jfunc))
+ || (ici->polymorphic
+ && !ipa_get_jf_ancestor_type_preserved (jfunc)))
ici->param_index = -1;
else
{
@@ -3650,6 +3681,7 @@ ipa_modify_formal_parameters (tree fndecl, ipa_parm_adjustment_vec adjustments)
TREE_TYPE (fndecl) = new_type;
DECL_VIRTUAL_P (fndecl) = 0;
+ DECL_LANG_SPECIFIC (fndecl) = NULL;
otypes.release ();
oparms.release ();
}
diff --git a/gcc-4.9/gcc/ipa-prop.h b/gcc-4.9/gcc/ipa-prop.h
index 8fdd92c14..70185b2f4 100644
--- a/gcc-4.9/gcc/ipa-prop.h
+++ b/gcc-4.9/gcc/ipa-prop.h
@@ -585,6 +585,7 @@ tree ipa_get_indirect_edge_target (struct cgraph_edge *ie,
struct cgraph_edge *ipa_make_edge_direct_to_target (struct cgraph_edge *, tree);
tree ipa_binfo_from_known_type_jfunc (struct ipa_jump_func *);
tree ipa_intraprocedural_devirtualization (gimple);
+tree ipa_impossible_devirt_target (struct cgraph_edge *, tree);
/* Functions related to both. */
void ipa_analyze_node (struct cgraph_node *);
diff --git a/gcc-4.9/gcc/ipa-pure-const.c b/gcc-4.9/gcc/ipa-pure-const.c
index 7d3588099..948665e4a 100644
--- a/gcc-4.9/gcc/ipa-pure-const.c
+++ b/gcc-4.9/gcc/ipa-pure-const.c
@@ -1504,6 +1504,12 @@ static bool
gate_pure_const (void)
{
return (flag_ipa_pure_const
+ /* Due to the traverse order difference between profile-use
+ and profile-gen, pure/const analysis result can be different
+ resulting in differnt CFG in the caller (e.g, different VOPS,
+ --> different MEMOP PHI --> different CFG cleanups) function,
+ thus causing profile mismatch problem. */
+ && (!flag_dyn_ipa || cgraph_pre_profiling_inlining_done)
/* Don't bother doing anything if the program has errors. */
&& !seen_error ());
}
diff --git a/gcc-4.9/gcc/ipa-utils.c b/gcc-4.9/gcc/ipa-utils.c
index dccecb16a..e914d8fb7 100644
--- a/gcc-4.9/gcc/ipa-utils.c
+++ b/gcc-4.9/gcc/ipa-utils.c
@@ -38,6 +38,7 @@ along with GCC; see the file COPYING3. If not see
#include "flags.h"
#include "diagnostic.h"
#include "langhooks.h"
+#include "l-ipo.h"
#include "lto-streamer.h"
#include "ipa-inline.h"
@@ -331,6 +332,9 @@ ipa_reverse_postorder (struct cgraph_node **order)
&& !DECL_DISREGARD_INLINE_LIMITS
(cgraph_function_node (edge->callee, NULL)->decl))
node2 = NULL;
+ if (L_IPO_COMP_MODE
+ && cgraph_is_fake_indirect_call_edge (edge))
+ node2 = NULL;
}
for (;ipa_ref_list_referring_iterate (&stack[stack_size].node->ref_list,
stack[stack_size].ref,
diff --git a/gcc-4.9/gcc/ipa-utils.h b/gcc-4.9/gcc/ipa-utils.h
index a2c985a43..4d609096a 100644
--- a/gcc-4.9/gcc/ipa-utils.h
+++ b/gcc-4.9/gcc/ipa-utils.h
@@ -22,6 +22,10 @@ along with GCC; see the file COPYING3. If not see
#define GCC_IPA_UTILS_H
#include "cgraph.h"
+/* Used for parsing attributes of asm code. */
+extern tree memory_identifier_string;
+extern tree get_memory_identifier_string (void);
+
struct ipa_dfs_info {
int dfn_number;
int low_link;
@@ -187,5 +191,3 @@ possible_polymorphic_call_target_p (tree call,
n);
}
#endif /* GCC_IPA_UTILS_H */
-
-
diff --git a/gcc-4.9/gcc/ipa.c b/gcc-4.9/gcc/ipa.c
index 26e9b03b9..5a0b199ff 100644
--- a/gcc-4.9/gcc/ipa.c
+++ b/gcc-4.9/gcc/ipa.c
@@ -25,6 +25,7 @@ along with GCC; see the file COPYING3. If not see
#include "calls.h"
#include "stringpool.h"
#include "cgraph.h"
+#include "toplev.h"
#include "tree-pass.h"
#include "pointer-set.h"
#include "gimple-expr.h"
@@ -32,11 +33,13 @@ along with GCC; see the file COPYING3. If not see
#include "flags.h"
#include "target.h"
#include "tree-iterator.h"
+#include "l-ipo.h"
#include "ipa-utils.h"
#include "ipa-inline.h"
#include "tree-inline.h"
#include "profile.h"
#include "params.h"
+#include "l-ipo.h"
/* Return true when NODE can not be local. Worker for cgraph_local_node_p. */
@@ -138,7 +141,10 @@ process_references (struct ipa_ref_list *list,
symtab_node *node = ref->referred;
if (node->definition && !node->in_other_partition
- && ((!DECL_EXTERNAL (node->decl) || node->alias)
+ && ((!(DECL_EXTERNAL (node->decl)
+ || (is_a <cgraph_node> (node)
+ && cgraph_is_aux_decl_external (dyn_cast<cgraph_node> (node))))
+ || node->alias)
|| (((before_inlining_p
&& (cgraph_state < CGRAPH_STATE_IPA_SSA
|| !lookup_attribute ("always_inline",
@@ -151,6 +157,13 @@ process_references (struct ipa_ref_list *list,
&& ctor_for_folding (node->decl)
!= error_mark_node))))
pointer_set_insert (reachable, node);
+ else if (L_IPO_COMP_MODE
+ && cgraph_pre_profiling_inlining_done
+ && is_a <varpool_node> (node)
+ && ctor_for_folding (real_varpool_node (node->decl)->decl)
+ != error_mark_node)
+ pointer_set_insert (reachable, node);
+
enqueue_node (node, first, reachable);
}
}
@@ -183,6 +196,9 @@ walk_polymorphic_call_targets (pointer_set_t *reachable_call_targets,
{
struct cgraph_node *n = targets[i];
+ if (L_IPO_COMP_MODE && cgraph_pre_profiling_inlining_done)
+ n = cgraph_lipo_get_resolved_node (n->decl);
+
/* Do not bother to mark virtual methods in anonymous namespace;
either we will find use of virtual table defining it, or it is
unused. */
@@ -303,6 +319,14 @@ symtab_remove_unreachable_nodes (bool before_inlining_p, FILE *file)
struct pointer_set_t *body_needed_for_clonning = pointer_set_create ();
struct pointer_set_t *reachable_call_targets = pointer_set_create ();
+ /* In LIPO mode, do not remove functions until after global linking
+ is performed. Otherwise functions needed for cross module inlining
+ may get eliminated. Global linking will be done just before tree
+ profiling. */
+ if (L_IPO_COMP_MODE
+ && !cgraph_pre_profiling_inlining_done)
+ return false;
+
timevar_push (TV_IPA_UNREACHABLE);
#ifdef ENABLE_CHECKING
verify_symtab ();
@@ -412,10 +436,22 @@ symtab_remove_unreachable_nodes (bool before_inlining_p, FILE *file)
if (e->callee->definition
&& !e->callee->in_other_partition
&& (!e->inline_failed
- || !DECL_EXTERNAL (e->callee->decl)
+ || !(DECL_EXTERNAL (e->callee->decl)
+ || cgraph_is_aux_decl_external (e->callee))
|| e->callee->alias
|| before_inlining_p))
- pointer_set_insert (reachable, e->callee);
+ {
+ /* Be sure that we will not optimize out alias target
+ body. */
+ if (DECL_EXTERNAL (e->callee->decl)
+ && e->callee->alias
+ && before_inlining_p)
+ {
+ pointer_set_insert (reachable,
+ cgraph_function_node (e->callee));
+ }
+ pointer_set_insert (reachable, e->callee);
+ }
enqueue_node (e->callee, &first, reachable);
}
@@ -505,8 +541,14 @@ symtab_remove_unreachable_nodes (bool before_inlining_p, FILE *file)
DECL_ATTRIBUTES (node->decl));
if (!node->in_other_partition)
node->local.local = false;
+#ifdef FIXME_LIPO
+error " Check the following code "
+#endif
+ if (!cgraph_is_aux_decl_external (node)) {
cgraph_node_remove_callees (node);
+ symtab_remove_from_same_comdat_group (node);
ipa_remove_all_references (&node->ref_list);
+ }
changed = true;
}
}
@@ -523,6 +565,20 @@ symtab_remove_unreachable_nodes (bool before_inlining_p, FILE *file)
if (node->global.inlined_to
&& !node->callers)
{
+ /* Clean up dangling references from callees as well.
+ TODO -- should be done recursively. */
+ if (L_IPO_COMP_MODE)
+ {
+ struct cgraph_edge *e;
+ for (e = node->callees; e; e = e->next_callee)
+ {
+ struct cgraph_node *callee_node;
+
+ callee_node = e->callee;
+ if (callee_node->global.inlined_to)
+ callee_node->global.inlined_to = node;
+ }
+ }
gcc_assert (node->clones);
node->global.inlined_to = NULL;
update_inlined_to_pointer (node, node);
@@ -532,7 +588,10 @@ symtab_remove_unreachable_nodes (bool before_inlining_p, FILE *file)
/* Remove unreachable variables. */
if (file)
- fprintf (file, "\nReclaiming variables:");
+ fprintf (file, "\n");
+
+ if (file)
+ fprintf (file, "Reclaiming variables:");
for (vnode = varpool_first_variable (); vnode; vnode = vnext)
{
vnext = varpool_next_variable (vnode);
@@ -561,6 +620,8 @@ symtab_remove_unreachable_nodes (bool before_inlining_p, FILE *file)
vnode->analyzed = false;
vnode->aux = NULL;
+ symtab_remove_from_same_comdat_group (vnode);
+
/* Keep body if it may be useful for constant folding. */
if ((init = ctor_for_folding (vnode->decl)) == error_mark_node)
varpool_remove_initializer (vnode);
@@ -697,6 +758,8 @@ address_taken_from_non_vtable_p (symtab_node *node)
static bool
comdat_can_be_unshared_p_1 (symtab_node *node)
{
+ if (!node->externally_visible)
+ return true;
/* When address is taken, we don't know if equality comparison won't
break eventually. Exception are virutal functions, C++
constructors/destructors and vtables, where this is not possible by
@@ -1155,6 +1218,10 @@ function_and_variable_visibility (bool whole_program)
symtab_dissolve_same_comdat_group_list (vnode);
vnode->resolution = LDPR_PREVAILING_DEF_IRONLY;
}
+ /* Static variables defined in auxiliary modules are externalized to
+ allow cross module inlining. */
+ gcc_assert (TREE_STATIC (vnode->decl)
+ || varpool_is_auxiliary (vnode));
}
if (dump_file)
diff --git a/gcc-4.9/gcc/ira-costs.c b/gcc-4.9/gcc/ira-costs.c
index 648806bc1..43006f7e8 100644
--- a/gcc-4.9/gcc/ira-costs.c
+++ b/gcc-4.9/gcc/ira-costs.c
@@ -407,6 +407,8 @@ record_reg_classes (int n_alts, int n_ops, rtx *ops,
int alt;
int i, j, k;
int insn_allows_mem[MAX_RECOG_OPERANDS];
+ move_table *move_in_cost, *move_out_cost;
+ short (*mem_cost)[2];
for (i = 0; i < n_ops; i++)
insn_allows_mem[i] = 0;
@@ -517,41 +519,78 @@ record_reg_classes (int n_alts, int n_ops, rtx *ops,
bool in_p = recog_data.operand_type[i] != OP_OUT;
bool out_p = recog_data.operand_type[i] != OP_IN;
enum reg_class op_class = classes[i];
- move_table *move_in_cost, *move_out_cost;
ira_init_register_move_cost_if_necessary (mode);
if (! in_p)
{
ira_assert (out_p);
- move_out_cost = ira_may_move_out_cost[mode];
- for (k = cost_classes_ptr->num - 1; k >= 0; k--)
+ if (op_class == NO_REGS)
{
- rclass = cost_classes[k];
- pp_costs[k]
- = move_out_cost[op_class][rclass] * frequency;
+ mem_cost = ira_memory_move_cost[mode];
+ for (k = cost_classes_ptr->num - 1; k >= 0; k--)
+ {
+ rclass = cost_classes[k];
+ pp_costs[k] = mem_cost[rclass][0] * frequency;
+ }
+ }
+ else
+ {
+ move_out_cost = ira_may_move_out_cost[mode];
+ for (k = cost_classes_ptr->num - 1; k >= 0; k--)
+ {
+ rclass = cost_classes[k];
+ pp_costs[k]
+ = move_out_cost[op_class][rclass] * frequency;
+ }
}
}
else if (! out_p)
{
ira_assert (in_p);
- move_in_cost = ira_may_move_in_cost[mode];
- for (k = cost_classes_ptr->num - 1; k >= 0; k--)
+ if (op_class == NO_REGS)
{
- rclass = cost_classes[k];
- pp_costs[k]
- = move_in_cost[rclass][op_class] * frequency;
+ mem_cost = ira_memory_move_cost[mode];
+ for (k = cost_classes_ptr->num - 1; k >= 0; k--)
+ {
+ rclass = cost_classes[k];
+ pp_costs[k] = mem_cost[rclass][1] * frequency;
+ }
+ }
+ else
+ {
+ move_in_cost = ira_may_move_in_cost[mode];
+ for (k = cost_classes_ptr->num - 1; k >= 0; k--)
+ {
+ rclass = cost_classes[k];
+ pp_costs[k]
+ = move_in_cost[rclass][op_class] * frequency;
+ }
}
}
else
{
- move_in_cost = ira_may_move_in_cost[mode];
- move_out_cost = ira_may_move_out_cost[mode];
- for (k = cost_classes_ptr->num - 1; k >= 0; k--)
+ if (op_class == NO_REGS)
{
- rclass = cost_classes[k];
- pp_costs[k] = ((move_in_cost[rclass][op_class]
- + move_out_cost[op_class][rclass])
- * frequency);
+ mem_cost = ira_memory_move_cost[mode];
+ for (k = cost_classes_ptr->num - 1; k >= 0; k--)
+ {
+ rclass = cost_classes[k];
+ pp_costs[k] = ((mem_cost[rclass][0]
+ + mem_cost[rclass][1])
+ * frequency);
+ }
+ }
+ else
+ {
+ move_in_cost = ira_may_move_in_cost[mode];
+ move_out_cost = ira_may_move_out_cost[mode];
+ for (k = cost_classes_ptr->num - 1; k >= 0; k--)
+ {
+ rclass = cost_classes[k];
+ pp_costs[k] = ((move_in_cost[rclass][op_class]
+ + move_out_cost[op_class][rclass])
+ * frequency);
+ }
}
}
@@ -762,10 +801,11 @@ record_reg_classes (int n_alts, int n_ops, rtx *ops,
into that class. */
if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
{
- if (classes[i] == NO_REGS)
+ if (classes[i] == NO_REGS && ! allows_mem[i])
{
/* We must always fail if the operand is a REG, but
- we did not find a suitable class.
+ we did not find a suitable class and memory is
+ not allowed.
Otherwise we may perform an uninitialized read
from this_op_costs after the `continue' statement
@@ -782,51 +822,94 @@ record_reg_classes (int n_alts, int n_ops, rtx *ops,
bool in_p = recog_data.operand_type[i] != OP_OUT;
bool out_p = recog_data.operand_type[i] != OP_IN;
enum reg_class op_class = classes[i];
- move_table *move_in_cost, *move_out_cost;
ira_init_register_move_cost_if_necessary (mode);
if (! in_p)
{
ira_assert (out_p);
- move_out_cost = ira_may_move_out_cost[mode];
- for (k = cost_classes_ptr->num - 1; k >= 0; k--)
+ if (op_class == NO_REGS)
{
- rclass = cost_classes[k];
- pp_costs[k]
- = move_out_cost[op_class][rclass] * frequency;
+ mem_cost = ira_memory_move_cost[mode];
+ for (k = cost_classes_ptr->num - 1; k >= 0; k--)
+ {
+ rclass = cost_classes[k];
+ pp_costs[k] = mem_cost[rclass][0] * frequency;
+ }
+ }
+ else
+ {
+ move_out_cost = ira_may_move_out_cost[mode];
+ for (k = cost_classes_ptr->num - 1; k >= 0; k--)
+ {
+ rclass = cost_classes[k];
+ pp_costs[k]
+ = move_out_cost[op_class][rclass] * frequency;
+ }
}
}
else if (! out_p)
{
ira_assert (in_p);
- move_in_cost = ira_may_move_in_cost[mode];
- for (k = cost_classes_ptr->num - 1; k >= 0; k--)
+ if (op_class == NO_REGS)
+ {
+ mem_cost = ira_memory_move_cost[mode];
+ for (k = cost_classes_ptr->num - 1; k >= 0; k--)
+ {
+ rclass = cost_classes[k];
+ pp_costs[k] = mem_cost[rclass][1] * frequency;
+ }
+ }
+ else
{
- rclass = cost_classes[k];
- pp_costs[k]
- = move_in_cost[rclass][op_class] * frequency;
+ move_in_cost = ira_may_move_in_cost[mode];
+ for (k = cost_classes_ptr->num - 1; k >= 0; k--)
+ {
+ rclass = cost_classes[k];
+ pp_costs[k]
+ = move_in_cost[rclass][op_class] * frequency;
+ }
}
}
else
{
- move_in_cost = ira_may_move_in_cost[mode];
- move_out_cost = ira_may_move_out_cost[mode];
- for (k = cost_classes_ptr->num - 1; k >= 0; k--)
+ if (op_class == NO_REGS)
{
- rclass = cost_classes[k];
- pp_costs[k] = ((move_in_cost[rclass][op_class]
- + move_out_cost[op_class][rclass])
- * frequency);
+ mem_cost = ira_memory_move_cost[mode];
+ for (k = cost_classes_ptr->num - 1; k >= 0; k--)
+ {
+ rclass = cost_classes[k];
+ pp_costs[k] = ((mem_cost[rclass][0]
+ + mem_cost[rclass][1])
+ * frequency);
+ }
+ }
+ else
+ {
+ move_in_cost = ira_may_move_in_cost[mode];
+ move_out_cost = ira_may_move_out_cost[mode];
+ for (k = cost_classes_ptr->num - 1; k >= 0; k--)
+ {
+ rclass = cost_classes[k];
+ pp_costs[k] = ((move_in_cost[rclass][op_class]
+ + move_out_cost[op_class][rclass])
+ * frequency);
+ }
}
}
- /* If the alternative actually allows memory, make
- things a bit cheaper since we won't need an extra
- insn to load it. */
- pp->mem_cost
- = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
- + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
- - allows_mem[i]) * frequency;
+ if (op_class == NO_REGS)
+ /* Although we don't need insn to reload from
+ memory, still accessing memory is usually more
+ expensive than a register. */
+ pp->mem_cost = frequency;
+ else
+ /* If the alternative actually allows memory, make
+ things a bit cheaper since we won't need an
+ extra insn to load it. */
+ pp->mem_cost
+ = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
+ + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
+ - allows_mem[i]) * frequency;
/* If we have assigned a class to this allocno in
our first pass, add a cost to this alternative
corresponding to what we would add if this
@@ -836,15 +919,28 @@ record_reg_classes (int n_alts, int n_ops, rtx *ops,
enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
if (pref_class == NO_REGS)
+ {
+ if (op_class != NO_REGS)
+ alt_cost
+ += ((out_p
+ ? ira_memory_move_cost[mode][op_class][0]
+ : 0)
+ + (in_p
+ ? ira_memory_move_cost[mode][op_class][1]
+ : 0));
+ }
+ else if (op_class == NO_REGS)
alt_cost
+= ((out_p
- ? ira_memory_move_cost[mode][op_class][0] : 0)
+ ? ira_memory_move_cost[mode][pref_class][1]
+ : 0)
+ (in_p
- ? ira_memory_move_cost[mode][op_class][1]
+ ? ira_memory_move_cost[mode][pref_class][0]
: 0));
else if (ira_reg_class_intersect[pref_class][op_class]
== NO_REGS)
- alt_cost += ira_register_move_cost[mode][pref_class][op_class];
+ alt_cost += (ira_register_move_cost
+ [mode][pref_class][op_class]);
}
}
}
diff --git a/gcc-4.9/gcc/ira-int.h b/gcc-4.9/gcc/ira-int.h
index e36bb9217..19d86019a 100644
--- a/gcc-4.9/gcc/ira-int.h
+++ b/gcc-4.9/gcc/ira-int.h
@@ -42,9 +42,8 @@ along with GCC; see the file COPYING3. If not see
profile driven feedback is available and the function is never
executed, frequency is always equivalent. Otherwise rescale the
edge frequency. */
-#define REG_FREQ_FROM_EDGE_FREQ(freq) \
- (optimize_size || (flag_branch_probabilities \
- && !ENTRY_BLOCK_PTR_FOR_FN (cfun)->count) \
+#define REG_FREQ_FROM_EDGE_FREQ(freq) \
+ (optimize_function_for_size_p (cfun) \
? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
diff --git a/gcc-4.9/gcc/java/Make-lang.in b/gcc-4.9/gcc/java/Make-lang.in
index d23a39f91..62a902670 100644
--- a/gcc-4.9/gcc/java/Make-lang.in
+++ b/gcc-4.9/gcc/java/Make-lang.in
@@ -83,7 +83,7 @@ JAVA_OBJS = java/class.o java/decl.o java/expr.o \
JCFDUMP_OBJS = java/jcf-dump.o java/jcf-io.o java/jcf-depend.o java/jcf-path.o \
java/win32-host.o java/zextract.o ggc-none.o hash-table.o
-JVGENMAIN_OBJS = java/jvgenmain.o java/mangle_name.o
+JVGENMAIN_OBJS = java/jvgenmain.o java/mangle_name.o vec.o ggc-none.o
java_OBJS = $(sort $(JAVA_OBJS) $(JCFDUMP_OBJS) $(JVGENMAIN_OBJS)) java/jvspec.o
diff --git a/gcc-4.9/gcc/l-ipo.c b/gcc-4.9/gcc/l-ipo.c
new file mode 100644
index 000000000..843ad557d
--- /dev/null
+++ b/gcc-4.9/gcc/l-ipo.c
@@ -0,0 +1,2394 @@
+/* Copyright (C) 2009. Free Software Foundation, Inc.
+ Contributed by Xinliang David Li (davidxl@google.com) and
+ Raksit Ashok (raksit@google.com)
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tree.h"
+#include "is-a.h"
+#include "predict.h"
+#include "function.h"
+#include "basic-block.h"
+#include "stor-layout.h"
+#include "pointer-set.h"
+#include "stringpool.h"
+#include "c-family/c-common.h"
+#include "toplev.h"
+#include "langhooks.h"
+#include "langhooks-def.h"
+#include "diagnostic.h"
+#include "debug.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "gimple-expr.h"
+#include "gimple.h"
+#include "gimple-iterator.h"
+#include "cgraph.h"
+#include "l-ipo.h"
+#include "coverage.h"
+#include "gcov-io.h"
+#include "timevar.h"
+#include "vec.h"
+#include "params.h"
+
+unsigned ggc_total_memory; /* in KB */
+
+struct GTY(()) saved_module_scope
+{
+ vec<tree, va_gc> *module_decls;
+ unsigned module_id;
+};
+
+static GTY (()) struct saved_module_scope *current_module_scope;
+static GTY ((param_is (saved_module_scope))) htab_t saved_module_scope_map;
+static int primary_module_last_funcdef_no = 0;
+/* Function id space for each module are qualified by the module id. After all the files
+ are parsed, we need to reset the funcdef_no to the max value from all module so that
+ the function clones do not assigned with ids colliding with some other orignal function
+ in the same module. */
+static int max_funcdef_no = 0;
+static location_t primary_module_last_loc;
+/* Primary module pending templates. */
+/* Referenced asm ids in primary module. */
+static GTY (()) vec<tree, va_gc> *referenced_asm_ids = NULL;
+bool parser_parsing_start = false;
+/* Nonzero if we're done parsing and into end-of-file activities. */
+int at_eof;
+
+static int aggr_has_equiv_id (tree t1, tree t2);
+
+/* Module scope hash function. */
+
+static hashval_t
+htab_module_scope_hash (const void *ent)
+{
+ const struct saved_module_scope *const entry
+ = (const struct saved_module_scope *) ent;
+ return (hashval_t) entry->module_id;
+}
+
+/* Module scope equality function. */
+
+static int
+htab_module_scope_eq (const void *ent1, const void *ent2)
+{
+ const struct saved_module_scope *const entry1
+ = (const struct saved_module_scope *) ent1;
+ const struct saved_module_scope *const entry2
+ = (const struct saved_module_scope *) ent2;
+
+ return entry1->module_id == entry2->module_id;
+}
+
+/* Returns the module scope given a module id MOD_ID. */
+
+static struct saved_module_scope *
+get_module_scope (unsigned mod_id)
+{
+ struct saved_module_scope **slot, key, *module_scope;
+
+ gcc_assert (mod_id);
+
+ if (saved_module_scope_map == NULL)
+ saved_module_scope_map = htab_create_ggc (10, htab_module_scope_hash,
+ htab_module_scope_eq, NULL);
+ key.module_id = mod_id;
+ slot = (struct saved_module_scope **)
+ htab_find_slot (saved_module_scope_map, &key, INSERT);
+ module_scope = *slot;
+ if (!module_scope)
+ {
+ module_scope = ggc_alloc_cleared_saved_module_scope ();
+ module_scope->module_id = mod_id;
+ *slot = module_scope;
+ }
+ return module_scope;
+}
+
+/* Allocate memory for struct lang_decl for tree T. */
+
+static struct lang_decl *
+alloc_lang_decl (tree t)
+{
+ size_t size;
+ size = lang_hooks.l_ipo.get_lang_decl_size (t);
+ return ggc_alloc_cleared_lang_decl (size);
+}
+
+/* Return a cloned copy of tree SRC. */
+
+tree
+lipo_save_decl (tree src)
+{
+ tree saved = copy_node (src);
+ enum tree_code tc = TREE_CODE (src);
+ if (TREE_CODE_CLASS (tc) == tcc_declaration)
+ {
+ struct lang_decl *ls = NULL;
+ struct function *func = NULL;
+ DECL_CONTEXT (saved) = DECL_CONTEXT (src);
+ if (DECL_LANG_SPECIFIC (src))
+ {
+ ls = alloc_lang_decl (src);
+ memcpy (ls, DECL_LANG_SPECIFIC (src),
+ lang_hooks.l_ipo.get_lang_decl_size (src));
+ }
+ DECL_LANG_SPECIFIC (saved) = ls;
+ if (tc == FUNCTION_DECL && DECL_STRUCT_FUNCTION (src))
+ {
+ func = ggc_alloc_cleared_function ();
+ *func = *(DECL_STRUCT_FUNCTION (src));
+ DECL_STRUCT_FUNCTION (saved) = func;
+ }
+ }
+ else
+ {
+ gcc_assert (TREE_CODE_CLASS (tc) == tcc_type &&
+ TYPE_MAIN_VARIANT (src) == src);
+ TYPE_CONTEXT (saved) = TYPE_CONTEXT (src);
+ lang_hooks.l_ipo.dup_lang_type (src, saved);
+ }
+
+ return saved;
+}
+
+/* Copy tree SAVED to tree DEST. */
+
+void
+lipo_restore_decl (tree dest, tree saved)
+{
+ enum tree_code tc;
+ unsigned old_uid;
+ struct lang_decl *oldls;
+
+ tc = TREE_CODE (saved);
+ if (TREE_CODE_CLASS (tc) == tcc_declaration)
+ {
+ struct function *oldfunc = NULL;
+ old_uid = DECL_UID (dest);
+ oldls = DECL_LANG_SPECIFIC (dest);
+ oldfunc
+ = (tc == FUNCTION_DECL ? DECL_STRUCT_FUNCTION (dest) : NULL);
+
+ memcpy ((char *) dest + sizeof (struct tree_common),
+ (char *) saved + sizeof (struct tree_common),
+ sizeof (struct tree_decl_common) - sizeof (struct tree_common));
+
+ if (tc == FUNCTION_DECL)
+ memcpy ((char *) dest + sizeof (struct tree_decl_common),
+ (char *) saved + sizeof (struct tree_decl_common),
+ sizeof (struct tree_function_decl)
+ - sizeof (struct tree_decl_common));
+
+ DECL_UID (dest) = old_uid;
+ if (DECL_LANG_SPECIFIC (saved))
+ {
+ if (!oldls)
+ oldls = alloc_lang_decl (dest);
+ memcpy (oldls, DECL_LANG_SPECIFIC (saved),
+ lang_hooks.l_ipo.get_lang_decl_size (saved));
+ DECL_LANG_SPECIFIC (dest) = oldls;
+ }
+ else
+ DECL_LANG_SPECIFIC (dest) = NULL;
+
+ if (tc == FUNCTION_DECL)
+ {
+ if (DECL_STRUCT_FUNCTION (saved))
+ {
+ if (!oldfunc)
+ oldfunc = ggc_alloc_cleared_function ();
+ *oldfunc = *(DECL_STRUCT_FUNCTION (saved));
+ DECL_STRUCT_FUNCTION (dest) = oldfunc;
+ }
+ else
+ DECL_STRUCT_FUNCTION (dest) = NULL;
+ }
+ }
+ else
+ {
+ gcc_assert (TREE_CODE_CLASS (tc) == tcc_type);
+ lang_hooks.l_ipo.copy_lang_type (saved, dest);
+ }
+}
+
+
+/* Return the name for tree TD which is either a decl or type. */
+
+tree
+get_type_or_decl_name (tree td)
+{
+ tree id;
+
+ if (DECL_P (td))
+ id = DECL_NAME (td);
+ else
+ {
+ id = TYPE_NAME (td);
+ if (DECL_P (id))
+ id = DECL_NAME (id);
+ }
+ return id;
+}
+
+/* For a DECL (a type or a decl) in SCOPE, check to see if it is in
+ global or namespace scope. If yes, add it to the current module scope. */
+
+void
+add_decl_to_current_module_scope (tree decl, void *scope)
+{
+ struct saved_module_scope *module_scope;
+ tree id;
+
+ if (!flag_dyn_ipa)
+ return;
+
+ if (!parser_parsing_start)
+ {
+ /* The source file may contains only global variable declations
+ -- there is no module grouping data associated with it, so
+ neither primary_module_id nor current_module_id is set. */
+ lang_hooks.l_ipo.add_built_in_decl (decl);
+ return;
+ }
+
+ if (!L_IPO_COMP_MODE)
+ return;
+
+ if (!lang_hooks.l_ipo.has_global_name (decl, scope))
+ return;
+
+ /* Unlike C++ where names are attached to type decls, for C, the type name
+ is identifier node. Thus we need to track type names as well. */
+ id = get_type_or_decl_name (decl);
+ if (!id)
+ return;
+
+ module_scope = current_module_scope;
+ gcc_assert (module_scope && module_scope->module_id == current_module_id);
+ vec_safe_push (module_scope->module_decls, decl);
+}
+
+/* Clear name bindings for all decls created in MODULE_SCOPE. */
+
+static void
+clear_module_scope_bindings (struct saved_module_scope *module_scope)
+{
+ size_t i;
+ tree decl;
+
+ for (i = 0;
+ vec_safe_iterate (module_scope->module_decls, i, &decl);
+ ++i)
+ {
+ lang_hooks.l_ipo.clear_global_name_bindings (
+ get_type_or_decl_name (decl));
+ /* Now force creating assembly name. */
+ if (VAR_OR_FUNCTION_DECL_P (decl))
+ {
+ tree assembler_name;
+
+ if (HAS_DECL_ASSEMBLER_NAME_P (decl)
+ && DECL_ASSEMBLER_NAME_SET_P (decl))
+ {
+ assembler_name = DECL_ASSEMBLER_NAME (decl);
+ lang_hooks.l_ipo.clear_global_name_bindings (assembler_name);
+ }
+ }
+ }
+}
+
+/* The referenced attribute of a decl is not associated with the
+ decl itself but with the assembler name. Remember the referenced
+ bits before clearing them. */
+
+static void
+save_assembler_name_reference_bit (void)
+{
+ varpool_get_referenced_asm_ids (&referenced_asm_ids);
+}
+
+/* Clear the reference bits for assembler names before closing the
+ module scope. */
+
+static void
+clear_assembler_name_reference_bit (void)
+{
+ varpool_clear_asm_id_reference_bit ();
+}
+
+/* Restore the reference bits for assembler names. */
+
+static void
+restore_assembler_name_reference_bit (void)
+{
+ size_t i;
+ tree nm;
+ for (i = 0;
+ vec_safe_iterate (referenced_asm_ids, i, &nm);
+ ++i)
+ TREE_SYMBOL_REFERENCED (nm) = 1;
+}
+
+/* Set up the module scope before the parsing of the
+ associated source file. */
+
+void
+push_module_scope (void)
+{
+ struct saved_module_scope *prev_module_scope;
+
+ if (!flag_dyn_ipa || !L_IPO_COMP_MODE)
+ {
+ parser_parsing_start = true;
+ return;
+ }
+
+ prev_module_scope = current_module_scope;
+ if (L_IPO_IS_PRIMARY_MODULE)
+ {
+ gcc_assert (!prev_module_scope);
+ lang_hooks.l_ipo.save_built_in_decl_pre_parsing ();
+ parser_parsing_start = true;
+ }
+
+ gcc_assert (current_module_id);
+
+ /* Set up the module scope. */
+ current_module_scope = get_module_scope (current_module_id);
+ return;
+}
+
+/* Restore the shared decls to their post parsing states. */
+
+static void
+restore_post_parsing_states (void)
+{
+ current_module_id = primary_module_id;
+ current_module_scope = get_module_scope (primary_module_id);
+ set_funcdef_no (max_funcdef_no);
+ input_location = primary_module_last_loc;
+
+ restore_assembler_name_reference_bit ();
+ lang_hooks.l_ipo.restore_built_in_decl_post_module_parsing ();
+}
+
+/* Pop the current module scope (by clearing name bindings etc.)
+ and prepare for parsing of the next module. In particular,
+ built-in decls need to be restored to the state before file
+ parsing starts. */
+
+void
+pop_module_scope (void)
+{
+ bool is_last = false;
+ int last_funcdef_no;
+
+ if (!flag_dyn_ipa || !L_IPO_COMP_MODE)
+ return;
+
+ gcc_assert (current_module_id && current_module_scope);
+
+ if (L_IPO_IS_PRIMARY_MODULE)
+ primary_module_last_loc = input_location;
+
+ at_eof = 1;
+ cgraph_process_same_body_aliases ();
+ lang_hooks.l_ipo.process_pending_decls (input_location);
+ lang_hooks.l_ipo.clear_deferred_fns ();
+ at_eof = 0;
+
+ is_last = is_last_module (current_module_id);
+
+ last_funcdef_no = get_last_funcdef_no ();
+ if (last_funcdef_no > max_funcdef_no)
+ max_funcdef_no = last_funcdef_no;
+
+ lang_hooks.l_ipo.save_built_in_decl_post_module_parsing ();
+ /* Save primary module state if needed (when module group
+ size > 1) */
+ if (L_IPO_IS_PRIMARY_MODULE && num_in_fnames > 1)
+ {
+ save_assembler_name_reference_bit ();
+ primary_module_last_funcdef_no = last_funcdef_no;
+ }
+
+ if (!is_last)
+ {
+ /* More aux modules are anticipated, clear
+ the parsing state. */
+ gcc_assert (num_in_fnames > 1);
+ clear_assembler_name_reference_bit ();
+ clear_module_scope_bindings (current_module_scope);
+ /* Restore symtab bindings for builtins */
+ lang_hooks.l_ipo.restore_built_in_decl_pre_parsing ();
+ /* The map can not be cleared because the names of operator
+ decls are used to store the information about the conversion
+ target type. This forces the coversion operator ids to be
+ incremented across different modules, and assember id must
+ be used for checksum computation. */
+ /* cp_clear_conv_type_map (); */
+ }
+ else if (num_in_fnames > 1)
+ {
+ clear_module_scope_bindings (current_module_scope);
+ restore_post_parsing_states ();
+ }
+ else
+ gcc_assert (L_IPO_IS_PRIMARY_MODULE && num_in_fnames == 1);
+}
+
+
+/* Type merging support for LIPO */
+
+struct type_ec
+{
+ tree rep_type;
+ vec<tree> *eq_types;
+};
+
+static vec<tree> *pending_types = NULL;
+static struct pointer_set_t *type_set = NULL;
+static htab_t type_hash_tab = NULL;
+
+/* Hash function for the type table. */
+
+static hashval_t
+type_hash_hash (const void *ent)
+{
+ tree type, name;
+ const struct type_ec *const entry
+ = (const struct type_ec *) ent;
+
+ type = entry->rep_type;
+ name = TYPE_NAME (type);
+ if (DECL_P (name))
+ name = DECL_NAME (name);
+
+ return htab_hash_string (IDENTIFIER_POINTER (name));
+}
+
+/* Equality function for type hash table. */
+
+static int
+type_hash_eq (const void *ent1, const void *ent2)
+{
+ tree type1, type2;
+ const struct type_ec *const entry1
+ = (const struct type_ec *) ent1;
+ const struct type_ec *const entry2
+ = (const struct type_ec *) ent2;
+
+ type1 = entry1->rep_type;
+ type2 = entry2->rep_type;
+
+ return aggr_has_equiv_id (type1, type2);
+}
+
+/* Function to delete type hash entries. */
+
+static void
+type_hash_del (void *ent)
+{
+ struct type_ec *const entry
+ = (struct type_ec *) ent;
+
+ vec_free (entry->eq_types);
+ free (entry);
+}
+
+struct GTY(()) type_ent
+{
+ tree type;
+ unsigned eq_id;
+};
+
+static GTY ((param_is (type_ent))) htab_t l_ipo_type_tab = 0;
+static unsigned l_ipo_eq_id = 0;
+
+/* Address hash function for struct type_ent. */
+
+static hashval_t
+type_addr_hash (const void *ent)
+{
+ const struct type_ent *const entry
+ = (const struct type_ent *) ent;
+ return (hashval_t) (uintptr_t) entry->type;
+}
+
+/* Address equality function for type_ent. */
+
+static int
+type_addr_eq (const void *ent1, const void *ent2)
+{
+ const struct type_ent *const entry1
+ = (const struct type_ent *) ent1;
+ const struct type_ent *const entry2
+ = (const struct type_ent *) ent2;
+ return entry1->type == entry2->type;
+}
+
+/* Returns 1 if NS1 and NS2 refer to the same namespace. */
+
+static int
+is_ns_equiv (tree ns1, tree ns2)
+{
+ tree n1, n2;
+ if (ns1 == NULL && ns2 == NULL)
+ return 1;
+
+ if ((!ns1 && ns2) || (ns1 && !ns2))
+ return 0;
+
+ gcc_assert (DECL_P (ns1) && DECL_P (ns2));
+
+ if (!is_ns_equiv (DECL_CONTEXT (ns1),
+ DECL_CONTEXT (ns2)))
+ return 0;
+
+ n1 = DECL_NAME (ns1);
+ n2 = DECL_NAME (ns2);
+ if (n1 == 0 && n2 == 0)
+ /* Conservative (which can happen when two NSes are from
+ different modules but with same UID) quivalence is allowed. */
+ return DECL_UID (ns1) == DECL_UID (ns2);
+ if (!n1 || !n2)
+ return 0;
+
+ if (!strcmp (IDENTIFIER_POINTER (n1),
+ IDENTIFIER_POINTER (n2)))
+ return 1;
+
+ return 0;
+}
+
+/* Returns 1 if aggregate type T1 and T2 have equivalent qualified
+ ids. */
+
+static int
+aggr_has_equiv_id (tree t1, tree t2)
+{
+ int ctx_match;
+ tree ctx1, ctx2, tn1, tn2;
+ gcc_assert (TYPE_P (t1) && TYPE_P (t2));
+
+ ctx1 = TYPE_CONTEXT (t1);
+ ctx2 = TYPE_CONTEXT (t2);
+
+ if ((ctx1 && !ctx2) || (!ctx1 && ctx2))
+ return 0;
+
+ if (ctx1 && TREE_CODE (ctx1) != TREE_CODE (ctx2))
+ return 0;
+
+ if (ctx1 && (TREE_CODE (ctx1) == FUNCTION_DECL
+ || TREE_CODE (ctx1) == BLOCK))
+ return 0;
+
+ if (!ctx1)
+ {
+ ctx_match = 1;
+ gcc_assert (!ctx2);
+ }
+ else if (TREE_CODE (ctx1) == NAMESPACE_DECL)
+ ctx_match = is_ns_equiv (ctx1, ctx2);
+ else if (TYPE_P (ctx1))
+ ctx_match = aggr_has_equiv_id (ctx1, ctx2);
+ else
+ {
+ gcc_assert (TREE_CODE (ctx1) == TRANSLATION_UNIT_DECL);
+ ctx_match = 1;
+ }
+
+ if (!ctx_match)
+ return 0;
+
+ /* Now compare the name of the types. */
+ tn1 = TYPE_NAME (t1);
+ tn2 = TYPE_NAME (t2);
+ if ((tn1 && !tn2) || !(tn1 && tn2))
+ return 0;
+ else if (!tn1 && !tn2)
+ /* Be conservative on unamed types. */
+ return 1;
+
+ if (DECL_P (tn1))
+ tn1 = DECL_NAME (tn1);
+ if (DECL_P (tn2))
+ tn2 = DECL_NAME (tn2);
+ if (strcmp (IDENTIFIER_POINTER (tn1),
+ IDENTIFIER_POINTER (tn2)))
+ return 0;
+
+ return lang_hooks.l_ipo.cmp_lang_type (t1, t2);
+}
+
+/* Return the canonical type of the type's main variant. */
+static inline tree
+get_norm_type (const_tree type)
+{
+ tree cano_type = TYPE_MAIN_VARIANT (type);
+ if (TYPE_CANONICAL (cano_type))
+ cano_type = TYPE_CANONICAL (cano_type);
+
+ return cano_type;
+}
+
+/* Return 1 if type T1 and T2 are equivalent. Struct/union/class
+ types are compared using qualified name ids. Alias sets of
+ equivalent types will be merged. Client code may choose to do
+ structural equivalence check for sanity. Note the difference
+ between the types_compatible_p (and its langhooks subroutines)
+ and this interface. The former is mainly used to remove useless
+ type conversion and value numbering computation. It returns 1
+ only when it is sure and should not be used in contexts where
+ erroneously returning 0 causes problems. This interface
+ lipo_cmp_type behaves differently - it returns 1 when it is not
+ sure -- as the primary purpose of the interface is for alias
+ set computation. */
+
+int
+lipo_cmp_type (tree t1, tree t2)
+{
+ if (TREE_CODE (t1) != TREE_CODE (t2))
+ return 0;
+ if (TYPE_READONLY (t1) != TYPE_READONLY (t2))
+ return 0;
+ if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
+ return 0;
+
+ t1 = get_norm_type (t1);
+ t2 = get_norm_type (t2);
+
+ switch (TREE_CODE (t1))
+ {
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ return aggr_has_equiv_id (t1, t2);
+
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ case COMPLEX_TYPE:
+ case TYPE_PACK_EXPANSION:
+ return lipo_cmp_type (TREE_TYPE (t1), TREE_TYPE (t2));
+ case ARRAY_TYPE:
+ return (TYPE_DOMAIN (t1) == NULL || TYPE_DOMAIN (t2) == NULL
+ || (lipo_cmp_type (TYPE_DOMAIN (t1), TYPE_DOMAIN (t2))
+ && lipo_cmp_type (TREE_TYPE (t1), TREE_TYPE (t2))));
+ case METHOD_TYPE:
+ return lipo_cmp_type (TYPE_METHOD_BASETYPE (t1),
+ TYPE_METHOD_BASETYPE (t2));
+ case FUNCTION_TYPE:
+ {
+ tree arg1, arg2;
+ for (arg1 = TYPE_ARG_TYPES (t1), arg2 = TYPE_ARG_TYPES (t2);
+ arg1 && arg2;
+ arg1 = TREE_CHAIN (arg1), arg2 = TREE_CHAIN (arg2))
+ if (!lipo_cmp_type (TREE_VALUE (arg1),
+ TREE_VALUE (arg2)))
+ return 0;
+ if (arg1 || arg2)
+ return 0;
+ return 1;
+ }
+ case OFFSET_TYPE:
+ return lipo_cmp_type (TYPE_OFFSET_BASETYPE (t1),
+ TYPE_OFFSET_BASETYPE (t2));
+ case ENUMERAL_TYPE:
+ return lipo_cmp_type (TREE_TYPE (t1), TREE_TYPE (t2));
+ case REAL_TYPE:
+ case FIXED_POINT_TYPE:
+ case INTEGER_TYPE:
+ return (TYPE_PRECISION (t1) == TYPE_PRECISION (t2)
+ && TYPE_MODE (t1) == TYPE_MODE (t2)
+ && TYPE_MIN_VALUE (t1) == TYPE_MIN_VALUE (t2)
+ && TYPE_MAX_VALUE (t1) == TYPE_MAX_VALUE (t2));
+ case VECTOR_TYPE:
+ return (TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
+ && lipo_cmp_type (TREE_TYPE (t1), TREE_TYPE (t2)));
+ case VOID_TYPE:
+ case BOOLEAN_TYPE:
+ case NULLPTR_TYPE:
+ return 1;
+ case TEMPLATE_TYPE_PARM:
+ return 1;
+ default:
+ gcc_unreachable ();
+ }
+}
+
+#ifndef ANON_AGGRNAME_PREFIX
+#define ANON_AGGRNAME_PREFIX "__anon_"
+#endif
+#ifndef ANON_AGGRNAME_P
+#define ANON_AGGRNAME_P(ID_NODE) \
+ (!strncmp (IDENTIFIER_POINTER (ID_NODE), ANON_AGGRNAME_PREFIX, \
+ sizeof (ANON_AGGRNAME_PREFIX) - 1))
+#endif
+
+/* Callback function used in tree walk to find referenced struct types. */
+
+static tree
+find_struct_types (tree *tp,
+ int *walk_subtrees ATTRIBUTE_UNUSED,
+ void *data ATTRIBUTE_UNUSED)
+{
+ if (!(*tp))
+ return NULL_TREE;
+
+ if (TYPE_P (*tp))
+ {
+ if (lang_hooks.l_ipo.is_compiler_generated_type (*tp))
+ return NULL_TREE;
+
+ switch (TREE_CODE (*tp))
+ {
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ {
+ tree cano_type, name;
+ tree context;
+ tree field;
+
+ cano_type = get_norm_type (*tp);
+ name = TYPE_NAME (cano_type);
+ if (!name)
+ {
+ /* the main variant of typedef of unnamed struct
+ has no name, use the orignal type for equivalence. */
+ cano_type = *tp;
+ name = TYPE_NAME (cano_type);
+ }
+ if (!name)
+ return NULL_TREE;
+ if (DECL_P (name)
+ && (DECL_IGNORED_P (name)
+ || ANON_AGGRNAME_P (DECL_NAME (name))))
+ return NULL_TREE;
+
+ if (!pointer_set_insert (type_set, cano_type))
+ pending_types->safe_push (cano_type);
+ else
+ return NULL_TREE; /* Or use walk tree without dups. */
+
+ context = TYPE_CONTEXT (cano_type);
+ if (context && TYPE_P (context))
+ walk_tree (&context, find_struct_types, NULL, NULL);
+
+ /* Instantiate a nested work as the tree walker does not
+ get to the fields. */
+ if (TYPE_BINFO (cano_type))
+ {
+ int i;
+ tree binfo, base_binfo;
+
+ for (binfo = TYPE_BINFO (cano_type), i = 0;
+ BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
+ walk_tree (&BINFO_TYPE (base_binfo), find_struct_types,
+ NULL, NULL);
+ }
+ for (field = TYPE_FIELDS (cano_type);
+ field != 0;
+ field = TREE_CHAIN (field))
+ walk_tree (&TREE_TYPE (field), find_struct_types,
+ NULL, NULL);
+ return NULL_TREE;
+ }
+ default:
+ return NULL_TREE;
+ }
+ }
+ else if (DECL_P (*tp))
+ /* walk tree does not walk down decls, so do a nested walk here. */
+ walk_tree (&(TREE_TYPE (*tp)), find_struct_types, NULL, NULL);
+
+ return NULL_TREE;
+}
+
+/* Collect referenced struct types. */
+
+static void
+cgraph_collect_type_referenced (void)
+{
+ basic_block bb;
+ gimple_stmt_iterator gi;
+
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ for (gi = gsi_start_bb (bb); !gsi_end_p (gi); gsi_next (&gi))
+ {
+ unsigned i;
+ gimple stmt = gsi_stmt (gi);
+ for (i = 0; i < gimple_num_ops (stmt); i++)
+ walk_tree (gimple_op_ptr (stmt, i), find_struct_types, NULL, NULL);
+ }
+ }
+}
+
+/* Check type equivalence. Returns 1 if T1 and T2 are equivalent
+ for tbaa; return 0 if not. -1 is returned if it is unknown. */
+
+int
+equivalent_struct_types_for_tbaa (const_tree t1, const_tree t2)
+{
+ struct type_ent key, *tent1, *tent2, **slot;
+
+ if (!l_ipo_type_tab)
+ return -1;
+
+ t1 = get_norm_type (t1);
+ t2 = get_norm_type (t2);
+
+ key.type = (tree) (uintptr_t) t1;
+ slot = (struct type_ent **)
+ htab_find_slot (l_ipo_type_tab, &key, NO_INSERT);
+ if (!slot || !*slot)
+ return -1;
+ tent1 = *slot;
+
+ key.type = (tree) (uintptr_t) t2;
+ slot = (struct type_ent **)
+ htab_find_slot (l_ipo_type_tab, &key, NO_INSERT);
+ if (!slot || !*slot)
+ return -1;
+ tent2 = *slot;
+
+ return tent1->eq_id == tent2->eq_id;
+}
+
+/* Build type hash table. */
+
+static void
+cgraph_build_type_equivalent_classes (void)
+{
+ unsigned n, i;
+ n = pending_types->length ();
+ for (i = 0; i < n; i++)
+ {
+ struct type_ec **slot;
+ struct type_ec te;
+ te.rep_type = (*pending_types)[i];
+ te.eq_types = NULL;
+ slot = (struct type_ec **) htab_find_slot (type_hash_tab,
+ &te, INSERT);
+ if (!*slot)
+ {
+ *slot = XCNEW (struct type_ec);
+ (*slot)->rep_type = te.rep_type;
+ vec_alloc ((*slot)->eq_types, 10);
+ }
+ (*slot)->eq_types->safe_push (te.rep_type);
+ }
+}
+
+/* Re-propagate component types's alias set to that of TYPE. PROCESSED
+ is the pointer set of processed types. */
+
+static void
+re_record_component_aliases (tree type,
+ struct pointer_set_t *processed)
+{
+ alias_set_type superset = get_alias_set (type);
+ tree field;
+
+ if (superset == 0)
+ return;
+
+ if (pointer_set_insert (processed, type))
+ return;
+
+ switch (TREE_CODE (type))
+ {
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ /* Recursively record aliases for the base classes, if there are any. */
+ if (TYPE_BINFO (type))
+ {
+ int i;
+ tree binfo, base_binfo;
+
+ for (binfo = TYPE_BINFO (type), i = 0;
+ BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
+ {
+ re_record_component_aliases (BINFO_TYPE (base_binfo),
+ processed);
+ record_alias_subset (superset,
+ get_alias_set (BINFO_TYPE (base_binfo)));
+ }
+ }
+ for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
+ if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
+ {
+ re_record_component_aliases (TREE_TYPE (field), processed);
+ record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
+ }
+ break;
+
+ case COMPLEX_TYPE:
+ re_record_component_aliases (TREE_TYPE (type), processed);
+ record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
+ break;
+
+ /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
+ element type. */
+
+ default:
+ break;
+ }
+}
+
+/* The callback function to merge alias sets of equivalent types. */
+
+static int
+type_eq_process (void **slot, void *data ATTRIBUTE_UNUSED)
+{
+ unsigned i;
+ alias_set_type alias_set, ptr_alias_set = -1;
+ tree rep_type, type;
+ vec<tree> *eq_types;
+ struct type_ec ** te = (struct type_ec **)slot;
+ bool zero_set = false, ptr_zero_set = false;
+ struct type_ent **slot2, key, *tent;
+
+
+ rep_type = (*te)->rep_type;
+ eq_types = (*te)->eq_types;
+ alias_set = get_alias_set (rep_type);
+
+ for (i = 0; eq_types->iterate (i, &type); ++i)
+ {
+ alias_set_type als, ptr_als = -1;
+ tree type_ptr = TYPE_POINTER_TO (type);;
+
+ als = get_alias_set (type);
+ if (als == 0)
+ zero_set = true;
+
+ if (alias_set && als && alias_set != als)
+ record_alias_subset (alias_set, als);
+
+ if (type_ptr)
+ {
+ ptr_als = get_alias_set (type_ptr);
+ if (ptr_als == 0)
+ ptr_zero_set = true;
+
+ if (ptr_alias_set == -1)
+ ptr_alias_set = ptr_als;
+ else
+ {
+ if (!ptr_zero_set && ptr_alias_set != ptr_als)
+ record_alias_subset (ptr_alias_set, ptr_als);
+ }
+ }
+ }
+
+ /* Now propagate back. */
+ for (i = 0; eq_types->iterate (i, &type); ++i)
+ {
+ alias_set_type als, ptr_als;
+ tree ptr_type = TYPE_POINTER_TO (type);
+
+ als = get_alias_set (type);
+
+ if (zero_set)
+ TYPE_ALIAS_SET (type) = 0;
+ else if (alias_set != als)
+ record_alias_subset (als, alias_set);
+
+ if (ptr_type)
+ {
+ ptr_als = get_alias_set (ptr_type);
+ if (ptr_zero_set)
+ TYPE_ALIAS_SET (ptr_type) = 0;
+ else if (ptr_alias_set != ptr_als)
+ record_alias_subset (ptr_als, ptr_alias_set);
+ }
+ }
+
+
+ /* Now populate the type table. */
+ l_ipo_eq_id++;
+ for (i = 0; eq_types->iterate (i, &type); ++i)
+ {
+ key.type = type;
+ slot2 = (struct type_ent **)
+ htab_find_slot (l_ipo_type_tab, &key, INSERT);
+ tent = *slot2;
+ gcc_assert (!tent);
+ tent = ggc_alloc_cleared_type_ent ();
+ tent->type = key.type;
+ tent->eq_id = l_ipo_eq_id;
+ *slot2 = tent;
+ }
+
+ return 1;
+}
+
+/* Regenerate alias set for aggregate types. */
+
+static void
+record_components_for_parent_types (void)
+{
+ unsigned n, i;
+ struct pointer_set_t *processed_types;
+
+ processed_types = pointer_set_create ();
+ n = pending_types->length ();
+ for (i = 0; i < n; i++)
+ {
+ tree type = (*pending_types)[i];
+ re_record_component_aliases (type, processed_types);
+ }
+
+ pointer_set_destroy (processed_types);
+}
+
+/* Unify type alias sets for equivalent types. */
+
+void
+cgraph_unify_type_alias_sets (void)
+{
+ struct cgraph_node *node;
+ struct varpool_node *pv;
+
+ /* Only need to do type unification when we are in LIPO mode
+ and have a non-trivial module group (size is >1). However,
+ override the size check under non-zero PARAM_LIPO_RANDOM_GROUP_SIZE,
+ which indicates that we are stress-testing LIPO. In that case
+ try to flush out problems with type unification by always
+ performing it. */
+ if (!L_IPO_COMP_MODE
+ || (num_in_fnames == 1
+ && PARAM_VALUE (PARAM_LIPO_RANDOM_GROUP_SIZE) == 0))
+ return;
+
+ vec_alloc (pending_types, 100);
+ type_set = pointer_set_create ();
+ type_hash_tab = htab_create (10, type_hash_hash,
+ type_hash_eq, type_hash_del);
+ l_ipo_type_tab = htab_create_ggc (10, type_addr_hash,
+ type_addr_eq, NULL);
+
+ FOR_EACH_DEFINED_FUNCTION (node)
+ {
+ if (!gimple_has_body_p (node->decl))
+ continue;
+ push_cfun (DECL_STRUCT_FUNCTION (node->decl));
+ current_function_decl = node->decl;
+ if (gimple_has_body_p (current_function_decl))
+ cgraph_collect_type_referenced ();
+ current_function_decl = NULL;
+ set_cfun (NULL);
+ pop_cfun ();
+ }
+
+ FOR_EACH_VARIABLE (pv)
+ walk_tree (&pv->decl, find_struct_types, NULL, NULL);
+
+ /* Compute type equivalent classes. */
+ cgraph_build_type_equivalent_classes ();
+ /* Now unify alias sets of equivelent types. */
+ htab_traverse (type_hash_tab, type_eq_process, NULL);
+ /* Finally re-populating parent's alias set. */
+ record_components_for_parent_types ();
+
+ pointer_set_destroy (type_set);
+ vec_free (pending_types);
+ htab_delete (type_hash_tab);
+}
+
+/* Return true if NODE->decl from an auxiliary module has external
+ definition (and therefore is not needed for expansion). */
+
+bool
+cgraph_is_aux_decl_external (struct cgraph_node *node)
+{
+ tree decl = node->decl;
+
+ if (!L_IPO_COMP_MODE)
+ return false;
+
+ if (!cgraph_is_auxiliary (decl))
+ return false;
+
+ /* Versioned clones from auxiliary moduels are not external. */
+ if (node->is_versioned_clone)
+ return false;
+
+ /* Comdat or weak functions in aux modules are not external --
+ there is no guarantee that the definitition will be emitted
+ in the primary compilation of this auxiliary module. */
+ if (DECL_COMDAT (decl) || DECL_WEAK (decl))
+ return false;
+
+ /* virtual functions won't be deleted in the primary module. */
+ if (DECL_VIRTUAL_P (decl))
+ return true;
+
+ if (!TREE_PUBLIC (decl))
+ return false;
+
+ /* The others from aux modules are external. */
+ return true;
+}
+
+/* Linked function symbol (cgraph node) table. */
+static GTY((param_is (cgraph_sym))) htab_t cgraph_symtab;
+
+/* This is true when global linking is needed and performed (for C++).
+ For C, symbol linking is performed on the fly during parsing, and
+ the cgraph_symtab is used only for keeping additional information
+ for any already merged symbol if needed. */
+
+static bool global_link_performed = 0;
+
+/* For an external (non-defined) function DECL, return the primary
+ module id (even though when the declaration is declared in an aux
+ module). For a defined function DECL, return the module id in which
+ it is defined. */
+
+unsigned
+cgraph_get_module_id (tree decl)
+{
+ struct function *func = DECL_STRUCT_FUNCTION (decl);
+ /* Not defined. */
+ if (!func)
+ return primary_module_id;
+ return FUNC_DECL_MODULE_ID (func);
+}
+
+/* Return true if function decl is defined in an auxiliary module. */
+
+bool
+cgraph_is_auxiliary (tree decl)
+{
+ return (cgraph_get_module_id (decl) != primary_module_id);
+}
+
+/* Return the hash value for cgraph_sym pointed to by P. The
+ hash value is computed using function's assembler name. */
+
+static hashval_t
+hash_sym_by_assembler_name (const void *p)
+{
+ const struct cgraph_sym *n = (const struct cgraph_sym *) p;
+ return (hashval_t) decl_assembler_name_hash (n->assembler_name);
+}
+
+/* Return nonzero if P1 and P2 are equal. */
+
+static int
+eq_assembler_name (const void *p1, const void *p2)
+{
+ const struct cgraph_sym *n1 = (const struct cgraph_sym *) p1;
+ const_tree name = (const_tree) p2;
+ return (decl_assembler_name_equal (n1->rep_decl, name));
+}
+
+/* Return the cgraph_sym for function declaration DECL. */
+
+static struct cgraph_sym **
+cgraph_sym (tree decl)
+{
+ struct cgraph_sym **slot;
+ tree name;
+
+ if (!cgraph_symtab)
+ {
+ gcc_assert (!global_link_performed);
+ return NULL;
+ }
+
+ name = DECL_ASSEMBLER_NAME (decl);
+ slot = (struct cgraph_sym **)
+ htab_find_slot_with_hash (cgraph_symtab, name,
+ decl_assembler_name_hash (name),
+ NO_INSERT);
+ return slot;
+}
+
+/* Return the representative declaration for assembler name
+ ASM_NAME. */
+
+tree
+cgraph_find_decl (tree asm_name)
+{
+ struct cgraph_sym **slot;
+ if (!L_IPO_COMP_MODE)
+ return NULL;
+ if (!cgraph_symtab || !global_link_performed)
+ return NULL;
+
+ slot = (struct cgraph_sym **)
+ htab_find_slot_with_hash (cgraph_symtab, asm_name,
+ decl_assembler_name_hash (asm_name),
+ NO_INSERT);
+ if (!slot || !*slot)
+ return NULL;
+
+ return (*slot)->rep_node->decl;
+}
+
+/* Return true if function declaration DECL is originally file scope
+ static, which is promoted to global scope. */
+
+bool
+cgraph_is_promoted_static_func (tree decl)
+{
+ struct cgraph_sym ** sym;
+ gcc_assert (L_IPO_COMP_MODE);
+
+ /* cgraph_symtab will be created when any symbol got
+ promoted. */
+ if (!cgraph_symtab)
+ return false;
+
+ sym = cgraph_sym (decl);
+ if (!sym)
+ return false;
+ return (*sym)->is_promoted_static;
+}
+
+/* Hash function for module information table. ENT
+ is a pointer to a cgraph_module_info. */
+
+static hashval_t
+htab_sym_hash (const void *ent)
+{
+ const struct cgraph_mod_info * const mi
+ = (const struct cgraph_mod_info * const ) ent;
+ return (hashval_t) mi->module_id;
+}
+
+/* Hash equality function for module information table. */
+
+static int
+htab_sym_eq (const void *ent1, const void *ent2)
+{
+ const struct cgraph_mod_info * const mi1
+ = (const struct cgraph_mod_info * const ) ent1;
+ const struct cgraph_mod_info * const mi2
+ = (const struct cgraph_mod_info * const ) ent2;
+ return (mi1->module_id == mi2->module_id);
+}
+
+/* cgraph_sym SYM may be defined in more than one source modules.
+ Add declaration DECL's definiting module to SYM. */
+
+static void
+add_define_module (struct cgraph_sym *sym, tree decl)
+{
+ unsigned module_id;
+ struct cgraph_mod_info **slot;
+ struct cgraph_mod_info mi;
+
+ struct function *f = DECL_STRUCT_FUNCTION (decl);
+ if (!f)
+ return;
+ module_id = FUNC_DECL_MODULE_ID (f);
+
+ if (!sym->def_module_hash)
+ sym->def_module_hash
+ = htab_create_ggc (10, htab_sym_hash, htab_sym_eq, NULL);
+
+ mi.module_id = module_id;
+ slot = (struct cgraph_mod_info **)htab_find_slot (sym->def_module_hash,
+ &mi, INSERT);
+ if (!*slot)
+ {
+ *slot = ggc_alloc_cleared_cgraph_mod_info ();
+ (*slot)->module_id = module_id;
+ }
+ else
+ gcc_assert ((*slot)->module_id == module_id);
+}
+
+static int
+add_def_module (void **slot, void *data)
+{
+ struct cgraph_mod_info **m = (struct cgraph_mod_info **)slot;
+ htab_t mod_set = (htab_t) data;
+ struct cgraph_mod_info **new_slot;
+
+ new_slot = (struct cgraph_mod_info **)htab_find_slot (mod_set, *m, INSERT);
+ if (!*new_slot)
+ {
+ *new_slot = ggc_alloc_cleared_cgraph_mod_info ();
+ (*new_slot)->module_id = (*m)->module_id;
+ }
+ else
+ gcc_assert ((*new_slot)->module_id == (*m)->module_id);
+ return 1;
+}
+
+/* Clone defined module hash table from ORIG to CLONE. */
+
+void
+copy_defined_module_set (tree clone, tree orig)
+{
+ struct cgraph_sym **orig_sym, **clone_sym;
+
+ orig_sym = cgraph_sym (orig);
+ clone_sym = cgraph_sym (clone);
+ if (!orig_sym || !(*orig_sym)->def_module_hash)
+ return;
+ if (!(*clone_sym)->def_module_hash)
+ (*clone_sym)->def_module_hash
+ = htab_create_ggc (10, htab_sym_hash, htab_sym_eq, NULL);
+ htab_traverse ((*orig_sym)->def_module_hash, add_def_module, (*clone_sym)->def_module_hash);
+}
+
+/* Return true if the symbol associated with DECL is defined in module
+ MODULE_ID. This interface is used by the inliner to make sure profile-gen
+ and profile-use pass (L-IPO mode) make consistent inline decision. */
+
+bool
+cgraph_is_inline_body_available_in_module (tree decl, unsigned module_id)
+{
+ struct cgraph_sym **sym;
+ void **slot;
+ struct cgraph_mod_info mi;
+
+ gcc_assert (L_IPO_COMP_MODE);
+
+ if (DECL_BUILT_IN (decl))
+ return true;
+
+ /* TODO: revisit this. */
+ if (DECL_IN_SYSTEM_HEADER (decl) && DECL_DECLARED_INLINE_P (decl))
+ return true;
+
+ gcc_assert (TREE_STATIC (decl) || DECL_DECLARED_INLINE_P (decl));
+
+ if (cgraph_get_module_id (decl) == module_id)
+ return true;
+
+ sym = cgraph_sym (decl);
+ if (!sym || !(*sym)->def_module_hash)
+ return false;
+
+ mi.module_id = module_id;
+ slot = htab_find_slot ((*sym)->def_module_hash, &mi, NO_INSERT);
+ if (slot)
+ {
+ gcc_assert (((struct cgraph_mod_info*)*slot)->module_id == module_id);
+ return true;
+ }
+ return false;
+}
+
+/* Return the linked cgraph node using DECL's assembler name. DO_ASSERT
+ is a flag indicating that a non null link target must be returned. */
+
+struct cgraph_node *
+cgraph_lipo_get_resolved_node_1 (tree decl, bool do_assert)
+{
+ struct cgraph_sym **slot;
+
+ /* Handle alias decl. */
+ slot = cgraph_sym (decl);
+
+ if (!slot || !*slot)
+ {
+ if (!do_assert)
+ return NULL;
+ else
+ {
+ /* Nodes that are indirectly called are not 'reachable' in
+ the callgraph. If they are not needed (comdat, inline
+ extern etc), they may be removed from the link table
+ before direct calls to them are exposed (via indirect
+ call promtion by const folding etc). When this happens,
+ the node will need to be relinked. A probably better fix
+ is to modify the callgraph so that they are not eliminated
+ in the first place -- this will allow inlining to happen. */
+
+ struct cgraph_node *n = cgraph_get_create_node (decl);
+ if (!n->analyzed)
+ {
+ gcc_assert (DECL_EXTERNAL (decl)
+ || cgraph_is_aux_decl_external (n)
+ || DECL_VIRTUAL_P (decl));
+ gcc_assert (/* This is the case for explicit extern instantiation,
+ when cgraph node is not created before link. */
+ DECL_EXTERNAL (decl));
+ cgraph_link_node (n);
+ return n;
+ }
+ else
+ gcc_unreachable ();
+ }
+ }
+ else
+ {
+ struct cgraph_sym *sym = *slot;
+ return sym->rep_node;
+ }
+}
+
+/* Return the cgraph_node of DECL if decl has definition; otherwise return
+ the cgraph node of the representative decl, which is the declaration DECL
+ is resolved to after linking/symbol resolution. */
+
+struct cgraph_node *
+cgraph_lipo_get_resolved_node (tree decl)
+{
+ struct cgraph_node *node = NULL;
+
+ gcc_assert (L_IPO_COMP_MODE && global_link_performed);
+ gcc_assert (cgraph_symtab);
+
+ /* Never merged. */
+ if (!TREE_PUBLIC (decl) || DECL_ARTIFICIAL (decl)
+ /* builtin function decls are shared across modules, but 'linking'
+ is still performed for them to keep track of the set of defining
+ modules. Skip the real resolution here to avoid merging '__builtin_xxx'
+ with 'xxx'. */
+ || DECL_BUILT_IN (decl))
+ return cgraph_get_create_node (decl);
+
+ node = cgraph_lipo_get_resolved_node_1 (decl, true);
+ return node;
+}
+
+/* When NODE->decl is dead function eliminated,
+ remove the entry in the link table. */
+
+void
+cgraph_remove_link_node (struct cgraph_node *node)
+{
+ tree name, decl;
+
+ if (!L_IPO_COMP_MODE || !cgraph_symtab)
+ return;
+
+ decl = node->decl;
+
+ /* Skip nodes that are not in the link table. */
+ if (!TREE_PUBLIC (decl) || DECL_ARTIFICIAL (decl))
+ return;
+
+ /* Skip if node is an inline clone or if the node has
+ defintion that is not really resolved to the merged node. */
+ if (cgraph_lipo_get_resolved_node_1 (decl, false) != node)
+ return;
+
+ name = DECL_ASSEMBLER_NAME (decl);
+ htab_remove_elt_with_hash (cgraph_symtab, name,
+ decl_assembler_name_hash (name));
+}
+
+/* Return true if the function body for DECL has profile information. */
+
+static bool
+has_profile_info (tree decl)
+{
+ gcov_type *ctrs = NULL;
+ unsigned n;
+ struct function* f = DECL_STRUCT_FUNCTION (decl);
+
+ ctrs = get_coverage_counts_no_warn (f, GCOV_COUNTER_ARCS, &n);
+ if (ctrs)
+ {
+ unsigned i;
+ for (i = 0; i < n; i++)
+ if (ctrs[i])
+ return true;
+ }
+
+ return false;
+}
+
+/* Resolve delaration NODE->decl for function symbol *SLOT. */
+
+static void
+resolve_cgraph_node (struct cgraph_sym **slot, struct cgraph_node *node)
+{
+ tree decl1, decl2;
+ int decl1_defined = 0;
+ int decl2_defined = 0;
+
+ decl1 = (*slot)->rep_decl;
+ decl2 = node->decl;
+
+ decl1_defined = gimple_has_body_p (decl1);
+ decl2_defined = gimple_has_body_p (decl2);
+
+ if (decl1_defined && !decl2_defined)
+ return;
+
+ if (!decl1_defined && decl2_defined)
+ {
+ (*slot)->rep_node = node;
+ (*slot)->rep_decl = decl2;
+ add_define_module (*slot, decl2);
+ return;
+ }
+
+ if (decl2_defined)
+ {
+ bool has_prof1 = false;
+ bool has_prof2 = false;
+ gcc_assert (decl1_defined);
+ add_define_module (*slot, decl2);
+
+ /* Pick the node that cannot be removed, to avoid a situation
+ where we remove the resolved node and later try to access
+ it for the remaining non-removable copy. E.g. one may be
+ extern and the other weak, only the extern copy can be removed. */
+ if (cgraph_can_remove_if_no_direct_calls_and_refs_p ((*slot)->rep_node)
+ && !cgraph_can_remove_if_no_direct_calls_and_refs_p (node))
+ {
+ (*slot)->rep_node = node;
+ (*slot)->rep_decl = decl2;
+ return;
+ }
+
+ has_prof1 = has_profile_info (decl1);
+ if (has_prof1)
+ return;
+ has_prof2 = has_profile_info (decl2);
+ if (has_prof2)
+ {
+ (*slot)->rep_node = node;
+ (*slot)->rep_decl = decl2;
+ }
+ return;
+ }
+
+ /* Handle aliases properly. Make sure the alias symbol resolution
+ is consistent with alias target */
+ if (node->alias && !node->thunk.thunk_p)
+ {
+ struct cgraph_node *decl2_tgt = cgraph_function_or_thunk_node (node, NULL);
+ if (cgraph_lipo_get_resolved_node_1 (decl2_tgt->decl, false) == decl2_tgt)
+ {
+ (*slot)->rep_node = node;
+ (*slot)->rep_decl = decl2;
+ }
+ }
+ return;
+}
+
+
+/* Resolve NODE->decl in the function symbol table. */
+
+struct cgraph_sym *
+cgraph_link_node (struct cgraph_node *node)
+{
+ void **slot;
+ tree name;
+
+ if (!L_IPO_COMP_MODE)
+ return NULL;
+
+ if (!cgraph_symtab)
+ return NULL;
+
+ /* Skip the cases when the defintion can be locally resolved, and
+ when we do not need to keep track of defining modules. */
+ if (!TREE_PUBLIC (node->decl) || DECL_ARTIFICIAL (node->decl))
+ return NULL;
+
+ name = DECL_ASSEMBLER_NAME (node->decl);
+ slot = htab_find_slot_with_hash (cgraph_symtab, name,
+ decl_assembler_name_hash (name),
+ INSERT);
+ if (*slot)
+ resolve_cgraph_node ((struct cgraph_sym **) slot, node);
+ else
+ {
+ struct cgraph_sym *sym = ggc_alloc_cleared_cgraph_sym ();
+ sym->rep_node = node;
+ sym->rep_decl = node->decl;
+ sym->assembler_name = name;
+ add_define_module (sym, node->decl);
+ *slot = sym;
+ }
+ return (struct cgraph_sym *) *slot;
+}
+
+/* Perform cross module linking of function declarations. */
+
+void
+cgraph_do_link (void)
+{
+ struct cgraph_node *node;
+
+ if (!L_IPO_COMP_MODE)
+ return;
+
+ global_link_performed = 1;
+ gcc_assert (cgraph_pre_profiling_inlining_done);
+
+ if (!cgraph_symtab)
+ cgraph_symtab
+ = htab_create_ggc (10, hash_sym_by_assembler_name,
+ eq_assembler_name, NULL);
+
+ FOR_EACH_FUNCTION (node)
+ {
+ gcc_assert (!node->global.inlined_to);
+ /* Delay aliases */
+ if (node->alias && !node->thunk.thunk_p)
+ continue;
+ cgraph_link_node (node);
+ }
+
+ /* Now handle aliases */
+ FOR_EACH_FUNCTION (node)
+ {
+ if (node->alias && !node->thunk.thunk_p)
+ cgraph_link_node (node);
+ }
+}
+
+struct promo_ent
+{
+ char* assemb_name;
+ tree decl;
+ int seq;
+};
+
+/* Hash function for promo_ent table. */
+
+static hashval_t
+promo_ent_hash (const void *ent)
+{
+ const struct promo_ent *const entry
+ = (const struct promo_ent *) ent;
+
+ return htab_hash_string (entry->assemb_name);
+}
+
+/* Hash_eq function for promo_ent table. */
+
+static int
+promo_ent_eq (const void *ent1, const void *ent2)
+{
+ const struct promo_ent *const entry1
+ = (const struct promo_ent *) ent1;
+ const struct promo_ent *const entry2
+ = (const struct promo_ent *) ent2;
+ if (!strcmp (entry1->assemb_name, entry2->assemb_name))
+ return 1;
+ return 0;
+}
+
+/* Delete function for promo_ent hash table. */
+
+static void
+promo_ent_del (void *ent)
+{
+ struct promo_ent *const entry
+ = (struct promo_ent *) ent;
+
+ free (entry->assemb_name);
+ free (entry);
+}
+
+static htab_t promo_ent_hash_tab = NULL;
+
+/* Make the var decl for weak symbol as extern. */
+
+static inline void
+externalize_weak_decl (tree decl)
+{
+ gcc_assert (TREE_CODE (decl) == VAR_DECL && DECL_WEAK (decl));
+
+ DECL_EXTERNAL (decl) = 1;
+ TREE_STATIC (decl) = 0;
+ DECL_INITIAL (decl) = NULL;
+
+ /* Keep the context so that devirt_variable_node_removal_hook
+ can do cleanup properly for vtables.
+ DECL_CONTEXT (decl) = NULL; */
+}
+
+/* Return a unique sequence number for NAME. This is needed to avoid
+ name conflict -- function scope statics may have identical names.
+
+ When DECL is NULL,
+ this function returns a zero sequence number if it is called with
+ a particular NAME for the first time, and non-zero otherwise.
+ This fact is used to keep track of unseen weak variables.
+
+ When DECL is not NULL, this function is supposed to be called by
+ varpool_remove_duplicate_weak_decls. */
+
+static int
+get_name_seq_num (const char *name, tree decl)
+{
+ struct promo_ent **slot;
+ struct promo_ent ent;
+ int ret = 0;
+
+ gcc_assert (!decl || TREE_CODE (decl) == VAR_DECL);
+ ent.assemb_name = xstrdup (name);
+ ent.seq = 0;
+
+ slot = (struct promo_ent **)
+ htab_find_slot (promo_ent_hash_tab, &ent, INSERT);
+
+ if (!*slot)
+ {
+ *slot = XCNEW (struct promo_ent);
+ (*slot)->assemb_name = ent.assemb_name;
+ (*slot)->decl = decl;
+ }
+ else
+ {
+ /* During output, the previously selected weak decl may not be
+ referenced by any function that is expanded thus they do not have
+ DECL_RTL_SET_P to be true and therefore can be eliminated by
+ varpool_remove_unreferenced_decls later. To avoid that, logic is
+ added to replace previously selected decl when needed. */
+ if (decl && DECL_RTL_SET_P (decl)
+ && !DECL_RTL_SET_P ((*slot)->decl))
+ {
+ externalize_weak_decl ((*slot)->decl);
+ (*slot)->decl = decl;
+ ret = 0;
+ }
+ else
+ ret = ++(*slot)->seq;
+ free (ent.assemb_name);
+ }
+ return ret;
+}
+
+/* Returns a unique assembler name for DECL. */
+
+static tree
+create_unique_name (tree decl, unsigned module_id)
+{
+ tree id, assemb_id;
+ char *assembler_name;
+ const char *name;
+ struct function *context = NULL;
+ int seq = 0;
+
+ if (TREE_CODE (decl) == FUNCTION_DECL)
+ {
+ if (!DECL_CONTEXT (decl)
+ || TREE_CODE (DECL_CONTEXT (decl)) == TRANSLATION_UNIT_DECL)
+ {
+ id = DECL_NAME (decl);
+ /* if (IDENTIFIER_OPNAME_P (id)) */
+ if (TREE_LANG_FLAG_2 (id))
+ id = DECL_ASSEMBLER_NAME (decl);
+ }
+ else
+ id = DECL_ASSEMBLER_NAME (decl);
+ }
+ else
+ {
+ if (!DECL_CONTEXT (decl))
+ id = DECL_NAME (decl);
+ else if (TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)
+ id = DECL_ASSEMBLER_NAME (decl);
+ else if (TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL)
+ {
+ id = DECL_NAME (decl);
+ context = DECL_STRUCT_FUNCTION (DECL_CONTEXT (decl));
+ }
+ else
+ /* file scope context */
+ id = DECL_NAME (decl);
+ }
+
+ name = IDENTIFIER_POINTER (id);
+ if (context)
+ {
+ char *n;
+ unsigned fno = FUNC_DECL_FUNC_ID (context);
+ n = (char *)alloca (strlen (name) + 15);
+ sprintf (n, "%s.%u", name, fno);
+ name = n;
+ }
+
+ assembler_name = (char*) alloca (strlen (name) + 30);
+ sprintf (assembler_name, "%s.cmo.%u", name, module_id);
+ seq = get_name_seq_num (assembler_name, NULL);
+ if (seq)
+ sprintf (assembler_name, "%s.%d", assembler_name, seq);
+
+ assemb_id = get_identifier (assembler_name);
+
+ return assemb_id;
+}
+
+/* Promote DECL to be global. MODULE_ID is the id of the module where
+ DECL is defined. IS_EXTERN is a flag indicating if externalization
+ is needed. */
+
+static void
+promote_static_var_func (unsigned module_id, tree decl, bool is_extern)
+{
+ tree assemb_id;
+ tree alias;
+
+ /* No need to promote symbol alias. */
+ alias = lookup_attribute ("alias", DECL_ATTRIBUTES (decl));
+ if (alias)
+ return;
+
+ /* Function decls in C++ may contain characters not taken by assembler.
+ Similarly, function scope static variable has UID as the assembler name
+ suffix which is not consistent across modules. */
+ assemb_id = create_unique_name (decl, module_id);
+
+ if (DECL_ASSEMBLER_NAME_SET_P (decl))
+ {
+ if (TREE_CODE (decl) == FUNCTION_DECL)
+ unlink_from_assembler_name_hash (cgraph_get_create_node (decl),
+ false);
+ else
+ unlink_from_assembler_name_hash (varpool_get_node (decl), false);
+ }
+
+ SET_DECL_ASSEMBLER_NAME (decl, assemb_id);
+ TREE_PUBLIC (decl) = 1;
+ DECL_VISIBILITY (decl) = VISIBILITY_HIDDEN;
+ DECL_VISIBILITY_SPECIFIED (decl) = 1;
+
+ if (TREE_CODE (decl) == FUNCTION_DECL)
+ {
+ struct cgraph_node *node = cgraph_get_create_node (decl);
+
+ node->resolution = LDPR_UNKNOWN;
+ insert_to_assembler_name_hash (node, false);
+ }
+ else
+ {
+ struct varpool_node *node = varpool_get_node (decl);
+ node->resolution = LDPR_UNKNOWN;
+ /* Statics from exported primary module are very likely
+ referenced by other modules, so they should be made
+ externally visible (to be avoided to be localized again).
+ Another way to do this is to set force_output bit or
+ change the logic in varpool_externally_visible in ipa.c. */
+ if (!is_extern)
+ {
+ node->resolution = LDPR_PREVAILING_DEF;
+ node->externally_visible = true;
+ }
+ varpool_link_node (node);
+ insert_to_assembler_name_hash (node, false);
+ }
+
+ if (is_extern)
+ {
+ if (TREE_CODE (decl) == VAR_DECL)
+ {
+ TREE_STATIC (decl) = 0;
+ DECL_EXTERNAL (decl) = 1;
+ /* Keep the initializer to allow const prop. */
+ /* DECL_INITIAL (decl) = 0; */
+ /* Keep the context so that devirt_variable_node_removal_hook
+ can do cleanup properly for vtables.
+ DECL_CONTEXT (decl) = 0; */
+ }
+ /* else
+ Function body will be deleted later before expansion. */
+ }
+ else
+ TREE_STATIC (decl) = 1;
+}
+
+/* Externalize global variables from aux modules and promote
+ static variables.
+ WEAK variables are treated especially in
+ varpool_remove_duplicate_weak_decls. */
+
+static void
+process_module_scope_static_var (struct varpool_node *vnode)
+{
+ tree decl = vnode->decl;
+
+ if (varpool_is_auxiliary (vnode))
+ {
+ gcc_assert (vnode->module_id != primary_module_id);
+ if (TREE_PUBLIC (decl))
+ {
+ /* Externalize non-weak variables. */
+ if (!DECL_WEAK (decl))
+ {
+ DECL_EXTERNAL (decl) = 1;
+ TREE_STATIC (decl) = 0;
+ /* Keep the initializer to allow const prop. */
+ /* DECL_INITIAL (decl) = NULL; */
+ if (DECL_CONTEXT (decl))
+ {
+ DECL_ASSEMBLER_NAME (decl);
+ }
+ /* Keep the context so that devirt_variable_node_removal_hook
+ can do cleanup properly for vtables.
+ DECL_CONTEXT (decl) = NULL; */
+ }
+ }
+ else
+ {
+ /* Promote static vars to global. */
+ if (vnode->module_id)
+ promote_static_var_func (vnode->module_id, decl,
+ varpool_is_auxiliary (vnode));
+ }
+ }
+ else
+ {
+ if (PRIMARY_MODULE_EXPORTED && !TREE_PUBLIC (decl))
+ promote_static_var_func (vnode->module_id, decl,
+ varpool_is_auxiliary (vnode));
+ }
+}
+
+/* Promote all aliases of CNODE. */
+
+static void
+promote_function_aliases (struct cgraph_node *cnode, unsigned mod_id,
+ bool is_extern)
+{
+ int i;
+ struct ipa_ref *ref;
+
+ for (i = 0; ipa_ref_list_referring_iterate (&cnode->ref_list, i, ref);
+ i++)
+ {
+ if (ref->use == IPA_REF_ALIAS)
+ {
+ struct cgraph_node *alias = ipa_ref_referring_node (ref);
+ tree alias_decl = alias->decl;
+ /* Should assert */
+ if (cgraph_get_module_id (alias_decl) == mod_id)
+ promote_static_var_func (mod_id, alias_decl, is_extern);
+ }
+ }
+}
+
+/* Promote static function CNODE->decl to be global. */
+
+static void
+process_module_scope_static_func (struct cgraph_node *cnode)
+{
+ tree decl = cnode->decl;
+ bool addr_taken;
+ unsigned mod_id;
+ struct ipa_ref *ref;
+ int i;
+
+ if (TREE_PUBLIC (decl)
+ || !TREE_STATIC (decl)
+ || DECL_EXTERNAL (decl)
+ || DECL_ARTIFICIAL (decl))
+ return;
+
+ if (flag_ripa_no_promote_always_inline
+ && lookup_attribute ("always_inline", DECL_ATTRIBUTES (decl)) != NULL)
+ return;
+
+ /* Can be local -- the promotion pass need to be done after
+ callgraph build when address taken bit is set. */
+ addr_taken = cnode->address_taken;
+ if (!addr_taken)
+ {
+ for (i = 0; ipa_ref_list_referring_iterate (&cnode->ref_list, i, ref);
+ i++)
+ if (ref->use == IPA_REF_ALIAS)
+ {
+ struct cgraph_node *alias = ipa_ref_referring_node (ref);
+ if (alias->address_taken)
+ addr_taken = true;
+ }
+ }
+ if (!addr_taken)
+ {
+ tree assemb_id = create_unique_name (decl, cgraph_get_module_id (decl));
+
+ if (DECL_ASSEMBLER_NAME_SET_P (decl))
+ unlink_from_assembler_name_hash (cnode, false);
+ SET_DECL_ASSEMBLER_NAME (decl, assemb_id);
+ insert_to_assembler_name_hash (cnode, false);
+ return;
+ }
+
+ mod_id = cgraph_get_module_id (decl);
+ if (cgraph_is_auxiliary (decl))
+ {
+ gcc_assert (mod_id != primary_module_id);
+ /* Promote static function to global. */
+ if (mod_id)
+ {
+ promote_static_var_func (mod_id, decl, 1);
+ promote_function_aliases (cnode, mod_id, 1);
+ }
+ }
+ else
+ {
+ if (PRIMARY_MODULE_EXPORTED
+ /* skip static_init routines. */
+ && !DECL_ARTIFICIAL (decl))
+ {
+ promote_static_var_func (mod_id, decl, 0);
+
+ promote_function_aliases (cnode, mod_id, 0);
+ }
+ }
+}
+
+/* Process var_decls, func_decls with static storage. */
+
+void
+cgraph_process_module_scope_statics (void)
+{
+ struct cgraph_node *pf;
+ struct varpool_node *pv;
+
+ if (!L_IPO_COMP_MODE)
+ return;
+
+ promo_ent_hash_tab = htab_create (10, promo_ent_hash,
+ promo_ent_eq, promo_ent_del);
+
+ /* Process variable first. */
+ FOR_EACH_DEFINED_VARIABLE (pv)
+ process_module_scope_static_var (pv);
+
+ FOR_EACH_FUNCTION (pf)
+ process_module_scope_static_func (pf);
+
+ htab_delete (promo_ent_hash_tab);
+}
+
+/* There could be duplicate non-extern WEAK decls in the varpool queue,
+ coming from different modules. All but one of these need to be externalized
+ and removed from the varpool queue.
+ Duplicate WEAK decls can be added to varpool queue as late as
+ cgraph_expand_function, when a WEAK decl is marked referenced as assembler
+ is being output. Therefore, a call to this function should be made after
+ cgraph_expand_function. */
+
+void
+varpool_remove_duplicate_weak_decls (void)
+{
+ struct varpool_node *node = NULL;
+
+ if (!L_IPO_COMP_MODE)
+ return;
+
+ promo_ent_hash_tab = htab_create (10, promo_ent_hash,
+ promo_ent_eq, promo_ent_del);
+
+ FOR_EACH_VARIABLE (node)
+ {
+ tree decl = node->decl;
+
+ if (TREE_PUBLIC (decl) && DECL_WEAK (decl) && !DECL_EXTERNAL (decl)
+ && get_name_seq_num (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)), decl))
+ externalize_weak_decl (decl);
+ }
+
+ htab_delete (promo_ent_hash_tab);
+}
+
+static GTY((param_is (symtab_node))) htab_t varpool_symtab;
+
+/* Hash function for varpool node. */
+
+static hashval_t
+hash_node_by_assembler_name (const void *p)
+{
+ const struct varpool_node *n = (const struct varpool_node *) p;
+ return (hashval_t) decl_assembler_name_hash (
+ DECL_ASSEMBLER_NAME (n->decl));
+}
+
+/* Returns nonzero if P1 and P2 are equal. */
+
+static int
+eq_node_assembler_name (const void *p1, const void *p2)
+{
+ const struct varpool_node *n1 = (const struct varpool_node *) p1;
+ const_tree name = (const_tree)p2;
+ return (decl_assembler_name_equal (n1->decl, name));
+}
+
+/* Return true if NODE's decl is declared in an auxiliary module. */
+
+bool
+varpool_is_auxiliary (struct varpool_node *node)
+{
+ return (node->module_id
+ && node->module_id != primary_module_id);
+}
+
+/* Return the varpool_node to which DECL is resolved to during linking.
+ This method can not be used after static to global promotion happens. */
+
+static struct varpool_node *
+real_varpool_node_1 (tree decl, bool assert)
+{
+ void **slot;
+ tree name;
+
+ if (!L_IPO_COMP_MODE || !varpool_symtab)
+ return varpool_get_node (decl);
+
+ if (!TREE_PUBLIC (decl) || DECL_ARTIFICIAL (decl))
+ return varpool_get_node (decl);
+
+ name = DECL_ASSEMBLER_NAME (decl);
+ slot = htab_find_slot_with_hash (varpool_symtab, name,
+ decl_assembler_name_hash (name),
+ NO_INSERT);
+ if (!slot)
+ {
+ gcc_assert (!assert);
+ return NULL;
+ }
+
+ gcc_assert (slot && *slot);
+ return (struct varpool_node *)*slot;
+}
+
+struct varpool_node *
+real_varpool_node (tree decl)
+{
+ return real_varpool_node_1 (decl, true);
+}
+
+/* Remove NODE from the link table. */
+
+void
+varpool_remove_link_node (struct varpool_node *node)
+{
+ tree name;
+ tree decl;
+
+ if (!L_IPO_COMP_MODE || !varpool_symtab)
+ return;
+
+ decl = node->decl;
+
+ if (!TREE_PUBLIC (decl) || DECL_ARTIFICIAL (decl))
+ return;
+
+ if (real_varpool_node_1 (decl, false) != node)
+ return;
+
+ name = DECL_ASSEMBLER_NAME (decl);
+ htab_remove_elt_with_hash (varpool_symtab, name,
+ decl_assembler_name_hash (name));
+}
+
+/* Merge the addressable attribute from DECL2 to DECL1. */
+
+static inline void
+merge_addressable_attr (tree decl1, tree decl2)
+{
+ if (TREE_ADDRESSABLE (decl2))
+ TREE_ADDRESSABLE (decl1) = 1;
+}
+
+/* Resolve NODE->decl to symbol table entry *SLOT. */
+
+static void
+resolve_varpool_node (struct varpool_node **slot, struct varpool_node *node)
+{
+ tree decl1, decl2;
+
+ decl1 = (*slot)->decl;
+ decl2 = node->decl;
+
+ /* Take the decl with the complete type. */
+ if (COMPLETE_TYPE_P (TREE_TYPE (decl1))
+ && !COMPLETE_TYPE_P (TREE_TYPE (decl2)))
+ {
+ merge_addressable_attr (decl1, decl2);
+ return;
+ }
+ if (!COMPLETE_TYPE_P (TREE_TYPE (decl1))
+ && COMPLETE_TYPE_P (TREE_TYPE (decl2)))
+ {
+ *slot = node;
+ merge_addressable_attr (decl2, decl1);
+ return;
+ }
+
+ if (DECL_INITIAL (decl1) && !DECL_INITIAL (decl2))
+ {
+ merge_addressable_attr (decl1, decl2);
+ return;
+ }
+
+ if (!DECL_INITIAL (decl1) && DECL_INITIAL (decl2))
+ {
+ *slot = node;
+ merge_addressable_attr (decl2, decl1);
+ return;
+ }
+
+ /* Either all complete or neither's type is complete. Just
+ pick the primary module's decl. */
+ if (!varpool_is_auxiliary (*slot))
+ {
+ merge_addressable_attr (decl1, decl2);
+ return;
+ }
+
+ if (!varpool_is_auxiliary (node))
+ {
+ *slot = node;
+ merge_addressable_attr (decl2, decl1);
+ return;
+ }
+
+ merge_addressable_attr (decl1, decl2);
+ return;
+}
+
+/* Link NODE into var_decl symbol table. */
+
+void
+varpool_link_node (struct varpool_node *node)
+{
+ tree name;
+ void **slot;
+
+ if (!L_IPO_COMP_MODE || !varpool_symtab)
+ return;
+
+ if (!TREE_PUBLIC (node->decl) || DECL_ARTIFICIAL (node->decl))
+ return;
+
+ name = DECL_ASSEMBLER_NAME (node->decl);
+ slot = htab_find_slot_with_hash (varpool_symtab, name,
+ decl_assembler_name_hash (name),
+ INSERT);
+ if (*slot)
+ resolve_varpool_node ((struct varpool_node **) slot, node);
+ else
+ *slot = node;
+}
+
+/* Fixup references of VNODE. */
+
+static void
+fixup_reference_list (struct varpool_node *node)
+{
+ int i;
+ struct ipa_ref *ref;
+ struct ipa_ref_list *list = &node->ref_list;
+ vec<cgraph_node_ptr> new_refered;
+ vec<int> new_refered_type;
+ struct cgraph_node *c;
+ enum ipa_ref_use use_type = IPA_REF_LOAD;
+
+ new_refered.create (10);
+ new_refered_type.create (10);
+ for (i = 0; ipa_ref_list_reference_iterate (list, i, ref); i++)
+ {
+ if (!is_a <cgraph_node> (ref->referred))
+ continue;
+
+ struct cgraph_node *cnode = ipa_ref_node (ref);
+ struct cgraph_node *r_cnode
+ = cgraph_lipo_get_resolved_node (cnode->decl);
+ if (r_cnode != cnode)
+ {
+ new_refered.safe_push (r_cnode);
+ use_type = ref->use;
+ new_refered_type.safe_push ((int) use_type);
+ }
+ }
+ for (i = 0; new_refered.iterate (i, &c); ++i)
+ {
+ ipa_record_reference (node, c,
+ (enum ipa_ref_use) new_refered_type[i], NULL);
+ }
+}
+
+/* Perform cross module linking for var_decls. */
+
+void
+varpool_do_link (void)
+{
+ struct varpool_node *node;
+
+ if (!L_IPO_COMP_MODE)
+ return;
+
+ varpool_symtab
+ = htab_create_ggc (10, hash_node_by_assembler_name,
+ eq_node_assembler_name, NULL);
+ FOR_EACH_VARIABLE (node)
+ varpool_link_node (node);
+
+ /* Merge the externally visible attribute. */
+ FOR_EACH_VARIABLE (node)
+ {
+ if (node->externally_visible)
+ (real_varpool_node (node->decl))->externally_visible = true;
+ fixup_reference_list (node);
+ }
+}
+
+/* Get the list of assembler name ids with reference bit set. */
+
+void
+varpool_get_referenced_asm_ids (vec<tree,va_gc> **ids)
+{
+ struct varpool_node *node;
+ FOR_EACH_VARIABLE (node)
+ {
+ tree asm_id = NULL;
+ tree decl = node->decl;
+ if (DECL_ASSEMBLER_NAME_SET_P (decl))
+ {
+ asm_id = DECL_ASSEMBLER_NAME (decl);
+ vec_safe_push (*ids, asm_id);
+ }
+ }
+}
+
+/* Clear the referenced bit in all assembler ids. */
+
+void
+varpool_clear_asm_id_reference_bit (void)
+{
+ struct varpool_node *node;
+ FOR_EACH_VARIABLE (node)
+ {
+ tree asm_id = NULL;
+ tree decl = node->decl;
+ if (DECL_ASSEMBLER_NAME_SET_P (decl))
+ {
+ asm_id = DECL_ASSEMBLER_NAME (decl);
+ TREE_SYMBOL_REFERENCED (asm_id) = 0;
+ }
+ }
+}
+
+
+#include "gt-l-ipo.h"
diff --git a/gcc-4.9/gcc/l-ipo.h b/gcc-4.9/gcc/l-ipo.h
new file mode 100644
index 000000000..e9c661b78
--- /dev/null
+++ b/gcc-4.9/gcc/l-ipo.h
@@ -0,0 +1,68 @@
+/* Copyright (C) 2009. Free Software Foundation, Inc.
+ Contributed by Xinliang David Li (davidxl@google.com) and
+ Raksit Ashok (raksit@google.com)
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#ifndef GCC_L_IPO_H
+#define GCC_L_IPO_H
+
+/* Used in profile-gen */
+extern unsigned ggc_total_memory; /* in KB */
+
+/* Primary module's id (non-zero). If no module-info was read in, this will
+ be zero. */
+extern unsigned primary_module_id;
+
+/* The macro to test if the compilation is in light weight IPO mode.
+ In this mode, the source module being compiled will be compiled
+ together with 0 or more auxiliary modules. */
+#define L_IPO_COMP_MODE (primary_module_id != 0)
+
+/* The macro to test if the current module being parsed is the
+ primary source module. */
+#define L_IPO_IS_PRIMARY_MODULE (current_module_id == primary_module_id)
+
+/* The macro to test if the current module being parsed is an
+ auxiliary source module. */
+#define L_IPO_IS_AUXILIARY_MODULE (L_IPO_COMP_MODE && current_module_id \
+ && current_module_id != primary_module_id)
+
+/* Current module id. */
+extern unsigned current_module_id;
+extern bool include_all_aux;
+extern struct gcov_module_info **module_infos;
+extern int is_last_module (unsigned mod_id);
+
+extern unsigned num_in_fnames;
+extern int at_eof;
+extern bool parser_parsing_start;
+
+void push_module_scope (void);
+void pop_module_scope (void);
+tree lipo_save_decl (tree src);
+void lipo_restore_decl (tree, tree);
+void add_decl_to_current_module_scope (tree decl, void *b);
+int lipo_cmp_type (tree t1, tree t2);
+tree get_type_or_decl_name (tree);
+int equivalent_struct_types_for_tbaa (const_tree t1, const_tree t2);
+void lipo_link_and_fixup (void);
+extern void copy_defined_module_set (tree, tree);
+extern bool is_parsing_done_p (void);
+extern const char* get_module_name (unsigned int);
+
+#endif
diff --git a/gcc-4.9/gcc/langhooks-def.h b/gcc-4.9/gcc/langhooks-def.h
index 95bd37933..3cc155fed 100644
--- a/gcc-4.9/gcc/langhooks-def.h
+++ b/gcc-4.9/gcc/langhooks-def.h
@@ -36,6 +36,12 @@ struct diagnostic_info;
extern void lhd_do_nothing (void);
extern void lhd_do_nothing_t (tree);
+extern void lhd_do_nothing_u (unsigned);
+extern void lhd_do_nothing_t_t (tree, tree);
+extern int lhd_do_nothing_t_return_int (tree);
+extern bool lhd_do_nothing_t_return_bool (tree);
+extern int lhd_do_nothing_t_t_return_int (tree, tree);
+extern bool lhd_do_nothing_t_vp_return_bool (tree, void *);
extern void lhd_do_nothing_f (struct function *);
extern tree lhd_pass_through_t (tree);
extern bool lhd_post_options (const char **);
@@ -60,6 +66,7 @@ extern size_t lhd_tree_size (enum tree_code);
extern HOST_WIDE_INT lhd_to_target_charset (HOST_WIDE_INT);
extern tree lhd_expr_to_decl (tree, bool *, bool *);
extern tree lhd_builtin_function (tree);
+extern bool lhd_user_conv_function_p (tree decl);
/* Declarations of default tree inlining hooks. */
extern void lhd_initialize_diagnostics (diagnostic_context *);
@@ -74,6 +81,7 @@ extern bool lhd_handle_option (size_t, const char *, int, int, location_t,
extern int lhd_gimplify_expr (tree *, gimple_seq *, gimple_seq *);
extern enum omp_clause_default_kind lhd_omp_predetermined_sharing (tree);
extern tree lhd_omp_assignment (tree, tree, tree);
+extern void lhd_omp_finish_clause (tree, gimple_seq *);
struct gimplify_omp_ctx;
extern void lhd_omp_firstprivatize_type_sizes (struct gimplify_omp_ctx *,
tree);
@@ -109,6 +117,7 @@ extern bool lhd_omp_mappable_type (tree);
#define LANG_HOOKS_TYPES_COMPATIBLE_P lhd_types_compatible_p
#define LANG_HOOKS_BUILTIN_FUNCTION lhd_builtin_function
#define LANG_HOOKS_BUILTIN_FUNCTION_EXT_SCOPE LANG_HOOKS_BUILTIN_FUNCTION
+#define LANG_HOOKS_USER_CONV_FUNCTION lhd_user_conv_function_p
#define LANG_HOOKS_EXPR_TO_DECL lhd_expr_to_decl
#define LANG_HOOKS_TO_TARGET_CHARSET lhd_to_target_charset
#define LANG_HOOKS_INIT_TS lhd_do_nothing
@@ -194,6 +203,39 @@ extern tree lhd_make_node (enum tree_code);
LANG_HOOKS_RECONSTRUCT_COMPLEX_TYPE \
}
+#define LANG_HOOKS_ADD_BUILT_IN_DECL lhd_do_nothing_t
+#define LANG_HOOKS_SAVE_BUILT_IN_PRE lhd_do_nothing
+#define LANG_HOOKS_RESTORE_BUILT_IN_PRE lhd_do_nothing
+#define LANG_HOOKS_SAVE_BUILT_IN_POST lhd_do_nothing
+#define LANG_HOOKS_RESTORE_BUILT_IN_POST lhd_do_nothing
+#define LANG_HOOKS_CLEAR_NAME_BINDINGS lhd_do_nothing_t
+#define LANG_HOOKS_HAS_GLOBAL_NAME lhd_do_nothing_t_vp_return_bool
+#define LANG_HOOKS_GET_LANG_DECL_SIZE lhd_do_nothing_t_return_int
+#define LANG_HOOKS_DUP_LANG_TYPE lhd_do_nothing_t_t
+#define LANG_HOOKS_COPY_LANG_TYPE lhd_do_nothing_t_t
+#define LANG_HOOKS_PROCESS_PENDING_DECLS lhd_do_nothing_u
+#define LANG_HOOKS_CLEAR_DEFFERED_FNS lhd_do_nothing
+#define LANG_HOOKS_IS_GENERATED_TYPE lhd_do_nothing_t_return_bool
+#define LANG_HOOKS_CMP_LANG_TYPE lhd_do_nothing_t_t_return_int
+
+
+#define LANG_HOOKS_FOR_LIPO_INITIALIZER { \
+ LANG_HOOKS_ADD_BUILT_IN_DECL, \
+ LANG_HOOKS_SAVE_BUILT_IN_PRE, \
+ LANG_HOOKS_RESTORE_BUILT_IN_PRE, \
+ LANG_HOOKS_SAVE_BUILT_IN_POST, \
+ LANG_HOOKS_RESTORE_BUILT_IN_POST, \
+ LANG_HOOKS_CLEAR_NAME_BINDINGS, \
+ LANG_HOOKS_HAS_GLOBAL_NAME, \
+ LANG_HOOKS_GET_LANG_DECL_SIZE, \
+ LANG_HOOKS_DUP_LANG_TYPE, \
+ LANG_HOOKS_COPY_LANG_TYPE, \
+ LANG_HOOKS_PROCESS_PENDING_DECLS, \
+ LANG_HOOKS_CLEAR_DEFFERED_FNS, \
+ LANG_HOOKS_IS_GENERATED_TYPE, \
+ LANG_HOOKS_CMP_LANG_TYPE, \
+}
+
/* Declaration hooks. */
#define LANG_HOOKS_GLOBAL_BINDINGS_P global_bindings_p
#define LANG_HOOKS_PUSHDECL pushdecl
@@ -211,8 +253,9 @@ extern tree lhd_make_node (enum tree_code);
#define LANG_HOOKS_OMP_CLAUSE_DEFAULT_CTOR hook_tree_tree_tree_tree_null
#define LANG_HOOKS_OMP_CLAUSE_COPY_CTOR lhd_omp_assignment
#define LANG_HOOKS_OMP_CLAUSE_ASSIGN_OP lhd_omp_assignment
+#define LANG_HOOKS_OMP_CLAUSE_LINEAR_CTOR NULL
#define LANG_HOOKS_OMP_CLAUSE_DTOR hook_tree_tree_tree_null
-#define LANG_HOOKS_OMP_FINISH_CLAUSE hook_void_tree
+#define LANG_HOOKS_OMP_FINISH_CLAUSE lhd_omp_finish_clause
#define LANG_HOOKS_DECLS { \
LANG_HOOKS_GLOBAL_BINDINGS_P, \
@@ -234,6 +277,7 @@ extern tree lhd_make_node (enum tree_code);
LANG_HOOKS_OMP_CLAUSE_DEFAULT_CTOR, \
LANG_HOOKS_OMP_CLAUSE_COPY_CTOR, \
LANG_HOOKS_OMP_CLAUSE_ASSIGN_OP, \
+ LANG_HOOKS_OMP_CLAUSE_LINEAR_CTOR, \
LANG_HOOKS_OMP_CLAUSE_DTOR, \
LANG_HOOKS_OMP_FINISH_CLAUSE \
}
@@ -291,6 +335,7 @@ extern void lhd_end_section (void);
LANG_HOOKS_TREE_DUMP_INITIALIZER, \
LANG_HOOKS_DECLS, \
LANG_HOOKS_FOR_TYPES_INITIALIZER, \
+ LANG_HOOKS_FOR_LIPO_INITIALIZER, \
LANG_HOOKS_LTO, \
LANG_HOOKS_GET_INNERMOST_GENERIC_PARMS, \
LANG_HOOKS_GET_INNERMOST_GENERIC_ARGS, \
@@ -298,6 +343,7 @@ extern void lhd_end_section (void);
LANG_HOOKS_GIMPLIFY_EXPR, \
LANG_HOOKS_BUILTIN_FUNCTION, \
LANG_HOOKS_BUILTIN_FUNCTION_EXT_SCOPE, \
+ LANG_HOOKS_USER_CONV_FUNCTION, \
LANG_HOOKS_INIT_TS, \
LANG_HOOKS_EXPR_TO_DECL, \
LANG_HOOKS_EH_PERSONALITY, \
diff --git a/gcc-4.9/gcc/langhooks.c b/gcc-4.9/gcc/langhooks.c
index d00ebd8a0..3b2081d42 100644
--- a/gcc-4.9/gcc/langhooks.c
+++ b/gcc-4.9/gcc/langhooks.c
@@ -103,6 +103,48 @@ lhd_return_null_const_tree (const_tree ARG_UNUSED (t))
return NULL_TREE;
}
+void
+lhd_do_nothing_u (unsigned ARG_UNUSED (t))
+{
+}
+
+int
+lhd_do_nothing_t_return_int (tree ARG_UNUSED (t))
+{
+ return false;
+}
+
+bool
+lhd_do_nothing_t_return_bool (tree ARG_UNUSED (t))
+{
+ return false;
+}
+
+
+void
+lhd_do_nothing_t_t (tree ARG_UNUSED (t), tree ARG_UNUSED (t2))
+{
+}
+
+int
+lhd_do_nothing_t_t_return_int (tree ARG_UNUSED (t), tree ARG_UNUSED (t2))
+{
+ return 1;
+}
+
+bool
+lhd_do_nothing_t_vp_return_bool (tree ARG_UNUSED (t), void * ARG_UNUSED (t2))
+{
+ return true;
+}
+
+/* Do nothing (tree, tree). Return NULL_TREE. */
+tree
+lhd_do_nothing_t_t_return_null_tree (tree ARG_UNUSED (t), tree ARG_UNUSED (t2))
+{
+ return NULL_TREE;
+}
+
/* The default post options hook. */
bool
@@ -515,6 +557,13 @@ lhd_omp_assignment (tree clause ATTRIBUTE_UNUSED, tree dst, tree src)
return build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
}
+/* Finalize clause C. */
+
+void
+lhd_omp_finish_clause (tree, gimple_seq *)
+{
+}
+
/* Register language specific type size variables as potentially OpenMP
firstprivate variables. */
@@ -616,6 +665,12 @@ lhd_builtin_function (tree decl)
return decl;
}
+bool
+lhd_user_conv_function_p (tree decl ATTRIBUTE_UNUSED)
+{
+ return false;
+}
+
/* Create a builtin type. */
tree
diff --git a/gcc-4.9/gcc/langhooks.h b/gcc-4.9/gcc/langhooks.h
index c848b0c59..f24bcdd82 100644
--- a/gcc-4.9/gcc/langhooks.h
+++ b/gcc-4.9/gcc/langhooks.h
@@ -219,12 +219,71 @@ struct lang_hooks_for_decls
/* Similarly, except use an assignment operator instead. */
tree (*omp_clause_assign_op) (tree clause, tree dst, tree src);
+ /* Build and return code for a constructor of DST that sets it to
+ SRC + ADD. */
+ tree (*omp_clause_linear_ctor) (tree clause, tree dst, tree src, tree add);
+
/* Build and return code destructing DECL. Return NULL if nothing
to be done. */
tree (*omp_clause_dtor) (tree clause, tree decl);
/* Do language specific checking on an implicitly determined clause. */
- void (*omp_finish_clause) (tree clause);
+ void (*omp_finish_clause) (tree clause, gimple_seq *pre_p);
+};
+
+/* Lang hooks for LIPO. */
+
+struct lang_hooks_for_lipo
+{
+ /* Add DECL to the list of predefined builtins. */
+ void (*add_built_in_decl) (tree decl);
+
+ /* Save the tree (by making a copy) and binding values
+ for builtins before parsing start. */
+ void (*save_built_in_decl_pre_parsing) (void);
+
+ /* Restore builtins and their bindings to their values
+ before parsing. */
+ void (*restore_built_in_decl_pre_parsing) (void);
+
+ /* Save the tree (by making a copy) and binding values for
+ builtins after parsing of a file. */
+ void (*save_built_in_decl_post_module_parsing) (void);
+
+ /* Restore builtins and their bindings to their post
+ parsing values. */
+ void (*restore_built_in_decl_post_module_parsing) (void);
+
+ /* Clear symbol binding for name ID. */
+ void (*clear_global_name_bindings) (tree id);
+
+ /* Return true if DECL in SCOPE is scoped in global/namespace scope,
+ otherwise return false. */
+ bool (*has_global_name) (tree decl, void *scope);
+
+ /* Return the actual size of the lang_decl struct for
+ decl T. */
+ int (*get_lang_decl_size) (tree t);
+
+ /* Duplicate language specific type information from SRC
+ to DEST. */
+ void (*dup_lang_type) (tree src, tree dest);
+
+ /* Copy DEST into SRC. */
+ void (*copy_lang_type) (tree src, tree dest);
+
+ /* Process decls after parsing of a source module. */
+ void (*process_pending_decls) (unsigned);
+
+ /* Clear the list of deferred functions. */
+ void (*clear_deferred_fns) (void);
+
+ /* Return true if T is compiler generated. */
+ bool (*is_compiler_generated_type) (tree t);
+
+ /* Compare language specific types T1 and T2.
+ Return 1 if they are compatible. */
+ int (*cmp_lang_type) (tree t1, tree t2);
};
/* Language hooks related to LTO serialization. */
@@ -408,6 +467,8 @@ struct lang_hooks
struct lang_hooks_for_types types;
+ struct lang_hooks_for_lipo l_ipo;
+
struct lang_hooks_for_lto lto;
/* Returns a TREE_VEC of the generic parameters of an instantiation of
@@ -438,6 +499,9 @@ struct lang_hooks
backend must add all of the builtins at program initialization time. */
tree (*builtin_function_ext_scope) (tree decl);
+ /* Returns true if DECL is a user defined conversion operator (C++) */
+ bool (*user_conv_function_p) (tree decl);
+
/* Used to set up the tree_contains_structure array for a frontend. */
void (*init_ts) (void);
diff --git a/gcc-4.9/gcc/loop-iv.c b/gcc-4.9/gcc/loop-iv.c
index 909122064..ef46aefad 100644
--- a/gcc-4.9/gcc/loop-iv.c
+++ b/gcc-4.9/gcc/loop-iv.c
@@ -3022,8 +3022,12 @@ get_simple_loop_desc (struct loop *loop)
/* At least desc->infinite is not always initialized by
find_simple_loop_exit. */
desc = ggc_alloc_cleared_niter_desc ();
- iv_analysis_loop_init (loop);
- find_simple_exit (loop, desc);
+ if (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun))
+ {
+ iv_analysis_loop_init (loop);
+ find_simple_exit (loop, desc);
+ }
+ analyze_loop_insns (loop, desc);
loop->simple_loop_desc = desc;
if (desc->simple_p && (desc->assumptions || desc->infinite))
diff --git a/gcc-4.9/gcc/loop-unroll.c b/gcc-4.9/gcc/loop-unroll.c
index 4561ce8cb..1cf7129bf 100644
--- a/gcc-4.9/gcc/loop-unroll.c
+++ b/gcc-4.9/gcc/loop-unroll.c
@@ -33,6 +33,7 @@ along with GCC; see the file COPYING3. If not see
#include "recog.h"
#include "target.h"
#include "dumpfile.h"
+#include "gcov-io.h"
/* This pass performs loop unrolling and peeling. We only perform these
optimizations on innermost loops (with single exception) because
@@ -202,6 +203,99 @@ static void combine_var_copies_in_loop_exit (struct var_to_expand *,
basic_block);
static rtx get_expansion (struct var_to_expand *);
+/* Compute the maximum number of times LOOP can be unrolled without exceeding
+ a branch budget, which can increase branch mispredictions. The number of
+ branches is computed by weighting each branch with its expected execution
+ probability through the loop based on profile data. If no profile feedback
+ data exists, simply return the current NUNROLL factor. */
+
+static unsigned
+max_unroll_with_branches(struct loop *loop, unsigned nunroll)
+{
+ struct loop *outer;
+ struct niter_desc *outer_desc = 0;
+ int outer_niters = 1;
+ int frequent_iteration_threshold;
+ unsigned branch_budget;
+ struct niter_desc *desc = get_simple_loop_desc (loop);
+
+ /* Ignore loops with FP computation as these tend to benefit much more
+ consistently from unrolling. */
+ if (desc->has_fp)
+ return nunroll;
+
+ frequent_iteration_threshold = PARAM_VALUE (PARAM_MIN_ITER_UNROLL_WITH_BRANCHES);
+ if (expected_loop_iterations (loop) >= (unsigned) frequent_iteration_threshold)
+ return nunroll;
+
+ /* If there was no profile feedback data, av_num_branches will be 0
+ and we won't limit unrolling. If the av_num_branches is at most 1,
+ also don't limit unrolling as the back-edge branch will not be duplicated. */
+ if (desc->av_num_branches <= 1)
+ return nunroll;
+
+ /* Walk up the loop tree until we find a hot outer loop in which the current
+ loop is nested. At that point we will compute the number of times the
+ current loop can be unrolled based on the number of branches in the hot
+ outer loop. */
+ outer = loop_outer (loop);
+ /* The loop structure contains a fake outermost loop, so this should always
+ be non-NULL for our current loop. */
+ gcc_assert (outer);
+
+ /* Walk up the loop tree until we either find a hot outer loop or hit the
+ fake outermost loop at the root. */
+ while (true)
+ {
+ outer_desc = get_simple_loop_desc (outer);
+
+ /* Stop if we hit the fake outermost loop at the root of the tree,
+ which includes the whole procedure. */
+ if (!loop_outer (outer))
+ break;
+
+ if (outer_desc->const_iter)
+ outer_niters *= outer_desc->niter;
+ else if (outer->header->count)
+ outer_niters *= expected_loop_iterations (outer);
+
+ /* If the outer loop has enough iterations to be considered hot, then
+ we can stop our upwards loop tree traversal and examine the current
+ outer loop. */
+ if (outer_niters >= frequent_iteration_threshold)
+ break;
+
+ outer = loop_outer (outer);
+ }
+
+ gcc_assert(outer);
+
+ /* Assume that any call will cause the branch budget to be exceeded,
+ and that we can't unroll the current loop without increasing
+ mispredicts. */
+ if (outer_desc->has_call)
+ return 0;
+
+ /* Otherwise, compute the maximum number of times current loop can be
+ unrolled without exceeding our branch budget. First we subtract
+ off the outer loop's average branch count from the budget. Note
+ that this includes the branches in the current loop. This yields
+ the number of branches left in the budget for the unrolled copies.
+ We divide this by the number of branches in the current loop that
+ must be duplicated when we unroll, which is the total average
+ number of branches minus the back-edge branch. This yields the
+ number of new loop body copies that can be created by unrolling
+ without exceeding the budget, to which we add 1 to get the unroll
+ factor. Note that the "outermost loop" may be the whole procedure
+ if we did not find a hot enough enclosing loop. */
+ branch_budget = PARAM_VALUE (PARAM_UNROLL_OUTER_LOOP_BRANCH_BUDGET);
+ if (outer_desc->av_num_branches > branch_budget)
+ return 0;
+ /* We already returned early if desc->av_num_branches <= 1. */
+ return (branch_budget - outer_desc->av_num_branches)
+ / (desc->av_num_branches - 1) + 1;
+}
+
/* Emit a message summarizing the unroll or peel that will be
performed for LOOP, along with the loop's location LOCUS, if
appropriate given the dump or -fopt-info settings. */
@@ -263,6 +357,85 @@ report_unroll_peel (struct loop *loop, location_t locus)
dump_printf (report_flags, "\n");
}
+/* Determine whether and how much LOOP unrolling/peeling should be constrained
+ based on code footprint estimates. Returns the codesize-based factor to be
+ divided into the max instructions in an unrolled or peeled loop:
+ 1) For size <= threshold, do not limit (by returning 1).
+ 2) For threshold < size < 2*threshold, reduce maximum allowed peeled or
+ unrolled instructions according to loop hotness.
+ 3) For threshold >= 2*threshold, disable unrolling/peeling (by returning
+ INT_MAX). */
+
+static int
+code_size_limit_factor(struct loop *loop)
+{
+ unsigned size_threshold, num_hot_counters;
+ struct niter_desc *desc = get_simple_loop_desc (loop);
+ gcov_type sum_to_header_ratio;
+ int hotness_ratio_threshold;
+ gcov_type limit;
+ int limit_factor;
+ gcov_working_set_t *ws;
+
+ ws = find_working_set(999);
+ if (! ws)
+ return 1;
+ num_hot_counters = ws->num_counters;
+
+ /* First check if the application has a large codesize footprint.
+ This is estimated from FDO profile summary information for the
+ program, where the num_hot_counters indicates the number of hottest
+ counters (blocks) that compose most of the execution time of
+ the program. A large value would indicate a large flat execution
+ profile where icache misses may be a concern. */
+ size_threshold = PARAM_VALUE (PARAM_UNROLLPEEL_CODESIZE_THRESHOLD);
+ if (!profile_info
+ || num_hot_counters <= size_threshold
+ || !profile_info->sum_all)
+ return 1;
+
+ /* Next, exclude some loops where unrolling/peeling may be more
+ important to overall performance. */
+
+ /* Ignore FP loops, which are more likely to benefit heavily from
+ unrolling. */
+ if (desc->has_fp)
+ return 1;
+
+ /* Next, set the value of the codesize-based unroll factor divisor which in
+ most loops will need to be set to a value that will reduce or eliminate
+ unrolling/peeling. */
+ if (loop->header->count > 0)
+ {
+ /* Allow limited unrolling for very hot loops. */
+ sum_to_header_ratio = profile_info->sum_all / loop->header->count;
+ hotness_ratio_threshold = PARAM_VALUE (PARAM_UNROLLPEEL_HOTNESS_THRESHOLD);
+ /* When the profile count sum to loop entry header ratio is smaller than
+ the threshold (i.e. the loop entry is hot enough), the divisor is set
+ to 1 so the unroll/peel factor is not reduced. When it is bigger
+ than the ratio, increase the divisor by the amount this ratio
+ is over the threshold, which will quickly reduce the unroll/peel
+ factor to zero as the loop's hotness reduces. */
+ if (sum_to_header_ratio > hotness_ratio_threshold)
+ {
+ limit = sum_to_header_ratio / hotness_ratio_threshold;
+ gcc_assert (limit >= 1);
+ if (limit > INT_MAX)
+ limit_factor = INT_MAX;
+ else
+ limit_factor = (int) limit;
+ }
+ else
+ limit_factor = 1;
+ }
+ else
+ /* For appliations that are at least twice the codesize limit, set
+ the divisor to a large value that will force the unroll factor to 0. */
+ limit_factor = INT_MAX;
+
+ return limit_factor;
+}
+
/* Unroll and/or peel (depending on FLAGS) LOOPS. */
void
unroll_and_peel_loops (int flags)
@@ -640,6 +813,7 @@ static void
decide_unroll_constant_iterations (struct loop *loop, int flags)
{
unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
+ unsigned nunroll_branches;
struct niter_desc *desc;
double_int iterations;
@@ -687,6 +861,21 @@ decide_unroll_constant_iterations (struct loop *loop, int flags)
return;
}
+ /* Be careful when unrolling loops with branches inside -- it can increase
+ the number of mispredicts. */
+ if (desc->num_branches > 1)
+ {
+ nunroll_branches = max_unroll_with_branches (loop, nunroll);
+ if (nunroll > nunroll_branches)
+ nunroll = nunroll_branches;
+ if (nunroll <= 1)
+ {
+ if (dump_file)
+ fprintf (dump_file, ";; Not unrolling, contains branches\n");
+ return;
+ }
+ }
+
/* Check whether the loop rolls enough to consider.
Consult also loop bounds and profile; in the case the loop has more
than one exit it may well loop less than determined maximal number
@@ -939,9 +1128,10 @@ unroll_loop_constant_iterations (struct loop *loop)
static void
decide_unroll_runtime_iterations (struct loop *loop, int flags)
{
- unsigned nunroll, nunroll_by_av, i;
+ unsigned nunroll, nunroll_by_av, nunroll_branches, i;
struct niter_desc *desc;
double_int iterations;
+ int limit_factor = 1;
if (!(flags & UAP_UNROLL))
{
@@ -954,10 +1144,26 @@ decide_unroll_runtime_iterations (struct loop *loop, int flags)
"\n;; Considering unrolling loop with runtime "
"computable number of iterations\n");
+ if (flag_unroll_codesize_limit)
+ {
+ /* Determine whether to limit code size growth from unrolling,
+ using FDO profile summary information that gives an
+ estimated number of executed blocks. */
+ limit_factor = code_size_limit_factor (loop);
+ if (dump_file && limit_factor > 1)
+ {
+ fprintf (dump_file,
+ ";; Due to large code size footprint estimate, limit "
+ "max unrolled insns by divisor %d\n", limit_factor);
+ }
+ }
+
/* nunroll = total number of copies of the original loop body in
unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
- nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
- nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
+ nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / limit_factor
+ / loop->ninsns;
+ nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS)
+ / limit_factor / loop->av_ninsns;
if (nunroll > nunroll_by_av)
nunroll = nunroll_by_av;
if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
@@ -994,6 +1200,21 @@ decide_unroll_runtime_iterations (struct loop *loop, int flags)
return;
}
+ /* Be careful when unrolling loops with branches inside -- it can increase
+ the number of mispredicts. */
+ if (desc->num_branches > 1)
+ {
+ nunroll_branches = max_unroll_with_branches (loop, nunroll);
+ if (nunroll > nunroll_branches)
+ nunroll = nunroll_branches;
+ if (nunroll <= 1)
+ {
+ if (dump_file)
+ fprintf (dump_file, ";; Not unrolling, contains branches\n");
+ return;
+ }
+ }
+
/* Check whether the loop rolls. */
if ((get_estimated_loop_iterations (loop, &iterations)
|| get_max_loop_iterations (loop, &iterations))
@@ -1004,6 +1225,13 @@ decide_unroll_runtime_iterations (struct loop *loop, int flags)
return;
}
+ /* In AutoFDO, the profile is not accurate. If the calculated trip count
+ is larger than the header count, then the profile is not accurate
+ enough to make correct unroll decisions. */
+ if (flag_auto_profile
+ && expected_loop_iterations (loop) > loop->header->count)
+ return;
+
/* Success; now force nunroll to be power of 2, as we are unable to
cope with overflows in computation of number of iterations. */
for (i = 1; 2 * i <= nunroll; i *= 2)
@@ -1338,6 +1566,7 @@ decide_peel_simple (struct loop *loop, int flags)
{
unsigned npeel;
double_int iterations;
+ int limit_factor = 1;
if (!(flags & UAP_PEEL))
{
@@ -1348,8 +1577,23 @@ decide_peel_simple (struct loop *loop, int flags)
if (dump_file)
fprintf (dump_file, "\n;; Considering simply peeling loop\n");
+ if (flag_peel_codesize_limit)
+ {
+ /* Determine whether to limit code size growth from peeling,
+ using FDO profile summary information that gives an
+ estimated number of executed blocks. */
+ limit_factor = code_size_limit_factor (loop);
+ if (dump_file && limit_factor > 1)
+ {
+ fprintf (dump_file,
+ ";; Due to large code size footprint estimate, limit "
+ "max peeled insns by divisor %d\n", limit_factor);
+ }
+ }
+
/* npeel = number of iterations to peel. */
- npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
+ npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / limit_factor
+ / loop->ninsns;
if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
@@ -1361,16 +1605,26 @@ decide_peel_simple (struct loop *loop, int flags)
return;
}
+ struct niter_desc *desc = get_simple_loop_desc (loop);
+
+ /* Check number of iterations. */
+ if (desc->simple_p && !desc->assumptions && desc->const_iter)
+ {
+ if (dump_file)
+ fprintf (dump_file, ";; Loop iterates constant times\n");
+ return;
+ }
+
/* Do not simply peel loops with branches inside -- it increases number
of mispredicts.
Exception is when we do have profile and we however have good chance
to peel proper number of iterations loop will iterate in practice.
- TODO: this heuristic needs tunning; while for complette unrolling
+ TODO: this heuristic needs tunning; while for complete unrolling
the branch inside loop mostly eliminates any improvements, for
peeling it is not the case. Also a function call inside loop is
also branch from branch prediction POV (and probably better reason
to not unroll/peel). */
- if (num_loop_branches (loop) > 1
+ if (desc->num_branches > 1
&& profile_status_for_fn (cfun) != PROFILE_READ)
{
if (dump_file)
@@ -1493,6 +1747,7 @@ decide_unroll_stupid (struct loop *loop, int flags)
unsigned nunroll, nunroll_by_av, i;
struct niter_desc *desc;
double_int iterations;
+ int limit_factor = 1;
if (!(flags & UAP_UNROLL_ALL))
{
@@ -1503,11 +1758,26 @@ decide_unroll_stupid (struct loop *loop, int flags)
if (dump_file)
fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
+ if (flag_unroll_codesize_limit)
+ {
+ /* Determine whether to limit code size growth from unrolling,
+ using FDO profile summary information that gives an
+ estimated number of executed blocks. */
+ limit_factor = code_size_limit_factor (loop);
+ if (dump_file && limit_factor > 1)
+ {
+ fprintf (dump_file,
+ ";; Due to large code size footprint estimate, limit "
+ "max unrolled insns by divisor %d\n", limit_factor);
+ }
+ }
+
/* nunroll = total number of copies of the original loop body in
unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
- nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
- nunroll_by_av
- = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
+ nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / limit_factor
+ / loop->ninsns;
+ nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS)
+ / limit_factor / loop->av_ninsns;
if (nunroll > nunroll_by_av)
nunroll = nunroll_by_av;
if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
@@ -1539,7 +1809,7 @@ decide_unroll_stupid (struct loop *loop, int flags)
of mispredicts.
TODO: this heuristic needs tunning; call inside the loop body
is also relatively good reason to not unroll. */
- if (num_loop_branches (loop) > 1)
+ if (desc->num_branches > 1)
{
if (dump_file)
fprintf (dump_file, ";; Not unrolling, contains branches\n");
diff --git a/gcc-4.9/gcc/lra-constraints.c b/gcc-4.9/gcc/lra-constraints.c
index b7bfc57a5..ec28b7ff8 100644
--- a/gcc-4.9/gcc/lra-constraints.c
+++ b/gcc-4.9/gcc/lra-constraints.c
@@ -1343,6 +1343,8 @@ insert_move_for_subreg (rtx *before, rtx *after, rtx origreg, rtx newreg)
}
}
+static int valid_address_p (enum machine_mode mode, rtx addr, addr_space_t as);
+
/* Make reloads for subreg in operand NOP with internal subreg mode
REG_MODE, add new reloads for further processing. Return true if
any reload was generated. */
@@ -1373,10 +1375,26 @@ simplify_operand_subreg (int nop, enum machine_mode reg_mode)
equivalences in function lra_constraints) and because for spilled
pseudos we allocate stack memory enough for the biggest
corresponding paradoxical subreg. */
- if ((MEM_P (reg)
- && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (reg))
- || MEM_ALIGN (reg) >= GET_MODE_ALIGNMENT (mode)))
- || (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER))
+ if (MEM_P (reg)
+ && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (reg))
+ || MEM_ALIGN (reg) >= GET_MODE_ALIGNMENT (mode)))
+ {
+ rtx subst, old = *curr_id->operand_loc[nop];
+
+ alter_subreg (curr_id->operand_loc[nop], false);
+ subst = *curr_id->operand_loc[nop];
+ lra_assert (MEM_P (subst));
+ if (! valid_address_p (GET_MODE (reg), XEXP (reg, 0),
+ MEM_ADDR_SPACE (reg))
+ || valid_address_p (GET_MODE (subst), XEXP (subst, 0),
+ MEM_ADDR_SPACE (subst)))
+ return true;
+ /* If the address was valid and became invalid, prefer to reload
+ the memory. Typical case is when the index scale should
+ correspond the memory. */
+ *curr_id->operand_loc[nop] = old;
+ }
+ else if (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER)
{
alter_subreg (curr_id->operand_loc[nop], false);
return true;
@@ -2879,9 +2897,14 @@ equiv_address_substitution (struct address_info *ad)
Add reloads to the lists *BEFORE and *AFTER. We might need to add
reloads to *AFTER because of inc/dec, {pre, post} modify in the
- address. Return true for any RTL change. */
+ address. Return true for any RTL change.
+
+ The function is a helper function which does not produce all
+ transformations which can be necessary. It does just basic steps.
+ To do all necessary transformations use function
+ process_address. */
static bool
-process_address (int nop, rtx *before, rtx *after)
+process_address_1 (int nop, rtx *before, rtx *after)
{
struct address_info ad;
rtx new_reg;
@@ -3071,6 +3094,13 @@ process_address (int nop, rtx *before, rtx *after)
*ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
new_reg, *ad.index);
}
+ else if (get_index_scale (&ad) == 1)
+ {
+ /* The last transformation to one reg will be made in
+ curr_insn_transform function. */
+ end_sequence ();
+ return false;
+ }
else
{
/* base + scale * index => base + new_reg,
@@ -3088,6 +3118,18 @@ process_address (int nop, rtx *before, rtx *after)
return true;
}
+/* Do address reloads until it is necessary. Use process_address_1 as
+ a helper function. Return true for any RTL changes. */
+static bool
+process_address (int nop, rtx *before, rtx *after)
+{
+ bool res = false;
+
+ while (process_address_1 (nop, before, after))
+ res = true;
+ return res;
+}
+
/* Emit insns to reload VALUE into a new register. VALUE is an
auto-increment or auto-decrement RTX whose operand is a register or
memory location; so reloading involves incrementing that location.
@@ -3372,7 +3414,7 @@ curr_insn_transform (void)
change_p = true;
lra_update_dup (curr_id, i);
}
-
+
if (change_p)
/* If we've changed the instruction then any alternative that
we chose previously may no longer be valid. */
diff --git a/gcc-4.9/gcc/lra-eliminations.c b/gcc-4.9/gcc/lra-eliminations.c
index abdf69733..278782035 100644
--- a/gcc-4.9/gcc/lra-eliminations.c
+++ b/gcc-4.9/gcc/lra-eliminations.c
@@ -565,6 +565,16 @@ lra_eliminate_regs_1 (rtx insn, rtx x, enum machine_mode mem_mode,
alter_subreg (&x, false);
return x;
}
+ else if (! subst_p)
+ {
+ /* LRA can transform subregs itself. So don't call
+ simplify_gen_subreg until LRA transformations are
+ finished. Function simplify_gen_subreg can do
+ non-trivial transformations (like truncation) which
+ might make LRA work to fail. */
+ SUBREG_REG (x) = new_rtx;
+ return x;
+ }
else
return simplify_gen_subreg (GET_MODE (x), new_rtx,
GET_MODE (new_rtx), SUBREG_BYTE (x));
diff --git a/gcc-4.9/gcc/lto/ChangeLog b/gcc-4.9/gcc/lto/ChangeLog
index b396e485d..47a5924c1 100644
--- a/gcc-4.9/gcc/lto/ChangeLog
+++ b/gcc-4.9/gcc/lto/ChangeLog
@@ -1,3 +1,8 @@
+2014-04-22 Jan Hubicka <hubicka@ucw.cz>
+
+ PR lto/61012
+ * lto-symtab.c (lto_symtab_merge_decls_1):
+
2014-04-22 Release Manager
* GCC 4.9.0 released.
diff --git a/gcc-4.9/gcc/lto/lto-symtab.c b/gcc-4.9/gcc/lto/lto-symtab.c
index 71242c892..e77448e19 100644
--- a/gcc-4.9/gcc/lto/lto-symtab.c
+++ b/gcc-4.9/gcc/lto/lto-symtab.c
@@ -453,7 +453,12 @@ lto_symtab_merge_decls_1 (symtab_node *first)
cgraph or a varpool node. */
if (!prevailing)
{
- prevailing = first;
+ for (prevailing = first;
+ prevailing; prevailing = prevailing->next_sharing_asm_name)
+ if (lto_symtab_symbol_p (prevailing))
+ break;
+ if (!prevailing)
+ return;
/* For variables chose with a priority variant with vnode
attached (i.e. from unit where external declaration of
variable is actually used).
diff --git a/gcc-4.9/gcc/mcf.c b/gcc-4.9/gcc/mcf.c
index 9a766399e..f8997541a 100644
--- a/gcc-4.9/gcc/mcf.c
+++ b/gcc-4.9/gcc/mcf.c
@@ -47,6 +47,10 @@ along with GCC; see the file COPYING3. If not see
#include "coretypes.h"
#include "basic-block.h"
#include "gcov-io.h"
+#include "params.h"
+#include "diagnostic-core.h"
+
+#include "tree.h"
#include "profile.h"
#include "dumpfile.h"
@@ -59,15 +63,18 @@ along with GCC; see the file COPYING3. If not see
#define COST(k, w) ((k) / mcf_ln ((w) + 2))
/* Limit the number of iterations for cancel_negative_cycles() to ensure
reasonable compile time. */
-#define MAX_ITER(n, e) 10 + (1000000 / ((n) * (e)))
+#define MAX_ITER(n, e) (PARAM_VALUE (PARAM_MIN_MCF_CANCEL_ITERS) + \
+ (1000000 / ((n) * (e))))
+
typedef enum
{
- INVALID_EDGE,
+ INVALID_EDGE = 0,
VERTEX_SPLIT_EDGE, /* Edge to represent vertex with w(e) = w(v). */
REDIRECT_EDGE, /* Edge after vertex transformation. */
REVERSE_EDGE,
SOURCE_CONNECT_EDGE, /* Single edge connecting to single source. */
SINK_CONNECT_EDGE, /* Single edge connecting to single sink. */
+ SINK_SOURCE_EDGE, /* Single edge connecting sink to source. */
BALANCE_EDGE, /* Edge connecting with source/sink: cp(e) = 0. */
REDIRECT_NORMALIZED_EDGE, /* Normalized edge for a redirect edge. */
REVERSE_NORMALIZED_EDGE /* Normalized edge for a reverse edge. */
@@ -243,6 +250,10 @@ dump_fixup_edge (FILE *file, fixup_graph_type *fixup_graph, fixup_edge_p fedge)
fputs (" @SINK_CONNECT_EDGE", file);
break;
+ case SINK_SOURCE_EDGE:
+ fputs (" @SINK_SOURCE_EDGE", file);
+ break;
+
case REVERSE_EDGE:
fputs (" @REVERSE_EDGE", file);
break;
@@ -458,7 +469,7 @@ create_fixup_graph (fixup_graph_type *fixup_graph)
double k_neg = 0;
/* Vector to hold D(v) = sum_out_edges(v) - sum_in_edges(v). */
gcov_type *diff_out_in = NULL;
- gcov_type supply_value = 1, demand_value = 0;
+ gcov_type supply_value = 0, demand_value = 0;
gcov_type fcost = 0;
int new_entry_index = 0, new_exit_index = 0;
int i = 0, j = 0;
@@ -481,10 +492,12 @@ create_fixup_graph (fixup_graph_type *fixup_graph)
+ n_basic_blocks_for_fn (cfun) + 2);
/* In create_fixup_graph: Each basic block and edge can be split into 3
- edges. Number of balance edges = n_basic_blocks. So after
- create_fixup_graph:
- max_edges = 4 * n_basic_blocks + 3 * n_edges
+ edges. Number of balance edges = n_basic_blocks - 1. And there is 1 edge
+ connecting new_entry and new_exit, and 2 edges connecting new_entry to
+ entry, and exit to new_exit. So after create_fixup_graph:
+ max_edges = 4 * n_basic_blocks + 3 * n_edges + 2
Accounting for residual flow edges
+
max_edges = 2 * (4 * n_basic_blocks + 3 * n_edges)
= 8 * n_basic_blocks + 6 * n_edges
< 8 * n_basic_blocks + 8 * n_edges. */
@@ -527,6 +540,7 @@ create_fixup_graph (fixup_graph_type *fixup_graph)
{
/* v'->v'': index1->(index1+1). */
i = 2 * bb->index;
+
fcost = (gcov_type) COST (k_pos, bb->count);
add_fixup_edge (fixup_graph, i, i + 1, VERTEX_SPLIT_EDGE, bb->count,
fcost, CAP_INFINITY);
@@ -590,23 +604,45 @@ create_fixup_graph (fixup_graph_type *fixup_graph)
new_entry_index = fixup_graph->new_entry_index = fixup_graph->num_vertices;
fixup_graph->num_vertices++;
- /* Set supply_value to 1 to avoid zero count function ENTRY. */
- add_fixup_edge (fixup_graph, new_entry_index, ENTRY_BLOCK, SOURCE_CONNECT_EDGE,
- 1 /* supply_value */, 0, 1 /* supply_value */);
-
- /* Create new exit with EXIT_BLOCK as single pred. */
+ /* Set capacity to 0 initially, it will be updated after
+ supply_value is computed. */
+ add_fixup_edge (fixup_graph, new_entry_index, ENTRY_BLOCK,
+ SOURCE_CONNECT_EDGE, 0 /* supply_value */, 0,
+ 0 /* supply_value */);
+ add_fixup_edge (fixup_graph, ENTRY_BLOCK, new_entry_index,
+ SOURCE_CONNECT_EDGE, 0 /* supply_value */, 0,
+ 0 /* supply_value */);
+
+
+ /* Set capacity to 0 initially, it will be updated after
+ demand_value is computed. */
new_exit_index = fixup_graph->new_exit_index = fixup_graph->num_vertices;
fixup_graph->num_vertices++;
add_fixup_edge (fixup_graph, 2 * EXIT_BLOCK + 1, new_exit_index,
SINK_CONNECT_EDGE,
0 /* demand_value */, 0, 0 /* demand_value */);
+ add_fixup_edge (fixup_graph, new_exit_index, 2 * EXIT_BLOCK + 1,
+ SINK_CONNECT_EDGE,
+ 0 /* demand_value */, 0, 0 /* demand_value */);
+
+
+ /* Create a back edge from the new_exit to the new_entry.
+ Initially, its capacity will be set to 0 so that it does not
+ affect max flow, but later its capacity will be changed to
+ infinity to cancel negative cycles. */
+ add_fixup_edge (fixup_graph, new_exit_index, new_entry_index,
+ SINK_SOURCE_EDGE, 0, 0, 0);
+
+
/* Connect vertices with unbalanced D(v) to source/sink. */
if (dump_file)
fprintf (dump_file, "\nD(v) balance:\n");
- /* Skip vertices for ENTRY (0, 1) and EXIT (2,3) blocks, so start with i = 4.
- diff_out_in[v''] will be 0, so skip v'' vertices, hence i += 2. */
- for (i = 4; i < new_entry_index; i += 2)
+
+ /* Skip vertices for ENTRY (0, 1) and EXIT (2,3) blocks, so start
+ with i = 4. diff_out_in[v''] should be 0, but may not be due to
+ rounding error. So here we consider all vertices. */
+ for (i = 4; i < new_entry_index; i += 1)
{
if (diff_out_in[i] > 0)
{
@@ -671,7 +707,6 @@ create_fixup_graph (fixup_graph_type *fixup_graph)
fprintf (dump_file, "------------------\n");
}
- pfedge->cost /= 2;
pfedge->norm_vertex_index = new_index;
if (dump_file)
{
@@ -681,7 +716,7 @@ create_fixup_graph (fixup_graph_type *fixup_graph)
/* Add a new fixup edge: new_index->src. */
add_fixup_edge (fixup_graph, new_index, pfedge->src,
- REVERSE_NORMALIZED_EDGE, 0, r_pfedge->cost,
+ REVERSE_NORMALIZED_EDGE, 0, 0,
r_pfedge->max_capacity);
gcc_assert (fixup_graph->num_vertices <= fmax_num_vertices);
@@ -689,7 +724,6 @@ create_fixup_graph (fixup_graph_type *fixup_graph)
==> r_pfedge->src -> new_index. */
r_pfedge->dest = new_index;
r_pfedge->type = REVERSE_NORMALIZED_EDGE;
- r_pfedge->cost = pfedge->cost;
r_pfedge->max_capacity = pfedge->max_capacity;
if (dump_file)
dump_fixup_edge (dump_file, fixup_graph, r_pfedge);
@@ -791,14 +825,12 @@ cancel_negative_cycle (fixup_graph_type *fixup_graph,
bool found_cycle = false;
int cycle_start = 0, cycle_end = 0;
gcov_type sum_cost = 0, cycle_flow = 0;
- int new_entry_index;
bool propagated = false;
gcc_assert (fixup_graph);
fnum_vertices = fixup_graph->num_vertices;
fnum_edges = fixup_graph->num_edges;
fedge_list = fixup_graph->edge_list;
- new_entry_index = fixup_graph->new_entry_index;
/* Initialize. */
/* Skip ENTRY. */
@@ -817,8 +849,6 @@ cancel_negative_cycle (fixup_graph_type *fixup_graph,
for (i = 0; i < fnum_edges; i++)
{
pfedge = fedge_list + i;
- if (pfedge->src == new_entry_index)
- continue;
if (pfedge->is_rflow_valid && pfedge->rflow
&& d[pfedge->src] != CAP_INFINITY
&& (d[pfedge->dest] > d[pfedge->src] + pfedge->cost))
@@ -840,8 +870,6 @@ cancel_negative_cycle (fixup_graph_type *fixup_graph,
for (i = 0; i < fnum_edges; i++)
{
pfedge = fedge_list + i;
- if (pfedge->src == new_entry_index)
- continue;
if (pfedge->is_rflow_valid && pfedge->rflow
&& d[pfedge->src] != CAP_INFINITY
&& (d[pfedge->dest] > d[pfedge->src] + pfedge->cost))
@@ -909,10 +937,12 @@ cancel_negative_cycle (fixup_graph_type *fixup_graph,
{
pfedge = find_fixup_edge (fixup_graph, cycle[k + 1], cycle[k]);
r_pfedge = find_fixup_edge (fixup_graph, cycle[k], cycle[k + 1]);
- pfedge->rflow -= cycle_flow;
+ if (pfedge->rflow != CAP_INFINITY)
+ pfedge->rflow -= cycle_flow;
if (pfedge->type)
pfedge->flow += cycle_flow;
- r_pfedge->rflow += cycle_flow;
+ if (r_pfedge->rflow != CAP_INFINITY)
+ r_pfedge->rflow += cycle_flow;
if (r_pfedge->type)
r_pfedge->flow -= cycle_flow;
}
@@ -942,7 +972,8 @@ compute_residual_flow (fixup_graph_type *fixup_graph)
for (i = 0; i < fnum_edges; i++)
{
pfedge = fedge_list + i;
- pfedge->rflow = pfedge->max_capacity - pfedge->flow;
+ pfedge->rflow = pfedge->max_capacity == CAP_INFINITY ?
+ CAP_INFINITY : pfedge->max_capacity - pfedge->flow;
pfedge->is_rflow_valid = true;
add_rfixup_edge (fixup_graph, pfedge->dest, pfedge->src, pfedge->flow,
-pfedge->cost);
@@ -1067,20 +1098,22 @@ find_max_flow (fixup_graph_type *fixup_graph, int source, int sink)
{
pfedge = find_fixup_edge (fixup_graph, bb_pred[u], u);
r_pfedge = find_fixup_edge (fixup_graph, u, bb_pred[u]);
+
+ if (pfedge->rflow != CAP_INFINITY)
+ pfedge->rflow -= increment;
+ if (r_pfedge->rflow != CAP_INFINITY)
+ r_pfedge->rflow += increment;
+
if (pfedge->type)
{
/* forward edge. */
pfedge->flow += increment;
- pfedge->rflow -= increment;
- r_pfedge->rflow += increment;
}
else
{
/* backward edge. */
gcc_assert (r_pfedge->type);
- r_pfedge->rflow += increment;
r_pfedge->flow -= increment;
- pfedge->rflow -= increment;
}
}
@@ -1302,6 +1335,60 @@ adjust_cfg_counts (fixup_graph_type *fixup_graph)
}
+/* Called before negative_cycle_cancellation, to form a cycle between
+ * new_exit to new_entry in FIXUP_GRAPH with capacity MAX_FLOW. We
+ * don't want the flow in the BALANCE_EDGE to be modified, so we set
+ * the residural flow of those edges to 0 */
+
+static void
+modify_sink_source_capacity (fixup_graph_type *fixup_graph, gcov_type max_flow)
+{
+ fixup_edge_p edge, r_edge;
+ int i;
+ int entry = ENTRY_BLOCK;
+ int exit = 2 * EXIT_BLOCK + 1;
+ int new_entry = fixup_graph->new_entry_index;
+ int new_exit = fixup_graph->new_exit_index;
+
+ edge = find_fixup_edge (fixup_graph, new_entry, entry);
+ edge->max_capacity = CAP_INFINITY;
+ edge->rflow = CAP_INFINITY;
+
+ edge = find_fixup_edge (fixup_graph, entry, new_entry);
+ edge->max_capacity = CAP_INFINITY;
+ edge->rflow = CAP_INFINITY;
+
+ edge = find_fixup_edge (fixup_graph, exit, new_exit);
+ edge->max_capacity = CAP_INFINITY;
+ edge->rflow = CAP_INFINITY;
+
+ edge = find_fixup_edge (fixup_graph, new_exit, exit);
+ edge->max_capacity = CAP_INFINITY;
+ edge->rflow = CAP_INFINITY;
+
+ edge = find_fixup_edge (fixup_graph, new_exit, new_entry);
+ edge->max_capacity = CAP_INFINITY;
+ edge->flow = max_flow;
+ edge->rflow = CAP_INFINITY;
+
+ r_edge = find_fixup_edge (fixup_graph, new_entry, new_exit);
+ r_edge->rflow = max_flow;
+
+ /* Find all the backwards residual edges corresponding to
+ BALANCE_EDGEs and set their residual flow to 0 to enforce a
+ minimum flow constraint on these edges. */
+ for (i = 4; i < new_entry; i += 1)
+ {
+ edge = find_fixup_edge (fixup_graph, i, new_entry);
+ if (edge)
+ edge->rflow = 0;
+ edge = find_fixup_edge (fixup_graph, new_exit, i);
+ if (edge)
+ edge->rflow = 0;
+ }
+}
+
+
/* Implements the negative cycle canceling algorithm to compute a minimum cost
flow.
Algorithm:
@@ -1330,13 +1417,18 @@ find_minimum_cost_flow (fixup_graph_type *fixup_graph)
int fnum_vertices;
int new_exit_index;
int new_entry_index;
+ gcov_type max_flow;
gcc_assert (fixup_graph);
fnum_vertices = fixup_graph->num_vertices;
new_exit_index = fixup_graph->new_exit_index;
new_entry_index = fixup_graph->new_entry_index;
- find_max_flow (fixup_graph, new_entry_index, new_exit_index);
+ max_flow = find_max_flow (fixup_graph, new_entry_index, new_exit_index);
+
+ /* Adjust the fixup graph to translate things into a minimum cost
+ circulation problem. */
+ modify_sink_source_capacity (fixup_graph, max_flow);
/* Initialize the structures for find_negative_cycle(). */
pred = (int *) xcalloc (fnum_vertices, sizeof (int));
@@ -1352,7 +1444,14 @@ find_minimum_cost_flow (fixup_graph_type *fixup_graph)
iteration++;
if (iteration > MAX_ITER (fixup_graph->num_vertices,
fixup_graph->num_edges))
- break;
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE,
+ DECL_SOURCE_LOCATION (current_function_decl),
+ "Exiting profile correction early to avoid "
+ "excessive compile time");
+ break;
+ }
}
if (dump_file)
diff --git a/gcc-4.9/gcc/mversn-dispatch.c b/gcc-4.9/gcc/mversn-dispatch.c
new file mode 100644
index 000000000..17b2ae8db
--- /dev/null
+++ b/gcc-4.9/gcc/mversn-dispatch.c
@@ -0,0 +1,1769 @@
+/* Mulitversion Dispatch Pass.
+ Copyright (C) 2011 Free Software Foundation, Inc.
+ Contributed by Sriraman Tallam (tmsriram@google.com)
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+
+/* This pass processes __builtin_dispatch calls to call multi-versioned
+ functions. Only two versions are supported now. Example use :
+
+ int popcnt_sse4(unsigned int x) __attribute__((__target__("popcnt")));
+ int popcnt_sse4(unsigned int x)
+ {
+ int count = __builtin_popcount(x);
+ return count;
+ }
+
+ int popcnt(unsigned int x) __attribute__((__target__("no-popcnt")));
+ int popcnt(unsigned int x)
+ {
+ int count = __builtin_popcount(x);
+ return count;
+ }
+
+ int testsse() __attribute__((version_selector));
+ int main ()
+ {
+ ...
+ ret = __builtin_dispatch (testsse, (void*)popcnt_sse4, (void*)popcnt, 25);
+ ...
+ }
+
+ There are two passes that are run to achieve multi-versioning.
+ "pass_ipa_multiversion_dispatch" is an ipa pass that decides which functions
+ have to be cloned and hoists the feature-test calls appropriately. This
+ pass can be enabled with the flag "-fclone-hot-version-paths" and disabled
+ with "-fno-clone-hot-version-paths".
+
+ "pass_tree_convert_builtin_dispatch" does the lowering. It is a
+ function-level pass. Functions marked with attribute "version_selector" are
+ also handled by this pass. This pass is always on.
+
+ How to use __builtin_dispatch ?
+ -----------------------------
+
+ __builtin_dispatch takes 3 mandatory arguments :
+
+ __builtin_dispatch (arg1, arg2, arg3, <arg4>, <arg5>, ...);
+
+ arg1 is the pointer to the feature-test function.
+ arg2 is the ( void *) cast pointer to the versioned function that is
+ executed when the feature test returns 1.
+ arg3 is the ( void *) cast pointer to the versioned function that is
+ executed when the feature test returns 0.
+ arg4, arg5, ... are optional. They are the arguments to the versioned
+ functions. Both versions must accept the same number of arguments.
+ The __builtin_dispatch function returns the value returned by the
+ versioned function that gets executed. The versioned function arg2
+ is executed when the feature_test function arg1 returns 1 and arg3
+ is executed when the feature_test function arg1 returns 0. arg1
+ could be marked as a "version_selector" function if it is a pure
+ function with no side-effects, returns a constant at run-time and
+ can be evaluated at any point in the execution.
+
+ When to use the "version_selector" attribute ?
+ -----------------------------------------------
+
+ Functions are marked with attribute "version_selector" only if
+ they are run-time constants. Example of such functions would
+ be those that test if a specific feature is available on a
+ particular architecture. Such functions must return a positive
+ integer. For two-way functions, those that test if a feature
+ is present or not must return 1 or 0 respectively.
+
+
+ The code is organized into five parts. The first part has the functionality
+ to detect and handle functions marked with attribute "version_selector". The
+ second part is the analysis phase where we find calls to __builtin_dispatch
+ and mark all functions that are hot and have a call-graph path to a
+ __builtin_dispatch call. The third part decides which functions
+ to clone. This is based on the number of clones that have to be created for
+ the functions marked in the analysis phase. Only two clones are allowed for
+ a function currently. The fourth part is where the actual cloning happens.
+ The fifth part contains the implementation to lower the __builtin_dispatch
+ calls.
+
+ Flags : -fclone-hot-version-paths does function unswitching via cloning.
+ --param=num-mversn-clones=<num> allows to specify the number of
+ functions that should be cloned.
+ --param=mversn-clone-depth=<num> allows to specify the length of
+ the call graph path that should be cloned. num = 0 implies only
+ leaf node that contains the __builtin_dispatch statement must be
+ cloned. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "tree-inline.h"
+#include "langhooks.h"
+#include "flags.h"
+#include "cgraph.h"
+#include "diagnostic.h"
+#include "toplev.h"
+#include "timevar.h"
+#include "params.h"
+#include "fibheap.h"
+#include "intl.h"
+#include "tree-pass.h"
+#include "hashtab.h"
+#include "coverage.h"
+#include "ggc.h"
+#include "tree-flow.h"
+#include "rtl.h"
+#include "ipa-prop.h"
+#include "basic-block.h"
+#include "toplev.h"
+#include "dbgcnt.h"
+#include "tree-dump.h"
+#include "output.h"
+#include "vecprim.h"
+#include "gimple-pretty-print.h"
+#include "ipa-inline.h"
+
+typedef struct cgraph_node* NODEPTR;
+DEF_VEC_P (NODEPTR);
+DEF_VEC_ALLOC_P (NODEPTR, heap);
+
+/* Store the decl of __builtin_dispatch */
+static tree builtin_function_decl = NULL;
+
+/* Hash to map name to a decl. Used for variables and functions. */
+static htab_t name_decl_htab = NULL;
+
+/* Hashtable helpers for name_decl_htab. */
+
+static hashval_t
+name_decl_htab_hash_descriptor (const void *p)
+{
+ const_tree t = (const_tree) p;
+ const char *name
+ = (IDENTIFIER_POINTER (DECL_NAME (t)));
+ return htab_hash_string(name);
+}
+
+/* Hashtable helper for name_decl_htab. */
+
+static int
+name_decl_htab_eq_descriptor (const void *p1, const void *p2)
+{
+ const_tree t1 = (const_tree) p1;
+ const char *c1 = IDENTIFIER_POINTER (DECL_NAME (t1));
+ const char *c2 = (const char *)p2;
+
+ return (strcmp (c1, c2) == 0);
+}
+
+/* Return true if NODE is a hot function. It is a hot function
+ if its execution frequency is determined to be hot or
+ if any of its incoming or outgoing call-graph edges is hot. */
+
+static bool
+hot_function_p (struct cgraph_node *node)
+{
+ struct cgraph_edge *edge;
+
+ if (node->frequency == NODE_FREQUENCY_HOT)
+ return true;
+
+ for (edge = node->callees; edge; edge = edge->next_callee)
+ if (cgraph_maybe_hot_edge_p (edge))
+ return true;
+
+ for (edge = node->callers; edge; edge = edge->next_caller)
+ if (cgraph_maybe_hot_edge_p (edge))
+ return true;
+
+ return false;
+}
+
+/* Return the number of arguments that a function has. */
+
+static int
+function_args_count (tree fntype)
+{
+ function_args_iterator args_iter;
+ tree t;
+ int num = 0;
+
+ if (fntype)
+ {
+ FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
+ {
+ num++;
+ }
+ }
+
+ return num;
+}
+
+/* Return the variable name (global/constructor) to use for the
+ version_selector function with name of DECL by appending SUFFIX. */
+
+static char *
+make_name (tree decl, const char *suffix)
+{
+ char *global_var_name;
+ int name_len;
+ const char *name;
+
+ name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
+
+ name_len = strlen (name) + strlen (suffix) + 2;
+ global_var_name = (char *) xmalloc (name_len);
+ snprintf (global_var_name, name_len, "%s_%s", name, suffix);
+ return global_var_name;
+}
+
+/* Code for handling version_selector attribute functions. Such functions are
+ run-time constants and need to be executed only once. They are hoisted
+ to a static constructor and their result is stored in a global.
+ */
+
+
+/* This function returns the global variable / constructor name created
+ for feature-test functions marked with attribute "version_selector".
+ The name returned is the DECL name appended with
+ "version_selector_global" for the variable and
+ "version_selector_constructor" for the constructor. */
+
+static char*
+make_feature_test_global_name (tree decl, bool is_constructor)
+{
+ if (is_constructor)
+ return make_name (decl, "version_selector_constructor");
+
+ return make_name (decl, "version_selector_global");
+}
+
+/* This function creates a new VAR_DECL with attributes set
+ using the parameters. PUBLIK corresponds to TREE_PUBLIC,
+ EXTERNAL corresponds to DECL_EXTERNAL and comdat is
+ for DECL_ONE_ONLY. The global variable will have the
+ same status as the version_selector function.*/
+
+static tree
+allocate_new_var (const char *name, int publik,
+ int external, int comdat)
+{
+ tree new_global_var;
+ struct varpool_node *vnode;
+
+ new_global_var = build_decl (UNKNOWN_LOCATION,
+ VAR_DECL,
+ get_identifier (name),
+ integer_type_node);
+
+ DECL_EXTERNAL (new_global_var) = external;
+ TREE_STATIC (new_global_var) = 1;
+ TREE_PUBLIC (new_global_var) = publik;
+ DECL_INITIAL (new_global_var) = 0;
+ DECL_ARTIFICIAL (new_global_var) = 1;
+ DECL_PRESERVE_P (new_global_var) = 1;
+
+ if (comdat)
+ make_decl_one_only (new_global_var, DECL_ASSEMBLER_NAME (new_global_var));
+ assemble_variable (new_global_var, 0, 0, 0);
+
+ vnode = varpool_node (new_global_var);
+ gcc_assert (vnode != NULL);
+ /* Set finalized to 1, otherwise it asserts in function "write_symbol" in
+ lto-streamer-out.c. */
+ vnode->finalized = 1;
+
+ return new_global_var;
+}
+
+/* Make a new constructor function here to call a feature-test function
+ and set its body to CONSTRUCTOR_BODY. Its public and comdat
+ attributes are set from the parameters, PUBLIK, and COMDAT.
+ VERSION_SELECTOR_VAR is the global decl that saves the result of the
+ feature-test function in the constructor. */
+
+static tree
+make_constructor_function (char *name, gimple constructor_body, int publik,
+ int comdat, tree version_selector_var)
+{
+ tree decl, type, t;
+ gimple_seq seq;
+ basic_block new_bb;
+ tree old_current_function_decl;
+
+ type = build_function_type_list (void_type_node, NULL_TREE);
+
+ if (dump_file)
+ fprintf (dump_file, "Name of new constructor function = %s\n", name);
+
+ decl = build_fn_decl (name, type);
+
+ DECL_NAME (decl) = get_identifier (name);
+ SET_DECL_ASSEMBLER_NAME (decl, DECL_NAME (decl));
+ gcc_assert (cgraph_get_create_node (decl) != NULL);
+
+ TREE_USED (decl) = 1;
+ DECL_ARTIFICIAL (decl) = 1;
+ DECL_IGNORED_P (decl) = 0;
+ TREE_PUBLIC (decl) = publik;
+ DECL_UNINLINABLE (decl) = 1;
+ DECL_EXTERNAL (decl) = 0;
+ DECL_CONTEXT (decl) = NULL_TREE;
+ DECL_INITIAL (decl) = make_node (BLOCK);
+ DECL_STATIC_CONSTRUCTOR (decl) = 1;
+ TREE_READONLY (decl) = 0;
+ DECL_PURE_P (decl) = 0;
+
+ if (comdat)
+ make_decl_one_only (decl, DECL_ASSEMBLER_NAME (decl));
+
+ /* Build result decl and add to function_decl. */
+ t = build_decl (UNKNOWN_LOCATION, RESULT_DECL, NULL_TREE, void_type_node);
+ DECL_ARTIFICIAL (t) = 1;
+ DECL_IGNORED_P (t) = 1;
+ DECL_RESULT (decl) = t;
+
+ gimplify_function_tree (decl);
+
+ /* Build CFG for this function. */
+
+ old_current_function_decl = current_function_decl;
+ push_cfun (DECL_STRUCT_FUNCTION (decl));
+ current_function_decl = decl;
+ init_empty_tree_cfg_for_function (DECL_STRUCT_FUNCTION (decl));
+ cfun->curr_properties |=
+ (PROP_gimple_lcf | PROP_gimple_leh | PROP_cfg | PROP_referenced_vars |
+ PROP_ssa);
+ new_bb = create_empty_bb (ENTRY_BLOCK_PTR);
+ make_edge (ENTRY_BLOCK_PTR, new_bb, EDGE_FALLTHRU);
+
+ /* XXX: Not sure if the edge commented below is necessary. If I add this
+ edge, it fails in gimple_verify_flow_info in tree-cfg.c in condition :
+ " if (e->flags & EDGE_FALLTHRU)"
+ during -fprofile-generate.
+ Otherwise, it is fine. Deleting this edge does not break anything.
+ Commenting this so that it is clear I am intentionally not doing this.*/
+ /* make_edge (new_bb, EXIT_BLOCK_PTR, EDGE_FALLTHRU); */
+
+ seq = gimple_seq_alloc_with_stmt (constructor_body);
+
+ set_bb_seq (new_bb, seq);
+ gimple_set_bb (constructor_body, new_bb);
+
+ /* Set the lexical block of the constructor body. Fails the inliner
+ other wise. */
+ gimple_set_block (constructor_body, DECL_INITIAL (decl));
+
+ /* This call is very important if this pass runs when the IR is in
+ SSA form. It breaks things in strange ways otherwise. */
+ init_tree_ssa (DECL_STRUCT_FUNCTION (decl));
+ add_referenced_var (version_selector_var);
+
+ cgraph_add_new_function (decl, true);
+ cgraph_call_function_insertion_hooks (cgraph_get_create_node (decl));
+ cgraph_mark_needed_node (cgraph_get_create_node (decl));
+
+ if (dump_file)
+ dump_function_to_file (decl, dump_file, TDF_BLOCKS);
+
+ pop_cfun ();
+ current_function_decl = old_current_function_decl;
+ return decl;
+}
+
+/* If the current function is marked with attribute
+ "version_selector" then it is the predicate (feature-test) function
+ for multi-versioning. Call this function in a constructor and assign
+ the return value to a global variable.
+ The constructor's name is the decl name suffixed
+ "version_selector_constructor" and the global variable's name is the
+ decl name suffixed with "version_selector_global"
+
+ For example, feature-test function isSSE4 marked with attribute
+ version_selector is converted to
+
+ void isSSE4_version_selector_constructor ()
+ {
+ isSSE4_version_selector_global = isSSE4 ();
+ }
+
+ This function returns the decl of the global variable.
+
+ THIS_DECL is the function decl of the "version_selector" function.
+ */
+
+static tree
+handle_version_selector_attr_function (tree this_decl)
+{
+ char *global_var_name;
+ tree version_selector_var = NULL;
+ void **slot;
+
+ gcc_assert (!flag_lto);
+
+ if (dump_file)
+ fprintf (dump_file, "Creating constructor/global for function %s\n",
+ IDENTIFIER_POINTER (DECL_NAME (this_decl)));
+
+ global_var_name = make_feature_test_global_name (this_decl,
+ false);
+
+ slot = htab_find_slot_with_hash (name_decl_htab, global_var_name,
+ htab_hash_string (global_var_name),
+ INSERT);
+ if (*slot == NULL)
+ {
+ if (dump_file)
+ fprintf (dump_file, "Creating global variable %s\n",
+ global_var_name);
+ *slot = allocate_new_var (global_var_name,
+ TREE_PUBLIC (this_decl),
+ DECL_EXTERNAL (this_decl),
+ DECL_ONE_ONLY (this_decl));
+ }
+ else
+ {
+ free (global_var_name);
+ return (tree) *slot;
+ }
+
+ version_selector_var = (tree) *slot;
+
+ /* If the feature-test function is not external, create a constructor and
+ call this function in the constructor. */
+
+ if (!DECL_EXTERNAL (this_decl))
+ {
+ char *constructor_name;
+ gimple constructor_body;
+ tree constructor_decl;
+
+ constructor_name
+ = make_feature_test_global_name (this_decl, true);
+
+ constructor_body = gimple_build_call (this_decl, 0);
+
+ gimple_call_set_lhs (constructor_body, version_selector_var);
+
+ if (dump_file)
+ print_gimple_stmt (dump_file, constructor_body, 0, TDF_VOPS);
+
+ constructor_decl =
+ make_constructor_function (constructor_name, constructor_body,
+ TREE_PUBLIC (this_decl),
+ DECL_ONE_ONLY (this_decl),
+ version_selector_var);
+
+ gcc_assert (constructor_decl != NULL_TREE);
+ free (constructor_name);
+ }
+
+ free (global_var_name);
+ return version_selector_var;
+}
+
+/* Start Analysis phase. Mark all functions that are hot and have a call-graph
+ path to a __builtin_dispatch call. */
+
+/* This function returns the address of the feature test function.
+ If the address of the function is saved to a temporary,
+ this function traverses the gimple statements before BUILTIN_STMT
+ and finds an assignment whose rhs is the feature test function.
+ If the feature test function is specified as a function pointer
+ whose function value is unknown, this funcition returns NULL. */
+
+static tree
+find_version_selector_func_addr (gimple builtin_stmt)
+{
+ tree cond_func_addr = NULL;
+ gimple def_stmt = NULL;
+
+ cond_func_addr = gimple_call_arg (builtin_stmt, 0);
+
+ gcc_assert (TREE_CODE (cond_func_addr) == ADDR_EXPR
+ || TREE_CODE (cond_func_addr) == SSA_NAME);
+
+ if (TREE_CODE (cond_func_addr) == ADDR_EXPR)
+ return cond_func_addr;
+
+ /* TREE_CODE (cond_func_addr) == SSA_NAME
+ This means a new function pointer variable is created and assigned the
+ address of the feature-test function. Traverse the statements backwards
+ and find the assignment to get the RHS. */
+
+ def_stmt = SSA_NAME_DEF_STMT (cond_func_addr);
+
+ gcc_assert (def_stmt
+ && gimple_assign_lhs (def_stmt) == cond_func_addr);
+
+ cond_func_addr = gimple_assign_rhs1 (def_stmt);
+
+ /* If the cond_func_addr is still not an ADDR_EXPR, it means that the
+ feature-test function is specified as a pointer. In this case, we
+ return NULL, since the feature-test function decl is not known. */
+
+ if (cond_func_addr == NULL
+ || TREE_CODE (cond_func_addr) != ADDR_EXPR)
+ return NULL;
+
+ /* If the operand of the ADDR_EXPR is not a function_decl, return NULL
+ as this still means the feature-test function is specified as a
+ function pointer. */
+
+ if (TREE_CODE (TREE_OPERAND (cond_func_addr, 0)) != FUNCTION_DECL)
+ return NULL;
+
+ return cond_func_addr;
+}
+
+/* Finds the gimple calls to __builtin_dispatch in function pointed
+ to by the call graph NODE and populates the vector VEC. Returns
+ true if at least one statement was found where the feature test
+ function is marked as "version_selector". Otherwise, there is no
+ question of hoisting it. */
+
+static bool
+is_builtin_dispatch_stmt_present (struct cgraph_node *node,
+ VEC (tree,heap) **vec)
+{
+ struct cgraph_edge *edge;
+ bool present = false;
+
+ gcc_assert (!flag_lto);
+
+ for (edge = node->callees; edge; edge = edge->next_callee)
+ {
+ if (edge->callee->decl == builtin_function_decl)
+ {
+ tree cond_func_decl;
+ tree cond_func_addr;
+ gcc_assert (*vec != NULL);
+ cond_func_addr = find_version_selector_func_addr (edge->call_stmt);
+
+ if (cond_func_addr == NULL)
+ continue;
+
+ cond_func_decl = TREE_OPERAND (cond_func_addr, 0);
+
+ /* Do not consider for hoisting if "version_selector" attribute is
+ not set. */
+ if (lookup_attribute ("version_selector",
+ DECL_ATTRIBUTES (cond_func_decl)) == NULL)
+ {
+ if (dump_file)
+ {
+ fprintf (dump_file, "Not hoisting builtin_dispatch as "
+ "feature_test function not version_selector :\n");
+ print_gimple_stmt (dump_file, edge->call_stmt, 0, TDF_VOPS);
+ }
+ continue;
+ }
+
+ present = true;
+ VEC_safe_push (tree, heap, *vec, cond_func_decl);
+ }
+ }
+ return present;
+}
+
+/* Updates the list of feature-test function decls reaching the cgraph
+ function NODE. */
+
+static void
+update_reachable_decls_list (struct cgraph_node *node,
+ VEC (tree, heap) *predicate_decls)
+{
+ VEC (tree, heap) **decl_list = NULL;
+ tree cond_func_decl;
+ int ix;
+
+ if (node->aux == NULL)
+ {
+ decl_list = (VEC (tree, heap) **) xmalloc (sizeof (VEC (tree, heap) *));
+ *decl_list = VEC_alloc (tree, heap, 1);
+ node->aux = decl_list;
+ }
+ else
+ decl_list = (VEC (tree, heap) **) node->aux;
+
+ for (ix = 0; VEC_iterate (tree, predicate_decls, ix, cond_func_decl); ++ix)
+ VEC_safe_push (tree, heap, *decl_list, cond_func_decl);
+}
+
+/* Propagate the __builtin_dispatch stmt (s) called from node to its
+ callers, PREDICATE_DECLS is the decls list of the predicate functions. */
+
+static unsigned int
+mark_reachable_functions (struct cgraph_node *this_node,
+ VEC (tree, heap) *predicate_decls)
+{
+ VEC (NODEPTR, heap) *work_list;
+ VEC (int, heap) *depth_list;
+ struct cgraph_edge *e;
+ htab_t node_htab = NULL;
+ void **slot = NULL;
+
+ /* Use a work-list style algorithm to mark functions in any call-graph
+ path to the current function. */
+
+ work_list = VEC_alloc (NODEPTR, heap, 8);
+ depth_list = VEC_alloc (int, heap, 8);
+
+ VEC_safe_push (NODEPTR, heap, work_list, this_node);
+ VEC_safe_push (int, heap, depth_list, 0);
+
+ node_htab = htab_create (10, htab_hash_pointer,
+ htab_eq_pointer, NULL);
+
+ slot = htab_find_slot (node_htab, this_node, INSERT);
+
+ gcc_assert (*slot == NULL);
+ *slot = this_node;
+
+ while (!VEC_empty (NODEPTR, work_list))
+ {
+ struct cgraph_node *node = VEC_pop (NODEPTR, work_list);
+ int depth = VEC_pop (int, depth_list);
+
+ if (dump_file)
+ fprintf (dump_file, "%s has a depth = %d callgraph path to %s\n",
+ cgraph_node_name (node), depth,
+ cgraph_node_name (this_node));
+
+ update_reachable_decls_list (node, predicate_decls);
+
+ gcc_assert (node->aux != NULL);
+
+ if (depth >= PARAM_VALUE (PARAM_MVERSN_CLONE_CGRAPH_DEPTH))
+ {
+ if (dump_file)
+ fprintf (dump_file, "Not propogating __builtin_dispatch... "
+ "maximum cloning depth = %d reached\n",
+ PARAM_VALUE (PARAM_MVERSN_CLONE_CGRAPH_DEPTH));
+ continue;
+ }
+
+ for (e = node->callers; e; e = e->next_caller)
+ {
+ slot = htab_find_slot (node_htab, e->caller, INSERT);
+ if (*slot != NULL)
+ continue;
+ *slot = e->caller;
+ if (!hot_function_p (e->caller))
+ continue;
+
+ VEC_safe_push (NODEPTR, heap, work_list, e->caller);
+ VEC_safe_push (int, heap, depth_list, (depth + 1));
+ }
+ }
+
+ htab_delete (node_htab);
+ VEC_free (NODEPTR, heap, work_list);
+ VEC_free (int, heap, depth_list);
+ return 0;
+}
+
+/* Scan the call graph and detect hot functions that have __builtin_dispatch
+ calls. Then, propogate this information to its callers. Returns true if
+ a suitable __builtin_dispatch was found. */
+
+static bool
+perform_analysis_phase (void)
+{
+ struct cgraph_node *node;
+ VEC(tree, heap) *builtin_predicates_vec = NULL;
+ bool flag = false;
+
+ builtin_predicates_vec = VEC_alloc (tree, heap, 1);
+
+ for (node = cgraph_nodes; node; node = node->next)
+ {
+ /* if the body of this decl is from outside, do nothing. */
+ if (DECL_EXTERNAL (node->decl))
+ continue;
+
+ if (!hot_function_p (node))
+ continue;
+
+ if (!is_builtin_dispatch_stmt_present (node, &builtin_predicates_vec))
+ continue;
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "%s calls __builtin_dispatch atleast once.\n",
+ cgraph_node_name (node));
+
+ fprintf (dump_file, "%s is a hot function, consider cloning ...\n",
+ cgraph_node_name (node));
+ }
+
+ flag = true;
+ mark_reachable_functions (node, builtin_predicates_vec);
+ VEC_truncate (tree, builtin_predicates_vec, 0);
+ }
+
+ VEC_free (tree, heap, builtin_predicates_vec);
+ return flag;
+}
+
+/* End Analysis phase. */
+
+/* Decide Cloning Phase.
+
+ In this phase, we go through each function and decide if it should be
+ cloned or not. */
+
+/* This function counts the number of unique decls in the DECL_LIST.*/
+
+static int
+count_predicate_functions (VEC (tree,heap) *decl_list)
+{
+ int ix;
+ int count = 0;
+ tree cond_func_decl = NULL;
+ htab_t dup_decl_htab = NULL;
+
+ if (VEC_length (tree, decl_list) == 1)
+ return 1;
+
+ dup_decl_htab = htab_create (2, htab_hash_pointer, htab_eq_pointer, NULL);
+
+ for (ix = 0; VEC_iterate (tree, decl_list, ix, cond_func_decl); ++ix)
+ {
+ void **slot = NULL;
+ slot = htab_find_slot (dup_decl_htab, cond_func_decl, INSERT);
+
+ if (*slot != NULL)
+ continue;
+ count++;
+ *slot = cond_func_decl;
+ }
+
+ htab_delete (dup_decl_htab);
+ return count;
+}
+
+/* This function decides which functions to clone based on the number of
+ feature_test decls reaching it. Currently, only one feature_test decl
+ is allowed. */
+
+static bool
+decide_cloning_phase (void)
+{
+ struct cgraph_node *node;
+ int count;
+ bool run_cloning_phase = false;
+ int num_funcs_cloned = 0;
+
+ for (node = cgraph_nodes; node; node = node->next)
+ {
+ tree cond_func_decl = NULL;
+ VEC (tree, heap) *vec;
+ if (node->aux == NULL)
+ continue;
+
+ if (num_funcs_cloned >= PARAM_VALUE (PARAM_NUMBER_OF_MVERSN_CLONES))
+ {
+ if (dump_file)
+ fprintf (dump_file, "Reached cloning limit specified "
+ "by \"num-mversn-clones\" for %s\n",
+ cgraph_node_name (node));
+
+ free (node->aux);
+ node->aux = NULL;
+ continue;
+ }
+
+ vec = *(VEC (tree,heap) **) node->aux;
+ count = count_predicate_functions (vec);
+ gcc_assert (count >= 1);
+ cond_func_decl = VEC_index (tree, vec, 0);
+ gcc_assert (cond_func_decl != NULL);
+ VEC_free (tree, heap, vec);
+ free (node->aux);
+ node->aux = NULL;
+
+ if (count > 1)
+ {
+ if (dump_file)
+ fprintf (dump_file, "%s has %d predicates, Not cloning for > 1\n",
+ cgraph_node_name (node), count);
+ continue;
+ }
+ /* Set the node's aux value to be that of the predicate decl. */
+ node->aux = cond_func_decl;
+ run_cloning_phase = true;
+ num_funcs_cloned++;
+ }
+ return run_cloning_phase;
+}
+
+/* End Decide Cloning Phase. */
+
+/* Cloning Phase. */
+
+/* Deletes all basic-blocks and leaves function with :
+ ENTRY_BLOCK ---> (new empty basic block) ---> EXIT_BLOCK
+*/
+
+static basic_block
+empty_function_body (tree fndecl)
+{
+ basic_block bb, new_bb;
+ edge e;
+ tree old_current_function_decl;
+
+ old_current_function_decl = current_function_decl;
+ push_cfun (DECL_STRUCT_FUNCTION (fndecl));
+ current_function_decl = fndecl;
+
+ clear_edges ();
+ for (bb = ENTRY_BLOCK_PTR; bb != NULL;)
+ {
+ basic_block bb_next;
+ bb_next = bb->next_bb;
+ if (bb != EXIT_BLOCK_PTR
+ && bb != ENTRY_BLOCK_PTR)
+ {
+ if (bb_seq (bb) != NULL)
+ {
+ gimple_stmt_iterator i;
+ for (i = gsi_start_bb (bb); !gsi_end_p (i);)
+ {
+ gimple stmt = gsi_stmt (i);
+ unlink_stmt_vdef (stmt);
+ gsi_remove (&i, true);
+ release_defs (stmt);
+ }
+ }
+ bb->il.gimple = NULL;
+ bb->prev_bb = NULL;
+ bb->next_bb = NULL;
+ SET_BASIC_BLOCK (bb->index, NULL);
+ n_basic_blocks--;
+ }
+ bb = bb_next;
+ }
+ ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
+ new_bb = create_empty_bb (ENTRY_BLOCK_PTR);
+ e = make_edge (ENTRY_BLOCK_PTR, new_bb, EDGE_FALLTHRU);
+ gcc_assert (e != NULL);
+ /* XXX:Is this edge necessary ? */
+ e = make_edge (new_bb, EXIT_BLOCK_PTR, 0);
+ gcc_assert (e != NULL);
+
+ current_function_decl = old_current_function_decl;
+ pop_cfun ();
+ return new_bb;
+}
+
+/* Takes function with decl ORIG_FNDECL and clones it. The
+ name of the clone is the original name suffixed with
+ NAME_SUFFIX. Code is adapted from cgraph_function_versioning
+ in cgraphunit.c */
+
+static tree
+clone_function (tree orig_fndecl, const char *name_suffix)
+{
+ tree new_decl;
+ char *new_name;
+ struct cgraph_node *new_version;
+ struct cgraph_node *old_version;
+ void **slot;
+ tree old_current_function_decl;
+
+ new_name = make_name (orig_fndecl, name_suffix);
+ new_decl = copy_node (orig_fndecl);
+
+
+ slot = htab_find_slot_with_hash (name_decl_htab, new_name,
+ htab_hash_string (new_name), INSERT);
+
+ gcc_assert (*slot == NULL);
+ *slot = new_decl;
+
+ /* Code adapted from cgraph_function_versioning in cgraphuinit.c */
+
+ new_version = cgraph_get_create_node (new_decl);
+ old_version = cgraph_get_create_node (orig_fndecl);
+
+ new_version->local = old_version->local;
+ new_version->global = old_version->global;
+ new_version->rtl = old_version->rtl;
+ new_version->reachable = true;
+ new_version->count = old_version->count;
+
+ /* Set the name of the new function. */
+ DECL_NAME (new_decl) = get_identifier (new_name);
+ SET_DECL_ASSEMBLER_NAME (new_decl, DECL_NAME (new_decl));
+ SET_DECL_RTL (new_decl, NULL);
+
+ tree_function_versioning (orig_fndecl, new_decl, NULL /*tree_map*/,
+ false, NULL /*args_to_skip*/,
+ false, /* skip return */
+ NULL /* blocks_to_copy */ ,
+ NULL /* new_entry */);
+
+
+ old_current_function_decl = current_function_decl;
+ push_cfun (DECL_STRUCT_FUNCTION (new_decl));
+ current_function_decl = new_decl;
+
+ TREE_READONLY (new_decl) = TREE_READONLY (orig_fndecl);
+ TREE_STATIC (new_decl) = TREE_STATIC (orig_fndecl);
+ TREE_USED (new_decl) = TREE_USED (orig_fndecl);
+ DECL_ARTIFICIAL (new_decl) = 1;
+ DECL_IGNORED_P (new_decl) = 0;
+ TREE_PUBLIC (new_decl) = TREE_PUBLIC (orig_fndecl);
+ DECL_CONTEXT (new_decl) = DECL_CONTEXT (orig_fndecl);
+
+ DECL_EXTERNAL (new_decl) = DECL_EXTERNAL (orig_fndecl);
+ DECL_COMDAT (new_decl) = DECL_COMDAT (orig_fndecl);
+ DECL_COMDAT_GROUP (new_decl) = DECL_COMDAT_GROUP (orig_fndecl);
+ DECL_VIRTUAL_P (new_decl) = DECL_VIRTUAL_P (orig_fndecl);
+ DECL_WEAK (new_decl) = DECL_WEAK (orig_fndecl);
+
+ /* Always inline the clones. Why are we cloning otherwise? */
+ DECL_DECLARED_INLINE_P (new_decl) = 1;
+ DECL_UNINLINABLE (new_decl) = 0;
+ new_version->local.externally_visible
+ = old_version->local.externally_visible;
+ new_version->local.local
+ = old_version->local.local;
+
+ new_version->analyzed = true;
+ new_version->lowered = true;
+
+ if (dump_file)
+ dump_function_to_file (new_decl, dump_file, TDF_BLOCKS);
+
+ cgraph_add_new_function (new_decl, true);
+
+ cgraph_call_function_insertion_hooks (new_version);
+ cgraph_mark_needed_node (new_version);
+
+ pop_cfun ();
+ current_function_decl = old_current_function_decl;
+
+ return new_decl;
+}
+
+/* This function populates the vector *VEC with the args in the gimple
+ call statement STMT. SKIP_ARGS is the number of args to skip.*/
+
+static void
+get_function_args (gimple stmt, int num_args, VEC (tree, heap) **vec,
+ int skip_args)
+{
+ int i;
+
+ if (num_args == 0) return;
+
+ *vec = VEC_alloc (tree, heap, num_args);
+ /* The number of args in a function is 1 plus the actual number of
+ args. Also, there are 3 special args reserved, so the first arg
+ starts from 3. */
+ for (i = 0; i <= num_args - 2; ++i)
+ VEC_quick_push (tree, *vec, gimple_call_arg (stmt, (skip_args + i)));
+}
+
+/* Given ret = __builtin_dispatch (pred, fn1, fn2, arg1, ....)
+ get ret = fn1 (arg1, ...) or ret = fn2 (arg1, ....)
+ depending on the value of SIDE == 0 or 1. */
+
+static gimple
+make_specialized_call_from_builtin (gimple builtin_stmt, int side)
+{
+ tree func_addr;
+ int num_func_args = 0;
+ VEC (tree, heap) *nargs = NULL;
+ tree lhs_stmt;
+ gimple specialized_call_stmt;
+
+ if (side == 0)
+ func_addr = gimple_call_arg (builtin_stmt, 1);
+ else
+ func_addr = gimple_call_arg (builtin_stmt, 2);
+
+ num_func_args
+ = function_args_count (TREE_TYPE (TREE_OPERAND (func_addr, 0)));
+
+ get_function_args (builtin_stmt, num_func_args, &nargs, 3);
+
+ specialized_call_stmt = gimple_build_call_vec (func_addr, nargs);
+
+ lhs_stmt = gimple_call_lhs (builtin_stmt);
+
+ if (lhs_stmt != NULL_TREE)
+ gimple_call_set_lhs (specialized_call_stmt, lhs_stmt);
+
+ if (nargs != NULL)
+ VEC_free (tree, heap, nargs);
+
+ return specialized_call_stmt;
+}
+
+/* Given a call (GENERIC_STMT) to a function that is cloned, substitute
+ with a call to the correct clone. */
+
+static gimple
+make_specialized_call_to_clone (gimple generic_stmt, int side)
+{
+ tree new_decl;
+ char *new_name;
+ tree generic_fndecl;
+ gimple specialized_call_stmt;
+ void **slot;
+ int num_func_args;
+ tree lhs_stmt;
+ VEC (tree, heap) *nargs= NULL;
+
+ generic_fndecl = gimple_call_fndecl (generic_stmt);
+ gcc_assert (generic_fndecl != NULL);
+
+ if (side == 0)
+ new_name = make_name (generic_fndecl, "clone_0");
+ else
+ new_name = make_name (generic_fndecl, "clone_1");
+
+ slot = htab_find_slot_with_hash (name_decl_htab, new_name,
+ htab_hash_string (new_name), NO_INSERT);
+ gcc_assert (slot != NULL);
+ new_decl = (tree) *slot;
+ gcc_assert (new_decl);
+
+ num_func_args = function_args_count (TREE_TYPE (generic_fndecl));
+ get_function_args (generic_stmt, num_func_args, &nargs, 0);
+ specialized_call_stmt = gimple_build_call_vec (new_decl, nargs);
+
+ lhs_stmt = gimple_call_lhs (generic_stmt);
+
+ if (lhs_stmt != NULL_TREE)
+ gimple_call_set_lhs (specialized_call_stmt, lhs_stmt);
+
+ if (nargs != NULL)
+ VEC_free (tree, heap, nargs);
+
+ return specialized_call_stmt;
+}
+
+/* Returns true if STMT is a call to __builtin_dispatch and its
+ predicate feature-test function is marked with attribute
+ "version_selector". */
+
+static bool
+is_builtin_with_predicate_version_selector (gimple stmt)
+{
+ tree cond_func_addr, cond_func_decl;
+
+ gcc_assert (!flag_lto);
+
+ if (gimple_call_fndecl (stmt) != builtin_function_decl)
+ return false;
+
+ cond_func_addr = find_version_selector_func_addr (stmt);
+
+ if (cond_func_addr == NULL)
+ return false;
+
+ cond_func_decl = TREE_OPERAND (cond_func_addr, 0);
+ if (lookup_attribute ("version_selector",
+ DECL_ATTRIBUTES (cond_func_decl)) != NULL)
+ return true;
+
+ return false;
+}
+
+/* Find calls to __builtin_dispatch or to functions that are versioned
+ in CLONE_DECL and substitute the call with the correct version based
+ on the value of SIDE. */
+
+static void
+specialize_call (tree clone_decl, int side)
+{
+ basic_block bb;
+ tree old_current_function_decl;
+
+ old_current_function_decl = current_function_decl;
+ push_cfun (DECL_STRUCT_FUNCTION (clone_decl));
+ current_function_decl = clone_decl;
+
+ /* Iterate over call edges and find out if there is
+ a call to __builtin_dispatch or a cloned function.
+ We cannot iterate over call graph edges as there are
+ no edges for the clones yet. */
+
+ FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (clone_decl))
+ {
+ gimple_stmt_iterator gsi;
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ tree callee_decl;
+ struct cgraph_node *callee_node;
+ gimple specialized_call_stmt;
+ gimple stmt = gsi_stmt (gsi);
+
+ if (!is_gimple_call (stmt))
+ continue;
+
+ callee_decl = gimple_call_fndecl (stmt);
+
+ if (callee_decl == NULL)
+ continue;
+
+ callee_node = cgraph_get_create_node (callee_decl);
+
+ /* For a __builtin_dispatch stmt, only specialize if
+ version_selector attribute is set. Otherwise, it is
+ not hoisted, so no specialization. */
+
+ if (is_builtin_with_predicate_version_selector (stmt))
+ {
+ specialized_call_stmt =
+ make_specialized_call_from_builtin (stmt, side);
+ }
+ else if (callee_node->aux != NULL)
+ {
+ specialized_call_stmt =
+ make_specialized_call_to_clone (stmt, side);
+ }
+ else
+ continue;
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "Specialize stmt : \n");
+ print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS);
+ fprintf (dump_file, "Specialized stmt : \n");
+ print_gimple_stmt (dump_file, specialized_call_stmt,
+ 0, TDF_VOPS);
+ }
+
+ gimple_set_block (specialized_call_stmt, gimple_block (stmt));
+ gsi_insert_before_without_update (&gsi, specialized_call_stmt,
+ GSI_SAME_STMT);
+
+
+ unlink_stmt_vdef (stmt);
+ gsi_remove (&gsi, true);
+ mark_symbols_for_renaming (specialized_call_stmt);
+
+ /* After removing make sure gsi is set correctly to not skip
+ a statememt. */
+ gsi = gsi_for_stmt (specialized_call_stmt);
+ }
+ }
+ current_function_decl = old_current_function_decl;
+ pop_cfun ();
+}
+
+/* When a function is version cloned, its body is replaced to call one
+ of the versions with the feature-test function acting as a predicate.
+ This is done with __builtin_dispatch which is later expanded. */
+
+static gimple
+make_builtin_call_to_clones (tree orig_fndecl, tree clone_0_addr,
+ tree clone_1_addr, tree cond_func_addr)
+{
+ gimple new_builtin_call;
+ VEC(tree, heap) *vargs = VEC_alloc (tree, heap, 4);
+ tree arg;
+
+ VEC_quick_push (tree, vargs, cond_func_addr);
+ VEC_quick_push (tree, vargs, clone_0_addr);
+ VEC_quick_push (tree, vargs, clone_1_addr);
+
+ for (arg = DECL_ARGUMENTS (orig_fndecl); arg; arg = TREE_CHAIN (arg))
+ {
+ VEC_safe_push (tree, heap, vargs, arg);
+ /* Again, this add_referenced_var is very very important. It broke
+ a build where a cloned function's arguments where never
+ referenced. Missing this statement in places asserts at
+ tree-dfa.c:589, in function referenced_var_lookup at
+ "gcc_assert (h || uid == 0);" and is very difficult to triage. */
+ add_referenced_var (arg);
+ }
+
+ new_builtin_call = gimple_build_call_vec (builtin_function_decl, vargs);
+ mark_symbols_for_renaming (new_builtin_call);
+
+
+ if (dump_file)
+ print_gimple_stmt (dump_file, new_builtin_call, 0, TDF_VOPS);
+
+ VEC_free (tree, heap, vargs);
+
+ return new_builtin_call;
+}
+
+/* This clones a dispatch function whose callee-graph path has a function
+ which calls __builtin_dispatch. This function is cloned and the
+ original function branches to the right clone. */
+
+static int
+clone_and_dispatch_function (struct cgraph_node *orig_node, tree *clone_0,
+ tree *clone_1)
+{
+ tree clone_0_decl, clone_1_decl;
+ gimple new_builtin_call = NULL;
+ gimple new_return_stmt = NULL;
+ gimple_seq seq = NULL;
+ basic_block new_bb;
+ tree orig_fndecl;
+ tree return_var = NULL;
+ tree return_type;
+ tree old_current_function_decl;
+
+ old_current_function_decl = current_function_decl;
+ orig_fndecl = orig_node->decl;
+ push_cfun (DECL_STRUCT_FUNCTION (orig_fndecl));
+ current_function_decl = orig_fndecl;
+
+ /* Make 2 clones for true and false function. */
+ clone_0_decl = clone_function (orig_fndecl, "clone_0");
+ clone_1_decl = clone_function (orig_fndecl, "clone_1");
+ *clone_0 = clone_0_decl;
+ *clone_1 = clone_1_decl;
+
+ new_bb = empty_function_body (orig_fndecl);
+
+ new_builtin_call = make_builtin_call_to_clones (
+ orig_fndecl,
+ build_fold_addr_expr (clone_0_decl),
+ build_fold_addr_expr (clone_1_decl),
+ build_fold_addr_expr ((tree)orig_node->aux));
+
+ return_type = TREE_TYPE (TREE_TYPE (orig_fndecl));
+
+ if (!TREE_ADDRESSABLE (return_type) && COMPLETE_TYPE_P (return_type))
+ {
+ tree tmp_var;
+ tmp_var = create_tmp_var (return_type, NULL);
+ add_referenced_var (tmp_var);
+ return_var = make_ssa_name (tmp_var, new_builtin_call);
+ gimple_call_set_lhs (new_builtin_call, return_var);
+ }
+
+ mark_symbols_for_renaming (new_builtin_call);
+ new_return_stmt = gimple_build_return (return_var);
+ mark_symbols_for_renaming (new_return_stmt);
+ gimple_seq_add_stmt (&seq, new_builtin_call);
+ gimple_seq_add_stmt (&seq, new_return_stmt);
+ set_bb_seq (new_bb, seq);
+ gimple_set_bb (new_builtin_call, new_bb);
+ gimple_set_bb (new_return_stmt, new_bb);
+
+ gimple_set_block (new_builtin_call, DECL_INITIAL (orig_fndecl));
+ gimple_set_block (new_return_stmt, DECL_INITIAL (orig_fndecl));
+
+ if (dump_file)
+ dump_function_to_file (orig_fndecl, dump_file, TDF_BLOCKS);
+
+ /* This update_ssa is necessary here for the following reason. SSA uses
+ a global syms_to_rename bitmap that stores syms that must be renamed.
+ So, if we accumulate the syms from one function in IPA but move to
+ a different function without updating SSA, then we could be
+ accumulating syms from many functions. This would assert in
+ referenced_var_lookup because the hashtab storing the syms is
+ function local. This is horrible. gcc-4.6 makes this bitmap a
+ global. */
+ update_ssa (TODO_update_ssa);
+
+ compute_inline_parameters (cgraph_get_create_node (orig_fndecl), false);
+ DECL_DECLARED_INLINE_P (orig_fndecl) = 1;
+ DECL_UNINLINABLE (orig_fndecl) = 0;
+ current_function_decl = old_current_function_decl;
+ pop_cfun ();
+ return 0;
+}
+
+/* Clone all functions marked for cloning by the earlier phase. */
+
+static void
+perform_cloning_phase (void)
+{
+ struct cgraph_node *node;
+ int ix;
+ VEC (tree, heap) *cloned_decl_list = NULL;
+ tree cloned_decl = NULL;
+
+ cloned_decl_list = VEC_alloc (tree, heap, 2);
+
+ /* First clone, then specialize the clones. */
+ for (node = cgraph_nodes; node; node = node->next)
+ {
+ tree clone_0_decl, clone_1_decl;
+ if (node->aux == NULL)
+ continue;
+ if (dump_file)
+ {
+ fprintf (dump_file, "%s will be cloned\n", cgraph_node_name (node));
+ dump_function_to_file (node->decl, dump_file, TDF_BLOCKS);
+ }
+ clone_and_dispatch_function (node, &clone_0_decl, &clone_1_decl);
+ VEC_safe_push (tree, heap, cloned_decl_list, clone_0_decl);
+ VEC_safe_push (tree, heap, cloned_decl_list, clone_1_decl);
+ continue;
+ }
+
+ /* Specialize the clones now. */
+ for (ix = 0; VEC_iterate (tree, cloned_decl_list, ix, cloned_decl); ++ix)
+ {
+ int which_clone = ix % 2;
+ specialize_call (cloned_decl, which_clone);
+ }
+
+ VEC_free (tree, heap, cloned_decl_list);
+}
+
+/* End Cloning phase. */
+
+/* Checks if there is atleast one call to __builtin_dispatch. */
+
+static bool
+find_builtin_decl (void)
+{
+ struct cgraph_node *node;
+ for (node = cgraph_nodes; node; node = node->next)
+ {
+ if (strstr (cgraph_node_name (node), "__builtin_dispatch") != NULL)
+ {
+ builtin_function_decl = node->decl;
+ return true;
+ }
+ }
+ return false;
+}
+
+/* Set the aux fields of all nodes and edges in the call graph to be NULL. */
+
+static void
+cleanup_aux_field (void)
+{
+ struct cgraph_node *node;
+ struct cgraph_edge *edge;
+
+ for (node = cgraph_nodes; node; node = node->next)
+ {
+ node->aux = NULL;
+ for (edge = node->callees; edge; edge = edge->next_callee)
+ edge->aux = NULL;
+ }
+}
+
+/* Main driver function. It scans the __builtin_dispatch calls and
+ figures out which functions to clone. It then clones the functions. */
+
+static unsigned int
+builtin_dispatch_ipa_clone (void)
+{
+ cleanup_aux_field ();
+
+ /* Allocate hashtab mapping name to decl. */
+ name_decl_htab = htab_create (10, name_decl_htab_hash_descriptor,
+ name_decl_htab_eq_descriptor, NULL);
+
+ /* Turn it on for O1 and above. At -O0, there is a SSA alias bug
+ with create_tmp_var. Cloning and hoisting is not necessary at
+ -O0 anyways. Also, guard it with the flag
+ "-fclone-hot-version-paths".
+ Disabled for LTO as it needs more work. */
+ if (optimize == 0
+ || profile_arc_flag
+ || !flag_clone_hot_version_paths
+ || flag_lto)
+ return 0;
+
+ if (!find_builtin_decl ())
+ return 0;
+
+ gcc_assert (builtin_function_decl != NULL);
+
+ if (!perform_analysis_phase ())
+ {
+ cleanup_aux_field ();
+ return 0;
+ }
+
+ if (decide_cloning_phase ())
+ perform_cloning_phase ();
+
+ cleanup_aux_field ();
+
+ return 0;
+}
+
+static bool
+gate_handle_builtin_dispatch (void)
+{
+ return true;
+}
+
+struct simple_ipa_opt_pass pass_ipa_multiversion_dispatch =
+{
+ {
+ SIMPLE_IPA_PASS,
+ "multiversion_dispatch", /* name */
+ gate_handle_builtin_dispatch, /* gate */
+ builtin_dispatch_ipa_clone, /* execute */
+ NULL, /* sub */
+ NULL, /* next */
+ 0, /* static_pass_number */
+ TV_MVERSN_DISPATCH, /* tv_id */
+ 0, /* properties_required */
+ PROP_cfg, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_dump_func | /* todo_flags_finish */
+ TODO_update_ssa
+ }
+};
+
+/* Lowering of the __builtin_dispatch calls. */
+
+
+/* This function converts STMT which is a __builtin_dispatch
+ call of the form :
+ ret = __builtin_dispatch (predicate, foo, bar, arg1, ...)
+ into :
+ var_1 = predicate
+ if (var_1)
+ var_2 = foo (arg1, ...);
+ else
+ var_3 = bar (arg1, ...);
+ var_4 = phi (var_2, var_3)
+ ret = var_4
+
+ var_? are ssa names for variable var.
+*/
+
+static unsigned int
+convert_builtin_dispatch (gimple stmt)
+{
+ tree cond_func_addr, if_func_addr, else_func_addr;
+ tree cond_func_decl = NULL;
+ gimple if_part, else_part, if_else_stmt;
+ basic_block bb1, bb2, bb3, bb4;
+ gimple bb1end, bb2end, bb3end;
+ edge e12, e13, e23, e24, e34;
+ VEC(tree, heap) *nargs = NULL;
+ int num_func_args = 0, i;
+ tree version_selector_var;
+ tree lhs_result;
+ gimple_stmt_iterator gsi;
+ basic_block bb;
+ gimple feature_test_call = NULL;
+ tree tmp_var = NULL;
+ gimple init_stmt = NULL;
+ tree ssa_if_name, ssa_else_name;
+ gimple phinode = NULL;
+ tree tmp_result_var, ssa_result_var;
+
+ gsi = gsi_for_stmt (stmt);
+ bb = gsi_bb (gsi);
+
+ cond_func_addr = find_version_selector_func_addr (stmt);
+ if (cond_func_addr != NULL)
+ {
+ cond_func_decl = TREE_OPERAND (cond_func_addr, 0);
+ gcc_assert (cond_func_decl);
+ }
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "Before Converting __builtin_dispatch :\n");
+ dump_function_to_file (current_function_decl, dump_file, TDF_BLOCKS);
+ }
+
+ if_func_addr = gimple_call_arg (stmt, 1);
+ else_func_addr = gimple_call_arg (stmt, 2);
+
+ tmp_result_var = create_tmp_var (integer_type_node, NULL);
+ add_referenced_var (tmp_result_var);
+
+ if (flag_lto
+ || cond_func_decl == NULL
+ || lookup_attribute ("version_selector",
+ DECL_ATTRIBUTES (cond_func_decl)) == NULL)
+ {
+ tree arg = gimple_call_arg (stmt, 0);
+ /* This means the feature-test function is not set with attribute
+ version_selector or it is a function pointer or in LTO. So,
+ explicitly call it. */
+ feature_test_call = gimple_build_call (arg, 0);
+ ssa_result_var = make_ssa_name (tmp_result_var, feature_test_call);
+ gimple_call_set_lhs (feature_test_call, ssa_result_var);
+ mark_symbols_for_renaming (feature_test_call);
+ version_selector_var = ssa_result_var;
+ }
+ else
+ {
+ /* Get the global corresponding to the "version_selector" function. */
+ version_selector_var
+ = handle_version_selector_attr_function (cond_func_decl);
+ gcc_assert (version_selector_var);
+ add_referenced_var (version_selector_var);
+ feature_test_call = gimple_build_assign (tmp_result_var,
+ version_selector_var);
+ ssa_result_var = make_ssa_name (tmp_result_var, feature_test_call);
+ gimple_assign_set_lhs (feature_test_call, ssa_result_var);
+ mark_symbols_for_renaming (feature_test_call);
+ version_selector_var = ssa_result_var;
+ }
+
+ if_else_stmt = gimple_build_cond (GT_EXPR,
+ version_selector_var,
+ integer_zero_node,
+ NULL_TREE, NULL_TREE);
+
+ mark_symbols_for_renaming (if_else_stmt);
+
+ num_func_args = function_args_count (
+ TREE_TYPE (TREE_OPERAND (if_func_addr, 0)));
+
+ nargs = VEC_alloc (tree, heap, num_func_args);
+
+ /* The arguments to the feature test function start from the 4th argument
+ in __builtin_dispatch. The first 3 arguments are mandatory. */
+
+ for (i = 0; i <= num_func_args - 2; ++i)
+ VEC_quick_push (tree, nargs,
+ gimple_call_arg (stmt, (3 + i)));
+
+ if_part = gimple_build_call_vec (if_func_addr, nargs);
+ else_part = gimple_build_call_vec (else_func_addr, nargs);
+
+ lhs_result = gimple_call_lhs (stmt);
+
+ if (lhs_result != NULL_TREE)
+ {
+ tree ssa_var;
+ tree return_type;
+ return_type = TREE_TYPE (lhs_result);
+ tmp_var = create_tmp_var (return_type, NULL);
+ add_referenced_var (tmp_var);
+
+ init_stmt = gimple_build_assign (tmp_var, build_zero_cst (return_type));
+ ssa_var = make_ssa_name (tmp_var, init_stmt);
+ gimple_assign_set_lhs (init_stmt, ssa_var);
+ mark_symbols_for_renaming (init_stmt);
+
+ ssa_if_name = make_ssa_name (tmp_var, init_stmt);
+ ssa_else_name = make_ssa_name (tmp_var, init_stmt);
+ gimple_call_set_lhs (if_part, ssa_if_name);
+ gimple_call_set_lhs (else_part, ssa_else_name);
+ }
+ mark_symbols_for_renaming (if_part);
+ mark_symbols_for_renaming (else_part);
+
+ /* Set the lexical block to be the same as the dispatch call. */
+ gcc_assert (feature_test_call);
+ gimple_set_block (feature_test_call, gimple_block (stmt));
+
+ if (init_stmt)
+ gimple_set_block (init_stmt, gimple_block (stmt));
+
+ gimple_set_block (if_else_stmt, gimple_block (stmt));
+ gimple_set_block (if_part, gimple_block (stmt));
+ gimple_set_block (else_part, gimple_block (stmt));
+
+ gsi_insert_before_without_update (&gsi, feature_test_call, GSI_SAME_STMT);
+ gimple_set_bb (feature_test_call, bb);
+
+ if (init_stmt)
+ {
+ gsi_insert_before_without_update (&gsi, init_stmt,
+ GSI_SAME_STMT);
+ gimple_set_bb (init_stmt, bb);
+ }
+
+ gsi_insert_before_without_update (&gsi, if_else_stmt, GSI_SAME_STMT);
+ gsi_insert_before_without_update (&gsi, if_part, GSI_SAME_STMT);
+ gsi_insert_before_without_update (&gsi, else_part, GSI_SAME_STMT);
+
+ /* Remove the builtin_dispatch call after the expansion. */
+ unlink_stmt_vdef (stmt);
+ gsi_remove (&gsi, true);
+
+ bb1end = if_else_stmt;
+ bb2end = if_part;
+ bb3end = else_part;
+ bb1 = bb;
+ e12 = split_block (bb1, bb1end);
+ bb2 = e12->dest;
+ e23 = split_block (bb2, bb2end);
+ bb3 = e23->dest;
+ e34 = split_block (bb3, bb3end);
+ bb4 = e34->dest;
+
+ e12->flags &= ~EDGE_FALLTHRU;
+ e12->flags |= EDGE_TRUE_VALUE;
+ e13 = make_edge (bb1, bb3, EDGE_FALSE_VALUE);
+ gcc_assert (e13);
+ e24 = make_edge (bb2, bb4, EDGE_FALLTHRU);
+ gcc_assert (e24);
+ remove_edge (e23);
+
+ if (tmp_var)
+ {
+ gimple assign_stmt;
+ phinode = create_phi_node (tmp_var, bb4);
+ add_phi_arg (phinode, ssa_if_name, e24, UNKNOWN_LOCATION);
+ add_phi_arg (phinode, ssa_else_name, e34, UNKNOWN_LOCATION);
+ mark_symbols_for_renaming (phinode);
+ gcc_assert (lhs_result);
+ assign_stmt
+ = gimple_build_assign (lhs_result, gimple_phi_result (phinode));
+ mark_symbols_for_renaming (assign_stmt);
+ gsi = gsi_start_bb (bb4);
+ gsi_insert_before_without_update (&gsi, assign_stmt, GSI_SAME_STMT);
+ gimple_set_bb (assign_stmt, bb4);
+ }
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "Converted __builtin_dispatch :\n");
+ dump_function_to_file (current_function_decl, dump_file, TDF_BLOCKS);
+ }
+
+ return 0;
+}
+
+/* This function does two things.
+
+ 1) For a feature-test function marked with attribute "version_selector",
+ it creates a constructor that calls the feature-test function and a
+ global that holds the result. The global's result will be used
+ to lower any __builtin_dispatch statement that refers to this feature
+ test function. The __builtin_dispatch statement and the feature test
+ function can be in different modules.
+
+ 2) It lowers __builtin_dispatch statements. */
+
+static unsigned int
+do_convert_builtin_dispatch (void)
+{
+ basic_block bb;
+ gimple_stmt_iterator gsi;
+ VEC (gimple, heap) *builtin_stmt_list = NULL;
+ int ix;
+ gimple builtin_stmt;
+
+ /* Allocate hashtab mapping name to decl. */
+ if (name_decl_htab == NULL)
+ name_decl_htab = htab_create (10, name_decl_htab_hash_descriptor,
+ name_decl_htab_eq_descriptor, NULL);
+
+ /* Look for functions with attribute "version_selector" and make a
+ constructor which calls the function and saves the result in a
+ global. Disabled for LTO as it needs more work. */
+
+ if (!flag_lto
+ && lookup_attribute ("version_selector",
+ DECL_ATTRIBUTES (current_function_decl)) != NULL)
+ {
+ if (dump_file)
+ fprintf (dump_file, "Function with version_selector attribute found :"
+ " %s. Making constructor for it.\n",
+ current_function_name ());
+
+ handle_version_selector_attr_function (current_function_decl);
+ /* Assume there are no __builtin_dispatch calls in feature test
+ functions. So it is safe to return. */
+ return 0;
+ }
+
+ /* Find and lower __builtin_dispatch calls. */
+
+ FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (current_function_decl))
+ {
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+ tree call_decl;
+
+ if (!is_gimple_call (stmt))
+ continue;
+
+ call_decl = gimple_call_fndecl (stmt);
+
+ if (call_decl == NULL)
+ continue;
+
+ if (DECL_NAME (call_decl) == NULL_TREE)
+ continue;
+
+ if (strstr (IDENTIFIER_POINTER (DECL_NAME (call_decl)),
+ "__builtin_dispatch") == NULL)
+ continue;
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "Converting __builtin_dispatch stmt in:%s\n",
+ current_function_name ());
+ print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS);
+ }
+
+ if (builtin_stmt_list == NULL)
+ builtin_stmt_list = VEC_alloc (gimple, heap, 2);
+
+ gcc_assert (builtin_stmt_list != NULL);
+ VEC_safe_push (gimple, heap, builtin_stmt_list, stmt);
+ }
+ }
+
+ if (!builtin_stmt_list)
+ return 0;
+
+ for (ix = 0; VEC_iterate (gimple, builtin_stmt_list, ix, builtin_stmt);
+ ++ix)
+ convert_builtin_dispatch (builtin_stmt);
+
+ compute_inline_parameters (cgraph_get_create_node (current_function_decl),
+ false);
+
+ VEC_free (gimple, heap, builtin_stmt_list);
+
+ return 0;
+}
+
+static bool
+gate_convert_builtin_dispatch (void)
+{
+ return true;
+}
+
+struct gimple_opt_pass pass_tree_convert_builtin_dispatch =
+{
+ {
+ GIMPLE_PASS,
+ "convert_builtin_dispatch", /* name */
+ gate_convert_builtin_dispatch, /* gate */
+ do_convert_builtin_dispatch, /* execute */
+ NULL, /* sub */
+ NULL, /* next */
+ 0, /* static_pass_number */
+ TV_MVERSN_DISPATCH, /* tv_id */
+ PROP_cfg, /* properties_required */
+ PROP_cfg, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_dump_func | /* todo_flags_finish */
+ TODO_cleanup_cfg | TODO_dump_cgraph |
+ TODO_update_ssa | TODO_verify_ssa
+ }
+};
diff --git a/gcc-4.9/gcc/omp-low.c b/gcc-4.9/gcc/omp-low.c
index 26e484964..a605c45f0 100644
--- a/gcc-4.9/gcc/omp-low.c
+++ b/gcc-4.9/gcc/omp-low.c
@@ -1509,11 +1509,19 @@ scan_sharing_clauses (tree clauses, omp_context *ctx)
break;
case OMP_CLAUSE_SHARED:
+ decl = OMP_CLAUSE_DECL (c);
/* Ignore shared directives in teams construct. */
if (gimple_code (ctx->stmt) == GIMPLE_OMP_TEAMS)
- break;
+ {
+ /* Global variables don't need to be copied,
+ the receiver side will use them directly. */
+ tree odecl = maybe_lookup_decl_in_outer_ctx (decl, ctx);
+ if (is_global_var (odecl))
+ break;
+ insert_decl_map (&ctx->cb, decl, odecl);
+ break;
+ }
gcc_assert (is_taskreg_ctx (ctx));
- decl = OMP_CLAUSE_DECL (c);
gcc_assert (!COMPLETE_TYPE_P (TREE_TYPE (decl))
|| !is_variable_sized (decl));
/* Global variables don't need to be copied,
@@ -1670,6 +1678,11 @@ scan_sharing_clauses (tree clauses, omp_context *ctx)
}
else
{
+ if (ctx->outer)
+ {
+ scan_omp_op (&OMP_CLAUSE_DECL (c), ctx->outer);
+ decl = OMP_CLAUSE_DECL (c);
+ }
gcc_assert (!splay_tree_lookup (ctx->field_map,
(splay_tree_key) decl));
tree field
@@ -2003,6 +2016,7 @@ scan_omp_parallel (gimple_stmt_iterator *gsi, omp_context *outer_ctx)
tree temp = create_tmp_var (type, NULL);
tree c = build_omp_clause (UNKNOWN_LOCATION,
OMP_CLAUSE__LOOPTEMP_);
+ insert_decl_map (&outer_ctx->cb, temp, temp);
OMP_CLAUSE_DECL (c) = temp;
OMP_CLAUSE_CHAIN (c) = gimple_omp_parallel_clauses (stmt);
gimple_omp_parallel_set_clauses (stmt, c);
@@ -2500,6 +2514,23 @@ check_omp_nesting_restrictions (gimple stmt, omp_context *ctx)
return false;
}
break;
+ case GIMPLE_OMP_TARGET:
+ for (; ctx != NULL; ctx = ctx->outer)
+ if (gimple_code (ctx->stmt) == GIMPLE_OMP_TARGET
+ && gimple_omp_target_kind (ctx->stmt) == GF_OMP_TARGET_KIND_REGION)
+ {
+ const char *name;
+ switch (gimple_omp_target_kind (stmt))
+ {
+ case GF_OMP_TARGET_KIND_REGION: name = "target"; break;
+ case GF_OMP_TARGET_KIND_DATA: name = "target data"; break;
+ case GF_OMP_TARGET_KIND_UPDATE: name = "target update"; break;
+ default: gcc_unreachable ();
+ }
+ warning_at (gimple_location (stmt), 0,
+ "%s construct inside of target region", name);
+ }
+ break;
default:
break;
}
@@ -2967,8 +2998,10 @@ lower_rec_simd_input_clauses (tree new_var, omp_context *ctx, int &max_vf,
{
tree c = find_omp_clause (gimple_omp_for_clauses (ctx->stmt),
OMP_CLAUSE_SAFELEN);
- if (c
- && compare_tree_int (OMP_CLAUSE_SAFELEN_EXPR (c), max_vf) == -1)
+ if (c && TREE_CODE (OMP_CLAUSE_SAFELEN_EXPR (c)) != INTEGER_CST)
+ max_vf = 1;
+ else if (c && compare_tree_int (OMP_CLAUSE_SAFELEN_EXPR (c),
+ max_vf) == -1)
max_vf = tree_to_shwi (OMP_CLAUSE_SAFELEN_EXPR (c));
}
if (max_vf > 1)
@@ -3000,6 +3033,27 @@ lower_rec_simd_input_clauses (tree new_var, omp_context *ctx, int &max_vf,
return true;
}
+/* Helper function of lower_rec_input_clauses. For a reference
+ in simd reduction, add an underlying variable it will reference. */
+
+static void
+handle_simd_reference (location_t loc, tree new_vard, gimple_seq *ilist)
+{
+ tree z = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (new_vard)));
+ if (TREE_CONSTANT (z))
+ {
+ const char *name = NULL;
+ if (DECL_NAME (new_vard))
+ name = IDENTIFIER_POINTER (DECL_NAME (new_vard));
+
+ z = create_tmp_var_raw (TREE_TYPE (TREE_TYPE (new_vard)), name);
+ gimple_add_tmp_var (z);
+ TREE_ADDRESSABLE (z) = 1;
+ z = build_fold_addr_expr_loc (loc, z);
+ gimplify_assign (new_vard, z, ilist);
+ }
+}
+
/* Generate code to implement the input clauses, FIRSTPRIVATE and COPYIN,
from the receiver (aka child) side and initializers for REFERENCE_TYPE
private variables. Initialization statements go in ILIST, while calls
@@ -3031,11 +3085,14 @@ lower_rec_input_clauses (tree clauses, gimple_seq *ilist, gimple_seq *dlist,
for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c))
switch (OMP_CLAUSE_CODE (c))
{
+ case OMP_CLAUSE_LINEAR:
+ if (OMP_CLAUSE_LINEAR_ARRAY (c))
+ max_vf = 1;
+ /* FALLTHRU */
case OMP_CLAUSE_REDUCTION:
case OMP_CLAUSE_PRIVATE:
case OMP_CLAUSE_FIRSTPRIVATE:
case OMP_CLAUSE_LASTPRIVATE:
- case OMP_CLAUSE_LINEAR:
if (is_variable_sized (OMP_CLAUSE_DECL (c)))
max_vf = 1;
break;
@@ -3091,6 +3148,13 @@ lower_rec_input_clauses (tree clauses, gimple_seq *ilist, gimple_seq *dlist,
if (pass != 0)
continue;
}
+ /* Even without corresponding firstprivate, if
+ decl is Fortran allocatable, it needs outer var
+ reference. */
+ else if (pass == 0
+ && lang_hooks.decls.omp_private_outer_ref
+ (OMP_CLAUSE_DECL (c)))
+ lastprivate_firstprivate = true;
break;
case OMP_CLAUSE_ALIGNED:
if (pass == 0)
@@ -3191,13 +3255,11 @@ lower_rec_input_clauses (tree clauses, gimple_seq *ilist, gimple_seq *dlist,
}
else if (TREE_CONSTANT (x))
{
- /* For reduction with placeholder in SIMD loop,
- defer adding the initialization of the reference,
- because if we decide to use SIMD array for it,
- the initilization could cause expansion ICE. */
- if (c_kind == OMP_CLAUSE_REDUCTION
- && OMP_CLAUSE_REDUCTION_PLACEHOLDER (c)
- && is_simd)
+ /* For reduction in SIMD loop, defer adding the
+ initialization of the reference, because if we decide
+ to use SIMD array for it, the initilization could cause
+ expansion ICE. */
+ if (c_kind == OMP_CLAUSE_REDUCTION && is_simd)
x = NULL_TREE;
else
{
@@ -3356,34 +3418,37 @@ lower_rec_input_clauses (tree clauses, gimple_seq *ilist, gimple_seq *dlist,
if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_LINEAR
&& gimple_omp_for_combined_into_p (ctx->stmt))
{
- tree stept = POINTER_TYPE_P (TREE_TYPE (x))
- ? sizetype : TREE_TYPE (x);
- tree t = fold_convert (stept,
- OMP_CLAUSE_LINEAR_STEP (c));
- tree c = find_omp_clause (clauses,
- OMP_CLAUSE__LOOPTEMP_);
- gcc_assert (c);
- tree l = OMP_CLAUSE_DECL (c);
- if (fd->collapse == 1)
- {
- tree n1 = fd->loop.n1;
- tree step = fd->loop.step;
- tree itype = TREE_TYPE (l);
- if (POINTER_TYPE_P (itype))
- itype = signed_type_for (itype);
- l = fold_build2 (MINUS_EXPR, itype, l, n1);
- if (TYPE_UNSIGNED (itype)
- && fd->loop.cond_code == GT_EXPR)
- l = fold_build2 (TRUNC_DIV_EXPR, itype,
- fold_build1 (NEGATE_EXPR,
- itype, l),
- fold_build1 (NEGATE_EXPR,
- itype, step));
- else
- l = fold_build2 (TRUNC_DIV_EXPR, itype, l, step);
- }
+ tree t = OMP_CLAUSE_LINEAR_STEP (c);
+ tree stept = TREE_TYPE (t);
+ tree ct = find_omp_clause (clauses,
+ OMP_CLAUSE__LOOPTEMP_);
+ gcc_assert (ct);
+ tree l = OMP_CLAUSE_DECL (ct);
+ tree n1 = fd->loop.n1;
+ tree step = fd->loop.step;
+ tree itype = TREE_TYPE (l);
+ if (POINTER_TYPE_P (itype))
+ itype = signed_type_for (itype);
+ l = fold_build2 (MINUS_EXPR, itype, l, n1);
+ if (TYPE_UNSIGNED (itype)
+ && fd->loop.cond_code == GT_EXPR)
+ l = fold_build2 (TRUNC_DIV_EXPR, itype,
+ fold_build1 (NEGATE_EXPR, itype, l),
+ fold_build1 (NEGATE_EXPR,
+ itype, step));
+ else
+ l = fold_build2 (TRUNC_DIV_EXPR, itype, l, step);
t = fold_build2 (MULT_EXPR, stept,
fold_convert (stept, l), t);
+
+ if (OMP_CLAUSE_LINEAR_ARRAY (c))
+ {
+ x = lang_hooks.decls.omp_clause_linear_ctor
+ (c, new_var, x, t);
+ gimplify_and_add (x, ilist);
+ goto do_dtor;
+ }
+
if (POINTER_TYPE_P (TREE_TYPE (x)))
x = fold_build2 (POINTER_PLUS_EXPR,
TREE_TYPE (x), x, t);
@@ -3407,10 +3472,7 @@ lower_rec_input_clauses (tree clauses, gimple_seq *ilist, gimple_seq *dlist,
= gimple_build_assign (unshare_expr (lvar), iv);
gsi_insert_before_without_update (&gsi, g,
GSI_SAME_STMT);
- tree stept = POINTER_TYPE_P (TREE_TYPE (x))
- ? sizetype : TREE_TYPE (x);
- tree t = fold_convert (stept,
- OMP_CLAUSE_LINEAR_STEP (c));
+ tree t = OMP_CLAUSE_LINEAR_STEP (c);
enum tree_code code = PLUS_EXPR;
if (POINTER_TYPE_P (TREE_TYPE (new_var)))
code = POINTER_PLUS_EXPR;
@@ -3526,25 +3588,10 @@ lower_rec_input_clauses (tree clauses, gimple_seq *ilist, gimple_seq *dlist,
But if they aren't used, we need to emit the deferred
initialization now. */
else if (is_reference (var) && is_simd)
- {
- tree z
- = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (new_vard)));
- if (TREE_CONSTANT (z))
- {
- const char *name = NULL;
- if (DECL_NAME (var))
- name = IDENTIFIER_POINTER (DECL_NAME (new_vard));
-
- z = create_tmp_var_raw
- (TREE_TYPE (TREE_TYPE (new_vard)), name);
- gimple_add_tmp_var (z);
- TREE_ADDRESSABLE (z) = 1;
- z = build_fold_addr_expr_loc (clause_loc, z);
- gimplify_assign (new_vard, z, ilist);
- }
- }
+ handle_simd_reference (clause_loc, new_vard, ilist);
x = lang_hooks.decls.omp_clause_default_ctor
- (c, new_var, unshare_expr (x));
+ (c, unshare_expr (new_var),
+ build_outer_var_ref (var, ctx));
if (x)
gimplify_and_add (x, ilist);
if (OMP_CLAUSE_REDUCTION_GIMPLE_INIT (c))
@@ -3575,6 +3622,13 @@ lower_rec_input_clauses (tree clauses, gimple_seq *ilist, gimple_seq *dlist,
if (code == MINUS_EXPR)
code = PLUS_EXPR;
+ tree new_vard = new_var;
+ if (is_simd && is_reference (var))
+ {
+ gcc_assert (TREE_CODE (new_var) == MEM_REF);
+ new_vard = TREE_OPERAND (new_var, 0);
+ gcc_assert (DECL_P (new_vard));
+ }
if (is_simd
&& lower_rec_simd_input_clauses (new_var, ctx, max_vf,
idx, lane, ivar, lvar))
@@ -3586,9 +3640,18 @@ lower_rec_input_clauses (tree clauses, gimple_seq *ilist, gimple_seq *dlist,
x = build2 (code, TREE_TYPE (ref), ref, ivar);
ref = build_outer_var_ref (var, ctx);
gimplify_assign (ref, x, &llist[1]);
+
+ if (new_vard != new_var)
+ {
+ SET_DECL_VALUE_EXPR (new_vard,
+ build_fold_addr_expr (lvar));
+ DECL_HAS_VALUE_EXPR_P (new_vard) = 1;
+ }
}
else
{
+ if (is_reference (var) && is_simd)
+ handle_simd_reference (clause_loc, new_vard, ilist);
gimplify_assign (new_var, x, ilist);
if (is_simd)
{
@@ -3689,8 +3752,9 @@ lower_rec_input_clauses (tree clauses, gimple_seq *ilist, gimple_seq *dlist,
tree c = find_omp_clause (gimple_omp_for_clauses (ctx->stmt),
OMP_CLAUSE_SAFELEN);
if (c == NULL_TREE
- || compare_tree_int (OMP_CLAUSE_SAFELEN_EXPR (c),
- max_vf) == 1)
+ || (TREE_CODE (OMP_CLAUSE_SAFELEN_EXPR (c)) == INTEGER_CST
+ && compare_tree_int (OMP_CLAUSE_SAFELEN_EXPR (c),
+ max_vf) == 1))
{
c = build_omp_clause (UNKNOWN_LOCATION, OMP_CLAUSE_SAFELEN);
OMP_CLAUSE_SAFELEN_EXPR (c) = build_int_cst (integer_type_node,
@@ -6854,8 +6918,10 @@ expand_omp_simd (struct omp_region *region, struct omp_for_data *fd)
else
{
safelen = OMP_CLAUSE_SAFELEN_EXPR (safelen);
- if (!tree_fits_uhwi_p (safelen)
- || tree_to_uhwi (safelen) > INT_MAX)
+ if (TREE_CODE (safelen) != INTEGER_CST)
+ loop->safelen = 0;
+ else if (!tree_fits_uhwi_p (safelen)
+ || tree_to_uhwi (safelen) > INT_MAX)
loop->safelen = INT_MAX;
else
loop->safelen = tree_to_uhwi (safelen);
@@ -8421,10 +8487,14 @@ maybe_add_implicit_barrier_cancel (omp_context *ctx, gimple_seq *body)
&& gimple_code (ctx->outer->stmt) == GIMPLE_OMP_PARALLEL
&& ctx->outer->cancellable)
{
- tree lhs = create_tmp_var (boolean_type_node, NULL);
+ tree fndecl = builtin_decl_explicit (BUILT_IN_GOMP_CANCEL);
+ tree c_bool_type = TREE_TYPE (TREE_TYPE (fndecl));
+ tree lhs = create_tmp_var (c_bool_type, NULL);
gimple_omp_return_set_lhs (omp_return, lhs);
tree fallthru_label = create_artificial_label (UNKNOWN_LOCATION);
- gimple g = gimple_build_cond (NE_EXPR, lhs, boolean_false_node,
+ gimple g = gimple_build_cond (NE_EXPR, lhs,
+ fold_convert (c_bool_type,
+ boolean_false_node),
ctx->outer->cancel_label, fallthru_label);
gimple_seq_add_stmt (body, g);
gimple_seq_add_stmt (body, gimple_build_label (fallthru_label));
@@ -9021,7 +9091,10 @@ lower_omp_for (gimple_stmt_iterator *gsi_p, omp_context *ctx)
OMP_CLAUSE__LOOPTEMP_);
}
else
- temp = create_tmp_var (type, NULL);
+ {
+ temp = create_tmp_var (type, NULL);
+ insert_decl_map (&ctx->outer->cb, temp, temp);
+ }
*pc = build_omp_clause (UNKNOWN_LOCATION, OMP_CLAUSE__LOOPTEMP_);
OMP_CLAUSE_DECL (*pc) = temp;
pc = &OMP_CLAUSE_CHAIN (*pc);
@@ -10130,21 +10203,23 @@ lower_omp_1 (gimple_stmt_iterator *gsi_p, omp_context *ctx)
}
break;
}
- tree lhs;
- lhs = create_tmp_var (boolean_type_node, NULL);
if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_GOMP_BARRIER)
{
fndecl = builtin_decl_explicit (BUILT_IN_GOMP_BARRIER_CANCEL);
gimple_call_set_fndecl (stmt, fndecl);
gimple_call_set_fntype (stmt, TREE_TYPE (fndecl));
}
+ tree lhs;
+ lhs = create_tmp_var (TREE_TYPE (TREE_TYPE (fndecl)), NULL);
gimple_call_set_lhs (stmt, lhs);
tree fallthru_label;
fallthru_label = create_artificial_label (UNKNOWN_LOCATION);
gimple g;
g = gimple_build_label (fallthru_label);
gsi_insert_after (gsi_p, g, GSI_SAME_STMT);
- g = gimple_build_cond (NE_EXPR, lhs, boolean_false_node,
+ g = gimple_build_cond (NE_EXPR, lhs,
+ fold_convert (TREE_TYPE (lhs),
+ boolean_false_node),
cctx->cancel_label, fallthru_label);
gsi_insert_after (gsi_p, g, GSI_SAME_STMT);
break;
diff --git a/gcc-4.9/gcc/optabs.c b/gcc-4.9/gcc/optabs.c
index 54f07ab02..cd31b0e63 100644
--- a/gcc-4.9/gcc/optabs.c
+++ b/gcc-4.9/gcc/optabs.c
@@ -465,6 +465,9 @@ optab_for_tree_code (enum tree_code code, const_tree type,
case DOT_PROD_EXPR:
return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
+ case SAD_EXPR:
+ return TYPE_UNSIGNED (type) ? usad_optab : ssad_optab;
+
case WIDEN_MULT_PLUS_EXPR:
return (TYPE_UNSIGNED (type)
? (TYPE_SATURATING (type)
diff --git a/gcc-4.9/gcc/optabs.def b/gcc-4.9/gcc/optabs.def
index 9b8974080..b75547006 100644
--- a/gcc-4.9/gcc/optabs.def
+++ b/gcc-4.9/gcc/optabs.def
@@ -253,6 +253,8 @@ OPTAB_D (sdot_prod_optab, "sdot_prod$I$a")
OPTAB_D (ssum_widen_optab, "widen_ssum$I$a3")
OPTAB_D (udot_prod_optab, "udot_prod$I$a")
OPTAB_D (usum_widen_optab, "widen_usum$I$a3")
+OPTAB_D (usad_optab, "usad$I$a")
+OPTAB_D (ssad_optab, "ssad$I$a")
OPTAB_D (maskload_optab, "maskload$a")
OPTAB_D (maskstore_optab, "maskstore$a")
OPTAB_D (vec_extract_optab, "vec_extract$a")
diff --git a/gcc-4.9/gcc/opts-global.c b/gcc-4.9/gcc/opts-global.c
index 111884bb5..e115c9bf2 100644
--- a/gcc-4.9/gcc/opts-global.c
+++ b/gcc-4.9/gcc/opts-global.c
@@ -41,6 +41,8 @@ along with GCC; see the file COPYING3. If not see
#include "plugin.h"
#include "toplev.h"
#include "tree-pass.h"
+#include "params.h"
+#include "l-ipo.h"
#include "context.h"
typedef const char *const_char_p; /* For DEF_VEC_P. */
@@ -185,7 +187,7 @@ lang_handle_option (struct gcc_options *opts,
/* Handle FILENAME from the command line. */
-static void
+void
add_input_filename (const char *filename)
{
num_in_fnames++;
@@ -193,6 +195,40 @@ add_input_filename (const char *filename)
in_fnames[num_in_fnames - 1] = filename;
}
+/* GCC command-line options saved to the LIPO profile data file.
+ See detailed comment in opts.h. */
+const char **lipo_cl_args;
+unsigned num_lipo_cl_args;
+
+/* Inspect the given GCC command-line arguments, which are part of one GCC
+ switch, and decide whether or not to store these to the LIPO profile data
+ file. */
+static void
+lipo_save_cl_args (struct cl_decoded_option *decoded)
+{
+ const char *opt = decoded->orig_option_with_args_text;
+ /* Store the following command-line flags to the lipo profile data file:
+ (1) -f... (except -frandom-seed...)
+ (2) -m...
+ (3) -W...
+ (4) -O...
+ (5) --param...
+ (6) -std=... (-std=c99 for restrict keyword)
+ */
+ if (opt[0] == '-'
+ && (opt[1] == 'f' || opt[1] == 'm' || opt[1] == 'W' || opt[1] == 'O'
+ || (strstr (opt, "--param") == opt)
+ || (strstr (opt, "-std=")))
+ && !strstr(opt, "-frandom-seed")
+ && !strstr(opt, "-fripa-disallow-opt-mismatch")
+ && !strstr(opt, "-Wripa-opt-mismatch"))
+ {
+ num_lipo_cl_args++;
+ lipo_cl_args = XRESIZEVEC (const char *, lipo_cl_args, num_lipo_cl_args);
+ lipo_cl_args[num_lipo_cl_args - 1] = opt;
+ }
+}
+
/* Handle the vector of command line options (located at LOC), storing
the results of processing DECODED_OPTIONS and DECODED_OPTIONS_COUNT
in OPTS and OPTS_SET and using DC for diagnostic state. LANG_MASK
@@ -209,6 +245,10 @@ read_cmdline_options (struct gcc_options *opts, struct gcc_options *opts_set,
diagnostic_context *dc)
{
unsigned int i;
+ int force_multi_module = 0;
+ static int cur_mod_id = 0;
+
+ force_multi_module = PARAM_VALUE (PARAM_FORCE_LIPO_MODE);
for (i = 1; i < decoded_options_count; i++)
{
@@ -227,12 +267,15 @@ read_cmdline_options (struct gcc_options *opts, struct gcc_options *opts_set,
&opts->x_main_input_basename);
}
add_input_filename (decoded_options[i].arg);
+ if (force_multi_module)
+ add_module_info (++cur_mod_id, (num_in_fnames == 1), num_in_fnames - 1);
continue;
}
read_cmdline_option (opts, opts_set,
decoded_options + i, loc, lang_mask, handlers,
dc);
+ lipo_save_cl_args (decoded_options + i);
}
}
diff --git a/gcc-4.9/gcc/opts.c b/gcc-4.9/gcc/opts.c
index 506ed8490..3ed603a53 100644
--- a/gcc-4.9/gcc/opts.c
+++ b/gcc-4.9/gcc/opts.c
@@ -507,7 +507,7 @@ static const struct default_options default_options_table[] =
{ OPT_LEVELS_1_PLUS_NOT_DEBUG, OPT_finline_functions_called_once, NULL, 1 },
{ OPT_LEVELS_3_PLUS, OPT_funswitch_loops, NULL, 1 },
{ OPT_LEVELS_3_PLUS, OPT_fgcse_after_reload, NULL, 1 },
- { OPT_LEVELS_3_PLUS, OPT_ftree_loop_vectorize, NULL, 1 },
+ { OPT_LEVELS_2_PLUS, OPT_ftree_loop_vectorize, NULL, 1 },
{ OPT_LEVELS_3_PLUS, OPT_ftree_slp_vectorize, NULL, 1 },
{ OPT_LEVELS_3_PLUS, OPT_fvect_cost_model_, NULL, VECT_COST_MODEL_DYNAMIC },
{ OPT_LEVELS_3_PLUS, OPT_fipa_cp_clone, NULL, 1 },
@@ -802,6 +802,14 @@ finish_options (struct gcc_options *opts, struct gcc_options *opts_set,
opts->x_param_values, opts_set->x_param_values);
}
+ /* External id is not supported in LIPO mode. */
+ /* Also force using internal id in coverage mode for now. */
+ if (opts->x_flag_dyn_ipa || opts->x_flag_test_coverage)
+ {
+ maybe_set_param_value (PARAM_PROFILE_FUNC_INTERNAL_ID, 1,
+ opts->x_param_values, opts_set->x_param_values);
+ }
+
if (opts->x_flag_lto)
{
#ifdef ENABLE_LTO
@@ -847,17 +855,44 @@ finish_options (struct gcc_options *opts, struct gcc_options *opts_set,
}
}
+ if (opts->x_profile_arc_flag
+ || opts->x_flag_branch_probabilities)
+ {
+ /* With profile data, inlining is much more selective and makes
+ better decisions, so increase the inlining function size
+ limits. Changes must be added to both the generate and use
+ builds to avoid profile mismatches. */
+ maybe_set_param_value
+ (PARAM_MAX_INLINE_INSNS_SINGLE, 1000,
+ opts->x_param_values, opts_set->x_param_values);
+ maybe_set_param_value
+ (PARAM_MAX_INLINE_INSNS_AUTO, 1000,
+ opts->x_param_values, opts_set->x_param_values);
+ }
+
/* Tune vectorization related parametees according to cost model. */
if (opts->x_flag_vect_cost_model == VECT_COST_MODEL_CHEAP)
{
maybe_set_param_value (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS,
- 6, opts->x_param_values, opts_set->x_param_values);
+ 8, opts->x_param_values, opts_set->x_param_values);
maybe_set_param_value (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS,
0, opts->x_param_values, opts_set->x_param_values);
maybe_set_param_value (PARAM_VECT_MAX_PEELING_FOR_ALIGNMENT,
0, opts->x_param_values, opts_set->x_param_values);
}
+ /* Set PARAM_MAX_COMPLETELY_PEELED_INSNS to the default original value during
+ -O2 when -funroll-loops and -fpeel-loops are not set. */
+ if (optimize == 2 && !opts->x_flag_unroll_loops && !opts->x_flag_peel_loops
+ && !opts->x_flag_unroll_all_loops)
+
+ {
+ maybe_set_param_value
+ (PARAM_MAX_COMPLETELY_PEELED_INSNS,
+ PARAM_VALUE (PARAM_MAX_DEFAULT_COMPLETELY_PEELED_INSNS),
+ opts->x_param_values, opts_set->x_param_values);
+ }
+
/* Set PARAM_MAX_STORES_TO_SINK to 0 if either vectorization or if-conversion
is disabled. */
if ((!opts->x_flag_tree_loop_vectorize && !opts->x_flag_tree_slp_vectorize)
@@ -865,9 +900,13 @@ finish_options (struct gcc_options *opts, struct gcc_options *opts_set,
maybe_set_param_value (PARAM_MAX_STORES_TO_SINK, 0,
opts->x_param_values, opts_set->x_param_values);
- /* The -gsplit-dwarf option requires -gpubnames. */
+ /* The -gsplit-dwarf option requires -ggnu_pubnames. */
if (opts->x_dwarf_split_debug_info)
- opts->x_debug_generate_pub_sections = 1;
+ opts->x_debug_generate_pub_sections = 2;
+
+ /* Turn on -ffunction-sections when -freorder-functions=* is used. */
+ if (opts->x_flag_reorder_functions > 1)
+ opts->x_flag_function_sections = 1;
}
#define LEFT_COLUMN 27
@@ -1249,6 +1288,7 @@ print_specific_help (unsigned int include_flags,
opts->x_help_columns, opts, lang_mask);
}
+
/* Handle target- and language-independent options. Return zero to
generate an "unknown option" message. Only options that need
extra handling need to be listed here; if you simply want
@@ -1536,6 +1576,10 @@ common_handle_option (struct gcc_options *opts,
opts, opts_set, loc, dc);
break;
+ case OPT_Wforce_warnings:
+ dc->force_warnings_requested = value;
+ break;
+
case OPT_Wlarger_than_:
opts->x_larger_than_size = value;
opts->x_warn_larger_than = value != -1;
@@ -1555,6 +1599,15 @@ common_handle_option (struct gcc_options *opts,
opts->x_flag_stack_usage_info = value != -1;
break;
+ case OPT_Wshadow:
+ warn_shadow_local = value;
+ warn_shadow_compatible_local = value;
+ break;
+
+ case OPT_Wshadow_local:
+ warn_shadow_compatible_local = value;
+ break;
+
case OPT_Wstrict_aliasing:
set_Wstrict_aliasing (opts, value);
break;
@@ -1690,8 +1743,6 @@ common_handle_option (struct gcc_options *opts,
opts->x_flag_unroll_loops = value;
if (!opts_set->x_flag_peel_loops)
opts->x_flag_peel_loops = value;
- if (!opts_set->x_flag_tracer)
- opts->x_flag_tracer = value;
if (!opts_set->x_flag_value_profile_transformations)
opts->x_flag_value_profile_transformations = value;
if (!opts_set->x_flag_inline_functions)
@@ -1710,11 +1761,6 @@ common_handle_option (struct gcc_options *opts,
if (!opts_set->x_flag_tree_loop_vectorize
&& !opts_set->x_flag_tree_vectorize)
opts->x_flag_tree_loop_vectorize = value;
- if (!opts_set->x_flag_tree_slp_vectorize
- && !opts_set->x_flag_tree_vectorize)
- opts->x_flag_tree_slp_vectorize = value;
- if (!opts_set->x_flag_vect_cost_model)
- opts->x_flag_vect_cost_model = VECT_COST_MODEL_DYNAMIC;
if (!opts_set->x_flag_tree_loop_distribute_patterns)
opts->x_flag_tree_loop_distribute_patterns = value;
if (!opts_set->x_flag_profile_reorder_functions)
@@ -1726,6 +1772,43 @@ common_handle_option (struct gcc_options *opts,
opts->x_flag_devirtualize_speculatively = false;
break;
+ case OPT_fauto_profile_:
+ auto_profile_file = xstrdup (arg);
+ opts->x_flag_auto_profile = true;
+ maybe_set_param_value (
+ PARAM_EARLY_INLINER_MAX_ITERATIONS, 10,
+ opts->x_param_values, opts_set->x_param_values);
+ value = true;
+ /* No break here - do -fauto-profile processing. */
+ case OPT_fauto_profile:
+ if (!opts_set->x_flag_branch_probabilities)
+ opts->x_flag_branch_probabilities = value;
+ if (!opts_set->x_flag_unroll_loops)
+ opts->x_flag_unroll_loops = value;
+ if (!opts_set->x_flag_peel_loops)
+ opts->x_flag_peel_loops = value;
+ if (!opts_set->x_flag_value_profile_transformations)
+ opts->x_flag_value_profile_transformations = value;
+ if (!opts_set->x_flag_inline_functions)
+ opts->x_flag_inline_functions = value;
+ if (!opts_set->x_flag_ipa_cp)
+ opts->x_flag_ipa_cp = value;
+ if (!opts_set->x_flag_ipa_cp_clone
+ && value && opts->x_flag_ipa_cp)
+ opts->x_flag_ipa_cp_clone = value;
+ if (!opts_set->x_flag_predictive_commoning)
+ opts->x_flag_predictive_commoning = value;
+ if (!opts_set->x_flag_unswitch_loops)
+ opts->x_flag_unswitch_loops = value;
+ if (!opts_set->x_flag_gcse_after_reload)
+ opts->x_flag_gcse_after_reload = value;
+ if (!opts_set->x_flag_tree_loop_vectorize
+ && !opts_set->x_flag_tree_vectorize)
+ opts->x_flag_tree_loop_vectorize = value;
+ if (!opts_set->x_flag_tree_loop_distribute_patterns)
+ opts->x_flag_tree_loop_distribute_patterns = value;
+ break;
+
case OPT_fprofile_generate_:
opts->x_profile_data_prefix = xstrdup (arg);
value = true;
@@ -1740,10 +1823,14 @@ common_handle_option (struct gcc_options *opts,
/* FIXME: Instrumentation we insert makes ipa-reference bitmaps
quadratic. Disable the pass until better memory representation
is done. */
- if (!opts_set->x_flag_ipa_reference && opts->x_in_lto_p)
+ if (!opts_set->x_flag_ipa_reference)
opts->x_flag_ipa_reference = false;
break;
+ case OPT_fripa_inc_path_sub_:
+ lipo_inc_path_pattern = xstrdup (arg);
+ break;
+
case OPT_ftree_vectorize:
if (!opts_set->x_flag_tree_loop_vectorize)
opts->x_flag_tree_loop_vectorize = value;
@@ -1820,13 +1907,8 @@ common_handle_option (struct gcc_options *opts,
break;
case OPT_g:
- /* -g by itself should force -g2. */
- if (*arg == '\0')
- set_debug_level (NO_DEBUG, DEFAULT_GDB_EXTENSIONS, "2", opts, opts_set,
- loc);
- else
- set_debug_level (NO_DEBUG, DEFAULT_GDB_EXTENSIONS, arg, opts, opts_set,
- loc);
+ set_debug_level (NO_DEBUG, DEFAULT_GDB_EXTENSIONS, arg, opts, opts_set,
+ loc);
break;
case OPT_gcoff:
@@ -1868,6 +1950,12 @@ common_handle_option (struct gcc_options *opts,
loc);
break;
+ case OPT_gmlt:
+ /* Synonym for -g1. */
+ set_debug_level (NO_DEBUG, DEFAULT_GDB_EXTENSIONS, "1", opts, opts_set,
+ loc);
+ break;
+
case OPT_gvms:
set_debug_level (VMS_DEBUG, false, arg, opts, opts_set, loc);
break;
@@ -2077,10 +2165,12 @@ set_debug_level (enum debug_info_type type, int extended, const char *arg,
opts_set->x_write_symbols = type;
}
- /* A debug flag without a level defaults to level 2. */
+ /* A debug flag without a level defaults to level 2.
+ If off or at level 1, set it to level 2, but if already
+ at level 3, don't lower it. */
if (*arg == '\0')
{
- if (!opts->x_debug_info_level)
+ if (opts->x_debug_info_level < DINFO_LEVEL_NORMAL)
opts->x_debug_info_level = DINFO_LEVEL_NORMAL;
}
else
diff --git a/gcc-4.9/gcc/opts.h b/gcc-4.9/gcc/opts.h
index f69408234..3f07ec203 100644
--- a/gcc-4.9/gcc/opts.h
+++ b/gcc-4.9/gcc/opts.h
@@ -306,6 +306,15 @@ extern const char **in_fnames;
extern unsigned num_in_fnames;
+/* GCC command-line arguments used during profile-gen, that are saved to the
+ profile data file. During profile-use, these can be compared to make sure
+ only those auxiliary modules are actually imported that use a compatible
+ set of GCC flags as the primary module. */
+extern const char **lipo_cl_args;
+
+/* The size of the above mentioned mentioned array. */
+extern unsigned num_lipo_cl_args;
+
extern char *opts_concat (const char *first, ...);
/* Obstack for option strings. */
@@ -370,6 +379,11 @@ extern void control_warning_option (unsigned int opt_index, int kind,
struct gcc_options *opts_set,
diagnostic_context *dc);
extern void print_ignored_options (void);
+extern void add_input_filename (const char *filename);
+extern void add_module_info (unsigned mod_id, bool is_primary, int index);
+extern void set_lipo_c_parsing_context (struct cpp_reader *parse_in, int i, bool verbose);
+extern void coverage_note_define (const char *cpp_def, bool is_def);
+extern void coverage_note_include (const char *filename);
extern void handle_common_deferred_options (void);
extern bool common_handle_option (struct gcc_options *opts,
struct gcc_options *opts_set,
@@ -401,4 +415,6 @@ extern void set_struct_debug_option (struct gcc_options *opts,
const char *value);
extern bool opt_enum_arg_to_value (size_t opt_index, const char *arg,
int *value, unsigned int lang_mask);
+extern void write_compilation_info_to_asm (void);
+extern void write_compilation_flags_to_asm (void);
#endif
diff --git a/gcc-4.9/gcc/params.c b/gcc-4.9/gcc/params.c
index 3ae5ccd5c..ab3c7c761 100644
--- a/gcc-4.9/gcc/params.c
+++ b/gcc-4.9/gcc/params.c
@@ -70,7 +70,9 @@ void
global_init_params (void)
{
add_params (lang_independent_params, LAST_PARAM);
+#ifndef IN_GCOV_TOOL
targetm_common.option_default_params ();
+#endif
}
/* Note that all parameters have been added and all default values
diff --git a/gcc-4.9/gcc/params.def b/gcc-4.9/gcc/params.def
index dd2e2cd1a..fd38e8fed 100644
--- a/gcc-4.9/gcc/params.def
+++ b/gcc-4.9/gcc/params.def
@@ -103,6 +103,33 @@ DEFPARAM (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY,
"Inline recursively only when the probability of call being executed exceeds the parameter",
10, 0, 0)
+DEFPARAM (PARAM_INLINE_FUNCTION_OVERHEAD_SIZE,
+ "inline-function-overhead-size",
+ "Size estimate of function overhead (prologue/epilogue) for inlining purposes",
+ 7, 0, 0)
+
+/* Knob to control hot-caller heuristic. 0 means it is turned off, 1 means
+ it is always applied, and 2 means it is applied only if the footprint is
+ smaller than PARAM_HOT_CALLER_CODESIZE_THRESHOLD. */
+DEFPARAM (PARAM_INLINE_HOT_CALLER,
+ "inline-hot-caller",
+ "Consider cold callsites for inlining if caller contains hot code",
+ 2, 0, 2)
+
+/* The maximum code size estimate under which hot caller heuristic is
+ applied. */
+DEFPARAM(PARAM_HOT_CALLER_CODESIZE_THRESHOLD,
+ "hot-caller-codesize-threshold",
+ "Maximum profile-based code size footprint estimate for "
+ "hot caller heuristic ",
+ 10000, 0, 0)
+
+DEFPARAM (PARAM_INLINE_USEFUL_COLD_CALLEE,
+ "inline-useful-cold-callee",
+ "Only consider cold callsites for inlining if analysis estimates "
+ "downstream optimization opportunities",
+ 1, 0, 1)
+
/* Limit of iterations of early inliner. This basically bounds number of
nested indirect calls early inliner can resolve. Deeper chains are still
handled by late inlining. */
@@ -199,6 +226,14 @@ DEFPARAM(PARAM_EARLY_INLINING_INSNS,
"early-inlining-insns",
"Maximal estimated growth of function body caused by early inlining of single call",
11, 0, 0)
+DEFPARAM(PARAM_EARLY_INLINING_INSNS_ANY,
+ "early-inlining-insns-any",
+ "Early inline calls if growth does not exceed this limit",
+ 0, 0, 0)
+DEFPARAM(PARAM_EARLY_INLINING_INSNS_COMDAT,
+ "early-inlining-insns-comdat",
+ "Early inline calls to comdate functions if growth does not exceed this limit",
+ 15, 0, 0)
DEFPARAM(PARAM_LARGE_STACK_FRAME,
"large-stack-frame",
"The size of stack frame to be considered large",
@@ -304,6 +339,11 @@ DEFPARAM(PARAM_MAX_COMPLETELY_PEELED_INSNS,
"max-completely-peeled-insns",
"The maximum number of insns of a completely peeled loop",
100, 0, 0)
+/* The default maximum number of insns of a peeled loop, with -O2. */
+DEFPARAM(PARAM_MAX_DEFAULT_COMPLETELY_PEELED_INSNS,
+ "max-default-completely-peeled-insns",
+ "The maximum number of insns of a completely peeled loop",
+ 200, 0, 0)
/* The maximum number of peelings of a single loop that is peeled completely. */
DEFPARAM(PARAM_MAX_COMPLETELY_PEEL_TIMES,
"max-completely-peel-times",
@@ -319,6 +359,32 @@ DEFPARAM(PARAM_MAX_UNROLL_ITERATIONS,
"max-completely-peel-loop-nest-depth",
"The maximum depth of a loop nest we completely peel",
8, 0, 0)
+/* The maximum code size estimate under which loop unrolling and peeling
+ * is allowed in a profile feedback compile. This currently applies to loops
+ * with non-constant iteration counts and no floating point computations. */
+DEFPARAM(PARAM_UNROLLPEEL_CODESIZE_THRESHOLD,
+ "unrollpeel-codesize-threshold",
+ "Maximum profile-based code size footprint estimate for loop unrolling "
+ "and peeling",
+ 15000, 0, 0)
+/* The maximum ratio of total profiled execution counts to loop entry block
+ count that must be exceeded to ignore most code size limits when unrolling
+ and peeling. */
+DEFPARAM(PARAM_UNROLLPEEL_HOTNESS_THRESHOLD,
+ "unrollpeel-hotness-threshold",
+ "Maximum ratio of total profiled execution count to loop entry "
+ "block count under which most codesize limits for unrolling and "
+ "peeling will be ignored",
+ 100, 1, 0)
+
+DEFPARAM(PARAM_MIN_ITER_UNROLL_WITH_BRANCHES,
+ "min-iter-unroll-with-branches",
+ "Minimum iteration count to ignore branch effects when unrolling",
+ 50, 0, 0)
+DEFPARAM(PARAM_UNROLL_OUTER_LOOP_BRANCH_BUDGET,
+ "unroll-outer-loop-branch-budget",
+ "Maximum number of branches allowed in hot outer loop region after unroll",
+ 25, 0, 0)
/* The maximum number of insns of an unswitched loop. */
DEFPARAM(PARAM_MAX_UNSWITCH_INSNS,
@@ -404,6 +470,14 @@ DEFPARAM(PARAM_MAX_PREDICTED_ITERATIONS,
"The maximum number of loop iterations we predict statically",
100, 0, 0)
+/* This parameter controls the maximum iterations that AutoFDO profile
+ prpagation algorithm will run for a specific CFG. */
+
+DEFPARAM(PARAM_AUTOFDO_MAX_PROPAGATE_ITERATIONS,
+ "max-autofdo-max-propagate-iterations",
+ "The maximum number of AutoFDO profile propagation iterations",
+ 100, 0, 0)
+
/* This parameter controls the probability of builtin_expect. The default
value is 90%. This empirical value is obtained through the weighted
probability of FDO counters (with the FDO count value as the weight)
@@ -869,6 +943,170 @@ DEFPARAM (PARAM_LOOP_INVARIANT_MAX_BBS_IN_LOOP,
"Max basic blocks number in loop for loop invariant motion",
10000, 0, 0)
+/* Promote indirect call to conditional direct call only
+ when the percentage of the target count over the total
+ indirect call count is no smaller than the threshold. */
+DEFPARAM (PARAM_ICALL_PROMOTE_PERCENT_THRESHOLD,
+ "icall-promote-target-percent-threshold",
+ "percentage threshold for direct call promotion"
+ " of a callee target",
+ 33, 0, 100)
+
+DEFPARAM (PARAM_ICALL_PROMOTE_COUNT_THRESHOLD,
+ "icall-promote-target_count-threshold",
+ "call count threshold for direct call promotion"
+ " of a callee target",
+ 1, 0, 0)
+
+/* 0: do not always inline icall target:
+ other value: always inline icall target when call count
+ exceeds this value.
+*/
+DEFPARAM (PARAM_ALWAYS_INLINE_ICALL_TARGET,
+ "always-inline-icall-target",
+ "force inline indirect call target when promoted",
+ 0, 0, 0)
+
+/* When the parameter is 1, use the internal function id
+ to look up for profile data. Otherwise, use a more stable
+ external id based on assembler name and source location. */
+DEFPARAM (PARAM_PROFILE_FUNC_INTERNAL_ID,
+ "profile-func-internal-id",
+ "use internal function id in profile lookup",
+ 0, 0, 1)
+
+/* Do not check the icall target count distribution, but use
+ hotness info to decide if promotion should be done. */
+DEFPARAM (PARAM_ICALL_USE_HOTNESS_HEUR,
+ "icall-use-hotness-heur",
+ "use hotness based heuristics to match inliner",
+ 0, 0, 0)
+
+/* Force the compiler to be in LIPO mode even there is no
+ profile data available. -fripa is also needed. */
+DEFPARAM (PARAM_FORCE_LIPO_MODE,
+ "force-lipo",
+ "force LIPO compilation mode",
+ 0, 0, 1)
+
+/* Limit max module group size in LIPO mode. When the value
+ is set to 0 (which is the default), there is no limit. */
+DEFPARAM (PARAM_MAX_LIPO_GROUP,
+ "max-lipo-group",
+ "maximum module group size.",
+ 0, 0, 10000)
+
+/* In LIPO mode, stop processing any further auxiliary modules
+ if current memory consumption exceeds this limit (in kb). */
+DEFPARAM (PARAM_MAX_LIPO_MEMORY,
+ "max-lipo-mem",
+ "don't import aux files if memory consumption exceeds this value",
+ 4000000, 0, 0)
+
+/* In LIPO profile-gen, use this parameter to record the cutoff value used at
+ profile collection runtime. */
+DEFPARAM (PARAM_LIPO_CUTOFF,
+ "lipo-cutoff",
+ "The cutoff value of cumulative profile count. The value is between"
+ "0-99. 100 is reserved as a special value indicating default cutoff"
+ "which is set at runtime. When the parameter is used and if its value"
+ "is not 100, it overrides the dafault as well as the value set by the"
+ " enviornment variable",
+ 100, 0, 100)
+
+/* In LIPO profile-gen, use this parameter to limit IPA inline. */
+DEFPARAM (PARAM_LIPO_SKIP_SPECIAL_SECTIONS,
+ "lipo-skip-special-sections",
+ "In LIPO profile gen compilation, do not generate direct call "
+ "profiling to functions marked with __attribute__((section(...))"
+ "Those functions can not be inlined so there is no point tracking"
+ "them.",
+ 1, 0, 1)
+
+/* In LIPO profile-gen, use this parameter to set random group generation
+ seed value. */
+DEFPARAM (PARAM_LIPO_RANDOM_SEED,
+ "lipo-random-seed",
+ "random seed value used in random group testing",
+ 0, 0, 0)
+
+/* In LIPO profile-gen, use this parmaeter to set random group max size at profile
+ collection runtime. */
+DEFPARAM (PARAM_LIPO_RANDOM_GROUP_SIZE,
+ "lipo-random-group-size",
+ "In LIPO random group testing, this parameter is used to set max group"
+ " size. The default value is 0 which is treated specially and specifies"
+ " no random grouping.",
+ 0, 0, 300)
+
+/* In LIPO profile-gen, use this parameter to specify the scale factor to propagate
+ callee module groups to caller. */
+DEFPARAM (PARAM_LIPO_PROPAGATE_SCALE,
+ "lipo-propagate-scale",
+ "The scale factor to propagate callee module group's weight to the caller.",
+ 100, 0, 100)
+
+/* Choose different module grouping algorithms. This only affects
+ LIPO profile-gen. */
+DEFPARAM (PARAM_LIPO_GROUPING_ALGORITHM,
+ "lipo-grouping-algorithm",
+ "Algorithm 0 uses the eager propagation algorithm."
+ "Algorithm 1 uses the inclusion_based priority algorithm."
+ "The default algorithm is 1.",
+ 1, 0, 1)
+
+/* In the inclusion_based_priority grouping algorithm, specify if we combine the
+ the edges b/w modules. */
+DEFPARAM (PARAM_LIPO_MERGE_MODU_EDGES,
+ "lipo-merge-modu-edges",
+ "Default is 0 which not merge."
+ "If the value is 1, merge the edges.",
+ 0, 0, 1)
+
+/* In the inclusion_based_priority grouping algorithm, specify if we force
+ strict inclusion of modules. */
+DEFPARAM (PARAM_LIPO_WEAK_INCLUSION,
+ "lipo-weak-inclusion",
+ "0: force strict inclusion; 1: weak inclusion."
+ "Default is 0.",
+ 0, 0, 1)
+
+/* In LIPO profile-use, use this parameter to enable the dumping of module id
+ in inline message. */
+DEFPARAM (PARAM_INLINE_DUMP_MODULE_ID,
+ "inline-dump-module-id",
+ "Default is 1. If the value is 0, dumping is disabled.",
+ 1, 0, 1)
+
+/* In LIPO profile-gen, use this parameter to enable cgraph dumping. */
+DEFPARAM (PARAM_LIPO_DUMP_CGRAPH,
+ "lipo-dump-cgraph",
+ "Default is 0. If the value is 1, text dump is used. If the value "
+ "is 2, .dot dump is enabled. ",
+ 0, 0, 2)
+
+DEFPARAM (PARAM_PROFILE_GENERATE_SAMPLING_PERIOD,
+ "profile-generate-sampling-period",
+ "sampling rate with -fprofile-generate-sampling",
+ 100, 0, 2000000000)
+
+DEFPARAM (PARAM_COVERAGE_CALLBACK,
+ "coverage-callback",
+ "callback a user-define function when for arc counter increments.",
+ 0, 0, 1)
+
+DEFPARAM (PARAM_COVERAGE_EXEC_ONCE,
+ "coverage-exec_once",
+ "Stop incrementing arc counts once they become 1.",
+ 0, 0, 1)
+
+/* Used for debugging purpose. Tell the compiler to find
+ the gcda file in the current directory. */
+DEFPARAM (PARAM_GCOV_DEBUG,
+ "gcov-debug",
+ "Looking for gcda file in current dir.",
+ 0, 0, 1)
+
/* Avoid SLP vectorization of large basic blocks. */
DEFPARAM (PARAM_SLP_MAX_INSNS_IN_BB,
"slp-max-insns-in-bb",
@@ -971,6 +1209,12 @@ DEFPARAM (MIN_PARTITION_SIZE,
"Minimal size of a partition for LTO (in estimated instructions)",
1000, 0, 0)
+DEFPARAM (PARAM_MIN_MCF_CANCEL_ITERS,
+ "min-mcf-cancel-iters",
+ "the minimum number of iterations of negative cycle cancellation "
+ "in MCF",
+ 10, 1, 0)
+
/* Diagnostic parameters. */
DEFPARAM (CXX_MAX_NAMESPACES_FOR_DIAGNOSTIC_HELP,
@@ -979,6 +1223,15 @@ DEFPARAM (CXX_MAX_NAMESPACES_FOR_DIAGNOSTIC_HELP,
"name lookup fails",
1000, 0, 0)
+
+/* Only output those call graph edges in .gnu.callgraph.text sections
+ whose count is greater than this value. */
+DEFPARAM (PARAM_GNU_CGRAPH_SECTION_EDGE_THRESHOLD,
+ "gnu-cgraph-section-edge-threshold",
+ "minimum call graph edge count for inclusion in "
+ ".gnu.callgraph.text section",
+ 0, 0, 0)
+
/* Maximum number of conditional store pairs that can be sunk. */
DEFPARAM (PARAM_MAX_STORES_TO_SINK,
"max-stores-to-sink",
@@ -1054,6 +1307,15 @@ DEFPARAM (PARAM_MAX_SLSR_CANDIDATE_SCAN,
"strength reduction",
50, 1, 999999)
+/* Parameters to be used with -mpatch-functions-for-instrumentation.
+ See config/i386/i386.opt */
+DEFPARAM (PARAM_FUNCTION_PATCH_MIN_INSTRUCTIONS,
+ "function-patch-min-instructions",
+ "Minimum number of instructions in the function without loop before "
+ "the function is qualified for patching for instrumentation (for use "
+ "with -mpatch-functions-for-instrumentation)",
+ 200, 0, 0)
+
DEFPARAM (PARAM_ASAN_STACK,
"asan-stack",
"Enable asan stack protection",
diff --git a/gcc-4.9/gcc/passes.c b/gcc-4.9/gcc/passes.c
index 377b2471a..e681d2bd3 100644
--- a/gcc-4.9/gcc/passes.c
+++ b/gcc-4.9/gcc/passes.c
@@ -78,6 +78,7 @@ along with GCC; see the file COPYING3. If not see
#include "predict.h"
#include "lto-streamer.h"
#include "plugin.h"
+#include "l-ipo.h"
#include "ipa-utils.h"
#include "tree-pretty-print.h" /* for dump_function_header */
#include "context.h"
@@ -248,6 +249,13 @@ rest_of_decl_compilation (tree decl,
top_level, at_end);
}
#endif
+ if (L_IPO_COMP_MODE)
+ {
+ /* Create the node early during parsing so
+ that module id can be captured. */
+ if (TREE_CODE (decl) == VAR_DECL)
+ varpool_node_for_decl (decl);
+ }
timevar_pop (TV_VARCONST);
}
@@ -384,11 +392,17 @@ make_pass_early_local_passes (gcc::context *ctxt)
return new pass_early_local_passes (ctxt);
}
+/* Decides if the cgraph callee edges are being cleaned up for the
+ last time. */
+bool cgraph_callee_edges_final_cleanup = false;
+
/* Gate: execute, or not, all of the non-trivial optimizations. */
static bool
gate_all_early_optimizations (void)
{
+ /* The cgraph callee edges are being cleaned up for the last time. */
+ cgraph_callee_edges_final_cleanup = true;
return (optimize >= 1
/* Don't bother doing anything if the program has errors. */
&& !seen_error ());
@@ -1948,7 +1962,6 @@ verify_curr_properties (void *data)
bool
pass_init_dump_file (opt_pass *pass)
{
- pass->graph_dump_initialized = false;
/* If a dump file name is present, open it if enabled. */
if (pass->static_pass_number != -1)
{
diff --git a/gcc-4.9/gcc/passes.def b/gcc-4.9/gcc/passes.def
index dbe0d3498..4d2ea6d82 100644
--- a/gcc-4.9/gcc/passes.def
+++ b/gcc-4.9/gcc/passes.def
@@ -91,6 +91,7 @@ along with GCC; see the file COPYING3. If not see
NEXT_PASS (pass_rebuild_cgraph_edges);
NEXT_PASS (pass_inline_parameters);
POP_INSERT_PASSES ()
+ NEXT_PASS (pass_ipa_auto_profile);
NEXT_PASS (pass_ipa_free_inline_summary);
NEXT_PASS (pass_ipa_tree_profile);
PUSH_INSERT_PASSES_WITHIN (pass_ipa_tree_profile)
@@ -123,6 +124,7 @@ along with GCC; see the file COPYING3. If not see
/* These passes are run after IPA passes on every function that is being
output to the assembler file. */
INSERT_PASSES_AFTER (all_passes)
+ NEXT_PASS (pass_direct_call_profile);
NEXT_PASS (pass_fixup_cfg);
NEXT_PASS (pass_lower_eh_dispatch);
NEXT_PASS (pass_all_optimizations);
diff --git a/gcc-4.9/gcc/po/ChangeLog b/gcc-4.9/gcc/po/ChangeLog
index d9af0fe34..631f64ad1 100644
--- a/gcc-4.9/gcc/po/ChangeLog
+++ b/gcc-4.9/gcc/po/ChangeLog
@@ -1,3 +1,7 @@
+2014-05-14 Joseph Myers <joseph@codesourcery.com>
+
+ * zh_CN.po: Update.
+
2014-05-01 Joseph Myers <joseph@codesourcery.com>
* sv.po: Update.
diff --git a/gcc-4.9/gcc/po/be.gmo b/gcc-4.9/gcc/po/be.gmo
deleted file mode 100644
index 258c1e153..000000000
--- a/gcc-4.9/gcc/po/be.gmo
+++ /dev/null
Binary files differ
diff --git a/gcc-4.9/gcc/po/da.gmo b/gcc-4.9/gcc/po/da.gmo
deleted file mode 100644
index 9b6388be6..000000000
--- a/gcc-4.9/gcc/po/da.gmo
+++ /dev/null
Binary files differ
diff --git a/gcc-4.9/gcc/po/de.gmo b/gcc-4.9/gcc/po/de.gmo
deleted file mode 100644
index a8804a13b..000000000
--- a/gcc-4.9/gcc/po/de.gmo
+++ /dev/null
Binary files differ
diff --git a/gcc-4.9/gcc/po/el.gmo b/gcc-4.9/gcc/po/el.gmo
deleted file mode 100644
index 7ebda1647..000000000
--- a/gcc-4.9/gcc/po/el.gmo
+++ /dev/null
Binary files differ
diff --git a/gcc-4.9/gcc/po/es.gmo b/gcc-4.9/gcc/po/es.gmo
deleted file mode 100644
index ba97e9a40..000000000
--- a/gcc-4.9/gcc/po/es.gmo
+++ /dev/null
Binary files differ
diff --git a/gcc-4.9/gcc/po/fi.gmo b/gcc-4.9/gcc/po/fi.gmo
deleted file mode 100644
index 9bb78c929..000000000
--- a/gcc-4.9/gcc/po/fi.gmo
+++ /dev/null
Binary files differ
diff --git a/gcc-4.9/gcc/po/fr.gmo b/gcc-4.9/gcc/po/fr.gmo
deleted file mode 100644
index 0d1bdab66..000000000
--- a/gcc-4.9/gcc/po/fr.gmo
+++ /dev/null
Binary files differ
diff --git a/gcc-4.9/gcc/po/hr.gmo b/gcc-4.9/gcc/po/hr.gmo
deleted file mode 100644
index d2f3e407c..000000000
--- a/gcc-4.9/gcc/po/hr.gmo
+++ /dev/null
Binary files differ
diff --git a/gcc-4.9/gcc/po/id.gmo b/gcc-4.9/gcc/po/id.gmo
deleted file mode 100644
index 066da2705..000000000
--- a/gcc-4.9/gcc/po/id.gmo
+++ /dev/null
Binary files differ
diff --git a/gcc-4.9/gcc/po/ja.gmo b/gcc-4.9/gcc/po/ja.gmo
deleted file mode 100644
index 16dfaed19..000000000
--- a/gcc-4.9/gcc/po/ja.gmo
+++ /dev/null
Binary files differ
diff --git a/gcc-4.9/gcc/po/nl.gmo b/gcc-4.9/gcc/po/nl.gmo
deleted file mode 100644
index 72670edbc..000000000
--- a/gcc-4.9/gcc/po/nl.gmo
+++ /dev/null
Binary files differ
diff --git a/gcc-4.9/gcc/po/ru.gmo b/gcc-4.9/gcc/po/ru.gmo
deleted file mode 100644
index 2c1e34c65..000000000
--- a/gcc-4.9/gcc/po/ru.gmo
+++ /dev/null
Binary files differ
diff --git a/gcc-4.9/gcc/po/sr.gmo b/gcc-4.9/gcc/po/sr.gmo
deleted file mode 100644
index c865395a0..000000000
--- a/gcc-4.9/gcc/po/sr.gmo
+++ /dev/null
Binary files differ
diff --git a/gcc-4.9/gcc/po/sv.gmo b/gcc-4.9/gcc/po/sv.gmo
deleted file mode 100644
index 690b52069..000000000
--- a/gcc-4.9/gcc/po/sv.gmo
+++ /dev/null
Binary files differ
diff --git a/gcc-4.9/gcc/po/tr.gmo b/gcc-4.9/gcc/po/tr.gmo
deleted file mode 100644
index 024ac7742..000000000
--- a/gcc-4.9/gcc/po/tr.gmo
+++ /dev/null
Binary files differ
diff --git a/gcc-4.9/gcc/po/vi.gmo b/gcc-4.9/gcc/po/vi.gmo
deleted file mode 100644
index be0bfa927..000000000
--- a/gcc-4.9/gcc/po/vi.gmo
+++ /dev/null
Binary files differ
diff --git a/gcc-4.9/gcc/po/zh_CN.gmo b/gcc-4.9/gcc/po/zh_CN.gmo
deleted file mode 100644
index e82fdf5cb..000000000
--- a/gcc-4.9/gcc/po/zh_CN.gmo
+++ /dev/null
Binary files differ
diff --git a/gcc-4.9/gcc/po/zh_CN.po b/gcc-4.9/gcc/po/zh_CN.po
index 7edfcb457..e20e43f8c 100644
--- a/gcc-4.9/gcc/po/zh_CN.po
+++ b/gcc-4.9/gcc/po/zh_CN.po
@@ -1,14 +1,14 @@
# Simplified Chinese translation for gcc.
# Copyright (C) 2005 Free Software Foundation, Inc.
# This file is distributed under the same license as the gcc package.
-# Meng Jie <zuxy.meng@gmail.com>, 2005-2011.
+# Meng Jie <zuxy.meng@gmail.com>, 2005-2014.
#
msgid ""
msgstr ""
-"Project-Id-Version: gcc 4.6.0\n"
+"Project-Id-Version: gcc 4.9-b20140202\n"
"Report-Msgid-Bugs-To: http://gcc.gnu.org/bugs.html\n"
"POT-Creation-Date: 2014-02-02 17:35+0000\n"
-"PO-Revision-Date: 2011-05-19 15:04+0800\n"
+"PO-Revision-Date: 2014-05-14 14:25-0800\n"
"Last-Translator: Meng Jie <zuxy.meng@gmail.com>\n"
"Language-Team: Chinese (simplified) <i18n-zh@googlegroups.com>\n"
"Language: zh_CN\n"
@@ -38,7 +38,6 @@ msgstr "return åŽæ²¡æœ‰å±éšœ"
#: collect2.c:1578
#, fuzzy, c-format
-#| msgid "collect2 version %s"
msgid "collect2 version %s\n"
msgstr "collect2 版本 %s"
@@ -94,13 +93,11 @@ msgstr "常é‡/å¤åˆ¶ä¼ é€’被ç¦ç”¨"
#: diagnostic.c:170
#, fuzzy, c-format
-#| msgid "%s: all warnings being treated as errors\n"
msgid "%s: all warnings being treated as errors"
msgstr "%s:所有的警告都被当作是错误\n"
#: diagnostic.c:175
#, fuzzy, c-format
-#| msgid "%s: some warnings being treated as errors\n"
msgid "%s: some warnings being treated as errors"
msgstr "%s:有些警告被当作是错误\n"
@@ -120,10 +117,6 @@ msgstr "编译中止因为 -fmax-errors=%u。\n"
#: diagnostic.c:479
#, fuzzy, c-format
-#| msgid ""
-#| "Please submit a full bug report,\n"
-#| "with preprocessed source if appropriate.\n"
-#| "See %s for instructions.\n"
msgid ""
"Please submit a full bug report,\n"
"with preprocessed source if appropriate.\n"
@@ -134,7 +127,6 @@ msgstr ""
#: diagnostic.c:485
#, fuzzy, c-format
-#| msgid "Use fp double instructions"
msgid "See %s for instructions.\n"
msgstr "使用浮点åŒç²¾åº¦æŒ‡ä»¤"
@@ -293,7 +285,6 @@ msgstr " --target-help 显示目标机器特定的命令行选项\n"
#: gcc.c:3073
#, fuzzy
-#| msgid " --help={target|optimizers|warnings|params|[^]{joined|separate|undocumented}}[,...]\n"
msgid " --help={common|optimizers|params|target|warnings|[^]{joined|separate|undocumented}}[,...]\n"
msgstr " --help={target|optimizers|warnings|params|[^]{joined|separate|undocumented}}[,...]\n"
@@ -339,9 +330,6 @@ msgstr " -print-prog-name=<程åº> 显示编译器组件 <程åº> 的完整路
#: gcc.c:3085
#, fuzzy
-#| msgid ""
-#| " -print-multi-lib Display the mapping between command line options and\n"
-#| " multiple library search directories\n"
msgid ""
" -print-multiarch Display the target's normalized GNU triplet, used as\n"
" a component in the library path\n"
@@ -461,13 +449,11 @@ msgstr " -o <文件> 输出到 <文件>\n"
#: gcc.c:3120
#, fuzzy
-#| msgid "Create a position independent executable"
msgid " -pie Create a position independent executable\n"
msgstr "生æˆä½ç½®æ— å…³å¯æ‰§è¡Œæ–‡ä»¶"
#: gcc.c:3121
#, fuzzy
-#| msgid "Create a shared library"
msgid " -shared Create a shared library\n"
msgstr "生æˆä¸€ä¸ªå…±äº«åº“"
@@ -497,7 +483,6 @@ msgstr ""
#: gcc.c:5402
#, fuzzy, c-format
-#| msgid "Processing spec %c%s%c, which is '%s'\n"
msgid "Processing spec (%s), which is '%s'\n"
msgstr "å¤„ç† spec %c%s%c,å³â€˜%s’\n"
@@ -613,9 +598,6 @@ msgstr ""
#: gcov.c:472
#, fuzzy, c-format
-#| msgid ""
-#| "Usage: gcov [OPTION]... SOURCEFILE...\n"
-#| "\n"
msgid ""
"Usage: gcov [OPTION]... SOURCE|OBJ...\n"
"\n"
@@ -649,9 +631,6 @@ msgstr " -b, --branch-probabilities 输出包å«åˆ†æ”¯æ¦‚率\n"
#: gcov.c:477
#, fuzzy, c-format
-#| msgid ""
-#| " -c, --branch-counts Given counts of branches taken\n"
-#| " rather than percentages\n"
msgid ""
" -c, --branch-counts Output counts of branches taken\n"
" rather than percentages\n"
@@ -701,7 +680,6 @@ msgstr " -p, --preserve-paths ä¿ç•™æ‰€æœ‰è·¯å¾„å\n"
#: gcov.c:488
#, fuzzy, c-format
-#| msgid " -a, --all-blocks Show information for every basic block\n"
msgid " -r, --relative-only Only show data for relative sources\n"
msgstr " -a, --all-blocks 显示æ¯ä¸ªåŸºæœ¬å—çš„ä¿¡æ¯\n"
@@ -749,25 +727,21 @@ msgstr ""
#: gcov.c:794
#, fuzzy, c-format
-#| msgid "%s:creating '%s'\n"
msgid "Creating '%s'\n"
msgstr "%s:正在创建‘%s’\n"
#: gcov.c:797
#, fuzzy, c-format
-#| msgid "%s:error writing output file '%s'\n"
msgid "Error writing output file '%s'\n"
msgstr "%s:写入输出文件‘%s’时出错\n"
#: gcov.c:801
#, fuzzy, c-format
-#| msgid "%s:could not open output file '%s'\n"
msgid "Could not open output file '%s'\n"
msgstr "%s:ä¸èƒ½æ‰“开输出文件‘%s’\n"
#: gcov.c:806
#, fuzzy, c-format
-#| msgid "[Leaving %s]\n"
msgid "Removing '%s'\n"
msgstr "[离开 %s]\n"
@@ -778,13 +752,11 @@ msgstr "\n"
#: gcov.c:856
#, fuzzy, c-format
-#| msgid "%s: Cannot open output file: %s\n"
msgid "Cannot open intermediate output file %s\n"
msgstr "%s:无法打开输出文件:%s\n"
#: gcov.c:1139
#, fuzzy, c-format
-#| msgid "%s:source file is newer than graph file '%s'\n"
msgid "%s:source file is newer than notes file '%s'\n"
msgstr "%s:æºæ–‡ä»¶è¾ƒå›¾æ–‡ä»¶â€˜%s’新\n"
@@ -795,13 +767,11 @@ msgstr "(æ¯ä¸ªæºæ–‡ä»¶åªæ˜¾ç¤ºä¸€æ¡ä¿¡æ¯)\n"
#: gcov.c:1169
#, fuzzy, c-format
-#| msgid "%s:cannot open source file\n"
msgid "%s:cannot open notes file\n"
msgstr "%s:无法打开æºæ–‡ä»¶\n"
#: gcov.c:1175
#, fuzzy, c-format
-#| msgid "%s:not a gcov data file\n"
msgid "%s:not a gcov notes file\n"
msgstr "%s:ä¸æ˜¯ä¸€ä¸ª gcov æ•°æ®æ–‡ä»¶\n"
@@ -842,7 +812,6 @@ msgstr "%s:版本‘%.4s’,首选版本‘%.4s’\n"
#: gcov.c:1417
#, fuzzy, c-format
-#| msgid "%s:stamp mismatch with graph file\n"
msgid "%s:stamp mismatch with notes file\n"
msgstr "%s:时间戳与图文件ä¸åŒ¹é…\n"
@@ -958,7 +927,6 @@ msgstr "æ— æ¡ä»¶ %2d 从未执行\n"
#: gcov.c:2424
#, fuzzy, c-format
-#| msgid "%s:cannot open source file\n"
msgid "Cannot open source file %s\n"
msgstr "%s:无法打开æºæ–‡ä»¶\n"
@@ -1109,13 +1077,11 @@ msgstr "在函数%qs中"
#: langhooks.c:456 cp/error.c:3131
#, fuzzy
-#| msgid " inlined from %qs at %s:%d:%d"
msgid " inlined from %qs at %r%s:%d:%d%R"
msgstr " 内è”自%qs于 %s:%d:%d"
#: langhooks.c:461 cp/error.c:3136
#, fuzzy
-#| msgid " inlined from %qs at %s:%d"
msgid " inlined from %qs at %r%s:%d%R"
msgstr " 内è”自%qs于 %s:%d"
@@ -1419,7 +1385,6 @@ msgstr "ä¸è€ƒè™‘内è”函数"
#: cif-code.def:43
#, fuzzy
-#| msgid "%qE is not initialized"
msgid "caller is not optimized"
msgstr "%qE未ç»åˆå§‹åŒ–"
@@ -1437,7 +1402,6 @@ msgstr "函数ä¸èƒ½å†…è”"
#: cif-code.def:60
#, fuzzy
-#| msgid "function body can be overwriten at linktime"
msgid "function body can be overwritten at link time"
msgstr "函数体å¯èƒ½åœ¨é“¾æŽ¥æ—¶è¢«æ”¹å†™"
@@ -1499,7 +1463,6 @@ msgstr ""
#: cif-code.def:113
#, fuzzy
-#| msgid "Enable exception handling"
msgid "non-call exception handling mismatch"
msgstr "å¯ç”¨å¼‚常处ç†"
@@ -1602,7 +1565,6 @@ msgstr "早期内è”器å¯ä»¥è¿›è¡Œçš„嵌套间接内è”的最大数é‡"
#: params.def:117
#, fuzzy
-#| msgid "Probability that COMDAT function will be shared with different compilatoin unit"
msgid "Probability that COMDAT function will be shared with different compilation unit"
msgstr "与其他编译å•å…ƒå…±äº« COMDAT 函数的概率"
@@ -1632,7 +1594,6 @@ msgstr "调度候选æ“作列表的最大长度"
#: params.def:175
#, fuzzy
-#| msgid "The maximum number of instructions to consider to unroll in a loop"
msgid "The maximum number of backtrack attempts the scheduler should make when modulo scheduling a loop"
msgstr "å•ä¸ªå¾ªçŽ¯ä¸­è€ƒè™‘展开的最大指令数"
@@ -1719,7 +1680,6 @@ msgstr "å•ä¸ªå¾ªçŽ¯æœ€å¤§çš„剥离数"
#: params.def:300
#, fuzzy
-#| msgid "The maximum number of iterations through CFG to extend regions"
msgid "The maximum number of branches on the path through the peeled sequence"
msgstr "通过 CFG 以扩展区域的最大循环次数"
@@ -2152,7 +2112,6 @@ msgstr "为实现跳转æ示æ’入的 nop 的最大数(默认 2)"
#: params.def:980
#, fuzzy
-#| msgid "Maximum number of times that an insn could be scheduled"
msgid "Maximum number of conditional store pairs that can be sunk"
msgstr "指定一æ¡æŒ‡ä»¤æœ€å¤šèƒ½è¢«è°ƒåº¦å‡ æ¬¡"
@@ -2170,13 +2129,11 @@ msgstr ""
#: params.def:1006
#, fuzzy
-#| msgid "Allow branches to be packed with other instructions"
msgid "Allow new data races on packed data loads to be introduced"
msgstr "å…许跳转与其他指令打包在一起"
#: params.def:1011
#, fuzzy
-#| msgid "Allow branches to be packed with other instructions"
msgid "Allow new data races on packed data stores to be introduced"
msgstr "å…许跳转与其他指令打包在一起"
@@ -2206,31 +2163,26 @@ msgstr ""
#: params.def:1054
#, fuzzy
-#| msgid "Enable stack probing"
msgid "Enable asan stack protection"
msgstr "å¯ç”¨å †æ ˆæŽ¢æµ‹"
#: params.def:1059
#, fuzzy
-#| msgid "Enable all optional instructions"
msgid "Enable asan globals protection"
msgstr "å¯ç”¨æ‰€æœ‰å¯é€‰æŒ‡ä»¤"
#: params.def:1064
#, fuzzy
-#| msgid "Enable saturation instructions"
msgid "Enable asan store operations protection"
msgstr "å¯ç”¨é¥±å’ŒæŒ‡ä»¤"
#: params.def:1069
#, fuzzy
-#| msgid "Enable all optional instructions"
msgid "Enable asan load operations protection"
msgstr "å¯ç”¨æ‰€æœ‰å¯é€‰æŒ‡ä»¤"
#: params.def:1074 params.def:1079
#, fuzzy
-#| msgid "Enable saturation instructions"
msgid "Enable asan builtin functions protection"
msgstr "å¯ç”¨é¥±å’ŒæŒ‡ä»¤"
@@ -2510,7 +2462,6 @@ msgstr "<命令行>"
#: config/aarch64/aarch64.c:3487 config/arm/arm.c:21114 config/arm/arm.c:21127
#: config/nios2/nios2.c:1885
#, fuzzy, c-format
-#| msgid "invalid operand for code '%c'"
msgid "Unsupported operand for code '%c'"
msgstr "代ç â€˜%c’的æ“作数无效"
@@ -2519,7 +2470,6 @@ msgstr "代ç â€˜%c’的æ“作数无效"
#: config/aarch64/aarch64.c:3551 config/aarch64/aarch64.c:3567
#: config/aarch64/aarch64.c:3586 config/aarch64/aarch64.c:3625
#, fuzzy, c-format
-#| msgid "invalid operand for code '%c'"
msgid "invalid operand for '%%%c'"
msgstr "代ç â€˜%c’的æ“作数无效"
@@ -2535,19 +2485,16 @@ msgstr "缺少æ“作数"
#: config/aarch64/aarch64.c:3724
#, fuzzy, c-format
-#| msgid "invalid insn:"
msgid "invalid constant"
msgstr "无效指令:"
#: config/aarch64/aarch64.c:3727
#, fuzzy, c-format
-#| msgid "invalid %%d operand"
msgid "invalid operand"
msgstr "无效的 %%d æ“作数"
#: config/aarch64/aarch64.c:3815
#, fuzzy, c-format
-#| msgid "invalid operand code '%c'"
msgid "invalid operand prefix '%%%c'"
msgstr "无效的æ“作数代ç â€˜%c’"
@@ -2637,19 +2584,16 @@ msgstr "无效的 %%xn 代ç "
#: config/arc/arc.c:2782
#, fuzzy, c-format
-#| msgid "invalid operand to %%R code"
msgid "invalid operand to %%Z code"
msgstr "%%R 代ç çš„æ“作数无效"
#: config/arc/arc.c:2790
#, fuzzy, c-format
-#| msgid "invalid operand to %%R code"
msgid "invalid operand to %%z code"
msgstr "%%R 代ç çš„æ“作数无效"
#: config/arc/arc.c:2798
#, fuzzy, c-format
-#| msgid "invalid operand to %%R code"
msgid "invalid operand to %%M code"
msgstr "%%R 代ç çš„æ“作数无效"
@@ -2675,7 +2619,6 @@ msgstr "%%V 代ç çš„æ“作数无效"
#: config/arc/arc.c:3099
#, fuzzy, c-format
-#| msgid "invalid operand to %%R code"
msgid "invalid operand to %%O code"
msgstr "%%R 代ç çš„æ“作数无效"
@@ -2689,7 +2632,6 @@ msgstr "无效的æ“作数输出代ç "
#: config/arc/arc.c:4676
#, fuzzy, c-format
-#| msgid "invalid UNSPEC as operand"
msgid "invalid UNSPEC as operand: %d"
msgstr "无效的 UNSPEC 用作æ“作数"
@@ -2749,19 +2691,16 @@ msgstr "地å€æ“ä½œæ•°éœ€è¦ Xã€Y 或 Z 寄存器约æŸ"
#: config/avr/avr.c:2140
#, fuzzy
-#| msgid "output operand %d must use %<&%> constraint"
msgid "operands to %T/%t must be reg + const_int:"
msgstr "输出æ“作数 %d 必须使用%<&%>约æŸ"
#: config/avr/avr.c:2180 config/avr/avr.c:2235
#, fuzzy
-#| msgid "bad address, not (reg+disp):"
msgid "bad address, not an I/O address:"
msgstr "地å€é”™è¯¯ï¼Œä¸æ˜¯(reg+disp):"
#: config/avr/avr.c:2189
#, fuzzy
-#| msgid "bad address, not a constant):"
msgid "bad address, not a constant:"
msgstr "错误的地å€ï¼Œä¸æ˜¯ä¸€ä¸ªå¸¸é‡):"
@@ -2813,7 +2752,6 @@ msgstr "编译器内部错误。ä¸æ­£ç¡®çš„移ä½é‡ï¼š"
#: config/avr/avr.c:7100
#, fuzzy
-#| msgid "invalid types in fixed-point conversion"
msgid "unsupported fixed-point conversion"
msgstr "整点转æ¢ä¸­ç±»åž‹æ— æ•ˆ"
@@ -3058,25 +2996,21 @@ msgstr "无效的 UNSPEC 用作æ“作数"
#: config/i386/i386.c:14839
#, fuzzy, c-format
-#| msgid "invalid operand size for operand code '%c'"
msgid "invalid operand size for operand code 'O'"
msgstr "æ“作数代ç â€˜%c’的æ“作数大å°æ— æ•ˆ"
#: config/i386/i386.c:14874
#, fuzzy, c-format
-#| msgid "invalid operand size for operand code '%c'"
msgid "invalid operand size for operand code 'z'"
msgstr "æ“作数代ç â€˜%c’的æ“作数大å°æ— æ•ˆ"
#: config/i386/i386.c:14944
#, fuzzy, c-format
-#| msgid "invalid operand type used with operand code '%c'"
msgid "invalid operand type used with operand code 'Z'"
msgstr "æ“作数代ç â€˜%c’的æ“作数类型无效"
#: config/i386/i386.c:14949
#, fuzzy, c-format
-#| msgid "invalid operand size for operand code '%c'"
msgid "invalid operand size for operand code 'Z'"
msgstr "æ“作数代ç â€˜%c’的æ“作数大å°æ— æ•ˆ"
@@ -3092,13 +3026,11 @@ msgstr "æ“作数ä¸æ˜¯ä¸€ä¸ªæ¡ä»¶ç ï¼Œæ— æ•ˆçš„æ“作数代ç â€˜D’"
#: config/i386/i386.c:15115
#, fuzzy, c-format
-#| msgid "operand is not a condition code, invalid operand code 'D'"
msgid "operand is not a condition code, invalid operand code '%c'"
msgstr "æ“作数ä¸æ˜¯ä¸€ä¸ªæ¡ä»¶ç ï¼Œæ— æ•ˆçš„æ“作数代ç â€˜D’"
#: config/i386/i386.c:15128
#, fuzzy, c-format
-#| msgid "operand is not a condition code, invalid operand code 'D'"
msgid "operand is not an offsettable memory reference, invalid operand code 'H'"
msgstr "æ“作数ä¸æ˜¯ä¸€ä¸ªæ¡ä»¶ç ï¼Œæ— æ•ˆçš„æ“作数代ç â€˜D’"
@@ -3127,7 +3059,6 @@ msgstr "使用本地 (MS) ä½æ®µå­˜å‚¨æ–¹å¼"
#: config/i386/i386-interix.h:78
#, fuzzy
-#| msgid "Use native (MS) bitfield layout"
msgid "Use gcc default bitfield layout"
msgstr "使用本地 (MS) ä½æ®µå­˜å‚¨æ–¹å¼"
@@ -3343,7 +3274,6 @@ msgstr "MMIX 内部错误:这ä¸æ˜¯ä¸€ä¸ªå¸¸é‡ï¼š"
#: config/msp430/msp430.c:2130
#, fuzzy, c-format
-#| msgid "invalid reference prefix"
msgid "invalid operand prefix"
msgstr "无效的引用å‰ç¼€"
@@ -3404,7 +3334,6 @@ msgstr "-mno-altivec ç¦ç”¨äº† VSX"
#: config/rs6000/rs6000.c:3363
#, fuzzy
-#| msgid "--resource requires -o"
msgid "-mquad-memory requires 64-bit mode"
msgstr "--resource éœ€è¦ -o"
@@ -3414,7 +3343,6 @@ msgstr ""
#: config/rs6000/rs6000.c:3378
#, fuzzy
-#| msgid "Generate code in little endian mode"
msgid "-mquad-memory is not available in little endian mode"
msgstr "生æˆå°ç«¯åœ¨å‰çš„代ç "
@@ -3503,13 +3431,11 @@ msgstr "传递 AltiVec å‚数给无原型的函数"
#: config/rs6000/rs6000.c:32382
#, fuzzy
-#| msgid "Do not generate a single exit point for each function"
msgid "Could not generate addis value for fusion"
msgstr "ä¸ä¸ºæ¯ä¸ªå‡½æ•°ç”Ÿæˆå•ä¸€çš„退出点"
#: config/rs6000/rs6000.c:32441
#, fuzzy
-#| msgid "unable to generate reloads for:"
msgid "Unable to generate load offset for fusion"
msgstr "无法生æˆé‡æ–°è½½å…¥ï¼Œä¸ºï¼š"
@@ -3638,13 +3564,11 @@ msgstr "无效的 %%B æ“作数"
#: config/sparc/sparc.c:8830 config/tilegx/tilegx.c:5061
#: config/tilepro/tilepro.c:4516
#, fuzzy, c-format
-#| msgid "invalid %%P operand"
msgid "invalid %%C operand"
msgstr "无效的 %%P æ“作数"
#: config/sparc/sparc.c:8847 config/tilegx/tilegx.c:5094
#, fuzzy, c-format
-#| msgid "invalid %%P operand"
msgid "invalid %%D operand"
msgstr "无效的 %%P æ“作数"
@@ -3700,49 +3624,41 @@ msgstr "无效的 %%d æ“作数"
#: config/tilegx/tilegx.c:5174
#, fuzzy, c-format
-#| msgid "invalid %%L code"
msgid "invalid %%H specifier"
msgstr "无效 %%L 代ç "
#: config/tilegx/tilegx.c:5216 config/tilepro/tilepro.c:4530
#, fuzzy, c-format
-#| msgid "invalid %%P operand"
msgid "invalid %%h operand"
msgstr "无效的 %%P æ“作数"
#: config/tilegx/tilegx.c:5228 config/tilepro/tilepro.c:4594
#, fuzzy, c-format
-#| msgid "invalid %%P operand"
msgid "invalid %%I operand"
msgstr "无效的 %%P æ“作数"
#: config/tilegx/tilegx.c:5242 config/tilepro/tilepro.c:4608
#, fuzzy, c-format
-#| msgid "invalid %%P operand"
msgid "invalid %%i operand"
msgstr "无效的 %%P æ“作数"
#: config/tilegx/tilegx.c:5265 config/tilepro/tilepro.c:4631
#, fuzzy, c-format
-#| msgid "invalid %%P operand"
msgid "invalid %%j operand"
msgstr "无效的 %%P æ“作数"
#: config/tilegx/tilegx.c:5296
#, fuzzy, c-format
-#| msgid "invalid %%c operand"
msgid "invalid %%%c operand"
msgstr "无效的 %%c æ“作数"
#: config/tilegx/tilegx.c:5311 config/tilepro/tilepro.c:4745
#, fuzzy, c-format
-#| msgid "invalid %%P operand"
msgid "invalid %%N operand"
msgstr "无效的 %%P æ“作数"
#: config/tilegx/tilegx.c:5355
#, fuzzy, c-format
-#| msgid "invalid operand for 'b' modifier"
msgid "invalid operand for 'r' specifier"
msgstr "‘b’修饰符的æ“作数无效"
@@ -3753,37 +3669,31 @@ msgstr ""
#: config/tilepro/tilepro.c:4566
#, fuzzy, c-format
-#| msgid "invalid %%P operand"
msgid "invalid %%H operand"
msgstr "无效的 %%P æ“作数"
#: config/tilepro/tilepro.c:4670
#, fuzzy, c-format
-#| msgid "invalid %%P operand"
msgid "invalid %%L operand"
msgstr "无效的 %%P æ“作数"
#: config/tilepro/tilepro.c:4730
#, fuzzy, c-format
-#| msgid "invalid %%P operand"
msgid "invalid %%M operand"
msgstr "无效的 %%P æ“作数"
#: config/tilepro/tilepro.c:4773
#, fuzzy, c-format
-#| msgid "invalid %%P operand"
msgid "invalid %%t operand"
msgstr "无效的 %%P æ“作数"
#: config/tilepro/tilepro.c:4780
#, fuzzy, c-format
-#| msgid "invalid %%P operand"
msgid "invalid %%t operand '"
msgstr "无效的 %%P æ“作数"
#: config/tilepro/tilepro.c:4801
#, fuzzy, c-format
-#| msgid "invalid %%P operand"
msgid "invalid %%r operand"
msgstr "无效的 %%P æ“作数"
@@ -4057,13 +3967,11 @@ msgstr "{匿å}"
#: cp/error.c:1060
#, fuzzy
-#| msgid "(anonymous)"
msgid "(anonymous namespace)"
msgstr "(匿å)"
#: cp/error.c:1169
#, fuzzy
-#| msgid "<template parameter error>"
msgid "<template arguments error>"
msgstr "<模æ¿å‚数数错误>"
@@ -4104,7 +4012,6 @@ msgstr "<未解æž>"
#: cp/error.c:2616
#, fuzzy
-#| msgid "<lambda"
msgid "<lambda>"
msgstr "<lambda"
@@ -4150,13 +4057,11 @@ msgstr "在 lambda 函数中"
#: cp/error.c:3196
#, fuzzy, c-format
-#| msgid "%s: In instantiation of %qs:\n"
msgid "%s: In substitution of %qS:\n"
msgstr "%s:在%qs的实例化中:\n"
#: cp/error.c:3197
#, fuzzy
-#| msgid "%s: In instantiation of %qs:\n"
msgid "%s: In instantiation of %q#D:\n"
msgstr "%s:在%qs的实例化中:\n"
@@ -4185,7 +4090,6 @@ msgstr " 内è”自%qs于 %s:%d:%d"
#: cp/error.c:3240
#, fuzzy
-#| msgid "provided for %q+D"
msgid "required from %q#D\n"
msgstr "æ供给%q+D"
@@ -4196,31 +4100,26 @@ msgstr "%s:%d:从此处实例化"
#: cp/error.c:3248
#, fuzzy
-#| msgid "called from here"
msgid "required from here"
msgstr "从此处调用"
#: cp/error.c:3300
#, fuzzy
-#| msgid "%s:%d:%d: [ skipping %d instantiation contexts ]\n"
msgid "%r%s:%d:%d:%R [ skipping %d instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ]\n"
msgstr "%s:%d:%d:[ 跳过 %d 个实例化上下文 ]\n"
#: cp/error.c:3306
#, fuzzy
-#| msgid "%s:%d:%d: [ skipping %d instantiation contexts ]\n"
msgid "%r%s:%d:%R [ skipping %d instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ]\n"
msgstr "%s:%d:%d:[ 跳过 %d 个实例化上下文 ]\n"
#: cp/error.c:3371
#, fuzzy
-#| msgid "%s:%d:%d: in constexpr expansion of %qs"
msgid "%r%s:%d:%d:%R in constexpr expansion of %qs"
msgstr "%s:%d:%d:在%qs的广义常表达å¼æ‰©å±•ä¸­"
#: cp/error.c:3375
#, fuzzy
-#| msgid "%s:%d: in constexpr expansion of %qs"
msgid "%r%s:%d:%R in constexpr expansion of %qs"
msgstr "%s:%d:在%qs的广义常表达å¼æ‰©å±•ä¸­"
@@ -4390,13 +4289,11 @@ msgstr ""
#: fortran/error.c:899
#, fuzzy
-#| msgid "Obsolescent feature: Computed GOTO at %C"
msgid "Obsolescent feature:"
msgstr "已过时的特性:%C处的计算转移 GOTO 语å¥"
#: fortran/error.c:902
#, fuzzy
-#| msgid "expected operator"
msgid "Deleted feature:"
msgstr "需è¦æ“作符"
@@ -4647,61 +4544,51 @@ msgstr "基本过程"
#: fortran/resolve.c:2225
#, fuzzy
-#| msgid "no arguments"
msgid "allocatable argument"
msgstr "没有å‚æ•°"
#: fortran/resolve.c:2230
#, fuzzy
-#| msgid "not enough arguments"
msgid "asynchronous argument"
msgstr "实å‚太少"
#: fortran/resolve.c:2235
#, fuzzy
-#| msgid "invalid PHI argument"
msgid "optional argument"
msgstr "无效的 PHI 实å‚"
#: fortran/resolve.c:2240
#, fuzzy
-#| msgid "pointer assignment"
msgid "pointer argument"
msgstr "指针赋值"
#: fortran/resolve.c:2245
#, fuzzy
-#| msgid "no arguments"
msgid "target argument"
msgstr "没有å‚æ•°"
#: fortran/resolve.c:2250
#, fuzzy
-#| msgid "invalid PHI argument"
msgid "value argument"
msgstr "无效的 PHI 实å‚"
#: fortran/resolve.c:2255
#, fuzzy
-#| msgid "no arguments"
msgid "volatile argument"
msgstr "没有å‚æ•°"
#: fortran/resolve.c:2260
#, fuzzy
-#| msgid "mismatched arguments"
msgid "assumed-shape argument"
msgstr "å‚æ•°ä¸åŒ¹é…"
#: fortran/resolve.c:2265
#, fuzzy
-#| msgid "mismatched arguments"
msgid "assumed-rank argument"
msgstr "å‚æ•°ä¸åŒ¹é…"
#: fortran/resolve.c:2270
#, fuzzy
-#| msgid "array assignment"
msgid "coarray argument"
msgstr "数组赋值"
@@ -4711,7 +4598,6 @@ msgstr ""
#: fortran/resolve.c:2280
#, fuzzy
-#| msgid "no arguments"
msgid "polymorphic argument"
msgstr "没有å‚æ•°"
@@ -4723,7 +4609,6 @@ msgstr ""
#. See also TS 29113, Note 6.1.
#: fortran/resolve.c:2292
#, fuzzy
-#| msgid "mismatched arguments"
msgid "assumed-type argument"
msgstr "å‚æ•°ä¸åŒ¹é…"
@@ -4738,13 +4623,11 @@ msgstr "%3$L 处“%1$sâ€åˆ†å¥å¯¹è±¡â€œ%2$sâ€æœ‰ ALLOCATABLE 组件"
#: fortran/resolve.c:2315
#, fuzzy
-#| msgid "'%s' at %L must have constant character length in this context"
msgid "result with non-constant character length"
msgstr "å˜é‡â€˜%s’在%L处上下文中字符长度必须为常é‡"
#: fortran/resolve.c:2327
#, fuzzy
-#| msgid "module procedure"
msgid "bind(c) procedure"
msgstr "模å—过程"
@@ -4894,7 +4777,6 @@ msgstr "%3$s 中字符长度ä¸ç›¸ç­‰ (%1$ld/%2$ld)"
#: fortran/trans-intrinsic.c:6165
#, fuzzy, c-format
-#| msgid "Argument NCOPIES of REPEAT intrinsic is negative (its value is %lld)"
msgid "Argument NCOPIES of REPEAT intrinsic is negative (its value is %ld)"
msgstr "内建函数 REPEAT çš„ NCOPIES å‚数为负(其值是 %lld)"
@@ -4964,7 +4846,6 @@ msgstr ""
#: go/go-backend.c:171
#, fuzzy
-#| msgid "Memory allocation failed"
msgid "memory allocation failed while reading export data"
msgstr "内存分é…失败"
@@ -5230,13 +5111,11 @@ msgstr "Ada 需è¦æŒ‡å®š -c 或 -S"
#: ada/gcc-interface/lang-specs.h:52
#, fuzzy
-#| msgid "-c or -S required for Ada"
msgid "-c required for gnat2why"
msgstr "Ada 需è¦æŒ‡å®š -c 或 -S"
#: ada/gcc-interface/lang-specs.h:65
#, fuzzy
-#| msgid "-c or -S required for Ada"
msgid "-c required for gnat2scil"
msgstr "Ada 需è¦æŒ‡å®š -c 或 -S"
@@ -5266,7 +5145,6 @@ msgstr "ä¸èƒ½åŒæ—¶ä½¿ç”¨ -EB å’Œ -EL"
#: config/avr/avr.h:526
#, fuzzy
-#| msgid "-fpic is not supported"
msgid "shared is not supported"
msgstr "ä¸æ”¯æŒ -fpic"
@@ -5284,7 +5162,6 @@ msgstr "-mas100-syntax 与 -gdwarf ä¸å…¼å®¹"
#: config/rx/rx.h:76
#, fuzzy
-#| msgid "rx200 cpu does not have FPU hardware"
msgid "rx100 cpu does not have FPU hardware"
msgstr "RX200 CPU 没有 FPU 硬件"
@@ -5306,7 +5183,6 @@ msgstr "-femit-class-file 应当与 -fsyntax-only 一起使用"
#: config/rs6000/freebsd64.h:161 config/rs6000/freebsd64.h:173
#, fuzzy
-#| msgid "consider using `-pg' instead of `-p' with gprof(1) "
msgid "consider using `-pg' instead of `-p' with gprof(1)"
msgstr "与 gprof(1) 一起使用时请考虑使用‘-pg’以代替‘-p’"
@@ -5321,7 +5197,6 @@ msgstr ""
#: gcc.c:731
#, fuzzy
-#| msgid "-fdirectives-only is incompatible with -traditional"
msgid "-fsanitize=address is incompatible with -fsanitize=thread"
msgstr "-fdirectives-only 与 -traditional ä¸å…¼å®¹"
@@ -5339,7 +5214,6 @@ msgstr "当输入æ¥è‡ªæ ‡å‡†è¾“å…¥è®¾å¤‡æ—¶ï¼Œéœ€è¦ -E 或 -x"
#: config/arm/arm.h:217
#, fuzzy
-#| msgid "-msoft-float and -mhard_float may not be used together"
msgid "-mfloat-abi=soft and -mfloat-abi=hard may not be used together"
msgstr "-msoft-float å’Œ -mhard_float ä¸èƒ½ä¸€èµ·ä½¿ç”¨"
@@ -5410,7 +5284,6 @@ msgstr "打å°é¢å¤–(å¯èƒ½æ‚¨å¹¶ä¸æƒ³è¦)的警告信æ¯"
#: fortran/lang.opt:242
#, fuzzy
-#| msgid "Warn about implicit function declarations"
msgid "Warn about function call elimination"
msgstr "对éšå¼å‡½æ•°å£°æ˜Žç»™å‡ºè­¦å‘Š"
@@ -5436,13 +5309,11 @@ msgstr ""
#: fortran/lang.opt:270
#, fuzzy
-#| msgid "Warn when a register variable is declared volatile"
msgid "Warn when a left-hand-side array variable is reallocated"
msgstr "当一个寄存器å˜é‡è¢«å£°æ˜Žä¸º volatile 时给出警告"
#: fortran/lang.opt:274
#, fuzzy
-#| msgid "Warn when a register variable is declared volatile"
msgid "Warn when a left-hand-side variable is reallocated"
msgstr "当一个寄存器å˜é‡è¢«å£°æ˜Žä¸º volatile 时给出警告"
@@ -5473,7 +5344,6 @@ msgstr "对未使用的哑元给出警告。"
#: fortran/lang.opt:306
#, fuzzy
-#| msgid "Warn about zero-length formats"
msgid "Warn about zero-trip DO loops"
msgstr "对长度为 0 çš„æ ¼å¼å­—符串给出警告"
@@ -5616,7 +5486,6 @@ msgstr "-ffpe-trap=[...]\t在以下浮点异常的情况下åœæ­¢"
#: fortran/lang.opt:458
#, fuzzy
-#| msgid "-ffpe-trap=[...]\tStop on following floating point exceptions"
msgid "-ffpe-summary=[...]\tPrint summary of floating point exceptions"
msgstr "-ffpe-trap=[...]\t在以下浮点异常的情况下åœæ­¢"
@@ -5634,7 +5503,6 @@ msgstr "-ffree-line-length-<n>\t在自由模å¼ä¸‹ä»¥ n 作为字符行宽"
#: fortran/lang.opt:474
#, fuzzy
-#| msgid "Enable linker optimizations"
msgid "Enable front end optimization"
msgstr "å¯ç”¨é“¾æŽ¥å™¨ä¼˜åŒ–"
@@ -5784,7 +5652,6 @@ msgstr "éµå¾ª ISO Fortran 2008 标准"
#: fortran/lang.opt:670
#, fuzzy
-#| msgid "Conform to the ISO Fortran 2008 standard"
msgid "Conform to the ISO Fortran 2008 standard including TS 29113"
msgstr "éµå¾ª ISO Fortran 2008 标准"
@@ -5937,13 +5804,11 @@ msgstr "当在 C 语言中使用了 C 与 C++ 交集以外的构造时给出警å
#: c-family/c.opt:296
#, fuzzy
-#| msgid "Deprecated in favor of -std=c99"
msgid "Deprecated in favor of -Wc++11-compat"
msgstr "ä¸å»ºè®®ä½¿ç”¨ï¼Œè¯·æ”¹ç”¨ -std=c99"
#: c-family/c.opt:300
#, fuzzy
-#| msgid "Warn about C++ constructs whose meaning differs between ISO C++ 1998 and ISO C++ 200x"
msgid "Warn about C++ constructs whose meaning differs between ISO C++ 1998 and ISO C++ 2011"
msgstr "当 C++ 构造的æ„义在 ISO C++ 1998 å’Œ ISO C++ 200x 中ä¸åŒæ—¶ç»™å‡ºè­¦å‘Š"
@@ -5989,13 +5854,11 @@ msgstr "当声明出现在语å¥åŽæ—¶ç»™å‡ºè­¦å‘Š"
#: c-family/c.opt:344
#, fuzzy
-#| msgid "dereferencing pointer to incomplete type"
msgid "Warn when deleting a pointer to incomplete type"
msgstr "æ领指å‘ä¸å®Œå…¨ç±»åž‹çš„指针"
#: c-family/c.opt:348
#, fuzzy
-#| msgid "Warn about non-virtual destructors"
msgid "Warn about deleting polymorphic objects with non-virtual destructors"
msgstr "当æžæž„函数ä¸æ˜¯è™šå‡½æ•°æ—¶ç»™å‡ºè­¦å‘Š"
@@ -6029,7 +5892,6 @@ msgstr "ä¸å»ºè®®ä½¿ç”¨æ­¤å¼€å…³ï¼›è¯·æ”¹ç”¨ -Werror=implicit-function-declarati
#: c-family/c.opt:392
#, fuzzy
-#| msgid "Warn for implicit type conversions that may change a value"
msgid "Warn for implicit type conversions that cause loss of floating point precision"
msgstr "当éšå¼ç±»åž‹è½¬æ¢å¯èƒ½æ”¹å˜å€¼æ—¶ç»™å‡ºè­¦å‘Š"
@@ -6286,7 +6148,6 @@ msgstr "编译器将代ç é‡æ–°æŽ’åºæ—¶ç»™å‡ºè­¦å‘Š"
#: c-family/c.opt:673
#, fuzzy
-#| msgid "returning reference to temporary"
msgid "Warn about returning a pointer/reference to a local or temporary variable."
msgstr "返回临时å˜é‡çš„引用"
@@ -6364,7 +6225,6 @@ msgstr "对ä¸å¸¦åŽç¼€çš„浮点常é‡ç»™å‡ºè­¦å‘Š"
#: c-family/c.opt:777
#, fuzzy
-#| msgid "Warn about macros defined in the main file that are not used"
msgid "Warn when typedefs locally defined in a function are not used"
msgstr "当定义在主文件中的å®æœªè¢«ä½¿ç”¨æ—¶ç»™å‡ºè­¦å‘Š"
@@ -6378,7 +6238,6 @@ msgstr "当一个带有 warn_unused_result 属性的函数的调用者未使用å
#: c-family/c.opt:789
#, fuzzy
-#| msgid "Do not warn about using variadic macros when -pedantic"
msgid "Warn about using variadic macros"
msgstr "指定 -pedantic æ—¶ä¸ä¸ºå¯å˜å‚æ•°å®ç»™å‡ºè­¦å‘Š"
@@ -6404,13 +6263,11 @@ msgstr "在 C++ 中,éžé›¶å€¼è¡¨ç¤ºå°†å­—é¢å­—符串转æ¢ä¸ºâ€˜char *’时ç
#: c-family/c.opt:813
#, fuzzy
-#| msgid "Warn when a label is unused"
msgid "Warn when a literal '0' is used as null pointer"
msgstr "有未使用的标å·æ—¶è­¦å‘Š"
#: c-family/c.opt:817
#, fuzzy
-#| msgid "Warn about misuses of pragmas"
msgid "Warn about useless casts"
msgstr "对错误使用的 pragma 加以警告"
@@ -6467,25 +6324,21 @@ msgstr "-fconst-string-class=<åå­—>\t使用å字作为常é‡å­—符串类的å
#: c-family/c.opt:883
#, fuzzy
-#| msgid "-ftemplate-depth=<number>\tSpecify maximum template instantiation depth"
msgid "-fconstexpr-depth=<number>\tSpecify maximum constexpr recursion depth"
msgstr "-ftemplate-depth=<N>\t指定模æ¿å®žä¾‹åŒ–的最大深度"
#: c-family/c.opt:887
#, fuzzy
-#| msgid "Enable traditional preprocessing"
msgid "Emit debug annotations during preprocessing"
msgstr "å¯ç”¨ä¼ ç»Ÿé¢„处ç†"
#: c-family/c.opt:891
#, fuzzy
-#| msgid "-fno-deduce-init-list\tdisable deduction of std::initializer_list for a template type parameter from a brace-enclosed initializer-list"
msgid "-fdeduce-init-list\tenable deduction of std::initializer_list for a template type parameter from a brace-enclosed initializer-list"
msgstr "-fno-deduce-init-list\tç¦ç”¨ä¸ºæ¨¡æ¿ç±»åž‹å‚数从花括å·ä¸­çš„åˆå§‹å€¼è®¾å®šåˆ—表演绎 std::initializer_list"
#: c-family/c.opt:895
#, fuzzy
-#| msgid "Warn when all constructors and destructors are private"
msgid "Factor complex constructors and destructors to favor space over speed"
msgstr "当所有构造函数和æžæž„函数都是ç§æœ‰æ—¶ç»™å‡ºè­¦å‘Š"
@@ -6632,7 +6485,6 @@ msgstr "å¯ç”¨ OpenMP(对 Fortran 而言也åŒæ—¶è®¾å®š -frecursive)"
#: c-family/c.opt:1090
#, fuzzy
-#| msgid "Unclassifiable OpenMP directive at %C"
msgid "Enable OpenMP's SIMD directives"
msgstr "%C处的 OpenMP 指示无法分类"
@@ -6710,7 +6562,6 @@ msgstr "-ftabstop=<N>\t指定报告列å·æ—¶åˆ¶è¡¨ä½é—´çš„è·ç¦»"
#: c-family/c.opt:1183
#, fuzzy
-#| msgid "The maximum number of peelings of a single loop"
msgid "Set the maximum number of template instantiation notes for a single warning or error"
msgstr "å•ä¸ªå¾ªçŽ¯æœ€å¤§çš„剥离数"
@@ -6740,7 +6591,6 @@ msgstr "在异常处ç†ä¸­ä½¿ç”¨ __cxa_get_exception_ptr"
#: c-family/c.opt:1217
#, fuzzy
-#| msgid "Marks all inlined methods as having hidden visibility"
msgid "Marks all inlined functions and methods as having hidden visibility"
msgstr "将所有内è”函数标记为具有éšè—çš„å¯è§æ€§"
@@ -6842,37 +6692,31 @@ msgstr "包å«æ–‡ä»¶æ—¶æ˜ å°„短文件å"
#: c-family/c.opt:1344 c-family/c.opt:1348
#, fuzzy
-#| msgid "Conform to the ISO 1998 C++ standard with GNU extensions"
msgid "Conform to the ISO 1998 C++ standard revised by the 2003 technical corrigendum"
msgstr "éµå¾ª ISO 1998 C++ æ ‡å‡†ï¼Œä¹Ÿæ”¯æŒ GNU 扩展"
#: c-family/c.opt:1352
#, fuzzy
-#| msgid "Conform to the ISO 201X C standard draft (experimental and incomplete support)"
msgid "Conform to the ISO 2011 C++ standard (experimental and incomplete support)"
msgstr "éµå¾ª ISO 201X C 标准è‰æ¡ˆ(试验性质的ä¸å®Œå…¨æ”¯æŒ)"
#: c-family/c.opt:1356
#, fuzzy
-#| msgid "Deprecated in favor of -std=c99"
msgid "Deprecated in favor of -std=c++11"
msgstr "ä¸å»ºè®®ä½¿ç”¨ï¼Œè¯·æ”¹ç”¨ -std=c99"
#: c-family/c.opt:1360
#, fuzzy
-#| msgid "Conform to the ISO 201X C standard draft (experimental and incomplete support)"
msgid "Conform to the ISO 201y(7?) C++ draft standard (experimental and incomplete support)"
msgstr "éµå¾ª ISO 201X C 标准è‰æ¡ˆ(试验性质的ä¸å®Œå…¨æ”¯æŒ)"
#: c-family/c.opt:1364 c-family/c.opt:1450
#, fuzzy
-#| msgid "Conform to the ISO 201X C standard draft (experimental and incomplete support)"
msgid "Conform to the ISO 2011 C standard (experimental and incomplete support)"
msgstr "éµå¾ª ISO 201X C 标准è‰æ¡ˆ(试验性质的ä¸å®Œå…¨æ”¯æŒ)"
#: c-family/c.opt:1368
#, fuzzy
-#| msgid "Deprecated in favor of -std=c99"
msgid "Deprecated in favor of -std=c11"
msgstr "ä¸å»ºè®®ä½¿ç”¨ï¼Œè¯·æ”¹ç”¨ -std=c99"
@@ -6890,37 +6734,31 @@ msgstr "ä¸å»ºè®®ä½¿ç”¨ï¼Œè¯·æ”¹ç”¨ -std=c99"
#: c-family/c.opt:1388 c-family/c.opt:1393
#, fuzzy
-#| msgid "Conform to the ISO 1998 C++ standard with GNU extensions"
msgid "Conform to the ISO 1998 C++ standard revised by the 2003 technical"
msgstr "éµå¾ª ISO 1998 C++ æ ‡å‡†ï¼Œä¹Ÿæ”¯æŒ GNU 扩展"
#: c-family/c.opt:1398
#, fuzzy
-#| msgid "Conform to the ISO 201X C standard draft with GNU extensions (experimental and incomplete support)"
msgid "Conform to the ISO 2011 C++ standard with GNU extensions (experimental and incomplete support)"
msgstr "éµå¾ª ISO 201X C 标准è‰æ¡ˆå’Œ GNU 扩展(试验性质的ä¸å®Œå…¨æ”¯æŒ)"
#: c-family/c.opt:1402
#, fuzzy
-#| msgid "Deprecated in favor of -std=gnu99"
msgid "Deprecated in favor of -std=gnu++11"
msgstr "ä¸å»ºè®®ä½¿ç”¨ï¼Œè¯·æ”¹ç”¨ -std=gnu99"
#: c-family/c.opt:1406
#, fuzzy
-#| msgid "Conform to the ISO 201X C standard draft with GNU extensions (experimental and incomplete support)"
msgid "Conform to the ISO 201y(7?) C++ draft standard with GNU extensions (experimental and incomplete support)"
msgstr "éµå¾ª ISO 201X C 标准è‰æ¡ˆå’Œ GNU 扩展(试验性质的ä¸å®Œå…¨æ”¯æŒ)"
#: c-family/c.opt:1410
#, fuzzy
-#| msgid "Conform to the ISO 201X C standard draft with GNU extensions (experimental and incomplete support)"
msgid "Conform to the ISO 2011 C standard with GNU extensions (experimental and incomplete support)"
msgstr "éµå¾ª ISO 201X C 标准è‰æ¡ˆå’Œ GNU 扩展(试验性质的ä¸å®Œå…¨æ”¯æŒ)"
#: c-family/c.opt:1414
#, fuzzy
-#| msgid "Deprecated in favor of -std=gnu99"
msgid "Deprecated in favor of -std=gnu11"
msgstr "ä¸å»ºè®®ä½¿ç”¨ï¼Œè¯·æ”¹ç”¨ -std=gnu99"
@@ -6958,7 +6796,6 @@ msgstr "ä¸é¢„定义系统或 GCC 特定的å®"
#: ada/gcc-interface/lang.opt:61
#, fuzzy
-#| msgid "Synonym for -Wcomment"
msgid "Synonym of -gnatk8"
msgstr "-Wcomment çš„åŒä¹‰è¯"
@@ -6968,7 +6805,6 @@ msgstr ""
#: ada/gcc-interface/lang.opt:73
#, fuzzy
-#| msgid "Select code model"
msgid "Select the runtime"
msgstr "选择代ç æ¨¡åž‹"
@@ -7036,7 +6872,6 @@ msgstr ""
#: config/vms/vms.opt:42
#, fuzzy, c-format
-#| msgid "unknown TLS model %qs"
msgid "unknown pointer size model %qs"
msgstr "未知的 TLS 模型%qs"
@@ -7547,7 +7382,6 @@ msgstr "å‡å®šç›®æ ‡ CPU 被é…置为大端在å‰"
#: config/aarch64/aarch64.opt:68
#, fuzzy
-#| msgid "Generate code which uses hardware floating point instructions"
msgid "Generate code which uses only the general registers"
msgstr "生æˆä½¿ç”¨ç¡¬ä»¶æµ®ç‚¹æŒ‡ä»¤çš„代ç "
@@ -7558,7 +7392,6 @@ msgstr "å‡å®šç›®æ ‡ CPU 被é…置为å°ç«¯åœ¨å‰"
#: config/aarch64/aarch64.opt:76
#, fuzzy
-#| msgid "Select code model"
msgid "Specify the code model"
msgstr "选择代ç æ¨¡åž‹"
@@ -7576,13 +7409,11 @@ msgstr ""
#: config/aarch64/aarch64.opt:92
#, fuzzy
-#| msgid "-mcpu=\tUse features of and schedule code for given CPU"
msgid "-march=ARCH\tUse features of architecture ARCH"
msgstr "-mcpu=\t使用指定 CPU 的特性和调度代ç "
#: config/aarch64/aarch64.opt:96
#, fuzzy
-#| msgid "-mcpu=\tUse features of and schedule code for given CPU"
msgid "-mcpu=CPU\tUse features of and optimize for CPU"
msgstr "-mcpu=\t使用指定 CPU 的特性和调度代ç "
@@ -7592,7 +7423,6 @@ msgstr ""
#: config/aarch64/aarch64.opt:104
#, fuzzy
-#| msgid "-mabi=ABI\tGenerate code that conforms to the given ABI"
msgid "-mabi=ABI\tGenerate code that conforms to the specified ABI"
msgstr "-mabi=ABI\t生æˆéµå¾ªç»™å®š ABI 的代ç "
@@ -7874,25 +7704,21 @@ msgstr ""
#: config/epiphany/epiphany.opt:32
#, fuzzy
-#| msgid "Relax branches"
msgid "Set branch cost"
msgstr "放宽跳转"
#: config/epiphany/epiphany.opt:36
#, fuzzy
-#| msgid "Enable all optional instructions"
msgid "enable conditional move instruction usage."
msgstr "å¯ç”¨æ‰€æœ‰å¯é€‰æŒ‡ä»¤"
#: config/epiphany/epiphany.opt:40
#, fuzzy
-#| msgid "The number of insns executed before prefetch is completed"
msgid "set number of nops to emit before each insn pattern"
msgstr "预å–æ“作完æˆå‰æ‰§è¡ŒæŒ‡ä»¤çš„æ•°ç›®"
#: config/epiphany/epiphany.opt:52
#, fuzzy
-#| msgid "Use software floating point"
msgid "Use software floating point comparisons"
msgstr "使用软件浮点å•å…ƒ"
@@ -7918,13 +7744,11 @@ msgstr ""
#: config/epiphany/epiphany.opt:76
#, fuzzy
-#| msgid "Generate call insns as indirect calls, if necessary"
msgid "Generate call insns as indirect calls"
msgstr "如有必须,为调用指令生æˆé—´æŽ¥è°ƒç”¨"
#: config/epiphany/epiphany.opt:80
#, fuzzy
-#| msgid "Generate call insns as indirect calls, if necessary"
msgid "Generate call insns as direct calls"
msgstr "如有必须,为调用指令生æˆé—´æŽ¥è°ƒç”¨"
@@ -7938,7 +7762,6 @@ msgstr ""
#: config/epiphany/epiphany.opt:112
#, fuzzy
-#| msgid "Use structs on stronger alignment for double-word copies"
msgid "Vectorize for double-word operations."
msgstr "为结构使用更强的对é½ä»¥ä½¿ç”¨åŒå­—å¤åˆ¶"
@@ -7948,7 +7771,6 @@ msgstr ""
#: config/epiphany/epiphany.opt:132
#, fuzzy
-#| msgid "Use hardware floating point conversion instructions"
msgid "Use the floating point unit for integer add/subtract."
msgstr "使用浮点转æ¢æŒ‡ä»¤"
@@ -8184,7 +8006,6 @@ msgstr "sizeof(long double) 等于 12"
#: config/i386/i386.opt:190
#, fuzzy
-#| msgid "Use 128-bit long double"
msgid "Use 80-bit long double"
msgstr "使用 128 ä½ long double"
@@ -8244,7 +8065,6 @@ msgstr ""
#: config/i386/i386.opt:271
#, fuzzy
-#| msgid "Use given x86-64 code model"
msgid "Use given address mode"
msgstr "使用给定的 x86-64 代ç æ¨¡å¼"
@@ -8291,19 +8111,16 @@ msgstr "ä¸å»ºè®®ä½¿ç”¨%<-mintel-syntax%>å’Œ %<-mno-intel-syntax%>;请改用%<
#: config/i386/i386.opt:369
#, fuzzy
-#| msgid "Set 80387 floating-point precision (-mpc32, -mpc64, -mpc80)"
msgid "Set 80387 floating-point precision to 32-bit"
msgstr "设定 80387 浮点精度(-mpc32ã€-mpc64ã€-mpc80)"
#: config/i386/i386.opt:373
#, fuzzy
-#| msgid "Set 80387 floating-point precision (-mpc32, -mpc64, -mpc80)"
msgid "Set 80387 floating-point precision to 64-bit"
msgstr "设定 80387 浮点精度(-mpc32ã€-mpc64ã€-mpc80)"
#: config/i386/i386.opt:377
#, fuzzy
-#| msgid "Set 80387 floating-point precision (-mpc32, -mpc64, -mpc80)"
msgid "Set 80387 floating-point precision to 80-bit"
msgstr "设定 80387 浮点精度(-mpc32ã€-mpc64ã€-mpc80)"
@@ -8361,7 +8178,6 @@ msgstr "选择生æˆå­—符串æ“作的策略"
#: config/i386/i386.opt:433
#, fuzzy
-#| msgid "bad value (%s) for %sstringop-strategy=%s %s"
msgid "Valid arguments to -mstringop-strategy=:"
msgstr "%2$sstringop-strategy=%3$s %4$s所带å‚æ•°(%1$s)ä¸æ­£ç¡®"
@@ -8425,7 +8241,6 @@ msgstr ""
#: config/i386/i386.opt:543
#, fuzzy
-#| msgid "Do dispatch scheduling if processor is bdver1 and Haifa scheduling"
msgid "Do dispatch scheduling if processor is bdver1 or bdver2 or bdver3 or bdver4 and Haifa scheduling"
msgstr "进行海法调度,当处ç†å™¨æ˜¯ bdver1 时也进行派é£è°ƒåº¦"
@@ -8443,13 +8258,11 @@ msgstr "ç”Ÿæˆ 64 ä½ x86-64 代ç "
#: config/i386/i386.opt:562
#, fuzzy
-#| msgid "Generate 64bit x86-64 code"
msgid "Generate 32bit x86-64 code"
msgstr "ç”Ÿæˆ 64 ä½ x86-64 代ç "
#: config/i386/i386.opt:566
#, fuzzy
-#| msgid "Generate 32bit i386 code"
msgid "Generate 16bit i386 code"
msgstr "ç”Ÿæˆ 32 ä½ i386 代ç "
@@ -8503,31 +8316,26 @@ msgstr "æ”¯æŒ MMXã€SSEã€SSE2ã€SSE3ã€SSSE3ã€SSE4.1ã€SSE4.2 å’Œ AVX 内建å
#: config/i386/i386.opt:622
#, fuzzy
-#| msgid "Support MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX and FMA built-in functions and code generation"
msgid "Support MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX and AVX2 built-in functions and code generation"
msgstr "æ”¯æŒ MMXã€SSEã€SSE2ã€SSE3ã€SSSE3ã€SSE4.1ã€SSE4.2ã€AVX å’Œ FMA 内建函数åŠä»£ç ç”Ÿæˆ"
#: config/i386/i386.opt:626
#, fuzzy
-#| msgid "Support MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX and FMA built-in functions and code generation"
msgid "Support MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2 and AVX512F built-in functions and code generation"
msgstr "æ”¯æŒ MMXã€SSEã€SSE2ã€SSE3ã€SSSE3ã€SSE4.1ã€SSE4.2ã€AVX å’Œ FMA 内建函数åŠä»£ç ç”Ÿæˆ"
#: config/i386/i386.opt:630
#, fuzzy
-#| msgid "Support MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX and FMA built-in functions and code generation"
msgid "Support MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2 and AVX512F and AVX512PF built-in functions and code generation"
msgstr "æ”¯æŒ MMXã€SSEã€SSE2ã€SSE3ã€SSSE3ã€SSE4.1ã€SSE4.2ã€AVX å’Œ FMA 内建函数åŠä»£ç ç”Ÿæˆ"
#: config/i386/i386.opt:634
#, fuzzy
-#| msgid "Support MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX and FMA built-in functions and code generation"
msgid "Support MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2 and AVX512F and AVX512ER built-in functions and code generation"
msgstr "æ”¯æŒ MMXã€SSEã€SSE2ã€SSE3ã€SSSE3ã€SSE4.1ã€SSE4.2ã€AVX å’Œ FMA 内建函数åŠä»£ç ç”Ÿæˆ"
#: config/i386/i386.opt:638
#, fuzzy
-#| msgid "Support MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX and FMA built-in functions and code generation"
msgid "Support MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2 and AVX512F and AVX512CD built-in functions and code generation"
msgstr "æ”¯æŒ MMXã€SSEã€SSE2ã€SSE3ã€SSSE3ã€SSE4.1ã€SSE4.2ã€AVX å’Œ FMA 内建函数åŠä»£ç ç”Ÿæˆ"
@@ -8565,13 +8373,11 @@ msgstr "æ”¯æŒ BMI 内建函数åŠä»£ç ç”Ÿæˆ"
#: config/i386/i386.opt:674
#, fuzzy
-#| msgid "Support BMI built-in functions and code generation"
msgid "Support BMI2 built-in functions and code generation"
msgstr "æ”¯æŒ BMI 内建函数åŠä»£ç ç”Ÿæˆ"
#: config/i386/i386.opt:678
#, fuzzy
-#| msgid "Support TBM built-in functions and code generation"
msgid "Support LZCNT built-in function and code generation"
msgstr "æ”¯æŒ TBM 内建函数åŠä»£ç ç”Ÿæˆ"
@@ -8581,7 +8387,6 @@ msgstr ""
#: config/i386/i386.opt:686
#, fuzzy
-#| msgid "Use SmartMIPS instructions"
msgid "Support RDSEED instruction"
msgstr "使用 SmartMIPS 指令"
@@ -8591,7 +8396,6 @@ msgstr ""
#: config/i386/i386.opt:694
#, fuzzy
-#| msgid "Support code generation of crc32 instruction."
msgid "Support flag-preserving add-carry instructions"
msgstr "支æŒç”Ÿæˆ crc32 指令。"
@@ -8601,13 +8405,11 @@ msgstr ""
#: config/i386/i386.opt:702
#, fuzzy
-#| msgid "Support calls between Thumb and ARM instruction sets"
msgid "Support XSAVE and XRSTOR instructions"
msgstr "æ”¯æŒ Thumb å’Œ ARM 指令集间互相调用g"
#: config/i386/i386.opt:706
#, fuzzy
-#| msgid "Support MMX built-in functions"
msgid "Support XSAVEOPT instruction"
msgstr "æ”¯æŒ MMX 内建函数"
@@ -8637,7 +8439,6 @@ msgstr "æ”¯æŒ AES 内建函数åŠä»£ç ç”Ÿæˆ"
#: config/i386/i386.opt:734
#, fuzzy
-#| msgid "Support MMX and SSE built-in functions and code generation"
msgid "Support SHA1 and SHA256 built-in functions and code generation"
msgstr "æ”¯æŒ MMX å’Œ SSE 内建函数åŠä»£ç ç”Ÿæˆ"
@@ -8680,13 +8481,11 @@ msgstr ""
#: config/i386/i386.opt:774
#, fuzzy
-#| msgid "Support TBM built-in functions and code generation"
msgid "Support RTM built-in functions and code generation"
msgstr "æ”¯æŒ TBM 内建函数åŠä»£ç ç”Ÿæˆ"
#: config/i386/i386.opt:778
#, fuzzy
-#| msgid "Use propolice as a stack protection method"
msgid "Use given stack-protector guard"
msgstr "使用 propolice æ¥ä¿æŠ¤å †æ ˆ"
@@ -8805,7 +8604,6 @@ msgstr "å¯ç”¨åŽç«¯è°ƒè¯•"
#: config/v850/v850.opt:41
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the callt instruction (default)"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -8871,13 +8669,11 @@ msgstr "为 v850e2v3 处ç†å™¨ç¼–译"
#: config/v850/v850.opt:117
#, fuzzy
-#| msgid "Compile for the v850e processor"
msgid "Compile for the v850e3v5 processor"
msgstr "为 v850e 处ç†å™¨ç¼–译"
#: config/v850/v850.opt:124
#, fuzzy
-#| msgid "Enable clip instructions"
msgid "Enable v850e3v5 loop instructions"
msgstr "å¯ç”¨ clip 指令"
@@ -8887,37 +8683,31 @@ msgstr "为 ZDA 区域åˆæ ¼çš„æ•°æ®è®¾ç½®æœ€å¤§å°ºå¯¸"
#: config/v850/v850.opt:135
#, fuzzy
-#| msgid "Enable the rank heuristic in the scheduler"
msgid "Enable relaxing in the assembler"
msgstr "在调度器中å¯ç”¨ç§©å¯å‘"
#: config/v850/v850.opt:139
#, fuzzy
-#| msgid "Prohibit PC relative function calls"
msgid "Prohibit PC relative jumps"
msgstr "ç¦æ­¢ç›¸å¯¹ PC 的函数调用"
#: config/v850/v850.opt:143
#, fuzzy
-#| msgid "Prevent the use of all hardware floating-point instructions"
msgid "Inhibit the use of hardware floating point instructions"
msgstr "ä¸å…许使用任何硬件浮点指令"
#: config/v850/v850.opt:147
#, fuzzy
-#| msgid "Allow the use of hardware floating-point ABI and instructions"
msgid "Allow the use of hardware floating point instructions for V850E2V3 and up"
msgstr "å…许使用硬件浮点 ABI 和指令"
#: config/v850/v850.opt:151
#, fuzzy
-#| msgid "Enable the use of RX FPU instructions. This is the default."
msgid "Enable support for the RH850 ABI. This is the default"
msgstr "å¯ç”¨ä½¿ç”¨ RX FPU 指令。这是默认值。"
#: config/v850/v850.opt:155
#, fuzzy
-#| msgid "Enable support for huge objects"
msgid "Enable support for the old GCC ABI"
msgstr "å¯ç”¨å¯¹å·¨åž‹å¯¹è±¡çš„支æŒ"
@@ -8951,13 +8741,11 @@ msgstr "å‡å®š VxWorks vThreads 环境"
#: config/cr16/cr16.opt:23
#, fuzzy
-#| msgid "-msim\tUse simulator runtime"
msgid "-msim Use simulator runtime"
msgstr "-msim\t使用仿真器è¿è¡Œæ—¶"
#: config/cr16/cr16.opt:27
#, fuzzy
-#| msgid "Generate bit instructions"
msgid "Generate SBIT, CBIT instructions"
msgstr "生æˆä½æŒ‡ä»¤"
@@ -8971,19 +8759,16 @@ msgstr ""
#: config/cr16/cr16.opt:42
#, fuzzy
-#| msgid "Generate code for a cpu32"
msgid "Generate code for CR16C architecture"
msgstr "为 cpu32 生æˆä»£ç "
#: config/cr16/cr16.opt:46
#, fuzzy
-#| msgid "Generate code for GNU assembler (gas)"
msgid "Generate code for CR16C+ architecture (Default)"
msgstr "为 GNU 汇编器(gas)生æˆä»£ç "
#: config/cr16/cr16.opt:50
#, fuzzy
-#| msgid "Pointers are 32-bit"
msgid "Treat integers as 32-bit."
msgstr "指针是 32 ä½"
@@ -9038,7 +8823,6 @@ msgstr ""
#: config/avr/avr.opt:80
#, fuzzy
-#| msgid "taking the address of a label is non-standard"
msgid "Warn if the address space of an address is changed."
msgstr "å–æ ‡å·çš„地å€ä¸ç¬¦åˆæ ‡å‡†"
@@ -9157,7 +8941,6 @@ msgstr "使用 128 ä½ long double"
#: config/s390/s390.opt:117
#, fuzzy
-#| msgid "Use hardware floating point instructions"
msgid "Use hardware transactional execution instructions"
msgstr "使用硬件浮点指令"
@@ -9203,7 +8986,6 @@ msgstr ""
#: config/s390/s390.opt:167 config/rs6000/rs6000.opt:470
#, fuzzy
-#| msgid "Use ROM instead of RAM"
msgid "Use LRA instead of reload"
msgstr "使用 ROM 而ä¸æ˜¯ RAM"
@@ -9217,7 +8999,6 @@ msgstr ""
#: config/rl78/rl78.opt:47
#, fuzzy
-#| msgid "Specifies the number of registers to reserve for interrupt handlers."
msgid "Use all registers, reserving none for interrupt handlers."
msgstr "指定ä¿ç•™ç»™ä¸­æ–­å¤„ç†å‡½æ•°ä½¿ç”¨çš„寄存器的数é‡"
@@ -9227,7 +9008,6 @@ msgstr ""
#: config/rl78/rl78.opt:55
#, fuzzy
-#| msgid "Target the AM33/2.0 processor"
msgid "Target the RL78/G10 series"
msgstr "目标为 AM33/2.0 处ç†å™¨"
@@ -9277,7 +9057,6 @@ msgstr "生æˆå¯é‡å…¥çš„ PIC 代ç "
#: config/arm/arm.opt:90
#, fuzzy
-#| msgid "Generate code for 32 bit addressing"
msgid "Generate code in 32 bit ARM state."
msgstr "为 32 ä½å¯»å€ç”Ÿæˆä»£ç "
@@ -9303,7 +9082,6 @@ msgstr "指定 __fp16 浮点格å¼"
#: config/arm/arm.opt:131
#, fuzzy
-#| msgid "invalid __fp16 format option: -mfp16-format=%s"
msgid "Known __fp16 formats (for use with the -mfp16-format= option):"
msgstr "无效的 __fp16 浮点选项:-mfp16-format=%s"
@@ -9317,7 +9095,6 @@ msgstr "如有必须,为调用指令生æˆé—´æŽ¥è°ƒç”¨"
#: config/arm/arm.opt:163
#, fuzzy
-#| msgid "Assume arguments alias no other storage"
msgid "Assume data segments are relative to text segment."
msgstr "å‡å®šå®žå‚ä¸ä¸Žå…¶ä»–存储é‡å "
@@ -9343,7 +9120,6 @@ msgstr "为结构指定最å°ä½å¯¹é½"
#: config/arm/arm.opt:190
#, fuzzy
-#| msgid "Generate code for GNU as"
msgid "Generate code for Thumb state"
msgstr "为 GNU as 生æˆä»£ç "
@@ -9353,7 +9129,6 @@ msgstr "æ”¯æŒ Thumb å’Œ ARM 指令集间互相调用g"
#: config/arm/arm.opt:198
#, fuzzy
-#| msgid "Use given thread-local storage dialect"
msgid "Specify thread local storage scheme"
msgstr "使用给定的线程局部存储模å¼"
@@ -9380,7 +9155,6 @@ msgstr "为指定的处ç†å™¨ä¼˜åŒ–代ç "
#: config/arm/arm.opt:236
#, fuzzy
-#| msgid "Assume big endian bytes, little endian words"
msgid "Assume big endian bytes, little endian words. This option is deprecated."
msgstr "å‡å®šé«˜ä½å­—节在å‰ï¼Œä½Žä½å­—在å‰"
@@ -9390,7 +9164,6 @@ msgstr "使用 Neon 四字(而éžåŒå­—)寄存器æ¥è¿›è¡Œå‘é‡åŒ–"
#: config/arm/arm.opt:244
#, fuzzy
-#| msgid "Use Neon quad-word (rather than double-word) registers for vectorization"
msgid "Use Neon double-word (rather than quad-word) registers for vectorization"
msgstr "使用 Neon 四字(而éžåŒå­—)寄存器æ¥è¿›è¡Œå‘é‡åŒ–"
@@ -9436,7 +9209,6 @@ msgstr "ä¸ä½¿ç”¨ç¡¬ä»¶æµ®ç‚¹å•å…ƒ"
#: config/sparc/sparc.opt:42
#, fuzzy
-#| msgid "Use alternate register names"
msgid "Use flat register window model"
msgstr "使用å¦ä¸€å¥—寄存器å"
@@ -9462,37 +9234,31 @@ msgstr "为 V8+ ABI 编译"
#: config/sparc/sparc.opt:66
#, fuzzy
-#| msgid "Use UltraSPARC Visual Instruction Set extensions"
msgid "Use UltraSPARC Visual Instruction Set version 1.0 extensions"
msgstr "使用 UltraSPARC å¯è§†åŒ–指令集"
#: config/sparc/sparc.opt:70
#, fuzzy
-#| msgid "Use UltraSPARC Visual Instruction Set extensions"
msgid "Use UltraSPARC Visual Instruction Set version 2.0 extensions"
msgstr "使用 UltraSPARC å¯è§†åŒ–指令集"
#: config/sparc/sparc.opt:74
#, fuzzy
-#| msgid "Use UltraSPARC Visual Instruction Set extensions"
msgid "Use UltraSPARC Visual Instruction Set version 3.0 extensions"
msgstr "使用 UltraSPARC å¯è§†åŒ–指令集"
#: config/sparc/sparc.opt:78
#, fuzzy
-#| msgid "Use UltraSPARC Visual Instruction Set extensions"
msgid "Use UltraSPARC Compare-and-Branch extensions"
msgstr "使用 UltraSPARC å¯è§†åŒ–指令集"
#: config/sparc/sparc.opt:82
#, fuzzy
-#| msgid "Use UltraSPARC Visual Instruction Set extensions"
msgid "Use UltraSPARC Fused Multiply-Add extensions"
msgstr "使用 UltraSPARC å¯è§†åŒ–指令集"
#: config/sparc/sparc.opt:86
#, fuzzy
-#| msgid "Use hardware floating point instructions"
msgid "Use UltraSPARC Population-Count instruction"
msgstr "使用硬件浮点指令"
@@ -9534,7 +9300,6 @@ msgstr "使用给定的 SPARC-V9 代ç æ¨¡åž‹"
#: config/sparc/sparc.opt:196
#, fuzzy
-#| msgid "-mdebug=\tEnable debug output"
msgid "Enable debug output"
msgstr "-mdebug=\tå¯ç”¨è°ƒè¯•è¾“出"
@@ -9628,13 +9393,11 @@ msgstr "使用 AltiVec 指令"
#: config/rs6000/rs6000.opt:145
#, fuzzy
-#| msgid "Generate code in little endian mode"
msgid "Generate Altivec instructions using little-endian element order"
msgstr "生æˆå°ç«¯åœ¨å‰çš„代ç "
#: config/rs6000/rs6000.opt:149
#, fuzzy
-#| msgid "Generate VRSAVE instructions when generating AltiVec code"
msgid "Generate Altivec instructions using big-endian element order"
msgstr "ç”Ÿæˆ AltiVec 代ç æ—¶ç”Ÿæˆ VRSAVE 指令"
@@ -9741,13 +9504,11 @@ msgstr "ç”Ÿæˆ AltiVec 代ç æ—¶ç”Ÿæˆ VRSAVE 指令"
#: config/rs6000/rs6000.opt:322
#, fuzzy
-#| msgid "-mvrsave=yes/no\tDeprecated option. Use -mvrsave/-mno-vrsave instead"
msgid "Deprecated option. Use -mno-vrsave instead"
msgstr "-mvrsave=yes/no\tä¸å»ºè®®ä½¿ç”¨çš„选项。请改用 -mvrsave/-mno-vrsave"
#: config/rs6000/rs6000.opt:326
#, fuzzy
-#| msgid "Deprecated. Use -Os instead"
msgid "Deprecated option. Use -mvrsave instead"
msgstr "ä¸å»ºè®®ä½¿ç”¨ã€‚请改用 -Os"
@@ -9761,13 +9522,11 @@ msgstr "ç”Ÿæˆ isel 指令"
#: config/rs6000/rs6000.opt:338
#, fuzzy
-#| msgid "-misel=yes/no\tDeprecated option. Use -misel/-mno-isel instead"
msgid "Deprecated option. Use -mno-isel instead"
msgstr "-misel=yes/no\tä¸å»ºè®®ä½¿ç”¨çš„选项。请改用 -misel/-mno-isel"
#: config/rs6000/rs6000.opt:342
#, fuzzy
-#| msgid "Deprecated. Use -Os instead"
msgid "Deprecated option. Use -misel instead"
msgstr "ä¸å»ºè®®ä½¿ç”¨ã€‚请改用 -Os"
@@ -9781,13 +9540,11 @@ msgstr "ç”Ÿæˆ PPC750CL é…对å•ç²¾åº¦æŒ‡ä»¤"
#: config/rs6000/rs6000.opt:354
#, fuzzy
-#| msgid "-mspe=yes/no\tDeprecated option. Use -mspe/-mno-spe instead"
msgid "Deprecated option. Use -mno-spe instead"
msgstr "-mspe=yes/no\tä¸å»ºè®®ä½¿ç”¨çš„选项。请改用 -mspe/-mno-spe"
#: config/rs6000/rs6000.opt:358
#, fuzzy
-#| msgid "Deprecated. Use -Os instead"
msgid "Deprecated option. Use -mspe instead"
msgstr "ä¸å»ºè®®ä½¿ç”¨ã€‚请改用 -Os"
@@ -9797,37 +9554,31 @@ msgstr "-mdebug=\tå¯ç”¨è°ƒè¯•è¾“出"
#: config/rs6000/rs6000.opt:366
#, fuzzy
-#| msgid "Use the Cray Pointer extension"
msgid "Use the AltiVec ABI extensions"
msgstr "使用 Cray 指针扩展"
#: config/rs6000/rs6000.opt:370
#, fuzzy
-#| msgid "Do not use the bit-field instructions"
msgid "Do not use the AltiVec ABI extensions"
msgstr "ä¸ä½¿ç”¨ä½æ®µæŒ‡ä»¤"
#: config/rs6000/rs6000.opt:374
#, fuzzy
-#| msgid "Use the Cray Pointer extension"
msgid "Use the SPE ABI extensions"
msgstr "使用 Cray 指针扩展"
#: config/rs6000/rs6000.opt:378
#, fuzzy
-#| msgid "Do not use the bit-field instructions"
msgid "Do not use the SPE ABI extensions"
msgstr "ä¸ä½¿ç”¨ä½æ®µæŒ‡ä»¤"
#: config/rs6000/rs6000.opt:382
#, fuzzy
-#| msgid "Use EABI"
msgid "Use the ELFv1 ABI"
msgstr "使用 EABI"
#: config/rs6000/rs6000.opt:386
#, fuzzy
-#| msgid "Use EABI"
msgid "Use the ELFv2 ABI"
msgstr "使用 EABI"
@@ -9947,7 +9698,6 @@ msgstr ""
#: config/rs6000/rs6000.opt:554
#, fuzzy
-#| msgid "Align destination of the string operations"
msgid "Allow sign extension in fusion operations"
msgstr "对é½å­—符串æ“作的目标"
@@ -9957,7 +9707,6 @@ msgstr ""
#: config/rs6000/rs6000.opt:562
#, fuzzy
-#| msgid "Use SmartMIPS instructions"
msgid "Use ISA 2.07 crypto instructions"
msgstr "使用 SmartMIPS 指令"
@@ -9967,13 +9716,11 @@ msgstr ""
#: config/rs6000/rs6000.opt:570
#, fuzzy
-#| msgid "Use vector/scalar (VSX) instructions"
msgid "Use ISA 2.07 transactional memory (HTM) instructions"
msgstr "使用å‘é‡/æ ‡é‡(VSX)指令"
#: config/rs6000/rs6000.opt:574
#, fuzzy
-#| msgid "Generate load/store multiple instructions"
msgid "Generate the quad word memory instructions (lq/stq)."
msgstr "生æˆåŠ è½½/存储乘法指令"
@@ -10165,7 +9912,6 @@ msgstr ""
#: config/tilepro/tilepro.opt:28 config/tilegx/tilegx.opt:26
#, fuzzy
-#| msgid "-mcpu=\tUse features of and schedule code for given CPU"
msgid "-mcpu=CPU\tUse features of and schedule code for given CPU"
msgstr "-mcpu=\t使用指定 CPU 的特性和调度代ç "
@@ -10195,7 +9941,6 @@ msgstr "å¯ç”¨ç”¨æˆ·è‡ªå®šä¹‰æŒ‡ä»¤"
#: config/nios2/elf.opt:26
#, fuzzy
-#| msgid "Link with the fast floating-point library"
msgid "Link with a limited version of the C library"
msgstr "与快速浮点库链接"
@@ -10217,7 +9962,6 @@ msgstr ""
#: config/nios2/nios2.opt:39
#, fuzzy
-#| msgid "Enable clip instructions"
msgid "Enable MUL instructions"
msgstr "å¯ç”¨ clip 指令"
@@ -10227,19 +9971,16 @@ msgstr ""
#: config/nios2/nios2.opt:47
#, fuzzy
-#| msgid "Use the software emulation for divides (default)"
msgid "Use table based fast divide (default at -O3)"
msgstr "使用软件模拟除法(默认)"
#: config/nios2/nios2.opt:51
#, fuzzy
-#| msgid "Enable unaligned load/store instruction"
msgid "All memory accesses use I/O load/store instructions"
msgstr "å¯ç”¨ä¸å¯¹é½çš„载入/存储指令"
#: config/nios2/nios2.opt:55
#, fuzzy
-#| msgid "Enable unaligned load/store instruction"
msgid "Volatile memory accesses use I/O load/store instructions"
msgstr "å¯ç”¨ä¸å¯¹é½çš„载入/存储指令"
@@ -10268,7 +10009,6 @@ msgstr "大定点常é‡éšå¼æˆªæ–­ä¸ºå®šç‚¹ç±»åž‹"
#: config/nios2/nios2.opt:79
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the ftruncds custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10278,7 +10018,6 @@ msgstr ""
#: config/nios2/nios2.opt:87
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fextsd custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10288,19 +10027,16 @@ msgstr ""
#: config/nios2/nios2.opt:95
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fixdu custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
#: config/nios2/nios2.opt:99
#, fuzzy
-#| msgid "Enable divide and modulus instructions"
msgid "Integer id (N) of fixdu custom instruction"
msgstr "å¯ç”¨é™¤æ³•å’Œæ±‚余指令"
#: config/nios2/nios2.opt:103
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fixdi custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10310,7 +10046,6 @@ msgstr ""
#: config/nios2/nios2.opt:111
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fixsu custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10320,7 +10055,6 @@ msgstr ""
#: config/nios2/nios2.opt:119
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fixsi custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10330,31 +10064,26 @@ msgstr ""
#: config/nios2/nios2.opt:127
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the floatud custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
#: config/nios2/nios2.opt:131
#, fuzzy
-#| msgid "Enable unaligned load/store instruction"
msgid "Integer id (N) of floatud custom instruction"
msgstr "å¯ç”¨ä¸å¯¹é½çš„载入/存储指令"
#: config/nios2/nios2.opt:135
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the floatid custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
#: config/nios2/nios2.opt:139
#, fuzzy
-#| msgid "Enable unaligned load/store instruction"
msgid "Integer id (N) of floatid custom instruction"
msgstr "å¯ç”¨ä¸å¯¹é½çš„载入/存储指令"
#: config/nios2/nios2.opt:143
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the floatus custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10364,7 +10093,6 @@ msgstr ""
#: config/nios2/nios2.opt:151
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the floatis custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10374,7 +10102,6 @@ msgstr ""
#: config/nios2/nios2.opt:159
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fcmpned custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10384,7 +10111,6 @@ msgstr ""
#: config/nios2/nios2.opt:167
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fcmpeqd custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10394,7 +10120,6 @@ msgstr ""
#: config/nios2/nios2.opt:175
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fcmpged custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10404,7 +10129,6 @@ msgstr ""
#: config/nios2/nios2.opt:183
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fcmpgtd custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10414,7 +10138,6 @@ msgstr ""
#: config/nios2/nios2.opt:191
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fcmpled custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10424,7 +10147,6 @@ msgstr ""
#: config/nios2/nios2.opt:199
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fcmpltd custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10434,7 +10156,6 @@ msgstr ""
#: config/nios2/nios2.opt:207
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the flogd custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10444,7 +10165,6 @@ msgstr ""
#: config/nios2/nios2.opt:215
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fexpd custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10454,7 +10174,6 @@ msgstr ""
#: config/nios2/nios2.opt:223
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fatand custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10464,19 +10183,16 @@ msgstr ""
#: config/nios2/nios2.opt:231
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the ftand custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
#: config/nios2/nios2.opt:235
#, fuzzy
-#| msgid "Enable divide and modulus instructions"
msgid "Integer id (N) of ftand custom instruction"
msgstr "å¯ç”¨é™¤æ³•å’Œæ±‚余指令"
#: config/nios2/nios2.opt:239
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fsind custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10486,7 +10202,6 @@ msgstr ""
#: config/nios2/nios2.opt:247
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fcosd custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10496,7 +10211,6 @@ msgstr ""
#: config/nios2/nios2.opt:255
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fsqrtd custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10506,7 +10220,6 @@ msgstr ""
#: config/nios2/nios2.opt:263
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fabsd custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10516,7 +10229,6 @@ msgstr ""
#: config/nios2/nios2.opt:271
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fnegd custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10526,7 +10238,6 @@ msgstr ""
#: config/nios2/nios2.opt:279
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fmaxd custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10536,7 +10247,6 @@ msgstr ""
#: config/nios2/nios2.opt:287
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fmind custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10546,7 +10256,6 @@ msgstr ""
#: config/nios2/nios2.opt:295
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fdivd custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10556,19 +10265,16 @@ msgstr ""
#: config/nios2/nios2.opt:303
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fmuld custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
#: config/nios2/nios2.opt:307
#, fuzzy
-#| msgid "Enable divide and modulus instructions"
msgid "Integer id (N) of fmuld custom instruction"
msgstr "å¯ç”¨é™¤æ³•å’Œæ±‚余指令"
#: config/nios2/nios2.opt:311
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fsubd custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10578,7 +10284,6 @@ msgstr ""
#: config/nios2/nios2.opt:319
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the faddd custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10588,7 +10293,6 @@ msgstr ""
#: config/nios2/nios2.opt:327
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fcmpnes custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10598,7 +10302,6 @@ msgstr ""
#: config/nios2/nios2.opt:335
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fcmpeqs custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10608,7 +10311,6 @@ msgstr ""
#: config/nios2/nios2.opt:343
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fcmpges custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10618,7 +10320,6 @@ msgstr ""
#: config/nios2/nios2.opt:351
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fcmpgts custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10628,7 +10329,6 @@ msgstr ""
#: config/nios2/nios2.opt:359
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fcmples custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10638,7 +10338,6 @@ msgstr ""
#: config/nios2/nios2.opt:367
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fcmplts custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10648,7 +10347,6 @@ msgstr ""
#: config/nios2/nios2.opt:375
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the flogs custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10658,7 +10356,6 @@ msgstr ""
#: config/nios2/nios2.opt:383
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fexps custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10668,7 +10365,6 @@ msgstr ""
#: config/nios2/nios2.opt:391
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fatans custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10678,7 +10374,6 @@ msgstr ""
#: config/nios2/nios2.opt:399
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the ftans custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10688,7 +10383,6 @@ msgstr ""
#: config/nios2/nios2.opt:407
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fsins custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10698,7 +10392,6 @@ msgstr ""
#: config/nios2/nios2.opt:415
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fcoss custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10708,7 +10401,6 @@ msgstr ""
#: config/nios2/nios2.opt:423
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fsqrts custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10718,7 +10410,6 @@ msgstr ""
#: config/nios2/nios2.opt:431
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fabss custom instr"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10728,7 +10419,6 @@ msgstr ""
#: config/nios2/nios2.opt:439
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fnegs custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10738,7 +10428,6 @@ msgstr ""
#: config/nios2/nios2.opt:447
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fmaxs custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10748,7 +10437,6 @@ msgstr ""
#: config/nios2/nios2.opt:455
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fmins custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10758,7 +10446,6 @@ msgstr ""
#: config/nios2/nios2.opt:463
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fdivs custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10768,19 +10455,16 @@ msgstr ""
#: config/nios2/nios2.opt:471
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fmuls custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
#: config/nios2/nios2.opt:475
#, fuzzy
-#| msgid "Enable divide and modulus instructions"
msgid "Integer id (N) of fmuls custom instruction"
msgstr "å¯ç”¨é™¤æ³•å’Œæ±‚余指令"
#: config/nios2/nios2.opt:479
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fsubs custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10790,7 +10474,6 @@ msgstr ""
#: config/nios2/nios2.opt:487
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fadds custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10800,7 +10483,6 @@ msgstr ""
#: config/nios2/nios2.opt:495
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the frdy custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10810,7 +10492,6 @@ msgstr ""
#: config/nios2/nios2.opt:503
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the frdxhi custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10820,7 +10501,6 @@ msgstr ""
#: config/nios2/nios2.opt:511
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the frdxlo custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10830,7 +10510,6 @@ msgstr ""
#: config/nios2/nios2.opt:519
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fwry custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10840,7 +10519,6 @@ msgstr ""
#: config/nios2/nios2.opt:527
#, fuzzy
-#| msgid "Do not use the callt instruction"
msgid "Do not use the fwrx custom instruction"
msgstr "ä¸ä½¿ç”¨ callt 指令"
@@ -10882,7 +10560,6 @@ msgstr "能被放在å°å†…存区的全局和é™æ€å˜é‡çš„最大尺寸。"
#: config/rx/rx.opt:93
#, fuzzy
-#| msgid "Generate assembler output that is compatible with the Renesas AS100 assembler. This may restrict some of the compiler's capabilities. The default is to generate GAS compatable syntax."
msgid "Generate assembler output that is compatible with the Renesas AS100 assembler. This may restrict some of the compiler's capabilities. The default is to generate GAS compatible syntax."
msgstr "生æˆä¸Ž Renesas AS100 兼容的汇编输出。这å¯èƒ½ä¼šé™åˆ¶ç¼–译器的æŸäº›åŠŸèƒ½ã€‚默认是使用与 GAS 兼容的语法。"
@@ -10920,7 +10597,6 @@ msgstr ""
#: config/rx/rx.opt:141
#, fuzzy
-#| msgid "Enable the use of the short load instructions"
msgid "Enable the use of the LRA register allocator."
msgstr "å¯ç”¨å¯¹çŸ­åŠ è½½æŒ‡ä»¤çš„使用"
@@ -10977,7 +10653,6 @@ msgstr "使用浮点åŒç²¾åº¦æŒ‡ä»¤"
#: config/microblaze/microblaze.opt:87
#, fuzzy, c-format
-#| msgid "%qE is deprecated: %s"
msgid "%qs is deprecated; use -fstack-check"
msgstr "ä¸å»ºè®®ä½¿ç”¨%qE:%s"
@@ -10991,7 +10666,6 @@ msgstr "使用相对 GP 的 sdata/sbss 节"
#: config/microblaze/microblaze.opt:95
#, fuzzy, c-format
-#| msgid "-mno-clearbss is deprecated; use -fno-zero-initialized-in-bss"
msgid "%qs is deprecated; use -fno-zero-initialized-in-bss"
msgstr "-mno-clearbsså·²ä¸å»ºè®®ä½¿ç”¨ï¼›è¯·æ”¹ç”¨ -fno-zero-initialized-in-bss"
@@ -11225,61 +10899,51 @@ msgstr "å…许 gcc ç”Ÿæˆ LIW 指令"
#: config/mn10300/mn10300.opt:67
#, fuzzy
-#| msgid "Allow gcc to generate LIW instructions"
msgid "Allow gcc to generate the SETLB and Lcc instructions"
msgstr "å…许 gcc ç”Ÿæˆ LIW 指令"
#: config/nds32/nds32.opt:26
#, fuzzy
-#| msgid "Generate code in big endian mode"
msgid "Generate code in big-endian mode."
msgstr "生æˆå¤§ç«¯åœ¨å‰çš„代ç "
#: config/nds32/nds32.opt:30
#, fuzzy
-#| msgid "Generate code in little endian mode"
msgid "Generate code in little-endian mode."
msgstr "生æˆå°ç«¯åœ¨å‰çš„代ç "
#: config/nds32/nds32.opt:34
#, fuzzy
-#| msgid "Reschedule instructions before register allocation"
msgid "Use reduced-set registers for register allocation."
msgstr "分é…寄存器å‰é‡æ–°è°ƒåº¦æŒ‡ä»¤"
#: config/nds32/nds32.opt:38
#, fuzzy
-#| msgid "Reschedule instructions before register allocation"
msgid "Use full-set registers for register allocation."
msgstr "分é…寄存器å‰é‡æ–°è°ƒåº¦æŒ‡ä»¤"
#: config/nds32/nds32.opt:42
#, fuzzy
-#| msgid "Generate bit instructions"
msgid "Generate conditional move instructions."
msgstr "生æˆä½æŒ‡ä»¤"
#: config/nds32/nds32.opt:46
#, fuzzy
-#| msgid "Generate bit instructions"
msgid "Generate performance extension instructions."
msgstr "生æˆä½æŒ‡ä»¤"
#: config/nds32/nds32.opt:50
#, fuzzy
-#| msgid "Generate isel instructions"
msgid "Generate v3 push25/pop25 instructions."
msgstr "ç”Ÿæˆ isel 指令"
#: config/nds32/nds32.opt:54
#, fuzzy
-#| msgid "Generate bit instructions"
msgid "Generate 16-bit instructions."
msgstr "生æˆä½æŒ‡ä»¤"
#: config/nds32/nds32.opt:58
#, fuzzy
-#| msgid "Generate isel instructions"
msgid "Generate GP base instructions directly."
msgstr "ç”Ÿæˆ isel 指令"
@@ -11293,7 +10957,6 @@ msgstr ""
#: config/nds32/nds32.opt:70
#, fuzzy
-#| msgid "Specify the name of the target architecture"
msgid "Specify the name of the target architecture."
msgstr "指定目标架构的å称"
@@ -11307,19 +10970,16 @@ msgstr ""
#: config/nds32/nds32.opt:94
#, fuzzy
-#| msgid "Run predictive commoning optimization."
msgid "Use special directives to guide linker doing ex9 optimization."
msgstr "å¯ç”¨é¢„测公因å­ä¼˜åŒ–。"
#: config/nds32/nds32.opt:98
#, fuzzy
-#| msgid "Warn when all constructors and destructors are private"
msgid "Enable constructor/destructor feature."
msgstr "当所有构造函数和æžæž„函数都是ç§æœ‰æ—¶ç»™å‡ºè­¦å‘Š"
#: config/nds32/nds32.opt:102
#, fuzzy
-#| msgid "Generate isel instructions"
msgid "Guide linker to relax instructions."
msgstr "ç”Ÿæˆ isel 指令"
@@ -11353,13 +11013,11 @@ msgstr ""
#: config/c6x/c6x.opt:46
#, fuzzy
-#| msgid "alias argument not a string"
msgid "Valid arguments for the -msdata= option"
msgstr "alias çš„å‚æ•°ä¸æ˜¯ä¸€ä¸ªå­—符串"
#: config/c6x/c6x.opt:59
#, fuzzy
-#| msgid "Create a shared library"
msgid "Compile for the DSBT shared library ABI"
msgstr "生æˆä¸€ä¸ªå…±äº«åº“"
@@ -11633,7 +11291,6 @@ msgstr ""
#: config/sh/sh.opt:236 config/sh/sh.opt:240
#, fuzzy, c-format
-#| msgid "Deprecated. This switch has no effect"
msgid "%qs is deprecated and has no effect"
msgstr "ä¸å»ºè®®ä½¿ç”¨ã€‚此开关ä¸èµ·ä½œç”¨ã€‚"
@@ -11675,7 +11332,6 @@ msgstr "é’循 Renesas(å…ˆå‰è¢«ç§°ä½œ Hitachi)/SuperH 调用约定"
#: config/sh/sh.opt:277
#, fuzzy
-#| msgid "Increase the IEEE compliance for floating-point code"
msgid "Increase the IEEE compliance for floating-point comparisons"
msgstr "让浮点代ç æ›´åŠ éµå¾ª IEEE 标准"
@@ -11725,7 +11381,6 @@ msgstr ""
#: config/sh/sh.opt:331
#, fuzzy
-#| msgid "Generate code for built-in atomic operations"
msgid "Specify the model for atomic operations"
msgstr "为内建原å­æ“作生æˆä»£ç "
@@ -11751,13 +11406,11 @@ msgstr "将数æ®ä¼ è¾“周围的跳转认为是æ¡ä»¶è½¬ç§»ã€‚"
#: config/sh/sh.opt:357
#, fuzzy
-#| msgid "Enable the use of the short load instructions"
msgid "Enable the use of the fsca instruction"
msgstr "å¯ç”¨å¯¹çŸ­åŠ è½½æŒ‡ä»¤çš„使用"
#: config/sh/sh.opt:361
#, fuzzy
-#| msgid "Enable the use of the short load instructions"
msgid "Enable the use of the fsrra instruction"
msgstr "å¯ç”¨å¯¹çŸ­åŠ è½½æŒ‡ä»¤çš„使用"
@@ -11895,7 +11548,6 @@ msgstr "使用 PMC 风格的‘mad’指令"
#: config/mips/mips.opt:63
#, fuzzy
-#| msgid "Use multiply add/subtract instructions"
msgid "Use integer madd/msub instructions"
msgstr "使用乘加/å‡æŒ‡ä»¤"
@@ -11925,7 +11577,6 @@ msgstr "-mcode-readable=SETTING\t指定何时指令å…许被访问代ç "
#: config/mips/mips.opt:91
#, fuzzy
-#| msgid "invalid argument %qs to -fdebug-prefix-map"
msgid "Valid arguments to -mcode-readable=:"
msgstr "-fdebug-prefix-map çš„å‚æ•°%qs无效"
@@ -11955,7 +11606,6 @@ msgstr "使用 MIPS-DSP REV 2指令"
#: config/mips/mips.opt:146
#, fuzzy
-#| msgid "Use the bit-field instructions"
msgid "Use Enhanced Virtual Addressing instructions"
msgstr "使用ä½æ®µæŒ‡ä»¤"
@@ -11969,7 +11619,6 @@ msgstr "为未被当å‰å¯¹è±¡æ‰€å®šä¹‰çš„æ•°æ®ä½¿ç”¨ -G"
#: config/mips/mips.opt:158
#, fuzzy
-#| msgid "Work around certain R4000 errata"
msgid "Work around certain 24K errata"
msgstr "为æŸäº› R4000 缺陷æä¾›å˜é€š"
@@ -11983,7 +11632,6 @@ msgstr "为æŸäº› R4400 缺陷æä¾›å˜é€š"
#: config/mips/mips.opt:170
#, fuzzy
-#| msgid "Work around certain R4000 errata"
msgid "Work around certain RM7000 errata"
msgstr "为æŸäº› R4000 缺陷æä¾›å˜é€š"
@@ -12057,13 +11705,11 @@ msgstr "å…许使用硬件浮点 ABI 和指令"
#: config/mips/mips.opt:252
#, fuzzy
-#| msgid "Generate code that can be safely linked with MIPS16 code."
msgid "Generate code that is link-compatible with MIPS16 and microMIPS code."
msgstr "生æˆèƒ½ä¸Ž MIPS16 代ç å®‰å…¨é“¾æŽ¥çš„代ç ã€‚"
#: config/mips/mips.opt:256
#, fuzzy
-#| msgid "Does nothing. Preserved for backward compatibility."
msgid "An alias for minterlink-compressed provided for backward-compatibility."
msgstr "ä¸èµ·ä½œç”¨ã€‚为å‘å‰å…¼å®¹ä¿ç•™çš„选项。"
@@ -12109,7 +11755,6 @@ msgstr "ä¸ä¼˜åŒ–å—移动"
#: config/mips/mips.opt:300
#, fuzzy
-#| msgid "Use SmartMIPS instructions"
msgid "Use microMIPS instructions"
msgstr "使用 SmartMIPS 指令"
@@ -12123,7 +11768,6 @@ msgstr "ä¸å…许使用任何浮点æ“作"
#: config/mips/mips.opt:312
#, fuzzy
-#| msgid "Use MIPS-3D instructions"
msgid "Use MCU instructions"
msgstr "使用 MIPS-3D 指令"
@@ -12214,31 +11858,26 @@ msgstr ""
#: config/tilegx/tilegx.opt:37
#, fuzzy
-#| msgid "Compile for 32-bit pointers"
msgid "Compile with 32 bit longs and pointers."
msgstr "为 32 ä½æŒ‡é’ˆç¼–译"
#: config/tilegx/tilegx.opt:41
#, fuzzy
-#| msgid "Compile for 64-bit pointers"
msgid "Compile with 64 bit longs and pointers."
msgstr "为 64 ä½æŒ‡é’ˆç¼–译"
#: config/tilegx/tilegx.opt:45
#, fuzzy
-#| msgid "Use given x86-64 code model"
msgid "Use given TILE-Gx code model"
msgstr "使用给定的 x86-64 代ç æ¨¡å¼"
#: config/arc/arc.opt:26
#, fuzzy
-#| msgid "Generate code in big endian mode"
msgid "Compile code for big endian mode"
msgstr "生æˆå¤§ç«¯åœ¨å‰çš„代ç "
#: config/arc/arc.opt:30
#, fuzzy
-#| msgid "Stores doubles in 32 bits. This is the default."
msgid "Compile code for little endian mode. This is the default"
msgstr "以 32 ä½åŒç²¾åº¦æ•°å­˜å‚¨ã€‚这是默认值。"
@@ -12284,31 +11923,26 @@ msgstr ""
#: config/arc/arc.opt:80
#, fuzzy
-#| msgid "Generate string instructions for block moves"
msgid "Generate instructions supported by barrel shifter"
msgstr "为å—移动使用字符串指令"
#: config/arc/arc.opt:84
#, fuzzy
-#| msgid "Generate bit instructions"
msgid "Generate norm instruction"
msgstr "生æˆä½æŒ‡ä»¤"
#: config/arc/arc.opt:88
#, fuzzy
-#| msgid "Generate isel instructions"
msgid "Generate swap instruction"
msgstr "ç”Ÿæˆ isel 指令"
#: config/arc/arc.opt:92
#, fuzzy
-#| msgid "Generate load/store multiple instructions"
msgid "Generate mul64 and mulu64 instructions"
msgstr "生æˆåŠ è½½/存储乘法指令"
#: config/arc/arc.opt:96
#, fuzzy
-#| msgid "Do not generate fused multiply/add instructions"
msgid "Do not generate mpy instructions for ARC700"
msgstr "ä¸ç”Ÿæˆèžåˆçš„乘/加指令"
@@ -12322,13 +11956,11 @@ msgstr ""
#: config/arc/arc.opt:108
#, fuzzy
-#| msgid "Generate call insns as indirect calls, if necessary"
msgid "Generate call insns as register indirect calls"
msgstr "如有必须,为调用指令生æˆé—´æŽ¥è°ƒç”¨"
#: config/arc/arc.opt:112
#, fuzzy
-#| msgid "Generate cld instruction in the function prologue."
msgid "Do no generate BRcc instructions in arc_reorg."
msgstr "在函数åºè¨€ä¸­ç”Ÿæˆ cld 指令"
@@ -12346,7 +11978,6 @@ msgstr ""
#: config/arc/arc.opt:132
#, fuzzy
-#| msgid "Generate bit instructions"
msgid "FPX: Generate Single Precision FPX (fast) instructions."
msgstr "生æˆä½æŒ‡ä»¤"
@@ -12356,13 +11987,11 @@ msgstr ""
#: config/arc/arc.opt:140 config/arc/arc.opt:144
#, fuzzy
-#| msgid "Generate bit instructions"
msgid "FPX: Generate Double Precision FPX (compact) instructions."
msgstr "生æˆä½æŒ‡ä»¤"
#: config/arc/arc.opt:148
#, fuzzy
-#| msgid "Generate bit instructions"
msgid "FPX: Generate Double Precision FPX (fast) instructions."
msgstr "生æˆä½æŒ‡ä»¤"
@@ -12384,7 +12013,6 @@ msgstr ""
#: config/arc/arc.opt:187
#, fuzzy
-#| msgid "Cost to assume for a multiply insn"
msgid "Cost to assume for a multiply instruction, with 4 being equal to a normal insn."
msgstr "为乘法指令设定的开销"
@@ -12406,7 +12034,6 @@ msgstr ""
#: config/arc/arc.opt:215
#, fuzzy
-#| msgid "Enable the use of the short load instructions"
msgid "Enable the use of indexed loads"
msgstr "å¯ç”¨å¯¹çŸ­åŠ è½½æŒ‡ä»¤çš„使用"
@@ -12416,7 +12043,6 @@ msgstr ""
#: config/arc/arc.opt:223
#, fuzzy
-#| msgid "Generate fused multiply/add instructions"
msgid "Generate 32x16 multiply and mac instructions"
msgstr "生æˆèžåˆçš„乘/加指令"
@@ -12434,7 +12060,6 @@ msgstr ""
#: config/arc/arc.opt:241
#, fuzzy
-#| msgid "Avoid all range limits on call instructions"
msgid "Do alignment optimizations for call instructions."
msgstr "为调用指令é¿å…一切范围é™åˆ¶"
@@ -12448,7 +12073,6 @@ msgstr ""
#: config/arc/arc.opt:253
#, fuzzy
-#| msgid "Enable cbranchdi4 pattern"
msgid "Enable pre-reload use of cbranchsi pattern"
msgstr "å¯ç”¨ cbranchdi4 æ ·å¼"
@@ -12462,13 +12086,11 @@ msgstr ""
#: config/arc/arc.opt:265
#, fuzzy
-#| msgid "Enable cbranchdi4 pattern"
msgid "Enable compact casesi pattern"
msgstr "å¯ç”¨ cbranchdi4 æ ·å¼"
#: config/arc/arc.opt:269
#, fuzzy
-#| msgid "Enable clip instructions"
msgid "Enable 'q' instruction alternatives."
msgstr "å¯ç”¨ clip 指令"
@@ -12478,25 +12100,21 @@ msgstr ""
#: config/arc/arc.opt:280
#, fuzzy
-#| msgid "Enable Plan 9 language extensions"
msgid "Enable variable polynomial CRC extension"
msgstr "å¯ç”¨ä¹å·è®¡åˆ’语言扩展"
#: config/arc/arc.opt:284
#, fuzzy
-#| msgid "Enable Plan 9 language extensions"
msgid "Enable DSP 3.1 Pack A extensions"
msgstr "å¯ç”¨ä¹å·è®¡åˆ’语言扩展"
#: config/arc/arc.opt:288
#, fuzzy
-#| msgid "Enable Plan 9 language extensions"
msgid "Enable dual viterbi butterfly extension"
msgstr "å¯ç”¨ä¹å·è®¡åˆ’语言扩展"
#: config/arc/arc.opt:298
#, fuzzy
-#| msgid "Enable leading zero instructions"
msgid "Enable Dual and Single Operand Instructions for Telephony"
msgstr "å¯ç”¨å‰å¯¼é›¶æŒ‡ä»¤"
@@ -12506,19 +12124,16 @@ msgstr ""
#: config/arc/arc.opt:307
#, fuzzy
-#| msgid "Enable dead store elimination"
msgid "Enable Locked Load/Store Conditional extension"
msgstr "删除死存储"
#: config/arc/arc.opt:311
#, fuzzy
-#| msgid "Enable sign extend instructions"
msgid "Enable swap byte ordering extension instruction"
msgstr "å¯ç”¨ç¬¦å·æ‰©å±•æŒ‡ä»¤"
#: config/arc/arc.opt:315
#, fuzzy
-#| msgid "Enable bit manipulation instructions"
msgid "Enable 64-bit Time-Stamp Counter extension instruction"
msgstr "å¯ç”¨ä½æ“作指令"
@@ -12532,19 +12147,16 @@ msgstr ""
#: config/arc/arc.opt:327
#, fuzzy
-#| msgid "Pass -z text to linker"
msgid "Pass -EB option through to linker."
msgstr "将 -z text 传递给链接器"
#: config/arc/arc.opt:331
#, fuzzy
-#| msgid "Pass -z text to linker"
msgid "Pass -EL option through to linker."
msgstr "将 -z text 传递给链接器"
#: config/arc/arc.opt:335
#, fuzzy
-#| msgid "Pass -z text to linker"
msgid "Pass -marclinux option through to linker."
msgstr "将 -z text 传递给链接器"
@@ -12722,7 +12334,6 @@ msgstr "为速度优化,ä¸ä¸¥æ ¼éµå®ˆæ ‡å‡†"
#: common.opt:457
#, fuzzy
-#| msgid "Optimize for space rather than speed"
msgid "Optimize for debugging experience rather than speed or size"
msgstr "为最å°ç©ºé—´è€Œä¸æ˜¯æœ€å¤§é€Ÿåº¦ä¼˜åŒ–"
@@ -12781,7 +12392,6 @@ msgstr "-Wframe-larger-than=<N>\t当一个函数的堆栈框架需è¦å¤šäºŽ N å­
#: common.opt:562
#, fuzzy
-#| msgid "%Kattempt to free a non-heap object"
msgid "Warn when attempting to free a non-heap object"
msgstr "%K试图 free 一个ä¸åœ¨å †ä¸Šçš„对象"
@@ -12870,7 +12480,6 @@ msgstr "自动å˜é‡æœªåˆå§‹åŒ–时警告"
#: common.opt:660
#, fuzzy
-#| msgid "Warn about uninitialized automatic variables"
msgid "Warn about maybe uninitialized automatic variables"
msgstr "自动å˜é‡æœªåˆå§‹åŒ–时警告"
@@ -13007,7 +12616,6 @@ msgstr "比较几个数æ®ä¾èµ–分æžçš„结果。"
#: common.opt:918
#, fuzzy
-#| msgid "Check the return value of new"
msgid "Check the return value of new in C++"
msgstr "检查 new 的返回值"
@@ -13094,7 +12702,6 @@ msgstr "删除无用的空指针检查"
#: common.opt:1012
#, fuzzy
-#| msgid "Perform superblock formation via tail duplication"
msgid "Perform speculative devirtualization"
msgstr "通过尾å¤åˆ¶è¿›è¡Œè¶…å—åˆæˆ"
@@ -13145,7 +12752,6 @@ msgstr "在调试转储中ä¸è¾“出地å€"
#: common.opt:1096
#, fuzzy
-#| msgid "Do the full register move optimization pass"
msgid "Dump optimization passes"
msgstr "进行全寄存器传é€ä¼˜åŒ–"
@@ -13265,7 +12871,6 @@ msgstr "å¯ç”¨ Graphite 身份转æ¢"
#: common.opt:1243
#, fuzzy
-#| msgid "Enable hoisting loads from conditional pointers."
msgid "Enable hoisting adjacent loads to encourage generating conditional move"
msgstr "为æ¡ä»¶æŒ‡é’ˆå¤–æ内存读å–æ“作。"
@@ -13319,7 +12924,6 @@ msgstr ""
#: common.opt:1303
#, fuzzy, c-format
-#| msgid "unknown TLS model %qs"
msgid "unknown Stack Reuse Level %qs"
msgstr "未知的 TLS 模型%qs"
@@ -13346,19 +12950,16 @@ msgstr ""
#: common.opt:1342
#, fuzzy
-#| msgid "Integrate simple functions into their callers when code size is known to not growth"
msgid "Integrate functions into their callers when code size is known not to grow"
msgstr "在ä¸å¯¼è‡´ä»£ç è†¨èƒ€çš„情况下将简å•å‡½æ•°é›†æˆåˆ°å®ƒä»¬çš„调用者中"
#: common.opt:1346
#, fuzzy
-#| msgid "Integrate functions called once into their callers"
msgid "Integrate functions not declared \"inline\" into their callers when profitable"
msgstr "å°†åªè¢«è°ƒç”¨ä¸€æ¬¡çš„函数集æˆåˆ°å®ƒä»¬çš„调用者中"
#: common.opt:1350
#, fuzzy
-#| msgid "Integrate functions called once into their callers"
msgid "Integrate functions only required by their single caller"
msgstr "å°†åªè¢«è°ƒç”¨ä¸€æ¬¡çš„函数集æˆåˆ°å®ƒä»¬çš„调用者中"
@@ -13384,7 +12985,6 @@ msgstr "-finstrument-functions-exclude-file-list=文件å,... å–样时排除å
#: common.opt:1377
#, fuzzy
-#| msgid "Perform Interprocedural constant propagation"
msgid "Perform interprocedural constant propagation"
msgstr "进行进程间的å¤å†™ä¼ é€’"
@@ -13407,7 +13007,6 @@ msgstr "å‘现纯函数和常函数"
#: common.opt:1397
#, fuzzy
-#| msgid "unimplemented functionality"
msgid "Perform Semantic function equality"
msgstr "未实现的功能"
@@ -13504,7 +13103,6 @@ msgstr "报告å„ç§é“¾æŽ¥æ—¶ä¼˜åŒ–统计"
#: common.opt:1521
#, fuzzy
-#| msgid "Report various link-time optimization statistics"
msgid "Report various link-time optimization statistics for WPA only"
msgstr "报告å„ç§é“¾æŽ¥æ—¶ä¼˜åŒ–统计"
@@ -13522,7 +13120,6 @@ msgstr "报告永久性内存分é…"
#: common.opt:1537
#, fuzzy
-#| msgid "Report on permanent memory allocation"
msgid "Report on permanent memory allocation in WPA only"
msgstr "报告永久性内存分é…"
@@ -13576,7 +13173,6 @@ msgstr "å°½å¯èƒ½ä¸ç”Ÿæˆæ ˆå¸§"
#: common.opt:1592
#, fuzzy
-#| msgid "Enable loop optimizations on tree level"
msgid "Enable all optimization info dumps on stderr"
msgstr "在树级别进行循环优化"
@@ -13690,13 +13286,11 @@ msgstr "为å–样表达å¼çš„值æ’入相关代ç "
#: common.opt:1713
#, fuzzy
-#| msgid "internal consistency failure"
msgid "Report on consistency of profile"
msgstr "内部一致性错误"
#: common.opt:1717
#, fuzzy
-#| msgid "Reorder functions to improve code placement"
msgid "Enable function reordering that improves code placement"
msgstr "函数é‡æ–°æŽ’åºä»¥æ”¹å–„代ç å¸ƒå±€"
@@ -13714,7 +13308,6 @@ msgstr "在寄存器中返回å°èšåˆ"
#: common.opt:1746
#, fuzzy
-#| msgid "Enable register pressure sensitive insn scheduling"
msgid "Relief of register pressure through live range shrinkage"
msgstr "å¯ç”¨å¯¹å¯„存器压力æ•æ„Ÿçš„指令调度"
@@ -13909,7 +13502,6 @@ msgstr "为æ¯ä¸ªå‡½æ•°ä½¿ç”¨å †æ ˆä¿æŠ¤æœºåˆ¶"
#: common.opt:1967
#, fuzzy
-#| msgid "Use a stack protection method for every function"
msgid "Use a smart stack protection method for certain functions"
msgstr "为æ¯ä¸ªå‡½æ•°ä½¿ç”¨å †æ ˆä¿æŠ¤æœºåˆ¶"
@@ -13986,7 +13578,6 @@ msgstr "å¯ç”¨æ ‘上的循环ä¸å˜é‡è½¬ç§»"
#: common.opt:2065
#, fuzzy
-#| msgid "Perform variable tracking and also tag variables that are uninitialized"
msgid "Enable coalescing of copy-related user variables that are inlined"
msgstr "进行å˜é‡è¿½è¸ªå¹¶ä¸”标记未被åˆå§‹åŒ–çš„å˜é‡"
@@ -14020,7 +13611,6 @@ msgstr "å¯ç”¨ä¸»å¯¼ä¼˜åŒ–"
#: common.opt:2101
#, fuzzy
-#| msgid "Enable loop header copying on trees"
msgid "Enable tail merging on trees"
msgstr "å¯ç”¨æ ‘上的循环ä¸å˜é‡è½¬ç§»"
@@ -14038,13 +13628,11 @@ msgstr "å¯ç”¨æ ‘上的完全冗余消除(FRE)"
#: common.opt:2117
#, fuzzy
-#| msgid "Enable SSA-CCP optimization on trees"
msgid "Enable string length optimizations on trees"
msgstr "å¯ç”¨æ ‘上的 SSA-CCP 优化"
#: common.opt:2121
#, fuzzy
-#| msgid "comparison with string literal results in unspecified behaviour"
msgid "Detect paths which trigger erroneous or undefined behaviour due to"
msgstr "与字é¢å­—符串比较的结构是ä¸å¯é¢„测的"
@@ -14164,13 +13752,11 @@ msgstr "仅为异常处ç†ç”Ÿæˆå †æ ˆå±•å¼€è¡¨"
#: common.opt:2254
#, fuzzy
-#| msgid "Use the hardware barrel shifter instead of emulation"
msgid "Use the bfd linker instead of the default linker"
msgstr "使用硬件桶型移ä½å™¨ä»£æ›¿ä»¿çœŸ"
#: common.opt:2258
#, fuzzy
-#| msgid "Use the hardware barrel shifter instead of emulation"
msgid "Use the gold linker instead of the default linker"
msgstr "使用硬件桶型移ä½å™¨ä»£æ›¿ä»¿çœŸ"
@@ -14192,7 +13778,6 @@ msgstr "进行å˜é‡è¿½è¸ªå¹¶ä¸”标记未被åˆå§‹åŒ–çš„å˜é‡"
#: common.opt:2296
#, fuzzy
-#| msgid "Enable loop vectorization on trees"
msgid "Enable vectorization on trees"
msgstr "在树上进行循环å‘é‡åŒ–"
@@ -14206,7 +13791,6 @@ msgstr "在树上进行基本å—å‘é‡åŒ–(SLP)"
#: common.opt:2312
#, fuzzy
-#| msgid "Enable use of cost model in vectorization"
msgid "Specifies the cost model for vectorization"
msgstr "å¯ç”¨å‘é‡åŒ–开销模型"
@@ -14216,19 +13800,16 @@ msgstr ""
#: common.opt:2319
#, fuzzy, c-format
-#| msgid "unknown TLS model %qs"
msgid "unknown vectorizer cost model %qs"
msgstr "未知的 TLS 模型%qs"
#: common.opt:2332
#, fuzzy
-#| msgid "Does nothing. Preserved for backward compatibility."
msgid "Enables the dynamic vectorizer cost model. Preserved for backward compatibility."
msgstr "ä¸èµ·ä½œç”¨ã€‚为å‘å‰å…¼å®¹ä¿ç•™çš„选项。"
#: common.opt:2336
#, fuzzy
-#| msgid "Does nothing. Preserved for backward compatibility."
msgid "Enables the unlimited vectorizer cost model. Preserved for backward compatibility."
msgstr "ä¸èµ·ä½œç”¨ã€‚为å‘å‰å…¼å®¹ä¿ç•™çš„选项。"
@@ -14255,7 +13836,6 @@ msgstr ""
#: common.opt:2380
#, fuzzy, c-format
-#| msgid "(near initialization for %qs)"
msgid "unknown vtable verify initialization priority %qs"
msgstr "(在%qsçš„åˆå§‹åŒ–附近)"
@@ -14301,7 +13881,6 @@ msgstr "ç”Ÿæˆ COFF æ ¼å¼çš„调试信æ¯"
#: common.opt:2433
#, fuzzy
-#| msgid "Generate debug information in default format"
msgid "Generate debug information in default version of DWARF format"
msgstr "生æˆé»˜è®¤æ ¼å¼çš„调试信æ¯"
@@ -14327,25 +13906,21 @@ msgstr ""
#: common.opt:2457
#, fuzzy
-#| msgid "Record gcc command line switches in the object file."
msgid "Don't record gcc command line switches in DWARF DW_AT_producer."
msgstr "在目标文件中记录 gcc 命令行开关。"
#: common.opt:2461
#, fuzzy
-#| msgid "Record gcc command line switches in the object file."
msgid "Record gcc command line switches in DWARF DW_AT_producer."
msgstr "在目标文件中记录 gcc 命令行开关。"
#: common.opt:2465
#, fuzzy
-#| msgid "Generate debug information in default format"
msgid "Don't generate debug information in separate .dwo files"
msgstr "生æˆé»˜è®¤æ ¼å¼çš„调试信æ¯"
#: common.opt:2469
#, fuzzy
-#| msgid "Generate debug information in default format"
msgid "Generate debug information in separate .dwo files"
msgstr "生æˆé»˜è®¤æ ¼å¼çš„调试信æ¯"
@@ -14387,7 +13962,6 @@ msgstr "-iplugindir=<目录>\t将目录设定为默认的æ’件å­ç›®å½•"
#: common.opt:2512
#, fuzzy
-#| msgid "-imultilib <dir>\tSet <dir> to be the multilib include subdirectory"
msgid "-imultiarch <dir>\tSet <dir> to be the multiarch include subdirectory"
msgstr "-imultilib <目录>\t将目录设定为 multilib 的包å«å­ç›®å½•"
@@ -14450,7 +14024,6 @@ msgstr "需è¦æ•°å­—类型"
#: go/gofrontend/expressions.cc:4157
#, fuzzy
-#| msgid "expected integer or boolean type"
msgid "expected boolean type"
msgstr "需è¦æ•´æ•°æˆ–布尔类型"
@@ -14469,7 +14042,6 @@ msgstr "需è¦æŒ‡é’ˆ"
#: go/gofrontend/expressions.cc:5925
#, fuzzy
-#| msgid "invalid comparison code in gimple cond"
msgid "invalid comparison of nil with nil"
msgstr "gimple æ¡ä»¶ä¸­æ¯”较代ç æ— æ•ˆ"
@@ -14480,7 +14052,6 @@ msgstr "二元表达å¼ä¸­ç±»åž‹ä¸åŒ¹é…"
#: go/gofrontend/expressions.cc:5969
#, fuzzy
-#| msgid "division by zero"
msgid "integer division by zero"
msgstr "被零除"
@@ -14508,13 +14079,11 @@ msgstr "方法类型ä¸åŒ¹é…对象类型"
#: go/gofrontend/expressions.cc:7156
#, fuzzy
-#| msgid "invalid argument to built-in function"
msgid "invalid use of %<...%> with builtin function"
msgstr "内建函数实å‚无效"
#: go/gofrontend/expressions.cc:7167
#, fuzzy
-#| msgid "invalid use of template-name %qE without an argument list"
msgid "invalid use of method value as argument of Offsetof"
msgstr "使用模æ¿å%qEæ—¶ä¸å¸¦å®žå‚表无效"
@@ -14540,7 +14109,6 @@ msgstr "实å‚太多"
#: go/gofrontend/expressions.cc:7271
#, fuzzy
-#| msgid "argument must be a constant"
msgid "argument 1 must be a map"
msgstr "实å‚必须是常数"
@@ -14551,7 +14119,6 @@ msgstr "函数%q+#D的抽象返回类型无效"
#: go/gofrontend/expressions.cc:7384
#, fuzzy
-#| msgid "bad length when making slice"
msgid "length required when allocating a slice"
msgstr "生æˆåˆ‡ç‰‡æ—¶é•¿åº¦é”™è¯¯"
@@ -14561,7 +14128,6 @@ msgstr ""
#: go/gofrontend/expressions.cc:7435
#, fuzzy
-#| msgid "too many arguments to %qE"
msgid "too many arguments to make"
msgstr "%qE实å‚太多"
@@ -14603,19 +14169,16 @@ msgstr "元素类型必须一样"
#: go/gofrontend/expressions.cc:8317
#, fuzzy
-#| msgid "left argument must be a slice"
msgid "first argument must be []byte"
msgstr "左实å‚必须是一个切片"
#: go/gofrontend/expressions.cc:8320
#, fuzzy
-#| msgid "right argument must be a slice or a string"
msgid "second argument must be slice or string"
msgstr "å³å®žå‚必须是一个切片或字符串"
#: go/gofrontend/expressions.cc:8361
#, fuzzy
-#| msgid "parameter %u has void type"
msgid "argument 2 has invalid type"
msgstr "第 %u 个å‚数类型为 void"
@@ -14638,7 +14201,6 @@ msgstr "需è¦å‡½æ•°"
#: go/gofrontend/expressions.cc:9332
#, fuzzy
-#| msgid "invalid use of %<this%> at top level"
msgid "invalid use of %<...%> with non-slice"
msgstr "在文件作用域使用%<this%>无效"
@@ -14648,7 +14210,6 @@ msgstr "接收器类型ä¸å…¼å®¹"
#: go/gofrontend/expressions.cc:9623
#, fuzzy
-#| msgid "invalid use of %<this%> in non-member function"
msgid "invalid use of %<...%> calling non-variadic function"
msgstr "在éžæˆå‘˜å‡½æ•°ä¸­ä½¿ç”¨%<this%>无效"
@@ -14666,7 +14227,6 @@ msgstr "切片结尾必须是整数"
#: go/gofrontend/expressions.cc:10474
#, fuzzy
-#| msgid "slice end must be integer"
msgid "slice capacity must be integer"
msgstr "切片结尾必须是整数"
@@ -14741,7 +14301,6 @@ msgstr "需è¦è¡Œå°¾"
#: go/gofrontend/statements.cc:2654 go/gofrontend/statements.cc:2683
#, fuzzy
-#| msgid "not enough arguments"
msgid "not enough arguments to return"
msgstr "实å‚太少"
@@ -14783,49 +14342,41 @@ msgstr "å³å®žå‚必须是一个切片或字符串"
#: go/gofrontend/types.cc:514
#, fuzzy
-#| msgid "invalid comparison code in gimple cond"
msgid "invalid comparison of non-ordered type"
msgstr "gimple æ¡ä»¶ä¸­æ¯”较代ç æ— æ•ˆ"
#: go/gofrontend/types.cc:530
#, fuzzy
-#| msgid "duplicate class will only be compiled once"
msgid "slice can only be compared to nil"
msgstr "é‡å¤çš„ç±»åªä¼šè¢«ç¼–译一次"
#: go/gofrontend/types.cc:532
#, fuzzy
-#| msgid "duplicate class will only be compiled once"
msgid "map can only be compared to nil"
msgstr "é‡å¤çš„ç±»åªä¼šè¢«ç¼–译一次"
#: go/gofrontend/types.cc:534
#, fuzzy
-#| msgid "duplicate class will only be compiled once"
msgid "func can only be compared to nil"
msgstr "é‡å¤çš„ç±»åªä¼šè¢«ç¼–译一次"
#: go/gofrontend/types.cc:540
#, fuzzy, c-format
-#| msgid "invalid operand to %%R"
msgid "invalid operation (%s)"
msgstr "%%R çš„æ“作数无效"
#: go/gofrontend/types.cc:563
#, fuzzy
-#| msgid "invalid comparison code in gimple cond"
msgid "invalid comparison of non-comparable type"
msgstr "gimple æ¡ä»¶ä¸­æ¯”较代ç æ— æ•ˆ"
#: go/gofrontend/types.cc:581
#, fuzzy
-#| msgid "invalid comparison code in gimple cond"
msgid "invalid comparison of non-comparable struct"
msgstr "gimple æ¡ä»¶ä¸­æ¯”较代ç æ— æ•ˆ"
#: go/gofrontend/types.cc:592
#, fuzzy
-#| msgid "invalid use of non-lvalue array"
msgid "invalid comparison of non-comparable array"
msgstr "对éžå·¦å€¼æ•°ç»„的使用无效"
@@ -14911,13 +14462,11 @@ msgstr "缺少方法%s%s%s"
#: go/gofrontend/types.cc:7240
#, fuzzy, c-format
-#| msgid "method %s%s%s requires a pointer"
msgid "method %s%s%s requires a pointer receiver"
msgstr "方法%s%s%s需è¦ä¸€ä¸ªæŒ‡é’ˆ"
#: go/gofrontend/types.cc:7258
#, fuzzy, c-format
-#| msgid "method %s%s%s requires a pointer"
msgid "method %s%s%s is marked go:nointerface"
msgstr "方法%s%s%s需è¦ä¸€ä¸ªæŒ‡é’ˆ"
@@ -14930,7 +14479,6 @@ msgstr "%qE属性指定被忽略"
#: attribs.c:450
#, fuzzy, gcc-internal-format
-#| msgid "%qE attribute directive ignored"
msgid "%<%E::%E%> scoped attribute directive ignored"
msgstr "%qE属性指定被忽略"
@@ -14944,7 +14492,6 @@ msgstr "为%qE属性给定的实å‚数目错误"
#. type. Ignore it.
#: attribs.c:472
#, fuzzy, gcc-internal-format
-#| msgid "%qE attribute ignored"
msgid "attribute ignored"
msgstr "%qE属性被忽略"
@@ -15045,7 +14592,6 @@ msgstr ""
#: builtins.c:5248
#, fuzzy, gcc-internal-format
-#| msgid "invalid argument to built-in function"
msgid "invalid memory model argument to builtin"
msgstr "内建函数实å‚无效"
@@ -15066,13 +14612,11 @@ msgstr ""
#: builtins.c:5360
#, fuzzy, gcc-internal-format
-#| msgid "invalid use of %<auto%>"
msgid "invalid memory model for %<__atomic_load%>"
msgstr "错误地使用了%<auto%>"
#: builtins.c:5390 builtins.c:5497
#, fuzzy, gcc-internal-format
-#| msgid "invalid use of %<auto%>"
msgid "invalid memory model for %<__atomic_store%>"
msgstr "错误地使用了%<auto%>"
@@ -15088,13 +14632,11 @@ msgstr ""
#: builtins.c:5709
#, fuzzy, gcc-internal-format
-#| msgid "__builtin_eh_return not supported on this target"
msgid "__builtin_thread_pointer is not supported on this target"
msgstr "__builtin_eh_return 在此目标机上ä¸å—支æŒ"
#: builtins.c:5729
#, fuzzy, gcc-internal-format
-#| msgid "__builtin_eh_return not supported on this target"
msgid "__builtin_set_thread_pointer is not supported on this target"
msgstr "__builtin_eh_return 在此目标机上ä¸å—支æŒ"
@@ -15189,7 +14731,6 @@ msgstr "函数调用有èšåˆç±»åž‹"
#: calls.c:3055
#, fuzzy, gcc-internal-format
-#| msgid "missing argument to %qs"
msgid "passing too large argument on stack"
msgstr "%qs缺少å‚æ•°"
@@ -15335,7 +14876,6 @@ msgstr "verify_flow_info 失败"
#: cfghooks.c:310
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "%s does not support duplicate_block"
msgid "%s does not support dump_bb_for_graph"
msgstr "%s ä¸æ”¯æŒ duplicate_block"
@@ -15406,7 +14946,6 @@ msgstr "%s ä¸æ”¯æŒ make_forwarder_block"
#: cfghooks.c:984
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "%s does not support move_block_after"
msgid "%s does not support force_nonfallthru"
msgstr "%s ä¸æ”¯æŒt move_block_after"
@@ -15447,7 +14986,6 @@ msgstr ""
#: cfgloop.c:1356
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Enable loop header copying on trees"
msgid "loop with header %d not in loop tree"
msgstr "å¯ç”¨æ ‘上的循环ä¸å˜é‡è½¬ç§»"
@@ -15468,13 +15006,11 @@ msgstr "循环 %d 的大å°åº”该为 %d,而ä¸æ˜¯%d"
#: cfgloop.c:1395
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "bb %d do not belong to loop %d"
msgid "bb %d does not belong to loop %d"
msgstr "åŸºæœ¬å— %d ä¸å±žäºŽå¾ªçŽ¯ %d"
#: cfgloop.c:1407
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "size of loop %d should be %d, not %d"
msgid "bb %d has father loop %d, should be loop %d"
msgstr "循环 %d 的大å°åº”该为 %d,而ä¸æ˜¯%d"
@@ -15595,7 +15131,6 @@ msgstr ""
#: cfgrtl.c:2428
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "verify_flow_info: REG_BR_PROB does not match cfg %wi %i"
msgid "verify_flow_info: REG_BR_PROB does not match cfg %i %i"
msgstr "verify_flow_info:REG_BR_PROB ä¸åŒ¹é… cfg %wi %i"
@@ -15606,19 +15141,16 @@ msgstr ""
#: cfgrtl.c:2454
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "fallthru edge crosses section boundary (bb %i)"
msgid "fallthru edge crosses section boundary in bb %i"
msgstr "直通边越过了节分界(åŸºæœ¬å— %i)"
#: cfgrtl.c:2460
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "fallthru edge crosses section boundary (bb %i)"
msgid "EH edge crosses section boundary in bb %i"
msgstr "直通边越过了节分界(åŸºæœ¬å— %i)"
#: cfgrtl.c:2467
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "fallthru edge crosses section boundary (bb %i)"
msgid "No region crossing jump at section boundary in bb %i"
msgstr "直通边越过了节分界(åŸºæœ¬å— %i)"
@@ -15634,13 +15166,11 @@ msgstr ""
#: cfgrtl.c:2510
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "missing REG_EH_REGION note in the end of bb %i"
msgid "missing REG_EH_REGION note at the end of bb %i"
msgstr "åŸºæœ¬å— %i 结尾缺少 REG_EH_REGION 记录"
#: cfgrtl.c:2515
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "too many outgoing branch edges from bb %i"
msgid "too many exception handling edges in bb %i"
msgstr "ä»ŽåŸºæœ¬å— %i 分出太多的分支边"
@@ -15651,31 +15181,26 @@ msgstr "ä»ŽåŸºæœ¬å— %i 分出太多的分支边"
#: cfgrtl.c:2528
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "fallthru edge after unconditional jump %i"
msgid "fallthru edge after unconditional jump in bb %i"
msgstr "éžæ¡ä»¶è·³è½¬ %i 之åŽçš„直通边"
#: cfgrtl.c:2533
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "wrong number of branch edges after unconditional jump %i"
msgid "wrong number of branch edges after unconditional jump in bb %i"
msgstr "éžæ¡ä»¶è·³è½¬ %i 之åŽçš„分支边数ä¸å¯¹"
#: cfgrtl.c:2540
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "wrong amount of branch edges after conditional jump %i"
msgid "wrong amount of branch edges after conditional jump in bb %i"
msgstr "æ¡ä»¶è·³è½¬ %i 之åŽçš„分支边数ä¸å¯¹"
#: cfgrtl.c:2546
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "call edges for non-call insn in bb %i"
msgid "abnormal call edges for non-call insn in bb %i"
msgstr "åœ¨åŸºæœ¬å— %i 中éžè°ƒç”¨æŒ‡ä»¤çš„调用边"
#: cfgrtl.c:2551
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "call edges for non-call insn in bb %i"
msgid "sibcall edges for non-call insn in bb %i"
msgstr "åœ¨åŸºæœ¬å— %i 中éžè°ƒç”¨æŒ‡ä»¤çš„调用边"
@@ -15801,7 +15326,6 @@ msgstr ""
#: cgraph.c:2651
#, fuzzy, gcc-internal-format
-#| msgid "Assume symbols might be invalid"
msgid "local symbols must be defined"
msgstr "å‡å®šç¬¦å·å¯èƒ½æ— æ•ˆ"
@@ -15817,7 +15341,6 @@ msgstr "内è”已被å–地å€çš„克隆"
#: cgraph.c:2666
#, fuzzy, gcc-internal-format
-#| msgid "inline clone is needed"
msgid "inline clone is forced to output"
msgstr "需è¦å†…è”克隆"
@@ -15943,7 +15466,6 @@ msgstr "调用语å¥ç¼ºå°‘ callgraph 边:"
#: cgraph.c:2895
#, fuzzy, gcc-internal-format
-#| msgid "expected statement"
msgid "reference to dead statement"
msgstr "需è¦è¯­å¥"
@@ -15984,7 +15506,6 @@ msgstr "%qE属性被忽略,因为%qT已被定义"
#: cgraphunit.c:774
#, fuzzy, gcc-internal-format
-#| msgid "Warn when an inlined function cannot be inlined"
msgid "always_inline function might not be inlinable"
msgstr "当内è”函数无法被内è”时给出警告"
@@ -16010,7 +15531,6 @@ msgstr ""
#: cgraphunit.c:1200
#, fuzzy, gcc-internal-format
-#| msgid "%q+D used prior to declaration"
msgid "%q+D aliased declaration"
msgstr "%q+D在声明å‰ä½¿ç”¨"
@@ -16021,7 +15541,6 @@ msgstr "无法收回ä¸éœ€è¦çš„函数"
#: cgraphunit.c:1303
#, fuzzy, gcc-internal-format
-#| msgid "failed to reclaim unneeded function"
msgid "failed to reclaim unneeded function in same comdat group"
msgstr "无法收回ä¸éœ€è¦çš„函数"
@@ -16072,19 +15591,16 @@ msgstr "未知的解修饰风格‘%s’"
#: collect2.c:1567 collect2.c:1750 collect2.c:1790
#, fuzzy, gcc-internal-format
-#| msgid "fopen %s"
msgid "fopen %s: %m"
msgstr "fopen %s"
#: collect2.c:1570 collect2.c:1755 collect2.c:1793
#, fuzzy, gcc-internal-format
-#| msgid "fclose %s"
msgid "fclose %s: %m"
msgstr "fclose %s"
#: collect2.c:1857
#, fuzzy, gcc-internal-format
-#| msgid "can't get program status: %s"
msgid "can't get program status: %m"
msgstr "无法获å–程åºçŠ¶æ€ï¼š%s"
@@ -16130,7 +15646,6 @@ msgstr "找ä¸åˆ° ‘nm’"
#: collect2.c:2546
#, fuzzy, gcc-internal-format
-#| msgid "can't open nm output"
msgid "can't open nm output: %m"
msgstr "无法打开 nm 的输出"
@@ -16151,7 +15666,6 @@ msgstr "找ä¸åˆ°â€˜ldd’"
#: collect2.c:2742
#, fuzzy, gcc-internal-format
-#| msgid "can't open ldd output"
msgid "can't open ldd output: %m"
msgstr "无法打开 ldd 输出"
@@ -16247,7 +15761,6 @@ msgstr "%s 的存储信æ¯å¾ˆè¯¡å¼‚"
#: coverage.c:291
#, fuzzy, gcc-internal-format
-#| msgid "checksum is %x instead of %x"
msgid "checksum is (%x,%x) instead of (%x,%x)"
msgstr "检验和是 %x 而ä¸æ˜¯ %x"
@@ -16273,7 +15786,6 @@ msgstr ""
#: coverage.c:393
#, fuzzy, gcc-internal-format
-#| msgid "execution counts estimated"
msgid "execution counts estimated\n"
msgstr "预计执行次数"
@@ -16374,7 +15886,6 @@ msgstr "忽略未知的选项%q.*s,在%<-fdump-%s%>中"
#: dumpfile.c:862
#, fuzzy, gcc-internal-format
-#| msgid "ignoring unknown option %q.*s in %<-fdump-%s%>"
msgid "unknown option %q.*s in %<-fopt-info-%s%>"
msgstr "忽略未知的选项%q.*s,在%<-fdump-%s%>中"
@@ -16390,7 +15901,6 @@ msgstr "多个 EH 个性需è¦æ±‡ç¼–å™¨æ”¯æŒ .cfi.personality 指示。"
#: dwarf2out.c:11303
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "non-delegitimized UNSPEC %d found in variable location"
msgid "non-delegitimized UNSPEC %s (%d) found in variable location"
msgstr "å˜é‡ä½ç½®å¤„å‘现未被éžæ³•åŒ–çš„ UNSPEC %d"
@@ -16481,7 +15991,6 @@ msgstr "堆栈é™åˆ¶åœ¨æ­¤ç›®æ ‡æœºä¸Šä¸å—支æŒ"
#: expr.c:7657
#, fuzzy, gcc-internal-format
-#| msgid "global register variable %qD used in nested function"
msgid "local frame unavailable (naked function?)"
msgstr "嵌套函数中使用了全局寄存器å˜é‡%qD"
@@ -16853,7 +16362,6 @@ msgstr "比较最终指令转储"
#: gcc.c:7131
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "-fuse-linker-plugin, but "
msgid "-fuse-linker-plugin, but %s not found"
msgstr "使用了 -fuse-linker-plugin,但"
@@ -16944,7 +16452,6 @@ msgstr "%%:compare-debug-auxbase-opt çš„å‚数未以 .gk 结尾"
#: gcc.c:8636
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "too few arguments to function"
msgid "too few arguments to %%:replace-extension"
msgstr "给予函数的实å‚太少"
@@ -17042,13 +16549,11 @@ msgstr ""
#: gimplify.c:5647
#, fuzzy, gcc-internal-format
-#| msgid "%qE not specified in enclosing parallel"
msgid "%qE not specified in enclosing task"
msgstr "%qE未为在括入的并行中指定"
#: gimplify.c:5653
#, fuzzy, gcc-internal-format
-#| msgid "%qE not specified in enclosing parallel"
msgid "%qE not specified in enclosing teams construct"
msgstr "%qE未为在括入的并行中指定"
@@ -17069,7 +16574,6 @@ msgstr "括入并行"
#: gimplify.c:5770 gimplify.c:5799
#, fuzzy, gcc-internal-format
-#| msgid "iteration variable %qE should not be reduction"
msgid "iteration variable %qE is predetermined linear"
msgstr "迭代å˜é‡%qEä¸åº”当是 reduction"
@@ -17090,19 +16594,16 @@ msgstr "迭代å˜é‡%qEä¸åº”当是 reduction"
#: gimplify.c:5793
#, fuzzy, gcc-internal-format
-#| msgid "iteration variable %qE should not be firstprivate"
msgid "iteration variable %qE should not be lastprivate"
msgstr "迭代å˜é‡%qEä¸åº”当是 firstprivate"
#: gimplify.c:5796
#, fuzzy, gcc-internal-format
-#| msgid "iteration variable %qE should be private"
msgid "iteration variable %qE should not be private"
msgstr "迭代å˜é‡%qE应当是ç§æœ‰çš„"
#: gimplify.c:6064
#, fuzzy, gcc-internal-format
-#| msgid "%s variable %qE is private in outer context"
msgid "copyprivate variable %qE is not threadprivate or private in outer context"
msgstr "%s å˜é‡%qE在外层上下文中是ç§æœ‰çš„"
@@ -17113,7 +16614,6 @@ msgstr "%s å˜é‡%qE在外层上下文中是ç§æœ‰çš„"
#: gimplify.c:8063
#, fuzzy, gcc-internal-format
-#| msgid "expected %<}%> before %<else%>"
msgid "expected %<_Cilk_spawn%> before %<_Cilk_sync%>"
msgstr "%<else%>å‰éœ€è¦%<}%>"
@@ -17170,7 +16670,6 @@ msgstr "ä¸èƒ½ä½¿ç”¨ Graphite 循环优化"
#: ipa-devirt.c:302 ipa-devirt.c:337
#, fuzzy, gcc-internal-format
-#| msgid "previous definition here"
msgid "type %qD violates one definition rule "
msgstr "å…ˆå‰çš„定义在这里"
@@ -17212,7 +16711,6 @@ msgstr ""
#: ira.c:5544
#, fuzzy, gcc-internal-format
-#| msgid "as %qD"
msgid "for %qD"
msgstr "作为%qD"
@@ -17238,7 +16736,6 @@ msgstr ""
#: lto-cgraph.c:1083
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "bytecode stream: found multiple instances of cgraph node %d"
msgid "bytecode stream: found multiple instances of cgraph node with uid %d"
msgstr "字节ç æµï¼šæ‰¾åˆ° cgraph 节点 %d 的多个实例"
@@ -17312,19 +16809,16 @@ msgstr ""
#: lto-streamer-in.c:824
#, fuzzy, gcc-internal-format
-#| msgid "operand number out of range"
msgid "Reference statement index out of range"
msgstr "æ“作数å·è¶…出范围"
#: lto-streamer-in.c:827
#, fuzzy, gcc-internal-format
-#| msgid "Warn if deprecated empty statements are found"
msgid "Reference statement index not found"
msgstr "å‘现ä¸å»ºè®®ä½¿ç”¨çš„空语å¥æ—¶ç»™å‡ºè­¦å‘Š"
#: lto-streamer-out.c:393 lto-streamer-out.c:1307
#, fuzzy, gcc-internal-format
-#| msgid "tree code %qs is not supported in gimple streams"
msgid "tree code %qs is not supported in LTO streams"
msgstr "树代ç %qs在 gimple æµä¸­ä¸è¢«æ”¯æŒ"
@@ -17370,13 +16864,11 @@ msgstr ""
#: omp-low.c:2351 omp-low.c:2364
#, fuzzy, gcc-internal-format
-#| msgid "%<#pragma omp section%> may only be used in %<#pragma omp sections%> construct"
msgid "%<#pragma omp cancel sections%> inside %<nowait%> sections construct"
msgstr "%<#pragma omp section%>åªèƒ½ç”¨åœ¨%<#pragma omp sections%>结构中"
#: omp-low.c:2378
#, fuzzy, gcc-internal-format
-#| msgid "invalid PHI argument"
msgid "invalid arguments"
msgstr "无效的 PHI 实å‚"
@@ -17417,7 +16909,6 @@ msgstr "临界区域ä¸å¯ä»¥è¢«åµŒå¥—在åŒå的临界区域内"
#: omp-low.c:2492
#, fuzzy, gcc-internal-format
-#| msgid "master region may not be closely nested inside of work-sharing or explicit task region"
msgid "teams construct not closely nested inside of target region"
msgstr "主è¦åŒºåŸŸä¸å¯ä»¥ç´§å¯†åµŒå¥—在工作共享或显å¼çš„任务区域内"
@@ -17438,13 +16929,11 @@ msgstr "OpenMP 结构å—å…¥å£æ— æ•ˆ"
#: omp-low.c:10275
#, fuzzy, gcc-internal-format
-#| msgid "invalid entry to OpenMP structured block"
msgid "invalid entry to Cilk Plus structured block"
msgstr "OpenMP 结构å—å…¥å£æ— æ•ˆ"
#: omp-low.c:10283
#, fuzzy, gcc-internal-format
-#| msgid "invalid branch to/from an OpenMP structured block"
msgid "invalid branch to/from a Cilk Plus structured block"
msgstr "进出 OpenMP 结构å—的分支无效"
@@ -17455,7 +16944,6 @@ msgstr "进出 OpenMP 结构å—的分支无效"
#: omp-low.c:10761
#, fuzzy, gcc-internal-format
-#| msgid "ignoring duplicate directory \"%s\"\n"
msgid "ignoring large linear step"
msgstr "忽略é‡å¤çš„目录“%sâ€\n"
@@ -17558,7 +17046,6 @@ msgstr "当unit-at-a-time 被ç¦æ­¢æ—¶é¡¶å±‚é‡æ–°æŽ’åºå¿…é¡»ç¦æ­¢ã€‚"
#: opts.c:695
#, fuzzy, gcc-internal-format
-#| msgid "-static-libgfortran is not supported in this configuration"
msgid "transactional memory is not supported with non-call exceptions"
msgstr "-static-libgfortran 在此é…置下ä¸å—支æŒ"
@@ -17705,7 +17192,6 @@ msgstr "无效的å‚æ•°%qs"
#: passes.c:107
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "%s does not support split_edge"
msgid "pass %s does not support cloning"
msgstr "%s ä¸æ”¯æŒ split_edge"
@@ -17721,13 +17207,11 @@ msgstr "无法识别的选项‘-%s’"
#: passes.c:999
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "unknown field %qE specified in initializer"
msgid "unknown pass %s specified in -fenable"
msgstr "åˆå§‹å€¼è®¾å®šé¡¹é‡Œæœ‰æœªçŸ¥çš„字段%qE"
#: passes.c:1001
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "unknown field %qE specified in initializer"
msgid "unknown pass %s specified in -fdisable"
msgstr "åˆå§‹å€¼è®¾å®šé¡¹é‡Œæœ‰æœªçŸ¥çš„字段%qE"
@@ -17743,19 +17227,16 @@ msgstr ""
#: passes.c:1065 passes.c:1093
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "invalid floating point option: -mfpu=%s"
msgid "Invalid range %s in option %s"
msgstr "无效的浮点选项:-mfpu=%s"
#: passes.c:1111
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "invalid storage class for function %qE"
msgid "enable pass %s for function %s"
msgstr "函数%qE存储类无效"
#: passes.c:1122
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "invalid storage class for function %qE"
msgid "disable pass %s for function %s"
msgstr "函数%qE存储类无效"
@@ -17859,7 +17340,6 @@ msgstr "-iplugindir <目录>选项未被传递给 gcc 驱动程åº"
#: predict.c:2805
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Missing argument list in function '%s' at %C"
msgid "Missing counts for called function %s/%i"
msgstr "函数‘%s’在%C处缺少å‚数列表"
@@ -17967,13 +17447,11 @@ msgstr "全局寄存器å˜é‡å‡ºçŽ°åœ¨å‡½æ•°å®šä¹‰åŽ"
#: reginfo.c:770
#, fuzzy, gcc-internal-format
-#| msgid "register used for two global register variables"
msgid "register of %qD used for multiple global register variables"
msgstr "寄存器用作两个全局寄存器å˜é‡"
#: reginfo.c:773
#, fuzzy, gcc-internal-format
-#| msgid " conflict with %q+D"
msgid "conflicts with %qD"
msgstr " 与%q+D冲çª"
@@ -18199,25 +17677,21 @@ msgstr "%D 在汇编中被引用åŽåˆè¢«é‡å‘½å"
#: symtab.c:736
#, fuzzy, gcc-internal-format
-#| msgid "function returning a function"
msgid "function symbol is not function"
msgstr "函数返回了一个函数"
#: symtab.c:744
#, fuzzy, gcc-internal-format
-#| msgid "array is not addressable"
msgid "variable symbol is not variable"
msgstr "数组ä¸èƒ½è¢«å–指"
#: symtab.c:750
#, fuzzy, gcc-internal-format
-#| msgid "node has wrong clone list"
msgid "node has unknown type"
msgstr "节点的克隆列表ä¸æ­£ç¡®"
#: symtab.c:759
#, fuzzy, gcc-internal-format
-#| msgid "node not found in cgraph_hash"
msgid "node not found in symtab decl hashtable"
msgstr "cgraph_hash 中找ä¸åˆ°èŠ‚点"
@@ -18233,19 +17707,16 @@ msgstr ""
#: symtab.c:790
#, fuzzy, gcc-internal-format
-#| msgid "node not found in cgraph_hash"
msgid "node not found in symtab assembler name hash"
msgstr "cgraph_hash 中找ä¸åˆ°èŠ‚点"
#: symtab.c:797
#, fuzzy, gcc-internal-format
-#| msgid "double linked list of clones corrupted"
msgid "double linked list of assembler names corrupted"
msgstr "åŒå‘克隆链接列表已æŸå"
#: symtab.c:802
#, fuzzy, gcc-internal-format
-#| msgid "node is in clone list but it is not clone"
msgid "node is analyzed byt it is not a definition"
msgstr "节点在克隆列表中,但并ä¸æ˜¯å…‹éš†"
@@ -18256,7 +17727,6 @@ msgstr ""
#: symtab.c:813
#, fuzzy, gcc-internal-format
-#| msgid "node is in clone list but it is not clone"
msgid "node is alias but not definition"
msgstr "节点在克隆列表中,但并ä¸æ˜¯å…‹éš†"
@@ -18272,7 +17742,6 @@ msgstr ""
#: symtab.c:832
#, fuzzy, gcc-internal-format
-#| msgid "Combining units with different profiles is not supported."
msgid "mixing different types of symbol in same comdat groups is not supported"
msgstr "ä¸æ”¯æŒç»„åˆæœ‰ä¸åŒå–æ ·ä¿¡æ¯çš„å•å…ƒã€‚"
@@ -18293,13 +17762,11 @@ msgstr ""
#: symtab.c:885
#, fuzzy, gcc-internal-format
-#| msgid "verify_cgraph_node failed"
msgid "verify_symtab_node failed"
msgstr "verify_cgraph_node 失败"
#: symtab.c:1110
#, fuzzy, gcc-internal-format
-#| msgid "function %q+D redeclared as inline"
msgid "function %q+D part of alias cycle"
msgstr "函数%q+Dé‡å£°æ˜Žä¸ºå†…è”çš„"
@@ -18335,13 +17802,11 @@ msgstr "#pragma GCC target 在此目标机上ä¸å—支æŒ"
#: tlink.c:489
#, fuzzy, gcc-internal-format
-#| msgid "removing .rpo file"
msgid "removing .rpo file: %m"
msgstr "删除 .rpo 文件"
#: tlink.c:491
#, fuzzy, gcc-internal-format
-#| msgid "renaming .rpo file"
msgid "renaming .rpo file: %m"
msgstr "é‡å‘½å .rpo 文件"
@@ -18382,7 +17847,6 @@ msgstr "-frecord-gcc-switches 在此目标机上ä¸å—支æŒ"
#: toplev.c:989
#, fuzzy, gcc-internal-format
-#| msgid "-fstack-usage not supported for this target"
msgid "stack usage computation not supported for this target"
msgstr "-fstack-usage 在此目标机上ä¸å—支æŒ"
@@ -18393,13 +17857,11 @@ msgstr ""
#: toplev.c:1060
#, fuzzy, gcc-internal-format
-#| msgid "stackframe too big: %d bytes"
msgid "stack usage might be %wd bytes"
msgstr "栈帧太大:%d 字节"
#: toplev.c:1063
#, fuzzy, gcc-internal-format
-#| msgid "stackframe too big: %d bytes"
msgid "stack usage is %wd bytes"
msgstr "栈帧太大:%d 字节"
@@ -18495,7 +17957,6 @@ msgstr "-fstack-protector 在此目标机上ä¸å—支æŒ"
#: toplev.c:1559
#, fuzzy, gcc-internal-format
-#| msgid "-fdata-sections not supported for this target"
msgid "-fsanitize=address not supported for this target"
msgstr "-fdata-sections 在此目标机上ä¸å—支æŒ"
@@ -18511,7 +17972,6 @@ msgstr "关闭 %s 时出错:%m"
#: trans-mem.c:614
#, fuzzy, gcc-internal-format
-#| msgid "invalid use of %qD in linkage specification"
msgid "invalid volatile use of %qD inside transaction"
msgstr "指定链接时使用%qD无效"
@@ -18532,7 +17992,6 @@ msgstr ""
#: trans-mem.c:725
#, fuzzy, gcc-internal-format
-#| msgid "indirect function call with a yet undetermined callee"
msgid "unsafe indirect function call within atomic transaction"
msgstr "间接函数调用目标未定义"
@@ -18548,25 +18007,21 @@ msgstr ""
#: trans-mem.c:743
#, fuzzy, gcc-internal-format
-#| msgid "indirect function call with a yet undetermined callee"
msgid "unsafe indirect function call within %<transaction_safe%> function"
msgstr "间接函数调用目标未定义"
#: trans-mem.c:758 trans-mem.c:4721
#, fuzzy, gcc-internal-format
-#| msgid "namespace %qD not allowed in using-declaration"
msgid "asm not allowed in atomic transaction"
msgstr "ä¸å…许在 using 声明中使用命å空间%qD"
#: trans-mem.c:761
#, fuzzy, gcc-internal-format
-#| msgid "attributes are not allowed on a function-definition"
msgid "asm not allowed in %<transaction_safe%> function"
msgstr "函数定义中ä¸å…许有属性"
#: trans-mem.c:772
#, fuzzy, gcc-internal-format
-#| msgid "Place each function into its own section"
msgid "relaxed transaction in atomic transaction"
msgstr "å°†æ¯ä¸ªå‡½æ•°åˆ†åˆ«æ”¾åœ¨å®ƒä»¬å„自的节中"
@@ -18577,7 +18032,6 @@ msgstr ""
#: trans-mem.c:782
#, fuzzy, gcc-internal-format
-#| msgid "pointer to a function used in subtraction"
msgid "outer transaction in transaction"
msgstr "函数指针ä¸èƒ½ç›¸å‡"
@@ -18593,7 +18047,6 @@ msgstr ""
#: trans-mem.c:4348
#, fuzzy, gcc-internal-format
-#| msgid "attributes are not allowed on a function-definition"
msgid "%Kasm not allowed in %<transaction_safe%> function"
msgstr "函数定义中ä¸å…许有属性"
@@ -18684,7 +18137,6 @@ msgstr "éžæ•´ä½“结果的模å¼ç²¾åº¦ä¸åŒ¹é… BIT_FIELD_REF 的字段尺寸"
#: tree-cfg.c:2836
#, fuzzy, gcc-internal-format
-#| msgid "invalid position or size operand to BIT_FIELD_REF"
msgid "position plus size exceeds size of referenced object in BIT_FIELD_REF"
msgstr "BIT_FIELD_REF ä½ç½®æˆ–大å°æ“作数无效"
@@ -18850,31 +18302,26 @@ msgstr "gimple 比较中æ“作数无效"
#: tree-cfg.c:3333
#, fuzzy, gcc-internal-format
-#| msgid "type mismatch in comparison expression"
msgid "mismatching comparison operand types"
msgstr "比较表达å¼ç±»åž‹ä¸åŒ¹é…"
#: tree-cfg.c:3347
#, fuzzy, gcc-internal-format
-#| msgid "function returning a function"
msgid "vector comparison returning a boolean"
msgstr "函数返回了一个函数"
#: tree-cfg.c:3361
#, fuzzy, gcc-internal-format
-#| msgid "invalid operands in gimple comparison"
msgid "non-vector operands in vector comparison"
msgstr "gimple 比较中æ“作数无效"
#: tree-cfg.c:3374
#, fuzzy, gcc-internal-format
-#| msgid "invalid vector permutation constant"
msgid "invalid vector comparison resulting type"
msgstr "无效的å‘é‡ç½®æ¢å¸¸é‡"
#: tree-cfg.c:3381
#, fuzzy, gcc-internal-format
-#| msgid "Warn about comparison of different enum types"
msgid "bogus comparison result type"
msgstr "对ä¸åŒæžšä¸¾ç±»åž‹ä¹‹é—´çš„比较给出警告"
@@ -18950,7 +18397,6 @@ msgstr "对浮点å‘é‡çš„éžå…ƒç´ å¤§å°çš„å‘é‡ç§»ä½"
#: tree-cfg.c:3660 tree-cfg.c:3681
#, fuzzy, gcc-internal-format
-#| msgid "type mismatch in vector shift expression"
msgid "type mismatch in widening vector shift expression"
msgstr "å‘é‡ç§»ä½è¡¨è¾¾å¼ç±»åž‹ä¸åŒ¹é…"
@@ -19001,13 +18447,11 @@ msgstr "æ¡ä»¶è¡¨è¾¾å¼ä¸­ç±»åž‹ä¸åŒ¹é…"
#: tree-cfg.c:3900
#, fuzzy, gcc-internal-format
-#| msgid "type mismatch in vector shift expression"
msgid "type mismatch in vector permute expression"
msgstr "å‘é‡ç§»ä½è¡¨è¾¾å¼ç±»åž‹ä¸åŒ¹é…"
#: tree-cfg.c:3912
#, fuzzy, gcc-internal-format
-#| msgid "expected integer expression"
msgid "vector types expected in vector permute expression"
msgstr "需è¦æ•´æ•°è¡¨è¾¾å¼"
@@ -19018,7 +18462,6 @@ msgstr ""
#: tree-cfg.c:3939
#, fuzzy, gcc-internal-format
-#| msgid "invalid increment expression"
msgid "invalid mask type in vector permute expression"
msgstr "无效的自增语å¥"
@@ -19084,43 +18527,36 @@ msgstr "开关语å¥æ“作数无效"
#: tree-cfg.c:4268
#, fuzzy, gcc-internal-format
-#| msgid "invalid operand to switch statement"
msgid "non-integral type switch statement"
msgstr "开关语å¥æ“作数无效"
#: tree-cfg.c:4276
#, fuzzy, gcc-internal-format
-#| msgid "%<default%> label not within a switch statement"
msgid "invalid default case label in switch statement"
msgstr "%<default%>æ ‡å·æœªå‡ºçŽ°åœ¨ switch 语å¥å†…"
#: tree-cfg.c:4288
#, fuzzy, gcc-internal-format
-#| msgid "case label not within a switch statement"
msgid "invalid case label in switch statement"
msgstr "case æ ‡å·å‡ºçŽ°åœ¨å¼€å…³è¯­å¥å¤–"
#: tree-cfg.c:4295
#, fuzzy, gcc-internal-format
-#| msgid "invalid operand to switch statement"
msgid "invalid case range in switch statement"
msgstr "开关语å¥æ“作数无效"
#: tree-cfg.c:4305
#, fuzzy, gcc-internal-format
-#| msgid "case label not within a switch statement"
msgid "type mismatch for case label in switch statement"
msgstr "case æ ‡å·å‡ºçŽ°åœ¨å¼€å…³è¯­å¥å¤–"
#: tree-cfg.c:4315
#, fuzzy, gcc-internal-format
-#| msgid "case label not within a switch statement"
msgid "type precision mismatch in switch statement"
msgstr "case æ ‡å·å‡ºçŽ°åœ¨å¼€å…³è¯­å¥å¤–"
#: tree-cfg.c:4324
#, fuzzy, gcc-internal-format
-#| msgid "case label not within a switch statement"
msgid "case labels not sorted in switch statement"
msgstr "case æ ‡å·å‡ºçŽ°åœ¨å¼€å…³è¯­å¥å¤–"
@@ -19191,7 +18627,6 @@ msgstr "gimple_bb (phi) 设置为一个错误的基本å—"
#: tree-cfg.c:4816
#, fuzzy, gcc-internal-format
-#| msgid "from this location"
msgid "PHI node with location"
msgstr "从这个地方"
@@ -19327,13 +18762,11 @@ msgstr "忽略声明有 warn_unused_result 属性的函数的返回值"
#: tree-diagnostic.c:203
#, fuzzy, gcc-internal-format
-#| msgid "redefinition of %q+D"
msgid "in definition of macro %qs"
msgstr "%q+Dé‡å®šä¹‰"
#: tree-diagnostic.c:220
#, fuzzy, gcc-internal-format
-#| msgid "%s:%d: in constexpr expansion of %qs"
msgid "in expansion of macro %qs"
msgstr "%s:%d:在%qs的广义常表达å¼æ‰©å±•ä¸­"
@@ -19439,7 +18872,6 @@ msgstr "函数%q+F无法被内è”,因为它使用了与内è”冲çªçš„属性"
#: tree-inline.c:4147
#, fuzzy, gcc-internal-format
-#| msgid "inlining failed in call to %q+F: %s"
msgid "inlining failed in call to always_inline %q+F: %s"
msgstr "调用%q+F时内è”失败:%s"
@@ -19466,7 +18898,6 @@ msgstr "未实现的功能"
#: tree-ssa-loop-niter.c:2632
#, fuzzy, gcc-internal-format
-#| msgid "operation on %qE may be undefined"
msgid "iteration %E invokes undefined behavior"
msgstr "%qE上的è¿ç®—结果å¯èƒ½æ˜¯æœªå®šä¹‰çš„"
@@ -19482,7 +18913,6 @@ msgstr ""
#: tree-ssa-operands.c:1001
#, fuzzy, gcc-internal-format
-#| msgid "invalid operand in return statement"
msgid "virtual def operand missing for stmt"
msgstr "返回语å¥æ“作数无效"
@@ -19503,7 +18933,6 @@ msgstr ""
#: tree-ssa-operands.c:1042
#, fuzzy, gcc-internal-format
-#| msgid "operand number missing after %%-letter"
msgid "use operand missing for stmt"
msgstr "%% å­—æ¯åŽç¼ºå°‘æ“作数å·"
@@ -19529,13 +18958,11 @@ msgstr "此函数中的%qD在使用å‰å¯èƒ½æœªåˆå§‹åŒ–"
#: tree-ssa-uninit.c:238
#, fuzzy, gcc-internal-format
-#| msgid "%qD is used uninitialized in this function"
msgid "%qE is used uninitialized in this function"
msgstr "此函数中的%qD在使用å‰æœªåˆå§‹åŒ–"
#: tree-ssa-uninit.c:243
#, fuzzy, gcc-internal-format
-#| msgid "%qD may be used uninitialized in this function"
msgid "%qE may be used uninitialized in this function"
msgstr "此函数中的%qD在使用å‰å¯èƒ½æœªåˆå§‹åŒ–"
@@ -19676,7 +19103,6 @@ msgstr ""
#: tree-streamer-out.c:510
#, fuzzy, gcc-internal-format
-#| msgid "gimple bytecode streams do not support machine specific builtin functions on this target"
msgid "tree bytecode streams do not support machine specific builtin functions on this target"
msgstr "GIMPLE 字节ç æµåœ¨æ­¤ç›®æ ‡æœºä¸Šä¸æ”¯æŒæœºå™¨ç›¸å…³çš„内建函数"
@@ -19882,37 +19308,31 @@ msgstr "树检查:在 %4$s 中访问有 %3$d 个æ“作数的 omp_clause %2$s ç
#: tree.c:12081
#, fuzzy
-#| msgid "%qD is deprecated (declared at %s:%d): %s"
msgid "%qD is deprecated (declared at %r%s:%d%R): %s"
msgstr "ä¸å»ºè®®ä½¿ç”¨%qD(声明于 %s:%d):%s"
#: tree.c:12085
#, fuzzy
-#| msgid "%qD is deprecated (declared at %s:%d)"
msgid "%qD is deprecated (declared at %r%s:%d%R)"
msgstr "ä¸å»ºè®®ä½¿ç”¨%qD(声明于 %s:%d)"
#: tree.c:12110
#, fuzzy
-#| msgid "%qE is deprecated (declared at %s:%d): %s"
msgid "%qE is deprecated (declared at %r%s:%d%R): %s"
msgstr "ä¸å»ºè®®ä½¿ç”¨%qE(声明于 %s:%d):%s"
#: tree.c:12114
#, fuzzy
-#| msgid "%qE is deprecated (declared at %s:%d)"
msgid "%qE is deprecated (declared at %r%s:%d%R)"
msgstr "ä¸å»ºè®®ä½¿ç”¨%qE(声明于 %s:%d)"
#: tree.c:12121
#, fuzzy
-#| msgid "type is deprecated (declared at %s:%d): %s"
msgid "type is deprecated (declared at %r%s:%d%R): %s"
msgstr "ä¸å»ºè®®ä½¿ç”¨ç±»åž‹(声明于 %s:%d):%s"
#: tree.c:12125
#, fuzzy
-#| msgid "type is deprecated (declared at %s:%d)"
msgid "type is deprecated (declared at %r%s:%d%R)"
msgstr "ä¸å»ºè®®ä½¿ç”¨ç±»åž‹(声明于 %s:%d)"
@@ -19968,13 +19388,11 @@ msgstr "å˜é‡è·Ÿè¸ªå¤§å°è¶Šé™"
#: varasm.c:319
#, fuzzy, gcc-internal-format
-#| msgid "%+D causes a section type conflict"
msgid "%+D causes a section type conflict with %D"
msgstr "%+D 导致一个节类型冲çª"
#: varasm.c:322
#, fuzzy, gcc-internal-format
-#| msgid " conflict with %q+D"
msgid "section type conflict with %D"
msgstr " 与%q+D冲çª"
@@ -19985,13 +19403,11 @@ msgstr "%+D 导致一个节类型冲çª"
#: varasm.c:329
#, fuzzy, gcc-internal-format
-#| msgid "%+D causes a section type conflict"
msgid "section type conflict"
msgstr "%+D 导致一个节类型冲çª"
#: varasm.c:977
#, fuzzy, gcc-internal-format
-#| msgid "alignment of %q+D is greater than maximum object file alignment. Using %d"
msgid "alignment of %q+D is greater than maximum object file alignment %d"
msgstr "%q+D的对é½è¦æ±‚大于目标文件的最大对é½è¾¹ç•Œã€‚使用 %d"
@@ -20012,13 +19428,11 @@ msgstr "为%q+D指定的寄存器ä¸é€‚åˆæ­¤æ•°æ®ç±»åž‹"
#: varasm.c:1295
#, fuzzy, gcc-internal-format
-#| msgid "register specified for %q+D isn%'t suitable for data type"
msgid "the register specified for %q+D cannot be accessed by the current target"
msgstr "为%q+D指定的寄存器ä¸é€‚åˆæ­¤æ•°æ®ç±»åž‹"
#: varasm.c:1298
#, fuzzy, gcc-internal-format
-#| msgid "register used for two global register variables"
msgid "the register specified for %q+D is not general enough to be used as a register variable"
msgstr "寄存器用作两个全局寄存器å˜é‡"
@@ -20094,7 +19508,6 @@ msgstr "弱引用在此é…置下ä¸å—支æŒ"
#: varasm.c:5600
#, fuzzy, gcc-internal-format
-#| msgid "nested functions not supported on this target"
msgid "ifunc is not supported on this target"
msgstr "嵌套函数在此目标机上ä¸å—支æŒ"
@@ -20141,20 +19554,17 @@ msgstr "字节ç æµï¼šæ ‡è®° %s ä¸åœ¨é¢„期的范围[%s,%s]内"
#: c-family/array-notation-common.c:70
#, fuzzy, gcc-internal-format
-#| msgid "case label is not an integer constant expression"
msgid "__sec_implicit_index parameter must be an integer constant expression"
msgstr "case æ ‡å·ä¸æ˜¯ä¸€ä¸ªæ•´æ•°å¸¸é‡è¡¨è¾¾å¼"
#: c-family/array-notation-common.c:106
#, fuzzy, gcc-internal-format
-#| msgid "type mismatch in shift expression"
msgid "length mismatch in expression"
msgstr "移ä½è¡¨è¾¾å¼ç±»åž‹ä¸åŒ¹é…"
#: c-family/array-notation-common.c:278 c-family/array-notation-common.c:306
#: c/c-array-notation.c:721 cp/cp-array-notation.c:610
#, fuzzy, gcc-internal-format
-#| msgid "comparison between %qT and %qT"
msgid "rank mismatch between %qE and %qE"
msgstr "在%qT和%qT间比较"
@@ -20166,7 +19576,6 @@ msgstr "在%qT和%qT间比较"
#. may lie in the original expression.
#: c-family/array-notation-common.c:287
#, fuzzy, gcc-internal-format
-#| msgid "type mismatch in shift expression"
msgid "rank mismatch in expression %qE"
msgstr "移ä½è¡¨è¾¾å¼ç±»åž‹ä¸åŒ¹é…"
@@ -20177,19 +19586,16 @@ msgstr ""
#: c-family/c-cilkplus.c:39
#, fuzzy, gcc-internal-format
-#| msgid "iteration variable %qE should be private"
msgid "iteration variable cannot be volatile"
msgstr "迭代å˜é‡%qE应当是ç§æœ‰çš„"
#: c-family/c-cilkplus.c:82
#, fuzzy, gcc-internal-format
-#| msgid "%qE appears more than once in data clauses"
msgid "variable appears in more than one clause"
msgstr "%qE在数æ®å­å¥ä¸­å¤šæ¬¡å‡ºçŽ°"
#: c-family/c-cilkplus.c:84
#, fuzzy, gcc-internal-format
-#| msgid "struct defined here"
msgid "other clause defined here"
msgstr "结构在此定义"
@@ -20400,13 +19806,11 @@ msgstr "使用 -flax-vector-conversions 以å…许元素类型或数é‡ä¸åŒçš„å
#: c-family/c-common.c:2333
#, fuzzy, gcc-internal-format
-#| msgid "the last argument must be an 8-bit immediate"
msgid "__builtin_shuffle last argument must be an integer vector"
msgstr "最åŽä¸€ä¸ªå®žå‚必须是一个 8 ä½ç«‹å³æ•°"
#: c-family/c-common.c:2342
#, fuzzy, gcc-internal-format
-#| msgid "%<__builtin_longjmp%> second argument must be 1"
msgid "__builtin_shuffle arguments must be vectors"
msgstr "%<__builtin_longjmp%>的第二个实å‚必须是 1"
@@ -20557,13 +19961,11 @@ msgstr "%<sizeof%>ä¸èƒ½ç”¨äºŽå‡½æ•°ç±»åž‹"
#: c-family/c-common.c:4958
#, fuzzy, gcc-internal-format
-#| msgid "ISO C++ does not allow %<alignof%> with a non-type"
msgid "ISO C++ does not permit %<alignof%> applied to a function type"
msgstr "ISO C++ ä¸å…许对éžç±»åž‹ä½¿ç”¨%<alignof%>"
#: c-family/c-common.c:4961
#, fuzzy, gcc-internal-format
-#| msgid "ISO C++ does not allow %<alignof%> with a non-type"
msgid "ISO C does not permit %<_Alignof%> applied to a function type"
msgstr "ISO C++ ä¸å…许对éžç±»åž‹ä½¿ç”¨%<alignof%>"
@@ -20574,13 +19976,11 @@ msgstr "%qsä¸èƒ½ç”¨äºŽ void 类型"
#: c-family/c-common.c:4981
#, fuzzy, gcc-internal-format
-#| msgid "invalid application of %qs to incomplete type %qT "
msgid "invalid application of %qs to incomplete type %qT"
msgstr "%qsä¸èƒ½ç”¨äºŽä¸å®Œå…¨çš„类型%qT"
#: c-family/c-common.c:4989
#, fuzzy, gcc-internal-format
-#| msgid "invalid application of %qs to incomplete type %qT "
msgid "invalid application of %qs to array type %qT of incomplete element type"
msgstr "%qsä¸èƒ½ç”¨äºŽä¸å®Œå…¨çš„类型%qT"
@@ -20787,13 +20187,11 @@ msgstr "此目标机ä¸æ”¯æŒèŠ‚属性"
#: c-family/c-common.c:7417
#, fuzzy, gcc-internal-format
-#| msgid "requested alignment is not a constant"
msgid "requested alignment is not an integer constant"
msgstr "è¦æ±‚的对é½è¾¹ç•Œä¸æ˜¯å¸¸é‡"
#: c-family/c-common.c:7425
#, fuzzy, gcc-internal-format
-#| msgid "requested alignment is not a power of 2"
msgid "requested alignment is not a positive power of 2"
msgstr "è¦æ±‚的对é½è¾¹ç•Œä¸æ˜¯ 2 çš„æŸæ¬¡æ–¹"
@@ -20804,7 +20202,6 @@ msgstr "è¦æ±‚的对é½è¾¹ç•Œå¤ªå¤§"
#: c-family/c-common.c:7513
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "requested alignment is too large"
msgid "requested alignment %d is larger than %d"
msgstr "è¦æ±‚的对é½è¾¹ç•Œå¤ªå¤§"
@@ -20921,37 +20318,31 @@ msgstr "定义之åŽä¸èƒ½è®¾å®š%qE属性"
#: c-family/c-common.c:8190
#, fuzzy, gcc-internal-format
-#| msgid "%qE attribute ignored"
msgid "%qE attribute duplicated"
msgstr "%qE属性被忽略"
#: c-family/c-common.c:8192
#, fuzzy, gcc-internal-format
-#| msgid "%qE attribute ignored for %qE"
msgid "%qE attribute follows %qE"
msgstr "%qE属性为%qE所忽略"
#: c-family/c-common.c:8291
#, fuzzy, gcc-internal-format
-#| msgid "previously declared here"
msgid "type was previously declared %qE"
msgstr "以å‰åœ¨æ­¤å£°æ˜Žè¿‡"
#: c-family/c-common.c:8344
#, fuzzy, gcc-internal-format
-#| msgid "cleanup argument not an identifier"
msgid "%qE argument not an identifier"
msgstr "cleanup 实å‚ä¸æ˜¯ä¸€ä¸ªæ ‡è¯†ç¬¦"
#: c-family/c-common.c:8355
#, fuzzy, gcc-internal-format
-#| msgid "%qD is not declared in %qD"
msgid "%qD is not compatible with %qD"
msgstr "%qD未在%qD中声明"
#: c-family/c-common.c:8358
#, fuzzy, gcc-internal-format
-#| msgid "cleanup argument not a function"
msgid "transaction_wrap argument is not a function"
msgstr "cleanup 实å‚ä¸æ˜¯ä¸€ä¸ªå‡½æ•°"
@@ -21095,7 +20486,6 @@ msgstr "给予函数%2$qEçš„å‚æ•°%1$uä¸æ˜¯æ•´åž‹å¸¸é‡"
#: c-family/c-common.c:9343
#, fuzzy, gcc-internal-format
-#| msgid "non-const integer argument %u in call to function %qE"
msgid "non-integer argument 3 in call to function %qE"
msgstr "给予函数%2$qEçš„å‚æ•°%1$uä¸æ˜¯æ•´åž‹å¸¸é‡"
@@ -21316,7 +20706,6 @@ msgstr "%<->%>å‚数类型无效(有%qT)"
#: c-family/c-common.c:9932
#, fuzzy, gcc-internal-format
-#| msgid "invalid type argument of %<->%> (have %qT)"
msgid "invalid type argument of %<->*%> (have %qT)"
msgstr "%<->%>å‚数类型无效(有%qT)"
@@ -21342,49 +20731,41 @@ msgstr "%2$qE的第 %1$d 个实å‚类型ä¸å…¼å®¹"
#: c-family/c-common.c:10277
#, fuzzy, gcc-internal-format
-#| msgid "not enough arguments to function %qE"
msgid "incorrect number of arguments to function %qE"
msgstr "æ供给函数%qE的实å‚太少"
#: c-family/c-common.c:10285
#, fuzzy, gcc-internal-format
-#| msgid "argument %d of %qE must be an address"
msgid "argument 1 of %qE must be a non-void pointer type"
msgstr "%2$qEçš„å®žå‚ %1$d 必须是地å€"
#: c-family/c-common.c:10294
#, fuzzy, gcc-internal-format
-#| msgid "%Kfirst argument of %D must be a pointer, second integer constant"
msgid "argument 1 of %qE must be a pointer to a constant size type"
msgstr "%K%D 的第一个实å‚必须是一个指针,第二个必须是整常é‡"
#: c-family/c-common.c:10305
#, fuzzy, gcc-internal-format
-#| msgid "%Kfirst argument of %D must be a pointer, second integer constant"
msgid "argument 1 of %qE must be a pointer to a nonzero size object"
msgstr "%K%D 的第一个实å‚必须是一个指针,第二个必须是整常é‡"
#: c-family/c-common.c:10320
#, fuzzy, gcc-internal-format
-#| msgid "argument %d of %qE must be an address"
msgid "argument %d of %qE must be a pointer type"
msgstr "%2$qEçš„å®žå‚ %1$d 必须是地å€"
#: c-family/c-common.c:10327
#, fuzzy, gcc-internal-format
-#| msgid "Type/rank mismatch in argument '%s' at %L"
msgid "size mismatch in argument %d of %qE"
msgstr "%2$L处实å‚‘%1$s’类型/秩ä¸åŒ¹é…"
#: c-family/c-common.c:10343
#, fuzzy, gcc-internal-format
-#| msgid "incompatible type for argument %d of %qE"
msgid "invalid memory model argument %d of %qE"
msgstr "%2$qE的第 %1$d 个实å‚类型ä¸å…¼å®¹"
#: c-family/c-common.c:10350
#, fuzzy, gcc-internal-format
-#| msgid "incompatible type for argument %d of %qE"
msgid "non-integer memory model argument %d of %qE"
msgstr "%2$qE的第 %1$d 个实å‚类型ä¸å…¼å®¹"
@@ -21520,7 +20901,6 @@ msgstr "比较无符å·æ•°å’Œå–ååŽåˆç»æå‡çš„无符å·æ•°"
#: c-family/c-common.c:11454
#, fuzzy, gcc-internal-format
-#| msgid "%q+D defined but not used"
msgid "typedef %qD locally defined but not used"
msgstr "%q+D定义åŽæœªä½¿ç”¨"
@@ -21532,7 +20912,6 @@ msgstr "索引值越界"
#: c-family/c-common.c:11733 c-family/c-common.c:11783
#: c-family/c-common.c:11798 cp/call.c:4493 cp/call.c:4500
#, fuzzy, gcc-internal-format
-#| msgid "conversion from %qT to %qT is ambiguous"
msgid "conversion of scalar %qT to vector %qT involves truncation"
msgstr "从%qT到%qT的转æ¢æœ‰æ­§ä¹‰"
@@ -22020,7 +21399,6 @@ msgstr "无效的自增语å¥"
#: c-family/c-omp.c:976
#, fuzzy, gcc-internal-format
-#| msgid "%qE is not a function name"
msgid "%qD is not an function argument"
msgstr "%qEä¸æ˜¯ä¸€ä¸ªå‡½æ•°å"
@@ -22091,7 +21469,6 @@ msgstr "-Wformat-security 未与 -Wformat 一起使用,已忽略"
#: c-family/c-opts.c:924
#, fuzzy, gcc-internal-format
-#| msgid "nested functions not supported on this target"
msgid "external TLS initialization functions not supported on this target"
msgstr "嵌套函数在此目标机上ä¸å—支æŒ"
@@ -22502,19 +21879,16 @@ msgstr "ä¸èƒ½å¯¹è¯¥ç±»åž‹çš„实å‚求ç»å¯¹å€¼"
#: c-family/cilk.c:93 cp/parser.c:5784
#, fuzzy, gcc-internal-format
-#| msgid "%<friend%> can only be specified inside a class"
msgid "%<_Cilk_spawn%> may only be used inside a function"
msgstr "%<friend%>åªèƒ½åœ¨ç±»ä¸­æŒ‡å®š"
#: c-family/cilk.c:107
#, fuzzy, gcc-internal-format
-#| msgid "virtual functions cannot be friends"
msgid "only function calls can be spawned"
msgstr "虚函数ä¸èƒ½æ˜¯å‹å…ƒ"
#: c-family/cilk.c:356
#, fuzzy, gcc-internal-format
-#| msgid "address of explicit register variable %qD requested"
msgid "explicit register variable %qD may not be modified in spawn"
msgstr "è¦æ±‚显å¼å¯„存器å˜é‡%qD的地å€ã€‚"
@@ -22525,7 +21899,6 @@ msgstr ""
#: c-family/cilk.c:436
#, fuzzy, gcc-internal-format
-#| msgid "invalid use of %qD in linkage specification"
msgid "invalid use of label %q+D in %<_Cilk_spawn%>"
msgstr "指定链接时使用%qD无效"
@@ -22551,7 +21924,6 @@ msgstr "-mtls-size 开关的值%qsä¸æ­£ç¡®"
#: common/config/arc/arc-common.c:80
#, fuzzy, gcc-internal-format
-#| msgid "multiple function type attributes specified"
msgid "multiple -mcpu= options specified."
msgstr "指定了多个函数类型属性"
@@ -22572,43 +21944,36 @@ msgstr "-mcpu=%s 芯片版本ä¸æ­£ç¡®"
#: common/config/i386/i386-common.c:764
#, fuzzy, gcc-internal-format
-#| msgid "%salign-loops%s is obsolete, use -falign-loops%s"
msgid "-malign-loops is obsolete, use -falign-loops"
msgstr "%salign-loops%s å·²ç»è¿‡æ—¶ï¼Œè¯·ä½¿ç”¨ -falign-loops%s"
#: common/config/i386/i386-common.c:766
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "%salign-loops=%d%s is not between 0 and %d"
msgid "-malign-loops=%d is not between 0 and %d"
msgstr "%salign-loops=%d%s ä¸åœ¨ 0 å’Œ %d 之间"
#: common/config/i386/i386-common.c:773
#, fuzzy, gcc-internal-format
-#| msgid "%salign-jumps%s is obsolete, use -falign-jumps%s"
msgid "-malign-jumps is obsolete, use -falign-jumps"
msgstr "%salign-jumps%s å·²ç»è¿‡æ—¶ï¼Œè¯·ä½¿ç”¨ -falign-jumps%s"
#: common/config/i386/i386-common.c:775
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "%salign-loops=%d%s is not between 0 and %d"
msgid "-malign-jumps=%d is not between 0 and %d"
msgstr "%salign-loops=%d%s ä¸åœ¨ 0 å’Œ %d 之间"
#: common/config/i386/i386-common.c:783
#, fuzzy, gcc-internal-format
-#| msgid "%salign-functions%s is obsolete, use -falign-functions%s"
msgid "-malign-functions is obsolete, use -falign-functions"
msgstr "%salign-functions%s 已过时,请使用 -falign-functions%s"
#: common/config/i386/i386-common.c:785
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "%salign-loops=%d%s is not between 0 and %d"
msgid "-malign-functions=%d is not between 0 and %d"
msgstr "%salign-loops=%d%s ä¸åœ¨ 0 å’Œ %d 之间"
#: common/config/i386/i386-common.c:794
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "%sbranch-cost=%d%s is not between 0 and 5"
msgid "-mbranch-cost=%d is not between 0 and 5"
msgstr "%sbranch-cost=%d%sä¸åœ¨ 0 å’Œ 5 之间"
@@ -22664,7 +22029,6 @@ msgstr "RX200 CPU 没有 FPU 硬件"
#: common/config/rx/rx-common.c:63
#, fuzzy, gcc-internal-format
-#| msgid "the RX200 cpu does not have FPU hardware"
msgid "the RX100 cpu does not have FPU hardware"
msgstr "RX200 CPU 没有 FPU 硬件"
@@ -22680,7 +22044,6 @@ msgstr "栈大å°å¿…须刚好是 2 çš„æŸæ¬¡æ–¹"
#: common/config/v850/v850-common.c:47
#, fuzzy, gcc-internal-format
-#| msgid "value passed to %<-m%s%> is too large"
msgid "value passed in %qs is too large"
msgstr "传递给%<-m%s%>的值太大"
@@ -22777,7 +22140,6 @@ msgstr "%qE 2.95 虚表兼容属性åªå¯¹ C++ 类有效"
#: config/darwin.c:2738
#, fuzzy, gcc-internal-format
-#| msgid "visibility attribute not supported in this configuration; ignored"
msgid "protected visibility attribute not supported in this configuration; ignored"
msgstr "å¯è§æ€§å±žæ€§åœ¨æ­¤é…置下ä¸å—支æŒï¼›å·²å¿½ç•¥"
@@ -22788,19 +22150,16 @@ msgstr "无法打开临时å“应文件 %s"
#: config/darwin.c:3096
#, fuzzy, gcc-internal-format
-#| msgid "%<-fobjc-abi-version%> >= 2 is only supported on %<-m64%> targets for %<-fnext-runtime%>"
msgid "%<-fobjc-abi-version%> >= 2 must be used for %<-m64%> targets with %<-fnext-runtime%>"
msgstr "%<-fobjc-abi-version%> >= 2 åªåœ¨%<-m64%>目标下支æŒ%<-fnext-runtime%>"
#: config/darwin.c:3100
#, fuzzy, gcc-internal-format
-#| msgid "%<-fobjc-abi-version%> >= 2 is only supported on %<-m64%> targets for %<-fnext-runtime%>"
msgid "%<-fobjc-abi-version%> >= 2 is not supported on %<-m32%> targets with %<-fnext-runtime%>"
msgstr "%<-fobjc-abi-version%> >= 2 åªåœ¨%<-m64%>目标下支æŒ%<-fnext-runtime%>"
#: config/darwin.c:3185
#, fuzzy, gcc-internal-format
-#| msgid "-mdynamic-no-pic overrides -fpic or -fPIC"
msgid "%<-mdynamic-no-pic%> overrides %<-fpic%>, %<-fPIC%>, %<-fpie%> or %<-fPIE%>"
msgstr "-mdynamic-no-pic 覆盖了 -fpic 或 -fPIC"
@@ -22917,26 +22276,22 @@ msgstr "对 VxWorks çš„å–样支æŒ"
#: config/aarch64/aarch64-builtins.c:817
#, fuzzy, gcc-internal-format
-#| msgid "incompatible type for argument %d of %qE"
msgid "incompatible type for argument %d, expected %<const int%>"
msgstr "%2$qE的第 %1$d 个实å‚类型ä¸å…¼å®¹"
#: config/aarch64/aarch64.c:5041
#, fuzzy, gcc-internal-format
-#| msgid "missing filename after %qs"
msgid "missing feature modifier after %qs"
msgstr "%qsåŽç¼ºå°‘文件å"
#. Extension not found in list.
#: config/aarch64/aarch64.c:5062
#, fuzzy, gcc-internal-format
-#| msgid "unknown TLS model %qs"
msgid "unknown feature modifier %qs"
msgstr "未知的 TLS 模型%qs"
#: config/aarch64/aarch64.c:5093
#, fuzzy, gcc-internal-format
-#| msgid "missing path after %qs"
msgid "missing arch name in -march=%qs"
msgstr "%qsåŽç¼ºå°‘路径"
@@ -22948,33 +22303,28 @@ msgstr "开关 -mcpu=%s 与 -march=%s 冲çª"
#. ARCH name not found in list.
#: config/aarch64/aarch64.c:5125
#, fuzzy, gcc-internal-format
-#| msgid "unknown value %s for -mfpu"
msgid "unknown value %qs for -march"
msgstr "-mfpu 的值 %s 未知"
#: config/aarch64/aarch64.c:5150
#, fuzzy, gcc-internal-format
-#| msgid "missing path after %qs"
msgid "missing cpu name in -mcpu=%qs"
msgstr "%qsåŽç¼ºå°‘路径"
#. CPU name not found in list.
#: config/aarch64/aarch64.c:5174
#, fuzzy, gcc-internal-format
-#| msgid "unknown value %s for -mfpu"
msgid "unknown value %qs for -mcpu"
msgstr "-mfpu 的值 %s 未知"
#. CPU name not found in list.
#: config/aarch64/aarch64.c:5198
#, fuzzy, gcc-internal-format
-#| msgid "unknown value %s for -mfpu"
msgid "unknown value %qs for -mtune"
msgstr "-mfpu 的值 %s 未知"
#: config/aarch64/aarch64.c:5234
#, fuzzy, gcc-internal-format
-#| msgid "does not support multilib"
msgid "Assembler does not support -mabi=ilp32"
msgstr "ä¸æ”¯æŒ multilib"
@@ -22986,19 +22336,16 @@ msgstr ""
#: config/aarch64/aarch64.c:5611 config/aarch64/aarch64.c:5719
#: config/aarch64/aarch64.c:5958
#, fuzzy, gcc-internal-format
-#| msgid "Use hardware floating point instructions"
msgid "%qs and floating point or vector arguments"
msgstr "使用硬件浮点指令"
#: config/aarch64/aarch64.c:6830
#, fuzzy, gcc-internal-format
-#| msgid "operand number out of range"
msgid "lane out of range"
msgstr "æ“作数å·è¶…出范围"
#: config/aarch64/aarch64.c:6840
#, fuzzy, gcc-internal-format
-#| msgid "constant argument out of range for %qs"
msgid "constant out of range"
msgstr "常é‡å®žå‚超过%qs的范围"
@@ -23066,7 +22413,6 @@ msgstr "错误的内建 fcode"
#: config/arc/arc.c:738
#, fuzzy, gcc-internal-format
-#| msgid "-mrelax is only supported for RTP PIC"
msgid "-mmul64 not supported for ARC700"
msgstr "-mrelax åªåœ¨ RTP PIC 上å—支æŒ"
@@ -23107,7 +22453,6 @@ msgstr ""
#: config/arc/arc.c:1230
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "multiple function type attributes specified"
msgid "multiply option implies r%d is fixed"
msgstr "指定了多个函数类型属性"
@@ -23131,13 +22476,11 @@ msgstr ""
#: config/arc/arc.c:5373
#, fuzzy, gcc-internal-format
-#| msgid "%<__builtin_next_arg%> called without an argument"
msgid "__builtin_arc_aligned with non-constant alignment"
msgstr "调用%<__builtin_next_arg%>时没有给定实å‚"
#: config/arc/arc.c:5381
#, fuzzy, gcc-internal-format
-#| msgid "invalid argument to %<__builtin_frame_address%>"
msgid "invalid alignment value for __builtin_arc_aligned"
msgstr "%<__builtin_frame_address%>的实å‚无效"
@@ -23158,7 +22501,6 @@ msgstr ""
#: config/arc/arc.c:6206
#, fuzzy, gcc-internal-format
-#| msgid "Bad address, not register:"
msgid "insn addresses not freed"
msgstr "错误的地å€ï¼Œä¸æ˜¯å¯„存器:"
@@ -23294,7 +22636,6 @@ msgstr "AAPCS ä¸æ”¯æŒ -mcallee-super-interworking"
#: config/arm/arm.c:2571
#, fuzzy, gcc-internal-format
-#| msgid "-fPIC and -G are incompatible"
msgid "iWMMXt and NEON are incompatible"
msgstr "-fPIC 与 -G 互ä¸å…¼å®¹"
@@ -23320,13 +22661,11 @@ msgstr "-mtp=cp15 å’Œ 16 ä½ Thumb ä¸èƒ½å¹¶ç”¨"
#: config/arm/arm.c:2638
#, fuzzy, gcc-internal-format
-#| msgid "structure size boundary can only be set to %s"
msgid "structure size boundary can only be set to 8, 32 or 64"
msgstr "结构大å°è¾¹ç•Œåªèƒ½è¢«è®¾å®šä¸º %s"
#: config/arm/arm.c:2640
#, fuzzy, gcc-internal-format
-#| msgid "structure size boundary can only be set to %s"
msgid "structure size boundary can only be set to 8 or 32"
msgstr "结构大å°è¾¹ç•Œåªèƒ½è¢«è®¾å®šä¸º %s"
@@ -23352,7 +22691,6 @@ msgstr "‘%s’ä¸èƒ½è¢«ç”¨ä½œ PIC 寄存器"
#: config/arm/arm.c:2715
#, fuzzy, gcc-internal-format
-#| msgid "target CPU does not support ARM mode"
msgid "target CPU does not support unaligned accesses"
msgstr "目标 CPU ä¸æ”¯æŒ ARM 模å¼"
@@ -23440,7 +22778,6 @@ msgstr "掩ç å¿…须是一个立å³æ•°"
#: config/arm/arm.c:25441
#, fuzzy, gcc-internal-format
-#| msgid "%qE attribute argument should be between 0 to 255"
msgid "the range of mask should be in 0 to 255"
msgstr "%qE属性的å‚数应当在 0 å’Œ 255 之间"
@@ -23566,7 +22903,6 @@ msgstr ""
#: config/arm/arm.c:26165
#, fuzzy, gcc-internal-format
-#| msgid "Unexpected end of module"
msgid "Unexpected thumb1 far jump"
msgstr "éžé¢„期的模å—结æŸ"
@@ -23582,13 +22918,11 @@ msgstr "Thumb 模å¼ä¸­ä¸èƒ½ç¼–ç ä¸­æ–­æœåŠ¡è¿›ç¨‹"
#: config/avr/avr-c.c:66 config/avr/avr-c.c:191
#, fuzzy, gcc-internal-format
-#| msgid "%qs expects a constant argument"
msgid "%qs expects 1 argument but %d given"
msgstr "%qs需è¦ä¸€ä¸ªå¸¸é‡å®žå‚"
#: config/avr/avr-c.c:77
#, fuzzy, gcc-internal-format
-#| msgid "%qs expects a constant argument"
msgid "%qs expects a fixed-point value as argument"
msgstr "%qs需è¦ä¸€ä¸ªå¸¸é‡å®žå‚"
@@ -23599,25 +22933,21 @@ msgstr "ä¸å»ºè®®ä½¿ç”¨ã€‚此开关ä¸èµ·ä½œç”¨ã€‚"
#: config/avr/avr-c.c:108 config/avr/avr-c.c:174 config/avr/avr-c.c:231
#, fuzzy, gcc-internal-format
-#| msgid "no matching template for %qD found"
msgid "no matching fixed-point overload found for %qs"
msgstr "没有找到与%qD匹é…的模æ¿"
#: config/avr/avr-c.c:125
#, fuzzy, gcc-internal-format
-#| msgid "%qs expects a constant argument"
msgid "%qs expects 2 arguments but %d given"
msgstr "%qs需è¦ä¸€ä¸ªå¸¸é‡å®žå‚"
#: config/avr/avr-c.c:137 config/avr/avr-c.c:202
#, fuzzy, gcc-internal-format
-#| msgid "%qs expects a constant argument"
msgid "%qs expects a fixed-point value as first argument"
msgstr "%qs需è¦ä¸€ä¸ªå¸¸é‡å®žå‚"
#: config/avr/avr-c.c:145
#, fuzzy, gcc-internal-format
-#| msgid "%qs expects a constant argument"
msgid "%qs expects an integer value as second argument"
msgstr "%qs需è¦ä¸€ä¸ªå¸¸é‡å®žå‚"
@@ -23633,19 +22963,16 @@ msgstr "ä¸æ”¯æŒ -fPIC"
#: config/avr/avr.c:322
#, fuzzy, gcc-internal-format
-#| msgid "-fpic is not supported"
msgid "-fpie is not supported"
msgstr "ä¸æ”¯æŒ -fpic"
#: config/avr/avr.c:324
#, fuzzy, gcc-internal-format
-#| msgid "-fPIC is not supported"
msgid "-fPIE is not supported"
msgstr "ä¸æ”¯æŒ -fPIC"
#: config/avr/avr.c:586
#, fuzzy, gcc-internal-format
-#| msgid "-flto and -fwhopr are mutually exclusive"
msgid "function attributes %qs, %qs and %qs are mutually exclusive"
msgstr "-flto and -fwhopr 互斥"
@@ -23656,25 +22983,21 @@ msgstr "%qE属性åªèƒ½ç”¨äºŽå‡½æ•°"
#: config/avr/avr.c:616
#, fuzzy, gcc-internal-format
-#| msgid "%qD cannot have default arguments"
msgid "%qs function cannot have arguments"
msgstr "%qDä¸èƒ½æœ‰é»˜è®¤å‚æ•°"
#: config/avr/avr.c:619
#, fuzzy, gcc-internal-format
-#| msgid "functions cannot return __fp16 type"
msgid "%qs function cannot return a value"
msgstr "函数ä¸èƒ½è¿”回 __fp16 类型"
#: config/avr/avr.c:626
#, fuzzy, gcc-internal-format
-#| msgid "%qs appears to be a misspelled signal handler"
msgid "%qs appears to be a misspelled %s handler"
msgstr "%qs似乎是一个拼写错的信å·å¤„ç†è€…"
#: config/avr/avr.c:856
#, fuzzy, gcc-internal-format
-#| msgid "'builtin_return_address' contains only 2 bytes of address"
msgid "%<builtin_return_address%> contains only 2 bytes of address"
msgstr "‘builtin_return_address’åªåŒ…å«ä¸¤å­—节地å€"
@@ -23690,19 +23013,16 @@ msgstr "用程åºå†…存地å€è®¿é—®æ•°æ®å†…å­˜"
#: config/avr/avr.c:2241
#, fuzzy, gcc-internal-format
-#| msgid "accessing program memory with data memory address"
msgid "accessing program memory with data memory address"
msgstr "用数æ®å†…存地å€è®¿é—®ç¨‹åºå†…å­˜"
#: config/avr/avr.c:2660
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Number of registers used to pass integer arguments"
msgid "fixed register %s used to pass parameter to function"
msgstr "用以传递整数å‚数的寄存器个数"
#: config/avr/avr.c:2931
#, fuzzy, gcc-internal-format
-#| msgid "conflicting named address spaces (%s vs %s)"
msgid "writing to address space %qs not supported"
msgstr "冲çªçš„有å地å€ç©ºé—´(%så’Œ%s)"
@@ -23718,13 +23038,11 @@ msgstr ""
#: config/avr/avr.c:8292
#, fuzzy, gcc-internal-format
-#| msgid "pointers to disjoint address spaces used in conditional expression"
msgid "pointer targeting address space %qs must be const in %qT"
msgstr "æ¡ä»¶è¡¨è¾¾å¼ä¸­ä½¿ç”¨äº†æŒ‡å‘ä¸ç›¸äº¤åœ°å€ç©ºé—´çš„指针"
#: config/avr/avr.c:8295
#, fuzzy, gcc-internal-format
-#| msgid "pointers to disjoint address spaces used in conditional expression"
msgid "pointer targeting address space %qs must be const in %s %q+D"
msgstr "æ¡ä»¶è¡¨è¾¾å¼ä¸­ä½¿ç”¨äº†æŒ‡å‘ä¸ç›¸äº¤åœ°å€ç©ºé—´çš„指针"
@@ -23745,7 +23063,6 @@ msgstr "åªæœ‰æœªåˆå§‹åŒ–çš„å˜é‡æ‰èƒ½æ”¾åœ¨ .noinit 节中"
#: config/avr/avr.c:8597
#, fuzzy, gcc-internal-format
-#| msgid "only initialized variables can be placed into program memory area"
msgid "uninitialized variable %q+D put into program memory area"
msgstr "åªæœ‰åˆå§‹åŒ–çš„å˜é‡æ‰èƒ½æ”¾å…¥ç¨‹åºå†…存区"
@@ -23756,19 +23073,16 @@ msgstr "MCU%qsåªæ”¯æŒæ±‡ç¼–器"
#: config/avr/avr.c:11101
#, fuzzy, gcc-internal-format
-#| msgid "Conversion from %s to %s at %L"
msgid "conversion from address space %qs to address space %qs"
msgstr "从 %s 转æ¢åˆ° %s,ä½äºŽ %L"
#: config/avr/avr.c:12048
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Unexpected end of module in string constant"
msgid "%s expects a compile time integer constant"
msgstr "字符串常é‡ä¸­å‡ºçŽ°éžé¢„期的模å—结æŸ"
#: config/avr/avr.c:12062
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "%qs expects a constant argument"
msgid "%s expects a compile time long integer constant as first argument"
msgstr "%qs需è¦ä¸€ä¸ªå¸¸é‡å®žå‚"
@@ -23855,7 +23169,6 @@ msgstr "ä¸èƒ½ä¸ºå±€éƒ¨å˜é‡æŒ‡å®š%qE属性"
#: config/c6x/c6x.c:238
#, fuzzy, gcc-internal-format
-#| msgid "-fPIC and -fpic are not supported for this target"
msgid "-fpic and -fPIC not supported without -mdsbt on this target"
msgstr "-fPIC å’Œ -fpic ä¸è¢«æ­¤ç›®æ ‡æ‰€æ”¯æŒ"
@@ -23871,7 +23184,6 @@ msgstr ""
#: config/cr16/cr16.c:299
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "invalid thread pointer option: -mtp=%s"
msgid "invalid data model option -mdata-model=%s"
msgstr "无效的线程指钟选项:-mtp=%s"
@@ -24020,13 +23332,11 @@ msgstr ""
#: config/epiphany/epiphany.c:1468
#, fuzzy, gcc-internal-format
-#| msgid "stack size must be an exact power of 2"
msgid "stack_offset must be at least 4"
msgstr "栈大å°å¿…须刚好是 2 çš„æŸæ¬¡æ–¹"
#: config/epiphany/epiphany.c:1470
#, fuzzy, gcc-internal-format
-#| msgid "stack size must be an exact power of 2"
msgid "stack_offset must be a multiple of 4"
msgstr "栈大å°å¿…须刚好是 2 çš„æŸæ¬¡æ–¹"
@@ -24092,7 +23402,6 @@ msgstr "此内建函数åªåœ¨ fr450 上å¯ç”¨"
#: config/h8300/h8300.c:324
#, fuzzy, gcc-internal-format
-#| msgid "-f%s not supported: ignored"
msgid "-msx is not supported in coff"
msgstr "-f%s ä¸å—支æŒï¼šå·²å¿½ç•¥"
@@ -24103,25 +23412,21 @@ msgstr "-ms2600 未与 -ms 一起使用"
#: config/h8300/h8300.c:352
#, fuzzy, gcc-internal-format
-#| msgid "-mn is used without -mh or -ms"
msgid "-mn is used without -mh or -ms or -msx"
msgstr "-mn 未与 -mh 或 -ms 一起使用"
#: config/h8300/h8300.c:358
#, fuzzy, gcc-internal-format
-#| msgid "-ms2600 is used without -ms"
msgid "-mexr is used without -ms"
msgstr "-ms2600 未与 -ms 一起使用"
#: config/h8300/h8300.c:364
#, fuzzy, gcc-internal-format
-#| msgid "%<__int128%> is not supported for this target"
msgid "-mint32 is not supported for H8300 and H8300L targets"
msgstr "%<__int128%>在此目标机上ä¸å—支æŒ"
#: config/h8300/h8300.c:370
#, fuzzy, gcc-internal-format
-#| msgid "-mn is used without -mh or -ms"
msgid "-mexr is used without -ms or -msx"
msgstr "-mn 未与 -mh 或 -ms 一起使用"
@@ -24142,7 +23447,6 @@ msgstr "ä¸èƒ½åœ¨ PCH 文件中设定ä½ç½®ï¼š%m"
#: config/i386/i386.c:2911
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "-Werror=%s: no option -%s"
msgid "wrong arg %s to option %s"
msgstr "-Werror=%s:没有选项 -%s"
@@ -24153,13 +23457,11 @@ msgstr ""
#: config/i386/i386.c:2929
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "register name not specified for %q+D"
msgid "wrong stringop strategy name %s specified for option %s"
msgstr "%q+D的寄存器å无效"
#: config/i386/i386.c:2943
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "alignment may not be specified for %q+D"
msgid "unknown alignment %s specified for option %s"
msgstr "ä¸èƒ½ä¸º%q+D指定对é½"
@@ -24170,13 +23472,11 @@ msgstr ""
#: config/i386/i386.c:2962
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "no class name specified with %qs"
msgid "too many size ranges specified in option %s"
msgstr "%qs没有指定类å"
#: config/i386/i386.c:3016
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Unknown argument list function at %L"
msgid "Unknown parameter to option -mtune-ctrl: %s"
msgstr "%L处å‚数列表函数未知"
@@ -24193,7 +23493,6 @@ msgstr ""
#: config/i386/i386.c:3424
#, fuzzy, gcc-internal-format
-#| msgid "code model %qs not supported in the %s bit mode"
msgid "address mode %qs not supported in the %s bit mode"
msgstr "代ç æ¨¡å¼%qs在 %s ä½æ¨¡å¼ä¸‹ä¸å—支æŒ"
@@ -24205,7 +23504,6 @@ msgstr "代ç æ¨¡å¼%qs在 %s ä½æ¨¡å¼ä¸‹ä¸å—支æŒ"
#: config/i386/i386.c:3462 config/i386/i386.c:3474
#, fuzzy, gcc-internal-format
-#| msgid "code model %qs not supported in the %s bit mode"
msgid "code model %qs not supported in x32 mode"
msgstr "代ç æ¨¡å¼%qs在 %s ä½æ¨¡å¼ä¸‹ä¸å—支æŒ"
@@ -24216,7 +23514,6 @@ msgstr "代ç æ¨¡å¼ %s 在 PIC 模å¼ä¸‹ä¸å—支æŒ"
#: config/i386/i386.c:3517
#, fuzzy, gcc-internal-format
-#| msgid "-m%s not supported in this configuration"
msgid "-masm=intel not supported in this configuration"
msgstr "-m%s 在此é…置下ä¸å—支æŒ"
@@ -24237,7 +23534,6 @@ msgstr "generic åªèƒ½ç”¨åœ¨%stune%s %s中"
#: config/i386/i386.c:3678
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "generic CPU can be used only for %stune=%s %s"
msgid "intel CPU can be used only for %stune=%s %s"
msgstr "generic åªèƒ½ç”¨åœ¨%stune%s %s中"
@@ -24253,13 +23549,11 @@ msgstr "%2$stune=%3$s%4$s所带å‚æ•°(%1$s)ä¸æ­£ç¡®"
#: config/i386/i386.c:3777
#, fuzzy, gcc-internal-format
-#| msgid "%sregparm%s is ignored in 64-bit mode"
msgid "-mregparm is ignored in 64-bit mode"
msgstr "%sregparm%s 在 64 ä½æ¨¡å¼ä¸‹è¢«å¿½ç•¥"
#: config/i386/i386.c:3780
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "%sregparm=%d%s is not between 0 and %d"
msgid "-mregparm=%d is not between 0 and %d"
msgstr "%sregparm=%d%s ä¸åœ¨ 0 å’Œ %d 之间"
@@ -24270,13 +23564,11 @@ msgstr "%srtd%s 在 64 ä½æ¨¡å¼ä¸‹è¢«å¿½ç•¥"
#: config/i386/i386.c:3900
#, fuzzy, gcc-internal-format
-#| msgid "%spreferred-stack-boundary%s is not supported for this target"
msgid "-mpreferred-stack-boundary is not supported for this target"
msgstr "%spreferred-stack-boundary%s 在此目标机上ä¸è¢«æ”¯æŒ"
#: config/i386/i386.c:3903
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "%spreferred-stack-boundary=%d%s is not between %d and %d"
msgid "-mpreferred-stack-boundary=%d is not between %d and %d"
msgstr "%spreferred-stack-boundary=%d%s ä¸åœ¨ %d å’Œ %d 之间"
@@ -24308,7 +23600,7 @@ msgstr "堆栈探针目å‰éœ€è¦æ¡†æž¶æŒ‡é’ˆæˆ– %saccumulate-outgoing-args%s æ¥
#: config/i386/i386.c:4108
#, gcc-internal-format
msgid "-mfentry isn%'t supported for 32-bit in combination with -fpic"
-msgstr "-mfentry 在 32 ä½ä¸‹ä¸èƒ½å’Œ -pic åŒæ—¶ä½¿ç”¨"
+msgstr "-mfentry 在 32 ä½ä¸‹ä¸èƒ½å’Œ -fpic åŒæ—¶ä½¿ç”¨"
#: config/i386/i386.c:4115
#, gcc-internal-format
@@ -24422,7 +23714,6 @@ msgstr "没有å¯ç”¨ AVX,å´å‡ºçŽ°äº† AVX å‘é‡å®žå‚,这改å˜äº† ABI"
#: config/i386/i386.c:6236
#, fuzzy, gcc-internal-format
-#| msgid "AVX vector argument without AVX enabled changes the ABI"
msgid "AVX vector return without AVX enabled changes the ABI"
msgstr "没有å¯ç”¨ AVX,å´å‡ºçŽ°äº† AVX å‘é‡å®žå‚,这改å˜äº† ABI"
@@ -24515,7 +23806,6 @@ msgstr "扩展的寄存器ä¸æ”¯æŒçš„æ“作数大å°"
#: config/i386/i386.c:14881
#, fuzzy, gcc-internal-format
-#| msgid "non-integer operand used with operand code '%c'"
msgid "non-integer operand used with operand code 'z'"
msgstr "éžæ•´æ•°æ“作数使用了æ“作数代ç â€˜%c’"
@@ -24541,7 +23831,6 @@ msgstr ""
#: config/i386/i386.c:31750 config/i386/i386.c:32198
#, fuzzy, gcc-internal-format
-#| msgid "static linking is not supported"
msgid "Virtual function multiversioning not supported"
msgstr "ä¸æ”¯æŒé™æ€é“¾æŽ¥"
@@ -24552,25 +23841,21 @@ msgstr ""
#: config/i386/i386.c:31818
#, fuzzy, gcc-internal-format
-#| msgid "previous declaration of %q+D"
msgid "previous declaration of %D"
msgstr "%q+Dçš„å‰ä¸€ä¸ªå£°æ˜Ž"
#: config/i386/i386.c:32037
#, fuzzy, gcc-internal-format
-#| msgid "nested functions not supported on this target"
msgid "multiversioning needs ifunc which is not supported on this target"
msgstr "嵌套函数在此目标机上ä¸å—支æŒ"
#: config/i386/i386.c:32405
#, fuzzy, gcc-internal-format
-#| msgid "argument to %qs must be a 2-bit unsigned literal"
msgid "Parameter to builtin must be a string constant or literal"
msgstr "%qs的实å‚必须是一个 2 ä½æ— ç¬¦å·å­—é¢å¸¸é‡"
#: config/i386/i386.c:32430 config/i386/i386.c:32480
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Argument to -ffpe-trap is not valid: %s"
msgid "Parameter to builtin not valid: %s"
msgstr "-ffpe-trap çš„å‚数无效:%s"
@@ -24581,25 +23866,21 @@ msgstr "最åŽä¸€ä¸ªå®žå‚必须是一个 2 ä½ç«‹å³æ•°"
#: config/i386/i386.c:33287
#, fuzzy, gcc-internal-format
-#| msgid "the fifth argument must be a 8-bit immediate"
msgid "the fifth argument must be an 8-bit immediate"
msgstr "第五个实å‚必须是一个 8 ä½ç«‹å³æ•°"
#: config/i386/i386.c:33382
#, fuzzy, gcc-internal-format
-#| msgid "the third argument must be a 8-bit immediate"
msgid "the third argument must be an 8-bit immediate"
msgstr "第三个实å‚必须是一个 8 ä½ç«‹å³æ•°"
#: config/i386/i386.c:33967
#, fuzzy, gcc-internal-format
-#| msgid "the last argument must be a 1-bit immediate"
msgid "the last argument must be an 1-bit immediate"
msgstr "最åŽä¸€ä¸ªå®žå‚必须是一个 1 ä½ç«‹å³æ•°"
#: config/i386/i386.c:33974
#, fuzzy, gcc-internal-format
-#| msgid "the last argument must be a 32-bit immediate"
msgid "the last argument must be a 3-bit immediate"
msgstr "最åŽä¸€ä¸ªå‚数必须是一个 32 ä½ç«‹å³æ•°"
@@ -24630,37 +23911,31 @@ msgstr "最åŽä¸€ä¸ªå®žå‚必须是一个 8 ä½ç«‹å³æ•°"
#: config/i386/i386.c:34214
#, fuzzy, gcc-internal-format
-#| msgid "argument must be a constant"
msgid "the third argument must be comparison constant"
msgstr "实å‚必须是常数"
#: config/i386/i386.c:34219
#, fuzzy, gcc-internal-format
-#| msgid "incorrect sharing of tree nodes"
msgid "incorect comparison mode"
msgstr "对树结节的共享ä¸æ­£ç¡®"
#: config/i386/i386.c:34225 config/i386/i386.c:34421
#, fuzzy, gcc-internal-format
-#| msgid "incorrect sharing of tree nodes"
msgid "incorrect rounding operand"
msgstr "对树结节的共享ä¸æ­£ç¡®"
#: config/i386/i386.c:34403
#, fuzzy, gcc-internal-format
-#| msgid "the last argument must be a 4-bit immediate"
msgid "the immediate argument must be a 4-bit immediate"
msgstr "最åŽä¸€ä¸ªå®žå‚必须是一个 4 ä½ç«‹å³æ•°"
#: config/i386/i386.c:34409
#, fuzzy, gcc-internal-format
-#| msgid "the last argument must be a 5-bit immediate"
msgid "the immediate argument must be a 5-bit immediate"
msgstr "最åŽä¸€ä¸ªå®žå‚必须是一个 5 ä½ç«‹å³æ•°"
#: config/i386/i386.c:34412
#, fuzzy, gcc-internal-format
-#| msgid "the last argument must be an 8-bit immediate"
msgid "the immediate argument must be an 8-bit immediate"
msgstr "最åŽä¸€ä¸ªå®žå‚必须是一个 8 ä½ç«‹å³æ•°"
@@ -24691,25 +23966,21 @@ msgstr "最åŽä¸€ä¸ªå®žå‚必须是一个立å³æ•°"
#: config/i386/i386.c:35816 config/i386/i386.c:35964
#, fuzzy, gcc-internal-format
-#| msgid "the last argument must be a 4-bit immediate"
msgid "the last argument must be scale 1, 2, 4, 8"
msgstr "最åŽä¸€ä¸ªå®žå‚必须是一个 4 ä½ç«‹å³æ•°"
#: config/i386/i386.c:36016
#, fuzzy, gcc-internal-format
-#| msgid "left argument must be a slice"
msgid "the forth argument must be scale 1, 2, 4, 8"
msgstr "左实å‚必须是一个切片"
#: config/i386/i386.c:36022
#, fuzzy, gcc-internal-format
-#| msgid "the last argument must be a 4-bit immediate"
msgid "the last argument must be hint 0 or 1"
msgstr "最åŽä¸€ä¸ªå®žå‚必须是一个 4 ä½ç«‹å³æ•°"
#: config/i386/i386.c:36041
#, fuzzy, gcc-internal-format
-#| msgid "the last argument must be an 8-bit immediate"
msgid "the xabort's argument must be an 8-bit immediate"
msgstr "最åŽä¸€ä¸ªå®žå‚必须是一个 8 ä½ç«‹å³æ•°"
@@ -24735,7 +24006,6 @@ msgstr "%qEä¸å…¼å®¹çš„属性已被忽略"
#: config/i386/i386.c:46439
#, fuzzy, gcc-internal-format
-#| msgid "Unknown architecture '%s'"
msgid "Unknown architecture specific memory model"
msgstr "未知的架构‘%s’"
@@ -24751,7 +24021,6 @@ msgstr ""
#: config/i386/i386.c:46476
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "unsupported ELF file class"
msgid "unsupported simdlen %d"
msgstr "ä¸æ”¯æŒçš„ ELF 文件类"
@@ -24955,7 +24224,6 @@ msgstr "ä¸æ”¯æŒ -falign-loops=%d"
#: config/m68k/m68k.c:624
#, fuzzy, gcc-internal-format
-#| msgid "stack limits not supported on this target"
msgid "-fstack-limit- options are not supported on this cpu"
msgstr "堆栈é™åˆ¶åœ¨æ­¤ç›®æ ‡æœºä¸Šä¸å—支æŒ"
@@ -25240,7 +24508,6 @@ msgstr "éžé¢„期的 %d 字节 cop 指令"
#: config/microblaze/microblaze.c:1679
#, fuzzy, gcc-internal-format
-#| msgid "-fPIC and -fpic are not supported for this target"
msgid "-fPIC/-fpic not supported for this target"
msgstr "-fPIC å’Œ -fpic ä¸è¢«æ­¤ç›®æ ‡æ‰€æ”¯æŒ"
@@ -25276,7 +24543,6 @@ msgstr "%qs属性åªèƒ½åº”用于函数"
#: config/mips/mips.c:1427 config/mips/mips.c:1433
#, fuzzy, gcc-internal-format
-#| msgid "%qE cannot have both %<mips16%> and %<nomips16%> attributes"
msgid "%qE cannot have both %qs and %qs attributes"
msgstr "%qEä¸èƒ½åŒæ—¶æœ‰%<mips16%>å’Œ%<nomips16%>属性"
@@ -25385,7 +24651,6 @@ msgstr "%<-mgp32%>å’Œ%<-mfp64%>åªæœ‰å½“使用 o32 ABI æ—¶æ‰èƒ½ä¸€èµ·ä½¿ç”¨"
#: config/mips/mips.c:17050 config/mips/mips.c:17052 config/mips/mips.c:17065
#, fuzzy, gcc-internal-format
-#| msgid "assert: %s is assign compatible with %s"
msgid "%qs is incompatible with %qs"
msgstr "assert:%s 与 %s 赋值兼容"
@@ -25396,7 +24661,6 @@ msgstr "assert:%s 与 %s 赋值兼容"
#. an error.
#: config/mips/mips.c:17059
#, fuzzy, gcc-internal-format
-#| msgid "assert: %s is assign compatible with %s"
msgid "the combination of %qs and %qs is incompatible with %qs"
msgstr "assert:%s 与 %s 赋值兼容"
@@ -25407,13 +24671,11 @@ msgstr "%qs架构ä¸æ”¯æŒ Branch-Likely 指令"
#: config/mips/mips.c:17120
#, fuzzy, gcc-internal-format
-#| msgid "the %qs architecture does not support the synci instruction"
msgid "the %qs architecture does not support madd or msub instructions"
msgstr "%qs架构ä¸æ”¯æŒ synci 指令"
#: config/mips/mips.c:17134
#, fuzzy, gcc-internal-format
-#| msgid "Generate position-independent code if possible (large mode)"
msgid "cannot generate position-independent code for %qs"
msgstr "å°½å¯èƒ½ç”Ÿæˆä¸Žä½ç½®æ— å…³çš„代ç (大模å¼)"
@@ -25530,19 +24792,16 @@ msgstr ""
#: config/msp430/msp430.c:1102
#, fuzzy, gcc-internal-format
-#| msgid "invalid argument of %qE attribute"
msgid "unrecognised interrupt vector argument of %qE attribute"
msgstr "属性%qEçš„å‚数无效"
#: config/msp430/msp430.c:1111
#, fuzzy, gcc-internal-format
-#| msgid "argument %d of %qE must be in the range %d...%d"
msgid "numeric argument of %qE attribute must be in range 0..63"
msgstr "%2$qE的第 %1$d 个å‚数必须是在 %3$d å’Œ %4$d 之间"
#: config/msp430/msp430.c:1117
#, fuzzy, gcc-internal-format
-#| msgid "argument of %qE attribute is not a string constant"
msgid "argument of %qE attribute is not a string constant or number"
msgstr "%qE属性的实å‚ä¸æ˜¯ä¸€ä¸ªå­—符串常é‡"
@@ -25564,13 +24823,11 @@ msgstr "给予函数的实å‚太少"
#: config/nds32/nds32.c:1213
#, fuzzy, gcc-internal-format
-#| msgid "multiple function type attributes specified"
msgid "multiple nested types attributes to function %qD"
msgstr "指定了多个函数类型属性"
#: config/nds32/nds32.c:1225
#, fuzzy, gcc-internal-format
-#| msgid "multiple interrupt attributes not allowed"
msgid "multiple interrupt attributes to function %qD"
msgstr "ä¸å…许多个中断属性"
@@ -25581,44 +24838,37 @@ msgstr "ä¸å…许多个中断属性"
#: config/nds32/nds32.c:3007 config/nds32/nds32.c:3013
#: config/nds32/nds32.c:3045
#, fuzzy, gcc-internal-format
-#| msgid "nested functions not supported on this target"
msgid "a nested function is not supported for reduced registers"
msgstr "嵌套函数在此目标机上ä¸å—支æŒ"
#. The enum index value for array size is out of range.
#: config/nds32/nds32.c:2848
#, fuzzy, gcc-internal-format
-#| msgid "invalid register in the instruction"
msgid "intrinsic register index is out of range"
msgstr "此指令中寄存器无效"
#: config/nds32/nds32.c:3153
#, fuzzy, gcc-internal-format
-#| msgid "invalid type for iteration variable %qE"
msgid "invalid id value for interrupt/exception attribute"
msgstr "迭代å˜é‡%qE类型无效"
#: config/nds32/nds32.c:3181
#, fuzzy, gcc-internal-format
-#| msgid "invalid argument of %qs attribute"
msgid "invalid id value for reset attribute"
msgstr "属性%qsçš„å‚数无效"
#: config/nds32/nds32.c:3197
#, fuzzy, gcc-internal-format
-#| msgid "invalid argument of %qs attribute"
msgid "invalid nmi function for reset attribute"
msgstr "属性%qsçš„å‚数无效"
#: config/nds32/nds32.c:3210
#, fuzzy, gcc-internal-format
-#| msgid "invalid argument of %qs attribute"
msgid "invalid warm function for reset attribute"
msgstr "属性%qsçš„å‚数无效"
#: config/nds32/nds32.c:3284
#, fuzzy, gcc-internal-format
-#| msgid "%s does not support split_block"
msgid "not support -fpic"
msgstr "%s ä¸æ”¯æŒ split_block"
@@ -25629,7 +24879,6 @@ msgstr ""
#: config/nios2/nios2.c:794
#, fuzzy, gcc-internal-format
-#| msgid "target attribute or pragma changes double precision floating point"
msgid "switch %<-mcustom-%s%> is required for double precision floating point"
msgstr "目标属性或 pragma 改å˜äº†åŒç²¾åº¦æµ®ç‚¹æ•°"
@@ -25675,7 +24924,6 @@ msgstr ""
#: config/nios2/nios2.c:2598
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "invalid argument to built-in function"
msgid "invalid argument to built-in function %s"
msgstr "内建函数实å‚无效"
@@ -25686,7 +24934,6 @@ msgstr ""
#: config/nios2/nios2.c:2743
#, fuzzy, gcc-internal-format
-#| msgid "switch -mcpu=%s conflicts with -march=%s switch"
msgid "switch %<-mcustom-%s%> conflicts with switch %<-mcustom-%s%>"
msgstr "开关 -mcpu=%s 与 -march=%s 冲çª"
@@ -25707,7 +24954,6 @@ msgstr ""
#: config/nios2/nios2.c:2899
#, fuzzy, gcc-internal-format
-#| msgid "%s only accepts 2 arguments"
msgid "%<no-custom-%s%> does not accept arguments"
msgstr "%s åªæŽ¥å— 2 个å‚æ•°"
@@ -25728,7 +24974,6 @@ msgstr ""
#: config/nios2/nios2.c:2943
#, fuzzy, gcc-internal-format
-#| msgid "type of %qE is unknown"
msgid "%<%s%> is unknown"
msgstr "%qE的类型未知"
@@ -25979,13 +25224,11 @@ msgstr "-malign-power 在 64 ä½ Darwin 下ä¸å—支æŒï¼›å®ƒä¸Žå·²å®‰è£…çš„ C å
#: config/rs6000/rs6000.c:3173
#, fuzzy, gcc-internal-format
-#| msgid "not configured for ABI: '%s'"
msgid "not configured for SPE ABI"
msgstr "没有为此 ABI é…置:‘%s’"
#: config/rs6000/rs6000.c:3178
#, fuzzy, gcc-internal-format
-#| msgid "Do not use PowerPC instruction set"
msgid "not configured for SPE instruction set"
msgstr "ä¸ä½¿ç”¨ PowerPC 指令集"
@@ -26021,7 +25264,6 @@ msgstr ""
#: config/rs6000/rs6000.c:3333
#, fuzzy, gcc-internal-format
-#| msgid "--resource requires -o"
msgid "-mdirect-move requires -mvsx"
msgstr "--resource éœ€è¦ -o"
@@ -26032,13 +25274,11 @@ msgstr ""
#: config/rs6000/rs6000.c:3347
#, fuzzy, gcc-internal-format
-#| msgid "--resource requires -o"
msgid "-mpower8-vector requires -mvsx"
msgstr "--resource éœ€è¦ -o"
#: config/rs6000/rs6000.c:3354
#, fuzzy, gcc-internal-format
-#| msgid "--resource requires -o"
msgid "-mvsx-timode requires -mvsx"
msgstr "--resource éœ€è¦ -o"
@@ -26099,7 +25339,6 @@ msgstr "内部错误:对 %s 的内建函数已ç»å¤„ç†è¿‡ã€‚"
#: config/rs6000/rs6000.c:11517
#, fuzzy, gcc-internal-format
-#| msgid "argument 1 must be a 5-bit signed literal"
msgid "argument 1 must be an 8-bit field value"
msgstr "å®žå‚ 1 必须是一个 5 ä½æœ‰ç¬¦å·å­—é¢å€¼"
@@ -26125,13 +25364,11 @@ msgstr "__builtin_altivec_predicate 的第 1 个实å‚越界"
#: config/rs6000/rs6000.c:12074
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "argument 2 must be a 5-bit unsigned literal"
msgid "argument %d must be an unsigned literal"
msgstr "å®žå‚ 2 必须是一个 5 ä½æ— ç¬¦å·å­—é¢å€¼"
#: config/rs6000/rs6000.c:12076
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "argument 1 of __builtin_spe_predicate is out of range"
msgid "argument %d is an unsigned literal that is out of range"
msgstr "__builtin_spe_predicate 的第 1 个实å‚越界"
@@ -26152,13 +25389,11 @@ msgstr "å®žå‚ 2 必须是一个 1 ä½æ— ç¬¦å·å­—é¢å€¼"
#: config/rs6000/rs6000.c:12246
#, fuzzy, gcc-internal-format
-#| msgid "number must be 0 or 1"
msgid "argument 2 must be 0 or 1"
msgstr "数字必须是 0 或 1"
#: config/rs6000/rs6000.c:12254
#, fuzzy, gcc-internal-format
-#| msgid "argument %d of %qE must be in the range %d...%d"
msgid "argument 3 must be in the range 0..15"
msgstr "%2$qE的第 %1$d 个å‚数必须是在 %3$d å’Œ %4$d 之间"
@@ -26199,7 +25434,6 @@ msgstr "__builtin_spe_predicate 的第 1 个实å‚越界"
#: config/rs6000/rs6000.c:13239
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "this builtin function is only available on the fr450"
msgid "Builtin function %s is only valid for the cell processor"
msgstr "此内建函数åªåœ¨ fr450 上å¯ç”¨"
@@ -26464,19 +25698,16 @@ msgstr "-fdirectives-only 与 -traditional ä¸å…¼å®¹"
#: config/rs6000/e500.h:37
#, fuzzy, gcc-internal-format
-#| msgid "AltiVec and E500 instructions cannot coexist"
msgid "AltiVec and SPE instructions cannot coexist"
msgstr "AltiVec å’Œ E500 指令ä¸èƒ½å…±å­˜"
#: config/rs6000/e500.h:39
#, fuzzy, gcc-internal-format
-#| msgid "VSX and E500 instructions cannot coexist"
msgid "VSX and SPE instructions cannot coexist"
msgstr "VSX å’Œ E500 指令ä¸èƒ½å…±å­˜"
#: config/rs6000/e500.h:41
#, fuzzy, gcc-internal-format
-#| msgid "64-bit E500 not supported"
msgid "64-bit SPE not supported"
msgstr "ä¸æ”¯æŒ 64 ä½ E500"
@@ -26492,7 +25723,6 @@ msgstr "-m64 éœ€è¦ PowerPC64 CPU"
#: config/rs6000/linux64.h:116
#, fuzzy, gcc-internal-format
-#| msgid "-mas100-syntax is incompatible with -gdwarf"
msgid "-mcall-aixdesc incompatible with -mabi=elfv2"
msgstr "-mas100-syntax 与 -gdwarf ä¸å…¼å®¹"
@@ -26550,13 +25780,11 @@ msgstr "-m%s 在此é…置下ä¸å—支æŒ"
#: config/rx/rx.c:644
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "unreocgnized control register number: %d - using 'psw'"
msgid "unrecognized control register number: %d - using 'psw'"
msgstr "无法识别的控制寄存器å·ï¼š%d - 使用‘psw’"
#: config/rx/rx.c:1380
#, fuzzy, gcc-internal-format
-#| msgid "multiple interrupt attributes not allowed"
msgid "multiple fast interrupt routines seen: %qE and %qE"
msgstr "ä¸å…许多个中断属性"
@@ -26577,13 +25805,11 @@ msgstr "RX FPU 指令ä¸æ”¯æŒ NaN 和无é™"
#: config/s390/s390.c:479
#, fuzzy, gcc-internal-format
-#| msgid "argument of %qE attribute is not a string constant"
msgid "requested %qE attribute is not a non-negative integer constant or too large (max. %d)"
msgstr "%qE属性的实å‚ä¸æ˜¯ä¸€ä¸ªå­—符串常é‡"
#: config/s390/s390.c:1712
#, fuzzy, gcc-internal-format
-#| msgid "argument to %qE attribute larger than %d"
msgid "argument to %qs is too large (max. %d)"
msgstr "%qE属性的实å‚大于 %d"
@@ -26634,13 +25860,11 @@ msgstr "-mstack-guard æ„味ç€ä½¿ç”¨ -mstack-size"
#: config/s390/s390.c:5480
#, fuzzy, gcc-internal-format
-#| msgid "function %q+D redeclared with attribute noinline"
msgid "function %qE with the %qs attribute is not hotpatchable"
msgstr "函数%q+Dé‡å£°æ˜Žä¸ºå¸¦æœ‰ä¸å¯å†…è”属性"
#: config/s390/s390.c:5521
#, fuzzy, gcc-internal-format
-#| msgid "ms_hook_prologue is not compatible with nested function"
msgid "hotpatch_prologue is not compatible with nested function"
msgstr "ms_hook_prologue 与嵌套函数ä¸å…¼å®¹"
@@ -26661,7 +25885,6 @@ msgstr ""
#: config/s390/s390.c:9019
#, fuzzy, gcc-internal-format
-#| msgid "frame size of %qs is "
msgid "frame size of %qs is %wd bytes"
msgstr "%qs的框架大å°æ˜¯"
@@ -26770,7 +25993,6 @@ msgstr "32 ä½ç³»ç»Ÿä¸æ”¯æŒ -mcmodel="
#: config/sparc/sparc.c:1298
#, fuzzy, gcc-internal-format
-#| msgid "-fdata-sections not supported for this target"
msgid "-fcall-saved-REG is not supported for out registers"
msgstr "-fdata-sections 在此目标机上ä¸å—支æŒ"
@@ -26856,13 +26078,11 @@ msgstr "__BELOW100__ 属性ä¸å…许用于自动存储类"
#: config/tilegx/tilegx.c:3512 config/tilepro/tilepro.c:3118
#, fuzzy, gcc-internal-format
-#| msgid "bad builtin code"
msgid "bad builtin icode"
msgstr "错误的内建代ç "
#: config/tilegx/tilegx.c:3553 config/tilepro/tilepro.c:3144
#, fuzzy, gcc-internal-format
-#| msgid "mask must be an immediate"
msgid "operand must be an immediate of the right size"
msgstr "掩ç å¿…须是一个立å³æ•°"
@@ -26983,19 +26203,16 @@ msgstr "è¦å‡†å¤‡å¤ªå¤šçš„堆栈空间:%d"
#: config/vms/vms-c.c:44
#, fuzzy, gcc-internal-format
-#| msgid "junk at end of #pragma ghs starttda"
msgid "junk at end of #pragma __nostandard"
msgstr "#pragma ghs starttda 末尾有垃圾字符"
#: config/vms/vms-c.c:55
#, fuzzy, gcc-internal-format
-#| msgid "junk at end of #pragma %s"
msgid "junk at end of #pragma __standard"
msgstr "#pragma %s 末尾有垃圾字符"
#: config/vms/vms-c.c:80
#, fuzzy, gcc-internal-format
-#| msgid "malformed %<#pragma align%>, ignoring"
msgid "malformed '#pragma member_alignment', ignoring"
msgstr "%<#pragma align%>æ ¼å¼é”™è¯¯ - 已忽略"
@@ -27006,25 +26223,21 @@ msgstr ""
#: config/vms/vms-c.c:100
#, fuzzy, gcc-internal-format
-#| msgid "malformed %<#pragma align%>"
msgid "malformed '#pragma member_alignment'"
msgstr "%<#pragma align%>æ ¼å¼é”™è¯¯"
#: config/vms/vms-c.c:134
#, fuzzy, gcc-internal-format
-#| msgid "invalid alignment for %<#pragma align%>, ignoring"
msgid "unhandled alignment for '#pragma nomember_alignment'"
msgstr "%<#pragma align%>指定的对é½è¾¹ç•Œæ— æ•ˆï¼Œå¿½ç•¥"
#: config/vms/vms-c.c:147
#, fuzzy, gcc-internal-format
-#| msgid "junk at end of '#pragma options'"
msgid "garbage at end of '#pragma nomember_alignment'"
msgstr "‘#pragma options’末尾有垃圾字符"
#: config/vms/vms-c.c:202
#, fuzzy, gcc-internal-format
-#| msgid "malformed '#pragma options', ignoring"
msgid "malformed '#pragma extern_model', ignoring"
msgstr "‘#pragma options’格å¼é”™è¯¯ - 已忽略"
@@ -27040,31 +26253,26 @@ msgstr ""
#: config/vms/vms-c.c:234
#, fuzzy, gcc-internal-format
-#| msgid "junk at end of %<#pragma extern_prefix%>"
msgid "junk at end of '#pragma extern_model'"
msgstr "%<#pragma extern_prefix%>末尾有垃圾字符"
#: config/vms/vms-c.c:248
#, fuzzy, gcc-internal-format
-#| msgid "malformed %<#pragma message%>, ignored"
msgid "vms '#pragma __message' is ignored"
msgstr "%<#pragma message%>æ ¼å¼é”™è¯¯ï¼Œå·²å¿½ç•¥"
#: config/vms/vms-c.c:273 config/vms/vms-c.c:279
#, fuzzy, gcc-internal-format
-#| msgid "malformed #pragma extern_prefix, ignored"
msgid "malformed '#pragma __extern_prefix', ignoring"
msgstr "#pragma extern_prefix æ ¼å¼é”™è¯¯ï¼Œå·²å¿½ç•¥"
#: config/vms/vms-c.c:312 config/vms/vms-c.c:332
#, fuzzy, gcc-internal-format
-#| msgid "malformed %<#pragma %s%>, ignored"
msgid "malformed %<#pragma %s%>, ignoring"
msgstr "%<#pragma %s%>æ ¼å¼é”™è¯¯ï¼Œå·²å¿½ç•¥"
#: config/vms/vms-c.c:328
#, fuzzy, gcc-internal-format
-#| msgid "invalid constant in %<#pragma pack%> - ignored"
msgid "invalid constant in %<#pragma %s%>"
msgstr "%<#pragma pack%>ä¸­æœ‰æ— æ•ˆå¸¸é‡ - 已忽略"
@@ -27146,31 +26354,26 @@ msgstr ""
#: c/c-array-notation.c:708 c/c-array-notation.c:714
#, fuzzy, gcc-internal-format
-#| msgid "%qD cannot be declared as constexpr"
msgid "%qE cannot be scalar when %qE is not"
msgstr "%qDä¸èƒ½è¢«å£°æ˜Žä¸ºå¹¿ä¹‰å¸¸è¡¨è¾¾å¼"
#: c/c-array-notation.c:776 cp/cp-array-notation.c:658
#, fuzzy, gcc-internal-format
-#| msgid "type mismatch between an SSA_NAME and its symbol"
msgid "length mismatch between LHS and RHS"
msgstr "SSA_NAME 和其符å·é—´ç±»åž‹ä¸åŒ¹é…"
#: c/c-array-notation.c:1323 cp/cp-array-notation.c:1407
#, fuzzy, gcc-internal-format
-#| msgid "array subscript is not an integer"
msgid "start-index of array notation triplet is not an integer"
msgstr "数组下标ä¸æ˜¯ä¸€ä¸ªæ•´æ•°"
#: c/c-array-notation.c:1328 cp/cp-array-notation.c:1412
#, fuzzy, gcc-internal-format
-#| msgid "array subscript is not an integer"
msgid "length of array notation triplet is not an integer"
msgstr "数组下标ä¸æ˜¯ä¸€ä¸ªæ•´æ•°"
#: c/c-array-notation.c:1335 cp/cp-array-notation.c:1417
#, fuzzy, gcc-internal-format
-#| msgid "array subscript is not an integer"
msgid "stride of array notation triplet is not an integer"
msgstr "数组下标ä¸æ˜¯ä¸€ä¸ªæ•´æ•°"
@@ -27593,7 +26796,6 @@ msgstr "带有类型é™å®šçš„空声明没有é‡å£°æ˜Žæ ‡è®°"
#: c/c-decl.c:3755
#, fuzzy, gcc-internal-format
-#| msgid "empty declaration with type qualifier does not redeclare tag"
msgid "empty declaration with %<_Alignas%> does not redeclare tag"
msgstr "带有类型é™å®šçš„空声明没有é‡å£°æ˜Žæ ‡è®°"
@@ -27609,7 +26811,6 @@ msgstr "%<inline%>用于空声明中"
#: c/c-decl.c:3799
#, fuzzy, gcc-internal-format
-#| msgid "%<inline%> in empty declaration"
msgid "%<_Noreturn%> in empty declaration"
msgstr "%<inline%>用于空声明中"
@@ -27630,7 +26831,6 @@ msgstr "空声明中指定存储类无用"
#: c/c-decl.c:3824
#, fuzzy, gcc-internal-format
-#| msgid "useless type name in empty declaration"
msgid "useless %qs in empty declaration"
msgstr "空声明中类型å无用"
@@ -27641,7 +26841,6 @@ msgstr "空声明中类型é™å®šæ— ç”¨"
#: c/c-decl.c:3844
#, fuzzy, gcc-internal-format
-#| msgid "useless %<__thread%> in empty declaration"
msgid "useless %<_Alignas%> in empty declaration"
msgstr "空声明中%<__thread%>无用"
@@ -27890,7 +27089,6 @@ msgstr "é‡å¤çš„%<volatile%>"
#: c/c-decl.c:5147
#, fuzzy, gcc-internal-format
-#| msgid "duplicate %<restrict%>"
msgid "duplicate %<_Atomic%>"
msgstr "é‡å¤çš„%<restrict%>"
@@ -27921,7 +27119,6 @@ msgstr "函数声明定义为%<typedef%>"
#: c/c-decl.c:5190
#, fuzzy, gcc-internal-format
-#| msgid "function definition declared %<auto%>"
msgid "function definition declared %qs"
msgstr "函数声明定义为%<auto%>"
@@ -27977,7 +27174,6 @@ msgstr "嵌套函数%qE被声明为%<extern%>"
#: c/c-decl.c:5259
#, fuzzy, gcc-internal-format
-#| msgid "function-scope %qE implicitly auto and declared %<__thread%>"
msgid "function-scope %qE implicitly auto and declared %qs"
msgstr "函数作用域的%qEéšå¼ä¸º auto,å´è¢«å£°æ˜Žä¸º%<__thread%>"
@@ -28103,7 +27299,6 @@ msgstr "忽略函数返回类型的类型é™å®š"
#: c/c-decl.c:5754 c/c-decl.c:5952 c/c-decl.c:6005 c/c-decl.c:6078
#: c/c-decl.c:6179 c/c-parser.c:2401
#, fuzzy, gcc-internal-format
-#| msgid "ISO C forbids qualified function types"
msgid "%<_Atomic%>-qualified function type"
msgstr "ISO C ä¸å…许使用 const 或 volatile é™å®šå‡½æ•°ç±»åž‹"
@@ -28149,55 +27344,46 @@ msgstr "为结构字段指定了%qs"
#: c/c-decl.c:5880
#, fuzzy, gcc-internal-format
-#| msgid "bit-field %qs has invalid type"
msgid "bit-field %qE has atomic type"
msgstr "ä½æ®µ%qs类型无效"
#: c/c-decl.c:5882
#, fuzzy, gcc-internal-format
-#| msgid "bit-field %qs has invalid type"
msgid "bit-field has atomic type"
msgstr "ä½æ®µ%qs类型无效"
#: c/c-decl.c:5891
#, fuzzy, gcc-internal-format
-#| msgid "alignment may not be specified for %q+D"
msgid "alignment specified for typedef %qE"
msgstr "ä¸èƒ½ä¸º%q+D指定对é½"
#: c/c-decl.c:5893
#, fuzzy, gcc-internal-format
-#| msgid "%qs specified for parameter %qE"
msgid "alignment specified for %<register%> object %qE"
msgstr "为形å‚%2$qE指定了%1$qs"
#: c/c-decl.c:5898
#, fuzzy, gcc-internal-format
-#| msgid "%qs specified for parameter %qE"
msgid "alignment specified for parameter %qE"
msgstr "为形å‚%2$qE指定了%1$qs"
#: c/c-decl.c:5900
#, fuzzy, gcc-internal-format
-#| msgid "%qs specified for unnamed parameter"
msgid "alignment specified for unnamed parameter"
msgstr "为无åå½¢å‚指定了%qs"
#: c/c-decl.c:5905
#, fuzzy, gcc-internal-format
-#| msgid "alignment may not be specified for %q+D"
msgid "alignment specified for bit-field %qE"
msgstr "ä¸èƒ½ä¸º%q+D指定对é½"
#: c/c-decl.c:5907
#, fuzzy, gcc-internal-format
-#| msgid "%qs specified for unnamed parameter"
msgid "alignment specified for unnamed bit-field"
msgstr "为无åå½¢å‚指定了%qs"
#: c/c-decl.c:5910
#, fuzzy, gcc-internal-format
-#| msgid "assignment of function %qD"
msgid "alignment specified for function %qE"
msgstr "å‘函数%qD赋值"
@@ -28218,7 +27404,6 @@ msgstr "typedef%q+D声明为%<inline%>"
#: c/c-decl.c:5968
#, fuzzy, gcc-internal-format
-#| msgid "typedef %q+D declared %<inline%>"
msgid "typedef %q+D declared %<_Noreturn%>"
msgstr "typedef%q+D声明为%<inline%>"
@@ -28250,7 +27435,6 @@ msgstr "å½¢å‚%q+D声明为%<inline%>"
#: c/c-decl.c:6111
#, fuzzy, gcc-internal-format
-#| msgid "parameter %q+D declared %<inline%>"
msgid "parameter %q+D declared %<_Noreturn%>"
msgstr "å½¢å‚%q+D声明为%<inline%>"
@@ -28281,19 +27465,16 @@ msgstr "ä¸èƒ½å†…è”%<main%>函数"
#: c/c-decl.c:6223
#, fuzzy, gcc-internal-format
-#| msgid "%qE initialized and declared %<extern%>"
msgid "%<main%> declared %<_Noreturn%>"
msgstr "%qEå·²åˆå§‹åŒ–,å´åˆè¢«å£°æ˜Žä¸º%<extern%>"
#: c/c-decl.c:6236
#, fuzzy, gcc-internal-format
-#| msgid "ISO C99 does not support %<_Static_assert%>"
msgid "ISO C99 does not support %<_Noreturn%>"
msgstr "ISO C90 ä¸æ”¯æŒ%<_Static_assert%>"
#: c/c-decl.c:6239
#, fuzzy, gcc-internal-format
-#| msgid "ISO C90 does not support %<long long%>"
msgid "ISO C90 does not support %<_Noreturn%>"
msgstr "ISO C90 ä¸æ”¯æŒ%<long long%>"
@@ -28309,7 +27490,6 @@ msgstr "å˜é‡%q+D声明为%<inline%>"
#: c/c-decl.c:6280
#, fuzzy, gcc-internal-format
-#| msgid "variable %q+D declared %<inline%>"
msgid "variable %q+D declared %<_Noreturn%>"
msgstr "å˜é‡%q+D声明为%<inline%>"
@@ -28482,7 +27662,6 @@ msgstr "å¯å˜æ•°ç»„是结构中的唯一æˆå‘˜"
#: c/c-decl.c:7352 cp/class.c:6386
#, fuzzy, gcc-internal-format
-#| msgid "size of array %qE is too large"
msgid "type %qT is too large"
msgstr "数组%qE太大"
@@ -28682,13 +27861,11 @@ msgstr "å½¢å‚%qD被设定但未被使用"
#. allow it.
#: c/c-decl.c:8697
#, fuzzy, gcc-internal-format
-#| msgid "%<for%> loop initial declarations are only allowed in C99 mode"
msgid "%<for%> loop initial declarations are only allowed in C99 or C11 mode"
msgstr "åªå…许在 C99 模å¼ä¸‹ä½¿ç”¨%<for%>循环åˆå§‹åŒ–声明"
#: c/c-decl.c:8702
#, fuzzy, gcc-internal-format
-#| msgid "use option -std=c99 or -std=gnu99 to compile your code"
msgid "use option -std=c99, -std=gnu99, -std=c11 or -std=gnu11 to compile your code"
msgstr "使用 -std=c99 或 -std=gnu99 æ¥ç¼–译您的代ç "
@@ -28799,31 +27976,26 @@ msgstr "%qE没有出现在声明的开头"
#: c/c-decl.c:9862
#, fuzzy, gcc-internal-format
-#| msgid "%<__thread%> used with %<auto%>"
msgid "%qE used with %<auto%>"
msgstr "%<__thread%>与%<auto%>一起使用"
#: c/c-decl.c:9864
#, fuzzy, gcc-internal-format
-#| msgid "%<__thread%> used with %<register%>"
msgid "%qE used with %<register%>"
msgstr "%<__thread%>与%<register%>一起使用"
#: c/c-decl.c:9866
#, fuzzy, gcc-internal-format
-#| msgid "%<__thread%> used with %<typedef%>"
msgid "%qE used with %<typedef%>"
msgstr "%<__thread%>与%<typedef%>一起使用"
#: c/c-decl.c:9880 c/c-parser.c:6560
#, fuzzy, gcc-internal-format
-#| msgid "%s does not support %s"
msgid "ISO C99 does not support %qE"
msgstr "%s ä¸æ”¯æŒ %s"
#: c/c-decl.c:9883 c/c-parser.c:6563
#, fuzzy, gcc-internal-format
-#| msgid "ISO C90 does not support %<long long%>"
msgid "ISO C90 does not support %qE"
msgstr "ISO C90 ä¸æ”¯æŒ%<long long%>"
@@ -28849,7 +28021,6 @@ msgstr "声明指定了多个存储类"
#: c/c-decl.c:9933
#, fuzzy, gcc-internal-format
-#| msgid "%qs must be used with %qs"
msgid "%qs used with %qE"
msgstr "%qs必须与%qs一起使用"
@@ -28906,7 +28077,6 @@ msgstr "需è¦æŒ‡å®šå£°æ˜Ž"
#: c/c-parser.c:1535
#, fuzzy, gcc-internal-format
-#| msgid "%<inline%> in empty declaration"
msgid "%<__auto_type%> in empty declaration"
msgstr "%<inline%>用于空声明中"
@@ -28942,13 +28112,11 @@ msgstr "æ•°æ®å®šä¹‰æ—¶æ²¡æœ‰ç±»åž‹æˆ–存储类"
#: c/c-parser.c:1706
#, fuzzy, gcc-internal-format
-#| msgid "%<typeof%> applied to a bit-field"
msgid "%<__auto_type%> used with a bit-field initializer"
msgstr "为ä½æ®µä½¿ç”¨%<typeof%>"
#: c/c-parser.c:1778 c/c-parser.c:1863
#, fuzzy, gcc-internal-format
-#| msgid "%<auto%> in file-scope empty declaration"
msgid "%<__auto_type%> requires an initialized data declaration"
msgstr "文件作用域中出现%<auto%>空声明"
@@ -29022,19 +28190,16 @@ msgstr ""
#: c/c-parser.c:2372
#, fuzzy, gcc-internal-format
-#| msgid "ISO C99 does not support %<_Static_assert%>"
msgid "ISO C99 does not support the %<_Atomic%> qualifier"
msgstr "ISO C90 ä¸æ”¯æŒ%<_Static_assert%>"
#: c/c-parser.c:2375
#, fuzzy, gcc-internal-format
-#| msgid "ISO C90 does not support %<_Static_assert%>"
msgid "ISO C90 does not support the %<_Atomic%> qualifier"
msgstr "ISO C90 ä¸æ”¯æŒ%<_Static_assert%>"
#: c/c-parser.c:2403
#, fuzzy, gcc-internal-format
-#| msgid "%<typeof%> applied to a bit-field"
msgid "%<_Atomic%> applied to a qualified type"
msgstr "为ä½æ®µä½¿ç”¨%<typeof%>"
@@ -29109,13 +28274,11 @@ msgstr "为ä½æ®µä½¿ç”¨%<typeof%>"
#: c/c-parser.c:3049
#, fuzzy, gcc-internal-format
-#| msgid "ISO C90 does not support %<long long%>"
msgid "ISO C99 does not support %<_Alignas%>"
msgstr "ISO C90 ä¸æ”¯æŒ%<long long%>"
#: c/c-parser.c:3052
#, fuzzy, gcc-internal-format
-#| msgid "ISO C90 does not support %<long long%>"
msgid "ISO C90 does not support %<_Alignas%>"
msgstr "ISO C90 ä¸æ”¯æŒ%<long long%>"
@@ -29126,7 +28289,6 @@ msgstr "需è¦æ ‡è¯†ç¬¦æˆ–%<(%>"
#: c/c-parser.c:3349 c/c-parser.c:3378
#, fuzzy, gcc-internal-format
-#| msgid "Warn for obsolescent usage in a declaration"
msgid "array notations cannot be used in declaration"
msgstr "对声明中的过时用法给出警告"
@@ -29306,37 +28468,31 @@ msgstr "对ä½æ®µä½¿ç”¨%<sizeof%>"
#: c/c-parser.c:6616
#, fuzzy, gcc-internal-format
-#| msgid "ISO C++ does not allow %<alignof%> with a non-type"
msgid "ISO C does not allow %<%E (expression)%>"
msgstr "ISO C++ ä¸å…许对éžç±»åž‹ä½¿ç”¨%<alignof%>"
#: c/c-parser.c:6643
#, fuzzy, gcc-internal-format
-#| msgid "cannot take address of bit-field %qD"
msgid "cannot take address of %qs"
msgstr "无法å–å¾—ä½æ®µ%qD的地å€"
#: c/c-parser.c:6727
#, fuzzy, gcc-internal-format
-#| msgid "ISO C99 does not support %<_Static_assert%>"
msgid "ISO C99 does not support %<_Generic%>"
msgstr "ISO C90 ä¸æ”¯æŒ%<_Static_assert%>"
#: c/c-parser.c:6730
#, fuzzy, gcc-internal-format
-#| msgid "ISO C90 does not support %<_Static_assert%>"
msgid "ISO C90 does not support %<_Generic%>"
msgstr "ISO C90 ä¸æ”¯æŒ%<_Static_assert%>"
#: c/c-parser.c:6797
#, fuzzy, gcc-internal-format
-#| msgid "cast specifies function type"
msgid "%<_Generic%> association has function type"
msgstr "类型转æ¢æŒ‡å®šäº†å‡½æ•°ç±»åž‹"
#: c/c-parser.c:6800
#, fuzzy, gcc-internal-format
-#| msgid "expression statement has incomplete type"
msgid "%<_Generic%> association has incomplete type"
msgstr "表达å¼è¯­å¥ç±»åž‹ä¸å®Œå…¨"
@@ -29352,7 +28508,6 @@ msgstr ""
#: c/c-parser.c:6829
#, fuzzy, gcc-internal-format
-#| msgid "originally defined here"
msgid "original %<default%> is here"
msgstr "原先在这里定义"
@@ -29368,7 +28523,6 @@ msgstr "指针目标类型在 C++ 中ä¸å…¼å®¹"
#: c/c-parser.c:6861
#, fuzzy, gcc-internal-format
-#| msgid "Generate load/store multiple instructions"
msgid "%<_Generic> selector matches multiple associations"
msgstr "生æˆåŠ è½½/存储乘法指令"
@@ -29399,7 +28553,6 @@ msgstr "ISO C ä¸å…许在表达å¼ä¸­ä½¿ç”¨èŠ±æ‹¬å·ç»„"
#: c/c-parser.c:7265
#, fuzzy, gcc-internal-format
-#| msgid "wrong number of arguments to function %<__builtin_next_arg%>"
msgid "wrong number of arguments to %<__builtin_choose_expr%>"
msgstr "给函数%<__builtin_next_arg%>çš„å‚æ•°æ•°ç›®ä¸å¯¹"
@@ -29410,7 +28563,6 @@ msgstr "%<__builtin_choose_expr%>的第一个实å‚ä¸æ˜¯ä¸€ä¸ªå¸¸é‡"
#: c/c-parser.c:7347
#, fuzzy, gcc-internal-format
-#| msgid "wrong number of arguments to function %<__builtin_next_arg%>"
msgid "wrong number of arguments to %<__builtin_complex%>"
msgstr "给函数%<__builtin_next_arg%>çš„å‚æ•°æ•°ç›®ä¸å¯¹"
@@ -29421,13 +28573,11 @@ msgstr ""
#: c/c-parser.c:7378
#, fuzzy, gcc-internal-format
-#| msgid "%<__builtin_longjmp%> second argument must be 1"
msgid "%<__builtin_complex%> operands of different types"
msgstr "%<__builtin_longjmp%>的第二个实å‚必须是 1"
#: c/c-parser.c:7424 cp/parser.c:5861
#, fuzzy, gcc-internal-format
-#| msgid "wrong number of arguments to function %<__builtin_next_arg%>"
msgid "wrong number of arguments to %<__builtin_shuffle%>"
msgstr "给函数%<__builtin_next_arg%>çš„å‚æ•°æ•°ç›®ä¸å¯¹"
@@ -29538,19 +28688,16 @@ msgstr "%<#pragma omp taskwait%>åªèƒ½ç”¨åœ¨å¤åˆè¯­å¥ä¸­"
#: c/c-parser.c:9422 cp/parser.c:31380
#, fuzzy, gcc-internal-format
-#| msgid "%<#pragma omp taskwait%> may only be used in compound statements"
msgid "%<#pragma omp taskyield%> may only be used in compound statements"
msgstr "%<#pragma omp taskwait%>åªèƒ½ç”¨åœ¨å¤åˆè¯­å¥ä¸­"
#: c/c-parser.c:9433 cp/parser.c:31396
#, fuzzy, gcc-internal-format
-#| msgid "%<#pragma omp barrier%> may only be used in compound statements"
msgid "%<#pragma omp cancel%> may only be used in compound statements"
msgstr "%<#pragma omp barrier%>åªèƒ½ç”¨åœ¨å¤åˆè¯­å¥ä¸­"
#: c/c-parser.c:9444 cp/parser.c:31412
#, fuzzy, gcc-internal-format
-#| msgid "%<#pragma omp taskwait%> may only be used in compound statements"
msgid "%<#pragma omp cancellation point%> may only be used in compound statements"
msgstr "%<#pragma omp taskwait%>åªèƒ½ç”¨åœ¨å¤åˆè¯­å¥ä¸­"
@@ -29561,7 +28708,6 @@ msgstr "%<#pragma omp section%>åªèƒ½ç”¨åœ¨%<#pragma omp sections%>结构中"
#: c/c-parser.c:9479 cp/parser.c:31468
#, fuzzy, gcc-internal-format
-#| msgid "for statement expected"
msgid "for, while or do statement expected"
msgstr "éœ€è¦ for 语å¥"
@@ -29598,7 +28744,6 @@ msgstr "%<num_threads%>值必须为正"
#: c/c-parser.c:10195
#, fuzzy, gcc-internal-format
-#| msgid "expected %<+%>, %<*%>, %<-%>, %<&%>, %<^%>, %<|%>, %<&&%>, or %<||%>"
msgid "expected %<+%>, %<*%>, %<-%>, %<&%>, %<^%>, %<|%>, %<&&%>, %<||%>, %<min%> or %<max%>"
msgstr "需è¦%<+%>ã€%<*%>ã€%<-%>ã€%<&%>ã€%<^%>ã€%<|%>ã€%<&&%>或%<||%>"
@@ -29619,19 +28764,16 @@ msgstr "无效的调度类型"
#: c/c-parser.c:10410
#, fuzzy, gcc-internal-format
-#| msgid "%<num_threads%> value must be positive"
msgid "%<num_teams%> value must be positive"
msgstr "%<num_threads%>值必须为正"
#: c/c-parser.c:10454
#, fuzzy, gcc-internal-format
-#| msgid "%<num_threads%> value must be positive"
msgid "%<thread_limit%> value must be positive"
msgstr "%<num_threads%>值必须为正"
#: c/c-parser.c:10496 cp/semantics.c:5589
#, fuzzy, gcc-internal-format
-#| msgid "%Hcollapse argument needs positive constant integer expression"
msgid "%<aligned%> clause alignment expression must be positive constant integer expression"
msgstr "%H折å å˜é‡éœ€è¦æ­£æ•´å¸¸æ•°è¡¨è¾¾å¼"
@@ -29642,49 +28784,41 @@ msgstr ""
#: c/c-parser.c:10538
#, fuzzy, gcc-internal-format
-#| msgid "schedule chunk size expression must be integral"
msgid "%<linear%> clause step expression must be integral"
msgstr "调度å—大å°è¡¨è¾¾å¼å¿…须为整型"
#: c/c-parser.c:10575
#, fuzzy, gcc-internal-format
-#| msgid "%Hcollapse argument needs positive constant integer expression"
msgid "%<safelen%> clause expression must be positive constant integer expression"
msgstr "%H折å å˜é‡éœ€è¦æ­£æ•´å¸¸æ•°è¡¨è¾¾å¼"
#: c/c-parser.c:10611
#, fuzzy, gcc-internal-format
-#| msgid "%Hcollapse argument needs positive constant integer expression"
msgid "%<simdlen%> clause expression must be positive constant integer expression"
msgstr "%H折å å˜é‡éœ€è¦æ­£æ•´å¸¸æ•°è¡¨è¾¾å¼"
#: c/c-parser.c:10673 cp/parser.c:27875 cp/parser.c:28058
#, fuzzy, gcc-internal-format
-#| msgid "invalid schedule kind"
msgid "invalid depend kind"
msgstr "无效的调度类型"
#: c/c-parser.c:10710 cp/parser.c:27915
#, fuzzy, gcc-internal-format
-#| msgid "invalid mask"
msgid "invalid map kind"
msgstr "无效掩ç "
#: c/c-parser.c:10775 cp/parser.c:28005
#, fuzzy, gcc-internal-format
-#| msgid "invalid schedule kind"
msgid "invalid dist_schedule kind"
msgstr "无效的调度类型"
#: c/c-parser.c:10844
#, fuzzy, gcc-internal-format
-#| msgid "invalid schedule kind"
msgid "invalid proc_bind kind"
msgstr "无效的调度类型"
#: c/c-parser.c:10999 cp/parser.c:28194
#, fuzzy, gcc-internal-format
-#| msgid "%qs must be used with %qs"
msgid "%qs must be the first clause of %qs"
msgstr "%qs必须与%qs一起使用"
@@ -29700,7 +28834,6 @@ msgstr "%qs对%qs而言无效"
#: c/c-parser.c:11459 cp/parser.c:28653 cp/parser.c:28679
#, fuzzy, gcc-internal-format
-#| msgid "invalid operator for %<#pragma omp atomic%>"
msgid "invalid form of %<#pragma omp atomic%>"
msgstr "%<#pragma omp atomic%>è¿ç®—符无效"
@@ -29746,19 +28879,16 @@ msgstr "迭代å˜é‡%qDä¸åº”当是 firstprivate"
#: c/c-parser.c:12219 cp/parser.c:29731
#, fuzzy, gcc-internal-format
-#| msgid "expected %<operator%>"
msgid "expected %<for%> after %qs"
msgstr "需è¦%<operator%>"
#: c/c-parser.c:12411 cp/parser.c:29918
#, fuzzy, gcc-internal-format
-#| msgid "expected %<using%>"
msgid "expected %<point%>"
msgstr "需è¦%<using%>"
#: c/c-parser.c:12615 cp/parser.c:30140
#, fuzzy, gcc-internal-format
-#| msgid "%<#pragma omp taskwait%> may only be used in compound statements"
msgid "%<#pragma omp target update%> may only be used in compound statements"
msgstr "%<#pragma omp taskwait%>åªèƒ½ç”¨åœ¨å¤åˆè¯­å¥ä¸­"
@@ -29774,7 +28904,6 @@ msgstr ""
#: c/c-parser.c:12817 c/c-parser.c:12845
#, fuzzy, gcc-internal-format
-#| msgid "%<#pragma align%> must appear before the declaration of %D, ignoring"
msgid "%<#pragma omp declare simd%> must be followed by function declaration or definition"
msgstr "%<#pragma align%>必须出现在 %D 的声明之å‰ï¼Œå¿½ç•¥"
@@ -29795,19 +28924,16 @@ msgstr ""
#: c/c-parser.c:12983 cp/parser.c:30450
#, fuzzy, gcc-internal-format
-#| msgid "expected %<try%>"
msgid "expected %<target%>"
msgstr "需è¦%<try%>"
#: c/c-parser.c:12990 cp/parser.c:30457
#, fuzzy, gcc-internal-format
-#| msgid "expected %<decltype%>"
msgid "expected %<declare%>"
msgstr "需è¦%<decltype%>"
#: c/c-parser.c:12996 cp/parser.c:30464
#, fuzzy, gcc-internal-format
-#| msgid "%<#pragma GCC pop_options%> without a corresponding %<#pragma GCC push_options%>"
msgid "%<#pragma omp end declare target%> without corresponding %<#pragma omp declare target%>"
msgstr "%<#pragma GCC pop_options%>缺少相应的%<#pragma GCC push_options%>"
@@ -29818,7 +28944,6 @@ msgstr "Objective-C 声明åªèƒ½å‡ºçŽ°åœ¨å…¨å±€ä½œç”¨åŸŸä¸­"
#: c/c-parser.c:13074
#, fuzzy, gcc-internal-format
-#| msgid "expected %<+%>, %<*%>, %<-%>, %<&%>, %<^%>, %<|%>, %<&&%>, or %<||%>"
msgid "expected %<+%>, %<*%>, %<-%>, %<&%>, %<^%>, %<|%>, %<&&%>, %<||%>, %<min%> or identifier"
msgstr "需è¦%<+%>ã€%<*%>ã€%<-%>ã€%<&%>ã€%<^%>ã€%<|%>ã€%<&&%>或%<||%>"
@@ -29844,19 +28969,16 @@ msgstr ""
#: c/c-parser.c:13125
#, fuzzy, gcc-internal-format
-#| msgid "previous declaration"
msgid "previous %<#pragma omp declare reduction%>"
msgstr "上一个声明"
#: c/c-parser.c:13242
#, fuzzy, gcc-internal-format
-#| msgid "expected %<(%> or end of line"
msgid "expected %<omp_priv%> or function-name"
msgstr "需è¦%<(%>或行尾"
#: c/c-parser.c:13253
#, fuzzy, gcc-internal-format
-#| msgid "expected function"
msgid "expected function-name %<(%>"
msgstr "需è¦å‡½æ•°"
@@ -29867,7 +28989,6 @@ msgstr ""
#: c/c-parser.c:13388 cp/parser.c:30900
#, fuzzy, gcc-internal-format
-#| msgid "expected %<#pragma omp section%> or %<}%>"
msgid "expected %<simd%> or %<reduction%> or %<target%>"
msgstr "需è¦%<#pragma omp section%>或%<}%>"
@@ -29898,31 +29019,26 @@ msgstr ""
#: c/c-parser.c:13536
#, fuzzy, gcc-internal-format
-#| msgid "#pragma GCC optimize is not allowed inside functions"
msgid "pragma simd must be inside a function"
msgstr "#pragma GCC optimize ä¸å…许用在函数中"
#: c/c-parser.c:13580 cp/parser.c:31586
#, fuzzy, gcc-internal-format
-#| msgid "selector must be an integer constant in the range 0..%wi"
msgid "vectorlength must be an integer constant"
msgstr "选择å­å¿…须是 0 到 %wi 间的整常é‡"
#: c/c-parser.c:13582 cp/parser.c:31589
#, fuzzy, gcc-internal-format
-#| msgid "stack size must be an exact power of 2"
msgid "vectorlength must be a power of 2"
msgstr "栈大å°å¿…须刚好是 2 çš„æŸæ¬¡æ–¹"
#: c/c-parser.c:13665 cp/parser.c:31696
#, fuzzy, gcc-internal-format
-#| msgid "selector must be an integer constant in the range 0..%wi"
msgid "step size must be an integer constant expression or an integer variable"
msgstr "选择å­å¿…须是 0 到 %wi 间的整常é‡"
#: c/c-parser.c:13764 cp/parser.c:31789
#, fuzzy, gcc-internal-format
-#| msgid "expected %<#pragma omp%> clause"
msgid "expected %<#pragma simd%> clause"
msgstr "需è¦%<#pragma omp%>å­å¥"
@@ -29953,7 +29069,6 @@ msgstr ""
#: c/c-parser.c:14059 cp/parser.c:6263
#, fuzzy, gcc-internal-format
-#| msgid "expected %<:%> or %<::%>"
msgid "expected %<:%> or numeral"
msgstr "需è¦%<:%>或%<::%>"
@@ -29964,7 +29079,6 @@ msgstr ""
#: c/c-parser.c:14077 c/c-parser.c:14120
#, fuzzy, gcc-internal-format
-#| msgid "new cannot be applied to a function type"
msgid "array notations cannot be used with function type"
msgstr "new ä¸èƒ½ç”¨äºŽå‡½æ•°ç±»åž‹"
@@ -29980,7 +29094,6 @@ msgstr ""
#: c/c-parser.c:14148 c/c-parser.c:14151
#, fuzzy, gcc-internal-format
-#| msgid "expected boolean expression"
msgid "expected array notation expression"
msgstr "需è¦å¸ƒå°”表达å¼"
@@ -30062,7 +29175,6 @@ msgstr "在指å‘ä¸å®Œå…¨ç±»åž‹çš„指针上执行算术è¿ç®—"
#: c/c-typeck.c:1832
#, fuzzy, gcc-internal-format
-#| msgid "defining a type in a compound literal is invalid in C++"
msgid "converting an array compound literal to a pointer is ill-formed in C++"
msgstr "C++ ä¸å…许在组åˆå­—é¢å¸¸é‡ä¸­å®šä¹‰ç±»åž‹"
@@ -30088,7 +29200,6 @@ msgstr "æ领%<void *%>指针"
#: c/c-typeck.c:2434
#, fuzzy, gcc-internal-format
-#| msgid "alignment of array elements is greater than element size"
msgid "rank of the array's index is greater than 1"
msgstr "数组元素的对é½è¾¹ç•Œæ¯”元素大å°è¿˜è¦å¤§"
@@ -30129,19 +29240,16 @@ msgstr "在此声明"
#: c/c-typeck.c:2881
#, fuzzy, gcc-internal-format
-#| msgid "called object %qE is not a function"
msgid "called object %qE is not a function or function pointer"
msgstr "被调用的对象%qEä¸æ˜¯ä¸€ä¸ªå‡½æ•°"
#: c/c-typeck.c:2886
#, fuzzy, gcc-internal-format
-#| msgid "called object %qE is not a function"
msgid "called object %qD is not a function or function pointer"
msgstr "被调用的对象%qEä¸æ˜¯ä¸€ä¸ªå‡½æ•°"
#: c/c-typeck.c:2892
#, fuzzy, gcc-internal-format
-#| msgid "called object %qE is not a function"
msgid "called object is not a function or function pointer"
msgstr "被调用的对象%qEä¸æ˜¯ä¸€ä¸ªå‡½æ•°"
@@ -30250,7 +29358,6 @@ msgstr "函数指针ä¸èƒ½ç›¸å‡"
#: c/c-typeck.c:3515 cp/typeck.c:5054
#, fuzzy, gcc-internal-format
-#| msgid "arithmetic on pointer to an incomplete type"
msgid "arithmetic on pointer to an empty aggregate"
msgstr "在指å‘ä¸å®Œå…¨ç±»åž‹çš„指针上执行算术è¿ç®—"
@@ -30366,7 +29473,6 @@ msgstr "æ¡ä»¶è¡¨è¾¾å¼ä¸­æŒ‡é’ˆ/整数类型ä¸åŒ¹é…"
#: c/c-typeck.c:4725 cp/typeck.c:6204
#, fuzzy, gcc-internal-format
-#| msgid "a function call cannot appear in a constant-expression"
msgid "spawned function call cannot be part of a comma expression"
msgstr "函数调用ä¸èƒ½å‡ºçŽ°åœ¨å¸¸é‡è¡¨è¾¾å¼ä¸­"
@@ -30377,7 +29483,6 @@ msgstr "逗å·è¡¨è¾¾å¼çš„å·¦æ“作数ä¸èµ·ä½œç”¨"
#: c/c-typeck.c:4777 c/c-typeck.c:9666
#, fuzzy, gcc-internal-format
-#| msgid "left-hand operand of comma expression has no effect"
msgid "right-hand operand of comma expression has no effect"
msgstr "逗å·è¡¨è¾¾å¼çš„å·¦æ“作数ä¸èµ·ä½œç”¨"
@@ -30473,7 +29578,6 @@ msgstr "C++ ç¦æ­¢åœ¨ç±»åž‹è½¬æ¢ä¸­å®šä¹‰ç±»åž‹"
#: c/c-typeck.c:5214
#, fuzzy, gcc-internal-format
-#| msgid "assignment suppression"
msgid "assignment to expression with array type"
msgstr "å–消赋值"
@@ -30819,7 +29923,6 @@ msgstr "在嵌套的上下文中åˆå§‹åŒ–å¯å˜æ•°ç»„æˆå‘˜"
#: c/c-typeck.c:7436
#, fuzzy, gcc-internal-format
-#| msgid "missing initializer for member %qD"
msgid "missing initializer for field %qD of %qT"
msgstr "æˆå‘˜%qD缺少åˆå§‹å€¼è®¾å®š"
@@ -30945,7 +30048,6 @@ msgstr ""
#: c/c-typeck.c:9139 cp/typeck.c:8333
#, fuzzy, gcc-internal-format
-#| msgid "Logical range in CASE statement at %L is not allowed"
msgid "use of %<_Cilk_spawn%> in a return statement is not allowed"
msgstr "%L处 CASE 语å¥ä¸­çš„逻辑范围是ä¸è¢«å…许的"
@@ -31031,13 +30133,11 @@ msgstr "OpenMP for 循环中使用了 break 语å¥"
#: c/c-typeck.c:9621
#, fuzzy, gcc-internal-format
-#| msgid "break statement not within loop or switch"
msgid "break statement within %<#pragma simd%> loop body"
msgstr "break 语å¥ä¸åœ¨å¾ªçŽ¯æˆ–开关语å¥å†…"
#: c/c-typeck.c:9623 cp/parser.c:10656
#, fuzzy, gcc-internal-format
-#| msgid "continue statement not within a loop"
msgid "continue statement within %<#pragma simd%> loop body"
msgstr "continue 语å¥å‡ºçŽ°åœ¨å¾ªçŽ¯ä»¥å¤–"
@@ -31053,7 +30153,6 @@ msgstr "表达å¼è¯­å¥ç±»åž‹ä¸å®Œå…¨"
#: c/c-typeck.c:10464 c/c-typeck.c:10601 cp/typeck.c:4570
#, fuzzy, gcc-internal-format
-#| msgid "Warn about comparison of different enum types"
msgid "comparing vectors with different element types"
msgstr "对ä¸åŒæžšä¸¾ç±»åž‹ä¹‹é—´çš„比较给出警告"
@@ -31140,7 +30239,6 @@ msgstr "需è¦æ ‡é‡æ—¶ä½¿ç”¨äº†è”åˆç±»åž‹"
#: c/c-typeck.c:11053
#, fuzzy, gcc-internal-format
-#| msgid "used struct type value where scalar is required"
msgid "used vector type where scalar is required"
msgstr "需è¦æ ‡é‡æ—¶ä½¿ç”¨äº†ç»“构类型"
@@ -31156,33 +30254,28 @@ msgstr ""
#: c/c-typeck.c:11269 cp/semantics.c:4222 cp/semantics.c:5655
#, fuzzy, gcc-internal-format
-#| msgid "%qD is not a variable in clause %qs"
msgid "%qD is not a variable in %qs clause"
msgstr "%qD在å­å¥%qs中ä¸æ˜¯ä¸€ä¸ªå˜é‡"
#: c/c-typeck.c:11273 c/c-typeck.c:12044 cp/semantics.c:4226
#: cp/semantics.c:5658
#, fuzzy, gcc-internal-format
-#| msgid "%qE is not a variable in clause %qs"
msgid "%qE is not a variable in %qs clause"
msgstr "%qE在å­å¥%qs中ä¸æ˜¯ä¸€ä¸ªå˜é‡"
#: c/c-typeck.c:11281 c/c-typeck.c:12051 cp/semantics.c:4234
#: cp/semantics.c:5664
#, fuzzy, gcc-internal-format
-#| msgid "%qD is not a variable in clause %qs"
msgid "%qD is threadprivate variable in %qs clause"
msgstr "%qD在å­å¥%qs中ä¸æ˜¯ä¸€ä¸ªå˜é‡"
#: c/c-typeck.c:11303 cp/semantics.c:4260
#, fuzzy, gcc-internal-format
-#| msgid "size in array new must have integral type"
msgid "low bound %qE of array section does not have integral type"
msgstr "数组 new 的大å°å¿…须有整数类型"
#: c/c-typeck.c:11310 cp/semantics.c:4267
#, fuzzy, gcc-internal-format
-#| msgid "size in array new must have integral type"
msgid "length %qE of array section does not have integral type"
msgstr "数组 new 的大å°å¿…须有整数类型"
@@ -31198,7 +30291,6 @@ msgstr ""
#: c/c-typeck.c:11359 cp/semantics.c:4316
#, fuzzy, gcc-internal-format
-#| msgid "variable length array is used"
msgid "negative length in array section in %qs clause"
msgstr "使用了å˜é•¿æ•°ç»„"
@@ -31219,14 +30311,12 @@ msgstr ""
#: c/c-typeck.c:11447 cp/semantics.c:4404
#, fuzzy, gcc-internal-format
-#| msgid "for increment expression has no effect"
msgid "for pointer type length expression must be specified"
msgstr "for 循环増é‡è¡¨è¾¾å¼ä¸èµ·ä½œç”¨"
#: c/c-typeck.c:11456 c/c-typeck.c:11571 cp/semantics.c:4413
#: cp/semantics.c:4524
#, fuzzy, gcc-internal-format
-#| msgid "Copy array sections into a contiguous block on procedure entry"
msgid "array section is not contiguous in %qs clause"
msgstr "在过程入å£å¤„将数组段å¤åˆ¶åˆ°ä¸€ä¸ªè¿žç»­çš„å—中"
@@ -31282,25 +30372,21 @@ msgstr "%qE在å­å¥%<lastprivate%>中ä¸æ˜¯ä¸€ä¸ªå˜é‡"
#: c/c-typeck.c:11975 cp/semantics.c:5545
#, fuzzy, gcc-internal-format
-#| msgid "%qE is not a variable in clause %qs"
msgid "%qE is not a variable in %<aligned%> clause"
msgstr "%qE在å­å¥%qs中ä¸æ˜¯ä¸€ä¸ªå˜é‡"
#: c/c-typeck.c:11982
#, fuzzy, gcc-internal-format
-#| msgid "type to vector delete is neither pointer or array type"
msgid "%qE in %<aligned%> clause is neither a pointer nor an array"
msgstr "å‘é‡ delete 的实å‚类型既éžæŒ‡é’ˆä¹Ÿéžæ•°ç»„"
#: c/c-typeck.c:11989
#, fuzzy, gcc-internal-format
-#| msgid "%qE appears more than once in data clauses"
msgid "%qE appears more than once in %<aligned%> clauses"
msgstr "%qE在数æ®å­å¥ä¸­å¤šæ¬¡å‡ºçŽ°"
#: c/c-typeck.c:12010 cp/semantics.c:5615
#, fuzzy, gcc-internal-format
-#| msgid "%qE is not a variable in clause %qs"
msgid "%qE is not a variable in %<depend%> clause"
msgstr "%qE在å­å¥%qs中ä¸æ˜¯ä¸€ä¸ªå˜é‡"
@@ -31311,31 +30397,26 @@ msgstr "在 %L 处的推迟数组“%1$sâ€åœ¨åˆå§‹åŒ–表达å¼ä¸­ä¸è¢«å…许"
#: c/c-typeck.c:12062 cp/semantics.c:5680
#, fuzzy, gcc-internal-format
-#| msgid "%qD is not a variable in clause %qs"
msgid "%qD does not have a mappable type in %qs clause"
msgstr "%qD在å­å¥%qs中ä¸æ˜¯ä¸€ä¸ªå˜é‡"
#: c/c-typeck.c:12069 cp/semantics.c:5687
#, fuzzy, gcc-internal-format
-#| msgid "%qD appears more than once in data clauses"
msgid "%qD appears more than once in motion clauses"
msgstr "%qD在数æ®å­å¥ä¸­å¤šæ¬¡å‡ºçŽ°"
#: c/c-typeck.c:12071 cp/semantics.c:5689
#, fuzzy, gcc-internal-format
-#| msgid "%qD appears more than once in data clauses"
msgid "%qD appears more than once in map clauses"
msgstr "%qD在数æ®å­å¥ä¸­å¤šæ¬¡å‡ºçŽ°"
#: c/c-typeck.c:12084 cp/semantics.c:5703
#, fuzzy, gcc-internal-format
-#| msgid "%qD is not a variable in clause %qs"
msgid "%qD is not an argument in %<uniform%> clause"
msgstr "%qD在å­å¥%qs中ä¸æ˜¯ä¸€ä¸ªå˜é‡"
#: c/c-typeck.c:12087 cp/semantics.c:5705
#, fuzzy, gcc-internal-format
-#| msgid "%qE is not a variable in clause %qs"
msgid "%qE is not an argument in %<uniform%> clause"
msgstr "%qE在å­å¥%qs中ä¸æ˜¯ä¸€ä¸ªå˜é‡"
@@ -31424,7 +30505,6 @@ msgstr ""
#. Re-run template unification with diagnostics.
#: cp/call.c:3279
#, fuzzy, gcc-internal-format
-#| msgid "template argument %d is invalid"
msgid " template argument deduction/substitution failed:"
msgstr "模æ¿ç¬¬ %d 个å‚数无效"
@@ -31472,25 +30552,21 @@ msgstr "对%<(%T) (%A)%>的调用有歧义"
#: cp/call.c:4245
#, fuzzy, gcc-internal-format
-#| msgid "ambiguous overload for %qs in %<%s %E%>"
msgid "ambiguous overload for "
msgstr "%qs在%<%s %E%>中的é‡è½½æœ‰æ­§ä¹‰"
#: cp/call.c:4246
#, fuzzy, gcc-internal-format
-#| msgid "no match for %qs in %<%s %E%>"
msgid "no match for "
msgstr "%qs在%<%s %E%>中没有匹é…"
#: cp/call.c:4249
#, fuzzy, gcc-internal-format
-#| msgid "invalid operands to binary %s (have %qT and %qT)"
msgid " (operand types are %qT, %qT, and %qT)"
msgstr "åŒç›®è¿ç®—符 %s æ“作数(%qTå’Œ%qT)无效"
#: cp/call.c:4251
#, fuzzy, gcc-internal-format
-#| msgid "invalid operands to binary %s (have %qT and %qT)"
msgid " (operand types are %qT and %qT)"
msgstr "åŒç›®è¿ç®—符 %s æ“作数(%qTå’Œ%qT)无效"
@@ -31501,61 +30577,51 @@ msgstr ""
#: cp/call.c:4273
#, fuzzy, gcc-internal-format
-#| msgid "expected %<operator%>"
msgid "ternary %<operator?:%>"
msgstr "需è¦%<operator%>"
#: cp/call.c:4277
#, fuzzy, gcc-internal-format
-#| msgid "no match for ternary %<operator?:%> in %<%E ? %E : %E%>"
msgid "ternary %<operator?:%> in %<%E ? %E : %E%>"
msgstr "三元%<operator?:%>在%<%E ? %E : %E%>中没有匹é…"
#: cp/call.c:4286 cp/call.c:4317 cp/call.c:4326
#, fuzzy, gcc-internal-format
-#| msgid "expected %<operator%>"
msgid "%<operator%s%>"
msgstr "需è¦%<operator%>"
#: cp/call.c:4289
#, fuzzy, gcc-internal-format
-#| msgid "no match for %<operator%s%> in %<%E%s%>"
msgid "%<operator%s%> in %<%E%s%>"
msgstr "%<operator%s%>在%<%E%s%>中没有匹é…"
#: cp/call.c:4296
#, fuzzy, gcc-internal-format
-#| msgid "expected %<operator%>"
msgid "%<operator[]%>"
msgstr "需è¦%<operator%>"
#: cp/call.c:4299
#, fuzzy, gcc-internal-format
-#| msgid "no match for %<operator[]%> in %<%E[%E]%>"
msgid "%<operator[]%> in %<%E[%E]%>"
msgstr "%<operator[]%>在%<%E[%E]%>中没有匹é…"
#: cp/call.c:4307
#, fuzzy, gcc-internal-format
-#| msgid "%s"
msgid "%qs"
msgstr "%s"
#: cp/call.c:4310
#, fuzzy, gcc-internal-format
-#| msgid "no match for %qs in %<%s %E%>"
msgid "%qs in %<%s %E%>"
msgstr "%qs在%<%s %E%>中没有匹é…"
#: cp/call.c:4320
#, fuzzy, gcc-internal-format
-#| msgid "no match for %<operator%s%> in %<%E %s %E%>"
msgid "%<operator%s%> in %<%E %s %E%>"
msgstr "%<operator%s%>在%<%E %s %E%>中没有匹é…"
#: cp/call.c:4329
#, fuzzy, gcc-internal-format
-#| msgid "no match for %<operator%s%> in %<%s%E%>"
msgid "%<operator%s%> in %<%s%E%>"
msgstr "%<operator%s%>在%<%s%E%>中没有匹é…"
@@ -31571,7 +30637,6 @@ msgstr ""
#: cp/call.c:4554
#, fuzzy, gcc-internal-format
-#| msgid "enumeral mismatch in conditional expression: %qT vs %qT"
msgid "incompatible vector types in conditional expression: %qT, %qT and %qT"
msgstr "æ¡ä»¶è¡¨è¾¾å¼ä¸­æžšä¸¾ä¸åŒ¹é…:%qT对%qT"
@@ -31672,7 +30737,6 @@ msgstr "å°†%<false%>转æ¢ä¸ºæŒ‡å‘%2$qDçš„å®žå‚ %1$P 的指针类型"
#: cp/call.c:5883
#, fuzzy, gcc-internal-format
-#| msgid "converting %<false%> to pointer type for argument %P of %qD"
msgid "converting %<false%> to pointer type %qT"
msgstr "å°†%<false%>转æ¢ä¸ºæŒ‡å‘%2$qDçš„å®žå‚ %1$P 的指针类型"
@@ -31683,7 +30747,6 @@ msgstr "%qTçš„åˆå§‹å€¼è®¾å®šå‘¨å›´èŠ±æ‹¬å·å¤ªå¤š"
#: cp/call.c:5940
#, fuzzy, gcc-internal-format
-#| msgid "invalid conversion from %qT to %qT"
msgid "invalid user-defined conversion from %qT to %qT"
msgstr "从类型%qT到类型%qT的转æ¢æ— æ•ˆ"
@@ -31694,7 +30757,6 @@ msgstr "从类型%qT到类型%qT的转æ¢æ— æ•ˆ"
#: cp/call.c:5975
#, fuzzy, gcc-internal-format
-#| msgid " initializing argument %P of %qD"
msgid "initializing argument %P of %qD"
msgstr " åˆå§‹åŒ–%2$qDçš„å®žå‚ %1$P"
@@ -31705,7 +30767,6 @@ msgstr "从åˆå§‹åŒ–列表转æ¢ä¸º%qT将使用显å¼æž„造函数%qD"
#: cp/call.c:6080 cp/call.c:6219
#, fuzzy, gcc-internal-format
-#| msgid " initializing argument %P of %q+D"
msgid "initializing argument %P of %q+D"
msgstr "以åˆå§‹åŒ–%2$q+Dçš„å®žå‚ %1$P"
@@ -31736,7 +30797,6 @@ msgstr "无法将å³å€¼%qE绑定到%qT"
#: cp/call.c:6370 cp/cvt.c:1720
#, fuzzy, gcc-internal-format
-#| msgid "class %qT will be considered nearly empty in a future version of GCC"
msgid "scoped enum %qT will not promote to an integral type in a future version of GCC"
msgstr "在 GCC 的未æ¥ç‰ˆæœ¬ä¸­ç±»%qT将被看作几乎为空"
@@ -31758,7 +30818,6 @@ msgstr "递归计算%q#D的默认å‚æ•°"
#: cp/call.c:6507
#, fuzzy, gcc-internal-format
-#| msgid "the default argument for parameter %d of %qD has not yet been parsed"
msgid "call to %qD uses the default argument for parameter %P, which is not yet defined"
msgstr "%2$qD的第 %1$d 个形å‚的默认实å‚尚未被解æžåˆ°"
@@ -31769,7 +30828,6 @@ msgstr "函数的实å‚å¯èƒ½æ˜¯ format 属性的备选"
#: cp/call.c:6668
#, fuzzy, gcc-internal-format
-#| msgid "defaulted function %q+D with default argument"
msgid "use of multiversioned function without a default"
msgstr "默认化函数%q+D有默认å‚æ•°"
@@ -31820,7 +30878,6 @@ msgstr "ä¸èƒ½ç›´æŽ¥è°ƒç”¨æž„造函数%<%T::%D%>"
#: cp/call.c:7662
#, fuzzy, gcc-internal-format
-#| msgid " for a function-style cast, remove the redundant %<::%D%>"
msgid "for a function-style cast, remove the redundant %<::%D%>"
msgstr "对于函数类型的类型转æ¢ï¼Œç§»é™¤å†—余的%<::%D%>"
@@ -31891,7 +30948,6 @@ msgstr "ISO C++ 认为有歧义,尽管第一个备选的最差类型转æ¢è¦å
#: cp/call.c:9075
#, fuzzy, gcc-internal-format
-#| msgid "could not convert %qE to %qT"
msgid "could not convert %qE from %qT to %qT"
msgstr "ä¸èƒ½å°†%qE转æ¢ä¸º%qT"
@@ -31912,25 +30968,21 @@ msgstr "将类型为%qT的引用åˆå§‹åŒ–为类型为%qT的表达å¼æ— æ•ˆ"
#: cp/class.c:302
#, fuzzy, gcc-internal-format
-#| msgid "cannot convert from base %qT to derived type %qT via virtual base %qT"
msgid "cannot convert from pointer to base class %qT to pointer to derived class %qT because the base is virtual"
msgstr "无法从基类%qT转æ¢åˆ°æ´¾ç”Ÿç±»%qT,通过虚基类%qT"
#: cp/class.c:306
#, fuzzy, gcc-internal-format
-#| msgid "cannot convert from base %qT to derived type %qT via virtual base %qT"
msgid "cannot convert from base class %qT to derived class %qT because the base is virtual"
msgstr "无法从基类%qT转æ¢åˆ°æ´¾ç”Ÿç±»%qT,通过虚基类%qT"
#: cp/class.c:313
#, fuzzy, gcc-internal-format
-#| msgid "cannot convert from base %qT to derived type %qT via virtual base %qT"
msgid "cannot convert from pointer to base class %qT to pointer to derived class %qT via virtual base %qT"
msgstr "无法从基类%qT转æ¢åˆ°æ´¾ç”Ÿç±»%qT,通过虚基类%qT"
#: cp/class.c:318
#, fuzzy, gcc-internal-format
-#| msgid "cannot convert from base %qT to derived type %qT via virtual base %qT"
msgid "cannot convert from base class %qT to derived class %qT via virtual base %qT"
msgstr "无法从基类%qT转æ¢åˆ°æ´¾ç”Ÿç±»%qT,通过虚基类%qT"
@@ -31946,13 +30998,11 @@ msgstr "Java ç±»%qTä¸èƒ½æœ‰éšå¼çš„ä¸å¹³å‡¡çš„æžæž„函数"
#: cp/class.c:1159
#, fuzzy, gcc-internal-format
-#| msgid " inlined from %qs"
msgid "%q#D inherited from %qT"
msgstr " 内è”自%qs"
#: cp/class.c:1162
#, fuzzy, gcc-internal-format
-#| msgid "conflicts with previous declaration here"
msgid "conflicts with version inherited from %qT"
msgstr "与先å‰æ­¤å¤„的声明冲çª"
@@ -31998,7 +31048,6 @@ msgstr ""
#: cp/class.c:1389 cp/class.c:1399
#, fuzzy, gcc-internal-format
-#| msgid "%qD declared here"
msgid "%qT declared here"
msgstr "%qD在此声明"
@@ -32009,7 +31058,6 @@ msgstr ""
#: cp/class.c:1508
#, fuzzy, gcc-internal-format
-#| msgid "cannot convert from base %qT to derived type %qT via virtual base %qT"
msgid "cannot derive from %<final%> base %qT in derived type %qT"
msgstr "无法从基类%qT转æ¢åˆ°æ´¾ç”Ÿç±»%qT,通过虚基类%qT"
@@ -32040,7 +31088,6 @@ msgstr "%qD的最终é‡è½½åœ¨%qT中ä¸å”¯ä¸€"
#: cp/class.c:2753
#, fuzzy, gcc-internal-format
-#| msgid "%q+D defined but not used"
msgid "%q+#D marked final, but is not virtual"
msgstr "%q+D定义åŽæœªä½¿ç”¨"
@@ -32177,13 +31224,11 @@ msgstr "为éžç´§å®žçš„éžç®€å•æ—§æ•°æ®å­—段%q+#D忽略 packed 属性"
#: cp/class.c:3594
#, fuzzy, gcc-internal-format
-#| msgid "non-member %qs cannot be declared %<mutable%>"
msgid "member %q+D cannot be declared both %<const%> and %<mutable%>"
msgstr "éžæˆå‘˜%qsä¸èƒ½è¢«å£°æ˜Žä¸º%<mutable%>"
#: cp/class.c:3600
#, fuzzy, gcc-internal-format
-#| msgid "non-member %qs cannot be declared %<mutable%>"
msgid "member %q+D cannot be declared as a %<mutable%> reference"
msgstr "éžæˆå‘˜%qsä¸èƒ½è¢«å£°æ˜Žä¸º%<mutable%>"
@@ -32244,13 +31289,11 @@ msgstr "%3$L处 CLASS å˜é‡â€˜%2$s’的类型‘%1$s’ä¸èƒ½è¢«æ‰©å±•"
#: cp/class.c:5393
#, fuzzy, gcc-internal-format
-#| msgid "%q#T is not a class"
msgid "%q+T is not literal because:"
msgstr "%q#Tä¸æ˜¯ä¸€ä¸ªç±»"
#: cp/class.c:5395
#, fuzzy, gcc-internal-format
-#| msgid "base class %q#T has a non-virtual destructor"
msgid " %q+T has a non-trivial destructor"
msgstr "基类%q#T有一个éžè™šæžæž„函数"
@@ -32266,7 +31309,6 @@ msgstr "%3$L处 CLASS å˜é‡â€˜%2$s’的类型‘%1$s’ä¸èƒ½è¢«æ‰©å±•"
#: cp/class.c:5450
#, fuzzy, gcc-internal-format
-#| msgid "non-static data member %qD has Java class type"
msgid " non-static data member %q+D has non-literal type"
msgstr "éžé™æ€æ•°æ®æˆå‘˜%qD具有 Java 类类型"
@@ -32339,7 +31381,6 @@ msgstr "%q#T有虚函数和å¯è®¿é—®çš„éžè™šæ‹Ÿæžæž„函数"
#: cp/class.c:6643
#, fuzzy, gcc-internal-format
-#| msgid "type %qT does not have a known size"
msgid "type transparent %q#T does not have any fields"
msgstr "类型%qT大å°æœªçŸ¥"
@@ -32350,7 +31391,6 @@ msgstr ""
#: cp/class.c:6653
#, fuzzy, gcc-internal-format
-#| msgid "type %qE has virtual member functions"
msgid "type transparent class %qT has virtual functions"
msgstr "类型%qE有虚æˆå‘˜å‡½æ•°"
@@ -32421,7 +31461,6 @@ msgstr "改å˜äº†%qD的原æ„%q+#D"
#: cp/cp-array-notation.c:605
#, fuzzy, gcc-internal-format
-#| msgid "%qD cannot be declared as constexpr"
msgid "%qD cannot be scalar when %qD is not"
msgstr "%qDä¸èƒ½è¢«å£°æ˜Žä¸ºå¹¿ä¹‰å¸¸è¡¨è¾¾å¼"
@@ -32463,7 +31502,6 @@ msgstr ""
#: cp/cp-array-notation.c:1422
#, fuzzy, gcc-internal-format
-#| msgid "new cannot be applied to a function type"
msgid "array notation cannot be used with function type"
msgstr "new ä¸èƒ½ç”¨äºŽå‡½æ•°ç±»åž‹"
@@ -32484,13 +31522,11 @@ msgstr ""
#: cp/cp-cilkplus.c:53
#, fuzzy, gcc-internal-format
-#| msgid "statement-expressions are not allowed outside functions nor in template-argument lists"
msgid "throw expressions are not allowed inside loops marked with pragma simd"
msgstr "语å¥è¡¨è¾¾å¼åªèƒ½ç”¨äºŽå‡½æ•°æˆ–模æ¿å®žå‚列表内"
#: cp/cp-cilkplus.c:60
#, fuzzy, gcc-internal-format
-#| msgid "%s statement is not allowed inside of BLOCK at %C"
msgid "try statements are not allowed inside loops marked with #pragma simd"
msgstr "%s 语å¥ä¸èƒ½ç”¨åœ¨%C处 BLOCK 内"
@@ -32561,7 +31597,6 @@ msgstr "ä¸åº”使用%q#T而应使用%qT"
#: cp/cvt.c:780
#, fuzzy, gcc-internal-format
-#| msgid "could not convert %qE to %qT"
msgid "could not convert %qE from %<void%> to %<bool%>"
msgstr "ä¸èƒ½å°†%qE转æ¢ä¸º%qT"
@@ -32822,7 +31857,6 @@ msgstr "å°† NULL 转æ¢ä¸ºéžæŒ‡é’ˆç±»åž‹"
#: cp/cvt.c:1644
#, fuzzy, gcc-internal-format
-#| msgid "could not convert template argument %qE to %qT"
msgid "default type conversion can't deduce template argument for %qD"
msgstr "ä¸èƒ½å°†æ¨¡æ¿å‚数从%qE转æ¢åˆ°%qT"
@@ -32894,7 +31928,6 @@ msgstr "函数%q+Dé‡å£°æ˜Žä¸ºå†…è”çš„"
#: cp/decl.c:1304
#, fuzzy, gcc-internal-format
-#| msgid "previous declaration of %q+D with attribute noinline"
msgid "previous declaration of %qD with attribute noinline"
msgstr "å…ˆå‰%q+D的声明带有 noinline 属性"
@@ -32905,7 +31938,6 @@ msgstr "函数%q+Dé‡å£°æ˜Žä¸ºå¸¦æœ‰ä¸å¯å†…è”属性"
#: cp/decl.c:1314
#, fuzzy, gcc-internal-format
-#| msgid "previous declaration of %q+D was inline"
msgid "previous declaration of %qD was inline"
msgstr "%q+Då…ˆå‰è¢«å£°æ˜Žä¸ºå†…è”çš„"
@@ -32926,25 +31958,21 @@ msgstr "库函数%q#Dé‡å£°æ˜Žä¸ºéžå‡½æ•°%q#D"
#: cp/decl.c:1349
#, fuzzy, gcc-internal-format
-#| msgid "conflicts with built-in declaration %q#D"
msgid "declaration of %q#D conflicts with built-in declaration %q#D"
msgstr "与内建声明%q#D冲çª"
#: cp/decl.c:1357
#, fuzzy, gcc-internal-format
-#| msgid "declaration of %qD shadows a global declaration"
msgid "redeclaration of %<pragma omp declare reduction%>"
msgstr "%qD的声明éšè—了一个全局声明"
#: cp/decl.c:1359
#, fuzzy, gcc-internal-format
-#| msgid "previous non-function declaration %q+#D"
msgid "previous %<pragma omp declare reduction%> declaration"
msgstr "å…ˆå‰å¯¹äºŽ%q+#Dçš„éžå‡½æ•°å£°æ˜Ž"
#: cp/decl.c:1410
#, fuzzy, gcc-internal-format
-#| msgid "ambiguates built-in declaration %q#D"
msgid "new declaration %q#D ambiguates built-in declaration %q#D"
msgstr "使内建声明%q#D出现歧义"
@@ -32955,37 +31983,31 @@ msgstr "%q#D被é‡æ–°å£°æ˜Žä¸ºä¸åŒæ„义的符å·"
#: cp/decl.c:1505 cp/decl.c:1526 cp/decl.c:1553
#, fuzzy, gcc-internal-format
-#| msgid "previous declaration %q+D"
msgid "previous declaration %q#D"
msgstr "å…ˆå‰çš„声明%q+D"
#: cp/decl.c:1524
#, fuzzy, gcc-internal-format
-#| msgid "declaration of template %q#D"
msgid "conflicting declaration of template %q#D"
msgstr "模æ¿å£°æ˜Ž%q#D"
#: cp/decl.c:1540
#, fuzzy, gcc-internal-format
-#| msgid "ambiguates old declaration %q+#D"
msgid "ambiguating new declaration %q#D"
msgstr "使旧的声明%q+#D出现歧义"
#: cp/decl.c:1542 cp/decl.c:1565
#, fuzzy, gcc-internal-format
-#| msgid "global declaration %q+#D"
msgid "old declaration %q#D"
msgstr "全局声明%q+#D"
#: cp/decl.c:1550
#, fuzzy, gcc-internal-format
-#| msgid "conflicting declaration %q#D"
msgid "conflicting declaration of C function %q#D"
msgstr "相互冲çªçš„声明%q#D"
#: cp/decl.c:1563
#, fuzzy, gcc-internal-format
-#| msgid "ambiguates old declaration %q+#D"
msgid "ambiguating new declaration of %q#D"
msgstr "使旧的声明%q+#D出现歧义"
@@ -32996,7 +32018,6 @@ msgstr "相互冲çªçš„声明%q#D"
#: cp/decl.c:1575
#, fuzzy, gcc-internal-format
-#| msgid "previous declaration of %q+#D"
msgid "previous declaration as %q#D"
msgstr "%q+#Dçš„å‰ä¸€ä¸ªå£°æ˜Ž"
@@ -33009,13 +32030,11 @@ msgstr "%q+#Dçš„å‰ä¸€ä¸ªå£°æ˜Ž"
#. of the program.
#: cp/decl.c:1627
#, fuzzy, gcc-internal-format
-#| msgid "conflicting declaration %q#D"
msgid "conflicting declaration of namespace %qD"
msgstr "相互冲çªçš„声明%q#D"
#: cp/decl.c:1629
#, fuzzy, gcc-internal-format
-#| msgid "previous declaration of namespace %q+D here"
msgid "previous declaration of namespace %qD here"
msgstr "命å空间%q+D早先的声明在这里"
@@ -33026,37 +32045,31 @@ msgstr "%q+#D已在此定义过"
#: cp/decl.c:1642 cp/name-lookup.c:1152 cp/name-lookup.c:1175
#, fuzzy, gcc-internal-format
-#| msgid "previously declared here"
msgid "%q+#D previously declared here"
msgstr "以å‰åœ¨æ­¤å£°æ˜Žè¿‡"
#: cp/decl.c:1652
#, fuzzy, gcc-internal-format
-#| msgid "prototype for %q+#D"
msgid "prototype specified for %q#D"
msgstr "%q+#D的原型"
#: cp/decl.c:1654
#, fuzzy, gcc-internal-format
-#| msgid "follows non-prototype definition here"
msgid "previous non-prototype definition here"
msgstr "出现在此处的éžåŽŸåž‹å®šä¹‰ä¹‹åŽ"
#: cp/decl.c:1693
#, fuzzy, gcc-internal-format
-#| msgid "conflicts with new declaration with %qL linkage"
msgid "conflicting declaration of %q#D with %qL linkage"
msgstr "与带有%qL链接的新声明冲çª"
#: cp/decl.c:1696
#, fuzzy, gcc-internal-format
-#| msgid "previous declaration of %q+#D with %qL linkage"
msgid "previous declaration with %qL linkage"
msgstr "%q+#D的早先声明有%qL链接"
#: cp/decl.c:1723
#, fuzzy, gcc-internal-format
-#| msgid "redeclaration of friend %q#D may not have default template arguments"
msgid "redeclaration of %q#D may not have default arguments"
msgstr "å‹å…ƒ%q#Dçš„é‡å£°æ˜Žä¸èƒ½æœ‰é»˜è®¤æ¨¡æ¿å‚æ•°"
@@ -33067,7 +32080,6 @@ msgstr "为%2$q#D的第 %1$d 个形å‚指定了默认实å‚"
#: cp/decl.c:1741 cp/decl.c:1749
#, fuzzy, gcc-internal-format
-#| msgid "after previous specification in %q+#D"
msgid "previous specification in %q#D here"
msgstr "但先å‰åœ¨%q+#D中已有指定"
@@ -33078,7 +32090,6 @@ msgstr "åŒä¸€ä½œç”¨åŸŸä¸­%qD冗余的é‡å£°æ˜Ž"
#: cp/decl.c:1815 cp/decl.c:1825
#, fuzzy, gcc-internal-format
-#| msgid "previous declaration of %q+D"
msgid "previous declaration of %qD"
msgstr "%q+Dçš„å‰ä¸€ä¸ªå£°æ˜Ž"
@@ -33243,7 +32254,6 @@ msgstr "没有å为%q#T的类模æ¿ï¼Œåœ¨%q#T中 "
#: cp/decl.c:3395
#, fuzzy, gcc-internal-format
-#| msgid "no class template named %q#T in %q#T"
msgid "no type named %q#T in %q#T"
msgstr "没有å为%q#T的类模æ¿ï¼Œåœ¨%q#T中 "
@@ -33299,13 +32309,11 @@ msgstr "有拷è´èµ‹å€¼è¿ç®—符的æˆå‘˜%q+#Dä¸èƒ½ç”¨åœ¨è”åˆä¸­"
#: cp/decl.c:4246
#, fuzzy, gcc-internal-format
-#| msgid "attribute ignored in declaration of %q+#T"
msgid "attribute ignored in declaration of %q#T"
msgstr "属性于%q+#T的声明中被忽略"
#: cp/decl.c:4249
#, fuzzy, gcc-internal-format
-#| msgid "attribute for %q+#T must follow the %qs keyword"
msgid "attribute for %q#T must follow the %qs keyword"
msgstr "%q+#T的属性必须跟在%qs关键字åŽé¢"
@@ -33321,7 +32329,6 @@ msgstr "对 C++ 内建类型%qTçš„é‡å£°æ˜Ž"
#: cp/decl.c:4294
#, fuzzy, gcc-internal-format
-#| msgid "%qs can only be specified for functions"
msgid "%<auto%> can only be specified for variables or function declarations"
msgstr "åªèƒ½ä¸ºå‡½æ•°æŒ‡å®š%qs"
@@ -33372,13 +32379,11 @@ msgstr "%<constexpr%>ä¸èƒ½è¢«ç”¨ä½œç±»åž‹å£°æ˜Ž"
#: cp/decl.c:4378
#, fuzzy, gcc-internal-format
-#| msgid "attributes ignored on template instantiation"
msgid "attribute ignored in explicit instantiation %q#T"
msgstr "属性在模æ¿å®žä¾‹åŒ–上被忽略"
#: cp/decl.c:4381
#, fuzzy, gcc-internal-format
-#| msgid "%qE attribute can only be applied to class definitions"
msgid "no attribute can be applied to an explicit instantiation"
msgstr "åªèƒ½ä¸ºç±»å®šä¹‰åº”用%qE属性"
@@ -33543,7 +32548,6 @@ msgstr "%qTçš„åˆå§‹å€¼è®¾å®šå¿…须在花括å·å†…"
#: cp/decl.c:5260
#, fuzzy, gcc-internal-format
-#| msgid "name %qD used in a GNU-style designated initializer for an array"
msgid "%<[%E] =%> used in a GNU-style designated initializer for class %qT"
msgstr "åå­—%qD用在 GNU 风格的数组指定元素åˆå§‹å€¼è®¾å®šä¸­"
@@ -33590,7 +32594,6 @@ msgstr "å˜é•¿å¤åˆå­—é¢å€¼"
#: cp/decl.c:5632
#, fuzzy, gcc-internal-format
-#| msgid "%qD has incomplete type"
msgid "%q#D has incomplete type"
msgstr "%qD类型ä¸å®Œå…¨"
@@ -33666,19 +32669,16 @@ msgstr ""
#: cp/decl.c:7176
#, fuzzy, gcc-internal-format
-#| msgid "initializer fails to determine size of %qD"
msgid "initializer fails to determine size of %qT"
msgstr "åˆå§‹å€¼è®¾å®šæ— æ³•å†³å®š%qD的大å°"
#: cp/decl.c:7180
#, fuzzy, gcc-internal-format
-#| msgid "array size missing in %qD"
msgid "array size missing in %qT"
msgstr "%qD缺少数组大å°"
#: cp/decl.c:7183
#, fuzzy, gcc-internal-format
-#| msgid "zero-size array %qD"
msgid "zero-size array %qT"
msgstr "大å°ä¸º 0 的数组%qD"
@@ -33795,7 +32795,6 @@ msgstr "%<inline%>ä¸å…许用于å‹å…ƒæ¨¡æ¿ç‰¹ä¾‹åŒ–%qD的声明"
#: cp/decl.c:7499
#, fuzzy, gcc-internal-format
-#| msgid "%<inline%> is not allowed in declaration of friend template specialization %qD"
msgid "%<constexpr%> is not allowed in declaration of friend template specialization %qD"
msgstr "%<inline%>ä¸å…许用于å‹å…ƒæ¨¡æ¿ç‰¹ä¾‹åŒ–%qD的声明"
@@ -33811,7 +32810,6 @@ msgstr "ä¸èƒ½å°†%<::main%>声明为 inline"
#: cp/decl.c:7547
#, fuzzy, gcc-internal-format
-#| msgid "cannot declare %<::main%> to be inline"
msgid "cannot declare %<::main%> to be constexpr"
msgstr "ä¸èƒ½å°†%<::main%>声明为 inline"
@@ -33847,19 +32845,16 @@ msgstr "éžæˆå‘˜å‡½æ•°%qDä¸èƒ½æ‹¥æœ‰ cv é™å®šç¬¦"
#: cp/decl.c:7620
#, fuzzy, gcc-internal-format
-#| msgid "static member function %qD cannot have cv-qualifier"
msgid "static member function %qD cannot have ref-qualifier"
msgstr "æˆå‘˜å‡½æ•°%qDä¸èƒ½æ‹¥æœ‰ cv é™å®šç¬¦"
#: cp/decl.c:7621
#, fuzzy, gcc-internal-format
-#| msgid "non-member function %qD cannot have cv-qualifier"
msgid "non-member function %qD cannot have ref-qualifier"
msgstr "éžæˆå‘˜å‡½æ•°%qDä¸èƒ½æ‹¥æœ‰ cv é™å®šç¬¦"
#: cp/decl.c:7638
#, fuzzy, gcc-internal-format
-#| msgid "template with C linkage"
msgid "literal operator with C linkage"
msgstr "模æ¿æœ‰ C 链接"
@@ -33880,7 +32875,6 @@ msgstr ""
#: cp/decl.c:7667
#, fuzzy, gcc-internal-format
-#| msgid "%qD must be a nonstatic member function"
msgid "%qD must be a non-member function"
msgstr "%qD必须是一个éžé™æ€çš„æˆå‘˜å‡½æ•°"
@@ -33896,13 +32890,11 @@ msgstr "éšå¼å£°æ˜Žçš„%qD的定义"
#: cp/decl.c:7792
#, fuzzy, gcc-internal-format
-#| msgid "definition of implicitly-declared %qD"
msgid "definition of explicitly-defaulted %q+D"
msgstr "éšå¼å£°æ˜Žçš„%qD的定义"
#: cp/decl.c:7793
#, fuzzy, gcc-internal-format
-#| msgid "%q+#D previously defined here"
msgid "%q+#D explicitly defaulted here"
msgstr "%q+#D已在此定义过"
@@ -34017,7 +33009,6 @@ msgstr "数组维数溢出"
#: cp/decl.c:8522
#, fuzzy, gcc-internal-format
-#| msgid "declaration of %qD as array of void"
msgid "declaration of %qD as array of %<auto%>"
msgstr "%qD声明为 void 的数组"
@@ -34073,7 +33064,6 @@ msgstr "声明多维数组必须至少指定除第一维以外所有维的大å°
#: cp/decl.c:8578
#, fuzzy, gcc-internal-format
-#| msgid "creating array of functions"
msgid "array of array of runtime bound"
msgstr "创建函数的数组"
@@ -34144,13 +33134,11 @@ msgstr "函数定义未声明形å‚"
#: cp/decl.c:9014
#, fuzzy, gcc-internal-format
-#| msgid "template declaration of %<typedef%>"
msgid "declaration of %qD as %<typedef%>"
msgstr "%<typedef%>的模æ¿å£°æ˜Ž"
#: cp/decl.c:9019
#, fuzzy, gcc-internal-format
-#| msgid "declaration of %q+D shadows a parameter"
msgid "declaration of %qD as parameter"
msgstr "%q+D的声明éšè—了一个形å‚"
@@ -34326,25 +33314,21 @@ msgstr "%qs声明为返回一个数组的函数"
#: cp/decl.c:9608
#, fuzzy, gcc-internal-format
-#| msgid "%qs function uses %<auto%> type specifier without late return type"
msgid "%qs function uses %<auto%> type specifier without trailing return type"
msgstr "%qs函数使用了%<auto%>类型é™å®šå´æ²¡æœ‰è¿Ÿè¿”回类型"
#: cp/decl.c:9611
#, fuzzy, gcc-internal-format
-#| msgid "scoped enums only available with -std=c++0x or -std=gnu++0x"
msgid "deduced return type only available with -std=c++1y or -std=gnu++1y"
msgstr "带作用域的枚举åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
#: cp/decl.c:9616
#, fuzzy, gcc-internal-format
-#| msgid "virtual functions cannot be friends"
msgid "virtual function cannot have deduced return type"
msgstr "虚函数ä¸èƒ½æ˜¯å‹å…ƒ"
#: cp/decl.c:9621
#, fuzzy, gcc-internal-format
-#| msgid "%qs function with late return type has %qT as its type rather than plain %<auto%>"
msgid "%qs function with trailing return type has %qT as its type rather than plain %<auto%>"
msgstr "%qs函数使用迟返回类型%qT作为它的类型,而ä¸æ˜¯%<auto%>"
@@ -34357,7 +33341,6 @@ msgstr "å¯å˜å‚数模æ¿åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
#: cp/decl.c:9635
#, fuzzy, gcc-internal-format
-#| msgid "%qs function with late return type not declared with %<auto%> type specifier"
msgid "%qs function with trailing return type not declared with %<auto%> type specifier"
msgstr "%qs函数使用了迟返回类型å´æœªç”¨%<auto%>类型é™å®šå£°æ˜Ž"
@@ -34368,7 +33351,6 @@ msgstr "æžæž„函数ä¸èƒ½æ˜¯é™æ€æˆå‘˜å‡½æ•°"
#: cp/decl.c:9670
#, fuzzy, gcc-internal-format
-#| msgid "destructor cannot be static member function"
msgid "constructor cannot be static member function"
msgstr "æžæž„函数ä¸èƒ½æ˜¯é™æ€æˆå‘˜å‡½æ•°"
@@ -34379,13 +33361,11 @@ msgstr "æžæž„函数ä¸èƒ½è¢« cv é™å®š"
#: cp/decl.c:9675
#, fuzzy, gcc-internal-format
-#| msgid "destructors may not be cv-qualified"
msgid "constructors may not be cv-qualified"
msgstr "æžæž„函数ä¸èƒ½è¢« cv é™å®š"
#: cp/decl.c:9683
#, fuzzy, gcc-internal-format
-#| msgid "destructors may not be cv-qualified"
msgid "destructors may not be ref-qualified"
msgstr "æžæž„函数ä¸èƒ½è¢« cv é™å®š"
@@ -34447,13 +33427,11 @@ msgstr "ä¸èƒ½å£°æ˜ŽæŒ‡å‘é™å®šå‡½æ•°ç±»åž‹%qT的指针"
#: cp/decl.c:9829
#, fuzzy, gcc-internal-format
-#| msgid "Array reference out of bounds"
msgid "reference to array of runtime bound"
msgstr "对数组的引用超出范围"
#: cp/decl.c:9830
#, fuzzy, gcc-internal-format
-#| msgid "pointer to a function used in subtraction"
msgid "pointer to array of runtime bound"
msgstr "函数指针ä¸èƒ½ç›¸å‡"
@@ -34489,7 +33467,6 @@ msgstr "无法定义æˆå‘˜å‡½æ•°%<%T::%s%>,在%<%T%>中"
#: cp/decl.c:10028
#, fuzzy, gcc-internal-format
-#| msgid "cannot define member function %<%T::%s%> within %<%T%>"
msgid "cannot declare member function %<%T::%s%> within %<%T%>"
msgstr "无法定义æˆå‘˜å‡½æ•°%<%T::%s%>,在%<%T%>中"
@@ -34557,13 +33534,11 @@ msgstr "函数%qsä¸èƒ½è¢«å£°æ˜Žä¸º%<mutable%>"
#: cp/decl.c:10170
#, fuzzy, gcc-internal-format
-#| msgid "parameter declared %<auto%>"
msgid "typedef declared %<auto%>"
msgstr "å½¢å‚声明为%<auto%>"
#: cp/decl.c:10176
#, fuzzy, gcc-internal-format
-#| msgid "creating array of functions"
msgid "typedef naming array of runtime bound"
msgstr "创建函数的数组"
@@ -34624,7 +33599,6 @@ msgstr "ä¸èƒ½åœ¨å‚数声明中使用%<::%>"
#: cp/decl.c:10420
#, fuzzy, gcc-internal-format
-#| msgid "%<this%> may not be used in this context"
msgid "%<auto%> parameter not permitted in this context"
msgstr "%<this%>ä¸èƒ½ç”¨åœ¨æ­¤ä¸Šä¸‹æ–‡ä¸­"
@@ -34635,7 +33609,6 @@ msgstr "å½¢å‚声明为%<auto%>"
#: cp/decl.c:10465
#, fuzzy, gcc-internal-format
-#| msgid "non-static data member %qE declared %<constexpr%>"
msgid "non-static data member declared %<auto%>"
msgstr "éžé™æ€æ•°æ®æˆå‘˜%qE被声明为%<constexpr%>"
@@ -34682,7 +33655,6 @@ msgstr "在构造函数%qD中的å‹å…ƒå£°æ˜Žéœ€è¦é™å®šå"
#: cp/decl.c:10608
#, fuzzy, gcc-internal-format
-#| msgid "field %qD has incomplete type"
msgid "field %qD has incomplete type %qT"
msgstr "字段%qD类型ä¸å®Œå…¨"
@@ -34723,13 +33695,11 @@ msgstr "函数%qs的存储类%<__thread%>无效"
#: cp/decl.c:10747
#, fuzzy, gcc-internal-format
-#| msgid "storage class %<__thread%> invalid for function %qs"
msgid "storage class %<thread_local%> invalid for function %qs"
msgstr "函数%qs的存储类%<__thread%>无效"
#: cp/decl.c:10752
#, fuzzy, gcc-internal-format
-#| msgid "an asm-specification is not allowed on a function-definition"
msgid "virt-specifiers in %qs not allowed outside a class definition"
msgstr "函数定义中ä¸å…许出现 asm 指定"
@@ -34755,7 +33725,6 @@ msgstr "%qs定义在在éžç±»ä½œç”¨åŸŸä¸­"
#: cp/decl.c:10783
#, fuzzy, gcc-internal-format
-#| msgid "%qs defined in a non-class scope"
msgid "%qs declared in a non-class scope"
msgstr "%qs定义在在éžç±»ä½œç”¨åŸŸä¸­"
@@ -34802,7 +33771,6 @@ msgstr "%qs既有%<extern%>åˆæœ‰åˆå§‹å€¼è®¾å®š"
#: cp/decl.c:11032
#, fuzzy, gcc-internal-format
-#| msgid "default argument %qE uses local variable %qD"
msgid "default argument %qE uses %qD"
msgstr "默认实å‚%qE使用了局部å˜é‡%qD"
@@ -34984,7 +33952,6 @@ msgstr "使用模æ¿ç±»åž‹å½¢å‚%qT,在%qsåŽ"
#: cp/decl.c:11915
#, fuzzy, gcc-internal-format
-#| msgid "ambiguous template specialization %qD for %q+D"
msgid "using alias template specialization %qT after %qs"
msgstr "有歧义的模æ¿ç‰¹ä¾‹åŒ–%qD(为%q+D)"
@@ -34995,7 +33962,6 @@ msgstr "使用 typedef å%qD,在%qsåŽ"
#: cp/decl.c:11920
#, fuzzy, gcc-internal-format
-#| msgid "%q+D has a previous declaration here"
msgid "%qD has a previous declaration here"
msgstr "%q+Då…ˆå‰åœ¨æ­¤å¤„有过声明"
@@ -35123,7 +34089,6 @@ msgstr "%qD的枚举值ä¸æ˜¯ä¸€ä¸ªæ•´æ•°å¸¸é‡"
#: cp/decl.c:12928
#, fuzzy, gcc-internal-format
-#| msgid "integer constant is too large for %<unsigned long%> type"
msgid "incremented enumerator value is too large for %<unsigned long%>"
msgstr "对%<unsigned long%>类型而言整数常é‡å¤ªå¤§"
@@ -35134,7 +34099,6 @@ msgstr "%qD处枚举值溢出"
#: cp/decl.c:12960
#, fuzzy, gcc-internal-format
-#| msgid "enumerator value %E is too large for underlying type %<%T%>"
msgid "enumerator value %E is outside the range of underlying type %<%T%>"
msgstr "枚举值 %E 对其类型%<%T%>而言太大了"
@@ -35170,13 +34134,11 @@ msgstr "å½¢å‚%qD被声明为 void"
#: cp/decl.c:13960
#, fuzzy, gcc-internal-format
-#| msgid "no return statement in function returning non-void"
msgid "no return statements in function returning %qT"
msgstr "在有返回值的函数中未å‘现 return 语å¥"
#: cp/decl.c:13962 cp/typeck.c:8384
#, fuzzy, gcc-internal-format
-#| msgid "function return types not compatible due to %<volatile%>"
msgid "only plain %<auto%> return type can be deduced to %<void%>"
msgstr "由于%<volatile%>,函数返回类型ä¸å…¼å®¹"
@@ -35197,7 +34159,6 @@ msgstr "%qD已在类%qT中定义过"
#: cp/decl.c:14531 cp/decl2.c:4673
#, fuzzy, gcc-internal-format
-#| msgid "type of %qD defaults to %<int%>"
msgid "use of %qD before deduction of %<auto%>"
msgstr "%qD的类型默认为%<int%>"
@@ -35218,7 +34179,6 @@ msgstr "%<%T[%T]%>用作数组下标类型无效"
#: cp/decl2.c:449
#, fuzzy, gcc-internal-format
-#| msgid "deleting array %q#D"
msgid "deleting array %q#E"
msgstr "删除数组%q#D"
@@ -35337,7 +34297,6 @@ msgstr "ä½æ®µ%qDéžæ•´åž‹"
#: cp/decl2.c:1388
#, fuzzy, gcc-internal-format
-#| msgid "%qD is not a static data member of a class template"
msgid "%q+D static data member inside of declare target directive"
msgstr "%qDä¸æ˜¯ç±»æ¨¡æ¿çš„éžé™æ€æ•°æ®æˆå‘˜"
@@ -35444,43 +34403,36 @@ msgstr "with"
#: cp/error.c:3474
#, fuzzy, gcc-internal-format
-#| msgid "extended initializer lists only available with -std=c++0x or -std=gnu++0x"
msgid "extended initializer lists only available with -std=c++11 or -std=gnu++11"
msgstr "扩展åˆå§‹å€¼è®¾å®šåˆ—表åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
#: cp/error.c:3479
#, fuzzy, gcc-internal-format
-#| msgid "explicit conversion operators only available with -std=c++0x or -std=gnu++0x"
msgid "explicit conversion operators only available with -std=c++11 or -std=gnu++11"
msgstr "显å¼è½¬æ¢è¿ç®—符åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
#: cp/error.c:3484
#, fuzzy, gcc-internal-format
-#| msgid "variadic templates only available with -std=c++0x or -std=gnu++0x"
msgid "variadic templates only available with -std=c++11 or -std=gnu++11"
msgstr "å¯å˜å‚数模æ¿åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
#: cp/error.c:3489
#, fuzzy, gcc-internal-format
-#| msgid "lambda expressions only available with -std=c++0x or -std=gnu++0x"
msgid "lambda expressions only available with -std=c++11 or -std=gnu++11"
msgstr "Lambda 表达å¼åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
#: cp/error.c:3494
#, fuzzy, gcc-internal-format
-#| msgid "C++0x auto only available with -std=c++0x or -std=gnu++0x"
msgid "C++11 auto only available with -std=c++11 or -std=gnu++11"
msgstr "C++0x auto åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
#: cp/error.c:3498
#, fuzzy, gcc-internal-format
-#| msgid "scoped enums only available with -std=c++0x or -std=gnu++0x"
msgid "scoped enums only available with -std=c++11 or -std=gnu++11"
msgstr "带作用域的枚举åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
#: cp/error.c:3502
#, fuzzy, gcc-internal-format
-#| msgid "defaulted and deleted functions only available with -std=c++0x or -std=gnu++0x"
msgid "defaulted and deleted functions only available with -std=c++11 or -std=gnu++11"
msgstr "默认化和被删除的函数åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
@@ -35491,25 +34443,21 @@ msgstr "å¯å˜å‚数模æ¿åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
#: cp/error.c:3512
#, fuzzy, gcc-internal-format
-#| msgid "explicit conversion operators only available with -std=c++0x or -std=gnu++0x"
msgid "override controls (override/final) only available with -std=c++11 or -std=gnu++11"
msgstr "显å¼è½¬æ¢è¿ç®—符åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
#: cp/error.c:3517
#, fuzzy, gcc-internal-format
-#| msgid "extended initializer lists only available with -std=c++0x or -std=gnu++0x"
msgid "non-static data member initializers only available with -std=c++11 or -std=gnu++11"
msgstr "扩展åˆå§‹å€¼è®¾å®šåˆ—表åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
#: cp/error.c:3522
#, fuzzy, gcc-internal-format
-#| msgid "extended initializer lists only available with -std=c++0x or -std=gnu++0x"
msgid "user-defined literals only available with -std=c++11 or -std=gnu++11"
msgstr "扩展åˆå§‹å€¼è®¾å®šåˆ—表åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
#: cp/error.c:3527
#, fuzzy, gcc-internal-format
-#| msgid "explicit conversion operators only available with -std=c++0x or -std=gnu++0x"
msgid "delegating constructors only available with -std=c++11 or -std=gnu++11"
msgstr "显å¼è½¬æ¢è¿ç®—符åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
@@ -35520,13 +34468,11 @@ msgstr "å¯å˜å‚数模æ¿åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
#: cp/error.c:3537
#, fuzzy, gcc-internal-format
-#| msgid "C++0x auto only available with -std=c++0x or -std=gnu++0x"
msgid "c++11 attributes only available with -std=c++11 or -std=gnu++11"
msgstr "C++0x auto åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
#: cp/error.c:3542
#, fuzzy, gcc-internal-format
-#| msgid "scoped enums only available with -std=c++0x or -std=gnu++0x"
msgid "ref-qualifiers only available with -std=c++11 or -std=gnu++11"
msgstr "带作用域的枚举åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
@@ -35599,19 +34545,16 @@ msgstr " 在抛出的表达å¼ä¸­"
#: cp/except.c:987
#, fuzzy, gcc-internal-format
-#| msgid "cannot declare parameter %q+D to be of abstract type %qT"
msgid "cannot declare catch parameter to be of rvalue reference type %qT"
msgstr "ä¸èƒ½å°†å½¢å‚%q+D声明为具有抽象类型%qT"
#: cp/except.c:994
#, fuzzy, gcc-internal-format
-#| msgid "cannot create type information for type %qT because it involves types of variable size"
msgid "cannot throw expression of type %qT because it involves types of variable size"
msgstr "无法为类型%qT创建类型信æ¯ï¼Œå› ä¸ºå®ƒçš„大å°æ˜¯å¯å˜çš„"
#: cp/except.c:997
#, fuzzy, gcc-internal-format
-#| msgid "cannot create type information for type %qT because it involves types of variable size"
msgid "cannot catch type %qT because it involves types of variable size"
msgstr "无法为类型%qT创建类型信æ¯ï¼Œå› ä¸ºå®ƒçš„大å°æ˜¯å¯å˜çš„"
@@ -35726,7 +34669,6 @@ msgstr "(如果这ä¸æ˜¯æ‚¨åŽŸæ¥çš„想法,请确定此函数模æ¿å·²ç»å£°æ˜
#: cp/init.c:378
#, fuzzy, gcc-internal-format
-#| msgid "invalid application of %qs to incomplete type %qT "
msgid "value-initialization of incomplete type %qT"
msgstr "%qsä¸èƒ½ç”¨äºŽä¸å®Œå…¨çš„类型%qT"
@@ -35737,13 +34679,11 @@ msgstr "å½¢å‚%qD包å«äº†æŒ‡å‘具有未知边界数组%qT的指针"
#: cp/init.c:482
#, fuzzy, gcc-internal-format
-#| msgid "value-initialization of reference"
msgid "value-initialization of function type %qT"
msgstr "引用被值所åˆå§‹åŒ–"
#: cp/init.c:488
#, fuzzy, gcc-internal-format
-#| msgid "value-initialization of reference"
msgid "value-initialization of reference type %qT"
msgstr "引用被值所åˆå§‹åŒ–"
@@ -35759,7 +34699,6 @@ msgstr "%qD应该在æˆå‘˜åˆå§‹åŒ–列表中被åˆå§‹åŒ–"
#: cp/init.c:585
#, fuzzy, gcc-internal-format
-#| msgid "%qD is used uninitialized in this function"
msgid "%qD is initialized with itself"
msgstr "此函数中的%qD在使用å‰æœªåˆå§‹åŒ–"
@@ -35910,7 +34849,6 @@ msgstr "未åˆå§‹åŒ–的引用æˆå‘˜%qD"
#: cp/init.c:2147
#, fuzzy, gcc-internal-format
-#| msgid "uninitialized reference member in %q#T"
msgid "uninitialized reference member in base %q#T of %q#T"
msgstr "%q#T中有未åˆå§‹åŒ–的引用æˆå‘˜"
@@ -35936,25 +34874,21 @@ msgstr "%q#T中有未åˆå§‹åŒ–的引用æˆå‘˜"
#: cp/init.c:2317
#, fuzzy, gcc-internal-format
-#| msgid "integer overflow in expression"
msgid "integer overflow in array size"
msgstr "整数溢出"
#: cp/init.c:2327
#, fuzzy, gcc-internal-format
-#| msgid "Variable '%s' at %L in this context must be constant"
msgid "array size in operator new must be constant"
msgstr "å˜é‡â€˜%s’在%L处上下文中必须是常é‡"
#: cp/init.c:2341
#, fuzzy, gcc-internal-format
-#| msgid "variably modified field at file scope"
msgid "variably modified type not allowed in operator new"
msgstr "文件域中的动æ€å¯å˜å­—段"
#: cp/init.c:2355
#, fuzzy, gcc-internal-format
-#| msgid "ISO C does not support saturating types"
msgid "ISO C++ does not support variable-length array types"
msgstr "ISO C ä¸æ”¯æŒé¥±å’Œç±»åž‹"
@@ -35970,7 +34904,6 @@ msgstr "%<new%>%q#T时常é‡æœªåˆå§‹åŒ–"
#: cp/init.c:2477
#, fuzzy, gcc-internal-format
-#| msgid "not a valid Java .class file"
msgid "%qT isn%'t a valid Java class type"
msgstr "ä¸æ˜¯ä¸€ä¸ªæœ‰æ•ˆçš„ Java .class 文件。"
@@ -35996,7 +34929,6 @@ msgstr "对æˆå‘˜%qD的请求有歧义"
#: cp/init.c:2775
#, fuzzy, gcc-internal-format
-#| msgid "attributes after parenthesized initializer ignored"
msgid "parenthesized initializer in array new"
msgstr "括起的åˆå§‹å€¼è®¾å®šåŽå‡ºçŽ°çš„属性被忽略"
@@ -36027,7 +34959,6 @@ msgstr "%qT中找ä¸åˆ°%<class$%>"
#: cp/init.c:3158
#, fuzzy, gcc-internal-format
-#| msgid "possible problem detected in invocation of delete operator:"
msgid "possible problem detected in invocation of delete [] operator:"
msgstr "检测到调用 delete è¿ç®—符时å¯èƒ½å‡ºçŽ°çš„问题:"
@@ -36088,7 +35019,6 @@ msgstr ""
#: cp/lambda.c:477
#, fuzzy, gcc-internal-format
-#| msgid "compound literal has variable size"
msgid "because the array element type %qT has variable size"
msgstr "å¤åˆå­—é¢å€¼æœ‰å¯å˜çš„大å°"
@@ -36099,7 +35029,6 @@ msgstr "无法通过引用æ•èŽ·%qE"
#: cp/lambda.c:514
#, fuzzy, gcc-internal-format
-#| msgid "already captured %<this%> in lambda expression"
msgid "already captured %qD in lambda expression"
msgstr "å·²ç»åœ¨ Lambda 表达å¼ä¸­æ•èŽ·äº†%<this%>"
@@ -36170,7 +35099,6 @@ msgstr "修饰 typeof,请改用 decltype"
#: cp/mangle.c:2116
#, fuzzy, gcc-internal-format
-#| msgid "mangling unknown fixed point type"
msgid "mangling __underlying_type"
msgstr "修饰未知的定点类型"
@@ -36206,7 +35134,6 @@ msgstr "%qD修饰åŽçš„å字将在 GCC 的未æ¥ç‰ˆæœ¬ä¸­æœ‰å˜åŒ–"
#: cp/mangle.c:3500
#, fuzzy, gcc-internal-format
-#| msgid "-fabi-version=4 (or =0) avoids this error with a change in vector mangling"
msgid "-fabi-version=6 (or =0) avoids this error with a change in mangling"
msgstr "-fabi-version=4 (or =0) å¯ä»¥æ”¹å˜å‘é‡ä¿®é¥°æ¥é¿å…这个错误"
@@ -36237,13 +35164,11 @@ msgstr "未åˆå§‹åŒ–çš„æˆå‘˜%qD具有%<const%>类型%qT"
#: cp/method.c:1010
#, fuzzy, gcc-internal-format
-#| msgid "a destructor cannot be %<constexpr%>"
msgid "defaulted constructor calls non-constexpr %q+D"
msgstr "æžæž„函数ä¸èƒ½æ˜¯%<constexpr%>"
#: cp/method.c:1071
#, fuzzy, gcc-internal-format
-#| msgid "uninitialized const %qD is invalid in C++"
msgid "initializer for %q+#D is invalid"
msgstr "未åˆå§‹åŒ–的常é‡%qD在C++中是无效的"
@@ -36264,7 +35189,6 @@ msgstr ""
#: cp/method.c:1128
#, fuzzy, gcc-internal-format
-#| msgid "non-static data member %qD has Java class type"
msgid "copying non-static data member %q#D of rvalue reference type"
msgstr "éžé™æ€æ•°æ®æˆå‘˜%qD具有 Java 类类型"
@@ -36315,7 +35239,6 @@ msgstr "ä¸åŒ¹é…%qD预期的签å"
#: cp/method.c:1814
#, fuzzy, gcc-internal-format
-#| msgid "function %q+D defaulted on its first declaration must not have an exception-specification"
msgid "function %q+D defaulted on its redeclaration with an exception-specification that differs from the implicit declaration %q#D"
msgstr "首次声明时被默认化的函数%q+Dä¸å¯ä»¥æŒ‡å®šå¼‚常"
@@ -36326,7 +35249,6 @@ msgstr ""
#: cp/method.c:1860
#, fuzzy, gcc-internal-format
-#| msgid "%qD cannot be defaulted"
msgid "a template cannot be defaulted"
msgstr "%qDä¸èƒ½è¢«é»˜è®¤åŒ–"
@@ -36347,13 +35269,11 @@ msgstr "由于éšå¼çš„虚æžæž„函数,类%qTçš„ vtable 布局å¯èƒ½ä¸Ž ABI ä¸
#: cp/name-lookup.c:567
#, fuzzy, gcc-internal-format
-#| msgid "%q#D conflicts with previous using declaration %q#D"
msgid "%q#D conflicts with a previous declaration"
msgstr "%q#D与先å‰çš„ using 声明%q#D冲çª"
#: cp/name-lookup.c:569
#, fuzzy, gcc-internal-format
-#| msgid "previous declaration %q+D"
msgid "previous declaration %q+#D"
msgstr "å…ˆå‰çš„声明%q+D"
@@ -36420,7 +35340,6 @@ msgstr "%q#D的声明éšè—了一个形å‚"
#: cp/name-lookup.c:1189
#, fuzzy, gcc-internal-format
-#| msgid "declaration of %q+D shadows a parameter"
msgid "declaration of %qD shadows a lambda capture"
msgstr "%q+D的声明éšè—了一个形å‚"
@@ -36629,7 +35548,6 @@ msgstr "%qDåšäº†å¤šæ¬¡å¤æœ¬"
#: cp/parser.c:792
#, fuzzy, gcc-internal-format
-#| msgid "identifier %qE will become a keyword in C++0x"
msgid "identifier %qE is a keyword in C++11"
msgstr "标志符%qE将会æˆä¸º C++0x 的一个关键字"
@@ -36730,7 +35648,6 @@ msgstr "%qTä¸æ˜¯ä¸€ä¸ªæ¨¡æ¿"
#: cp/parser.c:2719
#, fuzzy, gcc-internal-format
-#| msgid "%qE is not a template"
msgid "%qE is not a class template"
msgstr "%qEä¸æ˜¯ä¸€ä¸ªæ¨¡æ¿"
@@ -36811,7 +35728,6 @@ msgstr "%qDä¸èƒ½å‡ºçŽ°åœ¨å¸¸é‡è¡¨è¾¾å¼ä¸­"
#: cp/parser.c:2809
#, fuzzy, gcc-internal-format
-#| msgid "a function call cannot appear in a constant-expression"
msgid "a transaction expression cannot appear in a constant-expression"
msgstr "函数调用ä¸èƒ½å‡ºçŽ°åœ¨å¸¸é‡è¡¨è¾¾å¼ä¸­"
@@ -36844,7 +35760,6 @@ msgstr "%qEä¸æ˜¯ä¸€ä¸ªç±»åž‹å"
#: cp/parser.c:2903
#, fuzzy, gcc-internal-format
-#| msgid "C++0x %<constexpr%> only available with -std=c++0x or -std=gnu++0x"
msgid "C++11 %<constexpr%> only available with -std=c++11 or -std=gnu++11"
msgstr "C++0x %<constexpr%>åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
@@ -36855,7 +35770,6 @@ msgstr "(也许您本æ„是想用%<typename %T::%E%>)"
#: cp/parser.c:2948
#, fuzzy, gcc-internal-format
-#| msgid "%qE in namespace %qE does not name a type"
msgid "%qE in namespace %qE does not name a template type"
msgstr "%qEä¸æ˜¯å‘½å空间%qE中的一个类型å"
@@ -36882,13 +35796,11 @@ msgstr "%<%T::%E%>之å‰éœ€è¦%<typename%>,因为%qT是一个有ä¾èµ–的作ç”
#: cp/parser.c:2974
#, fuzzy, gcc-internal-format
-#| msgid "%qE in class %qT does not name a type"
msgid "%qE in %q#T does not name a template type"
msgstr "%qEä¸æ˜¯ç±»%qT中的一个类型å"
#: cp/parser.c:2978
#, fuzzy, gcc-internal-format
-#| msgid "%qE in class %qT does not name a type"
msgid "%qE in %q#T does not name a type"
msgstr "%qEä¸æ˜¯ç±»%qT中的一个类型å"
@@ -36914,25 +35826,21 @@ msgstr ""
#: cp/parser.c:3867
#, fuzzy, gcc-internal-format
-#| msgid "floating constant exceeds range of %qT"
msgid "integer literal exceeds range of %qT type"
msgstr "浮点常é‡è¶…出%qT的范围"
#: cp/parser.c:3873
#, fuzzy, gcc-internal-format
-#| msgid "floating constant exceeds range of %qT"
msgid "floating literal exceeds range of %qT type"
msgstr "浮点常é‡è¶…出%qT的范围"
#: cp/parser.c:3877
#, fuzzy, gcc-internal-format
-#| msgid "floating constant truncated to zero"
msgid "floating literal truncated to zero"
msgstr "浮点常é‡å‘零截断"
#: cp/parser.c:3920
#, fuzzy, gcc-internal-format
-#| msgid "unable to find a register to spill in class %qs"
msgid "unable to find numeric literal operator %qD"
msgstr "在类%qs中找ä¸åˆ°å¯æº¢å‡ºçš„寄存器"
@@ -36943,7 +35851,6 @@ msgstr ""
#: cp/parser.c:3969
#, fuzzy, gcc-internal-format
-#| msgid "unable to find a register to spill in class %qs"
msgid "unable to find string literal operator %qD"
msgstr "在类%qs中找ä¸åˆ°å¯æº¢å‡ºçš„寄存器"
@@ -37004,7 +35911,6 @@ msgstr "%<~%>å‰çš„作用域%qTä¸æ˜¯ä¸€ä¸ªç±»å"
#: cp/parser.c:4935 cp/parser.c:6785
#, fuzzy, gcc-internal-format
-#| msgid "C++0x auto only available with -std=c++0x or -std=gnu++0x"
msgid "%<~auto%> only available with -std=c++1y or -std=gnu++1y"
msgstr "C++0x auto åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
@@ -37035,7 +35941,6 @@ msgstr "嵌套å指定中使用了ä¸å®Œå…¨çš„类型%qT"
#: cp/parser.c:5276
#, fuzzy, gcc-internal-format
-#| msgid "%qT resolves to %qT, which is not an enumeration type"
msgid "decltype evaluates to %qT, which is not a class or enumeration type"
msgstr "%qT被解æžåˆ°éžæžšä¸¾ç±»åž‹%qT"
@@ -37076,7 +35981,6 @@ msgstr ""
#: cp/parser.c:6368
#, fuzzy, gcc-internal-format
-#| msgid "-client_name not allowed with -dynamiclib"
msgid "braced list index is not allowed with array notation"
msgstr "-client_name ä¸èƒ½å’Œ -dynamiclib 一起使用"
@@ -37092,7 +35996,6 @@ msgstr "错误地使用了%qD"
#: cp/parser.c:6558
#, fuzzy, gcc-internal-format
-#| msgid "%<%D::%D%> is not a member of %qT"
msgid "%<%D::%D%> is not a class member"
msgstr "%<%D::%D%>ä¸æ˜¯%qTçš„æˆå‘˜"
@@ -37113,7 +36016,6 @@ msgstr "类型ä¸èƒ½å®šä¹‰åœ¨%<decltype%>中"
#: cp/parser.c:7262
#, fuzzy, gcc-internal-format
-#| msgid "types may not be defined in a new-type-id"
msgid "types may not be defined in a new-expression"
msgstr "类型ä¸èƒ½å®šä¹‰åœ¨ new-type-id 中"
@@ -37144,7 +36046,6 @@ msgstr "使用旧å¼çš„类型转æ¢"
#: cp/parser.c:7891
#, fuzzy, gcc-internal-format
-#| msgid "%<>>%> operator will be treated as two right angle brackets in C++0x"
msgid "%<>>%> operator is treated as two right angle brackets in C++11"
msgstr "%<>>%>è¿ç®—符在 C++0x 中将被认为是两个å³å°–括å·"
@@ -37175,7 +36076,6 @@ msgstr ""
#: cp/parser.c:8901
#, fuzzy, gcc-internal-format
-#| msgid "lambda expressions only available with -std=c++0x or -std=gnu++0x"
msgid "lambda capture initializers only available with -std=c++1y or -std=gnu++1y"
msgstr "Lambda 表达å¼åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
@@ -37186,13 +36086,11 @@ msgstr ""
#: cp/parser.c:8931
#, fuzzy, gcc-internal-format
-#| msgid "increment of read-only variable %qD"
msgid "capture of non-variable %qD "
msgstr "令åªè¯»å˜é‡%qD自增"
#: cp/parser.c:8933 cp/parser.c:8942 cp/semantics.c:3237
#, fuzzy, gcc-internal-format
-#| msgid "%q+D declared here"
msgid "%q+#D declared here"
msgstr "%q+D已在此声明过"
@@ -37213,7 +36111,6 @@ msgstr ""
#: cp/parser.c:9027
#, fuzzy, gcc-internal-format
-#| msgid "variadic templates only available with -std=c++0x or -std=gnu++0x"
msgid "lambda templates are only available with -std=c++1y or -std=gnu++1y"
msgstr "å¯å˜å‚数模æ¿åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
@@ -37224,7 +36121,6 @@ msgstr "为 lambda å½¢å‚指定了默认å‚æ•°"
#: cp/parser.c:9485
#, fuzzy, gcc-internal-format
-#| msgid "attributes after parenthesized initializer ignored"
msgid "attributes at the beginning of statement are ignored"
msgstr "括起的åˆå§‹å€¼è®¾å®šåŽå‡ºçŽ°çš„属性被忽略"
@@ -37250,7 +36146,6 @@ msgstr "%<%T::%D%>命å了一个构造函数而éžç±»åž‹"
#: cp/parser.c:9692
#, fuzzy, gcc-internal-format
-#| msgid "%qD is not a constexpr function"
msgid "compound-statement in constexpr function"
msgstr "%qDä¸æ˜¯ä¸€ä¸ªå¹¿ä¹‰å¸¸å‡½æ•°"
@@ -37266,7 +36161,6 @@ msgstr "类型ä¸èƒ½å®šä¹‰åœ¨æ¡ä»¶è¡¨è¾¾å¼ä¸­"
#: cp/parser.c:10305
#, fuzzy, gcc-internal-format
-#| msgid "expression statement has incomplete type"
msgid "range-based %<for%> expression of type %qT has incomplete type"
msgstr "表达å¼è¯­å¥ç±»åž‹ä¸å®Œå…¨"
@@ -37292,13 +36186,11 @@ msgstr "需è¦å¾ªçŽ¯è¯­å¥"
#: cp/parser.c:10568
#, fuzzy, gcc-internal-format
-#| msgid "range-based-for loops are not allowed in C++98 mode"
msgid "range-based %<for%> loops are not allowed in C++98 mode"
msgstr "C++98 模å¼ä¸‹ä¸å…许使用基于范围的 for 循环"
#: cp/parser.c:10642
#, fuzzy, gcc-internal-format
-#| msgid "break statement used with OpenMP for loop"
msgid "break statement used with Cilk Plus for loop"
msgstr "OpenMP for 循环中使用了 break 语å¥"
@@ -37337,7 +36229,6 @@ msgstr "%<friend%>用在类外"
#. we're complaining about C++0x compatibility.
#: cp/parser.c:11485
#, fuzzy, gcc-internal-format
-#| msgid "%<auto%> will change meaning in C++0x; please remove it"
msgid "%<auto%> changes meaning in C++11; please remove it"
msgstr "%<auto%>的语义在 C++0x 中将被改å˜ï¼›è¯·è€ƒè™‘删除它"
@@ -37368,7 +36259,6 @@ msgstr "类型ä¸èƒ½å®šä¹‰åœ¨%<decltype%>中"
#: cp/parser.c:12122
#, fuzzy, gcc-internal-format
-#| msgid "types may not be defined in a new-type-id"
msgid "types may not be defined in a conversion-type-id"
msgstr "类型ä¸èƒ½å®šä¹‰åœ¨ new-type-id 中"
@@ -37379,7 +36269,6 @@ msgstr "在转æ¢è¿ç®—符中使用%<auto%>无效"
#: cp/parser.c:12153
#, fuzzy, gcc-internal-format
-#| msgid "invalid use of %<auto%> in conversion operator"
msgid "use of %<auto%> in member template conversion operator can never be deduced"
msgstr "在转æ¢è¿ç®—符中使用%<auto%>无效"
@@ -37395,7 +36284,6 @@ msgstr "无法从æˆå‘˜%<%D%>中扩展åˆå§‹å€¼"
#: cp/parser.c:12276
#, fuzzy, gcc-internal-format
-#| msgid "static declaration of %q+D follows non-static declaration"
msgid "mem-initializer for %qD follows constructor delegation"
msgstr "对%qDçš„é™æ€å£°æ˜Žå‡ºçŽ°åœ¨éžé™æ€å£°æ˜Žä¹‹åŽ"
@@ -37421,7 +36309,6 @@ msgstr "二元æ“作中中æ“作数无效"
#: cp/parser.c:12737 cp/parser.c:12784
#, fuzzy, gcc-internal-format
-#| msgid "expected a string after %<#pragma message%>"
msgid "expected empty string after %<operator%> keyword"
msgstr "%<#pragma message%>åŽéœ€è¦ä¸€ä¸ªå­—符串"
@@ -37432,7 +36319,6 @@ msgstr ""
#: cp/parser.c:12761
#, fuzzy, gcc-internal-format
-#| msgid "expected identifier"
msgid "expected suffix identifier"
msgstr "需è¦æ ‡è¯†ç¬¦"
@@ -37484,7 +36370,6 @@ msgstr "%<<:%>是%<[%>çš„å¦ä¸€ç§æ‹¼æ³•ã€‚请在%<<%>å’Œ%<::%>间加上空格"
#: cp/parser.c:13403
#, fuzzy, gcc-internal-format
-#| msgid "(if you use %<-fpermissive%> G++ will accept your code)"
msgid "(if you use %<-fpermissive%> or %<-std=c++11%>, or %<-std=gnu++11%> G++ will accept your code)"
msgstr "(如果您使用%<-fpermissive%>G++ 会接å—您的代ç )"
@@ -37547,19 +36432,16 @@ msgstr "需è¦ç±»åž‹é™å®š"
#: cp/parser.c:14510
#, fuzzy, gcc-internal-format
-#| msgid "defaulted and deleted functions only available with -std=c++0x or -std=gnu++0x"
msgid "use of %<auto%> in lambda parameter declaration only available with -std=c++1y or -std=gnu++1y"
msgstr "默认化和被删除的函数åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
#: cp/parser.c:14516
#, fuzzy, gcc-internal-format
-#| msgid "defaulted and deleted functions only available with -std=c++0x or -std=gnu++0x"
msgid "use of %<auto%> in parameter declaration only available with -std=c++1y or -std=gnu++1y"
msgstr "默认化和被删除的函数åªåœ¨ -std=c++0x 或 -std=gnu++0x 下å¯ç”¨"
#: cp/parser.c:14521
#, fuzzy, gcc-internal-format
-#| msgid "ISO C forbids forward parameter declarations"
msgid "ISO C++ forbids use of %<auto%> in parameter declaration"
msgstr "ISO C ä¸å…许å‰å‘å‚数声明"
@@ -37640,7 +36522,6 @@ msgstr "%q#T多次定义"
#: cp/parser.c:15524
#, fuzzy, gcc-internal-format
-#| msgid "ISO C++ forbids incrementing an enum"
msgid "ISO C++ forbids empty anonymous enum"
msgstr "ISO C++ ä¸å…许枚举自增"
@@ -37681,7 +36562,6 @@ msgstr ""
#: cp/parser.c:16101
#, fuzzy, gcc-internal-format
-#| msgid "types may not be defined in exception-declarations"
msgid "types may not be defined in alias template declarations"
msgstr "类型ä¸èƒ½å®šä¹‰åœ¨å¼‚常声明中"
@@ -37764,7 +36644,6 @@ msgstr "无效的声明"
#. function.
#: cp/parser.c:17476
#, fuzzy, gcc-internal-format
-#| msgid "invalid type in declaration"
msgid "qualified-id in declaration"
msgstr "声明中有无效类型"
@@ -37780,7 +36659,6 @@ msgstr "%qD是一个命å空间"
#: cp/parser.c:17605
#, fuzzy, gcc-internal-format
-#| msgid "creating pointer to member of non-class type %qT"
msgid "cannot form pointer to member of non-class %q#T"
msgstr "生æˆéžç±»ç±»åž‹%qTçš„æˆå‘˜æŒ‡é’ˆ"
@@ -37796,13 +36674,11 @@ msgstr "é‡å¤çš„ cv é™å®š"
#: cp/parser.c:17739
#, fuzzy, gcc-internal-format
-#| msgid "duplicate cv-qualifier"
msgid "multiple ref-qualifiers"
msgstr "é‡å¤çš„ cv é™å®š"
#: cp/parser.c:17797
#, fuzzy, gcc-internal-format
-#| msgid "duplicate cv-qualifier"
msgid "duplicate virt-specifier"
msgstr "é‡å¤çš„ cv é™å®š"
@@ -37843,13 +36719,11 @@ msgstr "默认å‚æ•°åªå…许出现在函数å‚数中"
#: cp/parser.c:18594
#, fuzzy, gcc-internal-format
-#| msgid "%H%sparameter pack %qD cannot have a default argument"
msgid "parameter pack %qD cannot have a default argument"
msgstr "%H%s模æ¿å‚数包%qDä¸èƒ½æœ‰é»˜è®¤å‚æ•°"
#: cp/parser.c:18602
#, fuzzy, gcc-internal-format
-#| msgid "%H%sparameter pack cannot have a default argument"
msgid "parameter pack cannot have a default argument"
msgstr "%H%s模æ¿å‚数包ä¸èƒ½æœ‰é»˜è®¤å‚æ•°"
@@ -37860,7 +36734,6 @@ msgstr "ISO C++ ä¸å…许指定元素åˆå§‹å€¼è®¾å®š"
#: cp/parser.c:18907
#, fuzzy, gcc-internal-format
-#| msgid "ISO C++ does not allow designated initializers"
msgid "ISO C++ does not allow C99 designated initializers"
msgstr "ISO C++ ä¸å…许指定元素åˆå§‹å€¼è®¾å®š"
@@ -37891,7 +36764,6 @@ msgstr "需è¦%<{%>或%<:%>"
#: cp/parser.c:19667
#, fuzzy, gcc-internal-format
-#| msgid "cannot find file for class %s"
msgid "cannot specify %<override%> for a class"
msgstr "无法为类 %s 找到文件"
@@ -37942,7 +36814,6 @@ msgstr "需è¦ç±»å"
#: cp/parser.c:20181
#, fuzzy, gcc-internal-format
-#| msgid "a class-key must be used when declaring a friend"
msgid "in C++03 a class-key must be used when declaring a friend"
msgstr "声明å‹å…ƒæ—¶å¿…须使用 class 关键字"
@@ -38018,7 +36889,6 @@ msgstr "类型ä¸èƒ½å®šä¹‰åœ¨å¼‚常声明中"
#: cp/parser.c:21749
#, fuzzy, gcc-internal-format
-#| msgid "expected identifier or %<(%>"
msgid "expected an identifier for the attribute name"
msgstr "需è¦æ ‡è¯†ç¬¦æˆ–%<(%>"
@@ -38113,13 +36983,11 @@ msgstr "ISO C++ 1998 ä¸æ”¯æŒ%<long long%>"
#: cp/parser.c:24031
#, fuzzy, gcc-internal-format
-#| msgid "both %<_Sat%> and %<char%> in declaration specifiers"
msgid "both %<__thread%> and %<thread_local%> specified"
msgstr "声明中åŒæ—¶ä½¿ç”¨äº†%<_Sat%>å’Œ%<char%>"
#: cp/parser.c:24033
#, fuzzy, gcc-internal-format
-#| msgid "duplicate %qE"
msgid "duplicate %qD"
msgstr "é‡å¤çš„%qE"
@@ -38225,13 +37093,11 @@ msgstr "需è¦%<@throw%>"
#: cp/parser.c:24157
#, fuzzy, gcc-internal-format
-#| msgid "expected %<static_assert%>"
msgid "expected %<__transaction_atomic%>"
msgstr "需è¦%<static_assert%>"
#: cp/parser.c:24160
#, fuzzy, gcc-internal-format
-#| msgid "expected %<static_assert%>"
msgid "expected %<__transaction_relaxed%>"
msgstr "需è¦%<static_assert%>"
@@ -38272,7 +37138,6 @@ msgstr "使用了%qs标记,在命å%q#Tæ—¶"
#: cp/parser.c:24488
#, fuzzy, gcc-internal-format
-#| msgid "previously declared here"
msgid "%q#T was previously declared here"
msgstr "以å‰åœ¨æ­¤å£°æ˜Žè¿‡"
@@ -38283,7 +37148,6 @@ msgstr "%qDé‡å£°æ˜Žæ—¶æœ‰ä¸åŒçš„å¯è®¿é—®æ€§"
#: cp/parser.c:24528
#, fuzzy, gcc-internal-format
-#| msgid "%<template%> (as a disambiguator) is only allowed within templates"
msgid "in C++98 %<template%> (as a disambiguator) is only allowed within templates"
msgstr "用作消歧义的%<template%>åªèƒ½ç”¨äºŽæ¨¡æ¿å†…"
@@ -38354,7 +37218,6 @@ msgstr "%q+D的抽象类型无效"
#: cp/parser.c:27475
#, fuzzy, gcc-internal-format
-#| msgid "invalid initializer"
msgid "invalid reduction-identifier"
msgstr "无效的åˆå§‹å€¼è®¾å®š"
@@ -38365,7 +37228,6 @@ msgstr "括起的åˆå§‹åŒ–ä¸å…许使用在 OpenMP %<for%>循环中"
#: cp/parser.c:29045
#, fuzzy, gcc-internal-format
-#| msgid "parenthesized initialization is not allowed in OpenMP %<for%> loop"
msgid "parenthesized initialization is not allowed in for-loop"
msgstr "括起的åˆå§‹åŒ–ä¸å…许使用在 OpenMP %<for%>循环中"
@@ -38381,13 +37243,11 @@ msgstr "循环折å å¾—ä¸å¤Ÿ"
#: cp/parser.c:30334
#, fuzzy, gcc-internal-format
-#| msgid "attributes are not allowed on a function-definition"
msgid "vector attribute not immediately followed by a single function declaration or definition"
msgstr "函数定义中ä¸å…许有属性"
#: cp/parser.c:30561
#, fuzzy, gcc-internal-format
-#| msgid "invalid initializer"
msgid "invalid initializer clause"
msgstr "无效的åˆå§‹å€¼è®¾å®š"
@@ -38403,13 +37263,11 @@ msgstr ""
#: cp/parser.c:30678
#, fuzzy, gcc-internal-format
-#| msgid "expected %<+%>, %<*%>, %<-%>, %<&%>, %<^%>, %<|%>, %<&&%>, or %<||%>"
msgid "expected %<+%>, %<*%>, %<-%>, %<&%>, %<^%>, %<|%>, %<&&%>, %<||%> or identifier"
msgstr "需è¦%<+%>ã€%<*%>ã€%<-%>ã€%<&%>ã€%<^%>ã€%<|%>ã€%<&&%>或%<||%>"
#: cp/parser.c:30697
#, fuzzy, gcc-internal-format
-#| msgid "new types may not be defined in a return type"
msgid "types may not be defined in declare reduction type list"
msgstr "ä¸èƒ½åœ¨è¿”回类型中定义新类型"
@@ -38450,7 +37308,6 @@ msgstr "%<#pragma GCC pch_preprocess%>末尾有垃圾字符"
#: cp/parser.c:31479
#, fuzzy, gcc-internal-format
-#| msgid "#pragma GCC optimize is not allowed inside functions"
msgid "%<#pragma simd%> must be inside a function"
msgstr "#pragma GCC optimize ä¸å…许用在函数中"
@@ -38461,19 +37318,16 @@ msgstr "模å—间优化未为 C++ 实现"
#: cp/parser.c:31650
#, fuzzy, gcc-internal-format
-#| msgid "Expected variable name at %C"
msgid "expected variable-name"
msgstr "在%C处需è¦å˜é‡å"
#: cp/parser.c:31714
#, fuzzy, gcc-internal-format
-#| msgid "expected %<,%> or %<)%>"
msgid "expected %<,%> or %<)%> after %qE"
msgstr "éœ€è¦ %<,%> 或 %<)%>"
#: cp/parser.c:31996
#, fuzzy, gcc-internal-format
-#| msgid "templates may not be %<virtual%>"
msgid "implicit templates may not be %<virtual%>"
msgstr "模æ¿ä¸èƒ½æ˜¯%<virtual%>çš„"
@@ -38524,7 +37378,6 @@ msgstr "ç±»åéšè—了模æ¿çš„模æ¿å½¢å‚%qD"
#: cp/pt.c:831
#, fuzzy, gcc-internal-format
-#| msgid "declaration of template %q#D"
msgid "specialization of alias template %qD"
msgstr "模æ¿å£°æ˜Ž%q#D"
@@ -38562,13 +37415,11 @@ msgstr "%qD的特例化在实例化之åŽ"
#: cp/pt.c:1769
#, fuzzy, gcc-internal-format
-#| msgid "candidate is: %+#D"
msgid "candidate is: %#D"
msgstr "备选为:%+#D"
#: cp/pt.c:1776 cp/semantics.c:4775
#, fuzzy, gcc-internal-format
-#| msgid "%s %+#D"
msgid "%s %#D"
msgstr "%s %+#D"
@@ -38599,7 +37450,6 @@ msgstr "%qDä¸æ˜¯ç±»æ¨¡æ¿çš„éžé™æ€æ•°æ®æˆå‘˜"
#: cp/pt.c:2299
#, fuzzy, gcc-internal-format
-#| msgid "wrong number of template arguments (%d, should be %d)"
msgid "too many template headers for %D (should be %d)"
msgstr "模æ¿å‚æ•°æ•°ç›®ä¸å¯¹(ä¸åº”是 %d 个而应是 %d 个)"
@@ -38735,7 +37585,6 @@ msgstr ""
#: cp/pt.c:4159
#, fuzzy, gcc-internal-format
-#| msgid "previously declared here"
msgid "primary template here"
msgstr "以å‰åœ¨æ­¤å£°æ˜Žè¿‡"
@@ -38792,7 +37641,6 @@ msgstr "默认å‚æ•°ä¸èƒ½ç”¨åœ¨å‡½æ•°æ¨¡æ¿å‹å…ƒé‡å£°æ˜Žä¸­"
#: cp/pt.c:4478
#, fuzzy, gcc-internal-format
-#| msgid "default template arguments may not be used in function templates without -std=c++0x or -std=gnu++0x"
msgid "default template arguments may not be used in function templates without -std=c++11 or -std=gnu++11"
msgstr "åªæœ‰æŒ‡å®šäº† -std=c++0x 或 -std=gnu++0x æ—¶æ‰èƒ½åœ¨å‡½æ•°æ¨¡æ¿ä¸­ä½¿ç”¨é»˜è®¤å‚æ•°"
@@ -38914,19 +37762,16 @@ msgstr "它必须是一个具有外部链接函数的地å€"
#: cp/pt.c:5229
#, fuzzy, gcc-internal-format
-#| msgid "it must be the address of a function with external linkage"
msgid "it must be the name of a function with external linkage"
msgstr "它必须是一个具有外部链接函数的地å€"
#: cp/pt.c:5237
#, fuzzy, gcc-internal-format
-#| msgid "%qE is not a valid template argument for type %qT because object %qD has not external linkage"
msgid "%qE is not a valid template argument for type %qT because %qD has no linkage"
msgstr "%qEä¸æ˜¯ç±»åž‹%qT的有效模æ¿å®žå‚,因为对象%qD没有外部链接"
#: cp/pt.c:5241
#, fuzzy, gcc-internal-format
-#| msgid "%qE is not a valid template argument of type %qT because %qD does not have external linkage"
msgid "%qE is not a valid template argument for type %qT because %qD does not have external linkage"
msgstr "%qEä¸æ˜¯ç±»åž‹%qT的有效模æ¿å®žå‚,因为函数%qD没有外部链接"
@@ -38937,7 +37782,6 @@ msgstr "它必须是格å¼ä¸ºâ€˜&X::Y’的æˆå‘˜æŒ‡é’ˆ"
#: cp/pt.c:5318
#, fuzzy, gcc-internal-format
-#| msgid "got %d template parameters for %q#D"
msgid " couldn't deduce template parameter %qD"
msgstr "得到 %d 个模æ¿å‚数,为%q#D"
@@ -38948,31 +37792,26 @@ msgstr ""
#: cp/pt.c:5342
#, fuzzy, gcc-internal-format
-#| msgid "comparison between types %qT and %qT"
msgid " mismatched types %qT and %qT"
msgstr "在类型%qT和%qT间比较"
#: cp/pt.c:5351
#, fuzzy, gcc-internal-format
-#| msgid "template parameter pack %qD cannot have a default argument"
msgid " template parameter %qD is not a parameter pack, but argument %qD is"
msgstr "模æ¿å‚数包%qDä¸èƒ½æœ‰é»˜è®¤å‚æ•°"
#: cp/pt.c:5362
#, fuzzy, gcc-internal-format
-#| msgid "template arguments to %qD do not match original template %qD"
msgid " template argument %qE does not match pointer-to-member constant %qE"
msgstr "ç»™%qD的模æ¿å®žå‚ä¸åŒ¹é…原先的模æ¿%qD"
#: cp/pt.c:5372
#, fuzzy, gcc-internal-format
-#| msgid "%qs is not valid for %qs"
msgid " %qE is not equivalent to %qE"
msgstr "%qs对%qs而言无效"
#: cp/pt.c:5381
#, fuzzy, gcc-internal-format
-#| msgid "inconsistent deduction for %qT: %qT and then %qT"
msgid " inconsistent parameter pack deduction with %qT and %qT"
msgstr "对%qTä¸ä¸€è‡´çš„演绎:先是%qT然åŽæ˜¯%qT"
@@ -38988,31 +37827,26 @@ msgstr ""
#: cp/pt.c:5408
#, fuzzy, gcc-internal-format
-#| msgid "partial specialization %qT does not specialize any template arguments"
msgid " variable-sized array type %qT is not a valid template argument"
msgstr "部分特例化%qT并未特例化任何模æ¿å‚æ•°"
#: cp/pt.c:5419
#, fuzzy, gcc-internal-format
-#| msgid "%qE is not a valid template argument for type %qT"
msgid " member function type %qT is not a valid template argument"
msgstr "%qEä¸æ˜¯ç±»åž‹%qT的有效模æ¿å‚æ•°"
#: cp/pt.c:5453
#, fuzzy, gcc-internal-format
-#| msgid "cannot convert type %qT to type %qT"
msgid " cannot convert %qE (type %qT) to type %qT"
msgstr "ä¸èƒ½å°†ç±»åž‹%qT转æ¢ä¸ºç±»åž‹%qT"
#: cp/pt.c:5466
#, fuzzy, gcc-internal-format
-#| msgid "%qT is an ambiguous base of %qT"
msgid " %qT is an ambiguous base class of %qT"
msgstr "%qT是%qT的有歧义的基类"
#: cp/pt.c:5470
#, fuzzy, gcc-internal-format
-#| msgid "type %qT is not derived from type %qT"
msgid " %qT is not derived from %qT"
msgstr "类型%qTä¸æ˜¯ç”±ç±»åž‹%qT派生的"
@@ -39023,13 +37857,11 @@ msgstr ""
#: cp/pt.c:5491
#, fuzzy, gcc-internal-format
-#| msgid "cannot decrement a pointer to incomplete type %qT"
msgid " can't deduce a template for %qT from non-template type %qT"
msgstr "指å‘ä¸å®Œå…¨ç±»åž‹%qT的指针ä¸èƒ½è‡ªå‡"
#: cp/pt.c:5501
#, fuzzy, gcc-internal-format
-#| msgid "template arguments to %qD do not match original template %qD"
msgid " template argument %qE does not match %qD"
msgstr "ç»™%qD的模æ¿å®žå‚ä¸åŒ¹é…原先的模æ¿%qD"
@@ -39055,7 +37887,6 @@ msgstr "%qDä¸æ˜¯ä¸€ä¸ªæœ‰æ•ˆæ¨¡æ¿å®žå‚,因为%qD是一个å˜é‡ï¼Œè€Œéžå˜
#: cp/pt.c:5747
#, fuzzy, gcc-internal-format
-#| msgid "%qD is not a valid template argument because %qD is a variable, not the address of a variable"
msgid "%qE is not a valid template argument for %qT because it is not the address of a variable"
msgstr "%qDä¸æ˜¯ä¸€ä¸ªæœ‰æ•ˆæ¨¡æ¿å®žå‚,因为%qD是一个å˜é‡ï¼Œè€Œéžå˜é‡çš„地å€"
@@ -39071,7 +37902,6 @@ msgstr "%qEä¸æ˜¯ç±»åž‹%qT的有效模æ¿å®žå‚,因为函数%qD没有外部链
#: cp/pt.c:5778
#, fuzzy, gcc-internal-format
-#| msgid "%qE is not a valid template argument of type %qT because %qE is not a variable"
msgid "%qE is not a valid template argument of type %qT because %qD has no linkage"
msgstr "%qEä¸æ˜¯ç±»åž‹%qT的有效模æ¿å®žå‚,因为%qEä¸æ˜¯ä¸€ä¸ªå˜é‡"
@@ -39132,7 +37962,6 @@ msgstr "注入的类å%qD被用作模æ¿çš„模æ¿å‚æ•°"
#: cp/pt.c:6336
#, fuzzy, gcc-internal-format
-#| msgid "invalid use of destructor %qD as a type"
msgid "invalid use of destructor %qE as a type"
msgstr "å°†æžæž„函数%qD用作类型无效"
@@ -39210,13 +38039,11 @@ msgstr "æ供给%q+D"
#: cp/pt.c:6754
#, fuzzy, gcc-internal-format
-#| msgid "default argument for template parameter for class enclosing %qD"
msgid "pack expansion argument for non-pack parameter %qD of alias template %qD"
msgstr "包å«%qD的类的模æ¿å‚数有默认å‚æ•°"
#: cp/pt.c:7085
#, fuzzy, gcc-internal-format
-#| msgid "%qD is not a function template"
msgid "%q#D is not a function template"
msgstr "%qDä¸æ˜¯ä¸€ä¸ªå‡½æ•°æ¨¡æ¿"
@@ -39232,7 +38059,6 @@ msgstr "对于模æ¿å£°æ˜Ž%q+D"
#: cp/pt.c:8088
#, fuzzy
-#| msgid "template instantiation depth exceeds maximum of %d (use -ftemplate-depth= to increase the maximum) instantiating %qD"
msgid "template instantiation depth exceeds maximum of %d (use -ftemplate-depth= to increase the maximum) substituting %qS"
msgstr "在实例化%2$qD时模æ¿å®žä¾‹åŒ–深度超过最大值 %1$d(使用 use -ftemplate-depth= æ¥å¢žå¤§æœ€å¤§å€¼)"
@@ -39253,7 +38079,6 @@ msgstr "展开%<%E%>æ—¶å‚数包长度ä¸åŒ¹é…"
#: cp/pt.c:10108
#, fuzzy, gcc-internal-format
-#| msgid "redefinition of default argument for %q#D"
msgid " when instantiating default argument for call to %D"
msgstr "é‡å®šä¹‰%q#D的默认å‚æ•°"
@@ -39317,25 +38142,21 @@ msgstr "生æˆæŒ‡å‘引用类型%qT的引用"
#: cp/pt.c:11791
#, fuzzy, gcc-internal-format
-#| msgid "cannot declare pointer to qualified function type %qT"
msgid "forming pointer to qualified function type %qT"
msgstr "ä¸èƒ½å£°æ˜ŽæŒ‡å‘é™å®šå‡½æ•°ç±»åž‹%qT的指针"
#: cp/pt.c:11794
#, fuzzy, gcc-internal-format
-#| msgid "cannot declare reference to qualified function type %qT"
msgid "forming reference to qualified function type %qT"
msgstr "ä¸èƒ½å£°æ˜ŽæŒ‡å‘é™å®šå‡½æ•°ç±»åž‹%qT的引用"
#: cp/pt.c:11831
#, fuzzy, gcc-internal-format
-#| msgid "cannot declare reference to qualified function type %qT"
msgid "cannot declare reference to array of runtime bound"
msgstr "ä¸èƒ½å£°æ˜ŽæŒ‡å‘é™å®šå‡½æ•°ç±»åž‹%qT的引用"
#: cp/pt.c:11832
#, fuzzy, gcc-internal-format
-#| msgid "cannot declare pointer to %q#T member"
msgid "cannot declare pointer to array of runtime bound"
msgstr "无法声明指å‘%q#Tæˆå‘˜çš„指针"
@@ -39426,13 +38247,11 @@ msgstr ""
#: cp/pt.c:14567
#, fuzzy, gcc-internal-format
-#| msgid "%<%T::%E%> is not a type"
msgid "use %<%T::%D%> instead"
msgstr "%<%T::%E%>ä¸æ˜¯ä¸€ä¸ªç±»åž‹"
#: cp/pt.c:14571
#, fuzzy, gcc-internal-format
-#| msgid "%qE undeclared here (not in a function)"
msgid "%q+D declared here, later in the translation unit"
msgstr "%qE未声明(ä¸åœ¨å‡½æ•°å†…)"
@@ -39518,7 +38337,6 @@ msgstr "为模æ¿å®žä¾‹åŒ–化应用了存储类型%qD"
#: cp/pt.c:18935
#, fuzzy, gcc-internal-format
-#| msgid "explicit instantiation of non-template %q#D"
msgid "explicit instantiation of non-class template %qD"
msgstr "对éžæ¨¡æ¿%q#D的显å¼å®žä¾‹åŒ–"
@@ -39561,13 +38379,11 @@ msgstr "在实例化%2$q+D时模æ¿å®žä¾‹åŒ–深度超过了最大值 %1$d,å¯è
#: cp/pt.c:20137
#, fuzzy, gcc-internal-format
-#| msgid "invalid use of template type parameter %qT"
msgid "invalid template non-type parameter"
msgstr "对模æ¿ç±»åž‹å‚æ•°%qT的使用无效"
#: cp/pt.c:20139
#, fuzzy, gcc-internal-format
-#| msgid "%q#T is not a valid type for a template constant parameter"
msgid "%q#T is not a valid type for a template non-type parameter"
msgstr "%q#Tä¸æ˜¯ä¸€ä¸ªæœ‰æ•ˆçš„模æ¿å¸¸é‡å‚数类型"
@@ -39583,7 +38399,6 @@ msgstr ""
#: cp/pt.c:21484
#, fuzzy, gcc-internal-format
-#| msgid "unable to deduce %qT from %qE"
msgid "unable to deduce lambda return type from %qE"
msgstr "无法从%2$qE推导出%1$qT"
@@ -39629,7 +38444,6 @@ msgstr "在使用 typeid 之å‰å¿…须先 #include <typeinfo>"
#: cp/rtti.c:399
#, fuzzy, gcc-internal-format
-#| msgid "creating array of functions"
msgid "typeid of array of runtime bound"
msgstr "创建函数的数组"
@@ -39640,7 +38454,6 @@ msgstr "无法为类型%qT创建类型信æ¯ï¼Œå› ä¸ºå®ƒçš„大å°æ˜¯å¯å˜çš„"
#: cp/rtti.c:491
#, fuzzy, gcc-internal-format
-#| msgid "cannot declare pointer to qualified function type %qT"
msgid "typeid of qualified function type %qT"
msgstr "ä¸èƒ½å£°æ˜ŽæŒ‡å‘é™å®šå‡½æ•°ç±»åž‹%qT的指针"
@@ -39671,7 +38484,6 @@ msgstr "%qT是%qTä¸å¯è®¿é—®çš„基类"
#: cp/search.c:1899
#, fuzzy, gcc-internal-format
-#| msgid "invalid covariant return type for %q+#D"
msgid "invalid covariant return type for %q#D"
msgstr "%q+#Dçš„åå˜è¿”回类型无效"
@@ -39727,13 +38539,11 @@ msgstr "éšè—了被删除的函数%q+D"
#: cp/search.c:1966
#, fuzzy, gcc-internal-format
-#| msgid "virtual non-class function %qs"
msgid "virtual function %q+D"
msgstr "虚函数%qsä¸æ˜¯ç±»æˆå‘˜"
#: cp/search.c:1967
#, fuzzy, gcc-internal-format
-#| msgid "overriding deleted function %q+D"
msgid "overriding final function %q+D"
msgstr "éšè—了被删除的函数%q+D"
@@ -39851,7 +38661,6 @@ msgstr "无效的基类"
#: cp/semantics.c:3218
#, fuzzy, gcc-internal-format
-#| msgid "protected member %q+#D in anonymous union"
msgid "cannot capture member %qD of anonymous union"
msgstr "匿åè”åˆä¸­å‡ºçŽ°ä¿æŠ¤æˆå‘˜%q+#D"
@@ -39862,13 +38671,11 @@ msgstr "%qD未被æ•èŽ·"
#: cp/semantics.c:3235
#, fuzzy, gcc-internal-format
-#| msgid "use of %<auto%> variable from containing function"
msgid "use of local variable with automatic storage from containing function"
msgstr "在包å«å‡½æ•°ä¸­ä½¿ç”¨%<auto%>å˜é‡"
#: cp/semantics.c:3236
#, fuzzy, gcc-internal-format
-#| msgid "use of %<auto%> variable from containing function"
msgid "use of parameter from containing function"
msgstr "在包å«å‡½æ•°ä¸­ä½¿ç”¨%<auto%>å˜é‡"
@@ -39910,14 +38717,12 @@ msgstr "%qE的类型未知"
#: cp/semantics.c:3622
#, fuzzy, gcc-internal-format
-#| msgid "%qD is not an enumerator-name"
msgid "%qT is not an enumeration type"
msgstr "%qDä¸æ˜¯ä¸€ä¸ªæžšä¸¾å"
#. Parameter packs can only be used in templates
#: cp/semantics.c:3771
#, fuzzy, gcc-internal-format
-#| msgid "storage class specifiers invalid in parameter declarations"
msgid "Parameter pack __bases only valid in template declaration"
msgstr "为形å‚声明指定了无效的存储类"
@@ -39938,7 +38743,6 @@ msgstr "ä¸èƒ½ä¸ºæˆå‘˜å‡½æ•°%qD应用%<offsetof%>"
#: cp/semantics.c:4772
#, fuzzy, gcc-internal-format
-#| msgid "reference to %qD is ambiguous"
msgid "user defined reduction lookup is ambiguous"
msgstr "对%qD的引用有歧义"
@@ -39959,7 +38763,6 @@ msgstr ""
#: cp/semantics.c:5267
#, fuzzy, gcc-internal-format
-#| msgid "num_threads expression must be integral"
msgid "linear step expression must be integral"
msgstr "num_threads 表达å¼å¿…须是整型的"
@@ -39995,43 +38798,36 @@ msgstr "调度å—大å°è¡¨è¾¾å¼å¿…须为整型"
#: cp/semantics.c:5434
#, fuzzy, gcc-internal-format
-#| msgid "num_threads expression must be integral"
msgid "%qs length expression must be integral"
msgstr "num_threads 表达å¼å¿…须是整型的"
#: cp/semantics.c:5447
#, fuzzy, gcc-internal-format
-#| msgid "%Hcollapse argument needs positive constant integer expression"
msgid "%qs length expression must be positive constant integer expression"
msgstr "%H折å å˜é‡éœ€è¦æ­£æ•´å¸¸æ•°è¡¨è¾¾å¼"
#: cp/semantics.c:5464
#, fuzzy, gcc-internal-format
-#| msgid "num_threads expression must be integral"
msgid "%<num_teams%> expression must be integral"
msgstr "num_threads 表达å¼å¿…须是整型的"
#: cp/semantics.c:5483
#, fuzzy, gcc-internal-format
-#| msgid "num_threads expression must be integral"
msgid "%<thread_limit%> expression must be integral"
msgstr "num_threads 表达å¼å¿…须是整型的"
#: cp/semantics.c:5502
#, fuzzy, gcc-internal-format
-#| msgid "slice end must be integer"
msgid "%<device%> id must be integral"
msgstr "切片结尾必须是整数"
#: cp/semantics.c:5523
#, fuzzy, gcc-internal-format
-#| msgid "schedule chunk size expression must be integral"
msgid "%<dist_schedule%> chunk size expression must be integral"
msgstr "调度å—大å°è¡¨è¾¾å¼å¿…须为整型"
#: cp/semantics.c:5543
#, fuzzy, gcc-internal-format
-#| msgid "%qD is not a variable in clause %qs"
msgid "%qD is not a variable in %<aligned%> clause"
msgstr "%qD在å­å¥%qs中ä¸æ˜¯ä¸€ä¸ªå˜é‡"
@@ -40042,19 +38838,16 @@ msgstr ""
#: cp/semantics.c:5563
#, fuzzy, gcc-internal-format
-#| msgid "%qD appears more than once in data clauses"
msgid "%qD appears more than once in %<aligned%> clauses"
msgstr "%qD在数æ®å­å¥ä¸­å¤šæ¬¡å‡ºçŽ°"
#: cp/semantics.c:5576
#, fuzzy, gcc-internal-format
-#| msgid "schedule chunk size expression must be integral"
msgid "%<aligned%> clause alignment expression must be integral"
msgstr "调度å—大å°è¡¨è¾¾å¼å¿…须为整型"
#: cp/semantics.c:5613
#, fuzzy, gcc-internal-format
-#| msgid "%qD is not a variable in clause %qs"
msgid "%qD is not a variable in %<depend%> clause"
msgstr "%qD在å­å¥%qs中ä¸æ˜¯ä¸€ä¸ªå˜é‡"
@@ -40091,7 +38884,6 @@ msgstr ""
#. Report the error.
#: cp/semantics.c:6870
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "static assertion failed: %E"
msgid "static assertion failed: %s"
msgstr "é™æ€æ–­è¨€é”™è¯¯ï¼š%E"
@@ -40137,7 +38929,6 @@ msgstr "函数%2$qD的返回值类型%1$qTä¸æ˜¯ä¸€ä¸ªå­—é¢ç±»åž‹"
#: cp/semantics.c:7494
#, fuzzy, gcc-internal-format
-#| msgid "%q#T is not a class"
msgid "%q#T has virtual base classes"
msgstr "%q#Tä¸æ˜¯ä¸€ä¸ªç±»"
@@ -40168,7 +38959,6 @@ msgstr "返回语å¥è½¬æ¢æ— æ•ˆ"
#: cp/semantics.c:8033
#, fuzzy, gcc-internal-format
-#| msgid "%qD is not a constexpr function"
msgid "%q+D is not usable as a constexpr function because:"
msgstr "%qDä¸æ˜¯ä¸€ä¸ªå¹¿ä¹‰å¸¸å‡½æ•°"
@@ -40179,14 +38969,12 @@ msgstr "å‹å…ƒå£°æ˜Žæ²¡æœ‰æŒ‡å®šç±»æˆ–函数å"
#: cp/semantics.c:8382 cp/semantics.c:10054
#, fuzzy, gcc-internal-format
-#| msgid "call to non-function %qD"
msgid "call to non-constexpr function %qD"
msgstr "调用éžå‡½æ•°çš„%qD"
#. The definition of fun was somehow unsuitable.
#: cp/semantics.c:8416
#, fuzzy, gcc-internal-format
-#| msgid "%qE is not a constant expression"
msgid "%qD called in a constant expression"
msgstr "%qEä¸æ˜¯ä¸€ä¸ªå¸¸é‡è¡¨è¾¾å¼"
@@ -40202,7 +38990,6 @@ msgstr "调用存在循环ä¾èµ–"
#: cp/semantics.c:8462
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "template instantiation depth exceeds maximum of %d (use -ftemplate-depth= to increase the maximum) instantiating %qD"
msgid "constexpr evaluation depth exceeds maximum of %d (use -fconstexpr-depth= to increase the maximum)"
msgstr "在实例化%2$qD时模æ¿å®žä¾‹åŒ–深度超过最大值 %1$d(使用 use -ftemplate-depth= æ¥å¢žå¤§æœ€å¤§å€¼)"
@@ -40218,7 +39005,6 @@ msgstr "数组下标越界"
#: cp/semantics.c:8682
#, fuzzy, gcc-internal-format
-#| msgid "Expected array subscript at %C"
msgid "negative array subscript"
msgstr "%C处需è¦æ•°ç»„下标"
@@ -40284,13 +39070,11 @@ msgstr "%qE的枚举值ä¸æ˜¯ä¸€ä¸ªæ•´æ•°å¸¸é‡"
#: cp/semantics.c:9492 cp/semantics.c:10361
#, fuzzy, gcc-internal-format
-#| msgid "enumeral and non-enumeral type in conditional expression"
msgid "temporary of non-literal type %qT in a constant expression"
msgstr "枚举和éžæžšä¸¾ç±»åž‹ä¸€èµ·å‡ºçŽ°åœ¨æ¡ä»¶è¡¨è¾¾å¼ä¸­"
#: cp/semantics.c:9735 cp/semantics.c:10146
#, fuzzy, gcc-internal-format
-#| msgid "reinterpret_cast from type %qT to type %qT casts away qualifiers"
msgid "reinterpret_cast from integer to pointer"
msgstr "从类型%qT到类型%qTçš„ reinterpret_cast 丢失了é™å®šç¬¦"
@@ -40331,7 +39115,6 @@ msgstr ""
#: cp/semantics.c:10200
#, fuzzy, gcc-internal-format
-#| msgid "%qE is not a constant expression"
msgid "use of %<this%> in a constant expression"
msgstr "%qEä¸æ˜¯ä¸€ä¸ªå¸¸é‡è¡¨è¾¾å¼"
@@ -40352,7 +39135,6 @@ msgstr "整型表达å¼%qEä¸æ˜¯å¸¸é‡"
#: cp/semantics.c:10336
#, fuzzy, gcc-internal-format
-#| msgid "Bad type in constant expression"
msgid "cast to non-integral type %qT in a constant expression"
msgstr "常é‡è¡¨è¾¾å¼ä¸­ç±»åž‹é”™è¯¯"
@@ -40423,43 +39205,36 @@ msgstr "%qE属性在此平å°ä¸Šä¸å—支æŒ"
#: cp/tree.c:3333
#, fuzzy, gcc-internal-format
-#| msgid "declaration of %qD as member of %qT"
msgid "redeclaration of %qD adds abi tag %E"
msgstr "%qD声明为%qT的一个æˆå‘˜"
#: cp/tree.c:3339
#, fuzzy, gcc-internal-format
-#| msgid "previous declaration %q+#D here"
msgid "previous declaration here"
msgstr "与此处早先的声明%q+#D冲çª"
#: cp/tree.c:3356
#, fuzzy, gcc-internal-format
-#| msgid "%qE attribute ignored on non-class types"
msgid "%qE attribute applied to non-class, non-enum type %qT"
msgstr "%qE属性在ä¸æ˜¯ç±»çš„类型上被忽略"
#: cp/tree.c:3362
#, fuzzy, gcc-internal-format
-#| msgid "ignoring attributes applied to %qT after definition"
msgid "%qE attribute applied to %qT after its definition"
msgstr "忽略在其定义之åŽä¸º%qT应用的属性"
#: cp/tree.c:3384
#, fuzzy, gcc-internal-format
-#| msgid "%qE attribute applies only to functions"
msgid "%qE attribute applied to non-function %qD"
msgstr "%qE属性åªèƒ½ç”¨äºŽå‡½æ•°"
#: cp/tree.c:3389
#, fuzzy, gcc-internal-format
-#| msgid "%qE attribute applies only to functions"
msgid "%qE attribute applied to extern \"C\" function %qD"
msgstr "%qE属性åªèƒ½ç”¨äºŽå‡½æ•°"
#: cp/tree.c:4093
#, fuzzy, gcc-internal-format
-#| msgid "array bound is not an integer constant"
msgid "zero as null pointer constant"
msgstr "数组边界ä¸æ˜¯ä¸€ä¸ªæ•´æ•°å¸¸é‡"
@@ -40530,7 +39305,6 @@ msgstr "%qs用于æˆå‘˜å‡½æ•°æ— æ•ˆ"
#: cp/typeck.c:1559
#, fuzzy, gcc-internal-format
-#| msgid "creating array of functions"
msgid "taking sizeof array of runtime bound"
msgstr "创建函数的数组"
@@ -40561,7 +39335,6 @@ msgstr "对éžé™æ€æˆå‘˜å‡½æ•°çš„使用无效"
#: cp/typeck.c:1961
#, fuzzy, gcc-internal-format
-#| msgid "taking address of temporary"
msgid "taking address of temporary array"
msgstr "å–临时å˜é‡çš„地å€"
@@ -40572,7 +39345,6 @@ msgstr "ä¸å»ºè®®ä½¿ç”¨ä»Žå­—符串常é‡åˆ°%qT的转æ¢"
#: cp/typeck.c:2248 cp/typeck.c:2658
#, fuzzy, gcc-internal-format
-#| msgid "request for member %qD in %qE, which is of non-class type %qT"
msgid "request for member %qD in %qE, which is of pointer type %qT (maybe you meant to use %<->%> ?)"
msgstr "对æˆå‘˜%qD的请求出现在%qE中,而åŽè€…具有éžç±»ç±»åž‹%qT"
@@ -40663,7 +39435,6 @@ msgstr "数组引用缺少下标"
#: cp/typeck.c:3029
#, fuzzy, gcc-internal-format
-#| msgid "alignment of array elements is greater than element size"
msgid "rank of the array%'s index is greater than 1"
msgstr "数组元素的对é½è¾¹ç•Œæ¯”元素大å°è¿˜è¦å¤§"
@@ -40704,13 +39475,11 @@ msgstr "%qEä¸èƒ½ç”¨ä½œå‡½æ•°"
#: cp/typeck.c:3486
#, fuzzy, gcc-internal-format
-#| msgid "%qE cannot be used as a function"
msgid "%qD cannot be used as a function"
msgstr "%qEä¸èƒ½ç”¨ä½œå‡½æ•°"
#: cp/typeck.c:3489
#, fuzzy, gcc-internal-format
-#| msgid "%qE cannot be used as a function"
msgid "expression cannot be used as a function"
msgstr "%qEä¸èƒ½ç”¨ä½œå‡½æ•°"
@@ -40821,13 +39590,11 @@ msgstr "ISO C++ ä¸å…许比较指针和整数的值"
#: cp/typeck.c:4572 cp/typeck.c:4584
#, fuzzy, gcc-internal-format
-#| msgid "comparison between %qT and %qT"
msgid "operand types are %qT and %qT"
msgstr "在%qT和%qT间比较"
#: cp/typeck.c:4596
#, fuzzy, gcc-internal-format
-#| msgid "could not find interface for class %qE"
msgid "could not find an integer type of the same size as %qT"
msgstr "找ä¸åˆ°ç±»%qE的接å£"
@@ -40925,7 +39692,6 @@ msgstr "ä¸èƒ½åˆ›å»ºæŒ‡å‘引用æˆå‘˜%qD的指针"
#: cp/typeck.c:5473
#, fuzzy, gcc-internal-format
-#| msgid "taking address of expression of type %<void%>"
msgid "taking address of array of runtime bound"
msgstr "å–一个类型为%<void%>的表达å¼çš„地å€"
@@ -40981,7 +39747,6 @@ msgstr "请求声明为%<register%>çš„%qD的地å€"
#: cp/typeck.c:6077
#, fuzzy, gcc-internal-format
-#| msgid "initializer for %qT must be brace-enclosed"
msgid "list-initializer for non-class type must not be parenthesized"
msgstr "%qTçš„åˆå§‹å€¼è®¾å®šå¿…须在花括å·å†…"
@@ -41027,7 +39792,6 @@ msgstr "从类型%qT到类型%qTçš„ reinterpret_cast 丢失了é™å®šç¬¦"
#: cp/typeck.c:6296
#, fuzzy, gcc-internal-format
-#| msgid "invalid cast to function type %qT"
msgid "useless cast to type %qT"
msgstr "å‘函数类型%qT的转æ¢æ— æ•ˆ"
@@ -41058,7 +39822,6 @@ msgstr "从%qT到%qT的转æ¢å¢žå¤§äº†ç›®æ ‡ç±»åž‹çš„对é½éœ€æ±‚"
#: cp/typeck.c:6850
#, fuzzy, gcc-internal-format
-#| msgid "ISO C++ forbids casting between pointer-to-function and pointer-to-object"
msgid "casting between pointer-to-function and pointer-to-object is conditionally-supported"
msgstr "ISO C++ ä¸å…许在函数指针和对象指针间进行转æ¢"
@@ -41253,7 +40016,6 @@ msgstr "在返回%qT的函数中,返回语å¥ä¸å¸¦è¿”回值"
#: cp/typeck.c:8390
#, fuzzy, gcc-internal-format
-#| msgid "<brace-enclosed initializer list>"
msgid "returning initializer list"
msgstr "<花括å·å†…çš„åˆå§‹å€¼åˆ—表>"
@@ -41335,7 +40097,6 @@ msgstr "ä¸èƒ½å°†å½¢å‚%q+D声明为具有抽象类型%qT"
#: cp/typeck2.c:333
#, fuzzy, gcc-internal-format
-#| msgid "cannot declare parameter %q+D to be of abstract type %qT"
msgid "cannot declare parameter to be of abstract type %qT"
msgstr "ä¸èƒ½å°†å½¢å‚%q+D声明为具有抽象类型%qT"
@@ -41372,37 +40133,31 @@ msgstr "生æˆæŠ½è±¡ç±»åž‹%qT的数组"
#: cp/typeck2.c:356
#, fuzzy, gcc-internal-format
-#| msgid "invalid cast to function type %qT"
msgid "invalid cast to abstract class type %qT"
msgstr "å‘函数类型%qT的转æ¢æ— æ•ˆ"
#: cp/typeck2.c:359
#, fuzzy, gcc-internal-format
-#| msgid "invalid cast of an rvalue expression of type %qT to type %qT"
msgid "invalid new-expression of abstract class type %qT"
msgstr "从具有类型%qTçš„å³å€¼è¡¨è¾¾å¼åˆ°ç±»åž‹%qT中的转æ¢æ— æ•ˆ"
#: cp/typeck2.c:362
#, fuzzy, gcc-internal-format
-#| msgid "invalid parameter type %qT"
msgid "invalid abstract return type %qT"
msgstr "无效的å‚数类型%qT"
#: cp/typeck2.c:365
#, fuzzy, gcc-internal-format
-#| msgid "invalid parameter type %qT"
msgid "invalid abstract parameter type %qT"
msgstr "无效的å‚数类型%qT"
#: cp/typeck2.c:368
#, fuzzy, gcc-internal-format
-#| msgid "expression %qE of abstract class type %qT cannot be used in throw-expression"
msgid "expression of abstract class type %qT cannot be used in throw-expression"
msgstr "表达å¼%qE具有抽象类类型%qT,ä¸èƒ½ç”¨äºŽ throw 表达å¼ä¸­"
#: cp/typeck2.c:372
#, fuzzy, gcc-internal-format
-#| msgid "cannot declare parameter %q+D to be of abstract type %qT"
msgid "cannot declare catch parameter to be of abstract class type %qT"
msgstr "ä¸èƒ½å°†å½¢å‚%q+D声明为具有抽象类型%qT"
@@ -41448,7 +40203,6 @@ msgstr "对%qT的使用éžæ³•"
#: cp/typeck2.c:501
#, fuzzy, gcc-internal-format
-#| msgid "invalid use of member (did you forget the %<&%> ?)"
msgid "invalid use of member function (did you forget the %<()%> ?)"
msgstr "对æˆå‘˜çš„使用无效(您是å¦é—忘了%<&%>?)"
@@ -41474,7 +40228,6 @@ msgstr "对ä¾èµ–类型%qT的使用无效"
#: cp/typeck2.c:534
#, fuzzy, gcc-internal-format
-#| msgid "<brace-enclosed initializer list>"
msgid "invalid use of brace-enclosed initializer list"
msgstr "<花括å·å†…çš„åˆå§‹å€¼åˆ—表>"
@@ -41510,7 +40263,6 @@ msgstr "在 {} 内将%qE从%qT转æ¢ä¸ºè¾ƒçª„的类型%qT"
#: cp/typeck2.c:922
#, fuzzy, gcc-internal-format
-#| msgid "narrowing conversion of %qE from %qT to %qT inside { }"
msgid "narrowing conversion of %qE from %qT to %qT inside { } is ill-formed in C++11"
msgstr "在 {} 内将%qE从%qT转æ¢ä¸ºè¾ƒçª„的类型%qT"
@@ -41606,19 +40358,16 @@ msgstr "æˆå‘˜æŒ‡é’ˆç±»åž‹%qT与对象类型%qTä¸å…¼å®¹"
#: cp/typeck2.c:1759
#, fuzzy, gcc-internal-format
-#| msgid "pointer to member function used in arithmetic"
msgid "pointer-to-member-function type %qT requires an rvalue"
msgstr "在算术表达å¼ä¸­ä½¿ç”¨äº†æˆå‘˜æŒ‡é’ˆ"
#: cp/typeck2.c:1766
#, fuzzy, gcc-internal-format
-#| msgid "pointer to member function used in arithmetic"
msgid "pointer-to-member-function type %qT requires an lvalue"
msgstr "在算术表达å¼ä¸­ä½¿ç”¨äº†æˆå‘˜æŒ‡é’ˆ"
#: cp/typeck2.c:1807
#, fuzzy, gcc-internal-format
-#| msgid "invalid cast to function type %qT"
msgid "functional cast to array type %qT"
msgstr "å‘函数类型%qT的转æ¢æ— æ•ˆ"
@@ -41659,7 +40408,6 @@ msgstr "在%L处把一个无穷大或éžæ•°è½¬æ¢ä¸º INTEGER"
#: fortran/arith.c:904 fortran/arith.c:929
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: Noninteger exponent in an initialization expression at %L"
msgid "Noninteger exponent in an initialization expression at %L"
msgstr "Fortran 2003:%L处åˆå§‹åŒ–表达å¼ä¸­éžæ•´æ•°æŒ‡æ•°"
@@ -41833,7 +40581,6 @@ msgstr "%C处数组规格中有多于 %d 的维数"
#: fortran/array.c:578
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Array specification at %C has more than %d dimensions"
msgid "Array specification at %C with more than 7 dimensions"
msgstr "%C处数组规格中有多于 %d 的维数"
@@ -41864,13 +40611,11 @@ msgstr "%C处数组构造语法错误"
#: fortran/array.c:1060
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: [...] style array constructors at %C"
msgid "[...] style array constructors at %C"
msgstr "Fortran 2003:%C处 [...] 风格的数组构造"
#: fortran/array.c:1082
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: Array constructor including type specification at %C"
msgid "Array constructor including type specification at %C"
msgstr "Fortran 2003:%C处包å«ç±»åž‹è§„格的数组构造"
@@ -42074,7 +40819,6 @@ msgstr "%4$L处‘%3$s’内建函数的‘%1$s’和‘%2$s’实å‚类型必é¡
#: fortran/check.c:868 fortran/check.c:1807 fortran/check.c:1933
#: fortran/check.c:2007 fortran/check.c:2427
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Extension: Different type kinds at %L"
msgid "Different type kinds at %L"
msgstr "扩展:%L处类型ç§åˆ«ä¸åŒ"
@@ -42085,7 +40829,6 @@ msgstr "%3$L处内建函数‘%2$s’的实å‚‘%1$s’必须是一个 POINTER"
#: fortran/check.c:913 fortran/check.c:949 fortran/check.c:2945
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "'%s' argument of '%s' intrinsic at %L must be of kind %d"
msgid "'%s' argument of '%s' intrinsic at %L shall not be coindexed"
msgstr "%3$L处内建函数‘%2$s’的实å‚‘%1$s’必须具有ç§åˆ« %4$d"
@@ -42121,19 +40864,16 @@ msgstr "‘%s’的实å‚在%L处必须是一个指针"
#: fortran/check.c:1030
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "'%s' and '%s' arguments of '%s' intrinsic at %L must have the same type"
msgid "ATOM and VALUE argument of the %s intrinsic function shall have the same type at %L"
msgstr "%4$L处‘%3$s’内建函数的‘%1$s’和‘%2$s’实å‚类型必须相åŒ"
#: fortran/check.c:1048
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "'%s' argument of '%s' intrinsic at %L must be default real"
msgid "ATOM argument of the %s intrinsic function at %L shall be definable"
msgstr "%3$L处内建函数‘%2$s’的‘%1$s’实å‚类型必须为默认实型"
#: fortran/check.c:1065
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "'%s' argument of '%s' intrinsic at %L must be default real"
msgid "VALUE argument of the %s intrinsic function at %L shall be definable"
msgstr "%3$L处内建函数‘%2$s’的‘%1$s’实å‚类型必须为默认实型"
@@ -42162,7 +40902,6 @@ msgstr ""
#: fortran/check.c:3609 fortran/check.c:3664 fortran/check.c:4620
#: fortran/check.c:4749
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: '%s' intrinsic with KIND argument at %L"
msgid "'%s' intrinsic with KIND argument at %L"
msgstr "Fortran 2003:%2$L处的‘%1$s’内建函数有 KIND 实å‚"
@@ -42203,7 +40942,6 @@ msgstr "%2$L处 %1$s 内建函数缺少实å‚"
#: fortran/check.c:1739
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2008: COMPLEX argument '%s' argument of '%s' intrinsic at %L"
msgid "COMPLEX argument '%s' argument of '%s' intrinsic at %L"
msgstr "Fortran 2008:%3$L处的‘%2$s’内建函数有 COMPLEX å‚数‘%1$s’"
@@ -42239,19 +40977,16 @@ msgstr "%2$L处的内建函数‘%1$s’必须至少有两个实å‚"
#: fortran/check.c:2384
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "'%s' argument of '%s' intrinsic at %L is empty"
msgid "Missing '%s' argument to the %s intrinsic at %L"
msgstr "%3$L处内建‘%2$s’内建函数的‘%1$s’实å‚为空"
#: fortran/check.c:2399
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "arguments '%s' and '%s' for intrinsic %s"
msgid "Duplicate argument '%s' at %L to intrinsic %s"
msgstr "‘%s’和‘%s’用作内建函数‘%s’的å‚æ•°"
#: fortran/check.c:2404
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "arguments '%s' and '%s' for intrinsic %s"
msgid "Unknown argument '%s' at %L to intrinsic %s"
msgstr "‘%s’和‘%s’用作内建函数‘%s’的å‚æ•°"
@@ -42262,7 +40997,6 @@ msgstr "%3$L处内建函数‘%2$s’的实å‚‘a%1$d’必须是 %4$s(%5$d)"
#: fortran/check.c:2464
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: '%s' intrinsic with CHARACTER argument at %L"
msgid "'%s' intrinsic with CHARACTER argument at %L"
msgstr "Fortran 2003:%2$L处的‘%1$s’内建函数有 CHARACTER 实å‚"
@@ -42298,13 +41032,11 @@ msgstr "%3$L处内建函数‘%2$s’的实å‚‘%1$s’必须为整数型或实
#: fortran/check.c:2815
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Second argument of NEAREST at %L shall not be zero"
msgid "The FROM argument to MOVE_ALLOC at %L shall not be coindexed"
msgstr "%L处 NEAREST 的第二个å‚æ•°ä¸èƒ½ä¸º 0"
#: fortran/check.c:2826
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Second argument of NEAREST at %L shall not be zero"
msgid "The TO argument to MOVE_ALLOC at %L shall not be coindexed"
msgstr "%L处 NEAREST 的第二个å‚æ•°ä¸èƒ½ä¸º 0"
@@ -42315,25 +41047,21 @@ msgstr ""
#: fortran/check.c:2844
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "the '%s' and '%s' arguments of '%s' intrinsic at %L must have the same rank %d/%d"
msgid "The FROM and TO arguments of the MOVE_ALLOC intrinsic at %L must have the same rank %d/%d"
msgstr "%4$L处‘%3$s’内建函数的‘%1$s’和‘%2$s’实å‚必须有相åŒçš„秩 %5$d/%6$d"
#: fortran/check.c:2853
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "the '%s' and '%s' arguments of '%s' intrinsic at %L must have the same rank %d/%d"
msgid "The FROM and TO arguments of the MOVE_ALLOC intrinsic at %L must have the same corank %d/%d"
msgstr "%4$L处‘%3$s’内建函数的‘%1$s’和‘%2$s’实å‚必须有相åŒçš„秩 %5$d/%6$d"
#: fortran/check.c:2880
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Second argument of NEAREST at %L shall not be zero"
msgid "Argument 'S' of NEAREST at %L shall not be zero"
msgstr "%L处 NEAREST 的第二个å‚æ•°ä¸èƒ½ä¸º 0"
#: fortran/check.c:2930
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "'%s' argument of '%s' intrinsic at %L must be ALLOCATABLE"
msgid "'%s' argument of '%s' intrinsic at %L must be a POINTER, ALLOCATABLE or procedure pointer"
msgstr "%3$L处内建函数‘%2$s’的实å‚‘%1$s’必须为 ALLOCATABLE"
@@ -42364,7 +41092,6 @@ msgstr "%3$L处内建函数‘%2$s’的实å‚‘%1$s’必须是‘%4$s’的å­
#: fortran/check.c:3150
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "'%s' argument of '%s' intrinsic at %L must be a variable"
msgid "The argument of the RANK intrinsic at %L must be a data object"
msgstr "%3$L处内建函数‘%2$s’的实å‚‘%1$s’必须是一个å˜é‡"
@@ -42410,7 +41137,6 @@ msgstr "若没有填充,%L处内建 ESHAPE æºä¸­æ²¡æœ‰è¶³å¤Ÿçš„元素去与å¤
#: fortran/check.c:3408 fortran/check.c:3427
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "'%s' argument of '%s' intrinsic at %L must be %s"
msgid "'%s' argument of '%s' intrinsic at %L cannot be of type %s"
msgstr "%3$L处内建函数‘%2$s’的实å‚‘%1$s’必须是 %4$s"
@@ -42436,19 +41162,16 @@ msgstr "‘shape’内建函数的‘source’实å‚在%L处ä¸èƒ½æ˜¯å‡å®šå¤§å°
#: fortran/check.c:3679 fortran/check.c:5705
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "'%s' argument of '%s' intrinsic at %L must be a scalar"
msgid "'%s' argument of '%s' intrinsic at %L shall not be a procedure"
msgstr "%3$L处内建函数‘%2$s’的实å‚‘%1$s’必须是一个标é‡"
#: fortran/check.c:3687 fortran/check.c:3826 fortran/check.c:5697
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "'%s' argument of '%s' intrinsic at %L cannot be INTENT(IN)"
msgid "'%s' argument of '%s' intrinsic at %L shall not be TYPE(*)"
msgstr "%3$L处内建函数‘%2$s’的实å‚‘%1$s’ä¸èƒ½æ˜¯ INTENT(IN)"
#: fortran/check.c:3698 fortran/check.c:3838
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "'source' argument of 'shape' intrinsic at %L must not be an assumed size array"
msgid "'%s' argument of '%s' intrinsic at %L shall not be an assumed-size array"
msgstr "‘shape’内建函数的‘source’实å‚在%L处ä¸èƒ½æ˜¯å‡å®šå¤§å°çš„数组"
@@ -42474,7 +41197,6 @@ msgstr ""
#: fortran/check.c:3906
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Argument dim at %L must be scalar"
msgid "Argument FPTR at %L to C_F_POINTER must be a pointer"
msgstr "%L 实å‚维数必须是标é‡"
@@ -42540,7 +41262,6 @@ msgstr "%L处数æ®ä¼ è¾“元素ä¸èƒ½æœ‰ POINTER 组件"
#: fortran/check.c:4036
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Function result '%s' at %L has no IMPLICIT type"
msgid "Function result '%s' at %L is invalid as X argument to C_FUNLOC"
msgstr "%2$L处的函数返回值‘%1$s’处没有éšå¼ç±»åž‹"
@@ -42551,7 +41272,6 @@ msgstr ""
#: fortran/check.c:4050
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "User operator procedure '%s' at %L must be a FUNCTION"
msgid "Noninteroperable procedure at %L to C_FUNLOC"
msgstr "%2$L处的用户è¿ç®—符‘%1$s’必须是一个 FUNCTION"
@@ -42567,7 +41287,6 @@ msgstr "‘%s’的实å‚在%L处必须是一个指针"
#: fortran/check.c:4081
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Component at %C must have the POINTER attribute"
msgid "Argument X at %L to C_LOC shall have either the POINTER or the TARGET attribute"
msgstr "%C处的组件必须有 POINTER 属性"
@@ -42730,7 +41449,6 @@ msgstr "%L处数æ®å…ƒç´ é«˜äºŽæ•°ç»„上é™"
#: fortran/data.c:327 fortran/data.c:493
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Extension: re-initialization of '%s' at %L"
msgid "re-initialization of '%s' at %L"
msgstr "扩展:‘%s’é‡åˆå§‹åŒ–于 %L"
@@ -42741,7 +41459,6 @@ msgstr "%2$C处主机相关的å˜é‡â€˜%1$s’ä¸èƒ½å‡ºçŽ°åœ¨ DATA 语å¥ä¸­"
#: fortran/decl.c:271
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Extension: initialization of common block variable '%s' in DATA statement at %C"
msgid "initialization of common block variable '%s' in DATA statement at %C"
msgstr "扩展:DATA 语å¥ä¸­å¯¹å…¬å…±å—å˜é‡â€˜%s’在%C处åˆå§‹åŒ–"
@@ -42787,7 +41504,6 @@ msgstr "%C处函数å‚数属性中有冲çª"
#: fortran/decl.c:752
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Obsolescent feature: Old-style character length at %C"
msgid "Old-style character length at %C"
msgstr "已过时:%C处的旧å¼å­—符长度"
@@ -42823,13 +41539,11 @@ msgstr "%2$L 处类型“%1$sâ€æ˜¯åŽ»åˆ° BIND(C) 过程“%3$sâ€çš„å‚数,ä½
#: fortran/decl.c:1032
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Variable '%s' at %L is a parameter to the BIND(C) procedure '%s' but may not be C interoperable"
msgid "Variable '%s' at %L is a dummy argument to the BIND(C) procedure '%s' but is not C interoperable because it is polymorphic"
msgstr "%2$L处å˜é‡â€˜%1$s’是 BIND(C) 过程‘%3$s’的å‚数,但它ä¸èƒ½ä¸Ž C 互æ“作"
#: fortran/decl.c:1038
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Variable '%s' at %L is a parameter to the BIND(C) procedure '%s' but may not be C interoperable"
msgid "Variable '%s' at %L is a dummy argument of the BIND(C) procedure '%s' but may not be C interoperable"
msgstr "%2$L处å˜é‡â€˜%1$s’是 BIND(C) 过程‘%3$s’的å‚数,但它ä¸èƒ½ä¸Ž C 互æ“作"
@@ -42840,37 +41554,31 @@ msgstr "%2$L处字符å‚数‘%1$s’长度必须为 1,因为过程‘%3$s’æ
#: fortran/decl.c:1066
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Variable '%s' at %L cannot have the ALLOCATABLE attribute because procedure '%s' is BIND(C)"
msgid "Variable '%s' at %L with ALLOCATABLE attribute in procedure '%s' with BIND(C)"
msgstr "%2$L处å˜é‡â€˜%1$s’ä¸èƒ½æœ‰ ALLOCATABLE 属性,因为过程‘%3$s’是 BIND(C)"
#: fortran/decl.c:1074
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Variable '%s' at %L cannot have the POINTER attribute because procedure '%s' is BIND(C)"
msgid "Variable '%s' at %L with POINTER attribute in procedure '%s' with BIND(C)"
msgstr "%2$L处å˜é‡â€˜%1$s’ä¸èƒ½æœ‰ POINTER 属性,因为过程‘%3$s’是 BIND(C)"
#: fortran/decl.c:1083
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Variable '%s' at %L cannot have the ALLOCATABLE attribute because procedure '%s' is BIND(C)"
msgid "Scalar variable '%s' at %L with POINTER or ALLOCATABLE in procedure '%s' with BIND(C) is not yet supported"
msgstr "%2$L处å˜é‡â€˜%1$s’ä¸èƒ½æœ‰ ALLOCATABLE 属性,因为过程‘%3$s’是 BIND(C)"
#: fortran/decl.c:1092
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Variable '%s' at %L cannot have the OPTIONAL attribute because procedure '%s' is BIND(C)"
msgid "Variable '%s' at %L cannot have both the OPTIONAL and the VALUE attribute because procedure '%s' is BIND(C)"
msgstr "%2$L处å˜é‡â€˜%1$s’ä¸èƒ½æœ‰ OPTIONAL 属性,因为过程‘%3$s’是 BIND(C)"
#: fortran/decl.c:1099
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Variable '%s' at %L cannot have the OPTIONAL attribute because procedure '%s' is BIND(C)"
msgid "Variable '%s' at %L with OPTIONAL attribute in procedure '%s' which is BIND(C)"
msgstr "%2$L处å˜é‡â€˜%1$s’ä¸èƒ½æœ‰ OPTIONAL 属性,因为过程‘%3$s’是 BIND(C)"
#: fortran/decl.c:1110
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Assumed-shape array '%s' at %L cannot be an argument to the procedure '%s' at %L because the procedure is BIND(C)"
msgid "Assumed-shape array '%s' at %L as dummy argument to the BIND(C) procedure '%s' at %L"
msgstr "%2$L处å‡å®šå¤–形数组‘%1$s’ä¸èƒ½æ˜¯%4$L处过程‘%3$s’的å‚数,因为该过程是 BIND(C)"
@@ -42946,7 +41654,6 @@ msgstr "%C处的 NULL() åˆå§‹åŒ–有歧义"
#: fortran/decl.c:1724
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "NULL() initialization at %C is ambiguous"
msgid "NULL() initialization at %C may not have MOLD"
msgstr "%C处的 NULL() åˆå§‹åŒ–有歧义"
@@ -42987,7 +41694,6 @@ msgstr "%C处 Cray 指针é‡å¤æŒ‡å®šäº†æ•°ç»„"
#: fortran/decl.c:2003
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Extension: Old-style initialization at %C"
msgid "Old-style initialization at %C"
msgstr "扩展:%C处旧å¼çš„åˆå§‹åŒ–"
@@ -43068,7 +41774,6 @@ msgstr "%C处 CHARACTER 声明语法错误"
#: fortran/decl.c:2597
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Extension: BYTE type at %C"
msgid "BYTE type at %C"
msgstr "扩展:%C处的 BYTE 类型"
@@ -43079,7 +41784,6 @@ msgstr "%C处使用到的 BYTE 类型在目标机上ä¸å¯ç”¨"
#: fortran/decl.c:2624
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "By-value argument at %L is not allowed in this context"
msgid "Assumed type at %C is not allowed for components"
msgstr "%L处上下文中ä¸å…许使用按值传递的实å‚"
@@ -43101,7 +41805,6 @@ msgstr "扩展:‘%s’é‡åˆå§‹åŒ–于 %L"
#: fortran/decl.c:2780
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: CLASS statement at %C"
msgid "CLASS statement at %C"
msgstr "Fortran 2003:%C处的 CLASS 语å¥"
@@ -43138,7 +41841,6 @@ msgstr "%C处 IMPORT 语å¥åªå…许出现在接å£ä½“中"
#: fortran/decl.c:3171
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Empty IMPLICIT statement at %C"
msgid "IMPORT statement at %C"
msgstr "%C处 IMPLICIT 语å¥ä¸ºç©º"
@@ -43179,7 +41881,6 @@ msgstr "é‡å¤çš„ %s 属性,ä½äºŽ %L"
#: fortran/decl.c:3667
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: ALLOCATABLE attribute at %C in a TYPE definition"
msgid "ALLOCATABLE attribute at %C in a TYPE definition"
msgstr "Fortran 2003:%C处的 ALLOCATABLE 属性出现在 TYPE 定义中"
@@ -43190,7 +41891,6 @@ msgstr "%L处的属性ä¸å…许出现在 TYPE 定义中"
#: fortran/decl.c:3694
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: Attribute %s at %L in a TYPE definition"
msgid "Attribute %s at %L in a TYPE definition"
msgstr "Fortran 2003:属性 %s 在%L处出现在 TYPE 定义中"
@@ -43201,7 +41901,6 @@ msgstr "%2$L处的 %1$s 属性ä¸å…许出现在模å—规格说明以外"
#: fortran/decl.c:3718
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: ASYNCHRONOUS attribute at %C"
msgid "ASYNCHRONOUS attribute at %C"
msgstr "Fortran 2003:%C处的 ASYNCHRONOUS 属性"
@@ -43217,19 +41916,16 @@ msgstr "%C处的 PROTECTED ä»…å…许出现在模å—规格说明部分内"
#: fortran/decl.c:3780
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: PROTECTED attribute at %C"
msgid "PROTECTED attribute at %C"
msgstr "Fortran 2003:%C处的 PROTECT 属性"
#: fortran/decl.c:3809
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: VALUE attribute at %C"
msgid "VALUE attribute at %C"
msgstr "Fortran 2003:%C处的 VALUE 属性"
#: fortran/decl.c:3816
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: VOLATILE attribute at %C"
msgid "VOLATILE attribute at %C"
msgstr "Fortran 2003:%C处的 VOLATILE 属性"
@@ -43302,7 +41998,6 @@ msgstr "%C处的属性规格说明语å¥ç¼ºå°‘实体或公共å—å"
#: fortran/decl.c:4212
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Empty IMPLICIT statement at %C"
msgid "BIND(C) statement at %C"
msgstr "%C处 IMPLICIT 语å¥ä¸ºç©º"
@@ -43328,7 +42023,6 @@ msgstr ""
#: fortran/decl.c:4475 fortran/primary.c:1717
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Expected alternate return label at %C"
msgid "Alternate-return argument at %C"
msgstr "%C处需è¦æ›¿ä»£çš„返回标å·"
@@ -43359,7 +42053,6 @@ msgstr "%C处的函数声明åŽæœ‰éžé¢„期的垃圾字符"
#: fortran/decl.c:4687 fortran/decl.c:5753
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2008: BIND(C) attribute at %L may not be specified for an internal procedure"
msgid "BIND(C) attribute at %L may not be specified for an internal procedure"
msgstr "Fortran 2008:%L处的 BIND(C)属性对于内部过程ä¸å¯ä»¥æŒ‡å®š"
@@ -43400,7 +42093,6 @@ msgstr "%Cå¤„éœ€è¦ NOPASS 或显å¼æŽ¥å£"
#: fortran/decl.c:5031
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: Procedure pointer component at %C"
msgid "Procedure pointer component at %C"
msgstr "Fortran 2003:%C处的过程指针组件"
@@ -43416,13 +42108,11 @@ msgstr "%C处的 PROCEDURE 必须在一个泛型接å£å†…"
#: fortran/decl.c:5130 fortran/decl.c:7325
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Syntax error in PROCEDURE statement at %C"
msgid "double colon in MODULE PROCEDURE statement at %L"
msgstr "%C处 PROCEDURE 语å¥è¯­æ³•é”™è¯¯"
#: fortran/decl.c:5199
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: PROCEDURE statement at %C"
msgid "PROCEDURE statement at %C"
msgstr "Fortran 2003:%C处的 PROCEDURE 语å¥"
@@ -43440,7 +42130,6 @@ msgstr "%L处的 BIND(C) 属性åªèƒ½ç”¨äºŽå˜é‡æˆ–公共å—"
#: fortran/decl.c:5440
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Empty IMPLICIT statement at %C"
msgid "ENTRY statement at %C"
msgstr "%C处 IMPLICIT 语å¥ä¸ºç©º"
@@ -43562,13 +42251,11 @@ msgstr "éœ€è¦ %s 语å¥åœ¨%L处"
#: fortran/decl.c:6144
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Expecting %s statement at %C"
msgid "Expecting %s statement at %L"
msgstr "éœ€è¦ %s 语å¥ï¼ŒäºŽ %C"
#: fortran/decl.c:6162
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Expected block name of '%s' in %s statement at %C"
msgid "Expected block name of '%s' in %s statement at %L"
msgstr "需è¦å—å‘%s’在‘%s’表达å¼ä¸­ï¼ŒäºŽ %C"
@@ -43674,7 +42361,6 @@ msgstr "%2$C处的 .%1$s. è¿ç®—符的访问规格说明已ç»è¢«æŒ‡å®š"
#: fortran/decl.c:6834
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: PROTECTED statement at %C"
msgid "PROTECTED statement at %C"
msgstr "Fortran 2003:%C处的 PROTECTED 语å¥"
@@ -43740,7 +42426,6 @@ msgstr "VALUE ä¸èƒ½ç”¨åœ¨%C处 BLOCK 内"
#: fortran/decl.c:7128
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: VALUE statement at %C"
msgid "VALUE statement at %C"
msgstr "Fortran 2003:%C处的 VALUE 语å¥"
@@ -43751,7 +42436,6 @@ msgstr "%C处 VALUE 语å¥è¯­æ³•é”™è¯¯"
#: fortran/decl.c:7177
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: VOLATILE statement at %C"
msgid "VOLATILE statement at %C"
msgstr "Fortran 2003:%C处的 VOLATILE 语å¥"
@@ -43767,7 +42451,6 @@ msgstr "%C处的 VOLATILE 语å¥è¯­æ³•é”™è¯¯"
#: fortran/decl.c:7236
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: ASYNCHRONOUS statement at %C"
msgid "ASYNCHRONOUS statement at %C"
msgstr "Fortran 2003:%C处的 ASYNCHRONOUS 语å¥"
@@ -43793,7 +42476,6 @@ msgstr "%C处 TYPE 定义中的歧义符å·"
#: fortran/decl.c:7416
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Symbol '%s' at %C has already been host associated"
msgid "Symbol '%s' at %C has not been previously defined"
msgstr "%2$C处符å·â€˜%1$s’已ç»ä¸Žä¸»æœºç›¸å…³è”"
@@ -43824,7 +42506,6 @@ msgstr "%C处的派生类型在模å—规格说明部分内åªèƒ½æ˜¯ PUBLIC"
#: fortran/decl.c:7492
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "ABSTRACT type '%s' used at %L"
msgid "ABSTRACT type at %C"
msgstr "%2$L处使用了 ABSTRACT 类型‘%1$s’"
@@ -43855,7 +42536,6 @@ msgstr "%C处 Cray 指针ä¸èƒ½æŒ‡å‘å‡å®šå¤–形数组"
#: fortran/decl.c:7722
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: ENUM and ENUMERATOR at %C"
msgid "ENUM and ENUMERATOR at %C"
msgstr "Fortran 2003:%C处的 ENUM 和 ENUMERATOR"
@@ -44171,7 +42851,6 @@ msgstr "%2$L处的转æ¢å†…建函数‘%1$s’ä¸å…许用在åˆå§‹åŒ–表达å¼ä
#: fortran/expr.c:2414
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Extension: Evaluation of nonstandard initialization expression at %L"
msgid "Evaluation of nonstandard initialization expression at %L"
msgstr "扩展:%L处求éžæ ‡é‡åˆå§‹åŒ–表达å¼çš„值"
@@ -44302,19 +42981,16 @@ msgstr "%L处赋值å³æ‰‹è¾¹å‡ºçŽ° NULL"
#: fortran/expr.c:3161
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "POINTER valued function appears on right-hand side of assignment at %L"
msgid "POINTER-valued function appears on right-hand side of assignment at %L"
msgstr "%L处赋值å³æ‰‹è¾¹å‡ºçŽ°å€¼ä¸º POINTER 的函数"
#: fortran/expr.c:3171
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Extension: BOZ literal at %L used to initialize non-integer variable '%s'"
msgid "BOZ literal at %L used to initialize non-integer variable '%s'"
msgstr "扩展:%L处 BOZ å­—é¢å€¼è¢«ç”¨æ¥åˆå§‹åŒ–éžæ•´æ•°å˜é‡â€˜%s’"
#: fortran/expr.c:3176 fortran/resolve.c:9062
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Extension: BOZ literal at %L outside a DATA statement and outside INT/REAL/DBLE/CMPLX"
msgid "BOZ literal at %L outside a DATA statement and outside INT/REAL/DBLE/CMPLX"
msgstr "扩展:在 %L处的 BOZ å­—é¢å€¼åœ¨ä¸€ä¸ª DATA 语å¥ä¹‹å¤–并且也在 INT/REAL/DBLE/CMPLX 之外"
@@ -44375,7 +43051,6 @@ msgstr "%2$L处‘%1$s’需è¦è¾¹ç•Œè§„æ ¼"
#: fortran/expr.c:3343
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: Bounds specification for '%s' in pointer assignment at %L"
msgid "Bounds specification for '%s' in pointer assignment at %L"
msgstr "Fortran 2003:%2$L处指针赋值语å¥ä¸­â€˜%1$s’的边界规格"
@@ -44406,7 +43081,6 @@ msgstr "%L处过程指针赋值éžæ³•"
#: fortran/expr.c:3445
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Statement function '%s' is invalid in procedure pointer assignment at %L"
msgid "Function result '%s' is invalid as proc-target in procedure pointer assignment at %L"
msgstr "语å¥å‡½æ•°â€˜%s’在%L处的过程指针赋值中是éžæ³•çš„"
@@ -44427,13 +43101,11 @@ msgstr "内部过程‘%s’在%L处的过程指针赋值中是éžæ³•çš„"
#: fortran/expr.c:3477
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Internal procedure '%s' is invalid in procedure pointer assignment at %L"
msgid "Intrinsic '%s' at %L is invalid in procedure pointer assignment"
msgstr "内部过程‘%s’在%L处的过程指针赋值中是éžæ³•çš„"
#: fortran/expr.c:3485
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Internal procedure '%s' is invalid in procedure pointer assignment at %L"
msgid "Nonintrinsic elemental procedure '%s' is invalid in procedure pointer assignment at %L"
msgstr "内部过程‘%s’在%L处的过程指针赋值中是éžæ³•çš„"
@@ -44444,7 +43116,6 @@ msgstr "%L处过程指针赋值ä¸åŒ¹é…:调用约定ä¸åŒ¹é…"
#: fortran/expr.c:3564 fortran/expr.c:3571 fortran/resolve.c:2430
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "NOPASS or explicit interface required at %C"
msgid "Explicit interface required for '%s' at %L: %s"
msgstr "%Cå¤„éœ€è¦ NOPASS 或显å¼æŽ¥å£"
@@ -44632,31 +43303,26 @@ msgstr "在%L处建立临时数组"
#: fortran/frontend-passes.c:562 fortran/frontend-passes.c:565
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Return value of function '%s' at %L not set"
msgid "Removing call to function '%s' at %L"
msgstr "%2$L处函数‘%1$s’的返回值没有设置"
#: fortran/frontend-passes.c:1668
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Variable '%s' at %C cannot be redefined inside loop beginning at %L"
msgid "Variable '%s' at %L set to undefined value inside loop beginning at %L as INTENT(OUT) argument to subroutine '%s'"
msgstr "å˜é‡â€˜%s’(ä½äºŽ %C)ä¸èƒ½åœ¨ä»Ž %L 开始的循环的内部é‡å®šä¹‰"
#: fortran/frontend-passes.c:1674
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Variable '%s' at %C cannot be redefined inside loop beginning at %L"
msgid "Variable '%s' at %L not definable inside loop beginning at %L as INTENT(INOUT) argument to subroutine '%s'"
msgstr "å˜é‡â€˜%s’(ä½äºŽ %C)ä¸èƒ½åœ¨ä»Ž %L 开始的循环的内部é‡å®šä¹‰"
#: fortran/frontend-passes.c:1738
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Variable '%s' at %C cannot be redefined inside loop beginning at %L"
msgid "Variable '%s' at %L set to undefined value inside loop beginning at %L as INTENT(OUT) argument to function '%s'"
msgstr "å˜é‡â€˜%s’(ä½äºŽ %C)ä¸èƒ½åœ¨ä»Ž %L 开始的循环的内部é‡å®šä¹‰"
#: fortran/frontend-passes.c:1744
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Variable '%s' at %C cannot be redefined inside loop beginning at %L"
msgid "Variable '%s' at %L not definable inside loop beginning at %L as INTENT(INOUT) argument to function '%s'"
msgstr "å˜é‡â€˜%s’(ä½äºŽ %C)ä¸èƒ½åœ¨ä»Ž %L 开始的循环的内部é‡å®šä¹‰"
@@ -44687,7 +43353,6 @@ msgstr "哑过程‘%s’在%C处ä¸èƒ½æœ‰æ³›åž‹æŽ¥å£"
#: fortran/interface.c:254
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: ABSTRACT INTERFACE at %C"
msgid "ABSTRACT INTERFACE at %C"
msgstr "Fortran 2003:%C处的 ABSTRACT INTERFACE"
@@ -44803,7 +43468,6 @@ msgstr ""
#: fortran/interface.c:1590
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Cray pointee '%s' in %s clause at %L"
msgid "Internal procedure '%s' in %s at %L"
msgstr "%3$L处 %2$s 分å¥ä¸­ çš„Cray 指针目标‘%1$s’"
@@ -44824,7 +43488,6 @@ msgstr "%2$L处的‘%1$s’并éžä¸€ä¸ªæ¨¡å—过程"
#: fortran/interface.c:1893
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Assumed shape array at %L must be a dummy argument"
msgid "The assumed-rank array at %L requires that the dummy argument '%s' has assumed-rank"
msgstr "%L处å‡å®šå¤–形的数组必须是一个虚å‚"
@@ -44865,7 +43528,6 @@ msgstr "%2$L处实å‚‘%1$s’类型ä¸åŒ¹é…;将 %3$s 传递给 %4$s"
#: fortran/interface.c:2007
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Assumed-shape actual argument at %L is incompatible with the non-assumed-shape dummy argument '%s' due to VOLATILE attribute"
msgid "Assumed-type actual argument at %L requires that dummy argument '%s' is of assumed type"
msgstr "%L处å‡å®šå¤–形的实å‚由于 VOLATILE 属性而与éžå‡å®šå¤–形虚å‚‘%s’ä¸å…¼å®¹"
@@ -45051,7 +43713,6 @@ msgstr ""
#: fortran/interface.c:2843
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Actual argument for '%s' must be a pointer at %L"
msgid "Actual CLASS array argument for '%s' must be a full array at %L"
msgstr "‘%s’的实å‚在%L处必须是一个指针"
@@ -45142,7 +43803,6 @@ msgstr "%2$L处过程‘%1$s’的关键字å‚æ•°è¦æ±‚显å¼çš„接å£"
#: fortran/interface.c:3298
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Symbol '%s' at %L already has an explicit interface"
msgid "Assumed-type argument %s at %L requires an explicit interface"
msgstr "符å·â€˜%s’在%L处已ç»æœ‰äº†æ˜¾å¼æŽ¥å£"
@@ -45158,7 +43818,6 @@ msgstr ""
#: fortran/interface.c:3328
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Keyword argument requires explicit interface for procedure '%s' at %L"
msgid "Assumed-rank argument requires an explicit interface at %L"
msgstr "%2$L处过程‘%1$s’的关键字å‚æ•°è¦æ±‚显å¼çš„接å£"
@@ -45179,7 +43838,6 @@ msgstr ""
#: fortran/interface.c:3902
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Entity '%s' at %C is already present in the interface"
msgid "Entity '%s' at %L is already present in the interface"
msgstr "%2$C处实体‘%1$s’已ç»å‡ºçŽ°åœ¨æŽ¥å£ä¸­"
@@ -45225,7 +43883,6 @@ msgstr "%2$L处的‘%1$s’覆盖了一个 FUNCTION 因此也必须是 FUNCTION
#: fortran/interface.c:4184
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Interface mismatch in dummy procedure '%s' at %L: %s"
msgid "Result mismatch for the overriding procedure '%s' at %L: %s"
msgstr "哑过程‘%s’接å£åœ¨%L处ä¸åŒ¹é…:%s"
@@ -45241,7 +43898,6 @@ msgstr "%3$L处‘%2$s’的虚å‚‘%1$s’应该命å为‘%4$s’以匹é…è¢
#: fortran/interface.c:4236
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Interface mismatch in dummy procedure '%s' at %L: %s"
msgid "Argument mismatch for the overriding procedure '%s' at %L: %s"
msgstr "哑过程‘%s’接å£åœ¨%L处ä¸åŒ¹é…:%s"
@@ -45267,31 +43923,26 @@ msgstr "%2$L处的‘%1$s’的传递对象虚å‚必须与被覆盖的过程传é
#: fortran/intrinsic.c:196
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "NULL pointer at %L is not permitted as actual argument of '%s' intrinsic function"
msgid "Variable with NO_ARG_CHECK attribute at %L is only permitted as argument to the intrinsic functions C_LOC and PRESENT"
msgstr "%L çš„ NULL 指针ä¸èƒ½ç”¨ä½œå†…建函数‘%s’的实å‚"
#: fortran/intrinsic.c:210
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "NULL pointer at %L is not permitted as actual argument of '%s' intrinsic function"
msgid "Assumed-type argument at %L is not permitted as actual argument to the intrinsic %s"
msgstr "%L çš„ NULL 指针ä¸èƒ½ç”¨ä½œå†…建函数‘%s’的实å‚"
#: fortran/intrinsic.c:217
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "NULL pointer at %L is not permitted as actual argument of '%s' intrinsic function"
msgid "Assumed-type argument at %L is only permitted as first actual argument to the intrinsic %s"
msgstr "%L çš„ NULL 指针ä¸èƒ½ç”¨ä½œå†…建函数‘%s’的实å‚"
#: fortran/intrinsic.c:224
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "NULL pointer at %L is not permitted as actual argument of '%s' intrinsic function"
msgid "Assumed-rank argument at %L is only permitted as actual argument to intrinsic inquiry functions"
msgstr "%L çš„ NULL 指针ä¸èƒ½ç”¨ä½œå†…建函数‘%s’的实å‚"
#: fortran/intrinsic.c:231
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "NULL pointer at %L is not permitted as actual argument of '%s' intrinsic function"
msgid "Assumed-rank argument at %L is only permitted as first actual argument to the intrinsic inquiry function %s"
msgstr "%L çš„ NULL 指针ä¸èƒ½ç”¨ä½œå†…建函数‘%s’的实å‚"
@@ -45342,19 +43993,16 @@ msgstr "%3$L处使用了内建的‘%1$s’(是 %2$s)"
#: fortran/intrinsic.c:4255
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: Function '%s' as initialization expression at %L"
msgid "Function '%s' as initialization expression at %L"
msgstr "Fortran 2003:函数‘%s’在%L处用作åˆå§‹åŒ–表达å¼"
#: fortran/intrinsic.c:4331
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: Elemental function as initialization expression with non-integer/non-character arguments at %L"
msgid "Elemental function as initialization expression with non-integer/non-character arguments at %L"
msgstr "Fortran 2003:作为åˆå§‹è¡¨è¾¾å¼çš„基本函数在%L处使用了éžæ•´æ•°æˆ–éžå­—符的å‚æ•°"
#: fortran/intrinsic.c:4402
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Subroutine call to intrinsic '%s' at %L is not PURE"
msgid "Subroutine call to intrinsic '%s' in DO CONCURRENT block at %L is not PURE"
msgstr "在%2$L处调用内建‘%1$s’的å­ä¾‹ç¨‹ä¸æ˜¯ PURE"
@@ -45395,25 +44043,21 @@ msgstr "扩展:%C处格å¼ä¸­çš„制表符"
#: fortran/io.c:455
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: DP format specifier not allowed at %C"
msgid "DP format specifier not allowed at %C"
msgstr "Fortran 2003:ä¸å…许在%C处使用 DP æ ¼å¼é™å®šç¬¦"
#: fortran/io.c:462
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: DC format specifier not allowed at %C"
msgid "DC format specifier not allowed at %C"
msgstr "Fortran 2003:ä¸å…许在%C处使用 DC æ ¼å¼é™å®šç¬¦"
#: fortran/io.c:651
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Extension: X descriptor requires leading space count at %L"
msgid "X descriptor requires leading space count at %L"
msgstr "扩展:X æ述符在%L需è¦å‰å¯¼ç©ºæ ¼æ•°é‡"
#: fortran/io.c:680
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Extension: $ descriptor at %L"
msgid "$ descriptor at %L"
msgstr "扩展:%L处的 $ æ述符"
@@ -45429,7 +44073,6 @@ msgstr "扩展:%L处的 L æ述符åŽç¼ºå°‘正的宽度"
#: fortran/io.c:826
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2008: 'G0' in format at %L"
msgid "'G0' in format at %L"
msgstr "Fortran 2008:%L处格å¼ä¸­çš„‘G0’"
@@ -45455,7 +44098,6 @@ msgstr "%L处的 H æ ¼å¼é™å®šç¬¦å·²åœ¨ Fortran 95 中被删除"
#: fortran/io.c:1059 fortran/io.c:1121
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Extension: Missing comma at %L"
msgid "Missing comma at %L"
msgstr "扩展:%L处缺少逗å·"
@@ -45511,13 +44153,11 @@ msgstr "%L处 FORMAT 标记中的常é‡è¡¨è¾¾å¼é»˜è®¤ç±»åž‹å¿…须为 CHARACTER"
#: fortran/io.c:1399
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "FORMAT tag at %L must be of type CHARACTER or INTEGER"
msgid "FORMAT tag at %L must be of type default-kind CHARACTER or of INTEGER"
msgstr "%L处 FORMAT 标记必须具有类型 CHARACTER 或 INTEGER"
#: fortran/io.c:1405
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Deleted feature: ASSIGNED variable in FORMAT tag at %L"
msgid "ASSIGNED variable in FORMAT tag at %L"
msgstr "已删除的特性:%L处 FORMAT 标记中有 ASSIGNED å˜é‡"
@@ -45533,7 +44173,6 @@ msgstr "%2$L处的 FORMAT 标记中的标é‡â€˜%1$s’ä¸æ˜¯ä¸€ä¸ª ASSIGNED å˜é
#: fortran/io.c:1429
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Extension: Non-character in FORMAT tag at %L"
msgid "Non-character in FORMAT tag at %L"
msgstr "扩展:%L处的 FORMAT 标记中有éžå­—符"
@@ -45559,7 +44198,6 @@ msgstr "%s 标记在%L处必须具有类型 %s"
#: fortran/io.c:1482
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Concat operator at %L must concatenate strings of the same kind"
msgid "%s tag at %L must be a character string of default kind"
msgstr "%L处的毗连è¿ç®—符必须毗连åŒä¸€ç§åˆ«çš„字符串"
@@ -45570,7 +44208,6 @@ msgstr "%s 标记在%L处必须是标é‡"
#: fortran/io.c:1495
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: IOMSG tag at %L"
msgid "IOMSG tag at %L"
msgstr "Fortran 2003:%L处的 IOMSG 标记"
@@ -45586,13 +44223,11 @@ msgstr "Fortran 95 在%2$L处的 %1$s 标记中需è¦é»˜è®¤çš„ INTEGER"
#: fortran/io.c:1516
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "UNIT not specified at %L"
msgid "NEWUNIT specifier at %L"
msgstr "%L没有指定 UNIT"
#: fortran/io.c:1534
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Extension: CONVERT tag at %L"
msgid "CONVERT tag at %L"
msgstr "扩展:%L处的 CONVERT 标记"
@@ -45603,7 +44238,6 @@ msgstr "Fortran 2003:%3$C 处 %2$s 语å¥ä¸­çš„ %1$s é™å®šç¬¦å€¼ä¸ºâ€˜%4$s’
#: fortran/io.c:1727 fortran/io.c:1754
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "%s specifier in %s statement at %C has invalid value '%s'"
msgid "%s specifier in %s statement at %C has value '%s'"
msgstr "为%3$C处 %2$s 语å¥ä¸­ %1$s 指定了éžæ³•çš„值‘%4$s’"
@@ -45639,37 +44273,31 @@ msgstr "%L处的 INQUIRE 语å¥éœ€è¦ FILE 或 UNIT é™å®šç¬¦"
#: fortran/io.c:1889
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: ASYNCHRONOUS= at %C not allowed in Fortran 95"
msgid "ASYNCHRONOUS= at %C not allowed in Fortran 95"
msgstr "Fortran 2003:%C处的 ASYNCHRONOUS= ä¸å…许用在 Fortran 95 中"
#: fortran/io.c:1907 fortran/io.c:3350
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: BLANK= at %C not allowed in Fortran 95"
msgid "BLANK= at %C not allowed in Fortran 95"
msgstr "Fortran 2003:%C处的 BLANK= ä¸å…许用在 Fortran 95 中"
#: fortran/io.c:1925 fortran/io.c:3329
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: DECIMAL= at %C not allowed in Fortran 95"
msgid "DECIMAL= at %C not allowed in Fortran 95"
msgstr "Fortran 2003:%C处的 DECIMAL= ä¸å…许用在 Fortran 95 中"
#: fortran/io.c:1957
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: ENCODING= at %C not allowed in Fortran 95"
msgid "ENCODING= at %C not allowed in Fortran 95"
msgstr "Fortran 2003:%C处的 ENCODING= ä¸å…许用在 Fortran 95 中"
#: fortran/io.c:2008 fortran/io.c:3392
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: ROUND= at %C not allowed in Fortran 95"
msgid "ROUND= at %C not allowed in Fortran 95"
msgstr "Fortran 2003:%C处的 ROUND= ä¸å…许用在 Fortran 95 中"
#: fortran/io.c:2028
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: SIGN= at %C not allowed in Fortran 95"
msgid "SIGN= at %C not allowed in Fortran 95"
msgstr "Fortran 2003:%C处的 SIGN= ä¸å…许用在 Fortran 95 中"
@@ -45680,7 +44308,6 @@ msgstr "CLOSE 语å¥ä¸å…许出现在%C处的 PURE 过程中"
#: fortran/io.c:2301
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "ASSIGNED GOTO statement at %L requires an INTEGER variable"
msgid "CLOSE statement at %L requires a UNIT number"
msgstr "ASSIGNED GOTO 语å¥åœ¨%L处需è¦ä¸€ä¸ª INTEGER å˜é‡"
@@ -45701,7 +44328,6 @@ msgstr "%L处的语å¥ä¸­ UNIT 数必须为éžè´Ÿçš„æ•°"
#: fortran/io.c:2474
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: FLUSH statement at %C"
msgid "FLUSH statement at %C"
msgstr "Fortran 2003:%C处的 FLUSH 语å¥"
@@ -45767,7 +44393,6 @@ msgstr ""
#: fortran/io.c:2904
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Extension: Comma before i/o item list at %L"
msgid "Comma before i/o item list at %L"
msgstr "扩展:%L处 i/o 项目列表å‰çš„逗å·"
@@ -45814,7 +44439,6 @@ msgstr "%s 语å¥åœ¨%C处语法错误"
#: fortran/io.c:3246
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: Internal file at %L with namelist"
msgid "Internal file at %L with namelist"
msgstr "Fortran 2003:%L处内部文件有å字列表"
@@ -45825,13 +44449,11 @@ msgstr "必须为%L处的 ASYNCHRONOUS= 指定一个åˆå§‹åŒ–表达å¼"
#: fortran/io.c:3371
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: PAD= at %C not allowed in Fortran 95"
msgid "PAD= at %C not allowed in Fortran 95"
msgstr "Fortran 2003:%C处的 PAD= ä¸å…许用在 Fortran 95 中"
#: fortran/io.c:3437
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: DELIM= at %C not allowed in Fortran 95"
msgid "DELIM= at %C not allowed in Fortran 95"
msgstr "Fortran 2003:%C处的 DELIM= ä¸å…许用在 Fortran 95 中"
@@ -45877,7 +44499,6 @@ msgstr "%L处的 INQUIRE 语å¥éœ€è¦å¸¦æœ‰ ID= 指定的 PENDING="
#: fortran/io.c:4188
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: WAIT at %C not allowed in Fortran 95"
msgid "WAIT at %C not allowed in Fortran 95"
msgstr "Fortran 2003:%C处的 WAIT ä¸å…许用在 Fortran 95 中"
@@ -45933,7 +44554,6 @@ msgstr "%C çš„å字太长"
#: fortran/match.c:560
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Invalid character '$' at %C. Use -fdollar-ok to allow it as an extension"
msgid "Invalid character '$' at %L. Use -fdollar-ok to allow it as an extension"
msgstr "%C处无效的字符‘$’。使用 -fdollar-ok 以å…许它作为一个扩展"
@@ -45974,7 +44594,6 @@ msgstr "%C处 PROGRAM 语å¥æ ¼å¼æ— æ•ˆ"
#: fortran/match.c:1395 fortran/match.c:1475
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Obsolescent feature: Arithmetic IF statement at %C"
msgid "Arithmetic IF statement at %C"
msgstr "已过时的特性:%C处的算术 IF 语å¥"
@@ -46186,7 +44805,6 @@ msgstr "%C处 Cray 指针必须是一个整数"
#: fortran/match.c:2766
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Unexpected CASE statement at %C"
msgid "PAUSE statement at %C"
msgstr "%C处éžé¢„期的 CASE 语å¥"
@@ -46224,19 +44842,16 @@ msgstr "%L有多余的 ERRMSG 标记"
#: fortran/match.c:2907
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Redundant SOURCE tag found at %L "
msgid "Redundant ACQUIRED_LOCK tag found at %L "
msgstr "%L有多余的 SOURCE 标记"
#: fortran/match.c:2972
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Empty IMPLICIT statement at %C"
msgid "LOCK statement at %C"
msgstr "%C处 IMPLICIT 语å¥ä¸ºç©º"
#: fortran/match.c:2982
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Empty IMPLICIT statement at %C"
msgid "UNLOCK statement at %C"
msgstr "%C处 IMPLICIT 语å¥ä¸ºç©º"
@@ -46262,13 +44877,11 @@ msgstr "PRINT 语å¥ä¸å…许出现在%C处的 PURE 过程中"
#: fortran/match.c:3211
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Deleted feature: ASSIGN statement at %C"
msgid "ASSIGN statement at %C"
msgstr "已删除的特性:%C处的 ASSIGN 语å¥"
#: fortran/match.c:3255
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Deleted feature: Assigned GOTO statement at %C"
msgid "Assigned GOTO statement at %C"
msgstr "已删除的特性:%C处赋值 GOTO 语å¥"
@@ -46279,7 +44892,6 @@ msgstr "%C处 GOTO 中的语å¥æ ‡å·åˆ—表ä¸èƒ½ä¸ºç©º"
#: fortran/match.c:3360
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Obsolescent feature: Computed GOTO at %C"
msgid "Computed GOTO at %C"
msgstr "已过时的特性:%C处的计算转移 GOTO 语å¥"
@@ -46290,7 +44902,6 @@ msgstr "%C处指定 TYPE IS 语法错误"
#: fortran/match.c:3442
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: typespec in ALLOCATE at %L"
msgid "typespec in ALLOCATE at %L"
msgstr "Fortran 2003:%L处 ALLOCATE 中有 typespec"
@@ -46331,13 +44942,11 @@ msgstr "%C处å¯åˆ†é…æ ‡é‡çš„外形规格说明"
#: fortran/match.c:3607
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: ERRMSG tag at %L"
msgid "ERRMSG tag at %L"
msgstr "Fortran 2003:%L处的 ERRMSG 标记"
#: fortran/match.c:3630
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: SOURCE tag at %L"
msgid "SOURCE tag at %L"
msgstr "Fortran 2003:%L处的 SOURCE 标记"
@@ -46353,7 +44962,6 @@ msgstr "%L处的 SOURCE 标记与%L处的类型指定冲çª"
#: fortran/match.c:3649
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "SOURCE tag at %L requires only a single entity in the allocation-list"
msgid "SOURCE tag at %L with more than a single allocate object"
msgstr "%L处的 SOURCE 标记在分é…列表中åªéœ€è¦ä¸€ä¸ªå•ç‹¬çš„实体"
@@ -46409,13 +45017,11 @@ msgstr ""
#: fortran/match.c:3906
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Allocate-object at %C is not a nonprocedure pointer or an allocatable variable"
msgid "Allocate-object at %C is not a nonprocedure pointer nor an allocatable variable"
msgstr "%C处的分é…对象ä¸æ˜¯ä¸€ä¸ªéžè¿‡ç¨‹æŒ‡é’ˆæˆ–å¯åˆ†é…çš„å˜é‡"
#: fortran/match.c:3943
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: ERRMSG at %L"
msgid "ERRMSG at %L"
msgstr "Fortran 2003:%L处的 ERRMSG"
@@ -46436,7 +45042,6 @@ msgstr "%C处的替代 RETURN 语å¥åªå…许出现在 SUBROUTINE 中"
#: fortran/match.c:4046
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Extension: RETURN statement in main program at %C"
msgid "RETURN statement in main program at %C"
msgstr "扩展:%C处 RETURN 语å¥å‡ºçŽ°åœ¨ä¸»ç¨‹åºä¸­"
@@ -46545,7 +45150,6 @@ msgstr "%L处的语å¥å‡½æ•°æ˜¯é€’å½’çš„"
#: fortran/match.c:4941
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Statement function at %L is recursive"
msgid "Statement function at %C"
msgstr "%L处的语å¥å‡½æ•°æ˜¯é€’å½’çš„"
@@ -46561,7 +45165,6 @@ msgstr "%2$Cå¤„éœ€è¦ SELECT 构造的å—å‘%1$s’"
#: fortran/match.c:5339
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Syntax error in PROTECTED statement at %C"
msgid "parse error in SELECT TYPE statement at %C"
msgstr "%C处 PROTECTED 语å¥è¯­æ³•é”™è¯¯"
@@ -46638,7 +45241,6 @@ msgstr "扩展:%C处å•ç›®è¿ç®—符出现在算术è¿ç®—符之åŽ"
#: fortran/module.c:527
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: module nature in USE statement at %C"
msgid "module nature in USE statement at %C"
msgstr "Fortran 2003:%C处的 USE 语å¥ä¸­æ¨¡å—本性"
@@ -46654,7 +45256,6 @@ msgstr "%C处在模å—本性åŽéœ€è¦â€œ::â€"
#: fortran/module.c:562
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: \"USE :: module\" at %C"
msgid "\"USE :: module\" at %C"
msgstr "Fortran 2003:%C处的“USE :: moduleâ€"
@@ -46665,7 +45266,6 @@ msgstr "%C处的 USE 语å¥ç¼ºå°‘泛型规格"
#: fortran/module.c:629
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: Renaming operators in USE statements at %C"
msgid "Renaming operators in USE statements at %C"
msgstr "Fortran 2003:%C处的 USE 语å¥ä¸­æ›´åè¿ç®—符"
@@ -46701,7 +45301,6 @@ msgstr "å字列表 %s ä¸èƒ½ä¸ºå¯¹ %s çš„ USE å…³è”æ¥æ›´å"
#: fortran/module.c:4494
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Name '%s' at %C is an ambiguous reference to '%s' from current program unit"
msgid "'%s' of module '%s', imported at %C, is also the name of the current program unit"
msgstr "%2$C处的å字‘%1$s’是从当å‰ç¨‹åºå•å…ƒå¯¹â€˜%3$s’有歧义的引用"
@@ -46778,13 +45377,11 @@ msgstr "%2$L处引用的符å·â€˜%1$sâ€™åœ¨å†…å»ºæ¨¡å— ISO_FORTRAN_ENV 中找ä¸
#: fortran/module.c:6307
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: ISO_FORTRAN_ENV intrinsic module at %C"
msgid "ISO_FORTRAN_ENV intrinsic module at %C"
msgstr "Fortran 2003:%C 处的 ISO_FORTRAN_ENV 内建模å—"
#: fortran/module.c:6319
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: ISO_C_BINDING module at %C"
msgid "ISO_C_BINDING module at %C"
msgstr "Fortran 2003:%C处的 ISO_C_BINDING 模å—"
@@ -46805,7 +45402,6 @@ msgstr "%2$C处对éžå†…建模å—‘%1$s’的使用与之å‰å¯¹å†…建模å—åå
#: fortran/module.c:6368
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "File '%s' opened at %C is not a GFORTRAN module file"
msgid "File '%s' opened at %C is not a GNU Fortran module file"
msgstr "%2$C处打开的文件的‘%1$s’并éžä¸€ä¸ª GFORTRAN 模å—文件"
@@ -46906,7 +45502,6 @@ msgstr "%L处的 IF 分å¥éœ€è¦ä¸€ä¸ªæ ‡é‡ LOGICAL 表达å¼"
#: fortran/openmp.c:824
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "IF clause at %L requires a scalar LOGICAL expression"
msgid "FINAL clause at %L requires a scalar LOGICAL expression"
msgstr "%L处的 IF 分å¥éœ€è¦ä¸€ä¸ªæ ‡é‡ LOGICAL 表达å¼"
@@ -47023,25 +45618,21 @@ msgstr "%L处 !$OMP ATOMIC 语å¥å¿…须设定一个内建类型的标é‡å€¼"
#: fortran/openmp.c:1189
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "!$OMP ATOMIC statement must set a scalar variable of intrinsic type at %L"
msgid "!$OMP ATOMIC READ statement must read from a scalar variable of intrinsic type at %L"
msgstr "%L处 !$OMP ATOMIC 语å¥å¿…须设定一个内建类型的标é‡å€¼"
#: fortran/openmp.c:1194
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "expr in !$OMP ATOMIC assignment var = var op expr must be scalar and cannot reference var at %L"
msgid "expr in !$OMP ATOMIC WRITE assignment var = expr must be scalar and cannot reference var at %L"
msgstr "%L处 !$OMP ATOMIC 赋值“å˜é‡ = å˜é‡ è¿ç®—符 表达å¼â€ä¸­çš„“表达å¼â€å¿…须是标é‡å¹¶ä¸”ä¸èƒ½å¼•ç”¨â€œå˜é‡â€"
#: fortran/openmp.c:1216 fortran/openmp.c:1486
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "!$OMP ATOMIC statement must set a scalar variable of intrinsic type at %L"
msgid "!$OMP ATOMIC CAPTURE capture statement must read from a scalar variable of intrinsic type at %L"
msgstr "%L处 !$OMP ATOMIC 语å¥å¿…须设定一个内建类型的标é‡å€¼"
#: fortran/openmp.c:1231
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "!$OMP ATOMIC statement must set a scalar variable of intrinsic type at %L"
msgid "!$OMP ATOMIC CAPTURE update statement must set a scalar variable of intrinsic type at %L"
msgstr "%L处 !$OMP ATOMIC 语å¥å¿…须设定一个内建类型的标é‡å€¼"
@@ -47052,7 +45643,6 @@ msgstr ""
#: fortran/openmp.c:1282
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "!$OMP ATOMIC assignment operator must be +, *, -, /, .AND., .OR., .EQV. or .NEQV. at %L"
msgid "!$OMP ATOMIC assignment operator must be binary +, *, -, /, .AND., .OR., .EQV. or .NEQV. at %L"
msgstr "%L处 !$OMP ATOMIC 赋值è¿ç®—符必须是 +ã€*ã€-ã€/ã€.AND.ã€.OR.ã€.EQV. 或 .NEQV."
@@ -47103,7 +45693,6 @@ msgstr "%L处 !$OMP ATOMIC 赋值的å³æ‰‹è¾¹å¿…须有一个è¿ç®—符或内建å‡
#: fortran/openmp.c:1464
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "!$OMP ATOMIC statement must set a scalar variable of intrinsic type at %L"
msgid "!$OMP ATOMIC CAPTURE capture statement must set a scalar variable of intrinsic type at %L"
msgstr "%L处 !$OMP ATOMIC 语å¥å¿…须设定一个内建类型的标é‡å€¼"
@@ -47199,7 +45788,6 @@ msgstr "-ffpe-trap çš„å‚数无效:%s"
#: fortran/options.c:564
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Argument to -ffpe-trap is not valid: %s"
msgid "Argument to -ffpe-summary is not valid: %s"
msgstr "-ffpe-trap çš„å‚数无效:%s"
@@ -47340,25 +45928,21 @@ msgstr "%C处 TYPE 中的组件必须先于 CONTAINS"
#: fortran/parse.c:1987
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: Type-bound procedure at %C"
msgid "Type-bound procedure at %C"
msgstr "Fortran 2003:%C处的类型é™å®šè¿‡ç¨‹"
#: fortran/parse.c:1995
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Junk after GENERIC binding at %C"
msgid "GENERIC binding at %C"
msgstr "%C 处的泛型绑定åŽæœ‰åžƒåœ¾å­—符"
#: fortran/parse.c:2003
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: FINAL procedure declaration at %C"
msgid "FINAL procedure declaration at %C"
msgstr "Fortran 2003:%C处的的 FINAL 过程声明"
#: fortran/parse.c:2015
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2008: Derived type definition at %C with empty CONTAINS section"
msgid "Derived type definition at %C with empty CONTAINS section"
msgstr "Fortran 2008:%C的派生类型定义有空的 CONTAINS 节"
@@ -47394,7 +45978,6 @@ msgstr "%C处的 FINAL 声明必须在 CONTAINS 内"
#: fortran/parse.c:2119
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: Derived type definition at %C without components"
msgid "Derived type definition at %C without components"
msgstr "Fortran 2003:%C处的派生类型定义没有组件"
@@ -47420,7 +46003,6 @@ msgstr "%C处é‡å¤çš„ SEQUENCE 语å¥"
#: fortran/parse.c:2173
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: CONTAINS block in derived type definition at %C"
msgid "CONTAINS block in derived type definition at %C"
msgstr "Fortran 2003:%C处的派生类型定义中的 CONTAINS å—"
@@ -47436,7 +46018,6 @@ msgstr ""
#: fortran/parse.c:2272
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Allocatable component of structure at %C must have a deferred shape"
msgid "Allocatable component %s at %L of type LOCK_TYPE must have a codimension"
msgstr "%C处å¯åˆ†é…的组件必须有延迟的外形"
@@ -47487,7 +46068,6 @@ msgstr "%s 语å¥ä¸èƒ½ç”¨åœ¨%C处 BLOCK 内"
#: fortran/parse.c:2653
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "%s statement is not allowed inside of BLOCK at %C"
msgid "%s statement is not allowed inside of BLOCK DATA at %C"
msgstr "%s 语å¥ä¸èƒ½ç”¨åœ¨%C处 BLOCK 内"
@@ -47568,7 +46148,6 @@ msgstr "%C处 ENDDO 中的语å¥æ ‡å·ä¸Ž DO æ ‡å·ä¸åŒ¹é…"
#: fortran/parse.c:3372
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2008: BLOCK construct at %C"
msgid "BLOCK construct at %C"
msgstr "Fortran 2008:%C处的 BLOCK 结构"
@@ -47604,7 +46183,6 @@ msgstr "%2$C处的 %1$s 语å¥ä¸èƒ½ç»ˆæ­¢ä¸€ä¸ªä¸æˆå—çš„ DO 循环"
#: fortran/parse.c:3863
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "FORMAT statement at %L does not have a statement label"
msgid "DATA statement at %C after the first executable statement"
msgstr "%L处 FORMAT 语å¥æ²¡æœ‰è¯­å¥æ ‡å·"
@@ -47620,7 +46198,6 @@ msgstr "éžé¢„期的 %s 语å¥å‡ºçŽ°åœ¨%C处的 CONTAINS 段中"
#: fortran/parse.c:4135
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2008: CONTAINS statement without FUNCTION or SUBROUTINE statement at %C"
msgid "CONTAINS statement without FUNCTION or SUBROUTINE statement at %C"
msgstr "Fortran 2008:%C处 CONTAINS 语å¥æ²¡æœ‰ FUNCTION 或 SUBROUTINE 语å¥"
@@ -47631,7 +46208,6 @@ msgstr "%C处的 CONTAINS 语å¥å·²ç»åœ¨åŒ…å«çš„程åºå•å…ƒä¸­"
#: fortran/parse.c:4263
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Global name '%s' at %L is already being used as a %s at %L"
msgid "Global binding name '%s' at %L is already being used as a %s at %L"
msgstr "%2$L处的å字‘%1$s’已ç»åœ¨%4$L处被用作 %3$s"
@@ -47680,7 +46256,6 @@ msgstr "%C整数相对其ç§åˆ«è€Œè¨€å¤ªå¤§ã€‚这一检查å¯ç”¨ -fno-range-chec
#: fortran/primary.c:270
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Extension: Hollerith constant at %C"
msgid "Hollerith constant at %C"
msgstr "扩展:%C处的è·å‹’瑞斯常é‡"
@@ -47701,7 +46276,6 @@ msgstr "%L处无效的è·å‹’瑞斯常é‡åŒ…å«ä¸€ä¸ªå®½å­—符"
#: fortran/primary.c:393
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Extension: Hexadecimal constant at %C uses non-standard syntax"
msgid "Hexadecimal constant at %C uses non-standard syntax"
msgstr "扩展:%C处的å六进制常é‡ä½¿ç”¨äº†éžæ ‡å‡†è¯­æ³•"
@@ -47717,7 +46291,6 @@ msgstr "%C处的 BOZ 常é‡ä¸­æœ‰éžæ³•å­—符"
#: fortran/primary.c:431
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Extension: BOZ constant at %C uses non-standard postfix syntax"
msgid "BOZ constant at %C uses non-standard postfix syntax"
msgstr "扩展:%C处的 BOZ 常é‡ä½¿ç”¨äº†éžæ ‡å‡†çš„åŽåºè¯­æ³•ã€‚"
@@ -47728,7 +46301,6 @@ msgstr "%2$C处的整数对其ç§åˆ« %1$i æ¥è¯´å¤ªå¤§"
#: fortran/primary.c:467
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: BOZ used outside a DATA statement at %C"
msgid "BOZ used outside a DATA statement at %C"
msgstr "Fortran 2003:%C处的 BOZ 用在了 DATA 语å¥ä¹‹å¤–"
@@ -47739,7 +46311,6 @@ msgstr ""
#: fortran/primary.c:561
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Extension: Hollerith constant at %C"
msgid "Extension: exponent-letter 'q' in real-literal-constant at %C"
msgstr "扩展:%C处的è·å‹’瑞斯常é‡"
@@ -47755,13 +46326,11 @@ msgstr "%C处的实数有一个‘d’指数和一个显å¼çš„ç§åˆ«"
#: fortran/primary.c:663
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Real number at %C has a 'd' exponent and an explicit kind"
msgid "Real number at %C has a 'q' exponent and an explicit kind"
msgstr "%C处的实数有一个‘d’指数和一个显å¼çš„ç§åˆ«"
#: fortran/primary.c:677
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Invalid initializer %s in Data statement at %C"
msgid "Invalid exponent-letter 'q' in real-literal-constant at %C"
msgstr "%2$C处 DATA 语å¥åˆå§‹å€¼è®¾å®š %1$s 无效"
@@ -47822,7 +46391,6 @@ msgstr "%Cå¤„æ ‡é‡ PARAMETER è¦æ±‚å¤æ•°å¸¸é‡"
#: fortran/primary.c:1216
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Expected PARAMETER symbol in complex constant at %C"
msgid "PARAMETER symbol in complex constant at %C"
msgstr "%C处å¤æ•°å¸¸é‡ä¸­éœ€è¦ PARAMETER 符å·"
@@ -47843,7 +46411,6 @@ msgstr "关键字‘%s’在%C处已ç»å‡ºçŽ°åœ¨å½“å‰å®žå‚列表中"
#: fortran/primary.c:1645
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Unknown argument list function at %L"
msgid "argument list function at %C"
msgstr "%L处å‚数列表函数未知"
@@ -47874,13 +46441,11 @@ msgstr "在 %2$L 处的函数“%1$sâ€æ˜¯ INTRINSIC,但ä¸æ˜¯ä¸Žä¸€ä¸ªå†…建å
#: fortran/primary.c:1915
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Symbol '%s' at %L has no IMPLICIT type"
msgid "Symbol '%s' at %C has no IMPLICIT type"
msgstr "%2$L处的符å·â€˜%1$s’没有éšå¼ç±»åž‹"
#: fortran/primary.c:1921
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Unexpected character in variable list at %C"
msgid "Unexpected '%%' for nonderived-type variable '%s' at %C"
msgstr "%C处å˜é‡åˆ—表中有éžé¢„期的垃圾字符"
@@ -47906,7 +46471,6 @@ msgstr "Fortran 2003:%C处的过程指针组件"
#: fortran/primary.c:2363
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: Structure constructor with missing optional arguments at %C"
msgid "Structure constructor with missing optional arguments at %C"
msgstr "Fortran 2003:%C处的结构构造函数丢失å¯é€‰çš„å‚æ•°"
@@ -47917,31 +46481,26 @@ msgstr "%2$C处结构构造函数中没有组件‘%1$s’的åˆå§‹å€¼è®¾å®šï¼"
#: fortran/primary.c:2418
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Can't construct ABSTRACT type '%s' at %C"
msgid "Can't construct ABSTRACT type '%s' at %L"
msgstr "%2$C处无法构建 ABSTRACT 类型‘%1$s’"
#: fortran/primary.c:2438
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: Structure constructor with named arguments at %C"
msgid "Structure constructor with named arguments at %C"
msgstr "Fortran 2003:%C处的结构构造函数有有åçš„å‚æ•°"
#: fortran/primary.c:2453
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Component initializer without name after component named %s at %C!"
msgid "Component initializer without name after component named %s at %L!"
msgstr "%2$C处å为 %1$s 的组件之åŽçš„组件åˆå§‹å€¼è®¾å®šæ²¡æœ‰åå­—ï¼"
#: fortran/primary.c:2458
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Too many components in structure constructor at %C!"
msgid "Too many components in structure constructor at %L!"
msgstr "%C处结构构造函数中组件太多ï¼"
#: fortran/primary.c:2495
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Component '%s' is initialized twice in the structure constructor at %C!"
msgid "Component '%s' is initialized twice in the structure constructor at %L!"
msgstr "%2$C处结构构造函数中组件‘%1$s’被åˆå§‹åŒ–两次ï¼"
@@ -48012,31 +46571,26 @@ msgstr "%2$L处使用了 ABSTRACT 类型‘%1$s’"
#: fortran/resolve.c:145
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Interface '%s', used by procedure '%s' at %L, is declared in a later PROCEDURE statement"
msgid "Interface '%s' at %L is declared in a later PROCEDURE statement"
msgstr "为过程‘%2$s’在%3$L处使用的接å£â€˜%1$s’是在之åŽçš„ PROCEDURE 语å¥ä¸­å£°æ˜Žçš„"
#: fortran/resolve.c:158
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Interface '%s' at %C may not be generic"
msgid "Interface '%s' at %L may not be generic"
msgstr "%2$C处的接å£â€˜%1$s’ä¸èƒ½æ˜¯æ³›åž‹"
#: fortran/resolve.c:165
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Interface '%s' at %C may not be a statement function"
msgid "Interface '%s' at %L may not be a statement function"
msgstr "%2$C处的接å£â€˜%1$s’ä¸èƒ½æ˜¯ä¸ªè¯­å¥å‡½æ•°"
#: fortran/resolve.c:174
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Intrinsic procedure '%s' not allowed in PROCEDURE statement at %C"
msgid "Intrinsic procedure '%s' not allowed in PROCEDURE statement at %L"
msgstr "内建过程‘%s’ä¸å…许在 %C çš„ PROCEDURE 语å¥ä¸­"
#: fortran/resolve.c:180
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Interface '%s' of procedure '%s' at %L must be explicit"
msgid "Interface '%s' at %L must be explicit"
msgstr "%3$L处过程‘%2$s’的接å£â€˜%1$s’必须是显å¼çš„"
@@ -48057,7 +46611,6 @@ msgstr "函数‘%s’中的替代返回é™å®šç¬¦åœ¨%L处ä¸è¢«å…许"
#: fortran/resolve.c:311
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Keyword argument '%s' at %L is not in the procedure"
msgid "Self-referential argument '%s' at %L is not allowed"
msgstr "%2$L处关键字实å‚‘%1$s’ä¸åœ¨è¿‡ç¨‹é‡Œ"
@@ -48148,7 +46701,6 @@ msgstr "%2$L处函数‘%1$s’有ä¸åŒ¹é…的数组规格说明"
#: fortran/resolve.c:788
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Extension: Function %s at %L with entries returning variables of different string lengths"
msgid "Function %s at %L with entries returning variables of different string lengths"
msgstr "扩展:%2$L处函数 %1$s 有返回ä¸åŒå­—符串长度的å˜é‡çš„表项"
@@ -48219,7 +46771,6 @@ msgstr ""
#: fortran/resolve.c:1001
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "COMMON block '%s' at %L is used as PARAMETER at %L"
msgid "COMMON block '%s' at %L uses the same global identifier as entity at %L"
msgstr "%2$L处的 COMMON å—‘%1$s’在%3$L处被用作 PARAMETER"
@@ -48240,7 +46791,6 @@ msgstr "%2$L处的 COMMON å—‘%1$s’在%3$L处被用作 PARAMETER"
#: fortran/resolve.c:1056
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Variable '%s' at %L cannot have both the POINTER and BIND(C) attributes"
msgid "COMMON block '%s' at %L can not have the EXTERNAL attribute"
msgstr "%2$L处å˜é‡â€˜%1$s’ä¸èƒ½æ—¢æœ‰ POINTER åˆæœ‰ BIND(C) 属性"
@@ -48251,31 +46801,26 @@ msgstr "%2$L处的 COMMON å—‘%1$s’也是一个内建过程"
#: fortran/resolve.c:1064
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: COMMON block '%s' at %L that is also a function result"
msgid "COMMON block '%s' at %L that is also a function result"
msgstr "Fortran 2003:%2$L处的 COMMON å—‘%1$s’也是一个函数返回值"
#: fortran/resolve.c:1069
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: COMMON block '%s' at %L that is also a global procedure"
msgid "COMMON block '%s' at %L that is also a global procedure"
msgstr "Fortran 2003:%2$L处的 COMMON å—‘%1$s’也是一个全局过程"
#: fortran/resolve.c:1152
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "The rank of the element in the derived type constructor at %L does not match that of the component (%d/%d)"
msgid "The rank of the element in the structure constructor at %L does not match that of the component (%d/%d)"
msgstr "%L处的派生类型构造函数中元素的秩与该组件(%d/%d)çš„ä¸åŒ¹é…"
#: fortran/resolve.c:1173
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "The element in the derived type constructor at %L, for pointer component '%s', is %s but should be %s"
msgid "The element in the structure constructor at %L, for pointer component '%s', is %s but should be %s"
msgstr "%L处指针组件‘%s’的派生类型构造函数中的元素是 %s 但应该是 %s"
#: fortran/resolve.c:1258
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "The NULL in the derived type constructor at %L is being applied to component '%s', which is neither a POINTER nor ALLOCATABLE"
msgid "The NULL in the structure constructor at %L is being applied to component '%s', which is neither a POINTER nor ALLOCATABLE"
msgstr "%L处派生类型构造函数中的 NULL 被用在既ä¸æ˜¯ä¸€ä¸ªæŒ‡é’ˆä¹Ÿä¸æ˜¯ ALLOCATABLE 的组件‘%s’上"
@@ -48286,7 +46831,6 @@ msgstr "%C处结构构造函数中组件太多ï¼"
#: fortran/resolve.c:1308
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "The element in the derived type constructor at %L, for pointer component '%s' should be a POINTER or a TARGET"
msgid "The element in the structure constructor at %L, for pointer component '%s' should be a POINTER or a TARGET"
msgstr "%L处指针组件‘%s’的派生类型构造函数中的元素应该是 POINTER 或 TARGET"
@@ -48297,7 +46841,6 @@ msgstr "%2$L处‘%1$s’的传递对象虚å‚ä¸èƒ½æ˜¯ ALLOCATABLE"
#: fortran/resolve.c:1336
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Invalid expression in the derived type constructor for pointer component '%s' at %L in PURE procedure"
msgid "Invalid expression in the structure constructor for pointer component '%s' at %L in PURE procedure"
msgstr "%2$L处指针组件‘%1$s’的派生类型构造函数中表达å¼æ— æ•ˆ"
@@ -48418,7 +46961,6 @@ msgstr "函数ä¸èƒ½è¿”回函数"
#: fortran/resolve.c:2442
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Interface mismatch in dummy procedure '%s' at %L: %s"
msgid "Interface mismatch in global procedure '%s' at %L: %s "
msgstr "哑过程‘%s’接å£åœ¨%L处ä¸åŒ¹é…:%s"
@@ -48470,13 +47012,11 @@ msgstr "%2$Lå¤„ç”¨æˆ·å®šä¹‰çš„éž ELEMENTAL 函数‘%1$s’ä¸å®¹è®¸å‡ºçŽ°åœ¨ W
#: fortran/resolve.c:2990
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "reference to non-PURE function '%s' at %L inside a FORALL %s"
msgid "Reference to non-PURE function '%s' at %L inside a FORALL %s"
msgstr "%2$Lå¤„å¯¹éž PURE 函数‘%1$s’的引用出现在 FORALL %3$s 中"
#: fortran/resolve.c:2997
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "reference to non-PURE function '%s' at %L inside a FORALL %s"
msgid "Reference to non-PURE function '%s' at %L inside a DO CONCURRENT %s"
msgstr "%2$Lå¤„å¯¹éž PURE 函数‘%1$s’的引用出现在 FORALL %3$s 中"
@@ -48502,7 +47042,6 @@ msgstr "%2$L处 FORALL å—内对‘%1$s’å­ä¾‹ç¨‹çš„调用ä¸æ˜¯ PURE"
#: fortran/resolve.c:3069
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Subroutine call to '%s' in FORALL block at %L is not PURE"
msgid "Subroutine call to '%s' in DO CONCURRENT block at %L is not PURE"
msgstr "%2$L处 FORALL å—内对‘%1$s’å­ä¾‹ç¨‹çš„调用ä¸æ˜¯ PURE"
@@ -48628,7 +47167,6 @@ msgstr "%L处数组索引必须具有 INTEGER 类型而ä¸æ˜¯ %s"
#: fortran/resolve.c:4129
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Extension: REAL array index at %L"
msgid "REAL array index at %L"
msgstr "扩展:%L处的 REAL 数组索引"
@@ -48704,7 +47242,6 @@ msgstr ""
#: fortran/resolve.c:4766
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Assumed shape array at %L must be a dummy argument"
msgid "Assumed-type variable %s at %L may only be used as actual argument"
msgstr "%L处å‡å®šå¤–形的数组必须是一个虚å‚"
@@ -48719,7 +47256,6 @@ msgstr ""
#: fortran/resolve.c:4791
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Assumed shape array at %L must be a dummy argument"
msgid "Assumed-rank variable %s at %L may only be used as actual argument"
msgstr "%L处å‡å®šå¤–形的数组必须是一个虚å‚"
@@ -48825,7 +47361,6 @@ msgstr "%L处的 DO 循环中的步进表达å¼ä¸èƒ½ä¸ºé›¶"
#: fortran/resolve.c:6292
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "DO loop at %L will be executed zero times"
msgid "DO loop at %L will be executed zero times (use -Wno-zerotrip to suppress)"
msgstr "%L处的 DO 循环会被执行零次"
@@ -49070,7 +47605,6 @@ msgstr "%2$L处派生类型‘%1$s’必须是‘%3$s’的一个扩展"
#: fortran/resolve.c:7966
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Unexpected use of subroutine name '%s' at %C"
msgid "Unexpected intrinsic type '%s' at %L"
msgstr "对å­è¿›ç¨‹å‘%s’éžé¢„期的使用,在%C处"
@@ -49086,7 +47620,6 @@ msgstr "%L处 SELECT TYPE 语å¥ä¸­æœ‰åŒé‡çš„ CLASS IS å—"
#: fortran/resolve.c:8256
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Invalid context for NULL() pointer at %%L"
msgid "Invalid context for NULL () intrinsic at %L"
msgstr "%%L处 NULL() 指针上下文无效"
@@ -49098,7 +47631,6 @@ msgstr ""
#: fortran/resolve.c:8296
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Data transfer element at %L cannot have POINTER components"
msgid "Data transfer element at %L cannot have POINTER components unless it is processed by a defined input/output procedure"
msgstr "%L处数æ®ä¼ è¾“元素ä¸èƒ½æœ‰ POINTER 组件"
@@ -49109,7 +47641,6 @@ msgstr "%L处数æ®ä¼ è¾“元素ä¸èƒ½æœ‰ POINTER 组件"
#: fortran/resolve.c:8312
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Data transfer element at %L cannot have ALLOCATABLE components"
msgid "Data transfer element at %L cannot have ALLOCATABLE components unless it is processed by a defined input/output procedure"
msgstr "%L处数æ®ä¼ è¾“元素ä¸èƒ½æœ‰ ALLOCATABLE 组件"
@@ -49125,7 +47656,6 @@ msgstr "%L处数æ®ä¼ è¾“元素ä¸èƒ½æ˜¯å¯¹ä¸€ä¸ªå‡å®šå¤§å°æ•°ç»„的全引用"
#: fortran/resolve.c:8388
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Stat-variable at %L must be a scalar INTEGER variable"
msgid "Lock variable at %L must be a scalar of type LOCK_TYPE"
msgstr "%L处 stat å˜é‡å¿…é¡»æ˜¯ä¸€ä¸ªæ ‡é‡ INTEGER å˜é‡"
@@ -49251,7 +47781,6 @@ msgstr ""
#: fortran/resolve.c:9196
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Assignment to a FORALL index variable at %L"
msgid "Assignment to an allocatable polymorphic variable at %L"
msgstr "%Lå¤„å‘ FORALL 索引å˜é‡èµ‹å€¼"
@@ -49318,7 +47847,6 @@ msgstr "%L处的 FORMALL 掩ç å­å¥éœ€è¦ä¸€ä¸ª LOGICAL 表达å¼"
#: fortran/resolve.c:10180
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Binding label '%s' at %L collides with the global entity '%s' at %L"
msgid "Variable %s with binding label %s at %L uses the same global identifier as entity at %L"
msgstr "%2$L处的绑定标å·â€˜%1$s’与 %4$L 处的全局实体‘%3$s’冲çª"
@@ -49334,7 +47862,6 @@ msgstr ""
#. multiple checks for the same procedure.
#: fortran/resolve.c:10210
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Binding label '%s' at %L collides with the global entity '%s' at %L"
msgid "Procedure %s with binding label %s at %L uses the same global identifier as entity at %L"
msgstr "%2$L处的绑定标å·â€˜%1$s’与 %4$L 处的全局实体‘%3$s’冲çª"
@@ -49350,7 +47877,6 @@ msgstr "%L处字符串太长"
#: fortran/resolve.c:10628
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Allocatable array '%s' at %L must have a deferred shape"
msgid "Allocatable array '%s' at %L must have a deferred shape or assumed rank"
msgstr "å¯åˆ†é…的数组‘%s’在%L处必须有延迟的外形"
@@ -49361,7 +47887,6 @@ msgstr "%2$L处标é‡å¯¹è±¡â€˜%1$s’ä¸èƒ½ä¸º ALLOCATABLE"
#: fortran/resolve.c:10640
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Array pointer '%s' at %L must have a deferred shape"
msgid "Array pointer '%s' at %L must have a deferred shape or assumed rank"
msgstr "数组指针‘%s’在%L处必须有延迟的外形"
@@ -49387,7 +47912,6 @@ msgstr "‘%s’在%L处ä¸èƒ½æ˜¯ä¸»æœºç›¸å…³çš„,因为它被在%L处声明的
#: fortran/resolve.c:10730
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2008: Implied SAVE for module variable '%s' at %L, needed due to the default initialization"
msgid "Implied SAVE for module variable '%s' at %L, needed due to the default initialization"
msgstr "Fortran 2008:%2$L处模å—å˜é‡â€˜%1$s’éšå«ä½¿ç”¨äº† SAVE,因为默认åˆå§‹åŒ–有此需求"
@@ -49415,7 +47939,6 @@ msgstr "å˜é‡â€˜%s’在%L处上下文中字符长度必须为常é‡"
#: fortran/resolve.c:10830
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "'%s' at %L must have constant character length in this context"
msgid "COMMON variable '%s' at %L must have constant character length"
msgstr "å˜é‡â€˜%s’在%L处上下文中字符长度必须为常é‡"
@@ -49456,13 +47979,11 @@ msgstr "%2$L处有字符值的语å¥å‡½æ•°â€˜%1$s’必须有常é‡é•¿åº¦"
#: fortran/resolve.c:10958
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: '%s' is of a PRIVATE type and cannot be a dummy argument of '%s', which is PUBLIC at %L"
msgid "'%s' is of a PRIVATE type and cannot be a dummy argument of '%s', which is PUBLIC at %L"
msgstr "Fortran 2003:%3$L处‘%1$s’是 PRIVATE 类型因而ä¸èƒ½æ˜¯ PUBLIC 类型‘%2$s’的虚å‚"
#: fortran/resolve.c:10980 fortran/resolve.c:11004
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: Procedure '%s' in PUBLIC interface '%s' at %L takes dummy arguments of '%s' which is PRIVATE"
msgid "Procedure '%s' in PUBLIC interface '%s' at %L takes dummy arguments of '%s' which is PRIVATE"
msgstr "Fortran 2003: %3$L处 PUBLIC 接å£â€˜%2$s’中的过程‘%1$s’有 PRIVATE 的虚å‚‘%4$s’"
@@ -49508,19 +48029,16 @@ msgstr "CHARACTER(*) 函数‘%s’在%L处ä¸èƒ½æ˜¯é€’å½’çš„"
#: fortran/resolve.c:11093
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "CHARACTER(*) function '%s' at %L cannot be pure"
msgid "CHARACTER(*) function '%s' at %L"
msgstr "CHARACTER(*) 函数‘%s’在%L处ä¸èƒ½ä¸ºçº¯å‡½æ•°"
#: fortran/resolve.c:11102
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Procedure pointer component '%s' with PASS at %L must have at least one argument"
msgid "Procedure pointer '%s' at %L shall not be elemental"
msgstr "%2$L处的具有 PASS 的过程指针组件‘%1$s’必须至少有一个实å‚"
#: fortran/resolve.c:11108
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Dummy procedure '%s' at %C cannot have a generic interface"
msgid "Dummy procedure '%s' at %L shall not be elemental"
msgstr "哑过程‘%s’在%C处ä¸èƒ½æœ‰æ³›åž‹æŽ¥å£"
@@ -49766,7 +48284,6 @@ msgstr ""
#: fortran/resolve.c:12356
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: the component '%s' is a PRIVATE type and cannot be a component of '%s', which is PUBLIC at %L"
msgid "the component '%s' is a PRIVATE type and cannot be a component of '%s', which is PUBLIC at %L"
msgstr "Fortran 2003:%3$L处组åˆâ€˜%1$s’是一个 PRIVATE 类型,因此ä¸èƒ½æ˜¯ PUBLIC‘%2$s’的组åˆ"
@@ -49792,7 +48309,6 @@ msgstr "%2$L处具有 CLASS 的组件‘%1$s’必须是å¯åˆ†é…的或指针"
#: fortran/resolve.c:12484
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Component '%s' of '%s' at %L has the same name as an inherited type-bound procedure"
msgid "Generic name '%s' of function '%s' at %L being the same name as derived type at %L"
msgstr "%3$L处‘%2$s’的组件‘%1$s’与一个继承的类型é™å®šè¿‡ç¨‹åŒå"
@@ -49895,7 +48411,6 @@ msgstr "%L处å‡å®šå¤–形的数组必须是一个虚å‚"
#: fortran/resolve.c:12900
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Assumed shape array at %L must be a dummy argument"
msgid "Assumed-rank array at %L must be a dummy argument"
msgstr "%L处å‡å®šå¤–形的数组必须是一个虚å‚"
@@ -49941,13 +48456,11 @@ msgstr ""
#: fortran/resolve.c:12990
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Variable '%s' at %L cannot have both the ALLOCATABLE and BIND(C) attributes"
msgid "Variable %s at %L with NO_ARG_CHECK attribute may not have the ALLOCATABLE, CODIMENSION, POINTER or VALUE attribute"
msgstr "%2$L处å˜é‡â€˜%1$s’ä¸èƒ½æ—¢æœ‰ ALLOCATABLE åˆæœ‰ BIND(C) 属性"
#: fortran/resolve.c:12998
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Variable '%s' at %L cannot have both the POINTER and BIND(C) attributes"
msgid "Variable %s at %L with NO_ARG_CHECK attribute may not have the INTENT(OUT) attribute"
msgstr "%2$L处å˜é‡â€˜%1$s’ä¸èƒ½æ—¢æœ‰ POINTER åˆæœ‰ BIND(C) 属性"
@@ -49958,19 +48471,16 @@ msgstr ""
#: fortran/resolve.c:13025
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Assumed shape array '%s' at %L is not permitted in an initialization expression"
msgid "Assumed type of variable %s at %L is only permitted for dummy variables"
msgstr "%2$L处å‡å®šå¤–形数组‘%1$s’ä¸èƒ½ç”¨åœ¨åˆå§‹åŒ–表达å¼ä¸­"
#: fortran/resolve.c:13032
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Variable '%s' at %L cannot have both the ALLOCATABLE and BIND(C) attributes"
msgid "Assumed-type variable %s at %L may not have the ALLOCATABLE, CODIMENSION, POINTER or VALUE attribute"
msgstr "%2$L处å˜é‡â€˜%1$s’ä¸èƒ½æ—¢æœ‰ ALLOCATABLE åˆæœ‰ BIND(C) 属性"
#: fortran/resolve.c:13039
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Variable '%s' at %L cannot have both the POINTER and BIND(C) attributes"
msgid "Assumed-type variable %s at %L may not have the INTENT(OUT) attribute"
msgstr "%2$L处å˜é‡â€˜%1$s’ä¸èƒ½æ—¢æœ‰ POINTER åˆæœ‰ BIND(C) 属性"
@@ -49986,7 +48496,6 @@ msgstr "%2$L处å˜é‡â€˜%1$s’ä¸èƒ½æ˜¯ BIND(C) 因为它既ä¸æ˜¯ä¸€ä¸ª COMMON
#: fortran/resolve.c:13151
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: PUBLIC %s '%s' at %L of PRIVATE derived type '%s'"
msgid "PUBLIC %s '%s' at %L of PRIVATE derived type '%s'"
msgstr "Fortran 2003:%3$L处 PUBLIC %1$s‘%2$s’具有 PRIVATE 派生类型‘%4$s’"
@@ -50002,7 +48511,6 @@ msgstr "%2$L处INTENT(OUT) 虚å‚‘%1$s’是 ASSUMED SIZE,所以ä¸èƒ½æœ‰ä¸€
#: fortran/resolve.c:13196
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Dummy argument '%s' at %L cannot be INTENT(OUT)"
msgid "Dummy argument '%s' at %L of LOCK_TYPE shall not be INTENT(OUT)"
msgstr "%2$L处的‘%1$s’虚å‚ä¸èƒ½æ˜¯ INTENT(OUT)"
@@ -50178,7 +48686,6 @@ msgstr "%L çš„å­å­—符串长度为零"
#: fortran/resolve.c:14338
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: PUBLIC function '%s' at %L of PRIVATE type '%s'"
msgid "PUBLIC function '%s' at %L of PRIVATE type '%s'"
msgstr "Fortran 2003:%2$L处 PRIVATE 类型‘%3$s’的 PUBLIC 函数‘%1$s’"
@@ -50224,19 +48731,16 @@ msgstr "%2$L处 PURE 过程中包å«çš„过程‘%1$s’必须也是 PURE"
#: fortran/scanner.c:327
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "ignoring duplicate directory \"%s\"\n"
msgid "Include directory \"%s\": %s"
msgstr "忽略é‡å¤çš„目录“%sâ€\n"
#: fortran/scanner.c:333
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "ignoring nonexistent directory \"%s\"\n"
msgid "Nonexistent include directory \"%s\""
msgstr "忽略ä¸å­˜åœ¨çš„目录“%sâ€\n"
#: fortran/scanner.c:339
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "%qD is not a type"
msgid "\"%s\" is not a directory"
msgstr "%qDä¸æ˜¯ä¸€ä¸ªç±»åž‹"
@@ -50536,7 +49040,6 @@ msgstr "%2$L 处的对象“%1$sâ€å¯¹äºŽæˆåˆ†çš„默认åˆå§‹åŒ–必须有 SAVE
#: fortran/symbol.c:474
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: Procedure pointer at %C"
msgid "Procedure pointer at %C"
msgstr "Fortran 2003:%C处的过程指针"
@@ -50562,13 +49065,11 @@ msgstr "%s 属性与 %s 属性冲çªï¼Œåœ¨â€˜%s’中,ä½äºŽ %L"
#: fortran/symbol.c:767
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "%s attribute conflicts with %s attribute at %L"
msgid "%s attribute with %s attribute at %L"
msgstr "%s 属性与 %s 属性在%L处冲çª"
#: fortran/symbol.c:773
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "%s attribute conflicts with %s attribute in '%s' at %L"
msgid "%s attribute with %s attribute in '%s' at %L"
msgstr "%s 属性与 %s 属性冲çªï¼Œåœ¨â€˜%s’中,ä½äºŽ %L"
@@ -50664,7 +49165,6 @@ msgstr "%L处指定了é‡å¤çš„ BIND 属性"
#: fortran/symbol.c:1590
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: BIND(C) at %L"
msgid "BIND(C) at %L"
msgstr "Fortran 2003:%L处的 BIND(C)"
@@ -50675,7 +49175,6 @@ msgstr "%L处指定了é‡å¤çš„ EXTENDS 属性"
#: fortran/symbol.c:1610
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Fortran 2003: EXTENDS at %L"
msgid "EXTENDS at %L"
msgstr "Fortran 2003:%L处的 EXTENDS"
@@ -50771,7 +49270,6 @@ msgstr "%2$Cå¤„çš„æ ‡å· %1$d å…ˆå‰ç”¨ä½œåˆ†æ”¯ç›®æ ‡"
#: fortran/symbol.c:2270
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Expected terminating name at %C"
msgid "Shared DO termination label %d at %C"
msgstr "%C处需è¦ç»“æŸå"
@@ -50868,7 +49366,6 @@ msgstr "走过错误的表达å¼ç±»åž‹(%d)"
#: fortran/trans-common.c:400
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Named COMMON block '%s' at %L shall be of the same size"
msgid "Named COMMON block '%s' at %L shall be of the same size as elsewhere (%lu vs %lu bytes)"
msgstr "%2$L处的 COMMON å—‘%1$s’应该有åŒæ ·çš„大å°"
@@ -50920,13 +49417,11 @@ msgstr "%2$L处的 COMMON‘%1$s’并ä¸å­˜åœ¨"
#: fortran/trans-common.c:1167
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "COMMON '%s' at %L requires %d bytes of padding at start; reorder elements or use -fno-align-commons"
msgid "COMMON '%s' at %L requires %d bytes of padding; reorder elements or use -fno-align-commons"
msgstr "%2$L处的 COMMON‘%1$sâ€™éœ€è¦ %3$d 字节填充在开始处;é‡æŽ’åºå…ƒç´ æˆ–使用 -fno-align-commons"
#: fortran/trans-common.c:1171
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "COMMON at %L requires %d bytes of padding at start; reorder elements or use -fno-align-commons"
msgid "COMMON at %L requires %d bytes of padding; reorder elements or use -fno-align-commons"
msgstr "%L处的 COMMON éœ€è¦ %d 字节填充在开始处;é‡æŽ’åºå…ƒç´ æˆ–使用 -fno-align-commons"
@@ -50967,7 +49462,6 @@ msgstr "模å—å˜é‡ %s çš„åŽç«¯å£°æ˜Žå·²å­˜åœ¨"
#: fortran/trans-decl.c:4257
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Unused variable '%s' declared at %L"
msgid "Unused PRIVATE module variable '%s' declared at %L"
msgstr "%2$L处声明了未使用的å˜é‡â€˜%1$s’"
@@ -50988,7 +49482,6 @@ msgstr "%2$L处声明了未使用的虚å‚‘%1$s’"
#: fortran/trans-decl.c:4837
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Unused variable '%s' declared at %L"
msgid "Unused module variable '%s' which has been explicitly imported at %L"
msgstr "%2$L处声明了未使用的å˜é‡â€˜%1$s’"
@@ -51004,7 +49497,6 @@ msgstr "%2$L处声明了未使用的å‚数‘%1$s’"
#: fortran/trans-decl.c:4896
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Unused parameter '%s' declared at %L"
msgid "Unused parameter '%s' which has been explicitly imported at %L"
msgstr "%2$L处声明了未使用的å‚数‘%1$s’"
@@ -51066,37 +49558,31 @@ msgstr ""
#: fortran/trans-types.c:496
#, fuzzy, gcc-internal-format
-#| msgid "integer kind=8 not available for -fdefault-integer-8 option"
msgid "INTEGER(KIND=8) is not available for -fdefault-integer-8 option"
msgstr "integer kind=8 在指定了 -fdefault-integer-8 选项时ä¸å¯ç”¨"
#: fortran/trans-types.c:504
#, fuzzy, gcc-internal-format
-#| msgid "integer kind=8 not available for -fdefault-integer-8 option"
msgid "INTEGER(KIND=8) is not available for -finteger-4-integer-8 option"
msgstr "integer kind=8 在指定了 -fdefault-integer-8 选项时ä¸å¯ç”¨"
#: fortran/trans-types.c:522
#, fuzzy, gcc-internal-format
-#| msgid "real kind=8 not available for -fdefault-real-8 option"
msgid "REAL(KIND=8) is not available for -fdefault-real-8 option"
msgstr "real kind=8 在指定了 -fdefault-real-8 选项时ä¸å¯ç”¨"
#: fortran/trans-types.c:529
#, fuzzy, gcc-internal-format
-#| msgid "real kind=8 not available for -fdefault-real-8 option"
msgid "REAL(KIND=8) is not available for -freal-4-real-8 option"
msgstr "real kind=8 在指定了 -fdefault-real-8 选项时ä¸å¯ç”¨"
#: fortran/trans-types.c:536
#, fuzzy, gcc-internal-format
-#| msgid "real kind=8 not available for -fdefault-real-8 option"
msgid "REAL(KIND=10) is not available for -freal-4-real-10 option"
msgstr "real kind=8 在指定了 -fdefault-real-8 选项时ä¸å¯ç”¨"
#: fortran/trans-types.c:543
#, fuzzy, gcc-internal-format
-#| msgid "real kind=8 not available for -fdefault-real-8 option"
msgid "REAL(KIND=16) is not available for -freal-4-real-16 option"
msgstr "real kind=8 在指定了 -fdefault-real-8 选项时ä¸å¯ç”¨"
@@ -51107,25 +49593,21 @@ msgstr "使用 -fdefault-double-8 æ—¶éœ€è¦ -fdefault-real-8"
#: fortran/trans-types.c:566
#, fuzzy, gcc-internal-format
-#| msgid "real kind=8 not available for -fdefault-real-8 option"
msgid "REAL(KIND=4) is not available for -freal-8-real-4 option"
msgstr "real kind=8 在指定了 -fdefault-real-8 选项时ä¸å¯ç”¨"
#: fortran/trans-types.c:573
#, fuzzy, gcc-internal-format
-#| msgid "real kind=8 not available for -fdefault-real-8 option"
msgid "REAL(KIND=10) is not available for -freal-8-real-10 option"
msgstr "real kind=8 在指定了 -fdefault-real-8 选项时ä¸å¯ç”¨"
#: fortran/trans-types.c:580
#, fuzzy, gcc-internal-format
-#| msgid "real kind=8 not available for -fdefault-real-8 option"
msgid "REAL(KIND=10) is not available for -freal-8-real-16 option"
msgstr "real kind=8 在指定了 -fdefault-real-8 选项时ä¸å¯ç”¨"
#: fortran/trans-types.c:1458
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "Array element size too big"
msgid "Array element size too big at %C"
msgstr "数组元素太大"
@@ -51272,7 +49754,6 @@ msgstr "ä¸ä¼šæ‰§è¡Œåˆ°çš„字节ç ï¼Œä»Ž %d 直到方法末尾"
#. duplicate code from LOAD macro
#: java/expr.c:3549
#, fuzzy, gcc-internal-format
-#| msgid "unrecogized wide sub-instruction"
msgid "unrecognized wide sub-instruction"
msgstr "无法识别的宽å­æŒ‡ä»¤"
@@ -51570,19 +50051,16 @@ msgstr "ä¸èƒ½è¯»å– ELF 头:%s"
#: lto/lto.c:2302
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "cannot open %s"
msgid "Cannot open %s"
msgstr "ä¸èƒ½æ‰“å¼€ %s"
#: lto/lto.c:2323
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "cannot open %s"
msgid "Cannot map %s"
msgstr "ä¸èƒ½æ‰“å¼€ %s"
#: lto/lto.c:2334
#, fuzzy, gcc-internal-format, gfc-internal-format
-#| msgid "cannot open %s"
msgid "Cannot read %s"
msgstr "ä¸èƒ½æ‰“å¼€ %s"
@@ -52006,7 +50484,6 @@ msgstr "全局/é™æ€å˜é‡èµ‹å€¼å·²è¢«æ‰“æ–­"
#: objc/objc-act.c:3964 objc/objc-act.c:3992 objc/objc-act.c:4048
#, fuzzy, gcc-internal-format
-#| msgid "unused variable %q+D"
msgid "duplicate instance variable %q+D"
msgstr "未使用的å˜é‡%q+D"
@@ -52125,7 +50602,6 @@ msgstr "也找到了%<%c%s%>"
#. rtype is an IDENTIFIER_NODE at this point.
#: objc/objc-act.c:5398 objc/objc-act.c:5532
#, fuzzy, gcc-internal-format
-#| msgid "definition of protocol %qE not found"
msgid "@interface of class %qE not found"
msgstr "找ä¸åˆ°åè®®%qE的方法定义"
diff --git a/gcc-4.9/gcc/po/zh_TW.gmo b/gcc-4.9/gcc/po/zh_TW.gmo
deleted file mode 100644
index 429d3cd84..000000000
--- a/gcc-4.9/gcc/po/zh_TW.gmo
+++ /dev/null
Binary files differ
diff --git a/gcc-4.9/gcc/predict.c b/gcc-4.9/gcc/predict.c
index 249433f91..ecf3f73ba 100644
--- a/gcc-4.9/gcc/predict.c
+++ b/gcc-4.9/gcc/predict.c
@@ -161,11 +161,13 @@ set_hot_bb_threshold (gcov_type min)
/* Return TRUE if frequency FREQ is considered to be hot. */
-static inline bool
+bool
maybe_hot_count_p (struct function *fun, gcov_type count)
{
if (fun && profile_status_for_fn (fun) != PROFILE_READ)
return true;
+ if (!profile_info)
+ return false;
/* Code executed at most once is not hot. */
if (profile_info->runs >= count)
return false;
@@ -1033,6 +1035,12 @@ combine_predictions_for_bb (basic_block bb)
{
first->probability = combined_probability;
second->probability = REG_BR_PROB_BASE - combined_probability;
+ if (flag_check_branch_annotation && first_match &&
+ best_predictor == PRED_BUILTIN_EXPECT)
+ {
+ first->flags |= EDGE_PREDICTED_BY_EXPECT;
+ second->flags |= EDGE_PREDICTED_BY_EXPECT;
+ }
}
}
@@ -2955,7 +2963,7 @@ counts_to_freqs (void)
/* Don't overwrite the estimated frequencies when the profile for
the function is missing. We may drop this function PROFILE_GUESSED
later in drop_profile (). */
- if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
+ if (!flag_auto_profile && !ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
return 0;
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
@@ -3094,10 +3102,14 @@ compute_function_frequency (void)
if (DECL_STATIC_DESTRUCTOR (current_function_decl))
node->only_called_at_exit = true;
- if (profile_status_for_fn (cfun) != PROFILE_READ)
+ if (profile_status_for_fn (cfun) != PROFILE_READ
+ || (flag_auto_profile
+ && profile_status_for_fn (cfun) == PROFILE_GUESSED))
{
int flags = flags_from_decl_or_type (current_function_decl);
- if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
+ if (profile_info && flag_auto_profile_accurate)
+ node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
+ else if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
!= NULL)
node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
@@ -3254,7 +3266,8 @@ rebuild_frequencies (void)
count_max = MAX (bb->count, count_max);
if (profile_status_for_fn (cfun) == PROFILE_GUESSED
- || (profile_status_for_fn (cfun) == PROFILE_READ && count_max < REG_BR_PROB_BASE/10))
+ || (!flag_auto_profile && profile_status_for_fn (cfun) == PROFILE_READ
+ && count_max < REG_BR_PROB_BASE/10))
{
loop_optimizer_init (0);
add_noreturn_fake_exit_edges ();
diff --git a/gcc-4.9/gcc/print-rtl.c b/gcc-4.9/gcc/print-rtl.c
index 09ac387d1..b8134ef8e 100644
--- a/gcc-4.9/gcc/print-rtl.c
+++ b/gcc-4.9/gcc/print-rtl.c
@@ -410,8 +410,13 @@ print_rtx (const_rtx in_rtx)
redundant with line number information and do not print anything
when there is no location information available. */
if (INSN_LOCATION (in_rtx) && insn_file (in_rtx))
- fprintf (outfile, " %s:%i", insn_file (in_rtx),
- insn_line (in_rtx));
+ {
+ int discriminator = insn_discriminator (in_rtx);
+ fprintf (outfile, " %s:%i", insn_file (in_rtx),
+ insn_line (in_rtx));
+ if (discriminator)
+ fprintf (outfile, " discrim %d", discriminator);
+ }
#endif
}
else if (i == 6 && GET_CODE (in_rtx) == ASM_OPERANDS)
diff --git a/gcc-4.9/gcc/profile.c b/gcc-4.9/gcc/profile.c
index 83cbc0796..7c59c4393 100644
--- a/gcc-4.9/gcc/profile.c
+++ b/gcc-4.9/gcc/profile.c
@@ -70,6 +70,7 @@ along with GCC; see the file COPYING3. If not see
#include "tree-cfg.h"
#include "cfgloop.h"
#include "dumpfile.h"
+#include "params.h"
#include "cgraph.h"
#include "profile.h"
@@ -106,6 +107,12 @@ static int total_num_times_called;
static int total_hist_br_prob[20];
static int total_num_branches;
+void add_working_set (gcov_working_set_t *set) {
+ int i = 0;
+ for (; i < NUM_GCOV_WORKING_SETS; i++)
+ gcov_working_sets[i] = set[i];
+}
+
/* Forward declarations. */
static void find_spanning_tree (struct edge_list *);
@@ -161,6 +168,14 @@ instrument_values (histogram_values values)
histogram_value hist = values[i];
unsigned t = COUNTER_FOR_HIST_TYPE (hist->type);
+ /* See condition in gimple_gen_ic_func_topn_profiler */
+ if (t == GCOV_COUNTER_ICALL_TOPNV
+ && (DECL_STATIC_CONSTRUCTOR (current_function_decl)
+ || DECL_STATIC_CONSTRUCTOR (current_function_decl)
+ || DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (
+ current_function_decl)))
+ continue;
+
if (!coverage_counter_alloc (t, hist->n_counters))
continue;
@@ -183,6 +198,7 @@ instrument_values (histogram_values values)
break;
case HIST_TYPE_INDIR_CALL:
+ case HIST_TYPE_INDIR_CALL_TOPN:
gimple_gen_ic_profiler (hist, t, 0);
break;
@@ -313,6 +329,7 @@ is_edge_inconsistent (vec<edge, va_gc> *edges)
{
if (e->count < 0
&& (!(e->flags & EDGE_FAKE)
+ || e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
|| !block_ends_with_call_p (e->src)))
{
if (dump_file)
@@ -862,10 +879,19 @@ compute_value_histograms (histogram_values values, unsigned cfg_checksum,
gcov_type *histogram_counts[GCOV_N_VALUE_COUNTERS];
gcov_type *act_count[GCOV_N_VALUE_COUNTERS];
gcov_type *aact_count;
+ bool warned[GCOV_N_VALUE_COUNTERS];
+#define DEF_GCOV_COUNTER(COUNTER, NAME, FN_TYPE) NAME,
+ const char *const ctr_names[GCOV_COUNTERS] = {
+#include "gcov-counter.def"
+};
+#undef DEF_GCOV_COUNTER
struct cgraph_node *node;
for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
- n_histogram_counters[t] = 0;
+ {
+ n_histogram_counters[t] = 0;
+ warned[t] = 0;
+ }
for (i = 0; i < values.length (); i++)
{
@@ -901,6 +927,19 @@ compute_value_histograms (histogram_values values, unsigned cfg_checksum,
t = (int) hist->type;
aact_count = act_count[t];
+ /* If the counter cannot be found in gcda file, skip this
+ histogram and give a warning. */
+ if (aact_count == 0)
+ {
+ if (!warned[t])
+ warning (0, "cannot find %s counters in function %s.",
+ ctr_names[COUNTER_FOR_HIST_TYPE(t)],
+ IDENTIFIER_POINTER (
+ DECL_ASSEMBLER_NAME (current_function_decl)));
+ hist->n_counters = 0;
+ warned[t] = true;
+ continue;
+ }
if (act_count[t])
act_count[t] += hist->n_counters;
@@ -1322,6 +1361,10 @@ branch_prob (void)
/* Commit changes done by instrumentation. */
gsi_commit_edge_inserts ();
+
+ if (flag_profile_generate_sampling
+ || PARAM_VALUE (PARAM_COVERAGE_EXEC_ONCE))
+ add_sampling_to_edge_counters ();
}
free_aux_for_edges ();
diff --git a/gcc-4.9/gcc/profile.h b/gcc-4.9/gcc/profile.h
index be609c746..b50824ff6 100644
--- a/gcc-4.9/gcc/profile.h
+++ b/gcc-4.9/gcc/profile.h
@@ -46,7 +46,15 @@ extern gcov_type sum_edge_counts (vec<edge, va_gc> *edges);
extern void init_node_map (bool);
extern void del_node_map (void);
+/* Implement sampling to avoid writing to edge counters very often.
+ Many concurrent writes to the same counters, or to counters that share
+ the same cache line leads to up to 30x slowdown on an application running
+ on 8 CPUs. With sampling, the slowdown reduced to 2x. */
+extern void add_sampling_to_edge_counters (void);
+
+extern void compute_working_sets (void);
extern void get_working_sets (void);
+extern void add_working_set (gcov_working_set_t *);
/* In predict.c. */
extern gcov_type get_hot_bb_threshold (void);
diff --git a/gcc-4.9/gcc/ree.c b/gcc-4.9/gcc/ree.c
index fcde9a0f3..435c16696 100644
--- a/gcc-4.9/gcc/ree.c
+++ b/gcc-4.9/gcc/ree.c
@@ -507,6 +507,8 @@ struct ATTRIBUTE_PACKED ext_modified
/* Kind of modification of the insn. */
ENUM_BITFIELD(ext_modified_kind) kind : 2;
+ unsigned int do_not_reextend : 1;
+
/* True if the insn is scheduled to be deleted. */
unsigned int deleted : 1;
};
@@ -712,8 +714,10 @@ combine_reaching_defs (ext_cand *cand, const_rtx set_pat, ext_state *state)
register than the source operand, then additional restrictions
are needed. Note we have to handle cases where we have nested
extensions in the source operand. */
- if (REGNO (SET_DEST (PATTERN (cand->insn)))
- != REGNO (get_extended_src_reg (SET_SRC (PATTERN (cand->insn)))))
+ bool copy_needed
+ = (REGNO (SET_DEST (PATTERN (cand->insn)))
+ != REGNO (get_extended_src_reg (SET_SRC (PATTERN (cand->insn)))));
+ if (copy_needed)
{
/* In theory we could handle more than one reaching def, it
just makes the code to update the insn stream more complex. */
@@ -722,7 +726,7 @@ combine_reaching_defs (ext_cand *cand, const_rtx set_pat, ext_state *state)
/* We require the candidate not already be modified. It may,
for example have been changed from a (sign_extend (reg))
- into (zero_extend (sign_extend (reg)).
+ into (zero_extend (sign_extend (reg))).
Handling that case shouldn't be terribly difficult, but the code
here and the code to emit copies would need auditing. Until
@@ -777,6 +781,34 @@ combine_reaching_defs (ext_cand *cand, const_rtx set_pat, ext_state *state)
|| reg_set_between_p (SET_DEST (PATTERN (cand->insn)),
def_insn, cand->insn))
return false;
+
+ /* We must be able to copy between the two registers. Generate,
+ recognize and verify constraints of the copy. Also fail if this
+ generated more than one insn.
+
+ This generates garbage since we throw away the insn when we're
+ done, only to recreate it later if this test was successful.
+
+ Make sure to get the mode from the extension (cand->insn). This
+ is different than in the code to emit the copy as we have not
+ modified the defining insn yet. */
+ start_sequence ();
+ rtx pat = PATTERN (cand->insn);
+ rtx new_dst = gen_rtx_REG (GET_MODE (SET_DEST (pat)),
+ REGNO (XEXP (SET_SRC (pat), 0)));
+ rtx new_src = gen_rtx_REG (GET_MODE (SET_DEST (pat)),
+ REGNO (SET_DEST (pat)));
+ emit_move_insn (new_dst, new_src);
+
+ rtx insn = get_insns();
+ end_sequence ();
+ if (NEXT_INSN (insn))
+ return false;
+ if (recog_memoized (insn) == -1)
+ return false;
+ extract_insn (insn);
+ if (!constrain_operands (1))
+ return false;
}
@@ -843,11 +875,15 @@ combine_reaching_defs (ext_cand *cand, const_rtx set_pat, ext_state *state)
fprintf (dump_file, "All merges were successful.\n");
FOR_EACH_VEC_ELT (state->modified_list, i, def_insn)
- if (state->modified[INSN_UID (def_insn)].kind == EXT_MODIFIED_NONE)
- state->modified[INSN_UID (def_insn)].kind
- = (cand->code == ZERO_EXTEND
- ? EXT_MODIFIED_ZEXT : EXT_MODIFIED_SEXT);
+ {
+ ext_modified *modified = &state->modified[INSN_UID (def_insn)];
+ if (modified->kind == EXT_MODIFIED_NONE)
+ modified->kind = (cand->code == ZERO_EXTEND ? EXT_MODIFIED_ZEXT
+ : EXT_MODIFIED_SEXT);
+ if (copy_needed)
+ modified->do_not_reextend = 1;
+ }
return true;
}
else
@@ -1087,6 +1123,9 @@ find_and_remove_re (void)
static unsigned int
rest_of_handle_ree (void)
{
+ if (df_check_ud_du_memory_usage ())
+ return 0;
+
timevar_push (TV_REE);
find_and_remove_re ();
timevar_pop (TV_REE);
diff --git a/gcc-4.9/gcc/regs.h b/gcc-4.9/gcc/regs.h
index 006caca56..c8c978b24 100644
--- a/gcc-4.9/gcc/regs.h
+++ b/gcc-4.9/gcc/regs.h
@@ -135,9 +135,7 @@ extern size_t reg_info_p_size;
or profile driven feedback is available and the function is never executed,
frequency is always equivalent. Otherwise rescale the basic block
frequency. */
-#define REG_FREQ_FROM_BB(bb) (optimize_size \
- || (flag_branch_probabilities \
- && !ENTRY_BLOCK_PTR_FOR_FN (cfun)->count) \
+#define REG_FREQ_FROM_BB(bb) (optimize_function_for_size_p (cfun) \
? REG_FREQ_MAX \
: ((bb)->frequency * REG_FREQ_MAX / BB_FREQ_MAX)\
? ((bb)->frequency * REG_FREQ_MAX / BB_FREQ_MAX)\
diff --git a/gcc-4.9/gcc/rtl.h b/gcc-4.9/gcc/rtl.h
index f1cda4c04..115491a7d 100644
--- a/gcc-4.9/gcc/rtl.h
+++ b/gcc-4.9/gcc/rtl.h
@@ -1920,6 +1920,7 @@ extern rtx prev_cc0_setter (rtx);
extern int insn_line (const_rtx);
extern const char * insn_file (const_rtx);
extern tree insn_scope (const_rtx);
+extern int insn_discriminator (const_rtx);
extern location_t prologue_location, epilogue_location;
/* In jump.c */
diff --git a/gcc-4.9/gcc/sel-sched-ir.c b/gcc-4.9/gcc/sel-sched-ir.c
index f5a4ee035..e1408b488 100644
--- a/gcc-4.9/gcc/sel-sched-ir.c
+++ b/gcc-4.9/gcc/sel-sched-ir.c
@@ -162,7 +162,7 @@ static void create_initial_data_sets (basic_block);
static void free_av_set (basic_block);
static void invalidate_av_set (basic_block);
static void extend_insn_data (void);
-static void sel_init_new_insn (insn_t, int);
+static void sel_init_new_insn (insn_t, int, int = -1);
static void finish_insns (void);
/* Various list functions. */
@@ -4007,9 +4007,10 @@ get_seqno_by_succs (rtx insn)
return seqno;
}
-/* Compute seqno for INSN by its preds or succs. */
+/* Compute seqno for INSN by its preds or succs. Use OLD_SEQNO to compute
+ seqno in corner cases. */
static int
-get_seqno_for_a_jump (insn_t insn)
+get_seqno_for_a_jump (insn_t insn, int old_seqno)
{
int seqno;
@@ -4065,8 +4066,16 @@ get_seqno_for_a_jump (insn_t insn)
if (seqno < 0)
seqno = get_seqno_by_succs (insn);
- gcc_assert (seqno >= 0);
+ if (seqno < 0)
+ {
+ /* The only case where this could be here legally is that the only
+ unscheduled insn was a conditional jump that got removed and turned
+ into this unconditional one. Initialize from the old seqno
+ of that jump passed down to here. */
+ seqno = old_seqno;
+ }
+ gcc_assert (seqno >= 0);
return seqno;
}
@@ -4246,22 +4255,24 @@ init_insn_data (insn_t insn)
}
/* This is used to initialize spurious jumps generated by
- sel_redirect_edge (). */
+ sel_redirect_edge (). OLD_SEQNO is used for initializing seqnos
+ in corner cases within get_seqno_for_a_jump. */
static void
-init_simplejump_data (insn_t insn)
+init_simplejump_data (insn_t insn, int old_seqno)
{
init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
vNULL, true, false, false,
false, true);
- INSN_SEQNO (insn) = get_seqno_for_a_jump (insn);
+ INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
init_first_time_insn_data (insn);
}
/* Perform deferred initialization of insns. This is used to process
- a new jump that may be created by redirect_edge. */
-void
-sel_init_new_insn (insn_t insn, int flags)
+ a new jump that may be created by redirect_edge. OLD_SEQNO is used
+ for initializing simplejumps in init_simplejump_data. */
+static void
+sel_init_new_insn (insn_t insn, int flags, int old_seqno)
{
/* We create data structures for bb when the first insn is emitted in it. */
if (INSN_P (insn)
@@ -4288,7 +4299,7 @@ sel_init_new_insn (insn_t insn, int flags)
if (flags & INSN_INIT_TODO_SIMPLEJUMP)
{
extend_insn_data ();
- init_simplejump_data (insn);
+ init_simplejump_data (insn, old_seqno);
}
gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
@@ -5575,14 +5586,14 @@ sel_merge_blocks (basic_block a, basic_block b)
}
/* A wrapper for redirect_edge_and_branch_force, which also initializes
- data structures for possibly created bb and insns. Returns the newly
- added bb or NULL, when a bb was not needed. */
+ data structures for possibly created bb and insns. */
void
sel_redirect_edge_and_branch_force (edge e, basic_block to)
{
basic_block jump_bb, src, orig_dest = e->dest;
int prev_max_uid;
rtx jump;
+ int old_seqno = -1;
/* This function is now used only for bookkeeping code creation, where
we'll never get the single pred of orig_dest block and thus will not
@@ -5591,8 +5602,13 @@ sel_redirect_edge_and_branch_force (edge e, basic_block to)
&& !single_pred_p (orig_dest));
src = e->src;
prev_max_uid = get_max_uid ();
- jump_bb = redirect_edge_and_branch_force (e, to);
+ /* Compute and pass old_seqno down to sel_init_new_insn only for the case
+ when the conditional jump being redirected may become unconditional. */
+ if (any_condjump_p (BB_END (src))
+ && INSN_SEQNO (BB_END (src)) >= 0)
+ old_seqno = INSN_SEQNO (BB_END (src));
+ jump_bb = redirect_edge_and_branch_force (e, to);
if (jump_bb != NULL)
sel_add_bb (jump_bb);
@@ -5604,7 +5620,8 @@ sel_redirect_edge_and_branch_force (edge e, basic_block to)
jump = find_new_jump (src, jump_bb, prev_max_uid);
if (jump)
- sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
+ sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
+ old_seqno);
set_immediate_dominator (CDI_DOMINATORS, to,
recompute_dominator (CDI_DOMINATORS, to));
set_immediate_dominator (CDI_DOMINATORS, orig_dest,
@@ -5623,6 +5640,7 @@ sel_redirect_edge_and_branch (edge e, basic_block to)
edge redirected;
bool recompute_toporder_p = false;
bool maybe_unreachable = single_pred_p (orig_dest);
+ int old_seqno = -1;
latch_edge_p = (pipelining_p
&& current_loop_nest
@@ -5631,6 +5649,12 @@ sel_redirect_edge_and_branch (edge e, basic_block to)
src = e->src;
prev_max_uid = get_max_uid ();
+ /* Compute and pass old_seqno down to sel_init_new_insn only for the case
+ when the conditional jump being redirected may become unconditional. */
+ if (any_condjump_p (BB_END (src))
+ && INSN_SEQNO (BB_END (src)) >= 0)
+ old_seqno = INSN_SEQNO (BB_END (src));
+
redirected = redirect_edge_and_branch (e, to);
gcc_assert (redirected && !last_added_blocks.exists ());
@@ -5651,7 +5675,7 @@ sel_redirect_edge_and_branch (edge e, basic_block to)
jump = find_new_jump (src, NULL, prev_max_uid);
if (jump)
- sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
+ sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
/* Only update dominator info when we don't have unreachable blocks.
Otherwise we'll update in maybe_tidy_empty_bb. */
diff --git a/gcc-4.9/gcc/stmt.c b/gcc-4.9/gcc/stmt.c
index 5d68edb73..6f0cafd28 100644
--- a/gcc-4.9/gcc/stmt.c
+++ b/gcc-4.9/gcc/stmt.c
@@ -57,6 +57,9 @@ along with GCC; see the file COPYING3. If not see
#include "regs.h"
#include "alloc-pool.h"
#include "pretty-print.h"
+#include "coverage.h"
+#include "bitmap.h"
+#include "pointer-set.h"
#include "params.h"
#include "dumpfile.h"
@@ -515,7 +518,6 @@ tree_overlaps_hard_reg_set (tree decl, HARD_REG_SET *regs)
return walk_tree (&decl, decl_overlaps_hard_reg_set_p, regs, NULL);
}
-
/* A subroutine of expand_asm_operands. Check that all operand names
are unique. Return true if so. We rely on the fact that these names
are identifiers, and so have been canonicalized by get_identifier,
diff --git a/gcc-4.9/gcc/symtab.c b/gcc-4.9/gcc/symtab.c
index 4db4870fa..c9b091180 100644
--- a/gcc-4.9/gcc/symtab.c
+++ b/gcc-4.9/gcc/symtab.c
@@ -92,7 +92,7 @@ eq_node (const void *p1, const void *p2)
/* Hash asmnames ignoring the user specified marks. */
-static hashval_t
+hashval_t
decl_assembler_name_hash (const_tree asmname)
{
if (IDENTIFIER_POINTER (asmname)[0] == '*')
@@ -123,7 +123,7 @@ hash_node_by_assembler_name (const void *p)
/* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
-static bool
+bool
decl_assembler_name_equal (tree decl, const_tree asmname)
{
tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
@@ -189,7 +189,7 @@ eq_assembler_name (const void *p1, const void *p2)
/* Insert NODE to assembler name hash. */
-static void
+void
insert_to_assembler_name_hash (symtab_node *node, bool with_clones)
{
if (is_a <varpool_node> (node) && DECL_HARD_REGISTER (node->decl))
@@ -225,7 +225,7 @@ insert_to_assembler_name_hash (symtab_node *node, bool with_clones)
/* Remove NODE from assembler name hash. */
-static void
+void
unlink_from_assembler_name_hash (symtab_node *node, bool with_clones)
{
if (assembler_name_hash)
@@ -323,16 +323,11 @@ symtab_insert_node_to_hashtable (symtab_node *node)
*slot = node;
}
-/* Remove node from symbol table. This function is not used directly, but via
- cgraph/varpool node removal routines. */
+/* Remove NODE from same comdat group. */
void
-symtab_unregister_node (symtab_node *node)
+symtab_remove_from_same_comdat_group (symtab_node *node)
{
- void **slot;
- ipa_remove_all_references (&node->ref_list);
- ipa_remove_all_referring (&node->ref_list);
-
if (node->same_comdat_group)
{
symtab_node *prev;
@@ -346,6 +341,19 @@ symtab_unregister_node (symtab_node *node)
prev->same_comdat_group = node->same_comdat_group;
node->same_comdat_group = NULL;
}
+}
+
+/* Remove node from symbol table. This function is not used directly, but via
+ cgraph/varpool node removal routines. */
+
+void
+symtab_unregister_node (symtab_node *node)
+{
+ void **slot;
+ ipa_remove_all_references (&node->ref_list);
+ ipa_remove_all_referring (&node->ref_list);
+
+ symtab_remove_from_same_comdat_group (node);
if (node->previous)
node->previous->next = node->next;
@@ -829,6 +837,16 @@ verify_symtab_base (symtab_node *node)
error ("non-DECL_ONE_ONLY node in a same_comdat_group list");
error_found = true;
}
+ if (DECL_COMDAT_GROUP (n->decl) != DECL_COMDAT_GROUP (node->same_comdat_group->decl))
+ {
+ error ("same_comdat_group list across different groups");
+ error_found = true;
+ }
+ if (!n->definition)
+ {
+ error ("Node has same_comdat_group but it is not a definition");
+ error_found = true;
+ }
if (n->type != node->type)
{
error ("mixing different types of symbol in same comdat groups is not supported");
diff --git a/gcc-4.9/gcc/testsuite/ChangeLog b/gcc-4.9/gcc/testsuite/ChangeLog
index 104703076..20212cd73 100644
--- a/gcc-4.9/gcc/testsuite/ChangeLog
+++ b/gcc-4.9/gcc/testsuite/ChangeLog
@@ -1,3 +1,585 @@
+2014-07-10 Eric Botcazou <ebotcazou@adacore.com>
+
+ * gnat.dg/opt39.adb: New test.
+
+2014-07-09 Edward Smith-Rowland <3dw4rd@verizon.net>
+
+ PR c++/58155 - -Wliteral-suffix warns about tokens which are skipped
+ g++.dg/cpp0x/pr58155.C: New.
+
+2014-07-09 Alan Lawrence <alan.lawrence@arm.com>
+
+ Backport r211369 from trunk.
+ 2014-06-09 Alan Lawrence <alan.lawrence@arm.com>
+
+ PR target/61062
+ * gcc.target/arm/pr48252.c (main): Expect same result as endian-neutral.
+
+2014-07-08 Jakub Jelinek <jakub@redhat.com>
+
+ PR rtl-optimization/61673
+ * gcc.c-torture/execute/pr61673.c: New test.
+
+2014-07-08 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/61680
+ * gcc.dg/vect/pr61680.c: New testcase.
+
+ PR tree-optimization/61681
+ * gcc.dg/torture/pr61681.c: New testcase.
+
+2014-07-08 Alan Lawrence <alan.lawrence@arm.com>
+
+ Backport r211502 from mainline.
+ 2014-06-10 Alan Lawrence <alan.lawrence@arm.com>
+
+ PR target/59843
+ * gcc.dg/vect/vect-singleton_1.c: New file.
+
+2014-07-08 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/61725
+ * gcc.dg/tree-ssa/vrp93.c: New test.
+ * gcc.c-torture/execute/pr61725.c: New test.
+
+2014-07-07 Paul Thomas <pault@gcc.gnu.org>
+
+ PR fortran/61459
+ PR fortran/58883
+ * gfortran.dg/allocatable_function_8.f90 : New test
+
+2014-07-07 Dominique d'Humieres <dominiq@lps.ens.fr>
+ Mikael Morin <mikael@gcc.gnu.org>
+
+ PR fortran/41936
+ * gfortran.dg/class_array_15.f03: Check memory leaks.
+
+2014-07-06 Jerry DeLisle <jvdelisle@gcc.gnu.org>
+
+ Backport from mainline.
+ PR libgfortran/61640
+ * gfortran.dg/arrayio_16.f90: New test.
+
+2014-07-04 Jakub Jelinek <jakub@redhat.com>
+
+ PR middle-end/61654
+ * g++.dg/opt/pr61654.C: New test.
+
+ PR tree-optimization/61684
+ * gcc.c-torture/compile/pr61684.c: New test.
+
+ PR c++/61382
+ Backport from mainline
+ 2014-06-05 Andreas Schwab <schwab@suse.de>
+
+ * g++.dg/cpp0x/initlist86.C (main): Initialize i.
+
+2014-07-02 Jakub Jelinek <jakub@redhat.com>
+ Fritz Reese <Reese-Fritz@zai.com>
+
+ * gfortran.dg/oldstyle_5.f: New test.
+
+2014-07-01 Paul Pluzhnikov <ppluzhnikov@google.com>
+
+ PR c++/58753
+ PR c++/58930
+ PR c++/58704
+
+ Backported from mainline
+ 2014-05-20 Paolo Carlini <paolo.carlini@oracle.com>
+
+ * g++.dg/cpp0x/nsdmi-template11.C: New.
+ * g++.dg/cpp0x/nsdmi-template12.C: Likewise.
+ * g++.dg/cpp0x/nsdmi-template13.C: Likewise.
+
+2014-06-28 Edward Smith-Rowland <3dw4rd@verizon.net>
+
+ PR c++/58781
+ PR c++/60249
+ PR c++/59867
+ * testsuite/g++.dg/cpp0x/pr58781.C: New.
+ * testsuite/g++.dg/cpp0x/pr60249.C: New.
+ * testsuite/g++.dg/cpp1y/pr59867.C: New.
+
+2014-06-30 Bill Schmidt <wschmidt@linux.vnet.ibm.com>
+
+ * gfortran.dg/round_4.f90: Skip for powerpc*-*-linux* since the
+ test requires greater precision than the current PowerPC long
+ double implementation supports.
+
+2014-06-30 Jakub Jelinek <jakub@redhat.com>
+
+ Backported from mainline
+ 2014-06-27 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/57233
+ PR tree-optimization/61299
+ * gcc.dg/pr57233.c: New test.
+ * gcc.target/i386/pr57233.c: New test.
+ * gcc.target/i386/sse2-pr57233.c: New test.
+ * gcc.target/i386/avx-pr57233.c: New test.
+ * gcc.target/i386/avx2-pr57233.c: New test.
+ * gcc.target/i386/avx512f-pr57233.c: New test.
+ * gcc.target/i386/xop-pr57233.c: New test.
+
+ 2014-06-24 Jakub Jelinek <jakub@redhat.com>
+
+ * gfortran.dg/gomp/udr2.f90 (f7, f9): Add !$omp parallel with
+ reduction clause.
+ * gfortran.dg/gomp/udr4.f90 (f4): Likewise.
+ Remove Label is never defined expected error.
+ * gfortran.dg/gomp/udr8.f90: New test.
+
+ 2014-06-18 Jakub Jelinek <jakub@redhat.com>
+
+ * gfortran.dg/gomp/declare-simd-1.f90: New test.
+ * gfortran.dg/gomp/depend-1.f90: New test.
+ * gfortran.dg/gomp/target1.f90: New test.
+ * gfortran.dg/gomp/target2.f90: New test.
+ * gfortran.dg/gomp/target3.f90: New test.
+ * gfortran.dg/gomp/udr4.f90: Adjust expected diagnostics.
+ * gfortran.dg/openmp-define-3.f90: Expect _OPENMP 201307 instead of
+ 201107.
+
+ 2014-06-10 Jakub Jelinek <jakub@redhat.com>
+
+ PR fortran/60928
+ * gfortran.dg/gomp/allocatable_components_1.f90: Remove dg-error
+ directives.
+ * gfortran.dg/gomp/associate1.f90: New test.
+ * gfortran.dg/gomp/intentin1.f90: New test.
+ * gfortran.dg/gomp/openmp-simd-1.f90: New test.
+ * gfortran.dg/gomp/openmp-simd-2.f90: New test.
+ * gfortran.dg/gomp/openmp-simd-3.f90: New test.
+ * gfortran.dg/gomp/proc_ptr_2.f90: New test.
+
+ 2014-06-09 Jakub Jelinek <jakub@redhat.com>
+
+ * gfortran.dg/gomp/udr6.f90 (f1, f2, f3): Use complex(kind=8)
+ instead of complex(kind=16).
+
+ 2014-06-06 Jakub Jelinek <jakub@redhat.com>
+
+ * gfortran.dg/gomp/allocatable_components_1.f90: Adjust for
+ reduction clause diagnostic changes.
+ * gfortran.dg/gomp/appendix-a/a.31.3.f90: Likewise.
+ * gfortran.dg/gomp/reduction1.f90: Likewise.
+ * gfortran.dg/gomp/reduction3.f90: Likewise.
+ * gfortran.dg/gomp/udr1.f90: New test.
+ * gfortran.dg/gomp/udr2.f90: New test.
+ * gfortran.dg/gomp/udr3.f90: New test.
+ * gfortran.dg/gomp/udr4.f90: New test.
+ * gfortran.dg/gomp/udr5.f90: New test.
+ * gfortran.dg/gomp/udr6.f90: New test.
+ * gfortran.dg/gomp/udr7.f90: New test.
+
+ 2014-05-12 Tobias Burnus <burnus@net-b.de>
+
+ PR fortran/60127
+ * gfortran.dg/gomp/omp_do_concurrent.f90: New.
+
+ 2014-05-11 Jakub Jelinek <jakub@redhat.com>
+
+ * gfortran.dg/gomp/affinity-1.f90: New test.
+
+2014-06-30 Sebastian Huber <sebastian.huber@embedded-brains.de>
+
+ * gcc.dg/typeof-2.c: New testcase.
+
+2014-06-30 Kyrylo Tkachov <kyrylo.tkachov@arm.com>
+
+ * gcc.target/aarch64/vqdmulhh_lane_s16.c: New test.
+ * gcc.target/aarch64/vqdmulhs_lane_s32.c: Likewise.
+ * gcc.target/aarch64/vqrdmulhh_lane_s16.c: Likewise.
+ * gcc.target/aarch64/vqrdmulhs_lane_s32.c: Likewise.
+ * gcc.target/aarch64/vqdmlal_high_lane_s16.c: New test.
+ * gcc.target/aarch64/vqdmlal_high_lane_s32.c: Likewise.
+ * gcc.target/aarch64/vqdmlal_high_laneq_s16.c: Likewise.
+ * gcc.target/aarch64/vqdmlal_high_laneq_s32.c: Likewise.
+ * gcc.target/aarch64/vqdmlal_lane_s16.c: Likewise.
+ * gcc.target/aarch64/vqdmlal_lane_s32.c: Likewise.
+ * gcc.target/aarch64/vqdmlal_laneq_s16.c: Likewise.
+ * gcc.target/aarch64/vqdmlal_laneq_s32.c: Likewise.
+ * gcc.target/aarch64/vqdmlalh_lane_s16.c: Likewise.
+ * gcc.target/aarch64/vqdmlals_lane_s32.c: Likewise.
+ * gcc.target/aarch64/vqdmlsl_high_lane_s16.c: Likewise.
+ * gcc.target/aarch64/vqdmlsl_high_lane_s32.c: Likewise.
+ * gcc.target/aarch64/vqdmlsl_high_laneq_s16.c: Likewise.
+ * gcc.target/aarch64/vqdmlsl_high_laneq_s32.c: Likewise.
+ * gcc.target/aarch64/vqdmlsl_lane_s16.c: Likewise.
+ * gcc.target/aarch64/vqdmlsl_lane_s32.c: Likewise.
+ * gcc.target/aarch64/vqdmlsl_laneq_s32.c: Likewise.
+ * gcc.target/aarch64/vqdmlslh_lane_s16.c: Likewise.
+ * gcc.target/aarch64/vqdmlsls_lane_s32.c: Likewise.
+ * gcc.target/aarch64/vqdmulh_laneq_s16.c: Likewise.
+ * gcc.target/aarch64/vqdmulh_laneq_s32.c: Likewise.
+ * gcc.target/aarch64/vqdmulhq_laneq_s16.c: Likewise.
+ * gcc.target/aarch64/vqdmulhq_laneq_s32.c: Likewise.
+ * gcc.target/aarch64/vqdmull_high_lane_s16.c: Likewise.
+ * gcc.target/aarch64/vqdmull_high_lane_s32.c: Likewise.
+ * gcc.target/aarch64/vqdmull_high_laneq_s16.c: Likewise.
+ * gcc.target/aarch64/vqdmull_high_laneq_s32.c: Likewise.
+ * gcc.target/aarch64/vqdmull_lane_s16.c: Likewise.
+ * gcc.target/aarch64/vqdmull_lane_s32.c: Likewise.
+ * gcc.target/aarch64/vqdmull_laneq_s16.c: Likewise.
+ * gcc.target/aarch64/vqdmull_laneq_s32.c: Likewise.
+ * gcc.target/aarch64/vqdmullh_lane_s16.c: Likewise.
+ * gcc.target/aarch64/vqdmulls_lane_s32.c: Likewise.
+ * gcc.target/aarch64/vqrdmulh_laneq_s16.c: Likewise.
+ * gcc.target/aarch64/vqrdmulh_laneq_s32.c: Likewise.
+ * gcc.target/aarch64/vqrdmulhq_laneq_s16.c: Likewise.
+ * gcc.target/aarch64/vqrdmulhq_laneq_s32.c: Likewise.
+ * gcc.target/aarch64/vector_intrinsics.c: Simplify arm_neon.h include.
+ (test_vqdmlal_high_lane_s16): Fix parameter type.
+ (test_vqdmlal_high_lane_s32): Likewise.
+ (test_vqdmull_high_lane_s16): Likewise.
+ (test_vqdmull_high_lane_s32): Likewise.
+ (test_vqdmlsl_high_lane_s32): Likewise.
+ (test_vqdmlsl_high_lane_s16): Likewise.
+ * gcc.target/aarch64/scalar_intrinsics.c (test_vqdmlalh_lane_s16):
+ Fix argument type.
+ (test_vqdmlals_lane_s32): Likewise.
+ (test_vqdmlslh_lane_s16): Likewise.
+ (test_vqdmlsls_lane_s32): Likewise.
+ (test_vqdmulhh_lane_s16): Likewise.
+ (test_vqdmulhs_lane_s32): Likewise.
+ (test_vqdmullh_lane_s16): Likewise.
+ (test_vqdmulls_lane_s32): Likewise.
+ (test_vqrdmulhh_lane_s16): Likewise.
+ (test_vqrdmulhs_lane_s32): Likewise.
+
+2014-06-30 Igor Zamyatin <igor.zamyatin@intel.com>
+
+ PR middle-end/57541
+ * c-c++-common/cilk-plus/AN/pr57541.c: New case added.
+ * c-c++-common/cilk-plus/AN/pr57541-2.c: New test.
+
+2014-06-30 Thomas Preud'homme <thomas.preudhomme@arm.com>
+
+ Backport from mainline
+ 2014-06-11 Thomas Preud'homme <thomas.preudhomme@arm.com>
+
+ PR tree-optimization/61306
+ * gcc.c-torture/execute/pr61306-1.c: New test.
+ * gcc.c-torture/execute/pr61306-2.c: Likewise.
+ * gcc.c-torture/execute/pr61306-3.c: Likewise.
+
+2014-06-27 Jerry DeLisle <jvdelisle@gcc.gnu.org>
+
+ Backport from mainline.
+ PR libgfortran/61499
+ * gfortran.dg/arrayio_15.f90: New test.
+
+2014-06-27 Bill Schmidt <wschmidt@linux.vnet.ibm.com>
+
+ * gfortran.dg/nint_2.f90: Don't XFAIL for powerpc64le-*-linux*.
+
+2014-06-27 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/61614
+ * g++.dg/ext/complit14.C: New.
+
+2014-06-27 Martin Jambor <mjambor@suse.cz>
+
+ PR ipa/61160
+ * g++.dg/ipa/pr61160-2.C: New test.
+ * g++.dg/ipa/pr61160-3.C: Likewise.
+
+2014-06-27 Uros Bizjak <ubizjak@gmail.com>
+
+ Backport from mainline
+ 2014-06-26 Uros Bizjak <ubizjak@gmail.com>
+
+ PR target/61586
+ * gcc.target/alpha/pr61586.c: New test.
+
+2014-06-26 Adam Butcher <adam@jessamine.co.uk>
+
+ PR c++/61537
+ * g++.dg/template/pr61537.C: New testcase.
+
+2014-06-26 Martin Jambor <mjambor@suse.cz>
+
+ * g++.dg/ipa/pr60600.C: Fix typo.
+ * g++.dg/ipa/devirt-25.C: Likewise.
+ * g++.dg/ipa/pr61540.C: Likewise.
+
+2014-06-26 Martin Jambor <mjambor@suse.cz>
+
+ * g++.dg/ipa/pr61540.C: Remove dumping test.
+
+2014-06-25 Bill Schmidt <wschmidt@linux.vnet.ibm.com>
+
+ * gfortran.dg/default_format_denormal_2.f90: Remove xfail for
+ powerpc*-*-linux*.
+
+2014-06-24 Cong Hou <congh@google.com>
+
+ * gcc.dg/vect/vect-reduc-sad.c: New.
+ * lib/target-supports.exp (check_effective_target_vect_usad_char): New.
+
+2014-06-23 Alan Modra <amodra@gmail.com>
+
+ * gcc.dg/pr61583.c: New.
+
+2014-06-20 Martin Jambor <mjambor@suse.cz>
+
+ PR ipa/61540
+ * g++.dg/ipa/pr61540.C: New test.
+
+2014-06-17 Yufeng Zhang <yufeng.zhang@arm.com>
+
+ PR target/61483
+ * gcc.target/aarch64/aapcs64/type-def.h (struct hfa_fx2_t): New type.
+ * gcc.target/aarch64/aapcs64/va_arg-13.c: New test.
+ * gcc.target/aarch64/aapcs64/va_arg-14.c: Ditto.
+ * gcc.target/aarch64/aapcs64/va_arg-15.c: Ditto.
+
+2014-06-17 Richard Biener <rguenther@suse.de>
+
+ PR lto/61012
+ * gcc.dg/lto/pr61526_0.c: New testcase.
+ * gcc.dg/lto/pr61526_1.c: Likewise.
+
+2014-06-17 Uros Bizjak <ubizjak@gmail.com>
+
+ Backport from mainline
+ 2014-06-06 Uros Bizjak <ubizjak@gmail.com>
+
+ PR target/61423
+ * gcc.target/i386/pr61423.c: New test.
+
+2014-06-15 Francois-Xavier Coudert <fxcoudert@gcc.gnu.org>
+
+ Backport from trunk.
+ PR fortran/45187
+ * gfortran.dg/cray_pointers_10.f90: New file.
+
+2014-06-13 Peter Bergner <bergner@vnet.ibm.com>
+
+ Backport from mainline
+
+ 2014-06-13 Peter Bergner <bergner@vnet.ibm.com>
+ PR target/61415
+ * lib/target-supports.exp (check_effective_target_longdouble128): New.
+ * gcc.target/powerpc/pack02.c: Use it.
+ * gcc.target/powerpc/tfmode_off.c: Likewise.
+
+2014-06-13 Jeff Law <law@redhat.com>
+
+ Backports from mainline:
+
+ 2014-06-13 Ilya Enkovich <ilya.enkovich@intel.com>
+
+ PR rtl-optimization/61094
+ PR rtl-optimization/61446
+ * gcc.target/i386/pr61446.c : New.
+
+ 2014-06-02 Jeff Law <law@redhat.com>
+
+ PR rtl-optimization/61094
+ * g++.dg/pr61094: New test.
+
+2014-06-12 Jakub Jelinek <jakub@redhat.com>
+
+ PR middle-end/61486
+ * c-c++-common/gomp/pr61486-1.c: New test.
+ * c-c++-common/gomp/pr61486-2.c: New test.
+
+2014-06-12 Jeff Law <law@redhat.com>
+
+ Backports from mainline:
+ 2014-06-05 Jeff Law <law@redhat.com>
+
+ PR tree-optimization/61289
+ * g++.dg/pr61289.C: New test.
+ * g++.dg/pr61289-2.C: New test.
+
+2014-06-12 Georg-Johann Lay <avr@gjlay.de>
+
+ Backport from 2014-06-12 trunk r211491
+
+ PR target/61443
+ * gcc.target/avr/torture/pr61443.c: New test.
+
+2014-06-11 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/61452
+ * gcc.dg/torture/pr61452.c: New testcase.
+
+2014-06-11 Richard Biener <rguenther@suse.de>
+
+ PR middle-end/61456
+ * g++.dg/opt/pr61456.C: New testcase.
+
+2014-06-09 Paul Thomas <pault@gcc.gnu.org>
+
+ Backport from trunk.
+ PR fortran/61406
+ * gfortran.dg/associate_17.f90 : New test
+
+2014-06-07 Jerry DeLisle <jvdelisle@gcc.gnu>
+
+ Backport from trunk.
+ PR libfortran/61173
+ * gfortran.dg/arrayio_14.f90: New test.
+
+2014-06-07 Eric Botcazou <ebotcazou@adacore.com>
+
+ * gnat.dg/opt38.adb: New test.
+ * gnat.dg/opt38_pkg.ad[sb]: New helper.
+
+2014-06-04 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/61383
+ * gcc.dg/torture/pr61383-1.c: New testcase.
+
+2014-06-04 Igor Zamyatin <igor.zamyatin@intel.com>
+
+ PR c/58942
+ * c-c++-common/cilk-plus/AN/pr58942.c: Check for correct handling of
+ the case with a pointer.
+
+2014-06-04 Marek Polacek <polacek@redhat.com>
+
+ Backport from mainline
+ 2014-05-08 Marek Polacek <polacek@redhat.com>
+
+ PR c/61053
+ * gcc.dg/pr61053.c: New test.
+
+2014-06-03 Martin Jambor <mjambor@suse.cz>
+
+ PR ipa/61160
+ * g++.dg/ipa/pr61160-1.C: New test.
+
+2014-06-03 Andrey Belevantsev <abel@ispras.ru>
+
+ Backport from mainline
+ 2014-05-14 Andrey Belevantsev <abel@ispras.ru>
+
+ PR rtl-optimization/60866
+ * gcc.dg/pr60866.c: New test.
+
+2014-06-03 Andrey Belevantsev <abel@ispras.ru>
+
+ Backport from mainline
+ 2014-05-14 Andrey Belevantsev <abel@ispras.ru>
+
+ PR rtl-optimization/60901
+ * gcc.target/i386/pr60901.c: New test.
+
+2014-06-01 Uros Bizjak <ubizjak@gmail.com>
+
+ * g++.dg/pr60969.C (dg-do compile): Change ilp32 target to ia32.
+
+2014-05-29 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR rtl-optimization/61325
+ * gcc.target/aarch64/pr61325.c: New.
+
+2014-05-29 Thomas Koenig <tkoenig@gcc.gnu.org>
+
+ PR fortran/60834
+ Backport from mainline
+ * gfortran.dg/associate_16.f90: New test.
+
+2014-05-28 Eric Botcazou <ebotcazou@adacore.com>
+
+ Backport from mainline
+ 2014-05-27 Eric Botcazou <ebotcazou@adacore.com>
+
+ * gnat.dg/overflow_fixed.adb: New test.
+
+2014-05-28 Richard Biener <rguenther@suse.de>
+
+ Backport from mainline
+ 2014-05-28 Richard Biener <rguenther@suse.de>
+
+ PR middle-end/61045
+ * gcc.dg/pr61045.c: New testcase.
+
+ 2014-05-05 Richard Biener <rguenther@suse.de>
+
+ PR middle-end/61010
+ * gcc.dg/torture/pr61010.c: New testcase.
+
+ 2014-04-28 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/60979
+ * gcc.dg/graphite/pr60979.c: New testcase.
+
+2014-05-28 Rainer Orth <ro@CeBiTec.Uni-Bielefeld.DE>
+
+ * lib/clearcap.exp: New file.
+ * gcc.dg/vect/vect.exp: Load clearcap.exp.
+ Remove clearcap_ldflags handling.
+ Call clearcap-init, clearcap-finish.
+ * gcc.target/i386/i386.exp: Likewise.
+ * gcc.target/i386/clearcap.map: Move to ../config/sol2-clearcap.map.
+ * gcc.target/i386/clearcapv2.map: Move to
+ ../config/sol2-clearcapv2.map.
+ * gcc.target/x86_64/abi/avx/abi-avx.exp: Likewise.
+ * gcc.target/x86_64/abi/avx512f/abi-avx512f.exp: Likewise.
+
+2014-05-27 Eric Botcazou <ebotcazou@adacore.com>
+
+ * gnat.dg/aliasing1.adb (dg-final): Robustify pattern matching.
+
+2014-05-26 Uros Bizjak <ubizjak@gmail.com>
+
+ * c-c++-common/cilk-plus/AN/pr61191.c: Fix dg-error directives.
+
+2014-05-26 Igor Zamyatin <igor.zamyatin@intel.com>
+
+ PR c/61191
+ * c-c++-common/cilk-plus/AN/pr61191.c: Check for correct handling of
+ the case with syntax error.
+
+2014-05-22 Peter Bergner <bergner@vnet.ibm.com>
+
+ * gcc.target/powerpc/htm-ttest.c: New test.
+
+2014-05-21 Igor Zamyatin <igor.zamyatin@intel.com>
+
+ PR c++/60189
+ * c-c++-common/cilk-plus/CK/invalid_sync.cc: New test.
+
+2014-05-18 Jan Hubicka <hubicka@ucw.cz>
+
+ PR middle-end/58094
+ * g++.dg/ipa/devirt-11.C: Be lax about number of devirtualizations.
+
+2014-05-18 Eric Botcazou <ebotcazou@adacore.com>
+
+ * gnat.dg/enum3.adb: New test.
+
+2014-04-16 Jan Hubicka <hubicka@ucw.cz>
+
+ PR ipa/60854
+ * g++.dg/torture/pr60854.C: New testcase.
+
+2014-05-17 Uros Bizjak <ubizjak@gmail.com>
+
+ * g++.dg/pr60969.C: Compile for all ilp32 x86 targets.
+ (dg-options): Add -mfpmath=387.
+ (dg-final): Check that no MMX registers are used.
+
+2014-05-16 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR rtl-optimization/60969
+ * g++.dg/pr60969.C: New.
+
+2014-05-15 Martin Jambor <mjambor@suse.cz>
+
+ PR ipa/61085
+ * g++.dg/ipa/pr61085.C: New test.
+
+2014-05-15 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/61158
+ * gcc.dg/pr61158.c: New test.
+
2014-05-14 Matthias Klose <doko@ubuntu.com>
PR driver/61106
diff --git a/gcc-4.9/gcc/testsuite/ChangeLog-2013 b/gcc-4.9/gcc/testsuite/ChangeLog-2013
index 0d840b14c..84fff70b1 100644
--- a/gcc-4.9/gcc/testsuite/ChangeLog-2013
+++ b/gcc-4.9/gcc/testsuite/ChangeLog-2013
@@ -1,3 +1,3200 @@
+2013-11-04 Marek Polacek <polacek@redhat.com>
+
+ Backport from mainline
+ 2013-11-04 Marek Polacek <polacek@redhat.com>
+
+ PR c++/58979
+ * g++.dg/diagnostic/pr58979.C: New test.
+
+2013-11-03 H.J. Lu <hongjiu.lu@intel.com>
+
+ Backport from mainline
+ 2013-10-12 H.J. Lu <hongjiu.lu@intel.com>
+
+ PR target/58690
+ * gcc.target/i386/pr58690.c: New test
+
+2013-11-02 Janus Weil <janus@gcc.gnu.org>
+
+ Backport from mainline
+ 2013-09-23 Janus Weil <janus@gcc.gnu.org>
+
+ PR fortran/58355
+ * gfortran.dg/extends_15.f90: New.
+
+2013-10-29 Uros Bizjak <ubizjak@gmail.com>
+
+ Backport from mainline
+ 2013-08-08 Richard Sandiford <rdsandiford@googlemail.com>
+
+ PR rtl-optimization/58079
+ * gcc.dg/torture/pr58079.c: New test.
+
+2013-10-28 Tom de Vries <tom@codesourcery.com>
+
+ * gcc.target/arm/require-pic-register-loc.c: New test.
+
+2013-10-26 Uros Bizjak <ubizjak@gmail.com>
+
+ Backport from mainline
+ 2013-10-22 Uros Bizjak <ubizjak@gmail.com>
+
+ PR target/58779
+ * gcc.target/i386/pr30315.c: Remove MINUSCC, DECCC, MINUSCCONLY
+ and MINUSCCZEXT defines. Update scan-assembler dg directive.
+ * gcc.dg/torture/pr58779.c: New test.
+
+2013-10-25 Richard Henderson <rth@redhat.com>
+
+ PR rtl/58542
+ * gcc.dg/atomic-store-6.c: New.
+
+2013-10-25 Tom de Vries <tom@codesourcery.com>
+
+ PR c++/58282
+ * g++.dg/tm/noexcept-6.C: New test.
+
+2013-10-25 Eric Botcazou <ebotcazou@adacore.com>
+
+ * gcc.c-torture/execute/pr58831.c: New test.
+
+2013-10-23 Tom de Vries <tom@codesourcery.com>
+
+ PR tree-optimization/58805
+ * gcc.dg/pr58805.c: New test.
+
+2013-10-23 Richard Biener <rguenther@suse.de>
+
+ * gcc.dg/torture/pr58830.c: New testcase.
+
+ Backport from mainline
+ 2013-06-24 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/57488
+ * gcc.dg/torture/pr57488.c: New testcase.
+
+2013-10-19 Oleg Endo <olegendo@gcc.gnu.org>
+
+ * gcc.target/sh/pr54089-3.c: Fix test for load of constant 31.
+
+2013-10-17 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/58596
+ * g++.dg/cpp0x/lambda/lambda-nsdmi5.C: New
+
+2013-10-16 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/58633
+ * g++.dg/cpp0x/decltype57.C: New.
+ * g++.dg/cpp0x/enum18.C: Revert r174385 changes.
+
+2013-10-16 Release Manager
+
+ * GCC 4.8.2 released.
+
+2013-10-14 Rainer Orth <ro@CeBiTec.Uni-Bielefeld.DE>
+
+ * gcc.dg/torture/pr58670.c (ASM_STR) [__i386__ || __x86_64__]: Use
+ btsl.
+
+2013-10-10 Jakub Jelinek <jakub@redhat.com>
+
+ PR middle-end/58670
+ * gcc.dg/torture/pr58670.c: New test.
+
+2013-10-09 Jakub Jelinek <jakub@redhat.com>
+
+ Backport from mainline
+ 2013-09-26 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/58539
+ * gcc.dg/torture/pr58539.c: New testcase.
+
+2013-10-08 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/58568
+ * g++.dg/cpp0x/lambda/lambda-ice10.C: New.
+ * g++.old-deja/g++.mike/misc9.C: Adjust.
+
+2013-10-08 Andreas Krebbel <Andreas.Krebbel@de.ibm.com>
+
+ * gcc.target/s390/htm-nofloat-2.c: Add -mzarch to asm options.
+
+2013-10-07 Andreas Krebbel <Andreas.Krebbel@de.ibm.com>
+
+ * gcc.target/s390/htm-nofloat-2.c: New testcase.
+
+2013-10-07 Andreas Krebbel <Andreas.Krebbel@de.ibm.com>
+
+ Backport from mainline
+ 2013-06-27 Andreas Krebbel <Andreas.Krebbel@de.ibm.com>
+
+ * gcc.target/s390/htm-1.c: New file.
+ * gcc.target/s390/htm-nofloat-1.c: New file.
+ * gcc.target/s390/htm-xl-intrin-1.c: New file.
+
+2013-10-04 Tobias Burnus <burnus@net-b.de>
+
+ PR fortran/57697
+ PR fortran/58469
+ * gfortran.dg/defined_assignment_8.f90: New.
+ * gfortran.dg/defined_assignment_9.f90: New.
+ * gfortran.dg/defined_assignment_10.f90: New.
+ * gfortran.dg/defined_assignment_11.f90: New.
+
+2013-10-04 Marcus Shawcroft <marcus.shawcroft@arm.com>
+
+ Backport from mainline.
+
+ PR target/58460
+ * gcc.target/aarch64/pr58460.c: New file.
+
+2013-10-02 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/58535
+ * g++.dg/parse/crash62.C: New.
+
+2013-10-01 Jakub Jelinek <jakub@redhat.com>
+
+ PR target/58574
+ * gcc.c-torture/execute/pr58574.c: New test.
+
+2013-09-30 Jakub Jelinek <jakub@redhat.com>
+
+ PR middle-end/58564
+ * gcc.c-torture/execute/pr58564.c: New test.
+
+2013-09-24 Cong Hou <congh@google.com>
+
+ Backport from mainline:
+ 2013-09-24 Richard Biener <rguenther@suse.de>
+
+ PR middle-end/58513
+ * g++.dg/vect/pr58513.cc: New testcase.
+
+2013-09-23 Eric Botcazou <ebotcazou@adacore.com>
+
+ * gnat.dg/opt28.ad[sb]: New test.
+ * gnat.dg/opt28_pkg.ads: New helper.
+
+2013-09-23 Alan Modra <amodra@gmail.com>
+
+ * gcc.target/powerpc/pr58330.c: New.
+
+2013-09-20 Cong Hou <congh@google.com>
+
+ Backport from mainline:
+ 2013-09-13 Cong Hou <congh@google.com>
+
+ * gcc.dg/vect/vect-reduc-dot-s16c.c: Add a test case with dot product
+ on two arrays with short and int types. This should not be recognized
+ as a dot product pattern.
+
+2013-09-18 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/58457
+ * g++.dg/parse/using4.C: New.
+
+2013-09-18 Eric Botcazou <ebotcazou@adacore.com>
+
+ * gnat.dg/array_bounds_test2.adb: New test.
+
+2013-09-18 Eric Botcazou <ebotcazou@adacore.com>
+
+ * gnat.dg/in_out_parameter4.adb: New test.
+
+2013-09-17 Kyrylo Tkachov <kyrylo.tkachov@arm.com>
+
+ PR tree-optimization/58088
+ * gcc.c-torture/compile/pr58088.c: New test.
+
+2013-09-13 Christian Bruel <christian.bruel@st.com>
+
+ PR target/58314
+ * gcc.target/sh/torture/pr58314.c: New test.
+
+2013-09-11 Richard Biener <rguenther@suse.de>
+
+ PR middle-end/58377
+ * g++.dg/uninit-pred-4.C: New testcase.
+
+2013-09-11 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/58385
+ * gcc.c-torture/execute/pr58385.c: New test.
+
+2013-09-10 Jakub Jelinek <jakub@redhat.com>
+
+ PR rtl-optimization/58365
+ * gcc.c-torture/execute/pr58365.c: New test.
+
+2013-09-09 Jakub Jelinek <jakub@redhat.com>
+
+ PR c++/58325
+ * g++.dg/warn/Wunused-var-21.C: New test.
+
+ PR tree-optimization/58364
+ * gcc.c-torture/execute/pr58364.c: New test.
+
+2013-09-09 Kyrylo Tkachov <kyrylo.tkachov@arm.com>
+
+ PR target/57735
+ * g++.dg/ext/pr57735.C: New test.
+
+2013-09-09 Richard Biener <rguenther@suse.de>
+
+ Backport from mainline
+ 2013-08-27 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/57521
+ * gcc.dg/torture/pr57521.c: New testcase.
+
+2013-09-09 Richard Biener <rguenther@suse.de>
+
+ Backport from mainline
+ 2013-09-03 Richard Biener <rguenther@suse.de>
+
+ PR middle-end/57656
+ * gcc.dg/torture/pr57656.c: New testcase.
+
+2013-09-09 Richard Biener <rguenther@suse.de>
+
+ Backport from mainline
+ 2013-08-29 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/57685
+ * gcc.dg/torture/pr57685.c: New testcase.
+
+2013-09-09 Richard Biener <rguenther@suse.de>
+
+ Backport from mainline
+ 2013-08-30 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/58223
+ * gcc.dg/torture/pr58223.c: New testcase.
+ * gcc.dg/tree-ssa/ldist-16.c: Flip expected behavior.
+
+2013-09-03 Richard Biener <rguenther@suse.de>
+
+ Backport from mainline
+ 2013-08-29 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/58246
+ * gcc.dg/torture/pr58246.c: New testcase.
+
+2013-09-03 Richard Biener <rguenther@suse.de>
+
+ Backport from mainline
+ 2013-08-30 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/58228
+ * gcc.dg/torture/pr58228.c: New testcase.
+
+2013-09-03 Richard Biener <rguenther@suse.de>
+
+ Backport from mainline
+ 2013-08-30 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/58010
+ * gcc.dg/pr58010.c: New testcase.
+
+2013-08-30 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/58277
+ * gcc.c-torture/execute/pr58277-1.c: New test.
+ * gcc.c-torture/execute/pr58277-2.c: New test.
+
+2013-08-29 Jakub Jelinek <jakub@redhat.com>
+
+ Backported from mainline
+ 2013-07-22 Georg-Johann Lay <avr@gjlay.de>
+
+ PR testsuite/52641
+ * gcc.dg/torture/pr57381.c: Add dg-require-effective-target int32plus.
+
+ 2013-05-27 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/57417
+ * gcc.dg/torture/pr57417.c: New testcase.
+
+ PR tree-optimization/57396
+ * gfortran.fortran-torture/execute/pr57396.f90: New testcase.
+
+ PR tree-optimization/57343
+ * gcc.dg/torture/pr57343.c: New testcase.
+
+ 2013-05-23 Richard Biener <rguenther@suse.de>
+
+ PR middle-end/57381
+ * gcc.dg/torture/pr57381.c: New testcase.
+
+2013-08-28 Jakub Jelinek <jakub@redhat.com>
+
+ PR middle-end/58257
+ * c-c++-common/gomp/pr58257.c: New test.
+
+2013-08-28 Richard Biener <rguenther@suse.de>
+
+ Backport from mainline
+ 2013-06-24 Richard Biener <rguenther@suse.de>
+
+ PR middle-end/56977
+ * gcc.dg/pr56977.c: New testcase.
+
+2013-08-24 Mikael Morin <mikael@gcc.gnu.org>
+
+ PR fortran/57798
+ * gfortran.dg/inline_sum_5.f90: New.
+
+2013-08-24 Janus Weil <janus@gcc.gnu.org>
+
+ Backport from trunk:
+ 2013-08-22 Janus Weil <janus@gcc.gnu.org>
+
+ PR fortran/58185
+ * gfortran.dg/select_type_34.f90: New.
+
+2013-08-23 Jakub Jelinek <jakub@redhat.com>
+
+ PR target/58218
+ * gcc.target/i386/pr58218.c: New test.
+
+ PR tree-optimization/58209
+ * gcc.c-torture/execute/pr58209.c: New test.
+
+2013-08-20 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/58190
+ * g++.dg/pr57878.C: Use __SIZE_TYPE__.
+
+2013-08-18 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/58006
+ * g++.dg/opt/pr58006.C: New test.
+
+2013-08-16 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/58164
+ * gcc.c-torture/compile/pr58164.c: New test.
+
+ PR tree-optimization/58165
+ * g++.dg/opt/pr58165.C: New test.
+
+2013-08-14 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/58145
+ * gcc.dg/pr58145-1.c: New test.
+ * gcc.dg/pr58145-2.c: New test.
+
+2013-08-13 Jakub Jelinek <jakub@redhat.com>
+
+ PR sanitizer/56417
+ * gcc.dg/asan/pr56417.c: New test.
+
+2013-08-13 Vladimir Makarov <vmakarov@redhat.com>
+
+ Backport from mainline
+ 2013-06-06 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR rtl-optimization/57459
+ * gcc.target/i386/pr57459.c: New test.
+
+2013-08-13 Eric Botcazou <ebotcazou@adacore.com>
+
+ * gnat.dg/loop_optimization16.adb: New test.
+ * gnat.dg/loop_optimization16_pkg.ad[sb]: New helper.
+
+2013-08-13 Marek Polacek <polacek@redhat.com>
+
+ PR tree-optimization/57980
+ * gcc.dg/pr57980.c: New test.
+
+2013-08-13 Uros Bizjak <ubizjak@gmail.com>
+
+ Backport from mainline
+ 2013-08-12 Perez Read <netfirewall@gmail.com>
+
+ PR target/58132
+ * gcc.target/i386/movabs-1.c: New test.
+
+2013-08-11 Janus Weil <janus@gcc.gnu.org>
+
+ Backport from trunk:
+ 2013-08-09 Janus Weil <janus@gcc.gnu.org>
+
+ PR fortran/58058
+ * gfortran.dg/transfer_intrinsic_6.f90: New.
+
+2013-08-09 Zhenqiang Chen <zhenqiang.chen@linaro.org>
+
+ Backport from mainline:
+ 2013-08-09 Zhenqiang Chen <zhenqiang.chen@linaro.org>
+
+ * gcc.target/arm/lp1189445.c: New testcase.
+
+2013-08-06 Martin Jambor <mjambor@suse.cz>
+ Bernd Edlinger <bernd.edlinger@hotmail.de>
+
+ * gcc.dg/torture/pr58041.c (foo): Accept z by reference.
+ (a): Fix constructor.
+
+2013-08-06 Martin Jambor <mjambor@suse.cz>
+
+ PR middle-end/58041
+ * gcc.dg/torture/pr58041.c: New test.
+ * gcc.target/arm/pr58041.c: Likewise.
+
+2013-07-28 Tobias Burnus <burnus@net-b.de>
+
+ Backport from mainline
+ 2013-05-28 Tobias Burnus <burnus@net-b.de>
+
+ PR fortran/57435
+ * gfortran.dg/use_29.f90: New.
+
+2013-07-25 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/57981
+ * g++.dg/cpp0x/pr57981.C: New.
+
+2013-07-25 Terry Guo <terry.guo@arm.com>
+
+ Backport from mainline:
+ 2013-07-25 Terry Guo <terry.guo@arm.com>
+
+ * gcc.target/arm/thumb1-Os-mult.c: New test case.
+
+2013-07-19 Wei Mi <wmi@google.com>
+
+ Backport from mainline:
+ 2013-07-18 Wei Mi <wmi@google.com>
+
+ PR rtl-optimization/57878
+ * g++.dg/pr57878.C: New test.
+
+2013-07-19 Georg-Johann Lay <avr@gjlay.de>
+
+ Backport from 2013-07-19 trunk r201051.
+
+ PR target/57516
+ * gcc.target/avr/torture/builtins-4-roundfx.c (test2hr, test2k):
+ Adjust to corrected rounding.
+
+2013-07-19 Kirill Yukhin <kirill.yukhin@intel.com>
+
+ * gcc.target/i386/bmi-1.c: Extend with new instrinsics.
+ Fix scan patterns.
+ * gcc.target/i386/bmi-2.c: Ditto.
+ * gcc.target/i386/bmi-bextr-4.c: New.
+ * gcc.target/i386/bmi-bextr-5.c: Ditto.
+
+2013-07-16 Iain Sandoe <iain@codesourcery.com>
+
+ PR target/55656
+ PR target/55657
+ * obj-c++.dg/cxx-ivars-3.mm: Use NSObject instead of Object.
+ * obj-c++.dg/strings/const-cfstring-5.mm: Likewise.
+ * obj-c++.dg/torture/strings/const-str-10.mm: Likewise.
+ * obj-c++.dg/torture/strings/const-str-9.mm: Likewise.
+ * objc.dg/image-info.m: Likewise.
+ * objc.dg/symtab-1.m: Likewise.
+ * objc.dg/torture/strings/const-str-10.m: Likewise.
+ * objc.dg/torture/strings/const-str-11.m: Likewise.
+ * objc.dg/torture/strings/const-str-9.m: Likewise.
+ * objc.dg/zero-link-1.m: Likewise.
+ * objc.dg/zero-link-2.m: Likewise.
+ * objc.dg/no-extra-load.m: Avoid Foundation.h.
+ * objc.dg/objc-foreach-4.m: Likewise.
+ * objc.dg/objc-foreach-5.m: Likewise.
+ * obj-c++.dg/proto-lossage-7.mm: Use NSObject instead of Object
+ (for Darwin).
+ * obj-c++.dg/strings/const-str-12.mm: Likewise.
+ * obj-c++.dg/syntax-error-1.mm: Likewise.
+ * objc.dg/method-6.m: Likewise.
+ * objc.dg/pr23214.m: Likewise.
+ * objc.dg/proto-lossage-7.m: Likewise.
+ * objc.dg/strings/const-str-12b.m: Likewise.
+ * objc.dg/zero-link-3.m: Likewise.
+ * obj-c++.dg/method-12.mm: Skip on Darwin versions without 'Object'.
+ * objc.dg/encode-7-next-64bit.m: Use NSObject instead of Object,
+ adjust headers, interfaces and encoded types to reflect current system
+ versions. Add FIXME and outputs from current system compiler for
+ reference.
+
+2013-07-10 Janis Johnson <janisjo@codesourcery.com>
+
+ * gcc.target/powerpc/20020118-1.c: Force 128-bit stack alignment
+ for EABI targets.
+ * gcc.c-torture/execute/nest-align-1.x: New.
+
+2013-07-08 Janis Johnson <janisjo@codesourcery.com>
+
+ * gcc.target/powerpc/tfmode_off.c: Skip for EABI targets.
+
+ * gcc.target/powerpc/ppc-spe64-1.c: Update expected error message.
+
+ * gcc.target/powerpc/pr47197.c: Require powerpc_altivec_ok.
+
+2013-07-08 Tobias Burnus <burnus@net-b.de>
+
+ PR fortran/57785
+ * gfortran.dg/dot_product_2.f90: New.
+
+2013-07-08 Jakub Jelinek <jakub@redhat.com>
+
+ PR rtl-optimization/57829
+ * gcc.c-torture/execute/pr57829.c: New test.
+
+2013-07-05 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/57645
+ * g++.dg/cpp0x/noexcept21.C: New.
+
+2013-07-03 Jakub Jelinek <jakub@redhat.com>
+
+ PR target/57777
+ * gcc.target/i386/pr57777.c: New test.
+
+ PR c++/57771
+ * g++.dg/template/arg9.C: New test.
+
+2013-06-28 Jakub Jelinek <jakub@redhat.com>
+
+ PR target/57736
+ * gcc.target/i386/pr57736.c: New test.
+
+2013-06-27 Jakub Jelinek <jakub@redhat.com>
+
+ PR target/57623
+ * gcc.target/i386/bmi-bextr-3.c: New test.
+
+ PR target/57623
+ * gcc.target/i386/bmi2-bzhi-1.c: New test.
+
+2013-06-24 Martin Jambor <mjambor@suse.cz>
+
+ PR tree-optimization/57358
+ * gcc.dg/ipa/pr57358.c: New test.
+
+2013-06-24 Alan Modra <amodra@gmail.com>
+
+ * gcc.target/powerpc/altivec-consts.c: Correct for little-endian.
+ Add scan-assembler-not "lvx".
+ * gcc.target/powerpc/le-altivec-consts.c: New.
+
+2013-06-21 Uros Bizjak <ubizjak@gmail.com>
+
+ Backport from mainline
+ 2013-06-20 Uros Bizjak <ubizjak@gmail.com>
+
+ PR target/57655
+ * gcc.target/i386/pr57655.c: New test.
+
+2013-06-21 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/53211
+ * g++.dg/cpp0x/decltype55.C: New.
+
+2013-06-20 Wei Mi <wmi@google.com>
+
+ Backport from mainline
+ 2013-06-19 Wei Mi <wmi@google.com>
+
+ PR rtl-optimization/57518
+ * testsuite/gcc.dg/pr57518.c: New test.
+
+2013-06-11 Tobias Burnus <burnus@net-b.de>
+
+ PR fortran/57508
+ * gfortran.dg/defined_assignment_7.f90: New.
+
+2013-06-10 Oleg Endo <olegendo@gcc.gnu.org>
+
+ Backport from mainline
+ 2013-05-20 Oleg Endo <olegendo@gcc.gnu.org>
+
+ PR target/56547
+ * gcc.target/sh/pr56547-1.c: New.
+ * gcc.target/sh/pr56547-2.c: New.
+
+2013-06-09 Jakub Jelinek <jakub@redhat.com>
+
+ PR target/57568
+ * gcc.c-torture/execute/pr57568.c: New test.
+
+2013-06-04 Tobias Burnus <burnus@net-b.de>
+
+ Backport from mainline
+ 2013-05-22 Tobias Burnus <burnus@net-b.de>
+
+ PR fortran/57364
+ * gfortran.dg/defined_assignment_6.f90: New.
+
+2013-05-31 Janus Weil <janus@gcc.gnu.org>
+ Tobias Burnus <burnus@net-b.de>
+
+ PR fortran/57217
+ * gfortran.dg/typebound_override_4.f90: New.
+
+2013-05-31 Release Manager
+
+ * GCC 4.8.1 released.
+
+2013-05-26 Eric Botcazou <ebotcazou@adacore.com>
+
+ * gnat.dg/specs/last_bit.ads: New test.
+
+2013-05-24 Greta Yorsh <Greta.Yorsh@arm.com>
+
+ Backport from mainline
+ 2013-05-02 Greta Yorsh <Greta.Yorsh@arm.com>
+
+ PR target/56732
+ * gcc.target/arm/pr56732-1.c: New test.
+
+2013-05-24 Alexander Ivchenko <alexander.ivchenko@intel.com>
+
+ PR tree-ssa/57385
+ * gcc.dg/tree-ssa/pr57385.c: New test.
+
+2013-05-23 Martin Jambor <mjambor@suse.cz>
+
+ PR middle-end/57347
+ * gcc.dg/ipa/pr57347.c: New test.
+
+2013-05-23 Richard Biener <rguenther@suse.de>
+
+ PR rtl-optimization/57341
+ * gcc.dg/torture/pr57341.c: New testcase.
+
+2013-05-23 Jakub Jelinek <jakub@redhat.com>
+
+ PR middle-end/57344
+ * gcc.c-torture/execute/pr57344-1.c: New test.
+ * gcc.c-torture/execute/pr57344-2.c: New test.
+ * gcc.c-torture/execute/pr57344-3.c: New test.
+ * gcc.c-torture/execute/pr57344-4.c: New test.
+
+2013-05-22 Richard Biener <rguenther@suse.de>
+
+ Backport from mainline
+ 2013-05-21 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/57330
+ * gcc.dg/torture/pr57330.c: New testcase.
+
+ 2013-05-21 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/57303
+ * gcc.dg/torture/pr57303.c: New testcase.
+
+2013-05-21 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/57321
+ * gcc.c-torture/execute/pr57321.c: New test.
+
+2013-05-17 Jakub Jelinek <jakub@redhat.com>
+
+ PR rtl-optimization/57281
+ PR rtl-optimization/57300
+ * gcc.dg/pr57300.c: New test.
+ * gcc.c-torture/execute/pr57281.c: New test.
+
+2013-05-16 Dodji Seketeli <dodji@redhat.com>
+
+ PR c++/56782 - Regression with empty pack expansions
+ * g++.dg/cpp0x/variadic142.C: New test file.
+
+2013-05-14 Jakub Jelinek <jakub@redhat.com>
+
+ PR c++/57274
+ * c-c++-common/Wsequence-point-1.c: New test.
+
+ PR middle-end/57251
+ * gcc.dg/torture/pr57251.c: New test.
+
+2013-05-13 Uros Bizjak <ubizjak@gmail.com>
+
+ PR target/57264
+ * gcc.target/i386/pr57264.c: New test.
+
+2013-05-13 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/57230
+ * gcc.dg/strlenopt-23.c: New test.
+
+2013-05-10 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/57214
+ * gcc.dg/torture/pr57214.c: New testcase.
+
+2013-05-09 Martin Jambor <mjambor@suse.cz>
+
+ PR middle-end/56988
+ * gcc.dg/ipa/pr56988.c: New test.
+
+2013-05-08 Marc Glisse <marc.glisse@inria.fr>
+
+ * c-c++-common/vector-scalar-2.c: New testcase.
+
+2013-05-07 Tobias Burnus <burnus@net-b.de>
+
+ Backport from mainline
+ 2013-05-02 Tobias Burnus <burnus@net-b.de>
+
+ PR fortran/57142
+ * gfortran.dg/size_kind_2.f90: New.
+ * gfortran.dg/size_kind_3.f90: New.
+
+2013-05-07 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/57149
+ * gcc.dg/pr57149.c: New test.
+
+ PR debug/57184
+ * gcc.dg/pr57184.c: New test.
+
+2013-05-07 Richard Biener <rguenther@suse.de>
+
+ Backport from mainline
+ 2013-05-06 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/57185
+ * gcc.dg/autopar/pr57185.c: New testcase.
+
+ 2013-04-19 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/57000
+ * gcc.dg/tree-ssa/reassoc-27.c: New testcase.
+
+2013-05-07 Eric Botcazou <ebotcazou@adacore.com>
+
+ * gnat.dg/specs/array3.ads: New test.
+
+2013-05-06 Michael Meissner <meissner@linux.vnet.ibm.com>
+
+ Backport from trunk
+ 2013-05-03 Michael Meissner <meissner@linux.vnet.ibm.com>
+
+ PR target/57150
+ * gcc.target/powerpc/pr57150.c: New file.
+
+2013-05-06 Uros Bizjak <ubizjak@gmail.com>
+
+ Backport from mainline
+ 2013-05-06 Uros Bizjak <ubizjak@gmail.com>
+
+ PR target/57106
+ * gcc.target/i386/pr57106.c: New test.
+
+2013-05-06 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/57183
+ * g++.dg/cpp0x/auto38.C: New.
+
+2013-05-04 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/56205
+ * gcc.dg/tree-ssa/stdarg-6.c: Add cleanup-tree-dump "stdarg".
+
+2013-05-03 Jakub Jelinek <jakub@redhat.com>
+
+ PR rtl-optimization/57130
+ * gcc.c-torture/execute/pr57130.c: New test.
+
+2013-05-03 Marek Polacek <polacek@redhat.com>
+
+ Backport from mainline
+ 2013-04-25 Marek Polacek <polacek@redhat.com>
+
+ PR tree-optimization/57066
+ * gcc.dg/torture/builtin-logb-1.c: Adjust testcase.
+
+2013-05-02 Jakub Jelinek <jakub@redhat.com>
+
+ PR rtl-optimization/57131
+ * gcc.c-torture/execute/pr57131.c: New test.
+
+2013-05-02 Vladimir Makarov <vmakarov@redhat.com>
+
+ Backport from mainline
+ PR target/57091
+ * gcc.target/i386/pr57091.c: New test.
+
+2013-05-02 Vladimir Makarov <vmakarov@redhat.com>
+
+ Backport from mainline
+ 2013-04-29 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR target/57097
+ * gcc.target/i386/pr57097.c: New test.
+
+2013-05-02 Vladimir Makarov <vmakarov@redhat.com>
+
+ Backport from mainline
+ 2013-04-24 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR rtl-optimizations/57046
+ * gcc.target/i386/pr57046.c: New test.
+
+2013-05-02 Vladimir Makarov <vmakarov@redhat.com>
+
+ Backport from mainline
+ 2013-04-22 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR target/57018
+ * gcc.target/i386/pr57018.c: New test.
+
+2013-05-02 Vladimir Makarov <vmakarov@redhat.com>
+
+ Backport from mainline
+ 2013-04-18 Jakub Jelinek <jakub@redhat.com>
+
+ PR rtl-optimization/56999
+ * g++.dg/opt/pr56999.C: New test.
+
+2013-05-02 Vladimir Makarov <vmakarov@redhat.com>
+
+ Backport from mainline
+ 2013-04-19 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR rtl-optimization/56847
+ * gcc.dg/pr56847.c: New test.
+
+2013-05-02 Ian Bolton <ian.bolton@arm.com>
+
+ Backport from mainline (fix to botched commit)
+ 2013-04-04 Tejas Belagod <tejas.belagod@arm.com>
+
+ * gcc.target/aarch64/inc/asm-adder-clobber-lr.c: Remove duplication.
+ * gcc.target/aarch64/inc/asm-adder-no-clobber-lr.c: Likewise.
+ * gcc.target/aarch64/test-framepointer-1.c: Likewise.
+ * gcc.target/aarch64/test-framepointer-2.c: Likewise.
+ * gcc.target/aarch64/test-framepointer-3.c: Likewise.
+ * gcc.target/aarch64/test-framepointer-4.c: Likewise.
+ * gcc.target/aarch64/test-framepointer-5.c: Likewise.
+ * gcc.target/aarch64/test-framepointer-6.c: Likewise.
+ * gcc.target/aarch64/test-framepointer-7.c: Likewise.
+ * gcc.target/aarch64/test-framepointer-8.c: Likewise.
+
+ Backport from mainline
+ 2013-03-28 Ian Bolton <ian.bolton@arm.com>
+
+ * gcc.target/aarch64/inc/asm-adder-clobber-lr.c: New test.
+ * gcc.target/aarch64/inc/asm-adder-no-clobber-lr.c: Likewise.
+ * gcc.target/aarch64/test-framepointer-1.c: Likewise.
+ * gcc.target/aarch64/test-framepointer-2.c: Likewise.
+ * gcc.target/aarch64/test-framepointer-3.c: Likewise.
+ * gcc.target/aarch64/test-framepointer-4.c: Likewise.
+ * gcc.target/aarch64/test-framepointer-5.c: Likewise.
+ * gcc.target/aarch64/test-framepointer-6.c: Likewise.
+ * gcc.target/aarch64/test-framepointer-7.c: Likewise.
+ * gcc.target/aarch64/test-framepointer-8.c: Likewise.
+
+2013-05-01 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/57092
+ * g++.dg/cpp0x/decltype53.C: New.
+
+2013-04-30 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/57104
+ * gcc.dg/pr57104.c: New test.
+
+2013-04-30 Uros Bizjak <ubizjak@gmail.com>
+
+ Backport from mainline
+ 2013-04-29 Uros Bizjak <ubizjak@gmail.com>
+
+ PR target/44578
+ * gcc.target/i386/pr44578.c: New test.
+
+ Backport from mainline
+ 2013-04-29 Uros Bizjak <ubizjak@gmail.com>
+
+ PR target/57098
+ * gcc.target/i386/pr57098.c: New test.
+
+2013-04-29 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/56450
+ * g++.dg/cpp0x/decltype52.C: New.
+
+2013-04-29 Richard Biener <rguenther@suse.de>
+
+ PR middle-end/57103
+ * gcc.dg/autopar/pr57103.c: New testcase.
+
+2013-04-29 Christian Bruel <christian.bruel@st.com>
+
+ PR target/57108
+ * gcc.target/sh/pr57108.c: New test.
+
+2013-04-29 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/57083
+ * gcc.dg/torture/pr57083.c: New test.
+
+2013-04-28 Jerry DeLisle <jvdelisle@gcc.gnu.org>
+
+ Backport from trunk:
+
+ PR fortran/51825
+ * gfortran.dg/namelist_77.f90: New test.
+ * gfortran.dg/namelist_78.f90: New test.
+
+2013-04-28 Jerry DeLisle <jvdelisle@gcc.gnu.org>
+
+ PR fortran/56786
+ * gfortran.dg/namelist_81.f90: New test.
+
+2013-04-27 Jerry DeLisle <jvdelisle@gcc.gnu.org>
+
+ Backport from trunk:
+
+ PR fortran/52512
+ * gfortran.dg/namelist_79.f90: New test.
+
+2013-04-27 Jakub Jelinek <jakub@redhat.com>
+
+ PR target/56866
+ * gcc.c-torture/execute/pr56866.c: New test.
+ * gcc.target/i386/pr56866.c: New test.
+
+2013-04-26 Janus Weil <janus@gcc.gnu.org>
+
+ Backports from trunk:
+
+ PR fortran/56968
+ * gfortran.dg/proc_ptr_41.f90: New.
+
+ PR fortran/56814
+ * gfortran.dg/proc_ptr_42.f90: New.
+
+ PR fortran/53685
+ PR fortran/57022
+ * gfortran.dg/transfer_check_4.f90: New.
+
+2013-04-25 Jakub Jelinek <jakub@redhat.com>
+
+ PR rtl-optimization/57003
+ * gcc.target/i386/pr57003.c: New test.
+
+2013-04-25 Ian Bolton <ian.bolton@arm.com>
+
+ Backported from mainline.
+ 2013-03-22 Ian Bolton <ian.bolton@arm.com>
+
+ * gcc.target/aarch64/movk.c: New test.
+
+2013-04-24 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/56970
+ * g++.dg/cpp0x/sfinae45.C: New.
+
+2013-04-23 Bill Schmidt <wschmidt@linux.vnet.ibm.com>
+
+ Backported from mainline.
+ PR rtl-optimization/56605
+ * gcc.target/powerpc/pr56605.c: New.
+
+2013-04-22 Marek Polacek <polacek@redhat.com>
+
+ Backport from mainline
+ 2013-04-22 Marek Polacek <polacek@redhat.com>
+
+ PR sanitizer/56990
+ * gcc.dg/pr56990.c: New test.
+
+2013-04-22 Thomas Koenig <tkoenig@gcc.gnu.org>
+ Mikael Morin <mikael@gcc.gnu.org>
+
+ PR fortran/56872
+ * gfortran.dg/array_constructor_45.f90: New test.
+ * gfortran.dg/array_constructor_46.f90: New test.
+ * gfortran.dg/array_constructor_47.f90: New test.
+ * gfortran.dg/array_constructor_40.f90: Adjust number of
+ while loops.
+
+2013-04-18 Mikael Morin <mikael@gcc.gnu.org>
+
+ PR fortran/56816
+ * gfortran.dg/select_type_33.f03: New test.
+
+2013-04-18 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/56984
+ * gcc.c-torture/compile/pr56984.c: New test.
+
+ PR rtl-optimization/56992
+ * gcc.dg/pr56992.c: New test.
+
+2013-04-16 Uros Bizjak <ubizjak@gmail.com>
+
+ Backport from mainline
+ 2013-04-16 Uros Bizjak <ubizjak@gmail.com>
+
+ * g++.dg/ipa/devirt-c-7.C: Require nonpic effective target.
+ * gcc.c-torture/execute/pr33992.x: Remove.
+ * gcc.c-torture/execute/pr33992.c (foo): Declare as static.
+ * gcc.dg/uninit-pred-5_a.c (foo): Ditto.
+ * gcc.dg/uninit-pred-5_b.c (foo): Ditto.
+
+ Backport from mainline
+ 2013-03-27 Alexander Ivchenko <alexander.ivchenko@intel.com>
+
+ * g++.dg/ipa/ivinline-1.C: Add target nonpic.
+ * g++.dg/ipa/ivinline-2.C: Likewise.
+ * g++.dg/ipa/ivinline-3.C: Likewise.
+ * g++.dg/ipa/ivinline-4.C: Likewise.
+ * g++.dg/ipa/ivinline-5.C: Likewise.
+ * g++.dg/ipa/ivinline-7.C: Likewise.
+ * g++.dg/ipa/ivinline-8.C: Likewise.
+ * g++.dg/ipa/ivinline-9.C: Likewise.
+ * g++.dg/cpp0x/noexcept03.C: Likewise.
+ * gcc.dg/const-1.c: Likewise.
+ * gcc.dg/ipa/pure-const-1.c: Likewise.
+ * gcc.dg/noreturn-8.c: Likewise.
+ * gcc.target/i386/mmx-1.c: Likewise.
+ * gcc.dg/tree-ssa/ipa-split-5.c: Likewise.
+ * gcc.dg/tree-ssa/loadpre6.c: Likewise.
+ * gcc.c-torture/execute/pr33992.x: New file.
+
+2013-04-15 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/56962
+ * gcc.c-torture/execute/pr56962.c: New test.
+
+2013-04-15 Eric Botcazou <ebotcazou@adacore.com>
+
+ * gcc.dg/pr56890-1.c: New test.
+ * gcc.dg/pr56890-2.c: Likewise.
+
+2013-04-12 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR target/56903
+ * gcc.target/i386/pr56903.c: New test.
+
+2013-04-12 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/56918
+ PR tree-optimization/56920
+ * gcc.dg/vect/pr56918.c: New test.
+ * gcc.dg/vect/pr56920.c: New test.
+
+2013-04-11 Jakub Jelinek <jakub@redhat.com>
+
+ PR c++/56895
+ * g++.dg/template/arrow4.C: New test.
+
+2013-04-11 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/56913
+ * g++.dg/cpp0x/sfinae44.C: New.
+
+2013-04-11 James Greenhalgh <james.greenhalgh@arm.com>
+
+ Backported from mainline.
+ 2013-04-11 James Greenhalgh <james.greenhalgh@arm.com>
+
+ * gcc.target/aarch64/vect-fcm.x: Add check for zero forms of
+ inverse operands.
+ * gcc.target/aarch64/vect-fcm-eq-d.c: Check that new zero form
+ loop is vectorized.
+ * gcc.target/aarch64/vect-fcm-eq-f.c: Likewise.
+ * gcc.target/aarch64/vect-fcm-ge-d.c: Check that new zero form
+ loop is vectorized and that the correct instruction is generated.
+ * gcc.target/aarch64/vect-fcm-ge-f.c: Likewise.
+ * gcc.target/aarch64/vect-fcm-gt-d.c: Likewise.
+ * gcc.target/aarch64/vect-fcm-gt-f.c: Likewise.
+
+2013-04-11 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/56899
+ * gcc.c-torture/execute/pr56899.c: New test.
+
+2013-04-10 Jakub Jelinek <jakub@redhat.com>
+
+ PR c++/56895
+ * g++.dg/template/arrow3.C: New test.
+
+ Backported from mainline
+ 2013-04-09 Jakub Jelinek <jakub@redhat.com>
+
+ PR middle-end/56883
+ * c-c++-common/gomp/pr56883.c: New test.
+
+2013-04-08 Thomas Koenig <tkoenig@gcc.gnu.org>
+
+ PR fortran/56782
+ Backport from trunk.
+ * gfortran.dg/array_constructor_44.f90: New test.
+
+2013-04-08 Jakub Jelinek <jakub@redhat.com>
+
+ * gcc.c-torture/execute/pr56837.c: New test.
+
+2013-04-04 Marek Polacek <polacek@redhat.com>
+
+ Backport from mainline:
+ 2013-04-04 Marek Polacek <polacek@redhat.com>
+
+ PR tree-optimization/48186
+ * gcc.dg/pr48186.c: New test.
+
+2013-04-04 Kyrylo Tkachov <kyrylo.tkachov@arm.com>
+
+ Backport from mainline:
+ 2013-03-25 Kyrylo Tkachov <kyrylo.tkachov@arm.com>
+
+ PR target/56720
+ * gcc.target/arm/neon-vcond-gt.c: New test.
+ * gcc.target/arm/neon-vcond-ltgt.c: Likewise.
+ * gcc.target/arm/neon-vcond-unordered.c: Likewise.
+
+2013-04-04 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/56837
+ * g++.dg/torture/pr56837.C: New testcase.
+
+2013-04-03 Marek Polacek <polacek@redhat.com>
+
+ Backport from mainline:
+ 2013-04-03 Marek Polacek <polacek@redhat.com>
+
+ PR sanitizer/55702
+ * gcc.dg/pr55702.c: New test.
+
+2013-04-03 Jakub Jelinek <jakub@redhat.com>
+
+ PR debug/56819
+ * g++.dg/debug/pr56819.C: New test.
+
+2013-04-03 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/56817
+ * g++.dg/torture/pr56817.C: New testcase.
+
+2013-04-03 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/55964
+ * gcc.dg/torture/pr55964-2.c: New testcase.
+
+2013-04-03 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/56501
+ * gcc.dg/torture/pr56501.c: New testcase.
+
+2013-04-03 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/56407
+ * gcc.dg/torture/pr56407.c: New testcase.
+
+2013-04-02 Jakub Jelinek <jakub@redhat.com>
+
+ PR rtl-optimization/56745
+ * gcc.c-torture/compile/pr56745.c: New test.
+
+2013-04-02 Tobias Burnus <burnus@net-b.de>
+
+ Backport from mainline:
+ 2013-03-28 Tobias Burnus <burnus@net-b.de>
+
+ PR fortran/56735
+ * gfortran.dg/namelist_80.f90: New.
+
+2013-04-02 Tobias Burnus <burnus@net-b.de>
+
+ Backport from mainline:
+ 2013-03-29 Tobias Burnus <burnus@net-b.de>
+
+ PR fortran/56737
+ * testsuite/gfortran.dg/fmt_cache_3.f90: New.
+
+2013-04-02 Richard Biener <rguenther@suse.de>
+
+ PR middle-end/56768
+ * g++.dg/torture/pr56768.C: New testcase.
+
+2013-04-01 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/55951
+ * g++.dg/ext/desig5.C: New.
+
+2013-03-29 Kirill Yukhin <kirill.yukhin@intel.com>
+
+ * gcc.target/i386/avx2-vbroadcastsi128-1.c: Fix intrinsic name.
+ * gcc.target/i386/avx2-vbroadcastsi128-1.c: Ditto.
+
+2013-03-28 Tejas Belagod <tejas.belagod@arm.com>
+
+ PR middle-end/56694
+ * g++.dg/torture/pr56694.C: Fix test case to build on bare-metal
+ targets.
+
+2013-03-25 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/56722
+ * g++.dg/cpp0x/range-for23.C: New.
+
+2013-03-25 Richard Biener <rguenther@suse.de>
+
+ PR middle-end/56694
+ * g++.dg/torture/pr56694.C: New testcase.
+
+2013-03-25 Rainer Orth <ro@CeBiTec.Uni-Bielefeld.DE>
+
+ Backport from mainline:
+ 2013-03-20 Rainer Orth <ro@CeBiTec.Uni-Bielefeld.DE>
+
+ PR fortran/54932
+ * gfortran.dg/do_1.f90: Don't xfail.
+
+2013-03-24 Tobias Burnus <burnus@net-b.de>
+
+ PR fortran/56696
+ * gfortran.dg/eof_5.f90: New.
+
+2013-03-22 Sebastian Huber <sebastian.huber@embedded-brains.de>
+
+ * gcc.c-torture/execute/builtins/builtins.exp: Sort targets
+ alphabetically.
+
+2013-03-22 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/56582
+ * g++.dg/cpp0x/constexpr-array5.C: New.
+
+2013-03-22 H.J. Lu <hongjiu.lu@intel.com>
+
+ PR target/56560
+ * gcc.target/i386/pr56560.c: New file.
+
+2013-03-22 Sebastian Huber <sebastian.huber@embedded-brains.de>
+
+ PR testsuite/55994
+ * gcc.c-torture/execute/builtins/builtins.exp: Add
+ -Wl,--allow-multiple-definition for RTEMS targets.
+
+2013-03-22 Jakub Jelinek <jakub@redhat.com>
+
+ Backported from mainline
+ 2013-03-16 Jakub Jelinek <jakub@redhat.com>
+
+ PR c++/56607
+ * g++.dg/warn/Wdiv-by-zero-2.C: New test.
+ * c-c++-common/pr56607.c: New test.
+
+2013-03-22 Release Manager
+
+ * GCC 4.8.0 released.
+
+2013-03-20 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/56661
+ * gcc.dg/torture/pr56661.c: New testcase.
+
+2013-03-20 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/56635
+ * g++.dg/torture/pr56635.C: New test.
+
+2013-03-15 Tobias Burnus <burnus@net-b.de>
+
+ PR fortran/56615
+ * gfortran.dg/transfer_intrinsic_5.f90: New.
+
+2013-03-15 Kai Tietz <ktietz@redhat.com>
+
+ * gcc.target/i386/movti.c: Don't test for x64 mingw.
+ * gcc.target/i386/pr20020-1.c: Likewise.
+ * gcc.target/i386/pr20020-2.c: Likewise.
+ * gcc.target/i386/pr20020-3.c: Likewise.
+ * gcc.target/i386/pr53425-1.c: Likewise.
+ * gcc.target/i386/pr53425-2.c: Likewise.
+ * gcc.target/i386/pr55093.c: Likewise.
+ * gcc.target/i386/pr53907.c: Adjust test for LLP64 targets.
+
+2013-03-15 Jakub Jelinek <jakub@redhat.com>
+
+ PR debug/56307
+ * gcc.dg/tree-ssa/pr55579.c: Add -fvar-tracking-assignments to
+ dg-options. Remove 32-bit hppa*-*-hpux* xfail.
+
+2013-03-14 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/53265
+ * gcc.dg/graphite/scop-3.c (toto): Increase array size to avoid
+ undefined behavior.
+ * gcc.dg/graphite/id-6.c (test): Likewise.
+ * gcc.dg/graphite/pr35356-2.c: Adjust regexp patterns to only look for
+ MIN_EXPR and MAX_EXPR in GIMPLE stmts.
+
+ PR tree-optimization/53265
+ * gcc.dg/pr53265.c: New test.
+ * gcc.dg/torture/pr49518.c: Add -Wno-aggressive-loop-optimizations
+ to dg-options.
+ * g++.dg/opt/longbranch2.C (EBCOTLut): Double sizes of a2 and a3
+ arrays.
+ * gcc.dg/tree-ssa/cunroll-10.c (main): Rename to foo. Add argument
+ n, use it as high bound instead of 4.
+
+2013-03-13 Oleg Endo <olegendo@gcc.gnu.org>
+
+ PR target/49880
+ * gcc.target/sh/pr49880-1.c: New.
+ * gcc.target/sh/pr49880-2.c: New.
+ * gcc.target/sh/pr49880-3.c: New.
+ * gcc.target/sh/pr49880-4.c: New.
+ * gcc.target/sh/pr49880-5.c: New.
+
+2013-03-13 Paolo Carlini <paolo.carlini@oracle.com>
+
+ * g++.dg/cpp0x/alias-decl-32.C: Remove redundant bits.
+
+2013-03-13 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/56608
+ * gcc.dg/vect/fast-math-bb-slp-call-3.c: New testcase.
+
+2013-03-13 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/56611
+ * g++.dg/cpp0x/alias-decl-32.C: New.
+
+2013-03-11 Jan Hubicka <jh@suse.cz>
+
+ PR middle-end/56571
+ * gcc.c-torture/compile/pr56571.c: New testcase.
+
+2013-03-11 John David Anglin <dave.anglin@nrc-cnrc.gc.ca>
+
+ * gcc.dg/tree-ssa/vector-4.c: Add comment regarding xfail.
+ * gcc.dg/tree-ssa/pr55579.c: Likewise.
+
+2013-03-11 Dominique d'Humieres <dominiq@lps.ens.fr>
+
+ * gcc.dg/inline_3.c: Remove target and dg-excess-errors.
+ * gcc.dg/inline_4.c: Likewise.
+ * gcc.dg/unroll_2.c: Likewise.
+ * gcc.dg/unroll_3.c: Likewise.
+ * gcc.dg/unroll_4.c: Likewise.
+
+2013-03-10 John David Anglin <dave.anglin@nrc-cnrc.gc.ca>
+
+ PR testsuite/54119
+ * gcc.dg/tree-ssa/vector-4.c: xfail on 32-bit hppa*-*-*.
+
+ PR debug/56307
+ * gcc.dg/tree-ssa/pr55579.c: xfail 32-bit hppa*-*-hpux*.
+
+2013-03-11 Oleg Endo <olegendo@gcc.gnu.org>
+
+ PR target/40797
+ * gcc.c-torture/compile/pr40797.c: New.
+
+2013-03-10 John David Anglin <dave.anglin@nrc-cnrc.gc.ca>
+
+ * gcc.dg/pr44194-1.c: Skip compilation on hppa*64*-*-*.
+
+2013-03-10 Paul Thomas <pault@gcc.gnu.org>
+
+ PR fortran/56575
+ * gfortran.dg/class_56.f90: New test.
+
+2013-03-09 Richard Sandiford <rdsandiford@googlemail.com>
+
+ PR middle-end/56524
+ * gcc.target/mips/pr56524.c: New test.
+
+2013-03-08 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/56565
+ * g++.dg/cpp0x/lambda/lambda-nsdmi2.C: New.
+
+2013-03-08 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/51412
+ * g++.dg/cpp0x/lambda/lambda-err3.C: New.
+
+2013-03-08 Marek Polacek <polacek@redhat.com>
+
+ PR tree-optimization/56478
+ * gcc.dg/torture/pr56478.c: New test.
+
+2013-03-08 Kai Tietz <ktietz@redhat.com>
+
+ * gcc.c-torture/execute/builtins/builtins.exp: Add for mingw
+ targets linker option --allow-multiple-definition.
+
+ * gcc.dg/pr14092-1.c: Mark intptr_t typedef to use extension.
+ * gcc.dg/pr24683.c: Avoid warning about casting constant string.
+ * gcc.dg/pr52549.c: Add LLP64 case.
+ * gcc.dg/pr53701.c: Use for uintptr_t typedef __UINTPTR_TYPE__.
+ * gcc.dg/pr56510.c: Adjust for LLP64 targets.
+ * gcc.dg/torture/pr51071-2.c: Likewise.
+ * gcc.dg/tree-ssa/vrp72.c: Likewise.
+ * gcc.dg/tree-ssa/vrp73.c: Likewise.
+ * gcc.dg/tree-ssa/vrp75.c: Likewise.
+ * gcc.dg/torture/pr53922.c: Skip test for mingw-targets.
+ * gcc.dg/weak/weak-1.c: Likewise.
+ * gcc.dg/weak/weak-2.c: Likewise.
+ * gcc.dg/weak/weak-3.c: Likewise.
+ * gcc.dg/weak/weak-4.c: Likewise.
+ * gcc.dg/weak/weak-5.c: Likewise.
+ * gcc.dg/weak/weak-15.c: Likewise.
+ * gcc.dg/weak/weak-16.c: Likewise.
+
+ * c-c++-common/pr54486.c: Skip test for mingw-targets.
+
+2013-03-07 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/56559
+ * gcc.dg/tree-ssa/reassoc-26.c: New test.
+
+2013-03-07 Andreas Schwab <schwab@suse.de>
+
+ * gcc.dg/pr31490.c: Fix last change.
+
+2013-03-06 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/56534
+ * g++.dg/template/crash115.C: New.
+
+2013-03-06 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/56539
+ * gcc.c-torture/compile/pr56539.c: New test.
+
+2013-03-06 Kai Tietz <ktietz@redhat.com>
+
+ * gcc.dg/lto/20090914-2_0.c: Skip for mingw and cygwin targets.
+ * gcc.dg/lto/20091013-1_1.c: Set x64-mingw as xfail.
+ * gcc.dg/lto/20091013-1_2.c: Likewise.
+ * gcc.dg/pr31490.c: Adjust for LLP64 targets.
+
+2013-03-06 Eric Botcazou <ebotcazou@adacore.com>
+
+ * gnat.dg/specs/aggr6.ads: New test.
+
+2013-03-06 Eric Botcazou <ebotcazou@adacore.com>
+
+ * gnat.dg/loop_optimization15.ad[sb]: New test.
+
+2013-03-06 Jakub Jelinek <jakub@redhat.com>
+
+ PR middle-end/56548
+ * gcc.dg/pr56548.c: New test.
+
+2013-03-06 Rainer Orth <ro@CeBiTec.Uni-Bielefeld.DE>
+
+ PR debug/53363
+ * g++.dg/debug/dwarf2/thunk1.C: Skip on darwin.
+
+2013-03-06 Jakub Jelinek <jakub@redhat.com>
+
+ PR c++/56543
+ * g++.dg/template/typename20.C: New test.
+
+2013-03-05 Jakub Jelinek <jakub@redhat.com>
+
+ PR debug/56510
+ * gcc.dg/pr56510.c: New test.
+
+ PR rtl-optimization/56484
+ * gcc.c-torture/compile/pr56484.c: New test.
+
+2013-03-05 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/56530
+ * g++.dg/warn/Wsign-conversion-2.C: New.
+
+2013-03-05 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/56270
+ * gcc.dg/vect/slp-38.c: New testcase.
+
+2013-03-05 Jakub Jelinek <jakub@redhat.com>
+
+ PR rtl-optimization/56494
+ * gcc.dg/pr56494.c: New test.
+
+2013-01-04 Eric Botcazou <ebotcazou@adacore.com>
+
+ * gcc.dg/pr56424.c: New test.
+
+2013-03-04 Georg-Johann Lay <avr@gjlay.de>
+
+ * gcc.dg/pr55153.c: Add dg-require-effective-target scheduling.
+ * gcc.dg/pr56228.c <avr>: Skip.
+
+2013-03-04 Georg-Johann Lay <avr@gjlay.de>
+
+ PR testsuite/52641
+ PR tree-optimization/52631
+ * gcc.dg/tree-ssa/pr52631.c: Fix 16-bit int.
+
+2013-03-03 David Edelsohn <dje.gcc@gmail.com>
+
+ * gcc.dg/vect/vect-82_64.c: Skip on AIX.
+ * gcc.dg/vect/vect-83_64.c: Same.
+
+2013-03-03 Mikael Morin <mikael@gcc.gnu.org>
+
+ PR fortran/56477
+ * gfortran.dg/pointer_check_13.f90: New test.
+
+2013-03-03 Mikael Morin <mikael@gcc.gnu.org>
+
+ PR fortran/54730
+ * gfortran.dg/array_constructor_42.f90: New test.
+
+2013-03-02 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/52688
+ * g++.dg/template/static33.C: New.
+ * g++.dg/template/static34.C: Likewise.
+
+ PR c++/10291
+ * g++.dg/template/static35.C: New.
+
+2013-03-01 Steve Ellcey <sellcey@mips.com>
+
+ * gcc.dg/pr56396.c: Require pic support.
+
+2013-03-01 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/55481
+ * gcc.dg/torture/pr56488.c: New testcase.
+
+2013-02-28 Konstantin Serebryany <konstantin.s.serebryany@gmail.com>
+ Jakub Jelinek <jakub@redhat.com>
+
+ PR sanitizer/56454
+ * g++.dg/asan/default-options-1.C (__asan_default_options): Use
+ no_sanitize_address attribute rather than no_address_safety_analysis.
+ * g++.dg/asan/sanitizer_test_utils.h
+ (ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS): Likewise.
+ * c-c++-common/asan/attrib-1.c: Test no_sanitize_address attribute
+ in addition to no_address_safety_analysis.
+
+2013-02-28 Jason Merrill <jason@redhat.com>
+
+ PR c++/56481
+ * g++.dg/cpp0x/constexpr-and.C: New.
+
+2013-02-28 Martin Jambor <mjambor@suse.cz>
+
+ PR tree-optimization/56294
+ * g++.dg/debug/pr56294.C: New test.
+
+2013-02-28 Marcus Shawcroft <marcus.shawcroft@arm.com>
+
+ * g++.old-deja/g++.pt/ptrmem6.C(main): Add xfail aarch64*-*-*.
+
+2013-02-27 Marek Polacek <polacek@redhat.com>
+
+ PR rtl-optimization/56466
+ * gcc.dg/pr56466.c: New test.
+
+2013-02-28 Naveen H.S <Naveen.Hurugalawadi@caviumnetworks.com>
+
+ * gcc.dg/tree-ssa/slsr-1.c: Allow widening multiplications.
+ * gcc.dg/tree-ssa/slsr-2.c: Likewise.
+ * gcc.dg/tree-ssa/slsr-3.c: Likewise.
+
+2013-02-27 Andrey Belevantsev <abel@ispras.ru>
+
+ PR middle-end/45472
+ * gcc.dg/pr45472.c: New test.
+
+2013-02-26 Marek Polacek <polacek@redhat.com>
+
+ PR tree-optimization/56426
+ * gcc.dg/pr56436.c: New test.
+
+2013-02-26 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/56448
+ * gcc.c-torture/compile/pr56448.c: New test.
+
+ PR tree-optimization/56443
+ * gcc.dg/torture/pr56443.c: New test.
+
+2013-02-25 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/56175
+ * gcc.dg/tree-ssa/forwprop-24.c: New testcase.
+
+2013-02-24 Jakub Jelinek <jakub@redhat.com>
+
+ PR c++/56403
+ * g++.dg/torture/pr56403.C: New test.
+
+2013-02-25 Catherine Moore <clm@codesourcery.com>
+
+ Revert:
+ 2013-02-24 Catherine Moore <clm@codesourcery.com>
+ Richard Sandiford <rdsandiford@googlemail.com>
+
+ * gcc.target/mips/mips.exp: Add microMIPS support.
+ * gcc.target/mips/umips-movep-2.c: New test.
+ * gcc.target/mips/umips-lwp-2.c: New test.
+ * gcc.target/mips/umips-swp-5.c: New test.
+ * gcc.target/mips/umips-constraints-1.c: New test.
+ * gcc.target/mips/umips-lwp-3.c: New test.
+ * gcc.target/mips/umips-swp-6.c: New test.
+ * gcc.target/mips/umips-constraints-2.c: New test.
+ * gcc.target/mips/umips-save-restore-1.c: New test.
+ * gcc.target/mips/umips-lwp-4.c: New test.
+ * gcc.target/mips/umips-swp-7.c: New test.
+ * gcc.target/mips/umips-save-restore-2.c: New test.
+ * gcc.target/mips/umips-lwp-swp-volatile.c: New test.
+ * gcc.target/mips/umips-lwp-5.c: New test.
+ * gcc.target/mips/umips-save-restore-3.c: New test.
+ * gcc.target/mips/umips-lwp-6.c: New test.
+ * gcc.target/mips/umips-swp-1.c: New test.
+ * gcc.target/mips/umips-lwp-7.c: New test.
+ * gcc.target/mips/umips-swp-2.c: New test.
+ * gcc.target/mips/umips-lwp-8.c: New test.
+ * gcc.target/mips/umips-swp-3.c: New test.
+ * gcc.target/mips/umips-movep-1.c: New test.
+ * gcc.target/mips/umips-lwp-1.c: New test.
+ * gcc.target/mips/umips-swp-4.c: New test.
+
+2013-02-24 Catherine Moore <clm@codesourcery.com>
+ Richard Sandiford <rdsandiford@googlemail.com>
+
+ * gcc.target/mips/mips.exp: Add microMIPS support.
+ * gcc.target/mips/umips-movep-2.c: New test.
+ * gcc.target/mips/umips-lwp-2.c: New test.
+ * gcc.target/mips/umips-swp-5.c: New test.
+ * gcc.target/mips/umips-constraints-1.c: New test.
+ * gcc.target/mips/umips-lwp-3.c: New test.
+ * gcc.target/mips/umips-swp-6.c: New test.
+ * gcc.target/mips/umips-constraints-2.c: New test.
+ * gcc.target/mips/umips-save-restore-1.c: New test.
+ * gcc.target/mips/umips-lwp-4.c: New test.
+ * gcc.target/mips/umips-swp-7.c: New test.
+ * gcc.target/mips/umips-save-restore-2.c: New test.
+ * gcc.target/mips/umips-lwp-swp-volatile.c: New test.
+ * gcc.target/mips/umips-lwp-5.c: New test.
+ * gcc.target/mips/umips-save-restore-3.c: New test.
+ * gcc.target/mips/umips-lwp-6.c: New test.
+ * gcc.target/mips/umips-swp-1.c: New test.
+ * gcc.target/mips/umips-lwp-7.c: New test.
+ * gcc.target/mips/umips-swp-2.c: New test.
+ * gcc.target/mips/umips-lwp-8.c: New test.
+ * gcc.target/mips/umips-swp-3.c: New test.
+ * gcc.target/mips/umips-movep-1.c: New test.
+ * gcc.target/mips/umips-lwp-1.c: New test.
+ * gcc.target/mips/umips-swp-4.c: New test.
+
+2013-02-22 Jakub Jelinek <jakub@redhat.com>
+
+ PR sanitizer/56393
+ * lib/asan-dg.exp (asan_link_flags): Add
+ -B${gccpath}/libsanitizer/asan/ to flags.
+
+2013-02-21 Jakub Jelinek <jakub@redhat.com>
+
+ PR middle-end/56420
+ * gcc.dg/torture/pr56420.c: New test.
+
+2013-02-20 Aldy Hernandez <aldyh@redhat.com>
+
+ PR middle-end/56108
+ * gcc.dg/tm/memopt-1.c: Declare functions transaction_safe.
+
+2013-02-21 Martin Jambor <mjambor@suse.cz>
+
+ PR tree-optimization/56310
+ * g++.dg/ipa/pr56310.C: New test.
+
+2013-02-21 Janus Weil <janus@gcc.gnu.org>
+
+ PR fortran/56385
+ * gfortran.dg/proc_ptr_comp_37.f90: New.
+
+2013-02-21 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/56415
+ Revert
+ 2013-02-11 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/56273
+ * g++.dg/warn/Warray-bounds-6.C: New testcase.
+ * gcc.dg/tree-ssa/pr21559.c: Adjust.
+ * gcc.dg/tree-ssa/vrp17.c: Likewise.
+ * gcc.dg/tree-ssa/vrp18.c: Likewise.
+ * gcc.dg/tree-ssa/vrp23.c: Likewise.
+ * gcc.dg/tree-ssa/vrp24.c: Likewise.
+
+2013-02-21 Marek Polacek <polacek@redhat.com>
+
+ PR tree-optimization/56398
+ * g++.dg/torture/pr56398.C: New test.
+
+2013-02-21 Jakub Jelinek <jakub@redhat.com>
+
+ PR inline-asm/56405
+ * gcc.c-torture/compile/pr56405.c: New test.
+
+2013-02-20 Jan Hubicka <jh@suse.cz>
+
+ PR tree-optimization/56265
+ * testsuite/g++.dg/ipa/devirt-11.C: New testcase.
+
+2013-02-20 Richard Biener <rguenther@suse.de>
+
+ * gcc.dg/tree-ssa/forwprop-8.c: Adjust.
+
+2013-02-20 Richard Biener <rguenther@suse.de>
+ Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/56396
+ * gcc.dg/pr56396.c: New testcase.
+
+2013-02-20 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/56373
+ * g++.dg/cpp0x/Wzero-as-null-pointer-constant-2.C: New.
+
+2013-02-19 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/56384
+ * gcc.dg/torture/pr56384.c: New testcase.
+
+2013-02-19 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/56350
+ * gcc.dg/pr56350.c: New test.
+
+ PR tree-optimization/56381
+ * g++.dg/opt/pr56381.C: New test.
+
+2013-02-18 Jakub Jelinek <jakub@redhat.com>
+
+ PR pch/54117
+ * lib/dg-pch.exp (pch-init, pch-finish,
+ check_effective_target_pch_supported_debug): New procs.
+ (dg-flags-pch): If $pch_unsupported, make tests UNSUPPORTED.
+ Likewise if $pch_unsupported_debug and $flags include -g.
+ Skip FAILs about missing *.gch file if $pch_unsupported_debug
+ and dg-require-effective-target pch_unsupported_debug.
+ * g++.dg/pch/pch.exp: Call pch-init and pch-finish.
+ * objc.dg/pch/pch.exp: Likewise.
+ * gcc.dg/pch/pch.exp: Likewise.
+ * gcc.dg/pch/valid-1.c: Add dg-require-effective-target
+ pch_unsupported_debug.
+ * gcc.dg/pch/valid-1.hs: Likewise.
+ * gcc.dg/pch/valid-1b.c: Likewise.
+ * gcc.dg/pch/valid-1b.hs: Likewise.
+
+2013-02-18 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/56366
+ * gcc.dg/torture/pr56366.c: New testcase.
+
+2013-02-18 Richard Biener <rguenther@suse.de>
+
+ PR middle-end/56349
+ * gcc.dg/torture/pr56349.c: New testcase.
+
+2013-02-18 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/56321
+ * gcc.dg/torture/pr56321.c: New testcase.
+
+2013-02-16 Edgar E. Iglesias <edgar.iglesias@gmail.com>
+
+ * gcc.dg/20020312-2.c: Define MicroBlaze PIC register
+
+2013-02-16 Jakub Jelinek <jakub@redhat.com>
+ Dodji Seketeli <dodji@redhat.com>
+
+ PR asan/56330
+ * c-c++-common/asan/no-redundant-instrumentation-4.c: New test file.
+ * c-c++-common/asan/no-redundant-instrumentation-5.c: Likewise.
+ * c-c++-common/asan/no-redundant-instrumentation-6.c: Likewise.
+ * c-c++-common/asan/no-redundant-instrumentation-7.c: Likewise.
+ * c-c++-common/asan/no-redundant-instrumentation-8.c: Likewise.
+ * c-c++-common/asan/pr56330.c: Likewise.
+ * c-c++-common/asan/no-redundant-instrumentation-1.c (test1):
+ Ensure the size argument of __builtin_memcpy is a constant.
+
+2013-02-15 Jonathan Wakely <jwakely.gcc@gmail.com>
+ Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/51242
+ * g++.dg/cpp0x/enum23.C: New.
+
+2013-02-15 Oleg Endo <olegendo@gcc.gnu.org>
+
+ PR target/54685
+ * gcc.target/sh/pr54685.c: Fix scanning of not insn.
+
+2013-02-15 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR rtl-optimization/56348
+ * gcc.target/i386/pr56348.c: New test.
+
+2013-02-15 Greta Yorsh <Greta.Yorsh@arm.com>
+
+ * gcc.target/arm/interrupt-1.c: Fix for thumb mode.
+ * gcc.target/arm/interrupt-2.c: Likewise.
+
+2013-02-15 Tobias Burnus <burnus@net-b.de>
+
+ PR fortran/56318
+ * gcc/testsuite/gfortran.dg/matmul_9.f90: New.
+
+2013-02-15 Tobias Burnus <burnus@net-b.de>
+
+ PR fortran/53818
+ * gfortran.dg/init_flag_11.f90: New.
+
+2013-02-14 Rainer Orth <ro@CeBiTec.Uni-Bielefeld.DE>
+
+ * gcc.dg/debug/dwarf2/pr53948.c: Allow for more whitespace.
+
+2013-02-14 Rainer Orth <ro@CeBiTec.Uni-Bielefeld.DE>
+
+ * gcc.dg/debug/dwarf2/pr53948.c: Allow for / and ! as comment
+ characters.
+
+2013-02-14 Dominique d'Humieres <dominiq@lps.ens.fr>
+ Tobias Burnus <burnus@net-b.de>
+
+ PR testsuite/56138
+ * gfortran.dg/allocatable_function_7.f90: New.
+
+2013-02-14 Jakub Jelinek <jakub@redhat.com>
+
+ * g++.dg/asan/dejagnu-gtest.h: Add multiple inclusion guards.
+ * asan_globals_test-wrapper.cc: New file.
+ * g++.dg/asan/asan_test.C: Use asan_globals_test-wrapper.cc
+ instead of asan_globals_test.cc as dg-additional-sources.
+ Include asan_mem_test.cc, asan_str_test.cc and asan_oob_test.cc.
+ * g++.dg/asan/asan_test_utils.h: Synced from upstream. Include
+ "sanitizer_test_utils.h" instead of
+ "sanitizer_common/tests/sanitizer_test_utils.h".
+ * g++.dg/asan/asan_str_test.cc: New file, synced from upstream.
+ * g++.dg/asan/asan_mem_test.cc: New file, synced from upstream.
+ * g++.dg/asan/asan_oob_test.cc: New file, synced from upstream.
+ * g++.dg/asan/asan_globals_test.cc: Synced from upstream.
+ * g++.dg/asan/asan_test.cc: Synced from upstream.
+ * g++.dg/asan/sanitizer_test_utils.h: New file, synced from upstream.
+
+2013-02-14 Dodji Seketeli <dodji@redhat.com>
+
+ Fix an asan crash
+ * c-c++-common/asan/memcmp-2.c: New test.
+
+2013-02-13 Ed Smith-Rowland <3dw4rd@verizon.net>
+
+ PR c++/55582
+ * g++.dg/cpp0x/udlit-string-literal.h: New.
+ * g++.dg/cpp0x/udlit-string-literal.C: New.
+
+2013-02-13 Sriraman Tallam <tmsriram@google.com>
+
+ * g++.dg/ext/mv12-aux.C: Add directives to match mv12.C.
+
+2013-02-13 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR target/56184
+ * gcc.target/arm/pr56184.C: New test.
+
+2013-02-13 Jakub Jelinek <jakub@redhat.com>
+
+ PR c++/56302
+ * g++.dg/torture/pr56302.C: New test.
+ * g++.dg/cpp0x/constexpr-56302.C: New test.
+ * c-c++-common/pr56302.c: New test.
+
+2013-02-13 Tobias Burnus <burnus@net-b.de>
+ Rainer Orth <ro@CeBiTec.Uni-Bielefeld.DE>
+
+ PR fortran/56204
+ * gfortran.dg/quad_2.f90: Use "< epsilon" instead of "==".
+ * gfortran.dg/quad_3.f90: Ditto.
+
+2013-02-13 Kostya Serebryany <kcc@google.com>
+
+ * c-c++-common/asan/strncpy-overflow-1.c: Update the test
+ to match the fresh asan run-time.
+ * c-c++-common/asan/rlimit-mmap-test-1.c: Ditto.
+
+2013-02-12 Dodji Seketeli <dodji@redhat.com>
+
+ Avoid instrumenting duplicated memory access in the same basic block
+ * c-c++-common/asan/no-redundant-instrumentation-1.c: New test.
+ * testsuite/c-c++-common/asan/no-redundant-instrumentation-2.c:
+ Likewise.
+ * testsuite/c-c++-common/asan/no-redundant-instrumentation-3.c:
+ Likewise.
+ * testsuite/c-c++-common/asan/inc.c: Likewise.
+
+2013-02-12 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR inline-asm/56148
+ * gcc.target/i386/pr56148.c: New test.
+
+2013-02-12 Dominique d'Humieres <dominiq@lps.ens.fr>
+ Tobias Burnus <burnus@net-b.de>
+
+ PR testsuite/56082
+ * gfortran.dg/bind_c_bool_1.f90 (sub): Change kind=4 to kind=2.
+
+2013-02-12 Richard Biener <rguenther@suse.de>
+
+ PR lto/56297
+ * gcc.dg/lto/pr56297_0.c: New testcase.
+ * gcc.dg/lto/pr56297_0.c: Likewise.
+
+2013-02-12 Janus Weil <janus@gcc.gnu.org>
+
+ PR fortran/46952
+ * gfortran.dg/typebound_deferred_1.f90: New.
+
+2013-02-12 Jakub Jelinek <jakub@redhat.com>
+
+ PR rtl-optimization/56151
+ * gcc.target/i386/pr56151.c: New test.
+
+2013-02-11 Sriraman Tallam <tmsriramgoogle.com>
+
+ * g++.dg/ext/mv12.C: New test.
+ * g++.dg/ext/mv12.h: New file.
+ * g++.dg/ext/mv12-aux.C: New file.
+ * g++.dg/ext/mv13.C: New test.
+
+2013-02-11 Sebastian Huber <sebastian.huber@embedded-brains.de>
+
+ * lib/target-supports.exp
+ (check_effective_target_powerpc_eabi_ok): New.
+ * gcc.target/powerpc/ppc-eabi.c: Use require effective target
+ powerpc_eabi_ok.
+ * gcc.target/powerpc/ppc-sdata-1.c: Likewise.
+ * gcc.target/powerpc/spe-small-data-2.c: Likewise. Do not run, compile
+ only.
+ * gcc.target/powerpc/ppc-sdata-2.c: Add powerpc-*-rtems*.
+ * gcc.target/powerpc/pr51623.c: Likewise.
+ * gcc.target/powerpc/ppc-stackalign-1.c: Likewise.
+ * gcc.target/powerpc/ppc-ldstruct.c: Likewise.
+
+2013-02-11 Alexander Potapenko <glider@google.com>
+ Jack Howarth <howarth@bromo.med.uc.edu>
+ Jakub Jelinek <jakub@redhat.com>
+
+ PR sanitizer/55617
+ * g++.dg/asan/pr55617.C: Run on all targets.
+
+2013-02-11 Uros Bizjak <ubizjak@gmail.com>
+
+ PR rtl-optimization/56275
+ * gcc.dg/pr56275.c: New test.
+
+2013-02-11 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/56273
+ * gcc.dg/tree-ssa/vrp17.c: Disable tail-merging.
+
+2013-02-11 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/56264
+ * gcc.dg/torture/pr56264.c: New testcase.
+
+2013-02-11 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/56273
+ * g++.dg/warn/Warray-bounds-6.C: New testcase.
+ * gcc.dg/tree-ssa/pr21559.c: Adjust.
+ * gcc.dg/tree-ssa/vrp17.c: Likewise.
+ * gcc.dg/tree-ssa/vrp18.c: Likewise.
+ * gcc.dg/tree-ssa/vrp23.c: Likewise.
+ * gcc.dg/tree-ssa/vrp24.c: Likewise.
+
+2013-02-09 Uros Bizjak <ubizjak@gmail.com>
+
+ * g++.dg/asan/asan_test.C: Compile with -D__NO_INLINE__
+ for *-*-linux-gnu targets.
+ * g++.dg/asan/interception-test-1.c: Ditto.
+ * g++.dg/asan/interception-failure-test-1.C: Ditto.
+ * g++.dg/asan/interception-malloc-test-1.C: Ditto.
+
+2013-02-09 Paul Thomas <pault@gcc.gnu.org>
+
+ PR fortran/55362
+ * gfortran.dg/intrinsic_size_4.f90 : New test.
+
+2013-02-09 Jakub Jelinek <jakub@redhat.com>
+
+ PR target/56256
+ * gcc.target/powerpc/pr56256.c: New test.
+
+2013-02-08 Ian Lance Taylor <iant@google.com>
+
+ * lib/go.exp: Load timeout.exp.
+
+2013-02-08 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR rtl-optimization/56246
+ * gcc.target/i386/pr56246.c: New test.
+
+2013-02-08 Jeff Law <law@redhat.com>
+
+ PR debug/53948
+ * gcc.dg/debug/dwarf2/pr53948.c: New test.
+
+2013-02-08 Michael Meissner <meissner@linux.vnet.ibm.com>
+
+ PR target/56043
+ * gcc.target/powerpc/vsx-mass-1.c: Only run this test on
+ powerpc*-*-linux*.
+
+2013-02-08 Edgar E. Iglesias <edgar.iglesias@gmail.com>
+
+ * 20101011-1.c: Add __MICROBLAZE__ exception to set DO_TEST 0
+
+2013-02-08 Jakub Jelinek <jakub@redhat.com>
+
+ PR rtl-optimization/56195
+ * gcc.dg/torture/pr56195.c: New test.
+
+2013-02-08 Mikael Morin <mikael@gcc.gnu.org>
+
+ PR fortran/54107
+ * gfortran.dg/recursive_interface_2.f90: New test.
+
+2013-02-08 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/56250
+ * gcc.c-torture/execute/pr56250.c: New test.
+
+2013-02-08 Georg-Johann Lay <avr@gjlay.de>
+
+ PR tree-optimization/56064
+ * gcc.dg/fixed-point/view-convert-2.c: New test.
+
+2013-02-08 Michael Matz <matz@suse.de>
+
+ PR tree-optimization/52448
+ * gcc.dg/pr52448.c: New test.
+
+2013-02-08 Richard Biener <rguenther@suse.de>
+
+ PR middle-end/56181
+ * gcc.dg/torture/pr56181.c: New testcase.
+
+2013-02-08 Georg-Johann Lay <avr@gjlay.de>
+
+ PR target/54222
+ * gcc.target/avr/torture/builtins-4-roundfx.c: New test.
+ * gcc.target/avr/torture/builtins-5-countlsfx.c: New test.
+
+2013-02-07 Jakub Jelinek <jakub@redhat.com>
+
+ PR c++/56241
+ * g++.dg/parse/crash61.C: New test.
+
+ PR c++/56239
+ * g++.dg/parse/pr56239.C: New test.
+
+ PR c++/56237
+ * g++.dg/abi/mangle61.C: New test.
+
+2013-02-07 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR rtl-optimization/56225
+ * gcc.target/i386/pr56225.c: New test.
+
+2013-02-07 Jakub Jelinek <jakub@redhat.com>
+
+ PR debug/56154
+ * gcc.dg/guality/pr56154-1.c: New test.
+ * gcc.dg/guality/pr56154-2.c: New test.
+ * gcc.dg/guality/pr56154-3.c: New test.
+ * gcc.dg/guality/pr56154-4.c: New test.
+ * gcc.dg/guality/pr56154-aux.c: New file.
+
+ PR tree-optimization/55789
+ * g++.dg/ipa/inline-3.C: Use cleanup-ipa-dump instead of
+ cleanup-tree-dump.
+ * gcc.dg/tree-ssa/inline-3.c: Add
+ --param max-early-inliner-iterations=2 option.
+
+2013-02-07 Rainer Orth <ro@CeBiTec.Uni-Bielefeld.DE>
+
+ PR debug/53363
+ * g++.dg/debug/dwarf2/thunk1.C: Restrict to 32-bit x86.
+ Add -fno-dwarf2-cfi-asm to dg-options.
+ Adapt match count.
+
+2013-02-07 Jakub Jelinek <jakub@redhat.com>
+
+ PR target/56228
+ * gcc.dg/pr56228.c: New test.
+
+2013-02-07 Alan Modra <amodra@gmail.com>
+
+ PR target/54009
+ * gcc.target/powerpc/pr54009.c: New test.
+ PR target/54131
+ * gfortran.dg/pr54131.f: New test.
+
+2013-02-06 Paul Thomas <pault@gcc.gnu.org>
+
+ PR fortran/55789
+ * gfortran.dg/array_constructor_41.f90: New test.
+
+2013-02-06 Janus Weil <janus@gcc.gnu.org>
+
+ PR fortran/55978
+ * gfortran.dg/class_optional_2.f90: Uncomment some cases
+ which work now.
+
+2013-02-06 Jakub Jelinek <jakub@redhat.com>
+
+ PR middle-end/56217
+ * g++.dg/gomp/pr56217.C: New test.
+
+2013-02-05 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/56205
+ * gcc.dg/tree-ssa/stdarg-6.c: New test.
+ * gcc.c-torture/execute/pr56205.c: New test.
+
+2013-02-05 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/53342
+ PR tree-optimization/53185
+ * gcc.dg/vect/pr53185-2.c: New testcase.
+
+2013-02-05 Jan Hubicka <jh@suse.cz>
+
+ PR tree-optimization/55789
+ * g++.dg/tree-ssa/inline-1.C: Update max-inliner-iterations.
+ * g++.dg/tree-ssa/inline-2.C: Update max-inliner-iterations.
+ * g++.dg/tree-ssa/inline-3.C: Update max-inliner-iterations.
+ * g++.dg/ipa/inline-1.C: New testcase.
+ * g++.dg/ipa/inline-2.C: New testcase.
+ * g++.dg/ipa/inline-3.C: New testcase.
+
+2013-02-05 Jan Hubicka <jh@suse.cz>
+
+ PR tree-optimization/55789
+ * g++.dg/torture/pr55789.C: New testcase.
+
+2013-02-05 Jakub Jelinek <jakub@redhat.com>
+
+ PR middle-end/56167
+ * gcc.dg/pr56167.c: New test.
+
+2013-02-04 Oleg Endo <olegendo@gcc.gnu.org>
+
+ PR target/55146
+ * gcc.target/sh/pr55146.c: New.
+
+2013-02-04 Oleg Endo <olegendo@gcc.gnu.org>
+
+ PR tree-optimization/54386
+ * gcc.target/sh/pr54386.c: New.
+
+2013-02-04 Paul Thomas <pault@gcc.gnu.org>
+
+ PR fortran/56008
+ * gfortran.dg/realloc_on _assign_16.f90 : New test.
+
+ PR fortran/47517
+ * gfortran.dg/realloc_on _assign_17.f90 : New test.
+
+2013-02-04 Alexander Potapenko <glider@google.com>
+ Jack Howarth <howarth@bromo.med.uc.edu>
+ Jakub Jelinek <jakub@redhat.com>
+
+ PR sanitizer/55617
+ * g++.dg/asan/pr55617.C: New test.
+
+2013-02-04 Mikael Morin <mikael@gcc.gnu.org>
+
+ PR fortran/54195
+ * gfortran.dg/typebound_operator_19.f90: New test.
+ * gfortran.dg/typebound_assignment_4.f90: New test.
+
+2013-02-04 Mikael Morin <mikael@gcc.gnu.org>
+
+ PR fortran/54107
+ * gfortran.dg/recursive_interface_1.f90: New test.
+
+2013-02-04 Richard Guenther <rguenther@suse.de>
+
+ PR lto/56168
+ * gcc.dg/lto/pr56168_0.c: New testcase.
+ * gcc.dg/lto/pr56168_1.c: Likewise.
+
+2013-02-02 Thomas Koenig <tkoenig@gcc.gnu.org>
+
+ PR fortran/50627
+ PR fortran/56054
+ * gfortran.dg/block_12.f90: New test.
+ * gfortran.dg/module_error_1.f90: New test.
+
+2013-02-02 Richard Sandiford <rdsandiford@googlemail.com>
+
+ * lib/target-supports.exp (check_effective_target_vect_float)
+ (check_effective_target_vect_no_align): Add mips-sde-elf.
+
+2013-02-01 Jakub Jelinek <jakub@redhat.com>
+
+ * lib/gcc-dg.exp (restore-target-env-var): Avoid using lreverse.
+
+2013-02-01 David Edelsohn <dje.gcc@gmail.com>
+
+ * gcc.dg/pr56023.c: XFAIL on AIX.
+ * gcc.dg/vect/pr49352.c: Same.
+
+2013-02-01 Eric Botcazou <ebotcazou@adacore.com>
+
+ * gnat.dg/opt26.adb: New test.
+
+2013-01-31 Ramana Radhakrishnan <ramana.radhakrishnan@arm.com>
+
+ Revert.
+ 2013-01-27 Amol Pise <amolpise15@gmail.com>
+
+ * gcc.target/arm/neon-vfnms-1.c: New test.
+ * gcc.target/arm/neon-vfnma-1.c: New test.
+
+2013-01-31 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/56157
+ * gcc.dg/torture/pr56157.c: New testcase.
+
+2013-01-30 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/56150
+ * gcc.dg/torture/pr56150.c: New testcase.
+
+2013-01-30 Jakub Jelinek <jakub@redhat.com>
+
+ PR sanitizer/55374
+ * g++.dg/asan/large-func-test-1.C: Allow both _Zna[jm] in addition
+ to _Znw[jm] in the backtrace. Allow _Zna[jm] to be the first frame
+ printed in backtrace.
+ * g++.dg/asan/deep-stack-uaf-1.C: Use malloc instead of operator new
+ to avoid errors about mismatched allocation vs. deallocation.
+
+ PR c++/55742
+ * g++.dg/mv1.C: Moved to...
+ * g++.dg/ext/mv1.C: ... here. Adjust test.
+ * g++.dg/mv2.C: Moved to...
+ * g++.dg/ext/mv2.C: ... here. Adjust test.
+ * g++.dg/mv3.C: Moved to...
+ * g++.dg/ext/mv3.C: ... here.
+ * g++.dg/mv4.C: Moved to...
+ * g++.dg/ext/mv4.C: ... here.
+ * g++.dg/mv5.C: Moved to...
+ * g++.dg/ext/mv5.C: ... here. Adjust test.
+ * g++.dg/mv6.C: Moved to...
+ * g++.dg/ext/mv6.C: ... here. Adjust test.
+ * g++.dg/ext/mv7.C: New test.
+ * g++.dg/ext/mv8.C: New test.
+ * g++.dg/ext/mv9.C: New test.
+ * g++.dg/ext/mv10.C: New test.
+ * g++.dg/ext/mv11.C: New test.
+
+2013-01-30 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR rtl-optimization/56144
+ * gcc.dg/pr56144.c: New.
+
+2013-01-30 David Edelsohn <dje.gcc@gmail.com>
+
+ * g++.dg/cpp0x/constexpr-53094-2.C: Ignore non-standard ABI
+ message.
+ * g++.dg/cpp0x/constexpr-53094-3.C: Same.
+ * g++.dg/cpp0x/constexpr-55573.C: Same
+
+2013-01-30 Georg-Johann Lay <avr@gjlay.de>
+
+ PR tree-optimization/56064
+ * gcc.dg/fixed-point/view-convert.c: New test.
+
+2013-01-30 Andreas Schwab <schwab@suse.de>
+
+ * lib/target-supports-dg.exp (dg-process-target): Use expr to
+ evaluate the end index in string range.
+
+2013-01-30 Tobias Burnus <burnus@net-b.de>
+
+ PR fortran/56138
+ * gfortran.dg/allocatable_function_6.f90: New.
+
+2013-01-29 Janus Weil <janus@gcc.gnu.org>
+ Mikael Morin <mikael@gcc.gnu.org>
+
+ PR fortran/54107
+ * gfortran.dg/proc_ptr_comp_36.f90: New.
+
+2013-01-29 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/55270
+ * gcc.dg/torture/pr55270.c: New testcase.
+
+2013-01-28 Jakub Jelinek <jakub@redhat.com>
+
+ PR rtl-optimization/56117
+ * gcc.dg/pr56117.c: New test.
+
+2013-01-28 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/56034
+ * gcc.dg/torture/pr56034.c: New testcase.
+
+2013-01-28 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/56125
+ * gcc.dg/pr56125.c: New test.
+
+2013-01-28 Tobias Burnus <burnus@net-b.de>
+ Mikael Morin <mikael@gcc.gnu.org>
+
+ PR fortran/53537
+ * gfortran.dg/import2.f90: Adjust undeclared type error messages.
+ * gfortran.dg/import8.f90: Likewise.
+ * gfortran.dg/interface_derived_type_1.f90: Likewise.
+ * gfortran.dg/import10.f90: New test.
+ * gfortran.dg/import11.f90: Likewise
+
+2013-01-28 Jakub Jelinek <jakub@redhat.com>
+
+ PR testsuite/56053
+ * c-c++-common/asan/heap-overflow-1.c: Don't include stdlib.h and
+ string.h. Provide memset, malloc and free prototypes, adjust line
+ numbers in dg-output.
+ * c-c++-common/asan/stack-overflow-1.c: Don't include string.h.
+ Provide memset prototype and adjust line numbers in dg-output.
+ * c-c++-common/asan/global-overflow-1.c: Likewise.
+
+ PR tree-optimization/56094
+ * gcc.dg/pr56094.c: New test.
+
+2013-01-27 Amol Pise <amolpise15@gmail.com>
+
+ * gcc.target/arm/neon-vfnms-1.c: New test.
+ * gcc.target/arm/neon-vfnma-1.c: New test.
+
+2013-01-27 Uros Bizjak <ubizjak@gmail.com>
+
+ PR target/56114
+ * gcc.target/i386/pr56114.c: New test.
+
+2013-01-27 Paul Thomas <pault@gcc.gnu.org>
+
+ PR fortran/55984
+ * gfortran.dg/associate_14.f90: New test.
+
+ PR fortran/56047
+ * gfortran.dg/associate_13.f90: New test.
+
+2013-01-25 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/56098
+ * gcc.dg/pr56098-1.c: New test.
+ * gcc.dg/pr56098-2.c: New test.
+
+2013-01-25 Georg-Johann Lay <avr@gjlay.de>
+
+ PR target/54222
+ * gcc.target/avr/torture/builtins-3-absfx.c: New test.
+
+2013-01-22 Marek Polacek <polacek@redhat.com>
+
+ PR tree-optimization/56035
+ * gcc.dg/pr56035.c: New test.
+
+2013-01-24 Richard Sandiford <rdsandiford@googlemail.com>
+
+ * gfortran.dg/bind_c_array_params_2.f90: Require -mno-relax-pic-calls
+ for MIPS.
+
+2013-01-24 Richard Sandiford <rdsandiford@googlemail.com>
+
+ * gcc.target/mips/octeon-pipe-1.c: Add -ffat-lto-objects
+
+2013-01-24 Jakub Jelinek <jakub@redhat.com>
+
+ PR c/56078
+ * gcc.dg/pr56078.c: New test.
+ * gcc.c-torture/compile/20030305-1.c: Add dg-error lines.
+
+2013-01-24 Martin Jambor <mjambor@suse.cz>
+
+ PR tree-optimization/55927
+ * g++.dg/ipa/devirt-10.C: Disable early inlining.
+
+2013-01-24 Uros Bizjak <ubizjak@gmail.com>
+
+ * gcc.target/i386/movsd.c: New test.
+
+2013-01-24 Steven Bosscher <steven@gcc.gnu.org>
+
+ PR inline-asm/55934
+ * gcc.target/i386/pr55934.c: New test.
+
+2013-01-23 Janus Weil <janus@gcc.gnu.org>
+
+ PR fortran/56081
+ * gfortran.dg/select_8.f90: New.
+
+2013-01-23 David Holsgrove <david.holsgrove@xilinx.com>
+
+ * gcc.target/microblaze/microblaze.exp: Remove
+ target_config_cflags check.
+
+2013-01-23 Jakub Jelinek <jakub@redhat.com>
+
+ PR fortran/56052
+ * gfortran.dg/gomp/pr56052.f90: New test.
+
+ PR target/49069
+ * gcc.dg/pr49069.c: New test.
+
+2013-01-22 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/55944
+ * g++.dg/cpp0x/constexpr-static10.C: New.
+
+2013-01-22 Uros Bizjak <ubizjak@gmail.com>
+
+ PR target/56028
+ * gcc.target/i386/pr56028.c: New test.
+
+2013-01-22 Jakub Jelinek <jakub@redhat.com>
+
+ PR target/55686
+ * gcc.target/i386/pr55686.c: New test.
+
+2013-01-22 Dodji Seketeli <dodji@redhat.com>
+
+ PR c++/53609
+ * g++.dg/cpp0x/variadic139.C: New test.
+ * g++.dg/cpp0x/variadic140.C: Likewise.
+ * g++.dg/cpp0x/variadic141.C: Likewise.
+
+2013-01-22 Eric Botcazou <ebotcazou@adacore.com>
+
+ * gnat.dg/warn8.adb: New test.
+
+2013-01-21 Thomas Koenig <tkoenig@gcc.gnu.org>
+
+ PR fortran/55919
+ * gfortran.dg/include_8.f90: New test.
+
+2013-01-21 Uros Bizjak <ubizjak@gmail.com>
+
+ * gcc.dg/tree-ssa/pr55579.c: Cleanup esra tree dump.
+ * gfortran.dg/unlimited_polymorphic_8.f90: Cleanup original tree dump.
+
+2013-01-21 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/56051
+ * gcc.c-torture/execute/pr56051.c: New test.
+
+2013-01-21 Uros Bizjak <ubizjak@gmail.com>
+
+ PR rtl-optimization/56023
+ * gcc.dg/pr56023.c: New test.
+
+2013-01-21 Martin Jambor <mjambor@suse.cz>
+
+ PR middle-end/56022
+ * gcc.target/i386/pr56022.c: New test.
+
+2013-01-21 Jason Merrill <jason@redhat.com>
+
+ * lib/target-supports.exp (check_effective_target_alias): New.
+
+2013-01-20 Jack Howarth <howarth@bromo.med.uc.edu>
+
+ PR debug/53235
+ * g++.dg/debug/dwarf2/nested-4.C: XFAIL on darwin.
+
+2013-01-20 Hans-Peter Nilsson <hp@axis.com>
+
+ * gfortran.dg/inquire_10.f90: Run only for non-newlib targets.
+
+2013-01-19 Jeff Law <law@redhat.com>
+
+ PR tree-optimization/52631
+ * tree-ssa/pr52631.c: New test.
+ * tree-ssa/ssa-fre-9: Update expected output.
+
+2013-01-19 Anthony Green <green@moxielogic.com>
+
+ * gcc.dg/tree-ssa/asm-2.c (REGISTER): Pick an appropriate register
+ for moxie.
+
+2013-01-18 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/56029
+ * g++.dg/torture/pr56029.C: New test.
+
+2013-01-18 Sharad Singhai <singhai@google.com>
+
+ PR tree-optimization/55995
+ * gcc.dg/vect/vect.exp: Use "details" flags for dump info.
+
+2013-01-18 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR target/55433
+ * gcc.target/i386/pr55433.c: New.
+
+2013-01-18 Jakub Jelinek <jakub@redhat.com>
+
+ PR middle-end/56015
+ * gfortran.dg/pr56015.f90: New test.
+
+2013-01-18 Janis Johnson <janisjo@codesourcery.com>
+
+ * gcc.dg/vect/vect-multitypes-12.c: Refactor dg-final directive.
+
+2013-01-18 James Greenhalgh <james.greenhalgh@arm.com>
+
+ * gcc.target/aarch64/vect-fcm-gt-f.c: Change expected output.
+ * gcc.target/aarch64/vect-fcm-gt-d.c: Likewise.
+ * gcc.target/aarch64/vect-fcm-ge-f.c: Likewise.
+ * gcc.target/aarch64/vect-fcm-ge-d.c: Likewise.
+ * gcc.target/aarch64/vect-fcm-eq-f.c: Likewise.
+
+2013-01-17 Jeff Law <law@redhat.com>
+
+ * gcc.dg/pr52573.c: Move to...
+ * gcc.target/m68k/pr52573.c: Here. Eliminate target selector.
+
+ PR rtl-optimization/52573
+ * gcc.dg/pr52573.c: New test.
+
+2013-01-17 Jack Howarth <howarth@bromo.med.uc.edu>
+
+ PR sanitizer/55679
+ * g++.dg/asan/interception-test-1.C: Skip on darwin.
+ * lib/target-supports.exp (check_effective_target_swapcontext): Use
+ check_no_compiler_messages to test support in ucontext.h.
+ (check_effective_target_setrlimit): Return 0 for Darwin's non-posix
+ compliant RLIMIT_AS.
+
+2013-01-17 Marek Polacek <polacek@redhat.com>
+
+ PR rtl-optimization/55833
+ * gcc.dg/pr55833.c: New test.
+
+2013-01-17 Jan Hubicka <jh@suse.cz>
+
+ PR tree-optimization/55273
+ * gcc.c-torture/compile/pr55273.c: New testcase.
+
+2013-01-17 Uros Bizjak <ubizjak@gmail.com>
+
+ PR target/55981
+ * gcc.target/pr55981.c: New test.
+
+2013-01-17 Janis Johnson <janisjo@codesourcery.com>
+
+ * gcc.target/arm/pr40887.c: Require at least armv5.
+ * gcc.target/arm/pr51835.c: Avoid conflicts with multilib flags.
+ * gcc.target/arm/pr51915.c: Likewise.
+ * gcc.target/arm/pr52006.c: Likewise.
+ * gcc.target/arm/pr53187.c: Likewise.
+
+ * gcc.target/arm/ftest-support.h: Replace for compile-only tests.
+ * gcc.target/arm/ftest-support-arm.h: Delete.
+ * gcc.target/arm/ftest-support-thumb.h: Delete.
+ * gcc.target/arm/ftest-armv4-arm.c: Replace with compile-only test.
+ * gcc.target/arm/ftest-armv4t-arm.c: Likewise.
+ * gcc.target/arm/ftest-armv4t-thumb.c: Likewise.
+ * gcc.target/arm/ftest-armv5t-arm.c: Likewise.
+ * gcc.target/arm/ftest-armv5t-thumb.c: Likewise.
+ * gcc.target/arm/ftest-armv5te-arm.c: Likewise.
+ * gcc.target/arm/ftest-armv5te-thumb.c: Likewise.
+ * gcc.target/arm/ftest-armv6-arm.c: Likewise.
+ * gcc.target/arm/ftest-armv6-thumb.c: Likewise.
+ * gcc.target/arm/ftest-armv6k-arm.c: Likewise.
+ * gcc.target/arm/ftest-armv6k-thumb.c: Likewise.
+ * gcc.target/arm/ftest-armv6m-thumb.c: Likewise.
+ * gcc.target/arm/ftest-armv6t2-arm.c: Likewise.
+ * gcc.target/arm/ftest-armv6t2-thumb.c: Likewise.
+ * gcc.target/arm/ftest-armv6z-arm.c: Likewise.
+ * gcc.target/arm/ftest-armv6z-thumb.c: Likewise.
+ * gcc.target/arm/ftest-armv7a-arm.c: Likewise.
+ * gcc.target/arm/ftest-armv7a-thumb.c: Likewise.
+ * gcc.target/arm/ftest-armv7em-thumb.c: Likewise.
+ * gcc.target/arm/ftest-armv7m-thumb.c: Likewise.
+ * gcc.target/arm/ftest-armv7r-arm.c: Likewise.
+ * gcc.target/arm/ftest-armv7r-thumb.c: Likewise.
+ * gcc.target/arm/ftest-armv8a-arm.c: Likewise.
+ * gcc.target/arm/ftest-armv8a-thumb.c: Likewise.
+
+2013-01-17 Martin Jambor <mjambor@suse.cz>
+
+ PR tree-optimizations/55264
+ * g++.dg/ipa/pr55264.C: New test.
+
+2013-01-16 Janus Weil <janus@gcc.gnu.org>
+
+ PR fortran/55983
+ * gfortran.dg/class_55.f90: New.
+
+2013-01-16 Janis Johnson <janisjo@codesourcery.com>
+
+ PR testsuite/55994
+ * gcc.c-torture/execute/builtins/builtins.exp: Add
+ -Wl,--allow-multiple-definition for eabi and elf targets.
+
+ PR testsuite/54622
+ * lib/target-supports.exp (check_effective_target_vect_perm_byte,
+ check_effective_target_vect_perm_short,
+ check_effective_target_vect_widen_mult_qi_to_hi_pattern,
+ check_effective_target_vect64): Return 0 for big-endian ARM.
+ (check_effective_target_vect_widen_sum_qi_to_hi): Return 1 for ARM.
+
+ * gcc.target/arm/neon-vld1_dupQ.c: Use types that match function
+ prototypes.
+
+2013-01-16 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/55964
+ * gcc.dg/torture/pr55964.c: New testcase.
+
+2013-01-16 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/54767
+ PR tree-optimization/53465
+ * gfortran.fortran-torture/execute/pr54767.f90: New testcase.
+
+2013-01-16 Christian Bruel <christian.bruel@st.com>
+
+ PR target/55301
+ * gcc.target/sh/sh-switch.c: New testcase.
+
+2013-01-15 Janis Johnson <janisjo@codesourcery.com>
+
+ * gcc.dg/webizer.c: Increase the array size.
+
+2013-01-15 Jakub Jelinek <jakub@redhat.com>
+
+ PR target/55940
+ * gcc.dg/pr55940.c: New test.
+
+2013-01-15 Manfred Schwarb <manfred99@gmx.ch>
+ Harald Anlauf <anlauf@gmx.de>
+
+ * gfortran.dg/bounds_check_4.f90: Add dg-options "-fbounds-check".
+ * gfortran.dg/bounds_check_5.f90: Likewise.
+ * gfortran.dg/class_array_10.f03: Fix syntax of dg-directive.
+ * gfortran.dg/continuation_9.f90: Likewise.
+ * gfortran.dg/move_alloc_13.f90: Likewise.
+ * gfortran.dg/structure_constructor_11.f90: Likewise.
+ * gfortran.dg/tab_continuation.f: Likewise.
+ * gfortran.dg/warning-directive-2.F90: Likewise.
+ * gfortran.dg/coarray_lib_token_4.f90: Remove misspelled directive.
+
+2013-01-15 Janis Johnson <janisjo@codesourcery.com>
+
+ * gcc.target/arm/fma.c: Skip for conflicting multilib options.
+ * gcc.target/arm/fma-sp.c: Likewise.
+
+2013-01-15 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR rtl-optimization/55153
+ * gcc.dg/pr55153.c: New.
+
+2013-01-15 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/55920
+ * gcc.c-torture/compile/pr55920.c: New test.
+
+2013-01-15 Richard Biener <rguenther@suse.de>
+
+ PR middle-end/55882
+ * gcc.dg/torture/pr55882.c: New testcase.
+
+2013-01-15 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/55955
+ * gcc.c-torture/compile/pr55955.c: New test.
+
+2013-01-15 Dodji Seketeli <dodji@redhat.com>
+
+ PR c++/55663
+ * g++.dg/cpp0x/alias-decl-31.C: New test.
+
+2013-01-15 Paul Thomas <pault@gcc.gnu.org>
+
+ PR fortran/54286
+ * gfortran.dg/proc_ptr_result_8.f90 : Add module 'm' to check
+ case where interface is null.
+
+2013-01-14 Thomas Koenig <tkoenig@gcc.gnu.org>
+
+ PR fortran/55806
+ * gfortran.dg/array_constructor_40.f90: New test.
+
+2013-01-14 Richard Sandiford <rdsandiford@googlemail.com>
+
+ * gcc.dg/tree-ssa/slsr-8.c: Allow widening multiplications.
+
+2013-01-14 Tejas Belagod <tejas.belagod@arm.com>
+
+ * gcc.target/aarch64/aarch64/vect-ld1r-compile-fp.c: New.
+ * gcc.target/aarch64/vect-ld1r-compile.c: New.
+ * gcc.target/aarch64/vect-ld1r-fp.c: New.
+ * gcc.target/aarch64/vect-ld1r.c: New.
+ * gcc.target/aarch64/vect-ld1r.x: New.
+
+2013-01-14 Andi Kleen <ak@linux.intel.com>
+
+ PR target/55948
+ * gcc.target/i386/hle-clear-rel.c: New file
+ * gcc.target/i386/hle-store-rel.c: New file.
+
+2013-01-14 Harald Anlauf <anlauf@gmx.de>
+
+ * gfortran.dg/aint_anint_1.f90: Add dg-do run.
+ * gfortran.dg/bounds_check_4.f90: Likewise.
+ * gfortran.dg/inquire_10.f90: Likewise.
+ * gfortran.dg/minloc_3.f90: Likewise.
+ * gfortran.dg/minlocval_3.f90: Likewise.
+ * gfortran.dg/module_double_reuse.f90: Likewise.
+ * gfortran.dg/mvbits_1.f90: Likewise.
+ * gfortran.dg/oldstyle_1.f90: Likewise.
+ * gfortran.dg/pr20163-2.f: Likewise.
+ * gfortran.dg/save_1.f90: Likewise.
+ * gfortran.dg/scan_1.f90: Likewise.
+ * gfortran.dg/select_char_1.f90: Likewise.
+ * gfortran.dg/shape_4.f90: Likewise.
+ * gfortran.dg/coarray_29_2.f90: Fix dg-do directive.
+ * gfortran.dg/function_optimize_10.f90: Likewise.
+ * gfortran.dg/gomp/appendix-a/a.11.2.f90: Likewise.
+ * gfortran.dg/used_types_17.f90: Likewise.
+ * gfortran.dg/used_types_18.f90: Likewise.
+
+2013-01-13 Paul Thomas <pault@gcc.gnu.org>
+
+ PR fortran/54286
+ * gfortran.dg/proc_ptr_result_8.f90 : New test.
+
+2013-01-13 Richard Sandiford <rdsandiford@googlemail.com>
+
+ * gcc.dg/unroll_5.c: Add nomips16 attributes.
+
+2013-01-13 Richard Sandiford <rdsandiford@googlemail.com>
+
+ * gcc.dg/tree-ssa/ssa-dom-thread-4.c: Update expected results for MIPS.
+
+2013-01-12 Janus Weil <janus@gcc.gnu.org>
+
+ PR fortran/55072
+ * gfortran.dg/assumed_type_2.f90: Fix test case.
+ * gfortran.dg/internal_pack_13.f90: New test.
+ * gfortran.dg/internal_pack_14.f90: New test.
+
+2013-01-08 Paul Thomas <pault@gcc.gnu.org>
+
+ PR fortran/55868
+ * gfortran.dg/unlimited_polymorphic_8.f90: Update
+ scan-tree-dump-times for foo.0.x._vptr to deal with change from
+ $tar to STAR.
+
+2013-01-11 Andreas Schwab <schwab@linux-m68k.org>
+
+ * gcc.c-torture/compile/pr55921.c: Don't use matching constraints.
+
+2013-01-11 Andreas Krebbel <Andreas.Krebbel@de.ibm.com>
+
+ PR target/55719
+ * gcc.target/s390/pr55719.c: New testcase.
+
+2013-01-11 Richard Guenther <rguenther@suse.de>
+
+ PR tree-optimization/44061
+ * gcc.dg/pr44061.c: New testcase.
+
+2013-01-10 Richard Sandiford <rdsandiford@googlemail.com>
+
+ Update copyright years.
+
+2013-01-10 Aldy Hernandez <aldyh@redhat.com>
+ Jakub Jelinek <jakub@redhat.com>
+
+ PR target/55565
+ * gcc.target/powerpc/ppc-mov-1.c: Update scan-assembler-not regex.
+
+2013-01-10 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR rtl-optimization/55672
+ * gcc.target/i386/pr55672.c: New.
+
+2013-01-10 Jeff Law <law@redhat.com>
+
+ * gcc/dg/tree-ssa/vrp06.c: Tighten expected output. Make each
+ pass/fail message unique.
+
+
+2013-01-10 Jason Merrill <jason@redhat.com>
+
+ * ada/.gitignore: New.
+
+2013-01-10 Rainer Orth <ro@CeBiTec.Uni-Bielefeld.DE>
+
+ * g++.dg/tls/thread_local-cse.C: Don't xfail on *-*-solaris2.9.
+ Add tls options.
+ * g++.dg/tls/thread_local2.C: Likewise.
+ * g++.dg/tls/thread_local2g.C: Likewise.
+ * g++.dg/tls/thread_local6.C: Likewise.
+ * g++.dg/tls/thread_local-order1.C: Add tls options.
+ * g++.dg/tls/thread_local-order2.C: Likewise.
+ * g++.dg/tls/thread_local3.C: Likewise.
+ * g++.dg/tls/thread_local3g.C: Likewise.
+ * g++.dg/tls/thread_local4.C: Likewise.
+ * g++.dg/tls/thread_local4g.C: Likewise.
+ * g++.dg/tls/thread_local5.C: Likewise.
+ * g++.dg/tls/thread_local5g.C: Likewise.
+ * g++.dg/tls/thread_local6g.C: Likewise.
+
+2013-01-10 Kostya Serebryany <kcc@google.com>
+
+ * g++.dg/asan/asan_test.cc: Sync from upstream.
+
+2013-01-10 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/55921
+ * gcc.c-torture/compile/pr55921.c: New test.
+
+2013-01-09 Jan Hubicka <jh@suse.cz>
+
+ PR tree-optimization/55569
+ * gcc.c-torture/compile/pr55569.c: New testcase.
+
+2013-01-09 Mikael Morin <mikael@gcc.gnu.org>
+
+ PR fortran/47203
+ * gfortran.dg/use_28.f90: New test.
+
+2013-01-09 Uros Bizjak <ubizjak@gmail.com>
+
+ * gfortran.dg/intrinsic_size_3.f90: Make scan-tree-dump-times
+ number matching more robust.
+
+2013-01-09 Vladimir Makarov <vmakarov@redhat.com>
+
+ PR rtl-optimization/55829
+ * gcc.target/i386/pr55829.c: New.
+
+2013-01-09 Tobias Burnus <burnus@net-b.de>
+
+ PR fortran/55758
+ * gfortran.dg/bind_c_bool_1.f90: New.
+ * gfortran.dg/do_5.f90: Add dg-warning.
+
+2013-01-09 Jan Hubicka <jh@suse.cz>
+
+ PR tree-optimization/55875
+ * gcc.c-torture/execute/pr55875.c: New testcase.
+ * g++.dg/torture/pr55875.C: New testcase.
+
+2013-01-09 Jakub Jelinek <jakub@redhat.com>
+
+ PR c/48418
+ * c-c++-common/pr48418.c: New test.
+
+2013-01-09 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/55801
+ * g++.dg/tls/thread_local-ice.C: New.
+
+2013-01-09 Andreas Schwab <schwab@suse.de>
+
+ * gcc.dg/guality/pr54693.c: Null-terminate arr.
+
+2013-01-09 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/48189
+ * gcc.dg/pr48189.c: New test.
+
+2013-01-04 Jan Hubicka <jh@suse.cz>
+
+ PR tree-optimization/55823
+ * g++.dg/ipa/devirt-10.C: New testcase.
+
+2013-01-08 Uros Bizjak <ubizjak@gmail.com>
+ Vladimir Yakovlev <vladimir.b.yakovlev@intel.com>
+
+ PR rtl-optimization/55845
+ * gcc.target/i386/pr55845.c: New test.
+
+2013-01-08 Tejas Belagod <tejas.belagod@arm.com>
+
+ * gcc.target/aarch64/vect-mull-compile.c: Explicitly scan for
+ instructions generated instead of number of occurances.
+
+2013-01-08 James Greenhalgh <james.greenhalgh@arm.com>
+
+ * gcc.target/aarch64/vect-fcm-eq-d.c: New.
+ * gcc.target/aarch64/vect-fcm-eq-f.c: Likewise.
+ * gcc.target/aarch64/vect-fcm-ge-d.c: Likewise.
+ * gcc.target/aarch64/vect-fcm-ge-f.c: Likewise.
+ * gcc.target/aarch64/vect-fcm-gt-d.c: Likewise.
+ * gcc.target/aarch64/vect-fcm-gt-f.c: Likewise.
+ * gcc.target/aarch64/vect-fcm.x: Likewise.
+ * lib/target-supports.exp
+ (check_effective_target_vect_cond): Enable for AArch64.
+
+2013-01-08 James Greenhalgh <james.greenhalgh@arm.com>
+
+ * gcc.target/aarch64/vsqrt.c (test_square_root_v2sf): Use
+ endian-safe float pool loading.
+ (test_square_root_v4sf): Likewise.
+ (test_square_root_v2df): Likewise.
+ * lib/target-supports.exp
+ (check_effective_target_vect_call_sqrtf): Add AArch64.
+
+2013-01-08 Martin Jambor <mjambor@suse.cz>
+
+ PR debug/55579
+ * gcc.dg/tree-ssa/pr55579.c: New test.
+
+2013-01-08 Rainer Orth <ro@CeBiTec.Uni-Bielefeld.DE>
+
+ * g++.dg/debug/dwarf2/pr54508.C: Allow for more whitespace after
+ asm comments.
+
+2013-01-08 Jakub Jelinek <jakub@redhat.com>
+
+ PR middle-end/55890
+ * gcc.dg/torture/pr55890-3.c: New test.
+
+ PR middle-end/55851
+ * gcc.c-torture/compile/pr55851.c: New test.
+
+ PR sanitizer/55844
+ * c-c++-common/asan/null-deref-1.c: Add -fno-shrink-wrap to
+ dg-options.
+
+2013-01-08 Paul Thomas <pault@gcc.gnu.org>
+
+ PR fortran/55618
+ * gfortran.dg/elemental_scalar_args_2.f90: New test.
+
+2013-01-07 Tobias Burnus <burnus@net-b.de>
+
+ PR fortran/55763
+ * gfortran.dg/pointer_init_2.f90: Update dg-error.
+ * gfortran.dg/pointer_init_7.f90: New.
+
+2013-01-07 Richard Biener <rguenther@suse.de>
+
+ * gcc.dg/lto/pr55525_0.c (s): Size like char *.
+
+2013-01-07 Richard Biener <rguenther@suse.de>
+
+ PR middle-end/55890
+ * gcc.dg/torture/pr55890-1.c: New testcase.
+ * gcc.dg/torture/pr55890-2.c: Likewise.
+
+2013-01-07 James Greenhalgh <james.greenhalgh@arm.com>
+
+ * gcc.target/aarch64/fmovd.c: New.
+ * gcc.target/aarch64/fmovf.c: Likewise.
+ * gcc.target/aarch64/fmovd-zero.c: Likewise.
+ * gcc.target/aarch64/fmovf-zero.c: Likewise.
+ * gcc.target/aarch64/vect-fmovd.c: Likewise.
+ * gcc.target/aarch64/vect-fmovf.c: Likewise.
+ * gcc.target/aarch64/vect-fmovd-zero.c: Likewise.
+ * gcc.target/aarch64/vect-fmovf-zero.c: Likewise.
+
+2013-01-07 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/55888
+ PR tree-optimization/55862
+ * gcc.dg/torture/pr55888.c: New testcase.
+
+2013-01-07 Tobias Burnus <burnus@net-b.de>
+
+ PR fortran/55852
+ * gfortran.dg/intrinsic_size_3.f90: New.
+
+2013-01-07 Tobias Burnus <burnus@net-b.de>
+
+ PR fortran/55763
+ * gfortran.dg/select_type_32.f90: New.
+
+2013-01-04 Dodji Seketeli <dodji@redhat.com>
+
+ PR c++/52343
+ * g++.dg/cpp0x/alias-decl-29.C: New test.
+
+2013-01-06 Paul Thomas <pault@gcc.gnu.org>
+
+ PR fortran/53876
+ PR fortran/54990
+ PR fortran/54992
+ * gfortran.dg/class_array_15.f03: New test.
+
+2013-01-06 Mikael Morin <mikael@gcc.gnu.org>
+
+ PR fortran/42769
+ PR fortran/45836
+ PR fortran/45900
+ * gfortran.dg/use_23.f90: New test.
+ * gfortran.dg/use_24.f90: New test.
+ * gfortran.dg/use_25.f90: New test.
+ * gfortran.dg/use_26.f90: New test.
+ * gfortran.dg/use_27.f90: New test.
+
+2013-01-06 Olivier Hainque <hainque@adacore.com>
+
+ * gnat.dg/specs/clause_on_volatile.ads: New test.
+
+2013-01-06 Eric Botcazou <ebotcazou@adacore.com>
+
+ * gnat.dg/alignment10.adb: New test.
+
+2013-01-05 Steven G. Kargl <kargl@gcc.gnu.org>
+ Mikael Morin <mikael@gcc.gnu.org>
+
+ PR fortran/55827
+ * gfortran.dg/use_22.f90: New test.
+
+2013-01-04 Andrew Pinski <apinski@cavium.com>
+
+ * gcc.target/aarch64/cmp-1.c: New testcase.
+
+2013-01-04 Paul Thomas <pault@gcc.gnu.org>
+
+ PR fortran/55172
+ * gfortran.dg/select_type_31.f03: New test.
+
+2013-01-04 Paolo Carlini <paolo.carlini@oracle.com>
+
+ PR c++/54526 (again)
+ * g++.dg/cpp0x/parse2.C: Extend.
+ * g++.old-deja/g++.other/crash28.C: Adjust.
+
+2013-01-04 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/55862
+ * gcc.dg/torture/pr55862.c: New testcase.
+
+2013-01-04 Martin Jambor <mjambor@suse.cz>
+
+ PR tree-optimization/55755
+ * gcc.dg/torture/pr55755.c: New test.
+ * gcc.dg/tree-ssa/sra-13.c: Likewise.
+ * gcc.dg/tree-ssa/pr45144.c: Update.
+
+2013-01-04 Richard Biener <rguenther@suse.de>
+
+ PR middle-end/55863
+ * gcc.dg/fold-reassoc-2.c: New testcase.
+
+2013-01-04 Tobias Burnus <burnus@net-b.de>
+
+ PR fortran/55763
+ * gfortran.dg/null_7.f90: New.
+
+2013-01-04 Tobias Burnus <burnus@net-b.de>
+
+ PR fortran/55854
+ PR fortran/55763
+ * gfortran.dg/unlimited_polymorphic_3.f03: Remove invalid code.
+ * gfortran.dg/unlimited_polymorphic_7.f90: New.
+ * gfortran.dg/unlimited_polymorphic_8.f90: New.
+
+2013-01-03 Richard Sandiford <rdsandiford@googlemail.com>
+
+ * gcc.dg/torture/tls/tls-reload-1.c (main): Make testing more thorough.
+
+2013-01-03 Janus Weil <janus@gcc.gnu.org>
+
+ PR fortran/55855
+ * gfortran.dg/assignment_1.f90: Modified.
+ * gfortran.dg/assignment_4.f90: New.
+
+2013-01-03 David Edelsohn <dje.gcc@gmail.com>
+
+ * gcc.dg/torture/tls/tls-reload-1.c: Add tls options.
+
+2013-01-03 Richard Biener <rguenther@suse.de>
+
+ PR tree-optimization/55857
+ * gcc.dg/vect/pr55857-1.c: New testcase.
+ * gcc.dg/vect/pr55857-2.c: Likewise.
+
+2013-01-03 Jakub Jelinek <jakub@redhat.com>
+
+ PR rtl-optimization/55838
+ * gcc.dg/pr55838.c: New test.
+
+ PR tree-optimization/55832
+ * gcc.c-torture/compile/pr55832.c: New test.
+
+2013-01-02 Teresa Johnson <tejohnson@google.com>
+
+ * gcc.dg/tree-ssa/loop-1.c: Update expected dump message.
+ * gcc.dg/tree-ssa/loop-23.c: Ditto.
+ * gcc.dg/tree-ssa/cunroll-1.c: Ditto.
+ * gcc.dg/tree-ssa/cunroll-2.c: Ditto.
+ * gcc.dg/tree-ssa/cunroll-3.c: Ditto.
+ * gcc.dg/tree-ssa/cunroll-4.c: Ditto.
+ * gcc.dg/tree-ssa/cunroll-5.c: Ditto.
+ * gcc.dg/unroll_1.c: Ditto.
+ * gcc.dg/unroll_2.c: Ditto.
+ * gcc.dg/unroll_3.c: Ditto.
+ * gcc.dg/unroll_4.c: Ditto.
+
+2013-01-02 John David Anglin <dave.anglin@nrc-cnrc.gc.ca>
+
+ * gcc.dg/pr55430.c: Define MAP_FAILED if not defined.
+
+2013-01-02 Jerry DeLisle <jvdelisle@gcc.gnu.org>
+
+ PR fortran/55818
+ * gfortran.dg/eof_4.f90: New test.
+
+2013-01-02 Jakub Jelinek <jakub@redhat.com>
+
+ * lib/c-compat.exp (compat-use-alt-compiler): Remove
+ -fno-diagnostics-show-caret from TEST_ALWAYS_FLAGS if needed.
+ (compat-use-tst-compiler): Restore TEST_ALWAYS_FLAGS.
+ (compat_setup_dfp): Initialize compat_alt_caret and
+ compat_save_TEST_ALWAYS_FLAGS.
+
+2013-01-02 Richard Sandiford <rdsandiford@googlemail.com>
+
+ * gcc.dg/torture/tls/tls-reload-1.c: New test.
+
+2013-01-02 Richard Sandiford <rdsandiford@googlemail.com>
+
+ * gcc.dg/torture/fp-int-convert-2.c: New test.
+
+2013-01-01 Jerry DeLisle <jvdelisle@gcc.gnu.org>
+
+ * gfortran.dg/newunit_3.f90: Add dg-do run.
+ * gfortran.dg/inquire_15.f90: Add dg-do run.
+
+2013-01-01 Jakub Jelinek <jakub@redhat.com>
+
+ PR tree-optimization/55831
+ * gcc.dg/pr55831.c: New test.
+
+Copyright (C) 2013 Free Software Foundation, Inc.
+
+Copying and distribution of this file, with or without modification,
+are permitted in any medium without royalty provided the copyright
+notice and this notice are preserved.
2013-12-31 Jakub Jelinek <jakub@redhat.com>
PR tree-optimization/59622
diff --git a/gcc-4.9/gcc/testsuite/ada/.gitignore b/gcc-4.9/gcc/testsuite/ada/.gitignore
new file mode 100644
index 000000000..a499072f4
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/ada/.gitignore
@@ -0,0 +1,2 @@
+# In the Ada testsuite, .a is an ada source file, not a library.
+!*.a
diff --git a/gcc-4.9/gcc/testsuite/c-c++-common/cilk-plus/AN/pr57541-2.c b/gcc-4.9/gcc/testsuite/c-c++-common/cilk-plus/AN/pr57541-2.c
new file mode 100644
index 000000000..83325a775
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/c-c++-common/cilk-plus/AN/pr57541-2.c
@@ -0,0 +1,15 @@
+/* PR middle-end/57541 */
+/* { dg-do compile } */
+/* { dg-options "-fcilkplus" } */
+
+int foo1 ()
+{
+ int a;
+ a = __sec_reduce_add (1); /* { dg-error "Invalid builtin arguments" } */
+}
+
+int foo2 ()
+{
+ int a;
+ a = __sec_reduce_add (); /* { dg-error "Invalid builtin arguments" } */
+}
diff --git a/gcc-4.9/gcc/testsuite/c-c++-common/cilk-plus/AN/pr57541.c b/gcc-4.9/gcc/testsuite/c-c++-common/cilk-plus/AN/pr57541.c
index 9bff07991..f379e461c 100755
--- a/gcc-4.9/gcc/testsuite/c-c++-common/cilk-plus/AN/pr57541.c
+++ b/gcc-4.9/gcc/testsuite/c-c++-common/cilk-plus/AN/pr57541.c
@@ -1,9 +1,10 @@
+/* PR middle-end/57541 */
/* { dg-do compile } */
/* { dg-options "-fcilkplus" } */
int A[10];
-int main () {
+int foo () {
/* C compiler uses the term "undeclared" whereas C++ compiler uses
"not declared". Thus, grepping for declared seem to be the easiest. */
@@ -13,5 +14,13 @@ int main () {
A[l:s:c];
}
-/* { dg-message "note: each" "defined" { target c } 10 } */
+int foo1 (int N) {
+
+ char c = (char)N;
+ short s = (short)N;
+ A[l:s:c]; /* { dg-error "declared" } */
+}
+
+
+/* { dg-message "note: each" "defined" { target c } 11 } */
diff --git a/gcc-4.9/gcc/testsuite/c-c++-common/cilk-plus/AN/pr58942.c b/gcc-4.9/gcc/testsuite/c-c++-common/cilk-plus/AN/pr58942.c
new file mode 100644
index 000000000..87903af3c
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/c-c++-common/cilk-plus/AN/pr58942.c
@@ -0,0 +1,8 @@
+/* PR c/58942 */
+/* { dg-do compile } */
+/* { dg-options "-fcilkplus" } */
+
+int foo (int*p, int i)
+{
+ return __sec_reduce_max_ind(p[1:i]);
+}
diff --git a/gcc-4.9/gcc/testsuite/c-c++-common/cilk-plus/AN/pr61191.c b/gcc-4.9/gcc/testsuite/c-c++-common/cilk-plus/AN/pr61191.c
new file mode 100644
index 000000000..deb839218
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/c-c++-common/cilk-plus/AN/pr61191.c
@@ -0,0 +1,10 @@
+/* PR c/61191 */
+/* { dg-do compile } */
+/* { dg-options "-fcilkplus" } */
+
+double f(double * A, double * B)
+{
+ return __sec_reduce_add((B[0:500])(; /* { dg-error "called object" "" { target c } } */
+/* { dg-error "expected expression before ';' token" "" { target c } 7 } */
+/* { dg-error "expected primary-expression before ';' token" "" { target c++ } 7 } */
+} /* { dg-error "expected" "" { target c } } */
diff --git a/gcc-4.9/gcc/testsuite/c-c++-common/cilk-plus/CK/invalid_sync.cc b/gcc-4.9/gcc/testsuite/c-c++-common/cilk-plus/CK/invalid_sync.cc
new file mode 100644
index 000000000..cf1caf12b
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/c-c++-common/cilk-plus/CK/invalid_sync.cc
@@ -0,0 +1,9 @@
+/* PR c/60189 */
+/* { dg-do compile } */
+/* { dg-options "-fcilkplus" } */
+
+int main (void)
+{
+ _Cilk_sync return; /* { dg-error " expected ';' before 'return'" } */
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr59073.c b/gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr59073.c
new file mode 100644
index 000000000..543ff5d34
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr59073.c
@@ -0,0 +1,12 @@
+/* PR c/59073 */
+/* { dg-do compile } */
+/* { dg-options "-fopenmp" } */
+
+void
+foo ()
+{
+ int i;
+#pragma omp distribute parallel for
+ for (i = 0; i < 10; i) /* { dg-error "invalid increment expression" } */
+ ;
+}
diff --git a/gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr60823-1.c b/gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr60823-1.c
new file mode 100644
index 000000000..5f985724d
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr60823-1.c
@@ -0,0 +1,19 @@
+/* PR tree-optimization/60823 */
+/* { dg-do compile } */
+/* { dg-options "-O2 -fopenmp-simd" } */
+
+#pragma omp declare simd simdlen(4) notinbranch
+int
+foo (const double c1, const double c2)
+{
+ double z1 = c1, z2 = c2;
+ int res = 100, i;
+
+ for (i = 0; i < 100; i++)
+ {
+ res = (z1 * z1 + z2 * z2 > 4.0) ? (i < res ? i : res) : res;
+ z1 = c1 + z1 * z1 - z2 * z2;
+ z2 = c2 + 2.0 * z1 * z2;
+ }
+ return res;
+}
diff --git a/gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr60823-2.c b/gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr60823-2.c
new file mode 100644
index 000000000..4c8762007
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr60823-2.c
@@ -0,0 +1,44 @@
+/* PR tree-optimization/60823 */
+/* { dg-do run } */
+/* { dg-require-effective-target vect_simd_clones } */
+/* { dg-options "-O2 -fopenmp-simd" } */
+
+#pragma omp declare simd simdlen(4) notinbranch
+__attribute__((noinline)) int
+foo (double c1, double c2)
+{
+ double z1 = c1, z2 = c2;
+ int res = 100, i;
+
+ for (i = 0; i < 5; i++)
+ {
+ res = (z1 * z1 + z2 * z2 > 4.0) ? (i < res ? i : res) : res;
+ z1 = c1 + z1 * z1 - z2 * z2;
+ z2 = c2 + 2.0 * z1 * z2;
+ c1 += 0.5;
+ c2 += 0.5;
+ }
+ return res;
+}
+
+__attribute__((noinline, noclone)) void
+bar (double *x, double *y)
+{
+ asm volatile ("" : : "rm" (x), "rm" (y) : "memory");
+}
+
+int
+main ()
+{
+ int i;
+ double c[4] = { 0.0, 1.0, 0.0, 1.0 };
+ double d[4] = { 0.0, 1.0, 2.0, 0.0 };
+ int e[4];
+ bar (c, d);
+#pragma omp simd safelen(4)
+ for (i = 0; i < 4; i++)
+ e[i] = foo (c[i], d[i]);
+ if (e[0] != 3 || e[1] != 1 || e[2] != 1 || e[3] != 2)
+ __builtin_abort ();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr60823-3.c b/gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr60823-3.c
new file mode 100644
index 000000000..93e9fbe3a
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr60823-3.c
@@ -0,0 +1,32 @@
+/* PR tree-optimization/60823 */
+/* { dg-do compile } */
+/* { dg-options "-O2 -fopenmp-simd -fno-strict-aliasing" } */
+
+void bar (char *, double *);
+
+#if __SIZEOF_DOUBLE__ >= 4
+
+struct S { char c[sizeof (double)]; };
+void baz (struct S, struct S);
+union U { struct S s; double d; };
+
+#pragma omp declare simd simdlen(4) notinbranch
+__attribute__((noinline)) int
+foo (double c1, double c2)
+{
+ double *a = &c1;
+ char *b = (char *) &c1 + 2;
+
+ b[-2]++;
+ b[1]--;
+ *a++;
+ c2++;
+ bar ((char *) &c2 + 1, &c2);
+ c2 *= 3.0;
+ bar (b, a);
+ baz (((union U) { .d = c1 }).s, ((union U) { .d = c2 }).s);
+ baz (*(struct S *)&c1, *(struct S *)&c2);
+ return c1 + c2 + ((struct S *)&c1)->c[1];
+}
+
+#endif
diff --git a/gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr61486-1.c b/gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr61486-1.c
new file mode 100644
index 000000000..9ada58c8c
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr61486-1.c
@@ -0,0 +1,13 @@
+/* PR middle-end/61486 */
+/* { dg-do compile } */
+/* { dg-options "-fopenmp" } */
+
+int
+foo (int *a)
+{
+ int i, j = 0;
+ #pragma omp target teams distribute simd linear(i, j) map(a[:10])
+ for (i = 0; i < 10; i++)
+ a[i] = j++;
+ return i + j;
+}
diff --git a/gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr61486-2.c b/gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr61486-2.c
new file mode 100644
index 000000000..729438101
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/c-c++-common/gomp/pr61486-2.c
@@ -0,0 +1,458 @@
+/* PR middle-end/61486 */
+/* { dg-do compile } */
+/* { dg-options "-fopenmp" } */
+
+#pragma omp declare target
+void dosomething (int *a, int n, int m);
+#pragma omp end declare target
+
+void
+test (int n, int o, int p, int q, int r, int s, int *pp)
+{
+ int a[o], i, j;
+ #pragma omp target data device (n + 1) if (n != 6) map (tofrom: n, r)
+ {
+ #pragma omp target device (n + 1) if (n != 6) map (from: n) map (alloc: a[2:o-2])
+ dosomething (a, n, 0);
+ #pragma omp target teams device (n + 1) num_teams (n + 4) thread_limit (n * 2) \
+ if (n != 6)map (from: n) map (alloc: a[2:o-2]) default(shared) \
+ private (p) firstprivate (q) shared (n) reduction (+: r)
+ {
+ r = r + 1;
+ p = q;
+ dosomething (a, n, p + q);
+ }
+ #pragma omp target teams distribute device (n + 1) num_teams (n + 4) collapse (2) \
+ if (n != 6)map (from: n) map (alloc: a[2:o-2]) default(shared) \
+ private (p) firstprivate (q) shared (n) reduction (+: r) \
+ thread_limit (n * 2) dist_schedule (static, 4)
+ for (i = 0; i < 10; i++)
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ dosomething (a, n, p + q);
+ }
+ #pragma omp target teams distribute device (n + 1) num_teams (n + 4) \
+ if (n != 6)map (from: n) map (alloc: a[2:o-2]) default(shared) \
+ private (p) firstprivate (q) shared (n) reduction (+: r) \
+ thread_limit (n * 2) dist_schedule (static, 4)
+ for (i = 0; i < 10; i++)
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ dosomething (a, n, p + q);
+ }
+ #pragma omp target teams distribute parallel for device (n + 1) num_teams (n + 4) \
+ if (n != 6)map (from: n) map (alloc: a[2:o-2]) default(shared) \
+ private (p) firstprivate (q) shared (n) reduction (+: r) \
+ thread_limit (n * 2) dist_schedule (static, 4) collapse (2) \
+ num_threads (n + 4) proc_bind (spread) lastprivate (s) \
+ ordered schedule (static, 8)
+ for (i = 0; i < 10; i++)
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ dosomething (a, n, p + q);
+ #pragma omp ordered
+ p = q;
+ s = i * 10 + j;
+ }
+ #pragma omp target teams distribute parallel for device (n + 1) num_teams (n + 4) \
+ if (n != 6)map (from: n) map (alloc: a[2:o-2]) default(shared) \
+ private (p) firstprivate (q) shared (n) reduction (+: r) \
+ thread_limit (n * 2) dist_schedule (static, 4) num_threads (n + 4) \
+ proc_bind (master) lastprivate (s) ordered schedule (static, 8)
+ for (i = 0; i < 10; i++)
+ {
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ dosomething (a, n, p + q);
+ }
+ #pragma omp ordered
+ p = q;
+ s = i * 10;
+ }
+ #pragma omp target teams distribute parallel for simd device (n + 1) \
+ if (n != 6)map (from: n) map (alloc: a[2:o-2]) default(shared) \
+ private (p) firstprivate (q) shared (n) reduction (+: r) \
+ thread_limit (n * 2) dist_schedule (static, 4) collapse (2) \
+ num_threads (n + 4) proc_bind (spread) lastprivate (s) \
+ schedule (static, 8) num_teams (n + 4) safelen(8)
+ for (i = 0; i < 10; i++)
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ a[2+i*10+j] = p + q;
+ s = i * 10 + j;
+ }
+ #pragma omp target teams distribute parallel for simd device (n + 1) \
+ if (n != 6)map (from: n) map (alloc: a[2:o-2]) default(shared) \
+ private (p) firstprivate (q) shared (n) reduction (+: r) \
+ thread_limit (n * 2) dist_schedule (static, 4) num_threads (n + 4) \
+ proc_bind (master) lastprivate (s) schedule (static, 8) \
+ num_teams (n + 4) safelen(16) linear(i:1) aligned (pp:4)
+ for (i = 0; i < 10; i++)
+ {
+ r = r + 1;
+ p = q;
+ a[2+i] = p + q;
+ s = i * 10;
+ }
+ #pragma omp target teams distribute simd device (n + 1) \
+ if (n != 6)map (from: n) map (alloc: a[2:o-2]) default(shared) \
+ private (p) firstprivate (q) shared (n) reduction (+: r) \
+ thread_limit (n * 2) dist_schedule (static, 4) collapse (2) \
+ lastprivate (s) num_teams (n + 4) safelen(8)
+ for (i = 0; i < 10; i++)
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ a[2+i*10+j] = p + q;
+ s = i * 10 + j;
+ }
+ #pragma omp target teams distribute simd device (n + 1) \
+ if (n != 6)map (from: n) map (alloc: a[2:o-2]) default(shared) \
+ private (p) firstprivate (q) shared (n) reduction (+: r) \
+ thread_limit (n * 2) dist_schedule (static, 4) lastprivate (s) \
+ num_teams (n + 4) safelen(16) linear(i:1) aligned (pp:4)
+ for (i = 0; i < 10; i++)
+ {
+ r = r + 1;
+ p = q;
+ a[2+i] = p + q;
+ s = i * 10;
+ }
+ #pragma omp target device (n + 1) if (n != 6)map(from:n) map(alloc:a[2:o-2])
+ #pragma omp teams num_teams (n + 4) thread_limit (n * 2) default(shared) \
+ private (p) firstprivate (q) shared (n) reduction (+: r)
+ {
+ r = r + 1;
+ p = q;
+ dosomething (a, n, p + q);
+ }
+ #pragma omp target device (n + 1) if (n != 6)map(from:n) map(alloc:a[2:o-2])
+ #pragma omp teams distribute num_teams (n + 4) collapse (2) default(shared) \
+ private (p) firstprivate (q) shared (n) reduction (+: r) \
+ thread_limit (n * 2) dist_schedule (static, 4)
+ for (i = 0; i < 10; i++)
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ dosomething (a, n, p + q);
+ }
+ #pragma omp target device (n + 1) if (n != 6)map(from:n) map(alloc:a[2:o-2])
+ #pragma omp teams distribute num_teams (n + 4) default(shared) \
+ private (p) firstprivate (q) shared (n) reduction (+: r) \
+ thread_limit (n * 2) dist_schedule (static, 4)
+ for (i = 0; i < 10; i++)
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ dosomething (a, n, p + q);
+ }
+ #pragma omp target device (n + 1) if (n != 6)map(from:n) map(alloc:a[2:o-2])
+ #pragma omp teams distribute parallel for num_teams (n + 4) if (n != 6) \
+ default(shared) private (p) firstprivate (q) shared (n) reduction (+: r) \
+ thread_limit (n * 2) dist_schedule (static, 4) collapse (2) \
+ num_threads (n + 4) proc_bind (spread) lastprivate (s) \
+ ordered schedule (static, 8)
+ for (i = 0; i < 10; i++)
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ dosomething (a, n, p + q);
+ #pragma omp ordered
+ p = q;
+ s = i * 10 + j;
+ }
+ #pragma omp target device (n + 1) if (n != 6)map(from:n) map(alloc:a[2:o-2])
+ #pragma omp teams distribute parallel for num_teams (n + 4) if (n != 6) \
+ default(shared) private (p) firstprivate (q) shared (n) reduction (+: r) \
+ thread_limit (n * 2) dist_schedule (static, 4) num_threads (n + 4) \
+ proc_bind (master) lastprivate (s) ordered schedule (static, 8)
+ for (i = 0; i < 10; i++)
+ {
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ dosomething (a, n, p + q);
+ }
+ #pragma omp ordered
+ p = q;
+ s = i * 10;
+ }
+ #pragma omp target device (n + 1) if (n != 6)map(from:n) map(alloc:a[2:o-2])
+ #pragma omp teams distribute parallel for simd if (n != 6)default(shared) \
+ private (p) firstprivate (q) shared (n) reduction (+: r) \
+ thread_limit (n * 2) dist_schedule (static, 4) collapse (2) \
+ num_threads (n + 4) proc_bind (spread) lastprivate (s) \
+ schedule (static, 8) num_teams (n + 4) safelen(8)
+ for (i = 0; i < 10; i++)
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ a[2+i*10+j] = p + q;
+ s = i * 10 + j;
+ }
+ #pragma omp target device (n + 1) if (n != 6)map(from:n) map(alloc:a[2:o-2])
+ #pragma omp teams distribute parallel for simd if (n != 6)default(shared) \
+ private (p) firstprivate (q) shared (n) reduction (+: r) \
+ thread_limit (n * 2) dist_schedule (static, 4) num_threads (n + 4) \
+ proc_bind (master) lastprivate (s) schedule (static, 8) \
+ num_teams (n + 4) safelen(16) linear(i:1) aligned (pp:4)
+ for (i = 0; i < 10; i++)
+ {
+ r = r + 1;
+ p = q;
+ a[2+i] = p + q;
+ s = i * 10;
+ }
+ #pragma omp target device (n + 1) if (n != 6)map(from:n) map(alloc:a[2:o-2])
+ #pragma omp teams distribute simd default(shared) \
+ private (p) firstprivate (q) shared (n) reduction (+: r) \
+ thread_limit (n * 2) dist_schedule (static, 4) collapse (2) \
+ lastprivate (s) num_teams (n + 4) safelen(8)
+ for (i = 0; i < 10; i++)
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ a[2+i*10+j] = p + q;
+ s = i * 10 + j;
+ }
+ #pragma omp target device (n + 1) if (n != 6)map(from:n) map(alloc:a[2:o-2])
+ #pragma omp teams distribute simd default(shared) \
+ private (p) firstprivate (q) shared (n) reduction (+: r) \
+ thread_limit (n * 2) dist_schedule (static, 4) lastprivate (s) \
+ num_teams (n + 4) safelen(16) linear(i:1) aligned (pp:4)
+ for (i = 0; i < 10; i++)
+ {
+ r = r + 1;
+ p = q;
+ a[2+i] = p + q;
+ s = i * 10;
+ }
+ #pragma omp target teams device (n + 1) if (n != 6)map(from:n) map(alloc:a[2:o-2]) \
+ num_teams (n + 4) thread_limit (n * 2)default(shared) shared(n) \
+ private (p) reduction (+: r)
+ #pragma omp distribute collapse (2) dist_schedule (static, 4) firstprivate (q)
+ for (i = 0; i < 10; i++)
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ dosomething (a, n, p + q);
+ }
+ #pragma omp target teams device (n + 1) if (n != 6)map(from:n) map(alloc:a[2:o-2]) \
+ num_teams (n + 4) thread_limit (n * 2) shared(n) private(p) reduction (+ : r) \
+ default(shared)
+ #pragma omp distribute dist_schedule (static, 4) firstprivate (q)
+ for (i = 0; i < 10; i++)
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ dosomething (a, n, p + q);
+ }
+ #pragma omp target teams device (n + 1) if (n != 6)map(from:n) map(alloc:a[2:o-2]) \
+ num_teams (n + 4) thread_limit (n * 2)
+ #pragma omp distribute parallel for if (n != 6) \
+ default(shared) private (p) firstprivate (q) shared (n) reduction (+: r) \
+ collapse (2) dist_schedule (static, 4) \
+ num_threads (n + 4) proc_bind (spread) lastprivate (s) \
+ ordered schedule (static, 8)
+ for (i = 0; i < 10; i++)
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ dosomething (a, n, p + q);
+ #pragma omp ordered
+ p = q;
+ s = i * 10 + j;
+ }
+ #pragma omp target teams device (n + 1) if (n != 6)map(from:n) map(alloc:a[2:o-2]) \
+ num_teams (n + 4) thread_limit (n * 2)
+ #pragma omp distribute parallel for if (n != 6) \
+ default(shared) private (p) firstprivate (q) shared (n) reduction (+: r) \
+ num_threads (n + 4) dist_schedule (static, 4) \
+ proc_bind (master) lastprivate (s) ordered schedule (static, 8)
+ for (i = 0; i < 10; i++)
+ {
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ dosomething (a, n, p + q);
+ }
+ #pragma omp ordered
+ p = q;
+ s = i * 10;
+ }
+ #pragma omp target teams device (n + 1) if (n != 6)map(from:n) map(alloc:a[2:o-2]) \
+ num_teams (n + 4) thread_limit (n * 2)
+ #pragma omp distribute parallel for simd if (n != 6)default(shared) \
+ private (p) firstprivate (q) shared (n) reduction (+: r) \
+ collapse (2) dist_schedule (static, 4) \
+ num_threads (n + 4) proc_bind (spread) lastprivate (s) \
+ schedule (static, 8) safelen(8)
+ for (i = 0; i < 10; i++)
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ a[2+i*10+j] = p + q;
+ s = i * 10 + j;
+ }
+ #pragma omp target teams device (n + 1) if (n != 6)map(from:n) map(alloc:a[2:o-2]) \
+ num_teams (n + 4) thread_limit (n * 2)
+ #pragma omp distribute parallel for simd if (n != 6)default(shared) \
+ private (p) firstprivate (q) shared (n) reduction (+: r) \
+ num_threads (n + 4) dist_schedule (static, 4) \
+ proc_bind (master) lastprivate (s) schedule (static, 8) \
+ safelen(16) linear(i:1) aligned (pp:4)
+ for (i = 0; i < 10; i++)
+ {
+ r = r + 1;
+ p = q;
+ a[2+i] = p + q;
+ s = i * 10;
+ }
+ #pragma omp target teams device (n + 1) if (n != 6)map(from:n) map(alloc:a[2:o-2]) \
+ num_teams (n + 4) thread_limit (n * 2) default(shared) shared(n) private(p) \
+ reduction(+:r)
+ #pragma omp distribute simd private (p) firstprivate (q) reduction (+: r) \
+ collapse (2) dist_schedule (static, 4) lastprivate (s) safelen(8)
+ for (i = 0; i < 10; i++)
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ a[2+i*10+j] = p + q;
+ s = i * 10 + j;
+ }
+ #pragma omp target teams device (n + 1) if (n != 6)map(from:n) map(alloc:a[2:o-2]) \
+ num_teams (n + 4) thread_limit (n * 2) default(shared) shared(n) private(p) \
+ reduction(+:r)
+ #pragma omp distribute simd private (p) firstprivate (q) reduction (+: r) \
+ lastprivate (s) dist_schedule (static, 4) safelen(16) linear(i:1) aligned (pp:4)
+ for (i = 0; i < 10; i++)
+ {
+ r = r + 1;
+ p = q;
+ a[2+i] = p + q;
+ s = i * 10;
+ }
+ }
+}
+
+int q, i, j;
+
+void
+test2 (int n, int o, int p, int r, int s, int *pp)
+{
+ int a[o];
+ #pragma omp distribute collapse (2) dist_schedule (static, 4) firstprivate (q)
+ for (i = 0; i < 10; i++)
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ dosomething (a, n, p + q);
+ }
+ #pragma omp distribute dist_schedule (static, 4) firstprivate (q)
+ for (i = 0; i < 10; i++)
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ dosomething (a, n, p + q);
+ }
+ #pragma omp distribute parallel for if (n != 6) \
+ default(shared) private (p) firstprivate (q) shared (n) reduction (+: r) \
+ collapse (2) dist_schedule (static, 4) \
+ num_threads (n + 4) proc_bind (spread) lastprivate (s) \
+ ordered schedule (static, 8)
+ for (i = 0; i < 10; i++)
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ dosomething (a, n, p + q);
+ #pragma omp ordered
+ p = q;
+ s = i * 10 + j;
+ }
+ #pragma omp distribute parallel for if (n != 6) \
+ default(shared) private (p) firstprivate (q) shared (n) reduction (+: r) \
+ num_threads (n + 4) dist_schedule (static, 4) \
+ proc_bind (master) lastprivate (s) ordered schedule (static, 8)
+ for (i = 0; i < 10; i++)
+ {
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ dosomething (a, n, p + q);
+ }
+ #pragma omp ordered
+ p = q;
+ s = i * 10;
+ }
+ #pragma omp distribute parallel for simd if (n != 6)default(shared) \
+ private (p) firstprivate (q) shared (n) reduction (+: r) \
+ collapse (2) dist_schedule (static, 4) \
+ num_threads (n + 4) proc_bind (spread) lastprivate (s) \
+ schedule (static, 8) safelen(8)
+ for (i = 0; i < 10; i++)
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ a[2+i*10+j] = p + q;
+ s = i * 10 + j;
+ }
+ #pragma omp distribute parallel for simd if (n != 6)default(shared) \
+ private (p) firstprivate (q) shared (n) reduction (+: r) \
+ num_threads (n + 4) dist_schedule (static, 4) \
+ proc_bind (master) lastprivate (s) schedule (static, 8) \
+ safelen(16) linear(i:1) aligned (pp:4)
+ for (i = 0; i < 10; i++)
+ {
+ r = r + 1;
+ p = q;
+ a[2+i] = p + q;
+ s = i * 10;
+ }
+ #pragma omp distribute simd private (p) firstprivate (q) reduction (+: r) \
+ collapse (2) dist_schedule (static, 4) lastprivate (s) safelen(8)
+ for (i = 0; i < 10; i++)
+ for (j = 0; j < 10; j++)
+ {
+ r = r + 1;
+ p = q;
+ a[2+i*10+j] = p + q;
+ s = i * 10 + j;
+ }
+ #pragma omp distribute simd private (p) firstprivate (q) reduction (+: r) \
+ lastprivate (s) dist_schedule (static, 4) safelen(16) linear(i:1) aligned (pp:4)
+ for (i = 0; i < 10; i++)
+ {
+ r = r + 1;
+ p = q;
+ a[2+i] = p + q;
+ s = i * 10;
+ }
+}
diff --git a/gcc-4.9/gcc/testsuite/c-c++-common/torture/pr60971.c b/gcc-4.9/gcc/testsuite/c-c++-common/torture/pr60971.c
new file mode 100644
index 000000000..b7a967dab
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/c-c++-common/torture/pr60971.c
@@ -0,0 +1,34 @@
+/* PR tree-optimization/60971 */
+/* { dg-do run } */
+
+#ifndef __cplusplus
+#define bool _Bool
+#endif
+
+volatile unsigned char c;
+
+__attribute__((noinline)) unsigned char
+foo (void)
+{
+ return c;
+}
+
+__attribute__((noinline)) bool
+bar (void)
+{
+ return foo () & 1;
+}
+
+int
+main ()
+{
+ c = 0x41;
+ c = bar ();
+ if (c != 1)
+ __builtin_abort ();
+ c = 0x20;
+ c = bar ();
+ if (c != 0)
+ __builtin_abort ();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/constexpr-aggr1.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/constexpr-aggr1.C
new file mode 100644
index 000000000..7e4da11a2
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/constexpr-aggr1.C
@@ -0,0 +1,17 @@
+// PR c++/60951
+// { dg-do compile { target c++11 } }
+
+struct Foo {
+ constexpr Foo(int x = 0) : memb(x) {}
+ int memb;
+};
+
+struct FooContainer {
+ Foo foo[2];
+};
+
+void fubar() {
+ int nonConst = 0;
+ FooContainer fooContainer;
+ fooContainer = { { 0, nonConst } };
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/constexpr-ptrmem2.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/constexpr-ptrmem2.C
new file mode 100644
index 000000000..86859aa12
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/constexpr-ptrmem2.C
@@ -0,0 +1,13 @@
+// PR c++/61661
+// { dg-do compile { target c++11 } }
+
+struct Outer {
+
+ void Bar();
+
+ struct Foo {
+ void (Outer::*ptr)() ;
+ };
+
+ static constexpr Foo foo = { &Outer::Bar };
+};
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/constexpr-template7.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/constexpr-template7.C
new file mode 100644
index 000000000..e835dbf4d
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/constexpr-template7.C
@@ -0,0 +1,32 @@
+// PR c++/61556
+// { dg-do compile { target c++11 } }
+
+class ValueType {
+public:
+ constexpr operator int() const {return m_ID;};
+ constexpr ValueType(const int v)
+ : m_ID(v) {}
+private:
+ int m_ID;
+};
+
+class ValueTypeEnum {
+public:
+ static constexpr ValueType doubleval = ValueType(1);
+};
+
+template <int format>
+class ValueTypeInfo {
+};
+
+template <typename Format>
+class FillFunctor {
+public:
+ FillFunctor() {
+ ValueTypeInfo<ValueTypeEnum::doubleval> v;
+ }
+};
+
+int main() {
+ ValueTypeInfo<ValueTypeEnum::doubleval> v;
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/defaulted49.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/defaulted49.C
new file mode 100644
index 000000000..357be419d
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/defaulted49.C
@@ -0,0 +1,15 @@
+// PR c++/60980
+// { dg-do compile { target c++11 } }
+
+struct x0
+{
+ x0 () = default;
+};
+struct x1
+{
+ x0 x2[2];
+ void x3 ()
+ {
+ x1 ();
+ }
+};
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/initlist84.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/initlist84.C
new file mode 100644
index 000000000..4d46746c5
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/initlist84.C
@@ -0,0 +1,17 @@
+// PR c++/61242
+// { dg-do compile { target c++11 } }
+
+struct Foo
+{
+ struct A
+ {
+ const int &container;
+ const int &args;
+ };
+ static void Create (const A &);
+};
+
+int main ()
+{
+ Foo::Create ({{}, {}});
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/initlist86.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/initlist86.C
new file mode 100644
index 000000000..ace2ef928
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/initlist86.C
@@ -0,0 +1,18 @@
+// PR c++/61382
+// { dg-do run { target c++11 } }
+
+struct A
+{
+ int i,j;
+ A(int i,int j):i(i),j(j){}
+};
+
+extern "C" int printf (const char *, ...);
+
+int main()
+{
+ int i = 0;
+ A a{i++,i++};
+ if (a.i != 0 || a.j != 1)
+ __builtin_abort();
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/lambda/lambda-const3.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/lambda/lambda-const3.C
new file mode 100644
index 000000000..a1ffaddc4
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/lambda/lambda-const3.C
@@ -0,0 +1,38 @@
+// PR c++/60992
+// { dg-do compile { target c++11 } }
+
+struct ScopeGuardGenerator { };
+
+struct FF
+{
+ template < class F, class ... Ts >
+ void
+ operator () (F & ...)
+ {
+ const int n = sizeof ... (Ts) + 1;
+ void *mutexes[n];
+ auto _on_scope_exit_var_0 =
+ ScopeGuardGenerator () + [&mutexes] { };
+ }
+};
+
+template < class F >
+int operator+ (ScopeGuardGenerator, F) { return 1; }
+
+struct D
+{
+ template < class T0, class T1, class T2, class ... T >
+ void
+ operator () (T0, T1, const T2 & t2, T & ... t)
+ {
+ base (t2, t ...);
+ }
+ FF base;
+};
+
+D run_with_locks;
+
+void Fn ()
+{
+ run_with_locks ([] { }, 0, 0);
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/lambda/lambda-template13.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/lambda/lambda-template13.C
new file mode 100644
index 000000000..adbb4dbca
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/lambda/lambda-template13.C
@@ -0,0 +1,20 @@
+// PR c++/61566
+// { dg-do compile { target c++11 } }
+
+struct function
+{
+ template < typename _Functor>
+ function (_Functor);
+};
+
+struct C
+{
+ template <typename T>
+ void foo (T, function = [] {});
+};
+
+void bar ()
+{
+ C c;
+ c.foo (1);
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/lambda/lambda-this18.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/lambda/lambda-this18.C
new file mode 100644
index 000000000..fec2da615
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/lambda/lambda-this18.C
@@ -0,0 +1,30 @@
+// PR c++/61151
+// { dg-do compile { target c++11 } }
+
+struct B
+{
+ void foo () {}
+};
+
+template <class>
+struct A
+{
+ template <class> void bar ();
+ B a;
+};
+
+template <class T>
+template <class U>
+void
+A<T>::bar ()
+{
+ auto f = [this] () { auto g = [=] () { a.foo (); }; g (); };
+ f ();
+}
+
+int
+main ()
+{
+ A<int> a;
+ a.bar <int> ();
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/nsdmi-template10.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/nsdmi-template10.C
new file mode 100644
index 000000000..4a8c87e6d
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/nsdmi-template10.C
@@ -0,0 +1,14 @@
+// PR c++/60999
+// { dg-do compile { target c++11 } }
+
+struct B
+{
+ template<int N, int M>
+ struct A;
+
+ template<int M>
+ struct A<1, M>
+ {
+ int X = M;
+ };
+};
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/nsdmi-template11.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/nsdmi-template11.C
new file mode 100644
index 000000000..60e53c419
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/nsdmi-template11.C
@@ -0,0 +1,15 @@
+// PR c++/58930
+// { dg-do compile { target c++11 } }
+
+struct SampleModule
+{
+ explicit SampleModule (int);
+};
+
+template < typename >
+struct BaseHandler
+{
+ SampleModule module_ { 0 };
+};
+
+BaseHandler<int> a;
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/nsdmi-template12.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/nsdmi-template12.C
new file mode 100644
index 000000000..52ae25720
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/nsdmi-template12.C
@@ -0,0 +1,17 @@
+// PR c++/58753
+// { dg-do compile { target c++11 } }
+
+#include <initializer_list>
+
+template <class T>
+struct X {X(std::initializer_list<int>) {}};
+
+template <class zomg>
+class T {
+ X<T> x{1};
+};
+
+int main()
+{
+ T<int> t;
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/nsdmi-template13.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/nsdmi-template13.C
new file mode 100644
index 000000000..65ccd0aaa
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/nsdmi-template13.C
@@ -0,0 +1,11 @@
+// PR c++/58704
+// { dg-do compile { target c++11 } }
+
+struct A {};
+
+template<typename> struct B
+{
+ A a[1] = { };
+};
+
+B<int> b;
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/nsdmi-template9.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/nsdmi-template9.C
new file mode 100644
index 000000000..0cfbb9044
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/nsdmi-template9.C
@@ -0,0 +1,16 @@
+// PR c++/60999
+// { dg-do compile { target c++11 } }
+
+template <typename A>
+struct foo
+{
+};
+
+template<>
+struct foo<int>
+{
+ static constexpr int code = 42;
+ unsigned int bar = static_cast<unsigned int>(code);
+};
+
+foo<int> a;
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/pr58155.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/pr58155.C
new file mode 100644
index 000000000..60b02ab65
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/pr58155.C
@@ -0,0 +1,13 @@
+// { dg-do compile { target c++11 } }
+
+#define BAZ "baz"
+
+#if 0
+
+"bar"BAZ
+
+R"(
+ bar
+)"BAZ
+
+#endif
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/pr58781.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/pr58781.C
new file mode 100644
index 000000000..58c972f90
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/pr58781.C
@@ -0,0 +1,18 @@
+// PR c++/58781
+// { dg-do compile { target c++11 } }
+
+#include <cstddef>
+
+int
+operator""_s(const char32_t *a, size_t b)
+{
+ return 0;
+}
+
+int
+f()
+{
+ using a = decltype(U"\x1181"_s);
+ using b = decltype(U"\x8111"_s);
+ using c = decltype(U" \x1181"_s);
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/pr60249.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/pr60249.C
new file mode 100644
index 000000000..e650dcb45
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/pr60249.C
@@ -0,0 +1,6 @@
+// PR c++/60249
+// { dg-do compile { target c++11 } }
+
+decltype(""_) x; // { dg-error "unable to find string literal operator" }
+
+// { dg-error "invalid type in declaration before" "invalid" { target *-*-* } 4 }
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/ref-qual15.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/ref-qual15.C
new file mode 100644
index 000000000..ca333c2e2
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/ref-qual15.C
@@ -0,0 +1,13 @@
+// PR c++/59296
+// { dg-do compile { target c++11 } }
+
+struct Type
+{
+ void get() const& { }
+ void get() const&& { }
+};
+
+int main()
+{
+ Type{}.get();
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/sfinae50.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/sfinae50.C
new file mode 100644
index 000000000..e8d90ca76
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/sfinae50.C
@@ -0,0 +1,41 @@
+// PR c++/61083
+// { dg-do compile { target c++11 } }
+
+template<typename T> T declval();
+
+template<typename T, typename U>
+struct is_same {
+ static const bool value = false;
+};
+
+template<typename T>
+struct is_same<T, T> {
+ static const bool value = true;
+};
+
+struct true_type {};
+struct false_type {};
+
+template <typename T>
+struct is_foo {
+private:
+ template<typename U, U> struct helper {};
+
+ template <typename Z> static auto
+ test(Z z) -> decltype(helper<void (Z::*)() const, &Z::foo>(), true_type());
+
+ template <typename> static auto test(...) -> false_type;
+
+public:
+ enum { value = is_same<decltype(test<T>(declval<T>())), true_type>::value };
+};
+
+struct A {
+ int foo();
+ void foo() const;
+};
+
+struct A1 : public A {};
+
+static_assert (is_foo<A>::value == 1, "");
+static_assert (is_foo<A1>::value == 0, "");
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/variadic158.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/variadic158.C
new file mode 100644
index 000000000..cc5c24ddc
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/variadic158.C
@@ -0,0 +1,24 @@
+// PR c++/61134
+// { dg-do compile { target c++11 } }
+
+struct Base { };
+
+template <typename>
+struct Fixed {
+ typedef const char* name;
+};
+
+template <typename VT, typename... Fields>
+void New(const char* name,
+ typename Fixed<Fields>::name... field_names);
+
+template <typename VT, typename... Fields>
+void CreateMetric(const char* name,
+ typename Fixed<Fields>::name... field_names,
+ const Base&) { }
+
+
+void Fn()
+{
+ CreateMetric<int, const char*>("abcd", "def", Base());
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/variadic159.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/variadic159.C
new file mode 100644
index 000000000..2b14d3005
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/variadic159.C
@@ -0,0 +1,14 @@
+// PR c++/61507
+// { dg-do compile { target c++11 } }
+
+struct A {
+ void foo(const int &);
+ void foo(float);
+};
+
+template <typename... Args>
+void bar(void (A::*memfun)(Args...), Args... args);
+
+void go(const int& i) {
+ bar<const int &>(&A::foo, i);
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/variadic160.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/variadic160.C
new file mode 100644
index 000000000..20fcd5b4f
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp0x/variadic160.C
@@ -0,0 +1,49 @@
+// PR c++/61539
+// { dg-do compile { target c++11 } }
+
+template <typename _CharT> class A;
+template <typename> class B;
+template <class charT> class C;
+template <> class C<char>
+{
+ virtual void xparse (int &, const B<A<char> > &) const;
+};
+template <class T, class charT = char> class G : C<charT>
+{
+public:
+ G (void *) {}
+ void default_value (const T &);
+ void xparse (int &, const B<A<charT> > &) const;
+};
+template <class T, class charT>
+void validate (int &, const B<A<charT> > &, T *, int);
+template <class T, class charT>
+void G<T, charT>::xparse (int &p1, const B<A<charT> > &p2) const
+{
+ validate (p1, p2, (T *)0, 0);
+}
+template <class T> G<T> *value (T *) { return new G<T>(0); }
+namespace Eigen
+{
+template <typename T> struct D;
+template <typename, int, int, int = 0, int = 0, int = 0 > class F;
+template <typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows,
+ int _MaxCols>
+struct D<F<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
+{
+ typedef _Scalar Scalar;
+};
+template <typename, int, int, int, int, int _MaxCols> class F
+{
+public:
+ typedef typename Eigen::D<F>::Scalar Scalar;
+ F (const Scalar &, const Scalar &, const Scalar &);
+};
+template <class... T>
+void validate (int &, const B<A<char> > &, Eigen::F<T...> *);
+}
+int main (int, char *[])
+{
+ Eigen::F<double, 3, 1> a (0, 0, 0);
+ value (&a)->default_value (Eigen::F<double, 3, 1>(0, 0, 0));
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/cpp1y/pr59867.C b/gcc-4.9/gcc/testsuite/g++.dg/cpp1y/pr59867.C
new file mode 100644
index 000000000..91d025964
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/cpp1y/pr59867.C
@@ -0,0 +1,52 @@
+// PR c++/59867
+// { dg-do compile { target c++1y } }
+
+#include <iostream>
+using namespace std;
+
+// constant
+template<typename T, T x>
+ struct meta_value
+ {
+ typedef meta_value type;
+ typedef T value_type;
+ static const T value = x;
+ };
+
+// array
+template<typename T, T... data>
+ struct meta_array
+ {
+ typedef meta_array type;
+ typedef T item_type;
+ };
+
+// static array -> runtime array conversion utility
+template<typename T>
+ struct array_gen;
+
+template<typename T, T... xs>
+ struct array_gen<meta_array<T, xs...>>
+ {
+ static const T value[sizeof...(xs)];
+ };
+
+template<typename T, T... xs>
+ const T
+ array_gen<meta_array<T, xs...>>::value[sizeof...(xs)] = {xs...};
+
+// static string
+template<typename T, T... xs>
+ constexpr meta_array<T, xs...>
+ operator""_s()
+ {
+ static_assert(sizeof...(xs) == 3, "What's wrong with you?");
+ return meta_array<T, xs...>();
+ }
+
+int
+main()
+{
+ auto a = "123"_s;
+ const char (& xs)[3] = array_gen<decltype("123"_s)>::value;
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/debug/dwarf2/cdtor-1.C b/gcc-4.9/gcc/testsuite/g++.dg/debug/dwarf2/cdtor-1.C
index e3bddab0e..bfa5d9292 100644
--- a/gcc-4.9/gcc/testsuite/g++.dg/debug/dwarf2/cdtor-1.C
+++ b/gcc-4.9/gcc/testsuite/g++.dg/debug/dwarf2/cdtor-1.C
@@ -14,4 +14,4 @@ main()
K k;
}
-// { dg-final {scan-assembler-times " DW_AT_\[MIPS_\]*linkage_name" 2 } }
+// { dg-final {scan-assembler-times " DW_AT_\[MIPS_\]*linkage_name" 4 } }
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/debug/dwarf2/dwarf4-nested.C b/gcc-4.9/gcc/testsuite/g++.dg/debug/dwarf2/dwarf4-nested.C
new file mode 100644
index 000000000..160694c3c
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/debug/dwarf2/dwarf4-nested.C
@@ -0,0 +1,55 @@
+// { dg-do compile }
+// { dg-options "--std=c++11 -dA -gdwarf-4 -fdebug-types-section -fno-merge-debug-strings" }
+
+// Check that -fdebug-types-sections does not copy a full referenced type
+// into a type unit.
+
+// Checks that at least one type unit is generated.
+//
+// { dg-final { scan-assembler "DIE \\(\[^\n\]*\\) DW_TAG_type_unit" } }
+//
+// Check that func is declared exactly once in the debug info (in the
+// compile unit).
+//
+// { dg-final { scan-assembler-times "\\.ascii \"func\\\\0\"\[^\n\]*DW_AT_name" 1 } }
+//
+// Check to make sure that no type unit contains a DIE with DW_AT_low_pc
+// or DW_AT_ranges. These patterns assume that the compile unit is always
+// emitted after all type units.
+//
+// { dg-final { scan-assembler-not "\\.quad\[^\n\]*DW_AT_low_pc.*DIE \\(\[^\n\]*\\) DW_TAG_compile_unit" } }
+// { dg-final { scan-assembler-not "\\.quad\[^\n\]*DW_AT_ranges.*DIE \\(\[^\n\]*\\) DW_TAG_compile_unit" } }
+
+struct A {
+ A();
+ virtual ~A();
+ virtual void foo();
+ private:
+ int data;
+};
+
+struct B {
+ B();
+ virtual ~B();
+};
+
+extern B* table[];
+
+struct D {
+ template <typename T>
+ T* get(int i)
+ {
+ B*& cell = table[i];
+ if (cell == 0)
+ cell = new T();
+ return static_cast<T*>(cell);
+ }
+};
+
+void func(D* d)
+{
+ struct C : B {
+ A a;
+ };
+ d->get<C>(0)->a.foo();
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/debug/dwarf2/dwarf4-typedef.C b/gcc-4.9/gcc/testsuite/g++.dg/debug/dwarf2/dwarf4-typedef.C
index c5520fa72..89a6bb44e 100644
--- a/gcc-4.9/gcc/testsuite/g++.dg/debug/dwarf2/dwarf4-typedef.C
+++ b/gcc-4.9/gcc/testsuite/g++.dg/debug/dwarf2/dwarf4-typedef.C
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-gdwarf-4" } */
+/* { dg-options "-gdwarf-4 -fdebug-types-section" } */
/* Regression test for an ICE in output_die when using -gdwarf-4. */
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/debug/dwarf2/imported-decl-2.C b/gcc-4.9/gcc/testsuite/g++.dg/debug/dwarf2/imported-decl-2.C
new file mode 100644
index 000000000..ce01f7238
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/debug/dwarf2/imported-decl-2.C
@@ -0,0 +1,32 @@
+// { dg-do compile }
+// { dg-options "-gdwarf-2 -dA -O0 -fno-merge-debug-strings" }
+
+class AAAA
+{
+ public:
+ int method (void);
+ int a;
+};
+
+int
+AAAA::method (void)
+{
+ return a;
+}
+
+class BBBB : public AAAA
+{
+ public:
+ using AAAA::method;
+
+ int method (int b);
+};
+
+int
+BBBB::method (int b)
+{
+ return a + b;
+}
+
+// { dg-final { scan-assembler-not "ascii \"BBBB\\\\0\".*ascii \"AAAA\\\\0\".*DW_TAG_imported_declaration" } }
+// { dg-final { scan-assembler-times "ascii \"AAAA\\\\0\".*ascii \"BBBB\\\\0\".*DIE .0x\[0-9a-f\]*. DW_TAG_imported_declaration" 1 } }
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/debug/dwarf2/pr61433.C b/gcc-4.9/gcc/testsuite/g++.dg/debug/dwarf2/pr61433.C
new file mode 100644
index 000000000..a63b8a9ef
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/debug/dwarf2/pr61433.C
@@ -0,0 +1,23 @@
+// PR c++/61433
+// { dg-do compile { target c++11 } }
+// { dg-options "-O -fcompare-debug -fno-inline -fno-ipa-pure-const -fipa-sra" }
+
+template <class T>
+struct A
+{
+ template <class V>
+ struct B
+ {
+ int MEM;
+ };
+};
+struct D {};
+struct C: public A<int>::B<D>
+{};
+template <class T, class U, class V>
+auto k(T t, U u, V v) -> decltype (t.U::template B<V>::MEM)
+{}
+int main()
+{
+ k( C(), A<int>(), D() );
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/eh/spec3-static.C b/gcc-4.9/gcc/testsuite/g++.dg/eh/spec3-static.C
deleted file mode 100644
index 15408effa..000000000
--- a/gcc-4.9/gcc/testsuite/g++.dg/eh/spec3-static.C
+++ /dev/null
@@ -1,25 +0,0 @@
-// PR c++/4381
-// Test that exception-specs work properly for classes with virtual bases.
-
-// { dg-do run }
-// { dg-options "-static" }
-
-class Base {};
-
-struct A : virtual public Base
-{
- A() {}
-};
-
-struct B {};
-
-void func() throw (B,A)
-{
- throw A();
-}
-
-int main(void)
-{
- try { func(); }
- catch (A& a) { }
-}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/ext/complit14.C b/gcc-4.9/gcc/testsuite/g++.dg/ext/complit14.C
new file mode 100644
index 000000000..aed765dc5
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/ext/complit14.C
@@ -0,0 +1,11 @@
+// PR c++/61614
+// { dg-options "" }
+
+int Fn (...);
+
+void
+Test ()
+{
+ int j = Fn ((const int[]) { 0 }); // OK
+ unsigned long sz = sizeof Fn ((const int[]) { 0 }); // Error
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/gcov/gcov-7.C b/gcc-4.9/gcc/testsuite/g++.dg/gcov/gcov-7.C
deleted file mode 100644
index db3e95a07..000000000
--- a/gcc-4.9/gcc/testsuite/g++.dg/gcov/gcov-7.C
+++ /dev/null
@@ -1,28 +0,0 @@
-/* Check that Exception handler specification is not
- mapped to the curly braces below the function
- declaration. */
-
-/* { dg-options "-fprofile-arcs -ftest-coverage" } */
-/* { dg-do run { target native } } */
-
-struct foo
-{
- foo () throw (int)
- { /* count (-) */
- throw (1);
- }
-};
-
-int main ()
-{
- try
- {
- foo f;
- }
- catch ( ...)
- {
- return 0;
- }
-}
-
-/* { dg-final { run-gcov gcov-7.C } } */
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/guality/guality.exp b/gcc-4.9/gcc/testsuite/g++.dg/guality/guality.exp
index 3ff7f2f77..215f6f80f 100644
--- a/gcc-4.9/gcc/testsuite/g++.dg/guality/guality.exp
+++ b/gcc-4.9/gcc/testsuite/g++.dg/guality/guality.exp
@@ -1,5 +1,8 @@
# This harness is for tests that should be run at all optimisation levels.
+# Disable everywhere. These tests are very flaky.
+return
+
load_lib g++-dg.exp
load_lib gcc-gdb-test.exp
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/init/copy7.C b/gcc-4.9/gcc/testsuite/g++.dg/init/copy7.C
new file mode 100644
index 000000000..655fae21e
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/init/copy7.C
@@ -0,0 +1,9 @@
+// CWG 5
+
+struct C { };
+C c;
+struct A {
+ A(const A&);
+ A(const C&);
+};
+const volatile A a = c; // Okay
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/ipa/devirt-11.C b/gcc-4.9/gcc/testsuite/g++.dg/ipa/devirt-11.C
index ca8ea4cc2..e31832b87 100644
--- a/gcc-4.9/gcc/testsuite/g++.dg/ipa/devirt-11.C
+++ b/gcc-4.9/gcc/testsuite/g++.dg/ipa/devirt-11.C
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -fdump-ipa-inline -fno-devirtualize-speculatively" } */
+/* { dg-options "-O2 -fdump-ipa-inline --param=early-inlining-insns-comdat=0 -fno-devirtualize-speculatively" } */
int baz ();
struct A
{
@@ -45,5 +45,5 @@ bar ()
/* While inlining function called once we should devirtualize a new call to fn2
and two to fn3. While doing so the new symbol for fn2 needs to be
introduced. */
-/* { dg-final { scan-ipa-dump-times "Discovered a virtual call to a known target" 1 "inline" } } */
+/* { dg-final { scan-ipa-dump "Discovered a virtual call to a known target" "inline" } } */
/* { dg-final { cleanup-ipa-dump "inline" } } */
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/ipa/devirt-25.C b/gcc-4.9/gcc/testsuite/g++.dg/ipa/devirt-25.C
index 751647957..1da44f5d1 100644
--- a/gcc-4.9/gcc/testsuite/g++.dg/ipa/devirt-25.C
+++ b/gcc-4.9/gcc/testsuite/g++.dg/ipa/devirt-25.C
@@ -22,5 +22,5 @@ void dpr_run(ebs_Object& objectA) {
dpr_Job jobL;
dpr_run(jobL);
}
-/* { dg-final { scan-ipa-dump "Type inconsident devirtualization" "cp" } } */
+/* { dg-final { scan-ipa-dump "Type inconsistent devirtualization" "cp" } } */
/* { dg-final { cleanup-ipa-dump "cp" } } */
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/ipa/devirt-31.C b/gcc-4.9/gcc/testsuite/g++.dg/ipa/devirt-31.C
new file mode 100644
index 000000000..64c44ba1e
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/ipa/devirt-31.C
@@ -0,0 +1,23 @@
+/* { dg-options "-O2 -std=c++11 -fdump-ipa-inline" } */
+#include <new>
+
+class EmbeddedObject {
+public:
+ virtual int val() { return 2; }
+};
+
+class Container {
+ alignas(EmbeddedObject) char buffer[sizeof(EmbeddedObject)];
+public:
+ EmbeddedObject *obj() { return (EmbeddedObject*)buffer; }
+ Container() { new (buffer) EmbeddedObject(); }
+};
+
+Container o;
+
+int main()
+{
+ __builtin_printf("%d\n", o.obj()->val());
+}
+/* { dg-final { scan-ipa-dump-not "__builtin_unreachable" "inline" } } */
+/* { dg-final { cleanup-ipa-dump "inline" } } */
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/ipa/devirt-9.C b/gcc-4.9/gcc/testsuite/g++.dg/ipa/devirt-9.C
index 7fd0bf5f5..dc6c6c940 100644
--- a/gcc-4.9/gcc/testsuite/g++.dg/ipa/devirt-9.C
+++ b/gcc-4.9/gcc/testsuite/g++.dg/ipa/devirt-9.C
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -fdump-ipa-whole-program" } */
+/* { dg-options "-O2 -fdump-ipa-whole-program --param=early-inlining-insns-comdat=0" } */
double foo ();
struct B
{
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/ipa/pr60600.C b/gcc-4.9/gcc/testsuite/g++.dg/ipa/pr60600.C
index 00c368e63..b9039cb85 100644
--- a/gcc-4.9/gcc/testsuite/g++.dg/ipa/pr60600.C
+++ b/gcc-4.9/gcc/testsuite/g++.dg/ipa/pr60600.C
@@ -14,7 +14,7 @@ struct intermediate: top {
};
struct child1: top {
- void childf()
+ __attribute__((noinline)) void childf()
{
data d(topf());
}
@@ -30,5 +30,5 @@ void test(top& t)
test(d);
}
-/* { dg-final { scan-ipa-dump "Type inconsident devirtualization" "cp" } } */
+/* { dg-final { scan-ipa-dump "Type inconsistent devirtualization" "cp" } } */
/* { dg-final { cleanup-ipa-dump "cp" } } */
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/ipa/pr61085.C b/gcc-4.9/gcc/testsuite/g++.dg/ipa/pr61085.C
new file mode 100644
index 000000000..531f59d53
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/ipa/pr61085.C
@@ -0,0 +1,33 @@
+/* { dg-do run } */
+/* { dg-options "-O2 -fno-early-inlining" } */
+
+struct A {};
+struct B : virtual A {
+ unsigned m_i;
+ B() : m_i () {}
+ virtual A *m_virt ()
+ {
+ return 0;
+ }
+ ~B ()
+ {
+ m_foo ();
+ while (m_i)
+ ;
+ }
+ void m_foo ()
+ {
+ m_virt ();
+ }
+};
+
+class C : B {
+ A *m_virt () {
+ __builtin_abort ();
+ }
+};
+
+int main ()
+{
+ C c;
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/ipa/pr61160-1.C b/gcc-4.9/gcc/testsuite/g++.dg/ipa/pr61160-1.C
new file mode 100644
index 000000000..a0fbb5f42
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/ipa/pr61160-1.C
@@ -0,0 +1,31 @@
+/* { dg-do compile } */
+/* { dg-options "-O3" } */
+
+struct CBase {
+ virtual void BaseFunc () {}
+};
+
+struct MMixin {
+ virtual void * MixinFunc (int, void *) = 0;
+};
+
+struct CExample: CBase, public MMixin
+{
+ void *MixinFunc (int arg, void *arg2)
+ {
+ if (arg != 1 || arg2)
+ return 0;
+ return this;
+ }
+};
+
+void *test (MMixin & anExample)
+{
+ return anExample.MixinFunc (1, 0);
+}
+
+int main ()
+{
+ CExample c;
+ return (test (c) != &c);
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/ipa/pr61160-2.C b/gcc-4.9/gcc/testsuite/g++.dg/ipa/pr61160-2.C
new file mode 100644
index 000000000..1011bd1ef
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/ipa/pr61160-2.C
@@ -0,0 +1,43 @@
+/* { dg-do run } */
+/* { dg-options "-O3 --param ipa-cp-eval-threshold=1" } */
+
+extern "C" void abort (void);
+
+struct CBase {
+ virtual void BaseFunc () {}
+};
+
+struct MMixin {
+ virtual void * MixinFunc (int, void *) = 0;
+};
+
+struct CExample: CBase, public MMixin
+{
+ int stuff, magic, more_stuff;
+
+ CExample ()
+ {
+ stuff = 0;
+ magic = 0xbeef;
+ more_stuff = 0;
+ }
+ void *MixinFunc (int arg, void *arg2)
+ {
+ if (arg != 1 || arg2)
+ return 0;
+ if (magic != 0xbeef)
+ abort();
+ return this;
+ }
+};
+
+void *test (MMixin & anExample)
+{
+ return anExample.MixinFunc (1, 0);
+}
+
+int main ()
+{
+ CExample c;
+ return (test (c) != &c);
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/ipa/pr61160-3.C b/gcc-4.9/gcc/testsuite/g++.dg/ipa/pr61160-3.C
new file mode 100644
index 000000000..8184ec2cd
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/ipa/pr61160-3.C
@@ -0,0 +1,37 @@
+/* { dg-do run } */
+/* { dg-options "-O3" } */
+
+struct A {
+ void *p;
+ A (void *q) : p (q) {}
+ A (const A &) : p () {}
+};
+
+struct CBase {
+ virtual void BaseFunc () {}
+};
+
+struct MMixin {
+ virtual A MixinFunc (int, A) = 0;
+};
+
+struct CExample: CBase, public MMixin
+{
+ A MixinFunc (int arg, A arg2)
+ {
+ if (arg != 1 || arg2.p)
+ return 0;
+ return this;
+ }
+};
+
+void *test (MMixin & anExample)
+{
+ return anExample.MixinFunc (1, (0)).p;
+}
+
+int main ()
+{
+ CExample c;
+ return (test (c) != &c);
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/ipa/pr61540.C b/gcc-4.9/gcc/testsuite/g++.dg/ipa/pr61540.C
new file mode 100644
index 000000000..e7dee7262
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/ipa/pr61540.C
@@ -0,0 +1,38 @@
+/* { dg-do compile } */
+/* { dg-options "-O3 -fno-early-inlining" } */
+
+struct data {
+ data(int) {}
+};
+
+struct top {
+ virtual int topf() {}
+};
+
+struct intermediate: top {
+ int topf() /* override */ { return 0; }
+};
+
+struct child1: top {
+ void childf()
+ {
+ data d(topf());
+ }
+};
+
+struct child2: intermediate {};
+
+void test(top& t)
+{
+ child1& c = static_cast<child1&>(t);
+ c.childf();
+ child2 d;
+ test(d);
+}
+
+int main (int argc, char **argv)
+{
+ child1 c;
+ test (c);
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/opt/pr60849.C b/gcc-4.9/gcc/testsuite/g++.dg/opt/pr60849.C
new file mode 100644
index 000000000..52d8826b0
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/opt/pr60849.C
@@ -0,0 +1,13 @@
+// { dg-do compile }
+// { dg-options "-O2" }
+
+int g;
+
+extern "C" int isnan ();
+
+void foo(float a) {
+ int (*xx)(...);
+ xx = isnan;
+ if (xx(a))
+ g++;
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/opt/pr60912.C b/gcc-4.9/gcc/testsuite/g++.dg/opt/pr60912.C
new file mode 100644
index 000000000..ad51ba725
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/opt/pr60912.C
@@ -0,0 +1,18 @@
+// { dg-do run }
+// { dg-options "-O -fno-inline -fipa-pta" }
+
+struct IFoo
+{
+ virtual void Foo () = 0;
+};
+
+struct Bar:IFoo
+{
+ void Foo () {}
+};
+
+int main ()
+{
+ (new Bar ())->Foo ();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/opt/pr61456.C b/gcc-4.9/gcc/testsuite/g++.dg/opt/pr61456.C
new file mode 100644
index 000000000..14a118b57
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/opt/pr61456.C
@@ -0,0 +1,26 @@
+// { dg-do compile }
+// { dg-options "-O2 -std=c++11 -Werror=uninitialized" }
+
+int rand ();
+
+class Funcs
+{
+public:
+ int *f1 ();
+ int *f2 ();
+};
+typedef decltype (&Funcs::f1) pfunc;
+
+static int Set (Funcs * f, const pfunc & fp)
+{
+ (f->*fp) ();
+}
+
+void
+Foo ()
+{
+ pfunc fp = &Funcs::f1;
+ if (rand ())
+ fp = &Funcs::f2;
+ Set (0, fp);
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/opt/pr61654.C b/gcc-4.9/gcc/testsuite/g++.dg/opt/pr61654.C
new file mode 100644
index 000000000..78dc0c14c
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/opt/pr61654.C
@@ -0,0 +1,27 @@
+// PR middle-end/61654
+// { dg-do compile }
+
+class A
+{
+ virtual int a (int, int = 0) = 0;
+ int b (const int &);
+ int c;
+};
+
+class B : virtual A
+{
+ int d;
+ int a (int, int);
+};
+
+int
+A::b (const int &)
+{
+ return a ('\0');
+}
+
+int
+B::a (int, int)
+{
+ return 0 ? 0 : d;
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/opt/typeinfo1.C b/gcc-4.9/gcc/testsuite/g++.dg/opt/typeinfo1.C
new file mode 100644
index 000000000..efac4cbd1
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/opt/typeinfo1.C
@@ -0,0 +1,27 @@
+// PR c++/61020
+// { dg-options "-O2" }
+// { dg-do run }
+
+#include <typeinfo>
+
+struct Base {
+ virtual ~Base() { }
+};
+
+struct Derived : public Base {
+};
+
+int compare(const Base& base)
+{
+ return typeid(base) == typeid(typeid(Derived));
+}
+
+int main()
+{
+ Base base;
+ Derived derived;
+
+ if (compare(base)) return 1;
+ if (compare(derived)) return 2;
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/other/no-strict-enum-precision-1.C b/gcc-4.9/gcc/testsuite/g++.dg/other/no-strict-enum-precision-1.C
new file mode 100644
index 000000000..2115627ef
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/other/no-strict-enum-precision-1.C
@@ -0,0 +1,35 @@
+/* { dg-do run } */
+/* { dg-options "-fno-strict-enums" } */
+
+extern "C" void abort (void);
+
+enum zero_one
+{ zero = 0, one = 1 };
+
+int *
+allocate_bool (zero_one e)
+{
+ int *v = 0;
+ switch (e)
+ {
+ case zero:
+ v = new int (0);
+ case one:
+ v = new int (1);
+ }
+ return v;
+}
+
+int
+main ()
+{
+ if (allocate_bool (static_cast < zero_one > (999)))
+ {
+ /* Error: should not have matched any case label. */
+ abort ();
+ }
+ else
+ {
+ return 0;
+ }
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/other/no-strict-enum-precision-2.C b/gcc-4.9/gcc/testsuite/g++.dg/other/no-strict-enum-precision-2.C
new file mode 100644
index 000000000..086989c51
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/other/no-strict-enum-precision-2.C
@@ -0,0 +1,37 @@
+/* { dg-do run } */
+/* { dg-options "-O2 -fno-strict-enums" } */
+
+extern "C" void abort (void);
+
+enum X
+{
+ X1,
+ X2
+};
+
+int
+foo (enum X x)
+{
+ switch (x)
+ {
+ case X1:
+ return 0;
+ case X2:
+ return 1;
+ }
+ return x;
+}
+
+int
+main (int argc, char *argv[])
+{
+ int n = argc + 999;
+ if (n == foo (static_cast < X > (n)))
+ {
+ return 0;
+ }
+ else
+ {
+ abort ();
+ }
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/other/no-strict-enum-precision-3.C b/gcc-4.9/gcc/testsuite/g++.dg/other/no-strict-enum-precision-3.C
new file mode 100755
index 000000000..673601a41
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/other/no-strict-enum-precision-3.C
@@ -0,0 +1,21 @@
+/* { dg-do run } */
+/* { dg-options "-O2 -fno-strict-enums" } */
+
+extern "C" void abort (void);
+
+enum X
+{
+ X1,
+ X2
+};
+
+int
+main (int argc, char *argv[])
+{
+ X x = static_cast < X > (argc + 999);
+ if (x == X1)
+ abort ();
+ if (x == X2)
+ abort ();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/other/sized-delete-1.C b/gcc-4.9/gcc/testsuite/g++.dg/other/sized-delete-1.C
new file mode 100644
index 000000000..76f861af3
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/other/sized-delete-1.C
@@ -0,0 +1,14 @@
+// { dg-do link}
+// { dg-options "-O -fsized-delete" }
+// { dg-final { scan-assembler "_ZdlPv\[mj\]" } }
+struct A
+{
+ int a[100];
+};
+
+int main(void)
+{
+ A *a = new A;
+ delete a;
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/plugin/selfassign.c b/gcc-4.9/gcc/testsuite/g++.dg/plugin/selfassign.c
index 041f25dce..9a0c620dd 100644
--- a/gcc-4.9/gcc/testsuite/g++.dg/plugin/selfassign.c
+++ b/gcc-4.9/gcc/testsuite/g++.dg/plugin/selfassign.c
@@ -211,7 +211,7 @@ compare_and_warn (gimple stmt, tree lhs, tree rhs)
/* Check and warn if STMT is a self-assign statement. */
static void
-warn_self_assign (gimple stmt)
+check_self_assign (gimple stmt)
{
tree rhs, lhs;
@@ -264,7 +264,7 @@ execute_warn_self_assign (void)
FOR_EACH_BB_FN (bb, cfun)
{
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- warn_self_assign (gsi_stmt (gsi));
+ check_self_assign (gsi_stmt (gsi));
}
return 0;
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/pr60969.C b/gcc-4.9/gcc/testsuite/g++.dg/pr60969.C
new file mode 100644
index 000000000..4012e2ce7
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/pr60969.C
@@ -0,0 +1,32 @@
+/* { dg-do compile { target { { i?86-*-* x86_64-*-* } && ia32 } } } */
+/* { dg-options "-O2 -ftree-vectorize -march=pentium4 -mfpmath=387" } */
+
+struct A
+{
+ float f, g, h, k;
+ A () {}
+ A (float v0, float x, float y) : f(v0), g(x), h(y), k(0.0f) {}
+ A bar (A &a, float t) { return A (f + a.f * t, g + a.g * t, h + a.h * t); }
+};
+
+A
+baz (A &x, A &y, float t)
+{
+ return x.bar (y, t);
+}
+
+A *
+foo (A &s, A &t, A &u, A &v, int y, int z)
+{
+ A *x = new A[y * z];
+ for (int i = 0; i < 7; i++)
+ {
+ A s = baz (s, u, i / (float) z);
+ A t = baz (t, v, i / (float) z);
+ for (int j = 0; j < 7; j++)
+ x[i * y + j] = baz (s, t, j / (float) y);
+ }
+ return x;
+}
+
+/* { dg-final { scan-assembler-not "%mm" } } */
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/pr61094.C b/gcc-4.9/gcc/testsuite/g++.dg/pr61094.C
new file mode 100644
index 000000000..35adc256c
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/pr61094.C
@@ -0,0 +1,31 @@
+/* { dg-do compile } */
+/* { dg-options "-O3" } */
+
+template <typename> struct A {
+ unsigned _width, _height, _depth, _spectrum;
+ template <typename t> A(t p1) {
+ int a = p1.size();
+ if (a) {
+ _width = p1._width;
+ _depth = _height = _spectrum = p1._spectrum;
+ }
+ }
+ long size() { return (long)_width * _height * _depth * _spectrum; }
+};
+
+int d;
+void fn1(void *);
+A<int> *fn2();
+void fn3() {
+ int b;
+ for (;;) {
+ A<char> c(*fn2());
+ fn1(&c);
+ if (d || !b)
+ throw;
+ }
+}
+
+
+
+
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/pr61289-2.c b/gcc-4.9/gcc/testsuite/g++.dg/pr61289-2.c
new file mode 100644
index 000000000..4cc3ebe46
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/pr61289-2.c
@@ -0,0 +1,62 @@
+/* { dg-do run } */
+/* { dg-options "-O2 -fno-exceptions" } */
+struct S
+{
+ inline int fn1 () const { return s; }
+ __attribute__ ((noinline, noclone)) S *fn2 (int);
+ __attribute__ ((noinline, noclone)) void fn3 ();
+ __attribute__ ((noinline, noclone)) static S *fn4 (int);
+ S (int i) : s (i) {}
+ int s;
+};
+
+int a = 0;
+S *b = 0;
+
+S *
+S::fn2 (int i)
+{
+ a++;
+ if (a == 1)
+ return b;
+ if (a > 3)
+ __builtin_abort ();
+ b = this;
+ return new S (i + s);
+}
+
+S *
+S::fn4 (int i)
+{
+ b = new S (i);
+ return b;
+}
+
+void
+S::fn3 ()
+{
+ delete this;
+}
+
+void
+foo ()
+{
+ S *c = S::fn4 (20);
+ for (int i = 0; i < 2;)
+ {
+ S *d = c->fn2 (c->fn1 () + 10);
+ if (c != d)
+{
+ c->fn3 ();
+ c = d;
+ ++i;
+}
+ }
+ c->fn3 ();
+}
+
+int
+main ()
+{
+ foo ();
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/pr61289.C b/gcc-4.9/gcc/testsuite/g++.dg/pr61289.C
new file mode 100644
index 000000000..ea7ccea30
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/pr61289.C
@@ -0,0 +1,63 @@
+/* { dg-do run } */
+/* { dg-options "-O2 -fno-exceptions" } */
+
+struct S
+{
+ inline int fn1 () const { return s; }
+ __attribute__ ((noinline, noclone)) S *fn2 (int);
+ __attribute__ ((noinline, noclone)) void fn3 ();
+ __attribute__ ((noinline, noclone)) static S *fn4 (int);
+ S (int i) : s (i) {}
+ int s;
+};
+
+int a = 0;
+S *b = 0;
+
+S *
+S::fn2 (int i)
+{
+ a++;
+ if (a == 1)
+ return b;
+ if (a > 3)
+ __builtin_abort ();
+ b = this;
+ return new S (i + s);
+}
+
+S *
+S::fn4 (int i)
+{
+ b = new S (i);
+ return b;
+}
+
+void
+S::fn3 ()
+{
+ delete this;
+}
+
+void
+foo ()
+{
+ S *c = S::fn4 (20);
+ for (int i = 0; i < 2;)
+ {
+ S *d = c->fn2 (c->fn1 () + 10);
+ if (d != c)
+{
+ c->fn3 ();
+ c = d;
+ ++i;
+}
+ }
+ c->fn3 ();
+}
+
+int
+main ()
+{
+ foo ();
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/rtti/repo1.C b/gcc-4.9/gcc/testsuite/g++.dg/rtti/repo1.C
index f72a9730a..16dd3028e 100644
--- a/gcc-4.9/gcc/testsuite/g++.dg/rtti/repo1.C
+++ b/gcc-4.9/gcc/testsuite/g++.dg/rtti/repo1.C
@@ -2,6 +2,7 @@
// { dg-options "-frepo" }
// { dg-require-host-local "" }
// { dg-skip-if "dkms are not final links" { vxworks_kernel } }
+// { dg-skip-if "-frepo not supported with --sysroot (as it is not passed to COLLECT_GCC_OPTIONS" { *-*-linux* } { "*" } { "" } }
#include <typeinfo>
template<int>
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/template/conv14.C b/gcc-4.9/gcc/testsuite/g++.dg/template/conv14.C
new file mode 100644
index 000000000..509ae6a65
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/template/conv14.C
@@ -0,0 +1,30 @@
+// PR c++/61647
+
+class XX;
+
+template<typename Container, typename Key>
+struct Accessor;
+
+template<typename Container, typename Key, typename KeyStore = Key>
+class Variant {
+protected:
+ KeyStore index;
+ Container state;
+public:
+ Variant(Container st, const Key& i) : index(i), state(st) {}
+
+ template<typename T>
+ operator T() const {
+ return Accessor<Container, KeyStore>::template get<T>(state, index);
+ }
+};
+
+class AutoCleanVariant : public Variant<XX*, int> {
+public:
+ AutoCleanVariant(XX* st, int i) : Variant<XX*,int>(st,i) {}
+
+ template<typename T>
+ operator T() const {
+ return Variant<XX*, int>::operator T();
+ }
+};
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/template/local-fn1.C b/gcc-4.9/gcc/testsuite/g++.dg/template/local-fn1.C
new file mode 100644
index 000000000..88acd17d7
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/template/local-fn1.C
@@ -0,0 +1,8 @@
+// PR c++/60605
+
+template <typename T = int>
+struct Foo {
+ void bar() {
+ void bug();
+ }
+};
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/template/pr61537.C b/gcc-4.9/gcc/testsuite/g++.dg/template/pr61537.C
new file mode 100644
index 000000000..12aaf58ef
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/template/pr61537.C
@@ -0,0 +1,23 @@
+// PR c++/61537
+// { dg-do compile }
+
+struct A {};
+
+template <typename T>
+struct B
+{
+ template <typename U>
+ void f(U, struct A);
+};
+
+template <typename T>
+template <typename U>
+void B<T>::f(U, struct A)
+{
+}
+
+int main()
+{
+ B<char> b;
+ b.f(42, A());
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/template/ptrmem27.C b/gcc-4.9/gcc/testsuite/g++.dg/template/ptrmem27.C
new file mode 100644
index 000000000..8c63f9c29
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/template/ptrmem27.C
@@ -0,0 +1,22 @@
+// PR c++/61500
+
+struct X {
+ int i;
+ int j;
+
+ int foo(int X::* ptr);
+
+ template <int X::* ptr>
+ int bar();
+};
+
+int X::foo(int X::* ptr) {
+ int* p = &(this->*ptr); // OK.
+ return *p;
+}
+
+template <int X::* ptr>
+int X::bar() {
+ int* p = &(this->*ptr); // gcc 4.9.0: OK in C++98 mode, fails in C++11 mode.
+ return *p;
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/template/ptrmem28.C b/gcc-4.9/gcc/testsuite/g++.dg/template/ptrmem28.C
new file mode 100644
index 000000000..037996087
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/template/ptrmem28.C
@@ -0,0 +1,10 @@
+// PR c++/61488
+
+struct A {
+ typedef int (A::*cont_func)();
+ template <A::cont_func> void wait(int);
+ int notify();
+
+ void fix() { wait<&A::notify>(0); } // OK
+ template <int> void repair() { wait<&A::notify>(0); }
+};
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/thunk_section_name.C b/gcc-4.9/gcc/testsuite/g++.dg/thunk_section_name.C
new file mode 100644
index 000000000..12c25c991
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/thunk_section_name.C
@@ -0,0 +1,30 @@
+/* { dg-require-named-sections "" } */
+/* { dg-do compile } */
+/* { dg-options "-O2 -fno-reorder-blocks-and-partition -ffunction-sections" } */
+
+class base_class_1
+{
+public:
+ virtual void vfn () {}
+};
+
+class base_class_2
+{
+public:
+ virtual void vfn () {}
+};
+
+class need_thunk_class : public base_class_1, public base_class_2
+{
+public:
+ virtual void vfn () {}
+};
+
+int main (int argc, char *argv[])
+{
+ base_class_1 *c = new need_thunk_class ();
+ c->vfn();
+ return 0;
+}
+
+/* { dg-final { scan-assembler "\.text\._ZThn\[4|8\]_N16need_thunk_class3vfnEv" } } */
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tls/thread_local9.C b/gcc-4.9/gcc/testsuite/g++.dg/tls/thread_local9.C
new file mode 100644
index 000000000..c75528a02
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tls/thread_local9.C
@@ -0,0 +1,23 @@
+// PR c++/61343
+
+// { dg-do run { target c++11 } }
+// { dg-add-options tls }
+// { dg-require-effective-target tls_runtime }
+
+struct Foo {
+ int value;
+
+ Foo() noexcept {
+ value = 12;
+ }
+};
+
+static thread_local Foo a{};
+
+static __attribute__((noinline)) void UseA() {
+ if (a.value != 12) __builtin_abort();
+}
+
+int main() {
+ UseA();
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/torture/pr60854.C b/gcc-4.9/gcc/testsuite/g++.dg/torture/pr60854.C
new file mode 100644
index 000000000..fa4b2e71a
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/torture/pr60854.C
@@ -0,0 +1,13 @@
+template <typename T>
+class MyClass
+{
+public:
+ __attribute__ ((__always_inline__)) inline MyClass () { ; }
+};
+
+extern template class MyClass<double>;
+
+void Func()
+{
+ MyClass<double> x;
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/torture/pr60895.C b/gcc-4.9/gcc/testsuite/g++.dg/torture/pr60895.C
new file mode 100644
index 000000000..0edd36ada
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/torture/pr60895.C
@@ -0,0 +1,32 @@
+// { dg-do compile }
+
+struct C
+{
+ double elems[3];
+};
+
+C
+foo ()
+{
+ C a;
+ double *f = a.elems;
+ int b;
+ for (; b;)
+ {
+ *f = 0;
+ ++f;
+ }
+ return a;
+}
+
+struct J
+{
+ C c;
+ __attribute__((always_inline)) J () : c (foo ()) {}
+};
+
+void
+bar ()
+{
+ J ();
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_1.C b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_1.C
new file mode 100644
index 000000000..c58f3ca94
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_1.C
@@ -0,0 +1,45 @@
+/* Verify if call-graph profile sections are created with -freorder-functions=.
+ Check of edge profiles and node profiles are present in the profile
+ sections. Check if the segment splitting API is invoked. */
+/* { dg-require-section-exclude "" } */
+/* { dg-require-linker-function-reordering-plugin "" } */
+/* { dg-options "-O2 -freorder-functions=callgraph -ffunction-sections --save-temps -Wl,-plugin-opt,file=linker.dump -Wl,-plugin-opt,split_segment=yes" } */
+
+int
+notcalled ()
+{
+ return 0;
+}
+
+int __attribute__ ((noinline))
+foo ()
+{
+ return 1;
+}
+
+int __attribute__ ((noinline))
+bar ()
+{
+ return 0;
+}
+
+int main ()
+{
+ int sum;
+ for (int i = 0; i< 1000; i++)
+ {
+ sum = foo () + bar();
+ }
+ return sum * bar ();
+}
+
+/* { dg-final-use { scan-assembler "\.gnu\.callgraph\.text\.main" } } */
+/* { dg-final-use { scan-assembler "\.string \"1000\"" } } */
+/* { dg-final-use { scan-assembler "\.string \"Weight 1000 1000\"" } } */
+/* { dg-final-use { scan-assembler "\.string \"Weight 1001 1001\"" } } */
+/* Check if main is next to foo or bar */
+/* { dg-final-use { scan-file linker.dump "Callgraph group : *\(_Z3foov main|main _Z3foov|_Z3barv main|main _Z3barv\).*\n" } } */
+/* { dg-final-use { scan-file linker.dump ".text\..*\._Z9notcalledv entry count = 0 computed = 0 max count = 0" } } */
+/* { dg-final-use { scan-file linker.dump "Moving .* section\\(s\\) to new segment" } } */
+/* { dg-final-use { cleanup-saved-temps } } */
+/* { dg-final-use { remove-build-file "linker.dump" } } */
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_2.C b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_2.C
new file mode 100644
index 000000000..5e238d8e2
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_2.C
@@ -0,0 +1,25 @@
+/* Check if the edge_cutoffa option to the function reordering plugin works as
+ expected. */
+/* { dg-require-section-exclude "" } */
+/* { dg-require-linker-function-reordering-plugin "" } */
+/* { dg-options "-O2 -freorder-functions=callgraph -ffunction-sections -Wl,-plugin-opt,file=linker.dump -Wl,-plugin-opt,edge_cutoff=a1000" } */
+
+int __attribute__ ((noinline))
+foo ()
+{
+ return 1;
+}
+
+int main ()
+{
+ int sum = 0;
+ for (int i = 0; i< 1000; i++)
+ {
+ sum += foo ();
+ }
+ return sum - 1000;
+}
+
+/* { dg-final-use { scan-file linker.dump "Not considering edge with weight 1000 and below" } } */
+/* { dg-final-use { scan-file-not linker.dump "Callgraph group" } } */
+/* { dg-final-use { remove-build-file "linker.dump" } } */
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_3.C b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_3.C
new file mode 100644
index 000000000..f316701c8
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_3.C
@@ -0,0 +1,25 @@
+/* Check if the edge_cutoffp option to the function reordering plugin works as
+ expected. */
+/* { dg-require-section-exclude "" } */
+/* { dg-require-linker-function-reordering-plugin "" } */
+/* { dg-options "-O2 -freorder-functions=callgraph -ffunction-sections -Wl,-plugin-opt,file=linker.dump -Wl,-plugin-opt,edge_cutoff=p100" } */
+
+int __attribute__ ((noinline))
+foo ()
+{
+ return 1;
+}
+
+int main ()
+{
+ int sum = 0;
+ for (int i = 0; i< 1000; i++)
+ {
+ sum += foo ();
+ }
+ return sum - 1000;
+}
+
+/* { dg-final-use { scan-file linker.dump "Not considering edge with weight 1000 and below" } } */
+/* { dg-final-use { scan-file-not linker.dump "Callgraph group" } } */
+/* { dg-final-use { remove-build-file "linker.dump" } } */
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_4.C b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_4.C
new file mode 100644
index 000000000..58e38ad35
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_4.C
@@ -0,0 +1,41 @@
+/* Check if cutting off callgraph gets all functions laid out only according to
+ function profiles and not prefixes. foo_200 is as hot as the other foo's but
+ has a unlikely section prefix. This should not matter as sort_name_prefix
+ is turned off. */
+/* { dg-require-section-exclude "" } */
+/* { dg-require-linker-function-reordering-plugin "" } */
+/* { dg-options "-O2 -freorder-functions=callgraph -ffunction-sections -Wl,-plugin-opt,file=linker.dump,-plugin-opt,edge_cutoff=p100,-plugin-opt,sort_name_prefix=no" } */
+
+int __attribute__ ((noinline, section(".text.unlikely._Z7foo_200v")))
+foo_200 ()
+{
+ return 1;
+}
+
+int __attribute__ ((noinline))
+foo_100 ()
+{
+ return 1;
+}
+
+int __attribute__ ((noinline))
+foo_300 ()
+{
+ return 1;
+}
+int main ()
+{
+ int sum = 0;
+ for (int i = 0; i< 200; i++)
+ sum += foo_200 ();
+ for (int i = 0; i< 100; i++)
+ sum += foo_100 ();
+ for (int i = 0; i< 300; i++)
+ sum += foo_300 ();
+ return sum - 600;
+}
+
+/* { dg-final-use { scan-file-not linker.dump "Callgraph group" } } */
+/* { dg-final-use { scan-file linker.dump ".text.unlikely._Z7foo_200v entry count = 200 computed = 200 max count = 200" } } */
+/* { dg-final-use { scan-file linker.dump "\.text\.*\._Z7foo_100v.*\n\.text\.unlikely\._Z7foo_200v.*\n\.text\.*\._Z7foo_300v.*\n" } } */
+/* { dg-final-use { remove-build-file "linker.dump" } } */
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_5.C b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_5.C
new file mode 100644
index 000000000..dbae8d774
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_5.C
@@ -0,0 +1,41 @@
+/* Check if cutting off callgraph and using sort_name_prefix gets all functions laid out
+ according to prefixes. foo_200 is almost as hot as the other foo's but should
+ not be grouped with them as it has a different section prefix and sort_name_prefix is
+ turned on. */
+/* { dg-require-section-exclude "" } */
+/* { dg-require-linker-function-reordering-plugin "" } */
+/* { dg-options "-O2 -freorder-functions=callgraph -ffunction-sections -Wl,-plugin-opt,file=linker.dump,-plugin-opt,edge_cutoff=p100,-plugin-opt,sort_name_prefix=yes" } */
+
+int __attribute__ ((noinline, section(".text.unlikely._Z7foo_200v")))
+foo_200 ()
+{
+ return 1;
+}
+
+int __attribute__ ((noinline))
+foo_100 ()
+{
+ return 1;
+}
+
+int __attribute__ ((noinline))
+foo_300 ()
+{
+ return 1;
+}
+int main ()
+{
+ int sum = 0;
+ for (int i = 0; i< 200; i++)
+ sum += foo_200 ();
+ for (int i = 0; i< 100; i++)
+ sum += foo_100 ();
+ for (int i = 0; i< 300; i++)
+ sum += foo_300 ();
+ return sum - 600;
+}
+
+/* { dg-final-use { scan-file-not linker.dump "Callgraph group" } } */
+/* { dg-final-use { scan-file linker.dump ".text.unlikely._Z7foo_200v entry count = 200 computed = 200 max count = 200" } } */
+/* { dg-final-use { scan-file linker.dump "\.text\.unlikely\._Z7foo_200v.*\n\.text\.*\._Z7foo_100v.*\n\.text\.*\._Z7foo_300v.*\n" } } */
+/* { dg-final-use { remove-build-file "linker.dump" } } */
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_6.C b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_6.C
new file mode 100644
index 000000000..1116a4f44
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_6.C
@@ -0,0 +1,53 @@
+/* Check if use_maxcount works as expected. This makes the node profile weight to
+ be equal to the maximum count of any basic block in a function rather than the
+ entry count. foo_100's maxcount > foo_200's max count */
+/* { dg-require-section-exclude "" } */
+/* { dg-require-linker-function-reordering-plugin "" } */
+/* { dg-options "-O2 -freorder-functions=callgraph -ffunction-sections -Wl,-plugin-opt,file=linker.dump -Wl,-plugin-opt,edge_cutoff=p100,-plugin-opt,use_maxcount=yes" } */
+
+
+int __attribute__ ((noinline))
+bar (int *i)
+{
+ (*i)--;
+ if (*i >= 0)
+ return 1;
+ return 0;
+}
+
+int __attribute__ ((noinline))
+foo_100 (int count)
+{
+ int sum = 0;
+ while (count > 0)
+ {
+ sum += bar(&count);
+ }
+ return sum;
+}
+
+int __attribute__ ((noinline))
+foo_200 (int count)
+{
+ int sum = 0;
+ while (count > 0)
+ {
+ sum += bar(&count);
+ }
+ return sum;
+}
+
+int main ()
+{
+ int sum = 0;
+ for (int i = 0; i< 200; i++)
+ sum += foo_200 (100);
+ for (int i = 0; i< 100; i++)
+ sum += foo_100 (400);
+ return sum - 60000;
+}
+/* { dg-final-use { scan-file-not linker.dump "Callgraph group" } } */
+/* { dg-final-use { scan-file linker.dump "\.text\.*\._Z7foo_100i entry count = 100 computed = 100 max count = 40000" } } */
+/* { dg-final-use { scan-file linker.dump "\.text\.*\._Z7foo_200i entry count = 200 computed = 200 max count = 20000" } } */
+/* { dg-final-use { scan-file linker.dump "\.text\.*\._Z7foo_200i.*\n\.text\.*\._Z7foo_100i.*\n\.text\.*\._Z3barPi.*\n" } } */
+/* { dg-final-use { remove-build-file "linker.dump" } } */
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_7.C b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_7.C
new file mode 100644
index 000000000..3af8636ad
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_7.C
@@ -0,0 +1,55 @@
+/* Check if turning off use_maxcount works as expected. This makes the node
+ profile weight to be equal to the entry count of any basic block in a
+ function rather than the max count.
+ foo_100's maxcount > foo_200's max count but
+ foo_100's entry count < foo_200's entry count. */
+/* { dg-require-section-exclude "" } */
+/* { dg-require-linker-function-reordering-plugin "" } */
+/* { dg-options "-O2 -freorder-functions=callgraph -ffunction-sections -Wl,-plugin-opt,file=linker.dump -Wl,-plugin-opt,edge_cutoff=p100,-plugin-opt,use_maxcount=no" } */
+
+
+int __attribute__ ((noinline))
+bar (int *i)
+{
+ (*i)--;
+ if (*i >= 0)
+ return 1;
+ return 0;
+}
+
+int __attribute__ ((noinline))
+foo_100 (int count)
+{
+ int sum = 0;
+ while (count > 0)
+ {
+ sum += bar(&count);
+ }
+ return sum;
+}
+
+int __attribute__ ((noinline))
+foo_200 (int count)
+{
+ int sum = 0;
+ while (count > 0)
+ {
+ sum += bar(&count);
+ }
+ return sum;
+}
+
+int main ()
+{
+ int sum = 0;
+ for (int i = 0; i< 200; i++)
+ sum += foo_200 (100);
+ for (int i = 0; i< 100; i++)
+ sum += foo_100 (400);
+ return sum - 60000;
+}
+/* { dg-final-use { scan-file-not linker.dump "Callgraph group" } } */
+/* { dg-final-use { scan-file linker.dump "\.text\.*\._Z7foo_100i entry count = 100 computed = 100 max count = 40000" } } */
+/* { dg-final-use { scan-file linker.dump "\.text\.*\._Z7foo_200i entry count = 200 computed = 200 max count = 20000" } } */
+/* { dg-final-use { scan-file linker.dump "\.text\.*\._Z7foo_100i.*\n\.text\.*\._Z7foo_200i.*\n\.text\.*\._Z3barPi.*\n" } } */
+/* { dg-final-use { remove-build-file "linker.dump" } } */
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_8.C b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_8.C
new file mode 100644
index 000000000..3f1a0156e
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_8.C
@@ -0,0 +1,19 @@
+/* Check if unlikely_cutoff works as expected. Function foo is unlikely because of the cutoff. */
+/* { dg-require-section-exclude "" } */
+/* { dg-require-linker-function-reordering-plugin "" } */
+/* { dg-options "-O2 -freorder-functions=callgraph -ffunction-sections -Wl,-plugin-opt,file=linker.dump -Wl,-plugin-opt,edge_cutoff=p100,-plugin-opt,unlikely_cutoff=1" } */
+
+int __attribute__ ((noinline,section(".text.hot._Z3foov")))
+foo ()
+{
+ return 0;
+}
+
+int main()
+{
+ return foo ();
+}
+
+/* { dg-final-use { scan-file-not linker.dump "Callgraph group" } } */
+/* { dg-final-use { scan-file linker.dump "=== Unlikely sections start ===\n.*\.text\.hot\._Z3foov.* entry count = 1 computed = 1 max count = 1 split = 0\n.*=== Unlikely sections end ===" } } */
+/* { dg-final-use { remove-build-file "linker.dump" } } */
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_split_functions_1.C b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_split_functions_1.C
new file mode 100644
index 000000000..2f184c3e8
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/func_reorder_gold_plugin_split_functions_1.C
@@ -0,0 +1,63 @@
+/* Check if the gold function reordering plugin reorders split functions.
+ Check if foo is split and the cold section of foo is not next to its hot
+ section*/
+/* { dg-require-section-exclude "" } */
+/* { dg-require-linker-function-reordering-plugin "" } */
+/* { dg-require-effective-target freorder } */
+/* { dg-options "-O2 -freorder-functions=callgraph -ffunction-sections -freorder-blocks-and-partition --save-temps -Wl,-plugin-opt,file=linker.dump" } */
+
+
+#define SIZE 10000
+
+const char *sarr[SIZE];
+const char *buf_hot;
+const char *buf_cold;
+
+__attribute__ ((noinline))
+int bar (int *arg)
+{
+ (*arg)++;
+ return 0;
+}
+
+__attribute__((noinline))
+void
+foo (int path)
+{
+ int i;
+ bar (&path);
+ if (path)
+ {
+ for (i = 0; i < SIZE; i++)
+ sarr[i] = buf_hot;
+ }
+ else
+ {
+ for (i = 0; i < SIZE; i++)
+ sarr[i] = buf_cold;
+ }
+}
+
+int
+main (int argc, char *argv[])
+{
+ buf_hot = "hello";
+ buf_cold = "world";
+ foo (argc);
+ return 0;
+}
+
+/* { dg-final-use { scan-assembler "\.string \"ColdWeight 0\"" } } */
+/* { dg-final-use { scan-assembler "\.section.*\.text\.hot\._Z3fooi" } } */
+/* { dg-final-use { scan-assembler "\.section.*\.text\.unlikely\._Z3fooi" } } */
+/* { dg-final-use { cleanup-saved-temps } } */
+/* Check if foo and bar are together */
+/* { dg-final-use { scan-file linker.dump "Callgraph group :.*\(_Z3fooi _Z3barPi|_Z3barPi _Z3fooi\).*\n" } } */
+/* Check if foo and main are together */
+/* { dg-final-use { scan-file linker.dump "Callgraph group :.*\(_Z3fooi main|main _Z3fooi\).*\n" } } */
+/* { dg-final-use { scan-file linker.dump "\.text\.unlikely\._Z3fooi .* split = 1" } } */
+/* Check if unlikely sections of foo and bar are together */
+/* { dg-final-use { scan-file linker.dump "\(\.text\.unlikely\._Z3fooi\[^\n\]*\n\.text\.unlikely\._Z3barPi\[^\n\]*\n|\.text\.unlikely\._Z3barPi\[^\n\]*\n\.text\.unlikely\._Z3fooi\[^\n\]*\n\)" } } */
+/* Check if likely sections of hot foo and bar are together */
+/* { dg-final-use { scan-file linker.dump "\(\.text\._Z3barPi\[^\n\]*\n\.text\.hot\._Z3fooi|\.text\.hot\._Z3fooi\[^\n\]*\n\.text\._Z3barPi\)" } } */
+/* { dg-final-use { remove-build-file "linker.dump" } } */
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/indir-call-prof-2_0.C b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/indir-call-prof-2_0.C
new file mode 100644
index 000000000..e20cc64d3
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/indir-call-prof-2_0.C
@@ -0,0 +1,35 @@
+/* { dg-options "-O" } */
+
+int foo1(void) { return 0; }
+int bar1(void) { throw 1; }
+void foo2(void) { }
+void bar2(void) { throw 1; }
+void __attribute__((noinline,noclone)) test1(void (*f)(void)) { (*f)(); }
+void __attribute__((noinline,noclone)) test2(void (*f)(void)) { (*f)(); }
+int __attribute__((noinline,noclone)) test3(int (*f)(void)) { return (*f)(); }
+int __attribute__((noinline,noclone)) test4(int (*f)(void)) { return (*f)(); }
+int __attribute__((noinline,noclone)) test5(int (*f)(void), int x) { return x ? x : (*f)(); }
+int __attribute__((noinline,noclone)) test6(int (*f)(void), int x) { return x ? x : (*f)(); }
+void __attribute__((noinline,noclone)) test7(void (*f)(void)) { try { (*f)(); } catch (...) {} }
+void __attribute__((noinline,noclone)) test8(void (*f)(void)) { try { (*f)(); } catch (...) {}}
+int __attribute__((noinline,noclone)) test9(int (*f)(void)) { try { return (*f)(); } catch (...) {return 0;} }
+int __attribute__((noinline,noclone)) test10(int (*f)(void)) { try { return (*f)(); } catch (...) {return 0;} }
+int __attribute__((noinline,noclone)) test11(int (*f)(void), int x) { try { return x ? x : (*f)(); } catch (...) {return 0;} }
+int __attribute__((noinline,noclone)) test12(int (*f)(void), int x) { try { return x ? x : (*f)(); } catch (...) {return 0;} }
+
+int main()
+{
+ for (int i = 0; i < 100; ++i) test1(foo2);
+ for (int i = 0; i < 100; ++i) try { test2(bar2); } catch (...) {}
+ for (int i = 0; i < 100; ++i) test3(foo1);
+ for (int i = 0; i < 100; ++i) try { test4(bar1); } catch (...) {}
+ for (int i = 0; i < 100; ++i) test5(foo1, 0);
+ for (int i = 0; i < 100; ++i) try { test6(bar1, 0); } catch (...) {}
+ for (int i = 0; i < 100; ++i) test7(foo2);
+ for (int i = 0; i < 100; ++i) try { test8(bar2); } catch (...) {}
+ for (int i = 0; i < 100; ++i) test9(foo1);
+ for (int i = 0; i < 100; ++i) try { test10(bar1); } catch (...) {}
+ for (int i = 0; i < 100; ++i) test11(foo1, 0);
+ for (int i = 0; i < 100; ++i) try { test12(bar1, 0); } catch (...) {}
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/indir-call-prof_0.C b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/indir-call-prof_0.C
new file mode 100644
index 000000000..b34b937fd
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/indir-call-prof_0.C
@@ -0,0 +1,39 @@
+/* { dg-options "-O2 -fdump-tree-optimized -fdump-ipa-profile" } */
+
+struct A {
+ A () {}
+
+ virtual int AA (void)
+ { return 0; }
+
+};
+
+struct B : public A {
+ B () {}
+
+ virtual int AA (void)
+ { return 1; }
+};
+
+void * __attribute__((noinline,noclone)) wrap (void *p) { return p; }
+int
+main (void)
+{
+ A a;
+ B b;
+
+ A* p;
+
+ p = (A *)wrap ((void *)&a);
+ p->AA ();
+
+ p = (B *)wrap ((void *)&b);
+ p->AA ();
+
+ return 0;
+}
+
+/* { dg-final-use { scan-ipa-dump "Indirect call -> direct call.* AA " "profile" } } */
+/* { dg-final-use { scan-tree-dump-not "Invalid sum" "optimized" } } */
+/* { dg-final-use { cleanup-tree-dump "optimized" } } */
+/* { dg-final-use { cleanup-ipa-dump "profile" } } */
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/inline_mismatch_args_0.C b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/inline_mismatch_args_0.C
new file mode 100644
index 000000000..e82a46ebf
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/inline_mismatch_args_0.C
@@ -0,0 +1,36 @@
+/* { dg-options "-O2 -fdump-tree-einline" } */
+class DocId {
+ public:
+ DocId() { }
+ DocId(const DocId &other) { }
+};
+
+int g;
+class Base {
+ public:
+ virtual void Foo(DocId id) { g++; }
+};
+
+class Super: public Base {
+ public:
+ void Foo(DocId id) { }
+ void Bar(Base *base, DocId id) __attribute__((noinline));
+};
+
+void Super::Bar(Base *base, DocId id) {
+ Super::Foo(id); // direct call is inlined
+ base->Foo(id); // indirect call is marked do not inline
+}
+
+int main(void)
+{
+ Base bah;
+ Super baz;
+ DocId gid;
+
+ baz.Bar(&baz, gid);
+ return 0;
+}
+/* { dg-final-use { scan-tree-dump "Inlining .*Super::Foo" "einline" } } */
+/* { dg-final-use { scan-tree-dump-not "mismatched arguments" "einline" } } */
+/* { dg-final-use { cleanup-tree-dump "einline" } } */
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/lipo.exp b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/lipo.exp
new file mode 100644
index 000000000..2d1ddd7cd
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/lipo.exp
@@ -0,0 +1,60 @@
+# Copyright (C) 2001, 2002, 2004, 2005, 2007, 2008
+# Free Software Foundation, Inc.
+
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with GCC; see the file COPYING3. If not see
+# <http://www.gnu.org/licenses/>.
+
+# Test the functionality of programs compiled with profile-directed block
+# ordering using -fprofile-generate followed by -fprofile-use.
+
+load_lib target-supports.exp
+
+# Some targets don't support tree profiling.
+if { ![check_profiling_available ""] } {
+ return
+}
+
+# The procedures in profopt.exp need these parameters.
+set tool g++
+set prof_ext [list {gcda} {gcda.imports} ]
+
+# Override the list defined in profopt.exp.
+set PROFOPT_OPTIONS [list {}]
+
+if $tracelevel then {
+ strace $tracelevel
+}
+
+# Load support procs.
+load_lib profopt.exp
+
+# These are globals used by profopt-execute. The first is options
+# needed to generate profile data, the second is options to use the
+# profile data.
+set profile_option "-fprofile-generate -fripa"
+set feedback_option "-fprofile-use -fripa"
+
+# Add -fno-section-anchors for powerpc. Workround for Google ref b/6663281
+if {[istarget powerpc*-*-*]} {
+ set profile_option "$profile_option -fno-section-anchors"
+ set feedback_option "$feedback_option -fno-section-anchors"
+}
+
+foreach src [lsort [glob -nocomplain $srcdir/$subdir/*_0.C]] {
+ # If we're only testing specific files and this isn't one of them, skip it.
+ if ![runtest_file_p $runtests $src] then {
+ continue
+ }
+ profopt-execute $src
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/partition1_0.C b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/partition1_0.C
new file mode 100644
index 000000000..108803997
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/partition1_0.C
@@ -0,0 +1,54 @@
+/* { dg-require-effective-target freorder } */
+/* { dg-options "-O2 -freorder-blocks-and-partition" } */
+/* { dg-skip-if "PR target/47683" { mips-sgi-irix* } } */
+
+struct A { A () __attribute__((noinline)); ~A () __attribute__((noinline)); };
+A::A () { asm volatile ("" : : : "memory"); }
+A::~A () { asm volatile ("" : : : "memory"); }
+
+int bar () __attribute__((noinline));
+void foo () __attribute__((noinline));
+
+volatile int k, l;
+
+int bar (int i)
+{
+ void *p = __builtin_alloca (i);
+ asm volatile ("" : : "r" (i), "r" (p) : "memory");
+ if (k) throw 6;
+ return ++l;
+}
+
+void foo ()
+{
+ A a;
+ try {
+ A b;
+ int i = bar (5);
+ try { throw 6; } catch (int) {}
+ if (__builtin_expect (i < 4500, 0)) {
+ bar (7);
+ try { bar (8); } catch (long) {}
+ bar (10);
+ if (__builtin_expect (i < 0, 0)) {
+ try { bar (12); } catch (...) {}
+ bar (16);
+ bar (122);
+ } else {
+ try { bar (bar (7)); } catch (int) {}
+ }
+ } else {
+ try { bar (bar (bar (9))); } catch (...) {}
+ bar (5);
+ }
+ } catch (...) {
+ }
+}
+
+int
+main ()
+{
+ int i;
+ for (i = 0; i < 10000; i++)
+ foo ();
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/partition2_0.C b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/partition2_0.C
new file mode 100644
index 000000000..6715da57e
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/partition2_0.C
@@ -0,0 +1,16 @@
+// PR middle-end/45458
+// { dg-require-effective-target freorder }
+// { dg-options "-fnon-call-exceptions -freorder-blocks-and-partition" }
+// { dg-skip-if "PR target/47683" { mips-sgi-irix* } }
+
+int
+main ()
+{
+ try
+ {
+ throw 6;
+ }
+ catch (...)
+ {
+ }
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/partition3_0.C b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/partition3_0.C
new file mode 100644
index 000000000..784698369
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/partition3_0.C
@@ -0,0 +1,18 @@
+// PR middle-end/45566
+// { dg-require-effective-target freorder }
+// { dg-options "-O -fnon-call-exceptions -freorder-blocks-and-partition" }
+
+int k;
+
+int
+main ()
+{
+ try
+ {
+ if (k)
+ throw 6;
+ }
+ catch (...)
+ {
+ }
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/vcall1_0.C b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/vcall1_0.C
new file mode 100644
index 000000000..3052344b5
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/vcall1_0.C
@@ -0,0 +1,41 @@
+/* { dg-options "-O2 -fdump-tree-optimized -fdump-ipa-profile" } */
+#include <stdio.h>
+struct A {
+ A () {}
+ virtual int AA (void) { return 0; }
+};
+
+extern A* getB (void);
+extern A* getC (void);
+
+int g;
+
+int
+main (void)
+{
+ A* p;
+ int i;
+ int s = 0;
+
+ p = getB();
+ for (i = 0; i < 100; i++)
+ {
+ s += p->AA();
+ }
+
+ for (i = 0; i < 100; i++)
+ {
+ if (i%10 == 0)
+ p = getB();
+ else
+ p = getC();
+
+ s += p->AA();
+ }
+ printf ("result = %d\n",s);
+}
+
+/* { dg-final-use { scan-ipa-dump-times "Indirect call -> direct call" 2 "profile" } } */
+/* { dg-final-use { scan-tree-dump-not "Invalid sum" "optimized" } } */
+/* { dg-final-use { cleanup-tree-dump "optimized" } } */
+/* { dg-final-use { cleanup-ipa-dump "profile" } } */
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/vcall1_1.C b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/vcall1_1.C
new file mode 100644
index 000000000..6023024f4
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/vcall1_1.C
@@ -0,0 +1,23 @@
+/* { dg-options "-O2 -fdump-tree-optimized -fdump-ipa-profile" } */
+
+struct A {
+ A () {}
+
+ virtual int AA (void)
+ { return 0; }
+
+};
+
+struct B : public A {
+ B () {}
+
+ virtual int AA (void)
+ { return 1; }
+};
+
+B b;
+
+A* getB (void)
+{
+ return &b;
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/vcall1_2.C b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/vcall1_2.C
new file mode 100644
index 000000000..cc33d6a19
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/lipo/vcall1_2.C
@@ -0,0 +1,31 @@
+/* { dg-options "-O2 -fdump-tree-optimized -fdump-ipa-profile" } */
+
+struct A {
+ A () {}
+
+ virtual int AA (void)
+ { return 0; }
+
+};
+
+struct B : public A {
+ B () {}
+
+ virtual int AA (void)
+ { return 1; }
+};
+
+struct C : public B {
+ C () {}
+
+ virtual int AA (void)
+ { return 2; }
+
+};
+
+C c;
+
+A* getC(void)
+{
+ return &c;
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/morefunc.C b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/morefunc.C
new file mode 100644
index 000000000..d5cee40cd
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/morefunc.C
@@ -0,0 +1,55 @@
+/* { dg-options "-O2 -fno-devirtualize --param=profile-func-internal-id=0 -fdump-ipa-profile -Wno-attributes -Wno-coverage-mismatch" } */
+#include "reorder_class1.h"
+#include "reorder_class2.h"
+
+int g;
+
+#ifdef _PROFILE_USE
+/* Another function not existing
+ * in profile-gen */
+
+__attribute__((noinline)) void
+new_func (int i)
+{
+ g += i;
+}
+#endif
+
+static __attribute__((always_inline))
+void test1 (A *tc)
+{
+ int i;
+ for (i = 0; i < 1000; i++)
+ g += tc->foo();
+ if (g<100) g++;
+}
+
+static __attribute__((always_inline))
+void test2 (B *tc)
+{
+ int i;
+ for (i = 0; i < 1000; i++)
+ g += tc->foo();
+}
+
+
+__attribute__((noinline)) void test_a(A *ap) { test1 (ap); }
+__attribute__((noinline)) void test_b(B *bp) { test2 (bp); }
+
+
+int main()
+{
+ A* ap = new A();
+ B* bp = new B();
+
+ test_a(ap);
+ test_b(bp);
+
+#ifdef _PROFILE_USE
+ new_func(10);
+#endif
+
+}
+
+/* { dg-final-use { scan-ipa-dump-times "Indirect call -> direct call" 2 "profile" } } */
+
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/reorder.C b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/reorder.C
new file mode 100644
index 000000000..f0efc210a
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/reorder.C
@@ -0,0 +1,48 @@
+/* { dg-options "-O2 -fno-devirtualize --param=profile-func-internal-id=0 -fdump-ipa-profile -Wno-attributes" } */
+
+#ifdef _PROFILE_USE
+#include "reorder_class1.h"
+#include "reorder_class2.h"
+#else
+#include "reorder_class2.h"
+#include "reorder_class1.h"
+#endif
+
+int g;
+static __attribute__((always_inline))
+void test1 (A *tc)
+{
+ int i;
+ for (i = 0; i < 1000; i++)
+ g += tc->foo();
+ if (g<100) g++;
+}
+
+static __attribute__((always_inline))
+void test2 (B *tc)
+{
+ int i;
+ for (i = 0; i < 1000; i++)
+ g += tc->foo();
+}
+
+
+#ifdef _PROFILE_USE
+__attribute__((noinline)) void test_a(A *ap) { test1 (ap); }
+__attribute__((noinline)) void test_b(B *bp) { test2 (bp); }
+#else
+__attribute__((noinline)) void test_b(B *bp) { test2 (bp); }
+__attribute__((noinline)) void test_a(A *ap) { test1 (ap); }
+#endif
+
+int main()
+{
+ A* ap = new A();
+ B* bp = new B();
+
+ test_a(ap);
+ test_b(bp);
+}
+
+/* { dg-final-use { scan-ipa-dump-times "Indirect call -> direct call" 2 "profile" } } */
+
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/reorder_class1.h b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/reorder_class1.h
new file mode 100644
index 000000000..62a1e923c
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/reorder_class1.h
@@ -0,0 +1,11 @@
+struct A {
+ virtual int foo();
+};
+
+int A::foo()
+{
+ return 1;
+}
+
+
+
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/reorder_class2.h b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/reorder_class2.h
new file mode 100644
index 000000000..ee3ed109b
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/reorder_class2.h
@@ -0,0 +1,12 @@
+
+struct B {
+ virtual int foo();
+};
+
+int B::foo()
+{
+ return 2;
+}
+
+
+
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/tree-prof.exp b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/tree-prof.exp
index 2c96ee38c..f12ddaf86 100644
--- a/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/tree-prof.exp
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-prof/tree-prof.exp
@@ -42,8 +42,8 @@ set PROFOPT_OPTIONS [list {}]
# These are globals used by profopt-execute. The first is options
# needed to generate profile data, the second is options to use the
# profile data.
-set profile_option "-fprofile-generate"
-set feedback_option "-fprofile-use"
+set profile_option "-fprofile-generate -D_PROFILE_GENERATE"
+set feedback_option "-fprofile-use -D_PROFILE_USE"
foreach src [lsort [glob -nocomplain $srcdir/$subdir/*.C]] {
# If we're only testing specific files and this isn't one of them, skip it.
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-ssa/forwprop-switch.C b/gcc-4.9/gcc/testsuite/g++.dg/tree-ssa/forwprop-switch.C
new file mode 100644
index 000000000..c3f12ac45
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-ssa/forwprop-switch.C
@@ -0,0 +1,24 @@
+// { dg-do compile }
+// { dg-options "-O -fdump-tree-cddce1" }
+
+enum Scale { E1, E2, E3, E4, E5, E6, E7, E8 };
+
+int Test(Scale s)
+{
+ switch(s)
+ {
+ case E1: return 12;
+ case E2: return 17;
+ case E3: return 22;
+ case E4: return 42;
+ default: break;
+ }
+ return 0;
+}
+
+// tree forwprop should have eliminated the (int) s cast for the
+// switch value and directly switch on the 's' parameter
+
+// { dg-final { scan-tree-dump-not "\\\(int\\\)" "cddce1" } }
+// { dg-final { scan-tree-dump "switch \\\(s_.\\\(D\\\)\\\)" "cddce1" } }
+// { dg-final { cleanup-tree-dump "cddce1" } }
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/tree-ssa/pr61009.C b/gcc-4.9/gcc/testsuite/g++.dg/tree-ssa/pr61009.C
new file mode 100644
index 000000000..4e7bb1a1c
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/tree-ssa/pr61009.C
@@ -0,0 +1,53 @@
+/* { dg-do compile } */
+/* { dg-options "-O2 -fno-tree-vrp -std=c++11 -fno-strict-aliasing -fdump-tree-dom1" } */
+
+#include <stdio.h>
+struct Field {
+ virtual int Compare(void*, void*);
+};
+extern int NKF, NR;
+extern int idxs[];
+extern Field* the_field;
+extern int *incs;
+extern char** fptrs;
+inline int doCmp(int this_row_offset, int field_idx) {
+ void *p = fptrs[field_idx] + this_row_offset * incs[field_idx];
+ return the_field->Compare(p,0);
+}
+bool Test(void) {
+
+ int row_offset = 0;
+
+ for (; row_offset < NR; ++row_offset) {
+
+ bool is_different = false;
+ for (int j = 0; j < NKF ; ++j) {
+ int field_idx = idxs[j];
+ int cmp = doCmp(row_offset, field_idx);
+ fprintf (stderr, "cmp=%d\n",cmp);
+
+ if (cmp == 0) {
+ continue;
+ }
+ if (cmp > 0) {
+ is_different = true;
+ break;
+ } else {
+ fprintf (stderr, "Incorrect\n");
+ return false;
+ }
+ }
+ if (!is_different) {
+
+ return false;
+ }
+ }
+
+ return true;
+}
+
+// The block ending with cmp == 0 should not be threaded. ie,
+// there should be a single == 0 comparison in the dump file.
+
+// { dg-final { scan-tree-dump-times "== 0" 1 "dom1" } }
+// { dg-final { cleanup-tree-dump "dom1" } }
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/vect/pr60836.cc b/gcc-4.9/gcc/testsuite/g++.dg/vect/pr60836.cc
new file mode 100644
index 000000000..83bb18375
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/vect/pr60836.cc
@@ -0,0 +1,39 @@
+// { dg-do compile }
+
+int a, b;
+typedef double (*NormFunc) (const int &);
+int &
+max (int &p1, int &p2)
+{
+ if (p1 < p2)
+ return p2;
+ return p1;
+}
+
+struct A
+{
+ int operator () (int p1, int p2)
+ {
+ return max (p1, p2);
+ }
+};
+template < class, class > double
+norm_ (const int &)
+{
+ char c, d;
+ A e;
+ for (; a; a++)
+ {
+ b = e (b, d);
+ b = e (b, c);
+ }
+}
+
+void
+norm ()
+{
+ static NormFunc f = norm_ < int, A >;
+ f = 0;
+}
+
+// { dg-final { cleanup-tree-dump "vect" } }
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/warn/Weff1.C b/gcc-4.9/gcc/testsuite/g++.dg/warn/Weff1.C
deleted file mode 100644
index a00dc29bf..000000000
--- a/gcc-4.9/gcc/testsuite/g++.dg/warn/Weff1.C
+++ /dev/null
@@ -1,5 +0,0 @@
-// { dg-options "-Weffc++" }
-
-struct S {};
-/* Base classes should have virtual destructors. */
-struct T : public S {}; // { dg-warning "" }
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/warn/Wnull-conversion-1.C b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wnull-conversion-1.C
index 84a1d380b..ff82fd44a 100644
--- a/gcc-4.9/gcc/testsuite/g++.dg/warn/Wnull-conversion-1.C
+++ b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wnull-conversion-1.C
@@ -3,7 +3,7 @@
#include <stddef.h>
-void func1(int* ptr);
+void func1 (int *ptr);
void func2() {
int* t = false; // { dg-warning "converting 'false' to pointer" }
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/warn/Wnull-conversion-2.C b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wnull-conversion-2.C
index 92a87d1e7..6ce7605c5 100644
--- a/gcc-4.9/gcc/testsuite/g++.dg/warn/Wnull-conversion-2.C
+++ b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wnull-conversion-2.C
@@ -3,43 +3,53 @@
#include <stddef.h>
-class Foo {
- public:
- template <typename T1, typename T2>
- static void Compare(const T1& expected, const T2& actual) { }
+class Foo
+{
+public:
+ template < typename T1, typename T2 >
+ static void Compare (const T1 & expected, const T2 & actual)
+ {
+ }
- template <typename T1, typename T2>
- static void Compare(const T1& expected, T2* actual) { }
+ template < typename T1, typename T2 >
+ static void Compare (const T1 & expected, T2 * actual)
+ {
+ }
};
-template<typename T1>
-class Foo2 {
- public:
- Foo2(int x);
- template<typename T2> void Bar(T2 y);
+template < typename T1 > class Foo2
+{
+public:
+ Foo2 (int x);
+ template < typename T2 > void Bar (T2 y);
};
-template<typename T3> void func(T3 x) { }
+template < typename T3 > void
+func (T3 x)
+{
+}
-typedef Foo2<int> MyFooType;
+typedef Foo2 < int >MyFooType;
-void func1(long int a) {
- MyFooType *foo2 = new MyFooType(NULL); // { dg-warning "passing NULL to" }
- foo2->Bar(a);
- func(NULL);
- func<int>(NULL); // { dg-warning "passing NULL to" }
- func<int *>(NULL);
+void
+func1 (long int a)
+{
+ MyFooType *foo2 = new MyFooType (NULL); // { dg-warning "passing NULL to" }
+ foo2->Bar (a);
+ func (NULL);
+ func < int >(NULL); // { dg-warning "passing NULL to" }
+ func < int *>(NULL);
}
int x = 1;
-main()
+main ()
{
int *p = &x;
- Foo::Compare(0, *p);
- Foo::Compare<long int, int>(NULL, p); // { dg-warning "passing NULL to" }
- Foo::Compare(NULL, p);
- func1(NULL); // { dg-warning "passing NULL to" }
+ Foo::Compare (0, *p);
+ Foo::Compare < long int, int >(NULL, p); // { dg-warning "passing NULL to" }
+ Foo::Compare (NULL, p);
+ func1 (NULL); // { dg-warning "passing NULL to" }
}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-1.C b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-1.C
new file mode 100644
index 000000000..f15280501
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-1.C
@@ -0,0 +1,54 @@
+// Test the self-assignemnt detection and warning.
+// { dg-do compile }
+// { dg-options "-Wself-assign" }
+
+class Foo {
+ private:
+ int a_;
+
+ public:
+ Foo() : a_(a_) {} // { dg-warning "assigned to itself" }
+
+ void setA(int a) {
+ a_ = a_; // { dg-warning "assigned to itself" }
+ }
+
+ void operator=(Foo& rhs) {
+ this->a_ = rhs.a_;
+ }
+};
+
+struct Bar {
+ int b_;
+ int c_;
+};
+
+int g = g; // { dg-warning "assigned to itself" }
+Foo foo = foo; // { dg-warning "assigned to itself" }
+
+int func()
+{
+ Bar *bar1, bar2;
+ Foo local_foo;
+ int x = x; // { dg-warning "assigned to itself" }
+ static int y = y; // { dg-warning "assigned to itself" }
+ float *f;
+ Bar bar_array[5];
+ char n;
+ int overflow;
+
+ *f = *f; // { dg-warning "assigned to itself" }
+ bar1->b_ = bar1->b_; // { dg-warning "assigned to itself" }
+ bar2.c_ = bar2.c_; // { dg-warning "assigned to itself" }
+ local_foo = local_foo;
+ foo = foo;
+ foo.setA(5);
+ bar_array[3].c_ = bar_array[3].c_; // { dg-warning "assigned to itself" }
+ bar_array[x+g].b_ = bar_array[x+g].b_; // { dg-warning "assigned to itself" }
+ y = x;
+ x = y;
+ x += 0; // should not warn
+ y -= 0; // should not warn
+ x /= x; // should not warn
+ y *= y; // should not warn
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-3.C b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-3.C
new file mode 100644
index 000000000..bc5732de9
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-3.C
@@ -0,0 +1,35 @@
+// Test how operands_equal_p handles a NULL operand.
+// { dg-do compile }
+// { dg-options "-Wself-assign" }
+
+#include <cstdio>
+
+namespace testing {
+
+class Foo {
+ int f;
+ public:
+ Foo() { printf("Construct Foo\n"); }
+};
+
+class Bar {
+ int b;
+ public:
+ Bar(int x) { printf("Construct Bar\n"); }
+
+ void operator=(const Foo& foo) {
+ printf("Assign Foo to Bar\n");
+ }
+};
+
+}
+
+template <class T>
+void func(T t) {
+ ::testing::Bar(1) = ::testing::Foo(); // used to trigger a segfault
+ ::testing::Foo() = ::testing::Foo();
+}
+
+main() {
+ func(2);
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-4.C b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-4.C
new file mode 100644
index 000000000..abe96b55d
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-4.C
@@ -0,0 +1,48 @@
+// Test how self-assignment detection handles constant-folding happening
+// when parsing the RHS or the initializer.
+// { dg-do compile }
+// { dg-options "-Wself-assign" }
+
+class Foo {
+ private:
+ int a_;
+
+ public:
+ Foo() : a_(a_+0) {} // should not warn
+
+ void setA(int a) {
+ a_ = a_ + 0; // should not warn
+ }
+
+ void operator=(Foo& rhs) {
+ this->a_ = rhs.a_;
+ }
+};
+
+struct Bar {
+ int b_;
+ float c_;
+};
+
+int g = g * 1; // should not warn
+
+int func()
+{
+ Bar *bar1, bar2;
+ Foo foo;
+ int x = x - 0; // should not warn
+ static int y = y / 1; // should not warn
+ float *f;
+ Bar bar_array[5];
+
+ *f = *f / 1; // should not warn
+ bar1->b_ = bar1->b_ * 1; // should not warn
+ bar2.c_ = bar2.c_ - 0; // should not warn
+ foo.setA(5);
+ bar_array[3].c_ = bar_array[3].c_ * 1; // should not warn
+ bar_array[x+g].b_ = bar_array[x+g].b_ / 1; // should not warn
+ x += 0;
+ y -= 0;
+ foo = foo;
+ foo.operator=(foo); // should not warn
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-5.C b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-5.C
new file mode 100644
index 000000000..20df214dd
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-5.C
@@ -0,0 +1,38 @@
+// Test -Wself-assign does not warn on self-assignment of non-POD variables.
+// { dg-do compile }
+// { dg-options "-Wself-assign" }
+
+template<typename T>
+class Foo {
+ private:
+ T a_;
+ public:
+ Foo() : a_(a_) {} // { dg-warning "assigned to itself" }
+ void Set() { a_ = a_; }
+};
+
+struct Bar {
+ int b_;
+ int c_;
+ void operator=(Bar& rhs) {
+ this->b_ = rhs.b_;
+ this->c_ = rhs.c_;
+ }
+};
+
+template <typename T>
+void func() {
+ T a;
+ a = a;
+}
+
+main()
+{
+ Foo<Bar> foo;
+ Bar *bar1, bar2;
+ func<int>();
+ foo = foo;
+ bar2 = bar2;
+ bar1 = bar1; // { dg-warning "assigned to itself" }
+ bar2.b_ = bar2.b_; // { dg-warning "assigned to itself" }
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-non-pod-1.C b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-non-pod-1.C
new file mode 100644
index 000000000..6f9dfb73c
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-non-pod-1.C
@@ -0,0 +1,54 @@
+// Test the self-assignemnt detection and warning.
+// { dg-do compile }
+// { dg-options "-Wself-assign -Wself-assign-non-pod" }
+
+class Foo {
+ private:
+ int a_;
+
+ public:
+ Foo() : a_(a_) {} // { dg-warning "assigned to itself" }
+
+ void setA(int a) {
+ a_ = a_; // { dg-warning "assigned to itself" }
+ }
+
+ void operator=(Foo& rhs) {
+ this->a_ = rhs.a_;
+ }
+};
+
+struct Bar {
+ int b_;
+ int c_;
+};
+
+int g = g; // { dg-warning "assigned to itself" }
+Foo foo = foo; // { dg-warning "assigned to itself" }
+
+int func()
+{
+ Bar *bar1, bar2;
+ Foo local_foo;
+ int x = x; // { dg-warning "assigned to itself" }
+ static int y = y; // { dg-warning "assigned to itself" }
+ float *f;
+ Bar bar_array[5];
+ char n;
+ int overflow;
+
+ *f = *f; // { dg-warning "assigned to itself" }
+ bar1->b_ = bar1->b_; // { dg-warning "assigned to itself" }
+ bar2.c_ = bar2.c_; // { dg-warning "assigned to itself" }
+ local_foo = local_foo; // { dg-warning "assigned to itself" }
+ foo = foo; // { dg-warning "assigned to itself" }
+ foo.setA(5);
+ bar_array[3].c_ = bar_array[3].c_; // { dg-warning "assigned to itself" }
+ bar_array[x+g].b_ = bar_array[x+g].b_; // { dg-warning "assigned to itself" }
+ y = x;
+ x = y;
+ x += 0; // should not warn
+ y -= 0; // should not warn
+ x /= x; // should not warn
+ y *= y; // should not warn
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-non-pod-3.C b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-non-pod-3.C
new file mode 100644
index 000000000..4c37f5764
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-non-pod-3.C
@@ -0,0 +1,35 @@
+// Test how operands_equal_p handles a NULL operand.
+// { dg-do compile }
+// { dg-options "-Wself-assign -Wself-assign-non-pod" }
+
+#include <cstdio>
+
+namespace testing {
+
+class Foo {
+ int f;
+ public:
+ Foo() { printf("Construct Foo\n"); }
+};
+
+class Bar {
+ int b;
+ public:
+ Bar(int x) { printf("Construct Bar\n"); }
+
+ void operator=(const Foo& foo) {
+ printf("Assign Foo to Bar\n");
+ }
+};
+
+}
+
+template <class T>
+void func(T t) {
+ ::testing::Bar(1) = ::testing::Foo(); // used to trigger a segfault
+ ::testing::Foo() = ::testing::Foo(); // { dg-warning "assigned to itself" }
+}
+
+main() {
+ func(2);
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-non-pod-4.C b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-non-pod-4.C
new file mode 100644
index 000000000..86db4e3c6
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-non-pod-4.C
@@ -0,0 +1,48 @@
+// Test how self-assignment detection handles constant-folding happening
+// when parsing the RHS or the initializer.
+// { dg-do compile }
+// { dg-options "-Wself-assign -Wself-assign-non-pod" }
+
+class Foo {
+ private:
+ int a_;
+
+ public:
+ Foo() : a_(a_+0) {} // should not warn
+
+ void setA(int a) {
+ a_ = a_ + 0; // should not warn
+ }
+
+ void operator=(Foo& rhs) {
+ this->a_ = rhs.a_;
+ }
+};
+
+struct Bar {
+ int b_;
+ float c_;
+};
+
+int g = g * 1; // should not warn
+
+int func()
+{
+ Bar *bar1, bar2;
+ Foo foo;
+ int x = x - 0; // should not warn
+ static int y = y / 1; // should not warn
+ float *f;
+ Bar bar_array[5];
+
+ *f = *f / 1; // should not warn
+ bar1->b_ = bar1->b_ * 1; // should not warn
+ bar2.c_ = bar2.c_ - 0; // should not warn
+ foo.setA(5);
+ bar_array[3].c_ = bar_array[3].c_ * 1; // should not warn
+ bar_array[x+g].b_ = bar_array[x+g].b_ / 1; // should not warn
+ x += 0;
+ y -= 0;
+ foo = foo; // { dg-warning "assigned to itself" }
+ foo.operator=(foo); // should not warn
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-non-pod-5.C b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-non-pod-5.C
new file mode 100644
index 000000000..898ddecd7
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wself-assign-non-pod-5.C
@@ -0,0 +1,38 @@
+// Test -Wself-assign and -Wself-assign-non-pod.
+// { dg-do compile }
+// { dg-options "-Wself-assign -Wself-assign-non-pod" }
+
+template<typename T>
+class Foo {
+ private:
+ T a_;
+ public:
+ Foo() : a_(a_) {} // { dg-warning "assigned to itself" }
+ void Set() { a_ = a_; } // { dg-warning "assigned to itself" }
+};
+
+struct Bar {
+ int b_;
+ int c_;
+ void operator=(Bar& rhs) {
+ this->b_ = rhs.b_;
+ this->c_ = rhs.c_;
+ }
+};
+
+template <typename T>
+void func() {
+ T a;
+ a = a; // { dg-warning "assigned to itself" }
+}
+
+main()
+{
+ Foo<Bar> foo;
+ Bar *bar1, bar2;
+ func<int>();
+ foo = foo; // { dg-warning "assigned to itself" }
+ bar2 = bar2; // { dg-warning "assigned to itself" }
+ bar1 = bar1; // { dg-warning "assigned to itself" }
+ bar2.b_ = bar2.b_; // { dg-warning "assigned to itself" }
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/warn/Wshadow-compatible-local-1.C b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wshadow-compatible-local-1.C
new file mode 100644
index 000000000..e251b724e
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wshadow-compatible-local-1.C
@@ -0,0 +1,63 @@
+/* { dg-do compile } */
+/* { dg-options -Wshadow-compatible-local } */
+
+class Bar {
+};
+
+class ChildBar : public Bar {
+};
+
+Bar bar;
+
+class Foo {
+ private:
+ int val;
+
+ public:
+ int func1(int x) {
+ int val;
+ val = x;
+ return val;
+ }
+
+ int func2(int i) { // { dg-warning "shadowed declaration" }
+ int a = 3; // { dg-warning "shadowed declaration" }
+
+ for (int i = 0; i < 5; ++i) { // { dg-warning "shadows a parameter" }
+ for (int i = 0; i < 3; ++i) { // { dg-warning "shadows a previous local" }
+ int a = i; // { dg-warning "shadows a previous local" }
+ func1(a);
+ }
+ }
+
+ return a;
+ }
+
+ int func3() {
+ int bar;
+ float func1 = 0.3;
+ int f = 5; // { dg-warning "shadowed declaration" }
+
+ if (func1 > 1) {
+ float f = 2.0; // { dg-warning "shadows a previous local" }
+ bar = f;
+ }
+ else
+ bar = 1;
+ return bar;
+ }
+
+ void func4() {
+ Bar *bar; // { dg-bogus "shadowed declaration" }
+ ChildBar *cbp; // { dg-bogus "shadowed declaration" }
+ Bar *bp; // { dg-warning "shadowed declaration" }
+ if (val) {
+ int bar; // { dg-bogus "shadows a previous local" }
+ Bar *cbp; // { dg-bogus "shadows a previous local" }
+ ChildBar *bp; // { dg-warning "shadows a previous local" }
+ func1(bar);
+ }
+ }
+};
+
+// { dg-warning "shadowed declaration" "" { target *-*-* } 26 }
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/warn/Wshadow-local-1.C b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wshadow-local-1.C
new file mode 100644
index 000000000..24a5bc223
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wshadow-local-1.C
@@ -0,0 +1,35 @@
+/* { dg-do compile } */
+/* { dg-options -Wshadow-local } */
+
+struct status
+{
+ int member;
+ void foo2 ();
+
+ inline static int foo3 (int member)
+ {
+ return member;
+ }
+};
+
+int decl1; // { dg-bogus "shadowed declaration" }
+int decl2; // { dg-bogus "shadowed declaration" }
+void foo (struct status &status,
+ double decl1) // { dg-bogus "shadows a global" }
+{
+}
+
+void foo1 (int d)
+{
+ double d; // { dg-error "shadows a parameter" }
+}
+
+void status::foo2 ()
+{
+ int member; // { dg-bogus "shadows a member" }
+ int decl2; // { dg-bogus "shadows a global" }
+ int local; // { dg-warning "shadowed declaration" }
+ {
+ int local; // { dg-warning "shadows a previous local" }
+ }
+}
diff --git a/gcc-4.9/gcc/testsuite/g++.dg/warn/Wshadow-local-2.C b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wshadow-local-2.C
new file mode 100644
index 000000000..ac3951ebc
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/g++.dg/warn/Wshadow-local-2.C
@@ -0,0 +1,63 @@
+/* { dg-do compile } */
+/* { dg-options -Wshadow-local } */
+
+class Bar {
+};
+
+class ChildBar : public Bar {
+};
+
+Bar bar; // { dg-bogus "shadowed declaration" }
+
+class Foo {
+ private:
+ int val;
+
+ public:
+ int func1(int x) {
+ int val; // { dg-bogus "shadows a member" }
+ val = x;
+ return val;
+ }
+
+ int func2(int i) { // { dg-warning "shadowed declaration" }
+ int a = 3; // { dg-warning "shadowed declaration" }
+
+ for (int i = 0; i < 5; ++i) { // { dg-warning "shadows a parameter" }
+ for (int i = 0; i < 3; ++i) { // { dg-warning "shadows a previous local" }
+ int a = i; // { dg-warning "shadows a previous local" }
+ func1(a);
+ }
+ }
+
+ return a;
+ }
+
+ int func3() {
+ int bar; // { dg-bogus "shadows a global" }
+ float func1 = 0.3; // { dg-bogus "shadows a member" }
+ int f = 5; // { dg-warning "shadowed declaration" }
+
+ if (func1 > 1) {
+ float f = 2.0; // { dg-warning "shadows a previous local" }
+ bar = f;
+ }
+ else
+ bar = 1;
+ return bar;
+ }
+
+ void func4() {
+ Bar *bar; // { dg-warning "shadowed declaration" }
+ ChildBar *cbp; // { dg-warning "shadowed declaration" }
+ Bar *bp; // { dg-warning "shadowed declaration" }
+ if (val) {
+ int bar; // { dg-warning "shadows a previous local" }
+ Bar *cbp; // { dg-warning "shadows a previous local" }
+ ChildBar *bp; // { dg-warning "shadows a previous local" }
+ func1(bar);
+ }
+ }
+};
+
+// { dg-warning "shadowed declaration" "" { target *-*-* } 26 }
diff --git a/gcc-4.9/gcc/testsuite/g++.old-deja/g++.benjamin/15309-1.C b/gcc-4.9/gcc/testsuite/g++.old-deja/g++.benjamin/15309-1.C
deleted file mode 100644
index aa5530fff..000000000
--- a/gcc-4.9/gcc/testsuite/g++.old-deja/g++.benjamin/15309-1.C
+++ /dev/null
@@ -1,21 +0,0 @@
-// { dg-do assemble }
-// { dg-options "-Wnon-virtual-dtor -Weffc++" }
-// 981203 bkoz
-// g++/15309
-
-class bahamian {
-public:
- bahamian ();
- ~bahamian ();
-};
-
-class miami : public bahamian // { dg-warning "" } // WARNING -
-{
-public:
- miami ();
- ~miami ();
-};
-
-
-
-
diff --git a/gcc-4.9/gcc/testsuite/g++.old-deja/g++.benjamin/15309-2.C b/gcc-4.9/gcc/testsuite/g++.old-deja/g++.benjamin/15309-2.C
deleted file mode 100644
index 283179731..000000000
--- a/gcc-4.9/gcc/testsuite/g++.old-deja/g++.benjamin/15309-2.C
+++ /dev/null
@@ -1,10 +0,0 @@
-// { dg-do assemble }
-// { dg-options "-Wnon-virtual-dtor -Weffc++" }
-// 981203 bkoz
-// g++/15309
-
-class bermuda { // { dg-warning "" } // WARNING -
-public:
- virtual int func1(int);
- ~bermuda();
-};
diff --git a/gcc-4.9/gcc/testsuite/g++.old-deja/g++.ext/memconst.C b/gcc-4.9/gcc/testsuite/g++.old-deja/g++.ext/memconst.C
index d9347635c..7e861563c 100644
--- a/gcc-4.9/gcc/testsuite/g++.old-deja/g++.ext/memconst.C
+++ b/gcc-4.9/gcc/testsuite/g++.old-deja/g++.ext/memconst.C
@@ -1,5 +1,5 @@
// { dg-do assemble }
-// { dg-options "" }
+// { dg-options "-pedantic -pedantic-errors" }
// From: Ove.Ewerlid@syscon.uu.se (Ove Ewerlid)
// Subject: ss-940630:cc1plus: internal error
// Date: Sat, 2 Jul 1994 05:07:20 +0200
diff --git a/gcc-4.9/gcc/testsuite/gcc.c-torture/compile/pr61684.c b/gcc-4.9/gcc/testsuite/gcc.c-torture/compile/pr61684.c
new file mode 100644
index 000000000..f5b53b73a
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.c-torture/compile/pr61684.c
@@ -0,0 +1,15 @@
+/* PR tree-optimization/61684 */
+
+int a, c;
+static int *b = 0;
+short d;
+static short **e = 0;
+
+void
+foo ()
+{
+ for (; c < 1; c++)
+ ;
+ *e = &d;
+ a = d && (c && 1) & *b;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.c-torture/execute/20140425-1.c b/gcc-4.9/gcc/testsuite/gcc.c-torture/execute/20140425-1.c
new file mode 100644
index 000000000..c447ef95b
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.c-torture/execute/20140425-1.c
@@ -0,0 +1,23 @@
+/* PR target/60941 */
+/* Reported by Martin Husemann <martin@netbsd.org> */
+
+extern void abort (void);
+
+static void __attribute__((noinline))
+set (unsigned long *l)
+{
+ *l = 31;
+}
+
+int main (void)
+{
+ unsigned long l;
+ int i;
+
+ set (&l);
+ i = (int) l;
+ l = (unsigned long)(2U << i);
+ if (l != 0)
+ abort ();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr60960.c b/gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr60960.c
new file mode 100644
index 000000000..b4f08d4c5
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr60960.c
@@ -0,0 +1,38 @@
+/* PR tree-optimization/60960 */
+
+typedef unsigned char v4qi __attribute__ ((vector_size (4)));
+
+__attribute__((noinline, noclone)) v4qi
+f1 (v4qi v)
+{
+ return v / 2;
+}
+
+__attribute__((noinline, noclone)) v4qi
+f2 (v4qi v)
+{
+ return v / (v4qi) { 2, 2, 2, 2 };
+}
+
+__attribute__((noinline, noclone)) v4qi
+f3 (v4qi x, v4qi y)
+{
+ return x / y;
+}
+
+int
+main ()
+{
+ v4qi x = { 5, 5, 5, 5 };
+ v4qi y = { 2, 2, 2, 2 };
+ v4qi z = f1 (x);
+ if (__builtin_memcmp (&y, &z, sizeof (y)) != 0)
+ __builtin_abort ();
+ z = f2 (x);
+ if (__builtin_memcmp (&y, &z, sizeof (y)) != 0)
+ __builtin_abort ();
+ z = f3 (x, y);
+ if (__builtin_memcmp (&y, &z, sizeof (y)) != 0)
+ __builtin_abort ();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr61306-1.c b/gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr61306-1.c
new file mode 100644
index 000000000..ebc90a32f
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr61306-1.c
@@ -0,0 +1,39 @@
+#ifdef __INT32_TYPE__
+typedef __INT32_TYPE__ int32_t;
+#else
+typedef int int32_t;
+#endif
+
+#ifdef __UINT32_TYPE__
+typedef __UINT32_TYPE__ uint32_t;
+#else
+typedef unsigned uint32_t;
+#endif
+
+#define __fake_const_swab32(x) ((uint32_t)( \
+ (((uint32_t)(x) & (uint32_t)0x000000ffUL) << 24) | \
+ (((uint32_t)(x) & (uint32_t)0x0000ff00UL) << 8) | \
+ (((uint32_t)(x) & (uint32_t)0x00ff0000UL) >> 8) | \
+ (( (int32_t)(x) & (int32_t)0xff000000UL) >> 24)))
+
+/* Previous version of bswap optimization failed to consider sign extension
+ and as a result would replace an expression *not* doing a bswap by a
+ bswap. */
+
+__attribute__ ((noinline, noclone)) uint32_t
+fake_bswap32 (uint32_t in)
+{
+ return __fake_const_swab32 (in);
+}
+
+int
+main(void)
+{
+ if (sizeof (int32_t) * __CHAR_BIT__ != 32)
+ return 0;
+ if (sizeof (uint32_t) * __CHAR_BIT__ != 32)
+ return 0;
+ if (fake_bswap32 (0x87654321) != 0xffffff87)
+ __builtin_abort ();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr61306-2.c b/gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr61306-2.c
new file mode 100644
index 000000000..886ecfd29
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr61306-2.c
@@ -0,0 +1,40 @@
+#ifdef __INT16_TYPE__
+typedef __INT16_TYPE__ int16_t;
+#else
+typedef short int16_t;
+#endif
+
+#ifdef __UINT32_TYPE__
+typedef __UINT32_TYPE__ uint32_t;
+#else
+typedef unsigned uint32_t;
+#endif
+
+#define __fake_const_swab32(x) ((uint32_t)( \
+ (((uint32_t) (x) & (uint32_t)0x000000ffUL) << 24) | \
+ (((uint32_t)(int16_t)(x) & (uint32_t)0x00ffff00UL) << 8) | \
+ (((uint32_t) (x) & (uint32_t)0x00ff0000UL) >> 8) | \
+ (((uint32_t) (x) & (uint32_t)0xff000000UL) >> 24)))
+
+
+/* Previous version of bswap optimization failed to consider sign extension
+ and as a result would replace an expression *not* doing a bswap by a
+ bswap. */
+
+__attribute__ ((noinline, noclone)) uint32_t
+fake_bswap32 (uint32_t in)
+{
+ return __fake_const_swab32 (in);
+}
+
+int
+main(void)
+{
+ if (sizeof (uint32_t) * __CHAR_BIT__ != 32)
+ return 0;
+ if (sizeof (int16_t) * __CHAR_BIT__ != 16)
+ return 0;
+ if (fake_bswap32 (0x81828384) != 0xff838281)
+ __builtin_abort ();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr61306-3.c b/gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr61306-3.c
new file mode 100644
index 000000000..6086e2786
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr61306-3.c
@@ -0,0 +1,13 @@
+short a = -1;
+int b;
+char c;
+
+int
+main ()
+{
+ c = a;
+ b = a | c;
+ if (b != -1)
+ __builtin_abort ();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr61673.c b/gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr61673.c
new file mode 100644
index 000000000..b3e243da5
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr61673.c
@@ -0,0 +1,50 @@
+/* PR rtl-optimization/61673 */
+
+char e;
+
+__attribute__((noinline, noclone)) void
+bar (char x)
+{
+ if (x != 0x54 && x != (char) 0x87)
+ __builtin_abort ();
+}
+
+__attribute__((noinline, noclone)) void
+foo (const char *x)
+{
+ char d = x[0];
+ int c = d;
+ if ((c >= 0 && c <= 0x7f) == 0)
+ e = d;
+ bar (d);
+}
+
+__attribute__((noinline, noclone)) void
+baz (const char *x)
+{
+ char d = x[0];
+ int c = d;
+ if ((c >= 0 && c <= 0x7f) == 0)
+ e = d;
+}
+
+int
+main ()
+{
+ const char c[] = { 0x54, 0x87 };
+ e = 0x21;
+ foo (c);
+ if (e != 0x21)
+ __builtin_abort ();
+ foo (c + 1);
+ if (e != (char) 0x87)
+ __builtin_abort ();
+ e = 0x21;
+ baz (c);
+ if (e != 0x21)
+ __builtin_abort ();
+ baz (c + 1);
+ if (e != (char) 0x87)
+ __builtin_abort ();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr61725.c b/gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr61725.c
new file mode 100644
index 000000000..0aa6dafa2
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.c-torture/execute/pr61725.c
@@ -0,0 +1,14 @@
+/* PR tree-optimization/61725 */
+
+int
+main ()
+{
+ int x;
+ for (x = -128; x <= 128; x++)
+ {
+ int a = __builtin_ffs (x);
+ if (x == 0 && a != 0)
+ __builtin_abort ();
+ }
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/Wshadow-compatible-local-1.c b/gcc-4.9/gcc/testsuite/gcc.dg/Wshadow-compatible-local-1.c
new file mode 100644
index 000000000..cb21be9ae
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/Wshadow-compatible-local-1.c
@@ -0,0 +1,36 @@
+/* { dg-do compile } */
+/* { dg-options "-Wshadow-compatible-local" } */
+
+struct Bar {
+};
+
+struct Bar bar; /* { dg-bogus "shadowed declaration" } */
+
+int val; /* { dg-bogus "shadowed declaration" } */
+
+int func1(int x) { /* { dg-bogus "shadowed declaration" } */
+ int val; /* { dg-bogus "shadows a global" } */
+ val = x;
+ return val;
+}
+
+int func2(int i) {
+ int a = 3; /* { dg-warning "shadowed declaration" } */
+ int j; /* { dg-warning "shadowed declaration" } */
+
+ for (j = 0; j < i; ++j) {
+ int a = j; /* { dg-warning "shadows a previous local" } */
+ int j = a + 1; /* { dg-warning "shadows a previous local" } */
+ func1(j);
+ }
+
+ return a;
+}
+
+void func4() {
+ struct Bar bar; /* { dg-bogus "shadowed declaration" } */
+ if (val) {
+ int bar; /* { dg-bogus "shadows a previous local" } */
+ func1(bar);
+ }
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/Wshadow-local-1.c b/gcc-4.9/gcc/testsuite/gcc.dg/Wshadow-local-1.c
new file mode 100644
index 000000000..b21661ef8
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/Wshadow-local-1.c
@@ -0,0 +1,23 @@
+/* { dg-do compile } */
+/* { dg-options "-Wshadow-local" } */
+
+int decl1; /* should not warn */
+void foo (double decl1) /* should not warn */
+{
+}
+
+void foo2 (int d) /* { dg-warning "shadowed declaration" } */
+{
+ {
+ double d; /* { dg-warning "shadows a parameter" } */
+ }
+}
+
+void foo3 ()
+{
+ int local; /* { dg-warning "shadowed declaration" } */
+ {
+ int local; /* { dg-warning "shadows a previous local" } */
+ }
+}
+/* { dg-do compile } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/Wshadow-local-2.c b/gcc-4.9/gcc/testsuite/gcc.dg/Wshadow-local-2.c
new file mode 100644
index 000000000..9d52fac6f
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/Wshadow-local-2.c
@@ -0,0 +1,49 @@
+/* { dg-do compile } */
+/* { dg-options "-Wshadow-local" } */
+
+struct Bar {
+};
+
+struct Bar bar; /* { dg-bogus "shadowed declaration" } */
+
+int val; /* { dg-bogus "shadowed declaration" } */
+
+int func1(int x) { /* { dg-bogus "shadowed declaration" } */
+ int val; /* { dg-bogus "shadows a global" } */
+ val = x;
+ return val;
+}
+
+int func2(int i) {
+ int a = 3; /* { dg-warning "shadowed declaration" } */
+ int j; /* { dg-warning "shadowed declaration" } */
+
+ for (j = 0; j < i; ++j) {
+ int a = j; /* { dg-warning "shadows a previous local" } */
+ int j = a + 1; /* { dg-warning "shadows a previous local" } */
+ func1(j);
+ }
+
+ return a;
+}
+
+int func3() {
+ int bar; /* { dg-bogus "shadows a global" } */
+ float func1 = 0.3; /* { dg-bogus "shadows a global" } */
+
+ if (func1 > 1)
+ bar = 2;
+ else
+ bar = 1;
+ return bar;
+}
+
+void func4() {
+ struct Bar bar; /* { dg-warning "shadowed declaration" } */
+ if (val) {
+ int bar; /* { dg-warning "shadows a previous local" } */
+ func1(bar);
+ }
+}
+
+/* { dg-bogus "shadows a global" "" { target *-*-* } 42 } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/Wshadow-local-3.c b/gcc-4.9/gcc/testsuite/gcc.dg/Wshadow-local-3.c
new file mode 100644
index 000000000..429df37f5
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/Wshadow-local-3.c
@@ -0,0 +1,9 @@
+/* { dg-do compile } */
+/* { dg-options "-Wno-shadow" } */
+
+void func() {
+ int i;
+ {
+ int i; /* should not warn */
+ }
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/outer-1.c b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/outer-1.c
index a9d2185f0..2e4faf44b 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/outer-1.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/outer-1.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
void abort (void);
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/outer-3.c b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/outer-3.c
index c6e0adbff..755b9da4d 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/outer-3.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/outer-3.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
void abort (void);
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/outer-4.c b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/outer-4.c
index d60023f5d..0feac6897 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/outer-4.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/outer-4.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
void abort (void);
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/outer-5.c b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/outer-5.c
index fa8029326..f6cd97093 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/outer-5.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/outer-5.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
void abort (void);
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/parallelization-1.c b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/parallelization-1.c
index de2a0f3cc..fe77a92e8 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/parallelization-1.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/parallelization-1.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
void abort (void);
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-1.c b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-1.c
index 8018a558c..9bb1b5761 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-1.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-1.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
#include <stdarg.h>
#include <stdlib.h>
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-1char.c b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-1char.c
index 76645c850..832202008 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-1char.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-1char.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
#include <stdarg.h>
#include <stdlib.h>
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-1short.c b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-1short.c
index 526f17009..5a2efa871 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-1short.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-1short.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
#include <stdarg.h>
#include <stdlib.h>
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-2.c b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-2.c
index e0abb265b..8c9fb03a0 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-2.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-2.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
#include <stdarg.h>
#include <stdlib.h>
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-2char.c b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-2char.c
index ada1275f9..cff542511 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-2char.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-2char.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
#include <stdarg.h>
#include <stdlib.h>
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-2short.c b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-2short.c
index 3363c68f4..5ee5f014d 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-2short.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-2short.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
#include <stdarg.h>
#include <stdlib.h>
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-3.c b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-3.c
index 6bc204711..c9ec27b89 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-3.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-3.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
#include <stdarg.h>
#include <stdlib.h>
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-6.c b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-6.c
index fface8fed..5d495e34a 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-6.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-6.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
#include <stdarg.h>
#include <stdlib.h>
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-7.c b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-7.c
index f66069e56..72a36ad9b 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-7.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-7.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
#include <stdlib.h>
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-8.c b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-8.c
index 4a416df23..662ff44cb 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-8.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-8.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
#include <stdlib.h>
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-9.c b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-9.c
index 2c1677ce5..c738f2300 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-9.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/autopar/reduc-9.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -ftree-parallelize-loops=4 -fdump-tree-parloops-details -fdump-tree-optimized" } */
#include <stdlib.h>
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/debug/dwarf2/mlt1.c b/gcc-4.9/gcc/testsuite/gcc.dg/debug/dwarf2/mlt1.c
new file mode 100644
index 000000000..b916e69cf
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/debug/dwarf2/mlt1.c
@@ -0,0 +1,32 @@
+/* Test that -g1 includes line tables and inlined subroutine entries,
+ and excludes types and variables. */
+/* Origin: Cary Coutant <ccoutant@google.com> */
+/* { dg-do compile } */
+/* { dg-options "-O2 -gdwarf-2 -dA -g1" } */
+/* { dg-final { scan-assembler "DW_AT_stmt_list" } } */
+/* { dg-final { scan-assembler "DW_TAG_subprogram" } } */
+/* { dg-final { scan-assembler "DW_TAG_inlined_subroutine" } } */
+/* { dg-final { scan-assembler-not "DW_TAG_variable" } } */
+/* { dg-final { scan-assembler-not "DW_TAG_formal_parameter" } } */
+/* { dg-final { scan-assembler-not "DW_TAG_base_type" } } */
+
+static inline __attribute__((always_inline)) int
+a(int i, int j)
+{
+ return (i << 5) + j;
+}
+
+int
+b(int i, int j)
+{
+ return (i >> 5) + (j << 27);
+}
+
+int
+c(int i, int j)
+{
+ int r = a(i, j);
+ r = b(r, i);
+ r = b(r, j);
+ return r;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/debug/dwarf2/mlt2.c b/gcc-4.9/gcc/testsuite/gcc.dg/debug/dwarf2/mlt2.c
new file mode 100644
index 000000000..2fd5b0f22
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/debug/dwarf2/mlt2.c
@@ -0,0 +1,31 @@
+/* Test that -g overrides -g1. */
+/* Origin: Cary Coutant <ccoutant@google.com> */
+/* { dg-do compile } */
+/* { dg-options "-O2 -gdwarf-2 -dA -g1 -g" } */
+/* { dg-final { scan-assembler "DW_AT_stmt_list" } } */
+/* { dg-final { scan-assembler "DW_TAG_subprogram" } } */
+/* { dg-final { scan-assembler "DW_TAG_inlined_subroutine" } } */
+/* { dg-final { scan-assembler "DW_TAG_variable" } } */
+/* { dg-final { scan-assembler "DW_TAG_formal_parameter" } } */
+/* { dg-final { scan-assembler "DW_TAG_base_type" } } */
+
+static inline __attribute__((always_inline)) int
+a(int i, int j)
+{
+ return (i << 5) + j;
+}
+
+int
+b(int i, int j)
+{
+ return (i >> 5) + (j << 27);
+}
+
+int
+c(int i, int j)
+{
+ int r = a(i, j);
+ r = b(r, i);
+ r = b(r, j);
+ return r;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/fstack-protector-strong.c b/gcc-4.9/gcc/testsuite/gcc.dg/fstack-protector-strong.c
index 7c232fff2..5a5cf98a7 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/fstack-protector-strong.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/fstack-protector-strong.c
@@ -1,9 +1,10 @@
/* Test that stack protection is done on chosen functions. */
-/* { dg-do compile { target i?86-*-* x86_64-*-* rs6000-*-* s390x-*-* } } */
+/* { dg-do compile { target i?86-*-* x86_64-*-* } } */
/* { dg-options "-O2 -fstack-protector-strong" } */
#include<string.h>
+#include<stdlib.h>
extern int g0;
extern int* pg0;
@@ -109,7 +110,7 @@ foo8 ()
int
foo9 ()
{
- char* p = __builtin_alloca (100);
+ char* p = alloca (100);
return goo ((int *)(p + 50));
}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/graphite/pr55022.c b/gcc-4.9/gcc/testsuite/gcc.dg/graphite/pr55022.c
new file mode 100644
index 000000000..c631c0e23
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/graphite/pr55022.c
@@ -0,0 +1,27 @@
+/* { dg-do run } */
+/* { dg-options "-O2 -fgraphite-identity" } */
+
+extern void abort (void);
+
+void __attribute__((noinline,noclone))
+f(int *limit, int minLen, int maxLen)
+{
+ int i;
+
+ for (i = minLen; i <= maxLen; i++) {
+ limit[i] = i;
+ }
+}
+
+int main()
+{
+ int limit[256], i;
+ f (limit, 0, 255);
+ for (i = 0; i < 256; ++i)
+ {
+ if (limit[i] != i)
+ abort ();
+ __asm__ volatile ("" : : : "memory");
+ }
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/graphite/pr59817-1.c b/gcc-4.9/gcc/testsuite/gcc.dg/graphite/pr59817-1.c
new file mode 100644
index 000000000..175fa16fd
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/graphite/pr59817-1.c
@@ -0,0 +1,16 @@
+/* { dg-do compile } */
+/* { dg-options "-O2 -floop-interchange" } */
+
+int kd;
+
+void
+n2(void)
+{
+ static int so;
+ static short int i5;
+ int wj;
+ int *il;
+ int *nk = &so;
+ for (wj = 0; wj < 2; ++wj)
+ *nk = ((i5 += *il) || kd );
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/graphite/pr59817-2.c b/gcc-4.9/gcc/testsuite/gcc.dg/graphite/pr59817-2.c
new file mode 100644
index 000000000..139500768
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/graphite/pr59817-2.c
@@ -0,0 +1,15 @@
+/* { dg-do compile } */
+/* { dg-options "-O2 -floop-interchange" } */
+
+void
+xl(void)
+{
+ static int j3;
+ for (j3 = 0; j3 < 1; ++j3) {
+ static int f2;
+ static int w7;
+ short int b5;
+ int ok;
+ f2 = (b5 += ok) ? (w7 = 0): (w7 ? 0 : (f2 = ok));
+ }
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/graphite/pr60979.c b/gcc-4.9/gcc/testsuite/gcc.dg/graphite/pr60979.c
new file mode 100644
index 000000000..0004a5124
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/graphite/pr60979.c
@@ -0,0 +1,37 @@
+/* { dg-options "-O -fgraphite-identity" } */
+
+#include <setjmp.h>
+
+struct x;
+
+typedef struct x **(*a)(struct x *);
+
+struct x {
+ union {
+ struct {
+ union {
+ a *i;
+ } l;
+ int s;
+ } y;
+ } e;
+};
+
+jmp_buf c;
+
+void
+b(struct x *r)
+{
+ int f;
+ static int w = 0;
+ volatile jmp_buf m;
+ f = (*(((struct x *)r)->e.y.l.i[2]((struct x *)r)))->e.y.s;
+ if (w++ != 0)
+ __builtin_memcpy((char *)m, (const char *)c, sizeof(jmp_buf));
+ if (setjmp (c) == 0) {
+ int z;
+ for (z = 0; z < 0; ++z)
+ ;
+ }
+ d((const char *)m);
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/guality/guality.exp b/gcc-4.9/gcc/testsuite/gcc.dg/guality/guality.exp
index 5e714dd7d..d8e641f81 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/guality/guality.exp
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/guality/guality.exp
@@ -1,5 +1,8 @@
# This harness is for tests that should be run at all optimisation levels.
+# Disable everywhere. These tests are very flaky.
+return
+
load_lib gcc-dg.exp
load_lib gcc-gdb-test.exp
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/lto/pr60720_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/lto/pr60720_0.c
new file mode 100644
index 000000000..79cef5dad
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/lto/pr60720_0.c
@@ -0,0 +1,15 @@
+/* { dg-lto-do run } */
+/* { dg-extra-ld-options { -w } } */
+
+/* ??? lto.exp does not allow to scan for
+ :1:12: warning: type of 'x' does not match original declaration
+ extern int x[];
+ ^
+ :1:5: note: previously declared here
+ int x;
+ ^ */
+
+extern int x[];
+int *foo[] = { &x[0] };
+
+int main() { return *foo[0]; }
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/lto/pr60720_1.c b/gcc-4.9/gcc/testsuite/gcc.dg/lto/pr60720_1.c
new file mode 100644
index 000000000..6d1a0d47b
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/lto/pr60720_1.c
@@ -0,0 +1 @@
+int x;
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/lto/pr60911_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/lto/pr60911_0.c
new file mode 100644
index 000000000..e4820a204
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/lto/pr60911_0.c
@@ -0,0 +1,21 @@
+// { dg-lto-do run }
+// { dg-lto-options { { -O2 -flto -fipa-pta } } }
+
+int __attribute__ ((__noinline__)) f (unsigned *p, int *x)
+{
+ int y = *p++ & 0xfff;
+ *x++ = y;
+ *x = *p;
+ return y;
+}
+
+int
+main ()
+{
+ unsigned u[2] = { 0x3aad, 0x5ad1 };
+ int x[2] = { 17689, 23456 };
+
+ if (f (u, x) != 0xaad || x[0] != 0xaad || x[1] != 0x5ad1)
+ __builtin_abort ();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/lto/pr61526_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/lto/pr61526_0.c
new file mode 100644
index 000000000..6324c8c5b
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/lto/pr61526_0.c
@@ -0,0 +1,6 @@
+/* { dg-lto-do link } */
+/* { dg-lto-options { { -fPIC -flto -flto-partition=1to1 } } } */
+/* { dg-extra-ld-options { -shared } } */
+
+static void *master;
+void *foo () { return master; }
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/lto/pr61526_1.c b/gcc-4.9/gcc/testsuite/gcc.dg/lto/pr61526_1.c
new file mode 100644
index 000000000..bb2893b73
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/lto/pr61526_1.c
@@ -0,0 +1,2 @@
+extern void *master;
+void *bar () { return master; }
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/plugin/selfassign.c b/gcc-4.9/gcc/testsuite/gcc.dg/plugin/selfassign.c
index 041f25dce..9a0c620dd 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/plugin/selfassign.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/plugin/selfassign.c
@@ -211,7 +211,7 @@ compare_and_warn (gimple stmt, tree lhs, tree rhs)
/* Check and warn if STMT is a self-assign statement. */
static void
-warn_self_assign (gimple stmt)
+check_self_assign (gimple stmt)
{
tree rhs, lhs;
@@ -264,7 +264,7 @@ execute_warn_self_assign (void)
FOR_EACH_BB_FN (bb, cfun)
{
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- warn_self_assign (gsi_stmt (gsi));
+ check_self_assign (gsi_stmt (gsi));
}
return 0;
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/pr47793.c b/gcc-4.9/gcc/testsuite/gcc.dg/pr47793.c
index 0ee1aaee4..da6b6eab6 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/pr47793.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/pr47793.c
@@ -1,7 +1,6 @@
/* Bug pr47793: Allow relative paths in profile-generate. */
/* { dg-do run } */
/* { dg-options "-O -fprofile-generate=./" } */
-/* { dg-require-profiling "-fprofile-generate" } */
/* { dg-final { scan-file pr47793.gcda "."} } */
int
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/pr53265.c b/gcc-4.9/gcc/testsuite/gcc.dg/pr53265.c
index e1ca6f521..c5ed476ed 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/pr53265.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/pr53265.c
@@ -1,6 +1,6 @@
/* PR tree-optimization/53265 */
/* { dg-do compile } */
-/* { dg-options "-O2 -Wall" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -Wall" } */
/* { dg-require-effective-target size32plus } */
void bar (void *);
@@ -155,3 +155,5 @@ fn12 (void)
fn11 (1);
fn11 (1);
}
+
+/* { dg-prune-output "array subscript is above array bounds" } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/pr57233.c b/gcc-4.9/gcc/testsuite/gcc.dg/pr57233.c
new file mode 100644
index 000000000..58c05348b
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/pr57233.c
@@ -0,0 +1,171 @@
+/* PR tree-optimization/57233 */
+/* { dg-do run { target { ilp32 || lp64 } } } */
+/* { dg-options "-O2" } */
+
+typedef unsigned V4 __attribute__((vector_size(4 * sizeof (int))));
+typedef unsigned V8 __attribute__((vector_size(8 * sizeof (int))));
+typedef unsigned V16 __attribute__((vector_size(16 * sizeof (int))));
+V4 a, b, g;
+V8 c, d, h;
+V16 e, f, j;
+
+__attribute__((noinline)) void
+f1 (void)
+{
+ a = (a << 2) | (a >> 30);
+}
+
+__attribute__((noinline)) void
+f2 (void)
+{
+ a = (a << 30) | (a >> 2);
+}
+
+__attribute__((noinline)) void
+f3 (void)
+{
+ a = (a << b) | (a >> (32 - b));
+}
+
+__attribute__((noinline, noclone)) void
+f4 (int x)
+{
+ a = (a << x) | (a >> (32 - x));
+}
+
+__attribute__((noinline)) void
+f5 (void)
+{
+ c = (c << 2) | (c >> 30);
+}
+
+__attribute__((noinline)) void
+f6 (void)
+{
+ c = (c << 30) | (c >> 2);
+}
+
+__attribute__((noinline)) void
+f7 (void)
+{
+ c = (c << d) | (c >> (32 - d));
+}
+
+__attribute__((noinline, noclone)) void
+f8 (int x)
+{
+ c = (c << x) | (c >> (32 - x));
+}
+
+__attribute__((noinline)) void
+f9 (void)
+{
+ e = (e << 2) | (e >> 30);
+}
+
+__attribute__((noinline)) void
+f10 (void)
+{
+ e = (e << 30) | (e >> 2);
+}
+
+__attribute__((noinline)) void
+f11 (void)
+{
+ e = (e << f) | (e >> (32 - f));
+}
+
+__attribute__((noinline, noclone)) void
+f12 (int x)
+{
+ e = (e << x) | (e >> (32 - x));
+}
+
+unsigned
+r (void)
+{
+ static unsigned x = 0xdeadbeefU;
+ static unsigned y = 0x12347654U;
+ static unsigned z = 0x1a2b3c4dU;
+ static unsigned w = 0x87654321U;
+ unsigned t = x ^ (x << 11);
+ x = y;
+ y = z;
+ z = w;
+ w = w ^ (w >> 19) ^ t ^ (t >> 8);
+ return w;
+}
+
+void
+init (unsigned int *p, int count, int mod)
+{
+ int i;
+ for (i = 0; i < count; i++)
+ {
+ unsigned int v = r ();
+ if (mod)
+ v = (v % 31) + 1;
+ p[i] = v;
+ }
+}
+
+void
+check (unsigned int *p, unsigned int *q, int count, unsigned int *s, int ss)
+{
+ int i;
+ for (i = 0; i < count; i++)
+ {
+ if (s)
+ ss = s[i];
+ if (p[i] != ((q[i] << ss) | (q[i] >> (32 - ss))))
+ __builtin_abort ();
+ }
+}
+
+int
+main ()
+{
+ init ((unsigned int *) &a, 4, 0);
+ init ((unsigned int *) &b, 4, 1);
+ init ((unsigned int *) &c, 8, 0);
+ init ((unsigned int *) &d, 8, 1);
+ init ((unsigned int *) &e, 16, 0);
+ init ((unsigned int *) &f, 16, 1);
+ g = a;
+ h = c;
+ j = e;
+ f1 ();
+ f5 ();
+ f9 ();
+ check ((unsigned int *) &a, (unsigned int *) &g, 4, 0, 2);
+ check ((unsigned int *) &c, (unsigned int *) &h, 8, 0, 2);
+ check ((unsigned int *) &e, (unsigned int *) &j, 16, 0, 2);
+ g = a;
+ h = c;
+ j = e;
+ f2 ();
+ f6 ();
+ f10 ();
+ check ((unsigned int *) &a, (unsigned int *) &g, 4, 0, 30);
+ check ((unsigned int *) &c, (unsigned int *) &h, 8, 0, 30);
+ check ((unsigned int *) &e, (unsigned int *) &j, 16, 0, 30);
+ g = a;
+ h = c;
+ j = e;
+ f3 ();
+ f7 ();
+ f11 ();
+ check ((unsigned int *) &a, (unsigned int *) &g, 4, (unsigned int *) &b, 0);
+ check ((unsigned int *) &c, (unsigned int *) &h, 8, (unsigned int *) &d, 0);
+ check ((unsigned int *) &e, (unsigned int *) &j, 16, (unsigned int *) &f, 0);
+ g = a;
+ h = c;
+ j = e;
+ f4 (5);
+ f8 (5);
+ f12 (5);
+ check ((unsigned int *) &a, (unsigned int *) &g, 4, 0, 5);
+ check ((unsigned int *) &c, (unsigned int *) &h, 8, 0, 5);
+ check ((unsigned int *) &e, (unsigned int *) &j, 16, 0, 5);
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/pr60844.c b/gcc-4.9/gcc/testsuite/gcc.dg/pr60844.c
new file mode 100644
index 000000000..16ed243d7
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/pr60844.c
@@ -0,0 +1,16 @@
+/* PR tree-optimization/60844 */
+/* { dg-do compile } */
+/* { dg-options "-O2 -g" } */
+/* { dg-additional-options "-mtune=atom" { target { i?86-*-* x86_64-*-* } } } */
+
+void
+foo (int *x, int y, int z)
+{
+ int b, c = x[0], d = x[1];
+ for (b = 0; b < 1; b++)
+ {
+ int e = (y ? 1 : 0) | (d ? 2 : 0) | (z ? 1 : 0);
+ e |= (c ? 2 : 0) | ((1 >> b) ? 1 : 0);
+ x[2 + b] = e;
+ }
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/pr60866.c b/gcc-4.9/gcc/testsuite/gcc.dg/pr60866.c
new file mode 100644
index 000000000..020878d41
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/pr60866.c
@@ -0,0 +1,18 @@
+/* { dg-do compile { target powerpc*-*-* ia64-*-* x86_64-*-* } } */
+/* { dg-options "-O -fselective-scheduling -fno-if-conversion -fschedule-insns" } */
+
+int n;
+
+void
+foo (int w, int **dnroot, int **dn)
+{
+ int *child;
+ int *xchild = xchild;
+ for (; w < n; w++)
+ if (!dnroot)
+ {
+ dnroot = dn;
+ for (child = *dn; child; child = xchild)
+ ;
+ }
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/pr61045.c b/gcc-4.9/gcc/testsuite/gcc.dg/pr61045.c
new file mode 100644
index 000000000..1808cdc25
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/pr61045.c
@@ -0,0 +1,12 @@
+/* { dg-do run } */
+/* { dg-options "-fstrict-overflow" } */
+
+int main ()
+{
+ int a = 0;
+ int b = __INT_MAX__;
+ int t = (a - 2) > (b - 1);
+ if (t != 0)
+ __builtin_abort();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/pr61053.c b/gcc-4.9/gcc/testsuite/gcc.dg/pr61053.c
new file mode 100644
index 000000000..4fd531974
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/pr61053.c
@@ -0,0 +1,75 @@
+/* PR c/61053 */
+/* { dg-do compile { target i?86-*-* x86_64-*-* } } */
+/* { dg-options "-std=c11 -pedantic-errors" } */
+
+_Alignas (char) char cc;
+_Alignas (short int) char cs;
+_Alignas (int) char ci;
+_Alignas (long int) char cl;
+_Alignas (long long int) char cll;
+_Alignas (float) char cf;
+_Alignas (double) char cd;
+_Alignas (long double) char cld;
+
+_Alignas (char) short int sc; /* { dg-error "cannot reduce alignment" } */
+_Alignas (short int) short int ss;
+_Alignas (int) short int si;
+_Alignas (long int) short int sl;
+_Alignas (long long int) short int sll;
+_Alignas (float) short int sf;
+_Alignas (double) short int sd;
+_Alignas (long double) short int sld;
+
+_Alignas (char) int ic; /* { dg-error "cannot reduce alignment" } */
+_Alignas (short int) int is; /* { dg-error "cannot reduce alignment" } */
+_Alignas (int) int ii;
+_Alignas (long int) int il;
+_Alignas (long long int) int ill;
+_Alignas (float) int if_;
+_Alignas (double) int id;
+_Alignas (long double) int ild;
+
+_Alignas (char) long int lic; /* { dg-error "cannot reduce alignment" } */
+_Alignas (short int) long int lis; /* { dg-error "cannot reduce alignment" } */
+_Alignas (int) long int lii; /* { dg-error "cannot reduce alignment" "" { target { ! { ia32 } } } } */
+_Alignas (long int) long int lil;
+_Alignas (long long int) long int lill;
+_Alignas (float) long int lif; /* { dg-error "cannot reduce alignment" "" { target { ! { ia32 } } } } */
+_Alignas (double) long int lid;
+_Alignas (long double) long int lild;
+
+_Alignas (char) long long int llic; /* { dg-error "cannot reduce alignment" } */
+_Alignas (short int) long long int llis; /* { dg-error "cannot reduce alignment" } */
+_Alignas (int) long long int llii; /* { dg-error "cannot reduce alignment" "" { target { ! { ia32 } } } } */
+_Alignas (long int) long long int llil;
+_Alignas (long long int) long long int llill;
+_Alignas (float) long long int llif; /* { dg-error "cannot reduce alignment" "" { target { ! { ia32 } } } } */
+_Alignas (double) long long int llid;
+_Alignas (long double) long long int llild;
+
+_Alignas (char) float fc; /* { dg-error "cannot reduce alignment" } */
+_Alignas (short int) float fs; /* { dg-error "cannot reduce alignment" } */
+_Alignas (int) float fi;
+_Alignas (long int) float fl;
+_Alignas (long long int) float fll;
+_Alignas (float) float ff;
+_Alignas (double) float fd;
+_Alignas (long double) float fld;
+
+_Alignas (char) double dc; /* { dg-error "cannot reduce alignment" } */
+_Alignas (short int) double ds; /* { dg-error "cannot reduce alignment" } */
+_Alignas (int) double di; /* { dg-error "cannot reduce alignment" "" { target { ! { ia32 } } } } */
+_Alignas (long int) double dl;
+_Alignas (long long int) double dll;
+_Alignas (float) double df; /* { dg-error "cannot reduce alignment" "" { target { ! { ia32 } } } } */
+_Alignas (double) double dd;
+_Alignas (long double) double dld;
+
+_Alignas (char) long double ldc; /* { dg-error "cannot reduce alignment" } */
+_Alignas (short int) long double lds; /* { dg-error "cannot reduce alignment" } */
+_Alignas (int) long double ldi; /* { dg-error "cannot reduce alignment" "" { target { ! { ia32 } } } } */
+_Alignas (long int) long double ldl; /* { dg-error "cannot reduce alignment" "" { target { ! { ia32 } } } } */
+_Alignas (long long int) long double ldll; /* { dg-error "cannot reduce alignment" "" { target { ! { ia32 } } } } */
+_Alignas (float) long double ldf; /* { dg-error "cannot reduce alignment" "" { target { ! { ia32 } } } } */
+_Alignas (double) long double ldd; /* { dg-error "cannot reduce alignment" "" { target { ! { ia32 } } } } */
+_Alignas (long double) long double ldld;
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/pr61060.c b/gcc-4.9/gcc/testsuite/gcc.dg/pr61060.c
new file mode 100644
index 000000000..d2a136507
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/pr61060.c
@@ -0,0 +1,19 @@
+/* PR target/61060 */
+/* { dg-do compile } */
+/* { dg-options "-O0 -ftree-ter" } */
+
+typedef __SIZE_TYPE__ size_t;
+
+extern inline __attribute__ ((gnu_inline, always_inline, artificial))
+void *memset (void *dest, int ch, size_t len)
+{
+ return __builtin_memset (dest, ch, len);
+}
+
+char buf[10];
+
+void
+foo (void)
+{
+ memset (buf, sizeof (buf), 0);
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/pr61158.c b/gcc-4.9/gcc/testsuite/gcc.dg/pr61158.c
new file mode 100644
index 000000000..d0ba7f387
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/pr61158.c
@@ -0,0 +1,12 @@
+/* PR tree-optimization/61158 */
+/* { dg-do compile } */
+/* { dg-options "-O2 -fdump-tree-original" } */
+
+unsigned long long
+foo (unsigned int x)
+{
+ return ((unsigned long long) x & 0x00ff000000000000ULL) >> 40;
+}
+
+/* { dg-final { scan-tree-dump "return 0;" "original" { target { ilp32 || lp64 } } } } */
+/* { dg-final { cleanup-tree-dump "original" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/pr61583.c b/gcc-4.9/gcc/testsuite/gcc.dg/pr61583.c
new file mode 100644
index 000000000..8424293c1
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/pr61583.c
@@ -0,0 +1,18 @@
+/* { dg-do compile } */
+/* { dg-options "-O2 -fcompare-debug" } */
+
+void
+f1 (int n, int b)
+{
+ extern void f2 (int);
+ int j;
+
+ if (b)
+ n = 1;
+
+ if (n < 1)
+ __builtin_unreachable ();
+
+ for (j = 0; j < n; j++)
+ f2 (j);
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/record-compilation-info-in-elf-1.c b/gcc-4.9/gcc/testsuite/gcc.dg/record-compilation-info-in-elf-1.c
new file mode 100644
index 000000000..881281fc7
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/record-compilation-info-in-elf-1.c
@@ -0,0 +1,16 @@
+/* { dg-do compile} */
+/* { dg-options "-frecord-compilation-info-in-elf -Dtest -dA" } */
+
+void foobar(int);
+
+void
+foo (void)
+{
+ int i;
+ for (i = 0; i < 100; i++)
+ {
+ foobar(i);
+ }
+}
+
+/* { dg-final { scan-assembler-times "Dtest" 1 } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr56965-1.c b/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr56965-1.c
new file mode 100644
index 000000000..2512db396
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr56965-1.c
@@ -0,0 +1,32 @@
+/* { dg-do run } */
+/* { dg-options "-fschedule-insns" { target scheduling } } */
+
+extern void abort (void);
+
+struct S {
+ int i;
+ int j;
+};
+
+struct U {
+ struct S s;
+} __attribute__((may_alias));
+
+int __attribute__((noinline,noclone))
+foo (struct U *p, struct U *q)
+{
+ int i;
+ q->s.j = 1;
+ i = p->s.i;
+ return i;
+}
+
+int main()
+{
+ int a[3];
+ int *p = a;
+ p[1] = 0;
+ if (foo ((struct U *)(p + 1), (struct U *)p) != 1)
+ abort ();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr56965-2.c b/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr56965-2.c
new file mode 100644
index 000000000..04f55914e
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr56965-2.c
@@ -0,0 +1,34 @@
+extern void abort (void);
+
+struct S { int i; int j; };
+struct X { struct S s; int k; };
+struct Y { int k; struct S s; };
+union U { struct X x; struct Y y; } __attribute__((may_alias));
+
+int __attribute__((noinline))
+foo (union U *p, union U *q)
+{
+ p->x.s.j = 1;
+ q->y.s.i = 0;
+ return p->x.s.j;
+}
+
+struct R { int i; int j; } __attribute__((may_alias));
+
+int __attribute__((noinline))
+bar (struct R *p, struct R *q)
+{
+ p->i = 1;
+ q->j = 0;
+ return p->i;
+}
+
+int main()
+{
+ int a[3];
+ if (foo ((union U *)&a[0], (union U *)&a[0]) != 0)
+ abort ();
+ if (bar ((struct R *)&a[1], (struct R *)&a[0]) != 0)
+ abort ();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr57864.c b/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr57864.c
new file mode 100644
index 000000000..93962c20e
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr57864.c
@@ -0,0 +1,37 @@
+/* { dg-do compile } */
+
+union U {
+ double val;
+ union U *ptr;
+};
+
+union U *d;
+double a;
+int b;
+int c;
+
+static void fn1(union U *p1, int p2, _Bool p3)
+{
+ union U *e;
+
+ if (p2 == 0)
+ a = ((union U*)((unsigned long)p1 & ~1))->val;
+
+ if (b) {
+ e = p1;
+ } else if (c) {
+ e = ((union U*)((unsigned long)p1 & ~1))->ptr;
+ d = e;
+ } else {
+ e = 0;
+ d = ((union U*)0)->ptr;
+ }
+
+ fn1 (e, 0, 0);
+ fn1 (0, 0, p3);
+}
+
+void fn2 (void)
+{
+ fn1 (0, 0, 0);
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr60891.c b/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr60891.c
new file mode 100644
index 000000000..c8fec87ea
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr60891.c
@@ -0,0 +1,23 @@
+/* { dg-do compile } */
+/* { dg-additional-options "-fno-tree-ch -fno-tree-cselim -fno-tree-dominator-opts" } */
+
+int a, b, c, d, e, f;
+
+void foo (int x)
+{
+ for (;;)
+ {
+ int g = c;
+ if (x)
+ {
+ if (e)
+ while (a)
+ --f;
+ }
+ for (b = 5; b; b--)
+ {
+ }
+ if (!g)
+ x = 0;
+ }
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr60903.c b/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr60903.c
new file mode 100644
index 000000000..5d93ae3ee
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr60903.c
@@ -0,0 +1,22 @@
+/* { dg-do compile } */
+
+extern int a, b, k, q;
+
+void
+foo ()
+{
+ if (a)
+ {
+ while (q)
+ {
+ lbl:
+ if (a)
+ {
+ a = 0;
+ goto lbl;
+ }
+ }
+ b = k;
+ }
+ goto lbl;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr60930.c b/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr60930.c
new file mode 100644
index 000000000..5e35f1988
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr60930.c
@@ -0,0 +1,22 @@
+/* { dg-do run } */
+
+int x = 1;
+
+__attribute__((noinline, noclone)) void
+foo (unsigned long long t)
+{
+ asm volatile ("" : : "r" (&t));
+ if (t == 1)
+ __builtin_abort ();
+}
+
+int
+main ()
+{
+#if __SIZEOF_LONG_LONG__ >= 8
+ unsigned long long t = 0xffffffffffffffffULL * (0xffffffffUL * x);
+ if (t != 0xffffffff00000001ULL)
+ foo (t);;
+#endif
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr61010.c b/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr61010.c
new file mode 100644
index 000000000..ed5653982
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr61010.c
@@ -0,0 +1,8 @@
+/* { dg-do compile } */
+
+int main (void)
+{
+ int a = 0;
+ unsigned b = (a * 64 & 192) | 63U;
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr61383-1.c b/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr61383-1.c
new file mode 100644
index 000000000..d9a0a0b39
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr61383-1.c
@@ -0,0 +1,35 @@
+/* { dg-do run } */
+
+int a, b = 1, c, d, e, f, g;
+
+int
+fn1 ()
+{
+ int h;
+ for (;;)
+ {
+ g = b;
+ g = g ? 0 : 1 % g;
+ e = a + 1;
+ for (; d < 1; d = e)
+ {
+ if (f == 0)
+ h = 0;
+ else
+ h = 1 % f;
+ if (f < 1)
+ c = 0;
+ else if (h)
+ break;
+ }
+ if (b)
+ return 0;
+ }
+}
+
+int
+main ()
+{
+ fn1 ();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr61452.c b/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr61452.c
new file mode 100644
index 000000000..a62de30fd
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr61452.c
@@ -0,0 +1,31 @@
+/* { dg-do run } */
+
+int a, b;
+short c, d;
+char e, f;
+
+int
+fn1 (int p1, char p2)
+{
+ return p1 || p2 ? 0 : p2;
+}
+
+void
+fn2 ()
+{
+ for (; a;)
+ {
+ int g;
+ g = c = e;
+ for (; a;)
+ b = fn1 (g = d = e, g);
+ f = g;
+ }
+}
+
+int
+main ()
+{
+ fn2 ();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr61681.c b/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr61681.c
new file mode 100644
index 000000000..226de0c1a
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/torture/pr61681.c
@@ -0,0 +1,37 @@
+/* { dg-do run } */
+
+extern void abort (void);
+
+int a = 1, *e = &a, **f = &e, *l, *p, j;
+static int b;
+long d;
+short g;
+
+void
+fn1 (int *p)
+{
+ int m;
+ if (!(*p & j))
+ {
+ int *n = &m;
+ for (d = 6; d; d--)
+ {
+ for (g = 0; g < 1; g++)
+ {
+ n = l = *f;
+ b = *p;
+ }
+ *n = 0;
+ }
+ }
+}
+
+int
+main ()
+{
+ p = *f;
+ fn1 (p);
+ if (b != 0)
+ abort ();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/crossmodule-indircall-1a.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/crossmodule-indircall-1a.c
index a94195cd9..520cad0b2 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/crossmodule-indircall-1a.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/crossmodule-indircall-1a.c
@@ -1,6 +1,7 @@
/* It seems there is no way to avoid the other source of mulitple
source testcase from being compiled independently. Just avoid
error. */
+/* { dg-require-effective-target lto } */
#ifdef DOJOB
extern int a;
void abort (void);
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/inliner-1.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/inliner-1.c
index e44887b52..99398a60f 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/inliner-1.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/inliner-1.c
@@ -1,4 +1,4 @@
-/* { dg-options "-O2 -fdump-tree-optimized" } */
+/* { dg-options "-O2 --param inline-hot-caller=0 -fdump-tree-optimized" } */
int a;
int b[100];
void abort (void);
@@ -34,7 +34,7 @@ main ()
return 0;
}
-/* cold function should be inlined, while hot function should not.
+/* cold function should be not inlined, while hot function should be.
Look for "cold_function () [tail call];" call statement not for the
declaration or other appearances of the string in dump. */
/* { dg-final-use { scan-tree-dump "cold_function ..;" "optimized"} } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/bb-reorg_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/bb-reorg_0.c
new file mode 100644
index 000000000..f850c9bfd
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/bb-reorg_0.c
@@ -0,0 +1,39 @@
+/* { dg-require-effective-target freorder } */
+/* { dg-options "-O2 -freorder-blocks-and-partition" } */
+
+#include <string.h>
+
+#define SIZE 1000
+int t0 = 0;
+const char *t2[SIZE];
+char buf[SIZE];
+
+void
+foo (void)
+{
+ char *s = buf;
+ t0 = 1;
+
+ for (;;)
+ {
+ if (*s == '\0')
+ break;
+ else
+ {
+ t2[t0] = s;
+ t0++;
+ }
+ *s++ = '\0';
+ }
+ t2[t0] = NULL;
+}
+
+
+int
+main ()
+{
+ strcpy (buf, "hello");
+ foo ();
+ return 0;
+}
+
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/ic-misattribution-1_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/ic-misattribution-1_0.c
new file mode 100644
index 000000000..ff103a8c5
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/ic-misattribution-1_0.c
@@ -0,0 +1,19 @@
+/* { dg-options "-O2 -fdump-ipa-profile" } */
+
+extern void callee (void);
+extern void caller (void (*func) (void));
+
+typedef void (*func_t) (void);
+func_t func;
+
+int
+main ()
+{
+ func = callee;
+ caller (callee);
+ func ();
+ return 0;
+}
+
+/* { dg-final-use { scan-ipa-dump-times "Indirect call -> direct call" 2 "profile" } } */
+/* { dg-final-use { cleanup-ipa-dump "profile" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/ic-misattribution-1_1.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/ic-misattribution-1_1.c
new file mode 100644
index 000000000..4948ec4fa
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/ic-misattribution-1_1.c
@@ -0,0 +1,18 @@
+/* { dg-options "-O2 -fdump-ipa-profile" } */
+
+extern void other_caller (void);
+
+void
+callee (void)
+{
+ return;
+}
+
+void
+caller(void (*func) (void))
+{
+ func ();
+}
+
+/* { dg-final-use { scan-ipa-dump "Indiret call -> direct call" "profile" } } */
+/* { dg-final-use { cleanup-ipa-dump "profile" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/indir-call-prof-single_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/indir-call-prof-single_0.c
new file mode 100644
index 000000000..29a216c69
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/indir-call-prof-single_0.c
@@ -0,0 +1,43 @@
+/* { dg-options "-O2 -fdump-tree-optimized -fdump-ipa-profile" } */
+
+static int a1 (void)
+{
+ return 10;
+}
+
+static int a2 (void)
+{
+ return 0;
+}
+
+typedef int (*tp) (void);
+
+static tp aa [] = {a2, a1, a1, a1, a1};
+
+__attribute__((noinline)) void setp (int (**pp) (void), int i)
+{
+ if (!i)
+ *pp = aa [i];
+ else
+ *pp = aa [(i & 2) + 1];
+}
+
+int
+main (void)
+{
+ int (*p) (void);
+ int i;
+
+ for (i = 0; i < 10; i ++)
+ {
+ setp (&p, i);
+ p ();
+ }
+
+ return 0;
+}
+
+/* { dg-final-use { scan-ipa-dump "Indirect call -> direct call.* a1" "profile"} } */
+/* { dg-final-use { scan-tree-dump-not "Invalid sum" "optimized"} } */
+/* { dg-final-use { cleanup-tree-dump "optimized" } } */
+/* { dg-final-use { cleanup-ipa-dump "profile" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/indir-call-prof_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/indir-call-prof_0.c
new file mode 100644
index 000000000..6bd048df6
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/indir-call-prof_0.c
@@ -0,0 +1,23 @@
+/* { dg-options "-O2 -fdump-tree-optimized -fdump-ipa-profile" } */
+
+extern void setp (int (**pp) (void), int i);
+
+int
+main (void)
+{
+ int (*p) (void);
+ int i;
+
+ for (i = 0; i < 10; i ++)
+ {
+ setp (&p, i);
+ p ();
+ }
+
+ return 0;
+}
+
+/* { dg-final-use { scan-ipa-dump "Indirect call -> direct call.* a1" "profile"} } */
+/* { dg-final-use { scan-tree-dump-not "Invalid sum" "optimized"} } */
+/* { dg-final-use { cleanup-tree-dump "optimized" } } */
+/* { dg-final-use { cleanup-ipa-dump "profile" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/indir-call-prof_1.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/indir-call-prof_1.c
new file mode 100644
index 000000000..0cdb607cd
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/indir-call-prof_1.c
@@ -0,0 +1,23 @@
+/* { dg-options "-O2 -fdump-tree-optimized -fdump-ipa-profile" } */
+
+int a1 (void)
+{
+ return 10;
+}
+
+int a2 (void)
+{
+ return 0;
+}
+
+typedef int (*tp) (void);
+
+tp aa [] = {a2, a1, a1, a1, a1};
+
+__attribute__((noinline)) void setp (int (**pp) (void), int i)
+{
+ if (!i)
+ *pp = aa [i];
+ else
+ *pp = aa [(i & 2) + 1];
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/inliner-1_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/inliner-1_0.c
new file mode 100644
index 000000000..a82b95d82
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/inliner-1_0.c
@@ -0,0 +1,42 @@
+/* { dg-options "-O2 --param inline-hot-caller=0 -fdump-tree-optimized" } */
+int a;
+int b[100];
+void abort (void);
+
+inline void
+cold_function ()
+{
+ int i;
+ for (i = 0; i < 99; i++)
+ if (b[i] / (b[i+1] + 1))
+ abort ();
+}
+
+inline void
+hot_function ()
+{
+ int i;
+ for (i = 0; i < 99; i++)
+ if (b[i] / (b[i+1] + 1))
+ abort ();
+}
+
+main ()
+{
+ int i;
+ for (i = 0; i < 100; i++)
+ {
+ if (a)
+ cold_function ();
+ else
+ hot_function ();
+ }
+ return 0;
+}
+
+/* cold function should not be inlined, while hot function should be.
+ Look for "cold_function () [tail call];" call statement not for the
+ declaration or other apperances of the string in dump. */
+/* { dg-final-use { scan-tree-dump "cold_function ..;" "optimized"} } */
+/* { dg-final-use { scan-tree-dump-not "hot_function ..;" "optimized"} } */
+/* { dg-final-use { cleanup-tree-dump "optimized" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/lipo.exp b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/lipo.exp
new file mode 100644
index 000000000..26abc7f88
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/lipo.exp
@@ -0,0 +1,60 @@
+# Copyright (C) 2001, 2002, 2004, 2005, 2007, 2008
+# Free Software Foundation, Inc.
+
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with GCC; see the file COPYING3. If not see
+# <http://www.gnu.org/licenses/>.
+
+# Test the functionality of programs compiled with profile-directed block
+# ordering using -fprofile-generate followed by -fbranch-use.
+
+load_lib target-supports.exp
+
+# Some targets don't support tree profiling.
+if { ![check_profiling_available ""] } {
+ return
+}
+
+# The procedures in profopt.exp need these parameters.
+set tool gcc
+set prof_ext [list {gcda} {gcda.imports} ]
+
+# Override the list defined in profopt.exp.
+set PROFOPT_OPTIONS [list {}]
+
+if $tracelevel then {
+ strace $tracelevel
+}
+
+# Load support procs.
+load_lib profopt.exp
+
+# These are globals used by profopt-execute. The first is options
+# needed to generate profile data, the second is options to use the
+# profile data.
+set profile_option "-fprofile-generate -fripa -D_PROFILE_GENERATE"
+set feedback_option "-fprofile-use -fripa -D_PROFILE_USE"
+
+# Add -fno-section-anchors for powerpc. Workround for Google ref b/6663281
+if {[istarget powerpc*-*-*]} {
+ set profile_option "$profile_option -fno-section-anchors"
+ set feedback_option "$feedback_option -fno-section-anchors"
+}
+
+foreach src [lsort [glob -nocomplain $srcdir/$subdir/*_0.c]] {
+ # If we're only testing specific files and this isn't one of them, skip it.
+ if ![runtest_file_p $runtests $src] then {
+ continue
+ }
+ profopt-execute $src
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/lipo_inline1_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/lipo_inline1_0.c
new file mode 100644
index 000000000..d48080981
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/lipo_inline1_0.c
@@ -0,0 +1,29 @@
+/* { dg-options "-O2 -fdump-tree-optimized-details-blocks -fdump-ipa-inline-details -fopt-info" } */
+
+extern int foo (void);
+extern int goo (void);
+
+
+int bar (void)
+{
+ return 2;
+}
+
+int g;
+int main ()
+{
+ int s = 0, i;
+
+ for (i = 0; i < 1000; i ++)
+ {
+ s += foo(); /* Should be inlined */
+ s += goo(); /* Should be inlined */
+ }
+
+ g = s;
+ return 0;
+}
+
+/* { dg-final-use { scan-tree-dump-not "foo" "optimized"} } */
+/* { dg-final-use { scan-tree-dump-not "goo" "optimized"} } */
+/* { dg-final-use { cleanup-tree-dump "optimized" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/lipo_inline1_1.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/lipo_inline1_1.c
new file mode 100644
index 000000000..9725ca769
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/lipo_inline1_1.c
@@ -0,0 +1,22 @@
+extern int bar(void);
+extern int blah(void);
+int foo (void)
+{
+ int i, s = 0;
+
+ for (i = 0; i < 2; i++)
+ {
+ s += bar(); /* Inlined */
+ s += blah(); /* Inlined */
+ }
+ return s;
+}
+
+int goo (void)
+{
+ return 10;
+}
+
+/* { dg-final-use { scan-tree-dump-not "bar" "optimized"} } */
+/* { dg-final-use { scan-tree-dump-not "blah" "optimized"} } */
+/* { dg-final-use { cleanup-tree-dump "optimized" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/lipo_inline1_2.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/lipo_inline1_2.c
new file mode 100644
index 000000000..9eeadb20a
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/lipo_inline1_2.c
@@ -0,0 +1,6 @@
+int blah (void)
+{
+ return 2;
+}
+
+/* { dg-final-use { cleanup-tree-dump "optimized" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/pr34999_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/pr34999_0.c
new file mode 100644
index 000000000..4ec42790e
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/pr34999_0.c
@@ -0,0 +1,45 @@
+/* Same test as built-in-setjmp.c. Includes the case where
+ the source block of a crossing fallthru edge ends with a call. */
+/* { dg-require-effective-target freorder } */
+/* { dg-options "-O2 -freorder-blocks-and-partition" } */
+
+extern int strcmp(const char *, const char *);
+extern char *strcpy(char *, const char *);
+extern void abort(void);
+extern void exit(int);
+
+void *buf[20];
+
+void __attribute__((noinline))
+sub2 (void)
+{
+ __builtin_longjmp (buf, 1);
+}
+
+int
+main ()
+{
+ char *p = (char *) __builtin_alloca (20);
+
+ strcpy (p, "test");
+
+ if (__builtin_setjmp (buf))
+ {
+ if (strcmp (p, "test") != 0)
+ abort ();
+
+ exit (0);
+ }
+
+ {
+ int *q = (int *) __builtin_alloca (p[2] * sizeof (int));
+ int i;
+
+ for (i = 0; i < p[2]; i++)
+ q[i] = 0;
+
+ while (1)
+ sub2 ();
+ }
+}
+
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/pr45354_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/pr45354_0.c
new file mode 100644
index 000000000..b30ad7769
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/pr45354_0.c
@@ -0,0 +1,43 @@
+/* { dg-require-effective-target freorder } */
+/* { dg-options "-O -freorder-blocks-and-partition -fschedule-insns -fselective-scheduling" { target powerpc*-*-* ia64-*-* x86_64-*-* } } */
+
+extern void abort (void);
+
+int ifelse_val2;
+
+int __attribute__((noinline))
+test_ifelse2 (int i)
+{
+ int result = 0;
+ if (!i) /* count(6) */
+ result = 1; /* count(1) */
+ if (i == 1) /* count(6) */
+ result = 1024;
+ if (i == 2) /* count(6) */
+ result = 2; /* count(3) */
+ if (i == 3) /* count(6) */
+ return 8; /* count(2) */
+ if (i == 4) /* count(4) */
+ return 2048;
+ return result; /* count(4) */
+}
+
+void __attribute__((noinline))
+call_ifelse ()
+{
+ ifelse_val2 += test_ifelse2 (0);
+ ifelse_val2 += test_ifelse2 (2);
+ ifelse_val2 += test_ifelse2 (2);
+ ifelse_val2 += test_ifelse2 (2);
+ ifelse_val2 += test_ifelse2 (3);
+ ifelse_val2 += test_ifelse2 (3);
+}
+
+int
+main()
+{
+ call_ifelse ();
+ if (ifelse_val2 != 23)
+ abort ();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/pr47187_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/pr47187_0.c
new file mode 100644
index 000000000..467ce252b
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/pr47187_0.c
@@ -0,0 +1,23 @@
+/* PR bootstrap/47187 */
+/* { dg-options "-O2" } */
+
+char buf[64];
+char buf2[64];
+
+void *
+foo (char *p, long size)
+{
+ return __builtin_memcpy (buf, p, size);
+}
+
+int
+main (void)
+{
+ long i;
+ for (i = 0; i < 65536; i++)
+ if (foo ("abcdefghijkl", 12) != buf)
+ __builtin_abort ();
+ if (foo (buf2, 64) != buf)
+ __builtin_abort ();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/stringop-1_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/stringop-1_0.c
new file mode 100644
index 000000000..f73061387
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/stringop-1_0.c
@@ -0,0 +1,22 @@
+/* { dg-options "-O2 -fdump-tree-optimized -fdump-ipa-profile" } */
+int a[1000];
+int b[1000];
+int size=1;
+int max=10000;
+main()
+{
+ int i;
+ for (i=0;i<max; i++)
+ {
+ __builtin_memcpy (a, b, size * sizeof (a[0]));
+ asm("");
+ }
+ return 0;
+}
+/* { dg-final-use { scan-ipa-dump "Single value 4 stringop" "profile"} } */
+/* Really this ought to simplify into assignment, but we are not there yet. */
+/* a[0] = b[0] is what we fold the resulting memcpy into. */
+/* { dg-final-use { scan-tree-dump " = MEM.*&b" "optimized"} } */
+/* { dg-final-use { scan-tree-dump "MEM.*&a\\\] = " "optimized"} } */
+/* { dg-final-use { cleanup-tree-dump "optimized" } } */
+/* { dg-final-use { cleanup-ipa-dump "profile" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/stringop-2_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/stringop-2_0.c
new file mode 100644
index 000000000..d5c58561b
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/stringop-2_0.c
@@ -0,0 +1,20 @@
+/* { dg-options "-O2 -fdump-tree-optimized -fdump-ipa-profile" } */
+int a[1000];
+int b[1000];
+int size=1;
+int max=10000;
+main()
+{
+ int i;
+ for (i=0;i<max; i++)
+ {
+ __builtin_memset (a, 10, size * sizeof (a[0]));
+ asm("");
+ }
+ return 0;
+}
+/* { dg-final-use { scan-ipa-dump "Single value 4 stringop" "profile"} } */
+/* The versioned memset of size 4 should be optimized to an assignment. */
+/* { dg-final-use { scan-tree-dump "a\\\[0\\\] = 168430090" "optimized"} } */
+/* { dg-final-use { cleanup-tree-dump "optimized" } } */
+/* { dg-final-use { cleanup-ipa-dump "profile" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/tracer-1_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/tracer-1_0.c
new file mode 100644
index 000000000..385a1a5c2
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/tracer-1_0.c
@@ -0,0 +1,18 @@
+/* { dg-options "-O2 -ftracer -fdump-tree-tracer" } */
+volatile int a, b, c;
+int main ()
+{
+ int i;
+ for (i = 0; i < 1000; i++)
+ {
+ if (i % 17)
+ a++;
+ else
+ b++;
+ c++;
+ }
+ return 0;
+}
+/* Superblock formation should produce two copies of the increment of c */
+/* { dg-final-generate { scan-tree-dump-times "c =" 2 "tracer" } } */
+/* { dg-final-use { cleanup-tree-dump "tracer" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/update-cunroll-2_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/update-cunroll-2_0.c
new file mode 100644
index 000000000..d559b9245
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/update-cunroll-2_0.c
@@ -0,0 +1,21 @@
+
+/* { dg-options "-O2 -fdump-tree-optimized-blocks" } */
+int a[8];
+__attribute__ ((noinline))
+int t()
+{
+ int i;
+ for (i = 0; i < 3; i++)
+ if (a[i])
+ break;
+ return i;
+}
+main ()
+{
+ int i;
+ for (i = 0; i < 1000; i++)
+ t ();
+ return 0;
+}
+/* { dg-final-use { scan-tree-dump-not "Invalid sum" "optimized"} } */
+/* { dg-final-use { cleanup-tree-dump "optimized" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/update-loopch_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/update-loopch_0.c
new file mode 100644
index 000000000..e45c67461
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/update-loopch_0.c
@@ -0,0 +1,20 @@
+/* { dg-options "-O2 -fdump-ipa-profile-blocks -fdump-tree-optimized-blocks-details" } */
+int max = 33333;
+int a[8];
+int
+main ()
+{
+ int i;
+ for (i = 0; i < max; i++)
+ {
+ a[i % 8]++;
+ }
+ return 0;
+}
+/* Loop header copying will peel away the initial conditional, so the loop body
+ is once reached directly from entry point of function, rest via loopback
+ edge. */
+/* { dg-final-use { scan-ipa-dump "count:33333" "profile"} } */
+/* { dg-final-use { scan-tree-dump "count:33332" "optimized"} } */
+/* { dg-final-use { cleanup-ipa-dump "profile" } } */
+/* { dg-final-use { cleanup-tree-dump "optimized" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/update-tailcall_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/update-tailcall_0.c
new file mode 100644
index 000000000..285491445
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/update-tailcall_0.c
@@ -0,0 +1,20 @@
+/* { dg-options "-O2 -fdump-tree-tailc -fdump-tree-optimized" } */
+__attribute__ ((noinline))
+int factorial(int x)
+{
+ if (x == 1)
+ return 1;
+ else
+ return x*factorial(--x);
+}
+int gbl;
+int
+main()
+{
+ gbl = factorial(100);
+ return 0;
+}
+/* { dg-final-use { scan-tree-dump-not "Invalid sum" "tailc"} } */
+/* { dg-final-use { scan-tree-dump-not "Invalid sum" "optimized"} } */
+/* { dg-final-use { cleanup-tree-dump "tailc" } } */
+/* { dg-final-use { cleanup-tree-dump "optimized" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-1_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-1_0.c
new file mode 100644
index 000000000..d6f603e8b
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-1_0.c
@@ -0,0 +1,22 @@
+/* { dg-options "-O2 -fdump-tree-optimized -fdump-ipa-profile" } */
+int a[1000];
+int b = 256;
+int c = 257;
+main ()
+{
+ int i;
+ int n;
+ for (i = 0; i < 1000; i++)
+ {
+ if (i % 17)
+ n = c;
+ else n = b;
+ a[i] /= n;
+ }
+ return 0;
+}
+/* { dg-final-use { scan-ipa-dump "Div.mod by constant n_\[0-9\]*=257 transformation on insn" "profile"} } */
+/* { dg-final-use { scan-tree-dump "if \\(n_\[0-9\]* != 257\\)" "optimized"} } */
+/* { dg-final-use { scan-tree-dump-not "Invalid sum" "optimized"} } */
+/* { dg-final-use { cleanup-tree-dump "optimized" } } */
+/* { dg-final-use { cleanup-ipa-dump "profile" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-2_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-2_0.c
new file mode 100644
index 000000000..16839612d
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-2_0.c
@@ -0,0 +1,32 @@
+/* { dg-options "-O2 -fdump-tree-optimized -fdump-ipa-profile" } */
+unsigned int a[1000];
+unsigned int b = 256;
+unsigned int c = 1024;
+unsigned int d = 17;
+main ()
+{
+ int i;
+ unsigned int n;
+ for (i = 0; i < 1000; i++)
+ {
+ a[i]=100*i;
+ }
+ for (i = 0; i < 1000; i++)
+ {
+ if (i % 2)
+ n = b;
+ else if (i % 3)
+ n = c;
+ else
+ n = d;
+ a[i] %= n;
+ }
+ return 0;
+}
+/* { dg-final-use { scan-ipa-dump "Mod power of 2 transformation on insn" "profile" } } */
+/* This is part of code checking that n is power of 2, so we are sure that the transformation
+ didn't get optimized out. */
+/* { dg-final-use { scan-tree-dump "n_\[0-9\]* \\+ (4294967295|0x0*ffffffff)" "optimized"} } */
+/* { dg-final-use { scan-tree-dump-not "Invalid sum" "optimized"} } */
+/* { dg-final-use { cleanup-tree-dump "optimized" } } */
+/* { dg-final-use { cleanup-ipa-dump "profile" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-3_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-3_0.c
new file mode 100644
index 000000000..d7b3914a8
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-3_0.c
@@ -0,0 +1,32 @@
+/* { dg-options "-O2 -fdump-tree-optimized -fdump-ipa-profile" } */
+unsigned int a[1000];
+unsigned int b = 257;
+unsigned int c = 1023;
+unsigned int d = 19;
+main ()
+{
+ int i;
+ unsigned int n;
+ for (i = 0; i < 1000; i++)
+ {
+ a[i]=18;
+ }
+ for (i = 0; i < 1000; i++)
+ {
+ if (i % 2)
+ n = b;
+ else if (i % 3)
+ n = c;
+ else
+ n = d;
+ a[i] %= n;
+ }
+ return 0;
+}
+/* { dg-final-use { scan-ipa-dump "Mod subtract transformation on insn" "profile" } } */
+/* This is part of code checking that n is greater than the divisor so we are sure that it
+ didn't get optimized out. */
+/* { dg-final-use { scan-tree-dump "if \\(n_\[0-9\]* \\>" "optimized"} } */
+/* { dg-final-use { scan-tree-dump-not "Invalid sum" "optimized"} } */
+/* { dg-final-use { cleanup-tree-dump "optimized" } } */
+/* { dg-final-use { cleanup-ipa-dump "profile" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-4_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-4_0.c
new file mode 100644
index 000000000..239bf595d
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-4_0.c
@@ -0,0 +1,32 @@
+/* { dg-options "-O2 -fdump-tree-optimized -fdump-ipa-profile" } */
+unsigned int a[1000];
+unsigned int b = 999;
+unsigned int c = 1002;
+unsigned int d = 1003;
+main ()
+{
+ int i;
+ unsigned int n;
+ for (i = 0; i < 1000; i++)
+ {
+ a[i]=1000+i;
+ }
+ for (i = 0; i < 1000; i++)
+ {
+ if (i % 2)
+ n = b;
+ else if (i % 3)
+ n = c;
+ else
+ n = d;
+ a[i] %= n;
+ }
+ return 0;
+}
+/* { dg-final-use { scan-ipa-dump "Mod subtract transformation on insn" "profile" } } */
+/* This is part of code checking that n is greater than the divisor so we are sure that it
+ didn't get optimized out. */
+/* { dg-final-use { scan-tree-dump "if \\(n_\[0-9\]* \\>" "optimized"} } */
+/* { dg-final-use { scan-tree-dump-not "Invalid sum" "optimized"} } */
+/* { dg-final-use { cleanup-tree-dump "optimized" } } */
+/* { dg-final-use { cleanup-ipa-dump "profile" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-5_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-5_0.c
new file mode 100644
index 000000000..1a804a767
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-5_0.c
@@ -0,0 +1,17 @@
+/* { dg-options "-O2 -fdump-tree-optimized -fdump-ipa-profile" } */
+int a[1000];
+int b=997;
+main()
+{
+ int i;
+ for (i = 0; i < 1000; i++)
+ if (a[i])
+ a[i]/=b;
+ else
+ a[i]/=b;
+ return 0;
+}
+/* { dg-final-use { scan-ipa-dump "Div.mod by constant b.*=997 transformation on insn" "profile" } } */
+/* { dg-final-use { scan-tree-dump-not "Invalid sum" "optimized"} } */
+/* { dg-final-use { cleanup-tree-dump "optimized" } } */
+/* { dg-final-use { cleanup-ipa-dump "profile" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-6_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-6_0.c
new file mode 100644
index 000000000..c439fcffe
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-6_0.c
@@ -0,0 +1,20 @@
+/* { dg-options "-O2 -fdump-tree-optimized" } */
+char a[1000];
+char b[1000];
+int size=1000;
+__attribute__ ((noinline))
+t(int size)
+{
+ __builtin_memcpy(a,b,size);
+}
+int
+main()
+{
+ int i;
+ for (i=0; i < size; i++)
+ t(i);
+ return 0;
+}
+/* { dg-final-use { scan-tree-dump "Average value sum:499500" "optimized"} } */
+/* { dg-final-use { scan-tree-dump "IOR value" "optimized"} } */
+/* { dg-final-use { cleanup-tree-dump "optimized" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-7_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-7_0.c
new file mode 100644
index 000000000..5f5326384
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/val-prof-7_0.c
@@ -0,0 +1,26 @@
+/* { dg-options "-O2 -fdump-ipa-profile -mtune=core2" } */
+/* { dg-skip-if "" { ! { i?86-*-* x86_64-*-* } } { "*" } { "" } } */
+
+#include <strings.h>
+
+int foo(int len)
+{
+ char array[1000];
+ bzero(array, len);
+ return 0;
+}
+
+int main() {
+ int i;
+ for (i = 0; i < 1000; i++)
+ {
+ if (i > 990)
+ foo(16);
+ else
+ foo(8);
+ }
+ return 0;
+}
+
+/* { dg-final-use { scan-ipa-dump "Single value 8 stringop transformation on bzero" "profile" } } */
+/* { dg-final-use { cleanup-ipa-dump "profile" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/wcoverage-mismatch_0.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/wcoverage-mismatch_0.c
new file mode 100644
index 000000000..e4231057f
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/lipo/wcoverage-mismatch_0.c
@@ -0,0 +1,20 @@
+/* { dg-options "-O2 -Wno-coverage-mismatch" } */
+
+int __attribute__((noinline)) bar (void)
+{
+}
+
+int foo (int i)
+{
+#ifdef _PROFILE_USE
+ if (i)
+ bar ();
+#endif
+ return 0;
+}
+
+int main(int argc, char **argv)
+{
+ foo (argc);
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/merge_block.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/merge_block.c
new file mode 100644
index 000000000..91bd47482
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-prof/merge_block.c
@@ -0,0 +1,21 @@
+
+/* { dg-options "-O2 -fno-ipa-pure-const -fdump-tree-optimized-blocks -fno-early-inlining" } */
+int a[8];
+int t()
+{
+ int i;
+ for (i = 0; i < 3; i++)
+ if (a[i])
+ break;
+ return i;
+}
+main ()
+{
+ int i;
+ /* The loop will be optimized away after ipa-inline. */
+ for (i = 0; i < 1000; i++)
+ t ();
+ return 0;
+}
+/* { dg-final-use { scan-tree-dump-not "Invalid sum" "optimized"} } */
+/* { dg-final-use { cleanup-tree-dump "optimized" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/ivopt_1.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/ivopt_1.c
index 74b73da68..c2f7ebd26 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/ivopt_1.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/ivopt_1.c
@@ -1,5 +1,5 @@
/* { dg-do compile { target {{ i?86-*-* x86_64-*-* } && lp64 } } } */
-/* { dg-options "-O2 -m64 -fdump-tree-ivopts" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -m64 -fdump-tree-ivopts" } */
#define TYPE char*
/* Testing that only one induction variable is selected after IVOPT on
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/ivopt_2.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/ivopt_2.c
index f27b90072..87334c61c 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/ivopt_2.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/ivopt_2.c
@@ -1,5 +1,5 @@
/* { dg-do compile { target {{ i?86-*-* x86_64-*-* } && lp64 } } } */
-/* { dg-options "-O2 -m64 -fdump-tree-ivopts" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -m64 -fdump-tree-ivopts" } */
#define TYPE char*
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/ivopt_4.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/ivopt_4.c
index 330b3bf53..bd6393e58 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/ivopt_4.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/ivopt_4.c
@@ -1,5 +1,5 @@
/* { dg-do compile { target {{ i?86-*-* x86_64-*-* } && lp64 } } } */
-/* { dg-options "-O2 -m64 -fdump-tree-ivopts" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -m64 -fdump-tree-ivopts" } */
#ifndef TYPE
#define TYPE char*
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/ivopts-lt.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/ivopts-lt.c
index 5188fed2c..d1e03e365 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/ivopts-lt.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/ivopts-lt.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -fdump-tree-ivopts" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -fdump-tree-ivopts" } */
/* { dg-require-effective-target stdint_types } */
#include "stdint.h"
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/loop-16.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/loop-16.c
index 50fa33330..4b41ebe16 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/loop-16.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/loop-16.c
@@ -2,7 +2,7 @@
at most 100 times, thus the (32-bit) induction variables do not overflow,
and we may use 64-bit variable to represent them. */
-/* { dg-options "-O2 -fdump-tree-optimized" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -fdump-tree-optimized" } */
/* { dg-do compile { target x86_64-*-* } } */
unsigned a[100];
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/predcom-1.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/predcom-1.c
index f1e52e5d8..b4490d52e 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/predcom-1.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/predcom-1.c
@@ -1,6 +1,6 @@
/* { dg-do compile } */
/* { dg-do run } */
-/* { dg-options "-O2 -funroll-loops --param max-unroll-times=8 -fpredictive-commoning -fdump-tree-pcom-details" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -funroll-loops --param max-unroll-times=8 -fpredictive-commoning -fdump-tree-pcom-details" } */
void abort (void);
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/predcom-4.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/predcom-4.c
index c29a46ac2..3164c4569 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/predcom-4.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/predcom-4.c
@@ -1,6 +1,6 @@
/* { dg-do compile } */
/* { dg-do run } */
-/* { dg-options "-O2 -funroll-loops --param max-unroll-times=8 -fpredictive-commoning -fdump-tree-pcom-details" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -funroll-loops --param max-unroll-times=8 -fpredictive-commoning -fdump-tree-pcom-details" } */
/* Test for predictive commoning of expressions, without reassociation. */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/predcom-5.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/predcom-5.c
index 29444abe5..b830c4d65 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/predcom-5.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/predcom-5.c
@@ -1,6 +1,6 @@
/* { dg-do compile } */
/* { dg-do run } */
-/* { dg-options "-O2 -funroll-loops --param max-unroll-times=8 -fpredictive-commoning -fdump-tree-pcom-details" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -funroll-loops --param max-unroll-times=8 -fpredictive-commoning -fdump-tree-pcom-details" } */
/* Test for predictive commoning of expressions, with reassociation. */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/prefetch-7.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/prefetch-7.c
index 5c469ba00..3af204a57 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/prefetch-7.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/prefetch-7.c
@@ -1,7 +1,7 @@
/* { dg-do compile { target { { i?86-*-* x86_64-*-* } && ia32 } } } */
/* { dg-require-effective-target sse2 } */
/* { dg-skip-if "" { i?86-*-* x86_64-*-* } { "-march=*" } { "-march=athlon" } } */
-/* { dg-options "-O2 -fprefetch-loop-arrays -march=athlon -msse2 -mfpmath=sse --param simultaneous-prefetches=100 -fdump-tree-aprefetch-details -fdump-tree-optimized" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -fprefetch-loop-arrays -march=athlon -msse2 -mfpmath=sse --param simultaneous-prefetches=100 -fdump-tree-aprefetch-details -fdump-tree-optimized" } */
#define K 1000000
int a[K];
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/prefetch-8.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/prefetch-8.c
index 705d35fe2..31dc31469 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/prefetch-8.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/prefetch-8.c
@@ -1,7 +1,7 @@
/* { dg-do compile { target { { i?86-*-* x86_64-*-* } && ia32 } } } */
/* { dg-require-effective-target sse2 } */
/* { dg-skip-if "" { i?86-*-* x86_64-*-* } { "-march=*" } { "-march=athlon" } } */
-/* { dg-options "-O2 -fprefetch-loop-arrays -march=athlon -msse2 -mfpmath=sse --param simultaneous-prefetches=100 -fdump-tree-aprefetch-details -fdump-tree-optimized" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -fprefetch-loop-arrays -march=athlon -msse2 -mfpmath=sse --param simultaneous-prefetches=100 -fdump-tree-aprefetch-details -fdump-tree-optimized" } */
#define K 1000000
int a[K];
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/prefetch-9.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/prefetch-9.c
index f78bea3a4..afbb8a047 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/prefetch-9.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/prefetch-9.c
@@ -1,7 +1,7 @@
/* { dg-do compile { target { { i?86-*-* x86_64-*-* } && ia32 } } } */
/* { dg-require-effective-target sse2 } */
/* { dg-skip-if "" { i?86-*-* x86_64-*-* } { "-march=*" } { "-march=athlon" } } */
-/* { dg-options "-O2 -fprefetch-loop-arrays -march=athlon -msse2 -mfpmath=sse --param simultaneous-prefetches=100 -fdump-tree-aprefetch-details -fdump-tree-optimized" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -fprefetch-loop-arrays -march=athlon -msse2 -mfpmath=sse --param simultaneous-prefetches=100 -fdump-tree-aprefetch-details -fdump-tree-optimized" } */
#define K 1000000
int a[K], b[K];
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/vrp93.c b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/vrp93.c
new file mode 100644
index 000000000..d78c399c3
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/tree-ssa/vrp93.c
@@ -0,0 +1,36 @@
+/* PR target/29776 */
+/* PR tree-optimization/61725 */
+/* { dg-do compile } */
+/* { dg-options "-O2 -fdump-tree-vrp1" } */
+/* { dg-final { scan-tree-dump-not "link_error" "vrp1"} } */
+/* { dg-final { cleanup-tree-dump "vrp1" } } */
+
+#define A(fn, arg, min, max) \
+ if (__builtin_##fn (arg) < min || __builtin_##fn (arg) > max) \
+ link_error ();
+#define B(fn, min, max) \
+ A (fn, a, min, max) A (fn##l, b, min, max) A (fn##ll, c, min, max)
+#define C(fn, min, sub) \
+ A (fn, a, min, ((int) sizeof (a) * __CHAR_BIT__ - sub)) \
+ A (fn##l, b, min, ((int) sizeof (b) * __CHAR_BIT__ - sub)) \
+ A (fn##ll, c, min, ((int) sizeof (c) * __CHAR_BIT__ - sub))
+
+extern void link_error (void);
+
+unsigned int d;
+unsigned long e;
+unsigned long long f;
+
+void
+foo (int a, long b, long long c)
+{
+ C (ffs, 0, 0)
+ a &= 63; b &= 63; c &= 63;
+ B (ffs, 0, 6)
+ a++; b++; c++;
+ B (ffs, 1, 7)
+ a -= 2; b -= 2; c -= 2;
+ C (ffs, 0, 0)
+ a -= 63; b -= 63; c -= 63;
+ C (ffs, 1, 0)
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/typeof-2.c b/gcc-4.9/gcc/testsuite/gcc.dg/typeof-2.c
new file mode 100644
index 000000000..e9169003a
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/typeof-2.c
@@ -0,0 +1,28 @@
+/* Test qualifier discard of typeof for atomic types. */
+/* { dg-do compile } */
+/* { dg-options "-std=c11" } */
+
+extern int i;
+
+extern int * p;
+
+extern int _Atomic const ci;
+extern __typeof (ci) i;
+
+extern int _Atomic volatile vi;
+extern __typeof (vi) i;
+
+extern int * _Atomic restrict ri;
+extern __typeof (ri) p;
+
+void f(void)
+{
+ __auto_type aci = ci;
+ int *paci = &aci;
+
+ __auto_type avi = vi;
+ int *pavi = &avi;
+
+ __auto_type ari = ri;
+ int **pari = &ari;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/unused-8b.c b/gcc-4.9/gcc/testsuite/gcc.dg/unused-8b.c
new file mode 100644
index 000000000..5b4b89493
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/unused-8b.c
@@ -0,0 +1,4 @@
+/* { dg-do compile } */
+/* { dg-options "-Wall -Wno-unused -Wextra" } */
+
+void foo(int x) { }
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/var-expand1.c b/gcc-4.9/gcc/testsuite/gcc.dg/var-expand1.c
index a784ea1a0..b4580ea8a 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/var-expand1.c
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/var-expand1.c
@@ -2,7 +2,7 @@
/* We don't (and don't want to) perform this optimisation on soft-float
targets, where each addition is a library call. */
/* { dg-require-effective-target hard_float } */
-/* { dg-options "-O2 -funroll-loops --fast-math -fvariable-expansion-in-unroller -fdump-rtl-loop2_unroll" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -funroll-loops --fast-math -fvariable-expansion-in-unroller -fdump-rtl-loop2_unroll" } */
extern void abort (void);
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/vect/pr60841.c b/gcc-4.9/gcc/testsuite/gcc.dg/vect/pr60841.c
new file mode 100644
index 000000000..44b5d0191
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/vect/pr60841.c
@@ -0,0 +1,183 @@
+/* { dg-do compile } */
+/* { dg-additional-options "-ffast-math" } */
+
+/* This testcase shouldn't consume much memory or produce a 1GB vectorizer
+ dump file due to SLP tree explosion. */
+
+struct S { int f1, f2, f3, f4; } a;
+struct T { short f3, f2, f1, f4; };
+int b, c, d, e, f, g;
+unsigned long z;
+
+void
+foo (struct T *p, struct T *q, int x, int w)
+{
+ for (; x; x++)
+ {
+ struct S h;
+ int i;
+ struct T j;
+ struct T *r;
+ h = a;
+ g = 0;
+ r = p + 2 * (c + 4) + 1;
+ j = *r;
+ r = p;
+ f = r->f1 - 1;
+ b = +1.0 + f * f;
+ i = (r->f2 + j.f2) / 2;
+ f = r->f3 - 1;
+ b += 1.0 - i * f * f;
+ f = r->f4 - 1;
+ if (b)
+ b += -1.0 - i * f;
+ if (b / w)
+ {
+ h.f1 += 8.0 * r->f1;
+ h.f2 += 8.0 * r->f2;
+ h.f3 += 8.0 * r->f3;
+ h.f4 += 8.0 * r->f4;
+ g = 1;
+ }
+ r++;
+ f = r->f1;
+ i = (r->f2 + j.f2) / 2;
+ f = r->f3 - 1;
+ b += 1.0 - i * f * f;
+ i = (r->f4);
+ if (b * 65535UL / w)
+ {
+ h.f1 += 10.0 * r->f1;
+ h.f2 += 10.0 * r->f2;
+ h.f3 += 10.0 * r->f3;
+ h.f4 += 10.0 * r->f4;
+ g += 10.0;
+ }
+ r++;
+ f = r->f1;
+ z = 5UL * i;
+ f = r->f2;
+ i = (r->f3 + j.f3) / 2;
+ b = -i * f * f;
+ i = (r->f4 + j.f4) / 2;
+ if (b * 65535UL / 25.0f)
+ {
+ h.f1 += 8.0 * r->f1;
+ h.f2 += 8.0 * r->f2;
+ h.f3 += 8.0 * r->f3;
+ h.f4 += 8.0 * r->f4;
+ g += 8.0;
+ }
+ r++;
+ f = r->f1 - j.f1;
+ b = 1 * 2.0 * i * f * f;
+ f = r->f2;
+ b += 4.0 * f;
+ i = r->f3 / 2;
+ f = r->f4 - 1;
+ if (b * 1)
+ {
+ h.f1 += 8.0 * r->f1;
+ h.f2 += 8.0 * r->f2;
+ h.f3 += 8.0 * r->f3;
+ h.f4 += 8.0 * r->f4;
+ g += 8.0;
+ }
+ b = 4.0 * 1 * f;
+ if (b * 65535UL / 25.0f)
+ {
+ h.f1 += 20.0 * r->f1;
+ h.f2 += 20.0 * r->f2;
+ h.f3 += 20.0 * r->f3;
+ h.f4 += 20.0 * r->f4;
+ g += 20.0;
+ }
+ b = 5 * (0.0 - i);
+ if (b < 0)
+ {
+ h.f1 += 8.0 * r->f1;
+ h.f2 += 8.0 * r->f2;
+ h.f3 += 8.0 * r->f3;
+ h.f4 += 8.0 * r->f4;
+ g += 8.0;
+ }
+ r = p + 2 * (c + 4);
+ i = (r->f1 + j.f1);
+ b = 1 * 2.0 * i * 1;
+ f = r->f2 - 1;
+ i = (r->f3 + j.f3) / 2;
+ b = 5 * (0.0 - i) * f * f;
+ i = (r->f4 + j.f4) / 2;
+ if (b * 65535UL / 25.0f)
+ {
+ h.f1 += 10.0 * r->f1;
+ h.f2 += 10.0 * r->f2;
+ h.f3 += 10.0 * r->f3;
+ h.f4 += 10.0 * r->f4;
+ g += 10.0;
+ }
+ r++;
+ f = r->f1;
+ b = 5UL * i * f;
+ i = (r->f2 + j.f2) / 2;
+ f = r->f3 - 1;
+ b = 5 * (0.0 - i) * f * f;
+ f = r->f4 - 1;
+ if (b * 65535UL / 25.0f)
+ {
+ h.f1 += 40.0 * r->f1;
+ h.f2 += 40.0 * r->f2;
+ h.f3 += 40.0 * r->f3;
+ h.f4 += 40.0 * r->f4;
+ g += 40.0;
+ }
+ r++;
+ i = (r->f1 + j.f1);
+ b = 5 * i * f;
+ f = r->f2;
+ b = 4.0 * f * f;
+ f = r->f3;
+ i = (r->f4 + j.f4) / 2;
+ b = 5 * (0.0 - i) * f * f;
+ if (b * 25.0f)
+ {
+ h.f1 += 8.0 * r->f1;
+ h.f2 += 8.0 * r->f2;
+ h.f3 += 8.0 * r->f3;
+ h.f4 += 8.0 * r->f4;
+ g += 8.0;
+ }
+ r = p + 4 * (c + 4);
+ i = r->f1 / 2;
+ b = 5 * (1.0 + i);
+ i = r->f2 + j.f2;
+ f = r->f3 - 1;
+ b = 5 * (0.0 - i) * f * f;
+ i = (r->f4 + j.f4) / 2;
+ if (b * 65535UL / 25.0f)
+ {
+ h.f1 += 5.0 * r->f1;
+ h.f2 += 5.0 * r->f2;
+ h.f3 += 5.0 * r->f3;
+ h.f4 += 5.0 * r->f4;
+ g += 5.0;
+ }
+ b = 5 * (1.0 + i);
+ if (b < 0)
+ {
+ h.f1 += 5.0 * r->f1;
+ h.f2 += 5.0 * r->f2;
+ h.f3 += 5.0 * r->f3;
+ h.f4 += 5.0 * r->f4;
+ g += 5.0;
+ }
+ q->f1 = (h.f1 + g / 2 - 1) / g;
+ q->f2 = (h.f2 + g / 2 - 1) / g;
+ q->f3 = (h.f3 + g / 2 - 1) / g;
+ q->f4 = (h.f4 + g / 2 - 1) / g;
+ p++;
+ q++;
+ }
+}
+
+/* { dg-final { cleanup-tree-dump "vect" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/vect/pr61680.c b/gcc-4.9/gcc/testsuite/gcc.dg/vect/pr61680.c
new file mode 100644
index 000000000..605a651aa
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/vect/pr61680.c
@@ -0,0 +1,51 @@
+/* { dg-do run } */
+
+#include "tree-vect.h"
+
+double v[4096][4];
+
+__attribute__((noinline, noclone)) void
+bar (double p[][4])
+{
+ int i;
+ double d = 172.0;
+ for (i = 0; i < 4096; i++)
+ {
+ if (p[i][0] != 6.0 || p[i][1] != 6.0 || p[i][2] != 10.0)
+ __builtin_abort ();
+ if (__builtin_fabs (p[i][3] - d) > 0.25)
+ __builtin_abort ();
+ }
+}
+
+__attribute__((noinline, noclone)) void
+foo (void)
+{
+ int i;
+ double w[4096][4], t;
+ for (i = 0; i < 4096; i++)
+ {
+ w[i][0] = v[i][0] + 2.0;
+ w[i][1] = v[i][1] + 1.0;
+ w[i][2] = v[i][2] + 4.0;
+ w[i][3] = (w[i][0] * w[i][0] + w[i][1] * w[i][1] + w[i][2] * w[i][2]);
+ }
+ bar (w);
+}
+
+int
+main ()
+{
+ int i;
+
+ check_vect ();
+
+ for (i = 0; i < 4096; i++)
+ {
+ v[i][0] = 4.0;
+ v[i][1] = 5.0;
+ v[i][2] = 6.0;
+ }
+ foo ();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/vect/vect-reduc-sad.c b/gcc-4.9/gcc/testsuite/gcc.dg/vect/vect-reduc-sad.c
new file mode 100644
index 000000000..15a625f6a
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/vect/vect-reduc-sad.c
@@ -0,0 +1,54 @@
+/* { dg-require-effective-target vect_usad_char } */
+
+#include <stdarg.h>
+#include "tree-vect.h"
+
+#define N 64
+#define SAD N*N/2
+
+unsigned char X[N] __attribute__ ((__aligned__(__BIGGEST_ALIGNMENT__)));
+unsigned char Y[N] __attribute__ ((__aligned__(__BIGGEST_ALIGNMENT__)));
+
+/* Sum of absolute differences between arrays of unsigned char types.
+ Detected as a sad pattern.
+ Vectorized on targets that support sad for unsigned chars. */
+
+__attribute__ ((noinline)) int
+foo (int len)
+{
+ int i;
+ int result = 0;
+
+ for (i = 0; i < len; i++)
+ result += abs (X[i] - Y[i]);
+
+ return result;
+}
+
+
+int
+main (void)
+{
+ int i;
+ int sad;
+
+ check_vect ();
+
+ for (i = 0; i < N; i++)
+ {
+ X[i] = i;
+ Y[i] = N - i;
+ __asm__ volatile ("");
+ }
+
+ sad = foo (N);
+ if (sad != SAD)
+ abort ();
+
+ return 0;
+}
+
+/* { dg-final { scan-tree-dump-times "vect_recog_sad_pattern: detected" 1 "vect" } } */
+/* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */
+/* { dg-final { cleanup-tree-dump "vect" } } */
+
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/vect/vect-singleton_1.c b/gcc-4.9/gcc/testsuite/gcc.dg/vect/vect-singleton_1.c
new file mode 100644
index 000000000..6c2ff49cd
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/vect/vect-singleton_1.c
@@ -0,0 +1,38 @@
+/* PR target/59843 ICE on function taking/returning vector of one float64_t. */
+
+/* { dg-do compile } */
+/* { dg-options "-Warray-bounds -O2 -fno-inline -std=c99" } */
+
+#define TEST(BASETYPE, VECTYPE, SUFFIX) \
+ typedef BASETYPE VECTYPE \
+ __attribute__ ((__vector_size__ (sizeof (BASETYPE)))); \
+ VECTYPE \
+ test_vadd_##SUFFIX (VECTYPE a, VECTYPE b) \
+ { \
+ return a + b; \
+ } \
+ \
+ void \
+ test_##SUFFIX (BASETYPE val) \
+ { \
+ VECTYPE var = { val }; \
+ BASETYPE v0 = var[0]; \
+ BASETYPE v1 = var[1]; /* { dg-warning "index value is out of bound" } */ \
+ }
+
+TEST (double, float64x1_t, f64)
+
+/* Original bug was for above type;
+ in a nod to completeness, test other types too. */
+
+TEST (long long, int64x1_t, s64)
+
+TEST (float, float32x1_t, f32)
+
+TEST (long, longx1_t, l)
+
+TEST (int, intx1_t, i)
+
+TEST (short, int16x1_t, s16)
+
+TEST (char, int8x1_t, s8)
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/vect/vect.exp b/gcc-4.9/gcc/testsuite/gcc.dg/vect/vect.exp
index fa11e7e5e..e8d866b99 100644
--- a/gcc-4.9/gcc/testsuite/gcc.dg/vect/vect.exp
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/vect/vect.exp
@@ -18,6 +18,7 @@
# Load support procs.
load_lib gcc-dg.exp
+load_lib clearcap.exp
# Set up flags used for tests that don't specify options.
global DEFAULT_VECTCFLAGS
@@ -41,30 +42,9 @@ if ![check_vect_support_and_set_flags] {
# These flags are used for all targets.
lappend DEFAULT_VECTCFLAGS "-ftree-vectorize" "-fno-vect-cost-model" "-fno-common"
-# If the linker used understands -M <mapfile>, pass it to clear hardware
-# capabilities set by the Sun assembler.
-# Try mapfile syntax v2 first which is the only way to clear hwcap_2 flags.
-set clearcap_ldflags "-Wl,-M,$srcdir/gcc.target/i386/clearcapv2.map"
-
-if ![check_no_compiler_messages mapfilev2 executable {
- int main (void) { return 0; }
-} $clearcap_ldflags ] {
- # If this doesn't work, fall back to the less capable v1 syntax.
- set clearcap_ldflags "-Wl,-M,$srcdir/gcc.target/i386/clearcap.map"
-
- if ![check_no_compiler_messages mapfile executable {
- int main (void) { return 0; }
- } $clearcap_ldflags ] {
- unset clearcap_ldflags
- }
-}
-
-if [info exists clearcap_ldflags] {
- lappend DEFAULT_VECTCFLAGS $clearcap_ldflags
-}
-
# Initialize `dg'.
dg-init
+clearcap-init
global VEC_FLAGS
set VEC_FLAGS $DEFAULT_VECTCFLAGS
@@ -308,4 +288,5 @@ dg-runtest [lsort [glob -nocomplain $srcdir/$subdir/no-tree-sra-bb-slp-*.\[cS\]]
set dg-do-what-default ${save-dg-do-what-default}
# All done.
+clearcap-finish
dg-finish
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/wself-assign-1.c b/gcc-4.9/gcc/testsuite/gcc.dg/wself-assign-1.c
new file mode 100644
index 000000000..19324a645
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/wself-assign-1.c
@@ -0,0 +1,27 @@
+/* Test the self-assignemnt detection and warning. */
+/* { dg-do compile } */
+/* { dg-options "-Wself-assign" } */
+
+struct Bar {
+ int b_;
+ int c_;
+};
+
+int g;
+
+int main()
+{
+ struct Bar *bar;
+ int x = x; /* { dg-warning "assigned to itself" } */
+ static int y;
+ struct Bar b_array[5];
+
+ b_array[x+g].b_ = b_array[x+g].b_; /* { dg-warning "assigned to itself" } */
+ g = g; /* { dg-warning "assigned to itself" } */
+ y = y; /* { dg-warning "assigned to itself" } */
+ bar->b_ = bar->b_; /* { dg-warning "assigned to itself" } */
+ x += 0; /* should not warn */
+ y -= 0; /* should not warn */
+ x /= x; /* should not warn */
+ y *= y; /* should not warn */
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.dg/wself-assign-2.c b/gcc-4.9/gcc/testsuite/gcc.dg/wself-assign-2.c
new file mode 100644
index 000000000..d0f69cbaf
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.dg/wself-assign-2.c
@@ -0,0 +1,24 @@
+/* Test how self-assignment detection handles constant-folding happening */
+/* when parsing the RHS or the initializer. */
+/* { dg-do compile } */
+/* { dg-options "-Wself-assign" } */
+
+struct Bar {
+ int b_;
+ float c_;
+};
+
+int g;
+
+int main()
+{
+ struct Bar *bar;
+ int x = x - 0; /* should not warn */
+ static int y;
+ struct Bar b_array[5];
+
+ b_array[x+g].b_ = b_array[x+g].b_ * 1; /* should no warn */
+ g = g + 0; /* should not warn */
+ y = y / 1; /* should not warn */
+ bar->b_ = bar->b_ - 0; /* should not warn */
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.misc-tests/help.exp b/gcc-4.9/gcc/testsuite/gcc.misc-tests/help.exp
index e18912cfb..74f7eeb4a 100644
--- a/gcc-4.9/gcc/testsuite/gcc.misc-tests/help.exp
+++ b/gcc-4.9/gcc/testsuite/gcc.misc-tests/help.exp
@@ -55,7 +55,7 @@ check_for_options c "--help=target,optimizers" "" "" ""
check_for_options c "--help=warnings,^joined,^undocumented" "" "" ""
check_for_options c "-Q -O2 --help=optimizers" {
-O
--ftree-loop-vectorize[^\n]*disabled
+-ftree-loop-vectorize[^\n]*enabled
} " -g " ""
check_for_options c "-Q -O3 --help=optimizers" {
-O
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/aapcs64/type-def.h b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/aapcs64/type-def.h
index a95d06aa2..07e56fff8 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/aapcs64/type-def.h
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/aapcs64/type-def.h
@@ -34,6 +34,13 @@ struct hfa_fx2_t
float b;
};
+struct hfa_fx3_t
+{
+ float a;
+ float b;
+ float c;
+};
+
struct hfa_dx2_t
{
double a;
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/aapcs64/va_arg-13.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/aapcs64/va_arg-13.c
new file mode 100644
index 000000000..ae1e3ec45
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/aapcs64/va_arg-13.c
@@ -0,0 +1,59 @@
+/* Test AAPCS64 layout and __builtin_va_start.
+
+ Pass named HFA/HVA argument on stack. */
+
+/* { dg-do run { target aarch64*-*-* } } */
+
+#ifndef IN_FRAMEWORK
+#define AAPCS64_TEST_STDARG
+#define TESTFILE "va_arg-13.c"
+
+struct float_float_t
+{
+ float a;
+ float b;
+} float_float;
+
+union float_int_t
+{
+ float b8;
+ int b5;
+} float_int;
+
+#define HAS_DATA_INIT_FUNC
+void
+init_data ()
+{
+ float_float.a = 1.2f;
+ float_float.b = 2.2f;
+
+ float_int.b8 = 4983.80f;
+}
+
+#include "abitest.h"
+#else
+ ARG (float, 1.0f, S0, 0)
+ ARG (float, 2.0f, S1, 1)
+ ARG (float, 3.0f, S2, 2)
+ ARG (float, 4.0f, S3, 3)
+ ARG (float, 5.0f, S4, 4)
+ ARG (float, 6.0f, S5, 5)
+ ARG (float, 7.0f, S6, 6)
+ ARG (struct float_float_t, float_float, STACK, 7)
+ ARG (int, 9, W0, 8)
+ ARG (int, 10, W1, 9)
+ ARG (int, 11, W2, 10)
+ ARG (int, 12, W3, 11)
+ ARG (int, 13, W4, 12)
+ ARG (int, 14, W5, 13)
+ ARG (int, 15, W6, LAST_NAMED_ARG_ID)
+ DOTS
+ /* Note on the reason of using 'X7' instead of 'W7' here:
+ Using 'X7' makes sure the test works in the big-endian mode.
+ According to PCS rules B.4 and C.10, the size of float_int is rounded
+ to 8 bytes and prepared in the register X7 as if loaded via LDR from
+ the memory, with the content of the other 4 bytes unspecified. The
+ test framework will only compare the 4 relavent bytes. */
+ ANON (union float_int_t, float_int, X7, 15)
+ LAST_ANON (long long, 12683143434LL, STACK + 8, 16)
+#endif
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/aapcs64/va_arg-14.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/aapcs64/va_arg-14.c
new file mode 100644
index 000000000..91080d5af
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/aapcs64/va_arg-14.c
@@ -0,0 +1,35 @@
+/* Test AAPCS64 layout and __builtin_va_start.
+
+ Pass named HFA/HVA argument on stack. */
+
+/* { dg-do run { target aarch64*-*-* } } */
+
+#ifndef IN_FRAMEWORK
+#define AAPCS64_TEST_STDARG
+#define TESTFILE "va_arg-14.c"
+#include "type-def.h"
+
+struct hfa_fx2_t hfa_fx2 = {1.2f, 2.2f};
+struct hfa_fx3_t hfa_fx3 = {3.2f, 4.2f, 5.2f};
+vf4_t float32x4 = {6.2f, 7.2f, 8.2f, 9.2f};
+vf4_t float32x4_2 = {10.2f, 11.2f, 12.2f, 13.2f};
+
+#include "abitest.h"
+#else
+ ARG (float, 1.0f, S0, 0)
+ ARG (float, 2.0f, S1, 1)
+ ARG (float, 3.0f, S2, 2)
+ ARG (float, 4.0f, S3, 3)
+ ARG (float, 5.0f, S4, 4)
+ ARG (float, 6.0f, S5, 5)
+ ARG (float, 7.0f, S6, 6)
+ ARG (struct hfa_fx3_t, hfa_fx3, STACK, 7)
+ /* Previous argument size has been rounded up to the nearest multiple of
+ 8 bytes. */
+ ARG (struct hfa_fx2_t, hfa_fx2, STACK + 16, 8)
+ /* NSAA is rounded up to the nearest natural alignment of float32x4. */
+ ARG (vf4_t, float32x4, STACK + 32, 9)
+ ARG (vf4_t, float32x4_2, STACK + 48, LAST_NAMED_ARG_ID)
+ DOTS
+ LAST_ANON (double, 123456789.987, STACK + 64, 11)
+#endif
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/aapcs64/va_arg-15.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/aapcs64/va_arg-15.c
new file mode 100644
index 000000000..d8fdb322b
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/aapcs64/va_arg-15.c
@@ -0,0 +1,39 @@
+/* Test AAPCS64 layout and __builtin_va_start.
+
+ Pass named __128int argument on stack. */
+
+/* { dg-do run { target aarch64*-*-* } } */
+
+#ifndef IN_FRAMEWORK
+#define AAPCS64_TEST_STDARG
+#define TESTFILE "va_arg-15.c"
+#include "type-def.h"
+
+union int128_t qword;
+
+#define HAS_DATA_INIT_FUNC
+void
+init_data ()
+{
+ /* Init signed quad-word integer. */
+ qword.l64 = 0xfdb9753102468aceLL;
+ qword.h64 = 0xeca8642013579bdfLL;
+}
+
+#include "abitest.h"
+#else
+ ARG (int, 1, W0, 0)
+ ARG (int, 2, W1, 1)
+ ARG (int, 3, W2, 2)
+ ARG (int, 4, W3, 3)
+ ARG (int, 5, W4, 4)
+ ARG (int, 6, W5, 5)
+ ARG (int, 7, W6, 6)
+ ARG (__int128, qword.i, STACK, LAST_NAMED_ARG_ID)
+ DOTS
+#ifndef __AAPCS64_BIG_ENDIAN__
+ LAST_ANON (int, 8, STACK + 16, 8)
+#else
+ LAST_ANON (int, 8, STACK + 20, 8)
+#endif
+#endif
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/pr61325.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/pr61325.c
new file mode 100644
index 000000000..45ece5344
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/pr61325.c
@@ -0,0 +1,19 @@
+/* { dg-do compile } */
+/* { dg-options "-O2" } */
+typedef unsigned int wchar_t;
+typedef long unsigned int size_t;
+
+size_t
+wcstombs(char *s , const wchar_t *pwcs , size_t n)
+{
+ int count = 0;
+
+ if (n != 0) {
+ do {
+ if ((*s++ = (char) *pwcs++) == 0)
+ break;
+ count++;
+ } while (--n != 0);
+ }
+ return count;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/scalar_intrinsics.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/scalar_intrinsics.c
index aa041cc2c..782f6d194 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/scalar_intrinsics.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/scalar_intrinsics.c
@@ -387,7 +387,7 @@ test_vqdmlalh_s16 (int32x1_t a, int16x1_t b, int16x1_t c)
/* { dg-final { scan-assembler-times "\\tsqdmlal\\ts\[0-9\]+, h\[0-9\]+, v" 1 } } */
int32x1_t
-test_vqdmlalh_lane_s16 (int32x1_t a, int16x1_t b, int16x8_t c)
+test_vqdmlalh_lane_s16 (int32x1_t a, int16x1_t b, int16x4_t c)
{
return vqdmlalh_lane_s16 (a, b, c, 3);
}
@@ -403,7 +403,7 @@ test_vqdmlals_s32 (int64x1_t a, int32x1_t b, int32x1_t c)
/* { dg-final { scan-assembler-times "\\tsqdmlal\\td\[0-9\]+, s\[0-9\]+, v" 1 } } */
int64x1_t
-test_vqdmlals_lane_s32 (int64x1_t a, int32x1_t b, int32x4_t c)
+test_vqdmlals_lane_s32 (int64x1_t a, int32x1_t b, int32x2_t c)
{
return vqdmlals_lane_s32 (a, b, c, 1);
}
@@ -419,7 +419,7 @@ test_vqdmlslh_s16 (int32x1_t a, int16x1_t b, int16x1_t c)
/* { dg-final { scan-assembler-times "\\tsqdmlsl\\ts\[0-9\]+, h\[0-9\]+, v" 1 } } */
int32x1_t
-test_vqdmlslh_lane_s16 (int32x1_t a, int16x1_t b, int16x8_t c)
+test_vqdmlslh_lane_s16 (int32x1_t a, int16x1_t b, int16x4_t c)
{
return vqdmlslh_lane_s16 (a, b, c, 3);
}
@@ -435,7 +435,7 @@ test_vqdmlsls_s32 (int64x1_t a, int32x1_t b, int32x1_t c)
/* { dg-final { scan-assembler-times "\\tsqdmlsl\\td\[0-9\]+, s\[0-9\]+, v" 1 } } */
int64x1_t
-test_vqdmlsls_lane_s32 (int64x1_t a, int32x1_t b, int32x4_t c)
+test_vqdmlsls_lane_s32 (int64x1_t a, int32x1_t b, int32x2_t c)
{
return vqdmlsls_lane_s32 (a, b, c, 1);
}
@@ -451,7 +451,7 @@ test_vqdmulhh_s16 (int16x1_t a, int16x1_t b)
/* { dg-final { scan-assembler-times "\\tsqdmulh\\th\[0-9\]+, h\[0-9\]+, v" 1 } } */
int16x1_t
-test_vqdmulhh_lane_s16 (int16x1_t a, int16x8_t b)
+test_vqdmulhh_lane_s16 (int16x1_t a, int16x4_t b)
{
return vqdmulhh_lane_s16 (a, b, 3);
}
@@ -467,9 +467,9 @@ test_vqdmulhs_s32 (int32x1_t a, int32x1_t b)
/* { dg-final { scan-assembler-times "\\tsqdmulh\\ts\[0-9\]+, s\[0-9\]+, v" 1 } } */
int32x1_t
-test_vqdmulhs_lane_s32 (int32x1_t a, int32x4_t b)
+test_vqdmulhs_lane_s32 (int32x1_t a, int32x2_t b)
{
- return vqdmulhs_lane_s32 (a, b, 3);
+ return vqdmulhs_lane_s32 (a, b, 1);
}
/* { dg-final { scan-assembler-times "\\tsqdmull\\ts\[0-9\]+, h\[0-9\]+, h\[0-9\]+" 1 } } */
@@ -483,7 +483,7 @@ test_vqdmullh_s16 (int16x1_t a, int16x1_t b)
/* { dg-final { scan-assembler-times "\\tsqdmull\\ts\[0-9\]+, h\[0-9\]+, v" 1 } } */
int32x1_t
-test_vqdmullh_lane_s16 (int16x1_t a, int16x8_t b)
+test_vqdmullh_lane_s16 (int16x1_t a, int16x4_t b)
{
return vqdmullh_lane_s16 (a, b, 3);
}
@@ -499,7 +499,7 @@ test_vqdmulls_s32 (int32x1_t a, int32x1_t b)
/* { dg-final { scan-assembler-times "\\tsqdmull\\td\[0-9\]+, s\[0-9\]+, v" 1 } } */
int64x1_t
-test_vqdmulls_lane_s32 (int32x1_t a, int32x4_t b)
+test_vqdmulls_lane_s32 (int32x1_t a, int32x2_t b)
{
return vqdmulls_lane_s32 (a, b, 1);
}
@@ -515,9 +515,9 @@ test_vqrdmulhh_s16 (int16x1_t a, int16x1_t b)
/* { dg-final { scan-assembler-times "\\tsqrdmulh\\th\[0-9\]+, h\[0-9\]+, v" 1 } } */
int16x1_t
-test_vqrdmulhh_lane_s16 (int16x1_t a, int16x8_t b)
+test_vqrdmulhh_lane_s16 (int16x1_t a, int16x4_t b)
{
- return vqrdmulhh_lane_s16 (a, b, 6);
+ return vqrdmulhh_lane_s16 (a, b, 3);
}
/* { dg-final { scan-assembler-times "\\tsqrdmulh\\ts\[0-9\]+, s\[0-9\]+, s\[0-9\]+" 1 } } */
@@ -531,9 +531,9 @@ test_vqrdmulhs_s32 (int32x1_t a, int32x1_t b)
/* { dg-final { scan-assembler-times "\\tsqrdmulh\\ts\[0-9\]+, s\[0-9\]+, v" 1 } } */
int32x1_t
-test_vqrdmulhs_lane_s32 (int32x1_t a, int32x4_t b)
+test_vqrdmulhs_lane_s32 (int32x1_t a, int32x2_t b)
{
- return vqrdmulhs_lane_s32 (a, b, 2);
+ return vqrdmulhs_lane_s32 (a, b, 1);
}
/* { dg-final { scan-assembler-times "\\tsuqadd\\tb\[0-9\]+" 1 } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vector_intrinsics.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vector_intrinsics.c
index affb8a8a1..52b0496c8 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vector_intrinsics.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vector_intrinsics.c
@@ -1,7 +1,7 @@
/* { dg-do compile } */
/* { dg-options "-O2" } */
-#include "../../../config/aarch64/arm_neon.h"
+#include "arm_neon.h"
/* { dg-final { scan-assembler-times "\\tfmax\\tv\[0-9\]+\.2s, v\[0-9\].2s, v\[0-9\].2s" 1 } } */
@@ -305,7 +305,7 @@ test_vqdmlal_high_s16 (int32x4_t __a, int16x8_t __b, int16x8_t __c)
/* { dg-final { scan-assembler-times "\\tsqdmlal2\\tv\[0-9\]+\.4s, v\[0-9\]+\.8h, v\[0-9\]+\.h" 3 } } */
int32x4_t
-test_vqdmlal_high_lane_s16 (int32x4_t a, int16x8_t b, int16x8_t c)
+test_vqdmlal_high_lane_s16 (int32x4_t a, int16x8_t b, int16x4_t c)
{
return vqdmlal_high_lane_s16 (a, b, c, 3);
}
@@ -361,7 +361,7 @@ test_vqdmlal_high_s32 (int64x2_t __a, int32x4_t __b, int32x4_t __c)
/* { dg-final { scan-assembler-times "\\tsqdmlal2\\tv\[0-9\]+\.2d, v\[0-9\]+\.4s, v\[0-9\]+\.s" 3 } } */
int64x2_t
-test_vqdmlal_high_lane_s32 (int64x2_t __a, int32x4_t __b, int32x4_t __c)
+test_vqdmlal_high_lane_s32 (int64x2_t __a, int32x4_t __b, int32x2_t __c)
{
return vqdmlal_high_lane_s32 (__a, __b, __c, 1);
}
@@ -417,7 +417,7 @@ test_vqdmlsl_high_s16 (int32x4_t __a, int16x8_t __b, int16x8_t __c)
/* { dg-final { scan-assembler-times "\\tsqdmlsl2\\tv\[0-9\]+\.4s, v\[0-9\]+\.8h, v\[0-9\]+\.h" 3 } } */
int32x4_t
-test_vqdmlsl_high_lane_s16 (int32x4_t a, int16x8_t b, int16x8_t c)
+test_vqdmlsl_high_lane_s16 (int32x4_t a, int16x8_t b, int16x4_t c)
{
return vqdmlsl_high_lane_s16 (a, b, c, 3);
}
@@ -473,7 +473,7 @@ test_vqdmlsl_high_s32 (int64x2_t __a, int32x4_t __b, int32x4_t __c)
/* { dg-final { scan-assembler-times "\\tsqdmlsl2\\tv\[0-9\]+\.2d, v\[0-9\]+\.4s, v\[0-9\]+\.s" 3 } } */
int64x2_t
-test_vqdmlsl_high_lane_s32 (int64x2_t __a, int32x4_t __b, int32x4_t __c)
+test_vqdmlsl_high_lane_s32 (int64x2_t __a, int32x4_t __b, int32x2_t __c)
{
return vqdmlsl_high_lane_s32 (__a, __b, __c, 1);
}
@@ -529,7 +529,7 @@ test_vqdmull_high_s16 (int16x8_t __a, int16x8_t __b)
/* { dg-final { scan-assembler-times "\\tsqdmull2\\tv\[0-9\]+\.4s, v\[0-9\]+\.8h, v\[0-9\]+\.h" 3 } } */
int32x4_t
-test_vqdmull_high_lane_s16 (int16x8_t a, int16x8_t b)
+test_vqdmull_high_lane_s16 (int16x8_t a, int16x4_t b)
{
return vqdmull_high_lane_s16 (a, b, 3);
}
@@ -585,7 +585,7 @@ test_vqdmull_high_s32 (int32x4_t __a, int32x4_t __b)
/* { dg-final { scan-assembler-times "\\tsqdmull2\\tv\[0-9\]+\.2d, v\[0-9\]+\.4s, v\[0-9\]+\.s" 3 } } */
int64x2_t
-test_vqdmull_high_lane_s32 (int32x4_t __a, int32x4_t __b)
+test_vqdmull_high_lane_s32 (int32x4_t __a, int32x2_t __b)
{
return vqdmull_high_lane_s32 (__a, __b, 1);
}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_high_lane_s16.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_high_lane_s16.c
new file mode 100644
index 000000000..1388c3b61
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_high_lane_s16.c
@@ -0,0 +1,15 @@
+/* Test the vqdmlal_high_lane_s16 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int32x4_t
+t_vqdmlal_high_lane_s16 (int32x4_t a, int16x8_t b, int16x4_t c)
+{
+ return vqdmlal_high_lane_s16 (a, b, c, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmlal2\[ \t\]+\[vV\]\[0-9\]+\.4\[sS\], ?\[vV\]\[0-9\]+\.8\[hH\], ?\[vV\]\[0-9\]+\.\[hH\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_high_lane_s32.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_high_lane_s32.c
new file mode 100644
index 000000000..f90387dba
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_high_lane_s32.c
@@ -0,0 +1,15 @@
+/* Test the vqdmlal_high_lane_s32 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int64x2_t
+t_vqdmlal_high_lane_s32 (int64x2_t a, int32x4_t b, int32x2_t c)
+{
+ return vqdmlal_high_lane_s32 (a, b, c, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmlal2\[ \t\]+\[vV\]\[0-9\]+\.2\[dD\], ?\[vV\]\[0-9\]+\.4\[sS\], ?\[vV\]\[0-9\]+\.\[sS\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_high_laneq_s16.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_high_laneq_s16.c
new file mode 100644
index 000000000..5399ce985
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_high_laneq_s16.c
@@ -0,0 +1,15 @@
+/* Test the vqdmlal_high_laneq_s16 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int32x4_t
+t_vqdmlal_high_laneq_s16 (int32x4_t a, int16x8_t b, int16x8_t c)
+{
+ return vqdmlal_high_laneq_s16 (a, b, c, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmlal2\[ \t\]+\[vV\]\[0-9\]+\.4\[sS\], ?\[vV\]\[0-9\]+\.8\[hH\], ?\[vV\]\[0-9\]+\.\[hH\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_high_laneq_s32.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_high_laneq_s32.c
new file mode 100644
index 000000000..e4b55582e
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_high_laneq_s32.c
@@ -0,0 +1,15 @@
+/* Test the vqdmlal_high_laneq_s32 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int64x2_t
+t_vqdmlal_high_laneq_s32 (int64x2_t a, int32x4_t b, int32x4_t c)
+{
+ return vqdmlal_high_laneq_s32 (a, b, c, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmlal2\[ \t\]+\[vV\]\[0-9\]+\.2\[dD\], ?\[vV\]\[0-9\]+\.4\[sS\], ?\[vV\]\[0-9\]+\.\[sS\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_lane_s16.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_lane_s16.c
new file mode 100644
index 000000000..7e60c8220
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_lane_s16.c
@@ -0,0 +1,15 @@
+/* Test the vqdmlal_lane_s16 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int32x4_t
+t_vqdmlal_lane_s16 (int32x4_t a, int16x4_t b, int16x4_t c)
+{
+ return vqdmlal_lane_s16 (a, b, c, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmlal\[ \t\]+\[vV\]\[0-9\]+\.4\[sS\], ?\[vV\]\[0-9\]+\.4\[hH\], ?\[vV\]\[0-9\]+\.\[hH\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_lane_s32.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_lane_s32.c
new file mode 100644
index 000000000..c0f508dc9
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_lane_s32.c
@@ -0,0 +1,15 @@
+/* Test the vqdmlal_lane_s32 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int64x2_t
+t_vqdmlal_lane_s32 (int64x2_t a, int32x2_t b, int32x2_t c)
+{
+ return vqdmlal_lane_s32 (a, b, c, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmlal\[ \t\]+\[vV\]\[0-9\]+\.2\[dD\], ?\[vV\]\[0-9\]+\.2\[sS\], ?\[vV\]\[0-9\]+\.\[sS\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_laneq_s16.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_laneq_s16.c
new file mode 100644
index 000000000..9bf130435
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_laneq_s16.c
@@ -0,0 +1,15 @@
+/* Test the vqdmlal_laneq_s16 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int32x4_t
+t_vqdmlal_laneq_s16 (int32x4_t a, int16x4_t b, int16x8_t c)
+{
+ return vqdmlal_laneq_s16 (a, b, c, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmlal\[ \t\]+\[vV\]\[0-9\]+\.4\[sS\], ?\[vV\]\[0-9\]+\.4\[hH\], ?\[vV\]\[0-9\]+\.\[hH\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_laneq_s32.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_laneq_s32.c
new file mode 100644
index 000000000..5fd9c56dc
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlal_laneq_s32.c
@@ -0,0 +1,15 @@
+/* Test the vqdmlal_laneq_s32 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int64x2_t
+t_vqdmlal_laneq_s32 (int64x2_t a, int32x2_t b, int32x4_t c)
+{
+ return vqdmlal_laneq_s32 (a, b, c, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmlal\[ \t\]+\[vV\]\[0-9\]+\.2\[dD\], ?\[vV\]\[0-9\]+\.2\[sS\], ?\[vV\]\[0-9\]+\.\[sS\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlalh_lane_s16.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlalh_lane_s16.c
new file mode 100644
index 000000000..83f5af596
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlalh_lane_s16.c
@@ -0,0 +1,15 @@
+/* Test the vqdmlalh_lane_s16 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int32x1_t
+t_vqdmlalh_lane_s16 (int32x1_t a, int16x1_t b, int16x4_t c)
+{
+ return vqdmlalh_lane_s16 (a, b, c, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmlal\[ \t\]+\[sS\]\[0-9\]+, ?\[hH\]\[0-9\]+, ?\[vV\]\[0-9\]+\.\[hH\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlals_lane_s32.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlals_lane_s32.c
new file mode 100644
index 000000000..ef94e95d9
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlals_lane_s32.c
@@ -0,0 +1,15 @@
+/* Test the vqdmlals_lane_s32 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int64x1_t
+t_vqdmlals_lane_s32 (int64x1_t a, int32x1_t b, int32x2_t c)
+{
+ return vqdmlals_lane_s32 (a, b, c, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmlal\[ \t\]+\[dD\]\[0-9\]+, ?\[sS\]\[0-9\]+, ?\[vV\]\[0-9\]+\.\[sS\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_high_lane_s16.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_high_lane_s16.c
new file mode 100644
index 000000000..276a1a2a9
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_high_lane_s16.c
@@ -0,0 +1,15 @@
+/* Test the vqdmlsl_high_lane_s16 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int32x4_t
+t_vqdmlsl_high_lane_s16 (int32x4_t a, int16x8_t b, int16x4_t c)
+{
+ return vqdmlsl_high_lane_s16 (a, b, c, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmlsl2\[ \t\]+\[vV\]\[0-9\]+\.4\[sS\], ?\[vV\]\[0-9\]+\.8\[hH\], ?\[vV\]\[0-9\]+\.\[hH\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_high_lane_s32.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_high_lane_s32.c
new file mode 100644
index 000000000..2ae58ef0b
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_high_lane_s32.c
@@ -0,0 +1,15 @@
+/* Test the vqdmlsl_high_lane_s32 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int64x2_t
+t_vqdmlsl_high_lane_s32 (int64x2_t a, int32x4_t b, int32x2_t c)
+{
+ return vqdmlsl_high_lane_s32 (a, b, c, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmlsl2\[ \t\]+\[vV\]\[0-9\]+\.2\[dD\], ?\[vV\]\[0-9\]+\.4\[sS\], ?\[vV\]\[0-9\]+\.\[sS\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_high_laneq_s16.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_high_laneq_s16.c
new file mode 100644
index 000000000..1db5db4c9
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_high_laneq_s16.c
@@ -0,0 +1,15 @@
+/* Test the vqdmlsl_high_laneq_s16 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int32x4_t
+t_vqdmlsl_high_laneq_s16 (int32x4_t a, int16x8_t b, int16x8_t c)
+{
+ return vqdmlsl_high_laneq_s16 (a, b, c, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmlsl2\[ \t\]+\[vV\]\[0-9\]+\.4\[sS\], ?\[vV\]\[0-9\]+\.8\[hH\], ?\[vV\]\[0-9\]+\.\[hH\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_high_laneq_s32.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_high_laneq_s32.c
new file mode 100644
index 000000000..3a72a7bca
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_high_laneq_s32.c
@@ -0,0 +1,15 @@
+/* Test the vqdmlsl_high_laneq_s32 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int64x2_t
+t_vqdmlsl_high_laneq_s32 (int64x2_t a, int32x4_t b, int32x4_t c)
+{
+ return vqdmlsl_high_laneq_s32 (a, b, c, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmlsl2\[ \t\]+\[vV\]\[0-9\]+\.2\[dD\], ?\[vV\]\[0-9\]+\.4\[sS\], ?\[vV\]\[0-9\]+\.\[sS\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_lane_s16.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_lane_s16.c
new file mode 100644
index 000000000..0535378e4
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_lane_s16.c
@@ -0,0 +1,15 @@
+/* Test the vqdmlsl_lane_s16 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int32x4_t
+t_vqdmlsl_lane_s16 (int32x4_t a, int16x4_t b, int16x4_t c)
+{
+ return vqdmlsl_lane_s16 (a, b, c, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmlsl\[ \t\]+\[vV\]\[0-9\]+\.4\[sS\], ?\[vV\]\[0-9\]+\.4\[hH\], ?\[vV\]\[0-9\]+\.\[hH\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_lane_s32.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_lane_s32.c
new file mode 100644
index 000000000..b52e51e1a
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_lane_s32.c
@@ -0,0 +1,15 @@
+/* Test the vqdmlsl_lane_s32 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int64x2_t
+t_vqdmlsl_lane_s32 (int64x2_t a, int32x2_t b, int32x2_t c)
+{
+ return vqdmlsl_lane_s32 (a, b, c, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmlsl\[ \t\]+\[vV\]\[0-9\]+\.2\[dD\], ?\[vV\]\[0-9\]+\.2\[sS\], ?\[vV\]\[0-9\]+\.\[sS\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_laneq_s32.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_laneq_s32.c
new file mode 100644
index 000000000..7009a35f2
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsl_laneq_s32.c
@@ -0,0 +1,15 @@
+/* Test the vqdmlsl_laneq_s32 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int64x2_t
+t_vqdmlsl_lane_s32 (int64x2_t a, int32x2_t b, int32x4_t c)
+{
+ return vqdmlsl_laneq_s32 (a, b, c, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmlsl\[ \t\]+\[vV\]\[0-9\]+\.2\[dD\], ?\[vV\]\[0-9\]+\.2\[sS\], ?\[vV\]\[0-9\]+\.\[sS\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlslh_lane_s16.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlslh_lane_s16.c
new file mode 100644
index 000000000..056dfbb11
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlslh_lane_s16.c
@@ -0,0 +1,15 @@
+/* Test the vqdmlslh_lane_s16 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int32x1_t
+t_vqdmlslh_lane_s16 (int32x1_t a, int16x1_t b, int16x4_t c)
+{
+ return vqdmlslh_lane_s16 (a, b, c, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmlsl\[ \t\]+\[sS\]\[0-9\]+, ?\[hH\]\[0-9\]+, ?\[vV\]\[0-9\]+\.\[hH\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsls_lane_s32.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsls_lane_s32.c
new file mode 100644
index 000000000..9e351bc36
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmlsls_lane_s32.c
@@ -0,0 +1,15 @@
+/* Test the vqdmlsls_lane_s32 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int64x1_t
+t_vqdmlsls_lane_s32 (int64x1_t a, int32x1_t b, int32x2_t c)
+{
+ return vqdmlsls_lane_s32 (a, b, c, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmlsl\[ \t\]+\[dD\]\[0-9\]+, ?\[sS\]\[0-9\]+, ?\[vV\]\[0-9\]+\.\[sS\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulh_laneq_s16.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulh_laneq_s16.c
new file mode 100644
index 000000000..d3c699bd3
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulh_laneq_s16.c
@@ -0,0 +1,15 @@
+/* Test the vqdmulh_laneq_s16 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int16x4_t
+t_vqdmulh_laneq_s16 (int16x4_t a, int16x8_t b)
+{
+ return vqdmulh_laneq_s16 (a, b, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmulh\[ \t\]+\[vV\]\[0-9\]+\.4\[hH\], ?\[vV\]\[0-9\]+\.4\[hH\], ?\[vV\]\[0-9\]+\.\[hH\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulh_laneq_s32.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulh_laneq_s32.c
new file mode 100644
index 000000000..c6202ce19
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulh_laneq_s32.c
@@ -0,0 +1,15 @@
+/* Test the vqdmulh_laneq_s32 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int32x2_t
+t_vqdmulh_laneq_s32 (int32x2_t a, int32x4_t b)
+{
+ return vqdmulh_laneq_s32 (a, b, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmulh\[ \t\]+\[vV\]\[0-9\]+\.2\[sS\], ?\[vV\]\[0-9\]+\.2\[sS\], ?\[vV\]\[0-9\]+\.\[sS\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulhh_lane_s16.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulhh_lane_s16.c
new file mode 100644
index 000000000..763585100
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulhh_lane_s16.c
@@ -0,0 +1,36 @@
+/* Test the vqdmulhh_lane_s16 AArch64 SIMD intrinsic. */
+
+/* { dg-do run } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+#include <stdio.h>
+
+extern void abort (void);
+
+int
+main (void)
+{
+ int16_t arg1;
+ int16x4_t arg2;
+ int16_t result;
+ int16_t actual;
+ int16_t expected;
+
+ arg1 = -32768;
+ arg2 = vcreate_s16 (0x0000ffff2489e398ULL);
+ actual = vqdmulhh_lane_s16 (arg1, arg2, 2);
+ expected = 1;
+
+ if (expected != actual)
+ {
+ fprintf (stderr, "Expected: %xd, got %xd\n", expected, actual);
+ abort ();
+ }
+
+ return 0;
+}
+
+
+/* { dg-final { scan-assembler-times "sqdmulh\[ \t\]+\[hH\]\[0-9\]+, ?\[hH\]\[0-9\]+, ?\[vV\]\[0-9\]+\.\[hH\]\\\[2\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulhq_laneq_s16.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulhq_laneq_s16.c
new file mode 100644
index 000000000..809c85a77
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulhq_laneq_s16.c
@@ -0,0 +1,15 @@
+/* Test the vqdmulhq_laneq_s16 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int16x8_t
+t_vqdmulhq_laneq_s16 (int16x8_t a, int16x8_t b)
+{
+ return vqdmulhq_laneq_s16 (a, b, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmulh\[ \t\]+\[vV\]\[0-9\]+\.8\[hH\], ?\[vV\]\[0-9\]+\.8\[hH\], ?\[vV\]\[0-9\]+\.\[hH\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulhq_laneq_s32.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulhq_laneq_s32.c
new file mode 100644
index 000000000..d375fe818
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulhq_laneq_s32.c
@@ -0,0 +1,15 @@
+/* Test the vqdmulhq_laneq_s32 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int32x4_t
+t_vqdmulhq_laneq_s32 (int32x4_t a, int32x4_t b)
+{
+ return vqdmulhq_laneq_s32 (a, b, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmulh\[ \t\]+\[vV\]\[0-9\]+\.4\[sS\], ?\[vV\]\[0-9\]+\.4\[sS\], ?\[vV\]\[0-9\]+\.\[sS\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulhs_lane_s32.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulhs_lane_s32.c
new file mode 100644
index 000000000..9c27f5f3a
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulhs_lane_s32.c
@@ -0,0 +1,34 @@
+/* Test the vqdmulhs_lane_s32 AArch64 SIMD intrinsic. */
+
+/* { dg-do run } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+#include <stdio.h>
+
+extern void abort (void);
+
+int
+main (void)
+{
+ int32_t arg1;
+ int32x2_t arg2;
+ int32_t result;
+ int32_t actual;
+ int32_t expected;
+
+ arg1 = 57336;
+ arg2 = vcreate_s32 (0x55897fff7fff0000ULL);
+ actual = vqdmulhs_lane_s32 (arg1, arg2, 0);
+ expected = 57334;
+
+ if (expected != actual)
+ {
+ fprintf (stderr, "Expected: %xd, got %xd\n", expected, actual);
+ abort ();
+ }
+
+ return 0;
+}
+/* { dg-final { scan-assembler-times "sqdmulh\[ \t\]+\[sS\]\[0-9\]+, ?\[sS\]\[0-9\]+, ?\[vV\]\[0-9\]+\.\[sS\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_high_lane_s16.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_high_lane_s16.c
new file mode 100644
index 000000000..0af320e2c
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_high_lane_s16.c
@@ -0,0 +1,15 @@
+/* Test the vqdmull_high_lane_s16 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int32x4_t
+t_vqdmull_high_lane_s16 (int16x8_t a, int16x4_t b)
+{
+ return vqdmull_high_lane_s16 (a, b, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmull2\[ \t\]+\[vV\]\[0-9\]+\.4\[sS\], ?\[vV\]\[0-9\]+\.8\[hH\], ?\[vV\]\[0-9\]+\.\[hH\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_high_lane_s32.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_high_lane_s32.c
new file mode 100644
index 000000000..583e8a172
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_high_lane_s32.c
@@ -0,0 +1,15 @@
+/* Test the vqdmull_high_lane_s32 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int64x2_t
+t_vqdmull_high_lane_s32 (int32x4_t a, int32x2_t b)
+{
+ return vqdmull_high_lane_s32 (a, b, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmull2\[ \t\]+\[vV\]\[0-9\]+\.2\[dD\], ?\[vV\]\[0-9\]+\.4\[sS\], ?\[vV\]\[0-9\]+\.\[sS\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_high_laneq_s16.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_high_laneq_s16.c
new file mode 100644
index 000000000..dcfd14c71
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_high_laneq_s16.c
@@ -0,0 +1,15 @@
+/* Test the vqdmull_high_laneq_s16 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int32x4_t
+t_vqdmull_high_laneq_s16 (int16x8_t a, int16x8_t b)
+{
+ return vqdmull_high_laneq_s16 (a, b, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmull2\[ \t\]+\[vV\]\[0-9\]+\.4\[sS\], ?\[vV\]\[0-9\]+\.8\[hH\], ?\[vV\]\[0-9\]+\.\[hH\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_high_laneq_s32.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_high_laneq_s32.c
new file mode 100644
index 000000000..3e8b652d9
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_high_laneq_s32.c
@@ -0,0 +1,15 @@
+/* Test the vqdmull_high_laneq_s32 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int64x2_t
+t_vqdmull_high_laneq_s32 (int32x4_t a, int32x4_t b)
+{
+ return vqdmull_high_laneq_s32 (a, b, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmull2\[ \t\]+\[vV\]\[0-9\]+\.2\[dD\], ?\[vV\]\[0-9\]+\.4\[sS\], ?\[vV\]\[0-9\]+\.\[sS\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_lane_s16.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_lane_s16.c
new file mode 100644
index 000000000..695d4e3fb
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_lane_s16.c
@@ -0,0 +1,15 @@
+/* Test the vqdmull_lane_s16 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int32x4_t
+t_vqdmull_lane_s16 (int16x4_t a, int16x4_t b)
+{
+ return vqdmull_lane_s16 (a, b, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmull\[ \t\]+\[vV\]\[0-9\]+\.4\[sS\], ?\[vV\]\[0-9\]+\.4\[hH\], ?\[vV\]\[0-9\]+\.\[hH\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_lane_s32.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_lane_s32.c
new file mode 100644
index 000000000..e6a02b573
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_lane_s32.c
@@ -0,0 +1,15 @@
+/* Test the vqdmull_lane_s32 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int64x2_t
+t_vqdmull_lane_s32 (int32x2_t a, int32x2_t b)
+{
+ return vqdmull_lane_s32 (a, b, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmull\[ \t\]+\[vV\]\[0-9\]+\.2\[dD\], ?\[vV\]\[0-9\]+\.2\[sS\], ?\[vV\]\[0-9\]+\.\[sS\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_laneq_s16.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_laneq_s16.c
new file mode 100644
index 000000000..ba761b231
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_laneq_s16.c
@@ -0,0 +1,15 @@
+/* Test the vqdmull_laneq_s16 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int32x4_t
+t_vqdmull_laneq_s16 (int16x4_t a, int16x8_t b)
+{
+ return vqdmull_laneq_s16 (a, b, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmull\[ \t\]+\[vV\]\[0-9\]+\.4\[sS\], ?\[vV\]\[0-9\]+\.4\[hH\], ?\[vV\]\[0-9\]+\.\[hH\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_laneq_s32.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_laneq_s32.c
new file mode 100644
index 000000000..82b8e19ed
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmull_laneq_s32.c
@@ -0,0 +1,15 @@
+/* Test the vqdmull_laneq_s32 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int64x2_t
+t_vqdmull_laneq_s32 (int32x2_t a, int32x4_t b)
+{
+ return vqdmull_laneq_s32 (a, b, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmull\[ \t\]+\[vV\]\[0-9\]+\.2\[dD\], ?\[vV\]\[0-9\]+\.2\[sS\], ?\[vV\]\[0-9\]+\.\[sS\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmullh_lane_s16.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmullh_lane_s16.c
new file mode 100644
index 000000000..fd271e0b3
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmullh_lane_s16.c
@@ -0,0 +1,15 @@
+/* Test the vqdmullh_lane_s16 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int32x1_t
+t_vqdmullh_lane_s16 (int16x1_t a, int16x4_t b)
+{
+ return vqdmullh_lane_s16 (a, b, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmull\[ \t\]+\[sS\]\[0-9\]+, ?\[hH\]\[0-9\]+, ?\[vV\]\[0-9\]+\.\[hH\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulls_lane_s32.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulls_lane_s32.c
new file mode 100644
index 000000000..110333375
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqdmulls_lane_s32.c
@@ -0,0 +1,15 @@
+/* Test the vqdmulls_lane_s32 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int64x1_t
+t_vqdmulls_lane_s32 (int32x1_t a, int32x2_t b)
+{
+ return vqdmulls_lane_s32 (a, b, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqdmull\[ \t\]+\[dD\]\[0-9\]+, ?\[sS\]\[0-9\]+, ?\[vV\]\[0-9\]+\.\[sS\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulh_laneq_s16.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulh_laneq_s16.c
new file mode 100644
index 000000000..0313f1c07
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulh_laneq_s16.c
@@ -0,0 +1,15 @@
+/* Test the vqrdmulh_laneq_s16 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int16x4_t
+t_vqrdmulh_laneq_s16 (int16x4_t a, int16x8_t b)
+{
+ return vqrdmulh_laneq_s16 (a, b, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqrdmulh\[ \t\]+\[vV\]\[0-9\]+\.4\[hH\], ?\[vV\]\[0-9\]+\.4\[hH\], ?\[vV\]\[0-9\]+\.\[hH\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulh_laneq_s32.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulh_laneq_s32.c
new file mode 100644
index 000000000..a9124ee10
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulh_laneq_s32.c
@@ -0,0 +1,15 @@
+/* Test the vqrdmulh_laneq_s32 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int32x2_t
+t_vqrdmulh_laneq_s32 (int32x2_t a, int32x4_t b)
+{
+ return vqrdmulh_laneq_s32 (a, b, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqrdmulh\[ \t\]+\[vV\]\[0-9\]+\.2\[sS\], ?\[vV\]\[0-9\]+\.2\[sS\], ?\[vV\]\[0-9\]+\.\[sS\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulhh_lane_s16.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulhh_lane_s16.c
new file mode 100644
index 000000000..f21863ab4
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulhh_lane_s16.c
@@ -0,0 +1,35 @@
+/* Test the vqrdmulhh_lane_s16 AArch64 SIMD intrinsic. */
+
+/* { dg-do run } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+#include <stdio.h>
+
+extern void abort (void);
+
+int
+main (void)
+{
+ int16_t arg1;
+ int16x4_t arg2;
+ int16_t result;
+ int16_t actual;
+ int16_t expected;
+
+ arg1 = -32768;
+ arg2 = vcreate_s16 (0xd78e000005d78000ULL);
+ actual = vqrdmulhh_lane_s16 (arg1, arg2, 3);
+ expected = 10354;
+
+ if (expected != actual)
+ {
+ fprintf (stderr, "Expected: %xd, got %xd\n", expected, actual);
+ abort ();
+ }
+
+ return 0;
+}
+
+/* { dg-final { scan-assembler-times "sqrdmulh\[ \t\]+\[hH\]\[0-9\]+, ?\[hH\]\[0-9\]+, ?\[vV\]\[0-9\]+\.\[hH\]\\\[3\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulhq_laneq_s16.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulhq_laneq_s16.c
new file mode 100644
index 000000000..488e694ab
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulhq_laneq_s16.c
@@ -0,0 +1,15 @@
+/* Test the vqrdmulhq_laneq_s16 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int16x8_t
+t_vqrdmulhq_laneq_s16 (int16x8_t a, int16x8_t b)
+{
+ return vqrdmulhq_laneq_s16 (a, b, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqrdmulh\[ \t\]+\[vV\]\[0-9\]+\.8\[hH\], ?\[vV\]\[0-9\]+\.8\[hH\], ?\[vV\]\[0-9\]+\.\[hH\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulhq_laneq_s32.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulhq_laneq_s32.c
new file mode 100644
index 000000000..42519f615
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulhq_laneq_s32.c
@@ -0,0 +1,15 @@
+/* Test the vqrdmulhq_laneq_s32 AArch64 SIMD intrinsic. */
+
+/* { dg-do compile } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+
+int32x4_t
+t_vqrdmulhq_laneq_s32 (int32x4_t a, int32x4_t b)
+{
+ return vqrdmulhq_laneq_s32 (a, b, 0);
+}
+
+/* { dg-final { scan-assembler-times "sqrdmulh\[ \t\]+\[vV\]\[0-9\]+\.4\[sS\], ?\[vV\]\[0-9\]+\.4\[sS\], ?\[vV\]\[0-9\]+\.\[sS\]\\\[0\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulhs_lane_s32.c b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulhs_lane_s32.c
new file mode 100644
index 000000000..83d2ba28e
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/aarch64/vqrdmulhs_lane_s32.c
@@ -0,0 +1,35 @@
+/* Test the vqrdmulhs_lane_s32 AArch64 SIMD intrinsic. */
+
+/* { dg-do run } */
+/* { dg-options "-save-temps -O3 -fno-inline" } */
+
+#include "arm_neon.h"
+#include <stdio.h>
+
+extern void abort (void);
+
+int
+main (void)
+{
+ int32_t arg1;
+ int32x2_t arg2;
+ int32_t result;
+ int32_t actual;
+ int32_t expected;
+
+ arg1 = -2099281921;
+ arg2 = vcreate_s32 (0x000080007fff0000ULL);
+ actual = vqrdmulhs_lane_s32 (arg1, arg2, 1);
+ expected = -32033;
+
+ if (expected != actual)
+ {
+ fprintf (stderr, "Expected: %xd, got %xd\n", expected, actual);
+ abort ();
+ }
+
+ return 0;
+}
+
+/* { dg-final { scan-assembler-times "sqrdmulh\[ \t\]+\[sS\]\[0-9\]+, ?\[sS\]\[0-9\]+, ?\[vV\]\[0-9\]+\.\[sS\]\\\[1\\\]\n" 1 } } */
+/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/alpha/pr61586.c b/gcc-4.9/gcc/testsuite/gcc.target/alpha/pr61586.c
new file mode 100644
index 000000000..afb1af359
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/alpha/pr61586.c
@@ -0,0 +1,10 @@
+/* { dg-do compile } */
+/* { dg-options "-O2 -mieee" } */
+
+void foo (int *dimensions, double **params, int hh)
+{
+ if (params[hh])
+ ;
+ else if (dimensions[hh] > 0)
+ params[hh][0] = 1.0f;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/arm/pr48252.c b/gcc-4.9/gcc/testsuite/gcc.target/arm/pr48252.c
index 17f729bb3..250d5e4d6 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/arm/pr48252.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/arm/pr48252.c
@@ -15,7 +15,6 @@ int main(void)
uint8x8x2_t vd1, vd2;
union {uint8x8_t v; uint8_t buf[8];} d1, d2, d3, d4;
int i;
- uint8_t odd, even;
vd1 = vzip_u8(v1, vdup_n_u8(0));
vd2 = vzip_u8(v2, vdup_n_u8(0));
@@ -25,17 +24,9 @@ int main(void)
vst1_u8(d3.buf, vd2.val[0]);
vst1_u8(d4.buf, vd2.val[1]);
-#ifdef __ARMEL__
- odd = 1;
- even = 0;
-#else
- odd = 0;
- even = 1;
-#endif
-
for (i = 0; i < 8; i++)
- if ((i % 2 == even && d4.buf[i] != 2)
- || (i % 2 == odd && d4.buf[i] != 0))
+ if ((i % 2 == 0 && d4.buf[i] != 2)
+ || (i % 2 == 1 && d4.buf[i] != 0))
abort ();
return 0;
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/avr/pr60991.c b/gcc-4.9/gcc/testsuite/gcc.target/avr/pr60991.c
new file mode 100644
index 000000000..a09f42a62
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/avr/pr60991.c
@@ -0,0 +1,21 @@
+/* { dg-do run } */
+/* { dg-options "-O1" } */
+
+/* This testcase (simplified from the original bug report) exposes
+ PR60991. The code generated for writing the __int24 value corrupts
+ the frame pointer if the offset is <= 63 + MAX_LD_OFFSET */
+
+#include <stdlib.h>
+
+int main(void)
+{
+ volatile char junk[62];
+ junk[0] = 5;
+ volatile __int24 staticConfig = 0;
+
+ if (junk[0] != 5)
+ abort();
+
+ exit(0);
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/avr/torture/pr61055.c b/gcc-4.9/gcc/testsuite/gcc.target/avr/torture/pr61055.c
new file mode 100644
index 000000000..9dd1f427d
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/avr/torture/pr61055.c
@@ -0,0 +1,88 @@
+/* { dg-do run } */
+/* { dg-options { -fno-peephole2 } } */
+
+#include <stdlib.h>
+
+typedef __UINT16_TYPE__ uint16_t;
+typedef __INT16_TYPE__ int16_t;
+typedef __UINT8_TYPE__ uint8_t;
+
+uint8_t __attribute__((noinline,noclone))
+fun_inc (uint8_t c0)
+{
+ register uint8_t c asm ("r15") = c0;
+
+ /* Force target value into R15 (lower register) */
+ asm ("" : "+l" (c));
+
+ c++;
+ if (c >= 0x80)
+ c = 0;
+
+ asm ("" : "+l" (c));
+
+ return c;
+}
+
+uint8_t __attribute__((noinline,noclone))
+fun_dec (uint8_t c0)
+{
+ register uint8_t c asm ("r15") = c0;
+
+ /* Force target value into R15 (lower register) */
+ asm ("" : "+l" (c));
+
+ c--;
+ if (c < 0x80)
+ c = 0;
+
+ asm ("" : "+l" (c));
+
+ return c;
+}
+
+
+uint8_t __attribute__((noinline,noclone))
+fun_neg (uint8_t c0)
+{
+ register uint8_t c asm ("r15") = c0;
+
+ c = -c;
+ if (c >= 0x80)
+ c = 0;
+
+ return c;
+}
+
+uint16_t __attribute__((noinline,noclone))
+fun_adiw (uint16_t c0)
+{
+ register uint16_t c asm ("r24") = c0;
+
+ /* Force target value into R24 (for ADIW) */
+ asm ("" : "+r" (c));
+
+ c += 2;
+ if (c >= 0x8000)
+ c = 0;
+
+ asm ("" : "+r" (c));
+
+ return c;
+}
+
+
+int main()
+{
+ if (fun_inc (0x7f) != 0)
+ abort();
+
+ if (fun_neg (0x80) != 0)
+ abort();
+
+ if (fun_adiw (0x7ffe) != 0)
+ abort();
+
+ exit (0);
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/avr/torture/pr61443.c b/gcc-4.9/gcc/testsuite/gcc.target/avr/torture/pr61443.c
new file mode 100644
index 000000000..12c6bca66
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/avr/torture/pr61443.c
@@ -0,0 +1,134 @@
+/* { dg-do run } */
+/* { dg-options "-std=gnu99" } */
+
+#include <stdlib.h>
+#include <stdarg.h>
+
+#define NC __attribute__((noinline,noclone))
+
+void NC vfun (char n, ...)
+{
+ va_list ap;
+
+ va_start (ap, n);
+
+ switch (n)
+ {
+ default:
+ abort();
+ case 1:
+ if (11 != va_arg (ap, int))
+ abort();
+ break;
+ case 2:
+ if (2222 != va_arg (ap, int))
+ abort();
+ break;
+ case 3:
+ if (333333 != va_arg (ap, __int24))
+ abort();
+ break;
+ case 4:
+ if (44444444 != va_arg (ap, long))
+ abort();
+ break;
+ case 8:
+ if (8888888888888888 != va_arg (ap, long long))
+ abort();
+ break;
+ }
+
+ va_end (ap);
+}
+
+
+void NC boo_qi (const __flash char *p)
+{
+ vfun (1, *p);
+}
+
+void NC boox_qi (const __memx char *p)
+{
+ vfun (1, *p);
+}
+
+void NC boo_hi (const __flash int *p)
+{
+ vfun (2, *p);
+}
+
+void NC boox_hi (const __memx int *p)
+{
+ vfun (2, *p);
+}
+
+void NC boo_psi (const __flash __int24 *p)
+{
+ vfun (3, *p);
+}
+
+void NC boox_psi (const __memx __int24 *p)
+{
+ vfun (3, *p);
+}
+
+void NC boo_si (const __flash long *p)
+{
+ vfun (4, *p);
+}
+
+void NC boox_si (const __memx long *p)
+{
+ vfun (4, *p);
+}
+
+void NC boo_di (const __flash long long *p)
+{
+ vfun (8, *p);
+}
+
+void NC boox_di (const __memx long long *p)
+{
+ vfun (8, *p);
+}
+
+const __flash char f_qi = 11;
+const __flash int f_hi = 2222;
+const __flash __int24 f_psi = 333333;
+const __flash long f_si = 44444444;
+const __flash long long f_di = 8888888888888888;
+
+const __memx char x_qi = 11;
+const __memx int x_hi = 2222;
+const __memx __int24 x_psi = 333333;
+const __memx long x_si = 44444444;
+const __memx long long x_di = 8888888888888888;
+
+char r_qi = 11;
+int r_hi = 2222;
+__int24 r_psi = 333333;
+long r_si = 44444444;
+long long r_di = 8888888888888888;
+
+int main (void)
+{
+ boo_qi (&f_qi);
+ boo_hi (&f_hi);
+ boo_psi (&f_psi);
+ boo_si (&f_si);
+ boo_di (&f_di);
+
+ boox_qi (&x_qi);
+ boox_hi (&x_hi);
+ boox_psi (&x_psi);
+ boox_si (&x_si);
+ boox_di (&x_di);
+
+ boox_qi (&r_qi);
+ boox_hi (&r_hi);
+ boox_psi (&r_psi);
+ boox_si (&r_si);
+ boox_di (&r_di);
+
+ exit (0);
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/avx-pr57233.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/avx-pr57233.c
new file mode 100644
index 000000000..ffc71d908
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/avx-pr57233.c
@@ -0,0 +1,16 @@
+/* PR tree-optimization/57233 */
+/* { dg-do run { target avx } } */
+/* { dg-options "-O2 -mavx" } */
+
+#include "avx-check.h"
+
+static void
+avx_test (void)
+{
+ do_main ();
+}
+
+#undef main
+#define main() do_main ()
+
+#include "../../gcc.dg/pr57233.c"
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-pr57233.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-pr57233.c
new file mode 100644
index 000000000..3fb2608ab
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-pr57233.c
@@ -0,0 +1,16 @@
+/* PR tree-optimization/57233 */
+/* { dg-do run { target avx2 } } */
+/* { dg-options "-O2 -mavx2" } */
+
+#include "avx2-check.h"
+
+static void
+avx2_test (void)
+{
+ do_main ();
+}
+
+#undef main
+#define main() do_main ()
+
+#include "../../gcc.dg/pr57233.c"
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpaddb-3.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpaddb-3.c
index ee1f31356..4b249c3fb 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpaddb-3.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpaddb-3.c
@@ -8,5 +8,5 @@
#include "avx2-vpop-check.h"
-/* { dg-final { scan-assembler-times "vpaddb\[ \\t\]+\[^\n\]*%ymm\[0-9\]" 1 } } */
+/* { dg-final { scan-assembler "vpaddb\[ \\t\]+\[^\n\]*%ymm\[0-9\]" } } */
/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpaddw-3.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpaddw-3.c
index 7e7e018c1..889bd9f37 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpaddw-3.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpaddw-3.c
@@ -8,5 +8,5 @@
#include "avx2-vpop-check.h"
-/* { dg-final { scan-assembler-times "vpaddw\[ \\t\]+\[^\n\]*%ymm\[0-9\]" 1 } } */
+/* { dg-final { scan-assembler "vpaddw\[ \\t\]+\[^\n\]*%ymm\[0-9\]" } } */
/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpmullw-3.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpmullw-3.c
index 4d61d7a9f..c54084301 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpmullw-3.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpmullw-3.c
@@ -8,5 +8,5 @@
#include "avx2-vpop-check.h"
-/* { dg-final { scan-assembler-times "vpmullw\[ \\t\]+\[^\n\]*%ymm\[0-9\]" 1 } } */
+/* { dg-final { scan-assembler "vpmullw\[ \\t\]+\[^\n\]*%ymm\[0-9\]" } } */
/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpsraw-3.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpsraw-3.c
index 70bd5cd6b..e360fde0f 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpsraw-3.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpsraw-3.c
@@ -8,5 +8,5 @@
#include "avx2-vpop-check.h"
-/* { dg-final { scan-assembler-times "vpsraw\[ \\t\]+\[^\n\]*%ymm\[0-9\]" 1 } } */
+/* { dg-final { scan-assembler "vpsraw\[ \\t\]+\[^\n\]*%ymm\[0-9\]" } } */
/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpsrlw-3.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpsrlw-3.c
index 691e02f3f..761ad8a24 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpsrlw-3.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpsrlw-3.c
@@ -8,5 +8,5 @@
#include "avx2-vpop-check.h"
-/* { dg-final { scan-assembler-times "vpsrlw\[ \\t\]+\[^\n\]*%ymm\[0-9\]" 1 } } */
+/* { dg-final { scan-assembler "vpsrlw\[ \\t\]+\[^\n\]*%ymm\[0-9\]" } } */
/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpsubb-3.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpsubb-3.c
index 45527f524..c4eeff9d5 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpsubb-3.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpsubb-3.c
@@ -8,5 +8,5 @@
#include "avx2-vpop-check.h"
-/* { dg-final { scan-assembler-times "vpsubb\[ \\t\]+\[^\n\]*%ymm\[0-9\]" 1 } } */
+/* { dg-final { scan-assembler "vpsubb\[ \\t\]+\[^\n\]*%ymm\[0-9\]" } } */
/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpsubw-3.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpsubw-3.c
index 404c2eea9..dc0d937d6 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpsubw-3.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/avx2-vpsubw-3.c
@@ -8,5 +8,5 @@
#include "avx2-vpop-check.h"
-/* { dg-final { scan-assembler-times "vpsubw\[ \\t\]+\[^\n\]*%ymm\[0-9\]" 1 } } */
+/* { dg-final { scan-assembler "vpsubw\[ \\t\]+\[^\n\]*%ymm\[0-9\]" } } */
/* { dg-final { cleanup-saved-temps } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/avx512f-pr57233.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/avx512f-pr57233.c
new file mode 100644
index 000000000..2f1c23a15
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/avx512f-pr57233.c
@@ -0,0 +1,16 @@
+/* PR tree-optimization/57233 */
+/* { dg-do run { target avx512f } } */
+/* { dg-options "-O2 -mavx512f" } */
+
+#include "avx512f-check.h"
+
+static void
+avx512f_test (void)
+{
+ do_main ();
+}
+
+#undef main
+#define main() do_main ()
+
+#include "../../gcc.dg/pr57233.c"
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-andn-1a.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-andn-1a.c
index a7ee07653..6a0fe15c8 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-andn-1a.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-andn-1a.c
@@ -1,5 +1,5 @@
/* { dg-do compile { target { ! ia32 } } } */
-/* { dg-options "-O2 -mbmi -fno-inline -dp" } */
+/* { dg-options "-O2 -mbmi -fno-inline -dp --param max-default-completely-peeled-insns=0" } */
#include "bmi-andn-1.c"
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-andn-2a.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-andn-2a.c
index 72fe02639..c7a895cdc 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-andn-2a.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-andn-2a.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -mbmi -fno-inline -dp" } */
+/* { dg-options "-O2 -mbmi -fno-inline -dp --param max-default-completely-peeled-insns=0" } */
#include "bmi-andn-2.c"
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-bextr-1a.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-bextr-1a.c
index 4ccfbdc98..8dbf1eb72 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-bextr-1a.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-bextr-1a.c
@@ -3,4 +3,4 @@
#include "bmi-bextr-1.c"
-/* { dg-final { scan-assembler-times "bmi_bextr_di" 1 } } */
+/* { dg-final { scan-assembler "bmi_bextr_di" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-bextr-2a.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-bextr-2a.c
index 282a3e400..da476106d 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-bextr-2a.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-bextr-2a.c
@@ -3,4 +3,4 @@
#include "bmi-bextr-2.c"
-/* { dg-final { scan-assembler-times "bmi_bextr_si" 1 } } */
+/* { dg-final { scan-assembler "bmi_bextr_si" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsi-1a.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsi-1a.c
index e9e0ecb67..ab5257143 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsi-1a.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsi-1a.c
@@ -1,5 +1,5 @@
/* { dg-do compile { target { ! ia32 } } } */
-/* { dg-options "-O2 -mbmi -fno-inline -dp" } */
+/* { dg-options "-O2 -mbmi -fno-inline -dp --param max-default-completely-peeled-insns=0" } */
#include "bmi-blsi-1.c"
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsi-2a.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsi-2a.c
index be9ca3f63..ccca576f6 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsi-2a.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsi-2a.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -mbmi -fno-inline -dp" } */
+/* { dg-options "-O2 -mbmi -fno-inline -dp --param max-default-completely-peeled-insns=0" } */
#include "bmi-blsi-2.c"
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsmsk-1a.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsmsk-1a.c
index 4e6cb7b36..c75f33c48 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsmsk-1a.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsmsk-1a.c
@@ -1,5 +1,5 @@
/* { dg-do compile { target { ! ia32 } } } */
-/* { dg-options "-O2 -mbmi -fno-inline -dp" } */
+/* { dg-options "-O2 -mbmi -fno-inline -dp --param max-default-completely-peeled-insns=0" } */
#include "bmi-blsmsk-1.c"
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsmsk-2a.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsmsk-2a.c
index f6f6babff..7d3597d39 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsmsk-2a.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsmsk-2a.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -mbmi -fno-inline -dp" } */
+/* { dg-options "-O2 -mbmi -fno-inline -dp --param max-default-completely-peeled-insns=0" } */
#include "bmi-blsmsk-2.c"
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsr-1a.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsr-1a.c
index 79241ca8f..736997dd8 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsr-1a.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsr-1a.c
@@ -1,5 +1,5 @@
/* { dg-do compile { target { ! ia32 } } } */
-/* { dg-options "-O2 -mbmi -fno-inline -dp" } */
+/* { dg-options "-O2 -mbmi -fno-inline -dp --param max-default-completely-peeled-insns=0" } */
#include "bmi-blsr-1.c"
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsr-2a.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsr-2a.c
index d88c16e4d..6f6b67fd6 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsr-2a.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-blsr-2a.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -mbmi -fno-inline -dp" } */
+/* { dg-options "-O2 -mbmi -fno-inline -dp --param max-default-completely-peeled-insns=0" } */
#include "bmi-blsr-2.c"
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-tzcnt-1a.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-tzcnt-1a.c
index e283c3154..cd469a791 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-tzcnt-1a.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-tzcnt-1a.c
@@ -1,5 +1,5 @@
/* { dg-do compile { target { ! ia32 } } } */
-/* { dg-options "-O2 -mbmi -fno-inline" } */
+/* { dg-options "-O2 -mbmi -fno-inline --param max-default-completely-peeled-insns=0" } */
#include "bmi-tzcnt-1.c"
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-tzcnt-2a.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-tzcnt-2a.c
index 2cdb3f443..b60a5a15b 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-tzcnt-2a.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi-tzcnt-2a.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -mbmi -fno-inline" } */
+/* { dg-options "-O2 -mbmi -fno-inline --param max-default-completely-peeled-insns=0" } */
#include "bmi-tzcnt-2.c"
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-bzhi32-1a.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-bzhi32-1a.c
index 05be7a837..64be3bafa 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-bzhi32-1a.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-bzhi32-1a.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-mbmi2 -O2 -dp" } */
+/* { dg-options "-mbmi2 -O2 -dp --param max-default-completely-peeled-insns=0" } */
#include "bmi2-bzhi32-1.c"
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-bzhi64-1a.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-bzhi64-1a.c
index dc4a94cc3..08fee200e 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-bzhi64-1a.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-bzhi64-1a.c
@@ -1,5 +1,5 @@
/* { dg-do compile { target { ! ia32 } } } */
-/* { dg-options "-mbmi2 -O2 -dp" } */
+/* { dg-options "-mbmi2 -O2 -dp --param max-default-completely-peeled-insns=0" } */
#include "bmi2-bzhi64-1.c"
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-pdep32-1a.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-pdep32-1a.c
index 87888fcff..7e528985e 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-pdep32-1a.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-pdep32-1a.c
@@ -3,4 +3,4 @@
#include "bmi2-pdep32-1.c"
-/* { dg-final { scan-assembler-times "bmi2_pdep_si3" 1 } } */
+/* { dg-final { scan-assembler "bmi2_pdep_si3" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-pdep64-1a.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-pdep64-1a.c
index 8163c4062..24238ca21 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-pdep64-1a.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-pdep64-1a.c
@@ -3,4 +3,4 @@
#include "bmi2-pdep64-1.c"
-/* { dg-final { scan-assembler-times "bmi2_pdep_di3" 1 } } */
+/* { dg-final { scan-assembler "bmi2_pdep_di3" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-pext32-1a.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-pext32-1a.c
index c4a6deeca..5d908b37d 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-pext32-1a.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-pext32-1a.c
@@ -3,4 +3,4 @@
#include "bmi2-pext32-1.c"
-/* { dg-final { scan-assembler-times "bmi2_pext_si3" 1 } } */
+/* { dg-final { scan-assembler "bmi2_pext_si3" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-pext64-1a.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-pext64-1a.c
index aaf06c1f2..c4fb99c85 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-pext64-1a.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/bmi2-pext64-1a.c
@@ -3,4 +3,4 @@
#include "bmi2-pext64-1.c"
-/* { dg-final { scan-assembler-times "bmi2_pext_di3" 1 } } */
+/* { dg-final { scan-assembler "bmi2_pext_di3" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/cadd.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/cadd.c
index 7a39c67ed..32036e1a5 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/cadd.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/cadd.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -march=k8" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -march=k8" } */
/* { dg-final { scan-assembler "sbb" } } */
extern void abort (void);
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/clearcap.map b/gcc-4.9/gcc/testsuite/gcc.target/i386/clearcap.map
deleted file mode 100644
index 147f922d1..000000000
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/clearcap.map
+++ /dev/null
@@ -1,3 +0,0 @@
-# clear all hardware capabilities emitted by Sun as: the tests here
-# guard against execution at runtime
-hwcap_1 = V0x0 OVERRIDE;
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/clearcapv2.map b/gcc-4.9/gcc/testsuite/gcc.target/i386/clearcapv2.map
deleted file mode 100644
index 95cb14cc5..000000000
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/clearcapv2.map
+++ /dev/null
@@ -1,7 +0,0 @@
-# clear all hardware capabilities emitted by Sun as: the tests here
-# guard against execution at runtime
-# uses mapfile v2 syntax which is the only way to clear AT_SUN_CAP_HW2 flags
-$mapfile_version 2
-CAPABILITY {
- HW = ;
-};
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/i386.exp b/gcc-4.9/gcc/testsuite/gcc.target/i386/i386.exp
index 080e302b7..d9b36cd30 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/i386.exp
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/i386.exp
@@ -23,6 +23,7 @@ if { ![istarget i?86*-*-*] && ![istarget x86_64-*-*] } then {
# Load support procs.
load_lib gcc-dg.exp
+load_lib clearcap.exp
# Return 1 if attribute ms_hook_prologue is supported.
proc check_effective_target_ms_hook_prologue { } {
@@ -307,39 +308,6 @@ proc check_effective_target_sha { } {
} "-O2 -msha" ]
}
-# If the linker used understands -M <mapfile>, pass it to clear hardware
-# capabilities set by the Sun assembler.
-# Try mapfile syntax v2 first which is the only way to clear hwcap_2 flags.
-set clearcap_ldflags "-Wl,-M,$srcdir/$subdir/clearcapv2.map"
-
-if ![check_no_compiler_messages mapfilev2 executable {
- int main (void) { return 0; }
-} $clearcap_ldflags ] {
- # If this doesn't work, fall back to the less capable v1 syntax.
- set clearcap_ldflags "-Wl,-M,$srcdir/$subdir/clearcap.map"
-
- if ![check_no_compiler_messages mapfile executable {
- int main (void) { return 0; }
- } $clearcap_ldflags ] {
- unset clearcap_ldflags
- }
-}
-
-if [info exists clearcap_ldflags] {
- if { [info procs gcc_target_compile] != [list] \
- && [info procs saved_gcc_target_compile] == [list] } {
- rename gcc_target_compile saved_gcc_target_compile
-
- proc gcc_target_compile { source dest type options } {
- global clearcap_ldflags
- # Always pass -Wl,-M,<mapfile>, but don't let it show up in gcc.sum.
- lappend options "additional_flags=$clearcap_ldflags"
-
- return [saved_gcc_target_compile $source $dest $type $options]
- }
- }
-}
-
# If a testcase doesn't have special options, use these.
global DEFAULT_CFLAGS
if ![info exists DEFAULT_CFLAGS] then {
@@ -348,6 +316,7 @@ if ![info exists DEFAULT_CFLAGS] then {
# Initialize `dg'.
dg-init
+clearcap-init
# Special case compilation of vect-args.c so we don't have to
# replicate it 10 times.
@@ -367,4 +336,5 @@ set tests [prune $tests $srcdir/$subdir/vect-args.c]
dg-runtest $tests "" $DEFAULT_CFLAGS
# All done.
+clearcap-finish
dg-finish
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-1.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-1.c
new file mode 100644
index 000000000..aa1f424c8
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-1.c
@@ -0,0 +1,23 @@
+/* Verify -mpatch-functions-for-instrumentation works. */
+/* { dg-do compile } */
+/* { dg-require-effective-target lp64 } */
+/* { dg-options "-mpatch-functions-for-instrumentation" } */
+
+/* Check nop-bytes at beginning. */
+/* { dg-final { scan-assembler ".byte\t0xeb,0x09(.*).byte\t0x90" } } */
+/* Check nop-bytes at end. */
+/* { dg-final { scan-assembler "ret(.*).byte\t0x90(.*).byte\t0x90" } } */
+
+__attribute__ ((noinline))
+void foo()
+{
+ /* Dummy loop. */
+ int x = 0;
+ while (++x);
+}
+
+int main()
+{
+ foo();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-2.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-2.c
new file mode 100644
index 000000000..78de86763
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-2.c
@@ -0,0 +1,21 @@
+/* { dg-do compile } */
+/* { dg-require-effective-target lp64 } */
+/* { dg-options "-mpatch-functions-for-instrumentation -mno-patch-functions-main-always" } */
+
+/* Function is small to be instrumented with default values. Check there
+ aren't any nop-bytes at beginning or end of function. */
+
+/* { dg-final { scan-assembler-not ".byte\t0xeb,0x09(.*).byte\t0x90" } } */
+/* { dg-final { scan-assembler-not "ret(.*).byte\t0x90(.*).byte\t0x90" } } */
+
+__attribute__ ((noinline))
+void foo()
+{
+ int x = 0;
+}
+
+int main()
+{
+ foo();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-3.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-3.c
new file mode 100644
index 000000000..9e8eb52ae
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-3.c
@@ -0,0 +1,21 @@
+/* { dg-do compile } */
+/* { dg-require-effective-target lp64 } */
+/* { dg-options "-mpatch-functions-for-instrumentation --param function-patch-min-instructions=0" } */
+
+/* Function should have nop-bytes with -mpatch-function-min-instructions=0.
+ Check there are nop-bytes at beginning and end of function. */
+
+/* { dg-final { scan-assembler ".byte\t0xeb,0x09(.*).byte\t0x90" } } */
+/* { dg-final { scan-assembler "ret(.*).byte\t0x90(.*).byte\t0x90" } } */
+
+__attribute__ ((noinline))
+void foo()
+{
+ int x = 0;
+}
+
+int main()
+{
+ foo();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-4.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-4.c
new file mode 100644
index 000000000..7a031d796
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-4.c
@@ -0,0 +1,22 @@
+/* { dg-do compile } */
+/* { dg-require-effective-target lp64 } */
+/* { dg-options "-mpatch-functions-for-instrumentation -mpatch-functions-ignore-loops -mno-patch-functions-main-always" } */
+
+/* Function is too small to be patched when ignoring the loop.
+ Check there aren't any nop-bytes at beginning and end of function. */
+
+/* { dg-final { scan-assembler-not ".byte\t0xeb,0x09(.*).byte\t0x90" } } */
+/* { dg-final { scan-assembler-not "ret(.*).byte\t0x90(.*).byte\t0x90" } } */
+
+__attribute__ ((noinline))
+void foo()
+{
+ int x = 0;
+ while (++x);
+}
+
+int main()
+{
+ foo();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-5.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-5.c
new file mode 100644
index 000000000..cd6a014cd
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-5.c
@@ -0,0 +1,22 @@
+/* { dg-do compile } */
+/* { dg-require-effective-target lp64 } */
+/* { dg-options "-mpatch-functions-for-instrumentation -mpatch-functions-ignore-loops --param function-patch-min-instructions=0" } */
+
+/* Function should be patched with nop bytes with given options.
+ Check there are nop-bytes at beginning and end of function. */
+
+/* { dg-final { scan-assembler ".byte\t0xeb,0x09(.*).byte\t0x90" } } */
+/* { dg-final { scan-assembler "ret(.*).byte\t0x90(.*).byte\t0x90" } } */
+
+__attribute__ ((noinline))
+void foo()
+{
+ int x = 0;
+ while (++x);
+}
+
+int main()
+{
+ foo();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-6.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-6.c
new file mode 100644
index 000000000..c1d644686
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-6.c
@@ -0,0 +1,15 @@
+/* { dg-do compile } */
+/* { dg-require-effective-target lp64 } */
+/* { dg-options "-mpatch-functions-for-instrumentation" } */
+
+/* 'main' function should always be patched, irrespective of how small it is.
+ Check there are nop-bytes at beginning and end of main. */
+
+/* { dg-final { scan-assembler ".byte\t0xeb,0x09(.*).byte\t0x90" } } */
+/* { dg-final { scan-assembler "ret(.*).byte\t0x90(.*).byte\t0x90" } } */
+
+int main()
+{
+ int x = 0;
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-7.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-7.c
new file mode 100644
index 000000000..f625298d6
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-7.c
@@ -0,0 +1,15 @@
+/* { dg-do compile } */
+/* { dg-require-effective-target lp64 } */
+/* { dg-options "-mpatch-functions-for-instrumentation -mno-patch-functions-main-always" } */
+
+/* 'main' shouldn't be patched with the option -mno-patch-functions-main-always.
+ Check there aren't any nop-bytes at beginning and end of main. */
+
+/* { dg-final { scan-assembler-not ".byte\t0xeb,0x09(.*).byte\t0x90" } } */
+/* { dg-final { scan-assembler-not "ret(.*).byte\t0x90(.*).byte\t0x90" } } */
+
+int main()
+{
+ int x = 0;
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-8.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-8.c
new file mode 100644
index 000000000..436379cb2
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-8.c
@@ -0,0 +1,29 @@
+/* Verify -mpatch-functions-for-instrumentation works. */
+/* { dg-do run } */
+/* { dg-require-effective-target lp64 } */
+
+/* -O2 forces a sibling call for foo from bar. */
+/* { dg-options "-O2 -mpatch-functions-for-instrumentation --param function-patch-min-instructions=0" } */
+
+__attribute__ ((noinline))
+int foo()
+{
+ /* Dummy loop. */
+ int x = 10;
+ int y = 100;
+ while (--x)
+ ++y;
+ return y;
+}
+
+__attribute__ ((noinline))
+int bar()
+{
+ return foo();
+}
+
+int main()
+{
+ bar();
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-force-no-patching.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-force-no-patching.c
new file mode 100644
index 000000000..cad6f2da6
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-force-no-patching.c
@@ -0,0 +1,27 @@
+/* { dg-do compile } */
+/* { dg-require-effective-target lp64 } */
+/* { dg-options "-mpatch-functions-for-instrumentation -mno-patch-functions-main-always" } */
+
+/* Even complicated functions shouldn't get patched if they have the
+ never_patch_for_instrumentation attribute. */
+
+/* { dg-final { scan-assembler-not ".byte\t0xeb,0x09(.*).byte\t0x90" } } */
+/* { dg-final { scan-assembler-not "ret(.*).byte\t0x90(.*).byte\t0x90" } } */
+
+__attribute__ ((never_patch_for_instrumentation))
+int foo () {
+ volatile unsigned x = 0;
+ volatile unsigned y = 1;
+ x += y;
+ x *= y;
+ while (++x)
+ foo ();
+ return y;
+}
+
+
+int main ()
+{
+ int x = 0;
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-force-patching.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-force-patching.c
new file mode 100644
index 000000000..86ad1594c
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-force-patching.c
@@ -0,0 +1,20 @@
+/* { dg-do compile } */
+/* { dg-require-effective-target lp64 } */
+/* { dg-options "-O3 -mpatch-functions-for-instrumentation -mno-patch-functions-main-always" } */
+
+/* Functions which have the always_patch attribute should be patched no matter
+ what. Check that there are nop-bytes at the beginning and end of the
+ function. We add -O3 so that the compiler will try to inline foo (but it
+ will be blocked by the attribute). */
+
+/* { dg-final { scan-assembler ".byte\t0xeb,0x09(.*).byte\t0x90" } } */
+/* { dg-final { scan-assembler "ret(.*).byte\t0x90(.*).byte\t0x90" } } */
+
+__attribute__ ((always_patch_for_instrumentation))
+static int foo () {
+ return 3;
+}
+
+int main () {
+ volatile int x = foo ();
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-sibling-call.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-sibling-call.c
new file mode 100644
index 000000000..847a95ce6
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/patch-functions-sibling-call.c
@@ -0,0 +1,26 @@
+/* { dg-do compile } */
+/* { dg-require-effective-target lp64 } */
+/* -O2 forces a sibling call. */
+/* { dg-options "-O2 -mpatch-functions-for-instrumentation" } */
+
+/* { dg-final { scan-assembler ".byte\t0xeb,0x09(.*).byte\t0x90" } } */
+
+/* Checks correct nop-bytes are generated just before a sibling call. */
+/* { dg-final { scan-assembler ".byte\t0xeb,0x09(.*).byte\t0x90(.*)jmp" } } */
+
+/* Not instrumented as function has no loop and is small. */
+__attribute__ ((noinline))
+int foo(int n)
+{
+ int x = 0;
+ return n + 10;
+}
+
+__attribute__ ((noinline))
+int bar(int n)
+{
+ /* Dummy loop. */
+ while (--n)
+ n = n * 2;
+ return foo(n);
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/pie-copyrelocs-1.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/pie-copyrelocs-1.c
new file mode 100644
index 000000000..ae339bd9e
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/pie-copyrelocs-1.c
@@ -0,0 +1,13 @@
+/* Test if -mcopyrelocs does the right thing. */
+/* { dg-do compile } */
+/* { dg-options "-O2 -fpie -mcopyrelocs" } */
+
+extern int glob_a;
+
+int foo ()
+{
+ return glob_a;
+}
+
+/* glob_a should never be accessed with a GOTPCREL */
+/* { dg-final { scan-assembler-not "glob_a\\@GOTPCREL" { target { x86_64-*-* } } } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/pie-copyrelocs-2.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/pie-copyrelocs-2.c
new file mode 100644
index 000000000..ed60d0329
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/pie-copyrelocs-2.c
@@ -0,0 +1,13 @@
+/* Test if -mno-copyrelocs does the right thing. */
+/* { dg-do compile } */
+/* { dg-options "-O2 -fpie -mno-copyrelocs" } */
+
+extern int glob_a;
+
+int foo ()
+{
+ return glob_a;
+}
+
+/* glob_a should always be accessed via GOT */
+/* { dg-final { scan-assembler "glob_a\\@GOT" { target { x86_64-*-* } } } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/pr50038.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/pr50038.c
index e111574c4..8ec601dcb 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/pr50038.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/pr50038.c
@@ -1,5 +1,5 @@
/* PR target/50038 */
-/* { dg-options "-O2" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize" } */
void
test (int len, unsigned char *in, unsigned char *out)
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/pr57233.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/pr57233.c
new file mode 100644
index 000000000..34182fa7d
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/pr57233.c
@@ -0,0 +1,15 @@
+/* PR tree-optimization/57233 */
+/* { dg-do compile { target avx } } */
+/* { dg-options "-O2 -mavx -mno-xop" } */
+
+typedef unsigned V4 __attribute__((vector_size(4 * sizeof (int))));
+V4 a;
+
+__attribute__((noinline)) void
+foo (void)
+{
+ a = (a << 2) | (a >> 30);
+}
+
+/* { dg-final { scan-assembler "vpsrld\[^\n\r]*30" } } */
+/* { dg-final { scan-assembler "vpslld\[^\n\r]*2" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/pr60868.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/pr60868.c
new file mode 100644
index 000000000..c30bbfc18
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/pr60868.c
@@ -0,0 +1,10 @@
+/* { dg-do compile } */
+/* { dg-options "-O0 -minline-all-stringops -minline-stringops-dynamically -march=core2" } */
+
+void bar (float *);
+
+void foo (void)
+{
+ float b[256] = {0};
+ bar(b);
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/pr60901.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/pr60901.c
new file mode 100644
index 000000000..f0f25a1dc
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/pr60901.c
@@ -0,0 +1,17 @@
+/* { dg-options "-O -fselective-scheduling -fschedule-insns -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops -fno-tree-dominator-opts" } */
+
+extern int n;
+extern void bar (void);
+extern int baz (int);
+
+void
+foo (void)
+{
+ int i, j;
+ for (j = 0; j < n; j++)
+ {
+ for (i = 1; i < j; i++)
+ bar ();
+ baz (0);
+ }
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/pr60902.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/pr60902.c
new file mode 100644
index 000000000..b81dcd76f
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/pr60902.c
@@ -0,0 +1,32 @@
+/* { dg-do run } */
+/* { dg-options "-O2" } */
+extern void abort ();
+extern void exit (int);
+
+int x;
+
+foo()
+{
+ static int count;
+ count++;
+ if (count > 1)
+ abort ();
+}
+
+static inline int
+frob ()
+{
+ int a;
+ __asm__ ("mov %1, %0\n\t" : "=r" (a) : "m" (x));
+ x++;
+ return a;
+}
+
+int
+main ()
+{
+ int i;
+ for (i = 0; i < 10 && frob () == 0; i++)
+ foo();
+ exit (0);
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/pr60909-1.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/pr60909-1.c
new file mode 100644
index 000000000..5a1ac3c0f
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/pr60909-1.c
@@ -0,0 +1,11 @@
+/* { dg-do compile } */
+/* { dg-options "-mrdrnd" } */
+
+extern void bar (int);
+
+void
+foo (unsigned *u)
+{
+ int i = __builtin_ia32_rdrand32_step (u);
+ bar (i);
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/pr60909-2.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/pr60909-2.c
new file mode 100644
index 000000000..dd356685b
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/pr60909-2.c
@@ -0,0 +1,11 @@
+/* { dg-do compile } */
+/* { dg-options "-mrdseed" } */
+
+extern void bar (int);
+
+void
+foo (unsigned *u)
+{
+ int i = __builtin_ia32_rdseed_si_step (u);
+ bar (i);
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/pr61423.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/pr61423.c
new file mode 100644
index 000000000..5b538a265
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/pr61423.c
@@ -0,0 +1,38 @@
+/* PR target/61423 */
+/* { dg-do run { target ia32 } } */
+/* { dg-options "-O1 -ftree-vectorize -msse2 -mfpmath=387 -mtune=core2" } */
+
+#define N 1024
+static unsigned int A[N];
+
+double
+__attribute__((noinline))
+func (void)
+{
+ unsigned int sum = 0;
+ unsigned i;
+ double t;
+
+ for (i = 0; i < N; i++)
+ sum += A[i];
+
+ t = sum;
+ return t;
+}
+
+int
+main ()
+{
+ unsigned i;
+ double d;
+
+ for(i = 0; i < N; i++)
+ A[i] = 1;
+
+ d = func();
+
+ if (d != 1024.0)
+ __builtin_abort ();
+
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/pr61446.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/pr61446.c
new file mode 100644
index 000000000..fc32f63ee
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/pr61446.c
@@ -0,0 +1,14 @@
+/* PR rtl-optimization/61446 */
+
+/* { dg-do compile { target { ia32 } } } */
+/* { dg-options "-O2 -march=corei7 -mfpmath=387" } */
+
+unsigned long long
+foo (float a)
+{
+ const double dfa = a;
+ const unsigned int hi = dfa / 0x1p32f;
+ const unsigned int lo = dfa - (double) hi * 0x1p32f;
+
+ return ((unsigned long long) hi << (4 * (8))) | lo;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/pr61599-1.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/pr61599-1.c
new file mode 100644
index 000000000..4eec99253
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/pr61599-1.c
@@ -0,0 +1,13 @@
+/* PR target/61599 */
+/* { dg-options "-mcmodel=medium -fdata-sections" { target lp64 } } */
+/* { dg-do compile { target lp64 } } */
+
+char a[1*1024*1024*1024];
+char b[1*1024*1024*1024];
+char c[1*1024*1024*1024];
+
+extern int bar();
+int main()
+{
+ return bar() + c[225];
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/pr61599-2.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/pr61599-2.c
new file mode 100644
index 000000000..22a53a45d
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/pr61599-2.c
@@ -0,0 +1,13 @@
+/* PR target/61599 */
+/* With -mcmodel=medium, all the arrays will be treated as large data. */
+/* { dg-options "-mcmodel=medium -fdata-sections" { target lp64 } } */
+/* { dg-do compile { target lp64 } } */
+
+extern char a[];
+extern char b[];
+extern char c[];
+
+int bar()
+{
+ return a[2] + b[16] + c[256];
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/recip-vec-sqrtf-avx.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/recip-vec-sqrtf-avx.c
index 9cf3cc81b..efc73f91c 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/recip-vec-sqrtf-avx.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/recip-vec-sqrtf-avx.c
@@ -31,4 +31,4 @@ void t3(void)
r[i] = sqrtf (a[i]);
}
-/* { dg-final { scan-assembler-times "vrsqrtps\[ \\t\]+\[^\n\]*%ymm" 3 } } */
+/* { dg-final { scan-assembler "vrsqrtps\[ \\t\]+\[^\n\]*%ymm" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/sse2-pr57233.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/sse2-pr57233.c
new file mode 100644
index 000000000..8a3bb2fc5
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/sse2-pr57233.c
@@ -0,0 +1,16 @@
+/* PR tree-optimization/57233 */
+/* { dg-do run { target sse2 } } */
+/* { dg-options "-O2 -msse2" } */
+
+#include "sse2-check.h"
+
+static void
+sse2_test (void)
+{
+ do_main ();
+}
+
+#undef main
+#define main() do_main ()
+
+#include "../../gcc.dg/pr57233.c"
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/sse2-unaligned-mov.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/sse2-unaligned-mov.c
new file mode 100644
index 000000000..28470cec4
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/sse2-unaligned-mov.c
@@ -0,0 +1,20 @@
+/* { dg-do compile } */
+/* { dg-options "-mtune=corei7 -O2" } */
+
+#include <emmintrin.h>
+
+double a[1000];
+
+__m128d foo1() {
+ __m128d res;
+ res = _mm_load_sd(&a[1]);
+ res = _mm_loadh_pd(res, &a[2]);
+ return res;
+}
+
+void foo2(__m128d res) {
+ _mm_store_sd(&a[1], res);
+ _mm_storeh_pd(&a[2], res);
+}
+
+/* { dg-final { scan-assembler-times "movup" 2 } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/sse4_1-roundss-1.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/sse4_1-roundss-1.c
index 96dd8a6a7..fc92e6824 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/sse4_1-roundss-1.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/sse4_1-roundss-1.c
@@ -1,6 +1,6 @@
/* { dg-do run } */
/* { dg-require-effective-target sse4 } */
-/* { dg-options "-O2 -msse4.1" } */
+/* { dg-options "-O2 -msse4.1 --param max-default-completely-peeled-insns=0" } */
/* { dg-skip-if "no M_PI" { vxworks_kernel } } */
#include "sse4_1-check.h"
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/sse4_1-roundss-2.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/sse4_1-roundss-2.c
index f052c029f..72e6807fe 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/sse4_1-roundss-2.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/sse4_1-roundss-2.c
@@ -1,6 +1,6 @@
/* { dg-do run } */
/* { dg-require-effective-target sse4 } */
-/* { dg-options "-O2 -msse4.1" } */
+/* { dg-options "-O2 -msse4.1 --param max-default-completely-peeled-insns=0" } */
/* { dg-skip-if "no M_PI" { vxworks_kernel } } */
#include "sse4_1-check.h"
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/sse4_1-roundss-3.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/sse4_1-roundss-3.c
index 0a696b1cf..0af7ea783 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/sse4_1-roundss-3.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/sse4_1-roundss-3.c
@@ -1,6 +1,6 @@
/* { dg-do run } */
/* { dg-require-effective-target sse4 } */
-/* { dg-options "-O2 -msse4.1" } */
+/* { dg-options "-O2 -msse4.1 --param max-default-completely-peeled-insns=0" } */
/* { dg-skip-if "no M_PI" { vxworks_kernel } } */
#include "sse4_1-check.h"
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/vec-may_alias.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/vec-may_alias.c
new file mode 100644
index 000000000..e97049745
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/vec-may_alias.c
@@ -0,0 +1,25 @@
+/* { dg-do run } */
+/* { dg-options "-O2 -w -Wno-abi" } */
+
+typedef int v2si __attribute__ ((vector_size (8)));
+typedef short v4hi __attribute__ ((vector_size (8)));
+typedef short v4hia __attribute__ ((vector_size (8), may_alias));
+
+__attribute__ ((noinline, noclone))
+int f (v2si A, int N)
+{ return ((v4hia)A)[N]; }
+
+__attribute__ ((noinline, noclone))
+int g (v2si A, int N)
+{ return ((v4hi)A)[N]; }
+
+int main()
+{
+ v2si x = { 0, 0 }, y = { 1, 1 };
+ if (f (x, 0) || f (x, 1) || f (x, 2) || f (x, 3))
+ __builtin_abort ();
+ if (g (y, 0) != 1 || g (y, 1) || g (y, 2) != 1 || g (y, 3))
+ __builtin_abort ();
+ return 0;
+}
+
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/wmul-1.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/wmul-1.c
index 4ef8385ef..b8fd06a56 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/i386/wmul-1.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/wmul-1.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize" } */
/* { dg-require-effective-target ia32 } */
long long mac(const int *a, const int *b, long long sqr, long long *sum)
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/i386/xop-pr57233.c b/gcc-4.9/gcc/testsuite/gcc.target/i386/xop-pr57233.c
new file mode 100644
index 000000000..6129dc217
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/i386/xop-pr57233.c
@@ -0,0 +1,16 @@
+/* PR tree-optimization/57233 */
+/* { dg-do run { target xop } } */
+/* { dg-options "-O2 -mxop" } */
+
+#include "xop-check.h"
+
+static void
+xop_test (void)
+{
+ do_main ();
+}
+
+#undef main
+#define main() do_main ()
+
+#include "../../gcc.dg/pr57233.c"
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/powerpc/bcd-1.c b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/bcd-1.c
new file mode 100644
index 000000000..c7496c235
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/bcd-1.c
@@ -0,0 +1,27 @@
+/* { dg-do compile { target { powerpc*-*-linux* } } } */
+/* { dg-skip-if "" { powerpc*-*-darwin* } { "*" } { "" } } */
+/* { dg-skip-if "" { powerpc*-*-*spe* } { "*" } { "" } } */
+/* { dg-require-effective-target powerpc_vsx_ok } */
+/* { dg-options "-mcpu=power7 -O2" } */
+/* { dg-final { scan-assembler-times "cdtbcd " 1 } } */
+/* { dg-final { scan-assembler-times "cbcdtd " 1 } } */
+/* { dg-final { scan-assembler-times "addg6s " 1 } } */
+/* { dg-final { scan-assembler-not "bl __builtin" } } */
+
+unsigned int
+to_bcd (unsigned int a)
+{
+ return __builtin_cdtbcd (a);
+}
+
+unsigned int
+from_bcd (unsigned int a)
+{
+ return __builtin_cbcdtd (a);
+}
+
+unsigned int
+bcd_arith (unsigned int a, unsigned int b)
+{
+ return __builtin_addg6s (a, b);
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/powerpc/bcd-2.c b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/bcd-2.c
new file mode 100644
index 000000000..d330b7423
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/bcd-2.c
@@ -0,0 +1,44 @@
+/* { dg-do compile { target { powerpc*-*-linux* && lp64 } } } */
+/* { dg-skip-if "" { powerpc*-*-darwin* } { "*" } { "" } } */
+/* { dg-skip-if "" { powerpc*-*-*spe* } { "*" } { "" } } */
+/* { dg-require-effective-target powerpc_p8vector_ok } */
+/* { dg-options "-mcpu=power8 -O2" } */
+/* { dg-final { scan-assembler-times "bcdadd\[.\] " 2 } } */
+/* { dg-final { scan-assembler-times "bcdsub\[.\] " 2 } } */
+/* { dg-final { scan-assembler-not "bl __builtin" } } */
+/* { dg-final { scan-assembler-not "mtvsr" } } */
+/* { dg-final { scan-assembler-not "mfvsr" } } */
+/* { dg-final { scan-assembler-not "lvx" } } */
+/* { dg-final { scan-assembler-not "lxvw4x" } } */
+/* { dg-final { scan-assembler-not "lxvd2x" } } */
+/* { dg-final { scan-assembler-not "stvx" } } */
+/* { dg-final { scan-assembler-not "stxvw4x" } } */
+/* { dg-final { scan-assembler-not "stxvd2x" } } */
+
+typedef __int128_t __attribute__((__vector_size__(16))) vector_128_t;
+typedef __int128_t scalar_128_t;
+typedef unsigned long long scalar_64_t;
+
+vector_128_t
+do_add_0 (vector_128_t a, vector_128_t b)
+{
+ return __builtin_bcdadd (a, b, 0);
+}
+
+vector_128_t
+do_add_1 (vector_128_t a, vector_128_t b)
+{
+ return __builtin_bcdadd (a, b, 1);
+}
+
+vector_128_t
+do_sub_0 (vector_128_t a, vector_128_t b)
+{
+ return __builtin_bcdsub (a, b, 0);
+}
+
+vector_128_t
+do_sub_1 (vector_128_t a, vector_128_t b)
+{
+ return __builtin_bcdsub (a, b, 1);
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/powerpc/bcd-3.c b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/bcd-3.c
new file mode 100644
index 000000000..436cecf6f
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/bcd-3.c
@@ -0,0 +1,103 @@
+/* { dg-do compile { target { powerpc*-*-linux* && lp64 } } } */
+/* { dg-skip-if "" { powerpc*-*-darwin* } { "*" } { "" } } */
+/* { dg-skip-if "" { powerpc*-*-*spe* } { "*" } { "" } } */
+/* { dg-require-effective-target powerpc_p8vector_ok } */
+/* { dg-options "-mcpu=power8 -O2" } */
+/* { dg-final { scan-assembler-times "bcdadd\[.\] " 4 } } */
+/* { dg-final { scan-assembler-times "bcdsub\[.\] " 4 } } */
+/* { dg-final { scan-assembler-not "bl __builtin" } } */
+/* { dg-final { scan-assembler-not "mtvsr" } } */
+/* { dg-final { scan-assembler-not "mfvsr" } } */
+/* { dg-final { scan-assembler-not "lvx" } } */
+/* { dg-final { scan-assembler-not "lxvw4x" } } */
+/* { dg-final { scan-assembler-not "lxvd2x" } } */
+/* { dg-final { scan-assembler-not "stvx" } } */
+/* { dg-final { scan-assembler-not "stxvw4x" } } */
+/* { dg-final { scan-assembler-not "stxvd2x" } } */
+
+typedef __int128_t __attribute__((__vector_size__(16))) vector_128_t;
+typedef __int128_t scalar_128_t;
+typedef unsigned long long scalar_64_t;
+
+/* Test whether the peephole works to allow folding a bcdadd, with a
+ bcdadd_<test> into a single instruction. */
+
+vector_128_t
+do_add_lt (vector_128_t a, vector_128_t b, int *p)
+{
+ vector_128_t ret = __builtin_bcdadd (a, b, 0);
+ if (__builtin_bcdadd_lt (a, b, 0))
+ *p = 1;
+
+ return ret;
+}
+
+vector_128_t
+do_add_eq (vector_128_t a, vector_128_t b, int *p)
+{
+ vector_128_t ret = __builtin_bcdadd (a, b, 0);
+ if (__builtin_bcdadd_eq (a, b, 0))
+ *p = 1;
+
+ return ret;
+}
+
+vector_128_t
+do_add_gt (vector_128_t a, vector_128_t b, int *p)
+{
+ vector_128_t ret = __builtin_bcdadd (a, b, 0);
+ if (__builtin_bcdadd_gt (a, b, 0))
+ *p = 1;
+
+ return ret;
+}
+
+vector_128_t
+do_add_ov (vector_128_t a, vector_128_t b, int *p)
+{
+ vector_128_t ret = __builtin_bcdadd (a, b, 0);
+ if (__builtin_bcdadd_ov (a, b, 0))
+ *p = 1;
+
+ return ret;
+}
+
+vector_128_t
+do_sub_lt (vector_128_t a, vector_128_t b, int *p)
+{
+ vector_128_t ret = __builtin_bcdsub (a, b, 0);
+ if (__builtin_bcdsub_lt (a, b, 0))
+ *p = 1;
+
+ return ret;
+}
+
+vector_128_t
+do_sub_eq (vector_128_t a, vector_128_t b, int *p)
+{
+ vector_128_t ret = __builtin_bcdsub (a, b, 0);
+ if (__builtin_bcdsub_eq (a, b, 0))
+ *p = 1;
+
+ return ret;
+}
+
+vector_128_t
+do_sub_gt (vector_128_t a, vector_128_t b, int *p)
+{
+ vector_128_t ret = __builtin_bcdsub (a, b, 0);
+ if (__builtin_bcdsub_gt (a, b, 0))
+ *p = 1;
+
+ return ret;
+}
+
+vector_128_t
+do_sub_ov (vector_128_t a, vector_128_t b, int *p)
+{
+ vector_128_t ret = __builtin_bcdsub (a, b, 0);
+ if (__builtin_bcdsub_ov (a, b, 0))
+ *p = 1;
+
+ return ret;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/powerpc/dfp-builtin-1.c b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/dfp-builtin-1.c
new file mode 100644
index 000000000..614f27264
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/dfp-builtin-1.c
@@ -0,0 +1,88 @@
+/* { dg-do compile { target { powerpc*-*-linux* } } } */
+/* { dg-skip-if "" { powerpc*-*-darwin* } { "*" } { "" } } */
+/* { dg-skip-if "" { powerpc*-*-*spe* } { "*" } { "" } } */
+/* { dg-require-effective-target powerpc_vsx_ok } */
+/* { dg-options "-mcpu=power7 -O2" } */
+/* { dg-final { scan-assembler-times "ddedpd " 4 } } */
+/* { dg-final { scan-assembler-times "denbcd " 2 } } */
+/* { dg-final { scan-assembler-times "dxex " 1 } } */
+/* { dg-final { scan-assembler-times "diex " 1 } } */
+/* { dg-final { scan-assembler-times "dscli " 2 } } */
+/* { dg-final { scan-assembler-times "dscri " 2 } } */
+/* { dg-final { scan-assembler-not "bl __builtin" } } */
+/* { dg-final { scan-assembler-not "dctqpq" } } */
+/* { dg-final { scan-assembler-not "drdpq" } } */
+/* { dg-final { scan-assembler-not "stfd" } } */
+/* { dg-final { scan-assembler-not "lfd" } } */
+
+_Decimal64
+do_dedpd_0 (_Decimal64 a)
+{
+ return __builtin_ddedpd (0, a);
+}
+
+_Decimal64
+do_dedpd_1 (_Decimal64 a)
+{
+ return __builtin_ddedpd (1, a);
+}
+
+_Decimal64
+do_dedpd_2 (_Decimal64 a)
+{
+ return __builtin_ddedpd (2, a);
+}
+
+_Decimal64
+do_dedpd_3 (_Decimal64 a)
+{
+ return __builtin_ddedpd (3, a);
+}
+
+_Decimal64
+do_enbcd_0 (_Decimal64 a)
+{
+ return __builtin_denbcd (0, a);
+}
+
+_Decimal64
+do_enbcd_1 (_Decimal64 a)
+{
+ return __builtin_denbcd (1, a);
+}
+
+_Decimal64
+do_xex (_Decimal64 a)
+{
+ return __builtin_dxex (a);
+}
+
+_Decimal64
+do_iex (_Decimal64 a, _Decimal64 b)
+{
+ return __builtin_diex (a, b);
+}
+
+_Decimal64
+do_scli_1 (_Decimal64 a)
+{
+ return __builtin_dscli (a, 1);
+}
+
+_Decimal64
+do_scli_10 (_Decimal64 a)
+{
+ return __builtin_dscli (a, 10);
+}
+
+_Decimal64
+do_scri_1 (_Decimal64 a)
+{
+ return __builtin_dscri (a, 1);
+}
+
+_Decimal64
+do_scri_10 (_Decimal64 a)
+{
+ return __builtin_dscri (a, 10);
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/powerpc/dfp-builtin-2.c b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/dfp-builtin-2.c
new file mode 100644
index 000000000..189bc9ad6
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/dfp-builtin-2.c
@@ -0,0 +1,88 @@
+/* { dg-do compile { target { powerpc*-*-linux* } } } */
+/* { dg-skip-if "" { powerpc*-*-darwin* } { "*" } { "" } } */
+/* { dg-skip-if "" { powerpc*-*-*spe* } { "*" } { "" } } */
+/* { dg-require-effective-target powerpc_vsx_ok } */
+/* { dg-options "-mcpu=power7 -O2" } */
+/* { dg-final { scan-assembler-times "ddedpdq " 4 } } */
+/* { dg-final { scan-assembler-times "denbcdq " 2 } } */
+/* { dg-final { scan-assembler-times "dxexq " 1 } } */
+/* { dg-final { scan-assembler-times "diexq " 1 } } */
+/* { dg-final { scan-assembler-times "dscliq " 2 } } */
+/* { dg-final { scan-assembler-times "dscriq " 2 } } */
+/* { dg-final { scan-assembler-not "bl __builtin" } } */
+/* { dg-final { scan-assembler-not "dctqpq" } } */
+/* { dg-final { scan-assembler-not "drdpq" } } */
+/* { dg-final { scan-assembler-not "stfd" } } */
+/* { dg-final { scan-assembler-not "lfd" } } */
+
+_Decimal128
+do_dedpdq_0 (_Decimal128 a)
+{
+ return __builtin_ddedpdq (0, a);
+}
+
+_Decimal128
+do_dedpdq_1 (_Decimal128 a)
+{
+ return __builtin_ddedpdq (1, a);
+}
+
+_Decimal128
+do_dedpdq_2 (_Decimal128 a)
+{
+ return __builtin_ddedpdq (2, a);
+}
+
+_Decimal128
+do_dedpdq_3 (_Decimal128 a)
+{
+ return __builtin_ddedpdq (3, a);
+}
+
+_Decimal128
+do_enbcdq_0 (_Decimal128 a)
+{
+ return __builtin_denbcdq (0, a);
+}
+
+_Decimal128
+do_enbcdq_1 (_Decimal128 a)
+{
+ return __builtin_denbcdq (1, a);
+}
+
+_Decimal128
+do_xexq (_Decimal128 a)
+{
+ return __builtin_dxexq (a);
+}
+
+_Decimal128
+do_iexq (_Decimal128 a, _Decimal128 b)
+{
+ return __builtin_diexq (a, b);
+}
+
+_Decimal128
+do_scliq_1 (_Decimal128 a)
+{
+ return __builtin_dscliq (a, 1);
+}
+
+_Decimal128
+do_scliq_10 (_Decimal128 a)
+{
+ return __builtin_dscliq (a, 10);
+}
+
+_Decimal128
+do_scriq_1 (_Decimal128 a)
+{
+ return __builtin_dscriq (a, 1);
+}
+
+_Decimal128
+do_scriq_10 (_Decimal128 a)
+{
+ return __builtin_dscriq (a, 10);
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/powerpc/extend-divide-1.c b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/extend-divide-1.c
new file mode 100644
index 000000000..5f948b721
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/extend-divide-1.c
@@ -0,0 +1,34 @@
+/* { dg-do compile { target { powerpc*-*-linux* } } } */
+/* { dg-skip-if "" { powerpc*-*-darwin* } { "*" } { "" } } */
+/* { dg-skip-if "" { powerpc*-*-*spe* } { "*" } { "" } } */
+/* { dg-require-effective-target powerpc_vsx_ok } */
+/* { dg-options "-mcpu=power7 -O2" } */
+/* { dg-final { scan-assembler-times "divwe " 1 } } */
+/* { dg-final { scan-assembler-times "divweo " 1 } } */
+/* { dg-final { scan-assembler-times "divweu " 1 } } */
+/* { dg-final { scan-assembler-times "divweuo " 1 } } */
+/* { dg-final { scan-assembler-not "bl __builtin" } } */
+
+int
+div_we (int a, int b)
+{
+ return __builtin_divwe (a, b);
+}
+
+int
+div_weo (int a, int b)
+{
+ return __builtin_divweo (a, b);
+}
+
+unsigned int
+div_weu (unsigned int a, unsigned int b)
+{
+ return __builtin_divweu (a, b);
+}
+
+unsigned int
+div_weuo (unsigned int a, unsigned int b)
+{
+ return __builtin_divweuo (a, b);
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/powerpc/extend-divide-2.c b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/extend-divide-2.c
new file mode 100644
index 000000000..8ee6c8cf7
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/extend-divide-2.c
@@ -0,0 +1,34 @@
+/* { dg-do compile { target { powerpc*-*-linux* && lp64 } } } */
+/* { dg-skip-if "" { powerpc*-*-darwin* } { "*" } { "" } } */
+/* { dg-skip-if "" { powerpc*-*-*spe* } { "*" } { "" } } */
+/* { dg-require-effective-target powerpc_vsx_ok } */
+/* { dg-options "-mcpu=power7 -O2" } */
+/* { dg-final { scan-assembler-times "divde " 1 } } */
+/* { dg-final { scan-assembler-times "divdeo " 1 } } */
+/* { dg-final { scan-assembler-times "divdeu " 1 } } */
+/* { dg-final { scan-assembler-times "divdeuo " 1 } } */
+/* { dg-final { scan-assembler-not "bl __builtin" } } */
+
+long
+div_de (long a, long b)
+{
+ return __builtin_divde (a, b);
+}
+
+long
+div_deo (long a, long b)
+{
+ return __builtin_divdeo (a, b);
+}
+
+unsigned long
+div_deu (unsigned long a, unsigned long b)
+{
+ return __builtin_divdeu (a, b);
+}
+
+unsigned long
+div_deuo (unsigned long a, unsigned long b)
+{
+ return __builtin_divdeuo (a, b);
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/powerpc/htm-ttest.c b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/htm-ttest.c
new file mode 100644
index 000000000..29cbd5b90
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/htm-ttest.c
@@ -0,0 +1,14 @@
+/* { dg-do compile { target { powerpc*-*-* } } } */
+/* { dg-skip-if "" { powerpc*-*-darwin* } { "*" } { "" } } */
+/* { dg-require-effective-target powerpc_htm_ok } */
+/* { dg-options "-O2 -mhtm" } */
+
+/* { dg-final { scan-assembler "rlwinm r?\[0-9\]+,r?\[0-9\]+,3,30,31" { target { ilp32 } } } } */
+/* { dg-final { scan-assembler "rldicl r?\[0-9\]+,r?\[0-9\]+,35,62" { target { lp64 } } } } */
+
+#include <htmintrin.h>
+long
+ttest (void)
+{
+ return _HTM_STATE(__builtin_ttest());
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/powerpc/pack01.c b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/pack01.c
new file mode 100644
index 000000000..efac4087c
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/pack01.c
@@ -0,0 +1,91 @@
+/* { dg-do run { target { powerpc*-*-linux* && lp64 } } } */
+/* { dg-skip-if "" { powerpc*-*-darwin* } { "*" } { "" } } */
+/* { dg-skip-if "" { powerpc*-*-*spe* } { "*" } { "" } } */
+/* { dg-require-effective-target p8vector_hw } */
+/* { dg-options "-mcpu=power8 -O2" } */
+
+#include <stddef.h>
+#include <stdlib.h>
+#include <altivec.h>
+
+#ifdef DEBUG
+#include <stdio.h>
+#endif
+
+typedef __int128_t __attribute__((__vector_size__(16))) vector_128_t;
+typedef __int128_t scalar_128_t;
+typedef unsigned long long scalar_64_t;
+
+volatile scalar_64_t one = 1;
+volatile scalar_64_t two = 2;
+
+int
+main (void)
+{
+ scalar_128_t a = (((scalar_128_t)one) << 64) | ((scalar_128_t)two);
+ vector_128_t v1 = (vector_128_t) { a };
+ vector_128_t v2 = __builtin_pack_vector_int128 (one, two);
+ scalar_64_t x0 = __builtin_unpack_vector_int128 (v1, 0);
+ scalar_64_t x1 = __builtin_unpack_vector_int128 (v1, 1);
+ vector_128_t v3 = __builtin_pack_vector_int128 (x0, x1);
+
+ size_t i;
+ union {
+ scalar_128_t i128;
+ vector_128_t v128;
+ scalar_64_t u64;
+ unsigned char uc[sizeof (scalar_128_t)];
+ char c[sizeof (scalar_128_t)];
+ } u, u2;
+
+#ifdef DEBUG
+ {
+ printf ("a = 0x");
+ u.i128 = a;
+ for (i = 0; i < sizeof (scalar_128_t); i++)
+ printf ("%.2x", u.uc[i]);
+
+ printf ("\nv1 = 0x");
+ u.v128 = v1;
+ for (i = 0; i < sizeof (scalar_128_t); i++)
+ printf ("%.2x", u.uc[i]);
+
+ printf ("\nv2 = 0x");
+ u.v128 = v2;
+ for (i = 0; i < sizeof (scalar_128_t); i++)
+ printf ("%.2x", u.uc[i]);
+
+ printf ("\nv3 = 0x");
+ u.v128 = v3;
+ for (i = 0; i < sizeof (scalar_128_t); i++)
+ printf ("%.2x", u.uc[i]);
+
+ printf ("\nx0 = 0x");
+ u.u64 = x0;
+ for (i = 0; i < sizeof (scalar_64_t); i++)
+ printf ("%.2x", u.uc[i]);
+
+ printf ("\nx1 = 0x");
+ u.u64 = x1;
+ for (i = 0; i < sizeof (scalar_64_t); i++)
+ printf ("%.2x", u.uc[i]);
+
+ printf ("\n");
+ }
+#endif
+
+ u2.i128 = a;
+ u.v128 = v1;
+ if (memcmp (u.c, u2.c, sizeof (scalar_128_t)) != 0)
+ abort ();
+
+ u.v128 = v2;
+ if (memcmp (u.c, u2.c, sizeof (scalar_128_t)) != 0)
+ abort ();
+
+ u.v128 = v3;
+ if (memcmp (u.c, u2.c, sizeof (scalar_128_t)) != 0)
+ abort ();
+
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/powerpc/pack02.c b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/pack02.c
new file mode 100644
index 000000000..f85d3ff00
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/pack02.c
@@ -0,0 +1,96 @@
+/* { dg-do run { target { powerpc*-*-linux* } } } */
+/* { dg-skip-if "" { powerpc*-*-darwin* } { "*" } { "" } } */
+/* { dg-skip-if "" { powerpc*-*-*spe* } { "*" } { "" } } */
+/* { dg-require-effective-target powerpc_fprs } */
+/* { dg-require-effective-target longdouble128 } */
+/* { dg-options "-O2 -mhard-float" } */
+
+#include <stddef.h>
+#include <stdlib.h>
+#include <math.h>
+
+#ifdef DEBUG
+#include <stdio.h>
+#endif
+
+int
+main (void)
+{
+ double high = pow (2.0, 60);
+ double low = 2.0;
+ long double a = ((long double)high) + ((long double)low);
+ double x0 = __builtin_unpack_longdouble (a, 0);
+ double x1 = __builtin_unpack_longdouble (a, 1);
+ long double b = __builtin_pack_longdouble (x0, x1);
+
+#ifdef DEBUG
+ {
+ size_t i;
+ union {
+ long double ld;
+ double d;
+ unsigned char uc[sizeof (long double)];
+ char c[sizeof (long double)];
+ } u;
+
+ printf ("a = 0x");
+ u.ld = a;
+ for (i = 0; i < sizeof (long double); i++)
+ printf ("%.2x", u.uc[i]);
+
+ printf (", %Lg\n", a);
+
+ printf ("b = 0x");
+ u.ld = b;
+ for (i = 0; i < sizeof (long double); i++)
+ printf ("%.2x", u.uc[i]);
+
+ printf (", %Lg\n", b);
+
+ printf ("hi = 0x");
+ u.d = high;
+ for (i = 0; i < sizeof (double); i++)
+ printf ("%.2x", u.uc[i]);
+
+ printf (",%*s %g\n", (int)(2 * (sizeof (long double) - sizeof (double))), "", high);
+
+ printf ("lo = 0x");
+ u.d = low;
+ for (i = 0; i < sizeof (double); i++)
+ printf ("%.2x", u.uc[i]);
+
+ printf (",%*s %g\n", (int)(2 * (sizeof (long double) - sizeof (double))), "", low);
+
+ printf ("x0 = 0x");
+ u.d = x0;
+ for (i = 0; i < sizeof (double); i++)
+ printf ("%.2x", u.uc[i]);
+
+ printf (",%*s %g\n", (int)(2 * (sizeof (long double) - sizeof (double))), "", x0);
+
+ printf ("x1 = 0x");
+ u.d = x1;
+ for (i = 0; i < sizeof (double); i++)
+ printf ("%.2x", u.uc[i]);
+
+ printf (",%*s %g\n", (int)(2 * (sizeof (long double) - sizeof (double))), "", x1);
+ }
+#endif
+
+ if (high != x0)
+ abort ();
+
+ if (low != x1)
+ abort ();
+
+ if (a != b)
+ abort ();
+
+ if (x0 != high)
+ abort ();
+
+ if (x1 != low)
+ abort ();
+
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/powerpc/pack03.c b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/pack03.c
new file mode 100644
index 000000000..dfaf2efa0
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/pack03.c
@@ -0,0 +1,88 @@
+/* { dg-do run { target { powerpc*-*-linux* } } } */
+/* { dg-skip-if "" { powerpc*-*-darwin* } { "*" } { "" } } */
+/* { dg-skip-if "" { powerpc*-*-*spe* } { "*" } { "" } } */
+/* { dg-require-effective-target dfp_hw } */
+/* { dg-options "-O2 -mhard-dfp" } */
+
+#include <stddef.h>
+#include <stdlib.h>
+#include <math.h>
+
+#ifdef DEBUG
+#include <stdio.h>
+#endif
+
+int
+main (void)
+{
+ _Decimal128 one = (_Decimal128)1.0;
+ _Decimal128 two = (_Decimal128)2.0;
+ _Decimal128 ten = (_Decimal128)10.0;
+ _Decimal128 a = one;
+ _Decimal128 b;
+ _Decimal128 c;
+ unsigned long long x0;
+ unsigned long long x1;
+ size_t i;
+
+ for (i = 0; i < 25; i++)
+ a *= ten;
+
+ a += two;
+
+ x0 = __builtin_unpack_dec128 (a, 0);
+ x1 = __builtin_unpack_dec128 (a, 1);
+ b = __builtin_pack_dec128 (x0, x1);
+ c = __builtin_dscliq (one, 25) + two;
+
+#ifdef DEBUG
+ {
+ union {
+ _Decimal128 d;
+ unsigned long long ull;
+ unsigned char uc[sizeof (_Decimal128)];
+ } u;
+
+ printf ("a = 0x");
+ u.d = a;
+ for (i = 0; i < sizeof (_Decimal128); i++)
+ printf ("%.2x", u.uc[i]);
+
+ printf (", %Lg\n", (long double)a);
+
+ printf ("b = 0x");
+ u.d = b;
+ for (i = 0; i < sizeof (_Decimal128); i++)
+ printf ("%.2x", u.uc[i]);
+
+ printf (", %Lg\n", (long double)b);
+
+ printf ("c = 0x");
+ u.d = c;
+ for (i = 0; i < sizeof (_Decimal128); i++)
+ printf ("%.2x", u.uc[i]);
+
+ printf (", %Lg\n", (long double)c);
+
+ printf ("x0 = 0x");
+ u.ull = x0;
+ for (i = 0; i < sizeof (unsigned long long); i++)
+ printf ("%.2x", u.uc[i]);
+
+ printf ("\nx1 = 0x");
+ u.ull = x1;
+ for (i = 0; i < sizeof (unsigned long long); i++)
+ printf ("%.2x", u.uc[i]);
+
+ printf ("\n");
+ }
+#endif
+
+ if (a != b)
+ abort ();
+
+ if (a != c)
+ abort ();
+
+ return 0;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/powerpc/pr60735.c b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/pr60735.c
new file mode 100644
index 000000000..9bac30b51
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/pr60735.c
@@ -0,0 +1,11 @@
+/* { dg-do compile } */
+/* { dg-options "-mcpu=8548 -mspe -mabi=spe -O2" } */
+/* { dg-skip-if "not an SPE target" { ! powerpc_spe_nocache } { "*" } { "" } } */
+
+/* In PR60735, the type _Decimal64 generated an insn not found message. */
+
+void
+pr60735 (_Decimal64 *p, _Decimal64 *q)
+{
+ *p = *q;
+}
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/powerpc/tfmode_off.c b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/tfmode_off.c
index e6578ef31..ea703f0ee 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/powerpc/tfmode_off.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/tfmode_off.c
@@ -1,6 +1,7 @@
/* { dg-do assemble } */
/* { dg-skip-if "" { powerpc-ibm-aix* } { "*" } { "" } } */
/* { dg-skip-if "no TFmode" { powerpc-*-eabi* } { "*" } { "" } } */
+/* { dg-require-effective-target longdouble128 } */
/* { dg-options "-O2 -fno-align-functions -mtraceback=no -save-temps" } */
typedef float TFmode __attribute__ ((mode (TF)));
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/powerpc/ti_math1.c b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/ti_math1.c
new file mode 100644
index 000000000..cdf925100
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/ti_math1.c
@@ -0,0 +1,20 @@
+/* { dg-do compile { target { powerpc*-*-* && lp64 } } } */
+/* { dg-options "-O2" } */
+/* { dg-final { scan-assembler-times "addc" 1 } } */
+/* { dg-final { scan-assembler-times "adde" 1 } } */
+/* { dg-final { scan-assembler-times "subfc" 1 } } */
+/* { dg-final { scan-assembler-times "subfe" 1 } } */
+/* { dg-final { scan-assembler-not "subf " } } */
+
+__int128
+add_128 (__int128 *ptr, __int128 val)
+{
+ return (*ptr + val);
+}
+
+__int128
+sub_128 (__int128 *ptr, __int128 val)
+{
+ return (*ptr - val);
+}
+
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/powerpc/ti_math2.c b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/ti_math2.c
new file mode 100644
index 000000000..b9c03300d
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gcc.target/powerpc/ti_math2.c
@@ -0,0 +1,73 @@
+/* { dg-do run { target { powerpc*-*-* && lp64 } } } */
+/* { dg-options "-O2 -fno-inline" } */
+
+union U {
+ __int128 i128;
+ struct {
+ long l1;
+ long l2;
+ } s;
+};
+
+union U u1,u2;
+
+__int128
+create_128 (long most_sig, long least_sig)
+{
+ union U u;
+
+#if __LITTLE_ENDIAN__
+ u.s.l1 = least_sig;
+ u.s.l2 = most_sig;
+#else
+ u.s.l1 = most_sig;
+ u.s.l2 = least_sig;
+#endif
+ return u.i128;
+}
+
+long most_sig (union U * u)
+{
+#if __LITTLE_ENDIAN__
+ return (*u).s.l2;
+#else
+ return (*u).s.l1;
+#endif
+}
+
+long least_sig (union U * u)
+{
+#if __LITTLE_ENDIAN__
+ return (*u).s.l1;
+#else
+ return (*u).s.l2;
+#endif
+}
+
+__int128
+add_128 (__int128 *ptr, __int128 val)
+{
+ return (*ptr + val);
+}
+
+__int128
+sub_128 (__int128 *ptr, __int128 val)
+{
+ return (*ptr - val);
+}
+
+int
+main (void)
+{
+ /* Do a simple add/sub to make sure carry is happening between the dwords
+ and that dwords are in correct endian order. */
+ u1.i128 = create_128 (1, -1);
+ u2.i128 = add_128 (&u1.i128, 1);
+ if ((most_sig (&u2) != 2) || (least_sig (&u2) != 0))
+ __builtin_abort ();
+ u2.i128 = sub_128 (&u2.i128, 1);
+ if ((most_sig (&u2) != 1) || (least_sig (&u2) != -1))
+ __builtin_abort ();
+ return 0;
+}
+
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/s390/htm-nofloat-2.c b/gcc-4.9/gcc/testsuite/gcc.target/s390/htm-nofloat-2.c
deleted file mode 100644
index 59621a4c1..000000000
--- a/gcc-4.9/gcc/testsuite/gcc.target/s390/htm-nofloat-2.c
+++ /dev/null
@@ -1,55 +0,0 @@
-/* { dg-do run } */
-/* { dg-options "-O3 -mhtm -Wa,-march=zEC12,-mzarch --save-temps" } */
-
-/* __builtin_tbegin has to emit clobbers for all FPRs since the tbegin
- instruction does not automatically preserves them. If the
- transaction body is fully contained in a function the backend tries
- after reload to get rid of the FPR save/restore operations
- triggered by the clobbers. This testcase failed since the backend
- was able to get rid of all FPR saves/restores and since these were
- the only stack operations also of the entire stack space. So even
- the save/restore of the stack pointer was omitted in the end.
- However, since the frame layout has been fixed before, the prologue
- still generated the stack pointer decrement making foo return with
- a modified stack pointer. */
-
-void abort(void);
-
-void __attribute__((noinline))
-foo (int a)
-{
- /* This is just to prevent the tbegin code from actually being
- executed. That way the test may even run on machines prior to
- zEC12. */
- if (a == 42)
- return;
-
- if (__builtin_tbegin (0) == 0)
- __builtin_tend ();
-}
-
-#ifdef __s390x__
-#define GET_STACK_POINTER(SP) \
- asm volatile ("stg %%r15, %0" : "=QRST" (SP));
-#else
-#define GET_STACK_POINTER(SP) \
- asm volatile ("st %%r15, %0" : "=QR" (SP));
-#endif
-
-int main(void)
-{
- unsigned long new_sp, old_sp;
-
- GET_STACK_POINTER (old_sp);
- foo(42);
- GET_STACK_POINTER (new_sp);
-
- if (old_sp != new_sp)
- abort ();
-
- return 0;
-}
-
-/* Make sure no FPR saves/restores are emitted. */
-/* { dg-final { scan-assembler-not "\tstd\t" } } */
-/* { dg-final { scan-assembler-not "\tld\t" } } */
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/x86_64/abi/avx/abi-avx.exp b/gcc-4.9/gcc/testsuite/gcc.target/x86_64/abi/avx/abi-avx.exp
index d6fc1874f..624b7ea75 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/x86_64/abi/avx/abi-avx.exp
+++ b/gcc-4.9/gcc/testsuite/gcc.target/x86_64/abi/avx/abi-avx.exp
@@ -20,6 +20,7 @@
load_lib c-torture.exp
load_lib target-supports.exp
load_lib torture-options.exp
+load_lib clearcap.exp
if { (![istarget x86_64-*-*] && ![istarget i?86-*-*])
|| ![is-effective-target lp64]
@@ -28,20 +29,10 @@ if { (![istarget x86_64-*-*] && ![istarget i?86-*-*])
}
-# If the linker used understands -M <mapfile>, pass it to clear hardware
-# capabilities set by the Sun assembler.
-set flags ""
-set clearcap_ldflags "-Wl,-M,$srcdir/gcc.target/i386/clearcap.map"
-
-if [check_no_compiler_messages mapfile executable {
- int main (void) { return 0; }
- } $clearcap_ldflags ] {
- set flags $clearcap_ldflags
-}
-
torture-init
+clearcap-init
set-torture-options $C_TORTURE_OPTIONS
-set additional_flags "-W -Wall -mavx $flags"
+set additional_flags "-W -Wall -mavx"
foreach src [lsort [glob -nocomplain $srcdir/$subdir/test_*.c]] {
if {[runtest_file_p $runtests $src]} {
@@ -58,4 +49,5 @@ foreach src [lsort [glob -nocomplain $srcdir/$subdir/test_*.c]] {
}
}
+clearcap-finish
torture-finish
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/x86_64/abi/avx512f/abi-avx512f.exp b/gcc-4.9/gcc/testsuite/gcc.target/x86_64/abi/avx512f/abi-avx512f.exp
index cef6fa141..f8f991e92 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/x86_64/abi/avx512f/abi-avx512f.exp
+++ b/gcc-4.9/gcc/testsuite/gcc.target/x86_64/abi/avx512f/abi-avx512f.exp
@@ -20,6 +20,7 @@
load_lib c-torture.exp
load_lib target-supports.exp
load_lib torture-options.exp
+load_lib clearcap.exp
if { (![istarget x86_64-*-*] && ![istarget i?86-*-*])
|| ![is-effective-target lp64]
@@ -28,20 +29,10 @@ if { (![istarget x86_64-*-*] && ![istarget i?86-*-*])
}
-# If the linker used understands -M <mapfile>, pass it to clear hardware
-# capabilities set by the Sun assembler.
-set flags ""
-set clearcap_ldflags "-Wl,-M,$srcdir/gcc.target/i386/clearcap.map"
-
-if [check_no_compiler_messages mapfile executable {
- int main (void) { return 0; }
- } $clearcap_ldflags ] {
- set flags $clearcap_ldflags
-}
-
torture-init
+clearcap-init
set-torture-options $C_TORTURE_OPTIONS
-set additional_flags "-W -Wall -mavx512f $flags"
+set additional_flags "-W -Wall -mavx512f"
foreach src [lsort [glob -nocomplain $srcdir/$subdir/test_*.c]] {
if {[runtest_file_p $runtests $src]} {
@@ -58,4 +49,5 @@ foreach src [lsort [glob -nocomplain $srcdir/$subdir/test_*.c]] {
}
}
+clearcap-finish
torture-finish
diff --git a/gcc-4.9/gcc/testsuite/gcc.target/x86_64/abi/callabi/leaf-2.c b/gcc-4.9/gcc/testsuite/gcc.target/x86_64/abi/callabi/leaf-2.c
index 2a54bc89c..df4c4068b 100644
--- a/gcc-4.9/gcc/testsuite/gcc.target/x86_64/abi/callabi/leaf-2.c
+++ b/gcc-4.9/gcc/testsuite/gcc.target/x86_64/abi/callabi/leaf-2.c
@@ -1,5 +1,5 @@
/* { dg-do compile } */
-/* { dg-options "-O2 -mabi=sysv" } */
+/* { dg-options "-O2 -fno-tree-loop-vectorize -mabi=sysv" } */
extern int glb1, gbl2, gbl3;
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/allocatable_function_8.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/allocatable_function_8.f90
new file mode 100644
index 000000000..48f6dd216
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/allocatable_function_8.f90
@@ -0,0 +1,59 @@
+! { dg-do run }
+! Test the fix for PR61459 and PR58883.
+!
+! Contributed by John Wingate <johnww@tds.net>
+! and Tao Song <songtao.thu@gmail.com>
+!
+module a
+
+ implicit none
+ private
+ public :: f_segfault, f_segfault_plus, f_workaround
+ integer, dimension(2,2) :: b = reshape([1,-1,1,1],[2,2])
+
+contains
+
+ function f_segfault(x)
+ real, dimension(:), allocatable :: f_segfault
+ real, dimension(:), intent(in) :: x
+ allocate(f_segfault(2))
+ f_segfault = matmul(b,x)
+ end function f_segfault
+
+! Sefaulted without the ALLOCATE as well.
+ function f_segfault_plus(x)
+ real, dimension(:), allocatable :: f_segfault_plus
+ real, dimension(:), intent(in) :: x
+ f_segfault_plus = matmul(b,x)
+ end function f_segfault_plus
+
+ function f_workaround(x)
+ real, dimension(:), allocatable :: f_workaround
+ real, dimension(:), intent(in) :: x
+ real, dimension(:), allocatable :: tmp
+ allocate(f_workaround(2),tmp(2))
+ tmp = matmul(b,x)
+ f_workaround = tmp
+ end function f_workaround
+
+end module a
+
+program main
+ use a
+ implicit none
+ real, dimension(2) :: x = 1.0, y
+! PR61459
+ y = f_workaround (x)
+ if (any (f_segfault (x) .ne. y)) call abort
+ if (any (f_segfault_plus (x) .ne. y)) call abort
+! PR58883
+ if (any (foo () .ne. reshape([1,2,3,4,5,6,7,8],[2,4]))) call abort
+contains
+ function foo()
+ integer, allocatable :: foo(:,:)
+ integer, allocatable :: temp(:)
+
+ temp = [1,2,3,4,5,6,7,8]
+ foo = reshape(temp,[2,4])
+ end function
+end program main
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/arrayio_14.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/arrayio_14.f90
new file mode 100644
index 000000000..3d878c756
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/arrayio_14.f90
@@ -0,0 +1,18 @@
+! { dg-do run }
+! PR61173.f90 Bogus END condition
+module bd
+ character(len=25, kind=1), dimension(:), allocatable, save :: source
+ contains
+ subroutine init_data
+ allocate(source(2))
+ source=[" 1 1 1 ", " 4 4 4 "]
+ end subroutine init_data
+end module bd
+program read_internal
+ use bd
+ integer :: x(6),i
+
+ call init_data
+ read(source,*) (x(i), i=1,6)
+ if (any(x/=[1,1,1,4,4,4])) call abort
+end program read_internal
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/arrayio_15.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/arrayio_15.f90
new file mode 100644
index 000000000..df497dc02
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/arrayio_15.f90
@@ -0,0 +1,11 @@
+! { dg-do run }
+! PR61499
+program read_internal
+
+ integer :: x(9),i,iostat
+ character(len=512) :: iomsg
+ character(kind=1,len=30), dimension(:), allocatable, save :: source
+ allocate(source(3))
+ source=[" 1 1 -1"," 1 -1 1"," -1 1 1"] !This fails
+ read(source,*) (x(i), i=1,6)
+end program read_internal
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/arrayio_16.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/arrayio_16.f90
new file mode 100644
index 000000000..46814ae5d
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/arrayio_16.f90
@@ -0,0 +1,13 @@
+! { dg-do run }
+! PR61640 KIND=4 Character Array Internal Unit Read Fail
+program read_internal
+ integer :: x(9),i
+ integer :: y(9)
+ character(kind=4,len=30), dimension(3) :: source
+
+ y = reshape ((/ 1,1,-1,1,-1,1,-1,1,1 /), shape(x))
+ source=[4_" 1 1 -1",4_" 1 -1 1",4_" -1 1 1"]
+ !print *, (trim(source(i)), i=1,3)
+ read(source,*) (x(i), i=1,9) ! This read fails for KIND=4 character
+ if (any(x /= y )) call abort
+end program read_internal
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/associate_16.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/associate_16.f90
new file mode 100644
index 000000000..9129388b2
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/associate_16.f90
@@ -0,0 +1,23 @@
+! { dg-do compile }
+! PR 60834 - this used to ICE.
+
+module m
+ implicit none
+ type :: t
+ real :: diffusion=1.
+ end type
+contains
+ subroutine solve(this, x)
+ class(t), intent(in) :: this
+ real, intent(in) :: x(:)
+ integer :: i
+ integer, parameter :: n(1:5)=[(i,i=1, 5)]
+
+ associate( nu=>this%diffusion)
+ associate( exponential=>exp(-(x(i)-n) ))
+ do i = 1, size(x)
+ end do
+ end associate
+ end associate
+ end subroutine solve
+end module m
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/associate_17.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/associate_17.f90
new file mode 100644
index 000000000..5c39cf062
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/associate_17.f90
@@ -0,0 +1,12 @@
+! { dg-do run }
+! Test the fix for PR61406
+! Contributed by Adam Hirst <adam@aphirst.karoo.co.uk>
+program test
+ implicit none
+ real :: theta = 1.0
+
+ associate (n => [cos(theta), sin(theta)])
+ if (abs (norm2(n) - 1.0) .gt. 1.0e-4) call abort
+ end associate
+
+end program test
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/class_array_15.f03 b/gcc-4.9/gcc/testsuite/gfortran.dg/class_array_15.f03
index 7d1d4d718..d3a123259 100644
--- a/gcc-4.9/gcc/testsuite/gfortran.dg/class_array_15.f03
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/class_array_15.f03
@@ -1,4 +1,5 @@
! { dg-do run }
+! { dg-options "-fdump-tree-original" }
!
! Tests the fixes for three bugs with the same underlying cause. All are regressions
! that come about because class array elements end up with a different tree type
@@ -114,3 +115,5 @@ subroutine pr54992 ! This test remains as the original.
bh => bhGet(b,instance=2)
if (loc (b) .ne. loc(bh%hostNode)) call abort
end
+! { dg-final { scan-tree-dump-times "builtin_free" 12 "original" } }
+! { dg-final { cleanup-tree-dump "original" } }
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/cray_pointers_10.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/cray_pointers_10.f90
new file mode 100644
index 000000000..1ac98f3ea
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/cray_pointers_10.f90
@@ -0,0 +1,18 @@
+! { dg-do run }
+! { dg-options "-fcray-pointer" }
+!
+! PR fortran/45187
+!
+module foo
+ implicit none
+ real :: a
+ pointer(c_a, a)
+end module foo
+
+program test
+ use foo
+ real :: z
+ c_a = loc(z)
+ a = 42
+ if (z /= 42) call abort
+end program test
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/default_format_denormal_2.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/default_format_denormal_2.f90
index a5337ca3b..6134a5625 100644
--- a/gcc-4.9/gcc/testsuite/gfortran.dg/default_format_denormal_2.f90
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/default_format_denormal_2.f90
@@ -1,6 +1,6 @@
! { dg-require-effective-target fortran_large_real }
-! { dg-do run { xfail powerpc*-apple-darwin* powerpc*-*-linux* } }
-! Test XFAILed on these platforms because the system's printf() lacks
+! { dg-do run { xfail powerpc*-apple-darwin* } }
+! Test XFAILed on this platform because the system's printf() lacks
! proper support for denormalized long doubles. See PR24685
!
! This tests that the default formats for formatted I/O of reals are
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/finalize_25.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/finalize_25.f90
new file mode 100644
index 000000000..cdbec4cac
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/finalize_25.f90
@@ -0,0 +1,55 @@
+! { dg-do run }
+!
+! PR fortran/58880
+! PR fortran/60495
+!
+! Contributed by Andrew Benson and Janus Weil
+!
+
+module gn
+ implicit none
+ type sl
+ integer, allocatable, dimension(:) :: lv
+ contains
+ final :: sld
+ end type
+ type :: nde
+ type(sl) :: r
+ end type nde
+
+ integer :: cnt = 0
+
+contains
+
+ subroutine sld(s)
+ type(sl) :: s
+ cnt = cnt + 1
+ ! print *,'Finalize sl'
+ end subroutine
+ subroutine ndm(s)
+ type(nde), intent(inout) :: s
+ type(nde) :: i
+ i=s
+ end subroutine ndm
+end module
+
+program main
+ use gn
+ type :: nde2
+ type(sl) :: r
+ end type nde2
+ type(nde) :: x
+
+ cnt = 0
+ call ndm(x)
+ if (cnt /= 2) call abort()
+
+ cnt = 0
+ call ndm2()
+ if (cnt /= 3) call abort()
+contains
+ subroutine ndm2
+ type(nde2) :: s,i
+ i=s
+ end subroutine ndm2
+end program main
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/affinity-1.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/affinity-1.f90
new file mode 100644
index 000000000..b6e20b9ce
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/affinity-1.f90
@@ -0,0 +1,19 @@
+ integer :: i, j
+ integer, dimension (10, 10) :: a
+!$omp parallel do default(none)proc_bind(master)shared(a)
+ do i = 1, 10
+ j = 4
+ do j = 1, 10
+ a(i, j) = i + j
+ end do
+ j = 8
+ end do
+!$omp end parallel do
+!$omp parallel proc_bind (close)
+!$omp parallel default(none) proc_bind (spread) firstprivate(a) private (i)
+ do i = 1, 10
+ a(i, i) = i
+ enddo
+!$omp end parallel
+!$omp endparallel
+end
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/allocatable_components_1.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/allocatable_components_1.f90
index 2a762c77b..bc06cc866 100644
--- a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/allocatable_components_1.f90
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/allocatable_components_1.f90
@@ -14,7 +14,7 @@ CONTAINS
TYPE(t), SAVE :: a
!$omp threadprivate(a)
- !$omp parallel copyin(a) ! { dg-error "has ALLOCATABLE components" }
+ !$omp parallel copyin(a)
! do something
!$omp end parallel
END SUBROUTINE
@@ -22,7 +22,7 @@ CONTAINS
SUBROUTINE test_copyprivate()
TYPE(t) :: a
- !$omp single ! { dg-error "has ALLOCATABLE components" }
+ !$omp single
! do something
!$omp end single copyprivate (a)
END SUBROUTINE
@@ -30,7 +30,7 @@ CONTAINS
SUBROUTINE test_firstprivate
TYPE(t) :: a
- !$omp parallel firstprivate(a) ! { dg-error "has ALLOCATABLE components" }
+ !$omp parallel firstprivate(a)
! do something
!$omp end parallel
END SUBROUTINE
@@ -39,7 +39,7 @@ CONTAINS
TYPE(t) :: a
INTEGER :: i
- !$omp parallel do lastprivate(a) ! { dg-error "has ALLOCATABLE components" }
+ !$omp parallel do lastprivate(a)
DO i = 1, 1
END DO
!$omp end parallel do
@@ -49,7 +49,7 @@ CONTAINS
TYPE(t) :: a(10)
INTEGER :: i
- !$omp parallel do reduction(+: a) ! { dg-error "must be of numeric type" }
+ !$omp parallel do reduction(+: a) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
DO i = 1, SIZE(a)
END DO
!$omp end parallel do
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/appendix-a/a.31.3.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/appendix-a/a.31.3.f90
index f67c91c21..598c90420 100644
--- a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/appendix-a/a.31.3.f90
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/appendix-a/a.31.3.f90
@@ -5,7 +5,7 @@
!$OMP PARALLEL DO REDUCTION(MAX: M) ! MAX is no longer the
! intrinsic so this
! is non-conforming
-! { dg-error "is not INTRINSIC procedure name" "" { target *-*-* } 5 } */
+! { dg-error "OMP DECLARE REDUCTION max not found" "" { target *-*-* } 5 } */
DO I = 1, 100
CALL SUB(M,I)
END DO
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/associate1.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/associate1.f90
new file mode 100644
index 000000000..abc5ae95a
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/associate1.f90
@@ -0,0 +1,83 @@
+! { dg-do compile }
+
+program associate1
+ type dl
+ integer :: i
+ end type
+ type dt
+ integer :: i
+ real :: a(3, 3)
+ type(dl) :: c(3, 3)
+ end type
+ integer :: v, i, j
+ real :: a(3, 3)
+ type(dt) :: b(3)
+ i = 1
+ j = 2
+ associate(k => v, l => a(i, j), m => a(i, :))
+ associate(n => b(j)%c(:, :)%i, o => a, p => b)
+!$omp parallel shared (l) ! { dg-error "ASSOCIATE name" }
+!$omp end parallel
+!$omp parallel firstprivate (m) ! { dg-error "ASSOCIATE name" }
+!$omp end parallel
+!$omp parallel reduction (+: k) ! { dg-error "ASSOCIATE name" }
+!$omp end parallel
+!$omp parallel do firstprivate (k) ! { dg-error "ASSOCIATE name" }
+ do i = 1, 10
+ end do
+!$omp parallel do lastprivate (n) ! { dg-error "ASSOCIATE name" }
+ do i = 1, 10
+ end do
+!$omp parallel do private (o) ! { dg-error "ASSOCIATE name" }
+ do i = 1, 10
+ end do
+!$omp parallel do shared (p) ! { dg-error "ASSOCIATE name" }
+ do i = 1, 10
+ end do
+!$omp task private (k) ! { dg-error "ASSOCIATE name" }
+!$omp end task
+!$omp task shared (l) ! { dg-error "ASSOCIATE name" }
+!$omp end task
+!$omp task firstprivate (m) ! { dg-error "ASSOCIATE name" }
+!$omp end task
+!$omp do private (l) ! { dg-error "ASSOCIATE name" }
+ do i = 1, 10
+ end do
+!$omp do reduction (*: k) ! { dg-error "ASSOCIATE name" }
+ do i = 1, 10
+ end do
+!$omp sections private(o) ! { dg-error "ASSOCIATE name" }
+!$omp section
+!$omp section
+!$omp end sections
+!$omp parallel sections firstprivate(p) ! { dg-error "ASSOCIATE name" }
+!$omp section
+!$omp section
+!$omp endparallelsections
+!$omp parallelsections lastprivate(m) ! { dg-error "ASSOCIATE name" }
+!$omp section
+!$omp section
+!$omp endparallelsections
+!$omp sections reduction(+:k) ! { dg-error "ASSOCIATE name" }
+!$omp section
+!$omp section
+!$omp end sections
+!$omp simd private (l) ! { dg-error "ASSOCIATE name" }
+ do i = 1, 10
+ end do
+ k = 1
+!$omp simd lastprivate (m) ! { dg-error "ASSOCIATE name" }
+ do i = 1, 10
+ end do
+ k = 1
+!$omp simd reduction (+: k) ! { dg-error "ASSOCIATE name" }
+ do i = 1, 10
+ end do
+ k = 1
+!$omp simd linear (k : 2) ! { dg-error "ASSOCIATE name" }
+ do i = 1, 10
+ k = k + 2
+ end do
+ end associate
+ end associate
+end program
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/declare-simd-1.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/declare-simd-1.f90
new file mode 100644
index 000000000..d6ae7c9c8
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/declare-simd-1.f90
@@ -0,0 +1,9 @@
+! { dg-do compile }
+
+subroutine fn1 (x)
+ integer :: x
+!$omp declare simd (fn1) inbranch notinbranch uniform (x) ! { dg-error "Unclassifiable OpenMP directive" }
+end subroutine fn1
+subroutine fn2 (x)
+!$omp declare simd (fn100) ! { dg-error "should refer to containing procedure" }
+end subroutine fn2
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/depend-1.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/depend-1.f90
new file mode 100644
index 000000000..bd6d26a38
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/depend-1.f90
@@ -0,0 +1,13 @@
+! { dg-do compile }
+
+subroutine foo (x)
+ integer :: x(5, *)
+!$omp parallel
+!$omp single
+!$omp task depend(in:x(:,5))
+!$omp end task
+!$omp task depend(in:x(5,:)) ! { dg-error "Rightmost upper bound of assumed size array section|proper array section" }
+!$omp end task
+!$omp end single
+!$omp end parallel
+end
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/intentin1.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/intentin1.f90
new file mode 100644
index 000000000..f2a2e98fd
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/intentin1.f90
@@ -0,0 +1,16 @@
+! { dg-do compile }
+
+subroutine foo (x)
+ integer, pointer, intent (in) :: x
+ integer :: i
+!$omp parallel private (x) ! { dg-error "INTENT.IN. POINTER" }
+!$omp end parallel
+!$omp parallel do lastprivate (x) ! { dg-error "INTENT.IN. POINTER" }
+ do i = 1, 10
+ end do
+!$omp simd linear (x) ! { dg-error "INTENT.IN. POINTER" }
+ do i = 1, 10
+ end do
+!$omp single ! { dg-error "INTENT.IN. POINTER" }
+!$omp end single copyprivate (x)
+end
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/omp_do_concurrent.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/omp_do_concurrent.f90
new file mode 100644
index 000000000..83204791d
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/omp_do_concurrent.f90
@@ -0,0 +1,13 @@
+! { dg-do compile }
+! { dg-options "-fopenmp" }
+!
+! PR fortran/60127
+!
+! OpenMP 4.0 doesn't permit DO CONCURRENT (yet)
+!
+
+!$omp do
+do concurrent(i=1:5) ! { dg-error "OMP DO cannot be a DO CONCURRENT loop" }
+print *, 'Hello'
+end do
+end
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/openmp-simd-1.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/openmp-simd-1.f90
new file mode 100644
index 000000000..c9ce70c4f
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/openmp-simd-1.f90
@@ -0,0 +1,137 @@
+! { dg-do compile }
+! { dg-options "-fno-openmp -fopenmp-simd -fdump-tree-original -O2" }
+
+!$omp declare reduction (foo:integer:omp_out = omp_out + omp_in)
+ interface
+ integer function foo (x, y)
+ integer, value :: x, y
+!$omp declare simd (foo) linear (y : 2)
+ end function foo
+ end interface
+ integer :: i, a(64), b, c
+ integer, save :: d
+!$omp threadprivate (d)
+ d = 5
+ a = 6
+!$omp simd
+ do i = 1, 64
+ a(i) = foo (a(i), 2 * i)
+ end do
+ b = 0
+ c = 0
+!$omp simd reduction (+:b) reduction (foo:c)
+ do i = 1, 64
+ b = b + a(i)
+ c = c + a(i) * 2
+ end do
+ print *, b
+ b = 0
+!$omp parallel
+!$omp do simd schedule(static, 4) safelen (8) reduction (+:b)
+ do i = 1, 64
+ a(i) = a(i) + 1
+ b = b + 1
+ end do
+!$omp end parallel
+ print *, b
+ b = 0
+!$omp parallel do simd schedule(static, 4) safelen (8) &
+!$omp num_threads (4) if (.true.) reduction (+:b)
+ do i = 1, 64
+ a(i) = a(i) + 1
+ b = b + 1
+ end do
+ print *, b
+ b = 0
+!$omp parallel
+!$omp do simd schedule(static, 4) safelen (8) reduction (+:b)
+ do i = 1, 64
+ a(i) = a(i) + 1
+ b = b + 1
+ end do
+!$omp enddosimd
+!$omp end parallel
+ print *, b
+ b = 0
+!$omp parallel do simd schedule(static, 4) safelen (8) &
+!$omp num_threads (4) if (.true.) reduction (+:b)
+ do i = 1, 64
+ a(i) = a(i) + 1
+ b = b + 1
+ end do
+!$omp end parallel do simd
+!$omp atomic seq_cst
+ b = b + 1
+!$omp end atomic
+!$omp barrier
+!$omp parallel private (i)
+!$omp cancellation point parallel
+!$omp critical (bar)
+ b = b + 1
+!$omp end critical (bar)
+!$omp flush(b)
+!$omp single
+ b = b + 1
+!$omp end single
+!$omp do ordered
+ do i = 1, 10
+ !$omp atomic
+ b = b + 1
+ !$omp end atomic
+ !$omp ordered
+ print *, b
+ !$omp end ordered
+ end do
+!$omp end do
+!$omp master
+ b = b + 1
+!$omp end master
+!$omp cancel parallel
+!$omp end parallel
+!$omp parallel do schedule(runtime) num_threads(8)
+ do i = 1, 10
+ print *, b
+ end do
+!$omp end parallel do
+!$omp sections
+!$omp section
+ b = b + 1
+!$omp section
+ c = c + 1
+!$omp end sections
+ print *, b
+!$omp parallel sections firstprivate (b) if (.true.)
+!$omp section
+ b = b + 1
+!$omp section
+ c = c + 1
+!$omp endparallelsections
+!$omp workshare
+ b = 24
+!$omp end workshare
+!$omp parallel workshare num_threads (2)
+ b = b + 1
+ c = c + 1
+!$omp end parallel workshare
+ print *, b
+!$omp parallel
+!$omp single
+!$omp taskgroup
+!$omp task firstprivate (b)
+ b = b + 1
+!$omp taskyield
+!$omp end task
+!$omp task firstprivate (b)
+ b = b + 1
+!$omp end task
+!$omp taskwait
+!$omp end taskgroup
+!$omp end single
+!$omp end parallel
+ print *, a, c
+end
+
+! { dg-final { scan-tree-dump-times "pragma omp simd" 6 "original" } }
+! { dg-final { scan-tree-dump-times "pragma omp" 6 "original" } }
+! { dg-final { scan-tree-dump-times "__builtin_GOMP" 0 "original" } }
+! { dg-final { cleanup-tree-dump "original" } }
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/openmp-simd-2.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/openmp-simd-2.f90
new file mode 100644
index 000000000..4b2046a58
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/openmp-simd-2.f90
@@ -0,0 +1,28 @@
+! { dg-do compile }
+! { dg-options "-fopenmp -fopenmp-simd -fdump-tree-original -O2" }
+
+include 'openmp-simd-1.f90'
+
+! { dg-final { scan-tree-dump-times "pragma omp simd" 6 "original" } }
+! { dg-final { scan-tree-dump-times "pragma omp" 39 "original" } }
+! { dg-final { scan-tree-dump-times "pragma omp for" 6 "original" } }
+! { dg-final { scan-tree-dump-times "pragma omp parallel" 9 "original" } }
+! { dg-final { scan-tree-dump-times "pragma omp taskgroup" 1 "original" } }
+! Includes the above taskgroup
+! { dg-final { scan-tree-dump-times "pragma omp task" 3 "original" } }
+! { dg-final { scan-tree-dump-times "pragma omp critical" 1 "original" } }
+! { dg-final { scan-tree-dump-times "pragma omp atomic" 2 "original" } }
+! { dg-final { scan-tree-dump-times "pragma omp sections" 2 "original" } }
+! Includes the above sections
+! { dg-final { scan-tree-dump-times "pragma omp section" 6 "original" } }
+! { dg-final { scan-tree-dump-times "pragma omp single" 4 "original" } }
+! { dg-final { scan-tree-dump-times "pragma omp ordered" 1 "original" } }
+! { dg-final { scan-tree-dump-times "pragma omp master" 1 "original" } }
+! { dg-final { scan-tree-dump-times "__builtin_GOMP" 5 "original" } }
+! { dg-final { scan-tree-dump-times "__builtin_GOMP_barrier" 1 "original" } }
+! { dg-final { scan-tree-dump-times "__builtin_GOMP_cancellation_point" 1 "original" } }
+! Includes the above cancellation point
+! { dg-final { scan-tree-dump-times "__builtin_GOMP_cancel" 2 "original" } }
+! { dg-final { scan-tree-dump-times "__builtin_GOMP_taskyield" 1 "original" } }
+! { dg-final { scan-tree-dump-times "__builtin_GOMP_taskwait" 1 "original" } }
+! { dg-final { cleanup-tree-dump "original" } }
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/openmp-simd-3.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/openmp-simd-3.f90
new file mode 100644
index 000000000..2dece895f
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/openmp-simd-3.f90
@@ -0,0 +1,28 @@
+! { dg-do compile }
+! { dg-options "-fopenmp -fno-openmp-simd -fdump-tree-original -O2" }
+
+include 'openmp-simd-1.f90'
+
+! { dg-final { scan-tree-dump-times "pragma omp simd" 6 "original" } }
+! { dg-final { scan-tree-dump-times "pragma omp" 39 "original" } }
+! { dg-final { scan-tree-dump-times "pragma omp for" 6 "original" } }
+! { dg-final { scan-tree-dump-times "pragma omp parallel" 9 "original" } }
+! { dg-final { scan-tree-dump-times "pragma omp taskgroup" 1 "original" } }
+! Includes the above taskgroup
+! { dg-final { scan-tree-dump-times "pragma omp task" 3 "original" } }
+! { dg-final { scan-tree-dump-times "pragma omp critical" 1 "original" } }
+! { dg-final { scan-tree-dump-times "pragma omp atomic" 2 "original" } }
+! { dg-final { scan-tree-dump-times "pragma omp sections" 2 "original" } }
+! Includes the above sections
+! { dg-final { scan-tree-dump-times "pragma omp section" 6 "original" } }
+! { dg-final { scan-tree-dump-times "pragma omp single" 4 "original" } }
+! { dg-final { scan-tree-dump-times "pragma omp ordered" 1 "original" } }
+! { dg-final { scan-tree-dump-times "pragma omp master" 1 "original" } }
+! { dg-final { scan-tree-dump-times "__builtin_GOMP" 5 "original" } }
+! { dg-final { scan-tree-dump-times "__builtin_GOMP_barrier" 1 "original" } }
+! { dg-final { scan-tree-dump-times "__builtin_GOMP_cancellation_point" 1 "original" } }
+! Includes the above cancellation point
+! { dg-final { scan-tree-dump-times "__builtin_GOMP_cancel" 2 "original" } }
+! { dg-final { scan-tree-dump-times "__builtin_GOMP_taskyield" 1 "original" } }
+! { dg-final { scan-tree-dump-times "__builtin_GOMP_taskwait" 1 "original" } }
+! { dg-final { cleanup-tree-dump "original" } }
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/proc_ptr_2.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/proc_ptr_2.f90
new file mode 100644
index 000000000..d993429a7
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/proc_ptr_2.f90
@@ -0,0 +1,14 @@
+! { dg-do compile }
+ procedure(foo), pointer :: ptr
+ integer :: i
+ ptr => foo
+!$omp do reduction (+ : ptr) ! { dg-error "Procedure pointer|not found" }
+ do i = 1, 10
+ end do
+!$omp simd linear (ptr) ! { dg-error "must be INTEGER" }
+ do i = 1, 10
+ end do
+contains
+ subroutine foo
+ end subroutine
+end
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/reduction1.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/reduction1.f90
index 4912f7178..cdc530bf0 100644
--- a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/reduction1.f90
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/reduction1.f90
@@ -60,73 +60,73 @@ common /blk/ i1
!$omp end parallel
!$omp parallel reduction (*:ia1) ! { dg-error "Assumed size" }
!$omp end parallel
-!$omp parallel reduction (+:l1) ! { dg-error "must be of numeric type, got LOGICAL" }
+!$omp parallel reduction (+:l1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (*:la1) ! { dg-error "must be of numeric type, got LOGICAL" }
+!$omp parallel reduction (*:la1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (-:a1) ! { dg-error "must be of numeric type, got CHARACTER" }
+!$omp parallel reduction (-:a1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (+:t1) ! { dg-error "must be of numeric type, got TYPE" }
+!$omp parallel reduction (+:t1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (*:ta1) ! { dg-error "must be of numeric type, got TYPE" }
+!$omp parallel reduction (*:ta1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (.and.:i3) ! { dg-error "must be LOGICAL" }
+!$omp parallel reduction (.and.:i3) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (.or.:ia2) ! { dg-error "must be LOGICAL" }
+!$omp parallel reduction (.or.:ia2) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (.eqv.:r1) ! { dg-error "must be LOGICAL" }
+!$omp parallel reduction (.eqv.:r1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (.neqv.:ra1) ! { dg-error "must be LOGICAL" }
+!$omp parallel reduction (.neqv.:ra1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (.and.:d1) ! { dg-error "must be LOGICAL" }
+!$omp parallel reduction (.and.:d1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (.or.:da1) ! { dg-error "must be LOGICAL" }
+!$omp parallel reduction (.or.:da1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (.eqv.:c1) ! { dg-error "must be LOGICAL" }
+!$omp parallel reduction (.eqv.:c1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (.neqv.:ca1) ! { dg-error "must be LOGICAL" }
+!$omp parallel reduction (.neqv.:ca1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (.and.:a1) ! { dg-error "must be LOGICAL" }
+!$omp parallel reduction (.and.:a1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (.or.:t1) ! { dg-error "must be LOGICAL" }
+!$omp parallel reduction (.or.:t1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (.eqv.:ta1) ! { dg-error "must be LOGICAL" }
+!$omp parallel reduction (.eqv.:ta1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (min:c1) ! { dg-error "must be INTEGER or REAL" }
+!$omp parallel reduction (min:c1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (max:ca1) ! { dg-error "must be INTEGER or REAL" }
+!$omp parallel reduction (max:ca1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (max:l1) ! { dg-error "must be INTEGER or REAL" }
+!$omp parallel reduction (max:l1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (min:la1) ! { dg-error "must be INTEGER or REAL" }
+!$omp parallel reduction (min:la1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (max:a1) ! { dg-error "must be INTEGER or REAL" }
+!$omp parallel reduction (max:a1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (min:t1) ! { dg-error "must be INTEGER or REAL" }
+!$omp parallel reduction (min:t1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (max:ta1) ! { dg-error "must be INTEGER or REAL" }
+!$omp parallel reduction (max:ta1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (iand:r1) ! { dg-error "must be INTEGER" }
+!$omp parallel reduction (iand:r1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (ior:ra1) ! { dg-error "must be INTEGER" }
+!$omp parallel reduction (ior:ra1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (ieor:d1) ! { dg-error "must be INTEGER" }
+!$omp parallel reduction (ieor:d1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (ior:da1) ! { dg-error "must be INTEGER" }
+!$omp parallel reduction (ior:da1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (iand:c1) ! { dg-error "must be INTEGER" }
+!$omp parallel reduction (iand:c1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (ior:ca1) ! { dg-error "must be INTEGER" }
+!$omp parallel reduction (ior:ca1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (ieor:l1) ! { dg-error "must be INTEGER" }
+!$omp parallel reduction (ieor:l1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (iand:la1) ! { dg-error "must be INTEGER" }
+!$omp parallel reduction (iand:la1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (ior:a1) ! { dg-error "must be INTEGER" }
+!$omp parallel reduction (ior:a1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (ieor:t1) ! { dg-error "must be INTEGER" }
+!$omp parallel reduction (ieor:t1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
-!$omp parallel reduction (iand:ta1) ! { dg-error "must be INTEGER" }
+!$omp parallel reduction (iand:ta1) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found for type" }
!$omp end parallel
end subroutine
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/reduction3.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/reduction3.f90
index 2c113893a..9cab6d57d 100644
--- a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/reduction3.f90
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/reduction3.f90
@@ -16,7 +16,7 @@ subroutine f1
integer :: i, ior
ior = 6
i = 6
-!$omp parallel reduction (ior:i) ! { dg-error "is not INTRINSIC procedure name" }
+!$omp parallel reduction (ior:i) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found" }
!$omp end parallel
end subroutine f1
subroutine f2
@@ -27,7 +27,7 @@ subroutine f2
end function
end interface
i = 6
-!$omp parallel reduction (ior:i) ! { dg-error "is not INTRINSIC procedure name" }
+!$omp parallel reduction (ior:i) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found" }
i = ior (i, 3)
!$omp end parallel
end subroutine f2
@@ -50,7 +50,7 @@ subroutine f5
use mreduction3
integer :: i
i = 6
-!$omp parallel reduction (ior:i) ! { dg-error "is not INTRINSIC procedure name" }
+!$omp parallel reduction (ior:i) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found" }
i = ior (i, 7)
!$omp end parallel
end subroutine f5
@@ -58,7 +58,7 @@ subroutine f6
use mreduction3
integer :: i
i = 6
-!$omp parallel reduction (iand:i) ! { dg-error "is not INTRINSIC procedure name" }
+!$omp parallel reduction (iand:i) ! { dg-error "OMP DECLARE REDUCTION\[^\n\r\]*not found" }
i = iand (i, 18)
!$omp end parallel
end subroutine f6
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/target1.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/target1.f90
new file mode 100644
index 000000000..14db4970b
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/target1.f90
@@ -0,0 +1,520 @@
+! { dg-do compile }
+! { dg-options "-fopenmp" }
+
+module target1
+ interface
+ subroutine dosomething (a, n, m)
+ integer :: a (:), n, m
+ !$omp declare target
+ end subroutine dosomething
+ end interface
+contains
+ subroutine foo (n, o, p, q, r, pp)
+ integer :: n, o, p, q, r, s, i, j
+ integer :: a (2:o)
+ integer, pointer :: pp
+ !$omp target data device (n + 1) if (n .ne. 6) map (tofrom: n, r)
+ !$omp target device (n + 1) if (n .ne. 6) map (from: n) map (alloc: a(2:o))
+ call dosomething (a, n, 0)
+ !$omp end target
+ !$omp target teams device (n + 1) num_teams (n + 4) thread_limit (n * 2) &
+ !$omp & if (n .ne. 6)map (from: n) map (alloc: a(2:o)) default(shared) &
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r)
+ r = r + 1
+ p = q
+ call dosomething (a, n, p + q)
+ !$omp end target teams
+ !$omp target teams distribute device (n + 1) num_teams (n + 4) collapse (2) &
+ !$omp & if (n .ne. 6)map (from: n) map (alloc: a(2:o)) default(shared) &
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r) &
+ !$omp & thread_limit (n * 2) dist_schedule (static, 4)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ call dosomething (a, n, p + q)
+ end do
+ end do
+ !$omp target teams distribute device (n + 1) num_teams (n + 4) &
+ !$omp & if (n .ne. 6)map (from: n) map (alloc: a(2:o)) default(shared) &
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r) &
+ !$omp & thread_limit (n * 2) dist_schedule (static, 4)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ call dosomething (a, n, p + q)
+ end do
+ end do
+ !$omp end target teams distribute
+ !$omp target teams distribute parallel do device (n + 1) num_teams (n + 4) &
+ !$omp & if (n .ne. 6)map (from: n) map (alloc: a(2:o)) default(shared) &
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r) &
+ !$omp & thread_limit (n * 2) dist_schedule (static, 4) collapse (2) &
+ !$omp & num_threads (n + 4) proc_bind (spread) lastprivate (s) &
+ !$omp & ordered schedule (static, 8)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ call dosomething (a, n, p + q)
+ !$omp ordered
+ p = q
+ !$omp end ordered
+ s = i * 10 + j
+ end do
+ end do
+ !$omp target teams distribute parallel do device (n + 1) num_teams (n + 4) &
+ !$omp & if (n .ne. 6)map (from: n) map (alloc: a(2:o)) default(shared) &
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r) &
+ !$omp & thread_limit (n * 2) dist_schedule (static, 4) num_threads (n + 4) &
+ !$omp & proc_bind (master) lastprivate (s) ordered schedule (static, 8)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ call dosomething (a, n, p + q)
+ end do
+ !$omp ordered
+ p = q
+ !$omp end ordered
+ s = i * 10
+ end do
+ !$omp end target teams distribute parallel do
+ !$omp target teams distribute parallel do simd device (n + 1) &
+ !$omp & if (n .ne. 6)map (from: n) map (alloc: a(2:o)) default(shared) &
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r) &
+ !$omp & thread_limit (n * 2) dist_schedule (static, 4) collapse (2) &
+ !$omp & num_threads (n + 4) proc_bind (spread) lastprivate (s) &
+ !$omp & schedule (static, 8) num_teams (n + 4) safelen(8)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ a(2+i*10+j) = p + q
+ s = i * 10 + j
+ end do
+ end do
+ !$omp target teams distribute parallel do simd device (n + 1) &
+ !$omp & if (n .ne. 6)map (from: n) map (alloc: a(2:o)) default(shared) &
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r) &
+ !$omp & thread_limit (n * 2) dist_schedule (static, 4) num_threads (n + 4) &
+ !$omp & proc_bind (master) lastprivate (s) schedule (static, 8) &
+ !$omp & num_teams (n + 4) safelen(16) linear(i:1) aligned (pp:4)
+ do i = 1, 10
+ r = r + 1
+ p = q
+ a(1+i) = p + q
+ s = i * 10
+ end do
+ !$omp end target teams distribute parallel do simd
+ !$omp target teams distribute simd device (n + 1) &
+ !$omp & if (n .ne. 6)map (from: n) map (alloc: a(2:o)) default(shared) &
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r) &
+ !$omp & thread_limit (n * 2) dist_schedule (static, 4) collapse (2) &
+ !$omp & lastprivate (s) num_teams (n + 4) safelen(8)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ a(2+i*10+j) = p + q
+ s = i * 10 + j
+ end do
+ end do
+ !$omp target teams distribute simd device (n + 1) &
+ !$omp & if (n .ne. 6)map (from: n) map (alloc: a(2:o)) default(shared) &
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r) &
+ !$omp & thread_limit (n * 2) dist_schedule (static, 4) lastprivate (s) &
+ !$omp & num_teams (n + 4) safelen(16) linear(i:1) aligned (pp:4)
+ do i = 1, 10
+ r = r + 1
+ p = q
+ a(1+i) = p + q
+ s = i * 10
+ end do
+ !$omp end target teams distribute simd
+ !$omp target device (n + 1) if (n .ne. 6)map (from: n) map (alloc: a(2:o))
+ !$omp teams num_teams (n + 4) thread_limit (n * 2) default(shared) &
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r)
+ r = r + 1
+ p = q
+ call dosomething (a, n, p + q)
+ !$omp end teams
+ !$omp end target
+ !$omp target device (n + 1) if (n .ne. 6)map (from: n) map (alloc: a(2:o))
+ !$omp teams distribute num_teams (n + 4) collapse (2) default(shared) &
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r) &
+ !$omp & thread_limit (n * 2) dist_schedule (static, 4)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ call dosomething (a, n, p + q)
+ end do
+ end do
+ !$omp end target
+ !$omp target device (n + 1) if (n .ne. 6)map (from: n) map (alloc: a(2:o))
+ !$omp teams distribute num_teams (n + 4) default(shared) &
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r) &
+ !$omp & thread_limit (n * 2) dist_schedule (static, 4)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ call dosomething (a, n, p + q)
+ end do
+ end do
+ !$omp end teams distribute
+ !$omp end target
+ !$omp target device (n + 1) if (n .ne. 6)map (from: n) map (alloc: a(2:o))
+ !$omp teams distribute parallel do num_teams (n + 4) &
+ !$omp & if (n .ne. 6) default(shared) ordered schedule (static, 8) &
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r) &
+ !$omp & thread_limit (n * 2) dist_schedule (static, 4) collapse (2) &
+ !$omp & num_threads (n + 4) proc_bind (spread) lastprivate (s)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ call dosomething (a, n, p + q)
+ !$omp ordered
+ p = q
+ !$omp end ordered
+ s = i * 10 + j
+ end do
+ end do
+ !$omp end target
+ !$omp target device (n + 1) if (n .ne. 6)map (from: n) map (alloc: a(2:o))
+ !$omp teams distribute parallel do num_teams (n + 4)if(n.ne.6)default(shared)&
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r) &
+ !$omp & thread_limit (n * 2) dist_schedule (static, 4) num_threads (n + 4) &
+ !$omp & proc_bind (master) lastprivate (s) ordered schedule (static, 8)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ call dosomething (a, n, p + q)
+ end do
+ !$omp ordered
+ p = q
+ !$omp end ordered
+ s = i * 10
+ end do
+ !$omp end teams distribute parallel do
+ !$omp end target
+ !$omp target device (n + 1) if (n .ne. 6)map (from: n) map (alloc: a(2:o))
+ !$omp teams distribute parallel do simd if(n.ne.6)default(shared)&
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r) &
+ !$omp & thread_limit (n * 2) dist_schedule (static, 4) collapse (2) &
+ !$omp & num_threads (n + 4) proc_bind (spread) lastprivate (s) &
+ !$omp & schedule (static, 8) num_teams (n + 4) safelen(8)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ a(2+i*10+j) = p + q
+ s = i * 10 + j
+ end do
+ end do
+ !$omp end target
+ !$omp target device (n + 1) if (n .ne. 6)map (from: n) map (alloc: a(2:o))
+ !$omp teams distribute parallel do simd if (n .ne. 6)default(shared) &
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r) &
+ !$omp & thread_limit (n * 2) dist_schedule (static, 4) num_threads (n + 4) &
+ !$omp & proc_bind (master) lastprivate (s) schedule (static, 8) &
+ !$omp & num_teams (n + 4) safelen(16) linear(i:1) aligned (pp:4)
+ do i = 1, 10
+ r = r + 1
+ p = q
+ a(1+i) = p + q
+ s = i * 10
+ end do
+ !$omp end teams distribute parallel do simd
+ !$omp end target
+ !$omp target device (n + 1) if (n .ne. 6)map (from: n) map (alloc: a(2:o))
+ !$omp teams distribute simd default(shared) safelen(8) &
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r) &
+ !$omp & thread_limit (n * 2) dist_schedule (static, 4) collapse (2) &
+ !$omp & lastprivate (s) num_teams (n + 4)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ a(2+i*10+j) = p + q
+ s = i * 10 + j
+ end do
+ end do
+ !$omp end target
+ !$omp target device (n + 1) if (n .ne. 6)map (from: n) map (alloc: a(2:o))
+ !$omp teams distribute simd default(shared) aligned (pp:4) &
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r) &
+ !$omp & thread_limit (n * 2) dist_schedule (static, 4) lastprivate (s)
+ do i = 1, 10
+ r = r + 1
+ p = q
+ a(1+i) = p + q
+ s = i * 10
+ end do
+ !$omp end teams distribute simd
+ !$omp end target
+ !$omp target teams device (n + 1) if (n .ne. 6)map (from: n) &
+ !$omp & map (alloc: a(2:o)) num_teams (n + 4) thread_limit (n * 2) &
+ !$omp & default(shared) shared(n) private (p) reduction ( + : r )
+ !$omp distribute collapse (2) firstprivate (q) dist_schedule (static, 4)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ call dosomething (a, n, p + q)
+ end do
+ end do
+ !$omp end target teams
+ !$omp target teams device (n + 1) if (n .ne. 6)map (from: n) &
+ !$omp & map (alloc: a(2:o)) num_teams (n + 4) thread_limit (n * 2) &
+ !$omp & default(shared) shared(n) private (p) reduction(+:r)
+ !$omp distribute firstprivate (q) dist_schedule (static, 4)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ call dosomething (a, n, p + q)
+ end do
+ end do
+ !$omp end distribute
+ !$omp end target teams
+ !$omp target teams device (n + 1) if (n .ne. 6)map (from: n) &
+ !$omp & map (alloc: a(2:o)) num_teams (n + 4) thread_limit (n * 2) &
+ !$omp & default(shared) shared(n) private (p) reduction(+:r)
+ !$omp distribute parallel do if (n .ne. 6) default(shared) &
+ !$omp & ordered schedule (static, 8) private (p) firstprivate (q) &
+ !$omp & shared(n)reduction(+:r)dist_schedule(static,4)collapse(2)&
+ !$omp & num_threads (n + 4) proc_bind (spread) lastprivate (s)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ call dosomething (a, n, p + q)
+ !$omp ordered
+ p = q
+ !$omp end ordered
+ s = i * 10 + j
+ end do
+ end do
+ !$omp end target teams
+ !$omp target teams device (n + 1) if (n .ne. 6)map (from: n) &
+ !$omp & map (alloc: a(2:o)) num_teams (n + 4) thread_limit (n * 2) &
+ !$omp & default(shared) shared(n) private (p) reduction(+:r)
+ !$omp distribute parallel do if(n.ne.6)default(shared)&
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r) &
+ !$omp & dist_schedule (static, 4) num_threads (n + 4) &
+ !$omp & proc_bind (master) lastprivate (s) ordered schedule (static, 8)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ call dosomething (a, n, p + q)
+ end do
+ !$omp ordered
+ p = q
+ !$omp end ordered
+ s = i * 10
+ end do
+ !$omp end distribute parallel do
+ !$omp end target teams
+ !$omp target teams device (n + 1) if (n .ne. 6)map (from: n) &
+ !$omp & map (alloc: a(2:o)) num_teams (n + 4) thread_limit (n * 2) &
+ !$omp & default(shared) shared(n) private (p) reduction(+:r)
+ !$omp distribute parallel do simd if(n.ne.6)default(shared)&
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r) &
+ !$omp & dist_schedule (static, 4) collapse (2) safelen(8) &
+ !$omp & num_threads (n + 4) proc_bind (spread) lastprivate (s) &
+ !$omp & schedule (static, 8)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ a(2+i*10+j) = p + q
+ s = i * 10 + j
+ end do
+ end do
+ !$omp end target teams
+ !$omp target teams device (n + 1) if (n .ne. 6)map (from: n) &
+ !$omp & map (alloc: a(2:o)) num_teams (n + 4) thread_limit (n * 2) &
+ !$omp & default(shared) shared(n) private (p) reduction(+:r)
+ !$omp distribute parallel do simd if (n .ne. 6)default(shared) &
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r) &
+ !$omp & dist_schedule (static, 4) num_threads (n + 4) &
+ !$omp & proc_bind (master) lastprivate (s) schedule (static, 8) &
+ !$omp & safelen(16) linear(i:1) aligned (pp:4)
+ do i = 1, 10
+ r = r + 1
+ p = q
+ a(1+i) = p + q
+ s = i * 10
+ end do
+ !$omp end distribute parallel do simd
+ !$omp end target teams
+ !$omp target teams device (n + 1) if (n .ne. 6)map (from: n) &
+ !$omp & map (alloc: a(2:o)) num_teams (n + 4) thread_limit (n * 2) &
+ !$omp & default(shared) shared(n) private (p) reduction(+:r)
+ !$omp distribute simd safelen(8) lastprivate(s) &
+ !$omp & private (p) firstprivate (q) reduction (+: r) &
+ !$omp & dist_schedule (static, 4) collapse (2)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ a(2+i*10+j) = p + q
+ s = i * 10 + j
+ end do
+ end do
+ !$omp end target teams
+ !$omp target teams device (n + 1) if (n .ne. 6)map (from: n) &
+ !$omp & map (alloc: a(2:o)) num_teams (n + 4) thread_limit (n * 2) &
+ !$omp & default(shared) shared(n) private (p) reduction(+:r)
+ !$omp distribute simd aligned (pp:4) &
+ !$omp & private (p) firstprivate (q) reduction (+: r) &
+ !$omp & dist_schedule (static, 4) lastprivate (s)
+ do i = 1, 10
+ r = r + 1
+ p = q
+ a(1+i) = p + q
+ s = i * 10
+ end do
+ !$omp end distribute simd
+ !$omp end target teams
+ !$omp end target data
+ end subroutine
+ subroutine bar (n, o, p, r, pp)
+ integer :: n, o, p, q, r, s, i, j
+ integer :: a (2:o)
+ integer, pointer :: pp
+ common /blk/ i, j, q
+ !$omp target teams device (n + 1) if (n .ne. 6)map (from: n) &
+ !$omp & map (alloc: a(2:o)) num_teams (n + 4) thread_limit (n * 2) &
+ !$omp & default(shared) shared(n) private (p) reduction ( + : r )
+ !$omp distribute collapse (2) firstprivate (q) dist_schedule (static, 4)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ call dosomething (a, n, p + q)
+ end do
+ end do
+ !$omp end target teams
+ !$omp target teams device (n + 1) if (n .ne. 6)map (from: n) &
+ !$omp & map (alloc: a(2:o)) num_teams (n + 4) thread_limit (n * 2) &
+ !$omp & default(shared) shared(n) private (p) reduction(+:r)
+ !$omp distribute firstprivate (q) dist_schedule (static, 4)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ call dosomething (a, n, p + q)
+ end do
+ end do
+ !$omp end distribute
+ !$omp end target teams
+ !$omp target teams device (n + 1) if (n .ne. 6)map (from: n) &
+ !$omp & map (alloc: a(2:o)) num_teams (n + 4) thread_limit (n * 2) &
+ !$omp & default(shared) shared(n) private (p) reduction(+:r)
+ !$omp distribute parallel do if (n .ne. 6) default(shared) &
+ !$omp & ordered schedule (static, 8) private (p) firstprivate (q) &
+ !$omp & shared(n)reduction(+:r)dist_schedule(static,4)collapse(2)&
+ !$omp & num_threads (n + 4) proc_bind (spread) lastprivate (s)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ call dosomething (a, n, p + q)
+ !$omp ordered
+ p = q
+ !$omp end ordered
+ s = i * 10 + j
+ end do
+ end do
+ !$omp end target teams
+ !$omp target teams device (n + 1) if (n .ne. 6)map (from: n) &
+ !$omp & map (alloc: a(2:o)) num_teams (n + 4) thread_limit (n * 2) &
+ !$omp & default(shared) shared(n) private (p) reduction(+:r)
+ !$omp distribute parallel do if(n.ne.6)default(shared)&
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r) &
+ !$omp & dist_schedule (static, 4) num_threads (n + 4) &
+ !$omp & proc_bind (master) lastprivate (s) ordered schedule (static, 8)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ call dosomething (a, n, p + q)
+ end do
+ !$omp ordered
+ p = q
+ !$omp end ordered
+ s = i * 10
+ end do
+ !$omp end distribute parallel do
+ !$omp end target teams
+ !$omp target teams device (n + 1) if (n .ne. 6)map (from: n) &
+ !$omp & map (alloc: a(2:o)) num_teams (n + 4) thread_limit (n * 2) &
+ !$omp & default(shared) shared(n) private (p) reduction(+:r)
+ !$omp distribute parallel do simd if(n.ne.6)default(shared)&
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r) &
+ !$omp & dist_schedule (static, 4) collapse (2) safelen(8) &
+ !$omp & num_threads (n + 4) proc_bind (spread) lastprivate (s) &
+ !$omp & schedule (static, 8)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ a(2+i*10+j) = p + q
+ s = i * 10 + j
+ end do
+ end do
+ !$omp end target teams
+ !$omp target teams device (n + 1) if (n .ne. 6)map (from: n) &
+ !$omp & map (alloc: a(2:o)) num_teams (n + 4) thread_limit (n * 2) &
+ !$omp & default(shared) shared(n) private (p) reduction(+:r)
+ !$omp distribute parallel do simd if (n .ne. 6)default(shared) &
+ !$omp & private (p) firstprivate (q) shared (n) reduction (+: r) &
+ !$omp & dist_schedule (static, 4) num_threads (n + 4) &
+ !$omp & proc_bind (master) lastprivate (s) schedule (static, 8) &
+ !$omp & safelen(16) linear(i:1) aligned (pp:4)
+ do i = 1, 10
+ r = r + 1
+ p = q
+ a(1+i) = p + q
+ s = i * 10
+ end do
+ !$omp end distribute parallel do simd
+ !$omp end target teams
+ !$omp target teams device (n + 1) if (n .ne. 6)map (from: n) &
+ !$omp & map (alloc: a(2:o)) num_teams (n + 4) thread_limit (n * 2) &
+ !$omp & default(shared) shared(n) private (p) reduction(+:r)
+ !$omp distribute simd safelen(8) lastprivate(s) &
+ !$omp & private (p) firstprivate (q) reduction (+: r) &
+ !$omp & dist_schedule (static, 4) collapse (2)
+ do i = 1, 10
+ do j = 1, 10
+ r = r + 1
+ p = q
+ a(2+i*10+j) = p + q
+ s = i * 10 + j
+ end do
+ end do
+ !$omp end target teams
+ !$omp target teams device (n + 1) if (n .ne. 6)map (from: n) &
+ !$omp & map (alloc: a(2:o)) num_teams (n + 4) thread_limit (n * 2) &
+ !$omp & default(shared) shared(n) private (p) reduction(+:r)
+ !$omp distribute simd aligned (pp:4) &
+ !$omp & private (p) firstprivate (q) reduction (+: r) &
+ !$omp & dist_schedule (static, 4) lastprivate (s)
+ do i = 1, 10
+ r = r + 1
+ p = q
+ a(1+i) = p + q
+ s = i * 10
+ end do
+ !$omp end distribute simd
+ !$omp end target teams
+ end subroutine
+end module
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/target2.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/target2.f90
new file mode 100644
index 000000000..7521331fc
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/target2.f90
@@ -0,0 +1,74 @@
+! { dg-do compile }
+! { dg-options "-fopenmp -ffree-line-length-160" }
+
+subroutine foo (n, s, t, u, v, w)
+ integer :: n, i, s, t, u, v, w
+ common /bar/ i
+ !$omp simd safelen(s + 1)
+ do i = 1, n
+ end do
+ !$omp do schedule (static, t * 2)
+ do i = 1, n
+ end do
+ !$omp do simd safelen(s + 1) schedule (static, t * 2)
+ do i = 1, n
+ end do
+ !$omp parallel do schedule (static, t * 2) num_threads (u - 1)
+ do i = 1, n
+ end do
+ !$omp parallel do simd safelen(s + 1) schedule (static, t * 2) num_threads (u - 1)
+ do i = 1, n
+ end do
+ !$omp distribute dist_schedule (static, v + 8)
+ do i = 1, n
+ end do
+ !$omp distribute simd dist_schedule (static, v + 8) safelen(s + 1)
+ do i = 1, n
+ end do
+ !$omp distribute parallel do simd dist_schedule (static, v + 8) safelen(s + 1) &
+ !$omp & schedule (static, t * 2) num_threads (u - 1)
+ do i = 1, n
+ end do
+ !$omp distribute parallel do dist_schedule (static, v + 8) num_threads (u - 1) &
+ !$omp & schedule (static, t * 2)
+ do i = 1, n
+ end do
+ !$omp target
+ !$omp teams distribute dist_schedule (static, v + 8) num_teams (w + 8)
+ do i = 1, n
+ end do
+ !$omp end target
+ !$omp target
+ !$omp teams distribute simd dist_schedule (static, v + 8) safelen(s + 1) &
+ !$omp & num_teams (w + 8)
+ do i = 1, n
+ end do
+ !$omp end target
+ !$omp target
+ !$omp teams distribute parallel do simd dist_schedule (static, v + 8) safelen(s + 1) &
+ !$omp & schedule (static, t * 2) num_threads (u - 1) num_teams (w + 8)
+ do i = 1, n
+ end do
+ !$omp end target
+ !$omp target
+ !$omp teams distribute parallel do dist_schedule (static, v + 8) num_threads (u - 1) &
+ !$omp & schedule (static, t * 2) num_teams (w + 8)
+ do i = 1, n
+ end do
+ !$omp end target
+ !$omp target teams distribute dist_schedule (static, v + 8) num_teams (w + 8)
+ do i = 1, n
+ end do
+ !$omp target teams distribute simd dist_schedule (static, v + 8) safelen(s + 1) &
+ !$omp & num_teams (w + 8)
+ do i = 1, n
+ end do
+ !$omp target teams distribute parallel do simd dist_schedule (static, v + 8) safelen(s + 1) &
+ !$omp & schedule (static, t * 2) num_threads (u - 1) num_teams (w + 8)
+ do i = 1, n
+ end do
+ !$omp target teams distribute parallel do dist_schedule (static, v + 8) num_threads (u - 1) &
+ !$omp & schedule (static, t * 2) num_teams (w + 8)
+ do i = 1, n
+ end do
+end subroutine
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/target3.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/target3.f90
new file mode 100644
index 000000000..53a9682bf
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/target3.f90
@@ -0,0 +1,12 @@
+! { dg-do compile }
+! { dg-options "-fopenmp" }
+
+subroutine foo (r)
+ integer :: i, r
+ !$omp target
+ !$omp target teams distribute parallel do reduction (+: r) ! { dg-warning "target construct inside of target region" }
+ do i = 1, 10
+ r = r + 1
+ end do
+ !$omp end target
+end subroutine
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr1.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr1.f90
new file mode 100644
index 000000000..84601310c
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr1.f90
@@ -0,0 +1,41 @@
+! { dg-do compile }
+
+subroutine f1
+!$omp declare reduction (.le.:integer:omp_out = omp_out + omp_in) ! { dg-error "Invalid operator for" }
+end subroutine f1
+subroutine f2
+!$omp declare reduction (bar:real(kind=4):omp_out = omp_out + omp_in)
+ real(kind=4) :: r
+ integer :: i
+ r = 0.0
+!$omp parallel do reduction (bar:r)
+ do i = 1, 10
+ r = r + i
+ end do
+!$omp parallel do reduction (foo:r) ! { dg-error "foo not found" }
+ do i = 1, 10
+ r = r + i
+ end do
+!$omp parallel do reduction (.gt.:r) ! { dg-error "cannot be used as a defined operator" }
+ do i = 1, 10
+ r = r + i
+ end do
+end subroutine f2
+subroutine f3
+!$omp declare reduction (foo:blah:omp_out=omp_out + omp_in) ! { dg-error "Unclassifiable OpenMP directive" }
+end subroutine f3
+subroutine f4
+!$omp declare reduction (foo:integer:a => null()) ! { dg-error "Invalid character in name" }
+!$omp declare reduction (foo:integer:omp_out = omp_in + omp_out) &
+!$omp & initializer(a => null()) ! { dg-error "Invalid character in name" }
+end subroutine f4
+subroutine f5
+ integer :: a, b
+!$omp declare reduction (foo:integer:a = b + 1) ! { dg-error "Variable other than OMP_OUT or OMP_IN used in combiner" }
+!$omp declare reduction (bar:integer:omp_out = omp_out * omp_in) &
+!$omp & initializer(b = a + 1) ! { dg-error "Variable other than OMP_PRIV or OMP_ORIG used in INITIALIZER clause" }
+end subroutine f5
+subroutine f6
+!$omp declare reduction (foo:integer:omp_out=omp_out+omp_in) &
+!$omp & initializer(omp_orig=omp_priv)
+end subroutine f6
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr2.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr2.f90
new file mode 100644
index 000000000..7038d1869
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr2.f90
@@ -0,0 +1,53 @@
+! { dg-do compile }
+
+subroutine f6
+!$omp declare reduction (foo:real:omp_out (omp_in)) ! { dg-error "Unclassifiable OpenMP directive" }
+!$omp declare reduction (bar:real:omp_out = omp_in * omp_out) & ! { dg-error "Unclassifiable OpenMP directive" }
+!$omp & initializer (omp_priv (omp_orig))
+end subroutine f6
+subroutine f7
+ integer :: a
+!$omp declare reduction (foo:integer:a (omp_out, omp_in)) ! { dg-error "Unclassifiable OpenMP directive" }
+!$omp declare reduction (bar:real:omp_out = omp_out.or.omp_in) ! { dg-error "Operands of logical operator" }
+!$omp declare reduction (baz:real:omp_out = omp_out + omp_in)
+!$omp & initializer (a (omp_priv, omp_orig)) ! { dg-error "Unclassifiable OpenMP directive" }
+ real :: r
+ r = 0.0
+!$omp parallel reduction (bar:r)
+!$omp end parallel
+end subroutine f7
+subroutine f8
+ interface
+ subroutine f8a (x)
+ integer :: x
+ end subroutine f8a
+ end interface
+!$omp declare reduction (baz:integer:omp_out = omp_out + omp_in) &
+!$omp & initializer (f8a (omp_orig)) ! { dg-error "One of actual subroutine arguments in INITIALIZER clause" }
+!$omp declare reduction (foo:integer:f8a) ! { dg-error "is not a variable" }
+!$omp declare reduction (bar:integer:omp_out = omp_out - omp_in) &
+!$omp & initializer (f8a) ! { dg-error "is not a variable" }
+end subroutine f8
+subroutine f9
+ type dt ! { dg-error "which is not consistent with the CALL" }
+ integer :: x = 0
+ integer :: y = 0
+ end type dt
+ integer :: i
+!$omp declare reduction (foo:integer:dt (omp_out, omp_in)) ! { dg-error "which is not consistent with the CALL" }
+!$omp declare reduction (bar:integer:omp_out = omp_out + omp_in) &
+!$omp & initializer (dt (omp_priv, omp_orig)) ! { dg-error "which is not consistent with the CALL" }
+ i = 0
+!$omp parallel reduction (foo : i)
+!$omp end parallel
+!$omp parallel reduction (bar : i)
+!$omp end parallel
+end subroutine f9
+subroutine f10
+ integer :: a, b
+!$omp declare reduction(foo:character(len=64) &
+!$omp & :omp_out(a:b) = omp_in(a:b)) ! { dg-error "Variable other than OMP_OUT or OMP_IN used in combiner" }
+!$omp declare reduction(bar:character(len=16) &
+!$omp & :omp_out = trim(omp_out) // omp_in) &
+!$omp & initializer (omp_priv(a:b) = ' ') ! { dg-error "Variable other than OMP_PRIV or OMP_ORIG used in INITIALIZER clause" }
+end subroutine f10
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr3.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr3.f90
new file mode 100644
index 000000000..a4feaddd1
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr3.f90
@@ -0,0 +1,75 @@
+! { dg-do compile }
+
+subroutine f1
+ type dt
+ logical :: l = .false.
+ end type
+ type dt2
+ logical :: l = .false.
+ end type
+!$omp declare reduction (foo:integer(kind = 4) & ! { dg-error "Previous !.OMP DECLARE REDUCTION" }
+!$omp & :omp_out = omp_out + omp_in)
+!$omp declare reduction (foo:integer(kind = 4) : & ! { dg-error "Redefinition of !.OMP DECLARE REDUCTION" }
+!$omp & omp_out = omp_out + omp_in)
+!$omp declare reduction (bar:integer, &
+!$omp & real:omp_out = omp_out + omp_in)
+!$omp declare reduction (baz:integer,real,integer & ! { dg-error "Redefinition of !.OMP DECLARE REDUCTION|Previous" }
+!$omp & : omp_out = omp_out + omp_in)
+!$omp declare reduction (id1:dt,dt2:omp_out%l=omp_out%l &
+!$omp & .or.omp_in%l)
+!$omp declare reduction (id2:dt,dt:omp_out%l=omp_out%l & ! { dg-error "Redefinition of !.OMP DECLARE REDUCTION|Previous" }
+!$omp & .or.omp_in%l)
+!$omp declare reduction (id3:dt2,dt:omp_out%l=omp_out%l & ! { dg-error "Previous !.OMP DECLARE REDUCTION" }
+!$omp & .or.omp_in%l)
+!$omp declare reduction (id3:dt2:omp_out%l=omp_out%l & ! { dg-error "Redefinition of !.OMP DECLARE REDUCTION" }
+!$omp & .or.omp_in%l)
+end subroutine f1
+subroutine f2
+ interface
+ subroutine f2a (x, y, z)
+ character (len = *) :: x, y
+ logical :: z
+ end subroutine
+ end interface
+ interface f2b
+ subroutine f2b (x, y, z)
+ character (len = *, kind = 1) :: x, y
+ logical :: z
+ end subroutine
+ subroutine f2c (x, y, z)
+ character (kind = 4, len = *) :: x, y
+ logical :: z
+ end subroutine
+ end interface
+!$omp declare reduction (foo:character(len=*): &
+!$omp & f2a (omp_out, omp_in, .false.)) &
+!$omp & initializer (f2a (omp_priv, omp_orig, .true.))
+!$omp declare reduction (bar:character(len=:): &
+!$omp & f2a (omp_out, omp_in, .false.)) &
+!$omp & initializer (f2a (omp_priv, omp_orig, .true.))
+!$omp declare reduction (baz:character(len=4): &
+!$omp & f2a (omp_out, omp_in, .false.)) &
+!$omp & initializer (f2a (omp_priv, omp_orig, .true.))
+!$omp declare reduction (baz:character(len=5): &
+!$omp & f2a (omp_out, omp_in, .false.)) &
+!$omp & initializer (f2a (omp_priv, omp_orig, .true.))
+!$omp declare reduction (baz:character(len=6): &
+!$omp & f2a (omp_out, omp_in, .false.)) &
+!$omp & initializer (f2a (omp_priv, omp_orig, .true.))
+!$omp declare reduction (id:character(len=*): & ! { dg-error "Previous !.OMP DECLARE REDUCTION" }
+!$omp & f2a (omp_out, omp_in, .false.)) &
+!$omp & initializer (f2a (omp_priv, omp_orig, .true.))
+!$omp declare reduction (id: & ! { dg-error "Redefinition of !.OMP DECLARE REDUCTION" }
+!$omp & character(len=:) : f2a (omp_out, omp_in, .false.)) &
+!$omp & initializer (f2a (omp_priv, omp_orig, .true.))
+!$omp declare reduction & ! { dg-error "Redefinition of !.OMP DECLARE REDUCTION|Previous" }
+!$omp (id2:character(len=*), character(len=:): &
+!$omp f2a (omp_out, omp_in, .false.)) &
+!$omp & initializer (f2a (omp_priv, omp_orig, .true.))
+!$omp declare reduction (id3:character(len=*, kind = 1), character(kind=4, len=:): &
+!$omp f2b (omp_out, omp_in, .false.)) &
+!$omp & initializer (f2b (omp_priv, omp_orig, .true.))
+!$omp declare reduction (id4:character(kind=4, len=4), character(kind =1, len=4): &
+!$omp f2b (omp_out, omp_in, .false.)) &
+!$omp & initializer (f2b (omp_priv, omp_orig, .true.))
+end subroutine f2
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr4.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr4.f90
new file mode 100644
index 000000000..b48c1090f
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr4.f90
@@ -0,0 +1,74 @@
+! { dg-do compile }
+
+subroutine f3
+!$omp declare reduction ! { dg-error "Unclassifiable OpenMP directive" }
+!$omp declare reduction foo ! { dg-error "Unclassifiable OpenMP directive" }
+!$omp declare reduction (foo) ! { dg-error "Unclassifiable OpenMP directive" }
+!$omp declare reduction (foo:integer) ! { dg-error "Unclassifiable OpenMP directive" }
+!$omp declare reduction (foo:integer:omp_out=omp_out+omp_in) &
+!$omp & initializer(omp_priv=0) initializer(omp_priv=0) ! { dg-error "Unexpected junk after" }
+end subroutine f3
+subroutine f4
+ implicit integer (o)
+ implicit real (b)
+!$omp declare reduction (foo:integer:omp_priv(omp_out,omp_in)) ! { dg-error "Implicitly declared subroutine omp_priv" }
+!$omp declare reduction (foo:real:bar(omp_out,omp_in)) ! { dg-error "Implicitly declared subroutine bar used" }
+!$omp declare reduction (bar:integer:omp_out=omp_out+omp_in) &
+!$omp & initializer(omp_out (omp_priv)) ! { dg-error "Implicitly declared subroutine omp_out used" }
+!$omp declare reduction (bar:real:omp_out=omp_out+omp_in) &
+!$omp & initializer(bar (omp_priv, omp_orig)) ! { dg-error "Implicitly declared subroutine bar used" }
+!$omp declare reduction (id1:integer:omp_out=omp_orig(omp_out,omp_in)) ! { dg-error "Implicitly declared function omp_orig used" }
+!$omp declare reduction (id1:real:omp_out=foo(omp_out,omp_in)) ! { dg-error "Implicitly declared function foo used" }
+!$omp declare reduction (id2:integer:omp_out=omp_out+omp_in) &
+!$omp & initializer(omp_priv = omp_in (omp_orig)) ! { dg-error "Implicitly declared function omp_in used" }
+!$omp declare reduction (id2:real:omp_out=omp_out+omp_in) &
+!$omp & initializer(omp_priv = baz (omp_orig)) ! { dg-error "Implicitly declared function baz used" }
+ integer :: i
+ real :: r
+ i = 0
+ r = 0
+!$omp parallel reduction (foo: i, r)
+!$omp end parallel
+!$omp parallel reduction (bar: i, r)
+!$omp end parallel
+!$omp parallel reduction (id1: i, r)
+!$omp end parallel
+!$omp parallel reduction (id2: i, r)
+!$omp end parallel
+end subroutine f4
+subroutine f5
+ interface
+ subroutine f5a (x, *, y)
+ double precision :: x, y
+ end subroutine f5a
+ end interface
+!$omp declare reduction (foo:double precision: & ! { dg-error "Subroutine call with alternate returns in combiner" }
+!$omp & f5a (omp_out, *10, omp_in))
+!$omp declare reduction (bar:double precision: &
+!$omp omp_out = omp_in + omp_out) &
+!$omp & initializer (f5a (omp_priv, *20, omp_orig)) ! { dg-error "Subroutine call with alternate returns in INITIALIZER clause" }
+10 continue
+20 continue
+end subroutine f5
+subroutine f6
+ integer :: a
+!$omp declare reduction(foo:character(len=a*2) & ! { dg-error "cannot appear in the expression|not constant" }
+!$omp & :omp_out=trim(omp_out)//omp_in) &
+!$omp & initializer(omp_priv=' ')
+end subroutine f6
+subroutine f7
+ type dt1
+ integer :: a = 1
+ integer :: b
+ end type
+ type dt2
+ integer :: a = 2
+ integer :: b = 3
+ end type
+ type dt3
+ integer :: a
+ integer :: b
+ end type dt3
+!$omp declare reduction(foo:dt1,dt2:omp_out%a=omp_out%a+omp_in%a)
+!$omp declare reduction(foo:dt3:omp_out%a=omp_out%a+omp_in%a) ! { dg-error "Missing INITIALIZER clause for !.OMP DECLARE REDUCTION of derived type without default initializer" }
+end subroutine f7
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr5.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr5.f90
new file mode 100644
index 000000000..aebeee3a2
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr5.f90
@@ -0,0 +1,59 @@
+! { dg-do compile }
+
+module udr5m1
+ type dt
+ real :: r
+ end type dt
+end module udr5m1
+module udr5m2
+ use udr5m1
+ interface operator(+)
+ module procedure addm2
+ end interface
+!$omp declare reduction(+:dt:omp_out=omp_out+omp_in) &
+!$omp & initializer(omp_priv=dt(0.0))
+!$omp declare reduction(.myadd.:dt:omp_out=omp_out.myadd.omp_in) &
+!$omp & initializer(omp_priv=dt(0.0))
+ interface operator(.myadd.)
+ module procedure addm2
+ end interface
+contains
+ type(dt) function addm2 (x, y)
+ type(dt), intent (in):: x, y
+ addm2%r = x%r + y%r
+ end function
+end module udr5m2
+module udr5m3
+ use udr5m1
+ interface operator(.myadd.)
+ module procedure addm3
+ end interface
+!$omp declare reduction(+:dt:omp_out=omp_out+omp_in) &
+!$omp & initializer(omp_priv=dt(0.0))
+!$omp declare reduction(.myadd.:dt:omp_out=omp_out.myadd.omp_in) &
+!$omp & initializer(omp_priv=dt(0.0))
+ interface operator(+)
+ module procedure addm3
+ end interface
+contains
+ type(dt) function addm3 (x, y)
+ type(dt), intent (in):: x, y
+ addm3%r = x%r + y%r
+ end function
+end module udr5m3
+subroutine f1
+ use udr5m2
+ type(dt) :: d, e
+ integer :: i
+ d=dt(0.0)
+ e = dt (0.0)
+!$omp parallel do reduction (+ : d) reduction ( .myadd. : e)
+ do i=1,100
+ d=d+dt(i)
+ e=e+dt(i)
+ end do
+end subroutine f1
+subroutine f2
+ use udr5m3 ! { dg-error "Previous !.OMP DECLARE REDUCTION|Ambiguous interfaces" }
+ use udr5m2 ! { dg-error "Ambiguous !.OMP DECLARE REDUCTION" }
+end subroutine f2
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr6.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr6.f90
new file mode 100644
index 000000000..92fc5bb1b
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr6.f90
@@ -0,0 +1,205 @@
+! { dg-do compile }
+! { dg-options "-fmax-errors=1000 -fopenmp -ffree-line-length-160" }
+
+module udr6
+ type dt
+ integer :: i
+ end type
+end module udr6
+subroutine f1
+ use udr6, only : dt
+!$omp declare reduction (+:integer:omp_out = omp_out + omp_in) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (+:real(kind=4):omp_out = omp_out + omp_in) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (+:double precision:omp_out = omp_out + omp_in) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (+:integer(kind=8),integer(kind=1) & ! { dg-error "Redefinition of predefined" }
+!$omp & :omp_out = omp_out + omp_in)
+!$omp declare reduction (+:complex:omp_out = omp_out + omp_in) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (+:complex(kind=8):omp_out = omp_out + omp_in) ! { dg-error "Redefinition of predefined" }
+ interface operator(+)
+ function addf1 (x, y)
+ use udr6, only : dt
+ type(dt), intent (in) :: x, y
+ type(dt) :: addf1
+ end function
+ end interface
+end subroutine f1
+subroutine f2
+ use udr6, only : dt
+ interface operator(-)
+ function subf2 (x, y)
+ use udr6, only : dt
+ type(dt), intent (in) :: x, y
+ type(dt) :: subf2
+ end function
+ end interface
+!$omp declare reduction (-:integer:omp_out = omp_out + omp_in) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (-:real(kind=4):omp_out = omp_out + omp_in) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (-:double precision:omp_out = omp_out + omp_in) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (-:integer(kind=8),integer(kind=1) & ! { dg-error "Redefinition of predefined" }
+!$omp & :omp_out = omp_out + omp_in)
+!$omp declare reduction (-:complex:omp_out = omp_out + omp_in) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (-:complex(kind=8):omp_out = omp_out + omp_in) ! { dg-error "Redefinition of predefined" }
+end subroutine f2
+subroutine f3
+ use udr6, only : dt
+ interface operator(*)
+ function mulf3 (x, y)
+ use udr6, only : dt
+ type(dt), intent (in) :: x, y
+ type(dt) :: mulf3
+ end function
+ end interface
+!$omp declare reduction (*:integer:omp_out = omp_out * omp_in) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (*:real(kind=4):omp_out = omp_out * omp_in) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (*:double precision:omp_out = omp_out * omp_in) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (*:integer(kind=8),integer(kind=1) & ! { dg-error "Redefinition of predefined" }
+!$omp & :omp_out = omp_out * omp_in)
+!$omp declare reduction (*:complex:omp_out = omp_out * omp_in) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (*:complex(kind=8):omp_out = omp_out * omp_in) ! { dg-error "Redefinition of predefined" }
+end subroutine f3
+subroutine f4
+ use udr6, only : dt
+ interface operator(.and.)
+ function andf4 (x, y)
+ use udr6, only : dt
+ type(dt), intent (in) :: x, y
+ type(dt) :: andf4
+ end function
+ end interface
+!$omp declare reduction (.neqv.:logical:omp_out = omp_out .or. omp_in) ! { dg-error "Redefinition of predefined" }
+ interface operator(.or.)
+ function orf4 (x, y)
+ use udr6, only : dt
+ type(dt), intent (in) :: x, y
+ type(dt) :: orf4
+ end function
+ end interface
+!$omp declare reduction (.eqv.:logical:omp_out = omp_out .or. omp_in) ! { dg-error "Redefinition of predefined" }
+ interface operator(.eqv.)
+ function eqvf4 (x, y)
+ use udr6, only : dt
+ type(dt), intent (in) :: x, y
+ type(dt) :: eqvf4
+ end function
+ end interface
+!$omp declare reduction (.or.:logical:omp_out = omp_out .or. omp_in) ! { dg-error "Redefinition of predefined" }
+ interface operator(.neqv.)
+ function neqvf4 (x, y)
+ use udr6, only : dt
+ type(dt), intent (in) :: x, y
+ type(dt) :: neqvf4
+ end function
+ end interface
+!$omp declare reduction (.and.:logical:omp_out = omp_out .and. omp_in) ! { dg-error "Redefinition of predefined" }
+end subroutine f4
+subroutine f5
+ use udr6, only : dt
+ interface operator(.and.)
+ function andf5 (x, y)
+ use udr6, only : dt
+ type(dt), intent (in) :: x, y
+ type(dt) :: andf5
+ end function
+ end interface
+!$omp declare reduction (.neqv.:logical(kind =4):omp_out = omp_out .neqv. omp_in) ! { dg-error "Redefinition of predefined" }
+ interface operator(.or.)
+ function orf5 (x, y)
+ use udr6, only : dt
+ type(dt), intent (in) :: x, y
+ type(dt) :: orf5
+ end function
+ end interface
+!$omp declare reduction (.eqv.:logical(kind= 4):omp_out = omp_out .eqv. omp_in) ! { dg-error "Redefinition of predefined" }
+ interface operator(.eqv.)
+ function eqvf5 (x, y)
+ use udr6, only : dt
+ type(dt), intent (in) :: x, y
+ type(dt) :: eqvf5
+ end function
+ end interface
+!$omp declare reduction (.or.:logical(kind=4):omp_out = omp_out .or. omp_in) ! { dg-error "Redefinition of predefined" }
+ interface operator(.neqv.)
+ function neqvf5 (x, y)
+ use udr6, only : dt
+ type(dt), intent (in) :: x, y
+ type(dt) :: neqvf5
+ end function
+ end interface
+!$omp declare reduction (.and.:logical(kind = 4):omp_out = omp_out .and. omp_in) ! { dg-error "Redefinition of predefined" }
+end subroutine f5
+subroutine f6
+!$omp declare reduction (min:integer:omp_out = min (omp_out, omp_in)) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (max:integer:omp_out = max (omp_out, omp_in)) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (iand:integer:omp_out = iand (omp_out, omp_in)) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (ior:integer:omp_out = ior (omp_out, omp_in)) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (ieor:integer:omp_out = ieor (omp_out, omp_in)) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (min:real:omp_out = min (omp_out, omp_in)) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (max:real:omp_out = max (omp_out, omp_in)) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (min:double precision:omp_out = min (omp_out, omp_in)) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (max:double precision:omp_out = max (omp_out, omp_in)) ! { dg-error "Redefinition of predefined" }
+end subroutine f6
+subroutine f7
+!$omp declare reduction (min:integer(kind=2):omp_out = min (omp_out, omp_in)) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (max:integer(kind=4):omp_out = max (omp_out, omp_in)) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (iand:integer(kind=1):omp_out = iand (omp_out, omp_in)) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (ior:integer(kind=8):omp_out = ior (omp_out, omp_in)) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (ieor:integer(kind=4):omp_out = ieor (omp_out, omp_in)) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (min:real(kind=4):omp_out = min (omp_out, omp_in)) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (max:real(kind=4):omp_out = max (omp_out, omp_in)) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (min:double precision:omp_out = min (omp_out, omp_in)) ! { dg-error "Redefinition of predefined" }
+!$omp declare reduction (max:double precision:omp_out = max (omp_out, omp_in)) ! { dg-error "Redefinition of predefined" }
+end subroutine f7
+subroutine f8
+ integer :: min
+!$omp declare reduction (min:integer:omp_out = omp_out + omp_in)
+!$omp declare reduction (min:real:omp_out = omp_out + omp_in)
+!$omp declare reduction (min:double precision:omp_out = omp_out + omp_in)
+end subroutine f8
+subroutine f9
+ integer :: max
+!$omp declare reduction (max:integer:omp_out = omp_out + omp_in)
+!$omp declare reduction (max:real:omp_out = omp_out + omp_in)
+!$omp declare reduction (max:double precision:omp_out = omp_out + omp_in)
+end subroutine f9
+subroutine f10
+ integer :: iand
+!$omp declare reduction (iand:integer:omp_out = omp_out + omp_in)
+!$omp declare reduction (iand:real:omp_out = omp_out + omp_in)
+end subroutine f10
+subroutine f11
+ integer :: ior
+!$omp declare reduction (ior:integer:omp_out = omp_out + omp_in)
+!$omp declare reduction (ior:real:omp_out = omp_out + omp_in)
+end subroutine f11
+subroutine f12
+ integer :: ieor
+!$omp declare reduction (ieor:integer:omp_out = omp_out + omp_in)
+!$omp declare reduction (ieor:real:omp_out = omp_out + omp_in)
+end subroutine f12
+subroutine f13
+!$omp declare reduction (min:integer:omp_out = omp_out + omp_in)
+!$omp declare reduction (min:real:omp_out = omp_out + omp_in)
+!$omp declare reduction (min:double precision:omp_out = omp_out + omp_in)
+ integer :: min
+end subroutine f13
+subroutine f14
+!$omp declare reduction (max:integer:omp_out = omp_out + omp_in)
+!$omp declare reduction (max:real:omp_out = omp_out + omp_in)
+!$omp declare reduction (max:double precision:omp_out = omp_out + omp_in)
+ integer :: max
+end subroutine f14
+subroutine f15
+!$omp declare reduction (iand:integer:omp_out = omp_out + omp_in)
+!$omp declare reduction (iand:real:omp_out = omp_out + omp_in)
+ integer :: iand
+end subroutine f15
+subroutine f16
+!$omp declare reduction (ior:integer:omp_out = omp_out + omp_in)
+!$omp declare reduction (ior:real:omp_out = omp_out + omp_in)
+ integer :: ior
+end subroutine f16
+subroutine f17
+!$omp declare reduction (ieor:integer:omp_out = omp_out + omp_in)
+!$omp declare reduction (ieor:real:omp_out = omp_out + omp_in)
+ integer :: ieor
+end subroutine f17
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr7.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr7.f90
new file mode 100644
index 000000000..230a3fc44
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr7.f90
@@ -0,0 +1,90 @@
+! { dg-do compile }
+
+module udr7m1
+ type dt
+ real :: r
+ end type dt
+end module udr7m1
+module udr7m2
+ use udr7m1
+ interface operator(+)
+ module procedure addm2
+ end interface
+!$omp declare reduction(+:dt:omp_out=omp_out+omp_in) &
+!$omp & initializer(omp_priv=dt(0.0))
+!$omp declare reduction(.myadd.:dt:omp_out=omp_out.myadd.omp_in) &
+!$omp & initializer(omp_priv=dt(0.0))
+ interface operator(.myadd.)
+ module procedure addm2
+ end interface
+ private
+ public :: operator(+), operator(.myadd.), dt
+contains
+ type(dt) function addm2 (x, y)
+ type(dt), intent (in):: x, y
+ addm2%r = x%r + y%r
+ end function
+end module udr7m2
+module udr7m3
+ use udr7m1
+ private
+ public :: operator(.myadd.), operator(+), dt
+ interface operator(.myadd.)
+ module procedure addm3
+ end interface
+!$omp declare reduction(+:dt:omp_out=omp_out+omp_in) &
+!$omp & initializer(omp_priv=dt(0.0))
+!$omp declare reduction(.myadd.:dt:omp_out=omp_out.myadd.omp_in) &
+!$omp & initializer(omp_priv=dt(0.0))
+ interface operator(+)
+ module procedure addm3
+ end interface
+contains
+ type(dt) function addm3 (x, y)
+ type(dt), intent (in):: x, y
+ addm3%r = x%r + y%r
+ end function
+end module udr7m3
+module udr7m4
+ use udr7m1
+ private
+ interface operator(.myadd.)
+ module procedure addm4
+ end interface
+!$omp declare reduction(+:dt:omp_out=omp_out+omp_in) &
+!$omp & initializer(omp_priv=dt(0.0))
+!$omp declare reduction(.myadd.:dt:omp_out=omp_out.myadd.omp_in) &
+!$omp & initializer(omp_priv=dt(0.0))
+ interface operator(+)
+ module procedure addm4
+ end interface
+contains
+ type(dt) function addm4 (x, y)
+ type(dt), intent (in):: x, y
+ addm4%r = x%r + y%r
+ end function
+end module udr7m4
+subroutine f1
+ use udr7m2
+ type(dt) :: d, e
+ integer :: i
+ d=dt(0.0)
+ e = dt (0.0)
+!$omp parallel do reduction (+ : d) reduction ( .myadd. : e)
+ do i=1,100
+ d=d+dt(i)
+ e=e+dt(i)
+ end do
+end subroutine f1
+subroutine f2
+ use udr7m3 ! { dg-error "Previous !.OMP DECLARE REDUCTION|Ambiguous interfaces" }
+ use udr7m2 ! { dg-error "Ambiguous !.OMP DECLARE REDUCTION" }
+end subroutine f2
+subroutine f3
+ use udr7m4
+ use udr7m2
+end subroutine f3
+subroutine f4
+ use udr7m3
+ use udr7m4
+end subroutine f4
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr8.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr8.f90
new file mode 100644
index 000000000..e040b3d1e
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/gomp/udr8.f90
@@ -0,0 +1,351 @@
+! { dg-do compile }
+! { dg-options "-fmax-errors=1000 -fopenmp" }
+
+module m
+contains
+ function fn1 (x, y)
+ integer, intent(in) :: x, y
+ integer :: fn1
+ fn1 = x + 2 * y
+ end function
+ subroutine sub1 (x, y)
+ integer, intent(in) :: y
+ integer, intent(out) :: x
+ x = y
+ end subroutine
+ function fn2 (x)
+ integer, intent(in) :: x
+ integer :: fn2
+ fn2 = x
+ end function
+ subroutine sub2 (x, y)
+ integer, intent(in) :: y
+ integer, intent(inout) :: x
+ x = x + y
+ end subroutine
+ function fn3 (x, y)
+ integer, intent(in) :: x(:), y(:)
+ integer :: fn3(lbound(x, 1):ubound(x, 1))
+ fn3 = x + 2 * y
+ end function
+ subroutine sub3 (x, y)
+ integer, intent(in) :: y(:)
+ integer, intent(out) :: x(:)
+ x = y
+ end subroutine
+ function fn4 (x)
+ integer, intent(in) :: x(:)
+ integer :: fn4(lbound(x, 1):ubound(x, 1))
+ fn4 = x
+ end function
+ subroutine sub4 (x, y)
+ integer, intent(in) :: y(:)
+ integer, intent(inout) :: x(:)
+ x = x + y
+ end subroutine
+ function fn5 (x, y)
+ integer, intent(in) :: x(10), y(10)
+ integer :: fn5(10)
+ fn5 = x + 2 * y
+ end function
+ subroutine sub5 (x, y)
+ integer, intent(in) :: y(10)
+ integer, intent(out) :: x(10)
+ x = y
+ end subroutine
+ function fn6 (x)
+ integer, intent(in) :: x(10)
+ integer :: fn6(10)
+ fn6 = x
+ end function
+ subroutine sub6 (x, y)
+ integer, intent(in) :: y(10)
+ integer, intent(inout) :: x(10)
+ x = x + y
+ end subroutine
+ function fn7 (x, y)
+ integer, allocatable, intent(in) :: x(:), y(:)
+ integer, allocatable :: fn7(:)
+ fn7 = x + 2 * y
+ end function
+ subroutine sub7 (x, y)
+ integer, allocatable, intent(in) :: y(:)
+ integer, allocatable, intent(out) :: x(:)
+ x = y
+ end subroutine
+ function fn8 (x)
+ integer, allocatable, intent(in) :: x(:)
+ integer, allocatable :: fn8(:)
+ fn8 = x
+ end function
+ subroutine sub8 (x, y)
+ integer, allocatable, intent(in) :: y(:)
+ integer, allocatable, intent(inout) :: x(:)
+ x = x + y
+ end subroutine
+end module
+subroutine test1
+ use m
+!$omp declare reduction (foo : integer : omp_out = omp_out + omp_in) initializer (omp_priv = 0)
+!$omp declare reduction (bar : integer : omp_out = fn1 (omp_out, omp_in)) & ! { dg-error "Rank mismatch in argument\[^\n\r]*scalar and rank-1" }
+!$omp & initializer (sub1 (omp_priv, omp_orig)) ! { dg-error "Rank mismatch in argument\[^\n\r]*scalar and rank-1" }
+!$omp declare reduction (baz : integer : sub2 (omp_out, omp_in)) & ! { dg-error "Rank mismatch in argument\[^\n\r]*scalar and rank-1" }
+!$omp initializer (omp_priv = fn2 (omp_orig)) ! { dg-error "Rank mismatch in argument\[^\n\r]*scalar and rank-1" }
+ integer :: a(10)
+!$omp parallel reduction (foo : a)
+!$omp end parallel
+!$omp parallel reduction (bar : a)
+!$omp end parallel
+!$omp parallel reduction (baz : a)
+!$omp end parallel
+end subroutine test1
+subroutine test2
+ use m
+!$omp declare reduction (foo : integer : omp_out = omp_out + omp_in) initializer (omp_priv = 0)
+!$omp declare reduction (bar : integer : omp_out = fn1 (omp_out, omp_in)) &
+!$omp & initializer (sub1 (omp_priv, omp_orig))
+!$omp declare reduction (baz : integer : sub2 (omp_out, omp_in)) &
+!$omp initializer (omp_priv = fn2 (omp_orig))
+ integer :: a
+!$omp parallel reduction (foo : a)
+!$omp end parallel
+!$omp parallel reduction (bar : a)
+!$omp end parallel
+!$omp parallel reduction (baz : a)
+!$omp end parallel
+end subroutine test2
+subroutine test3
+ use m
+!$omp declare reduction (foo : integer : omp_out = omp_out + omp_in) initializer (omp_priv = 0)
+!$omp declare reduction (bar : integer : omp_out = fn1 (omp_out, omp_in)) & ! { dg-error "Rank mismatch in argument\[^\n\r]*scalar and rank-1" }
+!$omp & initializer (sub1 (omp_priv, omp_orig)) ! { dg-error "Rank mismatch in argument\[^\n\r]*scalar and rank-1" }
+!$omp declare reduction (baz : integer : sub2 (omp_out, omp_in)) & ! { dg-error "Rank mismatch in argument\[^\n\r]*scalar and rank-1" }
+!$omp initializer (omp_priv = fn2 (omp_orig)) ! { dg-error "Rank mismatch in argument\[^\n\r]*scalar and rank-1" }
+ integer, allocatable :: a(:)
+ allocate (a(10))
+!$omp parallel reduction (foo : a)
+!$omp end parallel
+!$omp parallel reduction (bar : a)
+!$omp end parallel
+!$omp parallel reduction (baz : a)
+!$omp end parallel
+end subroutine test3
+subroutine test4
+ use m
+!$omp declare reduction (foo : integer : omp_out = omp_out + omp_in) initializer (omp_priv = 0)
+!$omp declare reduction (bar : integer : omp_out = fn1 (omp_out, omp_in)) &
+!$omp & initializer (sub1 (omp_priv, omp_orig))
+!$omp declare reduction (baz : integer : sub2 (omp_out, omp_in)) &
+!$omp initializer (omp_priv = fn2 (omp_orig))
+ integer, allocatable :: a
+ allocate (a)
+!$omp parallel reduction (foo : a)
+!$omp end parallel
+!$omp parallel reduction (bar : a)
+!$omp end parallel
+!$omp parallel reduction (baz : a)
+!$omp end parallel
+end subroutine test4
+subroutine test5
+ use m
+!$omp declare reduction (foo : integer : omp_out = omp_out + omp_in) initializer (omp_priv = 0)
+!$omp declare reduction (bar : integer : omp_out = fn3 (omp_out, omp_in)) &
+!$omp & initializer (sub3 (omp_priv, omp_orig))
+!$omp declare reduction (baz : integer : sub4 (omp_out, omp_in)) &
+!$omp initializer (omp_priv = fn4 (omp_orig))
+ integer :: a(10)
+!$omp parallel reduction (foo : a)
+!$omp end parallel
+!$omp parallel reduction (bar : a)
+!$omp end parallel
+!$omp parallel reduction (baz : a)
+!$omp end parallel
+end subroutine test5
+subroutine test6
+ use m
+!$omp declare reduction (foo : integer : omp_out = omp_out + omp_in) initializer (omp_priv = 0)
+!$omp declare reduction (bar : integer : omp_out = fn3 (omp_out, omp_in)) & ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar|Incompatible ranks 0 and 1 in assignment" }
+!$omp & initializer (sub3 (omp_priv, omp_orig)) ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar" }
+!$omp declare reduction (baz : integer : sub4 (omp_out, omp_in)) & ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar" }
+!$omp initializer (omp_priv = fn4 (omp_orig)) ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar|Incompatible ranks 0 and 1 in assignment" }
+ integer :: a
+!$omp parallel reduction (foo : a)
+!$omp end parallel
+!$omp parallel reduction (bar : a)
+!$omp end parallel
+!$omp parallel reduction (baz : a)
+!$omp end parallel
+end subroutine test6
+subroutine test7
+ use m
+!$omp declare reduction (foo : integer : omp_out = omp_out + omp_in) initializer (omp_priv = 0)
+!$omp declare reduction (bar : integer : omp_out = fn3 (omp_out, omp_in)) &
+!$omp & initializer (sub3 (omp_priv, omp_orig))
+!$omp declare reduction (baz : integer : sub4 (omp_out, omp_in)) &
+!$omp initializer (omp_priv = fn4 (omp_orig))
+ integer, allocatable :: a(:)
+ allocate (a(10))
+!$omp parallel reduction (foo : a)
+!$omp end parallel
+!$omp parallel reduction (bar : a)
+!$omp end parallel
+!$omp parallel reduction (baz : a)
+!$omp end parallel
+end subroutine test7
+subroutine test8
+ use m
+!$omp declare reduction (foo : integer : omp_out = omp_out + omp_in) initializer (omp_priv = 0)
+!$omp declare reduction (bar : integer : omp_out = fn3 (omp_out, omp_in)) & ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar|Incompatible ranks 0 and 1 in assignment" }
+!$omp & initializer (sub3 (omp_priv, omp_orig)) ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar" }
+!$omp declare reduction (baz : integer : sub4 (omp_out, omp_in)) & ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar" }
+!$omp initializer (omp_priv = fn4 (omp_orig)) ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar|Incompatible ranks 0 and 1 in assignment" }
+ integer, allocatable :: a
+ allocate (a)
+!$omp parallel reduction (foo : a)
+!$omp end parallel
+!$omp parallel reduction (bar : a)
+!$omp end parallel
+!$omp parallel reduction (baz : a)
+!$omp end parallel
+end subroutine test8
+subroutine test9
+ use m
+!$omp declare reduction (foo : integer : omp_out = omp_out + omp_in) initializer (omp_priv = 0)
+!$omp declare reduction (bar : integer : omp_out = fn5 (omp_out, omp_in)) &
+!$omp & initializer (sub5 (omp_priv, omp_orig))
+!$omp declare reduction (baz : integer : sub6 (omp_out, omp_in)) &
+!$omp initializer (omp_priv = fn6 (omp_orig))
+ integer :: a(10)
+!$omp parallel reduction (foo : a)
+!$omp end parallel
+!$omp parallel reduction (bar : a)
+!$omp end parallel
+!$omp parallel reduction (baz : a)
+!$omp end parallel
+end subroutine test9
+subroutine test10
+ use m
+!$omp declare reduction (foo : integer : omp_out = omp_out + omp_in) initializer (omp_priv = 0)
+!$omp declare reduction (bar : integer : omp_out = fn5 (omp_out, omp_in)) & ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar|Incompatible ranks 0 and 1 in assignment" }
+!$omp & initializer (sub5 (omp_priv, omp_orig)) ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar" }
+!$omp declare reduction (baz : integer : sub6 (omp_out, omp_in)) & ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar" }
+!$omp initializer (omp_priv = fn6 (omp_orig)) ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar|Incompatible ranks 0 and 1 in assignment" }
+ integer :: a
+!$omp parallel reduction (foo : a)
+!$omp end parallel
+!$omp parallel reduction (bar : a)
+!$omp end parallel
+!$omp parallel reduction (baz : a)
+!$omp end parallel
+end subroutine test10
+subroutine test11
+ use m
+!$omp declare reduction (foo : integer : omp_out = omp_out + omp_in) initializer (omp_priv = 0)
+!$omp declare reduction (bar : integer : omp_out = fn5 (omp_out, omp_in)) &
+!$omp & initializer (sub5 (omp_priv, omp_orig))
+!$omp declare reduction (baz : integer : sub6 (omp_out, omp_in)) &
+!$omp initializer (omp_priv = fn6 (omp_orig))
+ integer, allocatable :: a(:)
+ allocate (a(10))
+!$omp parallel reduction (foo : a)
+!$omp end parallel
+!$omp parallel reduction (bar : a)
+!$omp end parallel
+!$omp parallel reduction (baz : a)
+!$omp end parallel
+end subroutine test11
+subroutine test12
+ use m
+!$omp declare reduction (foo : integer : omp_out = omp_out + omp_in) initializer (omp_priv = 0)
+!$omp declare reduction (bar : integer : omp_out = fn5 (omp_out, omp_in)) & ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar|Incompatible ranks 0 and 1 in assignment" }
+!$omp & initializer (sub5 (omp_priv, omp_orig)) ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar" }
+!$omp declare reduction (baz : integer : sub6 (omp_out, omp_in)) & ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar" }
+!$omp initializer (omp_priv = fn6 (omp_orig)) ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar|Incompatible ranks 0 and 1 in assignment" }
+ integer, allocatable :: a
+ allocate (a)
+!$omp parallel reduction (foo : a)
+!$omp end parallel
+!$omp parallel reduction (bar : a)
+!$omp end parallel
+!$omp parallel reduction (baz : a)
+!$omp end parallel
+end subroutine test12
+subroutine test13
+ use m
+!$omp declare reduction (foo : integer : omp_out = omp_out + omp_in) initializer (omp_priv = 0)
+!$omp declare reduction (bar : integer : omp_out = & ! { dg-error "Different shape for array assignment at \[^\n\r]* on dimension 1 .9 and 10" }
+!$omp & fn5 (omp_out, omp_in)) & ! { dg-warning "Actual argument contains too few elements for dummy argument \[^\n\r]* .9/10" }
+!$omp & initializer (sub5 (omp_priv, omp_orig)) ! { dg-warning "Actual argument contains too few elements for dummy argument \[^\n\r]* .9/10" }
+!$omp declare reduction (baz : integer : sub6 (omp_out, omp_in)) & ! { dg-warning "Actual argument contains too few elements for dummy argument \[^\n\r]* .9/10" }
+!$omp initializer (omp_priv = & ! { dg-error "Different shape for array assignment at \[^\n\r]* on dimension 1 .9 and 10" }
+!$omp & fn6 (omp_orig)) ! { dg-warning "Actual argument contains too few elements for dummy argument \[^\n\r]* .9/10" }
+ integer :: a(9)
+!$omp parallel reduction (foo : a)
+!$omp end parallel
+!$omp parallel reduction (bar : a)
+!$omp end parallel
+!$omp parallel reduction (baz : a)
+!$omp end parallel
+end subroutine test13
+subroutine test14
+ use m
+!$omp declare reduction (foo : integer : omp_out = omp_out + omp_in) initializer (omp_priv = 0)
+!$omp declare reduction (bar : integer : omp_out = fn7 (omp_out, omp_in)) & ! { dg-error "Actual argument for \[^\n\r]* must be ALLOCATABLE" }
+!$omp & initializer (sub7 (omp_priv, omp_orig)) ! { dg-error "Actual argument for \[^\n\r]* must be ALLOCATABLE" }
+!$omp declare reduction (baz : integer : sub8 (omp_out, omp_in)) & ! { dg-error "Actual argument for \[^\n\r]* must be ALLOCATABLE" }
+!$omp initializer (omp_priv = fn8 (omp_orig)) ! { dg-error "Actual argument for \[^\n\r]* must be ALLOCATABLE" }
+ integer :: a(10)
+!$omp parallel reduction (foo : a)
+!$omp end parallel
+!$omp parallel reduction (bar : a)
+!$omp end parallel
+!$omp parallel reduction (baz : a)
+!$omp end parallel
+end subroutine test14
+subroutine test15
+ use m
+!$omp declare reduction (foo : integer : omp_out = omp_out + omp_in) initializer (omp_priv = 0)
+!$omp declare reduction (bar : integer : omp_out = fn7 (omp_out, omp_in)) & ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar|Incompatible ranks 0 and 1 in assignment" }
+!$omp & initializer (sub7 (omp_priv, omp_orig)) ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar" }
+!$omp declare reduction (baz : integer : sub8 (omp_out, omp_in)) & ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar" }
+!$omp initializer (omp_priv = fn8 (omp_orig)) ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar|Incompatible ranks 0 and 1 in assignment" }
+ integer :: a
+!$omp parallel reduction (foo : a)
+!$omp end parallel
+!$omp parallel reduction (bar : a)
+!$omp end parallel
+!$omp parallel reduction (baz : a)
+!$omp end parallel
+end subroutine test15
+subroutine test16
+ use m
+!$omp declare reduction (foo : integer : omp_out = omp_out + omp_in) initializer (omp_priv = 0)
+!$omp declare reduction (bar : integer : omp_out = fn7 (omp_out, omp_in)) &
+!$omp & initializer (sub7 (omp_priv, omp_orig))
+!$omp declare reduction (baz : integer : sub8 (omp_out, omp_in)) &
+!$omp initializer (omp_priv = fn8 (omp_orig))
+ integer, allocatable :: a(:)
+ allocate (a(10))
+!$omp parallel reduction (foo : a)
+!$omp end parallel
+!$omp parallel reduction (bar : a)
+!$omp end parallel
+!$omp parallel reduction (baz : a)
+!$omp end parallel
+end subroutine test16
+subroutine test17
+ use m
+!$omp declare reduction (foo : integer : omp_out = omp_out + omp_in) initializer (omp_priv = 0)
+!$omp declare reduction (bar : integer : omp_out = fn7 (omp_out, omp_in)) & ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar|Incompatible ranks 0 and 1 in assignment" }
+!$omp & initializer (sub7 (omp_priv, omp_orig)) ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar" }
+!$omp declare reduction (baz : integer : sub8 (omp_out, omp_in)) & ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar" }
+!$omp initializer (omp_priv = fn8 (omp_orig)) ! { dg-error "Rank mismatch in argument\[^\n\r]*rank-1 and scalar|Incompatible ranks 0 and 1 in assignment" }
+ integer, allocatable :: a
+ allocate (a)
+!$omp parallel reduction (foo : a)
+!$omp end parallel
+!$omp parallel reduction (bar : a)
+!$omp end parallel
+!$omp parallel reduction (baz : a)
+!$omp end parallel
+end subroutine test17
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/graphite/pr59817.f b/gcc-4.9/gcc/testsuite/gfortran.dg/graphite/pr59817.f
new file mode 100644
index 000000000..a9ee8f19d
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/graphite/pr59817.f
@@ -0,0 +1,14 @@
+! { dg-do compile }
+! { dg-options "-O2 -floop-interchange" }
+ SUBROUTINE PREPD(ICAST,ICAS,ICASX,ICAS1,ICAS2,NDET,NM,III,IMP,
+ * CASMIN)
+ LOGICAL CASMIN
+ DIMENSION ICAST(NDET,NM),IMP(NM)
+ IF(CASMIN) THEN
+ DO K=1,NDET
+ DO L=1,NM
+ IF(L.EQ.K-1) ICAST(K,L) = 1
+ END DO
+ END DO
+ END IF
+ END SUBROUTINE
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/guality/guality.exp b/gcc-4.9/gcc/testsuite/gfortran.dg/guality/guality.exp
index b3f64fbed..8f61ca360 100644
--- a/gcc-4.9/gcc/testsuite/gfortran.dg/guality/guality.exp
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/guality/guality.exp
@@ -1,5 +1,8 @@
# This harness is for tests that should be run at all optimisation levels.
+# Disable everywhere. These tests are very flaky.
+return
+
load_lib gfortran-dg.exp
load_lib gcc-gdb-test.exp
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/list_read_13.f b/gcc-4.9/gcc/testsuite/gfortran.dg/list_read_13.f
new file mode 100644
index 000000000..0f8efd86c
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/list_read_13.f
@@ -0,0 +1,13 @@
+c { dg-do run }
+c PR61049, reduced test case by Dominique d'Humieres
+ character(len=30) :: buff = ", (2.0, 3.0),,6.0D0, 2*,"
+ DOUBLE PRECISION AVD, BVD, CVD, DVCORR
+ COMPLEX AVC, BVC, CVC, ZVCORR
+
+ read(buff, *, err=10) AVD, AVC, BVC, BVD, CVC, CVD
+ goto 20
+ 10 call abort
+ 20 continue
+ end
+
+
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/nint_2.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/nint_2.f90
index 9f2705318..0727136df 100644
--- a/gcc-4.9/gcc/testsuite/gfortran.dg/nint_2.f90
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/nint_2.f90
@@ -4,7 +4,8 @@
! http://gcc.gnu.org/ml/fortran/2005-04/msg00139.html
!
! { dg-do run }
-! { dg-xfail-run-if "PR 33271, math library bug" { powerpc-ibm-aix* powerpc*-*-linux* *-*-mingw* } { "-O0" } { "" } }
+! { dg-xfail-run-if "PR 33271, math library bug" { powerpc-ibm-aix* powerpc-*-linux* powerpc64-*-linux* *-*-mingw* } { "-O0" } { "" } }
+! Note that this doesn't fail on powerpc64le-*-linux*.
real(kind=8) :: a
integer(kind=8) :: i1, i2
real :: b
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/oldstyle_5.f b/gcc-4.9/gcc/testsuite/gfortran.dg/oldstyle_5.f
new file mode 100644
index 000000000..8a0d3119f
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/oldstyle_5.f
@@ -0,0 +1,8 @@
+C { dg-do compile }
+ TYPE T
+ INTEGER A(2)/1,2/ ! { dg-error "Invalid old style initialization for derived type component" }
+ END TYPE
+ TYPE S
+ INTEGER B/1/ ! { dg-error "Invalid old style initialization for derived type component" }
+ END TYPE
+ END
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/openmp-define-3.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/openmp-define-3.f90
index 3d559864f..44d5c9de4 100644
--- a/gcc-4.9/gcc/testsuite/gfortran.dg/openmp-define-3.f90
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/openmp-define-3.f90
@@ -6,6 +6,6 @@
# error _OPENMP not defined
#endif
-#if _OPENMP != 201107
+#if _OPENMP != 201307
# error _OPENMP defined to wrong value
#endif
diff --git a/gcc-4.9/gcc/testsuite/gfortran.dg/round_4.f90 b/gcc-4.9/gcc/testsuite/gfortran.dg/round_4.f90
index 975cb20e4..f60e1f785 100644
--- a/gcc-4.9/gcc/testsuite/gfortran.dg/round_4.f90
+++ b/gcc-4.9/gcc/testsuite/gfortran.dg/round_4.f90
@@ -1,6 +1,7 @@
! { dg-do run }
! { dg-add-options ieee }
! { dg-skip-if "PR libfortran/58015" { *-*-solaris2.9* hppa*-*-hpux* } }
+! { dg-skip-if "IBM long double 31 bits of precision, test requires 38" { powerpc*-*-linux* } }
!
! PR fortran/35862
!
diff --git a/gcc-4.9/gcc/testsuite/gnat.dg/aliasing1.adb b/gcc-4.9/gcc/testsuite/gnat.dg/aliasing1.adb
index b2b7d123b..bffc4225b 100644
--- a/gcc-4.9/gcc/testsuite/gnat.dg/aliasing1.adb
+++ b/gcc-4.9/gcc/testsuite/gnat.dg/aliasing1.adb
@@ -18,5 +18,5 @@ package body Aliasing1 is
end Aliasing1;
--- { dg-final { scan-tree-dump-not "__gnat_rcheck" "optimized" } }
+-- { dg-final { scan-tree-dump-not "gnat_rcheck" "optimized" } }
-- { dg-final { cleanup-tree-dump "optimized" } }
diff --git a/gcc-4.9/gcc/testsuite/gnat.dg/enum3.adb b/gcc-4.9/gcc/testsuite/gnat.dg/enum3.adb
new file mode 100644
index 000000000..1cb6c4b56
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gnat.dg/enum3.adb
@@ -0,0 +1,23 @@
+-- { dg-do run }
+
+procedure Enum3 is
+ type Enum is (Aaa, Bbb, Ccc);
+ for Enum use (1,2,4);
+begin
+ for Lo in Enum loop
+ for Hi in Enum loop
+ declare
+ subtype S is Enum range Lo .. Hi;
+ type Vector is array (S) of Integer;
+ Vec : Vector;
+ begin
+ for I in S loop
+ Vec (I) := 0;
+ end loop;
+ if Vec /= (S => 0) then
+ raise Program_Error;
+ end if;
+ end;
+ end loop;
+ end loop;
+end;
diff --git a/gcc-4.9/gcc/testsuite/gnat.dg/opt38.adb b/gcc-4.9/gcc/testsuite/gnat.dg/opt38.adb
new file mode 100644
index 000000000..143f4fade
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gnat.dg/opt38.adb
@@ -0,0 +1,9 @@
+-- { dg-do run }
+-- { dg-options "-O2 -gnatn" }
+
+with Opt38_Pkg; use Opt38_Pkg;
+
+procedure Opt38 is
+begin
+ Test (-1);
+end;
diff --git a/gcc-4.9/gcc/testsuite/gnat.dg/opt38_pkg.adb b/gcc-4.9/gcc/testsuite/gnat.dg/opt38_pkg.adb
new file mode 100644
index 000000000..7cbbeeab3
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gnat.dg/opt38_pkg.adb
@@ -0,0 +1,33 @@
+package body Opt38_Pkg is
+
+ procedure Proc (I : Integer);
+ pragma Inline (Proc);
+
+ procedure Proc (I : Integer) is
+
+ procedure Inner;
+ pragma No_Inline (Inner);
+
+ procedure Inner is
+ begin
+ if I /= 110 then
+ raise Program_Error;
+ end if;
+ end;
+
+ begin
+ if I > 0 then
+ Inner;
+ end if;
+ end;
+
+ procedure Test (I : Integer) is
+ begin
+ if I > -1 then
+ Proc (I);
+ else
+ Proc (I + 111);
+ end if;
+ end;
+
+end Opt38_Pkg;
diff --git a/gcc-4.9/gcc/testsuite/gnat.dg/opt38_pkg.ads b/gcc-4.9/gcc/testsuite/gnat.dg/opt38_pkg.ads
new file mode 100644
index 000000000..b6cb4e6bc
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gnat.dg/opt38_pkg.ads
@@ -0,0 +1,5 @@
+package Opt38_Pkg is
+
+ procedure Test (I : Integer);
+
+end Opt38_Pkg;
diff --git a/gcc-4.9/gcc/testsuite/gnat.dg/opt39.adb b/gcc-4.9/gcc/testsuite/gnat.dg/opt39.adb
new file mode 100644
index 000000000..a00cac75f
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gnat.dg/opt39.adb
@@ -0,0 +1,31 @@
+-- { dg-do compile }
+-- { dg-options "-O2 -fno-inline -fdump-tree-optimized" }
+
+procedure Opt39 (I : Integer) is
+
+ type Rec is record
+ I1 : Integer;
+ I2 : Integer;
+ I3 : Integer;
+ I4 : Integer;
+ I5 : Integer;
+ end record;
+
+ procedure Set (A : access Rec; I : Integer) is
+ Tmp : Rec := A.all;
+ begin
+ Tmp.I1 := I;
+ A.all := Tmp;
+ end;
+
+ R : aliased Rec;
+
+begin
+ Set (R'Access, I);
+ if R.I1 /= I then
+ raise Program_Error;
+ end if;
+end;
+
+-- { dg-final { scan-tree-dump-times "MEM" 1 "optimized" } }
+-- { dg-final { cleanup-tree-dump "optimized" } }
diff --git a/gcc-4.9/gcc/testsuite/gnat.dg/overflow_fixed.adb b/gcc-4.9/gcc/testsuite/gnat.dg/overflow_fixed.adb
new file mode 100644
index 000000000..6ece51523
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/gnat.dg/overflow_fixed.adb
@@ -0,0 +1,19 @@
+-- { dg-do run }
+-- { dg-options "-gnato -O" }
+
+procedure Overflow_Fixed is
+
+ type Unsigned_8_Bit is mod 2**8;
+
+ procedure Fixed_To_Eight (Value : Duration) is
+ Item : Unsigned_8_Bit;
+ begin
+ Item := Unsigned_8_Bit(Value);
+ raise Program_Error;
+ exception
+ when Constraint_Error => null; -- expected case
+ end;
+
+begin
+ Fixed_To_Eight (-0.5);
+end;
diff --git a/gcc-4.9/gcc/testsuite/lib/asan-dg.exp b/gcc-4.9/gcc/testsuite/lib/asan-dg.exp
index 9ba39db15..f4ec44577 100644
--- a/gcc-4.9/gcc/testsuite/lib/asan-dg.exp
+++ b/gcc-4.9/gcc/testsuite/lib/asan-dg.exp
@@ -85,12 +85,12 @@ proc asan_init { args } {
}
if [info exists ALWAYS_CXXFLAGS] {
set ALWAYS_CXXFLAGS [concat "{ldflags=$link_flags}" $ALWAYS_CXXFLAGS]
- set ALWAYS_CXXFLAGS [concat "{additional_flags=-fsanitize=address -g}" $ALWAYS_CXXFLAGS]
+ set ALWAYS_CXXFLAGS [concat "{additional_flags=-fsanitize=address -static-libasan -g}" $ALWAYS_CXXFLAGS]
} else {
if [info exists TEST_ALWAYS_FLAGS] {
- set TEST_ALWAYS_FLAGS "$link_flags -fsanitize=address -g $TEST_ALWAYS_FLAGS"
+ set TEST_ALWAYS_FLAGS "$link_flags -fsanitize=address -static-libasan -g $TEST_ALWAYS_FLAGS"
} else {
- set TEST_ALWAYS_FLAGS "$link_flags -fsanitize=address -g"
+ set TEST_ALWAYS_FLAGS "$link_flags -fsanitize=address -static-libasan -g"
}
}
if { $link_flags != "" } {
diff --git a/gcc-4.9/gcc/testsuite/lib/clearcap.exp b/gcc-4.9/gcc/testsuite/lib/clearcap.exp
new file mode 100644
index 000000000..044881fbd
--- /dev/null
+++ b/gcc-4.9/gcc/testsuite/lib/clearcap.exp
@@ -0,0 +1,58 @@
+# Copyright (C) 2014 Free Software Foundation, Inc.
+
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with GCC; see the file COPYING3. If not see
+# <http://www.gnu.org/licenses/>.
+
+# Clear hardware capabilities on Solaris.
+if [istarget *-*-solaris2*] {
+ set clearcap_ldflags "-mclear-hwcap"
+}
+
+#
+# clearcap-init -- called at the start of each subdir of tests
+#
+
+proc clearcap-init { args } {
+ global TEST_ALWAYS_FLAGS
+ global ALWAYS_CXXFLAGS
+ global clearcap_saved_TEST_ALWAYS_FLAGS
+ global clearcap_ldflags
+
+ if [info exists TEST_ALWAYS_FLAGS] {
+ set clearcap_saved_TEST_ALWAYS_FLAGS $TEST_ALWAYS_FLAGS
+ }
+ if [info exists clearcap_ldflags] {
+ if [info exists ALWAYS_CXXFLAGS] {
+ set ALWAYS_CXXFLAGS [concat "{ldflags=$clearcap_ldflags}" $ALWAYS_CXXFLAGS]
+ } else {
+ append TEST_ALWAYS_FLAGS " $clearcap_ldflags"
+ }
+ }
+ return 0
+}
+
+#
+# clearcap-finish -- called at the start of each subdir of tests
+#
+
+proc clearcap-finish { args } {
+ global TEST_ALWAYS_FLAGS
+ global clearcap_saved_TEST_ALWAYS_FLAGS
+
+ if [info exists clearcap_saved_TEST_ALWAYS_FLAGS] {
+ set TEST_ALWAYS_FLAGS $clearcap_saved_TEST_ALWAYS_FLAGS
+ } else {
+ unset TEST_ALWAYS_FLAGS
+ }
+}
diff --git a/gcc-4.9/gcc/testsuite/lib/gcov.exp b/gcc-4.9/gcc/testsuite/lib/gcov.exp
index 7e4ed6937..9086fe635 100644
--- a/gcc-4.9/gcc/testsuite/lib/gcov.exp
+++ b/gcc-4.9/gcc/testsuite/lib/gcov.exp
@@ -303,6 +303,8 @@ proc run-gcov { args } {
set gcov_args ""
set gcov_verify_calls 0
set gcov_verify_branches 0
+ set gcov_execute_xfail ""
+ set gcov_verify_xfail ""
set gcov_verify_lines 1
set gcov_verify_intermediate 0
set xfailed 0
diff --git a/gcc-4.9/gcc/testsuite/lib/profopt.exp b/gcc-4.9/gcc/testsuite/lib/profopt.exp
index cb6a350dd..a6e4d8903 100644
--- a/gcc-4.9/gcc/testsuite/lib/profopt.exp
+++ b/gcc-4.9/gcc/testsuite/lib/profopt.exp
@@ -249,6 +249,27 @@ proc profopt-execute { src } {
set executable $tmpdir/[file tail [file rootname $src].x]
set basename [file tail $testcase]
set base [file rootname $basename]
+ set dir [file dirname $src]
+ # multiple file test base
+ set mbase [file rootname $basename]
+ regsub "_0" $mbase "" mbase
+ regsub "/" $mbase "" mbase
+ set src_list $src
+ set i 1
+ set done 0
+ while { !$done } {
+ set names [glob -nocomplain -types f -- "${dir}/${mbase}_${i}.*"]
+ if { [llength ${names}] > 1 } {
+ warning "profopt-execute: more than one file matched ${dir}/${mbase}_${i}.*"
+ }
+ if { [llength ${names}] == 1 } {
+ lappend src_list [lindex ${names} 0]
+ incr i
+ } else {
+ set num_srcs ${i}
+ set done 1
+ }
+ }
set count 0
foreach option $prof_option_list {
@@ -296,7 +317,7 @@ proc profopt-execute { src } {
set options "$extra_options"
lappend options "additional_flags=$option $extra_flags $profile_option"
set optstr "$option $profile_option"
- set comp_output [${tool}_target_compile "$src" "$execname1" executable $options]
+ set comp_output [${tool}_target_compile "$src_list" "$execname1" executable $options]
if ![${tool}_check_compile "$testcase compilation" $optstr $execname1 $comp_output] {
unresolved "$testcase execution, $optstr"
unresolved "$testcase compilation, $option $feedback_option"
@@ -311,15 +332,32 @@ proc profopt-execute { src } {
set missing_file 0
# Make sure the profile data was generated, and fail if not.
if { $status == "pass" } {
- foreach ext $prof_ext {
- remote_upload target $tmpdir/$base.$ext
- set files [glob -nocomplain $base.$ext]
- if { $files == "" } {
- set status "fail"
- set missing_file 1
- fail "$testcase execution: file $base.$ext does not exist, $option $profile_option"
- }
- }
+ set i 0
+ if { $num_srcs > 1 } {
+ foreach s $src_list {
+ foreach ext $prof_ext {
+ remote_upload target $tmpdir/${mbase}_${i}.$ext
+ set files [glob -nocomplain ${mbase}_${i}.$ext]
+ if { $files == "" } {
+ set status "fail"
+ set missing_file 1
+ fail "$testcase execution: file ${mbase}_${i}.$ext does not exist, $option $profile_option"
+ }
+ }
+ incr i
+ }
+ } else {
+ foreach ext $prof_ext {
+ remote_upload target $tmpdir/$base.$ext
+ set files [glob -nocomplain $base.$ext]
+ if { $files == "" } {
+ set status "fail"
+ set missing_file 1
+ fail "$testcase execution: file $base.$ext does not exist, $option $profile_option"
+ }
+ }
+ }
+
}
if { $missing_file == 0 } {
$status "$testcase execution, $optstr"
@@ -345,7 +383,7 @@ proc profopt-execute { src } {
set options "$extra_options"
lappend options "additional_flags=$option $extra_flags $feedback_option"
set optstr "$option $feedback_option"
- set comp_output [${tool}_target_compile "$src" "$execname2" "executable" $options]
+ set comp_output [${tool}_target_compile "$src_list" "$execname2" "executable" $options]
# Prune warnings we know are unwanted.
set comp_output [prune_warnings $comp_output]
@@ -367,8 +405,18 @@ proc profopt-execute { src } {
}
# Remove the profiling data files.
- foreach ext $prof_ext {
- remote_file target delete $tmpdir/$base.$ext
+ if { $num_srcs > 1 } {
+ set i 0
+ foreach s $src_list {
+ foreach ext $prof_ext {
+ remote_file target delete $tmpdir/${mbase}_${i}.$ext
+ }
+ incr i
+ }
+ } else {
+ foreach ext $prof_ext {
+ remote_file target delete $tmpdir/$base.$ext
+ }
}
if { $status != "pass" } {
@@ -396,7 +444,7 @@ proc profopt-execute { src } {
set options "$extra_options"
lappend options "additional_flags=$option"
set optstr "$option"
- set comp_output [${tool}_target_compile "$src" "$execname3" "executable" $options]
+ set comp_output [${tool}_target_compile "$src_list" "$execname3" "executable" $options]
if ![${tool}_check_compile "$testcase compilation" $optstr $execname3 $comp_output] {
unresolved "$testcase execution, $optstr"
unresolved "$testcase perf check, $optstr"
diff --git a/gcc-4.9/gcc/testsuite/lib/target-supports-dg.exp b/gcc-4.9/gcc/testsuite/lib/target-supports-dg.exp
index 171dc1b47..9128a5486 100644
--- a/gcc-4.9/gcc/testsuite/lib/target-supports-dg.exp
+++ b/gcc-4.9/gcc/testsuite/lib/target-supports-dg.exp
@@ -127,6 +127,25 @@ proc dg-require-ifunc { args } {
}
}
+# If this target does not support the section exclude "e" attribute,
+# skip this test.
+
+proc dg-require-section-exclude { args } {
+ if { ![ check_section_exclude_available ] } {
+ upvar dg-do-what dg-do-what
+ set dg-do-what [list [lindex ${dg-do-what} 0] "N" "P"]
+ }
+}
+# If this target uses a linker that supports plugins and can load
+# the function reordering linker plugin.
+
+proc dg-require-linker-function-reordering-plugin {args } {
+ if { ![ check_linker_function_reordering_plugin_supported ] } {
+ upvar dg-do-what dg-do-what
+ set dg-do-what [list [lindex ${dg-do-what} 0] "N" "P"]
+ }
+}
+
# If this target's linker does not support the --gc-sections flag,
# skip this test.
diff --git a/gcc-4.9/gcc/testsuite/lib/target-supports.exp b/gcc-4.9/gcc/testsuite/lib/target-supports.exp
index 4f1325bde..902771bd5 100644
--- a/gcc-4.9/gcc/testsuite/lib/target-supports.exp
+++ b/gcc-4.9/gcc/testsuite/lib/target-supports.exp
@@ -382,6 +382,30 @@ proc check_ifunc_available { } {
}]
}
+# Returns true if tool chain supports "e" section attribute.
+
+proc check_section_exclude_available { } {
+ return [check_runtime_nocache section_exclude_available {
+ asm(".section \".gnu.callgraph.text.main\", \"e\"");
+ int main()
+ {
+ return 0;
+ }
+ }]
+}
+
+# If this target uses a linker that supports plugins and can load
+# the function reordering linker plugin.
+
+proc check_linker_function_reordering_plugin_supported {} {
+ return [check_runtime_nocache function_reordering_plugin_supported {
+ int main()
+ {
+ return 0;
+ }
+ } "-freorder-functions=callgraph"]
+}
+
# Returns true if --gc-sections is supported on the target.
proc check_gc_sections_available { } {
@@ -1917,6 +1941,15 @@ proc check_effective_target_large_double { } {
}]
}
+# Return 1 if the target supports long double of 128 bits,
+# 0 otherwise.
+
+proc check_effective_target_longdouble128 { } {
+ return [check_no_compiler_messages longdouble128 object {
+ int dummy[sizeof(long double) == 16 ? 1 : -1];
+ }]
+}
+
# Return 1 if the target supports double of 64 bits,
# 0 otherwise.
@@ -3990,6 +4023,26 @@ proc check_effective_target_vect_udot_hi { } {
return $et_vect_udot_hi_saved
}
+# Return 1 if the target plus current options supports a vector
+# sad operation of unsigned chars, 0 otherwise.
+#
+# This won't change for different subtargets so cache the result.
+
+proc check_effective_target_vect_usad_char { } {
+ global et_vect_usad_char
+
+ if [info exists et_vect_usad_char_saved] {
+ verbose "check_effective_target_vect_usad_char: using cached result" 2
+ } else {
+ set et_vect_usad_char_saved 0
+ if { ([istarget i?86-*-*]
+ || [istarget x86_64-*-*]) } {
+ set et_vect_usad_char_saved 1
+ }
+ }
+ verbose "check_effective_target_vect_usad_char: returning $et_vect_usad_char_saved" 2
+ return $et_vect_usad_char_saved
+}
# Return 1 if the target plus current options supports a vector
# demotion (packing) of shorts (to chars) and ints (to shorts)
diff --git a/gcc-4.9/gcc/testsuite/lib/target-supports.exp.orig b/gcc-4.9/gcc/testsuite/lib/target-supports.exp.orig
deleted file mode 100644
index 7d296d902..000000000
--- a/gcc-4.9/gcc/testsuite/lib/target-supports.exp.orig
+++ /dev/null
@@ -1,5791 +0,0 @@
-# Copyright (C) 1999-2014 Free Software Foundation, Inc.
-
-# This program is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3 of the License, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GCC; see the file COPYING3. If not see
-# <http://www.gnu.org/licenses/>.
-
-# Please email any bugs, comments, and/or additions to this file to:
-# gcc-patches@gcc.gnu.org
-
-# This file defines procs for determining features supported by the target.
-
-# Try to compile the code given by CONTENTS into an output file of
-# type TYPE, where TYPE is as for target_compile. Return a list
-# whose first element contains the compiler messages and whose
-# second element is the name of the output file.
-#
-# BASENAME is a prefix to use for source and output files.
-# If ARGS is not empty, its first element is a string that
-# should be added to the command line.
-#
-# Assume by default that CONTENTS is C code.
-# Otherwise, code should contain:
-# "// C++" for c++,
-# "! Fortran" for Fortran code,
-# "/* ObjC", for ObjC
-# "// ObjC++" for ObjC++
-# and "// Go" for Go
-# If the tool is ObjC/ObjC++ then we overide the extension to .m/.mm to
-# allow for ObjC/ObjC++ specific flags.
-proc check_compile {basename type contents args} {
- global tool
- verbose "check_compile tool: $tool for $basename"
-
- if { [llength $args] > 0 } {
- set options [list "additional_flags=[lindex $args 0]"]
- } else {
- set options ""
- }
- switch -glob -- $contents {
- "*! Fortran*" { set src ${basename}[pid].f90 }
- "*// C++*" { set src ${basename}[pid].cc }
- "*// ObjC++*" { set src ${basename}[pid].mm }
- "*/* ObjC*" { set src ${basename}[pid].m }
- "*// Go*" { set src ${basename}[pid].go }
- default {
- switch -- $tool {
- "objc" { set src ${basename}[pid].m }
- "obj-c++" { set src ${basename}[pid].mm }
- default { set src ${basename}[pid].c }
- }
- }
- }
-
- set compile_type $type
- switch -glob $type {
- assembly { set output ${basename}[pid].s }
- object { set output ${basename}[pid].o }
- executable { set output ${basename}[pid].exe }
- "rtl-*" {
- set output ${basename}[pid].s
- lappend options "additional_flags=-fdump-$type"
- set compile_type assembly
- }
- }
- set f [open $src "w"]
- puts $f $contents
- close $f
- set lines [${tool}_target_compile $src $output $compile_type "$options"]
- file delete $src
-
- set scan_output $output
- # Don't try folding this into the switch above; calling "glob" before the
- # file is created won't work.
- if [regexp "rtl-(.*)" $type dummy rtl_type] {
- set scan_output "[glob $src.\[0-9\]\[0-9\]\[0-9\]r.$rtl_type]"
- file delete $output
- }
-
- return [list $lines $scan_output]
-}
-
-proc current_target_name { } {
- global target_info
- if [info exists target_info(target,name)] {
- set answer $target_info(target,name)
- } else {
- set answer ""
- }
- return $answer
-}
-
-# Implement an effective-target check for property PROP by invoking
-# the Tcl command ARGS and seeing if it returns true.
-
-proc check_cached_effective_target { prop args } {
- global et_cache
-
- set target [current_target_name]
- if {![info exists et_cache($prop,target)]
- || $et_cache($prop,target) != $target} {
- verbose "check_cached_effective_target $prop: checking $target" 2
- set et_cache($prop,target) $target
- set et_cache($prop,value) [uplevel eval $args]
- }
- set value $et_cache($prop,value)
- verbose "check_cached_effective_target $prop: returning $value for $target" 2
- return $value
-}
-
-# Like check_compile, but delete the output file and return true if the
-# compiler printed no messages.
-proc check_no_compiler_messages_nocache {args} {
- set result [eval check_compile $args]
- set lines [lindex $result 0]
- set output [lindex $result 1]
- remote_file build delete $output
- return [string match "" $lines]
-}
-
-# Like check_no_compiler_messages_nocache, but cache the result.
-# PROP is the property we're checking, and doubles as a prefix for
-# temporary filenames.
-proc check_no_compiler_messages {prop args} {
- return [check_cached_effective_target $prop {
- eval [list check_no_compiler_messages_nocache $prop] $args
- }]
-}
-
-# Like check_compile, but return true if the compiler printed no
-# messages and if the contents of the output file satisfy PATTERN.
-# If PATTERN has the form "!REGEXP", the contents satisfy it if they
-# don't match regular expression REGEXP, otherwise they satisfy it
-# if they do match regular expression PATTERN. (PATTERN can start
-# with something like "[!]" if the regular expression needs to match
-# "!" as the first character.)
-#
-# Delete the output file before returning. The other arguments are
-# as for check_compile.
-proc check_no_messages_and_pattern_nocache {basename pattern args} {
- global tool
-
- set result [eval [list check_compile $basename] $args]
- set lines [lindex $result 0]
- set output [lindex $result 1]
-
- set ok 0
- if { [string match "" $lines] } {
- set chan [open "$output"]
- set invert [regexp {^!(.*)} $pattern dummy pattern]
- set ok [expr { [regexp $pattern [read $chan]] != $invert }]
- close $chan
- }
-
- remote_file build delete $output
- return $ok
-}
-
-# Like check_no_messages_and_pattern_nocache, but cache the result.
-# PROP is the property we're checking, and doubles as a prefix for
-# temporary filenames.
-proc check_no_messages_and_pattern {prop pattern args} {
- return [check_cached_effective_target $prop {
- eval [list check_no_messages_and_pattern_nocache $prop $pattern] $args
- }]
-}
-
-# Try to compile and run an executable from code CONTENTS. Return true
-# if the compiler reports no messages and if execution "passes" in the
-# usual DejaGNU sense. The arguments are as for check_compile, with
-# TYPE implicitly being "executable".
-proc check_runtime_nocache {basename contents args} {
- global tool
-
- set result [eval [list check_compile $basename executable $contents] $args]
- set lines [lindex $result 0]
- set output [lindex $result 1]
-
- set ok 0
- if { [string match "" $lines] } {
- # No error messages, everything is OK.
- set result [remote_load target "./$output" "" ""]
- set status [lindex $result 0]
- verbose "check_runtime_nocache $basename: status is <$status>" 2
- if { $status == "pass" } {
- set ok 1
- }
- }
- remote_file build delete $output
- return $ok
-}
-
-# Like check_runtime_nocache, but cache the result. PROP is the
-# property we're checking, and doubles as a prefix for temporary
-# filenames.
-proc check_runtime {prop args} {
- global tool
-
- return [check_cached_effective_target $prop {
- eval [list check_runtime_nocache $prop] $args
- }]
-}
-
-###############################
-# proc check_weak_available { }
-###############################
-
-# weak symbols are only supported in some configs/object formats
-# this proc returns 1 if they're supported, 0 if they're not, or -1 if unsure
-
-proc check_weak_available { } {
- global target_cpu
-
- # All mips targets should support it
-
- if { [ string first "mips" $target_cpu ] >= 0 } {
- return 1
- }
-
- # All AIX targets should support it
-
- if { [istarget *-*-aix*] } {
- return 1
- }
-
- # All solaris2 targets should support it
-
- if { [istarget *-*-solaris2*] } {
- return 1
- }
-
- # Windows targets Cygwin and MingW32 support it
-
- if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } {
- return 1
- }
-
- # HP-UX 10.X doesn't support it
-
- if { [istarget hppa*-*-hpux10*] } {
- return 0
- }
-
- # ELF and ECOFF support it. a.out does with gas/gld but may also with
- # other linkers, so we should try it
-
- set objformat [gcc_target_object_format]
-
- switch $objformat {
- elf { return 1 }
- ecoff { return 1 }
- a.out { return 1 }
- mach-o { return 1 }
- som { return 1 }
- unknown { return -1 }
- default { return 0 }
- }
-}
-
-###############################
-# proc check_weak_override_available { }
-###############################
-
-# Like check_weak_available, but return 0 if weak symbol definitions
-# cannot be overridden.
-
-proc check_weak_override_available { } {
- if { [istarget *-*-mingw*] } {
- return 0
- }
- return [check_weak_available]
-}
-
-###############################
-# proc check_visibility_available { what_kind }
-###############################
-
-# The visibility attribute is only support in some object formats
-# This proc returns 1 if it is supported, 0 if not.
-# The argument is the kind of visibility, default/protected/hidden/internal.
-
-proc check_visibility_available { what_kind } {
- if [string match "" $what_kind] { set what_kind "hidden" }
-
- return [check_no_compiler_messages visibility_available_$what_kind object "
- void f() __attribute__((visibility(\"$what_kind\")));
- void f() {}
- "]
-}
-
-###############################
-# proc check_alias_available { }
-###############################
-
-# Determine if the target toolchain supports the alias attribute.
-
-# Returns 2 if the target supports aliases. Returns 1 if the target
-# only supports weak aliased. Returns 0 if the target does not
-# support aliases at all. Returns -1 if support for aliases could not
-# be determined.
-
-proc check_alias_available { } {
- global alias_available_saved
- global tool
-
- if [info exists alias_available_saved] {
- verbose "check_alias_available returning saved $alias_available_saved" 2
- } else {
- set src alias[pid].c
- set obj alias[pid].o
- verbose "check_alias_available compiling testfile $src" 2
- set f [open $src "w"]
- # Compile a small test program. The definition of "g" is
- # necessary to keep the Solaris assembler from complaining
- # about the program.
- puts $f "#ifdef __cplusplus\nextern \"C\"\n#endif\n"
- puts $f "void g() {} void f() __attribute__((alias(\"g\")));"
- close $f
- set lines [${tool}_target_compile $src $obj object ""]
- file delete $src
- remote_file build delete $obj
-
- if [string match "" $lines] then {
- # No error messages, everything is OK.
- set alias_available_saved 2
- } else {
- if [regexp "alias definitions not supported" $lines] {
- verbose "check_alias_available target does not support aliases" 2
-
- set objformat [gcc_target_object_format]
-
- if { $objformat == "elf" } {
- verbose "check_alias_available but target uses ELF format, so it ought to" 2
- set alias_available_saved -1
- } else {
- set alias_available_saved 0
- }
- } else {
- if [regexp "only weak aliases are supported" $lines] {
- verbose "check_alias_available target supports only weak aliases" 2
- set alias_available_saved 1
- } else {
- set alias_available_saved -1
- }
- }
- }
-
- verbose "check_alias_available returning $alias_available_saved" 2
- }
-
- return $alias_available_saved
-}
-
-# Returns 1 if the target toolchain supports strong aliases, 0 otherwise.
-
-proc check_effective_target_alias { } {
- if { [check_alias_available] < 2 } {
- return 0
- } else {
- return 1
- }
-}
-
-# Returns 1 if the target toolchain supports ifunc, 0 otherwise.
-
-proc check_ifunc_available { } {
- return [check_no_compiler_messages ifunc_available object {
- #ifdef __cplusplus
- extern "C"
- #endif
- void g() {}
- void f() __attribute__((ifunc("g")));
- }]
-}
-
-# Returns true if --gc-sections is supported on the target.
-
-proc check_gc_sections_available { } {
- global gc_sections_available_saved
- global tool
-
- if {![info exists gc_sections_available_saved]} {
- # Some targets don't support gc-sections despite whatever's
- # advertised by ld's options.
- if { [istarget alpha*-*-*]
- || [istarget ia64-*-*] } {
- set gc_sections_available_saved 0
- return 0
- }
-
- # elf2flt uses -q (--emit-relocs), which is incompatible with
- # --gc-sections.
- if { [board_info target exists ldflags]
- && [regexp " -elf2flt\[ =\]" " [board_info target ldflags] "] } {
- set gc_sections_available_saved 0
- return 0
- }
-
- # VxWorks kernel modules are relocatable objects linked with -r,
- # while RTP executables are linked with -q (--emit-relocs).
- # Both of these options are incompatible with --gc-sections.
- if { [istarget *-*-vxworks*] } {
- set gc_sections_available_saved 0
- return 0
- }
-
- # Check if the ld used by gcc supports --gc-sections.
- set gcc_spec [${tool}_target_compile "-dumpspecs" "" "none" ""]
- regsub ".*\n\\*linker:\[ \t\]*\n(\[^ \t\n\]*).*" "$gcc_spec" {\1} linker
- set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=$linker" "" "none" ""] 0]
- set ld_output [remote_exec host "$gcc_ld" "--help"]
- if { [ string first "--gc-sections" $ld_output ] >= 0 } {
- set gc_sections_available_saved 1
- } else {
- set gc_sections_available_saved 0
- }
- }
- return $gc_sections_available_saved
-}
-
-# Return 1 if according to target_info struct and explicit target list
-# target is supposed to support trampolines.
-
-proc check_effective_target_trampolines { } {
- if [target_info exists no_trampolines] {
- return 0
- }
- if { [istarget avr-*-*]
- || [istarget msp430-*-*]
- || [istarget hppa2.0w-hp-hpux11.23]
- || [istarget hppa64-hp-hpux11.23] } {
- return 0;
- }
- return 1
-}
-
-# Return 1 if according to target_info struct and explicit target list
-# target is supposed to keep null pointer checks. This could be due to
-# use of option fno-delete-null-pointer-checks or hardwired in target.
-
-proc check_effective_target_keeps_null_pointer_checks { } {
- if [target_info exists keeps_null_pointer_checks] {
- return 1
- }
- if { [istarget avr-*-*] } {
- return 1;
- }
- return 0
-}
-
-# Return true if profiling is supported on the target.
-
-proc check_profiling_available { test_what } {
- global profiling_available_saved
-
- verbose "Profiling argument is <$test_what>" 1
-
- # These conditions depend on the argument so examine them before
- # looking at the cache variable.
-
- # Tree profiling requires TLS runtime support.
- if { $test_what == "-fprofile-generate" } {
- if { ![check_effective_target_tls_runtime] } {
- return 0
- }
- }
-
- # Support for -p on solaris2 relies on mcrt1.o which comes with the
- # vendor compiler. We cannot reliably predict the directory where the
- # vendor compiler (and thus mcrt1.o) is installed so we can't
- # necessarily find mcrt1.o even if we have it.
- if { [istarget *-*-solaris2*] && $test_what == "-p" } {
- return 0
- }
-
- # We don't yet support profiling for MIPS16.
- if { [istarget mips*-*-*]
- && ![check_effective_target_nomips16]
- && ($test_what == "-p" || $test_what == "-pg") } {
- return 0
- }
-
- # MinGW does not support -p.
- if { [istarget *-*-mingw*] && $test_what == "-p" } {
- return 0
- }
-
- # cygwin does not support -p.
- if { [istarget *-*-cygwin*] && $test_what == "-p" } {
- return 0
- }
-
- # uClibc does not have gcrt1.o.
- if { [check_effective_target_uclibc]
- && ($test_what == "-p" || $test_what == "-pg") } {
- return 0
- }
-
- # Now examine the cache variable.
- if {![info exists profiling_available_saved]} {
- # Some targets don't have any implementation of __bb_init_func or are
- # missing other needed machinery.
- if { [istarget aarch64*-*-elf]
- || [istarget am3*-*-linux*]
- || [istarget arm*-*-eabi*]
- || [istarget arm*-*-elf]
- || [istarget arm*-*-symbianelf*]
- || [istarget avr-*-*]
- || [istarget bfin-*-*]
- || [istarget cris-*-*]
- || [istarget crisv32-*-*]
- || [istarget fido-*-elf]
- || [istarget h8300-*-*]
- || [istarget lm32-*-*]
- || [istarget m32c-*-elf]
- || [istarget m68k-*-elf]
- || [istarget m68k-*-uclinux*]
- || [istarget mep-*-elf]
- || [istarget mips*-*-elf*]
- || [istarget mmix-*-*]
- || [istarget mn10300-*-elf*]
- || [istarget moxie-*-elf*]
- || [istarget msp430-*-*]
- || [istarget nds32*-*-elf]
- || [istarget nios2-*-elf]
- || [istarget picochip-*-*]
- || [istarget powerpc-*-eabi*]
- || [istarget powerpc-*-elf]
- || [istarget rx-*-*]
- || [istarget tic6x-*-elf]
- || [istarget xstormy16-*]
- || [istarget xtensa*-*-elf]
- || [istarget *-*-rtems*]
- || [istarget *-*-vxworks*] } {
- set profiling_available_saved 0
- } else {
- set profiling_available_saved 1
- }
- }
-
- return $profiling_available_saved
-}
-
-# Check to see if a target is "freestanding". This is as per the definition
-# in Section 4 of C99 standard. Effectively, it is a target which supports no
-# extra headers or libraries other than what is considered essential.
-proc check_effective_target_freestanding { } {
- if { [istarget picochip-*-*] } then {
- return 1
- } else {
- return 0
- }
-}
-
-# Return 1 if target has packed layout of structure members by
-# default, 0 otherwise. Note that this is slightly different than
-# whether the target has "natural alignment": both attributes may be
-# false.
-
-proc check_effective_target_default_packed { } {
- return [check_no_compiler_messages default_packed assembly {
- struct x { char a; long b; } c;
- int s[sizeof (c) == sizeof (char) + sizeof (long) ? 1 : -1];
- }]
-}
-
-# Return 1 if target has PCC_BITFIELD_TYPE_MATTERS defined. See
-# documentation, where the test also comes from.
-
-proc check_effective_target_pcc_bitfield_type_matters { } {
- # PCC_BITFIELD_TYPE_MATTERS isn't just about unnamed or empty
- # bitfields, but let's stick to the example code from the docs.
- return [check_no_compiler_messages pcc_bitfield_type_matters assembly {
- struct foo1 { char x; char :0; char y; };
- struct foo2 { char x; int :0; char y; };
- int s[sizeof (struct foo1) != sizeof (struct foo2) ? 1 : -1];
- }]
-}
-
-# Add to FLAGS all the target-specific flags needed to use thread-local storage.
-
-proc add_options_for_tls { flags } {
- # On Solaris 9, __tls_get_addr/___tls_get_addr only lives in
- # libthread, so always pass -pthread for native TLS. Same for AIX.
- # Need to duplicate native TLS check from
- # check_effective_target_tls_native to avoid recursion.
- if { ([istarget *-*-solaris2.9*] || [istarget powerpc-ibm-aix*]) &&
- [check_no_messages_and_pattern tls_native "!emutls" assembly {
- __thread int i;
- int f (void) { return i; }
- void g (int j) { i = j; }
- }] } {
- return "$flags -pthread"
- }
- return $flags
-}
-
-# Return 1 if thread local storage (TLS) is supported, 0 otherwise.
-
-proc check_effective_target_tls {} {
- return [check_no_compiler_messages tls assembly {
- __thread int i;
- int f (void) { return i; }
- void g (int j) { i = j; }
- }]
-}
-
-# Return 1 if *native* thread local storage (TLS) is supported, 0 otherwise.
-
-proc check_effective_target_tls_native {} {
- # VxWorks uses emulated TLS machinery, but with non-standard helper
- # functions, so we fail to automatically detect it.
- if { [istarget *-*-vxworks*] } {
- return 0
- }
-
- return [check_no_messages_and_pattern tls_native "!emutls" assembly {
- __thread int i;
- int f (void) { return i; }
- void g (int j) { i = j; }
- }]
-}
-
-# Return 1 if *emulated* thread local storage (TLS) is supported, 0 otherwise.
-
-proc check_effective_target_tls_emulated {} {
- # VxWorks uses emulated TLS machinery, but with non-standard helper
- # functions, so we fail to automatically detect it.
- if { [istarget *-*-vxworks*] } {
- return 1
- }
-
- return [check_no_messages_and_pattern tls_emulated "emutls" assembly {
- __thread int i;
- int f (void) { return i; }
- void g (int j) { i = j; }
- }]
-}
-
-# Return 1 if TLS executables can run correctly, 0 otherwise.
-
-proc check_effective_target_tls_runtime {} {
- # MSP430 runtime does not have TLS support, but just
- # running the test below is insufficient to show this.
- if { [istarget msp430-*-*] } {
- return 0
- }
- return [check_runtime tls_runtime {
- __thread int thr = 0;
- int main (void) { return thr; }
- } [add_options_for_tls ""]]
-}
-
-# Return 1 if atomic compare-and-swap is supported on 'int'
-
-proc check_effective_target_cas_char {} {
- return [check_no_compiler_messages cas_char assembly {
- #ifndef __GCC_HAVE_SYNC_COMPARE_AND_SWAP_1
- #error unsupported
- #endif
- } ""]
-}
-
-proc check_effective_target_cas_int {} {
- return [check_no_compiler_messages cas_int assembly {
- #if __INT_MAX__ == 0x7fff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2
- /* ok */
- #elif __INT_MAX__ == 0x7fffffff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4
- /* ok */
- #else
- #error unsupported
- #endif
- } ""]
-}
-
-# Return 1 if -ffunction-sections is supported, 0 otherwise.
-
-proc check_effective_target_function_sections {} {
- # Darwin has its own scheme and silently accepts -ffunction-sections.
- if { [istarget *-*-darwin*] } {
- return 0
- }
-
- return [check_no_compiler_messages functionsections assembly {
- void foo (void) { }
- } "-ffunction-sections"]
-}
-
-# Return 1 if instruction scheduling is available, 0 otherwise.
-
-proc check_effective_target_scheduling {} {
- return [check_no_compiler_messages scheduling object {
- void foo (void) { }
- } "-fschedule-insns"]
-}
-
-# Return 1 if trapping arithmetic is available, 0 otherwise.
-
-proc check_effective_target_trapping {} {
- return [check_no_compiler_messages scheduling object {
- add (int a, int b) { return a + b; }
- } "-ftrapv"]
-}
-
-# Return 1 if compilation with -fgraphite is error-free for trivial
-# code, 0 otherwise.
-
-proc check_effective_target_fgraphite {} {
- return [check_no_compiler_messages fgraphite object {
- void foo (void) { }
- } "-O1 -fgraphite"]
-}
-
-# Return 1 if compilation with -fopenmp is error-free for trivial
-# code, 0 otherwise.
-
-proc check_effective_target_fopenmp {} {
- return [check_no_compiler_messages fopenmp object {
- void foo (void) { }
- } "-fopenmp"]
-}
-
-# Return 1 if compilation with -fgnu-tm is error-free for trivial
-# code, 0 otherwise.
-
-proc check_effective_target_fgnu_tm {} {
- return [check_no_compiler_messages fgnu_tm object {
- void foo (void) { }
- } "-fgnu-tm"]
-}
-
-# Return 1 if the target supports mmap, 0 otherwise.
-
-proc check_effective_target_mmap {} {
- return [check_function_available "mmap"]
-}
-
-# Return 1 if the target supports dlopen, 0 otherwise.
-proc check_effective_target_dlopen {} {
- return [check_no_compiler_messages dlopen executable {
- #include <dlfcn.h>
- int main(void) { dlopen ("dummy.so", RTLD_NOW); }
- } [add_options_for_dlopen ""]]
-}
-
-proc add_options_for_dlopen { flags } {
- return "$flags -ldl"
-}
-
-# Return 1 if the target supports clone, 0 otherwise.
-proc check_effective_target_clone {} {
- return [check_function_available "clone"]
-}
-
-# Return 1 if the target supports setrlimit, 0 otherwise.
-proc check_effective_target_setrlimit {} {
- # Darwin has non-posix compliant RLIMIT_AS
- if { [istarget *-*-darwin*] } {
- return 0
- }
- return [check_function_available "setrlimit"]
-}
-
-# Return 1 if the target supports swapcontext, 0 otherwise.
-proc check_effective_target_swapcontext {} {
- return [check_no_compiler_messages swapcontext executable {
- #include <ucontext.h>
- int main (void)
- {
- ucontext_t orig_context,child_context;
- if (swapcontext(&child_context, &orig_context) < 0) { }
- }
- }]
-}
-
-# Return 1 if compilation with -pthread is error-free for trivial
-# code, 0 otherwise.
-
-proc check_effective_target_pthread {} {
- return [check_no_compiler_messages pthread object {
- void foo (void) { }
- } "-pthread"]
-}
-
-# Return 1 if compilation with -mpe-aligned-commons is error-free
-# for trivial code, 0 otherwise.
-
-proc check_effective_target_pe_aligned_commons {} {
- if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } {
- return [check_no_compiler_messages pe_aligned_commons object {
- int foo;
- } "-mpe-aligned-commons"]
- }
- return 0
-}
-
-# Return 1 if the target supports -static
-proc check_effective_target_static {} {
- return [check_no_compiler_messages static executable {
- int main (void) { return 0; }
- } "-static"]
-}
-
-# Return 1 if the target supports -fstack-protector
-proc check_effective_target_fstack_protector {} {
- return [check_runtime fstack_protector {
- int main (void) { return 0; }
- } "-fstack-protector"]
-}
-
-# Return 1 if compilation with -freorder-blocks-and-partition is error-free
-# for trivial code, 0 otherwise.
-
-proc check_effective_target_freorder {} {
- return [check_no_compiler_messages freorder object {
- void foo (void) { }
- } "-freorder-blocks-and-partition"]
-}
-
-# Return 1 if -fpic and -fPIC are supported, as in no warnings or errors
-# emitted, 0 otherwise. Whether a shared library can actually be built is
-# out of scope for this test.
-
-proc check_effective_target_fpic { } {
- # Note that M68K has a multilib that supports -fpic but not
- # -fPIC, so we need to check both. We test with a program that
- # requires GOT references.
- foreach arg {fpic fPIC} {
- if [check_no_compiler_messages $arg object {
- extern int foo (void); extern int bar;
- int baz (void) { return foo () + bar; }
- } "-$arg"] {
- return 1
- }
- }
- return 0
-}
-
-# Return 1 if -pie, -fpie and -fPIE are supported, 0 otherwise.
-
-proc check_effective_target_pie { } {
- if { [istarget *-*-darwin\[912\]*]
- || [istarget *-*-linux*]
- || [istarget *-*-gnu*] } {
- return 1;
- }
- return 0
-}
-
-# Return true if the target supports -mpaired-single (as used on MIPS).
-
-proc check_effective_target_mpaired_single { } {
- return [check_no_compiler_messages mpaired_single object {
- void foo (void) { }
- } "-mpaired-single"]
-}
-
-# Return true if the target has access to FPU instructions.
-
-proc check_effective_target_hard_float { } {
- if { [istarget mips*-*-*] } {
- return [check_no_compiler_messages hard_float assembly {
- #if (defined __mips_soft_float || defined __mips16)
- #error FOO
- #endif
- }]
- }
-
- # This proc is actually checking the availabilty of FPU
- # support for doubles, so on the RX we must fail if the
- # 64-bit double multilib has been selected.
- if { [istarget rx-*-*] } {
- return 0
- # return [check_no_compiler_messages hard_float assembly {
- #if defined __RX_64_BIT_DOUBLES__
- #error FOO
- #endif
- # }]
- }
-
- # The generic test equates hard_float with "no call for adding doubles".
- return [check_no_messages_and_pattern hard_float "!\\(call" rtl-expand {
- double a (double b, double c) { return b + c; }
- }]
-}
-
-# Return true if the target is a 64-bit MIPS target.
-
-proc check_effective_target_mips64 { } {
- return [check_no_compiler_messages mips64 assembly {
- #ifndef __mips64
- #error FOO
- #endif
- }]
-}
-
-# Return true if the target is a MIPS target that does not produce
-# MIPS16 code.
-
-proc check_effective_target_nomips16 { } {
- return [check_no_compiler_messages nomips16 object {
- #ifndef __mips
- #error FOO
- #else
- /* A cheap way of testing for -mflip-mips16. */
- void foo (void) { asm ("addiu $20,$20,1"); }
- void bar (void) { asm ("addiu $20,$20,1"); }
- #endif
- }]
-}
-
-# Add the options needed for MIPS16 function attributes. At the moment,
-# we don't support MIPS16 PIC.
-
-proc add_options_for_mips16_attribute { flags } {
- return "$flags -mno-abicalls -fno-pic -DMIPS16=__attribute__((mips16))"
-}
-
-# Return true if we can force a mode that allows MIPS16 code generation.
-# We don't support MIPS16 PIC, and only support MIPS16 -mhard-float
-# for o32 and o64.
-
-proc check_effective_target_mips16_attribute { } {
- return [check_no_compiler_messages mips16_attribute assembly {
- #ifdef PIC
- #error FOO
- #endif
- #if defined __mips_hard_float \
- && (!defined _ABIO32 || _MIPS_SIM != _ABIO32) \
- && (!defined _ABIO64 || _MIPS_SIM != _ABIO64)
- #error FOO
- #endif
- } [add_options_for_mips16_attribute ""]]
-}
-
-# Return 1 if the target supports long double larger than double when
-# using the new ABI, 0 otherwise.
-
-proc check_effective_target_mips_newabi_large_long_double { } {
- return [check_no_compiler_messages mips_newabi_large_long_double object {
- int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
- } "-mabi=64"]
-}
-
-# Return true if the target is a MIPS target that has access
-# to the LL and SC instructions.
-
-proc check_effective_target_mips_llsc { } {
- if { ![istarget mips*-*-*] } {
- return 0
- }
- # Assume that these instructions are always implemented for
- # non-elf* targets, via emulation if necessary.
- if { ![istarget *-*-elf*] } {
- return 1
- }
- # Otherwise assume LL/SC support for everything but MIPS I.
- return [check_no_compiler_messages mips_llsc assembly {
- #if __mips == 1
- #error FOO
- #endif
- }]
-}
-
-# Return true if the target is a MIPS target that uses in-place relocations.
-
-proc check_effective_target_mips_rel { } {
- if { ![istarget mips*-*-*] } {
- return 0
- }
- return [check_no_compiler_messages mips_rel object {
- #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
- || (defined _ABI64 && _MIPS_SIM == _ABI64)
- #error FOO
- #endif
- }]
-}
-
-# Return true if the target is a MIPS target that uses the EABI.
-
-proc check_effective_target_mips_eabi { } {
- if { ![istarget mips*-*-*] } {
- return 0
- }
- return [check_no_compiler_messages mips_eabi object {
- #ifndef __mips_eabi
- #error FOO
- #endif
- }]
-}
-
-# Return 1 if the current multilib does not generate PIC by default.
-
-proc check_effective_target_nonpic { } {
- return [check_no_compiler_messages nonpic assembly {
- #if __PIC__
- #error FOO
- #endif
- }]
-}
-
-# Return 1 if the target does not use a status wrapper.
-
-proc check_effective_target_unwrapped { } {
- if { [target_info needs_status_wrapper] != "" \
- && [target_info needs_status_wrapper] != "0" } {
- return 0
- }
- return 1
-}
-
-# Return true if iconv is supported on the target. In particular IBM1047.
-
-proc check_iconv_available { test_what } {
- global libiconv
-
- # If the tool configuration file has not set libiconv, try "-liconv"
- if { ![info exists libiconv] } {
- set libiconv "-liconv"
- }
- set test_what [lindex $test_what 1]
- return [check_runtime_nocache $test_what [subst {
- #include <iconv.h>
- int main (void)
- {
- iconv_t cd;
-
- cd = iconv_open ("$test_what", "UTF-8");
- if (cd == (iconv_t) -1)
- return 1;
- return 0;
- }
- }] $libiconv]
-}
-
-# Return true if Cilk Library is supported on the target.
-proc check_libcilkrts_available { } {
- return [ check_no_compiler_messages_nocache libcilkrts_available executable {
- #ifdef __cplusplus
- extern "C"
- #endif
- int __cilkrts_set_param (const char *, const char *);
- int main (void) {
- int x = __cilkrts_set_param ("nworkers", "0");
- return x;
- }
- } "-fcilkplus -lcilkrts" ]
-}
-
-# Return 1 if an ASCII locale is supported on this host, 0 otherwise.
-
-proc check_ascii_locale_available { } {
- return 1
-}
-
-# Return true if named sections are supported on this target.
-
-proc check_named_sections_available { } {
- return [check_no_compiler_messages named_sections assembly {
- int __attribute__ ((section("whatever"))) foo;
- }]
-}
-
-# Return true if the "naked" function attribute is supported on this target.
-
-proc check_effective_target_naked_functions { } {
- return [check_no_compiler_messages naked_functions assembly {
- void f() __attribute__((naked));
- }]
-}
-
-# Return 1 if the target supports Fortran real kinds larger than real(8),
-# 0 otherwise.
-#
-# When the target name changes, replace the cached result.
-
-proc check_effective_target_fortran_large_real { } {
- return [check_no_compiler_messages fortran_large_real executable {
- ! Fortran
- integer,parameter :: k = selected_real_kind (precision (0.0_8) + 1)
- real(kind=k) :: x
- x = cos (x)
- end
- }]
-}
-
-# Return 1 if the target supports Fortran real kind real(16),
-# 0 otherwise. Contrary to check_effective_target_fortran_large_real
-# this checks for Real(16) only; the other returned real(10) if
-# both real(10) and real(16) are available.
-#
-# When the target name changes, replace the cached result.
-
-proc check_effective_target_fortran_real_16 { } {
- return [check_no_compiler_messages fortran_real_16 executable {
- ! Fortran
- real(kind=16) :: x
- x = cos (x)
- end
- }]
-}
-
-
-# Return 1 if the target supports SQRT for the largest floating-point
-# type. (Some targets lack the libm support for this FP type.)
-# On most targets, this check effectively checks either whether sqrtl is
-# available or on __float128 systems whether libquadmath is installed,
-# which provides sqrtq.
-#
-# When the target name changes, replace the cached result.
-
-proc check_effective_target_fortran_largest_fp_has_sqrt { } {
- return [check_no_compiler_messages fortran_largest_fp_has_sqrt executable {
- ! Fortran
- use iso_fortran_env, only: real_kinds
- integer,parameter:: maxFP = real_kinds(ubound(real_kinds,dim=1))
- real(kind=maxFP), volatile :: x
- x = 2.0_maxFP
- x = sqrt (x)
- end
- }]
-}
-
-
-# Return 1 if the target supports Fortran integer kinds larger than
-# integer(8), 0 otherwise.
-#
-# When the target name changes, replace the cached result.
-
-proc check_effective_target_fortran_large_int { } {
- return [check_no_compiler_messages fortran_large_int executable {
- ! Fortran
- integer,parameter :: k = selected_int_kind (range (0_8) + 1)
- integer(kind=k) :: i
- end
- }]
-}
-
-# Return 1 if the target supports Fortran integer(16), 0 otherwise.
-#
-# When the target name changes, replace the cached result.
-
-proc check_effective_target_fortran_integer_16 { } {
- return [check_no_compiler_messages fortran_integer_16 executable {
- ! Fortran
- integer(16) :: i
- end
- }]
-}
-
-# Return 1 if we can statically link libgfortran, 0 otherwise.
-#
-# When the target name changes, replace the cached result.
-
-proc check_effective_target_static_libgfortran { } {
- return [check_no_compiler_messages static_libgfortran executable {
- ! Fortran
- print *, 'test'
- end
- } "-static"]
-}
-
-# Return 1 if cilk-plus is supported by the target, 0 otherwise.
-
-proc check_effective_target_cilkplus { } {
- # Skip cilk-plus tests on int16 and size16 targets for now.
- # The cilk-plus tests are not generic enough to cover these
- # cases and would throw hundreds of FAILs.
- if { [check_effective_target_int16]
- || ![check_effective_target_size32plus] } {
- return 0;
- }
-
- # Skip AVR, its RAM is too small and too many tests would fail.
- if { [istarget avr-*-*] } {
- return 0;
- }
- return 1
-}
-
-proc check_linker_plugin_available { } {
- return [check_no_compiler_messages_nocache linker_plugin executable {
- int main() { return 0; }
- } "-flto -fuse-linker-plugin"]
-}
-
-# Return 1 if the target supports executing 750CL paired-single instructions, 0
-# otherwise. Cache the result.
-
-proc check_750cl_hw_available { } {
- return [check_cached_effective_target 750cl_hw_available {
- # If this is not the right target then we can skip the test.
- if { ![istarget powerpc-*paired*] } {
- expr 0
- } else {
- check_runtime_nocache 750cl_hw_available {
- int main()
- {
- #ifdef __MACH__
- asm volatile ("ps_mul v0,v0,v0");
- #else
- asm volatile ("ps_mul 0,0,0");
- #endif
- return 0;
- }
- } "-mpaired"
- }
- }]
-}
-
-# Return 1 if the target OS supports running SSE executables, 0
-# otherwise. Cache the result.
-
-proc check_sse_os_support_available { } {
- return [check_cached_effective_target sse_os_support_available {
- # If this is not the right target then we can skip the test.
- if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
- expr 0
- } elseif { [istarget i?86-*-solaris2*] } {
- # The Solaris 2 kernel doesn't save and restore SSE registers
- # before Solaris 9 4/04. Before that, executables die with SIGILL.
- check_runtime_nocache sse_os_support_available {
- int main ()
- {
- asm volatile ("movaps %xmm0,%xmm0");
- return 0;
- }
- } "-msse"
- } else {
- expr 1
- }
- }]
-}
-
-# Return 1 if the target OS supports running AVX executables, 0
-# otherwise. Cache the result.
-
-proc check_avx_os_support_available { } {
- return [check_cached_effective_target avx_os_support_available {
- # If this is not the right target then we can skip the test.
- if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
- expr 0
- } else {
- # Check that OS has AVX and SSE saving enabled.
- check_runtime_nocache avx_os_support_available {
- int main ()
- {
- unsigned int eax, edx;
-
- asm ("xgetbv" : "=a" (eax), "=d" (edx) : "c" (0));
- return (eax & 6) != 6;
- }
- } ""
- }
- }]
-}
-
-# Return 1 if the target supports executing SSE instructions, 0
-# otherwise. Cache the result.
-
-proc check_sse_hw_available { } {
- return [check_cached_effective_target sse_hw_available {
- # If this is not the right target then we can skip the test.
- if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
- expr 0
- } else {
- check_runtime_nocache sse_hw_available {
- #include "cpuid.h"
- int main ()
- {
- unsigned int eax, ebx, ecx, edx;
- if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
- return !(edx & bit_SSE);
- return 1;
- }
- } ""
- }
- }]
-}
-
-# Return 1 if the target supports executing SSE2 instructions, 0
-# otherwise. Cache the result.
-
-proc check_sse2_hw_available { } {
- return [check_cached_effective_target sse2_hw_available {
- # If this is not the right target then we can skip the test.
- if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
- expr 0
- } else {
- check_runtime_nocache sse2_hw_available {
- #include "cpuid.h"
- int main ()
- {
- unsigned int eax, ebx, ecx, edx;
- if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
- return !(edx & bit_SSE2);
- return 1;
- }
- } ""
- }
- }]
-}
-
-# Return 1 if the target supports executing AVX instructions, 0
-# otherwise. Cache the result.
-
-proc check_avx_hw_available { } {
- return [check_cached_effective_target avx_hw_available {
- # If this is not the right target then we can skip the test.
- if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
- expr 0
- } else {
- check_runtime_nocache avx_hw_available {
- #include "cpuid.h"
- int main ()
- {
- unsigned int eax, ebx, ecx, edx;
- if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
- return ((ecx & (bit_AVX | bit_OSXSAVE))
- != (bit_AVX | bit_OSXSAVE));
- return 1;
- }
- } ""
- }
- }]
-}
-
-# Return 1 if the target supports running SSE executables, 0 otherwise.
-
-proc check_effective_target_sse_runtime { } {
- if { [check_effective_target_sse]
- && [check_sse_hw_available]
- && [check_sse_os_support_available] } {
- return 1
- }
- return 0
-}
-
-# Return 1 if the target supports running SSE2 executables, 0 otherwise.
-
-proc check_effective_target_sse2_runtime { } {
- if { [check_effective_target_sse2]
- && [check_sse2_hw_available]
- && [check_sse_os_support_available] } {
- return 1
- }
- return 0
-}
-
-# Return 1 if the target supports running AVX executables, 0 otherwise.
-
-proc check_effective_target_avx_runtime { } {
- if { [check_effective_target_avx]
- && [check_avx_hw_available]
- && [check_avx_os_support_available] } {
- return 1
- }
- return 0
-}
-
-# Return 1 if the target supports executing power8 vector instructions, 0
-# otherwise. Cache the result.
-
-proc check_p8vector_hw_available { } {
- return [check_cached_effective_target p8vector_hw_available {
- # Some simulators are known to not support VSX/power8 instructions.
- # For now, disable on Darwin
- if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
- expr 0
- } else {
- set options "-mpower8-vector"
- check_runtime_nocache p8vector_hw_available {
- int main()
- {
- #ifdef __MACH__
- asm volatile ("xxlorc vs0,vs0,vs0");
- #else
- asm volatile ("xxlorc 0,0,0");
- #endif
- return 0;
- }
- } $options
- }
- }]
-}
-
-# Return 1 if the target supports executing VSX instructions, 0
-# otherwise. Cache the result.
-
-proc check_vsx_hw_available { } {
- return [check_cached_effective_target vsx_hw_available {
- # Some simulators are known to not support VSX instructions.
- # For now, disable on Darwin
- if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
- expr 0
- } else {
- set options "-mvsx"
- check_runtime_nocache vsx_hw_available {
- int main()
- {
- #ifdef __MACH__
- asm volatile ("xxlor vs0,vs0,vs0");
- #else
- asm volatile ("xxlor 0,0,0");
- #endif
- return 0;
- }
- } $options
- }
- }]
-}
-
-# Return 1 if the target supports executing AltiVec instructions, 0
-# otherwise. Cache the result.
-
-proc check_vmx_hw_available { } {
- return [check_cached_effective_target vmx_hw_available {
- # Some simulators are known to not support VMX instructions.
- if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] } {
- expr 0
- } else {
- # Most targets don't require special flags for this test case, but
- # Darwin does. Just to be sure, make sure VSX is not enabled for
- # the altivec tests.
- if { [istarget *-*-darwin*]
- || [istarget *-*-aix*] } {
- set options "-maltivec -mno-vsx"
- } else {
- set options "-mno-vsx"
- }
- check_runtime_nocache vmx_hw_available {
- int main()
- {
- #ifdef __MACH__
- asm volatile ("vor v0,v0,v0");
- #else
- asm volatile ("vor 0,0,0");
- #endif
- return 0;
- }
- } $options
- }
- }]
-}
-
-proc check_ppc_recip_hw_available { } {
- return [check_cached_effective_target ppc_recip_hw_available {
- # Some simulators may not support FRE/FRES/FRSQRTE/FRSQRTES
- # For now, disable on Darwin
- if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
- expr 0
- } else {
- set options "-mpowerpc-gfxopt -mpowerpc-gpopt -mpopcntb"
- check_runtime_nocache ppc_recip_hw_available {
- volatile double d_recip, d_rsqrt, d_four = 4.0;
- volatile float f_recip, f_rsqrt, f_four = 4.0f;
- int main()
- {
- asm volatile ("fres %0,%1" : "=f" (f_recip) : "f" (f_four));
- asm volatile ("fre %0,%1" : "=d" (d_recip) : "d" (d_four));
- asm volatile ("frsqrtes %0,%1" : "=f" (f_rsqrt) : "f" (f_four));
- asm volatile ("frsqrte %0,%1" : "=f" (d_rsqrt) : "d" (d_four));
- return 0;
- }
- } $options
- }
- }]
-}
-
-# Return 1 if the target supports executing AltiVec and Cell PPU
-# instructions, 0 otherwise. Cache the result.
-
-proc check_effective_target_cell_hw { } {
- return [check_cached_effective_target cell_hw_available {
- # Some simulators are known to not support VMX and PPU instructions.
- if { [istarget powerpc-*-eabi*] } {
- expr 0
- } else {
- # Most targets don't require special flags for this test
- # case, but Darwin and AIX do.
- if { [istarget *-*-darwin*]
- || [istarget *-*-aix*] } {
- set options "-maltivec -mcpu=cell"
- } else {
- set options "-mcpu=cell"
- }
- check_runtime_nocache cell_hw_available {
- int main()
- {
- #ifdef __MACH__
- asm volatile ("vor v0,v0,v0");
- asm volatile ("lvlx v0,r0,r0");
- #else
- asm volatile ("vor 0,0,0");
- asm volatile ("lvlx 0,0,0");
- #endif
- return 0;
- }
- } $options
- }
- }]
-}
-
-# Return 1 if the target supports executing 64-bit instructions, 0
-# otherwise. Cache the result.
-
-proc check_effective_target_powerpc64 { } {
- global powerpc64_available_saved
- global tool
-
- if [info exists powerpc64_available_saved] {
- verbose "check_effective_target_powerpc64 returning saved $powerpc64_available_saved" 2
- } else {
- set powerpc64_available_saved 0
-
- # Some simulators are known to not support powerpc64 instructions.
- if { [istarget powerpc-*-eabi*] || [istarget powerpc-ibm-aix*] } {
- verbose "check_effective_target_powerpc64 returning 0" 2
- return $powerpc64_available_saved
- }
-
- # Set up, compile, and execute a test program containing a 64-bit
- # instruction. Include the current process ID in the file
- # names to prevent conflicts with invocations for multiple
- # testsuites.
- set src ppc[pid].c
- set exe ppc[pid].x
-
- set f [open $src "w"]
- puts $f "int main() {"
- puts $f "#ifdef __MACH__"
- puts $f " asm volatile (\"extsw r0,r0\");"
- puts $f "#else"
- puts $f " asm volatile (\"extsw 0,0\");"
- puts $f "#endif"
- puts $f " return 0; }"
- close $f
-
- set opts "additional_flags=-mcpu=G5"
-
- verbose "check_effective_target_powerpc64 compiling testfile $src" 2
- set lines [${tool}_target_compile $src $exe executable "$opts"]
- file delete $src
-
- if [string match "" $lines] then {
- # No error message, compilation succeeded.
- set result [${tool}_load "./$exe" "" ""]
- set status [lindex $result 0]
- remote_file build delete $exe
- verbose "check_effective_target_powerpc64 testfile status is <$status>" 2
-
- if { $status == "pass" } then {
- set powerpc64_available_saved 1
- }
- } else {
- verbose "check_effective_target_powerpc64 testfile compilation failed" 2
- }
- }
-
- return $powerpc64_available_saved
-}
-
-# GCC 3.4.0 for powerpc64-*-linux* included an ABI fix for passing
-# complex float arguments. This affects gfortran tests that call cabsf
-# in libm built by an earlier compiler. Return 1 if libm uses the same
-# argument passing as the compiler under test, 0 otherwise.
-#
-# When the target name changes, replace the cached result.
-
-proc check_effective_target_broken_cplxf_arg { } {
- return [check_cached_effective_target broken_cplxf_arg {
- # Skip the work for targets known not to be affected.
- if { ![istarget powerpc64-*-linux*] } {
- expr 0
- } elseif { ![is-effective-target lp64] } {
- expr 0
- } else {
- check_runtime_nocache broken_cplxf_arg {
- #include <complex.h>
- extern void abort (void);
- float fabsf (float);
- float cabsf (_Complex float);
- int main ()
- {
- _Complex float cf;
- float f;
- cf = 3 + 4.0fi;
- f = cabsf (cf);
- if (fabsf (f - 5.0) > 0.0001)
- abort ();
- return 0;
- }
- } "-lm"
- }
- }]
-}
-
-# Return 1 is this is a TI C6X target supporting C67X instructions
-proc check_effective_target_ti_c67x { } {
- return [check_no_compiler_messages ti_c67x assembly {
- #if !defined(_TMS320C6700)
- #error FOO
- #endif
- }]
-}
-
-# Return 1 is this is a TI C6X target supporting C64X+ instructions
-proc check_effective_target_ti_c64xp { } {
- return [check_no_compiler_messages ti_c64xp assembly {
- #if !defined(_TMS320C6400_PLUS)
- #error FOO
- #endif
- }]
-}
-
-
-proc check_alpha_max_hw_available { } {
- return [check_runtime alpha_max_hw_available {
- int main() { return __builtin_alpha_amask(1<<8) != 0; }
- }]
-}
-
-# Returns true iff the FUNCTION is available on the target system.
-# (This is essentially a Tcl implementation of Autoconf's
-# AC_CHECK_FUNC.)
-
-proc check_function_available { function } {
- return [check_no_compiler_messages ${function}_available \
- executable [subst {
- #ifdef __cplusplus
- extern "C"
- #endif
- char $function ();
- int main () { $function (); }
- }] "-fno-builtin" ]
-}
-
-# Returns true iff "fork" is available on the target system.
-
-proc check_fork_available {} {
- return [check_function_available "fork"]
-}
-
-# Returns true iff "mkfifo" is available on the target system.
-
-proc check_mkfifo_available {} {
- if { [istarget *-*-cygwin*] } {
- # Cygwin has mkfifo, but support is incomplete.
- return 0
- }
-
- return [check_function_available "mkfifo"]
-}
-
-# Returns true iff "__cxa_atexit" is used on the target system.
-
-proc check_cxa_atexit_available { } {
- return [check_cached_effective_target cxa_atexit_available {
- if { [istarget hppa*-*-hpux10*] } {
- # HP-UX 10 doesn't have __cxa_atexit but subsequent test passes.
- expr 0
- } elseif { [istarget *-*-vxworks] } {
- # vxworks doesn't have __cxa_atexit but subsequent test passes.
- expr 0
- } else {
- check_runtime_nocache cxa_atexit_available {
- // C++
- #include <stdlib.h>
- static unsigned int count;
- struct X
- {
- X() { count = 1; }
- ~X()
- {
- if (count != 3)
- exit(1);
- count = 4;
- }
- };
- void f()
- {
- static X x;
- }
- struct Y
- {
- Y() { f(); count = 2; }
- ~Y()
- {
- if (count != 2)
- exit(1);
- count = 3;
- }
- };
- Y y;
- int main() { return 0; }
- }
- }
- }]
-}
-
-proc check_effective_target_objc2 { } {
- return [check_no_compiler_messages objc2 object {
- #ifdef __OBJC2__
- int dummy[1];
- #else
- #error
- #endif
- }]
-}
-
-proc check_effective_target_next_runtime { } {
- return [check_no_compiler_messages objc2 object {
- #ifdef __NEXT_RUNTIME__
- int dummy[1];
- #else
- #error
- #endif
- }]
-}
-
-# Return 1 if we're generating 32-bit code using default options, 0
-# otherwise.
-
-proc check_effective_target_ilp32 { } {
- return [check_no_compiler_messages ilp32 object {
- int dummy[sizeof (int) == 4
- && sizeof (void *) == 4
- && sizeof (long) == 4 ? 1 : -1];
- }]
-}
-
-# Return 1 if we're generating ia32 code using default options, 0
-# otherwise.
-
-proc check_effective_target_ia32 { } {
- return [check_no_compiler_messages ia32 object {
- int dummy[sizeof (int) == 4
- && sizeof (void *) == 4
- && sizeof (long) == 4 ? 1 : -1] = { __i386__ };
- }]
-}
-
-# Return 1 if we're generating x32 code using default options, 0
-# otherwise.
-
-proc check_effective_target_x32 { } {
- return [check_no_compiler_messages x32 object {
- int dummy[sizeof (int) == 4
- && sizeof (void *) == 4
- && sizeof (long) == 4 ? 1 : -1] = { __x86_64__ };
- }]
-}
-
-# Return 1 if we're generating 32-bit integers using default
-# options, 0 otherwise.
-
-proc check_effective_target_int32 { } {
- return [check_no_compiler_messages int32 object {
- int dummy[sizeof (int) == 4 ? 1 : -1];
- }]
-}
-
-# Return 1 if we're generating 32-bit or larger integers using default
-# options, 0 otherwise.
-
-proc check_effective_target_int32plus { } {
- return [check_no_compiler_messages int32plus object {
- int dummy[sizeof (int) >= 4 ? 1 : -1];
- }]
-}
-
-# Return 1 if we're generating 32-bit or larger pointers using default
-# options, 0 otherwise.
-
-proc check_effective_target_ptr32plus { } {
- # The msp430 has 16-bit or 20-bit pointers. The 20-bit pointer is stored
- # in a 32-bit slot when in memory, so sizeof(void *) returns 4, but it
- # cannot really hold a 32-bit address, so we always return false here.
- if { [istarget msp430-*-*] } {
- return 0
- }
-
- return [check_no_compiler_messages ptr32plus object {
- int dummy[sizeof (void *) >= 4 ? 1 : -1];
- }]
-}
-
-# Return 1 if we support 32-bit or larger array and structure sizes
-# using default options, 0 otherwise.
-
-proc check_effective_target_size32plus { } {
- return [check_no_compiler_messages size32plus object {
- char dummy[65537];
- }]
-}
-
-# Returns 1 if we're generating 16-bit or smaller integers with the
-# default options, 0 otherwise.
-
-proc check_effective_target_int16 { } {
- return [check_no_compiler_messages int16 object {
- int dummy[sizeof (int) < 4 ? 1 : -1];
- }]
-}
-
-# Return 1 if we're generating 64-bit code using default options, 0
-# otherwise.
-
-proc check_effective_target_lp64 { } {
- return [check_no_compiler_messages lp64 object {
- int dummy[sizeof (int) == 4
- && sizeof (void *) == 8
- && sizeof (long) == 8 ? 1 : -1];
- }]
-}
-
-# Return 1 if we're generating 64-bit code using default llp64 options,
-# 0 otherwise.
-
-proc check_effective_target_llp64 { } {
- return [check_no_compiler_messages llp64 object {
- int dummy[sizeof (int) == 4
- && sizeof (void *) == 8
- && sizeof (long long) == 8
- && sizeof (long) == 4 ? 1 : -1];
- }]
-}
-
-# Return 1 if long and int have different sizes,
-# 0 otherwise.
-
-proc check_effective_target_long_neq_int { } {
- return [check_no_compiler_messages long_ne_int object {
- int dummy[sizeof (int) != sizeof (long) ? 1 : -1];
- }]
-}
-
-# Return 1 if the target supports long double larger than double,
-# 0 otherwise.
-
-proc check_effective_target_large_long_double { } {
- return [check_no_compiler_messages large_long_double object {
- int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
- }]
-}
-
-# Return 1 if the target supports double larger than float,
-# 0 otherwise.
-
-proc check_effective_target_large_double { } {
- return [check_no_compiler_messages large_double object {
- int dummy[sizeof(double) > sizeof(float) ? 1 : -1];
- }]
-}
-
-# Return 1 if the target supports double of 64 bits,
-# 0 otherwise.
-
-proc check_effective_target_double64 { } {
- return [check_no_compiler_messages double64 object {
- int dummy[sizeof(double) == 8 ? 1 : -1];
- }]
-}
-
-# Return 1 if the target supports double of at least 64 bits,
-# 0 otherwise.
-
-proc check_effective_target_double64plus { } {
- return [check_no_compiler_messages double64plus object {
- int dummy[sizeof(double) >= 8 ? 1 : -1];
- }]
-}
-
-# Return 1 if the target supports 'w' suffix on floating constant
-# 0 otherwise.
-
-proc check_effective_target_has_w_floating_suffix { } {
- set opts ""
- if [check_effective_target_c++] {
- append opts "-std=gnu++03"
- }
- return [check_no_compiler_messages w_fp_suffix object {
- float dummy = 1.0w;
- } "$opts"]
-}
-
-# Return 1 if the target supports 'q' suffix on floating constant
-# 0 otherwise.
-
-proc check_effective_target_has_q_floating_suffix { } {
- set opts ""
- if [check_effective_target_c++] {
- append opts "-std=gnu++03"
- }
- return [check_no_compiler_messages q_fp_suffix object {
- float dummy = 1.0q;
- } "$opts"]
-}
-# Return 1 if the target supports compiling fixed-point,
-# 0 otherwise.
-
-proc check_effective_target_fixed_point { } {
- return [check_no_compiler_messages fixed_point object {
- _Sat _Fract x; _Sat _Accum y;
- }]
-}
-
-# Return 1 if the target supports compiling decimal floating point,
-# 0 otherwise.
-
-proc check_effective_target_dfp_nocache { } {
- verbose "check_effective_target_dfp_nocache: compiling source" 2
- set ret [check_no_compiler_messages_nocache dfp object {
- float x __attribute__((mode(DD)));
- }]
- verbose "check_effective_target_dfp_nocache: returning $ret" 2
- return $ret
-}
-
-proc check_effective_target_dfprt_nocache { } {
- return [check_runtime_nocache dfprt {
- typedef float d64 __attribute__((mode(DD)));
- d64 x = 1.2df, y = 2.3dd, z;
- int main () { z = x + y; return 0; }
- }]
-}
-
-# Return 1 if the target supports compiling Decimal Floating Point,
-# 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_dfp { } {
- return [check_cached_effective_target dfp {
- check_effective_target_dfp_nocache
- }]
-}
-
-# Return 1 if the target supports linking and executing Decimal Floating
-# Point, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_dfprt { } {
- return [check_cached_effective_target dfprt {
- check_effective_target_dfprt_nocache
- }]
-}
-
-# Return 1 if the target supports executing DFP hardware instructions,
-# 0 otherwise. Cache the result.
-
-proc check_dfp_hw_available { } {
- return [check_cached_effective_target dfp_hw_available {
- # For now, disable on Darwin
- if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
- expr 0
- } else {
- check_runtime_nocache dfp_hw_available {
- volatile _Decimal64 r;
- volatile _Decimal64 a = 4.0DD;
- volatile _Decimal64 b = 2.0DD;
- int main()
- {
- asm volatile ("dadd %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
- asm volatile ("dsub %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
- asm volatile ("dmul %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
- asm volatile ("ddiv %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
- return 0;
- }
- } "-mcpu=power6 -mhard-float"
- }
- }]
-}
-
-# Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
-
-proc check_effective_target_ucn_nocache { } {
- # -std=c99 is only valid for C
- if [check_effective_target_c] {
- set ucnopts "-std=c99"
- }
- append ucnopts " -fextended-identifiers"
- verbose "check_effective_target_ucn_nocache: compiling source" 2
- set ret [check_no_compiler_messages_nocache ucn object {
- int \u00C0;
- } $ucnopts]
- verbose "check_effective_target_ucn_nocache: returning $ret" 2
- return $ret
-}
-
-# Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
-#
-# This won't change for different subtargets, so cache the result.
-
-proc check_effective_target_ucn { } {
- return [check_cached_effective_target ucn {
- check_effective_target_ucn_nocache
- }]
-}
-
-# Return 1 if the target needs a command line argument to enable a SIMD
-# instruction set.
-
-proc check_effective_target_vect_cmdline_needed { } {
- global et_vect_cmdline_needed_saved
- global et_vect_cmdline_needed_target_name
-
- if { ![info exists et_vect_cmdline_needed_target_name] } {
- set et_vect_cmdline_needed_target_name ""
- }
-
- # If the target has changed since we set the cached value, clear it.
- set current_target [current_target_name]
- if { $current_target != $et_vect_cmdline_needed_target_name } {
- verbose "check_effective_target_vect_cmdline_needed: `$et_vect_cmdline_needed_target_name' `$current_target'" 2
- set et_vect_cmdline_needed_target_name $current_target
- if { [info exists et_vect_cmdline_needed_saved] } {
- verbose "check_effective_target_vect_cmdline_needed: removing cached result" 2
- unset et_vect_cmdline_needed_saved
- }
- }
-
- if [info exists et_vect_cmdline_needed_saved] {
- verbose "check_effective_target_vect_cmdline_needed: using cached result" 2
- } else {
- set et_vect_cmdline_needed_saved 1
- if { [istarget alpha*-*-*]
- || [istarget ia64-*-*]
- || (([istarget x86_64-*-*] || [istarget i?86-*-*])
- && ([check_effective_target_x32]
- || [check_effective_target_lp64]))
- || ([istarget powerpc*-*-*]
- && ([check_effective_target_powerpc_spe]
- || [check_effective_target_powerpc_altivec]))
- || ([istarget sparc*-*-*] && [check_effective_target_sparc_vis])
- || [istarget spu-*-*]
- || ([istarget arm*-*-*] && [check_effective_target_arm_neon])
- || [istarget aarch64*-*-*] } {
- set et_vect_cmdline_needed_saved 0
- }
- }
-
- verbose "check_effective_target_vect_cmdline_needed: returning $et_vect_cmdline_needed_saved" 2
- return $et_vect_cmdline_needed_saved
-}
-
-# Return 1 if the target supports hardware vectors of int, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_int { } {
- global et_vect_int_saved
-
- if [info exists et_vect_int_saved] {
- verbose "check_effective_target_vect_int: using cached result" 2
- } else {
- set et_vect_int_saved 0
- if { [istarget i?86-*-*]
- || ([istarget powerpc*-*-*]
- && ![istarget powerpc-*-linux*paired*])
- || [istarget spu-*-*]
- || [istarget x86_64-*-*]
- || [istarget sparc*-*-*]
- || [istarget alpha*-*-*]
- || [istarget ia64-*-*]
- || [istarget aarch64*-*-*]
- || [check_effective_target_arm32]
- || ([istarget mips*-*-*]
- && [check_effective_target_mips_loongson]) } {
- set et_vect_int_saved 1
- }
- }
-
- verbose "check_effective_target_vect_int: returning $et_vect_int_saved" 2
- return $et_vect_int_saved
-}
-
-# Return 1 if the target supports signed int->float conversion
-#
-
-proc check_effective_target_vect_intfloat_cvt { } {
- global et_vect_intfloat_cvt_saved
-
- if [info exists et_vect_intfloat_cvt_saved] {
- verbose "check_effective_target_vect_intfloat_cvt: using cached result" 2
- } else {
- set et_vect_intfloat_cvt_saved 0
- if { [istarget i?86-*-*]
- || ([istarget powerpc*-*-*]
- && ![istarget powerpc-*-linux*paired*])
- || [istarget x86_64-*-*]
- || ([istarget arm*-*-*]
- && [check_effective_target_arm_neon_ok])} {
- set et_vect_intfloat_cvt_saved 1
- }
- }
-
- verbose "check_effective_target_vect_intfloat_cvt: returning $et_vect_intfloat_cvt_saved" 2
- return $et_vect_intfloat_cvt_saved
-}
-
-#Return 1 if we're supporting __int128 for target, 0 otherwise.
-
-proc check_effective_target_int128 { } {
- return [check_no_compiler_messages int128 object {
- int dummy[
- #ifndef __SIZEOF_INT128__
- -1
- #else
- 1
- #endif
- ];
- }]
-}
-
-# Return 1 if the target supports unsigned int->float conversion
-#
-
-proc check_effective_target_vect_uintfloat_cvt { } {
- global et_vect_uintfloat_cvt_saved
-
- if [info exists et_vect_uintfloat_cvt_saved] {
- verbose "check_effective_target_vect_uintfloat_cvt: using cached result" 2
- } else {
- set et_vect_uintfloat_cvt_saved 0
- if { [istarget i?86-*-*]
- || ([istarget powerpc*-*-*]
- && ![istarget powerpc-*-linux*paired*])
- || [istarget x86_64-*-*]
- || [istarget aarch64*-*-*]
- || ([istarget arm*-*-*]
- && [check_effective_target_arm_neon_ok])} {
- set et_vect_uintfloat_cvt_saved 1
- }
- }
-
- verbose "check_effective_target_vect_uintfloat_cvt: returning $et_vect_uintfloat_cvt_saved" 2
- return $et_vect_uintfloat_cvt_saved
-}
-
-
-# Return 1 if the target supports signed float->int conversion
-#
-
-proc check_effective_target_vect_floatint_cvt { } {
- global et_vect_floatint_cvt_saved
-
- if [info exists et_vect_floatint_cvt_saved] {
- verbose "check_effective_target_vect_floatint_cvt: using cached result" 2
- } else {
- set et_vect_floatint_cvt_saved 0
- if { [istarget i?86-*-*]
- || ([istarget powerpc*-*-*]
- && ![istarget powerpc-*-linux*paired*])
- || [istarget x86_64-*-*]
- || ([istarget arm*-*-*]
- && [check_effective_target_arm_neon_ok])} {
- set et_vect_floatint_cvt_saved 1
- }
- }
-
- verbose "check_effective_target_vect_floatint_cvt: returning $et_vect_floatint_cvt_saved" 2
- return $et_vect_floatint_cvt_saved
-}
-
-# Return 1 if the target supports unsigned float->int conversion
-#
-
-proc check_effective_target_vect_floatuint_cvt { } {
- global et_vect_floatuint_cvt_saved
-
- if [info exists et_vect_floatuint_cvt_saved] {
- verbose "check_effective_target_vect_floatuint_cvt: using cached result" 2
- } else {
- set et_vect_floatuint_cvt_saved 0
- if { ([istarget powerpc*-*-*]
- && ![istarget powerpc-*-linux*paired*])
- || ([istarget arm*-*-*]
- && [check_effective_target_arm_neon_ok])} {
- set et_vect_floatuint_cvt_saved 1
- }
- }
-
- verbose "check_effective_target_vect_floatuint_cvt: returning $et_vect_floatuint_cvt_saved" 2
- return $et_vect_floatuint_cvt_saved
-}
-
-# Return 1 if the target supports #pragma omp declare simd, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_simd_clones { } {
- global et_vect_simd_clones_saved
-
- if [info exists et_vect_simd_clones_saved] {
- verbose "check_effective_target_vect_simd_clones: using cached result" 2
- } else {
- set et_vect_simd_clones_saved 0
- if { [istarget i?86-*-*] || [istarget x86_64-*-*] } {
- # On i?86/x86_64 #pragma omp declare simd builds a sse2, avx and
- # avx2 clone. Only the right clone for the specified arch will be
- # chosen, but still we need to at least be able to assemble
- # avx2.
- if { [check_effective_target_avx2] } {
- set et_vect_simd_clones_saved 1
- }
- }
- }
-
- verbose "check_effective_target_vect_simd_clones: returning $et_vect_simd_clones_saved" 2
- return $et_vect_simd_clones_saved
-}
-
-# Return 1 if this is a AArch64 target supporting big endian
-proc check_effective_target_aarch64_big_endian { } {
- return [check_no_compiler_messages aarch64_big_endian assembly {
- #if !defined(__aarch64__) || !defined(__AARCH64EB__)
- #error FOO
- #endif
- }]
-}
-
-# Return 1 if this is a AArch64 target supporting little endian
-proc check_effective_target_aarch64_little_endian { } {
- return [check_no_compiler_messages aarch64_little_endian assembly {
- #if !defined(__aarch64__) || defined(__AARCH64EB__)
- #error FOO
- #endif
- }]
-}
-
-# Return 1 is this is an arm target using 32-bit instructions
-proc check_effective_target_arm32 { } {
- return [check_no_compiler_messages arm32 assembly {
- #if !defined(__arm__) || (defined(__thumb__) && !defined(__thumb2__))
- #error FOO
- #endif
- }]
-}
-
-# Return 1 is this is an arm target not using Thumb
-proc check_effective_target_arm_nothumb { } {
- return [check_no_compiler_messages arm_nothumb assembly {
- #if (defined(__thumb__) || defined(__thumb2__))
- #error FOO
- #endif
- }]
-}
-
-# Return 1 if this is a little-endian ARM target
-proc check_effective_target_arm_little_endian { } {
- return [check_no_compiler_messages arm_little_endian assembly {
- #if !defined(__arm__) || !defined(__ARMEL__)
- #error FOO
- #endif
- }]
-}
-
-# Return 1 if this is an ARM target that only supports aligned vector accesses
-proc check_effective_target_arm_vect_no_misalign { } {
- return [check_no_compiler_messages arm_vect_no_misalign assembly {
- #if !defined(__arm__) \
- || (defined(__ARMEL__) \
- && (!defined(__thumb__) || defined(__thumb2__)))
- #error FOO
- #endif
- }]
-}
-
-
-# Return 1 if this is an ARM target supporting -mfpu=vfp
-# -mfloat-abi=softfp. Some multilibs may be incompatible with these
-# options.
-
-proc check_effective_target_arm_vfp_ok { } {
- if { [check_effective_target_arm32] } {
- return [check_no_compiler_messages arm_vfp_ok object {
- int dummy;
- } "-mfpu=vfp -mfloat-abi=softfp"]
- } else {
- return 0
- }
-}
-
-# Return 1 if this is an ARM target supporting -mfpu=vfp3
-# -mfloat-abi=softfp.
-
-proc check_effective_target_arm_vfp3_ok { } {
- if { [check_effective_target_arm32] } {
- return [check_no_compiler_messages arm_vfp3_ok object {
- int dummy;
- } "-mfpu=vfp3 -mfloat-abi=softfp"]
- } else {
- return 0
- }
-}
-
-# Return 1 if this is an ARM target supporting -mfpu=fp-armv8
-# -mfloat-abi=softfp.
-proc check_effective_target_arm_v8_vfp_ok {} {
- if { [check_effective_target_arm32] } {
- return [check_no_compiler_messages arm_v8_vfp_ok object {
- int foo (void)
- {
- __asm__ volatile ("vrinta.f32.f32 s0, s0");
- return 0;
- }
- } "-mfpu=fp-armv8 -mfloat-abi=softfp"]
- } else {
- return 0
- }
-}
-
-# Return 1 if this is an ARM target supporting -mfpu=vfp
-# -mfloat-abi=hard. Some multilibs may be incompatible with these
-# options.
-
-proc check_effective_target_arm_hard_vfp_ok { } {
- if { [check_effective_target_arm32]
- && ! [check-flags [list "" { *-*-* } { "-mfloat-abi=*" } { "-mfloat-abi=hard" }]] } {
- return [check_no_compiler_messages arm_hard_vfp_ok executable {
- int main() { return 0;}
- } "-mfpu=vfp -mfloat-abi=hard"]
- } else {
- return 0
- }
-}
-
-# Return 1 if this is an ARM target that supports DSP multiply with
-# current multilib flags.
-
-proc check_effective_target_arm_dsp { } {
- return [check_no_compiler_messages arm_dsp assembly {
- #ifndef __ARM_FEATURE_DSP
- #error not DSP
- #endif
- int i;
- }]
-}
-
-# Return 1 if this is an ARM target that supports unaligned word/halfword
-# load/store instructions.
-
-proc check_effective_target_arm_unaligned { } {
- return [check_no_compiler_messages arm_unaligned assembly {
- #ifndef __ARM_FEATURE_UNALIGNED
- #error no unaligned support
- #endif
- int i;
- }]
-}
-
-# Return 1 if this is an ARM target supporting -mfpu=crypto-neon-fp-armv8
-# -mfloat-abi=softfp or equivalent options. Some multilibs may be
-# incompatible with these options. Also set et_arm_crypto_flags to the
-# best options to add.
-
-proc check_effective_target_arm_crypto_ok_nocache { } {
- global et_arm_crypto_flags
- set et_arm_crypto_flags ""
- if { [check_effective_target_arm32] } {
- foreach flags {"" "-mfloat-abi=softfp" "-mfpu=crypto-neon-fp-armv8" "-mfpu=crypto-neon-fp-armv8 -mfloat-abi=softfp"} {
- if { [check_no_compiler_messages_nocache arm_crypto_ok object {
- #include "arm_neon.h"
- uint8x16_t
- foo (uint8x16_t a, uint8x16_t b)
- {
- return vaeseq_u8 (a, b);
- }
- } "$flags"] } {
- set et_arm_crypto_flags $flags
- return 1
- }
- }
- }
-
- return 0
-}
-
-# Return 1 if this is an ARM target supporting -mfpu=crypto-neon-fp-armv8
-
-proc check_effective_target_arm_crypto_ok { } {
- return [check_cached_effective_target arm_crypto_ok \
- check_effective_target_arm_crypto_ok_nocache]
-}
-
-# Add options for crypto extensions.
-proc add_options_for_arm_crypto { flags } {
- if { ! [check_effective_target_arm_crypto_ok] } {
- return "$flags"
- }
- global et_arm_crypto_flags
- return "$flags $et_arm_crypto_flags"
-}
-
-# Add the options needed for NEON. We need either -mfloat-abi=softfp
-# or -mfloat-abi=hard, but if one is already specified by the
-# multilib, use it. Similarly, if a -mfpu option already enables
-# NEON, do not add -mfpu=neon.
-
-proc add_options_for_arm_neon { flags } {
- if { ! [check_effective_target_arm_neon_ok] } {
- return "$flags"
- }
- global et_arm_neon_flags
- return "$flags $et_arm_neon_flags"
-}
-
-proc add_options_for_arm_v8_vfp { flags } {
- if { ! [check_effective_target_arm_v8_vfp_ok] } {
- return "$flags"
- }
- return "$flags -mfpu=fp-armv8 -mfloat-abi=softfp"
-}
-
-proc add_options_for_arm_v8_neon { flags } {
- if { ! [check_effective_target_arm_v8_neon_ok] } {
- return "$flags"
- }
- global et_arm_v8_neon_flags
- return "$flags $et_arm_v8_neon_flags -march=armv8-a"
-}
-
-proc add_options_for_arm_crc { flags } {
- if { ! [check_effective_target_arm_crc_ok] } {
- return "$flags"
- }
- global et_arm_crc_flags
- return "$flags $et_arm_crc_flags"
-}
-
-# Add the options needed for NEON. We need either -mfloat-abi=softfp
-# or -mfloat-abi=hard, but if one is already specified by the
-# multilib, use it. Similarly, if a -mfpu option already enables
-# NEON, do not add -mfpu=neon.
-
-proc add_options_for_arm_neonv2 { flags } {
- if { ! [check_effective_target_arm_neonv2_ok] } {
- return "$flags"
- }
- global et_arm_neonv2_flags
- return "$flags $et_arm_neonv2_flags"
-}
-
-# Add the options needed for vfp3.
-proc add_options_for_arm_vfp3 { flags } {
- if { ! [check_effective_target_arm_vfp3_ok] } {
- return "$flags"
- }
- return "$flags -mfpu=vfp3 -mfloat-abi=softfp"
-}
-
-# Return 1 if this is an ARM target supporting -mfpu=neon
-# -mfloat-abi=softfp or equivalent options. Some multilibs may be
-# incompatible with these options. Also set et_arm_neon_flags to the
-# best options to add.
-
-proc check_effective_target_arm_neon_ok_nocache { } {
- global et_arm_neon_flags
- set et_arm_neon_flags ""
- if { [check_effective_target_arm32] } {
- foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon" "-mfpu=neon -mfloat-abi=softfp"} {
- if { [check_no_compiler_messages_nocache arm_neon_ok object {
- #include "arm_neon.h"
- int dummy;
- } "$flags"] } {
- set et_arm_neon_flags $flags
- return 1
- }
- }
- }
-
- return 0
-}
-
-proc check_effective_target_arm_neon_ok { } {
- return [check_cached_effective_target arm_neon_ok \
- check_effective_target_arm_neon_ok_nocache]
-}
-
-proc check_effective_target_arm_crc_ok_nocache { } {
- global et_arm_crc_flags
- set et_arm_crc_flags "-march=armv8-a+crc"
- return [check_no_compiler_messages_nocache arm_crc_ok object {
- #if !defined (__ARM_FEATURE_CRC32)
- #error FOO
- #endif
- } "$et_arm_crc_flags"]
-}
-
-proc check_effective_target_arm_crc_ok { } {
- return [check_cached_effective_target arm_crc_ok \
- check_effective_target_arm_crc_ok_nocache]
-}
-
-# Return 1 if this is an ARM target supporting -mfpu=neon-fp16
-# -mfloat-abi=softfp or equivalent options. Some multilibs may be
-# incompatible with these options. Also set et_arm_neon_flags to the
-# best options to add.
-
-proc check_effective_target_arm_neon_fp16_ok_nocache { } {
- global et_arm_neon_fp16_flags
- set et_arm_neon_fp16_flags ""
- if { [check_effective_target_arm32] } {
- foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-fp16"
- "-mfpu=neon-fp16 -mfloat-abi=softfp"} {
- if { [check_no_compiler_messages_nocache arm_neon_fp_16_ok object {
- #include "arm_neon.h"
- float16x4_t
- foo (float32x4_t arg)
- {
- return vcvt_f16_f32 (arg);
- }
- } "$flags"] } {
- set et_arm_neon_fp16_flags $flags
- return 1
- }
- }
- }
-
- return 0
-}
-
-proc check_effective_target_arm_neon_fp16_ok { } {
- return [check_cached_effective_target arm_neon_fp16_ok \
- check_effective_target_arm_neon_fp16_ok_nocache]
-}
-
-proc add_options_for_arm_neon_fp16 { flags } {
- if { ! [check_effective_target_arm_neon_fp16_ok] } {
- return "$flags"
- }
- global et_arm_neon_fp16_flags
- return "$flags $et_arm_neon_fp16_flags"
-}
-
-# Return 1 if this is an ARM target supporting -mfpu=neon-fp-armv8
-# -mfloat-abi=softfp or equivalent options. Some multilibs may be
-# incompatible with these options. Also set et_arm_v8_neon_flags to the
-# best options to add.
-
-proc check_effective_target_arm_v8_neon_ok_nocache { } {
- global et_arm_v8_neon_flags
- set et_arm_v8_neon_flags ""
- if { [check_effective_target_arm32] } {
- foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-fp-armv8" "-mfpu=neon-fp-armv8 -mfloat-abi=softfp"} {
- if { [check_no_compiler_messages_nocache arm_v8_neon_ok object {
- #include "arm_neon.h"
- void
- foo ()
- {
- __asm__ volatile ("vrintn.f32 q0, q0");
- }
- } "$flags"] } {
- set et_arm_v8_neon_flags $flags
- return 1
- }
- }
- }
-
- return 0
-}
-
-proc check_effective_target_arm_v8_neon_ok { } {
- return [check_cached_effective_target arm_v8_neon_ok \
- check_effective_target_arm_v8_neon_ok_nocache]
-}
-
-# Return 1 if this is an ARM target supporting -mfpu=neon-vfpv4
-# -mfloat-abi=softfp or equivalent options. Some multilibs may be
-# incompatible with these options. Also set et_arm_neonv2_flags to the
-# best options to add.
-
-proc check_effective_target_arm_neonv2_ok_nocache { } {
- global et_arm_neonv2_flags
- set et_arm_neonv2_flags ""
- if { [check_effective_target_arm32] } {
- foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-vfpv4" "-mfpu=neon-vfpv4 -mfloat-abi=softfp"} {
- if { [check_no_compiler_messages_nocache arm_neonv2_ok object {
- #include "arm_neon.h"
- float32x2_t
- foo (float32x2_t a, float32x2_t b, float32x2_t c)
- {
- return vfma_f32 (a, b, c);
- }
- } "$flags"] } {
- set et_arm_neonv2_flags $flags
- return 1
- }
- }
- }
-
- return 0
-}
-
-proc check_effective_target_arm_neonv2_ok { } {
- return [check_cached_effective_target arm_neonv2_ok \
- check_effective_target_arm_neonv2_ok_nocache]
-}
-
-# Add the options needed for NEON. We need either -mfloat-abi=softfp
-# or -mfloat-abi=hard, but if one is already specified by the
-# multilib, use it.
-
-proc add_options_for_arm_fp16 { flags } {
- if { ! [check_effective_target_arm_fp16_ok] } {
- return "$flags"
- }
- global et_arm_fp16_flags
- return "$flags $et_arm_fp16_flags"
-}
-
-# Return 1 if this is an ARM target that can support a VFP fp16 variant.
-# Skip multilibs that are incompatible with these options and set
-# et_arm_fp16_flags to the best options to add.
-
-proc check_effective_target_arm_fp16_ok_nocache { } {
- global et_arm_fp16_flags
- set et_arm_fp16_flags ""
- if { ! [check_effective_target_arm32] } {
- return 0;
- }
- if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "-mfpu=*fp16*" "-mfpu=*fpv[4-9]*" "-mfpu=*fpv[1-9][0-9]*" } ]] {
- # Multilib flags would override -mfpu.
- return 0
- }
- if [check-flags [list "" { *-*-* } { "-mfloat-abi=soft" } { "" } ]] {
- # Must generate floating-point instructions.
- return 0
- }
- if [check_effective_target_arm_hf_eabi] {
- # Use existing float-abi and force an fpu which supports fp16
- set et_arm_fp16_flags "-mfpu=vfpv4"
- return 1;
- }
- if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "" } ]] {
- # The existing -mfpu value is OK; use it, but add softfp.
- set et_arm_fp16_flags "-mfloat-abi=softfp"
- return 1;
- }
- # Add -mfpu for a VFP fp16 variant since there is no preprocessor
- # macro to check for this support.
- set flags "-mfpu=vfpv4 -mfloat-abi=softfp"
- if { [check_no_compiler_messages_nocache arm_fp16_ok assembly {
- int dummy;
- } "$flags"] } {
- set et_arm_fp16_flags "$flags"
- return 1
- }
-
- return 0
-}
-
-proc check_effective_target_arm_fp16_ok { } {
- return [check_cached_effective_target arm_fp16_ok \
- check_effective_target_arm_fp16_ok_nocache]
-}
-
-# Creates a series of routines that return 1 if the given architecture
-# can be selected and a routine to give the flags to select that architecture
-# Note: Extra flags may be added to disable options from newer compilers
-# (Thumb in particular - but others may be added in the future)
-# Usage: /* { dg-require-effective-target arm_arch_v5_ok } */
-# /* { dg-add-options arm_arch_v5 } */
-# /* { dg-require-effective-target arm_arch_v5_multilib } */
-foreach { armfunc armflag armdef } { v4 "-march=armv4 -marm" __ARM_ARCH_4__
- v4t "-march=armv4t" __ARM_ARCH_4T__
- v5 "-march=armv5 -marm" __ARM_ARCH_5__
- v5t "-march=armv5t" __ARM_ARCH_5T__
- v5te "-march=armv5te" __ARM_ARCH_5TE__
- v6 "-march=armv6" __ARM_ARCH_6__
- v6k "-march=armv6k" __ARM_ARCH_6K__
- v6t2 "-march=armv6t2" __ARM_ARCH_6T2__
- v6z "-march=armv6z" __ARM_ARCH_6Z__
- v6m "-march=armv6-m -mthumb" __ARM_ARCH_6M__
- v7a "-march=armv7-a" __ARM_ARCH_7A__
- v7ve "-march=armv7ve" __ARM_ARCH_7A__
- v7r "-march=armv7-r" __ARM_ARCH_7R__
- v7m "-march=armv7-m -mthumb" __ARM_ARCH_7M__
- v7em "-march=armv7e-m -mthumb" __ARM_ARCH_7EM__
- v8a "-march=armv8-a" __ARM_ARCH_8A__ } {
- eval [string map [list FUNC $armfunc FLAG $armflag DEF $armdef ] {
- proc check_effective_target_arm_arch_FUNC_ok { } {
- if { [ string match "*-marm*" "FLAG" ] &&
- ![check_effective_target_arm_arm_ok] } {
- return 0
- }
- return [check_no_compiler_messages arm_arch_FUNC_ok assembly {
- #if !defined (DEF)
- #error FOO
- #endif
- } "FLAG" ]
- }
-
- proc add_options_for_arm_arch_FUNC { flags } {
- return "$flags FLAG"
- }
-
- proc check_effective_target_arm_arch_FUNC_multilib { } {
- return [check_runtime arm_arch_FUNC_multilib {
- int
- main (void)
- {
- return 0;
- }
- } [add_options_for_arm_arch_FUNC ""]]
- }
- }]
-}
-
-# Return 1 if this is an ARM target where -marm causes ARM to be
-# used (not Thumb)
-
-proc check_effective_target_arm_arm_ok { } {
- return [check_no_compiler_messages arm_arm_ok assembly {
- #if !defined (__arm__) || defined (__thumb__) || defined (__thumb2__)
- #error FOO
- #endif
- } "-marm"]
-}
-
-
-# Return 1 is this is an ARM target where -mthumb causes Thumb-1 to be
-# used.
-
-proc check_effective_target_arm_thumb1_ok { } {
- return [check_no_compiler_messages arm_thumb1_ok assembly {
- #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
- #error FOO
- #endif
- } "-mthumb"]
-}
-
-# Return 1 is this is an ARM target where -mthumb causes Thumb-2 to be
-# used.
-
-proc check_effective_target_arm_thumb2_ok { } {
- return [check_no_compiler_messages arm_thumb2_ok assembly {
- #if !defined(__thumb2__)
- #error FOO
- #endif
- } "-mthumb"]
-}
-
-# Return 1 if this is an ARM target where Thumb-1 is used without options
-# added by the test.
-
-proc check_effective_target_arm_thumb1 { } {
- return [check_no_compiler_messages arm_thumb1 assembly {
- #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
- #error not thumb1
- #endif
- int i;
- } ""]
-}
-
-# Return 1 if this is an ARM target where Thumb-2 is used without options
-# added by the test.
-
-proc check_effective_target_arm_thumb2 { } {
- return [check_no_compiler_messages arm_thumb2 assembly {
- #if !defined(__thumb2__)
- #error FOO
- #endif
- int i;
- } ""]
-}
-
-# Return 1 if this is an ARM target where conditional execution is available.
-
-proc check_effective_target_arm_cond_exec { } {
- return [check_no_compiler_messages arm_cond_exec assembly {
- #if defined(__arm__) && defined(__thumb__) && !defined(__thumb2__)
- #error FOO
- #endif
- int i;
- } ""]
-}
-
-# Return 1 if this is an ARM cortex-M profile cpu
-
-proc check_effective_target_arm_cortex_m { } {
- return [check_no_compiler_messages arm_cortex_m assembly {
- #if !defined(__ARM_ARCH_7M__) \
- && !defined (__ARM_ARCH_7EM__) \
- && !defined (__ARM_ARCH_6M__)
- #error FOO
- #endif
- int i;
- } "-mthumb"]
-}
-
-# Return 1 if the target supports executing NEON instructions, 0
-# otherwise. Cache the result.
-
-proc check_effective_target_arm_neon_hw { } {
- return [check_runtime arm_neon_hw_available {
- int
- main (void)
- {
- long long a = 0, b = 1;
- asm ("vorr %P0, %P1, %P2"
- : "=w" (a)
- : "0" (a), "w" (b));
- return (a != 1);
- }
- } [add_options_for_arm_neon ""]]
-}
-
-proc check_effective_target_arm_neonv2_hw { } {
- return [check_runtime arm_neon_hwv2_available {
- #include "arm_neon.h"
- int
- main (void)
- {
- float32x2_t a, b, c;
- asm ("vfma.f32 %P0, %P1, %P2"
- : "=w" (a)
- : "w" (b), "w" (c));
- return 0;
- }
- } [add_options_for_arm_neonv2 ""]]
-}
-
-# Return 1 if the target supports executing ARMv8 NEON instructions, 0
-# otherwise.
-
-proc check_effective_target_arm_v8_neon_hw { } {
- return [check_runtime arm_v8_neon_hw_available {
- #include "arm_neon.h"
- int
- main (void)
- {
- float32x2_t a;
- asm ("vrinta.f32 %P0, %P1"
- : "=w" (a)
- : "0" (a));
- return 0;
- }
- } [add_options_for_arm_v8_neon ""]]
-}
-
-# Return 1 if this is a ARM target with NEON enabled.
-
-proc check_effective_target_arm_neon { } {
- if { [check_effective_target_arm32] } {
- return [check_no_compiler_messages arm_neon object {
- #ifndef __ARM_NEON__
- #error not NEON
- #else
- int dummy;
- #endif
- }]
- } else {
- return 0
- }
-}
-
-proc check_effective_target_arm_neonv2 { } {
- if { [check_effective_target_arm32] } {
- return [check_no_compiler_messages arm_neon object {
- #ifndef __ARM_NEON__
- #error not NEON
- #else
- #ifndef __ARM_FEATURE_FMA
- #error not NEONv2
- #else
- int dummy;
- #endif
- #endif
- }]
- } else {
- return 0
- }
-}
-
-# Return 1 if this a Loongson-2E or -2F target using an ABI that supports
-# the Loongson vector modes.
-
-proc check_effective_target_mips_loongson { } {
- return [check_no_compiler_messages loongson assembly {
- #if !defined(__mips_loongson_vector_rev)
- #error FOO
- #endif
- }]
-}
-
-# Return 1 if this is an ARM target that adheres to the ABI for the ARM
-# Architecture.
-
-proc check_effective_target_arm_eabi { } {
- return [check_no_compiler_messages arm_eabi object {
- #ifndef __ARM_EABI__
- #error not EABI
- #else
- int dummy;
- #endif
- }]
-}
-
-# Return 1 if this is an ARM target that adheres to the hard-float variant of
-# the ABI for the ARM Architecture (e.g. -mfloat-abi=hard).
-
-proc check_effective_target_arm_hf_eabi { } {
- return [check_no_compiler_messages arm_hf_eabi object {
- #if !defined(__ARM_EABI__) || !defined(__ARM_PCS_VFP)
- #error not hard-float EABI
- #else
- int dummy;
- #endif
- }]
-}
-
-# Return 1 if this is an ARM target supporting -mcpu=iwmmxt.
-# Some multilibs may be incompatible with this option.
-
-proc check_effective_target_arm_iwmmxt_ok { } {
- if { [check_effective_target_arm32] } {
- return [check_no_compiler_messages arm_iwmmxt_ok object {
- int dummy;
- } "-mcpu=iwmmxt"]
- } else {
- return 0
- }
-}
-
-# Return true if LDRD/STRD instructions are prefered over LDM/STM instructions
-# for an ARM target.
-proc check_effective_target_arm_prefer_ldrd_strd { } {
- if { ![check_effective_target_arm32] } {
- return 0;
- }
-
- return [check_no_messages_and_pattern arm_prefer_ldrd_strd "strd\tr" assembly {
- void foo (int *p) { p[0] = 1; p[1] = 0;}
- } "-O2 -mthumb" ]
-}
-
-# Return 1 if this is a PowerPC target supporting -meabi.
-
-proc check_effective_target_powerpc_eabi_ok { } {
- if { [istarget powerpc*-*-*] } {
- return [check_no_compiler_messages powerpc_eabi_ok object {
- int dummy;
- } "-meabi"]
- } else {
- return 0
- }
-}
-
-# Return 1 if this is a PowerPC target with floating-point registers.
-
-proc check_effective_target_powerpc_fprs { } {
- if { [istarget powerpc*-*-*]
- || [istarget rs6000-*-*] } {
- return [check_no_compiler_messages powerpc_fprs object {
- #ifdef __NO_FPRS__
- #error no FPRs
- #else
- int dummy;
- #endif
- }]
- } else {
- return 0
- }
-}
-
-# Return 1 if this is a PowerPC target with hardware double-precision
-# floating point.
-
-proc check_effective_target_powerpc_hard_double { } {
- if { [istarget powerpc*-*-*]
- || [istarget rs6000-*-*] } {
- return [check_no_compiler_messages powerpc_hard_double object {
- #ifdef _SOFT_DOUBLE
- #error soft double
- #else
- int dummy;
- #endif
- }]
- } else {
- return 0
- }
-}
-
-# Return 1 if this is a PowerPC target supporting -maltivec.
-
-proc check_effective_target_powerpc_altivec_ok { } {
- if { ([istarget powerpc*-*-*]
- && ![istarget powerpc-*-linux*paired*])
- || [istarget rs6000-*-*] } {
- # AltiVec is not supported on AIX before 5.3.
- if { [istarget powerpc*-*-aix4*]
- || [istarget powerpc*-*-aix5.1*]
- || [istarget powerpc*-*-aix5.2*] } {
- return 0
- }
- return [check_no_compiler_messages powerpc_altivec_ok object {
- int dummy;
- } "-maltivec"]
- } else {
- return 0
- }
-}
-
-# Return 1 if this is a PowerPC target supporting -mpower8-vector
-
-proc check_effective_target_powerpc_p8vector_ok { } {
- if { ([istarget powerpc*-*-*]
- && ![istarget powerpc-*-linux*paired*])
- || [istarget rs6000-*-*] } {
- # AltiVec is not supported on AIX before 5.3.
- if { [istarget powerpc*-*-aix4*]
- || [istarget powerpc*-*-aix5.1*]
- || [istarget powerpc*-*-aix5.2*] } {
- return 0
- }
- return [check_no_compiler_messages powerpc_p8vector_ok object {
- int main (void) {
-#ifdef __MACH__
- asm volatile ("xxlorc vs0,vs0,vs0");
-#else
- asm volatile ("xxlorc 0,0,0");
-#endif
- return 0;
- }
- } "-mpower8-vector"]
- } else {
- return 0
- }
-}
-
-# Return 1 if this is a PowerPC target supporting -mvsx
-
-proc check_effective_target_powerpc_vsx_ok { } {
- if { ([istarget powerpc*-*-*]
- && ![istarget powerpc-*-linux*paired*])
- || [istarget rs6000-*-*] } {
- # VSX is not supported on AIX before 7.1.
- if { [istarget powerpc*-*-aix4*]
- || [istarget powerpc*-*-aix5*]
- || [istarget powerpc*-*-aix6*] } {
- return 0
- }
- return [check_no_compiler_messages powerpc_vsx_ok object {
- int main (void) {
-#ifdef __MACH__
- asm volatile ("xxlor vs0,vs0,vs0");
-#else
- asm volatile ("xxlor 0,0,0");
-#endif
- return 0;
- }
- } "-mvsx"]
- } else {
- return 0
- }
-}
-
-# Return 1 if this is a PowerPC target supporting -mhtm
-
-proc check_effective_target_powerpc_htm_ok { } {
- if { ([istarget powerpc*-*-*]
- && ![istarget powerpc-*-linux*paired*])
- || [istarget rs6000-*-*] } {
- # HTM is not supported on AIX yet.
- if { [istarget powerpc*-*-aix*] } {
- return 0
- }
- return [check_no_compiler_messages powerpc_htm_ok object {
- int main (void) {
- asm volatile ("tbegin. 0");
- return 0;
- }
- } "-mhtm"]
- } else {
- return 0
- }
-}
-
-# Return 1 if this is a PowerPC target supporting -mcpu=cell.
-
-proc check_effective_target_powerpc_ppu_ok { } {
- if [check_effective_target_powerpc_altivec_ok] {
- return [check_no_compiler_messages cell_asm_available object {
- int main (void) {
-#ifdef __MACH__
- asm volatile ("lvlx v0,v0,v0");
-#else
- asm volatile ("lvlx 0,0,0");
-#endif
- return 0;
- }
- }]
- } else {
- return 0
- }
-}
-
-# Return 1 if this is a PowerPC target that supports SPU.
-
-proc check_effective_target_powerpc_spu { } {
- if { [istarget powerpc*-*-linux*] } {
- return [check_effective_target_powerpc_altivec_ok]
- } else {
- return 0
- }
-}
-
-# Return 1 if this is a PowerPC SPE target. The check includes options
-# specified by dg-options for this test, so don't cache the result.
-
-proc check_effective_target_powerpc_spe_nocache { } {
- if { [istarget powerpc*-*-*] } {
- return [check_no_compiler_messages_nocache powerpc_spe object {
- #ifndef __SPE__
- #error not SPE
- #else
- int dummy;
- #endif
- } [current_compiler_flags]]
- } else {
- return 0
- }
-}
-
-# Return 1 if this is a PowerPC target with SPE enabled.
-
-proc check_effective_target_powerpc_spe { } {
- if { [istarget powerpc*-*-*] } {
- return [check_no_compiler_messages powerpc_spe object {
- #ifndef __SPE__
- #error not SPE
- #else
- int dummy;
- #endif
- }]
- } else {
- return 0
- }
-}
-
-# Return 1 if this is a PowerPC target with Altivec enabled.
-
-proc check_effective_target_powerpc_altivec { } {
- if { [istarget powerpc*-*-*] } {
- return [check_no_compiler_messages powerpc_altivec object {
- #ifndef __ALTIVEC__
- #error not Altivec
- #else
- int dummy;
- #endif
- }]
- } else {
- return 0
- }
-}
-
-# Return 1 if this is a PowerPC 405 target. The check includes options
-# specified by dg-options for this test, so don't cache the result.
-
-proc check_effective_target_powerpc_405_nocache { } {
- if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } {
- return [check_no_compiler_messages_nocache powerpc_405 object {
- #ifdef __PPC405__
- int dummy;
- #else
- #error not a PPC405
- #endif
- } [current_compiler_flags]]
- } else {
- return 0
- }
-}
-
-# Return 1 if this is a PowerPC target using the ELFv2 ABI.
-
-proc check_effective_target_powerpc_elfv2 { } {
- if { [istarget powerpc*-*-*] } {
- return [check_no_compiler_messages powerpc_elfv2 object {
- #if _CALL_ELF != 2
- #error not ELF v2 ABI
- #else
- int dummy;
- #endif
- }]
- } else {
- return 0
- }
-}
-
-# Return 1 if this is a SPU target with a toolchain that
-# supports automatic overlay generation.
-
-proc check_effective_target_spu_auto_overlay { } {
- if { [istarget spu*-*-elf*] } {
- return [check_no_compiler_messages spu_auto_overlay executable {
- int main (void) { }
- } "-Wl,--auto-overlay" ]
- } else {
- return 0
- }
-}
-
-# The VxWorks SPARC simulator accepts only EM_SPARC executables and
-# chokes on EM_SPARC32PLUS or EM_SPARCV9 executables. Return 1 if the
-# test environment appears to run executables on such a simulator.
-
-proc check_effective_target_ultrasparc_hw { } {
- return [check_runtime ultrasparc_hw {
- int main() { return 0; }
- } "-mcpu=ultrasparc"]
-}
-
-# Return 1 if the test environment supports executing UltraSPARC VIS2
-# instructions. We check this by attempting: "bmask %g0, %g0, %g0"
-
-proc check_effective_target_ultrasparc_vis2_hw { } {
- return [check_runtime ultrasparc_vis2_hw {
- int main() { __asm__(".word 0x81b00320"); return 0; }
- } "-mcpu=ultrasparc3"]
-}
-
-# Return 1 if the test environment supports executing UltraSPARC VIS3
-# instructions. We check this by attempting: "addxc %g0, %g0, %g0"
-
-proc check_effective_target_ultrasparc_vis3_hw { } {
- return [check_runtime ultrasparc_vis3_hw {
- int main() { __asm__(".word 0x81b00220"); return 0; }
- } "-mcpu=niagara3"]
-}
-
-# Return 1 if this is a SPARC-V9 target.
-
-proc check_effective_target_sparc_v9 { } {
- if { [istarget sparc*-*-*] } {
- return [check_no_compiler_messages sparc_v9 object {
- int main (void) {
- asm volatile ("return %i7+8");
- return 0;
- }
- }]
- } else {
- return 0
- }
-}
-
-# Return 1 if this is a SPARC target with VIS enabled.
-
-proc check_effective_target_sparc_vis { } {
- if { [istarget sparc*-*-*] } {
- return [check_no_compiler_messages sparc_vis object {
- #ifndef __VIS__
- #error not VIS
- #else
- int dummy;
- #endif
- }]
- } else {
- return 0
- }
-}
-
-# Return 1 if the target supports hardware vector shift operation.
-
-proc check_effective_target_vect_shift { } {
- global et_vect_shift_saved
-
- if [info exists et_vect_shift_saved] {
- verbose "check_effective_target_vect_shift: using cached result" 2
- } else {
- set et_vect_shift_saved 0
- if { ([istarget powerpc*-*-*]
- && ![istarget powerpc-*-linux*paired*])
- || [istarget ia64-*-*]
- || [istarget i?86-*-*]
- || [istarget x86_64-*-*]
- || [istarget aarch64*-*-*]
- || [check_effective_target_arm32]
- || ([istarget mips*-*-*]
- && [check_effective_target_mips_loongson]) } {
- set et_vect_shift_saved 1
- }
- }
-
- verbose "check_effective_target_vect_shift: returning $et_vect_shift_saved" 2
- return $et_vect_shift_saved
-}
-
-# Return 1 if the target supports hardware vector shift operation for char.
-
-proc check_effective_target_vect_shift_char { } {
- global et_vect_shift_char_saved
-
- if [info exists et_vect_shift_char_saved] {
- verbose "check_effective_target_vect_shift_char: using cached result" 2
- } else {
- set et_vect_shift_char_saved 0
- if { ([istarget powerpc*-*-*]
- && ![istarget powerpc-*-linux*paired*])
- || [check_effective_target_arm32] } {
- set et_vect_shift_char_saved 1
- }
- }
-
- verbose "check_effective_target_vect_shift_char: returning $et_vect_shift_char_saved" 2
- return $et_vect_shift_char_saved
-}
-
-# Return 1 if the target supports hardware vectors of long, 0 otherwise.
-#
-# This can change for different subtargets so do not cache the result.
-
-proc check_effective_target_vect_long { } {
- if { [istarget i?86-*-*]
- || (([istarget powerpc*-*-*]
- && ![istarget powerpc-*-linux*paired*])
- && [check_effective_target_ilp32])
- || [istarget x86_64-*-*]
- || [check_effective_target_arm32]
- || ([istarget sparc*-*-*] && [check_effective_target_ilp32]) } {
- set answer 1
- } else {
- set answer 0
- }
-
- verbose "check_effective_target_vect_long: returning $answer" 2
- return $answer
-}
-
-# Return 1 if the target supports hardware vectors of float, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_float { } {
- global et_vect_float_saved
-
- if [info exists et_vect_float_saved] {
- verbose "check_effective_target_vect_float: using cached result" 2
- } else {
- set et_vect_float_saved 0
- if { [istarget i?86-*-*]
- || [istarget powerpc*-*-*]
- || [istarget spu-*-*]
- || [istarget mips-sde-elf]
- || [istarget mipsisa64*-*-*]
- || [istarget x86_64-*-*]
- || [istarget ia64-*-*]
- || [istarget aarch64*-*-*]
- || [check_effective_target_arm32] } {
- set et_vect_float_saved 1
- }
- }
-
- verbose "check_effective_target_vect_float: returning $et_vect_float_saved" 2
- return $et_vect_float_saved
-}
-
-# Return 1 if the target supports hardware vectors of double, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_double { } {
- global et_vect_double_saved
-
- if [info exists et_vect_double_saved] {
- verbose "check_effective_target_vect_double: using cached result" 2
- } else {
- set et_vect_double_saved 0
- if { [istarget i?86-*-*]
- || [istarget aarch64*-*-*]
- || [istarget x86_64-*-*] } {
- if { [check_no_compiler_messages vect_double assembly {
- #ifdef __tune_atom__
- # error No double vectorizer support.
- #endif
- }] } {
- set et_vect_double_saved 1
- } else {
- set et_vect_double_saved 0
- }
- } elseif { [istarget spu-*-*] } {
- set et_vect_double_saved 1
- }
- }
-
- verbose "check_effective_target_vect_double: returning $et_vect_double_saved" 2
- return $et_vect_double_saved
-}
-
-# Return 1 if the target supports hardware vectors of long long, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_long_long { } {
- global et_vect_long_long_saved
-
- if [info exists et_vect_long_long_saved] {
- verbose "check_effective_target_vect_long_long: using cached result" 2
- } else {
- set et_vect_long_long_saved 0
- if { [istarget i?86-*-*]
- || [istarget x86_64-*-*] } {
- set et_vect_long_long_saved 1
- }
- }
-
- verbose "check_effective_target_vect_long_long: returning $et_vect_long_long_saved" 2
- return $et_vect_long_long_saved
-}
-
-
-# Return 1 if the target plus current options does not support a vector
-# max instruction on "int", 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_no_int_max { } {
- global et_vect_no_int_max_saved
-
- if [info exists et_vect_no_int_max_saved] {
- verbose "check_effective_target_vect_no_int_max: using cached result" 2
- } else {
- set et_vect_no_int_max_saved 0
- if { [istarget sparc*-*-*]
- || [istarget spu-*-*]
- || [istarget alpha*-*-*]
- || ([istarget mips*-*-*]
- && [check_effective_target_mips_loongson]) } {
- set et_vect_no_int_max_saved 1
- }
- }
- verbose "check_effective_target_vect_no_int_max: returning $et_vect_no_int_max_saved" 2
- return $et_vect_no_int_max_saved
-}
-
-# Return 1 if the target plus current options does not support a vector
-# add instruction on "int", 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_no_int_add { } {
- global et_vect_no_int_add_saved
-
- if [info exists et_vect_no_int_add_saved] {
- verbose "check_effective_target_vect_no_int_add: using cached result" 2
- } else {
- set et_vect_no_int_add_saved 0
- # Alpha only supports vector add on V8QI and V4HI.
- if { [istarget alpha*-*-*] } {
- set et_vect_no_int_add_saved 1
- }
- }
- verbose "check_effective_target_vect_no_int_add: returning $et_vect_no_int_add_saved" 2
- return $et_vect_no_int_add_saved
-}
-
-# Return 1 if the target plus current options does not support vector
-# bitwise instructions, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_no_bitwise { } {
- global et_vect_no_bitwise_saved
-
- if [info exists et_vect_no_bitwise_saved] {
- verbose "check_effective_target_vect_no_bitwise: using cached result" 2
- } else {
- set et_vect_no_bitwise_saved 0
- }
- verbose "check_effective_target_vect_no_bitwise: returning $et_vect_no_bitwise_saved" 2
- return $et_vect_no_bitwise_saved
-}
-
-# Return 1 if the target plus current options supports vector permutation,
-# 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_perm { } {
- global et_vect_perm
-
- if [info exists et_vect_perm_saved] {
- verbose "check_effective_target_vect_perm: using cached result" 2
- } else {
- set et_vect_perm_saved 0
- if { [is-effective-target arm_neon_ok]
- || ([istarget aarch64*-*-*]
- && [is-effective-target aarch64_little_endian])
- || [istarget powerpc*-*-*]
- || [istarget spu-*-*]
- || [istarget i?86-*-*]
- || [istarget x86_64-*-*]
- || ([istarget mips*-*-*]
- && [check_effective_target_mpaired_single]) } {
- set et_vect_perm_saved 1
- }
- }
- verbose "check_effective_target_vect_perm: returning $et_vect_perm_saved" 2
- return $et_vect_perm_saved
-}
-
-# Return 1 if the target plus current options supports vector permutation
-# on byte-sized elements, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_perm_byte { } {
- global et_vect_perm_byte
-
- if [info exists et_vect_perm_byte_saved] {
- verbose "check_effective_target_vect_perm_byte: using cached result" 2
- } else {
- set et_vect_perm_byte_saved 0
- if { ([is-effective-target arm_neon_ok]
- && [is-effective-target arm_little_endian])
- || ([istarget aarch64*-*-*]
- && [is-effective-target aarch64_little_endian])
- || [istarget powerpc*-*-*]
- || [istarget spu-*-*] } {
- set et_vect_perm_byte_saved 1
- }
- }
- verbose "check_effective_target_vect_perm_byte: returning $et_vect_perm_byte_saved" 2
- return $et_vect_perm_byte_saved
-}
-
-# Return 1 if the target plus current options supports vector permutation
-# on short-sized elements, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_perm_short { } {
- global et_vect_perm_short
-
- if [info exists et_vect_perm_short_saved] {
- verbose "check_effective_target_vect_perm_short: using cached result" 2
- } else {
- set et_vect_perm_short_saved 0
- if { ([is-effective-target arm_neon_ok]
- && [is-effective-target arm_little_endian])
- || ([istarget aarch64*-*-*]
- && [is-effective-target aarch64_little_endian])
- || [istarget powerpc*-*-*]
- || [istarget spu-*-*] } {
- set et_vect_perm_short_saved 1
- }
- }
- verbose "check_effective_target_vect_perm_short: returning $et_vect_perm_short_saved" 2
- return $et_vect_perm_short_saved
-}
-
-# Return 1 if the target plus current options supports a vector
-# widening summation of *short* args into *int* result, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_widen_sum_hi_to_si_pattern { } {
- global et_vect_widen_sum_hi_to_si_pattern
-
- if [info exists et_vect_widen_sum_hi_to_si_pattern_saved] {
- verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: using cached result" 2
- } else {
- set et_vect_widen_sum_hi_to_si_pattern_saved 0
- if { [istarget powerpc*-*-*]
- || [istarget ia64-*-*] } {
- set et_vect_widen_sum_hi_to_si_pattern_saved 1
- }
- }
- verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: returning $et_vect_widen_sum_hi_to_si_pattern_saved" 2
- return $et_vect_widen_sum_hi_to_si_pattern_saved
-}
-
-# Return 1 if the target plus current options supports a vector
-# widening summation of *short* args into *int* result, 0 otherwise.
-# A target can also support this widening summation if it can support
-# promotion (unpacking) from shorts to ints.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_widen_sum_hi_to_si { } {
- global et_vect_widen_sum_hi_to_si
-
- if [info exists et_vect_widen_sum_hi_to_si_saved] {
- verbose "check_effective_target_vect_widen_sum_hi_to_si: using cached result" 2
- } else {
- set et_vect_widen_sum_hi_to_si_saved [check_effective_target_vect_unpack]
- if { [istarget powerpc*-*-*]
- || [istarget ia64-*-*] } {
- set et_vect_widen_sum_hi_to_si_saved 1
- }
- }
- verbose "check_effective_target_vect_widen_sum_hi_to_si: returning $et_vect_widen_sum_hi_to_si_saved" 2
- return $et_vect_widen_sum_hi_to_si_saved
-}
-
-# Return 1 if the target plus current options supports a vector
-# widening summation of *char* args into *short* result, 0 otherwise.
-# A target can also support this widening summation if it can support
-# promotion (unpacking) from chars to shorts.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_widen_sum_qi_to_hi { } {
- global et_vect_widen_sum_qi_to_hi
-
- if [info exists et_vect_widen_sum_qi_to_hi_saved] {
- verbose "check_effective_target_vect_widen_sum_qi_to_hi: using cached result" 2
- } else {
- set et_vect_widen_sum_qi_to_hi_saved 0
- if { [check_effective_target_vect_unpack]
- || [check_effective_target_arm_neon_ok]
- || [istarget ia64-*-*] } {
- set et_vect_widen_sum_qi_to_hi_saved 1
- }
- }
- verbose "check_effective_target_vect_widen_sum_qi_to_hi: returning $et_vect_widen_sum_qi_to_hi_saved" 2
- return $et_vect_widen_sum_qi_to_hi_saved
-}
-
-# Return 1 if the target plus current options supports a vector
-# widening summation of *char* args into *int* result, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_widen_sum_qi_to_si { } {
- global et_vect_widen_sum_qi_to_si
-
- if [info exists et_vect_widen_sum_qi_to_si_saved] {
- verbose "check_effective_target_vect_widen_sum_qi_to_si: using cached result" 2
- } else {
- set et_vect_widen_sum_qi_to_si_saved 0
- if { [istarget powerpc*-*-*] } {
- set et_vect_widen_sum_qi_to_si_saved 1
- }
- }
- verbose "check_effective_target_vect_widen_sum_qi_to_si: returning $et_vect_widen_sum_qi_to_si_saved" 2
- return $et_vect_widen_sum_qi_to_si_saved
-}
-
-# Return 1 if the target plus current options supports a vector
-# widening multiplication of *char* args into *short* result, 0 otherwise.
-# A target can also support this widening multplication if it can support
-# promotion (unpacking) from chars to shorts, and vect_short_mult (non-widening
-# multiplication of shorts).
-#
-# This won't change for different subtargets so cache the result.
-
-
-proc check_effective_target_vect_widen_mult_qi_to_hi { } {
- global et_vect_widen_mult_qi_to_hi
-
- if [info exists et_vect_widen_mult_qi_to_hi_saved] {
- verbose "check_effective_target_vect_widen_mult_qi_to_hi: using cached result" 2
- } else {
- if { [check_effective_target_vect_unpack]
- && [check_effective_target_vect_short_mult] } {
- set et_vect_widen_mult_qi_to_hi_saved 1
- } else {
- set et_vect_widen_mult_qi_to_hi_saved 0
- }
- if { [istarget powerpc*-*-*]
- || [istarget aarch64*-*-*]
- || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
- set et_vect_widen_mult_qi_to_hi_saved 1
- }
- }
- verbose "check_effective_target_vect_widen_mult_qi_to_hi: returning $et_vect_widen_mult_qi_to_hi_saved" 2
- return $et_vect_widen_mult_qi_to_hi_saved
-}
-
-# Return 1 if the target plus current options supports a vector
-# widening multiplication of *short* args into *int* result, 0 otherwise.
-# A target can also support this widening multplication if it can support
-# promotion (unpacking) from shorts to ints, and vect_int_mult (non-widening
-# multiplication of ints).
-#
-# This won't change for different subtargets so cache the result.
-
-
-proc check_effective_target_vect_widen_mult_hi_to_si { } {
- global et_vect_widen_mult_hi_to_si
-
- if [info exists et_vect_widen_mult_hi_to_si_saved] {
- verbose "check_effective_target_vect_widen_mult_hi_to_si: using cached result" 2
- } else {
- if { [check_effective_target_vect_unpack]
- && [check_effective_target_vect_int_mult] } {
- set et_vect_widen_mult_hi_to_si_saved 1
- } else {
- set et_vect_widen_mult_hi_to_si_saved 0
- }
- if { [istarget powerpc*-*-*]
- || [istarget spu-*-*]
- || [istarget ia64-*-*]
- || [istarget aarch64*-*-*]
- || [istarget i?86-*-*]
- || [istarget x86_64-*-*]
- || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
- set et_vect_widen_mult_hi_to_si_saved 1
- }
- }
- verbose "check_effective_target_vect_widen_mult_hi_to_si: returning $et_vect_widen_mult_hi_to_si_saved" 2
- return $et_vect_widen_mult_hi_to_si_saved
-}
-
-# Return 1 if the target plus current options supports a vector
-# widening multiplication of *char* args into *short* result, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_widen_mult_qi_to_hi_pattern { } {
- global et_vect_widen_mult_qi_to_hi_pattern
-
- if [info exists et_vect_widen_mult_qi_to_hi_pattern_saved] {
- verbose "check_effective_target_vect_widen_mult_qi_to_hi_pattern: using cached result" 2
- } else {
- set et_vect_widen_mult_qi_to_hi_pattern_saved 0
- if { [istarget powerpc*-*-*]
- || ([istarget arm*-*-*]
- && [check_effective_target_arm_neon_ok]
- && [check_effective_target_arm_little_endian]) } {
- set et_vect_widen_mult_qi_to_hi_pattern_saved 1
- }
- }
- verbose "check_effective_target_vect_widen_mult_qi_to_hi_pattern: returning $et_vect_widen_mult_qi_to_hi_pattern_saved" 2
- return $et_vect_widen_mult_qi_to_hi_pattern_saved
-}
-
-# Return 1 if the target plus current options supports a vector
-# widening multiplication of *short* args into *int* result, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_widen_mult_hi_to_si_pattern { } {
- global et_vect_widen_mult_hi_to_si_pattern
-
- if [info exists et_vect_widen_mult_hi_to_si_pattern_saved] {
- verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern: using cached result" 2
- } else {
- set et_vect_widen_mult_hi_to_si_pattern_saved 0
- if { [istarget powerpc*-*-*]
- || [istarget spu-*-*]
- || [istarget ia64-*-*]
- || [istarget i?86-*-*]
- || [istarget x86_64-*-*]
- || ([istarget arm*-*-*]
- && [check_effective_target_arm_neon_ok]
- && [check_effective_target_arm_little_endian]) } {
- set et_vect_widen_mult_hi_to_si_pattern_saved 1
- }
- }
- verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern: returning $et_vect_widen_mult_hi_to_si_pattern_saved" 2
- return $et_vect_widen_mult_hi_to_si_pattern_saved
-}
-
-# Return 1 if the target plus current options supports a vector
-# widening multiplication of *int* args into *long* result, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_widen_mult_si_to_di_pattern { } {
- global et_vect_widen_mult_si_to_di_pattern
-
- if [info exists et_vect_widen_mult_si_to_di_pattern_saved] {
- verbose "check_effective_target_vect_widen_mult_si_to_di_pattern: using cached result" 2
- } else {
- set et_vect_widen_mult_si_to_di_pattern_saved 0
- if {[istarget ia64-*-*]
- || [istarget i?86-*-*]
- || [istarget x86_64-*-*] } {
- set et_vect_widen_mult_si_to_di_pattern_saved 1
- }
- }
- verbose "check_effective_target_vect_widen_mult_si_to_di_pattern: returning $et_vect_widen_mult_si_to_di_pattern_saved" 2
- return $et_vect_widen_mult_si_to_di_pattern_saved
-}
-
-# Return 1 if the target plus current options supports a vector
-# widening shift, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_widen_shift { } {
- global et_vect_widen_shift_saved
-
- if [info exists et_vect_shift_saved] {
- verbose "check_effective_target_vect_widen_shift: using cached result" 2
- } else {
- set et_vect_widen_shift_saved 0
- if { ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
- set et_vect_widen_shift_saved 1
- }
- }
- verbose "check_effective_target_vect_widen_shift: returning $et_vect_widen_shift_saved" 2
- return $et_vect_widen_shift_saved
-}
-
-# Return 1 if the target plus current options supports a vector
-# dot-product of signed chars, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_sdot_qi { } {
- global et_vect_sdot_qi
-
- if [info exists et_vect_sdot_qi_saved] {
- verbose "check_effective_target_vect_sdot_qi: using cached result" 2
- } else {
- set et_vect_sdot_qi_saved 0
- if { [istarget ia64-*-*] } {
- set et_vect_udot_qi_saved 1
- }
- }
- verbose "check_effective_target_vect_sdot_qi: returning $et_vect_sdot_qi_saved" 2
- return $et_vect_sdot_qi_saved
-}
-
-# Return 1 if the target plus current options supports a vector
-# dot-product of unsigned chars, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_udot_qi { } {
- global et_vect_udot_qi
-
- if [info exists et_vect_udot_qi_saved] {
- verbose "check_effective_target_vect_udot_qi: using cached result" 2
- } else {
- set et_vect_udot_qi_saved 0
- if { [istarget powerpc*-*-*]
- || [istarget ia64-*-*] } {
- set et_vect_udot_qi_saved 1
- }
- }
- verbose "check_effective_target_vect_udot_qi: returning $et_vect_udot_qi_saved" 2
- return $et_vect_udot_qi_saved
-}
-
-# Return 1 if the target plus current options supports a vector
-# dot-product of signed shorts, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_sdot_hi { } {
- global et_vect_sdot_hi
-
- if [info exists et_vect_sdot_hi_saved] {
- verbose "check_effective_target_vect_sdot_hi: using cached result" 2
- } else {
- set et_vect_sdot_hi_saved 0
- if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
- || [istarget ia64-*-*]
- || [istarget i?86-*-*]
- || [istarget x86_64-*-*] } {
- set et_vect_sdot_hi_saved 1
- }
- }
- verbose "check_effective_target_vect_sdot_hi: returning $et_vect_sdot_hi_saved" 2
- return $et_vect_sdot_hi_saved
-}
-
-# Return 1 if the target plus current options supports a vector
-# dot-product of unsigned shorts, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_udot_hi { } {
- global et_vect_udot_hi
-
- if [info exists et_vect_udot_hi_saved] {
- verbose "check_effective_target_vect_udot_hi: using cached result" 2
- } else {
- set et_vect_udot_hi_saved 0
- if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) } {
- set et_vect_udot_hi_saved 1
- }
- }
- verbose "check_effective_target_vect_udot_hi: returning $et_vect_udot_hi_saved" 2
- return $et_vect_udot_hi_saved
-}
-
-
-# Return 1 if the target plus current options supports a vector
-# demotion (packing) of shorts (to chars) and ints (to shorts)
-# using modulo arithmetic, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_pack_trunc { } {
- global et_vect_pack_trunc
-
- if [info exists et_vect_pack_trunc_saved] {
- verbose "check_effective_target_vect_pack_trunc: using cached result" 2
- } else {
- set et_vect_pack_trunc_saved 0
- if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
- || [istarget i?86-*-*]
- || [istarget x86_64-*-*]
- || [istarget aarch64*-*-*]
- || [istarget spu-*-*]
- || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]
- && [check_effective_target_arm_little_endian]) } {
- set et_vect_pack_trunc_saved 1
- }
- }
- verbose "check_effective_target_vect_pack_trunc: returning $et_vect_pack_trunc_saved" 2
- return $et_vect_pack_trunc_saved
-}
-
-# Return 1 if the target plus current options supports a vector
-# promotion (unpacking) of chars (to shorts) and shorts (to ints), 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_unpack { } {
- global et_vect_unpack
-
- if [info exists et_vect_unpack_saved] {
- verbose "check_effective_target_vect_unpack: using cached result" 2
- } else {
- set et_vect_unpack_saved 0
- if { ([istarget powerpc*-*-*] && ![istarget powerpc-*paired*])
- || [istarget i?86-*-*]
- || [istarget x86_64-*-*]
- || [istarget spu-*-*]
- || [istarget ia64-*-*]
- || [istarget aarch64*-*-*]
- || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]
- && [check_effective_target_arm_little_endian]) } {
- set et_vect_unpack_saved 1
- }
- }
- verbose "check_effective_target_vect_unpack: returning $et_vect_unpack_saved" 2
- return $et_vect_unpack_saved
-}
-
-# Return 1 if the target plus current options does not guarantee
-# that its STACK_BOUNDARY is >= the reguired vector alignment.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_unaligned_stack { } {
- global et_unaligned_stack_saved
-
- if [info exists et_unaligned_stack_saved] {
- verbose "check_effective_target_unaligned_stack: using cached result" 2
- } else {
- set et_unaligned_stack_saved 0
- }
- verbose "check_effective_target_unaligned_stack: returning $et_unaligned_stack_saved" 2
- return $et_unaligned_stack_saved
-}
-
-# Return 1 if the target plus current options does not support a vector
-# alignment mechanism, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_no_align { } {
- global et_vect_no_align_saved
-
- if [info exists et_vect_no_align_saved] {
- verbose "check_effective_target_vect_no_align: using cached result" 2
- } else {
- set et_vect_no_align_saved 0
- if { [istarget mipsisa64*-*-*]
- || [istarget mips-sde-elf]
- || [istarget sparc*-*-*]
- || [istarget ia64-*-*]
- || [check_effective_target_arm_vect_no_misalign]
- || ([istarget mips*-*-*]
- && [check_effective_target_mips_loongson]) } {
- set et_vect_no_align_saved 1
- }
- }
- verbose "check_effective_target_vect_no_align: returning $et_vect_no_align_saved" 2
- return $et_vect_no_align_saved
-}
-
-# Return 1 if the target supports a vector misalign access, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_hw_misalign { } {
- global et_vect_hw_misalign_saved
-
- if [info exists et_vect_hw_misalign_saved] {
- verbose "check_effective_target_vect_hw_misalign: using cached result" 2
- } else {
- set et_vect_hw_misalign_saved 0
- if { ([istarget x86_64-*-*]
- || [istarget aarch64*-*-*]
- || [istarget i?86-*-*]) } {
- set et_vect_hw_misalign_saved 1
- }
- }
- verbose "check_effective_target_vect_hw_misalign: returning $et_vect_hw_misalign_saved" 2
- return $et_vect_hw_misalign_saved
-}
-
-
-# Return 1 if arrays are aligned to the vector alignment
-# boundary, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_aligned_arrays { } {
- global et_vect_aligned_arrays
-
- if [info exists et_vect_aligned_arrays_saved] {
- verbose "check_effective_target_vect_aligned_arrays: using cached result" 2
- } else {
- set et_vect_aligned_arrays_saved 0
- if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
- if { ([is-effective-target lp64]
- && ( ![check_avx_available]
- || [check_prefer_avx128])) } {
- set et_vect_aligned_arrays_saved 1
- }
- }
- if [istarget spu-*-*] {
- set et_vect_aligned_arrays_saved 1
- }
- }
- verbose "check_effective_target_vect_aligned_arrays: returning $et_vect_aligned_arrays_saved" 2
- return $et_vect_aligned_arrays_saved
-}
-
-# Return 1 if types of size 32 bit or less are naturally aligned
-# (aligned to their type-size), 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_natural_alignment_32 { } {
- global et_natural_alignment_32
-
- if [info exists et_natural_alignment_32_saved] {
- verbose "check_effective_target_natural_alignment_32: using cached result" 2
- } else {
- # FIXME: 32bit powerpc: guaranteed only if MASK_ALIGN_NATURAL/POWER.
- set et_natural_alignment_32_saved 1
- if { ([istarget *-*-darwin*] && [is-effective-target lp64]) } {
- set et_natural_alignment_32_saved 0
- }
- }
- verbose "check_effective_target_natural_alignment_32: returning $et_natural_alignment_32_saved" 2
- return $et_natural_alignment_32_saved
-}
-
-# Return 1 if types of size 64 bit or less are naturally aligned (aligned to their
-# type-size), 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_natural_alignment_64 { } {
- global et_natural_alignment_64
-
- if [info exists et_natural_alignment_64_saved] {
- verbose "check_effective_target_natural_alignment_64: using cached result" 2
- } else {
- set et_natural_alignment_64_saved 0
- if { ([is-effective-target lp64] && ![istarget *-*-darwin*])
- || [istarget spu-*-*] } {
- set et_natural_alignment_64_saved 1
- }
- }
- verbose "check_effective_target_natural_alignment_64: returning $et_natural_alignment_64_saved" 2
- return $et_natural_alignment_64_saved
-}
-
-# Return 1 if all vector types are naturally aligned (aligned to their
-# type-size), 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vect_natural_alignment { } {
- global et_vect_natural_alignment
-
- if [info exists et_vect_natural_alignment_saved] {
- verbose "check_effective_target_vect_natural_alignment: using cached result" 2
- } else {
- set et_vect_natural_alignment_saved 1
- if { [check_effective_target_arm_eabi] } {
- set et_vect_natural_alignment_saved 0
- }
- }
- verbose "check_effective_target_vect_natural_alignment: returning $et_vect_natural_alignment_saved" 2
- return $et_vect_natural_alignment_saved
-}
-
-# Return 1 if vector alignment (for types of size 32 bit or less) is reachable, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vector_alignment_reachable { } {
- global et_vector_alignment_reachable
-
- if [info exists et_vector_alignment_reachable_saved] {
- verbose "check_effective_target_vector_alignment_reachable: using cached result" 2
- } else {
- if { [check_effective_target_vect_aligned_arrays]
- || [check_effective_target_natural_alignment_32] } {
- set et_vector_alignment_reachable_saved 1
- } else {
- set et_vector_alignment_reachable_saved 0
- }
- }
- verbose "check_effective_target_vector_alignment_reachable: returning $et_vector_alignment_reachable_saved" 2
- return $et_vector_alignment_reachable_saved
-}
-
-# Return 1 if vector alignment for 64 bit is reachable, 0 otherwise.
-#
-# This won't change for different subtargets so cache the result.
-
-proc check_effective_target_vector_alignment_reachable_for_64bit { } {
- global et_vector_alignment_reachable_for_64bit
-
- if [info exists et_vector_alignment_reachable_for_64bit_saved] {
- verbose "check_effective_target_vector_alignment_reachable_for_64bit: using cached result" 2
- } else {
- if { [check_effective_target_vect_aligned_arrays]
- || [check_effective_target_natural_alignment_64] } {
- set et_vector_alignment_reachable_for_64bit_saved 1
- } else {
- set et_vector_alignment_reachable_for_64bit_saved 0
- }
- }
- verbose "check_effective_target_vector_alignment_reachable_for_64bit: returning $et_vector_alignment_reachable_for_64bit_saved" 2
- return $et_vector_alignment_reachable_for_64bit_saved
-}
-
-# Return 1 if the target only requires element alignment for vector accesses
-
-proc check_effective_target_vect_element_align { } {
- global et_vect_element_align
-
- if [info exists et_vect_element_align] {
- verbose "check_effective_target_vect_element_align: using cached result" 2
- } else {
- set et_vect_element_align 0
- if { ([istarget arm*-*-*]
- && ![check_effective_target_arm_vect_no_misalign])
- || [check_effective_target_vect_hw_misalign] } {
- set et_vect_element_align 1
- }
- }
-
- verbose "check_effective_target_vect_element_align: returning $et_vect_element_align" 2
- return $et_vect_element_align
-}
-
-# Return 1 if the target supports vector conditional operations, 0 otherwise.
-
-proc check_effective_target_vect_condition { } {
- global et_vect_cond_saved
-
- if [info exists et_vect_cond_saved] {
- verbose "check_effective_target_vect_cond: using cached result" 2
- } else {
- set et_vect_cond_saved 0
- if { [istarget aarch64*-*-*]
- || [istarget powerpc*-*-*]
- || [istarget ia64-*-*]
- || [istarget i?86-*-*]
- || [istarget spu-*-*]
- || [istarget x86_64-*-*]
- || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
- set et_vect_cond_saved 1
- }
- }
-
- verbose "check_effective_target_vect_cond: returning $et_vect_cond_saved" 2
- return $et_vect_cond_saved
-}
-
-# Return 1 if the target supports vector conditional operations where
-# the comparison has different type from the lhs, 0 otherwise.
-
-proc check_effective_target_vect_cond_mixed { } {
- global et_vect_cond_mixed_saved
-
- if [info exists et_vect_cond_mixed_saved] {
- verbose "check_effective_target_vect_cond_mixed: using cached result" 2
- } else {
- set et_vect_cond_mixed_saved 0
- if { [istarget i?86-*-*]
- || [istarget x86_64-*-*]
- || [istarget powerpc*-*-*] } {
- set et_vect_cond_mixed_saved 1
- }
- }
-
- verbose "check_effective_target_vect_cond_mixed: returning $et_vect_cond_mixed_saved" 2
- return $et_vect_cond_mixed_saved
-}
-
-# Return 1 if the target supports vector char multiplication, 0 otherwise.
-
-proc check_effective_target_vect_char_mult { } {
- global et_vect_char_mult_saved
-
- if [info exists et_vect_char_mult_saved] {
- verbose "check_effective_target_vect_char_mult: using cached result" 2
- } else {
- set et_vect_char_mult_saved 0
- if { [istarget aarch64*-*-*]
- || [istarget ia64-*-*]
- || [istarget i?86-*-*]
- || [istarget x86_64-*-*]
- || [check_effective_target_arm32] } {
- set et_vect_char_mult_saved 1
- }
- }
-
- verbose "check_effective_target_vect_char_mult: returning $et_vect_char_mult_saved" 2
- return $et_vect_char_mult_saved
-}
-
-# Return 1 if the target supports vector short multiplication, 0 otherwise.
-
-proc check_effective_target_vect_short_mult { } {
- global et_vect_short_mult_saved
-
- if [info exists et_vect_short_mult_saved] {
- verbose "check_effective_target_vect_short_mult: using cached result" 2
- } else {
- set et_vect_short_mult_saved 0
- if { [istarget ia64-*-*]
- || [istarget spu-*-*]
- || [istarget i?86-*-*]
- || [istarget x86_64-*-*]
- || [istarget powerpc*-*-*]
- || [istarget aarch64*-*-*]
- || [check_effective_target_arm32]
- || ([istarget mips*-*-*]
- && [check_effective_target_mips_loongson]) } {
- set et_vect_short_mult_saved 1
- }
- }
-
- verbose "check_effective_target_vect_short_mult: returning $et_vect_short_mult_saved" 2
- return $et_vect_short_mult_saved
-}
-
-# Return 1 if the target supports vector int multiplication, 0 otherwise.
-
-proc check_effective_target_vect_int_mult { } {
- global et_vect_int_mult_saved
-
- if [info exists et_vect_int_mult_saved] {
- verbose "check_effective_target_vect_int_mult: using cached result" 2
- } else {
- set et_vect_int_mult_saved 0
- if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
- || [istarget spu-*-*]
- || [istarget i?86-*-*]
- || [istarget x86_64-*-*]
- || [istarget ia64-*-*]
- || [istarget aarch64*-*-*]
- || [check_effective_target_arm32] } {
- set et_vect_int_mult_saved 1
- }
- }
-
- verbose "check_effective_target_vect_int_mult: returning $et_vect_int_mult_saved" 2
- return $et_vect_int_mult_saved
-}
-
-# Return 1 if the target supports vector even/odd elements extraction, 0 otherwise.
-
-proc check_effective_target_vect_extract_even_odd { } {
- global et_vect_extract_even_odd_saved
-
- if [info exists et_vect_extract_even_odd_saved] {
- verbose "check_effective_target_vect_extract_even_odd: using cached result" 2
- } else {
- set et_vect_extract_even_odd_saved 0
- if { [istarget aarch64*-*-*]
- || [istarget powerpc*-*-*]
- || [is-effective-target arm_neon_ok]
- || [istarget i?86-*-*]
- || [istarget x86_64-*-*]
- || [istarget ia64-*-*]
- || [istarget spu-*-*]
- || ([istarget mips*-*-*]
- && [check_effective_target_mpaired_single]) } {
- set et_vect_extract_even_odd_saved 1
- }
- }
-
- verbose "check_effective_target_vect_extract_even_odd: returning $et_vect_extract_even_odd_saved" 2
- return $et_vect_extract_even_odd_saved
-}
-
-# Return 1 if the target supports vector interleaving, 0 otherwise.
-
-proc check_effective_target_vect_interleave { } {
- global et_vect_interleave_saved
-
- if [info exists et_vect_interleave_saved] {
- verbose "check_effective_target_vect_interleave: using cached result" 2
- } else {
- set et_vect_interleave_saved 0
- if { [istarget aarch64*-*-*]
- || [istarget powerpc*-*-*]
- || [is-effective-target arm_neon_ok]
- || [istarget i?86-*-*]
- || [istarget x86_64-*-*]
- || [istarget ia64-*-*]
- || [istarget spu-*-*]
- || ([istarget mips*-*-*]
- && [check_effective_target_mpaired_single]) } {
- set et_vect_interleave_saved 1
- }
- }
-
- verbose "check_effective_target_vect_interleave: returning $et_vect_interleave_saved" 2
- return $et_vect_interleave_saved
-}
-
-foreach N {2 3 4 8} {
- eval [string map [list N $N] {
- # Return 1 if the target supports 2-vector interleaving
- proc check_effective_target_vect_stridedN { } {
- global et_vect_stridedN_saved
-
- if [info exists et_vect_stridedN_saved] {
- verbose "check_effective_target_vect_stridedN: using cached result" 2
- } else {
- set et_vect_stridedN_saved 0
- if { (N & -N) == N
- && [check_effective_target_vect_interleave]
- && [check_effective_target_vect_extract_even_odd] } {
- set et_vect_stridedN_saved 1
- }
- if { ([istarget arm*-*-*]
- || [istarget aarch64*-*-*]) && N >= 2 && N <= 4 } {
- set et_vect_stridedN_saved 1
- }
- }
-
- verbose "check_effective_target_vect_stridedN: returning $et_vect_stridedN_saved" 2
- return $et_vect_stridedN_saved
- }
- }]
-}
-
-# Return 1 if the target supports multiple vector sizes
-
-proc check_effective_target_vect_multiple_sizes { } {
- global et_vect_multiple_sizes_saved
-
- set et_vect_multiple_sizes_saved 0
- if { ([istarget aarch64*-*-*]
- || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok])) } {
- set et_vect_multiple_sizes_saved 1
- }
- if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
- if { ([check_avx_available] && ![check_prefer_avx128]) } {
- set et_vect_multiple_sizes_saved 1
- }
- }
-
- verbose "check_effective_target_vect_multiple_sizes: returning $et_vect_multiple_sizes_saved" 2
- return $et_vect_multiple_sizes_saved
-}
-
-# Return 1 if the target supports vectors of 64 bits.
-
-proc check_effective_target_vect64 { } {
- global et_vect64_saved
-
- if [info exists et_vect64_saved] {
- verbose "check_effective_target_vect64: using cached result" 2
- } else {
- set et_vect64_saved 0
- if { ([istarget arm*-*-*]
- && [check_effective_target_arm_neon_ok]
- && [check_effective_target_arm_little_endian]) } {
- set et_vect64_saved 1
- }
- }
-
- verbose "check_effective_target_vect64: returning $et_vect64_saved" 2
- return $et_vect64_saved
-}
-
-# Return 1 if the target supports vector copysignf calls.
-
-proc check_effective_target_vect_call_copysignf { } {
- global et_vect_call_copysignf_saved
-
- if [info exists et_vect_call_copysignf_saved] {
- verbose "check_effective_target_vect_call_copysignf: using cached result" 2
- } else {
- set et_vect_call_copysignf_saved 0
- if { [istarget i?86-*-*]
- || [istarget x86_64-*-*]
- || [istarget powerpc*-*-*] } {
- set et_vect_call_copysignf_saved 1
- }
- }
-
- verbose "check_effective_target_vect_call_copysignf: returning $et_vect_call_copysignf_saved" 2
- return $et_vect_call_copysignf_saved
-}
-
-# Return 1 if the target supports vector sqrtf calls.
-
-proc check_effective_target_vect_call_sqrtf { } {
- global et_vect_call_sqrtf_saved
-
- if [info exists et_vect_call_sqrtf_saved] {
- verbose "check_effective_target_vect_call_sqrtf: using cached result" 2
- } else {
- set et_vect_call_sqrtf_saved 0
- if { [istarget aarch64*-*-*]
- || [istarget i?86-*-*]
- || [istarget x86_64-*-*]
- || ([istarget powerpc*-*-*] && [check_vsx_hw_available]) } {
- set et_vect_call_sqrtf_saved 1
- }
- }
-
- verbose "check_effective_target_vect_call_sqrtf: returning $et_vect_call_sqrtf_saved" 2
- return $et_vect_call_sqrtf_saved
-}
-
-# Return 1 if the target supports vector lrint calls.
-
-proc check_effective_target_vect_call_lrint { } {
- set et_vect_call_lrint 0
- if { ([istarget i?86-*-*] || [istarget x86_64-*-*]) && [check_effective_target_ilp32] } {
- set et_vect_call_lrint 1
- }
-
- verbose "check_effective_target_vect_call_lrint: returning $et_vect_call_lrint" 2
- return $et_vect_call_lrint
-}
-
-# Return 1 if the target supports vector btrunc calls.
-
-proc check_effective_target_vect_call_btrunc { } {
- global et_vect_call_btrunc_saved
-
- if [info exists et_vect_call_btrunc_saved] {
- verbose "check_effective_target_vect_call_btrunc: using cached result" 2
- } else {
- set et_vect_call_btrunc_saved 0
- if { [istarget aarch64*-*-*] } {
- set et_vect_call_btrunc_saved 1
- }
- }
-
- verbose "check_effective_target_vect_call_btrunc: returning $et_vect_call_btrunc_saved" 2
- return $et_vect_call_btrunc_saved
-}
-
-# Return 1 if the target supports vector btruncf calls.
-
-proc check_effective_target_vect_call_btruncf { } {
- global et_vect_call_btruncf_saved
-
- if [info exists et_vect_call_btruncf_saved] {
- verbose "check_effective_target_vect_call_btruncf: using cached result" 2
- } else {
- set et_vect_call_btruncf_saved 0
- if { [istarget aarch64*-*-*] } {
- set et_vect_call_btruncf_saved 1
- }
- }
-
- verbose "check_effective_target_vect_call_btruncf: returning $et_vect_call_btruncf_saved" 2
- return $et_vect_call_btruncf_saved
-}
-
-# Return 1 if the target supports vector ceil calls.
-
-proc check_effective_target_vect_call_ceil { } {
- global et_vect_call_ceil_saved
-
- if [info exists et_vect_call_ceil_saved] {
- verbose "check_effective_target_vect_call_ceil: using cached result" 2
- } else {
- set et_vect_call_ceil_saved 0
- if { [istarget aarch64*-*-*] } {
- set et_vect_call_ceil_saved 1
- }
- }
-
- verbose "check_effective_target_vect_call_ceil: returning $et_vect_call_ceil_saved" 2
- return $et_vect_call_ceil_saved
-}
-
-# Return 1 if the target supports vector ceilf calls.
-
-proc check_effective_target_vect_call_ceilf { } {
- global et_vect_call_ceilf_saved
-
- if [info exists et_vect_call_ceilf_saved] {
- verbose "check_effective_target_vect_call_ceilf: using cached result" 2
- } else {
- set et_vect_call_ceilf_saved 0
- if { [istarget aarch64*-*-*] } {
- set et_vect_call_ceilf_saved 1
- }
- }
-
- verbose "check_effective_target_vect_call_ceilf: returning $et_vect_call_ceilf_saved" 2
- return $et_vect_call_ceilf_saved
-}
-
-# Return 1 if the target supports vector floor calls.
-
-proc check_effective_target_vect_call_floor { } {
- global et_vect_call_floor_saved
-
- if [info exists et_vect_call_floor_saved] {
- verbose "check_effective_target_vect_call_floor: using cached result" 2
- } else {
- set et_vect_call_floor_saved 0
- if { [istarget aarch64*-*-*] } {
- set et_vect_call_floor_saved 1
- }
- }
-
- verbose "check_effective_target_vect_call_floor: returning $et_vect_call_floor_saved" 2
- return $et_vect_call_floor_saved
-}
-
-# Return 1 if the target supports vector floorf calls.
-
-proc check_effective_target_vect_call_floorf { } {
- global et_vect_call_floorf_saved
-
- if [info exists et_vect_call_floorf_saved] {
- verbose "check_effective_target_vect_call_floorf: using cached result" 2
- } else {
- set et_vect_call_floorf_saved 0
- if { [istarget aarch64*-*-*] } {
- set et_vect_call_floorf_saved 1
- }
- }
-
- verbose "check_effective_target_vect_call_floorf: returning $et_vect_call_floorf_saved" 2
- return $et_vect_call_floorf_saved
-}
-
-# Return 1 if the target supports vector lceil calls.
-
-proc check_effective_target_vect_call_lceil { } {
- global et_vect_call_lceil_saved
-
- if [info exists et_vect_call_lceil_saved] {
- verbose "check_effective_target_vect_call_lceil: using cached result" 2
- } else {
- set et_vect_call_lceil_saved 0
- if { [istarget aarch64*-*-*] } {
- set et_vect_call_lceil_saved 1
- }
- }
-
- verbose "check_effective_target_vect_call_lceil: returning $et_vect_call_lceil_saved" 2
- return $et_vect_call_lceil_saved
-}
-
-# Return 1 if the target supports vector lfloor calls.
-
-proc check_effective_target_vect_call_lfloor { } {
- global et_vect_call_lfloor_saved
-
- if [info exists et_vect_call_lfloor_saved] {
- verbose "check_effective_target_vect_call_lfloor: using cached result" 2
- } else {
- set et_vect_call_lfloor_saved 0
- if { [istarget aarch64*-*-*] } {
- set et_vect_call_lfloor_saved 1
- }
- }
-
- verbose "check_effective_target_vect_call_lfloor: returning $et_vect_call_lfloor_saved" 2
- return $et_vect_call_lfloor_saved
-}
-
-# Return 1 if the target supports vector nearbyint calls.
-
-proc check_effective_target_vect_call_nearbyint { } {
- global et_vect_call_nearbyint_saved
-
- if [info exists et_vect_call_nearbyint_saved] {
- verbose "check_effective_target_vect_call_nearbyint: using cached result" 2
- } else {
- set et_vect_call_nearbyint_saved 0
- if { [istarget aarch64*-*-*] } {
- set et_vect_call_nearbyint_saved 1
- }
- }
-
- verbose "check_effective_target_vect_call_nearbyint: returning $et_vect_call_nearbyint_saved" 2
- return $et_vect_call_nearbyint_saved
-}
-
-# Return 1 if the target supports vector nearbyintf calls.
-
-proc check_effective_target_vect_call_nearbyintf { } {
- global et_vect_call_nearbyintf_saved
-
- if [info exists et_vect_call_nearbyintf_saved] {
- verbose "check_effective_target_vect_call_nearbyintf: using cached result" 2
- } else {
- set et_vect_call_nearbyintf_saved 0
- if { [istarget aarch64*-*-*] } {
- set et_vect_call_nearbyintf_saved 1
- }
- }
-
- verbose "check_effective_target_vect_call_nearbyintf: returning $et_vect_call_nearbyintf_saved" 2
- return $et_vect_call_nearbyintf_saved
-}
-
-# Return 1 if the target supports vector round calls.
-
-proc check_effective_target_vect_call_round { } {
- global et_vect_call_round_saved
-
- if [info exists et_vect_call_round_saved] {
- verbose "check_effective_target_vect_call_round: using cached result" 2
- } else {
- set et_vect_call_round_saved 0
- if { [istarget aarch64*-*-*] } {
- set et_vect_call_round_saved 1
- }
- }
-
- verbose "check_effective_target_vect_call_round: returning $et_vect_call_round_saved" 2
- return $et_vect_call_round_saved
-}
-
-# Return 1 if the target supports vector roundf calls.
-
-proc check_effective_target_vect_call_roundf { } {
- global et_vect_call_roundf_saved
-
- if [info exists et_vect_call_roundf_saved] {
- verbose "check_effective_target_vect_call_roundf: using cached result" 2
- } else {
- set et_vect_call_roundf_saved 0
- if { [istarget aarch64*-*-*] } {
- set et_vect_call_roundf_saved 1
- }
- }
-
- verbose "check_effective_target_vect_call_roundf: returning $et_vect_call_roundf_saved" 2
- return $et_vect_call_roundf_saved
-}
-
-# Return 1 if the target supports section-anchors
-
-proc check_effective_target_section_anchors { } {
- global et_section_anchors_saved
-
- if [info exists et_section_anchors_saved] {
- verbose "check_effective_target_section_anchors: using cached result" 2
- } else {
- set et_section_anchors_saved 0
- if { [istarget powerpc*-*-*]
- || [istarget arm*-*-*] } {
- set et_section_anchors_saved 1
- }
- }
-
- verbose "check_effective_target_section_anchors: returning $et_section_anchors_saved" 2
- return $et_section_anchors_saved
-}
-
-# Return 1 if the target supports atomic operations on "int_128" values.
-
-proc check_effective_target_sync_int_128 { } {
- if { ([istarget x86_64-*-*] || [istarget i?86-*-*])
- && ![is-effective-target ia32] } {
- return 1
- } else {
- return 0
- }
-}
-
-# Return 1 if the target supports atomic operations on "int_128" values
-# and can execute them.
-
-proc check_effective_target_sync_int_128_runtime { } {
- if { ([istarget x86_64-*-*] || [istarget i?86-*-*])
- && ![is-effective-target ia32] } {
- return [check_cached_effective_target sync_int_128_available {
- check_runtime_nocache sync_int_128_available {
- #include "cpuid.h"
- int main ()
- {
- unsigned int eax, ebx, ecx, edx;
- if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
- return !(ecx & bit_CMPXCHG16B);
- return 1;
- }
- } ""
- }]
- } else {
- return 0
- }
-}
-
-# Return 1 if the target supports atomic operations on "long long".
-#
-# Note: 32bit x86 targets require -march=pentium in dg-options.
-
-proc check_effective_target_sync_long_long { } {
- if { [istarget x86_64-*-*]
- || [istarget i?86-*-*])
- || [istarget aarch64*-*-*]
- || [istarget arm*-*-*]
- || [istarget alpha*-*-*]
- || ([istarget sparc*-*-*] && [check_effective_target_lp64]) } {
- return 1
- } else {
- return 0
- }
-}
-
-# Return 1 if the target supports atomic operations on "long long"
-# and can execute them.
-#
-# Note: 32bit x86 targets require -march=pentium in dg-options.
-
-proc check_effective_target_sync_long_long_runtime { } {
- if { [istarget x86_64-*-*]
- || [istarget i?86-*-*] } {
- return [check_cached_effective_target sync_long_long_available {
- check_runtime_nocache sync_long_long_available {
- #include "cpuid.h"
- int main ()
- {
- unsigned int eax, ebx, ecx, edx;
- if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
- return !(edx & bit_CMPXCHG8B);
- return 1;
- }
- } ""
- }]
- } elseif { [istarget aarch64*-*-*] } {
- return 1
- } elseif { [istarget arm*-*-linux-*] } {
- return [check_runtime sync_longlong_runtime {
- #include <stdlib.h>
- int main ()
- {
- long long l1;
-
- if (sizeof (long long) != 8)
- exit (1);
-
- /* Just check for native; checking for kernel fallback is tricky. */
- asm volatile ("ldrexd r0,r1, [%0]" : : "r" (&l1) : "r0", "r1");
-
- exit (0);
- }
- } "" ]
- } elseif { [istarget alpha*-*-*] } {
- return 1
- } elseif { ([istarget sparc*-*-*]
- && [check_effective_target_lp64]
- && [check_effective_target_ultrasparc_hw]) } {
- return 1
- } elseif { [istarget powerpc*-*-*] && [check_effective_target_lp64] } {
- return 1
- } else {
- return 0
- }
-}
-
-# Return 1 if the target supports atomic operations on "int" and "long".
-
-proc check_effective_target_sync_int_long { } {
- global et_sync_int_long_saved
-
- if [info exists et_sync_int_long_saved] {
- verbose "check_effective_target_sync_int_long: using cached result" 2
- } else {
- set et_sync_int_long_saved 0
-# This is intentionally powerpc but not rs6000, rs6000 doesn't have the
-# load-reserved/store-conditional instructions.
- if { [istarget ia64-*-*]
- || [istarget i?86-*-*]
- || [istarget x86_64-*-*]
- || [istarget aarch64*-*-*]
- || [istarget alpha*-*-*]
- || [istarget arm*-*-linux-*]
- || [istarget bfin*-*linux*]
- || [istarget hppa*-*linux*]
- || [istarget s390*-*-*]
- || [istarget powerpc*-*-*]
- || [istarget crisv32-*-*] || [istarget cris-*-*]
- || ([istarget sparc*-*-*] && [check_effective_target_sparc_v9])
- || [check_effective_target_mips_llsc] } {
- set et_sync_int_long_saved 1
- }
- }
-
- verbose "check_effective_target_sync_int_long: returning $et_sync_int_long_saved" 2
- return $et_sync_int_long_saved
-}
-
-# Return 1 if the target supports atomic operations on "char" and "short".
-
-proc check_effective_target_sync_char_short { } {
- global et_sync_char_short_saved
-
- if [info exists et_sync_char_short_saved] {
- verbose "check_effective_target_sync_char_short: using cached result" 2
- } else {
- set et_sync_char_short_saved 0
-# This is intentionally powerpc but not rs6000, rs6000 doesn't have the
-# load-reserved/store-conditional instructions.
- if { [istarget aarch64*-*-*]
- || [istarget ia64-*-*]
- || [istarget i?86-*-*]
- || [istarget x86_64-*-*]
- || [istarget alpha*-*-*]
- || [istarget arm*-*-linux-*]
- || [istarget hppa*-*linux*]
- || [istarget s390*-*-*]
- || [istarget powerpc*-*-*]
- || [istarget crisv32-*-*] || [istarget cris-*-*]
- || ([istarget sparc*-*-*] && [check_effective_target_sparc_v9])
- || [check_effective_target_mips_llsc] } {
- set et_sync_char_short_saved 1
- }
- }
-
- verbose "check_effective_target_sync_char_short: returning $et_sync_char_short_saved" 2
- return $et_sync_char_short_saved
-}
-
-# Return 1 if the target uses a ColdFire FPU.
-
-proc check_effective_target_coldfire_fpu { } {
- return [check_no_compiler_messages coldfire_fpu assembly {
- #ifndef __mcffpu__
- #error FOO
- #endif
- }]
-}
-
-# Return true if this is a uClibc target.
-
-proc check_effective_target_uclibc {} {
- return [check_no_compiler_messages uclibc object {
- #include <features.h>
- #if !defined (__UCLIBC__)
- #error FOO
- #endif
- }]
-}
-
-# Return true if this is a uclibc target and if the uclibc feature
-# described by __$feature__ is not present.
-
-proc check_missing_uclibc_feature {feature} {
- return [check_no_compiler_messages $feature object "
- #include <features.h>
- #if !defined (__UCLIBC) || defined (__${feature}__)
- #error FOO
- #endif
- "]
-}
-
-# Return true if this is a Newlib target.
-
-proc check_effective_target_newlib {} {
- return [check_no_compiler_messages newlib object {
- #include <newlib.h>
- }]
-}
-
-# Return true if this is NOT a Bionic target.
-
-proc check_effective_target_non_bionic {} {
- return [check_no_compiler_messages non_bionic object {
- #include <ctype.h>
- #if defined (__BIONIC__)
- #error FOO
- #endif
- }]
-}
-
-# Return 1 if
-# (a) an error of a few ULP is expected in string to floating-point
-# conversion functions; and
-# (b) overflow is not always detected correctly by those functions.
-
-proc check_effective_target_lax_strtofp {} {
- # By default, assume that all uClibc targets suffer from this.
- return [check_effective_target_uclibc]
-}
-
-# Return 1 if this is a target for which wcsftime is a dummy
-# function that always returns 0.
-
-proc check_effective_target_dummy_wcsftime {} {
- # By default, assume that all uClibc targets suffer from this.
- return [check_effective_target_uclibc]
-}
-
-# Return 1 if constructors with initialization priority arguments are
-# supposed on this target.
-
-proc check_effective_target_init_priority {} {
- return [check_no_compiler_messages init_priority assembly "
- void f() __attribute__((constructor (1000)));
- void f() \{\}
- "]
-}
-
-# Return 1 if the target matches the effective target 'arg', 0 otherwise.
-# This can be used with any check_* proc that takes no argument and
-# returns only 1 or 0. It could be used with check_* procs that take
-# arguments with keywords that pass particular arguments.
-
-proc is-effective-target { arg } {
- set selected 0
- if { [info procs check_effective_target_${arg}] != [list] } {
- set selected [check_effective_target_${arg}]
- } else {
- switch $arg {
- "vmx_hw" { set selected [check_vmx_hw_available] }
- "vsx_hw" { set selected [check_vsx_hw_available] }
- "p8vector_hw" { set selected [check_p8vector_hw_available] }
- "ppc_recip_hw" { set selected [check_ppc_recip_hw_available] }
- "dfp_hw" { set selected [check_dfp_hw_available] }
- "named_sections" { set selected [check_named_sections_available] }
- "gc_sections" { set selected [check_gc_sections_available] }
- "cxa_atexit" { set selected [check_cxa_atexit_available] }
- default { error "unknown effective target keyword `$arg'" }
- }
- }
- verbose "is-effective-target: $arg $selected" 2
- return $selected
-}
-
-# Return 1 if the argument is an effective-target keyword, 0 otherwise.
-
-proc is-effective-target-keyword { arg } {
- if { [info procs check_effective_target_${arg}] != [list] } {
- return 1
- } else {
- # These have different names for their check_* procs.
- switch $arg {
- "vmx_hw" { return 1 }
- "vsx_hw" { return 1 }
- "p8vector_hw" { return 1 }
- "ppc_recip_hw" { return 1 }
- "dfp_hw" { return 1 }
- "named_sections" { return 1 }
- "gc_sections" { return 1 }
- "cxa_atexit" { return 1 }
- default { return 0 }
- }
- }
-}
-
-# Return 1 if target default to short enums
-
-proc check_effective_target_short_enums { } {
- return [check_no_compiler_messages short_enums assembly {
- enum foo { bar };
- int s[sizeof (enum foo) == 1 ? 1 : -1];
- }]
-}
-
-# Return 1 if target supports merging string constants at link time.
-
-proc check_effective_target_string_merging { } {
- return [check_no_messages_and_pattern string_merging \
- "rodata\\.str" assembly {
- const char *var = "String";
- } {-O2}]
-}
-
-# Return 1 if target has the basic signed and unsigned types in
-# <stdint.h>, 0 otherwise. This will be obsolete when GCC ensures a
-# working <stdint.h> for all targets.
-
-proc check_effective_target_stdint_types { } {
- return [check_no_compiler_messages stdint_types assembly {
- #include <stdint.h>
- int8_t a; int16_t b; int32_t c; int64_t d;
- uint8_t e; uint16_t f; uint32_t g; uint64_t h;
- }]
-}
-
-# Return 1 if target has the basic signed and unsigned types in
-# <inttypes.h>, 0 otherwise. This is for tests that GCC's notions of
-# these types agree with those in the header, as some systems have
-# only <inttypes.h>.
-
-proc check_effective_target_inttypes_types { } {
- return [check_no_compiler_messages inttypes_types assembly {
- #include <inttypes.h>
- int8_t a; int16_t b; int32_t c; int64_t d;
- uint8_t e; uint16_t f; uint32_t g; uint64_t h;
- }]
-}
-
-# Return 1 if programs are intended to be run on a simulator
-# (i.e. slowly) rather than hardware (i.e. fast).
-
-proc check_effective_target_simulator { } {
-
- # All "src/sim" simulators set this one.
- if [board_info target exists is_simulator] {
- return [board_info target is_simulator]
- }
-
- # The "sid" simulators don't set that one, but at least they set
- # this one.
- if [board_info target exists slow_simulator] {
- return [board_info target slow_simulator]
- }
-
- return 0
-}
-
-# Return 1 if programs are intended to be run on hardware rather than
-# on a simulator
-
-proc check_effective_target_hw { } {
-
- # All "src/sim" simulators set this one.
- if [board_info target exists is_simulator] {
- if [board_info target is_simulator] {
- return 0
- } else {
- return 1
- }
- }
-
- # The "sid" simulators don't set that one, but at least they set
- # this one.
- if [board_info target exists slow_simulator] {
- if [board_info target slow_simulator] {
- return 0
- } else {
- return 1
- }
- }
-
- return 1
-}
-
-# Return 1 if the target is a VxWorks kernel.
-
-proc check_effective_target_vxworks_kernel { } {
- return [check_no_compiler_messages vxworks_kernel assembly {
- #if !defined __vxworks || defined __RTP__
- #error NO
- #endif
- }]
-}
-
-# Return 1 if the target is a VxWorks RTP.
-
-proc check_effective_target_vxworks_rtp { } {
- return [check_no_compiler_messages vxworks_rtp assembly {
- #if !defined __vxworks || !defined __RTP__
- #error NO
- #endif
- }]
-}
-
-# Return 1 if the target is expected to provide wide character support.
-
-proc check_effective_target_wchar { } {
- if {[check_missing_uclibc_feature UCLIBC_HAS_WCHAR]} {
- return 0
- }
- return [check_no_compiler_messages wchar assembly {
- #include <wchar.h>
- }]
-}
-
-# Return 1 if the target has <pthread.h>.
-
-proc check_effective_target_pthread_h { } {
- return [check_no_compiler_messages pthread_h assembly {
- #include <pthread.h>
- }]
-}
-
-# Return 1 if the target can truncate a file from a file-descriptor,
-# as used by libgfortran/io/unix.c:fd_truncate; i.e. ftruncate or
-# chsize. We test for a trivially functional truncation; no stubs.
-# As libgfortran uses _FILE_OFFSET_BITS 64, we do too; it'll cause a
-# different function to be used.
-
-proc check_effective_target_fd_truncate { } {
- set prog {
- #define _FILE_OFFSET_BITS 64
- #include <unistd.h>
- #include <stdio.h>
- #include <stdlib.h>
- int main ()
- {
- FILE *f = fopen ("tst.tmp", "wb");
- int fd;
- const char t[] = "test writing more than ten characters";
- char s[11];
- int status = 0;
- fd = fileno (f);
- write (fd, t, sizeof (t) - 1);
- lseek (fd, 0, 0);
- if (ftruncate (fd, 10) != 0)
- status = 1;
- close (fd);
- fclose (f);
- if (status)
- {
- unlink ("tst.tmp");
- exit (status);
- }
- f = fopen ("tst.tmp", "rb");
- if (fread (s, 1, sizeof (s), f) != 10 || strncmp (s, t, 10) != 0)
- status = 1;
- fclose (f);
- unlink ("tst.tmp");
- exit (status);
- }
- }
-
- if { [check_runtime ftruncate $prog] } {
- return 1;
- }
-
- regsub "ftruncate" $prog "chsize" prog
- return [check_runtime chsize $prog]
-}
-
-# Add to FLAGS all the target-specific flags needed to access the c99 runtime.
-
-proc add_options_for_c99_runtime { flags } {
- if { [istarget *-*-solaris2*] } {
- return "$flags -std=c99"
- }
- if { [istarget powerpc-*-darwin*] } {
- return "$flags -mmacosx-version-min=10.3"
- }
- return $flags
-}
-
-# Add to FLAGS all the target-specific flags needed to enable
-# full IEEE compliance mode.
-
-proc add_options_for_ieee { flags } {
- if { [istarget alpha*-*-*]
- || [istarget sh*-*-*] } {
- return "$flags -mieee"
- }
- if { [istarget rx-*-*] } {
- return "$flags -mnofpu"
- }
- return $flags
-}
-
-# Add to FLAGS the flags needed to enable functions to bind locally
-# when using pic/PIC passes in the testsuite.
-
-proc add_options_for_bind_pic_locally { flags } {
- if {[check_no_compiler_messages using_pic2 assembly {
- #if __PIC__ != 2
- #error FOO
- #endif
- }]} {
- return "$flags -fPIE"
- }
- if {[check_no_compiler_messages using_pic1 assembly {
- #if __PIC__ != 1
- #error FOO
- #endif
- }]} {
- return "$flags -fpie"
- }
-
- return $flags
-}
-
-# Add to FLAGS the flags needed to enable 64-bit vectors.
-
-proc add_options_for_double_vectors { flags } {
- if [is-effective-target arm_neon_ok] {
- return "$flags -mvectorize-with-neon-double"
- }
-
- return $flags
-}
-
-# Return 1 if the target provides a full C99 runtime.
-
-proc check_effective_target_c99_runtime { } {
- return [check_cached_effective_target c99_runtime {
- global srcdir
-
- set file [open "$srcdir/gcc.dg/builtins-config.h"]
- set contents [read $file]
- close $file
- append contents {
- #ifndef HAVE_C99_RUNTIME
- #error FOO
- #endif
- }
- check_no_compiler_messages_nocache c99_runtime assembly \
- $contents [add_options_for_c99_runtime ""]
- }]
-}
-
-# Return 1 if target wchar_t is at least 4 bytes.
-
-proc check_effective_target_4byte_wchar_t { } {
- return [check_no_compiler_messages 4byte_wchar_t object {
- int dummy[sizeof (__WCHAR_TYPE__) >= 4 ? 1 : -1];
- }]
-}
-
-# Return 1 if the target supports automatic stack alignment.
-
-proc check_effective_target_automatic_stack_alignment { } {
- # Ordinarily x86 supports automatic stack alignment ...
- if { [istarget i?86*-*-*] || [istarget x86_64-*-*] } then {
- if { [istarget *-*-mingw*] || [istarget *-*-cygwin*] } {
- # ... except Win64 SEH doesn't. Succeed for Win32 though.
- return [check_effective_target_ilp32];
- }
- return 1;
- }
- return 0;
-}
-
-# Return true if we are compiling for AVX target.
-
-proc check_avx_available { } {
- if { [check_no_compiler_messages avx_available assembly {
- #ifndef __AVX__
- #error unsupported
- #endif
- } ""] } {
- return 1;
- }
- return 0;
-}
-
-# Return true if 32- and 16-bytes vectors are available.
-
-proc check_effective_target_vect_sizes_32B_16B { } {
- return [check_avx_available];
-}
-
-# Return true if 128-bits vectors are preferred even if 256-bits vectors
-# are available.
-
-proc check_prefer_avx128 { } {
- if ![check_avx_available] {
- return 0;
- }
- return [check_no_messages_and_pattern avx_explicit "xmm" assembly {
- float a[1024],b[1024],c[1024];
- void foo (void) { int i; for (i = 0; i < 1024; i++) a[i]=b[i]+c[i];}
- } "-O2 -ftree-vectorize"]
-}
-
-
-# Return 1 if avx512f instructions can be compiled.
-
-proc check_effective_target_avx512f { } {
- return [check_no_compiler_messages avx512f object {
- typedef double __m512d __attribute__ ((__vector_size__ (64)));
-
- __m512d _mm512_add (__m512d a)
- {
- return __builtin_ia32_addpd512_mask (a, a, a, 1, 4);
- }
- } "-O2 -mavx512f" ]
-}
-
-# Return 1 if avx instructions can be compiled.
-
-proc check_effective_target_avx { } {
- return [check_no_compiler_messages avx object {
- void _mm256_zeroall (void)
- {
- __builtin_ia32_vzeroall ();
- }
- } "-O2 -mavx" ]
-}
-
-# Return 1 if avx2 instructions can be compiled.
-proc check_effective_target_avx2 { } {
- return [check_no_compiler_messages avx2 object {
- typedef long long __v4di __attribute__ ((__vector_size__ (32)));
- __v4di
- mm256_is32_andnotsi256 (__v4di __X, __v4di __Y)
- {
- return __builtin_ia32_andnotsi256 (__X, __Y);
- }
- } "-O0 -mavx2" ]
-}
-
-# Return 1 if sse instructions can be compiled.
-proc check_effective_target_sse { } {
- return [check_no_compiler_messages sse object {
- int main ()
- {
- __builtin_ia32_stmxcsr ();
- return 0;
- }
- } "-O2 -msse" ]
-}
-
-# Return 1 if sse2 instructions can be compiled.
-proc check_effective_target_sse2 { } {
- return [check_no_compiler_messages sse2 object {
- typedef long long __m128i __attribute__ ((__vector_size__ (16)));
-
- __m128i _mm_srli_si128 (__m128i __A, int __N)
- {
- return (__m128i)__builtin_ia32_psrldqi128 (__A, 8);
- }
- } "-O2 -msse2" ]
-}
-
-# Return 1 if F16C instructions can be compiled.
-
-proc check_effective_target_f16c { } {
- return [check_no_compiler_messages f16c object {
- #include "immintrin.h"
- float
- foo (unsigned short val)
- {
- return _cvtsh_ss (val);
- }
- } "-O2 -mf16c" ]
-}
-
-# Return 1 if C wchar_t type is compatible with char16_t.
-
-proc check_effective_target_wchar_t_char16_t_compatible { } {
- return [check_no_compiler_messages wchar_t_char16_t object {
- __WCHAR_TYPE__ wc;
- __CHAR16_TYPE__ *p16 = &wc;
- char t[(((__CHAR16_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
- }]
-}
-
-# Return 1 if C wchar_t type is compatible with char32_t.
-
-proc check_effective_target_wchar_t_char32_t_compatible { } {
- return [check_no_compiler_messages wchar_t_char32_t object {
- __WCHAR_TYPE__ wc;
- __CHAR32_TYPE__ *p32 = &wc;
- char t[(((__CHAR32_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
- }]
-}
-
-# Return 1 if pow10 function exists.
-
-proc check_effective_target_pow10 { } {
- return [check_runtime pow10 {
- #include <math.h>
- int main () {
- double x;
- x = pow10 (1);
- return 0;
- }
- } "-lm" ]
-}
-
-# Return 1 if current options generate DFP instructions, 0 otherwise.
-
-proc check_effective_target_hard_dfp {} {
- return [check_no_messages_and_pattern hard_dfp "!adddd3" assembly {
- typedef float d64 __attribute__((mode(DD)));
- d64 x, y, z;
- void foo (void) { z = x + y; }
- }]
-}
-
-# Return 1 if string.h and wchar.h headers provide C++ requires overloads
-# for strchr etc. functions.
-
-proc check_effective_target_correct_iso_cpp_string_wchar_protos { } {
- return [check_no_compiler_messages correct_iso_cpp_string_wchar_protos assembly {
- #include <string.h>
- #include <wchar.h>
- #if !defined(__cplusplus) \
- || !defined(__CORRECT_ISO_CPP_STRING_H_PROTO) \
- || !defined(__CORRECT_ISO_CPP_WCHAR_H_PROTO)
- ISO C++ correct string.h and wchar.h protos not supported.
- #else
- int i;
- #endif
- }]
-}
-
-# Return 1 if GNU as is used.
-
-proc check_effective_target_gas { } {
- global use_gas_saved
- global tool
-
- if {![info exists use_gas_saved]} {
- # Check if the as used by gcc is GNU as.
- set gcc_as [lindex [${tool}_target_compile "-print-prog-name=as" "" "none" ""] 0]
- # Provide /dev/null as input, otherwise gas times out reading from
- # stdin.
- set status [remote_exec host "$gcc_as" "-v /dev/null"]
- set as_output [lindex $status 1]
- if { [ string first "GNU" $as_output ] >= 0 } {
- set use_gas_saved 1
- } else {
- set use_gas_saved 0
- }
- }
- return $use_gas_saved
-}
-
-# Return 1 if GNU ld is used.
-
-proc check_effective_target_gld { } {
- global use_gld_saved
- global tool
-
- if {![info exists use_gld_saved]} {
- # Check if the ld used by gcc is GNU ld.
- set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=ld" "" "none" ""] 0]
- set status [remote_exec host "$gcc_ld" "--version"]
- set ld_output [lindex $status 1]
- if { [ string first "GNU" $ld_output ] >= 0 } {
- set use_gld_saved 1
- } else {
- set use_gld_saved 0
- }
- }
- return $use_gld_saved
-}
-
-# Return 1 if the compiler has been configure with link-time optimization
-# (LTO) support.
-
-proc check_effective_target_lto { } {
- global ENABLE_LTO
- return [info exists ENABLE_LTO]
-}
-
-# Return 1 if -mx32 -maddress-mode=short can compile, 0 otherwise.
-
-proc check_effective_target_maybe_x32 { } {
- return [check_no_compiler_messages maybe_x32 object {
- void foo (void) {}
- } "-mx32 -maddress-mode=short"]
-}
-
-# Return 1 if this target supports the -fsplit-stack option, 0
-# otherwise.
-
-proc check_effective_target_split_stack {} {
- return [check_no_compiler_messages split_stack object {
- void foo (void) { }
- } "-fsplit-stack"]
-}
-
-# Return 1 if this target supports the -masm=intel option, 0
-# otherwise
-
-proc check_effective_target_masm_intel {} {
- return [check_no_compiler_messages masm_intel object {
- extern void abort (void);
- } "-masm=intel"]
-}
-
-# Return 1 if the language for the compiler under test is C.
-
-proc check_effective_target_c { } {
- global tool
- if [string match $tool "gcc"] {
- return 1
- }
- return 0
-}
-
-# Return 1 if the language for the compiler under test is C++.
-
-proc check_effective_target_c++ { } {
- global tool
- if [string match $tool "g++"] {
- return 1
- }
- return 0
-}
-
-# Check whether the current active language standard supports the features
-# of C++11/C++1y by checking for the presence of one of the -std
-# flags. This assumes that the default for the compiler is C++98, and that
-# there will never be multiple -std= arguments on the command line.
-proc check_effective_target_c++11_only { } {
- if ![check_effective_target_c++] {
- return 0
- }
- return [check-flags { { } { } { -std=c++0x -std=gnu++0x -std=c++11 -std=gnu++11 } }]
-}
-proc check_effective_target_c++11 { } {
- if [check_effective_target_c++11_only] {
- return 1
- }
- return [check_effective_target_c++1y]
-}
-proc check_effective_target_c++11_down { } {
- if ![check_effective_target_c++] {
- return 0
- }
- return ![check_effective_target_c++1y]
-}
-
-proc check_effective_target_c++1y_only { } {
- if ![check_effective_target_c++] {
- return 0
- }
- return [check-flags { { } { } { -std=c++1y -std=gnu++1y -std=c++14 -std=gnu++14 } }]
-}
-proc check_effective_target_c++1y { } {
- return [check_effective_target_c++1y_only]
-}
-
-proc check_effective_target_c++98_only { } {
- if ![check_effective_target_c++] {
- return 0
- }
- return ![check_effective_target_c++11]
-}
-
-# Return 1 if expensive testcases should be run.
-
-proc check_effective_target_run_expensive_tests { } {
- if { [getenv GCC_TEST_RUN_EXPENSIVE] != "" } {
- return 1
- }
- return 0
-}
-
-# Returns 1 if "mempcpy" is available on the target system.
-
-proc check_effective_target_mempcpy {} {
- return [check_function_available "mempcpy"]
-}
-
-# Check whether the vectorizer tests are supported by the target and
-# append additional target-dependent compile flags to DEFAULT_VECTCFLAGS.
-# Set dg-do-what-default to either compile or run, depending on target
-# capabilities. Return 1 if vectorizer tests are supported by
-# target, 0 otherwise.
-
-proc check_vect_support_and_set_flags { } {
- global DEFAULT_VECTCFLAGS
- global dg-do-what-default
-
- if [istarget powerpc-*paired*] {
- lappend DEFAULT_VECTCFLAGS "-mpaired"
- if [check_750cl_hw_available] {
- set dg-do-what-default run
- } else {
- set dg-do-what-default compile
- }
- } elseif [istarget powerpc*-*-*] {
- # Skip targets not supporting -maltivec.
- if ![is-effective-target powerpc_altivec_ok] {
- return 0
- }
-
- lappend DEFAULT_VECTCFLAGS "-maltivec"
- if [check_p8vector_hw_available] {
- lappend DEFAULT_VECTCFLAGS "-mpower8-vector" "-mno-allow-movmisalign"
- } elseif [check_vsx_hw_available] {
- lappend DEFAULT_VECTCFLAGS "-mvsx" "-mno-allow-movmisalign"
- }
-
- if [check_vmx_hw_available] {
- set dg-do-what-default run
- } else {
- if [is-effective-target ilp32] {
- # Specify a cpu that supports VMX for compile-only tests.
- lappend DEFAULT_VECTCFLAGS "-mcpu=970"
- }
- set dg-do-what-default compile
- }
- } elseif { [istarget spu-*-*] } {
- set dg-do-what-default run
- } elseif { [istarget i?86-*-*] || [istarget x86_64-*-*] } {
- lappend DEFAULT_VECTCFLAGS "-msse2"
- if { [check_effective_target_sse2_runtime] } {
- set dg-do-what-default run
- } else {
- set dg-do-what-default compile
- }
- } elseif { [istarget mips*-*-*]
- && ([check_effective_target_mpaired_single]
- || [check_effective_target_mips_loongson])
- && [check_effective_target_nomips16] } {
- if { [check_effective_target_mpaired_single] } {
- lappend DEFAULT_VECTCFLAGS "-mpaired-single"
- }
- set dg-do-what-default run
- } elseif [istarget sparc*-*-*] {
- lappend DEFAULT_VECTCFLAGS "-mcpu=ultrasparc" "-mvis"
- if [check_effective_target_ultrasparc_hw] {
- set dg-do-what-default run
- } else {
- set dg-do-what-default compile
- }
- } elseif [istarget alpha*-*-*] {
- # Alpha's vectorization capabilities are extremely limited.
- # It's more effort than its worth disabling all of the tests
- # that it cannot pass. But if you actually want to see what
- # does work, command out the return.
- return 0
-
- lappend DEFAULT_VECTCFLAGS "-mmax"
- if [check_alpha_max_hw_available] {
- set dg-do-what-default run
- } else {
- set dg-do-what-default compile
- }
- } elseif [istarget ia64-*-*] {
- set dg-do-what-default run
- } elseif [is-effective-target arm_neon_ok] {
- eval lappend DEFAULT_VECTCFLAGS [add_options_for_arm_neon ""]
- # NEON does not support denormals, so is not used for vectorization by
- # default to avoid loss of precision. We must pass -ffast-math to test
- # vectorization of float operations.
- lappend DEFAULT_VECTCFLAGS "-ffast-math"
- if [is-effective-target arm_neon_hw] {
- set dg-do-what-default run
- } else {
- set dg-do-what-default compile
- }
- } elseif [istarget "aarch64*-*-*"] {
- set dg-do-what-default run
- } else {
- return 0
- }
-
- return 1
-}
-
-proc check_effective_target_non_strict_align {} {
- return [check_no_compiler_messages non_strict_align assembly {
- char *y;
- typedef char __attribute__ ((__aligned__(__BIGGEST_ALIGNMENT__))) c;
- c *z;
- void foo(void) { z = (c *) y; }
- } "-Wcast-align"]
-}
-
-# Return 1 if the target has <ucontext.h>.
-
-proc check_effective_target_ucontext_h { } {
- return [check_no_compiler_messages ucontext_h assembly {
- #include <ucontext.h>
- }]
-}
-
-proc check_effective_target_aarch64_tiny { } {
- if { [istarget aarch64*-*-*] } {
- return [check_no_compiler_messages aarch64_tiny object {
- #ifdef __AARCH64_CMODEL_TINY__
- int dummy;
- #else
- #error target not AArch64 tiny code model
- #endif
- }]
- } else {
- return 0
- }
-}
-
-proc check_effective_target_aarch64_small { } {
- if { [istarget aarch64*-*-*] } {
- return [check_no_compiler_messages aarch64_small object {
- #ifdef __AARCH64_CMODEL_SMALL__
- int dummy;
- #else
- #error target not AArch64 small code model
- #endif
- }]
- } else {
- return 0
- }
-}
-
-proc check_effective_target_aarch64_large { } {
- if { [istarget aarch64*-*-*] } {
- return [check_no_compiler_messages aarch64_large object {
- #ifdef __AARCH64_CMODEL_LARGE__
- int dummy;
- #else
- #error target not AArch64 large code model
- #endif
- }]
- } else {
- return 0
- }
-}
-
-# Return 1 if <fenv.h> is available with all the standard IEEE
-# exceptions and floating-point exceptions are raised by arithmetic
-# operations. (If the target requires special options for "inexact"
-# exceptions, those need to be specified in the testcases.)
-
-proc check_effective_target_fenv_exceptions {} {
- return [check_runtime fenv_exceptions {
- #include <fenv.h>
- #include <stdlib.h>
- #ifndef FE_DIVBYZERO
- # error Missing FE_DIVBYZERO
- #endif
- #ifndef FE_INEXACT
- # error Missing FE_INEXACT
- #endif
- #ifndef FE_INVALID
- # error Missing FE_INVALID
- #endif
- #ifndef FE_OVERFLOW
- # error Missing FE_OVERFLOW
- #endif
- #ifndef FE_UNDERFLOW
- # error Missing FE_UNDERFLOW
- #endif
- volatile float a = 0.0f, r;
- int
- main (void)
- {
- r = a / a;
- if (fetestexcept (FE_INVALID))
- exit (0);
- else
- abort ();
- }
- } "-std=gnu99"]
-}
-
-# Return 1 if LOGICAL_OP_NON_SHORT_CIRCUIT is set to 0 for the current target.
-
-proc check_effective_target_logical_op_short_circuit {} {
- if { [istarget mips*-*-*]
- || [istarget arc*-*-*]
- || [istarget avr*-*-*]
- || [istarget crisv32-*-*] || [istarget cris-*-*]
- || [istarget s390*-*-*]
- || [check_effective_target_arm_cortex_m] } {
- return 1
- }
- return 0
-}
-
-# Record that dg-final test TEST requires convential compilation.
-
-proc force_conventional_output_for { test } {
- if { [info proc $test] == "" } {
- perror "$test does not exist"
- exit 1
- }
- proc ${test}_required_options {} {
- global gcc_force_conventional_output
- return $gcc_force_conventional_output
- }
-}
-
diff --git a/gcc-4.9/gcc/testsuite/lib/ubsan-dg.exp b/gcc-4.9/gcc/testsuite/lib/ubsan-dg.exp
index fecce7bf0..a8eb4f7aa 100644
--- a/gcc-4.9/gcc/testsuite/lib/ubsan-dg.exp
+++ b/gcc-4.9/gcc/testsuite/lib/ubsan-dg.exp
@@ -75,12 +75,12 @@ proc ubsan_init { args } {
set ubsan_saved_TEST_ALWAYS_FLAGS $TEST_ALWAYS_FLAGS
}
if [info exists ALWAYS_CXXFLAGS] {
- set ALWAYS_CXXFLAGS [concat "{ldflags=$link_flags}" $ALWAYS_CXXFLAGS]
+ set ALWAYS_CXXFLAGS [concat "{ldflags=$link_flags -static-libubsan}" $ALWAYS_CXXFLAGS]
} else {
if [info exists TEST_ALWAYS_FLAGS] {
- set TEST_ALWAYS_FLAGS "$link_flags $TEST_ALWAYS_FLAGS"
+ set TEST_ALWAYS_FLAGS "$link_flags -static-libubsan $TEST_ALWAYS_FLAGS"
} else {
- set TEST_ALWAYS_FLAGS "$link_flags"
+ set TEST_ALWAYS_FLAGS "$link_flags -static-libubsan"
}
}
if { $link_flags != "" } {
diff --git a/gcc-4.9/gcc/timevar.def b/gcc-4.9/gcc/timevar.def
index 466b41422..9cabb4c6d 100644
--- a/gcc-4.9/gcc/timevar.def
+++ b/gcc-4.9/gcc/timevar.def
@@ -87,6 +87,7 @@ DEFTIMEVAR (TV_WHOPR_PARTITIONING , "whopr partitioning")
DEFTIMEVAR (TV_WHOPR_LTRANS , "whopr ltrans")
DEFTIMEVAR (TV_IPA_REFERENCE , "ipa reference")
DEFTIMEVAR (TV_IPA_PROFILE , "ipa profile")
+DEFTIMEVAR (TV_IPA_AUTOFDO , "auto profile")
DEFTIMEVAR (TV_IPA_PURE_CONST , "ipa pure const")
DEFTIMEVAR (TV_IPA_PTA , "ipa points-to")
DEFTIMEVAR (TV_IPA_SRA , "ipa SRA")
diff --git a/gcc-4.9/gcc/toplev.c b/gcc-4.9/gcc/toplev.c
index 0f7d452f3..528087302 100644
--- a/gcc-4.9/gcc/toplev.c
+++ b/gcc-4.9/gcc/toplev.c
@@ -79,6 +79,7 @@ along with GCC; see the file COPYING3. If not see
#include "context.h"
#include "pass_manager.h"
#include "optabs.h"
+#include "auto-profile.h"
#if defined(DBX_DEBUGGING_INFO) || defined(XCOFF_DEBUGGING_INFO)
#include "dbxout.h"
@@ -181,6 +182,19 @@ FILE *stack_usage_file = NULL;
static const char *src_pwd;
+/* Primary module's id (non-zero). If no module-info was read in, this will
+ be zero. */
+
+unsigned primary_module_id = 0;
+
+/* Current module id. */
+
+unsigned current_module_id = 0;
+
+/* Include all auxiliary modules specified in the profile. This
+ will bypass the ggc_memory limit check. */
+bool include_all_aux = 0;
+
/* Initialize src_pwd with the given string, and return true. If it
was already initialized, return false. As a special case, it may
be called with a NULL argument to test whether src_pwd has NOT been
@@ -564,6 +578,9 @@ compile_file (void)
if (seen_error ())
return;
+ if (flag_dyn_ipa)
+ coverage_finish ();
+
timevar_start (TV_PHASE_LATE_ASM);
/* Compilation unit is finalized. When producing non-fat LTO object, we are
@@ -660,6 +677,10 @@ compile_file (void)
targetm.asm_out.output_ident (ident_str);
}
+ /* Auto profile finalization. */
+ if (flag_auto_profile)
+ end_auto_profile ();
+
/* Invoke registered plugin callbacks. */
invoke_plugin_callbacks (PLUGIN_FINISH_UNIT, NULL);
@@ -1418,6 +1439,9 @@ process_options (void)
error ("target system does not support the \"%s\" debug format",
debug_type_names[write_symbols]);
+ if (flag_auto_profile && debug_info_level == DINFO_LEVEL_NONE)
+ debug_hooks = &auto_profile_debug_hooks;
+
/* We know which debug output will be used so we can set flag_var_tracking
and flag_var_tracking_uninit if the user has not specified them. */
if (debug_info_level < DINFO_LEVEL_NORMAL
@@ -1905,13 +1929,15 @@ do_compile (void)
init_cgraph ();
init_final (main_input_filename);
- coverage_init (aux_base_name);
+ coverage_init (aux_base_name, main_input_filename);
statistics_init ();
invoke_plugin_callbacks (PLUGIN_START_UNIT, NULL);
timevar_stop (TV_PHASE_SETUP);
compile_file ();
+ if (flag_record_compilation_info_in_elf)
+ write_compilation_info_to_asm ();
}
else
{
diff --git a/gcc-4.9/gcc/tree-cfg.c b/gcc-4.9/gcc/tree-cfg.c
index 56b6c3595..d9896e76f 100644
--- a/gcc-4.9/gcc/tree-cfg.c
+++ b/gcc-4.9/gcc/tree-cfg.c
@@ -30,6 +30,7 @@ along with GCC; see the file COPYING3. If not see
#include "tm_p.h"
#include "basic-block.h"
#include "flags.h"
+#include "input.h"
#include "function.h"
#include "gimple-pretty-print.h"
#include "pointer-set.h"
@@ -64,6 +65,7 @@ along with GCC; see the file COPYING3. If not see
#include "tree-ssa-propagate.h"
#include "value-prof.h"
#include "tree-inline.h"
+#include "l-ipo.h"
#include "target.h"
#include "tree-ssa-live.h"
#include "omp-low.h"
@@ -958,6 +960,32 @@ same_line_p (location_t locus1, location_t locus2)
&& filename_cmp (from.file, to.file) == 0);
}
+/* Assign a unique discriminator value to instructions in block BB that
+ have the same LOCUS as its predecessor block. */
+
+static void
+assign_discriminator (location_t locus, basic_block bb)
+{
+ gimple_stmt_iterator gsi;
+ int discriminator;
+
+ locus = map_discriminator_location (locus);
+
+ if (locus == UNKNOWN_LOCATION)
+ return;
+
+ discriminator = next_discriminator_for_locus (locus);
+
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+ location_t stmt_locus = gimple_location (stmt);
+ if (same_line_p (locus, stmt_locus))
+ gimple_set_location (stmt,
+ location_with_discriminator (stmt_locus, discriminator));
+ }
+}
+
/* Assign discriminators to each basic block. */
static void
@@ -969,8 +997,36 @@ assign_discriminators (void)
{
edge e;
edge_iterator ei;
+ gimple_stmt_iterator gsi;
gimple last = last_stmt (bb);
location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
+ location_t curr_locus = UNKNOWN_LOCATION;
+ int curr_discr = 0;
+
+ /* Traverse the basic block, if two function calls within a basic block
+ are mapped to a same line, assign a new discriminator because a call
+ stmt could be a split point of a basic block. */
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+ if (curr_locus == UNKNOWN_LOCATION)
+ {
+ curr_locus = gimple_location (stmt);
+ }
+ else if (!same_line_p (curr_locus, gimple_location (stmt)))
+ {
+ curr_locus = gimple_location (stmt);
+ curr_discr = 0;
+ }
+ else if (curr_discr != 0)
+ {
+ gimple_set_location (stmt, location_with_discriminator (
+ gimple_location (stmt), curr_discr));
+ }
+ /* Allocate a new discriminator for CALL stmt. */
+ if (gimple_code (stmt) == GIMPLE_CALL)
+ curr_discr = next_discriminator_for_locus (curr_locus);
+ }
if (locus == UNKNOWN_LOCATION)
continue;
@@ -982,10 +1038,12 @@ assign_discriminators (void)
if ((first && same_line_p (locus, gimple_location (first)))
|| (last && same_line_p (locus, gimple_location (last))))
{
- if (e->dest->discriminator != 0 && bb->discriminator == 0)
- bb->discriminator = next_discriminator_for_locus (locus);
+ if (((first && has_discriminator (gimple_location (first)))
+ || (last && has_discriminator (gimple_location (last))))
+ && !has_discriminator (locus))
+ assign_discriminator (locus, bb);
else
- e->dest->discriminator = next_discriminator_for_locus (locus);
+ assign_discriminator (locus, e->dest);
}
}
}
@@ -1864,6 +1922,15 @@ gimple_merge_blocks (basic_block a, basic_block b)
}
}
+ /* When merging two BBs, if their counts are different, the larger count
+ is selected as the new bb count. This is to handle inconsistent
+ profiles. */
+ if (a->loop_father == b->loop_father)
+ {
+ a->count = MAX (a->count, b->count);
+ a->frequency = MAX (a->frequency, b->frequency);
+ }
+
/* Merge the sequences. */
last = gsi_last_bb (a);
gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
@@ -3032,7 +3099,8 @@ verify_types_in_gimple_reference (tree expr, bool require_lvalue)
/* Verify if the reference array element types are compatible. */
if (TREE_CODE (expr) == ARRAY_REF
&& !useless_type_conversion_p (TREE_TYPE (expr),
- TREE_TYPE (TREE_TYPE (op))))
+ TREE_TYPE (TREE_TYPE (op)))
+ && !L_IPO_COMP_MODE)
{
error ("type mismatch in array reference");
debug_generic_stmt (TREE_TYPE (expr));
@@ -3247,7 +3315,8 @@ verify_gimple_call (gimple stmt)
returning java.lang.Object.
For now simply allow arbitrary pointer type conversions. */
&& !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
- && POINTER_TYPE_P (TREE_TYPE (fntype))))
+ && POINTER_TYPE_P (TREE_TYPE (fntype)))
+ && !L_IPO_COMP_MODE)
{
error ("invalid conversion in gimple call");
debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
@@ -3946,6 +4015,36 @@ verify_gimple_assign_ternary (gimple stmt)
return false;
+ case SAD_EXPR:
+ if (!useless_type_conversion_p (rhs1_type, rhs2_type)
+ || !useless_type_conversion_p (lhs_type, rhs3_type)
+ || 2 * GET_MODE_BITSIZE (GET_MODE_INNER
+ (TYPE_MODE (TREE_TYPE (rhs1_type))))
+ > GET_MODE_BITSIZE (GET_MODE_INNER
+ (TYPE_MODE (TREE_TYPE (lhs_type)))))
+ {
+ error ("type mismatch in sad expression");
+ debug_generic_expr (lhs_type);
+ debug_generic_expr (rhs1_type);
+ debug_generic_expr (rhs2_type);
+ debug_generic_expr (rhs3_type);
+ return true;
+ }
+
+ if (TREE_CODE (rhs1_type) != VECTOR_TYPE
+ || TREE_CODE (rhs2_type) != VECTOR_TYPE
+ || TREE_CODE (rhs3_type) != VECTOR_TYPE)
+ {
+ error ("vector types expected in sad expression");
+ debug_generic_expr (lhs_type);
+ debug_generic_expr (rhs1_type);
+ debug_generic_expr (rhs2_type);
+ debug_generic_expr (rhs3_type);
+ return true;
+ }
+
+ return false;
+
case DOT_PROD_EXPR:
case REALIGN_LOAD_EXPR:
/* FIXME. */
@@ -3970,7 +4069,9 @@ verify_gimple_assign_single (gimple stmt)
tree rhs1_type = TREE_TYPE (rhs1);
bool res = false;
- if (!useless_type_conversion_p (lhs_type, rhs1_type))
+ if (!useless_type_conversion_p (lhs_type, rhs1_type)
+ /* Relax for LIPO. TODO add structural or name check. */
+ && !L_IPO_COMP_MODE)
{
error ("non-trivial conversion at assignment");
debug_generic_expr (lhs_type);
@@ -4214,7 +4315,8 @@ verify_gimple_return (gimple stmt)
&& DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
op = TREE_TYPE (op);
- if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
+ if (!useless_type_conversion_p (restype, TREE_TYPE (op))
+ && !L_IPO_COMP_MODE)
{
error ("invalid conversion in return statement");
debug_generic_stmt (restype);
@@ -5070,7 +5172,13 @@ gimple_verify_flow_info (void)
if (gimple_code (stmt) == GIMPLE_LABEL)
continue;
- err |= verify_eh_edges (stmt);
+ /* FIXME: there does seem to be an overassertion in eh
+ edge verification -- triggered by -fdyn-ipa: after eh
+ cleanup, there might not be an direct edge from a BB
+ to the parent try block's catch region, but the catch
+ region is still reachable. */
+ if (!flag_dyn_ipa)
+ err |= verify_eh_edges (stmt);
if (is_ctrl_stmt (stmt))
{
@@ -7476,7 +7584,8 @@ need_fake_edge_p (gimple t)
if (is_gimple_call (t)
&& fndecl
&& DECL_BUILT_IN (fndecl)
- && (call_flags & ECF_NOTHROW)
+ && ((call_flags & ECF_NOTHROW)
+ || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
&& !(call_flags & ECF_RETURNS_TWICE)
/* fork() doesn't really return twice, but the effect of
wrapping it in __gcov_fork() which calls __gcov_flush()
diff --git a/gcc-4.9/gcc/tree-core.h b/gcc-4.9/gcc/tree-core.h
index 1719c7e66..bb89feee1 100644
--- a/gcc-4.9/gcc/tree-core.h
+++ b/gcc-4.9/gcc/tree-core.h
@@ -631,7 +631,10 @@ enum size_type_kind {
enum operand_equal_flag {
OEP_ONLY_CONST = 1,
OEP_PURE_SAME = 2,
- OEP_CONSTANT_ADDRESS_OF = 4
+ OEP_CONSTANT_ADDRESS_OF = 4,
+ OEP_ALLOW_NULL = 8, /* Allow NULL operands to be passed in and compared. */
+ OEP_ALLOW_NO_TYPE = 16 /* Allow operands both of which don't have a type
+ to be compared. */
};
/* Enum and arrays used for tree allocation stats.
@@ -740,13 +743,14 @@ struct GTY(()) tree_base {
unsigned lang_flag_5 : 1;
unsigned lang_flag_6 : 1;
unsigned saturating_flag : 1;
+ unsigned expr_folded_flag : 1;
unsigned unsigned_flag : 1;
unsigned packed_flag : 1;
unsigned user_align : 1;
unsigned nameless_flag : 1;
unsigned atomic_flag : 1;
- unsigned spare0 : 3;
+ unsigned spare0 : 2;
unsigned spare1 : 8;
@@ -987,7 +991,7 @@ struct GTY(()) tree_base {
SSA_NAME_IN_FREELIST in
SSA_NAME
- VAR_DECL_NONALIASED in
+ DECL_NONALIASED in
VAR_DECL
deprecated_flag:
@@ -1029,6 +1033,13 @@ struct GTY(()) tree_base {
SSA_NAME_IS_DEFAULT_DEF in
SSA_NAME
+ expr_folded_flag:
+
+ EXPR_FOLDED in
+ all expressions
+ all decls
+ all constants
+
DECL_NONLOCAL_FRAME in
VAR_DECL
@@ -1127,6 +1138,11 @@ enum omp_clause_map_kind
array sections. OMP_CLAUSE_SIZE for these is not the pointer size,
which is implicitly POINTER_SIZE / BITS_PER_UNIT, but the bias. */
OMP_CLAUSE_MAP_POINTER,
+ /* Also internal, behaves like OMP_CLAUS_MAP_TO, but additionally any
+ OMP_CLAUSE_MAP_POINTER records consecutive after it which have addresses
+ falling into that range will not be ignored if OMP_CLAUSE_MAP_TO_PSET
+ wasn't mapped already. */
+ OMP_CLAUSE_MAP_TO_PSET,
OMP_CLAUSE_MAP_LAST
};
diff --git a/gcc-4.9/gcc/tree-diagnostic.c b/gcc-4.9/gcc/tree-diagnostic.c
index ee7155555..dec95f82d 100644
--- a/gcc-4.9/gcc/tree-diagnostic.c
+++ b/gcc-4.9/gcc/tree-diagnostic.c
@@ -108,6 +108,8 @@ maybe_unwind_expanded_macro_loc (diagnostic_context *context,
unsigned ix;
loc_map_pair loc, *iter;
+ if (has_discriminator (where))
+ where = map_discriminator_location (where);
map = linemap_lookup (line_table, where);
if (!linemap_macro_expansion_map_p (map))
return;
diff --git a/gcc-4.9/gcc/tree-inline.c b/gcc-4.9/gcc/tree-inline.c
index 04d099f61..beb65f0b1 100644
--- a/gcc-4.9/gcc/tree-inline.c
+++ b/gcc-4.9/gcc/tree-inline.c
@@ -66,6 +66,8 @@ along with GCC; see the file COPYING3. If not see
#include "value-prof.h"
#include "tree-pass.h"
#include "target.h"
+#include "langhooks.h"
+#include "l-ipo.h"
#include "cfgloop.h"
#include "rtl.h" /* FIXME: For asm_str_count. */
@@ -1984,9 +1986,11 @@ copy_edges_for_bb (basic_block bb, gcov_type count_scale, basic_block ret_bb,
edge new_edge;
flags = old_edge->flags;
+ flags &= (~EDGE_ANNOTATED);
/* Return edges do get a FALLTHRU flag when the get inlined. */
- if (old_edge->dest->index == EXIT_BLOCK && !old_edge->flags
+ if (old_edge->dest->index == EXIT_BLOCK
+ && !(old_edge->flags & (EDGE_TRUE_VALUE|EDGE_FALSE_VALUE|EDGE_FAKE))
&& old_edge->dest->aux != EXIT_BLOCK_PTR_FOR_FN (cfun))
flags |= EDGE_FALLTHRU;
new_edge = make_edge (new_bb, (basic_block) old_edge->dest->aux, flags);
@@ -2226,17 +2230,18 @@ initialize_cfun (tree new_fndecl, tree callee_fndecl, gcov_type count)
cfun->can_delete_dead_exceptions = src_cfun->can_delete_dead_exceptions;
cfun->returns_struct = src_cfun->returns_struct;
cfun->returns_pcc_struct = src_cfun->returns_pcc_struct;
+ cfun->module_id = src_cfun->module_id;
init_empty_tree_cfg ();
profile_status_for_fn (cfun) = profile_status_for_fn (src_cfun);
ENTRY_BLOCK_PTR_FOR_FN (cfun)->count =
- (ENTRY_BLOCK_PTR_FOR_FN (src_cfun)->count * count_scale /
+ (ENTRY_BLOCK_PTR_FOR_FN (src_cfun)->count * (double)count_scale /
REG_BR_PROB_BASE);
ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency
= ENTRY_BLOCK_PTR_FOR_FN (src_cfun)->frequency;
EXIT_BLOCK_PTR_FOR_FN (cfun)->count =
- (EXIT_BLOCK_PTR_FOR_FN (src_cfun)->count * count_scale /
+ (EXIT_BLOCK_PTR_FOR_FN (src_cfun)->count * (double)count_scale /
REG_BR_PROB_BASE);
EXIT_BLOCK_PTR_FOR_FN (cfun)->frequency =
EXIT_BLOCK_PTR_FOR_FN (src_cfun)->frequency;
@@ -2645,8 +2650,20 @@ copy_debug_stmt (gimple stmt, copy_body_data *id)
gimple_debug_bind_set_var (stmt, t);
if (gimple_debug_bind_has_value_p (stmt))
- walk_tree (gimple_debug_bind_get_value_ptr (stmt),
- remap_gimple_op_r, &wi, NULL);
+ {
+ tree v = gimple_debug_bind_get_value (stmt);
+ if (TREE_CODE (v) == ADDR_EXPR)
+ v = TREE_OPERAND (v, 0);
+
+ /* The global var may be deleted */
+ if (L_IPO_COMP_MODE &&
+ ((TREE_CODE (v) != VAR_DECL)
+ || is_global_var (v)))
+ processing_debug_stmt = -1;
+ else
+ walk_tree (gimple_debug_bind_get_value_ptr (stmt),
+ remap_gimple_op_r, &wi, NULL);
+ }
/* Punt if any decl couldn't be remapped. */
if (processing_debug_stmt < 0)
@@ -3524,8 +3541,13 @@ tree_inlinable_function_p (tree fn)
tree always_inline;
/* If we've already decided this function shouldn't be inlined,
- there's no need to check again. */
- if (DECL_UNINLINABLE (fn))
+ there's no need to check again. But the cached bit from analysis
+ can be reset during decl merge in multi-module compilation (C FE only).
+ The problem is we can not really use a 2 state cached value --
+ can not tell the init state (unknown value) from a computed value. */
+ if (DECL_UNINLINABLE (fn)
+ && (!L_IPO_COMP_MODE
+ || lookup_attribute ("noinline", DECL_ATTRIBUTES (fn))))
return false;
/* We only warn for functions declared `inline' by the user. */
@@ -3695,6 +3717,7 @@ estimate_operator_cost (enum tree_code code, eni_weights *weights,
case WIDEN_SUM_EXPR:
case WIDEN_MULT_EXPR:
case DOT_PROD_EXPR:
+ case SAD_EXPR:
case WIDEN_MULT_PLUS_EXPR:
case WIDEN_MULT_MINUS_EXPR:
case WIDEN_LSHIFT_EXPR:
@@ -4068,6 +4091,16 @@ add_local_variables (struct function *callee, struct function *caller,
{
tree tem = DECL_DEBUG_EXPR (var);
bool old_regimplify = id->regimplify;
+
+ /* The mapped debug expression might be deleted
+ as a varpool node (the reachbility analysis
+ of varpool node does not check the reference
+ from debug expressions.
+ Set it to 0 for all global vars. */
+ if (L_IPO_COMP_MODE && tem && TREE_CODE (tem) == VAR_DECL
+ && is_global_var (tem))
+ tem = NULL;
+
id->remapping_type_depth++;
walk_tree (&tem, copy_tree_body_r, id, NULL);
id->remapping_type_depth--;
@@ -4355,7 +4388,7 @@ expand_call_inline (basic_block bb, gimple stmt, copy_body_data *id)
function in any way before this point, as this CALL_EXPR may be
a self-referential call; if we're calling ourselves, we need to
duplicate our body before altering anything. */
- copy_body (id, bb->count,
+ copy_body (id, cg_edge->callee->count,
GCOV_COMPUTE_SCALE (cg_edge->frequency, CGRAPH_FREQ_BASE),
bb, return_block, NULL);
@@ -4621,7 +4654,7 @@ optimize_inline_calls (tree fn)
/* Double check that we inlined everything we are supposed to inline. */
for (e = id.dst_node->callees; e; e = e->next_callee)
- gcc_assert (e->inline_failed);
+ gcc_assert (e->inline_failed || !e->call_stmt /*fake edge*/);
}
#endif
@@ -4711,7 +4744,19 @@ copy_tree_r (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
else if (TREE_CODE_CLASS (code) == tcc_type)
*walk_subtrees = 0;
else if (TREE_CODE_CLASS (code) == tcc_declaration)
- *walk_subtrees = 0;
+ {
+ *walk_subtrees = 0;
+ if (L_IPO_COMP_MODE
+ && (code == VAR_DECL)
+ && (TREE_STATIC (*tp) || DECL_EXTERNAL (*tp)))
+ {
+ tree resolved_decl = real_varpool_node (*tp)->decl;
+ if (resolved_decl != *tp)
+ {
+ *tp = resolved_decl;
+ }
+ }
+ }
else if (TREE_CODE_CLASS (code) == tcc_constant)
*walk_subtrees = 0;
return NULL_TREE;
diff --git a/gcc-4.9/gcc/tree-nested.c b/gcc-4.9/gcc/tree-nested.c
index 9c175de4e..28753c16c 100644
--- a/gcc-4.9/gcc/tree-nested.c
+++ b/gcc-4.9/gcc/tree-nested.c
@@ -1085,6 +1085,10 @@ convert_nonlocal_omp_clauses (tree *pclauses, struct walk_stmt_info *wi)
case OMP_CLAUSE_LINEAR:
if (OMP_CLAUSE_LINEAR_GIMPLE_SEQ (clause))
need_stmts = true;
+ wi->val_only = true;
+ wi->is_lhs = false;
+ convert_nonlocal_reference_op (&OMP_CLAUSE_LINEAR_STEP (clause),
+ &dummy, wi);
goto do_decl_clause;
case OMP_CLAUSE_PRIVATE:
@@ -1112,10 +1116,64 @@ convert_nonlocal_omp_clauses (tree *pclauses, struct walk_stmt_info *wi)
case OMP_CLAUSE_FINAL:
case OMP_CLAUSE_IF:
case OMP_CLAUSE_NUM_THREADS:
+ case OMP_CLAUSE_DEPEND:
+ case OMP_CLAUSE_DEVICE:
+ case OMP_CLAUSE_NUM_TEAMS:
+ case OMP_CLAUSE_THREAD_LIMIT:
+ case OMP_CLAUSE_SAFELEN:
wi->val_only = true;
wi->is_lhs = false;
convert_nonlocal_reference_op (&OMP_CLAUSE_OPERAND (clause, 0),
- &dummy, wi);
+ &dummy, wi);
+ break;
+
+ case OMP_CLAUSE_DIST_SCHEDULE:
+ if (OMP_CLAUSE_DIST_SCHEDULE_CHUNK_EXPR (clause) != NULL)
+ {
+ wi->val_only = true;
+ wi->is_lhs = false;
+ convert_nonlocal_reference_op (&OMP_CLAUSE_OPERAND (clause, 0),
+ &dummy, wi);
+ }
+ break;
+
+ case OMP_CLAUSE_MAP:
+ case OMP_CLAUSE_TO:
+ case OMP_CLAUSE_FROM:
+ if (OMP_CLAUSE_SIZE (clause))
+ {
+ wi->val_only = true;
+ wi->is_lhs = false;
+ convert_nonlocal_reference_op (&OMP_CLAUSE_SIZE (clause),
+ &dummy, wi);
+ }
+ if (DECL_P (OMP_CLAUSE_DECL (clause)))
+ goto do_decl_clause;
+ wi->val_only = true;
+ wi->is_lhs = false;
+ walk_tree (&OMP_CLAUSE_DECL (clause), convert_nonlocal_reference_op,
+ wi, NULL);
+ break;
+
+ case OMP_CLAUSE_ALIGNED:
+ if (OMP_CLAUSE_ALIGNED_ALIGNMENT (clause))
+ {
+ wi->val_only = true;
+ wi->is_lhs = false;
+ convert_nonlocal_reference_op
+ (&OMP_CLAUSE_ALIGNED_ALIGNMENT (clause), &dummy, wi);
+ }
+ /* Like do_decl_clause, but don't add any suppression. */
+ decl = OMP_CLAUSE_DECL (clause);
+ if (TREE_CODE (decl) == VAR_DECL
+ && (TREE_STATIC (decl) || DECL_EXTERNAL (decl)))
+ break;
+ if (decl_function_context (decl) != info->context)
+ {
+ OMP_CLAUSE_DECL (clause) = get_nonlocal_debug_decl (info, decl);
+ if (OMP_CLAUSE_CODE (clause) != OMP_CLAUSE_PRIVATE)
+ need_chain = true;
+ }
break;
case OMP_CLAUSE_NOWAIT:
@@ -1125,6 +1183,7 @@ convert_nonlocal_omp_clauses (tree *pclauses, struct walk_stmt_info *wi)
case OMP_CLAUSE_COLLAPSE:
case OMP_CLAUSE_UNTIED:
case OMP_CLAUSE_MERGEABLE:
+ case OMP_CLAUSE_PROC_BIND:
break;
default:
@@ -1315,10 +1374,42 @@ convert_nonlocal_reference_stmt (gimple_stmt_iterator *gsi, bool *handled_ops_p,
break;
case GIMPLE_OMP_TARGET:
+ if (gimple_omp_target_kind (stmt) != GF_OMP_TARGET_KIND_REGION)
+ {
+ save_suppress = info->suppress_expansion;
+ convert_nonlocal_omp_clauses (gimple_omp_target_clauses_ptr (stmt),
+ wi);
+ info->suppress_expansion = save_suppress;
+ walk_body (convert_nonlocal_reference_stmt,
+ convert_nonlocal_reference_op, info,
+ gimple_omp_body_ptr (stmt));
+ break;
+ }
save_suppress = info->suppress_expansion;
- convert_nonlocal_omp_clauses (gimple_omp_target_clauses_ptr (stmt), wi);
+ if (convert_nonlocal_omp_clauses (gimple_omp_target_clauses_ptr (stmt),
+ wi))
+ {
+ tree c, decl;
+ decl = get_chain_decl (info);
+ c = build_omp_clause (gimple_location (stmt), OMP_CLAUSE_MAP);
+ OMP_CLAUSE_DECL (c) = decl;
+ OMP_CLAUSE_MAP_KIND (c) = OMP_CLAUSE_MAP_TO;
+ OMP_CLAUSE_SIZE (c) = DECL_SIZE_UNIT (decl);
+ OMP_CLAUSE_CHAIN (c) = gimple_omp_target_clauses (stmt);
+ gimple_omp_target_set_clauses (stmt, c);
+ }
+
+ save_local_var_chain = info->new_local_var_chain;
+ info->new_local_var_chain = NULL;
+
walk_body (convert_nonlocal_reference_stmt, convert_nonlocal_reference_op,
info, gimple_omp_body_ptr (stmt));
+
+ if (info->new_local_var_chain)
+ declare_vars (info->new_local_var_chain,
+ gimple_seq_first_stmt (gimple_omp_body (stmt)),
+ false);
+ info->new_local_var_chain = save_local_var_chain;
info->suppress_expansion = save_suppress;
break;
@@ -1619,6 +1710,10 @@ convert_local_omp_clauses (tree *pclauses, struct walk_stmt_info *wi)
case OMP_CLAUSE_LINEAR:
if (OMP_CLAUSE_LINEAR_GIMPLE_SEQ (clause))
need_stmts = true;
+ wi->val_only = true;
+ wi->is_lhs = false;
+ convert_local_reference_op (&OMP_CLAUSE_LINEAR_STEP (clause), &dummy,
+ wi);
goto do_decl_clause;
case OMP_CLAUSE_PRIVATE:
@@ -1651,12 +1746,71 @@ convert_local_omp_clauses (tree *pclauses, struct walk_stmt_info *wi)
case OMP_CLAUSE_FINAL:
case OMP_CLAUSE_IF:
case OMP_CLAUSE_NUM_THREADS:
+ case OMP_CLAUSE_DEPEND:
+ case OMP_CLAUSE_DEVICE:
+ case OMP_CLAUSE_NUM_TEAMS:
+ case OMP_CLAUSE_THREAD_LIMIT:
+ case OMP_CLAUSE_SAFELEN:
wi->val_only = true;
wi->is_lhs = false;
convert_local_reference_op (&OMP_CLAUSE_OPERAND (clause, 0), &dummy,
wi);
break;
+ case OMP_CLAUSE_DIST_SCHEDULE:
+ if (OMP_CLAUSE_DIST_SCHEDULE_CHUNK_EXPR (clause) != NULL)
+ {
+ wi->val_only = true;
+ wi->is_lhs = false;
+ convert_local_reference_op (&OMP_CLAUSE_OPERAND (clause, 0),
+ &dummy, wi);
+ }
+ break;
+
+ case OMP_CLAUSE_MAP:
+ case OMP_CLAUSE_TO:
+ case OMP_CLAUSE_FROM:
+ if (OMP_CLAUSE_SIZE (clause))
+ {
+ wi->val_only = true;
+ wi->is_lhs = false;
+ convert_local_reference_op (&OMP_CLAUSE_SIZE (clause),
+ &dummy, wi);
+ }
+ if (DECL_P (OMP_CLAUSE_DECL (clause)))
+ goto do_decl_clause;
+ wi->val_only = true;
+ wi->is_lhs = false;
+ walk_tree (&OMP_CLAUSE_DECL (clause), convert_local_reference_op,
+ wi, NULL);
+ break;
+
+ case OMP_CLAUSE_ALIGNED:
+ if (OMP_CLAUSE_ALIGNED_ALIGNMENT (clause))
+ {
+ wi->val_only = true;
+ wi->is_lhs = false;
+ convert_local_reference_op
+ (&OMP_CLAUSE_ALIGNED_ALIGNMENT (clause), &dummy, wi);
+ }
+ /* Like do_decl_clause, but don't add any suppression. */
+ decl = OMP_CLAUSE_DECL (clause);
+ if (TREE_CODE (decl) == VAR_DECL
+ && (TREE_STATIC (decl) || DECL_EXTERNAL (decl)))
+ break;
+ if (decl_function_context (decl) == info->context
+ && !use_pointer_in_frame (decl))
+ {
+ tree field = lookup_field_for_decl (info, decl, NO_INSERT);
+ if (field)
+ {
+ OMP_CLAUSE_DECL (clause)
+ = get_local_debug_decl (info, decl, field);
+ need_frame = true;
+ }
+ }
+ break;
+
case OMP_CLAUSE_NOWAIT:
case OMP_CLAUSE_ORDERED:
case OMP_CLAUSE_DEFAULT:
@@ -1664,6 +1818,7 @@ convert_local_omp_clauses (tree *pclauses, struct walk_stmt_info *wi)
case OMP_CLAUSE_COLLAPSE:
case OMP_CLAUSE_UNTIED:
case OMP_CLAUSE_MERGEABLE:
+ case OMP_CLAUSE_PROC_BIND:
break;
default:
@@ -1785,10 +1940,38 @@ convert_local_reference_stmt (gimple_stmt_iterator *gsi, bool *handled_ops_p,
break;
case GIMPLE_OMP_TARGET:
+ if (gimple_omp_target_kind (stmt) != GF_OMP_TARGET_KIND_REGION)
+ {
+ save_suppress = info->suppress_expansion;
+ convert_local_omp_clauses (gimple_omp_target_clauses_ptr (stmt), wi);
+ info->suppress_expansion = save_suppress;
+ walk_body (convert_local_reference_stmt, convert_local_reference_op,
+ info, gimple_omp_body_ptr (stmt));
+ break;
+ }
save_suppress = info->suppress_expansion;
- convert_local_omp_clauses (gimple_omp_target_clauses_ptr (stmt), wi);
- walk_body (convert_local_reference_stmt, convert_local_reference_op,
- info, gimple_omp_body_ptr (stmt));
+ if (convert_local_omp_clauses (gimple_omp_target_clauses_ptr (stmt), wi))
+ {
+ tree c;
+ (void) get_frame_type (info);
+ c = build_omp_clause (gimple_location (stmt), OMP_CLAUSE_MAP);
+ OMP_CLAUSE_DECL (c) = info->frame_decl;
+ OMP_CLAUSE_MAP_KIND (c) = OMP_CLAUSE_MAP_TOFROM;
+ OMP_CLAUSE_SIZE (c) = DECL_SIZE_UNIT (info->frame_decl);
+ OMP_CLAUSE_CHAIN (c) = gimple_omp_target_clauses (stmt);
+ gimple_omp_target_set_clauses (stmt, c);
+ }
+
+ save_local_var_chain = info->new_local_var_chain;
+ info->new_local_var_chain = NULL;
+
+ walk_body (convert_local_reference_stmt, convert_local_reference_op, info,
+ gimple_omp_body_ptr (stmt));
+
+ if (info->new_local_var_chain)
+ declare_vars (info->new_local_var_chain,
+ gimple_seq_first_stmt (gimple_omp_body (stmt)), false);
+ info->new_local_var_chain = save_local_var_chain;
info->suppress_expansion = save_suppress;
break;
@@ -2089,6 +2272,13 @@ convert_tramp_reference_stmt (gimple_stmt_iterator *gsi, bool *handled_ops_p,
break;
}
+ case GIMPLE_OMP_TARGET:
+ if (gimple_omp_target_kind (stmt) != GF_OMP_TARGET_KIND_REGION)
+ {
+ *handled_ops_p = false;
+ return NULL_TREE;
+ }
+ /* FALLTHRU */
case GIMPLE_OMP_PARALLEL:
case GIMPLE_OMP_TASK:
{
@@ -2109,7 +2299,6 @@ convert_tramp_reference_stmt (gimple_stmt_iterator *gsi, bool *handled_ops_p,
default:
*handled_ops_p = false;
return NULL_TREE;
- break;
}
*handled_ops_p = true;
@@ -2181,6 +2370,42 @@ convert_gimple_call (gimple_stmt_iterator *gsi, bool *handled_ops_p,
info->static_chain_added |= save_static_chain_added;
break;
+ case GIMPLE_OMP_TARGET:
+ if (gimple_omp_target_kind (stmt) != GF_OMP_TARGET_KIND_REGION)
+ {
+ walk_body (convert_gimple_call, NULL, info, gimple_omp_body_ptr (stmt));
+ break;
+ }
+ save_static_chain_added = info->static_chain_added;
+ info->static_chain_added = 0;
+ walk_body (convert_gimple_call, NULL, info, gimple_omp_body_ptr (stmt));
+ for (i = 0; i < 2; i++)
+ {
+ tree c, decl;
+ if ((info->static_chain_added & (1 << i)) == 0)
+ continue;
+ decl = i ? get_chain_decl (info) : info->frame_decl;
+ /* Don't add CHAIN.* or FRAME.* twice. */
+ for (c = gimple_omp_target_clauses (stmt);
+ c;
+ c = OMP_CLAUSE_CHAIN (c))
+ if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_MAP
+ && OMP_CLAUSE_DECL (c) == decl)
+ break;
+ if (c == NULL)
+ {
+ c = build_omp_clause (gimple_location (stmt), OMP_CLAUSE_MAP);
+ OMP_CLAUSE_DECL (c) = decl;
+ OMP_CLAUSE_MAP_KIND (c)
+ = i ? OMP_CLAUSE_MAP_TO : OMP_CLAUSE_MAP_TOFROM;
+ OMP_CLAUSE_SIZE (c) = DECL_SIZE_UNIT (decl);
+ OMP_CLAUSE_CHAIN (c) = gimple_omp_target_clauses (stmt);
+ gimple_omp_target_set_clauses (stmt, c);
+ }
+ }
+ info->static_chain_added |= save_static_chain_added;
+ break;
+
case GIMPLE_OMP_FOR:
walk_body (convert_gimple_call, NULL, info,
gimple_omp_for_pre_body_ptr (stmt));
@@ -2188,7 +2413,6 @@ convert_gimple_call (gimple_stmt_iterator *gsi, bool *handled_ops_p,
case GIMPLE_OMP_SECTIONS:
case GIMPLE_OMP_SECTION:
case GIMPLE_OMP_SINGLE:
- case GIMPLE_OMP_TARGET:
case GIMPLE_OMP_TEAMS:
case GIMPLE_OMP_MASTER:
case GIMPLE_OMP_TASKGROUP:
diff --git a/gcc-4.9/gcc/tree-pass.h b/gcc-4.9/gcc/tree-pass.h
index 7464d955e..5f00e642a 100644
--- a/gcc-4.9/gcc/tree-pass.h
+++ b/gcc-4.9/gcc/tree-pass.h
@@ -395,6 +395,7 @@ extern gimple_opt_pass *make_pass_call_cdce (gcc::context *ctxt);
extern gimple_opt_pass *make_pass_merge_phi (gcc::context *ctxt);
extern gimple_opt_pass *make_pass_split_crit_edges (gcc::context *ctxt);
extern gimple_opt_pass *make_pass_pre (gcc::context *ctxt);
+extern gimple_opt_pass *make_pass_direct_call_profile (gcc::context *ctxt);
extern unsigned int tail_merge_optimize (unsigned int);
extern gimple_opt_pass *make_pass_profile (gcc::context *ctxt);
extern gimple_opt_pass *make_pass_strip_predict_hints (gcc::context *ctxt);
@@ -459,6 +460,7 @@ extern simple_ipa_opt_pass *make_pass_ipa_lower_emutls (gcc::context *ctxt);
extern simple_ipa_opt_pass
*make_pass_ipa_function_and_variable_visibility (gcc::context *ctxt);
extern simple_ipa_opt_pass *make_pass_ipa_tree_profile (gcc::context *ctxt);
+extern simple_ipa_opt_pass *make_pass_ipa_auto_profile (gcc::context *ctxt);
extern simple_ipa_opt_pass *make_pass_early_local_passes (gcc::context *ctxt);
diff --git a/gcc-4.9/gcc/tree-pretty-print.c b/gcc-4.9/gcc/tree-pretty-print.c
index 83d5ca62d..c3ec6c02d 100644
--- a/gcc-4.9/gcc/tree-pretty-print.c
+++ b/gcc-4.9/gcc/tree-pretty-print.c
@@ -36,6 +36,7 @@ along with GCC; see the file COPYING3. If not see
#include "dumpfile.h"
#include "value-prof.h"
#include "predict.h"
+#include "l-ipo.h"
#include <new> // For placement-new.
@@ -499,6 +500,7 @@ dump_omp_clause (pretty_printer *buffer, tree clause, int spc, int flags)
pp_string (buffer, "alloc");
break;
case OMP_CLAUSE_MAP_TO:
+ case OMP_CLAUSE_MAP_TO_PSET:
pp_string (buffer, "to");
break;
case OMP_CLAUSE_MAP_FROM:
@@ -519,6 +521,9 @@ dump_omp_clause (pretty_printer *buffer, tree clause, int spc, int flags)
if (OMP_CLAUSE_CODE (clause) == OMP_CLAUSE_MAP
&& OMP_CLAUSE_MAP_KIND (clause) == OMP_CLAUSE_MAP_POINTER)
pp_string (buffer, " [pointer assign, bias: ");
+ else if (OMP_CLAUSE_CODE (clause) == OMP_CLAUSE_MAP
+ && OMP_CLAUSE_MAP_KIND (clause) == OMP_CLAUSE_MAP_TO_PSET)
+ pp_string (buffer, " [pointer set, len: ");
else
pp_string (buffer, " [len: ");
dump_generic_node (buffer, OMP_CLAUSE_SIZE (clause),
@@ -667,6 +672,7 @@ static void
dump_location (pretty_printer *buffer, location_t loc)
{
expanded_location xloc = expand_location (loc);
+ int discriminator = get_discriminator_from_locus (loc);
pp_left_bracket (buffer);
if (xloc.file)
@@ -675,6 +681,11 @@ dump_location (pretty_printer *buffer, location_t loc)
pp_string (buffer, " : ");
}
pp_decimal_int (buffer, xloc.line);
+ if (discriminator)
+ {
+ pp_string (buffer, " discrim ");
+ pp_decimal_int (buffer, discriminator);
+ }
pp_string (buffer, "] ");
}
@@ -3437,12 +3448,18 @@ dump_function_header (FILE *dump_file, tree fdecl, int flags)
else
aname = "<unset-asm-name>";
- fprintf (dump_file, "\n;; Function %s (%s, funcdef_no=%d",
- dname, aname, fun->funcdef_no);
+ if (L_IPO_COMP_MODE)
+ fprintf (dump_file, "\n;; Function %s (%s, funcdef_no=%d:%d",
+ dname, aname, FUNC_DECL_MODULE_ID (fun),
+ FUNC_DECL_FUNC_ID (fun));
+ else
+ fprintf (dump_file, "\n;; Function %s (%s, funcdef_no=%d",
+ dname, aname, fun->funcdef_no + (flag_dyn_ipa? 1 : 0));
if (!(flags & TDF_NOUID))
fprintf (dump_file, ", decl_uid=%d", DECL_UID (fdecl));
if (node)
{
+ fprintf (dump_file, ", cgraph_uid=%d", node->uid);
fprintf (dump_file, ", symbol_order=%d)%s\n\n", node->order,
node->frequency == NODE_FREQUENCY_HOT
? " (hot)"
diff --git a/gcc-4.9/gcc/tree-profile.c b/gcc-4.9/gcc/tree-profile.c
index 02e9ff27e..4e2e8741e 100644
--- a/gcc-4.9/gcc/tree-profile.c
+++ b/gcc-4.9/gcc/tree-profile.c
@@ -29,6 +29,9 @@ along with GCC; see the file COPYING3. If not see
#include "coretypes.h"
#include "tm.h"
#include "flags.h"
+#include "target.h"
+#include "output.h"
+#include "regs.h"
#include "function.h"
#include "basic-block.h"
#include "diagnostic-core.h"
@@ -52,16 +55,35 @@ along with GCC; see the file COPYING3. If not see
#include "tree-into-ssa.h"
#include "tree-pass.h"
#include "value-prof.h"
+#include "output.h"
+#include "params.h"
+#include "profile.h"
+#include "l-ipo.h"
#include "profile.h"
#include "target.h"
#include "tree-cfgcleanup.h"
#include "tree-nested.h"
+#include "pointer-set.h"
+
+/* Default name for coverage callback function. */
+#define COVERAGE_CALLBACK_FUNC_NAME "__coverage_callback"
+
+/* True if we insert a callback to edge instrumentation code. Avoid this
+ for the callback function itself. */
+#define COVERAGE_INSERT_CALL ((PARAM_VALUE (PARAM_COVERAGE_CALLBACK) == 1) \
+ && strcmp (get_name (current_function_decl), \
+ COVERAGE_CALLBACK_FUNC_NAME))
+
+/* Number of statements inserted for each edge counter increment. */
+#define EDGE_COUNTER_STMT_COUNT 3
static GTY(()) tree gcov_type_node;
static GTY(()) tree tree_interval_profiler_fn;
static GTY(()) tree tree_pow2_profiler_fn;
static GTY(()) tree tree_one_value_profiler_fn;
static GTY(()) tree tree_indirect_call_profiler_fn;
+static GTY(()) tree tree_indirect_call_topn_profiler_fn;
+static GTY(()) tree tree_direct_call_profiler_fn;
static GTY(()) tree tree_time_profiler_fn;
static GTY(()) tree tree_average_profiler_fn;
static GTY(()) tree tree_ior_profiler_fn;
@@ -69,11 +91,19 @@ static GTY(()) tree tree_ior_profiler_fn;
static GTY(()) tree ic_void_ptr_var;
static GTY(()) tree ic_gcov_type_ptr_var;
+static GTY(()) tree dc_void_ptr_var;
+static GTY(()) tree dc_gcov_type_ptr_var;
static GTY(()) tree ptr_void;
+static GTY(()) tree gcov_info_decl;
/* Do initialization work for the edge profiler. */
/* Add code:
+ // if flag_dyn_ipa
+ extern gcov* __gcov_indirect_call_topn_counters; // pointer to actual counter
+ extern void* __gcov_indirect_call_topn_callee; // actual callee address
+
+ // else
__thread gcov* __gcov_indirect_call_counters; // pointer to actual counter
__thread void* __gcov_indirect_call_callee; // actual callee address
__thread int __gcov_function_counter; // time profiler function counter
@@ -85,6 +115,31 @@ init_ic_make_global_vars (void)
ptr_void = build_pointer_type (void_type_node);
+ if (flag_dyn_ipa)
+ {
+ ic_void_ptr_var
+ = build_decl (UNKNOWN_LOCATION, VAR_DECL,
+ get_identifier ("__gcov_indirect_call_topn_callee"),
+ ptr_void);
+ TREE_PUBLIC (ic_void_ptr_var) = 1;
+ DECL_EXTERNAL (ic_void_ptr_var) = 1;
+ if (targetm.have_tls)
+ DECL_TLS_MODEL (ic_void_ptr_var) =
+ decl_default_tls_model (ic_void_ptr_var);
+ gcov_type_ptr = build_pointer_type (get_gcov_type ());
+ ic_gcov_type_ptr_var
+ = build_decl (UNKNOWN_LOCATION, VAR_DECL,
+ get_identifier ("__gcov_indirect_call_topn_counters"),
+ gcov_type_ptr);
+ TREE_PUBLIC (ic_gcov_type_ptr_var) = 1;
+ DECL_EXTERNAL (ic_gcov_type_ptr_var) = 1;
+ if (targetm.have_tls)
+ DECL_TLS_MODEL (ic_gcov_type_ptr_var) =
+ decl_default_tls_model (ic_gcov_type_ptr_var);
+ }
+ else
+ {
+ /* Do not fix indentation to avoid merge conflicts. */
/* Workaround for binutils bug 14342. Once it is fixed, remove lto path. */
if (flag_lto)
{
@@ -145,6 +200,442 @@ init_ic_make_global_vars (void)
decl_default_tls_model (ic_gcov_type_ptr_var);
varpool_finalize_decl (ic_gcov_type_ptr_var);
+
+ } /* Indentation not fixed intentionally. */
+
+ if (!flag_dyn_ipa)
+ {
+ varpool_finalize_decl (ic_void_ptr_var);
+ varpool_finalize_decl (ic_gcov_type_ptr_var);
+ }
+}
+
+/* A pointer-set of the first statement in each block of statements that need to
+ be applied a sampling wrapper. */
+static struct pointer_set_t *instrumentation_to_be_sampled = NULL;
+
+/* extern __thread gcov_unsigned_t __gcov_sample_counter */
+static GTY(()) tree gcov_sample_counter_decl = NULL_TREE;
+
+/* extern gcov_unsigned_t __gcov_profile_prefix */
+static tree GTY(()) gcov_profile_prefix_decl = NULL_TREE;
+
+/* extern gcov_unsigned_t __gcov_test_coverage */
+static tree GTY(()) gcov_test_coverage_decl = NULL_TREE;
+
+/* extern gcov_unsigned_t __gcov_sampling_period */
+static GTY(()) tree gcov_sampling_period_decl = NULL_TREE;
+
+/* extern gcov_unsigned_t __gcov_has_sampling */
+static tree gcov_has_sampling_decl = NULL_TREE;
+
+/* extern gcov_unsigned_t __gcov_lipo_cutoff */
+static tree GTY(()) gcov_lipo_cutoff_decl = NULL_TREE;
+
+/* extern gcov_unsigned_t __gcov_lipo_random_seed */
+static tree GTY(()) gcov_lipo_random_seed_decl = NULL_TREE;
+
+/* extern gcov_unsigned_t __gcov_lipo_random_group_size */
+static tree GTY(()) gcov_lipo_random_group_size_decl = NULL_TREE;
+
+/* extern gcov_unsigned_t __gcov_lipo_propagate_scale */
+static tree GTY(()) gcov_lipo_propagate_scale_decl = NULL_TREE;
+
+/* extern gcov_unsigned_t __gcov_lipo_dump_cgraph */
+static tree GTY(()) gcov_lipo_dump_cgraph_decl = NULL_TREE;
+
+/* extern gcov_unsigned_t __gcov_lipo_max_mem */
+static tree GTY(()) gcov_lipo_max_mem_decl = NULL_TREE;
+
+/* extern gcov_unsigned_t __gcov_lipo_grouping_algorithm */
+static tree GTY(()) gcov_lipo_grouping_algorithm = NULL_TREE;
+
+/* extern gcov_unsigned_t __gcov_lipo_merge_modu_edges */
+static tree GTY(()) gcov_lipo_merge_modu_edges = NULL_TREE;
+
+/* extern gcov_unsigned_t __gcov_lipo_strict_inclusion */
+static tree GTY(()) gcov_lipo_strict_inclusion = NULL_TREE;
+
+/* Insert STMT_IF around given sequence of consecutive statements in the
+ same basic block starting with STMT_START, ending with STMT_END.
+ PROB is the probability of the taken branch. */
+
+static void
+insert_if_then (gimple stmt_start, gimple stmt_end, gimple stmt_if, int prob)
+{
+ gimple_stmt_iterator gsi;
+ basic_block bb_original, bb_before_if, bb_after_if;
+ edge e_if_taken, e_then_join, e_else;
+ int orig_frequency;
+
+ gsi = gsi_for_stmt (stmt_start);
+ gsi_insert_before (&gsi, stmt_if, GSI_SAME_STMT);
+ bb_original = gsi_bb (gsi);
+ e_if_taken = split_block (bb_original, stmt_if);
+ e_if_taken->flags &= ~EDGE_FALLTHRU;
+ e_if_taken->flags |= EDGE_TRUE_VALUE;
+ e_then_join = split_block (e_if_taken->dest, stmt_end);
+ bb_before_if = e_if_taken->src;
+ bb_after_if = e_then_join->dest;
+ e_else = make_edge (bb_before_if, bb_after_if, EDGE_FALSE_VALUE);
+ orig_frequency = bb_original->frequency;
+ e_if_taken->probability = prob;
+ e_else->probability = REG_BR_PROB_BASE - prob;
+ e_if_taken->dest->frequency = orig_frequency * (prob / REG_BR_PROB_BASE);
+}
+
+/* Transform:
+
+ ORIGINAL CODE
+
+ Into:
+
+ __gcov_sample_counter++;
+ if (__gcov_sample_counter >= __gcov_sampling_period)
+ {
+ __gcov_sample_counter = 0;
+ ORIGINAL CODE
+ }
+
+ The original code block starts with STMT_START, is made of STMT_COUNT
+ consecutive statements in the same basic block. */
+
+static void
+add_sampling_wrapper (gimple stmt_start, gimple stmt_end)
+{
+ tree zero, one, tmp_var, tmp1, tmp2, tmp3;
+ gimple stmt_inc_counter1, stmt_inc_counter2, stmt_inc_counter3;
+ gimple stmt_reset_counter, stmt_assign_period, stmt_if;
+ gimple_stmt_iterator gsi;
+
+ tmp_var = create_tmp_reg (get_gcov_unsigned_t (), "PROF_sample");
+ tmp1 = make_ssa_name (tmp_var, NULL);
+ tmp2 = make_ssa_name (tmp_var, NULL);
+
+ /* Create all the new statements needed. */
+ stmt_inc_counter1 = gimple_build_assign (tmp1, gcov_sample_counter_decl);
+ one = build_int_cst (get_gcov_unsigned_t (), 1);
+ stmt_inc_counter2 = gimple_build_assign_with_ops (
+ PLUS_EXPR, tmp2, tmp1, one);
+ stmt_inc_counter3 = gimple_build_assign (gcov_sample_counter_decl, tmp2);
+ zero = build_int_cst (get_gcov_unsigned_t (), 0);
+ stmt_reset_counter = gimple_build_assign (gcov_sample_counter_decl, zero);
+ tmp3 = make_ssa_name (tmp_var, NULL);
+ stmt_assign_period = gimple_build_assign (tmp3, gcov_sampling_period_decl);
+ stmt_if = gimple_build_cond (GE_EXPR, tmp2, tmp3, NULL_TREE, NULL_TREE);
+
+ /* Insert them for now in the original basic block. */
+ gsi = gsi_for_stmt (stmt_start);
+ gsi_insert_before (&gsi, stmt_inc_counter1, GSI_SAME_STMT);
+ gsi_insert_before (&gsi, stmt_inc_counter2, GSI_SAME_STMT);
+ gsi_insert_before (&gsi, stmt_inc_counter3, GSI_SAME_STMT);
+ gsi_insert_before (&gsi, stmt_assign_period, GSI_SAME_STMT);
+ gsi_insert_before (&gsi, stmt_reset_counter, GSI_SAME_STMT);
+
+ /* Insert IF block. */
+ /* Sampling rate can be changed at runtime: hard to guess the branch prob,
+ so make it 1. */
+ insert_if_then (stmt_reset_counter, stmt_end, stmt_if, REG_BR_PROB_BASE);
+}
+
+/* Add a conditional stmt so that counter update will only exec one time. */
+
+static void
+add_execonce_wrapper (gimple stmt_start, gimple stmt_end)
+{
+ tree zero, tmp_var, tmp1;
+ gimple stmt_if, stmt_assign;
+ gimple_stmt_iterator gsi;
+
+ /* Create all the new statements needed. */
+ tmp_var = create_tmp_reg (get_gcov_type (), "PROF_temp");
+ tmp1 = make_ssa_name (tmp_var, NULL);
+ stmt_assign = gimple_build_assign (tmp1, gimple_assign_lhs (stmt_end));
+
+ zero = build_int_cst (get_gcov_type (), 0);
+ stmt_if = gimple_build_cond (EQ_EXPR, tmp1, zero, NULL_TREE, NULL_TREE);
+
+ gsi = gsi_for_stmt (stmt_start);
+ gsi_insert_before (&gsi, stmt_assign, GSI_SAME_STMT);
+
+ /* Insert IF block. */
+ insert_if_then (stmt_start, stmt_end, stmt_if, 1);
+}
+
+/* Return whether STMT is the beginning of an instrumentation block to be
+ applied sampling. */
+
+static bool
+is_instrumentation_to_be_sampled (gimple stmt)
+{
+ return pointer_set_contains (instrumentation_to_be_sampled, stmt);
+}
+
+/* Add sampling wrappers around edge counter code in current function. */
+
+void
+add_sampling_to_edge_counters (void)
+{
+ gimple_stmt_iterator gsi;
+ basic_block bb;
+
+ FOR_EACH_BB_REVERSE_FN (bb, cfun)
+ for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
+ {
+ gimple stmt_end = gsi_stmt (gsi);
+ if (is_instrumentation_to_be_sampled (stmt_end))
+ {
+ gimple stmt_beg;
+ int i;
+ int edge_counter_stmt_count = EDGE_COUNTER_STMT_COUNT;
+
+ /* The code for edge counter increment has EDGE_COUNTER_STMT_COUNT
+ gimple statements. Advance that many statements to find the
+ beginning statement. */
+ if (COVERAGE_INSERT_CALL)
+ edge_counter_stmt_count++;
+
+ for (i = 0; i < edge_counter_stmt_count - 1; i++)
+ gsi_prev (&gsi);
+ stmt_beg = gsi_stmt (gsi);
+ gcc_assert (stmt_beg);
+
+
+ if (flag_profile_generate_sampling)
+ add_sampling_wrapper (stmt_beg, stmt_end);
+ if (PARAM_VALUE (PARAM_COVERAGE_EXEC_ONCE))
+ add_execonce_wrapper (stmt_beg, stmt_end);
+
+ /* reset the iterator and continue. */
+ gsi = gsi_last_bb (bb);
+ }
+ }
+}
+
+/* Helper function to define a variable in comdat with initialization.
+ DECL is the variable, PARAM is the parameter to set init value. */
+
+static void
+init_comdat_decl (tree decl, int param)
+{
+ TREE_PUBLIC (decl) = 1;
+ DECL_ARTIFICIAL (decl) = 1;
+ DECL_COMDAT_GROUP (decl)
+ = DECL_ASSEMBLER_NAME (decl);
+ TREE_STATIC (decl) = 1;
+ DECL_INITIAL (decl) = build_int_cst (
+ get_gcov_unsigned_t (),
+ PARAM_VALUE (param));
+ varpool_finalize_decl (decl);
+}
+
+/* Initialization function for LIPO runtime parameters. */
+
+void
+tree_init_dyn_ipa_parameters (void)
+{
+ if (!gcov_lipo_cutoff_decl)
+ {
+ gcov_lipo_cutoff_decl = build_decl (
+ UNKNOWN_LOCATION,
+ VAR_DECL,
+ get_identifier ("__gcov_lipo_cutoff"),
+ get_gcov_unsigned_t ());
+ init_comdat_decl (gcov_lipo_cutoff_decl, PARAM_LIPO_CUTOFF);
+ gcov_lipo_random_seed_decl = build_decl (
+ UNKNOWN_LOCATION,
+ VAR_DECL,
+ get_identifier ("__gcov_lipo_random_seed"),
+ get_gcov_unsigned_t ());
+ init_comdat_decl (gcov_lipo_random_seed_decl, PARAM_LIPO_RANDOM_SEED);
+ gcov_lipo_random_group_size_decl = build_decl (
+ UNKNOWN_LOCATION,
+ VAR_DECL,
+ get_identifier ("__gcov_lipo_random_group_size"),
+ get_gcov_unsigned_t ());
+ init_comdat_decl (gcov_lipo_random_group_size_decl, PARAM_LIPO_RANDOM_GROUP_SIZE);
+ gcov_lipo_propagate_scale_decl = build_decl (
+ UNKNOWN_LOCATION,
+ VAR_DECL,
+ get_identifier ("__gcov_lipo_propagate_scale"),
+ get_gcov_unsigned_t ());
+ init_comdat_decl (gcov_lipo_propagate_scale_decl, PARAM_LIPO_PROPAGATE_SCALE);
+ gcov_lipo_dump_cgraph_decl = build_decl (
+ UNKNOWN_LOCATION,
+ VAR_DECL,
+ get_identifier ("__gcov_lipo_dump_cgraph"),
+ get_gcov_unsigned_t ());
+ init_comdat_decl (gcov_lipo_dump_cgraph_decl, PARAM_LIPO_DUMP_CGRAPH);
+ gcov_lipo_max_mem_decl = build_decl (
+ UNKNOWN_LOCATION,
+ VAR_DECL,
+ get_identifier ("__gcov_lipo_max_mem"),
+ get_gcov_unsigned_t ());
+ init_comdat_decl (gcov_lipo_max_mem_decl, PARAM_MAX_LIPO_MEMORY);
+ gcov_lipo_grouping_algorithm = build_decl (
+ UNKNOWN_LOCATION,
+ VAR_DECL,
+ get_identifier ("__gcov_lipo_grouping_algorithm"),
+ get_gcov_unsigned_t ());
+ init_comdat_decl (gcov_lipo_grouping_algorithm,
+ PARAM_LIPO_GROUPING_ALGORITHM);
+ gcov_lipo_merge_modu_edges = build_decl (
+ UNKNOWN_LOCATION,
+ VAR_DECL,
+ get_identifier ("__gcov_lipo_merge_modu_edges"),
+ get_gcov_unsigned_t ());
+ init_comdat_decl (gcov_lipo_merge_modu_edges,
+ PARAM_LIPO_MERGE_MODU_EDGES);
+ gcov_lipo_strict_inclusion = build_decl (
+ UNKNOWN_LOCATION,
+ VAR_DECL,
+ get_identifier ("__gcov_lipo_weak_inclusion"),
+ get_gcov_unsigned_t ());
+ init_comdat_decl (gcov_lipo_strict_inclusion,
+ PARAM_LIPO_WEAK_INCLUSION);
+ }
+}
+
+static void
+cleanup_instrumentation_sampling (void)
+{
+ /* Free the bitmap. */
+ if (flag_profile_generate_sampling && instrumentation_to_be_sampled)
+ {
+ pointer_set_destroy (instrumentation_to_be_sampled);
+ instrumentation_to_be_sampled = NULL;
+ }
+}
+
+/* Initialization function for FDO instrumentation. */
+
+void
+tree_init_instrumentation (void)
+{
+ if (!gcov_profile_prefix_decl)
+ {
+ tree prefix_ptr;
+ int prefix_len;
+ tree prefix_string;
+
+ /* Construct an initializer for __gcov_profile_prefix. */
+ gcov_profile_prefix_decl =
+ build_decl (UNKNOWN_LOCATION, VAR_DECL,
+ get_identifier ("__gcov_profile_prefix"),
+ get_const_string_type ());
+ TREE_PUBLIC (gcov_profile_prefix_decl) = 1;
+ DECL_ARTIFICIAL (gcov_profile_prefix_decl) = 1;
+ make_decl_one_only (gcov_profile_prefix_decl,
+ DECL_ASSEMBLER_NAME (gcov_profile_prefix_decl));
+ TREE_STATIC (gcov_profile_prefix_decl) = 1;
+
+ const char null_prefix[] = "\0";
+ const char *prefix = null_prefix;
+ prefix_len = 0;
+ if (profile_data_prefix)
+ {
+ prefix_len = strlen (profile_data_prefix);
+ prefix = profile_data_prefix;
+ }
+ prefix_string = build_string (prefix_len + 1, prefix);
+ TREE_TYPE (prefix_string) = build_array_type
+ (char_type_node, build_index_type
+ (build_int_cst (NULL_TREE, prefix_len)));
+ prefix_ptr = build1 (ADDR_EXPR, get_const_string_type (),
+ prefix_string);
+
+ DECL_INITIAL (gcov_profile_prefix_decl) = prefix_ptr;
+ varpool_finalize_decl (gcov_profile_prefix_decl);
+ }
+
+ if (!gcov_test_coverage_decl)
+ {
+ /* Initialize __gcov_test_coverage to 1 if -ftest-coverage
+ specified, 0 otherwise. Used by libgcov to determine whether
+ a binary was instrumented for coverage or profile optimization. */
+ gcov_test_coverage_decl = build_decl (
+ UNKNOWN_LOCATION,
+ VAR_DECL,
+ get_identifier ("__gcov_test_coverage"),
+ get_gcov_unsigned_t ());
+ TREE_PUBLIC (gcov_test_coverage_decl) = 1;
+ DECL_ARTIFICIAL (gcov_test_coverage_decl) = 1;
+ DECL_COMDAT_GROUP (gcov_test_coverage_decl)
+ = DECL_ASSEMBLER_NAME (gcov_test_coverage_decl);
+ TREE_STATIC (gcov_test_coverage_decl) = 1;
+ DECL_INITIAL (gcov_test_coverage_decl) = build_int_cst (
+ get_gcov_unsigned_t (),
+ flag_test_coverage ? 1 : 0);
+ varpool_finalize_decl (gcov_test_coverage_decl);
+ }
+}
+
+/* Initialization function for FDO sampling. */
+
+void
+tree_init_instrumentation_sampling (void)
+{
+ if (!gcov_sampling_period_decl)
+ {
+ /* Define __gcov_sampling_period regardless of
+ -fprofile-generate-sampling. Otherwise the extern reference to
+ it from libgcov becomes unmatched.
+ */
+ gcov_sampling_period_decl = build_decl (
+ UNKNOWN_LOCATION,
+ VAR_DECL,
+ get_identifier ("__gcov_sampling_period"),
+ get_gcov_unsigned_t ());
+ TREE_PUBLIC (gcov_sampling_period_decl) = 1;
+ DECL_ARTIFICIAL (gcov_sampling_period_decl) = 1;
+ DECL_COMDAT_GROUP (gcov_sampling_period_decl)
+ = DECL_ASSEMBLER_NAME (gcov_sampling_period_decl);
+ TREE_STATIC (gcov_sampling_period_decl) = 1;
+ DECL_INITIAL (gcov_sampling_period_decl) = build_int_cst (
+ get_gcov_unsigned_t (),
+ PARAM_VALUE (PARAM_PROFILE_GENERATE_SAMPLING_PERIOD));
+ varpool_finalize_decl (gcov_sampling_period_decl);
+ }
+
+ if (!gcov_has_sampling_decl)
+ {
+ /* Initialize __gcov_has_sampling to 1 if -fprofile-generate-sampling
+ specified, 0 otherwise. Used by libgcov to determine whether
+ a request to set the sampling period makes sense. */
+ gcov_has_sampling_decl = build_decl (
+ UNKNOWN_LOCATION,
+ VAR_DECL,
+ get_identifier ("__gcov_has_sampling"),
+ get_gcov_unsigned_t ());
+ TREE_PUBLIC (gcov_has_sampling_decl) = 1;
+ DECL_ARTIFICIAL (gcov_has_sampling_decl) = 1;
+ DECL_COMDAT_GROUP (gcov_has_sampling_decl)
+ = DECL_ASSEMBLER_NAME (gcov_has_sampling_decl);
+ TREE_STATIC (gcov_has_sampling_decl) = 1;
+ DECL_INITIAL (gcov_has_sampling_decl) = build_int_cst (
+ get_gcov_unsigned_t (),
+ flag_profile_generate_sampling ? 1 : 0);
+ varpool_finalize_decl (gcov_has_sampling_decl);
+ }
+
+ if (flag_profile_generate_sampling && !instrumentation_to_be_sampled)
+ {
+ instrumentation_to_be_sampled = pointer_set_create ();
+ gcov_sample_counter_decl = build_decl (
+ UNKNOWN_LOCATION,
+ VAR_DECL,
+ get_identifier ("__gcov_sample_counter"),
+ get_gcov_unsigned_t ());
+ TREE_PUBLIC (gcov_sample_counter_decl) = 1;
+ DECL_EXTERNAL (gcov_sample_counter_decl) = 1;
+ DECL_ARTIFICIAL (gcov_sample_counter_decl) = 1;
+ if (targetm.have_tls)
+ DECL_TLS_MODEL (gcov_sample_counter_decl) =
+ decl_default_tls_model (gcov_sample_counter_decl);
+ }
+ if (PARAM_VALUE (PARAM_COVERAGE_EXEC_ONCE)
+ && instrumentation_to_be_sampled == 0)
+ instrumentation_to_be_sampled = pointer_set_create ();
}
/* Create the type and function decls for the interface with gcov. */
@@ -157,14 +648,25 @@ gimple_init_edge_profiler (void)
tree one_value_profiler_fn_type;
tree gcov_type_ptr;
tree ic_profiler_fn_type;
+ tree ic_topn_profiler_fn_type;
+ tree dc_profiler_fn_type;
tree average_profiler_fn_type;
tree time_profiler_fn_type;
+
if (!gcov_type_node)
{
+ char name_buf[32];
gcov_type_node = get_gcov_type ();
gcov_type_ptr = build_pointer_type (gcov_type_node);
+ ASM_GENERATE_INTERNAL_LABEL (name_buf, "LPBX", 0);
+ gcov_info_decl = build_decl (UNKNOWN_LOCATION, VAR_DECL,
+ get_identifier (name_buf),
+ get_gcov_unsigned_t ());
+ DECL_EXTERNAL (gcov_info_decl) = 1;
+ TREE_ADDRESSABLE (gcov_info_decl) = 1;
+
/* void (*) (gcov_type *, gcov_type, int, unsigned) */
interval_profiler_fn_type
= build_function_type_list (void_type_node,
@@ -196,7 +698,12 @@ gimple_init_edge_profiler (void)
= build_function_type_list (void_type_node,
gcov_type_ptr, gcov_type_node,
NULL_TREE);
- tree_one_value_profiler_fn
+ if (PROFILE_GEN_VALUE_ATOMIC)
+ tree_one_value_profiler_fn
+ = build_fn_decl ("__gcov_one_value_profiler_atomic",
+ one_value_profiler_fn_type);
+ else
+ tree_one_value_profiler_fn
= build_fn_decl ("__gcov_one_value_profiler",
one_value_profiler_fn_type);
TREE_NOTHROW (tree_one_value_profiler_fn) = 1;
@@ -215,6 +722,7 @@ gimple_init_edge_profiler (void)
gcov_type_ptr, gcov_type_node,
ptr_void, ptr_void,
NULL_TREE);
+ // TODO(xur): atomic support
tree_indirect_call_profiler_fn
= build_fn_decl ("__gcov_indirect_call_profiler",
ic_profiler_fn_type);
@@ -227,15 +735,44 @@ gimple_init_edge_profiler (void)
gcov_type_node,
ptr_void,
NULL_TREE);
- tree_indirect_call_profiler_fn
- = build_fn_decl ("__gcov_indirect_call_profiler_v2",
- ic_profiler_fn_type);
+ if (PROFILE_GEN_VALUE_ATOMIC)
+ tree_indirect_call_profiler_fn
+ = build_fn_decl ("__gcov_indirect_call_profiler_atomic_v2",
+ ic_profiler_fn_type);
+ else
+ tree_indirect_call_profiler_fn
+ = build_fn_decl ("__gcov_indirect_call_profiler_v2",
+ ic_profiler_fn_type);
}
TREE_NOTHROW (tree_indirect_call_profiler_fn) = 1;
DECL_ATTRIBUTES (tree_indirect_call_profiler_fn)
= tree_cons (get_identifier ("leaf"), NULL,
DECL_ATTRIBUTES (tree_indirect_call_profiler_fn));
+ /* void (*) (void *, void *, gcov_unsigned_t) */
+ ic_topn_profiler_fn_type
+ = build_function_type_list (void_type_node, ptr_void, ptr_void,
+ get_gcov_unsigned_t (), NULL_TREE);
+ tree_indirect_call_topn_profiler_fn
+ = build_fn_decl ("__gcov_indirect_call_topn_profiler",
+ ic_topn_profiler_fn_type);
+ TREE_NOTHROW (tree_indirect_call_topn_profiler_fn) = 1;
+ DECL_ATTRIBUTES (tree_indirect_call_topn_profiler_fn)
+ = tree_cons (get_identifier ("leaf"), NULL,
+ DECL_ATTRIBUTES (tree_indirect_call_topn_profiler_fn));
+
+ /* void (*) (void *, void *, gcov_unsigned_t) */
+ dc_profiler_fn_type
+ = build_function_type_list (void_type_node, ptr_void, ptr_void,
+ get_gcov_unsigned_t (), NULL_TREE);
+ tree_direct_call_profiler_fn
+ = build_fn_decl ("__gcov_direct_call_profiler",
+ dc_profiler_fn_type);
+ TREE_NOTHROW (tree_direct_call_profiler_fn) = 1;
+ DECL_ATTRIBUTES (tree_direct_call_profiler_fn)
+ = tree_cons (get_identifier ("leaf"), NULL,
+ DECL_ATTRIBUTES (tree_direct_call_profiler_fn));
+
/* void (*) (gcov_type *, gcov_type, void *) */
time_profiler_fn_type
= build_function_type_list (void_type_node,
@@ -288,20 +825,72 @@ gimple_gen_edge_profiler (int edgeno, edge e)
{
tree ref, one, gcov_type_tmp_var;
gimple stmt1, stmt2, stmt3;
+ bool is_atomic = PROFILE_GEN_EDGE_ATOMIC;
+
+ if (is_atomic)
+ ref = tree_coverage_counter_addr (GCOV_COUNTER_ARCS, edgeno);
+ else
+ ref = tree_coverage_counter_ref (GCOV_COUNTER_ARCS, edgeno);
- ref = tree_coverage_counter_ref (GCOV_COUNTER_ARCS, edgeno);
one = build_int_cst (gcov_type_node, 1);
- gcov_type_tmp_var = make_temp_ssa_name (gcov_type_node,
- NULL, "PROF_edge_counter");
- stmt1 = gimple_build_assign (gcov_type_tmp_var, ref);
- gcov_type_tmp_var = make_temp_ssa_name (gcov_type_node,
- NULL, "PROF_edge_counter");
- stmt2 = gimple_build_assign_with_ops (PLUS_EXPR, gcov_type_tmp_var,
- gimple_assign_lhs (stmt1), one);
- stmt3 = gimple_build_assign (unshare_expr (ref), gimple_assign_lhs (stmt2));
- gsi_insert_on_edge (e, stmt1);
- gsi_insert_on_edge (e, stmt2);
+
+ /* insert a callback stmt stmt */
+ if (COVERAGE_INSERT_CALL)
+ {
+ gimple call;
+ tree tree_edgeno = build_int_cst (gcov_type_node, edgeno);
+ tree tree_uid = build_int_cst (gcov_type_node,
+ current_function_funcdef_no);
+ tree callback_fn_type
+ = build_function_type_list (void_type_node,
+ gcov_type_node,
+ integer_type_node,
+ NULL_TREE);
+ tree tree_callback_fn = build_fn_decl (COVERAGE_CALLBACK_FUNC_NAME,
+ callback_fn_type);
+ TREE_NOTHROW (tree_callback_fn) = 1;
+ DECL_ATTRIBUTES (tree_callback_fn)
+ = tree_cons (get_identifier ("leaf"), NULL,
+ DECL_ATTRIBUTES (tree_callback_fn));
+
+ call = gimple_build_call (tree_callback_fn, 2, tree_uid, tree_edgeno);
+ gsi_insert_on_edge(e, call);
+ }
+
+ if (is_atomic)
+ {
+ /* __atomic_fetch_add (&counter, 1, MEMMODEL_RELAXED); */
+ stmt3 = gimple_build_call (builtin_decl_explicit (
+ GCOV_TYPE_ATOMIC_FETCH_ADD),
+ 3, ref, one,
+ build_int_cst (integer_type_node,
+ MEMMODEL_RELAXED));
+ /* Suppress "'stmt1' may be used uninitialized" warning. */
+ stmt1 = stmt2 = 0;
+ }
+ else
+ {
+ gcov_type_tmp_var = make_temp_ssa_name (gcov_type_node,
+ NULL, "PROF_edge_counter");
+ stmt1 = gimple_build_assign (gcov_type_tmp_var, ref);
+ gcov_type_tmp_var = make_temp_ssa_name (gcov_type_node,
+ NULL, "PROF_edge_counter");
+ stmt2 = gimple_build_assign_with_ops (PLUS_EXPR, gcov_type_tmp_var,
+ gimple_assign_lhs (stmt1), one);
+ stmt3 = gimple_build_assign (unshare_expr (ref), gimple_assign_lhs (stmt2));
+ }
+
+ if (flag_profile_generate_sampling
+ || PARAM_VALUE (PARAM_COVERAGE_EXEC_ONCE))
+ pointer_set_insert (instrumentation_to_be_sampled, stmt3);
+
+ if (!is_atomic)
+ {
+ gsi_insert_on_edge (e, stmt1);
+ gsi_insert_on_edge (e, stmt2);
+ }
gsi_insert_on_edge (e, stmt3);
+
}
/* Emits code to get VALUE to instrument at GSI, and returns the
@@ -396,10 +985,13 @@ gimple_gen_ic_profiler (histogram_value value, unsigned tag, unsigned base)
{
tree tmp1;
gimple stmt1, stmt2, stmt3;
- gimple stmt = value->hvalue.stmt;
- gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
- tree ref_ptr = tree_coverage_counter_addr (tag, base);
+ gimple stmt;
+ gimple_stmt_iterator gsi;
+ tree ref_ptr;
+ stmt = value->hvalue.stmt;
+ gsi = gsi_for_stmt (stmt);
+ ref_ptr = tree_coverage_counter_addr (tag, base);
ref_ptr = force_gimple_operand_gsi (&gsi, ref_ptr,
true, NULL_TREE, true, GSI_SAME_STMT);
@@ -429,7 +1021,7 @@ gimple_gen_ic_profiler (histogram_value value, unsigned tag, unsigned base)
void
gimple_gen_ic_func_profiler (void)
{
- struct cgraph_node * c_node = cgraph_get_node (current_function_decl);
+ struct cgraph_node * c_node = cgraph_get_create_node (current_function_decl);
gimple_stmt_iterator gsi;
gimple stmt1, stmt2;
tree tree_uid, cur_func, void0;
@@ -483,6 +1075,105 @@ gimple_gen_ic_func_profiler (void)
gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
}
+/* Output instructions as GIMPLE trees for code to find the most
+ common called function in indirect call. Insert instructions at the
+ beginning of every possible called function.
+ */
+
+static void
+gimple_gen_ic_func_topn_profiler (void)
+{
+ gimple_stmt_iterator gsi;
+ gimple stmt1;
+ tree cur_func, gcov_info, cur_func_id;
+
+ if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
+ || DECL_STATIC_CONSTRUCTOR (current_function_decl)
+ || DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (current_function_decl))
+ return;
+
+ gimple_init_edge_profiler ();
+
+ gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
+
+ cur_func = force_gimple_operand_gsi (&gsi,
+ build_addr (current_function_decl,
+ current_function_decl),
+ true, NULL_TREE,
+ true, GSI_SAME_STMT);
+ gcov_info = build_fold_addr_expr (gcov_info_decl);
+ cur_func_id = build_int_cst (get_gcov_unsigned_t (),
+ FUNC_DECL_FUNC_ID (cfun));
+ stmt1 = gimple_build_call (tree_indirect_call_topn_profiler_fn,
+ 3, cur_func, gcov_info, cur_func_id);
+ gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
+}
+
+
+/* Output instructions as GIMPLE trees for code to find the number of
+ calls at each direct call site.
+ BASE is offset of the counter position, CALL_STMT is the direct call
+ whose call-count is profiled. */
+
+static void
+gimple_gen_dc_profiler (unsigned base, gimple call_stmt)
+{
+ gimple stmt1, stmt2, stmt3;
+ gimple_stmt_iterator gsi = gsi_for_stmt (call_stmt);
+ tree tmp1, tmp2, tmp3, callee = gimple_call_fn (call_stmt);
+
+ /* Insert code:
+ __gcov_direct_call_counters = get_relevant_counter_ptr ();
+ __gcov_callee = (void *) callee;
+ */
+ tmp1 = tree_coverage_counter_addr (GCOV_COUNTER_DIRECT_CALL, base);
+ tmp1 = force_gimple_operand_gsi (&gsi, tmp1, true, NULL_TREE,
+ true, GSI_SAME_STMT);
+ stmt1 = gimple_build_assign (dc_gcov_type_ptr_var, tmp1);
+ tmp2 = create_tmp_var (ptr_void, "PROF_dc");
+ stmt2 = gimple_build_assign (tmp2, unshare_expr (callee));
+ tmp3 = make_ssa_name (tmp2, stmt2);
+ gimple_assign_set_lhs (stmt2, tmp3);
+ stmt3 = gimple_build_assign (dc_void_ptr_var, tmp3);
+ gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
+ gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
+ gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT);
+}
+
+
+/* Output instructions as GIMPLE trees for code to find the number of
+ calls at each direct call site. Insert instructions at the beginning of
+ every possible called function. */
+
+static void
+gimple_gen_dc_func_profiler (void)
+{
+ gimple_stmt_iterator gsi;
+ gimple stmt1;
+ tree cur_func, gcov_info, cur_func_id;
+
+ if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
+ || DECL_STATIC_CONSTRUCTOR (current_function_decl)
+ || DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (current_function_decl))
+ return;
+
+ gimple_init_edge_profiler ();
+
+ gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
+
+ cur_func = force_gimple_operand_gsi (&gsi,
+ build_addr (current_function_decl,
+ current_function_decl),
+ true, NULL_TREE,
+ true, GSI_SAME_STMT);
+ gcov_info = build_fold_addr_expr (gcov_info_decl);
+ cur_func_id = build_int_cst (get_gcov_unsigned_t (),
+ FUNC_DECL_FUNC_ID (cfun));
+ stmt1 = gimple_build_call (tree_direct_call_profiler_fn, 3, cur_func,
+ gcov_info, cur_func_id);
+ gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
+}
+
/* Output instructions as GIMPLE tree at the beginning for each function.
TAG is the tag of the section for counters, BASE is offset of the
counter position and GSI is the iterator we place the counter. */
@@ -569,8 +1260,13 @@ tree_profiling (void)
cgraphunit.c:ipa_passes(). */
gcc_assert (cgraph_state == CGRAPH_STATE_IPA_SSA);
+ /* After value profile transformation, artificial edges (that keep
+ function body from being deleted) won't be needed. */
+ if (L_IPO_COMP_MODE)
+ lipo_link_and_fixup ();
init_node_map (true);
+
FOR_EACH_DEFINED_FUNCTION (node)
{
if (!gimple_has_body_p (node->decl))
@@ -582,6 +1278,9 @@ tree_profiling (void)
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
+ if (flag_emit_function_names)
+ emit_function_name ();
+
/* Local pure-const may imply need to fixup the cfg. */
if (execute_fixup_cfg () & TODO_cleanup_cfg)
cleanup_tree_cfg ();
@@ -589,7 +1288,8 @@ tree_profiling (void)
branch_prob ();
if (! flag_branch_probabilities
- && flag_profile_values)
+ && flag_profile_values
+ && !flag_dyn_ipa)
gimple_gen_ic_func_profiler ();
if (flag_branch_probabilities
@@ -644,7 +1344,7 @@ tree_profiling (void)
{
gimple stmt = gsi_stmt (gsi);
if (is_gimple_call (stmt))
- update_stmt (stmt);
+ update_stmt (stmt);
}
}
@@ -653,13 +1353,100 @@ tree_profiling (void)
update_ssa (TODO_update_ssa);
rebuild_cgraph_edges ();
-
pop_cfun ();
}
handle_missing_profiles ();
del_node_map ();
+ cleanup_instrumentation_sampling();
+ return 0;
+}
+
+/* Return true if tree-based direct-call profiling is in effect, else false. */
+
+static bool
+do_direct_call_profiling (void)
+{
+ return !flag_branch_probabilities
+ && (profile_arc_flag || flag_test_coverage)
+ && flag_dyn_ipa;
+}
+
+/* Instrument current function to collect direct call profile information. */
+
+static unsigned int
+direct_call_profiling (void)
+{
+ basic_block bb;
+ gimple_stmt_iterator gsi;
+
+ /* Add code:
+ extern gcov* __gcov_direct_call_counters; // pointer to actual counter
+ extern void* __gcov_direct_call_callee; // actual callee address
+ */
+ if (!dc_gcov_type_ptr_var)
+ {
+ dc_gcov_type_ptr_var
+ = build_decl (UNKNOWN_LOCATION, VAR_DECL,
+ get_identifier ("__gcov_direct_call_counters"),
+ build_pointer_type (gcov_type_node));
+ DECL_ARTIFICIAL (dc_gcov_type_ptr_var) = 1;
+ DECL_EXTERNAL (dc_gcov_type_ptr_var) = 1;
+ DECL_TLS_MODEL (dc_gcov_type_ptr_var) =
+ decl_default_tls_model (dc_gcov_type_ptr_var);
+
+ dc_void_ptr_var =
+ build_decl (UNKNOWN_LOCATION, VAR_DECL,
+ get_identifier ("__gcov_direct_call_callee"),
+ ptr_void);
+ DECL_ARTIFICIAL (dc_void_ptr_var) = 1;
+ DECL_EXTERNAL (dc_void_ptr_var) = 1;
+ DECL_TLS_MODEL (dc_void_ptr_var) =
+ decl_default_tls_model (dc_void_ptr_var);
+ }
+
+ if (!DECL_STATIC_CONSTRUCTOR (current_function_decl))
+ {
+ FOR_EACH_BB_FN (bb, cfun)
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+ /* Check if this is a direct call, and not a builtin call. */
+ if (gimple_code (stmt) != GIMPLE_CALL
+ || gimple_call_fndecl (stmt) == NULL_TREE
+ || DECL_BUILT_IN (gimple_call_fndecl (stmt))
+ || DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
+ continue;
+
+ if (PARAM_VALUE (PARAM_LIPO_SKIP_SPECIAL_SECTIONS))
+ {
+ tree callee = gimple_call_fndecl (stmt);
+ if (DECL_IS_MALLOC (callee)
+ || DECL_IS_OPERATOR_NEW (callee)
+ || (DECL_ASSEMBLER_NAME_SET_P (callee)
+ && (!strcmp (IDENTIFIER_POINTER (
+ DECL_ASSEMBLER_NAME (callee)), "_ZdlPv")
+ || !strcmp (IDENTIFIER_POINTER (
+ DECL_ASSEMBLER_NAME (callee)), "_ZdaPv"))))
+ continue;
+ }
+
+ if (!coverage_counter_alloc (GCOV_COUNTER_DIRECT_CALL, 2))
+ continue;
+ gimple_gen_dc_profiler (0, stmt);
+ }
+ coverage_dc_end_function ();
+ }
+
+ if (coverage_function_present (FUNC_DECL_FUNC_ID (cfun)))
+ {
+ gimple_gen_dc_func_profiler ();
+ if (! flag_branch_probabilities
+ && flag_profile_values)
+ gimple_gen_ic_func_topn_profiler ();
+ }
+
return 0;
}
@@ -668,7 +1455,7 @@ tree_profiling (void)
static bool
gate_tree_profile_ipa (void)
{
- return (!in_lto_p
+ return (!in_lto_p && !flag_auto_profile
&& (flag_branch_probabilities || flag_test_coverage
|| profile_arc_flag));
}
@@ -703,6 +1490,35 @@ public:
}; // class pass_ipa_tree_profile
+const pass_data pass_data_direct_call_profile =
+{
+ GIMPLE_PASS,
+ "dc_profile", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ true, /* has_gate */
+ true, /* has_execute */
+ TV_BRANCH_PROB, /* tv_id */
+ ( PROP_ssa | PROP_cfg), /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_update_ssa /* todo_flags_finish */
+};
+class pass_direct_call_profile : public gimple_opt_pass
+{
+public:
+ pass_direct_call_profile (gcc::context *ctxt)
+ : gimple_opt_pass (pass_data_direct_call_profile, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ opt_pass * clone () { return new pass_direct_call_profile (m_ctxt); }
+ bool gate () { return do_direct_call_profiling (); }
+ unsigned int execute () { return direct_call_profiling (); }
+
+}; // class pass_direct_call_profiling
+
+
} // anon namespace
simple_ipa_opt_pass *
@@ -711,4 +1527,10 @@ make_pass_ipa_tree_profile (gcc::context *ctxt)
return new pass_ipa_tree_profile (ctxt);
}
+gimple_opt_pass *
+make_pass_direct_call_profile (gcc::context *ctxt)
+{
+ return new pass_direct_call_profile (ctxt);
+}
+
#include "gt-tree-profile.h"
diff --git a/gcc-4.9/gcc/tree-sra.c b/gcc-4.9/gcc/tree-sra.c
index ffef13d16..535df57c0 100644
--- a/gcc-4.9/gcc/tree-sra.c
+++ b/gcc-4.9/gcc/tree-sra.c
@@ -105,11 +105,13 @@ along with GCC; see the file COPYING3. If not see
#include "ipa-prop.h"
#include "statistics.h"
#include "params.h"
+#include "toplev.h"
#include "target.h"
#include "flags.h"
#include "dbgcnt.h"
#include "tree-inline.h"
#include "gimple-pretty-print.h"
+#include "l-ipo.h"
#include "ipa-inline.h"
#include "ipa-utils.h"
@@ -4801,7 +4803,8 @@ convert_callers_for_node (struct cgraph_node *node,
xstrdup (cs->callee->name ()),
cs->callee->order);
- ipa_modify_call_arguments (cs, cs->call_stmt, *adjustments);
+ if (cs->call_stmt)
+ ipa_modify_call_arguments (cs, cs->call_stmt, *adjustments);
pop_cfun ();
}
@@ -4861,12 +4864,15 @@ modify_function (struct cgraph_node *node, ipa_parm_adjustment_vec adjustments)
{
struct cgraph_node *new_node;
bool cfg_changed;
- vec<cgraph_edge_p> redirect_callers = collect_callers_of_node (node);
rebuild_cgraph_edges ();
free_dominance_info (CDI_DOMINATORS);
pop_cfun ();
+ /* This must be done after rebuilding cgraph edges for node above.
+ Otherwise any recursive calls to node that are recorded in
+ redirect_callers will be corrupted. */
+ vec<cgraph_edge_p> redirect_callers = collect_callers_of_node (node);
new_node = cgraph_function_versioning (node, redirect_callers,
NULL,
NULL, false, NULL, NULL, "isra");
@@ -4878,6 +4884,7 @@ modify_function (struct cgraph_node *node, ipa_parm_adjustment_vec adjustments)
sra_ipa_reset_debug_stmts (adjustments);
convert_callers (new_node, node->decl, adjustments);
cgraph_make_node_local (new_node);
+
return cfg_changed;
}
@@ -5049,7 +5056,7 @@ ipa_early_sra (void)
static bool
ipa_early_sra_gate (void)
{
- return flag_ipa_sra && dbg_cnt (eipa_sra);
+ return flag_ipa_sra && !flag_dyn_ipa && dbg_cnt (eipa_sra);
}
namespace {
diff --git a/gcc-4.9/gcc/tree-ssa-alias.c b/gcc-4.9/gcc/tree-ssa-alias.c
index e70627589..de3fd0598 100644
--- a/gcc-4.9/gcc/tree-ssa-alias.c
+++ b/gcc-4.9/gcc/tree-ssa-alias.c
@@ -47,6 +47,8 @@ along with GCC; see the file COPYING3. If not see
#include "params.h"
#include "alloc-pool.h"
#include "tree-ssa-alias.h"
+#include "dbgcnt.h"
+#include "l-ipo.h"
#include "ipa-reference.h"
/* Broad overview of how alias analysis on gimple works:
@@ -665,6 +667,9 @@ same_type_for_tbaa (tree type1, tree type2)
if (get_alias_set (type1) == get_alias_set (type2))
return -1;
+ if (L_IPO_COMP_MODE)
+ return equivalent_struct_types_for_tbaa (type1, type2);
+
/* The types are known to be not equal. */
return 0;
}
@@ -835,8 +840,8 @@ nonoverlapping_component_refs_of_decl_p (tree ref1, tree ref2)
/* ??? We cannot simply use the type of operand #0 of the refs here
as the Fortran compiler smuggles type punning into COMPONENT_REFs
for common blocks instead of using unions like everyone else. */
- tree type1 = TYPE_MAIN_VARIANT (DECL_CONTEXT (field1));
- tree type2 = TYPE_MAIN_VARIANT (DECL_CONTEXT (field2));
+ tree type1 = DECL_CONTEXT (field1);
+ tree type2 = DECL_CONTEXT (field2);
/* We cannot disambiguate fields in a union or qualified union. */
if (type1 != type2 || TREE_CODE (type1) != RECORD_TYPE)
@@ -858,6 +863,123 @@ may_overlap:
return false;
}
+/* qsort compare function to sort FIELD_DECLs after their
+ DECL_FIELD_CONTEXT TYPE_UID. */
+
+static inline int
+ncr_compar (const void *field1_, const void *field2_)
+{
+ const_tree field1 = *(const_tree *) const_cast <void *>(field1_);
+ const_tree field2 = *(const_tree *) const_cast <void *>(field2_);
+ unsigned int uid1 = TYPE_UID (DECL_FIELD_CONTEXT (field1));
+ unsigned int uid2 = TYPE_UID (DECL_FIELD_CONTEXT (field2));
+ if (uid1 < uid2)
+ return -1;
+ else if (uid1 > uid2)
+ return 1;
+ return 0;
+}
+
+/* Return true if we can determine that the fields referenced cannot
+ overlap for any pair of objects. */
+
+static bool
+nonoverlapping_component_refs_p (const_tree x, const_tree y)
+{
+ if (!flag_strict_aliasing
+ || !x || !y
+ || TREE_CODE (x) != COMPONENT_REF
+ || TREE_CODE (y) != COMPONENT_REF)
+ return false;
+
+ auto_vec<const_tree, 16> fieldsx;
+ while (TREE_CODE (x) == COMPONENT_REF)
+ {
+ tree field = TREE_OPERAND (x, 1);
+ tree type = DECL_FIELD_CONTEXT (field);
+ if (TREE_CODE (type) == RECORD_TYPE)
+ fieldsx.safe_push (field);
+ x = TREE_OPERAND (x, 0);
+ }
+ if (fieldsx.length () == 0)
+ return false;
+ auto_vec<const_tree, 16> fieldsy;
+ while (TREE_CODE (y) == COMPONENT_REF)
+ {
+ tree field = TREE_OPERAND (y, 1);
+ tree type = DECL_FIELD_CONTEXT (field);
+ if (TREE_CODE (type) == RECORD_TYPE)
+ fieldsy.safe_push (TREE_OPERAND (y, 1));
+ y = TREE_OPERAND (y, 0);
+ }
+ if (fieldsy.length () == 0)
+ return false;
+
+ /* Most common case first. */
+ if (fieldsx.length () == 1
+ && fieldsy.length () == 1)
+ return ((DECL_FIELD_CONTEXT (fieldsx[0])
+ == DECL_FIELD_CONTEXT (fieldsy[0]))
+ && fieldsx[0] != fieldsy[0]
+ && !(DECL_BIT_FIELD (fieldsx[0]) && DECL_BIT_FIELD (fieldsy[0])));
+
+ if (fieldsx.length () == 2)
+ {
+ if (ncr_compar (&fieldsx[0], &fieldsx[1]) == 1)
+ {
+ const_tree tem = fieldsx[0];
+ fieldsx[0] = fieldsx[1];
+ fieldsx[1] = tem;
+ }
+ }
+ else
+ fieldsx.qsort (ncr_compar);
+
+ if (fieldsy.length () == 2)
+ {
+ if (ncr_compar (&fieldsy[0], &fieldsy[1]) == 1)
+ {
+ const_tree tem = fieldsy[0];
+ fieldsy[0] = fieldsy[1];
+ fieldsy[1] = tem;
+ }
+ }
+ else
+ fieldsy.qsort (ncr_compar);
+
+ unsigned i = 0, j = 0;
+ do
+ {
+ const_tree fieldx = fieldsx[i];
+ const_tree fieldy = fieldsy[j];
+ tree typex = DECL_FIELD_CONTEXT (fieldx);
+ tree typey = DECL_FIELD_CONTEXT (fieldy);
+ if (typex == typey)
+ {
+ /* We're left with accessing different fields of a structure,
+ no possible overlap, unless they are both bitfields. */
+ if (fieldx != fieldy)
+ return !(DECL_BIT_FIELD (fieldx) && DECL_BIT_FIELD (fieldy));
+ }
+ if (TYPE_UID (typex) < TYPE_UID (typey))
+ {
+ i++;
+ if (i == fieldsx.length ())
+ break;
+ }
+ else
+ {
+ j++;
+ if (j == fieldsy.length ())
+ break;
+ }
+ }
+ while (1);
+
+ return false;
+}
+
+
/* Return true if two memory references based on the variables BASE1
and BASE2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
[OFFSET2, OFFSET2 + MAX_SIZE2) may alias. REF1 and REF2
@@ -1023,6 +1145,10 @@ indirect_ref_may_alias_decl_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
&& same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (dbase2)) == 1)
return ranges_overlap_p (doffset1, max_size1, doffset2, max_size2);
+ if (ref1 && ref2
+ && nonoverlapping_component_refs_p (ref1, ref2))
+ return false;
+
/* Do access-path based disambiguation. */
if (ref1 && ref2
&& (handled_component_p (ref1) || handled_component_p (ref2)))
@@ -1144,11 +1270,18 @@ indirect_refs_may_alias_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
&& !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
return false;
+ /* If either reference is view-converted, give up now. */
+ if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1
+ || same_type_for_tbaa (TREE_TYPE (base2), TREE_TYPE (ptrtype2)) != 1)
+ return true;
+
+ if (ref1 && ref2
+ && nonoverlapping_component_refs_p (ref1, ref2))
+ return false;
+
/* Do access-path based disambiguation. */
if (ref1 && ref2
- && (handled_component_p (ref1) || handled_component_p (ref2))
- && same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) == 1
- && same_type_for_tbaa (TREE_TYPE (base2), TREE_TYPE (ptrtype2)) == 1)
+ && (handled_component_p (ref1) || handled_component_p (ref2)))
return aliasing_component_refs_p (ref1,
ref1_alias_set, base1_alias_set,
offset1, max_size1,
@@ -1184,6 +1317,9 @@ refs_may_alias_p_1 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
|| TREE_CODE (ref2->ref) == MEM_REF
|| TREE_CODE (ref2->ref) == TARGET_MEM_REF));
+ if (!dbg_cnt (alias))
+ return true;
+
/* Decompose the references into their base objects and the access. */
base1 = ao_ref_base (ref1);
offset1 = ref1->offset;
@@ -2509,4 +2645,3 @@ walk_aliased_vdefs (ao_ref *ref, tree vdef,
return ret;
}
-
diff --git a/gcc-4.9/gcc/tree-ssa-forwprop.c b/gcc-4.9/gcc/tree-ssa-forwprop.c
index b22942900..b6bedfea6 100644
--- a/gcc-4.9/gcc/tree-ssa-forwprop.c
+++ b/gcc-4.9/gcc/tree-ssa-forwprop.c
@@ -1356,43 +1356,38 @@ simplify_gimple_switch_label_vec (gimple stmt, tree index_type)
static bool
simplify_gimple_switch (gimple stmt)
{
- tree cond = gimple_switch_index (stmt);
- tree def, to, ti;
- gimple def_stmt;
-
/* The optimization that we really care about is removing unnecessary
casts. That will let us do much better in propagating the inferred
constant at the switch target. */
+ tree cond = gimple_switch_index (stmt);
if (TREE_CODE (cond) == SSA_NAME)
{
- def_stmt = SSA_NAME_DEF_STMT (cond);
- if (is_gimple_assign (def_stmt))
+ gimple def_stmt = SSA_NAME_DEF_STMT (cond);
+ if (gimple_assign_cast_p (def_stmt))
{
- if (gimple_assign_rhs_code (def_stmt) == NOP_EXPR)
- {
- int need_precision;
- bool fail;
-
- def = gimple_assign_rhs1 (def_stmt);
-
- to = TREE_TYPE (cond);
- ti = TREE_TYPE (def);
-
- /* If we have an extension that preserves value, then we
- can copy the source value into the switch. */
-
- need_precision = TYPE_PRECISION (ti);
- fail = false;
- if (! INTEGRAL_TYPE_P (ti))
- fail = true;
- else if (TYPE_UNSIGNED (to) && !TYPE_UNSIGNED (ti))
- fail = true;
- else if (!TYPE_UNSIGNED (to) && TYPE_UNSIGNED (ti))
- need_precision += 1;
- if (TYPE_PRECISION (to) < need_precision)
- fail = true;
+ tree def = gimple_assign_rhs1 (def_stmt);
+ if (TREE_CODE (def) != SSA_NAME)
+ return false;
- if (!fail)
+ /* If we have an extension or sign-change that preserves the
+ values we check against then we can copy the source value into
+ the switch. */
+ tree ti = TREE_TYPE (def);
+ if (INTEGRAL_TYPE_P (ti)
+ && TYPE_PRECISION (ti) <= TYPE_PRECISION (TREE_TYPE (cond)))
+ {
+ size_t n = gimple_switch_num_labels (stmt);
+ tree min = NULL_TREE, max = NULL_TREE;
+ if (n > 1)
+ {
+ min = CASE_LOW (gimple_switch_label (stmt, 1));
+ if (CASE_HIGH (gimple_switch_label (stmt, n - 1)))
+ max = CASE_HIGH (gimple_switch_label (stmt, n - 1));
+ else
+ max = CASE_LOW (gimple_switch_label (stmt, n - 1));
+ }
+ if ((!min || int_fits_type_p (min, ti))
+ && (!max || int_fits_type_p (max, ti)))
{
gimple_switch_set_index (stmt, def);
simplify_gimple_switch_label_vec (stmt, ti);
diff --git a/gcc-4.9/gcc/tree-ssa-ifcombine.c b/gcc-4.9/gcc/tree-ssa-ifcombine.c
index be28fb004..d02d72b9e 100644
--- a/gcc-4.9/gcc/tree-ssa-ifcombine.c
+++ b/gcc-4.9/gcc/tree-ssa-ifcombine.c
@@ -127,7 +127,11 @@ bb_no_side_effects_p (basic_block bb)
{
gimple stmt = gsi_stmt (gsi);
+ if (is_gimple_debug (stmt))
+ continue;
+
if (gimple_has_side_effects (stmt)
+ || gimple_could_trap_p (stmt)
|| gimple_vuse (stmt))
return false;
}
@@ -229,7 +233,8 @@ recognize_single_bit_test (gimple cond, tree *name, tree *bit, bool inv)
while (is_gimple_assign (stmt)
&& ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt))
&& (TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (stmt)))
- <= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))))
+ <= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt))))
+ && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
|| gimple_assign_ssa_name_copy_p (stmt)))
stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
diff --git a/gcc-4.9/gcc/tree-ssa-live.c b/gcc-4.9/gcc/tree-ssa-live.c
index 3cd3613d7..db7607258 100644
--- a/gcc-4.9/gcc/tree-ssa-live.c
+++ b/gcc-4.9/gcc/tree-ssa-live.c
@@ -607,7 +607,7 @@ remove_unused_scope_block_p (tree scope)
;
/* When not generating debug info we can eliminate info on unused
variables. */
- else if (debug_info_level == DINFO_LEVEL_NONE)
+ else if (!flag_auto_profile && debug_info_level == DINFO_LEVEL_NONE)
{
/* Even for -g0 don't prune outer scopes from artificial
functions, otherwise diagnostics using tree_nonartificial_location
diff --git a/gcc-4.9/gcc/tree-ssa-loop-ivcanon.c b/gcc-4.9/gcc/tree-ssa-loop-ivcanon.c
index b475b067b..496fdf7de 100644
--- a/gcc-4.9/gcc/tree-ssa-loop-ivcanon.c
+++ b/gcc-4.9/gcc/tree-ssa-loop-ivcanon.c
@@ -1319,7 +1319,7 @@ tree_complete_unroll (void)
return tree_unroll_loops_completely (flag_unroll_loops
|| flag_peel_loops
- || optimize >= 3, true);
+ || optimize >= 2, true);
}
static bool
diff --git a/gcc-4.9/gcc/tree-ssa-math-opts.c b/gcc-4.9/gcc/tree-ssa-math-opts.c
index 9ff857cd6..292ced1d0 100644
--- a/gcc-4.9/gcc/tree-ssa-math-opts.c
+++ b/gcc-4.9/gcc/tree-ssa-math-opts.c
@@ -1620,7 +1620,7 @@ make_pass_cse_sincos (gcc::context *ctxt)
struct symbolic_number {
unsigned HOST_WIDEST_INT n;
- int size;
+ tree type;
};
/* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
@@ -1632,13 +1632,15 @@ do_shift_rotate (enum tree_code code,
struct symbolic_number *n,
int count)
{
+ int bitsize = TYPE_PRECISION (n->type);
+
if (count % 8 != 0)
return false;
/* Zero out the extra bits of N in order to avoid them being shifted
into the significant bits. */
- if (n->size < (int)sizeof (HOST_WIDEST_INT))
- n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
+ if (bitsize < 8 * (int)sizeof (HOST_WIDEST_INT))
+ n->n &= ((unsigned HOST_WIDEST_INT)1 << bitsize) - 1;
switch (code)
{
@@ -1646,20 +1648,24 @@ do_shift_rotate (enum tree_code code,
n->n <<= count;
break;
case RSHIFT_EXPR:
+ /* Arithmetic shift of signed type: result is dependent on the value. */
+ if (!TYPE_UNSIGNED (n->type)
+ && (n->n & ((unsigned HOST_WIDEST_INT) 0xff << (bitsize - 8))))
+ return false;
n->n >>= count;
break;
case LROTATE_EXPR:
- n->n = (n->n << count) | (n->n >> ((n->size * BITS_PER_UNIT) - count));
+ n->n = (n->n << count) | (n->n >> (bitsize - count));
break;
case RROTATE_EXPR:
- n->n = (n->n >> count) | (n->n << ((n->size * BITS_PER_UNIT) - count));
+ n->n = (n->n >> count) | (n->n << (bitsize - count));
break;
default:
return false;
}
/* Zero unused bits for size. */
- if (n->size < (int)sizeof (HOST_WIDEST_INT))
- n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
+ if (bitsize < 8 * (int)sizeof (HOST_WIDEST_INT))
+ n->n &= ((unsigned HOST_WIDEST_INT)1 << bitsize) - 1;
return true;
}
@@ -1676,7 +1682,7 @@ verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
if (TREE_CODE (lhs_type) != INTEGER_TYPE)
return false;
- if (TYPE_PRECISION (lhs_type) != n->size * BITS_PER_UNIT)
+ if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
return false;
return true;
@@ -1733,20 +1739,23 @@ find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
to initialize the symbolic number. */
if (!source_expr1)
{
+ int size;
+
/* Set up the symbolic number N by setting each byte to a
value between 1 and the byte size of rhs1. The highest
order byte is set to n->size and the lowest order
byte to 1. */
- n->size = TYPE_PRECISION (TREE_TYPE (rhs1));
- if (n->size % BITS_PER_UNIT != 0)
+ n->type = TREE_TYPE (rhs1);
+ size = TYPE_PRECISION (n->type);
+ if (size % BITS_PER_UNIT != 0)
return NULL_TREE;
- n->size /= BITS_PER_UNIT;
+ size /= BITS_PER_UNIT;
n->n = (sizeof (HOST_WIDEST_INT) < 8 ? 0 :
(unsigned HOST_WIDEST_INT)0x08070605 << 32 | 0x04030201);
- if (n->size < (int)sizeof (HOST_WIDEST_INT))
+ if (size < (int)sizeof (HOST_WIDEST_INT))
n->n &= ((unsigned HOST_WIDEST_INT)1 <<
- (n->size * BITS_PER_UNIT)) - 1;
+ (size * BITS_PER_UNIT)) - 1;
source_expr1 = rhs1;
}
@@ -1755,12 +1764,12 @@ find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
{
case BIT_AND_EXPR:
{
- int i;
+ int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
unsigned HOST_WIDEST_INT val = widest_int_cst_value (rhs2);
unsigned HOST_WIDEST_INT tmp = val;
/* Only constants masking full bytes are allowed. */
- for (i = 0; i < n->size; i++, tmp >>= BITS_PER_UNIT)
+ for (i = 0; i < size; i++, tmp >>= BITS_PER_UNIT)
if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
return NULL_TREE;
@@ -1776,19 +1785,29 @@ find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
break;
CASE_CONVERT:
{
- int type_size;
+ int type_size, old_type_size;
+ tree type;
- type_size = TYPE_PRECISION (gimple_expr_type (stmt));
+ type = gimple_expr_type (stmt);
+ type_size = TYPE_PRECISION (type);
if (type_size % BITS_PER_UNIT != 0)
return NULL_TREE;
+ /* Sign extension: result is dependent on the value. */
+ old_type_size = TYPE_PRECISION (n->type);
+ if (!TYPE_UNSIGNED (n->type)
+ && type_size > old_type_size
+ && n->n &
+ ((unsigned HOST_WIDEST_INT) 0xff << (old_type_size - 8)))
+ return NULL_TREE;
+
if (type_size / BITS_PER_UNIT < (int)(sizeof (HOST_WIDEST_INT)))
{
/* If STMT casts to a smaller type mask out the bits not
belonging to the target type. */
n->n &= ((unsigned HOST_WIDEST_INT)1 << type_size) - 1;
}
- n->size = type_size / BITS_PER_UNIT;
+ n->type = type;
}
break;
default:
@@ -1801,7 +1820,7 @@ find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
if (rhs_class == GIMPLE_BINARY_RHS)
{
- int i;
+ int i, size;
struct symbolic_number n1, n2;
unsigned HOST_WIDEST_INT mask;
tree source_expr2;
@@ -1825,11 +1844,12 @@ find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
source_expr2 = find_bswap_1 (rhs2_stmt, &n2, limit - 1);
if (source_expr1 != source_expr2
- || n1.size != n2.size)
+ || TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
return NULL_TREE;
- n->size = n1.size;
- for (i = 0, mask = 0xff; i < n->size; i++, mask <<= BITS_PER_UNIT)
+ n->type = n1.type;
+ size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
+ for (i = 0, mask = 0xff; i < size; i++, mask <<= BITS_PER_UNIT)
{
unsigned HOST_WIDEST_INT masked1, masked2;
@@ -1868,7 +1888,7 @@ find_bswap (gimple stmt)
struct symbolic_number n;
tree source_expr;
- int limit;
+ int limit, bitsize;
/* The last parameter determines the depth search limit. It usually
correlates directly to the number of bytes to be touched. We
@@ -1883,13 +1903,14 @@ find_bswap (gimple stmt)
return NULL_TREE;
/* Zero out the extra bits of N and CMP. */
- if (n.size < (int)sizeof (HOST_WIDEST_INT))
+ bitsize = TYPE_PRECISION (n.type);
+ if (bitsize < 8 * (int)sizeof (HOST_WIDEST_INT))
{
unsigned HOST_WIDEST_INT mask =
- ((unsigned HOST_WIDEST_INT)1 << (n.size * BITS_PER_UNIT)) - 1;
+ ((unsigned HOST_WIDEST_INT)1 << bitsize) - 1;
n.n &= mask;
- cmp >>= (sizeof (HOST_WIDEST_INT) - n.size) * BITS_PER_UNIT;
+ cmp >>= sizeof (HOST_WIDEST_INT) * BITS_PER_UNIT - bitsize;
}
/* A complete byte swap should make the symbolic number to start
diff --git a/gcc-4.9/gcc/tree-ssa-operands.c b/gcc-4.9/gcc/tree-ssa-operands.c
index c525fe579..6647801aa 100644
--- a/gcc-4.9/gcc/tree-ssa-operands.c
+++ b/gcc-4.9/gcc/tree-ssa-operands.c
@@ -864,6 +864,7 @@ get_expr_operands (struct function *fn, gimple stmt, tree *expr_p, int flags)
}
case DOT_PROD_EXPR:
+ case SAD_EXPR:
case REALIGN_LOAD_EXPR:
case WIDEN_MULT_PLUS_EXPR:
case WIDEN_MULT_MINUS_EXPR:
diff --git a/gcc-4.9/gcc/tree-ssa-sccvn.c b/gcc-4.9/gcc/tree-ssa-sccvn.c
index f7ec8b6d6..5bf4e9289 100644
--- a/gcc-4.9/gcc/tree-ssa-sccvn.c
+++ b/gcc-4.9/gcc/tree-ssa-sccvn.c
@@ -3074,33 +3074,12 @@ visit_phi (gimple phi)
/* If all value numbered to the same value, the phi node has that
value. */
if (allsame)
- {
- if (is_gimple_min_invariant (sameval))
- {
- VN_INFO (PHI_RESULT (phi))->has_constants = true;
- VN_INFO (PHI_RESULT (phi))->expr = sameval;
- }
- else
- {
- VN_INFO (PHI_RESULT (phi))->has_constants = false;
- VN_INFO (PHI_RESULT (phi))->expr = sameval;
- }
-
- if (TREE_CODE (sameval) == SSA_NAME)
- return visit_copy (PHI_RESULT (phi), sameval);
-
- return set_ssa_val_to (PHI_RESULT (phi), sameval);
- }
+ return set_ssa_val_to (PHI_RESULT (phi), sameval);
/* Otherwise, see if it is equivalent to a phi node in this block. */
result = vn_phi_lookup (phi);
if (result)
- {
- if (TREE_CODE (result) == SSA_NAME)
- changed = visit_copy (PHI_RESULT (phi), result);
- else
- changed = set_ssa_val_to (PHI_RESULT (phi), result);
- }
+ changed = set_ssa_val_to (PHI_RESULT (phi), result);
else
{
vn_phi_insert (phi, PHI_RESULT (phi));
@@ -3214,24 +3193,18 @@ simplify_binary_expression (gimple stmt)
catch those with constants. The goal here is to simultaneously
combine constants between expressions, but avoid infinite
expansion of expressions during simplification. */
- if (TREE_CODE (op0) == SSA_NAME)
- {
- if (VN_INFO (op0)->has_constants
+ op0 = vn_valueize (op0);
+ if (TREE_CODE (op0) == SSA_NAME
+ && (VN_INFO (op0)->has_constants
|| TREE_CODE_CLASS (code) == tcc_comparison
- || code == COMPLEX_EXPR)
- op0 = valueize_expr (vn_get_expr_for (op0));
- else
- op0 = vn_valueize (op0);
- }
+ || code == COMPLEX_EXPR))
+ op0 = valueize_expr (vn_get_expr_for (op0));
- if (TREE_CODE (op1) == SSA_NAME)
- {
- if (VN_INFO (op1)->has_constants
- || code == COMPLEX_EXPR)
- op1 = valueize_expr (vn_get_expr_for (op1));
- else
- op1 = vn_valueize (op1);
- }
+ op1 = vn_valueize (op1);
+ if (TREE_CODE (op1) == SSA_NAME
+ && (VN_INFO (op1)->has_constants
+ || code == COMPLEX_EXPR))
+ op1 = valueize_expr (vn_get_expr_for (op1));
/* Pointer plus constant can be represented as invariant address.
Do so to allow further propatation, see also tree forwprop. */
@@ -3289,24 +3262,28 @@ simplify_unary_expression (gimple stmt)
return NULL_TREE;
orig_op0 = op0;
- if (VN_INFO (op0)->has_constants)
- op0 = valueize_expr (vn_get_expr_for (op0));
- else if (CONVERT_EXPR_CODE_P (code)
- || code == REALPART_EXPR
- || code == IMAGPART_EXPR
- || code == VIEW_CONVERT_EXPR
- || code == BIT_FIELD_REF)
+ op0 = vn_valueize (op0);
+ if (TREE_CODE (op0) == SSA_NAME)
{
- /* We want to do tree-combining on conversion-like expressions.
- Make sure we feed only SSA_NAMEs or constants to fold though. */
- tree tem = valueize_expr (vn_get_expr_for (op0));
- if (UNARY_CLASS_P (tem)
- || BINARY_CLASS_P (tem)
- || TREE_CODE (tem) == VIEW_CONVERT_EXPR
- || TREE_CODE (tem) == SSA_NAME
- || TREE_CODE (tem) == CONSTRUCTOR
- || is_gimple_min_invariant (tem))
- op0 = tem;
+ if (VN_INFO (op0)->has_constants)
+ op0 = valueize_expr (vn_get_expr_for (op0));
+ else if (CONVERT_EXPR_CODE_P (code)
+ || code == REALPART_EXPR
+ || code == IMAGPART_EXPR
+ || code == VIEW_CONVERT_EXPR
+ || code == BIT_FIELD_REF)
+ {
+ /* We want to do tree-combining on conversion-like expressions.
+ Make sure we feed only SSA_NAMEs or constants to fold though. */
+ tree tem = valueize_expr (vn_get_expr_for (op0));
+ if (UNARY_CLASS_P (tem)
+ || BINARY_CLASS_P (tem)
+ || TREE_CODE (tem) == VIEW_CONVERT_EXPR
+ || TREE_CODE (tem) == SSA_NAME
+ || TREE_CODE (tem) == CONSTRUCTOR
+ || is_gimple_min_invariant (tem))
+ op0 = tem;
+ }
}
/* Avoid folding if nothing changed, but remember the expression. */
diff --git a/gcc-4.9/gcc/tree-ssa-structalias.c b/gcc-4.9/gcc/tree-ssa-structalias.c
index 347dba3e9..abc99ba37 100644
--- a/gcc-4.9/gcc/tree-ssa-structalias.c
+++ b/gcc-4.9/gcc/tree-ssa-structalias.c
@@ -6091,6 +6091,10 @@ find_what_var_points_to (varinfo_t orig_vi)
pt->ipa_escaped = 1;
else
pt->escaped = 1;
+ /* Expand some special vars of ESCAPED in-place here. */
+ varinfo_t evi = get_varinfo (find (escaped_id));
+ if (bitmap_bit_p (evi->solution, nonlocal_id))
+ pt->nonlocal = 1;
}
else if (vi->id == nonlocal_id)
pt->nonlocal = 1;
diff --git a/gcc-4.9/gcc/tree-ssa-tail-merge.c b/gcc-4.9/gcc/tree-ssa-tail-merge.c
index f6b1ba081..aa7f829d1 100644
--- a/gcc-4.9/gcc/tree-ssa-tail-merge.c
+++ b/gcc-4.9/gcc/tree-ssa-tail-merge.c
@@ -481,7 +481,11 @@ same_succ_hash (const_same_succ e)
hashval = iterative_hash_hashval_t
((hashval_t) gimple_call_internal_fn (stmt), hashval);
else
- hashval = iterative_hash_expr (gimple_call_fn (stmt), hashval);
+ {
+ hashval = iterative_hash_expr (gimple_call_fn (stmt), hashval);
+ if (gimple_call_chain (stmt))
+ hashval = iterative_hash_expr (gimple_call_chain (stmt), hashval);
+ }
for (i = 0; i < gimple_call_num_args (stmt); i++)
{
arg = gimple_call_arg (stmt, i);
@@ -1121,18 +1125,23 @@ gimple_equal_p (same_succ same_succ, gimple s1, gimple s2)
switch (gimple_code (s1))
{
case GIMPLE_CALL:
- if (gimple_call_num_args (s1) != gimple_call_num_args (s2))
- return false;
if (!gimple_call_same_target_p (s1, s2))
return false;
+ t1 = gimple_call_chain (s1);
+ t2 = gimple_call_chain (s2);
+ if (!gimple_operand_equal_value_p (t1, t2))
+ return false;
+
+ if (gimple_call_num_args (s1) != gimple_call_num_args (s2))
+ return false;
+
for (i = 0; i < gimple_call_num_args (s1); ++i)
{
t1 = gimple_call_arg (s1, i);
t2 = gimple_call_arg (s2, i);
- if (gimple_operand_equal_value_p (t1, t2))
- continue;
- return false;
+ if (!gimple_operand_equal_value_p (t1, t2))
+ return false;
}
lhs1 = gimple_get_lhs (s1);
diff --git a/gcc-4.9/gcc/tree-ssa-threadedge.c b/gcc-4.9/gcc/tree-ssa-threadedge.c
index 8e628d553..c715e842d 100644
--- a/gcc-4.9/gcc/tree-ssa-threadedge.c
+++ b/gcc-4.9/gcc/tree-ssa-threadedge.c
@@ -199,9 +199,7 @@ record_temporary_equivalence (tree x, tree y, vec<tree> *stack)
traversing back edges less painful. */
static bool
-record_temporary_equivalences_from_phis (edge e, vec<tree> *stack,
- bool backedge_seen,
- bitmap src_map, bitmap dst_map)
+record_temporary_equivalences_from_phis (edge e, vec<tree> *stack)
{
gimple_stmt_iterator gsi;
@@ -229,14 +227,6 @@ record_temporary_equivalences_from_phis (edge e, vec<tree> *stack,
stmt_count++;
record_temporary_equivalence (dst, src, stack);
-
- /* If we have crossed a backedge, then start recording equivalences
- we might need to invalidate. */
- if (backedge_seen && TREE_CODE (src) == SSA_NAME)
- {
- bitmap_set_bit (src_map, SSA_NAME_VERSION (src));
- bitmap_set_bit (dst_map, SSA_NAME_VERSION (dst));
- }
}
return true;
}
@@ -294,29 +284,15 @@ fold_assignment_stmt (gimple stmt)
/* A new value has been assigned to LHS. If necessary, invalidate any
equivalences that are no longer valid. */
static void
-invalidate_equivalences (tree lhs, vec<tree> *stack,
- bitmap src_map, bitmap dst_map)
+invalidate_equivalences (tree lhs, vec<tree> *stack)
{
- /* SRC_MAP contains the source SSA_NAMEs for equivalences created by PHI
- nodes. If an entry in SRC_MAP changes, there's some destination that
- has been recorded as equivalent to the source and that equivalency
- needs to be eliminated. */
- if (bitmap_bit_p (src_map, SSA_NAME_VERSION (lhs)))
- {
- unsigned int i;
- bitmap_iterator bi;
-
- /* We know that the LHS of STMT was used as the RHS in an equivalency
- created by a PHI. All the LHS of such PHIs were recorded into DST_MAP.
- So we can iterate over them to see if any have the LHS of STMT as
- an equivalence, and if so, remove the equivalence as it is no longer
- valid. */
- EXECUTE_IF_SET_IN_BITMAP (dst_map, 0, i, bi)
- {
- if (SSA_NAME_VALUE (ssa_name (i)) == lhs)
- record_temporary_equivalence (ssa_name (i), NULL_TREE, stack);
- }
- }
+
+ for (unsigned int i = 1; i < num_ssa_names; i++)
+ if (ssa_name (i) && SSA_NAME_VALUE (ssa_name (i)) == lhs)
+ record_temporary_equivalence (ssa_name (i), NULL_TREE, stack);
+
+ if (SSA_NAME_VALUE (lhs))
+ record_temporary_equivalence (lhs, NULL_TREE, stack);
}
/* Try to simplify each statement in E->dest, ultimately leading to
@@ -341,9 +317,7 @@ record_temporary_equivalences_from_stmts_at_dest (edge e,
vec<tree> *stack,
tree (*simplify) (gimple,
gimple),
- bool backedge_seen,
- bitmap src_map,
- bitmap dst_map)
+ bool backedge_seen)
{
gimple stmt = NULL;
gimple_stmt_iterator gsi;
@@ -399,19 +373,7 @@ record_temporary_equivalences_from_stmts_at_dest (edge e,
if (backedge_seen)
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
- {
- /* This call only invalidates equivalences created by
- PHI nodes. This is by design to keep the cost of
- of invalidation reasonable. */
- invalidate_equivalences (op, stack, src_map, dst_map);
-
- /* However, conditionals can imply values for real
- operands as well. And those won't be recorded in the
- maps. In fact, those equivalences may be recorded totally
- outside the threading code. We can just create a new
- temporary NULL equivalence here. */
- record_temporary_equivalence (op, NULL_TREE, stack);
- }
+ invalidate_equivalences (op, stack);
continue;
}
@@ -451,8 +413,7 @@ record_temporary_equivalences_from_stmts_at_dest (edge e,
if (backedge_seen)
{
tree lhs = gimple_get_lhs (stmt);
- record_temporary_equivalence (lhs, NULL_TREE, stack);
- invalidate_equivalences (lhs, stack, src_map, dst_map);
+ invalidate_equivalences (lhs, stack);
}
continue;
}
@@ -530,11 +491,7 @@ record_temporary_equivalences_from_stmts_at_dest (edge e,
|| is_gimple_min_invariant (cached_lhs)))
record_temporary_equivalence (gimple_get_lhs (stmt), cached_lhs, stack);
else if (backedge_seen)
- record_temporary_equivalence (gimple_get_lhs (stmt), NULL_TREE, stack);
-
- if (backedge_seen)
- invalidate_equivalences (gimple_get_lhs (stmt), stack,
- src_map, dst_map);
+ invalidate_equivalences (gimple_get_lhs (stmt), stack);
}
return stmt;
}
@@ -981,9 +938,7 @@ thread_through_normal_block (edge e,
tree (*simplify) (gimple, gimple),
vec<jump_thread_edge *> *path,
bitmap visited,
- bool *backedge_seen_p,
- bitmap src_map,
- bitmap dst_map)
+ bool *backedge_seen_p)
{
/* If we have traversed a backedge, then we do not want to look
at certain expressions in the table that can not be relied upon.
@@ -992,17 +947,18 @@ thread_through_normal_block (edge e,
if (*backedge_seen_p)
simplify = dummy_simplify;
- /* PHIs create temporary equivalences. */
- if (!record_temporary_equivalences_from_phis (e, stack, *backedge_seen_p,
- src_map, dst_map))
- return 0;
+ /* PHIs create temporary equivalences.
+ Note that if we found a PHI that made the block non-threadable, then
+ we need to bubble that up to our caller in the same manner we do
+ when we prematurely stop processing statements below. */
+ if (!record_temporary_equivalences_from_phis (e, stack))
+ return -1;
/* Now walk each statement recording any context sensitive
temporary equivalences we can detect. */
gimple stmt
= record_temporary_equivalences_from_stmts_at_dest (e, stack, simplify,
- *backedge_seen_p,
- src_map, dst_map);
+ *backedge_seen_p);
/* If we didn't look at all the statements, the most likely reason is
there were too many and thus duplicating this block is not profitable.
@@ -1111,8 +1067,6 @@ thread_across_edge (gimple dummy_cond,
tree (*simplify) (gimple, gimple))
{
bitmap visited = BITMAP_ALLOC (NULL);
- bitmap src_map = BITMAP_ALLOC (NULL);
- bitmap dst_map = BITMAP_ALLOC (NULL);
bool backedge_seen;
stmt_count = 0;
@@ -1128,16 +1082,13 @@ thread_across_edge (gimple dummy_cond,
int threaded = thread_through_normal_block (e, dummy_cond,
handle_dominating_asserts,
stack, simplify, path,
- visited, &backedge_seen,
- src_map, dst_map);
+ visited, &backedge_seen);
if (threaded > 0)
{
propagate_threaded_block_debug_into (path->last ()->e->dest,
e->dest);
remove_temporary_equivalences (stack);
BITMAP_FREE (visited);
- BITMAP_FREE (src_map);
- BITMAP_FREE (dst_map);
register_jump_thread (path);
return;
}
@@ -1159,8 +1110,6 @@ thread_across_edge (gimple dummy_cond,
if (threaded < 0)
{
BITMAP_FREE (visited);
- BITMAP_FREE (src_map);
- BITMAP_FREE (dst_map);
remove_temporary_equivalences (stack);
return;
}
@@ -1189,26 +1138,15 @@ thread_across_edge (gimple dummy_cond,
{
remove_temporary_equivalences (stack);
BITMAP_FREE (visited);
- BITMAP_FREE (src_map);
- BITMAP_FREE (dst_map);
return;
}
- /* We need to restore the state of the maps to this point each loop
- iteration. */
- bitmap src_map_copy = BITMAP_ALLOC (NULL);
- bitmap dst_map_copy = BITMAP_ALLOC (NULL);
- bitmap_copy (src_map_copy, src_map);
- bitmap_copy (dst_map_copy, dst_map);
-
/* Look at each successor of E->dest to see if we can thread through it. */
FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
{
/* Push a fresh marker so we can unwind the equivalences created
for each of E->dest's successors. */
stack->safe_push (NULL_TREE);
- bitmap_copy (src_map, src_map_copy);
- bitmap_copy (dst_map, dst_map_copy);
/* Avoid threading to any block we have already visited. */
bitmap_clear (visited);
@@ -1244,8 +1182,7 @@ thread_across_edge (gimple dummy_cond,
found = thread_through_normal_block (path->last ()->e, dummy_cond,
handle_dominating_asserts,
stack, simplify, path, visited,
- &backedge_seen,
- src_map, dst_map) > 0;
+ &backedge_seen) > 0;
/* If we were able to thread through a successor of E->dest, then
record the jump threading opportunity. */
@@ -1264,10 +1201,6 @@ thread_across_edge (gimple dummy_cond,
remove_temporary_equivalences (stack);
}
BITMAP_FREE (visited);
- BITMAP_FREE (src_map);
- BITMAP_FREE (dst_map);
- BITMAP_FREE (src_map_copy);
- BITMAP_FREE (dst_map_copy);
}
remove_temporary_equivalences (stack);
diff --git a/gcc-4.9/gcc/tree-ssa-uninit.c b/gcc-4.9/gcc/tree-ssa-uninit.c
index eee83f79a..ca684120b 100644
--- a/gcc-4.9/gcc/tree-ssa-uninit.c
+++ b/gcc-4.9/gcc/tree-ssa-uninit.c
@@ -149,6 +149,7 @@ warn_uninit (enum opt_code wc, tree t,
location = (context != NULL && gimple_has_location (context))
? gimple_location (context)
: DECL_SOURCE_LOCATION (var);
+ location = map_discriminator_location (location);
location = linemap_resolve_location (line_table, location,
LRK_SPELLING_LOCATION,
NULL);
diff --git a/gcc-4.9/gcc/tree-ssa.c b/gcc-4.9/gcc/tree-ssa.c
index 20f061ffa..d835bc121 100644
--- a/gcc-4.9/gcc/tree-ssa.c
+++ b/gcc-4.9/gcc/tree-ssa.c
@@ -52,6 +52,7 @@ along with GCC; see the file COPYING3. If not see
#include "hashtab.h"
#include "tree-pass.h"
#include "diagnostic-core.h"
+#include "l-ipo.h"
#include "cfgloop.h"
#include "cfgexpand.h"
diff --git a/gcc-4.9/gcc/tree-streamer-in.c b/gcc-4.9/gcc/tree-streamer-in.c
index b02bb6bd0..1839f579e 100644
--- a/gcc-4.9/gcc/tree-streamer-in.c
+++ b/gcc-4.9/gcc/tree-streamer-in.c
@@ -167,6 +167,9 @@ unpack_ts_real_cst_value_fields (struct bitpack_d *bp, tree expr)
REAL_VALUE_TYPE r;
REAL_VALUE_TYPE *rp;
+ /* Clear all bits of the real value type so that we can later do
+ bitwise comparisons to see if two values are the same. */
+ memset (&r, 0, sizeof r);
r.cl = (unsigned) bp_unpack_value (bp, 2);
r.decimal = (unsigned) bp_unpack_value (bp, 1);
r.sign = (unsigned) bp_unpack_value (bp, 1);
diff --git a/gcc-4.9/gcc/tree-vect-data-refs.c b/gcc-4.9/gcc/tree-vect-data-refs.c
index 274cdbdcf..6622bd84d 100644
--- a/gcc-4.9/gcc/tree-vect-data-refs.c
+++ b/gcc-4.9/gcc/tree-vect-data-refs.c
@@ -373,11 +373,14 @@ vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
.. = a[i+1];
where we will end up loading { a[i], a[i+1] } once, make
sure that inserting group loads before the first load and
- stores after the last store will do the right thing. */
- if ((STMT_VINFO_GROUPED_ACCESS (stmtinfo_a)
- && GROUP_SAME_DR_STMT (stmtinfo_a))
- || (STMT_VINFO_GROUPED_ACCESS (stmtinfo_b)
- && GROUP_SAME_DR_STMT (stmtinfo_b)))
+ stores after the last store will do the right thing.
+ Similar for groups like
+ a[i] = ...;
+ ... = a[i];
+ a[i+1] = ...;
+ where loads from the group interleave with the store. */
+ if (STMT_VINFO_GROUPED_ACCESS (stmtinfo_a)
+ || STMT_VINFO_GROUPED_ACCESS (stmtinfo_b))
{
gimple earlier_stmt;
earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
diff --git a/gcc-4.9/gcc/tree-vect-generic.c b/gcc-4.9/gcc/tree-vect-generic.c
index a1de7beb0..0cc83b417 100644
--- a/gcc-4.9/gcc/tree-vect-generic.c
+++ b/gcc-4.9/gcc/tree-vect-generic.c
@@ -1336,15 +1336,67 @@ lower_vec_perm (gimple_stmt_iterator *gsi)
update_stmt (gsi_stmt (*gsi));
}
+/* Return type in which CODE operation with optab OP can be
+ computed. */
+
+static tree
+get_compute_type (enum tree_code code, optab op, tree type)
+{
+ /* For very wide vectors, try using a smaller vector mode. */
+ tree compute_type = type;
+ if (op
+ && (!VECTOR_MODE_P (TYPE_MODE (type))
+ || optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing))
+ {
+ tree vector_compute_type
+ = type_for_widest_vector_mode (TREE_TYPE (type), op);
+ if (vector_compute_type != NULL_TREE
+ && (TYPE_VECTOR_SUBPARTS (vector_compute_type)
+ < TYPE_VECTOR_SUBPARTS (compute_type))
+ && (optab_handler (op, TYPE_MODE (vector_compute_type))
+ != CODE_FOR_nothing))
+ compute_type = vector_compute_type;
+ }
+
+ /* If we are breaking a BLKmode vector into smaller pieces,
+ type_for_widest_vector_mode has already looked into the optab,
+ so skip these checks. */
+ if (compute_type == type)
+ {
+ enum machine_mode compute_mode = TYPE_MODE (compute_type);
+ if (VECTOR_MODE_P (compute_mode))
+ {
+ if (op && optab_handler (op, compute_mode) != CODE_FOR_nothing)
+ return compute_type;
+ if (code == MULT_HIGHPART_EXPR
+ && can_mult_highpart_p (compute_mode,
+ TYPE_UNSIGNED (compute_type)))
+ return compute_type;
+ }
+ /* There is no operation in hardware, so fall back to scalars. */
+ compute_type = TREE_TYPE (type);
+ }
+
+ return compute_type;
+}
+
+/* Helper function of expand_vector_operations_1. Return number of
+ vector elements for vector types or 1 for other types. */
+
+static inline int
+count_type_subparts (tree type)
+{
+ return VECTOR_TYPE_P (type) ? TYPE_VECTOR_SUBPARTS (type) : 1;
+}
+
/* Process one statement. If we identify a vector operation, expand it. */
static void
expand_vector_operations_1 (gimple_stmt_iterator *gsi)
{
gimple stmt = gsi_stmt (*gsi);
- tree lhs, rhs1, rhs2 = NULL, type, compute_type;
+ tree lhs, rhs1, rhs2 = NULL, type, compute_type = NULL_TREE;
enum tree_code code;
- enum machine_mode compute_mode;
optab op = unknown_optab;
enum gimple_rhs_class rhs_class;
tree new_rhs;
@@ -1457,11 +1509,76 @@ expand_vector_operations_1 (gimple_stmt_iterator *gsi)
{
op = optab_for_tree_code (code, type, optab_scalar);
+ compute_type = get_compute_type (code, op, type);
+ if (compute_type == type)
+ return;
/* The rtl expander will expand vector/scalar as vector/vector
- if necessary. Don't bother converting the stmt here. */
- if (optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing
- && optab_handler (opv, TYPE_MODE (type)) != CODE_FOR_nothing)
+ if necessary. Pick one with wider vector type. */
+ tree compute_vtype = get_compute_type (code, opv, type);
+ if (count_type_subparts (compute_vtype)
+ > count_type_subparts (compute_type))
+ {
+ compute_type = compute_vtype;
+ op = opv;
+ }
+ }
+
+ if (code == LROTATE_EXPR || code == RROTATE_EXPR)
+ {
+ if (compute_type == NULL_TREE)
+ compute_type = get_compute_type (code, op, type);
+ if (compute_type == type)
return;
+ /* Before splitting vector rotates into scalar rotates,
+ see if we can't use vector shifts and BIT_IOR_EXPR
+ instead. For vector by vector rotates we'd also
+ need to check BIT_AND_EXPR and NEGATE_EXPR, punt there
+ for now, fold doesn't seem to create such rotates anyway. */
+ if (compute_type == TREE_TYPE (type)
+ && !VECTOR_INTEGER_TYPE_P (TREE_TYPE (rhs2)))
+ {
+ optab oplv = vashl_optab, opl = ashl_optab;
+ optab oprv = vlshr_optab, opr = lshr_optab, opo = ior_optab;
+ tree compute_lvtype = get_compute_type (LSHIFT_EXPR, oplv, type);
+ tree compute_rvtype = get_compute_type (RSHIFT_EXPR, oprv, type);
+ tree compute_otype = get_compute_type (BIT_IOR_EXPR, opo, type);
+ tree compute_ltype = get_compute_type (LSHIFT_EXPR, opl, type);
+ tree compute_rtype = get_compute_type (RSHIFT_EXPR, opr, type);
+ /* The rtl expander will expand vector/scalar as vector/vector
+ if necessary. Pick one with wider vector type. */
+ if (count_type_subparts (compute_lvtype)
+ > count_type_subparts (compute_ltype))
+ {
+ compute_ltype = compute_lvtype;
+ opl = oplv;
+ }
+ if (count_type_subparts (compute_rvtype)
+ > count_type_subparts (compute_rtype))
+ {
+ compute_rtype = compute_rvtype;
+ opr = oprv;
+ }
+ /* Pick the narrowest type from LSHIFT_EXPR, RSHIFT_EXPR and
+ BIT_IOR_EXPR. */
+ compute_type = compute_ltype;
+ if (count_type_subparts (compute_type)
+ > count_type_subparts (compute_rtype))
+ compute_type = compute_rtype;
+ if (count_type_subparts (compute_type)
+ > count_type_subparts (compute_otype))
+ compute_type = compute_otype;
+ /* Verify all 3 operations can be performed in that type. */
+ if (compute_type != TREE_TYPE (type))
+ {
+ if (optab_handler (opl, TYPE_MODE (compute_type))
+ == CODE_FOR_nothing
+ || optab_handler (opr, TYPE_MODE (compute_type))
+ == CODE_FOR_nothing
+ || optab_handler (opo, TYPE_MODE (compute_type))
+ == CODE_FOR_nothing)
+ compute_type = TREE_TYPE (type);
+ }
+ }
}
}
else
@@ -1475,38 +1592,10 @@ expand_vector_operations_1 (gimple_stmt_iterator *gsi)
&& INTEGRAL_TYPE_P (TREE_TYPE (type)))
op = optab_for_tree_code (MINUS_EXPR, type, optab_default);
- /* For very wide vectors, try using a smaller vector mode. */
- compute_type = type;
- if (!VECTOR_MODE_P (TYPE_MODE (type)) && op)
- {
- tree vector_compute_type
- = type_for_widest_vector_mode (TREE_TYPE (type), op);
- if (vector_compute_type != NULL_TREE
- && (TYPE_VECTOR_SUBPARTS (vector_compute_type)
- < TYPE_VECTOR_SUBPARTS (compute_type))
- && (optab_handler (op, TYPE_MODE (vector_compute_type))
- != CODE_FOR_nothing))
- compute_type = vector_compute_type;
- }
-
- /* If we are breaking a BLKmode vector into smaller pieces,
- type_for_widest_vector_mode has already looked into the optab,
- so skip these checks. */
+ if (compute_type == NULL_TREE)
+ compute_type = get_compute_type (code, op, type);
if (compute_type == type)
- {
- compute_mode = TYPE_MODE (compute_type);
- if (VECTOR_MODE_P (compute_mode))
- {
- if (op && optab_handler (op, compute_mode) != CODE_FOR_nothing)
- return;
- if (code == MULT_HIGHPART_EXPR
- && can_mult_highpart_p (compute_mode,
- TYPE_UNSIGNED (compute_type)))
- return;
- }
- /* There is no operation in hardware, so fall back to scalars. */
- compute_type = TREE_TYPE (type);
- }
+ return;
gcc_assert (code != VEC_LSHIFT_EXPR && code != VEC_RSHIFT_EXPR);
new_rhs = expand_vector_operation (gsi, type, compute_type, stmt, code);
diff --git a/gcc-4.9/gcc/tree-vect-loop.c b/gcc-4.9/gcc/tree-vect-loop.c
index 4204907a1..4e579043d 100644
--- a/gcc-4.9/gcc/tree-vect-loop.c
+++ b/gcc-4.9/gcc/tree-vect-loop.c
@@ -3694,6 +3694,7 @@ get_initial_def_for_reduction (gimple stmt, tree init_val,
{
case WIDEN_SUM_EXPR:
case DOT_PROD_EXPR:
+ case SAD_EXPR:
case PLUS_EXPR:
case MINUS_EXPR:
case BIT_IOR_EXPR:
diff --git a/gcc-4.9/gcc/tree-vect-patterns.c b/gcc-4.9/gcc/tree-vect-patterns.c
index 5db023fc4..2f2eeed7c 100644
--- a/gcc-4.9/gcc/tree-vect-patterns.c
+++ b/gcc-4.9/gcc/tree-vect-patterns.c
@@ -57,6 +57,8 @@ static gimple vect_recog_widen_mult_pattern (vec<gimple> *, tree *,
tree *);
static gimple vect_recog_dot_prod_pattern (vec<gimple> *, tree *,
tree *);
+static gimple vect_recog_sad_pattern (vec<gimple> *, tree *,
+ tree *);
static gimple vect_recog_pow_pattern (vec<gimple> *, tree *, tree *);
static gimple vect_recog_over_widening_pattern (vec<gimple> *, tree *,
tree *);
@@ -74,6 +76,7 @@ static vect_recog_func_ptr vect_vect_recog_func_ptrs[NUM_PATTERNS] = {
vect_recog_widen_mult_pattern,
vect_recog_widen_sum_pattern,
vect_recog_dot_prod_pattern,
+ vect_recog_sad_pattern,
vect_recog_pow_pattern,
vect_recog_widen_shift_pattern,
vect_recog_over_widening_pattern,
@@ -152,9 +155,8 @@ vect_single_imm_use (gimple def_stmt)
}
/* Check whether NAME, an ssa-name used in USE_STMT,
- is a result of a type promotion or demotion, such that:
+ is a result of a type promotion, such that:
DEF_STMT: NAME = NOP (name0)
- where the type of name0 (ORIG_TYPE) is smaller/bigger than the type of NAME.
If CHECK_SIGN is TRUE, check that either both types are signed or both are
unsigned. */
@@ -201,10 +203,8 @@ type_conversion_p (tree name, gimple use_stmt, bool check_sign,
if (TYPE_PRECISION (type) >= (TYPE_PRECISION (*orig_type) * 2))
*promotion = true;
- else if (TYPE_PRECISION (*orig_type) >= (TYPE_PRECISION (type) * 2))
- *promotion = false;
else
- return false;
+ *promotion = false;
if (!vect_is_simple_use (oprnd0, *def_stmt, loop_vinfo,
bb_vinfo, &dummy_gimple, &dummy, &dt))
@@ -445,6 +445,240 @@ vect_recog_dot_prod_pattern (vec<gimple> *stmts, tree *type_in,
}
+/* Function vect_recog_sad_pattern
+
+ Try to find the following Sum of Absolute Difference (SAD) pattern:
+
+ type x_t, y_t;
+ signed TYPE1 diff, abs_diff;
+ TYPE2 sum = init;
+ loop:
+ sum_0 = phi <init, sum_1>
+ S1 x_t = ...
+ S2 y_t = ...
+ S3 x_T = (TYPE1) x_t;
+ S4 y_T = (TYPE1) y_t;
+ S5 diff = x_T - y_T;
+ S6 abs_diff = ABS_EXPR <diff>;
+ [S7 abs_diff = (TYPE2) abs_diff; #optional]
+ S8 sum_1 = abs_diff + sum_0;
+
+ where 'TYPE1' is at least double the size of type 'type', and 'TYPE2' is the
+ same size of 'TYPE1' or bigger. This is a special case of a reduction
+ computation.
+
+ Input:
+
+ * STMTS: Contains a stmt from which the pattern search begins. In the
+ example, when this function is called with S8, the pattern
+ {S3,S4,S5,S6,S7,S8} will be detected.
+
+ Output:
+
+ * TYPE_IN: The type of the input arguments to the pattern.
+
+ * TYPE_OUT: The type of the output of this pattern.
+
+ * Return value: A new stmt that will be used to replace the sequence of
+ stmts that constitute the pattern. In this case it will be:
+ SAD_EXPR <x_t, y_t, sum_0>
+ */
+
+static gimple
+vect_recog_sad_pattern (vec<gimple> *stmts, tree *type_in,
+ tree *type_out)
+{
+ gimple last_stmt = (*stmts)[0];
+ tree sad_oprnd0, sad_oprnd1;
+ stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
+ tree half_type;
+ loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
+ struct loop *loop;
+ bool promotion;
+
+ if (!loop_info)
+ return NULL;
+
+ loop = LOOP_VINFO_LOOP (loop_info);
+
+ if (!is_gimple_assign (last_stmt))
+ return NULL;
+
+ tree sum_type = gimple_expr_type (last_stmt);
+
+ /* Look for the following pattern
+ DX = (TYPE1) X;
+ DY = (TYPE1) Y;
+ DDIFF = DX - DY;
+ DAD = ABS_EXPR <DDIFF>;
+ DDPROD = (TYPE2) DPROD;
+ sum_1 = DAD + sum_0;
+ In which
+ - DX is at least double the size of X
+ - DY is at least double the size of Y
+ - DX, DY, DDIFF, DAD all have the same type
+ - sum is the same size of DAD or bigger
+ - sum has been recognized as a reduction variable.
+
+ This is equivalent to:
+ DDIFF = X w- Y; #widen sub
+ DAD = ABS_EXPR <DDIFF>;
+ sum_1 = DAD w+ sum_0; #widen summation
+ or
+ DDIFF = X w- Y; #widen sub
+ DAD = ABS_EXPR <DDIFF>;
+ sum_1 = DAD + sum_0; #summation
+ */
+
+ /* Starting from LAST_STMT, follow the defs of its uses in search
+ of the above pattern. */
+
+ if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
+ return NULL;
+
+ tree plus_oprnd0, plus_oprnd1;
+
+ if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
+ {
+ /* Has been detected as widening-summation? */
+
+ gimple stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
+ sum_type = gimple_expr_type (stmt);
+ if (gimple_assign_rhs_code (stmt) != WIDEN_SUM_EXPR)
+ return NULL;
+ plus_oprnd0 = gimple_assign_rhs1 (stmt);
+ plus_oprnd1 = gimple_assign_rhs2 (stmt);
+ half_type = TREE_TYPE (plus_oprnd0);
+ }
+ else
+ {
+ gimple def_stmt;
+
+ if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def)
+ return NULL;
+ plus_oprnd0 = gimple_assign_rhs1 (last_stmt);
+ plus_oprnd1 = gimple_assign_rhs2 (last_stmt);
+ if (!types_compatible_p (TREE_TYPE (plus_oprnd0), sum_type)
+ || !types_compatible_p (TREE_TYPE (plus_oprnd1), sum_type))
+ return NULL;
+
+ /* The type conversion could be promotion, demotion,
+ or just signed -> unsigned. */
+ if (type_conversion_p (plus_oprnd0, last_stmt, false,
+ &half_type, &def_stmt, &promotion))
+ plus_oprnd0 = gimple_assign_rhs1 (def_stmt);
+ else
+ half_type = sum_type;
+ }
+
+ /* So far so good. Since last_stmt was detected as a (summation) reduction,
+ we know that plus_oprnd1 is the reduction variable (defined by a loop-header
+ phi), and plus_oprnd0 is an ssa-name defined by a stmt in the loop body.
+ Then check that plus_oprnd0 is defined by an abs_expr. */
+
+ if (TREE_CODE (plus_oprnd0) != SSA_NAME)
+ return NULL;
+
+ tree abs_type = half_type;
+ gimple abs_stmt = SSA_NAME_DEF_STMT (plus_oprnd0);
+
+ /* It could not be the sad pattern if the abs_stmt is outside the loop. */
+ if (!gimple_bb (abs_stmt) || !flow_bb_inside_loop_p (loop, gimple_bb (abs_stmt)))
+ return NULL;
+
+ /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
+ inside the loop (in case we are analyzing an outer-loop). */
+ if (!is_gimple_assign (abs_stmt))
+ return NULL;
+
+ stmt_vec_info abs_stmt_vinfo = vinfo_for_stmt (abs_stmt);
+ gcc_assert (abs_stmt_vinfo);
+ if (STMT_VINFO_DEF_TYPE (abs_stmt_vinfo) != vect_internal_def)
+ return NULL;
+ if (gimple_assign_rhs_code (abs_stmt) != ABS_EXPR)
+ return NULL;
+
+ tree abs_oprnd = gimple_assign_rhs1 (abs_stmt);
+ if (!types_compatible_p (TREE_TYPE (abs_oprnd), abs_type))
+ return NULL;
+ if (TYPE_UNSIGNED (abs_type))
+ return NULL;
+
+ /* We then detect if the operand of abs_expr is defined by a minus_expr. */
+
+ if (TREE_CODE (abs_oprnd) != SSA_NAME)
+ return NULL;
+
+ gimple diff_stmt = SSA_NAME_DEF_STMT (abs_oprnd);
+
+ /* It could not be the sad pattern if the diff_stmt is outside the loop. */
+ if (!gimple_bb (diff_stmt)
+ || !flow_bb_inside_loop_p (loop, gimple_bb (diff_stmt)))
+ return NULL;
+
+ /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
+ inside the loop (in case we are analyzing an outer-loop). */
+ if (!is_gimple_assign (diff_stmt))
+ return NULL;
+
+ stmt_vec_info diff_stmt_vinfo = vinfo_for_stmt (diff_stmt);
+ gcc_assert (diff_stmt_vinfo);
+ if (STMT_VINFO_DEF_TYPE (diff_stmt_vinfo) != vect_internal_def)
+ return NULL;
+ if (gimple_assign_rhs_code (diff_stmt) != MINUS_EXPR)
+ return NULL;
+
+ tree half_type0, half_type1;
+ gimple def_stmt;
+
+ tree minus_oprnd0 = gimple_assign_rhs1 (diff_stmt);
+ tree minus_oprnd1 = gimple_assign_rhs2 (diff_stmt);
+
+ if (!types_compatible_p (TREE_TYPE (minus_oprnd0), abs_type)
+ || !types_compatible_p (TREE_TYPE (minus_oprnd1), abs_type))
+ return NULL;
+ if (!type_conversion_p (minus_oprnd0, diff_stmt, false,
+ &half_type0, &def_stmt, &promotion)
+ || !promotion)
+ return NULL;
+ sad_oprnd0 = gimple_assign_rhs1 (def_stmt);
+
+ if (!type_conversion_p (minus_oprnd1, diff_stmt, false,
+ &half_type1, &def_stmt, &promotion)
+ || !promotion)
+ return NULL;
+ sad_oprnd1 = gimple_assign_rhs1 (def_stmt);
+
+ if (!types_compatible_p (half_type0, half_type1))
+ return NULL;
+ if (TYPE_PRECISION (abs_type) < TYPE_PRECISION (half_type0) * 2
+ || TYPE_PRECISION (sum_type) < TYPE_PRECISION (half_type0) * 2)
+ return NULL;
+
+ *type_in = TREE_TYPE (sad_oprnd0);
+ *type_out = sum_type;
+
+ /* Pattern detected. Create a stmt to be used to replace the pattern: */
+ tree var = vect_recog_temp_ssa_var (sum_type, NULL);
+ gimple pattern_stmt = gimple_build_assign_with_ops
+ (SAD_EXPR, var, sad_oprnd0, sad_oprnd1, plus_oprnd1);
+
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vect_recog_sad_pattern: detected: ");
+ dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ /* We don't allow changing the order of the computation in the inner-loop
+ when doing outer-loop vectorization. */
+ gcc_assert (!nested_in_vect_loop_p (loop, last_stmt));
+
+ return pattern_stmt;
+}
+
+
/* Handle widening operation by a constant. At the moment we support MULT_EXPR
and LSHIFT_EXPR.
diff --git a/gcc-4.9/gcc/tree-vectorizer.h b/gcc-4.9/gcc/tree-vectorizer.h
index fa2989d72..7733faa8f 100644
--- a/gcc-4.9/gcc/tree-vectorizer.h
+++ b/gcc-4.9/gcc/tree-vectorizer.h
@@ -1123,7 +1123,7 @@ extern void vect_slp_transform_bb (basic_block);
Additional pattern recognition functions can (and will) be added
in the future. */
typedef gimple (* vect_recog_func_ptr) (vec<gimple> *, tree *, tree *);
-#define NUM_PATTERNS 11
+#define NUM_PATTERNS 12
void vect_pattern_recog (loop_vec_info, bb_vec_info);
/* In tree-vectorizer.c. */
diff --git a/gcc-4.9/gcc/tree-vrp.c b/gcc-4.9/gcc/tree-vrp.c
index 14f1526fa..2c80135f9 100644
--- a/gcc-4.9/gcc/tree-vrp.c
+++ b/gcc-4.9/gcc/tree-vrp.c
@@ -3616,15 +3616,18 @@ extract_range_basic (value_range_t *vr, gimple stmt)
/* If arg is non-zero, then ffs or popcount
are non-zero. */
if (((vr0->type == VR_RANGE
- && integer_nonzerop (vr0->min))
+ && range_includes_zero_p (vr0->min, vr0->max) == 0)
|| (vr0->type == VR_ANTI_RANGE
- && integer_zerop (vr0->min)))
- && !is_overflow_infinity (vr0->min))
+ && range_includes_zero_p (vr0->min, vr0->max) == 1))
+ && !is_overflow_infinity (vr0->min)
+ && !is_overflow_infinity (vr0->max))
mini = 1;
/* If some high bits are known to be zero,
we can decrease the maximum. */
if (vr0->type == VR_RANGE
&& TREE_CODE (vr0->max) == INTEGER_CST
+ && !operand_less_p (vr0->min,
+ build_zero_cst (TREE_TYPE (vr0->min)))
&& !is_overflow_infinity (vr0->max))
maxi = tree_floor_log2 (vr0->max) + 1;
}
@@ -6661,8 +6664,9 @@ remove_range_assertions (void)
}
else
{
+ if (!is_gimple_debug (gsi_stmt (si)))
+ is_unreachable = 0;
gsi_next (&si);
- is_unreachable = 0;
}
}
}
diff --git a/gcc-4.9/gcc/tree.c b/gcc-4.9/gcc/tree.c
index efee5e69c..0b0787967 100644
--- a/gcc-4.9/gcc/tree.c
+++ b/gcc-4.9/gcc/tree.c
@@ -75,6 +75,7 @@ along with GCC; see the file COPYING3. If not see
#include "except.h"
#include "debug.h"
#include "intl.h"
+#include "l-ipo.h"
/* Tree code classes. */
@@ -252,7 +253,7 @@ unsigned const char omp_clause_num_ops[] =
4, /* OMP_CLAUSE_REDUCTION */
1, /* OMP_CLAUSE_COPYIN */
1, /* OMP_CLAUSE_COPYPRIVATE */
- 2, /* OMP_CLAUSE_LINEAR */
+ 3, /* OMP_CLAUSE_LINEAR */
2, /* OMP_CLAUSE_ALIGNED */
1, /* OMP_CLAUSE_DEPEND */
1, /* OMP_CLAUSE_UNIFORM */
@@ -11079,8 +11080,13 @@ walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
}
- case OMP_CLAUSE_ALIGNED:
case OMP_CLAUSE_LINEAR:
+ WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
+ WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
+ WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
+ WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
+
+ case OMP_CLAUSE_ALIGNED:
case OMP_CLAUSE_FROM:
case OMP_CLAUSE_TO:
case OMP_CLAUSE_MAP:
@@ -11895,7 +11901,7 @@ types_same_for_odr (tree type1, tree type2)
if (!same_for_odr (TYPE_CONTEXT (type1), TYPE_CONTEXT (type2)))
return false;
/* When not in LTO the MAIN_VARIANT check should be the same. */
- gcc_assert (in_lto_p);
+ gcc_assert (in_lto_p || L_IPO_COMP_MODE);
return true;
}
diff --git a/gcc-4.9/gcc/tree.def b/gcc-4.9/gcc/tree.def
index f8d64447d..2e8fe1fdc 100644
--- a/gcc-4.9/gcc/tree.def
+++ b/gcc-4.9/gcc/tree.def
@@ -1172,6 +1172,22 @@ DEFTREECODE (DOT_PROD_EXPR, "dot_prod_expr", tcc_expression, 3)
with the second argument. */
DEFTREECODE (WIDEN_SUM_EXPR, "widen_sum_expr", tcc_binary, 2)
+/* Widening sad (sum of absolute differences).
+ The first two arguments are of type t1 which should be integer.
+ The third argument and the result are of type t2, such that t2 is at least
+ twice the size of t1. Like DOT_PROD_EXPR, SAD_EXPR (arg1,arg2,arg3) is
+ equivalent to (note we don't have WIDEN_MINUS_EXPR now, but we assume its
+ behavior is similar to WIDEN_SUM_EXPR):
+ tmp = WIDEN_MINUS_EXPR (arg1, arg2)
+ tmp2 = ABS_EXPR (tmp)
+ arg3 = PLUS_EXPR (tmp2, arg3)
+ or:
+ tmp = WIDEN_MINUS_EXPR (arg1, arg2)
+ tmp2 = ABS_EXPR (tmp)
+ arg3 = WIDEN_SUM_EXPR (tmp2, arg3)
+ */
+DEFTREECODE (SAD_EXPR, "sad_expr", tcc_expression, 3)
+
/* Widening multiplication.
The two arguments are of type t1.
The result is of type t2, such that t2 is at least twice
diff --git a/gcc-4.9/gcc/tree.h b/gcc-4.9/gcc/tree.h
index 90e5e275c..b656b7b46 100644
--- a/gcc-4.9/gcc/tree.h
+++ b/gcc-4.9/gcc/tree.h
@@ -854,6 +854,10 @@ extern void omp_clause_range_check_failed (const_tree, const char *, int,
/* In fixed-point types, means a saturating type. */
#define TYPE_SATURATING(NODE) (TYPE_CHECK (NODE)->base.u.bits.saturating_flag)
+/* Nonzero in an expression, a decl, or a constant node if the node is
+ the result of a successful constant-folding. */
+#define EXPR_FOLDED(NODE) ((NODE)->base.u.bits.expr_folded_flag)
+
/* These flags are available for each language front end to use internally. */
#define TREE_LANG_FLAG_0(NODE) \
(TREE_NOT_CHECK2 (NODE, TREE_VEC, SSA_NAME)->base.u.bits.lang_flag_0)
@@ -1327,9 +1331,17 @@ extern void protected_set_expr_location (tree, location_t);
#define OMP_CLAUSE_LINEAR_VARIABLE_STRIDE(NODE) \
TREE_PROTECTED (OMP_CLAUSE_SUBCODE_CHECK (NODE, OMP_CLAUSE_LINEAR))
+/* True if a LINEAR clause is for an array or allocatable variable that
+ needs special handling by the frontend. */
+#define OMP_CLAUSE_LINEAR_ARRAY(NODE) \
+ (OMP_CLAUSE_SUBCODE_CHECK (NODE, OMP_CLAUSE_LINEAR)->base.deprecated_flag)
+
#define OMP_CLAUSE_LINEAR_STEP(NODE) \
OMP_CLAUSE_OPERAND (OMP_CLAUSE_SUBCODE_CHECK (NODE, OMP_CLAUSE_LINEAR), 1)
+#define OMP_CLAUSE_LINEAR_STMT(NODE) \
+ OMP_CLAUSE_OPERAND (OMP_CLAUSE_SUBCODE_CHECK (NODE, OMP_CLAUSE_LINEAR), 2)
+
#define OMP_CLAUSE_LINEAR_GIMPLE_SEQ(NODE) \
(OMP_CLAUSE_CHECK (NODE))->omp_clause.gimple_reduction_init
diff --git a/gcc-4.9/gcc/value-prof.c b/gcc-4.9/gcc/value-prof.c
index 289009347..c0bd06538 100644
--- a/gcc-4.9/gcc/value-prof.c
+++ b/gcc-4.9/gcc/value-prof.c
@@ -55,7 +55,11 @@ along with GCC; see the file COPYING3. If not see
#include "gcov-io.h"
#include "timevar.h"
#include "dumpfile.h"
+#include "langhooks.h"
+#include "params.h"
+#include "l-ipo.h"
#include "profile.h"
+#include "ipa-inline.h"
#include "data-streamer.h"
#include "builtins.h"
#include "tree-nested.h"
@@ -133,11 +137,10 @@ static bool gimple_divmod_fixed_value_transform (gimple_stmt_iterator *);
static bool gimple_mod_pow2_value_transform (gimple_stmt_iterator *);
static bool gimple_mod_subtract_transform (gimple_stmt_iterator *);
static bool gimple_stringops_transform (gimple_stmt_iterator *);
-static bool gimple_ic_transform (gimple_stmt_iterator *);
/* Allocate histogram value. */
-static histogram_value
+histogram_value
gimple_alloc_histogram_value (struct function *fun ATTRIBUTE_UNUSED,
enum hist_type type, gimple stmt, tree value)
{
@@ -349,6 +352,10 @@ dump_histogram_value (FILE *dump_file, histogram_value hist)
}
fprintf (dump_file, ".\n");
break;
+ case HIST_TYPE_INDIR_CALL_TOPN:
+ fprintf (dump_file, "Indirect call -- top N\n");
+ /* TODO add more elaborate dumping code. */
+ break;
case HIST_TYPE_TIME_PROFILE:
fprintf (dump_file, "Time profile ");
if (hist->hvalue.counters)
@@ -434,6 +441,11 @@ stream_in_histogram_value (struct lto_input_block *ib, gimple stmt)
case HIST_TYPE_TIME_PROFILE:
ncounters = 1;
break;
+
+ case HIST_TYPE_INDIR_CALL_TOPN:
+ ncounters = (GCOV_ICALL_TOPN_VAL << 2) + 1;
+ break;
+
case HIST_TYPE_MAX:
gcc_unreachable ();
}
@@ -638,6 +650,70 @@ check_counter (gimple stmt, const char * name,
return false;
}
+/* The overall number of invocations of the counter should match
+ execution count of basic block. Report it as error rather than
+ internal error as it might mean that user has misused the profile
+ somehow. STMT is the indiret call, COUNT1 and COUNT2 are counts
+ of two top targets, and ALL is the enclosing basic block execution
+ count. */
+
+static bool
+check_ic_counter (gimple stmt, gcov_type *count1, gcov_type *count2,
+ gcov_type all)
+{
+ location_t locus;
+ locus = (stmt != NULL)
+ ? gimple_location (stmt)
+ : DECL_SOURCE_LOCATION (current_function_decl);
+ if (*count1 > all && flag_profile_correction)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, locus,
+ "Correcting inconsistent value profile: "
+ "ic (topn) profiler top target count (%ld) exceeds "
+ "BB count (%ld)", (long)*count1, (long)all);
+ *count1 = all;
+ }
+ if (*count2 > all && flag_profile_correction)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, locus,
+ "Correcting inconsistent value profile: "
+ "ic (topn) profiler second target count (%ld) exceeds "
+ "BB count (%ld)", (long)*count2, (long)all);
+ *count2 = all;
+ }
+
+ if (*count2 > *count1)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, locus,
+ "Corrupted topn ic value profile: "
+ "first target count (%ld) is less than the second "
+ "target count (%ld)", (long)*count1, (long)*count2);
+ return true;
+ }
+
+ if (*count1 + *count2 > all)
+ {
+ /* If (COUNT1 + COUNT2) is greater than ALL by less than around 10% then
+ just fix COUNT2 up so that (COUNT1 + COUNT2) equals ALL. */
+ if ((*count1 + *count2 - all) < (all >> 3))
+ *count2 = all - *count1;
+ else
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, locus,
+ "Corrupted topn ic value profile: top two "
+ "targets's total count (%ld) exceeds bb count "
+ "(%ld)",
+ (long)(*count1 + *count2), (long)all);
+ return true;
+ }
+ }
+ return false;
+}
+
/* GIMPLE based transformations. */
@@ -690,9 +766,7 @@ gimple_value_profile_transformations (void)
}
if (changed)
- {
- counts_to_freqs ();
- }
+ counts_to_freqs ();
return changed;
}
@@ -1214,6 +1288,9 @@ init_node_map (bool local)
struct cgraph_node *n;
cgraph_node_map = pointer_map_create ();
+ if (L_IPO_COMP_MODE)
+ return;
+
FOR_EACH_DEFINED_FUNCTION (n)
if (cgraph_function_with_gimple_body_p (n)
&& !cgraph_only_called_directly_p (n))
@@ -1270,6 +1347,9 @@ init_node_map (bool local)
void
del_node_map (void)
{
+ if (L_IPO_COMP_MODE)
+ return;
+
pointer_map_destroy (cgraph_node_map);
}
@@ -1286,13 +1366,129 @@ find_func_by_profile_id (int profile_id)
return NULL;
}
+/* Initialize map of gids (gid -> cgraph node) */
+
+static htab_t gid_map = NULL;
+
+typedef struct func_gid_entry
+{
+ struct cgraph_node *node;
+ unsigned HOST_WIDEST_INT gid;
+} func_gid_entry_t;
+
+/* Hash function for function global unique ids. */
+
+static hashval_t
+htab_gid_hash (const void * ent)
+{
+ const func_gid_entry_t *const entry = (const func_gid_entry_t *) ent;
+ return entry->gid;
+}
+
+/* Hash table equality function for function global unique ids. */
+
+static int
+htab_gid_eq (const void *ent1, const void * ent2)
+{
+ const func_gid_entry_t *const entry1 = (const func_gid_entry_t *) ent1;
+ const func_gid_entry_t *const entry2 = (const func_gid_entry_t *) ent2;
+ return entry1->gid == entry2->gid;
+}
+
+static void
+htab_gid_del (void *ent)
+{
+ func_gid_entry_t *const entry = (func_gid_entry_t *) ent;
+ free (entry);
+}
+
+/* Initialize the global unique id map for functions. */
+
+static void
+init_gid_map (void)
+{
+ struct cgraph_node *n;
+
+ if (!gid_map)
+ gid_map = htab_create (10, htab_gid_hash, htab_gid_eq, htab_gid_del);
+
+ FOR_EACH_FUNCTION (n)
+ {
+ func_gid_entry_t ent, *entp;
+ func_gid_entry_t **slot;
+ struct function *f;
+ ent.node = n;
+ f = DECL_STRUCT_FUNCTION (n->decl);
+ /* Do not care to indirect call promote a function with id. */
+ if (!f || DECL_ABSTRACT (n->decl))
+ continue;
+ /* The global function id computed at profile-use time
+ is slightly different from the one computed in
+ instrumentation runtime -- for the latter, the intra-
+ module function ident is 1 based while in profile-use
+ phase, it is zero based. See get_next_funcdef_no in
+ function.c. */
+ ent.gid = FUNC_DECL_GLOBAL_ID (DECL_STRUCT_FUNCTION (n->decl));
+ slot = (func_gid_entry_t **) htab_find_slot (gid_map, &ent, INSERT);
+
+ gcc_assert (!*slot || ((*slot)->gid == ent.gid && (*slot)->node == n));
+ if (!*slot)
+ {
+ *slot = entp = XCNEW (func_gid_entry_t);
+ entp->node = n;
+ entp->gid = ent.gid;
+ }
+ else if (cgraph_pre_profiling_inlining_done)
+ {
+ (*slot)->node = cgraph_lipo_get_resolved_node (n->decl);
+ (*slot)->gid = ent.gid;
+ }
+ else
+ {
+ gcc_assert ((*slot)->gid == ent.gid && (*slot)->node == n);
+ }
+ }
+}
+
+/* Initialize the global unique id map for functions. */
+
+void
+cgraph_init_gid_map (void)
+{
+ if (!L_IPO_COMP_MODE)
+ return;
+
+ init_gid_map ();
+}
+
+/* Return cgraph node for function with global id. */
+
+struct cgraph_node *
+find_func_by_global_id (unsigned HOST_WIDE_INT gid, bool is_auto_fdo)
+{
+ func_gid_entry_t ent, *entp;
+
+ if (is_auto_fdo)
+ return cgraph_node_for_asm (get_identifier ((const char *) gid));
+
+ gcc_assert (gid_map);
+
+ ent.node = NULL;
+ ent.gid = gid;
+ entp = (func_gid_entry_t *)htab_find (gid_map, &ent);
+ if (entp)
+ return entp->node;
+ return NULL;
+}
+
+
/* Perform sanity check on the indirect call target. Due to race conditions,
false function target may be attributed to an indirect call site. If the
call expression type mismatches with the target function's type, expand_call
may ICE. Here we only do very minimal sanity check just to make compiler happy.
Returns true if TARGET is considered ok for call CALL_STMT. */
-static bool
+bool
check_ic_target (gimple call_stmt, struct cgraph_node *target)
{
location_t locus;
@@ -1456,26 +1652,11 @@ gimple_ic (gimple icall_stmt, struct cgraph_node *direct_call,
*/
static bool
-gimple_ic_transform (gimple_stmt_iterator *gsi)
+gimple_ic_transform_single_targ (gimple stmt, histogram_value histogram)
{
- gimple stmt = gsi_stmt (*gsi);
- histogram_value histogram;
gcov_type val, count, all, bb_all;
struct cgraph_node *direct_call;
- if (gimple_code (stmt) != GIMPLE_CALL)
- return false;
-
- if (gimple_call_fndecl (stmt) != NULL_TREE)
- return false;
-
- if (gimple_call_internal_p (stmt))
- return false;
-
- histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_INDIR_CALL);
- if (!histogram)
- return false;
-
val = histogram->hvalue.counters [0];
count = histogram->hvalue.counters [1];
all = histogram->hvalue.counters [2];
@@ -1540,6 +1721,219 @@ gimple_ic_transform (gimple_stmt_iterator *gsi)
return true;
}
+/* Convert indirect function call STMT into guarded direct function
+ calls. Multiple indirect call targets are supported. HISTOGRAM
+ is the target distribution for the callsite. */
+
+static bool
+gimple_ic_transform_mult_targ (gimple stmt, histogram_value histogram)
+{
+ gcov_type val1, val2, count1, count2, all, bb_all;
+ gcov_type prob1, prob2;
+ gimple modify1, modify2;
+ struct cgraph_node *direct_call1 = 0, *direct_call2 = 0;
+ int perc_threshold, count_threshold, always_inline;
+ int use_hotness_heur = false;
+ location_t locus;
+
+ val1 = histogram->hvalue.counters [1];
+ count1 = histogram->hvalue.counters [2];
+ val2 = histogram->hvalue.counters [3];
+ count2 = histogram->hvalue.counters [4];
+ bb_all = flag_auto_profile ? histogram->hvalue.counters[0]
+ : gimple_bb (stmt)->count;
+ all = bb_all;
+
+ gimple_remove_histogram_value (cfun, stmt, histogram);
+
+ if (count1 == 0)
+ return false;
+
+ perc_threshold = PARAM_VALUE (PARAM_ICALL_PROMOTE_PERCENT_THRESHOLD);
+ count_threshold = PARAM_VALUE (PARAM_ICALL_PROMOTE_COUNT_THRESHOLD);
+ always_inline = PARAM_VALUE (PARAM_ALWAYS_INLINE_ICALL_TARGET);
+ use_hotness_heur = PARAM_VALUE (PARAM_ICALL_USE_HOTNESS_HEUR);
+
+ if (!use_hotness_heur)
+ {
+ if (100 * count1 < all * perc_threshold || count1 < count_threshold)
+ return false;
+ }
+ else
+ {
+ if (!maybe_hot_count_p (cfun, count1))
+ return false;
+ }
+
+ if (check_ic_counter (stmt, &count1, &count2, all))
+ return false;
+
+ if (all > 0)
+ {
+ prob1 = (count1 * REG_BR_PROB_BASE + all / 2) / all;
+ if (all - count1 > 0)
+ prob2 = (count2 * REG_BR_PROB_BASE
+ + (all - count1) / 2) / (all - count1);
+ else
+ prob2 = 0;
+ }
+ else
+ prob1 = prob2 = 0;
+
+ direct_call1 = find_func_by_global_id (val1, flag_auto_profile);
+
+ if (val2 && (100 * count2 >= all * perc_threshold)
+ && count2 > count_threshold)
+ direct_call2 = find_func_by_global_id (val2, flag_auto_profile);
+
+ locus = (stmt != NULL) ? gimple_location (stmt)
+ : DECL_SOURCE_LOCATION (current_function_decl);
+ if (direct_call1 == NULL
+ || !check_ic_target (stmt, direct_call1))
+ {
+ if (dump_enabled_p () && !flag_auto_profile)
+ {
+ if (!direct_call1)
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, locus,
+ "Can not find indirect call target decl "
+ "(%d:%d)[cnt:%u] in current module",
+ EXTRACT_MODULE_ID_FROM_GLOBAL_ID (val1),
+ EXTRACT_FUNC_ID_FROM_GLOBAL_ID (val1),
+ (unsigned) count1);
+ else
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, locus,
+ "Can not find promote indirect call target decl "
+ "-- type mismatch (%d:%d)[cnt:%u] in current "
+ "module",
+ EXTRACT_MODULE_ID_FROM_GLOBAL_ID (val1),
+ EXTRACT_FUNC_ID_FROM_GLOBAL_ID (val1),
+ (unsigned) count1);
+ }
+ return false;
+ }
+
+ /* Don't indirect-call promote if the target is in auxiliary module and
+ DECL_ARTIFICIAL and not TREE_PUBLIC, because we don't static-promote
+ DECL_ARTIFICIALs yet. */
+ if (cgraph_is_auxiliary (direct_call1->decl)
+ && DECL_ARTIFICIAL (direct_call1->decl)
+ && ! TREE_PUBLIC (direct_call1->decl))
+ return false;
+
+ modify1 = gimple_ic (stmt, direct_call1, prob1, count1, all);
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, locus,
+ "Promote indirect call to target (call count:%u) %s",
+ (unsigned) count1,
+ lang_hooks.decl_printable_name (direct_call1->decl,
+ 3));
+
+ if (always_inline && count1 >= always_inline)
+ {
+ /* TODO: should mark the call edge. */
+ DECL_DISREGARD_INLINE_LIMITS (direct_call1->decl) = 1;
+ }
+ if (dump_file)
+ {
+ fprintf (dump_file, "Indirect call -> direct call ");
+ print_generic_expr (dump_file, gimple_call_fn (stmt), TDF_SLIM);
+ fprintf (dump_file, "=> ");
+ print_generic_expr (dump_file, direct_call1->decl, TDF_SLIM);
+ if (flag_auto_profile)
+ fprintf (dump_file, " (%s)\n", (char *) val1);
+ else
+ fprintf (dump_file, " (module_id:%d, func_id:%d)\n",
+ EXTRACT_MODULE_ID_FROM_GLOBAL_ID (val1),
+ EXTRACT_FUNC_ID_FROM_GLOBAL_ID (val1));
+ fprintf (dump_file, "Transformation on insn:\n");
+ print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
+ fprintf (dump_file, "==>\n");
+ print_gimple_stmt (dump_file, modify1, 0, TDF_SLIM);
+ fprintf (dump_file, "hist->count "HOST_WIDEST_INT_PRINT_DEC
+ " hist->all "HOST_WIDEST_INT_PRINT_DEC"\n", count1, all);
+ }
+
+ if (direct_call2 && check_ic_target (stmt, direct_call2)
+ /* Don't indirect-call promote if the target is in auxiliary module and
+ DECL_ARTIFICIAL and not TREE_PUBLIC, because we don't static-promote
+ DECL_ARTIFICIALs yet. */
+ && ! (cgraph_is_auxiliary (direct_call2->decl)
+ && DECL_ARTIFICIAL (direct_call2->decl)
+ && ! TREE_PUBLIC (direct_call2->decl)))
+ {
+ modify2 = gimple_ic (stmt, direct_call2,
+ prob2, count2, all - count1);
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, locus,
+ "Promote indirect call to target (call count:%u) %s",
+ (unsigned) count2,
+ lang_hooks.decl_printable_name (direct_call2->decl,
+ 3));
+
+ if (always_inline && count2 >= always_inline)
+ {
+ /* TODO: should mark the call edge. */
+ DECL_DISREGARD_INLINE_LIMITS (direct_call2->decl) = 1;
+ }
+ if (dump_file)
+ {
+ fprintf (dump_file, "Indirect call -> direct call ");
+ print_generic_expr (dump_file, gimple_call_fn (stmt), TDF_SLIM);
+ fprintf (dump_file, "=> ");
+ print_generic_expr (dump_file, direct_call2->decl, TDF_SLIM);
+ if (flag_auto_profile)
+ fprintf (dump_file, " (%s)\n", (char *) val2);
+ else
+ fprintf (dump_file, " (module_id:%d, func_id:%d)\n",
+ EXTRACT_MODULE_ID_FROM_GLOBAL_ID (val2),
+ EXTRACT_FUNC_ID_FROM_GLOBAL_ID (val2));
+ fprintf (dump_file, "Transformation on insn\n");
+ print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
+ fprintf (dump_file, "=>\n");
+ print_gimple_stmt (dump_file, modify2, 0, TDF_SLIM);
+ fprintf (dump_file, "hist->count "HOST_WIDEST_INT_PRINT_DEC
+ " hist->all "HOST_WIDEST_INT_PRINT_DEC"\n", count2,
+ all - count1);
+ }
+ }
+
+ return true;
+}
+
+/* Perform indirect call (STMT) to guarded direct function call
+ transformation using value profile data. */
+
+bool
+gimple_ic_transform (gimple_stmt_iterator *gsi)
+{
+ gimple stmt = gsi_stmt (*gsi);
+ histogram_value histogram;
+ tree callee;
+
+ if (gimple_code (stmt) != GIMPLE_CALL)
+ return false;
+
+ callee = gimple_call_fn (stmt);
+
+ if (TREE_CODE (callee) == FUNCTION_DECL)
+ return false;
+
+ histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_INDIR_CALL);
+ if (!histogram)
+ {
+ histogram = gimple_histogram_value_of_type (cfun, stmt,
+ HIST_TYPE_INDIR_CALL_TOPN);
+ if (!histogram)
+ return false;
+ }
+
+ if (histogram->type == HIST_TYPE_INDIR_CALL)
+ return gimple_ic_transform_single_targ (stmt, histogram);
+ else
+ return gimple_ic_transform_mult_targ (stmt, histogram);
+}
+
/* Return true if the stringop CALL with FNDECL shall be profiled.
SIZE_ARG be set to the argument index for the size of the string
operation.
@@ -1883,9 +2277,13 @@ gimple_indirect_call_to_profile (gimple stmt, histogram_values *values)
values->reserve (3);
- values->quick_push (gimple_alloc_histogram_value (cfun, HIST_TYPE_INDIR_CALL,
- stmt, callee));
-
+ if (flag_dyn_ipa)
+ values->quick_push (gimple_alloc_histogram_value (cfun,
+ HIST_TYPE_INDIR_CALL_TOPN,
+ stmt, callee));
+ else
+ values->quick_push (gimple_alloc_histogram_value (cfun, HIST_TYPE_INDIR_CALL,
+ stmt, callee));
return;
}
@@ -1971,7 +2369,7 @@ gimple_find_values_to_profile (histogram_values *values)
break;
case HIST_TYPE_INDIR_CALL:
- hist->n_counters = 3;
+ hist->n_counters = 3;
break;
case HIST_TYPE_TIME_PROFILE:
@@ -1986,6 +2384,10 @@ gimple_find_values_to_profile (histogram_values *values)
hist->n_counters = 1;
break;
+ case HIST_TYPE_INDIR_CALL_TOPN:
+ hist->n_counters = (GCOV_ICALL_TOPN_VAL << 2) + 1;
+ break;
+
default:
gcc_unreachable ();
}
diff --git a/gcc-4.9/gcc/value-prof.h b/gcc-4.9/gcc/value-prof.h
index 9d2c3516d..af3a74ea2 100644
--- a/gcc-4.9/gcc/value-prof.h
+++ b/gcc-4.9/gcc/value-prof.h
@@ -34,6 +34,8 @@ enum hist_type
called in indirect call */
HIST_TYPE_AVERAGE, /* Compute average value (sum of all values). */
HIST_TYPE_IOR, /* Used to compute expected alignment. */
+ HIST_TYPE_INDIR_CALL_TOPN, /* Tries to identify the top N most frequently
+ called functions in indirect call. */
HIST_TYPE_TIME_PROFILE, /* Used for time profile */
HIST_TYPE_MAX
};
@@ -75,6 +77,8 @@ typedef vec<histogram_value> histogram_values;
extern void gimple_find_values_to_profile (histogram_values *);
extern bool gimple_value_profile_transformations (void);
+histogram_value gimple_alloc_histogram_value (struct function *, enum hist_type,
+ gimple stmt, tree);
histogram_value gimple_histogram_value (struct function *, gimple);
histogram_value gimple_histogram_value_of_type (struct function *, gimple,
enum hist_type);
@@ -89,7 +93,8 @@ void verify_histograms (void);
void free_histograms (void);
void stringop_block_profile (gimple, unsigned int *, HOST_WIDE_INT *);
gimple gimple_ic (gimple, struct cgraph_node *, int, gcov_type, gcov_type);
-
+bool check_ic_target (gimple, struct cgraph_node *);
+bool gimple_ic_transform (gimple_stmt_iterator *);
/* In tree-profile.c. */
extern void gimple_init_edge_profiler (void);
@@ -116,4 +121,3 @@ extern void branch_prob (void);
extern void end_branch_prob (void);
#endif /* GCC_VALUE_PROF_H */
-
diff --git a/gcc-4.9/gcc/varasm.c b/gcc-4.9/gcc/varasm.c
index 8e8c5f663..f4da29576 100644
--- a/gcc-4.9/gcc/varasm.c
+++ b/gcc-4.9/gcc/varasm.c
@@ -52,6 +52,7 @@ along with GCC; see the file COPYING3. If not see
#include "targhooks.h"
#include "cgraph.h"
#include "pointer-set.h"
+#include "l-ipo.h"
#include "asan.h"
#include "basic-block.h"
@@ -1548,6 +1549,13 @@ notice_global_symbol (tree decl)
|| !MEM_P (DECL_RTL (decl)))
return;
+ if (L_IPO_COMP_MODE
+ && ((TREE_CODE (decl) == FUNCTION_DECL
+ && cgraph_is_auxiliary (decl))
+ || (TREE_CODE (decl) == VAR_DECL && varpool_get_node (decl)
+ && varpool_is_auxiliary (varpool_get_node (decl)))))
+ return;
+
/* We win when global object is found, but it is useful to know about weak
symbol as well so we can produce nicer unique names. */
if (DECL_WEAK (decl) || DECL_ONE_ONLY (decl) || flag_shlib)
@@ -2287,6 +2295,13 @@ assemble_external (tree decl ATTRIBUTE_UNUSED)
If it's not, we should not be calling this function. */
gcc_assert (asm_out_file);
+ /* Processing pending items from auxiliary modules are not supported
+ which means platforms that requires ASM_OUTPUT_EXTERNAL may
+ have issues. (TODO : one way is to flush the pending items from
+ auxiliary modules at the end of parsing the module) */
+ if (L_IPO_IS_AUXILIARY_MODULE)
+ return;
+
/* In a perfect world, the following condition would be true.
Sadly, the Java and Go front ends emit assembly *from the front end*,
bypassing the call graph. See PR52739. Fix before GCC 4.8. */
@@ -2370,7 +2385,7 @@ mark_decl_referenced (tree decl)
functions can be marked reachable, just use the external
definition. */
struct cgraph_node *node = cgraph_get_create_node (decl);
- if (!DECL_EXTERNAL (decl)
+ if (!(DECL_EXTERNAL (decl) || cgraph_is_aux_decl_external (node))
&& !node->definition)
cgraph_mark_force_output_node (node);
}
@@ -5550,6 +5565,11 @@ do_assemble_alias (tree decl, tree target)
if (TREE_ASM_WRITTEN (decl))
return;
+ if (L_IPO_COMP_MODE
+ && lookup_attribute ("weakref", DECL_ATTRIBUTES (decl))
+ && TREE_ASM_WRITTEN (DECL_ASSEMBLER_NAME (decl)))
+ return;
+
/* We must force creation of DECL_RTL for debug info generation, even though
we don't use it here. */
make_decl_rtl (decl);
@@ -5648,6 +5668,12 @@ assemble_alias (tree decl, tree target)
{
tree target_decl;
+ if (L_IPO_IS_AUXILIARY_MODULE)
+ {
+ if (!lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
+ return;
+ }
+
if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
{
tree alias = DECL_ASSEMBLER_NAME (decl);
diff --git a/gcc-4.9/gcc/varpool.c b/gcc-4.9/gcc/varpool.c
index acb522100..d9b9a1ad5 100644
--- a/gcc-4.9/gcc/varpool.c
+++ b/gcc-4.9/gcc/varpool.c
@@ -33,7 +33,9 @@ along with GCC; see the file COPYING3. If not see
#include "target.h"
#include "output.h"
#include "gimple-expr.h"
+#include "toplev.h"
#include "flags.h"
+#include "l-ipo.h"
#include "pointer-set.h"
/* List of hooks triggered on varpool_node events. */
@@ -150,6 +152,7 @@ varpool_node_for_decl (tree decl)
return node;
node = varpool_create_empty_node ();
+ node->module_id = current_module_id;
node->decl = decl;
symtab_register_node (node);
return node;
@@ -161,12 +164,15 @@ varpool_remove_node (varpool_node *node)
{
tree init;
varpool_call_node_removal_hooks (node);
+ varpool_remove_link_node (node);
symtab_unregister_node (node);
/* Because we remove references from external functions before final compilation,
we may end up removing useful constructors.
FIXME: We probably want to trace boundaries better. */
- if ((init = ctor_for_folding (node->decl)) == error_mark_node)
+ if (cgraph_state == CGRAPH_LTO_STREAMING)
+ ;
+ else if ((init = ctor_for_folding (node->decl)) == error_mark_node)
varpool_remove_initializer (node);
else
DECL_INITIAL (node->decl) = init;
@@ -302,7 +308,18 @@ ctor_for_folding (tree decl)
if (DECL_VIRTUAL_P (real_decl))
{
gcc_checking_assert (TREE_READONLY (real_decl));
- return DECL_INITIAL (real_decl);
+ if (DECL_INITIAL (real_decl))
+ return DECL_INITIAL (real_decl);
+ else
+ {
+ /* The C++ front end creates VAR_DECLs for vtables of typeinfo
+ classes not defined in the current TU so that it can refer
+ to them from typeinfo objects. Avoid returning NULL_TREE. */
+ /* In LIPO mode, the DECL_CONTEXT may have been cleared. */
+ if (!L_IPO_COMP_MODE)
+ gcc_checking_assert (!COMPLETE_TYPE_P (DECL_CONTEXT (real_decl)));
+ return error_mark_node;
+ }
}
/* If there is no constructor, we have nothing to do. */
@@ -504,7 +521,7 @@ varpool_remove_unreferenced_decls (void)
{
enqueue_node (node, &first);
if (cgraph_dump_file)
- fprintf (cgraph_dump_file, " %s", node->asm_name ());
+ fprintf (cgraph_dump_file, " %s/%d", node->asm_name (), node->order);
}
}
while (first != (varpool_node *)(void *)1)
@@ -545,7 +562,7 @@ varpool_remove_unreferenced_decls (void)
if (!node->aux)
{
if (cgraph_dump_file)
- fprintf (cgraph_dump_file, " %s", node->asm_name ());
+ fprintf (cgraph_dump_file, " %s/%d", node->asm_name (), node->order);
if (pointer_set_contains (referenced, node))
varpool_remove_initializer (node);
else